

Modulation meter expertise has always meant mi-ever since we were the only manufacturer. So, if you are in the market for deviation or modulation meters, you could save yourself time and trouble by considering the mi range first . . . anything from lowest priced automatic to sophisticated, low noise, high performance instruments. TF2303 Compact and lightweight, this manual model is still preferred by many engineers for mobile radio testing on the bench or in the field. FM deviation and AM depth at carrier frequencies up to 520 MHz .
TF 2304 A low priced automatic with high performance. Automatic tuning and level setting with exceptionally good r.f. screening. Eight peak deviation ranges from 1.5 to 150 kHz and a.m. ranges at carrier frequencies from 18 to 1000 MHz . TF 2300B A high-grade instrument with exceptional low noise performance, TF 2300B is often used as a standard for lower grade types. As a multipurpose instrument it can measure peak deviations up to 500 kHz (at. modulating
frequencies up to 200 kHz) for carrier frequencies up to 1200 MHz . Applications include tests on mono and stereo broadcast transmitters, mobile radio type approval and f.m./a.m. production testing. Crystal oscillator TK 2302 plugs into TF 2300B for extra low noise testing.
TF 2300BM series: A series of specials (e.g. for measuring a.m. on f.m.).

TF 2301A Fully programmable, for use in automatic test systems. Special peak detector designed to follow rapidly increasing or decreasing modulation depths. Deviation ranges 1.5 to 500 kHz and a.m. at carrier frequencies 4 to 1000 MHz . Accessories A range of accessories specially designed to make your job easier includes a signal sniffer, power attenuators, termination unit, r.f. fuse unit and carrying cases.
Ask for the latest information from the experts who have been in the business for over 30 years.

n!: THE MODULATION EXPERTS

LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{~K} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale.
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre
Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .
CURRENT RANGE
100pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overtoad is 50 mA .

MEASUREMENT TIME

< 3s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / I_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a $9 V$ battery

TRANSISTOR RANGES (PNP OR NPN)

${ }^{1}$ C в о ${ }^{\mathcal{Q I}} \mathrm{I}_{\text {e в o }}: 10 \mathrm{nA}, 100 \mathrm{nA}, \uparrow \mu \mathrm{A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$ 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV CBO: $\quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
IB: $\quad 10 n \mathrm{~A}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{\text {BE }}: \quad 1 \mathrm{~V} . \mathrm{s} . \mathrm{d} . \mathrm{acc} . \pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
${ }^{\mathrm{V}} \mathrm{CE}($ sat $): \quad 1 \mathrm{Vf.s.d.acc} \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $/ \mathrm{C} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or $30 \mathrm{acc} . \pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{\prime} D R$ As $I_{\text {E }}{ }^{\text {transistor ranges. }}$
V_{Z} : Breakdownranges as $B V_{C B O}$ for transistors.
$V_{D F} \quad 1 \mathrm{Vi.s.d.acc} \pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

\% \%

LEVELL ELECTRONICS LTD

Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-4495028/440 8686

Prices include batteries and U.K. delivery, V.A.T. extra
Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

It is now 2 years since we published this tuner design in the Wireless World. Since then it has been admired, sold across the world, built by countless people, talked about and copied, but this is still the best F.M. Tuner available.

Now further improved by the original designers:

* Updated circuitry gives full $88-108 \mathrm{MHz}$ tuning, and reduced hum level.
* New fibreglass P.C.B., fully anotated, drilled and tinned.
* Coil now supplied fully assembled and aligned, leaving NO adjustments after building, for the same price!
\star Illustrated booklet gives full description and assembly instructions for 50p, refundable on purchase
\star New REDUCED prices now INCLUDE U.K. postage and packing
\star Assembled modules now competitive with kits from other sources (Compare our prices!)
* Credit facilities now available via BARCLAYCARD AND ACCESS. Just quote your card number when ordering.
* New illustrated leaflet available, drop us a post card.

KITS

K1 All main board resistors, including tuning pot
$£ 5.32$
K2 All main board capacitors $£ 1.98$

K5 Stereo board resistors $\mathbf{£ 0 . 7 6}$
K6 Stereo board capacitors 1.05
$K 7$ Stereo P.C.B.i.c. and transistors £3.55
$\begin{array}{ll}\text { K8 } \\ \text { K9a } \\ 6 & \text { way function switches } \\ \text { waynel selector inc cermet pots, P. C. B }\end{array}$
£12.75
K10 Power supply, including transformer and P.C.B.
$£ 5.50$
K11 Full metalwork set, front panel, cabinet, plugs mains lead, wire, etc............25.60
K 12 Frequency meter and drive components for K 9 a
£.10.22

SEPARATE ITEMS (inc. in kits)

P.C.B. for main board	$\mathbf{£ 1 . 9 5}$
P.C.B. for stereo	$\mathbf{£ 0 . 9 5}$
P.C.B. for selector	$\mathbf{£ 0 . 9 5}$
PC.B. for power supply	$\mathbf{£ 0 . 9 5}$
MC1310 or equiv.	$\mathbf{£ 1 . 9 5}$
TBA750B	$\mathbf{£ 1 . 5 5}$
SL301B	$\mathbf{£ 1 . 1 0}$
SL3046	$\mathbf{£ 0 . 8 5}$
TBA625C (reg) \& heat sk.	$\mathbf{£ 1 . 1 5}$
LP1186 front end	$\mathbf{£ 5 . 9 5}$
Filter SFG 10.7MA	$\mathbf{£ 1 . 5 5}$
Coil. (assembled \& adjusted)	$\mathbf{£ 0 . 5 0}$
Ten turn tuning pot	$\mathbf{£ 3 . 0 0}$
Front panel	$\mathbf{£ 1 . 7 5}$
Teak cabinet	$\mathbf{£ 7 . 7 5}$
Meter (scaled 105 or 108 MHz)	$\mathbf{£ 8 . 8 5}$
Scale only (state which)	$\mathbf{E 0 . 3 0}$

All kits guaranteed to work or free repair!

FULL TUNER KIT £85.00 COMPLETED TUNER £92.50

ALL ORDERS ACKNOWLEDGED - EX STOCK DELIVERY
PLEASE ADD 25% VAT TO ALL ORDERS
33 Restrop View Purton, WILTS SN5 9DG

Viewer's Panel

The new DymarType 2085. An AFpower meter that let's you see what youre doing.

With a mirror-backed 11 cm meter - that's nearly $4 \frac{1}{2}$ in. - you are never in doubt about the reading. It's the same with the control settings. Man-sized knobs, click stops and clear markings make this AF power meter a joy to drive. Under the bonnet, of course, there's performance to match appearance Like:
Frequency range: 30 Hz to 30 kHz .
Power ranges: Twelve from $150 \mu \mathrm{~W}$ to 50 W (yes, fifty Watts).
Impedance ranges: 39 values, 1.2 ohms to 1000 ohms.
Plus all the little extras that come as standard with Dymar.
A temperature compensated 'square law' detector for true power reading on the sensibly linear meter scale.
And the battery power option. A simple module which provides integral battery and charger for laboratory standard measurements anywhere.
Measure AF power, AF gain loss or signal to noise, or match source impedances. Whichever way you use the Dymar Type 2085 the answers come out crystal clear. On a panel that's meant to be looked at. Not simply admired.

The Type 2085. Designed and made in Britain by Dymar. Write or call for details, or use the Reader Reply Service.

DTMAT

the name in radiotelephones

Dymar Electronics Limited,
Instruments Division, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA, England Telephone: Watford 37321. Teiex: 923035 Cables. Dymar Watford.

We've joined ChristopherWren in the dome business...

... as users of our Dome Tweeters will arready know

ISOPHON -are a company who have been manufacturing 亻oudspeakors for oye fity yearsia id are internationally known and respented for quity and reliability They offer a wide ramer of twee mid-rangéand báss units.

Owing to shoituge of spoce we arevonly able ta staw your atention to just two of the modets eurren䉓, being manufactured by / soption

Collect wireless world Circards. And build a valuable dossier on

Circards is a unique and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design data not available from any other single source.

Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and usually shows a specific tested circuit, a description of the circuit operation; component values and ranges; circuit limitations and modifications; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well protected.

Circard sets (10 cards) come in wallets and cost $£ 2.00$. A subscription for 10 consecutive sets costs $£ 18$.

Start your personal dossier on circuit design by completing and returning the coupon below.

Subjects already covered bv Circards

1. Basic active filters. 2 . Switching circuits comparators and schmitts.
2. Waveform generators. 4. AC measurements.
3. Audio circuits: preamplifiers, mixers, filters and tone controls.
4. Constant current circuits. 7. Power amplifiers. 8. Astables. 9. Opto-electronics.
5. Micropower circuits. 11. Basic logic gates.
6. Wideband amplifiers. 13. Alarm circuits.
7. Digital counters. 15. Pulse modulators.
8. Current differencing amplifiers - signal processing.
9. Current differencing amplifiers - generation.
10. Current differencing amplifiers -
measurement and detection.
To: General Sales Dept., IPC Business Press Ltd., Room 11 Dorset House, Stamford Street, London SE1 9LU

Please send me set no(s)	
	@ $£ 2.00$ each \square^{*}
$@ 18.00 \square^{*}$	

I wish to subscribe, starting with no
I enclose cheque/money order for $£$
*Tick as required/Cheques to be made payable to IPC Business Press Ltd.
19. Monostable circuits. 20 . Transistor pairs.
21. Voltage to frequency converters.
22. Amplitude modulators. 23. Reference circuits. 24. Voltage regulators
25. RC oscillators - I. 26. RC oscillators - II.
27. Linear C.M.O.S.-I.
28. Linear C.M.O.S.-II.
29. Analogue multipliers
30. Non-linear functions

Model X25 Point 1

Near-perfect insulation Breakdown voltage 1500 A.C. Leakage current 3-5 uA

Point 2

Top-efficiency in heat transfer.
Element slides inside the soldering tit
25 watts but equivalent in heat capacity to 60 watts

Point 3

Highgrade phenolic handle (own moulding!)
Stainless steel shaft
-3 core 0.4 mm flexible lead.

Point 4

Iron-coated bits that do not stick to the shaft but slide on ard off easily.
3 tip sizes 2.4, 3.2 and 4.7 mm .

Point 5

Price with standard (3.2 mm) bit £2.99 (0.22)
Spare elements $£ 1.47$
Spare bits $£ 0.47$ incl. VAT

Point 6

A well balanced tool ength 22 cm , weight 50 gr .

quickly-

 with ANTEX SolderingIronsFor dual-in-line de-soldering the model $X .25$ can be fitted with special bits 14A and 14B.
For other de-soldering jobs, we can supply our models ESS and GSS de-soldering irons working on compressed air (or with a footpump). Our catalogue gives further particulars.

Please send the following:

Please send the
ANTEX colour cataloque.

From radio or electrical dealers, car accessory shops or in case of difficulty direct from ANTEX LTD. FREEPOST, FLYMOUTH PL1 1BR (no stamp required) Tel. 075267377

FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Specitication
Basic error. 2.5\%
Sensitivity 8mA F.S.D.
Response 0.2 sec.
Width of each channel 80mm
Chart speeds, selected by push buttons
0.1-0.2-0.5-1-2.5-$-5-12.5-25 \mathrm{~mm} / \mathrm{sec}$.
Chart drive
. 200-250v 50Hz

Type H3020-3
Three-pen

Recording:
Syphon pen directly attached to moving coil frame, curvilinear co-ordirates

Equipment: Marker pen, Timerpen, Paper footage indicator, 10 rolls of paper. connectors. etc.

Dimensions: \quad H320-1: $285 \times 384 \times 16.5 \mathrm{~mm}$
H320-3: 475×384x 16.5 mm PRICE: H320-1 £108.00

H320-3 £160.00
Exclusive of VAT

ATE WDIW: HIOM TISOLDEING

Iso-Tip Cordless Soldering Iron

Ideal for factory, field servicing, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand.

The Iso-Tip is powered by long-hfe nickel cadmium batterıes giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$ Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all solderıng requirements.

Greenwood Electronics
Portman Rd, Reading RG3 1NE, England Telephone: Reading (0734) 595844. Telex: 848659

WW-028 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate_as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-Z 2" measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ PRICE £20.00 each [VAT 8\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

$£ 5.95$
plus 50 p paçking and surface post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request.
VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.

In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

$£ 3.95$

plus 50 p P. \& P.
Offer Order both courses for the bargain price $£ 9.25$, plus $50 p$ P. \& P

Designer
 Manager

Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be, refunded in full, no questions asked

[^0]

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault condit ions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your ow - - wete amany ineesesed
Surprising how often you'll find

Whiteley Electrical Radio Co. Ltd Mansfield, Notts NG185RW. England. Tel: 062324762.

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road. London N1 1LY. Tel: 01-607.8271

HEPWORTH ELECTRONICS

Worcester Road, Kidderminster Tel. 05622212 or 3
for
Quick, Clean, Low Cost, No Waste Breadboarding.

THE SK10 Socket

or its little brother the SK50 Socket. SK50 Costs £6.95, the SK10 Costs $£ 12.07$.
VAT and Postage extra or from London and South East Distributors

ASPEN ELECTRONICS
18A High Street, Northwood, Middlesex
Tel. 27688

Way out in front!

A great new line of RF-heating triodes from THOMSON-CSF:

- Output power from 100 to 800 kW .
- Superior PYROBLOC* grids and HYPERVAPOTRON* anode cooling - the latest word in power-grid tube technology.
Specially designed for industrial thermal treatment and bult using rugged metal/ceramic technology.
Get the latest advance in the power-grid tube state of the aft from the RF-heating leader:
THOMSON-CSF!
Contact us today.

THOMSON-CSF ELECTRONIC TUBES LTO RINGWAY HOUSE / BELL ROAD / DANESHILL

BASINGSTOKE RG 24 OQG
TEL. : (0256) 29155 /TELEX. 858865

LITTLE WONDER...THEMINITEST ISPREFERRED

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favounte with disceming people in the industry.

First, the appearance. Diminutive, neat, wipeclean plastic cover with pressed steel case

Controls are simple and easy to use.
Second, the range. The Minitest measures a.c.
and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively.

Third, High Voltage Probes. Will extend the range to 25 kV or 30 kV d.c. Ideal for T.V. sets and similar electronic equipment where source impeciance is high. Little wonder the Minitest is preferred!

Edgecumbe (Peebles) Limited,
Main Street,
Bothwell,
Scotland.
I.T.T. Electronic Services S.T.C. Ltd.

Edinburgh Way,
Harlow, Essex CM20 2DF.

Havant Instruments Ltd, Instrument House, 2A Waterloo Road, Havant, Hampshire
A. Electrics, 64-66 Crossgates Road, Leeds 15.

SALFORD ELECTRICAL INSTRUMENTS LIIMTED
Peel Works, Barton Lane, Eccles, Manchester M30 OHL
Telephone: 061-789 5081. Telex: 667711

A member company of GEC Electncal Components Lid.

WW - 057 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range

 comprises:Low profile (flatform) Timing Miniature Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler
Zettler
UK Division HA2 8AS
Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est. 187 ?

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30, $300 \& 1200$ (30 and 120 cps) Teleterm 1030 \& 1132 (portable 30 cps with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer
\star Sparts, repairs, overhauls and maintenance \star Other types and models available

* Refurbished units also available
* Short and long period rentals
\star Minicomputer interfaces \star Quantity discounts \star Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring

Complete the coupon and we'll sendyou our complete, new catalogue.

The new Heathkit catalogue is now out. Full as ever with exciting. new models. To make building a Heathkit even more intere:sting and satisfying.

And, naturally, being Heathkit, cevery kit is absolutely complete. Right down to the last nut and bolt. So you wont find yourself embarrassingly short of a vital componemt on a Saturday evening-when the shops are shut.

You'll also get a very casy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now (enclosing a 10p stamp for postage) and we'll send you your copy to browse through.

With the worlds largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test ('quipment, amateur radiogear, hi-fi equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happern to be in L.ondon or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next toour factory in Bristol Road.

At either one youll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Cloucester) Limited. Dept. W/W - 46 Bristol Road, Giloucester, GL2 2 GEF. Tel: Gloucester (0452) 29451.
1)igital electronic stop watch

AM/FM 60 watt r.m.s. stereo receiver

Digital rev counter

ANADEX CF-700
 1 GHz COUNTER FOR £475

Features include:-
$\star 1 \mathrm{GHz}$ count rate with 1 Hz resolution

* 30 mv sensitivity with high overload capa-
bility
* 8 digit 'SPERRY' display

Also: Model CF-710 giving $0.00^{-1} \mathrm{~Hz}$ resolution up to 10 kHz

2SOE electronics limited
 18a HIGH STREET, NORTHWOOD, MIDDX HA61BN TELEPHONE NORTHWOOD 27688

WW-034 FOR FURTHER DETAILS

GROOVAC

Vacuum cleaning is the best way to remove dust, especially fine dust. Now with the Groovac, vacuum cleaning is available for extracting the particles from inside record grooves which are responsible for record and stylus wear - while your record is playing.

For full details please write to:-

Kernick Road, Penryn Cornwall TR 10 900, England :Telephone: Penryn 72753

RADFORD

HIGH SENSITIVITY AUDIO VOLTMETERS AND NOISEMETERS

Four instruments are now available for the measurement of audio frequency signals including noise. They are derived from a basic battery operated voltmeter design having 16 measurement ranges from $10 \mu \mathrm{~V}$ for full scale meter deflection to 300 V f.s.d. The Voltmeter has a high input impedance and low inherent noise. It is fitted with a high grade meter having a $5^{\prime \prime}$ mirror scale of excellent linearity, calibrated in volts and dBv.

The Audio Voltmeter (HSV 1) become an Audio Noisemeter (ANM1) by the inclusion of frequency contouring networks having characteristics recommended by international organisations concerned with specifications and measurement standards as being suitable for the quantitative measurement of the subjective effect of noise in audio systems. The HSV 1 and ANM 1 instruments respond to the average or mean value of the waveform being measured and are calibrated in r.m.s. values on a sine wave.

In the HSV2 and ANM2 instruments an r.m.s. to d.c. converter module is incorporated which provides a true r.m.s. reading on waveforms with a crest factor in excess of 10 . These instruments are also provided with an additional output socket giving 1.00 V d.c. output corresponding to 1.00 V at nominal full scale meter deflection to operate a chart recorder or d.c. digital voltmeter.

All the instruments are fitted with a socket to enable an external network of any weighting characteristic to be introduced in the measuring circuit. This extends the use of the instruments to vibration and acoustical measurement as well as to the measurement of gramophone turntable rumble, f.m receiver noise, etc.

Brief Specification:

Frequency response as Voltmeter: 4 Hz to $500 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ input impedance: 1 M ohm shunted by 30 pF
Attenuator accuracy: 0.25\%
Meter scale linearity: 1%. Typically better than 0.5%
Waveform error in true r.m.s. Instruments: 1% for crest factor 10 Noisemeter included weighting characteristics: Wide band (flat response as voltmeter). DIN. 'Audio Band', IEC/DIN. Curve 'A', and CCIR

Size: $111 / 4^{\prime \prime} \times 71 / 4^{\prime \prime} \times 81 / 2^{\prime \prime}$ deep overall

HSV1	Audio Voltmeter. Average reading $\ldots . . . £ 125.00$
HSV2	Audio Voltmeter. True r.m.s. reading

Please write or phone for descriptive leaflet giving details of the design and full performance characteristics of the above instruments, together with a reprint copy of Dolby Laboratories Inc. Engineering Field Bulletin No. 19/2-'Noise Measurement on Consumer Equipment'

RADFORD LABORATORY INSTRUMENTS LTD.
Ashton Vale Road, Bristol. BS3 2HZ. Telephone 0272 662301

EXCLUSIVE

NON-ALABM E14 INC. YAT, ETC.

TEAK Case 70p extra

- Built-in Alarm
- Photo cell controlled brightness
- AM/PM Indicator
- Giant 0.5" LED Display
- 12/24 hr. mode
- Mains failure ind
- Tilt Snooze Sw.
- Separate alarm Control Sw
- 9 min . Snooze
- No knowledge of electronics to build kit

ELECTRONORGTECHNICA

carbon film

 RESISTORS$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12

EX-STOCK
$£ 4.00$
PER 1,000
PLUS
OF ONE VALUE
V.A.T

1-10,000 for same day shipment

Prices from 49p 100 rate Military grade-
ask for NATO conversion list
Custom design specials-
7-10 days for samples
15 years experience
Equivalents to most European \& U.S.type available

Evg Timplitents relephone: 0082.62241
Luton Road, Dunstable, Bedfordshire, LU5 4LJ England.

\& | AERO SERVICES LTD. |
| :--- |
| 44A Westbourne Grove |
| London W2 5SF |
| TEL: $01-7275641 \quad$ TELEX 261306 |

[^1]

Telford Oscilloscope cameras

Type A modular system with widest range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements.
Plus inexpensive Type P (prices from $\mathrm{f50}$) utilising coaterless Polaroid (8) film and 'Robot with economical 35 mm film for continuous feed.

Introduced to meet the demand for a simple, high quality, FOR for those who do not require full recording oscilloscope capabilities; the FOR-7 has a rectangular CRT which provides strip chart, $X-Y$ plot and single frame recording on low cost paper
WIDEBAND BRILLIANCE MODULATION
-for video imaging with good grey scale
HIGH FREQUENCY DEFLECTION AMPLIFIERS
-for trace recording with faithful transient response
VARIABLE SENSITIVITY AND POLARITY REVERSAL -for easy interfacing with displays and systems
BENCH, RACK OR BUILD-IN VERSIONS
-for general purpose laboratory or OEM applications
For further information or a demonstration of the FOR-7 or any other Medelec unit please contact:
MEDELEC LIMITED. Woking. Surrey GU22 9JU
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

medelec 然

WW 008 FOR FURTHER DETAILS

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.
LEEVERS-RICH EQUIPMENT LTD.
INC. BIAS ELECTRONICS
319 TRINITY RD., LONDON, SW18 3SL

servos

 synchronous control systems

PETITE PRECISION! A 12V DC POWER TOOL FOR THE DESIGN AÑD RESEARCH ENGINEER AVAILABLE IN KIT FORM OR SEPARATES EXAMPLE OF FRENCH PRECISION ENGINEERING EXE		

Bridge in a thousand

WAYNE KERR
 A member of the Wimot Breeden group

For more information phone Bognor (O2433) 25811, or write to Wayne Kerr, Durban Rd., Bognor Regis, Sussex PO22 9RL

One part in one thousand is the accuracy of Universal Bridge B224 from 10 ohms to 1 gigohm, 0.1 pF to 10 microfarads and 1 nanomho to 100 millimhos. Monitor its 1592 Hz source frequency and also get 0.1% from 1 mH to 10 kH . With reducing accuracy, coverage extends above and below the ranges quoted, on R, C, G and L. Resistive and reactive terms read simultaneously. Sockets for $200 \mathrm{~Hz}-50 \mathrm{kHz}$ operation. Internal rechargeable battery. Many other valuable features detailed in Data Sheet B224.

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham, midolesex telephone 01-894 9141

WW-027 FOR FURTHER DETAILS

nombrex WIDERANGEAUDIO GENERATOR $£ 42.49$ + VAT

$\star 4$ RANGES, $10 \mathrm{~Hz}-100 \mathrm{KHz}$.

* SINE AND SQUARE WAVE OUTPUT,
* DUAL CALIBRATED ATTENUATOR
* STABILIZED OUTPUT LEVEL 1 V .

[^2]NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET NEWTON ABBOT, DEVON TQ12 INE Tel. Newion Abbot 68297
 WW-039 FOR FURTHER DETAILS

WW-051 FOR FURTHER DETAILS

In a range of multimeters with pointers whats the point of one without

The point is that for some applications, a digital indicator makes a lot of sense That's why AVO makes the the Digital Avometer DA 114. It offers youa choice of $D C, A C$ and resistance ranges at high accuracy. High input impedance, comprehensive built-in calibration check facilities, two versions - one for mains operation, the other with built-in rechargeable battery and mains operátion.

It offers you the best of the traditional AVO features - reliability, ruggedness, range, repairability, readability and, perhapsabove all, AVO accuracy. Plus the best of the new generation multimeters.

As you can imagine, our designers took a long hard look at digitals before they produced a Digita! Avometer. For instance, they realized that the aisplays on some digital meters could be a positive nuisance in many applications. After all, you don't always need accuracy to the 'nth degree-so where you'd normally just glance at an analogue pointer you could find yoursèlf screwing your eyes up at a diminutive and
faintly glowing digital. A few hours of that and the average engineer would be begging for the return of his old analogue meter.

That's why we gave the DA 114 numerals big and bright enough to read across a room. And it's the reason that AVO, while producing one of the few 'serious' digital multimeters, still produces what is probably the widest range of analogue multimeters for the electronics engineer.

The AVO range for Electronics Engineers includes Model 8 Mk 5, Model 72, and the high impedance models EM 272 and EA 113.

For full details of the range, contact your distributor or write to:
AVO Limited, Archcliffe Road, Dover, Kent CT179EN. Telephone: Dover (0304) 202620. Telex: 96283

1 ThornMeasurement Controland Automation Division

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm).
- Simple operation $\mathbf{1 0 0 \%}$ British
- Burr-free holes - no jagged edges
- 57 Metric and Linear sizes (LLsts on appication)

Used all over the world by: Government services - Atomic, Military, Naval, Air, G.P.O and Ministry of Works; Radio, Motor and Industrial manufacturers, Plumbing and Sheet Metal Trades, Garages, etc
Obtainable from leading tool factors
Wholesale \& Export enquiries to:
> "Q•MAX"(ELECTRONICS)LTD 44 PENTON STREET-LONDON N19OA Tel: 012782500

TPA 50-D Specification
$\begin{array}{ll}\text { Power Output } & 100 \text { watts rms into } 4 \text { ohms } \\ & 65 \text { watts rms into } 15 \text { ohms }\end{array}$
Freq Response $\quad \pm_{0} .1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. 1 dB at 150 KHz

| Total harmonic
 distortion Less than 0.04%
 50 at all levels up to |
| :--- | :--- |有 Input sensitivity OdBm

Noise $\quad-100 \mathrm{~dB}$
Rise time 2 u seconds
Price
100V Line (C.T.) and balanced inputs available.
For full technical information contact:
h|helectronc
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7
WW- 025 FOR FURTHER DETAILS

FREQUENCY COUNTERS HIGHER PERFORMANCE INSTRUMENTS FROM $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . MEASURING FREQUENCY, PERIOD, TIME, FREQ. IRATIO AND CALIBRATED OUTPUT FACILITY. FAST DELIVERY.

WW-095 FOR FURTHER DETAILS

Meets in every respect all current specifications
for measurement of Wow, Flutter and Drift
on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc High accuracy
with crystal controlled oscillator Simple to use
accepts wide range of input signals with no manial tuning or adjustment Two models available: Type 1742° A BS A847: 1972 DIN 45507 CCIR 409-2 Specifications Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications
k^{s}
RANK FILM
EQUIPMENT

STABILISED TWIN POWER SUPPLIES TO 30V AT 2 AMP

LINSTEAD

MANUFACTURING CO. LTD.

ROSLYN ROAD LONDON N15 5JB

 01-8025144MAIN AGENTS
PO BOX $212 A$ DUBLIN 2 DENMARK: IRELAND: LENNOX LTD PO BOX 210, DK-2100 COPENHAGEN SCANFYSIK AB, $13 / 15$ HJOR.RINGADEGEN 17 . FACK S-171 19 SOLDEN: EORWAY. EMI NORSK AS POSTBOKS 42, KORSVOLL. OSLO 8 MALAYSIA: LEC Soln Bhd, P.O. BOX 60, BATU-PAHAT SOUTH ASPICA: PROTEA (PTY) 38 FARADAY STREET, JOHANNESBURG

AEL 3030

The AEL 3030 is a compact, fully solid-state 150 watt PEP output Transmitter-Receiver covering 2.16 MHz on 4 or 6 channels.
Rugged construction for today's tough environments. Easily accessible for simple maintenance.
Ten plug-in modules give maximum insurance against loss of service.

The advanced technology used in the AEL 3030 provides unmatched efficiency in point to point or mobile communication, minimises size and cost and maximises reliability!
DESIGNED FOR RELIABILITY

For further information and colour brochu:se write to HORI_EY, SURREY, ENGLAND TELEPHONE HORLEY (02934) 5353
Telex 87116 (Aerocon Horley)
Cables Aerocon Telex Horlev
WW085-FOR FURTHER DETAILS

SOUND INSTALLATIONS

Design, installation and commissioning of recording and broadcast studios, sound reinforcement equipment, theatre communication and other systems

SOUND EQUIPMENT

Supply and, where required, manufacture of equipment to customers' specifications.
We also specialise in television, lighting and other systems.
PHILIP DRAKE ELECTRONICS LTD.
165 lancaster road. new barnet, herts.
Telephone: 01-445 1144

Audio Connectors
Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut

Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street London W1V 3LE 01-437 1892/3

WW-080 FOR FURTHER DETAILS

WW-070 FOR FURTHER DETAILS

SPECIALISTS IN COIL AND TRANSFORMER WINDING:

Torroidal: c core: high speed high turn bobbin winding: chokes and wave winding
any quantity, any rating

Send for new catalogue.

27 STATION ROAD BRIMINGTON CHESTERFIELD
DERBYSHIRE, ENGLAND
TEL: 0246 70297/8/9
TELEX 54284

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:\star very low distortion content-less than 0.03%
\star an output conforming to RIAA recording characteristic
\star battery operation for no ripple or hum loop

* square wave output of fast rise time
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc

HIGH POWER DC-COUPLED AMPLIFIER

\star UP TO 500 WATTS RMS FROM ONE CHANNEL

* DC-COUPLED THROUGHOUT
^ OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan Phase Response Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise $(20-20 \mathrm{kHz})$

DC-20kHz@ 150 watts $+1 \mathrm{db} .-0 \mathrm{db}$ 500 watts rms into 2.5 ohms $+0 .-15 \mathrm{DC}$ to 20 kHz . 1 watt 88 Below 0.05\% DC to 20 kHz
Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 82 At least 110 db below 150 watts Other models in the range: D60-60 watts per channel

Slewing Rate Load impedance Inpur sensitivity Input Impedance Protection Power supply Dimensions

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω 10K ohms to 100 K ohms Short. mismatch \& open cct. protection $120.256 \mathrm{~V}, 50.400 \mathrm{~Hz}$
19" Rackmount. $7^{\prime \prime}$ High. $9 \frac{33^{\prime \prime}}{}{ }^{\circ}$ Deep D150- $\$ 50$ watts per channel

MACINNES LABORATORIES LTD

MACINNES HOUSE, CARLTON PARK INDUSTRIAL ESTATE, SAXMUNDHAM, SUFFOLK IP17 2NL TEL: (0728) 22622615

PB Reliant drill kit 9000 RPM drill with 20 assorted tools only $£ 9.40$ inclus. post + VAT.

Building Circuits? IC or Discreet? Use DeC Breadboards. No soldering. 208 Contact points. Step by step instructions. Build hundreds of circuits. Use components over and over again. U-DeC "B" $£ 6.99$ inclusive of postage and VAT.

U-DeC "B" with sockets for inserting 2×16 DIL Packages

[^3]
Alice Broadcasting STM6

The definitive DJ / OB / Production Mixer Can you afford to use anything use?

ALICE (STANCOIL LTD.), 38 ALEXANDRA ROAD, WINDSOR, BERKS, ENGLAND

Also available from Roger Squires, London and Manchester

The International

(10)When anew nois nicerded orthe oldone needs reparining

Contact the appointed U.K. distributor with authorized repair service:-

FARNELL INTERNATIONAL INSTRUMENTS LTD
Sandbeck Way, Wetherby
LS22 4DH
Tel. 09373541 or
018647433

WW-088 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

Add LUSTRE to every Performance

Lustre Pick-up arms have variable Magnetic anti-skating, stylus overhang adjustment, lateral balance and height adjustment plus

SPECIFICATION

 an oil damped arm lifter and two plug-in headshells all to add Lustre to your HiFi performance.The Lustre Pick-up Arm is beautifully finished in satin chrome and black to complement the precision engineering employed in its manufacture and yet it is (approximately) half the recommended price of those few other arms which rival its performance.
ratented Direct Masnetic Dialling System
Twu lleadshells provided with Gold Plated Contacts

* Otfset angle 210
*Tacking error angle
Less than 1.50
* Weight range of suitable Cartridge: 5-30g
Connecting leads
Low Capacity Phono
Plug
- Plygus pressure is by micro adjustment graduated
from 0-3g
* Height Adjustment is from $45-60 \mathrm{~mm}$
* Overall length: 330 mm
* F.ffective length : 237 mm
* Overhang: 15 mm
haKUTO
INTERNATIONAL (U.K.) LTD.,

Halkuto

Hakuto House, 557/563 Rayleigh Road, Leigh-on-Sea, Essex, SS9 5HP. Telephone (0703) 526622 WW - Oof FOR FURTHER DETAILS

Case Systems, 20 Hunt Lane, Chadderton, Lancs. England.
Trade Enquires welcome

digital arithmetic tutor

Like all it's predecessors, Limrose's Digital Arithmetic Tufor is an extremely versatile and low cost computer training aid. It is very reliable, portable and comes completé with mains cperated power supplies for just £ 174 plus VAT.

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0
Telephone 077257560

Fylde Electronic Laboratories Limited.

WW-047 FOR FURTHER DETAILS
For more information, please contact :
> limrose electronics Itd. 241-243 Manchester Road, Northwich, CW9 7NE Tel. 060641696 and 060641697.
P.A. SYSTEMS FOR AIRPORT, HOTEL. FACTORY.

THEATRE AND LECTURE THEATRE AUDIO SYSTEMS

- AUDIO MIXING EQUIPMENT

SIMULTANEOUS TRANSLATION SYSTEMS
(7 RADIO AND T.V. BROADCAST SOUND CONTROL EQUIPMENT
MARINE INTERCOMMUNICATION AND ENTERTAINMENT EQUIPMENT

- System design, manufacture and installation.

COIL WINDING

Manufacturers of all wound components including transformers, chokes, stators and armatures. Prototype and design service available.

Electric Windings' factories are equipped to handle large or small volume production. Vacuum impregnation plants provide varnish impregnation for all temperature requirements.

ELECTRIC WINDINGS (LONDON) LTD. (Dept. WW) Avenue Works, Gallows Corner Romford, ESSEX RM3 OAJ

Ingrebourne 46677
WW-075 FOR FURTHER DETAILS

JOYSTICKS

Precise, reliable, long-life Joystick Control Units, in single, dual or triple axis forms. Sprung to centre, or held by adjustable friction locks. Choice of wirewound, cermet or plastic film potentiometers (all standard $3 / 8^{\prime \prime}$ bush .types) - or rotary switches.

Already in quantity production for remote control, TV games electic wheelchairs, audio control panels, etc., etc. Any quantity from one-off to hundreds per month. Typical one-off prices: Single axis $£ 4.50$. Dual $£ \mathbf{£ . 5 0}$. Triple $£ 11.00+$ VAT.

See our ad. in January issue for details of all our products.
FLIGHT LINK CONTROL LTD.
Bristow Works, Bristow Road
Hounslow, Middlesex, 01-570 4065

STEREO POWER AMPLIFIERS

A range of professional stereo power amplifiers designed and manufactured to a very high standard
The A Series (Professional Studio Monitor) amplifiers feature dual power supplies to maintain full RMS power on both channels
The E Series (Protessional) amplifiers feature single power supplies suitable for most music. applications.

			STANDARD	WITH VU S
MODEL A500	$250+250$ watts RMS 4 ohms	$£ 380.00$	$£ 440.00$	
MODEL A300	$150+150$ watts RMS 4 ohms	$£ 262.50$	$£ 322.00$	
MODEL B300	150 watts RMS per channel	$£ 210.00$	$£ 250.00$	
MODEL B200	100 watts RMS per channel	$\mathbf{£ 1 7 0 . 0 0}$	$\mathbf{£ 2 1 0 . 0 0}$	

The above prices are list and exclusive of VAT
Overseas Import Agents are invited to make their final applications for allocation of areas for 1976 exports.

TURNER ELECTRONIC INDUSTRIES LTD. 175 Uxbridge Road, London W7 3TH Tel. 01-5678472

1976 INTERNATIONAL AUDIO FESTIVAL \& FAIR OLYMPIA LONDON
13th - 19th September (inclusive)

There is a whole new deal for exhibitors at the 1976 Audio Festival \& Fair. A new deal designed to ensure that participation spells success in every way. The formula has been created by a new management team comprising people with a real understanding of $\mathrm{Hi}-\mathrm{Fi}$ and people possessing deep experience and

IT'S SOUND SENSE FOR YOUR COMPANY TO BE THERE
Complete and post the coupon below for more details

Please send me a brochure with details for intending exhibitors at the 1976 Audio Festival \& Fair.
Name
Company

Address
「elephone number

Complete and post to: Audio Festival \& Fair, Iliffe Promotions Ltd.,
Dorset House, Stamford Street. London SE1 9LU.
Tel:01-2618000

CRYSLON eiectroncs tт.

for
ALL SOUND \& COMMUNICATION EQUIPMENT

SOUND MIXERS
CUE SYSTEMS TALK-BACK ALL ANCILLARY EQUIPMENT

100 WATT POWER AMPLIFIER
FREE STANDING OR RACK MOUNTING

FULL PROTECTION CIRCUITS SEND OR TELEPHONE FOR DETAILS

CRYSLON ELECTRONIC LTD SYDENHAM INDUSTRIAL ESTATE LEAMINGTON SPA, WARWICKSHIRE Tel. 37628

WW - 026 FOR FURTHER DETAILS

IS CHILTON'S MIXER THE BEST FOR YOUR USE?

Magnetic tapes Itd make the $10 / 2$ above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at $£ 400$ for the basic 10/2 + VAT @ 8\%

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

BE FAIR TO YOUR MUSIC

Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combin. ation of specifications will enable a system to
reproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker

Naim Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746
WW - 022 FOR FURTHER DETAILS

* Resistance Range 10Ω to $150 \mathrm{~K} \Omega$
* Tolerance from $\pm 1 \%$
* Nominal Watage $1070^{\circ} \mathrm{C}$ upto $50 \mathrm{~K} \Omega 125 \mathrm{~mW}$
* Prices from 9.06p each 100 rate
* Temperature Coefficients from 50 ppM
* Size 4.1 mm long 1.8 mm diameter

Efg Romprients

Telephone: 0582-62241
Luton Road, Dunstable, Bedfordshire, LU5 4LJ England

WW-063 FOR FURTHER DETAILS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'w.w.' July '72)
 MOTOROLA MC1310P EX STOCK
 DELIVERY
 specification

Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
$1 / P$ level 560 mV ms
0/P level: 485 mV Distortion: 0.3% Input impedance: $50 \mathrm{k} \Omega$ Power requirements: $8-14 \mathrm{~V}$ at 16 mA Will drive up to 75 mA stereo on lamp or LED

Suitable as stereo 'on' indicator for above

MC1310P only E2.15 plus p.p. 10p

The new P14 range is designed to meet the demand for a UK source of high quality, low cost 10 mm wound components. High quality and low cost has been achieved by designing specifically for automatic production techniques representing a high degree of capital investment.

The range is designed to provide flexible winding and tapping arrangements with adjustable tuning for IF transformers, oscillator coils and RF inductors.

Weyrad are manufacturers of wound components and assemblies for the electronics industry
Capabilities include bobbin. layer, and toroidal winding, resin/wave encapsulation, moulding, varnish and wax impregnation and vacuum filling. These manufacturing capabilities are backed by design and development sections which offer industry the widest possible service and flexibility.

Weyrad (Electronics) Ltd

Head office
Lynch Lane Weymouth Dorset
Telephone (03057) 3801 Telex 41165

Vocal Master of Ceremonies

There are precious few ceremonies, functions, meetings or entertainment events that Shure Vocal Master Sound Systems can't cover - regardless of room size or apparent acoustic difficulties. The Vocal Master is designed to project the voice with intelligibility and authority to the rear of large areas without overwhelming the listeners up front. It's versatile, easy to operate, and totally retiable. It's the system that earned its reputation for superb sound amplification by meeting the standards of professional entertainers and is now used in hotels, churches, schools, executive meeting rooms and entertainment facilities from Land's End to John O'Groats in preference to built-in "custom" systems costing many times more.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

wireless world

Electronics, Television, Radio, Audio

APRIL 1976 Vol 82 No 1484
Contents
36 Transistor driver for valve amplifiers by Seth Berglund
41 News of the month Mobile radio price fears Union for engineers?
43 Communication theory - 1 by D. A. Bell
46 Sixty years ago. H.F. predictions
47 F.M. tuner designs - 2 by D. C. Read
51 Research notes
52 Letters to the editor
Phase effects in loudspeakers
Was Baird fooling the public?
Current dumping audio amplifier
56 Time-code receiver clock - 3 by A. F. Cross
58 April meetings
59 Electronic systems - 3 by W. E. Anderton
60 Books received
61 Circuit ideas
Automatic display brightness control Low current source
64 Wireless World Teletext decoder - 6 by J. F. Daniels
73 Phase shift in loüdspeakers by James Moir
76 Automatic battery switch-off circuit by D.T. Smith
77 Diode model of the m.o.s.f.e.t. by B. L. Hart
80 World of amateur radio
81 Circards 29: analogue multipliers by J. Carruthers, J. H. Evans, J. Kinsley \& P. Williams.
83 Television tuner design notes by D. C. Read
85 New products
88 Real and imaginary by "Vector"
129 APPOINTMENTS VACANT
144 INDEX TO ADVERTISERS
'Price 35p (Back numbers 50̄p, from Room 1i, Dorset House, Stamford Street, L̇ondon SE1 9L̈Ü.)' Editorial \& Advertising offices: Dorset House. Stamford Street. London SEI 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables. "Ethaworld, London SE1."
Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $\mathfrak{£ 3 . 5 0}$ UK and overseas ($\$ 9.10$ USA and Canada).
Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House. Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281 . Subscribers are requested to notify a change of address.
(C) IPC Business Press Ltd, 1976

Front cover shows 120 kHz quartz crystal, DT-cot, made by the Quartz Crystal Division of ITT Components Group Europe.
(Photographer Paul Brierley)

IN OUR NEXT ISSUE

Cassette deck. Design for a low-noise (s/n 52dB) front-loading cassette deck which can be built for less than $£ 40$.

The "walltenna" - an array of metal foil dipoles for v.h.f./f.m. reception, designed to be hidden beneath the wallpaper of your living room.

Loudspeaker sound quality. Little known relationships between design parameters and what is heard with some new subjective data.

SIXTY-SIXTH YEAR OF PUBLICATION

ibpa

ABC
2000en

Switch to complete protection. Switch to EEV.

A selection from the EEV range. We have more than 300 types of duplexer devices currently in production.

The receiver is one of the most important components in radar equipment. And one of the most delicate.

Unless the receiver is completely protected, sensitivity will be degraded and. performance adversely affected.

You can give your receiver the protection it needs - hy using EEV duplexer devices.

We can supply high-quality de vices for all power levels and radar functions. The EEV range includes:
-TR tubes. TR limiters primed and primerless). Pre-TR tubes. Protector tubes.

- PIN switches - Solid state limiters.
- Balanced duplexers. - Mixer receivers.
- RF heads. © . Ionitor cliodes. © Noise sources.

EEV appreciates the importance of duplexer devices. They are a major part of our total microwave capahility.

Backed by Europe's best research, production and test facilities. we can provide devices which exactly meet your needs.

Whatever you want to protect, try EEV"s range forsize. IV riteor phone for chuplexer device data. ()r, even better. tell us your precise requirements.

EEVand M-OV know how.

wireless world

Approach to microwave landing

If your holiday beach last year lay at the end of a journey by air the chances are that the last few miles were flown along a narrow radio beam known as ILS instrument landing system. This has become the standard international approach aid to airfields, and its performance has been steadily improved to the extent that it enables suitably equipped aircraft to be landed in virtually zero. visibility. In no other function is the pilot required to put so much trust in the accuracy and reliability of electronics. But a new development known as MLS microwave landing system - now holds the attention of the policy makers in the International Civil Aviation Organisation. Interest in the possibility of a new approach aid developed in the late 1960s when communications engineers realised that microwaves, digital computing and advanced cockpit displays could be brought together to produce a more accurate and versatile system.

ICAO produced in 1972 a set of technical requirements, and five countries responded: the USA, Britain, France, West Germany and Australia. Their proposals are now being studied, and a decision is expected next year. The schemes fall into two categories: Doppler and scanning beam. Britain, along withtwo US companies, ITT Gilfillan and Hazeltine, has put forward a Doppler-based system (see March 1974 issue, pp. 25-26) which, supported by the UK Government in collaboration with Plessey, has already been successfully demonstrated in flight tests at the Royal Aircraft Establishment, Bedford. Two other American companies, Texas Instruments and Bendix, pinned their faith on the alternative technique. Last year the US Federal Aviation Administration, in a controversial decision which was hotly contested by Britain and the two losing US companies, chose the scanning-beam system as its proposal to ICAO. The reasons given for this decision - there was no airborne experience of scanning-beam equipment to the technical standard specified by ICAO available for comparison - are not convincing, particularly since the scanning-beam system as it stands probably cannot provide the accuracy needed to level the aircraft and reduce its rate of sink just before it touches the runway. This, of course, is a critical manoeuvre.

America's choice cannot but influence the ICAO's committee, the All Weather Operations Panel, in its deliberations. If it pleads more time for practical experiments, the FAA is likely to go ahead anyway and introduce scanning-beam MLS into some US airfields which cannot be served by ILS. Such a fait accompli may very well capture the majority vote of the ICAO's eleven-man AWOP group which will choose one of the five entries as the basis of its recommendation for an international standard.

Apart from the rights and wrongs of the decision, the companies involved stand to make money handsomely. Even those firms which backed the losing method will have the edge over those which have no experience, because the C -band techniques, aerial design, data-processing and many other aspects are similar in both systems. This particularly applies to Britain, whose Government has spent $£ 3.5$ million in developing and demonstrating the so far only workable MLS.

Michael Wilson,
Technical Editor, Flight International

Transistor driver for valve amplifiers

Design for Williamson and other output stages

by Seth Berglund
Lunds University, Sweden

There are certainly a lot of valve audio amplifiers still in use, and many of them have an inherent quality of performance that makes it reasonable to give them a thorough repair, with or without an accompanying modernization. The work needed for repair may tend to grow, however, since it may not be sufficient to replace valves and a few electrolytic capacitors. A general degradation of components may have taken place, and in nearly all instances of modernization it should be advantageous to replace the rectifying valve by silicon or maybe selenium rectifiers. So there may be some doubt as to what is really needed and what is worthwhile.
For those who are interested in giving their valve amplifier a positive modernization that will result in obvious improvements, a description is here given of a transistor driving amplifier that can replace the voltage amplifying stages of many existing power amplifiers. The Williamson amplifier ${ }^{1}$ has been chosen as a typical example for the discussion that follows, because it is a well-known design. Other amplifier designs that have been used for comparison are those designs by Mullard ${ }^{2}$. and by GEC ${ }^{3}$.

The original idea was to design an amplifier with a bandwidth sufficiently in excess of the output transformer bandwidth, so that the only phase shift to take account of should be that of the transformer. A d.c. amplifier with a bandwidth of about 1 MHz was thought to be sufficient. Direct coupling from the input stage to the signal grids of the output valves leaves the output transformer as the only cause of phase shift at the low frequency end, and the shift tends to only 90°. So there are no problems of instability from negative feedback at the low frequency end, provided that the usual precautions as to supply line filtering are taken.

At the high frequency end of the transformer passband there is usually one main resonant frequency, often at about 100 kHz , around which the phase shift passes 90° by a considerable amount but does not reach 180°. It was thought therefore that with a bandwidth of at least 1 MHz for the driver, the normal amount of 20 dB frequencyindependent feedback should be

Fig. 1. A constant voltage $V_{g o}$ is in this circuit added to a normal cathode bias.

Fig. 2. Further development of the circuit in Fig. 1 by means of a gain function A.
allowāble without instability. This was found to be the case for several output transformers, at least with a resistive load. With the Williamson transformer and output stage according to the original design, an essentially flat amplitude-frequency response was obtained up to 1 MHz , and there was some stabilitv margain.
If a loudspeaker or some load of a complex nature is inserted, the phase shift tends to become too large, and the only way to stability is then to reduce the closed-loop gain. So extended bandwidth is no radical solution for stability at the high frequency end in the same way as direct coupling is for low frequencies. And after all, the aim should not be amplification up to radio frequencies, but an 1.f. amplifier with a defined upper frequency limit. This does not mean that it is a wasted effort to start with a large bandwidth for the
driver. On the contrary, by starting with a bandwidth of 1 MHz , the high-frequency response can be exactly formed up to this frequency, using simple operational amplifier techniques, and so it can easily be changed to suit different output transformers. The output voltage of the driver is sufficient even for large output tubes such as the KT88; they are assumed to work in class A or $A B$ in the design that follows.

Output valve biasing

When direct coupling to the output valves is used, the grids can still be kept at zero potential for the quiescent point, with a normal cathode bias for class A or $A B$ operation. But this is not necessary and in my opinion not at all the best way. Let us therefore look at other ways of biasing. For the sake of simplicity, single valve biasing is discussed first, and the valves shown as triodes with the usual assumption of zero grid current, i.e. anode and cathode currents are identical. If thus I_{a} is the anode current of a triode and R_{k} the outer cathode resistance, the negative grid voltage with a normal cathode bias is $V_{\mathrm{gh}}=I_{a} R_{k}$.

It is possible, although not often used in practise, to modify the influence of the anode current on this bias voltage by the addition of a constant voltage to the circuit, either in series with the cathode or, normally with less effort, in the grid circuit, shown as the voltage V_{go} in Fig. 1. The grid bias voltage is now $V_{g h}$ $=V_{g o}-I_{a} R_{k}$.
It is important to note that $V_{g o}$ may be positive as indicated in the figure, or negative. In the first case a larger. resistance R_{k} is required than for simple cathode bias, which makes the grid voltage more dependent on the anode current, i.e. there is a better stabilization of the quiescent point. In the case of negative polarity for $V_{g o}$, the grid voltage becomes less dependent on the anode current, as R_{k} must be diminished. For growing negative values of $V_{g o}$, it becomes in the limit equal to the desired grid voltage. Then R_{k} must go to zero and the result is a constant grid voltage.

A grid bias that has exactly the same dependence on the combination of a constant voltage and the anode current
as that of Fig. 1, but with improved means for the choice, can be obtained by a circuit as shown in Fig. 2. With the notations according to this figure, and provided that the operational amplifier of voltage gain A has zero offset, the constant part of the grid bias is $V_{g o}=$ $A V_{1}$, and the total grid bias becomes

$$
V_{g k}=A V_{1}-(1+A) I_{a} R_{k}
$$

In this circuit R_{k} can be a small resistance, which is an advantage for large output tubes where the power dissipated in R_{k} for a normal bias may be considerable. Most important is, however, the ease of adjustment to a desıred bias.

The bypass capacitor C_{k} has retained its function, and the time constant $R_{k} C_{k}$ is chosen as for normal cathode bias. However, if R_{k} is small, so that it causes only negligable feedback by itself, the bias time-constant may be introduced by a separate RC-link, either before or after the amplifier.

In the foregoing figures the bias and signal voltages have been mixed in the usual way by a grid resistor R_{g} and a coupling capacitor C_{g}. If a full signal feedback from R_{k} is wanted, corresponding to an unbypassed cathode resistance in Fig.1, some other type of mixing circuit is needed. This also holds, if direct coupling of the signal to the valve grid is used.

Arrangement of amplifier

To explain the main features of the complete push-pull amplifier, its layout is first shown by the simplified circuit of Fig. 3. The circuit comprises three differential stages, namely a signal input stage, a biasing stage for the sensing of the currents in the output valves, and between these a mixing and amplifying stage that drives the valves. It is a symmetrical circuit throughout for the input signals, and the necessary d.c. balance is obtained at the emitter side of the input stage, in the figure by means of the potentiometer R_{1}. Another important feature is that the differential stages are all supplied by a current source at the emitter side, instead of just by a common emitter resistor. A high common-mode rejection ratio is thereby obtained, which means that the input signal and the negative feedback around the amplifier can be fed differentially to the input stage without danger of adverse secondary effects.

The current source for the mixing stage, a single transistor in Fig.3, acts with the differential pair as a com-mon-mode anılifier for the signals from the preceding biasing stage, so that the two stages together give a common-mode voltage gain from cathodes to grids that corresponds to the gain function denoted by A in Fig. 2. The gain to a sufficiently good approximation is

$$
|A|=\frac{R_{B}}{R_{2}} \cdot \frac{R_{C}}{2 R_{E}}
$$

Resistance R_{2} is selectable for choice of voltage gain.

As the amplified part of the bias is a common-mode one, it corresponds to acommon cathode resistance with the value $R_{k} A / 2$, and the time constant of the RC -link is $R \mathrm{C} / 2$. The constant part of the grid bias is simply an offset voltage, effected by an adjustment of the potentiometer R_{2}, which is therefore found to have the double function of determining the gain by its resistance value and the constant voltage by its adjustment.
The resistances of R_{k} may be so small that their direct influence on the valve bias becomes negligible. They cause a small lowering of the effective valve transconductances.

Because the collector resistances of the mixing stage become fairly large, there is ample signal amplification available in this stage for local feedback to be applied. This is used in the amplifier for determining the response by means of the impedances Z.

Amplifier design

The complete amplifier is shown in the circuit diagram of Fig. 4. Although the number of components has grown, the fundamental simplicity as evidenced by Fig. 3 is retained, and there are not any hidden difficulties such as the need for tricky adjustments or special demands on the power supply voltages, wh: 2 h may vary within large limits. The demands on filtering are not very large either, since the current sources for the
differential stages reduce hum. Only the negative high tension voltage needs a certain stabilization.

The input common-emitter longtailed pair of Fig. 3 is a dual $n-p-n$ transistor Tr_{1}, and it is completed by an n-channel dual f.e.t. Tr_{2}, the two transistors of which are used as input source followers. This makes the amplifier compatible with 'valve amplifiers with regard to input impedance as well as to independency of the characteristics of the driving source. So all that is required of the preamplifier is that it shall give sufficient voltage.
The d.c. balancing potentiometer R_{41}, a I5-turn trimming potentiometer, has been moved away from the main signal path into the f.e.t. source circuit, where it gives a smooth adjustment of the differential balance. By this change the two resistors R_{7} and R_{8} also become' more freely selectable for their function to determine the local feedback of the stage and the gain of the amplifier. They should be matched, so as not to cause additional asymmetry to be balanced out. It is the combination of f.e.t. and bipolar transistor pairs that gives the good input property, together with an easily variable amplification and a large bandwidth. Dual transistors must be used to reduce temperature drift, see later.

The mixing stage has been developed to a cascode configuration, which is very important with regard to harmonic distortion because the output voltage swing is large. It is also important that
the Miller feedback capacitance is kept very low so that the loading on the preceding stage can be controlled as desired, and the amplifier as a whole be given sufficient bandwidth. The main local feedback is by means of the emitter resistors R_{13} and R_{14}, but they need not be matched as their counterparts R_{7} and R_{8}, as the balancing action of R_{41} is amplified by the input stage.

Local feedback by the two impedances Z starts at a value of about 12 dB for low frequencies, but increases within the frequency range 20 to 200 kHz to about 26 dB . It forms the amplitude response as shown in Fig.5, curve A. The impedances Z do not cause any common-mode feedback but act together for the differential feedback, so they do not need matching for their action. However, matching is needed for the collector loads of transistors Tr_{5} and Tr_{6} for symmetry in driving the output valves. The two collector resistors R_{15} and R_{16} should be matched, and also the impedances as they also load the collectors.

As to the valve common-mode biasing, there are only two alterations from the simplified circuit of Fig.3. One is that the potentiometer for adjustment of the constant voltage part has been split up in two fixed resistors, R_{19} and R_{20}, and a 15-turn trimming potentiometer, R_{42} This makes the selection of resistances for a desired value of the amplification fairly easy, and provides for a smooth adjustment of the constant voltage. The other change, mainly for temperature
drift is that the current source for the mixing stage, Tr_{9} and Tr_{10}, is a complementary pair amplifier.
The gain as defined by Fig. 2 is nearly 70 , which means that the bias circuit corresponds to a common-cathode resistor of 350 ohms. A common-mode constant grid voltage of about +5 V is added by adjustment of R_{42}. The quiescent grid-cathode voltage is about -45 V and the valves work in class A.
A negative feedback that senses the differential direct voltages across the cathode resistors has also been added to the circuit. It consists of the matched resistor pairs $\mathrm{R}_{31}, \mathrm{R}_{32}$ and $\mathrm{R}_{5}, \mathrm{R}_{6}$ together with the capacitors C_{3}, C_{4}. This feedback is coupled to the amplifier inputs and has an upper frequency limit of about 1 Hz . It has the same stabilizing effect on the balance between the tube currents as two separate cathode resistors of 200 ohms, connected together in a long-tailed pair configuration but without influence on the commonmode bias.
All the above values are easily changed for desired bias conditions, but a general discussion of valve biasing is outside the scope of this article.
A capacitance of $22 \mu \mathrm{~F}$ was originally used for C_{5}, but is omitted in the circuit of Fig. 4. However, output triodes in

Fig. 4. Complete circuit diagram of the power amplifier. Valves work in class A as C_{5} is made zero (see text).
class A with a high load impedance is the only case where the capacitance may be omitted to some advantage.

Response and distortion

The amplitude-frequency response of the complete amplifier is shown in Fig. 5: without feedback by curve B, and with 20 dB overall negative feedback by curve C. The low-frequency response for small signals is flat down to ${ }^{\circ} 10 \mathrm{~Hz}$ both with and without feedback. Exact curves showing the fall below 10 Hz are not interesting, but it is possible to select a value for C_{2} that gives an optimum response to square waves at low frequencies.
There is a dip in transformer response at about 50 kHz , which cannot be eliminated by simple feedback circuits. It causes some ringing in square-wave tests, which of course has nothing to do with instability. The capacitance of C_{6} in the feedback loop hás, however, been chosen so large that it has a damping influence on the ringing. The series resistance of R_{36} has been chosen as a compromise to give about the same frequency response when loaded by a certain broadband loadspeaker as with a resistive load. A capacitance inserted as C_{6} in the feedback loop without a series resistance often gives a good frequency response with a resistive load, but oscillations when a loadspeaker is connected. Its influence on the feedback must therefore always be carefully checked.

The branch R_{22} and C_{7} between the

output terminals has been found valuable with several output transformers, and is therefore recommended. It has no effect on the response within the audible band, but represents a resistive load at high frequencies. Values are not critical.

It has been an aim to choose about the same high frequency limit for the response without feedback as in the improved version design by Williamson to make a comparison of the final result fairly easy. It could be an advantage, however, to choose a lower high frequency limit by a change of the impedances Z .

Total harmonic distortion of the driver is quite low. For 30 V r.m.s. output on each side it is only about 0.05% at low frequencies and rises to about 0.1% at 20 kHz . This leads to a low distortion for the whole amplifier even without overall feedback: at 1 kHz this distortion is only 0.08% for 10 W and 0.2% for 15 W output power.

The overall feedback works fully within the audible band, but the maximum output power falls at the low and high frequency ends. At a distortion of less than a quarter of a percent the available output power with resistive load is 20 W at middle frequencies and 15 W at 20 Hz and 15 kHz .
The total harmonic distortion, measured at $20 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 15 kHz and with an output power of 10 and 15 W is summarized in the table below. The figures are given in percentage distortion, but include what there may be of hum and noise in the prototype amplifier.

Power Total harmonic distortion(\%) output

(W)	20 Hz	1 kHz	15 kHz
10	0.05	0.01	0.1
15	0.1	0.02	0.25

Circuit working conditions

In all d.c. amplifiers there is a temperature drift that must be taken account of. In this case there are really two, namely a common-mode drift in the biasing circuit and a differential drift for the signal path. Drift in the output valves is not considered.

An obvious cause of common-mode bias drift is the difference in change of base-emitter voltage with temperature for the transistor pair Tr_{7} and Tr_{8}. The two transistors should be of the same current amplification class, BCl07A in the prototypes, in which case the difference may be assumed to be $0.1 \mathrm{mV} / \mathrm{deg} C$ at the most. The drift voltage is equal in its effect to a false reading of the direct input voltage on the base of Tr_{8}, and results in a corresponding shift of the anode currents of the valves.

If an ambient temperature change as large as $\pm 20 \mathrm{deg} C$ is assumed, the false reading is not more than $\pm 2 \mathrm{mV}$, which is less than 0.3% of the above-

Fig. 5. Amplitude frequency response curves for the driver (A) and for the complete amplifier without (B) and with feedback (C).
mentioned d.c. input voltage, being about 700 mV . However, the two transistors must be mounted close together, so that they experience the same ambient temperature change. Preferably they should be plastics transistors and clamped together, but a dual transistor is not necessary.

