wireless

 Railway electronics

 Railway electronics

 Opto-electronic

 Opto-electronic p.p.m.

 p.p.m.}

The design engineers at $\mathbf{m i}$ all have to shape up to one essential fact: we consider good design to be all-important.

By good design we don't just mean an attractive outward form, however aesthetically pleasing it may be. We mean design that is right both outside andin. No cover-up jobs. No cosmetic operations. No makeshift solutions. Because whoever pointed out that beauty is more than skin
deep knew what he was talking about.
The clean, compact, uncluttered lines of today's $\mathbf{m i}$ instruments signify more than good styling.
They are the outcome of the most intensive application to the balance of form and function, of the eradication of any design that has failed to match our exacting standards.

In other words, they signify mi's conviction that correct designing means correct functioning.

MARCONI INSTRUMENTS LIMITED

LOW COST VOLTMETERS

PORTABLE INSTRUMENTS
These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{14}{4}{ }^{\prime \prime}$ scale meters, and case sizes 5 " $\times 7^{\prime \prime} \times 5^{\prime \prime}$. B types
 have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE $\& \mathrm{db}$ RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz} .-100,-90 \ldots+50 \mathrm{~dB}$, scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$.
RESPONSE : $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}_{2} \pm 0.3 \mathrm{~dB}$
from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be
set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pt}$
AMPLIFIER OUTPUT: 150 mV at f.s.d.

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d.

Acc. $\pm 4 \% \pm 1 \%$ of $f . s . d$. at $30 \mathrm{MHz},-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega$. $\pm 0 \cdot 7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES : As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with
amplitude proportional to square of input. As TM3 on L.F.

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} \ldots 300 \mathrm{~V}$
Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$.
Acc. $\pm 2 \%, \pm 2 \%$ f.s.d. $\pm 2 \mathrm{pA} . \mathrm{CZ}$ scale.
LOGARITHMIC RANGE:
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d. $\pm 500 \mathrm{mV}$ at f.s.d.
RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$

£in $£ 73$

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$,
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA, 10pA, 30pA... 1 mA (1A for TM9BP)
Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 p A . L Z$ \& CZ scales
RESISTANCERANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear
Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on LZranges.

type
 TM9A
 $£ 105$ 5:

LEVELL ELECTRONICS LTD.

Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/440 8686

Prices include batteries and U.K. delivery. V.A.T. extra Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

Cambridge
Audio
for people who listen to music Cambridge Audio Limited The River Mill

St. Ives
Huntingdon PE1 7 4EP
Telephone St. Ives 62901

THEPAKOFVERSATITI. The AVO EA113 steps forward from the AVOMETER range to take a well deserved bow.

EA113 does everything a major multimeter will do, but it does it with a high input impedance of $1 \mathrm{M} \Omega \sim$ (dc voltage ranges), a 100 kHz capability, centre zero facility, single switch range selection, overload protection and other refinements, all for a UK Trade Price of well under £95. EA113 is, of course, an Electronic multimeter.

The range of measurement and accuracy are outstanding too. Voltage from $100 \mu \mathrm{~V}$ to 1 kV ($\pm 1.25 \%$): Current from $0.01 \mu \mathrm{~A}$ to $3 \mathrm{~A}(\pm 1.25 \%)$: Resitance from 1Ω to 100 MS 2 .

Yes, digital instruments also have high impedances-Avo offer the DA114 -but when it comes to all-round versatility in the laboratory and
maintenance workshop, with many peaking adjustments to make, you can't beat analogue display. As a final bonus, the EA113 brings you two valuable time-savers. No electrical zero setting, and internal batteries which are rated to run for 10 months of continuous round-the-clock operation.

Choose your next multimeter from the British-built AVOMETER range and ring your Distributor for price and delivery. Avo Limited, Dover, Kent, England Telephone: Dover (0304) 202620.

THORN Thorn Measurement Control and Aulomation Division

Forallwhowantto knowabout electroniccircuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (I) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

Collected Circards

PWilliams / J Caruthers JHEvans JKinsler

A WIRELESS WORLD PUBLICATION

Anew book fromWirelessWorld

ORDER FORM

To: General Sales Department.
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me
. copy/copies of
Circuit Designs - Number I at $£ 10.40$ each inclusive. I enclose remittance value $£$.(cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House. Stamford Street, London SEI 9LU.

The world's most universal audio bridges

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being necessary.

Wayne Kerr's B224 and B642

The B224 is a manually operated bridge, the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

The B642 balances itself automatically. The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above 10Ω impedance and also to inductance and resistance below 10Ω. One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

NOTE: 0.1% accuracy relates to parallel component measurements above 10Ω impedance. 0.3% accuracy relates to series component measurements below 10Ω impedance

- Manualoperation only

Sinclair hi-fi

The watts...

The Sinclair range of hi-fi products. Three different ways of achieving hi-fi excellence whatever area of hi-fi you're interested in.

And the Sinclair range fact-file gives you the full run-down on all of them.

On Project 80 - the
build-as-you-please hi-fi module system.

On IC20 - the revolutionary integrated circuit amplifier kit. And System 4000 - the luxury hi-fi amplifier and matching tuner.

The Sinclair range fact-file shows you the whole story. Technical specifications. complete descriptions.. big, clear pictures... and test reports by impartial hi-fi journals.

A real bundle of goodies.

Send for Sinclair's range

 fact-file - now!See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and send it to the no-stamp-needed FREEPOST address below. We'll send you the Sinclair fact-file - giving you all you need to know about Sinclair hi-fi. And information about a few extras you're sure to find rather interesting.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ St Ives (0480) 64646

A low cost, rugged and reliable photo-electric relay/counter supplied complete with optical heads.

Supply: $110,240,440 \mathrm{~V}$ a.c. mains
Output: Model PR has 2 sets C / O relay contacts, 250 V a.c. 6 A Model PC has 6 digit resettable electromechanical counter instead

Controls: Sensitivity, make or break beam, time delay
Lamp: $6 \mathrm{~V}, 2 \mathrm{~W}$ M.B.C. Operates up to 3 metres

Details semt on request to:-
1 ?
FARNELL INSTRUMENTS LIMITED
WETHERBY • WEST YORKSHIRE LS22 4DH • TEL: 09373541 or 01-864 7433 WW—020 FOR FURTHER DETAILS

ELECTRONIC
 INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe. and internal $1 \frac{1}{2}$ volt standard size battery. Madel "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On $\mathrm{Hi}^{\prime \prime}$ measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

	MAIN AGENTS
IRELAND:	LENNOX LTD P.O BOX 212A DUBLIN 2
DENMARK:	SCANFYSIK AB 13/15 HJORRINGADE
	DK-2100 COPENHAGEN
SWEDEN:	EMI SVENSKA AB TRITONVAGEN 17 FACK
	S-171 19 SOLNA 1
NORWAY:	EMI NORSK AS POSTBOKS 42
	KORSVOLL OSLO 8
MALAYSIA:	LEC Sdn BLA P.O. BOX 60 BATU-PAHAT
SOUTH AFRICA:	PROTEA (PTY)
	38 FARADAY STREET
	JOHANNESBURG

THE TUNER YOU CAN TRUST

(W.W. APRIL/MAY 1974)

This tuner has been designed for use with high quality audio equipment. It has therefore been designed so that only high quality audio signals may be heard. There are no interstation noises, distorted or mis-tuned stations, spurious tuning responses, or other unwanted effects. There are only clear stereo programmes set against a background of silence. When the tuning lamp is out - silence; tuning lamp on - one of a multitude of receivable stations, in perfect tune, and held by powerful a.f.c.

NEW REVISED PRICES (EXC. VAT)

This tuner was published by us in the WW in April/May 1974 and is therefore the only approved kit available. Minor improvements have been made over the year, and these have been included. We also offer a complete after-sales service which guarantees you working tuner of the higheat quality.

K1-4 Main receiver board	£24.55
K5-7 Stereo decode board	£7.05
K8 Function Switches	£4.95
K9a Pre-set station unit	£13.75
K 10 Power supply unit	$£ 5.59$
K11 Cabinet and all else	£27.70
K12 Meter with drive components	£11.00
K1-12 package price	£85.00
	£9.59

U.K postage 30 p per kit, free over£ 15
£24.55
£7.05 と
$£ 13.75$
$\mathbf{~} 5.59$
£27.70
£ 11.00
ing £9.59

Ready built and tested $\mathbf{£ 1 0 2 . 0 0}$. Securicor delivery (mainland only).

OTHER ITEMS
LP1 186 front end. MC1310P decoder SBA 750 B i.f. amp. SL3046B trans array SL301B dual trans. Filter SFG 10.7 MA Coil with wire Ten turn pot 50 K Postage per item U.K
S.A.E. please for details to:

33 RESTROP VIEW, PURTON, WILTS SN5 9DG J. A. SKINGLEY \& N. C. THOMPSON

ALICE (STANCOIL LTD.)

£4.53
£3. 15
E2.95
E1.70 £1 40 £2. 95 £0. 50 $E 3.55$ CO. 10

8 mono MIC/Line Channels 4 stereo line Channels

ALICE AM 82/B
SERIES II
Modulator Continuity Mixer

CONTACT CHRIS WALDEN or TED FLETCHER on WINDSOR 51056/7

CUSTOM BUILT FOR RADIO TEE'S

GU 100 consol mounted Transcription turntable unit. Full stereo electronics + built-in cueing facility via 5 watt amplifier and internal speaker/cans. Remote or local control

TBU 11 rack mounted Telephone balancing unit

DA 6/24 six input, twenty four output distribution amplifier.
AS 3 rack mounting solid state audio switching matrix.
LDA 1 rack mounting line drive unit
TBT remote location tatkback terminal.

PPM 3 rack mounting triple PPM unit monitoring left, right and centre on stereo transmissions. PS 10 rack mounting 10 amp 24 v . power supply.
PM 1 Preview Monitor. Monitors up to 10 stereo sources at the push of a button. Output line level or cans.

ALICE BROADCASTING (STANCOIL LTD.)

38 ALEXANDRA ROAD - WINDSOR - BERKSHIRE - ENGLAND

New Course in Digital Design

Understand the latest developments in calculators,

 computers, watches, telephones, television , automotive instrumentation....Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Solf-Instruction Course in 6 Volumes 2 BooleanLogic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design 6 ComputerArchitecture

$£ 5.95$

plus 50 p packing and surface post anywhere in the world.
Payments may be made in
foreign currencies.
Quantity discounts available on request.
Total packaged weight does not
exceed 4 lb . Please allow enough extra for air mail.
VAT zero rated.
To: Cambridge Learnirig Enterprises
FREEPOST, St Ives, Huntingdon. Cambs PE174BR
-Please send me . . . set(s) of Design of Digital Systems at $£ 6.45$
each, $p \& p$ included
or set(s) of Digital Computer Logic and Electronics at $£ 4.45$ each.
p \& pincluded
or combined set $t_{\{ }^{\prime}()$ at $£ 9.75$ each, $p \& p$ included
Name
Address
delete as applicable
Ne need to use a stamp - just print FREEPOST on the envelope

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high vol tage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your own - we're always interested!

Whiteley Electrical Radio Co. Ltd Mansfield, Notts NG18 5RW, England. Tel: 062324762.

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:
Frequency range:
Output voltage:
Output source resistance:

Output attenuation:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)

Output attenuation accuracy:
Sine wave distortion:
10 volts r.m.s. max.
150 ohms unbalanced
(optional 150 ohms unbalanced, plus $150 / 600$ ohms balanced/ floating)
$0-100 \mathrm{~dB}$ (eight, 10 dB steps plus $0-20 \mathrm{~dB}$ variable)

Less than $0.002 \% 10 \mathrm{~Hz}-10 \mathrm{kHz}$
(typically below noise of measuring instrument)

Square wave rise and fall time: $40 / 60 n$.secs
Monitor output meter:
Scaled 0-3, 0-10, and dBV
$110 \mathrm{~V} / 130 \mathrm{~V}, 220 \mathrm{~V} / 240 \mathrm{~V}$
i7" $(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high \times $83 / 4^{\prime \prime}(22 \mathrm{~cm})$ deep

Price: 150 ohms unbalanced output: $£ 250$
150/600 unbalanced/balanced floating output: £300

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.

Specification:
Frequency range:
Distortion range (f.s.d.):
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands)
$0.01 \%-100 \%$ (9 ranges)
nput voltage measurement range:
Input resistance:
High pass filter:
Power requirement:
Size:
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges)
47 K ohms on all ranges
12 dB / octave below 500 Hz
$2 \times$ PP9, included
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high \times
$8^{3 / 4^{\prime \prime}}(22 \mathrm{~cm})$ deep £200

Now available in reasonable delivery time
RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ

Telephone 0272662301

Vahredio
 TRANSVERTORS

Valradio sinewave and square wave transvertors now incorporate SILICON transistors resulting in greater reliability and more stable performance at high ambient temperatures, including tropical climates

A wide selection of types are available to drive practically any equipment within the power rating.
A random selection of types

> Input Output
rice
C12/30S 12vDC $115 / 230 v 30$ watts Sine wave £40.00
C24/60S 24vDC $115 / 230 v 60$ watts Sine wave $£ 58.20$ D12/400S 12vDC $115 / 230 v 400$ watts Sine wave £206.85 D12/500T 12vDC $115 / 230 v 500$ watts Square wave $£ 110.55$ D24/150T 24vDC $115 / 230 v 150$ watts Square wave $£ 39.60$ D12/250/24 12vDC 24vDC 8A £83.10

Please send for literature WW675 All prices + VAT

> VALRADIO LIMITED

BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 7EN
Tei: 01-890 4242/4837
WW-053 FOR FURTHER DETAILS

digital arithmetic tutor

Like all it's predecessors, Limrose's Digital Arithmetic Tutor is an extremely versatile and low cost computer training aid. It is very reliable, portable and comes complete with mains operated power supplies for just £174 plus VAT.

For more information, please contact
limrose electronics Itd.
241-243 Manchestér Road, Northwich, CW9 7NE
Tel. 060641696 and 060641697.

Sinclair System 4000

The watts...

Black, beautiful, and incredibly good value. Sinclair's two selfcontained hi-fi units - in one handsome, elegant style.

A17 watts per channel amplifier and a matching FM tuner.

The amplifier offers 17 W RMS per channel output 0.05\% total harmonic distortion ... and a price tag
of around £50
The System/4000 tuner completes a handsome, hardworking system.

Engineered and designed to accompany the System 4000 stereo amplifier, the FM tuner matches it in specification and design - and at around £40 completes a system of outstanding value.

and the wherefores.

Get the full technical specifications.

See what impartial hi-fi journals thought of its performance

And read up on the rest of the Sinclair range

It's all in the Sinclair hi-fi range fact-file.
Send for Sinclair's
fact-file now!
See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and

PETITE PRECISION!
 A 12V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER

AVAILABLE IN KIT FORM OR SEPARATES
PRECISION EXAMPLE OF FRENCH ENGINEERING
Diameter 33 mm Weight 160 g Length 125 mm Torque 105 cmg RPM
approx. 3000
at 12 V DC Power 9/14V DC Batteries or AC/DC transformer

Features include:-
$\star 1 \mathrm{GHz}$ count rate with 1 Hz resolution

* 30 mv sensitivity with high overload capa-
bility
* 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to 10 k Hz

aspen
 electronics limited

18a HIGH STREET, NORTHWOOD, MIDDX

> HA61 BN

TELEPHONE NORTHWOOD 27688

GROOVAC

vacuum record cleaner

Vacuum cleaning is the best way to remove dust, especially fine dust. Now with the Groovac, vacuum cleaning is available for extracting the particles from inside record grooves which are responsible for record and stylus wear - while your record is playing.

For full details please write to:-

IEI AUDDO $\begin{aligned} & \text { Kernick Rd, Penryn } \\ & \text { Cornwall }\end{aligned}$ Cornwall, England

COWII'S Til AMCRONM600
 M600 POWER AMPLIFIER

Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring.

1350 watts DC-Coupled

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RMS over a bandwidth of DC to 20 kHz .70 volts RMS at the output terminals, very low noise and distortion. AC/DC selector switch. plug-in front panel circuit board built-in fan for cooling and the ability to connect two M600s together to double the power and output voltage, are just some of the features which place the Amcron M600 in the forefront when considering power amplifiers.
Driving shakers and vibrators, motors, and difficult speaker systems providing power for material or components testing or used as a large distribution amplifier, the M600 is equally at home.

Brief specifications

RMS power out
DC output
Power bandwidth Phase response
Phase resp
Siew rate
Damping factor (80) Hum \& noise
Hum
THD
Dimensions

750 watts into 8 ohms 1.350 watts into 4 ohms 20 amps (supply fuse limited) $D C$ to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db} 600 \mathrm{~W}$ into 8Ω $+0 \mathrm{db}-15 \mathrm{db} D C-20 \mathrm{kHz}$
$16 \mathrm{~V} / \mu \mathrm{second}$
greater than $400 \mathrm{DC}-1 \mathrm{kHz}$
greater than $400 \mathrm{DC}-1 \mathrm{kH}$
120 db below 600 Watts
20 db below 600 Watts
less than $0.05 \% \mathrm{DC}-20 \mathrm{kHz}, 600 \mathrm{~W}$ into $8 \vec{\Omega}$
$19^{\prime \prime}$ std rack, $8^{3 / 4^{\prime \prime}} \mathrm{H}, 161 / 2^{\prime \prime}$ deep. Wi. 92 lb .

MACINNES LABORATORIES LTD

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham, middlesex telephone 01-894 giai

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW- 016 FOR FURTHER DETAILS

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19' crates small size-low weight-realistic prices.

49/51 Fyide Road Preston PR1 2XQ

Fylde Electronic Laboratories Limited.

Sinclair IC20

The watts...

The Sinclair IC20 is a revolutionary new 20 watts stereo amplifier kit.

It incorporates state-of-theart integrated circuits - two monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4Ω speakers.

And the IC20 has integral short-circuit protection and thermal cut-out - it's virtually indestructible. Use it for converting your mono record player to stereo... for upgrading your existing stereo... or for improving your car radio/tape player.

Its cost? Only $£ 7.95+$ VAT!

and the wherefores.

Get the full technical specifications...

See what impartial hi-fi journals thought of its performance...

And read up on the rest of the Sinclair hi-fi range.. It's all in the Sinclair hi-fi range fact-file.

Send for Sinclair's

fact-file now!
See if the answer's here -
the information on the component you've been looking for.

Simply cut the coupon and

WW—092 FOR FURTHER DETAILS

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy with crystal controlled oscillator

Simple to use

accepts wide range of input signals with no manual tuning or adjustment

Two models available:
Type $1742^{\text {'A' BS-4847: }} 1972$ DIN 45507
CC1R 409-2 Specifications Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

RANK FLLM
EQUIPMENT
ion please address your enquiry to
Mrs B. Nodwell
Rank Film Equipment, PO Box 70
Great West Road, Brentford
Middlesex TW8 9HR
Tel: 01-568 9222. Telex 24408. Cables Rankaudio Brentfora

ROGERS

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment but with additional applications in the electronics industry in general. The equipment is of particular interest to the protessional audio engineer to the protessional audio engine
recording studios, broadcasting recording studios, broadcas authorities and
DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. Selling Price: c/w Bench amplifiers, recording and
Case $£ 175.00+$ VAT.

S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measurement of total harmonic distortion. Selling Price: c/w Bench Case £80.00 + VAT.

AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and principally for measuring low level signals in high impedance circuits. Selling Price: c/w Bench Case $£ 75.00$ + VAT.

PS1A. Regulated Mains Power Supply. Selling Price: $£ 18.50$ + VAT.

Model ' A ' Noise Generator. A portable battery operated unit designed for carrying out listening tests on loudspeakers. 'Pink' or 'White' noise can be selected and output can be continuous or burst. Output is continuously variable. Selling Price: $£ 37.50$ + VAT.
full Colour Literature describing the complete range may be had on request
ROGERS DEVELOPMENTS (Electronics) LIMITED 4/14 Barmeston Road, London SE6 3BN, England Telephone: 01-698 7424/4340

WW-030 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform). Timing - Miniature - Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks•Solenoids

Angled Relay Sockets

for international standard miniature plug-in relays fitted with printed circuit pins for mounting "in-line" on p.c.b.s.
Inward and outward facing. Reduction of spacing between p.c.b.s. in control panels. Removal of relays without removing the p.c.b.s. is facilitated.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

A member of the worldwide ZETTLER electrical engineering group. est. 1877

[^0]
S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.

SOLID MAHOGANY
CABINET per channel Stereo Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V} . \mathrm{THD}$ typ. 0.4%.

PRICE: $£ 47.95+99 p p \& p+V A T$.

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection- 70 dB . IF rejection- 85 dB . THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

> | PRICE: Mono $£ 25.46+85$ p p\&p + VAT; |
| :--- |
| With Portus-Haywood Decoder $£ 31.96+85$ p p\&p + VAT; |
| With ICPL Decoder $£ 29.73+85 p$ p $\&$ p + VAT. |

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN"
 design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99 p$ p\&p+VAT.

STEREO MODULE TUNER

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and highperformance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. 30 dB S/N mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85 p$ p\&p + VAT. Mono $£ 22.40+85 p$ p\&p+VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.) PRICE: $£ 12.88+25 p$ p\&p+VAT.
BASIC MODULE TUNER
Supplied as a printed circuit board with all components and screened Mullard LP1186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono $£ 11.11+25 \mathrm{p}$ p\&p+VAT; Stereo $£ 13.89+25 \mathrm{p}$ p\&p+VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. 0.05% @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED
PRICE: $£ 7.68+25 p$ p\&p + VAT.
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC1310. THD typically 0.3%. Separation $40 \mathrm{~dB} @ 1 \mathrm{KHz}$. PRICE: $£ 4.27+20 p$ p\&p+VAT.
PUSH-BUTTON UNIT
The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers.

PRICE: $£ 3.00+20 p$ p $\& p+$ VAT.
Please send SAE for complete lists and specifications.
INTEGREX LIMITED, Portwood Industrial Estate, Church Gresley, Bur

Sinclair Project 80

14 different hi-fi modules. Between them they cater for every variety of hi-fi set-up, from a tuner amp to a full CBS SQ quadrophonic system. The value for money's amazing. A genuine 25 W per channel quadraphonic amplifier for under $£ 80 .$.
a 12 W per channel stereo amp for around $£ 30$.

And the satisfaction's even greater! If you can handle a soldering iron, you can handle Project 80 . And if you can't... use Project 805 - the same modules but with solderless clip connections.

and the wherefores.

Take a look at some of the hi-fi systems you can build.. Get the full technical specifications.

See what impartial hi-fi journals thought of its performance.

And read up on the rest of the Sinclair hi-fi range...

It's all in the Sinclair hi-fi range fact-file.
Send for Sinclair's fact-file - now!

See if the answer's here the information on the component you've been looking for.

Simply cut the coupon and send it to the no-stamp-needed FREEPOST address below.

We'll send you the Sinclair fact-file - giving you all you need to know about Project 80, and the rest of the Sinclair hi-fi range.

Plus information about a few extras you're sure to find rather interesting.

You've plenty to gain... so cut the coupon - now!
Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ St Ives (0480) 64646

Please send me the Sinclair range fact-file immediately
Name
Address

TAKE A CLOSE LOOK

at a professional recorder that offers high performance. excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.
BIAS ELECTRONICS LTD.
01-540 8808 572 KINGSTON ROAD, LONDON SW20 8DR

WW - 033 FOR FURTHER DETAILS

WW-032 FOR FURTHER DETAILS
 Cases exira availabies for most Cases exira aveilable for most moters. but not sobid sepprately
Please write for illustrated SOLE IMPORTERS FUUK.

WW-027 FOR FURTHER DETAILS

The AVM500 gives accurate and immediate metering of airflow. The standard scale is between 0 and 30 metres/ second (70 mph). Other calibrations can be supplied at cost.
Airflow is measured by a.constant temperature bridge, supported on a lightweight probe, which is connected by cable to the meter. Operation is by battery. The AVM500 is therefore extremely quick and easy to move and instal. A recording instrument is available.
Please send details of your AVM500. I am interested in wind measurement for
Name
Position
Company
Address

U

Prosser Scientific Instruments Ltd Lady Lane Estate Hadleigh Suffolk Tel Hadleigh (047-338) 3005

POWER AMPLIFIER

120 watts RMS into 4 ohms

For full details on our range of mixers, amplifiers and light control units, contact:

ICELECTRICS LTD

15 ALBERT ROAD, ALDERSHOT

HANTS. TEL: 025228514
WW-083 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS.
Lamp housings and lens systems manufactured as standard off the shelf models or to specific design.

K. T. Manners Design Ltd.

33 Percy Street, London W 1P 9FG Telephone: 01-580 6361. Telex: 28604

FANTASTIC OFFER—DIGITAL CLOCK KIT SAVE £££s

- Fast building

Easy to follow instructions

- No knowledge of electronics required
- The most comprehensive kit and instructions you have ever seen

Now only £12.50

$+£ 1.50$ VAT \& p $\& p$
OR READY BUILT \& FULLY TESTED $E 18+£ 1.90$ VAT $p \& p$

COMET CLOCK DATA
Size $61 / 4 \times 3 \times 21 / 2$ Mains Operation $50 / 60 \mathrm{HZ}$ $12 / 24$ hour mode

Magnetic tapes Itd make the 10/2 above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at $£ 350$ for the basic 10/2.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957

CONSTRUCTIONAL KITS

Mullard CCTV Camera, P.E. CCTV Camera
P.W. Tele-Tennis, Crofton UHF Modulator Crofton VHF Modulator
Electronic Dic (Resdy Assembled) in attractive case
P.W. Electronic Organ Kit.

Further kits will be added to the range. Kits are complete, down to the last nut. including attractively finished ready drilled, painted and silk screened panels. A FREE get you going technical Back up service is avallable
A PC.B service is available for any published design at competitive prices
As well as hoiding large stocks of electronic components we are also importing a range of competitive products such as Stereo Headphones, Telephone Desk Amplifiers, Stereo 8 -track Head Cleaner and Demagnetizers. Mini Drills, etc
Full list send $121 / 2 p$ stamp on large envelope. Alternatively, call in for a demonstration of any kit.

CROFTON ELECTRONICS

124 Colne Road, Twickenham, Middlesex TV2 6 QS Tele: 01-898 1569 Telex: 934642 Cadanac LDN

WW-067 FOR FURTHER DETAILS

Naim Audio Ltd., 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746

LEIGHTON ELECTRONICS CENTRE, 59 NORTH ST., LEIGHTON BUZZARD. BEDS. LU7 7EG. Tel. (05253) 2316.

Bias oscillator blocks; AM/FM tunerheads.

TBP 23 (actual size)

EC3302 - Varicap FM. The latest varactor tuned VHF head from TOKO. FET input with AFC, and very small size. $100+\ldots f 3.20$ each.

Supply +16v

TOKO now offer a series of prebuilt oscillator blocks, in fully screened PC mounting assemblies.
Various specifications are available to suit supplies of $6-20 \mathrm{v}$, with impedances that will suit most standard heaḍs.

Frequencies $35 / 100 \mathrm{kHz}$ Erase current up to 80 mA . (into 300 ohm erase head.)

RC TOKO

EF5603 - varicap FM. MOS input, 5 tracked tun ed circuits. 100+ ...£5.85

MT3302 - FM + AM gang. A new low cost tunerhead with two gang capacitor and reduction gearing. $100+£ 3$

Varicap tuned MW AM. A new concept in MW radio with 3 stage tracking, and IC RF/IF system with a ceramic IF filter. The 'All Electric Wirsless', with the benefits of remote tuning and location of the entire AM/FM radio. The MC720 MW varicap tuner has been.specially devised to let engineers and enthusiasts evaluate this new concept Kit (PC+ all components) £8 Ready built $£ 9.95$.

EH TOKO (UK) Ltd., Shirley Lodge, 470 London Road, Slough, Berks. tel. (0753) 48444; tlx. 847185 Distributor Ambit International, 37 High Street, Brentwood, Essex. tel. (0277) 216029; tlx. 995194

QUARTZ CHRONOMETER

The range of Electro Systems and Timing
electronic chronometers is now available in kit electronic chronometers is now available in kit Send S.A.E. for full detais. 049481).
Trade and overseas enquiries welcome.

PRICES	KIT.	ASSEMBLED \& TESTED
401.4 (Hours minutes)	+38.75	¢49.40
401-6 (Hours, minutes seconds)	E43.75	£54.60
401-4.R (As 401-4, with Ni-Cd battery)	£52.50	$¢ 6370$
401-6-R (As 401-6. with Ni-Cd battery)	£57.50	£68.90
No VAT recured tol overseas orders bul add 1 Add 8\% VAT U.K only; postage and pa	icet post ded	

dUTSTANDING features df the mudel 401 digital chronometer

* One second per month accuracy at $20^{\circ} \mathrm{C}$
* 3 MHz AT cut quartz crystal used for besi possible temperature stability All versions provide security against timing inaccuracies caused by mains-borne
* Rechargeable nickel-cadmium battery versions offer not only portabifity but also protection against outright mains tailure, may be left on charge continuously
* Rugged mechanical design ensures reliability for portable use
* Large, bright and easy 10 read LED display. 24 hour or 12 hour modes optional - 220/240V mains or external battery operation 110 V version also available
* Weight 0.5 kg . Width 13 cm . depth 5 cm . height 10 cm (12 cm with stand)
* No-cost exiras include precision engineered adjustable metal stand and power unit/battery charger
* 12 -month guarantee for correctly assembled kits and ready-built chronometers Low cost Get-you-going service for kits, if required
All componenisneeded
48 Robinson Road CTRD SYSTEMS AND TIMING CD
48 Robinson Road, Loudwater, High Wycombe, Bucks., HP137BJ
Please supply
 401-6-R (U.K
Name

Included in the programme of new antennas Radio Masts are currently producing is the Model CX500 - an 'on site' paging antenna. Two versions are available, $450-470 \mathrm{MHz}$ and $158-163 \mathrm{MHz}$
The licensing authorities insist that side radiation must be kept to a minimum and it was with this point in mind that the antenna was designed to produce a downward pattern so as to cover only the immediate site
The Antenna is robustly made and fully sealed against the weather. Various mounting brackets and clamps are available for end mounting or 'off side' as shown in the photograph

RADIO
MASTS LIMITED
Pond Wood Close Moulton Park Industrial Estate Nor thampton
England
Tel. 0604-43728
Cable Address:
RAMAR, Northampton

D5 A ELECTRONICS
ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

POSTAGE PAID SHIPMENT VIA AIR MAIL

\& $1.49 \quad 3 / 3.95$

```\(\begin{array}{ll}1.49 & 3 / 3.95 \\ 2.25 & 3 / 5.95\end{array}\)
\[
\begin{array}{ll}
2.25 & 3 / 5.95 \\
2.95 & 3 / 7.95
\end{array}
\]
\[
\begin{aligned}
& 1.95 \\
& 3.50
\end{aligned}
\]
£ 0.70
```


RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 5 ohme.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)
Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 Khz)

Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mv)

Line -85 dBV measured flat (ref 100 v)
-88d BV " ${ }^{A}$ " weighted (ref 100 V)
Hear the HD250 at

SWIFT OF WILMSLOW

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Benk

ALL RADFORD SPEAKER DRIVE UNITS \& CRDSSOVERS IN STOCK
WW-073 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.

Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers.

Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street London W1V 3LE 01-437 1892/3

MEMORIES w/OATA			$\begin{gathered} \text { MIN } \\ \text { ORDER } \end{gathered}$	CALCULATORS \& CLOCKS w/DATA			
1101	256 Bit Ram Mos 1024 Bit Ram Mos	¢ 1.95		$\begin{aligned} & 5001 \\ & 5002 \end{aligned}$	Cal Chip		$\begin{array}{r} £ .1 .95 \\ 195 \end{array}$
1103		2.70			Cal Cnip		
7489	(8225) 64 Bit Pam TTL	1.50		5005	Cal Chio		2.95
8223	Programmable ROM	2.50		5311	Clock Chip		2.95
5260	1024 Bit Ram Low Power	1.95	¢. 2.5	5312	Clock Chip		2.95
LEOS					Clack Chio		2.95
MV 5020 Jumbo Red or Cliear				Data only for any of above		nip	3.95
MAN I Red 7 Seg. 270'		2.130		Refundable Against Purchase			
MAN 5	5 Green 7 Seg 270	1.75	TRANSISTORS				
MAN 6.6 Solid Seg.		2.50	2N 2219A	TO5	£ 0.37	2N 4124 T	ro92 010
9 Digit Array Fairchild 37			2N 2222	TO 18	0.15	2N 4126 T	ro92 0.10
with clear magnity ing lens		2.95	2N 2369	TO18	0.10	2N 4401 T	TO92 0.10
10\%	Discount on		2N 2905A	TO5	0.38	2N 5225	rO92 0.10
	orders over £ 10						
15\%	Discount on orders over £ 25		ALL ITE MANUFA	$\begin{aligned} & \text { S NE } \\ & \text { TUR } \end{aligned}$	$\begin{aligned} & \mathrm{BRA} \\ & \mathrm{BRGL}^{2} \end{aligned}$	ED SUB RANTEE	JECT TO

[^1]
IP IL.P. ©testronemente

Tie try is a complete momo hybrid pieamplifier, ideally sulted for both mono and stereo applications. Internally the device consists of two bigh quality moplifiers the it st comtans fiequency equalisation and gain correction, while
he second caters for tone control and
TECHN
ECHNICAL SPECIFICATION
Inputs
Magnetic Pick-up 3mV RIAA
Ceramic Pick-up 30 mv
Microphone $\quad 10 \mathrm{mV}$
100 mV
Auxilary
$47 \mathrm{k} \Omega$ ता 1 kHz
Outputs
Main output Odb (0.775 volts RMS) Active Tone Control:
reble 12 db at 10 KHz
12 db at 100 Hz
0.05% at lkHz Signal/Noise Ratio 68db
Overload Capability 40 dh on most
Supply Voltage sensitive input
PRICE £ $475+£ 1.19$ V.AT P \& P free

The HY 50 is a complete solid state hybid Hi-Fi amplifier incorporating its own high conductivity heatsum hermetically sealed 11 black epoxy iesin. Only five connce. tions are piovided: Input, output, power thes and easth

TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 85? Load Impedance $4-16 \Omega 2$
Input Sensitivity $\operatorname{Odb}(0.775$ volts RMS) input Impedance $47 k \Omega$
Distortion Less thals 0.1% al 25 walts typically 0.05
Signal/Noise Ratio Hetter than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{hHz}+3 \mathrm{db}$ Supply Voltage + 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$
PRICE $£ 6.20+£ 1.55$ V.A.T P \& P free

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 50 volts (25-0-25)
Input voltage $210-240$ volts
Size L. 70. D. 90. H. 60 mm .
PRICE £6. $25+£ 1.56$ V.A.T. P \& P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS
I.L.P. Electronics Ltd,

Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address
Signature

'Value' is an overworked and underrated word. But still the most effective way to describe Telequipment's D75 50MHz Dual Trace portable oscilloscope costing only £506.*

In more detail it is
Lightweight $\square 50 \mathrm{MHz}$ bandwidth at $5 \mathrm{mV} /$ div $\square 15 \mathrm{MHz}$ at $1 \mathrm{mV} / \mathrm{div}$3\% accuracyMixed sweepCalibrated sweep delayGated trigger \square Bright $8 \times 10 \mathrm{~cm}$ display
value Developed by engineers for engineers this newcomer from Telequipment is easy to handle and offers unprecedented value when compared with other 50 MHz instruments.
Its outstanding specification includes a wide-range dual timebase incorporating sweep intensifying, delaying, mixed sweep and single-shot facilities, an $8 \times 10 \mathrm{~cm}$ CRT operating at 15 kV , and dual-trace operation in the alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz . Don't take our word for it. Write or telephone for a full specification and a demonstration of the D75 now!

TelequipmenT <霊>

Tektronix U.K. Ltd. Beaverton House, P.O. Box 69, Harpenden, Herts.

Telephone: Harpenden 63141 Telex: 25559

wireless world

Electronics, Television, Radio, Audio

AUGUST 1975 Vol 81 No 1476

347 Not always the spice of life
348 Computers, communications and high speed railways by W. E. Anderton

354 New domestic equipment
356 Literature received
357 Peak-reading audio level indicator by S. F. Bywaters and J. E. West
362 Television - solid state and digital
365 Letters to the editor
The Blattnerphone
Controlling stage lighting
Multi-rate VAT
367 News of the month
Large area liquid crystals
Ship simulator innovations
368 Sixty years ago
369 Consumer electronics in the U.S.A.
371 Digital wristwatch -2 by D. D. Clegg
376 H.F. predictions
377 Circards 23: reference and regulator circuits by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

380 World of amateur radio
381 A 50MHz oscilloscope-4 by C. M. J. Little
386 VAT rates
387 Electronic circuit calculations simplified-3 by S. W. Amos
-391 Circuit ideas
Measuring resistance changes
Dividing pulse rates
392 New products
396 Real and imaginary by "Vector"
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

[^2]

This month's front cover shows British Railways' advanced passenger train, symbolic of the achievements being made with the help of electronic systems the subject of an article in this issue.

IN OUR NEXT ISSUE

Variable frequency oscil-
lator. Phase-locked loop design uses discrete components and provides stability by using a low-frequency control oscillator

Radiating cables. An investigation of radiating properties for localized radio coverage in buildings and city streets.

Transmitter power ampli-
fiers. Start of a series ón the design of transmitter power amplifiers for h.f. and v.h.f. mobile radio.

ibpa

When flashoveristhe danger

 Use EEV spark gaps.

Photograph courtesy of C.E.G.B.

You name it. EEV spark gaps can stop it from happening.

Our range covers any voltage from $400-40,000 \mathrm{~V}$ and handles powers up to 15 kilo joules. Types are available in glass or ceramic envelopes.

EEV spark gaps are very rugged and will work in any environment, unaffected by dust, damp or atmospheric changes. They are also compact, consistently dependable and long-lasting.

We make 2-electrode and 3-electrode types, and the whole range covers many applications including:

Flash-over protection. Crowbar protection circuits. Protection from transient phenomena. Protection circuitry for s / c drives for thermionic tubes.

Capacitor discharge circuits. Firing circuits. Relaxation oscillator circuits for gas ignition equipment. Quench circuits.TIG welding equipment.

For data and any help you need, write or 'phone EEV at the address below.

Right, GK(2400, a crowbar protection deviceand
GXU40, ior protecton circuits inground air
communications equpment.

EEVand M-OV know how.

wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429
Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515
ROGER PORT
Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

Not always the spice of life

Right from the start, the branch of technology engineers call electronics progressed faster than our powers of organization have been equipped to handle it. Every few years - and the intervals are getting smaller - some new possibility has emerged and been developed. In the last twenty years calculators, colour television, video tape recording, surround sound, various kinds of "convenience" audio tape mechanisms, noise reduction systems and others have either been invented or intensively developed.

Now workers in our kind of engineering have no lien on original thought. A high proportion of them have an interest in photography, and they may care to reflect on the number of "systems" that have evolved in recent years - 120 or 620 roll film, 35 mm cassettes (half and full frame) 127, 126, 110 "instant" cartridges, Polaroid . . . and so on. But the point to bear in mind is that they are all still with us, because there is little trouble with incompatibility. One doesn't buy "programme material" - one makes one's own.

By way of contrast, it seems unlikely that losers in the surround-sound battle will still be with us in 1985, or that there will be more than one noise-reduction system available, or that the domestic video recorder people will have more than one or two kinds of machine to offer. That is inevitable, and sensible. But what happens to all the buyers of current quad equipment or domestic video? Well, they will have to write off their $£ 500$ or so "investment" and fork out again. It's very good for business.

There is no halting change, and in spite of the cynics, change - at least in engineering circles - can often be equated with progress. But would it not be a better idea to try to reach some agreement on standards before rushing into bulk manufacture? Because, done the other way round, it is to some extent unavoidable that the eventual agreement will be biased towards the system backed by the most lavish PR campaign - not, in our experience, an infallible guide to engineering excellence.

A polished performance in a similar situation was the choice of colour television system for Europe twelve years ago. Thorough investigations were carried out by the EBU and broadcasting authorities and, although in the end some countries agreed to differ, all the arguing was done and a choice made before the confusion and not after. People had not been encouraged to lay out several hundred pounds on the wrong type of receiver and the only complication now is the standards conversion between countries, which is no problem to the viewer.

The diversification of video recording machines and the clutter of surround-sound audio equipment is an affront. In an area where the non-technical consumer is in a poor position to make a choice, he should not be bewildered by a welter of nearly, but not quite, equivalent ways of achieving his aim. Manufacturers should take warning from a correspondent on the West Coast of America, who reports that a tour of dealers revealed hardly any with stocks of surround-sound hardware. When questioned, the dealers said that the confusion in standards has stopped the public buying and that many of the demonstrators which were built when surround-sound was first produced are now being dismantled.

Computers, communication and high speed railways

On September 15, 1830 in the reign of King William IV, the history of railway signalling commenced when the Liverpool to Manchester railway was opened by the Duke of Wellington - a soldier turned politician. The signalling system consisted of railway policemen stationed a mile apart along the track, who indicated to the driver by disciplined hand signals on a time-interval basis whether the line was considered to be clear or obstructed. By night red or white lamps were used. In 1834 the first fixed signal was erected.

From then onwards there has been a steady development in railway signal engineering. It has proceeded from two-aspect to three-aspect time interval and from two-aspect to four-aspect space interval; from flags to semaphore signals; and from upper quadrant signals to multiple-aspect colour lights. Speeds have increased from the 30 m.p.h. of the Liverpool \& Manchester Railway to the present day high speed trains where moves towards a 500 km per hour train are already evident.

