

How long does it take for you to make a series of modulation tests with the meter you are using? The M.I. TF 2304 Automatic Modulation Meter eliminates at least five manual operations for each test and even more per test when a series of measurements is to be made. That can save you hours in a production day.
When connected to a transmitter, the TF 2304 automatically tunes to the carrier frequency and automatically sets the level, all within a few seconds. Exceptionally efficient screening and a very low distortion mixer ensure locking to the wanted signal. It is only necessary to select the required mode and range and the meter will read either deviation or \% depth. L.E.D. lamps indicate if the signal level is too high or low and a push-button inserts a 20 dB attenuator to extend the maximum input level to | watt.

The basic frequency range is $25-1000 \mathrm{MHz}$ and there are 8 peak deviation ranges covering 1.5 kHz f.s.d. to 150 kHz f.s.d. and a.m. depth ranges of 30% and 100% f.s.d. all with a modulation frequency range of 50 Hz to 9 kHz . Modulation symmetry can be checked by push-button selection of positive or negative deviation and peak or trough amplitude.

The accuracy of modulation measurement is $\pm 3 \%$ of full scale so transmitter deviation can now be set close to the permitted maximum with a consequent increase in efficiency.

The TF 2304 can be operated either from mains or internal rechargeable battery. It's small and light and there's a comprehensive range of accessories including a carrying case.

The price will pleasantly surprise you. Ask for full details.
mi:THE AUTOMATIC CHOICE
MARCONI INSTRUMENTS LIMITED,
Longacres, St. Albans, Hertfordshire, AL4 OJN. England. Telephone: St. Albans 59292. Telex: 23350.

wireless world

Electronics, Television, Radio, Audio

NOVEMBER 1975 Vol 81 No 1479

Contents

497 The dugs of war
498 Wireless World Teletext decoder by Philip Darrington
505 The consultants by John Dwyer
508 H.F. predictions
509 November meetings
510 News of the month
IEE to leave CEI
Buy British audio campaign
Push-button phones available
512 Letters to the editor
Vanishing component shops Sorting out signs

515 Audio Fair preview
519 Circuit ideas
One-shot timer
Variable voltage-ratio converter Thermal overload cut-out
521 International radio and television exhibition
525 Television tuner design - 2 by D. C. Read
529 Crossover networks and phase response by S. K. Pramanik
533 Optical sensor ignition system by H. Maidment
537 Literature received
538 Research notes. Sixty years ago
539 More from the Berlin show
540 World of amateur radio
541 Transmitter power amplifier design - 3 by W. P. O'Reilly
545 New products
a98 APPOINTMENTS VACANT
all6 INDEX TO ADVERTISERS

[^0]

This month's front cover shows a colour TV receiver displaying a Teletext page, processed by the Wireless World Teletext decoder seen on top of the set (see page 498). (Receiver lent by Thorn Television Rentals)

IN OUR NEXT ISSUE

Microprocessors for computer control. What they are and how they work, with a table of types on the market

New audio amplifier design uses "current dumping" output transistors and feedforward distortion correction

Interference from pocket calculators can cause trouble. Measurements of electromagnetic radiation from three named calculators

SIXTY-FIFTH YEAR OF PUBLICATION

ibpa

miecrasiona Bus sess

When flashoveristhe danger

UseEEVspark gaps.

Photograph courtesy of C.E.G.I3.

You name it. EEV spark gaps can stop it from happening.

Our range covers any voltage from $400-40,000 \mathrm{~V}$ and handles powers up to 15 kilo joules. Types are available in glass or ceramic envelopes.

EEV spark gaps are very rugged and will work in any environment, unaffected by dust, damp or atmospheric changes. They are also compact, consistently dependable and long-lasting.

We make 2-electrode and 3-electrode types, and the whole range covers many applications including:

Flash-over protection. Crowbar protection circuits. Protection from transient phenomena. Protection circuitry for s / c drives for thermionic tubes.

Capacitor discharge circuits. Firing circuits. Relaxation oscillator
 circuits for gas ignition equipment. Quench circuits.TIG welding equipment.

For data and any help you need, write or 'phone EEV at the address below.

Right, (NO Q x, acrowhar protectionderne and

communacationséquapment.

EEVand M-OV know how.

wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515
ROGER PORT
Phone 01-261 8037
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597

JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Publisher: Gordon Henderson

The dugs of war

It's a sad comment on our times that you can now get a degree in destruction. To be more precise, an M.Sc. in guided weapon systems, under the auspices of the Council for National Academic Awards. Look into the olive-grove of Academe and what do you see but a war-head pointing out at you.

This little fact is only a symptom of our permanent involvement in war technology. To adapt Von Clausewitz's famous saying, "Peace is nothing more than the continuation of war by other means." Commentators speak nowadays of "the industrial-military complex" and by this they mean that certain parts of manufacturing industry have become closely identified with, and commercially dependent upon, the production of military equipment. This is certainly true of electronics. The art of war has come to depend on rapid communication and information processing, continuous surveillance and accurate control of mechanisms. And why? Because electronics has made these things possible. But electronics technology itself has been greatly developed by the pressures of actual wars - for example radar and the electronic digital computer in the 1939-45 war - and it continues to be stimulated by our fear of aggression and our consequent need to maintain the nuclear and military balance of power. It is really a chicken-and-egg situation.

Even though the basic drives in this reproductive cycle are fear and profit, it is possible to draw up an impressive list of benefits. For example, one of the significant "spin-offs" of nuclear missile development was the integrated circuit. This has produced a revolution in the design of electronic equipment. Calculator chips, microprocessors, counters, decoders and the like have made possible, simply and cheaply, the kind of information processing operations which, in the days when there were only discrete active devices, would have been quite inconceivable in domestic and industrial applications. Military electronics business is becoming an important factor in the economy of industrial countries. In the UK the Ministry of Defence is the biggest single customer for electronics. Profits are made, dividends are issued, jobs are created, and the export of the military equipment helps to pay for the import of essential raw materials and food.

Although engineers and technologists are beginning to show concern about the effects of their work on the environment, they seem not to be worried by the use of their technologies for destroying life and property. Perhaps we have been bamboozled by the use of the word "defence" as a euphemism for war. More likely, we are just too far away to see the blood being spilt. Anyway, "it's just a job." As long as the milch cow of defence expenditure continues to provide a steady flow of cash there will be plenty of us - individuals and firms - lining up and ready to feed off it, without looking too closely at the implications.

Wireless World Teletext decoder

1 - The background

by Philip Darrington

Abstract

The first of a series of articles on the Teletext television information display system and the construction of a decoder for use with domestic television receivers.

In succeeding articles of this series we shall describe the design and construction of the Wireless World Teletext Decoder. But, before we do that, it seems only sensible to make sure that readers are up to date with current activity in the field and have an idea of other systems which have been proposed. We will also describe the basic operation of Teletext and mention the techniques used to decode the transmissions for display on a domestic television receiver.

In the early years of "wireless", the vision of millions of people being entertained by transmissions was just not credible. Television was thought to be sheer science fiction and wireless itself was for the transmission of vital information. Even if it had been possible to communicate phonically, that was not the idea at all - ships were the real users of radio and if amateurs could derive pleasure from listening to marine morse traffic or Eiffel Tower time signals, so much the better.

Then, of course, radio telephony was developed and the entertainment possibilities were recognized. It is now an extraordinary and rather depressing fact that out of the few thousand megahertz available for radio transmission, nearly 600 MHz are taken up by broadcasting stations, most of which put out entertainment of one sort or another. Sound is reasonably restrained in its use of bandwidth, but television occupies 566 MHz - a staggering figure, particularly as the television signal contains so much redundancy. Anything designed to make better use of this signal is to be welcomed and Teletext is one way of doing that, in that a previously unused part of the waveform is used to transmit more information.

Many ways of using television transmissions to better effect have been proposed ${ }^{1,2}$. Since the early sixties, test signals inserted in the field blanking interval have been in common use, and have been supplemented by coded data
transmitted on lines 16 and 329 of each frame ${ }^{3}$. It apparently did not, at the time, occur to ORTF, who originally used the system, that the technique could be developed to allow the transmission of visible information, but the system was used for switching remote transmitters, identification for remote supervision purposes, etc.

Other systems of transmission aimed at "still" display, with or without sound and in colour or monochrome depend on the exclusive use of a television or sound channel. For instance, the NHK " A " system ${ }^{4}$ is able to carry over 50 channels of colour still pictures, with sound, in the bandwidth of one normal television channel. The pictures are transmitted at the rate of one still per frame, together with a code to enable a magnetic disc memory in the receiving equipment to record a selected frame, which is then continuously replayed. Sound is multiplexed with video information and transmitted in the frame intervals.

The NHK "B"4 system falls into the multiplexed television channel category, using uncoded signals. Three unused lines per field are used to transmit three lines of a still picture, which is magnetically recorded at the receiver. Sound is transmitted by the use of additional sound carriers at low level, spaced further in the spectrum from the vision channel than the original sound carrier.

In 1971, W. D. Houghton of RCA described the Homefax ${ }^{5}$ system in which additional information was multiplexed with a broadcast television waveform to produce "hard copy" from an electro-optical printer, using a cathode-ray tube to produce the "printing" on Electrofax paper. The information, uncoded, was carried in an unused vertical interval line and transmitted in the normal way - each of these lines producing part of one line of a row of print on the receiver paper. Transmission tests of this system had been carried out in 1967, and improve-
ments were being carried out in 1970. A method of data transmission not using the vertical blanking interval ${ }^{6}$ was described by P. T. King of Hazeltine Research, Inc., at the SMPTE Technical Conference in 1973. In this system, known as an "add-on" type, a low-level subcarrier was inserted on the vision signal at an odd multiple of half the line frequency, a method which is well known in colour television circles as a method of avoiding interference between two signals in a common waveform. The added signal is shifted in phase from line to line and the visible effects are reduced. The actual frequency is chosen to be between 2 and 3 MHz in the NTSC standard, because radiated energy is at a minimum in that region in a typical picture. The data signal is biphase modulated at 21 kilobits per second and at the receiver is synchronously detected, the data decoded and used to operate a character generator, which can, for example, produce subtitles in languages using the characters available.

These two techniques - the use of previously blank lines in the vertical blanking interval and the provision of a character generator at the receiving end - paved the way for Teletext. A system of this kind is able to carry more information, more flexibly, by leaving the receiver to do rather more of the work than an analogue or uncoded digital system. If the transmitted signal is made to carry instructions to the receiver on what to do, the receiver can then hold much of the information in store, releasing it when commanded to do so.

Peter Hutt of the IBA described an embodiment of this principle in a paper read to the IPC, 1972^{7}. The system was named SLICE and was primarily intended for the labelling of programmes with a source identification. The information was carried on lines 16 and 329 in the form of 112 binary digits per line and, at the receiver, was read
into a memory where a complete message was assembled. SLICE was the fore-runner of ORACLE and CEEFAX. (Hutt mentioned the possibility of a domestic information service in his paper.)

Teletext

ORACLE was developed by the Independent Broadcasting Authority in the light of its experience with SLICE and the BBC announced their own system, which was very similar and bore the name CEEFAX. (ORACLE is an acronym - Optional Reception of Announcements by Coded Line Electronics - CEEFAX is See Facts as pronounced by an adenoidal dyslexic.) There is little profit in trying to decide which organization hit upon the idea first, or which was on the air first, as the two were quickly and sensibly to agree on a common standard of transmission, in conjunction with BREMA ${ }^{8}$. Both names will probably continue to be used for each organization's broadcasts, but the generic term "Teletext" is now common, and will be used henceforth. Teletext has been broadcast on the present standard since September 1974 - the beginning of a two-year experimental period. The system uses a multiplex-with-vision type of transmission and uses lines 17 and 18/330 and 331 to carry coded information. There is no accompanying Teletext sound.

Before proceeding further, a look at the facilities offered by a Teletext transmission and a résumé of some of the specification will be a help when considering the equipment needed in the receiver. Briefly, the Teletext page consists of 23 rows of 40 characters each, plus a page header, which is only partly displayed. As seen in Fig. 1, the header gives the name of the service (Ceefax or Oracle), the page number, the date and the time. The time display is continually changing and is always visible.

Visible characters are either capitals or lower-case letters assembled on a $7 \times$ 5 dot matrix and in one of six colours or white: diagrams or low-resolution "pictures" can be assembled by the use of a block of cells on a 3×2 pattern, each of which can be "on" or "off", in colour. A variety of other symbols (commas, brackets, @, £, etc.) can also be shown, and the set of characters is known as the ISO-7 code, which is a version of the ASCII code with some of the "National usage" characters substituted. Characters can be made to flash on and off, though our own feeling is that this will be used rather less when the service is finally in use than it is now, if it infuriates other people as it does the writer.

The Teletext editing teams can use the pages in three different ways, the norm being single pages which appear when selected by the viewer at any time and which are up-dated perhaps once or twice a day. A second type is one of a

Fig. 1. The main index page (p. 100) of ORACLE for August 14, 1975, produced by the W.W. decoder on a Thorn colour receiver.
group of, perhaps, four such pages which change at about one minute intervals. They will usually be on a related topic, such as sport, and are identified by the letters A B C or D, the relevant letter being in a different colour so that the viewer knows which point in the set of pages has been reached. This type is really the same as the first variety, but pages are changed automatically at minute intervals. The third kind of page can be selected by the time-code on the header, so that it can be received, placed in store and read out at a convenient time.
The data to be displayed can be presented as a complete page or, in the case of news flashes or subtitles, can be inserted in a blank rectangle on the screen, leaving the rest of the picture visible. The full page can be superimposed on the picture, but in our experience this is a good way to ruin one's eyesight.
A typical magazine has the capacity of 100 pages. Four lines are transmitted per television frame and there are 24 lines per Teletext page. A full magazine would therefore take 600 frames or 24 seconds to cycle. The BBC and IBA appear to differ on what they consider acceptable access times; the BBC suggest a typical time of 12 seconds (for an unspecified number of pages) while a recent check on Oracle gave an access time of 28 seconds for well over 100 pages. The theoretical time can be reduced considerably by not transmit-
ting blank lines, a practice which is already followed by the IBA and which the BBC intend to change to shortly (they already omit blank lines at the bottom of a page).

To select a Teletext page, one first switches the signal path through the decoder, selects a page by means of thumbwheel switches or a set of pushbuttons and waits for the selected page to be assembled.

Teletext signal

The method of transmission of the Teletext data is of interest at this point. As has been said, the data signals are carried by lines 17 and 18 and the corresponding lines in the alternate field, 330 and 331 . The choice of lines is influenced by the need to avoid the early part of the vertical blanking interval and the few lines near the start of the video signal (lines 23 and 336). If early lines were used, it is possible that data would appear on the field flyback on some receivers and if lines later than 18/331 carried the information, receivers with incorrect picture height adjustment or with a downward-shifted picture might show the data as an extremely "busy" pattern of dots at the top of the screen - this sometimes occurs even with the present line allocations. A further reason for avoiding lines $19 / 332,20 / 333$ is that they are currently used for insertion test signals, which are often visible but, being static, are not obtrusive.
A form of binary code is used for the data, known as non-return-to-zero, which possesses the advantage over a complemented-element code of a reduced bandwidth requirement. As its name suggests, the resulting waveform is not a continuous train of pulses, but rather a series of voltage levels. A
typical sequence is shown in Fig. 2(b), where it is seen that a " 1 " level does not automatically return to zero at the end of the pulse and if the succeeding level is also 1, the voltage merely stays up similarly with a succession of " 0 ". One result of this is seen in Fig. 2(c) where a train of the form 010101 etc . turns out to be a square wave at half the repetition frequency of the clokc. As transmitted the pulses are "raised-cosine" in form and the square wave becomes a half-clock-frequency sinusoid.
The diagram in Fig. 3 shows one line of the complete picture frame. A complete line occupies $64 \mu \mathrm{~s}$, of which about $12 \mu \mathrm{~s}$ are taken up with the synchronizing pulse, back porch with colour burst and front porch. The first 40 of the 360 bits are concerned with clock synchronization (in a manner similar to that of the colour burst), a series of bits which constitute a "start" sequence and 16 bits for control and row address information. The rest of the line contains 320 bits for display and control. Figure 4 shows the layout of information in the line.

Coding

All transmission paths are subject to errors, and television has its share. Noise can be a problem, but the type of distortion caused by multipath propagation is perhaps the deadliest source of error. Both BBC and IBA have done work on this in the U.K., Sweden and Germany, and have come to the conclusion that Teletext transmissions are fairly robust, but require a good performance in the receiver. This relative invulnerability to attack is assisted by the application of code protection additional bits of information transmitted with the data.
Code protection is applied in two levels. Data bits which are intended for addressing and control are heavily protected, while those used to produce the displayed characters are protected rather less. The transmitting authorities consider that the occasional error in, or rejection of, a character is not serious as it will quite probably be corrected on the succeeding transmission of the page, but that an error in an address would lead to complete nonsense and must be avoided in the presence of the average amount of noise and ghosting.

The character code is basically 7 -bit ISO-7 and is protected quite simply by means of a parity bit, giving odd parity. This means that if the total of " 1 s " in the basic 7 bits is odd, the parity bit is " 0 ". An even total of " 1 "s in the 7 bits dictates a " 1 " parity bit to maintain an odd overall total. On examination at the receiver, any byte (the name for a "word" of 8 bits) with an even number of " 1 "s is seen to contain one error and is rejected. Previously-correct words in a display will not, therefore, be overwritten by an incorrect one and the effect is a reduction in errors in succeeding pages. Double errors, pre-
serving odd parity, are not rejected and will be written.

Address data bits, on the other hand, are more heavily protected by being transmitted in a type of code which will detect 2,4 or 6 errors in the byte and will detect and correct a single error. This type of code was described by R. W. Hamming in a classic paper ${ }^{9}$ in 1950, and is known as the Hamming code. It takes the form of four parity bits in positions 1,3,5 and 7 of the eight-bit byte (the addresses are in a four-bit code). Three of the parity checks are associated with groups of three of the four message bits and the overall parity check covers all message and parity bits. Failure of the overall parity indicates an error and the position of the error is identified by the checks on the groups of three bits. If the overall parity appears true, but the individual checks show that a correction is required, there will have been a double error and the byte will be rejected as unusable.

Figs. 3 and 4 indicate that the bits at

(b)

(c)

Fig. 2. The non-return-to-zero method of transmitting binary information is at (b) with the attendant clock at (a). A succession of 101010 etc. gives a half-clock frequency waveform and, if the pulse shape is a raised cosine, as used in Teletext, the result is a sinusoid at 3.5 MHz .

Fig. 3. A line of Teletext data. Sync. pulses are the 30% pulses and the colour burst is on the back porch.
the beginning of the line are not concerned with the displayed message. Three groups of bits are transmitted, of which one is two bytes (16 bits) designed to lock the receiver's clock in frequency and phase with the transmission, in a similar manner to the way in which. the colour burst dictates phase in a colour receiver. The 16 bits are termed the clock run-in and consist of a train of 1010 ls . It is a penalty of the n.r.z. code used that this run-in is necessary, as it entails a code which is not self-clocking. In other words, unless the data are of the 101010 variety, which conveys no information, the transitions do not occur at every interval, and the data pulses themselves could not be used as a clock source, if it were not for the choice of odd parity for the protection code, ensuring at least one transition per character, which can be used to refresh the clock generator. The 16 -bit burst of 3.5 MHz is also detected and used to identify the transmission as Teletext and not some other data system such as SLICE (IBA), ICE (BBC) or insertion test signals.
The second group of 8 bits forms the framing code, which is always the same and is used to indicate the start of the first 8 -bit word. The order of bits used is 11100100 - an arrangement which is designed to avoid errors. A common way to detect the framing code is to pass all data through an 8 -bit shift register and to examine the parallel outputs of the register. There will be only one step, when the register contains all eight bits of the framing code, when the above order of bits is present at the outputs of the shift register and gives a positive comparison with the "permanent" word used for detection. The framing code is shown in progress through the shift register in Fig. 6, which indicates that, even in the presence of bits from the clock run-in (c.r.i.) and succeeding information, a maximum of 5 bits "look like" the framing code. By means of more or less extensive circuitry, the framing code detector can be made to recognize the code in the presence of one error.

Row addressing. The 16 bits following the framing code are concerned with the identification of the following data. Each of the 24 rows of characters must be identified and this is done by numbering each with a row number from 0-23 and a magazine number (1 to 8). The bottom line of Fig. 4 shows the layout of bits in the 16 -bit group and also indicates the fact that these are protected by being Hamming-coded. As, at the moment, we are not concerned with protection, the bits marked " P " can be ignored, and the groups become 4 -bit words. In fact, this is an artificial distinction, because they form one word of three bits and one of five. The first group of three message bits (marked "M") identifies the magazine, and the remaining five contain the row address in a pure binary code (00001 is Row 1,10111 is Row 23). The least significant bit is transmitted first

Data. The rest of the line is filled with data for display, the previous bits not, of course, being visible on the screen. Fig. 5 shows the complete set (in use until Sept. 1, 1975) of available characters and blocks for graphic displays, together with the address code (bits 1-7). Bit 8 is the parity bit and plays no part in the display. A slightly modified table will be used exclusively after September, 1976, and the system is now in transition between the two.

Decoding

The circuitry for decoding Teletext transmissions is extra to that in an ordinary receiver and is mainly digital in nature. When the services are established and commercial receivers are sold (several firms already have models), the decoders will be built in, but before that happens, many viewers will want to convert their existing receivers, an add-on unit being the obvious solution, with video signals into and out of the decoder. U.h.f. input and output will probably not be used, the cost of a colour modulator, for instance, being prohibitive.
The extra circuitry needed can be considered in three groups; data acquisition, storage and output processing.

The detected vision signal is taken from the television receiver, having been disconnected from the video amplifier, and taken to the decoder, where clock regeneration, framing-code detection, parity checking, serial-to-parallel conversion and page selection are carried out. The selected and organized information is then passed to a store (either a multitude of shift registers or a ran-dom-access read/write memory) until the selected page is assembled. When this has been done, the store addresses the character generator in the output processor (a read-only memory containing the ISO-7 characters) which indirectly drives the guns of the display tube.

Input processor. This preliminary canter through the decoder is, of course, grossly over-simplified and a closer look at the sections is necessary, the first of these being the video processor which operates on the video signal to derive data and clock pulses. As has been said, the n.r.z. code in which data are transmitted, is not a self-clocking code and the decoder must contain its own clock. The clock run-in contained in the Teletext signal can operate as either a locking sequence for an oscillator which is continuously running, but which drifts out of phase with the Teletext clock between lines, or can be used to excite a passive oscillatory circuit which then rings for at least the duration of the Teletext line, being automatically in phase and frequency synchronization with the signal when the LC circuit is properly tuned. Each transition of the data "refreshes" the tuned circuit.

The diagrammatic input processor of Fig. 7 shows that the data is first passed through a serial-in, parallel-out store the shift register, which is clocked at data rate. The register is 8 bits long and can contain one word, complete with its parity bit (4 parity bits in the case of Hamming-protected words). The 8 bits, in parallel, are examined by the fram-ing-code detector for coincidence with the 11100100 "start" sequence which, when detected, resets a "divide-by-eight" counter, to zero. The

Fig. 4. A row of data It is seen that each group of 8 bits (l byte) has a separate function. Clock run-in and Control and Row address each have two groups.
output of the counter is a pulse at one-eighth the rate of the clock and is used to identify correctly-framed words of 8 -bit words in the shift register. In other words, framing-code detection indicates a reference point and the counter produces a pulse every eighth clock period which transfers the group of eight bits currently in the shift register, through latches, to the data lines. The output if the latch only changes when the counter indicates that the eight bits being presented to it are, in fact, a word. Complete characters are therefore presented on the eight, parallel data lines in serial form, reducing the 6.9375 MHz rate to 867 kHz .
The parallel data presented to the latches are also examined by the Hamming-code checker which, as was seen, can correct one error and detect 2 , 4 or 6 errors in address and time information. Following this block, an 8 -bit latch finds and holds the 3 -bit magazine address and 5 -bit row address, referred to in Fig. 4, after a two-character holding time, inserted to allow the two four-bit words (or one three-bit word and a five-bit word) to be assembled.
Parity checks on character words are performed by the parity block, operating from the main data line, its output determining the acceptability or otherwise of a word.
The rest of the input processor is concerned with the selection of a page by the viewer, who will be provided with three thumbwheel switches or a keyboard with ten number keys and keys for several other functions. A page having been "dialled in", the row address latch block examines the row address words until row zero is detected - the page header - when the selector will examine the following address information to compare it with the required page keyed in by the viewer. On detection of the required page code,

Fig. 5. Characters possible in a Teletext display. Graphics are not
in the ROM, being produced directly by the data bits.
the data which follows is written into the store, assuming that the parity checker is in agreement.

The outputs of the input processor are taken to the store and are (a) the 7-bit data (b) the "write" or "reject" command to the store (c) the row address and (d) the character address.

Store. Storage can take many forms, but the most convenient way to store the data while the page is assembled is the random-access memory, which is an
array of semiconductor devices, often bistable circuits, set to " 1 " or " 0 " by input signals and which can be interrogated non-destructively when required by examining any desired location in the memory. No "order" is entailed: data can be lodged at any part of the memory.
Data are stored in 7 -bit code as received from the 7 -bit latch driving the data line in Fig. 7.

Display. The display of characters depends on the use of a large-scale integrated circuit - another form of store called a read-only memory. This is again an array of memory cells, but this time the pattern of bits read out of a given address in the memory is not under the control of the user. The form of the data is decided at the time of
manufacture to perform a variety of functions, but the one in a Teletext decoder is a character generator, arranged to contain the characters shown in Fig. 5. Bits 1-7 in the configurations shown on the left, control the selection of display at the output. Bits 1-4 determine which row of character bits should be read out, while bits 5-7 indicate the column. For example, if the seven bits from the store were 0011010 , bits 7,6 and $5(001)$ indicate that one of the undisplayed control characters in column 1 should be generated and bits 4 , 3,2 and 1 show that ROW 10 - alphanumerics, green - is required. The use of this invisible control character means that the visible, succeeding character shall be a green alphanumeric one, as opposed to the graphics alternative in columns 2, 3, 6 and 7 . The next group of
bits could be 1101001 , in which case the result would be a green, lower-case " i " on the screen. A control character is not displayed, so that whenever the mode is changed - from alphanumerics to graphics or from picture to insert or from white to red - a space must appear.

There is one exception to this, and the space can be avoided when an alphanumeric character is needed close to graphics, with no control character space. Although the graphics characters are shown in Fig. 5, it is not meant to imply that they are contained in the ROM. Only the alphanumeric characters are held in the memory, the graphics being generated directly by the 7 -bit code as received, as shown in Fig. 5. The area occupied by a character and its surrounding space can be separated into six "cells" which each have a bit of data allocated to them. All codes intended for display as graphics have a 1 as bit 6. However, if, while in the graphics mode, a code occurs with a 0 as bit 6, then those characters in columns 4 and 5 of Fig. 5 will be displayed - a limited selection of alphanumerics, termed "blast-through" alphanumerics.

Fig. 8 shows the output processor, complete with character generator and timing circuits, synchronized by line and field sync pulses. Characters are built up from dots at the 7 MHz clock frequency and a dot clock is therefore required. The number of elements or dots in the width of a character is six (5 in the character and a space) and a

Fig. 7. The input processor block diagram.

6-counter produces an output at each character. These two outputs are used to serialize the outputs of the ROM, and a 40 -counter with a 6-line output is applied to the store, instructing it to provide successive character codes to the ROM which generates the pattern for each new character.

Line sync is also applied to a "divide-by-10" counter, which ensures that the store addresses the ROM for 10 lines in each character, giving 7 scanning lines for the character and 3 scanning lines space between characters. A 24 -counter addresses the 24 rows of data in the store.

A further block in the display circuitry is the controls decoder which recognizes the control characters in columns 0 and 1 of Fig. 6, to produce RGB drives, blanking to provide a box

Fig. 6. The framing code in progress through the shift register, and in position on the loth row down. At no time other than at coincidence are more than 5 bits in the register in correspondence with the reference word 11100100.
for inserts and a "flashing" instruction. Graphics are produced, under command from the controls decoder, by the graphics generator on the principle previously mentioned and illustrated in Fig. 5.

Finally, the interpolator can be used to obtain a slightly improved appearance to characters which include a diagonal ($\mathrm{Y}, \mathrm{Z}, \mathrm{K}$, etc.). The principle is to take advantage of the fact that interlacing effectively provides 14 lines

in a character, not 7, and to "fill in" the steps produced by the 7 stored lines. An odd/even field command can be derived and used to synchronize the interpolator, which is also used to make the flashing signal effective.

That is the principle of the decoder, very briefly. In a short article, it is not possible to cover all aspects and it was not the intention. Forthcoming articles will describe the circuit in detail and provide complete information on the construction of a decoder that will differ from this general picture in several respects. Many savings in cost have been found possible by circuit changes which have also made possible a unit which is much smaller than envisaged.
(To be continued)

References

I. Gassman, G.-G. "Twelve Sound Channels during the Vertical Sync Interval of the Television Signal", ITT Chicago Spring Conference, June 1970.
2. Ball, J. D. \& Wells, D. R. "Encoded captioning of television for the deaf". International Television Symposium, Montreux, 1973.
3. Guillermin, J., Dumont, J. \& Guinet, Y. "Transmission of remote control and identification signals within audio and video channels in radio and television broadcasting", I.E.E. Conference Publication No. 25, November, 1966.
4. Numaguchi, Yasutaka. "Still Picture Broadcasting System", NHK Laboratories Note No. 174, January 1974.
5. Houghton, W. D. "Homefax - a consumer information system", RCA Engineer, Vol. 16, No. 5, Feb./Mar., 1971.
6. King, Patrick T. "A Novel Television Add-On Data Communication System", Journal of the S.M.P.T.E., Vol. 83, January 1974.
7. Hutt, P. R. "A system of Data Transmission in the Vertical Interval of the Television Signal. IBC 1972 Conference Publication No. 88, pp. 131-140.
8. "Specification of standards for information transmission by digitally-coded signals in the field-blanking interval of 625 -line television systems". Published jointly by BBC, IBA and BREMA. October 1974.
9. Hamming, R. W. 'Error Detecting and Error Correcting Codes," Bell System Technical Journal, Vol. XXVI, 2 April, 1950.

Fig. 10. Extracts from an Oracle index page, showing the normal appearance at (top) and the effect of character rounding (bottom). This is an IBA photograph taken from the screen of a studio monitor. On a domestic receiver, the effect is not as pronounced.

Fig. 8. A typical output processor.

The consultants

An investigation of the role of independent engineering consultants

by John Dwyer

Abstract

"Most consultants leave a trail of disaster in their wake . . . Most of the so-called household names I wouldn't let within two miles of our factory." This trenchant observation came from Raymond Cooke, managing director of KEF Electronics, who went on to say in a recent interview that he thought the name consultant was grossly misused: ' 'Anyone with an Avo with a bent needle can set himself up as a consultant."

His view was echoed by Derek Bond of Ferrograph, who was in no doubt about the capabilities of consultants: 'It would be disastrous in my opinion to use these guys where you're committed to a tight production schedule, because they're just not suited to it. They are generally much more aware of the trends in basics but they haven't got a clue about equipment practice.'

These comments seem particularly significant because they come from people who do employ consultants. At one time or another such diverse organisations as EMI, Plessey, Cambridge Audio, Rank, Garrard, Ferrograph, Sinclair, Marsden Hall, Strathearn Audio, Quad, Decca, Lecson, IMF, Metrosound, Audiotronics (Laskys), Technics, Sony, 3M, BASF, B\&W, Capitol, Audio Devices and the BBC and IBA have used consultants, even though many of them denied that they did so. One or two firms, particularly in the hi-fi market, make such extensive use of outside contractors and advice that all they can be said to do is to market a product someone else has designed, made and put the client's name to.

As the foregoing list shows, there is no particular type of company that uses consultants more than another, but the reasons for which they use them tend to be similar. Peter Walker of Acoustical Manufacturing said: 'If we need expertise in a particular area or we're a bit busy we take on a consultant.'

Another common use of consultants is to assess equipment about to go into production, as Grahame West of National Panasonic explained: 'The reason is that we're totally involved in what we're doing and we can't see the wood for the trees. An outside person may be able to pick out things we hadn't noticed.'

Another reason for the need for assessment is to check that imported
equipment, whether from a parent company or some other, conforms to its specifications and to British safety standards. British law is often more strict in these matters than foreign law.
The law, indeed, often provides consultants with work, perhaps the best known example being Hugh Ford's study of covert tape recordings, which was extensively publicised during the trial of the two Scotland Yard detectives who were bugged by The Times newspaper. James Moir, an expert in

Well known contributor to Wireless World, Peter Baxandall.
loudspeaker designing and assessment, noise problems in council flats, prisons, penthouses, and power stations, and electronic circuit design, was retained by Tandberg during their patent suit against Akai.

In manufacturing, free advice is plentiful but often such advice is not independent. You can't be sure a man selling i.cs is conveying the best way of doing a job, or purveying the best way of swelling his commission. You employ a technical consultant to get advice on a subject with which you are unfamilar, for which you are not equipped or your capacity is overloaded, in the hope that the advice will be free of commercial bias. This means not only that the consultant is not financially linked with any manufacturer but that ideally any
private shareholdings he has are unconnected with his work. In another case, like that of Angus McKenzie, who has shares in EMI, Plessey and other firms, the consultant should agree to tell you what those shareholdings are. Mr McKenzie said he would be glad to tell any clients of his interests.
There are many other reasons for a consultant's need to be independent. One is that the potential client must not feel the consultant may be in competition with him. Another was advanced by Geoff Evans, founder and managing director of Warren Point: 'A supplier can only supply from what's in his brochure. An independent consultant can often find a supplier who suits what you want. The point is we can shop around.'

Warren Point have set up a company which supplies automatic test equipment, but they say they keep even that 'at arm's length.' Evans likes to think that the company has to wear two hats: 'The first is advisory, then there's the implementation hat. We're in touch with the implementation people, but not influenced by them. If you get your hands dirty you can advise, if you don't, you can't.'
Indeed, one of the major criticisms of consultants was that they tended to know a lot of theory and a lot less about the practicalities. Raymond Cooke explained his views more fully: 'A consultant soon runs to the end of his knowledge. A good example is the use of solid state devices. Those who use them on a large scale know a great deal more about these than the chap who does a "lashup" now and again . . . The specification is not enough. Most manufacturers will tell you that the running specifications are miles outside what they should be and the other parameters, the crucial ones, are not quoted, and those are the ones that let you down. Ask any manufacturer what his
greatest problem is and he will tell you the variability of devices.'

Stan Curtis of Cambridge Audio said that one consultant had produced a superb design 'but it was too good. It would have been all right if we had only wanted to produce one a month.' In future they would use consultants for specific problems rather than hand over entire projects to them.
Production engineering is a specialised skill which some thought outside the ken of consultants, and one engineer remarked that the production engineer needed to be familiar with the constraints of the plant and staff, which would only be possible if the engineer were loaned to the client for a year or so, in which case the client may as well hire one himself.
Yet many firms use consultants to advise them how to fill up spare production capacity, and let them see a new product through from design to production. The company of PA Consultants have often done this, perhaps the best example being Strathearn Audio, which had no product line at all before PA arrived. The Advanced Production Technology Unit of PA will develop, research, and produce a product, recruit and train staff, build any special production machinery and even make a small production line which can then be transferred to the client's plant.

Peter Baxandall, with far less commercial test gear at his command and a preference for using easily modified home-made equipment for much of his work, had a similar view. 'There are two schools of thought on this. One is that the designer does his sums and draws a diagram and that's the end of it, and if it hums and needs a bit of screening that isn't really his concern. I never take that view. The job of the good circuit. designer is to see the thing through and these practical things are part of it.' To quote from Cherry and Hooper, \dagger 'If pen and paper design is an art, then completion of the design to the hardware stage is an art of a higher order.'

He admitted he sometimes became absorbed in the merely interesting but unremunerative. Hugh Ford agreed. 'You're always looking for perfection, but you've got to give and take. You've got to compromise because the thing has got to be made to a price. Usually what you're doing is saying "These are the areas for improvement".'

On this, one observer, who has worked in most branches of electronic engineering, said he thought it was not the consultant's job to keep his own feet on the ground. 'For instance, if the consultant says the best way to do this is to use high vacuum technology, someone has to say to him "Well we don't want to get involved in that. What are the alternatives?" And he says this, this and this and the client says "We'll
\dagger Amplifying Devices and Low Pass Amplifier Design by E. M. Cherry and D. E. Hooper, Wiley, 1968.

Roger Driscoll, of the North London Poly technic.
do this because we know how to do it"., There had to be continuous communication between client and consultant.

Geoff Evans of Warren Point even stressed the value of knowing how to use the client's old plant, say an oven, in the design of the new system, if that were what the client wanted.

Academics in consultancy

Because he thinks many consultants haven't got their feet on the ground John Deutsch calls himself a freelance computer systems designer, and he's particularly critical of the practical ability of many of his colleagues: 'They've overlooked the problems that can occur, and this is particularly true of academics. My job in the computer industry is to make the equipment do what the user wants. For example any systems where money is concerned have to be safe. There has to be a deliberate rigidity built into the system so that it's not easy to access once you've put the information in.'

His feeling about academics is widespread, and one commentator remarked about their 'Ivory Tower' approach. Roger Driscoll, lecturer at the North London Polytechnic, dismissed the charge: 'On the contrary the very fact that we have this close association with the press and with industry keeps us in touch.' Some might be churlish enough to argue that close association with industry is not the same as being in industry, but if one accepts that the academic community has a great deal to offer industry, there are still other sources of resentment against the academics. One that gives a great deal of contemptuous amusement is the perpetual paper chase through Milton's 'grove of Academe,' the ceaseless agglomeration of honorifics to add to the notepaper, a sense that scientific knowledge is of less importance than the acknowledgement of other scien-
tists. Another reason for the resentment is even older.

It was perhaps best expressed by James Moir, a man who is obviously successful, drives a powder green Jaguar and owns a slice of Hertfordshire that extends, as he puts it, 'as far as you can see'. Yet he feels threatened by competition from the denizens of university departments that are equipped with public money. 'They're all at this,' he said. 'It even goes down to the technical colleges where the physics master has set himself up as an acoustic consultant. And not just acoustics, they're doing all kinds of other things as well.' The apogee of sheer cheek must have been reached in one individual who attended a symposium Moir gave some years ago. 'He took away the notes we handed out and said to himself "This looks like a good thing", and the next thing I saw was that he was advertising himself as an independent consultant.
How did Roger Driscoll of the North London Polytechnic justify this use of public resources, presumably to fill his own pocket: 'The money isn't the thing that counts. My consultancy work helps the college because it is good for the recruitment of interested students. Our connections with the press and with local industry helps the students to become known in industry and make it easier to place graduate students when the time comes for them to leave college.'
He acknowledged that he was using publicly owned equipment but said that he didn't charge nearly as much as outside consultants. 'I estimate that my income from consultancy could be counted in hundreds of pounds before tax.' Until recently all consultancy fees at the N.L.P. used to go into various pockets but now a pool has been started into which the lecturers pay part of the fees they receive. 'It varies. It's usually about a third.'
About one in six of the lecturers at the N.L.P. did consultancy work, mostly because they were not in disciplines where such work was appropriate. Driscoll emphasised that the amount of free time lecturers had was exaggerated: 'The amount of time actually spent in the lecture room may seem small, possibly only five or six hours a week, but a considerable amount more, maybe 15 or 20 hours a week, is spent in preparation for lectures.'

Many of the reasons for or against using consultants are paradoxical. For instance, their non-involvement in manufacturing gives them independence, but that non-involvement may reduce their ability to help.

Cambridge Consultants used to be involved in manufacturing, and it was a none too happy experience. They set up three companies not long after the firm was founded in 1960, one of which was Cambridge Audio, now no longer linked with them. The consultancy service did well but the manufacturing interests
foundered and dragged Cambridge Consultants down with them. The bankruptcy may still be having its effects.

Peter Baxandall: 'The consultant is dependent on being successful, because if he makes a mess of it it will get around. So he has to be careful not to take on the wrong job, either because it's too large or too difficult or it's likely to have an unsatisfactory outcome. He has to have a knowledge of the firm he's dealing with.'

Paying a consultant to learn

Another paradox of using a consultant is that the client, having called him in, has to brief him extensively, not just on one particular problem perhaps, but on the client's entire process, of which the consultant may have no previous knowledge. Thus the client is paying the consultant to gain knowledge and experience that may one day benefit the client's competitors.

Dr Robin Smith-Saville of Cambridge Consultants did not think this was a problem. 'First of all if you're working for the government they don't mind your learning at their expense. Secondly if a company is working with a product that is going to give them a good market they don't mind putting cash into it.' Bob Stuart of Boothroyd Stuart said they didn't charge clients for learning time. Others said that not knowing the process would be part of the objectivity the client was paying for. Many gained clients because of their experience of other manufacturers in the same business; many firms take on a consultant because they want to know what their competitors are doing. This particularly applies in consumer electronics, where many consultants may do a great deal of equipment reviewing for magazines.

Technical reviews for magazines are a fruitful source of revenue for consultants. This is not because the magazines pay well, as any consultant, particularly one who doesn't seem to need the money, will tell you, but because signed articles attract business. The consultants I spoke to did not advertise directly, though only one of them, Moir, indicated that he was aware of any restriction on doing so. 'Most professional people are prevented from advertising,' he said.

A spokesman for the I.E.E. admitted that their restrictions were largely imitative of the legal and medical professions. Rules 9 and 14 state: 'A member shall not, in self-laudatory language or in anyy manner derogatory to the dignity of the profession of electrical engineers, advertise or write articles for publication, not shall he authorise any such advertisement or article to be written or published by any person.' An explanatory paragraph later explains that the stress is on the word 'self-laudatory,' and the engineer must not suggest he is more competent than other engineers. He is not allowed, as a consultant, to 'improperly solicit' work.

Most of the consultants I spoke to said their work came either from personal recommendation or from people with whom they had worked before.
The relationship with the press introduces the extent to which the activities of consultants are secret. A difficulty here is that for a consultant to carry on his business successfully he must tell potential clients what he has worked on in the past and, if he over consciencious, this may put him in a difficulty. In practice this does not seem to present too much of a problem.
The most secretive consultant organisation perhaps, is PA, which started as Personnel Administration in 1943 when it was advising on Spitfire production. They now claim to be the largest consultancy in the world, with a world-wide staff of 2,000 and a staff of 100 , many of them Ph.Ds, at their new research centre in the Hertfordshire countryside. To begin with they have taken elaborate precautions to make sure the firm is not taken over and its secrets plundered thereby. In the midfifties they made PA a profit making trust, which is now administered by 'three or four people of sound reputation' in the city and elsewhere. Unlike other consultants, who did not regard working at some future date for a present client's competitor a problem, PA undertake never to work for a competitor.

Angus McKenzie in his laboratory.
Potential recruits to PA, 90 per cent of whose consultants have degrees or a professional qualification, have to undertake not to leave to work for a client, and not only do PA give the usual undertaking not to disclose for whom they are working, but they bind the client contractually from telling anyone that they have PA working for them.
However, other parts of the PA organisation may be working for competitors and so some PA staff are not allowed into the PATS Centre International Laboratories in Hertfordshire. PA have made confidentiality a special part of their service. 'Our secrecy,' said Gordon Edge, 'is an added recommendation.'
One can see why clients should keep their use of consultants quiet, before a product goes on the market. What seems more strange is that the use of a consultant should be kept secret after that, particularly in electronic consumer products. Many firms insisted they did not use consultants even
though incontrovertable evidence rexisted that they did.
Angus McKenzie offered a simple but appealing explanation: 'They feel their prestige will be much lower if the public is told that (the company) had to go outside their big empire. They like to think they've got all the best brains in the country under one roof."
One would have thought the public might be impressed by the resourcefulness of a company that used consultants. Graham West, of Technics, said: 'I think it's just pride. I think it's a mistake because it must be of benefit to them to let the consumer know they've taken a lot of trouble to make sure the product is correct.' Many suggested, however, that idea was much too complicated. Alan Hall-Williams, of Strathearn, said: 'Talking about whether or not a company uses consultants may cloud the issue.' The public didn't care as long as the product worked properly.
Gordon Edge thought the companies had better reasons: 'It's not pride. This is silly because the modern sophisticated company treats the consultant as one of the tools he has available to help him do the job. Firms don't rely on us to do all the $R \& D$ by any means and they buy the tools they need, use them and then turn the tool off.'

Sony UK's marketing manager said that Sony had never used consultants but thought the reason that other firms might want to conceal their own use of them was that 'maybe they don't want to lose the consultant to another manufacturer, or that he may sell a similar design to another manufacturer. That's the only danger I think.'

Perhaps some are afraid, like the sign writer who makes all the newsagents within five miles look as if they're under the same ownership, the use of a specialist consultant will produce uniformity. This might be true if the same consultant were asked to design similar products for competing manufacturers at the same time. As Hugh Ford said, this rarely happens: 'Ideas change, new products come on the market, new transistors, new i.csbecome available so that's not a problem. It depends on the period of time that elapses between working for a client and his competitor. If there is a problem you can phone up the previous people you did the work for and say "Look, I've been asked to do this." Usually they don't mind but if they do, you tell the customer "I'm sorry I can't do it. I suggest you contact X ".'

Peter Baxandall commented that he tried to avoid working for directly competing firms, and had, for instance, only accepted one audio amplifier design commission. In many cases there is no conflict because an amplifier costing $£ 150$ is a very different product from one that costs $£ 50$.

Many firms commented that a consultant would not appreciate their design philosophy as well as their own
staff. Hugh Ford reported: 'In fact, I think this is a strong case for getting a consultant. Firms get dyed in their ways and they ought to bring somebody in to examine the end product. Manufacturers don't do this enough, and you'd be amazed at the awful clangers that have been dropped by even well known firms.' Bob. Stuart also thought the complaint groundless: 'If a company is bringing in a consultant they must be wanting to change their image anyway.'

Although the consultant has no loyalty to the firm other than the fee, in Bob Stuart's words 'You want clients to come back to you.' Indeed he said he regarded this as a measure of a consultant's success. In each case research staff are not obliged to stay with companies forever, and consultants may provide better continuity then one's own staff.

In this connection Geoff Evans saw a problem for the client who went to a large-system house for a one-off system. 'They are basically production companies and they are prototype oriented. Their engineers are there to fill spare production capacity, so that the one-off job is given to the young graduates, with obvious results. They have a high staff turnover because the lad gets so far into the job, panics, leaves and usually leaves no documentation behind him when he goes.' The customer will get this equipment in the end, said Evans - probably one of the reasons he went to a large system house was that he knew it wouldn't go broke but it will often be late, 'and usually if a firm can put up with late delivery it means that either they've ordered the thing at the wrong time or they don't need it at all. Most of his own staff, he said, had been at Warren Point for seven years.

One view often expressed was that having one's own staff on the premises was much more convenient than calling out a consultant when a problem occurred. This indeed, was the basis of Derek Bond's remark at the beginning of this article. On the other hand, in a recent article in the journal Communications International, Dr Robin SmithSaville of Cambridge Consultants made the following point about consultants: 'In communications it would be rash to claim that they can do anything which is beyond the capabilities of the rest of the industry but they have outstanding skills in special areas. These skills coupled with their independence and accessibility give them their special role in the industry.' In what way accessible? II meant accessible as opposed to a specialist engineer in Marconi or one of the other large firms', he said. Often such an engineer couldn't be found when he was wanted.

One design manager, who wished to remain anonymous, said hiring a consultant was much more convenient than going through the business of advertising for staff, interviewing and waiting for the successful candidate to

Jonathan Pope, a consultant at PATS Centre.
work out his notice. In addition the R \& D engineer needs to be kept fully occupied and has to be backed up with a great deal of expensive equipment in addition to the non-productive space he takes up.

Mike East, public relations adviser to Warren Point, said, 'In the present economic situation using consultants becomes more important not less. It's a shelter for many firms because they pay a fixed fee, there are no overheads and so they cost for it.'
As regards fees, there are various methods of computation. Boothroyd Stuart work on a flat fee plus a royalty. 'This gives us an incentive to ensure success, and it limits the client's costs at the beginning, the very time when he needs the money.' Roger Driscoll saw a snag: 'With a royalty payment you could become identified with the company.' On the other hand, many manufacturers do as Marsden Hall do, paying consultants on an annual retainer with an additional fee for specific projects. This too would identify the consultant with the company.

For $£ 100$ a day the client may buy the services of the large group consultancies. Individual consultants normally charge a great deal less, $£ 50$ a day upwards, although Angus McKenzie charges El 100 , he told me, which does seem just a little high. A university or college lecturer using borrowed equipment may charge $£ 30$ or $£ 40$ a day; one suggestion is that whatever they charge, and it could be raised to the usual rate, the money should be returned to the education service and the work counted as part of the duties for which the lecturers are already well paid, a productive means of lengthening that 26 -hour week.

Whoever the consultant is, Derek Bond warns: 'Unless they pull their socks up and get a bit more production oriented we won't be using consultants much in future. If they're cheap we'll use them, but if they're not, we won't.'

HF.predictions
Onset 告 winter conditions brings a notable increase in northern hemisphere mid-latitude daytime FOTs. The charts show how this effect is modified by differences in local time at the ends of a circuit. For example taking UK daytime as 07 to 19 GMT and Hongkong daytime as 23 through 11GMT the complete path is in daylight from 07 to 11 GMT . Similarly the Montreal path is not fully lit until 11GMT, since it lies to the west, but then continues lit until 19 GMT as path length is relatively short.
The southern hemisphere is of course changing to summer conditions. Ionospheric control points for Johannesburg and Buenos Aires are at equatorial and lower mid-latitudes so their FOTs are not greatly affected however.

Meetings
 NOVEMBER

LONDON

4th. IEE - Colloquium on "Piezoelectric and pyroelectric materials and applications" at 10.30 at Savoy P1., WC2.
4th. IEE/RTS/BKSTS-"A dual-guage multistandard telecine" by J. D. Millward at 19.00 at Savoy P1., WC2.

5th. AES - "Blumlein in the low frequency jungle" by P. B. Vanderlyn at 19.15 at the IEE, Savoy PI., WC2.
6th. IEE - Colloquium on "Electrical pheno mena on insulating surfaces in gases and in vacuum" at 10.30 at Savoy P1., WC2.
6th. IEE/IERE - Colloquium on "Distributed information systems" at 14.00 at 9 Bedford Sq., WC1.
10th. IEE - Discussion on "SAW resonators: a new challenge to conventional crystal filters and oscillators" at 17.30 at Savoy P1., WC2.
11th. IEE - "Fuzzy algorithms - systems and control applications" by Dr E. H. Mamdani, Prof. P. K. M'Pherson and Dr B. R. Gaines at 17.30 at Savoy Pl., WC2.
11th. IEE - "A single axis tracking earth station" by D. W. Longhurst and "Investigation of step track aerial steering techniques" by R. J. Jones at 17.30 at Savoy P1., WC2.

12th. IERE - Coloquium on "Wedding calculators to instruments" at 10.00 at 9 Bedford Sq., WCl.
12th. I. Phys./IEE - One-day meeting on "Compound semiconductors" at Imperial College, SW7

12th. IEE - "The scanning acoustical microscope" by Prof. R. Kompfner at $\mathbf{1 7 . 3 0}$ at Savoy Pl., WC2.
12th. BKSTS. - "The history and use of slides" by Brian Coe at 20.30 at NFT2, National Film Theatre, South Bank, Waterloo, SEI.
13th. RTS - "RTS Convention in retrospect" at 19.00 at the Conference Suite, London Weekend Television, South Bank TV Centre, Upper Ground, SEI.

14th. IEE - Colloquium on "Reliability of solid state microwave devices" at 10.30 at Savoy P1., WC2.
14th. IEE - Colloquium on "Standard computer interfaces - where next?" at 10.30 at Savoy Pl., WC2.
17th. 1EE - "What the common market means to engineers" by G. L. E. Metz at 18.30 at Savoy P1., WC2.
18th. IEE - Colloquium on "Field effect device applications" at 10.30 at Savoy P1., WC2.
20th. RTS - "SECAM - the other European colour standard" by Michael Cox at 19.00 at the Conference Suite, London Weekend Television South Bank TV Centre, Upper Ground, SE1.
21st. 1.Phys. - Meeting on "Metals and metallic compounds" at 10.00 at the Lecture Theatre, Geological Society, Burlington House, Piccadilly. W1.
25th. IEE - Colloquium on "Radio interference and the BSI" at 10.30 at Savoy P1.. WC2.
25th. IEE/IERE - Colloquium on "Patient monitoring" at 10.30 at Savoy P1., WC2.

25th. IEE/IEETE - Discussion on "Aids in the teaching and learning of electrical subjects" at Polytechnic of Central London, 309 Regent St., W1.
26th. IERE - Colloquium on "Industrial cathode ray tubes" at 14.00 at 9 Bedford Sq., WC1.
26th. BKSTS. - "The overhead projector - a versatile visual aid" by L. S. Powell at 19.30 at Thames Television Theatre, 308-316 Euston Rd., NW1.

27th. RTS - "Computers in support of the production and transmission processes" by R. C. Evens and C. Lashmar at 19.00 at the Conference Suite, London Weekend Television, South Bank TV Centre, Upper Ground, SE1.
27th. IERE - Two joint lectures on "The development of the Mediator project for air traffic control" at 18.00 at 9 Bedford Sq., WC1.

BEDFORD

18th. IERE - "Large scale integrated circuits for Teletext decoding" by D. Spicer at 19.45 at Room 7/1, Mander College.

BELFAST

4th. IERE - "Voice recognition by computer" by Dr R. Lingard at 19.00 at Cregagh Technical College.

BIRMINGHAM

19th. SERT - "The selection of the correct hi-fi record cartridge for a given system" by A. Munro at 19.30 at the Byng Kendrick Suite, University of Aston.

19th. RTS - 1975 Fleming Memorial lecture "Television: Parliament and people" at 19.00 at BBC Broadcasting Centre, Pebble Mill Road
20th. CEI/IERE - "Space technology" by G. K. C. Pardoe at 18.30 at Vaughan Jeffreys Lecture Theatre, University of Birmingham (School of Education).

BRIDGWATER

1lth. IEETE. - "Mobile radio communications" by Prof. W. Gosling, at 19.30 at Royal Clarence Hotel, Cornhill.

BRISTOL

19th. CEI - "Engineering for survival" by Prof Meredith Thring at 19.00 at the Lecture Room, School of Chemistry, University of Bristol.

BROMLEY

12th. IEETE. - "Electronics in commercial vehicles" by G. Leonard at 19.30 at Bromley College of Technology, Rookery Lane.

CAMbridge

27th. IEE/IERE - "Videodisc" by speaker from Mullard at 18.00 at The University Engineering Laboratories, Trumpington Street

CARDIFF

12th. IERE - AGM South Wales Section followed by "The Omega system of navigation" by R. C. V. Macario at 18.15 at the Dept. of Applied Physics and Electronics, UWIST.

CHATHAM

27th. IERE - "Recent advances in calculator technology" by R. Bradbeer at 19.00 at Medway and Maidstone College of Technology.

COLCHESTER

12th. IEE - "Techniques and achievements of radio astronomy"' by Prof. A. Hewish at 19.00 at University of Essex.

HEMEL HEMPSTEAD

20th. IEE - "Thermal imaging - techniques and applications" by W. Lawson at 19.30 at Dacorum College of Further Education.

HULL

12th. SERT - "U-matic video cassette" by a representative of Sony (UK) Ltd at 19.00 at Hull College of Technology.

IPSWICH

5th. IEE/IERE - "Viewdata - an interactive information service for the general public" by S . Fedida at 18.30 at The Great White Horse Hotel, Tavern Street.

LEICESTER

11th. IEE/IERE - "Dolby noise reduction system" by I. Hardcastle at 19.00 at the Lecture Theatre, Chemistry Dept., Leicester University.

LINCOLN

20th. SERT - "Receiving aerials" by R. S Roberts at 20.00 at the Refectory of Lincoln Technical College

LIVERPOOL

12th. IERE - "Radio astronomy" by Dr A. G. Lyne at 19.00 at the Dept. of Electrical Engineering and Electronics, University of Liverpool.

MANCHESTER

13th. IERE - "Radio astronomy - bird's-eye view" by Miss Hilary Exton at 18.15 at the Lecture Theatre R/H10, Renold Building, UMIST.

27th. SERT - "TCE 9000 colour television chassis" by K. Harris at 19.00 at the Lecture Theatre C10, Manchester Polytechnic.

NEWPORT, l.o.W.

14th. IERE - "Hybrid integrated microwave. amplifiers" by Dr S. J. Hewitt and R. S. Pengelly at 19.00 at Isle of Wight College of Arts and Technology.

NORWICH

12th. IERE - "Communications of the future" by Dr P. D. Whitaker at 19.00 at The Audio Visual Centre, University of East Anglia.

PLYMOUTH

13th. IEE/IERE - "ORACLE - a broadcast information service" by D. Wood at 19.00 at Plymouth Polytechnic.

PORTSMOUTH

26th. lERE - "Future trends in primary radar systems" by K. Milne at 19.30 at Portsmouth Polytechnic, Park Road, Room ABO 11.

READING

3rd. SERT - "Medical instrumentation" by P. Sibley at 20.00 at the Post House Hotel, Basingstoke Road.
4th. IERE - "Electronics in medicine" by Dr D. W. Hill at 19.30 at Caversham Bridge Hotel, Caversham Road.

REDHILL

1lth. IEE - "MADGE - helicopter landing system" by H. L. Derwent at 19.30 at Mullard Research Labs, Cross Oak Lane, Salfords.

SHEFFIELD

19th. IERE - "Electronic control and communications on motorways" by. Supt. Hambrey at 19.00 at Dept. of Physics, Sheffield University.

26th. IERE - "Signals and systems - what do we know?" by D. Brook at 18.30 at Sheffield Telephone House, Charter Square.

SLOUGH

5th. I. Phys. - One-day meeting on "Physics of detection and surveillance" at the Fulmer Research Institute, Stoke Poges.

SOUTHAMPTON

12th. IERE - "V.h.f./f.m. broadcast reception" by R. S. Broom at 19.30 at Southampton College of Technology, East Park Terrace.
19th. IEE/IERE - "Application of semiconductor devices to protection" by M. C. S. Simpson at 18.30 at Lanchester Building, University of Southampton.

UXBRIDGE

28th. IEE - "Some aspect of artificial intelligence" by Prof. I. Aleksander at 18.30 at Brunel University, Kingston Lane.

WHITBY

11th. IERE - "Fly-by-wire flight control systems" by Flt.Lt. P. L. Hills at 19.00 at Botham's Cafe.

Tickets are required for some meetings: readers are advised therefore to contact the society concerned.

IEE to resign from CEI

The Institute of Electrical Engineers has decided to give notice of its intention to resign from the Council of Engineering Institutions on December 31 next year. A statement by the IEE's President, James H. H. Merriman was issued as follows.
"As you know, we have endeavoured, with colleagues in other institutions, to secure a reform of the CEI that would make it representative of individual Chartered Engineers, regardless of their specialisation, who would freely elect its governing Board. We consider it essential to eliminate, or at least substantially dilute, responsibility of the Board to the institutions because we are sure this has been the main cause of the CEI's inability to act promptly and effectively. It is excessively difficult for fifteen sovereign institutions- probably more in the future - to reach agreement on important matters.
"The constitutional changes agreed by twelve of the fifteen institutions at the CEI meeting on 24th July, by which each institution will elect one representative on the Board, would not, in our view, dissociate the CEI from the overriding influence of the institutions. We considered that this decision represented the limit to which a majority of other institutions were prepared to go to meet our views, and that further progress could only be expected to take place, if at all, in a future far more distant than we believe our members would tolerate. In these circumstances, our council thought the only proper course was to give notice of resignation . . In the meantime, we shall play our part in the CEI in a constructive and conciliatory manner so that if, at the end of the day, we decide we must withdraw, we may do so without rancour, and in circumstances that will enable us to collaborate in friendship with the other engineering institutions and with the CEI itself."

Buy British audio

September saw the announcement of two campaigns intended to promote British audio products both here and overseas. The first starts with a recent exhibition at the Design Centre, Haymarket, and is promoted jointly with a group of 18 well known retailers from all parts of the U.K.

Based on the slogan "the best of British", the advertisements list the dealers who have joined the group and outline the advantages of a new guarantee and service agreement
offered. In each instance, the dealers are promoting British made products and providing a passport-like document, with each purchase. This offers a two-year free parts and labour guarantee on listed British items, purchased and entered in the document, with the exception of the pick-up cartridge stylus.
Parallel to this campaign a loose grouping of a number of well known British manufacturers has been created to improve overseas promotion and exhibition activity. The impetus to this movement came from what one spokesman called "the poor stand location and tatty appearance" of the joint British stand at this year's Chicago Consumer Electronic Show.
The group plan to start a twice yearly promotional magazine which will be circulated among some U.K. dealers and extensively in potential overseas markets. The magazine is to be edited by Denys Killick, the technical editor of Cassettes and Cartridges.
Just how successful this latest idea will be is difficult to judge, since it is embryonic, but one leading British manufacturer, Rank-Audio Visual, pointed out that they and some other companies could be embarrassed by such a campaign, since they have a foot in both camps, importing Japanese products as well as making Leak and Wharfedale products. The comment was made that British products should be offered on the basis of a direct technical and quality comparison, not relying on patriotism to boost sales.

Push-button 'phones introduced

Push-button telephones will become generally available to customers in London next spring and elsewhere later in 1976. Calls are made by keying (see photograph), which is easier than dialling and enables users to put numbers into the telephone faster. Called the SC Keyphone, it is interchangeable with an ordinary dial telephone and may be used on most exchange lines and extensions. It uses an m.o.s. microcircuit designed by Pye TMC engineers which translates the keyed number into a chain of pulses identical to that produced by conventional rotary dial telephones. The Post Office's new D4000 specification has been drawn up to ensure that equipment incorporating m.o.s. circuits will achieve a 30 -year fault-free lifetime and requires that test circuits designed to check process and production parameters be regularly submitted to the P.O. for accelerated life-time testing at extremes of temperature. Following successful market trials in London and the provinces, the P.O. has now placed contracts with GEC Telecommunications and Pye TMC for a total of 145,000 SC Keyphones. They will be offered to

Britain's telephone of the future is the self-contained Keyphone - see news item for details.
customers at an extra rental of $£ 4$ a quarter and there is an installation charge of $£ 5$.

Data buoy commissioned

The UK National Data Buoy was formally commissioned at Lowestoft on Friday, August 22 and is expected to be in position reporting automatically on sea and weather condition in the North Sea, in the early autumn (see 'Electronics in Oil', Jan. 1975 issue, p.8). The items of equipment have been supplied by Harwell's Electronics and Applied Physics Division. One of these measures the rate and direction of movement of the water while the other produces electric power for the buoy's instrumentation. In the current meter, ultrasonic pulses pass horizontally between two pairs of transducers mounted at right-angles to each other on spars projecting beneath the buoy. Differences between the times taken for the pulse forward and return journeys are measured electronically and combined with the buoy's compass bearing to give true direction and speed of the water's movement.
The thermomechanical generator, which powers all the buoy's instruments and the sea-to-shore communications system, is a Harwell development of the Stirling Cycle Engine and provides a continuous output of 25 W from the combustion of $200 \mathrm{~kg} /$ year of propane gas.

New computer breed

The Science Research Council has made a grant of $£ 8,000$ for work on a graphically patched hybrid computer being undertaken by Mr Peter Atkinson of the Department of Engineering and Cybernetics at Reading University. In a hybrid computer, simulation runs on the analogue computer are controlled by a digital machine which also logs data. Once a problem has been programmed it can then be left on the hybrid computer to run itself until the
problem has been solved. The one remaining difficulty at present is that the analogue machine has to be wire connected ("patched") by hand before the programme may be run. The patching must be carefully checked for errors and this process is time consuming. Earlier work by the investigator has shown that digital computers may be automatically programmed to solve simulation problems by drawing up the block diagram of the system to be simulated on a cathode ray screen. The object of this present research is to produce a small demonstration system which allows the analogue component of a hybrid computer to be similarly automatically patched up by drawing a block diagram on the c.r.t. screen. The digital computer will be programmed to recognize the system's topology and will make connections between the analogous blocks in the analogue machine. The numerical values of the elements within each block will then be typed into the digital computer via a conventional teletypewriter keyboard and the digital computer will set up the component values in the analogue machine.

This research is not the first attempt to produce an automatically patched hybrid computer but it possesses new features which ease the solution of the problem considerably.

No interference from experimental tube train

Measurements have been made to monitor interference signals induced in
the running rails by London Transport's experimental tube train and it was found that resolved signals were obtained at considerably lower levels than expected. The train is experimental in that control of the traction motor's power unit is solid state, employing thyristors rather than banks of resistors. The result is a 5% saving in power, smoother control and less maintenance. Interference from the power unit could have affected vital signalling information but the tests have showed that operation of the train does not introduce spurious signals of sufficient level to affect running safety. While operating, interference in the region $500-600 \mathrm{~Hz}$ was expected while on starting, a frequency of 16 Hz could have been induced from the motor. The Fenlow instrumentation recorder used for monitoring the signals has facilities for recording on up to four channels using standard $1 / 4$ in magnetic tape at a speed of $71 / 2$ i.p.s. Signal to noise ratio is better than 43 dB and linearity is 0.5%.

Briefly

And now Roberts Video. Roberts Radio has entered the colour television market and will operate Roberts Video from the same address and will trade within the same sales policy.

Electrical safety. The Department of Prices and Consumer Protection have just released information on the new guidance document dealing with the Electrical Safety Regulations 1975. This is available from HMSO.

Bathtime at the British Hovercraft Corporation has now advanced beyond the rubber duck stage to the remotely controlled model hovercraft which is here undergoing hydrodynamic tests using an SE Labs eight-channel portable magnetic tape recorder.

VANISHING
COMPONENTS SHOPS
Can anyone tell me what has happened to the service that used to be provided by London's electronic component shops? I have been aware that the situation had deteriorated, but not until two recent occasions, when I attempted to make purchases in such shops, how far the deterioration had gone.

There was a time when you could take your "shopping list" for whatever equipment you were building to one of a score of shops in Edgware Road, Tottenham Court Road, and Lisle Street with a high probability of getting your requirements met, if not in one shop, in two, at the most. And these shops were manned by people with actual experience of circuitry, radio hams and the like. Now all these shops are owned by two or three big chains and staffed by salesmen who, generally speaking, know nothing about electronics and in many cases have only a limited grasp of English. Look in the advertising pages of this magazine: most of the component suppliers are in the North of England or in the West Country, which means buying components blind as no one seems to give manufacturers' type numbers of the components they advertise and therefore volume and configuration of these items remain a mystery until purchase has been made.
Perhaps other readers would tell us how they manage to build complex electronic equipment to professional standards, using miniature close-tolerance components with such an impossible supply situation - or do they all use their employers' stores?
Perhaps one of the tycoons who own these super-chains of resistorless capacitorless radio shops will tell us why we are not getting the service we used to get and which, judging by the number of electronic magazines sold, many would be eager to take advantage of. Maybe such tycoons don't regard it as their function to provide a service only to make a profit!

Perhaps, moving into the area of pipe-dreams, someone will open up an experimenters' materials supply supermarket, not just for electronics but also where one could buy optical components, mechanical engineering materials, chemicals, specialist photographic materials . . let others add their special needs! And all at 8% VAT!
B. W. B. Pethers,

Welling,
Kent.

PEAK READING LEVEL METER

On some of the issues raised by Messrs Dawson and Evans in October letters we find ourselves in agreement. In mid-1972 we built a resistor chain/comparator instrument, but later investigated the analogue/digital approach because this seemed a powerful and flexible method.
We appreciate that our design seems complex, but the two-channel prototypes were built for the authors' satisfaction and as a demonstration of the principle, not really for presentation as a design for construction - hence the absence of p.c.b. layouts. However, if one considers the application of our design to a multichannel system - e.g. on a $24 / 8$ mixing console where 32 channels are to be monitored - it can provide a simple and economic solution, as we need use only one set of logarithmic, clock and display logic; we then multiplex sequentially:
(a) 1 out of 32 rectifier/storage capacitor outputs into the reference capacitor (C_{9}, Fig. 3)
(b) 1 out of 32 columns of $1 . e . d s$, enabling that column alone to respond to the previously processed input signal.

Very little circuitry is needed to effect the multiplexing, the power consumption per channel is greatly reduced and calibration of the logarithmic intervals for all channels simultaneously is by a single potentiometer setting.

A digital system can permit variations in dB increments: for example, a system of 1 dB resolution may be designed so that each step is displayed at the highest levels, every other step at mid-levels for 2 dB resolution and 1 out of 4 at low levels for 4 dB resolution.

Referring to the question of drift, we should like to point out that:
(a) The capacitor C_{9}, Fig. 3, is a polystyrene type, as was mentioned in the article as submitted for publication but subsequently omitted on publication.
(b) The reference voltage, $V_{\text {REF }}$ tracks the 10 V zener sub-rail voltage to almost 99%.
(c) The hysteresis drift in the 74132 clock oscillator is typically less than 1% over a $25^{\circ} \mathrm{C}$ free air temperature change.

Our prototypes do indeed dissipate
heat, but this is minimised by the use of a $20 \mathrm{~V}+5 \mathrm{~V}$ power supply; they were designed in 1973 and our article had been awaiting publication for some eighteen months. If we were now to up-date its design, we should certainly use c.m.o.s. logic, greatly reducing power consumption.
We consider the suggestion of a series l.e.d. chain an excellent one and are grateful for this.

For domestic/prototype use, the low-cost 748 amplifier has an acceptable h.f. performance, but we would agree with Messrs Dawson and Evans that for professional purposes faster devices should be used.

We are not concerned to attempt to imitate the inertia of a moving-coil instrument, nor do we claim to have produced a direct replacement for the BBC p.p.m.; we simply used the BBC specification for rise and decay times as a guide - other tastes or standards could easily be accommodated.
In 1973 the price differential between red and green l.e.ds determined our preference - that differential has now changed.
We would like to thank Messrs Dawson and Evans for their interest and suggestions, but feel that they may have mistaken our intentions somewhat. S. F. Bywaters and J. E. West, London, NWII.

"SORTING OUT SIGNS"

In his article in your September issue, on conventions in circuit and phasor diagrams, A. T. Morgan introduces it with the words "it is important to be logical and consistent. This article outlines a logical system . . ." And he goes on to repeat "logical and consistent" and "logical" with reference to the system he is about to commend. At the same time he is kind enough to refer to my book "Phasor Diagrams", but by contrast describes the system therein merely as "new and interesting". As for newness, it was given embryonically in Wireless World and Electrical Review more than 24 years ago, and fairly fully in Electrical Review, Jan. 1, 15 and 22, 1954). He finishes, in a Summary, with the observation that if his instructions are followed "no confusion should arise." So one reads on with high hopes.
His Figs. 1 and 3 show two opposite conventions for indicating positive directions of voltage and current, and Figs. 2 and 4 show the corresponding opposite phasor diagrams. But instead of coming down logically on one side or the other, Mr Morgan tells us neither is better than the other and we can take our pick as fancy moves us! This does not strike me as the emphatically logical and consistent approach we had been promised. And as for no confusion, I can hardly think of anything more likely to give rise to it.

Mr Morgan's opposing conventions are of course familiar, and in a recent paper* I showed that the existence of this conflict of viewpoint was due to the use of totally unnecessary arrows in circuit and phasor diagrams, and that the dispute just did not arise if my system was used. My claim that whatever arrow methods can do, even when used in such a way as to be valid, those I advocated can do better (often very much better) still after more than two decades does not appear to have been refuted. So what is the point of clinging to arrows, etc., with resulting diversity of conventions, risk of confusion, greater complication and restricted capability (strikingly exemplified in "Phasor Diagrams") when there is no need?

As regards restricted capability, it is significant that out of Mr Morgan's 35 diagrams no fewer than 25 are devoted to the simple series circuit. Parallel circuits are not mentioned at all (nor Kirchhoff's current law), except one complicated circuit (Fig. 18) for which again significally no phasor diagram is attempted. It would ne interesting to see Mr Morgan's phasor diagram for a two-stage amplifier with feedback, such as Fig. 7.63 in "Phasor Diagrams."

Fig. 1 , a simple generator-and-resistor series circuit, shows, in variety (b), two voltage arrows pointing in the same direction around the circuit, both of them in the same direction as the current and therefore, one might think, in phase with it. But Mr Morgan says that the two voltages are opposite, and shows them so in the phasor diagram. Is that not likely to confuse? Especially when the reader has just been given two versions, each upside down relative to the other. Even after one of these has been selected for the remainder of the article. Figs. 15 and 16 show two different phasor diagrams for the same transformer. One of the features of the arrowless system is that every circuit has one and only one correct general phasor diagram shape; a fact that should endear it to student and exam paper marker alike!
Regarding the claim for consistency, one notes that some of the phasor diagrams have been drawn on the closed-figure principle while others are of the star form. Some of the current arrows are incorporated in the wiring; others are drawn alongside like the voltage ones. The same kind of arrow is used for both voltage and current. The usual convention of E for e.m.f. and V for p.d., upheld by the BSI, is reversed for no apparent reason. Since one undoubted merit of the system is that it does not necessitate distinguishing between e.m.fs and p.ds (just as well, since nobody, not even the BSI, has been able to define them in such a way that all can agree about which is which)

[^1]one wonders why Mr Morgan bothers to use different symbols for them.