There is also a temperature drift from differences in the internal heating of the transistors, for instance at power supply variations. This is kept low by means of low collector currents. For the same reason the design assures a small collector current for Tr_{9} in the current source, and the transistor drift is partly balanced out by D_{3}. The balance is not as good as for a couple of equal transistors, but here the drift is inside the feedback loop and has less influence on the valve currents, about one third of that of the preceding transistor pair.

The main cause of differential drift is the input dual f.e.t. Although its thermal drift of gate-source voltage difference for specified working conditions is less than $40 \mu \mathrm{~V} /$ deg C , its drift in the circuit may be larger, on account of shifts of quiescent points. There is also up to $10 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$ drift in the dual bipolar transistor, and some additional drift from the transistor pair $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$. As a summation a temperature drift of up to $100 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$ referred to the input of. the amplifier will be assumed.

To find what the above drift means as a drift in quiescent current for the valves, the d.c. feedback from the cathodes to the input circuit will first be assumed inoperative. The differential voltage amplification to the grids is 450 and the transconductance is $10 \mathrm{~mA} / \mathrm{V}$, which gives $0.45 \mathrm{~mA} / \mathrm{deg} \mathrm{C}$ differential drift for the anode currents, or $\pm 9 \mathrm{~mA}$ for a change in temperature of $\pm 20 \mathrm{deg}$ C. This is at the limit of what should be allowable, but, on the other hand, fairly wide limits as to the causes are assumed.

The picture of drift changes radically, however, if the d.c. differential feedback

is inserted. The feedback is 14 dB from d.c. to about 1 Hz , and the above anode drift becomes less than $\pm 2 \mathrm{~mA}$ for a $\pm 20 \mathrm{deg} \mathrm{C}$ temperature change. The feedback also reduces d.c. drift from other causes, such as changes of component values with time. Its equivalence to a pair of separate cathode resistances has already been shown.

The above feedback may, on the whole, be regarded as a possibility rather than a necessity, and 14 dB is certainly more than necessary. The time constant in the feedback circuit is so large that temporary deviations from symmetry in the signal (musical) voltage should not cause appreciable d.c. shifts.
Stabilization is needed for the negative high tension voltage, because a $\pm 10 \%$ variation of this voltage would cause too large variations in the valve bias. A simple stabilization, for instance by means of a series resistance from a -300 V supply feeding a chain of six $0.4 \mathrm{~W}, 33 \mathrm{~V}$ zener diodes is sufficient. The voltage is of course not critical.

Constructional details

The layout of the circuit on a printed circuit board or otherwise is not critical. It has already been mentioned that the two transistors of the pairs $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ and $\mathrm{Tr}_{7}, \mathrm{Tr}_{8}$ should be mounted for close thermal connexion, and so should Tr_{9} be with D_{3}. To avoid heating effects from the collector resistors R_{15} and R_{16}, mount them with the valves, and not on a p.c. board. The circuit should be mounted away from the mains transformer and filtering choke to avoid induced hum from stray magnetic fields. It should also be kept away from any hot air stream or heat radiation from the valves. These precautions do not cause any problem, as the circuit may be given fairly small dimensions. Simple metal shields have been used in the prototype amplifiers.

Five-percent resistors have been use, and for matched pairs a 2%

Fig. 6. Components in feedback circuits, $R_{5}, C_{3}, R_{6}, C_{4}$ and C_{2} are not included on board; neither are R_{15} and R_{16}. Mono printed boards are available for $£ 2$ inclusive from M. R. Sagin, 11 Villiers Road, London NW9.
difference is acceptable, although a closer tolerance may be required for the resistor pairs in the d.c. feedback, or the value of R_{1} may prove not to be sufficient
In a first construction, the d.c. feedback should be omitted, and put into effect only as a finishing touch
For the positive and negative supply voltages of 25 V in Fig. 4 the recommended values are 25 to 30 V , but there is no need for symmetry. The value of collector currents for the cascode stage is 6 to 7 mA . The currents of the other stages are evident from the values of the resistors R_{38}, R_{39} and R_{40}, since the voltage across these is about 4.3 V .
Any transistor in the Philips BFQ10-16 family may be used at the input, and there are of course also other replacement types, for instance the Siliconix E401. There are also a number of replacements for the Motorola MPS-A92, for instance MPS-U60, BFT19 (RCA), and BFW43 and BFW44 (SGSAtes). There are numerous replacements for BC 107 and BC 177 , and also for the dual transistor BCY89, which is the least expensive of the BCY87-89 family.

Concluding remarks

One reason for the choice of KT88 valves connected as triodes was that they put high demands on the driver, and so are suitable for presentation of driver qualities. The same valves connected as pentodes or with a distributed load are more easily driven because the Miller capactiance is lower. An obvious conclusion is therefore that the driver should suit most power amplifiers except for very large ones that require several output valves in parallel.
The ratio between the negative high
tension voltage for the cascode stage and the maximum grid peak-to-peak voltage is about two. When smaller output tubes are used, such as EL34, EL506 or EL84, the negative voltage should be lowered, but the above ratio not made smaller - a value between two and three is preferred. The collector currents for the cascode stage should be maintained, and the collector resistors chosen accordingly.

References

1. Williamson, D.T.N. High quality amplifier: new version, Wireless World, vol. 55, 1949, p. 282.
Williamson, D.T.N: The Williamson Amplifier, A Wireless World publication, Iliffe \& Sons, Ltd
2. Ferguson, W.A. Design for a 20 -watt high quality amplifier, Wireless World, vol. 61, 1955, p. 223.
High Quality Sound Reproduction, Mullard Ltd.
3. How to Build the Osram 912-PLUS General Electric Co, Ltd.
Heath, W. Ian and Woodville, G. R "Design for a 50 -watt amplifier," Wireless World, vol. 63, 1957, p. 158.

Logic design course

Digital System Design is the name of a course to be held at Chelsea College, Pulton Place, London SW6, from May 17 to 21. This course is designed to give practising engineers and scientists a formal approach to the logical design of digital systems and should prove useful to those engineers and scientists working in the field of digital electronics who have had no previous training in methods of logic design. Enquiries should be addressed to Professor J. E. Houldin at the above address.

Mobile radio price fears

According to the Mobile Radio Users' Association, essential public services as well as commerce and industry will experience escalating equipment costs during the next ten years in the use of mobile radio. Proposals made by the Home Office in their preparations for the 1979 World Administrative Radio Conference - which will decide the amount of frequency spectrum required for the 1980s - suggest even greater usage of mobile radio frequencies now available.

Such measures "would entail vastly more expensive equipment and reorganization of the present allocated spectrum at a time when users are already experiencing increasing interference in the main conurbations, as well as being forced to share facilities." The Mobile Radio Users' Association is busy gathering support from its members to prepare a case for the allocation of more of the spectrum to .mobile radio. They think that unless this is done, unfair and costly restrictions will be imposed on what is an essential cost-saving and efficiency-improving tool for the country, resulting in the "trebling of costs and the curtailing of growth within the industry."

BS9000 mandatory for military equipment

From February 1 the Ministry of Defence introduced a new contracts clause requiring electronic components used in the design of MOD-sponsored equipment to be approved within the BS9000 standards system. Any necessary exceptions will be kept to the minimum. Military forces rely heavily on electronic equipment, which they expect to function reliably under exacting conditions, and they therefore consider it essential to have an effective system of component specification and quality assurance.

The BS9000 series was formulated by the British Standards Institution in 1967, in collaboration with Government departments, industry and other users,
to specify a range of electronic components meeting levels of quality assurance and performance acceptable for common use in industry and the military services. The Ministry of Defence has supported the scheme, believing that a national system offers greater benefits than one restricted to military requirements. In particular the larger volume of components covered by BS9000 permits economies in reducing wasteful proliferation of component types. Although the use of BS9000 components is growing, progress has been slower than originally hoped. Since the full advantages of the scheme will not be realised until BS9000 is more widely used, the Ministry of Defence is now taking steps to extend its application in the military equipment industries.

Union for engineers?

Professional engineers need a union, with strong and experienced leaders and affiliation to the TUC, according to Dr G. F. Gainsborough, secretary of the Institution of Electrical Engineers. Writing in the February issue of IEENews he refers to a recent report* of a Council of Engineering Institutions working party which urges that engineers should join a union, and backs a suggestion that the Electrical Power Engineers' Association (EPEA) should change its name and constitution to make it representative of all engineering disciplines. The March issue of Wireless World (p.43) proposed rather a union to be formed on an industrytechnology basis for technicians and professional engineers in electronics. (About half of the unions affiliated to
the TUC are based on particular crafts, trades or technologies.)
*"CEI Professional Engineers and Trade Unions"

Direction finder for Cape Gris Nez

Following the successful completion of trials at Cape Gris Nez (between Boulogne and Calais) the French office of lighthouses and maritime signals has ordered a v.h.f. direction finder. The monitoring of shipping in the English Channel by radar has not proved itself to be completely satisfactory as the unambiguous identification of ships is not immediate enough and presumes among other things the manoeuvrability of the ships and that the v.h.f. communication channels are not too crowded. This led to the additional use of a v.h.f. direction finder which was tested out for the task. In contrast to other identification aids, direction finders possess the advantage of requiring no extra aids on board ships except the v.h.f. radio systems which most ships have anyway. Also, in the case of emergencies they can immediately provide the exact position of disabled ships. The Rohde \& Schwarz NP7 direction finde:- used works in the frequency range of maritime radio (156 to 162 or 174 MHz) and delivers bearing values with a maximum deviation of only one degree. The NP7 operates on the Doppler principle and uses an antenna system made up of 32 dipoles arranged on a circle plus one antenna in the centre. An antenna commutator simulates the rotation of a single antenna on this circle. The bearing indicator automatically provides a three-digit display of the direction to

In the new Radio London Studio, Marylebone High Street. Picture shows d.j. Robbie Vincent at his control desk.

Not the latest electronic guided weapon but Jim
Taylor, an installation supervisor for General
Telephone and Electronics Company of Florida who resorts to the bowman's ancient art whenever he has to install telephone lines in inaccessible places.
the transmitter target, the measured value being averaged over 180 simulated rotations of the d.f. antenna.

TV goes underground

Platforms on the new Heathrow Central underground station at London Airport will be monitored with a closed-circuit TV system. This will allow London Transport observers at Earls Court station to view the platforms at the last three stations on the new Piccadilly Line extension - Heathrow Central, Hatton Cross, Hounslow West. The installation consists of a single coaxial cable linking all stations along the line and control cables for switching the selected cameras at the different stations to two monitors at Earls Court. The installation contract, awarded to British Relay TV Ltd, covers videoswitching and modulating equipment at the "observed" stations, amplifying equipment for picture transmission, at h.f. and the receiving and switching equipment at Earls Court. The system is capable of carrying three vision channels in the 3 to 30 MHz frequency band.

Sun-tan for components

A solar radiation simulator is in use at the Product Assessment Laboratories of

Plessey in Titchfield. The simulator has been introduced to meet new specifications which have been laid down by the Internátional Electro-Technical Commission and the British Standards Institution. Artificially created sunshine can be applied to test samples to determine their ability to withstand both visible and invisible radiation in natural sunlight. The simulator will show the effect of u.v. radiation on rubbers and plastics such as cable forms and plastic assemblies and will also create a temperature rise in equipment to enable designers to check solar radiation protection and the operation of cooling systems. Electronic trackside railway signalling equipment is under investigation at the Plessey laboratories and the facility is expected to be widely used in testing virtually anything that stands in the open air. The sun simulator is claimed to be able to reproduce the worst solar radiation conditions throughout the world.

Secondary radar for MRCA

A secondary radar data display $\overline{\text { sen }}$ ystem to be installed at British Aircraft Corporation's military aircraft division flight test centre at Warton is scheduled to be in service within ten months, serving $B A C$ and the development flying programme of the Multi-Role

Combat Aircraft. The design of the system is claimed to provide an economic solution to the surveillance and control problems of any small airfield with radar facilities. It will also increase air safety by providing additional flight data to the air traffic controllers at Warton where full flight envelope testing of supersonic aircraft takes place relatively close to civil air lanes and the busy Manchester control zone.

At present, the air traffic control unit at Warton relies solely on a Marconi S264 primary radar, backed up by a precision approach radar. This has recently been improved by the addition of a digital signal processor and provides primary cover up to a distance of 160 miles. The secondary radar data display system, to be provided under a new contract to Marconi Radar Systems, will take this primary information in its new form and present it to the controller combined with secondary and primary extracted radar data obtained via landline from Civil Aviation Authority's St Añne's facility about four miles away. The ability to revert to a local primary picture is retained. The facilities available at each radar display position include raw local primary radar data, video and digital map data, reference marks, emergency indications plus full control over range, off-centre and presentation parameters.

Colour TV deliveries for ' 75

Deliveries to UK distributors of UK made and imported colour television receivers reached 150,000 in December, a fall of 7% on December 1974, according to the latest statistics compiled by the British Radio Equipment Manufacturers' Association. This brought the total for the year to $1,590,000$, a fall of 28% compared with the same period in 1974. Total monochrome set deliveries for December were 67,000 , an increase of 52% compared with December 1974; this brings the year's total to 938,000 , a 15% increase on the same period of last year. These figures include deliveries to rental and relay companies.

Leeds electronics exhibition

Visitors to the 1976 Leeds Electronics Exhibition will be able to hear about current technology and applications of microprocessors. Three lectures on this subject are being arranged for day two of the show and one lecture for day three. Also in the programme of lectures which traditionally accompanies the Leeds show is one on switched mode power supplies. The exhibition will take place in the Department of Electrical and Electronic Engineering at Leeds University on June 29, 30 and July 1.

Communication theory

1 - Information is finite

by D. A. Bell
University of Hull

A generation ago one might have said that language was one of the main features distinguishing man from the animals. But now it is known that most animals, from chimpanzees to bees, have systematic methods of communication by sounds and gestures; and the unfortunate person who is deaf and dumb (and therefore would a few centuries ago have been regarded as stupid) can communicate by "deaf and dumb language." All of this goes to show that communication can be effected by various means; and the superiority of human speech lies in its speed and flexibility which enable it to convey a very wide range of messages, including abstract ideas.

The introduction of the word idea is a cue to point out that the communication or information theory of engineers is not concerned with "ideas": it handles only "messages." This might sound like a severe limitation but in fact it is not, since any set of words, for example, can be regarded as a message; and the "set of words" might be the Bible, the collected works of Shakespeare, or the works of your favourite science-fiction author. By choosing a set of words we have made the number of possible messages finite in the mathematical sense though inconceivably large: there are some 35,000 words in an English dictionary so the number of different sets of, say, 100,000 words is rather more than 10 to the power of 400,000 . If I assume that every reader has a copy of the Concise Oxford Dictionary (5th edition, 1964) I can represent any word by a code of the form $n_{1} a n_{2}$ where n_{1} is the page number, a is L or R for left-hand or right-hand column and n_{2} is the serial number of the word in the column. The opening words of this article would then be represented by: 1L2 509R4 26L13 544R7 767L6.

This is very clumsy and time-consuming as it means looking up every word in the dictionary (though I am sure one would soon get to recognise the codes for common words, like 1L2 and 544 R 7) but it has several noteworthy features:
(1) It reminds us that communication
requires that sender and receiver agree on the code to be used, even if only on a common language.
(2) It is more precise than words. 767 L 6 in the dictionary reads "might ${ }^{2}$. See MAY '", thus distinguishing it from "might"" meaning great strength.
(3) It illustrates the point that words may be represented by all sorts of different symbols during the process of communication.
(4) From the sample given above it would appear that the typical length of a code group is 5 characters, which compares with 5 letters for an average English word. But 4 of the 5 characters are now numerals in the scale 0-9 and the fifth has only two values, L or R . So there is some economy.
It also makes it clear that we are talking about the kind of communication which consists in selecting in turn particular signals from a known set of signals or code; and the kind of information which can be communicated in this way is called selective information. Now most of the information we handle is of this kind: the current price of gold; which of the national contestants became Miss World; which premium bond drew a prize; which airline has just had a plane crash; what are the frequencies and times of BBC stereo broadcasts. These are ail questions which can be answered by drawing a particular number or name from the range of numbers and names which was known to exist, and less specific or more complex information can be communicated by a more or less lengthy series of words selected from the dictionary. New ideas, on the other hand, cannot always be specified definitively by existing words or groups of words and may have to be assimilated gradually from the context in which new words or phrases are used. If I look in the dictionary for "meaning" I am referred to "significant" and vice versa. But under "bread" I find "Flour moistened, kneaded and baked, usually with leaven". Thus a concrete object can be broken down into its components or alternatively it can be described in terms of shape, colour, texture etc.;
but an abstract idea like "meaning" can only be learned through experience of the way in which the word is used. It is also a prime principle of communication theory that one should not communicate information which was already known; this means that the amount of information transmitted is measured by the increase in amount of information possessed by the recipient. The method of measuring the amount of information will come later.

Communication is never absolutely certain. The hi-fi enthusiast may ask for "perfect" reproduction, but the engineer knows that at least there will be Johnson noise in the circuits, with power $k T B^{*}$ in bandwidth B. So the engineer must ask "How good is good enough?" Ask him for $60,70 \ldots \mathrm{~dB}$ signal-to-noise ratio and he will tell you whether it is possible and how much it will cost; but ask him for perfection and he will either shake his head or decide for himself what standard the customer will accept as perfect. But if we are communicating only selections from a finite set of signals, it is obvious that the s / n ratio required is just enough to prevent one signal being mistaken for another. This idea is usually illustrated by the analogy of representing the several signals by points in space. (It has to be multi-dimensional space with a large number of dimensions.) These points have to be far enough apart that when the co-ordinates of one of the points are given then in spite of the noise in the system a seeker armed with the co-ordinates will arrive within reach of the desired point and of no other. The sort of practical problems to be solved by communication theory are therefore as follows.
(i) Given a set of messages (of known number) from which selections are to be communicated through a channel of given bandwidth and s / n ratio, what are: the best shapes of signal to use to represent the messages?
(ii) With the conditions in (i), what will be the reliability of communication, or

* $k=$ Boltzmann's constant and $T=$ circuit temperature.
how should the conditions be altered to achieve some specified standard of reliability?
(iii) How does speed of communication tie in with everything else?
Ignoring derivations and proofs, we can answer questions (ii) and (iii) by quoting Shannon's key formula

$$
\begin{equation*}
C \leqslant W \log (1+P / N) \tag{1}
\end{equation*}
$$

which is part of the following theorem: By a sufficiently complicated method of encoding it is possible to communicate information at any rate.up to C through a channel of bandwidth W and ratio P / N of signal power to noise power with negligible risk of error. This is the channel capacity theorem. Note that this evades question (i) by postulating "a sufficiently complicated system of encoding." The hypothetical system of coding which allows the equality sign to be used in formula (i) is called "ideal coding." Much effort has been devoted to the search for coding methods which approach this ideal. Another point is that where we have loosely said "with negligible risk of error" one should ask "negligible in comparison with what?" To be precise, Shannon showed that the risk of error may be made as small as we wish by making the signals long enough in time. There are therefore advantages in putting the formula in symmetrical form

$$
\begin{equation*}
I \leqslant T W \log (1+P / N) \tag{2}
\end{equation*}
$$

where I is the amount of information transmitted in time T.
T can be measured in seconds, W in hertz and P / N is a ratio (e.g. of watts); but we have not yet any measure of I.

Now any information can be communicated, between two people using the same code book, by a sufficient number of yes/no questions. This was noted by Francis Bacon in 1623 when he devised a code in which each letter of the alphabet was represented by five binary symbols and said that "And here, by the way, we gain no small advantage, as this contrivance shows a method of expressing and signifying one's mind to any distance by objects that are either visible or audible - provided only the objects are but capable of two differences, as bells, speaking trumpets, fireworks, cannon etc."

A simple example is that about 16 binary decisions should suffice to locate any word in the Concise Oxford Dictionary if I start with first or second half, quarters, eighths . . . and finally down to fractions of a page. (I have to say "about" because the number of pages is not a power of 2 and the number of words per page is not uniform; the Dictionary was not designed for this exercise!) It follows that (selective) information can always be expressed as an equivalent number of binary units; and I in (2) is measured in bits or C in (1) in bits per second. But this is not the whole story. If a "sixteen questions" guessing game with the dictionary leads me to the top half of the right-hand column of $p .943$ I shall think that the word I am seeking is likely to be pompous or pond, but unlikely to be pompano or pompier, for example. So the measure of the amount of informa-

Fig. 1. Identification of a word: (a) the dictionary, (b) the page number, (c) the column, (d) the word.

tion which is communicated must take account of the pre-existing probabilities and not merely absolute certainties; and we now take the view that the amount of information communicated is related to the reduction in uncertainty or to the extent to which it allows a reassessment of probabilities at the receiving end of the channel. It can be shown mathematically that the only satisfactory measure of the uncertainty related to a finite group of probabilities is the entropy

$$
\begin{equation*}
H=-\sum_{i=1}^{N} p_{i} \log p_{i} \tag{3}
\end{equation*}
$$

where the p_{i} are the individual probabilities in a set of N distinct probabilities. Since probabilities are by definition less than unity, each $\log p_{i}$ is a negative quantity and H is positive.
Entropy has significance in thermodynamics and statistical mechanics, but the exact relationship between the different applications of entropy need not concern us. It suffices to say that entropy is always associated with ideas of disorder, confusion or indistinguishability of one state of a system from another. It is therefore natural to associate it with uncertainty and use reduction in entropy as a quantitative measure of information.
So far as we are concerned, H in formula (3) is just the weighted mean of all the logarithms of the probabilities, each logarithm being weighted with its own probability of occurrence, and it can be measured in bits. (Readers are probably familiar with the transformation from common logarithms $\left(\log _{10}\right)$ to natural logarithms $\left(\log _{e}\right)$ by multiplying by 2.3. Equally one can work in logarithms to base 2 and if the units in formulae (1), (2) and (3) are bits it must be understood that the logarithms are $\left(\log _{2}\right)$. An important property of H is that it has a maximum value of $-\log p$ when all p 's are equal and is zero if one probability is unity and all others zero. For if one probability $p_{k}=1, \log p_{k}=0$ and all the other $p_{i}=0$; so $\sum p \log p$ $=0$ when one possibility can be selected with certainty.
For a simple application to a communication situation, suppose we are watching a Telex machine which we know is going to print a string of letters. Before a letter is printed there is a probability of $1 / 26$ for each letter of the alphabet and $H=-\log _{2}(1 / 26)=\log _{2}$ $26=4.7$ bits. If the letter Q is printed, $H=0$ for this letter; and the information attributed to the communication of one letter is equal to the reduction of entropy of 4.7 bits. But if instead of "a string of letters" the Telex output was known to be English language text, the appearance of Q would be quite improbable but the appearance of E would be probable. This prior knowledge of probabilities constitutes information which we already have at the receiver and thereby reduces the amount of information which has been communicated. This is allowed for by recalculat-
ing the value of H before the letter was received, putting the English-language weighting for each letter in the formula

$$
\begin{equation*}
H=-\sum_{i=1}^{26} p_{i} \log p_{i} \tag{4}
\end{equation*}
$$

This will necessarily be less than the maximum value sbtained when all the p 's are equal and therefore its reduction to zero will represent less increase in information. (Actually the entropy of the English-language-weighted alphabet of 26 letters is reduced only to 4.3 bits per letter.)

But now let us look at the line engineer's view. Each letter is represented by five units (plus some synchronising pulses), and the receiving equipment must be set up with a threshold which decides between mark and space for each of the five units. Suppose the line is noisy so that there is a 10% chance that any one (but only one) of the units will be incorrectly interpreted. Then 5 letters which differ in one unit from the letter sent will each have a $(1 / 5) \times 0.1$ chance of being printed and the entropy after receipt of the noisy signal will look like this:
$H=-\Sigma p \log p=-(5 \times 0.02 \log 0.02+$

$$
\begin{equation*}
0.9 \log 0.9) \tag{5}
\end{equation*}
$$

In binary units this is 0.701 bits. The information transmitted is the difference between the uncertainty before and the uncertainty after transmission, which in this case with English language is nearly 3.6 bits. So now we are able to measure the amount of information which is communicated even when noise in the channel means that nothing is certain. An important result of applying formula (3) to a binary. channel $(\mathrm{N}=2)$ is that a 50% error rate means zero communication of information. For if when 1 is received the chances are $50-50$ whether 0 or 1 was transmitted, one might as well toss a coin at the receiver and dispense with the communication channel.

Now we have admitted that there will always be noise in the communication channel. If it is random noise it may have any value of instantaneous amplitude up to infinity, but for just over two-thirds of the time it will not exceed the r.m.s. value. How can we reconcile this presence of occasional noise amplitudes which are many times bigger than the r.m.s. value with the channel capacity theorem?

That there is a real problem is shown by the following very crude and approximate interpretation of formula (2). If the signal-to-noise ratio is good, $1+P / N \approx P / N$ and the amplitude ratio is approximately $V(P / N)$. The logarithm of the square root is half the logarithm of the original quantity, so

$$
\begin{equation*}
I \approx 2 T W \log \left[V^{\prime}(P / N)\right] \tag{6}
\end{equation*}
$$

Now $2 T W$ is the number of independent pulses that can be associated with the time-bandwidth product $T W$ and in the

Fig. 2. The distance between signals must be greater than the likely effect of noise.
absence of noise digital information can always be expressed in the form

$$
\begin{equation*}
I_{D}=n \log S \tag{7}
\end{equation*}
$$

where n is the number of digits and S the number of states or amplitude levels for each digit.

Comparing (6) and (7), the channel capacity theorem seems to be saying that the number of amplitude levels can be spaced at intervals equal to the r.m.s. noise; but the instantaneous noise exceeds the r.m.s. value for about one third of the time, so how can errors then be negligible? The answer is in the first few words of the theorem "By a sufficiently complicated method of coding..." A proper derivation of the channel capacity theorem is fairly mathematical, and the further one goes in search of "ideal coding" the more one gets entangled in mathematics; but there are two principles which can be stated non-mathematically:
(1) Since the number of messages is finite, one has only to choose a finite set of signals which are sufficiently different from each other that even in the presence of noise one is unlikely to pick the wrong one. (This difference is often called the "distance" between signals.) (2) A single instantaneous amplitude of noise may have a large value, but it is unlikely that a number of instantaneous values in succession will a!l have large values, and the more samples you take the nearer their average ${ }^{\dagger}$ will come to what we regard as the r.m.s. value of the noise.
An example of the second principle is
+Strictly speaking this "average" must be the root-mean-square value of the samples and what we normally call the r.m.s. value of the noise is that which we should obtain with an infinite number of samples.

Fig. 3. (a) signal transmitted, 11010 ; (b) signal received, 11010 or 11011?
that if you listen to the audio output from a high-gain receiver you will hear noise because the ear can respond to pulses lasting only one tenth of a millisecond; but if you connect an a.c. voltmeter with a response time of about a second, it will probably give a perfectly steady reading. This is because it will have averaged the noise over a TW product of about 10,000 .
So "ideal coding" requires first that you construct signals with sufficient mutual differences (or distances) and second that you both construct signals which require a large value of $T W$ and wait until the whole of a signal has been received before you try to identify it. Thus in principle ideal coding involves delay; but if W is of the order of kilohertz then T, and hence the delay, need only be of the order of a second to make TW large.
More recently the question has been put, "Supposing I do exceed the channel capacity defined by formula (1), how bad will the system be?" If we regard all differences between the received and transmitted signals as distortion, it is possible to formulate a relationship between the amount of such distortion and the rate of communication. The latter must take account of the fact that information is not received with certainty. For each received symbol one has only a set of probabilities of the various possible transmitted symbols; and in general different symbols may be made to have different probabilities of error. There results a rather complicated mathematical function called the rate distortion function which relates the rate of communication which can be achieved to a specified degree of distortion.
All that we have said so far about finite sets of messages seems to apply readily to telegraphy, where digital signals are natural, but what about telephony, television etc. when the signals are basically in continuous analogue form?
The answer is that continuous analogue signals may be reduced to discrete form by the two processes of quantizing in amplitude and sampling in time. No magnitude is ever known with absolute precision so it can always be equated to the nearest of a number of fixed levels if the latter are at close enough intervals. This process of equating to a pre-selected value is known as quantizing, and is no different from expressing a magnitude by a figure taken to a finite number of decimal places. The fineness of quantizing - the number of decimal places in the analogy - is chosen to give the desired accuracy. The other operation which is needed is sampling in time.
It was mentioned in connection with

(a)

(b)
formulae (6) and (7) that the maximum rate at which independent pulses can be transmitted through a channel is two per unit of time-bandwidth. This is often called the Nyquist rate, since it was stated by Nyquist in relation to telegraphy in 1928^{*} An equivalent statement in very general terms due to Gabor** is that however one may try to construct a minimum signal element it will obey the law

$$
\begin{equation*}
\delta f . \delta t \geqslant 1 / 2 \tag{8}
\end{equation*}
$$

where the equivalent extent of the signal in bandwidth and time, δf and δt, is measured by a statistical formula which can be applied however fast or slowly the signal is cut off in frequency and in time. This is mathematically true because the frequency spectrum of a signal is the Fourier transform of its time waveform; but the cut-off points equivalent to this δf and δt do not correspend in any way with 3 dB points. Gabor's theorem of the minimum signal is in close analogy with Heisenberg's principle of indeterminacy in physics, which is generally written as δp. $\delta \mathbf{q} \approx h$ where h is Planck's quantum and p and q are a pair of conjugate co-ordinates of a particle such as its momentum and position.

The counterpart of the rule about pulse rate is that any waveform of which the Fourier components can be contained in a bandwidth W and of which the duration is T can be reconstructed unambiguously from $2 W T$ suitably chosen samples. This is the sampling theorem. If the waveform corresponds to a low-pass band from 0 to W hertz, then evenly spaced samples at two per cycle of the highest frequency are suitable. (This is the form of the sampling theorem which is most commonly used. Other arrangements of 2TW samples are possible, and a different sampling pattern is needed for bandpass signals.) The original waveform is reconstructed if the nth sample of amplitude a_{n} causes the receiver to generate a unit waveform

$$
a_{n}^{\sin \pi(2 \omega t-n)} \frac{\pi(2 \omega t-n)}{}
$$

This method of reconstructing the waveform is open to criticism in theory, though in practice it is good enough provided that TW is large. The difficulty is that the waveform $(\sin x) / x$ extends from $x=-\infty$ to $x=+\infty$ so no one of the waveforms used for reconstruction can be completely contained in the time interval T. But the function is small for x outside $\pm 4 \pi$ so the imperfect reconstruction is noticeable only in the neighbourhood of the first and last

[^4]samples, and this is unimportant if TW is large. Assuming for the moment that formula (1) is of general application, it says that for a given communication

Fig. 4. Digitising a waveform.
rate one can change bandwidth provided one adjusts P / N accordingly, and vice versa. This is a qualitative retrospective justification of systems like f.m. where for a given output the carrier signal-to-noise may be allowed to drop in exchange for the use of a greater bandwidth. The idea of exchanging bandwidth against signal-to-noise was not obvious while we were always thinking of hi-fi transmission of the original sound or other waveform. But it arises naturally from the Shannon approach of communicating signals from a finite and pre-arranged set instead of arbitrary waveforms.
Thus we have shown that information is an objectively measurable quantity; and in consequence communication channels can be designed in terms of the communication of information rather than of the faithful transmission of waveforms.
(Next article: redundancy and the exchange rate)

Sixty Years Ago

The following extracts from the April 1916 issue of Wireless World were drawn from an informative article by Wm. S. Purser entitled The Banjo - A Pastime for Wireless Operators. "One of the popular fallacies regarding the banjo is that one has to have a black face and sing nigger songs Some talk has been heard in the past of elevating the banjo, and playing classical music upon it The banjo may be regarded as symbolical of good fellowship When purchasing an instrument select a British-made ordinary banjo and you will have a reliable article which will stand any climate Do not be 'misguided by the expression 'Anything will do to learn on'. The banjo should have five strings . . . Wireless operators and others going on voyages or to out-of-the-way places should purchase strings by the dozen. Having decided on your brand of strings, always get them from the same place . . . After gut strings have been exposed to the sea air for a long time on the instrument they gradually turn green". Follow that.

HF predictions

There are no signs of vigour in current solar activity and expectations of an established upward trend by the end of the year seem optimistic at present.

Seasonal changes in highest probable frequency (HPF) and optimum working frequency (FOT) curves become evident this month and magnetic disturbances are likely to occur over March 14 to 19 and April 10 to 15 .

FM tuner designs

2 - Improved performance; further facilities

by D. C. Read, B.Sc.

Changes which provide the tuner described in part 1 of this article with some additional control and monitoring facilities and a more flexible input circuit are shown in Fig. 5. The extra gain-controlled r.f. stage comprising the dual-gate m.o.s.f.e.t., Tr_{r}, can be arranged to function in different ways according to local reception conditions. Two alternatives are illustrated in the circuit diagram by the indicated possible connection of a $10 \mathrm{k} \Omega$ resistor between Tr_{1} source and the positive supply rail. Circuit operation is as follows.

With $10 \mathrm{k} \Omega$ resistor. The stage produces either a gain (maximum 6dB) or a loss (maximum 12dB) under the control of the a.g.c. voltage returned from the i.c. This division into two control regions makes the most efficient use of the available 18 dB a.g.c. range whereby large incoming signals are reduced in level to prevent oscillator pulling but weak signals are given low-noise amplification before the LP1 186 r.f. and mixer stages, so that the noise these produce is added in smaller proportion.

Without resistor. The stage gives low-noise gain with a value between zero and 12 dB again depending on the a.g.c. voltage. This arrangement is suitable for tuners used in fringe areas where received signals are low; i.e. where increased sensitivity is required and high-level incoming signals are not normally encountered.

A further possibility makes even more effective use of the m.o.s.f.e.t. characteristics but at the expense of added complexity, particularly in setting up. If the Tr_{10} source is held at a fixed voltage, say by means of a low-value zener between it and the 0 -volt rail with a current feed via a resistor to the positive rail, then the a.g.c. range is extended because the source-follower feedback action which modifies the effect of the control voltage on gate 2 is inhibited.
The spread of characteristics for f.e.t. devices is such that, without this stabilizing feedback, the bias on gate 1 needs preset adjustment to give maxi-

- The simpler version described in part 1 comprises tried and trusted circuits, up-dated with refinements intended to make construction, line-up and operation easy; stability and utility are the essential features. The overall design is flexible, and various special facilities can easily be added either during or subsequent to the main construction. These extras include:
-a twin tuned-circuit demodulator which reduces harmonics in the recovered multiplex signal but which needs proper adjustment using a wave analyser or distortion meter
-a stereo-inhibit switch which allows mono reception of weak stereo signals thus giving a 20 dB improvement in signal-to-noise
-a buffered and de-emphasized mono feed derived before decoding and intended for tape-recording
-low-pass audio filters to remove unwanted components from the tuner outputs, useful for tape recording either stereo or mono
-a tuning-indicator circuit.
- The more advanced tuner can be provided with any or all of the additions listed above; it also shows further refinements, some optional, which give improved performance in certain respects but which increase the number of necessary adjustments both in setting up the tuner and in its normal operation. These modifications and additions are:
-an extra gain-controlled r.f. stage giving increased sensitivity and stability, and improved signal-to-noise performance. The design of this stage also allows different a.g.c. characteristic's to be chosen either as a result of fixed circuit changes or subsequently by adjustment of a panel control to suit various reception conditions
-a more comprehensive a.f.c. system which, like the a.g.c. circuit, can be varied in its effect under external control (R_{9} could be a front-panel variable resistor)
-a received signal-strength meter circuit with calibration curve. This meter feed could also be used for stereo-threshold switching.
-adjustable inter-station muting.
mum gain for weak signals. In practice the required bias is easily set by connecting gate 1 , actually the earthy end of the input coil, to a variable tapping in a high-resistance potentiometer chain across the zener. Then, with the a.g.c. voltage on gate 2 at its most positive value, the bias is varied until the highest possible stage gain is obtained. The likely performance of such a circuit is a maximum gain of 16 dB and a control range of 25 to 30 dB .
The circuit which includes the LP1186 module and the impedance-matching stage, Tr_{2}, is largely as in the simpler version, the only difference being an additional resistor in the a.f.c. feed. The choice of value for this component, which determines a.f.c. sensitivity, is
dictated by local reception conditions. High sensitivity is given with the value at $47 \mathrm{k} \Omega$ as shown in Fig. 5. If equal. strength neighbouring-channel signals are present, the degree of control migh be too great such that the tuner could t captured by an unwanted station as tl local oscillator sweeps through t relevant frequency while changing select the wanted station. If this occ reduce the resistor value, possibly t low as $5 \mathrm{k} \Omega$, which still allows a u amount of control.
Because of the extra gain now lable at the tuner front end and a the CA3089E module, the i.f. ar IC_{2} is not required and the , impedance for F_{2} is provided ins a grounded-base stage, Tr_{3}.

Fig. 5. Improved performance at low signal levels is obtained with this circuit, which uses the tuning and decoder circuits of Fig. 1. Sequence of connections for Tr_{2} is b, e, c, screen (on-lead view). On the CA3089E pin 8 corresponds with the tag location.

Although the RCA limiter/demodulator circuit is more complex than its TAA661B counterpart it operates in a similar manner, using an inductive carrier feed to obtain the quadrature reference phase and has the optional dummy tuned circuit to improve linearity of the transfer slope. The external circuit differences mainly concern the use of additional facilities provided by the i.c. Because the a.f.c. signal is derived from a push-pull, open-collector current source in the CA3089E circuit, it is possible that the equal and opposite current condition in a given sample of the i.c. does not occur precisely at the middle of the demodulator S curve. In such a circumstance, a small correcting bias can be provided through a resistor with a value in the 91 to $330 \mathrm{k} \Omega$ range, connected either to the positive rail, as shown, or to 0 volts, whichever is appropriate. To find the required value and the appropriate supply connection point for this resistor, a method similar to that already described for matching the a.f.c. offset voltage in the simple tuner is suggested; in this instance, however, the S curve is sampled by measuring the voltage across the 150 pF capacitor in the pin 6 output circuit.
The completely off-tune condition is used to find the particular voltage value which represents the effective S curve centre and this is then established by tuning to a strong station. Now connect the meter across the a.f.c. sensitivity-controlling resistor, R_{9} (points 1 and 2). With the a.f.c. switch off, vary the bias to pin 7 until the measured voltage is zero and remains so with the a.f.c. on. (Note that, as the a.f.c. drive is from a constant-current source, there is automatic compensation for the supply voltage - offset at pin 8 of the LP1186.)
The varying voltage output from pin 13 , shown as the meter current curve in

Fig. 6. Curves showing a.g.c. performance and meter current, taken with R_{4} omitted. Delayed a.g.c. voltage is at pin 15 on CA3089E.

Fig. 7. Double notch output filter option. Inductors wound on 14 mm Mullard Vinkor assembly, with Ferrox core violet type LA1228. Filter, which has a 6 dB loss, should have $25 k \Omega$ load.

Fig. 6, is not used in this tuner for stereo threshold switching. It can, however, be fed to a suitable meter circuit to give a received-signal strength measurement by relating the indicated current to the calibration curve shown in Fig. 6.

Setting of the audio muting sensitivity control is done by tuning manually through a number of stations and increasing sensitivity until the noise between these is reduced to a minimum The demodulated multiplex signal, at about 140 mV r.m.s. for $\pm 75 \mathrm{kHz}$ incom-ing-signal deviation, is fed via Tr_{4} to the 50 kHz low-pass filter, decoder and audio output circuits, already described. An extra stage around Tr_{4} provides a small amount of gain to compensate for the lower output from the CA3089E demodulator and presents the correct source impedance to the filter.

Optional 15kHz low-pass filter

The output signals from the tuner contain components at the pilot-tone frequency and the switching frequency. Apart from producing noise, these

Component location and p.c. board layout for Fig. 1. Boards for Fig. 1 and Fig. 5 circuits are available from M. R. Sagin, 11 Villiers Road, London NW2, price $£ 3$ inclusive, and parts are available from Manor Supplies, 172 West End Lane, London NW6.

unwanted signals can cause difficulty when the tuner stereo output is taperecorded. If the recording bias beats with one or other of the out-of-band components, or more probably, with their harmonics, then the product frequency could be within the audio band and the resulting signal would produce interference. Such undesirable effects can be prevented by including a low-pass filter in each of the output circuits

The audio band transmitted is limited to 15 kHz , as a necessary factor in normal pulse-code-modulated signal distribution, so it is reasonable to use a sharp filter cut-off at a frequency just above 15 kHz . The circuit of a suitable filter is given in Fig. 7 together with its
response. The second notch, at 23 kHz , is at the frequency allotted to a control signal which the BBC uses for distribu-tion-route and transmitter switching. (An active filter would have required a more extensive circuit requiring many more components to achieve the high rates of response change at cut-off and the notch sides.)

Tuner r.f. and i.f. performance

The four most important figures here are those for i.f. and image rejection, which relate to operation in the r.f. section, and for a.m. and adjacent/alternate channel rejection given by the i.f. circuits

The first two depend on r.f. circuit

Fig. 8. If Toko EF5600U-1 module is used in place of LP1186 change values of resistors in Toko module to those shown in brackets.

1/4 in former, $6 \mathrm{~mm}(9 / 32$ in dia.) Neosid can $1^{3 / 8}$ in. high $3 / 4$ in square
2 violet cores $6 \times 1 \times 12.7$
both windings 16 turns 34 s.w.g.
L_{3} component numbers above as for Fig. 1. Capacitor marked C_{20} is omitted in Fig. 5. Simpler coil uses 10 turns on Neosid E3 assembly. Phase shift coil is a Sigma SCl0 screened r.f. choke, or Painton equivalent. L_{2} Fig. 1 is wound on a Mullard Vinkor assembly with 14 mm violet core and 172 turns of 38s.w.g. enamelled wire. L_{1} in Fig. 5 is $81 / 4$ turns, tapped at $11 / 4$ turns, on Neosid 6 mm former with 22s.w.g. wire.

Front panel and controls can be mounted remote from the printed board.
selectivity and in both versions are determined by the performance of the Mullard LPl186 module. The specification for this quotes an i.f. rejection of 65 dB for 95 MHz input and an image rejection of 40 dB .

If better r.f. performance is required, this can be easily obtained but at increased cost by replacing the LP1 186 with the Toko type EF5600U-1 tuner module which contains four varicapcontrolled tuned circuits and has image and i.f. rejection figures both quoted as 90 dB . A module of this type has been successfully fitted to the author's tuner with some small modifications, as below.

Fitting Toko front-end

Change of tuning voltages. For tuners operated in the London area, the necessary changes to pre-set tuning voltages for stations at the ends of the band are:

LP 1186 (w.r.t. pin 8)	EF5600U-1 (w.r.t. 0V)	
89.1 MHz (Radio 2) 2.4 V	3.5 V	
97.3 MHz (LBC)	6.0 V	7.5 V

Change of d.c. offset and a.f.c. centre-voltage. The EF5600U-1 tuning voltages are referred to 0 volts instead of the +4.5 -volt offset present at pin 8 of the LP1186. This difference necessitates two modifications. First, the 4.3 -volt zener, marked D_{1} in both diagrams, must be replaced with a shorting link. Second, in the Toko module, the maker's circuit diagram shows that the a.f.c. circuit involves a separate diode with a 2 -volt bias obtained from resistors numbered R_{21} and R_{22} as illusirated in Fig. 8. Because this circuit is intended for operation with an incoming a.f.c. signal centred on 0 volts, it must be modified to suit the +4.5 -volt centre value which obtains in the tuners. The suggested changes are marked in parentheses in Fig. 8, giving an offset of about 6.5 volts.

The figures for a.m. rejection, quoted from the manufacturers' data for 30% a.m., are -45 dB for the SGS TAA661B and -55 dB for the RCA 3089E. Performance in respect of adjacent/alternate channel rejection is determined by the i.f. pass-band response characteristic which, for both tuner versions, is the resultant of two FM-4 ceramic filters in cascade. These components were also used by Nelson-Jones, and a curve showing the insertion loss for the combination appears in his original article. This gives the 3 dB -down bandwidth as $\pm 110 \mathrm{kHz}$, and off-tune loss figures of 40 dB at $\pm 200 \mathrm{kHz}$ and 60 dB at $\pm 280 \mathrm{kHz}$. Rejection of unwanted channels is thus more than adequate.
Correction. In Fig. 1, March issue, the value of C_{12} should be 47 nF and not $47 \mu \mathrm{~F}, \mathrm{R}_{2}$ should be $1 \mathrm{k} \Omega$ and not $100 \mathrm{k} \Omega$, and D_{6} should be a 6.2 V zener diode, labelled C6V2. Supply voltage to Fig. 4 circuit is 13 V and not 11 V .

Literature Received

Radio-frequency shielding materials and their use are treated in a simple manner in a handbook from Metex. R.f. gaskets are fully described in theory and practical applications data is provided, together with detailed information on shielded enclosure windows and ventilators for shielded cubicles. Walmore Electronics Ltd, 11-15 Betterton Street London WC2H 9BS.
An application note on a thermal r.m.s.-to-d.c. converter is published by Burr-Brown. The device exhibits a thermal time-constant of 65 ms and a characteristic which is linear and repeatable to within 0.05% over 30 dB . It is still accurate to within 2% at 100 MHz . Applications include amplifier gain measurement, thermal protection and r.m.s voltage regulation. Burr-Brown International Ltd, Permanent House, ly Exchange Road, Watford WDI 7EB.

WW 402
Aluminium aerial towers are the subject of a leaflet sent to us by Fred Franke Inc., PO Box 2806, 1639 Old Dixie Highway, Vero Beach, Florida, USA. The towers are crank-up, extending types, forty, fifty or sixty feet in height and of triangular section, and a selection of bases and mounting brackets is described. .
.WW403
The British Standards Institution has published group 09:1976 of part 3 of BS4727, which is a glossary of terms used in waveguide engineering. The publication is obtainable from British Standards Institution, Sales Department, 101 Pentonville Road, London N1 0ND at $£ 3.10$ by post.WW 404
Relays with mercury-wetted contacts from Elliott -are described in a booklet which gives mechanical information and electrical characteristics of twelve ranges of relays. Application information on contact protection, screening, etc. is included. Elliott Relays, 70 Dudden Hill Lane, London NW 10 1DJ.

WW405
Aerial information for equipment in the m.w., v.h.f. and u.h.f. range is presented by Aerialite. The latest to be published includes a leaflet on indocr aerials two on u.h.f. types and a description of the mounting accessories made by the company. Aerialite Aerials Ltd, Whitgate, Broadway, Chad derton, Oldham, OL9 9QC..
.WW406
An f.m. radiotelephone is illustrated and described by Telefunken in a new leaflet. The 10 -channel Teleport VII covers the $80 \mathrm{MHz}, 160 \mathrm{MHz}$ and 460 MHz bands at 2.5 W r.f. (IW at 460 MHz). Bayly Engineering Ltd, 167 Hunt Street, Ajax, Ontario, Canada. .

WW407

Great balls of fire!

According to a NASA report, glowing spheres have been noticed in almost half the cases where an observer happened to be very close to a stroke of lightning. The nature and indeed the very existence of this ball-lightning has been the subject not only of heated debate among theorists but more recently of some seemingly dangerous research in France.

Scientists at the Commissariat à l'Energie Atomic (CEA) and Electricité de France (EDF) have been photographing lightning discharges caused when rockets trailing thin stee, wire were fired into thunder clouds. During the course, of these experiments, some twenty artificial lightning strokes were produced and filmed. According to a report in Nature (vol. 257, no. 5523), triggered lightning, like upward natural lightning, begins with a slow discharge in the kiloampere range with a rise time longer than 10 us and a total duration of several tenths of a second.
But although nothing resembling some of the more exotic stories of ball-lightning was noticed, there is now firm photographic evidence for balls of lesser degree. During some long-lasting lighting strokes ($>1 / 2 \mathrm{sec}$) "luminous spheroids" some 40 cm in diameter were observed towards the end of the discharge and, according to the French researchers, their properties are entirely consistent with those of hot blobs of gas. So it seems that lightning folklore and tales of monster blobs of plasma can still thrive on exaggerated stories of the one that got away!

Fibre optics for chemists

Readers of this journal won't need reminding that progress in fibre optics has now reached a point where "light-guides" are very competitive with r.f. waveguides for data transmission. But if the highly critical design criteria for light-guides have provided headaches for some researchers, their less desirable properties have nevertheless resulted in a highly sensitive method of chemical analysis.

It's a form of spectrophotometry developed in the United States in which the transmission properties of a lightguide are intentionally altered by the presence on its surface of microgram quantities of the chemical being evaluated. The refractive indices of the light guide and of a special polymer coating carrying the test chemical are so arranged that light is refracted in and out of the coating as it passes along the guide. In this way a small change in the optical properties of the guide/coating interface are amplified to a very considerable extent. So sensitive is this technique that polymers containing sub-microgram quantities of cyanide ion can alter the light transmission of a guide by over 50% compared with a pure polymer coating. (Nature, vol. 257, no. 5528.)

Natural magnetism attracts the birds

Dr William Southern, an American biologist writing in Science (vol. 189, no. 143) has evidence to suggest that v.l.f. radio waves affect the migratory pattern of gulls. His experiments were conducted on frequencies around 50 Hz using equipment which the US Navy has developed for submarine communication (Project Sanguine). The birds, chicks a few days old, were taken from their colony several miles away and released near the transmitting aerial, some at times when the transmitter was operating and some when it was inactive. The birds released during non-radiating periods were found to migrate in a direction consistent with those in the parent colony, whereas during transmission the migratory pattern became completely random. These results add considerable weight to current theories that birds can orientate themselves to the natural magnetic field. (The writer however, has very little evidence that his amateur transmitting activities in any way deter marauding wood-pigeons!).

Microminiature . . . Picominiature . . . where next?

A comparison of today's microprocessor chips with bipolar transistors of only a decade ago might well convince even the most sceptical that pinhead-sized computers are merely a few years away. But before you go rushing out to buy the latest in 25 microwatt soldering irons (or perhaps commit suicide), be comforted: the end is nigh. A paper by J. T. Wallmark (Inst. of Physics Conf. Ser. No. 25,133) concludes that by the time present-day circuit elements have been scaled down by about five times, i.e. to around $2 \mu \mathrm{~m}$, basic laws of physics will step into play and limit any further size reduction. The limitations according to
this author lie not so much in the technology necessary to produce finer and finer patterns, but intrinsic barriers such as insulation breakdown and excessive current density. One other major problem is that with diminishing size, local variations in the concentration of doping atoms result in excessive spread of device characteristics. So, in the absence of any fundamental discoveries in solid state physics, we might as well forget any dreams about unlimited pocket computer power - that is uniess we're prepared for it to think slowly like people.

Grains of metal in an insulator

Mixtures of conducting and non-conducting materials are interesting to solid-state physicists in their own right but are also now beginning to be used to make devices. Dr Ben Abeles and his co-workers at RCA Laboratories, Princeton, USA, have been exploring the conducting properties of films formed when metals, say gold, and insulating materials such as silica are sputtered together. The metal forms well-dispersed spherical particles in an insulating matrix but the particles are close enough together that, even though they do not touch, electrons can tunnel between them. Tunnelling is a quantum-mechanical phenomenon which does not allow high current to flow but can be controlled more effectively than metallic conduction. One new application for these effects is described in the announcement of a "granular metal semiconductor vidicon". In this, the light-sensitive target consists of the following layers deposited on a glass faceplate: transparent conductive tin oxide, cadmium selenide and granular metal, sputtered from a composite gold-silica target, to a thickness of 400 nm .
As is usual in a vidicon camera, the target charges up in proportion to the light falling upon it and an electron beam is scanned over it as a means of reading out the charge pattern. The advantage over targets which have been used up to now, such as those which have the semiconductor left bare or others which have a pure silica layer over the semiconductor, is that the granular metal layer prevents blurring of the image (which occurs on the bare target because of excessive conductivity) and it also eases the flow of image information to the electron beam (which is excessively slow for the pure-silica coated target). C. R. Wronski, Ben Abeles and Al Rose, writing in Applied Physics Letters, vol. 27, 91-92, put this more precisely, explaining that photo-generated holes have to be forced through the pure insulator under high fields, while tunnelling allows the same process to be done in the metal-filled insulator under much lower fields.

Letters to the Editor

CONSULTANTS, PROSTITUTES AND CHAUFFEURS

There is chalk and cheese, there are prostitutes and wives, there are also in our domain consultants and consulting engineers. As someone who, starting without the aid of either capital or contracts, has run a successful consulting engineering practice in telecommunications and electronics for rising twenty-five years, I feel I must comment on the article "The consultants" in your November issue.
l have always felt that consulting must be done from the background of complete independence from commercial affiliations and any other loyalties. Independence means just that. If you are paid by someone else and/or use their property for your own purposes you have no higher status than the chauffeur who uses his master's Rolls for weddings and funerals while the latter is out of sight.

I am not the least surprised that your correspondent has found such dissatisfaction with "consultants" - highly likely I would say - but give the real chaps a break. We have had clients in all five continents. We have had large public companies in our domain - sometimes for a period of years and they wouldn't come back if they were not satisfied, but it is true that more often than not they do not wish it to be known that they used us.

The World Bank will not underwrite any engineering project without the imprimatur of consulting engineers. Surely this shows the value, the competence and status of the consulting engineer.
C. A. Henn-Collins,

Henn-Collins Associates,
Castel,
Guernsey.

John Dwyer is deserved of high praise for his clearly written, unbiased, frank, fearless and interesting exploration into the ways and means of independent engineering consultants, and for illuminating certain dark corners.

My own consultancy activities stem from a small family business and much of the money it makes is ploughed back into the purchase of new plant and equipment to enhance the value and quality of the work undertaken for our clients and readers of the .hi-fi magazines in which our detailed review
and test reports appear. In spite of the expensive plant we are obliged to purchase and maintain from our own resources, our fees are far more modest than those of the consultants referred to in the latter part of the article; and I feel that Derek Bond in his summing-up warning means ". . . if they're inexpensive (not cheap) and good we'll use them.

Like James Moir intimates, we are also experiencing the somewhat unfair competition from college-based consultants, and were very surprised to read that equipment. plant and facilities from the public pocket are, in effect, being used in competition with the consultant who relies essentially on his fees for a living. It is noteworthy that North London Polytechnic at least has blocked one-third of the flow of money from essentially college-financed personal enterprises to private pocket, but this still nevertheless presumes that two-thirds of the money goes as a cheque into the bank account or as pound notes into the pocket of the consulting lecturer, etc. What about other polytechnics, and colleges - is it accepted practice, for all the income so derived to go to the college official?
One might be inclined to say "so what, good luck to them", except for the startling attitude-reflecting statements, such as " money isn't the thing that counts . . ." (it may not be to the chap getting a fat salary from public funds for his twenty-six-hour week when it is purely pin money, but it certainly is to the professional consultant working his hundred or more hours a week for possibly less money) and ". . . didn't charge nearly as much as outside consultants
(a blatant admission of unfair competition based on public money at the expense of the professional).
Clearly, if all this is true, then the private consultant not in a position to command the use of thousands of pounds worth of equipment, plant and facilities at public cost for nothing is faced with overwhelming and singularly unfair competition. The depreciation and running costs of a small lab could well be up to $£ 10,000$ per annum. Apart from having this sort of yearly expenditure immediately available for free the college chap would appear to acquire at least two-thirds of the consulting fee for himself (perhaps the whole;lot apart from NLP) plus his normal salary. What an incredibie situation if it is really a fact!
From the article, it appears as though it could be. The implication being that provided the NLP chap puts about one-third in the pool all is well. The article fails to say what happens to the pool of money - whether it is returned to the public funds or shared out at Christmas time!

Perhaps officials from colleges other than NLP who undertake șuch consultancies with the college's plant, facilities, etc, would care to clarify the scene, saying exactly where the client's money goes and whether any charge is made to the consultant.

1 also often wonder what happens to the fees received by the technician, etc, for equipment reviews, he undertakes for the hi-fi magazines using college plant, equipment and facilities, as often indicated by the review. Does he charge less for the review than could a reviewer relying upon the income to live and pocket all the fee? Does he charge the full amount and return it to the public kitty; or does he keep some for himself and return some of the college? Then there are all the other researches written up in the magazines and paid for. Who gets the fees?
Answers to questions like these are very
important to the private consultant who has to purchase and maintain his own lab and premises, pay the rates and rent, pay his own telephone bills, pay for his own heating, his own office and secretarial staff, who cannot advertise for business and cannot beiong to a trade union, giving him some idea of the unfair competition he is now facing and how long he will be able to stay in business.
Gordon J. King,
Gordon J. King (Enterprises) Ltd,
Brixham.
Devon.

WAS BAIRD FOOLING THE PUBLIC?

The plea in your January issue for a "serious study of the business and technical aspects" of the 30 -line Baird activity may well serve to put an end to this confused affair. ("John Logie Baird and the Falkirk transmitter," pp 43-46). Annotated references in the article to reputable proceedings about achievements are intended to convince but give to today's reader a false picture of the happenings of 50 years ago. It should be appreciated that Baird never successfully demonstrated television. Being without a method of synchronisation over a distance, there could be no such event. At every attempted demonstration this primary need had to be faced and contrived. The bringing together of radio transmission, in itself having ideal properties for television purposes, and the trundling mechanical image analyser, was quite incongruous.

Proper electrical circuits for conveying the light values were not to be found in the various Baird set-ups. This was the time of early talking films and picture telegraphy when the stable photocell and bright recording lamp were both readily available. Baird claimed to use visual purple as the light sensitive material.
"Fibre optics," a modern term of wide application, is brought into the article. True, the possibility of using a bundle of fine internally reflecting glass fibres for channelling an image falling on a closely divided grid was well known, a scheme which avoids synchronising and light handling difficulties. The modern plastics as used in optical cables give a high degree of light insulation with but little loss, Fibre optics offer high definition remote viewing with the possibilities of image intensification. These things were not part of the Baird programme, being generally inapplicable to a radio service.

Baird hoped to convey to the public with his inadequate devices that he was in possession of a commercial proposition of considerable potential value. This he aimed to sell by pretence and to that end demonstrations had to be conjured and reports by staff contributors commissioned for publication. The pattern of the Wireless World, article, almost line by line, shows the marks of this policy. Displayed advertisements in the daily press of the time said "Television is Here." A "Home Televisor" appeared. so here all was revealed for public judgement. The "Televisor" was a typical well made. Plessey product. With a monitored signal input (Big Ben clock face) and in an equipped laboratory where auxiliary gear, by way of a heavy duty synchronising and vision amplifier was to hand, the Baird Televisor was shown to be a failure in fulfilling its intended purpose.

This was the end of the 30 -line part of the story which is as far as your article goes. No
radio enthusiast was fooled. Radio societies, then much attended, were amused. Wireless World, always ready to pursue and report, remained silent.
F. H. Haynes,

Bovey Tracey,
Devon.

PHASE EFFECTS IN LOUDSPEAKERS

It is, I think, generally accepted that phase distortion exists, inasmuch as it can be mathematically proven, or perhaps better, displayed on a c.r.t. It is also, 1 believe, generally accepted that the human brain in some mysterious way "integrates" the incoming signal in the same way as it does a harmonic interval, say a major third, to sound as it does and not as a c.r.t. shows that it should. In the same way (broadly speaking) a received mixture of primary colours is seen as a specific hue. At least, by most of us it is: there are those who do not have this ability visually, and it does not seem beyond belief that there are those who, similarly, lack the audio integrating function which most take for granted, but is not easily quantified in the same way as, say aural frequency response.

1 know, for instance, that my hearing cuts off above 17 kHz , whereas 20 years ago it was 22 kHz (when it was still kc / s) but this is an easily measured function. Perhaps we need a consultant neurologist to enter the discussion?
A. J. Gamble

Ormskirk
Lancs

The long dead and buried question of square waves not being heard differently when considerable phaseshift is applied to the different harmonics, is disinterred again. This despite the fact that no designer of linear phase speakers uses the argument that because of the ability of a speaker to reproduce a square wave it will sound better. This is always presented as just one means and no more - to show that it really possesses phase linearity. It is a "tool" and nothing but a tool and presented as such.

As to audibility of linear phase, Mr. Harwood (conveniently?) completely ignores the articles on "Aural Phase Detection" in the Journal of the AES (vol. 22, Nos. 1 and 10) by V. Hansen and E. R. Madsen, which go a long way indeed to proving the importance of investigating this aspect in sound reproduction.

Quite different signals than square waves were extensively used, far more related to musical transient sounds. Altogether it was a very thorough investigation into human perception, with particular regard to the desirability of phase linearity in music reproduction. Far more convincing indeed than the questionable experiments by Mr . Harwood in which only NON linear phase seems to have played a part.

Personally I had the opportunity of investigating loudspeakers that laid claim to. phase linearity, to a greater or lesser degree, from France, Germany, Denmark, Japan and England. Most of them first as prototypes and later on as the finished product.

Perhaps the most striking experience was the first in which I and a few other selected people were able to compare two identical loudspeakers, identical as to size and units used, where the first was equipped with a carefully designed, but conventional 3 -way crossover filter, and the second with a filter that ensured linear phase from about 300 Hz upwards.

