
mi's TF 2015 a wider view of signal generation...

The TF 2015 is a versatile $10-520 \mathrm{MHz}$ signal generator with calibrated a.m. and f.m. and an accuracy of output level setting normally found only in instruments costing three times as much. A special system gives very fast tuning across the bands yet provides smooth control within the narrowest of passbands. Leakage radiation is carefully screened out to enable accurate measurements to be made even at levels below $I_{\mu} V$.
Matched Synchronizer
The clip-on Synchronizer TF 2171 transforms the performance of TF 2015 into the equivalent of a synthesizer at less than half the comparable cost. The frequency is locked to crystal stability and can be dialled in 100 Hz . steps. Tuning is quick and easy - set the decade dials, switch to "lock" and tune the generator to the approximate
frequency and the synchronizer will finish the job for you. Now you can change the frequency by up to 2% using the decade dials without touching the generator and all to an accuracy of 2 parts in 10^{7}. It stays locked all day and doesn't degrade any aspect of the generator performance.
I.F. Probes

These are an invaluable aid to the testing of receivers with squelch or battery economiser circuits. These circuits are inactivated when the crystalcontrolled signal from the probes is brought into the proximity of the receiver's i.f. strip. This makes it easy to tune the generator to a receiver when its channel frequency is unknown. The probes can also be used to check exact tuning by adjusting for zero beat.

Mi:THE SIGNAL GENERATORS
MARCONI INSTRUMENTS LIMITED

LEVELL
 POBTABLE INSTRUMENTS
 New for 1976

JANUARY

M T W T						
4	5	6	7	8		
11	12	13	14	15	1	
18	19	20	21	22	2	
25	26	27	28	29	3	
MARCH						
S	M	T	W	T		F
	1	2	3	4		
7	8	9	10	11	1	
14	15	16	17	18	1	
21	22	23	24	25		
8						

FEBRUARY

S M T W T F S $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ $8 \quad 91011121314$ $\begin{array}{llllll}15 & 16 & 17 & 18 & 19 & 20 \\ 21\end{array}$ 22232425262728 29

APRIL

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10

11121314151617
18192021222324
252627282930

MULTITESTER TYPE TM11

With over 100 basic ranges.

MAY

S	M	T	W	T	F	$\begin{aligned} & \mathrm{s} \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{T} \\ & 1 \end{aligned}$	$\begin{array}{r} w \\ 2 \end{array}$	$\begin{aligned} & T \\ & 3 \end{aligned}$		S
2	3	4	5	6	7	8	6	7	8	9	10	1	12
9	10	11	12	13	14	15	13	14	15	16	17	18	19
16	17	18	19	20	21	22	20	21	22	23	24	2	26
23	24	25	26	27	28	29	27	28	29	30			
	31												
JULY							AUGUST						
S	M	T	w	T	F	S	S	M	T	W	1		S
				1	2	3	1	2	3	4	5		7
4	5	6	7	8	9	10	8	9	10	11	12		14
11	12	13	14	15	16	17	15	16	17	18	19	2	21
18	19	20	21	22	23	24	22	23	24	25	26	2	28

SEPTEMBER

S	M	T	W	T	F	S
			1	2	3	4

$\begin{array}{lllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
12131415161718
19202122232425
2627282930

NOVEMBER

S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				

OCTOBER

S	M	T	W	T	F	\mathbf{S}
3	4	5	6	7	1	2
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

$50 \mu \mathrm{~V}$ to 500 V fsd. AC. $]$	3 Hz to 200 kHz
50pA to 500mA fsd.	
-90/+50dB mid scale.	Input $\mathrm{R}=100 \mathrm{M} \Omega$
$150 \mu \mathrm{~V}$ to 500 V fsd. DC.	Input $\mathrm{R}=100 \mathrm{M} \Omega$
150pA to 500mA fsd. D C	
0.2Ω to $10 \mathrm{G} \Omega$ Resistan	ce at $<0.7 \mu \mathrm{~W}$.
D.C. Lin/Log ranges for n	ulling.

50 pA to 500 mA fsd. above $500 \mu \mathrm{~V}$ \& 500 nA .
$-90 /+50 \mathrm{~dB}$ mid scale. \quad Input $R=100 \mathrm{M} \Omega$ on V.
$150 \mu \mathrm{~V}$ to 500 V fsd. DC . Input $\mathrm{R}=100 \mathrm{M} \Omega$.

DECEMBER

S M T W T F S 150 pA to 500 mA fsd. DC.
0.2Ω to $10 G \Omega$ Resistance at $<0.7 \mu \mathrm{~W}$.
12131415161718
19202122232425
26. $27 \quad 28 \quad 2930 \quad 31$

S-DEC Solderless Breadboard 50p off + free solder board.

Designing circuits? It's easy with S-DEC! NO SOLDERING - just plug your components in. So they can be re-used indefinitely. As used by the Schools Project Technology Courses.
FREE with this offer - booklet giving a range of quick-assembly circuits for the S-DEC, including radio receiver; VHF radio microphone; 3 -stage amplifier, and many others. Also, FREE control panel for mounting switches, lamps etc.
This offer also applies to the T-DEC, U-DEC, and the T- and U-super solder boards. Simply take this page to your local dealer, or send it direct to us.
S-DEC BREADBOARD + FREE SUPER SOLDER BOARD. $£ 1.48$ (send $£ 1.80$ to cover postage, packing and V.A.T.).
T-DEC + SUPER SOLDER BOARD $£ 3.87$ U-DEC A + SUPER SOLDER BOARD $£ 4.31$
covers postage, packing and V.A.T.
U-DEC B + SUPER SOLDER BOARD £7.71
To use ICs with T and U-DEC A, 16 DIL adaptor with socket, $£ 1.92 ; 10$ to 5 adaptor with socket, $£ 1.80$.

NEW Low cost PB DEC Super Solder Boards.

When your circuit is proved working on your DEC, simply plug the components into a Super Solder Board - a fibre-glass, drilled, roller-tinned finished circuit board using the same layout as the DEC breadboard. Once the components are plugged in, in the same positions as on the DEC, solder! (No cutting or drilling of contact rails.) The result -a perfect, finished, printed circuit board.
Super-solder boards are available in packs of 1 or 3 off
SUPER SOLDER BOARD SSS-1 for use with S DEC circuits, only: 1 off $£ 0.39$;
3 off $£ 1.00$.
SUPER SOLDER BOARD SST-1 for discrete circuits: 1 off $£ 0.59$; 3 off $£ 1.60$.
SUPER SOLDER BOARD SSU-1 for discrete and DIL circuits: 1 off $£ 0.59$; 3 off $£ 1.60$.
SUPER SOLDER BOARD SSN-1 for discrete and DIL sockets. Up to 40 -lead 0.6 in. DIL, and for the direct insertion of TO5 packages or 0.1 in . lead-out sockets: 1 -off $£ 0.69$; 3-off, £2.00
When ordering, please also send $£ 0.40$ for post, packing and V.A.T.

Expo Reliant Drills and Kits.

Powerful, miniature, low-voltage drills capable of sawing, grinding, burring, brushing and polishing - as well as drilling holes up to 3 mm . diameter through virtually any material. The Expo drill operates from a power supply of 12 V d.c. or, using the Titan transformer/ rectifier unit (0220), from a.c. mains supplies at $200-250 \mathrm{~V}$ a.c., 50 Hz .
The Expo Reliant Mini Kit, consists of the Reliant Standard Drill (0150) and a set of 20 assorted tools (0305), providing a powerful, versatile kit for use both by the professional and the hobbyist. Prices: $£ 9.40$ including postage and packing, and V.A.T.

Zippy Cabinets. Ideal For All Assembly Cabinets.

Robust ABS plastic assembly boxes, front panel designed to be cut and drilled, slots inside for mounting circuit boards attractive colouring and styling.
TP1 $80 \times 50 \times 30 \mathrm{~mm} £ 0.721$ OFF TP3 $155 \times 90 \times 50 \mathrm{~mm} £ 1.621$ OFF TP2 $115 \times 65 \times 40 \mathrm{~mm} £ 1.271$ OFF TP4 $210 \times 125 \times 70 \mathrm{~mm} £ 2.271$ OFF
Discount for quantity prices include Post \& VAT

Resist Coated Circuit Board Lowest price in U.K.
U.K. $12^{\prime \prime} \times 12^{\prime \prime}$ Glass Fibre $1 / 16$ coated with resist £ 1.50 each.

Circuit Board Manufacture, Fast delivery, Low Price, any circuit board made in days.

NIGHT GUARD.
Dimmer with a difference, Guards your home from theft. SET, darkness comes, lights come on, dawn, lights go off. Dims room lights up to 500 watts. $£ 5.95+£ 1.05$ VAT \& POST

S DEC - TDEC - UDEC Accessories. 16 DIL ADAPTOR £ 0.99 16 DIL with socket $£ 1.92$ Single ended leads (packs of ten)... £0.90 Double ended leads (packs of ten). £0.90 EXPERIMENT GUIDES used by all to teach electronics with DEC breadboards. teach electronics with DEC breadboards.

 GUIDE B 10 Projects £1.77 GUIDE C.... 3 ADVANCED . £0.90 | GUIDE D | | |
| :--- | :--- | :--- |
| GUIDE E 23 Projects | | $£ 2.40$ |

Audio Lahoratory Instruments

To expand the distribution of Audio Laboratory Instruments RADFORD are looking for new dealer/agents outside the United Kingdom. If you are a supplier of laboratory instruments to professional and industrial end users it could be to your advantage to learn more about
RADFORD audio measuring equipment.
Write today for leaflets and details of franchised dealership.

Radford Laboratory Instruments Ltd
Ashton Vale Road
Bristol BS3 2HZ England
T/RADFORD

LDO3. Low Distortion Oscillator

Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
Distortion: Distortion less than 0.002% over audio band. Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3}{4}$ ".
LDO3B. Low Distortion Oscillator
As LDO3 but additionally fitted with output amplifier and
transformer providing a 600 ohm floating balanced output.
Unbalance: $-80 \mathrm{~dB} .1 \mathrm{kHz} .-60 \mathrm{~dB} 10 \mathrm{kHz}$.
$£ 375.00$
DMS3. Distortion Measuring Set
Frequency range: $5 \mathrm{~Hz}-50 \mathrm{kHz}$.
Measurement down to 0.001%.
Size: $17^{\prime \prime} \times 7^{\prime \prime} \times 8 \frac{3}{4}$ ".
1225.00

HSV1. High Sensitivity Voltmeter

Average reading: $10 \mu \mathrm{~V}$ to 300 V f.s.d.
HSV2. High Sensitivity Voltmeter
True r.m.s. reading. $10 \mu \mathrm{~V}$ to 300 V f.s.d. £17500
ANM1. Audio Noise Meter and High Sensitivity Voltmeter
Average reading: $10 \mu \mathrm{~V}$ to 300 V f.s.d.
Includes Wide band, Audio band, IEC curve ' A ' and CCIR
weighting networks. Illustrated above.
£150.00
ANM2. Audio Noise Meter and High Sensitivity
Voltmeter
As ANM1 but true r.m.s. reading.
$£ 200.00$

66 where can I get an RF Generator nowadays that's easy to use, reliable, robust but not too expensive? $9 \boldsymbol{9}$

"Here"-AVO's new HF 135-a really useful professional RF generator ideal for repair bench or test lab.

Wide frequency range - eight bands from 100 kHz to 240 MHz . Calibration accuracy conservatively rated at $\pm 1 \%$ right across the range. Output level from $1 \mu \mathrm{~V}$ to 100 mV $(\pm 6 \mathrm{~dB})$ AF Signal source facility (1 kHz). Input for external modulation. All wrapped up in a tough metal cabinet with ergonomically designed front panel and complete with connectors, crocodile clips and the AVO guarantee of reliability, serviceability, and accuracy at a sensible price.

For descriptive leaflet and name of your nearest stockist. phone or write:

Avo Limited, Archcliffe Road,
Dover, Kent. CT17 9EN.
Tel: 0304202620 Telex: 96283.
$\stackrel{1}{\text { rhow }}$ Thorn Measurement Control and Automation Division
WW-089 FOR FURTHER DETAILS

FAST RESPONSE STRIP CHART RECORDERS

Specification
Basic error
Sensitivity
Sensitivity
Response
Chart speeds, selected by
push butions \qquad
Chart drive

Made in USSR 2.5\% 8mA F.S.D.
0.1-0.2-0.5-1-2.5-$-5-12.5-25 \mathrm{~mm} / \mathrm{sec}$.
Type H3O20-1
Single pen
.200-250v 50Hz
Recording:

Type H3020-3
Three-pen

Syphon pen directly attached to moving coil frame. curvilinear co-ordinates

Equipment: Marker pen, Timerpen, Paper footage indicator, 10 rolls of paper. connectors, etc.

Dimensions:
H320-1: $285 \times 384 \times 16.5 \mathrm{~mm}$ H320-3: $475 \times 384 \times 16.5 \mathrm{~mm}$

PRICE: H320-1 $£ 108.00$
H320-3 £160.00
Exclusive of VAT

66 where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune?

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anvwhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take - with no calculations thanks to the mechanical in-line digital display and interlocking units selector.

The B150Mk. 3-for use in production, quality control, development labs-even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From good distributors evervwhere

Ring us for the name of vour nearest stockist or for fuller details of AVO's Universal Bridge B150 Mk. 3.

brandenburg's Olympian view.

Our 200 Series and 479 HV supply modules. Brandenburg's range of HV power supplies and associated equipment is unequalled by any other British manufacturer.

Take our 200 Series for instance. Totally resin encapsulated to provide high voltages for C.R.T. displays, storage tubes, projection systems and many other applications where a compact and reliable HV source is required.

Offering all the advantages of miniaturisation and standardisation of design, the 200 Series units come either regulated or unregulated within the output range 4 kV to 20 kV .

Or our 479 Photomultiplier supply module. Incorporating a low drift reference voltage source, this module is designed to provide stable, low ripple high voltages for a wide range of photomultipliers. The 479 provides a positive output which is adjustable over the range 500 V to 3 kV , and a maximum current of 2.5 mA .

We at Brandenburg believe Britain does not do enough at or for the Olympic Games. So, as we are British through and through, we thought we would get our industry involved. Please use our enquiry number and, apart from receiving full information on our 200 Series and 479 module, it could be the first step in your winning a free trip to the Montreal Olympics. We'll send you an entry form for our Olympian Competition which is, we are sure you'll agree, great fun. Get in training; use your pen now.

brandenburg

Due to our continued expansion, we have vacancies for sales engineers. development engineers and production personnel.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$
WW-016 FOR FURTHER NFTAILS

nombrex

 MODEL 40
 WIDE RANGE AUDIO GENERATOR
 $£ 42.49$ + VAT

$\star 4$ RANGES, $10 \mathrm{~Hz}-100 \mathrm{KHz}$

* Sine and square wave output.
* DUAL CALIBRATED ATTENUATOR
* STABILIZED OUTPUT LEVEL 1 V

> ade and Export enquiries welcon.. Send for full technical leaflets Post and packing $£ 1.00$ extra

NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET NEWTON ABBOT, DEVON TQ12 1 NE

Tel. Newton Abbot 68297

Alice Broadcasting STM6

Six Channel Stereo Transmission Mixer (ALICE'S BABY)

ALICE (STANCOIL LTD.), 38 ALEXANDRA ROAD. WINDSOR, BERKS, ENGLAND

Also available from Roger Squires, London and Manchester

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road. London N1 1LY. Tel: 01-607.8271

\section*{Switching problems? Rely on Zettler.
 | Producing 30 basic types
 of relay and 15.000 variants
 with regard to contact
 stacks, terminals, energizing
 current and contact
 material, Zettler is among
 the largest manufacturers
 of electro-mechanical
 components. | Our product range
 comprises:
 Low profile (flatform)
 Timing. Miniature. Low
 contact capacity. Herme-
 tically sealed . Stepping.
 Mains switching • Latching
 Contact stacks • Solenoids |
| :--- | :--- |}

We resolve your switching problems rapidly and expertly. Pliase contact us for further details.

Zettler UK Division
Brember Road
Harrow, Middx. HA2 8AS. Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est. 1877

I NTERNAT\|ONAL DANAVOX (GT. BRITAIN) LTD
'BROADLANDS" BAGSHOT ROAD
SUNNINGHILL, ASCOT, BERKS
TEL: 0990 23732/6: TELEX: 84584

© f reserrchara"on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

WW-053 FOR FURTHER DETAILS

Eddystone Model 990R professional
 Designed for fixed or mobile point-to-point service or for broadcast monitoring, this solid-state single-conversion VHF receiver is finding increasing use in other professional applications such as the meteorological service, radio astronomy, aerial investigations, civil aviation and in radio laboratories
 Continuous coverage is provided from 27 MHz to 240 MHz for CW AM and FM reception, with exceptional stability and sensitivity. A crystal filter to suit $12.5 \mathrm{kHz}, 25 \mathrm{kHz}$ or 50 kHz channel spacing can be supplied to suit customer requirements; and output is available for panoramic display

Teach yourself the latest techniques of digital electronics
 Computers and calculators are only the beginning of the

Jointhe Digital Revolution digital revolution in electronics Telephones, wristwatches. TV., automobile instrumentation - these will be just some of the application areas in the next few years

Are you prepared to cope with these developments?
This four volume ccurse - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and containing 48 pages - guides you step-hy-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles The only initial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you

Also available - a more advanced course in 6

 volumes:1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer. Order this together with Digital Computer Logic \& Electronics for the bargain price of $£ 9.25$, plus 50 p p\&p.
Design of Digital Systems contains over twice as much information in each volume as the simpler course Digital Computer Logic and Electronics All the information in the simpler course is covered as part of the first volumes of Design of Digital Svstems which as vou can see from its contents also covers many more advanced topics

Designer

Manager Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questioris on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

Digital Computer Logic and alectronics
A Seff-instructional Course

$:$| Designing circuits |
| :--- |
| to carry out |
| logical functions |

$: \circ /$| Fliptops |
| :--- |
| and |
| registers |

£3.95

plus 50p packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

[^0]A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

transformers

mains, audio, microphone, ferrite core and other wound components

Drake Transformers Limited

Telephone: Billericay 51155

TRANSFORMER
WITH UNIVERSAL
end frames and
turret lug connections

TWO HOLE CLAMP AND
SOLDERTAG CONNECTIONS

Kennel Lane, Billericay, Essex.

WW-04; FOR FURTHER DETAILS

Easiest and quickest way of punching holes
in sheet metal (uft to 1.625 mm)
Simple operation 100% British
Burr-free holes - no jagged edges
57 Metric and Linear sizea
(Lists on application)

Used by all Government Services and most industries Wholesale and Export enquiries to
"Q:MAX"(ELECTRONICS)LTD 44 PENTON STREET.LONDON N190A TE: 012782500

J E S AUDIO INSTRUMENTATION

WW-010 FOR FURTHER DETAILS

WW-005 FOR FURTHER DETAILS
 cameras

Type A modular system with widest range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements.
Plus inexpensive Type P (prices from E50) utlising coaterless Polarold (i) fllm and Robot with economical 35 mm film for contiruous faed.

Complete the coupon and we'll send you our complete, new catalogue.

The new Heathkit catalogue is now out. Full as ever with exciting. new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading. And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Cloucester) Limited, Dept. WW - 26 , Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (045'2) 29451.

SSB Transceiver

Digital electronic stop watch

WW-OII FOR FURTHER DETAILS

Bridge in a thousand

WAYNE KERR

For more information phone Bognor (02433) 25811 , or write to Wayne Kerr, Durban Rd., Bognor Regis, Sussex PO22 9RL

One part in one thousand is the accuracy of Universal Bridge B224 from 10 ohms to 1 gigohm, 0.1 pF to 10 microfarads and 1 nanomho to 100 millimhos. Monitor its 1592 Hz source frequency and also get 0.1% from 1 mH to 10 kH . With reducing accuracy, coverage extends above and below the ranges quoted, on R,C, G and L Resistive and reactive terms read simultaneously. Sockets for $200 \mathrm{~Hz}-50 \mathrm{kHz}$ operation. Internal rechargeable battery. Many other valuable features detailed in Data Sheet B224.

PETITE PRECISION!

A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER
AVAILABLE IN KIT FORM OR SEPARATES
EXAMPLE OF FRENCH PRECISION ENGINEERING
Diameter 33 mm Weight 160 g Length 125mm Tonque 105 cmg RPM approx. 5000/6000 at 12 V DC Power 9/14V DC Batteries or AC/DC transformer

PRECISION PETITE LTD
119A HIGH STREET TEDDINGTON, MIDDX. UK

TEL. 01-977 0878

Wireless World Annual 1976

The world of electronics, television, radio/audio is on parade in the second great Wireless World annual. Constructional articles include making a photographic timer. Surveys cover video, magnetic tape compatability, electronic ignition and radio astronomy in schools.

Hi-Fi Year Book 1976

2This is the book that tells you everything you need to know about the hi-fi equipment on the market. Separate illustrated sections cover every major category, together giving prices and specifications of over 2,000 products.

High Fidelity Designs

3In response to demand for reprints of Wireless World constructional projects, we have collected fifteen of the most popular designs in one book

Gircuit Designs (1)

4

 A compilation of the first ten sets of Wireless World Circards and including additional circuits. Each set in this hard back book is preceded by an explanatory introduction.
Order coupon

To General Sales Dept. Room 11 ,
Dorset House, Stamford St., SE1 9LU
Please send me books as indicated below (state number of copies of each)
Wireless World Annual 1976 /" $£ 1.35 \mathrm{incl}$
Hi-Fi Yearbook 1976 (1 £ $£ 2.35$ incl
High Fidelity Designs (c) $£ 1.35$ incl
Circuit Designs (1) u! E 10.40 incl
I enclose remittance value $£$ \qquad
(cheques payable to IPC Business Press Ltd)
Name
Address

Regd. in England No. 677128 Regd. Office: Dorset House, Stamford St. SE1 9LU

STATEK
 ULTRA MINIATURE LOW FREQUENCY QUARIZ CRYSTALS
 Models SX \& WX

FEATURES

* Rugged tuning fork designs, semiconductor manufacturing techniques for low cost, high volume production
* Frequency range from 10 kHz to 250 kHz
* Hermetically sealed in TO-5 can
* Calibration accuracies of 100 ppm for SX-1, 10 ppm for WX
* Twenty most prevalent crystal frequencies available from stock
* Low cost - unit price from $£ 1.15$ for production quantities
* Shock 1000 g , vibration 11 g

Distributed in the United Kingdom by
INTERFACE QUARTZ DEVICES LIMITED
29 Market Street, Crewkerne, Somerset
Telephone: (046031) 2578 Telex: 46283
World wide exporters and importers of all types of quartz crystals, crystal oscillators, filters, timers, counters and accessories

WW-004 FOR FURTHER DETAILS

Hard-to-find tubes and semiconductors are normally included in our quotations.

 We try to give a complete answer. AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex $87 \| 6$ Cables Aerocon Telex Horley Telephone Horley 5353
TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

LEEVERS-RICH EQUIPMENT LTD.

INC. BIAS ELECTRONICS
319 TRINITY RD., LONDON, SW18 3SL
01-9749054
WW-045 FOR FURTHER DETAILS
80 CHRONOMETERS and TIMERS
Three grades of precision are available.
8\% VAT

Model	Oscillator employed	Features in Brief
$\mathbf{4 0 1}$	Quartz, temperature-	Very low powwer consump
$\mathbf{4 0 2}$		Accuracy one second

402 compensated \quad tion. Accuracy one second
$403 \quad 3.2 Z 6800 \mathrm{MHz}$ AT-cut per month at $20^{\circ} \mathrm{C}$ Price range £44-£98.
501 Quartz, low-power Accuracy one second per month $5^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Prices range from $£ 180$

| 601 | $\begin{array}{l}\text { Rubidium } \\ \text { absorption with phase- }\end{array}$ |
| :--- | :--- | controlled temperature Very high accuracy, with leap-second adjustment facility. Price subject to quotation.

Kits also available (40 i chronometer models only); everything needed is supplied, including wire, screws and case Please send for full details to

ELECTRO SYSTEMS \& TIMING CO.
48 Robinson Road, Loudwater, High Wycombe, Bucks. HP137BJ, England

Tel: Penn (049481) 4661
WW - 082 FOR FURTHER DETAILS

DATEST 1: THE NEW TIME SAVER

Automatic device tester and identifier

Abstract

DATEST 1 saves valuable repair time by automatically testing diodes, transistors, and all types of FETs, both in and out-of-circuit, plus common op. amp. i.c.s out-of-circuil.

To carry out a test simply connect the device and switch on. If the display flashes its "No Go". It you get a steady pattern it's "Go". No prior knowledge is required of device polarity or whether it is bipolar or FET On the contrary, the clear six-LED display telts you at a glance the polarity of the device (NPN, PNP. N-channel. P-channel) and for out-of-circuit tests whether it is bipolar, depletion FET or enhancement FET If you then flick the test current switch you can instantly place limits on current gain, leakage current, and FET parameters Finally if you need to you can even plug in a multimeter and actually measure some of them DATEST 1 with its advanced four i.c. and six transistor circuit (pat. appl. for) rapidly pays for itself in skilled man hours saved and in expensive mistakes avoided. For complete user confidence DATEST ; even stops working abruptly and gives a special display when battery voltage has dropped to too low a value Write for full details or send now for your own time savery. Price $£ 49$ plus 8% for in-circuit tests. and detailed handbook

DATONG ELECTRONICS LIMITED

New Achievements from Xcelite

Xcelite technology has created some new additions to the famous 99 SERIES of interchangeable Tools The first of these is the Compact Set of Ball-End Hex drivers which, as illustrated, can drive from any angle.

Also now available in the same series are the POSIDRIV blades Nos. 1, 2 and 3

Send for the complete Xcelite precision tools catalogue from:
Special Products Distributors Limited 81 Piccadilly, London W1V OHL
Telephone: 01-629 9556
XCELITE PROFESSIONAL HAND TOOLS
WW - 008 FOR FURTHER DETAILS

Spot the Difference

TYPICAL
STEREO MASTER RECORDER at around £3,000.00

Wow \& Flutter less than 05\%

Start Time less than .5 sec

Frequency
Response
$40-18 \mathrm{KHz} \pm 2.0 \mathrm{cB}$
Erasure
75dB
Full Servo Tension
Noise
60dB below 320
nWb/m
Servo Controlled
Capstans

Electronic Tape Timer

TEKNIK SM2 STEREO MASTER RECORDER at * $£ 1,750.00$ complete
Wow \& Flutter less than 05\% (Typically 02% at $15 \mathrm{ips})$
Start Time
less than 3 sec
Frequency
Response
$40-20 \mathrm{KHz}-2.0 \mathrm{~dB}$
Erasure
75dB
Full Servo Tension
Noise
60dB below 320
$\mathrm{nV} / \mathrm{b} / \mathrm{m}$ at all speeds
Servo Controlled Capstans
with panel operated or remoteable varispeed
Elactronic Tape Timer
Switchable
NAB;DIN
ecualization
V.U metering plus
L.E.D. peak level indicators

* J.K. Trade Price

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!
Simply draw the desired circuit onto copper laminated board etch - clean.
The circuit is ready to use

NO MESS - NO MASKING

A perfect circuit every time!

Still only $£ 1.08$ for one-off, £4.42 for six, £8. 80 for twelve, post and VAT paid! Available now in every country in Europe. AND FROM YOUR LOCAL COMPONENT SUPPLY SHOP!
Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371

ELECTRONIC INDUSTRIAL THERMOMETER

the modern way to measure temperature A Thermometer designed to operate_as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Motel "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

WW-017 FOR FURTHER DETAILS

Red \& Green LED applied Logic Level Indicator MODEL 320 LOGIC PROBE

* Wrong polarity and overload protectors provided
* Detection of the peak value of input waveform
* Open circuit or faulty IC can be detected
* Ail logic levels are visible at a glance
* Powered from circuit under test

IH Associntes Itd Salos office: 52 silver Street. Stansted;Essex. (0279) 814929

WW-087 FOR FURTHER DETAILS

McLENNAN ENGINEERING LIMITED
Kings Road Crowthorne Berks Telephone: Crowthorne 5757/8

EXCLUSIVE - WORLDBEATING

MON-ALATM E14 TNG. VAT, EIC.

- Mains failure ind.
- Tilt Snooze Sw.
- Separate alarm Control Sw.
- 9 min . Snooze
- No knowledge of electronics to build kit

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20.000 Hz . The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse qr complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan)
Phase Response
Harmonic Distortion Intermad. Distortion Damping Factor
Hum \& Noise ($20-20 \mathrm{kHz}$)
At least 110 db below 150 watts
Other models in the range: D60 - 60 watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply
Dimensions
D150-150 watts perchanne

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10 K ohms to 100 K ohms
Short. mismatch \& open cct. protection $120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19" Rackmount. 7" High, 93ㅜㅜ Deep
macinnes house, carlton park inoustrial estate, SAXMUNDHAM, SIJFFOLK IP17 2NL
TEL: (0728) 22622615

HIGH VOLTAGE PROBE/METER

[^1]For further information contact: 01-639 0155/7

Precision Instrument Laboratories Instrument House, 212 Ilderton Road, London SE15 1 NT

HIGH FIDELITY STEREO RECEPTION by Con

There is little doubt that live stereo radio broadcasts provide the highest fidelity reproduction available from any source If you do not gree with this statement, "t is probably because your tuner BBC , and is restricting the quality of sound available
It could be that you have not invested in an F.M receiver. and are naware of the wealth of listening pleasure going to waste over you rooftop. and could be yours to enjoy without the cost of a licence l In ether case you are in for a pleasant surprise when you install the ICON DESIGN tuner. Gone is the confusion of finding the right station from the multiplicity of transmitters now operating. Gone is the unceramy of tuning for the best sound Gone are the noises and With the ICON DESIGN inner you get only what you want: good clean sounds at the touch of a button or the turn of a knob. Tuning is sounds at the touch of a beak and out-of-tune stations are not heard and the quality of reproduction will rival your best records.

BUILT \& TESTED

This tuner is available ready to plug in and use, on a two week money back guarantee for your inspection guarantee against failure in normal use
Available also are a number of ready built and tested sub-assemblies for inclusion in your own cabinet, and pub-assemblies of these will be sent with full derails upon request.

Main Receiver Board
$£ 27.00$
Stereo Decoder Board
Complete Tuner
Securicor (Mainland)

Ali prices are exclusive of VAT at 25%

KITS

large number of kits are available to suit all needs, in addition to many individual items including P.C. Bs. All kits are guaranteed to work if correctly built. or we will repair them without charge. Compare this service with other sources' then build with confidence from our kits.

1-4 Main receiver board
5-7 Stereo decoder board
K9a 12 Preselect unit \&
$k 10$ Power supply
LP 1 186 Millard front end module
SFG10.7MA Filter Unit
SBA 750B I.F amplifier IC
Other parts available

DETAILS

For full details of all our products. prices and order form. send s ace. to

33 Restrop View Burton, WILTS SN 9DG

BE FAIR TO YOUR MUSIC

Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combin ation of specifications will enable a system to
reproduce music. We have taken care that the have taken care that the
NAD 12 and NAP 160 gre and power amplifier will do
so faithfully, while accepting and power amplifier will do the output of any pickup cartridge and driving any loudspeaker

Nair Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel : (0722) 3746

OUR NEW XL35

our monitor, special

* Nominal $3 \frac{1}{2}$ digit display with 50% overrarıge to 2999 .
- Accuracy 0.05\%.
- Autozero.
- Versions offering fully optically isolated bcd are available.
- Mains or 5V dc power requirement.
- Cost competitive.

Send now for full details.

ene electronics tumbled
wollerion road, branksome
poole BHI2 11 R
telephone: bour se mavis (02022) 766166.11x: 417143

WW 079 FOR FURTHER DETAILS

sound equipment

by Grampian
GRAMPIAN REPRODUCERS LTD. hanworth thading estate feltham, midolesex telephone 01-894 9141

WW-041 FOR FURTHER DETAILS

ELECTRONIC CAPACITANCE METER

NOW CAPACITORS ARE EASIER TO MEASURE THAN RESISTORS

PRICE £38.50 +VAT Ex-Stock

APPLICATIONS
DF
C-METERS

* Filter Design
\star Decoupling and Coupling
* Precision Timing Circuits
* Tuned Circuits
- C-R Networks
- Fault-Finding. Quality Control

* Less than a second to measure a capacitor. * Six ranges 1 pF to $10 \mu \mathrm{~F}$ * Accuracy $\pm 2 \%$ * Robust construction. Long battery life. OPTIONAL: MAINS/BATTERY + $\mathbf{6 5 . 0 0}$

SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depts. and Electronic Laboratories world-wide

Electronic Services \& Products Ltd.
Braunston, Daventry, Northants NN 11 7HH Telephone: Rugby 89067.2
WW-056 FOR FURTHER DETAILS

A message for dealers in exclusive high quality audio equipment everywhere.

It is now proposed to expand the distribution of RADFORD products by supplying from the factory in BRISTOL direct to franchised dealers outside the United Kingdom.

If you have a discriminating clientele looking for the inest audio equipment and loudspeaker components available, you could profit from a direct FADFORD franchise.

Write today for details and leaflets.
Radford Fudio Ltd
Ashton Vale Road
Bristol 3S3 2HZ England

F	$R A D O R D$

ZD22

Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and two tape machines. Size $17^{\prime \prime} \times 4_{4}^{3 "} \times 10^{\prime \prime}$ deep.

HD250 Stereo Integrated amplifier
Incorporates ZD22 pre-amplifier with low distortion power amplifier of 50 watts per channel into $4-8$ ohms load. Headphone output. Illustrated above Size $17^{\prime \prime} \times 4 \frac{3}{4}{ }^{\prime \prime} \times 11^{\prime \prime}$

ZD100 Power amplifier

Power output 120 watts in 4 ohms and 75 watts into 8 uhms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 4 \frac{31^{\prime \prime}}{} \times 13^{\prime \prime}$
£175.00

ZD200 Power amplifier

Power output 250 watts into 4 ohms and 150 watts into 8 ohms. Distortion less than 0.004% up to clip level. Size $17^{\prime \prime} \times 7^{\prime \prime} \times 13^{\prime \prime}$
£295.00

- P.A. SYSTEMS FOR AIRPORT. HOTEL, FACTORY.
- theatre and lecture theatre audio systems
- AUDIC MIXING EQUIPMENT
- simultaneous thanslation systems
- RADIO AND T.V. BROADCAST SOUND CONTROL EQUIPMENT
- MARINE INTERCOMMUNICATION AND ENTERTAINMENT EQUIPMENT
- System design, manufacture and installation

tecknowledgey in consumer ICs - and their applications. SGS Audio ICs
 WV®,
 Modules \& Kits
 New modules:

The much heralded TDA2020 is here. And just to make sure that you don't go wrong, so is the SGS application test circuit PCB for a stereo $15+15$ (RMS) Hi Fi amplifier.

Prices:

Prices		C	AUDIO	discretes
TBA810AS	+HS	1.09		
TCA940E	+HS	1.80	ZTX107/8/9	
TDA2020		2.99		\%
FM LINEAR		ICS	BD 535 npm	7A/60v 52p
MC1350		0.70	BD536 pnp	53p
CA3089	+0C	1.94	BD377 npm	3A/50v 29p
TBA120	+OC	1.00	BD378 pnp	32p
MPX LINEAR		ICS	BD515	270
10P	+LED	2.20	B60	
A3090Ad	+LE	3.75	BD610 pn	102p

To accomodate expanded R \& D facilities, AMBIT has moved sales and administration to 25 Higlı St. Brentwood. The existing 37 High Street premises are retained for the engineering activities.
One of the first products of this move has been the development of a TV sound tuner, from an "off air" system, using its own varicap UHF TV tuner, with ICIF amplifiers and block filters by TOKO. And then one of our best ever circuits - an electronic touch tuner, with scanning mode, and facilities for 6 preset stations. The unit is suitable for use with FM. and now AM of course, and offers a complete tuner system without any moving parts. Selection is by means of touch tuning in all cases, with manual scan and preset switching automatically interlocked.

Our R\&D facilities are available for general consultancy to OEMs: further details on application. Standard project estimation fee, including project evaluation comment data is $£ 75.00$ payable in advance.

8011 Totally touch tuned varicap controller built $£ 14.99$. 8005 Larsholt tunerset accesory unit, with pilot tone filter and audio stages, rectifier, IC stabilizer, meter driver
$8001 \quad 55 \mathrm{kHz}$ low pass filter (mpx birdy filter) $£ 2.35$ built
2001 Stereo scratch and rumble filter, with continuously variable operating frequencies. $\mathbf{E 5 . 8 0}$ (built)
3000 £4.60 (kıt)
disto control preamp - a wide dynamic range, low distortion AF preamp, with vol, bal, bass and treble con trols. kit $£ 5.78$
The TDA2020 stereo amp kit photographed on the left. $£ 7.85$
7700 TV off air UHF sound tuner - built $£ 26.00$ (4 preset stations)
9000 kit AM/FMmpxtuner chassis, with mech. tuner £17.50 7004 kit $M W / L W$ varicap tuner module, inc. ferrite rod $£ 9.95$ 7252 HiF1 MOSFET FM tuner module by Larsholt $\mathbf{E 2 4 . 0 0}$ 7253 HIF1 FET FM tuner module inc decoder E24.00 5600 Hi Q MOSFET varicap tunerhead by TOKO E 11.25 EC3302 FET tunerhead from TOKO E 11.25
f 5.00 Complete FM Tuner kits, inc case, for use with the above modules.' details SAE please. Prices range from $£ 40 \cdot £ 60$.

Amongst our various accessories for entertainment electronics is a range of $F M$ tuning, frequency and sig. strength meters with $12 \mathrm{v}, 50 \mathrm{~mA}$ bulb. $£ 2.50 \mathrm{ea}$.

ambit international 25 high street, brentwood, essex. cm14 4rh.

Free price list with an SAE, catalogue of modules and parts 40p., including postage and VAT.
General Terms: CWO please, official bodies and companies please note min. invoice $£ 7.50$. PP for CWO orders 22 p per order. (UK and Eire). Overseas customers please include sufficient for postage. VAT is not included, and must be added at 25%, In stock orders despatched within 48 hours.

WW 081—FOR FURTHER DETAILS

FYLDE
 TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical control's. 'individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

Fylde Electronic Laboratories Limited.

IS CHILTON'S MIXER THE BEST FOR YOUR USE?

.Magnetic tapes Itd make the $10 / 2$ above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at $£ 365$ for the basic 10/2 + VAT@8\%.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

-TURNER-

STEREO POWER AMPLIFIERS

A range of professional stereo power amplifiers designed and manufactured to a very high standard
The A Series (Professional Studio Monitor) amplifiers feature dual power supplies to maintain full RMS power on both channels
The B Series (Professional) amplifiers feature single power supplies suitable for most music applications
MODEL 4500 STANDARD WITH VU'S MODEL A500 $250+250$ watts RMS 4 ohms $\quad £ 380.00 \quad$ £440.00 $\begin{array}{llll}\text { MODEL A300 } & 150+150 \text { watts RMS. } 4 \text { ohms } & \mathbf{£ 2 6 2 . 5 0} & \mathbf{£ 3 2 2 . 0 0} \\ \text { MOD }\end{array}$ $\begin{array}{lllll}\text { MODEL } & \text { B300 } & 150 \text { wats RMS per channel } & \text { £210.00 } & \text { £250.00 } \\ \text { MODEL B200 } & 100 \text { watts RMS per channel } & \mathbf{£ 1 7 0 . 0 0} & \mathbf{£ 2 1 0 . 0 0}\end{array}$ The above prices are list and exclusive of VAT

Test Equipment

Multimeters

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about $£ 6$ to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.
We have a lot of other test equipment too Send the coupon and we'll send you our

Tel. 01-567 8472

WW-070 FOR FURTHER DETAILS

ABLL3030

The AEL 3030 is a compact, fully solid-state 150 watt PEP output Transmitter-Receiver covering 2.16 MHz on 4 or 6 channels.
Rugged construction for today's tough environments Easily accessible for simple maintenance
Ten plug-in modules give maximum insurance against loss of service

The advanced technology used in the AEL 3030 provides unmatched efficiency in point to point or mobile communication, minimises size and cost and maximises reliability!
DESIGNED FOR RELIABILITY

For further information and colour brochıre write to

HORLLEY, SURREY, ENGLAND
TELEPHONE HORLEY (02934) 5353
Telex: 87116 (Aerocon Horley)
Cables Aerocon. Telex Horlev

Diminutive in size and weight-and in cost Telequipment's new S22 miniature oscilloscope is packed with features usually seen only in instruments twice the size.

For its remarkable specification it is probably the smallest and least expensive scope in the world Size $3 \mathrm{in} . \times 8 \mathrm{in} . \times 10 \mathrm{in}$, weight less than 10 lb .

The S 22 is a single trace 5 MHz scope with an additional high sensitivity (1 mV) facility, and offers automatic selection of TV line or frame displays. It is battery or mains operated. The internal batteries are rechargeable.

For engineers on the move-or wherever accessibility is limited or working conditions are restricted - Telequipment's new S22 miniature scope is ideal. It is robust and easy to operate.

Telequipment gives you more scope for your budget

Write or telephone for full specification and a demonstration

TELEQUIPMENT \ll >

Tektronix UK Ltd.
 Beaverton House, PO Box 69, Harpenden, Herts.
 Telephone: Harpenden 63141 Telex: 25559

wireless world

Electronics, Television, Radio, Audio

FEBRUARY 1976 Vol 82 No 1482

Contents

29 Deliver us from data

30 Time-code receiver clock by A. F. Cross
35 Literature received. Sixty years ago
36 News of the month
Dublin, Sheffield receive Indian TV
Audio Fair under new management
Colour TV sent by p.c.m.
38 New forms of waveguides by H. M. Barlow and M. Nouri
40 Microcomputer development system
41 Letters to the editor
Audio amplifier load specification
Microprocessors
The consultants
45 Electronic systems-2 by P. R. Darrington
47 Wireless World Teletext decoder - 4 by J. F. Daniels
51 February meetings
52 Space news
57 Thermistor and thermocouple action by C. Budd
61 Gunn effect and avalanche oscillators by F. A. Myers
66 H.F. predictions
71 Electronic circuit calculations simplifed - 7 by S. W. Amos
76 Circuit ideas
Single gang pan-pot
C.r.o. input isolating probe

Automatic switch-off power supply
79 World of amateur radio
80 New products
83 Circards 28: linear c.m.o.s. circuits by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

84 Real and imaginary by "Vector"
122 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS

For dual-in-line de-soldering the model X. 25° can be fitted with special bits 14 A and 14B.
For other de-soldering jobs, we can supply our models ESS and GSS de-soldering irons working on compressed air (or with a footpump).

Our catalogue gives further particulars.

Point 1

Near-perfect insulation Breakdown voltage 1500 A.C. Leakage current 3-5 uA

Point 2

Top-efficiency in heat transfer.
Element slides inside the soldering bit
25 watts but equivalent in heat capacity to 60 watts

Point 3

Highgrade phenolic handle (own moulding!)
Stainless steel shaft
-3 core 0.4 mm flexible lead.

Point 4

Iron-coated bits that do not stick to the shaft but slide on and off easily. 3 tip sizes 2.4, 3.2 and 4.7 mm .

Point 5

Price with standard $(3.2 \mathrm{~mm})$ bit E2.99 (0.22)
Spare elements $£ 1.47$
Spare bits $£ 0.47$ incl. VAT

Point 6

A well balanced tool ength 22 cm , weight 50 gr .

The Antex Range

\rightarrow
MODEL C -15 watt miniature soldering iron Bits slide on and off stainless steel shaft. Elementsfitted inside steel shaft for efficient heat transfer. Length 16 cm . Complete iron with 2.3 mm . iron-coated bit $£ 2.99(0.22)$ Spare elements $£ 1.20$ Spare bits $£ 0.35$ (nickel) 60.45 (iron-coated).

$-2 \boldsymbol{n} \boldsymbol{\sim}$

MODEL G- 18 watt miniature soldering iron Looks exactly like model C, but because of the extra 3 watts should be kept going all day on repairs or production. Stainless steel shaft - fitted with standard iron+coated bit 2.3 mm . $£ 3.21(0.22)$ Spare elements $£ 1.69$ Spare bits $2.3,3$ or 4.7 mm . £0.45.

MODEL CCN -15 watt miniature soldering iron
Unique - ceramic shaft - no measurable leakage - capacitance 30 pf. Tested at 2000 volts A.C. Length 16 cm . Complete with standard iron-coated bit 2.3 mm . $£ 3.21$ (0-22). 4 other slide-on and-off bits available from $£ 0.45$ Spare elements $£ 1.69$. Suitable for the most delicate soldering job imaginable.

MODEL X. 50 T.C. - 50 watt temperature controlled soldering iron
Leakage current negligible - Temperature controlled to $2^{\circ} \mathrm{C}$ either way. Ceramic shaft inside stainless steel shaft. Tested at 2000 volts A.C. Complete with 3 mm . iron-coated bit $£ 10.55(0.274)$ Normally set at $370^{\circ} \mathrm{C}$ Length 20 cm . Weight 50 gr .
MODEL SK. 1 - SOLDERING KIT
Fitted with model C miniature iron (see abovel. 2 spare bits 2.3 and

MODEL MLX - $\mathbf{1 2}$ volt - $\mathbf{2 5}$ watt Soldering
 iron with
$41 / 2 \mathrm{mtrs}$. $41 / 2$ mtrs. lead and crocodile clips Useful for repairs on motor cars, boats, model trains, etc. Can car-type battery.
Complete with 3.2 mm . bit
$£ 3-53$ (0.30) Two other bits available 2.4 and 4.7 mm . $£ 0.47$ each. Packed in a plastic wallet with guide "How to Solder'
STAND S.T. 3 High grade insulation material, chromium plated steel spring. Suitable for all our models. Replaceable sporiges. space for spare Li
Complete $£ 1.21(0.24)$
t enclose cheque/P.O./Cash
(Giro No. 2581000)
NAME
ADDRESS

wireless world

Deliver us from data

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc
Phone 01-261 8620
MIKE SAGIN
Phone 01-261 8429

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-2618515
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261. 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

The Government's proposals for safeguarding the privacy of personal information held in electronic computers and data banks are welcome but not before time. In a recent White Paper* they announce their intention to set up a permanent watchdog organization, a Data Protection Authority, to oversee the use of computers and "ensure that they are operated with proper regard for privacy and with the necessary safeguards for the personal information which they contain." One wonders why it has taken so long for the UK to get as far as a mere statement of intent when other countries have already taken the necessary steps to protect their citizens by laws. Sweden introduced a Data Act in 1973, the USA a Privacy Act in 1975, a part of West Germany (Hesse) had a Data Protection Law as early as 1970, and legislation is on the way, in the form of Bills or draft laws, in at least ten other countries.

At least our tardiness in the UK may give us time to consider a wider danger, of which the threat to privacy in data banks is only a part: the extent to which we are in thrall to information. Two ways of getting power over people are to hold information about them and to control the information that is supplied to them. Electronics has enormously increased the capacity to do both these things. For the holding of information (as in data banks) electronics makes possible extensive, cheap storage, quick access and transfer between systems, and easy combination of data from different sources to form "identikit" pictures of individuals. And the information is held in codes which are not intelligible to the individuals themselves. For the controlling of information supplied to people, broadcasting is becoming increasingly powerful. It cannot control what people think but, like other media, it does control by its selection of material what they think about. Whenever there is a revolution or military coup the first thing to be taken over, usually by force, is the radio and television services. But broadcasting is not the end of the matter. Britain, in common with other industrialized nations, is considering the introduction of information services wired to people's homes (e.g. by existing domestic telephone lines or perhaps wideband optical fibres in the future). Already the British Post Office has started trials with its Viewdata system. And, as a correspondent pointed out in the January issue, if people are selecting information via a permanent wired system from an electronic data store held by some organization, it is possible to monitor their choice of information, discover what they are interested in and exploit this knowledge.

In a benign democratic society one may not think there is much to fear. Unfortunately, improved information technology helps benign democracy to become paternalistic bureaucracy. From there to repressive totalitarianism is but a short step.

[^2]
Time-code receiver clock - 1

An accurate and automatic digital time-piece

by A. F. Cross, B.Sc.

Thames Television Ltd

Last year time code transmissions started from Rugby on 60 kHz , offering a new approach to accurate time-keeping in the UK. This article describes a 24 -hour digital clock of flexible design, based on the Rugby signal.

Many designs for digital clocks have been published, but generally they have had two drawbacks; they require an accurate internal frequency source and manual setting. While the first problem may be solved, at a price, the second usually involves the GPO speakingclock. This design was aimed at producing a relatively inexpensive time-piece-capable of keeping correct time without regular checking. The usual mains-derived reference, whilst having a low long term frequency error, exhibits a high short term variation, with the result that a clock can be in error by several seconds at any time. On the other hand, a local crystal reference will exhibit an accumulating long term error.
The clock to be described uses a crystal oscillator and divider chain. Checking and setting of the clock is provided automatically by a received time code.

Transmission

The National Physical Laboratory has been controlling the transmission of 1 s pulses radiated on 60 kHz from the GPO

transmitter at Rugby. In 1974 a data code was added to the signal to give the exact time of day. The carrier is on-off modulated, as shown in Fig. 1. The one-second intervals are indicated by the start of a 100 ms break in carrier, and the minute by a 500 ms break. The data has been added to the 500 ms break. The 20 ms control pulse indicates that data is to follow, which comprises a leading 1 followed by thirteen data bits for hours and minutes. The data is followed by a parity bit which checks that the data has been correctly received.
The carrier, and hence the pulse timing, is based on a rubidium reference at Rugby, which is compared with a caesium reference at the NPL Teddington; the deviation is usually in the order of 1 in 10^{11}. The clock uses the timing of the code to resynchronize the reference divider, and the data to check and correct the displayed time. Several checks are carried out on the time code

Fig. 1. On-off modulation of the 60 kHz carrier - one-second intervals are indicated by the start of a 100 ms break, and the minute by the 500 ms break.
before it is allowed to influence either internal timing or displayed time. The transmission is normally maintained twenty four hours a day, except for five or six hours on the first Tuesday of each month to allow for maintenance. The clock will free-run during this period and the accumulated error (a fraction of a second) will be eliminated when the code is again received.
Initially, consideration was given to using the one-second received pulses to clock the seconds display. This method has problems because interference can cause multiple clocking, and other information, which is transmitted during the minute, must be discriminated against. It was decided for overall simplicity to derive the 1 Hz signal from the reference divider. Although the transmitted code is always GMT, or more precisely UTC (Universal Co-ordinated Time), the facility for switching the display to BST manually has been provided. A further feature of the clock is that it will follow the internationally agreed time-scale corrections, often referred to as the leap-second. This is a one-second correction which is made to all standard clocks to maintain tracking between the precise atomic standard and the astronomic time scale. The correction is made every 12 or 18 months as required (Wireless World, June 1971, p.276). A free-running clock, no matter how accurate, cannot carry out this adjustment automatically.

System operation

The block diagram in Fig. 2 shows the interconnexion between the circuit functions, each of which may be constructed independently. The circuit may be considered in two sections; a free-running clock, and a receiver plus control logic. The clock comprises the hours, minutes and seconds dividers and displays, the crystal oscillator, and the 5 -decade reference divider. These sections together will operate as a normal digital clock, except that no manual setting facility is provided.

The receiver amplifies and demodulates the 60 kHz signal which is then passed to the time code register section. When a control pulse has been detected a 100 Hz clock loads the serial data into the shift register. When the register is full, clocking ceases and, if parity is correct, a data strobe pulse is generated. The data in the register is applied to the 13 -bit comparator, which also receives data from the hours and minutes display-dividers. An output from the comparator to the control logic indicates whether the displaydividers agree with the received data. Upon receiving the data-strobe signal from the time-code register, and a comparison error signal from the comparator, the control logic initially assumes that the error is in the received code. If, however, two consecutive received data words both give an error signal, the control logic acts to correct the display-dividers. This is achieved in less than 15 ms by fast-clocking the hours and minutes-dividers at 100 kHz until the comparator gives the no-error signal. In normal operation the received code agrees with the contents of the hours and minutes display-dividers. The control logic then resets the secondsdivider, which should be reading zero, and resynchronizes the 5 -decade divider, which is normally a correction of less than lms. The outputs of the hoursdivider pass through the GMT/BST converter before driving the display logic. With the converter set to GMT there is no effect on the hours data; when set to BST, a one hour correction is made to the display.

Clock options

It is possible to simplify the clock by omitting certain functions. The simplest circuit would comprise the
receiver, the time-code register and the four-digit display logic. Such a clock would display GMT hours and minutes. A 1 kHz signal is required to control the clock generator, but its accuracy need only be about $\pm 1 \%$ and a 555 timer would be suitable. Retaining three decades of the divider chain, and improving the accuracy of the 1 kHz clock to about $\pm 0.1 \%$ would produce a 1 Hz signal for clocking a seconds-divider. The 3 -decade divider would be resynchronized with the datastrobe signal, which would also reset the seconds count. In the absence of a carrier these simplified clocks would cease to function correctly because there is no display counter. This also means that there is little protection against incorrect data; once a control pulse has been detected the display will show the contents of the shift register, even it it is wrong. The parity signal can, however, light a warning indicator. Also, if a control pulse is not recognised, the display will not update, but continue to show the previous time code. Even with these limitations, a simplified version of the clock can still find useful applications where an occasional time check is required and a continuous reliable readout is not necessary. The GMT/BST converter may be included or omitted as required.

Circuit operation

The units of seconds, minutes and hours each use a 7490 decade counter, and the tens-of-seconds and minutes use a

Fig. 2. Block diagram which may be considered as two sections - a free running clock, and a receiver plus control logic.

7492 divide-by- 12 as shown in Fig. 3. With the most significant bit ignored, (output D) the device divides by 6 in binary sequence. The tens-of-hours divider is provided by a 7473 dual JK flip-flop, and the 24 -hour reset is provided by a D-type flip-flop.

When a count of 24 exists in the hour-dividers a logic 0 is applied to the flip-flop via NAND gate $1 C_{5 b}$ which is connected to the appropriate divider outputs. Because the D-type is clocked at 100 kHz , the 0 on the D input will be clocked within $10 \mu \mathrm{~s}$, which sets the Q output to 0 and the \bar{Q} output to 1 . The Q . output provides a low reset to the JK flip-flops for tens-of-hours; the logic 1 on the \bar{Q} output provides the required high reset on the hours-units-divider. The D input now changes back to a 1 , but the D-type does not change until the next clock pulse. Thus a 10μ s reset pulse to the hours-divider is ensured.

The NAND gates $I C_{4 d}$ and $I C_{5 a}$ between the seconds and minutesdividers provide the facility for injecting fast clocking pulses into the minutes and hours-dividers for time setting. In normal operation these gates have no effect, and the output pulses from the; tens-seconds divider pass to the clock input of the units-minutes divider. When the fast-set condition is operating, the inhibit-seconds ouput signal goes low, thereby forcing the output of gate $\mathrm{IC}_{4 \mathrm{~d}}$ to logic 1. Pulses at 100 kHz appear on the set-time input of gate $\mathrm{IC}_{5 \mathrm{a}}$ which are then inverted. Thus the hours and minutes count is advanced at 100,000 steps per second. The maximum setting time is determined from the time taken to clock the dividers through 24 hours i.e. 144 ms .

The 5-decade divider is shown in Fig. 4 and comprises five 7490 i.cs. Besides

Fig. 3. (top) Display dividers - seconds, minutes and hours each use decade counters and the tens of seconds and minutes use divide-by-12s.

Fig. 4. (above) Five-decade divider. Besides providing the 1 Hz output for clocking the display dividers, it also provides 1 kHz for the time-code register.

Fig. 5. (right) Oscillator circuit incorporating a two transistor buffer to produce a t.t.l. compatible output at 100 kHz .

Fig. 6. (below) Receiver and demodulator circuit. A.g.c. is applied over the second and third stages.

Truth table for decade counter				
	D	C	B	A
Reset at 0.2 s	0	0	0	0
State at 0.3 s	0	0	0	1
State at 0.4 s	0	0	1	0
State at 0.5 s	0	0	1	1
State at 0.6 s	0	1	0	0
State at 0.7 s	0	1	0	1
State at 0.8 s	0	1	1	0
State at 0.9 s	0	1	1	1
State at 1.0 s	1	0	0	0
State at 1.1 s	1	0	0	1
State at 1.2 s	0	0	0	0

Box: 1-0 transition provides clocking output at end of second.
providing the 1 Hz output for clocking the display-dividers, it also provides 1 kHz for the time-code register, which in turn derives the 100 Hz data clocking pulses. The 5 -decade divider is resynchronized by resetting the last three dividers. The resetting pulse from the control logic appears at the end of the received data word, which is about 200 ms after the beginning of a second as shown in Fig. 1. Conventional setting to zero would therefore result in the clock being permanently 0.2 s slow. However, Truth Table 1 for the decade divider reveals that, although the D output goes

Fig. 7. Time-code register - takes in the demodulated signal, detects the control pulse and stores the incoming time code.
low one second after the zeros reset, the C output does so after 0.8 s . If, therefore, the C output is used to clock the seconds-display dividers, the indicated time will be correct to within about 5 ms .

The oscillator circuit in Fig. 5 is quite conventional. A two transistor buffer is added to produce a t.t.l. compatible output which operates at 100 kHz . When the Rugby transmitter is switched off for maintenance, the crystal oscillator is required to hold the correct time to an accuracy of about 5 parts per million. This can be achieved by a simple oscillator, over a restricted temperature range but, if greater accuracy is required, a temperature-compensated oscillator should be considered.
The receiver, see Fig. 6, uses a ferrite rod aerial, followed by three stages at r.f., the first two being tuned. Automatic
gain control is applied over the second and third stages and a simple transistor demodulator is employed followed by d.c. amplification to provide a t.t.I. compatible output. At low signal levels a muting circuit inhibits the demodulator output. The r.f. stages are conventional and require little explanation. The tuned transformers are not critical and the originals were handwound. Transistor Tr_{4} is the level detector for the a.g.c. circuit. Signal peaks exceeding the base-emitter threshold voltage will result in Tr_{4} discharging the a.g.c. reservoir capacitor C_{16}. This reduces the base bias voltage to Tr_{2} which reduces the gain of the second stage. With a.g.c. operating, the signal at the collector of Tr_{3} is between 600 mV and 800 mV peak-to-peak. The a.g.c. voltage is detected by Tr_{5} and no-signal or a weak signal will result in an increase in a.g.c. voltage. When this voltage turns Tr_{5} on the output of the demodulator is inhibited. To allow for differing transfer characteristics and variations in signal strength, a potentiometer $\left(\mathrm{R}_{73}\right)$ in the a.g.c. feedback line may be used to vary the level of signal at
which the muting circuit operates. In areas of high signal strength, the muting circuit can operate at a higher signal level, thereby improving the interference rejection when the carrier is not present. With a weaker signal, the muting circuit must be set to operate at a lower level. Transistor Tr_{6} is the demodulator and, with no signal present, is biased off. With a carrier signal, the positive peaks turn Tr_{6} on which discharges C_{17}. The potential on C_{17} is detected by Tr_{7} which, with Tr_{8}, produces a 5 V demodulated signal. Resistor R_{20} provides a small measure of positive feedback to assist clean switching. The output from Tr_{8} is fed to the time-code-register logic, and also drives a l.e.d. indicator (carrier).