I am confused by a phrase near the top of the last page: "If the force F moves in the direction of the force." There are two obvious errors in Fig. 10(b), and eqn. 3 does not agree with the text.

I feel that Mr Morgan's article tends to confirm the case I put in "Phasor Diagrams", that "conventional methods of dealing with circuit and phasor diagrams" are so confusing and inadequate at best that it is a waste of time trying to bolster them up. Why not make a clean sweep of them, as was done so expeditiously with the c.g.s. systems of units?
M. G. Scroggie,

Bexhill,
Sussex.

Mr Morgan replies:
First of all, I would like to point out some printing errors in my article.

Page 436, column 2, the last equation should read

$$
v=i R \text { and } e_{R}=-i R
$$

Page 439, column 2, equation 3 should read

$$
V_{2}=-Z I_{2}
$$

In Fig. 10, (a) and (b) the equation should read

$$
V_{Z}=I Z
$$

I will now try to answer Mr Scroggie's points.

It seems to me that what Mr Scroggie is saying is that no method is acceptable or can possibly be clear and logical unless it is the Scroggie method. I am well aware of the fact that Mr Scroggie's "new" method has been published from time to time over a period of over 20 years. However, it has still not been generally accepted and although I find it "interesting" and perfectly acceptable I certainly do not agree that it is the only acceptable method.
As explained in my paper, what I have tried to do is to take the traditional methods, which my students find in all the text books they read, and try to clarify the points which cause confusion.

1 do indeed show two different conventions in Figs. 1 and 3, but as clearly explained in the article, I see no logical reason why one must be used in preference to the other. I have my own preferences, of course, but I do not wish, as Mr Scroggie appears to do, to force these on all other readers. All I ask is that the chosen conventions be clearly stated and that the writer then sticks to them. Having personally chosen in my paper the conventions of Fig. 1(a) and 3(a), I have not departed from this subsequently. Fig. 16, as stated in the article, is an example of a way of dealing with the transformer which is often used but which I do not find acceptable for the reasons stated.
The length of my article was obviously restricted for publication
purposes and the reason that considerable attention was paid to series circuits is because this is where the confusion often starts, i.e. right at the beginning. If the basic principles as outlined for series circuits is well understood, I don't think Fig. 18 would necessarily be described as "complicated". The method of dealing with it has been carefully outlined. The reason I have not attempted to draw a phasor diagram for Fig. 18 is because I don't see any useful purpose in doing so. The circuit would be solved from the equations as given.

I just cannot understand why Mr Scroggie thinks that in Fig. 1(b) the fact that both voltage arrows point the same way round the circuit as the current arrow indicates that all three quantities are in phase. As explained quite clearly, the arrows only indicate the chosen positive directions. If two quantities are in phase, they are always positive together and negative together. If in antiphase, vice versa. Clearly in Fig. 1 (b) if v is positive, then $e \mathrm{R}$ must be negative. Positive in one direction is the same thing as negative in the opposite direction.

Mr Scroggie apparently objects to my drawing some phasor diagrams closed and others in star form. As far as I am concerned this is perfectly acceptable as phasors, like vectors, have only magnitude and direction (with respect to other phasors). I agree it would be nice to have only one way of drawing the phasor diagram for a given circuit, but I live in a real world and I have to teach my students to understand the text books which they are likely to read.
The point about type and position of current and voltage arrows, I feel, is rather trivial as it doesn't affect the understanding of the diagrams.
I am not interested in the distinction between e.m.f. and p.d. for my method does not necessitate the distinction and, as Mr Scroggie admits, the distinction between the two is another point which causes confusion. I have used the symbol e for voltage across an impedance, whether it be resistance, inductance or capacitance. Everyone uses e for inductance so why not also for resistance and capacitance? They all impede the flow of current in an a.c. circuit. That is consistent, isn't it?

SMALL SHOPS CARE

I take exception to certain remarks in your September issue in the article "Electrical safety, standards and the law."
The impression is given that small retailers are a second best, technically dim section of the trading community. This is not so. For technical knowledge, experience and simply caring about what we sell and whether our customers will survive, we are far ahead of the multiples and others. How many
of these selling organisations even keep a Megger at the point of sale, let alone know how to use it? Perhaps a quick check by your readers would turn up some interesting figures on 13 -amp plugs sold complete with 13 -amp fuses and no enquiry about the appliance to be connected. Small is beautiful.
G. J. Badman,

Watts Radio,
Somerton,
Somerset.

RESISTANCE

COMPARATOR

I may be wrong - but! Surely the circuit shown solves the Griffiths-Choi problem (Letters, September issue) even more simply.

It uses a current instead of voltage meter, but as these are the only moving-coil types made it's of no practical concern.
A. Sandman,

London NW3.

SAFETY REGULATIONS

With reference to the article "Electrical safety, standards and the law" in the September issue, I should like to draw your attention to a problem concerning the connection of electronic circuits to the earthed metal cases of instruments.

It is the practice of some manufacturers of electronic test equipment (such as oscilloscopes) to connect the low-potential terminal of the electronic circuit directly to the metal case and to provide a three-core cable to facilitate the earthing of the case. The combined use of a number of such equipments in a test may lead to the induction of a spurious e.m.f. into the loop formed by the low potential signal wire and the mains wiring between the two earthed metal instrument cases. To defeat this difficulty, some people (illegally) cut the earth lead(s) to one or more instruments. Following the test, the earth connection which has been severed is seldom repaired, with the result that the instrument now represents a hazard to the next unsuspecting user.

Having suffered many bad electric shocks from equipment which has been subjected to this illegal practice, I have very strong feelings on this subject.
The difficulty may be eliminated by insulating the low-potential terminal of the electronic circuit from the earthed case. Alternatively a manufacturer may connect a resistor of low value, say 100 ohms, between the low-potential terminal and the mains earth lead in order to reduce the magnitude of current that can flow around any such earth loop. In either case, the temptation to cut an earth wire is thus removed.
Finally, I suggest that the direct connection of the electronic circuit to the earth wire within the instrument be forbidden. There is nothing to stop the user from making his own external connection if he should so wish.
Roy C. Whitehead,
Sutton,
Surrey.

LAWN MOWER POWERED GENERATOR

It is to be expected that such a simple emergency generator as that described by J. M. Caunter (February issue) would not be free from danger, but something which most of your readers may overlook is the fact that the Electricity Boards expect all persons with their own generators to provide proper two-pole changeover switching. Otherwise, as they point out, it is possible for their workmen to be exposed to risk.
Not, I think, a very likey risk, but it is possible. My own Board started a rather acrimonious correspondence with me even after they had seen the installation but, it appears, failed to appreciate there was the necessary isolating switch. In my case the supply was 240 V d.c. from accumulators, which could supply a very high current for a few minutes.
D.c.-to-a.c. converters are usually constructed so that the load is plugged in, so isolation is automatic. Otherwise quite extensive house wiring alterations may be needed to satisfy the Electricity Board.
L. Sreatfield,

Poole,
Dorset.

READ-OUT FOR THE VISUALLY HANDICAPPED

A near-blind physicist is in a good position to stimulate his electronics colleagues to think along the lines suggested by Mr John Osborne in his letter in your July issue and this has been going on here for some years. We should not like to see wasted effort so I am writing to give brief details of current activities.

With financial assistance from the RNIB Mr David Smith has produced an audio-output unit designed for adding on to three current Advance calculators and this is on the verge of commercial manufacture. He is also working on a similar unit for the Hewlett Packard calculators and has built a prototype audio read-out for a computer.
We have also produced a c.c.t.v. reader for the partially sighted which is based upon standard British equipment but which includes a circuit designed by our Mr John Ward which reverses black and white and also enhances contrast. Although similar equipment has been developed in parallel in other countries we believe ours to be better as well as much cheaper.
There are of course many other fields of activity in the application of electronics to helping the visually handicapped. Anyone wanting to find out what is being done should consult the International Register maintained by Dr John Gill of the University of Warwick.

A. J. Croft,

Clarendon Laboratory, University of Oxford.

BLOWERS ON AMPLIFIERS

Our attention has been drawn to the article in the August issue describing the Chicago Consumer Electronics Show.
In the third column is a report that suggests that, due to the new Federal Trade Commission ruling on amplifiers, Crown amongst others have had to incorporate blowers or fans on their amplifiers.
This is incorrect and your contributor may have been misled into believing this by seeing the M600 Amplifier which does have fan cooling but was designed some 3-4 years before the new ruling was introduced. The DC300A model has no fans incorporated but in America is offered with additional clip-on heatsinks which greatly improve the heat dissipation.
I. M. Marshall,

Macinnes Laboratories Ltd,
Saxmundham,
Suffolk.

The BS1852 resistance code contains the letters F, G, J, K, M which refer, respectively, to $\pm 1 \%, \pm 2 \%, \pm 5 \%, \pm 10 \%$, $\pm 20 \%$ tolerance. For those who find it difficult to remember the letter sequence reader B. L. Hart suggests the following mnemonic:

Audio Fair preview

New in amplifiers, tuners, tape recorders and turntables

Fighting the current trend against a declining market and ever reducing profits, audio manufacturers seem to be retaliating with an amazing range of technical innovations and new products for this season. It seems that every branch of technology has been drawn upon, from carbon fibres, popularly associated with Rolls Royce tur-bo-jet fan blades, to the recently developed power f.e.ts. Technique is not the only factor brought to bear upon the public since speakers, tuners and amplifiers all seem to have grown bigger since last year. One new amplifier, for example, weighs 1151 b (52 kg). and is unusual in that it is fitted with a pair of castors to help in moving it about the floor!

It will be interesting to see how the public reacts to the present sympathy for buying British, since many of the remaining British manufacturers seriously in the hi-fi business are making obvious attempts to fight back against the Japanese invasion, with high quality designs and a degree of innovation. What is disappointing is that so.few of these British manufacturers have come to the Audio Fair. Perhaps they should be encouraged by the example of the small Northern company of North East Audio Ltd, which has not only survived since it was opened some years ago, but has actually thrived and is producing a wider range of models than ever before. Certainly, the hi-fi enthusiast is becoming more discriminating in the choice of products and not only demands value for money, but also a very high standard. That NEAL should have been able to meet these criteria in the face of competition from giant manufacturers from overseas is all credit to them.

This review cannot hope to survey the complete range of new products that appears at the 1975 Audio Fair. Instead, a few highlights will be selected from the major product divisions to illustrate some of the technical trends which can be expected in the New Year.

Surround-sound

Developments in surround-sound this year have centred mainly around improved equipment and a gradual
increase in the number of records available, notably for the CD-4 system. As far as the quest for system dominance goes, informed opinion is that the early systems were launched too soon - before the theory of surround-sound was properly developed and understood. This premature marketing, resulting in a less than wholehearted commitment by record companies and indifferent demonstrations, taken with the recent economic situation has given the surround-sound industry a slap in the face.

Nonetheless, new equipment continues to be developed. The initial spate of extended-response cartridges has been followed by some improved designs, for example Pickering's XUV/4500Q, JVC's X-1 and Empire's $4000 \mathrm{D} / 111$. The X-1 uses a beryllium cantilever, rather than the more usual aluminium or titanium, with lower density, higher sound velocity and higher Young's modulus. A special coating gives protection against possible beryllium poisoning. It uses the recently developed samarium cobalt polymer magnet, its high energy product (BH) allowing a significant reduction of weight in moving magnet systems. The magnetic circuit is improved by a laminated core and smaller gap, reducing dips in the h.f. response.

The Pickering XUV is the first low-tracking-force extended-response pickup ($1 \pm 0.5 \mathrm{~g}$). This is achieved using a tiny moving samarium-cobalt magnet (about $0.6 \times 1.3 \mathrm{~mm}$ dia.) giving reduced damping, in addition to mass, with consequent improvement in mid-range tracking. The well-known Pickering slide-in stylus assembly carries a foursurface tip (Shibata has two) called Quadrahedral. Tracking force of the fixed-magnet Empire is also low at 0.75 $\pm 0.5 \mathrm{~g}$.

Notable recent demodulators are the Technics SH400, using the QS1 CD-4 chip. Facilities include pre-set controls that push into the front panel to avoid accidental alteration, a "high-blend" switch to reduce the effect of noise on worn recordings, and a facility for use with the Technics semiconductor car-
tridge. The JVC "professional series" CD4-1000 uses phase-locked loop demodulation with the full two-band a.n.r.s. circuit (earlier demodulators used the one-band version). Increased signal-to-noise ratio, decreased distortion and increased separation are claimed and the carrier-to-baseband time delay is adjustable to allow optimization with different pickups. A switchable 10 kHz filter (-6 dB) is provided in the carrier-channel circuits.

An extremely useful and under-publicized demodulator is the Denon type UDA-100 (Nippon Columbia). This features demodulation circuitry for both CD-4 and UD-4 systems, as well as having switched positions for the basic SQ and QS matrix systems. An optional expander circuit allows reduction of the carrier channel levels at low signal levels. (If this were used in the CD-4 system, loss of carrier channel would spoil sound localization but with UD-4 loss of carrier would result only in a broadening of directivity.) This decoder/demodulator is the only model on the market that caters for all four marketed surround-sound systems. (From Johnsons of Hendon Ltd.)
At the recording ends both JVC and RCA now use modulator equipment based on phase-locked loop principles. The JVC mark III equipment claims improved dynamic and frequency range and eliminates the need for advance heads on the tape transport (used for carrier level control). Price is around $\$ 30,000$. The Ortofon 731 cutter head has improved crosstalk -30 dB over the critical range of 10 to 22.5 kHz , which range is equivalent to 20 to 45 kHz as cutting is done at half speed. Positional feedback at low frequencies controls amplitude response down to 10 Hz . Its "T-bar" structure is claimed to provide tight coupling between stylus tip motion and the motional feedback coils.
Though not in public use in the UK the artificial head recording technique is in popular use by broadcasters in Germany, especially for drama. While its limitations are widely recognised particularly the loss of realhead movement, making front images difficult to place - it has stimulated one company
at least to investigate techniques of achieving an out-of-head stereo image with normal recordings (see page 523).

Amplifiers

Over the past three or four years, loudspeaker manufacturers have tended to produce loudspeakers with lower and lower efficiency. This, in turn, has brought the reaction of amplifiers with steadily increasing power outputs. This year must surely have seen the ultimate in the race for higher powers from amplifiers, since quite a large number of 200 and 300 -watt amplifiers are on show on various manufacturers stands.

The 115lb amplifier with castors mentioned in the introduction, is the Luxman M6000. This is the power amplifier part of a complete system including a preamplifier-control unit in a separate cabinet. The specification suggests a 300 -watt continuous power output per channel, into 8 ohm loads, from 20 Hz to 20 kHz at no more than 0.05% total harmonic distortion. Additionally, the rated intermodulation distortion is suggested as being no more than 0.05% into an 8 ohm load at 300 watts using test signals of 60 Hz and 7 kHz in an amplitude ratio of 4:1. (Such wealth of detail in a specification is a new trend to be welcomed, but it is questionable whether most consumers will understand what all this means.) The frequency response for the M 6000 is said to be $\pm 1 \mathrm{~dB}$ from 5 Hz to 50 kHz and the signal-to-noise ratio is better than 100 dB , referred to the input voltage required to produce 300 watts output. Just as an added statistic, the power consumption is said to be 150 VA with no input signal and 1.3 kVA when driving the maximum output into an 8 ohm load.

As if all these statistics are not enough, combined with the weight of the unit mentioned above, the circuitry features 12 transistors arranged in 6 pairs, complementary symmetry for each channel, with each output transistor individually fused and protected (see circuit). The protection circuitry is quite complex, and occupies a remarkably large panel inside the amplifier. The high standard of mechanical engineering is undoubted, with almost every part of the chassis being hand made. This perhaps provides a clue to the sales potential of such an amplifier, and it is suggested that it is more of a prestige product than a practical part of an audio system for the home.

Coming to more practical aspects of amplifiers, of direct interest to many readers of this journal are the Dynaco kit amplifiers being offered by Sound Incorporated (Sutton) Ltd. One integrated amplifier, the SCA 80 Q , is offered together with two pre-amplifiers, the PAT 4 and PAT 5 and a choice of up to six power amplifiers ranging in price from $£ 75.95$ up to $£ 261.95$ plus VAT. At least one of these amplifiers should interest many of our older readers, being the Model Stereo 70.
This is a valve amplifier offering a 70W continuous power output, with both channels driven at 1 kHz into 4,8 or 16 ohms . The harmonic and intermodulation distortion is claimed to be under 1% at the rated output and under 0.05% at IW. Hum and noise are claimed to be more than 90 dB below 35 W on each channel, and the frequency response $\pm 0.5 \mathrm{~dB}$ from 10 Hz to 40 kHz .

Circuit diagram of the Luxman M-6000 output stage for one channel.

It would seem that valve amplifiers are simply refusing to die!

Tape and cassette recorders

Tandberg deserve special attention for their interesting reel-to-reel tape recorder, the Model 10XD Stereo. This represents a step up in the existing range of machines offered by Tandberg, since the 10 XD will accept $10^{1 / 2}$ in NAB centered spools. Capable of tape speeds from $3^{3} / 4 i$.p.s. through $71 / 2 i$ i.p.s. to $15 i . p . s$. , the recorder uses three motors and a total of four tape heads.
However, all of this seems relatively mundane by modern standards, until it is realised that Dolby B noise reduction is offered at all tape speeds. This must make the Tandberg the first reel-to-reel tape recorder to 'officially' record a Dolby B processed signal onto a tape, running at what is normally regarded as a "professional" tape speed. Since the introduction of the Dolby B system there has been a resistance from Dolby to tape recorders being offered with the B system operative at 15 i.p.s.
Some time ago Revox planned to offer a model of this type, but were discouraged by Dolby. Obviously Tandberg have been able to persuade Dolby that their fears about the dangers of two systems of noise reduction at this tape speed (Dolby A being the professional system used at 15 i.p.s. and higher speeds) causing confusion were unfounded. Probably we will see a spate of new machines which later will incorporate Dolby B at a tape speed of 15 i.p.s. The 10XD Stereo features many other facilities familiar to the users of the other Tandberg tape recorder models and includes a remote control facility to operate the deck at some distance. Additionally, since electronic servo speed regulation is employed, it has been possible to fit an external control socket which permits the basic tape speed to be varied over a range of values, by a simple add-on accessory.

Among the large numbers of cassette recorders being introduced perhaps the most remarkable is that being offered by Akai, the model GXC325D. This machine is a development of the three-head principle in cassette recorders, but avoids the problem of having to rearrange other components in the tape path in order to accommodate the additional head.
This is achieved by combining the record and replay head into a single moulded block, occupying the normal position for the record/replay head.

Turntables and arms

Among the many turntables which will be shown for the first time at the Audio Fair wili be a piece of innovative engineering from A. R. Sugden. This is the Connoisseur Transcription unit, which represents a considerable advance from their simpler, but very effective, BD1 and BD2 units. The turntable platter is driven by a 9 V d.c.

servo-controlled motor, at a choice of one of three speeds, $331 / 3,45$ or 78 r.p.m., selected by a control on the front edge of the plinth. The power supply for the system is housed in a separate unit, thus eliminating hum fields, and is convertible for 120 or 230 V mains supply.
One of the unusual features of this turntable is its two-part platter, consisting of a continuously revolving flywheel, on the surface of which are a series of rubber studs. Set above this, and separate from the flywheel, is an aluminium platter $111 / 2 \mathrm{in}$ in diameter, which carries the record itself. Operating a lever on the left hand side of the plinth raises the large diameter flywheel up until the rubber studs come into contact with the underside of the aluminium plate causing it to revolve.
Further movement of the lever raises the flywheel and platter together, a fraction of an inch, to come into contact with the stylus tip. Thus the arm does not lower to the disc, rather the disc rises under the stylus tip. This means that the vertical movement of the arm is restricted, that instant start and rapid cueing is possible, and the problem of side drift caused by bias compensation on the tonearm during lowering, is avoided.
The tonearm is of unusual design. being of very low effective mass and mounted on a unipivot for horizontal motion and knife-edges for the vertical
(a) B\&O Uni-phase loudspeakers. (b) Toshiba digital tuner. (c) Tandberg TR2075 tuner. (d) Strathearn STA4 turntable.
motion. Magnetic stabilization is used on the unipivot bearings to prevent side-slop. Magnetic bias, which is adjustable, and calibrated for spherical and elliptical styli is available via a large knob set on top of the housing for the tonearm bearings.
The headshell is lightweight and interchangeable, and fits into an aluminium anodized straight cube. As in many other turntables at present on the market, isolation from vibration from the outside world is provided by special rubber feet, while the platter and arm themselves are solidly mounted in the plinth. Clearly, this turntable is aimed directly at the semi-professional and professional market, particularly broadcast studios. The price is between £80 and $£ 90$.
Contrasting with the efforts of Sugden, Technics have developed a professional turntable with precisely the same market in mind, but bringing to bear a different technique. This turntable is the SP-10 MkII, utilizing a direct drive motor. Rather than use a clutch system to disengage the motor during run-up periods, the motor has been made to
have a very high starting torque, to provide a virtually instant start facility. From standstill, the motor can take the 3 kg platter up to $331 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$. in 0.25 s or only 25 deg of revolution. Braking the platter is equally as fast, taking only 0.3 s or $1 / 12$ of a turn to come to a standstill from the rated speed. Motor control is achieved by a quartz crystal controlled phase-lock loop servo. The main power supply for the system is housed in a separate box in the same manner as the Connoisseur turntable.
Since the torque of the drive motor is so high, the platter has had to be bolted to the motor shaft itself. Again, with the mass of the rotating system and the large torque of the drive motor, a significant problem has been to design a plinth which does not twist during acceleration or braking. In the example to be shown at the Audio Fair, the turntable has been mounted in a plinth consisting of finely ground black granite, compressed in a matrix of plastic. Technics claim that the plinth consists of over 75% granite! The price is estimated to be about $£ 450$ plus VAT and the system is expected to sell purely in the professional and semi-professional world.

Finally, before leaving the subject of turntables, it is interesting to mention another UK effort at designing advanced record players. This comes from Strathearn, the new Northern Ireland company set up by Government
grant. Two turntables will be shown by Strathearn and both use a direct drive motor developed in the UK. One of the two turntables, the STA 4 is remarkably priced at £58.75. This includes a low mass pick-up arm and provides two speed, automatic electronic servo operation.

Loudspeakers

As is customary with the loudspeaker market, the end of the summer usually sees the emergence onto the public market of a new design trend taking us one step nearer the state of "perfection" which audio engineers have the notion that they are approaching. This year's talking-point is "linear phase," several manufacturers having produced designs in which the phase characteristics have been tailored to be linear with respect to frequency, the aim being to reproduce the "ideal" amplitude and phase characteristics of a band-pass filter. It is claimed that benefits in clarity and definition of sound reproduction can be obtained in this manner. Those companies participating at the Audio Fair who are manufacturing linear phase loudspeakers include Bang \& Olufsen with their Uni-phase range consisting of six loudspeakers, a selection of wall-, shelf-mounting and freestanding speakers whose power handling capacity ranges from 30 W to 70 W . Technics are also into linear phase with their SB-700 "Flat Phase" loudspeaker system. This is a three-speaker bass reflex system which produces an SPL of 93 dB at 1 m for a 1 W input. External dimensions are $480 \times 845 \times 410 \mathrm{~mm}$.

Leak have introduced an improved treble unit into their 2000 series of loudspeakers which is claimed to have a smoother response than the previous unit while retaining similar power handling capabilities. The speaker units used in the 2000 system were designed using holographic test methods for spotting and control of unwanted resonances in the cone material.

Improvement of systems by paying extra attention to the drive units themselves has resulted from several developments in test and measurement techniques from the use of holography

Pickering XUV cartridge.
to the digital analysis of performance characteristics à la KEF (who are not, incidentally, exhibiting at this year's Audio Fair). Design techniques have not improved greatly from the classical work done during the 1950 s but improvement of materials and manufacturing techniques have led to refinements hitherto unknown.
Bookshelf units are no longer necessarily so relatively inefficient and lacking in bass due to improvement in power handling capacity and reduction in natural resonant frequency of the smaller drive units used in bookshelf units. Reflex techniques also seem to be making a comeback, again advantage being taken of this technique in small cabinet volumes to keep efficiency up at low frequencies and also to extend the bass response.

Tuners

Despite the recent norm in quality f.m. tuner circuits of dual-gate f.e.ts, vol-tage-tuned front ends, piezo filters and i.c. demodulators and decoders, there is still a wide variation in specifications. Not so much in sensitivity or distortion - figures of 1 to $2 \mu \mathrm{~V}$ for a mono signal-to-noise ratio of 30 dB and 0.2 to 0.8% harmonic distortion on stereo being typical - but frequently with selectivity and susceptibility to unwanted signals.
Part of the service area planning process is to minimize the occurrence of difficult reception problems, but planners are much like ordinary mortals in

Denon surround-sound demodulator / decoder features UD-4, CD-4, QS and SQ decoding.

therrability to see into the future. The demands of a full stereo service were unknown when the U.K. mono service was planned in the 1950s; it is now well known that stereo reception is much more susceptible to interference from other stations than mono. But of course, most reception problems are parochial and it would be unfair to expect everyone to pay for refinements intended for a minority.

A new receiver whose specification appears to cover many eventualities is the Tandberg TR-2075, with a sensitivity of $1.8 \mu \mathrm{~V}$ for 30 dB signal-to-noise ratio (IHF, 300 ohms) and a distortion of 0.3% in stereo (75 kHz deviation). The receiver gives low unwanted outputs of pilot tone and subcarrier (-70 dB), and has an IHF signal-to-noise ratio of 68 dB in stereo and 1 mV antenna voltage (61 dB DIN). Suppression of unwanted signals is: a.m. 65 dB , image frequency 70 dB , i.f. 95 dB and $1 / 2$ i.f. 95 dB . Selectivity for the alternate channel ($\pm 400 \mathrm{kHz}$) is 100 dB and 40 dB for the adjacent channel. Facilities on this tuner include a 25μ s time constant (Dolby f.m.) switch for the American market. (It has many other facilities, such as tape copying, tape input prior to tone controls, peak power meter, that belong to the a.f. section.) Performance of the a.m. section is good too (image rejection 90 dB) and it is relatively unusual to see a.m. distortion quoted (0.8% for 30% modulation, 1.5% for 80%). Appearance of the set is distinctive but the scales are of the type fitted to many Japanese made tuners.

Technics, who claim their range of receivers is the only one to include a phase-locked loop circuit in the decoder in all their models, use linearly-phased ceramic filters in three i.f. stages to maintain a flat group delay time. The range includes the ST3050 "budget" tuner, the ST3150 tuner, the SA5150, 5250,5350 and 5550 receivers, all with very similar circuitry.

A few receivers are available now equipped with Dolby B processors, such as the NAD 300, but these are made primarily for the American market. Another feature becoming more common is that of a local oscillator frequency synthesized in steps, usually 200 kHz (channel spacing). The Toshiba ST-910 goes the whole hog and gives a digital readout of frequency which, with its seven-station sensor panel, gives the tuner a distinctive appearance. Automatic tuning and stepped manual tuning is provided $(100 \mathrm{kHz}$ or 1 MHz steps) together with a memory. Such memories need to be kept supplied with power and in some tuners a battery is provided so that memory is retained for a limited time (48 h) in the event of power failure. Three lamps indicate signal strength in 20 dB steps the lowest two to indicate sufficient signal for mono and stereo reception, though one would have thought the ear would have been the best test. A useful feature is a three-level muting control.

Variable voltage-ratio transistor converter

Conventional square wave inverter circuits give an output voltage proportional to the d.c. supply. The efficiency of such a system can never exceed 50% due to voltage limiting and component losses. The circuit described can charge a capacitor from zero volts at efficiencies of over 80%. When a conventional series stabilizer is used to drop the voltage of a 9 V battery to 5 V the average efficiency, taking the end point voltage of the battery as 6 V , is only 67%. The use of this inverter extends a battery life in two ways: firstly by the higher efficiency and secondly by allowing the battery to be used to a lower end point voltage.

The primary current in T_{1} is controlled by Tr_{1} and oscillation is started by a low current passing through R_{1} and the feedback winding of T_{1} to the base of Tr_{1}. The transistor switches on due to the positive feedback action of the transformer and the main base drive is provided by the feedback winding through R_{2} and D_{1} While Tr_{1} is conducting, D_{2} is reverse biased and there is no current in the secondary winding. The collector current is therefore the sum of the referred base drive current and the

magnetizing current which rises iinearly according to the equation

$$
\frac{d i_{p}}{d t}=\frac{V_{c c}-V_{c e s}}{L_{p}}
$$

where $\mathrm{V}_{\text {ces }}$ is the transistor saturation voltage, L_{p} the primary inductance of transformer and i_{p} the primary current. Thus the collector current rises until the base current is insufficient to saturate T_{1}, the positive feedback action then causes it to switch off. Reverse voltage on the transformer windings rises until D_{2} and D_{3} conduct and secondary current passes into the reservoir capacitor C_{1}. Diode D_{1} is then reverse biased. Energy stored in the magnetic field of the transformer is transferred to C_{1} and, when the current has dropped to zero, the winding voltages collapse and the oscillation is repeated until C_{1} has charged up to a voltage which causes D_{4} to conduct through the resistor R_{3} and the base of Tr_{2}. This transistor then diverts the base current from Tr_{1} and stops the oscillator until C_{1} has discharged through the load circuit. Resistor R_{5} carries the leakage current of D_{4} and so prevents Tr_{2} from conducting before the zener voltage has been reached. Waveforms are shown as C_{1} is charged from zero. For fast switching it
is essential that the leakage inductance between primary and feedback winding is very low. The leakage inductance between primary and secondary must also be low because the energy stored in the leakage flux cannot be transferred to the secondary when the transistor switches off. Air-gapped cores have been found most successful. There are two types of application where the circuit is of particular interest. For pulse generators where repetitive charging of a capacitor in a pulse-forming network is required or for generating one or more stabilized voltages from a dry battery. The circuit enables voltages above or below the battery voltage to be generated and the efficiency remains high throughout battery life. In the case of capacitor-discharge ignition systems the power conversion efficiency is so high that a heatsink is not required and only one power transistor is needed. The full output voltage is obtainable when the battery voltage is less than half its nominal value which results in an improvement in cold starting.

```
R. M. Carter, Lincarc Ltd, Lincoln.
```


Battery charger

The simple circuit shown is for charging four size D nickel cadmium cells in series at constant current and with automatic voltage limiting. The BC301 acts as a current source, its base voltage being stabilized at about 3 V by two l.e.ds, which may also be used to indicate the charge condition. The 2N3638 provides voltage limiting by cutting off the BC301 when V_{c} ap-
proaches the voltage across the $1 \mathrm{k} \Omega$ branch of the voltage divider. For the component values shown, charge current is 260 mA at low $\mathrm{V}_{\mathrm{c} .} 200 \mathrm{~mA}$ at V_{c} of 5 V , and decreases to virtually zero at V_{c} of 6.5 V .
N. H. Sabah,

American University, Beirut.

Variable power supply with zener stabilization

In regulated power supplies it is advantageous to feed the reference zener diode from the stabilized line. This is more difficult with a variable voltage supply; however, a simple solution to
the problem is to use a dual linear potentiometer as in the circuit shown. L. J. Baughan, Charlbury,
Oxon.

One-shot timer circuit

The circuit shown is a four-transistor configuration which is similar in operation to the well-known 555 device but, since the normal state is all transistors on, the circuit has a high degree of impulse noise immunity - thereby avoiding the occurrence of spurious timing cycles which are sometimes troublesome in i.c. timing circuits.

In operation, the voltage on the timing capacitor C rises until Tr_{2} begins to conduct which in turn causes $\operatorname{Tr}_{3}, \operatorname{Tr}_{4}$ and Tr_{1} also to switch on. Regeneration in the circuit is caused by the interaction of Tr_{2} and Tr_{4}, and the timing capacitor is discharged to about 0.6 V by the operation of Tr_{3} and Tr_{1}. The timing

cycle is initiated either by the application of V_{cc} or by the opening of S_{1}. As in the 555 , the timing period is V_{cc} independent as long as it is stable during the timing cycle.

J. L. Linsley Hood,

Taunton,
Somerset.

Contributors to Circuit Ideas are urged to say what is new or improved about their circuit early in the item, preferably in the first sentence.

International Radio and Television Exhibition

Berlin, 29 August - 7 September Infra-red sound links and m.o.s. I.s.i. in colour receivers

With rising labour costs forcing German manufacturers to increase prices from September this year (colour television set prices had so far remained relatively constant or fallen slightly since colour tv was introduced in 1967), its not surprising that many of the innovations appearing in television sets are designed to reduce labour content and servicing time. Modular construction has enabled 95% of all components to be housed in modules, and 100% of the receiver circuits. Introduction this year of the Philips 20AX self-convergent in-line tubes by Valvo has made setting up simpler and self-diagnostic systems reduce servicing time. At the same time, integrated circuits are used wherever possible, especially thick-film circuits, the latest ideas involving digital m.o.s. i.cs in ultrasonic remote control links and programme selection.
Philips, for instance, are proposing a digital channel-selection technique that would provide up to 16 pre-selections (the numbers game applies to television as well as audio equipment!) replacing two costly pull-out drawers of special-ly-tested pre-set potentiometers with frequency-synthesis m.o.s. circuits and an m.o.s. memory. The technique is part of a concept to provide circuits for search tuning, remote control, local control and on-screen displays of memorized sound level, brightness, colour setting and tuning, with Valvo m.o.s. 1.s.i. circuits that could be available in production quantities next year. A small current drain would be needed to keep the memory "alive", and a nickel-cadium battery would prevent loss during a mains failure.

Remote units have become digitized. The Blaupunkt and Siemens FM100 chassis, the Nordmende Spectra and Prestige sets and the Körting colour chassis 8 incorporates the ITT-Intermetall p.m.o.s. circuit SAA 1025 for decoding a maximum of 30 commands. A c.m.o.s. SAAl024 coder in the remote unit, with a 4.43 MHz oscillator, accepts control inputs and converts them to a 5 -bit code for an adjustable divider. (Types SAA 1000 and 1010 provide up to 15 channels). Twelve channel selections, mains on/off, sound on/off, and

At the time of going to press, attendance figures for the 1975 international radio and television exhibition were not available. But if the 1973 event is anything to go by, it will be over the half-million mark. With 386 manufacturers represented, showing around 800 new products in $\mathbf{2 3}$ halls and two pavilions, and in an area of 88,000 square metres, this report of the largest event of its kind cannot possibly be complete. What follows then is a mere sampling of some of the more interesting things seen.
"up" and "down" movements of colour saturation, brightness and sound level are typically provided by dividing the band into 30 frequencies, 346 Hz apart, between 33.945 kHz and 43.990 kHz , this range lying between the second and third harmonic of the line oscillator frequency.

These frequencies, representing the commands, are received by a wideband pre-amplifier, measured by the 1025 i.c. and converted to 5 -bit codes (4-bit for

On-screen display of time, channel number and tuning scale in Grundig S9000 chassis.
the 1010), and fed to programme selection circuits via a decoder. Signals for the analogue variables are stored and delivered in the form of variable mark-space ratio pulses.
Three Siemens circuits SAB1000, 1001 and 1002 provided similar functions for 36 channels of control, but these appear to have been superceded. Valvo have produced l.s.i. c.m.o.s. chips, SAB1011 and 1012, with a capability of 32 commands using a carrier pulse-coding system. The latest circuit-used in the Telefunken Supersonic sets - is capable of handling 32 commands using only two frequencies. In the coding circuit, a p.m.o.s. i.c. type SAB2000, the number of cycles from an external oscillator is counted until it agrees with the number allocated to the selected button (varying from 1760 to 7360 cycles at intervals of 160 cycles). After this number, the oscillator is changed to a second frequency, until the button is released, for 480 cycles. After release, the i.c. is disconnected from the supply to reduce consumption from 10 mA to $100 \mu \mathrm{~A}$.

In the SAB2010 decoder, commands are identified by counting the number of initial cycles. Commands for any one of 16 programmes result in an output signal having a number of pulses corresponding to the selected programme. Six commands for increasing and decreasing colour, volume and brightness are passed in serial form to an SAB2020 and converted into an analogue voltage. If buttons are depressed for longer than 100 ms the selected setting is changed by one out of 32 voltage steps at clocking time of 100 ms (it therefore takes 3.2 s to change from one extreme to the other).
A facility is provided for bringing the analogue outputs to a mid-positionprior to entering commands, as on the ITT i.c., the command button or sensor for this having been dubbed "granny button" or, in more polite circles, Ideal Color (ITT).
With such remote units, the user has no indication of control setting. Some makers provide a display on the set, next to the screen, as in the Nordmende "spectra color TM-3-infra". There are three eight-point scales, illuminated by
l.e.d.s, for brightness (coloured yellow), saturation (red) and sound level (green) that light when a sensor key is touched. This remote unit also has a standby position which immediately restores picture and sound when one of the channel selections is made. A timer in the remote unit enables the receiver to be switched on or off at a pre-selected time. (This set also has the facility to transmit sound via infra-red transmission to headphones or tape recorder (see later). And it has a built-in 30 -watt amplifier to DIN45,500, with a threeway loudspeaker system. Following Grundig's lead in 1973, this set can accept a Secam decoder for reception of programmes from the Democratic Republic.)

In the case of the Körting circuit the variable mark-space ratio outputs from the SAAl025 i.c. - which ratio is proportional to the value of the three analogue parameters - are used to produce horizontal bars across the bottom 30 lines of picture, the length representing that value. Green is used for brightness, red for saturation and blue for volume. A "band" is switched off a second or so after the control has been activated.

Television receiver statistics			
(Germany)			
Licenceholders 19 million, estimated penetration: $\mathbf{3 4 \%}$ colour. 84% with black and white.			
	Millions of units		
	1973	1974	1/21975
Production colour	$\begin{aligned} & 2.1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.7 \end{aligned}$	1.1 0.66
Sales' colour	2.0	2.4	0.96
$b \& w$	2.0	2.1	0.81
Exports: colour	0.53	0.60	0.30
b \& w	0.77	0.90	0.33
impors: colour	0.13	0.29	0.15
b \& w	0.9	0.91	0.44
${ }^{\text {- Domestic plus export sales. }}$			

DISPLAY OF TIME and channel number on the screen for a few seconds after command is a feature of one Telefunken variant. After a mains failure, the need to reset the clock is indicated by flashing. Another Telefunken model includes a seven-watt sound i.c., type TCA940, with tone controls and remotely controlled switching for speech or music - giving two different amplitude-frequency responses (18 dB boost at 100 Hz and 10 kHz for music).

Grundig's new colour S9000 set provides high-quality sound to DIN 45,500 from its 15 -watt amplifier with tone

New infra-red equipment: 1-Sennheiser receiver and transmitter module; 2-Nordmende receiving adapter; 3-Saba tuner-amplifier with transmitters and AKG phones; 4-Beyer neck-slung receiver; 5-Sennheiser receiver adapter.

controls and two-way speaker system. This model, and eight others with various styles of cabinet all using 66 m 20AX self-convergent tubes, includes a clock circuit and character generator for on-screen display of time, in addition to showing channel number. Digits are $4-\mathrm{cm}$ high and coloured green. Seconds are indicated by a blinking colour. A tuning scale can also be superposed on the screen (see photograph) to facilitate setting the programme selector. Saba, Blaupunkt and Telefunken colour sets also display time and channel number on the picture.

Rather than indicate time on the picture area, ITT models 1789 and 2689 , along with Philips model 567, include digital clocks that can be used as timers. In the ITT sets, a stand-by mode enables time to be normally displayed, but control buttons allow switch-on time to be set and memorized. The clock is normally switched off when the set is in operation.

Unlike the Loewe, Saba and Grundig sets, with their plug-in diagnostic aids, ITT, Blaupunkt and Siemens use on-board l.e.d. indicators to speed fault location. Blaupunkt call their concept ISA, using nine l.e.d.s, and ITT (Schaub-Lorenz and Graetz) call theirs Vidom. Using six l.e.ds to signify correct voltages at various points, with another that flashes if the electronic fuse in the switched-mode power unit fails, the Vidom concept also includes board markings to ease component location, signal-path identification and to indicate test points, with voltage readings where appropriate.

These innovations of l.s.i. in remote controls, built-in clocks and timers, on-screen identification of channel, time and tuning, infra-red sound links, self-convergent in-line tubes, and almost total modular construction are complemented by options for addition of Secam converters and tuners for cable television at a later time. And all the new colour sets have provision for connection with audio and video recorders, often including automatic switching for line synchronization time constant.

Infra-red sound links

Our report of the 1973 Berlin exhibition mentioned the development by Nordmende of an infra-red link between television set and headphones. Now two years later most of the major German television receiver and headphone manufacturers were showing sets equipped with such links and the industry standardized on system details last June. In on the act are Blaupunkt, Grundig, ITT (with the Graetz and Schaub-Lorenz brand names), LoeweOpta, Metz, Nordmende, Saba and Siemens, together with headphone makers AKG, Beyer and Sennheiser.

Use of a frequency-modulated subcarrier in the infra-red links is clearly the way to avoid noise problems from
a.c. filament lamps and the frequency agreed is 95 kHz with a maximum deviation of $\pm 50 \mathrm{kHz}$, although some makers are quoting other figures, e.g. Loewe-Opta with 93.7 kHz (presumably to minimize beating with the sixth harmonic of the line frequency), Saba who quote 100 kHz with a deviation of $\pm 10 \mathrm{kHz}$, and Beyer who use $\pm 30 \mathrm{kHz}$ deviation. Pre- and de-emphasis of $50 \mu \mathrm{~s}$ is used and with an a.f. bandwidth of 40 Hz to 10 kHz and distortion figures being quoted range from 1 to 3%.

The Sennheiser AD416 infra-red headset is a stethoscope-type headphone with transducer, receiver with volume control, and nickel-cadmium battery mounted as shown in the photograph and weighing 70 g. Signal-to-noise ratio achieved depends on the transmitter power; distance from transmitter, room size and surface absorption. Measurements taken 4 metres from a transmitter (60 mW emitted) in a room $4 \times 6 \times 3$ metres with light walls and a tiled ceiling gave a signal-to-noise ratio of 58 dB in daylight (200 lux). This worsens to 40 dB when the receiver faces away from the transmitter. The 50 mAh receiver battery module contains components for recharging at 1.5 mA and one merely plugs it into a mains outlet.

Grundig, Nordmende, Blaupunkt (who also make sets for Siemens) and Metz have adopted the Sennheiser approach in their new ranges of television receivers. An add-on unit for existing sets will be available in Fe bruary next year. To provide present owners of Sennheiser headphones with the capability to receive i-r transmissions a receiving adapter has been developed that clips on to both earpieces (see photograph).

AKG use Körting's circuitry in their new system. The infra-red transmitter type G-20wl can be connected to the line, loudspeaker or headphone outputs of monophonic equipment and provides 100 mW of radiated power at 940 nm , over an angle of $\pm 60^{\circ}$ in the horizontal plane and $\pm 35^{\circ}$ in the vertical plane ($\pm 6 \mathrm{~dB}$ figures). Bandwidth is 30 Hz to 12.5 kHz . The headphones, a modified version of the Kl40 model, contain the receiver in one earpiece and an automatic-off manual-on switch. Loss of signal or very poor signal-to-noise ratio causes the circuit to switch off. Sockets on the phones allow them to be used with an ordinary stereo input and an a.f. output is provided for connection to a tape recorder or amplifier. The five-cell battery is charged by connecting to a separate charger unit. A miniature neck-slung receiver E -10sl is available too, for current owners of headphones, providing an output of 1.55 V at the 1% distortion level.

Beyer Dynamic make a transmitter IS76, using ten diodes and operating with $\pm 30 \mathrm{kHz}$ deviation at 1.5% distortion, a receiver IE76 for existing head-
phones (neck slung and about the size of a cigarette packet), a DT444 "infraphone" with $9-V$ rechargeable battery, and a charger.

Most transmitter circuits use a TBAl20S limiter/demodulator whose input is the 5.5 MHz sound signal. In the Loewe-Opta circuit the audio output modulates a 95 kHz multivibrator, whereas in the Nordmende circuit there is no audio stage, the 95 kHz signal being generated by mixing the 5.5 MHz signal with the output of a 5.595 MHz oscillator. Another difference in the Nordmende circuit is the use of a single 60 mW infra-red diode, SLH8, transformer coupled to a BF457 output transistor. Most manufacturers fit ten CQY38 diodes (Telefunken) or eight LD241 diodes (Siemens) in series, rather than use high-power Valvo or Texas emitters, on cost grounds. The Sennheiser transmitter circuit is the simplest, the Intersil 8038 circuit providing a pulse frequency modulated output (see Fig.1.). Constant-width pulses can be transmitted as an alternative to reduce dissipation in the emitting diodes.

Receiver circuits use the Siemens BPW34 p-i-n photodiode, reversed biased to give better linearity and low capacitances. Despite its large area $3 \times$ $3 \mathrm{~mm}{ }^{2}$ its capacitance is only around $15-33 \mathrm{pF}$. This is followed by either an f.e.t. preamplifier and Siemens SO41P f.m. limiter/detector, as in the Körting circuit, or a three-stage bipolar preamplifier and SO41P, as in the Loewe circuit. Another variant, used in the Nordmende "infra-adapter", has a three-stage bipolar amplifier following an f.e.t., providing a signal voltage that is rectified and used to switch off the TBAI20S i.c. when signal level drops below a certain threshold.

The infra-red transmission approach can of course be applied to stereo amplifiers and receivers by using two subcarrier frequencies. Though there is no agreement yet on frequencies and deviation, 200 kHz and 280 kHz have

Fig.1. Sennheiser's suggested circuit for mono transmitter.
been used with a deviation of $\pm 20 \mathrm{kHz}$. Page 522 has a photograph of a Saba receiver fitted with two infra-red transmitters - model 8101 "audiomatic".

Pot-pourri

The interest which the dummy-head stereo demonstrations created at the 1973 exhibition abounds: there were many demonstrations of the technique, especially by the broadcasting interests. One of the results of the artificial-head work, evidently, has been to stimulate interest in obtaining out-of-head images with headphones. Engineers from Matsushita were showing the results of their work in the form of a prototype "ambience phone" system. They have conducted experiments which led them to believe that out-of-head localization is possible by synthesizing a proper proportion of indirect to direct sound energy. These experiments showed that perception of out-of-head images depends not only on the amount of indirect sound present in recordings, but also to the decay time of the first reflected sound and to the decay envelope. A Matsushita "bucket-brigade" analogue delay device is used to obtain a simulation of indirect sounds. In addition some modification is made to amplitude-frequency response in cross-feeding left and right signals to simulate the effect of the head on high-frequency perception.

Full details are not available yet, but results of their preliminary work has shown that consistent in-head localizations are obtained when the ratio is zero, that out-of-head images obtain in 80% or more auditions when the ratio is about 0.5 or more, and that for a ratio of 0.12 , localizations are $50: 50$ in or out. Initial tests used two loudspeakers, with narrow and wide directivity, which, together with sound absorbers and an anechoic room, enabled five values of energy density ratio to be investigated.*
'Additionatly. the sound source direction was moved through 180° at 30° intervals, with the interesting result that the occurrence of out-of-head images depended on source direction, maximizing around $80-130$, and in particular tor he case of zero reflected energy it reached 50% of audition at 120°

Fig.2. Two-integrator loop used in Technics equalizer permits independent control of Q and centre frequency (using three-gauged control).

Later experiments used two separate recording rooms, one anechoic and one reverberant with speaker facing away from the dummy head, signals from the two being mixed after electronically delaying the reverberant signals. (A corrective filter was included in the two combined stereo channels to take account of the coloration produced by transmission down, effectively, two auditory canals.) This time the percentage of in and out-of-head localizations of the listeners and subjective distance were investigated as a function of energy density ratio, with delay time and reverberation time as parameters. Results showed that out-of-head localizations could be achieved in anechoic conditions even for centre front sources some of the time and that perception depended not only on the energy density ratio but also on delay time and decay envelope. (For an r.t. of 0.25 s a 98% score of outer localizations was possible with a ratio of unity - whether delay was 5 or 20 ms - while for 0.15 s.r.t., ratio had to be 3 to produce the same effect.) T. Goto, manager of Matsushita's acoustics research lab., tells us that their further work on the correlation of these various parameters will be reported shortly.
An interesting product from Matsushita is the Technics equalizer, SH-9090. Interesting because it appears to be the first equalizer with independent control of centre frequency, level and Q . It achieves this using 12 two-integrator loop RC active filters, with tripleganged variable resistors for centre frequency (see Fig.2.). Each of the 12 octave-band sections is adjustable in centre frequency by \pm one octave, and Q is variable between 0.7 and 7.0. A wide range of curves can be synthesized with this unit by virtue of the ability to overlap three curves. Filter characteristics from one octave above and below a
selected frequency can be moved to coincide at that frequency. The equipment is mono, and harmonic distortion is below 0.05%. Phase response curves are given in the operating instructions.

Receivers and tuners

Two frequency synthesis tuners were shown for the first time in Europe, having been announced at the Chicago CES. Unlike the Kenwood/Trio tuner with its synthesized local oscillator frequencies and conventional analogue scale, mentioned in our report in the August issue, the Scott RD1000 receiver has digital readout and a frequency input keyboard. It adopts the same technique used in their five-year-old digital tuner but with the addition of a memory section. Up to ten frequencies may be stored and called up on command. To keep the memory "alive" a constant drain of 1.5 mA is incurred provided by a nickel-cadmium cell in the event of short-term mains failure. Scanning, at 5 channels per second, can be on a stereo-only or all-station basis. Four l.e.d.s indicate signal strength; de-emphasis is switchable between 25 ,

Denon tuner has fixed pointer, moving tuning scale, and separate headphone level control. Meters can be used for external measurement.

50 and $75 \mu \mathrm{~s}$; tuning accuracy is 0.001% !
Three further tuners and receivers stood out. BASF introduced receiver with four audio channels in two versions, model 8440 with 40 watts output and 8425 with 25 watts output. Its outstanding feature is a slot that accepts plug-in modules for the Philips dynamic noise limiter, Dolby B processor unit, SQ decoder, CD-4 demodulator and a UD-4 demodulator (under development), making it an extremely versatile receiver. BASF are believed to be the first European company to plan a facility for the Nippon Columbia UD-4 surround-sound system. The new Thorens AT410 receiver has a very fresh appearance. With five preset f.m. channels and, unusually, two a.m. channels, its field strength meter also functions as a tuning scale for the preset controls. Two filters, one at 9 kHz and one at 6.5 kHz can be switched in simultaneously to give a 14 dB / octave slope with a cut-off frequency of 4.8 kHz for use with a.m. radio. The Denon tuner was shown by Bolex, together with the studio-quality amplifier PMA700Z. The tuner features a null balancing arrangement, a meter attenuator to enable the two level meters to be used with external signals (meters double as signal level and null balance indicators) and the all too rare facility of separate headphone level adjustment is provided. The tuning scale, with fixed pointer and moving scale, is a welcome change from most Japanese scales.

More motional feedback loudspeakers

Rather than use the motional feedback system to reduce distortion in normalsized loudspeaker enclosures, Philips chose to reduce enclosure size (at the expense of weight) in their RH532 system. They have now taken this a step further with an even smaller system (eight litres) using two instead of three drive units. Model RH541 measures 23 $\times 29 \times 17 \mathrm{~cm}$ and weighs half of the RG532 $(6.5 \mathrm{~kg})$. Amplifier power is 20 watts at 0.1% distortion and 30 watts at 1%. A new version of the 532 is also available finished in black (RH544).
Jamo of Denmark are producing a motional feedback system using the Philips bass drive unit in a box 46×28 $\times 24 \mathrm{~cm}$. Upper crossover frequency is 4.5 kHz rather than the 3 kHz of the RH544 and adjustable level controls are provided for the three speakers. The low-frequency amplifier provides 40 watts at 0.1% distortion and the lower half-power frequency is 30 Hz .
Bolex were showing a speaker from 3a in France, that uses an apparently similar technique to the Servosound system. A bridge circuit is used to cancel out the static properties of the voice coil, leaving the dynamic effects to be used in a feedback arrangement (see, for example, WW 1947, pp.401/2).

Continued on page 539

Television tuner and design - 2

Gives quality sound as well as vision signals

by D. C. Read, B.Sc.

Using a varicap u.h.f. front-end, this tuner design provides quality sound and vision outputs for connection to a separate sound reproduction system and to a monitor-type receiver. It provides a group-delay corrected signal and proper black-level registration. Sound information is removed prior to the video demodulator, overcoming the problem of sound and colour subcarrier interference. Modifications, to be described subsequently, enable it to be used with a vaned-capacitor u.h.f. tuner, a domestic-type receiver - using an opto-coupler - and as a simplified sound-only unit.

The expected tuner performance up to the MC1330 demodulator input is illustrated by the frequency sweep photographs in Figs. 3 to 7. Fig. 3 was obtained by feeding the sweep signal to the base of Tr_{1}, with the soldered link disconnected and using the oscilloscope to inspect the signal appearing at the test points provided across C_{22} (i.e. at the demodulator input). For this measurement, C_{23} and the $\mathrm{L}_{19} / \mathrm{L}_{20}$ circuit were also disconnected and L_{21} was
shorted. The response shown in Fig. 3 is therefore simply that of the second i.f. pass-band shaping circuit.

For Fig. 4, the sound trap/take-off circuit was reconnected and the resulting deep notch at 33.5 MHz caused by phase cancellation is clearly shown both here and in the magnified version of the response in this region given in Fig. 7.
Comparison of Fig. 3 with Fig. 4 reveals an unfortunate but not disas-

Fig. 3. Sweep response of second band-pass filter $\left(L_{4} / L_{\theta}\right)$ feeding demodulator (sound trap/take-off circuit disconnected).

Fig. 5. Sweep response of i.f. chain (first and second band-pass filters); adjacent-channel traps ($\left.L_{1}, L_{2}\right)$ disconnected

Fig. 4. As for Fig. 3 but with sound trap/take-off circuit connected.

Fig. 6. As for Fig. 5 but with adjacent-channel traps connected. This is the complete response of the video i.f. chain.
trous side effect caused by action in this circuit. Because the injected signal phase becomes additive on either side of the notch, there is an increase in signal level in the range 30 to 33 MHz which includes the adjacent-channel visioncarrier frequency. Fortunately, transmitter siting and frequency allocation in the U.K. has been carefully arranged so that adjacent-channel interference is rarely a serious problem under normal reception conditions. Thus, the conventional 31.5 MHz trap at the input to Tr_{1} reduces the overall response in this region by a sufficient amount (about 15 dB , see Fig. 6) despite the unwanted increase given here.

A more helpful result of the sound-trap/take-off circuit operation is that the video i.f. pass-band response cut-off between 33 and 34 MHz is made steeper as is also shown by comparison of Figs. 3 and 4.
With the input link to Tr_{1} replaced and the adjacent sound and vision trap circuits disconnected, or tuned out-ofband, a sweep injected at the ECL1043 test point gives the basic overall i.f. response, shown in Fig. 5. Re-connection of the traps then gives the final

Fig. 7. Magnified response sweep showing phase cancellation of sound carrier giving $>50 \mathrm{~dB}$ notch in vision response.
complete pass-band shape as in Fig. 6. An approximate scale indicating the eventual baseband signal frequencies has been added here to show that the shape obtained is a good approximation to the ideal receiver response (Fig. 8). In particular, the adjacent-vision trap has modified the response cut-off at the vestigial side band end so that the correct rate of fall is obtained with the vision carrier frequency positioned at the 6 dB -down point.
The MCl330 video demodulator is connected in a standard manner with L_{7} and C_{26} supplying the two necessary unmodulated carrier feeds in phase opposition; and Fig. 9 explains the essential circuit action in this type of synchronous demodulator.
Two other points regarding this circuit deserve comment. Because the following video circuits are directly coupled (allowing true blanking-level measurement and control) it is important that the demodulated output at pin 4 of the i.c. carries the correct d.c. component. Normally, the 200-300 ohm value of R_{18} plus R_{19} will provide for this, but as there is some spread in the MC1330 operating characteristics, it will be necessary to set R_{19} so that the required clipping action occurs at Tr_{13} emitter.
The dotted components including the 'line-linearity' variable, R_{17}, form an optional extra circuit which provides the means to adjust for accurate balance of the demodulator internal circuit. In practice, the degree of improvement possible is usually quite small and, in any event, can only be obtained by accurate measurement. Therefore, this part of the circuit should be omitted unless suitable high-grade test equipment is available.

Following the demodulator, two trap circuits $\mathrm{L}_{8} / \mathrm{C}_{28}, \mathrm{~L}_{9} / \mathrm{C}_{29}$ create notches in the video response at the sound carrier offset of 6 MHz and 8.86 MHz (twice colour subcarrier), as shown in the oscillogram of Fig. 10. Separate traps are used instead of a 5.5 MHz low-pass network because it is an easier way to arrange the required baseband cut-off, and also reject the two out-of-band components likely to cause interference in subsequent circuits.

In view of the almost total removal of sound carrier by phase cancellation at the take-off point, it may seem that the 6 MHz trap is an unnecessary extravagance; for most of the time that the tuner is operating this is true. Exceptionally, however, such as when first switching on in a cold room and before a.f.c. has become fully, effective, there may be an appreciable frequency shift of the phase-cancellation point. As the 'expanded' sweep photograph of the sound take-off circuit response (Fig. 7) shows, a relatively small shift would result in a considerably increased 6 MHz component in the tuner output and hence, in the absence of any other precaution, a large amount of interference on the picture.

Fig. 8. Ideal receiver vision-channel response (taken from $B B C / I T A$ publication: "Specification of television standards for 625-line system I transmissions'. - 1971).

Fig. 10. Sweep response showing effect of 6 MHz and 8.86 MHz trap circuits.

Fig. 9. Circuit action and waveforms of synchronous demodulator.

An even more important benefit obtained by having this 6 MHz notch circuit is that its action is helpful during initial tuner line-up; various adjustments - particularly of the sound take-off circuit itself - would be more difficult without it, again because of high-level unwanted output-signal components.

The complementary-pair amplifier, $\mathrm{Tr}_{4}, \mathrm{Tr}_{5}$ has three main functions. It provides about 7 dB gain; it presents the correct terminating impedance for the notch circuits and feeding impedance for the group-delay equaliser; it produces an additional feed of video with the required amount of d.c. shift for the direct-coupled Tr_{13} to Tr_{18} circuits which measures blanking level and generates the a.g.c. voltage.

The group-delay corrector has two resonant sections each acting over a different part of the video band such that their combined effect changes the basic delay characteristic (lower curve
in Fig. llb) to the fully corrected (upper) curve. No attempt has been made to correct the sudden change in delay beyond 5 MHz because the incoming video signal contains little information above this frequency. In fact, there is some compensation for delay variation at these higher frequencies given as a by-product of modifications to the PAL decoder to be discussed in a later article.

Fig. lla has been included for reference. It shows the approximate spectral energy response curves relating to two important components of the insertion test signal (i.t.s.) radiated as part of the television signal by U.K. transmitters. The two components are known as the $2 T$ luminance and $10 T$ composite pulses which, as explained in the line-up procedure, are most useful when adjusting the four inductors in the group-delay equaliser.

The final stage of the video signal circuit is a complementary-pair ampli-

Fig. 11. (a) Spectral response of Insertion Test Signal pulses. (b) Curves showing result of two-stage delay correction.
fier which can provide up to three 75 -ohm outputs or, if constructed as shown in the circuit diagram, gives one 75 -ohm output for coax distribution and one medium-impedance output for direct connection to the monitor decoder (in the same box).

Fig. 12 illustrates the overall performance of the tuner using a line-repetitive frequency sweep test signal injected at the aerial input. The top trace shows the d.c. to 6 MHz response up to the terminated tuner output; the lower trace displays the same signal in its i.f. carrier form before demodulation as observed at the C_{23} test terminals (see Fig. 2). To avoid adding confusing stray impedances here, a Hewlett-Packard 'twin-legged' oscilloscope probe attachment was connected in place of C_{23} to obtain this oscillogram; a photograph of this attachment together with possible home-constructed alternatives will be included in the line-up instructions.

Sound and a.f.c. circuit

The 33.5 MHz sound carrier from the take-off point is fed first to an impe-dance-matching common-base stage, Tr_{8}, and thence to the 'top-C' over-coupled band-pass pair comprising L_{14} and L_{15} which gives a double-humped response with a band-width of about 1 MHz . The tuning of the 'secondary' coil, L_{15}, is offset to give a lop-sided overall characteristic which counteracts the response tilt in the video band-shaping (i.f.) circuits. An asymmetrical response here is particularly important so that the resulting a.f.c. action is equally effective on either side of the correct tuning point.

Most of the sound i.f. amplification is provided by the cascode pair, $\mathrm{Tr}_{9}, \mathrm{Tr}_{10}$. In this stage, part of the load is formed by a resonant circuit which is tuned to 33.5 MHz so that it fills in the dip in the $\mathrm{L}_{14} / \mathrm{L}_{15}$ response.

The amplfied signal is then fed to the long-tailed-pair limiter circuit of Tr_{11} and Tr_{12}. Only one stage of limiting is needed because a.g.c. action on the
tuner r.f. and video i.f. circuits maintains the level of the extracted sound carrier at a nearly constant value. (There is, of course, a specified fixed difference of 5 to 6 dB between the sound and vision carriers leaving the transmitter.) The back-to-back diodes D_{5} and D_{6} are included to by-pass high-level signals which may exceptionally appear at the limiter input; e.g. such as might occur if the vision carrier level is drastically reduced at the transmitter because of a fault. Normal limiting takes place for signals in excess of about 0.2 volts peak-to-peak; the diodes clip signals of about 1.4 volts peak-to-peak.

The circuit including $\mathrm{L}_{17}, \mathrm{~L}_{18}$ and diodes $\mathrm{D}_{7}, \mathrm{D}_{8}$ forms a discriminator of the Foster-Seeley type. 'Top-C' coupling between the two tuned circuits is provided by C_{53} to feed an in-phase 33.5 MHz carrier component to the diodes; the quadrature component is injected via C_{50} to the secondary 'centre-tap' formed by C_{51} and C_{52}. Resistors R_{52} and R_{53} act as the diode loads, and the demodulated a.f. signal appearing across C_{54} is de-emphasized by R_{54} with parallel resistances and C_{56}.
There are two further points which

Fig. 12. (a) Tuner overall response (video terminated output) with linerepetitive sweep d.c. to 6 MHz . (b) i.f. vision carrier envelope at input to MCl330 for the same signal as in (a).
need mention in respect of this circuit. One is purely practical and concerns the series inductors (not numbered) shown on either side of D_{7} and D_{8}. These are constructed by winding the diode leads in small-diameter coils using, for instance, a piece of 10 -gauge wire as a temporary former. The inductance of a few turns here - as near to the diode body as possible - will help to prevent radiation of the sound-carrier harmonics which are generated as a result of diode non-linearity and which could cause interference in the r.f. circuits.
The second point is more important and relates to another function of this circuit: that of producing the a.f.c. voltage and combining it with the switched tuning-control voltage developed in a subsidiary circuit. Fig. 2 shows that the discriminator secondary circuit has no direct connection to earth. Therefore, in addition to the audio signal across C_{54}, the discriminator output contains a d.c. component varying by up to ± 10 volts from the mean value in proportion to the difference between the incoming sound i.f. (ideally, at 33.5 MHz) and the frequency corresponding to the discriminator conversion curve centre (also set at 33.5 MHz). When the a.f.c. inhibit switch is on, a reduced-voltage feed of this varying d.c. is taken via R_{62} and other resistors to the high-impedance input of zero-gain amplifier $\mathrm{IC}_{2 \mathrm{~b}}$ where it is mixed with the switched tuning-control voltage which, for tuners operated in the London area, will have a value between 3.7 and 8.3 volts according to the station selected. The combined tuning and frequency control voltages are filtered by R_{64} and C_{60} to remove a.f. modulation before being fed to the u.h.f. module.

Diodes, D_{15} and D_{16}, are included to restrict the a.f.c. range and so prevent the tuner capturing the wrong carrier when re-selection takes place. Figures quoted for the ECL1043 module indicate that a tuning-voltage change of ± 0.5 volts, i.e. the total available from the a.f.c. circuit without the catching diodes, would cause a frequency change of about $\pm 10 \mathrm{MHz}$. In practice, a maximum frequency change of $\pm 2 \mathrm{MHz}$ is sufficient and this is the extent of control allowed by D_{15} and D_{16} which together with dividing resistors $\mathrm{R}_{61}, \mathrm{R}_{62}$ and R_{101} restrict the applied a.f.c. voltage excursion to about ± 0.1 volt. An inset drawing in Fig. 2 shows the alternative circuit which is necessary if a mechanically-controlled u.h.f. tuner is installed instead of the varicap one. In such an instance, a.f.c. sensitivity is much less, perhaps $\pm 2 \mathrm{MHz}$ for $\pm 4 \mathrm{~V}$, and for the same amount of control a larger voltage swing can be tolerated; the catching diodes used are the 3.3 -volt zeners connected in series as shown

Amplifier $\mathrm{IC}_{2 \mathrm{a}}$, connected as shown in Fig. 2, has a gain of 6 dB and produces the unit audio output at about 0.5 volt r.m.s. from a low-impedance source. The gain of this stage can be set to suit a
particular installation by changing the ratio of R_{63} to R_{59}.

A.G.C. circuit

A feed of positive-going composite video at 4 volts pk-pk is taken from Tr_{5} in the main circuit, filtered by R_{27} and C_{62}, giving a 6 dB /octave reduction for frequencies above 1 MHz , and then applied to emitter-follower Tr_{13}. When properly set, the output from Tr_{13} has its blanking level at about +15 volts d.c. Clipping action at Tr_{13} emitter, controlled either by D_{9} or by simple potential division from $\mathrm{R}_{67} / \mathrm{R}_{73}$ according to the circuit fitted, causes this waveform to be sliced at a nominal 16 volts so that the remaining signal comprises negative-going mixed-sync pulses together with a volt or so of the picture component. The clipped signal then follows two paths; one goes directly to the f.e.t. sample switch, Tr_{16}, and the other to Tr_{14} which, acting as a sync-tip detector/amplifier, produces an output of 4 -volt positive pulses labelled, logic-fashion, $\overline{\text { MS }}$.
The blanking-level sampling pulse is generated as follows. During each sync-pulse period, C_{64} charges to the full pulse amplitude taking current through Tr_{14} and the base-emitter junction of Tr_{15}. At the end of the pulse, this transistor is momentarily cut off as C_{64} discharges through R_{72} and the base potential of Tr_{15} then rises from about -3.5 volts to the on value of +0.7 volt; this takes about $3 \mu \mathrm{~s}$.
While Tr_{15} is conducting, its collector holds the gate of Tr_{16} near to 0 volts. As Tr_{16} source is fed with the clipped video at an average potential of about +15 volts, the gate voltage is well below that required for pinch-off in this type of f.e.t. But, during the $3 \mu \mathrm{~s}$ period that Tr_{15} is cut off, the gate voltage rises above this inhibiting value so that the f.e.t. conducts, and charges storage capacitor C_{65} to the Tr_{13} emitter blanking-level voltage present at that time.
Emitter bias of Tr_{17} is arranged so that conduction occurs for a base potential somewhere in the range +15 to +18 volts, the precise value being pre-set by adjustment of R_{77}. Having fixed the bias conditions in this way, conduction in this transistor then depends on the blanking-level samples stored in C_{65}. Suppose, for instance, the blankingsample voltage moves negatively; the 'sense' of the MC1330 transfer characteristic is such that this indicates an increase in r.f. signal level. As a result, Tr_{17} begins to draw more current, the a.g.c. voltage fed from the junction of R_{80} and R_{81} to Tr_{2} in the main circuit rises, and the i.f. gain is reduced. Hence, the signal level re-established at the MC1330 input is that pre-determined to give the required unit output; thus, R_{78} acts as a 'set output level' control.
Although the black-level sample-and-hold a.g.c. system requires some extra circuitry, it does offer at least two worthwhile advantages compared with the more usual methods. One is that it

Fig. 13. Tuner a.g.c. characteristics (arranged to show the effect of crossover adjustment).
gives equal 'attack' and 'recovery' times for either sense of gain change, and therefore follows fast and repeated variations in incoming r.f. signal level (e.g. aircraft flutter) more faithfully. Second, it does not depend on the maintenance of a constant picture/sync ratio in the detected video signal.
The i.f. a.g.c. voltage produced as shown is also fed to the common-base stage Tr_{18} which is biased by the divider chain R_{82} to R_{84} so that a 'delayed' version of the control voltage is derived for application to the u.h.f. module. The amount of delay obtained depends on the setting of R_{83} which determines the positive value of emitter voltage required (i.e. the point on the i.f. gain-control range) necessary to cause conduction in Tr_{18}. For a continuing rise in this voltage, the current drawn by Tr_{18} then increases the p.d. across R_{86} which reduces the tuner r.f. gain.
Obviously, the overall tuner a.g.c. characteristic is governed by the degree of overlap between the i.f. and r.f. control ranges and hence depends largely on the setting of R_{83}. In practice, the crossover point is chosen to obtain the best compromise between conflicting requirements according to local reception conditions.

Figs. 13(a) and (b) illustrate the r.f. and i.f. a.g.c. characteristics separately.

Comparison between these two curves shows the relationship of their actions on the appropriate stage gain with R_{83} at its least positive setting i.e. for maximum overlap. Here, Tr_{18} is bottomed so that the two a.g.c. voltages are equal, tracking together and taking proportionate shares in the control of the overall gain. In this condition, the r.f. circuits tend to operate at relatively low gain and the noise they and the mixer produce is amplified by the i.f. circuits working at high gain so that the picture is thereby degraded.
The alternative limit condition, which obtains with R_{83} at its most positive setting for minimum overlap, is illustrated by comparing Fig. 13(b) with Fig. 13(c). The last-mentioned is simply the r.f. a.g.c. characteristic from (a) redrawn with a displaced horizontal (voltage) scale. Transistor Tr_{18} is now biased off until the i.f. a.g.c. reaches about 5.7 volts, i.e. reduction of r.f. gain is 'delayed' by this amount as indicated by the scale displacement. Over the same range of incoming signal levels as before, the r.f. circuits are at full gain and there is accordingly less i.f. amplification of r.f. stage and mixer noise. But the larger-voltage signals now acting in the r.f. stages may cause capacitance change in the varicap diodes, such changes being, of course, in sympathy with the a.m. vision carrier envelope. The resulting phase modulation of the outgoing i.f. signal has no effect on the video component, but the sound discriminator detects it as frequency modulation and hence produces a 'buzz' on the sound output. A secondary result of having excessive r.f. signal level is that there is then a danger of overloading the u.h.f. mixer stage with consequent intermodulation effects.
The choices open when setting up this section of the tuner can now be clearly seen. In those locations where all the stations which may be required for selection are received at low and constant level, the user will probably opt for high r.f. gain and so obtain the best possible noise performance. If, however, there is wide disparity in the received signal strength from different stations, or the signal from any one station is subject to large changes in level, then the alternative approach that of keeping the r.f. gain as low as possible to prevent sound-carrier phase modulation occurring when the incoming level is high - may be preferable.
Printed circuit boards. Wireless World has arranged a supply of printed circuit boards for the tuner design. The board, which measures approximately $25 \times$ 13 cm , is a double-sided glass-fibre type and is supplied roller tinned and drilled with test points marked. One off price is £6 inclusive; make cheques or postal orders payable to M. R. Sagin at 11 Villiers Road, London NW2.
A kit of parts, including board, will be available from Magnum Electronics, 25 The Rise, Elstree, Herts, details of which will be given in part three of the article.

Crossover networks and phase response

A problem solved in loudspeaker design

by S. K. Pramanik
Bang \& Olufsen, Denmark

Linearity of phase response has long been an aim of audio equipment designers, although its benefits to listening quality is a much debated subject. Whatever the pros and cons of the argument, it will be realised that to reproduce exactly through a speaker system (at least the direct sound) the wave form as received at the microphone, the two major influencing factors are the frequency and phase response of the chain. For example, to reproduce the steep wave front of a transient sound, not only must the harmonics be present in the same ratio as in the original sound, but their phase relationship must be equally correct. Other factors, such as harmonic distortion, etc., have a smaller visible effect when wave shapes are compared on an oscilloscope. This does not imply that there is any direct proportionality between the audible effect of any factor and its effect on visible wave shape. Phase distortion may therefore be regarded as wave shape distortion. Equally, it may be regarded as a frequency dependent delay in arrival times of different parts of the sound spectrum.

Square waves have long been used to give a quick and meaningful check on audio equipment, where by custom it is linked with transient performance. In fact it is a combined amplitude/frequency and phase/frequency response test, and gives little indication of harmonic or intermodulation distortion, or any of the other parameters considered relevant to audio equipment. It has, however, never been used to test speaker systems, as the reproduced wave has always been so far from the original that no conclusions have been possible. Generally it has been assumed that it was impossible to reproduce square waves on speaker systems, and, since the best designs sounded so good, that it was obviously unnecessary.