Although the first was judged to be a very good speaker of very wide response and an extremely well balanced sound, the difference could be called enormous. Especially transient response was improved to an incredible extent. This concerns pure quality, but the other aspect, the stereo image, also changed in a startling way. By comparison the first pair (for pure quality only single speakers were compared) suddenly gave the impression of presenting a confused though reasonably wide stereo-stage with little depth.

In the meantime I have listened to, and tested extensively, the other ones mentioned. It cannot just be a coincidence that five (!) loudspeakers from five different countries ALL showed the same striking improvement in transient response. The last, one of British origin (this cannot be any other than the DM-6 of course) being an absolute winner and in some ways even beating an electrostatic speaker.

Yes., square waves too! In all cases I was able to make oscillograms in an ordinary, but well damped room, of square waves with the microphone at 1 m distance. Again, no proof of better music, but of linear phase. Single sinewave pulses, and/or half waves have proven to be of more use to confirm in technical tests, qualities heard with music. Symmetry and ringing can be judged over the whole frequency range and in my experience are in 90% of the tests, consistent with subjective experiences. In the case of p.l. it is moreover remarkable to observe the steady position of the reproduced pulse when the microphone is moved vertically, no significant phaseshift can be observed, even in crossover regions.

The transfer function of any link in a reproduction chain should be described by its frequency and phase response; without linear phase accurate reproduction of waveshapes, and envelopes is impossible. To state that this is of no importance takes someone of perhaps great bravery, but more likely, one with prejudices who still thinks of music in terms of simple sinewave structures in which simple evenly related harmonics play a part only. It is of course, in particular, the transient nature of most musical sounds, with its highly complicated structure that is so important to reproduce well. Any system that shows large improvements in transient handling should be taken very seriously indeed, if of course all the other long known important parameters are not neglected. Signs of this were found in some of the prototypes, where some preoccupation with phase made bass or treble suffer. Not however apparent in most of the finalized deisgns. No, if Mr. Harwood were right, a lot of music should be rescored to fit his conclusions!

The linear phase loudspeakers I was privileged to handle proved to me and all my "guinea pigs" beyond all reasonable doubt that it is an important step forward in striving for perfection.
J. Kool,

Technical Editor,
Luister
Amersfoort;
Holland.

While I have to admit that H. D. Harwood's article on the Audibility of Phase Effects in Loudspeakers (Wireless World, January 1976) was scrupulously fair with regard to the facts, I would venture to suggest that a good deal of emotional weight went behind the thesis that phase-linear speakers are a 'con'. For readers interested in the other side of the coin, could I perhaps publicize an article of mine (1976, Hi-Fi News Annual) in which some of the recent evidence demonstrating the ears' sensitivity to phase effects is presented in detail. I have also outlined there the way in which this evidence has modified current thinking about the mechanisms involved in the ear/brain hearing system.
However, rather than becoming entrenched in our own respective camps and flinging mud at the opposite side, it seems to me that the way forward is to accept the findings of both sets of experimenters, and look for an explanation which admits of both results.

Let me summarise the two, apparently mutually exclusive viewpoints. On the one hand the psycho-acousticians (if they'll forgive the phrase!) have shown that in special circumstances and with special kinds of signals, the ear is capable of detecting 'phase distortion'. The audio-engineers, on the other hand, have demonstrated many. times that on typical programme music, phase shifts go unnoticed. Could there be an explanation which is consistent with both these results? Consider the following. Suppose that the transmitting of information is a bit like playing 'Scrabble' (to steal a Magnus Pyke-ism), and suppose that phase shifting is a bit like rearranging the orders of the letters in the words. If I were now to ask my audience to compare the sequence SEPAH with the phase-shifted sequence ASHEP, they might well retort that the information conveyed by both sequences is zero, and that therefore, in information terms, both these sequences are identical. If, however, I presented them with the sequence PHASE, comprehension might dawn!
\ln other words, if the phase information in a signal is already jumbled, a re-jumbling could well make no difference at all to our perception of the signal - the brain just rejects the phase-information channel, and derives instead, as much information as it can from other channels. If though, the phase channel is pregnant with information (e.g. the phase relationships are undistorted from source to detector) the brain might just be able to put this information to good use.

In terms of audio-programme material, the initial jumbling of phase information occurs long before the signal reaches the speaker it occurs whenever a multi-mike recording technique (with its attendant mixer desks and pan-potted imaging) is used. What does a bit more phase-jumbling at the speaker end matter here?!

It has been argued that phase distortion occurs even before the microphone stage, because multiple room-wall relections (the ingredients which make for a satisfactory reverberent acoustic) generate a resultant pressure wave at the microphone (or ear) which has a time profile dependent on the position of the source, the properties and positioning of the reflecting surfaces in the roon, and the position of the listener. If the phase information really is lost at this stage, then phase-linear-anthings really are a con. (And that includes square-wave tested amplifiers too!) It would appear, however, (even though the experimental evidence is as yet very tentative), that the ear/brain is:
capable of distinguishing between direct and reflected sound. If this result is confirmed, we can see that the relative phase of the source's harmonics is preserved in the direct sound reaching the ear. What is more, comparison of the phase information in the direct sound with that in the reflected sound might be an important direction-locating mechanism in the 'live' acoustic of the concert hall.

In the meantime, I'm not averse to any development which reduces the phase distortion properties of the recording chain as long as I am not charged exhorbitantly for the privilege.
K. A. Hodgkinson,

Open University,
Milton Keynes.

In Mr Harwood's article, and in the view of many other eminent men in the audio field in the "anti-phase" lobby, one factor stands out as the fundamental argument - that until someone can demonstrate that phase response is important to sound quality on musical signals, they will continue to believe that phase is unimportant. Often this is accompanied by details of experiments "proving" that phase distortion is inaudible, and sometimes the nature and conditions of the experiment give the impression that the proof of a predetermined objective was the purpose of the test. The debate on phase is not going to end unless those who are primarily interested in high quality sound reproduction rather than pro- or anti-phase arguments, come to conclusions based on unbiased listening tests conducted under fair conditions:

There can be no doubt that since linearity of phase response is fundamental to recreating the original wave shape received at the microphone, it can be no disadvantage to eliminate phase distortion throughout the reproducing chain, including the loudspeaker. It can conceivably be argued that a limited amount of phase distortion is not detectable by the ear, but it has been conclusively established by, amongst others, telephone companies that large amounts of frequency dependant time delay (phase distortion) can not only distort speech, but make the human voice totally unintelligible, and phase correctors have to be used in long-distance cable communications. Thus, the debate really centres on how much phase distortion is detectable by the ear, and especially whether the amount and quality of phase distortion in conventional loudspeakers is above or below this limit. It will serve no purpose to add to the debate by quoting experiments, or arguments about phase distortion. But a certain amount of care must be taken in listening tests, without which tests would not be valid
To start with, testing for wave shape distortion with a microphone in a living room is extremely misleading. Reflections from room walls picked up by the microphone are indistinguishable from the direct sound, whereas the ear finds it quite easy to concentrate on the direct sound, presumably because of the slight delays that occur. Thus while we prefer certain acoustic conditions to others in particular cases, one can always recognise a voice or instrument, irrespective of its environment. In order to test with musical signals, a primary condition must be that the source, together with the reproducing chain, must have a linear phase response. If one were conducting a test to find the limits in variation of frequency response in a loudspeaker, before the difference became
audible compared to a flat frequency response, one would naturally arrange for the music source to be recorded with microphones that also had a flat frequency response.
Similarly, if phase distortion is under test, a sound source and reproducing chain which do not have a linear phase response will mask the phase distortion originating in the loudspeakers. If in addition one is used to the type of sound reproduced by a high quality system, one can quite easily be misled into believing that phase is unimportant. This is not to say, as everyone will agree, that reproduction is perfect. No one, to the best of my knowledge, has any doubt that the finest system in existence is still imperfect
It is, however, unwise to reject phase, as one of the factors giving rise to imperfections without comprehensive tests under relevant conditions. A musical source with undistorted phase response may be difficult to find among commercial sources. One suitable method of recording such a signal for test purposes would be a mono recording using a single high quality microphone and a high quality tape recorder.

Finally, as the purpose is to judge the effect of phase distortion only, and not the quality of the reproducing chain, it is relevant to point out that no two loudspeakers sound exactly alike. To make an A-B comparison, therefore, only one loudspeaker should be used, and this must be one with a minimum of conventional faults. In addition, it must have linear phase response. Phase distortion can be added easily by an electronic phase shift unit, at a high impedance stage of the amplifier.
Phase distortion, artificially introduced, should reflect the characteristics of conventional loudspeakers. Thus, with conventional crossover, or non-staggered units, phase rotation is limited in angle and the frequency region it occurs. Thus a second order filter network has a 180° rotation and a third order 360°, in both cases the rotation occurs mainly in the two octaves on either side of the crossover frequency. Mr Harwood's all-pass networks have a constant rotation of 30°, 60°, and 90° per octave, which do not have the same characteristics as any known loudspeaker. This alone invalidates Mr Harwood's tests as far as loudspeakers are concerned, but experience in this field shows that even this kind of steady rotation can be heard under the right test conditions.
It should be noted that phase distortion is not something that is easily recognised, as we are not conditioned to listen for phase-distorted sound. Differences between live and reproduced sound can too easily be attributed to other causes, without recognising the influence of phase. The relevant criterion, in the first instance, must therefore be that a difference should be heard in an A-B test between distorted and undistorted sound. The relevance of phase distortion in sound reproduction will then have been established S. K. Pramanik,

Bang and Olufsen a / s,
Denmark.

CURRENT DUMPING AUDIO AMPLIFIER

Mr Walker's ingenious "current dumping circuit" (Wireless World, December 1975 , p.560) undoubtedly is one way of solving the difficult problem of cross-over distortion in
amplifers. The only claim I would reject is that it is "feedforward"
An essential feature of feedforward is freedon from interaction; i.e. the voltage at the enmmitters of $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ (Fig 2, p.561, December 1975, WW) should have no effect at the output point of amplifier A. This basic criterion is not met.
The equation given in Fig. 1

$$
I_{3}=\left(V_{\mathrm{in}}-I_{4} Z_{4}\right) \frac{Z_{2}}{Z_{1} Z_{3}}+\frac{V_{\mathrm{in}}}{Z_{3}}
$$

confirms this.
Feedforward can very easily.make distortion worse; indeed I have no doubt that Black found this when his amplifiers went out of adjustment, which may be why when he discovered negative feedback he abandoned feedforward.
To make feedforward work another ingredient is necessary - that of "rigidity of interconnection" (Fig. 2, October 1974, WW p.367), i.e. that the error voltage at the output of the main amplifier A_{1} should be rigidly interconnected to the output of the subsidiary amplifier $A_{2} V_{d}$ so that its waveshape is accurately reproduced. For this reason it is important not to add transformers outside the negative feedback loop.
These two principles together produce "error takeoff" which has the ability to reduce distortion by an arbitrary amount and at the same time maintain stability.
Mr Walker's circuit in my view is an effective application of negative feedback. A. Sandman,

Royal College of Surgeons,
London, WC2.

Mr Walker replies

The feedforward ancestry of current dumping can be clearly seen if we disentangle the circuit to show the error amplifier and the main amplifier as separate entities. This is shown below.
The bottom amplifier has a mutual conductance, $G_{m a}$ feeding current into the load via resistor R. Current feedback developed across R is fed back to its input. The top amplifier is the "error" amplifier and has a mutual conductance $G_{m p}$, feeding into the same load. The differential inputs of the two amplifiers are commoned.
The total current in load is $V^{\prime} G_{m 1}+V^{\prime} G_{m 2}$ But $V^{\prime}=V_{\text {in }}-V^{\prime} G_{m} R$. Therefore we can write the load current as ($\left.V_{\text {in }}-V^{\prime} G_{m} R\right) G_{m 1}$ $+V^{\prime} G_{m 2}$ If we now arrange that $R=1 / G_{m}$ we then have a load current: $-V_{i n} G_{m 1}-V^{\prime} G_{m 2}$ $+V^{\prime} G_{m 2}=V_{i n} G_{m 1}$ Note that dependence on $G_{m 2}$ has completely disappeared.
If $G_{m 2}$ is very much larger than $G_{m b}$, the bottom amplifier will provide most of the current and hence the power to the load. Since its mutual conductance does not appear in the transfer characteristics its own disturtion will not appear in the load. This is not a result than can be expected from conventional feedback. We call it feedforwaru because the error correcting current is added in the load outside the feedback loop. (There is no current interaction)
Nuw suppose the top amplifier is replaced by an amplifier of rigidly fixed voltage gain feeding its output into the load via a resistor. It will still have a fully defined overall G_{m} and operate as before. However, the top amplifier now has an accessible output point of fixed voliage gain relative to its input and this can therefore usefully be used as the drive point for ine bottom amplifier.

I lis combining of error amplifier and drive amplifier brings us to Fig. 1 of the original articie. I believe the reasoning to be clear from that point on

Mr Walker's amplifier shown in basic form.

Mr Bennett's suggested circuit.

I have recently made a more rigorous analysis of the behaviour of the "current dumping" amplifier than that presented by Mr P. J. Walker in his December article, and several interesting properties were brought out.
First there are distortion terms which are not removed by setting $Z_{1} Z_{3}=Z_{2} Z_{4}$ using the notation of Mr Walker's article. For Fig. 1 of that article,

$$
\begin{gathered}
I_{L}=\frac{\left.A V_{1}, \bar{Z}_{1}+\dot{Z}_{2}\right)+A\left(Z_{Z_{3}}-Z_{2} Z_{4} \bar{I}_{4}+\right.}{\left.Z_{3}(A+1) Z_{1}+Z_{2}\right]} \\
+\frac{Z_{3}\left(Z_{1}+Z_{2}\right) I_{4}}{Z_{3}\left[(A+1) Z_{1}+Z_{2}\right]}
\end{gathered}
$$

To obtain some judgement of the importance of the third term, use the circuit values in the original Fig. 2, and worst-case 5% tolerance components, as suggested by Mr Walker. If $A=10^{4}$, then the third term dominates distortion below 2.5 kHz . Incidentally, another distortion term would be introduced in Fig. 2 by the use of voltage gain as indicated.

Now the situation is not so severe in the Quad 405 where inspection reveals A is of the order of 10^{6} Also it is important to note that the contribution of I_{4} is not the same as cross-over distortion, for in this case the problem may be reduced by feedback, whereas when the output transistors of a class B amplifier are switched off, the feedback loop is powerless to compensate.
The final point, and perhaps the most interesting, is to consider what happens when Z_{2} and Z_{4} are removed and short-circuited respectively, thus:

$$
\begin{aligned}
I_{\mathrm{L}} Z_{\mathrm{L}}= & A\left(V_{\mathrm{in}}-\frac{Z_{\mathrm{K}} I_{\mathrm{L}} Z_{\mathrm{L}}}{Z_{\mathrm{L}}+Z_{\mathrm{K}}}\right)-I_{3} Z_{3} \\
& =\frac{\left(Z_{\mathrm{L}}+Z_{\mathrm{K}}\right)\left(A_{\mathrm{vin}}-I_{3} Z_{3}\right)}{(A+1) Z_{\mathrm{K}}+Z_{\mathrm{L}}}
\end{aligned}
$$

Thus this configuration has no feedback components tolerance problems, does not need a power inductor, and there is no third' distortion term due to the presence of Z_{k}
The $Z_{3} I_{3}$ term is of equivalent effect to the $Z_{3}\left(Z_{\text {: }}+Z_{2}\right) I_{4}$ term in (1), and thus, given an A of order 10^{6} may be reduced to similar insignificance.

J. G. Bennett,

Cambridge

There appears to be some mystification surrounding Mr Walker's new amplifier circuit described in the December 1975 issue, pp. 560-562. Consider his Fig. 1. It is a power amplifier in which part of the load current (I_{\checkmark}) comes from the unbiased emitter-followers via Z_{4} and the remainder $\left(I_{3}\right)$ from the driver amplifier via Z_{3}, At the central junction of the potential divider $Z_{1}-Z_{2}$ a feedback voltage is derived, which if the divider ratio is correct ($Z_{1} Z_{2}=Z_{4} Z_{3}$) depends only on $\bar{I}_{3}+I_{4}^{-}$i.e. on the total output current. This is not a very special achievement - normally such a voltage would be obtained more straightforwardly across a small resistor in series with the load below the junction of Z_{3} and Z_{4}

Having established that the voltage fed back is linearly related to the output current, he proceeds by implication to the quite different claim that the forward response is linear. There seem to be no grounds for this assertion. In the basic amplifier without feedback it is far from true - in the floating input configuration of Fig. 1 (with the values suggested) the transconductance increases by up to a hundredfold when the transistors turn on - and the application of feedback will reduce the distortion only to the extent expected in any feedback amplifier.

The various voltages marked on Fig. 1 do
appear to support the claim; they are, however, correct only if there is no p.d. between the inputs of the driver amplifier A, i.e. if it has infinite gain. The text implies that this is indeed the intended assumption. In that case the benefits attributed to the circuit reduce to the familiar assertion that the distortion can be made negligible by huge amounts of feedback, and it has yet to be shown that Fig. 1 possesses any unique property making is easier than usual to do this.
J. Halliday,

Winchester,
Hants.

Mr Walker replies:

Asking the reader "for the time being" to assume the gain of amplifier A to be completely defined by its external impedances Z_{1} and Z_{2} was, I thought, a convenient way of defining a finite gain (of around 100 in Fig. 1) and was not intended to imply infinite loop gain in a practical case. For any finite gain for amplifier A it is necessary to change the component equation to give the equivalent of a true "virtual earth". Thus for a gain of A, the real equation for balance becomes

$$
\frac{Z_{3}}{Z_{4}}=\frac{Z_{2} A}{Z_{i}(A+I)+Z}
$$

and indeed if this is applied to Mr Bennett's formula for the load current, it will be found that terms involving I_{4} disappear.
It is this possibility of reducing the output stage distortion to zero (without calling on infinite loop again) that distinguishes this circuit from those in which feedback only is applied.

Mr Bennett's suggested circuit employs feedback in the conventional manner. The circuit principle is found in several excellent commercial amplifiers and, as Mr Bennett rightly points out, if enough feedback is applied the distortion becomes acceptably low.

SUPPRESSOR FOR TV COMMERCIALS?

On reading about Ceefax and Oracle it occurred to me that there are some other useful pieces of information which could be added to TV signals. I refer to the nature of the transmission, especially advertisements. It would be possible to have various codes for different types of advertisement, and for sets to be fitted with a fairly simple decoder which would, at the selection of the viewers, mute the sound and/or blank the vision during transmissions.

Supporters of commercial TV have for long assured us that viewers enjoy advertisements. Now is an opportunity for them to show that they believe what they say, as if they oppose this suggestion it will be clear evidence that their policy is to take our minds by force.
Robin A. Hoare,
Howick,
Auckland,
New Zealand.

Editor's note: Correspondence on "Electrodynamically induced e.m.f." will be resumed in a later issue.

Time-code receiver clock - 3

Construction, alignment and operation

by A. F. Cross, B.Sc.
Thames Television Ltd

The power supply for the time-code receiver clock, shown in Fig. 15, requires little explanation. The nominal d.c. voltage across C_{37} is 10 V on load, and this can be used to supply the display. The 10 V rail feeds the monolithic voltage regulator IC_{40}, which has an output preset to 5 V , and a current output capability in excess of 1A. A heat-sink is required for the regulator.

Construction

The author's aim was a conveniently small clock, and for this reason a compact layout has been adopted. Apart from the power supply, the clock has been constructed on one matrix board $10 \mathrm{in} \times 6 \mathrm{in}$, resulting in overall dimensions of $14 \mathrm{in} \times 7 \mathrm{in} \times 21 / 2 \mathrm{in}$.
Care should be taken with the layout, and the power supply connections should be as short and substantial as practical e.g. at least 20 s.w.g. on the board. It is good practice to decouple the supply rail to the integrated circuits at regular intervals; a 10 nF ceramic disc per integrated circuit is ideal. Logic wiring should be no longer than necessary, and compact construction of the receiver will minimise the effect of interference from the logic. Earthing of the zero-volt line is important, preferably to a single point on the chassis. For this reason it is desirable to isolate the aerial coaxial socket, the 5 V regulator
can then become the common earth point.
The displays are mounted in di.i.l. sockets fitted to a small piece of matrix board, and interconnected using thin single strand insulated wire. The wiring details of the ferrite-rod aerial are shown in Fig. 16. The rod may be housed in a plastic or cardboard tube, along with the tuning capacitors which should have short connections to the coil. A screened cable should be connected as shown, close to the coupling coil. The siting of the aerial should not
be critical except in areas of low signal strength; however, placing it within six inches or so of the clock does result in a degradation of the signal due to interference from the power supply. Generally it is more convenient to separate the aerial from the clock so that it may be independently rotated for the best signal. The capacitors across the primary windings are a parallel combination of a nominal $4 n 7$ capacitor plus a smaller value for trimming. The final adjustment of resonant frequency is made with the coil adjuster core.

Fig. 16. Ferrite-rod aerial constructional details.

Alignment

There are several adjustments to be made before the clock will function correctly. These are; tuning of the ferrite-rod aerial, alignment of the two tuned amplifier stages, adjustment of the muting level, adjustment of the crystal oscillator frequency, and the setting of the two monostable periods.
The a.g.c. used in the receiver must be disabled before accurate alignment is possible. For the initial tuning, however, there will probably be insufficient output to operate the a.g.c. system and the amplifier will be operating at maximum gain. An oscilloscope should be connected to the collector of Tr_{3}. The adjusters for T_{1} and T_{2} should be set about half way. With the ferrite rod placed roughly "broadside" to Rugby, the aerial trimmer C_{2} should be adjusted over its range until a 60 kHz signal is observed on the oscilloscope (this may be only a few millivolts). T_{1} and T_{2} are now adjusted for maximum output. When the output has reached about 600 mV peak-to-peak, the a.g.c. loop will start to operate. To disable this a $47 \mathrm{k} \Omega$ potentiometer should be connected between the collector of Tr_{4} and zero volts. This is now adjusted to give an output between 100 and 200 mV peak-to-peak. Fine adjustments to all three tuned circuits can now be made, adjusting the potentiometer as necessary to maintain the output below 200 mV . When tuning is complete the potentiometer is removed; the output should increase to between 600 mV and 800 mV peak-to-peak. (The positive peaks will be somewhat flattened due to non-linear loading of the output.)

Muting level is set by adjusting R_{73}. (With the receiver correctly aligned, the carrier indicator lamp should be flashing with the breaks in the carrier.) When R_{73} is set to maximum resistance the muting level is at a minimum, i.e. relatively weak signals can be received without the muting circuit inhibiting the demodulator. This means; however, that in areas prone to radio interference, such interference may be of a level which prevents the muting circuit from operating when Rugby is not transmitting. If the normal signal strength is good, the muting level can be raised to reject the interference.

The oscillator is easily set to the correct operating frequency, using the received 60 kHz carrier as a reference. The output of the first decade divider after the oscillator ($\mathrm{pin} 11, \mathrm{IC}_{21}$) provides a 10 kHz signal; this is used to trigger an oscilloscope with the timebase set at about $5 \mu \mathrm{~s} / \mathrm{cm}$. Displaying the signal on the collector of Tr_{3} in the receiver should produce a stable 60 kHz trace which drifts slowly across the screen. The trimmer, C_{28}, is now adjusted for minimum drift. Because one cycle of the 60 kHz carrier has a period of $16.7 \mu \mathrm{~s}$, a figure for the accuracy can be determined. A relative drift of one cycle per second represents $16.7 \mu \mathrm{~s}$ per second or 16.7 parts per million. Ideally the
oscillator should be set up to better than one part per million which requires that the relative drift be one cycle of carrier in not less than about 17 seconds (the breaks in the displayed carrier provide convenient one second pulses for timing).

The adjustable monostable periods can be set up using an oscilloscope with a well-calibrated time base (an excellent calibrator is the crystal oscillator and

Fig. 17. Connection details for integrated circuits.
divider chain). The demodulated carrier will normally trigger the monostables once per second. The final adjustment should be made by comparison with the received control pulse once per minute. The end of the 25 ms off period (preceding the control pulse) should fall in the middle of the 4 ms low pulse on the collector of $\mathrm{Tr}_{12} ; \mathrm{R}_{74}$ is adjusted to achieve this. The end of the 20 ms control pulse should fall in the middle of the 4 ms high. pulse on the collector of Tr_{10}; only R_{75} should be adjusted for this.

Operating the clock

When the clock is switched on the disparity lamp should light, along with the carrier lamp which flashes in sympathy with the signal. Besides the one-second pulses, the time code should be seen as a brief flicker each minute. The other coded information may also be noticed: firstly, the atomic/astronomic time-difference code, which is transmitted as a double break in the carrier in some of the seconds in the first quarter of each minute. This code changes from week to week as the difference varies. Secondly, in the last five seconds of every hour, the modulation is changed to the station call sign (MSF) transmitted twice in Morse code. Until the first code is correctly received, the clock display remains blanked. Upon recognising a control pulse the code lamp should flash, the disparity lamp should go off, and the display should show the received time code (subject to the GMT/BST switch). The disparity light may come on again if either a spurious signal is recognised as a control pulse (followed by correct spurious parity), or if the time code is incorrectly received (but again with the correct detected parity), or if the contents of the display dividers become corrupted by, for instance, momentary loss of power. For the displayed time to become corrupted by received interference, several coincidences must occur; two false control pulses need to be recognised with no intervening correct code, also, both false pulses must be followed by correct parity before they are acknowledged by the control logic. Although the chance of this happening is increased when the transmitter is switched off, the system has been found to give satisfactory results in most environments.
The author wishes to thank Mr J S Sansom, OBE, former director of Studios and Engineering, Thames Television, for permission to publish this article, and Mr B G Scott, chief engineer, for his encouragement and the use of facilities for the project.

Points arising

Because of a change in the transmission specification the following points should be noted. In Fig. 1 the parity bit was shown as a 1 , this is now a 0 and, as a result, the parity check from $\mathrm{IC}_{12 \mathrm{a}}$ (Fig. 7) is taken from the $\overline{\mathrm{Q}}$ output. If the received parity in the flip-flop is correct the final state is now $\mathrm{Q}=0$.
In the parts list IC_{2} was shown as a quad two-input NAND gate package. In Fig. 9, 11 sections a and b of IC_{2} are shown as inverters. These are realised by connecting the two inputs of the gates together which then function as inverters.

Meetings

LONDON

1st. IEE - "Electrical engineering and medicine" by Dr D. W. Hill at 18.30 at Savoy Pl., WC2.
6th. IEE - "Position control of floating structures" by P. H. Barton at 17.30 at Savoy Pl., WC2.
7th. IEE - "The history of transmitters - some aspects of early radio" by R. F. Pocock at 17.30 at Savoy PI., WC2.
7th. BKSTS - "What are audio visuals?" at 19.30 at Thames Television Theatre, 308-316 Euston Road, NWI.
I2th. IEE - "Digital systems representation" by S. Y. Foo at 18.30 at Savoy Pl., WC2.

13th. IEE - Colloquium on "Earth leakage protective devices" at 10.30 at Savoy PL., WC2.
13th. IEE - Colloquium on "Theory and operation of Read type IMPATTs" at 14.30 at Savoy Pl., WC2.
13th. AES - "Developments in noise reduction techniques" by speaker from Dolby Laboratories Inc. at 19.15 at the IEE, Savoy Place, WC2
14th. IEE - Colloquium on "Evaluation and experience of high level languages for process control computers" at 10.30 at Savoy Pl., WC2.
20th. SERT - One-day seminar on "Applications of computers" at the IEE, Savoy PI., WC2.
21st. IERE - Colloquium on "Automatic production" at 14.00.
2lst. BKSTS - "Video tape recording today and tomorrow" by L. H. Griffiths at 19.30 at Thames Television Theatre, 308-316 Euston Road, NWI.
26th. IEE - "History of magnetic sound recording" by B. Lane at 17.30 at Savoy Pl., WC2.
27th. IEE - Colloquium on "Paging systems" at Savoy PI., WC2.
29th. IEE - Colloquium on "Parallel digital computing methods: d.d.as and stochastic computing at 10.30 at Savoy P1., WC2.
29th. IERE - "A novel approach to marine surveying" by J. M. Thompson at 9 Bedford Sq., wCl.
30th. IEE - Discussion on "Part-time undergraduate degree courses in electrical engineering" at 17.30 at Savoy PL., WC2.

belfast

13th. IEE - "Integrated circuits for communications" by S. J. Laverty at 18.30 at Ashby Institute.

BIRMINGHAM

7th. IEE - "Train control, developments on British Rail" by J. W. Birkby at 18.30 at Sumpner Building, University of Aston, Gosta Green.
14th. RTS - "The other side of the camera" by Tom Coyne at 19.00 at BBC Broadcasting Centre, Pebble Mill Road.

BLETCHLEY

8th. IEE - "Tomorrow's world and microwave communications" by P. J. Mountain at 19.30 at Post Office Training Centre, Horwood House.

BRIGHTON

13th. IEE - "Electro-acoustics" by Prof. E. Ash at 19.30 at the University of Sussex.

BRISTOL

5th. IEE - "Automobile Electronics" by C. S. Rayner at 18.00 at Mercury House, Bond Street.
8th. IEE - "Electronic calculators" by B. Clarke at 19.30 at Queens Building, Bristol University. 28th. IEE/IERE - "Marine electronics" by speaker from Marconi International Marine Ltd.
28th. IEETE - "Programmable logic controllers" by C. C. Cargill at 19.30 at Royal Hotel, College Green.

BURY ST EDMUNDS

7th. IEE - "Police Research" by B. J. Blain at the Angel Hotel.

DERBY

6th. IEE - "Automobile electronics" by D. B. Hodgson at 19.00 at the Lecture Theatre, College of Art and Technology, Kedleston Road.

DUBLIN

8th. IEE - "Electronic aids for medical studies" by Dr E. T. Powner and P. J. Best at 18.00 at Physics Laboratory, Trinity College.

DURHAM

5th. IEE - Exhibition and "Telecommunications; past, present and future" by W. J. Bray at Durham Castle.

EASTBOURNE

8th. IEETE - "Royal Greenwich Observatory" by G. H. Gill at 19.30 at The Drive Hotel, Victoria Drive.

EDINBURGH

8th. IEE - Symposium on "Further developments of applications of micro-computer systems" at 9.30 at Heriot Watt University, Grassmarket.
23rd. IEE - Faraday Lecture on "The entertaining electron" by F. H. Steele, afternoon and evening at The Usher Hall.

GLASGOW

21st. IEE - Faraday Lecture on "The entertaining electron" by F. H. Steele in the evening at The Kelvin Hall.

HATFIELD

6th. IEETE - EASCON 76 one-day conference "Links: education - employment" at Hatfield Polytechnic.

KINGSTON-UPON-THAMES

1st. IEETE - "The testing of electrical household appliances" by M. H. Hewett at 19.30 at Kingston Polytechnic, Penrhyn Road

LIVERPOOL

5th. 1EE - "Music hath charms . . ." at 18.30 at the Department of Electrical Engineering, Liverpool University.

LOUGHBOROUGH

27th. IEE - "Introduction of adaptive control techniques into areas of classical control" by J. R. Wolton at 19.30 at Lecture Theatre J002 Ed., Herbert Building, Loughborough University.

MANCHESTER

14th. IEE - "Microprocessors" by Prof. D. Aspinall at 18.15 at the University of Manchester.

MIDDLESBROUGH

7th. IEE - "Rapid fault finding techniques to minimise down time" by R. H. Baulk at 18.30 at Cleveland Scientific Institute, Corporation Road.

NEWCASTLE-UPON-TYNE

12th. IEE - "Colour TV - a popular approach" by G. D. Barnes at 18.30 at Room Liol Merz Court, University of Newcastle-upon-Tyne.
27th. IEE - Faraday Lecture on "The entertaining electron" by F. H. Steele, 19.15 at City Hall.

NOTTINGHAM

6th. IEETE - "Computerised control of Nottingham traffic" by M. B. Tate at 19.00 at New Mechanics Institute, St Trinity Square.

PORTSMOUTH

6th. IEETE - "Oracle - the teletext data broadcasting system" by G. A. McKenzie at 19.30 at Highbury Technical College, Cosham.

RUGBY

7th. IEE - "The future of the IEE" by R. J. Clayton at 18.30 at Lanchester Polytechnic, Rugby.

SHEFFIELD

20th. 1EE - "Future role of the IEE by Dr E. Laverick at 19.30 at Sheffield University.
28th. IEE - "Electronic techniques in Archaeology" by Dr E. T. Hall at 18.30 at Sheffield Telephone House.

SWANSEA

8th. IEE - "Transducers for modern automobile systems" by J. Moore at 18.15 at University College.

SWINDON

6th. IEE - "Sonar and underwater acoustic communication" by V. G. Welsby at 18.15 at The College, Regent Circus.

Electronic systems - 3

Modulation and transmitting signals

by W. E. Anderton
Assistant Editor, Wireless World

Modulation is a principle fundamental to all communication systems - speech is a modulation of sound waveforms, pictures are modulations of light intensity and communication within the human body itself relies on modulation of the rate of firing of electro-chemical pulses in the nerves. The fast transmission of information over long distances is only possible using a high speed carrier which will travel for large distances without attenuation; hence electromagnetic radio waves are of prime importance for distant communication. In the case of transmitted radio waves, the process of modulation is to vary some parameter of the basic electromagnetic wave, which is usually called the carrier. Over the years, various modulating methods have been devised and are aimed at transmitting the required information as effectively as possible with the minimum amount of distortion. The primary factors to be considered are signal power, baseband, distortion and noise power - each of these will be described later. Ultimately, it is the ratio of signal power to noise power or output "signal-to-noise ratio" specified for the system which determines its performance.

Baseband

The baseband is defined as the range of frequencies which is to be communicated, e.g., the speech baseband is approximately 300 Hz to 4 kHz . The ear can perceive sounds outside this defined speech baseband but experiments have shown that adequate intelligibility is achieved using this contracted range. Consequently all telephone systems use this baseband.
Baseband communication (i.e. with no modulation of carrier signal) has a very limited transmission distance. Without electrical assistance, acoustic communication is not possible over distances greater than half a mile. This range may be further restricted by environmental conditions. In fact, the limitations of baseband telephone communication are many and the following list gives some of the more obvious and important of these: (a) the communica-
tion link can be made only between fixed locations; (b) a complex switching system must be designed to allow any subscriber to contact any other subscriber; (c) long distance links require amplification in order to overcome cable losses; (d) simultaneous communication with large audiences is impossible; (e) the system's cost is - largely in the laying of individual cables to each subscriber.
The development of a "wire-less" system has overcome most of these disadvantages.

Electromagnetic propagation

Early experimenters in electromagnetic propagation discovered that some energy from a high energy spark could be transmitted to a suitable receiver without the use of wires. The spark's energy was coupled to an aerial and propagated through "space" to the receiver. The receiver often being a crude tuned circuit consisting of a coil and another smaller spark gap. This process was termed "impulsive electromagnetic propagation".

Fig. 1. Oscillatory waveform - the basic carrier wave.

Fig. 2. Frequency bands may be classified as shown here.

Later experiments were performed. which, instead of using the impulsive spark energy, used an oscillatory waveform. This waveform (represented as in Fig. 1) could also be propagated from transmitter to receiver.

Wavelength, frequency, wavebands

 Sound waves travelling in air do so at a velocity of approximately $343 \mathrm{~m} . \mathrm{s}^{-1}$, but radio waves travelling through space do so at the speed of light, i.e. at approximately 300 million m.s. ${ }^{-1}$. The frequency of an electromagnetic wave is defined as the number of complete cycles transmitted per second and because we know the speed of the radio wave we can calculate the length of any one complete cycle in space. This length is known as the wavelength of the radio wave. The formula linking these two quantities is$$
\begin{aligned}
& \text { wavelength }=\frac{\text { speed of light }}{\text { frequency }} \\
& \text { or } \quad \lambda=c / f
\end{aligned}
$$

Electromagnetic propagation is affected by the Earth's atmosphere in various ways which are dependent on the transmission frequency and the distance between transmitter and receiver. Fig. 2 shows a convenient classification of the frequency bands.

Modulation

To send information from transmitter to receiver, the carrier wave must be varied in sympathy with the information to be transmitted. This process is termed "modulation" and the information that is being transmitted is termed the "modulating signal". Modulation occurs whenever a "carrier" is affected by a signal which has to be transmitted. For example, the frequencies and

increasing irequency \longrightarrow
amplitudes of sound waves are modulated by the speech information which is transmitted from person to person whilst the intensity of a light is modulated by a signaller using an Aldis lamp.
The two mōst important analogue methods are amplitude modulation and angle modulation. Amplitude modulation is most common for applications such as radio broadcasting and radio telephony. The process of amplitude modulation is illustrated in Fig. 3. The a.m. systems are essentially narrowband and suffer from limitations due to noise which has a direct effect on signal amplitude, and is therefore reproduced as interference.
In competition with a.m. some systems use angle modulation because of its immunity to amplitude varying noise. In angle modulation, the instantaneous angle of the carrier wave is varied and it leads to two forms of modulation known respectively as frequency modulation (f.m.) and phase modulation (p.m.). These two are closely related though practical systems tend to favour f.m. Typical examples are v.h.f. broadcasting, satellite communications and f.m. radar. The frequency modulated carrier wave shown in Fig. 4 requires a much greater available band of frequencies than its a.m. counterpart and an f.m. system is capable of giving a much better signal-to-noise performance than the corresponding a.m. system, or alternatively a considerable economy in power if required.

Carrier keying

If a transmitter is tuned to transmit a carrier wave at frequency f and a receiver at a distant location is tuned to receive this frequency then one would expect that the man at the receiver would be able to detect if the man at the transmitter switched his transmitter on and off. This is the most basic form of modulation and information transmission via a carrier wave. The technique is termed "carrier keying". This simple system can be extended to enable it to convey messages by keying the carrier in a predetermined code sequence. Morse code wireless telegraphy uses a system of long and short pulses. Fig. 5 shows the signal transmitted by a carrier keying system for the morse character " Y ". The long bursts of carrier denote a dash and the short bursts a dot.

Amplitude modulation

In a linear amplitude modulation system, the amplitude of the transmitted carrier wave is made to be instantaneously proportional to the amplitude of the modulating signal. The modulation can be sinusoidal, square or any other shape which it is found necessary to transmit. The modulator is similar to a linear multiplier, the inputs being the carrier and the modulation signals. The output is the signal to be transmitted. transmitted ' signal $={ }^{\prime}$ carrier $^{\circ} x$ modulation signal
(a)

(b)

(c)

Fig. 3. Illustrating the basic process of amplitude modulation.

Fig. 4. Frequency-modulated carrier wave.

Fig. 5. Signal transmitted by a carrier keying system for the morse character "Y".

If the carrier is modulated with a 400 Hz sine wave then the receiver will receive a carrier signal whose amplitude is varying at 400 Hz and the variations will be sinusoidal. In the last section we discussed carrier keying as a method of transmitting morse code. There are complications involved when one wants to switch a high power transmitter rapidly on and off. This problem is easily overcome in the amplitude modulation system - one simply switches the modulating signal on and off. The result at the receiver is 400 Hz tone bursts which will represent the dashes and dots of the code, while the carrier wave is transmitted continuously. The 400 Hz modulation frequency can be replaced by a speech waveform, in which case the carrier will now be amplitude modulated so as to correspond with the speech signal. This system is used widely, an example being the programmes broadcast on the long and medium wavebands.

The next part of this series will examine a.m. and f.m. in more detail. An
outline of the basic electronic systems course which this series of articles will cover was published in the first part appearing in the January 1976 issue.

This article was prepared in consultation with Professor G. B. B. Chaplin, University of Essex.

Further reading

Connor, F. R., "Modulation," Edward Arnold, London.

Obtainable from Mr R. A. Smith, Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, are the teaching texts for the electronic systems pilot A-level course, price $£ 4.50$: communication systems section only, $£ 2.00$; computer systems section only, $£ 2.00$; feedback systems section only, $£ 2.00$; basic electronics section only, £1.50.

Handbook of Electronic Circuits by G. J. Scoles. In the authors words "instead of first, dealing with electronic theory in some detail and then proceeding to a mathematical analysis of a small number of selected circuits, it assumes that with the help of a simple explanation the reader already knows sufficient of the theory for him to understand the operation of virtually any electronic circuit. In this way it becomes possible to describe the uses and functioning of more than 200 different circuits, either using non-mathematical explanation or, where relevant, simplified formulae only". A wide cross section of circuits are discussed. under 26 general categories purposely omitting r.f. amplifiers and t.v, receiver details because, in the authors opinion, these have been adequately covered in other publications. Price $£ 13.50$. Pp. 370. John Wiley \& Sons Ltd, Baffins Lane, Chichester, Sussex.

Diode characteristics, equivalents and substitutes by B. B. Babani contains more than 25,000 separate entries including military types. The pocket book also contains a contents page in nine different languages for our overseas friends. Price 95p. Pp. 159. Bernards Publishers Ltd, The Grampians, Shepherds Bush Road, London W6 7NF.

Electronic and switching circuits by S. M. Bozic. R. M. H. Chery and J. D. Parsons. This book is based on lectures given by the authors to undergraduate students. An intermediate level of mathematical knowledge is assumed together with the basic principles of a.c. circuit theory. After explaining physical electronics, the princi. ples of amplification, switching devices, oscillators and power supplies are covered. Final chapters discuss data processing and transmission, industrial applications and electronic instruments. The book also contains problems and solutions which are designed to test whether the reader has understood the text. Price $£ 4.95$ paperback, $£ 10.00$ hard back. Pp. 380. Edward Arnold Publishers Ltd, 25 Hill Street, London WIX 8LL.

Circuit Ideas

Low-current source

It is possible to use a reverse-biased germanium diode as a voltage independent current source for loading silicon transistors. Advantages of this method are less voltage lost across the source when compared with f.e.ts and similar sources, it is cheap, and the diode I_{R} increases with temperature in much the same manner as the $h_{f e} . I_{c b o}$ in a transistor. The last point allows reliable micropower circuits to operate over a wide temperature range at

optimum current drain. This principle was applied in the amplifier circuit shown. The diode leakage current is arranged to be greater than the collec-tor-emitter leakage of the transistor, permitting linear operation. Performance figures are: a voltage gain of 50 , a -3 dB bandwidth from 16 Hz to 4 kHz , a maximum output into 1 MS of 500 mV pk-pk (at 300 Hz), an input impedance of $10 \mathrm{k} \Omega$ (at 500 Hz), and a consumption at $20^{\circ} \mathrm{C}$ of $4 \pi \mathrm{~W}$.

Owing to manufacturing tolerances the operating point can only be guaranteed to within a decade or two, and the diode capacitance is extremely non-linear at low reverse voltages.
M. G. Baker,

Beaminster,
Dorset.

Automatic display-brightness control

It is quite easy to modulate the intensity of a display by switching it on and off with a varying duty cycle. With single-chip clocks where multiplexing is used, the display on time must be synchronised to the multiplex frequency. This circuit was designed around an MM5314 clock chip but should be usable wherever there are external multiplex-oscillator and strobe-enable outputs. The 555 timer is used in the monostable mode, triggered by the multiplex oscillator to determine the display off time. In bright conditions the ORP12 resistance is low and the display is on most of the time. It is
necessary to set an upper limit to the pulse length, otherwise the 555 will not retrigger on each cycle of the multiples oscillator and only alternate digits wiH be displayed. The potentiometer should be set to give low light output without mistriggering in dark conditions. The simplest way to control the rate of brightness increase with ambient light is to partially obscure the ORP12 surface. The 555 can also drive a decimal point directly, giving a matched brightness.
M. G. Martin,

Maybush, Southampton.

Bias supply for r.f. power amplifiers

Many designers resort to the use of a single forward-biased diode voltage source when attempting to operate transistor r.f. power amplifiers in the class $A B$ linear mode. This can require the selection of a suitable diode and thus does not lend itself to reproducible design.

The circuit shown not only offers inproved performance, typically 1Ω output impedance and $\pm 3 \%$ output voltage change for $\pm 21 / 2 \mathrm{~V}$ input change, but also allows adjustment of the quiescent collector current. A p-n-p
silicon device is used as an amplified diode variable voltage source. If this is ' in thermal contact with the r.f. device's heatsink, a significant degree of thermal stabilization is obtained. The emitter follower lowers the supply output impedance. The devices shown can be replaced by similar readily available transistors.
C. P. Bartram,

Dept. of Metallurgy and Science of Materials, Oxford.

Simple current controlled pulse generator

This simple circuit generates pulses to operate t.t.I. at a variable rate between about 100 Hz and several MHz . The diode should be a germanium type of low capacitance and must be able to carry current I continuously. The capacitor can be any value from picofarads to millifarads. Suitable inverters are SN7413/14/132 or the Schottky clamped variety for higher speed. Care

must be taken in choosing the current to avoid damaging the inverter and diode. The control current can be obtained by a resistor to +5 V . There is an internal resistor of about $4 \mathrm{k} \Omega$ connected to +5 V on the input of the inverter, which gives a minimum pulse rate for any value of C . For further information about such oscillators see T.I. Applications report B81.
G. W. Haywood,

Bingham,
Notts.

Synchronous-motor phase control

The requirement was for accurate phasing of a 51 pole pair phonic/ synchronous motor in a facsimile transmitter. This circuit can be readily adapted for similar applications. A sixteen stage shift register loaded with one bit and connected as a ring counter is clocked at sixteen times the required motor drive frequency. Thus, the output of any one stage is a pulse train with a 1:15 mark/space ratio and a repetition rate equal to the drive frequency. A single pole sixteen way switch can select the output from any stage of the shift register. For every clockwise step of the switch there will be a $360 / 16$ degree phase retard of the output. Similarly for every anticlockwise step there will be a $360 / 16$ degree phase advance. Smaller steps may be achieved
by extra stages in the shift register. In terms of shaft rotation each step is $360 / 16 \times 51=0.44^{\circ}$. In the circuit shown a sixteen line-to-one multiplexer acts as the sixteen-way switch. The position of the switch is determined by the data select input. To make the switch rotate uniformly either clockwise or anticlockwisè, the data select is connected to a four-bit binary up/down counter. The clock drive for the counter is derived from a gated multivibrator, the rate of which determines the rate at which the phase advances or retards. If necessary another counter can be used to monitor the number of pulses from the multivibrator.
The $1: 15 \mathrm{mark} / \mathrm{space}$ ratio at the multiplexer output can be improved by a monostable with a period set at half
the period of the drive frequency. This puts less demand on the bandpass filter if a sinusoidal output is required. Sixteen clock pulses to the up/down counter produce one complete rotation of the sixteen way switch which means one complete cycle subtracted from or added to the motor drive. In terms of shaft rotation in a 51 pole pair machine, the phase is retarded or advanced $360 / 51\left(7.05^{\circ}\right)$ in sixteen 0.44° steps. In other words, if the gated multivibrator output frequency is N pulses/s, the motor speed alters by N/7.05 degrees/second.
P. E. Baylis and R. J. H. Brush,

Dept. of Electrical Engineering and Electronics,
University of Dundee.

Pulse rate doubler

The circuit shown will generate pulses at twice the input frequency. A pulse is applied to the first monostable in the $74123 \mathrm{~N}, i$ which runs for time T_{A}. The negative edge, terminating T_{A}, triggers
the second monostable which runs for time T_{B}. Thus, if T_{A} equals half the input period and T_{B} equals the width of the input pulse, an additional pulse is generated between each input pulse. An exclusive-OR gate combines both
pulses to produce the output. Using R and C values as shown, the circuit will double a pulse of width $800 \mu \mathrm{~s}$ and repetition rate about 130 per sec.
K. R. Brooks,

University of Bristol.

Simple staircase generator

The circuit provides a simple means of generating a repetitive staircase waveform. A total of seven steps is generated before the waveform is repeated. This may be increased by cascading several SN74 164 shift registers or decreased by providing the clear pulse from an earlier Q output.
P. Cochrane,

Ipswich,
Suffolk.

F.m. discriminator

To produce a high quality f.m. tuner I surveyed a number of design techniques using discrete components. After some research I became interested in an article by J.C. Hopkins (Wireless World, Sept. 1965). This circuit uses a transistor pump discriminator operating around a 200 kHz i.f. This technique, used with a conventional 10.7 MHz i.f. strip, produced very good results.

The circuit is similar to J. C. Hopkins's design and requires modifications only to the capacitor values and transistors. The last i.f. stage was modified and the load made resistive. The signal was then coupled to the discriminator which, in turn, was connected to a stereo decoder. W. Anderson,

Portland,
Dorset.

Wireless World Teletext decoder

6 --Lower-case characters and analogue circuits

by J. F. Daniels

The control-codes detection is based on six D-type flip-flops. The first three of these $(52,6),(52,8)$ and $(53,6)$ detect codes which mean "go to red display, green display and blue display" respectively. The fourth one dictates whether the display should be in the alphanumeric or graphics mode, and the fifth one $(51,6)$ indicates when characters should be flashing. The final one is used to derive a wavefrom to switch between the TV and Teletext displays during the insert or boxed mode.

The Teletext specification says that all rows should begin in the steady, alphanumeric white, unboxed condition, and this is achieved by presetting the outputs of the six flip-flops to the required state with the output pulse from (59,8), which is a combined line and field blanking waveform.

Considering first the codes which indicate a change in colour of the display, it can be seen from the code table that bit I is always at I when a red output is required, bit 2 is at I when a green output is required and bit 3 is at I when a blue display is required. Combinations of these three bits will also give the complementary colours correctly such as yellow when bits I and 2 are both at 1 , and also white when all three bits are at I. The way in which this is achieved in the decoder is to feed bits 1,2 and 3 respectively to the D inputs of the three flip-flops, $(52,6)$, $(52,8)$ and $(53,6)$ and feed the clock inputs in parallel, with clock pulses occurring only during the fourteen colouring codes in the code table
The clock pulse gating is achieved in $(41,10),(49,8),(43,13),(44,6),(58,6)$ and $(49,6)$. The actual clock pulses are narrow negative-going pulses obtained from decoder $(42,2)$ and are fed into gate (43.13). The other gates merely serve to inhibit the clock pulses at all times other than when a change in colour of the display is required. The input to IC_{49}, pin 9 can be changed by means of the link, from IC_{28}, pin 7 to IC_{59}, pin 2, altering the Clock-pulse-allow waveform to cater for the new code allocations.
The changeover between graphics and alphanumeric operation is obtained in a very similar way to that already
described for colours. Flip-flop $(53,8)$ obtains its clock pulses from the same place as the colour changing i.cs and its D input is fed either from (66.12) or (28.10) according to which transmission standard is being received.

Flashing and boxing codes are dealt with, again in a similar way to that already described. Clock pulses are only allowed during the two code positions allocated to flashing and boxing respectively. The D inputs are fed with bit 1 information, and in this way the output of each flip-flop is set either to the on or off condition depending upon which of the control codes is received. Normally, of course, the flip-flops are set to the off condition by the lineblanking waveform, and then somewhere along the character row a flashing code may be received which will set the flip-flop to the on condition. A further code may be received to turn off the flashing or, if no code is received, the line-blanking waveform will again set the flip-flop to the off condition at the end of the row.
Switching between the alphanumeric and graphic displays (both types of character are actually generated for each character box in the display) is achieved with gates $(57,8),(57,11),(58,8)$ and (58,12). Alphanumeric characters are fed into IC_{58}, pin 2 and graphic characters into IC_{57}, pin 10 . A feed of bit6 is also connected into IC_{58}, pin I and $\mathrm{IC}_{57}, \mathrm{pin} 13$. This is to enable the "blast through" mode of operation, in the following manner. Normally when graphics are being displayed, bit 6 is in the 1 condition. If, however, bit 6 is made 0 as for instance in the transmission of upper-case letters, this can be made to switch away from the graphics mode, and into the alphanumeric mode for the duration of the character. In this way switching between graphics and alphanumerics can be obtained very economically, without the need for a separate control character (which would be displayed as a space). The slight disadvantage of this is that only upper-case characters in columns 4 and 5 of the code table may be displayed in this way.

Gate $(58,8)$ is fed with the outputs of
gates $(57,8)$ and (58,12), containing the graphics and alphanumeric characters respectively. A third input to this gate is fed with a composite blanking waveform which contains both line and field blanking, and also information to blank the control characters. Gate $(44,12)$ adds together the line and field blanking waveforms, and a third blanking input is provided here which may be used to blank the Teletext display output while watching TV programmes. (It is possible that the Teletext waveform could break through onto the TV picture under some circumstances, if the leads were not properly screened, for instance.) The output of this gate is delayed by capacitor C_{11} to allow for delays in the r.a.ms and ro.m. This output is added to the control-character blanking waveform in gate $(41,13)$ and the output of this gate is then fed into $(58,8)$ where it serves to blank the video display waveform.
The output of $(58,8)$ is then inverted and gated with the output of the flashing oscillator formed from $(67,2)$ and (67,4). This flashing oscillator is allowed by the D type flip flop $(51,6)$ and gates the display waveform in $(57,6)$. At this point the composite display waveform exists in monochrome form, and then the colours are incorporated by gating this monochrome waveform in the 2 -input NOR gates $(54,4)$, (54,13) and (54,1). The three D-type flip-flops enable or disable these gates to form the red, green and blue outputs.
Finally the output of the flip-flop (51,8) is gated with the line and field blanking waveforms to give an output which can be used as a switching waveform when a "boxed" display is wanted.

Lower-case characters

The character-generation circuit already described is capable of generating only upper case, or capital letters. Although this does not detract in any way from the information-carrying capabilities of the system, some people may consider it worthwhile to add the extra circuitry required to display lower case characters.

The method is exactly the same as that described last month for upper case characters, except that some lower case letters, i.e. g, j, p, q, y, drop below the line of normal characters. Provision has already been made for this as the character box is ten lines high and only the top eight lines are used for the upper-case characters and a space line between characters. This leaves two unused lines available to display lowercase descenders.

The same type of r.o.m. is used to contain the lower-case characters, the only difference being that the lowercase memory only contains the thirty two characters in columns six and seven of the code table, the other thirty two spaces being left blank. The complication arises from the fact that characters stored in the memory can only occupy up to eight lines of the display, as the row-address information to the r.o.m. consists of only three bits of information. Fortunately, however, none of the characters having descenders contains information in the top two rows of the character box, and this enables the character to be stored in the r.o.m. two rows higher than its intended display position, as shown in Fig. 1. This means that when the row addresses are applied to the r.o.m. they must be changed for those characters which have descenders, in order to lower the display position by two TV lines.

Figure 2 shows the extra circuitry needed to produce lower-case characters, and in practice these additional i.cs are mounted on a small board which fits above digital board 1 at the opposite end to the analogue board. I.cs $87,88,89$, and 90 are used to detect the characters which require lowering by two rows, and this information is available at gate $(89,4)$ where a 0 denotes a normal character and a 1 indicates a character that should be lowered by two rows.

(a)

(b)

Fig. 1. Lower-case letters with "tails" are stored in the same memory rows as ordinary letters. Row addresses are changed during readout to lower the letters by two rows.

The character generator, IC_{85} is of the same type as the upper case one, a 2513, but its suffix CM3021 indicates that it is programmed with lower case characters. (The upper-case version is suffixed CM2140). Switching between the outputs of the two character generators is facilitated by their "tri-state" outputs. This means that as well as having the normal states of 0 and 1 at the output pins, a third condition can be obtained where the output pin is effectively open-circuited from the rest of the i.c. This third state is controlled by the "chip enable" input, and by suitable control of this input, any number of 2513's may be connected to the same five output rails. In this circuit, switching between the two r.o.m.s is controlled by gate $(90,3)$. The output of this gate goes to 0 only during columns 6 and 7 of the code table, enabling IC_{85}, and the inverse of this waveform is fed to the chip enable pin of the upper-case character generator IC_{73}, enabling it during columns $0-5$ of the code table.
The row addresses to IC_{85} are fed from IC_{86}, which is a four-bit binary full adder, type 7483. The A inputs are fed with the four-bit row-address information from the line counter IC_{5}, and the B
inputs are fed either with a binary zero, during normal characters, or the binary number fourteen during characters which require descending by two rows. Sum outputs one, two and three are fed to the row address inputs of the r.o.m. and these will change for a descended character in such a way that the character will be lowered by two TV lines. Sum output four can be used as a blanking waveform to inhibit the generation of characters during the top two rows of the character box, when a descended character is displayed. The blanking is achieved by means of gate $(89,13)$ which switches the character generator to one of the blank character spaces during the required blanking period. This method of achieving the blanking is extremely useful, as the delay applied to the blanking waveform will be similar to the delay of the character read-out of the r.o.m. (about 400 ns). If the blanking had to be added externally to the r.o.m. then some means of delaying the waveform by a suitable amount would have to be found. A useful feature of the lowercase circuitry is that only one track on the upper-case printed board has to be cut when adding the extra board (the chip-enable pin of IC_{73}) and all the connections to the existing boards may be made to the underside of digital board two, which entails a minimum amount of disturbance to the existing upper-case circuitry. For this reason also, I would suggest that the decoder should be built and tested as an "upper-case only" unit initially. The lower-case board can be added later as there is no extra line-up procedure required when this board is fitted.

Analogue board

This board serves three main functions, namely to provide feeds to the digital boards of mixed syncs, separated data,

and a switched clock waveform which is suitable both for the writing of data into the store and for reading it out during. the display period. The input to the analogue board, the circuit of which is shown in Fig. 3, should consist of a composite positive-going video waveform of between about 1 volt and 5 volts peak to peak. Tr_{1} is an emitter-follower buffer which provides a suitable lowimpedance source to drive the d.c. restorer formed from $\mathrm{C}_{8}, \mathrm{R}_{10}$ and D_{1}. This restores the sync tips of the video waveform to a potential of about -1 volt. Chrominance information is then removed by the low-pass filter $\mathrm{R}_{9}, \mathrm{C}_{7}$, and the remaining video signal is fed to the positive input of a difference amplifier. The negative input is connected to a potentiometer which controls the point at which the video waveform is sliced. The best setting will depend on the amplitude of the video waveform, but the range of the potentiometer should be great enough to cover the whole of the sync portion of the video waveform and enable separated syncs to be obtained at the output of the difference amplifier. This i.c. is in fact a high-speed dual line receiver with fully t.t.1.-compatible outputs and is ideal for use in this type of circuit.
A mixed sync waveform could, of

Fig. 3. The analogue circuitry to produce syncs, data and clock.
course, be obtained from the TV receiver in which the decoder is to be installed, but it was felt that it would be better to include one in the decoder if only to reduce the number of connections to the TV set. It also has another advantage in that the decoder may be fed from a "video ring main" where a separate feed of syncs may not be available.
As well as feeding the digital boards, the feed of mixed syncs is used to generate a clamp-pulse waveform which is used both on the analogue board and the video switching interface board in the TV receiver. The positive going trailing edge of the line sync waveform is differentiated by C_{10} and R_{16} and coupled into gate (84,12). The resulting negative-going pulse is inverted by gate $(84,6)$ and a positive going clamp pulse is obtained which is about 4μ s wide, and occurs during the back porch of the video waveform.
This pulse is used in the analogue board to clamp the video waveform before slicing the Teletext-data in a similar way to that used in the sync separator. Before describing this in
great detail, however, it would be as well to discuss some of the problems involved in successfully slicing the data signal.

Data slicing

In the simplest possible system, the video waveform could be fed via a capacitor into the positive input of a differential amplifier and by varying the direct voltage level on the negative input by means of a potentiometer, sliced video and data would be obtained at the output. The fact that picture information is sliced, and present at the output, is immaterial as precautions against this causing trouble have been taken elsewhere in the digital circuitry. However, because of the nature of the video waveform, the varying picture information will cause the average voltage of the signal to vary, and thus alter the position at which the video (and data) is sliced. If the data information were transmitted as perfect square-shaped pulses this would not matter because the output mark/space ratio of the data information would remain unaltered. However, the data cannot be transmitted in this way because the bandwidth requirements would become infinite, and the transmission system must be tailored to suit the normal TV band-
width of 5.5 MHz . The data is in fact transmitted in the form of raised cosine pulses, and this implies that the data must be sliced fairly close to the halfway point between its positive and negative peaks, if the mark/space ratio of the received data is to be close enough to the original for correct decoding. This is the case even if the received signal is completely undistorted by the receiver tuner and i.f. strip. In cases where the receiver i.f. amplifier has insufficient bandwidth or large group-delay errors, or the aerial is mismatched into the receiver, the setting of the slice level will be even more critical and in very severe cases of "ghosting" or i.f. misalignment it may be impossible to find a suitable point at which to slice the video waveform and obtain error-free readouts. The simple system described above could only be adjusted to give satisfactory results during periods of static transmission such as test card, where the picture information is constant and the slice level would remain unaltered.