The time-code-register, Fig. 7, takes in the demodulated signal, detects the control pulse and stores the incoming time code. It also checks the parity of the detached signal and generates a data-strobe pulse when the register is full. Transistor Tr_{9} produces a $5 \mu \mathrm{~s}$ pulse for every carrier-off transition. This pulse is used to trigger monostable $\mathrm{IC}_{32 \mathrm{a}}$ (23ms), whose trailing edge triggers monostable $\mathrm{IC}_{32 \mathrm{~b}}(20 \mathrm{mS})$. The differentiated trailing edge of the second monostable pulses the transistor Tr_{10} which delivers an output of, about 4 ms . The output of gate $\mathrm{IC}_{8 \mathrm{~B}}$ inhibits retriggering of the monostable chain during its active period, i.e. for 47 ms . Gate $\mathrm{IC}_{8 \mathrm{a}}$ also applies a reset level to the cross-coupled NAND-gate bistable $\mathrm{IC}_{2 \mathrm{~b}} / \mathrm{IC}_{3 \mathrm{a}}$, which is removed for the 47 ms period. The timing of the internally generated pulses in relation to the demodulator output is shown in Fig. 8. The action of the detector is best explained if monostable $\mathrm{IC}_{32 \mathrm{a}}$ is imagined to have a period of 25 ms , and monostable $\mathrm{IC}_{32 \mathrm{~b}}$ a period of 18 ms ; the reason for modifying these periods will be explained later.

The detector attempts to mimic the expected incoming waveform of the control pulse. The Q output of the first monostable, once it has been triggered,

Fig. 8. Timing diagram for control pulse detection.

Fig. 9. Comparator circuit which compares 13 inputs from the time-code register with the hours and minute-divider output.

goes high for 25 ms , and then low. This is exactly the signal out of the demodulator when a control pulse is received. The two signals are compared and any difference results in the output of exclusive -OR gate $\mathrm{IC}_{15 \mathrm{a}}$ going high, and the cross-coupled NAND-gate bistable becoming set (output of $\mathrm{IC}_{2 \mathrm{~d}}$ low). Because it is impossible to mimic exactly the 25 ms off-period, a degree of tolerance is allowed by shortening the monostable period to 23 ms and producing at the end of the period, a 4 ms inhibit pulse ($\mathrm{Tr}_{11}, \mathrm{Tr}_{12}$) which prevents the setting of the bistable around the time of the carrier-on transition. The timing allows a total error of up to 2 ms either way. The 4 ms pulse from Tr_{10} generates a gating window for the period 43 ms to 47 ms after the initial triggering of the 23 ms monostable. Its output is applied to the 3 -input NAND gate ($\mathrm{IC}_{8 \mathrm{~b}}$). For a low pulse on the output of the gate, three input conditions must apply; the 4 ms window must be open, the bistable must not have been set, and an off-transition pulse must appear on the collector of Tr_{9}. The low output pulse represents the end of the control pulse.

To summarise; after receipt of an off-transition, a continuous high for 23 ms is sought, followed by a continuous low from 27 ms to 43 ms , again followed by an off-transition between 43 ms and 47 ms . The signal will be ignored if there is any deviation from these conditions. This detection tech-, nique has been found to give extremely good immunity against false triggering due to noise. The low pulse generated on the output of $\mathrm{IC}_{8 \mathrm{~b}}$ resets the two 8-bit serial-in shift registers ($\mathrm{IC}_{38} \&{ }_{39}$). All outputs go low. When pin 13 of the second register goes low it removes the reset-to-nine signal from the clock generator IC_{20} which is a divide-by-10, clocked by a continuous 1 kHz signal from the 5 -decade divider chain. Upon removal of the reset, it starts to generate a 100 Hz signal on its D output, the first positive transition occurring between 8 ms and 9 ms after the removal of the reset, and thereafter at 10 ms intervals. This signal is applied to the clock input of the shift registers, thereby clocking in the time code applied to the input of the first register.

The first data bit in the time code is always a 1 ; after 16 clock pulses this 1 will have reached the last bistable in the second shift register (pin 13). This output restores the reset to the clock generator which stops the clock pulses. The register now contains the complete time code, including leading marker bit and parity bit. The parity is checked by using a JK flip-flop ($\mathrm{IC}_{12 \mathrm{a}}$) to count the number of l's appearing at the first shift register output as the data is clocked through. For every 1 clocked into the register, the J and K inputs become logic 1; when clocked, the JK flip-flop inverts its previous state. For a 0 on the J and K inputs, the output state does not change when the flip-flop is clocked.

Thus the final state of the JK flip-flop is determined by whether an even or odd number of 1 's have been clocked into the register. The flip-flop starts in the reset state, $\mathrm{Q}=0$; if received parity is correct the final state is $\mathrm{Q}=1$. Gate $\mathrm{IC}_{8 \mathrm{c}}$ generates the data-strobe pulse of $2 \mu \mathrm{~s}$ about 200 ns after the full signal is received from the shift register, and in the presence of correct parity. The datastrobe pulse is passed to the control logic. The data-clock enabling signal is used to drive the code indicator D_{5}, which will light for about 150 ms upon recognition of a control pulse.

Thirteen inputs from the time-code register are compared with the hours and minutes divider outputs - Fig. 9. Thirteen exclusive -OR gates ($\mathrm{IC}_{15}, 16$ \& ${ }_{17}$) each compare one bit, giving a logic 0 output for input identity and a 1 for disparity. The first twelve outputs are OR-ed via inverted NOR gates, and these outputs are again OR-ed, along with the thirteenth bit comparison, by NOR gate $\mathrm{IC}_{10 \mathrm{~b}}$, producing a logic high for no comparison error.
(To be continued) The principle of redundancy, or the "belt and braces" approach to the achievement of reliability, is common enough, but for those who imagined it to be a modern, money-noobject attitude, the following piece from our issue of February, 1915, is some indication to the contrary. It rather reminds one of the writers who advocate the use of electronic ignition devices, but recommend the use of a changeover switch for instant reversion to the mechanical system.
"Every means of long-distance communication has been used in this war, and although the carrier pigeons' loft in the South of England, long utilised by the British Admiralty, was dismantled a few years ago on account of the introduction of wireless telegraphy, we know that pigeons are still being used by the British for war purposes. Only quite recently the War Office authorities issued instructions to the effect that it was hoped that British sportsmen who were not able to distinguish between ordinary wood pigeons and carrier pigeons would abstain from pigeon shooting altogether. The reason for this appears to have been that some of our own sportsmen were destroying British flying dispatch bearers. The fact of the matter with regard to all these things is that the latest method may for all ordinary purposes supersede its predecessors; but in times of strain and stress it is wise to have as many strings to one's bow as possible."

Literafure
 Received

Magnifiers for desk use, quality control and inspection, including the illuminated variety. spectacle types and eye magnifiers are described in an illustrated brochure from Combined Optical Industries Lid, 200 Bath Road. Slough. SL1 4DW

WW407
A seven-volume collection of data on Motorola semiconductor devices is now available. Devices from other manufacturers are covered in broad outline. Four of the books, the index and three volumes of discrete devices, are available at $£ 10.50$. while those concerned with emitter-coupled !ogic. complementary m.o.s. and linear i.cs are priced at £6. The complete set costs £15. Motorola Led. Semiconductor Division, York House. Empire Way. Wembley. Middlesex HA9 OPR.

Plessey have produced an illustrated brochure on its range of resistors of various kinds. including faders, cermet power resistors, potentiometers and trimniers. R.f. chokes are included. Plessey Resistors. Cheney Manor. Swindon. Wilts SN2 2PZ

WW 408

A complete catalogue of the prolific Foulsham range of books on hobbies and technical subjects. including electronics, is obtainable from Foul. sham-Tab Ltd. Yeovil Road. Slough SLl 4JH
. WW409
A comprehensive listing of all known professional resistors in Western Europe has been compiled by the European Space Agency as an introductory volume in a series covering all components. The lists will be published annually. The Resistance Reference Book is obtainable free from ESRIN/SDS, Electronic Components Databank, Casella Postale 64. 1-00044 Frascati (Roma) WW410

Aerialite have sent us the first two leaflets in their new series, which describe and illustrate u.h.f. aerials and a range of coax. plugs and sockets, diplexers and a masthead amplifier. Aerialite Aerials LId, Whitegate, Broadway. Chadderton. Oldham. Lancs OL9 9QG

WW4ll
A shortform catalogue is obtainable from AMI Microsystems, which lists current and future projects in the field of microprocessors. memories. communication modules, watch and clock circuits. calculator chips and displays. AMI Microsystems Ltd, 108A Commercial Road, Swindon. Wilts

WW412
We have received a data sheet from ITT. which gives constructional and application details on their transformers and coils. It can be obtained from ITT Components Group Europe, Electrical Products Division. Edinburgh Way. Harlow. Essex

WW413
British Standard BS 1597 "Radio interference suppression on marine installations" is now revised. Cupies are available at $£ 3.50$ from BSI Sales Department, 101 Pentonville Road, London N19ND.

A brochure is available on the ELLM earth line and leakage monitor which prevents the connexion of a piece of equipment to the mains via a circuit breaker if a leakage of over 30 mA exists or if a sufficiently good eartr is not provided. Commercial and Industrial Electrical Services Ltd, 73-75 Shawhill Road. Birmingham B8 3LJ WW 414

Correction

In the November issue we stated that Custom Transformers offered only the mechanical components for transformers. This was wrong - a winding service is provided. We apologize for the error. The catalogue is obtainable from Custom Transformers Lid. Bristol Road. Malmesbury. Wilts SN16 0DU, and covers units from 5 to 1500 VA

News of the Month

Dublin, Sheffield receive Indian TV

Broadcasts from the ATS-6 satellite now transmitting educational television programmes over the sub-continent of India (see "A star for India", p. 549 December 1975 issue) have been received successfully by workers at University College, Dublin and by Steve Birkill of Sheffield. Special receivers have been built for the frequency modulated 625 -line transmissions. The accompanying photograph was taken from the receiver at Dublin and Wireless World will be publishing further details of this installation in the next issue. The Sheffield installation consists of a 5 ft aluminium mesh paraboloid (pictures were noisier than those received in Dublin where a 20 ft diameter parabolic dish was used) with dipole disc feed and transistor head
amplifier, a 5 MHz bandpass filter centred on 860 MHz , and a standard u.h.f. TV tuner feeding an NE561B integrated phase-lock demodulator at an i.f. of 35 MHz . From Britain the geostationary satellite over East Africa appears at about 20° elevation, bearing 135°. Signal strength is reported to be fairly constant with little or no variation from day to day. Polarization appears to be in a vertical plane and constant. It is estimated that from the direction of Sheffield the e.r.p. is approximately 30 dB below that of the main lobe.

Audio Fair under new management

A new management team recruited by the Audio Fair's owners, Iliffe Promotions Ltd, will be responsible for the 1976 show, replacing the previous organizers Industrial and Trade Fairs Ltd. The 21st International Audio Festival and Fair will be held at London's Olympia from September 13 to 19,1976 . Improved facilities for trade visitors will include a day and a half reserved for trade only, and the organizers claim that there will be major innovations designed to make the event the best in its history. Backing for the Fair has been confirmed by the IPC Business Press journals Wireless World, Melody Maker, Electrical \& Radio Trading, Black Music and Electrical and Electronic Trader. The new management team includes Cyril Rex-Hassan, Don Quillen and Geoffrey Tomkins, all well known in the running of audio events.

Jersey 'phones computerized

The States of Jersey Telecommunications Board has opened its first computer controlled telephone exchange system at Jersey Central. Initially the equipment will serve 2,500 lines in the island's capital, St. Helier, but to cope with growth in the tourist trade an extension to provide a further 2,500 lines is already in production.

By the use of stored programme control techniques (see July 1974 issue, p.241) the Board will be able to introduce new facilities in the future as and when required, often by quite simple changes in the computer programme and without the need for additional equipment. The system already provides for such facilities as automatic print-out of data for subscribers' accounts and print-out of the calling subscriber's identity on emergency 999 calls. In addition, by dialling a special digit recipients of malicious calls can cause a print-out of the telephone number of the originating caller, and the time and date, to be recorded on a teleprinter located at the exchange. Subscriber controlled call transfer will also be introduced on a limited basis to enable the Board to guage the demand for such a facility. Subscribers who use this service will be able to have their calls automatically re-routed when they are away from their normal line. A second, similar installation designed by Pye TMC in association with Philips Telecommunicatie Industrie BV is to be brought into service early in the New Year at Jersey West Exchange.

Colour television sent by p.c.m.

After pilot field trials in April 1975, the $B B C$ and Post Office have carried out a successful major field trial at Portsmouth of equipment for digitally multiplexing two colour television and twelve high quality sound signals to form a 120 Mbit /s p.c.m. signal. This was transmitted over a new Post Office coaxial cable system (see "High capacity p.c.m. system', February 1975, p.92). Each video channel employed sub-Nyquist sampling at a rate equal to twice the colour subcarrier frequency of the PAL signal (i.e. about 8.9 MHz). After quantizing with eight bits per sample, the bit rate was reduced to optionally five or six bits per sample, using a form of differential pulse code modulation. The resultant bit-rate was $53.2 \mathrm{Mbit} / \mathrm{s}$.

The multiplex $120 \mathrm{Mbit} / \mathrm{s}$ input signal was generated in experimental equipment built in the BBC Research Department. It was formed by interleaving two similar 60Mbit/s "pack-
'ages', each consisting of a combination of one digital PAL colour video signal with a nominal bit rate of optionally 44.3 or $53.2 \mathrm{Mbit} / \mathrm{s}$ and one $2048 \mathrm{kbit} / \mathrm{s}$ signal for sound channels. The four signals in the $120 \mathrm{Mbit} / \mathrm{s}$ multiplex were not synchronized, i.e. their precise bit-rates were independent of each other and also of the resultant $120 \mathrm{Mbit} / \mathrm{s}$ bit-rate. Engineers of the Independent Broadcasting Authority's Experimental Development Department have also completed field trials of digitally encoded $120 \mathrm{Mbit} / \mathrm{s}$ colour TV over the same route. The IBA's terminal equipment samples the TV waveform at three times the colour sub-carrier frequency, a rate just over 13.3 MHz .

No noise is good noise

An agreement signed recently in Montebello, California between DBX Inc and the Teac Corporation will provide for the inclusion in certain Teac tape recorders of the DBX noise reduction system.

DBX will continue to produce their current range of tape noise reduction products for professional and semi-professional accessory use while Teac will incorporate the system within selected models of their tape recorder range and offer it as an optional extra for other models. The Tascam series $80-8$ compact $1 / 2$ in eight track recorder will be the first to incorporate the system. Teac will shortly offer cassette machines equipped with the DBX type II system recently developed specifically for this format. The inclusion within tape recorders of the $2: 1$ double ended compression/expansion noise reduction system brings a number of claimed operating improvements, signal-tonoise ratio being increased by approximately 30 dB and dynamic range headroom being improved by $10-12 \mathrm{~dB}$.

Orkneys in colour

The Independent Broadcasting Authority's new high-power u.h.f. television station on Keelylang Hill, Orkney, the first ITV station built in The Orkneys, began transmissions on December 12. It will provide Grampian Television programmes from Aberdeen on channel 43. The station, about four miles west of Kirkwall, will provide 625 -line colour and black-and-white pictures for about 15,000 people in most of the group of islands from Papa Westray and North Ronaldsay in the north to Hoy and South Ronaldsay in the south. There will be a few places in The Orkneys screened by local hills where reception is unlikely to be satisfactory. To receive Keelylang Hill, viewers should use Group B aerials with the aerial rods horizontal, carefully positioned and directed towards

Multicurrency electronic bidding system shown in operation at Goff's new Bloodstock Sales Complex at Kill, near Dublin. The system was designed by CTH Electronics.
the transmitter. These aerials should prove equally suitable for the reception of BBC transmissions from this station.

Expansion in electronics forecast

The major European electronics markets are expected to expand in 1976 after two years of low growth, although 1973 output levels are unlikely to be repeated before 1977, according to the Mackintosh Electronics Yearbook 1975/76. In its analysis of the west European electronics industry, the yearbook forecasts a 50% growth from 1975 to 1979. General growth rates forecast are: Spain $5-6 \%$; Norway 5.5%; France 4.5%; Belgium 3-4\%; Austria and West Germany 4\%. At the bottom of the scale are Switzerland and the UK at 1%; Sweden 1.3% and Finland 2%. In the UK a gradual recovery is expected from the 25% fall in the consumer sector during 1975. Telecommunications output has been reduced but the industrial and communications areas could benefit from North Sea oil investment and higher overseas demand in 1976, which in turn should lead to an upturn in the components market.

Microwave c.a.t.v. begins

A cable television network receiving signals by microwave from a Swiss mountain is bringing clear pictures of foreign TV programmes to 35,000 Swiss families for the first time. The Weissenstein c.a.t.v. network, named after the $4,000 \mathrm{ft}$ Swiss mountain on which the station is built, is the forerunner of similar systems being developed
throughout Europe. In Belgium, a system at Kontrijk will serve a wide area of West Flanders. Special interest is also being shown in Sweden, Denmark, Finland, Austria and the Netherlands, which have the same type of problem as Switzerland.
The microwave system has been introduced into Switzerland by ThetaCom, a subsidiary of the Hughes Aircraft Company. The advantage of using microwaves is that relatively long distances can be covered and natural barriers overcome without laying cables.

BBC equipment designs

New equipment designs by the BBC are being offered for commercial exploitation. Latest developments include a u.h.f. amplifier design for use as a low-power transposer or for transmitter driving (type AM14/550) with intermodulation products at -60 dB ; an a.m. crystal-controlled monitor receiver, RC3/10, for medium- and long-wave bands incorporating a d.s.b. synchronous demodulator (i.f. and image rejection $<80 \mathrm{~dB}$); an m.f./v.h.f. diplexer; and a directional aerial covering medium- and long-wave bands.

WW noise reducer

As a result of the success of the Wireless World Dolby B noise reducer project, our suppliers have successfully applied for a Dolby licence. Components and kits are now available directly from Integrex Ltd (see advertisement) and not from our General Sales Department.

New forms of waveguide

Novel structures for guiding waves offer a three-times improvement over conventional guides, measured on an attenuation x sectional area basis

by H. M. Barlow, Ph.D., D.Sc., Fel.I.E.E.E., F.I.Mech.E., F.I.E.R.E., F.I.E.E., F.R.S. and M. Nouri, Ph.D., both of University College, London

For many years electrical engineers have dealt with transmission lines and cables in terms of transverse electromagnetic (t.e.m.) wave propagation. The approach has developed logically and consistently from low-frequency circuit concepts, starting with lumped resistance, inductance and capacitance elements, progressively translated to distributed parameters of the same kind as frequency rises. In the process consideration has been given to the need for components of electric field in the direction of propagation, but we have continued to describe the wave concerned as t.e.m. although in truth it cannot strictly maintain that configuration. The fact is that in practical arrangements using good conductors to carry the longitudinal current at frequencies up to the v.h.f. part of the spectrum, any departure from a pure t.e.m. field has always been minimal and represented, at most, a perturbation easily provided for within the treatment.

Closer examination of the situation, however, identifies a form of surfacewave, sometimes of only slight significance, associated with each surface acting as a field boundary. Thus the familiar t.e.m. wave so-called in a

(b)

Fig. 1 Circularly symmetrical E_{0} waves (a) E_{0} surface-wave supported by a single conductor isolated in space. This is a slow-wave. (b) E_{0} wave between coaxial metal surfaces. This is also a slow-wave and can be regarded as a form of dual surface-wave.
coaxial cable can be depicted, perhaps with some exaggeration of axial electric field, as shown in Fig. 1 (b) and it can conveniently be described as embracing a dual surface-wave of circularly symmetrical variety. Metal surfaces coated with a thin layer of dielectric of higher permittivity than the surrounding medium exhibit enhanced reactance at high frequency and this accentuates the axial component of electric field, leading to a larger content of surface-wave within the total field.
One can also think of a coaxial line in which the outer surface has been removed to an infinite radius, operating in effect as a single-wire transmission line with a circularly symmetrical sur-face-wave of the Goubau type on the outside, progressively decaying in amplitude with distance from the surface. Fig. 1 (a). When the coaxial metal outer is brought to a finite radius to form a cable, a counterpart field is set up on its inside, satisfying the boundary conditions and forming the dual sur-face-wave configuration, Fig. 1 (b).
It should be borne in mind that surface-waves propagate freely at any frequency; they are slow-waves not subject to cut-off. This is always a feature of waves that are evanescent in
the transverse plane. Cut-off behaviour only arises when waves are reflected backwards and forwards across the guide, as part of the mechanism of forward travel.

Dipole-mode propagation

It happens that in a coaxial line, too small to accept waveguide modes susceptible to frequency cut-off, the usual circularly symmetrical field is not the only one possible. A field of dipole configuration can also exist when the surface impedances are anisotropic, that is to say when they are resistive and inductive to axial current while being resistive and capacitive to circumferential current. This dipole-mode is also a surface-wave and it is best known in its simplest form when propagating along the outside of an isolated dielectric rod, Fig. 2 (a). Such a guide presents to the field concerned an anisotropic surface-impedance of the kind described, but since there is only one surface at finite radius the field extends outside it to infinity, but decaying quite rapidly.
As in the case of the circularly symmetrical wave, a second surface placed coaxially can be made to satisfy the boundary conditions. An anisotro-

Comparison between performance of different waveguides operating at $\mathbf{3 G H z}$.

(d)

Fig. 2. Cylindrical forms of dipole-mode transmission line (a) Dipole-mode supported by a dielectric rod isolated in space. This is a surface-wave and the dielectric rod exhibits an anisotropic surface impedance. (b) Dual dipole-mode between coaxial surfaces, the inner comprising a dielectric rod and the outer a wire grid of cylindrical form. (c) Dipole-mode within an empty circular-section guide comprising a wire grid. (d) Half dipole-mode in hollow semi-cylindrical guide comprising a wire grid.

(a)

(b)

(c)

Dipole-mode multiwire waveguide of the circular kind (top) and of the rectangular kind (bottom).

pic surface-impedance, similar to that of the dielectric rod, is required and this can be conveniently provided by a cylindrical grid of wires running parallel along the length, Fig. 2(b). A counter-

Fig. 3. Half and full-dipole waves in rectangular guide. (a) Half dipole-mode within a rectangular metal channel closed by a semi-circular wire-grid surface. Here parallel metal walls are added to the guide shown in Fig. 2 (d). (b) Half dipole-mode within a rectangular metal channel closed by a plane wire-grid surface. (c) Full dipole-mode in rectangular guide with two plane wire-grid surfaces.

part dipole field is then established on the inside of the outer surface to form a dual dipole wave.
Having provided for such a wave in this structure, it is apparent that the inner dielectric rod may be removed to leave a hollow cylindrical guide of wire-grid formation supporting a dipole-type field on its inside, Fig. 2 (c). Incidentally, the inner of a coaxial line supporting a circularly symmetrical surface-wave cannct be removed without destroying the whole wave mode.
In the illustrations the field distributions for the dipole-mode are shown pictorially; no attempt is made to include axial components of field whichalso exist.
The hollow cylirdrical structure
supports a dipole field symmetrical about a diameter at right-angles to the direction of polarisation and consequently the image-line technique can be used, comprising the introduction of a metal plate normal to the electric field so as to give a half dipole-mode, Fig. 2 (d).

The evanescence of the field can then be accentuated by placing two parallel metal plates one on each side of the semi-cylindrical surface and perpendicular to the ground plans, Fig. 3 (a). A simple adjustment is to make the wire grid flat and thus provide for the half dipole-mode in a rectangular guide, Fig. 3 (b). The open side of the guide can be closed in most cases by a metal surface, because the field outside the grid is very highly evanescent and has no significant value at the opening.

The corresponding full dipole-mode in rectangular guide requires two grids, as shown in Fig. 3 (c).

Practical applications

A number of different waveguide structures capable of supporting variants of the dipole-mode of propagation have been constructed and measurements are in progress on their attenuation and phase-change characteristics. There are many variables in the design of these waveguides and efforts are being made to optimize performance in a practical structure, hopefully leading to significantly reduced losses and smaller dispersion when compared with conventional transmission lines.

Valuable features of dipole-mode propagation are that the wave is not subject to frequency cut-off and there is a distinct prospect of making better use of the cross-sectional area of the guide by achieving a more uniform energydensity over it. Preliminary results at 3 GHz taking as a basis of comparison the product (attentuation) (sectional area) are most encouraging and the table shows that dipole-mode rectangular guide is, on this basis, about three times better than both the corresponding conventional rectangular guide and coaxial line.

Apart from the application of dipolemode lines to a wide range of transmission circuits, there could be development as a leaky-waveguide for communications in tunnels or for coupling to moving vehicles on a railway track.

It is still early days in the development of this novel form of wave transmission but sufficient work has been done to establish firm belief in its future.

It seems that so-called t.e.m. propagation applied at high frequencies without too much regard for the precise nature of the field associated with a given practical structure, has very definite limitations and the time has come to apply more finesse in the approach to some of our problems. By this means new avenues of engineering development are likely to appear on the horizon.

Microcomputer development system

Programme proving and fault finding

The design and development of micro-processor-based equipment usually follows a fairly standard pattern. Once a microprocessor has been chosen, and the proposed system has been planned in some detail, hardware and software development will proceed separately. The programmer will employ what is called a development system, such as the Intellec from Intel or the Exorciser from Motorola, to develop, correct and run his programmes.

Development systems such as these provide the programmer with a good deal of assistance in that they contain "firmware"* designed to speed the operation. For example, they allow the programmer to insert a software "break-point". This means the microprocessor will stop programme execution when the break-point is reached so that the programmer can examine and analyse the state of the various registers within the system at the break-point. This is the equivalent to dividing a complex circuit into smaller units for fault diagnosis by isolating all but the section of interest.
At some stage in the proceedings the user's hardware and software will be combined and comprehensive system tests will be carried out. Fault finding can be difficult, as either the hardware or the software may be responsible for malfunctions.

To alleviate this problem, Intel have introduced a microprocessor development system which they call MDS. This is used in conjunction with a unit called ICE (in-circuit emulator) to provide a flexible microprocessor development and fault finding tool.

In its basic form, MDS comprises a complete 8080 eight-bit microprocessor system with 16 kbytes of random-access memory (r.a.m.), 2 kbytes of read-only memory (r.o.m.) which holds various programmes for system control and monitoring, 256 bytes of erasable, - programmable, read-only memory (e.p.r.o.m.) and interface circuits for a teletype, video display unit, line printer, high-speed tape reader, high-speed tape punch and a universal e.p.r.o.m. programmer.

With an MDS and ICE combination, the hardware and software engineers are able to come together earlier in the
development cycle. The c.p.u. chip is unplugged from the user's prototype microprocessor system and the ICE unit, which is connected to the MDS, is plugged in in its place. This configuration allows components and software in the MDS unit to be substituted for components and software in the user's system.
For example, if the system being developed is a machine tool, the user's circuit card is coupled, through its interfaces, to the machine tool and the MDS and ICE units are connected as described above. Initially, the machine tool control programme will be loaded in the MDS and the microprocessor within the MDS will control the machine tool via the interfaces in the user's system. If there is a programme fault, the full facilities of the MDS are available to "de-bug" the programme in real time. Hardware break-points can be set. If, for example, the machine tool performs a faulty operation, a signal from the tool can be picked up and can be used to halt programme execution when the fault occurs. The programmer can then instruct the MDS to print out all the changes which occurred during the 44 steps which were executed just before the fault occurred, so that the sequence of events that led up to the faulty action can be studied.
Stage-by-stage control of the machine tool can be passed from the MDS to the user's system and, section by section, the correct operation of the user's system can be verified.

At the end of this process, the MDS and ICE units will only be performing the task of the c.p.u. chip in the user's system. The ICE unit is then unplugged, the c.p.u. is replaced and the user's system is ready to go into production. At this stage the MDS/ICE combination takes on a different role. It can be taken to the end of the production line and used for final system testing and trouble shooting.

Most of the peripheral units for the MDS mentioned earlier are supplied by Intel. The basic MDS can be expanded by plugging in extra cards to provide extra input/output ports and up to 64 kbytes of memory.
*Firmware. A programme that is permanently stored in a read-only memory.

AUDIO AMPLIFIER LOAD SPECIFICATION

Like Mr Stuart, I go along with the principle of Mr Walker's proposal in the December issue but would like to reconsider the load values. Consider a simple case - that of a single-unit loudspeaker. This will have a rated impedance, R, stated by the manufacturer and subject to a manufacturing tolerance. Part of this will be due to variations in voice-coil resistance and part due to motional impedance effects which show up as a shallow minimum in the impedance curve, usually at around 400 Hz . At low and high frequencies the reactive component will dominate and the impedance will be much higher than the rated value, falling to the d.c. resistance as zero frequency is approached.
The worst-case condition from the point of view in question, that of spurious operation of protection circuits, will be around that minimum of the impedance curve. Here Mr Stuart's $\mathrm{j} X R /(R+\mathrm{j} X)$ is a somewhat severe but fairly reasonable value.
The famous DIN 45500 gives a lower limit for the magnitude of the impedance of a domestic hi-fi loudspeaker of 0.8 times the rated value (although it is delightfully coy about the phase angle), and this applies to multi-way systems with dividing networks as well as to single units. It seems reasonable that monitor loudspeakers should be able to meet this standard (in the form 1.13 $\mathrm{j} X R /(R+\mathrm{j} X)$, that is $)$ as well. After all, the BBC designs show very little impedance variation over the whole frequency range.
On examining typical loudspeaker impedance curves there seems to be little justification, however, for $R / 2$, still less for Mr Stuart's ${ }^{-} \mathrm{j} X R /(R+\mathrm{j} X)$ for values of X between 0 and R, and the demands made on heat sinks and power supply are considerably increased. An amplifier designed to drive the former load will, in fact, be capable of delivering twice its rated output power, which appears ultra-conservative. (For the latter case, no overload protection
would seem possible.) Be sure that foreign competitors will not de-rate their products in that way - and it is likely to be economically better to improve the loudspeaker impedance curve anyway.
As to Mr Stuart's final query, the process is already under way. This subject is on the agenda to be discussed by Working Group 10 of IEC SC29B at Gaithersburg, USA, in March 1976. Opinions expressed through the columns of WW will be available to the members of WG10 by that time (or before, if they sủbscribe!). Furthermore, members of the Audio Engineering Society, British Section, will soon be advised of a new venture by which proposals like that of Mr Walker can reach, more quickly, a wide audience of informed opinion and progress to adoption as effective standards quite quickly.
J. M. Woodgate,

Hastings,
Sussex.

Peter Walker raises a very valid point in his reference to the reactive loading of amplifiers (December issue). We have tried to subject our amplifiers to such loads but have found difficulty in defining a "standard load". Our first attempt was to use an R50 crossover network (four section circuit) loaded by resistors. This load did not seem to be difficult enough. We then tried a Spendor BC3, perhaps the most difficult load currently on sale. The Spendor couldn't handle steady tones without (quite naturally) burning out. We were faced with designing an equivalent circuit of the $B C 3$. We have not to date been successful.
To illustrate the problem we compared a P40 amplifier (well respected in its day) with a Classic Two amplifier. The amplifiers were alternatively loaded with an 8 ohm non-inductive load and an R50 loudspeaker. With the gains set for 10 watts into 8 ohms the results were:

	P40 $\mathbf{8}$ ohms	R50
	0.035%	0.13%
400 Hz	0.035%	
1 kHz	0.016%	0.062%
10 kHz	0.022%	0.084%
20 kHz	0.047%	0.15%
	Classic Two	
400 Hz	0.0018%	0.0034%
1 kHz	0.0027%	0.0073%
10 kHz	0.0051%	0.015%
20 kHz	0.018%	0.017%

The figures were measured on a Sound Technology 1700 A analyser. The results achieved using the R50 as a load are as expected from its impedance curve. Equally with the Classic Two there was no disturbance on a 10 kHz square wave of 12 volt peak-to-peak amplitude. Thus any measurable effects of the loading are probably only apparent at much
higher levels, by which time the colourations of the speaker mask any amplifier colourations. Yet my ears tell me differently!
Stan Curtis,
Cambridge Audio, Huntingdon.

I would like to add my voice to that of Mr Walker (December issue) in saying that a power amplifier must have a reasonable capability to drive reactive loads, if it is to truly called a high-fidelity amplifier.
His criteria seem reasonable to me (i.e. $K= \pm \mathrm{j} X$), and indeed coincide with the often quoted load of $2 \mu \mathrm{~F} / / 8 \mathrm{ohms}$ at 10 kHz . All too often one sees an oscillogram published in an amplifier review, of the square wave response of an amplifier at 10 kHz , which shows very severe slew rate limitation with an 8 ohm $/ 2 \mu \mathrm{~F}$ load, but not without the capacitor.
I have recently been doing a good deal of work on class B amplifiers, and the requirement to deal with reactive loads has been well to the fore in my mind. The result of the work so far bears out Mr Walker's assertion that his criteria are no hardship to the designer.
I am frequently surprised at the relatively complex overload protection applied to amplifiers today, and especially that they often make no attempt to look at the mean rather than the instantaneous current. In my present class B design a simple fast-acting fuse is ${ }^{\circ}$ all that is used and this provides quite adequate protection from overload. I would add that the use of just a fuse means the use of transistors with a good safe operating area, and also the use of adequate heat sinks. To me, however, these two requirements are normal good design practice, which should be followed in any case.
Although the use of fast output transistors would seem to give a better output stage on paper, I have been able to get the necessary high performance I sought using 2 N 3055 (n-p-n) and 2N2955 (p-n-p) devices in the higher power versions of the amplifier, and owing to the use of a simple fuse the amplifier easily meets Mr Walker's requirements.
L. Nelson-Jones,

Bournemouth.

MICROPROCESSORS

Mr Waddington's article on microprocessors in the December issue stated that writing machine code by hand is not recommended for more than about 20 commands. Being an Open University student who used OPUS, a demonstration 8 -bit computer with 128 by 8 -bit bytes of memory, I feel that this figure is a little low. I was one of a number of students who wrote programmes for this of 70-80 instructions - limited only
by the memory size and the input/output facilities. I feel confident of being able to write and code programmes up to maybe a few hundred commands. However, one needs a machine on which to try out one's programmes and if this includes an assembler this will save a lot of time. Manufacturers' development systems cost from $£ 2000$ with necessary peripherals. The computer I am building will cost around $£ 100$. However, I am not denying that to write a complex programme involving many thousands of instructions the only reasonable way is to use a high level language like PL/M. This reduces the number of lines of programme that the programmer has to think about by a factor of ten, Intel claim. However, one has to buy time on a large computer to convert from PL/M to machine code and this will probably be beyond the pockets of amateurs like myself.
J. O. Owen, GW8JZB,

Pendine,
Dyfed.
I cannot agree with D. E. O'N. Waddington ("Microprocessors", December issue) that interpreters are only suitable for very large computers. Interpreters are easy to implement, and may save memory space if the interpreter's code can be designed so that it represents the problem more compactly than the host machine's instruction set. They are useful on computers of all sizes.

At Strathclyde we have an interpreter for a high-level language running in about 1 k bytes of memory on an Intel 8080 microprocessor, providing immediate portability of programmes from several other ranges of computers. A student is now implementing a similar interpreter for the Motorola M6800 series of computers - hardly very large machines.
Eric C. Sprigg,
Department of Computer Science,
University of Strathclyde,
Glasgow.

Mr Waddington replies:

While I concede that it is quite feasible to write machine code programmes for more than 20 commands (I have done so myself) I do not recommend it as normal practice. The longer the programme, the more likelihood of error and, as Mr Owen says, it is desirable to have some means of trying out programmes before committing them to r.o.m. or p.r.o.m. Computer simulation provides a very powerful method if you can afford it.
Some figures on the cost of using a Time Sharing computer to assemble and simulate programmes, although very approximate, may be of interest.

The initial cost of obtaining a user account number is $£ 5$. The average user would spend at the rate of about $£ 14$ per hour although the actual cost would, of course, depend on the skill of the
programmer. The more skilful will spend at a faster rate but for a shorter time so that it would cost less. If you have no access to a teletypewriter, two courses are open: hire one by the month, only worthwhile if there is a lot of programming to be done, or use one at a computer bureau - Time Sharing charge about $£ 5$ a day. However, before embarking on such a course it is as well to realise that mistakes are expensive, particularly when simulating programmes. It is very difficult to estimate how much it will cost to debug a programme. My experience so far suggests that one can easily be out by a factor of two or three times!
With regard to interpreters, obviously Mr Sprigg is better qualified to discuss this subject than I, and I bow to his superior knowledge.

'THE CONSULTANTS'

I must congratulate Mr Dwyer on his review of the activities of consultants (November issue), though Raymond Cooke gave us all a devastating introductory blow. He must have met one of the many people who become acoustical consultants by buying a cheap sound level meter and a text book, having spent their previous twenty years repairing air compressors. There are a lot of these around.
Consultants are a private enterprise and they can only continue in practice as long as they are found to be worth their fees. We are clearly successful in this for we currently have over fifty active commissions ranging from the laboratory measurement of the impact insulation of a sample floor covering, through the design of a loudspeaker system to reproduce the level and spatial characteristics of truck noise, to the acoustic design of a quiet steam power station costing around $£ 300$ million. Business has never been so active.

The consultant provides the specialist expertise that is required when people meet a problem well outside their own experience. KEF do not need any advice on how to design loudspeakers but I am sure that if Raymond Cooke needed a spectrographic analysis of a loudspeaker magnet material he would find a consultant with the necessary equipment and specialist expertise in that field. He would never consider the alternative solution, spending $£ 35,000$ on the equipment and hiring a man to operate it at a salary of $£ 4,000$ a year, and then use the equipment and expertise two or three times a year.

Our clients include one of the big four car manufacturers, several other consulting engineers, some government departments and a large number of very well known architectural practices. They continue to bring their electroacoustical problems to us, many of them having been with us for fifteen years, so

I can safely assume that we are giving good value for the fees we have to charge. KEF experience cannot be typical.
James Moir
James Moir \& Associates,
Chipperfield,
Herts.
We found John Dwyer's report on consultants in the November issue to be very fair and objective and were surprised at the response of Mr Faulkner in December Letters.
Unfortunately the rate of progress is such that $£ 10,000$ does not buy much equipment. To equip just one of our test benches with: Sound Technology analyzer; Crown IMA analyzer; H-P function generator; $\mathrm{H}-\mathrm{P}$ a.c. millivoltmeter; H-P oscilloscope; 1\% precision loads; and a couple of AVOs sets us back around $£ 4,500$. When you start to add up the equipment needed in an R\&D lab the figure really starts to climb. And that's just for amplifiers, before we consider f.m. tuners where the real money is.
We have come across consultants who do have their role in evaluating equipment for those (importers?) who do not possess laboratory facilities, but we do not feel they have proved themselves in the field of original product design. We employ a team of development engineers and production engineers in very close contact with our production staff, and despite this we have made mistakes in putting a product into production. Many competent engineers can design a good amplifier, but can they guarantee an outstanding performance on every unit when:

1. Batches of components come from a variety of suppliers with characteristics across the full band of their tolerances. 2. Equipment is made up by different girls with varying degrees of ability.
2. Equipment has to be tested by test engineers lacking the skills and abilities of their R\&D counterparts?
When things do go wrong at the production stage it is prohibitively expensive to have a consultant virtually living on site to solve the daily problems.
Consultants do have a role to fulfil as long as they don't get carried away and set themselves up as demigods.
Stan Curtis,
Cambridge Audio,
Huntingdon.

VANISHING COMPONENTS SHOPS

I read with interest Mr Pethers's letter in the November issue. Perhaps it would be fair to show the other side of the counter.

As a small electronic component stockist, I do not wonder that the "big boys" have elected to sell higher value
items such as hi-fi rather than components. The time taken to sell one or two resistors at say $£ 0.10$ could well result in 10^{3} times this small amount for the same staff serving time.
It is not that I decry small value sales: it is just that no-one can exist with the vanished profit on small components. London rents, rates, insurances, and all the other multiplicity of outgoings which come under the generic term "overheads", have escalated enormously. In reference to staff, perhaps Mr Pethers has not experienced the peculiar situation where, although there are N number unemployed, it is very difficult to find reliable people at non-ransom salary levels.
In many sales areas customers pay a minimum order charge. To make the component area viable it is getting to the stage where one cannot afford the trained staff to offer advice to a customer without making a service charge. But would the man in the street accept this? I suspect not. But without some bolstering I fear that London electronic component shops will become even more rare. In the last analysis the customer suffers, because competition provides optimum availability and realistic prices.
Perhaps the tycoons checked returns versus outlay and effort. Perhaps they decided that profits determine the type of goods to be sold. Surely the customer must acknowledge that people work for reward.
The shop assistant quite rightly expects to be paid for his labour. The more successful a business is, the more profit available. This results in more money to pay staff well, to stock in depth, to expand ranges, to explore other areas of activity, and thus to offer a better service to the customer.
Try using the smaller shops which cannot afford High Street positions. Telephone enquiries will elucidate "gen" on components. A cheque in the post will provide by-return-service. If a component is not what is expected, a refund follows the return of the goods. Or, possibly, a visit to the edge of the City might prove helpful.

Ron Barrie,

Barrie Electronics Ltd,
London, EC3.
Having had similar experiences I sympathise and am completely in agreement with your correspondent B. W. B. Pethers (November Letters).
Since the age of twelve, when the BBC was but one year old, I have been buying components for home construction. I, too, shopped in the recognised "component areas" of London for some fifty years, which enabled me to enjoy the creative work in making many receivers and transmitters, but today this is no longer possible. Briefly, two recent experiences: I needed a 500 pF twin variable capacitor and tried Lisle Street: "Blimey, you're a bit behind aren't you, we haven't stocked anything
like that for more than five years." More recently I needed a few 2.7 -ohm I-watt carbon resistors, but more than a dozen shops in Londion were unable to supply. I did, however, as your reader mentioned, obtain them from the north Durham.

Now in all fairness to these shopkeepers - who only seem to be interested in hi-fi, record and cassette players - I do think the fashion has changed and there are not nearly so many of us who like making things. Perhaps radio has become too complex to be as popular as it was originally?
Henry Hatch G2CBB,
South Croydon,
Surrey.
TRANSMITTER POWER AMPLIFIER DESIGN

I read with interest Mr O'Reilly's popening article in his series on Transmitter Power Amplifier Design in the September issue. There is one point in it where I feel the record needs setting straight. In the final paragraph he talks about the various methods of combining low power transistors to form higher power amplifiers, and whilst I do not quarrel with his technical arguments, I do disagree with his assertion that "Little success has been obtained by simply paralleling devices

I disagree with this statement on three counts. Firstly, Redifon Telecommunications Ltd, one of the leading companies currently manufacturing linear h.f. power amplifiers, make a range of medium to high power amplifiers from I00W to IkW using the paralleling technique, which have designed-in protection against the failure modes mentioned in Mr O'Reilly's article. These amplifiers have been sold to a wide variety of professional users throughout the world as well as in the UK, and I think that amplifiers using this technique can justly claim a good share of the present market.

Secondly, in the early years of solid state amplifier design, devices available to the designer were of considerably lower power than those of today. Hybrid combining of such devices into power amplifiers would have involved multistage hybrid combiners which would not only have been! more expensive but would also increase power losses due to the large number of hybrids and their dummy loads. Power amplifiers were therefore produced using the direct paralleling technique and proved commercially successful. It is this success, I believe, that gave added impetus to the device manufacturers to undertake the costly development of the higher power devices available today.

Thirdly, the chip construction of these high power transistors in most
cases uses the overlay or interdigitated technique, which in effect consists of a very large number of lower nower transistors connected in parallel, usually with some form of emitter ballasting to overcome the major problem of paralleling, namely gain equalisation.

The technical arguments for and against paralleling and hybrids combining of power transistors will. continue, but I think the record shows that there has indeed been some considerable success achieved by using the direct paralleling technique for combining power transistors in h.f. linear power amplifiers.
C. R. Mitchell,

Redifon Telecommunications Ltd, London, SWI8.

Mr O'Reilly replies:

While not wishing to challenge the historic data Mr Mitchell provides, I would point out that my assertion that parallel connection is rarely the optimum method of combining relates to the present time (as was stated in my sentence preceding the one in question).
Early designs of 1 kW amplifier contained many dozens of power transistors in the output stage and so the cost of hybrid combining would have been prohibitive. Direct parallel connection was achieved with some safety only by suitably de-rating the "average" device to ensure safe operation of the highest gain ones. There are obvious problems of cost and perhaps spares provisioning. Transistor gain selection can help load sharing in such circuits.

The major difference between many individual low power transistors and a modern r.f. power transistor is that in the latter the individual devices are manufactured simultaneously and have nearly identical characteristics. Thus with minimal internal ballasting very good power sharing is achieved.
Nowadays IkW can be obtained from just four push-pull modules and the advantages of hybrid combining are obtainable at little expense. In choosing a circuit configuration the designer must weigh the cost of additional protection circuitry and additional output devices, to permit greater average de-rating, against the cost of a combiner. The cost of failure should also be borne in mind.

RAILWAY FAIL-SAFE

1 would like to reply to Mr Cockerell's letter in the December issue on the fail-safe timing circuit shown in Mr Anderton's article on railway electronics (August 1975 issue).

The safety of a system employing such a circuit depends on the time delay remaining longer than a given value. If, as Mr Cockerell suggests, the square wave generator were to fail, there
would never be an output from the circuit, and while this represents a failure, it is a safe failure.

The physical design of such a circuit employs screening techniques for the timing components, whereby all leakage currents would be to the 0 V rail, giving rise to an increase in delay time. Should these screens become disconnected, no:output will result.

The purpose of publishing this circuit was to illustrate the basic principle of the fail-safe design, which is the sequential charging of the timing capacitor, wherein the capacitor is used to perform two functions, i.e., timing and transferring the signal to the output stage.

E. Moorey,

M. L. Engineering (Plymouth) Ltd, Plymouth.

PHASE EFFECTS IN LOUDSPEAKERS

It is easier to destroy than to create and I feel it must be a matter of regret that such a respected organisation as the BBC should have lent its name to the article which appeared in the January 1976 issue of your journal ("Audibility of phase effects in loudspeakers", pp 30-32) expressing, as it did, contempt and indifference for the research efforts of manufacturers who have designed and are producing linear phase loudspeaker systems.

I am managing director and head a research team at B \& W Loudspeakers, who in October 1975 released a new three-unit dynamic loudspeaker system - DM6 - which has a transient performance comparable with the best full range electrostatic design and a substantially linear phase response. The design programme, spread over a period of two and a half years, involved enormous personal effort from our five design engineers, has resulted in the development of new measuring techniques, the use of new materials and the production of the first British linear phase loudseaker system.

A complete argument for phase linearity in loudspeaker design is too lengthy a subject to be dealt with by correspondence and is one on which we hope to publish a paper later this year. However, in view of the implication of gimmickry* on the part of manufacturers, I feel some immediate comment is called for.

The article dismisses phase as being quite unimportant, after a simple experiment employing an all-pass phase shift network and the opinion of an unspecified listening panel. It must be presumed that this experiment was carried out on a non linear phase loudspeaker and that the recordings used were made on an analogue tape recorder. If this was the case a little thought would have led the writer to realise that for the experiment to be
even partially meaningful it would have been necessary to employ a linear phase loudspeaker system with digitally recorded material.
To those of us who have spent the major part of their working life on loudspeaker design it became apparent from the early days that the exact physical relationship between the drive units forming a multiway loudspeaker system was of importance. Indeed, if identical components are used both the spherical polar configuration and the sound impression will be changed by different placement of identical units on the baffle configuration. Linear amplitude measurements may be obtained by positioning the microphone to suit the configuration, but the phase characteristic of the system is changed and, being the only variable in the experiment, must account for the differing listening experience.

Both my company and one other British loudspeaker manufacturer have invested considerable sums of money in exploring loudspeaker transient behaviour. Not, as the article appears to suggest, as a gimmick but to advance the frontiers of knowledge and produce a better product. When one is involved in transient evaluation, phase linearisation, quite apart from its inherent advantages, is a basic step forward in good engineering practice, as it will be obvious to your readers that the transfer function of any network may be completely defined by reference to both its amplitude and phase characteristic.

Whilst the mechanism of hearing is a little understood subject it is relatively easy to prove that direct, as opposed to reflected, signals considerably influence the listening experience hence, apart from other considerations, the importance of maintaining a linear free-field amplitude characteristic. I believe this is a theory to which Mr Harwood subscribes. It is therefore both logical and reasonable to suggest that unless we are to regard music as a steady state phenomenon the leading edge of a transient waveform would be clearly audible as a first arrival signal, the structure of which is determined both by the amplitude and the phase characteristic of the network - in this case the loudspeaker. In any event the subject is well documented and among others Hansen and Madsen, in a paper "Threshold of phase detection by hearing", presented proof that phase changes as small as 10° could be heard and that higher order changes were clearly detectable in normal semi-reverberant listening environments.

May I conclude by briefly commenting on two aspects of the article? First, gimmickry. Over the last two and a half years the research programme necessary to produce the B\&W DM6 linear phase loudspeaker has cost, including capital investment in the necessary measuring equipment, some $£ 75,000$. Had we been looking for a
gimmick I can assure you that there are plenty to be had at a much lower cost. Lastly, the thought that the BBC Research Department as represented by Mr Harwood will "remain agog with indifference" to the efforts of manufacturers will not, I feel, dismay them unduly. Speaking personally, my own company, which incidentally received the Queen's Award to Industry in 1973 for export achievement, is currently exporting some 80% of its entire output and selling these products in direct competition with all contenders throughout the world. During this current financial year our exports will approach $£ 1 \mathrm{M}$, and I venture to suggest that this success is of more significance than the apparent satisfaction which Mr Harwood derives from his "captive audience" not complaining.
John Bowers,
B\&W Loudspeakers,
Worthing, Sussex
${ }^{*}$ Editor's note: The subtitle "Are 'linear phase' loudspeakers a gimmick?" was an editorial addition.

ELECTRODYNAMICALLY INDUCED E.M.F.

As you have not yet declared this correspondence closed, may I comment on John Gray's further contribution to it in the December 1975 issue? It seems to me a good thing that Faraday, when he performed his classical experiments - in 1831 wasn't it? - was unaware that "relative motion between a conductor and the system within which the conductor e.m.f. is to be detected was a basic requirement for electrodynamic induction of e.m.f. in the conductor" or he might not have tried what he did. Nor could present-day power-station generators be expected to work.
As "electrodynamic" is not defined in the ${ }^{-}$relevant British Standard, 4727, I'm not sure exactly what it means, but presumably it must be relevant to the matter under discussion. Which is more than can be said of Einstein's axiom, cited by Mr Gray. That refers to the impossibility of measuring absolute velocity in a closed system (or at all); but what we have been discussing all this time is the measurement of relative velocity with reference to a field in another system. It is true that a passenger in a soundproofed lift moving at constant velocity relative to the earth would be unable to tell whether he was moving, up, down, or neither - unless, for example, he had apparatus for comparing the air pressure on a small area of the floor with that on a similar area of the ceiling, thereby establishing an observational link with the system "earth".

Incidentally, on the assumptions made by C . S . Evans in the October issue, I think the e.m.f. should be 200 times smaller than his 26 V . "Cathode Ray."

Electronic systems - 2

Background to a communications course

by P. R. Darrington

Communication between people, between machines and between machines and people is at the core of our society. Without communication, life would not be possible; indeed, without the communicating link of the DNA molecule, there would be no life.
In the somewhat more confined area of an electronic systems course, our concern is more specific and the two main subjects of interest are audio and visual communication. Both have arisen because the needs of people far outstrip their capabilities. People need to communicate with each other at a distance, or by "delayed action": information must sometimes be recorded for later use or the communicator requires that his message be modified in some way, perhaps to make it more entertaining.
The language that this kind of discussion is conducted in sometimes obscures the fact that these requirements can give rise to familiar objects. A "recorded, delayed visual communication" is better known as a photograph and "an electromagnetically-transmitted, melodic/visual stimulus" is not easily recognized as Top of the Pops. Such descriptions could be called breakdowns in communication and are fatuous, but can often be seen in print. We will try to avoid them.
Communication between people is at the centre of the subject and can be effected by the use of newspapers, town criers, posters, films, radio, records, tape and television. Our concern is with the last four, as the intention is to use electronics to illustrate systems in action in society, electronics being a prolific user of systems of all kinds.

Aural communication

The easiest way to communicate aurally is to open one's mouth and bellow. However deep-chested the bellower, this method has a limited range and electronics, in the form of radio, is employed to enable the message to travel almost any distance from a few yards to millions of miles. The original sound is carried by the wave-motion of the air - a short-range mechanism. By impressing the low-frequency sound waves via a mechanical-to-electrical transducer onto a high-frequency radio wave, which does not suffer the rapid
attenuation of an airborne wave, the message travels further. At the receiving end of the communication channel, the low-frequency sound is recovered and made audible by another transducer, this time electrical-to-mechanical - the loudspeaker or headphone.
Notice that the radio wave itself was not the message. Each cycle of the original radio wave is identical to any other and, as the probability of one being like the last is maximum and the recipient is aware of this, no information is carried. To reduce this probabili-

A Philips television receiver, adapted to receive and display Teletext information. The system is capable of displaying several hundred "pages" of news and data. Photograph taken by the Independent Broadcasting Authority at their research centre.
ty, the sound wave changes, or modulates, the cycles of the radio wave. The message is then in the differences between cycles. This matter of modulation is crucial.
As in any aspect of communication, control or measurement, the transducers mentioned above are also crucial. They are the boundary between the familiar acts of talking, listening or seeing and the world of electronic activity which cannot be tested by any of our senses. If they are inefficient, as loudspeakers are we spend too much on driving them and if they distort we lose some of the message.
Stored aural communication (oh, really!) is the domain of the disc or the tape, although one does sometimes wonder if a recording of, say, Vera Lynn. singing a World War II song is really communication. If one has heard the record played a hundred times, the

probability that, on the 101 st playing, it will be different is fairly low. Where, then, is the message? Storage, however, is the aim of the high-fidelity class of equipment. Discs and tape have their pro's and con's, concerned with ease of handling, vulnerability to damage and wear, and physical size. There is also the matter of access time - not, perhaps, as important domestically as in a computer service bureau, but a factor to note, nevertheless. When one is at the wrong end of a C-120 cassette, discs can take on a new appeal.

The problem of noise (defined here as unwanted sound) is a thorny one, particularly with tape. Recording materials, both for discs and tape, are responsible for background noise which is reproduced as though it were part of the original sound. It constitutes an error which, in most cases, is not serious but merely irritating. When information is transmitted digitally, each small piece of information frequently being denoted by the presence or absence of a signal, a noise signal can fake the presence of a legitimate signal and cause a lot of trouble. All information-carrying chennels suffer from noise to a greater or lesser degree, but in the domestic, music-playing environment, the taperecording process is more vulnerable than disc. Hence the appearance of the name of the inventor of a noise-reducing process on many cassettes and cassette recorders - Dolby.

Distortion in the waveshape of a signal is, again, always present, and can be considered a form of noise, because it often consists of added harmonics unwanted sound. In a telephone system, distortion is not considered very important (unless one is in the habit of dialling a disc) but in a high-quality audio system, a very small amount indeed is unacceptable. Some of this is no doubt due to the peculiar genius of advertising copy-writers (one can listen to a heavily-distorting car radio without suffering) but it seems to be a fact that amounts of distortion which are imperceptible visually on an oscilloscope are easily discerned when listened to.

For many years, the audio amplifier has been subjected to intense examination by circuit designers, with the intention of reducing the amount of distortion contributed by this link in the chain. It is now down to around 0.005% in the top-class units. And yet the other elements in the audio system can contribute much larger amounts - a tape deck up to 2%; a loudspeaker about the same. It'is as though a rare wine in a golden goblet were decanted through an old sock and drunk through a mouthful of black pudding.

The virtually distortionless and noiseless reproduction of music from one loudspeaker is not, of course, considered good enough now. In the last two or three decades, stereophonic reproduction has been adopted as standard and surround-sound is almost
upon us (assuming that the manufacturers ever decide which kind to make). Hearing mechanisms and the psychology of hearing are relevant subjects for study in this business of multichannel sound. Surround-sound reproduction is not always intended to give the listener the impression of being in a concert hall, listening to music from the platform. If the music is recorded in a studio and is mainly synthetic, the listener is quite likely to be among the players. The surround-sound effect is being used not to convey the literal truth, but the truth in a modified form.

Visual communication

Electronics come into their own here for remote viewing and storage. Perhaps the most spectacular televisual communication is that between a space capsule and Houston, Texas - communication in a very real sense. In its more mundane sphere, the science is perhaps not quite so communicative; the predictability of a weekly American detective film reduces the information content to a low level.
In industrial applications, a television channel will become part of a feedback loop. It can be used to observe the effect of a control and to display it to the controller, who is thereby protected from a possibly hazardous working area.
The amount of information required to reproduce an acceptable picture is large (between 300000 and 800000 elements). This immediately rules out any idea of transmitting a picture by means of a "one-to-one" photocell/ lamp connexion for each element. Such a channel in cable form would be grotesquely expensive in copper and very bulky. This "parallel" method of transmission is therefore abandoned and a "sequential" approach adopted, wherein one channel is modulated with the brightness of each element in turn, by scanning the scene. At the receiver, a similar scan is "in step" with that at the transmitter. The scanning of a picture is used in television at high speeds for real-time viewing or at much lower speeds for facsimile and amateur use (slow-scan television - s.s.t.v.).