British Railways' 240 km per hour electric advanced passenger train (APT) with its unique body-tilting mechanism, is undergoing main-line trials. The

This article describes how the railways have been making progress in utilization of electronic systems which are now becoming more and more necessary for economy, efficiency and safety as traffic volume and speeds increase. Control and signalling for high speed trains, centralized signal-box operation, a modernized communications system and computer control for the goods fleet are all examined with an eye to the future to determine the benefits that accrue from developments in electronics.

[^3]French Societe de l'Aerotrain has designed a 180 km per hour electrically linear-motor driven air supported hover-train. They also have the "Orleans" air cushion vehicle capable of 280 km per hour. The German Federal Government is completing a test centre at Donauriad as part of its planning for a "desirable transportation system of the future". Krauss-Maffei has already demonstrated a magnetically - supported vehicle, designed for a maximum 320 km per ${ }^{*}$ hour and its Transrapid system, as it is called, is moving into a new phase with test vehicles reaching 500 km per hour on the Donauriad track.

The U.S. Government has allocated massive funds for high speed train research and several corporations are using the Colorado test facility for operational testing of high speed trains with air-cushion or magnetic suspension and utilizing linear prepulsion. In 1973 the U.S. signed an agreement with the Soviet Union to co-operate in the field of high speed transport. The Russians have a test facility at Kiev, where linear-motored monorail cars and rolling stock are on trial, as well as air-cushion or magnetic suspension. Japanese National Railways is also
experimenting with magnetic levitation and linear motors for suspension and propulsion for its second Tokaido Shinkansen line which will be needed in 1980. Its Tokaido one is already the envy of the world and has been described as the finest operating in any country.

High speed running can be achieved only with suitably designed electrical signalling systems. It has been found, however, that high average speeds on routes with many converging and diverging junctions, carrying mixed traffic, is very difficult to achieve by simply replacing mechanical signalling with electrical equipment controlled from the original signal boxes. The speed of trains and the limited view of overall operations given to each operator provides a disjointed control system and can result in very rapid build-up of delays when mishaps occur. The solution in this country has been found in centralizing control in large signal boxes having very wide areas of track under their control. Operators in these signal boxes are provided with the most modern facilities: control consoles and indicating diagrams depicting each route, track circuit, signal, switch point etc, with convenient means of setting routes; comprehensive train-describer systems which continuously display on the indicating diagram the head-codes of all trains in their correct geographical location; automatic train-identity recording printers etc; teleprinter links to adjacent signal boxes and Traffic Control offices; extensive telephone installations for communications with other signal boxes, Traffic Control Centres, station staff, shunters, train crews etc.

Typical of these new boxes, the work at Feltham represents a further step in the Southern Region's programme of using modern signalling techniques to control large sections of line from a single signal box. Forty-five boxes were replaced when Feltham came into operation at the end of last year and it now controls 351 colour light signals and 112 points in 70 miles of track in the Feltham area. The Feltham signal box is one of the thirteen which will eventually control the whole of British Rail's Southern Region.

The control room houses a five section vertical control panel of the mosaic type. The panel depicts the track layout in a diagrammatic form. Level crossing, signal and points push-button switches and lamp indicators in the line of track provide white and red lights along the track showing "route set" and track "occupied" respectively. The routes are set by the signalman using an entrance/exit operating system. Two push-button switches are operated in a sequential manner and set a route from signal to signal.

The signalling console also houses closed-circuit television monitors, used to observe the road traffic over each crossing. Remote monitoring using this system is used up to distances of 21
miles. Each control panel has a diagram showing a section of the tracks controlled from the box, with push-buttons to operate the points and signals. Trains passing along the lines are shown on the diagram by red lights, while miniature cathode-ray tubes identify each train by a code number. A computer is also used to summarize and record data being continuously fed into the signal box, which is a two-level building, the lower floor containing signalling, train-description and telecommunications equipment rooms together with workshops and stores for the maintenance of that equipment. The upper floor houses the control panel and amenities for the signalmen, traffic regulators and maintenance staff located in the signal box. Information on trains entering or leaving the signalling control area is exchanged automatically between the Feltham and adjacent signal boxes using the telecommunication cable transmission system and is transmitted to the dual computer system situated at Feltham, which controls the operation of a four-digit display on small c.r.ts mounted in the signalling control panel. Progress of the trains is checked with the signal equipment and the descriptions are transferred automatically along the line of route, advance warning of a train's progress being transmitted to adjacent signal boxes. Synchronized station clocks, public address and train departure indicators are being provided on the stations within the control area, the latter two services being controlled from the train describer equipment.

Co-ordination of traffic movements is

Interior of Feltham signal box with a close up view showing one of the five track control panels.
carried out by the Regulator who sits behind the operators and has a complete view of the whole of the control and indication panel while advance warning of train movements is provided for him on the teleprinter machines on his desk.
From this initial outline of the complexity of British Railways control and signalling systems it becomes clear that the telecommunication system must be wide in its scope of operational practices from providing a general telephone service for administration and control to facilities for data transmission for computer systems. This should enable railway management to achieve a competitive and efficient service for its customers.

Telecommunications

To appreciate the span of the operation in the U.K. ${ }^{1}$ it is necessary to delve again into the recent history of railway communication. At the time of nationalization, British Rail inherited four separate telephone systems. These had all been developed independently to provide communication within each railway company, thus offering little scope for expansion into an integrated system. Financial limitations during the early years of nationalization also hampered overall development.
In the middle sixties, the Railways Board began to realize the need for efficient communication and a careful study was made into the various aspects of setting up a satisfactory and economic system that would provide all the facilities required for a modern business organization. In 1969 the Board gave authority for work to proceed in establishing a railway-owned and maintained telecommunications network. The provision of this network is known within the railway organiza-

tion as the National Telecommunications Plan (NTP). The principal object of the plan is in providing an automatic extension-to-extension trunk-dialling telephone network between all business centres on the railway, as well as a good base for data-transmission services.

The nationwide small-diameter coaxial trunk cable routes consist of surface concrete troughing. The major part of the grid provides for either two or four tubes with a sufficient number of quadded conductors included as may be required for other purposes, the whole comprising a composite cable of the requisite size. The coaxial tubes are engineered to the relevant Post Office specified standard for the particular type of cable. They provide a bandwidth of 4 MHz per pair of tubes or 960 high-quality audio circuits, giving a transmission performance to CCITT standards. Consideration is in hand to convert some of the line systems to 12 MHz to provide for the ever increasing demand for circuit needs.

To enable compensation to be provided for attenuation loss, transistorized repeaters are inserted in the cable every 4000 m and they are housed in buried metal boxes. The repeaters are power fed from the terminal stations and main repeater stations, the power feeding points being a maximum of about 70 km apart. Speech channels have an effective bandwidth of 300 $3,400 \mathrm{~Hz}$, outband signalling provided at a frequency of 3825 Hz . The cables are sheathed with lead, aluminium or plastic to suit the particular conditions. They are also gas pressurized to provide additional security.

It is particularly important to reduce impulsive noise to a minimum to avoid any increase in transmission error rate. The methods employed to reduce any induced voltages to the limits specified by the CCITT include the use of special steel-tape armouring, which acts as an electromagnetic screen, in addition to a

Fig. 1. Arrangement of the tuned double reed unit.
high-conductivity screening sheath of aluminium and the use of booster transformers and return conductors associated with the traction-supply path. The use of pulse code modulation is becoming widespread to provide high-grade circuits over local cables.

Time division multiplex systems are used only for the transmission of information that cannot affect the safety of trains." Although it is technically possible to design t.d.m. systems that operate on a fail-safe principle, such systems are not economical in cost or efficient in utilization of the carrierchannel bandwidth. An alternative form of multiplexing is the well-known frequency-division method. In this method, a number of generators of frequencies $f_{1} \ldots f_{n}$ may be connected to a line and at distant points; receivers of $f_{1} \ldots f_{n}$ may also be connected to the line. The transmission of any of the available frequencies will operate the appropriate receiver. The principle is widely used where on/off data is to be transmitted. The method is not attrac-

Fig. 2. Basic circuit developed by ML Engineering of a fail safe solid state timer. The timer, which is accurate to better than 5% and will provide up to four minute delays in two second intervals, is protected by ML patents.
tive when large quantities of data have to be transmitted between two points; it is most useful where the individual transmitters or receivers are required at different points, for instance along the track.
If the components that determine the operating frequencies of the generator and receiver filter can be guaranteed not to deviate from their normal frequency for any reason whatsoever during the life of the equipment, it is possible to design an f.d.m. system of the necessary high standard of integrity. The remaining problems are concerned with the exclusion of all other sources of interference in the operating frequency band of the system, and a circuit design that cannot result in self oscillation and which continuously proves the correct functioning of all components.
The device chosen for frequency determination in both transmitter and receiver filters is a tuned metal rod that operates on the same principle as a tuning fork. These "reeds" are made of alloys that give them highly stable characteristics. Each reed is about 38 mm long and imm diameter. A narrow neck is formed near one end, the precise size of which determines the resonant frequency of the reed. Each reed is clamped at the end nearest the neck, with the other end free to move between the poles of a permanent magnet. The reed passes through the centre of a coil and excitation of the coil at the resonant frequency of the reed causes the reed to vibrate, or conversely, vibration of the reed will produce an electrical output at the resonant frequency at the terminals.
In both transmitters and receivers, these reed assemblies are employed in pairs (see Fig 1). Each reed and clamp is mechanically coupled to the clamp of the other of the pair. To use these reeds as receiver filters, the coil of one reed is connected to line and the coil of the

other to an amplifier with a transformer/rectifier output driving a safety relay. Both reeds are tuned to the same frequency; when an electrical signal of this frequency appears on the line, the first reed vibrates causing the second to vibrate in sympathy and produce an output on the coil that will be amplified and rectified causing the relay to operate. Consider now the effect of a signal on the line that is just outside the passband of the filter or perhaps a shock to the first coil which overstresses it to the extent of changing the natural frequency of its reed. In both instances, owing to the inefficiency of mechanical coupling, the second reed will not vibrate and the filter will become inoperative.
The passband of these reed filters is between 0.65 and 0.9 Hz . The frequency range of the whole system is from approximately 390 to 890 Hz . To eliminate the possibility of false operation by induced signals from neigh bouring power systems, channel frequencies in the bands covered by the odd harmonics of the supply frequency are not used for safety functions. This still leaves 51 available channels for full safety circuits and the remainder are available for non safety circuits such as indications. Transmitters and receivers can be arranged to transmit in either direction on one pair of wires, giving a full duplex system. Maintenance of reed equipment is simple and consists of interchanging plug-in units. Failure rates of channels are approximately 1.2% per 1000 hours.

Computers in control

The object of the Total Operations Processing System (TOPS) which started operation in 1973 is to increase the efficiency of handling of the British Rail goods fleet which will be reduced to 175,000 wagons by 1976 while the freight tonnage is estimated to increase from the present 200 million tons to 220 million tons.
International Aeradio's contribution to the programme involved the manufacture and installation of a comprehensive set of data signal processing, switching and monitoring equipment which is situated between dual IBM $370 / 165$ computers installed close to the BR headquarters at Marylebone and remote data terminals which are locat ed at the numerous freight terminals and area headquarters. The complete data communications network (which utilizes the national telecommunications network) is controlled from a monitoring console and enables controllers to monitor the performance of each of the low-speed and mediumspeed data paths.
Where circuit degradation occurs, the system enables data path re-routing to be carried out both within the main control centre and at the remote terminals.

The central processing unit requires

British Rail's mobile radio laboratory, test coach Iris, which has been equipped by the Research \& Development Division to carry out radio system survey work anywhere on the network. Its first task was to evaluate the performance of a possible system of track-to-train
communication which overcomes the loss of signal problems experienced with normal radio links, particularly in tunnels and cuttings.

View of the data processing equipment inside test coach Iris (see text).

to receive messages at the data transfer rate of 188,000 characters per second in a parallel mode. It therefore demands a large number of high-speed bursts of information over a short-distance, wide-band channel. In contrast, the field data terminals operate at a relatively slow speed, 134.5 baud, in a series mode over narrow-band long-distance links. To ensure a steady interchange of data, a series of communication multiplexers are connected between the links and the computer. The multiplexers have a multichannel input with the capability of interconnecting a number of low- and medium-speed circuits with a main wideband output to the computer.

Transmission over the long-line system is frequency division multiplex, the voice frequency signal conversion to binary code being achieved by using modem data sets situated at the ends of the line circuits. The low speed modems are frequency stockable to enable up to eight data channels per audio line to be realized. In addition, facilities are provided at remote.transmission centres to combine local data links into their allocated frequency slot in the audio band line.

TOPS is just one of two or three major systems for which there are opportunities for further development with respect to computer control in automatic route setting and train regulation. ${ }^{3}$ Another major new project, the production planning system, will be less obvious to the public as it concerns the succession of activities between the
specification by the Passenger and Freight Marketing departments of the train services to be provided and the publication of the timetables, working instructions, locomotive programmes, station platform arrangements and the hundred and one other documents necessary for the day to day running of the railway. The application of computers to this process requires a whole series of interlinked systems and the main stages will be as follows: allocation of track capacity; allocation of locomotives; allocation of train crews; and preparation of documents. In the allocation of track capacity, as an example, the computer will calculate the fastest available path within the speed restrictions imposed by the track, the nature of the train and the movements of other trains, and will display this on a v.d.u. screen or graph plotter. The timetabler will then decide whether any train should be switched to an alternative track or held at a signal to allow another to pass and sends a decision message to the computer.

The introduction of a national seat reservation system, heavily reliant on

Fig. 3. Main processor for train-borne equipment in a possible speed supervisory system. The maximum safe speed is calculated from track conditions and the driver warned if he exceeds it. If the warning should be ignored the train will automatically be brought to rest.
computer processing and information storage is a must for the smooth and efficient operation of high density, high speed passenger services in the future. British Rail seem slow to make progress in this field, but the problems are largely political rather than technical.

The essential reservation system requirements designed to meet future conditions are for equipment and procedures to handle high volumes of information and a capability for providing passengers' requirements quickly up to the latest time practicable prior to train departure. The system would not only provide the best possible customer service, but at times when demand for seats exceeds supply, would ensure that only the requisite number of reservation tickets is issued for a particular service, thus providing the essential measure of control necessary.

A computer reservation system can fulfil the basic requirements of making reservations quickly and once the customer's requirement is established at any sales point equipped with a computer terminal, issue of a reservation ticket can be effected virtually instantaneously.

The design of the proposed computer system will consist of computers at the central site, holding files of fares and inventory information, connected by telecommunication links for data transmission with computer terminals located at sales outlets. Equipment at sales points, mainly BR stations, will consist of: a keyboard, for entering details of the reservation required; a

ticket printer; and a visual display unit, which provides information to the operator.

Leaky feeders

A possible system of track-to-train communication which overcomes the loss of signal problems experienced with normal radio links, particularly in tunnels and cuttings, is under examination by BR's Research and Development Division. Several leaky coaxial cable types, each with a different braid pattern, are being tested for optimum efficiency at operating frequencies of $46,86,138$ and 460 MHz . For the tests, a 1 W signal is fed into a cable strapped to the wall of a tunnel along a stretch of test track. Signals are analyzed by a mobile laboratory, known as test coach Iris, which has been equipped to carry out radio system survey work anywhere on the network.
The sampling rate of an analogue to digital converter which accepts the received signal on board Iris is dependent on wheel-velocity so that the reception bandwidth and accuracy of information received is known and constant. A point worth noting here is that radiation from a leaky feeder is.not literally through the holes or imperfections in the outer braid. These imperfections, however, do cause an imbalance in the signal current flowing in inner and outer conductors. The result is therefore a radiated signal. Both data and speech communications can be handled and a single cable can serve a number of parallel tracks.

Two parameters are used to specify the performance of a cable: the longitudinal attenuation per unit length of a cable; and the coupling loss between the cable and antenna. For a complete definition of coupling loss, ${ }^{4}$ the arrangement of the cable, and the mobile antenna and its type, together with the distance between the two must be defined, cable attenuation in dBs being approximately proportional to the square root of frequency. For minimum attenuation and hence minimum fixed station equipment per unit length of cable the frequency should be as low as possible. Coupling loss varies with frequency; increasing by about 10 to 20 dB from 40 to 500 MHz . From this it can be seen that optimum frequencies are in the low v.h.f. region. Frequencies below 30 MHz are not really practical except in completely underground systems. Naturally propagated radio signals follow an inverse square law, where a 6 dB or four times power increase gives a doubling in distance. Cable systems follow an inverse logarithmic law and a 6 dB power increase will give a range increase of only 100 to 300 m . Power is therefore not as important a factor as with conventional radio systems. Work has been sponsored partly by the International Union of Railways (European members each contribute to different aspects of
research, BR's involvement being with leaky feeder communications) and help has been received from the Coal Board on repeater development.

Another aspect (sic) of work by BR's Research and Development Division at Derby is for a new four-aspect signalling system which could be flexible enough to provide major advances in the field of automatic high-speed train control.

The communication system consists of short stretches of an inductive loop laid between the rails and is based on the tuning-fork tone generation that has been described. The loops at present carry 160 mA but this is being reduced to 60 mA (remember that a traction rail can carry more than $10,000 \mathrm{~A}$)

The driver is supplied with visual information on the particular aspect which he is approaching and must acknowledge by pressing the appropriately lit, appropriately coloured button, otherwise the brakes are automatically applied. A separate colour display in the cab also confirms the aspect after a signal has been passed.
One major problem encountered during development was in deciding whether or not received information was valid or not, depending in which direction the train was travelling. This was overcome by an elegant application of the Poynting vector principle polarity of the vectors between magnetic and electric fields (which is sensed) depends on the relative position of the power supply.

New signalling developments

An even more advanced system under development can supply the driver with maximum speed information and also any approaching speed restrictions. Failure to comply with speed restrictions, after a short time delay, results in the brakes being automatically applied and the driving system shut down. Another system for collecting trackside information and feeding this to the train driver is by means of transponders fastened to the sleepers. As the train passes over a transponder, it sends an inductive signal to the device which absorbs some of the energy and uses it to "talk" to the train by sending back a coded message. This message can identify the train's exact location and contain other information such as the existence of any speed restrictions which might be coming up. Each transponder requires no maintenance as it uses no internal or external power supply.

Test Coach Mercury has recently been hitching a ride on Inter-City express trains to test such a system between London and Birmingham. Signals at a frequency of 150 kHz are transmitted from the coach's underfloor aerial about 18 inches above ground towards the transponders. On receipt of the signal, the transponder uses some of
the received energy to generate a $24{\stackrel{V}{ }{ }^{\circ}}^{\prime}$ d.c. supply to power the solid-state circuitry which generates a coded: 75 kHz signal which is transmitted back to the train. The code is in the form of binary coded decimal numbers. These numbers are built into the transponder at manufacture and with the availability of 80 bits for coding, the: number of combinations is high.

It will be possible to use stored speed supervision information on the train which would be read from store as the train progressed on route. In order to ensure that the store was keeping step, with the actual running of the train, uniquely identified transponders would act as position markers. Readings from them being checked against the same information from the store. Speed information would only be displayed to the driver on direct correlation.

Fail safe

Behind all developments and operations to do with railway transport whether mechanical, electrical, organizational: or whatever, there is one overriding philosophy, the prime requirement of fail-safe operation. ${ }^{5}$ The change in ${ }^{3}$ conditions that has occurred with the abolition of so many of the manual and mechanical features and their substitution by automatic electrical or electronic systems is now rapidly approaching the point where little responsibility can be counted upon from' the human element and the machine must be capable of accepting full responsibility for safety.

A definition of the term fail safe that has been offered is "a design quality of mechanical and electrical signalling equipment and of the system within which it is used, that under failure conditions will provide safety for traffic." The major contribution made by electronic developments in communications, signalling and computer control, apart from economic control of a system that is making more and more operational demands, is in the reduction of failure-rate within the bounds of the fail safe philosophy and thus providing for Britain a system that can be run with efficiency and safety.

References

1. Boura, J. "Telecommunication for British. Rail," Electronics and Power, May 16, 1974, pp. $360-363$.
2. Barker, P. J. "Train control and signalling methods," GEC Journal of Science and Technology, Vol. 39, No. 2, 1972, pp.70-75.
3. Bowick, D. M. "Computer Systems Impact on Railways," \cdot The Chartered Institute of Transport Journal, Jan. 1975, pp.179-185. 4. Cree, D. J. "Railway Radio Communication using Radiating Coaxial Cables," paper delivered at the Intex International Conference, Liege, Belgium, April 1974.
4. Hadaway, H. W. "Fail Safe," paper read at the Institution of Railway Signal Engineers, Feb. 9, 1967.

New domestic equipment

A report on innovations in and around the domestic electronics trade shows, 1975

It's bigger, better, brighter and, most importantly, more expensive - seemed to be the theme of this year's trade shows. The underlying reason for these superlatives lies in the surprising range of technical innovation demonstrated in new television sets, radios and hi-fi equipment on display.

Television

The most noticeable trend in television sets was the tendency towards period cabinets, of which examples were shown by most of the large European manufacturers, the increasing use of precision in-line tubes (p.i.l.), and a large number of remote control devices. In addition, at least four manufacturers showed examples of service aids which could be directly connected with a TV chassis, and which would show on a panel marked with block diagrams of the set circuit whether correct voltage conditions were obtained at the relevant points around the circuit. These service aids were being offered by Körting Transmare, Loewe Opta, Grundig and AEG Telefunken.

The Grundig model Color 6022 television set is a new 26 in version with rather unusual facilities. The only control externally visible is the on/off button. All remaining controls are relegated to a remote unit carrying buttons for the selection of up to 12 channels - colour, contrast, brightness, volume, sound mute and a stand-by position. The last-mentioned allows the suppression of both picture and sound, leaving mains connected to the set ready for instant turn-on when the stand-by button is once again operated.

New from ITT, is the feathertouch de luxe model 103, using the standard CVC 9 chassis, and the touch-control unit developed for the other three Feathertouch models. The model 103 has a 26 in tube, and is housed inside a teak cabinet with a tambour door.

Precision in-line tubes featured large in Körting's new 20in model which uses a chassis standardised for all three units. An additional feature provided in the 20 in p.i.l. TV set, is sockets for headphones and a connexion for external video cassette recorder.

The models AEG Telefunken introduced at their show, included a $22 \mathrm{in}, 90^{\circ}$ hybrid table model, the PALcolor 634, and a 110°, 26 in tube model, the PALcolor 743. The latter includes touch tuning up for to eight selected stations, of which the eighth station can be used alternatively for an input from a video recorder. A wired remote control unit can also be connected via a rear mounted panel socket. Two models, the PAL 783 and the 884, provide for remote control using an ultrasonic control unit and, again, an additional socket for video recorder is available on both of these sets.

Philips appear to have gone in a very similar direction to AEG Telefunken and Körting, and have introduced a new 26 in 110° colour television set, the model 585. This unit also offers touch tuning, and remote control for channel selection. A preview was also offered of the Teletext decoder forming part of a 26 in

Fig. 1. Fields produced by the convergence-magnet rings, used on the newly-adopted p.i.l. tubes, showing beam movement with ring rotation.
colour television set, and featuring page selection by thumb-wheel numerical switches. Regrettably, this set did not appear to be functioning well at the time and so no assessment of quality of the decoder could be made.
The display of products put on by Pye, included a new colour television receiver with 26 in 110° tube. In addition, two new television sets, the CT236 and the CT232, also utilised 110° tubes. The CT236 employed a high-speed warm-up tube, said to give a picture within seconds of switching on. In a separate exhibit the Pye Labgear TV. aerial equipment was displayed, including the CM7000 series of head-end amplifiers. These amplifiers are principally designed for use with wideband cable television systems, the CM7000/HE model being a high level, head-end amplifier for v.h.f./u.h.f. and providing separate gain-controllable inputs on all bands. A second amplifier, the CM7006/WR, is a double outlet repeater amplifier, again for use with wideband systems operating within the frequency range 40 MHz to 860 MHz .
Of all the innovations in television receivers shown at the trade shows, the precision in-line, slot-mask tube was the most obvious. Until now, few models have been shown or marketed here in the UK using this type of tube. Originally developed by RCA in America and reported in Wireless World in 1972, the precision in-line tube has been taken up by such companies as Thorn and Mullard, with other manufacturers adopting the design in Europe and Japan.
The principal features of the precision in-line tube reside in the mask which is

an arrangement of vertical slots instead of the conventional dot shadow mask arrangement used widely until now. In addition, the electron gun is arranged as a horizontal array in a 29 mm neck. Finally, deflection is achieved by a precision toroid static deflection yoke, in which the coils are mechanically wound, to permit individual placement of each wire into an accurate position. The yoke is permanently locked on to the tube during the manufacturing process, the position being precisely determined by automatic adjustment devices. The design of yoke and the adjustment technique adopted during the manufacturing process ensure that purity andconvergence are optimized for each individual tube. Final adjustment of static convergence and purity is achieved with the use of several ring magnets located on the neck of the tube. These ring magnets are constructed in the form of four plastics rings containing individual barium ferrite magnets. This substance has the unusual property of: having a permeability close to 1 , a valuable feature in view of the potential interaction with the yoke field, which is in close proximity. Two of the rings produce a four-pole field as shown in Fig. 1, the other two producing a six-pole field. The location and geometry of the field is shown in relationship to the three electron guns and also demonstrates the direction in which the beams are moved with rotation of the magnets.
A major advantage to be obtained from this form of combined tube assembly and yoke is that no convergence adjustment need be made on tube replacement, since all this has been factory preset. Replacement of the tube is simple and consists of removing the tube socket and e.h.t. anode connector, disconnecting the wiring to the scanning yoke and degaussing coil and also the chassis connexions to the metal degaussing assembly. The tube can then be removed and the plastic tie wraps. which attach the degaussing assembly to the ring band can be cut to release it. A replacement tube can be refitted into the degaussing assembly and the entire assembly replaced into the set quickly and simply, thus making the servicing operation cheap and rapid.

Audio and radio products

Almost all manufacturers having a foothold in the hi-fi field, and also making radio and television products, were showing additions to their range of audio and radio equipment. In some instances it was obvious that the trend was towards considerably higher priced ranges, this being justified by the buoyance of the more expensive end of the market. Typical among such manufacturers was Sony, who introduced several extremely expensive products ${ }^{\text {i }}$ called the Super Hi-Fi Range. Almost every one of these products has some technological innovation. For example, a direct drive turntable model ES4750

Fig. 2. New loudspeaker from Technics has been designed to provide as linear phase response as possible (see text).
had a cabinet made of reclaimed plastics material with the curious description of SBMC (Sony Bulk Moulding Compound).

Somewhat cryptically, the product brochure describes SBMC as a material combining toughness with a lightweight and attractive appearance and suggests that it is already known that the substance is remarkable free of resonance associated with wood and alloy constructions found in conventional turntables. It was evident however, that in turntable design, Sony have been particularly anxious to overcome some of the mechanical feedback difficulties which have been a problem with turntables in the past.

In the model PS4750 turntable, the disc is supported by a series of flexible circular rubber pads with a cup shaped cross-section 'providing a highly compliant damped suspension for the disc. The companion model direct drive turntable, the PS6750, uses a liquid-filled turntable mat with the same objective in mind. An explanation offered for this level of sophistication, by a visiting Japanese engineer from Sony was that the disc itself can vibrate in resonant models, when excited by the stylus tracing high level modulation in the recorded grooves.
A further trend towards the use of unusual materials was evidenced in the tone-arm of the PS6750 turntable, which was also made from SBMC and said to have properties which reduced low frequency howl round. It was obvious from an examination of the arm. design that some considerable reduction in effective mass had been achieved
from the use of this material. Just how the arm relates in terms of performance to the best of European arms can only be judged on closer examination. However, the Japanese have long been aware of the preference for certain arms manufactured in Great Britain, and have been occupied in a serious study of the design of suitable new arms, capable of realising a good performance with the very high-compliance cartridges available today.

During the course of the trade show it was discovered that two other manufacturers, Pioneer and Technics, are also marketing similar carbon fibre arms in Japan.

Carbon fibre formed the basis of one of the design changes in the cones and domes of the drive units of two new loudspeakers from Sony, the SS5050 and the SS8150 units. Here carbon fibre is mixed with a normal paper pulp producing a random stiffening web of threads in the pulp when the cone is shaped in the normal vacuum forming process. Despite the obvious technical achievement that was represented in these two loudspeakers, perhaps the most remarkable aspect was the price of the larger of the two units, the SS8150, which was optimistically quoted at "approximately $£ 1,500$ per pair"!

In the same price bracket was a new professional tape recorder, the TC 800-2, priced at $£ 1,200$. This machine has unusually large programme meters switchable to v.u., p.p.m. or p.p.m. hold characteristics. The input and output attenuators are step calibrated, but perhaps the most noticeable feature of all, signifying a new development in reel-to-reel tape, the bias and equalisation switching provides for ferrichrome tape.

In explanation, ferrichrome tape is of a dual layer construction, in which the
first layer coated on the base foil, consists of conventional ferric oxide formulation, followed by a thin surface layer of chromium dioxide. This type of tape technology was introduced in 1973 by Sony in Japan, as a cassette tape.

Other technical developments

Linear phase loudspeakers, or perhaps more correctly minimum phase loudspeakers, made some of the more important news at the trade shows, as far as high fidelity reproduction was concerned. Earlier this year proposals for linear phase loudspeakers had been made by Bang and Olufsen and it is now understood that these are to be released in the autumn of this year. The Bang and Olufsen units are of a relatively modest size and externally bear some similarities to other speakers on the market, inasmuch as the cabinet is of fairly conventional appearance and rests on a metal stand some 18 in or so high. However, there the resemblance to other loudspeakers ends, since removal of the front cover reveals an angled panel similar to that used by Bang and Olufsen in their earlier wall mounted loudspeakers.
Both the front and back panels of the B\&O Uni-phase loudspeakers are plastics moulded. The crossover network has been briefly described in our earlier report on the AES 50th Convention in London.

These loudspeakers were not displayed at the trade show, in fact there was little news forthcoming of them. However, shortly after the shows, telephone conversations with $\mathrm{B} \& \mathrm{O}$ revealed their intention to release the Uni-phase loudspeakers in the near future.
The linear phase loudspeakers that did make an appearance at the shows were from Technics by Matsushita and distributed by National Panasonic (UK) Ltd. These units are considerably more unusual in their appearance than those being offered by Bang and Olufsen, and are illustrated in the accompanying photograph. Little is known about how Technics achieved the minimum phase characteristics in their loudspeaker since not only is it a three unit system whereas the $\mathrm{B} \& \mathrm{O}$ is a four unit system but also, $\mathrm{B} \& \mathrm{O}$ have patent applications pending on the "filler driver" principle of obtaining phase-linearity in a loudspeaker crossover, with high rates of roll off in the base and tweeter units.

It is therefore suspected that a simple 6 dB per octave crossover unit is being used by Technics, although this would be quite surprising since it is somewhat of a reversion to techniques used by manufacturers $15-20$ years ago! Nevertheless, this type of crossover is capable of giving a minimum phase performance, provided that the drive units themselves also meet this requirement. However, using such a low rate of roll off requires drive units capable of providing a performance over a far
greater extension of frequencies than is normally encountered in modern drive units. Undoubtedly the Technics drive units are of a very high standard, and comments made by those who have heard the loudspeakers suggest that Technics have achieved a very high standard.

As yet, little is known about the importance of phase linearity in loudspeakers and for țhis reason Wireless World plans to publish an article on the subject written by the engineers involved in the development of the Babg and Olufsen product.

In conclusion, mention should be made of at least one or two of the cassette recorders seen in the Hitachi display and that of Johnsons of Hendon, marketing the Aiwa brand. The former is an interesting design, since it provides a three head function with only iwo head units. The normal record/replay head is replaced by a single unit containing two heads, a separate record head with its own gap and alongside, in the same can, is the replay head with its own gap.

The advantages to be gained from this form of construction, are that optimum gap proportions can be obtained for the two functions, instead of resorting to the compromise found in conventional two head recorders. Details have not yet been released about the structure of the head itself, which must have presented quite a considerable design problem to the Hitachi engineers.

Mention should also be made of a new head introduced into a cassette recorder by JVC. This is a Sendust type and said to have performance superior to that of its ferrite counterpart. The Aiwa cassette recorders were of interest not only because of their performance, or the fact that they have offered machines which also follow the fashion for front loading techniques, but because the method of loading and unloading revealed rather interesting features in the way the cassette is handled.
One of the two cassette recorders, mounted in a music centre, required that the cassette be posted vertically down into the front lid of the machine. The lid would then be pushed forward to close and locate the cassette. At the termination of the recording, when the eject button was pressed the lid, instead of flying open depositing the cassette in one's lap, lowered gently under the influence of an oil damping arrangement and the cassette slowly rose an inch or so out of the holder.

There were several other interesting features about this product, but regrettably lack of space permits only a mention of their other front loading cassette recorder which, when the cassette is placed in the front lip of the cassette holder, "gobbles" it up mechanically, and lowers it gently on to the transport platform. Ejection of the cassette reverses the procedure.
B.L.

Literafure
 Received

CATALOGUES
The complete 1975 list of publications and "book-kits" by the prolific Tab Books organisation is available free from Tab Books, Blue Ridge Summit, Pensylvania, U.S.A

WW401
The new Guest Distribution catalogue is now available, which covers passive components, electromechanical products, semiconductors, tools and production equipment. Guest Electronic Distribution Ltd, Redlands, Coulsdon, Surrey, CR3 2HT

WW402

PASSIVE DEVICES

A large range of transformers - power, audio, pulse, etc. - is described in a publication issued by Tridem Transformers and Electronics Ltd, Mill Stream Industrial Estate, Unit No. 8, 156A Christchurch Road, Ringwood, Hants, BH24 3SD. .

WW403
Five leaflets from Astralux describe the company's ranges of reed relays, plugs, sockets and jacks, with complete functional and dimensional information. Astralux Dynamics Ltd, Brightlingsea, Colchester, Essex CO7 0SW

WW404

EQUIPMENT

Bosch have published a new catalogue, containing full descriptions of their Blaupunkt range of car radios, cassette and cartridge record/playback units and accessories. Publicity Manager, Bosch Ltd, P.O. Box 166, Rhodes Way, Watford, WD2 4LB

WW405
A leaflet describing the Pitman Model 235 Isotope Localization Monitor (a scintillation detector and ratemeter for medical use) is available on application to Pitman Instruments, Jessamy Road, Weybridge, Surrey, KT13 8LE

WW406
A full range of transducers and instrumentation for the audio band of frequencies is described in the 1975 B \& K Short Catalogue, now obtainable from B \& K Laboratories, Cross Lances Road, Hounslow, TW3 2AE

WW407
We have received a leaflet describing the ERSA VAC 40 vacuum de-soldering tool and portable vacuum pump, which is said to be useful for either small or large holes in printed-circuit boards. Greenwood Electronics, Portman Road, Reading RG3 INE

WW408
The solid-state motor controller, Type 721, for use with d.c. shunt motors of up to $1 / 4 \mathrm{~h} . \mathrm{p}$. is described in a leaflet now obtainable from Solid State Controls Ltd, Brunel Road, Acton, London W3.

WW409

A leaflet from Moore Reed is now available, describing the range of permanent-magnet d.c. servomotors, with their performance curves. Moore Reed \& Co Ltd, Walworth, Andover, Hants, SPI0 5AB.

WW410
We have received a brochure on the range of studio colour picture monitors made by the Belgian BARCO company. Monitors and brochures can be obtained from Crow of Reading, P.O. Box 36, Reading, RG1 2NB.

WW411

GENERAL

A 12-page edition of the IBA Transmitter Pocket Guide, which contains details of 246 u.h.f. stations (existing and future), 47 v.h.f. stations and 39 independent local radio transmitters. Free from Engineering Information Service, Independent Broadcasting Authority. 70 Brompton Road. London, SW3 IEY.

WW412

Peak-reading audio level indicator

An instrument using l.e.d. opto-electronic display devices

by S. F. Bywaters, B.Sc. and J. E. West

Abstract

The instrument to be described is arranged with rise and fall times comparable to the BBC peak programme meter and to display the signal level logarithmically, so that it may be calibrated in decibels. It was considered that an opto-electronic level display offers advantages over the conventional programme meter; for example in ease of observation, an incremental column of light was thought preferable to a moving spot.

Detected peak signal levels undergo a logarithmic voltage-to-time conversion and digital circuitry is employed to process and display the resultant time function as an incremented column of light-emitting diodes. Although there is a significant amount of digital circuitry, the logic functions performed are simple and this, combined with the simplicity of the means used to obtain an accurate logarithmic display, helps to make the unit competitive in component cost to, for example, the Nel-son-Jones i.c. peak programmë meter ${ }^{1}$.
Modular construction is employed, the circuit being divided into three sections: input detectors and logarithmic convertor; digital decoding and display logic; and the system clock. This makes the system suitable for multichannel use (the clock being common to all channels). A block diagram, Fig. 1, illustrates this.

Amplification and detection

The CA 3051 (dual differential amplifier shown in Fig. 2) performs the functions of input amplification and phase-splitting. Only one of the amplifiers is needed for this, so the other may be used in a similar manner for a second channel. Bias for both amplifiers is derived from the internal diode string. Positive and negative peak detection is accomplished by taking the two phase outputs from the CA 3051 to two 748 operational amplifiers ($I \mathrm{C}_{2}$ and $I C_{3}$) and then to BCY 31 transistors (Tr_{1} and Tr_{2}) whose emitters are joined together and to the inverting inputs of the op-amps (see Fig. 3). The 748 amplifiers used with a 10 pF compensating capacitor have a higher slewing rate than the more common 741 and thus an improved h.f. performance. The use of the transistor BCY 31 obviates the need for rectifying diodes, as the transistors combine
current gain and rectification. These alloy junction transistors were chosen because they have a sufficiently high. reverse $V_{B E}$ rating to withstand the voltages encountered in this circuit arrangement. Since they are p-n-p types, the rectified voltage becomes more negative as the signal input level increases, so that charge is taken from C_{8}, and high current pulses do not flow in the supply lines. The signal rise time constant (actually the capacitor discharge time constant) is 2.2 ms , produced by R_{10} and C_{8}. The signal decay
time constant, given by C_{8} being charged $u p$ to the 10 -volt sub-rail by R_{11}, is chosen to be one second.

Logarithmic conversion
The process used for linear to logarith: mic conversion makes use of the exponential function representing the resistive discharge of a capacitor. This may be expressed as:

$$
\begin{equation*}
V_{\mathrm{t}}=V_{0} e^{-\frac{t-t_{0}}{C R}} \tag{1}
\end{equation*}
$$

where V_{t} is the voltage existing across

Fig. 2. Schematic diagram and pin connections for the CA305I.

Fig. 5. Sample and decay of a varying voltage.

Fig. 4. Capacitor discharge (see text).

Prototype, enclosed in a wooden sleeve, with a clear Perspex front panel, on which calibration markings are made, and a smoked Perspex inner panel through which the l.e.ds are mounted.
the capacitor at time t, measured from t_{0}, at which time the voltage was V_{0}. If C is in farads, V in volts, and R in ohms, then t will be in seconds. Now if $x=e^{y}$, then $y=\log _{e} x$.

Similarly, from (1)

$$
\begin{aligned}
& -\frac{t-t_{0}}{C R}=\log _{e} \frac{V_{t}}{V_{0}} \\
& \text { or } \frac{t-t_{0}}{C R}=\log _{e} \frac{V}{V}_{0}
\end{aligned}
$$

Now if we arrange that C and R are constant, we have

$$
t-t_{0} \propto \log _{e} \frac{V_{0}}{V_{t}}
$$

If we make $V_{t}=V_{\text {ref }}$ a fixed reference voltage, and vary \dot{V}_{0}, then the time interval $t-t_{0}$ is proportional to the logarithm (to base e) of the ratio of V_{0} to $V_{\text {ref }}$ and, since the decibel scale is also logarithmic, by a suitable choice of C and R it is possible to arrange for fixed increments of $t-t_{0}$ to represent precise increments (in decibels) of V_{0}.

Fig. 4(a) shows the normal exponential decay curves for a resistor and capacitor combination for two arbitrary values of $V_{0}: V_{01}$ and V_{02}. Fig. 4(b) shows the same exponential decays, but with the logarithm of V_{0} plotted on the ordinate.
In a practical system we may arrange for a sample of a varying voltage to decay to a voltage $V_{\text {ref }}$ measuring the time taken to do so by means of a digital counter. A four-bit binary counter will measure sixteen time increments, as shown in Fig. 5. It can be seen that if the sampling rate is sufficiently high, the time intervals, $t_{1}, t_{2}, t_{3}, t_{4}$ etc, will follow the envelope of the varying voltage. (As sample acquisition takes a finite time, one of the sixteen time increments will have to be used for this function, and for generating other control pulses required.).

In the detector circuits the rectified voltage has a rise time of 2.2 ms and a decay time of one second. A sampling rate of 2 kHz was thought suitable for a visual display, which for a four-bit counter defines the clock rate as 32 kHz . A 30 dB range was chosen which, using fifteen time increments (sixteen minus one for sampling and control pulses) yields a resolution of 2 dB for each clock period ($1 / 32 \mathrm{~ms}$). A 2 dB decrease corresponds to a voltage 0.7943 of its original value, hence

$$
e^{-\frac{t}{T}}=0.7943
$$

where $T=C R$, the capacitance-resistance product to achieve the exponential decay, and $t,=1 / 32 \mathrm{~ms}$, from which we obtain

$$
\mathrm{T}=0.136 \mathrm{~ms}
$$

If C is chosen to be 4.7 nF , then R is

Fig. 6. Timing sequence (see text).
nominally 28.9 kilohms (components C_{9} and $R_{12}+R_{13}$ in Fig. 3). A trimming resistor, R_{13} is provided to facilitate precise calibration.
The f.e.t. Tr_{3} is used as the sampling gate, being driven by Tr_{5} which per. forms the necessary level conversion from t.t.l. to drive the f.e.t. gate sufficiently negative to cut it off between sampling pulses. For the transistor type used, TIS 73L, the gate-source cut-off voltage can be between -4 and -10 V .