One way to overcome the problem of changing level of the video waveform would be to use the d.c.-restored video present at the cathode end of D_{1}. However, a better system is to clamp the video during the back porch, and this method is used in this design. Tr_{2} is

Fig. 4. A suggested power supply circuit.
turned on during the back porch by the clamp pulse, thus holding black level to approximately 0 volts regardless of the average level of the signal. Purists may point out that the clamp action will be upset by the colour burst. In practice, however, this only becomes a problem if large variations in level of the chrominance information occur, which will in turn cause the clamping point to vary slightly. If this is really a problem that cannot be solved by improving the aerial installation, then a 4.43 MHz tuned circuit should be included in series with the collector of Tr_{2}. It has not been included as a standard feature in the circuit, partly because it has not proved niecessary, but mainly because it would be rather difficult to set up correctly without expensive test gear.
would undoubtedly be expensive, and a much simpler way of achieving the same end is to alter the slice level automatically, to enable it to follow the varying data amplitude. This is done by detecting the data amplitude with a peak-detector circuit and then using this information to set the slice level midway between the data peaks and black level.
Tr_{3} forms the positive-data peak detection circuit with the decay time set by the time constant $\mathrm{R}_{15}, \mathrm{C}_{15}$. This time constant is made fairly long compared to the data bytes to prevent too much decay during the worst case condition of fourteen consecutive zeros. TR_{4} then serves to offset the base-emitter voltage drop of Tr_{3} and the shorter time constant $\mathrm{R}_{7}, \mathrm{C}_{16}$, increases the rise time of the peak detector circuit to reduce the effect of large noise spikes. The actual slice level is adjustable by means of VR_{2} over the full range from 0 volts to the positive data peak level. Although theoretically this potentiometer should be in its mid position for correct data slicing, non-linearity distortion introduced by certain types of vision detector circuit will mean that the best results may be obtained if the slice level is not mid-way between the positive and negative peaks of the data. The difference amplifier used to perform the actual data slicing is the other half of the dual line receiver, IC_{81}.

Clock generation

It has already been explained that the clock waveform generated on the analogue board consists of the outputs of two oscillators, one locked to the incoming data, and the other adjustable in frequency to enable the display width to be adjusted. Switching between the two clock generators is performed by the 'lines 11-21' waveform. Gates $(83,11)$ and $(83,6)$ are cross coupled to form a free running oscillator. Oscillation is inhibited during lines $11-21$ by the waveform present at gate $(83,3)$, and by also inhibiting oscillation at the start of each TV line $-Q$ of monostable 3 is fed into gate $(83,11)$ - the oscillator is phase-locked to the TV lines. This ensures that the characters will have "clean" verticals. If the oscillator was merely free running the phase would alter at random from one TV line to the next, and ragged verticals would result. VR_{1} adjusts the frequency of oscillation and forms the display width control.

Gate $(84,8)$ forms the active part of the data clock oscillator. The frequency of oscillation is determined by L_{1}, C_{1} and C_{2}. The waveform on pin 9 of the i.c. only allows oscillation to take place during lines 11-21, and at all other times the gate output is held at 1 allowing the display clock through gate $(83,8)$ to the output line. The oscillator is locked to the incoming data by means of narrow. negative going spikes fed into the third input of $(84,8)$. These spikes occur at every data transition, gate (82,11)
providing the spikes derived from positive-going data transitions, and gate $(82,6)$ spikes derived from nega-tive-going data transitions. Although the oscillator circuit may appear rather crude; it has been found to give excellent results in practice. The main point in its favour is that it is extremely easy to set up, as there is only one adjustment, that being L_{1}. The specified coil former is the Neosid A6 assembly, but in practice equally good results will be obtained with any former of approximately $3 / 16$ in diameter, containing an adjustable ferrite core, so long as it can be tuned in to the correct frequency of about 7 MHz . The frequency stability of the circuit has been found to be perfectly adequate so long as polystyrene capacitors are used for C_{1} and C_{2}. The preferred method of adjusting the oscillator frequency will be dealt with later in the article, as will the rest of the decoder line up.

Power sapply

The power requirements of the decoder are fairly modest. Five volts for the t.t.l. circuitry is required at approximately 1.3 A , and this can most conveniently be obtained from a three-terminal regulator of the LM309K variety. The input voltage to the regulator must not be too great, however, as the device will be working fairly close to its limits and may exceed its maximum power dissipation figure. For this reason, the regulator must be mounted on a suitable heatsink.

A negative five-volt supply is required at a current of about 25 mA , and a negative 12 -volt supply for the char-acter-generator i.c. at only a few milliamps. Both negative supplies may be derived from simple zener-diode type stabilizers, and a suitable power supply circuit is shown in Fig. 4.

Constructors should see that the connecting wires between the power supply and the decoder are of a suitable gauge to prevent excessive voltage drop of the plus five-volt rail. At a current of something greater than one amp, it only takes a few feet of thin connecting wire to cause a voltage drop of greater than 0.25 volts which will be sufficient to bring the five-volt rail outside the recommended specification for t.t.l. devices.
(To be continued)

The next article in this series will give constructional details of the teletext decoder. Subsequently there will be an article on interfacing the decoder with various colour television sets in common use.

Who thought up the synchronous satellite?

Dr Harold A. Rosen, a vice-president of Hughes Aircraft Company and a pioneer developer of synchronous communications satellites, has won the first L.M. Ericsson International Prize for "proposing the introduction of geostationary communications satellites and for his scientific and technological contributions to their development, design and operation." The prize, of 100,000 Swedish crowns (about $£ 11,000$) will be presented by King Carl XVI Gustaf at ceremonies in Stockholm in May. To be awarded every three years, the prize honours the memory of Lars Magnus Ericsson, founder of the L.M. Ericsson Telephone Company.
Dr Hakan Sterky, chairman of the prize committee, says "" $\overline{\mathrm{Dr}}$ - Rosen proposed that a single satellite could be orbited at an altitude where it matches the earth's rotation and appear to be stationary, thereby simplifying connection with earth stations and providing 24 -hour-a-day service". British readers, in particular, will be surprised that no acknowledgement is made to Arthur C. Clarke, who is widely considered to be the originator of the idea of satellites in synchronous orbit. Clarke pointed out in the October 1945 issue of Wireless World (eleven years before Dr Rosen joined Hughes) that a space-station orbit with a radius of $42,000 \mathrm{~km}$ "has a period of exactly 24 hours. A body in such an orbit, if its plane coincided with that of the earth's equator, would revolve with the earth and would thus be stationary above the same spot on the planet. It would remain fixed in the sky of a whole hemisphere and unlike all other heavenly bodies would neither rise nor set." Further, a satellite in this orbit "could be provided with receiving and transmitting equipment . . . and could act as a repeater to relay transmissions between any two points on the hemisphere beneath . . ." (See "Extra-terrestial relays", October. 1945, pp. 305-308).
Hughes Aircraft state that all of the Intelsat communications satellites "are a result of Dr Rosen's synchronousorbit concept." This is strange in view of the fact that it was a vice-president of Hughes Aircraft Company, Dr F. P. Adler, who gave public acknowledgement to Clarke's proposal more than a decade ago (June 1965 issue, p.269). Moreover, L. M. Ericsson have indicated that they know of Clarke (although they do not seem to be aware of the thoroughness of his 1945 proposal). Readers may be forgiven for questioning whether it really was Dr Rosen's concept.

Radiotelephones?

Ask Nolton!

Key-men keep in touch by radio-telephone. For the planning of these sophisticated installations, for the supply and installation of equipment, for advice and help in procuring licenses, for maintenance and servicing, key-men keep in touch with Nolton.
Nolton supply major radio telephone users in the UK and overseas... Nolton advise impartially on the suitability of equipment (of their own manufacture and also other leading brands) ... Nolton are represented throughout the UK. For all radio-telephone enquiries, write, ring, or telex Nolton

Nolton Communications ltd

Radiotelephone Division

Fieldings Road Cheshunt Herts EN8 9TX Telephone Waltham Cross 33555
Telex 28952

The Black Watch kit £14.95!

*Practical-easily built by anyone in an evening's straightforward assembly. * Complete-right down to strap and batteries.
*Guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

Touch and tell

Press here for hours and minutes

here for minutes and seconds.

The specialist features of the Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

Large, bright, red display-easily read at night. Touch-and-see caseno unprofessional buttons.

Batteries easily replaced at home.

Runs on two hearing-aid batteries (supplied). Easily re-set using special button-no expensive jeweller's service.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...
The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic.
This chip of silicoh measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits.

.and how it works

A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from $32,768 \mathrm{~Hz}$ to 1 Hz . This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7 -segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit in original condition within 10 days and we'll refund your money without question. All parts are tested and checked before despatch-and correctlyassembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today! Price in kit form: $£ 14.95$ (inc. black strap, VAT, p \& p).
Price in built form: $£ 24.95$ (inc. black strap, VAT, p\&p).

Sinclair Radionics Ltd,

London Road, St Ives,
Huntingdon, Cambs., PE17 4HJ.
Tel: St Ives (0480) 64646.
Reg. no: 699483 England. VAT Reg. no: 213817088.

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR.

Please sendme
 Total E

(qty) Sinclair Black Watch kit(s) at $£ 14.95$ (inc. black strap, VAT, p\&p)
(qty) Sinclair Black Watch(es) built at £24.95 (inc. black strap, VAT, p\&p).
(qty) black stainless-steel
bracelet(s) at £2.00
(inc. VAT, p\&p).
Name (please print)
Address

* I enclose cheque for $£$
made out to Sinclair Radionics Ltd and crossed
* Please debitmy *Barclaycard/Access/ American Express account number
\square

Signature
WW/4

0
CONSERVES YOUR CASH. No need to lock up capital in slow moving stocks.

SAVES TIME. Parts usually despatched by return. Orders phoned before midday are often on the way same day.
A PROTOTYPE SERVICE. Invaluable when assorted alternative experimental parts are required.
SOLVES BUFFER STOCK PROBLEMS. Eliminates need for heavy stock holding. Our stocks are at your immediate disposal.

SIMPLIFIES ORDERING. One transaction for a variety of parts saves bookkeeping and paper work.
NO ORDER TOO SMALL. Every enquiry is of equal importance and dealt with expeditiously.

Obviously Single Source Service can solve a lot of your day to day problems. As the first step get the relevant U-C S catalogue, which illustrates and describes hundreds of parts any of which you may want at any moment. Write, or better still phone 0607278711 , for it now.

So makeUnited-Carr Supplies your SINGLE SOURCE for:-

Itmakes sense to use the United-Carr Supply Service when yourequire smalleror mixed quantities ofany of thefollowing:-

CINCH

Barrier terminal strips.
Fanning strips.
Marker strips.
Printed circuit board edge connectors.
D Subminiatures.
Multi way plugs and sockets.

Electrical Components.
Single and double pole rocker switches.
Mains and low voltage indicator lights.
Plunger switches.
Mains connector blocks.
Automotive lamp holders. Push on terminations. Fuse holders.

FT

Edge clips Cable clips. Cover plates. Turnbuckles. Knob clips.

Audio sockets.
Group boards.
Valve holders.
Fuse holders.
Battery connectors.

Industrial Fastenings.
Tee nuts.
DOT LOC single thread lock nuts.
Lift the Dot fastenings.
Turnbuttons
Plugs and grommets.
Metal and plastic components.
Press studs.

Separate catalogues are available for:-
Electronic Components, Electrical Components \& Industrial Fasteners.
Write or phone for your free copy stating possible requirements.

Phase shift in loudspeakers

Considering the cause and measurement of phase shifts

by James Moir

James Moir \& Associates

When the sound pressure maxima immediately in front of a loudspeaker do not occur at exactly the same instants in time as the corresponding maxima in the voltage across the loudspeaker voice coil, they are said to differ in phase. The phase shifts that actually occur in some typical current speaker systems were measured to obtain objective data.

The time delays or phase shifts produced by loudspeakers arise for several reasons which we will consider, starting with the simplest example, a single-unit wide-range loudspeaker. The mechanical force exerted on the adjacent section of the coil former by the current in the voice coil is in phase with that current, but the phase of the current with respect to the voltage across the
f voice coil varies throughout the frequency band because of the reactances present in the moving coil system. Typical measured values of the phase difference between the applied voltage and the resulting current for a simple single cone loudspeaker are shown in Fig. 1. The phase shift in the region of the bass resonance is critically dependent upon the type of enclosure. Below the bass resonance frequency the current in the voice coil is seen to be inductive with the current lagging the voltage, the phase angle approaching 40°; but the phase changes rapidly as the resonant frequency is passed, the current and voltage being in phase at resonance $(100 \mathrm{~Hz})$, but the current leads the voltage above the resonant frequency where the voice coil behaves as a capacitor. In this particular example the current is in phase with the voltage again just below 300 Hz but above this frequency the coil is generally inductive, the phase angle increasing continuously. Thus it will be seen that the mechanical force on the voice coil former is only rarely in phase with the applied voltage.

This effect is of greater significance in multi-unit speaker systems. These must incorporate electrical filters that protect the relatively fragile high frequency units from the powerful low frequency signals and channel the electrical signals into the speaker units best able to handle them. In a three or four unit system the filters are often of considerable complexity.

Fig. 1. Typical phase difference between applied voltage and resulting current for a single cone loudspeaker. The corresponding impedance curve is shown below.

Fig. 2. Phase angle and impedance curves for a three-unit loudspeaker system.

The curves of Fig. 2 illustrate the phase difference between the applied voltage and the current into the speaker system, but the voltage across the individual speaker units is not in phase with the voltage across the system terminals as a result of the reactance present in the crossover filters. Fig. 3 illustrates the phase shfft between the voltage applied to the system terminals and the voltage across the terminals of the woofer and mid-range units in a well known multiple unit system having an excellent reputation. It will be seen that the filter networks introduce a considerable additional' phase shift. In the cross-over region the voltage across the higher frequency unit is generally shifting in phase in the opposite direction to that across the lower frequency unit.
These phase shifts are all introduced by the electrical system but there are additional phase shifts in the mechanical coupling between the voice coil and the apex of the cone and between the apex of the cone and the remainder of the cone and surround. These are difficult to quantify but an approximate analysis shows that they are very frequency dependent and significant.

Acoustic phase shifts

The major phase shifts appear when sound waves are launched into the air. In a single cone wide range loudspeaker unit, the high frequency components of the acoustic signal are generally radiated from a small area near the cone apex, there being little high frequency radiation from the areas of cone near the surround. At frequencies below about 1 kHz the whole cone tends increasingly to act as a more or less rigid piston and the signals are radiated by the whole of the cone and part of the surround. Thus the area radiating the high frequencies is usually about an inch behind the effective centre of the low frequency radiation and in consequence signals in the high frequency band will appear a fraction of a millisecond behind the low frequency signal radiated by the whole area of the cone.
These phase shifts due to the variation in the effective position of the source are much more serious in a multiple unit system employing separate speaker units for the low, mid

Fig. 3. Phase shift through a typical crossover network.
and high frequency ranges. In the usual type of enclosure the 'tweeter' handling the frequencies above $4-5 \mathrm{kHz}$ will be mounted near the top of the enclosure, adjacent to the mid-range unit and perhaps 12-14 inches away from the centre of the l.f. unit. Generally the radiating surface of the tweeter will be a few inches in front of the effective radiation centre of the l.f. cone, so the higher frequencies will travel through the air a fraction of a millisecond before the frequencies handled by the woofer.
In practice the listener will sit two to four metres away from the loudspeaker enclosure and unless he is on the median line between the h.f. and l.f. units the path length between his ears and the $h . f$. unit will differ from the path length between his ears and the l.f. unit. In consequence, the signals from one unit will arrive before those from the other unit, or in conventional terms, there will be a phase difference between the signals from the two loudspeakers. This is of special significance in the changeover region when phase interference results in the appearance of peaks and dips in the frequency response, though the effect of phase shift on frequency response is not the real aspect of the present discussion.

Fig. 4. Measurement of a woofer's phase shift with the microphone mounted in the plane of the front baffle.

Several recent speaker system designs attempt to minimize the phase shifts due to the cross-over networks and the lack of coincidence in the vertical plane of the emitting surfaces, by displacing the units, the high frequency radiators generally being set back behind the plane of the woofer. The exact positions of the various units are difficult to determine by measurements of the relative phase of the acoustic outputs of the units, but the "correct" positions can be found experimentally by adjustment. of the unit location with a square voltage waveform applied. The adjustment must be done either in the open air or in an anechoic chamber to avoid the gross phase shifts that characterize any ordinary room.

Phase shift measurements

Measurements of the overall phase shift between the system input voltage that has been adopted as the reference and the sound pressure in front of the loudspeaker is not as simple as it might appear at first thought. While the position of the microphone diaphragm is obvious, the effective centre of the acoustic radiation from the speaker diaphragm is not known and cannot be determined with the required accuracy. Moreover the effective centre of radiation varies with frequency.
The microphone must be mounted in front of the loudspeaker and the spacing between speaker and microphone introduces a fixed time delay, or in phase shift terms, a phase shift linearly proportional to frequency. As this time delay is constant at all frequencies it does not introduce phase distortion, so any measurement of the phase shift should ignore that fraction of the total phase difference that is due to the physical spacing between microphone and loudspeaker.
This ambiguity in deciding on the actual part of the loudspeaker cone that emits the signal at any specific frequency limits the upper frequency to which phase shifts can be measured with an adequate degree of accuracy. At a frequency of 5 kHz for example, the wavelength in air is 6.86 cm and in consequence the phase nominally changes by 360 degrees for each 6.86 cm increase in spacing between microphone and loudspeaker unit. If the phase shift measurements are to be really accurate the distance between the diaphragm of the measuring microphone and the point on the diaphragm for which the signal is emitted must be known with an accuracy that can rarely be achieved.

A first choice for the position of the measuring microphone would be the speaker/microphone spacing standardized for frequency response measurements, one metre. At a frequency of 5 kHz this is $100 / 6.86=14.6$ wavelengths and an equivalent phase shift of $14.6 \times$ $360=5260$ degrees approximately, due

only to the distance between microphone and loudspeaker, and in consequence, a phase shift that does not introduce any waveshape distortion. It will be seen from Fig. 1 that a typical single unit speaker system will introduce a phase shift of about $30^{\circ}-60^{\circ}$ at this frequency. Thus if the phase shift due to the speaker unit itself is to be measured to an accuracy as poor as 20%, it is necessary to measure the overall phase shift between input voltage and the sound pressure at the microphone one metre away, to an accuracy of about $5^{\circ}-10^{\circ}$ in 5000° i.e. about 0.1%. This is just not possible for the effective centre of radiation in the speaker diaphragms, the point from which the one metre spacing is to be measured, is not known.
Nominally the constant time delay due to the speaker/microphone spacing of one metre can be compensated by the insertion of a delay line having a delay time of about 0.3 ms . In practice this is not satisfactory for the speaker/microphone distance of one metre cannot be determined when the centre of the acoustic radiation from the speaker cone is not known with any accuracy.

An alternative solution to the problem is to minimize the spacing between microphone and loudspeaker, for this minimizes the time delay that must be compensated. Consideration suggests that the best compromise may be to mount the microphone with its diaphragm in the plane of the speaker opening (Fig. 4). At this position the phase shifts due to spacing time delay are of no significance at low frequency and only become of consequence at frequencies above about 10 kHz where the wavelength is about 3.5 cm . The microphone can probably be located with a positional accuracy that is perhaps one tenth of this, limiting the accuracy to which the overall phase shift can be measured to about ± 15 degrees at a frequency of 10 kHz . Fig. 5 indicates the phase shift/frequency response of a typical wide range single unit loudspeaker when the measuring

Fig. 5. Phase versus frequency response of a moving coil loudspeaker measured as shown in Fig. 4.
microphone is mounted in the plane of the diaphragm opening.
Choosing a microphone location close to the loudspeaker unit may be the best compromise but it is not without its limitations, apart from that of accuracy mentioned earlier. As far as a listener is concerned the effective phase shift is that at his ears about two to three metres away from the loudspeaker. This cannot be directly measured if a multiunit speaker system is employed. At any listening position there is in addition to the phase shifts discussed, another and generally more significant cause of phase shift, that due to the difference in the length of the air path between the listener's ears and the two sources of the acoustic signal. If there are only two units in the system the listener can eliminate these differences by sitting exactly on the medium line between the two units, but this is not possible if a three unit system is employed. If the phase shift at the listener's ears must be known, it must be separately measured for each unit, and if the total resultant phase shift at the distant listening point is to be obtained, it must be calculated from geometric considerations. This is clearly a tedious piece of simple arithmetic, but the writer has gone on record many times as saying that these phase shifts are of no consequence.

Value of phase shift measurement

Measurements of the phase shifts to a point in the diaphragm plane is of real use to the speaker development engineer when he is assessing the effect of design changes. Phase changes more rapidly in the vicinity of a resonance that does the amplitude and is a more sensitive indication of the resonant frequency and its Q. Thus the effect of such changes as cone or surround doping can be rapidly assessed even
though the effect of such a change is small and in the midst of a lot of other irregularities.

When a stereo system is employed, the absolute values of phase shift in the loudspeakers are of little significance, but it is important to ensure that the phase shifts do not change too rapidly with frequency and that there is uniformity of phase shift between the speakers coming off the production line. Rapid changes in the phase/frequency response of nominally identical samples leads to unstable positioning of the stereo image.

My thanks are due to Mr W . R. Stevens of our laboratory for the measurements of phase response which have been quoted.

Announcements

Papers presented at the second international conference on software engineering for telecommunication switching systems held in February in Salzburg, Austria are to be published as "Software engineering for telecommunication switching systems", IEE Conference Publication 135. Further information can be obtained from The Marketing Department. The Institution of Electrical Engineers, PO Box 8, Southgate House, Stevenage, Herts. SGl IHQ.

A service for the design of l.s.i. circuits is available from Smiths Industries Ltd, Aviation Division, Cheltenham. A computer aided design and testing facility has been established to provide a design service for the low-volume market.

The Duddell medal and prize has been awarded by the Institute of Physics to Mr G. N. Hounsfield of EMI Ltd for his development in the use of X-raýs for the examination of three dimensional structures.

The National Closed Circuit Television Association's Annual Conference at University College, Cardiff is to be held from April 5th to 8th. Further information can be obtained from V. Ginn, College of Education, Cyncoed Road, Cardiff.

Sonab Ltd has moved to 214 Harlequin Avenue, Brentford, Middlesex TW8 9DW.

Cathodeon Crystals Ltd, Linton, Cambridge CB1 9JU, has received BS9000 approval for the manufacture of crystal based components for the telecommunications and electronics industries.

British Relay TV, Overline House. Crawley, Sussex is now relaying Southern-TV as a fourth channel to viewers connected to its cable-TV networks in the London regions of Bow, Fulham, Hammersmith, North Kensington, Paddington and Poplar.

Wound Electronic Components Ltd, Excelsis Works, Gogmore Lane, Chertsey, Surrey KT 169 AP are offering toroidal transformers designed and manufactured to customers specification.

Belmont A/V Ltd, Fircroft Way, Edenbridge, Kent TN8 6HA, UK distributors of the B.I.C. range of loudspeakers, have announced the granting of a US patent to B.I.C. for their application of the venturi principle in the field of acoustics.

Automatic battery switch-off circuit

Extending the life of small instrument batteries

by D. T. Smith
Clarendon Laboratory, University of Oxford

Nowadays, many small electronic instruments are powered by batteries. Battery prices have risen in recent years, and with the increasing prices of raw materials such as zinc, costs are likely to rise further. Moreover, it is frustrating to find equipment out of action due to flat batteries just when it is needed.

Much laboratory equipment is used intermittently and batteries then have a long life if the equipment is always switched off after use. However, people often forget to switch off, particularly when there is no obvious reminder (such as a light or noise) that the equipment is on. In practice, instruments are frequently left on for days or weeks when not in use. The circuit described here was designed so that it can be built into equipment without affecting performance or the normal controls, but will switch off the battery after a reasonable time it if it not switched off manually. We chose a time of about 10 hours so that the equipment would operate for a full working day without interruption. Normal operation can be restored by moving the manual switch to off and back to on.

Circuit operation

Both capacitors discharge when the battery is off. When the battery is switched on, C_{1} charges and gives a pulse of current to the base of Tr_{1}, which conducts and feeds current to the base of Tr_{3} to allow current to flow to the load. Initially, C_{2} remains uncharged, and with the bias on the gate of Tr_{4}, the tail current of the pair $\mathrm{Tr}_{4,5}$ is all taken
by Tr_{4}. Base current is fed to Tr_{2} which in turn drives Tr_{3} into saturation. Voltage drop across Tr_{3} is, therefore, quite small. Capacitor C_{2} is slowly charged via R_{7} until Tr_{5} is conducting and drawing tail current. Current through Tr_{4} is decreased together with the base current of Tr_{2}, and Tr_{3} is no longer saturated. The output voltage then falls and the bias on Tr_{4} falls, while the bias of Tr_{5} remains constant, so that a regenerative feedback loop is formed and the circuit snaps off.
When the circuit has switched off, the only drain on the battery is the current though R_{l} ($10 \mathrm{M} \Omega$) and transistor leakage, and this is a negligible drain to normal batteries. With the output off, C_{2} discharges rapidly through the gate of Tr_{5}. When the operator switches off, C_{1} discharges through D_{1} and R_{1} with a time constant of one second, so that the circuit is ready to be switched on again without delay.
The circuit switches off when the voltages on the gates of the f.e.ts are about equal, that is, when C_{2} has charged to about half of the output voltage. This gives an operating time $T=\log _{e} 2 . C_{2} R_{7} \approx 0.7 C_{2} R_{7}$.
The values shown give a calculated time of just under 10 hours. Other periods can be obtained by altering C_{2} or R_{7}.
The value of R_{2} is chosen to suit the working current and battery voltage. A
low value of R_{2} increases the battery drain, while a high value limits the working current; a suitable value is

$$
R_{2}=\frac{15 V_{\mathrm{b}}}{I_{\text {out }}}
$$

Construction

The circuit was built as a printed circuit board with a p.t.f.e. insulated tag for the junction of $\mathrm{R}_{7}, \mathrm{C}_{2}$ and the gate of Tr_{5} This extra insulation is necessary to give a leakage resistance large compared with the high resistance of R_{7} (10 $\mathrm{G} \Omega$), and care should be taken to keep this part of the circuit clean and dry to prevent the insulation from deteriorating. The circuit is not critical, as accurate timing is not required. A polycarbonate capacitor was used for C_{2} to ensure low internal leakage. A maximum gate current of 2 nA as quoted in manufacturers data for the 2N3819 would be disastrous, but in practice the gate current for this device is usually below 10 pA .
This circuit has been fitted to a number of a.f. oscillators without any inconvenience to normal operation. Users need not be aware of the presence of the circuit.

Fig. 1. Circuit diagram of the switch-off unit.

Components

$\mathrm{Tr}_{1,2} 2 \mathrm{~N} 4061, \mathrm{BC} 478$ or similar small silicon p-n-p type
Tr_{3} 2N3053, BC142 or a ssimilar medium power silicon $n-p-n$ type
$\operatorname{Tr}_{4.5}$ 2N3819 (n-channel silicon f.e.t.)
D_{1} any small silicon diode
$\mathrm{R}_{6} \quad 4 \mathrm{k} 7$ (9 or 12 V battery) 10 k (15 to 27 V battery)
$\mathrm{R}_{7} \quad 10 \mathrm{G} \Omega \pm 20 \% \mathrm{H} 13$. Welwyn Electric Ltd, Bedlington, Northumbria NE 22 7AA. ($£ 1.08$ in small quạntities)

Diode model of the m.o.s.f.e.t.

An insight into device operation to clear up some of the difficulties encountered in its initial study

by B. L. Hart

North East London Polytechnic

From the point of view of the circuit engineer the d.c. model, for a given application, of an active device can be classified as "good" if it is as simple as possible, and easy to use on both pencil-and-paper and computer aided designs. Also it should be characterized by parameters that are readily obtainable by measurements at the device terminals and that relate circuit performance potentialities and limitations to device design choices and fabrication process technology.

The classic Ebers-Moll ${ }^{1}$ (E-M) d.c. model of a bipolar junction transistor (b.j.t.) certainly fulfills these criteria. There can be little doubt that the E-M model has clarified the operation of a number of circuit designs and been responsible for the generation of some new ones. The advent of the equally classic Beaufoy-Sparkes ${ }^{2}$ charge-control model of a b.j.t. facilitated the paper design, and predictable practical performance, of saturated b.j.t. switching circuits such as inverters, bistables, etc, and led to the formulation of various figures-of-merit for fast switching b.j.ts.
Recently, work by Gibson ${ }^{3}$, Wedlock ${ }^{4}$, and others has led to the development of a simple d.c. m.o.s.f.e.t. model which is analogous to the E-M model of a b.j.t. The aim of this article is twofold: to clarify - at a level comprehensible by the circuit engineer, rather than the device physicist - the basic operation of a m.o.s.f.e.t.; to introduce the Gib-son-Wedlock model and show how it meets the criteria of "goodness" outlined above.

Basic operation

Because of its importance in digital electronics we consider, throughout, an enhancement-mode ${ }^{5}$ device. The symbolic representation, together with schematic cross-sectional views of the n-channel device selected for discussion are shown in Fig.1(a), (b) and (c) respectively. The source(S) - drain (D) spacing is L and, by definition, the gate(G) "width" is W. The S and D diffusions - richly doped by comparison with the p-type substrate - are designated n^{+}and have a plentiful supply of,
electrons. Let us see what happens for the bias conditions $V_{G S}=V_{B S} \neq 0$. The action of the device may, for the time being, be represented by two p.n junction diodes - the source-substrate junction, and the drain-substrate junction - connected back-to-back. Irrespective of the polarity of $V_{D S}$ there can be no significant drain current, $I_{D S}$. This

(c)

Fig. 1. N-channel enhancement-mode m.o.s.f.e.t. (a) symbolic representation and terminal voltage designation (b) plan view of physical construction (c) cross-section corresponding to (b)
is also the case if the substrate connection, B, is left floating (though this is an; operating condition not recommended): because one or the other of the two diodes is always reverse-biassed.

Suppose, instead, that $V_{B S}=V_{D S}=0$ but $V_{G S}>0$. Under d.c. conditions there is no current in the gate lead, i.e. $I_{G}=0$, because of the insulating properties of the oxide layer. Gate G acquires a positive charge and a corresponding negative charge is induced in the substrate surface layer beneath the gate. This arises as a result of electrons, drawn in from S and D, that are attracted to this region by the field in the oxide and holes that are repelled away from it. When $V_{G S}$ is sufficiently positive - by an amount known as the threshold voltage, V_{T} - enough electrons are concentrated in the substrate surface layer to compensate the positive charge due to substrate doping and device processing. Thus, when $V_{G S}=V_{T}$ the phenomenon of "inversion" is said to occur: the substrate just under the gate changes its polarity from p to n or "inverts." It must be borne in mind that the designation " n " means, basically, that the majority carriers are electrons, whether this be due to the fixed initial doping of the substrate wafer, or the induced doping from device biassing.
After inversion has occurred a continuous conducting layer or "channel" links the S and D diffusions. This channel, which is of uniform shape throughout its length, is normally only a few angstroms thick i.e. much less than the thickness, t_{ox}, of the oxide insulating layer (typically, 100 nm). The n-channel forms with the p-substrate an induced p.n junction and, as with any conventionally fabricated junction there is an associated depletion region (see Fig.2(a), in which the thickness of the channel is exaggerated for clarity) and this serves to make the device self-isolating. Thus, built-in junction-isolation is not required, and a consequent saving in chip area is achieved, when a number of similar devices share a common substrate as in single-polarity m.o.s.f.e.t. memory systems such as those used in pocket calculators.

Fig. 2 (a) Showing the presence of channel and depletion regions (b) equivalent circuit of $2(a)$

Ünder conditions of strong inversion ($V_{G S}-V_{T}>V_{T}$, say) and with $V_{D S}=0$ the m.o.s.f.e.t. behaves physically as a parallel plate capacitor system (Fig.2(b)), in which one plate is G and the other, accessible via the sourcedrain connection, is the channel. The magnitude of the charge density on each plate is $C_{0}\left(V_{G S}-V_{T}\right)$, where C_{0} is the gate-oxide capacitance per unit area. Let us now keep $V_{G S}>V_{T}$ and arrange that $0<V_{D S} \ll V_{G S}$. The charge of majority carriers on the lower plate of the capacitor is able to drift, under the influence of the x-directed field: there is no reverse-biassed p.n junction to impede the flow of electrons from S to D because the channel carriers have the same polarity as the S and D diffusions, hence $I_{D S}>0$. Variations in $V_{G S}$ cause variations in the density of charge carriers available for conduction, and it is the modulation of $I_{D S}$ by the perpendicular field which gives the name field effect to the control function of this type of structure. (We have chosen $V_{D S}>0$ for convenience. The choice $V_{D S}<0$ leads to a negative value for $I_{D S}$: once a channel is established the induced majority carrier charge can drift from S to D or with equal ease provided $\left|V_{D S}\right| \ll V_{G S}$ - from D to S, the particular direction being dependent on the polarity of $V_{D S}$.
The assumed condition $V_{D S} \ll V_{G S}$ ensures that the field in the oxide - and the channel charge density - varies only slowly throughout the channel length, and is perpendicular to the substrate surface. This is the 'gradualchannel approximation' used in firstorder mathematical treatments. The existence of a finite $V_{D S}$, and hence $I_{D S}$, means that the channel charge density $\sigma(x)$ is non-uniform. The x-directed field in the channel produces a potential difference $V(x)$ between S and some
point in the channel distance x away
from it.
Thus, $\sigma(x)=-\dot{C}_{0}\left\{V_{G S}-V_{T}-V(x)\right\}$
If $V_{D S} \ll V_{G S}, \quad \sigma(0<x<L) \approx-C_{0}$ $\left\{V_{G S}-V_{T}\right\}$, and the channel depth varies only slowly along its length - see Fig.3(a). When $V_{D S}$ is comparable with $V_{G S}, \sigma(x)$ varies significantly along the channel and this leads to a more pronounced wedge-shaped profile; however, a conducting channel always links S and D providing $;|\sigma(0 \leqslant x<L)|>0$. A limiting condition exists when $V_{G S}-V_{T}-V_{D S}=0$ because, then, $|\sigma(\mathrm{x})|$ falls to zero at the drain end, i.e. $V(x)=V_{D S}$, where the field in the oxide is least (Fig.3(b) - full line for channel outline). When $V_{D S}>\left(V_{G S}-V_{T}\right)$ the channel does not extend along the full length of the source-drain separation but terminates (is pinched-off) at some point P distant x_{p} from S, at which $\left|\sigma\left(x_{P}\right)\right| \approx 0$. (Fig.3(b), dotted curve).

The choice of the term pinch-off for this mode of operation is not a completely happy one since it suggests that $I_{D S}=0$ which is clearly not possible here because it is the presence of $I_{D S}$ which is responsible for $\mathrm{V}\left(x_{P}\right)$. A self-limiting process is established in which the current remains sensibly constant at that value corresponding to $x_{P}=L$, despite further increases in $V_{D S}$. Obviously $\left|\sigma\left(x_{P} \leqslant x<L\right)\right|$ cannot be precisely zero because that would mean the absence of charge carriers in the surface substrate layer for $x_{P} \leqslant x<L$. That part of $V_{D S}$ in excess of ($V_{G S}-V_{T}$) appears across the virtually depleted region between P and D and the field there helps speed the small, but finite, number of electrons at P on the remainder of their journey to D. Current continuity in the path from S to D is maintained because $I_{D S}$ is dependent on the product $\sigma(x) v(x)$, where $v(x)$ is the mean carrier velocity. As $|\sigma(x)|$ decreases with x, $|v(x)|$ increases. A self-limiting process, such as the one mentioned, is not unfamiliar in electronic devices and

Fig. 3. (a) Channel conditions for $V_{D S} \ll V_{G S}$ (depletion layer omitted) (b) Channel conditions for $V_{D S}=\left(V_{G S}-V_{T}\right)$, full-curve; $V_{D S}>\left(V_{G S}-V_{T}\right)$, dotted curve.

(a)

Fig. 4. An hydraulic analogy to m.o.s.f.e.t. pinch-off mode operation
suggests the existence of some internal negative feedback mechanism. A simple hydraulic analogy will help to clarify this for the case of the m.o.s.f.e.t.
Fig. 4 shows the cross-section of a possible self-limiting water flow system. C is a cylindrical chamber with an inlet pipe I, the diameter of which is much greater than that of the outlet tube, O , located at the bottom. Cylindrical sleeve, S, attached by rigid support rods, R , to a float unit, F , slides up and down the internal wall of C and - in one position - is capable of completely covering the inlet port. Under steadystate conditions (hydrodynamic equilibrium) F floats to a level, H , above O causing S to partially cover the inlet port. In likening this condition to pinch off in a m.o.s.f.e.t. we note that a flow rate (channel current), which is a function of the bore of O, is associated with a head, H (channel voltage) that, in itself, restricts the flow rate to a sensibly constant value dependent on the mechanical dimensions (electrical par'ameters) of the component parts. Other, and more precise, hydraulic analysis could be envisaged, but the one mentioned serves well enough for our discussion. The ideal constant-current characteristic of pinch-off operation is not observed practically because of the dependence of $I_{D S}$ on conducting channel length, which is a weak function, usually, of $V_{D S}$. Though this effect is understood, and can be allowed for, it is neglected in the d.c. model now presented.

(b)

Fig. 5. (a) Characteristics of a square-law-diode (b) symbolic representation of (a)

Fig. 7. M.o.s.f.e.t. square-law-diode d.c. model (a) form based on equation (4) of text (b) arrangement of (a) (c), development of (b)

Fig. 6 An equivalent circuit of (a) is shown in (b)

Fig. 8. Final d.c. model for Fig. 1(a)

M.o.s.f.e.t. d.c. model

For $V_{G S}<V_{T}, V_{D S}<\left(V_{G S}-V_{T}\right)$, the d.c. characteristic of the n-channel m.o.s.f.e.t. shown in Fig. 8 can be expressed mathematically in the form,
$I_{D S}=\lambda\left[2 V_{D S}\left(V_{G S}-V_{T}\right)-V_{D S}^{2}\right]$
where λ is a conductance coefficient (with dimensions A / V^{2}) given by,
$\lambda=\mu_{\mathrm{e}} \in \epsilon_{\mathrm{ox}}(W / 2) L t_{\mathrm{ox}}$
in which: $\epsilon=$ permittivity of free space; $\epsilon_{\mathrm{ox}}=$ relative permittivity of oxide; $\mu_{e}=$ effective mobility of electrons in the substrate surface layer.

A simple derivation of (2), based on a quantitive discussion of the physical electronics of device operation outlined above will be given in Part 2.
For the present purposes we can put (2) into a more convenient form by making the.temporary substitutions:

$$
a \equiv\left(V_{G S}-V_{T}\right): b \equiv V_{D S}
$$

Then, $I_{D S}=\lambda\left[2 a b-b^{2}\right]=\lambda\left[a^{2}-(a-b)^{2}\right]$
Now, $(a-b)=\left(V_{G S}-V_{T}-V_{D S}\right)$

$$
\begin{equation*}
=\left(V_{G D}-V_{T}\right) \tag{3}
\end{equation*}
$$

Hence, substituting back into (3), (2) becomes,
$I_{D S}=\lambda\left[\left(V_{G S}-V_{T}\right)^{2}-\left(V_{G D}-V_{T}\right)^{2}\right]$
Equation (5) can now be used, directly, in the construction of a d.c. model by imagining a fictitious square-law-diode with the d.c. characteristic in Fig. 5(a).

There is no standard symbol for such a device: the one proposed here, and favoured by this author, for its simplicity is shown in Fig. 5(b). Clearly, the d.c. circuit model for a square law characteristic offset from the origin by an amount V_{R}, Fig. 6(a), is an ideal square-law diode with an inbuilt opposing battery V_{R} (see Fig. 6(b)).

By an extension of this argument the model representing equation (5) and hence (2), is shown in Fig. 7(a). The intermediate form Fig. 7(b) and the final form, Fig. 7(c), both have terminal voltages and currents respectively identical to those of Fig. 7(a) and are thus - from a circuit theory and application standpoint - equivalent to Fig. 7(a). Two effects have been ignored, substrate bias and bulk resistance, but these will be considered in Part 2.
(To be continued)

References

1. Ebers, J. J. and Moll J. L., "Large signal behaviour of junction transistors" Proc. I.R.E., Dec. 1954, pp 1761-72.
2. Beaufoy R., and Sparkes J. J., "The junction transistor as a charge controlled device," A.T.E. Journal 317, Oct. 1957.
3. Lo A. W. and Gibson J. J., "Simple MOSFET modelling for Digital Applications", IEEE Journal of Solid State Circuits, Oct. 1973, pp 391-393.
4. Wedlock B. D., "Static large signal field effect junction transistor models" Proc. IEEE, April 1970, pp. 593-595.
5. Hart, B. L., "Classifying f.e.ts", Wireless World, Jan. 1975, pp 2-3.

World of Amateur Radio

Integrated-circuit transceivers

Back in 1970, Tich Ryan, G3VJN, found that the linear integrated circuit amplifiers types CA3020 and CA3020A, usually regarded as intended for audio frequency applications, were generally capable of providing significant r.f. output at frequencies as high as 21 MHz . On 7 MHz the CA3020 will usually provide 500 mW output and the CA3020A over l-watt.

A number of British amateurs have since used such devices in conjunction with the SL600 series of integrated circuits to provide compact, all-solidstate s.s.b./c.w. transceivers. One of those who have recently been interested in this approach is Leslie Moxon, G6XN, who has built an equipment which includes two of the recent SL613 devices to provide r.f. clipping of the speech. Powered by a 6 -volt lantern battery, his transceiver provides an output of about 250 mW on 14 MHz from a CA3020A and is capable of working quite easily into Eastern Europe. He has also been developing a 2 -watt "linear" amplifier for use when higher power is needed for long-distance contacts.

More repeaters

Two more v.h.f. repeaters have been authorized by the Home Office: Moel-y-Parc, GB3MP, and Burnley, GB3RF, both intended primarily for use by n.b.f.m. mobile and portable stations. GB3MP is expected to open during March or April on channel R6 (145.15 MHz in, 145.75 MHz out) and is sited at the IBA's television station near Clywd, North Wales. Under normal propagation conditions, it is expected to provide coverage of much of North Wales and North-west England, including Manchester, Liverpool, Preston and the coastal strip up to the Morecambe Bay area as well as parts of the Isle of Man. The repeater, under the aegis of the UK FM Group (Western), has been financed largely by contributions from over 125 licensed members.. The vertically polarized aerials, between 200 to

300 ft up the IBA mast, are over 1300 ft above sea level. Äpplications have also been submitted by this group for 70 cm u.h.f. repeaters at Manchester (GB3MR), Colwyn Bay (GB3LL), Liverpool (GB3LI) and Stoke-on-Trent (GB3ST). A linear repeater project is also being considered.

The very high usage of the London repeater, GB3LO, has been measured by W. Blanchard, G3JKV, and amounts to an average of between 51 to 58 minutes per hour throughout the period 0800 in the morning to midnight and remains substantial at all times except between 0400 and 0600.

The latest IARU list of repeaters in the German Federal Republic includes over 120 operational stations including some cross-band ($432 / 144 \mathrm{MHz}$), r.t.t.y., 1260 MHz and amateur TV repeaters. A 70 cm amateur TV repeater in Alexandria, Virginia, has a vision output of 800 watts e.r.p. and handles both vision and sound signals conforming to the US 525 -line specification.

Random communication?

There seems among some British amateurs a growing degree of disillusion with the way that amateur phone communication is developing, arising from the widespread adoption of the popular and effective Japanese s.s.b. transceivers for h.f. and increasingly for v.h.f. Operation of these units, unless carried out with specific aims or as part of an interest in aerials or propagation, often fails to retain the interest of amateurs who previously spent part of their time testing home-built equipment or "assembling" highly individual stations based on commercial and surplus units. Often - as in the classic Tony Hancock record - amateurs who acquire the current all-swinging little boxes show a burst of eager activity followed by fewer and fewer appearances on the bands. Is there any morale to be drawn from the fact that similar fading interest does not seem to affect those who pursue specific operating interests such as low-power (QRP) operation, the various specialist modes or even c.w.? One has the impression (or is it merely prejudice?) that amateur operating activity that involves some degree of personal effort or skill or training or with a definite technical or other aim results in far more dedication than random radiotelephone operation based on one specific piece of equipment. Few people would wish for long to sit beside an ordinary telephone dialling random numbers - or would they?

On the bands

The Home Office has approved the start of the GB2ATG r.t.t.y. news bulletin broadcasts from March 7, following four
weeks of trial transmissions. The bulletins a are transmitted on Sundays at 1200 ($3590 \mathrm{kHz}, ~ F 1,170 \mathrm{~Hz}$ shift); 1215 (144.6 MHz beaming north from London, $\mathrm{Fl}, 850 \mathrm{~Hz}$ shift); and 1230 (London area only, $144.6 \mathrm{MHz}, \mathrm{F} 2,170 \mathrm{~Hz}$ shift).

The Royal Signals Institution has made a grant of $£ 200$ to the Royal Signals Amateur Radio Society towards the cost of new aerials, including a ten-element crossed-Yagi, to allow the headquarters station, G4RS, at Blandford Camp, Dorset, to operate through the Oscar beacons.

The Home Office has refused an RSGB request to lift or modify the restrictions applying to the use of 430 to 432 MHz by amateurs living within the area $53-55^{\circ}$ north, $2-3^{\circ}$ west and has stated that these are likely to continue for many years.

During December/January a number of contacts were made on 1.8 MHz by European stations (including some in the UK) with Australian stations in Victoria and Western Australia. The "twilight boundary" or "Grey line" technique (working along the great circle route representing the dawn' dusk or dusk/dawn boundary) has also brought good long-distance contacts to many stations on 3.5 MHz during recent months.

The RSGB has recommended that QSL cards should not exceed about $51 / 2$ by $31 / 2$ inches as larger cards cause handling problems for the QSL Bureaux.

In brief

Class A licences in the series G4FAA are likely to be issued soon. Over 21,750 people held UK Class A, B or amateur TV licences on November 30, 1975 and there were almost 6000 mobile licences The British Amateur RadioTeleprinter Group are holding a "Spring r.t.t.y. contest" between 0200 GMT on March 27 to 0200 GMT on March $29 \ldots$ The Norwegian national society, NRRL, has a membership of just over 2500 with about 3700 licensed amateurs in the country and with some 18 repeaters in operation... "World Radio Club", the BBC World Service weekly programme for short-wave listeners, has recently enrolled its 25,000 th member ... The RSGB are providing an examination centre in Central London for the next Radio Amateurs' Examination on May $20 \ldots$ Among recent new 1TU prefix allocations are: D2A to D3Z Angola; D4A to D4Z Cape Verde; and D5A to D5Z Liberia . . . The Emley Moor beacon station (February issue) is under the aegis of the Northern Heights Amateur Radio Society and is not yet in regular operation...A mobile rally is being held for the North Midlands at Drayton Manor Park, Tamworth on April 25; the White Rose Rally is at Lawnswood School, Leeds on March 28. PAT HAWKER, G3VA

Introducing analogue multipliers

This article is complemented with the practical circuits of set 29 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

Paisley College of Technology

In the processing of electrical signals there is a need for circuits that can perform all the standard arithmetical processes - addition, subtraction, multiplication and division. The first two fall into the domain of linear amplifiers and present no great difficulty; the last-mentioned pair provide a real challenge to the ingenuity of circuit designers. Fig. I shows the waveforms of a particular example where an input signal Y is to be under the control of a second input X, the output being of the form XY. This is a gain-controlled amplifier and is one of the simpler forms of multiplier since usually the gain is required to be either positive or negative and not both. Hence X takes up only one polarity, and Fig. 2 shows the multiplier as needing to operate in only two of the four quadrants viz X positive, Y positive and X positive, Y negative. Such a system can be realized as in Fig. 3 where v_{1} corresponds to Y and v_{2} to X. In many such circuits it is not even essential that the gain be a linear function of v_{2}, in which case the circuit ceases to be a multiplier. A problem with circuits based on this idea is that of finding a resistor having negligible non-linearity over a suitable range of currents and voltages, while being controllable by an external signal.

While true and direct multiplication would be ideal, and can be obtained by using suitable transducers such as Hall-effect devices (see card 9), the designer often has to resort to devices and circuits obeying other laws. These are then manipulated until some combination of them yields a term which is proportional to the product of two signals.

It can be very difficult to eliminate all unwanted terms consistently and over a wide range of temperatures and supply voltages. One well-established technique is to use a circuit with a squarelaw voltage transfer function. This can be synthesized by a "piece-wise linear" technique, where a network of diodes, resistors and reference voltages, provides a slope that changes progressively as the input increases (see card 1). With a large enough number of. segments, a power law can be approached

One problem introduced by the use of a transistor is that of the increased loop gain, the transistor operating effectively in common-base with a voltage gain dependent on the input voltage. This leads to h.f. oscillation unless the amplitude-frequency response is carefully controlled by means of external compensation - one possibility being capacitive feedback from output to inverting input, by-passing the transistor at high frequencies. To use this logarithmic function for multiplication (as in card 4) the system shown in block diagram form in Fig. 6 may be used. The antilog circuit is simply a \log circuit with input (resistor) and feedback (diode/transistor) elements interchanged. Similar systems can be devised to provide other power law and ratio circuits by expressing the desired function in log/antilog forms first.

A related technique uses multiple transistors (card 8), shown in a general configuration in Fig. 7. It is assumed that the currents are controlled by external generators and/or feedback with one of them, or the difference between two of them, as the output. In the example shown, for I_{2} maintained constant, $I_{1} \propto I_{3} I_{4}$ i.e. a multiplier. As shown, operation would be restricted to a single quadrant, but a large number of circuits have been published both to extend the operation into all four quadrants and to produce a range of interrelationships such as those based on the log approach.

A totally different approach yielded many ingenious and effective multipliers, prior to the ready availability of matched transistors. It stems from the concept that the terms to be multiplied need not remain in the same physical domain while being processed e.g. the variables of interest may both be voltages and the output may also be required as a voltage but each input may be used separately to control a different parameter of an output waveform, while a third property might be proportional to the product of the other two.

Consider the pulse waveform shown in Fig. 8: The pulse height is V, the repetition frequency $f=1 / T$ and the pulse width of Δt. The mean output voltage as would be indicated on a moving coil meter is given by the product of these three variables, increases in each individually producing a proportional change in that mean value. Thus if any pair of these variables $(f, V),(f, \Delta t)$ or $(V, \Delta t)$ is brought under the separate and linear control of two input voltages, then the mean output voltage is a measure of the input product (card 2). There is a close relationship between these circuits and various forms of pulse modulators in the same way that the analogue multipliers described earlier are related to amplitude modulators.

There are purely digital methods of multiplication, but an intermediate solution is offered by the multiplying d.-to-a. converter. For a given binary input the converter has a number of output switches activated. If these operate on an external reference voltage the final output depends on the product of that reference voltage and the binary number. A class of digital circuits called binary-rate-multipliers is used to operate on a pulse train, producing a second train of pulses at a slower rate, card 3. At first sight this must cast doubts on the terminology since we associate multiplication with outputs greater than the inputs. The property of the circuit is however to multiply the input pulse rate by a factor such as $n / 100$ where $n<100$ arld n can take up any value between 1 and 100 , i.e. it is equivalent to multiplying by n but shifting the decimal point by two places.
The variety of methods available for achieving the multiplication of two
variables electronically is growing, and modules are readily available to a high degree of accuracy. As the methods vary widely in both properties and in the physical processes involved it is important to consider the options carefully - it is a field where the opportunities to place one's foot firmly in it (unspecified) are remarkably high.

Topics of set 29 Circards

Quarter-squares multiplier
V-f converter multiplier
Delta-sigma modulator/multiplier
Log-antilog multiplier
Triangle-wave averaging multiplier
Four-quadrant multiplier - characteristics
Four-quadrant multiplier - applications
Translinear multiplier
Hall-effect multiplier
F.e.t. analogue multiplier

Tested circuits on the above topics are given in set 29 , obtainable for $£ 2$ post free from:

IPC Electrical-Electronic Press Ltd General Sales Dept, Room 11
Dorset House
Stamford Street
London SEI 9LU
Subscriptions cost $£ 18$ for ten sets (100 cards minimum). When ordering specify which set your order should start with, and make cheques, postal orders or money orders payable to IPC Business Press Ltd. See advertisement on page 6).

Topics covered so far in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, etc.)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D).
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifiers signal processing
17 c.d.as - signal generation
18 c.d.as - measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators
23 reference circuits
24 voltage regulators
25 RC oscillators-1
26 RC oscillators-2
27 Linear c.m.o.s.-1
28 Linear c.m.o.s.- 2
29 Analogue multipliers
30 Non-linear functions (available April)

Television tuner design notes

Constructional hints in the light of experience

by D. C. Read, B.Sc.

Following publication of the TV tuner design details (WW, October, November, December 1975 and January 1976), a number of aspects of construction and operation have been queried. Happily, none of the questions suggest faulty design; most are concerned with minor effects, and the problems that have occurred have been easy to solve. For readers who are at present building the tuner or perhaps thinking of doing so, the various points are discussed below.

Modification to accommodate 05 version of ELC1043 module
As shown in Fig. 17 (part 3), the tuning-voltage spread for the ELCl043/05 is about l volt at the lower frequencies. If a module on the low side of this spread is installed, the tuning voltage required to select channel 21 (471.25 MHz) would probably be about 0.5 volt. But with the circuit as in Fig. 14 (part 3) the least voltage which can be fed from $\mathrm{IC}_{2 \mathrm{~h}}$ to the u.h.f. tuner (point C in Fig. 2 Part 1) is appreciably more than 1 volt.
To obtain the necessary lower voltage, the $\mathrm{IC}_{2 \mathrm{~b}}$ circuit modification suggested below would be suitable. It provides a voliage offset for $\mathrm{IC}_{2 \mathrm{~b}}$ output which is maintained at a constant value ovei a considerable range of ambient temperature.

In this modified circuit, the 3.3 volt zener diode draws a low bias current through the $18 k \Omega$ and l0ks resistors from the 11 -volt supply rail, and holds point C at a constant 2 volts negative with respect to the $\mathrm{IC}_{2 \mathrm{~b}}$, output. Given

this standing bias, the tuning voltage fed to the u.h.f. module can be reduced to zero or even below, and therefore enables selection of channel 21. The silicon junction diode connected between $\mathrm{IC}_{2 \mathrm{~b}}$ output (pin 6) and the inverting input (pin 2) provides an overall positive voltage-versus-temperature variation. which matches and counteracts the negative-going drift in the zener
A tuner modified in this way has been tested over an ambient temperature range much greater than would be experienced in practice. The trial showed that voitage tracking between the diodes was quite effective so that the a.f.c. system does not have to adjust for variation in the added bias.

Pile-winding of Neosid type-E2 coils The components list ir. part 3 shows that inductors $\mathrm{L}_{8}-\mathrm{L}_{13}$ are pile-wound on type-E2 formers. Pile winding is an effective way of reducing self-capacitance in coils, particularly those with a relatively large number of turns e.g. L_{10}. It prevents spurious resonances occurring and is generally used to ensure that the larger part of the designed circuit capacitance is obtained from known, discrete components rather than from indeterminate strays in the winding.

The accompanying diagran illustrates how the windings are started and then gradually stacked, as it were, in vertically-slanted layers across the former winding space. The winding height (h) must be judged to suit the
number of turns. The basic aim; of course, is to keep turns with the largest r.f. voltage difference as far apart as possible. With care it is not a difficult construction technique to master; the friction of silk-covered litz wire eases the slant stacking. Failing its use, it may be found that tuning capacitance values as shown in the Fig. 2 circuit will have to be reduced to accommodate the extra winding capacitance which will result; in this event, the specified tuner performance might be difficult to achieve.

As shown in the exploded diagram on p.83, a rubber "cushion" with an offset hole is included in the necessary fitments and is laid between the top of the former and the shielding can. It is a most important item. If the tuning core is screwed fully "home" with the cushion omitted, it could reach, and press against, the former base. When this happens, further rotation of the core lifts the nylon collar clear of the ferrite ring, allowing it to move up and down with the resulting random changes of inductance. It might then be necessary to remove the inductor screening can from the board, dismantle it and re-seat the collar.

The rubber cushion fills the gap between the collar and the can top and so restricts any such movement. To help it do this, remember to push each can firmly down on to the board before soldering the lugs to the earth plane; this action compresses the rubber.

Adjustment of $\mathrm{L}_{14} / \mathrm{L}_{15}$ coupling capacitor

In Fig. 2, it is shown that the "top-C" coupling for $\mathrm{L}_{14} / \mathrm{L}_{15}$ is provided on the printed-wiring board by track capacitance. Because of variation in the etching process, some of the boards supplied have a value of capacitance which is too large (too little space between tracks). In this event, the sound i.f. response as exampled in Fig. 20 of part 4 might be difficult to achieve, and the value would have to be reduced.

Adjustment is easily made by carefully scraping a small amount of copper from the board so as to widen the gap between tracks until the response is correct. As explained in step 9 of the line-up instructions (part 4), satisfactory response obtains when the transfer of energy by the $\mathrm{L}_{14} / \mathrm{L}_{15}$ circuit is equal about the carrier frequency. For a value of coupling C which is too large, the tendency will be for more energy to be transferred on the high-frequency side of the carrier i.e. the part of the spectrum towards the vision-frequencies.

Pre-set tuning arrangements

The photograph in part 4 shows a push-button assembly connected to a tuner board equipped for sound-only
reception; the full vision and sound version can also be fitted with pushbutton control. But, in adding this facility, the high-value variable resistors provided in these assemblies for pre-set adjustment are not suitable as direct replacements for the components ($\mathrm{R}_{91} \mathrm{R}_{94}, \mathrm{R}_{97}, \mathrm{R}_{100}$) specified for the tuning-voltage supply circuit given in Fig. 2.

The difference in resistance value creates two problems, both involving the $22 \mu \mathrm{~F}$ tantalum capacitors $\left(\mathrm{C}_{70}\right.$ to C_{73}) connected across each pre-set. Referring to Fig. 2, the $\mathrm{R}_{61} / \mathrm{C}_{59}$ combination at the input to $\mathrm{IC}_{2 b}$ is needed to reduce a.f. modulation present in the discriminator output feed used for a.f.c. But when channel reselection takes place, the voltage on C_{59} must be appropriately increased or reduced as quickly as possible to complete the re-tuning process. Mainly, voltage change results from the charge transfer between C_{59} and whichever of the $22 \mu \mathrm{~F}$ tuning-supply reservoir capacitors is connected into circuit at the instant of reselection. The feed of current from the d.c. supply through the relevant pre-set resistor then completes the change. The effective time constant is determined by the pre-set chain resistance, which is 10 $k \Omega$ in the original (published) circuit as compared with $100 \mathrm{k} \Omega$ for the pushbutton assemblies. Thus with the push-button unit, the time taken to bring the voltage within the range covered by a.f.c. and so re-establish settled tuning conditions is increased by up to 10 times.

The other problem concerns the leakage current taken by tantalum capacitors and the variation of this with temperature. For these capacitors, leakage can double for every 10 deg C change in temperature; for a d.c. source impedance of $2.5 \mathrm{k} \Omega$, as in the original circuit, this represents a voltage change of about 5 mV . Such a voltage applied to the ELC1043 u.h.f. module causes a frequency change of about 0.1 MHz , which is easily corrected by a.f.c. With a d.c. source of $25 \mathrm{k} \Omega$ as presented by the push-button pre-sets, however, the frequency bias resulting from capacitor leakage could be as much as 1 MHz . Although this is still within the a.f.c. range, the offset is unacceptably large because in one direction the degree of control then remaining to counteract all other tuning change effects is severely limited.

In practice, an elegant arrangement is possible: the two pre-set chains - high and low resistance - can be connected in parallel. If this is done, the high-resistance push-button pre-sets are initially put to mid-range and coarse adjustment for the required channels is carried out using the original low-value resistors. Subsequently, fine tuning is completed by means of the high-value controls so that the a.f.c. system is then arranged to operate exactly in the middle of its range for each selected station.

Component-location diagram

The following are errors in the location diagram supplied with the printed wiring board.

- The tantalum capacitor C_{74} across zener diode D_{14} at the base of T_{14} is shown reversed. As indicated in the circuit diagram of Fig. 2, the C_{74} positive terminal should be connected to the transistor base and to the positive end of the parallel zener.
- The positions marked $\mathrm{IC}_{2 \mathrm{a}}$ and $\mathrm{IC}_{2 \mathrm{~b}}$ are inverted in the diagram although the component type numbers are correct. The SN72741P, $\mathrm{IC}_{2 \mathrm{~b}}$, is at the top and the $\mathrm{SN} 72748 \mathrm{P}, \mathrm{IC}_{2 \mathrm{a}}$, at the bottom.
Finally, the ELC1043/05 module can be obtained from Manor Supplies, who also offer an alignment service.

T. C. Owen

Many of the long standing advertisers in Wireless World will be saddened to hear of the death of T. Charles Owen, who was advertisement manager of the journal from 1925 to 1959. Born in 1894 (the year Heinrich Hertz died), Tommy Owen made his career among the pioneers of radio. He joined Marconi's Wireless Telegraph Company in 1912 as an assistant in the cashier's department, and knew Marconi personally. He handled the cash side of The Marconigraph, and when this became The Wireless World in 1913, began his long, 47 years' association with the journal.