Recently, the exploitation of transmitted television signals has been increased by the Teletext experiment, which may become a permanent service. The previously unused sections of a television wave, blanked lines between scans, are now used to carry coded information. The code can be used by a domestic receiver to instruct a local "character generator" to display letters, numbers and graphic characters, forming a page of information on entertainment, news, weather forecasts, news flashes, financial reports and the like.

In the next article, the use of modulation techniques for signal transmission will be discussed.

Announcements

The third residential vacation school on the subject "RF Electrical Measurements" is being organized by the Institution of Electrical Engineers (IEE) and will take place at the University of Lancaster 11-23 July 1976. The school will be of interest to those working in calibration and standards laboratories as well as to research workers who require familiarity with modern measurement methods.. The subject will be dealt with at a level appropriate to recent graduates or senior technicians. Further information can be obtained from the IEE, Savoy Place, London WC2P 0BL.
"Electronics for electrical equipment" and "How computers work" are two part-time courses to be held at South London College, Main Building, Knights Hill, London SE27 0TX. The first is an eight-week course held each Tuesday evening from January 26 and the latter is a nine-week course held each Thursday evening from January 29. Further details can be obtained from the Senior Administrative Officer.

Regent Acoustics, Carrington House, 130 Regent Street, London WIR 6BR, has announced that it is now appointed as sole UK distributor for the American direct cut Sheffield records. These records are recorded from the studio directly to the master disc.

Quarndon Electronics, Slack Lane, Derby, best known for their stock holding and distribution of semiconductors from leading manufacturers, have announced the opening of a microprocessor laboratory at their premises in Derby.

Nitron has appointed Peter Gray Electronics Ltd, 21-23 Station Road, Henley on Thames, Oxfordshire as their sole agent to cover customers in the UK and Ireland. Nitron, a division of the McDonnell Douglas Aircraft Corporation, manufacture a range of p - and n -channel m.o.s. microcircuits, including non-volatile memories, calculator chips, data communication circuits and static r.o.ms.

Marshall's, 42 Cricklewood Broadway, London NW2 3ET, have announced their appointment as a specialist distributor for Mullard Ltd. This distributorship covers the full range of semiconductors, passive components and valves, specifically with reference to the radio, TV and hi-fi areas.

"'Linear phase" loudspeakers

It has been brought to our attention that certain phrases in the article "Audibility of phase effects in loudspeakers" by H. D. Harwood in the January 1976 issue may be taken as criticisms of the quality of loudspeakers with "linear phase" characteristics now on the market. We would like to assure readers that in publishing this article we intended no such criticism. The high quality of sound reproduction of these products is not in question. The issue, as we see it, is the extent to which a "linear phase" characteristic contributes to this high quality, and Mr Harwood's article is presented as one viewpoint in the debate on this subject. We shall be glad to consider for publication any responsible articles or letters giving contrary results and conclusions to those of Mr Harwood.

Wireless World Teletext decoder

4 - Framing code detector, error circuits and storage

by J. F. Daniels

Discussion of the serial-to-parallel convertor, framing code detector, data latches, Hamming corrector, data store and code converter completes the description of the circuitry contained on digital board one.

Fig. 1 shows the serial-to-parallel converter, data latches and framingcode detector. IC_{21} is an 8 -bit, serial-in, parallel-out shift register, which presents all eight bits of data in one "byte" to the inputs of the data latches at the same time. A strobe pulse is applied to the data latches, which causes the eight bits of data to be stored in the latches until the next strobe pulse arrives, eight clock periods later. A 7428 buffer i.c. is used for driving the strobe inputs of the
latches, as the fan-in requirement of 16 could not be met by the more common 7402, two-input NOR gate. The timing of the strobe pulse is quite critical and it must, of course, occur only when the eight bits of data in each byte are correctly positioned in the 74164 shift register. The detection of the framingcode pulse initially sets the timing of the latch strobe pulses, and subsequently they are derived from a $\div 8$ output of the clock divider circuit (IC_{42}, pin 1).

Framing code detection

The framing-code detection circuit consists of only four inverter gates and a single 8 -input NAND gate $(23,8)$. The output of this gate goes to " 0 " only
when the eight outputs of the shift register are in a condition that causes all " 1 " s to be present at the gate input. It is possible, with the use of more complex circuitry, to detect the framing code in the presence of a single error, as was explained in the introductory article. However, this added complication will also increase the number of false framing code detections, and this can in some circumstances be more troublesome than the occasional missed framing code. This simple detector was found to be perfectly adequate.

Error detection and correction

Before continuing with a description of the parity and Hamming-code correc-

A,B,C \& D are parity checks over the following bit no's

A checks on bits 1268

| B | n | $" 1$ | n | 2 | 3 | 4 | 8 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | $"$ | $" 1$ | $"$ | 2 | 4 | 5 | 6 | | | | |
| D | n | n | $"$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

$$
\begin{aligned}
& 0=\text { parity check correct } \\
& 1=" \quad " \text { incorrect }
\end{aligned}
$$

Fig. 2. Table showing the results of four possible parity checks carried out over the Hamming coded groups, and the action required for each combination of results.

Fig. 3. Circuit diagram of the Hamming corrector. $I C_{7}$ is a $7404, \mathrm{IC}_{8.16}$ are 7410, $I C_{24,31,32}$ are 7486 and IC_{40} is a 74180 .
tion circuits, it would be as well to explain in more detail some of the effects that can be caused by noise and distortion in the received signal, and what can be done about correcting them.

Below I have listed five different types of possible error in the data display, and I have put them in what I would consider to be in order of decreasing annoyance value:
a) a row of complete "rubbish", i.e. random characters across a complete display row;
b) a row which begins correctly with intelligible data but which becomes rubbish somewhere across the row;
c) a row which is correct in terms of the data it contains but which takes up the position of another row in the display; this may leave a blank row where it should have been situated;
d) a row which should contain information, but which is displayed blank;
e) words which have individual letters incorrect, or missing - other than those caused by typing errors!

Apart from the Hamming correction circuits, which can be considered an instantaneous form of correction, another type of correction can be used which relies on the fact that the pages of information are transmitted cyclically, repeating every 15 seconds or so. If information is written into the data store every time the selected page is. received - and not just the first time it arrives after being selected - then some errors such as missed rows, missed letters, etc., can be corrected. Bearing this in mind, we can now consider the types of error mentioned earlier, their causes, and whether they can be corrected by subsequent detections of the correct page.

Rows of complete rubbish are almost always caused by the detection of false framing codes. These arise in several ways. On normal data rows, for
instance, a framing code detection will result whenever the sequence of data bits is 11100100 . This will occur more often than might be expected since this sequence may occur across "byte barriers" e.g. the letters p , r will be represented by the data bits 00001110 01001111 . It can be seen from this that the last four bits of the first group and the first four of the second group combine to form a framing code sequence.

This simple example shows how frequently these framing code detections might occur. The false detection, does not, however, cause any serious problems, as there are two fairly simple ways of overcoming it, both of which are used in this design. Firstly, the output of the framing code detector is gated with a pulse, derived from monostable 17, which only allows through framing codes that occur at the expected position on the television line. This gating pulse is sufficiently wide to allow for expected differences between TV channels, but not so wide as to allow, through framing codes caused by byte barriers. Any framing codes which may occur before the correct one are also eliminated in this manner. (It is possible that framing codes may be detected in the colour burst with some types of data separator circuit.) Secondly, the reset waveform to the clock dividers consists not simply of framing code detections, but of the Data Allow latch waveform, which is derived as explained last month. This allows only the first framing code detected on any data line to set the initial timing of the latch enable pulses and ignores subsequent framing code detections on that line.

False framing codes which may be more of a problem, are those that can be detected on lines other than 17, 330 and 18, 331. It has already been pointed out that data is only "looked for" during lines 11, 21, 324, 334, and in this way

You've heard, perhaps, that nowadays Brandenburg are taking an Olympian view?

We're doing so for two important reasons. Our products. And to support the Olympiad ideal.

First, our products. (Then we'll tell you how to get all expenses paid - to Montreal).

The Olympic Games began by Mount Olympus - the home of the Gods, and the highest place known to the ancient Greeks. Which is why the word 'Olympian' means superior, magnificent and all manner of other fine things.

Which appeals to us at Brandenburg no end.
For over 21 years the Brandenburg name has been associated with HV power supply technology, and we are now established as Europe's leading manufacturer in this field.

We have an unequalled line-up of products, from our high technology Ensign range to HV modules and meters. All designed to satisfy the most demanding applications. We've just recently released our resin encapsulated 200 Series modules, and there's our second generation Alpha II units reflecting the very latest in high voltage state-of-the-art.

In parallel to our increasing range of power supplies, we've a unique selection of NIM modules and MCAs for nucleonic research from our Nuclear Engineering Division.

These are just some of our winners. In the months and years to come, there'll be more. For Brandenburg, in the truest Olympian tradition, is always reaching to better even today's finest achievements in HV and nucleonic engineering.

From these Olympian heights, we turn to others.

Two competitors will be Brandenburg's guests at a finals day - July 30th - at the 1976 Olympics. But to get there they'll have to work on it. We think the competition we've devised is fun, but it needs thought on your part - which is just as it should be.

So do look overleaf at the details.
Why are Brandenburg so keen on the Olympics? Well, we're British through and through - and we don't think Britain does enough at or for this extraordinarily prestigeous event. In our own small way we're going to get our industry just a little more involved.

This is how you can win your tickets, your travel and your expenses to the Montreal Olympics next July. You'll try won't you?

First, we want you to list in order of importance these seven major British technological achievements. They are:

Concorde
The Hovercraft
The scanning electron microscope
The brain and body scanner
Linear induction motors
Fast breeder reactors
Man-made fibres
Using, as they say, your skill and judgement - and, we hope, having discussed the list with your friends and colleagues - put them in order of technological importance. It's as easy as that - or as hard. But at least mathematically, you stand a two in five thousand and forty chance of a first prize.

Our judges will themselves work out what they believe to be the answer. And whoever agrees with their selection is in with a splendid chance.

Our judges are:
Mr. Kim Bachmann of New Electronics; Mr. Rex Grimoldby of Brandenburg; Mr. Brian Jennings of Electronic Engineering; Mr. Stan Mash of Electronic Equipment News; Mr. Stephen Broadbent of Flight International and Mr. Dave Whiffen of Laboratory Weekly.

The opinion of the judges is, of course, final.

Obviously more than two entrants will get the first part of the competition correct. So, to get around this problem, we've got another question for you to answer (in 25 words or less). What technological achievement would you like to see next - and why? Again the judges will decide. And remember, we are taking two winners - so try hard, won't you, as you peer into the crystal ball.

In the year of the 21st Olympiad-and our 2lst anniversary -21 prizes for "runners-up"

Brandenburg has been in HV engineering for 21 years. So, to celebrate our 'coming of age', we're awarding 21 prizes for 'runners-up'.

They're record books of the Olympiad - which we
 can't show you because they're not printed until after the Games. But they're magnificent volumes and we know you'll treasure your copy for ever.

Incidentally, all winners and runners-up will be informed by 7th May, 1976 and their names published in the afore-mentioned magazines.

How can I enter?

Just use our enquiry number - its 151 - and we'll send you an entry form. It's the only way we'll accept entries.

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey,
England. Tel: 016890441 Telex: 946149.

detections during separated picture information are avoided. However, lines 16 and 329 carry another form of data, and lines 19,332 and 20,333 carry insertion test signals. Despite the precautions already taken it is still possible under some circumstances to detect a framing code at the correct time on one of these lines. It is this type of false detection that can cause lines of complete rubbish to be written into the display, and it is this type of error that is most objectionable. The simplest way of overcoming it in this design is to not look for framing codes on lines 16,329 , $19 \& 20,332$ and 333 and this can be easily accomplished by inhibiting the entry of data into the 74164 shift register on these lines. This is achieved by feeding the QB output of IC_{5} into the second data input of the shift register (shown dotted in Fig. 1). This solution to the problem has the disadvantage that if the allocation of lines in the vertical interval is changed in the future, a modification to the circuit may be required. For this reason the connexion is not included on the p.c.bs, but may be added by means of a wire link if it is found to be necessary.
A second type of error, which is also quite disturbing but which is due to an

Fig. 4. Circuit diagram of the code converter and data store. IC_{2526} are $7400, \mathrm{IC}_{27}$ is $7404, \mathrm{IC}_{28}$ is a $74174, I \mathrm{C}_{69}$ is a 7474 and the r.a.ms are 2602 B or 2102B.
entirely different cause, is apparent in rows which begin correctly with intelligible data, but turn to rubbish at some point across the line. For this to happen, the framing code must have been correctly detected, but somewhere across the line the divide-by-eight counter generating the latch strobe pulses gets out of step with the data bytes, and this causes the information to turn to rubbish. The most likely causes of this are that the clock oscillator is slightly off frequency, or that some particularly severe noise in the data line causes the clock generator to mistrigger.
The third type of error is the row which appears in the wrong position in the display. This probably has the secondary effect that the position it should have occupied in the display will be left blank, thus effectively making two rows of the display incorrect. This type of error is fairly uncommon in
decoders employing Hamming correction, as single errors in the row address will be corrected automatically. Even if an even number of errors are present (2 , 4 , or 6), the row will still not be written into the wrong position, as even errors can be detected, and in this design they cause the Data Allow waveform to return to " 0 ", preventıng any data being written into the store on that row. This means that only errors totalling 3,5 or 7 bits in the row address group will cause rows to appear in the wrong position on the screen, and this is rather unlikely, except in cases of severe interference (car ignition interference, etc).
The types of error dealt with so far are all very undesirable for the simple reason that they may occur in the display at any time, even if the page is read out correctly the first time, and it is for this reason that the extensive precautions described above are taken to prevent their occurrence. The remaining types of error to be described are less annoying because they are self correcting, i.e., a page may be read out which has errors such as rows or letters missing, but these will be corrected when the selected page is next transmitted in 15-20 seconds time. This is another good reason for having a short

page-access time, since corrections will be made faster.

A blank row in the display may be caused either by an even error detected in the row address group, or by a missed framing code. In either case this type of error cannot cause an already correct page to be made incorrect, and correct information will almost certainly be taken the next time the page is transmitted.

Nothing has yet been said about the parity bit contained in each of the display character groups. This is used in the following way: a parity check is made on each 8-bit data byte before it is written into the store, and if the check is satisfactory the seven bits of the character code are written in the normal manner. If, however, the check shows the parity to be incorrect, nothing is written into the store during that byte. (Anything already in the store at that address location will therefore be unaffected, as only the action of writing removes already-stored information.) This has the effect that when a page is first read out onto the screen, any parity errors will cause characters to be missing from the display. These letters will then be filled in 15 seconds or so later, when the page is next written into .the store. Incorrect characters will only be read into the display if more than one error is present in the data word in such a way that the byte-parity is still correct

This, then, is a brief resume of the more common types of error that can be encountered in the teletext display, and we will now continue the circuit description by looking at the operation of the Hamming corrector circuit.

Hamming correction

It has already been explained that the Hamming-coded bytes contain four message bits and four parity bits. The use of four parity bits enables four separate parity checks to be carried out

Fig. 5. Diagram showing the operation of the code converter circuit (see text for explanation).
over the byte and in this way it is possible to determine which one, if any, of the bits is incorrect. If one of the message bits is found to be incorrect, then it is simply inverted, and hence corrected. The table in Fig. 2 shows the parity checks that are carried out and the action taken if one or more of the checks fails. The actual circuit, shown in Fig. 3 does not need to be quite as complicated as the table suggests because there is nothing to be gained by correcting the odd numbered bits (parity bits) and in fact only the message bits are corrected.

Gates (32, 6), $(24,11)$ and (24, 8) indicate parity checks A, B and C respectively as shown in the table, and the results of these checks are fed into the four three-input NAND gates, (16, 12), $(16,8),(8,12)$ and $(8,6)$. The output condition of these gates determines whether or not the bits from the \bar{Q} outputs of the 7475 latches will be inverted or passed through the exclu-sive-OR gates unchanged. (Normally the \bar{Q} outputs are inverted by these gates, but if an error is detected, the errant bit is passed through unchanged).

The 74180 eight-bit parity checking i.c. performs a dual function in this circuit. Firstly it is used simply as a parity checker for the ISO-7 coded characters, to determine whether they should be written into the store. Secondly, it is used in conjunction with gate $(16,6)$ to detect even-order errors during the Hamming-coded bytes. The input to gate $(8,8)$ from IC_{7}, pin 10 restricts the detection of even-order errors to the row address group only. As explained earlier an even-order error detected at the output of gate $(8,8)$
returns the Data Allow waveform to " 0 ", thus preventing the writing of information into the store on that row.

Data store and code converter

The data store consists of seven 1024-bit static random-access memories (r.a.ms). These are m.o.s. devices, but are extremely easy to use, as they have fully t.t.l.-compatible inputs and outputs and require no external pull-up resistors. The printed-circuit boards are designed in such a way that holders may be used for these i.cs to reduce the possibility of damage by "leaky" soldering irons etc. The outputs of these i.cs are only capable of driving one t.t.I. load and must therefore be suitably buffered to obtain the normal t.t.l. fan-out of 10 . They also have a somewhat variable access time, which depends on device type, temperature, and the particular 'location' in the store which is being addressed. Although the specification states that the access time will always be less than $1 \mu \mathrm{~s}$, it is important in this circuit that the bits are all time coincident at the output of the store, and this is achieved by using t.t.I. D-type latches on the outputs of the r.a.ms. These D-type latches perform the dual function of providing bit outputs that are time-coincident and with a full fan-out of 10 t.t.l. loads.

The read/write input of the store is normally at the " 1 " level during the display of data on the screen. When new information is written into the store,
 print here a list of i.cs used in the decoder. The full parts list will follow later. $\mathrm{IC}_{85.90}$ are required for a two-r.o.m. character generator, also described later.
this input is pulsed to the " 0 " level for each newly stored character code.

The address inputs to the r.a.ms are obtained from the column and row address dividers. As there are six column-address and five row-address outputs, and only ten address inputs to the r.a.ms, a code-converter circuit is needed to reduce the address word from eleven to ten bits. The method of doing this was briefly described in an earlier article, but with the help of Fig. 5, both the necessity for having a code converter and the method of achieving the conversion should become apparent. For simplicity the diagram only shows the addresses actually involved in the code conversion circuit, and not all the row and column addresses.

The area enclosed by ABHG is the area covered by the teletext display, i.e., 40 characters by 24 rows, and the area AEID is the 32 by 32 matrix of the random-access memory store. It can be seen fairly easily from this that if no code converter were used it would only be possible to obtain a teletext display of 32 by 24 characters (enclosed by AEFG). However, it is also fairly obvious that the extra space available in the r.a.ms enclosed by GFID is more than enough to store the extra eight character codes for each of the 24 rows. This is indicated in the diagram where the characters displayed in square x_{2} are in fact stored in position x_{1} in the r.a.ms and similarly y_{2} in y_{1} and z_{2} in z_{1}.

The method of achieving this in terms of gates is shown in Fig. 4 and the i.cs used are actually numbers 25,26 and 27 . It would take too long and serve little purpose to describe in detail this part of the circuit operation. Briefly, the circuit detects characters $32-40$ on each row and changes the store row address to one of the unused rows between 24 and 31.

There are many ways in which the above code conversion can be performed, but it was considered that the method used was probably the cheapest in terms of i.c. types and it was adopted for this reason.

This completes the description of all the circuitry contained on digital board one, and next month the description will be continued by looking at the majority of board two which includes page and time detection, control logic, graphics and character generation.

Correction

In Fig. l of the January issue, IC_{14} was specified as a 7490 . It should be 7493 .

Standards

We are informed by the BBC that, from February 2, 1976, the character code shown in our January issue will be broadcast on $\mathrm{BBCl}, \mathrm{BBC} 2$ will revert to the old standard.

LONDON

2nd. BKSTS - "Psychoacoustics: microphone techniques and the criteria of hearing" by Michael Gerzon at 19.00 at Thames Television, Studio 7, Euston Road, NWI.
3rd. IEE - "Automatic handwriting and speech recognition systems" by R. Watson and B. Paye at 17.30 at Savoy Pl., WC2.

3rd. IEE - Faraday lecture on "The entertaining electron" by F. H. Steele in the evening at The New London Theatre.

4th. IEE - Faraday lecture on "The entertaining electron'" by F. H. Steele, morning, afternoon and evening at The New London Theatre.

4th. I. Phys. - One-day meeting on "Absorption of sound and vibration" at Imperial College, SW7.

4th. IEE - Colloquium on "Antenna systems for frequency re-use" at 14.30 at Savoy Pl., WC2.

4th. BKSTS/RTS/IEE - Symposium on "Large screen television displays" at 16.00 at Studio 1, London Weekend Television, South Bank Television Centre, Upper Ground, SE 1.

5th. IEE - Colloquium on "H.F. communication systems" at 10.00 at Savoy Pl., WC2.
5th. IEE - Faraday lecture on "The entertaining electron" by F. H. Steele, morning and evening at The New London Theatre.

6th. IEE - Faraday lecture on "The entertaining electron" by F. H. Steele, morning and afternoon at The New London Theatre.

9th. IEE - "Safety regulations arising from the low-voltage safety document" by J. B. Lievens at 17.30 at Savoy PI., WC2.

9th. BKSTS - "Studio recording principles" by John Andrews at 19.00 at Thames Television, Studio 7, Euston Road, NW1.

10th. IEE/IEETE - Discussion on "Black boxes and their role in the teaching of semiconductors" at 17.30 at Savoy Pl., WC2.

10th. AES - "Low levels to line" by David. Rees at 19.15 at the IEE, Savoy Pl., WC2.
11th. I. Phys/IEE - One-day meeting on "Metallisation systems for semiconductor devices" at Imperial College, SW7.
llth. IEE - Colloquium on "Stroke rehabilitation as a problem in control" at 10.30 at Savoy Pl., WC2.

12th. IEE - "MF broadcasting" by T. Kilvington at 17.30 at Savoy PI., WC2.

16th. IEE - Colloquium on "Electronics against pollution" at Savoy Pl., WC2.

16th. BKSTS - "Studio techniques" by John Andrews at 19.00 at Thames Television, Studio 7, Euston Road. NW1.

17th. IEE - Colloquium on "Field effect transistor circuits" at 10.30 at Savoy Pl., WC2.

18th. I. Phys. - One-day meeting on "Adhesion of thin films" at 10.30 at Imperial College, SW7.
18th. IEE - Fourteenth annual lecture of the Electronics Division by Prof. C. Cherry at 17.30 at Savoy PL., WC2.

18th. IEE - "Liquid crystal materials" by Dr G. W. Grey at 17.30 at Savoy PI., WC2.
23rd. IEE - Discussion on "Reduction of electro-magnetically excited vibration and noise" at 17.30 at Savoy PI., WC2.

23rd. BKSTS - "Monitoring sound in studio and home" by Spencer Hughes at 19.00 at Thames Television, Studio 7, Euston Road, NW1.

25th. IEE - "Marketing engineering products in 1976" by L. A. Williams at 17.30 at Savoy Pl., WC2.

26th. IEE - Discussion on "Towards a real professionalism" at 14.00 at Savoy Pl., WC2.

BIRMINGHAM

18th. RTS - "Politics and broadcasting"' by Peter Hardiman Scott at 19.00 at the BBC, Broadcasting Centre, Pebble Mill Road.

BLANDFORD

18th. IEETE - "Ultrasonics in TV" by J. C. Goodwin at 18.30 at Princess Mary Hall, School of Signals, Blandford Camp.

BOURNEMOUTH

10th. IEETE - "The work of the Independent Broadcasting Authority" by B. T. Hadley at 19.30 at Cotford Hall Hotel, Knyveton Road.

BRIGHTON

19th. IEETE - "Stabilise your a.c. supplies" by Max E. Symes at 19.30 at the Royal Albion Hotel, Old Steine.

CARMARTHEN

llth IEETE - "Protective multiple earthing" by R. Hubbard at 19.30 at Carmarthen Technical and Agricultural College.

EXETER

5th. IEETE - "Fuel economy - control systems" at 19.30 at the Imperial Hotel, St Davids Hill.

GLASGOW

25th. IEE - Colloquium on "Electronics in the service of medicine" at the University of Strathclyde.

IPSWICH

5th. IEETE - "Hi-fi" by H. J. Dix at 19.30 at Room 1, Ipswich Town Hall.

MORDEN

24th. IEE - "Electronics on Saturday" by K. J. Dean at 18.30 at Merton Technical College, Morden Park, London Road.

REDHILL

5th. IEETE - "Automatic vehicle control - driverless buses and vehicles for the disabled" by J. Feaver and Dr G. Reynolds at 19.30 at Redhill Technical College, Gatton Point.

Tickets are required for some meetings: readers are advised therefore to contact the society concerned.

First Intelsat IV-A launched

The first in the series of Intelsat IV-A commercial communication satellites, capable of carrying 6,000 telephone calls and two television channels at once, was launched from Cape Canaveral, Florida on September 25, 1975. The satellite's capacity is almost twice that of each of the present communications satellites now in service. It is the first of six to be launched over the next few years.

The satellite carries 20 transponders, compared with 12 on each Intelsat IV, and a new antenna system that can concentrate several signal beams on to high traffic areas on each side of the Atlantic. Eighty-five per cent of all Intelsat use is for telephone transmission.

Using a technique of frequency re-use, the satellite will cast separate transmitting and receiving beams that will take in most of the Americas and Canada as well as Europe and Africa from its operating position in synchronous earth orbit 22,300 miles above the equator. The satellite is provided" by Intelsat, the International Telecommunications Satellite Organisation, which was set up in 1964 to exploit satellites for commercial communications on a global scale. Britain is the second largest shareholder in the venture after the USA.

ESA's bird's eye

The European Space Agency plans to send up a high orbiting weather satellite as part of a world-wide effort to obtain even faster and more detailed information about the earth's weather and climate. The "Meteosat" satellite is due to start operating in mid 1977, and the data from its continuous observation should help to produce more reliable weather forecasts. Siemens, as the main contractor, is at present constructing the antenna for the main ground station for this project near Michelstadt in the Odenwald region. The purpose of the Meteosat weather satellite is to photograph cloud movements and

Intelsat IV-A communication satellite (see news item). British Aircraft Corporation Electronic \& Space Systems Group at Bristol under contract to Hughes Aircraft Company manufactured major sections of the satellite including the spun structure, booster adapter, despun components, cable harness and solar arrays.

Main-station antëna near Michelstadt in the Odenwald region of Federal Germany for ESA's Meteosat weather satellite (see news item).
general atmóspheric phenomena. From its orbiting postion $36,000 \mathrm{~km}$ above the equator at the Greenwich meridian, the satellite will be able to survey an area extending from northern Europe to the South Atlantic and from mid Atlantic to the Indian Ocean. One ordinary and one infra-red picture will be transmitted in digital form at half-hourly intervals to the ground station, where a computing centre will compare the newly received pictures with the previous ones. The functions performed by the satellite's transmission system include: transmitting the pictures taken by the satellite in the visible and infra-red range to the main station; transferring the processed meteorological pictures from the main station to the user stations; transmitting data from the unattended stations to the main station. The S band (2.1 GHz or 1.7 GHz) is used for traffic with the main station and the user station and the u.h.f. range (400 or 470 MHz) is used for traffic with the unattended frequencies.

Satcom service for Alaska

Satellite Satcom I, designed specifically for Alaska communication services, was launched in mid December from the Kennedy Space Center at Cape Canaveral, USA. The satellite is urgently required for increased capacity voice, record and video services. These include critical operations for Alaskan pipeline communications, for telephone and public health services with the first 20 new small village earth stations under construction and also with 80 other small earth stations to follow in Alaska. Satcom I is the first of three that RCA will operate as part of its domestic satellite communications service available across the United States. The critical weight requirements of a high-capacity, 24transponder communications satellite dictated the use of a three-axis stabilized spacecraft in place of the more familiar spinner type vehicle. Weight savings were achieved by the use of graphite-fibre epoxy composite materials instead of conventional substances for the communications input and output multiplexers, antenna horns, waveguide and support towers, which cut the weight of those subsystems in half. Satcom I has 24 independent 34 MHz communication channels in the 500 MHz bandwidth authorized for satellite communications. Information will be transmitted using alternate horizontal and vertical polarization. To prevent interference between these signals, wire grids are embedded in the four antenna reflectors. These are designed so that two reflectors will receive only horizontally polarized signals while the other two receive only the vertical.

For faster delivery try these sources

Our Appointed Distributors have been ordering instruments on your behalf for over a year now. This means they can deliver your order quicker than any other sourcé. They can help you choose the right instrument, too.
Here's where to contact them:
LONDON AREA
London
Edmundson Electric Ltd
Tel: 01-891 1331
ERD(South East) Ltd.
Tel:01-9285620
Lugton \& Co. Ltd. Tel:01-3488247
R.T.\&I. Electronics Ltd

Tel:01-5394986
ITT Distributors Ltd
Tel:01-8036522
Harlow
ITT Instrument Services
Tel: 027929522
Welwyn Garden City
Ellistons (Welwyn) Ltd
Tel:07073 26344
MIDLANDS
Coventry
Mercia Electronics Ltd.
Tel: 020324091

Birmingham
ITT Distributors Ltd
Tel:021-2365030
ERD (Midlands) Ltd. Tel:021-2365060
Northampton
E.M.F.(Electrical) Ltd. Tel:0604 21711 Norwich
Newey \& Eyre Ltd. Tel: 060349341 Nottingham
Newey \& Eyre Ltd. Tel: 0602866531
NORTHERN IRELAND
Belfast
Eirco Ltd. Tel:023242911
NORTHEAST
Hull
Edmundson Electric Ltd
Tel:0482 20691
Leeds
Farnell Electronic Components Ltd
Tel:0532636311
Wetherby
Farnell Instruments Ltd.
Tel:09373541
Newcastle upon Tyne
J. Gledson \& Co. Ltd. Tel:0632860955

NORTH WEST AND N WALES
Salford
Hirst Ibbetson \& Taylor Ltd
Tel:061-8329711
J. Walton (Electrical) Ltd Tel:061-8724224
SCOTLAND
Glasgow
ERD (Scotland) Ltc. Tel:041-647 7141 Elesco-Fraser Ltd Tel:041-2219301

SOUTH WEST AND S. WALES

Bristol
Black Arrow (Electronics) Ltd
Tel: 0454315824
Cardiff
Newey \& EvreLtd. Tel:0222 45831
Bath
ERD (South West) Ltd. Tel: 022563281
Vou will still be able to buy our instru-
ments through your usual wholesaler.
although he may not be an Appointed Distributor.

Avo Limited

Evershed \& Vignoles Limited MEGGER Instruments Division H. W. Sullivan Limited

Tavior Electrical Instruments Limited
THORN Thorn Measurement Control and Automation Division, Archcliffe Road, Dover, Kent. Telephone: Dover (0304) 202620

Now...the most exciting Sinclair kit ever

The Black Watch kit

 At £17.95, it's* practical-easily built by anyone in an evening's straightforward assembly. * complete - right down to strap and batteries.
* guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The special features of The Black Watch

Smooth, chunky, matt-black case with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

Large, bright, red display-easily read at night.
Touch-and-see case -
no unprofessional buttons.

Runs on two hearing-aid batteries (supplied). Change your batteries yourself-no expensive jeweller's service

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...
The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic.
This chip of silicon measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits

The chip is totally designed and manufactured in the UK , and is the first design to incorporate. all circuitry for a digital watch on a single chip.
... and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from $32,768 \mathrm{~Hz}$ to 1 Hz . This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7 -segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

LED display

The kit contains

1. printed circuit board
2. uniaue Sinclair-designedIC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. blazk strap (black stainlesssteal bracelet optional extra-
11. fullinstructions for building and use.
All jou provide is a fine soldering iron ans a pair of cutters. If you've any queries or problems in building, ring or write to the Sinclair service
department for help.

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit within 10 days and we'll refund your money without question. All parts are tested and checked before despatchand correctly-assembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today!
Price in kit form: £17.95 (inc. black strap, VAT, p\&p).

Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE17 4HJ.
Tel: St Ives (0480) 6.4646.
Reg. no: 699483 England. VAT Reg. no: 213817088.

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR.

Please send me
Total £
(qty) Sinclair Black Watch kit(s) at £17.95 (inc. black strap, VAT, p\&p).
(qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p\&p)

* I enclose cheque for $£$
made out to Sinclair Radionics Ltd and crossed
*Please debit my *Barclaycard/Access/ American Express accountr.umber

Name

Address

Now the Alpha costs less than the A莱 will the 1567 engineers who are still without one please identify themselves?

Do get the Gould Advance data on Alpha. You see, it's so much better.

Gould Advance Limited
Roebuck Road, Hainault, Essex, England.
Telephone: 01-500 1000 Telex: 263785

Thermistor and thermocouple action

Methods of measuring temperature

by C. Budd

With the widespread use of the thermistor, the thermocouple seems to have been neglected. This article reviews the characteristics and principles of operation of the two devices and discusses their relative merits in practical applications

Thermistor action is based on the rapid variations of resistivity with temperature found in semiconductor materials. This component is a black sheep in the family of low-frequency semiconductor devices because it contains no junctions - just a piece of semiconductor material with two ohmic non-rectifying contacts. There are two basic types of thermistor, negative-coefficient types (n.t.c.) and positive-coefficient types (p.t.c.)

P.t.c. thermistors

In a metal, the forbidden energy band between the valence and conduction bands (see Fig. 1) has zero width and electrons can pass freely from one band to the other at any temperature other than absolute zero. The number of electrons available for conduction is practically independent of temperature. Theory shows that, approximately;

$$
\begin{equation*}
\rho=2 m v / n e^{2} l \tag{1}
\end{equation*}
$$

where m is the mass of each charge carrier (each electron in this case), v is the velocity of each charge carrier, n is the number of charge carriers available for conduction per unit volume, l is the average distance travelled by each charge carrier between collisions with the atoms of the material, e is the charge of each charge carrier $\left(-1.602 \times 10^{-19}\right.$ coulombs for electrons), and ρ is the resistivity of the material. Because m, n, e, and l are constants and v increases with temperature the resistivity must increase with temperature. This effect, known as lattice scattering, is responsible for the small positive tem-perature-coefficient of resistivity in most metals.

Lattice scattering is only apparent in semiconductors when the thermal energy is sinall enough, or the temperature is high enough to make the number of charge carriers available per unit volume a constant. This occurs in
extrinsic (doped) silicon at about room temperature because ample thermal energy is available to excite electrons from the donor level to the conduction band in n-type silicons, or from the valence band to the acceptor level in p-type. A much greater temperature must be. reached, however, before electrons can gain enough energy to pass from valence to conduction band and allow intrinsic conductivity. Therefore the number of charge carriers, either electrons or holes, available per unit volume is virtually independent of temperature, and the resistivity of the semiconductor will obey equation (1). The approximate relationship between resistivity and temperature is shown in Fig. 2. If the semiconductor sample is encapsulated, a resistor with a fairly

Fig. 1. Orbital electron energy bands in insulators, semiconductors and metals. At absolute zero temperature, only the valency bands are occupied but electrons may cross the energy gap, at higher temperatures, to become available as charge carriers.
large positive temperature coefficient of resistance is formed. The approximate relationship between temperature and resistance for this device is;

$$
\begin{equation*}
R=R_{0} \cdot T^{S} \tag{2}
\end{equation*}
$$

where R_{0} is a constant with the dimension of resistance which varies from device to device, R is the resistance of the device, T is the absolute temperature, S is a constant, about 2.7 for p-type silicon and 2.5 for n-type. Rearrangement and differentation of equation (2) shows that the temperature coefficient of resistivity of the thermistor is equal to S / T. Therefore, at a room temperature of $300^{\circ} \mathrm{K}$ and assuming that the silicon is p-type, the temperature coefficient of resistance should have a value of about $0.9 \% / \mathrm{K}$. In practice a figure of about $0.72 \% / \mathrm{K}$ can be achieved.
Extrinsic silicon is not the only material that may be used in p.t.c. thermistors. Barium-titanate is commonly used and is capable of far greater changes in resistivity. The relationship between temperature and resistivity for barium-titantate is shown in Fig. 3. The

resistivity drops slowly and uniformly as the temperature is increased until a critical point (the Curie temperature) is reached and the resistivity sharply increases by a factor of between 10,000 and 100,000 . For the sample of BaTio_{3} represented in Fig. 3, the Curie temperature would be about $393^{\circ} \mathrm{K}$ and the transition from low to high resistance would occur over a range of a few deg Kelvin. This type of device is known as a switching thermistor and finds application in protection circuits. By adding other titanates, the switching temperature may be varied between about 170 and $490^{\circ} \mathrm{K}$ and the rate of change of resistance may be reduced to almost any desired level. Both silicon and barium-titanate based thermistors have non-linear temperature-resistance functions and are not generally suitable for thermometric use.

N.t.c. thermistors

If the resistivity of intrinsic (pure). semiconductor material is plotted about temperature, a graph such as Fig. 4 is obtained. Because the sample is pure, conduction is by means of electrons thermally excited into the conduction band and by the holes created in the valence band. The resistivity of the material, therefore, decreases with rising temperature. An approximate relationship between temperature and resistance for such a device is;

$$
\begin{equation*}
R=A \exp (B / T) \tag{3}
\end{equation*}
$$

where R is the resistance at temperature T, T is the absolute temperature, A is a constant for the device having the dimension of resistance. B is another constant for the particular device having the dimension of temperature. Rearrangement and differentiation shows that the temperature coefficient of resistance must be equal to $-B / T$ and this will usually lie between -2 and $-7 \% \mathrm{~K}$. Because the n.t.c. thermistor. relies on intrinsic conduction, the semiconductor materials used must have fairly small forbidden-energy gaps to be useful at moderate temperatures. The energy gaps of germanium and silicon are too wide, so oxide semiconductors are almost exclusively used. In fact, the explanation of the resistancetemperature dependence given above is an over-simplification. Conduction in oxide semiconductors is less well understood than in elemental types.
The relationship between temperature and resistance is very non-linear, which makes the n.t.c. thermistor useless for accurate thermometric work. However, some n.t.c. thermistors may be regarded as having approximately linear characteristics over very limited temperature ranges and fairly simple correction can be applied to produce a cheap thermometer which is accurate over a limited range of temperatures. In this connection, thermistors encapsulated in glass beads do have

Fig. 2. Resistivity versus temperature graph for extrinsic silicon.

Fig. 3. Resistivity versus temperature graph for barium titanate.

Fig. 4. Resistivity versus temperature for an intrinsic semiconductor material showing an approximate inverse-exponential curve.

Fig. 5. Approximate current versus voltage characteristic for an n.t.c. thermistor heated by its own power dissipation.
the advantage of a very small heat capacity.

Applications of n.t.c. thermistors include temperature compensation in transistor circuits and certain situations requiring non-linear resistance elements in which the thermistor is heated by its own power dissipation. The voltage-current characteristic for an n.t.c. device is shown in Fig. 5.

Thermocouples

If two different metals are joined together a voltage will appear between them known as the contact potential. This voltage will be very small and arises as follows. The free electrons available for conduction in a metal may be regarded as forming a gas which possesses a pressure, and permeates the metal's crystal lattice. Two different metals will have different gas pressures and when they are joined the difference in pressure will cause a net flow of electrons from one metal to the other. This momentary flow will cease when the effective force on each electron due to the pressure gradient is countered by an equal but opposite electrostatic force due to the resulting contact potential. The generated voltage will increase with temperature at a rate between zero and 60 microvolts per degree Kelvin and will be independent of the area of contact. A single metal to metal junction as described is called a thermocouple and several such junctions joined in series is called a thermopile.

The actual contact potential of a thermocouple is rarely specified because the difference between a particular thermocouple's voltage at a particular temperature and the voltage developed by an exactly similar one at some reference temperature (usually zero degrees Celcius) is of more practical importance. On this basis, Fig 6(a), (b) show the difference-voltages developed by several common types of thermocouples for two different temperature ranges. The exact mathematical relationship between temperature and voltage for a thermocouple is rather involved, but a good approximation is given by the quadratic function;

$$
\begin{equation*}
V=A \cdot T+B \cdot T^{2} \tag{4}
\end{equation*}
$$

where T is the difference in temperature between the variable and fixed thermocouples, V is the difference voltage developed between the variable and fixed-temperature couples, and A and B are constants for the particular thermocouple type and the particular reference temperature. Shown in Fig. $\overline{7}$. is a general graph, deduced from equation (4), of temperature against voitage for any thermocouple. The temperatures H and I are known respectively as the neutral and inversion temperatures of the thermocouple. This graph is, in fact, mainly of academic interest because many thermocouples (copper/iron being a notable exception)

(a)

(b)

Fig. 6(a)(b). Difference-voltages developed by several common types of thermocouples for two different temperature ranges.

Fig. 7. General temperature versus voltage graph for a thermocouple.
either melt or undergo some chemical change before reaching the neutral temperature. Because B in equation (4) is often small enough, in a practical thermocouple, the temperature-voltage relationship can be regarded as linear over its useful range. Metal pairs used in common thermocouples are, iron/constantan - useable below $1030^{\circ} \mathrm{K}$, sensitive and substantially linear. Copper/ constantan - useable below $670^{\circ} \mathrm{K}$, rather less linear and almost as sensitive as iron/constantan. Copper/iron substantially non-linear, neutral temperature about $510^{\circ} \mathrm{K}$. Platinum/platin-um-rhodium alloy - much less sensitive than iron or copper with constantan, stable and linear at low temperatures and useable up to about $1370^{\circ} \mathrm{K}$. The international temperature scale is defined between $903.16^{\circ} \mathrm{K}$ and $1336.16^{\circ} \mathrm{K}$ in terms of a platinum/pla-tinum-rhodium alloy thermocouple pair; one couple being maintained at $0^{\circ} \mathrm{C}$, the ratio of the concentrations of platinum and rhodium in the alloy being 9:1.
It is found that if several thermocou-ple-type junctions are connected in series and all held at the same temperature - see Fig. 8, the total voltage developed around the loop is zero. Using this principle, an arrangement such as Fig. 9(a) should act as a thermometer, giving a zero reading when the meter and the thermocouple are at the same temperature, and a steadily greater reading as the thermocouple temperature is raised above that of the meter. Such an arrangement is frequently used to measure the high temperatures of furnaces. This system has the disadvantage that the temperature corresponding to zero meter reading is the temperature of the meter itself and therefore varies with ambient temperature, slightly shifting the entire temperature scale as it does so. A circuit which overcomes these drawbacks is shown in Fig. 9(b), where two junctions between the connecting wires and the meter (or d.c. amplifier) are identical so the voltages they develop will be equal and opposite. The temperature of the sensing thermocouple (junction X) corresponding to zero meter reading will now be the reference temperature. The need for a reference temperature in the circuit of Fig 9 (b) could be a considerable drawback if a simple thermometer is needed. In a remote temperature measuring application it will be necessary to station the meter or recorder and associated circuitry some distance from the thermocouple.
To prevent unwanted varying voltages it would be ideal to make the whole run, from each thermocouple to the instruments, in wire of the same metals as the thermocouple. This could be expensive, especially if the thermocouples are of the platinum/pla-tinum-rhodium type, so an arrangement as shown in Fig. 10 may be used. This makes it possible for the whole run from each thermocouple to be made in

Fig. 8. Total voltage developed around a ring of thermocouples, all at the same temperature, is zero.

(a)

(b)
junction held at constant reterence temperature

Fig. 9 (a). Simple thermocouple thermometer and a superior arrangement (b) where a second thermocouple is held at a constant reference temperature.
 close to the sensing Junction x

Fig. 10. Remote temperature-sensing arrangement which permits the use of copper wire for connecting the sensing thermocouple to the measuring instruments.
copper wire and obviates the need for an extra thermocouple at a reference temperature because the two connec. tions between each pair of leads and the instruments are identical. The only additional requirement is that the two junctions created at each sensing point should be close enough to the main junction to be at the same temperature. A practical design for a thermocouple thermometer capable of remote mea-
surement at seven different points is given in reference 1 .

Pyrometers

The temperatures of bodies may be measured without physical contact by using an instrument called a total radiation pyrometer in which the heat and light radiation from an object is focused by a mirror onto a blackened thermocouple. The voltage developed by this thermocouple is compared with the voltage from an identical one at
ambient temperature. The temperature of the object is determined from the difference voltage. The amount of radiation emitted by a body depends upon its emissive properties as well as the temperature and if it is not a black-body (i.e. a perfect radiator and absorber) the temperature measured by the total radiation pyrometer will be lower than the true temperature. Correction tables are available for the emmissive properties of an object, but the error may still be considerable. Total

Fig. 11 (above). Outline of a d.c. chopper amplifier where channel 1 and 2 are fast switches which produce a square wave.
-Fig. 12(a)(b)(c)(d). Waveforms at points Q, S, S^{1} and U respectively in Fig. 11 where V_{1} is the input voltage and G is the gain of amplifier A.

radiation pyrometers also have a disadvantage compared with direct contact thermometers because they can only be used with fairly large objects.

Practical thermocouple circuits

The output from a thermocouple is in the order of $40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$ for a copper/ constantan couple. This makes a d.c. amplifier generally impracticable because the variations in thermocouple voltage would be swamped by the thermal drift of voltages within the amplifier. For this reason a d.c. chopper or synchronous amplifier is often used. The outline of such an amplifier is shown in Fig. 11 Ch. 1 is a fast switch which alternately connects point Q to the input voltage and ground for equal times. Thus, a square waveform such as that shown in Fig. 12(a) is produced at Q. This is a.c. coupled to amplifier A to produce a square-wave at S which is symmetrical about ground-Fig. 12(b). Ch2 is another chopper which alternately connects T to S^{1} and ground. By synchronızing Ch. 1 with Ch. 2 T is connected to S^{1} during positive half-cycles of the waveform at S^{1}, producing a waveform as shown in Fig. 12(c) at T . Resistor R and capacitor C act as a smoothing network to produce a d.c. output at U proportional to the input voltage at P. The actual amplification is performed on an a.c. signal to avoid thermal drift.
A m.o.s.f.e.t. switching circuit is snown in Fig. 13. Transistor Tr_{1} and Tr_{2} are enhancementımode m.o.s.f.e.t.s. being switched by the square-wave voltage. An operational amplifier is a.c. coupled to the choppers. The chopping frequency is not important and an arrangement similar to that shown uses a frequency of 300 Hz .

Correction for non-linearity

As shown in equation (4) and Fig. 7, all thermocouples have non-linear voltage temperature relationships, but for many applications the value of B in equation (4) is small enough, for them to be regarded as linear (B is about -0.02 for copper/iron and 0.04 for copper/constantan at $0^{\circ} \mathrm{C}$). However, in an accurate thermocouple thermometer which operates over a wide portion of its useful range, some form of nonlinear correction will be needed. There are many circuits capable of giving an adjustable non-linear response but they all depend on non-linear negative feedback to a d.c. amplifier. This technique is well described in reference 2.

References

1. "International Thermocouple Meter", Electronics Today International, December 1973.
2. "Experiments with Operational Amplifiers -6", Wireless World, November 1972.

Gunn effect and avalanche oscillators

The generation of microwaves using solid-state diodes

by F. A. Myers, B.Sc., Ph.D.

Alten Clark Research Centre, The Plessey Company Ltd

Abstract

Microwave solid-state oscillators have become well established in a new generation of electronic equipment. This article briefly discusses the operating principles of these oscillators and emphasizes the operational parameters that determine the choice of a device for a particular application.

Microwave solid-state oscillators have become well established in new generation electronic equipment, such as intruder alarms, man-pack radars, radar altimeters, distance measuring equipment etc. Gunn effect and avalanche diodes have played a major part in the development of these new systems and are replacing some of the older solidstate devices, such as multipliers, in many applications.

Gunn effect devices

It was established that when high electric fields are applied to a piece of gallium arsenide with ohmic contacts, a bulk negative resistance is produced which leads to the formation of a so-called high field domain. The domain propagates through the material at approximately the electron's velocity ($\approx 10^{7} \mathrm{cms} / \mathrm{sec}$) and gives rise to an oscillatory current through the device. If the device is placed in a suitable resonant circuit, microwave power can be extracted. Due to the high velocity of the electron, the active material lengths must be short in order to obtain useful power: the basic frequency is given by $f=$ electron velocity length. Practical limits vary from about 20 microns for a C-band (4 GHz) diode to 1.5 microns for a Q-band $(40 \mathrm{GHz})$ device. The high frequency limit is around 100 GHz and is caused by an inherent time delay which sets up the electron distribution required for negative resistance. Difficulties in material growth also set the limit at around 100 GHz .

The active layers involved (2-20 microns) are far too thin to be handled practically in the form of bulk crystals, i.e. by lapping down thicker crystals. This means that some form of epitaxial growth must be used on a highly conducting and almost metallic substrate which will form one contact and also provide the required mechanical

Fig. Ia
Fig. 1(a). Fabrication of a typical low power 20 mW c.w. device. Scanning electron microscope photograph of such a device is shown at (b).

Fig. $1 b$
strength. The process invented and used by Plessey, and now many others, is the arsenic trichloride vapour epitaxy process which allows good control of the material for carrier concentrations of 1 $\times 10^{15} / \mathrm{cc}$ and above. Briefly, a substrate $(n+)$ slice is very carefully lapped and polished to the required thickness and then a few microns of $n+$ gallium arsenide are grown epitaxially on this to mask remaining surface defects. The dopant in the gas stream is then reduced, in a continuous growth process, and the active layer of gallium arsenide is grown on to the so-called $n+$ buffer layer. The growth continues until the required thickness for the final device is obtanned. At this stage the fabrication techniques used by various manufacturers diverge. The older technique requires that the growth ceases at this point and the slice is taken out of the reactor for contact metallization. This technique, although it produces usable devices, is rather difficult to control and produces devices with more variable characteristics such as device life and noise output. The more modern technique involves a further epitaxial growth of a thin $n+$ contact layer on to the active layer. The slice is then taken from the reactor and metallized. Contacting to highly-doped gallium arsenide is a far easier and more controlled process and produces a high yield of devices with virtually identical characteristics.

Semiconductor photoresist and etching techniques are used to define individual devices on the slice, after which they are diamond scribed and cleaved from the crystal. Individual devices are then bonded into packages suitable for mounting in a microwave environment. A brief pictorial summary of the fabrication of a tvpical low power $(\approx 20 \mathrm{~mW})$ diode is shown in Fig. 1 . together with a scanning electron microscope photograph of such a
device. Low power devices are alloybonded thermally with the substrate against the package heat sink, and are limited to a few tens of milliwatts of power output. Higher output powers can be obtained by a technique known as flip chip ultrasonic bonding but both of these methods are now being phased out of production in favour of the much more reliable and efficient integral-heat-sink (i.h.s.) devices. This technique is virtually identical to that used for avalanche diodes and is described in that section.

If the formation of a domain in a Gunn effect device is suppressed by some means, usually by careful control of the material characteristics and the circuit, one is left with a classic two-terminal negative resistance device which will oscillate in the l.s.a. mode when placed in the correct circuit. Very high power levels and efficiencies are possible with this type of device. Unfortunately, because the device is very thick and heat sinking is difficult, practical devices will usually only oscillate in a pulsed mode with low duty cycles around 0.1%. Very high power levels, up to 1 kW peak, have been generated at X-band and this device is the nearest competitor to the microwave tubes. It is, however, proving a very difficult beast to tame and is not yet in large scale systems use due to both material difficulties in making the device and the circuit difficulties in using it. But it still remains one of the most promising of the solid state pulsed generators for high power and high efficiency.

Avalanche diodes

The avalanche diode differs from the Gunn device in that the basic mechanism arises from a junction effect. Because of this it is possible to make devices from virtually any semiconductor although silicon and gallium arsenide are the more commonly used.
In the device the junction (either p-n or Schottky) is reverse biased into the breakdown region and the combination of the build up time of the resulting avalanche current and the drift of carriers across the depletion region gives rise to a phase delay between the current and voltage. This can result in negative resistance and hence oscillation in a suitable circuit. The maximum frequency limit of the avalanche device is determined by electron tunnelling. When the voltage breakdown is around 2 V , the carriers cannot gain sufficient energy for ionisation and no negative resistance occurs which sets an upper frequency limit in excess of 300 GHz . This mode of operation is commonly given the name IMPATT (impact avalanché transit time), or, more simply, the avalanche mode.
The main requirement of any technique for constructing avalanche diode generators is that it provides a structure from which heat can be efficiently

individual diode produced by cutting through gold pad
Fig. 2. Integral heat sink fabrication for an IMPATT diode. The active region of the device is adjacent to the metal heat sink for good thermal conductivity.

Fig. 3. Final packages for an IMPATT diode. These packages are similar for Gunn devices.

Fig. 4. Idealized plot of power output versus output frequency. The position of the $1 / f^{2}$ line is controlled by the material properties of the semiconductor used.
removed. A process frequently used, known as the integral heat sink process, involves the deposition of a thick metal heat sink layer directly on the surface of the semiconductor slice. The junction is either a very shallow diffused p-n junction or a Schottky barrier. In either case the active region is adjacent to the metal heat sink which has a high thermal conductivity such as gold, copper or silver. Subsequent steps in the process include thinning the semiconductor slice from the back surface by mechanical or chemical polishing followed by photoengraving and chemical etching to define and isolate individual mesa diodes. The process and final diode structure is illustrated in Fig. 2. The integral heat sink is finally cut into square dice each supporting one diode chip. The dice are then bonded individually into conventional copper based microwave packages. The quality of the bond is important for high power operation and techniques such as thermocompression, and alloy or ultrasonic bonding have all been successfully applied. The final packaged diode configuration is shown in Fig. 3. These packages are similar for Gunn devices.

TRAPATT device

In 1967 a second mode of oscillation was discovered. This new mode remained unexplained for some time and was initially referred to as the anomalous mode. The principal characteristic features of this mode were a very high conversion efficiency of up to 60%, and low frequency of operation. The mechanism giving rise to this mode was later identified by computer simulation techniques and showed that a new transient breakdown phenomenon was involved. This breakdown occurs when the voltage is applied very rapidly to the diode. Because there is an inherent delay in the build up of an avalanche current, it is possible to overdrive the field, if applied sufficiently rapidly, and create a dense hole-electron plasma. The space charge of the carriers reduces the electric field to almost zero in the plasma region and the velocity of the carriers drops accordingly. This state, in which the diode is filled with plasma and the voltage has collapsed to a low value, is referred to as a trapped plasma state. The diode then recovers gradually as the holes and electrons drift slowly out of the active region thereby restoring the field and voltage to their initial level. This has been called the TRAPATT (trapped plasma avalanche triggered transit) mode.

Comparison of applications

At the highest frequencies the modes of oscillation in Gunn effect and avalanche devices are transit-time limited and are subject to a general power-frequency limitation in which the relative output power decreases as $1 / f^{2}$. The absolute level of output power is controlled by the conversion efficiency and the minimum impedance level

Fig. 5. Limiting plots of power versus frequency for (a) c.w. and (b) pulsed generation using current techniques and devices.
attainable in a microwave circuit. At lower frequencies, the devices are thermal-dissipation limited and become subject to a $1 / f$ law relating relative output power to frequency. Shown in Fig. 4. is an idealised plot of power output versus frequency. The full line represents the output power limit for
continuous wave operation, and the shaded area represents a region in which devices can be operated for very short duty ratios under pulsed operation. Whilst the position of the $1 / f^{2}$ line is controlled by the material properties of the semiconductor used, the position of the $1 / f$ line is set by the device's thermal resistance. Fig. 5(a) and (b) shows how actual results are aligned with these simple theoretical laws. In practice, the efficiency is about 10% for Si IMPATTs and 15% for GaAs IMPATTs. The corresponding figure for Gunn devices varies between 3% and 12% depending on whether the results are "state of the art" or readily reproducible. The TRAPATT efficiency is much higher, up to 60% at low frequencies (around 1 GHz) and dropping to 25% at 10 GHz (X-band). Because the carriers spend a considerable fraction of each TRAPATT cycle travelling at their low field drift velocities, one would expect an upper frequency limit well below the IMPATT frequency limit. In practice, difficulties in the control of necessary circuit harmonics will restrict the TRAPATT oscillator to frequencies around X-band for the near future.

It can be seen from the power levels in Fig. 5. that these diodes cannot compete with existing vacuum devices, such as klystrons and magnetrons, which can generate power outputs from milliwatts up to megawatts. Solid-state devices have therefore tended to generate completely new applications which previously could not be satisfied by
existing tubes because of size, reliability and power supply limitations. An attempt has been made to summarize the spectrum of applications in the microwave region from 1 to 100 GHz in Fig. 6. The majority of systems lying within the region of solid-state devices are completely new. The possibility of some of these was appreciated before the advent of solid-state devices, but they were considered impracticable.
The decision on which class of solidstate source to use in a given application is usually based on the first-order considerations of output power required for the frequency of the system. Second-order factors may be considered with respect to conversion efficiency, noise and drive requirements.
The table over summarizes present views on preferred devices in a range of applications.