A 748 operational amplifier (IC_{4}) is used open-loop as a voltage comparator. Voltage $V_{\text {ref }}$ is established on its non-inverting input by R_{14} and R_{15}, yielding approximately -120 mV with respect to the +10 volt sub-rail (bearing in mind that the peak-detected input voltage grows more negative with increasing input level). Transistor Tr_{4} converts the comparator output swing to t.t.l.-compatible levels and drives a Schmitt NAND gate ($1 / 2 \times$ SN7413). Thus a t.t.l. level transition is obtained when the decaying voltage on C_{9} passes through the value $V_{\text {ref. }}$.
At this point it might be useful to investigate the timing sequence of the system (Fig. 6). We have an input voltage which is being continuously detected and then periodically sampled, a binary time-count being produced proportional to the logarithm of the ratio of the peak input voltage to a reference voltage. The sampling pulse is produced at a fixed moment in the measuring cycle (i.e. sixteen clock cycles) but the comparator level changes at a time in this cycle dependent on the input voltage. We require to store this time information and arrange
for it to be displayed for a fixed time in each measuring cycle, so that the l.e.d. illumination time, and hence their apparent brightness, is independent of the input voltage.

Digital display logic

The level transition from comparator IC_{4} is used to hold in a "primary" latch (SN7475) the binary count at the transition instant (see Fig. 7). This time count is transferred to the "display" latch (SN7475) during the last clock period of each measuring cycle, and the output of this latch is decoded to one of sixteen outputs by an SN74154 four line to sixteen line decoder. The 0000 time count, decoded to output 0 , corresponds to the detected voltage V_{0} being less than $V_{\text {ref }}$ and is not displayed. The SN74154 produces a "low" output for the decoded count and, using SN7407 buffer drivers, a "low" voltage is required to illuminate the diodes, so to generate a column of light instead of a spot we need the logic function:

$$
X_{r}=X_{r} \cdot X_{r+1} \cdot X_{r+2} \cdot--. X_{n}
$$

where Y_{r} is the input to an SN7407 driver, X_{r} is the corresponding SN74154 output and X_{n} 'is the SN74154 output corresponding to the highest binary count. This logic function is effected by means of SN7408 AND gates. By varying the common anode voitage to the diodes their brightness may be adjusted. If this facility is not required and the diode current is less than sixteen milliamps, the SN7407 drivers may be omitted, and the diodes driven directly from the SN7408 outputs.

Clock and control generator

The clock generator is shown in Fig. 8. The oscillator ($1 / 4 \times$ SN74132) operates at about 32 kHz , the binary time count

Fig. 7. Digital decoder circuit.

Fig. 8. Clock and control pulse generator.

being produced by the SN7493 four-bit counter. The sample and display pulses .are produced by the logic gates, with , small time constants introduced to ;avoid spikes caused by propagation ;delays.

Setting up

To adjust the 2 dB increments, it is convenient to apply a signal, setting the level so that one of the lower lightemitting diodes is just illuminated, and then increase the signal level by 20 dB , Gadjusting $V R_{2}$ until a diode 20 dB higher fup the column is just illuminated. It may be necessary to repeat the procedure 'since the two adjustments are interdependent.
Overall sensitivity is adjusted by means of the input potentiometer R_{1}. Maximum sensitivity is less than 100 mV for a fully lit column of diodes. The l.e.d. brightness may be varied by the selection of series resistance and also by the
voltage applied. In the prototypes, 560 -ohm resistors were used with a fixed 5 -volt supply and 1.8 kilohm with a variable three- to ten-volt supply. Provided that the anode voltage remains reasonably constant with change of load, altering this voltage will vary the brightness of all the diodes together. A circuit suitable for varying the brightness is shown in Fig. 9

Construction

The prototype was constructed as a two-channel system on glass-fibre printed circuit boards. Three boards were used: input stage, detection, sample and log. conversion for two channels; clock and control pulse generator; display logic (2 required, one for each channel).
The light-emitting diodes used were type TIL 209, which produce a red, diffused light. Although a switching type f.e.t. is to be preferred in the

Fig. 9. Circuit to vary the l.e.d brightness.

sampling circuit, a Texas TIS 73L being used in the prototype, it is thought that an n-channel general-purpose f.e.t. (e.g. 2 N 3819) could be used, although sampling errors may be introduced, which will become serious when transistors with a high drain-source "on" resistance are used. Wherever digital circuitry is used in conjunction with analogue circuitry, care must be taken to ensure that switching spikes are not injected into the analogue system. A possible source of trouble in this circuit was found to be the output of IC_{4} (Fig. 3), which is used as a comparator and produces fast voltage transitions of almost 15 volts at a repetition rate of almost 2 kHz . It should be ensured that the audio input is kept away from such potentially troublesome areas. In extreme cases of interference, where the fault cannot be traced to careless grounding arrangements, an input buffer amplifier may be helpful.

Acknowledgement

The authors would like to express their appreciation for the use of facilities in the Department of Phonetics and Linguistics at University College London.

Reference

1. L. Nelson-Jones, "An I.C. Peak Programme Meter, Wireless World, November 1972, p. 515.

Appendix

An alternative input circuit, useful when the high sensitivity of the present unit is not required (e.g. for line level signals at about 0 dBm), is shown in Fig. 10. It employs the well-known full-wave precision rectifier circuit, with a discrete transistor included in the second amplifier feedback loop to increase the current-sinking capability. This configuration replaces all the input circuitry in Fig. 3 up to the $100 \Omega \mu \mathrm{~F}$ $22 \mu \mathrm{~F}$ integrating time constant

Fig. 10. Alternative lower sensitivity input circuit shown within dotted lines (see appendix). The remainder of the circuit is as before in Fig. 3.

Rear view of the
p.p.m. The circuitry is mounted on three main p.c. boards.

Television - solid-state and digital

Highlights from the 9th international TV symposium at Montreux

He wore as a kind of badge of office a solid-state image sensing panel attached to his tie. It was a charge-coupled device. His office was to look after an experimental tubeless colour television camera, using three such c.c.ds, on the RCA stand at the recent Montreux international television symposium. The camera gave very passable colour pictures on a monitor, though not of broadcasting quality. The badge of office seemed to symbolize a great deal of the new technology presented at this combined conference and exhibition. Large-scale integrated circuits and devices such as the c.c.d. have brought in a whole new era of solid-state electronics and digital information processing to television broadcasting. The analogue signal as we used to know it seems to be lost in a welter of quanta, digits and logic, but all to the good, so we are told.

To return to the c.c.d. solid-state image sensor, it has some important advantages over the conventional camera tube - no image lag, no "blooming" (enabling the camera to handle bright reflections from the scene without causing "tailing" or picture smear), perfect geometry, small size, low power consumption, ruggedness and long life. The main disadvantage at the moment is poor resolution, owing to the limited number of sensing elements that can be fabricated on a panel. The RCA device, for example, has 512×320 (about 164,000) elements. However, also at the symposium M. F. Tompsett of Bell Labs described their latest c.c.d. image sensor which has about 235,000 elements and is claimed to have a resolution "compatible with commercial broadcast TV use" (It wasn't demonstrated so we couldn't judge for ourselves.) This silicon device measures $20 \mathrm{~mm} \times 16 \mathrm{~mm}-$ the imaging area being designed to be equivalent in size to the scanned area of a standard 1 -inch camera tube - and has 496 interlaced scan lines with 475 horizontal picture elements. It has been used in an experimental camera measuring 6 in x $21 / 2$ in $\times 21 / 2$ in to demonstrate the feasibility of high-resolution video-telephone systems.

The BBC Research Department has been doing some investigations into these solid-state image sensors and the head of the Department, P. Rainger, presented a paper by J. R. Sanders which surveyed their possibilities. Apart from the problem of poor resolution, he mentioned that they suffer from blemishes, poor background (dark-current irregularities) and high cost. Also, the quantum efficiency of the devices potentially above 50% over the visible spectrum - falls to only 5% at the blue end of the spectrum (450 nm wavelength). This is because the light has to pass through the electrode structure and blue light in particular suffers considerable attenuation before it reaches the silicon substrate in which the minority charge carriers are generated. One possible way round this problem is to make the substrate very thin so that the optical image can be formed directly on the rear face of the substrate.
The following table adapted from Mr Sanders' paper lists the devices that have so far been made:

Table 1 - Imaging arrays

	elements	iype	available
Bell Labs	475×496	c.c.d.	no
	220×256	c.c.d.	no
RCA	320×512	c.c.d.	yes
Fairchild	190×244	c.c.d.	no
GEC (UK)	100×100	c.c.d.	yes
	100×100	c.c.d.	no
GE (USA)	188×32	c.c.d.	yes
Integrated	644	c.c.d.	yes
Photomatrix	64×64	photodiode	yes
Reticon	50×50	photodiode	yes

In his article in the June 1975 issue J. Dwyer gave an outline of the general properties and advantages of digital techniques in broadcasting. As far as television is concerned one of the major applications of digital processing is to achieve accurate timing conversions and corrections to the signal. At Montreux, for example, probably the biggest and most advanced digital system was the IBA's standards conversion equipment DICE (Digital Intercontinental Conversion Equipment), which converts 525 -line NTSC colour
pictures into 625 -line PAL or SECAM colour pictures and also operates in the reverse direction. It was shown on the Marconi stand because this company are now manufacturing and marketing it under licence from the IBA. The system has been described in detail before. The basic idea is, of course, to take signals on one television standard, quantize and store them in digital form and then read them out of the store at a rate appropriate to the required output standard. The difference between the numbers of input and output television lines is taken care of by information interpolation techniques, extending over five lines. Digital storage is based on m.o.s. shift registers. Spatial filters of novel design are used to remove interlace between successive input fields to achieve movement interpolation, to separate luminance from chrominance components and vice versa, and to demodulate the chrominance information into I and Q components.
In a lecture on DICE, J. B. Sewter of the IBA said that it was in effect a very high speed computer making 600 million additions per second - and with input and output data rates of 85.6 and $86.4 \mathrm{Mbit} / \mathrm{s}$ respectively into and out of its 2.4 Mbit store, he thought it was possibly the fastest computer in the world.
A type of timing adjustment that is needed in a great many broadcasting situations is to improve the timebase stability of signals from the smaller and cheaper helical-scan video tape recorders. This enables these machines to be used as sources which meet the full broadcasting timebase stability requirements. In the digital timebase corrector, again the principle is to digitize the signal information from the v.t.r., store it in a digital store, remove the v.t.r. sync pulses, then to read out the stored video information at a rate determined by new reference sync pulses fed in from the broadcasting system. Also fed in from the broadcasting system is a colour subcarrier of correct frequency and phase, and this is used in the machine to obtain luminance of correct timing and chrominance of correct hue.

Typical of the latest digital timebase correctors was one shown by the fairly new British firm Quantel Ltd (see Fig. 1). This is produced in two versions, one for 525 -line NTSC or monochrome helical-scan v.t.r.s and one for 625 -line PAL, SECAM or monochrome v.t.rs. The first includes a line-by-line velocity compensator to convert high-frequency timebase errors, and also a one-line "drop-out compensator" which reinserts the correct luminance and the correct chrominance hue. In the PAL/SECAM version a two-line "drop-out compensator" ensures that correctly-phased (PAL) and correct colour axis (PAL and SECAM) colour signals are reinserted. In both versions the differential gain is 3% and differential phase 3°; the range of correction is ± 1 line; while the corrected timebase stability is $\pm 4 \mathrm{~ns}$ in a mode of operation locked to the colour burst or $\pm 25 \mathrm{~ns}$ in a mode locked to the horizontal sync pulses. The machine will automatically "clean up" incorrect field edits done on a simple v.t.r. - for example when the editing results in two even fields occurring in sequence on the tape.
Many of the digital processing systems applied to television signals sample the incoming analogue signal at a rate of three times the colour subcarrier signal, in order to quantize it as part of the analogue-to-digital conversion process. This frequency (13 MHz for the PAL system), which is in excess of the theoretically required Nyquist rate of twice the highest frequency being handled, has become accepted as a sort of standard. However, one speaker at the symposium, J. Lowry (the Canadian who "cleaned up" the Apollo 16 and 17 television pictures from the moon) strongly recommended the use of four times the subcarrier frequency. He claimed that this provides a higher signal/noise ratio (more than 2 dB better than for $3 \times f_{s c}$) a wider and flatter frequency response, improved differential gain (less than 2%) and differential phase (less than 2°), and allows precise locking on to the I and Q signals and
simple separation of chrominance and luminance. Mr Lowry described one of his own products, a timebase corrector from Digital Video Laboratories Inc, based on these principles. This uses 8-bit digitizing of the analogue video signal and has the wide range of correction of six television lines. One comment from a British speaker was that this fourtimes subcarrier sampling technique might well be advantageous for preserving the information in the new components recently added to the UK television signal for the Teletext transmissions.

When television signals are digitized, say into p.c.m. form, they do of course require channels of large information capacity or bandwidth. Within the digital processors themselves, or for short distance transmission, this is not much of a problem; but if digitized television signals are to be sent across the country by p.c.m. transmission systems, along with other services, the large amount of channel capacity they occupy in bits/second could be regarded - at least by people who don't like television - as somewhat wasteful. A certain amount of attention, therefore, is being paid to how to reduce the bit rate without impairing the picture quality. One technique is to go the opposite way to Mr Lowry and actually reduce the sampling rate to less than the theoretically required $2 \times f_{s c}$ - this is known as sub-Nyquist sampling. Theoretically it shouldn't work, but it does. Another way of reducing the bit rate is to use in place of p.c.m. a system of coding called differential p.c.m. (or d.p.c.m.) The principle of this is to take advantage of any redundancy in the picture information and only send bits when the picture signal changes (hence "differential").

Fig. 1. Digital timebase corrector shown by Quantel, for allowing small helical-scan v.t.rs to be used as picture sources for the broadcasting system.

The Institut für Rundfunktechnik at Munich has been doing some research along these lines, and $\operatorname{Dr} \mathrm{N}$. Mayer of the IRT presented some results of his studies into economical digital coding methods. The various methods he has tried and compared are: conventional p.c.m. for composite colour signals; conventional p.c.m. for composite b.f.l. signals; differential p.c.m. with sampling frequencies of three times and twice the colour subcarrier frequency; and differential p.c.m. on the separate colour components $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and Y , with and without sub-Nyquist sampling. Some of the results are shown in Table 2. It has been assumed that in practical television systems there would be several coding processes in tandem, so the experiments were conducted with three codecs (coder-decoders) in tandem. Note that, as would be expected, conventional p.c.m. results in the highest bit rate, of $106 \mathrm{Mbit} / \mathrm{s}$, while the lowest bit rate is given by d.p.c.m. with Nyquist sampling. Dr Mayer found that signal degradation due to multiple coding and decoding is very dependent on the coding system used.

The recording of video signals is still basically an analogue process, though at the last IBC in London we heard details of the BBC's digital v.t.r. (see November 1974 issue). For the moment in video recording the centre of the stage seems to be taken by the video disc, and several of these were described and/or demonstrated at Montreux the Philips VLP, the Telefunken-Decca TeD, the RCA Selectavision disc, Herr Rabe's magnetic disc, the ThomsonCSF videodisque, and - a new one to us - the Robert Bosch optical video disc. The excuse for describing this new Bosch development in a report largely devoted to digital techniques is that, like some of the others, it uses a kind of pulse modulation to impress the video signal information on the disc. An important feature of the development is that, unlike most of the video disc systems, which are playback-only for the user, it allows you to do your own

Table 2 - digital coding methods for colour TV signals

Coding method and sampling rate	Comb filter	Low-pass filter	Mixing	Suitable for colour TV system	Sensitivity to bit errors	Bit rate without error correction
composite signal $3 \times f_{s c}$	0	- 3	yes	NTSC PAL SECAM	less than d.p.c.m.	106 Mbit/s 8 bit/picture element
p.c.m. b.f.l. composite signal	1	3	yes	$\begin{gathered} \text { NTSC } \\ \text { PAL } \\ \text { SECAM } \end{gathered}$	less than d.p.c.m.	$60 \mathrm{Mbit} / \mathrm{s}$ 8 bit/picture element
d.p.c.m. composite signal $3 \times f_{s c}$	0	3	no	NTSC PAL	more than p.c.m.	$60 \mathrm{Mbit} / \mathrm{s}$ 5 bit/picture element
d.p.c.m. composite signal $2 \times f_{s c}$	2	3	no	PAL	more than p.c.m.	$53 \mathrm{Mbit} / \mathrm{s}$ 6 bit/picture element
d.p.c.m. colour signal components U,V,Y	$\begin{gathered} 3 \\ 0 \text { for } \mathrm{Y} \\ 3.5 \mathrm{MHz} \end{gathered}$	3	no	NTSC PAL SECAM	more than p.c.m.	$70 \mathrm{Mbit} / \mathrm{s}$ $5 \mathrm{bit} / \mathrm{picture}$ element
d.p.c.m. components U.V.Y sub-Nyquist	6 0 for Y 3.5 MHz	3	no	NTSC PAL SECAM	more than p.c.m.	$56 \mathrm{Mbit} / \mathrm{s}$ 5 bit/picture element

recording. However, the recording is done by a 200 mW laser, which is a rather dangerous and expensive device to have around the home, and in fact the recording system is basically intended for professional use.

The Bosch disc, about 10 inches in diameter, is made of transparent Plexiglass, on which is evaporated a thin amorphous metallic layer, actually a bismuth-selenium compound. The metallic layer is less than $0.1 \mu \mathrm{~m}$ thick (about $600 \AA$). This is rotated at $50 \mathrm{rev} / \mathrm{s}$ in front of the 200 mW argon laser, the beam of which is focussed on the metallic layer and, as a result of pulsing, the laser makes a series of small holes in it by evaporating the metal as the disc rotates. The laser moves radially across the disc and thus forms a spiral track of holes in the metallic layer over the whole of the recording surface. Writing speed is $30 \mathrm{~m} / \mathrm{s}$. The holes in the layer are "rounded slots" or "elongated circles," spaced approximately $2.5 \mu \mathrm{~m}$ apart along the track and about the same distance apart between adjacent track lines. The video signal, including PAL colour information, and the sound signal on a carrier are added and used to produce a frequency-modulated signal. This f.m. signal modulates the beam of the argon laser, by means of an electro-optical modulator, and the beam, as explained, is focussed on to the surface of the disc. Constant spacing between the disc and the focussing objective lens is maintained by an air cushion. The frequency modulation of the laser beam becomes transformed into wavelength modulation on the record, in the form of the series of holes already described.

For playback, an unmodulated laser beam (of lower power than the recording laser) is focussed on the track and maintained in position by a servo system using a 20 kHz "dither." The light is either transmitted through the holes or reflected from the metal between them, but in either case is
modulated by the moving holes and is picked up by a photo-diode and so converted back to the original f.m. signal.
The available playing time depends on the smallest usable wavelength, the track separation, the disc diameter, the maximum frequency to be recorded and the rotational speed of the disc. At 50 $\mathrm{rev} / \mathrm{s}$ playing times between 10 and 20 minutes are possible. The frequency response of the system is extremely good as can be seen from the amplitude/frequency characteristic Fig. 2. The falling response with higher frequency is the result of the recorded wavelength approaching the diameter of the playback light spot, which has a natural limit determined by the light wavelength used. There is no fixed value for the smallest usable wavelength but this depends on the noise, which rises with the reduction of the signal. A player for the Bosch disc was demonstrated in the exhibition and the pictures and test patterns reproduced on a monitor were of excellent quality. 5

Fig. 2. Amplitude/frequency response of the Bosch optical video disc recording system. Note the almost flat response up to about 6 MHz . The wavelength figures refer to the wavelength of the recorded signals on the disc.

MHz bars in a test pattern were resolved quite clearly. Obviously the extreme thinness of the metallic layer and the sharply defined holes are major factors contributing to the high quality of the pictures.

According to H. Düker, who gave a paper on the Bosch video disc, several machines are under development: a single-head playback-only type; a twohead type in which both heads work simultaneously, one recording and the other playing back; and a double-disc machine in which simultaneously both discs could be recording, both playing back, or one recording and the other playing back.

Colour systems line up: Now that we in the UK have become settled with the PAL colour television system for some years we tend to forget about the other systems which contended in the great "systems battle" of about 15 years ago. But, of course, NTSC and SECAM are still going strong in other countries, and here is a reminder of the situation:

NTSC: USA, Japan, Canada, Mexico

PAL (Already transmitting): UK, W. Germany, Belgium, Denmark, Finland, Ireland, Yugoslavia, Netherlands, Norway, Austria, Sweden, Switzerland, Brazil, Zanziba/Tanzania, Hong Kong, Thailand, Bahrein, Kuwait. (Opted): Iceland, Australia, New Zealand, South Africa, Indonesia, Malaysia, Singapore, Pakistan, Abu Dhabi, Dubai, Oman, Katar.

SECAM (Already transmitting): France, Monaco, USSR, E. Germany, Czechoslovakia, Lebanon. (Opted): Poland, Bulgaria, Hungary, Iraq, Iran, Saudia Arabia, Zaire, Egypt, Tunisia, Cuba, Haiti, Ivory Coast, Luxembourg, Morocco.

Italy and China are among the countries which have not yet decided which colour system to adopt.

Letłers to the Editor

MUSIC WITHOUT MOVEMENT

Regarding the article "Digital techniques in recording and broadcasting" by Mr J. Dwyer in the June issue, it is interesting to realize that, by using currently available computer stores, it is already perfectly feasible to make a hi fi audio recorder to play for an hour or more with no moving parts whatsoever!

Furthermore, such a recorder would have instant replay from any part of the recording and erasure of any part to the limits of one byte.

It is a fair guess that such a recorder does at this moment exist! I wonder how long it will be before reel-to-reel, cassettes and cartridges using tape are as dead as the dodo?
Ronald G. Young,
Peacehaven,
Sussex.

THE BLATTNERPHONE

I was most interested to see in your April issue a photograph of the actual Blattnerphone machine that I came to know and fear at Savoy Hill in 1931. Basil Lane quite rightly refers to the dangerous operating propensities of this machine, and as one of those who had to volunteer to handle the beast I can speak from some experience.

Apart from the motor on/off switch there were no braking facilities of any kind and the only way a whirling spool could be slowed down was to grasp the spool and hope to avoid a dangerously sharp end of tape. Nice judgement together with some courage was required to avoid a loop of tape occurring between the two drums. Failure in this endeavour usually resulted in the tape crashing down on the driving capstan with consequent breakage.
Tape was joined by soldering with a blow-lamp heated iron and careful chamfering sometimes ensured that heads were not demolished by the joins.

Editing was not then attempted but
spare pieces of tape had to be carefully conserved and this involved coiling the tape in one's hand like a clock spring. It was as well not to be disturbed in this task as accidental release of the coiled tape resulted in it exploding into a rather beautiful sphere with which one could do nothing because the ends disappeared into the interior.

Rewinding facilities did not exist and spools had to be changed over to achieve this, and an incident when a talk by Sir Oliver Lodge was reproduced backwards resulted in the quick establishment of a routine of rewinding immediately after recording.

Much useful work was done with this machine and I find it interesting to consider that my present-day cassette recorder utilises many of the principles of the early system and it is, at the same time, by no means lethal.
Gwilym Dann,
Chipstead,
Surrey.

DIGITAL FREQUENCY SYNTHESIS

The article by Ayre and Woodward in the May issue "Digital frequencysynthesis - a new approach" draws attention to the advantages of reduction of the low-frequency energy content of the output of the phase-comparator in a phase-lock synthesizer system using a low comparison frequency. Readers may be interested in my own realisation of the infinite pull-in comparator which is equivalent to the circuit of Fig. 9 and rather simpler.

The negative edges of the v.c.o. pulses and the reference pulses clock each of the two JK flip flops. Whichever pulse arrives first sets the appropriate flip flop, and subsequently a pulse arriving at the other flip flop will cause both flip flops to be reset. Thus an output is
present at one or other of the flip flops for the duration of time that one pulse is ahead of the other. These two outputs correspond to the "go up" and "go down" outputs of Fig. 9. If the two frequencies are different, the higher one will always arrive first after the first cycle, thus ensuring that the v.c.o. will move towards the correct frequency.
I show also the manner in which the "up" and "down" pulses were summed in a synthesizer I built to synthesize $144-146 \mathrm{MHz}$ in 25 kHz steps in an amateur radio mobile transceiver. The "up" and "down" pulses pull the input to the integrator either up or down via transistors tied to either supply line. Since these transistors only conduct during a correction pulse, and in the locked state these pulses are very short indeed, noise on the supply lines has virtually no effect on the v.c.o. jitter. This arrangement also allows the op-amp offset adjustment to be set so that the first pair of reference-frequency sidebands can be nulled completely. When this happens, the v.c.o. and "ref" pulses are arriving at the two flip flops at precisely the same time, and so the two Q outputs are both identical short pulses equal to the reset propagation delay, and these two short pulses cancel out in the summing stage. Higher order sidebands, which are the result of differences in the pulse shapes of the "up" and "down" pulses, can be easily removed by the loop filter. The NAND gate on the $\overline{\mathrm{Q}}$ outputs of the flip flops provides an output when the system is not locked, and this can be used to inhibit the output of the v.c.o. while channel changing.
J. P. Martinez, G3PLX,

Gosport,
Hants.

Mr Ayre replies:

The circuit put forward by Mr Martinez is similar to the basis of the system used in our article and is exactly right for the

application stated, i.e. to cover a narrow band in fairly large steps.

Our application was to cover a very wide frequency range with a much greater resolution and a very low level of unwanted frequency modulation. To this end, it was necessary to have two modes of phase locking: the coarse control, similar to the one offered by Mr Martinez, and a fine one in which the level of modulating signal is reduced to a mimimum.

Some other problems that our system was designed to overcome were the extended time to achieve lock when a comparison frequency of 100 Hz was used, and the tendency to lock onto harmonics. We also found that with such a low comparison frequency the drift rate of the integrator was critical. This led to the use of our f.e.t. gating circuit which has the effect of isolating the integrator between correction pulses. For the radio amateur application this is unnecessary, the offset null adjustment being adequate.

I hope that these comments are adequate explanation of the difference in complexity between our system and that put forward by Mr Martinez.

NOVEL CLASS B
 AMPLIFIER?

It would seem that the letter "A novel class B output?" in the April issue has been aptly titled. Although the amplifier will have a quiescent current of 15 mA , it will reproduce signals in class $A B$, with a variable duty cycle.

To see why, assume that, starting with no input, the amplifier is fed sine waves of constant amplitude. Initially, Tr_{6} will conduct for approximately 50% of each cycle, during which Tr_{7} is shut off; for most of the remaining $50 \% \mathrm{Tr}_{5}$ and Tr_{6} are switched off, with Tr_{7} conducting 15 mA . The capacitor at the collector of Tr_{7} will charge and the bias current increases. A steady state will be reached when Tr_{6} has approximately a 95% duty cycle.

If presented with music, or any other signal of fluctuating level, the duty cycle will vary, being near class B when a loud passage follows silence, and entering class A as the level decreases.

Tanj Bennett,

Churchill College,
Cambridge.

CONTROLLING STAGE LIGHTING

We recently constructed a six-way, $2.5-\mathrm{kW}$ solid state dimmer board for a local theatre. We learned a number of things about such projects, and thought your readers might be interested.

1. In general, triacs look attractive for
high-power dimmers, but are not as suitable as a pair of back-to-back s.c.rs. There are two reasons for this. First, triacs are inherently a low frequency device - above 60 Hz they may have difficulty commutating off at the end of an a.c. cycle.

This problem is compounded when incandescent lamps are the load. At low conduction angles, the resistance of the loop filament is low, and there are very large pulses of current just before the voltage passes through zero. When s.c.rs are used, each s.c.r. has a whole half cycle to commutate off.

Secondly, the problem of cooling the triac is made more difficult by the fact that all the heat is generated at one point; using two s.c.rs means that there are two hot spots which may be physically separated. This enables the use of thinner cooling fins.
2. Initially, we attempted to use a mastering system with small lamps and photoresistive cells. It was our idea to put a photoresistive cell in series with each dimmer variable resistor. A small lamp would shine on the photoresistive cell, and six of these lamps (one for each dimmer) would be connected to the master. (This scheme was suggested in two different sources which shall remain nameless to protect the guilty.)

For a number of reasons this mastering arrangement was unsatisfactory. For one thing, all the cells had different characteristics which had to be trimmed out. For another, the combination of small incandescent lamp with photoresistive cell produced an incredibly nonlinear response. For a third, the response time was in the order of $11 / 2$ seconds from the initiation of a blackout to its completion.

Finally, the characteristics of the cells tended to drift with time and temperature, requiring endless trimming sessions.

We scrapped this optoelectronic arrangement and replaced it with an all-electronic circuit which, while containing many more parts, has proven completely satisfactory.
3. The radio frequency chokes were constructed by winding 14 a.w.g. wire on $3 / 8 \mathrm{in}$. dia. $\times 7 \mathrm{in}$. long ferrite rod. Because only about half the surface area of the wire is exposed to air, the coils overheated and had to be rewound with 10 a.w.g. wire. The chokes were a considerable source of noise because the magnetic field causes the choke to shrink and expand at twice line frequency.

Fortunately, we have located a supplier who will manufacture C-core chokes which are relatively quiet, and we intend to use these in the future.
4. Because of the inrush current that occurs when an incandescent lamp is connected to the line, power switches must be substantially derated. In other words, a switch rated for 30 amps a.c. will not handle a 30 -amp lamp. A derating factor of at least ten is advisable. Since this was not practical,
master switches were connected to de-energize the thyristor firing circuit.

5 . The protection of the thristors is a particularly difficult problem. One has to choose a combination of circuit breaker and fuse that will protect the thyristor under short circuit conditions, and this means choosing a fuse that will vaporize faster than the thyristor. Unfortunately (as we found out) one cannot assume that a 25 -amp fuse will protect a 25 -amp or even a 40 -amp thyristor. The " $I^{2} t$ " rating of the fuse must be less than that of the thyristor. Motorola and General Electric both publish application notes on this subject. Ordinary (thermal) circuit breakers are far too slow to protect thyristors; magnetic circuit breakers must be used.

The most suitable form of protection is probably electronic; we intend to experiment in this area.

In conclusion, then, the building of a high-power dimmer board is not as simple as it might appear at first. To avoid some problems, it may be wise to attempt to build a number of low-power dimmers rather than a few monsters.
Peter D. Hiscocks,
Ryerson Polytechnical Institute,
Toronto, Canada.

MULTI-RATE VAT

I wonder how much longer the average amateur will tolerate the folly of the new multi-rate VAT. Since we now are expected to pay 25% VAT on electronic components - regardless of what they are used for, but rather for what they might be used in - the extra work and additional burden for the retailer has become a farce. I was told over the 'phone the other day that if I bought the. parts for an electronic clock individually, it would be subject to 25% rate, but if I bought the whole thing as a kit it would only be 8% since a clock does not come under the category of either hi-fi or television. Customs \& Exicise, as usual, have been enjoying the fog they can't tell the difference between an i.c. unit and a semiconductor. The retailer is therefore supposed to ask the customer whether the wire he wants is for household wiring (at 8\%) or for connecting his speakers (at 25%).

Might I suggest that if we write to M.P.s and the Chancellor we suggest that electronic components are all rated at 8%, and the finished goods such as television sets and radios are rated at 25%. That way we can still afford to enjoy ourselves!
John C. Nuttall,
Worthing,
Sussex.

An analysis of the VAT situation was given in the July issue, p.303. - Ed.

Stockholm's buses computerized

A computerized traffic control system for city buses is to be developed and manufactured for the Greater Stockholm Passenger Transport Company. The system allows the progress of each bus to be followed on a display screen in a traffic control room. Traffic controllers will know the exact location of each vehicle at any given moment, together with how many passengers are on board and this data will be automatically transmitted from the buses to a central computer. The new system will generate a great deal of data valuable for traffic planning and will also help to improve service to passengers. An instantaneous view of the current traffic situation means that fresh buses can be put into service as and when needed.
The order initially applies to 65 buses on five inner-city routes, though the computer to be used has a capacity for 500 buses. It is due to come into operation in 1977 and if results are satisfactory it will be extended.

TV landmark disappears

At the end of May, work began on dismantling an historic landmark in the story of television broadcasting. The $200-\mathrm{ft}$ steel aerial tower which has dominated the Hayes, Middlesex, skyline above EMI's Central Research Laboratories is to disappear. It was from here that the test pictures for the world's first regular high-definition television service were broadcast in 1935, establishing the 405 -line standard which was to remain in force until 1961. At this time the Baird system of television was strongly favoured and representations had been made to the BBC to adopt this system for public service, although the feasibility of high-definition $50 \mathrm{~Hz}, 405$-line transmission had been demonstrated by EMI in

1931 in a presentation to the Optical and Physical Society. An advisory committee was therefore set up under the chairmanship of Lord Selsdon to investigate the various methods available before advising the BBC on which to adopt.

Originally, experimental transmissions from Hayes used an aerial mounted on the roof of the research building. To increase the area of broadcast coverage, it was decided to erect the $200-\mathrm{ft}$ tower which was completed in 1936. Reception stations were established up to 40 miles distant from Hayes and the Selsdon Committee were invited to inspect the system to determine its viability for public service, compared with the Baird system. Subsequently, the BBC was recommended to transmit both the Baird system and the high-definition system on alternate weeks for an experimental period from an aerial at Alexandra Palace modelled on that at Hayes, and a photograph of this aerial was transmitted by the BBC to introduce the early news programme. The BBC's experimental broadcasts began in November 1936 and by early 1937 the high-definition system developed at Hayes was adopted.

Live stereo from Japan

The first intercontinental stereo relay to the UK took place on May 24th when BBC Radio 3 carried the final concert of the tour of Japan by the BBC Symphony

Orchestra live via satellite from Tokyo. This stereo relay was made possible by the co-operation of the Japanese Broadcasting Authority (NHK), the British Post Office and the Internal and Overseas Telecommunications Agencies in Japan (NTT and KDD).

From Tokyo the stereo signals were carried to the Japanese satellite earth station at Yamaguchi near the southern tip of Honshu island and thence to the Intelsat IV satellite which is in geostationary orbit about $35,000 \mathrm{~km}$ above the Indian Ocean. From the satellite the signals were beamed to the British Post Office earth station at Goonhilly, Cornwall, from which they were routed to the International Sound Programme Centre at Faraday Exchange in London and thence to Broadcasting House. The programme signals were distributed by the BBC's p.c.m. system to the Radio 3 transmitter network. Reception was reported to be excellent, even better than expected.

Large-area liquid crystal display

An experimental model of a liquid crystal display which measures $0.4 \times$ 0.5 m has recently been developed and is capable of a selective display of 600 alphanumeric or Japanese "Kana" characters - the system is the result of joint research carried out since 1972 by Hitachi, Dai Nippon Toryo Co and the Asahi Glass Company, of Japan.

[^4]

Liquid crystal is an organic compound having fluidity and optical anisotropy and whose transparency changes with the application of a voltage potential. Development of a large area display had been held up by the long time lag between the applied voltage and the change in transparency. The research group overcame this problem by employing what they call.a "dynamic scattering mode" and also by improving the liquid crystal material, method of panel fabrication and driving technique. In the scattering mode, the panel indicates characters by a whitening of the liquid crystal material when a voltage is applied. Possible fields for application of this large area display include computer terminals and information displays at airports and railway stations. Before commercial production becomes possible it will be necessary to apply further research on simplifying production processes as well as on the use of l.s.i. in the driving circuit.

Tower Bridge won't fall down

To ensure that the new electro-hydraulic control systems function efficiently while Tower Bridge in the City of London is undergoing modernization, pressure transducers are being connected into each of the main hydraulic loops. Reliability has always been a key
feature of Tower Bridge. An Act of Parliament states that rivercraft must always have access to the upper reaches of the River Thames. Since 1894, the two famous road spans, each weighing more than 1,000 tons have been raised and lowered by duplicated, steam powered, water hydraulic systems. In recent years these have become costly to operate and maintain and so new drive machinery with electrohydraulic controls is being installed.

In each of the four machinery rooms there will be duplicated main drive units. Signals from pressure transducers mounted in each of the drive unit's main hydraulic loop will be fed to a central control centre where one man will be able to continuously minitor the condition of the system.

Ship simulator innovations

A ship simulator suitable for the training of bridge teams including ship's officers, pilots and helmsmen has been ordered by the UK Department of Industry. The simulator is capable of providing anti-collision, navigation, pilotage and ship handling exercises for ships between 500 and 500,000 tonnes with the vessel responding correctly to wheel and throttle. The effects of tidal stream and depth of water under keel

[^5]
can also be taken into account. The manoeuvering behaviour of the vessel is governed by a computer mathematical model developed jointly by the National Physical Laboratory Ship Division and by Decca. Incorporated are wheelhouse with a bridge control console including wheel and autopilot, engine throttle, anti-collision radar, ship's telephone, radio communications, warning annunciators and chart table.

A bridge window is also provided through which can be seen the bows of the ship and lights of navigation markers and of other ships. Up to 16 lights can be shown at one time, for example eight buoys and two other ships. Engine and propeller noises and vibration are generated, varying correctly with engine revolutions. The simulator may be programmed for real or artificial exercise areas, which can be changed in a few minutes by inserting different magnetic tape cassettes. Each exercise is automatically recorded on a track plot for subsequent analysis, together with recordings of r.p.m., ship speed, rudder angle, rate of turn, drift angle and heading.

Trading boom at LECS

The 24th international London Electronic Component Show which closed at Olympia on May 16 defied the prophets of gloom and doom. Nearly 20,000 people including visitors from 61 different countries attended the show and though the overall figure is down on the 1973 LECS, trading and business conducted during the four-day event exceeded both expectation and previous records.

Sixty Years Ago

In August 1915, the "Questions and answers" column invited readers to send questions on technical and general problems that arose during the course of their work. A Mr C.J.M. of Upminster wrote to ask whether wireless telegraphists must transmit with the right hand. He said that at present he can transmit 20 words $/ \mathrm{min}$ with his left hand, but only 15 with his right. Wireless World replied - "We would strongly advise C.J.M., and any other students who have acquired the habit (very nasty) of sending with their left hand, to confine their practice to the right hand until they are able to send at a good commercial speed. Ability to send with the left hand is an accomplishment of some value when the possessor is already expert with his right hand, for on occasions where a considerable amount of traffic is being handled a change from one hand to the other may come as a welcome relief. Normally, however, all wireless work is done with the right hand, and the apparatus is arranged on the operating table in such a way that left-hand working is most inconvenient.

Well now we all know!

Consumer electronics in the U.S.A.

Chicago consumer electronics show - June 1975

The impression of this annual show is that it is a far more commercial operation than those experienced in this country, with an undercurrent of hard selling and much less emphasis on technical innovations or ideas. Such is the effectiveness of the jet age that there were few surprises at this show, a large number of the significant audio products having appeared somehow at the Festival du Son in Paris three months before.
British companies were very much in evidence, largely due to the efforts of the Federation of British Audio and the co-operation of the Department of Trade and Industry. The F.B.A. had taken a large stand in the centre of the hall and a dozen companies were represented there. Whilst the F.B.A. did everything it set out to do, it seemed sad that the exhibit stand itself was so dull It should have cost little more to compete with the visual impact of many of the adjacent exhibitors, and with products of this quality there is nothing to be shy about. Quad had a static display and were showing the new 405 "current dumping" power amplifier at a nearby hotel. Also represented were Decca Special Products, Jordan Watts, showing their full range transducer, KEF, Gale, Richard Allan, Celestion, Harrison, Neal, Lamb Laboratories, Linn Products and Keith Monks Audio.

New loudspeakers

KEF were showing for the first time a new bookshelf reference standard loudspeaker, the KEF 103 , rated at 80 W programme. A very interesting feature of this two-way system is the adjustable front panel in which the square section of the baffle holding the two drive units can be detached and relocated in any of four orientations so that optimum stereo can be obtained with either system in any position.

The engineers at Kenwood seem to have been burning a lot of midnight oil developing techniques and materials for loudspeaker design. It is very interesting that when most of their competitors are choosing to make tweeter diaphragms from beryllium or Mylar, Kenwood have chosen to make these domes from a pulp of the sweet daphne tree,
faced with titanium foil. This, it is claimed, gives the perfect piston motion. Such a tweeter is incorporated in the Model 7 loudspeaker system which also uses a $41 / 8$ in mid-range unit with a daphne-pulp dome and a 14 in base driver whose cone is made from Douglas fir pulp and stainless steel wool, a combination said to reduce cone flexing distortion! These features, along with a copper cap on the bass unit pole piece to reduce eddy distortion, ironcored cross-over inductors, metallizedfilm capacitors and a five-laminate lumber-cored cabinet construction, leave one to suppose that a great deal of care has been taken and we look forward to hearing this system.

Headphone and tweeter systems from Pioneer, based on their development of piezo-electric-treated Mylar (so-called high-polymer film) were on display. This very thin plastic material is metallized on both sides and changes its dimensions in response to a voltage applied across the film. In both the headphone and tweeter the contraction of the film is turned into useful radiating movements by pre-stretching the film over plastics foam in a full or part-full cylinder. Being nearly a pure capacitance this tweeter will handle high apparent powers and is very efficient in terms of output/volts applied.