At the outbreak of the First World War in 1914 he joined the Royal Welch Fusiliers and saw service in France, but was invalided out in 1916. He returned to Wireless World in 1917 and subsequently was put in charge of the office, sales and despatch department of Wireless Press Ltd, then at Marconi House in the Strand, London. Iliffe bought this company in 1924 and shortly afterwards Mr Owen was made advertisement manager of Wireless World. It was in the early 1920's that he got to know E. K. Cole, J. L. Baird and many other pioneers of radio and television in the U.K. The old 2 LO broadcasting station in London was familiar ground to him.

A genial, greatly respected figure, he conducted the advertisement business of Wireless World with continuing success until his retirement in 1959, when he was succeeded by G. Benton Rowell. Mr. Owen died in February, aged 81.
G.B.R.

Function generator

The model 119 voltage-controlled frequency function generator has been added to the range produced by Exact Electronics Ltd. This unit has a frequency range from 0.02 Hz to 2.2 MHz with sine, square, triangle and variable time symmetry of all waveforms for ramp and pulse operation. A v.c.f. input is provided to allow the generator frequency to be varied either up or down over a total range of $1,000: 1$. Minus 10 V d.c. will increase the frequency by three decades from a minimum multiplier setting, and plus 10 V d.c. will decrease it by a similar amount from a maximum multiplier setting. The "high" output delivers 20 V pk-pk on open circuit, or 10 V pk-pk into 50 ohms whilst the "low" output gives 632 mV pk-pk open circuit or 316 mV pk-pk into 50 ohms. An amplitude control provides a 30 dB attenuator for both high and low
outputs which are available simultaneously. An invert switch allows the pulse and ramp waveforms to be reversed in polarity and a d.c. offset control gives up to $\pm 10 \mathrm{~V}$ adjustment. A t.t.l.-compatible pulse output is provided in the front panel. Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW 301 for further details

Infrared oven

For reflow soldering, drying thick-film paste, curing photo-resists and sprays and many other small-scale heating, drying, soldering and curing applications, a new infrared oven has been introduced to this country by Dage Intersem Ltd. Called the TR-91, it is manufactured by Glo-Quartz Ovens Inc, California and is suitable for bench-top use. It incorporates a variable speed ($0-4 \mathrm{ft}$ per minute) stainless steel conveyor belt and may be integrated into existing production lines. Dage Intersen Ltd, Haywood House, Pinner, Middlesex.

WW 302 for further details

Inverter for TV sets

Inverter LF100T has been designed to operate mains-driven TV sets from a 12 -volt car battery or similar d.c. source. The inverter delivers a rectangular output waveform with a form factor suited to models relying on r.m.s. or peak voltage values. The maximum power output is 100 W at a nominal 240 V a.c. Input must be within 11 to 16 V d.c. Full protection against output short
circuits or overloads is incorporated and the unit is fuse protected against incorrect input polarity connection. Further protection is provided by an electronic trip circuit which shuts down the power unit should the battery voltage fall below 11 V , thereby preventing undue battery drain. The unit also trips should over heating occur. Dimensions are $180 \times 130 \times 90 \mathrm{~mm}$, it is mechanically robust and will withstand electrical surges of up to 20 V for 80 ms or spikes up to $\pm 300 \mathrm{~V}$ for $15 \mu \mathrm{~s}$. Weir Instrumentation Ltd, Durban Road, Bognor Regis, Sussex.
WW 303 for further details

Spark tester for defects

Designed for the detection of flaws, defects or porosity in non-conductive materials, the Goodburn model GBP20 portable h.f. spark tester incorporates a replaceable plug-in coil. The tester has a variable output control which adjusts the spark length to suit different applications, combining optimum frequency with safety in use. The unit will test such materials as rubber, plastics, ebonite and bituminous coatings up to 25 mm thick. Voltage input can be set to $100 / 125 \mathrm{~V}$ or $220 / 250 \mathrm{~V}$ at 30 W power consumption. Output frequency is 200 kHz and maximum output voltage 55 kV . The generator is housed in a compact pistol-shaped moulded polythene case. In testing, the surface of an object is systematically checked by passing over it with the correct probe. Voids and defects will be recognized by the passage of a bright spark accom-

WW 302 for further details

WW 304 for further details

WW 305 for further details
panied by an audible hissing noise. Goodburn, The Welding Centre, Arundel Road, Trading Estate, Uxbridge, Middlesex UB8 2SE.
WW 304 for further details

Digital multimeter

A new $31 / 2$-digit, five function, autoranging digital multimeter from Hew-lett-Packard measures voltages from $\pm 0.1 \mathrm{mV}$ to 1 kV d.c. and from 0.3 mV to 700 V r.m.s. a.c. Resistance is measured from $1 \mathrm{~m} \Omega$ to $1 \mathrm{M} \Omega$ whilst current can be measured from 0.1 mA to 1.1 A d.c. and 0.3 mA to 1.1 A a.c. Autozero, autopolarity and autoranging are built in. Typical accuracy for direct voltage measurements is 0.5% and direct current accuracy is 1%. On alternating voltage ranges, frequency is specified to 10 kHz , while a.c. measurement is to 5 kHz . Accuracy of resistance measurements is within 0.6% on the three highest ranges and 0.4% on the two lower ranges. Open circuit voltage is less than 4 V . Input resistance on all voltage ranges is $10 \mathrm{M} \Omega$ with input capacitance of less than 30 pF . The model 3476 is protected to 1100 volts peak on all ranges. A range hold feat ure is included that allows the instrument to be locked to any desired range. Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Berkshire RG115AR.
WW 305 for further details

Integrator

The D-block integrator from Lee-Dickens Ltd operates by providing a pulse rate which is linearly proportional to an input amplitude. The pulses are then amplified to drive a separate electromagnetic counter. The unit accepts signals with a minimum span of 100 mV and input currents of $0-10$ and $4-20 \mathrm{~mA}$. The output pulse is 24 V d.c., 40 ms wide and the output, at minimum input, may be up to any count rate between 120 and 12,000 counts per hour. The module will operate from either $100-120 \mathrm{~V}$ or $210-250 \mathrm{~V}$ and the power requirement is approximately 2VA. Each instrument is supplied factory calibrated from LeeDickens Ltd, Desborough, Kettering, Northants.
WW 306 for further details

Instrument case

Boss Industrial Mouldings has recently introduced the BIM300 instrument case. The unit measures $250 \times 167.5 \times$ 68.5 mm and has a volume of $2000 \mathrm{cu} . \mathrm{cm}$. The case has two similar covers screwed onto an $18 \mathrm{~s} . \mathrm{w} . \dot{g}$. chassis which is pre-punched to accept an IEC mains socket. Internal upper and lower brackets are also provided for mounting printed circuits boards. The top and bottom covers are constructed from s.w.g. aluminium which is stove ena-
melled in either red, grey or orange. The cases are priced at around $£ 12.50$ in one off quantities from Boss Industrial Mouldings Ltd, Higgs Industrial Estate, 2 Herne Hill Road, London SE 25 OAU.

WW $\mathbf{3 0 7}$ for further details

Automatic millivoltmeter

An analogue, alternating millivoltmeter from the NF Circuit Design Block Co., the Model M-176, will change ranges automatically from 1 mV to 300 V fullscale. A hold mode is provided and with this in use the ranges can be changed manually. Range-change switching points are at 25% f.s.d. in the downward direction and slightly over 100% upwards, although provision is made for variations. A row of l.e.ds indicates the range in use. A sensitivity control is fitted for convenience in making ratio measurements. The stated error is $\pm 3 \%$ or less; frequency/indication response is within 0.3 dB from 20 Hz to 500 kHz and 1 dB from 10 Hz to 1 MHz and a 1 V output is taken to front panel sockets. Lyons Instruments, Hoddesdon, Herts.
WW $\mathbf{3 0 8}$ for further details

Flexible jumperlinks

The latest ribbon cabling product to be offered by Tekdata Ltd is CK Jumperlinks. These are sections of flat interconnections for short-distance connection of p.c.bs and connectors. They are custom made in rolls ready to be cut by the user, and consist of tinned copper wires or self-fluxing enamel wires held at the required pitch by woven supporting strips. Any wire pitch or length up to 8 cm can be ordered in quantity and coloured bands at stipulated separations can indicate the cutting points. The maximum wire gauge is 30 s.w.g. After a section has been cut from the strip of sections and the ends trimmed, it is ready for termination at lay-on joints or poke-through holes and it may be reflow soldered. Tekdata Ltd, Westport Lake, Canal Lane, Tunstall, Stoke on Trent, Staffs.
WW 309 for further details

Logic-state indicator

The Ryley Logic Clip is a dual-in-line instrument which provides a simultaneous display of the logic state at each pin of an i.c. Indication is by means of l.e.ds which have a numerical-slide for pin number identification. The clip has high impedance inputs each with a 1.5 V threshold for use on t.t.l., d.t.l. and c.m.o.s. devices operating at 5 V . Power for the logic clip is derived automatically from the i.c. under test. The device costs $£ 25+$ v.a.t. and is available from Electroplan Ltd, P.O. Box 19, Orchard Rd, Royston, Herts. SG85HH.
WW 310 for further details

WW 308 for further details

WW 307 for further details

WW 309 for further details

Solid State Devices

Names of suppliers of devices in this: section are given in abbreviation after each entry and in full at the end of the section.

Microcomputer kit

A microcomputer kit called the SDK-80 incorporates all of the l.s.i. integrated circuits, crystal, sockets, printed circuit board and auxiliary components necessary to build an 8 -bit n.m.o.s. microcomputer system. The kit uses the 8080A c.p.u., the 8228 system controller and the 8224 clock generator with 256 bytes of read/write memory, 2 k bytes of programmable read only memory, a programmable serial communications input/output port and 24 other programmable input/output lines. The kit is also supplied with a detailed set of instructions together with system and software manuals.

Intel
WW 311 for further details

Microprocessor

An eight-bit microprocessor set developed by GIM of Glenrothes, the series 8000 is available as a set of five integrated circuits, as a microcomputer or as a set of plug-in circuit boards. Software support is available. The cost ($£ 17.50$ for the c.p.u. - one-off) makes it practicable to use the set for relatively mundane work, as in weighing machines, typewriters and cash registors. The use of the GIM p-channel nitride process used in equipment which is approved to Post Office D4000 means that it can be used in a telecommunications role.

WW 312 for further details

Divide-by-four

A 1 GHz divide-by-four circuit from Motorola, the MC1699 requires only 160 mV pk-pk input from 50 MHz to 1 GHz . Below 50 MHz , the device is best triggered by 1 or 2 ns rise time pulses, such as those from emitter-coupled logic. Clock enable and reset inputs are provided and the circuit needs +2 V and -5 V supplies. The package is currently a flat ceramic type, but the d.i.l. ceramic variety is soon to be used in addition. Motorola

WW 313 for further details

Watch calendar circuit

A 12-hour watch circuit in the c.m.o.s. family of devices is announced by RCA. The 32 -terminal, leadless package is a watch/calendar unit, designed for use with external display drives and intended for a 32.768 kHz drive. The TA6342 will display hours and minutes, with seconds or month, a.m. or p.m. or date. The date display is compensated for 30 and 31 day months, but not 28 -day Februaries so that annual re-setting is
needed. By the provision of separate photocell, R and C the display can be made to vary in brightness to accommodate ambient lighting changes. Supply voltage is between 2.2 V and 3.2 V . RCA
WW 314 for further details

Microwave i.c. amplifiers

The Avantek range of thin film microwave amplifiers is now available in the UK. The devices are designated the UTO- 500 series and are housed in the TO-8 packages suitable for operation in microstrip circuits. There are ten devices ranging in gain from 6 to 27 dB and output powers from -2 to +17 dBm . Maximum noise figures range from 2.5 to 11 dB . All of the amplifiers have a bandwidth of 5 to 500 MHz flat within $\pm 1 \mathrm{~dB}$. Inputs and outputs have a 50Ω impedance with a v.s.w.r. of less than 2.

Walmore
WW 315 for further details

Precision voltage source

The ZN423T provides a 1.26 V source and is suitable for use in stabilised power supplies d-a-d converters and instruments. The device, which is encapsulated in a two-pin TO18 package, offers a slope impedance of 5.5Ω, a temperature coefficient of 100 p.p.m. per deg C , and an operating temperature range from 0 to $+70^{\circ} \mathrm{C}$. The $100+$ price is $£ 0.70$ each. Ferranti WW 316 for further details

Precision op-amp

The AD510 is a laser-trimmed op-amp offering a maximum offset voltage of $25 \mu \mathrm{~V}$, a 10 nA bias current, $1 \mu \mathrm{~V}$ pk-pk input noise for a 0.01 to 10 Hz bandwidth and an open-loop gain of over $1 \times 10^{\text {i }}$. The device is available for operation between 0 and $+70^{\circ} \mathrm{C}$ or in the military temperature range of -55 to $+125^{\circ} \mathrm{C}$. Both types are packaged in a TO-99 can.

Analog Devices
WW 317 for further details

Transistor for s.m.p.s.

Mullard have recently extended their range of high-voltage, high-speed switching transistors with the addition of the BUX86. The device is an $n-p-n$ type with a power rating of 20 W , a $V_{\text {ces }}$ of 800 V and a $V_{\text {ceo }}$ of 400 V . Applications include switched-mode power supplies, inverters and converters. Mullard WW 318 for further details

Micro circuit oscillator

The latest addition to the range of standard microcircuit products produced by Redac Software Ltd is the TF105 audio oscillator, a hybrid thickfilm oscillator which can be used for either analogue or digital clock application. The unit is a ± 10 p.p.m. $/ \mathrm{deg} \mathrm{C}$ sine wave oscillator, the frequency of which can be set by the user in the range 100 Hz to 100 kHz . It will operate
between 5 and 30 V with split or single supplies and over the temperature range -20 to $+85^{\circ} \mathrm{C}$ with a high amplitude stability. The output is d.c. coupled with a low offset voltage. With the addition of a dual ganged potentiometer a wide range RC oscillator can be constructed. Dimensions of the unit are $2.5 \times 3.5 \times 0.8 \mathrm{~cm}$.

Racal.
WW 319 for further details

Low-pass filters

A range of low-pass filters in standard 16 -pin di.i.l. packages is available. The: filters, manufactured by the American E.S.C. Electronics Corporation provide a cut-off frequency range from 200 kHz to 1 MHz and an impedance range from 75Ω to $\mathrm{lk} \Omega$. Insertion loss is less than 0.5 dB . The operating temperature range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the device conforms to applicable portions of MIL-F-18327C.
G.E. Electronics WW $\mathbf{3 2 0}$ for further details

Telephone relay drivers

Two new i.cs from National Semiconductor, DS3686 and DS3687 will drive 48 V telephone relays without the need for external circuit protection. Both devices convert standard bipolar and c.m.o.s. logic signals to the high voltage, high current levels required by telephone relays. The DS3686 is a positivevoltage driver; DS3687 a negative-voltage driver. Outputs are rated at 65 V and the devices will sink 300 mA per channel.

National
WW 321 for further details

Suppliers

RCA Ltd, Sunbury-on-Thames, Middx. Mullard Ltd, Mullard House, Torrington Place, London, WC1.
Walmore Electronics Ltd, 11 Betterton Street, London WC2H 9BS.
Ferranti Ltd, Gem Mill, Chadderton, Oldham, Lancashire.
Analog Devices Ltd, Central Ave, East Molesey, Surrey.
Intel Corporation (UK) Ltd, Broadfield House, 4 Between Towns Road, Cowley, Oxford OX4 3NB.
National Semiconductor UK Ltd, 19 Goldington Road, Bedford MK403LF.
Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middx HA9 OPR.
General Instrument Microelectronics Ltd, 57 Mortimer Street, London W1N.
G. E. Electronics (London) Ltd, Eardley' House, 182/4 Campden Hill Road, Kensington, London W8 7AS.
Racal-Redac Ltd, Newtown, Tewkesbury, Gloucestershire, GL20 8HE.

Advanced Microdevices have informed us that they are now at Room 322, Ebury Gate, 23 Lower Belgrave St, London SWIW 0NS.

by "Vector"

FIFTY YEARS
OF THE BEAM

Holiday-makers in Cornwall may have discovered the charming little Poldhu Cove, a few miles west of Mullion. Relatively few visitors, however, make the short pilgrimage up a cliff path and round the headland to a spot which, if it had been in the United States, would surely have become a shrine long before this. For here was the cradle of longdistance radio communications.

But this is England (if the Cornish Nationalists will pardon the expression) so, apart from the magnificent view.s, there isn't much else to see. Some traces of building foundations, a granite obelisk and that's all, except for a plaque recording the bridging of the Atlantic by wireless signals in 1901 and the evolution of the beam system half a century ago. Of the mighty Poldhu station itself, scarcely a vestige remains.
Wireless telegraphy generated centimetric waves which were directed well, more or less - by forms of parabolic reflector; then Marconi discovered that an elevated antenna wire gave better ranges than the Hertzian dipole mounted on the transmitting or receiving instrument and this ushered in a phase of omnidirectional working in which the reflector sank into oblivion.
Gradually the operating ranges increased to line-of-sight and somewhat beyond and it was found that the longer the wavelength that was used, the further the signals reached, until at length ranges were being recorded that were utterly inconsistent with theory.

Voltaire's comment that "If God did not exist it would be necessary to invent him" fitted the situation perfectly, except that in this case it was the ionosphere that had to be invented. It was a concept which was still being hotly debated twenty years later, until its existence was proved by the work of Appleton, Breit and Tuve, T. L. Eckersley et al in the 1920s.

Ionosphere or no ionosphere, the practical workers in the field evolved the golden rule that long distances could be achieved only by using long wavelengths and high power. It worked. By the 1920s wavelengths of the order of thousands of metres were the norm for long-distance working and the use of reflectors was in any case physically
impracticable because of the huge sizes which would be involved. But by this time the reflector approach had long since been forgotten and plans were under way for a chain of longwave high-power stations to link the Empire.

In 1916, Marconi, who had largely been responsible for the trend toward long wavelengths, reverted to experiments on 2 metres but only for short range working. His personal assistant on this occasion, Charles Samuel Franklin, having an antenna of manageable size to work with, added a reflector and thereby concentrated the signal into a beam with consequent economies in power and an increase of privacy (the work was for the Italian Navy). Subsequently Franklin continued his short-wave experiments and in the immediate post-war period built a 15 -metre link between Birmingham and Hendon which also used reflectors. This was also highly successful.
Every now and then reports would come in of the signals being received over long distances. There was also the matter of the amateurs who, confined to the then despised and "useless" bands below 200 metres, were occasionally reporting that their signals had been picked up in the USA and even further afield. Franklin pondered over these circumstances; true, reception was erratic in the extreme but that it occurred at all was remarkable. He persuaded Marconi to let him investigate and in due course installed himself at the existing long-wave station at Poldhu. Here, working at astonishing speed, he built an 8 -valve transmitter to operate at 97 metres, and a half-wave antenna with a reflector that could be switched in and out at will.

Aboard Marconi's yacht Elettra special receiving gear had been fitted and on April 11, 1923, the ship set out from Falmouth heading for Madeira and, eventually, St. Vincent in the Cape Verde Islands, with Marconi aboard. At first, it seemed, the experiment was a failure, for the Poldhu signals attenuated rapidly then disappeared altogether. This was the now familiar (but then unknown) "skip distance effect". Fortunately the voyage continued and, after some hundreds of miles, Marconi was able to record good reception.

The results were spectacular but left room for improvement. As it turned out later, 97 metres was a bad choice for daylight reception, while the reflector wasn't providing the anticipated increase in gain. But more than enough had been done to show the enormous potential in short-wave long-haul radio communication.

With all speed Franklin redesigned the transmitter for 92 metres working at a power of 17 kW and at the same time improved the reflector, although this wasn't ready in time for the next series of tests. Even so, on May 30, 1924, Marconi was able to telephone direct to Sydney from Poldhu. Subsequent tests on various wavelengths between 32 and

92 metres showed that the daylight range increased as the wavelength decreased; on 32 metres, reception at Sydney was possible for $231 / 2$ out of the 24 hours. All the data from these tests were rigorously examined and formed the foundation of our present knowledge of the ionosphere.

The story of how the long-projected plan for a long-wave, high power chain of stations throughout the British Empire was abandoned in favour of the beam system is well-known. Perhaps less well-known is the magnitude of the gamble which Marconi took in offering the stations to the British Post Office and the Empire Governments. At the time of the contract, no fully engineered version of the beam transmitter existed; serious teething troubles were being experienced with the transmitting valves; neither the antennas nor the reflectors were fully engineered, while the problem of how to transfer the energy from the transmitter to the antenna without undue losses had still to be solved. To cap it all, Marconi had no means of knowing whether the long ranges obtained in the tests would continue or not. For all he knew, transient freak conditions might have been responsible - circumstances which might never be repeated. Although the contract was wholly conditional upon successful performance, he took the risk.

His decision was a measure of his faith in Franklin. And Franklin performed wonders. To overcome the valve problem he personally designed the first "CAT" (Cooled Anode Transmitter) valves in which the copper anode was also the envelope. Next, he re-engineered the transmitters, antennas and reflectors (and, with no precedents to guide him, the antennas themselves were no mean problem, consisting as they did of a large number of elements, all of which had to be fed in a common phase relationship).
Then came the matter of an efficient power transfer. Franklin solved this by the invention of the concentric feeder, or coaxial cable. And he did the whole lot in a matter of months - he had to, because construction of some of the stations had already begun! Let's be honest with ourselves for a moment. How many electronics engineers of, today have the capability of tackling an entirely new system and designing and engineering its transmitters, valves and antennas from scratch? And Franklin's end-products were no lashups, either. Forty years later one or two of his original transmitters were still in regular traffic service and in some part of the world may still be so - and that's engineering by any standards.

On October 18, 1926 the first beam circuit came officially into service, linking Britain and Canada.

Fifty years ago. Poldhu station has since disappeared almost without trace and I suspect that C. S. Franklin is all but forgotten.

More than just a cataloguse! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10W high quality power amp.., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc
Full details and pictures of our wide range of components e.g. capacitors, cases, knobs, veroboards, edge connectors, pluys and sockets, lamps and lampholcters, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc
Really good value for money at just 40p

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather that the matrix patchboard of the large unit and is particularly suitable for
performance and portable use
S.A.E. please for price list

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCBs. Complete reprint of article - price 15 p

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesise including all the PCBs, metalwork and a drilled and printed front panel, giving a

superb protessional finish.
Opinions of authority agree the ETI International Synthesiser is ${ }^{\text {. }}$ technically superior to most of today's models. Complete construction detars available now in our booklet price $£ \mathbf{1} 50$, or S.A.E. please for specification

ELECT:ONGOMGAN
 Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p. deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price $15 p$, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.

 Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, price 35p. (Pre-publication price 15p).
NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell vou about price changes in advance for just 30p a vear (refunded on purchases) If vou already have our catalogue send us an s.a.e and we'll send you our latest list of GUARANTEED prices. Send us 30 p and we'll put you on our mailing list you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented! plus details of any new lines, special offers, interesting projects and coupons to spend on components to repay your 30p
NOTE: The price list is based on the Order Codes shown in our cataiogue so an investment in our super catalogue is an essential first step
Call in at our shop, 284 Loncion Road, Westcliff on Sea, Essex. Please address all mall to

MAPLIN ELECTRONIC SUPPLIES

HART ELECTRONICS
 Audio Kit Specialists since 1961

STEREO BAILEY 30 WATT TUNER AMP.

Compact FM Tuner. Bailey 30 watt power amps and the Bailey/Burrows/Quilter pr amp The wooden sleeve is available in either teak or sapele finish to blend with existing equipment or furnishings
The combination of our excellently designed printed circuits and the high quality components used makes this unit unequalled on the kit market and approached in quality of performance and durability by few made up tuner amps
full detalls are in our tree lists
STUART TAPE CIRCUITS. Our printed circuits and components offer the easy way to convert any suitable quality deck into a very high quatity Stereo Yape unit. Inpút and
output levels suit Bailey pre amp. Yotal cost varies but around $£ \mathbf{£ 5}$ is all you need. We output tevels suit Bailey pre amp. Yotal cost varies but around $\mathbf{£ 3 5}$ is all you
can offer tape heads as well if you want new ones
All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is included
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. $\times 4$ in
S.A.E

REPRINTS Post tree, no 'VAT
Bailey 30w $18 p$.
STUART TAPE RECORDER. All 3 articles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits, layouts and assembly notes $\mathbf{1 5 p}$.
All puces exclude VAT
Penylan Mill, Oswestry, Salop

For the musician who wants the best in recording.

10 XD - Our Studio Class, 15 IPS, Cross Field, Dolby B Recorder. At 15 IPS, the advantage of Tandberg Cross Field recording and the Dolby B Noise Reduction System must be heard to be believed. You don't have to be a perfectionist to appreciate this quality, but it may make you into one.

1. $10^{1 / 2 \prime \prime}$ spool capacity, 3 speeds and remote control.
2. A, B Monitoring with easy editing facility.
3. Sound on Sound, add-a-track, echo, mixing, etc.
4. Peak level record/playback meters
5. Balanced microphone inputs.
6. Superb logic control circuits.
7. Electronic servo controlled speed regulation.

See the 10XD and other Tandberg recording equipment at REW's new professional department.

> R 톱
> Audio Visual Co., 146 Charing Cross Road, London WC2. Tel. 01240 3064/5

Above: Rer LED, R Threaded chrome LED, Q, S, PCG, PCE, PCH, PCI, PCF, PCC, PCB, PCA, PPA, PPB. LEDs in red, green on own or in 7 mm d. Neons in PC housings 9.5 mm d., 3 cap colours, dome, top-hat, square. PP 12.5 mm d. $6^{\prime \prime}$ leads std., $30^{\prime \prime}$ extra cost; neon only, 110,220 or square.
500 volts.
 On L., extruded PVC and anod. ali. Centre: heavy duty carrying handles. chromium, anodised, flush, extruded and carrying.

Pop-up 20,000 ohms $/ \mathrm{v}$. ., LT801, 17 ranges. Pocket LT101 low-cost, 12
ranges, 1,000 ohms $/ \mathrm{v}$. TS141, 66 ranges, 20,000 ohms/v, incl. nylon case, 115 mm scale, $5 \mathrm{mmps} A C \& D C, 2.500 \mathrm{v}$. AC , well damped, manv accessories.

BIADBAD COUEDUT ADEL

to R. $21 / 2^{\prime \prime}$ Bradrad, drills and deburrs. $1 / 4^{\prime \prime} / 1 \frac{1}{2} "^{\prime \prime} 11$ diameters Bradrad 4 Conecuts, $1 / 4^{\prime \prime} / 2^{\prime \prime}$. Adel nibbling tool, square or round holes. 11 mm d entry. Underneath: 2 reamers, $1 / 9^{"} / 1$ ". To make round holes with no vibration

THIE INETRUMENT

COMPONENTS

OVER 250 DIFFERENT CASES IN STOCK-SIZE RANGE OVER 5000:1 IN VOL UME

WEGT HYロE (2)

Hundreds of knobs, collet or screw fixing, plastic or aluminium, fluted. textured, smooth, wing, pointer, insulated, slow-motion, digital, crank from 3 mm to 10 mm . Dia. from 8 mm to 58 mm .

Solder pots incl. neors, temp. controlled irons, Oryx 75 silicone leads, solid toois, all with PTFE nozzle On right, solder suck at minimum cost.

Ltor	224,6, rotary, 6-position
197.111. $\mathrm{CO} \times 2,220 \mathrm{VV} 1 \mathrm{~A}$	212.13. illuminated push CO
199.112, CO. 220v 1 A	195.22, push snap CO, 220v. 2A
196.2. $\mathrm{CO} \times 2,220 \mathrm{v}$. 2 A	195.2. CO, 220v. 2A
198.1. 5-pasition togale	195.14. water tight, 195.2
197.212, spring return (197.111)	$189.2,6.5 \mathrm{~mm} \mathrm{~d}$. CO toggle

CAEE BR=CIALIETE
L 10 R
199.112 . $\mathrm{CO} \times 2,220 \mathrm{~V} 1 \mathrm{~A}$ 196.2. CO X 2.220 v .2 A
198.1. 5-pasition togale

CATRONICS WN TELETEXT DECODER
 The design of this decoder

 is being described in a series of articles being published by 'Wireless World' (from last November). All the components are available from Catronics Ltd.

$x-0.808$

The approved Catronics kit contains all the printed circuit boards and compoñen necessary to buld the complete decoder. Signal input required is a minimum of 0.5 V detected video. The outpur is approximately $4 V$ of R. G and B drive suitable for driving
most types of colour Teievision sets, PLUS a luminance output for black and white sets.
The power supply and video switching circuitry are normally installed within the elevision cabinet and the main decoding control and memory circuitry in a separate inet positioned on top of the television prices are as follows
Set of 3 main PCBs only
$\mathrm{E12.00}+$ VAT ($£ 3.00$)
Component Kit (inc. PCBs) - for upper case only Add-on Kit for hower case characters Cabinet and Front Panel (styling may vary) £91.45 + VAT ($£ 9.70$) £11.60+VAT (E2.95) Post \& Packing. PCBs are post tree - but add

A wide range of other components are also available, including SL600 series i.c.s. KVG
and MURATA filters. AERIALS for Commercial Mobile and Radio Amateur bands IGNITION Interference Suppression Components plus, of course, the famous Catronica Frequency Counters and Prescalors - including an exclusive new Send S.A.E. for current price lists (stating requirements)

CATRONICS LTD. (Dept. 624) Catronics Carshalton, Surrey Tet: 01-669 6700

WW 622- $\overline{\mathrm{FOR}}$ FURTHER DETAILS

ADVANCED CLOCK KIT

 P.E. CAR CLOCK with Journey Timer

SINTEL
53C ASTON STREET, OXFORD TEL. 086549791

Build it yourseff!

Featured by PRACTICIL WIREL ESS SOLE U.K. DISTRHBUTORS-HENRYS

THE NATURAL FOLLOW-ON - THE TEXAN FM. TUNER NIT!

Build the matching Texan stereo tuner! Features advanced vaticap tuning. Phase lock loop decodet
Professionally designed circuit. Everyithing you need is in the kit. From the glass fibre pcb to the cabinet itself. Excellent spec :2.5 uV aerial sensitivit
(adustable). Tuning range $87-102 \mathrm{M}$ powered.

all the electronic excitement
 you could wish for! nto yourown TV aerial socket bich on. And you'te away thole-in-the-wall Absolutely youl TV. Marns powered

HENRY'S PRICE-ONLY £29.50 WHATEVER YOU DO, DON'T FORGET YOUR LATEST

40A/G EDSWMRE ROAL, LONDON W2 01-402 8881
LOWERSSLES FLOOR, 231.TOTIENHAM GT. RD., LONDON W1 01-685 6681
NEW SAMSG UPFER PARLIAMENT STREET, NOTTHGHAM. GSO2-40403
siont All mail to Henry's Radio, 303 Edgware Road, London w2

ARMEC FREQUENCY METER TYPE 265: 0-6000 rpm and 0-100K c / s E35. Carr. £2.

RACAL L_F. CONVERTER UNIT RA-37B : £35. Carr. £1

RACALI.S.B. ÄDAPTOR RA-95A: £65. C.
MUIRHEAD ATTENUATORS: 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3 V$ MAK $\overline{3}$ ranges $0-5,0-25$, $0-50$ DB $£ 3.00+75$ p post.
CREED MODEL 54 TELEPRINTER: $\mathbf{£ 3 7 . 5 0}$ each. Carr. $\mathbf{£ 4}$.
CREED MODEL 75 TELEPRINTER: Receiver only $£ 30.00$. Carr. $£ 3$.
MUULARD VALVE VOLTMETER: E/7555/3 A.C./D.C. 2 ranges $0-5$ and 0.500 v . €35. Сагr. $£ 2$.
EDDYSTONE TELEPRINTER ADAPTOR TYPE 937: £45. Carr. £1.
WAVEMETER CLASS 'D' NO. 2: 1.2 to $20 \mathrm{Mc} / \mathrm{s} 12$ volts d.c. input or 240 v a.c.
£1250. Carr. $£ 3$.
WILD BARFIELD ELECTRIC FURNACE MODEL CCİI2X: With ether indicating temperature controllers Model $990.0-1400^{\circ} \mathrm{C} . £ 250$. Carr. $£ 5$.
METROVAC IONIZATION GAUGE MODEL V.C. $3:$ E55. Carr. £3.
AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic meter. Good condition, £45.00. Carr. $\mathbf{E 2 . 0 0}$.
ANTENNA MAST: 30 ft . consisting of $10 \times 3 \mathrm{ft}$ tubular screw sections ($/ \mathrm{m}^{\prime \prime}$ dia.) with base, guyropes and stays, etc. $£ 7.50$ each. Carr. $£ 2.00$.
REDIFON TELEPRINTER RELAY UNIT No. I2: ZA-41196 and power supplŷ $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CVV 286. Centre Zero Meter $10-0-10$. Size 8 in. $x \sin$. $x \sin$. New condition. $£ 10 \%$ Carr. 75p.
SOLARTRON PULSE GENERATOR TYPE G1101-2: $£ 75.00$ each. Carr. $£ 2.00$
TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 20$ each. Carriage $£ 3$. AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5^{\prime \prime} \times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. £12.00. Carr. £1.50.
BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Cärr. £1.
BRIDGE MEGGER: 2,50VV., series 1. 30 each Carr. AT
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 25$. Carr. $£ 1.50$
SOLARTRON VARIABLE POWER UNIT S.R.S. $1535: 0-500$ volts at 100 mA and 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. $£ 18.50$. Carr. $£ 1.50$.

CLASS 'D' WAVEMETER' $\bar{N} \bar{O}$. 1: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand condition. E8.50. Carr. $£ 1.50$
PREC̄ISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$.
MUIRHEAD PHASEMETER D-729: A.M. E85. Carr. £3.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LIOND̄ON ONLY.

ALL U.K. ORDERS SUBJECT TO, VALUE ADDED TAX.
H wishing to cailat stores, please telephone for appointment

RACAL RA17 Front Panels: £5. $£ 1$ post.
QMETER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £1
MUIRHEAD PHASEMETER TYPE D729: A.M. £95.00. Carr. £3.00.
CT. 420^{-}SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $£ 75$ each carr. $£ 2$. NOISE GENERATOR TF-IIO6: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration. Output impedance 70 ohms $£ 65$ each. Carr. $£ 1.50$.
MW-59 UNIVERSAL KLYSTRON POWER SUPPLEY: $£ 85$. Carr. $£ 3$.
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. £2
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. E 30 . Carr. $£ 1$.
CAWK $\overline{E L L}$ REMSCOPE TYPE 741 : Memory scope, 'as new' cond. £150.00.
MANSON SYNTHESISER Q115-URC: $2-30 \mathrm{mc} / \mathrm{s}$. £175.00.
FIREPROOF TELEPHONES: $£ 25.00$ each, carr. $\mathbf{E 1 . 5 0}$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30.00$ each. carr. $£ 3.00$.
SMOOTHING UNIT (for the above): $£ 10.00$ each. carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £ı25 each.Carr. $£ 1$.
BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. $£ 1$.

TEKTRONIX TIME MARK GENERATOR TYPE $180-$ Sl: $5,10,50 \mathrm{MHz} . £ 65$. Carr. $£ 2$.
ROTARY INVERTERS: TYPE PE.218E - input $24-28 \mathrm{~V}$ d.c., 80 Amps . $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 20.00$ each. Carr. £2.50.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts. Checked out, working order $£ 20+£ 1.50$ carr.
COMPUTER STABILISED POWER SUPPLY: $19^{\prime \prime}$ rack fitting. Input 200-240v a.c. Output 6 volts at 25 amps . $4^{\prime \prime}$ meter $0-8$ volts $0-25 \mathrm{amps}$. $\mathbf{£ 3 5 . 0 0}$ each. carr. £3.00.
SORENSEN VOLTAGE REGULATOR: Input $190 / 260$ volts a.c. Output $220 / 240^{\circ}$ volts a.c. 1000 watts. $£ 40.00$, carr. $£ 3.00$.
EVERSHED SAFETY OHM. METER: Max 10Ma. Test pressure 30v. Complete in leather case. $£ 25.00$ each. post $£ 1.00$.
AVO SIGNAL GENERATOR: 200/250 volts a.c. Frequency range 6 bands 50 Hz to 80 MHz . $£ 25.00$, carriage $£ 2.00$.
FYLDE AMPLIFIERS TŸPE 154 BDM: Rack mounted $3 v$ d.c. and power supply FE.500.TP. £65.00, carr. $£ 2.00$.
STC ATTENUATORS 74600A \& B: Push-button selectors $0-9 \mathrm{db} 75 \mathrm{ohm}$. and $0-90 \mathrm{db} 75 \mathrm{ohm}$. Housed in steel case $11^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime}$. $£ 25.00$ each. carr. $£ 1.50$. AUTOMATIC VOLTAGE STABILIZERS: Input $207-242 \mathrm{v}$ a.c. Output 230 v a.c. at 2.80 amps . $£ 17.50$, carriage $£ 1.50$.

TAUT SUSPENSION MULTIMETERS

Made in USSR
U4312: 41 ranges $0.3 \mathrm{~mA}-6 \mathrm{~A}$ D.C., 1.5 mA - 6 A A.C., $0.3-900 \mathrm{v}$ A.C./D.C. $0.2-50 \mathrm{k} \Omega$: Mirror scale. Sensitivity $667 \Omega / \mathrm{V}$; Accuracy 1% D.C. 1.5% A.C. 111.50 . $04313: 40$ ranges $0.06 \mathrm{~mA}-1.5 \mathrm{~A}$ D.C.: $0.6-1.5 \mathrm{~A}$ A.C.: $1.5-600 \mathrm{~V}$ A.C. $/ \mathrm{D} . \mathrm{C} . \quad 0.06-60 \mathrm{k} \Omega$; Mirror scale. Sensitivity $20 \mathrm{k} \Omega / \mathrm{v}$ D.C.: $2 \mathrm{k} \Omega / \mathrm{v}$ A.C. Accuracy 1.5% D.C. 2.5% A.C. £14.90.
U4315: 43 ranges $0.05 \mathrm{~mA}-2.5 \mathrm{~A}$ D.C.: $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ A.C.; $1-1000 \mathrm{~V}$ D.C./A.C.: $0.3-500 \mathrm{k} \Omega$; Sensitivity $20 k \Omega \vee$ D.C. $2 k \Omega / v$ A.C. Accuracy 2.5% D.C., 4% A.C. 11.25
U4324: 33 ranges $0.06 \mathrm{~mA}-3 \mathrm{~A}$ D.C., 0.3 mA - 3 A A.C.. $0.6-1200 \mathrm{v}$ DC., $3-900 \mathrm{~V}$ A.C. $0.5-500 \mathrm{k} \Omega$: Sensitivity $20,000 \Omega / v$ D.C.. 4000Ω /v A.C. Accuracy 2.5% D.C.. 4% A.C. Re-chargeable cadmium cell operation. 110.85.

LINEAR I.C. AMPLIFIERS	DIGITAL 7400 SERIES I.C. Made in USSR			
İAA263 -- 3 stage low level àmplifier.	7400	c0.14	7440	¢0.14
Bandwidth OC to 600 kHz . Supply	7401	¢0.14	7450	¢0.14
voltage $6-8 \mathrm{~V}$ Output power 10 mW To	7410	¢0.14	7453	£0.14
72 4-lead to. 65.	7420	E0.14	7455	¢0.14
ed ireq. amplifier up	7422	c0.20		
600 kHz . Supply voltage 6 V Output	7430		74774	¢0.25
10 mW into 150 N . TO 7410 -lead case				
A320 - Most stage followed	Slicon Darlington parr in three-lead plastic			
otar rransistor Gate.to-source voltag	case Average current gain $30.000 \mathrm{Max} \vee$ cbo			
	40V: Ma	$\mathrm{l}=40.0$	A. Max	$:=10 \cap A .$

OSCILLOSCOPE CI-5
 Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive Because of its bandwidth of 10 MHz the instrument is suitable tor bandwidth of 10 MHz the instrument is suitable to general electronic applicalions and educaliona purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / v$ max. Triggered and
free-running time base, suitable for displaying pulses free-running time base, suitable for displaying pulses from $0.1 \mu \mathrm{sec}$. 103 m sec . A.C. mains operation

Price $£ 55.00$ ex. works
Packing and carriage (U.K. only $£ 2.50^{\prime \prime}$

EDUCATIONAL METERS Made in USSR

A range of small portable free-standing meters suitable for experiments and demonstration work. Moving coil movements with centre-pole pieces. 69 mm long open scale. Basic calibration accuracy 4% The following ranges are available: 1, 2, 5, 10 Amps D.C., 6, 15, 30 Volts D.C. Overall dimensions: $80 \times 100 \times 48 \mathrm{~mm}$. Price $£ 1.90$ ex. works
Packing and postage E0. 20 per meter

SPECIAL TELEVISION BARGAINS

firstgrade transistors

R2008B	$\mathbf{£ 0 . 9 5}$
R2010B	$\mathbf{£ 1 . 6 5}$
BU126	$\mathbf{1 . 5 5}$
BU133	$\mathbf{£ 1 . 5 5}$
BU208	$\mathbf{£ 2 . 0 0}$

Have you already got our illustrated 1975 catalogue / price list of valves semiconductors test equipment and passive components? If not. please send LO 20 for your copy now

Prices are exclusive of VAT and unless stated otherwise packing and postage When remitting cash with order please add $£ 100$ per multimeter, or $£ 020$ in ε for other items, as well as VAT (25% for valves. se
linear IC S and 8% for other equipment)

HROWASOWIC electronics

Dept. 5, 56, Fortis Green Road Muswell Hill. London, N1O 3HN. telephone: 01-883 3705

Luoking tor...

...high voltage air ${ }^{2}$ lieleciric capacitars
 Specially developed for modern transmitting and aerial tuning applications.

....an extensive and versatile range of trimmers

With an extra edge of capability to a host of applications in professional communications and instrumentation equipment.

.... a new approach to linear displatement measurement

High sensitivity and linearity coupled with infinite resolution make these inear and anguiar displacement transducers ideal for a wide variety of control and measurement app|cations. See them on Stand 32 at the "All Electronics Show", Grosvenor House, April 13th-15th.

All Jackson products are backed by 50 years' experience in the communications field. Highly skilled men, and Jackson Brothers' good name JACKSON BROTHERS (LQNDON) LIMITED Kingsway, Waddoni, Croydon CR9 4DG. Tel: 01.681 2754/7. Telex: 946849. B. S. 9000 Approved. DEF. STAN. 05 - 21 REG. No. 48020/1/01.

Amper and WHAT?..

The

 JAMES SCOTT Alignment Units for T.R. and F.M. Multi-Channel Tape Recorders.

If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone.

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Wireless World, Room 15, Dorset House, Stamford Street, London SE1 9LU, England

Enquiry Service for Professional Readers

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name.
Name of Company .
Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company

Nature of Company/Business .
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in Gt. Britain, Channel Islands or N. Ireland

WIRELESS WORLD,

 READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS
2

Postage will be paid by Licensee

HARMSWORTH TOWNLEY FOR FASTENERS
The quickest way of putting things together

METAL ANCHOR NUTS
with threads up to $3 / 8$ " or 10 mm

SYSTEM \mathbf{J} for sheet metal and other work up to 1/4" thick

SYSTEM X for materials from $0.038^{\prime \prime}$ upwards.

These internally threaded fasteners are set into work like a blind rivet with hand and power tools.

WIRE TIES
Colour coded plastic wire ties. Twist-on, Twist-off, use over and over again.

PLASTIC RIVETS

Self expanding plastic rivets, set with simple hand tools or a light hammer.

DRESSING CLIPS
Semi-rigid panelmounted clips for flat, compact looms.

Wireless World Subscription Order Form
Wireless World, April 1976

UK subscription rates
1 vear: $£ 7.00$

USA \& Canada subscription rates 1 year: $\$ 18.20$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value. made payable to
IPC BUSINESS PRESS Ltd.

Name.
Address

Celestion Ditions get the best out of any system

Buy a really yoose ef sprakers an d you've got sourself a better hifisystem buy a cet of Celestion Ditons and you ve eot onedt the $b-3$.

Whet her veu alrecsowf ar are thinaing of buying cither a packetge' hifi zysten or are selecting yourgown individualunits, a per of grod speakers will pay dic derds in terms of sound qualiys

Some people pay last attention to selecting th: speakers. Given first Eilomis they will vastly improsethe performance of incst sy siens

Celcstion Pittons mava long stanying repuetion among enthusiasts is, their Gutstanding achisvements in high qualits soundereprodection

From left te righ कithe Ditten 11, 44 and 33 ?
Yisit you Celetior Ilealer. Secthe beautiful appegrance and hear thenew sour ds of ti e very latest Dit ozs.

Fill details on reculat.

Celestion \downarrow
Rola Celestion Limited, Ditton Works
Foxhall Road. Ipswich, Suffolk IP3 8JP
Telephone: Ipswich (0473) 73131
Cables: Voicecoil Ipswich. Telex: 98365

15-240 Watts!

HY5
 Preamplifier
 The HY5 is a mono hybrid ampliter ideally suited tor alf applications All common input functions (niag Cantrige tune, etc) are catered for internally, the desired function is achieved either by a mult-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting to external potentiometers (not included) The HY5 is compatible with all IL.P power ampitiers and power supplies. To ease construction and mounting a P Connector is supplied with each pre-amplifier
 FEATURES: Complete pre-amplifier in single pack - Mult function equalization - Low noise - Low distortion - High overioad - Two simply combined for siereo
 APPLICATIONS: Hi-F1 - Mixers - Disco - Guitar and Organ -- Public address
 SPECIFICATIONS:
 INPUTS Magnetic Pick-up 3 mV : Ceramic Pick-up 30 mV : Tuner 100 mV : Microphone 10 mV OUTPUTS Tape 100 mV , Man output 500 mV R M.S
 ACTIVE TONE CONTROLS Treble $=12 \mathrm{~dB}$ at 10 kHz , Bass \pm at 100 Hz
 DISTORTION 0.1% at 1 kHz Signal/Noise Ratio 68 dB .
 OVERLOAD 38 dB on Magnetic Pick up SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$

HY30
15 Watts into 8Ω
and thermal protection The kit consists of I.C heatsink. $P \mathrm{C}$ indestructible I C with short circuir mounting kit, together with easy to follow construction and operating instructions This amplifier is ideaily suited to the beginner in audio who wishes to use the most up-to date technology available FEATURES: Complete Kit - Low Distortion - Short, Operi and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar pracice amplifier - Test amplifier - audio oscilator
SPECIFICATIONS
OUTPUT POWER 15 W R.M.S into 8:. DISTORTION 01% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{H} r-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $\mathbf{E 4 . 7 5}+£ 1.19$ VAT P\&P free
Available June '76

The HY50 leads I LP s total integration approach to power amplifier design. The amplifier features an the amplifier has together with the simpicity of no externat components During the past three years the amplifier has been refined to the extent thai 11 must be one of the most reliable and robust High
Fidelity modules in the Worid ceatures: Low Dion
FEATURES: Low Distortion
-integral Heatsink - Only five connections - 7 Amp output transistors APPLICATIONS: Med

Power HI-Fi systems -- Low power disco - Guitar amplifie
APPLICATIONS: SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS into 8!? LOAD IMPEDANCE 4-16!? DISTORTION 0.04% at 25 W at
1 kHz NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $=25 \mathrm{~V}$ SIZE 1055025 mm

The HY120 is the baby of I.LP s new high power range, designed to meet the most exactirg design
FEATURES: Very low distortion - Integral leatsink - Load line protection - Thermal protection Five connections - No external components APPLICATIONS: Hi-FI - High quality disco -- Public address - Manitor amplifier -- Guitar and organ SPECIFICATIONS
INPUT SENSITIVITY 500 mv
OUTPUT POWER 6OW RMS IMto 8! LOAD IMPEDANCE $4.16!$ DISTORTION 0.04% at 60 W at
1 kHz SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $£ 14.40+£ 1.16$ VAT P\&P free
HY200
The HY 200 now improved to give an outpul of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true Hi-Fi performance FEATURES: Thermal shutdown - Very low distortion - Load line protection - Integral heatsink No external components
APPLICATIONS: HIFI - Disco - Montor - Power slave - Industrial -- Public Adrdress SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS Into 8\% LOAD IMPEDANCE $4-16!$ DISTORTION 005% at IOOW at 1 kHz
SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}_{2} .45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE -2. SIZE 11410085 mm
Price $£ 21.20+£ 1.70$ VAT P\& \mathbf{P} free.
HY400
The HY400 is ILP's Big Daddy of the range producing 240 W into 49 It has been designed fo high power disco or pubic address applications if the amplifier is to be used at continuous high power levels a cooling tan is recommended The amplifier includes all the quatites of the rest of the family to FEATURES: the as true high power hifidelity power module
componeras
APPLICATIONS: Public address - Disco ~ Power slave - Industria
SPECIFICATIONS
OUTPUT POWER 24OW RMS into 4I7 LOAD IMPEDANCE 4-16:2 DISTORTION 0.1% at 240 W a 1 kHz
SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE 45 V SENSITIVITY 500 mV SILE $114 \times 100 \times 85 \mathrm{mIN}$
Price $£ 29.25+£ 2.34$ VAT P\& \mathbf{P} free.
POWER SUPPLIES

PSU 36 sutable tor wo HY 30 s $\mathbf{£ 4 . 7 5}$ plus $£ 1.19 \mathrm{VAT}$ P/P free
PSU50 sutable for wo HY50's $£ 6.20$ plus $£ 155$ VAT P / P tree
PSU7O sutable for wo HY 120 s $\mathbf{E} 12.50$ plus $£ 100$ VAT P/P free
PSU 180 sulable for wo HY200's or one HY400 $£ 21.00$ plus $£ 168$ VAT P/P fres

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address
Signature

Marshall's

A. Marshall (London) Ltd Dept: WW

42 Cricklewood Broadway London NW2 3ET Tel 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 2QD Tel:041:332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX
Tel: $0272654201 / 2$ Tel: 0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92 Tel. 6442356
Calalogue price 25p
Trade and export enquiries welcome
OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S TTL CMOS \& LINEARS

LONDON, GLASGOW, PARIS - AND NOW
BRISTOL
IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

.

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING
12 and/or 24-VOLT PRI $120 / 240 \mathrm{~V}$ SEC $120 / 240 \mathrm{~V}$

PRIMAY 220240 OLT

60 VOLT RANGE SEC TAPS 0-24-30-40-48-6OV

E	30 VOLT RANGE SEC. TAPS 0-12-15-20-25-30V			
P\& P P	Rer. No.	Amps	£	P\% ${ }_{\text {P }}$
p	112	0.5	1.90	58
58	79	1.0	2.52	72
72	3	2.0	3.77	72
85	20	$\bigcirc 0$	4.70	85
97	21	<0	5.56	85
1.12	51	¢ 0	6.73	97
1.25	117	¢ 0	7.52	1.12
1.61	88	ع. 0	10.20	1.25
BRS	89	1 C .0	10.36	1.41

Re
No
\qquad

Ret

\qquad
PRI $200 / 220$ OR $400 / 440$
SEC $100 / 120$ OR $200 / 240$

240v to	110 v	(To BS3535)
Ref.		
277	VA	$\mathbf{5}$
2700	$\mathbf{2 9 . 9 6}$	
278	750	$\mathbf{3 4 . 4 7}$
279	1000	$\mathbf{3 7 . 6 3}$
280	1500	$\mathbf{4 1 . 5 5}$
P\& BRS	Send for details	

BRIDGE RECTIFIERS

High ouality M	
3 watt RMS Amplitier	£2.30
5 watt RMS Amplitier	£2.65
10 watt RMS Amplifier	£2.95
25 watt RMS Amplifier	£3.95
Pre-Amp for 3-5-10w (new)	¢6.50
Pre-Amp for 25 w	£13.50
Power Supplies for 3-5-10 N	¢1. 20
Power Supplies for 25 w	¢3.00
Transtormer for 3 w	£1.90
Transtormer for $5-10 \mathrm{w}$	c2.30
Transtormer for 25 w	¢2.60
P\&P Amps/Pre-Amps/Power Supplies	18p
\#\&P Transformers	37p

Stereo f.m. tuner 4 Pie-selected stations Supply 20.30 v 90 Ma Max
 f19.95 P\& ${ }^{2}$ 25p VAT 25%

NEW STEREO 30 Complete chassis, inc $?+7 \mathrm{wms}$ amps. pre-amp. power supply, front panel, knobs (needs mains trans.) £15.75. Mains trans $£ 2.45$. Teak veneered cat. $£ 3.65$. P\& ${ }^{\prime}$. 88 p . VAT 25%.
POWER UNITS cC12-05. Outrul switched 3.4.5.6.7. 5.9.12v at 500 mA E4.08. P\&\&F 42 p VAT 8%
antex soldering irons 15W £2.68. 1PW £2.45. $25 \mathrm{~W} £ 2.26$. Soldering ran kit $£ 3.61$ Stand for zbove $£ 1.13$. P\& P 25p VAT 8%
PLEASE ADD VAT AFTER P\&P ELECTROSIL AND SEMICONDUCTOR STOCKISTS AUDIO ACCESSORIES \& BARGAIN PAKS. CAILERS WE COME (MON FRI) OR

Barrie Electronics Ltd.

3,THE MINORIES,LONDONEC3N IBJ TELEPHONE: 01-488 3316/8

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Trademark of Dolby Laboratories Inc.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-Complete set of components for stereo processor

Typical performance

Noise reduction: better than 9 dB weighted
Clipping level: 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%

Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output.
Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity
-regulated power supply components
--board-mounted DIN sockets and push-button switches
_-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

PRICE: $£ 34.40$ + VAT

Calibration tapes are available tor open-reel use and for cassette (specify which)
Price $£ 1.80+$ VAT *
Single channel plug-in Dolby ${ }^{(T M)}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price E6.50 + VAT
Single channel board with selected fet
Price $£ 2.00+$ VAT
Gold plated edge connector
Price £1.27+VAT*
Selected FET's 54p each + VAT, 96p+VAT for two, £1.76+VAT for four

Please add VAT at 25% unless marked thus*, when 8% applies

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @$ $1.8 \mu \mathrm{~V}$.THD typ. 0.4%

PRICE: £48.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection-85dB. THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder £30.58 + VAT
With Portus-Haywood Decoder
£32.81 + VAT

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1 186 RF module requiring no alignment. The If comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
Sens.30dB S/N mono @ $1.8 \mu \mathrm{~V}$
THD typically 0.4%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator
PRICE: Mono £25.55 + VAT
Stereo £28.65 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £30.94 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

OPPORTUNITY SALE		
FIBREGLASS P.C.B. $10 \times 11 \mathrm{cms}$, contaning the following citcuity Reg P.S with 240 V Transformer 60 kHz , Osc (TX) R.F (RX) Amplifier (R.C A. I.C \}. Schmitt Trigger Zero Voltage Switch (R.C.A. I.C.) and 2A 500V Triac		
POSSIBLE USES: Security Systems with Ultrasonic Transducers: Bridge Circuits tor Temperature Control etc. and Proximity Detection. etc NOTE: These boards are complete and tested HEAT SINK ASSEMBLY: 13 A Triac complete with Terminal Block and Fuse		
HEAT SINK ASSEMBLY: 13 A Triac complete with Terminal Block and Fuse PCB MOUNTING TRANSFORMER: 240 V I/P $11 \mathrm{~V} 50 \mathrm{~mA} 0 / \mathrm{P}$ and Electiostatic		
Further details are available Price incl of UK detivery and VAT		
	1-10 Off	11-25 Off
PCB	¢1230	¢17 45
Transtormer	¢ 02	£0.92
Heat Sink Assembly	セ5. 24	¢445
POWER SUPPLIES Send for details on Range of Eurocard - $160 \times 100 \mathrm{~mm}$ - Power Suppties (EPS) and		
AVANT ELECTRONICS LTD. halesfield 22. TELFORD, SALOP TEL: 0952586071 TELEX: 35458		

Efargelk
 Bargains in Semi-Conductors, components, modules \& equipment.

B.P.P Packs

Originated in 1959 by the Company s managing director, his were the first semi-conductor and component packs to be marketed in this country, and indeed. the Company s name grow our Bi-Pre-Pa continues to Pccupy a position of pre-eminence in the supply of packs as well as a vastly extended range of products detailed in our latest 24 -page A. 4 size free catalogue. Send 10p stamped large addressed envelope for your copy by return.

IT'S ALL IN OUR FREE CATALOGUE

Gomponent Packs

	YOUR SUPPLIERS FOR:
	clewices the Mrice jezers Solder Tools Termumats Switches Thyristors Zfrner Diodies atm much mote in our calalogut

Semi-Ganduators

- TESTED AND GUARANTEED PACKS
 all the following are at 60p each pack

TP9. $\quad 5 \mathrm{SN} 7400$ integraled circuils. 14 pin dual in line TTL type
Quad 2 input NAND gate Get one FREE. these are $15 p$ Quad 2 imput NAND gate Get one FREE these are 150
each dark A/A dia

$\begin{array}{llll}\text { TP1 } & 20 & 1 & \text { watl zener diodes. mixed voltages } 68 \text { to } 43 \text { volts } \\ \text { TP18 } & 20 & 2 \text { N } 3707 / 8 / 9 / 10 \\ \text { fiansistors. } & \text { NPN silicon plastic }\end{array}$
TP19 100 Dimiles. mixture of germanium, goid bonded. silicon elc a
P20 10 Mufllard selection of many types marked and unmarked
TP23 20 BFY50 1222 N696 7 , 2 N1613 RTC NPN slicon $10-5$
TP24 20 UFYoded COMPLEMENTARY TO PAK TP24

TP31 20 PNP sticon planar transistors TO. 18 similar to BC 178.
TP32 $20 \begin{gathered}\text { elc, } \\ 2 \mathrm{~N} 2926 \text { silicon plastic transistors. uncoded and ungratied } \\ \text { for colours }\end{gathered}$

- UNTESTED PACKS - 60p each

Specially for keen bargain hunters

or full ranges - seecatalogue

- Singles

BRIDGE RECTIFIERS Plastic encapsulated

Sundiry

SIGNAL GENERATOR

for MW and lf Covers 550 KHz to 16 MHz for MW and 400 to 550 KHz tof IF Fully portable Invaluable in AM repair and alignment

POCKET SIGNAL INJECTOR
Fountan-pen type linvaluable for tault tracing
TV/ tape recorders etc Takes one HP 7 battery
EX-G.P.O. Sin SIOECUTTERS
EXG.P.O. $6^{\prime \prime}$ LONG NOSE PLIERS

MAINS TRANSFORMERS		
MT6	Gv 06 Vv 100 mA	E1.22.
MT12	12v 012 v 50 mA	E1.22.
SST9/1	9v 1 dmp	f.1.67
SST12/1	12 v 1 mmp	c2.05
SSTIE/1	18v lamp	¢2.50
SST25/2	25v 2amp	¢3.00
SST30/2	30 v 2 mp	¢4.25.
SST35/4	35 v 4 mp	c5.50

Type	Sizes	Pitch	
SSEC 6 .way	1\%/"	156 "	32 D
SSEC 10	136"	156 "	50p
SSEC 12	${ }^{2 \prime}$	$156^{\prime \prime}$	60p
SSEC 16	21/2"	$156^{\prime \prime}$	75p
SSEC 18	$3^{\prime \prime}$	$156^{\prime \prime}$	$85 p$
SSEC 22	31/2"	$156^{\prime \prime}$	1.00

UHF TUNEA UNITS
Brand new by tamous manufaciurer 625 lines Channels $27-65$ Ideea
tor use as ty sound peceiver With data
E.50
BOOKS
All tree of Vat We carry very large stocks of technical Buoks by Babani \& Bernard Publishers, by Newnes and Market in English/German/liatian All detailed in our catalogue
he Susalen
The Super Spark Capacity Discharge Ignition Unil. developed out of
our original ETt model (of which we thave sold well over 9.000) enables
you to enjoy this system at a truit economic price Faclues lnclude you to enioy this system at a truir economic price. Faclithes include
simple adaption to pos or neg earth immediate switch back to conventional ignition, ant-burglat immobolisation with all parts in
oraily enclosed stiong metal case Very easy to fit and install With full insiructions (P / P add 50 p)

83p.

B-P-P SECURITY CHECK POINT

Write your own name and addrest cearly in block capital lettere.	MAKE SURE YOU GET OUR NAME AND AODRESS RIGHT WHEN ORDERING.
Check that your order is correct for description quantity and price	Cash fcheque. money or postal order, whth your arder, please
of order uniess otherwise stared	- Mention this journal when ordering if you don't want to cui out the coupon

TERMS OF BUSINESS
VAT at 25% must be added to total value of order except for items marked of (8%), when
VAT is to be added at 8% No VAT on overseas orders POST \& PACKING Add 30 p for UK ordersexcept where shown otherwise Minimum matt order acceptable - E1 Overseas orders whthout notice AVAILABILITY All terms available at time of going to press when every effon

LOOK OUI' NEXT MONTH
FOR THE NEW
STERLING
SOUND MODULES

X-44 POCKEI SIZE R.F.	
CROSS HATCH GENERATOR	
Tmpored of which thousands are in regular ${ }^{2}$	
(e)	
(e)	
¢25	

222224 WEST ROAD, WESTGLIFF-ON-SEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.

- first in u.k. with packs for electronics users

Please send
for which I enclose
NAME
ADDRESS

LYNX ELECTRONICS (LONDON) LTD.