In addition, these devices can all be used as amplifiers but discussion on these is beyond the scope of this article.
The TRAPATT oscillator is best suited to high power pulsed applications such as radar transmitters. In this type of application it is in competition, up to X-band, with the high power pulsed modes of the Gunn and l.s.a. oscillator which can provide higher peak powers at a lower duty cycle. The specific advantage of the TRAPATT diode is its efficiency which becomes increasingly significant when very high power sources are required. Combinations of

Application	Preferred device (advantages)
High pulsed power e.g. radar (primary \& secondary)	Pulsed Gunn, I.s.a. (high peak power) TRAPATT (high efficiency)
Low power c.w. $(<100 \mathrm{~mW}$) e.g. local oscillators intruder alarms	Either IMPATT or Gunn diode in many cases. Gunn diode has the advantage of lower noise and lower operating voltage
Medium power c.w. e.g. communication links ($\approx 1 \mathrm{~W}$)	Either IMPATT or Gunn diode. IMPATT preferred for higher power and high efficiency, Gunn device for lower noise
High frequency applications ($>40 \mathrm{GHz}$) e.g. communication links, parametric amplifier pumps, etc.	IMPATT for high power and high frequency. Gunn diode when the noise performance is more important than high power for frequencies up to 60 GHz

these sources can be used where high powers are required, and the diode is well suited to phased array combinations because it cañ be operated in an amplifier mode. In this configuration the radar beam can be steered electronically by varying the phase of each element in the arrav.
The pulsed Gunn-effect device is particularly suited to applications requiring very short pulses, down to ins duration, and operates up to much higher frequencies than the TRAPATT. It is undergoing increasing exploitation in the field of miniature radars for both military and civil applications where its simplicity of use is a great advantage.
The IMPATT oscillator is generally preferred to the Gunn diode in c.w. applications requiring high power and/ or high efficiency. Examples of these are free-space microwave communication links and trunk waveguide communications at millimetre wave frequencies. At frequencies above about 70 GHz the IMPATT diode is the only solid state microwave source available and is finding applications as pump sources in parametric amplifiers, high frequency communication systems and high definition radar and imaging systems.
The principal disadvantages of the IMPATT in comparison with the Gunn diode are the noise performance and the high bias voltage. The IMPATT and TRAPATT diodes are fundamentally noisier than the Gunn diode and this precludes their use for certain applications. The noise originates in the avalanche multiplication process which produces a jitter in the current pulse from cycle to cycle under large signal conditions. Cavity control is not sufficient to completely overcome this problem. At a given frequency, the bias voltage on the c.w. Gunn diode is considerably less than the bias required on an IMPATT oscillator and this favours the Gunn diode in airborne or other similar applications where power supply voltages are limited. The table below lists some of the current applications for solid state devices. In principle, any of the devices (both
pulsed and c.w.) can be used for these systems but the Gunn effect device has found the widest use. Of these systems, the intruder alarm has made by far the biggest impact to date and is discussed below.

Intruder alarms

If an object moves in a microwave beam, a small amount of Doppler shifted radiation will be reflected from it. This Doppler shift can be detected, amplified and used to trigger an alarm. Several requirements dictate the features of the final system. To obtain a high Doppler signal the carrier frequency should be as high as possible, consistent with allocated frequencies. Two of the bands in use in Britain are at $10.687 \mathrm{GHz} \pm 12.5$ MHz and $13.7 \mathrm{GHz} \pm 300 \mathrm{MHz}$. Overseas, other frequencies around the X -band region are in use. For an X-band system,

Doppler frequencies of interest, generated by an intruder, usually lie in the region of 10 to 100 Hz . For instance, a man moving at $3 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. will generate a Doppler frequency of about 90 Hz , as given by the formula $f=2 \times$ velocity of the target \times frequency of radiation/ velocity of light. Some of the requirements on the transmitter for such a system are therefore:

1. The device must operate in the X - or J -band region generating perhaps $10-20 \mathrm{~mW}$ - usually adequate for most applications with ranges up to about 100 m .
2. The noise output must be as low as possible because this determines the safety factor in the system and hence the false alarm rate - a very important parameter as these systems are often linked by telephone to a police station or central monitoring point.
3. The devices must be long-lived.
4. The devices must be stable with regard to environmental changes such as temperature.
5. The device must be as low cost as possible consistent with the above and capable of giving reproducible performance for large quantities of devices.

A Gunn device mounted in a welldesigned waveguide cavity satisfies all of these requirements. Other types of resonant circuit may be used e.g. two potentially attractive systems are Gunn devices mounted in either microstrip circuits or lumped circuits. These are extremely competitive with regard to size and perhaps cost but cannot compare with a waveguide cavity with respect to noise output and stability. This is a direct result of the low Q-factor of these systems compared with waveguides. A typical waveguide cavity could be expected to have a loaded Q-factor of around 500 whereas the corresponding figure for a microstrip circuit would be around 20 . These systems would thus seem suitable for very short range intruder alarms or some other system not requiring particularly good electrical performance.

Some means must be used to detect the reflected microwave signal. The most sensitive method is to use a separate detector diode mounted in a separate cavity. A small amount of non-shifted signal is fed into the detector and this is mixed with the reflected signal to produce the Doppler signal. An amplifier of modest gain $(10,000)$ is then used to give reasonable signal levels after which some form of signal processing circuit is used to reduce false alarm rates by making the system less susceptible to triggering from spurious objects such as flapping curtains, falling leaves, etc. A diagram of such a system is shown in Fig. 7.

A system with somewhat reduced performance, but which is simpler and cheaper, utilises the Gunn device itself as the detector element. This is done by inserting a reasonably large resistor between the Gunn diode and the

Fig. 7(a). Gunn diode intruder alarm system using a separate detector. (b) Typical transmit/receive module- normally used for ranges from 10 to 100 m .

diode characteristic

Fig. 8. Self-oscillating mixer alarm system. Due to a higher noise level and small signal from a moving object the circuit is only suitable for up to 10 m .

Fig. 9. (Signal + noise) / noise versus . range of a self-oscillating mixer system and a separate-detector type using a man as the target, and the circuits used to obtain the range data.
constant voltage power supply. Any reflected signals modify the r.f fields in the cavity and modulate the current through the diode at the Doppler frequency. Because of the series resistor this is detected as a voltage fluctuation at the diode terminals. There are several requirements for such a self-mixing system:

1. The cavity Q-factor must be high tq produce a large r.f. field across the diode from the reflected signals, and therefore modulate the current.
2. The Gunn device must have a large differential negative current voltage. characteristic as this parameter determines the output.
3. The system noise is now determined by current fluctuations through the diode which must be minimised.

A waveguide cavity satisfies the first point and the $\mathrm{n}+$ contact Gunn diode scores over the metal contact diode for the second and third points. A diagram of such a self-oscillating mixer system is shown in Fig. 8. The electronic circuitry is virtually identical to the first system, but has a somewhat higher noise level and produces a smaller signal from a given object. It is therefore, usable only for fairly short range systems of up to 10 m , depending upon the antenna used. Shown in Fig. 9. is the (signal + noise)/noise output from the two types of system described as a function of range, using a man (radar cross section $\approx 0.5 \mathrm{~m}^{2}$) as the target. The signal processing circuit can be as complex as the system allows; The circuit will usually include a notch filter to overcome problems of interference from fluorescent lights, and some form of pulse counting circuit so that several cycles of Doppler signal must be detected before an alarm is generated. This will reduce false alarms caused by spuriously generated signals of short duration. More sophisticated alarms use pattern recognition techniques so that they only respond to the characteristic return signal from a man. Intruder alarms using the microwave principles detailed above have been produced commercially in the U.K. since about 1968 and have now reached a very high level of manufacture. In Europe and the U.S.A. the commercial exploitation is roughly equivalent to that in the U.K. about two years ago.

Small radars utilising Gunn devices

The situation with pulsed Gunn devices is similar to that of c.w. devices - new applications rather than replacing existing devices - as the power levels are limited to a few tens of watts peak. Powers of around 100 W peak cản be obtained by combining several devices. A typical pulsed Gunn application is in the field of small radars, either for battlefield surveillance and patrol duties, or for small marine radars. Typical ranges are usually around $2-5 \mathrm{~km}$. A diagram of one type of microwave system in use in such a
radar is shown in Fig. 10. The pulsed Gunn device is usually mounted in a waveguide cavity, the local oscillator device usually in a coaxial cavity incorporating a varactor diode which enables the frequency to be controlled electronically. This is used to maintain a constant i.f. over all operating conditions which reduces the bandwidth limitation on the i.f. amplifier. A complete radar system can be made small enough to be held and used in one hand. The information obtained by the radar may be given in the form of an audio tone, supplemented by a visual range indication. A photograph of a unit developed by the Royal Radar Establishment is shown in Fig. 11. In the case of marine radar the information may be displayed on a conventional cathode ray tube.
To date, the pulse devices are not in as common use as c.w. devices and most systems using them are of military origin. The potential market is immense, for instance, if a radar with the advantages of simplicity, small size and reliability could be made for a reasonable cost, the market could be in excess of 100,000 units. To a large extent the pulsed devices are analogues to the laser - a solution in search of a problem.

Acknowledgement

The author would like to thank Mr G. Gibbons, of the Allen Clark Research Centre, for his invaluable help in preparing this manuscript, and the directors of the Plessey Company Limited for permission to publish the article. .

Further reading

1. Transferred Electron Devices by P. J.' Bulman, G. S. Hobson and B. C. Taylor. Academic Press 1972.
2. M. W. Hosking. Realm of microwaves 7Solid state oscillators, Wireless World February 1973.

Fig. 11. Small portable radar torch (SPRAT) in use. Photograph by courtesy of the Royal Radar Establishment who developed the unit.
3. Avalanche Diode Microwave Oscillators by G. Gibbons. Clarendon Press 1973.
4. R. L. Johnston, B. C. DeLoach and G. B. Cohen A silicon diode microwave oscillator. Bell Syst. Tech. J., vol. 44, February 1965, pp. 369-372.
5. W. T. Read. A proposed high frequency negative resistance diode. Bell Syst. Tech. J., vol. 37, March 1958, pp. 401-446.
6. H. J Prager. K. K N Chang and S. Weisbrod. High-power high efficiency silicon. avalanche diodes at ultra high frequencies, Proc. IEEE (Lett) vol. 55, April 1967, pp. 586-587.
7. R. L. Johnston, D. L. Scharfetter and D. J. Bartelink. High-efficiency oscillations in germanium avalanche diodes below the transit time frequency. Proc. IEEE (Lett) vol. 56 September 1968, pp. 1611-1613.

HF predictions

The pattern of magnetic activity is now rather erratic and it is no longer possible to predict disturbed periods one or two months ahead with any confidence. From February 1974 until April 1975 there were two groups of days which were disturbed every solar rotation (27 days). That pattern continued until November 1975 but with the number of disturbed days in each group becoming fewer and fewer. Since August 1975 a new group has built up and its recurrence dates are around January 23 and February 19. Comparison with previous sunspot minimum periods suggests however that this new group will not persist and more notably that the next two years will have a minimum of magnetic and ionospheric disturbances.

${ }^{9}$ Phone-in

 Programme

When you can reach them. And theycan reach you. Any time.You've got a Dymar system.

> Computer controlled VHF radiotelephone network. Sounds great. The coming thing. At Dymar it's come! And that's the Dymar difference
> Dymar designs systems that take all the local conditions intc account Terrain Geographical distribution of the labour and the customers available to the user. Emergency situation control Channel congestion The lot.
> Dymar does it with common frequency coverage using quasisynchronous transmitters With a CCIR compatible selective calling system. With automatic signal level selection. With computer control of signal routing.
> Tomorrow's systems today. It's what you'd expect from a company 100% devoted to the rad iotelephone business.... and nothing else.
> Discover the Dymar diference. Make contacting Dymar par. of today's programme

DTMTAS

the name in radiotelephone systems
Dymar Electronics Limterd Colonal Way Radlett Road. Wattord.
Herts WD2 4LA Tel Wattord 37321 Telex 923035
Cables Dyrur We Hord

The Sinclair DM2 Multimeter:
 Comprehensive. Accurate. Portable. And really rugged. Yet only $£ 59$.
 (PLUS VAT)

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with $0 \cdot 1 \%$ metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.
The instrument reads to +1999 and has a basic accuracy on the 1 V DC range of $0.3 \% \neq 1$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.
The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything - except price!

Features of the Sinclair DM2

5 functions giving 22 ranges DC volts -1 mV to 1000 V AC volts -1 mV to 500 V DC current - $0.1 \mu \mathrm{~A}$ to 1 A $A C$ current $-1 \mu A$ to $1 A$ Resistance $-1!2$ to $20 \mathrm{M}!2$ Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives a quick, clear reading.
$3 \frac{1}{2}$ digit display
Display reads from 000 to 1999.
Overload indicator.
Protected
Separate fuses for current and resistance circuits.

Accurate

Dual slope integration. High stability.

Rugged construction
Tough metal casing takes the roughest treatment -- try standing on it!
Two power sources
Supplied with a 9 V battery, giving 60 -hour typical life. Mains adaptor also available.

Portable

Weighs only 3.5 lb approx,
including battery.
Measures only 2 in $\times 9$ in $\times 6$ in approx.
Optional extras
Mains adaptor - £3.19 inc VAT.
Carrying case - $£ 5.40$ inc VAT.
12-month no-quibble
guarantee

Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case -it's always ready for use.

All you need to use the DM2 . . . anywhere. Mains adaptor... carrying case ... multimeter... you're ready for quick. efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with the coupion below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to get details
of prices on 5 or more instruments.
Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon,
Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
VAT Registration No: 213817088.

The Sinclair DM2 Multimeter: full technical story

DC Volts Range	Accuracy	Input Impedance	Resolution
1 V	0.3\% : 1 Digit	$>100 \mathrm{MSL}$	1 mV
10 V	0.5\% : 1 ,	10 MS	10 mV
100 V	0.5\% - 1	10 MS ?	100 mV
1000 V	0.5\% . 1	10 Mss	1 V
Maximum overload - 350 V on 1 V range$1000 \mathrm{~V} \text { on allother ranges. }$			
ACVolts A Prequency			
Range	Accuracy	Input Impedance	Frequency Range
1 V	1.0\% + 2 Digits	$10 \mathrm{Ms} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
10 V	1.0\% 2 ,	$10 \mathrm{MS} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
100 V	$2 \cdot 0 \%+2$,	$10 \mathrm{Ms} 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-200 \mathrm{~Hz}$
1000 V	2.0\%:2	$10 \mathrm{M} \mathrm{S} / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-200 \mathrm{~Hz}$
500 V onallotherranges.			
DC Curren		Input	
Range	Accuracy	Impedance	Resolution
100 mA	2.0\% : 1 Digit	10 Ks 2	100 nA
1 mA	0.8\% - 1 ,	1 Ks 2	$1 \mathrm{\mu} \mathrm{~A}$
10 mA	0.8\% 11 .,	100s2	$10 \mu \mathrm{~A}$
100 mA	0.8\% : 1	$10 \leq 2$	$100 \mu \mathrm{~A}$
1000 mA	2.0\% 1 .,	1 s 2	1 mA
Maximum overload-1A (fused).			
AC Current			
Range	Accuracy	Frequency Range	
1 mA	1.5\% : 2 Digits	$20 \mathrm{~Hz}-3 \mathrm{KHz}$	
10 mA	1-5\% : 2 ,	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
100 mA	1.5\% $\mathrm{L}^{\text {2 }}$.	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
1000 mA	$2 \cdot 0 \%+2$	$20 \mathrm{~Hz}-500 \mathrm{~Hz}$	
Maximumoverload - 1A (fused).			
Resistance			
Range	Accuracy	Measuring Current	
$1 \mathrm{~K} \Omega$	1.0\% ! 1 Digit	1 mA	
10 K 12	1.0\% + 1.	$100 \mathrm{\mu A}$	
100 Ks 2	1.0\% : 1	$10 \mu \mathrm{~A}$	
1000 Ks 2	$1 \cdot 0 \%=1$	$1 \sim \mathrm{~A}$	
10 Ms	2.0\% - 1 ,	100 nA	
Overload protection-50mA (fused).			

Readers outside the UK, please write for details of your local distributor to: Sinclair Equipment International Ltd, 33 Beauchamp Place, London SW1 1 NU.

DM6

How B\&W pioneered the measurement of phàse/impulse response

These measurements and oscillograms are, as far as we know, the first to be published anywhere in the world. They relate to two vital aspects of loudspeaker performance that have not been previously assessed: phase response and impulse response.
This breakthrough is a result of a major investment by B\&W in entirely new measuring techniques and instruments in an area where accurate quantifications were previously thought to be prohibitively complex.
It is well known that 'square' or impulse waves are made up of a fundamental sine wave plus a harmonic series. Equally well-known is the fact that the amplitude of these harmonics must not only be correct but must also arrive in the correct phase or time if the desired wave shape is to be reproduced. It is this correction for phase or time in the design of the units, the crossover network and the physical placement of the units which enables the DM6 dramatically to improve the square or impulse waveform performance as set out below.
The 'third octave' room measurement is yet another meaningful method in assessing how well the balance of the DM6 conforms to the idealized curve shown.

Full range electrostatic

Normal 3-way dynamic system.

Impulse response of DM6.

Mid-frequency Squarewave

50μ s pulse at 5 ms interval.

50μ s puise at 10 ms interval.

1/srd Octave room response of system and optimum characteristic (from recommendation of "Relevant Hi-Fi Test at Home," Henning Meller, B\&K Application Note 14-114)

Phase Response on-axis at 3 metres.

L. F. Contour Control Operating in listening environment.

Contour Control operating between 500 Hz and 5 kHz .

H.F.Energy Control operating at frequencies above 5 kHz

New B\&W DM6

Now it can be told

It took a three year development programme and a major breakthrough to produce Britain's first linear phase dynamic speaker system.

B\&W DM6 is the result - a system reproducing sound with transient accuracy usually achieved by only the best electrostatic designs.

DM6 incorporates three entirely new drive units developed at the B \& W factory.
The bass unit achieves a level of performance that would normally be associated with a cabinet of much larger capacity than DM6's 51 litres.

The midrange unit employs totally new technology and materials. The cone assembly consists of a matrix of aromatic polyamide fibres formed and impregnated with critical quantities of PVA (patents applied for) and shows significant improvements in transient and conventional measurements.

A new high frequency transducer also shows improvements equivalent to those achieved in the midrange unit and linearly extends frequency response to 40 kHz .

All three units are integrated into a linear phase system by mounting in a stepped arrangement, after skilful shaping of the front baffle to allow for the different arrival times of the various components. And when a series of linear impedence first order filter configurations are introduced, new levels of linear phase and amplitude characteristics are achieved.

The cabinet is constructed to similar exact ing standards and the complete system visually matched by one of this country's leading industrial designers. All DM6 loudspeaker systems carry a five year guarantee.

If you want to see and hear the new DM6, contact your B\&W authorised dealer. Or drop a line to us and we'll send you detailed literature.

Electronic circuit calculations simplified

7 - Active devices

by S. W. Amos, B.Sc., M.I.E.E.

Previous articles in this series have been devoted chiefly to calculations on inductors, capacitors and resistors and on combinations of these. Transistors and valves have been mentioned but the emphasis has been on methods of calculating the values of L, C and R necessary to give the required circuit performance. This article is devoted to calculations on the performance of the active devices themselves.

There are three main types of active device: the thermionic valve, the bipolar transistor and the field-effect transistor. Many of the properties of the f.e.t. are similar to those of the valve and it is possible to regard the f.e.t. as a valve without a filament or heater. Indeed f.e.ts are now being manufactured with characteristics very similar to those of certain valves so that these f.e.ts can be used as direct replacements for valves in old equipments: such f.e.ts are termed fetrons. Thus we are concerned only with two types of active device: the bipolar transistor and the f.e.t. We will deal with them in that order.

Basic common-emitter amplifier. Consider the simple common-emitter amplifier shown in Fig 1. The calculation of values of R_{c} suitable for a current output and a voltage output were given in Part 1: if the supply voltage is 9 and the mean collector current $1 \mathrm{~mA}, \mathrm{R}_{\mathrm{c}}$ can be 8 kilohms for a current output and 4 kilohms for a voltage output. The problem is to calculate a suitable value for R_{b}. If β is the common-emitter current amplification factor ($h_{f e}$), then the mean value of the base current I_{b} is I_{c} / β. If β is 100 then I_{b} is $10 \mu \mathrm{~A}$. If the transistor is a silicon type there is a drop of 0.7 V across the base-emitter junction and the voltage across R_{b} is therefore 8.3. Thus from Ohm's law:

$$
\mathrm{R}_{\mathrm{b}}=\frac{8.3}{10 \times 10^{-6}}=830 \text { kilohms }
$$

The calculation of a suitable value for C_{b} is dealt with in Part 5.
Bipolar transistors are inherently current-operated devices i.e. the curve relating collector current with base current is almost linear. Thus the amplifier of Fig. 1 would give a satis-

Fig. 1. Basic common-emitter amplifier. This circuit (and Fig. 2) have a number of serious disadvantages discussed in the text.

Fig. 2. The inclusion of the series resistor R_{s} enables the basic circuit to be used with a voltage input.
factory performance for a current input. Provided R_{c} is large compared with the external load most of the signal-frequency collector current enters the external load and the current gain of the amplifier is only slightly less than β.

If, however, the performance of the circuit of Fig. 1 is measured with respect to the voltage applied between base and emitter, it is far from satisfactory: in fact the input-output characteristic is exponential in shape. The voltage gain is given by

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}}=g_{m} \mathrm{R}_{\mathrm{c}} \tag{1}
\end{equation*}
$$

The mutual conductance, g_{m}, of a bipolar transistor is generally much greater than that of a valve or f.e.t. and therefore permits very high values of voltage gain. For a bipolar transistor g_{m} is approximately $40 \mathrm{~mA} / \mathrm{V}$ for every milliampère ' of collector current. Thus if the mean collector current is $1 \mathrm{~mA}, g_{m}$ is $40 \mathrm{~mA} / \mathrm{V}$ and if R_{c} is 5
kilohms, the voltage gain is given by

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=40 \times 10^{-3} \times 5 \times 10^{3}=200
$$

This high gain is, however, accompanled by such poor linearity that the amplifier is unlikely to be used in practice except for signals of very small amplitude. The non-linearity is due to the variations in input resistance with input-signal amplitude and can be reduced by using a series resistor R_{s} (Fig. 2) large compared with the average value of input resistance so that input-resistance variations are swamped. For 1 mA mean collector current an average value of input resistance is 2 kilohms so that a suitable value for R_{s} is 20 kilohms. The input current is now given approximately by $v_{\text {in }} / R_{\mathrm{s}}$ and is magnified β times in the transistor, giving an output current of $\beta \nu_{i n} / R_{s}$ and an output voltage of $\beta v_{i n} R_{\mathrm{c}} / \mathrm{R}_{5}$. Thus the voltage gain for the circuit of Fig. 2 is given by

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\beta \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{s}}} \tag{2}
\end{equation*}
$$

For the typical practical values $\beta=100$, $\mathrm{R}_{\mathrm{c}}=5$ kilohms and $\mathrm{R}_{\mathrm{s}}=20$ kilohms

$$
\frac{v_{\text {out }}}{v_{\text {tn }}}=\frac{100 \times 5}{20}=25
$$

a more modest gain but, of course, with a reasonable degree of linearity. It is significant that this gain and current gain of the circuit of Fig. 1 are both directly proportional to β.
Disadvantages of the basic amplifier. In practical versions of the circuits of Figs. 1 and 2 it is generally necessary to use a preset resistor for R_{b} and to adjust it empirically to give the required mean value of collector current. This is because the precise value of β is unlikely to be known. There is normally a tolerance of $\pm 50 \%$ on the average value quoted by the manufacturer and therefore, for a nominal β of 100 , values as low as 50 and as high as 150 are possible. This is a ratio of $3: 1$ and thus the value of R_{b} can also lie within a resistance range of $3: 1 . \beta$ also measures the gain of the circuit and this, too, can have any
value within a range of $3: 1$. A third disadvantage of this basic circuit is that it has no means of stabilising the mean collector current. Thus the current could increase (for example as a result of a rise in temperature) and, for a germanium transistor, the increase could be sufficient to prevent normal operation of the circuit. Although it is possible to obtain a satisfactory performance from individual examples of the circuits of Figs. 1 and 2, these circuits are quite unsuitable where a number of amplifiers with similar performance are required. For mass production it is essential to have a circuit which will give a desired value of mean collector current, within a small tolerance, in spite of variations in β due to manufacturing spreads or due to temperature variations: this is known as d.c. stabilisation of the operating point. It is equally essential, of course, that all circuits should give the same signalfrequency performance in spite of manufacturing spreads and temperature variations. These two requirements are achieved by the use of negative feedback: a d.c. negative feedback circuit ensures that the mean collector current is determined by the values of passive components within the feedback loop and is thus independent of the transistor parameters. An a.c. negative feedback circuit similarly ensures that the gain and other aspects of the signal-frequency performance are also determined by passive components within a such a loop. Negative feedback has other advantages: for example it reduces distortion, so linearising the input-output characteristic and it makes possible desired values of input or output resistance. We shall now examine the negative feedback circuits commonly used and will show how d.c. stability and signal-frequency performance are related to the constants of the feedback loop.
D.c. stability. D.c. stability is ensured by using a negative feedback circuit in which any change in mean collector current produces a correcting change in base current. The collector current is passed through a resistor and the voltage generated across this is used as the source of base bias. Two commonlyused circuits are shown in Fig. 3. In (a) I_{c} flows through R_{c} and the voltage across R_{c} is used to drive current, through R_{b}, to the base. This is another way of saying that I_{c} splits at the junction of R_{c} and R_{b} : the current so fed back to the base is given by $I_{c} R_{c} /\left(R_{c}+R_{b}\right)$.
Let us attribute unwanted variations in I_{c} to a fictitious external input to the base of the transistor. This is a useful assumption because from it we can deduce that the factor by which negative feedback reduces unwanted variations in I_{c} is also the factor by which the d.c. gain of the transistor is reduced. This factor can easily be assessed as follows.

Fig. 3. Two fundamental methods of applying negative feedback to a bipolar transistor.

Fig. 4. Fig. 3 (b) redrawn to show its similarity to Fig. 3 (a).

Fig. 5. Method of d.c. stabilising a transistor by a potential divider and emitter resistor.

Fig. 6. Stabilising circuit based on a combination of the circuits of Figs. 3 (a) and (b).

In the absence of feedback a base current I_{b} gives rise to a collector current βI_{b}. The feedback current, as just shown, is a fraction of this and is given by $\beta I_{b} R_{c} /\left(R_{c}+R_{b}\right)$. As a result of this feedback the input current now required to give the same output current as before feedback was applied is given by

$$
I_{b}+\beta I_{b} R_{c} /\left(R_{c}+R_{b}\right)
$$

Formerly the input current was simply I_{b}. Thus the factor by which the d.c. gain of the transistor is reduced by feedback is

$$
\frac{1}{1+\beta R_{c} /\left(R_{c}+R_{b}\right)}
$$

and this is a direct measure of the factor by which variations in mean collector current are reduced by feedback. We can call this fraction the stability factor. Thus

$$
\text { stability factor }=\frac{1}{1+\beta R_{c} /\left(R_{c}+R_{b}\right)}
$$

Often R_{b} is large compared with R_{c} and we can say

$$
\text { stability factor }=\frac{1}{1+\beta R_{c} / R_{b}}
$$

The smaller the value of this fraction, the better is the d.c. stability of the circuit. For good stability $\beta R_{c} / R_{b}$ must be large compared with unity and the stability factor is then given approximately by the simple expression

$$
\begin{equation*}
\text { stability factor }=\frac{R_{b}}{\beta R_{c}} \tag{4}
\end{equation*}
$$

At first sight the circuit of Fig. 3(b) appears quite different from that of Fig. 3 (a). But if we redraw Fig. 3 (b) as in Fig. 4 we can see that the only way in which it differs from Fig. 3 (a) is in the position of the battery and as the battery is assumed to have negligible d.c. resistance this can have no effect on the behaviour of the circuit. Thus for the same values of R_{b} and provided R_{e} equals R_{c}, the two circuits of Fig. 3 have identical stability factors.

Practical circuits are usually based on Fig. 3 (b). There is usually little freedom in choosing a value for R_{e} because this is limited by the need to ensure a reasonable value of emitter current. Thus to achieve good stability R_{b} must be kept small. In practice the base of the transistor is often connected to a potential divider $R_{1} R_{2}$ as shown in Fig. 5 and R_{b} is then equal to the resistance of R_{1} and R_{2} in parallel. R_{1} and R_{2} are thus made as small as possible consistent with a reasonable drain current from the supply. The calculation of suitable values for R_{1} and R_{2} is given in Part 1 where one of the numerical examples has the following values:
$\mathrm{R}_{\mathrm{I}}=82$ kilohms;
$\mathrm{R}_{\mathrm{e}}=2.3$ kilohms.

For this example the parallel resistance of R_{1} and R_{2} is 22 kilohms and substitution of this and $\beta=100 \mathrm{in}$ expression (4) gives

$$
\begin{aligned}
\text { stability factor } & =\frac{R_{b}}{\beta R_{c}}=\frac{22}{100 \times 2.3} \\
& =\frac{1}{10} \text { approximately }
\end{aligned}
$$

showing that variations in mean collector current are reduced to $1 / 10$ th of their unstabilised value e.g. a 50% increase in mean current is held, by this circuit, to 5%, a worthwhile improvement in stability.
Better d.c. stability can be achieved by combining the circuits of Figs. 3 (a) and (b). An example of such a combined circuit is given in Fig. 6 in which the base resistors are replaced by a potential divider $R_{1} R_{2}$ fed from the collector (not from the supply rail as in Fig. 5). High stability is possible from this circuit because both R_{c} and R_{e} contribute towards the stabilising process and the stability factor is therefore given by

$$
\begin{equation*}
\text { stability factor }=\frac{\mathrm{R}_{\mathrm{b}}^{\prime}}{\beta \mathrm{R}_{\mathrm{c}}^{\prime}} \tag{5}
\end{equation*}
$$

where
$R_{b}{ }^{\prime}$ is the parallel resistance of R_{1} and $R_{2}{ }^{\prime}$ R_{c}^{\prime} is the sum of R_{c} and R_{e}.

The value of $R_{c}{ }^{\prime}$ is fixed by the need to have an adequate value of collector current and a typical practical value is 5 kilohms. Let β be 100 . From expression (5) the stability factor is now determined by ${R_{b}}^{\prime}$ which should be as small as possible to ensure high stability. In the circuit in the basic form shown in Fig. 6 it is unlikely that R_{b}^{\prime} could be reduced below 20 kilohms: even this value of $R_{b}{ }^{\prime}$ gives a stability factor of $1 / 25$. There is, however, a two-transistor version of Fig. 6 which permits values of $R_{b}{ }^{\prime}$ as low as 5 kilohms: this gives a stability factor of 0.01 , an impressively low figure. This highly effective circuit is described later.

Signal-frequency performance. The two negative feedback circuits of Fig. 3 give d.c. feedback and, to be effective in stabilising mean collector current, reduce the d.c. gain of the transistor to a very low value. The negative feedback circuit, being purely resistive, also reduces the signal-frequency gain of the transistor to this same low figure. This reduction is, in general, undesirable and in Fig. 3 (a) can be eliminated by decoupling the mid-point of R_{b} to emitter but a simpler solution is to use the circuit of Fig. 3 (b) and to decouple R_{e} by a low-reactance capacitor. This leaves the d.c. stability unchanged and enables signal-frequency feedback to be applied by an independent negative feedback circuit.

It was shown that at d.c. Figs. 3 (a) and (b) are effectively the same circuit. This is not true at signal frequencies: this is shown in Fig. 7 which is a repeat

Fig. 7. A repeat of Fig. 3 but including input and output terminals to show that the circuits behave differently at signal frequencies.

Fig. 8. A video amplifier based on the

(a) circuit of Fig. 7 (b).

(b)

of Fig. 3 but includes input and output terminals. At (a) R_{b} returns to the base a feedback current proportional to the output voltage. Such feedback reduces both input resistance and output resistance, so making the circuit suitable for use with a current input and a voltage output. The ratio of these two quantities is, in fact, equal to R_{b} and is thus independent of the transistor parameters. Thus, for the circuit of Fig. 7 (a):

$$
\begin{equation*}
\frac{v_{\text {out }}}{i_{\text {in }}}=R_{\mathrm{b}} \tag{6}
\end{equation*}
$$

In Fig. 7 (b) R_{e} returns to the base-emitter circuit a voltage proportional to the emitter (and hence the collector) current. Such negative feedback increases both input resistance and output resistance, making this circuit suitable for use with a voltage input and a current output. The ratio of these two quantities is equal to l / R_{e} and is thus independent of the transistor parameters. Thus, for the circuit of Fig. 7 (b):

$$
\begin{equation*}
\frac{i_{\text {out }}}{v_{\text {in }}}=\frac{1}{R_{e}} \tag{7}
\end{equation*}
$$

Video amplifier for television receiver. As a numerical example suppose the amplifier of Fig. 7 (b) is used to drive the cathode of a picture tube in a television receiver. Suppose that the tube requires a video input of 70 V peak-to-peak value. The value of R_{c} to use is determined by the total capacitance shunting R_{c}, say 15 pF , and the upper frequency limit of the video band, say 5 MHz . The reactance of 15 pF at 5 MHz is approximately 2 kilohms and, as explained in Part 5, if
R_{c} is also made 2 kilohms, the response will be 3 dB down at 5 MHz . If we make $R_{c} 4$ kilohms, the gain is doubled at low and middle video frequencies but the high-frequency loss is now 3 dB at 2.5 MHz and 7 dB at 5 MHz . This loss can, however, be offset by use of frequency-discriminating negative feedback and a value of 4 kilohms is suitable for R_{c}. If a video signal of 1.5 V peak-to-peak is available from the vision detector to drive the amplifier then the amplifier requires a voltage gain of $70 / 1.5$ i.e. approximately 50 . The voltage gain of the amplifier is given by

$$
\frac{v_{\text {out }}}{v_{\text {tn }}}=\frac{R_{c}}{R_{e}}
$$

which can readily be deduced from expression (7) by putting $i_{\text {out }}=\nu_{\text {out }} / R_{c}$. .Thus

$$
R_{e}=\frac{R_{c}}{50}=80 \mathrm{ohms}
$$

A common technique for maintaining the response at the upper end of the band is to shunt R_{e} by a capacitor which removes the negative feedback at high video frequencies. A simple way of determining the value of this capacitor is to equate the time constants in the collector and emitter circuits thus:

$$
\mathrm{R}_{\mathrm{c}} \mathrm{C}_{\mathrm{c}}=\mathrm{R}_{\mathrm{e}} \mathrm{C}_{\mathrm{e}}
$$

This gives

$$
\mathrm{C}_{\mathrm{e}}=\frac{\mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{e}} \cdot \mathrm{C}_{\mathrm{c}}=50 \times 16 \mathrm{pF}=750 \mathrm{pF}
$$

In a practical version of this amplifier provision must be made for ensuring d.c. stability and the obvious method is to use the 80 -ohm emitter resistor in a
circuit of the type shown in Fig. 5 but the low value of R_{e} introduces difficulties. From expression (5) it is clear that if R_{e} is 80 ohms then Rb^{\prime} must not be very great compared with this to achieve good stability. In fact if $R_{b}{ }^{\prime}=R_{e}$ the stability factor is $1 / \beta$ which represents excellent stability. $R_{b}{ }^{\prime}$ is the parallel resistance of the two arms of the potential divider and it would be impractical to make $\mathrm{R}_{\mathrm{b}}{ }^{\prime}$ much less than 1 kilohm. A solution to this problem commonly adopted in television receivers is to interpose an emitter follower between the potential divider $R_{1} R_{2}$ and the base of the video amplifier as shown in Fig. 8, direct coupling being used throughout. The value of $R_{b}{ }^{\prime}$ is now effectively the output resistance of the emitter follower: this depends on the resistance in the base circuit of the emitter follower but in this example is probably of the order of 80 ohms , so permitting excellent d.c. stability in the vieo amplifier.

The emitter follower is also of value at signal frequencies because its high input resistance minimises shunting of the diode load. Because of the direct coupling between the detector and the video amplifier it is possible to arrange the standing voltages so that the amplifier is biased to cut off by blacklevel signals. This has the advantage that the amplifier can be operated from a supply only slightly greater than the required video output: in this example an $80-\mathrm{V}$ supply is adequate. The emitter follower and potential divider can be fed from a lower supply voltage e.g. 12 V .
The values of R_{1} and R_{2} can be calculated in the following way. The output from the detector is almost zero for white-level signals. For such signals 70 V must be developed across R_{c} and therefore 1.5 V across R_{e}. If both transistors are silicon there is an offset voltage of 0.7 between each base and corresponding emitter. Thus the voltage across R_{2} must be $(1.5+2 \times 0.7)$ i.e. 2.9 V . If we assume a bleed current of 0.5 mA in the potential divider then Ohm's law gives R_{2} as 5.8 kilohms. If the potential divider supply is 12 V then R_{1} must be 18.2 kilohms. It would be an advantage to make R_{1} or R_{2} preset so that it can be adjusted to secure correct. operating conditions in the video amplifier.

Two-stage voltage amplifier. The basic circuits of Fig. 7 can be combined to form a two-stage amplifier in two ways. If the first stage is of type (a) and the second stage of type (b), the resulting amplifier has a low input resistance and a high output resistance, máking it suitable for current amplification. If, however, the first stage is of type (b) and the second stage of type (a), the. resulting amplifier has a high input resistance and a low output resistance, making it suitable for voltage amplification. We will consider the design of such a voltage amplifier.
The basic form of the amplifier is

Fig. 9. Basic form of two-stage direct-coupled voltage amplifier.

Fig. 10. This alteration to the position of $R_{b 2}$ makes little effect on the performance of the circuit.

Fig. 11. Final form of the circuit of the two-stage voltage amplifier.
shown in Fig. 9 in which direct coupling is employed between the stages. The output current of Tr_{1} is the input current of Tr_{2} and by eliminating the terms in i between expressions (6) and (7) we have

$$
\begin{equation*}
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\mathrm{R}_{\mathrm{b} 2}}{\mathrm{R}_{\mathrm{el}}} \ldots \ldots \ldots \ldots \tag{8}
\end{equation*}
$$

It is more usual to connect $R_{b 2}$ to the emitter of Tr_{1} than to the base of Tr_{2} and
the circuit then has the form shown in Fig. 10. This change makes no fundmental difference to the performance of the amplifier because the feedback current injected into Tr_{1} emitter by Rb2 emerges from the collector and enters Tr_{2} base with little loss. But it is clear from Fig. 10 that $R_{b 2}$ and $R_{e 1}$ constitute a potential divider across the amplifier output and so determine the voltage gain of the amplifier as mentioned in Part 1 and as indicated in expression (8). Signal-frequency feedback is thus provided by $R_{b 2}$ and $R_{e 1}$. We now have to provide d.c. negative feedback to stabilise the mean collector currents of the two transistors.
It was mentioned earlier in this article that a most effective method of d.c. stabilisation is possible using a potential divider connected to the collector of the transistor, the base being fed from the tapping point. This method can readily be applied to the circuit of Fig. 10: all that is necessary is to put the potential divider $R_{1} R_{2}$ in the emitter circuit of Tr_{2} and to return $R_{b 1}$ to the tapping point as shown in Fig. 11. D.c. stability then depends on the resistance in Tr_{1} collector and emitter circuits and can be increased by the addition of R_{3} in the emitter circuit. Decoupling capacitors C_{1} and C_{2} are required to eliminate the signal-frequency feedback which would otherwise result from R_{1}, R_{2} and R_{3}. We will now calculate the values of the resistors required in a typical application of this circuit.

Before the calculations can be performed certain characteristics of the amplifier must be known or decided. For example suppose that the supply voltage is 15 , that a voltage gain of 100 is required, that the amplifier must be capable of supplying an output signal of 3 V amplitude and that the input resistance must be at least 50 kilohms. We must now decide the mean collector currents of the transistors. Here we may choose values giving maximum values of β or minimum noise. Let the current for Tr_{1} be 0.3 mA and for $\mathrm{Tr}_{2} 1 \mathrm{~mA}$. One more decision is necessary before calculation can begin and a convenient choice to make is that of Tr_{2} emitter potential. Let us make this 6 V . Ohm's law immediately gives the total emitter resistance for Tr_{2} as 6 kilohms so that R_{1} and R_{2} can be 3 kilohms. To enable Tr_{2} to deliver the required output voltage we can make $R_{c 2} 4$ kilohms so that positive and negative collector voltage swings of 4 V amplitude are possible. If Tr_{2} is a silicon transistor its base potential is 6.7 V , i.e. 0.7 V above emitter potential. This is also Tr_{1} collector potential. The voltage across $R_{c 1}$ is thus ($15-6.7$), i.e. 8.3 and because the mean current is 0.3 mA , Ohm's law gives the value of $R_{c t}$ as 28 kilohms. If the voltage drop across $R_{b 1}$ due to base current is neglected, Tr_{1} base potential is 3 V . If Tr_{1} is a silicon transistor its emitter potential is thus 2.3 V , giving the total emitter resistance as 8 kilohms. We can thus make $R_{3} 7$ kilohms and $R_{e 1} 1$ kilohm. To
give the required voltage gain $R_{b 2}$ must be $100 \mathrm{R}_{\mathrm{e}}$ and is hence 100 kilohms.

The input resistance of the amplifier is made up of $R_{b 1}$ paralleled by the input resistance of Tr_{1} which, by virtue of the feedback due to $R_{b 2}$ and $R_{e 1}$, is very high. Thus the amplifier input resistance is effectively equal to $R_{b 1}$ which can be made 50 kilohms as required.
$\mathrm{R}_{\mathrm{e} 1}$ and $\mathrm{R}_{\mathrm{b} 2}$ determine the gain of the amplifier and should be narrow-tolerance components but this is not necessary for the other resistors provided that one of them (R_{3} is suitable) is made preset so that it can be adjusted to secure correct operating conditions in the amplifier.

The stability factor for the amplifier is given by expression (5) in which $R_{c}{ }^{\prime}$ is the sum of $R_{c l}, R_{e l}, R_{3}$ and R_{b}^{\prime} is $R_{b 1}$. Substitution of these values and $\beta=100$ gives the stability factor as $1 / 72$ representing a very high degree of stability.

Field-effect transistors. Fig. 12 illustrates the simplest form of single-stage f.e.t. amplifier. The value of the load resistor R_{d} depends on whether an output current or voltage is required and can be calculated as described in Part l. Bias is applied from a source of suitable voltage V_{g} via R_{g} and because an f.e.t. requires no gate current R_{g} can be made any value up to say 100 megohms without effect on the performance of the circuit. The ratio of output current to input voltage is the mutual conductance g_{m} of the transistor, one of the parameters quoted by the manufacturer: a typical value is $2 \mathrm{~mA} / \mathrm{V}$, the same order as for a valve.

The voltage gain of the simple amplifier is given by

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=g_{m} R_{d}
$$

and, as for the current output, is proportional to the value of g_{m} for the particular transistor used. The mean value of drain current also depends on the particular transistor used and can easily be so far from the desired value that the required performance cannot be obtained. Satisfactory results can be obtained from individual circuits of the type shown in Fig. 12 but to obtain them it is usually necessary to adjust the bias voltage. This difficulty stems from the fundamental property of the simple biasing circuit that it fixes the gate voltage and not the mean drain current or the mutual conductance.

Thus as for bipolar transistors practical f.e.t. circuits require a biasing circuit to give a desired value of mean drain current and d.c. negative feedback to maintain this current in spite of variations in transistor parameters. Signalfrequency feedback is also necessary to give the required signal-frequency performance and to maintain this in spite of variations in parameters.

As for bipolar transistors enhancement-type f.e.ts require a gate

Fig. 12. Simplest type of f.e.t. amplifier which has a number of disadvantages.

Fig. 13. Basic circuit for d.c. stabilisation of an enhancement type f.e.t.

Fig. 14. Method of eliminating signal-frequency feedback in the circuit of Fig. 13.

Fig. 15. Method of biasing and d.c. stabilising a depletion-type f.e.t.
bias voltage between that of the drain and that of the source: it is thus possible to use the d.c. biasing and stabilising circuits described earlier in this article. For example we can use the circuit of Fig. 3 (a): Fig. 13 shows an n-channel i.g.f.e.t. so stabilised. The stability factor is given by

$$
\begin{equation*}
\text { stability factor }=\frac{1}{1+g_{m} R_{d}} \tag{9}
\end{equation*}
$$

and is independent of the value of R_{g} which can thus be made very high. If $g_{m}=2 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{R}_{\mathrm{d}}=5$ kilohms, both typical practical values, the stability factor is $1 / 11$.

In the basic form of Fig. 13 the circuit has the disadvantage that R_{g} gives signal-frequency feedback but this can be eliminated. by constructing R_{g} of two resistors in series and by decoupling their junction to source as shown in Fig. 14. $\mathrm{R}_{\mathrm{g} 1}$ and $\mathrm{R}_{\mathrm{g} 2}$ can be made equal and each may be several megohms, so retaining the chief feature of the f.e.t., its high input resistance.

For depletion-type f.e.ts the gate bias voltage lies outside the range of the drain and source voltage: this is also true of valves, of course, and the biasing circuit used for valves can also be used for depletion-type f.e.ts as illustrated in Fig. 15. The method of calculating the value of the bias resistor was described in Part 1. The stability factor is given by expression (9) by substituting R_{s} for R_{d}. Typical practical values are $g_{m}=$ $2 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{R}_{\mathrm{s}}=1$ kilohm for which the stability factor is $1 / 5$. Better stability can be obtained by using the potential divider circuit (Fig. 5) which enables higher values for R_{s} to be employed. The potential divider circuit can also be used with enhancement-type f.e.ts.

Corrections

"Crossover networks and phase response", Nov. 1975 issue, p.531. The figures over the captions Fig. 5 and Fig. 6 should be interchanged. The filter proposed by Small is a modified fifth order filter, with final slopes corresponding to a third order filter.
"What's in a name?", Jan. 1976 issue, p.47. In the first column, the sentence beginning $2 \dot{3}$ lines from the the bottom should read: "So it could hardly be more wrong to choose this word to mean a progressive voltage change in an unchanging direction ..."

Schottky clock oscillator integrated circuit, type CO-238, mentioned in New Products, Nov. 1975 issue, p. 548 , will operate up to 100 MHz , not $1,000 \mathrm{MHz}$ as stated.

Simple c.r.o. input isolating probe

In many c.r.o. applications it is desirable to connect the Y deflection input to a p.d. that is floating with respect to the c.r.o. frame or earth. In some cases it is possible to float the c.r.o., but this is usually considered bad practice and may be potentially dangerous. Alternatively, it may be possible to float the circuit under test. However, neither of these expedients will solve the problem when one wishes to display simultaneously, with correct polarity on a double beam c.r.o., two p.ds, one of which may be referenced to earth whilst the other is floating.
The circuit shown overcomes such problems by the use of optical coupling between the floating test p.d. \bar{V}_{i} and the c.r.o. input V_{y}

Two separate 9 V batteries are used to power the input and output sides of the circuit, either or both of which may be earthed at any point to suit the test requirements. An inexpensive Texas i.c. opto-coupler is used and, in this circuit, has a bandwidth of about 30 kHz . A four-way switch gives three ranges and an off position.
Range 1 gives ${ }^{1} 11$ transmission with

Diode curve tracer for oscilloscope

This circuit is designed to show the I / V characteristics of two-terminal devices on any oscilloscope which has an external X input. The sweep input can be any low voltage signal source, such as a 20 V Variac. Current is monitored across the 100Ω series resistor, at a sensitivity of $10 \mathrm{~mA} / \mathrm{V}$. This resistor also helps to limit the current. The floating device-voltage is monitored with a differential circuit and inverted with IC_{2}. When a device is reverse biased the current flowing through the monitor is
approximately that through R_{1} and R_{2} plus the op-amp (741) bias current. If the oscilloscope X input has no amplifier, voltage sensitivity may be varied with R_{3}. Three terminal devices such as unijunction transistors may be traced if an external bias is provided. Maximum voltage across the device, which is the op-amp saturation voltage, may be increased by reducing the gain of IC_{1}. S. Cahill,

Ulster College, Northern Ireland Polytechnic.

an input resistance of $10 \mathrm{k} \Omega$ and up to 2 V peak-to-peak input.

Range 2 gives $10: 1$ attenuation, an input resistance of $100 \mathrm{k} \Omega$ and up to 20 V peak-to-peak input.

Range 3 gives 100:1 attenuation, an input resistance of $1 \mathrm{M} \Omega$ and up to 200 V peak-to-peak input. Two 4.3 V zener diodes provide input protection. Initial setting up is as follows: Set $R V_{1}$ and $R V_{2}$ to give unity V_{y} / V_{i} on range $1 . \mathrm{RV}_{2}$ should have a final value such that the output circuit phototransistor is biased
to the centre of its linear range - about 4.5 V between pins 4 and 5 of the i.c. RV_{3} can be set to give zero d.c. output when the input terminals are shorted. This component is not essential and can be omitted if zeroing of output level is not needed. Assembly and layout are not critical but care must be exercised to preserve isolation between input and output sides of the circuit.
A. F. Sargent

Carshalton
Surrey

Alarm system with position indication

This application takes advantage of the p-n-p-n structure in the CA3083 transistor array i.c. which contains five $\mathrm{n}-\mathrm{p}-\mathrm{n}$ devices with separate substrate connection. The p type substrate and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ structures of the transistors are utilised as p-n-p-n switches with common connection for anode (substrate). Thus, the transistor array is converted into a silicon controlled switch array. A relay forms the anode load and will be actuated if any of the s.c.s is triggered. By using five lamps in the circuit as shown, visual indication of the actuated channel is provided. Triggering sensitivity of the circuit is high and human touch will actuate the s.c.s. Alarm and visual indication will remain unless the circuit is reset.

Advantages of this circuit are miniaturization and low power consumption. In normal operating conditions, the s.c.s. will act as an open circuit. Use of dry battery cells makes the device small and portable. The number of channels can be increased by using two or more transistor arrays.
H. S. Kothari,

Central Electronics Engineering Research Institute, India.

Automatic switch-off power supply

This power supply was designed to operate a digital exposure timer constructed from t.t.l. circuits. Because the logic is required only when the enlarger lamp is on, it was decided to automatically switch off the power supply when on standby. The supply to the t.t.l. circuits is turned on by closing the switch at the same time as the timing cycle is activated, which sets the timer output to 5 V and turns on the lamp. Diode D_{2} is also connected to this logic point and the power supply remains on when the switch is released. When the timer output goes low and the lamp is extinguished, gate current to Tr_{4} is cut off which switches off Tr_{1} and removes the current supply from the zener diode. The supply voltage therefore drops to zero.
This circuit is applicable to all uses where the logic is required for only part of the time, which allows a smaller transformer to be used to reduce weight and cost.
E. R. Rumbo,

Acton,
Australia

push to on

Single gang pan-pot

The use of a single-gang linear potentiometer as a balance control is well known. Shown here is a simple pan-pot for stereo audio mixers using the same technique. The circuit was designed to give the best approach to a sine law so that $A^{2}=B^{2}$ is a constant, whatever the position of the wiper. The output was normalized at 90° (potentiometer at maximum) so:

$$
\begin{aligned}
\text { error } E & =20 \log \frac{A / A_{\max }}{\sin \left(90 \times R / R_{\max }\right)} \\
& \text { is } 0 \mathrm{~dB} \text { at } R=R_{\max }
\end{aligned}
$$

The calculated error for the circuit is less than 1 dB over the full range of the potentiometer. The input impedance, about $5 \mathrm{k} \Omega$, is constant within 10% over the same range $A_{\max }=0.35 \mathrm{~V}_{\text {in }}$.

If zero error at 45° (signal panned to centre) is required and some deviation from the sine law can be tolerated, the $5 \mathrm{k} \Omega$ should be changed to $10 \mathrm{k} \Omega$ which gives $A_{\text {max }}=0.49 \mathrm{~V}_{\text {in }}$. Clearly for higher input impedances all the values may be multiplied by a constant. Outputs A and B are virtual earth summing points and the potentiometer should be wirewound for minimum cross-talk. In practice there is no audible change of level as the image is panned.
J. Dawson,
K.J.E. Northover,
D. C. Threlfall,

Cambridge University Tape Recording Society.

Pulse generator

This pulse generator was designed to provide clock pulses of variable width and p.r.f. for t.t.l. circuits at a relatively low cost. It uses a versatile 74123 dual monostable i.c. which can be triggered from a positive or negative going edge and can be cleared or re-triggered if desired. The pulse width is determined by an external CR combination, the recommended maximum and minimum resistance being $50 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ respectively.

With the switch set to "internal," the monostables are connected in an asta-
ble configuration with each monostable being on for its own time period and off for that of the other monostable. The output is taken from an emitter-follower for low output impedance. The on time of each monostable is determined by its variable external resistor and one of a bank of six capacitors, giving on or off times between 100 ms and 100 ns . Therefore, it is not possible, as with some pulse generators, to set the puise width greater than $1 /$ p.r.f. - which gives no output.
With the switch in the "external" position the on-time monostable is
driven by three transistors arranged as a Schmitt trigger. This gives a pulse of the same frequency as the input waveform, the pulse width being determined by the on-time variables. Potentiometer VR_{1} determines the trigger level.
The circuit of a suitable power supply is shown.
Performance is above expectations, but wire lengths must be kept to a minimum if good pulse shapes are to be obtained at the highest frequency.

J. Garrett

Dublin
 Eire

Long-delay echoes

Despite the many apparently authentic reports of long-delayed echoes being received on h.f. in the period 1928-1938, a project carried out at the Cavendish Laboratory in 1973 by Peter DuffettSmith, G3XJE, completely failed to detect any such echoes in the course of more than half-a-million automatic transmissions on 7,9 and 20 MHz . But now new evidence - and a possible explanation - is put forward in a 245-page report, "Long delayed radio echoes" by D. M. Sears of Stanford University, who in a five-year period has obtained tape recordings that, although none reproduces exactly the transmitted signal, exhibit features which the author states "seem unlikely to have been generated except by an l.d.e. mechanism".

Sears and Crawford at an URSI symposium in Peru last August suggested that these curious echoes are due to very low group velocity ($1 \mathrm{~km} / \mathrm{s}$) propagation effects near the peak of the F-layer. It is proposed that very weak fluxes of kilovolt energy electrons could cause delays of several seconds.

But this remains a Loch Ness monster of h.f. radio - the early records of "sightings" were clear and specific, yet intensive investigations since 1969 have failed to come up with a single incontrovertible recording!

National societies

In an era where many amateur radio societies are facing acute financial problems there has been surprisingly little questioning of the fundamental issues. As became clear at the recent annual general meeting of the RSGB - where members voted overwhelmingly in favour of giving the Society's council full power in determining subscription rates - most amateurs accept the need for professionally administered societies providing a full range of services to members.
But Pierce Healy, VK2APQ, writing in Electronics Australia, raises basic issues in questioning "what future is there for amateur radio societies?" He points out that the societies were formed and
flourished as the result, almost entirely, of voluntary efforts on the part of the members: the "Wireless Institute of Australia", the oldest-established amateur radio society, being no exception. But during the past few years WIA has come to depend on executive staff, computerised membership records and a professionally produced journal. One result has been that rising subscriptions have reduced the percentage of Australian amateurs who belong to WIA from 54 to 50 per cent, and this process may be accelerated by a projected major increase in subscription rates.
Pierce Healy suggests that increasingly the amateur societies will be faced with only two possibilities: a membership willing to pay for high-cost tasks carried out on their behalf; or reversion to "the tried and proven voluntary effort system". The latter course, which he clearly favours, would be more economical but requires dedicated volunteers.
With thoughts increasingly turning to the next frequency conference in 1979 there is clearly a vital need for strong and effective societies, but he considers that unless high-cost amateur societies are willing to see themselves representing only a minority of amateurs in their own countries, they must depend for much of their effort on volunteers.

Notes and news

The Home Office has stated that it intends to undertake a review of the British amateur licence "when staffing time permits".
Colin Thomas, G3PSM, (73 Mexborough Avenue, Leeds LS7 3ED) who organises the "intruder watch" has asked for help from r.t.t.y. enthusiasts (whether amateur transmitters or listeners) in systematically checking and identifying non-amateur radioteleprinter transmissions in exclusive amateur bands. The proposed "GB2ATG" weekly r.t.t.y news bulletin transmission is still awaiting final Home Office approval and licensing.

A 432.91 MHz amateur beacon station, GB3EM, has been installed in the country's highest room - the enclosed room near the top of the IBA's concrete television aerial support tower at Emley Moor, near Huddersfield, Yorkshire. A modified all-semiconductor Pye transmitter provides 10 watts output to a J Beam " 8 over $8^{\prime \prime}$ aerial beaming 170° ETN (i.e., a direction slightly east of London). The aerial is mounted on the roof of the room almost 900 ft above ground and over 1700 ft above sea level, keeping transmission line losses to a minimum. The automatic keyer has been built by A. Robinson, G3TQA, on behalf of the Bradford University amateur society. Beacon keeper is H. P. Bottom, G8DHD, a member of IBA staff at Emley Moor.

Dr J. A. Saxton, director of The Appleton Laboratory, has accepted an
invitation by the RSGB Council to become an Honorary Member. Dr Saxton was President of the society in 1970 and again in 1973.
The RSGB are proposing three n.b.f.m. simplex channels in the 70 MHz band, 70.5 MHz as calling channel and 70.475 MHz and 70.525 MHz as working channels.
In conjunction with representatives of a number of local societies concerned with repeater stations, the RSGB has formed a "repeater working group" and the Home Office has confirmed that the Society should proyide an overall plan for the installation and operation of v.h.f. and u.h.f. repeaters in the U.K. and to be responsible for monitoring their operation.

An echo of the thirties

One of the oldest-established brand names in amateur radio - at one time the "world's largest builders of amateur communications receivers" - has recently changed hands: Hallicrafters amateur and citizen-band equipment will in future stem from Breaker Corporation of Arlington, Texas. The original Hallicrafters company of Chicago launched the "Super Skyrider" receiver in January 1935 and within a few years were producing a whole series of "Sky . . ." receivers. Many British amateurs used the Sky Buddy (selling in the U.K. for about 19) or the higher performance Sky Champion, which boasted an r.f. stage, in the years immediately before World War II.

A recent note from the Rev. Arthur Trewin, ZS5AX, of Durban, South Africa, mentions that although now 91 years old he is still active on the amateur bands. Formerly VQ5NTB, G2AT and ZS2AT, he recalls his first Uganda-to-U.K. contact in 1931 using a single P625 valve in the old "TNT" (tuned anode non-tuned grid) power oscillator transmitter and two-valve ($0-\mathrm{v}-1$) receiver.

In brief

Brian Bower, G3COJ, appears to have pushed the U.K. record for the 432 MHz band to over 900 miles with a contact (July 1975) with the Swedish station SM5DSN . . . The Swiss national society USKA reports an increase during the year of 208 members to bring total membership to 2312 . . . Northern Radio Societies Association holds their annual convention at Belle Vue, Manchester on April 25 . . . The RSGB National VHF/UHF Conference is to be held for the first time at Brunel University, Uxbridge, Middlesex on May 8-9 . . The British Amateur Radio Teleprinter Group's annual convention is at Meopham on May $22 \ldots$ As an alternative to a national mobile rally, the RSGB is planning to hold an amateur radio exhibition at Alexandra Palace on July 30, 31 and August 1.