Ashley ${ }^{1}$ showed that the problem of phase response lay more in the design of crossover networks than in the units themselves. In all multiway systems it is assumed that the sound from all the units is integrated in the air, by the time it reaches the listener. Therefore.
provided the vector sum of the sounds from each unit is, at all times, equal to the input to the speaker system, the wave form from the system will be the same as the input. The stress here is on the vector sum and therefore includes phase, rather than the amplitude sum and therefore amplitude/frequency response. Provided the units respond perfectly to the signal input applied to them with respect to both frequency and phase, the wave shape of the sound from the speaker system will be an exact replica of the wave shape of the input signal.

In practice, speaker units have a perfectly acceptable frequency and phase response over a limited bandwidth, usually of the order of four octaves. Also, technology exists today for units to be designed to cover a bandwidth of this order anywhere in the frequency spectrum. The problem therefore, is to ensure that the vector sum of the signals from the crossover network to the units exactly equals the input. Additionally, a sufficient number of units must be used to cover the audio spectrum, with adequate attentuation outside the useable bandwidth of each unit, for the quality level and the power handling capacity required.

Equal input-output crossover

 networksThe simplest form of crossover network is the first order filter, which operates at 6 dB /octave. Limiting the argument to two-way systems only (the mathematics is less straightforward but can be extended to multiway systems) for the sake of simplicity, the voltages received by the bass and treble units for unity voltage input to the crossover network * are

$$
V_{\text {bass }}=\frac{1}{s+1} \quad V_{\text {treble }}=\frac{s}{s+1}
$$

The attenuation curves for these functions are shown in Fig. 1. The vector sum of voltages to each unit is therefore

$$
V_{\text {output }}=\frac{1}{s+1}+\frac{s}{s+1}=1
$$

showing that the output is identical to the input in amplitude and phase. A
speaker system therefore can be made to have linear phase response using crossovers of $6 \mathrm{~dB} /$ oct., with correct choice of crossover components. However, this will not solve any of the other problems associated with first order filters, such as the large overlap of four octaves for just 12 dB attentuation. These problems are so well known that they need not be restated. In fact first order filters are used today, almost exclusively for less expensive systems, designed for modest power handling applications.

Higher order crossover networks

For second and higher order crossover networks, the vector sum of the voltages will not be identical with the input. For example, for a second (12 $\mathrm{dB} /$ oct) order network, the voltages received by the bass and treble units for unity voltage input in the crossover network are

$$
\begin{gathered}
V_{\text {bass }}=\frac{1}{s^{2}+\frac{1}{v s+1}} \\
V_{\text {treble }}=\frac{s^{2}}{s^{2}+\frac{1}{1}+1}
\end{gathered}
$$

If the two units are connected in phase, the vector sum is

$$
\begin{equation*}
V_{\text {output }}=\frac{1+s^{2}}{s^{2}+\sqrt{2} s+1} \tag{1}
\end{equation*}
$$

This gives attentuation curves for each unit and total amplitude/frequency characteristic shown in Fig. 2. It can be seen that the suckout at the crossover frequency will give audibly poor results, and to get around this most designers connect the two units in opposed phase. This gives the same attenuation char-

[^2]

Fig. 1. Simple 6dB/octave crossover.

Fig. 3. As Fig. 2, but with tweeter phase reversed.

Fig. 2. Second order crossover network.

Fig. 4. Third-order crossover network.
acteristics for each unit, but the curve for the total amplitude/frequency characteristic (Fig. 3) shows a 3 dB rise at the crossover frequency. The vector sum of the voltages:

$$
V_{\text {output }}=\frac{1+s^{2}}{s^{2}+1 / 2 s+1}
$$

The dotted line in Figs. 2 and 3 shows the phase characteristics in the two cases, and it can be seen that in both cases a phase shift of 180° occurs in the crossover region. While the frequency response cam be improved slightly by juggling with crossover components, the phase shift is an inherent property of the filters and cannot be altered.

In the case of a third order network ($18 \mathrm{~dB} / \mathrm{oct}$) one gets a perfectly flat amplitude/frequency characteristic (Fig. 4). Phase, however, shifts 360° over a broad band centred on the crossover frequency, the vector sum being given by the expression

$$
V_{\text {rutput }}=\frac{1+s^{3}}{1+2 s+2 s^{2}+s^{3}}
$$

As a third order crossover network has a large number of components it is basically expensive, but even more than this, components have to be matched to close tolerances, for the system to function as designed. Its application has
therefore been limited to speaker systems in the highest price bracket and even then generally limited to two-way systems.

Active crossover systems

To achieve linear phase response through the crossover network, Ashley ${ }^{1}$ proposed a mathematical solution, which was later modified by Ashley and Kaminsky ${ }^{2}$ and Small 3. The basic idea behind these solutions is the same, together with their advantages and disadvantages. If we go back to the equation (1) for the second order filter, we find that the vector sum

$$
V_{\text {output }}=\frac{1+s^{2}}{1+2 s+s^{2}}
$$

This expression can be made unity, i.e. identical with the input, by adding the term $/ 2 s$ to the numerator. In a practical case this term can be added to either the bass unit, the treble unit, or split between the two. For example, one could design a crossover network so that the voltages received by the bass and treble units were

$$
\begin{gathered}
V_{\text {bass }}=\frac{1+1^{\prime} 2 s}{1+1^{\prime} 2 s+s^{2}} \\
V_{\text {treble }}=\frac{s^{2}}{1+1^{\prime} 2 s+s^{2}}
\end{gathered}
$$

This would give the attenuation characteristics shown in Fig. 5, and since their vector sum is unity, would result in flat amplitude/frequency and phase characteristics. This principle can be extended to higher order filters and an example of a proposed third order network by Small ${ }^{3}$ is shown in Fig. 6.

Systems such as these characteristically show a peak in the voltage to one or both units (depending on whether the crossover is designed to be assymmetric or symmetric), at a frequency near the crossover point. In passive crossover networks, power supplied by the amplifier will be referred to this peak and the required characteristic can only be obtained by dissipating power at all other frequencies in the crossover network. For a peak of 3 dB anywhere in the amplitude/frequency characteristics of either unit, therefore, virtually half the power supplied by the amplifier is dissipated before it reaches the units. rather than converted to acoustic energy.

The only practical answer for using this principle is to use a high impedance crossover network and individual amplifiers for each unit, the system being sometimes known as an active loudspeaker system. Even so, although

Fig. 5. Second order active crossover.

Fig. 6. Third order active network after Small.

Fig. 7. Three-unit filler driver 2 nd order system.

Fig. 8. Third-order filler driver system.
power is no longer dissipated in the crossover, amplifiers must be designed to supply power for the peak in the amplitude/frequency characteristic of each driver, although it is generally used at much lower levels for most of the frequency range.
Finally, perhaps the most significant drawback is that overlap at crossover frequency between the two units is appreciably increased. While the normal 2nd order network gives an overlap of two octaves for 12 dB attenuation, the modified network of Fig. 5 gives over 3.5 octaves. The third order network of Fig. 6 gives an even larger overlap of almost 4.5 octaves for the same attenuation. Compared to the 4 octaves of a first order network, which can also be designed to give a linear phase response, the performance gain is marginal for an enormous increase in cost.

The filler driver solution

Baekgaard ${ }^{4}$ suggested that the missing term in the numerator of equations (1) could be added as an extra, completely separate unit, instead of attempting to alter the attenuation curves for the existing units. This unit, which he called a $\mathbf{f}: r$ driver. has the advantage that there is no alteration in the attenuation
characteristics of the normal bass and treble units, and therefore overlap is unaltered.

The calculated amplitude/frequency characteristic of the three units in what is still nominally a two-way system is shown in Fig. 7, for a second order (12 $\mathrm{dB} / o c t$) crossover network. The characteristics of the filler driver show a peak at the crossover frequency, with an attenuation of 6 dB /oct on both sides. It is therefore asked to handle only limited quantities of power, in a limited bandwidth centred on the crossover frequency.

The mathematical expressions for the attenuation characteristics are now

$$
\begin{aligned}
& V_{\text {bass }}=\frac{1}{s^{2}+V^{\prime} 2 s+1} \\
& V_{\text {filler }}=\frac{V 2 s}{s^{2}+V^{\prime} 2 s+1} \\
& V_{\text {treble }}=\frac{s^{2}}{s^{2}+V^{\prime} 2 s+1}
\end{aligned}
$$

The vector sum is unity, showing that both the frequency and phase responses are linear, and therefore the input and output wave shapes are identical.

A similar solution can be used for third order ($18 \mathrm{~dB} / \mathrm{oct}$) filters, the attenuation characteristics being as
shown in Fig. 8. It will be noticed that the efficiency of the filler driver must be twice that of the basic units, a solution most easily realised by an active circuit. In passive crossover methods a special unit would have to be used, to obtain the required efficiency.

Listening for phase distortion

Whether phase distortion can be heard is a much debated subject, and the author does not wish to contribute to that debate in this article. A word of warning about the methods used may, however, be in order.

It is well known that no two speaker systems are identical, even when made under laboratory conditions using identical units and crossover networks. It is therefore imperative that the same cabinet and units are used for comparative tests.

Phase shift may be introduced electronically by coupling a phase shifting circuit at a high impedance stage in the amplifier. A circuit may be made up to give an unaltered amplitude/frequency characteristic, but with frequency dependent phase shift corresponding to the relevant crossover network. A circuit published by Russel ${ }^{5}$ corresponds to the phase shift of a third order filter. Such a test will, of course, be
relevant only if the basic speaker system has no more than modest phase shift over most of the audio spectrum.

Another test would be to start with a speaker system using a third order crossover network, which has a flat amplitude/frequency characteristic. The addition of a filler driver to such a system gives it, in addition, a flat phase characteristic. Provided switching the extra unit has no effect on the amplifier characteristics, or on the function of the crossover network, the effect of phase distortion can be estimated. This can again be done by using a high impedance "electronic" crossover network.

Testing with microphones in normal living rooms is largely irrelevant, because reflected sound has a very large influence on measurements. The ear, on the other hand, finds it very easy to distinguish between direct and reflected sound. If therefore in comparative tests, the ear is able to distinguish between loudspeakers having undistorted and distorted phase response, even on a few signals, the value of correctly designed loudspeaker systems will have been proved. We will then have to wait for signal sources with undistorted phase response from the software manufacturers, before the benefits of loudspeaker systems with linear phase response become fully apparent.

References

1. Ashley, J. Robert, On the transient response of ideal crossover networks, J.A.E.S., July 1962.
2. Ashley, J. Robert \& Kaminsky, Allan L. Active and passive filters as loudspeaker crossover networks, J.A.E.S., June 1971.
3. Small, Richard H. Constant-voltage crossover network design, J.A.E.S., January 1971.
4. Loudspeakers - the missing link. Paper of the 50th Convention of the A.E.S., London ' 1975.
5. Russel, Howard T. Design active filters with less effort, Electronic Design, January 1971.

The above article is based on a paper presented by Mr Pramanik at the Wireless World private conference on "linear phase" loudspeakers (see note in October 1975 issue, p. 482).

Electronic circuit calculations simplified. We regret that it has been necessary to postpone publication of Part 6 of this series, on LC circuits.

We also apologise that an error appeared in Part 4 on RC combinations in the September issue. The diagrams above the captions Fig. 6 (p.424) and Fig. 8 (p.425) should be transposed.

Viewdata on trial soon

In January 1976 the Post Office starts limited trials of Viewdata, its tele-vision-screen information service. Like Teletext (see first article in this issue), Viewdata presents "pages" of printed information on the home television set - but there are two differences. First, the information is not broadcast but sent into the home by data transmission over the existing domestic line. It comes from a central "data base" - a digital computer with magnetic disc storage. Secondly, Viewdata is "interactive" in that the subscriber, by pressing buttons on a keypad, can interrogate the data base to obtain increasingly detailed information. This is arranged on a "tree" selection basis. For example, starting from the general item "eating out" on the index page, the subscriber can obtain successively: classes of restaurants (e.g. Italian, Greek); names, addresses and telephone numbers of restaurants in a particular class; and finally menus.
Viewdata is intended to be complementary to Teletext and technically compatible with it, so that the same domestic television sets and decoders can be used for both services. The page and character formats (960 characters per page, 7 colours, characters on a 7×5 dot matrix) are identical. The Post Office has already had discussions with BREMA, the set makers' organization, to ensure that suitable domestic equipment can be provided.
A demonstration of how the system will work was given at a recent computer conference, Eurocomp, at the Heathrow Hotel in London. Standard commerical Teletext receivers made by GEC were used, and to these keypads were connected for selecting pages and interrogating the data base. Information in ASCII telegraph code was transmitted to and from the sets, via modems by the standard Post Office Datel 600 data transmission service at a rate of 1200 bits/second for incoming information to the sets and 75 bits/second for outgoing information. The Datel 600 signals passed via the ordinary public telephone lines and exchanges to and from a data. base consisting of a GEC type 4080 digital computer at the old Post Office Research Station at Dollis Hill, London. This machine has a magnetic disc cartridge store (capacity 2.4 megabytes) on which the pages are held in binary code. It is estimated that the computer system will give an enquiry response time of less than 2 seconds to 200 subscribers using it simultaneously. The machine will be moved to the new Post Office Research Station at Martlesham, Suffolk, for the start of the Viewdata trials, when initially it will be serving 20 to 50 home terminals.
Information for the service will be provided by outside organizations, and about 40 potential sources have already

Design for a purpose-made Viewdata terminal for business users. Home terminals will be domestic television sets.
been approached by the Post Office. Classified advertisements might be accepted.

A full public service could start in 1978-9, say the Post Office, if the trials show that Viewdata is commercially viable. Assessments have yet to be made of the range of information to be provided, the likely demand and the charges to be made for the service. A typical domestic installation would consist of an "interface" or adaptor unit, to which would be connected the telephone line, the telephone handset, the television set (with built-in decoder) and the controlling keypad. Cost of a home installation might be in the region $£ 50-£ 100$. In addition to the facilities mentioned above, it might be possible for subscribers to contact by telephone the providers of displayed information and to send their own messages "electronic telegrams" - through the system.

Big demand for electronic watches

Production of electronic watch modules and the assembly of modules into cases will contribute over 30% of Hughes Microelectronics' turnover in 1976. This prediction was made by Dr Guy Barnes, the company's managing director who said that it was originally intended to develop production to 2,000 modules per month by August. This figure was rapidly lifted to 4,000 per month and the latest target is 6,000 modules per month. Plans are now advanced to include a two-button, five-function men's watch module and a ladies' module, and delivery will start later this year.

Optical sensor ignition system

Electronic switch replaces contact-breaker

by H . Maidment

A capacitive discharge (c.d.) system overcomes most of the problems inherent in the traditional Kettering system, and retains the option of reversion. The case for combining c.d. with a contactless timing source has been argued by J. R. Watkinson (WW July 74 and WW Annual 76), preferably with ignition advance determined by non-mechanical means. Although the last mentioned is desirable, it has not yet been proved to have superior reliability.

Having personally experienced timing drift, due to heel wear, with a contact-driven c.d. system and the longer term effects of cam-profile and distributor-shaft play on engine performance. I considered that a reliable contactless system, insensitive to the effects of shaft play, would be a worthwhile objective, provided that a roadside reversion was still possible.

With the availability of relatively cheap point-source l.e.ds and high-sen-

This design combines the Marston capacitive discharge circuit with an optoelectronic switch to produce an ignition system which does not suffer from the timing drift or pointswear associated with a mechanical type.

Fig. 1. Complete circuit diagram showing remote sensing head which is connected to the main circuit by unscreened leads.
sitivity planar phototransistors of matched spectral characteristics, an optical sensor was developed for use with the basic R. M. Marston c.d. ignition system (WW Jan 1970). The aim was to achieve a compact sensor head small enough to fit most distributors without disturbing the existing circuitbreaker assembly, and a design relatively immune to interference without the use of screened leads.

As shown in Fig. l. the c.d. circuit follows the Marston design with the addition of C_{1}, to overcome a tendency for false triggering, and the deletion of the bounce-suppression circuit. The last mentioned may be left in if existing units are being adapted, and C_{1} need only be added if the complete unit self triggers while the light path is interrupted. The trigger circuit operates in the following manner; l.e.d. D_{10} is energized from D_{9} via R_{19}. Transistor Tr_{6} provides a low impedance load for

phototransistor Tr_{7}. These items form the remote sensing head in the distributor, connected by unscreened leads to the main unit. With an interrupted light path, $\mathrm{Tr}_{5},{ }_{6}$ and ${ }_{7}$ are cut off and Tr_{3} and ${ }_{4}$ saturated. When light falls on Tr_{7} and the voltage across R_{14} exceeds about 3 V , a regenerative action follows, with Tr_{5} conducting and Tr_{4} being cut off, which causes the voltage across D_{9} to rise by 0.5 V , increasing the current in D_{10}. This ensures positive switching down to zero $\mathrm{rev} / \mathrm{min}$.
Transistors Tr_{3} and Tr_{4} are connected to form a complementary monostable which provides an output suitable for
triggering SCR_{1}, to provide an average voltage proportional to engine speed, and an automatic engine speed limiter. It also provides a measure of false-trigger immunity. The time constants have been chosen for four cylinder engines to limit the speed to about 6,$500 ; \mathrm{C}_{4}$ should be reduced to $0.15 \mu \mathrm{~F}$ for six cylinder engines.

A double sided p.c.b. design is shown in Fig. 2. The earth or negative return area on the circuit side, and the heat-sink areas on the component side were covered with Fablon. The rest of the circuit was inked in with a resist pen before etching. The clearance areas in

Fig. 2. Double sided p.c.b. layout measuring $2^{1 / 2} \times 4 \mathrm{in}$. This board can be cut across XX and the two halves mounted back to back. Alternatively, if the trigger circuit is to be used with an existing Marston c.d. unit the board below YY may be used.

Fig. 3. Vertical sensing head and shutter assembly mounted on a Lucas distributor.

the heat sinks were made after etching by lightly countersinking with a 3 mm drill. If desired, a more compact assembly may be obtained by cutting the board at XX and mounting back to back as shown in Fig. 7. Readers wishing to adapt the trigger circuit for use with an existing Marston c.d. unit, may prepare a single-sided board as shown below the line YY, omitting D_{7}, $\mathrm{R}_{9}, \mathrm{C}_{3}$ and R_{10}. Note that $\mathrm{R}_{3.4,6,10}$ and 18 are mounted clear of the board for better heat dissipation, and that C_{2} is not mounted on the p.c.b.

Sensing-head design

The detail design of the shutter, sensing head and mounting bracket will depend on the type of distributor. Shown in Fig. 3 is a prototype assembly mounted on a Lucas distributor, with the optical axis vertical. This is the easier to construct, but to avoid the possibility of excessive dust on the phototransistor lens a horizontal optical axis is to be preferred. This type was used by the author on a Saab 99 employing a Delco-Remy distributor-Fig. 8.
The two types of shutter are shown in Figs. 4(a) and 4(b). The disc version can be fabricated from 18- or 20-gauge dural sheet, first scribing two lines accurately at right-angles for 4 cylinder engines, or three at 60° for 6 cylinder versions, and circles of radii to suit the distributor. The slots are only critical with respect to their leading edges, which should be filed accurately to the scribed lines and bevelled slightly on the underside, particularly the trailing edge. The bevelling eliminates stray reflections which can cause timing scatter.
An alternative approach, where facilities are available, is to black anodize the disc before attachment. The cylindrical type of shutter follows much the same principle except that it is more easily machined from dural stock in a lathe. To obtain the desired clearance between the lower edge of the shutter and the contact breaker, it is necessary to turn a shoulder on the rotor arm against which the inner diameter of the shutter locates. It is possible to hand file the slots to within 0.1 mm of the scribed line using a suitable ward file. This represents about 0.5 crankshaft degrees error at 25 mm radius, and compares well with the allowable cam lobe error, normally $\pm 2^{\circ}$. The width of slot is uncritical but less than 1 mm will result in a loss of light and more than 3 mm will increase the non-linearity of the tachometer output at low engine speed.

The two forms of sensing head are shown in Figs. 5(a) and 5(b). Both can be constructed from 6 mm dural plate, although slightly thicker material would be an advantage when drilling the 5 mm hole. This should be eased with a half round file and emery paper for a snug fit. The outer edges of each hole are rebated on one side to clear the device wires, which are bent at rightangles to align with the p.c.b. The height of the sensing head and form of

Fig. 4. Shutter design for vertical axis (a) and horizontal axis (b).

Fig. 5. Vertical and horizontal sensing-head details. The two Veropins in both types earth the circuit and act as locating dowels.
the mounting bracket will depend on the type of distributor used, but the arrangement shown using two 8 BA screws for attachment to a suitable mounting bracket should suffice for most types. The single sided p.c.b. was prepared and etched in the normal manner. In the case of the horizontalaxis sensor, the p.c.b. was first clamped to the body of the sensor after ensuring correct alignment, and two 1.0 mm holes drilled, as indicated in Fig. 5, to receive a pair of 0.04 in Veropins which serve to earth the circuit and act as locating dowels. At the same time the inner face of the slot is gently radiused to match the shutter curvature. A similar dowelling technique may be used for vertical sensors.

Before final assembly, $\mathrm{Tr}_{6} \mathrm{R}_{19}$ and two fly leads are soldered in place. The fly leads should be thin instrument wires which are doubled back through clearance holes for mechanical strength. Diode D_{10} and Tr_{7} are positioned with their lenses 0.5 mm behind the slot faces. Tr_{7} occupies the inner or lower position with its base wire cut off flush. The p.c.b. is then aligned and soldered to the dowels, which have been force fitted to the block. The completed assembly is given a coat of polyurethane varnish which anchors the devices in place and
(b)

Components

Resistors

R_{1}	100
R_{2}	220
R_{3}	$270,2 \mathrm{~W}$
R_{4}	$270,2 \mathrm{~W}$
R_{5}	3.3 M
R_{6}	$1.0,5 \mathrm{~W}$
R_{7}	100
R_{8}	220
R_{g}	470
R_{10}	$50,5 \mathrm{~W}$
R_{11}	1 k
R_{12}	330
R_{13}	12 k
R_{14}	100 k
R_{15}	120
R_{16}	47
R_{17}	1 k
R_{18}	$100,1 \mathrm{~W}$
R_{19}	100

All resistors $1 / 2 \mathrm{~W}$ unless otherwise stated

Capacitors

C_{1}	$22 \mu, 16 \mathrm{~V}$
C_{2}	$1.0 \mu, 600 \mathrm{~V}$
$\mathrm{C}_{3}, \mathrm{C}_{4}$	$0.22 \mu, 250 \mathrm{~V}$ (polyester)

Semiconductors

Tr_{1}	2N3055		
Tr ${ }_{2}$	2N3055		
Tr_{3}	$\begin{aligned} & \text { 2N1613, } \\ & \text { BFY52 } \end{aligned}$	2N3053	or
Tr ${ }_{4}$	$\begin{aligned} & 2 N 3702 \\ & \text { ZTX500 } \end{aligned}$	BC2 12	or
Tr_{5}	$\begin{aligned} & 2 N 3702 \\ & Z T X 500 \end{aligned}$	BC2 12	or
Tr ${ }_{6}$	$\begin{aligned} & \text { 2N3704 } \\ & \text { ZTX300 } \end{aligned}$	$\text { BC } 182(3)$	or
Tr_{7}	FPT 120 (F	airchild)*	
SCR ${ }_{1}$	2N3525		

$\mathrm{D}_{1} \quad 27 \mathrm{~V}, 1 \mathrm{~W}$ zener
$\mathrm{D}_{2} \quad 27 \mathrm{~V}, 1 \mathrm{~W}$ zener
$\mathrm{D}_{3-6} \quad 1 \mathrm{~N} 4005$
$\mathrm{D}_{7}, \mathrm{D}_{8} \quad 1 \mathrm{~N} 4001$
D_{9}
D_{10}
$3.3 \mathrm{~V}, 400 \mathrm{~mW}$ zener FLVí00I.e.d. (Fairchild).
$\mathrm{T}_{1} \quad 15: 1$ centre-tapped transformer rated at 30VA, A lit or battery charger 240:16V type can be used. For details of modifying a transformer refer to WW Jan 70.

* Obtainable from Ambit International Ltd. 37a High Street, Brentwood. Essex CM14 4RH.
provides moisture protection. Care should be taken not to damage the lenses or contaminate them with varnish during construction.

Mounting

A suitable mounting bracket for the type of Lucas distributor shown in Fig. 3 is detailed in Fig. 6. This bracket is fitted in place of the capacitor whose original fixing screw provides a means for synchronizing the optical system to the contact breaker. Oversize holes in the vertical bracket and suitable washers behind the 8 BA screw heads holding the sensor permit adjustment of the shutter running-clearances. Brass was used as this allows the vertical bracket to be soldered in position on its base plate. Similar constructional methods may be adapted to suit most distributors

The position of the sensor with respect to the rotor arm is uncritical except in the case of the vertical axis version, when it should not be in line at the triggering points. The orientation of the shutter with respect to the contact-breaker opening point, with the sensor bracket mid way in the angular range of adjustment, should be determined before Aralditing to the rotor arm. The disc shutter increases the height of the rotor arm; this should be checked by removing the brush from the distributor cap, and placing a knob of plasticine on top of the rotor arm before seating the distributor cap. If the clearance is less than 0.5 mm , the base of the rotor arm should be carefully filed to suit. To maintain concentricity between the disc type shutter and rotor arm whilst Aralditing, a short length of split tube should be located through the shutter into the rotor arm and removed before the Araldite is fully cured.

In some distributors, significant angular backlash exists between the rotor arm and the shaft. This should be eliminated by shimming the clearance

Fig. 6. Mounting bracket for use with a vertical sensing head in a Lucas distributor.
between the leading edge of the slot in the shaft and the key in the rotor arm. This may be achieved by forming a shim steel or beryllium copper strip in the shape of a question mark, the circular section fashioned to fit the hollow section of the shaft, and the tail bowed slightly, cut to suit the depth of the keyway, and located against the leading edge; thus taking up the backlash when the rotor arm is fitted. An alternative method is to oil the shaft spigot and coat the sides of the rotor arm with Araldite

Fig. 7. Main electronic unit showing the double sided p.c.b. cut in half and mounted back to back.

before locating on the shaft. The rotor should be gently eased off the shaft before the Araldite is fully cured.
The construction of the main unit is left to the reader, following the general advice given by Marston. The optical trigger amplifier and sensor should be checked on the bench as follows. When the light path is uninterrupted; Tr_{3} collector should be cut off, the current in R_{19} about 22.5 mA and the current in R_{17} between 100 and $200 \mu \mathrm{~A}$. When the light path is interrupted; Tr_{3} collector should not exceed IV, the current in R_{19} should drop to about 17.5 mA , and in R_{17} it should be less than $1 \mu \mathrm{~A}$ provided that there is no background illumination. The circuit should change state cleanly when the current in R_{17} exceeds about $30 \mu \mathrm{~A}$.

Installation

When installing the sensor and shutter, the mechanical clearances over the full rotation (taking account of distributor bearing play) should be carefully checked. Between the shutter edge and the base of the slot in the sensor there should be between 0.25 and 0.75 mm clearance, and from 1.0 to 1.5 mm on the sides. The fly leads should be wound into a four-turn helix around a 3 mm drill shank and either taken through a grommet in the base of the distributor, or to a pair of feed through bushes; the fly leads must not foul or be strained over the range of vacuum advance travel. The capacitor from the distributor should be mounted alongside the coil and connected to the redundant contact breaker lead from which a lead may be taken to the c.b. connection of the coil as a "get you home" expedient. The contacts should be kept open with a slip of Tufnol to hold the heel clear of the cam when using the optical system.

The complete system should be monitored with a voltmeter at the tachometer output with the engine at tickover - there should be no voltage kicks indicative of false triggering. If this is not the case, the supply line impedance may be the most likely cause, as in the case of the basic c.d. system (WW January 1970). Similar checks should be made when selecting each of the electrical services in turn. The most probable source of interference will be horns operated directly from the button; however, the horn is infrequently used and the effect on the engine is only slight.

Some problems were experienced from relay transients during the circuit development, and better noise immunity was achieved by adopting a 3 V threshold for Tr_{5} and transferring Tr_{6} from the main unit to the sensing head. The timing delay introduced by the optical system was measured in a test rig where a second l.e.d., driven from the tachometer output (with C_{4} disconnected) was mounted behind the shutter, 180° away from the sensor. The shutter, comprising two 0.5 mm slots

diametrically opposed, was run at 3,000 r.p.m. (i.e. 6,000 crank r.p.m.) and the angular movement of the l.e.d. needed to restore full brilliance when viewed through the slot was less than $30 \mu \mathrm{~s}$. The low voltage start performance was
also simulated in powering the ignition from 6 V , and good starts from cold were achieved. This is a stringent test because under realistic conditions low voltages are only severe during the starter motor transient from rest.

Fig. 8. Horizontal-axis sensor head mounted in a Delco Remy distributor on a Saab motor car.

The system described has operated with complete reliability and no timing drift for over 18 months in the author's car, as well as six months in a Singer Vogue. In the last-mentioned case, the electrical system used a positive earth, so a three-wire sensor was used with the main circuit wired upside down. Readers wishing to instal a permanent tachometer may use any suitable moving coil movement up to about 2 mA f.s.d. The meter should be mechanically zeroed to offset the standing voltage present with the ignition on and the engine stationary. The desired f.s.d. may be set with an appropriate preset resistor. The linearity is good between 1,500 and 6,000 r.p.m., but will require calibration at a known roadspeed equivalent. As a guide, 9 V is approximately equivalent to $5,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. on a four-cylinder engine. Although the trigger amplifier was specifically designed for use with the Marston c.d. unit, it should be readily adaptable to suit other designs in existence.

Literafure Received

Four publications from Willsher and Quick describe their cases, racks and card frames now available The 19 -in Eurorac, Camac 19 -in racks and the AEC-NIM range of crates and modules are described. Willsher \& Quick Ltd. Walrow, Highbridge, Somerset TA9 4AQ WW401

A catalogue, detailing transformer assemblies for use in 5-1500 VA applications, has been sent to us by Custom Transformers Ltd. Only the mechanical parts are offered. Custom Transformers Ltd, Bristol Road, Malmesbury, Wilts SN16 0DU WW402

The Ensign range of high-voltage, high-stability power supplies is described in a new leaflet sent to us by Brandenburg Ltd, High-voltage Engineering Division, 939 London Road, Thornton Heath, Surrey CR4 6JE WW403

We have received a leaflet from Hipotronics, which gives details of a range of dielectric and insulation testers, working at potentials up to 10 kV a.c. and 25 kV d.c. Leaflet HP7107 is obtainable from Hipotronics, Inc., Brewster, N.Y.10509, U.S.A.

WW404
A new leaflet from BHS gives full constructional and technical data on the 2500 VDC series of h.v. capacitors, which are epoxy-encapsulated and of polypropylene construction. The leaflet is available from BHS Electronics (Sales) L.td, Bercourt House, York Road, Brentford, Middlesex WW405

Digital panel meters, with 200 mV or 2 V full-scale sensitivities, and $3^{1 / 2}$-digit 1.e.d. displays, are described in publication D. 1 from Farnell Instruments Ltd, Sandbetk Way, Wetherby, West Yorkshire LS22 4DHWW406

A pulse measuring system, counter and digital multimeter are combined in the Field Datameter DTM1000, described by Weir in a new leaflet. The instrument is for use with t.t.l. and m.o.s. logic and, in addition to voltage and resistance measurements, display of transition times, pulse width, duty cycle, time interval and pulse overlap is provided for. Weir instrumentation Ltd, Durban Road, Bognor Regis, Sussex WW407

The range of optoelectronic devices from Hewlett-Packard is fully covered in a new Designers Catalogue, which includes data on l.e.ds, l.e.d. displays, isolators and detectors. The catalogue is obtainable free from GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks WW408

Details of ITT power supplies, d.c.-to-d.c. converters and transformers, together with a number of reprinted articles, are published in a new catalogue from ITT Components Group Europe, Electrical Product Division, Edinburgh Way, Harlow, Essex
ww409
Two brochues from Du Pont describe a range of conductive silver compositions, for use with various methods of application to the substrate and curing temperatures. The brochures can be obtained from Du Pont Electronic Materials Division, Maylands Avenue, Hemel Hempstead, Herts WW410

We have received from Ferranti a 40 -page catalogue of application information and data on

T/R cells and duplexers. Ferranti Ltd, Professional Components Department, Dunsinane Avenue, Dundee DD2 3PN

A brochure describing a buffered magnetic tape transport for minicomputer use is obtainable from Pertec International, Peripheral Equipment Division, 10 Portman Road, Reading, Berks. The system includes the buffered tape formatter and one of several transports, providing auto read and write for tape/buffer transfers, at up to 79 kHz .

WW412
The 360-page Marconi Instruments catalogue for 1975/6 is now available, covering a wide range of measuring instruments for the communications and electronics industry. The catalogue is obtainable from Marconi Instruments Ltd, Longacres, St Albans, Herts.

Equipment for vacuum handling of small components and a range of de-soldering instruments is described in leaflets produced by Air-Vac Engineering of Connecticut, U.S.A. The leaflets can be obtained from Tony Chapman Electronics Ltd, 80a High Street, Epping, Essex CM16 4AE WW413

A leaflet describing the Mini-Therm range of temperature controllers is published by Solid State Controls. The units are either plug-in or panelmounting types and can cover temperature ranges between $-100^{\circ} \mathrm{C}$ to $+1600^{\circ} \mathrm{C}$, using either thermocouples or resistance bulbs. The leaflet can be obtained from the company at Brunel Road, Acton, London W. 3.

WW414
The Ariel group of companies have sent us a range of catalogues, describing electrical connectors, lampholders, fans, audio leads, tools and gauges. Available from Ariel Group of Companies Ltd, Wollaton Road, Beeston, Notts WW417

Black holes to solve the energy crisis?

Atom-sized black holes could spell the end of man's frantic search for energy, according to American physicist George Chapline of California University. Just before a black hole swallows matter, a pulse of radiation is emitted. This fact, coupled with the notion that there may be quite sizeable numbers of these minute black holes about the universe (10% in our galaxy), prompted the suggestion that a captive hole could provide our energy needs for all time. As an added bonus its insatiable appetite for matter would neatly solve the problem of rubbish disposal. But where do you find a black hole, and perhaps more difficult still, how do you contain it when you've got it? One possibility would be to give it a charge and then suspend it in an electric field. Then simply add garbage (any old junk will do) and wait for a pulse of energy to emerge. So easy, but, maybe we'd better stick to nice safe plutonium reactors after all. Black holes, if they exist, are supposed to have a rather nasty habit of turning into white holes and then...

Come back, Geller, all is forgiven?

If the idea of generating power from black holes seems just a little on the dangerous side, then there may be a perfectly safe alternative. Indian research shows that when a metal rod is broken, electric and magnetic fields are produced around the fracture. In the experiment a test rod was placed near a small copper "aerial" connected to an oscilloscope and then stretched to the point of breaking. Although the effect only lasts for a few tenths of a second, a rod made from magnetic material does acquire a degree of permanent magnetism.

Just a second . . .

If you've built one of the recent designs for crystal-controlled digital clocks, you're probably congratulating yourself on how few seconds it gains or loses in a year. And indeed time and frequency are the most accurately measurable of all physical quantities. But oddly enough it appears that, even using atomic frequency generators, a perfectly standard second is a rather elusive commodity.

You probably recall an experiment a few years ago in which atomic clocks were synchronised and then flown around the world in opposite directions. The result, predicted by Special Relativity, was a discrepancy of several microseconds. This is the so-called Time Dilation Effect, and so paradoxically standard time must stand still!

Gravity is another factor affecting time, and indeed all the world's standard clocks are corrected according to their height above sea level. But even with this sort of precaution, standards labs still have to issue correction factors to bring themselves into line, and, until recently, for no obvious reason.
The solution, according to two Canadian physicists, may lie in the suggestion that we've all overlooked yet another aspect of relativity. Maybe the rotational acceleration of the earth needs to be taken into account, making time different in different latitudes. Curiously enough when the latitude correction was applied to data from all the world's time standards there was complete agreement, with however one exception - the Royal Greenwich Observatory. So maybe British Standard Time is quite unique after all!

Bat sonar is best

Bats can be trained to distinguish between targets which look the same on ordinary man-made sonars. Research in St Louis, Missouri, USA, used plastic objects of nearly identical size and shape. The only difference was that shallow depressions in the objects (square slabs of Perspex) differed in depth. The bats (rewarded by food when they responded to the correct target) learned to discriminate effectively between holes 7 mm and 8 mm in depth.

Sound waves to hold liquids in space lab?

One of the most striking demonstrations of standing waves is the generation of Chladni's figures. A vibrator, such as a square piece of metal sheet, suspended at its centre is set in harmonic motion by applying acoustic energy. Fine powder - traditionally lycopodium spores - sprinkled on the surface moves to the points of minimum
amplitude. The result is a visual standing wave display.
A three-dimensional acoustic standing wave in the air would show similar properties if gravity were absent. Solids or liquids placed in the sound field would be pushed to the points of minimum amplitude and held there.
It is proposed to use this effect in several crystal-growing experiments on board Spacelab, where ultrasonic standing waves will prevent alloys such as gold-germanium from coming in contact with any container. In this way it will be possible to achieve hitherto impossible standards of purity.

Meteorites: poor man's intelsat?

Those who can remember the good old days when wavelengths below 100 m were "relegated" to amateurs will take pleasure in the belated arrival of the professional in yet another erstwhile amateur province; in this case meteorscatter. Scientists at Lahore University in Pakistan are now exploring the possibility of using the ionisation trails left by meteors as a sort of cheap substitute for the communications satellite. Full of eastern promise you might think, but the snag, of course, is the unpredictability of the meteor trails. Undeterred by this the Pakistani scientists plan to record digital data and then fire it off at high speed whenever conditions are ripe. Quite obviously the wise men of old who followed the star in the east never guessed the habit would be catching!

Sixty Years Ago

The contents of our November 1915 issue must have been frustrating in the extreme for the thousands of amateurs who were forbidden even to possess "wireless" parts, be they for transmission or reception. The journal was full of the activities of military and marine operators, but the war had put paid to any participation by unofficial listeners or operators. The most tantalizing article was on the exposure of German neutrality violation at their station at Sayville in the USA. Apparently the Germans were using innocent-sounding commercial messages to convey military information from the US to German submarines, and an American experimenter, C. E. Apgar, had recorded the messages on wax cylinders. Sayville was promptly taken over by the US authorities.

The editorial of this issue contained what may have been one of the first references to a "black box." The writer of the editorial was promising a bumper Christmas issue and said "A notable feature will consist of a brightly written story covering the twenty years (more or less) which have elapsed since Senatore Marconi landed with his little black box on the shores of England."

More from the Berlin show

An improved model of the three-yearold Philips VCR video cassette recorder was introduced, model N1500 having sold an estimated 90,000 units. As well as the obvious areas of improvement, such as greater integration of components and re-styled appearance, stability has been improved, a "stop-motion" facility added and a greater bandwidth achieved -3.1 MHz for the luminance channel instead of 2.7 MHz . Model N 1460 also features the stop-motion and wider bandvidth, but is a playback-only unit. The new models sell for DM2750 (DM2450 for the N1500) and DM1980.

Sony gave the first European demonstration of their 305 cm colour projection system, VPK1200E, using a spe-cially-developed Trinitron tube. Sony's president, Akio Morita, said at a press conference that with tape recorders and colour television being the company's two main technologies, Sony saw their future in combining the two. He told Wireless World that in future colour tv sets would have a cassette system built in, especially as the choice of television broadcasts was small and receivers were in use for only a limited time. Units incorporating a 48 cm colour receiver and Sony's new 1.3 cm Betamax cassette system are being prepared for marketing in the US for $\$ 2,295$. The outstanding feature of the Betamax system is its very low tape consumption - lower in fact that BASF's LVR proposal. It achieves this by reversing colour phase polarity on alternate tracks, thus allowing guard bands between diagonal video tracks to be eliminated. A comb filter technique is used to deal with remaining crosstalk.

Because of the greater penetration of colour television receivers, and the joint venture with MCA, Philips plan to market their VLP video disc system first in the USA during the latter part of 1976. Marketing in Europe is planned for 1977, with "software" probably being mostly supplied by Polymedia, a $50: 50$ Philips and Siemens venture. There are hopes that the potentially competitive systems under investigation by Zenith and Thomson-CSF, will produce compatible discs - Zenith have now chosen an optical system and have demonstrated compatibility on a Philips player, and Thomson are reported to be thinking in terms of a reflective disc.

Since our last report on VLP players (pages 541/2, 1973), a further servocontrolled mirror has been added. The single pivoted mirror behind the objective lens and its control system allowed for radial tracking corrections due to eccentricity of the track. Though eccentricity of the hole and player combined is less than $50 \mu \mathrm{~m}$ a longitudinal correction is needed to avoid timing errors, provided by a second orthogonal mirror and servo system. Other improvements have enabled a full composite video signal to be recorded
with a 5 MHz bandwidth, instead of translating the colour subcarrier downward and limiting luminance bandwidth to 3 MHz .

The Rabe MDR magnetic video disc recorder appears now to operate at 33 $\mathrm{rev} / \mathrm{min}$ - when we first reported this development, speed was $156 \mathrm{rev} / \mathrm{min}$ (p.542, 1973), but the unit wasn't available at the time of our visit. The unit is expected to be avilable at the end of the year for DM2,000-2,300. The most likely problem this will meet is that due to dust on the disc surface good head to disc contact being important to prevent dropout. Then there is the duplicating problem to be tackled.

Transcription units

A host of new cassette decks have the Dolby B system fitted (many being front-loading decks) - Akai, Braun, Elac, Grundig, ITT, Kenwood/Trio, NAD, Pioneer, Saba, Sanyo, Sharp, Tandberg, Telefunken, Uher and Wega (now owned by Sony). Some have both Dolby B and the Philips d.n.l. built in, such as the Braun TGC450, Elac CD520 and Philips N 2520 , while the Grundig CN700, Sanyo RD4050 and Saba CR833 have d.n.l. only. A new trend is the use of Dolby circuits in music centres, and according to Dolby Laboratories there are now 10 such models. There is still a lack of quality cassette machines with built-in power amplifiers.

Automatic arm lift-off is provided in the new Thorens TD145 turntable unit whilst leaving the pickup arm completely free of any mechanical attachment. A ferrite magnet is attached to a vertical spindle at the pickup arm centre of rotation, and a sensing coil energized by an h.f. oscillator is situated close to it. When the acceleration of the pickup arm in the run-out part of the disc groove is sensed the motor is switched off and the pickup arm lifted using the cueing lift.

The astonishing Technics SP-10 Mk2 professional direct-drive turntable was given its first European showing. Speed drift is held to within $\pm 0.002 \%$ by a quartz-controlled oscillator, giving a playing time repeatable to within ± 0.036 s for a 30 minute l.p. disc! It is insensitive to drag load, lkg not causing any change in speed. Full speed is achieved in 25 degrees of revolution (at $33 \mathrm{rev} / \mathrm{min}$) and the 3 kg platter can be stopped in 30 degrees. Speed change time from 33 to $45 \mathrm{rev} / \mathrm{min}$ is 0.1 s . Needless to say wow and flutter are imperceptible. It includes a $78 \mathrm{rev} / \mathrm{min}$ speed, and the only slight disadvantage we could possibly pick out is the lack of a $16^{2} / 3 \mathrm{rev} / \mathrm{min}$ speed which can sometimes be useful for pickup cartridge testing. But this is no loss for broadcasters, for whom the unit was intended. GBS.

Books Received
Principles and calculations for radio mechanics part 2 by R. A. Braney and A. P. Gilbert. This publication deals with subjects relative to the City \& Guilds Radio Mechanics course 222 and is also suitable for courses 231 and 221. Price $£ 1.90$. Pp. 166. NewnesButterworth, Borough Green, Sevenoaks, Kent TNl5 8PH.

Electronics Theoretical \& Experimental is published monthly and contains a collection of papers by specialists in the electronics field. Most of the papers are theoretical with a full mathematical analysis making them suitable for knowledgeable engineers. Price (annual subscription) $£ 50$. Taylor \& Francis Ltd, 10-14 Macklin Street, London WC2B 5 NF .

SCR applications handbook edited by Dr Richard G. Haft is a very useful paperback devoted to thyristors and triacs. Thirteen chapters cover most aspects of s.c.rs including series/parallel operation, a.c. phase control, and choppers, with the final sections dealing with protection, cooling, and testing of devices. Numerous circuits are given together with the waveforms produced for different modes of operation. Price $£ 1.50$. Pp536, International Rectifier, Hurst Green, Oxted, Surrey.

Directional Broadcast Antennas by Jack Layton. This book deals with the practical aspects of installing, adjusting, and maintaining antennas using minimal theory and mathematics for explanation. Price $\$ 12.95$, pp.209. Tab Books, Blue Ridge Summit, Pa.17214, U.S.A.

The Use of Microphones by Alec Nisbett. This is a useful handbook for those wanting a working knowledge of microphones and recording techniques. The first chapter provides a crash course in sound and acoustics, with subsequent chapters covering speech, music balance, sound with picture techniques and the electronic control of sound. Price $£ 1.75$ (paperback), pp. 168 . Focal Press Ltd, 31 Fitzroy Square, London, W1.

International Handbook of Liquid Crystal Displays 1975 -76 by Martin Tobias. At last! was the cry as I flicked through the pages, a book that will sort out one corner of the confused display market. After a general description of l.c. devices the chemistry of materials is discussed followed by the manufacture of displays. Subsequent chapters cover visual, optical and electrooptic characteristics of the devices with final sections describing drive systems, and lifetimes of l.cs. The book also contains an international directory of the 1.c. industry together with manufacturers of associated components. Ovum Ltd, 14 Penn Road, l.ondon N7 9RD.

Integrated Circuits vol. I analogue circuits, vol. 2 digital circuits, published by A. E. Kluwer. These two data books list details and characteristics of i.cs sold with a PRO Electron classification. Price $£ 6$ and $£ 7.50$ respectively, available from The Technical Press Ltd, Freeland, Oxford OX7 2AP.

What goes wrong?

For several years the New Zealand Association of Radio Transmitters (NZART) has encouraged its branch groups to provide constructional kits for a variety of projects. For example, in 1970 the Otaga branch provided 120 kits of parts for an s.s.b. exciter. P. W. Johnson, ZL4LV, who designed the equipment, has kept careful record of the problems that have arisen during the construction of 30 of these kits, amounting to some 70 faults. Of these, 15 were due to dry joints in soldering; there were 9 wrong parts used; 7 were errors in reading resistor colour codes; 11 parts had been omitted during construction; 2 diodes had been connected the wrong way round; but the most frequent faults, amounting to 20 , arose in the winding and connection of the various inductors, in particular a trifilar-wound wide-band toroid output transformer, even though a special diagram had been provided to help constructors with this component. Of the actual components, only 4 were found to be faulty, less than 0.08 per cent of the total supplied.

From Australia comes the suggestion that cigarette smoking by amateurs may not only be a personal health hazard but can account for a significant number of equipment faults. Ron Fisher, VK3OM, claims that "having looked at dozens of receivers, transceivers and transmitters over the years, there is no doubt that a smoking amateur will have more trouble with his gear that his non-smoking compatriots. The by-product of cigarette smoke will firstly discolour the front panel, fog up the dial and meter faces, and finally work their way into valve sockets, relay contacts and even into the bearings of v.f.o. tuning capacitors. It forms a sticky coating over valves and, in conjunction with dust, forms a substance that will reduce the efficiency of a final stage to a marked extent."

Inflated awards?

A strong attack on the rapidly rising cost of amateur operating awards has been made by Jock White, ZL2GX, contest manager of the New Zealand
society. He suggests that amateurs are now being asked for excessive fees for some awards in what are "blatant money-making exercises" and believes that "the birth of the 'dollar per award'," derived from the "horrendous dollar per QSL" practice which grew rapidly about the time that specially mounted "DXpeditions" became popular.
Jock White accepts that return postage charges for QSL cards have risen alarmingly but considers these could be reduced by appointing accredited amateurs to check cards locally. He is particularly concerned at the recent imposition of the US $\$ 10$ charge for new applications for the DXCC (DX Century Club) and US $\$ 20$ for the five-band DXCC since these awards have become internationally accepted and recognised yardsticks of amateur radio operation.
But the cost of awards and certificates is only one aspect of the many problems that inflation and high postal rates are presenting to organised amateur radio operation. The R.S.G.B. has recently forecast "the worst financial result the Society has ever had in its history" which suggests that the deficit must be in the region of five figures. B.A.T.C. though still in surplus is urgently seeking ways of increasing revenue; many local societies are reducing the number of newsletters and other postal communications with members.
A. O. Milne, G2MI, who for over 30 years has been QSL Manager for the R.S.G.B., has urged amateurs to forget the old saying "the ultimate courtesy of a contact is a QSL card" pointing out that of the $11 / 4$ million cards he receives each year some 600,000 are never claimed and have to be destroyed.

On the bands

After the summer doldrums, maximum usable frequencies for the h.f. bands rose steeply on September 5-6, bringing good long-distance openings back to 21 and 28 MHz . On September 5, the 21 MHz band remained open to the United States to beyond 2230 G.M.T. In view of recent suggestions that there may be a link between sunspot activity and earthquakes it may perhaps be significant that these high m.u.f.'s occurred at roughly the same time as the serious earthquakes in Turkey.
New Zealand amateurs believe they established a new world distance record for the 3.3 GHz band last February with a contact between Murray Willis, ZL2THW on Mount Murchison, 50 miles south of Nelson and Frances Brown-Douglas, ZL2TSM, on Mount Ruapehu, a distance of 238 miles. Height of the northern station was $5,650 \mathrm{ft}$. This follows an early 144 -mile contact made with the same equipment (CV237 feeding a $3-\mathrm{ft}$ dish aerial at both ends) to establish a Commonwealth record.
A recent "World Radio Club" visit to an RAF radio training centre near

Doncaster emphasised the continued importance (and problems) of h.f. radio and c.w. operation under difficult conditions. The 0815 G.M.T. transmission of this BBC World Service programme on Sunday mornings can now be heard on 1088 kHz medium-waves from the new external services transmitters in Suffolk.

Television topics

John L. Wood, G6AHT/T, in CQ-TV lists the following British amateur television stations as regularly active: G6ALT/T, Newcastle-upon-Tyne; G6ACK/T and G6AGC/T, Scarborough; G6AHW/T, Sheffield; G6AEP/T, Rotherham; G6MUR/T, Leicester; G6AHJ/T, Rugby; G6MXW/T, Warley; G6KQJ/T, Wolverhampton; G6ACH/T, Huntingdom; and also $\mathrm{F} 6 \mathrm{BQH} / \mathrm{T}$, Calais, France.

Not all television and slow-scan television amateurs are happy with the latest IARU Region 1 band plans for 144 MHz and $432 \mathrm{MHz} . \mathrm{M}$. T. Crampton, G6AHJ/T (G8DLX), urges that SSTV should use 144.23 MHz rather than the proposed 144.5 MHz which is not covered by a number of popular s.s.b. transceivers and which is used on Sundays for the R.S.G.B. news bulletins. B.A.T.C. is concerned that the proposed vision carrier frequency of 439.25 MHz is too close to the British band edge to permit use of 625 -line vestigial-sideband transmissions to the System I used in the U.K. and appears to have been based on System G used in most of Europe.

In brief

The recent boom in the sale of Citizen's Band equipment in the United States may not be unconnected with a belief that many long-distance lorry-drivers and motorists are using the facilities to pass along thinly-disguised warnings of police speed traps. Recent F.C.C. decisions mean that $C B$ radio can now legally be used "as a hobby or diversion", permit inter-state contacts, reduces the "silent period" between conversations and establishes Channel 11 as a national calling frequency. The demand for CB equipment has caused some manufacturers and distributors to reduce the amount of amateur radio equipment. . . . The Amateur Radio Retailers Association is holding its 4th amateur radio exhibition at the Granby Halls, Leicester, on October 30, 31 and November 1. . . . An R.S.G.B. evening symposium on "Amateur Radio Satellites" will be opened by Pat Gowen, G3IOR, and members of AMSAT-UK (IEE, Savoy Place, London WC2 at 6.30 pm. on November 4). . . . NZART are planning a Golden Jubilee conference in Auckland, New Zealand, from June 4 to 12, 1976 and have arranged group bookings with Air New Zealand.

PAT HAWKER, G3VA

Transmitter power amplifier design - 3

Practical considerations for a two-metre f.m. design using microstrip transmission line impedance matching

by W. P. O'Reilly, M.Sc., M.I.E.E.

The Plessey Company Ltd

The three stage amplifier to be described, which is intended for mobile use in the $144-146 \mathrm{MHz}$ amateur band, operates from a nominal 12 -volt supply and provides an output of 20 W for 150 mW input. In order that the matching networks shall not be critically dependent upon capacitor tolerances, two section networks have been selected for all interstage matching and for the final output network. The resulting bandwidth of the amplifier is somewhat wider than the minimum required. If
greater miniaturisation is required higher Q single section networks could be used, but unless close tolerance capacitors are available trimmers would be necessary and these are both expensive and lossy at v.h.f.

The power transistors used are BLY34, 2N5990, and 2N5991 having output power and gain capabilities of $2.5 \mathrm{~W}, 12 \mathrm{~dB}$; $10 \mathrm{~W}, 7 \mathrm{~dB}$; and $25 \mathrm{~W}, 4 \mathrm{~dB}$ respectively when operated in Class C at 144 MHz with a 12.5 -volt supply. In this design the input stage is operated in

Class $A B$ which provides a gain increase of about 2 dB over Class C operation and provides a smoother increase in output power as the drive to the amplifier is increased.

From equation (1) in part 2 the output transistor requires a load resistance of 2.5Ω. The 50 -ohms load is transformed to 2.5Ω by a two section matching network having an intermediate impedance of 12.5Ω. The parallel equivalent output capacitance of the 2 N 5991 , which is typically 150 pF and corresponds to a reactance of -7.5Ω at 144 MHz , is tuned to resonance by a stripline collector choke.

The Smith chart of Fig. 1 illustrates the steps in designing the final stage output matching network: determine (e.g. from Fig. 5 in part 2) how many sections are required to achieve the required impedance ratio and bandwidth with an acceptable v.s.w.r. (note that more sections provide a lower loaded Q factor and hence smaller v.s.w.r., lower loss and less sensitivity to component tolerances). For this amplifier a two section network has been chosen.

Calculate intermediate impedance points at approximately equal geometric spacing. In this case 12.5Ω is selected as near to the geometric mean of 2.5 and 50.

Determine the stripline impedance to be used for the first section of the matching network. For maximum bandwidth the optimum impedance of

A member of the Wireless World staff has made available a printed circuit board for the strip line r.f. power amplifier. The board, which measures approximately $23 \times 11 \mathrm{~cm}$, is a double sided glass fibre type and is supplied roller-tinned and drilled. The one-off price if $£ 4.50$ inclusive. All cheques and postal orders should be made payable to M. R. Sagin and sent to 11 Villiers Road, London N.W.2.

A component layout diagram will be supplied with the board but will also be published in the final part of this series,

Fig. 1. Output matching network design using a Smith chart.

Fig. 2. Circuit diagram of the 20W v.h.f. power amplifier.
the line is $\sqrt{ } Z_{1}, Z_{2}$, where Z_{1} and Z_{2} are the start and end impedances of the section, in which case a line length of $\lambda / 4$ would be required. When a smaller bandwidth is acceptable a higher loaded Q factor is obtained using a shorter length of higher impedance line. In the present case a 20 -ohm line is used giving a loaded Q of two. Use of a higher impedance line would result in further miniaturization but efficiency would be reduced and closer toleran e capacitors would be necessary.

On the Smith chart draw a circle with centre at $1+\mathrm{j} 0$ - i.e. the centre of the chart - passing through the point $0.125+\mathrm{j} 0$ corresponding to the required 2.5 -ohm load resistance. At all points on the circumference of this circle the modulus of the voltage reflection coefficient, (ρ), is 0.78 . Traversing the circumference clockwise from the point $0.125+\mathrm{j} 0$ corresponds to the change in impedance when moving along the stripline from the 2.5 -ohm point towards the load.

Draw a second circle centred on the $R_{\sigma}(\rho)=-1$ line and passing through $0+\mathrm{j} 0$ and $0.5+\mathrm{j} 0$. The intersection between the two circles at the point $0.13+\mathrm{j} 0.255$ corresponds to the junction of the stripline and the first shunt capacitor.
Draw a straight line from the centre of the chart passing through the point $0.13+j 0.255$. The required length of stripline is now read off from the calibrated scale around the chart. In this case a length of 0.04λ is indicated.

Calculate λ, the wavelength corresponding to 144 MHz on the 20 -ohm stripline. Due to the permeability of the. dielectric, the wave travels at less than its free space velocity, and the guided wavelength is thus less than the free
space wavelength λ_{0} From Fig. 8 in part $2, \lambda / \lambda_{0}=0.5$ for 20 -ohm microstrip in a medium of $\epsilon_{r}=5$, and the free space wavelength is $\lambda_{0}=3 \times 10^{8} /$ frequency $=$ 2.08 m Thus $\bar{\lambda}=0.5 \times 2.08=1.04 \mathrm{~m}$. The required length of line is thus $0.04 \lambda=$ 4.16 cm .

In this amplifier the output capacitance of each of the transistors is tuned to resonance by a stripline collector supply choke. When maximum bandwidth is required the output capacitance and input inductance of the transistors can often be used as components of the matching network. The value of the base return chokes is not very critical but a low unloaded Q factor is required. In this design stripline chokes have been used and the Q factor is lowered by means of shunt resistors.

To ensure that any r.f. power on the supply line does not reach the early stages of the amplifier at a sufficient level to cause instability, very low Q factor inductors are used for supply line decoupling. The inductors are constructed by winding enamelled copper wire around the body of a metal oxide or carbon resistor and terminating the inductor so formed to either end of the resistor. Collector feed networks of this type ensure that the transistors operate into their correct impedances at the required working frequency and into near resistive low impedances at lower frequencies where, due to the increased internal gain of the transistors, the probability of destructive oscillations is much greater.

Printed circuit board

The striplines of the amplifier printed circuit board have been meandered to reduce the space which they occupy. A minimum meander spacing of twice the
conductor width is necessary to ensure that the characteristic impedance is not altered significantly. It is important to avoid running lines parallel to one another over distances approaching $\lambda / 4$ since under these conditions quite strong coupling between the lines can occur. (This effect is made use of in directional couplers which will be discussed in the next article in this series.) Where a stripline abruptly changes direction a chamfer is used to reduce reflections caused by the discontinuity on the line. The p.c. board uses ordinary $1 / 16$ in epoxy-glass board with copper cladding of loz/sq. ft . on either side. It is essential to retain the copper on the reverse side of the board as this acts as an earth plane without which the striplines will not function correctly.

Components

Microstrip amplifiers contain only a minimum of discrete components. In this design apart from the power transistors the only unusual components are the capacitors used in the matching networks. Because of the very low impedances involved in v.h.f. solid state power amplifiers it is essential to use capacitors having very low internal inductance (e.g. at 144 MHz only about lnH inductance is required to create a l-ohm reactance). Unencapsulated n-p 0 ceramic chip capacitors are ideal. Also suitable, but more expensive, are porcelain chips and uncased mica capacitors. To achieve reactances of 20 ohms or above, ceramic or mica capacitors with very short leads may be used, but it is advisable to connect several low value capacitors in parallel to achieve the required total capacitance.

Fig. 3. Assembly of the power amplifier.

(a)

(b)

(c)

(e)

Fig. 4. Component mounting. In (a) and (b) spacers used in mounting a power transistor are not of the correct length, straining stripline leads and possibly ccusing fracture of package wall. In (c) the spacer is of the correct length.
(d) through connection (e) chip capacitor mounting (f) typical resistor mounting (g) how low v.s.w.r. coaxial to stripline transition is made.

Construction

Fig. 3 shows a suggested method of constructing the power amplifier and the following notes should help in assembly.

- Select a heatsink having a thermal resistance to free air of $<1^{\circ} \mathrm{C} /$ watt. This will permit safe continuous operation at ambient temperatures up to at least $50^{\circ} \mathrm{C}$. If only intermittent operation is envisaged a less effective heatsink may be used, but the maximum duration of transmission must be restricted to avoid damaging the transistors.
- The input stage requires a $<$ $40^{\circ} \mathrm{C} /$ watt heatsink and since the collector is connected to the case of Tr_{1} an insulated heatsink of the clip-on type having low capacitance to ground is most suitable.
- Fig. 4 shows the method of connecting the components and coaxial cables to the microstrip lines. The power transistors must be bolted to the heatsink prior to soldering. The recommended stud torque for transistors of this type if 3.5 to $6.5 \mathrm{lb}-\mathrm{in}$; excessive torque will result in damage to the threads of the copper stud. The surface of the heatsink should be smooth and flat with no burrs around the transistor mounting holes.
- If available, a smear of high thermal conductivity silicone compound such as Midland Silicones MS2623 should be used to improve the thermal contact between the transistors and their heatsink.

Caution. Most stripline r.f. power transistors contain a layer of beryllium oxide between the silicon and the metal stud to provide high thermal conductivity and electrical insulation for the collector. This hard white material is extremely toxic and dust particles which result from fracturing the material must not be inhaled or allowed to enter the body via a cut or wound. Do not attempt to examine the interior of this type of transistor. In the event of damage faulty units should be returned to the manufacturer for disposal.

Testing

When a new power amplifier has been assembled there is always the possibility of a faulty component, badly soldered joints or an accidental short circuit and so it is essential that a careful initial testing procedure be carried out if the chance of an unexplained and expensive device failure is to be minimized. The following precautions, which are recommended for initial testing of the 2-metre mobile power amplifier, are generally applicable to the initial testing of solid state r.f. power amplifiers.

- Check that all components are correctly connected giving special attention to the orientation of stripline transistors. Ensure that the assembly is free from solder splashes and other foreign material.
- With the output of the amplifier correctly terminated, preferably via a wattmeter, and the input drive set to a very low level, monitor the supply current as the supply voltage is gradually increased to about 70% of nominal. The quiescent current for this amplifier should be less than 20 mA at 8 V supply. A power supply with a variable electronic current limit is ideal for initial testing. A heavy quiescent current is indicative of a faulty connection or component.

Fig. 5. Input/output characteristic of the amplifier over the $144-146 \mathrm{MHz}$ band.

At the midband frequency gradually increase the drive to the amplifier. The output power and supply current should increase together. If they do not the current to each stage should be checked to determine the location of the fault. Any discontinuity in either output power or current consumption as drive is increased is an indication of instability and should be investigated and corrected before proceeding to test at full supply voltage when low frequency instability could result in destruction of the transistors.

- A spectrum analyser is extremely useful when the first prototype of a new design is being evaluated. The harmonic content of the output signal and any tendency for spurious or sub-harmonic instabilities under conditions of varying supply voltage, drive level or load mismatch may be monitored.

Matching network components

Input to Tr_{1} Single section	Microstrip line			$\begin{aligned} & \text { Fraction Length } \\ & \text { of } \quad(\mathrm{mm}) \end{aligned}$		Capacitor			
	Circuit Ref.	$\begin{gathered} \mathrm{Z}_{\mathrm{o}} \\ \text { (ohms) } \end{gathered}$	Width (mm)			Circuit Refer-	Value (pF)		
				wavelength					
50 ohms to (12.5+j1) ohms	$S L_{1}$	50	2.5	. 073	79	C	33.4		
Interstage Tr_{1} to Tr_{2} 1 st section									
50 ohms to 12.5 ohms	SL_{4}	50	2.5	. 073	79	C_{5}	33.4		
2nd section									
12.5 ohms to ($3+j 1$) ohms	SL_{5}	50	2.5	. 014	15	C,	100		
Interstage Tr_{2} to Tr_{3} 1st Section									
10 ohms to 3 ohms	SL_{8}	20	8	. 037	38.5	C_{10}	152		
2nd Section									
3 ohms to (1 ¡j0.5) ohms	SL_{9}	20	8	015	15.6	C_{12}	525		
Tr_{3} to Load 1 st Section									
2.5 ohms to 12.5 ohms	$S L_{12}$	20	8	. 04	35.4	C_{15}	172		
2nd Section									
12.5 ohms to 50 ohms	SL L_{13}	50	2.5	073	79	C_{18}	33.4		

Components

Capacitors 2, 9, 14, 3, 6, 11, 19, 4, 5, 18 ,
10,7 , and 15 are all 50 V n-p 0 unencapsulated ceramic chip.
D_{1} BAX12 or similar high conductance silicon diode

In this design, stability is ensured by careful supply line filter design and the use of low Q base return chokes. This ensures that a low source impedance is presented to the transistors at frequencies well below the operating band where the gain is much higher. Due to the inherent inductance of the low value resistors R_{4} and R_{6} very little gain at v.h.f. is sacrificed.
Fig 5 shows the input/output characteristic of the amplifier over the $144-146 \mathrm{MHz}$ band. A saturated output power approaching 25 W is obtained for a total current consumption of 3.3 A at 13.6 V . This corresponds to an overall efficiency in excess of 50%. The collector efficiency of the output stage is over 75\% when operating into a matched load.
(To be continued)

References

1. Jessop, G. R., A compact bandpass filter for 144 MHz , Radio Communication, June 1971, Vol. 7, No. 6, p. 390.
2. Matthaei, G. L., Young, L. and Jones, E. M. T., Microwave filters impedance matching networks and coupling structures, McGraw Hill, 1969.

Function generator kit

Two function generator kits based on the XR-2206 i.c. are now available from Rastra Electronics. Designated the XR-2206KA and KB both kits comprise a p.c.b., function generator i.c. and instruction manual but the last mentioned also contains the external components necessary for a complete circuit. The complete generator offers sine, triangle and square wave outputs with four overlapping frequency ranges which give an overall range from 1 Hz to

WW 301 for further details

WW 302 for further details

100 kHz . Total harmonic distortion of the sine wave is typically 0.5%, and the sine/triangle output can be varied from 0 to 6 V peak-to-peak from a 600Ω source. The square wave is available at a sync output terminal for oscilloscope synchronizing or driving logic circuits. The circuit also has a.m. and f.m. capabilities. Rastra Electronics Ltd, 275-281 King Street, Hammersmith, London W6 9NF.
WW 301 for further details

Video tape printer

This is a half-inch video cartridge copier comprising two separate units, a master tape recorder and a tape "printer." The tape recorder will accept inputs from a variety of media, including colour or black and white television cameras, monitor receiver, record player or microphone and produces a $1 / 2$ in master tape. The tape so produced can then be loaded into the duplicator and up to 1,000 copies printed off.

Copying is at 10 times normal speed and operation is fully automatic. National Panasonic (UK) Ltd, Whitby Road, Slough, Bucks.
WW 302 for further details

WW 303 for further details

Moving coil meters

A range of 240° moving coil meters called Linicators will measure any parameter that can be represented by a change in direct current or voltage. The makers claim that these meters have a completely linear, or exactly repeatable non-linear, scale with an accuracy to within 1% which is achieved by a patented self-compensating design. A range of cases with diameters from 52 to 250 mm is available and movements with sensitivities of greater than 1 mA

WW 304 for further details

WW 306 for further details
f.s.d. Smiths Industries Ltd, Industrial Division, Waterloo Road, Cricklewood, London NW2 7UR.

WW $\mathbf{3 0 4}$ for further details

Power supply

Three types of laboratory bench power supply units are being offered by Gresham Lion. All have a maximum output voltage of 30 V and two are dual output types. The GBS $30 / 25$ is a single output, $0-2 \mathrm{~A}, 0-30 \mathrm{~V}$ unit; the GBS 30 $/ 1 \mathrm{D}$ is a dual output $0-30 \mathrm{~V}, 0-1 \mathrm{~A}$ unit and the GBS $30 / 2 \mathrm{D}$ is a dual output $0-30 \mathrm{~V}, 0-2 \mathrm{~A}$ unit.

Each of the units is fitted with a voltmeter and an ammeter, and has coarse and fine output voltage and current controls. Gresham Lion Electronics Ltd, Gresham House, Twickenham Rd, Feltham, Middx TW13 6HA.
WW $\mathbf{3 0 5}$ for further details

Quartz chronometer

The model 401 is a solid state chronometer which uses a 3 MHz crystal to achieve an accuracy to within one second per month at room temperature. The unit is powered from either the mains supply of a $12 / 24 \mathrm{~V}$ external battery, with an optional self-contained nicke-cadmium battery.

Seven-segment l.e.d. displays are used in the chronometer which has four versions available either as ready built units or as kits. Electro Systems and Timing Co, 48 Robinson Road, Loudwater, High Wycombe, Bucks HP13 7BJ.
WW $\mathbf{3 0 6}$ for further details

WW $\mathbf{3 0 5}$ for further details

WW $\mathbf{3 0 9}$ for further details

Push button tuner

The CT9 is a novel, patented push-button selector system, coupled to a car radio tuner. Being extremely slim, the design can be combined with a car cassette player mechanism and still be mounted in the normal dash aperture. Autonnic Ltd, Tollesbury, Essex.
WW 307 for further details

Push-button switch

The DSR1066 is an addition to the Bulgin DS 1000 series of push-button switches. Requiring only a simple push-fit to a panel, it can be illuminated if required, carry messages and is a push-on, push-off action.

The contacts are twin s.p.c.o. rated at $5 \mathrm{~A}, 250 \mathrm{~V}$ with the low voltage illumination being isolated from the switches. Available with five lens colours, the components can be assembled with other items from the DS 1000 series, to extend the choice of panel presentation and switching configurations. Bulgin \& Co. Ltd, Bye-pass Road, Barking, Essex IGll 0AZ.
WW 308 for further details

\mathbf{X}-Y recorder

A potentiometric $X-Y$ recorder, suitable for use with A4 standard size graph paper, has been introduced by S.E. Labs (EMI) Ltd. Known as the SM225 Mk II, it features electrostatic chart retention, a zero point which can be set in any

WW 307 for further details
position and a 'zero check' switch for instant zero indenting. Chart location is achieved using two points of light as a reference.
Two versions are available, either with 14 steps of sensitivity from $0.5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ with an interposed vernier adjustment, or with 16 steps between $0.05 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$.

Additional options include a fixed range input for single function operation and a chart feed and winding adaptor for 180 mm wide roll-chart application. SE Labs (EMI) Ltd, North Feltham Trading Estate, Feltham, Middlesex.
WW 309 for further details

Digital multimeter

The TR-6656 is a digital multimeter with a d.c. voltage measurement accuracy of 0.01% of reading and a resistance accuracy of 0.015% of reading.
In addition to measuring a.c. and d.c. voltage, direct current, and resistance the unit also measures frequency, period, time interval and incorporates auto-ranging, start and stop inputs together with other separate inputs for the measurement of current, resistance and voltage. REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.

WW 310 for further details

Instrument cases

A range of p.v.c.-clad Colorcoat steel cases is being introduced by Vero and is to be called Veropak. Five sizes are

WW 308 for further details

WW 310 for further details
offered with a fixed height of 158 mm and depth of 220 mm , these being in widths of $278 \mathrm{~mm}, 316 \mathrm{~mm}$ and 405 mm . The 316 mm wide case is also available in a 308 mm high version and the 405 mm case in an additional 114 mm height.

Ventilation louvres are cut in the rear and base panels and the front panels are anodised. Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.

WW 311 for further details

H.v. probe

A high-voltage probe with a meter mounted in the handle is being marketed by Precision Instrument Laboratories. The scale has an accuracy of 2% at 25 kV and an f.s.d. of 40 kV .

The probe tip is 13 in long and capable of reading under the corona caps of most TV tubes. Price $£ 22.00$ plus VAT. Precision Instrument Laboratories, Instrument House, 212 Ilderton Rd, London SE15 1NT.

WW $\mathbf{3 1 2}$ for further details

D.i.y. potentiometers

The MOD POT components are designed to permit design engineers to assemble prototype potentiometers in a wide variety of configurations. They consist of parts for the Allen-Bradley Series 70, \%/sin square potentiometers and can be offered in either hot-moulded carbon or cermet resistance elements and in single, dual, triple and quad control versions. In addition a variety of switch, drive, shaft, bushing lug and terminal arrangements are possible. Allen-Bradley Electronics Ltd, Pilgrimsway, Bede Industrial Estate, Jarrow, Tyne and Wear NE32 3EN.
WW $\mathbf{3 1 3}$ for further details

Tool cases

Topper are adding to their existing range of carrying and tool cases by offering specialist cases in sizes up to 30 $\times 15 \times 7 \mathrm{in}$. Suitable for use with audio-visual equipment, telecopiers and portable electronic units, they are designed to protect against a wide range of environmental hazards. Topper Cases Ltd, St. Peter's Hill, Huntingdon PE18 7ET.
WW 314 for further details

Resistance element

Suitable for measuring temperature on plane and slightly curved surfaces, the WF 60 resistance element can be used in the temperature range $-250^{\circ} \mathrm{C}$ to $+600^{\circ} \mathrm{C}$. Designed to withstand vibration and display long term stability with a high response rate. Degussa Public Relations Department, D6000 Frankfurt am Main 1, Postfach 2644, Germany.
WW $\mathbf{3 1 5}$ for further details

WW 311 for further details

WW 312 for further details

WW 315 for further details

WW 314 for further details

P.c. connectors

A range of printed-circuit connectors are now available from Dieter Assmann Electronics, suitable for p.c.bs of thicknesses from 1.4 mm to 2.54 mm and having single or double sided contacts.