AC126	0.15	BC301	0.32	'8r206	0.15	TN4003	$0.0{ }^{\circ}$
AC127	0.16	BC323	0.60	BY207	0.20°	1 N 4004	$0.07{ }^{\circ}$
AC128	0.13	BC327	$0.18{ }^{*}$	BY× 36.300	0.12°	in4005	0.08 -
ACl28k	0.25	${ }_{8 C} 328$	$0.16{ }^{*}$	BYx 36.600	0.15	in4006	0.09
AC14 ${ }^{\text {a }}$	0.18	8C337	$0.17{ }^{\circ}$	BY $\times 36.900$	$0.18{ }^{\circ}$	iN4007	$0.10{ }^{\circ}$
AClisik	0.28	всз3в	0.17	BY×36.120	0.21	2N696	0.14
AC142	0.18	8Cry	0.12	BY $\times 38-300$	0.50	2N697	0.12
AC142K	0.28	8 C 77.	0.18	8×38.600	0.55	2N706	0.10
AC176	0.18	8 CY 72	0.12	BY×38-900	0.60	2 N 929	0.14
ACi 76 K	0.25	80115	0.55	$8 \mathrm{yx} 38-120$	0.65	2N930	0.14
AC187	0.18	86131	0.36	BZX61 Sertes		2N1131	0.15
AC187K	0.25	80132	0.40	Zeners	0.20	2N1132	0.16
ACl88	0.18	BD135	0.36	$8 \mathrm{Z} \times \mathrm{B} 3$ or B	X88	2 N 1304	0.20
ACl 88 K	0.25	8 BD 136	0.39	Series		2N1305	0.20
AD140	0.50	80137	0.40	Zeners	0.11	2N1711	0.18
AD142	0.50	80138	0.48	C106A	0.40	2N2102	0.44
AD143	0.46	80139		C106B	0.45	2N2369	0.14
AD149	0.45	6 6181	0.86	C106D	0.50	2 N 2369 A	0.14
AD161	0.35	BD182	0.92	C) 066	0.35	2N2484	0.16
AD162	0.35	80183	0.97	CRSI/05	0.25	2N2646	0.50
All 102	0.95	BD232	$0.60{ }^{\circ}$	CRS $1 / 10$	0.25	2N2905	0.18
Al103	0.93	BD233	$0.48{ }^{\circ}$	CAS $1 / 20$	0.35	2N2905A	0.22
AF114	0.20	B0237	$0.55{ }^{\circ}$	CRS1/40	0.40	2N2926R	0.10°
AF115	0.20	80238	$0.60{ }^{\circ}$	CRS 1/60	0.65	2N29260	0.09*
AF116	0.20	BD184	1.20	CRS3.05	0.34	2N29267	0.09
AFF117	0.20	BDY20	0.80	CRS3. 10	0.45	2N2926G	0.10^{-}
AF118	0.50	80Y38	0.60	Cas3.20	0.50	2N3053	0.15
AF 139	0.33	B0Y60	0.60	CRS3-40	0.60	2N3054	0.40
AF239	0.37	B0Y61	0.65	CRS 3.60	0.85	2N3055	0.50
BC107	0.14	BDY62	0.55	MJ480	0.80	2N3440	0.58
BC1078	0.16	BF178	0.28	MJ481	1.05	2N3442	1.20
BC108	0.13	BFi79	0.30	MJ490	0.90	2N3525	0.75
BC/109	0.14	BF 194	0.10	MJ491	1.15	2N3570	0.80
8 BC 109 C	0.16	BFF195	$0.10{ }^{\circ}$	MJE 340	0.40*	2N3702	0.10°
EC117	0.19	BF196	0.12	MJE371	0.60	2N3703	0.10°
BC125	$0.18{ }^{*}$	BF197	0.12	M.JE520	0.45	2N3704	0.10°
BC. 126	0.20°	Bf224J	0.18	MJE52 1	0.55	2N3705	0.10^{*}
BC141	0.28	BF244	0.17	OA5	0.50°	2N3706	0.10°
${ }^{8 C} 142$	0.23	BF257	0.30^{+}	OA90	0.08	2N3707	$0.10{ }^{\circ}$
${ }_{8 C 143}$	0.23	BF258	0.35	OA91	0.08	2N3714	1.05
$8 \mathrm{CC144}$	0.30	8F337	0.32	OC41	0.15	2N3715	1.15
BC147	0.09	BFW60	0.17	0 C 42	0.15	2N3716	1.25
8 C 148	0.09*	8Fx29	0.26	0 C 44	0.12	2N3771	1.60
BC149	0.09 ${ }^{\circ}$	BFx30	0.30	0 Ca 5	0.10	2 N 3772	1.60
8C152	0.25	BF×84	0.23	Oc70	0.10	2N3773	2.10
BC153	0.18	BF×85	0.25	0671	0.10	2N3819	$0.28{ }^{\text {- }}$
BC157	0.00°	BF×88	0.20	OC72	0.22	2N3904	0.16°
BC158	0.09	BFY50	0.20	OC84	0.14	2N3906	0.16°
BC159	$0.09{ }^{\circ}$	BFY51	0.18	SC40A	0.73	2N4124	$0.14{ }^{\circ}$
BC160	0.32	BFY52	0.19	SC40B	0.81	2N4290	0.12^{*}
$8 C 161$	0.38	BFY64	0.35	SC400	0.98	2N4348	1.20
${ }_{8 C} 1688$	0.09.	BFY90	0.65	SC4DF	0.65	2N4870	0.35
BC182	0.11*	BR100	0.20	SC41A	0.65	2N4871	0.35
BC182L	0.11°	BRY39	0.40	SC418	0.70	2N4919	0.70°
BC183	0.10°	BSX19	0.16	SC41D	0.85	2N4920	0.50°
BC1834	0.10°	BS×20	0.18	SC4iF	0.60	2N4922	$0.58{ }^{\circ}$
BC184	$0.1{ }^{1}$	BSx21	0.20	ST2	0.20	2N4923	$0.64{ }^{*}$
BC1841	0.11	$8 \mathrm{8Y95a}$	0.12	tip 298	0.44	2N506D	$0.20{ }^{\circ}$
8 C 2078	0.12*	BT106	1.00	T1P304	0.52	2N5061	0.25
BC212	0.11	BT107	1.60	TIP31A	0.54	2N5062	${ }^{0.27}$
BC212L	0.11°	BT108	1.60	TIP32A	0.64	2N5064	0.30°
P こ213	0.12	8T109	1.00	TIP34	1.05	2N5496	0.65
BC213L	0.12	${ }^{81116}$	1.00	TIP41A	0.68		
BC214	0.14	8U105	1.80	Yip42A	0.72		
BC214L	$0.14{ }^{\text {- }}$	Bu105/		$1{ }^{1} 2069$	0.14		
BC237	0.16^{*}	02	1.90	1 N 2 D 70	0.16		
8 C 238	$0.16{ }^{\text {- }}$	BU126	$1.60{ }^{\circ}$	1 N 4001	0.04		
BC300	0.34			1 N4002	0.05^{*}		

DIGITAL DISPLAYS \& LED'S

$\begin{aligned} & \text { DL704 } \\ & \text { Dl707 } \end{aligned}$	$\begin{aligned} & \mathbf{9 9}_{p} \\ & \mathbf{9 9}_{\mathrm{p}} \end{aligned}$	$\begin{aligned} & \text { DL747 } \\ & \text { DL750 } \end{aligned}$	$\begin{aligned} & 61.75 \\ & \& 1.75 \end{aligned}$	2 REO LED ONLY GREEN CLEAR		$\begin{aligned} & 13 p \\ & 150 \end{aligned}$
THYRISTORS						
	$\begin{gathered} 8 A \\ (\mathrm{rO92}) \end{gathered}$	$\begin{gathered} 1 \mathrm{~A} \\ (\operatorname{TO5}) \end{gathered}$	$\begin{gathered} 3 A \\ \text { (C106 type) } \end{gathered}$	$\begin{gathered} -6 \mathrm{GA} \\ (\mathrm{TO220}) \end{gathered}$	$\begin{gathered} 8 A \\ (T O 220) \end{gathered}$	10 A
50	20	25	35	41	42	47
100	25	25	40	47	48	54
200	27	35	45	58	60	68
400	30	40	50	87	88	98
6.00		65	70	1.09	1.19	1.26

N 8 Triacs without internal itigger diac are priced under column (a) Triacs with internal trigger
diac are priced under columin (b) When ordering piease indicate clearly the type required

74 TTL mixed prices											
	1.24	25.99	$100+$		1.24	25-99	$100+$		1.24	25.99	$100+$
7400	14p	12p	${ }^{10} \mathrm{p}$	7445	85p	71p	57p	7493	45p	40 p	32p
7401	14 p	12p	10p	7447	81p	75p	65p	7495	67p	55p	45p
7402	14p	12p	10p	7448	75p	62p	50p	74100	¢1.08	89 p	72p
7403	15p	$121 / 2 \mathrm{p}$		7447A	95p	83p	67p	74107	35p	28p	22p
7404	16p	13p	11p	7470	30 p	25p	20p	74121	34 p	$28 p$	${ }_{23}{ }^{\text {p }}$
7408	16p	13p	11p	7472	25p	21p	17p	74122	47p	39p	$31 p$
7409	16p	13p	$11 p$	7473	30p	25p	20p	74141	78 p	63p	53p
7410	16p	$13 p$	11 p	7474	32p	26p	21p	74145	68 p	58p	48p
7413	29p	24p	20p	7475	47p	39p	31p	74154	¢1.62	E1.48	$8 \mathrm{8p}$
7417	${ }_{15} 27$	$221 / 2 \mathrm{P}$	${ }^{20}$	7476	32p	28p	21p	74174	¢1.00	83p	67p
7420	${ }^{16 p}$	${ }^{13 \mathrm{p}}$	$11 p$	7482	75 p	62p	50p	74:80	E1.06	88p	71p
7427	${ }^{27 p}$	$221 / 2 \mathrm{P}$	p 18p	7485	¢1.30	E1.09	$87 p$	74181	$\underline{5} .20$	¢2.50	E1.90
7430	$16 p$	${ }^{13 p}$	11p	7486	32p	26p	21	74192	£1.35	E1.14	90 p
7432	27p	$221 / 2$ p	P 18p	7489	c. 2.92	c2. 80	¢2.10	74193	E1.35	E1.14	90 p
7437	27 p	$221 / 2$ p	p18p	7490	49p	40p	32p	74196	¢1.64	£1.34	99p
7441	75p	62p	50p	7497	$65 p$	55 p	45p			8.34	
7442	$65 p$	55p	43p	7492	57p	45p	36p				
LINEAR IC'S											
30148 pin DIL 307 309k 38014 pin DIL 38114 pin DIL		$\begin{array}{r} 35 p^{*} \\ 55 p^{*} \\ \mathrm{EA.60} \\ 90 \mathrm{p} \\ \mathrm{E1.60} \end{array}$		$3900 \quad 14$ pin Oft $1098 / 14 \mathrm{pmil}$ DIL			70p	$56514 \text { pin DIL }$$5668 \mathrm{pin} \text { DIL }$			c2.00*
		$35 p$.	c1.50*								
		7418 pin DIL 74114 pin Dit			28p.		8 pon		c2.00*		
			Ca3046 14 pin dil			${ }^{85 p}$					
			$36 p^{\circ}$	CA3045							
		$\begin{aligned} & 7488 \text { pin DiL } \\ & 5558 \text { pin DiL } \end{aligned}$	45p								

HIGHAM MEED, CHESHAM, BUCKS. Tel. (02405) . 75151
VAT - Please add 8% except items marked * which are $\mathbf{2 5 \%}$

DC Torque Motors and Tachometers
High performance, brush and brushless versions and complementary tachometers.

* 840 Standard Modēis ranging from 15 oz -in to 120° $\mathrm{lb}-\mathrm{ft}$.
* Military, Industrial or Space Qualified models are already used by most European Nations.

Servodata

Is able to offer a technical design service utilising these devices in control systems as well as supplying amplifiers, solid state synchro/resolver to digital convertors, readouts and other servo control traneducers.

Servodata Limited

Highclere,Newbury
Berkshire RG15 9PU
Telephone: Highclere (STD 0635) 253579 Telex: 847054

THE RADIO SHOP

INTRODUCTORY PRICES

In addition to National, Mostek and Caltex clock chips, we are now seiling a range of General Instrument chips
Until 30th April ' 76 we are pleased to offer the following special prices

AY-5-1202 + Futaba 5LT01

AY-5-1202 interfaces directly with 5LTO1 to provide the basis for a very simple electronic clack. The hours and minutes can be in 12 or 24 hour format and 50 or 60 Hz can be used as the timing source. 5 LTO 1 is a green phosphor diode display. Special price $£ 9.50$

AY-5-1230 + Futaba 5LT01
This chip similar to $\$ 202$ It has an ON/OFF programmable alarm which can be used in 7 segment mode to drive the 5LTO1 or in BCD format to drive logic or TV display chips Special price $£ 10.00$

MK50253 + Futaba 5LT01
12 or 24 hour, 6 digit alarm chip. Snooze facility Special price \& 10.50
COME AND SEE US AT SEMINEX MARCH 22nd-26th
STAND 11. Imperial College SW7
Please send SAE for free ticket and new catalogue

MISTRAL CLOCK KIT

Uses AY-5-1202 + Futaba 5LTO 1. Complete kit including case £11.58

CHEVIOT ALARM CLOCK

24 Hour 4 digit alarm clock $05^{\prime \prime}$ green display, tilt to snooze Finished clock - not kit £21.85

Terms: C.W O Access, Barclaycard (simply quote your number and sign) Credit facilities to Accredited account holders ALL PRICES EXCLUDE VAT AT 8%

By Hold

BYWOOOD ELECTRONICS

ELECTRTNALIE
 ISSUE No. 2 NOW READY - 144 pages
 - UP-DATED PRODUCT \& PRICE INFORMATION
 40p POST PAID + 40p REFUND VOUCHER
 We have made if just about as comprehensive and up-tothe-minure os possible housands of items from vast ranges of semi-conductors including I. C. s to components voucher worth 40 p for spending on Orders list value $£ 5$ or more SEND NOW FOR YOUR COPY OF CATALOGUE 8. ISSUE NO. 2 BY RETURN It's an investment in practical
 +E.V. PRICE STABILIZATION POLICY FOR 1976
 This is one of revewing prices every 3 months rather han trying to keep up with day by following this plan Next review period starts Aprit 1 st
 +E.V. DISCOUNT PLAN
 Apphes toans except the few where prices are shown NETT 5% on orders frome:5 +FREE POST \& PACKING
 15 p
 + QUALITY GUARANTEE
 All goods are sold on the understanding that

ELEGTROMALIE LTD

28 ST. JUDES ROAD, ENGIEFIELD GREEN. EGHAM. SURREY TW 20 OHB Telephone Egham 3603. Telex 364475 . Shop hours 9.5 . 30 dailv. 9.10 m . Sats
NORTHERN BRANCH: 680 Burnage Lane, Burnage. Manchester M19 INA NORTHERN BRANCH: 680 Burnage Lane, Burnage. Manchester M19 1 NA In U.S.A. you are invited to conlaci ELECThOVALUE AMEAICA. P.O. 337 Pelerborough Nh03458

DEMA ELECTRONICS

international ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

- Close our Sale Special Purchase Whive They Last -

CT 500112 Digit 4 Funct.
CT 5002 Batt Oper 5001 59
69 CT 500512 Diglt 4 funct. w/Mem 79
3.50
 .69 CT 70014 or 6 Digit Alarm $\quad 3.50$ Are
.99
1.45
1.45

1.45		
5261	$1024 \cdot$ Bit Ram L/power	1.45

TTL		$\begin{aligned} & 74123 \\ & 74145 \end{aligned}$	$\begin{aligned} & 39 \\ & 49 \end{aligned}$	ICL 8038 Funct. Gen Volt Contr Oscillator Sine Sq. 9 - Digiz LEO display Comm. Cathodes Comp w/8-digit Cla Chips $12^{* \prime \prime}$ Char	1951.95
7447	59				
7475	. 29				
7490	. 35				

74 HOO	¢0.16
74H01	0.16
$74 \mathrm{HO4}$	0.16
74 H05	0.21
$74 \mathrm{HO8}$	016
74W10	0.16
$74 \mathrm{HI}_{1}$	0.16

74 H 20 74 H 21 74 H 22

 74 H 22 74 H 30 74 H 40 74 H 50

 74 H 2274 H 30
74 H 40
74 H 50}

 CMOS 4000 SERIES $\begin{array}{ll}\text { 4000A } & £ 0.19 \\ 4001 & 0.19\end{array}$

£ 0.11	7485	¢ 0.85	74155	£ 069
3.60	7486	0.24	74156	069
0.55	7488	250	74157	069
055	7489	1.50	74158	0.69
0.60	7490	0.40	74160	0.89
075	7491	0.55	74162	0.89
0.85	7492	043	74163	089
075	7493	0.43	74164	1.05
0.65	7494	0.49	74165	1.05
0.12	7495	0.49	74166	1.05
013	7496	0.55	74170	165
0.13	74100	0.89	74175	090
014	74107	0.27	74180	0.80
0.11	74121	0.27	74181	2.50
0.24	74122	0.37	74182	0.80
0.21	74123	0.49	74192	0.90
0.25	74145	0.57	74193	085
0.25	7450	0.59	74194	0.85
0.37	74151	059	74195	0.80
0.26	74153	0.69	74198	1.70
0.69	74154	1.05	74199	1.70

$£ 0.85$
0.25
$\frac{5}{2}$
4028

4028	$\mathbf{£} 0.95$	4071	$\mathbf{£} 0.23$
4030	0.50	4072	025
4042	0.95	4073	0.25
4043	1.20	4075	025
4044	120	4078	0.25
4049	0.48	4081	025
4050	048	4082	0.29
4066	0.75	458	085
4068	0.23	4585	125
4069	0.23		

 BANKAMERICARD, BARCLAY CARD ACCEPTED. (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS
POSTAL AND HANDLING CHARGES SHIPMENT VIA AIR MAIL
under 4.99 $\begin{array}{lll}\text { under } 4.99 & \text { add } 45 & £ 10 \text { and over } \\ 5.00-9.99 & \text { add } 35 & \end{array}$

RETURN OF POST MAIL ORDER SERVICE

VOLUME CONTROLS $5 k \Omega$ to $2 M Q$. LOG or LIN L/S 25p. D.P. 40p. STEREO S.P. Transistor 30p.	
ELAC HI-FI SPEAKER	
8 in . or $10 \times 6 \mathrm{in}$.	
Dual cone plasticised roll surround Larga ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 8 ohm impedance	
10 watts. music power ¢4.35	35 Post 35
E.M.I. $13^{1 / 2} \times 8 \mathrm{in}$.	
SPEAKER SALE!	
With tweeter and	
crossover $\begin{aligned} & \text { cremat } \\ & \text { State } 3 \text { or } \\ & 8 \text { ohm. }\end{aligned}$	
${ }^{\text {As illustrated }}$	
5.25 Post 3	
With flared imeeter cone and ceramic	
$\begin{aligned} & \text { Flux } 10.000 \text { gauss. } \\ & 8 \mathrm{ohm} .40 \text { to } 11.000 \mathrm{c} / \mathrm{s} \text {. Post } 35 \mathrm{p} \\ & \hline \end{aligned}$	
Bookshelf Cabineí Teak finish $16 \times 10 \times 9$ in.	
THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISERE SUtable for cassentes, and all slzes of tape reels. A.C. 	

BLANK ALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 \mathrm{p}$; $10 \times 7-£ 1.15$;
ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p$; $14 \times$ 3-25p; $10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p$;

ELAC $9 \times 5 \mathrm{in}$ HI-FI SPEAKER TYPE 59RM
£3.45 ${ }^{\text {fog }}$

RCS LOW VOLTAGE STABILISED POWER PACK KITS

All parts and instructions with Zener diode. printed
circuit rectifiers and double wound mains
$£ 2.95$ transtormer. Input $200 / 240 \mathrm{~V}$ a c Output Post 45 p voltages available, 6 or 7.5 or 9 or 12 V d.c. up to 100 mA or less. Size $3 \times 21 / 2 \times 11 / 2 \mathrm{in}$. Please state voltage required.

RCS POWER PACK KIT

12 VOLT. 750 mA . Complete with printed \& 3.35 Posi 12 VOLT 300 mA KIT, £3.15, 9 VOLT

AMP KIT. E3.35.
R.C.S. GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape, P.U., Guitar, etc. Can be used with Battery $/ 4 \mathrm{in}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB}$ gain. For use with valve or transistor equipment.
Full instructions supplied. Details S.A.E.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

 1.5 V d.c. operation over 300 hours continuous on SP2battery. fully adjustable swing and speed. Ideal displays. leaching electro magnetism or for
metronome, strobe, etc.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players. guitars. tape playback.
electronic instruments or small P.A. systems. Two versions available: Mono. £12.50; Stereo. £20. Post 45p. Specification S.A.E. details. Full instructions supplied. AC mains powered.

MAINS TRANSFORMERS

ALL POS
50 p
$250-0-250 \mathrm{~V} 70 \mathrm{~mA} .6 .5 \mathrm{~V}, 2 \mathrm{~A}$. coc. E 3.45 $250-0-250 \mathrm{BOmA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5V 2A \quad E4.60
 MIDGET $220 \mathrm{~V} 45 \mathrm{~mA} .6 .3 \mathrm{~V} 2 \mathrm{~A}, \ldots . . . \mathrm{E}^{2} .40$ HEATED TRANS 6.3V $1 / 2 \mathrm{amp} \mathrm{E} 1 ; 3 \mathrm{amp}$ E. 1.40 amp. 3. 4, 5, 6, 8, 9, 10, 12, 15, 18. 25 and 30 V £4.60. $1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$
£ 4.60 .2 amp $, 6,8,10.12,16,18,20,24,30,36,40$ €4.60. $2 \mathrm{amp} .6,8,10.12,16,18,20.24,30.36 .40$.
48.60 £ 7.00 .3 amp 6. B, 10. 12, 16. 18. 20. 24.30. 36. 40. 48, 60 £8.70. 5 amp. 6, 8, 10, 12, 16, 18,20 . 24, 30, 36, 40, 48, $60 £ 11.25$. $6.06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$
 40 V . 2 amp .. $\mathbf{E 2 . 9 5 ,} 22-0-22 \mathrm{~V} .4$ amp. d.c.. $£ 3.45,16 \mathrm{~V}$.
 AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W £5; 250W £6; 400W £7; 500W £8. FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 outputs, $1 / 2$ amp 40p; 2 amp 55p; 4 amp 85p. CHARGER TRANSFORMERS $11 / 2 \mathrm{amp}$ £2.75; 4 amp E4.60.

GOODMANS 8-inch

HIFF BASS NOOFER
8 ohm. 10W Large ceramic magnet. Specia
$30.8000 \mathrm{c} / \mathrm{s}$.
Ideal HI.FI Enclosure Systems. $\mathbf{E 6 . 7 5}$

NEW ELECTROLYTIC CONDENSERS					
2/350Y	$20 p$	250/25y	20p	50+50/300V	50p
4/350N	20p	500/25Y	25p	900/350\%	95p
B/350Y	$28 p$	$100+100 / 275 \mathrm{~V}$	65p	$32+32 / 250 \mathrm{~V}$	200
16/350V	35p	$150+200 / 275 \mathrm{~V}$	70p	$32+32 / 4509$	80 p
32/500	60p	$8+8 / 350 \mathrm{Y}$	50p	$350+50 / 3254$	85
25/25V	15p	$8+16 / 350 \mathrm{~V}$	50p	$100+50+50 / 350 \mathrm{~V}$	85
50/50V	15p	$16+16 / 350 \mathrm{~V}$	60p	$32+32+32 / 350 \mathrm{~V}$	$65 p$
100/254	15p	$32+32 / 3504$	60p	4700/63v	.95p

LOW VOLTAGE ELECTRÖLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V}$ 30p.
$100 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
2500 mF 50 V 62 p ; 3000 mF 25 V 47 p ; 50 V 65 p . 5000 mF 6 V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V}$ 85p; 50 V 95 p.
SHORT WAVE 100 pF air spaced gangable tuner, 95 p . TRIMMERS 10pF, 30pF 50pF. 5p. 100pF, $150 \mathrm{pF}, 15 \mathrm{p}$. CERAMIC. 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pF . 5 p . PAPER 350V-0 1 7p; 05 13p; 1 mF 150V 15p; 2 mF 150 V 15p; $500 \mathrm{~V}-0.001$ to 005 5p; 01 10p; $02513 p ; 0.47$ 25p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Sinale pole change over 75 p; $365+365+25+25 \mathrm{pF}$, Slow motion drive 50 p . 120 pF TWIN GANG, 50 p ; 365 pF TWIN GANG, 50p. NEON PANEL INDICATORS $250 V$ AC/DC. Amber or red, 30p. RESISTORS. $1 / 4 \mathrm{~W} .1 / 2 \mathrm{~W} .1 \mathrm{~W} .20 \%$ 2p; 2W. 10p; 100 to 10 M HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 6 meg . 12 p . Ditto 5% Preferred values 10 ohms to 10 meg . 5 p . WIRE-WOUND RESISTORS 5 watt, 10 watt. 15 watt, 10 TAms to 100 K 12 p each
BRIDGE RECTIFIER

T SPECIALISTS

Forall whowantto knowabout electronic circuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successfu! Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and $\begin{gathered}\text { raphs. Each of the ten sets - including }\end{gathered}$ additional circuits - in this magazine size hard cover book has been updated where recessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Circuits covered are
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A new book fromWirelessWorld

ORDER FORM

To: General Sales Department,
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SE| 9LU.
Please send me
copy/copies of
Circuit Designs - Number 1 at $£ 10.40$ each inclusive. I enclose remittance
value ℓ. (cheques payable to
IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company - egistered ifi England and a subsidiary of Reed International Linited Registered No, 677128 Regd. office Dorset House. Stamford Street, London SEI 9LU.

KINNIE COMPONENTS

10, NELMES WAY, HORNCHURCH ESSEXRM11 202
HORNCHURCH 45167

CIRCUIT BOARD

P.C.B. 1/16. 1 oz. COPPER

FORMICA

Dim. 8.4×7.7 in 3 pcs., 75p
Dim. 9.4×8.1 in 3 pcs., 90 p
Dim. 10.1×7.9 in 3 pcs., $£ 1.00$
Dim. $1.3 .1 \times 9.4$ in 3 pcs., $£ 1.20$
Dim. 17.0×9.0 in 2 pcs., $£ 1.20$
Post \& Packing 30 p each pack

BARGAIN PACK

10 pcs. $10.1 \times 7.9 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals $\mathbf{£ 3 . 0 0}$ P.P. 55p.

FIBRE GLASS P.C.B.

Dim. 6×6 in. $\mathbf{3 5 p}$ each
Dim. 12×6 in. $\mathbf{6 0 p}$ each
Dim. 12×12 in. $\mathbf{£ 1 . 0 0}$ each
Equals less than 1p sq. in.
Post \& Packing 10p per sheet

RESIST COATED P.C.B. FORMICA

$10.1 \times 7.9 \mathrm{in}. \mathrm{55p} \mathrm{ea}$
13.1×9.4 in 70p ea.
RESIST COATED P.C.B. FJBRE GLASS
$6 \times 6 \mathrm{in}$. 50p ea.
12×6 in. 90p ea
12×12 in. $£ 1.50$ ea
Post \& Packing 10 p per sheet

BLUE P.C.B. INK

Etch resist use with any pen. Much cheaper than ready loaded pens
50c.c 55p. P.P. 10 p .
FERRIC CHLORIDE ETCHING XTALS
1 lb - 1 litre pack, 60p P.P. 25p.
$5 \mathrm{lb}-5$ litre pack, £1.95 P.P. 55 p

EDGE CONNECTORS. 54 WAY

1 Vero size etc. Can be cut to any length 55p P.P. 10p

QUADROPHONIC DECODER MODULE
 C.B.S./S.Q. Type using I.C. MC 1312 P

With slight modification direct substitute for PE. 'RONDO' Board. Complete with Data
$\mathbf{6 4 . 6 0}$ each. P.P. 25 p.

PRINTED CIRCUIT KIT

The no frills all value kit. Containing $4 \mathrm{pcs} 8 \times$ 7 Formica laminate. 1 pce 6×6 Fibre glass laminate, 1 lb Etching Crystals, 50 c.c. Resist ink, with instructions. £2.30 P.P. 50p.

TELEPHONE DIALS

(New) £1 P.P. 25p.
EXTENSION TELEPHONES
(Type 706). Various colours E3.95 P.P. 75p.
12V MINIATURE

UNISELECTOR

11 ways 4 bank (3 non bridging, 1 homing), £2.50 P.P. 35p.
H.T. TRANSFORMERS. Prim. $110 / 240 \mathrm{~V}$ Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$ €3. P.P. 65 p L.T. TRANSFORMER. Prim 240v. Sec $27.0-27$ at $800 \mathrm{~m} / \mathrm{a}$ £2.25. P. $\overline{\mathrm{P}}$. 50p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$ Sec. 50 v . at 10 amp £10. P.P. £ 1.50. L.T. TRANSFORMER. Prim. 240v. Sec 18 v at $1.5 \mathrm{amp} \& 12 \mathrm{v}$. at 1 amp £2.25. P.P. 50p.
L.T. TRANSFORMER. Prim. 240 v . Sec. 18 v . 1 amp. £1. P.P. 30p.
L.T. TRANSFORMER. Prim. 240 v . Sec. 12 v at 1 amp 80p. P.P. 25p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $23 / 24 / 25 v$ at 10 amps £7. P.P. £ 1 L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$

UNISELECTORS

(New) 25 way. 12 Bank (Non bridging), 68 ohms. £6.50 P.P. 50p.

MINIATURE UNISELECTOR

(Ex. Equip.) 6 Bank (5 non bridging. 1 bridging) 100 ohms $24-30$ V.D.C. $£ 1.50$ P.P. 50p

1,000 TYPE KEY SWITCHES

Single $2 \times 2 \mathrm{c} / 0$ Locking. 50p. P.P. 10p Bank of $4-2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased) £1.20 P.P. 25 p.

MULTICORE CABLE

6 -core (6 colours) 14 / 0076 Screened P.V.C $\mathbf{3 0}$ p per yard; 100 yards at $£ 16.50$ P.P. 2 p a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P.V.C. 30p per yard; 100 yards £16.50 P.P. 2 p per yard

RIBBON CABLE

(8 colours); 10 m £1.65. P.P. 20p. 100 m 8 -core $\times 14 / 0.19 \mathrm{~mm}$. Bonded side by side £11.50 P.P.£1

P.T.F.E. CONNEGTING WIRE

1/20 Black or White 100 m . Drum £2.50 P.P. 30p

H.D. ALARM BELLS

6 in . Dome $6 / 8 \mathrm{v}$, d.c. Heavy cast housing for exterior/interior use. £3.75 P.P. £1. Connecting wire (twin/twisted) 220yd. reel £3 P.P. 75 p

HIGH CAPACITY ELECTROLYTICS

$250 \mathrm{mfd} / 63$ volt, 20p P.P. 8p.
$1,000 \mathrm{mfd} / 100$ volt, 70p P.P. 25p. $2,200 \mathrm{mfd} / 100$ volt, 90p. P.P. 25p $4,700 \mathrm{mfd} / 25$ volt, 65p. P.P. 20 p. $6,800 \mathrm{mfd} / 16$ volt, 50p. P.P. 15 p $10,000 \mathrm{mfd} / 25$ volt, 75 p . P.P. 25 p $25,000 \mathrm{mfd} / 40$ volt, £1.25. P.P. 30p. $47.000 \mathrm{mfd} / 40$ volt, $\mathbf{£ 2 . 0 0}$. P.P. 50p $100,000 \mathrm{mfd} / 10$ volt, $£ 1.50$. P.P. 50p $160,000 \mathrm{mfd} / 10$ volt, $£ 2.00$. P.P. 50 p

OVERLOAD CUT OUTS

Panel mounting $800 \mathrm{M} / \mathrm{A} 1.8 \mathrm{amp} .10$ amp. 55p ea.

SMITHS GEARED MOTORS 24OV AC

3 rev. per min. £1.50. P.P. 25p
4 rev. per min. £1.50. P.P. 25p
6 rev. per min $£ 1 \mathbf{5 0}$. P.P. 25 p
2 rev. per hour. £1.50. P.P. 25p
6 rev. per hour £1.50. P.P. 25p

HIGH-SPEED MAGNETIC

COUNTERS
4 digit (non reset) 24 v or 48 v (state which)
$4 \times 1 \times 1$ in. £1. P.P. 20p

5 digit (non reset) $24 \vee 1.50$. P.P. 20p.
3 digit $12 v$ (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$
£1.40. P.P. $15 p$
6 digit (Reset) 220 v a.c. £3.50. P.P. 25p
S-DECS AND T-DECS
S-DEC $£ 1.90$ T-DEC $£ 3.60$
U-DEC A £4.20 U-DEC B £6.90
Post \& Packing 25 p.

MINIATURE METERS

500 micro-amp (level stereo beacon, etc) scaled half back/half red. Size 1×1 in. $\mathbf{6 5 p}$. P.P. $15 p$.

PANEL METERS

T2 $100 \mu \mathrm{~A}$

18 500 m
$100 \mu \mathrm{~A}$ T9 1 Amp
T3 $500 \mu \mathrm{~A} \quad$ T10 50v.a.c.
T5 $10 \mathrm{~mA} \quad$ T12 $50 / 0 / 50$ fla
T6 50mA T13 100/0/100 $\mu \mathrm{A}$
T7 100mA T14 500/0/500 $\mu \mathrm{A}$
All at £3.75. P.P. 15 p

PANEL METERS

$41 / 2$ ins. $\times 31 / 4 \quad$ D3 $200 \mu \mathrm{~A}$
D1 $50 \mu \mathrm{~A} \quad \mathrm{D} 4 \quad 500 \mu \mathrm{~A}$
D2 $\quad 100 \mu \mathrm{~A} \quad$ All at $£ 4.60$. P.P. $15 p$

S.T.C. CRYSTAL FILTERS

(10.7Mhz) 445-LQU-901A (50 Khz spacing), £3. P.P. 20p.
445-LQU-901B (25Khz spacing). E4. P.P. 20p. 10.7 Mhz Canned I. Fs. Size $1 \times 1 / 2 \times 1 / 2$ in. (with data) 65p. P.P. 10p

3 GANG TUNING CAPACITOR

8.5 PF, to 320 P.F. 80p. P.P. 20p

V.H.F./U.H.F. POWER TRANSISTORS

(type BLY 38). 3 watt output at 100-500 Mhz. £2.25. P.P. 10 p

SIEMENS MINIATURE RELAYS

$6 \mathrm{v} .4 \mathrm{c} / \circ 65 \mathrm{p} .24 \mathrm{v} .2 \mathrm{c} / \mathrm{O} 50 \mathrm{p}$.

MINIATURE RELAYS

$(13 / 8 \times 11 / 4 \times 1 / 2) 24 \vee 4$ c/o 35p. P.P. $5 p$

MAINS RELAY 240v.a.c.

$3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$. contacts 80p. with base P.P 20p
24v a.c. RELAY (PLUG IN)
3 pole c/o 75p. P.P. 15p.
2-pole c/o 55p. P.P. $15 p$.
S.C.R.

1 amp. 400 P.I.V. 35p.
5 amp. 400 P.I.V. 40p

minIATURE "ELAPSED TIME"

INDICATORS
(0.5000 hours) $45 \times 8 \mathrm{~mm} 75$ p. P.P. 15 p

BULK COMPONENTS OFFER

Resistors/capacitors 600 new components £2.75. P.P. 36p.
Trial order 100 pcs 75p. P.P. 20p.
D.C. SUPPLY

Input 240 v a.c. giving $171 / 2 \mathrm{v}$ d.c. at $11 / 2$ amp (unsmoothed) $23 / 4 \times 21 / 2 \times 21 / 4 \mathrm{in}$. £2.25. P.P. 45p.

ADVANCE TRANSFORMERS

'VOLSTAT"

Input 240 v a.c. C.V.50. 38 v , at 1 amp: 25 v . at $100 / \mathrm{m} / \mathrm{a} ; 75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a} £ \mathbf{3}$. P.P. 65p.
C.V. 75.25 v . at $21 / 2 \mathrm{amp}$. $\mathbf{~ 3 . 2 5}$. P.P. 75 p . C.V. 100.50 v at $2 \mathrm{amp} ; 50 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a}$ £4. P.P. 75 p
C.V 250.25 v , at $8 \mathrm{amp} ; 75 \mathrm{v}$. at $1 / 2 \mathrm{amp}$. £6.50. P.P. £1.50
C.V. 500.45 v . at 3 amp ; 35 v at 2 amp . $£ 12$. P.P.E1. 75.
$200 / 240 \mathrm{v}$. Secs. 1-3-8-9c. All at 1.5 amp 50 v at 1 amp £2.50. P.P. 50p.
L.T. TRANSFORMER ("C'" CORE)
$200 / 240 \mathrm{v}$. Secs. 1-3-9-27v. All at 4 amp .
Sec. $20 / 21 / 22 v$ at 8 amp . £6. P.P.£ 1
L.T. TRANSFORMER Prim. $110 / 240 \mathrm{~V}$ Sec. $0 / 24 / 40 v$ at $11 / 2$ amp. (Shrouded) £1.95. P.P. 50p
L.T TRANSFORMER Prim. $200 / 250 \mathrm{~V}$ Sec. $20 / 40 / 60 \mathrm{v}$. at 2 amp . (Shrouded). £3 P.P. 70p.
L.T. TRANSFORMER (H.D.) Prim $200 / 250 \mathrm{v}$. Sec. 18 v . at $27 \mathrm{amp} ; 40 \mathrm{v}$ at 9.8 $\mathrm{amp} ; 40 \mathrm{v}$ at $36 \mathrm{amp} ; 52 \mathrm{v}$ at $1 \mathrm{amp} ; 25 \mathrm{v}$ at 3.7 amp . 17.50 . P.P. $£ 2.50$.
L.T. TRANSFORMER. Prim 240 v . Sec. 20 v .
at 2.5 amp E2. P.P. 50p.
L.T. TRANSFORMER
£4. P.P. 50p.
L.T. TRANSFORMER ("C" CORE) 200/240v. Secs. 1-3-9-27v. All at 10 amp . £7.50. P.P. £ 1.50
L. T. TRANSFORMER (${ }^{\circ} \mathrm{C}$ " CORE) $200 / 240 v$. Secs. 1-3-9-20v. All at 4 amp £5.50. P. P. 75 p
L.T. TRANSFORMER ("C" CORE) $120 / 120 \mathrm{v}$. Secs. 1-3-9-9v. All at 10 amp £6.50. P.P.£1.50
L.T. TRANSFORMERS ("C" CORE)
$110 / 240 \mathrm{v}$. Secs. 1-3-9v. 10 amp .35 v . 1
amp; $50 \mathrm{v} .750 \mathrm{M} / \mathrm{A}$. £6.50. P.P. £ 1.50 .

BENTLEY ACOUSTIC CORPORATION LTD

7 G GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI. 6743

 osocos

 0.29
1.45
0.16
0.14
0.14
0.25
0.14
0.20
0.35
0.24
0.25
0.52
0.14
0.14
0.14
0.14
0.28
0.31
0.29
1.23
0.29
0.46
0.59
0.58
0.53
0.39
0.39
0.55
1.17
0.52
0.68
0.50
0.04
0.64
0.23
0.33
0.33
0.23
0.23

PRICES INCLUDE Y.A.T. NOTHING EXTRA TO PAY

 goods are unused Any parcel insured against damage in transit for 5 p extra per parcel. Condtions of sale available on
nequest. Many others in stock 100 numerous to list. Please enclose S . E. for reply to any enquiries

WW - O6O FOR FURTHER DETAILS

SEMICONDUCTORS

COMPONENTS
CARBON RESISTOR PAKS These Paks contain a range of Carbon Reaistors,
ed 100 ohms
820 ohms 1/th R2. 50 Mixed 1 K ohms R3. 50 Mixed tor 82 K ohms 1/4th 82 K ohms 10 th W R4. 820 K ohms 1 tht W R5. 30 Mixed 100 ohms R6. 30 Mixed 1 K ohms 8.2 K ohms $1 / 2 \mathrm{~W}$ R7. 30 Mixed 10 K ohms R8. 30 Mixed 100 K ohms $820 \mathrm{~K}^{\text {ohms }} 1 / 2 \mathrm{~W}$

These are unbeatable pric LOW COST CAPACITORS

500	$\mu \mathrm{~F}$	50 V	Elect	0.09
01	$\mu \mathrm{~F}$	400 V		0.03
	each			

REPANCO CHOKES \& COILS
$\begin{array}{lll}\mathrm{CH1} & 2.5 \mathrm{mH} & 0.27 \\ \mathrm{CH} 3 & 7.5 \mathrm{mH} & 0.29\end{array}$
$\begin{array}{lll}\text { CH5 } & 7.5 \mathrm{mH} & 0.29 \\ \mathbf{C H} & 1.5 \mathrm{mH} & 0.26\end{array}$ $\begin{array}{lll}\mathrm{CH} 2 & 5.0 \mathrm{mH} & 0.28\end{array}$ $\begin{array}{lll}\mathrm{CH} 4 & 5.0 \mathrm{mH} & 0.28 \\ \mathrm{CH} 4 & 10 \mathrm{mH} & 0.31\end{array}$
COILS
DRXI Crystal set 0.29
DRR2 Dual range 0.42
CARBON POTENTIOMETERS \log and $\operatorname{Lin} 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$. $220 \mathrm{~K} .470 \mathrm{~K}, 1 \mathrm{M} .2 \mathrm{M}$.

VC 1	Single Less Switch
VC 2	Single D.P. Switch
VC	3
Tandem Less Switch	
VC	1 IK Lin Less Switch
VC 5	l00K Log anti-Log

HORIZONTAL CARBON PRESETS

.I Watt 0.09 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$ $47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$.

REPANCO TRANSFORMERS

240 V . Primary. Secondary voltages $\mathrm{V}, 10 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}$ and $25 \mathrm{~V}-0.25 \mathrm{~V}$.

Type	Amps	Price	P\&P
MT50/1/2	$1 / 2$	$£ 1.79$	0.45

1T50/1
COIL FORMERS \& CORES NORMAN $11 / "^{\prime \prime}$ Cores \&
$3_{6}^{\prime \prime}$ Cores \& Formers
 PCrews)

INSTRUMENT CASES

COMPONENT PAKS
Pak Qty Description Pric
Cl 200 Resistors mixed values approx. count by weight Capacitors mixed value approx. count by weight Precis!
valuesferred types mixed values

C13 20 Electrolytics Trans. types
141 Pack assorted Hardware
Nuts/Bolts, Grommets, etc 2 Amp
C16 20 Assorted Tag Strips Panels .60 $\begin{array}{ll}\text { C17 } & 10 \\ \text { C18 } & \text { Assorted Control Knobs } \\ \text { Rotary Wave Change }\end{array}$ Switches Wave Change
192 Relays 6-24V Operating C20 Sheets Copper Laminate
Please add 20 p post and packing on all component packs, plus a further 10 p on ack nos. C1, C2, C19 \& C20

AVDEL BOND

SOLVE THOSE STICKY PROBLEMS

containing approx. 50 sq. ins. various SBes all 0.1 matrix
containing approx.
sizes all 0.15 matrix
DECON-DALO 33PC Marker*
Etch resistant printed circuit marker pen. Full instructions supplied with

BATTERY HOLDERS
Takes 6 H.P. 7's complete with terminal clip and lead $\quad{ }^{*} 0.31 \mathrm{p}$ each

V.A.T.

ALL PRICES EXCLUDE V.A.T.

Please add 8% to all prices marked *. Remainder add 25%. Do NOT add V.A.T. to prices marked \dagger.

ANTEX EQUIPMENT

 SOLOERING IRONSModel G . 18 watt
CCN 240. 15 watt BITS ANO ELEMENTS

BITS A Bit No.

Bit No.		
102 for model CN240	3/32"	* 42 p
104 for model CN240	3/16"	* 42 p
1100 for model CCN240	3/32"	*42p
1101 for model CCN240	3/8'	*42p
1102 for model CCN240	1/"	*42p
1020 for model G240	3/32 ${ }^{\prime \prime}$	* 42p
1021 for model G240	1/8"'	* 42 p
1022 for model G240	3/16"	* 42 p
50 for model X25	3/32'	*44p
51 for model X25	1/8' ${ }^{\prime \prime}$	*44p
52 for model X25	3/16 $6^{\prime \prime}$	*44p

ELEMENTS

Model ECN
Model EG 24
Model EG 240
Model ECCN 240
Model EX 25
SOLDERING IRON STAND

ST3 Suitable for all models	${ }^{*} £ 1.10$
Antex heat shunt	

Antex heat shunt	${ }^{\mathbf{E} 10 \mathrm{p}}$
PLUGS	PRICE
PS 1 D.I.N. 2 Pin (Speaker)	0.10

* $£ 2.45$
${ }_{*}^{*} £ 2.45$
* $£ 2.90$
+13.90

PS 2 D.I.N. 3 Pin
PS 4 D.I.N. 5 Pin 180°
PS 5
PS 6
PS 7 D.I.N. 7 Pin
PS 8 Jack 2.5 mm Screened
PS 9 Jack 3.5 mm Plastic
PS 10 Jack 3.5 mm Screened
PS 12 Jack $1 / 4$ Screened
PS 13 Jack Stereo Screened PS 14 Phono
PS 15 Car
$\begin{array}{ll}\text { PS } 15 \text { Car Aerial } & 0.09 \\ \text { PS } 16 \text { Co-Axial } & 0.14 \\ & 0.14\end{array}$

INLINE SOCKETS

PS 21 D.I.N. 2 Pin (Speaker)
PS 23 D.I.N. 5 Pin 180°
PS 23 D.IN. 5 Pin 180°
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic
PS 27 Jack $1 / 4^{\prime \prime}$ Plastic
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Screen
PS 31 Phono Screened
PS 33 Car Aerial

SOCKETS

PS 35 D.IN 2 Pin (Speaker)
PS 36 D.I.N. 3 Pin
PS 37 D.I.N. 5 Pin 180°
PS 39 Jack 5 Pin 240°
PS 40 Jack 2.5 mm Switched
PS 41 Jack $1 / 4^{\prime \prime}$ Swith Switched
PS 42 Jack Stereo Switched PS 43 Phono Single
PS 44 Phono Double
PS 46 Co -Axial Surface
PS 47 Co -Axial Flush

P.C.B. KITS \& PENS

PROFESSIONA

Containing 6 sheets of $6^{\prime \prime} \times 4^{\prime \prime}$ single sided laminate. a generous supply of etchant powder, etching dish, etchant measure, tweezers, etch resistant with spares, cutting knife with spare blades. $6^{\prime \prime}$ metal ruler, plus full easy to follow instructions.
Spare container of etchant for above Spare container of etchant for above,
complete with instructions
*70p
P.C.B. MARKING PENS
$2 \times$ quality market pens. specifically designed for drawing fine etchant resistant circuits on copper laminate per pair

AUDIO LEADS

CERAMIC PAKS

S221 5 pin DIN plu S222 length 1.5 m
 Containing a range of miniature

 length 1.5 m337 length 1.5 m to 5 pin DIN socket
5 pin DIN plug to 5 pin $\quad .68 \mathrm{p}$
2382 mirror image length $1.5 \mathrm{~m} \quad$ E1.20
length 5 m plug to 2 pin DIN socke length 5 m
5 pin DIN
\& 4 and 3 \& 5 io 3 pin DIN plug
52702 pin DIN plugio 1.5 m £1.00
2715
5 pin DIN plug to 2 phone plugs
1.5 m

S275 5 pin DIN plug to 2 phono sockets 23 cm
3185 pin DIN socket to 2 phono plugs connected to pin 3 \& 5 length
S404 Coiled
S 217 sion cord extends to $7 \mathrm{~m} \quad £ 1.40$
length 1.5 m . 80 p
2195 pin DIN plug to 5 pin DIN plug
S474 $\begin{gathered}\text { length } 1.5 \mathrm{~m} \\ 3.5 \mathrm{~mm} \text { Jack }\end{gathered}$
S600 $\begin{gathered}1.5 \mathrm{~m} \\ \mathrm{pin} \\ \text { DIN plug to } 3.5 \mathrm{~mm} \text { Jack } \\ .68 \mathrm{p}\end{gathered}$ connected to pins 3 \& 5 length
S700 5 pin DIN plug to 3.5 jack
connected to pins $1 \& 4$ length
1.5 m

CROSSOVER NETWORK

K4007 1/P Impedance 8 ohm
Crossover Frequency 3 KHz
PRICE $£ 1.12$

3-WAY-STEREO
 H/PHONE JUNCT BOX

H 1012 Enables change-over from loudspeaker to headphone listening Also has a centre position for both
outputs. \quad PRICE $£ 1.73$

HANDBOOKS

TRANSISTOR DATA BOOK. DTE 2 227 Pages packed with information on
European Transistors. Full specification including outlines. TRANSISTOR EQUIVALENT BOOK BPE 75256 Pages of cross references and equivalents for European, American and Japanese Transistors. This is the most comprehensive equivalents book on the market today and has an
introduction in 13 languages. hroduction in 13 languages. DIODE EQUIVALENT BOOK DE 74 144 Pages of cross references and equivalents for European, American and Japanese Diodes, Zeners, Thyristors. Triacs. Diacs and L.E.D.'s.
Price \dagger E1. 98 each MULLARD DATA Price EOKK 1976 MDB 74 The latest edition of this popular handbook contains information on Semiconductors, Integrated Circuits, Television Picture Tubes, Included in the 161 informative pages are 2l pages on Semiconductor Comparables Price $\boldsymbol{+} \mathbf{E 0 . 5 0}$ each TTL DATA BOOK DIC 75 Now complete Data book of 74 series TTL (7400-74132). Covering 13 main manufacturers in U.S.A. and Europe. this
book gives fulf data as well as eook gives full data as well as
Price + E3.74 THE WORLD'S BROADCASTING STATIONS WBS 75 An up-to-the DX-ing. Contains all the world's broadcasters on SW, MW and LW, as well as European FM/TV stations.
A full range of technical books
available on request.

INDICATORS
 3015F Minitron 7 Segment Indicator

SIL G.P. DIODES

$300 \mathrm{~mW} 40 \mathrm{PIV}(\mathrm{min})$ SUB-MIN
FULLY TESTED
Ideal for Organ builders
30 for $50 p^{*}, 100$ for $£ 1.50^{*}, 500$ for $£ 5^{*}$
ceramic capacitors
$\mathrm{MC1} 24$ ceramic capacitors: 22 pF,
$27 \mathrm{pF} .33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}$. $27 \mathrm{pF} .33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}$.
and 82 pF MC2 24 ceramic capacitors: 100 pF . $120 \mathrm{pF}, 150 \mathrm{pF}, 180 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}$. MC3 24 ceramic capacitors: 470 pF . $1500 \mathrm{pF}, 2200 \mathrm{pF}$, and $3300 \mathrm{pF} \quad .0 .60$ MC4 21 ceramic capacitors: 4700 pF , $6800 \mathrm{pF}, 01 \mu \mathrm{~F}, .015 \mu \mathrm{~F}, .022 \mu \mathrm{~F}, .033 \mu \mathrm{~F}$

MAMMOTHI.C. PAK * APPROX. 200 PIECES
Assorted fall-out integrated circuits. including: Logic, 74 series, Linear, Audio and D.T.L. Many coded devices OUR SPECLAL PRICE $£ 1.00$

WORLD SCOOP

JUMBO SEMICONDUCTOR PAK Transistors - Germ. and Silicon. Thyristors - Diodes - Triacs NEW AND CODED.

$$
\text { APPROX. } 100 \text { PIECES }
$$

Offering the amateur a fantastic bargain PAK and an enormous saving -iden
pak.
BIB HI-FI ACCESSORIES
REF

2 Hi-ri Cable \& Flex Tidy	$\mathbf{7 2 p}$
Tape Head Cleaning Kit	72 p

P' Hi-Fi Cleaner
${ }_{23}$ Model 9 Wire Stripper

29A Salvage Cassette
32 A Stylus Balance
33 Splicing Tape
41 8 Track Cartridge Head Carrier
Model 42 Groov-Kleen $\quad \begin{gathered}88 p\end{gathered}$
42/S Roller \& Brush for REF 42 \& 2000
43 Record Care Kit
45 Auto Cháanger Groov-Kleen
46 Spirit level
52A Casset Dust-off
53 Hi Fi Stereo Test Cassett 56 hi-Fi hints \& Tips
Model 60 Groov-Kileen
160/S Replacement Brush Vel
Replacement Brush Velvet Pa
and Base Sticker for Model $60 * 24$
62 Cassette Head Cleaner (Liquid) 48p
71 Record 'Dust Off' (Displays of ten
71A Record 'Dust Off' (Bubble Pack) ${ }^{* 66}$
75 Indexa Record
78 Cassette Fast Hand Winder
Cassette Title \& Container Labe

UNTTESTED LIN PAK̈

Manufacturets "Fall Outs" which
include Functional and part Functional Units. These are classed as "out-of-spec rom the maker's very rigid specificaions.'s but are ideal for learning about

PAK NO. CONTENTS

G.P. SWITCHING TRANS *

TO18 SIM. TO 2N706/8
BSY27/28/95A. All usable devices. No
PNP similar to 2 N 2906 , BCY 70. 20 for $75 \mathrm{p}, 50$ for $£ 1.50,100$ for $£ 2.50,500$
for $£ 12,1,000$ for $£ 20$

LOW-NOISE CASSETTES

SLIDER PAK

\section*{| C6 | |
| :---: | :---: |
| $\begin{aligned} & C 90 \\ & C 120 \\ & \hline \end{aligned}$ | * $* 5$ |

Postage and Packing add 25p
unless otherwise Shown. Add extra
for airmail. Minimum order $£ 1.00$

Containing a range of stider pots.
$\begin{array}{lll}6 & 7 \\ 6 & 4 \\ 6 & 1 \\ 6 & 2 \\ 6 & 4 \\ 6 & 4\end{array}$ 47 OK
10 K
22 K
47 K
47 K

KK Lin. slide
Kin. slider.

앙웅영영영

Bl-PAK
 \cdots

$£ 19.95$

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls UTEREO 30 exing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 cant be used if no suitable supply is available, together with the Transformer T461
The $\$ 450$ is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

* FET Input Stage

 * VARI-CAP diode tuning - Switched AFCMulti turn pre-sets * LED Stereo Indicator

Ypical Specification:
Sensitivity 3μ volts
Stereo separation 30db Supply required 20-30v at 90 Ma max.

STEREO PRE-AMPLIFIER

PA 100
 OUR PRICE £13.50

SPECIFICATION:
Harmonic Distortion
$\mathrm{PO}_{\mathrm{o}}=$
 20-30

MPLIFIER MODULES

The AL10, AL 20 and AL30 units

 are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S. The versatility of their design makes them ideal for use in record players. tape recorders, stereo amplifiers and cassette and cartridge tape players in the home. ts $f=1 \mathrm{KHz} \mathrm{O} \mathbf{~} \mathbf{~} .5 \%$ - Frequency response $\pm 3 \mathrm{~dB}$ Po=2 watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$Sensitivity for Rated O/P- $\mathrm{Vs}_{\mathrm{s}}=25 \mathrm{v}$. RL=8ohm f=1KHz 75 mV .RMS al 10
£2.30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only It is provided with a standard DIN input socket for ease of connection Full instructions supplied

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind wil produce a high quality audio unit suitable for use with wide range of inputs i.e. high quality ceramic pick-up stereo tuner. stereo tape deck etc. Simple to install. capable of producingreally firstass clasuls. this unit is supplied with full instructions, black front panel knobs main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of instaliation difficulty (can be installed in 30 mins)

TRANSFORMER £2.45 plus $62 p p$ \& TEAK CASE $£ 3.65$ plus $62 p p$ \& p.

AL 6025 Watts (RMS)

 * Max Heat Sink temp 90C. * Frequency response 20 Hz to 100 KHz * Distortion better than 0.1 at 1 KHz * Supply voltage $15-50 v$ * Thermal Feedback \star Latest Design Improvements Load - 3,4,8, or 16 ohms \star Signal to noise ratio 80 db * Overall size 63 mm .105 mm 13 mm . enthusiast

Stabilised Power Supply Type SPM80
SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm 30 mm . Incorporating short circuit protection
Transformer BMT80
£2,60 + 62p postage
$£ 3.00$

Input voltage $15-20$ v A.C. Output voltage $22-30$ v D.C Output current 800 mA Max. Size $60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$
Transformer T538 £2.30

OUR Palce $£ 1.20$
BT-PAK
P.O. BOX 6, WARE, HERTS.

High quality competitively priced Knobs in production quantities only. Min. order 1000 Pcs of any one of 266 types ${ }^{1}$

KNOB CAT.: WW 124 FOR FURTHER DETAILS

We can now affer a range of or without gear heeds for $A C$ and $D C$ operation.

MOTORISED ZOOM
LENSES FOR TV \& CCTV

OC pulse driven Turntable Units of especrally high performance.

ENVIRONMENTAL TEST EQUIPMENT

A Standard Range offering the following facilities:

High temperatures to $500^{\circ} \mathrm{C}$ Low temperatures to $-75^{\circ} \mathrm{C}$ Humidity Cycling
Thermal Shock
Vibration
Pressure Cycling
Sand and Dust exposure Corrosive Gas exposure Explosion Test

Also embraced in
the range of

VACUUM DRYING EQUIPMENT HYPERBARIC OXYGEN SURGERY CHAMBERS

TABAI INFO.: WWI26 FOR
FURTHER DETAILS

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, TEST EQUIPMENT, METERS AND CONNECTORS Servo and Electronic Sales Ltd
 201-1296-23. TELEX 965265

LEMANIA AIRCREW CHRONOGRAPHS Stanless stoel case with screw back, , lummous
hands and markngs Onerith sec sweep hand convolied and independently of main movemen
by press to start siop and retum to zero bution 15 S.ewel movemen Mony of these waiches are
as new but all have been completely overhauled

LEMANIA STOPWATCHES Fitted with one red and one black sweep hands inde pendently controlled enabling elapsed periods forming part of the main
period to be measured separately without stopping the period to be measured separately writhout stopping the
measurement of the main time period. Absolutely mint

1/10 SEC. STOPWATCHES Overheuled, E0.e0 (inc. P. \&P. \& VAT).

1/100 8EC. STOPWATCHES
$0-6$ sec., EA. 50 (inc. P. \&P. \& VAT).
CAMBRIDGE INST. MIRROR GALVOS $4.50 \mathrm{chm}, 10$ (ince. P. AP. 8 VAT).

500-WATT CW TRANSMITTERS 51026 MHz , P.O.A

HEAVY DUTY FLEXIBLE POWER

 CABLESType A 2 core ench 750A 440 VAC . Type B 4 core each 200A 440 VAC 100 ft lengthe.

PANEL DISPLAY RECORDING CAMERA Manufactured A.G.I. Specifically for the recording of complex mstrument displays on $21 / 4$ in $\times 21 / 1 /$ in shots Fitted 80 mm
F3.5 lens. Shutter speeds $1 / 100,1 / 50,1 / 25$ sec exp. Focusing at 175 speds $1 / 100,1 / 50,1 / 25 \mathrm{sec}$ and time exp. Focusing at 1.75 to 50 ft . in 18 steps. Aperture settings
F3.5 to F22. Prismatic viewfinder and factily for viewing direct on ground glass screen. Rotating fitter attachment. Cord film advance and shuter cock with separate Button control and electrical release facility (24 V DC). Spool holds 40 exposures. Camera may be wall mounted on bracket supplied. Tripod mounting socket provided. In wooden case. Two grades avalable as new. Grade $A £ 35.50$ (inc. $P \& P$ ana VAT). Somewhat used but serviceable Grade B E28.40 (inc P P.
\& P and VAT). \& P and VAT).
${ }^{m}$ SYNCHROS SERVOMOTORS

EX STOCK
COMPUTERS AND
PERIPHERALS

 computers mstrumimitation and control equipment etco and we have a
 Chns Setod ditxot hestate wo get in touch with us Coniact D P Manager

OVER 300,000 RF AND

 MULTIWAY CONNECTORS IN STOCK. TELEX YOUR REQUIREMENTS NOW!FORTHCOMING IEA-Electrex 1976 National Exhibition Centre, Birmingham, 3-7 May 1976 EXHIBITIONS Leetronex 1976, Leeds University, 29-30 June, 1 July, 1976 Tickets free on receipt of SAE (1 for each Exhibition please)

FOR YOUR PRODUCTION REQUIRENENTS USE ALPS PANEL METERS
Substantial quanyty discounts to manutacturers Remembert we are the sole importers!