PAT HAWKER, G3VA

New

 Products
Digital i.c. test system

Teradyne has announced a digital i.c. test system for use in production and incoming inspection. The J325 com-puter-controlled test system is optimized for testing a wide spectrum of digital i.cs, including t.t.l., d.t.l., e.c.l., c.m.o.s. and static m.o.s. The different test demands of these technologies are satisfied by the availability of two basic test stations. One is optimized for testing c.m.os., static m.o.s. and h.t.l., the other for e.c.l. and t.t.l. A two-station J325 is priced at around $£ 70,000$. Teradyne Ltd, Clive House, Queens Road, Weybridge, Surrey KT13 9XB.
WW $\mathbf{3 0 1}$ for further details.

Miniature rotary switches

Two ranges of miniature rotary switches are the 5920 and 5922 ER series. Designed for mounting directly on to a p.c.b., the 5920 series has angled terminals on a pitch of $2.45 \mathrm{~mm}(0.1 \mathrm{in})$ and a total height of 10 mm when mounted. They have gold-plated silver contacts rated at 0.2 V at 150 V a.c. and can be supplied in a variety of single and
multiple pole, multiple way switching configurations. The 5922ER series has been designed for panel-mounted applications, requiring an aperture of 10.2 mm . They measure 20 mm in diameter overall and can be supplied in various switching configurations. Contacts are silver, rated up to 0.3 A at 220 V a.c. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, Sussex.
WW 302 for further details.

Noise cancelling mic

An efficient, moving coil, low impedance instrument designed to withstand demanding environments in industrial use has been introduced by Selsound. The microphones are available as inserts, type 2500 , but can be provided with housings to suit specific customer requirements. Impedance is 25Ω and sensitivity $500 \mu \mathrm{~V}$ at close proximity and normal speech level. The directional response gives -12 dB at 1 kHz at 90° and 270° off axis. Selsound Ltd, Victory Close, Industrial Estate, Chandlers Ford, Eastleigh, Hants.
WW 303 for further details.

Proximity switch

A heavy-duty, solid-state proximity switch, model $8-260$, is a self contained barrel mounted switch designed for operation in severe environments. Manufactured by the Eldec Corporation and marketed in this country by Elliott Relays, the $8-260$ is sealed by moulded epoxy in a one-piece construction for maximum protection against contamination. A load current rating of $1 A$ permits lamp and relay operation - as well as a range of control circuitry requiring high input currents. Normally open or normally closed output switch versions are available. Sensing distance is 0.lin for ferrous metal targets and

WW 303

WW 305

0.05 in for non ferrous metals. Elliott Relays, 70 Dudden Hill Lane, London NW 10 1DJ.
WW 304 for further details.

High-voltage high-stability resistors

Up to 7.5 kV can be handled by new resistors from Erg Components. Rated at 2.5 watts at $70^{\circ} \mathrm{C}$, they have a temperature coefficient of ± 200 parts per million per deg. C. High value-stability is achieved (2% after 2000 hours at full load) by using a noble-metal resistive glaze on an alumina substrate. Erg Industrial Corporation Ltd, Luton Road, Dunstable, Beds LU5 4LJ.
WW 305 for further details.

Multichannel analogue recorder

The Gould Brush 2400 direct-writing chart recorder has channel amplitudes of 100 mm and 50 mm and uses a servo-controlled pen motor to give frequency responses of 30 Hz at 100 mm , 50 Hz at 50 mm and up to 100 Hz at lower amplitudes. The recorder is available in 12 configurations and can be used in two-, three- or four-channel form, with or without interchangeable plug-in preamplifiers. Portable or rack-mounted versions are available. The pen motor incorporates a non-contact servo feedback system known as Metrisite which gives a stiffness of $100 \mathrm{~g} / \mathrm{mm}$ and a linearity of 99.65% over the channel width. Rise time is less than 8 ms for 100 mm amplitude and 5 ms for 50 mm amplitude. Overshoot is less than 1% on square waves. Twelve chart speeds between $0.05 \mathrm{~mm} / \mathrm{s}$ and $200 \mathrm{~mm} / \mathrm{s}$ are provided. Gould Advance Ltd, Data Products Division, Raynham Road, Bishop's Stortford, Herts.
WW 306 for further details.

WW 301

WW 302

SSB transceiver for h.f.

A single-sideband transceiver for the h.f. bands has been added to the AEL range of communications equipment. Covering 2 to 16 MHz in four or six crystal-controlled channels, the transceiver - type AEL3030 - is designed for 12 -volt mobile use. A version for fixed-station use has an internal $115 / 230 \mathrm{~V}$ a.c. power pack. Output from the wideband p.a. is 150 watts p.e.p. with typical harmonic suppression of 50 dB . Receiver sensitivity is $0.5 \mu \mathrm{~V}$ for 20 dB $s+n / n$. Above $5 \mu \mathrm{~V}$, a.g.c. action gives a 3 dB increase in output for a 100 dB increase in input level. Ten of the eleven p.c. boards are plug-in modules. Acro Electronics (AEL) Ltd, Gatwick House, Horley, Surrey.
WW 307 for further details.

Mini battery-mains scope

The B1010 miniature battery-mains scope $(137 \mathrm{mmW} \times 195 \mathrm{mmD} \times$ 64 mmH) is a development of the Lawtronic Al010 with additional facilities. It is a 10 MHz bandwidth scope, the y-amplifier sensitivity ranging from $10 \mathrm{mV} /$ div to $50 \mathrm{~V} / \mathrm{div}$ and timebase speeds from 1 ms to $1 \mathrm{~s} /$ div. The scope has a choice of free running or triggered timebase as a standard facility. A decibel scale on the graticule gives direct reading of amplitude response and modulation depths in communication applications. Rechargeable nickel cadmium cells give up to three hours operating time while operation and recharging can be from $240 \mathrm{~V}, 110 \mathrm{~V}$ a.c. and 12 V d.c. The z-modulation display facility is retained and an internal y -amplifier calibrator has been added. Complete with carrying case, the B1010 costs $£ 198.00$. Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX. WW 308 for further details.

Broadband test oscillator

A general-purpose broadband test oscillator providing sine waves from 10 Hz to 10 MHz , with additional square wave outputs from 10 Hz to 1 MHz , has been introduced by Farnell. The LFM3 has a t.t.l. output at 5 V up to 10 MHz and a sync output of 6 V pk-pk sine. The output of 1 mV to 20 V into open circuit is levelled in seven attenuator steps of 10 dB per step from +10 dB to -50 dB with an uncalibrated fine level control providing a further nominal adjustment. Main output sockets for 600Ω and $50 \Omega 2$ are provided. The LFM3 is intended for general calibration and instrument test work and is particularly suitable for video amplifier and a.c. bridge measurements. Farnell Instruments Ltd, Sandbeck Way, Wetherby LS22 4DH, Yorkshire.
WW 309 for further details.

WW 307

WW 308

WW 309

Rapid heat irons

A range of 30,60 and 100 W soldering irons which heat up within seconds of switch-on are being marketed by Kelgray Products. For ease of working in confined spaces, the 60 W and 100 W Engel irons have built-in lights to illuminate the working area. A range of blades is available for use with the 100 W unit which extends the application of this model to include thermo-cutting of man-made fibres and ropes. Kelgray Products Ltd, Bywell House, South Godstone, Surrey.
WW 310 for further details.

Audio test set

Facilities offered by the Amber 4400 test set include function, sweep, noise, audio comb and burst generators, autoranging digital level meter and frequency counter, wave and spectrum analyzers and a dual digital memory. Dimensions are $133 \mathrm{mmH} \times 210 \mathrm{mmW} \times 279 \mathrm{mmD}$. Additional features include a balanced or unbalanced output capability of +30 dBm , a 10 dB per step output attenuator ranging from +30 dBm to -70 dBm , programmable operation for most functions and an internal crystal timebase for accurate frequency reference. The unit should be available at the end of January and will cost approximately £950. Scenic Sounds Equipment Ltd, 27-31 Bryanston St, London W1H 7AB.
WW 311 for further details.

Electronic multimeter

Use of an i.c. amplifier in a Philips multimeter enables a robust meter movement to be used but with a "sensitivity" of $500 \mathrm{k} \Omega / \mathrm{V}$. The multimeter, type SMT111, has 35 ranges, including f.s.ds for direct voltages of 30 mV to 300 V , direct currents of $3 \mu \mathrm{~A}$ to 300 mA (40 to 60 mV voltage drop), alternating voltages of 300 mV to 600 V , and alternating currents of $30 \mu \mathrm{~A}$ to 3 A (400 to 600 mV drop). In addition, the meter has five resistance ranges, a battery-check switch position and a frequency response that extends up to 10 kHz on the 60 V range and 40 kHz on the 300 mV range. Overload protection of the i.c. and movement is provided. Accuracy is ± 3 or 4%, depending on range. Price is $£ 30$ (excluding v.a.t. at 8%). Combined Electronics Services Ltd, 604 Purley Way, Waddon, Croydon CR9 4DR.
WW $\mathbf{W} 12$ for further details.

Solid State Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Analogue delay line

A charge-coupled device made by Fairchild, type CCD31l, can delay analogue signals from 20μ s to 25 ms by varying the rate of externally supplied clock pulses. The device is a "spin-off" from the Fairchild 256 -element c.c.d. image sensor and is thought to have potential as a time base corrector in video tape recording systems. The device could also be used for a wide variety of other applications, including phase equalization and convergence correction in video systems, delay equalization in speech transmissions and scrambling systems, and construction of complex analogue filters. A signal-to-noise ratio of 50 dB or more and a bandwidth of 4 MHz are claimed. The device, housed in an 18-pin dual-in-line package, is available from Fairchild in the U.S.A. and can be ordered in the U.K. from their Aylesbury, Bucks address.

Fairchild

Linear optical sensor

An array of 1872 photodiodes at 15 micron centres forms the Reticon RL 1872F linear sensor. The device possesses its own low-dissipation commutating shift register, with a maximum data output rate of 20 MHz . A ceramic dual-in-line package is used, a ground and polished quartz window covering the diodes. Clock generator, driver amplifer and integrator sample and hold
boards are available for use in highspeed facsimile equipment. P.c. cards containing all required drive circuitry for the device are available.

Rapid Recall

Low-cost micro processor

An 8-bit, p.m.o.s. microprocessor from National, the SC/MP, is capable of a $2 \mu \mathrm{~s}$ cycle time and is powered by a single $10-14 \mathrm{~V}$ supply; timing is on the chip. At $£ 7.50$ in quantities, the device is intended for use in toys, domestic appliances, car electronics and similar mass produced equipment which does not benefit from very high speeds or computing power. Multiple units can be bussed, each chip having "queueing" circuitry to organize the flow of information on the bus.

National

Fast l-kbit r.a.m.

With an access time of 22 ns , the MCM10146 is claimed by Motorola to be the fastest 1024 -bit random-access memory yet available. The 1024 1-bit words are stored in a 32×32 array and selectēd by 5 -bit x and y co-ordinates. The "write enable" input controls operation; when low, data at the inputs is stored and, when high, the data is output, without inversion. Outputs can be wire-ORed. Power consumption is around 510 mW and the device is in a 16-pin d.i.p.

Motorola

Suppliers

Fairchild Semiconductors Ltd, Kingmaker House, Station Road, New Barnet, Herts.
National Semiconductor UK Ltd, 19 Goldington Road, Bedford.
A. Marshall (London) Ltd, 42 Cricklewood Broadway, London NW2 3ET.
Motorola Ltd, Semiconductor Division, York House, Empire Way, Wembley, Middlesex, HA9 0PR.
Rapid Recall Ltd, 9 Betterton Street, London WC2H 9BS.

Linear c.m.o.s. circuits

A further selection of tested circuits is published in Circards, set 28

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

Paisley College of Technology

Abstract

If logic circuits could be adapted only for amplifying functions, the exercise would still be worthwhile - it would avoid having to add separate operational amplifiers on those occasions when only simple signal processing is needed. In fact most other electronic circuits can be designed if care is taken to work with the characteristics of c.m.o.s. rather against them. A restriction is that only inverting stages can be used with negative feedback, there being no equivalent to the series-applied feedback circuits (e.g. voltage followers) common in operational amplifier designs. Non-inverting buffers or cascaded inverters lend themselves to positive feedback functions such as Schmitt trigger circuits. Variety can be introduced by using individual devices from certain c.m.o.s. i.cs in combination with inverters and gates.

As a general rule it is simpler to adapt those familiar circuits that use inverting amplifiers, unless the function required cannot be performed in this way.
Circuits that can be designed using inverting amplifiers include active filters such as the two-integrator loop, three-stage phase-shift oscillators, and the like. There is no need to restrict ourselves to simple buffers and inverters; other i.cs can be readily applied in analogue circuits of various kinds. For the more complex i.cs, the degree of internal interconnection reduces flexibility and it is less easy to see ways in which non-logic functions can be performed.
One form of flip-flop, the D-type, has a pair of outputs Q and $\overline{\mathrm{Q}}$. When fed with a positive-going pulse on the clock input C , the output Q is forced to take up the logic state on the data input D at the instant of clocking. This state at the output is retained regardless of any variation at D until the next clock pulse. Such a flip-flop finds application in the processing of analogue signals, as in some forms of analogue to digital converters and phase-locked loops. In a particular application, the delta-sigma modulator, the integrator receives a current from the input voltage, which
causes its output to change until the comparator output swings through zero. On the succeeding clock pulse the Q-output must change, since the D value has changed, and this changes the f.e.t. between its conducting and non-conducting states. The polarity of input and reference voltage must be opposite so that the fed-back reference can reverse the direction of integration. Combining the clock pulse with Q (or $\overline{\mathrm{Q}}$) in a suitable logic gate gives a pulse train in which the average number of pulses is proportional to input voltage.
The above appears to be a complex system, but two properties of c.m.o.s. allow efficient use of the flip-flop. The sharpness of the transfer-function means that the region of doubt at the D input is very small i.e. that even voltages close to $V_{s} / 2$ are clearly distinguished as either logic 0 or logic 1 . Hence the comparator can be dispensed with, the flip-flop acting as its own comparator. Similarly the output of the flip-flop is well-defined, and for a stable supply voltage the f.e.t. and separate voltage reference can also be eliminated reducing the system to one op-amp and a flip-flop.
Similar considerations lead to economical circuits for Schmitt trigger, astable and monostable circuits, by making use of the S and R or set and reset inputs, also available in D-type flip-flops. It must be remembered that such circuits may depend on properties which may not be covered directly by manufacturer's data, although the experimental evidence for their satisfactory behaviour is clear.
A semi-digital mode of operation is where inverters are used to drive power transistors. Output stages for class-D power amplifiers are examples where this technique is of use, the c.m.o.s. drivers also helping to switch the transistors off rapidly, though delays may be needed at the inverter inputs to avoid the possibility of simultaneous conduction of both transistors.
There is one family of c.m.o.s. circuits designed specifically for use in linear and non-linear analogue circuits viz the analogue gate/bilateral switch. By driv-
ing a parallel complementary pair of m.o.s. transistors with anti-phase logic level signals their conduction can be linearized so that the transfer of voltage is near unity when lightly loaded. This extends over the whole supply range and these gates can be used to switch components in and out of circuit as well as for direct gating of signals. Applications include d. to a. conversion, waveform synthesis and switched filters.

The technology developed for logic applications in c.m.o.s. has proved to have many characteristics that can be pressed into the service of linear circuit designers. The very low cost of these i.cs must commend them, and with care their limitations can be overcome or side-stepped in a wide variety of applications.

Topics in Circards set 28 (linear c.m.o.s. - 2) are:

Transistor outputs.

Current differencing amplifier.
Frequency-to-voltage converter.
Two integrator oscillator.
D-type analogue circuits - 1 .
D-type analogue circuits - 2 .
Bandpass/notch filters.
Low-pass/high-pass filters.
D.C. feedback pair.

Circards are a unique way of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp. 469/70.

DON'T PUT YOUR OFF. SPRING IN THE CAGE, MR WORTHINGTON

For the past 20 years the American electronics engineer has had it made. The exigencies of defence and the space race made him the blue-eyed boy. The universities couldn't turn him out fast enough and extra supplies were lured from Europe and the rest of the world with the bait of the almighty dollar. The beauty of it was - or so it seemed at the time - that you didn't need any overall experience. If, for instance, you knew your way around in gating circuits, that was sufficient. The golden age of the blinkered specialist had arrived. With the resources of Fort Knox behind it, the American electronics industry could virtually write its own cheques.
Then came the writing on the wall and a rude bit of graffiti it turned out to be. The space programme went into mothballs and defence projects suffered the fiscal chopper. The electronics manufacturers, faced with cancelled contracts, suddenly became much more discriminating in their hiring and far more profligate in their firing, particularly in the specialist bracket. There are now a lot of electronics engineers in the States who are either looking for jobs or fearing that each payday may be their last. And it's on the middle-aged that the chopper is mainly falling, to a degree that the situation has been christened "The Mid-Career Crisis".
Why the middle-aged? For two main reasons. One is that statistics indicate that, as a generalisation, engineers are at their most inventive in their 20 s and 30s, while at 40 they're going over the top - and Americans are great believers in statistics. The other factor is the sheer pace of the development in electronics technology, hare-like in its speed and its bewildering twists and turns. And, beyond doubt, in the struggle to keep abreast of developments, the older engineer is handicapped.

For instance, any engineer who graduated circa 1949 did so in terms of valve technology. His sole excursions into solid state would have been a
cursory glance at a quaint museum piece called the crystal detector, plus something on the silicon diode and metal rectifiers. True, there were one or two papers appearing in the literature concerning a weird little device called the point-contact transistor which allegedly could be used to amplify weak signals, but nobody at university knew much about it. The serious business lay with the omnipotent thermionic valve and so our friend, having mastered various apsects of this device and a groundwork of electrical engineering, took his degree. After a year or so in the laboratory and/or industry he could legitimately regard himself as a fully. fledged electronics engineer, with WELCOME on the mat at the portals of the learned society of his choice. God, it seemed, was in His heaven and all was right with the world. Or was it?
For, by this time the trickle of information on transistors was becoming an avalanche and in due course the point-contact transistor was elbowed out by all sorts of outlandish varieties of which he knew nothing.
He was now faced with a choice of action. He could retreat up the power scale where valve technology was still supreme or he could try to latch on to the theory of these new-fangled solidstate, current-operated devices. Being still young and enthusiastic he chose the second course, but it wasn't easy to throw his valve indoctrination overboard and go it alone with a textbook that never seemed to answer the questions he wanted to ask.

Then, scarcely had he mastered transistors when two further innovations blew up in his face, namely the computer and the integrated circuit. As a guessing-stick man he had a built-in mistrust of computers and all his training rebelled against the miniscule size and seeming fragility of the i.c. package; give him $1 / 4$-watt resistors and solid connecting wire every time in preference to these minute chips of semiconductor which had been mucked around by photographic and etching processes of which he knew nothing. And there was more to it than that. Up to this point in time, his position as a designer of discrete circuits had been unchallenged but now the advent of whole subsystems on a semiconductor chip, plus the onset of computer-aided design, had kicked the ladder from under him. As a circuit designer he was rapidly moving into the dodo category; despite all his hard-won experience he was back to square one, competing against wet-behind-the-ears graduates with uncluttered minds, all avid to use the new technologies.
So, all honour to those who survived; whuse minds were fiexible enough to cope and triumph over adversity. But it seems that in the United States at least there are many that weren't able to do so - hence the so-cailed Mid-Career Crisis. The man who is over 40 finds it
very difficult to change jobs and, if he's lucky enough to hold down his present one there is often an unpleasant climate in which the up-and-coming young Substrates leap-frog him to senior posts while he finds himself assigned to the humdrum routine chores.
So what's the answer? One approach over there is to arrange for group therapy, where engineers who are in this particular boat get together and discuss their problems among themselves. The philosophy behind this is "togetherness"; it is piously believed that when the over-40 engineer realises that he is not alone and that his anxieties are shared by others, then he won't worry nearly so much. A touch of Disneyland here, I fancy.
In considering the problem it's tempting to cast the top management as the heavy villain callously tying his victim to the railroad tracks of economic retrenchment. But it isn't as simple as that. In the American socio-economic structure (and equally in our own) any company has a rigid set of commandments to observe. The first of these is "Thou shalt keep thy shareholders happy" which, being interpreted, means providing them with an adequate return on their investment. Clearly this can't be done if, because of cancelled contracts, half the engineering staff is filling in its football pools in the firm's time. Equally clearly, expensive redundancies are to be avoided and sackings can involve unions and tribunals, while if either occur in quantity the news makes bad publicity in the media and causes the shares to sag. So the general philosophy is to give a leaden handshake to one higher-salaried engineer rather than to three lowly ones, particularly if he's shown signs of dragging his feet. Or, better still, make his life so frustrated that he opts out on his own.

So that's the way it's going in the States, it appears. We aren't nearly so defence-orientated over here, but cancelled Government contracts are caus. ing headaches and the American electronics industry's ups and downs are often a foretaste of what's likely to happen here. As far as 1 know, no parallel situation exists with us but it wouldn't get publicity unless it reached epidemic proportions.
Nevertheless, if I were young Substrate I'd think seriously about getting out of engineering and into business management, for this is the area on which our industry's faith appears to be pinned. As Mr J. R. Thompson, chairman of the Science Education and Management Division of the IEE has pointed out, last year's starting salaries for engineers were in the $£ 1,800-£ 2,000$ bracket, while business graduates were offered from $£ 3,250$ to $£ 4,800$. And in management you're not over the top at 40. An industry with all cowboys and no Indians should be an interesting spectacle.

The remarkable HL33. Only the camera is more action-packed than the programmes it makes.

For superb performance in a handheld portable colour camera, programmers all over the world choose the HL33.

Truly, this is one of the world's great ENG cameras.

Even in the most difficult situations, the HL33 is easy to use. Easy to manoeuvre, thanks to its compact size and light weight. Easy to set up. And easy to manipulate; using a digital command technique, a single coaxial cable up to 1500 metres long interconnects the back-pack unit and base station, carrying video, auto white balance, program audio, intercom audio, colour lock signals, HVslip, iris controls
signals, HV centering control and return video, etc.

Extremely rugged, with excellent stability, the HL33 is literally packed with remarkable features.

It has a unique optical system. Light bias. Base station genlock. Horizontal and vertical detail corrector. And a battery running time of up to 4 hours. There's a whole range of back-up accessory equipment to extend its application.

The man to contact is Chris Quarton.
Dixons Technical Ltd Tel: 01-437 8811 Dixons Technical Lid OF SOHO SQUARE

CRYSLON

 AUDIO EQUIPMENTSOUND AND COMMUNICATION EOUIPMENT TO SUIT ALL TYPES OF INSTALLATION

SOUND MIXERS POWER AMPLIFIERS TALKBACK UNITS CUE SYSTEMS STAGE MANAGER SYSTEMS

Write or Telephone for Details or Quotation

CRYSLON ELECTRONICS LTD.
Berrington Road Leamington Spa, Warks.

Tel.:
Leamington Spa (0206) $37628 / 9$

WW-088 FOR FURTHER DETAILS

100 WATTS ! HY200

The HY200 is the latest hybrid amplifier from I.L.P. It has been designed to be virtually indestructible lending itself to domestic and industrial applications. Latest design techniques including thermal shutdown make the HY200 the most advanced amplifier of its kind in the World. Only five connections are required, input, output, power lines and earth.

Features:
Short Circuit Protection
No External Heatsinking
Thermal Shutdown
Only Five Connections
Low Distortion
Price £21.20 +VAT£5.30
P\&P free

Specifications
Output Power 100 watts R.M.S. into 8Ω
Input Impedance $100 \mathrm{~K} \Omega$
Input Sensitivity 500 mV R.M.S.
Distortion 0.05\% Typical
Signal: Noise 96dB
Power Band Width $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power Supply $45-0-45 v$ D. C. at 2 Amps
Weight 1 Kilo (2.2lb)
Power Supply PSV90 suitable for one HY200
Price £10.56 + VAT£2.64
P\&P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd,
Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address

EMBOMnSOMTE electronics

Dept. 5, 56, Fortis Green Road Muswell Hill, London, $\mathrm{N} 10 \mathrm{3HN}$ telephone: 01-883 3705


```
Pack
    Fibreglass printed circuit board for front
        end. IF strip. demodulator, AFC
    and mute circuits
2 Set of metal oxide resistors. thermistor
        capacitors. cermet preset for
        mounting on pack 1
        transistors. diodes. LED, integrated
        circuits for mounting on pack
        maed front end module. coil
        assembly. three-section ceramic
        fiter
Fibreglass printed circuit board for
    stereo decoder
Set of metal oxide resistors, capacitors
    cermet preset for decoder
Set of transistors LED. integrated
    clrcuit for decoder
    components for channel
    selector switch module including
    libreglass printed circuit board,
```



```
    preset adjusters. etc.
```

9 Fun \qquad anction switch switch, 10 turn tuning potentiometer. knobs
£2.15 ncy meter drive components. fibreglass printed circuit board al transformer with electrostatic of capacitors, rectifiers. voltage regulator for power supply of miscellaneous parts. including sockets. fuse hoider. fuses. interconnecting wire, etc.
metal work parts including silk screen printed facia panel. acrylic silk screen printed tuning indicator panel insert, internal screen. fixing Darts, etc.
\qquad k11)
leak cabinet
required for $1-16$ inclusive are
FM tuner.
Total cost of individually purchased packs f7685

STEREO FM TUNER KIT

In the April and May issues of Wirehess World there was published a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by too many earlier tuners. This original circuit has been developed further anc is used as the basis for our new slimline unit. The front end is a ready builh pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an integrated circuit five-stage limiting amplifier providing excellent a.m. rejection. This is followed by a single coit integrated balanced demodulator from which the audio o. tput may be taken. Temperature compensated varicap tuning allows stations to be selected either by a ten-tum tuning potentometer or by a choice of six preset push-button controls. Each of the preset contrals can be adjusted on the front panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert. Additional circuitry includes temperature compensated AFC restricted to less than station spacing, inter-station muting, a single-lamp LED tuning indicator and a linear scale frequency meter. The stereo decoder, built on a separate board, is based on a well-proven integrated circuit phase-locked-loop to which has been added active filters to remove sub-carrier harmonics and birdies'. The power supply. to ensure station holding stability, uses an integrated circuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.

STYLED TO COMPLEMENT THE WORLD-WIDE ACCLAIMED LINSLEY-HOOD 75W AMPLIFIER

FREE
TEAK CASE WITH FULL KITS
ESOB T 5 carriage free (U.K.)

MORE KITS ON NEXT PAGE!

Typical P. \& P. charges at November 1st (E \& OE)

EXPORT NO PROBLEM

£'s NOW HEAP CHEAP!

By special arrangement the U K government has continued its policy of industrial sabotage and stimulation of inflation ensuring the rapid dechine in value of sterling. making it even easier for overseas readers to purchase the Powertran range of high-quality audio kits \& down 12% against

	L.H. 75 Watt		F.M. Tuner		$\mathbf{T 2 0 + 2 0}$	
	Air	Sea	Alr	Sea	Air	Sea
Australia	E42 60	E1140	\$26.05	+ 7.25	£17.05	14.65
Canada	£2350	£ 800	£1440	E5.05	£9.60	\&3.45
Denmark	$£ 1050$	17.40	¢6 00	¢4.65	± 4.75	¢3.25
Germany	$£ 10.50$	E7.65	E6.00	¢4.80	14.75	¢3.35
New Zealand	\& 41.60	£10.75	£25 25	E6.85	$£ 1685$	E4.40
Norway	¢1140	£7.30	-6.70	E4.50	E5.20	£3.30
Rep. S. Africa	£2500	£7.80	£1515	£4.85	£10.35	£3.45
Sweden	£1090	E7.25	¢6.45	¢4.50	¢4.95	£3.25
Switzerland	£8.90	E6.85	E5 30	¢4 25	E4. 10	E3. 10
USA	£2320	¢9.85	E1425	£6.30	£945	£ 405

75W AMPLIFIER KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where most conventional designs run out of ain at the extremes of the frequency spectrum. un out of gain at the extremes of the frequency spectrum frequencies of the the controls and the variable slop requencies of the the con of the scratch filter. There is a choice of four inputs, two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (modifications as per Hi.fi News April 1974)

Full circuit description
in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS
кrracemem £62.40 cäriage free (U.K.)

```
Pack
Fibreglass printed-circuit board
    for power amp
    of resistors. capacitors. pre-sets
        for power amp.
        amp. Inow using
        BD529. BO5301 
        Pair of 2 drilled, finned heat sunks
        glass printed-circuit board
        for pre-amp.
        low noise resistors, capacitors
        pre-sets for pre-amp
        flow noise high gain semicon-
        ductors for pre-amp
        of potentiometers lincluding
        m
    Set of 4 push button switches,
    Toroidal transformer comple
        with magnetic screen/housing primary:
        0-117.234 V. secondaries:
```

 Price
 f. 0.85
 £1 70
 £9 15

Pack
Fibreglass printed-circuit board Set of resiswors supply. resishors. capacitors
secondary fuses. semicon secondary fuses. semico
13 Set of miscellaneous parts ncluding DIN skts. mains nput skt. fuse holder. inter connecting cable, control knobs
14 Set of metalwork parts includıng silk screen printed tascia panel and all brackets, fixing parts. etc.
15 Handbook
Teak cabinet
2 each of packs 1-7 inclusive are required for complete
Total stereo system purchased packs

V A T Please add 25\%*
to all U.K. orders
("or at current rate if changed)
U.K. ORDĖRS - - Carriage free (MAIL ORDER ONLY),
SECURICOR DELIVERY: For Securicor delivery to mainland-add E2 + VAT per kit. OVERSEAS - Postage at cost $+50 p$ special packing, handling (remittance in sterling please) Dept. WW2
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

STEREO IC DECODER

MOTOROLA MC1310P EX STOCK DELIVERY

Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
$1 / \mathrm{P}$ level: 560 mV rms
Input impedance $5 \mathrm{ok} \Omega$ \qquad Power requirements: 885 mb per channe
KIT COMPRISES FIBREGLASS PCB

(Roller tinned). Resistors. I C Capaciors. Preset Potm \& Comprehensive Instructions	$\begin{array}{r} \text { onLy } \\ £ 3.98 \end{array}$	WHY PAY MORE?
LIGHT EMITTING OIODE	RED	29p
Suitable as stereo 'on' indicator for above		59p
MC1310P only £2.15	. 10p	

As the
thousands, our customers can benefit from our wide experience

Please add V.A.T. to all prices

inounp tlectronics
PORTWOOD INOUSTRIAL ESTATE, CHURCH GRESLEY
BURTON-ON-TRENT, STAFFS. DE11 9PT

QUALITY AMPLIFIER KITS by POWERTRAN

WIRELESS WORLD AMPLIFIER DESIGNS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier--the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY
 Pk. 1 F/Glass PC

Pk. 2 Resistors. capacıtors, pots Pk. 3 Semiconductor set 2OW LINSLEY-HOOD Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots Pk. 3 Semiconductor set 60V REGULATED POWER SUPPLY Pk. 1 F/Glass PCB Pk. 2 Resistors. capacitors, pots Pk. 3 Semiconductor set

BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pre sets. transistors

Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set (with knobs)

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design
TRRP Pk. I Replay amplifier F/Glass PCB $£ 1.10$ TRRC Pk. 1 Record amp./meter drive cct. F/Glass PCB
£1.60
TROS Pk. 1 Bias/erase/stabilizer cct. F/Glass PCB
For details of component packs for this design please write for free list.

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit convention ally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World. involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined bandwidth. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

Pack
$1 \begin{aligned} & \text { Fibreglass PCB faccommo } \\ & \text { dates all filters for one }\end{aligned}$ dates all filters for one channel)
Set of pre-sets. solid tantalum capacitors. 2\% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stere $£$ system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS £2.6

READ/TEXAS 20wamp.
Pack
\qquad $£ 4.20$
$£ 2.65$ 206 off e
65 system
4 system
4
4 Special heat sink as sembly for set of 3 amplifiers
5 Set of 3 O/P coupling rapacitors 2 off packs 4,5 required for
stereo system

POWER SUPPLY

FOR 2OW/CHANNEL STEREO
C0.70 SYSTEM
Pack
Fibreglass PCB
Set of rectifiers. zener diode. capacitors. fuses. fuse holders
3 Toroidal transformer
60.85

E 1.00
MORE KITS ON PAGE 89

ELECTRONICS

AND NOW OUR NEW T30 + 30 30 WATT VERSION!

The $120+20$. already a development from the very successful Texan, has been developed still further to include all the improvements suggested in the P W July 1975年low-up article and our new model offers RF interference watts/channel of power

Pack		Price
1	Set of all low noise resistors	£ $1.05^{\text { }}$
2	Set of all small capac tors	£2.10
3	Set of 4 power supply capacitors	E2.05
4	Set of miscellaneous parts including DIN sockets fuses fuse holders control knobs etc	f 190
5	Set of slide and push button switches	$f 120$
6	Set of potentiometers and selector switch	¢200
7	Set of all semiconduciors	£7.75
8	Special Torordal Transtormer	£6.80
9	Fibreglass PC Panel	E2.90
10	Complete chassis work hardveare and brackerts	£4.80
11	Pretormed cable leads	¢0. 0.40
12	Handbook (free with complete kit)	20.25
13	Teäk Cabınet	± 4.50

FULL KIT (WITH FREE TEAK CASE) ONLY £32.95

SEMICONDUCTORS
as used in our range of quality amplifiers

V.A.T. Please add 25% * to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS - Post free (mail order only)

SECURICOR DELIVERY-- for this optional service (Mainland only) add $\mathrm{t} 2.00+$ VAT per kit
OVERSEAS - Postage at cost +50 p special packing, handling (remittance in sterling please)

Dept. WW2
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

AT THESE PRICES and buy quality

KINNIE COMPONENTS

10 NELMES WAY,
HORNCHURCH, ESSEX RM11 $20 Z$ HORNCHURCH 45167

10 PIECES $101 \mathrm{ln} \times 790_{1 n}$ PLUS FREE BOTTLE OF CIRCUIT ETCHANT £2.50. P.P. 50p

OVERLOAD CUT-OUTS. Panel mounting
$800 \mathrm{M} / \mathrm{A} / 18 \mathrm{amp}-10 \mathrm{amp} 45 \mathrm{p}$. P.P. 5 p
ADVANCE TRANSFORMERS "VOLSTAT". Input 240 V AC.V.50. 3 Bv at 1 amp. 25 v . at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$ at $200 \mathrm{~m} / \mathrm{a}$ E3. PP. 65p
C.V.75. 25 v at $21 / 2 \mathrm{amp}$ £3.25. P P. 75 p
C.V.100. 50 v at 2 amp . 50 v . at $100 \mathrm{~m} / \mathrm{a}$. ©4. P P 75 p
C.V.250. 25 v at 8 amp . 75 v at $1 / 2 \mathrm{amp} \mathrm{E6.50} \mathrm{P} P \mathrm{f} 50$
 C.V.S. TRANSFORMER. Prim $110 / 240 \mathrm{~V}$ Sec 400 V 100 m/a E3. P.P. 65p.
L.T. TRANSFORMER "TOROIDAL". PrIm 240 v Sec 30 v at $1 / 2 \mathrm{amp}$. Size 3 in. dia, $1^{\prime \prime}$ thick £1.65. P P 20 p
L.T. TRANSFORMER. Prim $240 \mathrm{~V} \operatorname{Sec} 27 \cdot 0-27$ at $800 \mathrm{~m} / \mathrm{a}$ 7.5 amp £2.25. P.P 50 p
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v} \mathrm{Sec} 50 \mathrm{v}$ at 10 amp €10. P.P. £1.50
L.T. TRANSFORMER. Prim 240 v Sec 18 v at 15 amp \& 12v @ 1 amp. E2.25. P P 50p
L.T. TRANSFORMER. PIIm 240

Sec 18 v 1 amp. £1.P.P L.T. TRANSFORMER. Prim 240 v Sec 12 v at 1 amp 70p.
PP. 25 p

ALL PRIICES INCLUDE V.A.T. EXCEPT WHERE SURCHARGE IS INDICATED

QUADROPHONIC DECODER MODULE. C B.S./S O. TYPE, for PE "RONDO" Board. Complete with Data. E4 each
15% V.A.T. Surcharge
S.T.C. CRYSTAL FILTERS (107 MHz). 445 -LQU-901A (50 Khz spacing). £3. P P 20p 445.LQU.901B (25 Khz spacing). £4. P.P 20 p 10.7 M.H.Z Canned I Fs. Size $1 \times 1 / 2 \times 1 / 2$ in (with 3 GANG TUNING
20 ANG TUNING CAPACITOR 8.5 PF to 320 PF 80p. P P 20p.
V.H.F./U.H.F. POWER TRANSISTORS (type BLY38) 3 wat output at 100.500 Mhz, $\mathbf{6 2 . 2 5 .}$. P.P 10 p . etc.) scaled half black/half red Size 1×1 inch 65 p . P P 15 p

HIGH CAPACITY ELECTROLYTICS
$2.200 \mathrm{uf} / 100 \mathrm{v}(4 \times 13 / 4 \mathrm{n}$.) 90 P. P.P. $20 \mathrm{p} 2.500 \mathrm{uf} / 100 \mathrm{v}(4$ 2in) 90 p . PP. $20 \mathrm{p} .4 .700 \mathrm{uf} / 25 \mathrm{v}(2 \times 1 \mathrm{kin}$) 65 p . P.P. 15 p $10000 \mathrm{uf} / 25 v(4 / / 2 \times 1 / / 2 \mathrm{n}) 75 \mathrm{p}$. P P $25 \mathrm{p} 25.000 \mathrm{uf} / 40 \mathrm{v}(43 / 4 \mathrm{x}$

MULTICORE CABLE. 6-core (6 colours) $14 / 0076$ Screened P.V C 22p per yard; 100 yards at £16.50. P P 2 p a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P V.C
22 p per yard. 100 yards $£ 16.50$. P P 2 p per yard 30 -core
 yard
RIBBON CABLE (B^{\prime} colours) 10 m ' £1.65. P P 20 p 100 m B-core $7 / \mathrm{mm}$ Bonded side by side $£ 11.50$. P.P

TRANSFORMERS

L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$ Sec 23/24/25v at 10 amps. £7. P.P.£1. $10 / 240 \mathrm{v}$. $20 / 21 / 22 v$ at 8 amp E6. P.P.E1. $110 / 240 \mathrm{v}$. Sec L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec $0 / 24 / 40 \mathrm{~V}$ at $11 / 2 \mathrm{amp}$ (Shrouded) £1.95. P.P 50p. L.T. TRANSFORMER. Prim, $200 / 250 \mathrm{~V}$ Sec $20 / 40 / 60 \mathrm{v}$ at 2 amp . (Shrouded) £3. PP. 50 p L.T. TRANSFORMER. (H D.) Prim $200 / 250 \mathrm{v}$ Sec. 18 v at 27 amp ., 40 v at 9.8 amp.; 40 v at 3.6 amp .; 52 v at 1
amp . 25 v at 37 amp . 17.50 . P.P E 2.50

WE REGRET THAT ALL ORDERS VALUE UNDER \&S MUST BE ACCOMPANIED BY THE REMITTANCE.

HIGH - SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v or 48 v (sta P P. 15 p
 5 digit (non reset) 24 v . £1.50. P P 15p

H.D. ALARM BELLS. 6in. Dome, $6 / 8 \mathrm{v}$. d.c. Heavy cast housing for exterior/interior use £3.75. P.P. E1. Connecting wire (twin/twisted) 220 yd . reel £3. p.p. 75 p
MINIATURE REED RELAYS $(3 / 6 \mathrm{v}$) 1 make ($30 \times 8 \mathrm{~mm}$) 20p; 2 make ($32 \times 12 \mathrm{~mm}$) 30p. P P. 5p. 12 v .2 c/o 5 amp. HD. RELAY 65p. P.P 15p. 240VA C. RELAY (PLUG-IN TYPE) $3 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$ contact with base $\mathbf{8 5 p}$ p. P.P 25 p

GARRARD PLINTH \& COVER. For 'Zero-100' etc. beautifully finished in brushed aluminium an̆d black with

24v. A.C. RELAY (PLUG-IN). 3
BULK COMPONENTS OFFER. Resistors/Capacitors. 60\% new components. $£ 2.50$, P.P 35p. Trial order 100 pcs. 60p. PP 20p 15% V.A.T.
D.C. SUPPLY. Input 240 v a.c giving $171 / 2 \mathrm{vdc}$. @ $11 / 2$ amp. MINIATURE "ELAPSED TIME" INDICATORS. (0.5000 hours) $45 \times 8 \mathrm{~mm} 75 \mathrm{p}$.
L.T. TRANSFORMER prim 240 v Sec $20 \mathrm{v} @ 2.5 \mathrm{amp}$. $£ 2$ P.P 50p
C.T. TRANSFGRMER $f^{\circ} \mathrm{C}$ CORE) $200 / 240 \mathrm{~V}$. Secs. 1.3.8.9v All at 1.5 amp 50 v at 1 amp £250. P.P. 50 p . L.T. TRANSFORMER ("C"' CORE). 200/240v Sect
1-3.9-27v AII at 4 amp . £4. P.P. 50p 1-3.9-27V All at 4 amp ©4. P.P. S0p
L.T. TRANSFORMER ('C'. CORE) $200 / 240 \mathrm{~V}$ Secs. 1.3-9-27v All at 10 amp $£ 7.50$. P.P E E 50.
L.T. TRANSFORMER (C^{\prime} CORE). $200 / 240 \mathrm{v}$ Secs
 L.T. TRANSFORMER (C' CORE) $120 / 120 \mathrm{v}$. Secs.
1.3-9-9v. All at 10 amp . E6.50. P.P. £1.50.
L.T. TRANSFORMER ("C' CORE). $110 / 240 \mathrm{v}$. Secs. 1-3-9v.

10 amp 35 v . \uparrow amp. $50 \mathrm{v} .750 \mathrm{M} / \mathrm{A}$ E6.50. P.P.£ 1.50 .

MAIL ORDER ONLY. PERSONAL CALLERS BY APPOINTMENT.

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av, continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
Maximum power output: $\mathbf{9 0}$ watts av. per channel into 5 ohms.
Distortion, proamplifier: Virrually zaro (cannot be identified or measured as it is below inheremt circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 Khz)
Hum and noise: Disc, - 83 dBV measured flat with noise band width 23 Khz (rof 5 mV); $-88 \mathrm{dBV}{ }^{-1} \mathrm{~A}^{\prime}$ weighted (ref. 5 mv)

Hear the HD250 at

SWIFT OF WILMSLOW

5 Swan Street, Wilmslow, Cheshire (Tel. 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Barik
Square, Wilmslow (Tel. 29599) Square, Wilmslow (Tell. 29599)
In stock: All Radford apeaker drive units and crossovers, 2 D22 preamp. Low
Distortion oscillator LDO3 and Distortion Measuring set DMS3.
WW—027 FOR FURTHEŔ DETAILS

SINCLAIR CALCULATORS

Cambridge £8.95. Scientific $£ 13.95$ Oxford $100 £ 8.95$. Oxford $200 £ 13.95$.
Oxford $300 £ 22.98$. Oxiord 300 Ez.95.
Programmable Scientific PO.A. Oxford mains adaptor £3.19. Mains adaptor for Cambridge, Cambridge Memoery and
Scientific $£ \mathbf{3 . 1 5}$.

S-DECS AND T-DECS

S. OeC $£ 2.24$
T. DeC $£ 4.05$

H-DeC A E4.45 ic carriers: 16 dili: plain $£ 1.1$
With sockel $£ 2.2$
10T05: plain $\mathrm{E}, 09$.
 L2. SSU 3 for E2. SSMi 3 for E2.40, 25 of order accompaniad by P阳 Electronics Coupon.

BATTERY ELIMINATORS

 6-way special Swilched oulput of$41 / 2.6 .71 / 2.9 .124$ a 500 mA with unique 4-way mutil jeck con. nector and free matching sockel. \&4.95.

3-WAY MODEL Switched output of 6 7/e. 9 N at 250 md with ninue 4-way multijack connector and lree mu
E 2.95.
hadio models 50 mA with poppent radions. otce. 6V E2. 55 gy $\mathbf{~ 2 2 . 9 5 . ~ D o u b l e ~}$ $41 / 2+41 / 2 V$ E3.95. $6+6 \mathrm{Y}$ £3.95. $9+9 \mathrm{~V}$ £3.95.
CASSETTE MAINS UNITS $71 / 2$ V output. Complete with 5 pin DIN plug

CBM CALCULATORS

776MO 7 degits/\%/memory 47.16 . -887D 8 digit/\%/memory/constant: £9.95. 385 R 8 digit/ \%/const/rechargea-
ble $£ 10.85$. GL 976 MD £9.50. GL976MR ble £10.85. "GL976MD £9.50. GL976MR
£13.60. 'GL997D £11.95. GL997R $\begin{array}{cccc}\text { £13.60. } & \text { GL997D } & \text { £11.95. GL997R } \\ \text { £15.30. } & \text { SR79190 } & 8 & \text { digit/power/ }\end{array}$ £15.30. SR79190 8 digit/power/
roots/memory/scientific notation/ $/$ /trig $/$. $\log £ 14.55$. SR4148R £42.95. Mains unit for " machunes £2.95. Others include mains units.

SINCLAIR	IC20 10W + 10W ster cou amp kit with tree booklet and printed circuil. E8.58.
	PI20 nower simply bit for Hove. E5.91.
AMPLIFIER	VP20 volume, towe control and proamp kit with printed circuits. E7.95.
	SP20 lodispenker... 52.95.

SINCLAIR PROJECT 80

AFU £7.55. FM tuner £13.25. Decoder
C8.55. 240 ©5 75 .
 c9.25. PZ5 53.95 . Project 805 . PZ6 $\mathbf{C 8} .70$.
JC12 AMPLIFIER
6W IC audio amp
with free data and
printed circuit
£2.80. Special
ofier only $\mathbf{E} 2.45$ it
bought with deluxe

DELUXE KIT FOR JC12

Inciudes all parts for the pcb and voi. bass and ireble controls for mono version $\mathbf{E 2 . 2 9}$. Stereo version with balance control £4.95.
JC12 POWER KIT
Supplies 28 V ai 0.5 Amps $£ 2.95$.
JC12 PREAMP KITS
Type 1 for magnatic pickups. mics and tuners. Mono model £1.95. Stereo £3.45. $95 p$. Stereo $£ 1.90$.
SEND SAE FOR FREE DATA

WW-021 FOR FURTHER DETAILS

WW-620 FOR FURTHER DETAILS

TRANSFORMERS
 ALL EX-STOCK - same day despatch

MAINS ISOLATING
12 and/or 24-VOLT
PRí 120/240V SEC 120/240V
PRIMAFY 24-VOLT

Ref. No.	VA (Watts)	¢	PS_{p}
07°	20	3.77	58
149	60	4.69	72
150	100	5.33	85
151	200	8.54	1.12
152	250	10.32	1.41
153	350	12.47	141
154	500	14.33	161
155	750	21.94	BRS
156	1000	30.51	8RS
157	1500	34.89	8RS
158	2000	38.92	8RS
159	3000	61.48	8RS

Ref.	
No.	
	111
213	
	71
18	
	70
	108
72	
	116
	17
	115
	187
	226

50 VOLT RANGE
SECONDARY TAPS

	Amps.	¢	Psp ${ }_{\text {P }}$
102	0.5	2.71	58
103	1.0	3.55	72
104	2.0	4.95	85
105	3.0	6.10	97
106	4.0	7.98	1.12
107	6.0	12.71	1.25
118	8.0	13.63	1.61
119	10.0	17.75	BRS

Barrie Electronics Ltd.
3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST.

DEMA ELECTRONOS ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

MONTHLY SPECIALS from DEMA ELECTRONICS

 B261 1024 Bit Ramt L/Power 1702 A 2 KE . Prom U/Volet
5203204 BH UNVIO PROM 21021024 bit Statis Rum

TTL 7400 SERIES	
7400	$£ 0.11$
7401	0.11
7402	0.11
7403	0.11
7404	0.13
7405	0.13
7406	0.22
7407	0.22
7408	0.14
7409	0.14
7410	0.11
7411	016
7413	0.26
7416	0.22
7417	0.22
7420	011
7426	0.23
7430	0.12
7432	0.22
7437	0.25
7438	0.25
HIGH SPEED 74 H00	

74HOO EO $\begin{array}{ll}74 \mathrm{HOO} & \mathrm{\&} 016 \\ 74 \mathrm{HO1} & 0.16\end{array}$ $\left\lvert\, \begin{array}{rr}74 \mathrm{H} 20 & £ 0.16 \\ 74 \mathrm{H} 21 \\ 74 \mathrm{H} 2 & 0.16\end{array}\right.$

CMOS 4000 SERIES

CMOS 4000 SERIES							
4000 A	£ 019	4014	£ 110	${ }^{4028}$	£ 095	4071	£ 0.23
4001	019	4015	110	4030	0.50	4072	0.25
4002	019	4016	0.55	4042	0.95	4073	0.25
4006	090	4019	0.67	4043	1.20	4075	025
4007	0.19	4020	115	4044	120	4078	0.25
4008	130	4021	110	14049	0.48	4081	025
4009	0.49	4023	019	4050	048	4082	0.29
4010	0.49	4024	0,85	4066	0.75	4528	0.85
4011	019	4025	0.19	4068	0.23	4585	1.25
4013	039	14027	075	4069	0.23		

TERMS:
PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER
MASTERCHARGE, BANKAMERICARD, BARCLAY CARD ACCEPTED. TERMS OFFERED TO SCHOOLS \& INSTITUTIONS.
POSTAL AND HANDLING CHARGES SHIPMENT VIA AIR MAIL
under 4.99 add 0.35 £ 10 and over 5.00-9.99 add 0.25 DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA Cable DEMAELINTL
 sizes are used widely for housing instruments and control gear. Standard rappings avaliable on 4 sizes. Easy to machine. stable mechanically, excellent . scheening S.s. screws are retained ess for quantities
Pads provided internaliy for mounting terminal strips Lid seal recessed to protect them aganst mechanical damage Mounting screws ourside gasker areal

masoment
 WEST HYDE WH

Open Mon to Fri. 9 a.m to 5.30 pm
WEST HYDE DEVELOPMENTS Lid, Ryefield Cres., Northwood Hills, Northwood, Middx HA6 INN Tel: Northwood 24941/26732

Teiex: 923231 Write or phone for new free catalogue WW-065 FOR FURTHER DETAILS

Introducing the small speaker with'big' ideas Celestion UL6

Compact Shape

How small? $11 \frac{1}{2} \times 16 \times 8 \frac{3}{4}$ in to be precise these measurements are the only 'small thing about UL6

Expansive Sound

UL gives expansive, open, natural sound; only Celestion have truly conquered the technical problems which have previously been held to be insurmountable.
An intensive three year development programme
has crystalized a life times know-how of
speaker design and given birth to UL

Superior Performance

Inside the beautiful exterior are the new 'acoustic motor units' which mat.e these designs possible. New soft dome 'tweeters' of impeccable design to give smooth sweet treble sounds: bass units built on to diecast chassis, with small ultra-low distortion bextrene diaphragm, extra large voice coil ($1 / 1 / 2 \mathrm{in}$.) and magnet for high accuracy and ability to handle wide dynamic range and high peak music levels when required The third diaphragm is Celestions auxiliary bass radiator 'ABR' which comes into its own on the
extreme low notes of instruments
such as organ and double bass.
UL means ultra linear UL also represents urtimited quality of sound; Celestion experience makes possible a prestige product at an ordinary cost
The UL6 speaker has precise and beautiful balance both aurally and visually.

Celestion

Hear the full range speak for itself:
Please send me full details of
UL6 \square ULE \square UL $10 \square$ and inform me of my nearest franchised demonstration centre.

Name

Address

More than just a cataloguse! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components e.g. capacitors, cases, knobs, ver oboards, edge connectors; plugs and sockets, lamps and lampholders, audio leadis, adaptor plugs, rotary and slide potentiometers, presets, relavs, resistors (even 1% types!), switches, interlocking pushbuttonswitches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7-segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc
Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesise includes the most popular teatures of the
4600 model, but is simpter Faster to operate, it has a switch
patching system rather than the matrix patchboatd of the larger unit and is paricularly suitable for live performance and portable use.
S.A.E. please for price list

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI We stock all parts (excep woodwork) including all the metal work drilled and printed as required to suit our components and PCBs Complete reprint of article - price $15 p$

The 4600 SYNTHESISER

We stock all the parts for this brillantly designed synthesiser including all the PCBs, metalwork and a drilled and

 printed front panel, yiving a superb professional finish. Opinions of authority agree the ET I International Synthesiser is technically superior to most of today's models Complete construction details avalable now in our booklet price $£ 1.50$ or S.A.E. please for specification

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our teaflet MES51, price 15p. deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops Leaflet MES52, price 15 p, describes the extension of the organ to iwo keyboards each with five vorces and the extension by an octave of the organ's range
 Solid-state switching and new footages along with a pedal board and a further extension of the organ's fange are shown in leaflet MES53, price 35p. (Pre-publication price $15 p$)

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes madivance for just 30p a year (refunded on purchases). It you already have our catalogue send us an s.a.e and we'll send you our latest list of
GUARANTEED prices. Send us 30p and we'll pu: you on our mailing list you'll receive immediately our latest puice list then every two months from the starting date shown on that list you'll receive detals of our prices for the next GUARANTEED period before the prices are implemented! plus detals of any new lines, special offers, interesting projects and coupons to spenct on components to repay your 30p
NOTE The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential lirst step

1 enclose Cheque/P O. value For copy/copies of your Catalogue Call in al our shop, 284 L
Please address all mall to $\square \rightarrow$

THE RADIO SHOP

FREQUENCY COUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC INSTRUMENTS
TYPE 901
CRYSTAL OVEN
two tone blue case
${ }_{\text {£375 }} 5 \mathbf{5 0}$ мнz
Sensitivity 10 mV . Stability 5 parts 10^{10}

301 M	32MHz 5 Digit £78	401	32M
50	32MHz 8 Digit £178	701A	80MHz 8 Digit £195
801A/	300MHz 8 Digit £305	901M	520MHz 8 Digit £375
8018/M	250MHz 8 Digit £262	Mem	rsions available it not
Type 101 IMHz 100khz 10kHz Crystal Standard $£ 85$ Type 103 Dff/Air Standard $£ 85$			
SUPPLIERS TO: Ministry of Defence, G.P.O. B.B.C., Government Depts., Crystal Manufacturers and Electronic Laboratories world-wide			
	R.C.S. ELECTRONICS NATIONAL WORKS, BATH ROAD hounslow, MIDDX. TW4 TEE Telephone: 01-572 0933/4		

WW-091 FOR FURTHER DETAILS

TELEPHONE 0272-421196
TRIACS

 $\begin{array}{lrrrrr}\text { NASO85WN } & 400 \mathrm{~V} & .76 & \text { NAS } 1502 \mathrm{X} & 200 \mathrm{~V} & 1.02 \\ \text { NAS1504W } & 400 \mathrm{~V} & 1.51 \\ \text { NAS0554X } & 400 \mathrm{~V} & .15 & \text { NAS } 1504 \mathrm{X} & 400 \mathrm{~V} & 1.48 \\ \text { NAS0856W } & 600 \mathrm{~V} & 1.10 & \text { NAS } 1506 \mathrm{~W} & 600 \mathrm{~V} & 1.89\end{array}$

		$\begin{aligned} & .25 \\ & .38 \\ & .30 \\ & .38 \\ & .82 \end{aligned}$			$\begin{aligned} & 26 \\ & \left.\begin{array}{l} 36 \\ .36 \\ .35 \\ .50 \\ .90 \end{array}\right) \end{aligned}$			
					16AMP ISOLATED TAB NAS806P NAS806O NAS306R NaS806S .50 $\substack{.53 \\ 1.15}$.15			
Cuensiv Prices on Appliction. 5 AE								
INTEGRATED CIRCUITS								
		$\begin{array}{r} .54 \\ .92 \\ .90 \\ 1.05 \end{array}$			$\begin{gathered} .78 \\ \substack{1.75 \\ \hline 75} \end{gathered}$	$\begin{aligned} & \text { y } \\ & \text { chat } \\ & \text { ond } \\ & 723 \end{aligned}$		27 35 50 67
CLOCK CHIPS								
$\begin{aligned} & \text { CT } 7001 \\ & 28 \text { Pin Ski } \\ & \text { Data } \end{aligned}$	28 Pin		$\begin{aligned} 54.95 \\ \hline .55 \\ \hline 15 \end{aligned}$			$\begin{aligned} & 1224 \\ & n_{n}^{125 k} \end{aligned} 16 \mathrm{Pin}$. 15
				$\begin{aligned} & \text { isplay } \\ & \text { splay } \end{aligned}$				
- Please add 25% vaT remander 8%. Posiage and pockng 20 per order								

 Bargains in Semi-Conductors, components, modules \& equipment.

B.P.P Packs

Originated in 1959 by the Company's managing director, his were the first semi-conductor and component packs to be marketed in this country, and indeed, the company's name grew out of "British Industrial Pre-Packed Components". Today, Bi-Pre-Pak continues to occupy a position of pre-eminence in the supply of packs as well as a vastly extended range of products detailed in our latest 24 -page A. 4 size free catalogue. Send copp by return.