Electrovoice were introducing their Interface A, which is a carefully engineered a.b.r. system with the a.b.r. mass-loaded and significantly larger than the bass driver. Careful dimensioning has allowed one of the more exotic alignments to be attained when used with an active equalizer supplied. This equalizer boosts the low frequency output of the amplifier by 6 dB in the region of 35 Hz and allows a response to 32 Hz from a 25 -litre enclosure with average sensitivity.

Amplifier ruling

The Federal Trade Commission introduced a ruling on claims made about power amplifiers, which became law in February of this year. One aspect of this ruling is that any power amplifier must be able to meet its specification after being pre-conditioned by a continuous sine wave drive at 30% output (both channels) at 1 kHz in an ambient of $25^{\circ} \mathrm{C}$ for one hour, followed by five
minutes at full rated power. Of course 30% output is very near the lowest efficiency of a Class B amplifier and they get very hot. An immediate result seems to be that a lot of familiar amplifiers from many manufacturers, SAE, Crown, Phase-Linear, BGW, etc, have grown blowers.
One development which is attempting to get round this is a pulse-widthmodulated (Class D) switching amplifier from Infinity Sound Systems which is rated at 250 W per channel at !ess than 0.1% distortion. Switching rate is 500 kHz and the power supply is converted to 25 kHz , so efficiency is very high and heat dissipation low. The unit is quite small, measuring 17 in by 11 in by only 3 in high. The matching preamplifier features a playback only noise reduction system using a noise-signal cross-correlation circuit.

This amplifier had a very large amount of heatsinking, roughly what would be expected for a Class B unit of the same size; however as it was obviously protected by thermal switches and claimed to run cool, it may be temperature sensitive. Probably Infinity haven't finished designing p.w.m. amplifiers yet, and this looks promising
High power amplifiers were very much in evidence and there is a wide choice in the 250 to 500 watt range. The ESS 500 A is a typical example. It is rated at 250 watts per channel at less than 0.1% distortion, with hum and noise better than 102 dB below rated output. Protection circuits are quite complex and they include thermal dissipation reduction and speaker protection. Of course there are many larger amplifiers, and companies such as Crown, BGW and Cerwin-Vega all make units that can put out 2000 watts or more. Only one amplifier was seen using the new f.e.t. output transistors: this was the Yamaha B-1 and it was rated at 180 watts per channel. This company had one of the most elaborate preamplifiers at the show and the features included all-f.e.t. circuitry, dual reading VU meters, six-position phono impedance matching and a built-in signal generator giving a choice of four frequencies plus pink noise. The Lux company had an interesting preamp too, and its double
cascode transistor input stage could handle 400 mV with a nominal phono sensitivity of 2 mV . It also boasted a Class A push-pull output stage, midrange tone controls, and a choice of bass and treble turnover frequencies.

A low noise pre-amplifier from Burwen features active cartridge termination - this is to give lower noise, claimed to be 77 dB below 2.5 mV . Also newly out was the Burwen extender equalizer EQ 3200 which is a well thought out programme equalizer with carefully chosen band filters below 150 Hz and above 3 kHz to allow maximum equalization of room emphasis. The noise-curative dynamic noise filter DNF 1201 by the same company was demonstrated and was very effective on noisy programme: this machine was a consumer version of the Burwen system of fast-response, low-pass-filter noise reduction and sells for about $£ 100$.

Tape recorders

There were many new tape recorders on show. The frequency response of a new Sony open-reel machine was only 2 dB down at 47 kHz so it will soon be possible for enthusiasts to tape their CD-4 records. Naturally, this machine is not cheap but improvements tend to find their way into less expensive equipment sooner or later. In any case, one of the reasons for the extended high frequency response is the use of the hybrid Ferri-chrome tape, now obtain: able in open-reels. But TDK have just announced a new tape using a finegrain ferric oxide and cobalt ion formulation which, they say, is superior to both chrome and Ferri-chrome. And so it goes: one can only hope that ths tape battle will not lead to a proliferation of equalizing controls. Already the majority of the new cassette decks have provision for low-noise, CrO_{2} and Ferri-chrome. Nearly all have built-in Dolby systems (one, a Sony model costs only $\$ 150$) and the more expensive models have monitoring facilities, variable speed control and all kinds of gadgets. Several use extended range VU meters, in other words a semi-logarithmic scale which permits readings down to -40 dB , a most useful feature.

Two interesting cassette recorders caught the eye. The Yamaha TC800GL, with an attractive appearance by Mario Bellini, offers all the usual facilities and, in addition, a memory rewind and a + 3% speed control for fine tuning of pitch. The other is a front-loading machine from JVC, the CD1960, featuring the automatic noise-reduction system and the new sendust alloy heads developed by JVC. JVC say this is a third-generation head material which offers at least twice the maximum flux density possible with Permalloy and the hardness of ferrite. lt is also much more elastic than ferrite and so does not tend to chip or crack in the way that ferrites do.

A very interesting development in tuners from Kenwood is the Model 700 T . It combines a $1.8 \mu \mathrm{~V}$ IHF sensitivity, distortion less than 0.2% and 100 dB image rejection, a synthesized local oscillator with a linear scale pointer display of frequency - probably the first chink in the digital armour. After all, there is no reason for having to use digital frequency readout just because it can now be done; in fact, the analogue display is often much more useful and acceptable. The synthesizer system locks in 200 kHz steps in accordance with the f.m. channel spacings, giving high "resettability" and long-term stability of 0.00024% to a tuner of conventional operation. The same tuner has a pulse-noise blanking system and a good a.m. section.

Statistics show that over $6,000,000$ Citizens Band radios are now in use in the USA and that one car out of 33 is so equipped! Apparently lorry drivers are enthusiastic users but anyone or almost anyone can get a FCC licence. There are 23 channels in the allotted 27 MHz band and the cheaper hand-held models are very suitable for campers, hikers and boating people. If the output is less than 100 mW no licence is required. So there was a great variety of CB radios on show and most of the companies concerned also make scanning receivers for the police bands. The majority use crystals but some of the more expensive use a digital frequency synthesizer. An example is the Optiscan which employs an optically scanned card to offer a selection of up to 16,000 scanned frequencies in the 30 MHz to 510 MHz bands.

More than 40 companies showed calculators ranging in price from $\$ 10$ to print-out units costing $\$ 200$ or more. A year ago it was said in jest that we would soon have $\$ 10$ calculators but one might ask what would one get for that money? Well, the Novus 600 offers a 6 -digit, 4 -function facility with automatic add, subtract, multiply and divide with a 2 -place decimal setting. Commodore has a new model with algebraic logic, seven-digits and floating decimal at $\$ 9.95$. Alco make a similar model, now available on the U.K. market. It measures $7 \frac{1}{2}$ inches square by 1 inch deep, with a cutout for a handle in one corner. The fancy plastic case is decorated with Schoolteacher Mickey Mouse and the model is called Mickey Math - what else? Litronix had a new model which features a floating decimal, square, percent, reciprocal and automatic constant with full accumulating memory. After 15 minutes it shuts itself off, and it costs $\$ 29.95$. Another model, the 2270 , performs five statistical functions: arithmetic mean, variance, standard deviation, sum of x and sum of x^{2} with square root and full accumulating memory. all for $\$ 39.95$.

Quadraphonic sound does not seem to generate the excitement it did a year or two ago. In a way it has come of age, and it is accepted as viable medium with many advantages over stereo for those who want to pay the price. A special Quad-a-Rama combined demonstration affair was always well attended and there were a great number of quadraphonic receivers to be seen. Onkyo are still the only makers of a model with automatic CD-4 to matrix switching, which was surprising as this seems such a logical (sorry!) thing to do. The standard practice is to provide decoding for both CD-4 and SQ, with Sansui and one or two others giving a choice of QS as well. There must be well over $500 \mathrm{f} . \mathrm{m}$. stations now broadcasting matrix records and many are equipped with Sansui QS or CBS-Sony SQ encoders. Dealers' estimates of their quadraphonic sales vary from 5% all the way up to 50%. In general, those who take the trouble to demoristrate, and demonstrate properly, get a high percentage of sales.

There were countless watches available, all in the same sort of format as a conventional mechanical watch, the basic differences being concerned with finish and the choice of l.e.d. or liquid crystal displays. It would seem to be a precarious time for all concerned in watches, particularly if prices take a dive in the way that calculators have over the past year. The l.e.d. watches all have a switch to activate the display for a short time, hence saving the battery: it seems a pity that one needs two hands to tell the time on these (no pun intended).

Television set sales are down 30% in 1975 so far but audio components are up 10%. Food for thought here. . Projected TV sales for 1975 vary between 7 and $71 / 2$ million sets compared with $9^{1 / 2}$ million in 1973. Mortek. were demonstrating a three-dimensional TV receiver, using a closed circuit camera. The viewing distance was quite critical, being about plus and minus one inch, but it was stressed that the model was a prototype and that the optimum distance of 18 inches from the tube would be suitable for medical and industrial applications.

This report was compiled from contributions by (;. W'. Tillet and J. R. Stuart.

Digital wristwatch

2-Construction

by D. D. Clegg

As mentioned in the introduction to this article, this watch was designed around a specific empty wristwatch case, Type 155-72. This case was chosen because it is fitted with two push buttons, which would have been difficult to engineer on a plain case and, although its diameter is not greater than most gent's watches, it is much deeper. Supplied with the case is a brass ring which forms the main framework of the module, which is assembled as a "sandwich" of three thin printed circuit boards with cut-outs for the components so that much of their depth is taken up in the p.c. boards.
The module is divided into two sub-units, connected by three flying leads. The front sub-unit comprises the display and the main logic i.c. assembled into the brass ring, while the rear part contains the complete oscillator circuit and the three mercury batteries. The batteries are held in place by a perspex block (the battery block) and the battery connexion clips are kept clear of the back of the case by a perspex spacer (the rear spacer block).

Printed circuit boards

The printed circuit boards are shown in Fig. 10. These boards will be supplied by
the manufacturer on a single piece of $1 / 32 \mathrm{in}$, loz copper, epoxy glass material and are undrilled and uncut to keep the price down. The cost of tooling-up to produce small quantities of completed boards to the required accuracy would certainly double, and more than likely triple the total cost of a set of boards.
The boards should be cut out oversize with a small saw and then filed to the exact size with a fine jeweller's file. They should be cut to just inside the copper delineating circle. The printed circuit boards are gold plated and great care should be exercised during filing so as not to scratch the surface. This is particularly important on the display board. If necessary during the filing process the surface can be protected by a layer of self adhesive tape. The cut-outs can then be filed out until the copper, shorting the component contact pads, is removed. This should be checked with an ohm-meter because even a very small whisker of copper left

Fig. 9. Logic and oscillator board wiring. The crystal and R_{I} are mounted above $R_{3} I C_{1}, R_{2}$ and C_{1} as shown.

across two pads will cause incorrect operation of the watch and can prove very difficult to trace after assembly. It is important also to check that the components will fit into the cut-outs provided for them. Again, this is particularly important on the display board, where not only the size should be checked, but also the orientation of the display. Once the watch is assembled, if the display is mounted at even quite a small angle to the horizontal, it will be very noticeable.

All of the components are mounted on the copper sides of the printed circuit boards; their location can be seen in Fig. 9. The only holes drilled in the boards are the screw holes (lettered A to E in Fig. 10) and the two arcs of holes at the periphery of the display and main logic boards.

The main logic and display boards are mounted back-to-back (plain sides together) to form a double-sided board, the through connexions being made by short pieces of wire through these two arcs of holes.

Before assembling these two boards together, check that they are the correct way round, i.e. the switch cut-outs on the two boards are at the

same side. To start with, wire only two of these connexions, one at the top and one at the bottom, allowing the two boards to be accurately aligned before the others are wired. They should be wired with thin, tinned copper wire of about 34 or $36 \mathrm{~s} . w . g$. The wire should be bent over on both sides of the board(s) and soldered with only the absolute minimum of solder. The solder must not protrude more than 0.5 mm above the surface of the boards; if necessary file these connexions to reduce these solder spots to this height.

Component fabrication

If the specified case is purchased, then it will be supplied with a brass ring. Its dimensions should agree pretty well with those given in Fig. 12A although the height and width of the switch clearance cut-outs may need to be increased. Holes "J" will not be present and should be drilled with a 0.58 mm drill (number 74) and tapped 16 BA . They are then countersunk slightly to suit the 16BA screws used (see Fig. 13). If the specified case is not purchased then the brass ring can quite easily be fabricated from two 0.5 mm thick strips of brass; soldered together so that the joins do not coincide.

Fig. 12G shows the faceplate and Figs.
$12 B, C$ and D give details of the battery clips, contact bridge and the switch contacts. In the author's prototype the faceplate was made from a piece of printed circuit board, bright nickel plated, which had the author's name etched in it. The faceplate described here is very much cheaper and any decoration can be stencilled on or added with Letraset.
When assembling the faceplate, the tapped blocks should be drilled and tapped before being glued to the faceplate proper. To prevent glue frcm blocking the holes they should be filled with wax or plasticine. Before the glue sets it should be checked that the holes "K" line up with the holes "D" and "E' in the display board.

The battery clips, contact bridge and switch contacts are made from 0.125 mm thick beryllium copper, gold plated. The author "rescued" some contacts from an old relay to make these components in the prototype.

Fig. 12 F shows the battery block which can be made from an offcut of 1/sin (3.175 mm) black perspex and reduced to the required thickness of 2.7 mm with abrasive paper. The best way to start making this component is to file out a 29 mm diameter disc. The positions of the tapped holes "F" can

Fig. 10. The three p.c. boards as supplied. Holes on the arc of connexions are 0.5 mm , countersunk on plain side. Hole A is 1.5 mm ; holes B are 0.9 mm and C is drilled 0.9 mm , counterbored 1.5 mm to a depth of 0.3 mm on plain side.

Fig. 12. Mechanical information.

Fig. 11. Display connexions.

then be marked through from the oscillator board. The correct size to drill these holes for tapping 14 BA is 0.7 mm , the nearest numbered drill size being No. 70. The battery holes should be drilled out undersize and filed to the 7.9 mm diameter required. Do not take this measurement from an actual cell, since the manufacturer's data gives the diameter of these cells as being between 7.6 and 7.87 mm , and if the hole were cut undersize later cells might not fit.
Although the material specified for the battery block is black perspex, constructors may find that the use of transparent perspex enables the positions of the various holes to be determined more easily.

Holes " H " should not be drilled until final assembly of the module, when their positions can be accurately determined by inserting the rear sub-unit into the brass ring of the front sub-unit, and marking their positions through holes " J ". Fig. 12E shows the rear spacer block. The material specified for this component is clear perspex; the author used red transparent perspex in the prototype, although almost any plastic material is suitable.

Assembly

The first stage in the assembly of the module has already been described; this was the construction of the double-sided display/main logic board which is part of the front sub-unit. The next stage is to glue the brass ring to this assembly with epoxy resin adhesive. The outer diameter of the brass ring is the same as that of the display board

Fig. 13. Screws used in the watch.

	UNO	$\begin{aligned} & \text { BA } \\ & \text { sIZE } \end{aligned}$	$\begin{aligned} & \text { HEAD } \\ & \text { TYPE } \end{aligned}$	m_{m}^{L}	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathbf{H}}$	USE
1	3	14	Y	1.8	20	03	secure battery block to oscillator board through holes ' B '
2	1	14	\times	15	1.4	03	secures small piece of battery block to oscillator board through hole C
3	4	14	\times	20	14	0.6	secure rear spacer block to battery block through holes ' 1 '.
4	3	14	Y	15	2.0	0.3	secure battery clips to battery block
5	1	14	\times	15	14	0.5	secures faceplate through hole 'D' Hole ' A ' clears the head of this screw
6	1	14	\times	12	14	0.3	
7	3	16	z	15	-	-	secure rear sub-untt to front sub-unit through holes ' J ' thus forming complete module.

(31 mm), while its inner diameter is the same as that of the main logic board $(29 \mathrm{~mm})$. The brass ring fits over the main logic board so that it rests on the plain side of the display board with the main logic board inside. Take care to use no more adhesive than is required, and check that the ring is accurately aligned with the boards before it sets. Once the glue has cured, remove any excess from around the outside with a fine file and check that it fits into the watch case. Fig. 14 is an exploded view of the front sub-unit.
At this stage it is advisable to assemble the three main components of the rear sub-unit (Fig. 15) and check that it fits into the front unit.

Fig. 13 gives details of the various screws required in the watch; the best way to obtain these is to buy a 20 gram box of assorted wristwatch screws from a watchmaker's suppliers, and sort out what is required. Alternatively constructors could ask their local watchmaker to help them obtain these. Once the mechanical work has been checked, the electronic components can be fitted. A word of caution here, however; the integrated circuits are c.m.o.s. devices and can be destroyed by quite small static charges picked up through incorrect handling. These devices will be supplied in plastic carriers and wrapped in conductive foam: leave them in this until you are ready to install them. Because of the possibility of damaging the i.cs due to static, the assembly of the module from this point onwards should be carried out. on an earthed conductive surface, for example a sheet of aluminium kitchen foil. All the components and tools should lie on this earthed surface and a small soldering iron with an earthed bit must be used. The author would advise constructors to obtain some $26 \mathrm{~s} . \mathrm{w} . g$. solder to assemble this watch as the more popular 22s.w.g. will be found to be rather too thick.

The component leads should be cut to a length of between 1.5 and 2 mm . Before soldering the components on the oscillator board, check that the component leads are not so long as to prevent the battery block from mounting flat on the board.

Fig. 9 shows the positions of the components on the two boards. It also
shows the wired links on the main logic board and the flying leads connecting the two sub-units together. These wired connexions should be made with a flexible p.v.c. covered wire with an overall diameter of not more than 0.5 mm (e.g. pickup connecting wire), The three leads from the rear sub-unit to the front sub-unit should not be more than 25 mm long. The -4 V connexion to the frame (Fig. 9) is soldered to the inside of the brass ring as close to the surface of the main logic board as possible. One lead of the trimmer capacitor, VCl ; is marked with a coloured dot; this indicates the "earthy" end of the capacitor (connected to the rotor) and must be connected to $V_{D D}$

The switch contacts are mounted on the main logic board; there should be a gap of between 0.5 and 0.75 mm between the inside of the brass ring and the contact.

When fitting the integrated circuits take great care that they are mounted the correct way round; mistakes here can be very difficult to correct, particularly with IC_{2}. The tops of both i.cs are the sides which are printed with the type number: pin 1 of IC_{1} is marked by a small dot; pin 1 of IC_{2} is the end lead whose "elbow" is T-shaped.

After soldering the main components to the oscillator board, fit the battery block before the crystal and feedback resistor R_{1}. Coat the underside and the ends of the crystal with a thin layer of silicone rubber; this will hold it in place and reduces the chance of shock damage if the watch is knocked or dropped. The rear sub-unit can then be completed by fitting the battery clips, contact bridge and finally the rear spacer block (see Fig. 16). resistor R_{4} should be omitted from the main logic board until the faceplate has been fitted, as one of the fixing screws is underneath it.

Display

The liquid-crystal display consists of two glass plates separated by a thin layer of the liquid crystal material: the inner surfaces of these glass plates are coated with a thin layer of transparent, conductive indium oxide in the required pattern, which can just be seen if the display is viewed almost parallel to its surface. The connexions to the display Fig. 11 are provided by continuing the indium oxide conductors to the edge of the upper plate. Liquid-crystal displays of the watch variety are difficult to connect: they cannot be soldered as can most other components, and the invisibility of the connexions does not help! Many manufacturers overcome this problems by using conductive adhesives, although for the home constructor this is inadvisable: the adhesives themselves are very, very expensive and the display would be difficult io replace when this is required.
As a result of the diffic ulties experienced in connecting watch displays
and to overcome similar problems, a number of connector manufacturers have designed some very ingenious systems. One such system, by Amp Inc., consists of an elastomer rod with metallized bands around its circumference at the required contact pitch. These rods are held between the display connector edges and the printed circuit board by adhesive tape. All of these connector systems are quite new and the author received data on them only after designing the watch (and part

Fig. 14. The front part of the watch in exploded form.

way through construction of the prototype). The Amp system described above is for a surface mounting display and is not suitable for this watch.

The display connexion method to be described may appear to owe much to a certain Heath Robinson, but it is quite cheap and, if it is carefully and accurately made, it will be reliable.

Figure 12 H shows the "construction" of the display connexion strips, which are made by laying 0.8 mm wide strips of aluminium foil at intervals of 1.6 mm across two thicknesses of self-adhesive tape, at least one of which must be double-sided. The author advises constructors to adopt the following formu-la:- lower layer of tape - Sellotape double-sided; top layer of tape - Scotch magic transparent tape, with the foil stuck on with its bright side outwards. This "sandwich" is then folded over so that the inner surfaces (those without foil) stick together. The strip thus formed is cut to the required size. These connexion strips can then be fitted accurately to the display board and pressed down; the display should then be aligned on top by viewing it almost parallel to its surface so that the contact pads can be seen. It should then be pressed down to hold it in position while the faceplate is fitted. The faceplate fixing screws should be tightened only until the display starts to compress the connexion strips, take great care not to screw them too tight.

Once the display and faceplate have been fitted, resistor R_{4} can be soldered onto the main logic board and the rear sub-unit fitted into the front sub-unit. Make sure that the flying leads lie side by side and not on top of each other, and that the oscillator board sits directly in contact with the top of IC_{2}. The positions of holes "H" can now be determined by marking through holes " J " in the brass ring, and drilling them with a 0.7 mm drill. After fitting the two sub-units together, the module is complete.

Testing

Before applying power to the module it should be given an overall visual check, just to make sure that there are no, possibly expensive, errors. The rear sub-unit is tested by itself to start with, by disconnecting the three connexions to the main logic board and connecting the 64 Hz output to an oscilloscope $\left(\mathrm{R}_{\text {in }} \geqslant 10 \mathrm{M} \Omega, \mathrm{C}_{\text {in }}<10 \mathrm{pF}\right)$ using the $-\mathrm{V}_{\text {ss }}$ (-4 V) connexion as the common. (The 'scope is effectively across R_{3}.)

The three batteries can now be inserted (see Figs. 9 \& 15) starting with cell number 1 . The negative connexion of this cell should be replaced by a microammeter connected with very short leads. The 'scope should show a 64 Hz waveform consisting of $15 \mu \mathrm{~s}$ pulses of approximately 4 volts amplitude at intervals of 15.6 ms . The current indicated on the meter should not be uver $-5 \mu \mathrm{~A}$; it will typically be about $2 \mu \mathrm{~A}$.

Fig. 15. The rear sub-unit.

If the current is much lower, and the output is present, then there is no cause for concern; if, however, the output is absent then the oscillator is faulty and all the components should be carefully checked. If, on the other hand, the current is much above the specified $5 \mu \mathrm{~A}$, then there may also be a fault. Check that this is not caused by excessive output loading due to the 'scope.

Once the oscillator has been successfully tested, remove the batteries, re-assemble the module and re-insert them, starting as before with cell number 1 . Check that the current is not more than $0.3 \mu \mathrm{~A}$ more than the oscillator takes by itself.

The display point should now be flashing at a 1 Hz rate, and the display will show a "random" time; there may also be some segments missing from some of the digits. This is caused by a combination of the counters powering up in non-valid states and incomplete decoding of the outputs; it is nothing to worry about at this stage. If all appears to be well, the operation of the reset controls can now be tested. This can be accomplished by connecting the switch contacts to the brass ring with short pieces of wire. The SCL-5424-AF integrated circuit does not have switch anti-bounce circuitry on the reset inputs and operation of these controls

may sometimes cause the minutes or hours to advance several counts at one time.

Finishing touches

Before inserting the module into the case, the screws securing the push-buttons should be removed and their heads should be highly polished. Also the case is supplied with a winding knob which should be fixed in position by means of a suitable screw. The crinkle spring supplied with the case is discarded and the inside of the case back is lined with a piece of thin insulating material, backed by a thin piece of plastic foam to keep the module in position if this is required. The final appearance of the completed watch is improved if the edge of the faceplate and any visible parts of the display board are painted matt black.

[^6]
Oscillator adjustment

A frequency counter will be found useful in adjusting the oscillator to the exact frequency of 32.768 kHz . This must be done with the module in the open case because variation in stray capacitance would cause a slight frequency shift. The frequency counter should be connected to the unused 256 Hz output of IC_{1}. Alternatively a tuned amplifier (tuned to 32.768 kHz) can be used to pick up the very small amount of radiation from the module. This is a technique that is used by a number of watch manufacturers. The trimmer VC_{1} should be adjusted with a plastic trimming tool having a 0.75 mm square end. If a frequency counter is not available, then the watch can be adjusted by trial and error, although it may take several weeks to arrive at an acceptable degree of accuracy.

HF predictions

The recurrence pattern of magnetic activity which was expected to break up in the spring and reform about now has in fact remained clearly defined throughout recent months. This has resulted in day to day variation of conditions greater than that normal for time of year with tendency for poor days to be dominant.

Solar activity is now very low. Minimum order index values have been observed since March so a new sunspot cycle can confidently be expected soon.

Reference and regulator circuits

Background to the topics of sets 23 \& 24 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

Paisley College of Technology

Reference circuits - see set 23 for tested circuits

Some semiconductor devices have highly non-linear characteristics, in which the non-linearity is well-defined with predictable and small dependence on temperature. If a region of the characteristic is found for which the slope resistance is either very much greater than or very much less than the static resistance then the device can be used as a current or voltage reference respectively.

In Fig. 1 (a) there is an extended region over which the voltage varies little for large changes in current. Fig. 1 shows the dual characteristic with current being maintained constant against changes in bias voltage. The most commonly used device belonging to the former category is the zener diode, the reverse characteristic having a sharp breakdown region. There are two physical mechanisms that can control the reverse conduction of a p-n junction: zener breakdown and avalanche breakdown.

Fig. 1
Zener breakdown is a field effect which dominates for heavily-doped narrow junctions, where even small p.ds of three or four volts can provide a sufficiently intense field for the direct production of hole-electron pairs. The observed characteristics are that the current increases steadily as the operating region is approached, with a rounded knee, and with a temperature
drift of about $-2 \mathrm{mVK}^{-1}$. To a first order the slope resistance of such diodes is inverse to the quiescent current.

At higher p.ds, which can only exist with more lightly doped broader junctions where the zener effect is unable to limit the voltage, thermally generated holes and electrons are accelerated by the field. If the p.d. is large enough some will gain sufficient kinetic energy before colliding with other atoms, to produce further hole-electron pairs by collision. These in turn may generate further pairs and at a particular voltage there is a very sharp increase in current. Below breakdown the current is negligible, while above it the slope resistance is low. The voltage changes with temperature by less than $+0.1 \% \mathrm{~K}^{-1}$.

There is an intermediate doping level resulting in breakdown voltages between five and seven volts where both processes contribute significantly to the total current. The proportion is dependent both on the junction and on the current level, but it is possible for diodes between 5.5 and 6.5 V to have negligible drift with temperature if biased correctly (lower currents for the higher voltage devices). An identical breakdown occurs in the base-emitter region of a transistor, and planar silicon transistors can be used as low-current zener diodes with good slope resistance. Breakdown voltage for the base-emitter junction is typically 6 to 10 V , varying little for a given device. (Breakdown diodes are commonly described as zener

diodes regardless of which physical process dominates.)
A simplified equivalent circuit for such a diode if biased into the low slope region is shown in Fig. 2. It consists of a constant e.m.f. in series with a small resistance. The resistance is assumed constant i.e. the characteristic is approximated to by the 'piecewise linear' graph shown. A circuit for a simple zener diode regulator is shown in

Fig. 3

Fig. 3. For changes in the supply voltage, load current etc the constant e.m.f. may be suppressed e.g. for an input voltage change ΔV_{S}, the output voltage changes by

$$
\binom{\frac{r R_{L}}{r+R_{L}}}{R b+\frac{r R_{L}}{r+R_{L}}} \Delta V_{S}
$$

Since $r \ll R_{L}$ and $r \ll \bar{R}_{b}$ are reasonable assumptions for a correctly designed circuit, the result simplifies to $\Delta V_{o} / \Delta V_{s} \approx r / R_{b}$. Similarly the output resistance is $\approx r$.

Where the diode is used simply to produce a stable reference voltage, the load current can usually be arranged to be negligible, or at least reasonably constant. This leaves only supply voltage and temperature variations to be dealt with, though for high-stability designs ageing of the device may be equally important in bringing long-term drift. The two problems require different solutions.

The effect of supply voltage is determined by the circuit design, while temperature effects can be minimized by choosing the right diode. In some
cases the reference diode may have one or more forward-biased diodes added in series. By selecting as the reversebiased diode, one with a breakdown voltage $>7 \mathrm{~V}$, its positive drift can be balanced against the negative drift of the forward-biased diode(s). In the circuits of Figs 4 to 7 the single zener diode could be replaced with any such combination.

Though the diode has a low slope resistance its voltage stability will be ideal if fed from a constant current (Fig 4). A practical way of realizing this is to use a transistor with a fixed basepotential and large emitter resistor. Any variation in supply voltage causes only a small variation in the transistor current and hence a still smaller change in the output voltage. An extension of the method, the ring-of-two reference (Fig. 5) has two zener diodes each controlling the constancy of current fed to the other. In this and other related circuits the variation in output voltage due to supply charges can be reduced to a few tens of microvolts - generally far lower than the variation due to temperature changes.
Most i.c. voltage reference/regulator circuits are based on similar principles while exploiting the matched-characteristics of adjacent transistors as in Fig. 6. The transistors Tr_{1} and Tr_{2} comprise a current mirror forcing the zener diode current to equal the current in R_{E}, which in turn is closely defined by the zener voltage. Both circuits contain a positive feedback loop, clamped by the zener, but they are essentially bistable in nature i.e. all devices could remain non-conducting indefinitely. To inhibit this condition the resistor R_{S} (which can be very much greater than R_{E}) provides a starting current without significantly impairing the regulation.
Where the reference voltage is of an inconvenient value then a voltage amplifier may be added as in Fig. 7. Further advantages accrue from this approach. The current drawn from the diode is reduced to negligible proportions; the output current capability is increased without forcing the zener to operate at a high current; the output impedance is very low because of the shunt-derived negative feedback; the diode can be biased either from a separate supply, or from the amplifier output provided it is sufficiently greater than the zener voltage. This last method is of the same nature as those adopted in the circuits of Figs 5 and 6 viz that the zener voltage indirectly controls its own bias current. The stability can be extremely high, but the non-conducting state can also occur and may require a separate starting circuit.
Although zener diodes are the most common voltage reference units, they can be replaced by any element conforming to Fig. 2). Examples include forward-biased silicon diodes, assymetric voltage dependent resistors (down to IV), forward and reverse biased

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8
junctions of transistors. A useful circuit where high stability can be sacrificed in exchange for flexibility is the amplified diode circuit of Fig. 8. If a transistor is biased by a potential divider between collector and emitter then under certain constraints, the terminal p.d. approximates to that of $(n+1)$ diodes in series. The current in the potential divider must be much greater than the transistor base current, but not much in excess of the collector current. Note that n need not be an integer and that by replacing the base-collector resistor with a variable control, we have a simple variable zener diode. The temperature drift is relatively large, about $+0.3 \% \mathrm{~K}^{-1}$, but an overall stability of a few percent is readily achievable under laboratory conditions.
A completely different principle is embodied in the circuit of Fig. 9. While the $V_{b e}$ of a transistor falls as the temperature rises, $\Delta V_{b e}$ between two identical transistors operated at differ-

Fig. 9
ent currents has a positive coefficient. The circuit, a much simplified form of that used in recent i.c. regulators, has a terminal p.d. of $V_{b e}+n \Delta V_{b e}$. A study of the transistor equations shows that this sum equals the energy-band gap of silicon at the point where the temperature drifts cancel. This voltage is about 1.23 V and is scaled up by suitable amplifying circuits where required. The forward characteristics of devices can reasonly be expected to offer better long-term stabilities than in the breakdown region, and this principle is well-established in i.c. reference circuits of the highest quality.

Voltage regulators - see set 24 for tested circuits

The regulator is divided into the reference section and a d.c. power amplifier. These both require supply voltages; the convenience of having a single supply may outweigh the improved stability that can be obtained. The output current can cause the amplifier supply to vary: the source impedance including increased ripple if it is a rectified a.c. supply. Because the current required by the reference circuit is low and constant, it is easier to avoid any serious ripple/regulation effects. It is essential that the d.c. amplifier have (a) an accurately defined voltage gain, (b) a low output resistance, (c) a sufficiently high output current/voltage capability, (d) a temperature drift
that is either low or of the appropriate sign and magnitude to compensate for any drift in the reference section.

A simple configuration that meets these requirements in principle is shown in Fig. 10. The amplifier can be a standard operational amplifier if the output current is not much in excess of 10 mA , and single-ended supply operation is permissible in many cases. The method is extended in Fig. 11 to the provision of output voltages that differ from the reference voltage. The output voltage is of opposite polarity to the reference voltage requiring a separate negative supply. The op-amp can be replaced by any circuit meeting conditions (a) to (d) above. Before turning to detailed study of possible configurations it is important to consider an alternative viewpoint.

A discrete component circuit that has all elements of a practical regulator is given in card 3. Three transistors comprise a voltage amplifier of gain $\left(R_{4} / R_{5}+1\right)$ with high input- and low output-impedance (alternatively Tr_{1}, Tr_{2} are the error amplifier and Tr_{3} the series-pass transistor).

A serious problem arises in all regulators with emitter-follower outputs. The minimum input-output differential includes the $V_{b e}$ of Tr_{3} plus the vol-tage-drop across R_{2}. This figure is markedly increased when Tr_{3} is replaced by compound transistors for greater output current capability. This property has serious implications for the maximum efficiency of which the circuit is capable, and also for the maximum dissipation the output stage may be called on to tolerate.

A control engineer would interpret the regulator as a control system and partition it differently. For example many regulator diagrams show the output transistors not as part of a d.c. amplifier but as a separate series-pass circuit. The remainder of the amplifier is then shown, see diagram, as an errordetecting section, comparing the output or a portion thereof with a reference signal - the difference is amplified in control the series block. The approach is not only valid, it may well be more acceptable to many users. Treating the error amplifier plus the series-pass section as a single unit, with internal feedback defining its characteristics, allows easier interchange between voltage regulators, d.c. amplifiers etc.

Fig. 11

Fig. 12

Fig. 13

A possible solution is to replace Tr_{3} by a common-emitter $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor, driving its base from the collector of Tr_{1} to restore the feedback condition (Tr_{3} would then be providing an additional inversion). A simplified form of the circuit for which this is not possible is shown in Fig. 12) The effective reference voltage in this circuit is ($V_{z}+V_{b e}$) and for best temperature stability, V_{z} would be chosen to have a drift of $+2 \mathrm{mV} \mathrm{K}^{-1}$ to cancel the negative $V_{b e}$ drift. This circuit is the basis of a large number of commercial regulators, though the functional similarity may be hard to recognize amongst the welter of extra functions such as current limiting variable output voltage etc.

Although the basic form can be designed for output currents of $100 \mathrm{~mA}+$, any further increase forces the base current of Tr_{2} too high normally Tr_{1} collector current has to be at least as great as the base current of Tr_{2}. It may not be convenient for the zener current to exceed about 10 mA since the regulation is impaired. To keep the zener/error amplifier current low, it is sufficient to replace the output stage by a pair of transistors connected to give increased current gain.

A major problem in the design of voltage regulators is to protect against load resistances falling below specified levels, and the size and cost of transistors, heatsinks and power supplies is dictated by the occasional fault condition rather than by the ratings into any intended value of load. For this reason
the technique described as foldback or re-entrant current limiting was devised. The resulting characteristic is shown in Fig. 13(b), with the current falling back to a short-circuit value close to zero as the short-circuit condition is approached. The technique involves a current-limit reference voltage which depends on the output voltage. As soon as the current-limit circuit is activated the output voltage begins to fall simultaneously reducing the current as shown.

Topics in set 23 of Circards

Monolithic reference
Simple current reference
Compensated circuits
$\mu \mathrm{A}$ to mA and mV to V calibrator
Low temperature coefficient voltage reference
Bipolar references
Variable reference diodes
Williams ring-of-two reference
Zener diode characteristics
Non-zener device characteristics

Topics in set 24

Zener diode shunt regulator
Simple transistor regulators
Feedback series regulators
Bipolar/c.m.o.s. op-amp regulator
Dual-polarity regulator
Monolithic regulators - $1 \& 2$
Self-regulating d.c. converter
Switching regulator
Regulator using current-differencing amplifiers

See July issue, page 322, for details of how to order.

200-mile microwave contacts

The steady increase in microwave operation - and the rising standard of results - is reflected in the recent success of the Barry Radio Society Microwave Group who, operating as GW4BRS/P, made a 200 -mile non-lineof -sight contact on 10 GHz with the Scottish station of G. Burt, GM30XX/P. The Welsh group were at Porthgain (national grid reference SM 814 327) at 100 ft above sea level and the Scottish station at Auchenmalg Bay (NX 236 517) only 20 ft above sea level. Good contact, with some 20 dB in hand, was established by super-refraction propagation within a minute of switching on the equipment and without the help of a talkback link on any other band. Contact was also made with GM3DXJ/P and GM8HEY/P. The Barry group included GW4AMV, GW3PPF and G8FGD, and was using a 10 mW Gunn diode generator through a circulator to an SIM2 mixer with 40673 mosfet pre-amplifier to a broadcast receiver used as a 106 MHz i.f. amplifier/discriminator. The aerial was a 2 ft 6 in diameter dish. The equipment at GM30XX uses an X-band Gunn diode in the dual role of transmitter and self-oscillating mixer.

Warsaw and v.h.f.

The recent IARU region 1 meetings in Warsaw agreed to recommend a number of changes to the voluntary band-planning of the 144 and 430 MHz bands and also to seek for Region 1 countries an amateur allocation between 220 and 225 MHz (currently part of the aeronautical allocation). The c.w. calling frequencies are to be 144.05 and 432.05 MHz s.s.b. calling 144.30 MHz (upper limit for s.s.b. 144.50 MHz) and 432.30 MHz , random meteor-scatter s.s.b. 144.20 MHz , slow-scan TV calling frequency 144.5 MHz . The recommended speed for radio teleprinting is to be 45.45 bauds (although British amateurs would probably have preferred 50 bauds) and a.f.s.k. standard tones for r.t.t.y. are to be 1275 Hz space, 1445 Hz mark (for 170 Hz shift) or 2125 Hz mark (for 850 Hz shift).

Proposals were also put forward for a German-developed reduced bandwidth amateur television standard (s.a.t.v.) requiring about 1 MHz bandwidth and with the sound transmitted by means of narrow-band frequency modulation of the vision carrier. For normal amateur TV the use of vestigial sideband techniques and a vision frequency of 439.25 MHz is recommended.

Whose finger on the rule book?

One of the long-established facts of European amateur operation is that many of the most vital operating practices are established as voluntary agreements rather than imposed by the licensing authorities. Most amateurs accept and fully endorse these recommendations but are alert to any suggestion that anyone - whether a national society or an international union - has the right to issue instructions or impose penalties for non-observance. Looking through the generally very sensible proposals adopted at Warsaw, I notice a touch of Big Brother in a series of detailed "instructions and recommendations" concerning operation through the Oscar satellites, the report stating that "National Societies will supervise the implementation of these recommendations and take action as considered appropriate with persistent offenders". The right, for example, of the R.S.G.B. to endorse such an attitude is hardly strengthened by the disclosure in the report that roughly 50 per cent of British amateurs are regrettably not members of the national society. Can we make the suggestion that societies can make only recommendations, not issue instructions, even on behalf of AMSAT?

FCC Docket 20282

Discussion of the FCC proposals (Docket 20282) for the restructuring of the American amateur radio service continues unabated with an A.R.R.L. survey of members' opinions bringing in no less than 56,000 replies. Generally the new proposals seem to be fairly wide! y supported although some of the detailed suggestions are not proving popular.

The suggestion has been put forward in Ham Radio that power limits, to be readily enforceable, should be specified in the form of maximum heater or filament power (eg 200 watts for thoriated tungsten filaments or 60 watts for indirectly-heated oxide cathodes). But where would this leave the semiconductor man now that all-transistor transmitters of over 1 kW rating are being developed for commercial operation?
Bill Orr, W6SAI, in CQ believes that the restructuring is an attempt by FCC to restore growth to the amateur movement in the United States but does not tackle what he sees as the prime reason
why it has slowed down. This he believes is Citizen's Band operation which, with no examinations, siphons off potential amateur operators but often results in their soon losing interest in radio communication. He urges the dropping of the American Morse code test to 10 wpm (it is currently 13 wpm) but adds "don't eliminate it as this opens the door to amateur radio to the 'Purple Phantom' and 'Ozark Charlie' operators".

A G-line pioneer

David Corfield, G5CD, who has died after several years of ill-health was first licensed in 1926 and operated from Beeston and then for many years in the London area. Throughout his long career as a valve applications and technical liaison engineer with STC and Thorn-AEI he was extremely active in pioneering amateur u.h.f. and f.m. transmission and, as a Council member of the Royal Television Society, played a leading role in setting up one of the first amateur television stations at what was then the Norwood Technical College in South London in the 'fifties. He served on the R.S.G.B. technical com. mittee from 1935 to 1971 and was one of the group of amateurs who prepared the first British amateur radio handbook in the 'thirties. I vividly remember an R.S.G.B. lecture he gave at the I.E.E. during which he publicly demonstrated, possibly for the first time in the U.K., the Goubau single-wire transmission line ("G-line") system by successfully lighting a small bulb at the back of the lecture theatre via a single-wire feeder strung across the theatre. Altogether he served on more than 16 technical and industry committees.