ENGINE TEST EQUIPMENT

SERVO AUTOTESTER No. 1. 0.3 .2 \& $0.16 \mathrm{v}, 0.80 \mathrm{~A}-\mathrm{DC}$ \& 0 20 K Ohms. dwell angle and speed for 4,6 \& 8 cyl. engines and EHHS SEC VOLTS A subslitute capacitor is incorporated Size $265 \times 14 \times$
16.5 cm. wi 325 Kg Wih handbook $\mathbf{E 3 0 . 3 7} \mathrm{inc} \mathrm{P} \& \mathrm{P}$ \& VAT

SERVO AUTOTESTER No. 2.
 Size $16 \times 9.5 \times 65 \mathrm{~cm} \mathrm{~W}_{\mathrm{t}} 045 \mathrm{Kg}$ With instns. $£ 11.15$ inc. $P \& P$ \& VAT

SERVO AUTOTESTER No. 3.

SERVO AUTOTESTER No. 4. Owell angle and engine speed Hand held instit Size 14

MULTIRANGE TEST METERS \& LOW-PRICE INDICATORS AND PANEL METERS AVAILABLE WITH PERSONALISED SCALES

, giovSAVE wE1,000, PER ENGINEER ${ }^{*}$ with THIS BOOK

\star With the Colour Faults Guide system of rapid, on-the-spot diagnosis of colour set faults the originating firm, Colour Vision Rentals Ltd, reported savings of the order of well over $£ 1,000$ per engineer per year.

HOW IT IS DONE . . . A tabulated index of fault symptons and the most common circuit troubles causing them quickly enables the engineer in the customer's home to locate the cause of the breakdown and the panel or assembly in which it has occurred. He can then change the panel (etc) on the spot from his van stock and return the faulty item for repair subsequently, and return to stock. The originating firm calculates that an average of about 3 hours a week per engineer is saved, plus an average of one workshop uplift less per engineer - hence the $£ 1,000$-plus per year saving.
The Colour Faults Guides, E R T's top innovation of $1974-5$, covering 14 widely used chassis, are now collected in book form for sale at £1. 70 inclusive per issue.

CAN YOU AFFORD YOUR MEN NOT TO HAVE A COPY WITH THEM ON EVERY JOB?

The fourteen chassis covered in the book comprise:- Decca 30 series; GEC 2210 series; GEC Hybrid 2040 series: Hitachi range - CAP 160, CEP 180, CNP 190; ITT CVC5; Philips G8; Pye CT200 series. Pye 691-697; Rank R I A823/A; Thorn C E $3000 \& 3500$; Thorn (BRC) $8000 / 8500$ series; Bang \& Olufsen 39 series - Beovisıon 3500, 3600, 400, 600; Skantic - all models except earlier 22 in . hybrid.

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including all drilling positions automatically marked.
Ideal for single unit boards or small quantities. All at a very low cost-for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30p, and the time taken under one hour, including etching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transfers made in required shapes - i.e. edge connectors, lines, pads, dual in line I.C.s, 8-10-12. T.O.5 Cans, 3-4 lead transistors, etc., etc., which only require pressing into the required positions on the printed circuit board before etching.

The printed circuit transfer system is a genuine offer to the public and industry, A full money back guarantee is sent with each order, trade prices on application

List of Prices

Complete system including post and VAT

Sample sheet
30p
Ex. U.K. Post Extra . £1.00
Printed circuit board PCB transfer systems patent applied for

E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE TELEPHONE NUMBER 061-480 2179

D. 5. B! 는
 10 CHAPEL ST. LONDON NWT. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF80id/IS. $10-480 \mathrm{mHz}$ P.O.A MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ £225.

HGN MS3/U. 9.7-11.9 and $77-109 \mathrm{mHz}$. AM $/$ FM
ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} £ 125$
RACAL/AIRMEC 201 . $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A.
ADVANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES

SOLARTRON CD 1400 DC .15 mHz
COSSOR CDU110. DC-80m mz
TEKTRONIX $545 A$ with CA unit. DC-30mhz. Price

TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545B DC- 30 mHz with 'CA' plug-in.
TEKTRONIX 5B5A. DC-80mHz with type 82 plug-in.
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502. 200uV Sens. X-Y
TEKTRONIX C27 Polaroid Camera

Abstract

CO-AXIAL CHANGE OVER RELAYS. Terminated in N-ivpe sockets (3 off) Suilable for frequencies avallable at 50 p each Relay only avallable at $\mathbf{£ 5 . 5 0}$ each PRINTED CIRCUIT MOTORS. Manufactured in US by Photocircuits diameter These are quality made, high diameter These are quality made. hiog ist price Only $£ 8.50$ each

> "WEE MEGGERS'. 250 V Insulation Testers Good working condition £8.50.
'MUFFIN' INSTRUMENT FANS. \bar{M}-̄nufactured in Holland by Rotron Dims $4.5 \times 4.5 \times 15$ ins This is a precision cooling fan, very quiet running specially designed for the cooling of electronic equtpment. amplifiers, etc 115 V .50 Hz operation,
drawing only 11 Watts The list price drawing only 11 Watts The list price price. brand new, מnly $£ \mathbf{4 . 5 0}$ each

MINIATURE DEAC NI.CADMIUM batteries. type 700 K 3 cells in package post paid

> E.M.I. oscilloscopes type RMO 15 Response to 40 mHz 5 inch CRT 10 KV E. T T We can offer these quality oscilloscopes at the exceptional price ot only $£ \mathbf{3 5}$ each to callers ofily

ADVANCE type 63 A AM/FM R F Signa generators $7.5-230 \mathrm{mHz}$ Deviation $0-22.5$ and $0-75$ kHz. X-sweep outpu
R.F SIGNAL GENERATORS R.F. SIGNAL GENERATORS.
$1.5-220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation. $1.5-220 \mathrm{mHz}$. 100 mV output. Sold in excel. lent condition. P.O.A

METRIX 210 WOBBULATORS.
0255 mHz Sweep width 5.20 mHz
Output 100 mV attenuable in steps of
10 to 10 uV . Last few of these left at
only $£ 15.00$ each to callers only.
EM. 1 oscilloscopes model WM 16 with
type $7 / 1$ W B A plug-in unit Sup-
plied in perfect condition complete with
trolley $\mathbf{£ 1 2 5 . 0 0}$.

20-way BPO Jack strips to accep 316 type Jack plugs. Also quantity of 316 plugs available. All good snndition.
Centrifugal blowers by WOODS 8 inch snall type Outlet $23 / 4 \times 2$ in 24 V DC
28 A
2400 rom Grey stove finish 28 all brand new. Price is $\mathbf{£ . 1 0 . 5 0}$ carnage

GENTS/FRIEDLAND fire alarm bells Operating voltages $12 \mathrm{v} \mathrm{dc} / 24 \mathrm{v}$ dc All in as new condition and tested Prices $£ 4.80, \mathbf{£ 5 . 2 0}$ and $\mathbf{£ 6 . 5 0}$ resp.

COMPUTER PERIPHERALS. Tape punches 8 hole by Westrex and other well known manufacturers Tape readers by Elliot All virtually brand new Prices are better than one half the

An exceptional buy enables us to offer stabilised and regulated power supplies by APT at a very cheap price. 16 -24v dc (a) 10 Amps . and $8-10 \mathrm{v}$ dc @ A Both supplies are extremely stable with low ripple voltage Price each $£ 18.50$ + carriage

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. £105
MARCONI TF791 $\overline{\mathrm{D}}$ deviation meter. $4-1024 \mathrm{mHz} \quad 0.100 \mathrm{kHz}$ deviation MARCONI 455 E Wave Analyser $£ 120$.
MARCONI TF2600 Valve Volimeter 1 mV -300V. Excellent $£ 75$. ROHDE \& SCHWARZ USVD calibrated receiver $280-940 \mathrm{mHz}(4600 \mathrm{mHz})$ LEVELL TG200 DM. RC Oscillator. c/w case. £65.
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz} .1 .600 \mathrm{mHz} £ 175$
COSSOR 1453 True RMS milli-voltmeter Excellent $£ 75$.
AIRMEC TYPE 210 modulation meter Excellent condition.
ROHDE \& SCHWARZ "SCR' V H F. Signal Generator $1000-1900 \mathrm{mHz}$ MARCONI type TF936 Impedance Bridge. £85.00
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV} \cdot 300 \mathrm{~V}$, in 12 ranges
SOLARTRON oscillator type CO $546 \quad 25 \mathrm{~Hz}-500 \mathrm{kHz} \mathbf{£ 3 0 . 0 0}$
GAMBRELL Precision 4 Decade Ressstance Box. 1-11. 110 ohms £24.50

Greenwood Electronics

Greenwoon Electronics Portman Road Reading. RG3 1NE Telephore 0734-595844 Telex 848659

[^5]

MINICOMPUTER BARGAINS!

TEXAS 960A MINICOMPUTER

 Speed Reader/Punch. Additional Releiype and Somm Reader/Punch. Additional teletype and backup. Sations interfaces, also Interval Timer and battery included. Maintenance and software backup (inc FORTRAN) available from T.I£1695 PDP 8/S, 4 K store. ASR33 Teletype - the system with very recent certificate of inspection by DEC. Software includes FOCAL \& FORTRAN
$£ 895$ PRINTEC $100 \mathrm{ch} / \mathrm{sec}$. PRINTER. Model 100 . These units are a current model and are under a year old. New cost c. $£ 2,000$. Parallel TTL interface - other interfaces (incl. RS232) available from distributors£465 ASR 33 Teletype, ASCII, etc.
£275

VIATRON VDU incorporating iwin cassette units having high-speed bi-directional search facility. Maint., etc. available for these units $\ldots 225$ G.E. High Speed Tape Reader in rack cabinet. With driver card tor stepping motor NEW68 HONEYWELL High Speed CARD READER. Installed
 EAL Gamma Spectrometer. With tube. NEW .. £185 Flexowriters, paper tape typewriters, from ... £50 BURROUGHS E2100 ACCOUNTING MACHINE £165
MEMODYNE Incremental Cassette Unit. NEW £225 Quantity Honeywell Core Store available, also VIATRON Incremental Recorder P.O.A.

Attenuate with hetesple
 Now with the latest additions to the range, you can select for ALL your needs from the \quad following

WW - 108 FOR FURTHER DETAILS

DS ROAD (Dept. WW4). SIMMONDS ROAD
WINCHEAP. CANTERBURY, KENT Tad: (0227) 52436

SAFETY ISOLATING
 AUTO TRANSFORMEFS Sye catioge to

			Pqice	ull range	
$\text { (Wans) }_{\text {(VA }}$	$\begin{aligned} & \text { Ref } \\ & \text { No } \end{aligned}$	Paice	$\begin{aligned} & \text { Blugs } \\ & 2 \text { 等 } 3 \text { pin } \end{aligned}$	PRICE Open	Post
1500	93	23.26	1195	1922	OA^{2}

MINIATURE \& EQUIPNENT

See caraiogue tor tult rance

 Primary| sec. | Sec. 2 | | Sec. 2 |
| :---: | :---: | :---: | :---: |
| 30.3 | | 200 | |
| 06 | ${ }^{0.6}$ | 50 | ${ }^{1}$ |
| ${ }_{0}^{0.6 .9}$ | 06 | 1000 | 1000 |
| 0.9 | -9.9 | 100 | 338 |

12 and 24 VOLTS PRIMARY 200.240 Volts

Y
s

See catal
full range

		${ }^{\text {aff }}$	price	Post
128	${ }_{2}^{244}$	**	${ }_{5}$	${ }^{\text {f }}$
${ }_{0.5}^{0.3}$	0.25	${ }_{11}^{24}$	1. 60	0.46
	0.5	213	1.90	0.61
$\stackrel{2}{1}$,	7	${ }^{2497}$	${ }^{0.61}$
4	${ }^{2}$	18	${ }^{3.07}$	062
${ }_{8}^{6}$	${ }_{4}^{3}$	79 108	4.50	${ }_{0.85}^{0.72}$

NEMT ${ }^{2 \prime \prime}$ AND $4^{\prime \prime}$

SPECIAL OFFER!
2 KVA ISOLATORS
Fully impregnated \& screened 2 primary windings $\mathbf{~} 110 \mathrm{~V}$ egch
2 secondarin windings
115 V each 2 secondañ wind ings 115 V each
12 matchung transisormers) $£ 29.50$ plus carr. \& VAT.
-octuccuctu-4

- please add 8% vat on all transformers \& meter

RADFORD HD250

High Definition Stereo Amplifier

$$
= \pm 1+1
$$

HATFIELD INSTRUMENTS LIMITED. Burringten Wav, Plymouth PL5 3LZ, Devon. Telephone: Plymolth (0752) 772773 Telex: 45592. Srams: Sigien, Plymouth.

ELECTRONIC BROKERS

Electronic Brokers Ltd．
are one of the leading
electronic instrumentation
companies in the UK；
providing a full range of
services to Universities，
Industry，Colleges and
Governments both at home
and overseas．
We have the largest
stocks of secondhand test
equipment in Europe as well
and
as a selected range of new products．These are on display at our London showrooms where customers can examine the equipment of their choice and see it working

Electronic Brokers Lid．
have fully equipped
workshops on the premises to test and report on the majority of equipment we sell．

TELEPHONE TEST EQUPFWENT

 PULSE GENERATORS

 Sweed OScillator 69384 －8GHz SPECIAL OFFER $£ 325$

 Sweep S：gnal Generator 9008 Central Freqs | 400MH2 |
| :--- |
| M．E．S |
| Swept |

SIENAL SOURGES

Yititiow AIRMEC
HF Signal Generator $20130 \mathrm{KHz}-30 \mathrm{MHz}$（ 7 bands）

TOKHz
GENERAL RADIO
Unit Oscillator $\dagger 209 \mathrm{C}$
\％Dritt 02% O／pin to 5 Oohms $=150 \mathrm{~mW}$ Accuracy
 Unit Oscillator 1218 A ， 900.2000 MHz Power outpur
of 200 mW across band $\begin{array}{ll}\text { Unt oncilator } 1363 \text { Spec on request } & £ 140.00 \\ \text { HEWLETT PACKARD }\end{array}$ HEWLETT PACKARD FM／AM Signal Generator 202H．FM A．M CW \＆
pulse coverage 54 to 216 MHz R．F O／D 01 V． 02 V 50 hms Impedance

 Int A M
Superb condtion \＆ 1000 Hz Ext AM $\quad 20 \mathrm{Hr}-20 \mathrm{KHz}$
$£ 895$
 SH．F．Signal Generator 618C $28.76 \mathrm{GHz} £ 39.00$ 500 hms
UHF Signal Generator $616 \mathrm{~A}: 8.42 \mathrm{GHz}=\begin{aligned} & \mathbf{5 5 5 0 . 0 0} \\ & \mathbf{E 4 7 5} .00\end{aligned}$ MARCONHINSTS．
 pap． 200 mV ．Intemal \＆Exlernal Mod Facilities $\mathbf{~} \mathbf{V}$
 in 5 bands 0 Y $1 \mathrm{~V} \cdot 200 \mathrm{mV}$ F M up to $\pm 120 \mathrm{KHz} 10 \mathrm{~m}$
$50 \mathrm{~Hz} \cdot 15 \mathrm{KHz} \mathrm{AM}$ up to 50% from $100 \mathrm{~Hz} \cdot 10 \mathrm{KHz}$
人⿻上丨aty

Phase／AM Signal Generatol TF	
04.12 MHz	2003
150	

 dance
Heverodyne Generator
E295．00 Heterodyne Generator TFI 221
2MHz－100M
EMz
E45．00
 Portable Rece
70 KHz 70 MHz

 10 Hz .1 CMMz Squate wave $10 \mathrm{~Hz}-100 \mathrm{KHz}$ Direct
 Phase A M M Sigal Generator TF2003
$04.12 \mathrm{MHz}_{2}$
 Signal Generator TF $144 \mathrm{H} / 4$ Late models in superb AM FAM Generalo：TF995B／5 Erand to E650． Mnused）

 Superb conduron
 AMODE \＆SCHWARZ MS27G £31 Frequency Synthessser Type XUC（8N444466）C／
XSU Power Supply \＆Callbrator（Brand WAYNE KERR
17.6
675.00
150.00

OSCILLOSCOPES

CDU110 DC－20MHzC wCAM 111 Plug in $\mathbf{E 2 4 5}$ HEWLETT PACKARD retlectoneter For ressing of catiles connector
rime domain

 Aus Pluello 1780 A Display Scanner 1782 A Sine 1783 Delay Gen i78ib Dual Trace Vert Amp 1750 a Delay Ge＇
MARCON：
TV Scope IF 2200A． $1 \mathrm{c} \cdot \mathrm{w}$ TV 0.14 plug in TM
6457A CC 30 MH ？
 ceupled 50 mv cm sensitivity
SOLARTRON SOLARTRON

 | Portable＇icope CO |
| ---: | :--- |
| CX 1400 OC． 15 MHz Plug ins avalable |
| $\mathbf{E 1 8 0}$ |
| 180 |

10.12 ｜Scope Single Bearn $50 \mathrm{MV} / \mathrm{cm}$ DC－ 45 MHz
5° Tube Assembled Refurbished Our price $\mathbf{~} \mathbf{4 9 . 5 0}$ roband
 tektronix
Sampling Scope $661 \mathrm{c} / \mathrm{w}$ plug ins
453 DC 50 MHz Sold slate 8 d poriable
$\mathbf{E 4 5}$

COLTUETERS

advance
FSO Millivaltmeter 50 Hz .45 MHz 0001 V to 300 V Soltmeler VM 80 AV volts $0-500 \mathrm{~V}$（ranges 61 DCV V 42 DAWE DAWE

The most comprethersive catalogue of its hind Send 50p toward printing，postage，atc be sent by return． Ealecronic Brokers
catiog．will then keap the chatague updated
sheers free of charge

the testequipment people
 On these pages you will

M

Carriage and packing charge extra on all items unless otherwise stated.

Please note: All instruments offered are months unless otherwise stated.
find just the briefest selection from the vast range which we hold in stock at any one time.

If you are seeking a specific item and it is not listed, it will pay you to ring us first - we believe we offer the best prices and the best service.

D WIDE EXPORT
Enquiries and tenders welcome from any part of the world. HOW TO REACH US

We are easy to reach, no matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over half an hou- from Heathrow Airport. Parking is easy too.

49-53Pancras
 Road, London NW12QB
 lel:O1-8377781

RHODE \& SCHWARTZ

$£ 210$
f 110
f 19

STROBOSGOPES \&

 TACHOWETERS
STROBOSCOPIC

 TACHOMETERTwo units ir one

$£ 49.50$

'TOUCHLESS'
RETRO-REFLECTIVE TACHOMETER

$£ 89.50$

LTD

 secondhand and tested and guaranteed 12

Price 111.95

SUPERTESTER 680R - I.C.E. 20.000 OHMS, $\left.\begin{array}{c}\text { RACOL } \\ \text { RAGES }\end{array}\right]$

Price $£ 18.50$

ACCESSORIES FDR 680R

 AND MICROTEST 80 (EXTRA)AMBERCLAMPAC
$(1195 \mathrm{HV}$. PROBE MOD. 1825 kV (MAX) 1,

 Fsctor $\times 100000$ R Range wwith 680R) 0.100 M
 MOOD 28100400 V (AC) $50-60 \mathrm{~Hz}$ £5.95 D.C CURRENT SHUNTS MOD 32 SERIES 10A 25A

POWERTRAN ELECTRONICS

HI-FI NEWS 75W /CHANNEL AMPLIFIER

By J. L. Linsley Hood

	Sat of resistors. capacitors. pre-sets for power mp. $£ 1.70$
	Set of semiconducters tor power amp. £6.50
	Peir of 2 drilled. finaed he at sim
	Fibreglass printed-circuit board for pre-a
6. Sel of law moise resistors. capacitors. pre-sets for ргя-апр . غ2.70	
Sel of low maisa. high gain senicoaductors for pre-amp	
8. Set of potentiometers (finctuting.mains switch) $£ 2.05$	
9. Set of 4 push.bution switches. rotary mode switch.	
10.	

Pack Fibreglass printed-circuil board Price supply. 2. Sel of resistors. capacitors. secondary fuses. semi-conductiars for power supply. $\mathbf{\text { E } 3 . 5 0}$ 3. Sel of misceliantous parts including DIN skts. mains input ski, tuse hoider. inter-Comnecting cable. contro 4. Sel of matabwork parts inctuding silk scre. 25 4. Ses of matalwork parts inctuding silk screse printed tascia panat and all brackets. fixing parts. atc. $£ 6.30$

2 each of pecks 1.7 inclusive are required tor complete storeo system. Total cast of individually purchases
packs

In H1-F1 News there was published by Mr. Linsley-Hood a series of fou articles (November, 1972 -February. 1973) and a subsequent follow-up article (Apri. 1974) on a design for an amplifier of exceptiona direct coupled fully protected output stage. power in excess of 75 wam direct coupled fully protected output stage, power in excess of 75 wat evels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where mos conventional designs run out of gain at the extremes of the frequenc spectrum Unusual features of the design are the variable transition requencies of the tone controls and the variable slope of the scratch filter There is a choice of four inputs. two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed
Toroidal transformer.

FREE
 TEAK CASE WITH FULL KITS
 $£ 62.40$

WIRELESS WORLD FM TUNER

[^6]

9. Fraction swilch. 10 tura turien pritentionater Price demodulator. AFC and mute circuits $£ 2.15$ 2. Set of metal axide resistors. thermistor. capacitors. cermet preset for maunting on pack 1 £4.80 3. Set of transintors. diades. LED. Integrated circuits for mountime on pack $1 . .$. $£ 6.25$ section ceratic filtor 10. Friquancy meter. me knabs
5.30 meter drwe compenents. Fibreglass pind circuit buart $£ 8.60$ 1. Toroidal transtormer with electrostatic scricta. 2. set of capacitors. rectifiers, voltage regulator for Set of rist … 22.95
 Sof of metal work parts iscluding silk screen printed tacia panel. acrytic silk screan printed printed acia panel. acryic silk screan printed turing
indicstor panel insert. intormal screan. fixing parts indicator panel insert. intornal screen. fixing parts
15. Construction noles firee with complete kit)
6. reak cabinet $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$

Dime each of packs 1.16 inclusive are required lor complete steren fim tumer. Toral cost of individually purchased pack

FREE

TEAK CASE WITH FULL KITS

srractem $\mathbf{E 6 6 . 7 5}$

PRICE STABILITY!
Order with confidence! |rrespecuve of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts
U.K. Orders: Subject to 25% 'Surcharge for VAT. Carriage free MAIL ORDER ONLY ('or at current rate if changed)
Securicor Delivery. For this optional service (Maınland only) add $£ 2.50$ VAT inc. per kit.
Overseas Orders: No VAT. Postage charged actual cost plus 50p packing and handling

DEPT. WW 04
POWERTRAN ELECTRONICS

Hong Kong Jersey Australia St. Lucia India Barbados Antigua Jordan Spain Israel Mauritius St.

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T} \mathbf{2 0}+\mathbf{2 0}$ and our new $\mathbf{T} \mathbf{3 0 + 3 0}$ 20W, 30W AMPLIFIERS

1 Sat ol low noise resistors
. Set of small capacitors
3. Sat of power supply capacitor
4. Set of miscellaneous parts
5. Set of slide. mains. P.B. switches
6. Sel of pots. selector switch. .
$\begin{array}{ll}720 & 130 \\ 0.95 & 1.05 \\ 1.50 & 2.10 \\ 1.40 & 2.05 \\ 1.90 & 1.90 \\ 1.20 & 1.20 \\ 2.00 & 2.00 \\ 7.25 & 7.75\end{array}$

Pack
8. Toroidal Iransiormer -240 V prim. L.s. screen . 9. Fitragilass PCE
. Set of mealwork. fixing part 1. Set of cables, mains lead 2. Handbook litree with complete kit)

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroidal transtormer and additiona improvements, the slımine T $20+20$ delivers 20 W per channel of true $H_{1}-F_{1}$ at exceptionally low cos The design is based on a single F/Glass PCB and features all the normal facilities found on Quality amplifiers. including scratch and rumble filters, adaptable input selector and head phores socket. In follow up article in Practical Wireless further modifications wo sugg and a incorporated into the T30 +30 These include RF

T20 $\quad 130$
$4.95 \quad 6.80$
$\begin{array}{ll}2.50 & 2.90 \\ 4.20 & 4.80\end{array}$
$\begin{array}{ll}4.20 & 4.80 \\ 0.40 & 0.40\end{array}$
$\begin{array}{ll}0.40 & 0.40 \\ 0.25 & 0.25\end{array}$ $\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}$

FREE
teak case with full kits
T20 +20
KIT PRICE only 228.25 T30+30 KIT PRICE only $532=95$

2 NEW TUNERS!

WW SFMT II

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce out new cost reduced model. designed to complement the $T 20$ and $T 30$ amplifiers. The frequency meter of however the circuitry is identical and this new kit offers most exceptiona value for money. Facilites included are switchable afc, adjustable switchable muting, channet selection by sider or readily adjustable pre-set push-button controls and LED tuning indication Individual pack prices in our free list.

KIT PRICE
$£ 47.40$

POWERTRAN SFMT

This easy to construct tuner using our own circult design includes pre-aligned front end module, PLL sterec decoder, adjustable. switchable muting, switchable atc and push-button channel selection As with all our full kits, all components down to the last nut and bolt are supplied together with full constructional details

KIT PRICE
$£ 32.60$ - $110.0 \cdot 0.00000$

CONVERT NOW TO QUADRAPHONICS
With 100s of titles now available no longer is there any problem over suitable software No problems with hardware etther Our of your existing amplifier and drives two additional speakers at 30 W per channel. A full complement of controls including volume, bass, treble and balance are provided as ara

SEMICONDUCTORS

as used in our range of quality audio equipment

$2 \mathrm{N699}$	$\underline{60.20}$	Bi212k	$\underline{50.12}$	MPSA65	¢0.35
2 N 1613	¢0.20	BE 582 L	60.10	MPSA66	c0.40
2N1711	¢0.25	BC184L	¢0.1t	MPSUOS	¢0.60
2N2926G	50.10	BC212L	c0.12	MPSU55	c0. 70
2N3055	¢0.45	BE2141	c0.14	SBA750A	¢2.50
2N3442	£1.20	8cy 72	60.13	St301	£1.30
2N3711	c0.09	8D529	£0.85	SL3045	¢1.60
2 N 3904	¢0.17	B.5530	¢0. 85	SN72741P	¢0.40
2N3906	¢0.20	BDY56	£1.60	SN72748P	$\underline{80.40}$
2 N 4062	¢0. 11	8F257	$\underline{60.40}$	tıL209	¢0.30
2 N 4302	E0.60	B $=259$	¢0.47	TIP29A	¢0.50
2 N 5087	¢0. 42	BfR39	¢0. 25	IIP30A	$\mathrm{E}^{6} .60$
2 N 5210	¢0.54	BFR79	¢0.25	1 1P29C	c0.71
2N5457	60.45	BFY51	£0.20	IIP30C	¢0.78
2N5459	¢0.45	BFY52	co. 20	TIP41A	¢0. 74
2N5461	£0.50	CA 3046	¢0.70	TIP42A	¢0.90
2N5830	¢0.35	$L^{2} 1186$	¢5.50	TIP418	¢0.82
40361	$\mathrm{f}^{6.40}$	NCL 310	£2.90	T\|P428	60.98
40362	¢0.45	NC1351	£1.05	1 N914	¢0.07
BC 107	¢0.10	NiFC4010	¢0.95	1 N 916	¢0.07
BC 108	¢0.10	N .481	¢1.20	15920	¢0.10
BC109	¢0.10	N. 4491	E1.30	5805	E1. 20
BC109C	¢0.12	NiJE521	¢0.60	FILTERS	
BC125	60.15	NPSAOS	¢0.25		
BC 126	E0.15	MPPSA12	$\underline{10.55}$	FM4	¢0.80
BC182	c0.10	NPSA14	¢0.35	SFG 10 7MA	E2.80
BC212	$\underline{0.12}$	SA55	c0.25		
BC182k	¢0.10				

comprehensive switching facilties enabling the unit to be used for either front or rear channels, by passing the decoder for stereo-only use and exchanging left and right channe:s The SQ matrix decoder is based upon a single integrated circuit and was designed by CBS whilst the power and tone control sections are identical to those used in our $\mathrm{T} 30+30$ amplifier which the Special offer to $T 20+20$ and Texan owners
speciar offer to $20+20$ Kind pice incluwners
monitor outlet purchasing an SQM 1.30 will be supplied ape request, a free conversion kit to fit a tape monitoring facility to the existing amplitier This makes simple the connection to the highly adaptable SQM 1-30 quadraphonic decoder/rear channel amplifier

SQ QUADRAPHONIC DECODERS

Feed 2 channels $(200-1000 \mathrm{mv}$ as obtainable from most pre-amplifiers or amplifier tape monitor outeès) into any one of 3 decoders and take 4 channels out with no overall signal level reduction. On the logic enhanced decoders Volume, Front-Back. LF-RF balance LB-RB balance and Dimens controls can all be implemented by simple single gang potentiometers
These state-of-the-art circuits used under licence from CBS are offered in kits of superior quality with close tolerance capacitors. metal oxide resistors and fibre-glass PCBs designed for edge connector insertion All kil prices include CBS licence fee.

M1 Basic matrix decoder with fixed $10-40$ blend All components. PCB
L1 Full logic controlled decoder with "wave matching and front back logic for enhanced channel separation Alt

Fullogic controlled decoder with wave matching and tront backlogic for enhanced channe separalion $\quad \mathrm{E17.20}$

2A More advanced full logic decoder with variable blend, extended frequency response increased front back
$\mathbf{E 2 4 . 6 0}$ separation All components. PCB

EXPORT NO PROBLEM

Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1975 are shown surrounding this advertisement
Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla Fin'

[- - - The SECOND-USER Computer Specialists COMPUIER SALES Peripherals and Systems for Data Processing Systems, Equipment and Components
 事 Exchange
 PDP11/20 24K Processor with
 RF11/RS11 Disk Drive \& Control and Remex High Speed Reader/Punch \& Control
 Tektronix Graphics Display \& Control (for PDP11 series)
 PDP81 16K Processor, rack-mounted, with Teletype Control
 PC81 High Speed Reader Punch
 RK05 Disk Drive (no controller)
 DF32 Disk Drive \& Control (for PDP8E
 series)
 TU60 DUAL Cassette Drive \& Control (for
 PDP8E series)
 RTO2 Single-line Alphanumeric Display \& Control (for PDP8E series)
 DEC 6 ft . Cabinets
 IMMEDIATE EX STOCK DELIVERY OF ASR33 TELETYPES, ALSO ASR35 and KSR33
 IBM PUNCHED CARD
 EQUIPMENT
 EX STOCK DELIVERY OF IBM 024. 056.026, 077
 PAPER TAPE PUNCHES \& READERS
 TELETYPE BRPE 1 to cps Synchronous Punch $57 / 8$ channe1 Self-contaned mainsoperated Unit 57,8 channei Self-contained mannsoperated unit consistung of punch unit base moror and tape suply spool Price $\mathrm{El45.00}$ Sound reducing supply spool Price $\mathrm{E145}$. cabinel available at $£ 25.00$
 FACIT 4050 rack-mounting heavy duly punch $5 / 8$ dtannel maximum operating speed 150 cps Complete winth supply and take-up spools cps tape how /out sensor and large bull-in chad box low/out sensor and large bullt.1n C595.00. Conirol unit also available
 TALLY P. 120 pariel-mounted perforator Asynchronous operation u 10120 CDS Integral tape supply and take-up spoots Price $£ 150.00$ 10 TALLr 420 Reck mounting pertorator Asynchronous operation up to 60 cps Integral supply and take-up spools Complete with Model 5088 60 cps integral supply and take-up spoo transistorised drive package $\mathrm{E495.00}$
 WELMEC LOW-SPEED PUNCH. Magneticaly, Ideal for data logging Large cnad box E45.00.
 FACIT 4001 Rack mounting high-speed reader A very with delectic reading and capstan drive Readivery high quality cos tor 1000 cps using separate spooler) Can be stopped between (wo Conseculive characters $\mathbf{E 6 5 0 . 0 0}$
 TALK R R rack mounting Comptete with supply and take up spools $\mathrm{E200.00}$ to 600 cps Complete with supply and take up spoolis Prive $£ 125.00$, WELMEC RE2 solenotd-operated mechanical reader Low-cost low.speed reader tor speeds
 DIGITAL PRINTING MECHANISM TYPE EP 101

 Reyboards
 NEW
 ECONOMY 80 COLUMN HAND PUNCH
 Completely redesigned with many important
 new features -- send for brochure from $\mathbf{£ 6 9 . 5 0}$
 NEW STOCK JUST
 RECEIVED:
 -
 Mank homerwell alphanumeric ketcoand - bramd new mistruction keys and 2 space bars Layout can be te-arranged a requred ldeal tor protorypes and special applications Hall-eftec swiches Power requirement +5 V 42 mA Price $£ 20.00$ (P\&P $\mathrm{E} \uparrow$) REED-SWITCH 4-BANK ALPHANUMERIC KEYBOARD mounted shith keys and 12 instructional keys Ideal for data displays kemp +
 Add 8\% VAT to =ill
 prices shown.
 carrive extra -
 COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED 49/53 Pancras Road, London NW1 2QB. Tel. 01-278 5571

WW-107 FOR FURTHER DETAILS

OPEN TYPE RELAYS
6 VOLT D.C. ${ }^{1}$ make con ${ }^{4}$
12 VOLT D.C. RELAY
24 VOLTD.C
ENCLOSED TYPE RELAYS
6 VOLT DC $3 c / 085$ p.
$\mathbf{2 4 V O C} 3$ c/o 85p. Post 20 p base 15
24 VOLT A.C. Mig it 3 hd c/o contacis 65
55 VOLT A.C.
230 VOLT A.C. RELAY
220/240 VOLT AC RELAY
ARROW 230/240V AC
110 VOLT A.C.
CLARE-ELLIOT Type RP 7641 G8
MANY OTHERS FROM STOCK, PHONE FOR DETAILS

MINIATURE ROLLER
M swich OMRON
SOp Min order 10$)$

230-250 VOLT A.C. SOLENDID

SOLENOID HEAVY DUTY MODEL

24 VOLT DC SOLENOIDS
 ABSOLUTE BARGAIN.
240 VA.C. SOLENOID OPERATED

600 WATT DIMMER SWITCH
Was Ealy fitted Fully guaranteeca by makers. Will escent at mains voltage Complete with simple instructions. $£ 2.75$. Post $25 p$
1000 watr model

VARIABLE VOLTAGE TRANSFORMERS

Carriage extra	INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE $0 / 260 \mathrm{v}$. A.C.
-3	BRAND NEW. All types. 200W (1 Amp) $£ 10.00$
	0.5 KVA (Max. $21 / 2 \mathrm{Amp}$) . . $£ 11.50$
	1 KVA (Max. 5 Amp) . . . $£ 16.50$
	4 KVA (Max. 20 Amp) $£ 60.00$
1	$($ max. 37.5 Amp$) \ldots \ldots 102.50$

\section*{LTTRANSFORMERS
 | 0.6. 12 volt a 10 amp | ¢5.60 Post 70p |
| :---: | :---: |
| 0. 10, 17. 18 volt " 10 amp | ¢7.90 Post 11.00 |
| 0.6. 12 volt at 20 amp | c9.00 Post El 00 |
| O 12.24 volt " 10 amp | c9.20 Post E1. 00 |
| 0 4. 6. 24.32 volt at 12 amp | c9.90 Post E1. 00 |
| 0. 6. 12.17.18. 20 volt a 20 amp . | ¢10.40 Post E1 00 |
| Other types to order at shott notice | Phone your enquiries. |
 AUTO TRANSFORMERS
 Step up step down 0
 At 15 watl $£ 3.00$ Post 40 p. 150 watl $£ 4.30$ Post 50 p. 300

 $£ 13.50$ Post 90 p
 }

* hY-LIGHT STROBE Mk. IV *

$x_{\text {xenon flash gun tubes }}$ *
Range of Xenon lubes availabie from slock. S. A.E for full delails. $\quad \star$
- ULTRA VIOLET BIG BLACK LIGHT 400 Wart. Mercury vapour uirra violet iamp $*$
* 400 Wart. Mercury vapour ultra violet lamp \neq
stage display discos ete. P.F. ballast is essential
with these bulbs. Price of matched ballast and buith

ultra violet black light
FLUORESCENT TUBES

 pius flash modulation effectively giving 14 different displays Maskes sound-10-light obsolete. Completely electrically and
mechanicallv noise tree.

WHY PAY MORE?!

METERS NEW

9 mmm Diam TYpe $65 C 5$ 204

NICKEL CADMIUM BATTERY

GEARED MOTORS

100 R.P.M

20 r.p.m. GEARED MOTOR

REVERSIBLE MOTOR 230 V A.C

BENDIX MAGNETIC CLUTCH

When energred rransmission is extremaly poweriul. 24 V d.c at
24OMA OUR PRICE JUST E3.50. Post 45 P

A.C. MAINS
TIMER UNIT

SERVICE TRADING CO.

SHOWROOMS NOW OPEN AMPLE PARKING

PERSONAL CALIERS ONLY
9 LITTLE NEWPORT STREET LONDON, WC2H 7JJ.

PLEASE ADD 8% FOR V.A.T. PLUS P \& P
Trade Counter is open for personal callers from 9 a.m. to 5.00 p.m. Monday-Friday

OLSON ELECTRONICS LTD. 5-7 LONG ST., LONDON, E. 2

New range of

 ILLUMINATED SWITCHES

Heres a new illuminated switch from
the famous Finnish ESMI range. Strong grey plastic case (cut-out size 21 mm sq.), contacts for make/break, make / make and break/break. capacity 1 A (60 V AC), $1 / 2 \mathrm{~A}$ (48 V DC). Takes variety of "push-in" miniature bulbs. Screw. solderıng or AMP connections. Built-in panel-grip fixing 4 lens colours. engraved if required. Rocker or push-button versions, with matching signal lamps

Send for
CONTARNEX LIMITED
252 MARTIN WAY, MORDEN
SURREY SM4 4AW, ENGLAND TEL. 01-540 1034/5

AMATEUR CDMPDNENTS

ORCHARD WORKS. GHURCH LAME. WALLIIGTON. SURREY SMG 7MF

What a trip old Richard's Rhine journey could have become had he built his own mixers, 900 wati amps, octave equalizers, 24 inch woofers, electronic crossovers, and home brew electrostatics.
Zounds what sounds!
Ask our Rhine maidens for details. Yellow Oak Cottage Tillington nr. Hereford HR48LQ
Send now for a free prospectus.
Craik Starh on STIREO REVIEA savs: "Top quality. Onls U.S. publication devered to the serions atadiophile constructor. Name

Address
\qquad

COMPLETE DETAILS FOR BUILDING:

GRAPHIC EQUALISER
IMPEDANCE METER
25W STEREO AMP
COLOUR ORGAN
DIGITAL DISPLAY
ELECTRONIC IGNITION

Now the European electronics industry is an open book

It s the European Electronics Suppliers Guide - -the only reference book of its kind you can buy.
(And. in iact. the only multi-lingual. multi-national buyers guide in the electronics world.)

Every feature is designed to take you fast to the name of the supplier you need whatever the country whatever the product concerned.

Products and manufacturers are broken down into 26 distinct market sectors. Over 600 types of products are listed, cross-referenced with over 1700 manufacturers. Principal Trade Associations in every country are inclucied too. And all essential information appears in three languages - English, German and French.

The price is $£ 18.50$. including post and packaging. Not much for opening up a continent

Post this coupon-with your cheque-today.

EXCLUSIVE OFFERS

WORLD-WIDE RANGE NEVER BEFORE OFFERED					
COMPLETE TRANSPORTABLE E.F. COMMUNICA-					
PHILCO HC-150 POINT-TO-POINT STRIP RADIO HE					
HIGHEST QUALITY 19* RACK MOUNTING CABINETS \& RACKS CABINETS					
Ker					
			20		${ }^{\text {Pr }}$
C	K5	22		160	
C	52	25	22		
		21	17	11	
J	5	21	15		
$\stackrel{16}{17}$		${ }^{21}$	17	9	
	16	20			
Lis	10	20		9	
1881818				14	
1					
Atso Consoles. twin and multi-way Cabinets ORETRACKi					
		, ${ }_{2}$		${ }_{14}{ }_{1}$	

We have a larse quantity of "bity and pieces" wé cannot lint-please semil us your reriniremerta ue can protably help-all enpuirles allswered.	
Oscilloscopes lisv	
C. Rx 5 Recpivers $0.5 / 300 \mathrm{~m}$	f:4
- 45 feet Uniratio 4 Co-ax 50 or	
Furzehill Spectrum Analyser	c5s
25 ft Telessopic Aerial Masts	t24.00
Bausch \& Lambe F.pidiascopes	¢4:
Advance LII Signal Generator 300 !00\% m cs	c7
Addo 5/8 Track Tape Readers	E4
Digital Cassette Recorders 'i" 1000 dp	£250
S.8 Oscilloscopes 115v	c30
1600 f $16 \mathrm{~m} / \mathrm{m}$ Film Spools ally (unused)	
vuatity electric weather vanes 8 contacts (unu	11
Heli Facsimile Machines	
Large Aerial Rotators for Coaxa	c1
Collins 500 watt Telephone Transmitters $2 / 12 \mathrm{~m}$	30
NC. Comnectors 20\% for	± 4
deo Cross Hatch TV General	c17.01
Racal MA.:175 IS. B Modulators (ne	c45.00
Collins KWT -6 SSB Transceivers 50	
slode Cabinet Shelf Sliders	
DU. $7 / 32$ C.R.T.'s	
Remscope Storage Scope with	,
xtronic 519 Scope 16HZ	E450.00
V.R. Action Replay 20 sec . V	P.UR.
vance HI Signal Generators.	
rian Valifiea backward Wave Oxcillat	
lly 5/8 Track Tape Readers 60 cps	
dy 5/8 Track Tape Reader	c2200
VA Auto-Transformers	
utant 400 30A Power Supp	
foot 15 inch Lattice Steel	
tel $2 \mathrm{~K} \vee$ Power Supples	¢ 3500
wkell FU 4 Band Pas	60
feet co-ax, ': $\mathrm{y}^{\prime \prime}$ dia	E2.00
o Geiger Counters (n	¢7.50
Rhode \& Schwarz SBR sig gen. 1.6/2.4	c70
mec 702	
We have a quanuty of Power Transformers 250 watts to 15 KVA at voltages up to 40 KV . Best quaity at low prices. List available.	
Racal RA-63 SSB Adaptors, new	¢70.0
cal RA-237L-W Converters. ne	¢70.00
Blank Rack Panels 8\%uin high	11.0
eco Dial a Copy Photo Copier E	E60.0
let Packard S34C Disital Counter	UR
rabie Mains Battery Food	c24.
400 channel Puilse Height Spectrum Analyse	¢600.

INSTRUMENTATION-TAPE RECORDER-REPRODUCERS
Ampex 7 M2 4 speeds, . Tracks ',"'
Ampex FR-1000. 6 , peeds. 2 tracks
Ampex FR 600,4 speeds, 7 tracks ${ }^{2}$
Ampex FR 600,4 speeds. 14 tracks
D.R.I. RM1. 4 speeds. 4 track
E.M1 BTR1. I speed. I track '

Mincom CMP 100.6 speeds. 7 tracks.
Levers Rich DA.2P. 2 peeds. 2 track
Prices of above $£ 70$ to $£ 400$
Also Transport Decks only avastabl

COMPUTER HARDWARE

* PRINTER, High speed 1000 lines p.m
* TAPE. READER, High-speed 5/8 track 800 c.p.m.
* Card reader $80 \mathrm{col} .600 \mathrm{c.p.m}$

Frices on Application
PLEASE ADD CARRIAGE AND V.A.T. AT APPROPRIATE RATE TO ABOVE

P. HARRIS
 ORGANFORD-DORSET

 BH16 6BRBOURNEMOUTH-765051

Wilmslow Audio
 THE firm for speakers!

Baker Group 25, 3, 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe. 8 or 15 ohm
Baker Major, 3.8 or 15 ohm
Baker Regent, 8 or 15 ohm
Baker Superb. 8 or 15 ohm
Celestion HF13008 or 15 ohm.
Celestion MH 1000 horn, 8 or 15 ohm
Decca London and X over
Decca DK30 and X over
EMI $5^{\prime \prime}$ Mid range
EMI $612^{\prime \prime} d /$ cone roll surr. 8 ohm
EMI $8 \times 5,10$ watt, d / c, roll/s 8 ohm
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Base 80.

\section*{$£ 8.64$}
 $£ 8.64$ $£ 10.25$

£13.75

$£ 11.87$
$£ 10.00$
£18.12
$\quad £ 7.75$ $£ 13.50$ £42.25 £24.06 $£ 3.50$
$£ 4.37$ $£ 4.37$
$£ 3.95$

Elac $61^{\prime \prime}$ d/c $15 /{ }^{\prime} 8$.
Fane Pop 15 watt $12^{\prime \prime}$ ohm
Fane Pop 25 T 30 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$ watt
Fane Pop $55,12^{\prime \prime} 60$ wat
Fane Pop 60 watt. $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Crescendo 12 A or B. 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm Fane Crescendo 18,8 of 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Goodmans 8 P 8 or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 1298 or 15 ohm
Goodmans 12P-D 8 or 15 ohms
Goodmans 12P-G 8 or 15 ohms
Goodmans Audiom 10015 -ohm
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm.
Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef T15
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN12
Richard Allan HP8B 8" 45 wat Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s STC 4001 G super tweeter
Baker Major Module, each
Goodmans Mezzo Twinkit, pair . Goodmans DIN 20, 4 ohm, each Helme XLK35, pair
Helme XLK40, pai
Helme XLK30, pair
Helme XLK50. pair
Helme XLK 50.
Kefkit 1, pair
K
Kefkit III, each
Richard Allan Twinkit, each
Richard Allan Triple 8. each
Richard Allan Triple, each
Richard Allan Super Triple, each
Richard Allan RA8 kit, pair
Richard Allan RA82 kit, pair
Wharfedale Linton 2 kit (pair) Whartedale Glendale 3 XP kit, pair $£ 4.06$ $£ 7.50$
£ 12.00
$£ 15.50$
$£ 17.25$
618.75
$£ 18.75$
$£ 29.95$
$\mathbf{6} 4.50$ 634.50
647.50

$\begin{array}{r}647.50 \\ 6 \\ \hline\end{array}$
 62.95

$£ 5.75$
$£ 9.95$
$£ 5.95$
$£ 5.95$
$£ 6.25$
$£ 13.95$
$£ 13.95$
$£ 16.95$
$£ 15.95$
$£ 13.90$
$£ 13.90$

$£ 13.90$ $\mathbf{f 8 . 4 4}$

$£ 8.44$
$£ 20.00$
£10.55

10.95

$£ 6.06$

 \section*{\section*{$€ 6.94$
 \section*{\section*{$€ 6.94$

 £8. 37}}
$£ 9.50$ $\kappa 16.95$

$£ 16.95$

$£ 5.99$

$\begin{array}{r}£ 4.50 \\ \hline\end{array}$
$£ 4.50$
$£ 13.25$
$£ 7.50$
66.56
$£ 14.75$
$£ 47.19$
614.75
$£ 14.75$
$£ 24.00$
£24.00
$\mathbf{~} 35.00$
£35.00
19.00
56.00

E 53.00
648.00
$£ 14.95$
$£ 22.50$
£27.95
27.95
$£ 32.50$
42.00
c 66.00
223.12
58.00
63.12

All Radford, Gauss, Castle, Jordan Watts, Eagle. Lowther, Peerless Tannoy units in stock

Prices correct at 32.76
INCLUDING VAT AT $\mathbf{2 5 \%}$ ON HI-FI 8\% ON PRO 8 P.A

Cabinets for PA AND HiFI, wadding. Vynair. etc Send stamp for tree booklet "Choosing a Speaker FREE with all orders over $£ 10$ - MiFi

Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carrage Speakers 50p each. $12^{\prime \prime}$ and up 75 p each.
weeters and crossovers 30 p each, kits $80 p$ each

WILMSLOW AUDİO
 Dept. WW

Loudspeakers \& Export Dept: Swan Works
Bank Square, Wilmslow, Cheshire SK9 1 HF
Discount HiFi, PA etc: 10 Swan Street,
Wilmshow. Radio, Hi Fi, TV: Swift of Wilms-
low, 5 Swan Street, Wilmslow. Tel. (Loud-
speakers) Wilmslow 29599, (HiFi, etc.) Wilmak 26213.

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469

International Electronic Components Exhibition Paris, April 5-10 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price [86.50, extra nights as required. \square

International Electrical and Electronics Engineers Exhibition - I.E.E.E. EL.ECTRO.Boston - May 11-14, 1976. 10 nights at the de luxe Statler Hilton Hotel. Fully inclusive price - £283.00

Compec Europe Exhibition - Brussels May 18-20, 1976. 2 nights at the first class Royal Windsor Hotel. Fully inclusive price-£108.60. \square

National Computer Congress - New York June 7-11, 1976. 10 nights at the de luxe Hilton Hotel at Rockefeller Centre. Fully inclusive price - $£ 320.00$

Exhibition of Electrical Equipment - EIEE Measurement and Control Exhibition MESUCORA Paris, June 10-17 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price $£ 86.50$, extra nights as required.

Consumer Electronics Show and Video Expo - Chicago - June 13-16, 1976. 10 nights at the de luxe Palmer House Hotel Fully inclusive price $£ 340.00$.

Western Electronic Show and Convention -WESCON - Los Angeles - September 14-17, 1976. 10 nights at the de luxe Downtown Hilton Hotel. Fully inclusive price $-£ 399.00$. \square

International Exhibition of Data Processing, Communication and Office Organisation SICOB Paris, September 23 - October 10 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price $£ 86.50$, extra nights as required

Hifi International Exhibition and Festival Dusseldorf - September 24-29, 1976. 2 nights at the first class Quality Inn Hotel. Ratingen (8 km from the Fair Ground) Fully inclusive price - 699.90. \square

International Trade Fair for Production in the Electronics Industry-ELECTRONICA Munich, November 25-December 1, 1976. Two nights at the first class Hotel Der Konigshof. Fully inclusive price £118.00, extra nights as required. \square

Please send details of the tours indicated above.

Appointments

Advertisements accepted up to 12 noon Monday, April 5th for the May issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 1$ per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEI 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

TEST AND LIAISON ENGINEERS

Ferranti in Edinburgh have a number of Ministry of Defence contracts involving the design and development of advanced avionic equipment for military aircraft in an international market.

We have vacancies for test and liaison engineers who will probably be qualified to HND level in electronic engineering with some years' experience in design, test or support of modern avionic equipment. A knowledge of digital and analogue techniques is essential.

Close liaison with design/development teams currently engaged on inertial navigation and display systems will be necessary and the work will entail factory acceptance testing, fault diagnosis and system commissioning on a variety of sophisticated equipment.

There will be opportunities for some of these engineers after a period of in-house training to be selected for technical liaison duties at locations in the U.K., Europe, Middle and Far East.

The Company offers an attractive employment package which includes 22 days holiday and membership of a life assurance and pension scheme. Incoming personnel will qualify for housing under the Scottish Special Housing Association scheme and realistic assistance will be given with relocation expenses where applicable.

Apply in writing giving details of age, experience and qualifications to:
THE STAFF APPOINTMENTS OFFICER
FERRANTI LIMITED
FERRY ROAD
EDINBURGH EH5 2XS

YOUNG ELECTRONICS LTD.
We are a manufacturer of lighting control systems and signal detection equipment, and are looking for a

WIREMAN-TESTER

(male or female) for the construction testing and servicing of the equipment at our works in N.W. 1. Very varied work Qualifications ONC or C\&G or ex-apprentice (electronics or C\&G or ex-apprentice (elecironics or mechanical) or similar desirable. A wide practical experience is essentia involving both electronics and mechanical work We are a small expanding company and will offer a good salary to the right person
Please write for an application form to:-Young Electronics Lid 184 Royal College St. London NW1 9NN
(5238)

LORD MAYOR TRELOAR COLLEGE ELECTRONICS INSTRUCTOR

required for September, 1976, to take charge of full-time Radio, Television \& Electronics Course and teach both theory and craft practical to parts 1 and 2 standard of the City \& Guilds Mechanics 222 Course
Qualifications Radio, Television \& Electronics (272) Technician Part III Certificate including Colour TV Endorsement and experience, or equivalent.
Salary: $£ 4,000+$ p.a. if fully qualified and experienced Superannuation. Accommodation at reasonable rent
Students are physically handicapped Good record of results
Further details and application form from the Headmaster, Lord Mayor Treloar College, Froyle, Alton, Hampshire GU34 4LA (5200)

Opportunities in the ELECTRONICS FIELD
People with analogue or digital qualifications / experience seeking qualificalions expers see in higher paid posts in

Phone Mike Gernat, Ref. W.W NEWMAN APPOINTMENTS 360 Oxford Street, W.1. 01-6290501
(94)

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to ETE Maritime Radio Services Division ($\mathrm{R} / \mathrm{B} / 1$), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1 AR.
Post Offifice Telecommunications

Professionally frustrated? We can find you a new job.

You know you're good but your present employers are apparently ignorant of the fact. Enough to make you look for a new job. Put your name on the Lansdowne Appointments Register and make it easy on yourself. Hundreds of employers use our register to fill their key jobs. And remember the best jobs are not always advertised.

It costs nothing to take advantage of our help so you've nothing to lose and everything to gain. And our service is conducted in strictest confidence.

So make sure you're 'in the know' by phoning 01-579 6585 or writing to Stuart Tait, Lansdowne Appointments Register, Design House, The Mall, London W5 5LS.

Name
Address \qquad

A leading US Manufacturer of TV Products requires

SYSTEMS ENGINEER

ELECTRONICS ENGINEERS

with extensive experience in digital techniques in one or more of the following areas:

Synchronisers
Time Base Correctors
TV Related Software Development Data Reduction Systems
Standards Conversion

These senior appointments would be based in the U.S.A., salary and benefits commensurate with experience. Initial interview in U.K.

Please send résumé to Box No. 5256.

Due to the rapid expansion of our Systems Group we have an excellent vacancy for a top grade Systems Engineer.

The post is for a person to design and commission minicomputer systems utilising a wide range of computer hardware. This is an excellent opportunity for the go-ahead engineer capable of solving system problems. A sound knowledge of minicomputer systems is essential and a working knowledge of software would be a distinct advantage.

For the right person this is a real opportunity for career advancement.

Qualifications:
HNC/BSc in Electronics/Electrical
Engineering.
A most competitive salary will be paid for the right person.

Salary: In the first instance contact Mrs. Jay Dee
In the first instance contact Mrs. Jay Dee

Tel: Reading (0734) 85464

Applications Engineers
 Audio Systems

Tannoy, the internationally famous name in the field of industrial and high fidelity audio electronics, are engaged in a major programme of growth and development

To assist in this expansion the Company wish to recruit additional suitably experienced Applications Engineers Application Engineers form part of the Engineering Division and are responsible for the interpretation of customer requirements in the audio communications field and the translation of these into engineering systems. There is a total involvement in the project from inception to completion and site visits may occasionally be necessary.

Applicants, aged over 25, should have had experience in the design of audio and communication systems and should be qualified at least to ONC standard in electronic engıneering

The company is in a particularly interesting stage of development and career prospects, for those able to accept responsibility and work conscientiously, are excellent. Salary is negotiable at an attractive level and normal company benefits apply including four weeks holiday.
For an application form, please write to or telephone Peter Fletcher, Personnel Manager, Tannoy Products Ltd, 348 Norwood Road, West Norwood, Landon SE27. Tel. 01-670 1131

North Midland Co-operative Society Ltd.
require

SENIOR AUDIO ENGINEER

A grand opportunity for a suitable, capable engineer to co-ordinate the activities of our Audio service department, which undertake the wide service aspect across the consumer spectrum.

The person appointed will be directly responsible to the Group Service Manager, and would not normally be expected to work on television or other equipment, but will be capable of dealing with customer inquiries and complaints.

The initial wage rate is $£ 58$ per week, and accommodation may be available on rental.
We are situated at the county border of Staffordshire, Cheshire and Derbyshire, which is a very attractive residential environment.
If you desire a change with opportunities, and wish to join an organisation with sales in excess of $£ 34$ million per year, apply in the first instance giving details of career to date by letter to the:

Personnel Officer

10 Newcastle Street

Burslem

Stoke-on-Trent
ST6 3QG

Looking

a

new
job?

Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries

Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME ADDRESS

torororororororororo You have avital role to play as a Test Engineer with Pye

Vital because many of our products are used in situations in which their efficient operation may make all the difference between life and death Much of our VHF radio equipment is used widely by police, fire and ambulance services throughout the country and overseas too. And that's why you, as a Test Engineer with Pye in Cambridge, have an important part to play.
Pye Telecom are one of the largest companies within the Pye Group. We're involved in the development and manufacture of a wide range of fixed, mobile and portable radio communications equipment and can, therefore, provide exceptional scope to experienced and ambitious engineers.
As a Test Engineer, you'll be carrying out unit and systems testing and fault finding, utilising the most modern equipment and techniques in a highly sophisticated quality control operation We'd like you to have sound relevant test experience, preferably but not necessarily on communications equipment, and this experience might well have been gained in the Services. If you have an ONC or City \& Guilds qualification, so much the better
You can look forward to a good salary and excellent career opportunities, both within the Company and the Pye Group as a whole. Attractive additional benefits include contributory pension scheme, a good canteen, sports and social activities and assistance with relocation expenses where appropriate.
To find out more, telephone or write to Mrs. Audrey Darkin at Pye Telecommunications Ltd., Cambridge Works, Elizabeth Way, Cambridge CB4 1DW. Tel. Cambridge 58985; or Mrs. T. White, at Pye Telecommunications Ltd., Colne Valley Road, Haverhill, Suffolk. Tel. Haverhill 4422.

Pye Telecommunications Ltd
Newmarkel Road Cambridge Eng!and CB5 8PD

OVERSEAS APPOINTMENTS

ELECTRONICS TECHNICIANS

Petty-Ray is one of the leading Companies in the field of oil exploration and due to our ever increasing workload require young single personnel, who are looking for varied and interesting career working overseas
You should be educated to HNC/ONC in Electronics of C \& G radio and TV Technician level, and on appointment you will be assigned to one of our field crews either in Africa or the Middle East for on the job training in the operation and maintenance of digital seismic recording equipment.
Candidates must be in possession of a current driving licence We offer a good starting salary which is tax free, food and accommodation will be provided and rest leaves are generous.
If you would like to have more information about these challenging positions why not write giving brief career details to:-

THE PERSONNEL OFFICER
 PETTY-RAY LTD.

106 Coldharbour Lane
Hayes, Middlesex
UB3 3HL

в $\frac{\pi}{4} k$

- first in Sound and Vibration
require

ELECTRONIC TECHNICIANS

for interesting and varied work in the fields of sound and vibration measuring instrumentation. This involves fault-finding, practical mechanical and electronic repairs and calibration. Previous experience with audio frequency equipment and a sound knowledge of current analogue and digital techniques is essential. (Valves to CMOS). We are looking for experienced engineers with both adaptability and enthusiasm and an understanding of the need to maintain the highest possible standards at all times.

Write, stating age, experience and present salary, to: Mr. Alan Gibson,

B \& K LABORATORIES LTD.

Cross Lances Road, Hounslow, Middx.

UNIVERSITY OF LEICESTER Department of Chemistry
Applications are invited for a post of

EXPERIMENTAL OFFICER

in the field of electronics Candidates should be graduates or have equivalent professional qualifications. The post concerns the maintenance of analytical instrumentation, design and development of electronic equipment and a knowledge of modern electronics including digital, data logging and R.F. circuitry. Salary on an incremental scale $£ 2766$ to $£ 4602$ a year Applications should be forwarded to the head of the Department of Chemistry. The University, Leicester LE1 7RH, as soon as possible.

MANAGEMENT TRAINEE C. $£ 2,500$

A young, technically orientated self-starter is required to train for Management in Fields based initially with our instrument and Ancillaries Division at Croydon
The successful candidate will be in the early to mid-twenties. with a basic engineering knowledge, probably gained in an indentured apprenticeship. and at least two years experience in purchasing or production management in the engineering industry.
Prospects are excellent and the salary is negotiable in the region of £2.500
Please apply for application form to
COMPANY PERSONNEL MANAGER
FIELD AIRCRAFT SERVICES
HEATHROW AIRPORT - LONDON
HOUNSLOW, MIDDLESEX, TW6 3AE
TELEPHONE: 01-759 2141, ext 56

CCTV ENGINEER

A top London Advertising Agency with the most sophisticated closed circuit T.V. facilities and a thorough understanding of the importance of good engin eering has a vacancy for a young engineer
Applicants must have some experience in this field, and should be studying towards HNC. Day release is allowed for further study and a salary is offered in keeping with exper ience and qualifications.
Please write giving information of experience and qualifications. to.