IT'S ALL IN OUR FREE CATALOGUE

Component Packs

CP1 $150 \begin{gathered}\text { Capactiors, muxed bag of paper. silver mica, electrotytics, } \\ \text { eic Approx quantity, counted by weight (posi and }\end{gathered}$

YOUR SUPPLIERS FOR:
Somiconductors - all popular trpes Optoelectionic
devices inc Nixie Tubes. Solder Tools. Terminals. Switches.
Knobs. E. GP O items, Aluminum Boxes. Tracs:
Thyristors. Zener Doodes and mueh more in our catatogue
and shop

Semi-Gondurtins

- TESTED AND GUARANTEED PACKS
 Secade counter Get one FREE. these are 60 p each in
fingies
fin

All the following are at 60p each pac
TPG. $\quad 5$ SN7400 integrated circuirs. 14 pin dual in line TTL type.
Quad 2.nput NAND gare Get one FREE these are 15 p each
Light
Light dependant resisitors. 400 ohms light. 1 megohm
dark $1 / 4^{\prime \prime}$ dia dark $1 / 4{ }^{\prime \prime}$ dia
AC156 OCB1/2 OC72 eic
BYill rectitier

lass iype. pre amp transistor. black TP15 20 OC8 1 Germanium PNP audio output transistor. white glas
 $\begin{array}{llll}\text { TP17 } & 20 & 1 & \text { watt cener diodes. Mixed volirages. } 6.8 \text { to } 43 \text { volts } \\ \text { TP18 } & 20 & 2 \text { N3700/8/9/10 } \\ \text { transistors. NPN siticon plastic }\end{array}$ TP19 $100 \begin{gathered}\text { unmarked } \\ \text { Diodes. mixture of germanium, gold bonded. silicon. eic. a } \\ \text { useful selection of many types, marked and unmarked }\end{gathered}$ TP 2010 Msetul selection of many types. marked and unmarked. P23 20 BFY50/1/2 2 N696/7. 2 N 1613 erc. NPN silicon $10 \cdot 5$ TP24 $20 \begin{gathered}\text { Uncoded COMPLEMENTARY TO PAK TP24 } \\ \text { BFY64.2N29OA/5. EtC. PNP s. } \\ \text { COMPLEMENTARY }\end{gathered}$ TP30 20 COMPLEMENTARY to PAK TP23. 18 simitar to 8 BC 108
 TP32 $20 \quad \begin{gathered}\text { erc. uncoded } \\ 2 \mathrm{~N} 2926 \text { silicon plastic transistors, uncoded and ungraded }\end{gathered}$

UNTESTED PACKS - 60p aach Specially for keen bargain hunters

$\begin{array}{ll}\text { UT6 } & 25 \text { Zener diodes. } 1.11 / 2 \text { watl top hat iype. mised voltages } \\ \text { UT9 } & 40 \text { NPN silicon planar tiansistors, of the } 2 \mathrm{~N} 3707 \text {. }\end{array}$
UT10 15 low nowise eamp $\begin{aligned} & \text { linsistors. PNP germanium and NPN silicon. }\end{aligned}$
T13 mostly 10.3 but some plastic and some marked
TTL. OTL. marked and unmarked some definitely good
but old types.
For full ha
BRIDGE RECTIFIERS Plastic encapsulated

8 p
$\mathbf{3 p}$

POWER TRANSISTORS

	vce	Warts	1 camps	Price
40 P 1	15	20	3	$20{ }^{\text {p }}$
40 N 2	40	40	4	30p
40 P 2	40	40	4	30p*
90 N 1	15	45	4	$25 p$ *
90 P 1	15	45	4	$25 p^{\text {* }}$
90N2	40	90	8	35p ${ }^{\text {. }}$
90 P 2	40	90	8	35p*

integrateo circuits

Sundry

For MW and IF Covers 550 KHz to 1.6 MHz for MW and 400 to 550 KHz for If Fully portable Invaluable in AM repair and alignmen
£4.25 ($\mathrm{P} / \mathrm{p} 40 \mathrm{p}$) POCKET SIGNAL INJECTOR tountann-pen type invaluable for fault tracing in radio sets. amplifiers
TVs tape recorders. etc Takes one HP7 battery. EX-G.P.O Sin SIDECUTTERS EX-G.P.O. Sin SIDECurters
Not new but in periect order per part
EX-G.P.O. $\mathbf{6}^{\prime \prime}$ LONG NOSE PLIERS
Not new but in pertect order. per pair
 Brand new by fampus manufacturer. 625 tines. Channels 21.65 . 1 digaj
tor use as $t V$ sound receiver With data BOOKS
All tree of vat We cant very large stocks of rechnical books by Babani \& Bernard Publishers, by Newnes and Butterworth as well as reference books from the Common Marker in English/German/trahan All detailed in our catalogue
money saver for car owners
The Super Spark Capactit Discharge Ignition Unit. developed out of
our original ETI model (of which we have sold well over 9 Ooo) enab of you to enfoy this systom at a truly economic price Facilities include simple adaption to pos or neg earth immediate switch back to
conventional ignition anti-burgla immobolisation with all par rotally enciosed strong metal case Very easy so fit and install With full
nstructrons. P / P acd 50) nstructions. (P/P. add 50p)

X-44 POCKET SIZE R.F.	
CROSS HATCH GENERATOR	
Synch Uses 4 aikaine type 1600 batisBiank raster taccility FOR COLOUR AND MONO. (P/P add 35p)	
	£27.50

LOOK OUY NEXT MONTH
FOR THE NEW
STERLING
SOUND MODULES

B-P-P SECURITY CHECK POINT

Write your own name and address clearly in block capital letters.	make sure you get our NAME AND ADDRESS RIGHT
Check that your ordes is correct for description. quantity and puce	WHEN OROERING. Cash (cheque, money or posfal order)
Don't forger VAT at 25% of rotalvalue of order unless otherwise stated	with your order. please. - Mention thus poumal when ordering if you don' f want to cut out the couson

terms of business:
VAT at 25% must be added to total value of order, except for nems marked or (8%) when
VAT is to be added al 8% NO VAT on overseas orders POST $\&$ PACKING Add 30 to VAT is to be added al 8\% NO VAT an overseas orders POST \& PACKING Add 30 p tor UK
orders excepi where shown otherwise Minimum mallorder acceptable E1 Overses orders
add i 1 tor postage And ditterence will be credited or charged PRICES Subject to alleration without notice AVAILABILITY All tems avallable ar time of going to press when every effon To: BI-PRE-PAK, 220/222 WEST RD.
WESTCLIFF-ON-SEA, ESSEX SSO 9DF Please send
for which I enclose
inc. VAT
NAME
ADDRESS

AIRMEC FREQUENCY METER TYPE 265: 0-6000 rpm and $0-100 \mathrm{Kc} / \mathrm{s} £ 35$. Carr f 2.
RACAL L.F. CONVERTER UNIT RA-37B : £35. Carr. $£ 1$.
RACAL I.S.B. ADAPTER RA-95A: £65. Carr. $\mathbf{£ 2}$.
MUIRHEAD ATTENUATORS: 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $0-5,0-25$, $0-50 \mathrm{DB} £ 3.00+75 \mathrm{p}$ post.
CREED MODEL 54 TELEPRINTER: $\mathbf{£ 3 7 . 5 0}$ each. Carr. $\mathbf{£ 4}$
CREED MODEL 75 TELEPRINTER: Receiver only $£ 30.00$. Carr. $£ 3$.
CREED MODEL 75 TELEPRINTER: Receiver, Transmitter and perferator £50. Carr. £4.
MULLARD VALVE VOLTMETER: E/7555/3 A.C./D.C. 2 ranges $0-5$ and $0-500 \mathrm{v}$. £35. Carr. £2.
EDDYSTONE TELEPRINTER ADAPTOR TYPE 937: $£ 45$. Carr. $£ 1$.
WAVEMETER CLASS 'D' NO. 2: 1.2 to $20 \mathrm{Mc} / \mathrm{s} 12$ volts d.c. input or 240 v a.c. £12.50. Cart. £3.
WILD BARFIELD ELECTRIC FURNACE MODEL CCI.22X: With ether indicating temperature controllers Model $990^{\circ}-1400^{\circ} \mathrm{C}$. $£ 250$. Carr. £5.
A.E.I. MASS SPECTROMETER TYPE MS.10: $£ 300$. CaIr. £6.

METROVAC IONIZATION GAUGE MODEL V.C.3: £55. Carr. £3.
MUIRHEAD PAMETRADA WAVE ANALYSER D-489-EM: Primarily used for the analysis of complex vibration waveforms but will measure audio and power frequency waveforms from $19 \mathrm{~Hz}-21 \mathrm{KHz}$. Complete with power supply unit 230 V 50 Hz . Secondhand, very good condition, $£ 110$. Carr. $£ 3$.
REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter $10-0-10$. Size 8 in . x 8 in . x 8 in . New condition. £I0: Carr. 75 p.
SOLARTRON PULSE GENERATOR TYPE G1101-2: $\mathbf{£ 7 5 . 0 0}$ each. Carr. $\mathbf{£ 2 . 0 0}$ TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 20$ each. Carriage $£ 3$. INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{v}$ a.c. input. S/hand, good cond. $\mathbf{£ 3 5}+\mathrm{£1}$ carr.
BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2 . £30 each. Carr. £1. BRIUGE MEGGER: $2,500 \mathrm{~V}$., series 1. E30 eacn. Carr. 11.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conditions and the equivalent resistance.
coniunction with a freq. meter. $£ 25$. Carr. $£ 1.50$.
SOLARTRON VARIABLE POWER UNIT S.R.S. $1535: 0-500$ volts at 100 mA and 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. $£ 18.50$. Carr. $£ 1.50$.

ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LONDON ONLY.

NOISE FIGURE METER TYPE II3A (Magnetic AB, Sweden): Complete with Noise Source 121 and 122. £125. Carr. £1.
PRECISIÖN PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in $\cdot 5$ ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$. MUIRHEAD PHASEMETER D-729: A.M. ©85. Carr. £3.
RACAL RAI7 Front Panels: $\mathbf{\text { E } 5 . ~} £ 1$ post.
RACAL RECEIVER TYPE I2I8: $\mathbf{£ 4 0 0 . 0 0}$.
CT. 343 VALVE VOLTMETER: in ruggerised steel case. Range 1.2 mV to 400 V .6 ranges indicated on $3^{\prime \prime}$ meter. 230 v a.c. input. $£ 25$. Carr. $£ 2$.
UHF MICROWAVE MILLIWATTMETERR TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . E 40 ach. Car $£ 1$.
-BAND RADAR TEST SET MW69S (Decca) Oscilloscope and Spectrum Analyser. Further details on request. £200.
Q METER: 30 MHz -200MHz. £55. Carr. $£ 1$
AVO TRANSISTOR ANALYSER CT.446: £35. carr. £1.50.
CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $£ 75$ each carr. $£ 2$. NOISE GENERATOR TF-IIO6: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration. Output impedance 70 ohms $£ 65$ each. Carr. £1.50.
COUNTER EXTENSION UNIT TF-I434/2: Complete with plug-in units $£ 75$ carr. £1.50.
MW-59 UNIVERSAL KI.VSTRON POWFR SUPPI.Y: £85. CaIr. £3
TF-1278/I TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. £2.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. $3: 2$ millivolts- 2 volts, 6 ranges. $£ 30$. Carr. El .
CAWKELL REMSCOPE TYPE 74I : Memory scope, 'as new' cond. £150.00.
MANSON SYNTHESISER QII5-URC: $2-30 \mathrm{mc} / \mathrm{s}$. £175.00.
$\bar{H} . V$. TRANSFORMER: $\overline{80} 00 / 8000$. Output 300 mA . rms. Size: 12 in x 12 in . x 36 in . 230 V input. £40. Carr. $£ 4$.
IREPROOF TELEPHONES: E25.00 each, carr. E1.50. at 40 amps output. £30.00 each, carr. $£ 3.00$.
SMOOTHING UNIT (for the above): $£ 10.00$ each. carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £125 each.Carr. £1.
BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. $£ 1$.

TEKTRONIX TIME MARK GENERATOR TYPE $\mathbf{1 8 0 - S I : ~} 5,10,50 \mathrm{MHz}$. $\mathbf{E} 65$. Carre $£ 2$
ROTARY INVERTERS: TYPE PE. 218 E - input $24-28 \mathrm{~V}$ d.c., $\overline{8} 0$ Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1Ph. P.F.9. £20.00 each. Carr. £2.50.
FREQUENCY METER BC-22I: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts. Checked out. working order £ $\mathbf{0} 0-£ 1.50$ carr.

ALL U.K. ORDERS SUBJECT TO VALUE ADDED TAX.
If wishing to call at \quad TGT 3 \& 3a BALDOCK STREET, WARE, HERTS. SG12 9DT

TRANSISTORS+DIODES

Type	Price excluding VAT	Price including VAT	Type	Price excluding VAT	Price including VAT
BC 107	0.090	0.113	2N 930	0.200	0.250
BC. 107 A	0, 130	0.163	2N 1132	0.240	0.300
BC 1078	0.140	0.175	2 N 2129	0240	0.300
BC 108	0.090	0.113	2 N 2218 A	0220	0.275
BC 108A	0130	0.163	2 N 2219	0.220	0.275
BC: 1088	0130	0.163	2 N 2219 A	0220	0275
BC. 108C	0110	0.175	2 N 7221	0.180	0.225
BC 109	0090	0.113	2 N 2221 A	0) 210	0.263
BC 109B	() 140	0.175	2 N 2222	0.200	0.250
13C: 109C	0140	0.175	2N 2722 A	0250	0.313
BC 184(K)	0, 120	0.150	2N 2904	0,190	0.238
BC-212A(K)	0.110	0) 138	2 N 2905 A	0230	0.288
BC 212B(K)	0110	0.138	2N 2906	0.170	0.213
BC 213C(K)	1) 110	0.138	2N 2906A	0.170	0.213
BC 214B(K)	() 110	0.138	2N 2907	0.220	0.275
BCY 71	0.720	0.275	2 N 2907 A	0.240	0.300
BFY 50	0200	0.250	2 N 3053	0180	0.225
BFY 51	0200	0.250	2 N 4037	0.250	0.313
BD 131A	0,360	0.450	1 N 4001	0.050	0.054
BD 135	0360	0.450	1N 40072	0065	0.070
BD 136	0390	0.495	IN:4003	0070	0.076
BD 131	0432	0.540	1 N .4004	0075	0.081
B0 1:38	(1) 4515	0.563	1 N .4005	0.080	0.086
80139	1) 495	0.619	1N4006	0085	0.092
2 N	02.30	0.288	1N4007	0.090	0.097
			1N4148	0040	0.050

quality

Manufactured strictly to stringent specifications
12 months guarantee.

service

Orders actioned in 24 hours Over one million transistors in stock.

special discounts

For large quantities ordered by retailers, educational establishments and hobby clubs.

terms

Cash with order, please
Post and Packing 20p
Minimum order 50 p.

Marshollis

A. Marshall (London) Ltd Dept: WW

42 Cricklewood Broadway London NW2 3EY Tel: 01-4520161/2 Telex: 21492
8.85 West Regent St Glasgow G2 2OD Tel: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: $0272654201 / 2$
\& 27 Rue Danton issy Les Moulineaux Paris 92 Tel: 6442356 Catalogue price $\mathbf{2 5 p} \quad$ Trade and export enquiries welcome

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN

TOP 200 IC'S TTL, CMOS \& LINEARS

CA3020A	1.80	CO3130	0.88	NE561	4.48	SN7448	0.90	SN74160	0
CA3028A	0.79	CD4510	1.25	NE565	4.48	SN7450	0.16	SN74161	1.10
CA3035	1.37	CD4511	1.94	SL414	1.80	SN7451	0.16	SN74162	1.10
CA3046	0.70	CDA516	1.25	SL610C	9.70	SN7453	0.16	SN74163	1.10
CA3048	2.11	C04518	1.87	SL611C	1.70	SN7454	0.16	SN74164	2.01
CA3052	1.62	C04520	1.87	SL612C	1.70	SN7460	0.16	SN74165	2.01
CA3089E	1.96	lm301a	0.48	SL620C	2.60	SN7470	0.33	SN74167	4.10
CA30900	4.23	LM308	2.50	SL621C	2.60	SN7472	0.26	SN74174	1.25
CO4000	0.36	L005TL	1.50	SL623C	4.59	SN7473	0.36	SN74175	0.90
CO4001	0.36	Lм ${ }^{\text {¢ }}$	1.10	SL640C	3.10	SN7474	0.36	SN74176	1.44
CD4002	0.36	LM381	2.20	SN7400	0.16	SN7475	0.50	SN74180	1.40
CD4006	1.58	LM702C	0.75	SN7401	0.16	SN7476	0.36	SN74181	1.95
CO4007	0.36	LM709	,	SN7401AN	0.38	SN7480	0.50	SN74190	2.30
CO4008 CO 4009	1.63	T099	0.38	SN7402	0.16	SN7481	1.25	SN74191	2.30
CD4010	1.18	8 CH	0.45	SN7403	0.16	SN7482	0.75	SN74192	1.15
CO4011	0.36	14010	0.38	SN7404	0.19	SN7483	0.95	SN74193	1.15
CO4012	0.36	[M723C	. 9	SN7405	0.19	SN7484	0.95	SN74196	1.60
CO4013	0.66	LM741C	0.90	SN7406	0.45 0.45	SN7486	1.25	SN74197	1.58
CO4014	1.72	T099	0.40	SN7408	0.19	SN7490	0.45	SN/4198	2.25
CD.4015	1.72	8 CHL	0.40	SN7409	0.22	SN7491	0.85	SN76003N	2.25
CO4016	0.66	14DIL	0.38	SN7410	0.16	SN7492	0.45	SN76013N	1.95
CO4017	1.72	[M747	1.05	SN7411	0.25	SN7493	0.45	SN76023N	1.60
CD4018	2.55	LM748		SN7412	0.28	SN7494	0.82	SN76033N	2.92
CD4019	0.86	80IL	0.60	SN7413	0.35	SN7495	0.72	TAA263	1.10
CO4020	1.91	14 DIL	0.73	SN7416	0.35	SN7496	0.75	taa300	1.80
CD402	1.72	LM3900	0.70	SN7417	0.35	SN74100	1.25	TAA350a	2.10
CD4022	1.66	LM7805	2.00	SN7420	0.16	SN74107	0.36		
${ }^{\text {COLO23 }}$	0.36	LM7812	2.50	SN7423	0.29	SN74118	1.00	TAAG1IC	2.18
CO4024	1.24	LM7815	2.50	SN7425	0.29	SN74119	1.92	tan621	2.03
CD4025	0.32	LM7824	2.50	SN7427	0.29	SN74121	0.37	taA6618	1.32
CO4027	0.43	MC ${ }^{\text {303L }}$	1.50	SN7430	0.16	SN74122	0.50	TBA641B	2.25
CD4028	1.50	MC1310P	2.50	SN7432	0.28	SN74123	0.60	tBa65	1.69
CD4029	3.50	MC1330	0.90	SN7437	0.35	SN74141	0.85	tbaboo	1.40
CD4030	0.87	MC1351P	0.80	SN7438	0.35	SN74145	0.90	tbab10	1.40
CD4031	5.19	MC1466L	3.50	SN7440	0.16	SN74150	1.50	tba820	1.15
CO4037 CD4041	1.93	MC1469R	2.75	SN744IAN	0.85	SN74151	0.85	tba920	4.00
CD4042	1.86 1.38	MC14553	4.07	SN7442	0.65	SN74153	0.85	14DILSKT	0.12
CD4049	0.81	NES55V	0.70 1.30	SN7445 SN7446	0.90 0.95	SN74154	1.50 1.50	16DILSKT	0.13
CD4050	0.66	NE560	4.48	SN7447	0.95	5N74157	0.95		

LONDON, GLASGOW, PARIS - AND NOW
BRISTOL
IT'S OUR SERVICE THAT MAKES US GROW

POPULAR SEMICONDUCTORS

2N696
$2 N 697$ 2N697
2N698
2N699 2N699
2N706
$2 N 708$ 2N708
2N916
2N918
2N1302 $2 N 1302$
$2 N 1304$
$2 N 1306$ 2N1306
2N1308
2N1711 2N1711
2N202
2N2147
2
 2N22
2N22
2N 222
$2 N 22$
2N22
2N 236
2N 2364
2N
2N264
2N290
2N290
$2 N 29$
2N290
2N290
2N292
$2 N 29$
2N2924
2N 2 205G
$2 N 3053$
2N3054
2N 3055
$2 N 3391$
2N3391
2N3392
2N3393
2 N 344
2 N 344
2 N 363
2N 370
2N 370
2N 370
2 N 3104
2N3706
2N3708
2N3714
2 N 3716
2 N 3779
2 N 3773
2N3789
2N3819
2N3904

OOOOOOOOOOOOOOOAONOOOOONO OOOOOOO O OOOOOO mwamond
 siszz\}z\}

 OOO

REED SWITCH INSERTS

 carrage pard UK

 carriage pard UK
Magn
pOA.

C- SCOPE METAL DETECTORS

Represent 10day BFO5O integral speaker

$8 F 060$ integral speaker and meter
18300 with headphones
IR200 with headphones
s and mete:
£26.24
£33.59

TR400 with headphones and meter
HUNT THAT TREASURE?

INDUCTION GENERATOR

Requires a supply voltage of 5 NV 50 Hz and provides an output of 7 V per
$1000 \mathrm{r} \mathrm{\rho} \mathrm{~m}$ disectly proportional to speed This instrument has a wide variety of applications eg anemometer
brand new conditon $\mathbf{5 5 . 6 0}$ post pald

ITT OFFICE INTERCOM

20 way with modern manual SWB and facatites Lightwerght desk sets
Brand now in carons $\varepsilon 160$ inc P \& P and $V A T$ Spare detiaphones $\varepsilon 7.50$ еョ

TELEPRINTER PAPER

TAPE STORAGE CANS

exhauster in reels of tape Oul last supply of these tems was idea exhausted at $30 p$ each but as a result of a massive new purchase we can
now orter a or and VA

SOLAR CELLS

Ferrantit slicon MSIIEE. active area CE 390 mm Open CCT voltage
 ohms Dia
and VAT)

CONTINENTAL CUSTOMERS

- we have a direct link by art trom Lydd to Beaura, latso Charnet slands) and are
and sea links mith France and Belgum

LEMANIA AIRCREW CHRONOGRAPHS
Stantess steel case with screw back fuminous
rands and markings One.fith sec sweep hand cands and markings One thith sec sweep hand
controlled independently of main movement by press to start stop and return to zero oution 15 jewel movement Many of these watches are as
new but all have been completely overhauled and checked tor accuracy fitted strap White face

GS WATCHES
back and black taces Marnufactured by TIMOR back and black laces Manulactured by TIMOR
ETERNA LEMMANA VERTEX RECORD CYMA eIc 10 standard specification Completelv
overhauled Fitted strap $£ 9.05$ (inc P \& P) We Verhauled Fitted strap $\mathbf{E 9 . 0 5}$ (inc P PP P) W
also have limued quantules of these watches b
OMEGA BUREN also have limuted quantilies of these waiches by
OMEGA BUREN HAMITON and IWC a
$£ 15.30$ Inc P \& P SMITHS GS watch with $£ 15.30 \mathrm{mc} P$ \& $P S$ MiTHS GS watch with
sweep second hand $\mathbf{E 9 . 2 5 \text { inc } P \text { \& } P \text { \& VAT } A}$. Sweep setond hand 69.25 inc P \& P \& VAT
watches: Inspection against remittance

ANALYTICAL EQUIPMENT RESEARCH OVEN
PV4051/4056 (Other GC items in stock)
A large capacity oven or low thermal mass for use between 35 and 400 C
Provides a forced air circulating system yielding 1000 changes min. The oven has forced air cooled ouler surfaces when the internal temperature is high $210.240 \mathrm{~V} \quad 50 \mathrm{~Hz} 26 \mathrm{KW} £ 31.50$ (C Pd England

IONISATION AMPLIFIER PV4075

 1 mV to 100 mV Linearity 01% is Noise less than 05% is at max
sensitivity Back off facility Dimensions $28 \times 10 \times 43 \mathrm{~cm}$ deep With
 Detals of these three and other gas chromat

AIRCRAFT INSTRUMENTS

400HZ ROTARY CONVERTERS Both DC
E 27.50

MULTIWAY CABLES
stock up to 50 way or up to 750 amp Also PTFE nsulated ryoes MARCONI SPECTRUM ANALYSERS OA1094A/S

ACTUATORS, RELAYS, FLOODLAMPS, POWER UNITS, TRIMPOTS, FANS, MICROWAVE EQUIPMENT

SOLARTRON OSCILLOSCOPES

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, TEST EQUIPMENT, METERS AND CONNECTORS Servo and Electronic Sales Ltd 24 HIGH ST., LYDD, KENT TN29 9AJ. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23. TELEX 965265

OMPUTERS AND PERIPHERALS bet 8350 . GE OPTICAL TAPE READERS 	

Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors (KEMET, ITT, PLESSEY, ETC.) ALL AVAILABLE EX STOCK in MANUFACTURING QUANTITIES
 SYNCHROS
 AND SERVOMOTORS EX STOCK

OVER 300,000 RF AND MUL TIWAY CONNECTORS IN STOCK. TELEX YOUR REQUIREMENTS NOW!

REACH FOR THE PEAKS OF MEASURING INSTRUMENT ENGINEERING!

FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS
FULL RANGE PRICE LIST-SAE PLEASE! Substantial quanlity discounts to manulacturers Kememberl Wa arn the soin impniters!

NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES

oving cail movements only and may house S-meter and VU-meter instruments.

YU METERS

SF100 $12 \times 68 \mathrm{~mm}$
SF10463 $\times 60 \mathrm{~mm}$
SF10663 $\times 60 \mathrm{~mm}$

With A or BScales Linear Movements or to B S $I \mathrm{~J}$ spec Also avallable in
mosi standard cases
'All meters can be supplued with special or personalised scales aternal illumination. coloured front lenses. mirror scales special pointer forms. etc.

Full details and prices on requess

AUTOMOBILE TEST EQUIPMENT SERVO AUTOTESTER No. 1

\& 8 cyc engines and EHT SEC VOLTS A subsitute capactior incorporated ${ }^{\text {Size }} 265$
E30. 37

SERVO AUTOTESTER NO. 2 0.16 V 0.80 A dwell angle Speed for $4,688 \mathrm{cyc}$ engines Sire 16×95 SERVO AUTOTESTER No. 3

SERVO AUTOTESTER No. 4
Dwell angle and engine speed Hand held
$0 ? 5 \mathrm{Kg}$ Pr Ee EE.35 inc P \& P \& $V \mathrm{~A}$

ALL MAIL ORDER :Y C. T. ELECTRONIGS
 Tel: 01-994 6275

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5DG.

P. F. RALFE
 10 CHAPEL ST. LONDON NW1.
 Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TFBOID/IS. $10-480 \mathrm{mHz}$ P.O.A MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ £225
HGN MS3/U. 9.7-11.9 and 77.109 mHz . AM / FM
ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} \mathbf{£ 1 2 5}$.
RACAL/AIRMEC $201 \mathrm{I} .30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A.
ADVANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES
 SOLARTRON CD $1400 \mathrm{DC}-15 \mathrm{mHz}$

COSSOR CDU110. DC-80mHz
TEKTRONIX 545A with CA unit. DC-30mHZ. Price only $£ 295.00$
TEKTRONIX 531 DC-1 15 mHz with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with ' CA ' plug-in.
TEKTRONIX 585A. DC -80 mHz with type 82 plug-in.
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502. 200uV Sens. X-Y
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter.

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs $50 \Omega .30$ p. BNC sockets 50Ω. 25p. N. Type plugs 50Ω. 50 p. Burndept plugs. 40p. Burndep Miniature sockets. 20p.
All connectors are brand new. Immediate delivery. Please add appropriate poscage

'MUFFIN' INSTRUMENT FANS

 Manufactured in Holland by Rotron Dims $4.5 \times 45 \times 15$ ins This is a precision cooling fan, very quie cooling of electronic equioment amplifiers, etc 115 V 50 Hz operation drawing only 11 Warts The list price from Rotrons is over $£ 10$ each. Our price, brand new, only $£ 4.50$ eachMINIATURE DEAC NI-CADMIUM batteries, type 70DK 3 cells in package making 37 Volts. $25 \times 17 \times 15 \mathrm{~mm}$ only 75 p post pald
E.M.I. oscilloscopes type RMO15 Response to 40 mHz 5 inch CRT 10KV E H T We can offer these quality oscilloscopes at the exceptional price of only $£ 35$ each to callers only

ADVANCE type 63A AM/FM R F Signa generators 75.230 mHz Deviation 0.225 and $0-75 \mathrm{kHz}$-sweep output. Crystal calibrator, scope output. $£ 75.00$.

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. $\uparrow .5-220 \mathrm{mHz}, 0.100 \mathrm{kHz}$ Deviation. $1 \mu \mathrm{~V}-100 \mathrm{mV}$ output. Sold in excellent condition. P.O.A.

METRIX 210 WOBBULATORS. 025 mHz Sweep width $05 \cdot 20 \mathrm{mHz}$ Output 100 mV attenuable in steps of 10 to 10 uV Last few of these left at
only $\mathbf{£ 1 5 . 0 0}$ each to callers only only $\mathbf{£ 1 5 . 0 0}$ each to callers only

EM.I oscilloscopes model WM 16 with plied in perfect condition complete with trolley $£ 125.00$.

20-way BPO Jack strips to accept 316 type Jack plugs. Also quantity of 316 plugs available. All good of 316 pl

Centrifugal blowers by WOODS 8 inch snat type Outlet $2^{3 / 4} \times 2 \mathrm{~m}$. 24 V DC Snail type
28 AA 2400 rpm Grey stove finish All brand new Price is $\mathbf{£ 1 0 . 5 0}$ carrage.

GENTS/FRIEDLAND fire alarm ells Operating voltages $12 \mathrm{v} \mathrm{dc} / 24 \mathrm{v}$ dc All in as new condition and tested before despatch Sizes $6 / 8 / 12$ meh Prices £4.80, £5.20 and $£ 6.50$ resp
COMPUTER PERIPHERALS. Tape punches. 8 hole by Westrex and other well known manufacturers Tape readers by Ellot All virtually brand maker's. Write or phone for quotation

An exceptional buy enables us to offer stabilised and regulated power supplies by APT at a very cheap price $16-24 \mathrm{v}$ dc@ 10 Amps. and 8-10v dc @ A Both supplies are extremely stable with low ripple voltage Pruce each $£ 18.50$ + carriage

MISCELLANEOUS TEST EQUIPMENT
MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit £105
MARCONI TF7910 deviation meter, $4.1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation MARCONI 455E Wave Analyser $£ 120$
MARCONI TF2600 Valve Voltmeter 1 mV -300V Excellent $£ 75$.
ROHDE \& SCHWARZ USVD calibrated recetver $280-940 \mathrm{mHz}(4600 \mathrm{mHz})$ LEVELL TG 200 DM. RC Oscillator, c/w case, £65.
ROHDE \& SCHWARZ URV millı-voltmeter BN10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1.6,00 \mathrm{mHz} £ 175$
COSSOR 1453 True RMS milli-voltmeter. Excellent. £75.
AIRMEC TYPE 210 modulation meter Excellent condition.
ROHDE \& SCHWARZ 'SCR" V H.F. Signal Generator $1000-1900 \mathrm{mHz}$ MARCONi type TF936 Impedance Bridge $£ \mathbf{8 5 . 0 0}$.
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV}-300^{\circ} \mathrm{V}$, in 12 ranges SOLARTRON oscillator type CO 546. $25 \mathrm{H}_{\mathrm{Z}}-500 \mathrm{kHz}$. $£ \mathbf{3 0 . 0 0}$. GAMBRELL Precision 4 Decade Resistance Box. 1-11, 110 ohms £24.50.

 need lor exoftic 4 yang unils 1
These state of the art curcuits
compunents only-fithere quass wised under licence from CBS are oftered in kit form comprising first grade
 M1 Basic mafilix decude ! Yansisturs used in each omphitymy stage Grrcuit Boadd 65.90 .
1 full logic conver

 United Kingdom Post Free Please add

WW-032 FOR FURTHER DETAILS

SOUND INSTALLATIONS

Design, installation and commissioning of recording and broadcast studios, sound reinforcement equipment theatre communication and other systems

SOUND EQUIPMENT

Supply and, where required manufacture of equipment to customers specifications
We also specialise in television lighting and other systems
PHILIP DRAKE ELECTRONICS LTD.
165 Lancaster hoad, new barnet, herts.
Telephone: 01-445 1144

WW-060 FOR FURTHER DETAILS

JUST ARRIVED SUPERB PDP8M
16K Processo
TU56 Dual DECTape
TU60 Dual DEC Cassette
SINTROM Dual Floppy Disc
LA30 DECWriter
ASR33 Teletype
RTO2 Display
Less than a year old - a bargain at £7,500. On display now in our London showroom - callers welcome.

Juirt recaived - DEC DF 32 Disk Drive with power supply and
control for PDP8E. DEC maintained. first-class condition. Reck cabinal avallable if required
Also avalable
PDP $11 / 154 \mathrm{~K}$
POP 11/15 4 K Processor. PDP8
and Control, RKO5 Disk Dives
Ring now for prices. Other modals becoming available all the time - let us know your requirements.
TERMINALS - SPECLAL CLEARANCE Offer: Cossor dids 402.2 VISUAL DISPLAY UNITS. Full 64 -character ASCII Keyboard
Diepley arae ${ }^{\circ}{ }^{\pi} 4 y_{2}$ (13 limee of 40 ch.). Data Tranzor rato 120 Dieplay yrae $8^{\prime \prime} \pi 4{ }^{4 / 2 " 1}$
cpe. PRICE: $\mathbf{E 1 0 0 . 0 0}$
Add 8% var to all prices shown. $\quad \begin{aligned} & \text { C inlers welcome - Mon } \\ & \text { day to friday } 9 \text { a } m \text { to }\end{aligned}$
COMPUTER SALES \& SERVICES (EQUIPMENT) LIMITED
49/53 Pancras Road, London NW1 2QB. Tel. 01-278 5571
 TELETYPE GRPE $110{ }^{\text {IWVAC P1 }} 135$ solenoid

 unit. base. motor and tap
supply spool. Price
26V OC 24.
oids 26 Y . Punch solan. 4.5 A . Punct

 Minumum pulse widlit millisec. Price E69.50. DATA DYNAMICS 1114 Rack-Mounted 110 cps Punch. as new
Mounted in sound-reducing rack cabinet and complete with control end miterface electronics and power supply unit with short circuit and
overload protection Asynchronous operation up io 110 cps Our special rice E 55 DIGITAL PRINTING MECHANISM TYPE EP 101
 Dimensions 18 mm wid
Current 150 mA non
Drinung printing up to 410 mA
maximum plinting
load maximum Plinting
load Very compact
unit measuring 6^{11}

 E49.00 (P\&PEI)
Input/ Output connec tor also avalable price
$\underline{22.00}$

JUST ARPIVED - SPECIAL PURCHASE OF DISK
STORAGE DRIVES BY CDC WILL ACCEPT 6-SPEED DISK.PACKS AVAILABLE EITHER 2 OR 4 MEG
CAPACITY NEVER OFFERED BEFORE PRICES FROM CAPACITY
E450.00
magnetic computer tap

Keyboards

new reed-swith reyboards by clare-pendar with R1- READ ONLY MEMORY ASCIIcoded output ldeal for communications equipment. VDJs. proladyps designas. etc. 68 kgy positions ples 11 inatruction koys. Pustive logic. lapuit veltape OUR INCR
(DUE TD SPECIAL PURCHASE) + £1.00 P\&P
NEW STOCK JUST RECEIVED:

4. Banion momeywal alpramumeric mermoano- anano wew
 Ideal for prototypes and special applications. Hall-efiect switches Power
It requirement + 5V 420 mA Price $£ 2000$ (P \& P £ 1)
REED-SWITCH L-GANK ALPHA-NUMERIC KEYBOARD mounted on prinied circuit boord with ASCli codəd output, 43 character keys +2
shith keys and 12 instructional keys. Ideal tor data displays. computer programming. atc (a) Ex x qumpment. housed in metal case $£ 30.00+$
$£ 300 \mathrm{P} \mathrm{\& P}$. (b) Brand new. mounted on PC board only $£ 30.00+$ £300 P\&P. (b) Brand new. mounted on PC board only E 30.00

TERMINALS

ASR35 Heevr-duty consolemounted version of ASR 33 D
KSR33 inputhoutput Consolm (hama copy only) $\mathbf{6 7 5 5 . 0 0}$
COSSOR DIDS SERIES 4022 and 402 2A Visual Display Unis Provide high-speed visual access liom computer or others information
sources Duta transfer rate 120 cps The model 402 display 13 Ines
of 40 characters with a vewing surfece of $8^{\prime \prime} \times 412^{\prime \prime}$. while the 4022 A of 40 characters with a verewing surface of $8^{\prime \prime} \times 41 /^{\prime \prime}$. While the 4022 A displays 1 hnes of 80 characters with a viewing surface of

HAZELTINE 1000 Video Display Terminal 04° character ASCll-coded

WW—094 FOR FURTHER DETAILS

LYNX ELECTRONICS (LONDON) LTD.

| | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AC1 | |

DIGITAL DISPLAYS \& LED'S

DL704	99p	DL747	£1.75	2 RED LED ONLY	${ }^{13} \mathrm{p}$
DL707	99p	DL750	c1. 75	green clear	15 p

LINEAR IC'S

301 A 8 pin Dil	35 p *	$3900{ }^{14} 4 \mathrm{pma} \mathrm{DIL}$	$70{ }^{\circ}$	56514 PIM DiL	¢2.00
307	$5_{5}{ }^{\text {p }}$	7098 8, 14 pan DIL	$35 \mathrm{p}{ }^{\text {c }}$	5668 Pin DIL	${ }^{\text {¢ } 1.50}$
309 k	¢1.80	7418 pon DIL	28p ${ }^{\circ}$	5678 pin DIL	¢2.00
38014 pin DIL	90p	74114 mm DIL		CA3046 14 pin DIL	50p
38114 pIM DIL	¢1.60*	7488 pin DIL		CA3045	85p

HIGHAM MEED, CHESHAM, BUCKS. Tel. [02405] 75151

TELETYPE 28 - NEW SPECIAL PRICE

TELETYPE 28 without keyboard. Good condition (can be used as receive only) $\mathbf{£ 3 2 . 5 0}$ ea.

Limited quantities - information in process of being obtained - this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time

TELETYPE 28 with housing, keyboard and Power supply £45 ea.

POLARAD SPECTRUM ANALYZER

Type TSA covering $10 \mathrm{MHZ}-1 \mathrm{GHZ} .25 \mathrm{KHZ}$ resolution. £325.
Can be extended to 44 GHZ with additional plug-in units at nominal cost.

MARCONI Signal Generator. TF801B 12 -
470 MHZ £ 120 ea.
MARCONI Valve Voltmeter type TF1041B
$£ 45$.
MARCONI TF934/2 FM Deviation Meter $\mathbf{£ 3 5}$.
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New. £60 ea.
MARCONI TF1020A RF Power Meter 50 and 100 Watts. As New. $£ 45$ ea
MARCONI TF1094A/S HF Spectrum Analyser. Late model. Must go. $£ 160$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz} \mathbf{£} 25$ ea.
KELVIN \& HUGHES Single Channel Recorders with spare paper $\mathbf{£ 1 8}$ ea
FURZEHILL Valve Voltmeter V200. 10 mv full scale. $£ 18$ ea. Nice condition.
LOCKHEED ELECTRONICS simultaneous 4 CHANNEL DATA RECORDERS. 18 volt operation. Portable-compact $£ 120$ each.

MARCONI TF 791D Deviation Meter. $£ 90$. MARCONI TF 791C Deviation Meter. $\mathbf{£ 6 0}$ MARCONI TF 1370 R.C. Oscillator, $£ 80$.
MARCONI TF 1060 UHF Signal Generator £175
MARCONI TF995 AM/FM Signal Generator £150
IBM Dara Unit Type 901, £85 ea
ROHDE \& SCHWARZ Receiver ESM 180 BN 15073/2. £425.
ROHDE \& SCHWARZ Generator 300-1000 MHZ. Type SDR BN 41022 . £300.
FLANN Signal Generator type 501 0.8-3 GC/S $£ 90$ ea.
DATAPULSE Generator 101 by Systron-Donner Corporation, £90 ea
\star AB POTENTIOMETERS
100K + 100K LIN DUAL GANG 25p ea.
Discount for quantites. P \& P extra

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16 \mathrm{in}$. Suitable for Colour TV servicing. Price $£ 85$ each including copy of manual.
*CAPACITOR PACK 50 Brand new components oniy 50p. P. \& P 27p *P.C. MOUNT SKELETON PRE-SETS Screwdriver adjust 105 and 2.5 M a 2 pe ea ust 10.5 and 2.5 M a 3 p ea. 1 M 500.250 and $25 \mathrm{~K}, a \mathrm{5p}$ ea Min. P \& P. 15 p
 10-99 10p ea P. \& P. 25p: 100-999 7pea. P. \& P free
DELIVERED' TO YOUR DOOR 1 cwt . of Electronic Scrap chassis boards etc. No
Rubbish FORONLY $£ 4.50$.N P.c.B. PACK S \& D Quanuty 2 sq f extra thy pieces. 50p plus P \& P 25 p
-TRIMMER PACK, 2 Twin 50/200 of
 spaced preset 30/100 pf on ceramic base ALL BRAND NEW

> FHACHI.: RAMP MODULE FX21 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ (eg 50 mfd electrolytic gives sweep of approx. 1 cm per second). In or out sync capability. Price £5.75. P. \& P. 20p.

* TELEPHONES

MODERN STYLE 706 BLACK OR TWO-TONE GREY $£ 3.75$ ea. P. \& P 45 D . STYLE 7006 TWO-TONE GREEN OR GREY $£ 3.75$ ea. P. \& P. 45 p HANDSETS-complete with 2 insets and lead $£ 1.25$ ea. P. \& P. 37 p . DIALS ONLY. 50p ea. P. \& P. 30p STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746 E3.00 ea. P. \& P. 45 p.

25p the LOT̄. P \& P 15p
*PHOTOCELL equivalent OCP71. 13p ea. GRATICULES. 12 cm by 14 cm in High Quality plastic. 15p each. P \& $P 8 \mathrm{p}$.

*Vast quantity of good quality componen 3 LB. of ELECTRONIC GOODIES

 - for £il 70° post pardHF Cirstal Drive Unit. 19 in rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) 55 ea. Catr $f 2$ BOURNS TRIMPOT POTENTIOMETERS. 20. 50,$100 ; 200.500 \mathrm{hms}, 1,2,25,5$. 10. 25 K at 35 pea ALL BRAND NEW
RELIANCE P.C.B. mounting $270 \quad 470$. RELIANCE P.C.B. mounting 270470 . 500 ohms: 10 K at 35 p ea ALL BRAND NEW. TEN TURN POTS. Ex equ As new. Micropot Modet 205 Two point nine ohms 0 1\% @
$£ 150$ ea. P\&P $20 p$ Bourns Model 35 E 125 ea. P\& P ${ }_{15 p}$ 2507S.3.101 100 ohms

VENNER Hour Meters-5 digit. wall mount -sealed case Standard mans. $£ 3.75$ ea

 P. \& P 55 pTRANSFORMERS Al standard nputs. Gard/Parm/Part. $450-400-0-400450 . \quad 180$ MA $2 \times 63 \mathrm{v}$. $\mathbf{f 3} \mathrm{ea}$

FIBREGLASS PRINTED CIRCUIT BOARD. Brand New Single or Double sided Any size $1 \frac{1}{2}$ p per sq. in Postage 20p per order
*HIGH VALUE PRINTED BOARD PACK. no two boards the same-no short leaded computer boards. $\mathbf{5 1 . 7 5}$ post pard
*METER PACKS - 3 different meters for $£ 2$.

RESETTABLE COUNTERS-4 dignt by Stonebridge Sodeco. 1000 ohm coll. $\mathbf{£ 2}$ ea \& P 35p

E.H.T.CAPACITORS

1 mfd 75 KV working 2 mid 5 KV working 8 mid $25 \mathrm{~K} /$ working. 05 mtd 10 KV working $£ 2$ each

RAPID DISCHARGE

153.50 ea 0 KV £2.50 ea. 0.9 mfd 15 KV $\mathbf{2 3 . 5 0}$ ea. 015 mfd 120 KV E 7 ea Carndge

FHACHIVCS MODULE
FX11-10HZ-100KHZ
Size $2 \times 1 / 8 \times 5 / /^{\prime 4} \mathrm{H}$. Input 12 V to 24 V DC (not centre tapped) 18 V input giving 10 V constant amplitude output Requires only a 1 meg ohm potentiometer to tune entire range - or can be swept with a saw tooth input Price e5.75.
\& P 20 p

DON'T FORGET
YOUR MANUALS
S.A.E. WITH

REQUIREMENTS

LOW FREQUENCY WOBBULATOR

 width and frequency. Order LX63. Price $\mathbf{£ 8 . 5 0}$ P. \& P. 35p.As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price $\mathbf{~} \mathbf{~} 11.50 \mathrm{P}$. \& P . 35p. Both models can be used with any general-purpose oscilloscope. Requires 6.3V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability. with the exception of the controls (not cased. not calibrated).

20 HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board. ready to use. 9 to $12 V$ supply required. $£ 8.85$ each. P. \& P. 35p. Sine Wave only. £6.85 each. P. \& P. 35p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only £6.75. P. \& P. 35p. (Not cased,. not calibrated.)

TRANSISTOR INVERTORS
 TYPE C

TYPE A
TYPE A
Input: 12 VDC
Output: 1.3 kV AC 1.5MA
Price $£ 3.45$

TYPE B
Output: 1.3 kV DC 1.5 MA
Price $\mathbf{£ 4 . 7 0}$

Input: 12V to 24V DC
Output: 1.5 kV to 4 kV AC 0.5 MA
Price f6.35
Postage \&

TYPE D
Input: 12 V to $24 \mathrm{~V} D C$
Output: 14 kV DC 100 micro amps at 24 V . Progressively reducing for lower input voltages
Price $£ 11$

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY f6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version
at $\mathbf{f 9} \mathbf{9 7 5}$. P. \& P. 25p.

VALUE ADDED TAX not included in prices-Goods marked with $\star 25 \%$ VAT, otherwise $\mathbf{8 \%}$ Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 a.m. to $5.30 \mathrm{p} . \mathrm{m}$. Mon. to Sat.

Tel.: Reading 582605

RETURN OF POST MAIL ORDER SERVICE

WEYRAD P50 - TRANSISTOR COILS

R	85p	Driver Trans LFDT4	
I.F P50/2CC $470 \mathrm{kc} / \mathrm{s}$	40p	Printed Circuit. PCA 1	$65 p$
$3 \mathrm{rd} / \mathrm{FP50/3CC}$	40p	J 8. Tuning Gang	£1.20
Spares Cores	3p	Weyrad 8ooklet	Op

| Spares Cores | $\mathbf{3 p}$ | Weyrad Booklet | 10p |
| :--- | ---: | :--- | :--- | :--- |
| P50.1AC | $\mathbf{6 0 p}$ | OPT1 | $65 p$ |

Mullard Ferrte Rod $8 \times$ 3/an , 20p. $6 \times \overline{5 / 16 i n} .20 p$.

VOLUME CONTROLS

$5 \mathrm{k} / 2$ to $2 \mathrm{MM} / 2 \mathrm{LOG}$ or LIN
$\mathrm{L} / \mathrm{S} 25 \mathrm{p}$. DP 40 p . STEREO L/S 55p. D P 75p. Edge 5 K

8 in . or $10 \times 6 \mathrm{in}$. ELAC HI-FI SPEAKER
Dual cone plasticised roll surround Large $\begin{array}{ll}\text { ceramic magnet } & 50-16.000 \mathrm{c} / \mathrm{s} \text { 8ass } \\ \text { resonance } 55 \mathrm{c} / \mathrm{s} & 8 \mathrm{ohm} \text { impedance, } 10\end{array}$ watts. music power, $£ 4.35$ Post 35 p
E.M.I. $131 / 2 \times 8$ in.

SPEAKER SALE!

With tweeter and	13 in $\times 18 \mathrm{in}$
crossover 10 watt	Bass Wooter
State 3 or 8 ohm	20 watts
As illustrated	
5.25 Post 35 p	$\mathbf{2} 60.60$

With flared tweeter cone and ceramic
magnet 10 watt
8 8ass res $45-60 \mathrm{c} / \mathrm{s}$
Flux 10000 gauss
8 ohm 40 to $11,000 \mathrm{c} / \mathrm{s}$$\quad$ Post 35 p .3 .5
Post 35 p
Bookshelf Cabinet Teak finish $16 \times$
£6.95

BLANK ALUMINIUM CMASSIS. $u \times 4$-70p; 8×6 - 90p; $10 \times 7-£ 1.15 ; 12 \times 8-£ 1.35 ; 14 \times 9-£ 1.50 ; 16 \times 6-£ 1.45$; $16 \times 10-£ 1.70$
ALUMINIUM PANELS. $6 \times 4-17 p ; \varepsilon \times 6-24 p ; 14 \times$ 3-25p; $10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ;$
$6-43 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p$

ELAC 9×5 in HI-FI SPEAKER TYPE 59RM
$£ 3.45{ }^{\text {Poss }}$ 35p
QUALITY LOUDSPEAKER ENCLOSURE Teak veneered $3 / 10$. thick wood cabinet. Size
$181 / 21 \pi . \times 181 / 21 \pi \times 81 / 2 n$. Werght $23 / b s$. This cabinet features a wide mesh Silver Grill covering a separate compartment for mounting Tweeters or
Mid-Range Horn The fully sealed bass compartment is cut out for $61 / 2$ inch Wooter $\mathbf{\text { E7.50. Cart }}$ 85 p
Rosew
Rosewood version £8.50. Carr 85p
Baftle could be cut to take larger speaker
RCS POWVER PACK KIT
$£ 3.35{ }_{\substack{\text { posp } \\ \text { pos }}}$ 12 VOLT 750 mA . Complete with prin 12 VOLT 300 mA KIT, £ $\mathbf{3 . 1 5} .9$ VOLT 1 AMP KIT, £3.35.
R.C.S. GENERAL PURPOSE TRANSISTOR

> PRE-AMPLIFIER - BRITISH MADE

Ideal tor Mike. Tape. P U. Guitar, etc. Can be used with Battery $9-12 \mathrm{~V}$ or $\mathrm{H} . \mathrm{T}$ line $200-300 \mathrm{~V}$ d c. operation. Sict For use with valve or transistor equipment Full instructions supplied. Details S.A.E.
£1.45 ${ }_{30 \mathrm{p}}^{\text {مos }}$

ELECTRO MAGNETIC PENDULUM MECHANISM

```
battery. teaching electro justable swing and
95 p pois
```

R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players. gutars, tape playback, electronic instruments or small P.A. Systems. Two versions avalable Mono, £12.50, 100 mV size $9^{1 / 2} \times 3 \times 21$ appro SA.E details Full instructions supplied.

MAINS TRANSFORMERS

ALL POST
Small 45 p
Large 75p
$250-0-250 \mathrm{~V} 70 \mathrm{~mA} .65 \mathrm{~V}, 2 \mathrm{~A}$
$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A}, 63 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A
$\mathbf{£ 4 . 6 0}$
 $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 63 \mathrm{~V} 4 \mathrm{~A}$ С. T.. $63 \mathrm{~V} 2 \mathrm{~A} \quad £ 7.00$ MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 63 \mathrm{~V} 2 \mathrm{~A} \ldots \mathrm{E} \ldots 25$ HEATED TRANS $63 \mathrm{~V} 1 / 2 \mathrm{mpp} 95 \mathrm{p}$; 3 amp E1.40 GENERAL PURPOSE LOW VOLTAGE Tapped outputs at amp. 3. 4, 5, 6, 8, 9, 10, 12. 15, 18, 25 and $30 \mathrm{~V} £ 4.60$.
1 amp 6, 8, 10, 12, 16. 18, 20, 24, 30, 36, 40. 48.60 £4.60. 2 amp $6,8,10,12,16,18,20,24,30,36,40$
48,60 £ 700
3 48, 60 £ $7.00 .3 \mathrm{amp} 6,8,10,12,16,18,20,24,30$
$36.40,48,60 £ 8.70 .5 \mathrm{amp} 6,8,10.12,16,18,20$ 24. 30. 36, $40,48,60 £ 11.25 .606 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$ $\mathrm{amp} £ 1,12 \mathrm{~V} 300 \mathrm{~mA}, £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}$.
$£ 1,10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp}, £ 2.75,20 \mathrm{~V}, 3 \mathrm{amp} . \mathrm{£2.45}$, $40 \mathrm{~V} .2 \mathrm{amp} . £ 2.95,22-0.22 \mathrm{~V} .4 \mathrm{amp}$ d $\mathrm{c}, £ 3.45,16 \mathrm{~V}$
 amp, E1.95, $20 \mathrm{~V} / 2 \mathrm{amp}$. $£ 1.75$; 20 V . 1 amp... $£ 2.20$. 150W £5: 250W£6; 400W £7: 500W£8. FUIL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p}$; 2 amp 55p; 4 amp 85 p. CHARGER TRANSFORMERS
$11 / 2 \mathrm{amp} £ 2.75 ; 4$ amp $£ 4.60$.
GOODMANS $61 / 2 \mathrm{in}$.