From six to 146 contacts per connector can be provided in the standard range or by using the modular connectors, series $\mathrm{A} 2-\mathrm{MS}$ or $\mathrm{A} 3-\mathrm{MS}$ a virtually unlimited number of contacts can be obtained.

Using appropriate end flanges, the connectors can be adapted for horizontal or vertical mounting, or used unmounted. Contacts are of gold or nickel plated phosphor bronze and can be supplied for 3A or 5A loads. Dieter Assmann Electronics Ltd, Victoria Works, Water Lane, Watford, Herts.
WW 316 for further details

Multi-turn trimmers

An addition to the capacitance range of p.t.f.e.-dialectric Tetfer trimmers has been announced by Jackson Brothers. It is called the $8 \mathrm{~mm}, 20 \mathrm{pF}$ Tetfer Trimmer; Cat.No. 6030 and is mounted on an 8 mm diameter ceramic base. Tolerance at maximum 20 pF is $-0 \%,+30 \%$ in a temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The temperature coefficient is zero within $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, the power factor better than 0.001 at 1 MHz and the tuning resolution, 18 turns from minimum settings to maximum. Jackson Brothers (London) Ltd, Kingsway, Waddon, Croydon, Surrey.
WW 317 for further details

Radiocom system

The SC905 is an addition to the SC900 series radio communications systems from Sonab. It consists of a simplex central processing unit, a u.h.f. transmitter operating on one channel in the $420-470 \mathrm{MHz}$ range and the option of a v.h.f. receiver providing duplex operation. Controlled by dial telephone, the c.p.u. converts the dial impulses to tones used to call the mobile stations.

These consist of pocket units, $53.5 \times$ $126 \times 19 \mathrm{~mm}$, containing_a receiver, an f.m. transmitter operating in the 160 MHz band and a decoder for selective calling. The range of the base unit is claimed to be 5 miles. Sonab Communications Division, Sonab Ltd, P.O. Box No. 4, Oldfield Road, Hampton, Middx TW12 2HN.
WW 318 for further details

Laboratory power supply

Powerlab is a novel design of power supply from ITT. Unlike most of its competitors, it provides no panel meter. Selection of voltages is by push button.

A choice of three voltages, $5 \mathrm{~V}, 10 \mathrm{~V}$ or 15 V , is offered from two isolated outputs, or a further three, $10 \mathrm{~V}, 25 \mathrm{~V}$ or 30 V by connecting the outputs in series by pushbutton. The output voltage is variable by slide control over a range of $\pm 10 \%$ but can be reset, on the 5 V range, to within 20 mV without reference to an external digital voltmeter.

An l.e.d. indicates constant current limiting, which is adjustable from 10% to 110% of full load current, which is 2 A on the twin 5 V range and the 10 V series range and 1 A on the remaining twin and series ranges. This can be doubled by selecting parallel arrangement of the outputs. ITT Components group Europe, STC Ltd, Edinburgh Way, Harlow, Essex.
WW 319 for further details

Solid Stafe Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Transient spike suppressor

Two "transtectors" designed for protecting circuit assemblies from transients and noise can be used in parallel with standard scr "crowbar" units for fast acting (5 ns) protection. They operate by clamping input and output lines to a specified voltage. Types V26 and V216 offer instantaneous clamping at 6.5 V d.c. at 1 A , and 16.5 V d.c. at $400 \mathrm{~mA} \pm 5 \%$ and peak pulse currents of 120 A and 67 A within an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
WW 320 for further details Coutant

Video amplifier

The SL514 has an open loop gain of 70 dB , temperature stable. giving a closed loop gain achievable using standard operational techniques. Slew rate is $175 \mathrm{~V} / \mu \mathrm{s}$ and a setling time of 50 ns to 1%. The bandwidth is 0 to 100 MHz at 20 dB and the device is encapsulated in a 10 -lead T0-5 package.

WW 321 for further details Plessey

C.m.o.s. phase-locked loop

The MC14046 contains two phase comparators, a v.c.o. and a zener diode regulated internal supply line. The v.c.o. operates at frequencies up to 1.4 MHz with a supply voltage of 10 V d.c. Power dissipation is of the order of microwatts. WW 322 for further details Motorola

Dual transistor

The 2 N 5902 series of monolithic j.f.e.ts have a diode-isolated substrate designed to reduce leakage current to 0.1 pA over input voltage swings up to 30 V . Common mode rejection is typically better than 120 dB and the transistors can be matched to within 5 mV and drift to within $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The devices are offered in 8 -pin, TO- 99 cans.

National Semiconductor
WW 323 for further details

R.a.m.

The Sl103X, is a dynamic 1024-bit r.a.m. with a data access time of 120 ns . It has a read-write cycle time of 270 ns and is available in an 18-pin d.i.p.
WW 324 for further details
AMI

D.c. - d.c. converter

A thick-film d.c.-d.c. converter, model TG311 has been designed to handle input voltages of 0.8 to 1.6 V and to give up to 15 V d.c. output. The efficiency is claimed to be 50% or greater over the operating temperature range and the circuit occupies approximately one cubic centimetre.
WW 325 for further details
Redac

Schottky clock

The CO-238 is a 14 -pin, d.i.p. crystal oscillator available at frequencies up to 1000 MHz to drive Schottky t.t.l. Power supply is 5 V d.c. and the oscillator will fan out into 10 loads. Stability is claimed as $\pm 0.0025 \%$ over the range $0-70^{\circ} \mathrm{C}$.
WW 326 for further details Lyons

Suppliers

Coutant Electronics Ltd, 3 Trafford Rd, Reading RG1 8JR.

Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW.

Motorola Inc, Semiconductor Products Division, York House, Empire Way, Wembley, Middx.

National Semiconductor UK Ltd, The Precinct, Broxbourne, Herts EN 10 7HY.

AMI Microsystems Ltd, 108A Commercial Rd, Swindon, Wilts.

Redac Software Ltd, Newtown, Tewkesbury, Gloucestershire GL20 8HE.

Lyons Instruments Ltd, Hoddesdon, Herts.

LOW COST VOLTMETERS

PORTABLE INSTRUMENTS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}$ " scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes 7 " $\times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE G db RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz} .-100,-90 \ldots+50 \mathrm{~dB}$, scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$.
RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$
from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be
set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUT IMPEDANCE: Above $50 \mathrm{mV}:>4 \cdot 3 \mathrm{M} \Omega<20$ pf.
On $50 \mu V$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$.
AMPLIFIER OUTPUT: 150 mV at f.s.d.

sixin $£ 7$
 type
 TM3B
 88

BROADBAND VOLTMETERS

H.F:VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 IV f.s.d. Acc. $\pm 4 \% \pm 1 \%$ off.s.d. at $30 \mathrm{MHz},-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ $10+20 \mathrm{~dB}$. Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F.RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} . .300 \mathrm{~V}$. Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale.
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$. Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., ± 2 pA. CZ scale.
LOGARITHMIC RANGE:
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d.
RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ atf.s.d. into $>1 \mathrm{k} \Omega$

mion

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA, 10pA, 30pA... 1 mA (1A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. ± 0.3pA. $\mathrm{LZ} \& \mathrm{CZ}$ scales. RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges.

Stable companions

Wide-range universal bridge B602 0.1-100MHz source/detector SR268 from Wayne Kerr

SPECIFICATION

B602

Frequency range:
Accuracy:

Overall impedance range

SR268

Frequency Range
Frequency accuracy: Shori Term Frequency
Stability
Output leve!
Output attenuator: Input sensitivity for
10% meter deflection
Input attenuator:
Detectorbandwidth

100 kHz to 10 MHz
1% up to 3 MHz .1 pf to 10 nF 10Ω to $100 \mathrm{k} \Omega$ $1 \mu \mathrm{H}$ to 10 mH
1 fF to 1 mF
$100 \mu \Omega$ to $100 \mathrm{M} \Omega$ (10 n 2 s to 10 kV) 10 pH to 10 H

100 kHz to 100 MHz in 9 bands
(SR268L 46.5 kHz to 46.5 MHz)
2-3\% according to band used.
0.01\%
$0.5-2.0 \mathrm{~V}$ according to band used.
3. 6.10 .20 dB adduive steps. 75Ω

1 to $30 \mu \mathrm{~V}$ according to frequency setting
4 steps of $20 \mathrm{~dB} .75 \Omega$
$2-3 \%$ according to band used

For more information, either phone Bognor Regis (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex Telex: 86120. Cables: Waynkerr, Bognor

The B 602 transformer ratio arm bridge measures impedance in all four quadrants of the complex plane over the frequency range 100 kHz to 10 MHz . Because of novel features incorporated in the design, values from virtually a short circuit to an open circuit can be measured. This bridge has established a standard of performance and flexibility which is unobtainable from any other radio frequency bridge

A standard inductor is included in the bridge network in addition to standards of capacitance and resistance enabling a periodic calibration of the scales which are correct at any frequency between 100 kHz and 10 MHz

There are only two balance controls. One is direct reading in resistance and conductance, the other in capacitance and inductance and there is no interaction between them.

The stability realised allows a discrimination of 0.1% to be obtained for all types of measurement with a general accuracy of 1% over most of the impedance and frequency range.

The bridge is shown together with the SR268 Source and Detector which can also be used with other bridges in the Wayne Kerr range over the frequency band 100 kHz to 100 MHz . Nine
frequency ranges are provided by this instrument and a single tuning control adjusts both source and detector to the exact frequency required.

Meticulous screening between the two sections provides freedom from bridge measurement errors due to leakage of the source signal into the detector. Common mode rejection transformers are incorporated in the input and output. networks to reduce interference from unwanted signals, and push button attenuators are included to assist the logarithmic detector circuit to indicate approach of the bridge balance point.

MEET OUR SCIENTISTS

011420 - SENIOR

1420 point)

Algebraic mode operation
Chain operations
Change sign operation
Three memories $\cos ^{-1}, \tan ^{-1}$)
Radian or degree selectable
π constant
Logarithms ($1 \mathrm{n}, \log$)
Anti-logarithms ($\mathrm{e}^{\mathrm{x}}, 10^{\text {n }}$)

Gamma function ($\Gamma(x)$)

Power function $\left(y^{*}\right)$
Reciprocal ($1 / \mathrm{x}$)

Automatic selection of correct notation for result display (scientific or floating

Dome keyboard for excellent response and preventing double entry input

Display and memory exchangeable Trigonometric functions (sin, cos, tan) Inverse-trigonometric functions isin '

Combinatorial functions ($n!,\left(h_{k}^{n}\right),(b)$)
Normal distribution function $(\operatorname{Pr}(x))$
Group operations ($\Sigma \pm, \sigma, \bar{x},\|x\|)$
Group controls ($K \uparrow, K \downarrow, \Sigma \uparrow, \Sigma \downarrow C L_{\text {GAP }}$)

Square root (\sqrt{x}) -
Square $\left(x^{2}\right)$
Sum of squares $\left(\Sigma x^{2}\right)$
Summation (Σ X) Item count (n) Mean value ($\overline{\bar{x}})$ Mixed chain operations with parentheses approach (up to two levels)

Q1 1421 - PROGRAMMABLE

besides having the capability OF A SCIENTIFIC CALCUEATOR:

- 9-digit LED display

8 digits capacity for data entry or results ($10^{3} \sim 10^{8}$)
Full floating point
Automatic display blanking
Three-register operational stack -Change sign operation

Reverse polish notation
Display and \vec{Y} register exchangeable One accumulating memory (Memory store. Memory recall, $M+X, M-X$ and $M+X^{2}$)
Trigonomerric functions (sin cos, tan) Inverse trigonometric functions (sin ${ }^{-1}$. $\left.\cos ^{-1}, \tan ^{-1}\right)$
Radians and degrees exchangeable
π constant
Logarithms (In. log)
Anti-logarithms $\left(e^{x}\right)$
Power function $\left(y^{x}\right)$
Reciprocal $(1 / x)$
Square root (\sqrt{x})
Square (X^{2})
IT CAN LOAD ANY 102 STEPS PRO. GRAM TO HELP YOU SOLVE THE REPEATED, ENORMOUS, COMPLEX PROBLEMS:

The Qualitron Programmable Catculator can be used to memorize any combination of key entrys while in the LOAD mode, then automatically plays back the programmed sequences as often as desired in the RUN mode.
Up to 102 steps can be stored in multiprogram sequence blocks. Each block, or program can be executed individually or you can make the decision to branch to specific program, run each in series or perform intermediate calculations from the keyboard.

Q1 1439—FINANCIAL

SPECIFICATION
: 110.0 oiq LED dispoy
10 digit mantike
 - Aulomatic selection of correct notration Tor result display ixcientific or fioationg
pointl
Oome Dome keyboasd tor excellent rexsonse
and preventing double entry input BASIC FUNCTION $\mid+\cdots, \ldots$ in BASIC F Alosebrace mode operation
Constant opertions Constant operations
Repeal'operations Crean operations

PRICE: $£ 31.25 \begin{gathered}\text { (Excluding } \\ \text { VAT) }\end{gathered}$ VAT)

Q1 1444 - SLIDE RULE

Optional extras, A/C adaptors $£ 2.50+$ VAT rechargeable batteries $£ 4.00$ per set + VAT VAT is 8% on all calculators, $P \& P 75 p$ per unit. Remittance with order please
An
חתمחתחת
OM
पषणणएण Company

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

चப■lix

me Jen

The Monitor H.P.D. represents a further outstanding improvement of a loudspeaker system which has become regarded as a quality standard over the last 25 years by Recording Studios throughout the world. There is a very good chance that your favourite records and tapes were monitored on Tannoy Dual Concentric loudspeakers, and to select these superbly engineered, individually hand-assembled speakers for your music system assures you of the same professional performance.

	$\begin{gathered} 260 \mathrm{~mm} \\ 10^{-} \end{gathered}$	$\begin{gathered} 310 \mathrm{~mm} \\ 12^{*} \\ \hline \end{gathered}$	$\begin{gathered} 410 \mathrm{~mm} \\ 15^{\circ} \end{gathered}$
Power Handling Capacity*	50W	60W	$85 . \mathrm{W}$
Frequency Response	$27-20.000 \mathrm{HZ}$	25-20.000 HZ	$23-20,000 \mathrm{HZ}$
Intermodulation Products	less than 2%	less than 2%	less than 2%
Impedance via Crossover nerwork	8 ohms (5 ohms min)	8 ohms (5 ohms min.)	8 ohms (5 ohms min.)

The Girdacoustic Cone improves frequency and transien response, gives much increased power handling capacity and

Patented Magnetic Shunt combined with specially treated and selected steel gives maximum magnetic flux in the unique Tannoy twin gap system. I sensitivity and damping.

The High Temperature Voice Coil assures absolute climatic stability and great mechanical strength together with much improved power handlıng capacity.

Unique High Frequency Unit with separate diaphragm and voice coil coupled to the horn by a 19 element phase-matching system.

The Tanoplas Surround
gives low bass resonance with excellent mechanical stability and freedom from edge rellections.

High Power Crossover Unit with solid dielectric condensers throughout, combined with treble and roll-off controls.

You could easily make our 12-speed chart recorder faster than you thought possible.

Send away for our 12 -speed, $10^{\prime \prime}$ chart recorder kit-the IR-18M. And you'll receive a very clear, easy to understand instruction manual with it. Which explains every single step. To make light work of assembly and provide you with a high quality chart recorder a lot quicker than you thought.

And just look what you'll be getting. Multispeed capability. With fast, pushbutton switch selection of speeds from 5 seconds per inch to 200 minutes per inch. To give you all the versatility you need.

You'll also get two input ranges, giving accurate voltage measurements of 1 millivolt and 10 millivolts full scale. Excellent repeatability. And a full scale pen response time of one second \quad-comparing favourably with many much higher priced recorders. Take a look at the $1 \mathrm{G}-18$ Solid State kit too. Outputs able using repeatable

Sine-Square Wave Generator from 1 Hz to 100 KHz are availswitch selection.

And its sine and square wave outputs are available simultaneously. With less than 0.1% sine wave distortion. And less than 50 ns square wave rise time.

And, for quick accurate testing of diodes, FETs, transistors, SCRs and triacs, there's the IT-121 Tester kit.

You can see these and other Heathkit electronic kits at the London Heathkit Centre, 233 Tottenham Court Road Or at our showroom in Bristol Road, Gloucester. Otherwise just clip the coupon and we'll send you the complete Heathkit catalogue. Faster than you thought possible. Heath (Gloucester) Limited,
 Dept WW-115, Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

To: Heath (Gloucester) Limited, Dept WW-115, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose a 10 p stamp for postage.

Name
Address

Ferrograph Professional Studio 8Console

Full logic control. Tape motion sensing. Two speeds. Servo-controlled capstan. Constant tape tension. Directreading tape timer (minutes and seconds). Three editing modes. Provision for synchronisation, remote control and remote display panel. Available for line-in/line-out or with mixing and monitoring facilities. IEC or NAB equalisation. Full or
half-track mono, dual track or stereo. Easy access for maintenance. Also available in transportable and rackmounted versions.

For full details contact Ferrograph Prófessional RecorderCompany, 442 Bath Road,Slough SL16BB. Telephone Burnham (06286) 62511. Telex 847297. Cables Brifferro,Slough.

The new TEAC A-7300/2T. Technology to match your talent.

As a professional, you probably know all about TEAC. Our A-3300 Series tape decks have helped to set new standards in the recording industry.

Now we'd like to introduce you to the new A-7300/2T. A superb $1 / 2$ track stereo machine with servo controlled direct capstan drive and full IC logic circuits.

It's an entirely different breed of animal with lots of new features to meet different demands and needs.

There's a built-in 4-in, 2-out mixer. You can plug up to four professional quality microphones or you can connect up to four line level sources, or combine two mic and two line sources together.

An Edit button overrides the take-up reel motor. When engaged from the play mode, this control allows portions of unwanted tape to be easily removed from the supply reel. And an elapsed time indicator shows actual minutes/seconds in all transport modes:

A pitch control provides continuously variable speeds, plus or minus approximately 8% at either of the two speeds of 15 ips and $71 / 2 \mathrm{ips}$. This can be used to compensate for pitch variation of musical instruments or as another element in the creative recording process.

And of course there are all the other advanced features you expect from TEAC. Master input level control, dual concentric output level control, 3-position bias and equalisation settings, $101 / 2$ inch reel capacity, and much much more.

A quarter track version of the A-7300 is also available.

Write to the address below for full literature.

TEAC

Tr TELEDYNE ACOUSTIC RESEARCH

High Street. Houghton Regis,
Dunstable, Bedfordshire LU5 50N
Telephone: Dunstable (0582) 603151
WW-087 FOR FURTHER DETAILS

GRAMPIAN REPRODUCERS LTD. HANWORTH TRADING ESTATE FELTHAM, MIDOLESEX TELEPhone 01-894 9141

THE INSIDE STORY—2
 SUPERB STEREO

Hllustrated here is the stereo decoder sub-system board as used in our high quality F.M. tuner. This tuner has been setting new standards of performance on stereo, giving clear clean sound, in addition to its well thought out controls and operating system. Placed side by side with most top performance tuners, particularly in bad reception areas, the Icon Design tuner gives better and cleaner stereo sound with greatly reduced 'birdies' and other spurious sounds.

How does it do it? Well, these high frequency noises are produced by harmonics of the stereo sub-carrier beating with audio modulation on the adjacent channel transmissions, which are well inside the i.f. filter pass-band. The only way of stopping this interference is to prevent the adjacent channel sounds from reaching the stereo decoder by audio filtering after the f.m. demodulator. This decoder module has such a filter. In conjunction with the main tuner board, this active filter gives an 18 dB per octave attenuation above the upper frequency limit of the stereo information. The result is clear clean stereo even in poor reception areas where 'birdies' are a problem.
The heart of the decoder is the well proven phase lock loop circuit, giving good separation at all audio frequencies without the use of coils. Two more active filters follow to attenuate the switching products in each channel output, ensuring clean recordings.
All our kits are fully guaranteed and backed by a complete after sales service, ensuring your satisfaction.

IN KIT FORM
 €7.05
 READY BUILT
 $£ 9.00$
 Postage 30 p U.K. $+25 \%$ VAT

For full details of our complete range of kits for this tuner, send s.a.e. to:-

WW゙W-038 FOR FURTHER DETAILS

 \title{

Inland motors
 \title{ \section*{Inland motors do the things most do the things most motors can't do}

 motors can't do}}

Inland direct drive torque motors, tachogenerators and DC servo motors respond in milliseconds to rapidly programmed
commands and give precise control of position, speed or tension. servo motors respond in milliseconds to rapidly programmed
commands and give precise control of position, speed or tension. Their high quality and extreme accuracy makes them particularly suitable for instrumentation, data handling and computer peripheral sub-șystems like magnetic tape drives, incremental transport drives and high speed printout systems.

Sizes range from a tiny "inch-cube" torque motor which will give $70 z$ in., to larger motors capable of $3,000 \mathrm{lb}$.ft. Speeds from zero to 10,000 r.p.m. are typical. And all models have high thermal capacity under severe duty cycles. We offer competitive prices, prototype services and application engineering support

Get in touch and see what inland can do for you.

Kollmorgen (UK) Limited, 219 Kings Road, Reading, Berks. Tel: Reading (0734) 68980/65929
Telex: 847032 Tel: Reading (0734) 68980/65929
Telex: 847032
For larger motors for machine tool applications contact: Merit House, Edgware Road, Colindale, London NW9 Tel: 01-205 0500/0538 Telex: 923416

INLAND MOTOR DIVISION

WW - 122 FOR FURTHER DETALLS

PETITE PRECISION!

A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER

AVAILÄBLE IN KÏT FORM OR SEPARATES
EXAMPLE OF FRENCH PRECISION ENGINEERING

Diameter 33 mm
Weight 160 g
Length 125 mm
Torque 105 cmg RPM
approx. 3000
at 12 V DC
Power $9 / 14 \mathrm{~V}$ DC
Batteries
or AC/DC
transformer

Drill. $\mathbf{£ 7 . 0 0}$ P\&P 35p

Now in use by the following GPO, BBC, Atomic Energy Authority, British Nuclear Fuels, Weekend TV, Ministry of Defence, Hospitals,
Opticians, etc.
 P\&P 58p
UK DISTRIBUTUK
PRECISION PETITE LTD
(Les Applications Rationelles Paris) 119A HIGH STREET TEDDINGTON, MIDDX. UK

TEL. 01-977 0878

Now ready!

A new line of VHF tetrodes with PYROBLOC ${ }^{\circledR}$ grids... for super-reliable FM-radio transmitters

- 3 kW to 30 kW of output power.
- Only one power tetrode needed.
- Direct solid-state drive for the output stage.

With a big extra plus: THOMSON-CSF's own RF line-circuit designs for optimum overall amplifier performance and reliability!

THOMSON-CSF

Eddystone EC 958/7 fixed mobile of high-grade professional receivers is ideal for general communication use, retwork monitoring and surveillance, mobile and shipborne installations.
 > Fully tuned front end High stability Digital readout to 1 Hz ISB version available Integral unit for FSK (optional)

 - Fully tuned front end

 - Fully tuned front end - High stability - High stability - Digital readout to 1 Hz - Digital readout to 1 Hz - ISB version available - ISB version available - Integral unit for FSK - Integral unit for FSK (optional)

 (optional)}

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex : 337081
A GEC-Marconi Electronics Company
WW-015 FOR FURTHER DETAILS

At Home Soldering?

You should be - with the LITESOLD CONQUEROR
A superbly handling lightweight iron, fully insulated and earthed for safety. Bits are interchangeable, non-seize, and are available in 16 different shapes and sizes, from $1 / 16^{\prime \prime}$ up to $1 / 4^{\prime \prime}$, in copper and long-life types. (Standard fitting, $1 / 8^{\prime \prime}$ copper single chisel shape). Covers a range of work often needing several different irons.
A special spring stand gives safe, easy location of the iron and spare bits. The heavy heat-resistant base is complete with non-slip pads and bit cleaning sponge.
Send cheque/PO direct, or ask for leaflet.

$3009+$ DP-3000

Latest in our series of information sheets No. 17 details the use of SME precision pick-up arms with this superb turntable from. Nippon Columbia.

A copy will be sent to you on request.
5月1名

The best pick-up arm in the world

Write to SME Limited
Steyning • Sussex - England

Audio Test Set

foramplifiers, mixers tape recorders

Checks... frequency response signal/noise ratio distortion cross-talk wow \& flutter drift
erasure sensitivity output power gain in one compact unit.

Auxiliary Unit provides extra facilities for Studio testing:

Send for leaflet RTS2
Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SL1 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

A member of the Wilmot Breeden group

Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100 W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850V H.T.

EEVand M-OV know how.

THE M-O VALVE CO LTD, Hammersmith. London. England W6 7PE Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. GEC wW-010 FOR FURTHER DETAILS

TDA 2020=20 watts from a chip: hi-fi!

Meaning only 1 per cent distortion over the audio band for a typical output of twenty watts. All for a few hundred millivolts in. The single or split supply arrangement lets you eliminate costly and troublesome electrolytics.
The standard package allows easy assembly. Thanks to thermal shutdown the heatsink
dimensions are not critical and the integral copper slug ensures efficient heat transfer

No problems with loudspeaker connections either, because the output is short-circuit proof.

The TDA 2020 shares its versatile power op amp configuration with the lower-rated TDA 2010.

Two soloists, but a full symphony of applications.

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL
* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.

\author{

* 3 YEAR WARRANTY ON PARTS AND LABOUR
}

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise $(20-20 \mathrm{kHz})$
Other models in the range:

DC-20kHz@ 150 watts + 1db, - Odb 500 watts rms into 2.5 ohms $+0 .-15$ DC to 20 kHz .1 watt 88 Below 0.05\% DC to 20 kHz Below 0.05% 0.01 watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

8 volts per microsecond 1 ohm to infinity 1.75 V for 150 watts into 8Ω 10 K ohms to 100 K ohms Short. mismatch \& open cct. protection $120.256 \mathrm{~V} .50-400 \mathrm{~Hz}$
19" Rackmount, 7" High, 9큥 Deep D150-150 watts per channel

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals. Liquids, Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe. and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price $\mathrm{f} \mathbf{1 7 . 5 0}$ Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price f20.00 (V.A.T. EXTRA)
Write for turther details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD. LONDON. WC1X 8AX
('Phone 01-837 7937)

On balance the best

FlyingSpotColour Telecine

The all in one $16 \mathrm{~mm} / 35 \mathrm{~mm}$ Telecine for 625/525 Standards.
Instant Start - Fast Shuttle - Still Frame Automatic Facilities.

Cintel9000

Economy with Super High Band Broadcast Performance the obvious choice for the cost and quality conscious user.

檪
cminioss
Watton Road, Ware, Hertfordshire, SGI2 OAE, England. Telephone: Ware 3939, Cables: Rank Ware, Telex: 81415 ,
A trading unit within RPI Ltd.

Medelec Limited, with a firmly established reputation earned in the exacting field of medical instrumentation, have developed a range of equipment combining the facilities of conventional oscilloscopes, strip chart and $\mathrm{X}-\mathrm{Y}$ recorders, to provide unique capability.
Fibre Optic Recording increases the clarity and efficiency of data recording, gives low cost records and extends the field of application to new areas of industrial research and development.

To learn more about Fibre Optic Recording and Medelec equipment send today for a new publication "Medelec Fibre Optic Recording'". This gives full information on development, comparisons, economics, case histories and general applications.
Medelec Limited, Woking, Surrey
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

medelec

DC-DC-CONVERTERS

WW-098 FOR FURTHER DETAILS

When you have to go from here

 to here

Go Dymar 1771.

The Dymar 1771 analyses complex waveforms and evaluates distortion and intermodulation products in the AF range.

Designed for the communications industry where it enjoys international acceptance - the 1771 has achieved much wider recognition.

Mechanical engineers use it, forlow frequency structural analysis. Obsessive purists, like audio engineers, swear by it. So do medical electronics specialists. And teachers.

No wonder when, in one package, they get a voltage range of $30 \mu \mathrm{~V}$ fsd to 300 V ; a dynamic
range for relative measurement down to -74 db ; intermodulation better than 70db; and a frequency range of 20 Hz to 50 kHz . Super-het techniques keep selectivity constant and independent of tuned frequency. Crystal filters in the IF amplifier provide the sharpest of selectivity.

Then, so simple it's a revelation, the 1771 has a large, easy-to-read meter. The perfect answer to endless complaints about Mickey Mouse scales that strain the eyes!

You'll want to know more. Use the Reader Reply Service or contact Dymar direct.

The Dymar range of instruments - designed for the mobile land, marine and air communications industry.

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output.

Rated:

Maximum:
Distortion.
Pre-amplifier:

Power amplifier. at rated output: at 25 w output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven
90 watts average power per channel into 5 ohms load.

Virtually zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02\% (typically 0.01% at 1 kHz)

Overload margin.
Disc input 40 dB min.

Hum and noise output
Disc:
-83dBV Measured flat with noise bandwidth of 23 kHz (ref. 5 mV .)
-88 dBV Measured with ' A ' weighted characteristic (ref. 5 mV .)
Line: $\quad-85 \mathrm{dBV}$ Measured flat (ref. 100 mV .) -88 dBV ' A ' weighted (ref. 100 mV .) 17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb .

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

Tanco.10
 TRANSVERTORS

Valradio sinewave and square wave transvertors now incorporate SILICON transistors resulting in greater reliability and more stable performance at high ambient temperatures, including tropical climates.

A wide selection of types are available to drive practically any equipment within the power rating.
A random selection of types:

	Input	Output
C24/60S	$24 v D C$	$115 / 230 v 60$ watts Sine wave
D12/400S	$12 v D C$	$115 / 230 v 400$ watts Sine wave
D12/500T	$12 v D C$	$115 / 230 v 500$ watts Square wave
D24/150T	$24 v D C$	$115 / 230 v 150$ watts Square wave
D12/250/24	$12 v D C$	$24 v D C 8 A$
	Please send forliterature WW675	
VALRADIO LIMITED		
BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 TEN		

Join the Digital Revolution Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV. automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and contaınıng 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flıpflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

Design of Digital Systems contans over iwice as much information in each volume as the simpler course Digital Computer Logic and Electronics All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which. as you can see from its contents also covers many more advanced topics

Designer
 Manager

Enthusiast
Scientist
Engineer
Student

These courses were written so that you could reach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed aṇd must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.
Book 1

plus 50p packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

[^3]

WW-022 FOR FURTHER DETAILS

WW-0I9 FOR FURTHER DETAILS
 Valves, Industrial Valves, T.V. Picture Tubes, Cathode Ray Tubes, High Reliability Valves and a full range of Receiving Valves always available. Professional import and export enquiries welcomed.

Redan House, 1 Redan Place, London W2 4SA
Telephone: 01-727 0101 Telex: 265531
Cables: Edicron London W2
WW-04I FOR FURTHER DETAILS

MEASURE FREQUENCY ANYWHERE WITH MULTIMETERSIZE INSTRUMENT POWERED BY FOUR PENCELLS
Latest technology miniature device uses four 0.3" LED digits to display frequency. 5 ranges with coupled decimal point give resolution of 0.1 Hz to 1 kHz in decade steps.

TAKES UP ALMOST NO BENCH SPACE.
NEW LOW PRICE. 167.50 inc p\&p ex vat.
Mains PSU available which fits inside ready drilled case.

miniature

 BATTERY FREQUENCY METER FM-1FOUR-DIGIT MEMORY DISPLAY FIVE RANGES 4 ppm CRYSTAL.
SIZE $6 \frac{1}{4} \times 3 \frac{1}{4} \times 2 \frac{3}{4}$ in -including knob and terminals

1tam

ITAM 805 (8TRACK) MASTER RECORDER

Fully modular electronics using plugin PCB's through. out. Separate sync and replay amps give identica!
revels. Switchable revels. Switchable
VU's with slow decay. Individual oscillator for each channel. Dolby A switching facilit Comprehensive facilities include sync on all channels, servo con trolled capstan. modularelectron-
ics, variable speed ioptional). relaysolenoid operation. Compact presentation for easy portability.
$£ 1790$ + VAT Fulf console oplional extra Compatible 8-output Mixer available $£ 1260$ + VAT

Industrial Tape Applications

5 Pratt Street, London NW1 OAE Telephone: 01-485 6162. Telex: 21879 WW-101 FOR FURTHER DETAILS

SPECIALISTS IN COIL AND TRANSFORMER WINDING:

Torroidal: c core: high speed high turn bobbin winding: chokes and wave winding any quantity, any rating.

Send for new catalogue.

FANTASTIC OFFER—DIGITAL CLOCK KIT SAVE £££s

- Fast building
- Easy to follow instructions
- No knowledge of electronics required
- The most comprehensive kit and instructions you have ever seen
now only $£ 12.50$
+ £1.50 VAT \& p\&p

OR READY BUILT \& FULLY TESTED £18+£1.90 VAT p\&p

COMET CLOCK DATA
Size $61 / 4 \times 3 \times 21 / 2$ Mains Operation $50 / 60 \mathrm{HZ}$
12/24 hour mode

KIT COMPRISES or separately at:-
1 MOS Clock Chip 12-24 hr option MM5314N 2.95 $40.63^{\prime \prime}$ LED Displays NSN6 1 L
1 Segment Driver Chip
1 Sack Resistors, Caps., Transistors, switch 1 Pack Resistors, Caps., Transistors, sw
1 Double Sided Glass Fibre P.C. Boar
1 Double Wound Mains Tran
1 Circuit/Assembly Manual
1 Futuristically styled Case (s

White Ma siyled Case (state colour), Red, Black, NB All P Mauve, Green, Blue.
-NB All Prices INCLUDE VAT \& p\&p

NEWEO
Ferranti now make high quality tuner diodes for domestic radio and TV app'ications. Low cost production quantities are available for immediate delivery.

ZC100 comes in the proven E-line pack that gives you reliability with economy. Selections on parameter tolerances and matched sets available on request.

Also in the series - Tuner diodes ZC700, 800 and 900 with different Q and tuning ranges to suit all needs.

Phone 061-624 0515 for prices, data and stock details or write to Ferranti Limited, Discrete Components Marketing, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs., OL9 8NP

Distributors

Semicomps L.td; Wembley. 01-903 3161. Telex : 935243 Keighley. 0535265191 . Telex: 517343 ;
Kclso, 2366 \& 2369. Telex: 72692
Edmundson Electronic Components Ltd., Birmingham. 021-359 2410; London. 01-237 0404
Swift-Hardman Ltd., Rochdale.
0706 47411. Telex: 63237

Mercia Electronics, Coventry. 0203 24091. Telex: 311243
SDS Components L.td., Portsmouth. 070565311 . Telex: 86114
J. McKeever Ltd., Dublin. 764869 \& 760589. Tclex: Dublin 5608

FERRANTI semiconductors

PROFESSIONAL LABORATORY
Silicone Damped Pick-Up Arm for Stereo or Quadraphonic Transcription

PLS4/D

Jewelled Unipivot
Pivot friction below 0.005 gm

Tracking force $0-3 \mathrm{gm}$ Stylus/pivot 224 mm Optimum performance with ultra high or low compliance cartridges weighing $3-10 \mathrm{gm}$ Reduced record wear
r.r.p. $£ 39+$ VAT

Leaflet on request (Export Agencies available certain countries)

MAYWARE LTD

15 Heather Walk, Edgware, Middlesex HA8 9TS, England WW-012 FOR FURTHER DETAILS

FREQUENCY COUNTERS

HIGH PERFORMANCE REASONABLY PRICED ELECTRONIC.INSTRUMENTS

Sensitivity 10 mV . Stability 5 parts $10{ }^{10}$

WW-014 FOR FURTHER DETAILS

745 COUNTER TIMER

Measures frequency, period, time and totalises
32 MHz frequency range (DC coupled) 5 -digit . 3" LED display
6 Gate times/Time units, $10 \mu \mathrm{~s}$ to 1 S in decades Sensitive, protected FET input

744 COUNTER TIMER
$£ 74+£ 1.50$ p.\&p. + VAT
Measures frequency, period and time
30 MHz frequency range (DC coupled)
5-digit, long-life incandescent display Sensitive, protected FET input

643 FUNCTION GENERATOR
$\mathbf{f 8 6}+\mathbf{£} 1.50$ p.\&p. + VAT
Accurate, digital frequency setting $.01 \mathrm{~Hz}-1 \mathrm{MHz}$
Wide range external control of frequency Triangle. Squarewave and Low Distortion Sinewave outputs $50 \Omega+$ simultaneous outputs

Finance
available

* Tapewidths up to 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimum up to $152 \mathrm{~cm} / \mathrm{s}$ max 2 and 4 speed models
* Reel Capacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road, London N1 1LY. Tel: 01-607•8271

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

TWO HOLE CLAMP AND
SOLDER TAG CONNECTIONS

TRANSFORMER
WITH UNIVERSAL END FRAMES AND TURRET LUG CONNECTIONS
TRANSFORMER WITH UNIVERSAL END FRAMES AND TURRET LUG CONNECTIONS

Drake Transformers Limited
$\begin{gathered}\text { Telephone: } \\ \text { Billericay } 51155\end{gathered}$
$\begin{gathered}\text { Kennel Lane, } \\ \text { Billericay, Essex. }\end{gathered}$

WẄ-048 FORFORTHER DETALS

WW-064 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Porrable or permanent fixing. compact units, with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.
Brochure from
LEXOR DIS-BOARDS LIMITED
Allesley Old Road, Caventry
Telephone 72614 or 72207

How mu Damage cost you?

In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because
 thoy are re-useable again and again and again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care.

Trip Amplifiers

SET-POINT CONTROL OF VOLTAGE, CURRENT \& TEMPERATURE

When input signals derived from voltage, current or temperature sources, fall outside pre-determined limits, relay changeover contacts (rated at 30 V d.c. 5 A) operate within this unit to control peripheral equipment.
Single or twin trip levels are available set by lockable 3 digit dials or alternatively by multi-turn screwdriver operated controls. Units are ready for panel mounting or can be supplied to fit a standard I.S.E.P. rack. Both versions incorporate a regulated power supply. A compatible range of Alarm Annunciators and Digital Panel Meters is available.

FARNELLINSTRUMENTS LIMITED WETHERBY. WEST YORKSHIRE LS22 4DH - TEL: 09373541 or 01-8025359

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on 'the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your own - we're always interested!
Surprising how often you'll find

Whiteley Electrical Radio Co. Ltd
Mansfield, Notts NG18 5RW, England. Tel: 062324762.

ROGERS

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment but with additional applications in the
electronics industry in general. The equipment is of particular interest to the professional audio engineer. recording studios, broadcasting
authorities and educational
establishments
DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. Selling Price: c/w Bench Case £225.00 + VAT

S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM 344 A , is the measurement of total harmonic distortion. Selling Price: c/w Bench Case £94.00 + VAT.

AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and principally for measuring low level signals in high impedance circuits. Selling Price: c/w Bench Case $£ 92.00+$ VAT.

PS1A. Regulated Mains Power Supply. Selling Price: $\mathbf{£ 2 2 . 5 0 + \text { VAT. }}$
Model ' A ' Noise Generator. A portable battery operated unit designed for carrying out fistening tests on loudspeakers. 'Pink or 'White noise can be selected and output can be continuous or burst. Output is continuously variable. Selling Price: $\mathbf{£ 4 7 . 5 0}$ + VAT.

Full Colour Literature describing the complete range may be had on request
ROGERS DEVELOPMENTS (Electronics) LIMITED 4/14 Barmeston Road, London SE6 3BN, England Telephone: 01-6978511 (3 lines)

WW-039 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

11050 microns

that's OCLI's I.R. Filter capability.

OCLI manufacture a wide variety of Infrared Filters which fully cover the 1 to 50 micron spectral region Strict quality control and inspection ensure that all OCLI I.R. Filters possess superior performance coupled with the highest degree of environmental stability and physical durability The range available includes SQUARE BAND, WIDE BAND, and LONG \& SHORT WAVELENGTH PASS Filters.

Typical performance characteristics of an OCLI I.R. Square Band Filter used to isolate the CO band in a
pollution detection application are shown below.

Other fields benefiting from OCLI Infrared Filters/Coatings include.

- GAS ANALYSERS/DETECTION SYSTEMS
- PASSIVE THERMAL IMAGING SYSTEMS
- FIRE DETECTION
- OPTICAL PROXIMITY FUSES
- !NFRARED SPECTROSCOPY
- INFRARED PHOTOGRAPHY
- SPACE RECONNAISANCE

(European Manufacturing Divisions

OCLI Optical Coatings Ltd. Hillend Industrial Estate. Dunfermline, Fife, Scotland KY11 5JE. Tel. Inverkeithing 3631 (038-34 3631). Telex. 72307.

SPANNING EUROPE

OLSON

Standard minicases are made from 20 g . mild steel sheets zinc-coated and finished in silver grey hammertone stove enamel. Front panels made from 18 g . steel finished in light grey high gloss enamet:"

Type	Overall Dimension			Case no vents	Case with vents	Chrome leg
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	-	3.92	0.90
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{}{ }^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	-	4.40	0.90
23.	$10 \frac{1}{}{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	-	5.25	0.95
24	121**	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	-	5.74	0.95
25A	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$ "	$4 \frac{1}{2}^{\prime \prime}$	3.80	4.28	0.90
25B	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{4}^{\prime \prime}$	4.00	4.48	0.90
26A	$8 \frac{3}{4}{ }^{\prime \prime}$	$5 \frac{3}{4}{ }^{\prime \prime}$	$6 \frac{1}{4}^{\prime \prime}$	5.37	5.85	0.95
26B	$8 \frac{3}{4}{ }^{\prime \prime}$	$5 \frac{3}{4}{ }^{\prime \prime}$	$8 \frac{1}{4}{ }^{\prime \prime}$	5.62	6.10	0.95
27A	$12 \frac{1}{4}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$.	$5 \frac{1}{2}{ }^{\prime \prime}$	5.75	6.35	0.95
27B	1219"	$7 \frac{1}{2}{ }^{\prime \prime}$	$8{ }^{\prime \prime}$	6.35	6.95	0.95
28A	$14^{\prime \prime}$	101" ${ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	6.95	7.55	-
28B	$14^{\prime \prime}$	$10 \frac{1}{2}{ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	7.55	8.15	-
29A	$10^{\prime \prime}$	4 "	$6{ }^{\prime \prime}$	4.85	5.33	0.95
29B	$10^{\prime \prime}$	4"	$8 \prime$	5.15	5.63	0.95
30A	12"	5"	6 "	5.25	5.85	0.95
30 B	$12^{\prime \prime}$	5"	$8^{\prime \prime}$	5.56	6.16	0.95
31 A	14"	6 "	$6 "$	5.75	6.35	0.95
31B	14"	6 "	8"	6.05	6.65	0.95
61	151 ${ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	8.75	-
62	$17 \frac{1}{}{ }^{\prime \prime}$	$8 \frac{1}{}{ }^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	10.15	-
63	1612"	$9 \frac{1}{2}^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	10.15	-
64	$15 \frac{1}{2}{ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	1212"	-	10.15	-
65	171/ ${ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	$12 \frac{1}{2}{ }^{\prime \prime}$	-	11.60	-
66	161/"	$9 \frac{1}{2}^{\prime \prime}$	121 ${ }^{\prime \prime}$	-	11.60	-

Types 21, 22, 23 and 24 are finished in olive green hammertone with front panels in light straw gloss enamel. Fitted with ventilated rear panels only. No louvres in the base

PORTABLE POWER DISTRIBUTION

COMPLETE WITH GFT CABLE AND 13AMP PLUG

4 SOCKETS 13AA.	$£ 8.86$
6 SOCKETS 13A.	$£ 10.45$
4 SOCKETS 13A/SW	$£ 10.06$
6 SOCKETS 13A/SW.	$£ 11.11$

Please add for postage and packing and VAT@8\%. Trade Counteris open for personal callersfrom 9 a.m. to 5.00 p.m. Monday-Friday
OLSON ELECTRONICS LTD., TEL: 01.7392343

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 vạriants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform) Timing - Miniature - Low contact capacity Herme tically sealed • Stepping Mains switching - Latching Contact stacks Solenoids

Flatform Relay AZ 531

for universal application with control circuits, i.e. for sblack and whiter operation. 2 independen changeover contacts. 'Contact material: Fine silver, silver cadmium oxlde, fine silver with hard gold flashing Printed circuit mounting ${ }^{6}$.tite $(27.5 \times 22.5 \times 11 \mathrm{~mm}$). Coil voltages: 6 to 110 VDC Contact rating
110 VDC/125 VAC max
? A/2.5 A max., $30 \mathrm{~W} / 100 \mathrm{VA}$.
We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK Division
Brember Road, Harrow, Middx. HA2 BAS Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group, est. 1877
Please look us up at the Electrical Engineering Exhibition, Manchester. 10-14 November, 1975. Stand No. D 13, Derby Hall, Belle Vue

WW-009 FOR FURंTHER DETAILS

WW-044 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

IIlustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 50 calibrated ranges $£ 50.00$
Si 452
£40.00
Distortion Measuring Unit.
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$
Si 453
$£ 50.00$ PRICEES plus VAT
distortion Oscillator
Sine - Square - RIAA.
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, W. YORKS BD19 5LA

Distributors of TOKO coils, tunerheads, filters for AM,FM etc
OIn international.
Ambit are the wireless specialists. We supply a comprehensive range of coils, filters, ICs, modules etc for AM/FM radio. We have systems for voltage tuned radio at ALL frequencies, available as components, kits, or ready built assemblies. A comprehensive folder of product information and prices is available for 40 p., inc. PP. Alternatively, a complete shortform pricelist is available free of charge - to all requests accompanied by an SAE.

Tuners, tunerheads, IF modules

 Larsholt 7252 tunerset. 1 uV for 26dB S/N. Scan, AFC, AGC, muting, dual MOSFET input 4 twin varicap tuned stages. A complete $88-108 \mathrm{MHz}$ receiver system for $\mathrm{HiFi} /$ Monitor uses. Built and tested £24.00. Ambit ET8000: As described for the ETI international FM tuner. A kit, with TOKO tuner, 3089/1310 if and decoder, ceramic IF filters, PSU with stabilizer, pilot tone filter.Kit price (with EF5603) $£ 28.00$ EF5600 tunerhead .. . $£ 10.00$ EF5603 tunerhead $£ 9.05$ EC3302 tunerhead $£ 5.00$ Larsholt 8319 tunerhead $£ 9.00$ All the above are varicap tuned MT3302 FM tuner with AM gang capacitor and $3: 1$ drive (3 stage FM tuning) .. $£ 5.00$ 993090 deluxe MPX decoder 40 mV composite input, AF pre amps, $19 \& 38 \mathrm{kHz}$ filters. $£ 7.60$.

Wireless system components. Varicap tuning accessories: WS150: 150 mm WW slider pot for direct scale readout. $£ 3.00$. 9932: 6 preset 40 turn pots for fixed station selection. £3.40. Edgewise meters for frequency, tuning, sig.strength. $£ 2.50$ ea. (includes $12 v$ bulb at 50 mA). 78 series voltage regs for tuning voltage 12, 15, 18v@1A £1.55. $1 / 2 A$ versions for $20,24 v £ 1.20$. Varicap AM wireless systems: EC720:Ant, RF and Osc. tuned by MVAM varicap diode. IC signal processing system, ceramic IF filter. For ferrite rod or loop antenna. Kit $£ 8.00$ MVAM1 $3 \times 300 \mathrm{pF}$ varicap diode. $£ 2.75$, or MVAM2 2 diode version $£ 1.05$. (2% match)

All prices exclude VAT. PP is $20 p$ per order. Minimum invoice $£ 7.50, \mathrm{~min}$. cwo $£ 2$.

37 High Street, Brentwood, Essex. CM14 4RH. tel: 227050 telex: 995194 (Ambit Brentwood)

PROFESSIONAL - FREQUENCY COUNTERS BY HOYMITZ

Up-to-the-minute design. All five of our range of frequency-period-ratio counters are directly gated. For best resolution - FAST.
Stability. Electronic controlled crystal oven 3 parts 10^{*} Bright. . $63^{\prime \prime}$ character height display. (All Nine)
CHOICE. Filament or LED with Polaroid Filter.
All counters have suppressed leading zeros and auto decimal point positioning for easy positive readings. The memory is also standard.

Suffix F- Filament
Suffix L- LED
Type DG110L
Type DG100F
Sensitivity 10 mV
Frequency 100 Mhz PRICE £199.00

Type DG32L

Type DG32F
(8 digit only)
Sensitivity 10 mV
Frequency 32 Mhz
PRICE $£ 169.00$

Type DG700L
Type DG700F

Type DG400L

Type DG400F
PRICE $£ 349.00$
Sensitivity AMP 1.0 C - 150 Mhz . 10 mV
Sensitivily AMP $2.40 \mathrm{Mhz}-400 \mathrm{Mhz}$. 10 mV
Type DG500L
Type DG500F PRICE $£ 475.00$
Sensitivily AMP $1.0 \mathrm{C}-150 \mathrm{Mhz}$. 10 mV Sensitivity AMP $2.40 \mathrm{Mhz}-500 \mathrm{Mhz}$. 10 mV

SPECIALS TO ORDER

Telephone Today (43124 Mbro)
Hoymitz Electronics Ltd. 9 Albert Terrace Middlesbrough

Sensitivity AMP $1.0 C-200 \mathrm{Mhz}$. 10 mV . PRICE $£ 569.00$
Sensitivity AMP $2.40 \cdot 700 \mathrm{Mhz}$. 10 mV

THE CINTEC

 SINUSOIDAL FREOUENCY anc voluge STA:MLITER

\star SINUSOIDAL $\star 500$ WATTS \star SINGLE PHASE

The rapid growth in the use of Video Tape Recorders and other types of equipment which are extremely sensitive to electrical supply frequency variations, has increased the problems for recording engineers, particularly when operating mobile or in areas where no stable electricity supply is. available.
The CINTEC Frequency and Voltage Stabilizer has been developed during the last two years to overcome this problem.
Just switch on and you have 230 volts 50 Hz with a stability of better than 0.01% in frequency and 1% in voltage. Even if the electrical supply is fluctuating wildy between $200-255$ volts and $40 \cdot 60 \mathrm{~Hz}$ the output remains rock steady from no load up to a full load of 500 watts. The harmonic distortion of the sinusoidal waveform is less than 2%.

Specification:

Input $200-255$ volts $40-60 \mathrm{~Hz}$ Direct.
$\begin{array}{ll}\text { Output: } & 230 \text { volts } \pm 1 \% \\ & 50 \mathrm{~Hz} \pm 0.01 \%\end{array}$ No load to 500 watts. (60 Hz output on request)
Waveform:
Distartion:
Duty:
Efficiency:
Dimensions:
Weight:
Construction:
Termination: Sinusoidal
2\% Max.
Continuous
Continuous.
60% at full load. $413(\mathrm{~W}) \times 203(\mathrm{H}) \times 540 \mathrm{~mm}(\mathrm{D})\left(16 \%^{\prime \prime} \times 8^{\prime \prime} \times 21 \%^{\prime \prime}\right)$
$.33 \mathrm{~kg}(72 \mathrm{lbs})$
Cabinet or 19" rack.
Inpur-Cannon EP-3.14.
Output-Cannon EP-4-13
An Inverter for $24 v$ DC input, with simisar output specification, available shortly.

Certificate of Calibration

The Stabilizer has been tested in accordance with National Standards by Bradley Services of London (Certification No. K5149/5832)

Prices exclusive of VAT

So you get four-in-one performance at the two-in-one price - or should we say five-in-one performance, since this instrument also has voltage-controlled frequency facilities. Other features include :

* Dynamic frequency range o.or Hz to rookHz in seven decade ranges.
* Output level continuously variable up to IoV pk-pk from 600Ω. TTL square wave at 5 V fixed amplitude.
* Low distortion visually pure waveforms.
* Full stabilised power supply 200-250V or $100-125 \mathrm{~V}$, single tap change.

Feedback-thefinal test

WW-036 FOR FURTHER DETAILS

Acclaumed as the World's leading telescopic tiltover tower in the field of radio communication Models from 25^{\prime} to 120°

$$
\begin{aligned}
& \text { Look for the name } \\
& \text { STRUMEOH}
\end{aligned}
$$

Strumech Engıneering Co Lid Coppice Side. Brownhills, Waisall. Stafts.

... more variable power than ever before with 13 types available from stock

LB SERIES
LB 200:0 to 50V@ 0102 A
L8 500: 0 to 30V@ 0 10 5A
LB 1.000: 0 to $15 \mathrm{~V} @ 0$ to 10 A

la series
LA 100: 0 to 50 V @ 010.1 A LA 200: 0 to 30V@0 to 2A

With the addition of the new Lat Twin Power Supply, offering double the voltage range, the Coutant 'L' Series is ideally suited for the wide range of laboratory and general applications where continuously varrable high performance power is essential

OVERSEAS REPRESENTATION

Austria

Dipl. Ing. Peter Marchetti, Elektronische Gerate Wein 6 . Sandwirtgasse 14, A 1061. Positach 455, Austria
Belgium Ets. L. OeGreef S.P.R.L. Electronic, Chaussee d'Alsemberg 367. 1180
Bruxelles, Belgium
Canada

Finland Orive, Weston, Ontario, Canada M9L 1Y4 Nores 8. Co OY, Fabianinkalu 32. Helsinki 10, Finland

France
Germany
Holland
Israe|
Italy

Coutant Electronics Limited

La SERIES
LQT: 100
-30v@0 101A or $01030 v @ 0$ to 2A
O $1060 \mathrm{v} @ 0$ to 1 A
LQT: 2000 to $\pm 15 \mathrm{v} @ 0$ to $2 \mathrm{X} \times 2$ or 0 to 15v @ 0 to 4A or 0 to 30 v @ 2 A

Commerciale Chauvin Arnoux, 188 Rue Championnet, Parıs 18, France Zentro-elektrik, 7530 Pforzheim. Pentro-elektrik. Sand Sandweg 20, West Germany
Air Parts International N.V.. Ryswyk Air Parts International N.V.. Ryswyk
(A.H.), 149 Haagweg. P.O. Box (A.H.). 449 Ha
4094 , Holland

Rapac Electronics Lid., P.O. Bök 18053, Tel Aviv. Israel
Celdis Italiana S.P.A., Via Luigi Barzini 20, Milano 20125, Italy

Norway Skandınavisk Elektronik A/S. Osire Aker veı 99. P.O. Bix 99-veitvedt Oslo 5. Norway
South Africa Telkor Electronics, 29 Webbe Street, Selby, P.O. Box 7764 Posbus Johannesburg. South Africa.

Sweden Gunnar Petters
Farsta, Sweden

Switzerland Automation \& Elekironik Industries. trasse. CH-B604 Voketswil. Schweiz, Switzerland

Trafford Road, Reading RG1 8JR Tel 073455391 Telex 847519 Coutant take the initiative in new technology

They use them here, they use them there, those engineers use them everywhere.

Being completely.self contained, the Sullivan Multi-Purpose Potentiometer, Type 44228 is equally at homie in a laboratorv, on a production line or on-site.

This versatile unit is intended for the calibration andtesting of thermocouples and associated indicators and recorders. It can measure orsupply potentials up to 101 mV (to anaccuracy of $+0.1 \%!$) An optional Voltage Ratio Box type 44763 extends measurements upto 500 V .

The Sullivan Multi-Purpose Potentiometer incorporates a solid state d. c. null detector which carries a centre zerologarithmic scale with sensitivity at $12 \mu \vee$ per division, for small deflections.

And to cap it all, this precisionengineered unit is rugged enough to goanywhere and give accurate readings. Get in touch to day for fully detailed literature.

Sullivan

H. W. Sullivan Limited, Dover, Kent.

Tel: Dover (0304) 202620 Telex: 96283.
$\frac{L}{}$ Thorn Measurement Control and Automation Division.

SPECIALISTS
Telephone: 01-689-0441/5, Telex:946149
WW-121 FOR FURTHER DETAILS

POWER AMPLIFIER

120 watts RMS into 4 ohms

For full details on our range of mixers, amplifiers and light control units, contact:

15 ALBERT ROAD, ALDERSHOT HANTS. TEL: 025228514

IS CHILTON'S MIXER THE BEST FOR YOUR USE?

Magnetic tapes Itd make the 10/2 above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for vou. Prices start at $£ 365$ for the basic 10/2 + VA1@8\%.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

WW-034 FOR FURTHER DETAILS

DESIGN and MANUFACTURE of ELECTRO-MECHANICAL COMPONENTS, including

JaCK CONNECTORS
CABINET MOULDINGS

- 96 KNOBS

SWITCHES

a range of

INSTRUMENT KNOBS

Radio and tuner DRIVE SPINDLES PRECISION STAINLESS STEEL

and HIGH QUALITY MOULDED

with various length and pulley combinations

What have Quad been up to recently?

Current Dumping that's what

Current Dumping is not East Anglia's answer to the black pudding but the name given to a totally new power amplifier circuit developed by QUAD.

A current dumping amplifier basically consists of a low power amplifier of very high quality, which controls the loudspeaker at all times and a high-powered heavy-duty-amplifier which provides most of the muscle.

The small amplifier is so arranged - it carries an error signal - that provided the heavy duty transistors (the dumpers) stay within the target area of the required output current, it will fill in the remainder accurately and completely

The reproduced quality is solely depen-
dent on the baby amplifier, which because of its low power, can be made very good indeed.

The QUAD 405 is the first amplifier to incorporate current dumping.

There are no internal adjustments, so nothing to go out of alignment.

There are no crossover distortion problems and performance is unaffected by thermal tracking.

The QUAD 405 offers impeccable performance, reliably and predictably.

Details from your nearest QUAD retailer or write directly to Dept.WW Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE187DB.

LITTLEWONDER...THEMINITEST ISPREFERRED

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favounte with disceming people in the industry.

First, the appearance. Diminutive, neat, wipeclean plastic cover with pressed steel case.

Controls are simple and easy to use.
Second, the range. The Minitest measures a.c.
and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively.

Third, High Voltage Probes. Will extend the range to 25 kV or 30 kV d.c. Ideal for T.V. sets and similar electronic equipment where source impedance is high. Little wonder the Minitest is preferred!

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles, Manchester M30 OHí
Telephone: 061-789 5081. Telex: 667711

WW-111 FOR FURTHER DETAILS

Hard-to-find tubes and semiconductors are normally included in our quotations. We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU
Telex 87116 Cables Aerocon Telex Horley Telephone Horley 5353
'WW-065 FOR FURTHER DETAILS

BE FAIR TO YOUR MUSIC Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combin ation of specifications will enable a system to
reproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker

Naim Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746 WW - 077 FOR FURTHER DETAILS
subject: Toroidal Cores-Data Sheets USI: RF Coils, Chokes, Filters, Transformers
FRER: To 200 MC . sOURCE: Micrometals

MICROMETALS

228 N. SUNSET, CITY OF INDUSTRY, CALIFORNIA 91744 (213) 968.4718

WW-061 FOR FURTHER DETAILS

Teonex are

 better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprohensive range), semi-conductors (a wide variety). integrated circuits.
Teonex offers more than 4,000 devices. They are competitively priced and they are imposes strict quality control. Teonex concentrates entirely on expon and now operates in more than 70^{\prime} countries, on Government or private contract. All popular types in the Teonex range are nearly always available for immediate deliver. to Teonex Limited 2 a Westbourne Grove Mews, to Teonex Limited, W11 2RY, Engiand Cables: Tosuply London W11. Telex: 262256

ELECTRONIC VALVES + SEMI CONDUCTORS
for Teonexport only
WW-104 FOR FURTHER DETAILS

Gardners The Best of British

Cat. No.	Nominal DC Input Voltage	OUTPUT		TYPICAL	
				$\begin{aligned} & \text { REGU } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & \text { TION } 1 \\ & \text { LOAD } \\ & \hline \end{aligned}$
NV7300	5	2×15	0.25	. 006	. 006
NV7308	5	180	0.05	2.5	2.5
N V7312	12	5	1.00	. 005	. 024
NV7314	12	2×5	1.00	. 005	. 024
NV7317	12	6	1.00	. 009	. 021
NV7319	12	2×6	1.00	. 009	. 023
NV7323	12	2×12	0.50	014	. 011
NV7328	12	2×15	0.50	019	. 011
NV7336	12	24	0.5	. 07	09
NV7342	24	5	1.00	. 004	024
NV7344	24	2× 5	1.00	004	024
N V7349	24	2×6	1.00	008	023
N V7353	24	2×12	0.50	010	012
NV7357	24	15	1.00	024	021
N V7358	24	2×15	0.50	. 015	. 012
- NV7366	24	24	0.5	.07	09
NV7368	24	50	0.25	. 3	2
NV7372	50	5	1.00	-. 002	024
NV7383	50	2×12	0.50	007	. 011
NV7388	50	2×15	0.50	. 010	. 012
NV7396	50	24	0.5	07	. 09
- NV7398	50	50	0.25	3	2

Based on ambient $20^{\circ} \mathrm{C}, 100 \mathrm{sq}$. in heatsink - modules facilitating polarity changes

Additional designs are fully described in GT. 218.

AC Input - Minimod Series

- P.C. mounting interchangeable with most American types
- Linear stabilization
- Foldback current limiting
- Wide temperature range
- Modules available for U.K. (210-250v), European (200-
240v) and American (106-121v) requirements
- Supply Frequency $50-400 \mathrm{~Hz}$

Type	OUTPUT		Short Circuit Current mA (Typical)	\% Regulation line \& load (Typical)
PUO1	Voltage	Amps	5	0.5
PU02	5	1.0	370	0.3
PU03	$15-0.15$	0.10	770	0.5
PU04	$15.0-15$	0.20	37	0.1
PU05	$12-0.12$	0.12	84	0.1
PU06	$12-0.12$	0.24	45	0.1
PU11	$18-0.18$	0.15	120	0.2
PU10	15	0.10	50	0.1
PU12	12	0.10	37	0.1
PU13	18	0.065	45	0.1

Voltage tolerance 5 v models $\pm 0.1 \mathrm{v}$. All other models $\pm 0.2 \mathrm{v}$.
Nickel-Cadmium Cell Charger Units
Constant current outputs permitting up to 10 cells to be charged in series. DC INPUT - NV7304 AC INPUT-PU07

ALL UNITS DESCRIBED ARE NORMALLY AVAILABLE
FROM STOCK. SPECIAL DESIGNSERVICE. CUSTOM
BUILT UNITS FOR APPLICATIONSREQUIRING
DIFFERENT SPECIFICATIONS ARE PRODUCED AS
PART OF OUR STANDARD SERVICE. TRY US FIRST.

Gardners

Gardners Transformers Limited Christchurch - Dorset BH23 3PN Telephone: 0201-5-2284 Telex 41276 Gardners XCH Approved manufacturers of electronic transformers, modular power supplies, inverters and converters to Defence Standard 05-21 WW-102 FOR FURTHER DETAILS

DEMA ELEGTRONICS INTERNATIONAL ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

LINEARS

LM300	T099	£. 0.45	3400	TO92	£. 1.25	1739	A DIP	£ 0.65
301	\checkmark DIP	0.25	380	A OIP	. 80	741	\checkmark DIP	0.22
302	T099	045	546	\checkmark OIP	0.51	747	A DIP	0.44
304	T0100	0.50	550	A DIP	0.55	748	V DIP	0.25
305	T099	0.60	555	\checkmark DIP	0.45	5556114561	\checkmark DIP	0.65
307	\checkmark OIP	0.38	556	8 DIP	0.75	5558 (1458)	\checkmark DIP	0.65
	T099	0.45	560	B DIP	2.55	ULN 2111	A DIP	0.95
308	A DIP	0.65	561	B DIP	2,55	Lm3900	A DIP	0.35
	T099	0.90	562	B DIP	2.55	75450	V DIP	0.45
309K	T03	1.45	565	A DIP	1.45	75451	\checkmark DIP	0. 45
311	\checkmark DIP	0.90	566	\checkmark DIP	1.50	75452	V DIP	045
320k	TO 3 NEG		567	\checkmark DIP	1.60	75453	\checkmark DIP,	0.45
	5.2,12.15	1.25	709	A DIP	0.22	75454	V DIP	0.45
324	A DIP	1.07	710	A DIP	0.25			
340K	T03	2.10	711	A DIP	0.30			
	12V 1 AMP		723	A DIP	0.38			

$V=$ Mini Dip

TERMS: PRICES AS LISTED ARE IN BRITISH POUNDS \& PENCE. SEND BANK CHEQUE OR PERSONAL CHEQUE WITH ORDER. ENCLOSE RECEIPT IF INTER. POSTAL MONEY ORDER IS USED. MASTERCHARGE BANKAMERICARD ACCEPTED. CABLE DEMAFLINTL.

DEMA Electronics International
P.O. Box 407A

San Ramon, CA 94583 U.S.A.

SHADED 4 POLE AC MOTORS

Slow drive speed.
Smooth running and freedom from 50 Hz vibration.
Low magnetic leakage fieid
No electrical interference.
Speed torque characteristics adaptable to individual requirements. Full load power up to 4 watts.
Particularly suitable for tape recorders, record players, instrumentation.

Also DC Motors up to 10 watts output

A. D. Bayliss \& Son Ltd.

 PFERA WORKS REDMARLEYTel. Bromesberrow 364 \& 273
GLOUCESTER GLI 19 3JU
STD 053-181-364 \& 273
WW-117 FOR FURTHER DETAILS

DC Torque Motors and Tochometers

* High performance, brush and brushless versions and complementary tachometers
* 840 Standard Models ranging from 15 oz -in to 120 $\mathrm{lb}-\mathrm{ft}$.
- Military, Industrial or Space Qualified models are already used by most European Nations.

Servodata

Is able to offer a technical design service utilising these devices in control systems as well is supplying amplifiers, solid state synchro/resolver to digital convertors, readouts and other servo control transducers.

Servodata Limited

Highclere,Newbury
Berkshire RG15 9PU
Telephone: Highclere (STD 0635) 253579
Telex: 847054

There's more scope in Scopex

The Scopex 4D25 is a portable 25 MHz dual-trace instrument suitable for all laboratory and field applications. It features a guaranteed measuring accuracy of 3% - and yet at $£ 225^{*}$ is in a price bracket bel6w any comparable.instrument. Check these features and see why the 4 D 25 is a must for the discerning buyer.

* DC-25 MHz, full screen
*3\% accuracy
*Signal delay (both channels)
* One control for Trig Level and Polarity
*Timebase 200 ms to 200 ns
$\times 5$ expansion.
*Sensitivity $50 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$

C口PEX
Write or telephone roday:-
Scopex Instruments Ltd., Pixmore Industrial Estate,
Letchworth, Herts. Tel: Letchworth (04626) 72771

Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm).

- Simple operation100% British
- Burr-free holes - no jagged edges

57 Metric and Linear sizes
Used all over the world by: Government services - Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio, Motor and Industrial manufacturers, Plumbing and Sheet Metal Trades, Garages, etc

Wholesale \& Export enquiries to:

2" ExHIBITION

COMPONENTS MEASUREMENTS CONTROL REGULATION INSTRUMENTS SYSTEMS

BRUSSELS - HEYSEL HALL 8
$25^{\text {th }}$ to $29^{\text {th }}$ november 1975 from 10 a.m. to 6 p.m.

Semiconductor Data TESTING, INSPECTION AND MAINTENANCE.

THE SEMICON

INTERNATIONAL TRANSISTOR INDEX

 1975/6 (6th Edition) NOW AVAILABLEEasy reference alpha-numeric listings of about 24,000 transistors of international origin, European, Japanese, USA etc.. Maximum ratings and basic characteristics. $400+$ pages of invaluable data.

> EXTENSIVE SUBSTITUTION GUIDE CV \& BS NUMBERED DEVICES
> TERMINATION OUTLINE DRAWINGS
> ALTERNATIVE MANUFACTURERS
> AND AGENTS ADDRESSES

ORDER NOW, $£ 10.60$ includes postage in the UK (Elsewhere $£ 11.90$ by surface mail)

FROM

SEMICON INDEXES LTD

2(W) DENMARK ST. WOKINGHAM, Berks. FG11 2BB
Tel: Wokingham (STD 0734) 786161
This is Vol. 1 of the Semicon Index Series.
Vol. 2 (Diodes \& SCRs) and Vol. 3 (ICs) available soon. Same price ORDER NOW AND AVOID DISAPPOINTMENT WW - 088 FOR FURTHER INFORMATION

WW-025 FOR FURTHER DETAILS

FOUR CHANNEL

Recorder . £385
Replay only £237
VAT and carriage extra

A new rugged four channel recorder for industrial or university use mounted in an Imhof stee case size $21^{\prime \prime \prime}$ wide $\times 19^{\prime \prime} \times 10^{\prime \prime}$ high overatl.
Weight 25 Kg .

In line record and replay heads with ability to erase and record on individual tracks. Mk. 5 Brenell Deck - $3^{1 / 4} .7^{1 / 2}$ and 15 i.p.s

- $8 / 4$ spools - $/ 4$ rape - - papst Molors
his equipment, which has simple controls, is specially designed for reliability and easy maintenance. All the amplifiers plug in Features include jack sockets for input and 8 watt power amplifiers avalable.. $£ 46$

WW-112 FOR FURTHER DETAILS

It's New

It's Versatile

It's from Telequipment

Yes indeed!, yet another addition to Telequipment's range.
This time it's a series of low cost, true dual beam oscilloscopes.
Setting new standards for high performance, versatility and value, the 63 series will appeal to the most budget . conscious of organisations.
Designed to meet the ever increasing demand for low cost 15 MHz oscilloscopes with plug-ins, the 63 series offers the choice of 5 different vertical amplifiers which include a TV monitor, a differential amplifier and 15 MHz general purpose plug-ins with or without signal delay. Two main frames are available - the D63 with a conventional c.r.t., or the DM 63 fitted with a variable persistence storage tube, both accepting any combination of two from the five vertical plug-ins available. These plugins cover a wide range of requirements in single, dual and four channel operation, in addition to $X-Y$ applications requiring low phase-shift characteristics.
UK provisiọnal prices (excluding VAT) $£ 342-£ 733$ depending on choice of main frame and plug-ins.
Write now for details and find out the full scope of Telequipment's 63 series. You won't be disappointed.

TELEQUIPMENT \ll

Telequipment gives you more scope for your budget

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Telephone: Harpenden 63141
Telex: 25559
Sales and Service throughout the world

wireless world

Electronics, Television, Radio, Audio

NOVEMBER 1975 Vol 81 No 1479

Contents

497 The dugs of war
498 Wireless World Teletext decoder by Philip Darrington
505 The consultants by John Dwyer
508 H.F. predictions
509 November meetings
510 News of the month
IEE to leave CEI
Buy British audio campaign
Push-button phones available
512 Letters to the editor
Vanishing component shops
Sorting out signs
515 Audio Fair preview
519 Circuit ideas
One-shot timer
Variable voltage-ratio converter
Thermal overload cut-out
521 International radio and television exhibition
525 Television tuner design - 2 by D. C. Read
529 Crossover networks and phase response by S. K. Pramanik
533 Optical sensor ignition system by H. Maidment
537 Literature received
538 Research notes. Sixty years ago
539 More from the Berlin show
540 World of amateur radio
541 Transmitter power amplifier design - 3 by W. P. O'Reilly
545 New products
a98 APPOINTMENTS VACANT
all6 INDEX TO ADVERTISERS

[^4]

This month's front cover shows a colour TV receiver displaying a Teletext page, processed by the Wireless World Teletext decoder seen on top of the set (see page 498) (Receiver lent by Thorn Television Rentals)

IN OUR NEXT ISSUE

Microprocessors for computer control. What they are and how they work, with a table of types on the market

New audio amplifier

 design uses "current dumping" output transistors and feedforward distortion correction
Interference from pocket

 calculators can cảuse trouble. Measurements of electromagnetic radiation from three named calculatorsSIXTY-FIFTH YEAR OF PUBLICATION

When flashover is the danger:

 UseEEV spark gaps.

Photograph courtesy of C.E.G.B.

You name it. EEV spark gaps can stop it from happening.

Our range covers any voltage from $400-40,000 \mathrm{~V}$ and handles powers up to 15 kilo joules. Types are available in glass or ceramic envelopes.

EEV spark gaps are very rugged and will work in any environment, unaffected by dust, damp or atmospheric changes. They are also compact, consistently dependable and long-lasting.

We make 2-electrode and 3-electrode types, and the whole range covers many applications including:

Flash-over protection. Crowbar protection circuits. Protection from transient phenomena. Protection circuitry for s/c drives for thermionic tubes.

Capacitor discharge circuits. Firing circuits. Relaxation oscillator circuits for gas ignition equipment. Quench circuits.TIG welding equipment.

For data and any help you need, write or 'phone EEV at the address below.

Right. GX(Q40), a crowhar protection device and GXUiU, for protection circuits in ground'iar communications equipment.

EEVand M-OV know how.

Aroustic Transducer (o. Ltd (Akoustic engineers)

For the

 ultimate high quality, high power professional loud-speaker drive units

THE NEW P6O INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high.
Recording with or without tone correction.
*Peak level indicator for tape recording
Suitable for continual high power operatión
Dual independent tape operation.
"Light Emitting Diodes for level monitoring in main and pre-amplifiers. Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages.
RIAA phono correction unaffected by cartridge inductance.
Ultra low distortion circuits.
*New tape monitoring, $A-B$ and $A-B-C$ facilities.
International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

Cambridge Audio Limited

NEW! Sinclair Scientific Pr

Three or four years ago, personal scientific calculators revolutionised the work of scientists, engineers and mathematicians.