Neville Smith
Television Department FOOTE, CONE \& BELDING LTD. 82 Baker Street London, W1 Tel. 01-9354426

The Polytechnic of NorthLondon

DEPARTMENT OF PHYSICS
Electronics or Physics?
A difficult choice - for a clear understanding of electronics you must know a great deal of basic physics: for experimental physics you need to be familiar with modem electronic devices. The Physics Department offers a sandwich course,
with 2 industrial training periods totalling with 2 industrial training periods totalling
15 months, in the CNAA Honours degree. The Physics and Technology of Electronics
This course combines both subjects and can satisfy the academic requirements for corporate membership the Institution of
tute of Physics and Electrical Engineers. Obtain this degree first - you will then be better able to make your final choice of profession.
MSc Course - The Physical Basis of Electronics
This course is designed for graduates in either physics or electrical engineering who have realised the need to study the fundamentals of electronics. Full-time, part-time and evening only courses are available
Detaits of all courses from
The Head of the Physics Dept. (Ref. WW1) THE POLYTECHNIC OF
NORTH LONDON
Holloway Road, London N7 8DB
(Tel. $01-607$ 6767, Ext. 305) (5201)

MALLA TECHNICAL STAFF
334 Euston Romd London NW1 3BG
$01-3871043$

ELECTRONICS AND COMPUTER PERSONNEL, QUALIFIED AND EXPERIENCED ALL SPECIALITIES. ALL AREAS

T.V. ENGINEERS FOR NEW ZEALAND

Due to the rapid development of colour T.V. and the introduction of a second channel, we are in need of experienced T.V. servicemen. Who are we? N.Z.'s largest T.V. service company with over 30 branches and a staff of approximately 350

Single Men: 2 Year Contract - Return Fares Guaranteed

Married Men: Subsidy provided to cover major part of air fares

Interested? Then write now enclosing a recent photograph, details of past experience and any qualifications to the Technical Staff Supervisor, Tisco Ltd., Private Bag, Royal Oak, Auckland, NEW ZEALAND

ELECTRONIC TECHNICIANS Required for fault finding diagnosis and testing of aircraft electronic equipment. Applicants should be qualified or studying H.N.C or C.G. technicians or have considerfinding and operation of standard test instruments. Apply in writing test instruments. Apply in writing Limited Stansted Airport Squipment Essex. (5274)

MARINE ELECTRONIC INSTALLA TION REPAIR FIELD ENGINEER for work on Yachts UK and abroad Must have experience radar communication. Auto pilots instruments, etc. Must live in or near London. Apply to: Telesonic Marine Limited, 243 Euston Road. $\begin{array}{ll}\text { London NW1. Telephone: } & 01-387 \\ 7467 \text { (} 5244 \text {) }\end{array}$
(5244)

DEVON AREA HEALTH AUTHORITY (PLYMOUTH HEALTH CARE) CORNWALL \& ISLES OF SCILLY AREA HEALTH AUTHORITY

Medical Physics Department Plymouth General Hospital, Freedom Fields

ELECTRONICS TECHNICIAN

required for further expansion of the electronics service. The person appointed will join a small team in a well-equipped laboratory. He will be responsible to a graduate electronics engineer for maintenance of a wide range of patient-orientated electronic equipment. Development of special-purpose systems is undertaken, and safety and purchase decisions are made on new equipment
Minimum qualifications: ONC or HNC. Some travel in S Devon and Cornwall necessitates a current driving licence. The appointment will be in either of the following grades depending on experience

Medical Physics Technician III £2,931-£3,834
Medical Physics Technician IV £2,346-£3,267
Further details of the work may be obtained by telephoning Mr. L. R. Jenkin, Plymouth 68080, ext. 369. Application forms are available from Miss E.J. Coggins, Senior Administrative Assistant, North Friary House, Greenbank Terrace, Plymouth, PL4 8QQ.

AGENTS WANTED

RADIO-TELEPHONE Service Engineer Wanted for workshops in experienced Salary neg. 6801010 experienced. Salary neg. 6801010

AGENTS required to sell quality electric soldering instruments and anciliary equipment to Industry Commission only basis. Suit persons selling allied products who require additional income. Good potential. Box No. 5227

ELECTROSONIC, S.E. LONDON

Microprocessor Applications Engineer

Salary not a limiting factor

Project Engineer

£3,000-£3600

Test Engineer

The Company has vacancies in its design, manufacturing and service division as outlined below. Electrosonic Ltd., is leader in the rapidly expanding fields of lighting control, audio and audio visual systems and offers a wide range of interesting work in an attractive environment with excellent conditions of employment.

Microprocessor Applications Engineer

A Programming / Development Engineer is required to assist in the development of a range of audio visual and lighting control products based on the Intel 4040 microprocessor.
Preference will be given towards experience gained in the design of software for real time applications using microprocessors together with some experience and knowledge of current digital techniques. A well equipped laboratory is available including a development computer, high speed reader, teletype and VDU.
Projects already in hand will involve the applicant in both hardware and software aspects of product design but it is anticipated that eventually the applicant will specialise in software and advise the Company in other areas of Computer application.

AUDIO PROJECT ENGINEER

An Engineer is required with experience of planning and detailing special projects. He will be required to handle projects from initial concept to on-site commissioning and should have the ability to liaise with customer sales and production departments.
ONC with a minimum of three years' experience in an electronics company essential, preferably with an audio background. Willingness to travel and a current driver's licence essential. This is an important post and remuneration will reflect qualifications and experience.

TEST/SERVICE ENGINEERS

Vacancies exist in both these departments for Electronic Engineers with at least two years' continuous experience in Industry additional to Industrial Training periods. On the job training will be given in the company's products and opportunities for advancement are available. Service Engineers will be required to work both in the factory and on site and the holding of a current driving licence is desirable

Applioations should be made by telephone or in writing to:
Mr. R. D. Naisbitt, Personnel Director
Electrosonic Lid., 815 Woolwich Road, Charlton, London, SE7 8LT Tel: 01-855 1101

ARTICLES FOR SALE

QUARTZ CRYSTAL

UNITS from

- 10.9 .9 .0 mmz
- bast deuveny
- mign ttaciutr
- migh stanatita

Vg SCiEniific

A division of one of Bintans s most rapidly
expanding Scientific Companies require top expâding Scientitic Companines require top
people to work in RESEARCH and people to work in RESEARCH and
DEVELOPMENT Atractive salaries are offered for the following positions based at East Grinstead

ELECTRONIC ENGINEERS TEST ENGINEERS PRINTED CIRCUIT DRAUGHTSMAN

We require several young people men and women to work with an active research and
develooment team engaged in the design of development team engaged in the design of
surface physics instruments The successful surface physics instruments The successful
applicants would require to have a sound applicants would require to have a sound
knowledge of fundamental principles and a physics appreciation The work entaits the design and development of equipment working over a wide range of voltage current and frequency using a large variety of circuitry
Please write stating qualifications and experience to Mrs S 8utton, The
Birches Industrial Estate, Imberhorne Lane, East Grinstead, Sussex.

(CA)

CAPITAL
APPOMTAENTS LTD.
FIELD SERVICE ENGINEERS [ELECTRONICS]
If you're not earning over $£ \mathbf{3 , 5 0 0}$ p a. plus a car - then you had better contact us!

KING'S COLLEGE HOSPITAL MEDICAL SCHOOL (University of London)
ELECTRONICS TECHNICIAN
Required to foin the Department of Bomedical Engineering. to assist research
groups within the department with the groups within the department with the
design development and mantenance of electronic signal processing equipment using analogue digital and radio-frequency techniques
Applicants should have experience in the freld and possess an HNC or equivalent in electronics as a minimum

The post is tenable for one vear in the tirst instance. but is renewable up to a maximum of three years initial salary w il be within
the range $£ 823$ - $£ 4050$ including London Allowance, commensurate with experience and qualifications
Applications giving details of age, qualifi catoons and experience. together with the names of two referees. Should be sent to the Secretary. King s College Hospital Medica School. Lono 3 S SE5. as soon as possible

ARTICLES FOR SALE

THE SCIENTIFIC WIRE CO

 Copper - Mickel - Chrome- Litz - Manganin Wires - Litz -- Manganin Wires Enamelled
Coverings
* No minımum charges or quantitıes - Trade and export enquiries welcome * S A E. brings List
P.O. BOX 30, LONDON E4 9BW

For Sale 2 off PDP 11/05 (16K): RK11 RK05 disc and bootstrap; LA 36 Dec Writer E9,900. Other peripherals possible.
CETEC Systems Limited. Tel. (0494) 446311 - P. Herke, Managing Director.

ARTICLES FOR SA

fibre optic 5 uppliers MARE'S TAAL 22 " dia. $7.000+$ Filires $£ 10.00$. Gius tilires

 fonmes use milabi saparately.

 $22 / 36 / 44 / 133 \mathrm{~mm}+150 \mathrm{~mm}$ St ip. $£ 2.50$.
 ULTRASONIC IRANSDUCERS SEO4B-25T/R 25 kHz E4.50. Limer Powrizers also milible: DPTOELECTRONICS LIGHT SOURES \& DETECTORS
 FIBRE OPTIC SUPPLIERS (WW) 6 CHPE NHAOMEWS

 IBMGOLFBALL TYPEMNRITERS STANDARD EBCDIC CODINGWill accept normal or sprocketed paper Supplied in working order with data sheets. machine serviced and tested
As above but modified to take office range
of Golf Balls $£ 110+8 \%$ VAT
PAPST (or similar) FANS $4 \frac{1}{2} \times 41 / 2 \times 2^{\prime \prime}$
$100 \mathrm{c} . \mathrm{tm} 50 / 60 \mathrm{c} / \mathrm{s} £ 4$ (40p)
PAPST FANS Type 7576. new, $6^{\prime \prime}$ da x
23/16 deep £5 (45p)
BC $107 / 8 / 9$ BC $147 / 8 / 9$ BC157 (8) all 9pea (11p)
$10.000 \mu 63 \mathrm{v} £ 1$ (2Bp). $280 \mu 100 \mathrm{v} 80 \mathrm{p}$ (25p) $2240 \mu 100 v 75 p$ (25p). 1000 $63 v$ $£ 1$ (25p) $4500 \mu 35 v 60 p$ (15 p - 2000μ
$50 v{ }^{2} 35 \mathrm{p}$ (11p). $4000 \mu 70 \mathrm{v}^{2} 80 \mathrm{p}$ (20p). $4700 \mu 63 v 80 p(15 p) .2500 \mu 60 v 50 p$ (12p).
EX-COMPUTER PC PANELS. $2 \times 4^{\prime \prime} 50$ boards for $£ 2.40$ (62 p)
OPCOA SCA7 7 mm 7 -seg led display
$\begin{array}{llll}\mathrm{OH} \text { bulbs } 12 \mathrm{v} 55 \mu & 60 \mathrm{p} & (10 \mathrm{p}) \\ 250 \text { mixed resistors } & 60 \mathrm{p} & (18 \mathrm{p})\end{array}$ $\begin{array}{lll}250 \text { mixed resistors } & 60 p & (18 p) \\ 250 \text { mixed capacitors } & 60 p & (18 p)\end{array}$ $\begin{array}{lll}250 \text { mixed capacitors } & 4 \text { for } £ 1 & \text { (15p) } \\ \text { Si recs } 60 \mathrm{~A} & 100 \mathrm{piv}\end{array}$ SN3055 EquIV. 4 for $£ 1$ (15 p)
EXTRUDED HEAT SINK for EXTRUDED HEAT SINK for $2 \times$ TO3 SMALLELECTROLYTICS 50p (15p) $2 \mu_{1} 10 \mathrm{v} 10 \mu 35 \mathrm{v} .50 \mu 40 \mathrm{v}, 100 \mu 40 \mathrm{v}$.
$100 \mu \mathrm{v} \quad 150 \mu 10 \mathrm{v} .64 \mu 10 \mathrm{v} .300 \mu 10 \mathrm{v}$ 200, $10 \mathrm{v}, 12$ for 45 p (12 p)
PIHER PRESETS 100 m
PIHER PRESETS, $220470 \mathrm{k}, ~ 4 \mathrm{k} 7,10 \mathrm{k}, ~ 47 \mathrm{k}, 100 \mathrm{k}, ~ 220 \mathrm{k}$, 12 for 50 p (12 p)
$6 \vee 05 A$ Transforme
6vO5A Transformer 75p (18p)
ALMA REED RELAY CPRI/A ALMA REED RELAY CPRI/A $18-30 \mathrm{v}$ REED RELAYS 6v coil h/d contacts $\begin{gathered}\text { (15p) } \\ 5 \text { for } \mathbf{£ 1} \quad(15)\end{gathered}$ REED INSERTS h / d contacts
WATER-COOLED HEATSINKS EX (12p)
£1.20 (40p)
$\begin{array}{lll}5^{\prime \prime} \mathrm{mtg} \text { centres } & \text { per pair } £ 1 & (20 \mathrm{p}) \\ 8^{\prime \prime} \mathrm{mtg} \text { centres } & \text { per paır } £ 1.50 & (25 \mathrm{p})\end{array}$
P\&P Shown in brackers
ADD 25% VAT to TOTAL
8" VAT ON PSUUS. FANS. DIMMER
BOARDS
KEYTRONICS
Shop open Monday-Saturday. 9.2
332 LEY STREET, ILFORD, ESSEX $01-5531863$ till 2 p.m.

Electroime
 THE TIME HAS ABAIVED FOR YOU TO JOIN THE DIGITAL REVOLUTION:

introducing a new range of QUARTZ CRYSTAL digital electronic watches

ALL MODELS EXCEPT THE BLACK WATCH WITH GOLD PLATED OR RHODIUM BRACELET

LED MODEL TLE 5

CONTINUOUS LIQUID CRYSTAL DISPLAY MODEL TLC 4
FEATURES-

* Hours
* Minutes
* Seconds
* Date

ALL WATCHES FEATURE

* Solid State - No moving parts
* Quartz Crystal Controlled

Attractive Presentation Gift Box
allo
$£ 39$
inc. VAT
With unique Backlight feature for Night Reading

ADD TO THE SOPHISTICATION OF YOUR LIFE WITH THIS UNIQUE DIGITAL ELECTRONIC CLOCK

features -

* Large 4 -digit Easy Reac Display * Variable Display Intensity
* Am/PM Indicator
* 24 -hour Alarm
* 5-minute Repeating Snooze Alarm
* Power Interrupl Indication
* Power Interrupl Indication * Tilt Operation for Alarm Cancel Seconds indicator * Aultracivive White Case

Complete
fully tested cased clock
£14.50
inc. VAT

Money back if not completely satisfied One-year guarantee with all models

ELECTROTIME, 111 Storforth Lane Trading Estate Chesterfield, Derbyshire - Tel: 35804

Please supply

I enclose cheque/postal order/money order

Name
Add ess

SERVICE, you can obtain many other Technical Products including Electrical, Mechanical and Tools in addition to the Electronic components that we have been distributing to Industry for over 30 years.

Large duplicate stocks are kept in LONDON and SCOTLAND to give you quick service.

SEMICONDUCTOR CIRCUIT ELEMENTS

Towers, T D.
Price: $\mathbf{£ 6 . 0 0}$ ELECTRONIC CIRCUIT DESIGN HANDBOOK by EEE Magazine RADIO VALVE \& PRICE E5.10 DUCTOR DATA bY A. M. Ball ELECTRONICE $£ 2.50$ ELECTRONIC CIRCUITS \& SYSTEMS by R King
HOW TO BUILD ELECTRONIC KITS by V Capel PRICE $£ 1.95$ ELECTRONIC TEST EQUIP. MENT by H. T Kitchen HI-FI LOUDSPEAKERS \& ENCLOSURES by A B Cohen designing circuits with IC OPERATIONAL AMPLIFIERS by R G. Seippel VIDEOTAPE RECORDING by J F Robinson PRICE £6. 25 FOUNDATION OF WIRELESS \& ELECTRONICS bY M G Scroggie HI-FI YEAR BOOK 1976 by K Elimore PRICE $£ 2.60$ * prices include postage *

THE MODERN BOOK CO
SPECIALISTS IN SCIENTIFIC \& TECHNICALBOOKS
19-21 PRAED STREET LONDON W2 1 NP
Phone 7234185 Closed Sat. 1 pm

Economise on Semiconductors

All prices inc/ude VAT - by return service

* Lower price CMOS
* Lower price 741 C

FULLY GUARANTEED

INSCO ELECTRONICS

POWER SUPPLY MANUFACTURER

Whitehill Industrial Estate，Glenrothes，Fife
Other information Telephone（0592） 771959

Scolab series to provide Designers with complete Lab capability in one instrument 0－30V 1A＋Balance．Tracking
$0-30 \mathrm{~V}-1 \mathrm{~A} \mathrm{Sim} /$ Triangular／Square $£ 128.00$
Wave．Form Generator Adjustable between 1 Hz and $1 \mathrm{mHz} 0-10 \mathrm{~V}$
Same as above，but inclusive 16 －BIT． 10 mHz Digital Word Generator．（TTL）£166．00

（5204）

DIRECT

COMMUNICATIONS

Division of Direct Electronics Ltd． INTERCOMMS \＆ TELEPHONES
－Simple 2 －way wall／desk with 100 ft cable 6v ball 2 way dive 16 （土 1 pep） 6v batt．of power supply．E 16 （ 11 p\＆p）
Similat but 2 －to 7 －way instrument on Installation diagram．E8． 50 each（50p）
－Superior 2－to 6 way Siemens \＆Halske Wall－desk conversion kit．term．block and cord per instrument $£ 10$（50p）
－AUTOMATIC INSTRUMENTS Strowger compatible or PX working New／refurbished／2nd hand 232332706 foreign types． －ULTRA International Touch－bution dial：Charleston （candlestick）：etc from $\begin{gathered} \\ 32.85\end{gathered}$
－Pian \＆－Key Phones for home and expori －Jacks．Plugs：Cords．Term Blocks：Cables
（up to 25 －way and 50 pair）．etc
－Entrance Phones and Electric Latches． －Teleptione Amplifier（1－way －Telephone Amplifier（1－way）．E6．95 （35p），hands－free tele a ＊TRANSISTORISED UNIT ＊TRANSISTORISED UNITS Simple 2 －way batt．intercomm．$£ 7.75$（ 50 p）；Batt Baby
Alarm 5.25 （ 50 p）；Intercomm with roving master \＆9 $50(50 \mu)$
－Wireless Intercomm just plug into mains）：2－way E2O（ 1 1）batt op 3 －way （master +2 subs）$£ 23.95$（位1）：4－way （master＋ 3 subs）玉28 50 （（ 1
＊Mains adaptor $6 \mathrm{v} / 7.5 \mathrm{v} / 9 \mathrm{v}$ it 1375 （35p）
Add VAT－$=8 \% ;=25 \%$ on post paid
TRADE ENQUIRIES WELCOMEO
MANY SURPLUS ELECTRONIC BARGAINS FROM OLD STOCK STILL LEFT－COME AND DOADEAL

34 LISLE STREET，LONDON WC2H Tel：01－4372524

SONAR IND UNITS．Modern style unit with 5 in $s q$ ．flat face electro－ static tube with dual beam and blue／yell phosfor module construc－ tion with approx 40 min \＆sub min valves as int eht unit osc type giving 2.7 Kv reqs ext $\mathrm{H} T \mathrm{~T}$ supplies． CRT as two separate deflection \＆ gun systems normally gives slow speed scan from bottom to top of rrimmers $3 / 10 \mathrm{pf}$ ceramic 10 xmm 5 for 50 p Feedthrough conds F ． type CDFT100 1000 pf 500 v solder type CDFTlu0 1000pf 500 v Solder
in type 20 for E1．Erie type 1214 in type 20 for El ．Ene type 1214
Fintercons 1750 pf
250 v solder in type good to 10 Ghz 10 for 21 ．Horn speaker unit for M／cycle 3 ohm size 5×3 in．with mt brk $£ 2.50$ ． Recording paper heart sensitive sprocket feed drive centres approx 9 inin．$£ 1.30$ per roll．Remote 6 chan Tx Rx crystal selector with holders for Hc6／u crystals also $6 x$ BC108， $6 \times T \mathrm{Tim} 6 \mathrm{x}$ Coils etc．£1．60．Hand－ sets with low imp earpoece \＆ 4 K at rear of earpiece with button at rear of earpiece with ext cable
fi．50．Crystal filters all $10.7 \mathrm{Mc} / \mathrm{s}$玉i．50．Crystal filters all $10.7 \mathrm{Mc} / \mathrm{s}$
 tegrated Circs three types CA3014 tegrated Cires three types CA3014
w．b．amp \＆disc ULN2111A w．b． W．b．amp \＆\＆disc deld \quad product det．TAA300 a．f． amp \＆product det．TAABoo a．f． ea with datia shts $£ 1.50$ ．Dish Aes 18in．dia 4 in．deep at centre in 16 g dural plain finish $£ 3.80$ Pwr Transis Lucas type DT6106 sil npn Vc 500 v Ic 10 a £3．50．Filters TV1 high pass fits into down lead rear of set standard coax fittings 4 for £1．30．Coax leads BNC to BNC 1.5 mts 50 ohm ${ }_{2} 2.30$ ．Min rot swt units STC 0 to 9 Db in 1 steps 75
 ohm cal at DC \＆ $50 \mathrm{Mc} / \mathrm{s}$ ． 55 Sig
Gens CT478 mains 1.3 to $4.2 \mathrm{KMc} / \mathrm{s}$ in two bands int mod etc ex equip £35．Decca marine scanner X band on base approx size $5 \mathrm{ft} x$ 4 ft 6in with qty of $w . g$ ．x equip f 45 plus carr．All pices inc．Vat and post． all items are new，unused，unless stated ex．equip．A．H．SUPPLIES． 122 Handsworth Rd．，Sheffield S9 4AE Tel．0742－444278．（5265）

TIDY PACK with 6 different sizes of heat shrink sleeving each 1 M in length 100 self－locking cable ties and a roll of black PVC tape．All for only $£ 2$ inc．VAT \＆PP．B．D．O． Heath Road，St Albans．Herts．
（5090

WE INVITE ENQUIRIES from any where in the world．We have in tors several minion carbon resis wire wound resistors 5 and $\frac{10}{\frac{1}{8} t h i n g h}$ － 1 minion capacitors－ 1 million electrolytic condensers－ 1 million electrolytic condensers milling mistors and diodes thousands of potentiometers，and hosts of other components．Write，phone or call at our warelouse－Broadfields \＆ Mayco Disposals Ltd．， 21 Lodge Lane，N．Finchley，London，N． 12. $01-4450749,4452713$ ．（5097）

＊MINICOMPUTERS
 \star PERIPHERALS
 \star INSTRUMENTATION

For fastest，best CASH offer，phone
COMPUTER APPRECIATION Godstone（088 384\} 3106

PRECISION POLYCARBONATE CAPACITORS

225 Fore St., Edmonton Landon Ng $01-8073719$ Closed Thursdays (5210)
oscilloscope. Dual Trace type CI-16 D.C. to 5 MHz . As new, owner emigrating. $\$ 80$ o.n.o. Crayford 521506.
(5236)
V.H.F. A.M. radio installation consisting of the following G.E.C. equipment:- ${ }^{1}$ High power fixed ransceiver RC 750, 3 portable trans ceivers RC 660 . 3 Personal trans ceivers RC $550-\mathrm{TR}$ with batteries and charger. Phone Pickering 72333.
(5168)

LOUDSPEAKER UNITS - UK'S lowest prices for KEF, Celestion, Peerless, etc. SAE lists. Soundbox 60 Penland Road, Haywards Heath, Sussex. Tel. 56822

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram e3.66 plus VAT, 'Jumbo ' LED digits (16mm high) type economy DL/747 ony 12.04 each plus VAT, post ree. Chester Road, Wirral, Merseyside L62 5AG.
(83
C.R.T. REGUNNING PLANT, New and secondhand reconditioned training. demonstration, colour or B/W. Barretts, Mayo Road. Croydion Surrey. CRO 2QP.

16MM B \& H 631 Sound projectors -/w speaker and transformers $£ 135$ c/w speaker and transformers £i35. ford -T. 20009.

500 DUAL STANDARD COLOUR TV's. In stuck from E 30 . Contact: S.H.C. Television. Norlett Building. Dormer Road, Thame, Oxon. Thame 4331 .

LINSLEY-HOOD 75 watt amplifier pares by return. Sescosen BDY5 61.75 Motorola BD529 65p, BD530
 BC184L 110. BC212L 12 p . BC214L BC184L $11 p_{1}$ BC212L 12p. BC214L
13p, BFR39 35p, BFR79 35p, MC1310P 13p, BFR39 35p, BFR79 35p. MC1310P instructions, 81.45 , Filter switch nstructions, mains/rf interference click and mpression kit, with instructions, E1.35. Inclusive prices. All com ponents brand new and guaranteed. P \& P 10p. List SAE. I. G. Bowman Dept WW). 59 Fowey Avenue, Torquay, S. Devon. (5262)

MANUFACTURERS OF AUDIO MIXERS, BIG AND SMALL, FOR

21-25 Hart Road, Benfleet, Essex
Phone: (03745) 3256

Abstract

FERRANTI JA GYRO'S (Four) Clased. $55 \mathrm{~m} / \mathrm{m} \quad \underset{\text { d }}{ } \times 30 \mathrm{~m} / \mathrm{m}$ rotor 048687088 . ${ }^{(5228)}$

DISCO \& LIGHTING by Citronic. DISCO \& LIGHTING by Citronic FAL ESE, PULSAR. OPTIKENETICS FAL ESE, PULSAR. etc. Also special bargains in components S / M equipment. SAE. M. Bond, 38 The Orchard. Market Deeping, Peterborough.

TF144G, 85 KHz to 25 MHz Signal Generator. Offers - 6 Ashtree Close, Worlingham, Nr. Beccles, Suffolk. Tel: Beccles 713786 (5261)

18 OLD COPIES OF WIRELESS WORLD. 1920 to $1938 . ~ £ 7.50 . \frac{(5247)}{01-}$ 8820638.

RANK STUDIO FLUTTER METER type 1740 - 175 . Heathkit laboratory oscilloscope model 10 18U - 25 . Heathkit sine/square wave audio signal generator model G-18 - $£ 35$. All items in excellent condition. - Phone 025471881.
(5246)

EVERSHED 8 VIGNOLES MURDAY Win pen chart recorder complete with $2 x$ fin paper rolls (1x cali brated) 2 off pens. ink also spare complete "X"' drive mech. with synchronous motor and service manu'al. £25. Tel: Brighton 684286. (5251)

AVO TRANSISTOR ANALYSER CT446. Complete with battery pack and service manual. Absolutely

IBM GOLFBALL TYPEWRITER, computer terminal in excelient con dition with TTL interface to trans mit and receive 7 bit parallel A.S.C. code. Price $£ 380$ or near offer. Tel: 01.485 6162, Mr. Papas. (5282)

STELLAVOX SPT portable tape recorder. 4.8 - 76 CMS/SEC variable head and amplifier configuration by plug in modules. Used for one project, as new condition With accessories and a quantity of
new tape. $£ 550$. Dawson. 387 6945 or 6735273 .
(5280)

AUDIX MXTZ00 MIXER. 10 MIC and Line inputs, 2 output Groups monitor. E350. Shelford (Cambs) 3860 .
5283)

DISCO UNIT, consisting of two. KF speakers. output 50 w , two turntables, one Garrard the other BSR blus D.J. Disco amplifier with microphone and headphones. £350 for quick saie. Also comprehensive record sellection available with innit. Tel: 01-440 il53 or 01-886 7026.
(5284)

COLOUR UHF and TV SPARES. Lists available on request "Wireless World' ${ }^{\prime}$ TV tuner project, by D. C.
Read. Kits of parts available. cross hatch kit, Aerial input type. No other connections. Battery operated, portable. Incl. Sync \& UHF Moderator units. $£ 11.00 \mathrm{p} / \mathrm{p}$ 45p. CRT Reactivatior kit for colour and mono $£ 17.48 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Signal strength meter kit £l8.00 p/p 60 p . 625 TV I.F. Unit, suitable for Hi Fi
amp on bape recording $6.80 \mathrm{p} / \mathrm{p}$ amp on bape recording $\$ 6.80 \mathrm{p}$ /p 60p. Bush CTV 25 new convergence ${ }_{\text {panels }}+60 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. New Philips single standard convergence panels com plete incl 16 controls coils P B switches, leads $53.75 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$ New colour scan coils. Mullard or Plessey. plus convergence yoke and blue lateral $£ 9.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Mullard at $1023 / 05$ convergence yoke $£ 2.50$ $\mathrm{p} / \mathrm{p} 50 \mathrm{p}$. Mullard or Plessey Blue scan coils $\mathrm{E} 2.00 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$ Bush CTV25 suan coils. new. $£ 2.50 \mathrm{p} / \mathrm{p}$ £1.50, DLIE, DLI £ $1.00 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Lum Delay Lines 50p p/p 20p. EHT colour quadrupler for Bush/Murphy CTV25 $3 / 174$ Series $88.50 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Special offer, colour triplers: 1Tr TH25/ T1.75 2.00 p/p 40 phile 2040 tripler e1.75 p/p 40p. Philips G8 panels. decoder $£ 2.50$, IF incl. 5 modules £2.25. T-Base $£ 1.00 \mathrm{p} / \mathrm{p} 50 \mathrm{p}$, CRT $\begin{array}{lll}\text { base } & 75 \mathrm{p} \text { p/p } \mathrm{p} \text { 20p. G.E.C. } 2040\end{array}$ panels for spares. Decoder £3.59. Timebase $1.00 \mathrm{p} / \mathrm{p} 55 \mathrm{p}$. VARICAP TUNERS UHF ELC 1043, new £4.20. ELC 1043/05, £5.00. VHF ELC 1042, new 55.00 . Salvaged $V H F$ and UHF Varicap tuners $£ 1.50 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$. SPECIAL OFFER: RBM 6psn. Varicap control units $£ 1.00 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$. UHF tuners, new, transistorised, incl. slow motion drive, $£ 3,80$. 41 position and 6 -position pushbutton transistorised, $\mathbf{5 4 . 2 0 \mathrm { p } / \mathrm { p }}$ 60 p . Philips, Bush, Decca integrated 65 p . Thorn 850 dual Standard time base panel 50 p p/p 50 p . Philips base panel 50p p/p 50p. Philips 626 I.F. ainp. incl. CCT 50 p p/p 50p. Valves for K.B. Featherlight, Philips Valves for K.B. Featherlight, Philips miniature incremental for 110 to 830, Pam and INVICTA $£ 1.00$. New Fireball tuners, Ferguson, HMV. Marconi. $£ 1.00 \mathrm{p} / \mathrm{p}$ all tuners 50 p , Mullard 1100 Mono scan coils, new, suitable all standard Philips, Stella, Pye, Ekeo. Ferranti, Invictia $£ 2.00$ p/p 55p. Large selection' LoPTs, FOPTs avarlable for most popular makes. $200+200=100$ MFD 350 D Electrolytic $£ 1.00 \mathrm{p} / \mathrm{p}$ 30p. MANOR SUPPLIES, 172 WeSt End Lane,
London, N.W.6. Shop Premises. London, N.W.6. Shop Premises. Callers welcome. Hampstead-Bakerloo and Brit. Rail), Mail Order: 64 Golders Manor Drive. London NW11. Tel: $01-794$ 8751. VAT. Please ADD KITS. VAT 8\%).

BURGLAR AND FIRE Alarms, ex ingushers, emergency lighting Comprehensive range of D.IY and professional equipment. Catalogues sor, Berks. (5269)

POWER SUPPLIES. 12vDC Iamp smoothed supply $£ 3.00 \quad 0-17 \mathrm{VDC}$ 1 Amp variable supply, regulated.
filtered.
£ $y .50$.
Complete available. Powerpax, Box WOG, Windsor, Berks.

WANTED!
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content

TRANSISTORS \& PRINTED

CIRCUIT BOARDS
TO COMPLETE COMPUTERS
The COMMERCIAL SMELTING $\&$
REFINING CO. Lid.
171 FARRINGODN bOAD LONDDN EC1R 3AL Tel. 01-837 1475
Cabies: COMSMELT, ECI
Works: FLECKMEY. nr, LECCESTEA 15116
WANTED, all types of communications receivers and test equipment. Details to R. T. \& I. Electronics Ltd., Ashville old Hall. Ash vilie
Rd., London. E.11. Ley 4986 . 63

B-D ELECTRONICS offer prompl ponents. our main field of interest is consumer electronics. Please | telephone our Miss Hughes, $\begin{array}{l}\text { Sandy } \\ \text { (} 0767 \text {) } 81616 \text {. }\end{array}$ |
| :--- |

SURPLUS COMPONENTS Equip. mer and Computer panels wanted

WANTED NEW 705A VALVES.
WANTED NEW 705A VALVES. Ltd., Sunbury-on-Thames 86262 ,
WANTED - ITT radio telephones type M5, AM7 and SF1. Good prices paid. any condition considered. Please telephone Rownhams (042
123)
(5277)

ARTICLES FOR SALE

Vacuum is our speciality, new and secondhand rotary pumps, diffusion outfits, accessories, coaters. etc. Sillicone rubber or varnish out-
gassing equipment from f40. V.
 Barrett (Sales)
Croydon.
$01-684$
Ltd.,
9917.

60 KHZ MSF RUGBY RECEIVERS. BCD TIME-OF-DAY OUTPUT. High performance. phase locked loop radio receiver. 5V operation with LED indication. Kit complete 19.50 ; assembled and tested unit
(prices include postage and V.A.T.) prices include postage and
Also available A.i.)
low power receiver Also available low power receiver
with signal and audio outputs. Send for details Toolex. Sherborne (4359) for deta.

MULLARD LP1400 high performance stereo decoder modules. Limited quantity to clear, only ef including p \& p. Mr Clook, 39 Barrett Road,
London, E.17. Mail order only.

DISCO CONSOLE consisting of two 100 Watt DJ Power Amplifiers with MKIII Turntables with Shure. MagMetic cartridges housed in compact netic cariridges housed in compact
mobile unit. 4
speaker units;
2 montaining four $2^{2 \prime \prime} 50$ watt Goodman speakers. 2
containing speakers. 100 watt Pluto light EM1 speakers. 100 watt Pluto light projector, microphone (including
stand and boom). Speaker leads, stand and boom). Speaker leads,
Bank lights. All perfect and ready Bank lights. Ah perfect a
for use. 8800 . $01-8053898$.

TELEQUBPMENT double beam oscilloscope model D56, Delayed sweep. Little used manual fi80. Spec.
aavilable. Parmeko transformer aavilable \quad Parmeko transformer
$7500 \mathrm{~V}-0$ £10. - Erith 30556.

WANTED

black and white, dual standard televisions. Preferably Thorn 1400's or similar sets. In large or small quantities. Collection arranged. Reply to Box No 5239

5239

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS,

ETC.

SPOT CASH

CHILTMEAD LTD.
7, 9, 11 Arthur Road Reading, Berks.
Tel. 582605

REQUIRED from Ministry of Defence and other sources Plessey
models P.T.R. 371 also $691 \quad 692$ models. P.T.R. 371 also 691 , 692 and 693 . Please post fullest details
to John F Learney 16 Pine Walk. Carshalton Beeches, Surrey. (5226)

WANTED. FLUKE 8000A. Advance DMM3 or similar digital volt meter. Also X-Y Recorder any Tel: Brighton $684286 . \quad$ (5250)

ENAMELLED COPPER WIRE

S.W.G.	$\mathbf{1}$ lb real	$\mathbf{1 / 2}$ lb real
10 to 99	240	135
20 t2 29	245	140
30	2434	260
35 to 40	285	150
	285	160

All the above prices are inclusive of postage
COPPER SUPPLIES
102 Parrswood Road, Withington, Telephone 061 -445 8753

EURO CIRCUITS

Printed Circut Boards - Master layouts - Photography - Legend

 pnnting - Roller tinning - Legend plating - Flexible films - Conventional fibre glass - No order too large or too small - Fast turnround on prototypes All or part service available NOW EUDD ClRCDITS TD.

West Kingsdown
Mr. Sevenoaks. Ke
WK2344

500 WATT DIMMER SWITCH

Basic Module with 1 " K nob \quad E2 00 Complete on MK switch plate ${ }_{\text {E2 }} 50$ Large 2" knob (BULGIN) 25p extra PR\& 25p.
Please add 8% VAT to all orders inc
FRASER-MANNING LTD. 40 TUDDENHAM ROAD, IPSWICH IPA

CAPACITY AVAILABLE

General Sheet Metal Work including Fabrication of Chassis Panels. Boxes and Guards. Large and Small Runs at highly Competitive Rates. Let us

quote you now.

ANTEC ENGINEERING LTD.
 6 Sunny Plece, Sunny Garden Road
 London NW4 1RS. Tel. 01-203 4822

(5086)

DESIGN, development, repair, test and small production, of electronic and sman
equipment. Specialist in production of printed circuit assemblies. YOUNG ELECTRONICS LTD., 184 Royal College Street. London NWI 9 NN . 0.-267 0201.

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assemiblies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed, $\begin{aligned} & \text { 3a } \\ & \text { Walerand Road London SE13 7PE. }\end{aligned}$ Tell: 01-852 1706 .

PRINTED CIRCUIT BOARDS Quick deliveries, competitive prices, quotations on request, roller tin: ning, drilling, etc., speciality small batches, larger quandities available Jamiesons Automatics Ltd, $1-5$ Westgate. Bridilington, N. Humberside for the attention of $\mathrm{Mr}_{\text {. }} \mathrm{J}$.
Harrison, Tel :
(0262) A.A.A. SERVICE. Small batch proor drawings. Specialists in printed or drawings. Specialists in printed circuit
order. Rock
Remble Cltronics
Etd.,
42 order. Rock Electronics Ltd.. ${ }^{42}$
Bishopsfield
Harlow. Essex. Tel. Harlow (0279) 33018.

BATCH Production Wiring and Assembly to sample or drawings. Deane Electricals, 19B Station W.5. Tel: $01-9928976$.

CAPACITY available to the Electronic Industry. Precision turned parts, engraving, midling and grinding both in metals and plastics. Mathey SP33 jig borer. Write for Mathey spang borer. Write for
lists of full plant oapacity to C.B
Industrial Engineering Lid Industrial Engineering
Mackintosh Lane, E9 6AB. Tel:
Li9857057.

CRYSTAL TECHNOLOGY

For quartz growing, cutting. lapping and finishing. Designs for crystal devices.

CLARK EXPORT IMPORT COMPANY MATTAPOISETT MASS., U.6.A.

Crystal specialists since 1941
(5207)

ELECTRO MECHANICAL DRAWING FACILITIES. Production standard drawings from Engineer's sketches; liayouts or circuit diagrams. Rapid urnround. Roger Jeffery. 39 Bun yon Close, Pirton, Nr. Hitching,
Herts
Tel:

CAPACITY AVAILABLE for assem bling large or small quantities of P.C.B.'s Electronic and ElectroMechanical equipment from drawings or prototype. Overseas enquonics 100 Sandfield Road Arnoc Nottm. Tel: 0602-606980, (5230)

DESIGN DEVELOPMENT and small production of electronic equipment. No job too smailh. - Holts Elec ronics, 223 Pole Lane Court, Uns worth, Bury, Lancs. BLL9 8QD.

DESIGN. YOUNG C. ENG. (Elec tronics) Physicist, university based. offers individualis land small firms design work, consultancy and in
istrument
construction. strument construction, Novelty's to Miccoprocessors
0293 45132. Systems. (5el:
(5779)

COURSES

GRADUATED OR GRADUATING?

BRUNEL

UNIVERSITY
epartment of Electrical Engineering and Electronics
Applications are invited from gra duates or graduands in Electrical Engineering, Electronics. Mathematics, Computer Science or Physics who wish to obtain a higher degree by foining research teams working

CDMPUTER AIDS TO DIGITAL
SYSTEM DESIGN
IMFORMATION PROCESSING SYSTEMS INTELIGENT AUTOMATA
POWER ELECTRONICS SYSTEMS
CONTHOL SYSTEM DESIGN
COMMUNICATION SYSTEMS
Studentships are avalable for suitably qualified candıdates.

Please write to Professor Igor Aleksander, Depi. of Electrical
Engineering and Electronics. Brunel University, Uxbridge, Middlesex

RADIO and Radar M.P.T. and C.G.L.I. Courses, Write: Principal, Nautical College, Fleetwood, FY7
8 JZ .

VALVES WANTED

WE BuY new valves, transistors and clean new components, large or small quantities. all details, 55 Worcester St. Wolverhampton.
(62
ARTICLES FOR SALE

CRYSTAL OSCILLATORS

-

16 pin DIL package $4-25 \mathrm{MHz}$
Low frequency range from 150 Hz

- CMOS \& TTL compatible
- Prototype service available
- Fast delivery (some items exstock)
- Competitive quantity discounts

Meon Electronics Lid., Savoy Works, Swan Street, Petersfield, Hants. Tel. 0730 2306/7. Telex: 86181.

BOOKS

TELECOMMUNICATIONS:

A Systems Approach by G. Smol, M. P. R. Hamer and M. T. Hills covers the application of a number of signalling and transmission techniques in telecommunication systems at a higher level than most books on the subject. It takes account of the needs of the users of the systems and the economic constraints which affect the choice of techniques and overall system structure. This is an Open University set book for the T321 course. Price: Hardback $£ 8.50$; Paperback $£ 4.25$ from bookshops.

Published by George Allen \& Unwin Ltd., Park Lane, Hemel Hempstead, Herts. HP2 4 TE.

START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS This unique instruction manual shows step by step how lo rewind motors. working I
orkilime, whoul previous experience Everything you need to know. easily explained including where to obtan mate tals.
etc.

A goldmine of information and knowledge
Only $\mathrm{E} 36+25 \mathrm{p}$ P \& P from
Magnum Publications Dept. ME 5 Brinksway Trading Estate Brinksway, Stock port SK3 OBZ

WIRELESS WORLD WANTED. November 1975 issue. High price offered for a clean complete copy - Please telephone 01-888 1909.
(5253)

TAPE RECORDING ETC.

RECORDS MADE TO ORDER
DEMO DISCS
MASTERS FOR RECORD COMPANIES

VINYLITE
PRESSING
Single disc. 1 20, Mono or Stereo. delivery 4 days from your tapes Quantity runs 25 - 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT Delivery $3-4$ weeks Sleeves/Labels Finest quality NEUMANN STEREO/MONO Lathes We cut for many studios UK/OVERSEAS SAE list

DEROY RECORDS
PO Box 3, Hawk Street, Carnforth Lancs
Tel: 2273

APPOINTMENTS

THE ROYAL NORTHERN COLLEGE OF MUSIC
AUDIO VISUAL AIDS
TECHNICIAN
GRADET.1.C
Salary £2,277-£2529
The Technician will be responsible under the direction of the Recording Manager for the provision of the highest quality of Audio Visual reproduclion and recording techniques in connection with public performances. broadcasting. commercial purposes and most important, involves close liaison with the tutorial staff and assistance in their tutorial programmes Experience of tape editing sound mixing CCTV and tape editing sound mixing the maintenance of recording and electronic equipment to a high
standard should be combined with an standard should be combined with an appreciation of music and the ability to read musical score. Further details and application forms can be obtained from the Administration Registrar, The Royal Northern College of Music, 124 Oxford Road, Manchester Closing date for applıcatons ist April. 1976 (5287)

EQUIPMENT WANTED

BROADFIELDS AND
MAYCO DISPOSALS 21 Lodge Lane, N. Finchley London, N12 8JG

Telephone:
$01-4452713$
01-445 0749
01-9587624

MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.

We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment

18IN FACSIMILE. Muirhead weather receiver required urgently. Please contact Sea \& Storm Service Specialists. Tel. 01-723 8466.
(5237)

NEW GRAM EQUIPMENT

GLASGOW. Hi Fi. Cassette Decks Tape Recorders Video Equipment always available we buy, sell and exchange for Hi Fi sets and photographic equipment. Victor MoRRis Audio Visual Ltd.. 340 Argyle Street. Glasgow, G1, $8 / 10$ Glassford Street, Glasgow. Gi, 8/10 Sauchiehall Street. Tele: 041-221 8958.

When you need to hire Video-
 it pays to contact the most experienced video company in the business

PRINTED CIRCUITS and HARDWARE

Readily avalable supplies of Constructors hardware Aluminum sheet and sections Printed circuit board top quality for individual or published designs
Prompt service
Send $15 p$ for catalogue
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon Warwicks. Tel: 4879
\qquad

AUDIOMASTER BACKGROUND MUSIC. service, sales. Tape programmes. P. J. Equipments. 3 programmes. P. Guildford 4801. (12

RECEIVERS AND AMPLIFIERS

HRO RXD̄s, etc. AR88. CRIOU, BRT400. G209, S640. etc. etc. in stock. R. T. \& Electronics, Lid., | Ashville Old Hall, Ashville Rd. |
| :--- |
| London, Ell. Ley 4986 . |
| 65 |

sIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters Frequency Meters. Multi-range Meters ete., etc. in stock. R. T. \& I. Electronics Ltd., Ashville Old Ley' 4986 Ashe Ra., London. E.11 Ley 4986.

RING YOUR CLASSIFIEDS TO OWEN BAILEY ON 01-261 8508 OR 01-261 8423

THOR-HOLE CONVENTIONAL P.C.B.'s gold plating, roller tinning, prototypes, silk screening, drilling. All or part service. - ELECTRO-
CIREUITS (P,C.) LTD., Delamare Road Cheshunt, Herts. Tel. Waltham Cross 38600 or 20344 . (84

TUBE POLISHING, mono, £5.63 colour 55.94 . C.W.O. Return car riage and VAT paid. Phone: N.S 300. Retube Limited. North Somer cotes, Lough. Lincs.

Instruments

well worth servicing and worth
servicing well
And now it's even easier because you can bring or send your AVO. MEGGER or SULLIVAN instruments for service or repair direct to the manufacturers' joint service and spares centre In-house BCS certification facility
London Instrument Repair Centre. Repairs
Cunnington Street
Acton Lane Works
Chiswick, London W4 5 HJ
Tel 01-995 9212. Telex. 22583
Enquiries
Archcliffe Road
DOVER, Kent CT 17 9EN
Tel 0304202620 Telex 96283
AVO-MEGGER-SULLIVAN

WANTED

WE BUY

All sorts of computers, peripherals, automatic typewriters, etc. Top prices paid.

Autotype, at East Hill, Otford, Kent. Otford 3256 or Otford 43393.

FOUNDATIONS OF WIRELESS AND ELECTRONICS

M. G. Scroggie, B.Sc., C.Eng., F.I.E.E.

- 9th Edition
* Since the first edition was first published in 1936 over a quarter of a million copies have been sold.
\star Has proved to be of great assistance to many thousands of enthusiasts and students making aquaintance with the principles of radio and electronics.
» It has been written clearly and concisely in Mr. Scroggie's well-known and often humorous style.
CONTENTS: General View of a System. Electricity and Circuits. Capacitance. Inductance. Alternating Currents. Capacitance in a.c. circuits. The Triode at Work. Transistor Equivalent Circuits. The Working Point. Oscillation. Radio Senders. Transmission Lines. Radiation and Aerials. Detection. Low-Frequency Amplification. Selectivity and Tuning. The Superheterodyne Receiver. High-Frequency Amplification. Cathode-Ray Tubes; Television and Radar. Electronic Waveform Generators and Switches. Computers. Power Supplies. Appendices. The cost of this very useful text is $£ 3.75$ which you will agree is tremendous value for a book of 521 pages. 0408001887.
If you purchase a copy you could be the winner of a beautiful leatherbound copy, personally autographed by the author. Details of 'The $1 / 4$-million Competition' appear in the book.

For details of other books in this field please write
NEVNNES TECHNICAL, Borough Green, Nr. Sevenoaks, Kent

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 99 p PER LINE. Average seven words per line Minimum THREE lines.
* Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus 40p
- Cheques, etc., payable to "Wireless World" and crossed \& Co.

NAME...
ADDRESS
\qquad
\qquad

\qquad \ldots

Newnes Technicel/Books

The Newest name in Technical Books

For details of all the books in our list please write to:
Newnes-Butterworths, Borough Green
Nr. Sevenoaks, Kent
Telephone: Borough Green (0732) 884567

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 130-142

	Page		Page		PAGE		
Aero Electronics Ltd.	18, 22, 27	Grampian Reproducers Ltd. 18		Q Max Electronics Ltd.. 20			
Alice (Stancoil) Ltd.	24						
Ambit International Lid.	24			Radford Laboratories Lid.	14		
Antex Products Ltd.	117	Harmsworth Townley \& Co. Ltd.	Readers Card	Radio Component Specialists	106		
A.S.P. Ltd. ${ }_{\text {Aspen }}$	117		... 9, 25		104		
Aspen Electronics Lid.	127	Harris Electronics (London) Ltd. Harris P.	${ }_{128}$	Ralfe, P.	115		
Audio Amate ur Avo Ltd......	127 19	Harris P.	91	Rank Film Equipment	21		
Audio Fair	29	Hatfield Instruments Ltd.	117	Rastra Electronics Ltd.	122		
Audix Ltd.	27	Hayden Laboratories Ltd.		R.C.S. Electronics	21		
Avant	102	Heath (Gloucester) Ltd.		R.E.W. Audio Visual Co.	92		
		Henry's Radio Ltd.		R.I. Instruments.	14		
Barr \& Stroud.	8	Hepworth Electronics.		Rola Celestion Ltd			
Barrie Electronics Ltd.	99	H/H Electronic		R.S.T. Valves Lt			
Bentley Acoustic Corp. Ltd. 109							
Beyer Dynamic (G.B.) Ltd.	25	Icon Designs.					
B.H. Component Factors Ltd	128	I.L.P. (Electronics) Ltd.	98	Salford Electrical lnsts. Ltd.	12		
Bi-Pak Semiconductors Ltd.	110,111	Imtech Products Ltd.	3	Samsons (Electronics) Ltd.	113		
Bi-Pree Pak Ltd.	103	Industrial Tape Applications Ltd.	113	S.C.S. Components	123		
Bradley, G. \& E. Ltd.	cover iii	Integrex Ltd.	100, 101	Scott, James (Electronic Eng.) Ltd.	96		
Brenell Eng.	10			Semiconductor Supplies Ltd.	126		
Bull, J., Electrical Ltd.	126	Jackson Bros. (Ldn) Ltd.		Service Trading Co.	125		
Bywood Electronics	105	,J.H. Associates Ltd.		Servodata Ltd.	104		
				Servo \& Electronic Sales Ltd	112		
Cambridge Learning		Kinnie Components Ltd.Leevers Rich Equipment 108	Shure Electronics Ltd. 32			
Case Systems				Sinclair Radionics Ltd.	70, 71		
Catronics.				Sintel	93		
Chromasonic Electronics	95			Strumech Eng. Ltd.	31		
Colomor (Electronics) Ltd.	. 124	Levell Electronics Ltd.	. 1	Sugden, J. E. \& Co. Ltd.	23		
Combined Precision Component.	91	Lexor Electronics Ltd	.. 18	Swanley Electronics Ltd.	91		
Computer Appreciation	116	Limrose Electronics Ltd.	27	Swift of Wilmslow			
Computer Sales \& Service	123	Linstead Electronics					
Contarnex Ltd.	126	Lynx (Electronics) London Ltd.	104				
Crofton Electronics Ltd.	. 102			Tandberg (U.K.) Ltd. 92			
Cryslon Electronics Ltd. 30		MacInnes Laboratories Ltd.		Technomatic Ltd.	102		
		Magnetic Tapes Ltd.		Teleprinter Equipment Ltd.	12		
Dema Electronics International		Maplin Electronic Supplies	89	Telford Products Ltd	15		
Dolby Noise Unit		McLennan Eng. Ltd.		Thomson CSF.			
Dymar Electronics Ltd.		Marconi Instruments Ltd.	Cover ii	Trampus Electronics			
		Marshall, A., \& Sons (London) Ltd	99	Turner Electronics			
		Medelec Ltd.	16				
Eagle International Ltd.	20	Mills, W.	. 94				
Electro Systems \& Timing	118.119 18.	Multicore Solders Ltd. Cover iv		United-Carr Supplies Ltd. 72			
Electronic Brokers Ltd. .	118, 119						
Electronics Today International	-127	Naim Audio					
Electrovalue Ltd ...	- 105	Nicholls, E. R.					
Electronic Windings	$\text { .. } 28$	Nolton Communications Ltd		Wayne, Kerr, The, Co. Ltd. .	$\begin{array}{ll} \cdots & 17 \\ \cdots & 92 \end{array}$		
English Electric Valve Co. Ltd.	$\begin{array}{r} 15.27 .30 \end{array}$	Nombrex Ltd.		West Hyde Developments Ltd.	$\begin{array}{cc} 92 \\ \cdots & 31 \end{array}$		
ERG Components Ltd.	$\begin{array}{r} 15,27,30 \\ 114 \end{array}$			Weyrad (Electronics) Ltd. Whiteley Electrical Radio Co. Ltd	$\begin{array}{r} 31 \\ \therefore \quad 10 \end{array}$		
European Electronic Systems Ltd. 127				Whiteley Electrical Radio Co. Ltd. Wilmslow Audio	$\begin{array}{r} 10 \\ 128 \end{array}$		
		Orchard	109	Wireless World Circards	6		
		Overseas Trade Fair	129	Wireless World (The Big Four)	107		
Farnell Instruments Ltd.					90		
Fi-Comp Electronics	30			Wye Electronics Ltd.	22		
Flight Link Control.		PB Electronics Lid.	17,23				
Forgestone Components		Powertran Electronics	120, 121				
Future Film Developments Ltd.	22	Precision Petite Ltd.	17	Z. \& I. Aero Services Ltd.	8, 15, 94		
Fylde Electronic Labs. Ltd.	... 27	Pulse Electronics Ltd.	15	Zettler(U.K.) Division	12		

[^7]

Bradley Electronics are well known as manufacturers of precision electronic instrumentation. But there's another important aspect of our business we're also experts on other people's products.

For 21 years our Services Division has been providing a first-class repair and recalibration service for all types and makes of electronic test and measuring equipment - from simple meters to complicated systems. Any manufacturer's instrument in the frequency range DC to 18 GHz - and to

36 GHz in some cases - collected and delivered back to your dcor ready to plug-in.

The Services Division has its own 35,000 sq ft factory, expert staff, comprehensive spares, and a Standards Laboratory approved by the British Calibration Service. It will supply calibration certificates for $A C, D C$ and RF measurements. And, of course, our standards are directly traceable to NPL and NBS.
So - when your calibrator won't calibrate anymore, your generator
refuses tc generate, or your counter stops counting - you know who to contact.

G \& E BRADLEY LIMITED
Electral House, Neasden Lane,
London NW10 1 RR
Telephone:01-4507811
Telex: 225583
A Lucas Company
BRADLEY

BHick Lune Ersin Multicorethe international solder

Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.
Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

Needle fine gauges

In addition to our standard range of wire diameters (10-22 swg: 3.2-0.7 mm) supplied on $2 \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5-Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications. B.S. 219 B.S. 219 B.S. 3252 B.S. 219 B.S. 219

Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Solder.

Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.

Alloy

Composition
(nominal major elements)

$50 / 33 / 17 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}$
$62 / 36 / 2 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$
$62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}$
$63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$60 / 40 \mathrm{Sn} / \mathrm{Pb}$
$60 / 39.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / 5 \mathrm{~b}$
$50 / 50 \mathrm{Sn} / \mathrm{Pb}$
$50 / 49.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$50 / 48.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}$
$45 / 55 \mathrm{Sn} / \mathrm{Pb}$
$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
Pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
$5 / 93.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$

Grade	Melting Temperature		
	Solidus ${ }^{\circ} \mathrm{C}$		Specification
TLC	145	145	DIN 1707
LMP	179	179	DIN 1707
Sn62	179	179	QQ-S-571E
Sn63	183	183	QQ-S-571E
K	183	188	B.S. 219
Sn60	183	188	QQ-S-571E
F	183	212	B.S. 219
$\operatorname{Sn} 50$	183	212	QQ-S-571F,
Savbit 1	183	215	DTD 900/4535 IIN 1707
R	183	224	B.S. 219
G	183	234	B.S. 219
Sn40	183	234	QQ-S-571E
J	183	255	B.S. 219
V	183	275	B.S. 219
-	225	290	-
P.T	232	232	B.S. 3252
95A	236	243	B.S. 219
H.M.P	296	301	B.S.219

For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex : 82363

[^0]: To. Cambridge Learning Enterprises, Dept COM
 FREEPOST. Si. Ives, Huntingdon. Cambs PE1 7 4BR
 -Please send me set(s) of Design of Digital Systems at £6.45 each. p \& p included
 -or set(\$) of Dıgital Computer Logıc and Electronics at $£ 4.45$ each. p \& p included
 | or combined set(s) at $£ 9.75$ each, $p \& p$ included
 Name
 Address
 1

 - delete as applicable

 No need to use a stamp - just print FREEPOST on the envelope

[^1]: WW- 059 FOR FURTHER DETAILS

[^2]: Trade and Export enquitres welcome
 Send for full technical leaflets Post and packing E1 00 extra

[^3]: All stockists of DeC Breadboards
 please note PB are the manufacturers and suppliers, please send all orders, communications direct.

[^4]: *H. Nyquist, "Certain Topics in Telegraph Transmission Theory," Trans. A.I.E.E. vol. 47, p.617, - 1928.
 **D. Gabor, "Theory of Communication," J.I.E.E., Part III, vol. 93, p.429, 1946.

[^5]: PLEASE ADD 8\% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

[^6]: Designed in response to demand for a tuner to complement the world-wide acclaimed Linsley Hood 75W Amplifier, this kit provides the perfect match. acclaimed Linsley Hood 75 W Amplifier, this kit provides the perfect match.
 The Wireless World published original circuit has been developed further for inclusion into this outstanding slimline unit and features a pre-aligned front end module, excellent a.m. rejection and temperature compensated varicap tuning, which may be controlled either continuously or by push button pre-selection. Frequencies are indicated by a frequency meter and shiding LED indicators, attached to each channel selector pre-set. The PLL stereo decoder incorporates active filters for "birdy" suppression and power is supplied via a toroidal transformer and integrated regulator for long term stability metal

 ## Wireless World Amplifier Design

 Full kits are not available for these projects but component packs and PCBs are stocked fo the highly regarded Bailey and 20W class AB Linsley Hood designs, together with an efficient regulated power supply of our own design. Suitable for driving these amplifiers is the Batey Burrows pre-amplitier and our circuit board. for the stereo version of it teatures inpuls, scratch
 slider operating.
 For those intending to get the best out of their speakers, we also ofter an active fitter system described by D. C. Read. which splits the output of each channel from the pre-amplifier into the channels each of which is fed to the appropriate speaker by its own power amplifier The Read/Texas 20W. or any of our other kits are suitable for these. For tape systems a se of three PCBs have been prepared tor the integrated circuit based, high performance stereo Stuart design Details of component packs are in our free list

 30W Bailey Amplifier
 BAIL Pk 1 F/Glass PCB
 BAIL Pk. 2 Resistors. Capacitors. Potentiometer set
 BAIL Pk 3 Semiconductor se
 20 W Linsley Hood Class AB
 LHAB Pk 1 F/Glass PCB
 LHAB Pk 2 Resistor, Capacitor,
 LHAB Pk 3 Semiconductor set
 Regulated Power Supply
 60 VS Pk $1 \mathrm{~F} /$ Glass PCB
 60VS Pk 2 Resistor, Capacitor se 1
 60VS Pk 3 Semiconductor set
 60VS Pk 6A Toroidal transformer (for use with Balley)
 60 VS Pk 6B Toroidal transformer (for use with 20 W LH)
 Bailey Burrows Stereo Pre-Amp
 BBPA Pk 1 F/Glass PCB
 BBPA Pk 2 Resistor, capacitor semiconductor set
 BBPA Pk 35 Slider Potentiometer set
 Active Filter
 FILT Pk $1 F /$ GIass PCB
 FILT PK 2 Resistor. Capacitor set (metal oxide 2\%, polystyrene $21 / 2 \%$)
 FILT Pk 3 Semiconductor set
 2 off Pks 1.2,3 rad for stereo active filter system
 Read/Texas 20W Amp
 READ Pk 2 Resistor. Capacitor set
 READ Pk 3 Resistor. Capacito
 6 off pks 1.2.3 required for stereo acrive fitter system

[^7]: Prínted in Great Britain by QB Lid., Sheepen Road. Colchester and Published by the Proprietors lPC ELECTRICAL-ELECTRONIC PRESS LTD.. Dorset House. Stamford St., London, SEI 9 LU telephone 01-261 8000. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service, Lid. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd.: William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News Distributors Inc.. 14th Floor, 111 Eighth Avenue, New York, 10011.