HI-FI SPEAKER

4 ohm or 8 ohm, 10 W Large ceramic magnet
Special Canibric cone surround Twin cone Special Canibric cone surround Twin cone
Frequency response $30-15.000 \mathrm{c}$'s $\mathbf{E 4 . 6 0}$
HI-Fl Enclosure Systems, etc

NEW ELECTROLYTIC CONDENSERS

2/350V 20p	250.25V 20p	$50+50 / 350 \vee 50$
4/350V 20p	500/25v 25p	$900 / 350 \mathrm{~V}$ 95p
8/350V 28p	$100+100 / 275 v$	$32+32$ 250V 20p
$16 / 350 \mathrm{~V}$	65p	$32+32 / 450 \vee 80 p$
35p	$150+200 / 275 v$	$350+50 / 325 \mathrm{~V}$
$32 / 350 \mathrm{~V}$	70p	85p
60p	8+8,350V 50p	$100+50+50 / 350 \mathrm{~V}$
25/25v 15p	$8+16350 \vee 50 p$	85p
$50 / 50 \vee 15 p$	$16+1635060 p$	$32+32+32 / 350 \mathrm{v}$
$100 / 25 \mathrm{~V}_{15 \mathrm{p}}$	$32+32350 \mathrm{~V}_{60 \mathrm{p}}$	

LOW VOLTAGE ELECTROLYTICS
$1.2,4.58 .16,25.30 .50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
500 mF 12 V 15 p ; $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000mF 12V 17p: $25 \vee$ 35p; $50 \vee 47 p ; 100 \vee 70 p$
2500 mF 50 V 62p; 3000 mF 25 V 47 p ; 50 V 65p. 5000 mF 6 V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V}$ 85p; 50 V 95 p . TRIMMERS 10pF, 30pF, 50pF, 5p. 100pF, 150pF, 15p. CERAMIC, 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pf , 5 p . 15p: $500 v 0$, 0 p; 0.5 13p; 1 pp; $02513 p ; 0.47$ 25p SP; 500 V .O OOI ti 0.05 5p: 0 MICRO SWITCH SPCD 20p.
TWIN GANG, '0-0' $208 \mathrm{pF}+176 \mathrm{pF}$. 1 pole change over. 75p; $365+365+25+25 \mathrm{pF}$. Slow motion drive 50 p . 120pF TWIN GANG, 50p; 365pF TVIN GANG, 50p. NEON PANEL INDICATORS $250 V$ AC/DC. Amber 30 p . RESISTORS. $1 / 4 \mathrm{~W} .1 / 2 \mathrm{~W} .1 \mathrm{~W} .20 \%$ 2p; $2 \mathrm{~W} .10 \mathrm{p} ; 10 \mathrm{~g}$ t HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 6 meg.. 12 p . Ditro 5%. Preferred values 10 ohms to 10 meg... $5 p$. Ditto 5\%. Preferred values 10 ohms to 10 meg... $5 p$.
WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt, 10

\section*{SERVICE TRADING CO
 RELAYS
 SIEMENS PLESSEY miniature relays
 | 52 | 4-8 | 2c/o | 75 | 700 | 16-24 | 4 M 2 B | $65 p^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | 5-9 | $6 \mathrm{c} / \mathrm{o}$ | $85 p$ | 700 | 16-24 | | 5 p . |
| 185 | 8-12 | 6 M | $65 p^{\circ}$ | 1250 | 1836 | $2 \mathrm{c} / \mathrm{o}$ | $65 p^{\circ}$ |
| 230 | 9-18 | 2 ClOHD | 75p ${ }^{\text {. }}$ | 2500 | 36-45 | | 65 P |
| 430 | 15-24 | 4 co | $85 p^{\circ}$ | 2500 | 31-43 | $2 \mathrm{c} / \mathrm{OHO}$ | $65 p^{*}$ |
| 700 | 12-24 | $2 \mathrm{c} /$ | $65{ }^{\circ}$. | 15k | 85-1 1 | 6 M | 65p |
| (1) Coll ohms; (2) Working d.c. volts: (3) Contacts: (4) Price HD=Heavy Duty. All Post Pard. ('Including Base) | | | | | | | |

OPEN TYPE RELAYS
6 VOLT D.C. I make con.
9 VOLT D.C. RELAY
12 VOLT D.C. RELAY
24 VOLT D.C
100 VOLT a 2 c/0. 65 p .3 c/o 75p. Post 15
ENCLOSED TYPE RELAYS
24 VOLT A.C.
55 VOLT A.C.
230 VOLT A.C. RELAY
220/240 VOLT AC RELAY
ARROW 230/240V AC 2
110 VOLT A.C.
CLARE-ELLIOT Type RP 7641 G8
MANY OTHERS FROM STOCK, PHONE FOR OETAILS

LATCHING RELAY Twin latching relay *tip-lilop $2 c / 10$ each reiay Mans contacts 115 volis AC or 50 voll DC operazion or 240 volis $A . C$ with 2.5 K resistor 85 p . Post 20p	
PRECISION CENTRIGUGAL BLOWERS Mfy by Smiths Industries Minature modet Series SF $/ 200$ Size $95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}$ Aperture $38 \mathrm{~mm} \times 31 \mathrm{~mm} .12 \mathrm{c} \mathbf{1} \mathrm{m} \mathbf{£ 2 . 7 5}$. Posi 50 p	

LT TRANSFORMERS	
0. 6.12 volt " 10 mp .	f5.60 Post 70 p
10,17, 18 volt "10	
12.24 volt ${ }^{20} 10 \mathrm{amp}$	E9.
0.4 .6 .24 .32 voit "	E99.90 Post 1 1.00
${ }^{0} \mathrm{O} .6 .12 .17 .18 .20$ volt " 20 amp	E10.40 Post 1.00

AUTO TRANSFORMERS

 * MANUAL/AUTO DIMMER 750 watt $\not *$

WHY PAY MORE?!
SOLENOID HEAVY DUTY MODEL
high $£ 2.50$. Post 50 p .
24 VOLT DC SOLENOIDS

UNIT containing 1 heavy dury solenoid	
AbSOLUTE BARGAIN.	
240 VA.C. SOLENOID OPERATED FLUID VALVE Rated: Ds L woll handie up to $7 \mathrm{p} . \mathrm{s}$, Forged brass body stainless sleel core and sping e In bs m inet outlet Precison made British mtg PRICE $£ 2.25$. Posi 50 O NEW orignal packing	

600 WATT DIMMER SWITCH
(1)

Easily yitted. Fully guaranteea by makers. Wir
control up to 600 watts of all lighting except fluor
64.00. Pos

METERS NEW
Mamm Diame
Type $65 C 52$

VAT AT 8\%
MUST BE ADDED
FOR THE TOTAL ORDERS
POSTAGE UNLESS OTHERWISE STATED

ALL MAIL ORDERS, ALSO CALLERS AT
57 BRIDGMAN ROAD, CHISWICK.
LONDON, W4 5B8. Phone: 01.9951560

GEARED MOTOR

UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C operation $\mathbf{~ E 6 . 9 0}$. Post 50 . Operation E6.90. Post 50 D
 8 BANK 25 WAY FULL WIPER

 A.C. MAINS TIMER UNIT

 THME SWITCH

 THME SWITCH heayy highindow heayy hig
hindow window buin
ndorvuably test
VAT $\varepsilon 8.9$.)} window buin
ndorvuably test
VAT $\varepsilon 8.9$.)}

GENTS' 6" ALARM BELL 200/250 volt AC DC Brand New,
£5.00. Post 75 p (fllus) VAT $\mathbf{~} 5 \%$. 'STC' 6" RED ALARM BELL Brand New. Price $\mathrm{EA}^{4.00}$. Post 50 p. 24/48V DC. VAT 25% INSULATION TESTERS (NEW)
 500 volts
Post BOD 1000 VOLTS 1000 megohms £ $\mathbf{6 6 . 0 0}$

TEAC TEAC A3340(S) 4-CHANNEL RECORDER

Industrial version upgraded to studio requirements with increased signal to no se performance and
mproved reliability Four totally independent channels mproved reliability four torally independent channels aft the faciltues for easy multitracking This industral model is in more studios than any other version Available only from ITA
(Semi-pro version also available) IMMEDIATE DELIVERY

$£ 595$| MMmbiate |
| :---: |
| DELUERY |

The famous
A7 7 has
been consis
tently im proved over
the past 8 years and ${ }^{4} 5$ now avall. able in the betest Mk. version
The w The wide
choce of
specifications includes versions for duplicating and logging applications Backed by
UKis latest UK's latest
fastest ser

Hire service
Check our prices from
IMMEDIATE DELIVERY

ITA 10-4
MODULAR MIXER
The new big
Revox -
ideal tor all studio rée
quirements Highly so
phisticated design fea tures in
clude servo tape tension ull deck logic, crysta
controlled controlled
servo elec tronics
speeds. tape footage footage
counter 17 A

5 Pratt Street, London NW1 OAE Telephone: 01-485 6162. Telex: 21879

WW-092 FOR FURTHER DETAILS

$\frac{\text { EMII }}{\text { MAXII }}$										ILIPS	Stereo Cassette Recorders Stereo Car Cassette Players SPECIAL AUDIO \& VIDEO TAPES SUPPLIED. PRICES ON REQUEST																					
Plastic			$\begin{aligned} & \text { BASF } \\ & \text { Super } S / M \end{aligned}$				Menorex MR		$\begin{gathered} \text { Memorex } \\ \text { Ca02 } \\ \hline \end{gathered}$		reel to reel	$\begin{gathered} \text { 8ASr Low Noise } \\ \text { in Plastic Bot } \end{gathered}$		$\begin{aligned} & \text { Bisfs LH Super } \\ & \text { im Plastic Box } \end{aligned}$		Scotch Hi-Fi $8.9 \times$		Agfa Low Noise in Plastic Box		$\begin{array}{\|c\|} \hline \text { Agla PFM } \\ \text { in Plaslic Bor } \\ \hline \end{array}$												
	Dne	10	One	10	Ine	10		10	One	- 10			Que 10	One 10		One 10		One 10		One 10												
$\begin{aligned} & \hline \text { C60 } \\ & \text { C90 } \\ & \text { c120 } \end{aligned}$			$\left\{\begin{array}{l} 6090 \\ \int_{1.09}^{609} \end{array}\right.$	$\begin{gathered} \text { f5.500 } \\ \text { five. } \\ \text { fix. } \end{gathered}$		$\begin{aligned} & \text { cis.89 } \\ & \substack{\text { f10.50 } \\ \text { E15.40 }} \\ & \hline \end{aligned}$			${ }_{\text {lip }}^{\text {98p }}$	$\begin{aligned} & \text { 97.78 } \\ & \hline \end{aligned}$		(1.720	$\begin{gathered} \text { f17.200 } \\ \substack{52.00 \\ 526.50} \end{gathered}$			$\begin{array}{\|cc\|} \hline- & - \\ \text { £3.20 } & \text { £3.10 } \\ - & - \\ - & - \\ \hline \end{array}$																
			${ }_{\text {rox }}^{\text {Tomm }}$		${ }_{\text {Etra }}^{\text {Th }}$	mamic									-																	
	$\mathrm{O}_{\text {ne }}$	10	One	10	One	10	mon	10	One	10	DOUBLE PLAY $5^{\prime \prime} \times 1200^{\prime}$ $5^{3 / 4} /^{\prime \prime} \times 1800^{\prime}$ 7 ' $\times 2400^{\prime}$	One 10		One 10		One 10		One 10		One												
$\begin{aligned} & \hline \text { c60 } \\ & \text { c90 } \\ & \text { c } 120 \end{aligned}$						$\begin{aligned} & 59.30 \\ & \text { gis.70 } \end{aligned}$				$\begin{aligned} & \hline 8: .25 \\ & \hline 55.14 \\ & 67.20 \\ & \hline \end{aligned}$										¢8.95												
PLASTIC SNAP PACK	${ }_{\text {Ruper }}^{\text {Suta }}$		${ }_{\text {char }}^{\text {cala }}$				$\begin{array}{c\|} \hline \text { EMI } \\ \text { High fynamic } \\ \hline \end{array}$		${ }_{\times 1000}^{\text {cmo }}$		triple play 5"×1800' 5% " $\times 2400$ $7{ }^{\prime \prime} \times 3610^{\prime}$	One	10	One		One	10	One	10	One												
	One	,																														
$\begin{aligned} & \text { c60 } \\ & \text { c90 } \\ & \text { c } 120 \end{aligned}$		$\begin{gathered} 55.45 \\ 96.75) \\ 69.25 \end{gathered}$																														
					reel to reel			Tok Adilis LH Buxed		SPECIAL OFFER																						
Plast	$\xrightarrow{\text { Pilips }}$		Scoctrn Hipo Energy			Scolth craz		$\begin{gathered} \text { Scouch } \\ \text { Classic } \end{gathered}$		$\begin{aligned} & \text { Maxell } \\ & \text { Super } \end{aligned}$										FREE Cassette Head Cleaner with every C.A. cassette order over £15.												
	One	,	One	-	One	10			Cne	,	One		LONG PLAY $5^{\prime \prime} \times 900^{\prime}$ 53/4"x 1200^{\prime} 7 'x 1800^{\prime} $10^{1 / 2^{\prime \prime} \times 3600^{\prime}}$																			
$\begin{aligned} & \hline c 60 \\ & \text { c90 } \\ & \text { c } 120 \end{aligned}$		$\begin{aligned} & \varepsilon_{4.0 .05}^{5.55} \\ & \varepsilon .7 .55 \end{aligned}$	850	¢8.45							$\begin{array}{\|l\|l\|} \hline 559 \\ \hline 49 \\ \hline 4 p \end{array}$																					
plastic SNAP PACK	$\begin{aligned} & \text { Maxell } \\ & \text { Ullia Dynamic } \end{aligned}$		Super in		Fulif Extr Dymamic		$\underset{\substack{\text { Prot } \\ \text { Hifilu }}}{ }$				dovele play $5^{\prime \prime} \times 1200^{\circ}$ $5 \times 1 / 4 \times 1800^{\prime}$ $7 \times \times 2400^{\prime}$	One 10 $£ 1.55$ $£ 14.30$ $£ 2.59$ $£ 25.00$				$\begin{aligned} & Q^{\text {MUS }} \mathrm{d} \\| \mathrm{O} \text { Cassettes and } \\ & \text { MUSIC Cartridges } \\ & \text { Send large }\left(9^{\prime \prime} \times 4^{\prime \prime}\right) \text { SAE to R/C } \\ & \text { Dept. for calalogue } \end{aligned}$																
	Ont	!	Ooes	,	One	,	One	,	One	1																						
		$\begin{aligned} & \text { fy.20 } \\ & \text { f9.35 } \\ & \text { fil.20 } \end{aligned}$	$\left\{\begin{array}{l} 439 \\ 59 p \end{array}\right.$				$\begin{aligned} & 359 \\ & \left.\begin{array}{l} 359 \\ \hline 699 \end{array} \right\rvert\, \end{aligned}$																									
	basf		memorex		rox		${ }^{\text {Em }}$		Scorch		Prices shown inclade WhT at 8 g/b. bul are subject le change without notice. Mait Ordar Only - Cash withorders. For pastage and packing. add $10 p$ every 10 cassettes. 10 p every real-to-reel tape. Minimum 20 p . maximum 70p. Offers apply to U.K. Mainland only. CITY AUDID. STRAND HDUSE GREAT WEST RDAD, BRENTFDRD MIDDLESEX (Tel. 01-560 4191)					If you wish tu use Barclaycard orAccess. simply quote name. address and card number when ordering																
cartridges	Ons	10	Ons	10	One	10	One	10	One	10																						
$\begin{aligned} & 40 / 45 \text { mins. } \\ & 60.54 \text { mins. } \\ & 90 / 100 \text { mins. } \end{aligned}$			$\left\{\begin{array}{l} \mathrm{E} 1.10 \mathrm{c} \\ \text { 11.25 } \\ 1.142 \end{array}\right.$		40/f1.25 $£ 11.60$ 50/f1.65 $£ 15.10$														Buy i nith Accrex.													

High quality modules for stereo, mono and other audio equipment.

STEREO PRE-AMPLIFIER

A top quality stereo pre-amplifier and tone conirol unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape outpu
MK. 60 AUDIO KIT: Comprising $2 \times$ SPM80 $1 \times$ BTM80 PA100 1 front panel and knobs 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus instruction booklet COMPLETE PRICE £27.55.
TEAK 60 AUDIO KIT plus $62 p$ Comprising Teak veneered cabinet size $163 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 33 / 4$ ". Other parts include aluminium chassis. heatsink and front pane bracket plus back panel and appropriate sockets etc KIT PRICE $£ 9.20$ etc KIT postage

Frequency Response +1 dB 20 Hz 20 KHz Sensitivity of inputs Tape input 100 mV into 100 K ohms Radio Tuner 100 mV into
Magnetic P Magnetic P
50 K ohms

1 dB from 20 Hz to 20 KHz Supply - 20.35 V at 20 mA . Dimensions
$299 \mathrm{~mm} \times 89 \mathrm{~mm}$ 35 mm

PA 100

OUR PRICE £13.50

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. It is provided with a standard DIN input socket for ease of connection. Full instructions supplied

VAT

AUDIO AMPLIFIER MODULES

Ideal for record players, recorders, stereo amplifiers, etc.

Harmonic Distortion Po $=3$ watts $f=1 \mathrm{KHz} 02.5 \%$
Load Impedance 8-16ohm
Frequency response $\pm 3 d B$ Po $=2$ watts $50 \mathrm{~Hz}-25 \mathrm{KHz}$
Sensitivity for Rated O/P -
Vs=25v. RL=8ohm $f=1 \mathrm{KHz}$
75mV. RMS
Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$

AL10 3w R.M.S.
 $£ 2.30$
 AL20 5w R.M.S.
 $£ 2.65$
 AL30 10 W R.M.S. $£ 2.95$

Wireless World Dolby"noise reducer
 Trademark of Dolby Laboratories Inc.

We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m, radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
--complete set of components for stereo processor
--regulated power supply components
--board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
--solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

PRICE: £34.40 + VAT

Calibration tapes are available tor open-reel use and for cassette (specify which)
Price £1.80 + VAT*
Single channel plug-in Dolby'M PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $£ 6.50$ +VAT
Single channel board with selected fet
Price $£ 2.00+$ VAT
Price $£ 1.27+$ VAT ${ }^{*}$
Gold piated edge connector

Typical performance

Noise reduction: better than 9 dB weighted

Clipping level: 16.5 dB above Dolby level (measure of 1% third harmonic content)

Harmonic distortion 0.1\% at Dolby level typically over most of band, rising to a maximum of 0.12%

Signal-to-noise ratio: $66 \mathrm{~dB} \quad(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level)

30 mV sensitivity

Selected FET's $\mathbf{5 4 p}$ each + VAT, $\mathbf{9 6 p}+$ VAT for two, $\mathbf{£ 1 . 7 6}+$ VAT for four
Please add VAT at 25% unless marked thus*, when 8% applies
We guarantee full after sales technical and servicing facilities on all our kits

IITEEREK

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}, 30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @$ $1.8 \mu \mathrm{~V}$.THD typ. 0.4%

PRICE: £48.95+VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection -85 dB . THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder $£ 30.58$ + VAT With Portus-Haywood Decoder
£32.81 + VAT

STEREO MODULE TUNER KIT

~

Sens. 30dB S/N mono @ $1.8 \mu \mathrm{~V}$
THD typically 0.4%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator
A low-cost Stereo Tuner based on the Mullard LP1 186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
PRICE: Mono £25.55 + VAT
Stereo £28.65 + VAT

S-202A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £30.94 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

ELECTRONIC BROKERS
 Electronic Brokers Lid.

are one of the leading electronic instrumentation companies in the UK providing a full range of services to Universities, Industry, Colleges and Governments both at home and overseas

We have the largest stocks of secondhand test equipment in Europe as well

as a selected range of new products. These are on display at our London showrooms where customers can examine the equipment of their choice and see it working

Electronic Brokers Ltd. have fully equipped workshops on the premises to test and report on the majority of equipment we sell.

TELEPHONE TEST EDUNPWENT

WANDEL\& GOLTERMAN

$\begin{array}{ll}\text { Level Transmiter TFPS } 42 \quad 10 \mathrm{KHz} \text {-14 } \\ \text { Level Meter TFPM } & \mathbf{6 3 7 5} \\ & \mathbf{8 3 7 5}\end{array}$
Wandel \& Golterman VZM 2 Distorion measuring set
tor phase and amplitude mod For multuchannel FM Radio Systems up to 12 MHz base bands $£ \mathbf{5 5 0}$

SIEMENS

 Level Oscillator $3 W 2903-1200 \mathrm{KHz}$

PULSE GENERATORS

advance
Double Puise Generatior PG 56 Puise Amplitude
O.1V. 10 V Sq wave 0.10 V Rise E87.50
P. Generator PG 55
50 Modular Pulse Generator Advance Type PG 52 System
of 5 Signal Generating \& Processing Units Repeltion freas. up to $20 \mathrm{MHz} \&$ Output Puises to 20 V (50 otinis) Rise \& fall times 5 nsec its versatilit enables the
production of complex puise \& ramp wavelorms no

SICNAL SOURGES

MARCONIINSTS
 Internal \& External Mod Facilthes V good condition
$F . M / A M S$ Signal Generator TF $995 A / 515.220 \mathrm{MHz}$ in 5 bands 0 quV- $200 \mathrm{~m} V \mathrm{FM}$ up to $\pm+20 \mathrm{KHz} \mathrm{HrO}$

 $\begin{aligned} & \text { On internal FM } \\ & \text { al } 30 \% \text { mod }\end{aligned} \quad \pm 25 \mathrm{~Hz}$ (2) on internal $A \mathrm{M} \quad 6 \%$ $A \mathrm{M}$ Signai Generator TF8D $10 / 1$ Freq to $£ 350$

 VSWR 12 or less 104 Signal Generato: TF8010/15 Military Version
E450.E800 R. C Oscllazor TE 1101 Superb Condmo
20 Hz -200KHz 600dB Allenuator Out
 R.C Oscillator TFI 1370 A 10Hz. 10 MHz Square Wave
up to 100 KHz HIgh Dotputs up to 316 V ع285
RC Oscillato TF 1370 phase/A M Sgnal Generator TF 20030.4 .12 MH E90

HEWLETT PACKARD
 Univerter 207H for use with above $£ 100$ UHF Signal Generator $6124450-1200 \mathrm{MHz} \quad 6495$ $V H F S$ Sgnal Generator 608 E 10.480 MHz (5 band)
 supert condition ${ }^{2} 895$

OSCILLOSGOPES

ADVANCE
OS 2000 Scope C/w OS $2002 Y$ \& OS $2003 \times$ Plug ins
$£ 215$
MARCONI
Porrable Scope TF 2203 DC- $15 \mathrm{MHz} 50 \mathrm{mV} / \mathrm{cm} £ 115$
TV Scope TF 2200 C TV Scope TF $2200 \mathrm{~A} / 1 \mathrm{C} / \mathrm{W}$ TV Diff Plug in TM
E457 OC. 30 MHz
E 190 Philips
Oscilloscope PM 3250/02 OC-50MHz £395

Solartron

Ponable Scope DC-6MHz Double Beam $\begin{aligned} & \text { Solarscope CD } 1016 \text { NS 10 DC } 5 \mathrm{MHz}\end{aligned}$ (90 Solarscope CD 1016 NS 10 OC- 5 MHz Double Beam

Suitable for TV Senving	Porable Scope CD $1400 \mathrm{DC}-15 \mathrm{MHz}$ Plug ins avalable
CX	
$£ 1441.1443$	
1444	

heathkit
10.12 1 Scope Single Beam $50 \mathrm{MV} / \mathrm{Cm} \mathrm{DC} . ~$ 5 MHz 5

ROBAND

VOLTHETERS

SIGN ELECTRONICS
 imv-300mV in 6 Ranges Facility also for 100 mV .30 V

HEWLETT PACKARD
OC Vacuurn Tube Votmeter 412 A 1 MV - O Ooov VTVM 40001 mV to 300 V FSD 12 ranges 10 mz to $4 \mathrm{MHz} 2 \%$ accuracy Inout impedence 10 MOhms E85

MARCONI
Senstive Vaive Voltmeter TF $1100 \quad 100 \mu \mathrm{~V} 300 \mathrm{~V} \mathrm{AC}$
Freq coverage $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$ Meter

advance

 Volimeter VM 80 AC Volts $0-500 \mathrm{~V}$ (ranges 6) DC Voits fluke
 Differential Voltmeter 821 A for calibration $\mathrm{£125}$ stablity measurements of regulated power supplies DC infinite input resistance at null over entre $0-500 \mathrm{~V}$ range
standard cell reterence pola . standard cell reterence polan ity switch In line readout Sable as conventionay V TVM (3\% FSD) E165

MISGELLANEOUS

BECKMAN
Transier Oscilator 7580 H DC. 15 GHz with counter
$75 \mathrm{MHz}-15 \mathrm{GHz}$ without counter Sensitivity 100 mV (RMS.) $\mathbf{E 3 5 0}$
AIRMEC
Moduation
bell
Gassmerer Type 120 complete with Probes P.O.A

HEWLETT PACKAAD
$\begin{array}{ll}\text { Digtal Recorder } 560 \mathrm{~A} & £ 210 \\ \text { Digtal Recor } \\ \text { E110 }\end{array}$
MARCONIINSTS.
Attenuator TF 1073 . 2 S
Distortion Facior Meter TF 2331 Brand New Condition

fadiometer
Stereo Signal Generator SMG
RHODE R SCHWARTZ P.O.A.
Stereo Coder MSCBN $4192 / 2$ P.O.A
TELONIC SIGN ELECTRONICS
Distortion Factor Meter DM 344 A
advaluce

COMPONENTS

SELF-SCAN

Pane: Display Model SSD 1000.0030 Direct Visual
Presentation of Alpha Numetic Data
 6.bit coded signat to display pre progranimed characters as a 5×7 dotmatix. 04 inches high providing a bright image visible ovei a Full appications data is avallable giving all necessary

Abridged Specification
Input signals. 6 ot dara, 1 ect
Power Supplies: $+5 \mathrm{v},-12 \mathrm{~V} \varepsilon_{1}+250 \mathrm{v}$
Auxilary data input avallable to permit generation
additional synibols etc

Brand New
$£ 60$
Secondhand
$£ 50$

P\&P

the testequipment people

On these pages you will find just the briefest selection from :he vast range which we held in stock at any ore time.

If you are seeking a specilic item and it is not listed. it will pay you to ring us first - we believe we offer the best prices and the best service. WORLD WIDE EXPORT.

Enquiries and tenders welcome from any part of the worldi. HOW TO REACH US

We are easy to reach, no matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over half an hour Irom Heathrow Airport. Parking is easy too.

CUUTIMETERS

SUPER TESTER 680R ICE
20.000 Ghm per Volt Sersitivity. Fully
scieened against external magnetic fields Scale width and small case dimensions $\{128 \times$ $95 \times 32 \mathrm{~mm}$). Accuracy and stability $(1 \%$ in Smplicity and ease of use and readabibty. Full ranges o accessories 1000 times overload Pnnted Eircuis board is removable without de-soldenng. More ranges than an7 other
meter A:k for free catalcgue
$=18.50$

FANTASTIC NEW MICROTEST 80

mensures
ancy
$30 \times 70 \times 18 \mathrm{~mm}=0$
Amazing Value at £11.95
3 fields of measuremert

Only
£89.50
"TOUCHLESS" RETRO-REFLECTIVE TACHOMETER

Technical Description
The ICE Signal Injector Model 63 is a compact
eelf-powered untul which has been designed to assist the elfi-powered untly which has been destigned to as sist the
olectronics and radic-technician in tauli-1inding in both
vacuum.tube and racuum-tube and transistorised equipment it is particularly valuable in the location of fallures in radic
recenvers amplfieis etc A small, hand.held, moulded plastic body contans the
transistorised oscillator circuif its $15 \times$ cell. and is tited with a connductive prod-tip for application to the cricull under tesi A trumb-operated spring-loaded button
apermins applcation of power to the oscitlaior. at will The circuit of the Stgral Inject tor Model 63 incorporates
who transistors and iwo inductors in a blocking-oscilator No transistors and two inductors in a blocking-osciliator conhguration which produces two basic trequencies
namely $5(10$ and 1 kHz of nominally reclangular
navetorm po fast rise.tme so confaining high-order wavetorm of fast rise-time so confaining tigh-ord E5.95. P\&F 40p

Oimensions 167
$98 \times 63 \mathrm{~mm}$
£9.75.

Relay Aerial Switching
 951 Magnetic Devices Relay

- Available with 12 V or 24 V DC coil
- Single Change-over contact
- For use with UR43 co-ax cable
- Claracteristic impedance 50 ohms
- Nominal frequency 450 MHz
- VSWR approx. 1.1

each
Inc. P \& P and VAT
When ordering specify operating voltage required

Cash with order

- Cross-talk 39dB
- Contact rated at 1 amp or 50 W max

‘MISTRAL’ Digital Clock

Kit $£ 12.50$ (Incl)
Built $£ 18.00$

Pleasant green display o 24 Hour readout

- Silent Synchronous Accuracy o Fully electronic
" Pulsating colon " Push button setting
* Building time 1 Hr ० Attractive acrylic case

Easy to follow instructions © Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drilled PCB to accept components

EXETRON Time Ltd Regal House Penhill Road LANCING, Sussex.

Payment : CWO, Cheque, Access, Barclaycard. (ouote Number)

Appointments

Advertisements accepted up to 12 noon Monday, February 2, for the March issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.99$ per single col. centimetre (min. 3 cm) LINE advertisements (run on): 99 p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 40p extra. (Replies should be addressed to the Box numbers in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEl 9LU) PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division ($R / B / 1$), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.

Posit Oifice Telecominnulicaicions

Opportunities in the
 ELECTRONICS FIELD

People with analogue or digital qualifications / experience seeking higher paid posts in: TEST - SERVICE - DESIGN SALES
Phone: Mike Gernat, Ref. W.W.
NEWMAN APPOINTMENTS 360 Oxford Street, W. 1.

How many professional new T.V. broadcasting systems have you pioneered lately?

Zanzibar, Nigeria, Korea, Oman and, most recently, Indonesia?
Over the past few years, Pye TVT have been breaking technological barriers in the broadcasting industry. Installing complete T.V. Broadcasting systems in countries, which have never before seen television and in places where existing systems are converting monochrome to colour.
Because each new system is a one-off, custom built job with unique technical innovations and maybe installed in widely differing conditions both in climate and terrain, we offer an unlimited challenge and interest to really creative engineers who have imaginative yet practical ideas, whilst being sufficiently resilient to thrive in our high technology business.

Senior Systems Engineers

 (Transmitters)Who are self motivated and capable of aligning complete $T . V$. transmitter systems to customer specifications using modern test equipment. Applicants should be able to locate and rectify complex faults involving the whole system or individual items of equipment and work with customers' engineers of many nationalities Experience in U.H.F Klystrons and/or high power transmitters is essential

Senior Installation Engineers

Working either independently or as a head of a small team which may involve taking charge of local labour, you'll be installing and commissioning V.H.F. and U.H.F. transmitters practically anywhere in the world. Your experience could have been gained with a U.K. or overseas broadcaster, but whatever your background, you should be a very competent T.V. transmitter engineer. Projects vary in length and in certain cases your family may be able to join you Overseas allowances will be paid in addition to basic salary

All appointments will be based in Cambridge and besides excellent salaries, will receive many worthwhile benefits, including relocation expenses in certain cases It is billy to be expected that an organisation involved for so long in pioneering broadcasting would have been responsible for many firsts throughout the industry. With your help, we hope to produce many more
Please write with full career details to Mrs J. A Macnab, Personnel Manager, TVT Limited, PO Box 41, 工olahams Lane, Cambridge, CB1 3JU

PyeTVT Limited
PO Box 41 Coldhams Lane Cambridge England CB1 3JU Tel: Cambridge (0223) 45115 Telex: 81103 pye tvt cambge

Instrumentation and Control Systems

The Electronics and Applied Physics Division has a vital role as a centre for advanced electronic knowledge and as a source of specialised equipment for the multidisciplinary laboratory at Harwell, for the whole UK Atomic Energy Authority and for industrial projects. Our responsibilities cover a broad range including measurement system desigr., transducers, semiconductor technology, and signal processing and communication in both analogue and digital forms, often requiring knowledge of both hardware and software.
Our work ranges from initiating applied research aimed at anticipating future needs, to tackling immediate problems in close collaboration with workers in other disciplines. We participate in the nuclear power programme, and we have research and development programmes in the environmerital, marine and medical fields

Applicants should have a clear interest in some of the above areas and should possess a good Honours Degree in Electrical/Electronic Engineering or in Physics with a bias towards Engineering; preference will be given to those with postgraduate experience in an appropriate area and who have scientific or technical management potential.

Appointments will be either to the permanent staff or to Fellowships with a salary or stipend in the range $£ 3500$ $£ 5000$ depending upon experience and ability.

Further enquiries and requests for application forms should be sent to:
Appointments Section 'A', AERE, Harwell, Oxon. OX110RA

UNIVERSITY OF DURHAM INSTITUTE OF EDUCATION

Colleges of Education Television Recording Unit

ENGINEER

An Engineer is needed to assist in the maintenance and operation of a Monochrome Television Recording Unit serving Colleges of Education in the Durham area. based at Neville's Cross College.
The Unit provides videotapes on a wide range of subjects for use in the training of student teachers. High quality recordings are made on locations throughout the county, using a well equipped Mobile Television Control Vehicle. The successful applicant will poin a team of six and will be expected to undertake not only and will be expected to undertake not only
engineering duties but also will have the opportunity to participate fully in a wide variety opportunity to partic
of production tasks.

Essential qualifications are a general knowledge of television techniques and equipment and a current driving licence Salary: Local Authority Scale T3 \&2.922-£3.282

Applications, including the names of two referees should be sent to the Secretary, University of Durham, Institute of Education, 48 Old Elvet, Durham, not later than
Sumlock Anita Ltd
1 Frogmore Road, Apsley
Hemel Hempstead, Herts.
Tel. Hemel Hempstead 61771

M.SC. COURSE IN ELECTRICAL ENGINEERING

with specialisation in
Electrical Machines Communication Systems Electronic
Instrumentation
Control Engineering and
Digital Electronic Systems
Design of Pulse and
Digital Circuits and Systems
The Course, which commences in October 1976. may be taken on a Full Time, Part Time, Sandwich or Block Release basis, and is open to applicants who will have graduated in Science or Engineering, or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the tenure of its Advanced Course Studentships
A Diploma Course, in some of the above topics or in Power Systems, is also open to applicants with the above, or slightly lower qualifications. Research in Electrical Engineering Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Phil or Ph.D. in any of the above topics.
Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref. M.Sc. 4), The University of Aston in Birmingham, Birmingham B4 7PB.

cit THE UNIVERSTY
 OF ASTON
 IN BIRMINGHAM

ELECTRONIC ENGINEERS AND AN INSTRUCTOR

Vacancies exist for Electronic Engineers and an instructor to join the technical back-up team of an expanding department, involved in electronic calculators and business equipment systems.
Electronic Engineers should have a good basic electronic background, preferably with some experience of pulse and counting circuitry
The Instructor should have a similar technical background in addition to proven teaching ability.
Please telephone or write for more details and application forms to:
Mr. D. D. Davies

Sumlock Anita Ltd.
Rockwell International

Friday, 6th February, 1976.

MEDICAL PHYSICS TECHNICIAN

GRADE IV

Area Medical Physics Department

Required for duties in the INTENSIVE CARE UNIT and in the wards primarily at Leicester General Hospital
The work involves close contact with patients. It will include care, use and maintenance of intensive care equipment and sophisticated monitoring systems both in the Unit and throughout the hospital.
A technician qualified ONC / HNC (Electronics) will be required Experience whilst desirable is not essential, as training in this aspect of work will be provided
Salary: Technician IV, £2346-£3267. New entrants would normally start at minimum.
Applications stating age, qualifications and previous experience together with the names of two referees, to the Sector Administrator, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW.
Closing date: 31 st January 1976
(5109)

Leicestershire Health Service

LEICESTERSHIRE AREA HEALTH AUTHORITY (TEACHING)

YAMAHA

require an

AUDIO ENGINEER

We require an Engineer to service Yamaha Hi Fi products. Applicants must be used to working on current sophisticated audio products and should be able to repair these without assistance to the highest standards.

Please apply in writing to:

Looking

 for a new job?
Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar,

 Banbury, Oxfordshire. Banbury (0295) 53529

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME \qquad
ADDRESS

Depot Engineers

Due to continually increasing commitments we need to expand our shore based engineering staff at our service depots at Cardiff and Tilbury.

The work is concerned with installation and service of our world famous communication equipment on board commercial vessels of all types.

In some instances opportunities may exist for overseas travel.
The ideal candidate will probably have served as a Radio or Electronics Officer at sea and will have three or more years sea service.

A company vehicle is provided for business and personal use.
If you are interested and would like to know more please write or telephone (reverse charges) to :

Jonathan Smith,

International Marine Radio Co. Ltd.,
Peall Road, Croydon, CR9 3AX
Telephone 01-6849771

THE UNIVERSITY OF LEEDS

Department of
 Physical Chemistry
 ELECTRONICS: DESIGN AND DEVELOPMENT

Applications are invited tor a post to assist research groups within the
deparment in the design and development of electronic equipment deparment in the design and development of electronic equipment.
Applicants should have a degree or its equivalent and a working Applicants should have a degree or its equivalient and a working
knowledge of modern electronics including computers. digital knowledge of modern electronics
The appointment will be at the Experimental Officer Grade with starting The appoiniment will be at the Experimental Office
salary in the range $£ 2370 \AA 3594$ (under review).
Apolications (three coperes) stating age experience and qualutications Appolcations (three copies) stating age experience and qualwications
and naming thre reterest should be sent as soon as possible to the
Registrar. The University. Leeds LS2 9 JT

CCTV ENGINEER

The successful applicant will
a) Be experienced in the servicing of all types of CCTV equipment including Video Tape Recorders.
b) Be preferably with some experience of Colour Cameras and VTR's
c) Be capable of working to a large degree on own initiative with a minimum of supervision.
d) Be resident in (or willing to move to) the Edinburgh area.
P.T.S. (Electronics) Ltd. St. Alkmunds Way Derby

AREA SALES MANAGER
 H.F. \& U.H.F.

Our client is in the business of HF \& UHF transmitters and receivers and radio antenna. We ransmitters and receivers and radio antenna. We be fluent in French. Based at Weybridge Sales be fluent in French. Based at Weybridge Sales
territory: French speaking African countries. Salary territory: Fr
C. $£ 4,500$

Write or phone V. Green
 S\&W SERVICES

26a high Street, hounslow, midox. 01.5727363 with good prospects. Weighting

Registrar \& Clerk to the Governing Body
Acton Technical College
High Street
LONDON W3 6RD
Telephone: 01-993 2344 ext. 2371

Inner London Education Authority

South Thames College

AudioVisual Technician

Grade 6

responsible for
College CCTV
System and All
Audio-Visual Aids
(including first line maintenance and operation).
Applicants must have an appropriate advanced CGLI or equivalent or higher qualification and six years experience (including training period)
Salary Grade $6 £ 3156 £ 3762$, with, additionally, $£ 411$ London Allowance added

Application forms and further particulars from Vice-Principal. South Thames College. Wandsworth High Street London SW 18 2PP, to whom they should be returned within two weeks of the date of this advertisement.

PRODUCTION MANAGER

relay/ELECTRONICS

A leading installer of burglar alarms systems, now expanding to produce its own range of Control and Electronic Equipment. seeks person with relevan: design and management expertise to develop from scratch the manufacturing division in EC1. Salary scraich the manu
negotiable A.A.E

For details please contact:
I.C.S. APPTS. 01-278 9551

Teach TELEPHONY to Post Office Students at ACTON TECHNICAL COLLEGE

Do you have a real interest in teaching, a sound knowledge of Post Office equipment and a Telecommunications Technician Certificate? Then join a team of teachers who would welcome your expertise.
In return we offer you a rewarding and interesting career as a Lecturer II
Starting salary in the range $£ 3,279-£ 5,493$ plus $£ 351$ London
For further details and application form write or telehone NOW:

SERVICE ENGINEER

F. W. O. BAUCH LIMITED

A vacancy exists for a service engineer seeking varied and interesting work in the professional audio field, the successful applicant should have a sound knowledge of electronics and some mechanical aptitude. Previous experience of professional broadcasting or recording studios would be an advantage.
The post involves repairing and servicing high quality audio equipment both in our own laboratory and in the field, salary negotiable.

Apply in writing directly to:

49 Theobald Street
 Borehamwood HERTS. WD6 4RZ

TECHNICAL SALES

ASSISTANT

Required by Importers of the famous AMCRON range of Laboratory Power Amplifiers to handle telephone sales, and service queries, and assist the Sales Manager in all aspects of sales, and marketing at the Company's Head Office in East Anglia.

The successful applicant will be 20-25 years of age with a sound knowledge of modern transistor circuit techniques. Some practicable experience in Research or Industry would be an advantage, but a pleasant personality and smart appearance is of prime importance.

Write in the first instance to the Managing Director
Macinnes Laboratories Ltd. Macinnes House
Carlton Park Industrial Estate
Saxmundham, Suffolk, IP17 2NL

TANN SYNCHRONOME

Field Support Engineer

Opportunity for a technically qualified young Engineer.

In a rapidly expanding Division of a National Company should have some experience in the following ANALOGUE/DIGITAL, FAULT DIAG. NOSTICS. small batch prototype assembly and NOSTICS. Small batch prototype assembly and
wiring. Full staff status, 4 weeks' holiday with pay wiring. Full staff status, 4 weeks' holiday with pay
for 1976 . Plus all statutory holidays. Excellent for 1976 . Plus all statutory holidays. Excellent
subsidised canteen, service increments after 1 and 2 subsidised canteen, service increments after 1 and 2
years' service Salary overt 3,000 per annum. Write years' service Salary overì3,000 per annum. Write
or telephone Mr. R. Fossey. Personnel Manager. or telephone Mr. R. Fossey. Personnel Manager.
John Tann Security Ltd., Sterling Corner, Borehamwood, Herts. Tel 01-953 2021.

REPAIR TECHNICIAN

for Audio equipment and photographic electronic instrument servicing
Good knowledge of solid state circuitry and mechanical expertise essential
Salary in region of $£ 3.000$ p.a

AXCO INSTRUMENTS LTD.
 228 Regents Park Road, Finchley N3 3HP

 (Tel. Mr. Brody - 01-346 8302)

Training course starting April 26

IAL is a world leader in communications and aviation services and we will be running a series of UK training courses this year to meet our expanding overseas commitments. Successful completion will lead to interesting, highly-paid postings abroad and opportunities to expand with the company.
To qualify for a place on the course, you should have several years' experience in the maintenance and operation of ILS, VOR and DME, together with a knowledge of associated ground-to
air communications systems We offer attractive tax-free salaries overseas and additional benefits include : free furnished accommoda tion : an excellent pension scheme ; opportunities for accompanied postings : education/child allowance The next course starts April 26th, 1976. Secure your place by contacting the Senior Recruitment Engineer, International Aeradio Limited, Aeradio House, Hayes Road,
$\square \square \quad \begin{aligned} & \text { Southall. } \\ & \text { Middlesex }\end{aligned}$ Middlesex. 01-571 1808 or 01-571 0678.

PAE PARK AIR ELECTRONICS

RF DESIGN ENGINEER

Our planned Company expansion has created an opportunity to join our team engaged on the design of VHF Transmitters and Receivers for use in the Airports of the World
The person we are looking for must be keen to work as a member of this specialist team and be prepared to take the responsibility of working on the project as a whole. The successful applicant will be formally qualified and will have had really relevant experience in our field. Reporting to the Development Manager and will be keen to progress a career in the expansion phase the Company is entering at the moment
Salary will be in line with the job responsibility. There is an excellent contributory pension scheme, World Wide Air Fare rebates for holiday travel and relocation assistance will be given
If you would like to work for a small company which offers career prospects and big company benefits in this pleasant rural area, please contact Clive Picking at

PAE

PARK A/R ELECTRON/CS

LIMITED

Ryhall Road, Stamford, Lincolnshire, England Telephone: Stamford 2187

PAE

Member of the International Aeradio Group

LONDON BOROUGH OF BARKING BARKING COLLEGE OF TECHNOLOGY
 LECTURER GRADE I/II IN TELECOMMUNICATIONS AND ELECTRONICS

required, principally for full-time courses in Marine Radio and for City and Guilds of London Institute Telecommunications Certificate. Applicants should have appropriate qualifications and experience. Appointment on the Grade il scale will depend upon the extent of such experience and qualifications obtained
Burnham Scales (I) £2,649 to £4,377 (II) £3,279 to $£ 5,493$ both plus $£ 351$ London Weighting. Application forms and further details from the Registrar, Barking College of Technology, Dagenham Road, Romford, Essex RM7 OXU. Completed forms to be returned to him within 14 days of this notice

5017

[8]

Recession?
 Don't you believe it!

We have more jobs for good Electronic Design Development and Test Engineers than ever before. All areas UK, all applications. Salaries to

E5.000

34 Percy Sireet, London, W. 1 01-636 9659 (day) or

5500836 (Cv?
CLARENDON LABORATORY, University of OX ford, offers 3 year appointmen't to holder of Grad. Inst. P., with considerable experience in
cryogenics and related applied physics tech cryogenics and related applied physics techgroup having helium dilution refrigerator Sroup having helam dilution refrigerator fications within the range $£ 3,378$ to $£ 5,010$ p.a. Transit accommodation available. Apply in writing giving fuld particulars of education. training and experience to Dr. A. J. Croft.

UNIVERSITY OF EXETER
 ELECTRONICS TECHNICIAN

A vacancy has arisen in the Department of Biological Sciences for a Technician in the Electronic Workshops, within the Grade range 3 to 5: The appointed technician will be required to provide a repair and maintenance service for electrical and electronic equipment for use in research and teaching
Salary: $£ 2,325$ to $£ \mathbf{~} \mathbf{3 , 2 0 7}$ p.a.
Applications are invited from qualified persons, and/or persons interested in attending ONC or HNC courses. These should be sent, together with the names and addresses of two referees, to the Administrative Officer (staffing), University of Exeter, Northcote House. The Queen's Drive, Exeter EX4 40J, by 29th January, 1976. Please quote reference no. $1 / 79 / 5058$

RCS ELECTRONICS have the following vacan-

 cies: Electronic Engineer with general elec-ironic experience for work on 74 Series Logic tronic experience for work on 74 Series Logic
R.F. and Digital Circuits. Design \& DevelopR.F. and Digital Circuits. Design \& Develop-
ment Engineer with wide experience in $R . F$. ment Engineer with wide experience in R.F.
and Digitai Equipment. Apply: R.C.S. Elecand Digitai Equipment. Apply: R.C.S. Elec-
tronics National Works, Bath Road. Hounslow. tronics. National Works, 'Bath Road. Hounslow,
Middx. Phone: $01-572 \quad 0933$ (5140)

EXPERIENCED CLOSED CIRCUIT TELEVISION SECURITY SYSTEM Design and Project Engineer capable of taking full responsibility for major projects. Must be thorough, selfmotivating and imaginative. Also required ex perienced CCTV Texhnicians. Excellent salary and benefits to right people with world-wide travel prospects. Please ring Brian Kent, Wind travel pros
sur $\$ 1966$.
(5123)

AGENTS WANTED

DANISH COMPANY seeks contact with British manufacturer of magnetic tapes (Compact Cassette and Open Reels) for possible agency in Scandinavia or Denmark. Please write to: Per
Meistrup Aksel Moellers Have 12. DK2000 Copenhagen F, Denmark

CHELSEA COLLEGE
University of London

TELEVISION TECHNICIAN

A Television Technician (Grade 5) is required to operate and maintain a wide range of audio and video equipment. The successful candidate will be expected to work closely with academic staff and students, and assist in the interpretation of their requirements in television terms. The television service at the college is expanding and the installation and commissioning of new equipment will present additional responsibilities. Salary Scale: £3161-£3617 per annum (inclusive)

Application forms from: Personnel Officer, Chelsea College, Manresa Road, London SW3 6LX.

LEICESTER POLYTECHNIC ELECTRONICS TECHNICIAN

required in the School of Chemistry, to be responsible for (a) the design, development and construction of prototype electronic equipment for chemical applications: (b) the maintenance of existing equipment

Successful applicant must have a knowledge of analogue and digital electronics and will probatly have at least two years' experience subsequent to taking a Full Technological Certificate Electronics, a HND in Electronics or a Degree in Electronics

Salary: £2277-£2529 p.a.
Apply in writing, giving full details, to Staffing Officer, Leicester Polytechnic, P.O. Box 143. Leicester, LE1 9BH

SERVICE MANAGER
 CAR RADIO STEREO TAPE PLAYERS

The sole national distributors for Pioneer Automotive Equipment require a Service Manager, fully conversant with all aspects of Service/Repair, fitting. suppression, technical advisory service and current technology. Modern well equipped workshop (one assistant). Salary negotiable according to experience and qualifications. Non-contributory pension scheme

Applications in writing with full details

to

AUTOCAR ELECTRICAL EQUIPMENT CO. LTD. Chantry Road Industrial Estate
 Kempston, Beds.

B. BAMBER ELECTRONICS
 (DEPT. WW), 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 1 QE
 TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

TERMS OF BUSINESS: CASH WITH ORDER
ALL PRICES INCLUDE POST AND PACKING (UK ONLY)
EXPORT ENQUIRIES WELCOME. CALLERS WELCOME TUE PLEASE ADD VAT. MINIMUM ORDER £1

ALL BELOW - ADD 8% VAT MARCONI TF867 SIGNAL GENERATOR up to 30 MHz), good condition, $£ 52.00$
a LARGE SELECTION of Test Equipment Surplus Equipment, Components, etc. Bulk Loads for dealers. Ring for appointment
ISEP RACKING,
ISEP RACKING, $1^{\prime \prime}$ wide, $1^{\prime \prime}$ deep to take
sackets), banels (with some
new, $£ \mathbf{8 . 0 0}$
PAL DECODER PANELS
Colour Monitors), type EL8618/00 Phillips complete but untested, $£ 20.00$.
AS ABOVE but NTSC $£ 10.00$.
PF1 POCKETFONES, UHF, untested bu complete,
PYE CAMBRIDGE BOOT MOUNT AM $10 B$ sets only no control gear 25 KHz channe spacing £20.00. (High or Low Band Muailable, state which required.)
MULLARD TUBULAR CERAMIC TRIM MERS, $1-18 \mathrm{pf}, 6$ for 50 p . (as featured in Rad Comm. Jan p. 25 ICs. some coded. 140IL type untested 2-6PF 10MM
2-6PF.̈ 10MM CIRCULAR; CERAMIC mounting, 5 for 50 p .
CERAMIC HIGH VOLTAGE PILLARS (metal ends tapped 4BA). approx 1 in long 10 for 60p.

MAINS TRANSFORMERS
All 240 V input. voltages quoted
(Please quote Type No. only when ordering) TYPE 10/2 10-0-10V at $\overline{2} \mathrm{~A}, \mathrm{E} 1.50$. TYPE $10 / 2100-0-10 \mathrm{~V}$ at $2 \mathrm{~A}, \mathrm{£1.50}$.
TYPE 72703 V 400 V at 10 mA .200 V at TYPE 72703400 V at $10 \mathrm{~mA}, 200 \mathrm{~V}$ at
5 mA .6 .3 V at 400 mA, £ 1,25 .
TYPE $28 / 428 \mathrm{~V}$ at 4 A .125 V a 500^{-}
TYPE
£4.00.
E4.00. $\mathbf{\text { TYPE }} 1258$, approx 125 V at 30 mA . 65 p .
COLOUR MONITOR DECODER PANELS. By leading British manufacturer. Designed to B.B.C standards. Units consist of chrominance module. PAL filter and delay module, lumin-
ance module and encoded video input module. All units brand new and complete including edge connectors and service manual £30.00

ALL BELOW - ADD 8% VAT BFY 51 TRANSISTORS 4 for 60 p .
BSX 20 TRANSISTORS 3 for 50 . BSX20 TRANSISTORS 3 for 50p. BC 108 (metal can) 4 for 50p PBC 108 (plastic BC 108) 5 for 50 p .
BSY95A TRANSISTORS, 6 for 50 BSY95A TRANSISTORS, 6 for 50 p
BCY72 TRANSISTORS, 4 for $50 p$. GCY72 TRANSISTORS, 4 for 50 p .
MINIATURE 2 PIN PLUGS R SOCKETS (Fit into $1 / /^{\prime \prime}$ hole, pins enclosed, with covers n-line connectors) Bargain pack of 3 plugs 3 sockets + covers 50p.
PROGRAMMERS (Magnetic Devices) Con lain 9 microswtiches (suitabie for mains
operation) with 9 rotating cams all individually adjustable, ideal for switching disco lights. displays, etc. or industriat machine programming (Need slow motion
motor to drive cams not supplied) 9 switch
version $\mathbf{1 1 . 5 0}$, or 15 switch version $\mathbf{£ 2 . 0 0}$ 10 WAY PUSH-BUTTON UNITS square buttons. marked 0-9. cancelling type mounted on one PCB for easy tixing, ex.equip 50p. HEAVY DUTY HEATSINK BLOCKS undrilled base area $2 \frac{1 / 4^{\prime \prime}}{} \times 2^{\prime \prime}$. with 6 fins total herght $2 \frac{1}{4} a^{\prime \prime} 50$ p each. 9V RELAVS, Continental type. 2 poie change RUBEBER
RUBBER MAGNETS
PYE CAMBRIDGE PC BOARDS (Removed
RF and MIXER BOARD $£ 7.00$
0.7 mhz IF BOARD £1.50
10.7 MHz OSCILLATOR/MIXER BOARD

(with 11155 Kial) £1.25.

455 KHz IF BOARD E.2.00
AM AUDIO BOARD E. 20
AM SQUELCH BOARD 50p
6 CHANNEL LEDEX SWITCHES,

$$
\begin{aligned}
& \text { complete with all trimmers and } \\
& \text { from high band AM 10) } 4.00 \text {. }
\end{aligned}
$$

PYE WESTMINSTER W3O AM MAN UALS (shop soiled) $£ 1.20$ (Zero rated VAT). TO3 TRANSISTOR INSULATOR SETS, 10 for 50 p .
SPECIAL OFFER. Miniature 50 ohm coax, high quality. PTFE insulation and blue PTFE cover, solid silver-plated inner, and
silver-plated braid, approx. 3 mm overall silver-plated braid, approx 3 mm overall PLease giclose stampen adoressed envelope with all endulbies

ALL BELOW - ADD 8% VAT

 24V MIN. REED RELAYS, encapsulate single-pole make. 2 for 50 p.WE NOW STOCK SPIRALUX TOOLS for the electronics enthusiast. Screwdrivers, nel etc. SAE for list

PLUGS AND SOCKETS

25-WAY ISEP PLUGS AND SOCKETS

 40p set (1 plug +1 skt). Plugs and sockets sold separately at 25 p eachFH4/50B or FHJ4/50B cable, © 1.00 each BULGIN ROUND FREE SKTS. 3 pich mains input on test equipment, etc., 25p SO239 BACK TO BACK SOCKETS, £1.25 PL259
PL259 PLUGS (PTFE). Brand new. Packed with reducers 65 p each, or 5 for $£ 3.00$ SO239 SOCKETS (PTFE). Brand new (hole fixing type), $\mathbf{5 0}$ p each, or 5 for $\mathbf{£ 2 . 2 5 .}$.
\mathbf{N}-TYPE SKTS, NOTYPE SKTS. (4 hole chassis mounting N-TYPE PLUGS 50 ohm, 60 p each
GREENPAR (GE35012) CHASSIS LEAD TERMINATIONS (These are the units Lhich both on to the chassis. the lead is secured by screw cap, and the inner of the coax passes through the chassis). 30 p each, 4 for $£ 1.00$. BULGIN FLAT 2 PIN FLEX CONNECTORS Non-reversible 40p each

PYERADIO-TELEPHONE EQUIPMENT
pa series. Send s.a e for full details
WELLER STOCKIST. All irons and spare

VALVES

aqvo3/20A (ex equipment), $£ 3.00$.
anvo3/10 (exequipment) 75p o ع1.20.
2C39A
C39A (ex equipment), $£ 1.00$ each COV02/6 (ex. equipmer.1), $£ 1.00$ each OX2508 (ex. equipment), $£ 1.50$ each

ALL BELOW - ADD 25% VAT HIGH QUALITY SPEAKERS, $8^{3 / 6 / 6} \times 6$ in. elliptical, 2 in deep, 40 hms . inverse magnet. rated up so 10 W £ 1.50 each, or 2 for $£ 2.75$ (Quantity discount availabie)
T.V. PLUGS (metal type) 6 for $\mathbf{5 0 p}$. T.V. SOCKETS (metal type) 5 for 50 p.
T.V. LINE CONNECTORS T.V. LINE CONNECTORS (back-to-back
skt., 4 for 50 p . skt., 4 for 50p.

£1.00

PNP AUDIO TYPE TOS TRANSISTORS 12 for 25p.
ITO RECTIFIERS, BYK42/300R, 300V at 10A. $\mathbf{3 0 p}$ each, or 4 for $\mathbf{£ 1 . 0 0}$
IF CANS IF CANS, $1 / 2$ in square, suitable for rewind, 6

DUBILIER ELECTROLYTICS. 50uF. 450 V 2 for 50 p
DUBILIER ELECTROLYTICS. 100 uF 275 V .2 for 50p.
PLESSEY ELECTROLYTICS. $470 \mathrm{uF}, 63 \mathrm{~V}$ PLESSEY ELECTROLYTICS. $470 \mathrm{uF}, 63 \mathrm{~V}$
3 for 50 p . 60p.
PLESSEY ELECTROLYTICS. 1000 uF 180V, 40p each (3 for £1.00). DUBILIER ELECTROLYTICS. 5000 mfd at DUBILIER ELECTROLYTICS. 5000 mfd a $50 \vee 60 p$ eac
OUBILIER ELECTROLYTICS. 5000 mfd , a ITT ELECTROLYTICS. 6800 mfd at 25 V high grade screw terminals, with mounting PLESSEY ELECTROLYTICS. 10000 mid . $63 \vee 75$ peach.

MULLARD BLACK/WHITE C.R.T A65-1 1 W. Brand new $£ 11.00$. T.V. LINE SOCKETS. 18p each. 5 for $75 p$ I.V. SOCKETS. Mounted on Bakelite panel for 50p.
OIN 3 pin LINE SOCKETS. $15 p$ each
E.H.T. V/HOLDERS B9A. (Both PHILIPS

APPOINTMENTS

DEVELOPMENT LABORATORY ASSISTANT/ JUNIOR ENGINEER

To work with Design team on monchrome and Colour television monitors, switching and mixing modules and systems. These positions offer interesting work, with good prospects in a fast growing company. Preferred qualifications are ONC/HNC or equivalent (or studying for).

Write or telephone: Griff Chanot (Chief Engineer) for appointment

MELFORD ELECTRONICS LTD.

High Wycombe, Leigh Court, Leigh St., High Wycombe, Bucks HP11 $20 U$
Tel: High Wycombe 25696/7/8

THOMSON
 FOUNDATION
 TELEVISION COLLEGE

his college which is involved in training engineering and production staff from overseas in advanced broadcast tech

ENGINEERING ASSISTANT

preparation and maintenance of a wide range of colour and monochrome broadcast equipment
Starting salary in the range $£ 2000$ $£ 2500$ p.a. (contributory pension scheme)
Experience in maintenance of broadcast or C.C.T.V. equipment desirable.
Application forms from: The Principal

THOMSON
 FOUNDATION

TELEVISION COLLEGE

Kirkhill House, Broom Road East Newton Mearns, Glasgow G77 5RH

ARTICLES FOR SALE

100,000 C280 CAPACITORS, good mixed selection 100,000 C280 CAPACITORS, good mixed selection
 f1.25, $1,000 / £ 10$ AC128 transistors marked unused but require testing. price per $50 / 41.50$.
Prices include VAT P\&P 25 p . Electronic Maiiorder Lid.. Ramsbotiom. Bury Lancs. (5024)
"motivator" Curtain Cord Controllets. Mains battery models and kits for use with
corded domestic curtains. From $518-20$. Aid-Us corded dumestic curtains. From f18-20. Aid-Us
Products, Dept. WW10. 8 Hillview Road, Pinner Products, Dept. WW10. 8 Hillview Road, Pinner
HA5 4PA, Middlesex.

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram. £3.66 plus VAT, Jumbo LED digits (16 mm high) type economy DL/747 only $£ 2.04$ each plus VAT, post free. Greenbank Electronics, 94 New Chester Road Wirral
Merseyside L62 5 AG .
C.r.t. REGUNNING plant. New and second hand reconditioned training, demonstration colour or B/W. Barretts, Mayo Road. Croydon, Surrey, CRO 2QP.

16MM B \& H 631 Sound projectors c/w speaker and transformers f135. - Hilton Cine, 9 West Hill, Dartford -T. 20009

fifbre optic

Cardiac Recorders have a vacancy for an Electronics Engineer to work on the design and development of Electro-medical equipment.

The successful applicant will have a degree or HND in Electronics, preferably with at least two years experience and proven ability in circuit design

The workdemands considerable responsibility with a commensurate salary

Apply im writing with full details to: R. Colson Cardiac Recorders Lid., 34 Scarborough Road, London N4 4LU.

COLOUR UHF and TY SPARES. Lists available on request "Wireless World" TV tuner project, by D. C. Read, Kits of parts available. New cross hatch kit, Aerial input type. No other connections. Battery operated, portable. Incl. Sync \& UHF Modulator units. Eil. 00 P/P P
CRT Reactivator kit for colour and mono $£ 17.48$ CRT Reactivator kit for colour and mit 40 p . Signal strength meter kit $18 / \mathrm{p}$ 60p. 625 TV I.F Unit suitable for Hi-Fi amp on tape recording $£ 6.80 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Bush CTV 25 new convergence panels + yoke and blue lateral $£ 3.60 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads $£ 3.75 \mathrm{p} / \mathrm{p}$ 65 p . New colour scan coils, Mullard or plessey, plus convergence yoke and blue lateral $£ 9.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Mullard at $1023 / 05$ convergence yoke 12.50 p/p 50 p . Mullard or Plessey Blue e2.00 p/p 60p. Bush CTV25 scan coils new E2.50 p/p 60p. Delay lines DL20 £3.50, DL40
 Lines $50 \mathrm{p} p / \mathrm{p} 20 \mathrm{p}$. EHT colour quadrupler for Bush/Murphy CTV25 3/174 Series $£ 8.50 \mathrm{p} / \mathrm{p}$ 60p. Special offer, colour triplers: ITT TH25/ 1TH $£ 2.00 \mathrm{p} / \mathrm{p} 40 \mathrm{p}$. GEC 2040 tripler $£ 1.75 \mathrm{p} / \mathrm{p}$ 40 p . Philips G8 panels, part complete, surplus/ salyaged: decoder £2.50, IF. incl. 5 modules £2.25. T-Base $£ 1.00 \mathrm{p} / \mathrm{p} 50 \mathrm{p}$. CRT base $75 \mathrm{p} \mathrm{p} / \mathrm{p}$ $20 p$ G.E.C. 2040 panels for spares. Decoder f3.50, Timebase $£ 1.00 \mathrm{p} / \mathrm{p} 55 \mathrm{p}$. VARICAP TUNERS. UHF ELC 1043, new £4.20. ELC 1043/ VHF and UHF Varicap tuners $£ 150$ D 10250 . SPECIAL OFFER: RBM 6psn. Varicap control units $81.00 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$. UHF tuners new control sistorised, incl. slow motion drive, £3.80. 4position and 6 -position push-button transistor. ised, $£ 4.20 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Philips, Bush, Decca integrated UHF/VHF transd. tuners $£ 4.50 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. Thorn 850 dual Standard time base panel 50 p p/p 50p. Philips 626 I.F. amp incl. ccT. 50p $\mathrm{p} / \mathrm{p} 50 \mathrm{p}$. VHF turret tuners at 7650 incl. Valves for K.B. Featherlight, Philips 19 TG170. GEC 2010 ETC, $£ 2.50$. Pye miniature incremental for 110 to 830 . Pam and INVICTA $£ 1.00$. N.ew Fireball tuners, Ferguson, HMV. Marconi, $\mathfrak{E 1 . 0 0}$ p / p all tuners 50 p . Mullard 1100 Mono scan coils, new, suitable all standard Philips. Stella, Pye, Ekco, Ferranti, Invicta $£ 2.00 \mathrm{p} / \mathrm{p} 55 \mathrm{p}$. most popular makes. $200+200=100 \mathrm{MFD}$ most popular makes. $200+200=100 \mathrm{MFD}$
350 V Electrolytic $£ 1.00 \mathrm{p} / \mathrm{p} 30 \mathrm{p}$. MANOR SUP. PLIES, 172 West End Lane. London N:W. Shop Premises. Callers welcome. (No. 28 159, 59 buses or W. Hampstead-Bakerloo and Brit. Rail). Mail Order: 64 Golders Manor Drive. London NW11. Tel: 01-794 8751. VAT. Please ADD 25% TO ALL PRICES (EXCEPT KITS. VAT 8% ?