In brief

Class A licences in the sequence G4EAA are now being issued with Class B licences now well into the G8KAA sequence. . . . The R.S.G.B. newsbulletins (GB2RS) are now being radiated in north-west England from Knutsford on 3.6 MHz at 11.15 a.m. and from Stockport on 144.5 MHz at 10.45 a.m. . . Bob Green, G3APH and formerly SU1KG is anxious to hear from any of those who operated in Egypt in the 'twenties and 'thirties (9 Hopgrove Lane North, Malton Road, York)... The fourth Midlands 'National Amateur Radio Exhibition' is being held at the Granby Halls, Leicester on October 30 , 31 and November 1 (trade enquiries to Tom Darn, G3FGY, Sandham Lodge, 1 Sandham Lane, Ripley, Derbyshire DE5 3HE). . . . The R.S.G.B. mobile rally at Woburn will be held this year on August 3. Other August rallies include Bromsgrove Mobile Picnic on August 10 at Avoncroft Building Museum; Derby Society rally at Rykneld School, Bedford Street, Derby on August 18.

PAT HAWKER, G3VA

TO MINIMISE INVESTMENTS AND SOLVE STOCK PROBLEMS

You can increase your efficiency, too, by ordering large or small quantities of any one part, or making up an order of any number of assorted small quantities through the United-Carr Supplies service. We can deliver with more than usual promptitude because we carry such large and varied stocks of CINCH, DOT and FT electronic and electrical components. Fastenings and assemblies.

So, make United-Carr Supplies your SINGLE SOURCE for
 CINCH ©OT FT

Send now, stating possible requirements, for free and post free catalogue.

United-Carr Supplies Ltd., 112 Station Road, Ilkeston, Derbyshire DE7 5LF.
Tel: Ilkeston 78711 STD 0607278711 . Telex 377117 . C.H.F.A.d.
WW-040 FOR FURTHER DETAILS

The Sinclair DM2 Multimeter.

Comprehensive. Accurate. Portable. And really rugged. Yet only $£ 59$. $\begin{aligned} \text { pusuart }\end{aligned}$

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with 0.1% metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.
The instrument reads to ± 1999 and has a basic accuracy on the 1 V DC range of $0.3 \% \pm 1$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.
The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything - except price!

Features of the Sinclair DM2

5 functions giving 22 ranges
DC volts -1 mV to 1000 V $A C$ volts -1 mV to 500 V DC current - $0.1 \% \mathrm{~A}$ to 1 A $A C$ current - 1 I A to 1 A Resistance-1!! to 20 M !? Easy to use
Automatic polarity. bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Bıg. bright 8 mm LED display gives a quick. clear reading.
$3 \frac{1}{2}$ digit display
Display reads from 000 to 1999
Overloadindicator.
Protected
Separate fuses for current and resistance circuits.
Accurate
Dual slope integration High stability.

Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case - it's always ready for use.

All you need to use the DM2 . . . anywhere. Mains adaptor . . carrying case . . . multimeter . . . you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to arrange demonstration and get details of prices on 5 or more instruments.

Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon,
Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
VAT Registration No: 213817088.

The Sinclair DM2 Multimeter: full technical story

DC Volts Range	Accuracy	Input Impedance	Resolution
1 V	0.3\% ± 1 Digit	$>100 \mathrm{M} \Omega$	1 mV
10 V	$0 \cdot 5 \%+1$,	$10 \mathrm{M} \Omega$	10 mV
100 V	$0.5 \%+1$	10 Ms	100 mV
1000 V	0.5\% + 1	$10 \mathrm{M} \Omega$	1 V
$\begin{aligned} & \text { Maximum overload }-350 \mathrm{~V} \text { on } 1 \mathrm{~V} \text { range } \\ & 1000 \mathrm{~V} \text { on all otherranges. }\end{aligned}$			
AC Volts			
	Accuracy	Impedance	Range
1 V	1.0\% $\ddagger 2$ Digits	$10 \mathrm{Ms} / \mathrm{s}^{\text {/ }} 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
10 V	1.0\% + 2 ,	$10 \mathrm{M} \Omega / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
100 V	2.0\% + 2		$20 \mathrm{Hz-3} \mathrm{KHz}$
1000 V	2.0\% + 2	$10 \mathrm{Ms} / 2 / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
Maximum overload - 300 V on 1 V range			
DC Curren		Input	
Range	Accuracy	Impedance	Resolution
$100 \mu \mathrm{~A}$	2.0\% + 1 Digit	$10 \mathrm{~K} \Omega$	100 nA
1 mA	$0.8 \% \pm 1$,	$1 \mathrm{~K} \Omega$	$1 \mu \mathrm{~A}$
10 mA	$0.8 \% \pm 1$,	100s	$10 \mu \mathrm{~A}$
100 mA	0.8\% + 1	10s2	$100 \mu \mathrm{~A}$
1000 mA	2.0\% : 1	1Ω	1 mA
Maximum	load-1A (fused)		

AC Current

Range	Accuracy	Frequency Range
1 mA	$1.5 \% \pm 2$ Digits	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
10 mA	$1.5 \% \pm 2 \%$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
100 mA	$1.5 \% \pm 2 \%$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
1000 mA	$2.0 \% \pm 2 . \prime 20 \mathrm{~Hz}-1 \mathrm{KHz}$	

Maximum overload-1A (fused).

Resistance

Range Accuracy Measuring

Current
1 mA
$100 \mu \mathrm{~A}$
$10 \mu \mathrm{~A}$

$10 K \Omega$	$1.0 \% \pm 1$,
$100 K \Omega$	$1.0 \% \pm 1$	$100 \mu A$
$1000 K \Omega$	$1.0 \% \pm 1$	$10 \mu A$
$10 M \Omega$	$2.0 \% \pm 1$	$1 \mu A$

$1000 K \Omega$	$1 \cdot 0 \% \pm 1$,
$10 \mathrm{M} \Omega$	$2 \cdot 0 \% \pm 1$	$1 \mu \mathrm{~A}$
$0 .$,	100 nA	

Overload protection-50mA (fused).

To: Sinclair Radionics Ltd, FREEPOST, St Ives,
Huntingdon, Cambs.. PE174BR.
Please send me
Wenclose a cheque for E
Multimeters'" $£ 6372$
inc VAT
Mans adaptors " $£ 3.19$
inc VAT
Carrying cases a $£ 5.40$
inc VAT
I aminterested in 5 or more
multimeters
..... Please arrange a
demonstration.
Please send detalls of
quantity discounts.
\#My Access'Barclaycard
number:

* I enclose an officjal company order - signed and dated.
*Please complete or delete as applicable.

Name
Address

Please print
FREEPOST - no stamp needed with address above.
wwisi75

From the world's largest manufacturer of $\mathrm{I}^{\prime \prime}$ video tape recorders, Bell \& Howell present the International Video Corporation range.

Before buying aVTR ask yourself these five basic questions

How does an IVC video recorder compare, in value-for-money terms, with other recorders?

Can I play back the programme at the same time it is being taped?

Is there a time lapse facility?

Action analysis is important to me ; does the recorder have slow motion?

Can I use the VTR with a camera?

We'd like to tell you more. Telephone Bell \& Howell's Video Systems Division on 0I-902 8812 or write to Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex, HAo IBR (no stamp required).

Not only is the 71 IP VTR the lowest cost $\mathrm{I}^{\prime \prime}$ model in current production; it also offers a very full specification. All the controls are electrical 'push-button' type with remote control and stop motion. Other features include a programme timer; a stable colour picture lock in under five seconds; and a programme recording capacity of 60 minutes.

The exclusive Instant Video Confidence (IVC) feature on the 826 P has a second video head in the scanner that allows continuous 'off-tape' playback while the programme is being recorded. This means that any slight defect in signal quality can be immediately corrected.

For studying growth development in plants or for security applications a time lapse feature is essential. The IVC 74 IP can record for up to 80 hours.

On the 80 IPSM range, playback speed can be continuously varied from normal to 'stop-motion'; this is ideal for analysis, X-ray or similar applications.

No problem here; with the entire range of IVC recorders there is a standard video input socket for use with both colour or monochrome cameras. Monochrome recorders can be updated to record and replay in colour by a simple plug-in circuit board.

IVC recorders are used in systems as diverse as aircraft performance, management and classroom lectures to TV station output monitoring and security surveillance recording.
The IVC 700,800 and 900 series offer a range to suit every application. Cross-series compatibility is assured and tapes made on one machine will replay on another without switching, balancing or any other adjustment.

Model	Special features
711 P	Lowest cost $\mathrm{I}^{\prime \prime}$ V $\Gamma \mathrm{R}$ in current production.
741 P	Iime lapse facility that gives up to 80 hours recording time.
761 P	Monochrome assembly electronic editing. Capstan servo.
705 P	Record replay 625,50 standard and replay of 525,60 (USA standard) tapes.
801PS.M	Slow motion varies video playback speed from normal to stop motion dis?lay.
826P	Off-tape monitoring facility while recording Capstan servo.
826 I SM	Off-tape monitoring while recording; plays standard or slow. motion. Capstan servo.
871 P	Assemble and insert inter-field electronic editing. Capstan servo.
901P	Master record 'replay machine.
96.1 P	Assemble and insert inter-frame electronic editing; optional dropout compensator; sync. processor and time base corrector available.
	Standard features
	I" helical scan; colour capability; black and white and stop motion are all standard features on the IVC range of VTRs.

IVC VTRs and colour cameras are part of an international range of vides equipment distributed and serviced by Bell \& Howell.
Electrohome video monitors
Viscount vision mixers and routers
Thomson-CSF cameras and systems components JVC video tape and video cassette recorders, cameras and portable systems

A 50M Hz oscilloscope

4-construction and test

by C. M. J. Little, B.A.
Department of Electronics, Southampton University

The overall size of the oscilloscope is 1 lin wide, 13 in high and 16 in long. The front and back panels are made from $1 / 8 \mathrm{in}$ aluminium joined by five steel bars, each of $1 / 2$ in square cross section. One bar is placed at each corner of the panels and the fifth at the centre of the bottom edge of the panels. This gives a very rigid frame. 16 s.w.g. aluminium panels are bolted on to the longitudinal rods in order to divide the chassis into separate compartments. A sketch of the layout is given in Fig. 17. Aluminium angle would be a better alternative to the steel rods as it is much easier to cut and drill. I recommend the constructor to make a

Fig. 17. The layout of units in the author's instrument. A vertical panel divides the oscilloscope into two halves. Power supplies and Y amplifier are separated by aluminium screens.
good job of the mechanical work as it greatly improves the appearance and durability of the finished instrument. The prototype was not made very carefully in this respect and as a result the Y plug in does not fit correctly, and is difficult to remove and replace.
Three pairs of matched f.e.t.s are used in the instrument. These should be matched in V_{GS} at about $500 \mu \mathrm{~A}$ drain current, as shown in Fig. 18. Matching of V_{GS} to within 0.2 V will be satisfactory.

Testing completed boards for the first time is tricky, as a mistake can destroy transistors very easily. This especially applies to emitter followers when a short is present between the emitter and earth. If a Variac is available, use it to increase the mains voltage very slowly, checking voltage levels all the time, in order to try and locate faults before any

Fig. 18. Method of matching f.e.t. gate-source voltages at $500 \mu \mathrm{~A}$ drain current.
damage is done. When making measurements or adjustments with the instrument switched on, be very careful to avoid slips of the screwdriver. My worst disaster was a momentary short between the +115 V rail and the +18 V rail. This blew about 8 transistors and the 709 in the e.h.t. generator!

Power supply

The mains transformer used is a l'A type made by Osmabet Ltd. It has a tapped secondary giving $40,50,60,80,90,100$ and 110 volts. The final winding from 100 to 110 volts is not needed and is removed to allow room for the 6.3 V isolated heater winding. The transformer is dismantled and the final winding on the secondary is removed, the number, of turns being carefully counted. A new winding is added to give 6.3 V , which will have 0.63 times the number of turns that were removed. This winding must be insulated to at least 1 kV and it is more convenient to use p.v.c. insulated wire instead of enamelled.

The reader may have noticed the curious choice of reservoir and smoothing capacitors. The exact value of these is not important, and may be any value above $1000 \mu \mathrm{~F}$. If it is difficult to obtain 150 V working capacitors for $\mathrm{C}_{289}, \mathrm{C}_{156}$ and C_{157} use two capacitors of double the value in series, and include voltage equalizing resistors of about $33 \mathrm{k} \Omega$ (Fig. 19).

The construction of the power supply is not critical, and any layout may be used. $\operatorname{Tr}_{101}, \operatorname{Tr}_{102}$, and Tr_{105} should be
mounted on heatsinks, the back panel being used in the prototype.
The only testing procedure needed is to check all the voltages and to adjust R_{286} for exactly 18 V at the emitter of Tr_{105}. Check the heater voltage with the tube connected and adjust if more than 10% out.

E.h.t. generator

The e.h.t. transformer, T_{2}, must be wound by the constructor as no commercial component is available. I used an LAl3 core, which was obtained surplus, and was the largest pot core I could find, for the greater the winding area, the easier it is to wind the high voltage secondary. The core of the LA13 measures $13 / 4$ in in diameter and $13 / 4 \mathrm{in}$ in total height. A core such as the LA4, with a size of $1 \frac{1}{2}$ in diameter by $7 / 8$ in

Fig. 19. The simulation of 150 V capacitors by lower-voltage types. Resistors equalize voltages.
height would probably be satisfactory. The oscillator circuit is not at all critical and will work with almost any transformer.
The high voltage winding should be
wound first, with a layer of p.v.c. insulating tape between each layer. The layers should be wound neatly, and a gap of between $1 / 1 \mathrm{in}$ and $1 / 8 \mathrm{in}$ left between the end of each layer and the flange of the bobbin, as contact between adjacent layers will certainly result in flashovers. 34 s.w.g. enamelled wire is used for the secondary, but if space is limited thinner wire may be used. The primary is wound with 22 s.w.g. p.v.c. insulated wire.
L_{7} is uncritical, and winding details are given in the parts list. The e.h.t. smoothing capacitors $\mathrm{C}_{126}, \mathrm{C}_{128}$ and C_{129} may be difficult to find in the values specified. Any values from about $2,500 \mathrm{pF}$ to $0.01 \mu \mathrm{~F}$ may be used. Diodes D_{63} to D_{66} should ideally be the ceramic encapsulated e.h.t. diodes specified, but these are expensive, about $£ 3$ each. An

Parts list	$1 C_{1} 709$ or 741 minus R_{224} and C_{121}
Power supply	$L_{7} 1.5 \mathrm{mH}$, R d_{c} ($10 \Omega 100 \mathrm{~T} 24 \mathrm{~g}$ on LA4
R	core. Uncritical
10W 280, 281	T_{2} LA13 core P. 10T +10 T 22 g p.v.c.
1/4W 10\% 282, 283	S. 900T 38 g enam.
1/4W 5\% 285, 287	
1/2W 5\% 289, 284	C.r.t. circuit
5W 10\% 288	R
$1 / 4 \mathrm{~W}$ preset 286	1/2W 5\% 263, 265, 266, 269, 274, 267
	1/4W 5\% 260, 261, 262, 271
c	2W 5\% 264
150V elec. $289.156,157$	1/4W preset 272,273
75 V elec. $\quad 151.152$	carbon variable 268,270
60 V elec. 153,154	WW variable 275
15 V elec. 150	D
160V, 10\% poly. 155	IN914 80
D	$80 \mathrm{~V}, 400 \mathrm{~mW}$ Zener 81
	OA200, etc. 82
$\begin{array}{ll}\text { 50V, } \\ 51 \mathrm{~V} 5 \mathrm{~W} \text { Zener } & 90.91 \\ & 98,99\end{array}$	C
$5.6 \mathrm{~V}, 400 \mathrm{~mW}$ Zener 100	Tr
$11 \mathrm{~V}, 400 \mathrm{~mW}$ Zener 101. 102	BFX85, BF257 100
Tr	L_{8} Twist coil
2N 3055 etc 101, 102, 105	C.r.t. Brimar D13-47GH/26. Base B12F.
BC 182, 107, 108, etc. 103	Thorn-AEl Ltd, P.O. Box 17. Enfield Middlesex.
BC 107104	
Mains transformer Osmabet OMT/5 (modified). Osmabet Ltd., 46 Kenilworth	Mumetal shield from Teicon Metals Ltd, Manor Royal, Crawley, Sussex. Hart Electronics, Ltd, Penylan Mill, Oswestry hold supplies of shields
Road, Edgware.	
2-pole mains switch	\mathbf{Y} output amplifier
	R
E.h.t. generator	1/4W 5\% 3, 6, 13, 14, 15
R	$1 / 4 \mathrm{~W}$ solid carbon $\quad 4,5,7,8,9,10$
1/1/4 W 5\% all but 232 (1/2W 5\%) a	1/4W 10\%
	2W 5\% 11, 12
D	1/4W preset $\quad 2,16$
	ferrite beads $\quad L_{1}, L_{2}$ (Doram)
N 914, etc. 61, 62	$L_{3}, L_{4} 12 \mathrm{~T} 28 \mathrm{~g}$ on $1 / 4 \mathrm{in}$ former with core
DA_{63-66} can be either IN2379 or IN2378 encap. silicon, or can be	
ITT selenium types K83/90D,	C
	50 V ceramic $\quad 1-6$
K8/50 or K8/45. ITT Electronic Services, Edinburgh Way, Harlow.	arrspaced trimmer 7
C	Tr
1.5 kV poly or paper $126,128,129$	TIS 52, BSX20 2, 5.6
3 kV disc ceramic 125,127	BC107, etc.
10\% polyester $\quad 122,123,124,121$	2N 3866 with h. sink 3.4
Tr	Y preamplifier
BFY50 80	R
BFY50 with h.sink 82, 83	1/4W 10\% 20.40

1/4W solid carbon	21, 49, 50
1/4W 5\%	$\begin{aligned} & 25,26,29,34,27 \\ & 31,24,35,36,37 \\ & 39,41,42,43,45 \\ & 47,22 \end{aligned}$
1/2W 5\%	33
carbon preset $1 / 4 \mathrm{~W}$	28, 30, 32, 23, 46
WW or carbon variable	le 38.44
C	
50 V ceramic	10, 12-14, 16-18
400 V ceramic	11
polyester	15

Tr
MPF111, 112 or 105 matched 10,15
TIS 52, BS $\times 20$ 11, 13
BC 107
$\mathrm{D}_{1}, \mathrm{D}_{2} \quad \mathrm{BAX} 13$ (low capacitance)
IC, $\quad \mu \mathrm{A} 733$ (ITT Electronic Services) or LM 733C
S , . single-pole on / off
$L_{5} L_{6} \quad$ ferrite beads (Doram)
$R L, \quad$ single-pole reed-relay -12 V (Doram)

\mathbf{Y} attenuator

R
all $1 / 8 \mathrm{~W}$ sub-miniature 1% selected
C
ceramic tubular trimmers

$$
\begin{array}{rl}
& 30-32,34,35,37,38 \\
& 40,41,43,44,46,47 \\
& 49,50,53 \\
\text { ceramic } 10 \% & 33,36,39,42,45,48 \\
& 51,25
\end{array}
$$

A.C. $\mathbf{x} \mathbf{1 0 0}$ preamplifier and Y input

 Rmetal oxide 2%
51-53
$1 / 4 W 5 \%$
59, 54, 55, 61 58, 57
$1 / 4$ W 10% solid carbon 60
$1 / 4 \mathrm{~W}$ preset 56

C

400 V polyester	20
Ceramic or silver mica	21
6 V elec.	23,24
25 V elec.	22
160 V polyester	25

alternative, which will be satisfactory but less reliable, are the selenium stick rectifiers specified in the parts list.
The construction of the e.h.t. inverter is not critical with the exception of the high voltage components. These should be mounted with adequate insulation and spacing, remembering that the insulation breakdown voltage of air is about $10 \mathrm{kV} / \mathrm{cm}$.
I found it convenient to make the circuit in a screened box measuring about $5 \times 5 \times 4 \mathrm{in}$. The circuit should be screened to avoid interference with the rest of the oscilloscope.

The inverter part of the circuit should be tested before the feedback loop is connected. Disconnect the base lead of Tr_{80} and C_{123} from R_{225} and connect to the slider of a $5 \mathrm{k} \Omega$ potentiometer across the 18 V supply. Connect a $470 \mathrm{k} \Omega 2 \mathrm{~W}$
resistor between -1 kV and earth, and monitor with a voltmeter. If possible connect an ammeter in the 12 V supply line. Increase the voltage on Tr_{80} base. The output voltage should be smoothly adjustable from zero to -1.5 kV . Do not exceed 1.5 kV . Any jumps in voltage or flashovers should be investigated before connecting the feedback loop. If the frequency is too low, resulting in an annoying whistle, turns may be removed from the primary and secondary of T_{2}, keeping the ratio constant. Do not try and lower the frequency by adding capacitance in the primary circuit as this usually results in parasitic oscillation. Finally reconnect Tr_{80} and C_{123} to R_{225} and set the -1 kV rail to the correct voltage by adjusting R_{222}. Check the +3 kV rail which should be between +2.5 kV and +3.5 kV .

C.r.t. and blanking

The twist coil, L_{8}, is wound directly on the glass of the c.r.t. About 1500 turns of any convenient gauge wire are necessary, commencing the winding 9 centimetres from the screen and finishing it less than 17.5 cm from the screen. Flexible wire leads should be glued to the glass and brought out through the square hole in the Mumetal shield.

Normal carbon potentiometers are used for R_{268} and R_{270}, mounted directly on the front panel. No trouble has (yet) occurred with insulation breakdown, although it would be better to use the type with plastic spindles, mounted on an insulated bracket. The blanking amplifier is built on a small piece of Veroboard which is mounted near the tube base.
When these circuits have been built,

$\mathrm{Tr}_{70} \mathrm{BC} 212 \mathrm{etc}$
Trigger generator
R
WW or carbon variable 203
1/4W preset 206, 207
all others $1 / 4$ W 5\%

C

ceramic $\quad 110,111,113-115$, 117.120

25 V elec. 112
10\% polyester 116
$\mathrm{D}_{50} 4.7 \mathrm{~mA}$ tunnel diode (sub-min.) Type IN3717. J. Birkett, 25 The Strait, Lincoln. D_{51} HP 2811 Schottky barrier from Hewlett-Packard Ltd diode or BAX13.

Tr
$\begin{array}{ll}\text { MPF111 etc. } & 71,74 \\ \text { TIS52, BSX20 } & 72,73\end{array}$
MPS3640, 2N4126, BCY70 75
S_{9} 2-pole, 6-way
S_{10} 2-pole, 2-way
$\mathrm{L}, 30 \mathrm{~T} 28 \mathrm{~g}$ on $1 / 4 \mathrm{in}$ former. No core.
T, Ferrite bead. Pri. 2T, sec. 4 turns 34 g .

Calibrator

R

metal oxide $1 \% 1 / 4 \mathrm{~W}$	$250-257$
$1 / 4 \mathrm{~W} 5 \%$	240,246,
	245,247
metal oxide 2%	242,243,
	249
$1 / 4 \mathrm{~W}$ high-quality preset	241,244
$1 / 4 \mathrm{~W} 10$-turn preset	248

D
IN914 71,73,74
5.6V 400mW Zener 70,72
c
5\% polyester 130,131

Tr
BC182 etc. 90-92

Errata

A resistor, designated $C_{18}, 0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic, should be connected from Tr_{15} drain to zero volts.
The resistor between Tr_{21} emitter and Tr_{22} collector is $R_{6},(47 \mathrm{k} \Omega 5 \%, 1 / 4 \mathrm{~W})$.
The resistor on Tr_{36} base is R_{102} and is $100 \Omega, 1 / 4 \mathrm{~W}, 10 \%$.
one should be able to obtain a focused spot on the screen. The X and Y plates may be left unconnected, but the input to the blanking amplifier, point A , should be connected to +18 V . Take great care not to burn the phosphor as a single spot may be made very bright. R_{267} may be adjusted if the focus control does not have sufficient range.

Y amplifier

Both the Y output amplifier and the Y preamplifier must be built on doublesided printed circuit boards, with the upper copper side used as a ground plane. Instability is almost certain to occur if any other method of construction is used. The output amplifier is built on a board measuring $3 \mathrm{in} \times 41 / 2 \mathrm{in}$, and the preamplifier on one measuring $31 / 2 \mathrm{in} \times 4 \mathrm{in}$. All earth connexions are, made to the ground plane, and this facilitates board layout.
With reference to the preamplifier board, he ground plane should be extended under IC_{1} to provide screening between its input and output leads. The reed relay $R L_{1}$ is mounted under the board as close as possible to R_{46} and pin 9 of IC_{1}. The components associated with the shift controls R_{38} and R_{44} are mounted on the two controls, but apart from these all the components are mounted on the board.
The connexions to the plug-in Y preamplifier from the main unit are made via a plug and socket. An 8-way Jones connector was used in the prototype but proved to have too great a stray capacitance to be used for the two signal leads. These were therefore made via sub-min. Harwin plugs. These plugs and sockets were not suitable for chassis mounting so it is not possible to remove the plug-in unit without taking the case off the main unit. This undesirable situation can be avoided by using a more modern plug and socket, similar to that used in commercial instruments. Unfortunately I cannot specify a particular type, as I have not yet modified the prototype.
The $\times 100$ a.c. preamplifier is built on a small piece of Veroboard, and is mounted near S_{1} and the input socket. It

Fig. 21. Frequency/amplitude response of the Y amplifier. The effect of using the higher gain of the input amplifier is evident.

Fig. 20. Testing the tunnel diode, D_{50} in Fig. 9 (shown incorrectly as a Zener diode).
should be screened from the main board. The input connector should be a 50Ω BNC type.

The attenuator has turned out to be the least successful of all the sections that make up the Y amplifier. From about the $5 \mathrm{~V} / \mathrm{cm}$ to the $50 \mathrm{~V} / \mathrm{cm}$ positions the attenuator degrades the pulse shape at high frequencies (see photographs). This is thought to be due to: inductive effects in the large capacitors that shunt the lower arms of the resistive dividers ($\mathrm{C}_{45}, \mathrm{C}_{48}, \mathrm{C}_{51}, \mathrm{C}_{54}$). The cure is probably to reduce the shunting time constant in these sections, i.e. to make C_{44}, C_{47}, C_{50} and C_{53} smaller, perhaps about 3 pF each. C_{45}, etc, may then be made smaller as well, raising the frequency of any resonance effects to outside the passband. In any event, all the components including the resistors should be as small as possible. The method of construction used is as follows: A piece of double sided printed circuit board about 3 in square is mounted between the two wafers of S_{3}, completely screening one from the other. The components are mounted as near the switch as possible, with all earth connexions going to the copper board; the resistor and trimmer joining the 2 poles in each wafer, C_{35} and R_{64} for example, pass through holes in the screen. The side nearer to the front panel should be the input side of the attenuator. Thick wire should be used to interconnect the earth connexion on the input socket, the attenuator screen, and the main board earth plane.

The complete setting up procedure for the Y amplifier will now be given, although it is not possible to make some of the adjustments until the timebase is working.
Switch to $100 \mathrm{mV} / \mathrm{cm}$, gain $\times 1$, d.c. coupled, and short the input. Set the shift controls to their centre positions, R_{28} to its mid position, and adjust R_{32} to centralize the spot. Set the voltage at Tr_{1} emitter (Fig. 1) to exactly +14 V with R_{2}. Set the voltage at pin 1 of IC_{1} to 7.5 V with R_{23} (Fig. 2), keeping the spot central. Check that the voltage at pin 2 is also 7.5 V . Now apply a suitable input voltage and adjust R_{30} for a sensitivity of exactly $100 \mathrm{mV} / \mathrm{cm}$. Switch the gain to $\times 10$ and adjust R_{46} for a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$. Finally switch to ACX100 and adjust R $_{56}$ (Fig. 3) for a sensitivity of $100 \mu \mathrm{~V} / \mathrm{cm}$.
The high frequency adjustments can only be made using a pulse generator with a rise time of less than 5 ns. This should be terminated at the input socket with the correct lead. Display a square wave at about 5 MHz . Set C_{7} (Fig. 1) to minimum capacitance and R_{16} to maximum resistance. Adjust L_{3} and L_{4} for an optimum pulse shape without overshoot, keeping the two inductors at the same value. Now C_{7} and R_{16} can be adjusted to decrease the rise time as much as possible. The photograph shows that I managed to achieve. These adjustments should be made at the $100 \mathrm{mV} / \mathrm{cm}$ gain setting.
The attenuator is adjusted in the usual way with a 1 kHz square wave. The input capacitance can be standardized using either a capacitance meter, or a $\div 10$ probe.

Sweep generator, triggering and X amplifier

It may be difficult to obtain the 24 -way switch for the timebase speed selector. A possible supplier has been given in the parts list, or the surplus shops may be tried. An alternative circuit uses a 9 -pole 4 -way switch to select the decades, and a 3 -pole 3 -way switch to provide multipliers of $\times 1, \times 2$ and $\times 5$. This arrangement will work equally well, but is less convenient to use.

The diode recommended for D_{51} in Fig. 9 is a Schottky barrier diode, as the combined low forward voltage and very high speed provides an optimum suppression of the unwanted positive pulses on the secondary of T_{1}. A gold bonded germanium diode or a high speed silicon diode may be substituted. The effect of inadequate suppression of the positive pulses is that the ramp is ended by the trigger pulses, resulting in a slightly shorter sweep length. The effect is obvious when the fine speed control is rotated, as the right hand end of the trace will move in discrete steps.

The tunnel diode, D_{50}, may be any component with a 4.7 mA peak current. The faster switching sub-miniature axial package is preferred.
Tunnel diodes may be tested using

Fig. 22 (a) shows the amplifier transient response. 5 MHz square wave with generator rise time of 5 ns . Y amplifier sensitivity $100 \mathrm{mV} / \mathrm{cm}$. Time scale $50 \mathrm{~ns} / \mathrm{cm}$. Settings at (b) are as at (a) but with sensitivity of Y amplifier $5 \mathrm{~V} / \mathrm{cm}$. Note the waveform degradation caused by the attenuator.

The same waveform is shown at (c) but Yamplifier sensitivity $10 \mathrm{mV} / \mathrm{cm}$.

A l00MHz sine wave is shown at (d). Y amplifier $100 \mathrm{mV} / \mathrm{cm}$, time scale $10 \mathrm{~ns} / \mathrm{cm}$. Note that the non-linearity is caused by the X amplifier when used
with $\times 5$ expansion. Also note that stable displays can be obtained well beyond the Y amplifier bandwidth.

Photograph (e) shows the time base waveform at a speed of $50 \mathrm{~ns} / \mathrm{cm}$, displayed on Tektronix oscilloscope. This is the waveform at point D (Fig. 7).

The photograph at (f) shows the waveform at the base of Tr $_{50}$ (Fig. 7) when the timebase is being triggered by a 1 MHz waveform. The timebase speed is $500 \mathrm{~ns} / \mathrm{cm}$, and the waveform shows the sharp negative trigger pulses, and the well suppressed positive pulses (see text).
the circuit of Fig. 20. As the current is varied the voltage will switch between about 200 mV and 700 mV . Take care not to let the current exceed about 10 mA and also do not overheat the diode when soldering. Tunnel diodes are very easily destroyed

The sweep generator may be built on veroboard as the layout is not critical. The trigger circuit, Fig. 9, is built on a small printed circuit board which is mounted on the sweep generator board and at right angles to it. This is to ensure that the leads to both primary and secondary of T_{1} are short. The X amplifier, Fig. 5, is once again built on a double sided p.c. board with a ground plane, as the first few versions, built on Veroboard, showed instability

The adjustment and calibration of the

X amplifier and time base circuits can only be finally completed when the circuits in Fig. 6 have been built.

Switch S_{5} (Fig. 6) to 'X AMP' and S_{4} (Fig. 6) to $100 \mathrm{mV} / \mathrm{cm}$. Short the external X input. Adjust the X shift to centralize the spot and set the mean X plate voltage to +50 V with R_{83} (Fig. 5). Now switch back to ' $\mathrm{TB} \times 1$ ' and display an input at about 1 kHz . Adjust the fine speed-control until 1 cycle of the 1 kHz waveform occupies 1 cm on the X axis. Now switch back to ' $\mathrm{TB} \times 1$ ' and display (Fig. 5) for an expansion of exactly 5. Switch back to 'X AMP', apply an input, and adjust the sensitivity of the X amplifier to $100 \mathrm{mV} / \mathrm{cm}$ with R_{93} (Fig. 5). The sweep length may now be set to a suitable value with R_{160} (Fig. 7). I suggest 10.5 cm . R_{187} (Fig. 8), the sweep speed calibration, should be adjusted on the $1 \mathrm{~ms} / \mathrm{cm}$ range, with R_{184} in the 'calibrated' position. The trimmers on the speed selector switch can now be adjusted until all the timebase ranges are accurate. It should be possible to obtain an accuracy of $\pm 2 \%$ over all the sweep speeds if the timing components have been selected to 1% tolerance. R_{113} (Fig. 6) is set so that the undeflected spot is in the centre of the screen when S_{5} is switch from 'TB' to ' X AMP'. R_{150} (Fig. 7) is adjusted so that the single sweep facility works correctly. If it is set to too low a value, the sweep will free run in the 'single sweep' position of S_{6}; if it is set to too high a value, S_{7} will be unable to reset the sweep.

The trigger generator must now be set up. Apply a noise free 1 kHz sine wave with an amplitude of about 4 cm on the screen. Set S_{9} (Fig. 9) to 'AC' and adjust the trigger level control for a triggered sweep. Back off the stability control as far as possible without losing the display. A stable single display should now be obtained, without any multi-triggering. Adjust R_{207} until mul-ti-triggering just does not occur, and check over the entire range of the trigger level control. Now reduce the amplitude of the input signal, continuously adjusting the level control, until the minimum signal that will generate a trigger has been obtained. This should be less than 0.3 cm peak-to-peak. The adjustment of R_{207} is à compromise between avoidance of multi-triggering and trigger sensitivity.
R_{206} is adjusted so that triggering occurs at the same position on the waveform when the slope switch S_{10} is changed over. The adjustment should be made initially on a large amplitude waveform and then checked for smaller and smaller amplitudes until the minimum is reached. The adjustment of R_{206} and R_{207} will interact slightly.
With the exception of the X attentuator compensation, this completes the adjustment and calibration of the timebase circuits.
Note. C_{63} (Fig. 5) can be adjusted if the high frequency compensation of the X amplifier is incorrect. This can be
checked by examining the retrace waveform of the sweep on the $50 \mathrm{~ns} / \mathrm{cm}$ range (disconnect the retrace blanking).

There should be no overshoot of the flyback and the flyback time should be as short as possible. A photograph of the $50 \mathrm{~ns} / \mathrm{cm}$ sweep waveform (as seen on another oscilloscope, and measured at point D (Fig. 7)) is provided for reference. Do not try and examine the waveform at the collectors of Tr_{36} and Tr_{37} (Fig. 5) using another oscilloscope as any extra capacitance here will affect the adjustment of C_{63}.

Amplitude calibrator Fig. 13

The easiest way of setting up this circuit is as follows: Short the base of Tr_{91} to earth to inhibit the operation of the astable. Now measure the voltage at the IV terminal using a digital voltmeter of 0.1% accuracy, and adjust R_{248} for 1 V d.c. Check the other outputs and if necessary readjust R_{248} until all outputs are within $\pm 1 \%$. Remove the short on Tr_{91} and connect a frequency meter to the 5 V output, leaving the digital voltmeter connected to the IV output. Now adjust R_{241} and R_{244} until the frequency is 1 kHz , and the digital voltmeter reads 0.5 V . This ensures that the mark-space ratio is exactly 0.5 .

VAT rates - details

The following list of components details certain items on which specific agreement has been reached between HM Customs \& Excise and the Electronic Components Board, and is extracted verbatim frcm a recent press release.
"The Electronic Components Board and Customs and Excise have agreed upon the following recommendations to traders:

1. Product categories to be charged at 25 per cent

 VAT(a) TV cathode ray tubes.
(b) TV tuners including tuners featuring touch button controls and/or remote control units.
(c) TV delay lines.
(d) TV, radio and audio loudspeakers (except loudspeakers suitable only for public address purposes).
(e) TV and radio wound assemblies (deflection coils, colour correction coils, line output transformers, switched mode inductors, wound aerial rods, r.f. and i.f. wound assemblies).
(f) All receiving valves for domestic use.
(g) All voltage multipliers for domestic use (triplers, etc).
(h) Modules for domestic appliances.
(i) Consumer modules for TV, radio and audio equipment.
(j) Linear integrated circuits suitable for use in TV, radio and audio equipment.
(k) Discrete semiconductors:
i) Transistors, triacs and thyristors, plastic encapsulated and less than 3 amps rating.
ii) Power transistors for TV deflection applications.
iii) All plastic diodes of less than 1 amp rating, excepting 2(f).
iv) All zener diodes of power rating less than 3 watts.
v) Rectifiers of a kind suitable for use in low voltage battery charger equipment having a current rating of less than 5 amps.
(l) Capacitors (excluding those types indicated in 2(m).)
(m) Resistors (excluding those types indicated in 2(n).).
(n) Switches having a rating of less than 5 amps and user controls (variable resistors, etc) of less than 2 watts max. dissipation of a kind suitable for use in TV, radio and audio equipment.
2. Product categories to be charged at 8 per cent

VAT
(a) Professional assemblies.
(b) Storage systems.
(c) Matrix stacks.
(d) Industrial assemblies (norbit logic elements, etc).
(e) Automobile assemblies (excluding those products used for in-car entertainment equipment - radio, stereo, etc).
(f) Microwave products (tube, solid state or passive networks).
(g) Professional deflection assemblies.
(h) All professional tubes.
(i) Infra red devices.
(j) Integrated circuits (excluding items indicated in 1(j).)
(k) Ferrites and wound ferrites (excluding items indicated in $1(\mathrm{e})$.)
(l) All discrete semiconductors (excluding those items indicated in l(k).)
(m) Capacitors:
i) Paper capacitors of greater than 0.5 microfarad and/or metal cased.
ii) Sintered tantalum capacitors of greater than 300 microfarad and/or metal cased.
iii) Film capacitors meeting IEC specification 68.2 or equivalent (21 day humidity rating) and/or metal cased.
iv) Electrolytic capacitors meeting IEC specification 103 Type I - $85^{\circ} \mathrm{C}$ or equivalent specification or operating in excess of 200 V a.c.
v) Mica capacitors.
vi) Vacuum and pressure gas capacitors
(n) Resistors:
i) Metal film with a stability better than 1 per cent over 1000 hours.
ii) Wirewound resistors (except main ballast resistors of a kind suitable for use in TV, radio or audio equipment).
(i) Edge connectors and connectors for more than 8 ways.
(p) Electro mechanical components - excluding switches having a rating of less than 5 amps and users controls (variable resistors, etc) of less than 2 watts max. dissipation of a kind suitable for use in TV, radio and audio equipment.
(q) Magnets.
(r) Printed circuits for the assemblies described in items 2(a), 2(d) and 2(e).
It is recognised that there may be some individual products to which the application of these definitions is not entirely straightforward. If a firm finds one of its products is described above as chargeable at 25% but, in its view, the product is not suitable for use as a part of goods within the Higher Rate Schedule, it may report the facts to the Electronic Components Board which will if necessary take the matter up with Customs and Excise, when an individual ruling will be given. The recommendations above will, in any case, be kept under review in the light of experience."

Electronic circuit calculations simplified

3 - Capacitive circuits

by S. W. Amos, B.Sc., M.I.E.E.

Parts 1 and 2 of this series were devoted to calculations of resistance values. This article is concerned with calculations of capacitance values and shows that these are similar in many instances to those of resistance: indeed many of the formulae are identical.

Tuning circuit. Fig. 1 shows a form of tuning circuit commonly used in the oscillator section of medium- and long-wave receivers. It is of interest because it contains an example of two capacitors in parallel (the variable tuning capacitor C_{1} with the preset trimming capacitor C_{2}) and of capacitors in series (the padding capacitor C_{3} with the $\mathrm{C}_{1} \mathrm{C}_{2}$ combination).
Suppose we wish to know the value of the effective tuning capacitance (i.e. the capacitance across the inductor L) when the tuning capacitor C_{1} is at its maximum and minimum values. We will assume that C_{1} has a maximum capacitance of 500 pF and a minimum of 25 pF , that C_{2} has a maximum capacitance of 50 pF and that C_{3} is 630 pF .