With a wide variety of preprogrammed functions-logs, trig, $\sqrt{x}, \frac{1}{x}, x^{2}$ and many more complex functions-they took a lot of the drudgery out of calculations

They were expensive.
But they were infinitely faster and normally more accurate than slide rules or tables

Programmable calculaters-

 unlimited powerPersonal scientific calculators had limitations: the number of functions was determined by the number of keys that could be crammed onto a keyboard; and every extra function meant extra cost.
Programmability overcomes both limitations-and makes a calculator vastly more powerful. With a programmable calculator, the number of functions which can be performed is unlimited.

It becomes a true miniature computer.

Sinclair Scientific Programmable:

 fastest, cheapest, most convenient The two or three personal scientific programmable calculators on the market so far have cost hundreds of pounds.The Sinclair Scientific Programmable is a technological breakthrough.

As a straightforward scientific calculator, it's remarkable. It gives access to the full range of scientific and mathematical functions. It uses true scientific notation. And it's the fastest personal scientific machine on the market-all functions are to all intents and purposes instantaneous.

It has an exceptionally convenient 19-key keyboard.

It's completely self-containedeven program-entry takes place through the keyboard.

Functions and features of the

Scientific Programmable

Keyboard-entry programmability

Programs up to 24 steps entered simply by
keying in a sequence equivalent to
calculation. No program takes longer than 30 seconds to enter.
Scientific notation
Full scientific notation, with floating-point entry option. Post-fixed operators (reverse Polish) for convenience in handling complex calculations. Exponent range: 10^{-99}, to 10^{+99}.
Log and trig functions
Sin, cos, arctan (radians); $\log _{10}$, antiłog 10 other functions immediately derivable.
Mathematical functions
$+-X \div$
$\sqrt{x}, \frac{1}{x}, x^{2}$, sign change
Three-function memory
Store, recall, exchange.
Program store can be used to give up to three extra memories.
Large green display
Mains/battery option
Program library
Over 400 standard programs.
Orie-year, no-quibble guarantee
Size
$156 \mathrm{~mm} \times 77 \mathrm{~mm} \times 33 \mathrm{~mm}$. Weight: 200 g .

Sinclair Scientific Programmable-a personal computer for under £30

The Sinclair Scientific Programmable is startingly good value.

It represents a tremendous design achievement: all the functions of the calculator are packed onto a single chip-an outstanding example of large-scale integration.

Other calculators use up to five or more chips-expensive to produce, and expensive to assemble.

The unique single Sinclair chip means that the Scientific
Programmable-the fastest personal scientific calculator in the worldcan be sold for $£ 29.95$ including VAT.

10-day no-ol

There's a lot more to this remarkable machine-far more than one advertisement can describe.

You need to see it and handle it. to program it yourself in a few seconds to save you hours... to check its performance against tables and graphs...to see the full range of standard programs.

It's not everybody's calculatorand as yet, it's not in the shops.

So we're offering you a 10 -day trial. Use the order form below and send us a cheque or your Access, Barclaycard, or American Express number. We'll send you a calculator direct. Or if you prefer, phone your credit card number to Ann Dent on St Ives (0480) 64646.

Use it for 10 days-and if you don't
feel it's $£ 29.95$ well spent, send it

dramatic breakthrough!
 rammable. For under \&30

How the Scientific Programmable saves you time

Programmability-what it is ...

 what it offersAny calculation consists of a series of operations performed on constant or variable numbers.

With a non-programmable calculator, every step demands at least one key-stroke.

With a programmable calculator, constants and operations can be stored in the right sequence in the calculator, ready to operate on the variables as they are entered. (The calculator becomes a miniature computer.)

The task of the operator is reduced to entering the appropriate variables at the appropriate points.

Programs may be taken from the program library or devised by the operator, Either way, they are entered simply by keying in a sequence equivalent to the calculation.

This means

1. unlimited power-any function can be entered as a program; 2. enormous time-saving-for repetitive or iterative calculations only the variables need be entered; 3. consistent accuracy-eliminates risk of operator error during program execution;
2. flexibility. The Sinclair Scientific Programmable offers the choice of mains or battery operation-and once programmed can even be given to an operator who does not understand the program.

This is most evident in repetitive calculations and in iterative procedures like the NewtonRaphson method of successive approximation.

Typical examples of repetitive calculations. 1. An electronics engineer needs to plot the theoretical output waveform of a long tailed pair with current source tail for a sine wave input of peak value $V \mathrm{pk}$.

The change of output current is described by the formula:

$$
\frac{s i}{I}=\frac{\left(10^{\frac{5 V}{60}}-1\right)}{\left(10^{\frac{5 V}{60}}+1\right)} \text { wheres } \mathrm{V} \text { is in } \mathrm{miV}
$$

By storing a 24 -step program, from the program library, he can rapidly construct a plot of the output waveform by entering $V \mathrm{pk}$ in $\mathrm{m} V$ plus a series of Inear steps corresponding to the time axis of the graph.

With no further instructions, the machine calculates the sinusoidal input waveform, applies it to the transfer function given, and displays the normalised change in output current.

If the calculation had to be performed step by step each time, graphing any substantial number of values could take hours. With the Scientific Programmable, each plot is instantaneous.
2. An accountant raising a loan may have a number of quotations giving different repayment terms and interest rates. He can enter a standard program from the program library to calculate annual repayments for any number of combinations in a matter of minutes.
Typical example of iterative process
Solve the equation $\tan x=1+x$.
By storing as a program the formula for solution by successive approximation, the solution can be obtained with high accuracy in a matter of seconds.

Over 400 standard programs

The procedures above are derived from some of over 400 standard programs in the Sinclair program library. Other programs include:

General

Fahrenheit to centigrade and centigrade to fahrenheit conversion Degrees minutes and seconds converston to radians
Finance
Compound interest Loan repayment Cashflow Electrical and electronic engineering Field variation from aerials
Reactance frequency chart
Transistor noise minimisation
Determination of values forladder attenuators Statistics Samplemean Chil ${ }^{2}$ lest Geometry
Solution of a triangle Surface area of a cone

Mathematics
Equation solving Hyperbolicfunctions Evaluation of polynomials Roots of quadratic equations (real and imaginary parts) Decimal to binary and binary to decimal conversion Resolution of forces via parallelogramlaw Beam deflection analysis Critical loading of struts Moments of inertia of square section torroids Thermodynamics Heat conduction shape factor of a cylinder Fluid mechanics Flow rate in a venturi Materials Determination of crystal spacing from X-ray diffraction data

yation offer

back. We'll refund your money without question.

There's nothing to lose, and so much calculating time to save. Post the coupon today.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE1.74HJ. Sir디린 Tel: St Ives (0480) 64646.
VAT Registration No. 213817088.
Registration No. 699483.

To: Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs., PE174HJ.

Please send me
.(qty) Sinclair Scientific Programmable calculators, at the introductory price of $£ 29.95$ each (to include calculator, carrying case, battery, mains adaptor, full instructions, program library, VAT, postage and packing - no more to pay).
I understand that if I return the calculator and accessories within 10 days from receipt you will refund my money in full.

* enclose cheque no. \qquad £...
* Please debit $£$.
.. to my
*Access/Barclaycard/American Express account number

Name (please print)

Address

M95ED: A Significant Technological Innovation

Shure now introduces a superb, moderately priced pick-up cartridge with a performance second only to the renowned V-15 Type III. The technologically advanced electromagnetic structure with a newly designed pole-piece virtually eliminates hysteresis loss. The frequency response from 20 to $20,000 \mathrm{~Hz}$ remains essentially flat. Operating at extremely light tracking forces of between $3 / 4$ and $11 / 2$ grams, the exceptional trackability of the M95ED enables it to trace the very high recorded velocities encountered on many modern recordings with the result that in addition to providing faithful reproduction of the recorded sound, stylus and record wear are reduced to minimum proportions. The M95ED: A notable addition to the Shure range with a performance never before available at such a competitive price.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

It's easy to understand

... why B\&Winvested more than two years' design and development work in producing this addition to their range of monitor loudspeakers. Easy that is, when you hear, and see, the result-the B\&WDM6.

but it's difficult to explain

how a robust three-unit dynamic system can reproduce sound with transient accuracy usually achieved only by the best electrostatic designs.
So, if you want to hear and see this new loudspeaker, contact your B \& W Authorised Dealer. If you would like to receive literature explaining the principles and complexities of the DM6, drop a line to us.

BSW Loudspeakers

Questions to ask before buying a video monitor

It's an impressive number of models but what about the performance?

The performance/price ratio is equally impressive - perhaps the best in the CCTV business. More than 80% of the screen has a resolution capability greater than 1,000 lines and on the large monitors the minimum brightness in the white area is 13 oft lamberts (under accepted test conditions). Other features include high video input impedance and external sync input.

I need a large screen. For what application has Electrohome's 23 in monitor been designed?

The long-term reliability of the EVM23 and EVM23AG make either ideal for surveillance systems in banks, factories and department stores. They are equally at home in the message centres of the world's airports, in schools and broadcast studios. Both models have a durable outer casing and the EVM23AG has a special tube face to reduce reflections important where lights or windows may reflect on to the screen. Lockable front panels make them ideal for unattended locations.

What about mounting? I need the utmost flexibility.

There is no problem. Electrohome have wall and ceiling mount assemblies that allow a monitor to be swivelled or tilted about its centre of gravity. For mobile work like presentations and exhibitions there is an adjustable stand to support the EVM 23 at four different heights $-63 \mathrm{in}, 55 \frac{1}{2} \mathrm{in}, 54 \mathrm{in}$, and $46 \frac{1}{2} \mathrm{in}$. If your requirement is for rack mounting versions, all sizes below 23 in are available in rack mount options.

How do I decide the screen size to suit my application and do Electrohome have a complete range?

Screen size depends largely on viewing distance and available space. If the minimum viewing distance is roft then you should use a large monitor - 17 in or above. At closer distances or where space is limited a gin or I I in screen may be more suitable. If you intend TV to teach or persuade, avoid the mistake of sacrificing visual impact for the sake of economy. Electrohome's range is one of the most comprehensive available with seven different sizes from gin to 25 in (two in colour).

What facilities do Electrohome's small screen monitors offer?

To complement this outstanding specification we have not forgotten the importance of switchable A-B inputs, switchable underscan, DC restoration and good geometry. Also the wide input sensitivity range and the input ground (which can be 'floated') will look after less favourable operating conditions. Input power requirement is also tolerant within $95-130 \mathrm{~V} / 185-265 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

When should I use a colour monitor?

We'll ask a question which will help you decide. Everything you show on TV will be shown with a purpose. Will colour help to achieve that purpose? If so, use colour - and choose an Electrohome colour monitor because, simply, you cannot make a better choice. (This is only part of the answer to a complex question which we would enjoy discussing with you in proper depth.)

What about audio? You have convinced me that the video signal is first-class, but I need to hear the sound.

Electrohome haven't overlooked audio, like some manufacturers. For large-screen monitors, both colour and monochrome, they produce an add-on audio pod with a combined 3 W RMS amplifier plus speaker unit. It has tone and volume controls and can handle all common audio inputs.

Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex HAO IBR (no stamp required).

More questions ? Write to us for the address of your nearest Bell \& Howell Video Centre. You'll get the answers in the most convincing way possible - by seeing and hearing how Electrohome's monitors perform.

Specifications: the Blectrohome monitor range from Bell \& Howell

all the "scope you need... with Dynamco's new 7500

Designed to meet the increasing demand for low cost 40 MHz oscilloscopes, Dynamco's new 7500 offers outstanding value when compared with instruments of similar specification.

Some of its many features are :-

* 40 MHz band width at $10 \mathrm{mV} /$ div sensitivity * Dual trace * Mixed sweep * Calibrated sweep delay $*$ Gated trigger $* 3 \%$ accuracy $*$ Small size lightweight and the option to operate from external DC supplies or clip-on battery pack.
Provisional price $£ 470.00^{*}$
With todays demand for first class equipment at sensible prices Dynamco's 7500 fits the bill.

WW-115 FOR FURTHER DETAILS

EHROMASONTE Electronics
 Dept. 5, 56. Fortis Green Road Muswell Hill, London, N1O 3HN telep̀hone: 01-883 3705

TRANSISTORS				Troe Pricer 2		True Pruce $2+$		Type Price 17		Tyoe Pricelg		Tvee Pricerol		DIODES	THYRISTORS, TRIACS AND TRIACS			
Type Pnce		Tvpe		${ }^{\text {BDO }} 15$	0.65	8F273		Cl06F	0.43	T7x310		2N3790		Trpe Price	WITH TRIGG			
AC107	0.35	19	0.29	B0124	0.80	-	-35	CRS1/	0.75	27x500	C.17	2 N 3819	0.35	AA119 0.09				
${ }_{\text {ACCl }}{ }^{\text {a }}$	0.24	${ }^{8 C 125}$	0.22 0.20		(1.42	BFF58 85459	0.60 0.63		0.95 0.45 0.			2N3820 2N3823	0.49 1.45 1	$\begin{array}{lll}\text { A4129 } & 0.20 \\ \text { A143 } & 0.10\end{array}$	IF VRM:		200 V 400V	
${ }_{\text {ACl }}{ }_{\text {ACl2 }}{ }^{\text {Cl2 }}$	0.25 0.25		0.20 0.15	${ }^{\text {BDO }}$ 8132	0.50	-8F459	0.63	D40N1	0.45 0.55			2N3823	${ }^{1.45}$	$\begin{array}{ll}\text { A } 1143 \\ \text { AAz13 } & 0.10 \\ 0.30\end{array}$	3 3	二 $-128 / 30$	-1.34/36 -150/52	/70
AC128		${ }_{81} 134$	0.20	в0175	0.40	BF597	0.15	E5024	0.20		0.86		25	$\begin{array}{ll}\text { AAZ } 13 & 0.30 \\ \text { AAZ17 } & 0.12\end{array}$		- 301-	1-1-601-1-	
AC1	0.25		0.19	${ }^{80} 136$	0.4			ME600	0.16		0.23		-	BA100 0.15	6 6 $29 /$	- 33/44/46	42/56/58 68/80/84	0/100/105
AC141K	0.27		0					ME6	0.17				0.18.	BA102 0.25		- 38/50/5	47/64/61 75/92/97	120
${ }_{\text {ACl }}$	0.19 0.28	38	${ }_{0}^{0.20}$	${ }^{80139}$	${ }_{0}^{0.55}$	BF	- 0.24	Me88001	0.18	2N706A	0.12	${ }_{\text {2N4032 }}$	0.43 ,	BA110U 0.350	10 A 36/-	- ${ }^{42 / 60 / 63}$	51/74/78 8 84/104/109	100/128/13
	0.20		,					341	0.72		0.35	2N4036	0.52	${ }^{\text {BA141 }}$				
AC1	0.25		${ }_{0}^{0.35}$			BFW10		M.EE370	0.65		0.30	2NaO	${ }^{0.35}$	8A145 0.17	Notes: All ori	ices are in pe	unit. First price	
		${ }_{\text {BC1478 }}$	0.13 0.12	${ }^{60145}$	5	${ }^{\text {BFWW164 }}$	${ }_{\text {i }}$	MJE520	${ }^{0.85}$	(1) $\begin{aligned} & \text { 2N914 } \\ & \text { NS16 }\end{aligned}$	0.19 0.20	${ }^{2} \mathrm{~N} 4058$	${ }^{0.17}$	8A148 BA154 0.17 0.13	tri	rd is it	trigger. Encapsulation	nds on current
AC	0.25	BC149	0.14	80183	0.58	8 F		IMJE2		2 N	0.42	${ }_{2}^{2 N 124}$	0.15	$\begin{array}{ll}\text { 8A155 } & 0.16\end{array}$	rating and d	ce type. Co	tion data supplied with each	device. Quantity
${ }^{\text {AC1 }} 187$	0.26	${ }^{\text {BC C } 1498}$						MJE3	1.85		0.35 0.21	2N41266		$\begin{array}{ll}8 A 156 & 0.15\end{array}$	enquiries we	med.		
${ }^{\text {ACl }}$ AC188	-0.25	${ }_{\text {BC }}{ }^{\text {BCI52 }}$	0.20	${ }^{80520}$	0.76	${ }^{\text {BFP}}$	${ }_{0}^{0.28}$	MU123	0.70	2N13	0.21	2 N 4248	${ }_{0}^{1.12}$				se items $\overline{8} \%$ v.a.t.	
AC	0.30	BC154	0.20	800	1.45		55	MPF	0.40		0.31	${ }^{2 N 4284}$	0.19	BA×16 0.07				
	0.32 0.25	${ }_{\text {BC158 }}^{\text {BC15 }}$	0.15 0.13	${ }_{\text {B0x }}^{\text {Bid }}$	${ }_{0}^{2.55}$	${ }_{8 F}^{8 F}$	0.30 0.35	MPSAO5	0.47	2N130	0.22	2N4286	0.19 0.13	BAY72 BE105B 0.0 .11	INTEGRATED	CIRCUITS	THIS MONT	
${ }^{\text {ACH39 }}$	0.68	${ }_{\text {BC }}^{\text {BC }}$	0.15	BD	1.78			MPS65	0.21	2N13	0.36	2 Na 289	0.20	8B1108 0.45	Troe Pricel?		SPECIAL OF	
${ }_{\text {AD }}{ }^{\text {AD }}$	0.58	${ }_{\text {BC }}^{\text {BC }}$	0.1	${ }^{\text {BFF }}$	0.20	${ }^{\text {BFXP65 }}$	0.26	MPSU	${ }^{0.66}$		0.45	2N42901		881				
AD143	0.51	BC1686	0.1			8F5	0.28	MPS	1.26		0.45		0.20	8Y103 $\begin{array}{ll}\text { Br100 } & 0.22\end{array}$	CA3065 1.90	Price	OOk lin pots	uged gauged
AD149	0.48		0.13 0.15	${ }^{8 F 120} 8121$	0.55 0.25		0.53			2 N	${ }^{0.48 .}$	${ }_{\text {2N4871 }}^{\text {2N492 }}$	-0.24	BY126 BY127 0.17 17	197p 1.19			
${ }_{\text {ADI }}$ ADI 12	0.48.	BC171A	0.15	8F123	0.2	Bry		O	0.65	2N2	0.36	2 N 50		$\begin{array}{lll}\text { BY12 } \\ 8 \times 133 & 0.17 \\ 0.23\end{array}$	P1	taA630S	00	
AF114	0.25	${ }^{\text {BC }}$	0.14		0.25		0	OC35	0.59	${ }_{2}^{2 N 2}$	0.60	$\xrightarrow{2 \mathrm{2N5} 5}$	0.32 0.35		1.01	18	0/1000	
AF	0.25	${ }^{\mathrm{BC} 173} 8$	${ }^{0.22}$	${ }^{\text {BFF127 }}$ BF15	0.35 0.25	${ }_{8 \mathrm{BrF}}^{8 \mathrm{Br}}$		OC36 OC42		${ }_{2}^{2 N 2}$	- 0.51	$2{ }^{2}$				taltoo	is-short	spindle
${ }_{\text {AFP }}^{\text {af }}$	0.25	${ }_{8 C 17}$	0.20	8F159	0.27	BFY	0.23	OC44	0.25	2N22	0.50	$2{ }^{2} 50$	0.32		C1352P 0.82	TAAB	5 peach	
Af	0.50	${ }^{\text {BC17 }} 18$			0.22	${ }^{\text {BF }}$	0.32	0 C	0.32	${ }^{2 \mathrm{~N} 23}$	0.42	2N5294	${ }_{0}^{0.5}$	8Y206 0.31	MC1358Pa	0.49	35/1000	
${ }_{\text {AF }}^{4} \mathbf{A F 1 2 1}$		${ }^{\text {BCL178 }}$	0.20	${ }_{\text {EF }}^{\text {8F } 161}$	0.455 0.45	${ }_{\text {BF }}$	0.31	OC71	0.32 0.32	2N2484	0.41	2 N	${ }_{0}^{0.58}$	BYX 10	UC1496L $\begin{aligned} & 1.85 \\ & 0.87\end{aligned}$	TAD100		
Af125	0.25	BC1798	0.21	BF163	0.45	BF	-	OC	0.32	2 N 2	0.18	${ }^{2} \mathrm{~N} 5$	0.85	O481 0.12	MC3051P 0.58	TBA240A	Lease ADD 25	P-VAT
AF126	0.25	${ }_{\text {BC }}$	0.11	${ }^{\text {8FF173 }}$	0.25 0.25	${ }^{\text {BLP }}$	0.79 1.90	OC	5		- 0.53	2N5457	${ }^{1.90}$	O490 0			CEPT AS INDIC	TEI
AF139	0.35	${ }^{\text {BC1 } 183 \mathrm{~K}}$	0.12	17	0.30	BPx29	1	oc	0.53	2 N 29	0.22	2N54	0.35	OA95 00.07	FCC4060			
AF147	0.35	${ }_{\text {BC }}$	0.13.	${ }^{\text {8FF } 789} 8$	0.33 0.33	8PXC	31.68	OC	7		0.26 0.26	${ }_{2 N 5}^{2 N 5}$	0.85 1.05 0.		70	${ }_{\text {TBA5500 }}{ }^{\text {TBA }}$	SEAS AIR MAIL: AT COST.	
AFT 78	0.55	BC1	0.25	BF180	0.35	BRY	0.47	OC140	0.80	2N290	0.28	$2{ }^{2} 6$	0.65	OA210 0.29	Ne555 0.72			
AF179	0.60	${ }^{\text {BC }}$	0.27 0.12	82	0.	BR	0.47	OC	0.25 0.30	2 N 29	0.12	${ }_{2}^{2 N 6178}$		$\begin{array}{ll}\text { INP14 } \\ \text { IN916 } & 0.07 \\ 0.10\end{array}$	NE5566 1.34 SI414A 1.91	T8A510 1.9	copy date. All prices sub	$\begin{aligned} & \text { n magazine } \\ & \text { o availabili- } \end{aligned}$
AF181	0.50	8C212	0.12	8F183	0.44	BSW	\bigcirc	OC	0.92	2 N 29	0.12	256643 A		IN4001 0.05	SL9018 3.84	TBA530 2.71	ew catalogue is no	available at
${ }_{\text {AFP239 }}^{\text {AF } 186}$	0.40 0.40	${ }_{\text {BC2 }}$	0.12 0.15	${ }^{\text {8FF } 184}$	${ }_{0}^{0.26}$	${ }_{\text {BSX }}^{\text {BSX }} 19$	0.13 0.19	ON188	2.19 0.65	${ }_{2}^{2 N}$	0.75 0.21				SL9178 SN76003 S	TEA 53002.71	30p (refundabie)	
AF279	0.84	,	0.12	194	0.15	${ }^{\text {BSTX }}$ 6	0.15	ORP 12	0.55	$2{ }^{2} 3054$	0.55	3N140	1.21	IN4004 0.08	${ }^{2} \times 1.92$	Trasto $\begin{aligned} & \text { 3.21 } \\ & \text { TBA5400 } \\ & 3.21\end{aligned}$	IROA/C 23532	00
${ }^{\text {All } 100}$	1.10	${ }^{\text {BC261A }}$			0.15 0.15	${ }^{\text {BSX }}$ 8819	${ }_{0}^{0.52}$	${ }_{\text {R200108 }}^{\text {R2008 }}$	2.05	2N30	0.60 0.54	${ }_{40327}^{40250}$	0.60 0.67	IN4005 0.09	SN76013N	TRA5500 4.10		
${ }^{\text {Al } 103}$	1.10	BC2638	0.25	BF97 ${ }^{\text {Br }}$	0.17	BSY	0.22	TAG3/400		2 N 3134	0.60	${ }^{40361}$	0.48	\|iN4006 ${ }^{\text {INA007 }}$	SN76013ND	TBA 560C 4.0		
All13 Allo3	${ }_{2.10}^{0.95}$	${ }_{\text {BC268C }}{ }_{\text {BC2 }}$	0.16 0.14	${ }^{\text {BF1 } 198} 8$	${ }_{0}^{0.20}$	${ }_{\text {BSY }}$	-0.45 0.50		1.54	${ }_{2}^{2 N 3232}$	1.32	${ }_{4}^{40362}$		IN4148 0.05	1.72	4.10		
Aul103 Aulio			${ }_{0}^{0.37}$		${ }_{0}^{0.25}$	${ }_{85 \mathrm{Br}}^{85}$	0.80	${ }_{\text {ric }}^{\text {TIC44 }}$	0.29 0.44	${ }_{2 N 325}$	1.10 0.28	40439	0.80 2.67		17			
Au	2.40	${ }_{8}^{\text {BC3 }}$	0.60 0.35	${ }_{85}^{88}$	0.35 1.08	${ }_{\text {BSY }}^{\text {BSY }}$	0.8	गC	0.58	2 2 3323	0.48	${ }^{\text {AC }}$ C128,		N55401 0.17	SN76023N	TRA673 2.28		
8C10	0.12 0.40	${ }^{68301} 8{ }^{68303 .}$	${ }_{0}^{0.35}$	${ }_{882245}^{8822}$	1.08 0.15	${ }^{\text {BSYY8 }}$	${ }_{0}^{0.28}$	T1C29A	${ }_{0}^{0.49}$	${ }_{2}{ }_{2} \mathrm{~N}_{3}$	0.23				SN76033N ${ }^{1}$	TBA700 $\mathbf{2 . 5 9}$ TBA7200 2.45		
${ }^{\text {BC1 } 108}$	0.12	${ }^{\text {BC } 3078}$	0.12	${ }^{85240}$	0.20	${ }^{81106}$	1.24	TIP	0.65		-. 15	${ }^{\text {ACP } 142 \mathrm{~K}}$	0.56	IN5404 ${ }^{\text {a }}$		TBA7500 2.33	似	
	- 0.12	${ }_{\text {BC3 }}$	0.10 0.15	${ }^{\text {BrF24 }}$ 844	0.22	${ }^{\text {B }}$		TIP	0.67 0.99	2N3704	0.1 0.1	${ }_{\text {AC188 }}^{\text {AC1 }} 18$		IN5404 0	SN76530P1.05			
${ }_{8 C}^{\text {BC }}$	- $\begin{aligned} & 0.13 \\ & 0.14\end{aligned}$		0.58	${ }_{\text {BF } 254}^{824}$	0.45	Bu					0.10			$\begin{array}{ll}\text { IN5406 } \\ \text { N5407 } & 0.30 \\ 0.39\end{array}$	SN76533 1.20			
	0.13	BC	0.22		0.45	${ }^{\text {Bu }}$	2.99	110	0.80	2 N3707	0.13	AC188K	61		TAA320 0.94.	T8A9200 4.23	CALLINGTON	
	0.14 0.13		1.58		0.49	${ }^{\text {Bu205 }}$	1.98	- ${ }_{\text {T1P42A }}$	0.91 0.30		2.3	${ }_{\text {A }}{ }^{\text {AC }}$		ZENERS		TBA990 4.10	CORNWALL PL17 8PZ	
BC	0.20	${ }^{\text {BCP4 }}$	0.16		0.66		3.00	Tis	1.36	2N3739	1.18	2		3v	TAA450 2.70	TCA2700 4.18		
	0.20							${ }_{2}^{212109}$	12		70	${ }_{\text {BC1 }}^{\text {AD }}$ A 162,		$\begin{array}{lll}3.33 \mathrm{~V} & 0.12 \\ 1 \mathrm{~W} & \\ 3\end{array}$	TAA550 0.55	2NA14 ${ }^{\text {P }}$	Telephone: Stoke Climsla	d (05797)
${ }_{8 C 117}$	0.20	${ }_{\text {BCY88 }}$	2.42	${ }_{8 F 263}$	0.70	8ury	2.50		22	2N3773	2.90	81,	0.70	3.3-100V 0.18	TAAA560 TAB	U6A995159 2.25	Calgton.	ERCUR

2×7400
$2 \times 74121_{2 \times 741}$
2×741 BPS8 and PLUS FREE $2 \times$ BPS 8 and $2 \times$ BPS 16 I.C. Sockets ALL FOR ONLY
 generous supply of etchant powder, etching dish, etchant measure, tweezers, etch resistant marking pen, high quality pump
drill with spares, cutting knife with spare blades, $6^{\prime \prime}$ metal ruler, plus full easy-to-fol blades, $\mathbf{6}$ metal ruler, plus full easy-to-fol
low instructions. $\mathbf{£ 7 . 8 0}$.

BARGAIN BUNDLES

Send to: BI-PAK SEMICONDUCTORS DEPT E.T.I., P.O. BOX 6, WARE, HERTS.

Bi-Pak bring you, for 2 months only a fantastic inflation beating offer designed to help you, the customer. With every Pak comes a useful FREE GIFT. In addition to this, our star attraction is the D.I.Y. Printed Circuit Kit. With every kit sold during this offer comes a voucher to the value of $£ 1.50$ to be spent on any items from our Retail Catalogue.

More than just a catalogusu! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components e:g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, interlocking pushbuttonswitches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc
Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch
patching system rather than the matrix patchboard of the targer
unit and is
particularly suitable for live performance and portable use.
S.A.E. please for price list

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCBs Complete reprint of article - price 15 p.

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesise including all the PCBs, metalwork and a drilled and printed front panel, giving a
 superb professional finish Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available now in our booklet price £1.50 or S.A.E. please for specification

ELSCRONGOBAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
 Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, price 35p. (Pre-publication price 15 p).

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30 p a vear (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of
GUARANTEED prices. Send us 30 p and we'll put you on our mailing list you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEEO period before the prices are implemented! plus details of any new lines, special offers, interesting projects and coupons to spend on components to repay your 30 p
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road. Westcliff on Sea, Essex Please address all mall to

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3 Rayleigh Essex SS6 8LR

LINEAR I.C. AMPLIFIERS

TAA263 - 3 stage low level amplitier Bandwidth DC to 600 kHZ . Supply voltage 6.8 V . Output power 10 mW . To 724 -lead E0. 65.
TAA293 - Med. freq. amplifier up to 600 kHZ . Supply voliage 6 V . Outpul 10 mW ino 150 . To 74 10-lead case 20.65.

TAA320 - Most stage followed by a bi-polar transistor. Gate-to-source voltage
g. 14 V . Power dissipation current $1 \mu \mathrm{~A}$. TO 183 -lead $£ 0.60$.

DIGITAL 7400 SERIES I.C.

7400	$£ 0.14$	7440	$£ 0.14$
7401	$£ 0.14$	7450	$£ 0.14$
7410	$£ 0.14$	7453	$£ 0.14$
7420	$£ 0.14$	7455	$£ 0.14$
7422	$£ 0.20$	7460	$£ 0.14$
7430	$£ 0.14$	7472	$£ 0.30$
		7474	$£ 0.25$

A minimum of 10 assorted I.C. must be ordered. Discount of 10% for any mix. up o 25 and 20% for larger quantities.

OSCILLOSCOPE CI-5

Made in USSR

Exiremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal values makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate. $3-\mathrm{in}$. tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulses from $0.1 \mu \mathrm{sec}$. to 3 m sec . A.C. mains operation.
Price £44.00 ex. works
Packing and carriage (U.K. only $£ 2.50$

EDUCATIONAL METERS Made in USSR

A range of small portable free-standing meters suitable for experiments and demonstration work. Moving coil movements with centre-pole pieces. 69 mm long open scale. Basic calibration accuracy 4%. The following ranges are available: 1, 2, 5, 10 Amps D.C.; 6, 15, 30 Volts D.C. Overall dimensions: $80 \times 100 \times 48 \mathrm{~mm}$ Price £ 1.80 ex. works
Packing and postage $£ \mathbf{E} 0.20$ per meter

SPECIAL TELEVISION

 BARGAINSFIRST GRADE TRANSISTORS

R2008B £0.95
 $\begin{array}{ll}20126 & \mathbf{E 1 . 6 5}\end{array}$

U133 \quad E1.55

$\begin{array}{lr}\text { BU208 } &$| 1.55 |
| :--- |
| 2.00 |\end{array}

Have you already got our illustrated 1975 catalogue/price list of valves. semiconductors. test equipment and passive components? If not, please send $£ 0.20$ for your copy now.

Prices are exclusive of VAT and unless stated otherwise packing and postage. When remitting cash with order please add $£ 0.80$ per mithimeter, or $£ 0.20$ in \mathbb{E} for other
items, as well as VAT (25% for valves, semiconductors and linear I.C.s, and 8\% for other equipment).

Z \& I AERO SERVICES LTD.

Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF
Tel.: 7275641
Telex: 261306

Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403

WW-071 FOR FURTHER DETAILS


```
Pack
        end. IF strip. demodulator. AFC
        and mute circuits
2 Set of metal oxide resistors, thermistor.
        capacitors. cermet preset for
        capacitors. cermet pr
3 Set of transistors, diodes. LED. integrated
    circuits for mounting on pack }
4 Pre-aligned front end module, coil
    assembly, three-section ceramic
        filter
5 Fibreglass printed circuit board for
    stereo decoder
6 -Set of metal oxide resistors. capacitors
        cermet preset for decoder
7 Set of transistors LED, integrated
- circuit for decoder
    components for channel
        selector switch module including
        fibreglass printed circuit board.
        push-button switches, knobs. LEDs
        preset adjusters, etc.
```

1 Fibreglass printed circuit board for front end. IF strip, demodulator. AFC capacitors. cermet preset for mounting on pack
3 Set of transistors, diodes. LED. integrated circuits for mounting on pack 4 Pre-aligned mbont and module. coil filter
cuit board for
6 -Set of metal oxide resistors. capacitors cermet presel for decoder

- circuit for decoder
Price

¢2.15 potentiometer, knobs ncy meter. meter dive components. ibreglass printed circuit board screen Primary: O-117V-234V screen. Primary: $0-117 \mathrm{~V}-234 \mathrm{~V}$ regulator for power supply regulator for power supply sockets, fuse holder. fuses, interconnecting wire. etc.
of metal work parts Including silk screen printed facia panel. acrylic slik screen printed tuning indicator panel inser. internal screen, fixing parts. etc.
15 Construction notes (tree with complere kitt
cabinet
One each of packs 1-16 inclusive are required for complete sterso FM tuner.

Price NOVELSTEREO FM TUNER

¢5.30
In the April and May issues of Wireless World there was published a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by too many earlier funers. This original circuit has been developed further and is used as the basis for our new stimline unit The front end is a ready buitt pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an integrated circuit five-stage limiting amplifier providing excellent a.m rejection. This is followed by a single coil integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a ten-tum tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the front panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert. Additional circuitry includes temperature compensated AFC restricted to less than station spacing, inter-station mufing, a single-lamp LED funing indicator and a tinear scale frequency meter. The stereo decoder, built on a separate board, is based on a well-proven integrated circuit phase-locked-loop to which has been added active fihers to remove sub-carrier harmonics and 'birdies'. The power supply, to ensure station holding stability, uses an integrated circuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.

STYLED TO COMPLEMENT THE WORLD-WIDE ACCLAIMED LINSLEY-HOOD 75W AMPLIFIER

THE FM TUNER KIT YOU HAVE WAITED FOR!

FREE
TEAK CASE WITH FULL KITS
KIT PRICE only 2 *********************************

NEW!

DESIGNER APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone of the system, namely the equalization stage and tone
control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. run out of gain at the extremes of the frequency spectrum.
Unusual features of the design are the variable transition Unusual features of the design are the variable transition
frequencies of the tone controls and the variable slope frequencies of the tone controls and the variable slope
of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (modifications as per Hi-Fi News April 1974)

Abstract

Full circuit description in handbook (pack 15-price 30p)

 FREE TEAK CASE WITH FULL KITSKIT PRICE only 2 carriage free (U.K.)

Pack

Pack	
1	Fibreglass printed-circuit board for power amp.
2	Set of resistors, capacitors, pre-sets
3	Sei of semiconductors for power amp. Inow using BDY56. BD529. BD530)
4	Pair of 2 drilled, finned heat sinks
5	Fibreglass printed-circuit board for pre-amp.
6	Set of low noise resistors. capacitors pre-sets for pre-amp.
7	Set of low noise. high galn semiconductors for pre-amp.
8	Set of potentiometers fincluding mains switch)
9	Set of 4 push-bution switches. rotary mode switch
10	Toroidal transformer complete with magnetic screerthousing primary: 0.117 .234 V , secondaries; $33 \cdot 0.33 \mathrm{~V} .25 \cdot 0.25 \mathrm{~V}$.

Fibreglass printed circuit board tor power supply
resistors, capacitors secondary fuses, semicon ductors for power supply 13 Setofmiscellaneous parts incluting skt. fuse holder inter connecting cable. control knobs of metalwork pants including silk screen printed fascia
panel and all brackets, fixing parts. etc.
5 Handbook
Handbook
Teak cabinet
2 each of packs 1-7 inclusive are required for complete stereo system Total cost of individuall purchased packs

Price
¢0.65
\checkmark A T Please add $25 \%^{\circ}$
to all U.K. orders
(*or at current rate if changed) U.K. ÓRDERS - Carriage free (MAIL ORDER ONLY)
SECURICOR DELIVERY: For Securicor delivery to
mainland- ądd $£ 2+$ VAT per kit.
OVERSEAS - Postage at cosi +50 p
special packing
Dept. WW11
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER. HANTS SP10 3NN

STANDARD TRANSFORMERS
The following types are stock items
Mains:
Primary $120 v+120 v$. Two identical secondaries

	Each	Tolal		
Type	Sec.	VA	Quantity	£ p
SM15-6	$0-6 \mathrm{v}$		1-9	1.92
SM15-12	$0.12 v$	15	10.49	1.82
SM15-15	0.15 v	15	50-99	1.75
SM15-20	0-20v		100-499	1.69
SM24-6	0-6v		1.9	2.30
SM24-12	$0-12 \mathrm{v}$	24	10-49	2.20
SM24-15	0-15v		50-99	2.15
SM24-20	$0-20 \mathrm{v}$		100-499	2.10
SM50-6	0-6v		1.9	3.75
SM50-12	$0.12 v$		10.49	3.60
SM50-15	0.15 v	50	50-99	3.49
SM50-20	$0-20 \mathrm{v}$		100-499	3.40

Sub-miniature mains:

Primary 240 v. Electrostatic screen. CT
Secondary 1.2VA, PCB or clamp mounting

			£ p	£p
Type	Sec.	Quantity	Clamp	No clamp
SMS3	$3-0.3 v$	1.9	1.60	1.56
SMS6	$6-0.6 v$	$10-49$	1.50	1.47
SMS12	$12-0.12 v$	$50-90$	1.43	1.40
SMS20	$20-0-20 v$	$100-499$	1.37	1.34

Data sheets are available. Minimum order charge $£ 5$, post \& packing extra

2 WAY CROSS ATLANTIC RADIO COMMUNICATION with $\mathbf{6 0 0}$ milliwatts

to a 230 cm . long aerial - on 14 mHz Amateur Band - typifies the WORLD RECORD (patented) PARTRIDGE V.F.A. MULTI-BAND AERIAL SYSTEM for any location
Details (stamp)
PARTRIDGE ELECTRONICS LTD. (W.W.) BROADSTAIRS, KENT
Tel. Thanet (0843) 62535 G33VED
ACCESS AND BARCLAYCARDS ACCEPTED
WW-096 FOR FURTHER DETAILS

ANALOGUE \& HYBRID COMPUTERS

Illustrated is the C180. one of our standard range of analogue and hybrid computers which offer high model has $18 \mathrm{I} . \mathrm{C}$. operational amplifiers all of which may be switched for use as integrators, automatic function selection and meter switching, 3-Four quadrant Multipliers. Individual Pot-Set Facilities, 1\% accuracy, built-in Stabilised Power Supplies, D.V.M. optional extra. Many other features al this very low price of $£ 1.150$ complete with patching leads and instruction
Book. Book.

We are specialists in producing computers designed for your own specific research or
engineering requirements at prices which are very little more than those for our standard
range.
Phone or write for details of our Analogue or Hybrid apparatus.
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF PRECISION ELECTRONIC EOUIPMENT
28 Athenaeum Road. Whetstone, London N20 9AE. Tel. 01-4457683

QUALITY AMPLIFIER KITS by POWERTRAN
 WIRELESS WORLD AMPLIFIER DESIGNS
 Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are ELECTRONICS

packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs. a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set

'2OW LINSLEY-HOOD

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set

GOV REGULATED POWER SUPPLY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set

BAILEY-BURROWS PRE-AMP

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets, transistors

ع0.80
$£ 1.75$
$£ 1.75$
1.75
$\mathbf{~} 4.70$
£0.85

$\mathbf{1} 2.85$

£3.35
£0.75
$£ 0.75$
$£ 1: 40$
$£ 1.10$
$\mathfrak{£} 2.05$
¢4.95

Pk. 3R Rotary potentiometer se
£ 1.60 Pk. 35 Slider potentiometer set (with knobs)
£2:70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design
TRRP Pk. 1 Reply amplifier F/Glass PCB £0.90 TRRC Pk. 1 Record amp./meter drive cct. F/Glass PCB
£ 1.40
TROS Pk. 1 Bias/erase/stabilizer cct. F/Glass PCB
£1.00
For details of component packs for this design please write for free list

20 WATTS/CHANNEL

TOROIDAL T20 + 20
Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in
delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal trąnsformer, this slimline integrated circuit design, based upon a single $F / G l a s s$ PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

Pack		Price
1	Set of all low noise resistors	£0.95
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capacitors	E1.40
4	Set of miscellaneous parts including DIN sockets. fuses, fuse holders. control knobs. etc.	£ 4.90
5	Set of slide and push-button switches	£1.20
6	Set of potentiometers and selector Switch	¢2.00
7	Set of all semiconductors	f 7.25
8	Special Toroidal Transformer	¢4.95
9	Fibreglass PC Panel	£2.50
10	Complete chassis work. hardware and brackets	¢4.20
11	Preformed cable/leads	f0.40
12	Handbook	£0.25
13	Teak Cabinet	E4.50

krimace £28.25 post free (U.K.)

2N699	¢0. 25	2N5830	E0.30̄	BC214L	c0.tis	MJ481	E. 20	TIL209	C0. 30
2 N 1613	¢0. 20	40361	80.40	8 CY 72	¢0.13	MJ491	£1.30	TIP29A	¢0.50
2 N 1711	¢0. 25	40362	¢0.45	8 B529	¢0.85	MJE521	¢0.60	TIP30A	¢0.60
2N2926G	f0.10	BC107	¢0.10	BD530	¢0.85	MPSAO5	¢0. 25	TPP29C	¢0.71
2N3055	¢0.45	8 C 108	¢0.10	BDY56	£1.60	MPSA12	¢0.55	TIP30C	¢0.78
2N3442	¢1.20	BC109	¢0.10	BF257	¢0.40	MPSA14	¢0.35	TIP41A	¢0.74
2N3711	¢0.09	BC109C	¢0.12	BF259	f0. 47	MPSA55	f0. 25	TIP 42 A	¢0.90
2N3904	¢0.17	BC125	f0.15	BFR39	ع0.25	MPSA65	¢0.35	TIP 418	£0.82
2N3906	¢0. 20	BC126	¢0.15	BFR79	¢0.25	MPSA66	¢0.40	TIP 428	c0. 98
2N4062	¢0.11	BC182	¢0.10	8FY51	ع0. 20	MPSU05	¢0.60	1 N914	¢0.07
2 N 4302	¢0.60	BC212	¢0.12	BFY52	¢0. 20	MPSU55	¢0.70	1 N916	¢0.07
2N5087	¢0.42	BC182K	£0.10	CA3046	¢0.70	SBAT50A	£2.50	15920	f0. 10
2N5210	¢0.54	BC212k	¢0.12	LP1186	¢5.50	SL301	f1. 30	5805	¢1.20
2N5457	c0.45	RC182L	f0.10	MC1310	£2.90	SL3045	£1.60	FIL	
2N5459	c0. 45	BC184L		MC135	£1.05	SN7274ip	¢0.40	FM4	¢0.80
2N5461	¢0.50	3C212L	f0.12	MFC4010	¢0.95	SN 72748 P	£0.40	SFG 10	

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

Pack
1 Fibreglass PCB (accommo.
dates all filters for one channel)
2 Set of pre-sets, solid tantalum capacitors. 2%
metal oxide resistors. 2% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER ANY OF OU

READ/TEXAS 20wamp.

Pack
1 Fibreglass PCB
2 Set of resistors, capaci-
tors pre-sets (not including O / P coupling capacitors)
3 Sitors) 4.206 off each pack required for stere 4.20
2.65 £2.65

Special heat sink as
sembly for set of 3

sembly for
amplifiers
5 Set of $30 / \mathrm{P}$ coupling - f.apacitors 2 off packs 4.5 required for
siereo system

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70 SYSTEM
$\begin{array}{ll}\text { Pack } \\ 2 & \text { Fibreglass PCB } \\ 2 & \text { Set of rectifiers }\end{array}$
$£ 1.102$ Set of rectifiers, zener diode, capacitors. fuses fuse holders
3 Toroidal transformer
£0.85
$£ 1.00$
MORE KITS
ON PAGE 61
for further information please write for FREE LIST NOW!

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the best pre-amp kit currentil available. Consider the advantages:- First quality fibreglass printed circuits with roller tinned finish and all component locations printed on reverse. ganged controls with matched tracks and shats cut to length. *Well engineered layoul for total stability. *Special decoupling and earthing arrangements to eliminate hum loops.
*Controls, switches and input sockets mount directly on the boards to TOTALLY Controls, switches and input sockets mount directly on the boards to TOTALLY
ELIMINATE wiring to these components. (We know of one pre-amp kit which claims its controls mount directly on the board-and so they do. by their shaft bushes! You still have to wire them up!!

* We incorporate the Quilter modification which is most important as it reduces distortion and increases the bass and treble control range.
As can be seen from the photograph the tone control unit is very slim fonly $1 \frac{1}{2}^{\prime \prime}$ from
front to back) and may therefore be used in many other applications than our Bailey metalwork which it is designed to fit. METALWORK AND WOODEN
pease send for latest iniormation.
F.M. TUNER This latest addition to our range is designed to offer the best possible performance allied to the ease of operation given by push button varicap luning. W coils to wind. no RF circuits to wire and no alignment is required. in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors. one IC and two ready built and aligned modules comprising the active components. We have
abandoned the concept of having a funer as large as the amplifier and this new unit has a abandoned the concept of having a tuner as large as the amplifier and this new unit has a
frontal size of onty $1 \frac{1}{2}$ in. $X 4$ in. It can be mounted on the side of our Bailey amplifier metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in.
Cost of tuner chassis (no case) is $£ 22$ for mono. $\mathbf{£ 2 5 . 4 5}$ for stereo. Metal case $\mathbf{£ 3 . 5 5}$ Cost of turer chassis (no case) is $£ 22$ for mono. E25.45 for stereo. Metal case $£ 3.55$
An extended woodencase to fit tuner and amplifier will be offered shorty. An extended wooden case to fit uner and ampifier will be ofered shorily. STUART TAPE CIRCUITS Our printed circuits and components orier the easy way
convert any suitable quality deck into a very high quality Stereo Tape unit. Input and
Sto output levels suit Bailey pre amp. Total cost offer tape heads as well if you want new ones.
All above kits have fibreglass PCB's. Prices exclude VAT but $P \& P$ is included.
FURTHER INFORMATION ON ALL KITS FREE if you send us a $9 \mathrm{in} . x^{\circ} 4 \mathrm{in}$. S.A.E. FURPRINTS Post free, no VAT

Bailey 30 W 18p

STUART TAPE RECORDER AII 3 articles under one cover 30p.
Penylan Mill, Oswestry, Salop

SO the leading quadraphonic system, designed by CBS enguneers, others not only 4 charinel ambiophony trom the
last expanding remge of SO encoted discs but also immensely increased depin and fuliness of sound from
standad slereo recordings too
 and take a chamnels out with no overall signal level reviction. On the togic entanced decoders Votume Front
Back LF-RF. LBneed tor exotic 4 -gang unitsl
these state-0t-the-an circuits, used under hicence from CBS. are oftered in hit form comprising first grade components only-titre glass circuit boards of protessionat quatity designed tor edge connector insertion, all
resistors 2% metal oxide. al polystyrene and polycarbonate capactors 5% or beter and in decoder 12 ulua low noise (MPS AISo 5 dB typ.) transistors used in each amplityng stage.
M1 Basic matrix
Circuit Board. 8654
L1 Full iogic controlled decoder with "wave malchung" anc "tront back logic' for entanced channel separation using
three specially designed Integrated Circuis. 24 Resisiors, 42 Capacitors, 3 Integrated Circuls. Pronted Circail Board. E19.80. 8 . 12 More advanced full togic decoder with varidule biend. extended frequency response. increased flomt-buck
ceparation, 43 Resistors 44 Casacitors. 3 integrated Circuits, 9 Transistors. 6 Dodes. Permied Circuir Board. 228.20 . Ceparation, 43 Resistors 44 Cabacitors, 3 integrated Circuits, 9 Transistors. 60
All kits inclune Re sokets and tonstruction Ailkits inclune IC socke ts and construction P .
Please wrie lor further delails in FAEE LIST.
Unired Kingdom: Post Free. Please add 25\% VAT. Overseas: No VAT. Please add (per kit) $£ 200 \mathrm{p}$ \& p
AIR MAll or $£ 1.00 \mathrm{p}$ \& SURFACE MAIL.

AIR MAIL or $£ 1.00$ p $\&$ SURFACE MAIL.

ANDOVER, HANTS SP103EQ

AUDIO MODULES - todav's most challenging values!

```
POWER AMPS
SS103
Compact I.C. amp. 3 watts R.M.S. Single channel (mono) On P.C.B. size \(31 / 2^{\prime \prime} \times 2^{\prime \prime}\). Needs \(10-20 \mathrm{~V}\) supply. \(£ 1.75\)
```

SS103-3
Stereo version of above. (Two I.Cs.)
£3.25
NEWI SS105 Mk. 2
A compact all-purpose power amp. Size $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Useful 5 woutput (mono) into 3Ω using 12 V . Excellent value. Two 20 w at 12 V 4 p.a.

SS110 Mk. 2

Similar in size to SS 105 but will give 10 w.output into 4Ω using 24 V (mono). Two in stereo give first-class results, suitable for many domestic applications. $\quad \mathbf{2} .75$ Now - the SS1 20 gives 20 w R.M.S. into 4 ohms from
 SS140*
Beautifully designed. Will give up to 40 w R.M.S. into 4Ω Excellent S. N. R. and transient response. Fine for P. A., disco use, etc. Operates from 45 V DC. Two in bridge formation will give $80 w$ R.M.S. into 8Ω.
£3.75

SUNDRY
P. 1 PAK - Approx. 170 short-lead semi-conductors and components. PNP, NPN At least 30% factory marked. Some dat
supplied. 50 p .
UHF 625 line tuner, rotary. $£ 2.50$
Rev Counter (for cars) (8\%). $£ 1.00$
Books by Bernard's Publications. Newnes.
Butierworth's, etc.

Now
vour's for froes and well worth getting

- only please send large S.A.E. with
| 10 p stamp if wo have to post it to you.

V.A.T. - IMPORTANT

Rates quoted in good faith in accordance with
Customs \& Excise natings. In the event of overpayment by customers the difference will be credited.

NEW RANGE TRANSISTOR \& COMPONENT PACKS

TP SELECTION

TP5 Ium, Red Spot A.F. German TP6 20 Transistors. PNP GermanTP7 12 N 174150 w 80vce Power Transistor, with mounting assembly.
TP19 100 diodes. mixed Germanium, Gold-bonded, etc. Marked/Un: marked.
TP23 Twenty NPN Silicon uncoded TO5. Similar 10 BFY50/2. 2N696. 2NT613.
TP24 Twenty PNP Silicon, uncoded 2N2904imilar to BFY64. TP29 8 power diodes 400V, 1.25A
Silicon FST $3 / 4$.

UT SELECTION

UT1 50 PNP's Germanium, AF \& RF
UT2 150 Germanium diodes, min glass.
UT4 100 Silicon diodes, min. glass, similar to IN914, IN916
UT5 40250 mW Zener diodes OAZ 240 range: average 50% good

UT7 30 silicon rectifiers 750 mA .
UT9 40 NPN Silicon planers. Similar to 2 N3707-11 range. Low noise to 2 N3707.11 range. Low noise
amps.
UT12 25 2N3702/3 Transistors, PNP Silicon. Plastic to 92

CP SELECTION
CP1 Mixed bag of capacitors Electrolytic, Paper, Silver Mica
(Approx. $150-$ sold by weight)

CP2 200 (approx.) Resistors. various types, values, watts. (Sold, by types.
weight.)

CP3*40 Wire-wound resistors, mixed.
CP4 ${ }^{12}$ pots - pre.set, w/wound. carbon, dual, with/without switches - all mixed

CP7 Heat sinks, assorred. To fit SO-2 (OC 72) TO. (AC 128), etc.

ALL ABOVE PACKS - 60p EACH. TP Tested \& Guaranteed: UT Uniested, unmarked; CP Components.

CAPACITOR DISCHARGE IGNITION KIT
Simple to assemble and improves car pertormance, £750
BI-PRE-PAK X-HATCH GENERATOR MK. 2

SS300 POWER SUPPLY STABILISER
Add this to your unstabilised supply to obtain a steady working
voltage from 12 to 50 V for your audio system, workbench, etc.
voltage from 12 to 50 V for your audio system, workbench, etc.
Money saving and very reliable.
$\mathbf{~} 3.25$
PLASTIC POWER TRANSISTORS
Ty WATT SILICON: Polarity
40 N 2
40 P 1
40 P 2
40P2
90 WATT SILICON

90 WATT SILICON :				
TYpe	Polarity	Gain	VCE	Price
90N1	NPN	15	15	$\mathbf{2 5 p}$
$90 N 2$	NPN	40	40	$\mathbf{3 5 p}$
$90 P 1$	PNP	15	15	$\mathbf{2 5 p}$
9092	PNP	40	40	$\mathbf{3 5 p}$

TERMS OF BUSINESS:
AT at $25^{\circ} \%$ must be added to total value of order, encept for ilems marked oor 886 men Vat is to be added al 8%. No Vat on overseas orders. POST \& PACKIMG Add EI, Overseas orders, add EI for poslage. Any ditterence will be crediled or charged. PRICES Subject to alieration wilhout notice. AVAILABILITY All tlems avallable at time of going to press when every ellart is made to ensure correclness of information.
you preter not to cut coupon out, please mention WW8 when writing.
TO BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX

Please send
for which / enclose

NAME

ADDRESS

8 DECADE RESISTANCE BOX

TIME ELECTRONICS LTD.
Botany Industrial Estate Tonbridge, Kent
Tel. Tonbridge (07322) 5993 (3 lines)

We have made it just about as comprehensive and up-to-the-minute as possible. Thousands of items from vast ranges of semi-conductors including I.C.s io components. tools, accessories, technical information and diagrams are included as well as a refund COPY BY RETURNN It span investment in practical
money-saving and reliability!
+E.V. PRICE STABILIZATION POLICY
This is one of reviewing prices every 3 months rather than trying 10 keep up with day by day changes as they occur. We have in fact held prices for two such periods (Jan. 1-July 1) and our next price review is due October 1 s1
+E.V. DISCOUNT PLAN
Applies to all itemsexcept the few where prices pre shown NETT. 5% on orders from $£ 5$ to £14.99: 10% on orders value $£ 15$ or more

+ FREE POST \& PACKING
In UK for pre-paid mail orders over £2 (except Baxandall cäbinets). If under there is an additional handling charge of 10 .
+ QUALITY GUARANTEE
All goods are sold on the understanding that they conform to makers' specifications. No rejects. seconds or sub-standard merchandise.

ELEGTROTALUE LTD

All communications to Section $2 / 8$
28 ST. JUDES RDAD, ENGLEFIELD GREEN, EGMAM, SURREY TW20 DHB Telephone Egham 3603. Toler 284475. Shop hours: $9: 5.30$ daily, 9.1 p.m. Sats.
NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M 191 NA Teiephone (061) 432 4945. Shop hours: Daily 9-5.30 p.m., 9.1 p.m. Sats. U.S.A. CUSTOMERS are invited to confact ELECTROVALUE AMEAICA. P.O. Box 27. Swarthmore Ph 19081

TRANSFOMMERS
 ALL EX-STOCK - SAME DAY DESPATCH

MAINS ISOLATING
PRI 120/240V SEC $120 / 240 \mathrm{~V}$ CENTRE TAPPED AND SCREENED

60 VOLT RANGE				
SECONDARY TAPS				
	$0.24-30-40.48-60$			
Ref.	Amps	\&	P\&P	
No.	0.5	2.33	38	
124	0.5	3.41	38	
126	1.0	3.41	45	
127	2.0	5.08	45	
125	3.0	7.52	60	
123	4.0	8.75	67	
40	5.0	9.75	73	
120	6.0	11.30	85	
131	8.0	15.00	BRS	
122	10.0	17.52	BRS.	
189	12.0	19.98	BRS	

12 and/or 24-VOLT
PRIMARY 220-240 VOLTS
f. ${ }_{12 \mathrm{~V}} \mathrm{AMPS}$

P\&P
23
30
$\begin{array}{ll}1.35 & 23 \\ 1.74 & 30 \\ 2.29 & 38\end{array}$
$56-45$
$\begin{array}{ll}5.14 & 53 \\ 5.52 & 53\end{array}$

AUTO TRANSFORMERS

 Ref. VANo. (Watts) AUTO TAPS P\&P

P\&P

HIGH VOLTAGE

PRI 200/220 OR 400/440
SEC 100/120 OR 200/240

VA	Ref.	£	PA P P
60	243	4.37	63
350	247	10.41	75
1000	250	27.06	BRS
2000	252	41.07	BRS

SPECIAL OFFER
Cased Isolator Transiormer.
1KVA. PRI 240v, sec. 115 v 1 KVA , PRI 240 v , sec, 115 v .
Few only $£ 33.50$. BRS. Few only $£ 33.50$. BRS
PLUS

PM7
METEPS
AVO8 Mk. 5
AVO72
U4313
U4315
(USSR), inc. steel carryin

P\&P 95p
MAGNETICTO
CARTRIDGE CONVERTER
ONLY $£ 2.65$ p $\& \mathrm{p}$ 18p
$\begin{array}{rrr}113 & 20 & 0.115-210-240 \\ 64 & 75 & 0.115-210-240\end{array}$ 1.67
2.90
4.12
5.82
8.82
13.68
18.11
24.20
35.09

\qquadSCREENED MINIATURES

$\begin{array}{ll}\text { Ref. } & \text { mA } \\ 238 & 200 \\ 212 & 1 \mathrm{~A} \\ 13 & 10 \\ 235 & 330 \\ 207 & 50 \\ 208 & 1 \mathrm{~A} \\ 236 & 20 \\ 214 & 30 \\ 221 & 70 \\ 206 & 1 A \\ 203 & 50 \\ 204 & 1 A\end{array}$

Volts
$3 \cdot 0-3$
$0-6.0-6$

0.0 .0
9.0 .9
0.9 .0 .9

CASED AUTO. TRANSFORMERS
240 V mains lead input and USA
20VA $£ 3.23$, P\&P 380
150 VA £6.07. P\&P 54p.
500 VA $£ 10.45$, P\&P 80
1000 VA $£ 17.51$ BRS.

Ref. 113 W
Ref. 4 W

Ref. 67 W
Ref. B4W

SCREENE

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST.

ANTENNAS

 EACH ANTENNA WE MAKE IS BACKED BY 20 YEARS OF CONTINUOUS DEVELOPMENT AND MANUFACTURING EXPERIENCE. OUR FIXED antennas carry a 5 -YEAR REPLACEMENT WARRANTY. YOU PAY NO MORE FOR THE RELIABILITY ANB PERFORMANCE THAT THIS EXTRA QUALITY BRINGS. YOU WILL PROBABLY FIND THAT WE ARE LESS EXPENSIVE THAN YOUR USUAL SUPPLIERS. ARE YOU SATISFIED WITH YOUR PRESENT DELIVERIES? WE SPECIALISE IN FAST EXPORT SHIPMENTS. OUR range Of COMMUNICATIONS ANTENNAS INCLUDES BOTH FIXED AND MOBILE - SO WHY NOT DROP US A LINE FOR A QUOTATION AND A COPY OF OUR LATEST CATALOGUE.
TELECOMMUNICATIONS LTD

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as is is below inherent circuit noise.)
Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z}$)
Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mv)

Line - 85 dBV measured flat (ref 100 v)
-88 d BV " A " weighted (ref 100 v)
Hear the HD250 at

SWIFT OF WILMSLOW

Celestion Dittons get the best out of any system

Buy a really good set of speakers and you've got yourself a better hi-fi system . . . buy a set of Celestion Dittons and you've got one of the best!

Whether you already own or are thinking of buying either a 'package' hi-fi system or are selecting your own individual units, a pair of good speakers will pav dividends in terms of sound quality.

Some people pay least attention 10 selecting the speakers. Given first priority they will vastly improve the performance of most systems.

Celestion Dittons have a long standing reputation among ent husiasts for their outstanding achievements in high quality sound reproduction.

From left to right, the Ditton 11, 44 and 33
Visit your Celestion dealer. See the beautiful appearance and hear the new sounds of the very latest Dittons.

Full details on request.

Celestion

Please send full details of Ditton 11Ditton $33 \square$ Ditton $44 \square$ (tick ippropriate 'xex /twexes)

Name

Rola Celestion Limited, Ditton Works,
\qquad

100 WATTS ! HY200

The HY200 is the latest hybrid amplifier from I.L.P. It has been designed to be virtually indestructible lending itself to domestic and industrial applications. Latest design techniques including thermal shutdown make the HY200 the most advanced amplifier of its kind in the World. Only five connections are required, input, output, power lines and earth.

Features:
Short Circuit Protection
No External Heatsinking
Thermal Shutdown
Only Five Connections
Low Distortion
Price £21.20 +VAT£5.30
P\&P free

Specifications:

Output Power 100 watts R.M.S. into 8Ω Input Impedance $100 \mathrm{~K} \Omega$
Input Sensitivity 500 mV R.M.S.
Distortion 0.05\% Typical
Signal: Noise 96dB
Power Band Width $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power Supply 45-0-45v D.C. at 2 Amps
Weight 1 Kilo (2.21b)
Power Supply PSV90 suitable for one HY200
Price $£ 10.56+$ VAT $£ 2.64$
P\&P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd,
Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Órder \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address

MODERN COWWUUICATIONS DEWAND QUALITY COWPOWENTS...

KR2376ST£11.50
With on-chip oscillator encoder 88 S.P.S.T. Keyboard. Closures to 9 -bit (with parity) ASCII Output.

COM2502P £4.65, COM2017P. E4.75 (11/2 stop bits)
UART - Universal Asynchronous Transmitter/ Receiver. Features: Automatic parity framing and overrun error detection fully independent send/receive - 25 KB .

COM2601£16.40
USRT - Universal Synchronous Receiver/Transmitter. 250 KB - Automatic Synch. Character send/detect.

DIL
 18-pin

Hermetic

COM5016£6.70
Dual Baud-Rate Gen. with on- chip crystal osc., two outputs selected by 4 binary address lines each. Outputs at $16 \times$ Baud rate.

Phase-Locked	
Loops	
XR-210	£3.25
XR-215	£4.10
XR-S200	15.35

EXAR

10 P	£1.75
XR-1800	£1.75

Quad Line Circuits X月-1488P $£ 2.85$ XR-1489AP $£ 2.40$ Timing Circuits
XR-2240CP
$£ 2.95$ (Programmable counter/divider) XR-320 $£ 0.95$

$555 C P \quad £ 0.60$

 XR-205K £12.30 XR-2206CP $£ 2.80$ XR-2206KA $\frac{\text { K1 }}{£ 1} .50$ (Kir, inc. chip $+p . p . c . b$. XR-2206KB $\quad £ 16.00$ Kit. inc. chip
passives p.c.b. + XR-2207CP E2. $1 \overline{0}$ (Sweep ratio $\mathbf{3 0 0 0 : 1)}$

DIL
24-pin
Hermetic
NM $\times 5010, £ 6.70$ 10.channel Multiplexer

High Voltage Op/Amps
SG1436CT £1.55
Micropower Op/Amp
SG3250M

Luw Drift Dp/Amp
SG308M
£0. 95
Low Drif: Somp Op/Amp
SG3118T.
£1.55

Tone

 Decoders XR-567CP £1.50 XR-2567CP £2.85 (Dual)Op-Multiplier XR-2208CP £2.80
Spot Power + ve £2.25
+5 V SG340K - 5
+6 V SG340K - 06
+8 V SG340K - 08
+12 V SG340K -12
+15 V SG340K -15
+18 V SG340K -18
+24 V SG340K - 24
Spot Power -ve £3.60
-5V SG320K - 05

- 5.2 V SG320K - 5.2
-12V SG320K - 12
-15V SG320K - 15

Dual Tracking Types
SG4501AN £1.94
SG3501AJ £4.02
± 15 volts, adjustable
SG3502N
£3.35
$\pm 10- \pm 23$ volts variable
Modulators/Multipliers
SG1495J
$£ 2.00$
SG1496T
£0.83
$£ 1.40$

USE AUGAT

SOCKETS FOR ALL THESE INTEGRATED CIRCUITS

AT THESE PRICES AND BUY QUALITY

TOSHIBA VALVES
 Type DY87 DY802
 DY802 ECC82
 ECC82 EF80
 EF80 EF183 EF184
 EF184 EH90 PC
 $\mathrm{PC900}$ $\mathrm{PCC89}$
 PCC189
 PCF80 PCF86
 ${ }^{\text {PCF886 }}$
 PCF802
 PCL82 PCL84
 PCL184 PCL85
 PFL200 PL 36
 PL84
 PLL504
 PL508 PY8
 PY88 PY 800 PY 500 A
 SEMI
 CONDUCTORS
 Type Each（p）
 AC127 AC128
 AC141K AC142K
 AC 142 K AC 151
 AC154
 AC155 AC156
 AC176
 AC187 AC187K
 AC188 AC188K
 AD142
 AD149 AD161
 AD162
 AF115
 AF116 AF117
 AF118
 AF139 AF178
 AF178 AF180
 AF181
 AF239
 AF240 BC107
 BC108 BC109
 ${ }^{8} 8 \mathrm{C} 109 \mathrm{C}$
 BC113
 ${ }_{8 C} 117$

price
cuAlicy
ginvice

COMBINED PRECISION
COMPONENTS
（PRESTON）LTD
Department w．
194－200 North Rd．
Preston PR 1 1VP Tel：55034

Price
Each（p） C125 C132 C135 C135
C137 C142 C143 C147A C148 C153 C157

C158 C159 | C173 |
| :--- |
| C 1788 |
| 1821 | C182L

C183L | Cl 1831 |
| :--- |
| C 187 |
| Bl | ్ㅔN． AN BD124

BD 131
80132 30132
30160
30235 80237
80×32 F115 F160 BF167 $\stackrel{7}{\sqsupset}$ $\stackrel{\rightharpoonup}{\square}$
 BF185
BF194 뉸 た ${ }^{2}$ NㅜN $\overbrace{0}^{\infty}$ BF336 F355 No BFY50 N 응 108 1JE 740 C 71
\qquad

$2 \mathrm{N696}$	0.22	2 N 3906	0.27	AFJ	0.65	80139	0.71	MPSA56	0.31
		2 N		AF23	， 5	в01	87		
				AF24	0.90	8F1	0.36		
				AF27			0.55	$0{ }^{0}$	
	4	2 N		AF28	0.79	8F1	0.20		
${ }^{2 N 708}$		2	34	Al10	1.00	${ }^{8} 1$	0.27	TIP	
16	8	2N4920	10	BC10	0.14	BF	35	TIP2	
2 2018		2 N 492	3	BC10	0.14	日Ft	6	tip3	
1302		2N492		BC10	14	8F1	30	tiP3	
${ }^{2}$	0.26	2N52		BC147	1	8 F	12	TIP	
2 N 1306		2 N	8	BC148	15	日F		T1P34A	
308		${ }^{2 N 5}$	8	BC1498		Bf	，	TPP35A	
2N1719	5	2		${ }^{\text {BCC157A }}$	0.16	${ }^{8}$		${ }_{T P}$	
				${ }^{\text {BCI } 158}$	16		8	T1P4	
${ }_{2}^{2 N 2147}$	8	2N		${ }^{\text {BC1 } 1678}$		8		TP4	
2148	2	${ }_{\text {2N }}$	35	${ }^{\text {8C }} 16888$	15		，	T1P29	
	0.26	3N140	1.00	${ }_{\text {BC } 182}$	0.15	${ }_{\text {BFF }}$	0．55	Tis	0．50
${ }^{\text {2N220 }}$	0.25	${ }^{3 N 141}$	0.81	BC182L	0.12	BFS61	0.27	27×300	0.13
2 N 2222	0.18	3N200		${ }^{\text {BC1 }} 183$	0.12		25	21×301	
${ }_{\substack{2 N 2228}}^{2 N}$		${ }^{40361}$		831	\％． its $^{\text {\％}}$	EFR	24	27x500	3
2 N	0.55	${ }_{40406}$	0.44	${ }_{8 C}$	0.13	BF×29	0.30	ZTX	
2N2904	0.22	40407	0.35	BC212A	0.16	Brx 30	0.27	1N9	0.07
2 N	0.25	40408	50	BC212LA	0.16	Bfx	0.24	1 N3754	
2N2906		40409	0.52	BC21314	0.15	B8x8	0．30	in4007	
		40418		BC214LB	0.18	Br	25	NA1488	
${ }^{2} \mathbf{N} 29294$	0.12			${ }^{\text {BC2378 }}$	0.16	BrY	0.225	N4504	
2 N 3053	0.25	40	${ }_{0.84}$	${ }_{8 C 2}$	－ 0.15	Brys	0．205	${ }_{\text {A }}$	0．08
2N3054	0.60	${ }^{40636}$	1.10	BC257A	0.16	BRY3	0.48	BA102	0.25
2N3055		40673	0.73	BC25	16	ME0402	0.20	BA145	
${ }^{2} \mathbf{N} 3399$	0.25	Act26	0.20	BC2598	0.17	ME0412	18	BA15	
${ }_{2}{ }^{\text {N3392 }}$	0.15	${ }^{\text {Act2 }}$	0.20	8 C 301	0.34	ME4102	0.11	BA155	
2 N 3393	0.15	${ }^{\text {a }}$（128	0.20	вс3078	0.17	MJ480	0.95	881038	
2 N 34	0.59	${ }^{\text {ACl151 }}$	0.27	вC308A	0.15	NJ481	20	888	
${ }_{2}{ }^{\text {N36438 }}$		${ }_{\text {ACl }}$	${ }_{0}^{0.35}$	${ }_{\text {BC3 }}^{\text {B } 3097}$	－ 0.23	MJ490	15		0.12
${ }^{2} \times 37702$	0.12	AC17	0.30	${ }_{86}{ }^{\text {c }} 28$	0.22	MJ2955	1.00	8V21	0.51
2 N 3703	0.13	AC187K	0.35	8cr	0.17	MJE		BY212	
2N3704	0.15	AC188	50	8CY71	0.22	MJE370	0.65	47	
2 N 3706	0.15	${ }^{\text {ADP143 }}$	0.68	8CY72	0.15	MJE371	0.75	OA81	． 18
${ }_{2}$	0.14 1.38	${ }_{\text {ADI }}$	0.50	${ }^{80121}$	1.00	MJE520	0.60	OA90	\％
${ }^{2} \times 3716$	1.80	Af1	0.40	BD124	0.67	MJE2955	1.20	oaz200	8
2 N 3771	2.20		0.40	во	0.40				
2 2N373	2.05	AF15	0.35	${ }^{80132}$	0.50	MP8113	0.47		0．20
－	2.06 0.37	${ }_{\text {AF }}^{\text {AF } 117}$	0.35 0.35	${ }^{80135}$	0.43	MPF102	－0．39	${ }^{40669}$	1.00
${ }_{2}{ }^{\text {N3820 }}$	0.64	AF118	0.35	${ }_{80137}$	0.53	MPSAOB	0.31	C1	0.65
$2^{\text {2N3904 }}$	0.27	Af 124	0.30	BD138	0.63	PSA		PPR	0.60

Prices correct at October，1975，but all exclusive of V．A．T．Pont \＆Package 25p
ype Each（p

$20088 \quad 12.00$ | 15 | R2008B | $\mathbf{〔 2 . 0 0}$ |
| :--- | :--- | ---: |
| 25 | R2010B | $\mathbf{£ 2} .00$ |
| 15 | RCA16334 | 80 |
| 19 | RCA16335 | 80 |
| 26 | TIP31AA | 57 |
| 23 | TIP32A | 67 |
| 25 | TIP41A | 67 |
| 11 | TIP42A | 80 |
| 11 | 2N3055 | 55 |
| 10 | DIODES | | | 15 | R2008B | $\mathbf{〔 2 . 0 0}$ |
| :--- | :--- | ---: |
| 25 | R2010B | $\mathbf{£ 2} .00$ |
| 15 | RCA16334 | 80 |
| 19 | RCA16335 | 80 |
| 26 | TIP31AA | 57 |
| 23 | TIP32A | 67 |
| 25 | TIP41A | 67 |
| 11 | TIP42A | 80 |
| 11 | 2N3055 | 55 |
| 10 | DIODES | | | 15 | R2008B | $\mathbf{〔 2 . 0 0}$ |
| :--- | :--- | ---: |
| 25 | R2010B | $\mathbf{£ 2} .00$ |
| 15 | RCA16334 | 80 |
| 19 | RCA16335 | 80 |
| 26 | TIP31AA | 57 |
| 23 | TIP32A | 67 |
| 25 | TIP41A | 67 |
| 11 | TIP42A | 80 |
| 11 | 2N3055 | 55 |
| 10 | DIODES | | | 15 | R2008B | $\mathbf{〔 2 . 0 0}$ |
| :--- | :--- | ---: |
| 25 | R2010B | $\mathbf{£ 2} .00$ |
| 15 | RCA16334 | 80 |
| 19 | RCA16335 | 80 |
| 26 | TIP31AA | 57 |
| 23 | TIP32A | 67 |
| 25 | TIP41A | 67 |
| 11 | TIP42A | 80 |
| 11 | 2N3055 | 55 |
| 10 | DIODES | | | 15 | R2008B | $\mathbf{〔 2 . 0 0}$ |
| :--- | :--- | ---: |
| 25 | R2010B | $\mathbf{£ 2} .00$ |
| 15 | RCA16334 | 80 |
| 19 | RCA16335 | 80 |
| 26 | TIP31AA | 57 |
| 23 | TIP32A | 67 |
| 25 | TIP41A | 67 |
| 11 | TIP42A | 80 |
| 11 | 2N3055 | 55 |
| 10 | DIODES | | 7

14 1

POPULAR SEMICONDUCTORS

Marshall＇s

42 Cricklewood Broadway London NW2 3ET Tel：01－452 0161／2 Telex： 21492
\＆ 85 West Regent St Glasgow G2 2OD Tel：041－332 4133 \＆ 1 Straits Parade Fishponds Bristol BS16 2LX Tel：0272654201／2
\＆ 27 Rue Danton Issy Les Moulineaux Paris 92 Tel： 6442356 Catalogue price 25p Trade and export enquiries welcome

OUR RANGE COVERS OVER 7，000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC＇S TTL CMOS \＆LINEARS

\section*{LONDON，GLASGOW，PARIS－AND NOW BRISTOL} | TCA2700 | $£ 2.90$ |
| :--- | :--- | MONOCHROME （BRC）Price Each HD MK1 960 2TQ 950MK2 1400 2DAK 1500

$\left(17^{\circ} \& 19^{\prime \prime}\right)$
\＆ 1.85 2TAK 1500 $\left(23^{\circ} 88^{\circ} 24^{\circ}\right) £ 2.00$

EHT MULTIPLIERS COLOUR	Price
Type 11 TAQ ITT CVC 1，2\＆3	Each
ITN GEC Sohell	§450
11 TAZ GEC 2110	£4．85
11 TAM Philips G8	£4．50
11 TBD Philips 550	£4．50
3TCW Pre 691／693	£3．50
1 1H Decca 30 Series	£4．50
11 TAQ Decca Bradford	¢450
3 TCU Tharn 3000／3500	$£ 5.00$
11 HAA Thorn 8000	£1．90
11 HAB Thorn 8500	£4． 25

$\mathrm{NeW}_{\text {toshiba tubes }}$
19＂A49－191X equivalents
19＇A49－191X equivalent
A49－192 and $A 49-120 x$
$20^{\circ} 5100$ JB22 equivalent

PRICES SUBJECT TO 25\％V．A．T All goods subject ro sertlemen monthly
order vage charges or minimum Wrize or pho

Abstract

BENTLEY ACOUSTIC CORPORATION LTD. 7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743 캐ำ - Al goods are unused and subject to the manufacturers' guarantee. Business hours Mon. Fri. 9-5.30 Any parcel insured against damage in rransit for $5 p$ exg ra per parcel. Conditions of sale available on request. Many others in stock too numerous to list. Please enclose S.A.E. for reply to any enquirles.