RTTY AUDIO FREQUENCY SHIFT CONVERTOR

 CV-89A/URA-8A. This must be the first quantity release of this most sought after Ritty Convertor. Brie description uses 15 BG9 \& BG7 Valves. with a $2^{\prime \prime}$ C.R. Tuning Tube Housed in a Grey Alloy Case size $17{ }^{\prime \prime}$. ${ }^{\prime}$ $15^{\prime \prime}$ deep input supply fully filtered for interferenceRequires 105.125 Volis A C A two position Selectivity or Requires Filter Switch that enables to set up for any Narrow Shift from 10-200 Cycles or any Wide Shift from 200-1000 Cycles The Mean or Centre Frea for the Narrow Shift is 1000 Cycles, for the Wide Shift is 2550 Cycles Normal Audio Input from Receiver is 600 OHMS The Convertor will operate with an input of 60 Microwatts to 60 Milliwatts or about -14 to plus 18 DBM Has Internal Tone OSC Frea 595.1785 CPS Mark Space Switch Normal or Reverse Supplied in good used condition, checked complete, but no
tested Electronically E22 50 Carr E2 50 onwards.

We aiso have fow COMPARATORS CM-22A. URA-BA same colour and size, using 13 BG7 and BG9 Valves Made for use with above for Dual Diversity Reception. 105-125 V.A.C. Supply fully filtered for interference Used Good condition, checked complete but not tested Electronically $£ 1000$ Carr. as above
We have in stock a Clip on Fan Blower Cooler complete with Filter \& Heat Switch that only switches on when Units get 10 a preselected heat. Normally if Units are used up to 24
hours a day Housed in Alloy case $£ 2.50$ Post or carr. 50 p TELEPRINTER CREED 7B. New or rebuilt as new by Gov in original Gov. Transit Case Power 100-250V D.C. Few only at $£ 22.50$ ea. Carr. $£ 3.50$ or at cost.
SUPPLY UNIT 7. Input Voltage 12 V d c or 100-250 A.C. Output $70-100$ Volts $30 \mathrm{M} / \mathrm{A}$ iwice $30-45 \mathrm{~V}$ A C $40 \mathrm{M} / \mathrm{A}$ $115-14 \mathrm{~V} \mathrm{dc}$..2 .4 amps . In small box. These are mainly for supplying Relay Voltage for the Teleprinters. Brand New
at $£ 3.50$. Carr or post $£ 1.00$
If possible collect ex Warehouse by appontment. and save carr cost also delivery time.
Terms cash with order. VAT at 8%
Phone Morley Code $0532-531179$

JOHNS RADIO

424 BRADFORD ROAD, BATLEY, YORKS.

THE SCIENTIFIC WIRECO.

Copper - Nickel - Chrome - Eureka Litz - Manganin Wires
Enamelled - Silk - Cotton - Tinned Coverings.

* No minimum charges or quantities.
* Trade and export enquiries welcome.
\star S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

OSCILLOSCOPE, Solartron CD711S.2. Any rea sonable offer. St. Leonards House. Ashree Close, Worlingham, Surfor, Tel. Beccles 713786
(5032)
E.C.L. LOGIC I.C.s. Mc10101L; Mc101002L: Mci0105L all first grade, guaranteed. 50 p per gate, post free. Discounts: $£ 4.20$ for 10 pieces £ 38 for 100 . Tunnel diodes TD253 at $£ 1.50$ each post free. Capacitor clearance: 0.1 micro-farad 250 v polyester films tape C280 at $£ 1.80$ per thousand. (These are physically perfect but are surpius untested E Tested C280s: 0.47 at £1.20 per 100; 0.33 at $£ 1.00$ per $100 ; 0.22$ at 90 p West Hendon, Broadway, London, NW9.
(5042)

OSCILLOSCOPE TUBES Mullard type D14-121-GH complete with shields and base. Suitable case. C Core mains transformer and muli-rail reg ulator P.C.B. Invertor transformer and E.H.T. multiflier. Twin plug-in deflection amplifiers. All at $£ 35$ per package. All brand new. Circuits supplied phone 01-202 6282, very limited stock.
(5043)

SUPERE INSTRUMENT CASES by Bazelli, manufactured from heavy duty p c aced steel. Hundreds of people and reosing the cases they require from our are choosing the cases they require rom our 75 p . Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated). Bazelli, Dept No 22, St Wilfrid's. Foundry Lane, Halton, Lancaster, LA2 6LT.
(5052)

TAPE SPOOLS, 5 in \& 5 zin diameter, in crystal polystyrene with quick load slots. Available polystyrene with quick load slots. Avainable Mitcham. Surrey. 01-640 0145.) W (5129)

500 DUAL STANDARD COLOUR TV's. In stock from $£ 30$. Contact: S.H.C. Television Norlett Building, Dormer Road, Thame, Oxon. Thame 4331. (20)

VACUUM is our speciality. new and secondhand rotary pumps, diffusion outfits, accessor. ies, coaters, etc. Silicone rubber or varnish outgassing equipment from 440 . V. N. Barrett (Sales) Led., 1 Mayo Road, Croydon. 01-684 9917.

ARTICLES FOR SALE

ENAMELLED COPPER WIRE

S.w.G.	$\mathbf{1} \mathbf{~ l b . ~ r e e l ~}$	$\mathbf{1 / 2} \mathbf{~ l b}$. reel
10 to 19	2.40	1.35
20 to 29	2.45	140
30 to 34	2.60	1.50
$35 . t 040$	2.85	1.60

and packing in UK. COPPER SUPPLIES
102 Parriwood Road, Withington, Manchester 20 Tolephone 061-445 8753

NEAL CASSETTE RECORDERS

Opportunity to own a famous machire at a fabulous saving Demonstration. Display and Review units - all models Thoroughly rechecked to full specification by Manufacturer and reboxed FULL GUARANTEE
Example Model 102 Mk 1 at only $£ 120$ + VAT -
£ 150 incl
Post enquiries only please dB Associates, 75 Marlow
Road, London SE20 or phone 089263150
60 KHz MSF RUGBY RECEIVERS. BCD TIME-OF-DAY OUTPUT. High perfirmance, phase locked loop radio receiver. 5 V operation with and tested unit fil complete eq.50; assembled and tested unit fl1.12 (prices include postage with signal and audio outputs. Send for details Toolex. Sherburne (4359) Dorset. (21.

TIDY PACK with 6 different sizes of neat shrink sleeving each 1 M in length 100 . Selflocking cable ties and a roll of black. PVC Products Lor Retail Division, 13A Heath Road St Albans, Herts.

SOLARTRON CD 71IS. 2 Double beam Oscilloscope. 9 MHz amplifiens, Xtal calibrator, variable trigger delay, with manual: f40. - Telephone
Dr Bell, 01-789 6611.
(5098)

WE INYITE ENQUIRIES from anywhere in the World. We have in stock several million carbon resistors $\frac{1}{6}$ th, $\frac{1}{4}, \frac{1}{\frac{1}{2}}$, and 1 watt, $\frac{\frac{1}{2}}{2}$ midion wire
wound resistors 5 and 10 watt -1 million capacitors - 1 million electrolytic condsensers - million transistors and diodes. thousands of potentiometers. and hosts of other components. Write, phone or call at our warehouse Broadfields \& Maycu Disposals Ltd., 21 Lodge Lane, N. Finchley. London, N.12. 01-445 0749, 4452713. (5097)

QUERSA RT 45U. Chasing machine. 220/240V. Used one dwelling only, 90.. VGC. - 79 Ashley

 Road. New Milton, Hants. Tel: New Milton 615912.LINSLEY-HOOD 75 watt amplifier spares by return. Sescosem BDY56 f1.75, Motorola BD529, $\begin{array}{llll}\text { BD530 } \\ \text { BF258 } & \text { 35p, Each. } & \text { 2N5457, } 2 N 5459 \text { 45p each. }\end{array}$ BF2.58 35 p , BFR 3935 p . BFR 7935 p . Tantalum
bead $100 / 3 \mathrm{~V}$ 15p. Headphone socket kit, with full fitting instiuctions, fl.45. Filter switch click and mains/rf interference suppression Kit, with instructions, $x 1.35$. All components brand new and guaranteed. Inclusive prices. P\&P 10 p . List SAE. I. G. Bowman, 59 Fowey Avenue, Torquay. S. Devon. (5106)

TEXTRONIX 564B Storage oscilloscope with a 4 -channel amplifier and time base £350. Fluke 8000A digital multi meter $£ 70$. 051-709 1898.
(5138)

MULLARD LP1400 high performance stereo decoder modules. Limited quantity to clear, only f6 including p M P. Mr. Cook, 39 Barreti
Road, London, E.17. Mail order only.

DISCO CONSOLE consisting of two 100 watt DJ Power Amplifiers with SDL mixer Mk 11. Magnetic cartridges housed in compact mobile Magnetic cartridges, housed in compact mobile
 EMI speakers, 100 watt Pluto light projector, microphone (including stand and boom; Speaker leads, Bank lights. All perfect and ready for use. £800. 01-805 3898.

FRENCH RADIO - ELECTRONICS WHOLESALER

Wishes to buy in Great Britain, in co-operation with British Wholesaler:

1. Radio.
2. Tape Recorders
3. Hi-Fi Record Players (Phi-lips-Garrard).

S. A. CERUTTI \& CIE

201/203 Bd. V. Hugo, BP 3512-59020 LILLE CEDEX Telex: 120082
CERUTTI - LILLE

WE PURCHASE

bulk quantity of fall-out or scrap grade

TRANSISTORS. DIODES

such as To-92, To-18, To-106, To-5, Do-35, Do-7 (Germanium), Do-41 . . . etc
If available, PLS, Sample to
W.K. ELECTRONICS CO.

57 Kam Ping St. D7 13/F Tung Fat Building
North Point, Hong Kong

* MINICOMPUTERS
* PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH offer, phone COMPUTER APPRECIATION Godstone (088 384) 3106

WANTED, all types of communications receivers and test equipment. Details to R. T. \& 1 . Rd, London Eii Ashville Old Hall, Ashvilio Rd., London, E.11. Ley 4986

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of phone our miss Hughes. Sandy (0767) 81616.
phone our miss Hughes, Sandy (0767) 81616.

WIRELESS WORLD COLLECTOR requires Jan Wary, March. April. June July, August 1966. February. March, April, May, June, July. Aug April May July October February, March Aprii. May. July, October. November, December Box No. 5065 .

WANTED, Valve Tester/Characteristic meter Cowley, 40 Langbank Ave., Ernsford Grange Coventry (0203) 453676
(5111)

WILLIAMSON AMPLIFIER output transformers, one pair of identical impedance. Partridge or Savage. Afternative, are Partridge type VDN
436 B or $\mathrm{CFB} / 0$ of 0.95 ohM. impedance. Reply: D. Fairbairn, Whitmore Farm windle sham, Surrey.
(5096)

[^3]
WANTED!

all types of scrap and
REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content
TRANSISTORS \& PRINTED CIRCUIT BOARDS to COMPLETE COMPUTERS
The COMMERCIAL SMELTING and REFINING Co. Ltd.
171 FARRINGDON ROAD. LONDON ECIR 3AL Tel. 01-837 1475. Cables: COMSMELT, EC1

Works: FLECKNEY, near LEICESTER

SURPLUS COMPONENTS, Equipment and Com puter panels wanted for cash. Ring Southamp
(on 7725)
(16)

TAPE RECORDING ETC.

RECORDS MADE TO ORDER

DEMO DISCS	VINYLITE
MASTERS FOR	PRESSINGS
RECORD COMPANIES	

Single d sc: , 1.20, Mono of Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3-4 weeks. Sleeves/Labels Finest quality NEUMANN STERED/Mono Lathes We cut for many studios UK / OVERSEAS. SAE list
DEROY RECORDS
pO Box 3, Hawh Street, Carnforth, Lancs. Tel. 2273

EX-GOV'T. MONO ta multi-track tape recorders,
EMM.I.: Ferrograph-rich Leevers, etc. S.A.E.
details A. Wright, 10 Chuhch Street, Dowlais
Glamorgan.
4991

RECEIVERS AND AMPLIFIERS -

HRO Rx5s, etc., AR88, CR100, BRT400, G209,
S640, etc., Etc., in stock. R. T. \& I. Electronics,
Ltd., Ashville old HaH. Ashville Rd., London,
E11 Ley 4986 .
SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, \& I Electrunics Lid. Ashvilie Old Hail ${ }^{\text {a }}$ ville Rd., London, E.il. Ley 4986.

When you need to hire Video-
 it pays to contact the most experienced video company in the business

R.E.W. House
10. 12 MICH STREET COLUERS WOOD LOMDON SWI9 28E

Also at CENTRE POINT 20/21 ST. GILES HIGH STREET LONDON, WC2 PHONE: 01-240 3066

ARTICLES FOR SALE CONT.

Economise on Semiconductors
All prices inc/ude VAT - by return service

* Lower price CMOS
* Lower price 741C

All prices include VAT. P\&P (UK) $12 p$, Overseas at cost SAE enquiries. All goods new. Full spec. devices from Motorola. Mullard. TI, SGS. etc. Schools, colleges. etc., supplied. By return service

SILICON SEMICONDUCTOR SERVICES

41 Dunstable Road, Caddington, Luton LU 1 4AL

TENDERS

BOROUGH OF CHARNWOOD TECHNICAL DEPARTMENT

Tenders for Surplus Radio Telephone Equipment

Tenders are invited for eleven low band Pye Westminster radiotelephones together with base station. This equipment can be inspected at the Council's Depot, Limehurst Avenue, Loughborough, and has become available due to the merging of two existing systems in which low band frequencies have been relinquished

[^4]

SOWTER TYPE 3678
MULTITAP MICROPHONE TRANSFORMER MULTITAP MICROPHONE Secondary loadings from 2 K ohm to 10 K ohm Frequency response plus/minus $/ 20830 \mathrm{mz}$ to 25 KHz . 22 mm high well finished Mumetal box, 33 mm diameter by 22 mm high,
with colour coded end leads, Iow distortion. DELIVERY (Small quantities) EX STOCK HIGHLY COMPETITIVE PRICE FULL OETAILS ON REQUEST
E. A. SOWTER LTD., Dedham Place, lpswich

IP4 1JP. Telephone 047352794
WW - 030 FOR FURTHER DETAILS

POLYESTER CAPACITORS
 I.T.W.

Radial Lead 10\% Tolerance 100 V D.C. $0013 p .0022$ $3 p \quad 0047$ 3p. $00683 p .013 p \quad 015$ 035p. 022 035p. 033 04p. 047 04p. 068.05 p. 1 055p. 1 06p. 22 065p. 33 075p. 47 095p
Axial Lead 10\% Tolerance 200V O.C. 01 mfd 185 p 022 nifd 185p. 047 mfd 20 p . 1 mfd 25 p
Dipped Tantalum Capacitors (Bead Type). Values avalable $1 \quad 15,22.331 \mathrm{mfd}, 15.22 .33,47,35 \mathrm{~V}$ $4768.10 \mathrm{mfd} .25 \mathrm{~V}, 15,22.33 .47 \mathrm{mfd}, 16 \mathrm{~V}$ Prices 10 p each - 10 for 95 p
Electrolytic Capacitors (Axiel). 1000-40V $25 p$. 470.16 V $15 p 220-25 \mathrm{~V} 12 \mathrm{p} 100.25 \mathrm{~V} 6 \mathrm{p} .47 .25 \mathrm{~V} 5 \mathrm{p} .47 .10 \mathrm{~V} 5 \mathrm{p}$ $22-40 \mathrm{~V} 5 \mathrm{p}, 10-25 \mathrm{~V} 5 \mathrm{p} 47-63 \mathrm{~V} 5 \mathrm{p} .22-63 \mathrm{~V} 5 \mathrm{p}$ $1 \mathrm{mfd}-63 \mathrm{~V} 5 \mathrm{p}$ Radial. 2200 (Tag) 40 V 45 p each $1000 \cdot 16 \mathrm{~V} 25 \mathrm{p} .470-25 \mathrm{~V} 19 \mathrm{p} .220-25 \mathrm{~V} 12 \mathrm{p} .100-25 \mathrm{~V} 6 \mathrm{p}$ $47.16 \mathrm{~V} 5 \mathrm{p} 33.16 \mathrm{~V} 5 \mathrm{p} 22.16 \mathrm{~V} 5 \rho .10-16 \mathrm{~V} 4 \mathrm{p} .5 \mathrm{~m} .16 \mathrm{p}$
Carbon Film Resiszors. $1 / 3$ Watt RD $1 / 35 \%(70$ c) $01 p$ each 90 p per 100 1R-1Meg ($1 \mathrm{M} 2 \cdot 10 \mathrm{M} 10 \%$) Special Pack 20 popular values quarter $W-5$ of each 90 p $1 / 2$ Watt $A E L$
$5 \% ~ 47 R-2 M 2 \quad 015 p$ each. 750 per 100 Watt $A E L$ $47-2 \mathrm{M} 2 \mathrm{2p}$ each 174 per 100 Special Pack 100 Resisitors mixed 40ρ
Polystyrene Capacitors (pf) 63V \& 160V 5%. 10,15 $\begin{array}{lllllll}18 & 22 & 33 & 56 & 68 & 100,120,150 & 180.270 .330,390\end{array}$ 035 peach 4700 . 6800 8200, 4 p each 10.000 pt $05 p$ each
Semiconducsors. BC107/8 9 09p. BC $147 / 8 / 9$ 10p 8C157 $899 p$ 8CY70/1/2 17p. 8FY51 19p SCR C1060 2P4M.400V 50p each
Integrated Circuits. 7418 Pin DII 27p. 723(TO99) 57p LM309K(TO3) 148 I/C Sockars. (Gold) $8 / 1416$ 15p $(\mathrm{T}+\mathrm{n})$ 8/14/16 14p Minitron हil 20 each
Zener Diodes. 400MW 9p. IWatt 17p (Standard voltages)
Diodes. IN4148 05p BAXI6 05p
Recrifiers. IA IN40015p, IN4002 06p IN4003 07p IN4OO4 OBp. 3Amp $3 A 05(50 \mathrm{v}) 10 \mathrm{p}$. 3A $10(100 \mathrm{~V}) 11$ p
TERMS. CASH WITH ORDER V.A.T. PLEASE ADD 25\% :5 PROMPT SERVICE ALL COMPONENTS GUARANTEED

Greenway Electronic Components

Wilmslow Audio
 THE firm for speakers！

Baker Group $25,3,8$ ，or 15 ohm Baker Group 35， 38 or 15 ohm Baker Deluxe． 8 or 15 ohm Baker Major，3， 8 or 15 ohm Baker Regent， 8 or 15 ohm Baker Superb， 8 or 15 ohm
Celestion HF1 3008 or 15 ohm Celestion HF1 3008 or 15 ohm．．．
Celestion MH 1000 horn． 8 or 15 ohm Decca London and X ove
Decca DK30 and X over
EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} .3 .8$ or 15 ohm EMI 13×8 ，Type 350 ． EMI 13×8 ， 25 watt bass EMI 8×5.10 watt． d / c ．roll／s 8 ohm Elac 59RM 10915 ohm 59RM 1148 Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll／s 8 ohm Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 50 watt， $12^{\prime \prime}$
Fane Pop
Fane Pop 55， $12^{\prime \prime} 60$ watt
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt， 18
Fane Crescendo 12A or B． 8 or 15 ohm Fane Crescendo 15，8 or 15 ohm Fane Crescendo 18,8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ ，roll／s， 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll／s 8 ohm
Goodmans 8 P 8 or 15 ohm Goodmans 8P 8 or 15 ohm
Goodmans 1 OP 8 or 15 ohm Goodmans 10P 8 or 15 ohm
Goodmans 12 P 8 or 15 ohm Goodmans 12 P－D 8 or 15 ohms Goodmans 12P－G 8 or 15 ohms Goodmans Audiom 10015 －ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm． Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN1 2
Kef DN13
Richard Allan HP8B 8＂ 45 watt Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll／s
STC 4001 G super tweete
Baker Major Module，each
Goodmans Mezzo Twinkıt，pair
Goodmans DIN 20． 4 ohm，each
Helme XLK̄35，par
Herme XLK40，pai
Helme XLK30，parr
Helme XLK50，parr
efkıt 1．pair
Kefkıt III，each
Richard Allan Twinkit，each
Richard Allan Triple 8，each
Richard Allan Trıple，each．
Richard Allan Super Triple，each Richard Allan RA8 kit，pair Richard Allan RA82
Wharfedale Linton 2 kit（paır） Wharfedale Glendale 3 kit，pair
Wharfedale Dovedale 3 kit，par
€8．64
$£ 8.64$
$£ 10.25$
£13．75
£11．87
$£ 10.00$
$£ 18.12$
$£ 18.12$
$£ 7.75$
$£ 7.75$
$£ 13.50$
£ 13.50
£ 42.25
E 24.06
£2．94
E 9.56
$£ 9.00$
$£ 3.95$
$£ 13.25$
£3．44

£4．06

$£ 4.06$
$£ 5.25$
$£ 7.50$
12.00

£ 13.95

$£ 18.75$

29.95
$£ 34.50$
$£ 47.50$
$£ 62.95$
$£ 5.75$
$£ 9.95$
$£ 5.50$
£5．80
$£ 13.95$
$£ 16.95$
$£ 15.95$
$£ 15.95$
$£ 13.90$
$£ 13.90$
$£ 8.44$
£20．00 £ 20.00 $£ 10.14$
f 10.75

$\begin{array}{r}£ 10.75 \\ \\ \hline 6.06\end{array}$

£6．06

$£ 6.94$
$E 8.37$

$\begin{array}{r}£ 9.50 \\ \hline 16.95\end{array}$
 \subsection*{16.95}

$£ 2.31$
$£ 5.99$
$£ 5.99$
$£ 4.50$
£13．25

13.25 $£ 7.50$
 $£ 7.50$ $£ 6.56$

£6．56 £ 13.44 £47．19 £14．75 $£ 24.00$ $£ 35.00$ $£ 19.00$ $£ 56.00$ $£ 53.00$ £48．00 E10．95 E16．50 £23．95 £28．75 $£ 42.00$
$£ 63.00$
$£ 23.12$ $£ 23.12$
$£ 40.62$ E63．12 Radford，Gauss．Castle．Jordan Watts，Eagie Prices correct at 291075
INCLUDING VAT AT $\mathbf{2 5} \%$ ON HI－FI 8% ON PRO AND PA
Cabinets for PA AND HIFI，wadding，Vynair，eic FREE with all orders over $£ 7-\mathrm{HiFi}$ Loudspeaker Enclosures Book
All units are guaranteed new and pertect Prompt despatch
Carriage Speakers 50p each． $12^{\prime \prime}$ and up $75 p$ each tweeters and cross－overs 30 p each．kits 80 p each

WILMSLOW AUDIO

Loudspeakers \＆Export Dept：Swan Works Bank Square，Wilmslow，Cheshire SK9 1HF． Discount Hifi，PA etc： 10 Swan Street Wilmslow．Radio，HiFi，TV，Radio：Swift of Wilmslow， 5 Swan Street，Wilmslow．Tel． （Loudspeakers）Wilmslow 29599．（HiFi，etc．） Wilmstow 26213

WW－020 FOR FURTHER DETAILS

SPECIAL RESISTOR KITS（CARBON FILM 5\％） （Prices include post \＆packing）
$10 \mathrm{E} \$ 2 \mathrm{t} / \mathrm{W}$ or $1 / 4 \mathrm{~W}$ KIT 10 of 22 ohms -1 M a total or $570 € 5.29$ net
$25 \mathrm{E} 121 / 4 \mathrm{~W}$ or $1 / \mathrm{WW}$ KIT 25 of each E12
uhnis 1 M a total of $1425 \mathrm{£12.64}$ net
SPECIAL CAPACITOR KITS
C280 Kit－PC，Mounting polyester 250V 5 of each value 0.01 .0022
 $0.22_{1 I} \mathrm{~F}^{2} 2$ of 0.47 IIF $£ 2.67$ net
Ceramic Kit－square plaqua 50 Y 5 of each value 22．33．47，100． 220.330 ．
$470.1000 \mu \mathrm{~F} .2200 .4700 \mu \mathrm{~F}$ ． $0.01 \mu \mathrm{~F} \mathrm{E} 1.66$ ael
250 V Paper Kit－Tubułar metal case． 3 of each value 0.05 ． 0.10 .25
$0.51 \mu \mathrm{f} £ .41$ net．
500 V Paper Kut－Tubular metal case． 3 of each value $0.025,0.05,0.1$
$0025.05, \mathrm{~F}, 1.41$ net
0025．O5／LE £1．41 nel
Ioony Paper Kit－Tubular
10001 Paper Kit－Tubular meial case． 3 ol each value 0.01 ． 0.025 ． 0.05 ，
B．H．COMPONENT FACTORS LTD．

nte－10－350 in 2 ranges
Complete with steel carrying case，tes
leads and battery PRICE $£ 11.88$ net P \＆P

Resistance－-1 K ？ 1 Mt in 4 range
db scale 10 to +12 db
Sccuracy $-\mathrm{dc}-11 / \mathrm{D}_{4,1} \mathrm{ac}--2$
Size $-115 \times 215 \times 90 \mathrm{~mm}$
Complete with steel carrying case tes
leads and battery
MULTIMETER U
\therefore Ranges ptus AF IF Oscilator
40 OOO！？Volt
de $=05-1000 \mathrm{~V}$ in 7 ranges
Vac－$-25-1000 \mathrm{~V}$ in 6 ranges
$\mathrm{ldc}-0$
ranges
ranges
Resistance－ $5(2-1 M 1)$ in 4 ranges
-5% of SSD
ditale
Supp red complete with carrymg case test leads and
batter
PRICE
MULTIMETER U4324
at Ranges High sensitivity
vdc－0 $6-1200 \mathrm{~V}$ in y ranges
wht $-3-900 V$ in 8 ianges
kic $-006-3 A$ in 6 ranges

+ － $03-3$ in 5 ranges
Ri＇sistance $-25!$ ！ $5 \mathrm{M}!$ ？in 5 ranges
Accuracy－dC and $R-21 / 2 \%$ of $F S D$
Size $-167 \times 98 \times 63 \mathrm{~mm}$
Sue－ $167 \times 98 \times 63 \mathrm{~mm}$
tedds spare diode and battery
（W．W．），LEIGHTON ELECTRONICS CENTRE， 59
NORTH STREET，LEIGHTON BUZZARD，LUT TEG

EXCLUSIVE OFFERS

WORLD－WIDE RANGENEVER

HIGHEST QUALITY 19＂RACK MOUNTING CABINETS \＆RACKS

	CABINETS				
い．t．	Herght	u＇dth	Depth	Kuck Punel	
Cry	ir inches	in inches	it miches	Spuce in mis	Price
CR	69	30	20		£2400
$\stackrel{\text { FA }}{ }$	8.5	22	36	160	$\mathrm{E} 2200^{0}$
FC	52	25	22	47	E17．00
${ }^{\mathrm{FH}}$	15	21	17	11	E12．00
FJ	15	21	15	12	¢12．00
11.6	11	21	17	9	¢15．00
117	16	20	12	14	£15．00
LL． 8	10	20	10		¢15．00
LL9	17	21	17	14	¢15．00
1.10	52	21	18	46	C15．00
MM	75	22	26	68	¢22．00
Also Consoles．twin and multi－way Cabinets OPEA RACKS					
	Herght	（ hanne）	kuck Pun		
k．！	（1）inches	Lepth	space	Buro	Price
RG	66	2	51	14	69．00

16000t $16 \mathrm{~m} / \mathrm{m}$ Film Spools ally (unused) 10 for
Quality electric Weather Vanes 8 contacts
Hell Facsımile Machines
Hell Facsamile Machines
Large Aerial Rotators for Coaxial
Collins 500 watt Tlephone Transmitters $2 / 12$ mcs
B. V.C. Connectors 200 for
Videa Cross Hatch TV Generators
Racal MA. 1751 I SB. Modulators (new
Codins KWT 6 SSB Transceivers 500 .
Iniertechnique SA40 Spectrum Analysers
Telequipment D53 d/b Cscilloscopes
Imslide Cabinet Shelf Sliders
DG $7: 32$ CRT s
Remscope Storage Scope with tracer
MV.R Action Replay 20 sec. Videodisc Linut
Racal IKWS S B Linear amplifiers $5 / 30$ m
Racal KW S.S.B. Linear amplifiers $1.5 / 30 \mathrm{~m} / \mathrm{s}$
Advance H1 Signal Generators, $15 / 50 \mathrm{kcs}$
Vanan VA175EA Backward Wave Oscillators
Tally $5 / 8$ Track Tape Readers 60 cps
Tally $5 / 8$ Track Tape Reader 120 cps
2 KVA Auto-Transformers
Coutant 40 V 30 A Power Supple
15 foot 15 mch Lattice Stuppltes
Cawkell FU 4 Band Pass Filter Testers

Film	${ }^{4.4 .00}$
＊Hell Facsimile Machines	E10．00 E45．00
＊Large Aerial Rotators for Coaxial	E1800
－Collins 500 wall Telephone Transmmers $2 / 12 \mathrm{mcs}$	¢ 30000
－B．V．C．Connectors 200 for	E42．00
＊Videa Cross Hatch TV Generators	E17．00
－Racal MA．175 1 S B．Modulators（new）	£45．00
Cuhims KWT 6 SSB Transceivers 500 watts $2 / 30$	U．R
Imertechnıque Sa40 Specrrum Analyser	PUR．
Telequipment D53d／b Cscilloscopes	E80，00
＊Imslice Cabinet Shelf Sliders	¢3．00
＊DG－7：32CRT＇s	£3．00
＊Remscope Storage Scope with tracer	¢115．00
－Textronic 519 Scope IGHz	¢450．00
＊M．V．R Action Replay 20 sec．Videodisc timit	PU．R
＊Racal 1KW S．S．B．Linear amplifiers $1.5 / 30 \mathrm{~m} / \mathrm{cs}$	PU．R．
＊Advance H1 Signal Gemerators，15／50K cs	
Vanan V＇A175EA Backward Wave Oscillators	PU．R．
Tally 5／8 Track Tape Readers 60 cps	¢48．00
Tally 5／8 Track Tape Readers 120 cps	E60．00
2 KVA Auto－Transformers	¢2200
Coutant 40v 30a Power Suppltes	£30．00
－ 15 foot 15 mch Lattice Steel Mast Sections	£29．00
Cintel 2 KV Power Suppties	E35．00
Cawkell FU 4 Band Pass Filter Testers	

We have o quantuty of Power Transformers 250 uatts to
15KVA at voitages up to 40 KV Best qually at fow prices
List dvalable
＊50inw Westingnouse Transmitters $2 / 1200 \mathrm{Kcs}$ less P／S \＆
Simon Alpo Becters E50.00
Simon Asfort Recorders 8 hour
40° : $^{\prime \prime}$ co-axall, high quality
American all chrome Police surens 6 v , new
Razal RA-63 SSB Adapotors. new
Racal RA-237 L-W Converters
19' Blank Rack Panels \$2 kin hiph
Aproco Dral a Copy PhotoCopier
Hewlett Pack kard 524C Digual Counter
Airmec 702 Sig Generator 30 cyc $/ 30 \mathrm{k} / \mathrm{cs}$
Tuning Roller Coasters
Porable Mains Battery Floodlights
400 channel Pulse Height Speceruḿ Analysers
£50.00
£50.00
£ 8.00

$\begin{array}{r}c 2.00 \\ \text { E2000 } \\ \hline\end{array}$
$£ 20.00$
$£ 7000$
$⿷ 7000$
$£ 7000$
67000
C 100
$c 100$
600.00
${ }^{\text {E60.00 }}$
1350
$\mathbf{C 2 4 . 0 0}$
660000

I NSTRUMENTATION－TAPE

 RECORDER－REPROD UCERS
－PRINTER，High speed 1000 lines p．m
＊TAPE READER，High speed $5 / 8$ track 800
＊C．p．m．\quad（ARD READER 80 col． 600 c．p．m．
Prices on Application
PLEASE ADD V．A．T．AT APPROPRIATE RATE TO ABOVE

P．HARRIS

ORGANFORD－DORSET BH16 8BA BOURNEMOUTH－766051

DIRECT
 COMMUNICATIONS
 Division of Direct Electronics Ltd． INTERCOMMS \＆TELEPHONES
 Simple 2－way wall／desk with 100 ft cable． 6 v bat

or power supply．£16（⿺廴⿻肀二灬1p\＆）
－Similar but 2－to 7 －way instrument only Installation diagram．غ8． 50 each（50p）
－Superior 2－to 6－way Siemens \＆Halske Wall－desk conversion kit．term．block and cord per instrument £10．（50p）．
－AUTOMATIC INSTRUMENTS．Strowger compa－ tible or PX working．New／refurbished／ 2 nd hand． 232332706746722 （Trimfone），etc．Special and foreign types．
－ULTRA MODERN TYPES．＂Gondola＂Interna tional：Touch－button dial；Charleston（candlestick）： etc．；from $\ddagger 32.85$
－Plan \＆Key Phones for home and export
－Jacks；Plugs；Cords；Term．Blocks；Cables（up to 25－way and 50 parr），etc
－Entrance Phones and Electric Latches，with or without intercomm，facility．
－Telephone Amplifier（1－way）．£6．95（35p） hands－free tele amp．（two－way conversation） $\AA 9.50(50 \mathrm{p})$
＊TRANSISTORISED UNITS．Simple 2 －way batt． intercomm．£7．75（50p）；Batt．Baby Alarm £5． 25 （ 50 p ）：Intercomm，with roving masteri 9.50 （ 50 p ）
－Wireless intercomm．（just plug into mains）： 2－way $£ 20$（ $£ 1$ ）；bat1．op． 3 －way（master +2 subs） ± 23.95（i 1）： 4 －way（master +3 subs）± 28.50（ 1 ） \star mains adaptor $6 \mathrm{v} / 7.5 \mathrm{v} / 9 \mathrm{v}$ dc $£ 3.75$（ 35 p ）．
Add VAT $=8 \% ; \star=25 \%$ on post paid price TRADE ENQUIRIES WELCOMED
MANY SURPLUS ELECTRONIC BARGAINS FROM OLD STOCK STILL LEFT－COME AND DO A
34 LISLE STREET，LONDON， WC2H 7BD
Tel：01－437 2524

PRECISION
 POLYCARBONATE CAPACITORS

VALUE：OMMEN	）	PRICE		\pm		
（F）$\quad 1$		EACH：	$33 V$ Range	1%	28	5
$0.1 \begin{aligned} & \text { \％} \\ & \\ & \\ & \end{aligned}$	12.7	$51 p$	$0.47 \mu \mathrm{~F}$	67p	50p	3p
$0.22 \mu \mathrm{~F} \quad 33$	16	64 p	$1.0 \mu \mathrm{~F}$	${ }^{82}$	62p	52p
$0.25 \mu \mathrm{FF} \quad 33$	16	67 p	$2.2 \mu \mathrm{~F}$	${ }^{6} \mathrm{p}$	75p	$61 p$
$0.47 \mu \mathrm{~F} \quad 33$	19	80 p	$4.7 \mu \mathrm{~F}$	c1．62	¢．13	94p
$0.5 \mu \mathrm{~F} \quad 33$	19	87p	$16.8 \mu \mathrm{~F}$	£1．96	c1．38	${ }_{\text {f1．} 13}$
$0.68 \mu \mathrm{~F} \quad 50.8$	19	93p	$10 \mu \mathrm{~F}$	12.40	¢1．95	． 64
$1.0 \mu \mathrm{~F} \quad 50.8$	19	£1．03	$15 \mu \mathrm{~F}$		¢2．79	24
$2.0 \mu \mathrm{~F} \quad 50.8$	25.4	¢1．44	22川F	E4． 28	E3．8．	8
＊tantalum 0.22 .0 .47 .1 .0 or $25 \mathrm{~V} ; 22.0 \mathrm{O}$ 6 V ： 100.0 F F	$\begin{aligned} & \text { M BEA1 } \\ & \text { 2.2. } 4.8 \\ & \text { Fat } 6 \mathrm{~V} \\ & 43 \mathrm{~V} . \mathrm{A} \end{aligned}$	CAPAC $\begin{aligned} & \text { or } 16 \mathrm{~V} ; 32 \\ & \mathrm{LL} \text { at } 10 \mathrm{p} \end{aligned}$	ITORS－Valu $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V 3.0 F at 6 V or 10 each． 10 for 95 p ． each． 10 for 95p			$\begin{aligned} & 01 \\ & 30 \mathrm{~V} \\ & 3 \mathrm{~V} \text { or } \end{aligned}$
transisto	RS \＆ 1.					
AC128	14p	BC268	A／384＊10p	OC71		${ }^{12 p}$
AC176	16p	－BC547／	558A 12p	${ }^{2} \mathrm{~N} 2926$		12p
AD149	$40 p$	BC 972	12p	－ 2 N 2926		$11 p$
AF178	30 p	BD131	132 39p	${ }^{*} 2 \mathrm{~N} 2926$		11 p
AF239	38 p	BFI15／	$167 \quad 22 \mathrm{p}$	2 N 305		${ }^{65 p}$
BC107／8／9	9 p	BFI73	24p	2 N 3055		50 p
－BC14	12p	BF178	26 p	2N3702		
＇${ }^{\text {BC147／8／9 }}$	10p	BFIP4	22p	3704		11 p
－ BC C153／154	12 p	－BF194／	195＊12p	TIP30A		52p
－BC157／8／9	12p．	－BFI96／	197＊12p	T1P31A		55p
BC177	18p	BF200	27p	T1P32A		${ }^{64} \mathrm{p}$
－BC182／183L	11 p	BF262	263＊60p	TIP305		${ }^{55 p}$
－BC 183／1831	11 p	BFY50	151／52 20p	－MPU15		49p
－BC184／184L	12p．	BFX84	／86／88 20p	NE555		${ }^{61 p}$
－BC 212／212L	$14 p^{\circ}$	BFX85	26p	741 C		32 p
＊RC213／213L	1 p	BR10：	41p			61.15
－BC 214／214L	İp	GET872	$2{ }^{2} \quad 25 \mathrm{p}$	SN760	3 N	
BC267	120	OC44／0	OC45 14p			E1．50

 or 27p． 12 for 48p；N40015＇4p； 002 6p； $003 \mathrm{~s}^{1} 2 \mathrm{pp} ; 0047 \mathrm{7p} ; 0068 \mathrm{8p}$ 0078＇ュP．
LOW PRICE ZENER DIODES -400 MW ．Tol．$\pm 5 \%$ at 5 mA ．
Values available $3 \mathrm{~V} .3,3 \mathrm{~V}, 36 \mathrm{~V}, 4.7 \mathrm{~V}, 5 . \mathrm{V}, 5.6 \mathrm{~V}, 6.2 \mathrm{~V} .6 .8 \mathrm{~V}$ $7.5 \mathrm{~V} .8 .2 \mathrm{~V} .9 .1 \mathrm{~V}, 10 \mathrm{~V}$ ． $11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{~V} .16 \mathrm{~V} .18 \mathrm{~V}, 20 \mathrm{~V}$ ．
22 V ． 24 V .27 V 30 V All al 7 p each： 5 for 33 p ； 10 for 65 p ．SPECIA OFFER 100 Zeners for $\mathbf{E 6 . 0 0}$ ．

S5．
 －SUBMINIATURE VERTICAL PRESETS－ 0.1 W Only．ALL ai
 PLEASE ADD $15 p$ POST AND PACKING ON ALL ORDERS
BELOW 5 ．ALL EXPORT ORDERS ADD COST OF SEA／AIR MLEASE ADD 8% VAT to atl tems except those marked with which are 25% ．

MARCO TRADING

（Dept．D2）

The Old School，Edstaston，Nr．Wem，Shrodshire Tel．Whixall（Shropshire］（STD 094872）464／5

CLOCK CHIPS AND DISPLAYS

LITRONIX CLASS II LEDs $\quad 1.24 \quad 25-99 \quad 100+$ DL707E，704E，701E 0．3＂＇ 0.70 $\begin{array}{lllll}\text { DL727E，728E，721E 0．5＂} & 1.80 & 1.15 & 0.86 \\ \text { DL747E 746E，750E } 0.6^{\prime \prime} & 1.50 & 1.00 & 0.80\end{array}$ NATIONAL CLOCK CHIPS $\quad 1.9 \quad 10-24 \quad 25-99$ MM5309 7 seg ．+ BCD
$\begin{array}{lllll}\text { with reset to zero } & 5.59 & 4.84 & 4.35\end{array}$
$\begin{array}{llll}\text { MM53117 seg．}+ \text { BCD } & 5.69 & 4.84 & 4.35\end{array}$
$\begin{array}{lllll}\text { MM5314 } 7 \text { segment } & 4.88 & 4.15 & 3.75\end{array}$
MM53187 seg．＋BCD
（external digit select）
$3.36 \quad 3.36 \quad 3.36$
MM5378 Car clock．
$6.73 \quad 5.72 \quad 5.15$
MOSTEK CLOCK CHIPS
MK50250 Alarm（ 12 Hr
$+60 \mathrm{~Hz} / 24 \mathrm{Hr}+50 \mathrm{~Hz}) \quad 5.60 \quad 4.90 \quad 4.26$
$\begin{array}{lllll}\mathrm{MK50253} \text { Alarm（12 } \mathrm{Hr}+ & & & \\ 50 \mathrm{~Hz} / 24 \mathrm{Hr}+60 \mathrm{~Hz}) & 5.60 & 4.98 & 4.33\end{array}$
MK50204 Stopwatch
Catculator
MK50395 Up／Down
Counter， 6 Decade
MK50396 Up／Down
Counter HHMMSS
$14.50 \quad 14.50 \quad 11.50$

MK50397 Up／Dow
$14.50 \quad 14.50 \quad 11.50$
Counter MMSS 99
$14.50 \quad 14.50 \quad 11.50$
Available in our MHI kit systems．All these kits interface directly with common anode LEDs－ $0.3^{\prime \prime}$ ． $0.5^{\prime \prime}, 0.6^{\prime \prime}$ ，details in our catalogue．
$\begin{array}{lllll}\text { DISPLAYS } & 1-9 & 10-24 & 25-99\end{array}$ $\begin{array}{lllll}\text { DL 707．704．} 7010.3^{\prime \prime} & 1.48 & 1.48 & 1.28\end{array}$ DL727，728， $7210.5^{\prime \prime}$
$\begin{array}{llll}2 \text { digit package } & 3.75 & 3.75 & 3.12\end{array}$
$\begin{array}{lllll}\text { DL747，746，} 75006^{\prime \prime} & 2.45 & 2.05 & 1.80\end{array}$
$\begin{array}{lllll}\text { 5LTO1．} 4 \text { digital phosphor } & & & & \\ \text { diode }\end{array}$ 5．80 $\quad 4.80 \quad 3.90$ $\begin{array}{llll} & 5.80 & 4.80 & 3.90 \\ 3017 \text { Minitron（flamentary）} & 2.00 & 2.00 & 1.70\end{array}$ MHI CASE．Dimensions， $8 \times 5.5 \times 3$ inches．£ 2.95 （Please include 25 p post \＆packing） Terms C．W．O．，Access，Barclaycard（simply quote your number and sign）．
Credit facılities to Accredited Account Holders All prices on this advert exclude VAT at 8%

BYURDD

BYVOOD ELECTRONICS
68 Ebberns Road
Hemel Hempstead Herts，HP3 9QRF
WW－076 FOR FURTHER DETAILS

Mail order protection scheme

Members of the Periodical Publishers Association have given to the Director General of Fair Trading and undertaking to refund the monies sent by readers in response to mail order adventisements（except for classified supply goods or refund monies owing to liquidation or supply goods or refund ment does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation．Publishers in membership of the Periodical Publishers Association are making these refunds voluntarily and readers＇claims can only be entertained in cases where the mail order advertiser is the subject of liquidation or bankruptcy．where proof of payment can be astablished and if lodged within three months of the date on which the advertisement appeared Any claims received after the the month per
publisher

BROADFIELDS \＆MAYCO DISPOSALS LTD． 21 Lodge Lane，N．Finchley London N12 8 JG Telephone：
014450749
01－445 2713
01－958 7624

URGENTLY REQUIRED FOR CASH

Large quantities of radio，TV and electronic components or equipment which may be redundant or surplus to your requirements．

Will call and inspect anywhere in the U．K

SAVE IT＇BARGAIN

500 WATT DIMMER SWITCH

（not suitable for fluorescent lights） Basic Module with 1＂Knob
± 2.00 Complete on MK switch plate

E2 50
Larger $2^{\prime \prime}$ knob（BULGIN）25p extra，P\＆P 25
Please add 8\％VAT to all orders inc．P\＆P FRASER－MANNING LTD． 40 TUDDENHAM ROAD，IPSWICH，IP4 2SL

MICROPHONE PREAMPLIFIER

Small pc board（70． 90 mm ）accepting io 30.600 ohm microphones
（balanced inputsi and teeding loads down to 5 Kohm ．Board plugs into 12 －way

STEREO DISC AMP

Magnetic car Bridge to balanced liles worth HF and LF thitering Excellent
distortion and overload performance MEETS IBA SPECIFICATION．
10－OUTLET DISTRIBUTION AMP
One balanced input－ 10 ，solated balanced outputs
GENERAL STUDIO WORX FEEDING MULTIPLE SLAVE PA
AMPLIFIERS \＃DRIVING FOLDBACK HEADPHONES

PEAK PROGRAM METERS TO BS4297

Drive circuit． $35 \times 80 \mathrm{~mm}$ for 1 mA mH zero meter to BBC ED 1498 Gold 8 ．way edge con supplied Complete kit E13
ERNEST TURNER PPM meters．scalings $1 / 7$ OR－22 $1+4$ Tyos aligned 619.00
 C42．00．

STABILIZER

FOR HOWL REDUCTION．BALANCED AND UNBALANCED PUBLIC ADDRESS ：SOUND REINFORCEMENT

5Hz FIXED SHEET CIRCUIT BOARDS for WW July 1973 article
Complete kit and board $£ 24$ ．the cabinets of many amplifiers DESIGNER Board bult and aligned £3

DESIG NER
APPROVED
SPECTRUM SHIFTER
SURREY ELECTRONICS
The Forge，Lucks Green，Cranleigh
Surrey GU6 7BG（STD 04866） 5997

Private enquiries，send 13 p in stamps for brochure
THE QUARTZ CRYSTAL CO．LTD．
Q．C．C．WORKS WELLINGTON CRESCENT
NEW MALDEN．SURREY．

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS，ETC． SPOT CASH
CHILTMEAD LTD．
7，9， 11 Arthur Road．Reading，Berks． Tel： 582605

IBMM GOLFBALL
COMPUTER INPUT/OUTPUT
TYPEWRRITERS
STANERD ERCDIC CODNG

TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR

by A. Douglas
Price: $\mathbf{£ 4 . 7 0}$
SOLID STATE DEVICES MANUAL by R.C.A. Price• £1.70 UNDERSTANDING SOLID-STATE ELECTRONICS by Texas InstrumentsPrice $£ 1.40$
COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett Price $£ 5.30$ RADIO COMMUNICATION by J. H. Reyner Price $£ 5.50$ FOUNDATIONS OF WIRELESS \& ELECTRONICS by M. G. Scroggie

Price: $£ 4.25$
SEMICONDUCTOR CIRCUIT ELE. MENTS by T. D. Towers Price $£ 5.90$ PRINCIPLES OF TRANSISTOR CIRCUITS by S. W. Amos Price $£ 3.60$ LOGICAL DESIGN OF SWITCHING CIRCUITS by D. Lewin Price $£ 5.45$ RADIO VALVE \& SEMI-CONDUCTOR DATA by A. M. Ball Price $£ 2.50$ GUIDEBOOK OF ELECTRONIC CIRCUITS by J. Markus Price $£ 15.00$

* PRICES INClUdE POSTAGE *

THE MODERN BOOK CO.
 SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET LONDON W2 1NP
 Phone 7234185
 Closed Sat $1 \rho \mathrm{~m}$

SERVICE AND REPAIRS

Two British ELECTRONICS ENGINEERS

 resident inSouth Korea
offer service to importers of all types Electrical/Electronic goods manufactured to UK standards.

Prices very competitive. write: C. and I Services, C.P.O. Box 626, Busan, Korea.
(5115)

[^5]
PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors hardware. Aluminium sheet and sections. Printed circuit board, top quality for individual or published designs.
Prompt service
Send 15 p for catalogue
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratiord-on-Avon
Warwicks. Tel. 4879 (38)

THOR-HOLE CONVENTIONAL P.C.B.'S gold plating, roller tinning, prototypes, silk screening. drilling. All or part service. - ELECTRO
CIRCUITS (P.C.) LTD. Delamare Road, Ches nut, Herts. Tel. Waltham Cross 38600 or 20344
(84

NEW GRAM AND SOUND EQUIPMENT

GlasGow. Hi Fi, Cassette Decks. Tape Recorders, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and
photographic equipment. VICTOR MORRIS Audio Visual Ltd, 340 Argyle Street, Glasgow, G1, 8/10 G1assford Street. Glasgow, G2, 31 Gauchtehall Street, Tele: 041-221 8958.
(11

VALVES WANTED

WE BUY new valves, transistors and clean now components, large or small quantities, all de center st wolverhampton Waltons, 55 Wo

COURSES

RADIO and Hadar M.P.T. and C.G.L.I Courses. Write: Principal, Nautical College, Fleetwood, FY7 8JZ.

COURSES

Department of Applied Physics and Electronics

M.Sc./DIPLOMA COURSE IN ELECTRONICS

Applications are invited tor places in the full-time one year Sc /Diploma Course in Electronics. commencing 29th September. 1976

Further details may be obtained from the Ácademic Registrar, UWIST, Cardiff CF1 $3 N U$.

Application forms should te completed and returned to the
College as soon as possible

TEACHING MACHINE

For EDP; Computers Data Input

 Operators. French Manufacturing Com pany is seeking for a British Distributor
DATALOGOS

124 Gambetta Ave., 94120
Fontenay - Bois, France
(5120)

BOOKS WANTED
WIRELESS WORLD 1961-197S, 3 missing offers please ELECTRONIC COMPONENTS Instruments clearance:- valves styli ferrite,
transformers, switches, etc. Large SAE or $8 \frac{1}{2} p$ transformers, swithes, etc, Large SAE or 8ip
stamp for lists. Write Box WW 5089 .

LOW FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{kHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

PRICE $£ 27$ p\&p $75 p$
Board, modules and all components (excluding P.U.).

12" CRT

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new, boxed, $£ 4$ each. Carriage $£ 2$.

X-Y RECORDERS

Advance, Moseley
Hewlett Packard

Price from:
£80 each
V.A.T. at 8\%

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 122-132

microphones matter most.

Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sound system quality-regardless of the other components in the system. It is false economy at its worst to be a microphone miser. İnstall Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice intelligibility (and fewer service calls due to microphone problems). For the name of your local sound specialist, write:

Shure Electronics Limited
 \title{
What's n
 \title{
What's n Laboratories are still Laboratories are still making news-three making news-three important new important new chemicals for electronics chemicals for electronics manufacturers.
} manufacturers.
}

MULTICORE PC 26 ROSIN FOAM FLUX

A completely new general purpose liquid soldering flux particularly suitable for the automated soldering of all types of printed circuits. PC 26 provides a unique combination of desirable properties.

- Complies with U.K. Ministry Flux Specification D.T.D. 599A.
- Eliminates "icicles" and "bridging".
- 0.5% max. halide content and yet gives better soldering than non-approved fluxes with high halide contents.
- Leaves negligible flux residues so p.c. boards are dry after soldering, can be handled and inspected easily and have better sales appeal.

MULTICORE PC 81
 SOLVENT CLEANER \& FLUX REMOVER

A unique blend of polar and non-polar solvents formulated for degreasing electronic hardware prior to soldering as well as for removing rosin flux residues including ionizable activators after soldering. Its intermediate boiling range of 71 to $80^{\circ} \mathrm{C}$ and selective solvency make it ideal for vapour degreasing.
The boiling range of PC. 81 is higher than fluorinated solvents (approx $46^{\circ} \mathrm{C}$) and lower than either trichloroethylene ($87^{\circ} \mathrm{C}$) or perchloroethylene $\left(121^{\circ} \mathrm{C}\right)$. Also its solvency properties for rosin flux removal are superior tofluorinated solvents without in any way affecting most electronic hardware. As a result, PC. 81 solvent will perform its vapour cleaning function longer and more effectively than fluorinated solvents whose vapour condensation ceases at $46^{\circ} \mathrm{C}$ with a consequent end to flux removal
Solvent evaporation rate is substantially lower than that of the fluorinated solvents. making it more economical to use in open tanks and vapour degreasers.
Multicore PC. 81 is a highly stabilized solvent blend, extremely resistant to thermal or chemical breakdown during prolonged heating or as a result of the introduction of activators from the solution of rosin during its working life. Its relatively narrow boiling range and high stability make it readily useable again without property changes after distillation.
PC. 81 can al so be used for cold cleaning and to reinforce ultrasonic cleaning. Even though its toxicity is relatively low, well ventilated areas are required.
PC. 81 is expected to be particularly welcome as it is non-flammable and non-combustible under the new British "Highly Inflammable Liquid" Regulations.
Supplied in one gallon metal cans and 45 gallon steel drums.
Specific Gravity $\left(20^{\circ} \mathrm{C}\right)-1.256$
Bolling Range —— $71-80^{\circ} \mathrm{C}$
Toxicity (TLV) - 340 ppm
Residue on Evaporation- less than 10 ppm

MULTICORE PC 54 CONFORMAL COATING

Fully meets the requirements of the new U.K Defence Standard 59-47/issue 2 and U.S Spec. MIL-I-46058C, which are becoming mandatory for the protection of many electronics assemblies against adverse environment, contamination and attack bychemicals.
PC. 54 is a two-part epoxy resin systern which is conveniently mixed in equal parts by volume. It may be applied by dip, spray or brush to either one or both sides of p.c. boards and components where it forms a thin tough coating after curing. PC. 54 will dry in 1 hour under normal ambient conditions and developitsfull properties after several days at room temperature or it may be cured in 2 to 4 hours at $65^{\circ} \mathrm{C}$. A glass fibre brush can be used to remove the coatinglocally to enable rework and repair

Other Multicore Soldering Chemicals include a complete range of liquid fluxes and the following special chemicals.
PC 2 Multicore Tarnish Remover
Cleans tarnish from metal surfaces prior to soldering.

PC10AActivated Surface Preservative Applied after pre-cleaning, preserves solder ability and need not be removed.
PC10D
A special version of PC 10A for application by roller coating machines.
PC90 Peeloff Solder Resist and
PC91 Thinners
A temporary solder resist for edge-connector contact areas etc. Replaces masking tape.
PC 41 and PC 43
Solder Bath dross inhibitors.
PC52 Protective Coating
One-part conformal coating. Can be soldered through.

PC 70 Thinners
Compatible Solvent blend for use with all rosin fluxes, PC $10 A$ and PC 52.

Please write for Technical Bulletins on your Company's letterhead for products which interest you to:

MULTICORE SOLDERS LIMITED
Hemel Hempstead,Herts. HP2 7EP
Tel: Hemel Hempstead 3636 Telex 82363

[^0]: 「 To: Cambridge Learning Enteıprises, - - - -
 | FREEPOST, St. Ives, Huntingdon, Cambs.
 PE1 7 4BR
 *Please send me set(s) of Digital Computer
 Logic and Electronics at $£ 4.45$ each, p\&p included
 *or . . . set(s) of Design of Digital Systems at
 £6.45 each, p\&p included
 *or . . . combined set(s) at $£ 9.75$ each, $p \& p$ included

 Name
 Address
 delete as applicable
 No need to use a stamp - just print FREEPOST on the envelope.

[^1]: This rugged self-contained direct reading 0 to 40 KV probe has a reading accuracy of 2% at 25 KV . Plus a $1.75^{\prime \prime}$ probe tip for reaching under the corona cap. This probe is ideal for the Television Engineer.

[^2]: *"Computers and Privacy" Cmnd. 6353, HMSO, 28p, with a supplement "Computers: safeguards for privacy" Cmnd. 6354, HMSO, 55p.

[^3]: VALVES RADIO TV TRANSMITTING INDUSTRIAL 1936 to 1975, many obsolete types, list 20 p s.a.e. for quotation. Postal export service. we wish to buy all types of valves new and
 boxed. Wholesalers, Dealers, boxed. Wholesaiers, (Dealers, ett.. stocks purEast Wittering. Sussex, West Wittering 2023. East wittering. Sussex, West Wittering 2023.

[^4]: E. T. Anderson, CEng, FIMunE, Chief Technical Officer Macaulay House, 5 Cattle Market, LOUGHBOROUGH

[^5]: AUDIOMASTER EACKGROUND MUSIC... SET vice, sales. Tape programmes. P. J. Equip-

 TUBE POLISHING, mono, £5.63, colour £5.94 C.W.O. Return carriage and VAT paid. Phone: Lough Lincs Retube Limited, North Somercotes Lough, Lincs.