We will begin by calculating the parallel capacitance of C_{1} and C_{2}. The effective capacitance $C_{\text {eff }}$ of two capacitors C_{1} and C_{2} connected in parallel (Fig. 2) is the arithmetic sum of the individual capacitance values thus:

$$
C_{e f f}=C_{1}+C_{2}
$$

(This rule also applies to resistors connected in series). When both capacitors are at their maximum $\mathrm{C}_{1}=500 \mathrm{pF}$ and $\mathrm{C}_{2}=50 \mathrm{pF}$, making the total capacitance 550 pF . C_{1} is 25 pF at its minimum and if C_{2} is still 50 pF , the total capacitance is 75 pF . Thus the effect of C_{2} is to treble the minimum value of C_{1} but to add only 10% to the maximum. The effect on the maximum value of C_{1} is an illustration of a general rule that when a large capacitor is connected in parallel with a small one, the effective capacitance is slightly greater than the larger. Since the trimmer contributes twothirds of the effective minimum of C_{1} but hardly affects the maximum it follows that the trimmer has a marked effect on the tuning at the high-frequency end of the band but has negligible effect on the tuning at the
other end. Trimmer capacitors should therefore be adjusted at the high-frequency end of the band.
Let us now consider the effect of the series capacitor C_{3}. In general the effective capacitance $C_{\text {eff }}$ of two capacitors C_{3} and C_{4} connected in series (Fig. 3) is given by the expression:

$$
\begin{aligned}
& C_{e f f}=\frac{C_{3} C_{4}}{C_{3}+C_{4}} \\
&=-\begin{array}{c}
\text { product of individual } \\
\text { capacitances }
\end{array} \\
& \begin{array}{c}
\text { sum of individual } \\
\text { capacitances }
\end{array}
\end{aligned}
$$

(This expression also applies to resistors in parallel). In our numerical example C_{3} is 630 pF and C_{4} consists of C_{1} and C_{2} in parallel and we know that C_{4} has a maximum value of 550 pF and a minimum of 75 pF . When C_{1} is at maximum we have:

$$
\begin{aligned}
C_{e f f} & =\frac{C_{3} C_{4}}{C_{3}+C_{4}}=\frac{630 \times 550}{630+550} \mathrm{pF} \\
& =294 \mathrm{pF}
\end{aligned}
$$

When C_{3} is at minimum:

$$
\begin{aligned}
C_{e f f} & =\frac{C_{3} C_{4}}{C_{3}+C_{4}}=\frac{75 \times 630}{75+630} \mathrm{pF} \\
& =67 \mathrm{pF}
\end{aligned}
$$

The padder has thus nearly halved the effective maximum tuning capacitance but has reduced the minimum by about 10%. The effect on the minimum value is an example of a general rule that when a large capacitor is connected in series with a small one, the effective capacitance is slightly less than the smaller. Since the padder reduces the maximum capacitance considerably but hardly affects the minimum, it follows that it has a great effect on the tuning at the low-frequency end of the band but has negligible effect at the other end. The value of the padder should therefore be chosen to give the required tuning range at the low-frequency end of the band.
The ratio of maximum to minimum capacitance across L is 294 to 67 pF i.e.

Fig. 1. Tuning circuit providing examples of capacitors connected in parallel and in series.

Fig. 2. Two capacitors connected in parallel.

Fig. 3. Two capacitors connected in series.
$4.38: 1$. This is a useful ratio to know because from it we can easily calculate the tuning range of the receiver. The ratio of maximum to minimum frequency (or maximum to minimum wavelength) of an LC circuit is equal to the square root of the capacitance ratio - in our example 2.1 : 1 approximately. The frequency range could therefore be
from 1 MHz to 2.1 MHz which, for an intermediate frequency of 465 kHz , corresponds to a tuning range of 535 kHz to 1.635 MHz , the medium waveband.
The rules quoted in Part 2 for calculating the effective value of two resistors connected in parallel apply equally to two capacitors connected in series. For example to calculate the capacitance C_{1} needed to be connected in series with a given capacitance C_{2} to give a required capacitance $C_{\text {eff }}$ we can use the expression:
$C_{1}=\frac{C_{2} C_{\text {eff }}}{C_{2}-C_{\text {eff }}}$

$$
=\frac{\begin{array}{c}
\text { product of original and } \\
\text { effective capacitances }
\end{array}}{\begin{array}{c}
\text { difference of original and } \\
\text { effective capacitances }
\end{array}}
$$

For example the series capacitance required to reduce 820 pF to 330 pF is given by
$\begin{aligned} C_{1} & =\frac{\text { product }}{\text { difference }}=\frac{820 \times 330}{820-330} \mathrm{pF} \\ & =550 \mathrm{pF} \text { approximately. }\end{aligned}$
If two equal capacitors are connected in series, the effective capacitance is half that of each capacitor. If we connect in series with a capacitor another of double its value, the effective capacitance of the combination is two-thirds that of the original capacitor. In general if we connect in series with a capacitor another of n times its capacitance, the effective capacitance of the combination is $n /(n+1)$ that of the original.
If we express the reduction in capacitance as a percentage we can use a rule similar to that for resistors in parallel, e.g. to reduce the effective capacitance by 1% the series capacitor should have 100 times the capacitance of the original and for a 5% reduction the series component should be approximately 20 times the original. In general the series capacitance for a $p \%$ reduction in capacitance should be $(100-p) / p$ times the original which, for small percentages, is approximately $100 / p$ as in the two numerical examples quoted above.
As a numerical example suppose a medium-wave receiver is found to have a waverange extending to 500 kHz and that the minimum frequency is required to be 520 kHz . The correction could, of course, be achieved by adjustment of the inductance followed by a trimmer adjustment at the high-frequency end of the band. Suppose, however, that the inductor must not be altered and that the correction must be achieved by connecting a capacitor in series with the tuning capacitor. Such a capacitor will not significantly affect the tuning at the high-frequency end as already explained. What value of series capacitance is required? The frequency correction is approximately 4% and this requires a capacitance correction of

Fig. 4. Long-wave signal-frequency tuning circuit.

Fig. 5. Bandspread short-wave oscillator tuning circuit.

Fig. 6. Capacitive voltage divider.

Fig. 7. Usé of a capacitive divider to feed a bipolar transistor in an i.f. amplifier.
double this, i.e. $8 \%^{*}$. From the rule just quoted the series capacitor should be $(100-8) / 8$, i.e. 11.5 times the maximum

[^7]tuning capacitance. If the tuning capacitance has a maximum value of 350 pF , the required series capacitor is $11.5 \times 350 \mathrm{pF}$ which is approximately 4000 pF .

Long-wave signal-frequency tuning circuit. As a numerical example consider the long-wave signal-frequency tuning circuit illustrated in Fig. 4. It is required to tune over the range 800 to 2,000 metres (150 to 375 kHz) and the tuning capacitor C_{1} has a maximum capacitance of 350 pF . What should be the capacitance of the trimmer C_{2} ?

The ratio of maximum to minimum frequency is 375 to 150 , i.e. $2.5: 1$. The ratio of maximum to minimum effective capacitance must hence be $2.5^{2}: 1$ that is 6.25 : 1. If we neglect the minimum capacitance of C_{1} and take C_{2} as the minimum capacitance of the circuit, the maximum capacitance is $\left(C_{1}+C_{2}\right)$ and we have the simple relationship

$$
C_{1}+C_{2}=6.25 C_{2}
$$

which gives C_{2} as 67 pF approximately. The minimum capacitance of C_{1} will, of course, contribute something towards this and C_{2} could well be made a preset component of 70 pF maximum capacitance which can be adjusted to resonance at 375 kHz with C_{1} at minimum.

Bandspread short-wave oscillator tuning circuit. Sometimes it is required to limit the tuning of a receiver to a small frequency range. For example it may be desired to cover the 49-metre band (5.95 to 6.2 MHz) in one sweep of the tuning capacitor. Such bandspread tuning greatly eases the difficulty of accurately tuning short-wave signals. The tuning is determined by the oscillator section of the receiver and for the standard intermediate frequency of 465 kHz its frequency range is from 6.415 to 6.665 MHz . The centre frequency is 6.54 MHz and the total tuning range $(250 \mathrm{kHz})$ is 3.8% of this. The total effective change in tuning capacitance must therefore be double this, i.e. 7.6% of the average (midband) capacitance. If we decide that the midband capacitance shall be 50 pF , then the effective capacitance range must be from 48.1 to 51.9 pF . The problem is to devise a tuning system to give such a range.
The required change in capacitance (3.8 pF) could possibly be obtained from a small variable capacitor but a more general solution is to use a series combination of a fixed capacitor (C_{3} in Fig. 5) and a variable capacitor C_{1}, the balance of fixed capacitance being provided by a parallel capacitor C_{2}. Suppose we choose for C_{1} a capacitor with a maximum capacitance of 10 pF and a minimum of 2 pF . What value of C_{3} will give a 3.8 pF change in capacitance as C_{1} is swung from minimum to maximum? To obtain an approximate answer we can assume that C_{3} will be large compared with the minimum value of C_{1} so that the effective

Fig. 8. Shunt capacitance aerial-coupling circuit.

Fig. 9. The previous diagram when the aerial is replaced by an equivalent generator.

Fig. 10. The previous diagram simplified by the omission of R_{1}.
minimum capacitance of the combination is also 2 pF . (In fact the minimum capacitance will necessarily be slightly less than 2 pF so that the frequency coverage will be slightly greater than calculated.) The maximum capacitance of the combination is required to be 5.8 pF and this enables us to calculate C_{3} immediately from the relationship:

$$
C_{3}=\frac{\begin{array}{c}
\text { product of original and } \\
\text { effective capacitance }
\end{array}}{\begin{array}{c}
\text { difference of original and } \\
\text { effective capacitance }
\end{array}}
$$

$$
=\frac{10 \times 5.8}{10-5.8} \mathrm{pF}
$$

$$
=14 \mathrm{pF}
$$

Finally we must determine the value of C_{2}. The midband capacitance of the
$\mathrm{C}_{1} \mathrm{C}_{3}$ combination is approximately 4 pF and to give a total midband capacitance of 50 pF , as assumed initially, C_{2} must be 46 pF . To allow for stray capacitance, including the self-capacitance of the tuning inductor, it would be wise to make C_{2} preset and to adjust it to give the required frequency range as C_{1} is varied.

Capacitance divider. Two capacitors in series can be used as a voltage divider in much the same way as two resistors in series. The relationship between $v_{i n}$ and $\nu_{\text {out }}$ (Fig. 6) is given by:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{C_{1}}{C_{1}+C_{2}}
$$

(This should be compared with the corresponding expression $R_{2} /\left(R_{1}+R_{2}\right)$ for the resistive potential divider.)
An example of an application of a capacitive divider is illustrated in Fig. 7. It is normal practice to derive the input signal for a bipolar transistor i.f. amplifying stage from a tapping (inductive or capacitive) on the preceding i.f. transformer. There are two main reasons for the use of such a tapping:
(a) it enables the effective damping of the tuned circuit by the transistor input resistance to be adjusted to obtain a desired Q value and hence the required shape of i.f. passband response.
(b) it limits the voltage gain of the transistor and this may be necessary to ensure stability particularly if no neutralisation or unilateralisation is used.
As a numerical example suppose that these design considerations dictate a capacitive divider step-down ratio of $8: 1$ and that the effective tuning capacitance should be 200 pF What capacitor values should be used? To obtain the required effective tuning capacitance we have the relationship:

$$
\frac{C_{1} C_{2}}{C_{1}+C_{2}}=200 \mathrm{pF}
$$

From the voltage step-down requirement:

$$
\frac{C_{1}}{C_{1}+C_{2}}=\frac{1}{8}
$$

Division of the first equation by the second gives us immediately that
$\mathrm{C}_{2}=1600 \mathrm{pF}$
It is then probably quicker to obtain the value of C_{1} by the product/difference relationship thus:

$$
\begin{aligned}
C_{1} & =\frac{\begin{array}{c}
\text { product of original and } \\
\text { effective capacitances }
\end{array}}{\begin{array}{c}
\text { difference of original and } \\
\text { effective capacitances }
\end{array}} \\
& =\frac{1600 \times 200}{1600-200} \mathrm{pF} \\
& =230 \mathrm{pF} \text { approximately. }
\end{aligned}
$$

Shunt-capacitance aerial-coupling circuit. A less-obvious application of a capacitive divider occurs in the shuntcapacitance aerial-coupling circuit illustrated in Fig. 8. This is a very simple method of coupling an external aerial to a tuning circuit and is useful when the aerial is at some distance from the receiver and is coupled to it by a coaxial cable: the capacitance of the cable simply adds to the value of the coupling capacitance C_{2}.

To analyse the performance of this circuit we must replace the aerial by an equivalent generator, and for a vertical rod or wire likely to be used for medium-wave or long-wave reception the equivalent generator need consist simply of a voltage source in series with a resistance R_{1} and a capacitance C_{1}^{-}as shown in Fig.9. R_{1} is commonly around 40 ohms which is negligible compared with the reactance of C_{1} and it is therefore permissible to omit R_{1} leaving the circuit in the form shown in Fig. 10. The circuit now consists of a capacitive potential divider $C_{1} C_{2}$ and its voltage output is magnified Q times by the resonant circuit $L C_{3}$. Thus we can say immediately that the voltage gain from the voltage induced in the aerial to that developed across C_{3} is given by:
voltage gain of shunt-capacitance aerial-coupling circuit \qquad
Normally C_{1} is small compared with C_{2} and this can thus be simplified to:
voltage gain of shunt-capacit- $=Q C_{1}$ ance aerial-coupling circuit $=\frac{C_{2}}{C_{2}}$

This expression contains no term in frequency nor does it include C_{3}, this illustrating a good feature of the aerial-coupling circuit, namely that the voltage gain is independent of frequency. The value of the gain depends on Q and C_{1} (which are fixed) and on C_{2} which should be small to give high gain. Unfortunately there is a lower limit to the value of C_{2} which can be used as illustrated in the following numerical example.
Suppose it is desired to cover the medium waveband (525 to 1605 kHz) and that C_{3} has a maximum capacitance of 350 pF and a minimum of 20 pF . As shown earlier in this article C_{2} has little effect on the minimum effective tuning capacitance but it does reduce the maximum and this reduction determines the minimum acceptable value of C_{2}. The ratio of maximum to minimum frequency in the medium waveband is $3.05: 1$ and thus the maximum to minimum effective tuning capacitance ratio must be 3.05^{2} : 1 , i.e. $9.35: 1$. Let the total minimum capacitance be 35 pF (this includes an allowance of 15 pF for the trimmer). Then the maximum effective capacitance should be $9.35 \times$ 35 , i.e. 327 pF . The maximum capacitance of C_{3} is in fact 365 pF (i.e. 350 pF plus 15 pF for the trimmer). From these
two figures we can calculate the value of C_{2} from the expression:

$$
\begin{aligned}
C_{2} & =\frac{\begin{array}{c}
\text { product of original and } \\
\text { effective capacitances }
\end{array}}{\begin{array}{c}
\text { difference of original and } \\
\text { effective capacitances }
\end{array}} \\
& =\frac{365 \times 327}{365-327} \\
& =3140 \mathrm{pF}
\end{aligned}
$$

If we take the aerial capacitance as 200 pF and the Q value of the tuning inductor as 100 , the voltage gain is given by:
voltage gain $=\frac{Q C_{1}}{C_{2}}$

$$
=\frac{100 \times 200}{3140}
$$

$=6.4$ approximately.
This is a low value but it is constant over the band: moreover there is very little damping of the tuned circuit ${L C_{3}}^{\text {. }}$

Series-capacitance aerial-coupling circuit. Another aerial-coupling circuit which can similarly be treated as an example of a capacitive divider is the series-capacitance circuit shown in Fig. 11. As before we can replace the aerial by a series $R C$ circuit and the resistance can be neglected leaving the equivalent circuit in the form shown in Fig. 12. As we shall see C_{4} is in practice only a few pF , small compared with the aerial capacitance C_{1}. The effective capacitance of C_{1} and C_{4} in series is thus nearly equal to C_{4}, and C_{1} can thus be omitted. The circuit then reduces to the simple form shown in Fig. 13. In this C_{4} and C_{3} form a capacitive divider, the output of which is magnified Q times by the tuned circuit $L C_{3}$. Thus the voltage gain, from voltage induced in the aerial to the voltage developed across C_{3} is given by:
$\begin{aligned} & \text { voltage gain of series-capacit- } \\ & \text { ance aerial-coupling circuit }\end{aligned}=\frac{Q C_{4}}{C_{3}+C_{4}}$
Normally C_{4} is small compared with C_{3} and this can thus be simplified to:
$\underset{\text { voltage gain of series-capacit- }}{\text { ance aerial-coupling circuit }}=\frac{Q C_{4}}{C_{3}}$
Now Q is fixed for a given tuning inductor. C_{4} is also fixed and its value can be determined as shown below. C_{3} is the tuning capacitor and its capacitance varies over a ratio of more than $9: 1$ to span the medium waveband. It follows that the voltage gain of the aerial-coupling circuit similarly varies over a range of more than $9: 1$, being a maximum at the high-frequency end where C_{3} is a minimum. Another important point is that C_{4} is in parallel with C_{3} and its value is therefore limited if, for example, the full extent of the

Fig. 11. Series-capacitance aerial coupling circuit.

Fig. 12. Series-capacitance aerialcoupling circuit with the aerial replaced by an equivalent generator.

Fig. 13. As explained in the text, C_{1}, can be omitted, leaving the equivalent circuit for series-capacitance aerial coupling in this form.
medium waveband is to be covered.
As a numerical example consider the medium waveband (525 to 1605 kHz). As already shown this requires a variation in effective tuning capacitance of $9.35: 1$. If the tuning capacitor has a maximum capacitance of 350 pF and a minimum of 20 pF , then the maximum capacitance which can be placed in parallel with the tuning capacitor, while still permitting the whole of the waveband to be covered, is given by C in the equation:

$$
9.35(C+20)=C+350
$$

which gives
$C=20 \mathrm{pF}$ approximately.

Thus the trimmer and aerial coupling capacitor (effectively in parallel) must not exceed 20 pF . An allowance of, say,

10 pF must be made for the trimmer to allow alignment of the tuned circuit with others in the receiver and thus C_{4} is limited to a maximum of about 10 pF .
To estimate the value of voltage gain obtainable suppose the Q of the inductor is 100 . If C_{4} is 10 pF we have, for the low-frequency end of the band, where the tuning capacitor has a maximum value of 360 pF :

$$
\begin{aligned}
\text { voltage gain } & =\frac{100 \times 10}{360} \\
& =2.8
\end{aligned}
$$

a very low value. At the high-frequency end of the band the tuning capacitance is 30 pF (minimum plus trimmer) and the voltage gain is given by:
voltage gain $=\frac{100 \times 10}{30}$

$$
=33
$$

more than ten times the low-frequency gain, thus illustrating the wide variation mentioned above.
(Next article: $R C$ combinations)

Teletext

We plan to publish in the near future a short series of articles on the Teletext television information system, culminating in a design for a decoder for use with domestic receivers. The decoder to be described will provide for full Teletext facilities, including colour, upper and lower-case characters, flashing indication and separate detection of news flashes and sub-titles. It will also contain provision for the display of time-selected Type C pages. Cost will be around $£ 85$. Teletext is a unified version of the BBC's CEEFAX system (Wireless World, May 1973, p.222) and the ORACLE system developed by the IBA (July 1973 issue, p.314). Test transmissions were started by the BBC in September 1974 on BBCl, while a group of independent television companies (London Weekend, ITN and Thames) will be starting them in July 1975. The Teletext broadcasting standard was outlined in News of the Month, November 1974 issue.

Continuous dividing of two pulse rates

The following circuit you can use as a ratio ratemeter whose output signal is proportional to N_{1} / N_{2} where N_{1} and N_{2} are average rates of the applied input pulse trains. The circuit is very simple and consists of two main parts: a logical circuit and an integrator. The logical circuit converts two input trains into one train whose pulse rate is equal to N_{1}, while the width of its pulses is given by the time intervals between two neighbouring pulses of train N_{2}. It is evident that, under certain conditions, at the output of the integrator the d.c. signal will be proportional both to the pulse rate of first train $\left(N_{1}\right)$ and to the pulse interspaces in the second train (the interspaces are equal to $1 / N_{2}$), i.e., it is proportional to the value $k N_{1} / N_{2}$ where constant k is given by the integrator.

The circuit diagram is shown in Fig. $1(a)$ and waveform responses in impor-

Fig. 2

tant circuit points are illustrated at (b). From the function of the proposed circuit it follows that such a ratio ratemeter works satisfactorily as long as in every time interval, defined as a gap between two successive pulses N_{1}, there appear at least two pulses N_{2}. For regularly distributed input pulses it is sufficient to satisfy the following condition: $2 N_{1}<N_{2}$. As far as randóm pulse trains are concerned the condition should be fulfilled to a greater extent. Naturally, in a practical application it is dependent chiefly upon the distribution of processing pulse trains. Measurements have shown that with regularly distributed pulses the achieved accuracy is better than 1% while for statistical pulses (Poisson distribution and $5 N_{1}<N_{2}$) the accuracy of the resulting ratio is approximately 2%.
The logical part of the ratio ratemeter can be designed with digital i.cs in general use. Fig. 1(a) shows that to do this it is sufficient to use only one integrated system containing two J-K
(a)

Fig. I

(b)
flip flops. Another example of logic part design is shown in Fig. 2. Any integrated version of operational amplifier can be used in the integrator.
J. Sabol,

Radiation Centre,
University of Birmingham

Cancellation by negative resistance provides alternative to Wheatstone bridge

When a small resistance variation must be measured in the presence of a large fixed resistance, the Wheatstone bridge technique is usually used. A better way, which eliminates balancing and/or output voltage signals which are a non-linear function of resistance change, is the use of a linear ohmmeter and negative resistance cancellation of the high fixed resistance value. A linear ohmmeter produces a constant current at its terminals; this allows the use of a

low range linear onmmeter
potential as a negative resistance because the fixed current holds the Q-point of the battery or source of potential at some constant negative resistance value. Then the ohmmeter may be used on a low range (on which it would be pegged without the bucking voltage) to show the small resistance value change.
In the example shown, a battery and low-resistance potentiometer is used as a variable voltage source to produce the negative resistance value to cancel 100 $\mathrm{k} \Omega$ of the unknown's total value; allowing the variation value of $3 \mathrm{k} \Omega$ to be read on the $10 \mathrm{k} \Omega$ range of the linear ohmmeter.

The linear ohmmeter may be any commercial instrument, such as the digital instruments available with resistance measuring ranges.
David R. Schaller,
Milwaukee,
Wisconsin

New Product's

Rotary slider

A fader control, model, RS100, combines the linear slide action of existing devices with the circular resistive track of a conventional potentiometer. The unit consists of a sealed "pot" at each end of the control. A belt system is incorporated around the two "pots" which are moved by linearly moving the belt with the attached slide knob. Robins/Fairchild, 75 Austin Boulevard, Commack, N.Y. 11725, U.S.A.

WW 301 for further details

V.h.f. receiver

A recent addition to the Eddystone range of receivers is the $1990 \mathrm{R} / 1$ which covers the 25 to 235 MHz band. Another
version, the 1990R/2, offers an extended frequency range to 500 MHz . Both types will receive a.m., f.m., c.w. and pulse transmissions and are suitable for mobile communications, monitoring or laboratory use with facilities to operate from a standard mains supply or a 12 V d.c. negative earth supply. Eddystone Radio Ltd, Eddystone Works, Alvechurch Road, Birmingham B31 3PP WW 313 for further details

Miniature p.c.b. sockets

A range of miniature sockets for vertical mounting in p.c.b. holes of 0.40 in diameter is rated at $5 \mathrm{~A}, 1800 \mathrm{~V}$ d.c. The sockets are silver plated and have a p.t.f.e. insulating cover in eleven colours. Oxley Developments Co. Ltd, Ulverston, Cumbria.
WW 309 for further details

Autoranging d.v.m.

A recent addition to the $B \& K$ range of electronic voltmeters is the model 2427. This is a general purpose instrument for measurement of + peak, - peak, maximum peak, true r.m.s. and average value of signals with complex waveforms, and also d.c. values. An automatic mode selects the correct range according to the input level and the measured value may be indicated in mV, V or dB on a four-digit, seven-segment display. Frequency range of the 2427 is from 0.5 Hz to 500 kHz and the
voltage range is from 10 mV to 300 V a.c., and from 100 mV to 300 V d.c. Decibel ranges are from -80 to +50 dB ref. 1 V , from +40 to +170 dB ref. $1 \mu \mathrm{~V}$, and from -80 to +52 dBm ref. 0.775 V . B \& K Laboratories Ltd, Cross Lances Road, Hounslow, Middlesex.
WW 305 for further details

Tuner frequency-display

The AY-5-8100 is a $41 / 2$-digit frequency counter designed specifically for the hi-fi tuner market. The 28 -lead m.o.s. microcircuit consists of a counter capable of accepting a 350 kHz input and displaying the output on a fluorescent display. The three-stage frequency divider divides the input signal by ten, ten and eight to provide coverage of the medium, short and v.h.f. wavebands. In this way frequencies up to $2,999 \mathrm{MHz}$ 29.995 MHz and 299.95 MHz can be displayed. General Instrument Microelectronics Ltd, 57-61 Mortimer Street, London W1N 7TD.
WW 311 for further details

Digital panel meters

A range of Swiss-made d.p.ms that have 1500 V isolation between analogue input and digital output and interface directly with computer systems has been introduced by A D Products. The 1999-count panel meter with 16 mm l.e.d. read-out, is in two display formats, $3^{1 / 2}$-digit

WW313

WW305

decimal or 3 -digit hexadecimal and is housed in a $48 \times 96 \mathrm{~mm}$ DIN 43700 standard case. Standard features are: greater than $1000 \mathrm{M} \Omega$ input resistance, input filter, reading rate of three per second, five ranges of direct voltage up to $1,000 \mathrm{~V}$ and eight ranges of direct current up to 2 A . Basic accuracy is 0.05% f.s. ± 1 digit. Dimensions are $96 \mathrm{~W} \times$ $48 \mathrm{H} \times 120 \mathrm{D} \mathrm{mm}$. Amplicon Electronics Ltd, 9 Lion Mews, Hove, Sussex BN3 5RA.
WW 323 for further details

Digital multimeter

The Simpson 360 digital multimeter offers a $31 / 2$-digit l.e.d. display, 29 ranges of measurement and an analogue output signal for interfacing to chart recorders. The meter will measure alternating and direct current up to 10A direct voltage up to 1100 V , alternating voltage up to 600 V , and resistance up to $19.99 \mathrm{M} \Omega$. The 360 measures $182 \times 137 \times 95 \mathrm{~mm}$ and weighs about 2 kg . Bach-Simpson (UK) Ltd, Trenant Industrial Estate, Wadebridge, Cornwall PL27 6HD.
WW316 for further details

Digital impedance meter

General Radio have announced the 1685 digital impedance meter. This instrument automatically measures R, L and C and has go/no-go limits for D and Q. Values for C ' and L are made at either

WW316

120 Hz or 1 kHz to offer an accuracy to within 0.5% and 0.1% respectively. General Radio Co. (U.K.) Ltd, Bourne End, Bucks.
WW $\mathbf{3 0 0}$ for further details

High-frequency breadboard

A range of self-adhering, tinned-copper strips and solder pads with plastic substrates, known as Lo-pads, is suitable for high-frequency breadboards. The pads, which are thin and flexible, may be cut with scissors and positioned to cross over each other. When this system is used in conjunction with a mini-mount system (from the same manufacturer) four impedance levels are obtained - ground, r.f. ground, matched impedance, and high impedance. Wainwright Instruments \& Co, D-8031 Oberlating-Seefeld, Aubachstrasse 25 , Germany.
WW 306 for further details

Flat-cable clips

A flat-cable clip manufactured from nylon is available in three sizes and will accommodate cables from 1 to 3in wide which are stacked up to $5 \frac{1}{4}$ in high. The base of the clip can be screw mounted or glued and the design of the device permits the removal of cable and re-use of the clip. Panduit Ltd, Sittingbourne Industrial Park, Unit 22a Crown Quay Lane, Sittingbourne, Kent.
WW 303 for further details

L.e.d. bar display

A 10-bar line array from ITT provīdes a linear display which may be extended to any length in multiples of 10 bars. The device uses a light pipe construction with GaAsP diodes presented in a 10 -pin d.i.l. package. ITT Components Group Europe, Electron Device Division, Brixham Road, Paignton, Devon.
WW318 for further details

Signal conditioner

The SE994 is a six-channel system that will condition the signal from any transducer that accepts a bridge supply voltage from 5 to 15 V d.c. Single, half or full-bridge configurations are accommodated and zero balance, gain set, internal/external calibration are also provided. A 1 V full scale output is produced, from a minimum 10 mV input, which is compatible with magnetic tape recorders, data loggers or meter units. SE Labs (EMI) Ltd, North Feltham Trading Estate, Feltham, Middlesex.
WW 308 for further details

Field tester for computer terminals

Identified as Field Datameter model DTM1000, Weir Instruments have introduced a diagnostic test set which combines a comprehensive pulse measuring system and a digital multimeter in a portable unit designed specifically

WW300

WW315

WW302

WW307

WW312
for use with Burroughs Intelligent Terminals and a wide range of computer peripheral equipment. The single unit effectively replaces a kit of test instruments including an oscilloscope, a pulse count meter, a frequency counter and a digital voltmeter. In addition to the normal functions of frequency measurement, pulse width timing and two-line time-interval measurement, the unit can be switched to indicate the coincidence (or overlap) time of two pulses applied to separate inputs, the duty cycle of a pulse waveform as a percentage of a total waveform period, the pulse count between external "start" and "stop" signals on either a one-shot or automatically up dated repeat basis. The digital multimeter section indicates d.c. voltage from $100 \mu \mathrm{~V}$ to lkV , a.c. voltages from 1 mV to 500 V and resistance over the range 0.1Ω to $9 \mathrm{M} \Omega$. All pulse and multimeter measurement results are indicated on a five-digit l.e.d. display with aut oranging on frequency and multimeter functions. Weir Instrumentation Ltd, Durban Road, Bognor Regis, Sussex.
WW315 for further details

Wireless microphone

Beyer have introduced a wireless microphone system called the transistophone. This consists of a pocket transmitter, TS160, or a microphone transmitter, SM1600 (see photograph) and a receiver - NE160. All the units are crystal stabilised and operate in the 140 to 180 MHz band. Beyer Dynamic (GB) Ltd, 1 Clair Road, Haywards Heath, Sussex.
WW 302 for further details

Analogue memory

The type AM1024 analogue memory is a digital store organized as 1024×9-bit words. Eight of the bits are used to retain converted analogue data, the remaining channel is available for synchronization, timing or control functions in a system. The memory is provided with crystal-controlled sampling increments between $3 \mu \mathrm{~s}$ and 300 ms . Two fixed playback speeds are offered which are compatible with a c.r.o. or an X-Y plotter. Kemo Ltd, 9-12 Goodwood Parade, Elmers End, Beckenham, Kent BR3 3QZ.
WW $\mathbf{3 0 7}$ for further details

Pc.b. rocker switches

The 76 series of di.i. printed circuit board rocker switches comprises nine sizes with between two and ten independent single contact switching positions. The moulded devices have a minimum height above the board of 7.75 mm and can be supplied with a transparent protective cover. Highland Electronics Ltd, 33-41 Dallington Street, London ECIV OBD.
WW 312 for further details

Video equaliser

The 2503 video equaliser is designed for the PAL and SECAM colour systems. The unit will detect and continuously correct distortion in the six parameters of a video signal that are most noticeable to a viewer; overall signal level, 2 T pulse amplitude, 2T pulse shape, bar tilt, chroma amplitude and chroma delay. Basically the unit receives a test signal incorporated in the transmitted picture signal. This is compared with stored reference voltages and any differences are corrected. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent ST6 3AT
WW 304 for further details

Rotation monitor

The type RM15 shaft-rotation monitor will provide an alarm or control signal when the speed of a rotating shaft reaches a preset level. The monitor accepts a signal from a sensor such as a magnetic transducer used in conjunction with a toothed wheel to give a train of pulses whose frequency is proportional to the rotational speed of the shaft. Gould Advance, Controls \& Calculator Division, Raynham Road, Bishop's Stortford, Herts.
WW317 for further details

Electronic watch modules

Three electronic watch modules incorporating l.e.d. displays are available to volume users from National Semiconductors. Model WM01 is a complete, calibrated and warranted watch module that displays hours, minutes and seconds. Models WM02 (12 hour) and WM03 (24 hour) are similar to the WM01 but they also display date of the month on command. National Semiconductor, The Precinct, Broxbourne, Herts EN 10 7HY.
WW 314 for further details

Comb generator

Scientific Research Corporation has developed a small comb generator which covers the 4 to 8 GHz band. Comb spacing of the device is 100 MHz with an output power of $-25 \mathrm{dBm} \pm 10 \mathrm{~dB}$ and an r.f. input of 100 MHz at 0 dBm . The generator, which operates in a temperature range from -55 to $+71^{\circ} \mathrm{C}$, measures $1.17 \times 0.67 \times 0.49 \mathrm{in}$, and is available from REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.
WW 310 for further details

Products seen at LECS

London Electronic Components Show, May 1975

Miniature relays

The $270 / 280$ series of miniature mer-cury-wetted reed relays are for low-level switching applications. The mercury wetting of the relay contacts eliminates electrical contact "bounce" and gives a stable contact resistance (initial contact rating 0.05Ω maximum). The devices are suitable for interfacing with low-level logic equipment, while the power ratings enable them to be used for switching inductive loads. Ratings for the Form A types in the series are: breakdown 1.2 kV d.c. minimum; switching $200 \mathrm{~V}, 1 \mathrm{~mA}$ and $28 \mathrm{~V}, 1 \mathrm{~A}$ (lkV d.c. and 2 A d.c. maximum); d.c. contact rating 50 W maximum. The corresponding figures for the Form C types are: breakdown 1 kV d.c. minimum; switching $200 \mathrm{~V}, 1 \mathrm{~mA}$ and $28 \mathrm{~V}, 1 \mathrm{~A}(200 \mathrm{~V}$ d.c. and 1 A d.c. maximum); d.c. contact rating 14 W maximum. Astralux Dynamics Ltd, Brightlingsea, Colchester, Essex CO7 0SW.
WW 327 for further details

Attenuator for cable television

A variable attenuator designed for cable television distribution systems and manufactured by Egen Electric provides a maximum attenuation range of 20 dB , while maintaining a constant 75Ω input/output impedance and ensuring maximum power transfer. Insertion loss is less than 0.5 dB and operating frequency range covers v.h.f. and u.h.f. bands between 40 and 860 MHz . Egen Electric Ltd, Charfleet Industrial Estate, Canvey Island, Essex SS8 0PG.
WW 326 for further details

Time delay relay

A miniature time delay relay by Magnetic Devices Ltd gives a delay of up to 66 seconds, adjusted by fine and coarse potentiometers. Contact rating is 6A at 250 V a.c. or 30 V d.c. The plug-in relay is designed to operate from 12,24 , or 36 V d.c. Magnetic Devices Ltd, Exning Road, Newmarket, Suffolk.
WW 334 for further details

Storage scope

An improved version of the OS2200 storage oscilloscope from Gould Advance, the OS2200A, offers more comprehensive storage facilities at a
lower cost than earlier models in the range. The incorporation of a stored brightness control improves the storage time, with low-brightness traces stored for up to approximately 30 min , a times-three improvement over previous models, while a hold facility allows traces to be retained for a period of several days even when the instrument is switched off. The instrument is available in two versions: high bandwidth (10 mV at 25 MHz) and high gain differential with a sensitivity of $50 \mu \mathrm{~V} / \mathrm{cm}$ at 2 MHz . Both versions use a wide-range timebase incorporating trigger delay and single-shot facilities. The OS2200A measures $25 \times 29 \times$ 44.5 cm and costs $£ 751$ plus VAT with the wide-bandwidth Y amplifier and $£ 816$ with the high-gain differential Y amplifier. Gould Advance, Instrument Division, Roebuck Road, Bishop's Stortford, Herts.
WW324 for further details

Dry battery

Latest addition to the range of Sonnenschein Dryfit batteries is a 12 V , 12Ah battery capable of supplying loads up to 100 A . It measures $186 \times 81 \times$ 168 mm and weighs approximately 5.25 kg . The unit may be stored, charged and discharged in any position as the electrolyte is jellified and each cell is sealed with a one way safety valve which resets after gas has been released. F.W.O. Bauch Ltd, 49 Theobald Street, Boreham Wood, Herts WD6 4RZ.
WW322 for further details

Contactless switches

Three kinds of contactless switches made by RAFI (Raimund Finsterhölzl) of Germany and imported by Cole Electronics use hall-effect devices. They are encoded thumbwheel switches, microswitches, and push-button/toggle switches. The plunger in these lastmentioned kinds of switch moves a permanent magnet with respect to a hall-effect chip. The hall voltage produced by the magnetic field is amplified and fed to a Schmitt trigger circuit. Two transistors with open collectors provide antiphase outputs. These bounce-free switches are claimed to be long life and relatively free from vibration and atmospheric effects. In the three-decade thumbwheel switches, operation of the

WW324

WW322
selector alters the positions of pinshaped magnets in relation to four hall i.cs. Cole Electronics Ltd, Church Road, Croydon CR0 ISG.
WW 331 for further details

Carbon on ceramic potentiometers

Series K10 and K15 potentiometers are high stability carbon preset controls with a performance closer to that of cermet types. The carbon track is deposited onto a ceramic substrate to give better heat dissipation. Temperature coefficient is within ± 5 parts in 10^{4} per $\operatorname{deg} \mathrm{C}$. Measuring 10 mm wide for the K 10 and 15 mm wide for the K15, they have a power rating of 0.5 W and 1 W respectively at $55^{\circ} \mathrm{C}$ (both derating to zero at $90^{\circ} \mathrm{C}$) Available in the range 100 to $5 \mathrm{M} \Omega$, with a tolerance of either $\pm 20 \%$ or $\pm 10 \%$. AB Electronic Components Ltd, Abercynon, Mid Glamorgan CF45 4SF. WW 330 for further details.

Polystyrene capacitors

New capacitors from Pye TMC Components Ltd feature a newly-developed plastics casing - called polystramethylene terephthalate - having excellent self-extinguishing properties. These extended-foil polystyrene capacitors are available in the range 1 nf to 160 nF at 63 V d.c. and lnf to 82 nF at 125 V d.c. Pye TMC Components Ltd, Graham Bell House, Roper Road, Canterbury, Kent. WW 333 for further details.

NOONDAY UPON THE
 MARKET-PLACE

Greetings, fellow Europeans!
By the time you read this, the tumult and the shouting will have died and the captains and the kings, although still with us, will have found something else to pontificate about. But, as I write, the Common Market referendum is just over and a bemused electorate has decided that, if they can't beat 'em, they may as well join 'em. A decision which, I'm sure, will be welcomed by all thinking gnomes (on both sides of the Channel) who see ir it a golden opportunity to make a fast buck, and which will, equally certainly, be damned to all eternity by those who don't.

As I've said, by the time this issue is in your hands, the topic of whether to or not will be as dead as the dodo. We're in, and the topicality now lies in what's likely to happen to us now we are in (by 'us' I mean the electronics industry in particular).

Unfortunately, in one sense, we can't consider electronics in isolation. Every industry is interdependent on every other and all of them in the long run depend on the prosperity of the individual. To ensure that we've got to sell a bit more than we buy in. So what have we got to sell that could possibly interest our new kith and kin over on the mainland? Agricultural produce? We can't even begin to feed ourselves and anyway there's nothing we can grow that they can't. Motor cars? Can you honestly see British Leyland giving Fiat, Renault or Mercedes-Benz any sleepless nights when, regardless of tariffs, the Japanese are already munching steadily away at the home market?

So what about electronics? Those of us who are long enough in the tooth may recall those far-off days when the BBC and (then) ITA were affluent enough to be pressured into lumbering themselves with a dual-standard service. One of the main platforms of support for the adoption of the 625 -line
standards was that it would enable British domestic receiver manufacturers to sell their wares on the Continent; this in bland disregard of the fact that, in the field of sound radio, where no significant difference in standards existed, British exports to the Continent had never exceeded 0.1% of the total exported. Since we went to 625 lines has anyone noticed fleets of cargo boats, loaded to the gunwales with British television sets, heading for the EEC countries?

Conversely, of course, you'd have to trudge many a weary mile before you found a French or Italian receiver on offer in British shops. The tariff barriers on either side have kept the member countries into relatively watertight compartments; a bad thing, one can argue. Yes, maybe; but for whom? Surely for the country with the most push and go, raring to go but thwarted by the sheer economics of the thing.

Can we, in this country, honestly see ourselves in that role? Aren't we, as a nation, too prone to imagine ourselves back in the days when a large proportion of the globe was coloured pink and we possessed ready-made markets by right of conquest? Don't we still have an inner conviction that the rest of the world acknowledges that if it's British it's best? Will we ever come to terms with some hard facts of life? For instance, that we're a grossly overpopulated little island, heavily over industrialised and with an inadequate supply of raw materials from internal sources. And, above all, that we're the poor relations of the EEC with a reputation for tea-breaks, an appalling incidence of industrial disputes and God's gift to all customers who have the foresight to insert a hefty penalty clause in their contracts against late delivery (and they all do).

So what do we do? Commit national hara-kiri? Of course not. We've got to count our blessings, tighten our belts and set our house in order, to get three clichés out of the way in one go. We might well make a start by returning to war-time food rationing, but making sure this time that it was enforced equally in the luxury hotels and Acacia Avenue. In industry we should be prepared to work longer hours, provided that comparable sacrifices were made up to Board level. in many industries, and certainly in electronics, there is a gross wastage and duplication of effort; too many departments which originated in all good faith as controls to promote efficiency and which have since blossomed into empires in their own right, parasitic on the works floor. (What is the point of saving money if the control systems which effect it cost ten times as much as they save?) the gospel of expansion for expansion's sake must be abandoned and the creed that mergers and economy are natural bed-fellows abandoned. There are a thousand-and-one ways in which the electronics industry might be stream-
lined to produce a highly competitive product without sacrifice of quality; all of them demand considerable positive effort; many involve a superficial loss of status in individuals and some are downright obnoxious. But to go on in the pious belief that somehow things will, of their own accord, take a turn for the better, is but to place the point of the sacrificial sword on the national belly.button.

Financially and in material possessions the Germans and the French have a far better time of it than we do. Don't begrudge them; don't envy them. They've earned it and they're going on earning it. Labour productivity in these countries makes us inept by comparison; return on capital is four times better in Germany than we can manage and strikes by comparison are almost non-existent. The adage that hard work never killed anybody is borne out by a better life-expectancy in both countries than we possess. In fact just about the only way in which we have the edge over them is in the possession of more television sets and more telephones - and there's a moral there if only I could think of it.

Something drastic has to be done before the tariff barriers fall. Even now there are a fair proportion of Continental cars on our roads and, on our own works floors, German machine tools and such equipments as photo-plotting machines are well in evidence (I've even seen them in factories where they actually make them themselves!).