TRANSISTORS+DIODES

Type	Price excluding VAT	Price including VAT	Type	Price excluding VAT	Price including VAT
BC 107	0.090	0.113	2N 930	0.200	0.250
BC 107A	0.130	0.163	2N 1132	0.240	0.300
BC 107B	0.140	0.175	2N 2129	0.240	0.300
BC 108	0.090	0.113	2N 2218A	0.220	0.275
BC:108A	0.130	0.163	2N 2219	0.220	0.275
BC 108B	0.130	0.163	2N 2219 A	0.220	0.275
BC 108C	0.140	0.175	2N 2221	0.180	0.225
BC 109	0.090	0.113	2 N 2221 A	0.210	0.263
BC 109B	0.140	0.175	2N 2222	0.200	0.250
BC 109C	0.140	0.175	2N 2222A	0.250	0.313
BC 184(K)	0.120	0.150	2N 2904	0.190	0.238
BC 212A(K)	0.110	0.138	2N 2905A	0.230	0.288
BC 212B(K)	0.110	0.138	2N 2906	0.170	0.213
BC 213C(K)	0.110	0.138	2N 2906A	0.170	0.213
BC 214B(K)	0.110	0.138	2N 2907	0.220	0.275
BCY 71	0.220	0.275	2N 2907A	0.240	0.300
BFY 50	0.200	0.250	2N 3053	0.180	0.225
BFY 51	0.200	0.250	2N 4037	0.250	0.313
BD 131A	0.360	0.450	1N 4001	0.050	0.054
BD 135	0.360	0.450	1N 4002	0.065	0.070
BD 136	0.396	0.495	1N 4003	0.070	0.076
BD 137	0.432	0.540	1 N 4004	0.075	0.081
BD 138	0.450	0.563	1N 4005	0.080	0.086
BD 139.	0.495	0.619	1 N 4006	0.085	0.092
2N 929	0.230	0.288	1N 4007	0.090	0.097
			1N 4148	0.040	0.050

REPLECOMPS Ltd.
123 Bohemia Road, ST. LEONARDS-ON-SEA, Sussex TN376RL

quality

Manufactured strictly to stringent specifications. 12 months guarantee.

service

Orders actioned in 24 hours Over one million transistors in stock

special discounts

For large quantities ordered by retailers, educational establishments and hobby clubs.

terms

1st GRADE COMPONENTS
 MOTOROLA MULLARD SIGNETICS MONSANTO FERRANTI GIM

We hold $£ 250,000$ worth of components and all items listed in this advetisement. are ex-stock at the time of going to press. All products guaranteed. No minimum order charge.

SIGNETICS 74 motioe TIL				
N7400	14p	N753	18 p	N7414881.26
N7402	${ }_{14 p}^{14 p}$	N) ${ }^{\text {N }} 468$	${ }_{18 \mathrm{l}}^{18 \mathrm{p}}$,	
N7403	${ }^{18 p}$	N7470	${ }^{36 p}$	N74153 ${ }^{\text {68p }}$
N 7404 N 7405	18p	N7472	24p	N74154E1.44
N 7405 $N 7406$	${ }_{4}^{20 p}$	N1473	${ }^{36} \mathrm{p}$	
407	$41 p$	N7474	${ }_{\substack{30 p \\ 54 p}}$	N74156 72 p
N7408	41p	N1476	37p	N74160 99p
N7409	${ }^{20}{ }^{\text {P }}$	N7480	${ }^{\text {50p }}$	N7416199p
N7410	${ }^{15}$	N7483	990	N74162 99p
N7413	${ }_{29 p}^{29}$	N7486	32p	
N7414	$45 p$	N7490	63p	N7416501.26
N 7	${ }^{27 p}$	N7491	90p	N74166£1.26
N 7417 N 7420	${ }^{27 p}$	N7492	$6^{63 p}$	
	15p	N7493 N7494		N7417461.13
N7426	${ }^{23}$ p	N7495	72p	N74180 90p
N7430	${ }^{15}$	N7496	c1.63	N74181¢3.24
N7432	23 p	N74100	E1.35	N74182 90p
N 7433 N 7437	${ }^{27 \%}$	N74107		
N 7440	18 p	N74116	E1.35	N74192 ¢1.44
N7443	E1.35	N74122		
N7444	E7.35	N 74123		N7419590p
$N 74458$ $N 74468$ N	81.35	N74125		N74198 ¢1.98
N74478		N74128	45p	N7422190p
N	c1.35	N74132	45p	N74279 72 D
N7451	18 p		¢1.44	N74298 ¢1.28

MOTOROLA C-MOS.	MC14028CP E1.31
MC14000CP 19p	MC14032CP ¢ 1.70
MC14001CP 19p	MC14035CP E1.34
MC14006CP E1.45	MC14038CP E1.70
MC14007CP ${ }^{\text {M }}$	MC14040CP $M C 14042 \mathrm{CP}$ E1.14 M
$\mathrm{MCH}^{\text {M } 14009 \mathrm{CP}}$	MC14046CP ${ }_{\text {E }}$
MC14010CP 19p	MC14049CP 53p
MC14011CP 19p	MC14050CP 53p
	MC14071CP MC14076CP E1.60
MC14014CP E1.42	MC14081CP 190
MC14015CP E1.17	MC14500 SERIES
MC14017CP E1.13	MC14510CP C1.26
MC14021CP E1.17	MC14528CP ${ }^{\text {87P }}$
MC14022CP E1.54	
MC14023CP ${ }^{\text {c }}$ (9p	MC14536P E2.90
MC14025CP ${ }^{\text {che }}$	¢
MC14027CP ${ }^{\text {P8p }}$	P

LP1162 5W Audio Amp AND RADIO

G.I.M. CONSUMER CIRCUITS

AY-5-1224 1224 nour ciopital clock cireuit	64. 25	thiacs	
AY-5-3510 3% digit DVM circuit	${ }_{\text {Efi }}^{6} 10$	Mac92-2 60V 0.8A.	${ }^{29} \mathrm{p}$
AY- A-0212 Mastor tone generator	c5.55	${ }_{2} \mathrm{~N} 606960 \mathrm{~V} 4 \mathrm{~A}$	
AY-1-50514 stage divider	¢1.20	$2 \mathrm{N6073} 400 \mathrm{~V} 4 \mathrm{~A}$	7p
	E1 4.4		
AY-1-5050 7 stege odivider	E1.75	${ }_{2}^{2 N 5060} 30060$	${ }^{27 p}$
		MCA 107.6400 V 4 A	47p

6.20 FERRANTI ICs

$\varepsilon 12.00$
$\varepsilon 21.09$
$\varepsilon 1.00$

LEDS

MV5 1748 orange
MV52748 green
MV5 57748 yellom
MV278 green
MV53748 yellow . 28

THE HALF-POUND SALE

Dept. WW, 5 Northfield Industrial Éstate Terms of Business: Cash with order.
Beresford Ave, Wembley, Middx. HAD 1 SD PRICES ExCLusive OF V.A.t. Which must be AdDed AS Shówn below Telephone: 01-903 3168

Don't miss your copy of me CATALOGUE

OVER 5,000 ITEMS - largest UK range of electronic components for home constructors.
200 PAGES - every aspect of electronics and components for amateurs and hobbyists
kits, projects, test gear.
DOZENS of new lines and new ranges.
MANY price reductions throughout the new Catalogue.
A Discount Voucher with every copy, worth 50p.

NOWOPEN 2 NEW STORES NOTTINGHAM \& TOTTENHAM COURT ROAD

Write fór your copy, enclosing 70p remittance

[^5]ELEECTRONIC FOOTBALL \& TENNIS wITH THE FABULOUS
VIDEO SPORT

$£ 29.50$ inc. VAT
Now available as
demonstrations NOW IN ALL CENTRES

AM/FM MODULES

LP117
E4.60.

BUILD THE TEXAN + FM TUNER TEXAN 20 + 20W STEREO AMP

 . Cc s. $\frac{10 \text {-transistors }}{\text { plous diodes, etc. }}$
Cesigned by Texas firtuments engineers
tor Henry's and
£29.95 (carbiage soop \qquad $9.95{ }^{\circ}$

Stereo FM Tuner

dicators, mains operated.

£ 26.25 (carriage 50p).
JOIN THE LARGE BAND OF CONSTRUCTORS!

SPECIAL OFFER. GARRARD CT4
 STEREO CASSETTE TRASPORT MECHANISM

FEATURES

* BUILT.IN MOTOR STABILISOR
- AUTO STOP + EJECT
- PAUSE CONTROL
- 12v dC OPERATION

Robus1 precision engineered mechanism based on the "STARA" patenled design. Ideal for use in car recorders, industrial and many other applications. Suitable for the 'PW' Ascot Siereo Cassette Dock
$£ 13.50$ inc. 'VAT P\&P 35p
Snclair DM1 DMI DIGITAL MULTIMETER

\qquad Electronic Centres
$404-406$ Electronte

S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.
 per channel Stereo Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP1186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V} . \mathrm{THD}$ typ. 0.4%.

PRICE: $£ 47.95+99 p$ p $\&$ p + VAT.

NELSON-JONES STEREO FM TUNER

A very high performance tuner with dual gate MOSFET RF and Mixer from end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning, range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$.. Image rejection- 70 dB . IF rejection- 85 dB . THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC. unit. Choice of either mono or stereo with a choice of stereo decoders.

PRICE: Mono £25.46 + 85p p\&p+VAT;
 With Portus-Haywood Decoder $£ 31.96+85$ p p\&p + VAT;
 With ICPL Decoder $£ 29.73+85 p$ p\&p + VAT.

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ - m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio inpüt $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99$ p p\&p+VAT.

STEREO MODULE TUNER

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and highperformance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. 30 dB S/N mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85$ p p\&p+VAT. Mono $£ 22.40+85 p$ p\&p+VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRÜCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.) PRICE: $£ 12.88+25 p$ p\&p+VAT.
BASIC MODULE TUNER
Supplied as a printed circuit board with all components and screened Mullard LP1186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono $£ 11.11+25 p$ p\&p+VAT; Stereo $£ 13.89+25 p$ p\&p+VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. 0.05% @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED.
PRICE: $£ 7.68+25 p$ p $\& p+$ VAT.
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC1310. THD typically 0.3%. Separation $40 \mathrm{~dB} @ 1 \mathrm{KHz}$. PRICE: $£ 4.27+20 p$ p\&p+VAT.

PUSH-BUTTON UNIT

The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers.

For just $£ 1$ the worid is yours!

The world of electronics, television, radio/audio is on parade in the second great Wireless World annual. Constructional articles include making a photographic timer. Surveys cover video, magnetic tape compatability, electronic ignition and radio astronomy in schools. 'How to ... ' features range from using oscilloscopes to making printed circuit boards. And there's a reference section listing standard frequency transmissions and much, much more. All written with the clarity, authority and expertise you'd expect from Wireless Wórld.
*£1 from newsagents or $£ 1.35$ inclusive by post from the publishers.

SMITHS CENTRAL HEATING CONTROLLER

and continuous central heating (2)

\square Learn in your sleep. Have radio playing and kelle booling as you awake Al these and many other chings you can do if you invest in an electrical
programmer. Clock by tamous maker with 15 amp. on ofl switch. Switich-on
 - THIS MONTHS'S SNTP
Smiths 24 hr. timer heart, really the "Autoset" without its plastic case. This is a 24 lir. twice on. twice off, clock switch which will repeat
until re-programmed. Switches rated at 15 amps. Limited supplies until re-programmed. Switches rated at 15 amps . Limited supplies -
$£ 3.95$ each + VAT \& post 55 . $£ 3.95$ each + VAT \& post $55 p$.
12 VOLT $11 / 2$ AMP POWER PACK

 steps - maximum load 250 W - that is from 6 arp at 40 V to 15 amp al 15 V
 TANGENTIAL HEATER UNIT

INSTANT START FLUORESCENT LIGHTING BARGAINS
 E3.25; win 8t, 125w, E5.75. These are about one hall of maker' s current prices and can't be repeated

J. BULL (ELECTRICAL) LTD.
 (Dept. W.W.) 103 TAMWORTH ROAD

 CROYDON CRO IXXMAINS TRANSFORMERS
$9 v$
9 v
12
12 v
${ }_{18 v}^{6.5 v} 0.6$ ov
$24 v$
$24 v$
$12.0-12$
${ }^{8.0 .8 \mathrm{v}} 18.0-18 \mathrm{v}$
$50 v 2$ amp \& $6.3 v$
$50 v 5 \mathrm{amp}^{2} 5 v$
$80 v$ tapoed $75 v 87$
$230 v 60 \mathrm{~mA}$
$8.3 v$
275.0 .275 v at $90 \mathrm{~mA} \& 6$
EHT Transtormer 5000 v

3 amp
(intermine
Charger Trenaioman

RELAY BARGAIN

contact. Twin 500 ohm coils make this one closed
 BLACK LIGHT
As used in discotheques and for stage eftects, etc.
Virualiy no white light appears until the rays impinge
 tubes complete with starter, choke. lamp-holders and
starter-folder. Price $£ 2.75+30 \mathrm{p}$ post. Tubes only $\in 2$ MULLARD AUDIO AMPLIFIERS

sinks and oonnection tags, data suppliied. $\begin{gathered}\text { Model } 1153 \quad 500 \mathrm{~mW}\end{gathered}$

40p post 8 VAT.
Model 1173

Moder EP9000
power output,
50p post 1 VAT.
EP 9001 Win
stereo preamp, $\mathbf{E 2 . 5 0}+$
+
MAINS TRANSISTOR PACK Adiustable output 6y gy 12 volis for 40 plifiers (class 8 working) Takes the piace of any of the
following batreries: PP1. PP3. PP44. PP6. PP7, PP9 and others. Kit comprises: main transformer rectifier,
smoothing and load resistor, condensers and smoothing and laad resistof, condensers and
Instructions. Real snip at onty E1.5e. VAT \& Postage
60 .

MULLARD POLYESTER CAFACITORS CZBO SERIES

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 V$. $0.001 \mu \mathrm{~F}, 0.001 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$,
$0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 4 \mathrm{p} ; 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 5 \mathrm{p} ; 0.15 \mu \mathrm{~F}, 8 \mathrm{p} ;$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F} .0 .033 \mu \mathrm{~F} .4 \mathrm{p} ; 0.04$
$0.22 \mu \mathrm{~F}, 10 \mathrm{p}: 0.33 \mu \mathrm{~F}, 15 \mathrm{p} ; 0.47 \mu \mathrm{~F}, 18 \mathrm{p}$.

MINIATURE CERAMIC PLATE CAPACITORS

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(1FF) $10.15,22.33 .47 .68,100.150 .220 .330 .470,680,1000,1500,2200,3300,4700$.
6800.10 .000 .4 ip.

B. H. COMPONENT FACTORS LTD.

59 NORTH STREET, LEIGHTON BUZZARE
NT TEG STREET, LEIGHTON BUZZARD

SERVICE TRADING CO
 RELAYS
 SIEMENS PLESSEY, MINIATURE RELAYS
 OPE N TYPE RELAYS
 6 VOLT D.C. 1 make con. 3
 9 VOLT D.C. RELAY
 12 VOLT D.C. RELAY
 (
 24 VOLT D.C. 3 c/o 600 ohm coil 75p. Post 15p
 4 co 300 ohm coil 85p. Post 150 .
 ENCLOSED TYPE RELAYS
 24 VOLT A.C. Mf.g. ITT 3 h.d. c/o contacts 55 p.
 55 VOLT A.C.
 100 VOLT A.C
 240 VOLT A.C. RELAY
 $220 / 240$ VOLT AC RELAY
 3 c/o 5 amp cont. Sealed 8ase 15 p extra. $230 / 240 \mathrm{~V}$ AC 2 . E1.25. Post 20 p ARROW 230

 CLARE-ELLIOT TYpe RP 7641 G8 MANY OTHERS FROM STOCK, PHONE FOR DETAILS

PRECISION CENTRIGUGAL

 BLOWERSMig. by Sminh Industries. Miniature model. Series

Migg by Airflow Developments Lud.

MIg. by woods
Extremely powerfut. $220 / 250 \mathrm{v}$ A.C. 0.3 amp . 2.700 p p.m. continuously.
rated. Capacitor star. Cast construction, A perture $66 \mathrm{~mm} * 50 \mathrm{~mm}$. O / A
230 VOLT FAN ASSEMBLY
Continuously rated, removable aluminium
blades. Price $£ 1,25$, Post 50 p VAT $\mathbf{2 5 \%}$

SUB-MINIATURE REED RELAY 3-9 VOLT D.C. 250 ohm coil

COIN MECHANISM (Ex-London Transport)
Unit containing. selector mechanism for $1 p .2 p \& 5 p$ coins.
Micro switches. relays. solenoid-operated hopper. 24 volt D.C.
Precision builh to high standard. Incredible VALUE at only Precision buil to high standard. Incredible VALUE at onlyl
$\mathbf{E 2 . 5 0}$. Post £1. VAT $\mathbf{2 5 \%}$ (Total price inc. VAT \& Post ©4.21)
230-250 VOLT A.C. SOLENOID Similar in apperance to illustration
Approximately $1 \frac{1}{2} \mathrm{lb}$. pull. Size of feet $1 \frac{18}{8^{\prime \prime}} \times$

SOLENOID HEAVY DUTY MODEL

230/250v A.C. Apprx. 101b. Dull. $4^{\prime \prime}$ long $\times 23^{3 / 4}$ "wide $\times 3$

24 VOLT DC SOLENOIDS

UNIT conraining: 1 heavy duty solenoid approx. 25 ib . pull
at 1 in. travel. 2 solenolds of approx. 1 id . Dull at tin, travel.
 1 heavy duty 1 make
ABSOLUTE BARGAIN.

600 WATT DIMMER SWITCM

-

Easily fitted. Fully guaranteen by makers. Will connrol up to 600 watts of all lighting except fluor-
escent at malns voltage. Complete with simple escent at malns voltage. Co
instructions. $\mathbf{\Sigma 2 . 7 5}$. Post 25 p.

VARIABLE VOLTAGE TRANSFORMERS Carriage extra INPUT 230 v. A.C. $50 / 60$ $\begin{array}{ll}\text { Carriage extra } \\ & \text { OUTPUT VARIABLE } 0 / 260 \text { v. A.C. }\end{array}$ BRAND NEW. All eypes. 200 W (1 Amp) 0.5 KVA (Max. $21 / 2$ Amp) 1 KVA (Max. 5 Amp). 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) (max. 375 Amp) (max. 37.5 Amp)
(Panel Mounting)

$£ 10.00$

LT TRANSFORMERS

AUTO TRANSFORMERS

Step up step down 0-115/200/220/240 volts.
At 75 watl $£ 2.64$ Post 40 p. 150 wat $£ 3.50$ Post 50 p. 300 wall At 75 watt $\varepsilon 2.64$ Post 40 . 150 want $£ 3.50$ Post 50 p. 300 walt
$\varepsilon 6.20$ Post 60 p. 500 walt $£ 9.20$ Post 75 p. 1000 watt $£ 12.00$

WHY PAY MORE?I

 courren $0 / 1 / 10 / 100 \mathrm{~mA}$. Hms s 海ge. Surdy
compert moving coil instrument with 21 ranges.
 (Total price inc. VAT \& Post (5,94).

METERS NEW

90 mm Oinmatror

T/4T MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDNNG POSTAGE UNLESS OTHERWISE STATED

BENDIX MAGNETIC CLUTCH

UNISELECTOR SWITCHES - NEW

A.C. MAINS

'GENTS' $\mathrm{G}^{\prime \prime}$ ALARM BELL $200 / 250$ volt AC/DC. Brand New. Pr
£5.00. Post 75 p (illus.), VAT 25%.
'STC' ${ }^{\prime \prime}$ " RED ALARM BELL

Brand New. Price: £4.00. Post 50p. $24 / 48 \mathrm{~V}$ DC. VAT 25%
INSULATION TESTEAS (NEW) Test to I.E.E. Spec. Rugged metal con-
structlon, suitable for bench or field w rk, constant speed elutch. Size L. 8 in ..
W. 4 in., H. 6 in., welght 6 tb.
500 VOLTS. 530.00 Post 80p.
1000 VOLTS 1000 megohms E36.00. Post $80 p$.

SERVICE TRADING CO.

REED SWITCH INSERTS

 to 500 mA 日f up to 250 vOC . Gold cisd contacts 74 p per doz. E4. 15 De
100 , 220.05 per 9.000 , E272 per 10.000 . All carriage paid U.K. Operating Magnets 95p per doz, £6.95 per 100 . £97 per 1,000 . Al carriage paid U.K.
Operaing Colls for 12 v supoly to accept up zo lour standard reede $£ 2.60$ Heevy dury ryes. (Body length 2in) Dind U.K.
 € 52.00 per 1,000 . Changeover Heevy Duty rype $£ 2.80$ per doz. All Marrigne paid U.K.

C- SCOPE METAL, DETECTORS

Represent loday's BEST VALUE in metal detection equipment.
BFO50 integral speaker.

BFO60 integral speaker and meter	¢31.99
18100 with headphones.	¢52.59
18300 with headohones and meter	664.99
TA200 with headphones	657.67
Th400 with hesdphones and	672.79

TR200 with headphones ... meter
TA400 with headphones and men
Full intormation on receipt of iOp stamp

INDUCTION GENERATOR. Requires a supply voltage of 50 V 50 Hz and This instrument has 7 V per 1.000 r.p.m. directly propertional to apeed. This instrument has ande variety of applications, o.g. anemometar
measuring shaft speed, ekc. In brand new condition E .6. 60 post psid.

ITT OFFICE INTERCOM. 20 way with modern manual SWB and acilities. Lightwerght desk sers. 8 ra
VAT. Spare deliaphones $£ 7.50$ ea.

TELEPRINTER PAPER. Standard rolls. 1 ply $\mathbf{5 5 . 0 0}$ per doz. 2 ply $\mathbf{E 5 . 0 0}$
per doz. 3 ply $\mathbf{E 5 . 4 0}$ per doz. 4 ply $\mathbf{E 5 . 7 0}$ per doz. All P.Pd. U.K. Telem TAPE STORAGE CANS. Brand new finished steet cans originallk
 and VAT .

SOLAR CELLS. Ferrant gillicon MSIIBE, active area 390 sq. mm. Open CCT voltage 550 mV at 3000 lumens/sq. th. Sht. Cct. Current 60 mA Optimum load 90 ohms. Did. 34 mm . Nickness 6 mim . Ex. made up pane

CONTINENTAL CUSTOMERS - we have a direct link by ar from Lydd to Beauvars talso Channel Islands) and are 35.45 munutes drive trom
Dover Folkestione with direct novercrah and sea lonks with France and
Relgium

ANALYTICAL EQUIPMENT GAS CHROMATOGRAPHY RESEARCH OVEN GAS CHROMATOGRAPHY RESEARCH OV AV large capacily oven of low thermal mass lor use between 35 and 400 C ,
,
Provides Provides a forced air circulating sysiem vielding 1000 changes of sir per min. The oven has forced air cooled outer suffaces when the internal
temperature is high. $210.240 \mathrm{~V}, 50 \mathrm{~Hz}, 2.6 \mathrm{KW}$. $£ 31.50$ /C. Pd. England temperature
and Wales).
IONISATION AMPLIFIER PV4075
 recorder. 18 input ranges from $10^{-12} 105 \times 10^{\circ}$ A with 5 outputs of
1 mV to 100 mV Linearity 0.1% f.a. Noise less then 0.5%.a. at max sensitviry, Back oft facility. Dimensions $28 \times 10 \times 43 \mathrm{~cm}$ deep. With operaling information E28.50. (C.Pd.U.K.),
Detarls of these three and other gas chromatography items. price 25 p C.W.O. onl). Handoooks (complete) available.

COMPUTER PROCESSORS AND PERIPHERALS. Printers Readers, Core Stores. etc.
AIRCRAFT INSTRUMENT
items avzilable for light use.
as. COMMUNICAT
condition. §160.
400 Hz ROTARY CONVERTERS. BOth-DC \& AC input ivmilable Ef 415 v 50 Hz to 115 v 400 Hz Iph $50 \mathrm{w} \mathrm{AJ} \mathrm{C27.50}$.
Multuray Cables in stock up to 50 way or up to 750 amp. Also PTFE insulated types.

MARCONI SPECTRUM ANALYSERS OA1094A/S. Listed at 22700. Our price $£ 565$.
ACTUATORS, AELAYS, FLOOOLAMPS, POWER UNITS.
TRIMPOTS FANS MICROWAVE EOUIPMENT. AII QX-STOCM.

dervo and Electronic dales Ltd

24 HIGH ST., LYDD, KENT TN29 9AS. Tel. LYdd 20252 (STD 0679) VAT NO. 201-1296-23 TELEX 965265

[^6]

OVER 300,000 RF AND MULTIWAY CONNECTORS IN STOCK. TELEX YOUR REQUIREMENTS NOW.

REACH FOR THE PEAKS OF MEASURING INSTRUMENT ENGINEERING!

TYPE TAD

TYPE SA

$0 . m$	43	s	61	22
${ }^{178}$	1	. 51	${ }_{6}^{1}$	${ }_{8} 8$
$\mathrm{man}_{50 \mathrm{at}}$	${ }_{23}^{23} 52$	¢5.59	${ }_{\text {c }}$	${ }_{\text {ctil2 }}$
500 uA .	¢3.21	¢3.28	¢. 3.53	E3.76
ImA	[3.11	E318	[3.33	${ }_{5} 3.72$
1500	${ }_{2} 315$	E3.22	¢3.50	${ }_{6} 3.76$
300 rac	¢5.39	${ }_{5}^{3} 48$.	£3.67	$¢^{639}$

FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS
FULL RANGE PRICE LIST-SAE PLEASĖI
Substantial quantity aiscounts to manufacturers Rememberl We are the sole importers!

NEW ADDITIONS to our range of PANEL METERS available at present only in MANUFACTURING QUANTITIES

$\begin{aligned} & \text { SE45 } \\ & \text { SE52 } \\ & \text { SE65 } \\ & \text { SE85 } \end{aligned}$	$\begin{array}{rl} 64 & x \\ 80 & x \\ 100 & x \\ 120 & x \end{array}$	
	mA	

$\begin{array}{ll}\text { SU45 } & 69 \times 53 \mathrm{~mm} \\ \text { SU55 } & 87 \times 63 \mathrm{~mm}\end{array}$ $\begin{array}{lr}\text { SU55 } & 87 \times 63 \mathrm{~mm} \\ \text { SU65 } & 105 \times 77 \mathrm{~mm}\end{array}$

Above meter forma are for moving cofl movements only and may house S -meter and VU-meter instrumente.

ALL VU WETEAS
SFIOD $72 \times 68 \mathrm{~mm}$
SFIO4 $63 \times 60 \mathrm{~mm}$
\$F106 $63 \times 60 \mathrm{~mm}$

All meters can be supplied with special or personalised scales internal illumination, coloured front lenses, mirror scales, special pointer forms. etc

Full details and prices on reques

AUTOMOBILE TEST EQUIPIMENT

 SERVO AUTOTESTER No. 2. $0.16 \mathrm{v}, 0.80 \mathrm{~A}$ divil ängle and speed for 4 , $6 \& 8$ cyc. engines. Size
With instns, $£ 11.15$ inc. P.\&P. \& V.A.T.

SERVO AUTOTESTER No. 3. Simullantously on separate
 SERvo AUTOTESTER No. 4 . Owell angle and ongine speed,
Hand held insm, Size $14 \times 8 \times 5 \mathrm{~cm}$. Wi. 0.26 kg . Pricere6. 35 nc . P .8 P . Hand held insm, Size $14 \times 8 \times 5 \mathrm{~cm}$. Wi. 0.26 kg . Price $E 6.35 \mathrm{nc}$. P. \&P. P,
\& V.A.T.

KINNIE COMPONENTS
10 NELMES WAY,
HORNCHURCH, ESSEX RM11 2 QZ
HORNCHURCH 45167

> COPPER LAMINATE P.C. BOARD
> $\begin{aligned} & 81 / 2 \times 6 \times 1 / 16 \text { inch, } 3 \text { for } 75 \text { p. P.P. } 25 p \text { p. } \\ & 10 \times 4 \times 1 / 16 \text { inch, } 5 \text { for } 75 \text { p. P.P. } 25 p \text {. }\end{aligned}$
> $\begin{aligned} & 10 \times 4 \times 1 / 16 \text { inch, } 5 \text { for } 75 \text { p. P.P. } 25 \text { p. } \\ & 101 / 2 \times 51 / 2 \times 1 / 16 \text { inch, } 3 \text { for } 75 \text { p. P.P. } 25 \text { p. }\end{aligned}$
> $\begin{aligned} & 101 / 2 \times 51 / 2 \times 1 / 16 \text { inch, } 3 \text { for } 75 \mathrm{p} . \text { P.P. } 25 \mathrm{p} \\ & 10 \times 81 / 2 \times 1 / 6 \text { inch. } 3 \text { for } £ 1 \text {. P.P. } 25 \mathrm{p} \\ & 17 \times 1 / 2 \times 1 / 16 \text { in. }\end{aligned}$
> $17 \times 91 / 2 \times 1 / 16$ inch, 2 for $£ 1.20$. P.P. 25p.

PRECISION A.C. MILLIVOLTMETER (SOLARTRON) 1.5 mv to 15 v ., 60 dB to 20 dB . 9 ranges. Excelient condition.

OVERLOAD CUT-outs. Panel mounting ($13 / 4 \times 1 / 4 \times 1 / 2 \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} .10 \mathrm{amp}$. 45p. P.P. 5p

AIL PRICES INCLUDE V.A.T. EXCEPT WHERE SURCHARGE IS INDICATED QUADROPHONIC DECODER MODULE. C.B.S./S.Q. Type, using 1.C. MC Wind slight modification direct substitute 15% V.A.T. Surcharge
S.T.C. CRYSTAL FILTERS (10.7 Mhz). 445-LQU.901A (50 Khz spacing). £3. P.P. 20p. 445 -LaU-901B (25 Khz spacing) E4. P.P. 20p
V.H.F./U.H.F. POWER TRANSISTORS (type BLY38). 3 watt HIGH CAPACITY ELECTROLYTICS
$1,000 \mu \mathrm{f} / 100 \mathrm{v}(4 \times 13 / 2 \mathrm{in}$) 60 p. P.P. $20 \mathrm{p} .2 .200 \mu \mathrm{f} / 100 \mathrm{v}(4$ $2,500 \mu f / 100 \mathrm{v}(4 \times 2 \mathrm{in}$. 90 p . P.P. $20 \mathrm{p} .10,000 \mu \mathrm{f} / 25 \mathrm{v}$ ($41 / 2 \mathrm{p}$ $1 / 2 \mathrm{in}$.) 75p. P.P. 20p. 25,000 $\mu \mathrm{t} / 40 \mathrm{v}(43 / 4 \times 21 / 2 \mathrm{in}$) E. P.P. 20 p $47.000 \mu / 40 \mathrm{~V}$ Powerlytic ($51 / 2 \times 3$ in.) E2. P.P. 50p. $100,000 \mu / / 10 \mathrm{v}$ Powerlytic $(41 / 2 \times 3$ in. $)$ §1.50. P.P. 30 p.
$160,000 \mu \mathrm{f} / 10 \mathrm{v}$ Powerlytic $(6 \times 3 \mathrm{in}$.$) E2. P.P. 50$ p.

> MULTICORE CABLE. 6-core (6 colours) 14/0076 Screened P.V.C. 22p per yard; 100 yards at £16.50. P.P $2 p$ a yard, 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P.V.C
$22 p$ per yard: 100 yards $£ 16.50$. P.P. 2 p per yard. 30 -core (15 colours) 25 p per yard; 100 yards $£ 20$. P.P. 2 p per yard.
> RIBBON CABLE (8 colours). $10 \mathrm{~m}, ~ £ 1.65$; P.P. 20 p 100 m . 8-core $7 / . \mathrm{mm}$ Bonded side by side $£ 11.50$. P.P

TRANSFORMERS

ADVANCE TRANSFORMERS "VOLSTAT". InPu: 242 V
C.V.50. 38 v . at $1 \mathrm{amp} ; 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} ; 75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$ C. V 75 . P. 65
C.V.75. 25 v . at $21 / 2 \mathrm{amp}$. £3. P.P. 75 p .
C. V .100 .50 v at 2 mp
50 v . 100 .
C.V. 100.50 v . at 2 amp .50 v . at $100 \mathrm{~m} / \mathrm{a}$. E3.75. P.P. 75 p C.V. 250.25 v . at 8 amp : 75 v . at $1 / 2 \mathrm{amp}$. £6.50. P.P. £1.50. H.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v . 100 M.T. ©2.50. P.P. 65p. L.T, TRANSFORMER '•TOROIOAL'". Prim. 240v. Sec. 30 V at $1 / 2$ amp. Size 3 in. dia. thick. $£ 1.65$. P.P. 20 p .
7.5 amp . €2.25. P.P. 50 p .

We regret that ali orders value under es MUST BE ACCOMPANIED BY THE REMITTANCE.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v . or 48 v . (state which), $4 \times 1 \times 1 \mathrm{in} .65 \mathrm{p}$.
P.P. 15 p . P.P. 15p.

5 digit (nōn resét) $24 \mathrm{v}^{-}$£1.15. P.P.

3 digit 12 v . (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4 \mathrm{in}$ £1.30. P.P. 15 p 6 digit (Rese 1) 240 v . A.C. €3.50. P.P. 25p.
H.D. ALARM BELLS. Gin. Dome, 6/8v. d.c. Heavy cas housing for exterior / interior use. E2.75. P.P. 75p. Connecting MINIATURE REED REIAYS $(3 / 6 v)$ I $20 \mathrm{p} ; 2$ make ($32 \times 12 \mathrm{~mm}$) 30p
$12 \mathrm{v} .2 \mathrm{c} / \mathrm{o} 5 \mathrm{amp}$. H.D. RELAY, 65p. P.P. 15 p
240v. A.C. RELAY (PLUG-IN TYPE). $3 \mathrm{c} / 010 \mathrm{amp}$. contac with base. 85p. P.P. 25 p
10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm 0.5% Lin. $38 \mathrm{~mm} \times 22 \mathrm{~mm} .14 \mathrm{~mm}$ Standard Spindle. £2. P.P. 15 p . (
GARRARD PLINTH \& COVER. For 'Zero-100' etc. beautifully finished in brushed aluminium and black with
hinged smoke/grey perspex lid. E9.75 P.P. £1. 24v. A.C. RELAY (PLUG-IN). 3 pole c/o 75p. P.P. $15 p$. 2.pole change over. 55p. P.P. 15p.

BULK COMPONENTS OFFER. Resistors/Capacitors, 600 new components. ©2.50. P.P. 35p. Trial order 100pcs. 60p. REGULATED POWER SUPPLY. Input $110 / 240 \mathrm{v}$., output $9 v$. D.C. $11 / 2 \mathrm{amp} ., 12 \mathrm{v}$. D.C. $500 \mathrm{~m} / \mathrm{a} . £ 4.75$. P.P. 75 p . D.C. SUPPLY. Input 240v a.c. giving $171 / 2 v$ d.c. @ $11 / 2 \mathrm{amp}$. (unsmoothed) $21 / 4 \times 21 / 2 \times 21 / 4 \mathrm{in}$. $£ 2.25$ p. p.p. $45 p$. MINIATURE "ELAPSED TIME" INDICATORS. 10.5000
hours), $45 \times 8 \mathrm{~mm} .75 \mathrm{p}$.
L.T. TRANSFORMER prim. 240v. Sec. 20v@ $2.5 \mathrm{amp} . £ 2$. p.p. 50p.
L.T. TRANSFORMER ("C'" CORE). 200/240v. Secs $1-3-8-9 \mathrm{v}$. All at 1.5 amp . 50 v . at 1 amp . £2.50. P.P. 50 p . LT. TRANSFORMER ("C'" CORE). $200 / 240 \mathrm{~V}$. Secs, 1-3-9-27v. All at 4 amp . E4. P.P. 50 p. L.T. TRANSFORMER ("C': CORE). $200 / 240 \mathrm{v}$. Secs. $1-3-9.27 \mathrm{~V}$. All at 10 amp . $£ 7.50$. P.P. £ 1.50 .
T. TRANSFORMER ("C'" CORE). $200 / 240 \mathrm{v}$. Secs, LT. TRANSFORMER ("C'" CORE). $120 / 120 \mathrm{v}$. Secs $1-3.9-9 \mathrm{v}$. All at 10 amp . £6.50. P.P. 75 p . L.T. TRANSFORMER ("C" CORE). $110 / 240 \mathrm{v}$. Secs.
$1-3.9 \mathrm{v} .10 \mathrm{amp} .35 \mathrm{v} .1 \mathrm{a} .: 50 \mathrm{v} .750 \mathrm{M} / \mathrm{A} . £ 6.50$. P.P. 75 p .

Fushionable Leatherwearr

A Wireless World special offer

We show four models from our new range of top grade leather clothing. Hand-cut by craftsmen, these soft, light and supple garments are a pleasure to wear and will give years of service. Items are interchangeable, warranted for six months under fair wear and tear and carry a money-back guarantee if returned within seven days of receipt. They are easily cleaned at specialist cleaners - we will recommend one if required. This special price offer closes on 31st January, 1976.

JB 53 A stylish Norfolk jacket, fully lined and incorporating a number of distinctive features. Available in pigskin (illustrated), leather or suede. Colours: Pigskin - Pastel Blue, Golden Tan, Truffle; Leather-Golden Brown, Dark Brown, Maroon, Bottle Green, Dark Blue, Black; Suede-Pastel Blue, Beige, Avocado Green, Milk Chocolate Brown, Dark Brown.

JB 265 A smart, suede-fronted cardigan, lined inside, twin pockets, single breasted fastening and featuring a detachable collar. An ideal 'all round' leisure garment. Colour: Dark Brown.
JB 304 A distinctive men's full length (41 in) sheepskin coat which is both luxurious and hard wearing. Leather bound, large feature collar, double breasted styling with leather buttons and vertical slit-pockets in seams. For the man who wants style and comfort without being too "trendy". Colours: White Wool/Mid-Brown, 2 -tone Brown.

JB 307 A classic sheepskin coat for men. Leather bound edges, twin pockets and side vents, inset sleeves, single breasted styling. Colour: 2-tone Brown.

Extra

SIZES: Chest measurement in inches

PRICE CHART	$\mathbf{3 4 - 4 2}$	$\mathbf{4 4 - 4 6}$	Approx. Ret. Value
JB 53	$£ 56.80$	$£ 59.99$	$£ 80.00-£ 85.00$
JB 265	$£ 15.93$	$£ 17.37$	$£ 25.00-£ 27.00$
JB 304 White/M. Brown	$£ 9.59$	$£ 66.07$	$£ 130.00-£ 145.00$
2-tone Browñ	$£ 100.98$	$£ 107.32$	
JB 307	$£ 70.28$	$£ 75.76$	$£ 90.00-£ 95.00$

SPECLAL OFFER

CATALOGUE We are able to supply a wide range of leather, suede, pig-skin and sheepskin coats, dresses, skirts, tunics, jackets, rugs, slippers, seat covers at preferential prices. Please tick box on order form to receive free catalogue and price list.

(JB 307)

To: Wireless World Offers
GPO Topsham, Topsham, Devon
Please send me the following items:

Style No.	Size	Colour	Finish	Price
	.			
I enclose cheque/P.O. value £				
Please send me your free catalogue \square (tick if required)				
NAME (please print) ADDRESS.				
Prices include postage, packing and VAT. Cheque or PO payable to Wirele World Special Offers must accompany all orders for goods. Offer applies to U.K only. Allow 28 days for delivery. Registered in England No. 677128 and a subsidiary of Reed International Limited. Regd. Office: Dorset House, Stamford Street. London SE1 9LU				

REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR, $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter $10-0-10$. Size 8in. x 8 ih. x 8 in. New condition. ÉO?
 TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds pe min . second hand cond. (excellent order) no parts broken, $£ 20$ each. Carriage $£ 3$ INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision fo checking ionisation. $110 / 230 \mathrm{v}$ a.c. input. S/hand, good cond. $£ 35+£ 1$ carr. BRIDGE MEḠGER: 250V. (Evershē̄ Vignoles) series 2. £30 each. Carr. E1 BRIDGE MEGGER: $2,500 \mathrm{~V}$., series 1. . $£ 30$ each. Carr $£ 1$
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. E25. Carr. E1. 50
SOLARTRON VARIABLE POWER UNIT S.R.S. 1535: 0-500 volts at 100 mA and 6.3 volts C.T. 3 amps d.c. $110 / 250$ volts a.c. input. $£ 18.50$. Carr. £1.50.

TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFṠ3: Converts signals from Receivers into d.c. pulses. Complete with monitor. £75 each. Carr. £2.
FURZHILL SENSITIVE VĀLVE VOLTMETER V.200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ (cañ be used beyond 6 MHz). Probe in circuit - voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}-100 \mathrm{~V}$ in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5 \%$. $£ 30$ each. Carr. El .
NÖISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): Complete with Noise Source 121 and 122. £125. Carr. £1.
PRECIISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $\mathbf{1 1}$.
RHODE \& SCHWARZ HF MILLVOLTMETER: $300 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges. 220 V . $£ 75$ each. Carr. $\mathbf{£ 2}$.
 probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum. $£ 35$ each. Carr. $£ 1$
CT. 343 VALLVE VÓLTMETER: in ruggerised steel case. Range I. 2 miV to ${ }^{-2} 400 \mathrm{~V} .6$ ranges indicated on $3^{\prime \prime}$ meter. 230v a.c. in put. £25. Carr. £2.
UHF MICRÖWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . $£ 40$ each. Carr. £1.
S-BAND RADAR TEST SET MW69S (Decca) Oscilloscope and Spectrum Analyser. Further details on request. $£ 200$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £1.
AVO TRANSISTOR ANALYSER CT.446: $£ 35$ carr $£ 1.50$
ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LONDON ONLY.

ALL U.K. ORDERS SUBJECT TO VALUE ADDED TAX. THIS 䚡UST BE ADDED TD THE TDTAL PRICE (including post or carriage)

 for appointment

CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $\mathbf{C 7 5}$ each carr. $£ 2$. NOISE GENERATOR TF-1106: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct nolse factor calibration. Output impedance 70 ohms $£ 65$ each. Carr. £1.50.
COUNTER EXTENSION UNIT TF-1434/2: Complete with plug-in units $£ 75$ carr c1.50.
MW-59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £3.
TF-1278/1 TRÁVELLING TUBE WAVE AMPLIFIER: $£ 25$. Carr. $\bar{\varepsilon} 2$
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. £1
MARCONI DUAL TRACE UNIT TM-6456: E30. Post 60p
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq- $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW FM, Modulated Pulse - 40-400 pulses per sec. Pulse Width - $0.5-10$ microsecs. Timing - Undelayed or delayed from 3-300 microsecs from external or internalpulse. Output - 1 milliwatt max., 0 to -127 dB variable. Output Impedance 500 . Price: $£ 120$ each $+£ 2$ carr.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: 12 in . $\times 12 \mathrm{in} \times 36 \mathrm{in}$ 230 V input. £40. Carr. £4.
FIREPROOF TELEPHONES: $£ 25.00$ each, cart. $£ 1.50$.
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $\mathbb{C 3 0 . 0 0}$ each, carr. $£ 3.00$
SMOOTHING UNIT (for the above): £10.00 each, carr. £2.00.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £125 each.Carr. $£$
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$. E35 each, 75 post. BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. £1. TEKTRONLX TIME MARK GENERATOR TYPE 180 -S1: $5,10,50 \mathrm{MHz}$. $£ 65$ Carr. £2.
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \% \mathrm{at} 1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt - 52.5 ohms. Imternal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \mathrm{in} . \times 121 / \mathrm{in}$. $\times 10 \mathrm{in}$. Secondhand condition. £32.50 each. Carr. $\mathbf{£ 2} 250$.
ROTARY INVERTERS: TYPE PE. 218 E - input $24-28 \mathrm{~V}$ d.c., $80 \mathrm{Amps} .4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1Ph. P.F.9. $£ 20.00$ each. Carr. £2.50.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original

Samson's
9 \& 10 CHAPEL ST., LONDON, N.W.I $01-7237851$
adjacent to edgware road met. line station

3-PHASE MEAVY DUTY L.T. TRANSFORMER Pri. $415 \mathrm{v} \pm 3 \% \mathrm{sec} .13 .1 \mathrm{v}, 100 \mathrm{amps}$. Star/delta. One only. $\mathbf{5 3 5 . 0 0}$. Carp. £5.00.
TEC TRANSFORMER Pri. 200-220-240v. Sec. 150v. 30 amps . Conservatively reted. £25.00. Carr. ©5.00.
PARMEKO POTTED TYPE SOLATION TRANSFORMERS Pr. 230v. Screen. Sec. 230v. 5 amps, conservatively rated. Size $10 \times 8 \times 8$ ins, ©25.00. Cerr. E3.00.
\qquad v. Sec. 46 v .29 amps. conserv 2.으․
GARONERŚ MAINS ISOLATION TRANSFORMERS̄ Pri. $10 \mathrm{v}, 0.200-220-240 \mathrm{v}$. Screen. Sec. 242v. 750 watis. Conservativeh ated. Enclosed in metal case. Size $8 \times 7 \times 7$ ins. $£ 15.00$. Carr. £1.50.
Partrioge maiss isolarion rtans formens Pft. 115-200-220.240-250-260v. Screen. Sec. 240v. 13 . mpp Conservatively rated. Open frame type. Sire $12 \times 9 \times 9$ ins. $£ 35.00$. Corr〔3.00.
STEP DOWN 240/110V AUTO TRANS FORMERS 3000 watts built into steel case with two American 2 pin grounded socket outtets, carrying hande. 6 Ht . mains lead. E32.50. Carriage z2.00. Without ase and fittings $\mathbf{8 2 2 . 5 0}$. Cart. $\mathbf{i} 1.50$. Other rypes available 80.1500 watis Fully shrouded with American socket outlets. Send s.e. for list. Also available American 2-3 plug and sockets, adaptors, etc.
GARONEA HTGH VOLTAGE INSULATION TRANSFOR MEER S Pri. 230-240v. Screen. Ser. 2-0.-2v. 11 amps, conservatively rated. 25 Kv insulation. Encapsulated type E4.50. Carr. E1,00.
L.T. SMOOTHING CHOKES E1.OO. $15 \mathrm{M} / \mathrm{H} 3.8 \mathrm{~A}$ E1.75, P.P. 35 p . Potted types $4.6 \mathrm{M} / \mathrm{H} 11 \mathrm{~A}$ E3.00, P.P. $50 \mathrm{p} .100 \mathrm{M} / \mathrm{H} 2 \mathrm{~A} \varepsilon 2.50$, P.P. $50 \mathrm{p} .130 \mathrm{M} / \mathrm{H} 1.15 \mathrm{~A}$ E1.00, P. P. 25 p . P.P. $50 \mathrm{p} .100 \mathrm{M} / \mathrm{H} 2 \mathrm{~A} \in 2.50$, P.P. $50 \mathrm{p} .130 \mathrm{M} / \mathrm{H} 1.15 \mathrm{~A}$ £1.00, P.P. 25 p. Open rype $150 \mathrm{M} / \mathrm{H} 3 \mathrm{~A}$ \& 3.00 , P.P. 50 . $50 \mathrm{M} / \mathrm{H} 2 \mathrm{~A}$ £1.50, P.P. 35 p . 20 M/H 1 A E1.00. P.P. 25 P . $4.8 \mathrm{M} / \mathrm{MH} 10 \mathrm{~A}$ E2.50, P.P. 40 p . Swinging trpes C cota. $7.5 \mathrm{M} / \mathrm{H} 6 \mathrm{~A}-75 \mathrm{M} / \mathrm{H} 0.5 \mathrm{~A}$ E3.75, P.P. SOp. $10 \mathrm{M} / \mathrm{H} 4 \mathrm{~A}-100 \mathrm{M} / \mathrm{H}$ P.P. 35p.

Forall whowant to knowabout electronic circuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless. World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preçeded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A newbook from Wireless World

ORDER FORM

To: General Sales Department,
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me copy/copies of Circuit Designs - Number 1 at $£ 10.40$ each inclusive. I enclose remittance value $£$. (cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House. Stamford Street, London SEI 9 LU.

SEMICONDUCTOR

COMPONENTS

CARBOTVRESISTOR PAKS These Paks contain a range of Carbon
Resistors, assorted into the following groups:-
RI 50
Mixed 100 ohms 820 ohms $1 / 8$ th W R2. 50 Mived $1 K$ ohms R3. 50 Mixed 10 K ohms - 82 Kohms $1 / 8$ th 4. 50 Mixed 100 K ohms 5. 30 Mixed 100 ohms 6. 30 Mixed 1 K ohms $8.2 \mathrm{Kohms} 1 / 2 \mathrm{~W}$. 30 Mixed 10 K ohms -
82 Kohms 1/2 . R8. 30 Mixed 100 K ohms

These are unbeatable prices. LOW COST CAPACITORS
$500{ }^{\circ} \mu \mathrm{F} \quad 50 \mathrm{~V}$ Elect 0.09 each REPANCO CHOKES \& COILS RF Chokes CHl $\quad 2.5 \mathrm{mH} \quad 0.27$ $\begin{array}{lll}\mathrm{CH} 3 & 7.5 \mathrm{mH} & 0.29 \\ \mathrm{CH} & 1.5 \mathrm{mH} & 0.29\end{array}$ $\begin{array}{lll}\mathrm{CH} & 1.5 \mathrm{mH} & 0.26 \\ \mathrm{CH} 2 & 5.0 \mathrm{mH} & 0.28 \\ \mathrm{C}\end{array}$ COILS DRXI Crystal set 0.29 CARBON POTENTIOMETERS
Log and $\operatorname{Lin} 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}$.
VC T Single Less Switch VC 2 Single D.P. Switch VC 4 IK in less Switch VC 5100 K Log anti-Log

HORIZONTAL CARBON PRESETS

0.1 Watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$

REPANCO TRANSFORMERS

240 V . Primary. Secondary voltages $8 \mathrm{~V}, 10 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}$ and $25 \mathrm{~V}-0.25 \mathrm{~V}$. 7

Type	Amps	Price	P\&P
MT50/1/2	$1 / 2$	£1.79	$0.45 p$
MT50/1	1	$\ldots 2.24$	$0.48 p$
MT50/2	2		

COIL FORMERS \& CORES
NORMAN X_{4} " Cores \& Formers $\quad 0.07 p$
$3 / k^{\prime \prime}$ Cores $\&$ Formers

SWITCHES

DP/DT Toggle 0.28p
SP/ST Toggle 0.22p
FUSES
$11 / 4^{\prime \prime}$ and $20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$, $500 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$ QUICK BLOW
Anti-surge 20 mm only $\ldots .{ }^{\circ} 0.8 \mathrm{p}$ each
VEROBOARDS:
VB 1
containing approx. 50 sq. ins. various VB 2
containing approx. 50 sq. ins, various sizes all 0.15 matrix
DECON.DALO 33PC Marker *
0.60p

Etch resistant printed circuit marker 0.92 p BATTERY HOLDERS
Takes 6 H.P. 7 s complete with terminal clip and lead
CABLES *

\section*{Single lapped screen $\quad \begin{gathered}\text { Per Metre } \\ * 0.08 \\ \\ 0\end{gathered}$
 | | Single lapped screen | $* 0.08$ |
| :--- | :--- | :--- |
| | Twin Common Screen | |
| 0.11 | | |} Stereo Screened Four Core Common Screen

Four Core individually

 screened icrophone Fully Braided *0.28 Cable Three Core Mains Cable *0.11 Win Oval Mains Cable peaker CableSEE OUR COMPLE

IN
 practical etectronics.

 PRACTICAL WIRELESS. RADIO CONSTRUCTOREVERYDAY ELECTRONICS
WIRELESS WORLD
OŔ SEND 5p FOK THE
FULL LIST OF ALL BI-PAK PRODUCTS

INSTRUMENT CASES
(In 2 sections, Black Vinyl covered top and sides and bezel) No. Length Width Height Price
BV1 $8^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime} \quad$ El.25
 ALUMINIUM BOXES
 Pak No. Qty. 200 Resistors mixed values approx. count by weight C2 150 Capacitors mixed values approx. count by welght C3 50 Precision Resistors mixed values
C4 $751 / 8$ th width Resistors mixed preferred values
5 Pieces assorted Ferrite Rods 2 Tuning Gangs. MW/LW 1 Pak Wir colours
10 Reed Switches
$\begin{array}{lr}3 \text { Micro Switches } & .60 \\ 15 \text { Assorted Pots \& Presses } & .60\end{array}$ Cll 5 Jack Sockets $3 \times 3.5 \mathrm{~m}, 2 \times$ standard Switch Type Paper Condensers preferred types mixed values
C13 20 Electroiytics Trans. types
C14 1 Pack assorted Hardware-
Nuts/Bolts, Grommets, etc.
C15 5 Mains Slide Switches, 2 Amp
C16 20 Assorted Tag Strips \& Pan- 60
els
C17
C18 4 Rotary Wave Change

- Switches

Sheets Copper Laminate approx. 200 sq. Ins.
Please add 20 post and packing on ali component packs, plus a further 10 p on pack nos. C1, C2, C19 \& C20.

SOLVE THOSE STICKY

 PROBLEMS!with

.

camocranaif 12 anissur

国

3 Stylus and furntable cleaning

Wire stripper/Cutter
Cassette head cleaner
Tape editing kit
A Stylus balance
32A Stylus balance
36A Record stylus cleaning kit
De Luxe Groov-Kleem
Record care ki
Auto changer
Spirit level
H1-Fl stereo hints \& tips
Hi-Fl stereo hints \& tips

BI-PAK 1975

NEW EDITION
JUST OUT!
Send S.A.E. And 10p

ANTEXEQUIPMENT:

 SOLDERING IRONS$\times 25.25$ watt
Model G. 18 wail
CCN 240. 15 watt

Bits No.

102 for model CN240
104 for model CN240
1100 for model CCN240
1101 for model CCN240
1102 for model CCN240
1020 for model G240
1021 for model G240
022 for model X25
50 for model X25
52 for model X25
ELEMENTS*
Model ECN 240
Model EG 240
Model ECCN 240
Model FX 25

SOLD

ST3 Suitable for all STA
Antex heat shunt
PLUGS
PS
2 D.IN. 3
4 D.LN. 5 Pin 180°
5 D.I.N. 5 Pin 240°
D.I.N. 6 Pin

Jack 2.5 mm Screened
Jack 3.5 mm Plastic
Jack $14_{4}^{\prime \prime}$ Plastic
Jack $1 / 4^{\prime \prime}$ Screened
13 Jack Stereo Screened
14 Phono
PS 16 Car Aerial
INLINE SOCKETS
PS 21 D.I.N. 2 Pin (Speaker)
PS 22 D.I.N. 3 Pin
PS 23 D.I.N. 5 Pin 180
PS 25 D.I.N. 5 Pin 240°
PS 26 Jack 2.5 mm Plastic
PS 27 Jack $1 / 4^{\prime \prime}$ Plastic
PS 28 Jack $1 / /^{\prime \prime}$ Screened
PS 30 Jack Stereo Screene
PS 31 Phono Screened
PS 33 Co-Axial

SOCKETS

PS 35 D.I.N. 2 Pin (Speaker)
PS 36 D.I.N. 3 Pin
PS 37 D.I.N. 5 Pin 180°
PS 39 Jack 2.5 mm Switched
PS 40 Jack 3.5 mm Switched
PS 42 Jack Stereo Switche
PS 43 Phono Single
PS 44 Phono Double
PS 44 Phono Double
PS 47 Co -Axial Flush

P.C.B.KITS \& PENS

PROFESSIONAL D.I.Y. PRINTED

CIRCUIT KIT
Containing 6 sheets of $6^{\prime \prime} \times 4^{\prime \prime}$ single sided laminate, a generous supply of etchant powder, etching dish, etchant marking pen, high quality pump marking pen, high quality pump cril blades, $6^{\prime \prime}$ metal ruler, plus full easy to follow instructions.
© $£ .80$ per kit
Spare container of etchant for above
complete with instructions
$* 60 \mathrm{p}$

*31p

$2 x$ quality market pens, specifically
designed for drawing fine etchant
resistant circuits on copper laminate
Complete with full instructions * $\mathbf{C 1} .53$
per pair

LOW-NOISE CASSETTES	
C60	$* 33 p$
C 90	$* 44 \mathrm{p}$
C120	$\$ 56 p$

SLIDER PAK

Containing a range of slider p
SP1 6 mixed values sliders
SP2 6 47OR Lin. sliders
SP3 610 K Lin. sliders
SP4 6 22K lin. sliders
SP5 $647 \mathrm{~K} \log$. sliders
SP6 647 K lin. sliders

AUDIO LEADS

S221 5 pin DIN plug to 4 phono plugs
length 1.5 m S222 5 pin DIN plug to 5 pin DIN socket S237 length 1.5 m pin DIN plug to 5 pin DIN .68 p S237 5 pin DIN plug to 5 pin DIN plug S238 2 pin DIN plug to 2 pin DIN socket S268 5 pin DIN plug to 3 pin DIN plug 1 \& 4 and 3 \& 5 length $1.5 \mathrm{~m} £ 1.00$ S270 2 pin DIN plug to 2 pin DIN socket S271 5 pln Dis 10 m
connected to pins 3 \& 5 length
S275 5 pin DIN plug to 2 phono sockets connected to pins 3 \& 5 length
S318 5 pin DIN socket to 2 phono plugs 23 cm connected to pin 3 \& 5 length
S404 Coiled stereo headphones exten.
sion cord extends to $7 \mathrm{~m} £ 1.40$
S217 3 pin DIN plug to 3 pin DIN plug
length 1.5 m
.80 p
S2195 pin DIN plug to 5 pin DIN plug
S474 $\begin{gathered}3.5 \mathrm{~mm} \text { Jack to } \\ 1.5 \mathrm{~m}\end{gathered}$

S700 $5 \frac{1.5 \mathrm{~m}}{\mathrm{p}} \mathrm{m}$ DIN plug to 3.5 jack
connected to pins 1 \& 4 length
1.5 m
80 p

CROSSOVER NETWORK

K4007 1/P 1 mpedance 8 ohm
Crossover Frequency 3 KHz .
PRICE $\mathrm{EL.12}$

3-WAY-STEREO

H/PHONE JUNCT BOX
H 1012 Enables change-over from
loudspeaker to headphone
iistening. Also has a centre
position for both outputs. PRICE $£ 1.73$

HANDBOOKS

TRANSISTOR DATA BOOK, DTE 2 227 Pages packed with information on European Transistors. Full specification
including outlines Price \# $\mathbf{~ E 2 . 9 5}$ each TRANSISTOR EQUIVALENT BOOK BPE 75256 Pages of cross references American and Japanese Transistors. This is the most comprehensive equivalents book on the market today and has an introduction in 13 languages

DIODE EQUIVALENT BOOK DE 74
144 Pages of cross references and and Japanese Diodes, Zeners Thyristors, Triacs. Dlacs and L.E.D.'s MULLARD DATA BOOK 1974/75 MDB 74 The latest edition of this popular handbook contains information on Semiconductors, Integrated Circuits, Celevision Picture Tubes, Valves, the 161 informative pages are 21 pages the 161 informative pages are 21 pages
on Semiconductor Comparables TTL DATA BOOK Price $\# \mathrm{EO}, 40$ each complete Data book of 74 series TTL (7400-74132). Covering 13 maln Europe, this book gives full data as well as equivalents Price $\#$ E3.74 THE WORLD'S BROADCASTING STATIONS WBS 75 An nterested in DX-ing. Contains all the world's broadcasters. Contains all the world's broadcasters on SW, MW and
LW , as well as European $\mathrm{FM} / \mathrm{TV}$
stations \quad Price $\#$ c3.56
A full range of technical books a vailable on reques.

INDICATORS *

3015 Mintor 7 Segment indicator

MAN 3M L.E.D. 7 SEGMENT DISPLAY
27" ligh Characters
ZENER DIODES
FULI RANGE 1 STOCK
VOLTAGERANGE 2.33 v
$400 \mathrm{mw} \quad 1.5 \mathrm{w} \quad 10 \mathrm{w}$

CERAMIC PAK

Containing a range of ceramic capacitors in mix unrepeatable value.

124 ceramic capacitors 33pF, 39pF, 47pF, 56pF 82 pF
MC2 24 ceramic capacito $120 \mathrm{pF}, 150 \mathrm{pF}, 180 \mathrm{pF}, 22$ MC3 $560 \mathrm{pF}, 680 \mathrm{pF}, 830 \mathrm{p}$ $1500 \mathrm{pF}, 2200 \mathrm{pF}$, and 330
MC4 21 ceramic capacito and $.047 \mu \mathrm{~F}$

MAMMOTH I.C.

APPROX. 200 PIECI Assorted fall-out integrate and D.T.L. Many coded and D.T.L. Many coded d

OUR SPECIAL P
WORLD SCOO
Jumbo SEMICONDUCTI

Rectifiers - Diodes -

 Thyristors - I.C.'sNEW AND CODED.

APPROX. 100 PIECI Offering the amateur a fantas identification and data sher ident
pak.

ONLY
UNTESTED LIN F
Manufacturers "Fall" Out
include Functional and part
Units. These are classed as 'o
from the maker's ve specifications, but are ideal f_{1} PAK NO. CONTENTS

PO BOX 6 WARE HERTS

AL 60

ONLY £3.95

50w. PEAK (25w. R.M.S.)

- Max Heat Sink temp $90^{\circ} \mathrm{C}$ - Frequency Response 20 Hz to 100 K Hz - Distortion better than 0.1 at 1 KHz - Supply voltage $15-50$ volts Thermal Feedback O. Latest Design Improvements Load - 3, 4, 5 or 16 ohms Signal to noise ratio 80 dH - Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$. Especially designed to a strict. specification. Only the finest components have been used and the latest solid state circuitry incorporated in. this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 30 \mathrm{~mm}$.
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems. Public Address Intercom Units, etc. Handbook available 10p.

TRANSFORMER BMT80 £2. 60
PRICE $£ 3.00$
STEREO PRE-AMPLIFIER TYPE PA100.
Built to a specification and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the: AL50 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages.
Three switched stereo inputs, and rumble and scratch filters are features of the PA100 which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.
£13.20

MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA100, 1 front panel, 1 kit of parts to include on-off swltch, neon indicator, stereo headphone sockets plus instruction booklets.
COMPLETE PRICE: $£ 27.55$ plus 45 p postage.

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $16 \% \%^{\prime \prime} \times 11 y_{2}^{\prime \prime} \times 33_{4}^{\prime \prime}$, other parts include aluminium chassis, heatsink and front panel bracket, plus back panel and appropriate sockets, etc.
KIT PRICE: $\neq 9.20$ plus 45 p postage.

STEREO 30 COMPLETE AUDIO CHASSIS
 $7+7$ WATTS R.M.S.

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
Simple to install, capable of producing really first-class results, this unit is supplied with full instructions, black front panel, knobs, mains switch, fuse \& fuse holder and universal mounting bracket, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available.
beginner or advanced constructor who
Ideal for the beginner or advanced constructor who
requires Hi-Fi performance with a minimum of requires Hi - Fi performance with a minimum
installation difficulty. Can be installed in 30 mins .

PRICE £15.75

Plus 45p postage \& packing.

TRANSFORMER E2.45 $\begin{gathered}\text { plus 45p } \\ \text { postage } \& \text { packing }\end{gathered}$
plus 45p
postage \& pack!ng,

The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, careful, selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.

AL10 £2.30, AL20 £2.65, AL30 £2.95

SPEAKKERS

AL 10/AL 20/AL 30

E.M.I. LEK 350 Loudspeakers Enclosure klt In teak veneer,
including speakers. Rec. retail price including speakers. Rec. retail price

AL10 £2.30, AL20 ONLY £27.75 per pair PRICE WHILE STOCKS LAST!

4-16 ohms Impedance
 frequency response
20 to $20,000 \mathrm{~Hz}$ ster-

FÖR PA100. Attractive matt sliver. 20 to $20,000 \mathrm{~Hz}$ ster-
eo/mono switch and colnono switch and
Volume Control cA.55

FRONT PANEL. and lettering. Adds and lettering. Adds
that professional that profession.

M.P:A. 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new Bi-Pak M.P.A. 30 which is a high quality pre-amplifier
cartridges only gain, silicon transistors and it is provided with a standard DIN input socket for ease of connection. Supplied with full, easy to follow instructions.

PRICE $£ 2.65$

STORAGE-GARRY CASES

RECORD CASES

RECORD CASES
7 in EP. $183 / 8$ th in. $\times 7$ in $\times 8$ in (50 records)
12 in L.P. $13 \frac{3}{4}$ in $\times 73 / 8$ th in $\times 12 \%$ in (50 records)

CASSETTE CASES

Holds 15 . $10 \mathrm{in} \times 33 / \mathrm{in} \times 5 \mathrm{in}$, Lock and handle
8-TRACK CARTRIDGE CASES
Holds 14. 13 in $\times 5$ ing $\times 6 i n$. Lock and handle
Holds 24.13 3/8th in $x 8$ in $\times 53 / 8$ th in Lock and handle

CARTRIDGES

ĀCOS GP91-1SC200mV at $1.2 \mathrm{cms} / \mathrm{sec}$ GP93-1 GP96-1 TTC J-2005 $J-2005$
$j-2010$ 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$. Crystal/Hi Outpul -2010 Crystal/Hi Output y 2006 . Compatible Compatible
Stereo/Hi Output J-2105 Ceramic/Med Output J-2203 Magnetic $5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$ including stylus J-22038 Replacement stylus for above AT-55 Audio-technica magnetic cartridge $4 \mathrm{mV} / \overline{\mathrm{B}} \mathrm{cm} / \mathrm{sec}$

DYNAMIC MICROPHONE
TYPE B1223 200 ohms impedance. Complete £1.11 with stand, on/off switch and 2.5 mm and 3.5 mm plugs. Suitable for cassette tape recorders PRICE 11.67

WW-134 FOR FURTHER DETAILS

WirelessWorld FULLCOLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.
wireless world
wallchart of Prequency allocationa

 -

$\square \square \square$

ORDER FORM

To: IPC Electrical-Electronic Press Ltd. General Sales Dept., Room 11 , 32 Stamford Street, London SE1 9LU
Please send me
copies of the Wireless World Wallchart of Frequency Allocations at 80 p each inclusive.
l enclose remittance value f
(cheque/p.o. payable to IPC Business Press Ltd.)

Name
(please prini) Address London SE1 9LU

IENIMDPAHSS
 7 turnham green terrace, chiswick. London.w.4. TEL: 01.994 2784

 100 WATT AUDIO AMPLIFIER MODULE

SPECIFICATION:

- Power output: 100 Watts R.M.S. Continuous into B ohms
. Frequency response: $15 \mathrm{~Hz}-23 \mathrm{kHz}$.
- Distontion: 0.8\% at full output. Typ. 0.4%.
- Signal/Noise ratio: -96 dB .
- Input Impedance: 10 Sensitivity: 150 mV . R.M.S.
* Input Sensitivity: 150 mV . R.M.S. 45 . $\mathbf{~ - ~} 45$ Volts. d.c. max
* Full short and open circuit proof protection.
- Complete with large anodised heatsink - no further heatsink required.
\# Utilises first grade glass-fibre P.C.B.
- Requires only 5 external connections
*Size: Approx. $150 \times 120 \times 65 \mathrm{~mm}$.
- PRICE: $1+$ C23.00. $10+$ Less 25%
- Kit comprising: 1×3 Amp Mains Transformer, 2×63 Volt Smoothing Capacitors, $1 \times$ 6 Amp Bridge Rectifier. Price $£ 12.00$.

ORDER FORM

TO: LEKTROPACKS, DEPT. W.W. 11
17 TURNHAM GREEN TERRACE, CHISWICK, LONDON, W. 4
From: Name
Address

Please supply:
100 Watt Modules at
.Power Supply Kit at
I enclose cheque/P.O. is for
C.O.O. Service also available

RADIO TELEPHONE OPERATORS HAVE YOU 'LOST' YOUR DRIVER?
 - IF SO -

Equip him with a personal pocket monitor receiver on your mobiles frequency and retain contact with your driver when away from his vehicle.
Small $5 \times 21 / 2 \times 1 \frac{1}{2}$ (approx.) self-contained unit. Xtal controlled; superhet with squelch.

AM - FM - SSB TO SÜIT YOUR MODE 70-175 MHZ
SIMPLE OPERATION, LONG BATTERY LIFE
Full six-month warranty with all units
Unit Price, from $£ 38.50+$ VAT depending on specification.
Units made to your requirements
MOBILE AUTOMOTIVE SERVICES LTD.
76 Pershore Street, Birmingham 5 Tel. REDDITCH 24550 (Technical Dept.)

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5DG. Tel: 01-994:6275

3 CORE PVC INSULATED MAINS CABLE GREY ML6650. $3 \times 7 / 0.2 \mathrm{~mm}$. Price
$100 \mathrm{mC4.50} 1,.000 \mathrm{~m} \cdot \mathrm{E} 35.10 .000 \mathrm{~m}-\mathrm{E} 330$. METAL OXIOE RESISTORS TR4/5/6 in
$\star \star$ SPECIAL OFFERS $\star t$ MINIATURE MAAINS TRANSFORMER. PRI2 240 V SEC. 12 V V. 100 Ma Manuf.: Hinchlev. Size $36 \times 45 \times$
40 mm . C .53 mm .
Price $1.65,10060$ an. 1,00050 pea, 10,00040 p -8. 8\%VA
 postage 33p, 8% VAT. Ma at 80 p ea. + VAT
MULLARD POT CORE TVPE FX 2241 at 60 p es. 33 p P. P. 8% VAT.

on Size approx. $23 \times 1 / 2 \times 1$ transistors
30 unmarked OC
25 Unmarked 250 mW Zener
25 Unmarked 250 mW Zener diodes. $4.7 \mathrm{~V}, 51.1 \mathrm{~V}$.
$6.2 \mathrm{~V}, 7.5 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}$, Measured and tesited

\qquad
\qquad
Many ofer vetails
JACKS ON AIRSPACED CAPACITORS to suit $1 / 4 \mathrm{in}$.
spndie:
100pF Two Gang at $55 p+25 \%$
500 pF Two Gang $75 p+25 \%$
MULLARD TUBULAR CEREAMIC UHF TRIM,
$\left.\begin{array}{rrr}\text { Type } & 092 & \overline{0} .8 .2 .2 p \\ 801 & 0.8-2.2 p \\ 991 & 0.5 .1 .3 p\end{array}\right\}$ Price $10 p{ }^{\text {. }}$

METAL BOXXS $.8 \%$ VAT ALUMINIUM BOXES IDEAL FOR VERAO
WITH BASE \& P.K. SCREWS

A857	2\%" Long	$5^{\prime \prime}$ Wide	侑" ${ }^{\prime \prime}$ nigh	55p*
AB8	$4^{\prime \prime}$ "	$4^{\prime \prime}$	112"	$55 p$
AB9	4 "	21/4"	$11 / 2$	$55 p^{\prime}$
AB10	$4^{\prime \prime}$	$5^{1 / 4}{ }^{\prime \prime}$		55p
A811	$4 \prime$	21/2"	$2^{\prime \prime}$	65 p
AB12	$3{ }^{\prime \prime}$	$2^{\prime \prime}$	${ }^{\prime \prime}$	50p
A813	$6^{\prime \prime}$	$4^{\prime \prime}$	2"	770.
AB14	$7{ }^{\prime \prime}$	5"	21/"	90 p
AB15.	$8^{\prime \prime}$	$6^{\prime \prime}$	$3^{\prime \prime}$	¢1.16
4816	$10^{\prime \prime}$	$7{ }^{\prime \prime}$	$3^{\prime \prime}$	ع1.32
A817	$10^{\prime \prime}$	41/2"	$3^{\prime \prime}$	£1.10
AB18	$12^{\prime \prime}$	$5^{\prime \prime}$	$3^{\prime \prime}$	E1.32;
AB19	$11^{\prime \prime}$	$8^{\prime \prime}$	$3^{\prime \prime}$	c1.80

AE20 $8^{\prime \prime}$ Long $9^{\prime \prime}$ Wide $3^{1 / 2 " ~ H i g h t ~ a t ~ b a c k ~}$ $2^{\prime \prime \prime}$ H"gh at front $6^{\prime \prime}$ Slope io front AB21 As above but $10^{\prime \prime}$ Long
AB22 As above but $12^{\prime \prime}$ Long

Where the facts are

Hi-Fi Year Book tells you everything you need to know about Hi-Fi equipment on the market - what it does, who makes it, what it costs and where to buy it. The directory section alone lists prices and specifications of over 2,000 audio products. Included are authoritative articles by leading experts on the latest Hi-Fi developments and their application. So if you want information like you want $\mathrm{Hi}-\mathrm{Fi}$, order your copy todaybefore it sells out!

HI-FIYEAR BOOK 1976
 Available direct from the publishers at $£ 2.35$ inclusive

 or from leading booksellers \& newsagents price $£ 2.00$.
ORDER FORM

To: Room 11, IPC Electrical-Electronic Press Ltd., Dorset House, Stamford Street, London SE1 gLU

Please send me...........copy/copies of Hi-Fi Year Book 1976 at $£ 2.35$ per copy inclusive. I enclose remittance of $£$. (cheque/'P.O. payable to IPC Business Press-Ltd).

Name \{please print

Address

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30,300 \& 1200 (30 and 120 cps) Teleterm $1030 \& 1132$? (portable 30 cps with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.) TermiNet 120 line printer
\star Spares, repairs, overhauls and maintenance

* Other types and models available
* Refurbished units also available
\star Short and long period rentals
\star Minicomputer interfaces \star Quantity discounts \star Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-401
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring

WW-113 FOR FURTHER DETAILS

FREE Brochure on New KITS
Whether professional.
stiudent. teacher or amateur.
the field of electronics can open
up a new world lor yau.

E

CROFTON don't just sell kits, we offer you a technical back up service to ensure your success.
The following is a selection of some of the more popular kits:-

Mulard CCTV Camera
PE CTV Camera PE CGIVC Camera Electronic ignition ing
 SW Trele Tersus Gam
UHF Modulato UHF Modulato
Bench Pomer Supolv Bench
Wilbowidor
Ail EII Top
Many of the Propects
Elekt Propect
CROFTON ELECTRONICS ITD Dept.D, 124.Colne Road, Twickenham, Middx. 01.8981569

WW-026 FOR FURTHER DETAILS

STEREOIC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP
 (as in 'W.W.' July' 72)

MOTOROLA MC1310P EX STOCK DELIVERY
SPECIFICATION
Separation: $\mathbf{4 0 d B} 50 \mathrm{~Hz}-15 \mathrm{kHz}$
P level: 560 mV rms
Will drive up to 75 mA stereo
O/P level: $4 B 5$ Distortion; 0.3% input impedance: $50 \mathrm{k} \Omega$

Will drive up to 75 mA stereo on lamp or LED
KIT COMPKISES FIBREGLASS PCB

COMPKISES FIBREGLASS PCB	ONLY	WHY PA
(Roller tinned), Resistors, I C. Capacitors,	C	
Preset Potm, \& Comprehensive Instructions	$\mathbf{3 . 9 8}$	MORE?
LIGHT EMITTING DIODE	RED	29p free
Suitable as stereo on indicator for above	GREEN	$59 p$

MiC1310P only £2.15 plus p.p. 10p
NOTE
As the supplier of the first MC1310P decoder kit, of which we have sold literally thousands, our customers can benefit from our wide experience. V.A.T.

Please add V.A.T. to all prices
FI-COMP ELECTRONICS
PORTWOOD INDUSTRIAL ESTATE, CHURCH GRESLEY
BURTON-ON-TRENT, STAFFS. DE11 9PT

iPnillanodic

The West Hyde prestige case
The smartest of the West Hyde cases, all
anodised aluminium, with top and bottom
panels only; in black PVC-covered steel (plain or
louvred). Free standing or 19 rack mounting with aluminium
brackets. Supplied ex-stock, fully assembled with Pozidriv screws

BC212 ($31 / 2^{\prime \prime}$ Whole Rack . . . £ 16.35	BC312 (51/4" Whole Rack)	E17.43
With $1 / 2$ panels $£ 16.90$	With $1 / 2$ panel	E17.98
With $1 / 4$ panels £17.65	With $1 / 4$ panel	¢18.
BC222 (31/2" Half Rack) £15.10	BC322 (51/4" Half Rack)	¢18.18
With $1 / 4$ panels . ., $£ 15.64$	With $1 / 4$ panel.	£17.01
Rack Brackets $31 / 2^{\prime \prime \prime} \ldots . .8$. 86 per pair	With	E12.01

Prices incl panels P\&P No exera charge for Louvres - Add L \qquad

Add 8.
1975.

COMTIL handles

The design of these cases permits the instrument
to be built or serviced within their external panele. 48 shapes.
Low cost. Blue PVC/steel with grey PVC-costed aluminium panels.

> | Width |
| :--- |
| $4.5 .^{\prime \prime}$ |
| $4.5^{\prime \prime}$ |
| $4.5^{\prime \prime}$ |
| $9^{\prime \prime}$ |
| $9^{\prime \prime}$ |
| $13^{\prime \prime \prime}$ |
| $13^{\prime \prime}$ |
| $13^{\prime \prime}$ |
| $18^{\prime \prime}$ |
| $18^{\prime \prime}$ |
| $18^{\prime \prime}$ |

> 6.5
$65^{\prime \prime}$
$6.5^{\prime \prime}$

だ

 rices include screws, rubber feet, one or two chassis according to size. P\&P and 8% VAT Write or phone for our latest catalogue. Prices correct Oc
NFW POSTAL INCREASES NOT INCLUDED

WEST HYDE

WEST HYDE DEVELOPMENTS Lud, Ryefietd Cies. Northwood Hills. Northwood, Middx HAG INN Tel: Northwood 24941/2673?

WhPGriONIC BROMP

SIGNAL SOURGES

FM AM SIGNAL GENERATRR TYPE 202H
 orator in grado F.M. condition, C.W. \& pulse
coverage 54 to coverage
216 MHz. Used to resting and calibration of
F.M. receiving systems, V.HF., T.V., "Mobile and general Communications. Frea range $54.216 \mathrm{MHz}+2$ Bands. R.F. stability 0.01%. R.F. output 0.1μ V.0.2V. V.S. W.R. 1.2. Signal to noise ratio 50 dB below IOKHz. PRICE NEW OVER E1,0001
OUR PRICE £495

ADVANCE
Audio Signal Generator HIB $15 \mathrm{~Hz}_{2} .50 \mathrm{KHz}_{\text {, }}$, $200 \mu \mathrm{~V}-20 \mathrm{Vm} \pm 2 \mathrm{~dB}$. Sine Wave \& Square
Wave Signal Generator JiB is $15 \mathrm{~Hz}-50 \mathrm{KHz}$
$0.2 \mathrm{~V}-25 \mathrm{~V}$.............................
VHF Square Wave Gen
$9 \mathrm{KHz}-100 \mathrm{MHz}$. Max $0 / 02 \mathrm{~V}$
Signal Generator D1 ranges Cal. Accuracy $\pm 2 \%+1 \mathrm{~Hz}$; Output 250 mV to 25 V variable. Overall distortion at full Power output above 100 Hz is $<2 \%$. $\mathbf{£ 6 5}$ A. F. Signal Generator J. 2B

AIPMEC

Signal Generator $70230 \mathrm{~Hz}-30 \mathrm{KHz}$ in 3 bands
Signal Generator 701
H.F. Signal Generator $20130 \mathrm{KHz} \cdot 30 \mathrm{MHz}$ in 7

Bands Int Xtal calibrator o/p level variable
$1 \mu \mathrm{~V} .1 \mathrm{~V} .75$ ohms impedance Int. Mod at 1 KHz . Ext. Mod $30 \mathrm{~Hz}-10 \mathrm{KHz}$ £75-£115

GENERAL RADIO

Unit Oscillator 1218 -A
Unit Oscillator. General Radio Type 1209 C C. Unit Oscillator. General Radio Type 120 gic. Freq. $250-920 \mathrm{MHz}$. Accuracy 1\% Drift $\sigma .2 \%$,
Output into 50 ohms $=150 \mathrm{MW}$ wh PSU 1201 - CQ18 as illustrated 215

HEWLETT PACKARD
U.H.F. Signal Generator $614 \mathrm{~A} 900-2100 \mathrm{MHz}$ 1% Accuracy. Output 0.1 uV-0.2V into 50 S.H.F. Signal Generator 618C $3.8-7.6 \mathrm{GHz} \pm$ $1 \% 50$ ohms $£ 550$ Signal Generator $608 \mathrm{~B} \quad 10-400 \mathrm{MHz}$ Signal Generator 60BE

Signal Generator $612 \mathrm{~A} \quad 450 \mathrm{MHz}-1230 \mathrm{MHz}$ Internal \& Ext. A.M. 50 ohms $£ 495$ Audio Oscillator Type 201C. $20 \mathrm{~Hz}-20 \mathrm{KHz}$. $0-40 \mathrm{~dB}$ in 10 dB steps. Distortion less than Adio Genera $206 A^{-} 20 \mathrm{KH}$ Calib Audio Generator $206 \mathrm{~A} 20 \mathrm{~Hz}-20 \mathrm{KHz}$. Calibra. tion accuracy $\pm 2 \%$. Distortion $<0.1 \%$ at 20 Hz to 50 Hz a/P Attenuators 111 dB in 0 dB steps.
Audio Oscillator $201 \mathrm{C} 20 \mathrm{~Hz}-20 \mathrm{KHz}$. Calibra tion Accuracy $\pm 1 \%$. Outpul (600 ohms) 3W Max. Distortion 0.5\% 895 Audio Oscillator 202 C 1 $\mathrm{Hz}-100 \mathrm{KHz} \mathrm{Cal}$ Accuracy $\pm 2 \%$. Max. Distoriion 0.5% Tbbove 5 Hz) O/P Impedance 600 ohms
MARCONIINTS.

Phase/AM Signal Generator TF 2003. $0.4-12 \mathrm{MHz}$. Bargain price - super condition

FM/AM Signal Generators:
TF995A
TF995A/2 2 M
1225
$E 385$
FM/AM Signal Generator TF $995 \mathrm{~A} / 3 \mathrm{~S}$ - 1.5 Minz-220 MHz, 2 公 V- 200 mV . Supert U.H.F. 385 U.H.F. Signal Generator TF $1060 / 2$. pulse mod facilities $£ 420$ U.H.F \& S.H.F. Sianal Generator TF 1058 $1600-4000 \mathrm{MHz} .0 .1 \mu \mathrm{~V} .445 \mathrm{mV} \ldots \mathrm{E} .298$

PULSE GENERATORS

Pulse Amplitude $0.1 \mathrm{~V}-10 \mathrm{~V}$. Sa. wave 0.10 V Rise Time 10 nsec . (typically) £87.50 Pulse Generator PG. 55
Modular Pulse Generator Advance Type PG.52. System of 5 Signal generating \& Processing units. Repetition freqs. up to 20 MHz \& Output pulses to 20 V (50 ohms) Rise \& Fall times 5 nsec . Its versatility enables the production of complex pulse \& ramp waveforms not obtainable from conventional
pulse generators

SWEEP GENERATORS

HEWLETT PACKARD Sweep Oscillator 6920 $\overline{2-4 G H z} \ldots \frac{£ 495}{\S 495}$
Sweep Oscillator $693 \mathrm{~B} 4-8 \mathrm{GHz}$

VOLTMETERS

MARCONI INSTRUMENTS

TF 1041 B V.T.V.M. $A C, D C$ and Ohms

C65-E80

HEWLETT PACKARD

D.C. Vacuum Tube Voltmeter 412A $1 \mathrm{mV} .1000 \mathrm{~V} 1 \%$ Accuracy. Can also be used as Onmeter \& Ammeter
VTVM, 400 D 1 mV to 300 V FSD. 12 ranges 10 Hz to 4 MHz . 2% accuracy. Input Impedance 10Mohms. $£ 85$ Reads. 400 L . Logarithmic version of 400 D . Reads RMS value of sine wave. Log, voltage scale Imput Impedance 10 Mohms . Input Impedance 10 Mohms
PHILIPS
L.F. Millivoltmeter GM 6012 H.F. Millivoltmeter GM 6014
D.C. Microvolimeter GM 6020 £60

ADVANCE

 $0-1500 \mathrm{~V}$. R 80 AC Volts 0.500 . DC Volts
IISULATION TESTERS

EVERSHED \& VIGNOLE
Circuit Tester Ohmeter 0-3 ohms 0-39 ohms Cirouit Tester Ohmeter 0.1000 ohms. Megger Series
Megger Series +11250 V
Megger Series III Mk. 3250 V
Battery Megger 500 V

Slemens Level Meier $3033510 \mathrm{KHz}-17 \mathrm{MHz}$ Complete system by Siemens. Comprising $3 W .518$ Level Oscillator, 30. 335 Level Meter, 3W. 933 Sweep Attachment, 30.346 Screen Level Tracing Receiver P.O.A Siemens Level Meter 30.332,0.3-1 200KHz Level Oscillat or $3 W .29,0.3-1200 \mathrm{KHz}$ P.O.A S.T.C.

Octave Filter $74143 \mathrm{~A} .37 .5 \cdot 12.800 \mathrm{~Hz}$. For analysing noise and interference on comms. systems, particularly useful with 74142 psophometer . S . Cl P.O.A. $60-1364 \mathrm{KHz}$ Sel 74184 Measuring Set 74831 A.A. WANDEL GOLTERMAN
Level Transmitter TFPS 42

Wandel \& Golterman VZM. 2. Distortion measuring set for phase \& amplitude mod. For multichannel FM Radio Systems up to 12 MHz Base bands
MARCONI
Sine Squared Pulse \& Bar Generato

COMPONENTS

B.7971. Displays alphabet \& 0.9 numera

OSCILLOSCOPE
 TEST EQUIPMENT

TEKTRON1X

Pulse Generator Type "III. $0.5 \mu \mathrm{sec}$ rlsetime: Amplitude $\pm 5 \mathrm{~V} .30$ to 250 nsec . difference between trigger and output pulses ... £60 ime Mar Ger and 100 O. E85

etime Pulse Generator 1090.25 nsec . Risetime | dance 50 ohrss |
| :--- |
| Pre-Triger Pulse Generator ill |
| 60 |

MISGELLANEOUS

ransfer Oscillator Type $\mathbf{7 5 8 0 H B y}$ Beckman DC-15GHz with counter, $7.5 \mathrm{MHz}-15 \mathrm{GHz}$ without counter. Sensitivity 100 mV (R.M.S.) Mistorion Factor Meter TF. 142 F Fundame. Distortion Factor Meter TF. 142 F . Fundamen-俍 Priable Recener $70 \mathrm{KHz}-70 \mathrm{MHz}$. Xtal check $600 \mathrm{KHz} \& 5 \mathrm{MHz}$.
 00 mW \& 1 W . A.F. Power 10 mW Wave Analyser TF 455E.... $£ 55$ Noise Generator TF 1301. 200.1700 MHz Amplitude Modulator TF 1102. Basic Carrier Frequency Range $100 \mathrm{KHz}-300 \mathrm{Mhz} / 500 \mathrm{MHz}$ CW or F output of an, conventional signal enerator can be amplitude modulated. ncluding sine waves, square waves pulses, picture signals
SOLARTRON
Resolved Component Indicatop VP 53.3 KCO INSTS Nucleonics)
Ructeonics)
s.T.C.
evel Measuring Set 74307A..... P.O.A.
$\mathrm{MHz}^{\mathrm{M}}$ Capacitance Comparator Type CMB 11 bS 2
BELL
Gaussmeter 120
TEWLETT PACKARD
Mcrowave Link Analyser 3701102/03 Distortion Ant E2000 Ratio Meter 4168 P.O.A. P. Univerter 207H (for use with 202 H and j (onerato

MUIRHEAD

acsimile Transmitter Receiver Type 900. Easiy conlite systems from satellite systems
AVAGE
Amplifier Mark II Star Model 1KM2Z, 1 KW utput. Freq. $50-10 \mathrm{KHz}$. Good condition WAYNE KERR £ 1650 Video Noise Level Meter M $131 \ldots$ E75 .P.L.
(Rponent Comparator CZ457/5 ... P.O.A.
Mmec
Modulation Meter 210
EWIETT PACKARD
Time Domain Reflectometer 140A +

MARCONI
HF/UHF Probe TM 9650 (New) £30
TEKTRONIX
Scope Camera C-13 P.
MUIRHEAD
MUIRHEAD
Various Pametrada Analysers P.O.A.
SOLARTRON
Analogue Tutor TY 1351. Ask for details
P.O.A.
AC/DC Converter LM $1219 \ldots$............
P.R.D.
P.O.A.

TD1 Freq. Meter/Generator. $10 \mathrm{KHz} \cdot 3000$
D1 Freq. Meter/Generator. $10 \mathrm{KHz} \cdot 3000$

POTENTIOMETERS

Manuf.	Type	Turns Value	Pric
Relcon	0705/1001/A	5100 ohm	E1.7
Relcon	0705/05/F11	5200 ohm	¢1.7
Beckman	7246/5019	1050 ohm	E2.0
Bourns	35005-2-500	1050 ohm	£1.9
Bourns	35005	10 1K	¢2.0
Beckman	A/S303	10 5K	E1.0
Beckman	72212/5	10 10K	E2.0
Relcon	0710-1-1.001A	10 10K	¢2.0
Beckman	A	10 20K	¢3.0
Borg	KS1302512	10 20k	¢2.0
Beckman	7223	10 50K	¢3.

he test equipment people ome and visit Europe's first Electronic istrumentation Centre

9-53 Pancras Road ondon NW1 20B
 el: 01-837 7781
 Next to KING'S CROSS ST. PANCRAS

Modei $130 \bar{\partial} \hat{C} \quad 200 \dot{O} \mu / \mathrm{cm}$ Óscílloscope. This scope is a versatile all purpose instrument for laboratory, production line. industrial process outputs of ri detectors, strain gauges transducers, and other low level devices may be viewed directly without preamplification. The Model 130 C is easy to operate even by nexperienced personnel. Specification: Time Base: Range $-1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm} .21$ ranges in a $1,2,5$ sequence: accuracy $\pm 3 \%$; vernier provides continuous adjustment between steps and extends the $5 \mathrm{~s} / \mathrm{cm}$ step to at least $12.5 \mathrm{~s} / \mathrm{cm}$. Automatic triggering (baseline Vertical and horizontal amplifiers. Bandwidth: d.c. coupled, de to 500 KHz ; ac coupled onput), 2 Hz to 500 KHz ; ac coupled (amplifier), 25 Hz to 500 KHz at $0.2 \mathrm{mV} / \mathrm{cm}$ deflection factor AVAILABLE SOON:
AEWLETT PAKARD
700A. 35 MHZ .
1707A- 75 MHZ
£385 $1710 \mathrm{~A}-150 \mathrm{MHZ}$.
TEKTRONIX
6700
$£ 900$
TEKTRONIX
£200
549
$1 L 10$
£800
SPECTRUM ANALYSER PLUG IN
TELEQUIPMEN
Dual Beam Scope D31R DC-6MHz
$£ 75$

LMB $100-\mathrm{RV} 1 / \mathrm{P} 240 \mathrm{QV} 0 / \mathrm{P} 100 \mathrm{~V} \pm 5 \%$ LMFA 24-OV V I/P 240 V O/P $24 \mathrm{~V} \pm 5 \%$ LMD 20 I/P 115 V O/P $20 \mathrm{~V} \pm 5 \%$ 7A $\left.\begin{array}{l}\text { E120 } \\ \text { E75 }\end{array}\right]$ ALSO OTHER TYPES \& MAKES

X-Y \& U/V RECORDERS

ADVANCE
X-Y Recorder HR. 92 /
U.V. Recorder 5/127, without Gaivo's £225 BRYANS
X-Y Recorder 20021
ELECTRONIC ASSOCIATES

SUPER-
TESTER
G80R
ICE
20,000
Ohm
per
Volt
sensi-
tivity.
Filly
screened against external magnetic fields Scale width and small case dimensions (128x $95 \times 32 \mathrm{~mm})$. Accuracy and stability (1% in D.C.. 2% in A.C.) of indicated reading Simplicity and ease of use and readability. Full ranges of accessories. 1000 times overload Printed Circuit board is removable withoul de-soldering. More ranges than any othe

FANTASTIC NEW

 MICROTEST 80measures ONLY $90 \times 70 \times 18 \mathrm{~mm}$ Electronic zero Ω
Amazing Value at $£ 11.95$
8 fields of measurement and 40 ranges
pRINTED CIRCUIT
BOARO IS REMOVABLE without soldering

Volte d.c. 6 ranges: 100 mV . $2 \mathrm{~V}, 10 \mathrm{~V} .50 \mathrm{~V} .200 \mathrm{~V}$ $\$.000 \mathrm{~V}(20 \mathrm{k} \Omega / \mathrm{V}) .2 \%$ precision on d.c. and a.c.
Votre a.c. 5 ranges: 1.5 .10 V . 50 V .250 V .1 .000 V
Amp. A.c. 6 ranges: $50 \mu \mathrm{~A} .500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}$
Armp e.c. 5 ranges: $\mathbf{2 5 0 \mu A}, \mathbf{2} 5 \mathrm{~mA}, 25 \mathrm{~mA} .250 \mathrm{~mA}$
Ohms 4 rangen: Low $\Omega . \Omega \times 1 . \Omega \times 10 . \Omega \times 100$ \checkmark Ourput 5 ranges: $t, 5 \mathrm{~V}, 10 \mathrm{~V} .50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}$. Decibel: 5 ranged: $+6 \mathrm{~dB},+22 \mathrm{~dB},+36 \mathrm{~dB},+50 \mathrm{~dB}$ +62 dB Capecity 4 ranges: 25μ F $250 \mu \mathrm{~F}, 2,500 \mu \mathrm{~F}$ Capacity
$25.000 \mu \mathrm{~F}$.
Accessories (extra) available to conver Vicrotest $80{ }^{8}$ Supertester 680 R inio METER. ELECTRONIC VOLTMETER. AMPER CLAMP. TRANSISTOR TESTER. TEMPERA TURE PROBE, PHASE SEQUENCE - INDICATOR - Send for details. MORE RANGES FOR LESS MONEY! ACter Multi-
 0.06-3A Ranges. 0.3 A Ranges.
$0.6-1200$ 0.6-1200 Ranges.
3.900 V $3.900 \mathrm{~V}-8$ Ranges. Freq.: In
the range of 45 to the range of 45 to
20 kHz Resis. tance: 500 ohm tance: 500 ohm
to 5 Mohm - 5 Ranges Decibel -10 to +12 dB Accuracy: $\pm 2.5 \%$ Accuracy: $\pm 2.5 \% \quad$ Only $£ 9.56$
All above Multimeters (except AVO) are biand new.

DIGITAL VOLTMETERS

D.C. Digital Voltmeter. Solartran Type M. 1420.2 2.5uV-1 KV in 6 Ranges. 0.05% DC Accuracy. $\mathbf{2 5 0 K} \mathbf{K z}$ Counter Facility $£ 235$ DYNAMCO

DM. $2022 \mathrm{~S} 10 \mu \mathrm{~V}-2 \mathrm{kV}$. Max. reading 39999.

 Accuracy 0.02%............... £245 O.V.M. DM2001 Mk. II £125 DVM DM2004
SOLARTRON

Autoranging Digital Voltmeter 'LM 1480 Accuracy: 0.005%. $10 \mu \mathrm{~V}-2 \mathrm{kV}$ DC Resolution 1 part in $30,000.20,000 \mathrm{M}$ input accuracy stability Suitable for the Standards保

RECORDERS

RECORD

ELECTRICAL
Single Pen Recorder. $3^{\prime \prime}$ chart sensitivity 1 mil hamp chart speed 1 and $6^{\prime \prime}$ per hr. Size $8^{\prime \prime} x$ I1 bitered complete with pen assembly. List month's special price due
o bulk purchase 500 u A version

SPEGIAL OFFER

High Precision Miniature Motor 1.5V-4.5V DC MOTOR

Suitable for Tape Recorders. Toys etc. 1001 uses BULK OFFER

\qquad £2.00
22.00
$E 15.00$
£ 120.00
1.000.00

25,000

Designer-approved

TEMN AMPMIII: IWD TUN:R XIS
 ., from Henry's Radio. The Sole UK Distributors.

Mere's your opportunity to build the superb Texan amplifier and tuner! Designed especially for Henry's by Richard Mann of Texas Instruments, the Texan amplifie was featured in Practical Wireless. Through bulk buying. Henry's are able to offer both these kits of quality componentsat low cost. Naturally, as sole appointed
distributos. Henry's offer a full after sales service-solf your kits don't result in properly functioning units, we'll helpyou sort them out!

TEXAN AMPLIFIER

incorporating fully integrated stereo preamp and power amp, with 6 IC 's, 10 transistors, low-field low-line mains transtormer; and all tacilities, and controls. Slim
chassis $1411^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$ overall
Professin protes sional appearance and. channel RMS, less than KIT PRICE £29.50
$+£ 1.00$ o \& p . E 39.50 inc . VAT
Bullt \& tested

TEXAN TUNER

Featuring varicap tuning and phase lock loop decoder in a prolession
designed circuit, this funer has a lass fibre peb: built-in AFC; 9 Iransistors, $1 \mathrm{IC}, 9$ diodes; and a teal
cabinet. Aerial sensitivity 2.5 V . cabinet. Aerial sensitivity 2.5 uV:
stereo separation 40 dB: frequency response on stereo $20-i 5,000 \mathrm{~Hz} \pm$ 3 dB (upper limit set by transmitte)
on mono $20-22,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. On mono $20-22,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$,
Cireuit can be altered to cover amateur and aircraft bands. Mains
KIT PRICE £25.95 inc. VAT $\$ \$ 1.00 \mathrm{p}$ \& p .
Built \& tested $£ 30.95$ ine. VAT

ELECTRONIC FOOTBALL \& TENNIS

V/IER 10'

ON YOUR OWN TV
 OHOLEIN THE WALL O Y your own TVI Just Dus videe Soor intit the go. Completely safe for you, your HENRY'S PRICE ONLY

HEnry's

404/6 EDGWARE ROAD LONDON W. 2 01-402 8381
LOWER SALES FLOOR
231 TOTTENHAM COURT ROAD LONDON W. 1 01-6366682 NEW MIDLANDS STORE
94/96 UPPER PARLIAMENT STREET, NOTTINGHAM 0602-40403 All mail to Henry's Radio, 303 Edgware Road, London W. 2

Benefit from our 30 years' experience in retail electronics!

P. F. RALFE
 10 CHAPEL ST. LONOON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF80ID/IS. $10-480 \mathrm{mHz}$ P.O.A MARCONI TF801B/2S $10-480 \mathrm{mHz}$ £225 HGN MS3/U. 9.7-11.9 and $77-109 \mathrm{mHz}$. $A M / F M$ ADVANCE SG63D. AM/FM $7.5 \cdot 230 \mathrm{mHz} \mathrm{E125}$.
RACAL/AIRMEC 301 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A.
ADVANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES

SOLARTRON CD 1400 DC -15 mHz
COSSOR CDU110. DC-80mHz
TEKTRONIX 545 A with CA unit. DC- 30 mHz . Price
only $£ 295.00$
TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with ' CA ' plug-in
TEKTRONIX 585 A . DC- 80 mHz with type 82 plug-in
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502. 200uV. Sens. X-
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. £105
MARCONI TF791D deviation meter, $4.1024 \mathrm{mHz} .0-100 \mathrm{k} \mathrm{Hz}$ deviation MARCONI 455E Wave Analyser £120
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. £75 ROHDE \& SCHWARZ USVD calibrated receiver $280.940 \mathrm{mHz}(4600 \mathrm{mHz})$ LEVELL TG200 DM. RC Oscillator, c/w case, E65
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With ' T ' type insertion unit, free probe and attenuator heads $1 \mathrm{kHz}-1,600 \mathrm{mHz}, £ 175$
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
AIRMEC TYPE 210 modulation meter. Excellent condition TOHDE \& SCHWARZ "SCR" V.H.F. Signal Generator $1000-1900 \mathrm{mHz}$ MARCONI type TF936 Impedance Bridge, 885.00
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV}-300 \mathrm{~V}$, in 12 ranges SOLARTRON oscillator type CO $546.25 \mathrm{~Hz}-500 \mathrm{kHz}$. £30.00.
GAMBRELL Precision 4 Decade Resistance Box. 1-11, 110 ohms £24.50.

BOXER INSTRUMENT
 FANS

Dimensions $4.5 \times 4.5 \times 1.5$ ins, Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers ece. For 110 V . AC operation (practise is to run from split primary of mains transformer or use suitable mains dropper). CC only II Watts. List price over E 10 each. Our price, in brand new
condition, is $\mathbf{~} 4.50$.

POWERSUPPLIES

WEIR Electronics modular unit Model OCAR. Regulated \& stabilised.0.7V@2A. £9.50

Centrifugal blowers by WOODS. 8 inch snail type. Outlet $23 / 4 \times 2 \mathrm{in}$. 24 V DC
$2.8 \mathrm{~A} 2400 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Grey stove finish 2.8A 2400 r.p.m. Grey stove finish All brand

MANY TYPES of RF plugs and

 sockets in stock:-BNC plugs $50 \Omega, 30 \mathrm{p}$. BNC sockers 50Ω. 25p. N. Type plugs 50 . 50p Burndept plugs. 40p. Burndept Miniature sockers 20p.
All connectors are brand new Immediate delivery. Please add appropriate postage.

AEI miniature uniselectors. Type 2200C. 3 banks. 1 bridging, non-bridging wipers. 12 positions Coil resistance 50 ohms. Complete with bases. Brand new. £4.50 each 20-way BPO Jack strips to accep 316 type Jack plugs. Also quantity of 316 plugs available. All good of condition.

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

GENTS/FRIEDLAND fire alarm bells. Operating voltages 12 v dc/24v dc. Al in as new condition and rested before despatch. Sizes $6 / 8 / 12$ inch. Prices £4.80, $£ 5.20$ and $£ 6.50$ resp. COMPUTER PERIPHERALS. Tape punches, 8 hole by Westrex and other readers by manufacturers. new. Prices are better than one halt the maker's. Write or 'phone for quotation.
an exceptional buy enables us to offer stabilised and regulated power supplies by APT at a very cheap price. 16-24 Both supplies are axtremely stable A bow ripple voltage Price each $\mathrm{C18.50}$ + carriage

DEAC Nickel-cadmium batteries type 2000 DK . $6 \mathrm{~V} 2 \mathrm{AH} .85 \mathrm{~mm} \times 50 \mathrm{~mm}$ diameter. $£ 2.50$

GEC Courier Walkie-Talkies. 3 Channel. Re-chargeable batteries. Midband. $£ 55$ pair
E.M.I oscilloscopes model WM 16 with ype $7 / 1$ W.8.A. plug-in unit. Sup troiley. $£ 125.00$.

HEWLETT PACKARD

BOONTON TYPE 8900B
Peak-power calibrator. Measures true peak power $\pm .6 \mathrm{db}$ absolute. Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, fullscale. RF Impedance 50 ohms. P.O.A

MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. $1.5 .220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation. $1 \mu \mathrm{~V}-100 \mathrm{mV}$ output. Sold in excellent condition. P.O.A

MANUFACTURERS SURPLUS AUDIO AMPLIFIERS AND COMPONENTS

Power: $1 / 2$ Watt, R.M.S.
Sensitivity: 100 mV R.M.S min. at 1 KHZ.
Hum: 20 mV R.M.S. max
Ripple: 10 mV R.M.S. max. (vol. min.) Volume control
Supply: 18V A.C. (from transformer or motor sec.)
£ 1.00 each

Stereo Amplifier
Power: $2+2$ watt R.M.S.
Sensivitity: 100 mV R.M.S. min . at 1 KHZ.
Tape Outlet: 90 mV R.M.S. min . at '1 KHZ.
Hum: 20 mV max.
Ripple: $\mathbf{3 \mathrm { mV } \text { . max }}$
Frequency response: 40 HZ to 25 KHZ .
Channel Separation: 20 dB min
Speaker impedance: 8 ohms.
Supply: 18 V A.C
£2.75 each

Power: $1 / 2+1 / 2$ watt R.M.S
Sensitivity: 100 mV R.M.S. min. at 1 KHZ.
Tape outlet: 90 mV R.M.S. nominal at 1 KHZ.
Hum: 20 mV R.M.S. maximum
Ripple: 10 mV R.M.S. maximum (vol min.)
Controls: Vol, balance, tone.
Supply: 18V A.C. (from transformer or motor sec.)
£ 1.75 each

Power: $7+7$ R.M.S.
Sensitivity: 100 mV . R.M.S. min. at 1 KHZ.
Tape Outlet: 90 mV . R.M.S. nominal Tape
Hum: 20 mV max
Hum: $20 \mathrm{~m} V$ max
Ripple: 5 mV max
Ripple: 5 mV max.
Frequency Response: 20 HZ to 25 Frequ
KHZ .
KHZ.
Channel Separation: 20 dB min . at 1 K Speaker impedance: 8 ohms.
Controls: Vol, balance, bass, treble.
Supply: A.C. 25V 1.54 .

Above amplifiers of highest quality and meet UL (USA) standards. Brand new and tested, total quantity 50,000 available. Vast quantity of components also available for above.
$5,000,0001 / 4$ and $1 / 6 \mathrm{~W}$ Resistors. UL standard $£ 3.50$ per 1.000 most values
$4,000,000$ capacitors price on application.
$1,000,000 \mathrm{RF}$, audio and power
1,000,000 diodes and rectifiers
Stereo decoders complete wired and rested $£ 1.50$ each Wire, heat sinks, tags, connectors, printed boards, controls, etc. All prices quoted FoB Dublin and do not include any duty or VAT payable on entry into UK. Min. order value $£ 1: 000$

ARMSTRONG ELECTRONICS LTD.
 37 Golden Lane, Dublin 2, Ireland. Tel. 788107. Telex 5712 AEL

WW - 127 FOR FURTHER DETAILS

Newnes Radio Engineer's
 Pocket Book 14th Edition
 Revised by H. W. Moorshead

A ready reference source of formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate slection of material.
1972188 pp illustrated $0408000740 £ 1.50$

Sound with Vision

Sound Techniques for Television and Film E. G. M. Alkin
For the first time the methods developed by the BBC are here made available in book form for the benefit of television and sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
1974294 pp illustrated 0408702362 E6.55

Video Recording

Record and Relay Systems
Gordon White
The book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, advantages and disadvantages of the various systems.
1972215 pp illustrated $0408000856 \mathbb{E} 3.75$

Stainabte through ay boak

Newnes-Butterworths

Borough Green, Sevenoaks
Kent TN 15 8PH. Tel. Borough, Green 884567

LIGHT CONTROLLED SILICON CONTROLLED RECTIFIERS

 (General Electric L.A.S.C.R. Type L9F)
$£ 1.20$ for two, post paid $\begin{gathered}\text { complete with full } \\ \text { datran and circuitri) }\end{gathered}$

S.C.R.s with light controlled gates can be used for most applications which equire an S.C.R. and where isolation is necessary. These low voltage devices are ideal for a wide range of applications such as:

```
- Locking Relays
Optical Logic
Optical Logic Control
Counting
```

Meter Relays
Precision Indexin

- Precision Indexing isolated switches Static Relays
rief Technicul Dat
Peak Forward Vottage: 50 V within temp. range $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Resistor Gate - Kathode (RGK): 56 K max. RMS Forward Current-on-state, 1.6A Peak Reversed Gate Voltage: 8V. Temp. Stability max. RMS Forward Current-on-state; 1.6 A
$<.02 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Holding Current: $560 \mathrm{HA} D C$. Turn-oft Tame' 40 us . Mail Order; Proops Bros. Lid., The Hyde Industriel Eetate, Edgwere Road, Hendon, London
NW9 6JS. Tol, 01-205 8006. Personal Shoppors: 52 Tortenham Court Roed, London W1P OBA, 9-6 Mon-Set.

WW—128 FOR FULL DETAILS

COLOUR TELEVISION SERVICING

-Second Edition

Gordon J. King

TEng (CEI), R. Tech Eng, MIPRE, FISTC, FSCTE, MAES, MRTS

* This new edition takes into account the improvements in techniques since the first edition was published.
* Covers the servicing of PAL receivers in a down-to-earth manner and with the minimum of mathematics.
* Contains a new fault-finding procedure chart that is also printed as a pull-out four-colour wall chart.

0408001372352 pages Illustrated 1975
$£ 4.40$

NEWNES-BUTTERWORTHS,

Borough Green Sevenoaks, Kent, TN15 8PH

NEW TEAC $3340 S$ INDUSTRIAL
The Teac A 3340 S professional model is a very high quality, 4 track (separate) ecorder. Operating at $71 / 2$ and 15 i.p.s. with full built-in sel-sync facility. ine and 4 mic) incorporating separate mixing conecho send controls NETT PRDFESSIONAL PRICE DN APPLICATIDN

MICROPHONES

REW Audio Contracts are able to offer the following microphones at professional prices (subject to stock), to bona-fide pro users.

AKG	SONY
SHURE	ELECTROVOICE
CALREC	DAN GIBSON
BEYER	SENNHEISER
RESLO	SNS Radio Microphone

SHURE ELECTROVOICE SENNHEISER SNS Radio Microphone

AMCRDN DC300a $200+200 \mathrm{w}$ rms AMCRON 0150 $100+100 \mathrm{~W}$ rms AMCRON 060 $40+49 \mathrm{~W}$ rms AMCRON YFX2 Electronic Crossover

NEW MDDEL M600 750W rms mono PHONE FOR LOWEST PROFESSIONAL PBICES

REW Nett Pro Price
$\varepsilon 99$

BRITAIN'S
SPECIAL OFFER FAMOUS MIXER
This high quality inexpensive 4/2 mixer incorporating 3 band eq, pan pots. faders. limiters and echosend controls make it a good starting paint for the basic mini studio set R.R.P. E139 + VAT

GEOF MIXERS $\begin{gathered}\text { All models } \\ \text { ex stock }\end{gathered}$

ALLEN \& HEATH POP MIXER $16 / 2$. ALLEN \& HEATH MINI MIXER 6/2. ALLEN \& HEATH MON MIX. BOX 5/2. SOUNDCRAFT 12/4. SOUNDCRAFT 16/2. ALICE AD62 6/2. AUDIO TECHNICS MM42 4/2. SONY MX16 8/4. LAMB PML422 $4 / 2$ (PROVISION FOR 8/4).

SOUNDCRAFT 12/4

Just arrived-12/4 Recording Console which is built into a teak case, incorporating 12 input and 4 output channels. output limiters, and full monitoring facilities. All input and output connectors are Switchcraft (XLR equiv.) except line input which are $1 / 4$ lack. 200 ohm mic. end; are balanced. 4 band E.Q.: $1 / 6$ pots and faders.

NETT PROFESSIONAL PRICE AN APPLICATION
NEW TRADE PRICE LIST JUST OUT - SEND FOR YOUR FREE COPY NOW

WW-135 FOR FURTHER DETAILS

DIGITAL CLOCK

MATCHED CHIP \& DISPLAY
$£ 9.56$
Inc. Vat. Post \& Packing

CHIP CALTEX CT7001. MOS LSI 28/30/31 Day Calendar Only Price $\quad 24$-hour Clock $£ 5.50$

Snooze Alarm
Clock Radio Feature Inc. VAT

Easily Settable Counters

TRANSFOR
IMTECH PRODUCTS LTD.
IMP HOUSE, ASHFORD ROAD, ASHFORD, MIDDX. Telephone: Ashford 44211 Telex: 936291

Latest transistorised Telephone Amplifier is completely automatic with detachable plug-in speaker. Placing the receiver on
to the cradie activates a switch for to the cradie activates a switch for
immediate two-way conversation without holding the hand-set. Many people can listen at a time. Increase efficiency in office. shop. workshop. Perfect for conference" calis: leaves the user's hands free to make notes, consult files. No long waiting. On/Off switch, volume control. Model with tape-recording facility $£ 13.95+$ VAT $£ 1.12$. P. \& P. 70 p.
C.W.O. 10 -day price refund guarantee.

This NEW. versatile De Luxe 4 Station Transistorised Intercom (1 Master and 3 Suls) for desk or (1 Master and 3 Suhs) for desk or munication problems instantly. Effective range 300 ft . Call/talk/listen from Master to Subs and Subs to Master. With selector switch. Ideally suitable for office. shop. home or surgery. Adaptable for Mains. Complete with three 66 ft . connecting wires and accessories. On/Off switch volume
control. P. P. 75 p .

WEST LONDON DIRECT SUPPLIES (W/W) 169 Kensington High Street, London W. 8

Masnat

From the TURBO (built in power amplifier - 375w music power per enclosure LED power output display four speaker system ($10^{\prime \prime} x$ $12^{\prime \prime} \times 25^{\prime \prime}$ high) to the TWIN (45w power handling in an enclosure approx. $9^{\prime \prime} \times 11^{\prime \prime} \times 15^{\prime \prime}$ high), our six loudspeakers offer a range of specifications and sizes to suit every situation

All speakers carry a no nonsense 3 year guarantee

Please send for literature to

MAGNAT SOUND SYSTEMS LTD. UNIT•D, ST. JOHNS ROAD, TYLERS GREEN PENN, BUCKS
TELEPHONE: PENN (049 481) 4615
WW-125 FOR FURTHER DETAILS

**** Leading brandos of Cassettes - replacement guarantee *****										
plastic SNAP PACK	basf LH		$\begin{gathered} \text { BASF } \\ \text { SUPFR S M } \end{gathered}$		$\begin{aligned} & \text { BASF } \\ & \text { Cr } 02 \end{aligned}$		SCOTCHDYNARANGE		$\underset{\mathrm{Cr} 02}{\mathrm{SCOTCH}}$	
	ONE	10								
C60 C90 C 120	60.44 60.64 68.80	64.35 66.20 87.90	$\begin{aligned} & \mathbf{c 0 . 5 7} \\ & 80.70 \\ & 51.08 \end{aligned}$	$\begin{array}{r} \text { E5. } 80 \\ \text { E7. } 80 \\ \text { E10.50 } \end{array}$	$\begin{aligned} & \mathrm{E} 0.88 \\ & \mathbf{6 1 . 1 6} \\ & 61.47 \end{aligned}$	$\left\|\begin{array}{c} \varepsilon 8.70 \\ £ 11.58 \\ \mathbf{E 1 4 . 6 5} \end{array}\right\|$	$\begin{aligned} & \varepsilon 0.48 \\ & 60.65 \\ & 80.87 \end{aligned}$	$\begin{aligned} & \text { E4.80 } \\ & \text { E8.4B } \\ & \text { E8.80 } \end{aligned}$	co. E1.18 E1.47	$\begin{gathered} \text { c11.70 } \\ \text { c1.70 } \\ \text { C14.B } \end{gathered}$
PLASTIC SNAP PACK	AGFA LH		AGFA GO2		MEMOREX MRX		MEMOREX CRO2		TDK DYNAMIC	
	ONE	10								
C60 C90 C120		$£ 3.70$ E. 84 £6.5u	c0.71 $\mathbf{6 0 . 9 4}$ $\mathbf{6 1 . 2 7}$		¢0.61 60.87 $£ 1.17$	E6.00 E8.60 E11.20	co. E1.11 -	c8.30 E11.00 -	00.43 $¢ 0.68$ 50.88	¢4.25 $\mathbf{8 6 . 3 5}$ $\mathbf{8 8 . 6 0}$
**** Leading brandos of tapes - fully guaranteed *****										
REEL TO REELTAPES			BASF LH LH LOW NOISE in plastic libra:y bor		SCOTCH HI.FI boxed		MEMOREX LOW NOISE in plastic library box		AGFA LOW NOISE in plastic lihrary hox	
LONG PLAY			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & 5^{\prime \prime} 900^{\prime} \\ & 5^{2 / 4} 101200^{\prime \prime} \\ & 7^{\prime \prime}+1800^{\prime} \end{aligned}$			$\begin{aligned} & £ 1.55 \\ & 11.78 \\ & £ 2.32 \end{aligned}$	$\begin{aligned} & \varepsilon 15.00 \\ & \varepsilon 17.50 \\ & \varepsilon 23.00 \end{aligned}$	$\begin{aligned} & £ 1.84 \\ & £ 2.40 \\ & £ 2.60 \end{aligned}$	$\begin{aligned} & £ 17.90 \\ & £ 22.76 \\ & \varepsilon 25.50 \end{aligned}$	$\begin{gathered} 61.34 \\ -7.10 \end{gathered}$	$\begin{aligned} & 612.90 \\ & 620.50 \end{aligned}$	$\begin{aligned} & \varepsilon 1.22 \\ & c 1.00 \\ & c 2.18 \end{aligned}$	$\begin{aligned} & £ 12.10 \\ & \$ 15.00 \\ & £ 21.00 \end{aligned}$
DOUBLE PLAY			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & 5^{\prime \prime \prime} 1200^{\prime} \\ & 5^{2 \prime \prime} / 1801800^{\prime \prime} \\ & 7^{\prime \prime} 2400^{\prime \prime} \end{aligned}$			$\begin{aligned} & £ 180 \\ & £ 2.57 \\ & £ 2.85 \end{aligned}$	$\begin{aligned} & £ 17.75 \\ & £ 25.00 \\ & £ 28.00 \end{aligned}$	$\begin{aligned} & £ 2.40 \\ & £ 3.00 \\ & £ 3.35 \end{aligned}$	$\begin{gathered} £ 22.75 \\ c 28.52 \\ \mathrm{E} 32.80 \end{gathered}$	$\begin{gathered} £ 1.48 \\ - \\ £ 2.60 \end{gathered}$	$\begin{array}{\|c} \hline 14.00 \\ - \\ \hline 25.00 \end{array}$	$\begin{array}{r} £ 1.52 \\ £ 2.20 \\ £ 2.60 \end{array}$	$\begin{aligned} & £ 14.49 \\ & 621.00 \\ & £ 28.50 \end{aligned}$
triple play			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & 6^{\prime \prime \prime} 1800^{\circ} \\ & 5^{3 / 4} / 24000^{\prime} \\ & 7^{\prime \prime} 36000^{\prime} \\ & \hline \end{aligned}$			$\begin{aligned} & 62.52 \\ & 63.20 \\ & 63.00 \end{aligned}$	$\begin{aligned} & £ 25.00 \\ & £ 31.00 \\ & £ 38.00 \end{aligned}$	63.00 63.65 65.25	$\begin{aligned} & £ 28.52 \\ & 635.95 \\ & £ 51.82 \end{aligned}$	-	-	E2.30 $£ 2.85$ $£ 3.50$	$\begin{aligned} & £ 22.20 \\ & £ 27.75 \\ & \mathbf{6} 34.50 \end{aligned}$
$\begin{aligned} & 90 \%^{\prime \prime} 3600 \text { UP NAB } \\ & 10 \%^{\prime \prime} 4200^{\prime} \text { LP NAB or CINE } \end{aligned}$							¢4.82	\$46.00	25.20	649.00
STRĀND HÓUSE, GREAT WEST ROAD, BRENTFORD, MIDOẌ. $\text { .TEL: 01-560 } 4191$ SPECIAL AUDIO E VIDEO TAPES SUPPLIEO - PRICES ON MEOUUEST										

ANY MAKE-UP OR COPY QUERIES

 CONTACT JOHN GIBBON 01-261 8353

Appointments

Advertisements accepted up to 12 noon Monday, November 3rd, for the December issue subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.99$ per single col. centimetre (min .3 cm). LINE advertisements (run on): 99p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 40p extra. (Replies should be addressed to the Box numbers in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division(R/B/11), ET 17.1.1.2., Room 643, Union House, St. Martins-leGrand, London EC1A 1AR.
Post Office Telecommunications

KINGSTON AND RICHMOND Area Health Authority

QUALIFIED TECHNICIANS (TWO POSTS)

For an Electro-Medical Section to be established shortly. This Section and the work-shop is based at Kingston Hospital, where a new surgical block is to be opened. but the technicians will also be required to operate at other hospitals within this Area. The electronic technicians will be responsible to the Area Engineer
Salary Scales: Grade IV $£ 2346 £ 3267$ per annum plus London Weighting.
Applicants should hold passes at Advanced Level in General Certificate of Education (or an equivalent qualification) in appropriate science subjects. and possess the relevant technical experience.
Salary Scales: Grade II $£ 3558 £ 4581$ per annum plus $\frac{4}{}$ bondon Weighting.
Applicants should have obtained ONC. HNC. HND or an appropriate science degree with the relevant technical experience.
Application forms from the Area Personnel Officar, 106-114 London Road, Kingston Upon Thames, Suryey. Tel: 01-546 2181, Ext. 264.
Closing date: 248h October, 1975.

RADIO OFFICERS See a different world with us.

Because our job is to keep the ships of the Royal Navy supplied with fuel, stores and equipment wherever they happen to be, RFA ships tend to operate off the beaten track of commercial shipping lanes. As a Radio Officer on one of our ships you will visit ports rarely frequented by other merchant fleets ; and you'll enjoy the social and sporting facilities laid on for RN Officers. Yet you remain firmly civilian.
You need a lst Class P.M.G. or M.P.T. General Certificate or (with previous sea experience) 2nd Class P.M.G. Certificate and D.O.T. Radar Maintenance Certificate. You'll find that service with us offers considerable technical challenge, as our ships have a more extensive communications fit than is usually found in commercial vessels.

Basic pay : at least $£ 3,370$ for less than
 6 months sea service, at least $£ 3,921$ for more than 6 months sea service,
 depending on qualifications and experience
Regular increases thereafter. Promotion can lead to salaries of £7,000 and more

* Leave : 183 days per annum served.
* Study leave on full pay.
* Generous sick leave and welfare arrangements. * Non-contributory personal
pension scheme.
* Special training courses on full pay * Opportunities for wives to travel.

For further details write to
The Careers Office, Royal Fleet Auxiliary, Empress State Building, London SW6 1 TR. Or telephone 01-385 1244 Ext. 2192.

VHF/UHF TELEVISION INSTALLATION ENGINEERS

(Spain)
Well qualified and/or highly experienced INSTALLATION ENGINEERS are invited to apply immediately for INTERVIEWS IN ENGLAND to fill THREE IMPORTANT VACANCIES leading to senior positions in Spain.

The posts are based in Madrid but knowledge of Spanish, though desirable, is not essential because the equipment being installed is of an international nature.

Please write today to:
CARLOS SYMMES, Engineering Manager
29 The Rookery, Balsham
CAMBRIDGE CB1 6EU, England.
and send brief summary of experience and qualifications.

NORTRON of Spain
Designers and Manufacturers of TV and FM Broadcast Equipment

REPRESENTATIVE REQUIRED

One time opportunity exists for a suitable candidate for this excellent job offered by a leading West German Manufacturer of Electronic Components.

Applicant must be able to prove some technical qualifications, should have good connections into Radio, Television and Electronic Industry and be willing to call on customers in any part of UK.

As this appointment carries with it a directorship at a later date in an already well-established agency, he must also be capable of working entirely on his own initiative and look after the administrative side of the Company

German an advantage but not a necessity.
Salary and other remunerations subject to negotiation.

MUSIC RECORDING ENGINEER

A major overseas studio has a vacancy for a Chief Recording Engineer.
The successful applicant will take charge of a studio complex fitted with the world's latest and most sophisticated equipment for the multi-track recording and mixing of Pop Music. He will have had at least 5 years' experience in professional Music Recording Studios, of which at least two years will have been spent as a balance and mixdown engineer. A knowledge of Electronics and maintenance techniques, although not essential, will be an advantage
This is a Senior position and carries a top salary plus exceptional fringe benefits, therefore only top people in this field need apply.

For further particulars apply to Box WW 4986.

G. R. INTERNATIONAL ELECTRONICS LTD.

is seeking

ELECTRONICS ENGINEERS

These oositions are as members of a busy Engineering Departiment engaged on a variety of projects, but with particular emphasis on audio and audio-visual consumer items. Duties will encompass design and the control of build and commissioning of in-house test equipment for sub-assemblies and finished products, with prospects of increasing involvement in product design work.
Applicants should ideally be qualified to H.N.C. standard or better, but this requirement might be waived for anyone able to offer a sufficient degree of practical experience coupled with enthusiasm and integrity. There are good prospects of advancement for hard-working and ambitious engineers who would like the opportunity to aid the successful growth of new product activities.
The Company is currently 300 strong, embarked on a major programme of expansion, and based in one of the most attractive parts of Central Scotland. The social and sporting amenities and general living environment of Perth are outstanding and assistance is offered with re-housing and removal costs.
Good salaries will be offered, consistent with age and experience.
Please apply in writing for interview, giving details of age, marital status, qualifications (if any), experience and current salary, to:

Mr. J. Bandeen, Executive Director Administration GR INTERNATIONAL ELECTRONICS LTD. Almondbank, Perthshire PH1 3NO

Interview expenses would be fully reimbursed

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE

HANSLOPE PARK, MILTON KEYNES MK19 7BH
has vacancies in the following fields of R \& D work:
(a) VHF/UHF COMMUNICATIONS EQUIPMENT DESIGN
(b) ACOUSTICS
(c) MICROWAVE COMMUNICATION SYSTEMS
(d) GENERAL CIRCUIT DESIGN - ANALOGUE, DIGITAL
(e) STATISTICS/OPERATIONAL ANALYSIS
(f) RELIABILITY - FROM COMPONENTS TO OVERALL SYSTEMS
(g) SMALL SCALE MECHANICAL ENGINEERING HYDRAULICS/SMALL MECHANISMS

Post (e) will be in London and will attract London allowance of $£ 410$ p.a. Appointments will be made within the grades of:

Scientific Officer

£2149-£3527 (Candidates under age 27)
Qualifications:- (a) Scientific or Engineering Degree
or (b) Degree standard membership of a Professional Institution
or (c) HNC or HND in a scientific or engineering subject or equivalent qualification.

Higher

Scientific Officer
£3254£4454 (Candidates underage 30)
Qualifications: As for Scientific Officer, with the following experience since qualifying:
(a) Candidates with 1 st or 2 nd class honours degree or equivalent qualifications - at least 2 years post graduate experience.
(b) Other Candidates - at least 5 years of appropriate experience.

Senior
 Scientific Officer

$£ 4185-£ 5778$ (Candidates at least age 25 and under age 32)

Posts (c) and (e) only.
Qualifications:
1 st or 2 nd class honours degree in a scientific subject and a minimum of 4 years appropriate post-graduate experience.

For further details and application form please write to:

[^7]
Looking

> for

a

 new job?
Perhaps we can help!

We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries

Please send me an "Application for Registration" form
NAME
ADDRESS

C.A.TV Television Communal Aerial Systems

We are acquiring an increasing volume of business in this field including many very long term contracts, and we are seeking to expand the range of our activities. Consequently, we have immediate requirements in London, Leeds and Birmingham for engineers with good practical experience and ability in any of the following aspects of the work:-

System Design
 Planning and Estimating
 Project Control
 Installation Supervision
 Test and Commissioning

Duties are varied and interesting, with frequent opportunities for travel, and for acquiring experience in new fields. Enquiries and application for interviews will be treated in strict confidence, and should be sent to:-

The General Manager, British Relay

> We know some of the best jobs in the $£ 2000-£ 5000$ p.a. bracket. But do we know about you?

Unless you fill in this coupon and post it off to us, there are hundreds of rewarding jobs you'll never get to hear about. You'll either miss them reading your paper or they just won't be advertised. And all you needed to do to be considered as a candidate was to have your name entered on our register. It costs you nothing but a 7 p stamp and could make all the difference to your future. What are you waiting for?

Find out more by writing to Stuart Tait, Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 6585 (any time - 24 hour answering scrvice).

Please send me a full explanation of your free service.
Name
Address \qquad

Northampton Borough Council

ENGINEERING DEPARTMENT

Area Traffic Control

A comprehensive Area Traffic Control scheme is being installed in the expanding town of Northampton and is due to be commissioned in Summer 1976. The system will comprise a dual computer system connected by data transmission links to on-street traffic signal; pelican crossing and flow detector equipment, together with closed circuit television for surveillance purposes. The following specialistpost is to be filled on the Council's permanent establishment:-

Engineering Assistant

(Systems-Hardware)
£2922-£4095 p.a.
For the implementation of contracts for the provision of computer equipment, CCTV and traffic signals, the day-to-day running of the ATC system and design of hardware for future extensions to the system. Applicants should have a degree in electrical engineering or a directly relevant discipline and have at least one year's experience in an appropriate field.

The successful applicant will join an enthusiastic team who are at present working on all aspects of the installation and commissioning of the Area Traffic Control system and associated traffic signals; and must be prepared to assist in associated fields as the workload demands.

Starting salary will be commensurate with experience and qualifications. Assistance with housing and removal expenses, temporary lodging or travelling allowance in approved cases.

Further details and application forms from the Chief Executive (Personnel),
Northampton Borough Council, 61
Derngate, Northampton NN 1 IUU
Telephone: Northampton (0604) 34881 ext. 583.

Closing date for applications: 31 st October, 1975.

UNIVERSITY OF LONDON INSTITUTE OF

 EDUCATION
ELECTRONICS

TECHNICIAN - GRADE 5

The Department of Child Development and Educational Psychology seeks a second technician to set up and run a modern electronics workshop in the Institute's new building; pleasant working conditions. Experience in maintaining psychological and / or physiological equipment and in general workshop practice desirable, together with some ability to advise on and construct special purpose equipment as needed. The appointment is to commence as soon as possible. Salary $£ 2849 £ 3305$, including London Allowance.

Further details and application forms from The Secretary, University of London Institute of Education, Malet Street, London WC1E 7HS , quoting ref. Tech/CDEP. Completed applica tions required by 30 October.

Technical Officer Telegraph Engineering

There is a vacancy in the Telegraph Services Department of British Airways for someone with extensive experience in modern telegraph engineering. The chief responsibility is with the development of new projects. Thus there is involvement at all stages from initial assessment of a user's technical requirements, through systems planning, development and progress chasing, up to acceptance testing and hand-over. Associated with this is the drawing-up of technical specifications, writing of documentation, and staff training where necessary.
Useful experience would therefore include traffic evaluation, written specifications, instructions and reports, and the drawing of circuit diagrams. There is considerable liaison with both user and communications departments within British Airways, and certain organisations outside, which involves some travelling, normally within the United Kingdom.
Applicants should be qualified to City and Guilds Intermediate Certificate at least, or its equivalent in relevant subjects. They should be familiar with telegraph engineering practices, message-switching networks and line disciplines, with experience on modern mechanical/ electronic telegraph and teleprinter equipment and semi-intelligent video terminals.
The post is based at Heathrow Airport and carries a starting salary of £ 3483 per annum including London Allowance. Other benefits include a contributory pension scheme, sports and social facilities and opportunities for concessional holiday air travel worldwide.
Please write or phone 8975602 or 5329 for an application form, quoting reference 509/ /MA to: Manager Selection Services, British Airways, PO Box 10, Heathrow Airport - London, Hounslow, Middlesex TW6 2JA.

British
arrways

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

BERNARD PRICE INSTITUTE OF GEOPHYSICAL RESEARCH

RESEARCH OFFICER [SEISMOLOGY]

Applications are invited for appointment to the above post for 3 years in the first instance.
Experienced science or engineering graduate is required for crustal structure investigations. based mainly on explosive energy sources including the initial planning. execution and analysis of data from refraction and reflection profiles. Results obtained may be used for a higher degree. Starting salary on the scale $86300 \times 360-R 9180$ according to qualifications and experience.

The University offers an annual vacation savings bonus, pension and medical aid facilities.

The policy of the University is not to discriminate in the appointment of staff or the selection of students on the grounds of sex, religion, race. colour or national origin. Applications giving full personal and career details, including the name and addresses of 3 persons whe may be called upon to act as referees, should reach the Registrar, University of the Witwatersrand, Jan Smuis Avenue, Johannesburg. not later than 19th November, 1975.

Appointments a 104

Telecommunications Technician

IBM Information Services Limited at Havant, Hampshire, is responsible for the installation and maintenance of the Company's internal telecommunications network. It provides international access to the USA, Europe and Middle East for a complex network of voice, telegraph and on-line data systems.

A vacancy exists for a Telecommunications Technician to work on the operational installation and maintenance of this network. The job is Havant based with occasional international travel when on-site support of our overseas installations is necessary. Applicants should have experience or knowledge of FDM, TDM or Datel techniques and of telegraphic and data transmission systems from 50 baud upwards. They should be educated to HNC, City and Guilds or equivalent standard and be prepared to work a rotating shift covering the hours between 7.00 a .m. and midnight. We offer good starting salaries plus a premium for working shifts, a comprehensive employee benefits scheme, generous assistance with removal expenses and an opportunity to live in one of the most pleasant parts of the south coast.

Please send details of age, experience and qualifications to Mrs. Jill Christison, Personnel Officer, IBM Information Services Limited, P.O. Box 11, Langstone Road, Havant, Hampshire PO9 1RQ. Quoting Ref: WW/92485.
to reside in South East of England (South of Thames and East of Bournemouth) the successful applicant, who has reached ONC in electrics or electronics and preferably has 'had experience in electro-mechanical servicing.
The duties are concerned with the commissioning, diagnosis of faults, and rectification of electronic equipment associated with liquid flow measuring devices, mainly on readout and control.
Permanent staff position with a Company car, four weeks holiday after one year of service, contributory pension scheme,
etc.

Please write with brief details of experience to date to:

Personnel

 Manager Avery-Hardoll Ltd. Downley Road Havant, Hants PO9 2NW
ELECTRONIC ENGINEERS

Design, R \& D and Technical Authors permanent and contract. Always required.

Technical Reserves
362 Euston Road
London, NW1
Tel: 3881609
14518

THE POLYTECHNIC OF CENTRAL LONDON SCHOOL OF ENGINEERING AND SCIENCE division or engineering
TECHNICIAN Grade 3 £2424-£2754
to join a small team investigating digital navigation receivers. The applicant should have some experience with digital integrated circuits for this expanding research programme. Apply to The Establishment Officer, PCL, 309 Regent Street, London W1R 8AL. 01-580 2020 Ext. 212.

Technician

£2,737-£3,382

The Independent Broadcasting Authority, which is responsible for independent television and independent local radio requires a technician who will operate and maintain a wide range of broadcast television equipment and arrange viewing sessions for internal departments. Other duties include driving, rigging and operating equipment aboard the mobile video tape recorder vehicle for lecture and exhibition support.
You should have some relevant experience and may currently be studying for a recognized electronics engineering qualification to ONC or HNC level. The post will provide an excellent opportunity to acquire knowledge of television and radio equipment in studio techniques.
Starting salary will be within the above range according to experience and qualifications.
The post is based at our modern offices in London - opposite Knightsbridge Underground Station but visits to the Authority's technical centre near Winchester and to Programme Company studio centres to assist in code of practice measurements will also be required.

INDEPENDENT BROADCASTING AUTHORITY

[^8] extension 390 or, if you prefer, by writing to:
The Establishments Officer,
Independent Broadcasting Authority, 70 Brompton Road, London, SW3 IEY.
has vacancies for

Communications Technicians

With experience of telegraph and line equipment maintenance, to work in UK and also on PABX installation at missions overseas.

Minimum qualifications required: City and Guilds Intermediate Certificate in Telecommunications or its equivalent.

SALARY is according to age, e.g. $£ 2450$ per annum at age 21; $£ 2675$ at age 23; £2905 at age 25 (or over on entry), rising by annual increments to a maximum of £ 3385 per annum. The appointments attract 4 weeks' paid holiday and prospects of pensionable employment

For further details and application form write to
Recruitment Section, Foreign and Commonwealth Office, Hanslope Park, Hanslope, Milton Keynes MK 19 7BH.
capipat 20.cintinio

FIEID SERVICE ENGINEERS (ELECTRONICS)
If you're not earning over $£ 3,500$ p.a. plus a car - then you had better contact us!

SERVICE ENGINEER

NUCLEAR AND CLINICAL
An additional engineer is required to join our present enthusiastic team in this expanding field. A thorough knowledge of digital electronics is essential and experience in the Nuclear counting field would be desirable. The successful applicant could expect not less than $£ 3000$ p.a. plus Company VOLVO car. 4 weeks' holiday profit sharing bonus scheme. Applicants must be resident within 20 miles Greater London or prepared to move. Application forms from Service Manager
L.K.B. Instruments Ltd.

232 Addington Road
Selsdon, South Croydon Tel: 01-657 8822

Opportunities for Electronics Engineers

To change to wider fields of electronics - join the EMI Service Team at Hayes.

Vacancies exist on repair and calibration of a wide range of electronic test gear including oscilloscopes, DVMs, pulse generators, power supplies etc.

Also

Servicing and commissioning closed circuit television equipment including cameras, VTRs, Monitors etc.
Applicants should have at least 5 years practical experience.
These positions offer varied and interesting work. Attractive starting salaries, subsidised lunches, 4 weeks holiday and excellent sick pay and pension schemes.
For further details telephone or write to:- M. Ford, 01-573 3888, Ext. 2167, EMI Service, 254 Blyth Road, Hayes, Middlesex.

SENIOR TELEVISION TECHNICIAN

For Educational Television Unit at Guildford County College of Technology.
The Unit operates a well-equipped closed-circuit television studio and mobile system producing and distributing educational material for use within the College and elsewhere in the County

To be responsible to the Senior Lecturer in Charge for the daily operation and maintenance of black and white television equipment, including cameras, monitors, vision and sound mixers, video tape recorders, etc.

Candidates should preferably have had practical experience with vidicon cameras and helical-scan recorders. An interest in photography is desirable, but not essential.

Salary $£ 2307 £ 2709$ or $£ 2709-£ 3033$ (inclusive) depending on qualifications and experience plus a qualification allowance where appropriate.

Application form and further particulars obtaining on receipt of S.A.E. from the Vice Principal, Guildford County College of Technology, Stoke Park, Guildford, Surrey.

PAE PARK A/R ELECTRONICS

RF DESIGN ENGINEER

Our planned Company expansion has created an opportunity to join our team engaged on the design of VHF Transmitters and Receivers for use in the Airports of the World

The man we are looking for must be keen to work as a member of this specialist team and be prepared to take the responsibility of working on the project as a whole. He will be formally qualified and will have had really relevant experience in our field. Reporting to the Development Manager he will be keen to progress' his career in the expansion phase the Company is entering at the moment.
Salary will be in line with the job responsibility. There is an excellent contributory pension scheme, World Wide Air Fare rebates for holiday travel, and relocation assistance will be given

If you would like to work for a small company which offers career prospects and big company benefits in this pleasant rural area, please contact Clive Picking at:

PAE
PARK AIR ELECTRONICS
\section*{LIMITED}
Ryhall Road, Stamford, Lincolnshire, England
Telephone: Stamford 2187
PAE
Member of the International Aeradio Group

Well-organised German enterprise working on the sector of loudspeaker chassis and accessories is looking for an

ACTIVE

REPRESENTATIVE

with good contacts to manufacturers and relevant quarters of special commerce.

We supply loudspeaker chassis for all applications such as $\mathrm{Hi}-\mathrm{Fi}$, Ela, bass guitars, autocars, frequency converters; also fabrics for loudspeakers.

Please contact us quoting Box No WW 4915

Men with analogue or digital qualifications / experience seeking higher paid posts in: TEST - SERVICE - DESIGN SALES.
Phone: Mike Gernat, Ref. W.W.

NEWMAN APPOINTMENTS

360 Oxford srreet, w.1. 01-629:0501

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG
 BERNARD PRICE INSTITUTE OF GEOPHYSICAL RESEARCH
 ELECTRONICS ENGINEER OR TECHNICIAN SEISMOLOGY

The successful applicant will be expected to maintain and take responsibility for the Institute's sophisticated system for replay and digitising of seismic tapes. Furthermore he will be responsible seismic tapes. Furthermore he will be responsible
for the mobile seismic replay laboratory during field for the mobile seismic replay laboratory during field
programmes. Salary scale will be $\mathrm{R} 6300 \times 360-$ program
R8100.

The University offers an annual vacation savings bonus, pension and medical aid facilities.

The policy of the university is not to discriminate in the appointment of staff or the selection of students on the grounds of sex, religion, race. colour or national origin. Applications giving full personal and career details, including the name and addresses of 3 persons who may be called upon to act as referees, should reach the Registrar, University of the Witwatersrand, Jan Smuts Avenus, Johannesburg, not later than 19th November, 1975.

ELECTRONIC\& meChancal TECHNCIANS

Phonodisc Limited, part of the International Polygram Group of Companies, manufactures and distributes records and pre-recorded tapes for the Marketing Companies whose labels include Philips, Polydor, DGG, Contour and many others.

We are in urgent need of an ELECTRONIC TECHNICIAN to join a busy team of technicians engaged in the servicing of professional high speed tape duplicating, disc cutting and ancillary equipment, incorporating NOBIT and TTL logic.

A City and Guilds qualification (or equivalent) is desirable and experience in the Hi-Fi field meeting industrial professional standards is an advantage.

We also need a MECHANICAL TECHNICIAN who has served a five year apprenticeship as an instrument maker and has five years' experience servicing and maintaining complex light production machinery. Preference will be given to technicians with some electrical knowledge and experience with electro-mechanical devices.

The wage for both positions is $£ 82.76$ per five night week with the prospect of extra after a satisfactory probationary period. Benefits of service include an annual bonus, staff discount shop, 4 weeks holiday, subsidised canteen, a sick pay and pension scheme.
For further details and an immediate interview please write or telephone:

Peter Garfield, Record W.orks, Phonodisc Limited Walthamstow Avenue, London, E.4. Tel: 01-527 2256

TELECOMMUNICATIONS ENGINEERS Going to the Middle East with LAL/Lockheed makes a lot of sense right now

Here's why. $£ 6,500$ p.a., free of local tax for a start. $£ 2,000$ bonus at the end of your $2 \frac{1}{2}$ year contract is another happy thought. Free accommodation, free life \& medical insurance and generous home leave make the actual take-home pay a very warming prospect. Especially with things as they are at home.

One of our contracts in the Middle East needs degree, or equivalent, standard engineers with relevant experience in telecommunications. They will analyse the various performance characteristics of both radio and wire
communications equipment and systems, and submit reports and recommendations. Equipment training will be given where necessary.
Apart from the money it's invaluable experience in a tough environment which will say a lot in your favour when you get back
If you'd like to make a profitable decision about the next $2 \frac{1}{2}$ years, please contact John Davies now at International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex.
Tel No
01 -5711808.

TECHNICAL WRITER

If you are an electronic engineer or technician with an interest in writing on electronics, you may be the man we are looking for to join the editorial team of Wireless World. We have a vacancy for someone with an industrial background and practical experience of amateur radio communication. A wide interest in radio and electronics is essential, as is the ability to write good English quickly. Preferred age is around 25.