Test and research engineers need no introduction to Rohde and Schwarz equipment which carries a cachet similar to Rolls-Royce. For many years this German firm has been selling their equipment in a modest way in Britain and the USA, with the price-tag as a deterrent to all but a relative few. Now I see that in the States R and S have changed tactics. Instead of manufacturing in the Fatherland, paying expensive shipping charges and import duties, they've come to an agreement with an American firm to manufacture their products over there, using American components. As a consequence the price has dropped to less than one-half and even in some instances to one-third. The firm is already selling to the Federal Aviation Administration, which, for starters, is pretty cheeky. One imagines that threat is not lost upon HewlettPackard and Tektronix, neither should it be on the British manufacturers of top-quality testgear.

In terms of capital goods (broadcasting transmitters, communications systems, radar systems and so on) Britain can scarcely expect to achieve massive orders from the Common Market countries, which, for the most part, have large electronics interests covering these areas. Our markets are, as they always have been, further afield. But so, too, are theirs and we're going to have to fight tooth and claw to keep them.

microphoner matter most.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881
$\rightleftarrows \sim \mathrm{L} \sim \mathrm{m}$

MODERN GOWWUNIICATIONS DEWAND QUALITY COWPONEITS...

EXAR
Phase-Locked Loops

KR3600ST E12.00 ASCII Keyboard Encoder with 3600 bit ROM and N -Key Rollover

KR2376ST£11.50
With on-chip oscillator encoder 88 S.P.S T Keyboard Closures to 9 -bit (with parity) ASCII Output

Timing Circuits

XR-2240CP £2.95
(Programmable counter/ divider)
XR-320 EO. 95 (Precision, wide range)
XR-555CP EO.60
(General purpose)
XR-556CP £1.35
(Dual 555)
XR-2556CP £1.75
(Dual 555)

QUADS for SINGLE SUPPLY
Op Amps SG324N
Comparators SG339N
TRANSISTOR ARRAYS
SG3081N/SG3082N

Pill enn fenerall MAKES MIL-SPEC DEVICES TOO!

COM2502P£4.65, COM2017P£4.75 (11/2 stop bits) UART - Universal Asynchronous Transmitter/Receiver. ".Features Automatic parity, framing and overrun error detection -- fully independent send/receive -25 KB .

COM2601, £16.40

USRT- Universal Synchronous Receiver/Transmitter. 250KB - Automatic Synch. Character send/detect.

SMC Microsystems Corporation

Function Generators	
XR-205	£5.25
XR-205K (Kit, inc	$\begin{aligned} & £ 12.30 \\ & \text { chips }+ \\ & \hline \end{aligned}$
$\begin{array}{r} \text { XR-2 } 206 \\ (1 / 2 \% T \end{array}$	$\underset{\text { typ!! }}{£ 2.80}$
$\begin{array}{r} \text { XR-2207 } \\ \text { (Sweep ra } \end{array}$	$\begin{gathered} E 2.10 \\ 3000 ; 1) \end{gathered}$

Tone
Decoders
XR-567CP
£1.50
XR-2567CP
£2.85
(Dual)
(Sweep ratio 3000:1)

\author{

}

SG741CM
SG741CN
Dual Op/Amps
SG747CT
SG1458M
Fast Slew Op/Amps
SG318M
SG7415CM
High Voltage Op/Amps
SG1436CT
Micropower Op/Amp SG3250M
Low Drift Op/Amp SG 308M
Low Drift Comp Op/Amp SG3118T

DIL
18-pin
Hermetic

COM5016 E6.70

 Dual Baud-Rate Gen with on-chip crystal osc., two outputs selected by 4 binary address lines each. Outputs at $16 \times$ Baud rateOp-Multiplier
XR-2208CP
£2.80

> MONOLITHIC VOLTAGE REGULATORS

General Purpose + ve SG300T
SG305N
General Purpose

+ ve or -ve SG723CT

Spot Power $+5 \mathbf{V}$
SG309K
SG340K -05
Spot Power + ve
$+5 V$ SG $340 K-05$
+6 V SG340K - 06
+8 V SG340K -08
+12 V SG340K -12
+15 V SG340K - 15
+18 V SG340K - 18
$+24 V$ SG340K - 24

Spot Power -ve

-5V SG320K - 05

- 5.2V SG320K - 5.2
-12V SG320K - 12
-15V SG320K - 15
Dual Tracking Types
SG4501AN
SG3501AJ
± 15 volts, adjustable
SG3502N
$\pm 10- \pm 23$ volts variable
Modulators/Multipliers
SG1495J
SG1496T
SG3402N
 Hermetic
NMX 5010 .
£6.70
10-Channel Multiplexer.

USE AUGAT SOCKETS FOR ALL THESE INTEGBATED CIRCUITS

CHiOwnsonic electronics

Dept 5, 56, Fortis Green Road Muswell Hill, London. N10 3HN telephone: 01-8833705

TRANSMITTING, INDUSTRIAL AND SPECIAL VALVES

2C39A	8.50	803	6.00	5796	12.00	8 BT 19	13.00	KR3	8.00
2 E 26	3.00	805	14.00	5836	25.00	BT45	20.00	KR6/2	8.00
2K25	9.00	807	0.65	5837	25.00	8183	12.00	KRN2A	6.00
3828	4.00	808	3.00	5846	10.00	${ }_{C 14}$	8.00	L102/1k	3.00
3 C 45	6.00	810	15.00	5876	6.00 4.00	$\stackrel{\text { Cla }}{\text { Cli }}$	9.00	MT17	9.00
$3 \mathrm{E29}$	5.50	811 A	3.00 4.00	${ }^{58886}$	4.00 30.00	C3E	15.00	MT57	13.00
465	12.00	812 A	4.00	${ }_{6116}^{6099}$	30.00 35.00	C3J	8.00	NSPI	9.00
$4 \mathrm{C} \times 250 \mathrm{~B}$	15.00	813	6.00 6.00	6262	30.00	C3JA	9.00	0 F 45 :	21.00
$4 \times 150 \mathrm{~A}$	9.50	815 816	6.00 3.00	6263	8.00	C3M	4.00	a0vo3-20	7.50
4×1500	11.00		12.00	6263 A	10.00	C6J	10.00	Qovo6-40	A.50
${ }_{5}^{4 \times 5004}$	80.00 22.00	828 8298	12.00 5.50	${ }_{6264} 62$	8.00	C1148	48.00	Qov07-50	23.00
11 E 3	8.00	832A	4.50	6308	7.00	C1149/1	40.00	Q0703-20	28.00
12 El	3.75	833A	20.00	6336	9.00	CV5	11.00	$\square_{0 Y 3} 125$	40.00
$12 \mathrm{El4}$	8.00	834	4.50	6363	30.00	CV35	25.00 20.00	QY4-250A	19.00
13 E 1	22.00	837	2.00	6364	30.00	CV43	6.00	OY4-400 A	20.00
13 E 12	15.00	838	4.00	6384 6386	7.00	CV76	70.00	ar5-500	50.00
19 G 3	8.00 6.00	${ }_{866 \mathrm{E}}^{8664}$	2.00	6442	10.00	DA42	7.00	Qr5-3000A	
$19 \mathrm{H} /$ 19	4.00	${ }_{8665 \mathrm{JR}}$	2.50	6469	75.00	DET16	38.00		45.00
19 H 4	9.50	872A	5.00	6470	75.00	DET22	10.00	RGI-250	6.50 11.00
19H5	15.00	${ }^{872 \mathrm{G}}$	6.00	6484	10.00 8.00	DET23	10.00 10.00	RR3.1250	14.00
29C.	6.50	889RA	60.00	7977	8.00 14.00	DET 25	3.50	S11E12	9.00
100E1	18.00	4004 B	6.50	8008	5.00	DET 29	40.00	STV280/4	6.00
250 TH	20.00	4004 B	6.50 3.25	8013	3.00	FG17	9.00	STV280/8	15.00
310A	2.50 3.00	4017 B	17.00	8013 A	5.00	FX215	35.00	T003-10	10.00
322	16.00	40248	4.00	8025	7.00	G1/235G	4.00	TDO3.10C	10.00
328A	4.00	4033A	8.00	A207	25.00	G1/371K	6.50 4.00	Tome	11.00
329A	4.00	4033AF	6.00	A1714	9.00	$\mathrm{G}_{\mathrm{G} 50} / 2 \mathrm{G}$	4.00 4.00	TT2 ${ }^{1}$	4.75
332A	6.00	4033X	6.00	A2293	2.75	G55/1K	4.00	TT22	4.75
349A	2.00	4043 C	12.00	${ }^{\text {A } 2426}$	8.00 8.00	G75/3G	10.00	TY2.125	12.00
393A	7.00	4049 GD	18.00	${ }^{2} 5210$	6.00 3.50	G400/2G	6.00	Tr3.250A	23.00
394A 527	6.00 25.00	4050 Cag	35.00 60.00	A2900 A3042	3.00	GMU2	6.00	TY4.500A	30.00
577	8.00	4120 A	8.25	АСт9	30.00	GU18	11.00	TY5.500A	65.00
583	9.00	4121 AB	5.00	ACT98	28.00	GU20/21	11.00		5.50
703A	4.00	4242A	4.00	ACT22	45.00	Gu50	6.00	XG2/6400	30.00 12.00
705 A	5.00	4409	10.00	AFX203	9.00	GxU4 $\mathrm{GXU5}$	14.00 5.50	$\times{ }^{\times} \times 1.16004$	13.00
7078	7.00	4687	3.00	AH221	11.00 G418	G×U51	6.00	$\times \mathrm{X} 1-32004$	25.00
708A	5.00 .	5544	25.00	АН238	GU18	K300	50.00	YL1 130	9.00
714AY	20.00	5545	25.00	BL800	35.00 40.00	K301	8.00	YLi240	10.00
720 CY	20.00 8.00		9.00 3.00	BL803 BS810	4F451	K302	50.00	2504S	5.00
726 A	5.00	5721	50.00	BT9A	7.00	K312	15.00		
$80^{1 / \bar{A}}$	1.00	5762	110.00	вт9в	7.00	K335	15.00		

TAUT SUSPENSION MULTIMETERS

ade in USSA
U4312: 41 ranges $0.3 \mathrm{~mA}-6 \mathrm{~A}$ D.C., 1.5 mA - 6A A.C., 0.3-900v A.C./D.C., $0.2-50 \mathrm{k} \Omega$; Mirror scale Sensitivity $667 \Omega / v$; Accuracy 1% D.C.: 1.5\% A.C. £10.75. U4313: 40 ranges $0.06 \mathrm{~mA}-1.5 \mathrm{~A}$ D.C.: 0.6-1.5A A.C.: 1.5-600v A.C./D.C.' $0.06-60 \mathrm{k} \Omega$; Mirror scale Sensitivity $20 \mathrm{k} \Omega / \mathrm{v}$ D.C.: $2 \mathrm{k} \Omega / \mathrm{v}$ A.C. Accuracy 1.5% D.C., 2.5% A.C £13.80.
U4315: 43 ranges $0.05 \mathrm{~mA}-2.5 \mathrm{~A}$ D.C.; $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ A.C.: $1-1000 \mathrm{v}$ D.C./A.C.: $0.3-500 \mathrm{k} \Omega$: Sensitivity $20 k \Omega v$ D.C., $2 k \Omega / v$ A.C. Accuracy 2.5% D.C., 4% A.C. £10.00
U4324: 33 ranges $0.06 \mathrm{~mA}-3 \mathrm{~A}$ D.C. 0.3 mA - 3A A.C., 0.6-1200v D.C., $3-900 \mathrm{~V}$ A.C., $0.5-500 \mathrm{k} \Omega$ Sensitivity $20,000 \Omega / v$ D.C. $4000 \Omega / v$ A.C. Accuracy 2.5% D.C. 4\% A.C. Re-chargeable cadmium cell operation. $£ 9.85$.
postage and V.a.t.: prices quoted are ex-wareHOUSE EXCLUSIVE OF V.A.T. Handling and postage is charged at $£ 0.50$ per multimeter and $£ 0.20$ in $£$ for other items. Please note that new rate of V.A.T. of 25% applies to all valves, semi-conductors and components. Test equipment, including multimeters, are subject to 8% V.A.T

OUR NEW 1975 CATALOGUE OF VALVES, TUBES, SEMICON DUCTORS, TEST EQUIPMENT AND PASSIVE COMPONENTS IS AVAILABLE. PLEASE ENCLOSE £O. 20 FOR YOUR COPY
MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE Our new Catalogue is ready. Please send $£ 0.20$ for your copy

Marshollis

A. Marshall (London) Lid Dept: WW

42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2
Telex: 21492 . Telex: 21492
885 West Regent St Glasgow G2 2QD Tel: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: 0272 654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92 Tel: 6422985 Catalogue price 25p Trade and export enquiries weicome

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN

 TOP 200 IC'S TTL CMOS \& LINEARS| CA3018A | 0.85 | CD4043 | . 00 | NE565 | 4.48 | SN7448 | 0.90 | SN74157 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CA3020A | 180 | CD4044 | 1.80 | SL414 | 1.80 | $\text { SN } 7450$ | 0.16 | SN74160 | 1.10 |
| CA3028A | 0.79 | CD4045 | 2.85 | SL610C | 1.70 | SN7451 | 0.16 | SN74161 | 1.10 |
| CA3035 | 1.37 | CD4046 | 2.84 | SL611C | 1.70 | SN7453 | 0.16 | SN74162 | 1.10 |
| CA3046 | 0.70 | CO4047 | 1.65 | SL612C | 1.70 | SN7454 | 0.16 | SN74163 | 1.10 |
| CA3048 | 2.11 | CD4049 | 0.81 | SL620C | 2.60 | SN7460 | 0.16 | SN74164 | 1.10 2.01 |
| CA3052 | 1.62 | CD4050 | 0.66 | SL62 1C | 2.60 | SN7470 | 0.16 0.33 | SN74164 SN74165 | 2.01 |
| CA3089E | 1.96 | LM301a | 0.48 | SL623C | 4.59 | SN7472 | 0.33 | SN74165 | 2.01 |
| CA30900 | 4.23 | LM308 | 2.50 | SL640C | 3.10 | SN7473 | 0.36 | SN74174 | 4.10 |
| CD4000 | 0.36 | LOO5TL | 1.50 | SN7400 | 0.16 | SN7474 | 0.36 | SN74174 | 1.25 |
| CO4001 | 0.36 | LM380 | 1.10 | SN7401 | 0.16 | SN7475 | 0.50 | SN74175 | 0.90 |
| CO4002 | 0.36 | LM381 | 2.20 | SN7401an | 0.38 | SN7476 | 0.35 | SN74180 | 1.40 |
| CD4006 | 1.58 | LM702C | 0.75 | SN7402 | 0.16 | SN7480 | 0.50 | | 1.40 |
| CD4007 | 0.36 | LM 709 | 0.38 | SN7403 | 0.16 | SN7481 | 1.25 | SN74190 | 1.95 2.30 |
| CD4008 | 1.63 | 8DIL | 0.45 | SN7404 | 0.19 | SN7482 | 0.75 | SN74191 | 2.30 2.30 |
| $\mathrm{CD} 4009$ | 1.18 | 14D/L | 0.40 | SN7405 | 0.19 | SN7483 | 0.95 | SN74192 | 1.15 |
| CD4010 CD4011 | 1.18 0.36 | LM 710 | 47 | SN7406 | 0.45 | SN7484 | 0.95 | SN74193 | 1.15 |
| CD4012 | 0.36 | LMP41C | 0.90 | SN7407 | 0.45 | SN7485 | 1.25 | SN74196 | 1.60 |
| CD4013 | 0.65 | 8DIL | 0.40 | SN7408 | 0.19 0.22 | SN7486 | 0.32 | SN74197 | 1.58 |
| CD4014 | 1.72 | 14DIL | 0.38 | SN7410 | 0.22 0.16 | SN7490 | 0.45 | SN74198 | 2.25 |
| CD4015 | 1.72 | LM 747 | 1.05 | SN7411 | 0.25 | SN7492 | 0.45 | SN74199 | 2.25 |
| CD4016 | 0.66 | LM 748 | 0.60 | SN7412 | 0.28 | SN7493 | 0.46 | | 2.92 |
| CD4017 | 1.72 | LM 140IL | 0.73 | SN7413 | 0.35 | SN7494 | 0.82 | SN76023N | 1.98 1.60 |
| CD4018 | 2.55 | LM3900 | 0.70 | SN7416 | 0.35 | SN7495 | 0.72 | SN76033N | 1.80 2.92 |
| CD4019 | 0.88 | LM 7805 | 2.00 | SN7417 | 0.35 | SN7496 | 0.75 | TAA263 | 2.92 1.10 |
| CD4020 | 1.91 | LM7812 | 2.60 | SN7420 | 0.15 | SN74100 | 1.25 | TAA300 | 1.10 |
| C04021 | 1.72 | LM7815 | 2.50 | SN7423 | 0.29 | SN74107 | 0.36 | TAA350a | 1.80 2.10 |
| CO4022 | 1.66 | LM7824 | 2.50 | SN7425 | 0.29 | SN74118 | 1.00 | taA550 | 2.10 0.60 |
| CD4023 | 0.36 | MC1303L | 1.50 | SN7427 | 0.29 | SN74119 | 1.92 | TAA611C | 0.60 2.18 |
| CD4024 | 1.24 | MC1310P | 2.59 | SN7430 | 0.16 | SN74121 | 0.37 | TAA621 | 2.18 2.03 |
| CD4025 | 0.32 | MC1330P | 0.90 | SN7432 | 0.28 | SN74122 | 0.50 | TAA6618 | 2.03 1.32 |
| CD4027 | 0.43 | MC1351P | 0.80 | SN7437 | 0.35 | SN74123 | 0.60 | T8A6418 | 1.32 2.35 |
| CD4028 | 1.50 | MC1352P | 0.80 | SN7438 | 0.35 | SN74141 | 0.85 | T8A6518 | 2.25 1.69 |
| CD4029 | 3.60 | MC1466L | 3.50 | SN7440 | 0.18 | SN74145 | 0.90 | t8a800 | 1.69 1.0 |
| CD4030 | 0.87 | MC1469R | 2.75 | SN7444AN | 0.85 | SN74150 | 1.80 | trabio | 1.40 |
| CO4031 | 5.19 | NE555V | 0.70 | SN7442 | 0.65 | SN74151 | 0.85 | t8a820 | 1.40 1.15 |
| CD4037 | 1.93 | NE556 | 1.30 | SN7445 | 0.90 | SN74153 | 0.ts | t8a920 | 1.15 4.00 |
| CD4041 | 1.86 | NE560 | 4.48 | SN7446 | 0.95 | SN74154 | 1.50 | DIL sockets | 4.17 |
| CD4042 | 1.38 | NE561 | 4.48 | SN7447 | 0.95 | SN74155 | 1.60 | | 0.1 |

BRISTOL

 10% discount for callers at our new shop BS 162 LX during August. Tele: Bristol 654201/2.
POPULAR SEMICONDUCTORS

2N696	0.22	2 N 3906	0.27	AF139	0.85	8D139	0.71	MPSA56	0.31
2N697	0.18	2 N 4037	0.42	AF239	0.65	80140	0.87	OC28	0.785
2N698	0.82	2N4036	d. 67	AF24d	0.90	BF115	0.368	OC35	0.60
2N699	0.59	2N4058	0:18	AF279	0.70	BF117	0.55	OC42	0.80
2N706	0.14	2N4062	0.15	AF280	0.79	BF154	0.20	OC45	0.32
2N708	0.17	2N4289	0.34	Al102	1.00	BF159	0.27	TIP29A	0.49
2N916	0.28	2N4920	1.10	BC107	0.14	BF180	0.35	tip29C	0.58
$2 N 918$	0.32	2N4921	0.83	8C108	0.14	BF181.	0.36	tip31A	0.62
2 N 1302	0.185	2 N 4923	1.00	BC109	0.14	BF184	0.30	TIP32A	0.74
2N1304	0.26	2N5245	0.47	BC1478	0.14	BF194	0.12	tip33A	1.01
2N1306	0.31	2N5294	0.48	BC1488	0.15	8F195	0.12	TIP34A	1.51
2N1308	0.47	2N5296	0.48	BC1498	0.18	BF196	0.13	TIP35A	2.90
2N1711	0.45	2N5457	0.49	BC157A	0.16	BF197	0.16	TIP36A	3.70
2N2102	0.60	2N5458	0.48	BC158A	0.16	BF198	0.18	TIP42A	0.90
2N2147	0.78	2N5459	0.49	BC1678	0.15	8F244	0.21	TIP2955	0.98
2N2148	0.94	2N6027	0.45	-C1688	0.15	8 F257	0.47	TIP3055	0.50
2N2218A	0.22	3N128	0.73	8C1698	0.15	BF258	0.53	TiS 43	0.28
2N2219A	0.26	3N 140	1.00	8C182	0.12	8F259	0.55	2TX300	0.13
2N2220	0.25	3N141	0.81	BC182L	0.12	8FS61	0.27	21x301	0.13
2 N 2221	0.18	3N200	2.49	BC183	0.12	BFS98	0.25	2TX500	0.18
2N2222	0.20	40361	0.40	BC 183L	0.12	BFR39	0.24	2TX501	0.13
2N2369	0.20	40362	0.46	8C184	0.13	8FR79	0.24	2TX502	0.18
2N2646	0.55	40406	0.44	BC184L	0.13	8F×29	0.30	1N914	0.07
2N2904	0.22	40407	0.35	BC212A	0.16	8FX30	0.27	1N3754	0.15
2N2905	0.25	40408	0.50	BC212LA	0.16	BFX84	0.24	1N4007	0.10
2N2906	0.19	40409	0.52	BC213LA	0.15	BFX85	0.30	1N4148	0.07
2N2907	0.22	40410	0.52	BC214LB	0.18	BFX88	0.25	IN5404	0.22
2N2924	0.20	40411	2.00	8C2378	0.16	BFY50	0.225	in5408	0.30
2N2926G	0.12	40594	0.74	8C238C	0.15	BFY51	0.23	AA119	0.00
2N3053	0.25	40595	0.84	8C239C	0.18	BFY52	0.205	BA102	0.25
2N3054	0.60	40636	1.10	BC257A	0.16	8RY39	0.48	BA145	0.18
2N3055	0.75	40673	$0 . 力 8$	8C2588	0.16	ME0402	0.20	BA154	0.12
2N3391	0.28	AC126	0.20	BC2598	0.17	ME04 12	0.18	8A155	0.12
2N3392	0.15	AC127	0.20	8С301	0.34	ME4 102	0.11	B ${ }^{\text {1038 }}$	0.23
$2 N 3393$	0.15	AC128	0.20	BC3078	0.17	MJ480	0.95	8 B 1048	0.48
2N3440	0.59	AC151	0.27	8C308A	0.15	MJ481	1.20	8×126	0.12
2N3442	1.40	$A C 152$	0.49	8 C 309 C	0.20	MJ490	1.05	BY127	0.15
2N3638	0.15	${ }^{\text {AC }} 153$	0.35	BC327	0.23	MJ491	1.46	8YZ11	0.51
2N3702	0.12	AC176	0.30	BC328	0.22	MJ2955	1.00	BYZ12	0.51
2N3703	0.13	AC187K	0.36	8CY70	0.13	MJE340	0.48	OA47	0.06
2N3704	0.15	AC 188k	0.40	$8 \mathrm{CY71}$	0.22	MJE370	0.85	OAB1	0.18
2 N 3706	0.15	AD 143	0.68	8CY72	0.15	MJE371	0.75	OA90	0.08
2N3708	0.14	AD 161	0.50	BD121	1.00	WE520	0.80	OA91	0.06
2N3714	1.38	AD162	0.50	B0123	0.82	MJE521	0.70	W021A200	0.32
2N3716	1.80	AF106	0.40	8D124	0.67	MJE2955	1.20	BYi64	0.57
2N3771	2.20	AF109	0.40	8D131	0.40	MuE3055	0.75	ST2 diac	0.20
2 N 3773	2.65	AF115	0.35	80132	0.50	MP8113	0.47	40669	1.00
2N3789	2.06	AF116	0.35	80135	0.43	MPF102	0.39	TIC44	0.29
2N3819	0.37	AF117	0.35	80136	0.47	MPSAO5	0.25	C1060	0.65
2N3820	0.64	AF118	0.35	80137	0.54	MPSA06	0.31	ORP12	0.60
2N3904	0.27	AF 124	0.30	BD138	0.60	MPSA55	0.31		
Prices correct at July, 1975, but all exclusive of V.A.T. Post \& Package.25p									

TRANSFORMERS

30-VOLT RANGE SECONDARY TAPS 0-12.15-20-24-30				50-VOLT RANGE SECONDARY TAPS 0-19-25-33-40-50			
Ref. No. $1,1$	Amps	¢ E_{1}	$\underset{p}{P} \mathbf{P}$	Ref. No.	Amps.	$£$	P\&P
79	1.0	2.40	38	102	05	2.58	30
3	2.0	3.49	38	103	$1 . \mathrm{D}$	3.38	38
20	3.0	4.53	45	104	2.0	4.68	45
21	4.0	5.13	53	105	3.0	5.81	53
51	5.0	6.41	53	106	40	7.60	67
117	6.0	7.16	60	107	60	12.10	67
88	8.0	9.87	67	118	8.0	12.98	85
89	10.0	9.90	73	119	10.0	16.99	BRS

								TRIACS PLEASE ADD 25% FOR VAT P\&P: UK £0. 12 PER ORDER OVERSEAS AIR MAIL AT COST Copy date All prices sugazine ty. Our new catalogue is now available a GIRO A/C 235324000 EAST CORNWALL COMPONENTS callungton CORNWALL PL17 8PZ Telephone: Stoke Climsland (05797) 439. Telex: $45457 \mathrm{~A} / \mathrm{B}$ MERCURY 439. Telex: CALGTON.

EIEGTROLGUT

 Why hunt around when there's Catalogue 7 issue no 3? - UP-DATED PRODUCT \& PRICE INFORMATION REFUND VOUCHER
 We have made it just about as comprehensive and up-to-the-minute as possible tools accessonies, technical information and diagrams are included as well as a refund voucher worth 25 p for spending on orders list value $£ 5$ or more SEND NOW FOR YOUR COPY BY RETURN It san investment in practical money-saving and reliablity'
 +E.V. PRICE STABILIZATION POLICY
 This is one of reviewing prices every 3 months rather than trying to keep up with day by day changes as they occur We have in fact held prices for wo such periods (Jan 1 July 1)
 +E.V. DISCOUNT PLAN
 Applies to all itemsexcept the few where prices are shown NETT 5% on orders from $£ 5$ to £ $1499,10 \%$ on orders value $£ 15$ or more
 + FREE POST \& PACKING
 In UK for pre-pard mall orders over $£ 2$ (except Baxandall cabinets) If under there is an additional handling charge of 10 p
 + QUALITY GUARANTEE
 All goods are sold on the understanding that they conlorm to makers specifications No

ELEGTRO/ALIE LTD

28 ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM. SURREY TW20 OH8 Telephone Eqham 3603. Telex 264475 . Shop hours. 9.530 dally $9-7$ p m Sars
NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester MI9 INA Telephene (0051) 432 4945. Shop hows
U.S.A. CUSTOMERS are invited to contact ELECTRDYALUE AMERICA. P.O. Box 27. Swarthmore PA 19081

post free on ORDERS OVER $E 10$

PLASTIC SNAP PACK	BASF L11		$\begin{aligned} & \text { BaSF } \\ & \text { SUPERS/M } \end{aligned}$		$\begin{aligned} & \text { BASF } \\ & \text { Ct } 0_{2}^{2} \end{aligned}$		SCOTCH dynarange		$\begin{gathered} \text { SCOTCH } \\ \operatorname{Cr} 02 \end{gathered}$	
	ONE	10								
$\begin{aligned} & c 60 \\ & c 90 \\ & c 120 \end{aligned}$	$\begin{aligned} & \mathbf{c o . 4 4} \\ & \mathbf{c 0 . 6 4} \\ & \varepsilon 0.80 \end{aligned}$	$\begin{aligned} & £ 4.35 \\ & \varepsilon 6.20 \\ & \varepsilon 7.90 \end{aligned}$	$\begin{aligned} & \mathrm{E0.57} \\ & \mathrm{co.79} \\ & \mathrm{E1.06} \end{aligned}$	$\begin{array}{r} \varepsilon 5.60 \\ \varepsilon 7.30 \\ \varepsilon 10.50 \end{array}$	$\begin{aligned} & € 0.88 \\ & £ 1.16 \\ & £ 1.47 \end{aligned}$	$\begin{aligned} & c 8.70 \\ & \text { ¢ } 11.55 \\ & \text { E14.65 } \end{aligned}$	$\begin{aligned} & £ 0.46 \\ & £ 0.65 \\ & \varepsilon 0.87 \end{aligned}$	$\begin{aligned} & £ 4.50 \\ & 66.45 \\ & 68.60 \end{aligned}$	$\begin{array}{r} £ 0.88 \\ £ 1.18 \\ £ 1.47 \end{array}$	$\begin{array}{r} \text { £8.70 } \\ \text { £11.70 } \\ £ 14.65 \end{array}$
PLASTIC SNAP PACK	AGFA LH		AGFA GO2		MEMOREX MRX		MEMOREX CRO2		2 TDK drnamic	
	ONE	10								
$\begin{aligned} & \mathrm{C} 60 \\ & \mathrm{C} 90 \\ & \mathrm{C} 120 \end{aligned}$	$\begin{aligned} & £ 0.38 \\ & \varepsilon 0.49 \\ & \varepsilon 0.68 \end{aligned}$	$\begin{aligned} & 63.70 \\ & 64.85 \\ & 66.50 \end{aligned}$	¢0.74 $\mathbf{6 0 . 9 4}$ $\mathbf{E 1 . 2 7}$	¢ 6.90 6.35 $\varepsilon 12.60$	£0.61 ¢0.87 ¢1.17	$\begin{array}{r} \epsilon 6.00 \\ \epsilon 8.60 \\ \epsilon 11.20 \end{array}$		$\begin{gathered} \epsilon 8.30 \\ \text { £11.00 } \end{gathered}$	$\begin{aligned} & £ 0.43 \\ & \varepsilon 0.68 \\ & \varepsilon 0.88 \end{aligned}$	$\begin{aligned} & £ 4.25 \\ & 66.35 \\ & 68.60 \end{aligned}$
**** Leading brando of tapes - fully guaranteed *****										
reel to reel tapes			BASF L LH LOW NOISE 1' plast libraty box		SCOTCH HI.Fi boxed		MEMOREX LOW NOISE in plastic library box		AGFA LOW NOISE in plastic library bonx	
LONG PLAY			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & \text { 5. } 900 \\ & 5^{3} / 6^{\prime \prime} 1200 \\ & 7^{\prime \prime} 1800^{\prime} \end{aligned}$			$\begin{aligned} & £ 1.55 \\ & £ 1.78 \\ & £ 2.32 \end{aligned}$	$\begin{aligned} & \varepsilon 15.00 \\ & \varepsilon 17.50 \\ & \varepsilon 23.00 \end{aligned}$	$\begin{aligned} & £ 1.84 \\ & £ 2.40 \\ & £ 2.60 \end{aligned}$	$\begin{aligned} & \varepsilon 17.90 \\ & \varepsilon 22.76 \\ & \varepsilon 25.50 \end{aligned}$	$\begin{gathered} £ 1.34 \\ £ 2.10 \end{gathered}$	$\begin{aligned} & £ 12.90 \\ & \varepsilon 20.50 \end{aligned}$	$\begin{aligned} & \varepsilon 1.22 \\ & \varepsilon 1.60 \\ & \varepsilon 2.18 \end{aligned}$	$\begin{aligned} & £ 12.10 \\ & £ 15.00 \\ & £ 21.00 \end{aligned}$
double play			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & 5^{\prime \prime} 1200 \\ & 5^{3 / 4} 1800 \\ & 7^{2} 2400^{\prime} \end{aligned}$			$\begin{aligned} & \varepsilon 1.80 \\ & £ 2.57 \\ & £ 2.85 \end{aligned}$	$\begin{aligned} & £ 17.75 \\ & \text { £25.00 } \\ & £ 28.00 \end{aligned}$	$\begin{gathered} \varepsilon 2.40 \\ \varepsilon 3.00 \\ \varepsilon .3 .35 \end{gathered}$	$\begin{aligned} & \epsilon 22.78 \\ & 628.52 \\ & E 32.50 \end{aligned}$	$\begin{aligned} & £ 1.48 \\ & £ 2.60 \end{aligned}$	$\begin{aligned} & £ 14.00 \\ & £ 25.00 \end{aligned}$	$\begin{aligned} & € 1.52 \\ & € 2.20 \\ & £ 2.60 \end{aligned}$	$\begin{aligned} & £ 14.49 \\ & £ 21.00 \\ & £ 25.50 \end{aligned}$
thiple play			ONE	10	ONE	10	ONE	10	ONE	10
$\begin{aligned} & b^{\prime \prime} 1800 \\ & 5^{1 / 2 / 4} 2400^{\prime} \\ & 7^{\prime \prime} 3600^{\prime} \\ & \hline \end{aligned}$			62.52 63.20 $\mathbf{6 3 . 9 0}$	$\begin{aligned} & £ 25.00 \\ & £ 31.00 \\ & £ 38.00 \end{aligned}$	$\begin{array}{r} £ 3.00 \\ \text { £3.65 } \\ \varepsilon 5.25 \\ \hline \end{array}$	$\begin{aligned} & c 28.92 \\ & 835.95 \\ & 551.92 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & £ 2.30 \\ & £ 2.85 \\ & £ 3.50 \end{aligned}$	$\begin{aligned} & £ 22.20 \\ & £ 27.75 \\ & £ 34.50 \end{aligned}$
$\begin{aligned} & 10^{1} 2^{\prime \prime}=3600^{\circ} \text { LP NAB } \\ & 10^{1 / 2} z^{\prime \prime} 4200^{\circ} \text { LP NAB or CINF } \end{aligned}$							E4.82	¢46.00	c5.20	¢49.00
TERMS ADD 15 p p\&p ORDERS OVER 110 post free Ptices shown melude VAT at 8% but dee subject to change without notice Ofters apply to UK members only MAIL ORDER ONLY - CASH WITH ORDER CITY AUDIO 30 BAKER STREET, LONDON, W1M 2DS SPECIAL AUDIO \& VIDEO TAPES SUPPLIED - RATES ON REQUEST										

THE RADIO SHOP

THYRISTORS

WW-055 FOR FURTHER DETAILS

TELETYPE 28

TELETYPE 28 without keyboard. Good condition (can be used as receive only) $\mathbf{£ 4 2 . 5 0}$ ea.

Limited quantities - information in process of being obtained - this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time

Ex-BEA

Control Units by Univac.
Consisting of 2-50 way plug/socket; 3 multiway switch assembly; a 2 \& 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

MARCONI TF801A/1 Signal Generator 10 to 310 MHZ £55 ea
MARCONI TF801B Signal Generator $\mathbf{£ 1 2 0}$ ea.
MARCONI TF791B Carrier Deviation Meter £30 ea.
MARCONI TF934/2 FM Deviation Meter $£ 35$.
MARCONI TFIO20A RF Power Meter 150 and 300 Watts. As New $£ 75$ ea.
MARCONI TFIO20A RF Power Meter 50 and 100 Watts. As New $£ 50$ ea
MARCONI TF1094A/S HF Spectrum Analyser. Late model. Must go. $\mathbf{£ 1 6 0}$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz} £ 25$ ea.
KELVIN \& HUGHES Single Channel Recorders with spare paper $\mathbf{£ 1 8} \mathbf{e a}$.
DAWE Digital Printer type 3094A. As new £27.50 ea

WESTON THERMOPROBE -60 to +100 degrees Centigrade $\mathbf{£ 7 0}$.
WANDEL \& GOLTERMAN TFEK41 Level Meter $\mathbf{f 6 0}$.
PROSSER SCIENTIFIC INSTRUMENTS
Model A100 Waveform Generator. Multi wave forms $£ 160$.
RHODE \& SCHWARZ Admittance Meter VLUK-BN3511. As new £140.
HEWLETT PACKARD DB Oscilloscope type 175A. 3dB-50MHZ twice. Large $6 \times 10 \mathrm{~cm}$ screen $£ 185$.
BRUEL \& KJOER Voltmeter type 24092 cs to $200 \mathrm{k} / \mathrm{cs}$. $£ 85 \mathrm{ea}$.
PYE SCALAMP GALVANOMETER. Hammer grey. Tested $\mathbf{f 5}$ ea.
SOLARTRON Multipurpose siab PU type 1094. Standard mains input. Outputs: +250 V DC $200 \mathrm{MA}:+18 \mathrm{VDC} 2 \mathrm{~A}:+6 \mathrm{VDC} 8 \mathrm{~A}:-3.5 \mathrm{VDC}$

100MA: -6 V DC 8A: -18 V DC 4A: 25 V AC 150MA. All DC lines will withstand shortcircuits to earth. With copy of manual $\mathbf{£ 2 0}$ ea. DUAL TRACE PLUG-IN units for CD1212 Scopes DC- $2.4 \mathrm{MHz} £ 35$ ea. TEKTRONIX Colour Monitor type $654 \mathbf{£ 5 5 0}$. TEKTRONIX RM527 Waveform Monitor $£ 250$. TELONIC Sweep Generator SM2000/1. Main frame with $0-20 \mathrm{kHz}$ plug-in $£ 300$.
COLLINS RECEIVER IP-10ULR. 90 MHz to 10 GHz in 8 bands. Panoramic. Analyser or DF modes. With power unit $£ 350$ ea.
TEKTRONIX Oscilloscope type $516 \mathbf{E 2 4 0}$.
TEKTRONIX Oscilloscope type 422 E430.

AB POTENTIOMETERS

$100 K+100 K$ LIN DUAL GANG 25p ea
Discount for quantities. P. \& P. extra

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16 \mathrm{in}$. Suitable for Colour TV servicing. Price $£ 85$ each including copy of manual.
CAPACITOR PACK 50 Brand new componerts only 50p. P. \& P. 27 p .
P.C. MOUNT SKELETON PRE.SETS Screwdriver adjust 105 and 25 M a 2 pea M. 500. 250 and 25 K " 4 pea. Finger ad just 10. 5 and 2.5 M a 3 pea . 1 M .500 .250 and 25 K a 5 5 ea. Min. P. \& P. 15p

> Beehive Trimmer $3 / 30 \mathrm{p}$
> Brand new. Oty 1-9 13p ea, P. \& P 15p: $10-99$ 10p ea. P \& P. 25p 100999 7pea P. \& P. free.

> DELIVERED TO YOUR DOOR 1 cwt Electronic Scrap chassis boards. eic No Rubbish. FOR ONLY E4. N fieland f2 extra P.C.B. PACK S \& D Quantily 2 sa. ft - no liny preces. 50p plus P \& P 25p.
> TRIMMER PACK, 2 Twin 50/20n pf ceramic

FHACHI RAMP MODULE FX21 24

 Volt DC input for 18 volt saw tooth output. Requires only external capacitor output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ (eg 50 mfd electrolytic gives sweep of approx. cm per second). In or out sync capability Price £5.75. P. \& P. 20p2 Twin 1060 pf ceramic: 2 min strips with 4 preset $5 / 20 \mathrm{pf}$ on each: 3 ar spaced preset 30,100 pf on ceramic base ALL BRAND NEW 25p the LOT P. \& P 15p.
PHOTOCELL equivalent OCP 7.1 , 13p ea, Quality plastic. 15 p each. p \& P .8 cm . in High

$$
\begin{aligned}
& \text { Vast quantity of good quality componen } \\
& \text { - NO PASSING TRADE - so we offer } \\
& \mathbf{3} \text { LB. of ELECTRONIC GOODIES }
\end{aligned}
$$

for $£ 170$ post pard
HF Crystal Drive Unit. 19 in. rack mount Standard 240 V input with superb crystal oven by Labgear (no crystals) $\mathbf{5} 5$ ea Carr 12 20: 50; 100: 200: 500 ohms 1:2•25:5.10 25 K at 35p ea. ALL BRAND NEW.
RELIANCE P.C.B. mounting 270,470 500 ohms 10 K al 35p ea. ALL BRAND NEW. BOURNS TRIMPOT POTENTIOMETERS.

TELEPHONES

MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P 45p. STYLE 7006 TWO-TONE GREEN OR GREY 3.75 ea. P. \& P. 45 p . HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37p. DIALS ONLY. 75p ea. P. \& P. 30p.
STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. $£ 3.00$ ea. P. \& P. 45p.
VENNER Hour Meters- 5 digit wall mount RESETTABLE COUNTERS-4 digit by
 P \& P 55p
TRANSFORMERS All Stand GardiParm'Part. All standard inputs MA. $2 \times 63 \mathrm{v} . £ 3 \mathrm{ea}$.

FANTASTIC VALUE		
Minature	Transformer St	Standard 240V
input. . 3 V	1 amp output	t Brand New
$65 \mathrm{p} \text { ea. }$	P. \& P 20p	Discount for

FIBREGLASS PRINTED CIRCUIT BOARD.
FIBREGLASS PRINTED CIRCUIT BOARD.
Brand New Single or Double sided Any Brand New Single or Double sided
size $1 \frac{1}{2} p$ per sq. in Postage 20p per order.
size $1_{\frac{1}{2}}$ p per sa. in Pasage 20p per orde
HIGH VALUE PRINTED BOARD PACK, no two bodrds the sarne-no shont leaded
computer boards $\mathbf{~} 1.75$ post pand computer boards $\mathbf{E 1 . 7 5}$ post paid
METER PACKS-3 different meters for $\mathbf{E 2}$

P \& P 35p
E.H.T.CAPACITORS

1 mfd 75 KV working 2 mfd 5 KV working. 8 mfd 2.5 Ky working. 0.5 mfd 10 KV working $f 2 \mathrm{trach}$

RAPID DISCHARGE

1 mtd 56 KV E2.50 ea 0.9 mtd 15 KV £3.50 ea. 015 mfd 120 KV f7 ea Catroge extra.