Please write briefly in first instance to:

wireless world

The Editor Wireless World Dorset House Stamford Street London SE1 9LU

SILICON SEMICONDUCTOR SERVICES 41 Dunstable Road, Caddington, Luton LUI 4AL

ELECTRONICS DEVELOPMENT
 ENGINEER

required to assist in the design, development and maintenance of specialised instrumentation covering a wide range of research projects at low and at radio frequencies. There is also the opportunity of working on thick-film circuits. Applicants should be of at least HNC standard and preferably have had experience in both linear and digital circuits and systems. Assisting in teaching laboratories is NOT involved. Salary range (grade 5 Technician) $£ 2,849-£ 3,305$. Annual leave is 25 days plus public holidays

Further details and application forms are obtainable from:

Mr. R. E. Webb Electronics Unit Queen Elizabeth College (University of London) Campden Hill Road London W8 7AH

BRITISH MEDICAL ASSOCIATION

 Department of Audio Visual Communication.ASSISTANT ELECTRONICS OFFICER
required to assist in the development and building of equipment, maintaining a small CCTV recording studio also audio recording and editing. Practical experience essential.
Starting salary up to $£ 2766$ depending on qualifications and experience.
Forward full curriculum vitae to Cyril Young, Electronics Officer, Department of Audio Visual Communication, British Medical Association, Tavistock Square, London WCIH 9JP.

ARTICLES FOR SALE

DIGITAL CLOCK CHIP, AY-5.1224, with data and circuit diagram $\mathrm{E}_{3} .66$ plus VAT, Jumbo LED digits (16 mm high) type economy DL/747 only $£ 2.04$ each plus VAT, post free. Greenbank Electronics, 94 New Chester Road. Wirral Merseyside Le2 5AG.

LNDDERS unvarndshed 14fi 11n, closed, 251 41 extd. $x 31.40$ delivered. Tol: Telford $\$ 8884$
(16

16MM B \& H 631 Sound projectors c/w speaker and transformers $£ 135$. Hilton Cine, 9 Wes Hill, Dartford -T. 20009

[^9]DISCOLICMTS. Best. Cheapest. Reiliable.

Low cost ic mounting. Use Soldercon IC socket pins for 8 to 40 pin DILS, 70 p (plus 5 p VAT) for strip oi 1.00 pins, fl.50 (plus 129 for 1,000 . Instructions supplied. Sond for sample. Sintel, 53 C Aston Street. Oxford. Tel: ple. Sintel

MUNDREDS of Dual Standard Colour TV's for sale. Contact: S. H. C. Televislons Lid., 024 026 (Radnage) 3321.

VACUUM is our speciality, new and secondhand rotary pumps, difusion outtits, accessorles,, coaters, etc. Stlicone rubber or varnish ourgassing equpraent from 24 . . N. Barrout (Sales) Ltud., 1 Mayo Road, Croydion. $01-684$
g917.

60 KHz MSF Rugby and 75 KHZ Neuchatel Rhadio Recelvers Signal and audio outputs. Small, compact units. Tho avallabite versions. Toolex, Bristol Road, Sherborne (3211). Dorser.

SURPLUS TEST EQUIPMENT AND RADIO AMATUER GEAR. Bench power suppliers $200 /$ 400 v. Precision millivolt meters, chart recorders. Vanguard, Cambridges, etc., etc., preciSion standards room equipment. B\&H ComponFNT LTD., Dept, WW, Leighton Electronics - Beds. Lu7 7EG. (05253 2316). (49

TRADE BUYERS required for selling battery type antenna amplifiers in allu parts of the world The type we make are B11-stereo VHF/ world. The type we make are B14-stereo VHF/ FM, monochrome television. Trade price 82.75. - Electronic Mail Order Ltd.: Ramsbottom, Bury. Lancs, England.

B. BAMBER ELECTRONICS
 E STATION ROAD, LITTLEPORT, CAMBS, CB6 10 OE
 TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

TERMS OF BUSINESS: CASH WITH ORDER
ALL PRICES INCLUDE POST AND PACKING (UK ONLY
EXPORT ENQUIRIES WELCOME. CALLERS WELCOME TUES.-SAT PLEASE ADD VAT. MINIMUM ORDER £1

ALL BELOW - AḊD 8% VAT SPECIAL OFFER. Miniature 50 ohm coax, high quality, PTFE insulation and blue PTFE
cover, solid silver. plated inner and cover, soll silver.plated inner, and
siver-plated braid, approx. 3 mm overall diameter, (ideal for unit wiring of RF stages up 1023 cms , otc.) 4 metres for 50 p .
WE NOW STOCK SPIRALUX TOOLS for the electronics enthusiast. Screwdrivers, nut spinners. BA and Metric sizes, pop rivet guns,
eic. SAE for list.
PHOTOMULTIPLIERS.E.M.A. TYPE 6094. Brand new with base. $£ 20$ each.

PLUGS AND SOCKETS

25-WAY ISEP PLUGS AND SOCKETS, 40 p set (1 plug +1 skt). Plugs and sockets sold separately at $\mathbf{2 5 p}$ each.
ANOREEWS 4AAN FREE SKTS. (N-TYPE) for FH4/50B or FHJ4/50B cable, c1.00 each. mains input on test equipment. etc.. 25 p each.
SO239 BACK TO BACK SOCKETS, $€ 1.25$
each. insulated sockets (single hole
BNC type), 65 p each.
PL259 PLUGS (PTFE). Brand new, 50p each or 5 for E 2.25 .
Reducers for above 15p each
SO239 SOCKETS (PTFE)
SO239 SOCKETS (PTFE). Brand new (4 hole fixing type). 50 peach, or 5 for $\mathbf{E 2 . 2 5 .}$
N-TYPE SKTS. (4 hole chassis mounting N-TYPE SKTS. (4 hole chassis mounting,
50 ohms, small coax lead type), 50 each. 50ohms. small coax lead type). 50p ea
BNC PLUGS (Amphenal, new, packed), 35p BNC PLUES (Amph
each (4 for $\mathrm{E1.20)}$.
EULGIN FLAT 2 Pin FLEX CONNECTORS. EULGIN FLAT 2 pin FLE
Non-reversible. 40 p each.
HELLERMAN LUBRICANT GRADEC. The ideal lubricant for all rubber goods. Good electrical insulator. 75 p per bottle.
GREENPAR (OE35012) CHASSIS LEAD TERMINATIONS (These are the units which bolt on to the chassis, the lead is secured by screw cap. and the inner of the coax passes through the chassis), 30p each, 4 for $£ 1.00$. mÚLLARD SCÓPE TUBE DN7.78. 3in, face complete with base and mu-matal screen. E 8.50 each

ALL BELOW - ADD 8 MAINS TRANSFORMERS
All 240 V input. vo approx. RMS
(Please quote Type No. only when ordering) TYPE $10 / 210.0 .10 \mathrm{~V}$ at $2 \mathrm{~A}, \mathrm{E} 1.50$.
TYPE $18 / 218 \mathrm{~V}$ at $2 \mathrm{~A}, \mathrm{E} 1.65$.
TYPE $28 / 428 \mathrm{~V}$ at $4 \mathrm{~A}, 125 \mathrm{~V}$ at 500 mA . E4.09.
TYPE 129400 V at $20 \mathrm{~mA}, 200 \mathrm{~V}$ at 10 mA . 6.3V at 500 mA , E1.25.
 $5 \mathrm{~mA}, 6.3 \mathrm{~V}$ at $400 \mathrm{~mA}, \mathrm{E} 1.25$. TYPE 70482 250-0-250V, 50-0.50V. 6.3V. E1.75.
TYPE 1258 .

125 V at 30 mA . M5p. (ex. equip), in metal cases, totally enclosed, 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at $0.5 \mathrm{~A}, \mathrm{Etc}^{2} 1.00$. As above, output 240 V at $12 \mathrm{~A}+12 \mathrm{~V}$ at $3 A+22 V$ at $2.5 A, \in 27.50$.
PYE WESTMINSTER W15 AM. $121 / 2 \mathrm{kHz}$ channel spacing, G.P.O. approved. High Band AM. Dash mount. less crystals. Good condiion. £100.00
YE BASE STATION F3OM. TX 100 mHz Rx 140 mHz , low power MID BAND, good
MANUFACTUAERS - SEND SAE FOR OUR LATEST BARGAIN CAPACITOR LIST. PLESSEY COLOUR SCAN COILS. 90° brand new. £4.00 each
COLOUR MONITOR DECODER PANELS'. By leading British manufacturer. Deslgned to B.B.C. standards. Units consist of chrominance module, PAL filter and delay module, luminAll units brand new and complete including All units brand new and complete including edge connectors and service manual. £30. PHILIPS STAB. POWER 0.35 volt, 3 amp Metered type PE 4806: E6E.00 aach. TINNED COPPER WIRE. 0.234 mm . like 15 a fuse wire. 12 oz , reel. 30p.
CHART RECORDER PAPER. 120 f. Type M1299. E1.00 per roll. MINIATURE Panel mounting Rocke Switches, bolton type, smārt appearance, 3 for 50 p .

ALL BELOW - ADD 8 \% VAT

 MULLARD TUBULAR CERAMIC TRIMMERS, 1.18 pf . 6 for 50 p .(as featured in Rad. Comm. Jan. p.25). mixed 20 for 25 p . 1401 L type, untested, TO3 TRANSISTOR INSULATOR SETS, 10 for 50 p .
24 V MIN. REED RELAYS, encapsulated single-pole make 2 for 50 p.
CHASSIS TAGS, 25 p pack.
RELAYS, single pole, changeover, 12 DC, approx. $3 / 4 \mathrm{in}, \mathrm{x} 1 / 2 \mathrm{in}, x 11 / \mathrm{in}, 35 \mathrm{p}$ each. MINIATURE SLIDER SWITCHES, 2 pole,
2 way, 5 for 50 p. 2 way, 5 for 50 p .
$2-6 \mathrm{PF}$., 10 MM CIRCULAR; CERAMIC TRIMMERS (for VHF/UHF WORk). 3 pin mounting, 5 for 50 p . VOLTAGE PILLARS (metal ends, tapped 4 BA), approx. 1 in . long. 10 for 60p.

PYE RADIO-TELEPHONE

 EQUIPMENTCambridge, Westminster, Motofone, Euro
pa series. Send s.a.e. for full details.
WELLER STOCKIST. All irons and spares available. S.A.E. for IIst

VALVES

aqvos/20A (ex-equipment). $\mathbf{£ 3 . 0 0}$ Qavo3/10 (ex-equipment) 75 p or C1. 20.
2C39A (ex. equipment), E1.00 each. Cav02/6 (ex. equipment), $£ 1.00$ each $4 C \times 2508$ (ex. equipment), 12.10 each
4×2508 (ex. equipment) $E 1.50$ each 4X250B (ex. equipment), E1.50 each
OET22 (ex. equipment) 2 for 51.00 $150 B 2$ MULLARD 150 V REG. (Equiv. OA2) (new, boxed), 40p.
TRANSISTOR HEATSINKS, to make $2 \times$ TO18 transistors, screw-in clamps, block size
$1 \mathrm{in} . x 1 / \mathrm{in} . x 1 / 4 \mathrm{in}$. With 2 holes for mounting $1 \mathrm{in} . x 1 / \mathrm{in} . x 1 / 4 \mathrm{in}$. with 2 holes for mounting 3 for $80 p$.
RADIOSPARES SOOWATT AUTO TRANSFORMER, $100 / 110 / 150 / 200$ $/ 220 / 240 \mathrm{~V}$ tapped input and output step up or step down facility, ex. new equip.,
£6.00.

ALL BELOW - ADD 25% VAT HIGH QUALITY SPEAKERS, 8% in $\times 6 \mathrm{in}$., elliptical, 2 in. deep, 4 ohms, inverse magnet, rated up to $10 W$. E1.50 each,
(Quantity discount available).
(Quantity discount available).
T.V. PLUGS (metal type). 6 for 50 p.
T.V. SOCKETS (metal type). 5 for 50 p T.V. LINE CONNECTORS (back-to-back skt.). 5 for 50 p.
MIXED ELECTROLYTICS, large bag. £1.00.
OC200 TRANSISTORS, 6 for 50p. BSY95A TRANSISTORS, 6 for 50p BCY72 TRANSISTORS, 4 for 50 p .
PNP AUDIO TYPE TO5 TRANSISTORS
12 for $25 p$ 12 for 25 p .
STUD RECTIFIERS, BYX42/300R, 3OOV at 10A, 30p each, or 4 for $£ 1.00$
OIN SPEAKER SKTS, 2 -pin. 4 for 50 p IF CANS, $1 / 2$ in square, suitable for rewind, 6 DUBILIER ELECTROLYTICS. 50uF, 450 V . 2 for 50 p .
DUBILIER ELECTROLYTICS. 100 uF , 275V, 2 for 50p.
PLESSEY ELECTROLYTICS. $470 \mathrm{uF}, 63 \mathrm{~V}$ 3 for 50 p .
TCC ELECTROLYTICS. $1000 \mathrm{uF}, 30 \mathrm{~V}, 3$ for 60p.
PLESSEY ELECTROLYTICS. 1000uF DUBILIER ELECTROLYTICS. 5000 mfd . at 35 V . 50 p ech.
DUBILIER ELECTROLYTICS. 5000 uF . $50 \mathrm{~V}, 60 \mathrm{p}$ each
DUBILIER ELECTROLYTICS. 5000 mfd . al
70 V . 65 p each.
ITT ELECTROLYTICS. 6800 mfd at 25 V . high grade, screw terminals, with mounting clip. 50p each.
PLESSEY ELECTROLYTICS. 10000 mfd . at $63 V .75 p$ each.
MULLARD
A65.11W. Brand new. E11.00.
A65.11W. Brand new. E11.00.
T.V. LINE SOCKETS. $18 p$ each, 5 for 75 p. T.V. LINE SOCKETS. 18p each, 5 for 75 p . 6 for 50 p .
DIN 3 pin LINE SOCKETS. $15 p$ each.
E.H.T. V/HOLDERS 89A. (Both PHILIPS and PYE types available.) 20 p each

LINSLEY-HOOD 75 watt ampHifers constructed and repaired. Comprehensive selection of spares in stock, BDY56 $£ 2.40$, BD529, BD530 ${ }^{65 p}$ each, filter switch click and mains borne interference suppression kit $1: 35$. SAE for list. S. I. G. Bowman. 35 Park Hiil Road, Torquay $\underset{14980}{ }$

GOING DIGITAL? From TEA-MAKERS to PULSARS!

You can change your clock to astronomical time by simply fitting a different crystal, of course. But our Clock (7 or 10 digits) is programmable. It will boil your tea for you' reselting of course, just as easily as it will keep track of the hours, or months. Five programs a day, alf of variable length, ideal for homes, schools, offices, etc. And tea-making. Thumb-wheels or adjustable ROMs. Programmable Clock Plans and Data
Also our popular Digital Multimeter (a digits):
Mod. 1: Frequency to Mhz, Period, Events, G
Mod. 2: Rathency to Mhz, Period, Events, Geiger Circult. Plans
cramped analogue scales or fiddling with nulis. Volts, Resistanceding pH and Capacitance. Ac/Dc. No readour. Plans and data

E 1.05
Also Multimode Alarm Circuits (Baby, Burglar, Optical)
£0.80
re e pUblications, Highland, Needham Marker, Suffolk
Designers of advanced circuits since 1969
-Subject so a supply of water, etc.t

MICRO
 ELECTRONIC TRANSMITTER
 Receive on a

VHF RADIO

The smallest Transmitter available in the UK.
Only $2^{\prime \prime} \times 1^{\prime \prime}$. Can pick up and transmit minute sounds and voices. Range 500 yards plus. Can be worn round the neck. held in the hand, or operated in a drawer. Works almost anywhere, uses PP3 battery (very long life). Completely selfcontained, transistorised printed circuit. Used the world over. Fully guaranteed. Latest model now dispatched.
Transmitter.
$£ 15.80$
If required, Pocket Radio for receiving transmissions

E15.30
P.\&P. 50p MAll DRDER \& COD Welcome Unlicencable in U.K.
Mulhall Electronics, (WW)
Ardglass, Co. Down, UK. BT30 7SF
Tel: 039-684461.

VALVE BARGAINS. Any 5.45p. $10-75 \mathrm{p}$. $50 . \mathrm{E3.60}$ ECC 82 ECL 80 EF $80 / 183 / 184$ PC 86/88 PCF $80 /$ 30PL14. COLOUR VALVES. ${ }^{12 p}$ each PL508/509 PY 500A. No VAT required. P\&P under f1/10p. tee. - LANCASHIRE MAIL ORDER, 6 WILLIAM STREET. STUBBINS. RAMSBOTTOM, BURY. LANCS.
(4807

PHOTD ETCCH

LIMITED
9 LOWER QUEEN STREET PENZANCE, CORNWALL, TR18 4DF

Prototype or long run - we will supply your printed circuit requirements
Also facilities for Design, Assembly and Test
Prompt and efficient service assured
み pEnzance (O73E) a47e

THE SCIENTIFIC WIRECO.

Copper - Nickel - Chrome - Eureka -
Litz - Manganin Wires
Enamelled - Silk - Cotton - Tinned Coverings.

* No minimum charges or quantities.
* Trade and export enquiries welcome
* S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

VALVES - Radio TV Transmitting \& Industrial 1930 to 1975 . 2200 Types in stock many obsolete. List 20 p . Quotation S.A.E Postal export service. We wish to buy new and boxed valves, wholesalers, dealers, etc. stocks purchased. Cox Radio (Sussex) Lid. The Parade, East Wittering, Sussex, West (4999)
lering 2023.

VIATRON VDU TERMINAL Incorporating Key board. 320 character VDU, MOS microproces sor, and twin Philips-type cassette station
1190. VIATRON incremental DATA RECORDER f190. VIATRON incremental DATA RECORDER.
manufactured 1972 . 895 . MDS 1320 LINE manufactured
PRINTER, as
1972.
new.
195.
1200. MDS
FLEXOWRITERS ipaper tope typewriters with $1 / 0$) from 850 EMI AUDIO Echo Unit. 55. GE Model 661A High Speed incremental paper tape reade
inalf rack mount) c / w drive \& read amps. ${ }_{f 50}^{\text {inalf }}$ NEW rack mount) c / w drive $\&$ read amps.
 HONEYWELL G- 115 PROCESSOR Module with
4 k store. Power Supply Module, and Control 4k store, Power Supply Module, and Contro
Console (System instatled 1971), ALL $£ 165$ Console (System installed 1971), ALL
(Honeywell Serles 200 Magtapes (four with con troller). $£ 65$ per untt of $£ 225$ the lot. COM Proter APPRECIATION. Godstone 3106, Otford 3256.
(4500)

ARTICLES FOR SALE

MARX-LUDER
STACKABLE EPICYCLIC GEARED ELECTRIC MOTORS

A range of high efticiency rev
D.C. motors are now offered
complere with
epicyclic gears epicyclic gears
giving all the giving all the
gear ratios:

? EM136P $1 \frac{1}{2}$ watts: 5000 rpm : size $24 \times 24 \times 74 \mathrm{~mm}$ Mar. gearbox torque 2 Kg . cm
EM141P8wats: 5000 ropm:size $35 \times 35 \times 109 \mathrm{~mm}$
 M145P 20watts: 7000 rpm: size $52 \times 52 \times 180 \mathrm{~mm}$ EM 146 P 30 watts: $4000 \mathrm{rpm}:$ size $52 \times 52 \times 200 \mathrm{~mm}$ SPECIAL OFFER

Gaartox pack. All ters
MOTORS without gearboxes

$00 \mathrm{pm}: 017 \mathrm{~mm}$

SPECLALOFFER
All motors above
Suggestéd applications. Laboratory equipment. stirfers. 16.00 Suggested applications. Laboratory equipment. stirers.

AID-US PRODUCTS Dept. WWV9, 8 Hillview Road, Pinner

HA5 4PA, Middlesex

SCOPES AVAILABLE

Tele-equipment. Absolutely perfect con dition.
D. 526 meg. £90

DM. 5315 meg. storage £225
Ring: Mr. Lewis at 01-882 1644 now and avoid disappointment

\section*{ENAMELLED COPPER WIRE
 | S.W.G. | $\mathbf{1}$ lb. reel | $\mathbf{1 / 2}$ It. reel |
| :--- | :---: | ---: |
| 10 to 19 | 2.40 | 1.35 |
| 20 to 29 | 2.45 | 1.40 |
| 30.344 | 2.60 | 1.50 |
| 35.1040 | 2.85 | 1.60 |}

All the above prices are inclusive of postage
 COPPER SUPPLIES

102 Parriwood Rosd, Withington, M

Abstract

16 CHANNEL TAPE DECK 9 AMPEX, £250. Remscope storage scopes, one working £40, two faulty e15 each or $\mathrm{s}^{6} 60$ the three, Marconi T.V. Monitor $\$ 15$. Nombres RF Generator El 10 . S.A Further details: Ferris, 27 Halley Street, Lonforther diN 1DA. Phone 01.580 4075.

MANPACK TRANSCEIVERS Plessey type A13 (2.8 MHZ), low power sets in original packing. plus charger stabiliser batteries and acces "MOTIVATOR " Curtain Cord Controllers.
Mains battery models and kits for use with
corded domestic curtains. From f18. $£ 20$, Aid-Us
Products. Dept. WW10. \& Hillview Road, Pinner
HA5 4PA. Middesex.
(4930) 60 KHz MSF RUGBY RECEIVERS. BCD TIME-
OF-DAY OUTPUT. High performance, phase locked loop radio receiver. 5 V operation with and tested unit £11.12 (prices include postage and tested unit fli.12 (prices include postage with signal and audio outputs. Send fo with signal and audio outputs. Send
details Toolex. Sherborne (4359) Dorset.

FOR SALE: Transformers. $240 / 110 \mathrm{v}$ 20amps 2kva unshrouded with leads 89.50 , same but for American Appliances $£ 22.50$. Small 50 watt Auto with lead and American socket E4, New Amplifier (Valve) transformers $345-0-345 \mathrm{v}$ 150 mA 6 v 4 amp 5 v 3 amp £5, Transformer $12-0.12 \mathrm{~V} 2 \mathrm{amp} £ 2.20$ Others. Malden Transformer, 134 London Hoad, Kingston-on-Thames. 01.5467534.

COLOUR. UHF and TV SPARES. Colour and UHF lists available on request. New cross hatch kit Ancl Sync andp 45p. CRT reactivato kit for colour and mono $£ 16.80$ p\&p $60 p$. Signal strength meter kit $£ 18.00$. P/P 45 p . 625 TV. I unit, suitable for Hi-Fi amp or tape recording. £6.75 P/P 35p. Bush CTV 25. New conver gence panels plus yoke and blue lat., $£ 3.85$ P / P 40p. New Phillps single standard conver gence panels complete, incl. 16 controls, coils P.B. switches, leads E3.75. P/P 50p. New Collour Scan Coils, Mullard or Plessey plus conver g'ence yoke and blue lateral, $\mathrm{Mullard} \mathrm{AT} 1023 / 05$ Convergence Yoke $£ 2.30 \mathrm{p} / \mathrm{p}$ | Mullard AT $1023 / 05$ Convergence Yoke |
| :--- |
| 50 p . Multard or Plessey Blue Laterals, 75 p P/p | 50p. Mullard or Plessey Blue Laterals, $75 p$ P/P

20 p. BRC 3000 type Scan Coils, $£ 2.00 \mathrm{P} / \mathrm{P} 40 \mathrm{p}$
Delay Lines DL50, $£ 3.50$ DIJE, DLI, $£ 1.00$, P/P 351 p . Lum Delay Lines, $50 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. EHT 355. Lum Delay Lines, 50p, P/P 15p. EHT
Colour Quadrupler for Bush Murphy CTV 25 Colour Quadrupler for Bush Murphy C Colour
 P/P 35p. GEC 2040 colour trlpler £1.75 P/P 35p Colour surplus/salvaged Phillips G8 panels part complete: Deoroder, $£ 2.50$, IF inel. modules, $£ 2.25$. T, Base, 21.00 , $\mathrm{P} / \mathrm{P} 25 \mathrm{p}$. CRT base, 75p. P/P 15p. GEC 2040 panels, fo spares Decoder 83.50 , Time Base 01.00 P/P 50 p . B9D valve bases 10p, P/P 6p. VAMICAP TUNERS. UHF ELC 1043 NEW, £4.20. ELC1043 05 £5.00. ELC1042 (VHF) £5.50. Salvarged VHF and UHF Varioap tuners, $£ 1.40, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. UHF TUNWRS NEW, Transistorised. Incl. slow motion drive, $£ 3.80$, 4 position and 6 pos push-button transistorised \&4.20. P/P 45p Philips, Bush. Decca, Integrated UHF/VHF transd tuners $£ 4.50$ P/P 60 p Murphy $600 / 700 \mathrm{ser}$ les cam. UHF conversion kits incl. tuner, drive in cabinet plinth assembly, 55.50 . $\ddot{P} / \mathrm{P} 65 \mathrm{p}$ THORN 850 Dual standard time base panel $50 p, P / P 50 \mathrm{p}$. PHOLIPS 625 IF amplifier pane incl. cot., $50 p \mathrm{P} / \mathbb{P} 45 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight Philips 19TG170, GFEC 2010, ete., 22.50 . PYE minitature incremental for 110 to 830 , Pam and Invicta, $£ 1.00$. A.B. miniature with UHF injection suitable K.B. Baind, Ferguson, 75p New firebball tuners ;Ferguson, HMV, Marconil $\$ 1.00 \mathrm{P} / \mathrm{P}$ ald tuners 50p. Mullard 110° mono scian coils, new sultable all standard Philips Stellat, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P / P 35 p . Lange selection LOPTs, FOPTS available for most popular makes. $200+200+100$ MFD 350 v Electrolytic $£ 1.00 \mathrm{P} / \mathrm{P}$ 20p. MANOR SUPPLIES 172 WEST END LANE, LONDON N.W.6. Shop premises, callersi welcome. (No and Brit. Rail). MAIL ORDER: 64 GOLDERS and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON N.W. 1.1 TEI, OL-794.
8751. VAT PLEASE ADD 25% TO ALL PRICES.

CAPACITY AVAILABLE

LABELS NAMEPLATES FASCIAS on a nodised aluminium or perspex. Any quantity, superb aluminium or perspex. Any quantity, superb quality, fast delivery. G.S.M. Graphics Ltd. ${ }^{4443) \text {), Yorks. }}$

PRINTED CIRCUIT BOARDS

 PRINTED CIRCUIT BOARDS - Quickdeliveries, comperitive prices, quotations on
request, roller tinning, drilling, etc., speclality request, roller tinning, drining, etc., speclality sman batches, larger quantitles available Jamlesons Automatics Lid. $1-5$ Westgate, Brid Mr. J. Harrison. Tel: (0262) 4738/77877.

DESIGN, development, repair, test and sma production of ectronic equipment specialis In production of printed eircuit assemblies lege Street, London NW1 9NN., 01-267 0201, (29

BATCH Production Wiring and Assembly to sample or drawings. Deune Electricals, 19 B Station Parade, Ealing Common, London, W.5. Tel: 01.992 8976 .

BUDEET MINI AUDIO MIXERS

With Professional Facilities
Slider Faders \# Tone Controls * Monitoring * VU Meter
Mono or Stereo * Ready to use or kits

Details Ref. WW

PARTRIDGE ELECTRONICS
21-25 Hart Road, Benfleet, Esse

Abstract

\section*{CRYSTALS}

Fast defivery of prototype and production quantilies to your specillcalion for digitit clocks, mobile radio. rader, etc. Examples $10 \mathrm{kHz} .100 \mathrm{kHz} \quad 0.03 \%$ T05 $£ 2.22$ aach. 51.020 pm 1.000 100 kHz 100 kHz 2097152 miver 3.2768 m 相 10.0 MHz TERFAGE QUABTZ DEvices tid 29 Martet Street, Grewherne, somerset. Telephone: (046031) 2578 Telex; 46283 4mporters and exporters of crysbels. fillers. oscillators and trequenc, counters lrom worldwide sources

PMR, TV, BROADCASTING, AMATEUR

$1.9 \mathrm{MHz}-500 \mathrm{MHz}$. Do you work on RF on these Frequencies? Then the new Range of Watt Meters Thru-Line Watt Meters and Dummy Loads will be o interest. Four Instruments up to 1 KW rating are available. For full details send to

J. H. ASSOCIATES

52 Silver Street, Stansted, Essex
(48465i

CAPACITY available to the Electronic Industry Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey Sp33 jig borer
Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane E9 6AB. Tel: $01-9857057$

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boands Assem plies. Suppllers to P.O.M.M.D., etc. Export en quiries welcomed. 3a Wialerand Road, London SE13 7PE. Tel: 01-852 1706.
(61

Abstract

A.A.A. SERVICE. Small batch production wiring, assembly to sample or drawings Specialists in printed circuit assembly. Cable forms to order. Rock Electronics Ld. 42 Bishopsfield, Harlow. Essex. Tel. Harlow (0279) 33018 . (4889)

AVOMETERS repaired and calibrated, trace. able calibration certificate given if required AVOMETERS and ELECTRONIC COMPONENTS Wanted, good prices paid. 'Q ' Services Elecany time.

ARTICLES WANTED

WANTED, all types of communications receiv ers and test equipment. Details to R. T. \& I. Electronics, Ltd. Ashville Old Hall, Ashville Rd., Londón, E.ii. Ley 4986
(63

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of phone our Miss Hughes, Sandy (0767) 81616.

WANTED R. F. SPECTRUM analyser minimum frequency range 10 to 1500 MHz e.g. Hewlett - packard 8551/851 or similar. - Box No WW4981.

AVD VCM 163 Valve tester. TF 1041 c Valve Fletcher, 62 Moorbridge Lane Stapleford Noi tingham, 0602397446 . (4985)

BRENNEL TAPE TRANSPORT wanted with or Without Electronics. Also Truvox TSA100 AMP. Repairable non-workers considered. - Phone
Bracknell 51308.

SURPLUS COMPONENTS, Equipment and Com-

 puter panels wanted for cash. Ring SouthampWANTED T.V. COLOUR bar generator price and particulars to HUBY, 31 Beckfield Lane

Our noise reducer is something to shout abouth

Wireless World Dolby noise reducer

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features:

- a weighted noise reduction of 9 dB
- switching for both encodina (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts.
Price is £43 inclusive.
A single-channel printed-circuit board, with f.e.t. costs $£ 2.50$ or £8.63 with all components inclusive (excluding edge connector, £1.37 extra). Selected field-effect transistors cost 68 p each inclusive, $£ 1.20$ for two and $£ 2.20$ for four.

Calibration tapes are available, costing $£ 1.94$ inclusive for $9.5 \mathrm{~cm} / \mathrm{s}$ open-reel use and for cassette (specify which).

DOLBY KIT ORDER FORM

Please supply me with the complete Wireless World kit for a Dolby noise reducer.
1 enclose remittance value $£ 43.00$ inclusive \square

Name

Address

Additional items required

Wilmslow Audio THE firm for speakers!

Baker Group 25, 3, 8, or 15 ohm

 Baker Group 35, 3' 8 or 15 ohm Baker Deluxe, 8 or 15 ohm 8.64 £10.25 Baker Major, 3, 8 or 15 ohm $\varepsilon 13.75$ Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 13008 or 15 ohm Celestion MF 1000 horn, 8 or 15 ohm Decca London and X overDecca DK30 and X over
EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c}, 3,8$ or 15 ohm EMI 13×8, Type 350
EM $13 \times 8,25$ watt bass
EMI $21 /{ }^{\prime \prime}$ " tweeter 8 ohm EMI $8 \times 5,10$ watt, d / c, roll/s 8 ohm Elac 59RM 10915 ohm. 59RM 1148 ohm Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Pop 15 watt $12^{\text {th }}$
Fane Pop 20T $10^{\prime \prime} 20$ watt
Fane Pop 25T 30 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt
Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 100 watt, $18^{\prime \prime}$
Fane Crescendo 12A or B, 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane Crescendo 18, 8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls/s. 8 or 15 hm Fane $801 \mathrm{~T} \mathrm{~B}^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll $/ \mathrm{s} 8 \mathrm{ohm}$ Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12 P 8 or 15 ohm Goodmans 12 P-D 8 or 15 ohms Goodmans 12P-G 8 or 15 ohms Goodmans Audiom 1008 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 100 B ohm 'Goodmans Axiom 402 B or 15 ohm Goodmans Twinaxiom $B^{\prime \prime} B$ or 15 ohm Goodmans Twinaxiom 10" 8 or 15 ohm Kef T27
Kef T27
Kef B110
Kef 8200
Kef 8139
Kef DNB
Kef DN1 2
Kef DN13
Aichard Allan HPBB B" 45 watt Aichard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s STC 4001 G super tweeter Baker Major Module, each Goodmans Mezzo Twinkit, pair Goodmans DIN 20, 4 ohm, each Helme XLK25, pair
Helme XLK 30, pair
Helme XLK50, pair
Kefkit 1, pair
Kef kit III, each
Peerless 3/15(3 sp. system) each Richard Allan Twinkit, each Richard Allan Triple 8, each Richard Allan Triple, each Richard Allan Super Triple, each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit, pair Wharfedale Dovedale 3 kit pair All Padiord Gauss, Castle Jordan Wat Lowther, Tannoy units in stock.

INCLUDING VAT AT $\mathbf{2 5 \%}$

Cabinets for PA AND Hifi, wadding, Vynair, etc Send stamp for free booklet "Choosing a Spaak FREE with all ordere over $£ 7$ - HiFi Loudspeaker Enclosures Book
All unite are guarenteed now and perfect Prompt despatch
Carriage: Speakers 38 peach, $12^{\prime \prime}$ and up 50 p each tweeters and cross-overs 25 p each, kits 75 p each (E1. 50 pair).

WILMSLOW AUDIO

Dopt. WW

Loudepeakers \& Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF Discount Hifi, PA, etc: 10 Swan Street Wilmalow. Radio, Hifi, TV: Swift of Wilms low, 5 Swan Sireet, Wilmslow. Tel. (Loudapeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213

WW-066 FOR FURTHER DETAILS

When you need to hire Video-
 it pays to contact the most experienced video company in the business

R 3 W
A.E.W. HOUSE 10. 12 HIGH STREET COLLIERS WOOD
LONDON SW19 2:E
PHONE: 01-540 9684
Also at CENTRE PDINT
20/21 ST. GILES HIGH STREET LONDDN, WC2 PHONE: 01-240 3066

Private enquiries, send $10 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO.LTD.
Q.C.C. WORKS, WELLINGTON CRESCENT,
. NEW MALDEN, SURREY. 01-942-0334 82988

SAVE IT" BARGAIN

500 WATT DIMMER SWITCH

(not suitable for fluorescent lights) Basic Module with 1" Knob
$\varepsilon 2.00$ Complete on MK switch plate Larger $2^{\prime \prime}$ knob (BULGIN) 25p extra, P\&P $25 p$. Please add 8% VAT 10 all orders inc. P\&P. FRASER-MANNING LTD.
40 TUDDENHAM ROAD, IPSWICH, IP4 2SL

ELELTRDIT:KíT STARTING IN ELECTRONICS?

Our kits provide the ideal introduction to this fascinating hobby Acturs working proiscts ere constructed without sildering.
wiring or serrewing ond the components ore uird over and orer again.
"An ideal introduction to electronics" (D.I.Y. magazine)
"Educational kits of exceptional quality" (AUDIO magazine)
 Tnie comms. tearine dotections. solat celll, voice relay, illuminomelers. voltmeters, meters ot all rypes, etc, etc. plus your own cirtuit dosigns.

These kits are very useful to experienced engineers too, for testing new layouts
COMPLETELY SAFE - 9v battery operation - fully explanatory manuals included with every kit.
16 different projects $£ 8.80$
30 different projects $£ 10.45$
100 different projects $£ 20.45$
105 different projects $£ 25.25$
150 different. projects $£ 33.95$
Prices include Valuablo Manưals, Battery, p\& p VAT, etc.

Cheque/P.O./Cash (or 7p for literazure) to DEPT. WW.

ELIECTRONI-KIT LTD, 408 St. John's Street,
London, EC1. [01-278 4579]
WW-058 FOR FURTHER DETAILS

325 Fore St, Edmonton, London, N. 9 $01-8073719$

Closed Thursdays

linear
 INTEGRATED CIRCUITS national

VOLTAGE REGULATOR HANDBOOK by National. Price: $£ 1.35$
ELECTRICAL CIRCUITS \& SYSTEMS by N. M. Morris. Price: $£ 4.20$
DESIGNING CIRCUITS WITH IC OPERATIONAL AMPLIFIERS by R. G. Seippal. Price: $£ 3.40$
OPERATIONAL AMPLIFIERS by G. B. Clayton. Price: $£ 4.25$
RADIO \& ELECTRONIC LABORA-
TORY HANDBOOK by M. G. Scroggie. Price: $£ 6.65$
COLOUR TELEVISION SERVICING by G. K. King. Price: $£ 4.80$
TELECOMMUNICATION TRANS. MISSION HANDBOOK by R. L Freeman. Price: $£ 16.00$
COMPUTER DATA-BASE ORGANI-
ZATION by J. Martin. Price: $£ 16.40$

* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1 NP

Phone 7234185
Closed Sat. 1 p.m
 CATALOGUES 50 pe each

> Mail order only please to
> Dept. MO2

SOUTHERN AVIATION

Station Approach, Epsom, Surrey
Telephone (03727) Epsom 20691

EX-COMPUTER STABILISED POWER SUPPLIES RECONDITIONED, TESTED AND GUARANTEED

Ripple < 10 mV o/v protection $120 / 130 \mathrm{v} 50 \mathrm{c} / \mathrm{s} \mathrm{i} / \mathrm{p}$ Stepdown transformer to suit £3. P\&P £2. 5/6v 8A £15.
$5 / 6 \mathrm{~V} 12 A \mathrm{E} 18.5 / 6 \mathrm{~V} 16 A £ 22$.
PAPST (or similar) FANS $41 / 2 \times 41 / 2 \times 2^{n 1} 100$ c.f.m. $50 / 60$ c/s ©4 (40p).
PAPST FANS Type 7576. new, $6^{\prime \prime}$ dia $\times 2^{3 / 16}$ deep E5 (45p).
LIGHT DIMMERS 250 w E2.70 (16p).
BC107/8/9, BC147/8/9. BC157/8/9 all 9p ea. (11p). ELECTROLVTICS
$12000 \mu \mathrm{H} 100 \mathrm{v}$ €1.75 (45p). $800 \mu 100 \mathrm{v}$ E1.50 (45p).
 50 v 35 p (11p). $4000 \mu 70 \mathrm{v}$ 80p (20p). $4700 \mu 63 \mathrm{v}$ 80p (15 p). $2500 \mu 60 \mathrm{v} 50 \mathrm{p}$ (12p).
EX-COMPUTER PC PANELS. $2 \times 4^{\prime \prime} .50$ boards for £2.40 (62p).
OPCOA SCA 77 mm 7 -seg. led display
QH bulbs $12 \mathrm{~V} 55 \mu$
250 mixed resistors
Si recs 20A 100 piv
2N3055 equiv
EXTRUDED HEAT SINK for $2 \times$ TO3

SMALL ELECTROLVTICS
$2.2 \mu 10 \mathrm{v}, 10 \mu 35 \mathrm{v}, 50 \mu 40 \mathrm{v}, 100 \mu 40 \mathrm{v}, 100 \mu 6 \mathrm{v}, 150 \mu$
$10 \mathrm{v}, 64 \mu 10 \mathrm{v}, 300 \mu 10 \mathrm{v}, 200 \mu 10 \mathrm{v} .12$ for 45 p (12 p).
$220 \Omega 47001 \mathrm{k}, 4 \mathrm{k} 7$. 10k
(12p).
CALCULATOR KEYBOARDS. TEXAS, p.c. type
REED RELAYS 6 v coll h / d contacts . . 5 for $£ 1$ (15p)
REED INSERTS h / d contacts.....${ }^{10}$ for E1 (12p)
WATER-COOLED HEATSINKS ex. eqpt. £1.20 (40p)
CHROMED HANDLES
$5^{\text {t"t }} \mathrm{mtg}$. Centres
per pair $£ 1$ (20p)
P\&P shown in brackets

ADO $\mathbf{2 5} \%$ VAT to TOTAL

8% VAT On PSUS. FANS. DIMMERS. BOARDS
KEYTRONICS
332 LEV STREET, ILFORD, ESSEX
01-4788499

DIRECT ELECTRONICS LTD.

INTERCOMMS AND TELEPHONES

All Genuine Instruments NOT Toys

- Simple 2 -way wall-fixing kit assembled with 100 ft cable. Only needs 6 v Battery and Power Supply. $£ 16+£ 1$ P\&P.
- 7-way simple instrument only. Suit 2 to 7 -way system. Supplied with installation diagram. $£ 8.50$ per unit $+£ 1$ P\&P
- 6-way Siemens \& Halske superior instrument with wall/desk conversion unit and term, block/cord for easy installation and diagram. $£ 10+£ 1$ P\&P.
- INSTRUMENTS for automatic circuits: 332; 706; 746; 722 (trimfone), etc.
- ULTRA MODERN TYPES, e.g. "Gondola" International; Ericofone (One-piece Horn type): Touch-Button-Dial; Charleston (Candlestick); etc. From $£ 32.85$
- Entrance Phones and Door Locks.
- Large stocks of refurbished and recovered items at extra-cheap prices: G.P.O. \& similar types; Loudspeaking phones; Special instruments; all tested to work
- Jacks; Plugs; Cords; Term. Blocks; Cables (up to 25 -way and 50 pairs); etc.
- VIDEO CAMERAS AND MONITORS (special purchase direct from importer)
- Trade and privare customers welcome.

MANY SURPLUS ELECTRONIC BARGAINS . FROM OLD STOCK STILL LEFT - COME AND DO A DEAL!

34 LISLE STREET LONDON WC2H 7BD
 Tel. 01-437 2524

EXCLUSIVE OFFERS

WORLD-WIDE RANGE

COMPLETE TRANSPORTABLE H.F. COMMUNICA TIONS CENTRE housed In Air Conditioned TRAILER
Atted two COLLINS KWT-6 500 W 日.S.B. Transmitterfitted two COLLINS KWT.6 500 W S.S.B. Transmitter-
Receivers and one COLLINS Receiver all fully tuneable Receivers and one COLLINs Receiver all fully tuneable
2 to 30 mics digital readout synthestsed control, with line amplifiers and Inputs, operating control, with ine amplifers and inputs, operating
pnsition and remote control facilities and ancillary
equlpment. Power equiproent. Po
on application.
PHILCO HC-150 POINT-TO-POINT STRIP RADIO HF RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$. Ten fuliy tuneable channels 0.5 kcs with synthesisers. Single and diversity reception
on $18 B$, DSB, $88 B$ with 4 sub-bunds to each channel. Full details and prices on a pplication.
HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS
 Our Height Ohannel RACKS Rat Panel $\begin{array}{lccccc}\text { Our } & \text { Height } & \text { Ohannel } & \text { Rack Pasel } & & \\ \text { Ref. } & \text { In inches } & \text { Depth } & \text { Space } & \text { Base } & \text { Price } \\ \text { RF } & 85 & 3 & 79 & 15 & 211.00 \\ \text { RG } & 57 & 2 & 51 & 14 & 28.00\end{array}$ Full details of all above on request.

We have a large quantity of "bits and pleces"
we cannot list-please bend us your requirements
we can prolably help-all enquiries answered.

COMPUTER HARDWARE

\star CARD READER 80 col. 600 c.p.m.

* PRINTER, HIgh speed 1000 lines p.m. 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. AT APPROPRIATE
hate to above.
P. HARRIS

ORGANFORD-DORSET
BH16 68R
BOUR NEMOUTH-785051

EURD ClRculs

Printed Circult Boards - Master Layouts -
Photography - Legend printing - Roller tinning Gold plating - Flexible films - Conventional fibre glass - No order too large or too small Fast turnround on prototypes.
All or part service avallable No
Evpi ciacurs LTO
Hightield Howse
West Kingsown Kent. WK 2344
Nr. Sevenoaks, Kent.
DIOTESTOR
in-Circuit TRANSISTOR TESTER

The DIOTESTOR detects faulty diodes and transistors when still in circuit without need for unsoldering

BRITEC LIMITED
17 Devonshire Road, London SE23 3EN
Tel. 01.6998844 Telex: 896161

WW-008 FOR FURTHER DETAILS

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lanè, N. Finchley London, N12 8JG
1-4450749 $\quad 01-4452713$ 01-958 7624
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

All prices incl. VAT WIRING NEEDED WIRELESS INTERCOM Each unit plugs into the mains and transmits down the mains cable (up to yha-mile is possible). Way price at ONLY £19.20 +
 MAINS ADAPTORS
 All for $240 \mathrm{v} 50 / 60 \mathrm{~Hz}$ input. 6. $71 / 2$ and 9 volts DC at 250 mA . All 3 voltages. 4 -way muti-plug suits almost all Cassettes Radios/Calculators. ONLY $\mathrm{E} 3.30+30 \mathrm{p}$ P\&P SIX Voltage madel. Swit chable 3, 41/2, 6, $7 \frac{1 / 2}{}, 9$ \& 12 volts DC at 500 mA . Sturdy case, pilor light and on/or and possible future voltage requirements. Output wired to std. batt. cut-out plug. ONLY $£ 4.95+45 p$ P\&P
 Or available with 4 way multiplug outlet for 50 p extra.

MAINS ADAPTOR for Pocket Calculators British made. 6, $71 / 2$ or 9 volts at 50 mA (state which) and whether 2.5 mm or 3.5 mm jack plug, or 6 mm dia. power plug is required. ONLY $£ 2.65+35$ P\&P.

MAINS ADÁPTOR

To suit Philips $71 / 2$ volt DC similar 10 six-voltage unir $\begin{array}{ccc}\text { Cassette } & \text { Recorders } & \text { above. } 0 \\ 2202 / 3 . & 3300 / 1 / 2 . & 35 p ~ P \& P .\end{array}$

DC VOLTAGE REGULATORS

nput: 12 volt car battery. Output: 6 v $250 \mathrm{~mA}, 71 / 2 \mathrm{v}$
300 mA or 9 v 350 mA state which). Module. black, $1^{\prime \prime} \times 11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ approx. Transistor NPN regulator, but suitable POS or NEG earth vehicles. rotected againt reverse term shorting of output. ONLY $£ 1.95+20 \mathrm{p}$ P\&P.

AUDIO PRE-AMP MODULE

Requirements: 9 v to 15 v DC or 250 to 350 v DC 12.6 mA a 9 v). Input impedance 50 k . Suitable for microphones/quitars, etc. Output imp. Sok of higher. Max. inpu. $1 \mathrm{l} \times 20$ Characteristic: Flat. ONLY $£ 1.25+20 \mathrm{p}$ P\&P. JEC (Depr WW), Box 60, Crawley, Sussex RH11 JUF

WW-131 FOR FURTHER DETAILS

Illustrations

 in Applied Network TheoryF. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated $040870425 \times$ cased $£ 5.75$ 0408704268 limp $£ 2.65$
Obtainable through any bookseller

Newnes-Butterworths bOROUGH GREEN SEVENOAKS KENT TN15 8PH

TEL.
BOROUGH GREEN 884567

QUARTZ CRYSTAL

UNITS from

- 1.0-60.0 MHZ
- fast oelivear
- high stability

WRITE FOR

McKNIGHT
CRYSTAL Co. Ltd.
HARDLEY INDUSTRIAL STATE, hTTHE. TEL. HYTHE 848961 SOUTHAMPTON SOA BCV.

Mail order protection scheme

Abstract

Members of the Periodical Publishers Association have given to the Director General of Fair Trading and undertaking to refund the monies sent by readers in response to mail order advertisements (excepi for classified advertisements) placed by mail order traders who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or the Periodical solicitation. Publishers in members Association are making these refunds voluntarily and readers' claims can only be entertained in cases wher the mail order advertiser is the subject of liquidation or bankruptcy, where proof of paymenican be established and if lodged within three months of the date on which the advertisement appeared. Any claims received after the three month period will be considered at the discretion of the publisher

ZONDON CENTRAAL RaDIO Storles

TELEPHONE CABLE.-Plastic covered grey 4 -core colour coded. 10 p per yard
ELECTRICITY SLOT METERS $(5 p$ in slot) for A. mains. Fixed tariff to your requirements. Suitable for hotels, etc 200/250c. 15A. £9.31. 20A. £10.24. P.P. 75p. Other amperage
MODERN TYPE DESK PHONES, red, green, blue or 2 -tone grey or black. with internal bell and handset with 0 . dial £6.50.
5-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Throughly overhauled, guaranteed. Price $£ 5.25$. Send s.a.e. 10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled Guaranteed $£ 7.75$ per unit. Send s.a.e.
QUARTERLY CHECK METERS 15A £4.30. 20A £4.64 25A. £5.31. P. \& P. 50 p.
Multi Relay Unirs Grices subject to fluctuation
Multi Relay Units, Group selectors, Final end selectors and Relays in stock, 20 -way jack strips and tip ring and sleeve plugs. For callers only

> 23 LISLE STREET, LONDON, W.C. 2
> 4372969

Open all day Saturday

SOWTER TRANSFORMERS
 FON SOUNO RECOROWS MOD REPRODUCMS EQUPMEWT We are suppliers to many well known companies, studios Early deliveries. Competitive prices. Large or smalt quantities. Let us quote. SowTeR LTO.
 Transformer Manufacturers and Designers powich IP4 1JP. Telephone 047352794

 WW-024 FOR FURTHER DETAILS
WE PURCHASE ALL FORMS

 OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASHCHILTMEAD LTD.
7,9, 11 Arthur Road, Reading, Berks. Tel: 582605

CAPACITY AVAILABLE

FARNBOROUGH ELECTRONIC SERVICES

Electronic prototype wiring, printed circuit board assembling, at competitive prices.
Design. Manufacture and finishing of metal work for the Electronic/Electrical fields.

TEL. FARNBOROUGH 44592
4505

SERVICE AND REPAIRS

AUDIOMASTER BACKGROUND MUSIC
號 ytce, sales. Tape programmes. P. J. Equip*
ments, 3 Onslow street, Guildford 4801 . $\left.{ }^{(12}\right)$

THOR-HOLE CONVENTIONAL P.C.B.'s gold plating, roller tinning, prototypes, silk screening, drilling. All or part service. - ELECTR nut, Herts. Tel. Waltham Cross 38600 or 20344.

TUBE POLISHING, mono, £5.63, colour £5.94. C.W.O. Return carriage and VAT paid. Phone: N.S. 300 Retube Limited, North Somercotes,

RECEIVERS AND AMPLIFIERS -

HRO Rx5S, etc. AR88, CR100, BRT400, G209, S640, etc., etc., in stock, R. T. \& Y. Electronics, E11 Ley 4986.
(65

SIGNAL' Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Mult-range Meters, etc., Atcentronics, Litd., Ashvilie Old Hall, Ashvilite Rd., London, E.il. Ley 4986.

STABILIZER

With two years' experience of frequency shifters the new Stabilizer includes all the features which have shown themselves to be desirzble in a uni for how reduction. It provides shifts between 1 and 10 Hertz either upwards or
dowrwards and has a tront panel gain control, signal overload LED and SHIFT/BYPASS switch as well as a mains switch and neon. This unit has a considerably lower noise levet than any previous shifter and hum pickup
within the small case is avoided by the mains transtormer, and input wrthin the small case is avoided by the mains transtormer, and input
vansiormer in the balanced version, being in mumetal screening cans. The transiormer in the balanced version, being in mumetal screaning cans. The
input amplifier is protected from high voltage spises on the signal line, Whether trom valve equipment or occurning through static or earnh leakage.
woltages while a system is being plugged up. The output line driving amplifier voltages while a system is boing plugged up. The output line driving amplifier
is preceded by a 24 Hz high pass tilter which not only provides further is preceded by a 24 Hz high pass tilter which not only provides further
into a opower amplitier
Available as a boxed unit with erther balanced or unbalanced signal lines Rack mounting version also available oftering studio quality slider 'SHIFT. ontrol, duplicated jack and XLR connectors and a smart anodised finish with
A British invention designed in the sunsmine outside The Forge during
summer 75 , based on a shifting lechnique developed at the University of sumrrer 75. based on a shitting lechnique developed at the University o
Manchester Institute of Science and Technology and manulactured Manches
Shifters are proving affective in the following situations:
Sound remflorcement for teievision sud
Foldback monitoring on stage
giving 10 Hz round the loop. which is effective in the smafl non-revert way rooms invovived
Group hearing aid systems for teaching deaf children
Microphones or radio microphones for discussion groups or 'floor Microphones or radio microphones for discussion groups or iloor
questioners' who are within the intended coverage of the PA loudspeakers all as tor straighiforward sound relnforcement and public address. CHOICE OF SHIFT FREOUENCY
actual sustained howling is suppressed even by very small shifts as low
Actual
${ }^{1} \mathrm{~Hz}$ the
develoos gradually until, with 6-10dB extra gain, a sustained coloration starts. In general, the greater the frequency shift. the more the onset of
coloration is delayed. There is, coloration is delayed. There is, however. \& limit it useful frequency shut, dead rooms shits as high as 8 Hz may be necessary for optimum results.
+5Hz FIXED SHIFT CIRCUIT BOARDS for WW July 1973 article
Small enough to be built inside the cabinets of many amplifiers
Complete kit and board $\{24$
including psu and
mains Iransformer
DESIGNER
Write or ring for leatier giving full specifications for thase or any other items STEREO DISC AMPLIFIER. 10 OUTLET DISTRIBUTION AMPLIFIER. MICROPHONE PREAMPLIFIER, PPM DRIVE CIRCUITS and Ernest Turn SPECTRUM SHBFTER:
SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG (STD 04866) 5997
Cash with order less 5%. UK post free Add VAT at 8%

COURSES

Scholarship Awarded by The Institution of Electrical Engineers

The Council of the Institution of Electrical Engineers will consider for award this year Undergraduate and Postgraduate Scholarships with a maximum value of $£ 600$ per annum
The closing date for the receipt of applications is 1st May, 1975, and late applications cannot be considered
Full particulars of the conditions governing the award of these Scholarships may be obtained from:
The Director, Qualifications Department, The Institution of Electrical Engineers, Savoy Place, London WC2R 0BL.

RADIO and Radar M.P.T. and C.G.L.I Courses RADIO and Radar M.P.T. and C.G.L.I Courses. Write: Principas, Nautical College, Fleetwond,
FY7 8JZ.

TAPE RECORDING ETC

RECORDS MADE TO ORDER

DEMO DISCS

MASTERS FOR
RECORD COMPANIES
Single disc: , 1.20. Mono of Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT Delivery 3.4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many studios UK / OVERSEAS. SAE lis?

DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs. Tel. 2273

VALVES WANTED

WE BUY new valves, transistors and clean new components, large or stnall quantities, all details, quatation by return - Walton's, 55 Worcaister quat., Wolverhampton

Towers' International Transistor Selector

by

T. D. TOWERS

MBE, MA, BSC, CEng, MIERE
No professional or enthusiast engineer should be without this time saving comprehensive reference work. Compiled by an expert to cater for the requirements of industry it is equally essential to the hobbyist, teacher, component buyer and service man.

The 142 large pages are crammed with concise information on over 10,000 British, U.S. European and Japanese devices, sensibly tabulated for easy reference.

Contents include electrical specifications. base types and connections, source of manufacture maker's addresses and much other vital informa tion.

All for $£ 3.40$

including postage

To: Technical Book Services (WW1)
25 Court Close, Bray, Maidenhead, Berks. SL6 2DL
Please supply
copies of Tawers International Transistor Selector. I enclose cheque / postal order for \hat{t} Name Address

CONFIDENTIAL BOX NUMBER SERVICE

Advertisers who wish to reply to BOX NUMBERS have the assurance that no personal details or other information relating to their identity will be disclosed to enquirers.
READERS who do not wish their replies to be forwarded to a particular company or individual should enclose their letter in a sealed envelope, addressed to the Box Number in the usual manner, and post this together with a note giving details of whom any replies should not be forwarded, to the Box Number Manager, Wireless World
Letters not forwarded will be destroyed and no correspondence can be entered into

OVERSEAS ORDERS $£ 34.50$ GENUINE BIG SOUND VALUE!

DORAM, ONE OF BRITAIN'S LEADING MAIL-ORDER DISTRIBUTORS OF AUDIO ACCESSORIES AND COMPONENTS BRINGS YOU THE 'INTERNATIONAL 25' A 25W STE REO AMP . THAT YOU CAN BUILD YOURSELF! THIS 'REAL VALUE FOR MONEY' KIT IS SUPPLIED WITH CLEAR ASSEMBLY
INSTRUCTIONS AND RELIABLE COMPONENTS TO GIVE YOU A BIG SOUND TO BE PROUD OF. FEATURES

* TRIPLE OP-AMP PRE-AMPLIFIER
* POWER 'DARLINGTONS' IN OUTPUT STAGE
* 25W R.M.S. PER CHANNEL INTO 8 OHMS
* MODERN, ELEGANT STYLING

INDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 98-110

Acoustical Mfg. Co. Ltd.
Acoustic Transducer Co. Ltd.
Aero Electronics Ltd.
Ambientacoustics
Ambit International Lid
Ancom Ltd.
A.O.T. Dynamco

Armstrong Electronics Ltd.
A.S.P. Ltd

Aspen Electronics Ltd
Audix Ltd.
PAGE
B. Bamber Electronics

Barr \& Stroud Ltd.
Barrie Electronics Ltd
Bayliss, A. D. \& Sons Ltd
Belı \& Howell Ltd.
Bentley Acoustic Corp. Ltd.
B.H. Component Factors Ltd

Bi-Pak Semiconductors Ltd.
Bi-Pre Pak Ltd.
Brandenburg Ltd.
Brenell Eng
Britec Ltd. .
Broadfields \& Mayco Dísposals
Bull, J., Electrical Ltd.
Butterworth \& Co. (Publishers) Ltd.
B\&W Loudspeakers Ltd.
Cambridge Audio Ltd
Cambridge Learning
Chiltmead Ltd.
Chromasonic Electronics
Cintec Ltd.
City Audio
Colomor (Electronics) Ltd.
Combined Precision Components Ltd.
Computer Sales \& Services
Condor Electronics Ltd.
Coutant Electronics Ltd.
Crofton Electronics Ltd
C.T. Electronics Ltd.

Danavox (G.B.) Ltd.
Deimos Lid.
Dema Electronics International
Direct Electronics Ltd.
Dolby Noise Unit
Doram Electronics Ltd.
Drake Transformers Ltd
Dymar Electronics Ltd.
East Cornwall Components
Edgington, John \& Co. Ltd.
Edicron Ltd.
Eddystone Radio Ltd.
Electrokit Ltd.
Electronic Brokers Ltd
Electro Systems \& Timing Co.
Electrovalue Ltd
English Electric Valve Co. Ltd
English Electr
Farnell Instruments Ltd.
Fashionable Leatherwear
Feedback Instruments Ltd.
Ferranti Ltd.
Ferrograph Professional Recorder Co. Ltd.
Ferrograph Co. Lid
Fi-Comp Electronics
Fraser-Manning Ltd.
Future Film Developments Lid.

Gardners Transformers Ltd.
Grampian Reproducers Ltd.
AGE Greenwood Electronics Lid.
-10
$-\quad 10$
Hall Electric Ltd.
Harmsworth Townley \& Co. Ltd. Readers Reply Card Harris Electronics (London) Ltd. Harris P.

18,31
Hart Electronics
Heath (Gloucester)
Henry's Radio Ltd.
Hi-Fidelity Designs
Hi-Fi Yearbook
Hoymitz Electronics Ltd.
IL.P. (Electronics) Ltd.
Icelectrics Ltd.
Icon Design
Imtech Products Ltd.
Industrial Tape Applications Ltd
Inland Motor Services (Reading) Ltd
Integrex Ltd.
J.H. Associates Ltd.

James Electrical Co.
J.E.T. Electronics

Keytronics Ltd.
Kinnie Components Litd.
Kramer \& Co.
Ledon Instruments Ltd.
Levell Electronics Ltd.
Lexor Electronics Ltd.
Lexor Electronic
Light Soldering Developments Ltd
Light Soldering Developments
London Central Radio Stores
Longs Ltd.
Lynx (Electronics) London Ltd.
Macinnes Labs. Ltd,
Magnat Sound Systems Lid.
Magnat Sound Syste
Magnetic Tapes Ltd.
Mail Order Protection
Mail Order Protection Schem
Maplin Electronic Supplies
Marco Trading Co.
Mayware Ltd.
McKnight Crystal Co.
McLennan Eng. Ltd.
Marconi Instruments Ltd.
Marshall, A., \& Sons (London) Ltd.
Medelec Ltd.
Meteronic Ltd
Microflame (U.K.) Ltd. .
Micrometals
Mills, W
Radford Audio Ltd
Ralfe, P.

Rank Cintel
Rank Film Equipment
Rastra Electronics Ltd.
R.C.S. Electronics

Rean Products Ltd
Replecomps Ltd.
R.E.W. Audio Visual Co.
R.I. Audio

74, 94 Rogers Developments (Electronics) Ltd
Rola Celestion Ltd
Rownsgem Ltd.
R.S.T. Valves Ltd

Salford Electrical Insts. Ltd.
Salon de L'Interelectronique
Samsons (Electronics) Ltd.
Scopex Ltd.
Scott, James (Electronics) Ltd.
S.C.S. Components .

Semicon Indexes Ltd.
S.E. Laboratories Ltd.
S.E. Laboratories Ltd.
Service Trading Co.

Service Trading
Servo Data Ltd.
Servo \& Electronics Sales Lid.
S.G.S. Ates U.K. Itd.

Shelton Instruments Ltd
Shure Electronics Ltd.
Sinclair Radionics Ltd.
Sintel
S.M.E. Lid.

Sowter, E. A., Ltd.
Southern Aviation.
Southern Av
Spectronics
Strumech Eng. Ltd.
Sugden, J. E. \& Co. Ltd.
Sullivan, H. W. Ltd.
Surrey Electronics
Swanley Electronics Lid
Swift of Wilmslow
Tannoy Products Ltd
Technical Book Services
Technomatic Ltd.
Technomatic Ltd.
Telcon Metals Ltd
Telcon Metals Ltd..
Telecommunications Ltd. .
Teledyne Acoustic Research
Teleprinter Equipment Ltd.
Telequipment Products (Tektronix U.K.) Ltd
Teleradio Special Products
Telford Products Ltd.
Teonex Ltd.
Thomson CSF (Electronic Tubes) Ltd
Time Electronics Lid
Trampus Electronics
Valradio Ltd.
Valradio
Vitavox
West Hyde Developments Lid.
West London Direct Supplies
Whiteley Electrical Radio Co. Ltd
Wilmslow Audio
Wilkinsoñ, L. (Croydon) Ltd.
Wireless World Annual
Wireless World Wallchart
Wireless World Circuit Designs
Wound Electronic Components Lid.
Wye Electronics Ltd.
ces Ltd
Zettler (U.K.) Division
Mobile Automotive Services (B'ham) Ltd
Modern Book Co
Multicore Solders Litd

OCLI Optical Coatings Ltd
Olson Electronics Ltd.
Partridge Electronics Ltd
Physical \& Electronic Labs. Ltd
Powertran Electronics
Precision Petite Ltd
Proops Bros. Ltd.

Q-Max Electronics Ltd.
Quality Electronics Ltd
Quartz Crystal Co. Ltd.

Terid

THIS CARTRIDGE CAN EQUAL THE PERFORMANCE OF ALL THESE
 sumerormance of all these

SHURE M75/6 $£ 8.10$ Rec. R.P. (1) 18 , PHILIPS CPAOO FACC. 17.06

THE

tenorelSTEREO 'MAGNEDUCT' CARTRIDGE
TECHNICAL SPECIFICATIONS:
Separation. \qquad
\qquad More than 25 db at 1000 Hz
Frequency Response. 15 to 25000 Hz
Compliance.
Output.
Playing weight. \qquad
Channel Balance.
\qquad
20×10^{-6} CM/DYNE
5.5 mV at $1000 \mathrm{~Hz}-5 \mathrm{~cm} / \mathrm{sec}$

Tip Mass..
......
.......
Stylus R \qquad
Weight.. \qquad
Inductance. \qquad
Measuring Records. $1 \frac{1}{2}-3$ grammes
2db at 1 KHz -dB
1 mg
$.0006-15 \mathrm{u}$ (colour white)
47K ohms
7 grammes
.550 mH
.520 ohms
DECCA SXL 2057 B + K QR 2009

a cartridge of tomorraw...TDORY!

> COME AND SEE US ON STAND No. D15 AT THE AUDIO FESTIVAL AND FAIR 20th - 26 th OCTOBER, OLYMPIA

Distributors of cartridges, styli, record cleaners, condenser microphones, headphones, and adaptors etc. Guaranteed 24 hour despatch service.

Multicore Solder preforms, a little something for automatic processes.

Multicore Preforms.

Multicore precision made solder preforms come in virtually any shape or size. Rings, washers, discs, pellets, and lengths of solder tape - in most soft solder alloys. Designed. with or without flux cores to make the most of automatic soldering processes, a solder preform is simple and accurate to use.It's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to about $50^{\circ} \mathrm{C}$ above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame hot plate. oven conveyor, induction coils. resistance/electrode soldering, hot gas and infra-red.

Multicore Solder Preforms just get on with the job. Aulomatically.

Our Solder Creams, something else again...

New Multicore Solder Creams are designed for electronics assembly where quality is vital. Like manufacturing diodes, for instance, or making a tuner chassis. or soldering thickfilm circuits.

A finely graded solder alloy powder in a thixotropic organic vehicle.It's often quicker, cheaper. easier and more reliable than other soldering techniques. It's different. It doesn't spit or need stirring. It can be applied by syringe automatic
 dispenser or screen printing - giving instant soldering with good spread. strong joints with low contact angles. It can act as a temporary adhesive during assembly and the clear colour flux residue - without solder globules - simplifies inspection.

There are three types of Multicore Solder Cream-one of them may be just what you've been looking for.
 Approved USA Federal Specification QQ-S-571E

Multicore Product Ref.	XM 27330	XM 27298	XM27328
Alloy Composition	$62 / 36 / 2 \mathrm{Sn} / \mathrm{Pb}: \mathrm{Ag}_{8}$	(10/40 Sn/Pb	96/4 Sn/Ag
Melting Point or Liquidus ${ }^{\circ} \mathrm{C}$	179	188	221
Recommendedflow Temperature ${ }^{\circ} \mathrm{C}$.	239	250	380
Typical Application	Low Melling Point Soldering of silver and gold-plated surfaces	Generat purpose joinls rexuuiring high quality solder cream	Higher lemperature resistant joinls. Lead free. Higher joint strength than $\mathrm{Sn} / \mathrm{Pb}$

On Qualified Products List of U.S.A. Defense Supply Agency

For full information on these or any other Multicore pruducts. please write on your company's letterhead direct to: Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363

[^0]: Price 35p (Back numbers 50p, from Room 11. Dorset House. Stamford Street, London SE1 9LU.) Editorial \& Advertising offices: Dorset House, Stamford Street. London SEI 9LU.
 Telephones: Editorial 01-261 8620: Advertising 01-261 8339
 Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables, "Ethaworld. London SEI."
 Subscription rates: I year, £6 UK and overseas ($\$ 15.60$ USA and Canada); 3 years, $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House. Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281.

 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address. C. I.P.C. Business Press Lid. 1975

[^1]: * "An Unnecessary Controversy." Int. J. Elect. Enging. Educ., Vol. 12, pp. 125-8.

[^2]: For the mathematical models, voltage transfer functions are used, which include both amplitude and phase information. They are simplified by using the normalised frequency variable $s_{n}=s / \omega_{0}$, u_{0} being the nominal crossover frequency. In the text, however, " s_{n} " is replaced by " s " for the sake of clarity. The equations given are based on "maximally flat Butterworth filters", but the mathematios and results are valid for any other tilter.

[^3]: r To; Cambridge Learning Enterprises, - - -
 | FREEPOST, St. Ives, Huntingdon, Cambs PE1 7 4BR
 "Please send me
 set(s) of Digital Computer
 Logic and Electronics at $£ 4.45$ each, p\&p included
 "orset(s) of Design of Digital Systems at E6. 45 each, p\&p included
 orc.combined set(s) at $£ 9.75$ each, $p \& p$
 included
 Name
 Address
 delete as applicable
 No need to use a stamp - just print FREEPOST on the
 envelope
 WW11 _

[^4]: Price 35̈p (Back numbers 50p, from Room 11, Dorset House, Stamford Street, London SE1 9LU.) Editorial \& Advertising offices: Dorset House, Stamford Street, London SEI 9LU. Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
 Subscription rates: 1 year, $£ 6$ UK and overseas ($\$ 15.60$ USA and Canada); 3 years. $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 © I.P.C. Business Press Ltd, 1975

[^5]: -

[^6]: PLESSEY GRDUND BASED U.H.F. GROUND/AIR TX/AX FOR EXPORT ONLY OR SALE TO LICENSED USERS
 Single Channel Receiver 5820.99 .932 .5694 .
 Single Channel Transmmitter 5820-99-932-56
 Single Channel Amplifier 5820.99-932.5701
 Power Unit for Amplifier 5820.99-932-5700
 Cooler Unit 5820-99.932-3995.
 These assemble into free standing rach unit providing U.H.F.
 communications over 225.0 .
 Bit communications over 225.0 to 399.9 MHz z. the $T X /$ Amplifier unh giving 100 Watts A.F. output into 50 Ohms. Spare sub-u
 guaranteed new and unused. Full derails on request
 SOLARTRON OSCILLOSCOPES in stock CD1183. CD1212. CD1220, CD1400. P.OA and INSTRUMENTS SR151, 152. VP253. OS103.
 CO546, JX641. JX641A. VF252. JX746, LMI 420 , TO960, JX603. CO546, JX64. JX6
 JM1600, erc. P. O A.

 | HEWLETT PACKARD SAMPLING 'SCOPE HP185A. $\mathbf{C 3 2 4} \mathrm{inc}$. carr. |
 | :--- |
 | and |

 STAINLESS STEEL VACUUM CONTAINERS FOR LIGUIDS, Capacity 2 US . GALLS. FITTED WITH DELIVERY TAPS. Brand new in cantons-E25 (C. Pd. U.K)
 PANEL DISPLAY RECORDING CAMERA. Manutaciured A.G.I. Specilically tor the recording of complex instument displays on 2
 $2 / 4 \mathrm{in}$. shots. Fitted 80 mm F3 5 lens. Shutter speeds $1 / 100$. $1 / 25 \mathrm{sec}$ and time exp focusing at 175 to 50 f , in 18 steps. Aperture strgs F3.5 io F22. Prosmatuc viewtinder and facility tor viewing direct on ground glass screen Rotaing fitier atrachment Cord litm advance and
 shuter cock with septe. Bution control and electical release facility (24 V shutter cocck with septe. Buthon conirot and electrical release facility (24V
 OC) Spool hoids 40 exposures Camera may be wall mounted on brachet suphied Tripod mountus socke1 provided In wooden case Two grades
 avallable as new' Grade A $£ 35.50$ (nic) P and P and VAT) Somewhar avalable as new Grade A $£ 35.50$ (inc. P and P and VAT)
 used but serviceable Grade B E28.40 (inc. P \& P and VaT) used but serviceable Grade 8 E2a.40 (inc. P \& P and VAT). POLARAD SPECTRUM ANALYSER, SAB4W. 10 MHz to 40.88 GHz . With hanobooks P.O.A
 ETMER TRANSISTORISED A.C. MAINS STABILISER. 190.260 V 50 Hz in. Output 220.240 v (aductable) 1000 VA $17^{\prime \prime} \times 7^{\prime \prime} \times 11^{\prime \prime} £ 42.50$
 finc. car. UK Mainlands \& VAT). 8RUSM CLEVITE 2-CHANNEL RECORDER. $4^{\prime \prime}$ sprocketless chart. 8RUSSM CLEVITE 2-CHANNEL RECORDER. 4 sprockelless Clain,
 Push-bution gearbox, $1,5,25,125 \mathrm{~mm} / \mathrm{min}$. Twin intil, amphrs. Giving Push.bution gearbox,
 $10 \mathrm{mvV}-10 \mathrm{~V}$ range. variable sensy elect. zeroing. twin event markers, $13^{\prime \prime} \mathrm{x}$
 $13^{\prime \prime} \times 12^{\prime \prime} .115 \mathrm{v}, 60 \mathrm{~Hz}$ input. 882.50 (inc. carr \& VAT. $13^{\prime \prime} \times 12^{\prime \prime} .115 \mathrm{v}, 60 \mathrm{~Hz}$ input. $\mathbf{E 8 2 . 5 0}$ (inc. carr. \& VA

 Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitor's (KEMET, ITT, PLESSEY, ETC.) all avallable ex stock in manufacturing quantities
 SYNCHROS
 AND SERVOMOTORS EX STOCK

[^7]: Administration Officer
 HM Government Communications Centre
 Hanslope Park
 Hanslope
 MILTON KEYNES MK 19 7BH

[^8]: Please apply for an application form either by telephoning or-584 7011

[^9]: Cor.t. REGUNNING PLANT. New and secondhand reconditioned training, demonstration, hand reconditioned or $\mathbf{B / W}$. Barretts, Mayo Road, Croydon, Surrey, ${ }^{\text {col }}$ CRO $2 Q$. Barretts, Mayo Road, Croydon