FHACHIVCO iñDULE

Stze $2 \times 11 /{ }^{5} \times 11-\mathbf{5 0 - 1 0 0 K} \mathbf{H z}$
 centre tapped) 18 V input giving : OV constant amplitude output. Requires unly a 1 meg ohm
 P \& swept with

DON'T FORGET
YOUR MANUALS
S.A.E. WITH

REQUIREMENTS

LOW FREQUENCY WOBBULATOR

For alignment of Receivers. Filters. etc. 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level, sweep width and frequency. Order LX63. Price f8.50 P. \& P. 35p.
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price f11.50 P. \& P. 35p.
Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability. with the exception
of the controls (not cased. not calibrated).

20 HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25 p. Sine Wave only £6. 85 each. P. \& P. 25p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $10 \cdot 7$ or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6 . 7 5}$. P. \& P. 25p. (Not cased. not calibrated.)

TRANSISTOR INVERTORS

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $\mathbf{f 9} 95$. P. \& P. 25 p.

VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 a.m. to 530 p.m. Mon. to Sat

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

sTo. SYNCHROS
EX STOCK Requirement Schẹdules please

for your production requirements use
ALPS PANEL METERS
FULL RANGE PRICE LIST-SAE PLEASE! Substantial quantity discounts to manufacturers Remember! We are the sole importers! Distributors and industrial treelance salesmen required

SPECIALIST STOCKISTS ÓF SERVOMOTORS, SYNCHROS, TEST EQUIPMENT, METERS AND CONNECTORS Servo and Electronic Jales Ltd 24 HIGH ST., LYDD, KENT. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23 TELEX 965265

ALL PRICES INCLUDE 8% VAT

 10500 mA at up to 250 vDC gold clad contacts 74 p per doz $\mathrm{Ea.15}$ per
100 . 299.95 per 1,000 . $£ 272$ per 10.000 All carriage pand K 95 p per dot, $\mathbf{£ 6 . 9 5}$ per 100. E67 per 1.000 A carrage pald UK
per doz. £12.60 per 100. All carrage paid $\cup \mathrm{K}$
 at up to 250 vAC Gold clad contacts $£ 1.45$ per doz $£ \mathbf{£ . 9 5}$ per E 2.00 per 1.000 Changeover Honvy Duty type $£ 2.80$ per doz All carrage pard UK
Magnete for HD reeds $\mathrm{E1.50}$ doz A very few coils available tor HD reeds

DVER 300,000 IN STOCK!

 MULTIWAY AND R.F. CONNECTORS by twenty different companies! Send us your delailedrequirements quoting Nato numbers if known.
Tantalum Capacitors Metal Oxide Resistors Tantalum Capacitors Metal Oxide Resistor
(Kemet. ITT, Plessey,
(Electrosil \& Welwyn)

[^8]
AUDIO MODULES - today's most challenging values!

POWER AMPS
SS103
Compact I.C amp. 3 watts R.M.S. Single channel (mono) On P.C.B. size $31 / 2^{" \times 2} \times 2^{\prime \prime}$ Needs 6-22V supply SS103-3
Stereo version of above (Two:Cs)
$£ 1.75$
£3.25
NEW! SS 105 Mk. 2
A compact all-purpose power amp Can be run from 12 V car battery Size $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Useful 5 w output (mono) into 3Ω using 135 V Excellent value $\quad £ 2.25$

SS1 10 Mk. 2
Similar in size to SS105 but will give 10 w output into 4Ω using 24 V (mono). Two in stereo give tirst-class results. suitable for many domestic applications $£ \mathbf{£ 2 . 7 5}$

SS140

Beautulully designed. Witl give up to 40 w R.M.S into 4Ω Excellent S.N.R and transient response. Fine for PA. disco use, etc Operates from $45 \mathrm{~V} D$. Two in bridge formation will give 80 w R.M. S into 8Ω
£3.60

PRE-AMP/CONTROL MODULES
SS100
Active tone control unit to provide Bass and Treble facilites sereo
£1. 60
SS101
Pre-amp for stereo ceramıc cartridges, radıo and tape $£ 1.60$ SS102
re-amp for low-output stereo magnetic cartridges, radio and tape
£2.25
BUILD A STEREO F.M. TUNER

FM Tuners

SS201

Front End assembly Ganged tuning with well engineered slow-motion geared drive in robust housing. A.F.C facility Requires $7-10 \mathrm{~V}$ Excellent sensitivity $88 \cdot 108 \mathrm{mHz}$. $\mathbf{E 6 . 2 5}$ SS202
IF Stage (with I.C.). Designed to use with SS201 uses I.C. Caretully checked betore despatch. For $9-16 \mathrm{~V}$ £5.25

SS203

Stereo Decoder Designed essentially for use with SS201 and SS202, this excellent decoder can also make a stereo tuner of almost any single channel FM tuner Supplied ready aligned AL.E.D can easily be fitted 9-16V E5.62
SAVE \&5 ON THE S/S TUNER
By buying Units SS.201, SS 202 and SS 203 together, the price is $£ 12.12$ - a genuine saving of $£ 5$ on this very efficient tuner $£ 12.12$

NEW RANGE TRANSISTOR \& COMPONENT PACKS

UT SELECTION
UT1 50 PNP's Germanium, AF \& RF
UT2 150 Germanium diodes. min glass
UT4 100 Silicon diodes min glass. similar to IN914 IN916

UT5 40250 mW Zener diodes OAZ 240 range average 50% good

UT7 30 Silicon rectifiers 750 mA mixed voltages. fop Hats, etc
UT9 40 NPN Silicon planers Similar to 2N3707-11 range Low noise

UT12 25 2N3702/3 Transistors. PNP ilicon. Plastic to 92

CP SELECTION
CP1 Mixed Laq of capacitors Electrolytic. Paper. Silver Mica (Approx 150 - sold by weight)

CP2 200 (approx) Resistors, various types, values watts. (Sold by weight.)

CP3 40 Wire-wound resistors. mixed
CP4 12 pots - pre-set, w/wound carbon, dual, with/without
switches - all mixed

CP7 Heat sinks. assorted To fit SO. 2

ALL ABOVE PACKS - 50p EACH. TP Tested \& Guaranteed: UT Untested. unmarked CP Components.

CAPACITOR DISCHARGEIGNITION KIT saves on fuel P / P anse 30 d 1 . Improves car pertornance. $\quad £ 750$

BI-PRE-PAK X-HATCH GENERATOR MK. 2

Invaluable to industial please add $33 p$ for postage and packing assures reliability and stilt bette, accuracy Vmproved circuitry self-contaned Robustly buitt Widely used by TV rental and other engineers With reinforced fibreglass case instructions but less battertes (Three U2 type required)

TV SIGNAL STRENGTH METER

Television E 1950 plus 40 p for P\&P

SS300 POWER SUPPLY STABILISER Add this to your unstabilised supply to obtain a steady working
voltage from 16 to 60 V for your audio system. workbench erc Money saving and very reliable $£ \mathbf{3} .25$

PLASTIC POWER TRANSISTORS

40 WATT SILICON	
Type	Polarity
$40 N 1$	NPN
40 N 2	NPN

Gain
15
40
15
40

VCE	Price
15	$\mathbf{2 0 p}$
40	$\mathbf{3 0 p}$
15	$\mathbf{2 0 p}$
40	$\mathbf{3 0 p}$
VCE	Pric
15	$\mathbf{2 5 p}$
40	$\mathbf{3 5 p}$
15	$\mathbf{2 5 p}$
40	$\mathbf{3 5 p}$

TERMS OF BUSINESS

Vat at 23% must be added to total value of order. excepl lor ilems marked *or [8%. $]$. when VAT is lo be added al 8° e Overseas orders. add $£ 1$ for postage. Any difterence will te creditud or charged PRICES Subject to alteralion without notice. AVAlLABILITY Alf ilems available al lime ol going io press when every effort is made to ensure correciness of information.

WirelessWorld FULLCOLOUR WALLCHART OFFREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.

ORDER FORM

To: IPC Electrical-Electronic Press Ltd. General Sales Dept., Room 11 32 Stamford Street, London SE1 9LU

Please send me copies of the Wireless World Wallchart of Frequency Allocations at 80 p each inclusive.

I enclose remittance value $£$ (cheque/p.o. payable to IPC Business Press Ltd.)
Name
(please print) Address

VaLVES

Open 9-12.30, 1.30-5.30 p.m. cept Thursday 9-1 p
Closed Saturdays

 $\left|\begin{array}{ll}6 \times 5 G T & 0.50 \\ 6 Y 6 \mathrm{G} & 0.90 \\ 674 & 0.65 \\ 6-30 L 2 & 0.90 \\ 787 & 0.80 \\ 7 Y 4 & 0.80 \\ 006 & 0.40\end{array}\right|$ Registered in England No. 677128 Regd. office : Dorset House, Stamford Street, London SE1 9LU

```
Pac
    Fibreglass printed crrcuir board for fron
        end IF strip.demodulator AFC
        nd mute circuits
2.Set of metal oxide resistors. thermistor
        macitors, cermet presel for
Ser mounting on pack
Ser of transistor5. dodes. LED, integrated
4 \text { Pre.afigned front end module, coll}
    assembly, three section cera
    frlter
Fibreglass printed circull board for
Stereo decoder
6 Set of metal oxide resistors. capacitors,
        cermet preset for decoder
Set of transistors LED integrated
    crrcutt for decoder
8 Set of components for channel
    selector switch module including
    tibreglass printed circuit board
    push butlon switches knobs LEDs
                Price
                Price Pack
panel insert. internal screen, flxing
3.45 16 Teak parts, etc.
Marts, etc
One each of packs 1-16 inclusive are
        required for complete stereo
        FM tuner
    FM tuner
f8 }3
Function switch 10 turn tuna
                #unction switch 10 turn tuning
                potentrometer, knobs
                    potentiometer, knobs
        of metal work parts including silk
```screen. Primary \(0-117 \mathrm{~V}-234 \mathrm{~V}\)capacitors rectifiers, voltageregulator for power supplysockets fuse holder fuses. intersockets fuse holder fuses. interPricef5.30
f860f860£4.45idal transformer with electrostatic¢4.45f 295f 29560f6.50
\(£ 7.35\)
f74 10

\section*{NOVEL STEREO FM TUNER}
```

In the April and May 1974 issues of Wireless World there was published by J. Skingley and N. C. Thompson a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by too many earlier tuners. The front end is a ready built pre-aligned module which then feeds an amplifier driven screened three section ceramic filter leading to an integrated circuit five-stage limiting amplifier providing excellent a.m. circuit five-stage limiting amplifier providing excellent a.m.
rejection. This is followed by a single coil integrated balanced rejection. This is followed by a single coil integrated balanced
demodulator from which the audio output may be taken. demodulator from which the audio output may be taken.
Temperature compensated varicap tuning allows stations to be selected either by a ten-turn funing potentiometer or by a choice of six preset push-buiton controls. Each of the preset controls can be adjusted on the front panel with the settings being indicated by sIx LED lamps behind an acrylic silk screen printed facia panel insert. Additional circuitry includes tempera ture compensated AFC restricted to less than station spacing inter-station muting a single-lamp LED tuning indicator and linear scale frequency mer separate board is separate board, is based on a well-proven integrated circuit phase-locked-loop to which has been added active filters to remove sub-carrier harmonics and 'burdies', The power supply, to ensure station holding stability, uses an integrated circuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.
STYLED TO COMPLEMENT THE WORLD-WIDE ACCLAIMED LINSLEY-HOOD 75W AMPLIFIER

```

\section*{THE FM TUNER KIT YOU HAVE WAITED FOR!}

KIT PRICE only EU 0 , 0 carriage free (U.K.)

\section*{\title{
NEW!
}}
\({ }^{866.75} \mathbf{W}\) !
FREE

POWERTRAN mone ON
FROM ELECTRONICS

NEXT PAGE!

\section*{*********************************}

\section*{DESIGNER APPROVED KIT}

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ablity to supply from a direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than \(0.01 \%\) even at very low power levels. The power amplifier is complemented by a pre amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier Mk III Version (modrications as per Hifi News April 1974।

Pack
1
```

Fibreglass pranted circuit horit
Set of resisturs power amp
for power amp
tor power amp
amp {now usmg BDY56
B0529 B0530;
4 Pa,r of 2 drilied finned heat sumks
Fibreglass, printedf circu! boriry
for pee amp
how nuise resisturs capacitors
pre sets for pre amy
ductors for pre dinp
potentiometers fincluding
marims switch!
Sel of 4 push bull
cotary mode swilch
Torerdal twansformer complete
wuth magnetic screen thot
01172344V secondares
33033v v 25025vv
Set of semiconduciors tor power

```
1085
f1 70
\(f 650\)
6650
1080
\(f 180\)
\(f 130\)
\(f 130\)
f2 70
f2 40
1205
f3 70
1915
```

Pack

1) Fibregiass primted circum board
12 Se: for power supply
fresistors capacitors
secondary fuses semicon
secondary fuses semicon
13 Serof miscellaneousparts
mcludtng DIN skis lis
ncluding DIN skis manns
mput skt fuse holder imter
connectirg cable contral
knobs (a) cable contral
lolmetalwork parts mctuding
stlk screen printed fascld
bothei and all brackets fixing
Madres etc
Handtrook
Tenk cabinet
ach of packs 1 7 inclusive
sterea system
Tutal cost of mdividually
Cosi ofmdividuall
```PriceE065350
 \(\mathbf{f} 30\)

\(\mathbf{f O} 30\)

V A T Please add 25\%*
to all U.K. orders
(or at current rate if changedt
UK ORDERS — Post free (mat order only)
SECURICOR DELIVERY For Securicor delivery io matnland-add 12 + VAT per kit
OVERSEAS -Postage at cost \(+50 p\) special packing
Dept. WWO6
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER. HANTS SP10 3NN

\title{
More than just a catalogue! PROJECTS FOR YOU TO BUILD
}

4-digit clock, 6 -digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full detalls and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even \(1 \%\) types!), switches, interlocking pushbuttonswitches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.

\section*{Really good value for money at just 40p.}

\section*{The 3600 SYNTHESISER}

The 3600 synthesise; includes the most popular features of the 4600 model, but is simpler. Faster to operate, thas a switch patching system rather than the matix patchboard of the larger unit and is
particularly suitable for live performance and portable use.
Please send
S.A.E. for

\section*{GRAPHIC EQUALIZER}

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts lexcept woodwork) including all the
 metal work
drilled and
drilied and printed as reçured to suit our components and PCB's
S.A.E. for price lisi or complete reprint of article - price 15 p

\section*{The 4600 SYNTHESISER}

We stock all the parts for this brilitantly designed synthesiser. including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details avariable shortly in our booklet price \(£ 1.50\), or S.A.E. please for specification

\section*{ELECTRONIC ORGAN}

Build vourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15 p, describes the extension of the organ to two keyboards each with five voices and the extension
 by an octave of the organ's range.
Solid-state switching and new footages along with a pedat board and a further extension of the organ's range are shown leaflet MES53, also priced at 15 p

\section*{NO MORE DOUBTS ABOUT PRICES}

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes madvance to just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a e and we'll send vou our latest list of
GUARANTEED prices. Send us 30 p and we'll put you on our malling list you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive detalls of our prices for the next GUARANTEED period before the prices are implemented! plus detals of any new lines, special offers,

\section*{repay your 30p}

NOTE The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westclift on Sea, Essex Please address all mall to

MAPLIN ELECTRONIC SUPPLIES

\section*{QUALITY AMPLIFIER KITS by POWERTRAN \\ WIRELESS WORLD AMPLIFIER DESIGNS \\ Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier--the Bailey-Burrows design which features six \\ ELECTRONICS}
inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating

30W BAILEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Gldss PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
GOV REGULATED POWER SUPPLY Pk. 1 F'Glass PCB
Pk. 2 Resistors. capacitors, pots
Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors capacitors, pre sets.
transistors
£0.80
£ 1.75 £4.70
£0.85
£2.40
\(£ 3.35\)
60.75
\(£ 1.40\)
f3 10
\(£ 2.05\)
£4.95

Pk. 3R Rotary potentiometer set Pk. 35 Slider potentiometer sel (with knobs)

\section*{STUART TAPE RECORDER}

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design
TRRP Pk. 1 Reply amplifier F/Glass PCB E 0.90
TRRC Pk. 1 Record amp./meter drive cct. F/Glass PCB
£ 1.40
TROS Pk. 1 Bias/erase/stabilizer cct. F/Glass PCB
\(\{1.00\)
For details of component packs for this design please write for free list.

\section*{20 WATTS/CHANNEL}

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit. was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER Pack
Fibreglass PCB (accon
dates all filters for une
channell
2 Set of pre
Set of pre-sets, solid tantalum capacitors \(2 \%\)
metal oxide resistors metal oxide resistors \(2 \%\) 3 Set of semiconductors
2 off each pack required for stere 2 system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH.POWER
DESIGNS

READ/TEXAS 20wamp.
Pack
Pack
2 Fibreglass PCB
2 Set of resistors. capaci-
tors pre-sets (not includ-

ing O.P coupling capa
ciors)
3 Sets of semiconductors 4.20
2.65

\section*{4 Spectal heat sink as sembly for}

5 Set of \(30 / P\) coupling rapacitors 2 off packs 4.5 required for stereo system

\section*{POWER SUPPLY}

FOR 2OW/CHANNEL STEREO
EO. 70 SYSTEM
£1.10 \(\left.\quad \begin{array}{c}\text { Pack } \\ 1\end{array}\right)\) Fibreglass PCB
E2.40 \({ }^{2}\) Set of rectifiers zener
diode. capacitors. fuses fuse holders
3 Toroıdal transformer

MORE KITS
ON PAGE 43!
for further information please write for FREE LIST NOW!

\section*{TOROIDAL T20 + 20}

Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true \(\mathrm{Hi}-\mathrm{Fi}\) performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single F/Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters. adaptable input selector and headphones socket.

\begin{tabular}{c}
Kifpics \\
stulunl \\
£28.25 \\
\hline
\end{tabular}
post free (U.K.)
SPECIAL OFFER

SLIOER POTENTIOMETER SALE!
Most values \(1 \mathrm{~K}-1 \mathrm{M}\) in log available
\begin{tabular}{lcc}
& Normal price & Sale Price \\
Single & \(35 p\) & \(25 p\) \\
Dual & \(55 p\) & \(35 p\) \\
Knob & \(15 p\) & \(10 p\) \\
& Pot luck. Mixed bags & - our chorce \\
& 10 singles \(\mathfrak{L 2}\) & 10 duals \(\mathfrak{£} 3\)
\end{tabular}
V.A.T. Please add \(25 \%\) * to all U.K. orders
(\%or at current rate if changed)
U.K. ORDERS - Post free (mail order only)

SECURICOR UELIVERY - for this Optiond
service (Mainland only) add f 2.00 VAT per kit
OVERSEAS - Postage at cost +50 p special packing, handing

Dept. WW06
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP1O 3NN

REDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply \(200-250 \mathrm{~V}\) a.c. Polarised relay type 3 SEITR. \(80-0 \mathrm{~V} 25 \mathrm{~mA}\). Two stabilised valves CV 286. Centre Zero Meter \(10-0-10\). Size 8 in . x 8 in . x 8 in . New condition. \(£ 10\) Carr. 75p.
Carr. 75p.
TELEPRINTER TYPE 7B: Pageprinter 24V d.c. power supply, speed 50 bauds per min . second hand cond. (excellent order) no parts broken. £20 each. Carriage \(£ 3\) INSULATION TEST SET: \(0-10 \mathrm{kV}\) negative, earth with amplifier provision for INSULATION TEST SET: \(0-10 \mathrm{kV}\) negative, earth with amplifier provision
checking ionisation. \(110 / 230 \mathrm{v}\) a.c. input. \(\mathrm{S} /\) hand, good cond. \(£ 35+£ 1\) carr.
BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Carr. £1.
BRIDGE MEGGER: 2,400 V., series 1 . \(£ 30\) each. Carr. \(£ 1\)
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range \(3000-10,000 \mathrm{KHz}\). Mains 230 V 50 Hz . Measures crystal current under oscillatory 300 itions and the equivalent resistance. Crystal freq. can be tested in conditions and the freq. meter. £25. Carr. £i. 50 .
SOLARTRON VARIABLE POWER UNIT S.R.S. 1535: \(0-500\) volts at 100 mA and 6.3 volts C.T. 3 amps d.c. \(110 / 250\) volts a.c. input. \(£ 18.50\). Carr. \(£ 1.50\).

T̄Ē̄EǴRAPH TERMINAL UNIT (A.T.E.) TYPE TFS3: Converts signals from Receivers into d.c. pulses. Complete with monitor. \(\mathbf{£ 7 5}\) each. Carr. \(£ 2\)
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. \(10 \mathrm{~Hz}-6 \mathrm{MHz}\) (can be used beyond 6 MHz). Probe in circuit - voltage range \(1 \mathrm{mV}-1 \mathrm{kV}\) in 6 decade ranges; full scale deflection 10 mV . \(100 \mathrm{mV}-1 \mathrm{kV}\). Without probe \(100 \mu \mathrm{~V}-100 \mathrm{~V}\) in 6 decade ranges; full scale deflection \(1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}\). Accuracy \(\pm 5 \%\). \(£ 30\) each. Carr. £1.
NOISE FIGURE METER TYPE 113 (Magnetic AB, Sweden): £125. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. \(0.1-15 \mathrm{MHz}\) in 5 ranges. Variable time delav microseconds \(0-0.1 \mathrm{c}, 115 \mathrm{~V}\) input. \(£ 55\) each. Carr. \(£ 1\).
RHODE \& SCHWARZ HF MILLIVOLTMETER: \(30 \mathrm{~Hz}-30 \mathrm{MHz}\) Type UVH. 1 mV -1V in 7 ranges, 220 V . \(\mathbf{£ 7 5}\) each. Carr. \(£ 2\).
PHILIPS VALVE VOLTMETER TYPE GM6014: \(1-300 \mathrm{mV}\) in 6 ranges, \(70-20 \mathrm{~dB}\), probe \(1000 \mathrm{~Hz}-30 \mathrm{MHz} .300 \mathrm{mV}\) maximum. \(£ 35\) each. Carr. \(£ 1\).
TF-1345/2 DIGITAL FREQUENCY COUNTER: Range \(10 \mathrm{KHz}-100 \mathrm{MHz}\) with extension units. Details on request, s.a.e. \(£ 100\). Carr. \(£ 2\).
UHF MIĆROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter 2.5 mW . \(£ 40\) each. Carr. \(£ 1\).
each. Carr. \(£ 1\).
MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request. £250 each. Carr. £5.
Q METER: \(30 \mathrm{MHz}-200 \mathrm{MHz}\). £55. Carr. £1.
AVO TRANSISTOR ANALYSER CT.446: \(£ 35\). carr. \(£ 1.50\).
AVO TRANSISTOR ANALYSER CT.44f: \(\operatorname{E35}\). carr. \(£ 1.50\).
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 -MILE RADIUS OF LONDON ALLCA.

\section*{If wishing to call at}
stores, please telephone
for appointment

\section*{PATTRICK \& KINNIE}

191 LONDON ROAD - ROMFORD ESSEX ROMFORD 44473

RM7 9DD
E.H.T. POWERUNIT. \(110 / 240 \mathrm{v} 50 \mathrm{~Hz}\) giving 5 Kv at \(50 \mathrm{~m} / \mathrm{a}\). METERED OUTPUT E18.50. P P. E1 50 .

OVERLOAD CUT-OUTS. Panel mounting
\(800 \mathrm{M} / \mathrm{A} / 1.8\) amp. 10 amp. \(45 \mathrm{p} . \mathrm{P}\) P 5 p .

SIGNAL GENERATOR AIRMEC TYPE 701: \(30 \mathrm{KHz}-\mathbf{3 0 M H z} 7\) ranges. \(£ 65\). Carr
¢1.-1278/1 TRAVELLING TUBE WAVE AMPLIFIEK: £25. Carr. £2.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. £1.
WAYNE KERR WAVEFORM ANALYSER A.221: Low scale \(0-1200 \mathrm{c} / \mathrm{s}\). High scale \(1-20 \mathrm{Kc} / \mathrm{s}, 600\) ohns. Harmonic level is \(0-55 \mathrm{~dB}\) in 12 steps. \(\mathbf{£ 7 5}\). Carr. \(£ 1.50\). SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request. E200.
MARCONI DUAL TRACE UNIT TM-6456: £30. Post 60 p .
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics indicated FM. Modulated Pulse - \(40-400\) pulses per sec. Pulse Width - 0.5-10 microsecs. Timing - Undelayed or delayed from 3-300 microsecs from external or internal pulse. Output -1 milliwatt max., 0 to -127 dB variable. Output Impedance 500 . Price: \(£ 120\) each \(+£ 2\) carr
H.V. TRANSFORMER: \(8000 / 8000\). Output 300 mA . rms. Size: 12 in . \(\times 12 \mathrm{in}\). \(\times 36 \mathrm{in}\). 230 V input. \(£ 40\). Carr. \(£ 4\).
FIREPROOF TELEPHONES: \(\mathbf{£ 2 5 . 0 0}\) each, carr. \(£ 1.50\).
POWER UNIT: \(110 / 230\) volts a.c. input. 28 volts d.c. at 40 amps output. \(£ 30.00\) each, carr. \(£ 3.00\)
SMOOTHING UNIT (for the above): \(£ 10.00\) each, carr. \(£ 2.00\).
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott £125 each.Carr. £l.

BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode. 7.9 mA . Mnfr. Watkins \& Johnson. \(£ 85\) each. Carr. fl .

TEKTRONIX TIME MARK GENERATOR TYPE 180 -SI: \(5,10,50 \mathrm{MHz}\). £65. Carr. \(£ 2\).
TRANSISTOR ANALYSER TA 1001 (K.\&N. Electronics Ltd): £95. Carr. £3. CHRONOTON MODEL 25E: \(0.4-10\) seconds in seven ranges. £50. Carr. \(£ 1\).
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 microvolt ranges. Increment Output Impedance: 1 microvolt to 100 millivolts, \(100 \mathrm{hms} 100 \mathrm{mV}-1\) volt - 52.5 ohms. Imternal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External - 52.5 ohms. Imternal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\). Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Me condition. \(£ 32.50\) each. Carr. \(£ 2.50\).
ROTARY INVERTERS: TYPE PE. 218 E - input \(24-28 \mathrm{~V}\) d.c., \(80 \mathrm{Amps} .4,800 \mathrm{rpm}\). Output 115 V a.c. \(13 \mathrm{AmD} 400 \mathrm{c} / \mathrm{s}\). 1 Ph. P.F. \(9 . £ 20.00\) each. Carr. \(£ 2.50\).
FREQUENCY METER BC-221: \(125-20,000 \mathrm{Kc} / \mathrm{s}\) complete with original calibration charts. Checked out, working order \(£ 20+£ 1.50\) carr. Unused as new condition complete with headset, spare valves. charts. \(£ 35+£ 2.00\) carr

3-B TRULOCK ROAD, LONDON, N17 0PG
Phone: 01-808 9213 and Bédford 740605 (STD 0234)
all prices incluoe va.t. ExCEPT Where SURCHARGE IS INDICATED

QUADROPHONIC DECODER MODULE. C.B.S./S.Q. TYpe. using IC. MC 1312P. With slight modification direct substutute for P.E. "RONDO" Board. Complete with Data E4 each.
\(15 \%\) VAT Surcharge
S.T.C. CRYSTAL FILTERS (10.7 Mhz). \(\quad 15 \%\) V.A.T. S.T.C. CRYSTAL Khers spacing). £3. P.P. 20p. Surcharge 445.LQU-901A (25 Khz spacing). £4. P.P. 20 p
\(445-\mathrm{LQU}-901 \mathrm{~K}\)
(Type BLY 38). 3 watt output at \(100-500 \mathrm{Mhz}\), £2.25. P.P. 10 p .

\section*{\(15 \%\) V.A.T. \\ HIGH CAPACITY ELECTROLYTICS}
\(1.000 \mu / 100 v(4 \times 13 / 8 \mathrm{n}) 60\) p. P P. \(20 \mathrm{p} \quad 1.400 \mu \mathrm{f} / 200 \mathrm{v}\) \((41 / 4 \times 2\) in \()\) £1.P P \(20 \mathrm{p} 2.200 \mu \mathrm{f} / 100 \mathrm{v}(4 \times 13 / 4 \mathrm{~m})\) 90p. PP. 20p 2.500 uf/ \(100 \mathrm{v}(4 \times 2 \mathrm{~m}) 90 \mathrm{p} . \mathrm{P}\) P 20 p .4 .000
 \(25,000 \mu \mathrm{f} / 40 \mathrm{v}(43 / 4 \times 21 / 2 \mathrm{in}) £ 1\). PP 20 p
H.D. ALARM BELLS. 6 in. Dome, 6/8v. DC. £2.75. P P 97 D.

MULTICORE CABLE. 6-core (6 colours) 14/0076 Screened P.V.C 22p per yard 100 yards at £16.50. P P 2p a yard 7 -core (7 colours) \(7 / 22 \mathrm{~mm}\). Screened PVC 22p per yard. 100 yards \(£ 16.50\). P.P 2 p per yard 30 -core 115 co
yard
RIBBON CABLE \((8\) colours) 10 m £1.65. P.P 20p 100 m . 8 -core \(7 / \mathrm{mm}\) Bonded side by side £11.50. P P

WE REGRET THAT ALL ORDERS VALUE UNDER ES
MUST BE ACCOMPANIED BY THE REMITTANCE.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
HIGH-SPEED \\
MAGNETIC COUNTERS. 4 digit (non reset) 24 v or 4 Bv (state which). \(4 \times 1 \times 1\) in 65 p PP 15p \\
5 digit (non reset) \(24 v \mathbf{£ 1 . 1 5 .} \mathbf{P} \mathbf{P}\) 15p \\
3 digit \(12 v\) (Rotary Reset) \(21 / 4 \times 13 / 4 \times 11 / 4\) in. \(£ 1.30\). P P \(15 p 6\) digit (Reset) 240v. A C £3.50. F.P 25p
\end{tabular} \\
\hline
\end{tabular}

RELAYS. SIEMANS/VARLEY. PLUG-IN. Complete with transparent dust cover and base 2 pole c/o 45p; 6-make contact 50 p; t-24-48v iypes in stock.
MINIATURE REED RELAYS (\(3 / 6 \mathrm{v}\)). 1 make (\(30 \times 8 \mathrm{~mm}\)) MINIATURE REED RELAYS
20p: 2 make \((32 \times 12 \mathrm{~mm})\) 30p.
20p: 2 make (\(32 \times 12 \mathrm{~mm}\)) 30p.
\(12 \mathrm{v} .2 \mathrm{c} / \mathrm{o} 5 \mathrm{amp}\). H.D. RELAY, 65p. P P. \(15 p\)
240 v . A.C. RELAY (PLUG-IN TYPE). \(3 \mathrm{c} / 010 \mathrm{amp}\). contact with base 85p. P.P 25p
10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm. \(0.5 \%\) Lin \(38 \mathrm{~mm} \times 22 \mathrm{~mm} .14 \mathrm{~mm}\) Standard Spindle. E2. P.P. 15 p . lals 50 p each)
GARRARD PLINTH \& COVER. For 'Zero-100' etc
beautifully finished in brushed aluminium and black with hinged smoke/grey perspex hd £9.75 P.P. £. 1
24v. A.C. RELAY (PLUG-IN). 3
2-pole change over 55p. PP \(15 p\)
BULK COMPONENTS OFFER. Resistors/Capacitors, 600 BULK COMPONENTS OFFER. Resistors/Capacitors, 60p. PP 20p. \(15 \%\) V.A.T. REGULATED POWER SUPPLY. Input \(110 / 240 \mathrm{v}\).. Output \(9 v\) D.C \(11 / 2 \mathrm{amp} . .12 \mathrm{v}\). D C. \(500 \mathrm{~m} / \mathrm{a}\). £4.75. PP 75 p MINIATURE "ELAPSED TIME" INDICATORS. 10.5000 hours) \(45 \times 8 \mathrm{~mm}\). 75 p .

\section*{TRANSFORMERS}

ADVANCE TRANSFORMERS "VOLSTAT". Input 242v
A.C
C.V.50. 38 v at \(1 \mathrm{amp} ; 25 \mathrm{v}\) at \(100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}\), at \(200 \mathrm{~m} / \mathrm{a}\) E2.50. P.P 65 p
C.V.75. \(25 v\) at \(21 / 2\) amp. E3. P.P. 75 p . C.V.100. 50 v at 2 amp .: 50 v . at \(100 \mathrm{~m} / \mathrm{a}\) £.3.75. P. P. 75p C.V.250. 25 v . at 8 amp: 75 v . at \(1 / 2\) amp. £6.50. P P E1.50 C.V.500. 45 v . at 3 amp . 35 v . at 2 amp . £10. P.P £ 175 H.T. TRANSFORMER
\(\mathrm{m} / \mathrm{a}\). 2.50 . P P 65 p

\section*{m/a. £2.50. P P. 65}
L.T.TRANSFORMER '"TOROIDAL'". Prim \(\angle 40 \mathrm{v}\). Sec 30 V at \(1 / 2\) amp: Size 3 in dia. thick E1.65. PP. 20 p at \(1 / 2\) amp: Size 3 in dal thick E1.65. PP. 20 v
L.T. TRANSFORMER. Prim \(240 \mathrm{v} \operatorname{Sec} 27-0-27\) at \(800 \mathrm{~m} / \mathrm{a}\)
75 amp £2.25. PP. 50 p.
L.T. TRANSFORMER. Prim 110
amp. (Shrouded) \(\mathbf{E 1 . 9 5}\). P.P 50 . amp. (Shrouded) £1.95. P.P 50p. L.T. TRANSFORMER. Prim. 200/250v Sec 20/40/60v at 2 amp. (Shrouded) E3. P.P. 50p.
L.T. TRANSFORMER (H.D.). PrIm. 200/250v Sec 18 v at \({ }^{\circ}\) \(27 \mathrm{amp} ; 40 \mathrm{v}\). at \(98 \mathrm{amp} .: 40 \mathrm{v}\) at \(36 \mathrm{amp}: 52 \mathrm{v}\). at 1 amp : 25 v at 3.7 amp £ 17.50 . P.P. £ 2.50
L.T. TRANSFORMER. Prim. 240 v Sec \(16 \cdot 0 \cdot 16 \mathrm{v}\) at 2 amp

\section*{C2. P P 50 p}
L.T. TRANSFORMER PRIM. \(120-0-120 \mathrm{v} \mathrm{Sec} .12 \mathrm{v}\). at , amp. 70p. P.P. 20p
L.T. TRANSFORMER PRIM. 240 v Sec. 1 Bv 1 amp . 21 .
L.T. TRA
PP \(20 p\).

POWER UNIT (TRANSFORMER/RECTIFIER). Prim 240v. output \(171 / 2 v\) (unsmoothed) at 1 amp. £1.85. P.P 45p. L.T. TRANSFORMER ("C' CORE). 200/240v Secs. \(1.3-8-9-\mathrm{v}\) All at 15 amp . 50 v at 1 amp £2.50. P.P 50p L.T. TRANSFORMER ("C'" CORE). 200/240v. Secs \(1-3-9-27 v\) All at 4 amp £4. P.P 50 p . L.T. TRANSFORMER ("C" CORE). \(200 / 240 \mathrm{v}\). Secs. 1.3-9-27v All at 10 amp £7.50. PP. £1.50.
CORE). 200/240v Secs L.T. TRANSFORMER ("C" CORE). 200/240v Secs
1.3.9-20v All at 4 amp £5.50. PP 75p. L.T. TRANSFORMER ("C' CORE). \(120 / 120 \mathrm{v}\). S Secs.
\(1-3-9-9 \mathrm{v}\). All at 10 amp. 6.50 . PP. 75 p . L.T. TRANSFORMER ("C" CORE). \(110 / 240 \mathrm{v}\). Secs.
\(1-3-9 v 10\) amp. 35 v . \(1 \mathrm{a} .50 \mathrm{v} 750 \mathrm{M} / \mathrm{A} . \mathbf{£ 6 . 5 0 . P . P .} 75 \mathrm{p}\).

MOTOR
12 v operated, strong enough to power a motor mower, go-cart or similar. Speed casily variable. These motors for any rotating machine simply by coupling the spin-
dle to the machine and short-circuiting the windings by variable resistance, price \(£ 2.50+\) post and V.A.T. 74 p
DITOO but \(6 / 12 \mathrm{v}\) even more powerful as it's larger and is series wound. \(£ 3.50+85\) p post and V.A.T FIRE ALRM SWITCHES
in cast iron case with break glass panel. break glass"; they have hinged lid and second safety switch for testing purposes. Limited quantity. £1.75 each + post and VAT 46p.

HIGHLY SENSITIVE MOVING COILL RELAY

panel mounting with glass window this measures approx. \(51 / 2^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\).
triggering current can be varied from a triggering current can be varied from a fraction of a miliamp to 5 miliamps by
removing the front and adjusting the setting level. Price \(\AA 8\) each + post and VAT 95p.
OC HIGH CURRENT PANEL METERS \(31 / 2^{\prime \prime}\) wound wide angle \(240^{\circ}\) move-
ment meters. flush mounting fitted with external shunts, made by Crompon Parkinson brand new, still in maker's cartons. These are a real bargain at \(\$ 5.50\) each. Reasonable quantities

ranges
\(-10 \mathrm{amps}, 0-20 \mathrm{amps}, 0-30 \mathrm{amps}\). \(0-40 \mathrm{amps}\). \(0-50\) amps. Post and VAT 80 p each

Size 23 MOUNTING MOVING COI movement scaled DB, unused still in original maker's cartons. \(£ 2.50\) each + post and VAT 50p.

PERMEABILITY TUNERS

M.W. two stage ideal for use with ZN414 or similar circuit Price
15 p .

OVEN THERMOSTAT Made by the famous Diamond \(H\) capilliary to a variable control and when fitted with a knob is ideal for many ovens or processes. 50p each
+ post and VAT \(15 p\).

\section*{BREAK-DOWN UNIT}

Contains hundreds of useful parts some of which are as resistors, mostly \(1 / 2\) watt \(5 \%\) eqvering a wide ran values. \(4 \times .1 \mathrm{mfd} 400 \mathrm{v}\) infd condensers. \(15 \times .01 \mathrm{mfd}\) 100 vcondensers . 2 RF chokes. \(8 \times 89\) valve holders. 1 \(\times 4 \mathrm{H}\) choke. \(1 \times 115 \mathrm{v}\) transfomer. 1 boxed unit containing 4 delay lines also tag panels, trimmer condensers, suppressors, etc., on a useful chassis sized approx. \(9^{\prime \prime} \times 5^{\prime \prime} \times 7^{\prime \prime}\). Only \(75 p\) the 66 diodes would cost at least 10 times this amou
be missed. Post and VAT 75 p .

\section*{GPO PUSH BUTTON DIALLING UNIT} Will take the place of the normal rotating dial, has 10 numbered keys, rubber feet, this is a very intricate and expensive piece of apparatus. New and unused - our price only \(£ 9\) each \(+£ 1.36\) post and VAT

\section*{24v POWER PACK}

Normal mains input with a thermal safety device. 800 mA completely enclosed in plastic box and with flex for mains and terminal block for output. Price \(£ 1.75+£ 1\) post and VAT.

\section*{8-SWITCH DISCO LAMP CONTROLLER}

Mains motor driving a drum with adjustable trips operating 8 changeover 10 amp switches. so a total of 40 K watts of lighting can be controlled enabling an unlimited variety of effects to be achieved and changed with the minimum TERMS: Where order is under E5 please add 30 p surcharge to offset packing expenses.
J. BULL (ELECTRICAL) LTD.
[Dept. W.W.)
103 TAMWORTH ROAD, CROYDON CRO 1XX

2000000000008126 UXBRIDGE ROAD, HANWELL, LONDON W7 Personal callers welcome. Open Mon. Wed. \(9.30-5.00\). Fri.-Sat. 9.30-5.00. Free Car Park adj. PRices shown are exclusive of vat.

\section*{TRANSISTORS AND DIODES (25\%)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Trpe} \\
\hline BSY29 (SNPN) & 17p \\
\hline B0107 (SNPN) & 85p \\
\hline 2N7118/2G106 & \\
\hline (SPNP) & 45p \\
\hline 2 N985 (GPNP) & 61.00 \\
\hline 2N1304 (GPNP) & 17p \\
\hline 2 N1309 (GPNP) & 32p \\
\hline 2 N 1046 (GPNP) & E2.80 \\
\hline 2N1146A (GPNP) & 50p \\
\hline 2 N 1557 (G) & 55p \\
\hline 2N2080 (G) & £1.20 \\
\hline 2 N 2082 (G) & \(E 1.20\) \\
\hline 2N2405 (SNPN) & 57p \\
\hline 2 N3054 (SNPN) & 45p \\
\hline 2N3055 (SNPN) & 47p \\
\hline 2N3375 (SNPN) & ¢3.60 \\
\hline 2N4427 (SNPN) & \({ }^{55}\) \\
\hline 2N5322 (SNPN) & 85p \\
\hline \multicolumn{2}{|l|}{A8218/OC26 25p, OC35 45p.} \\
\hline \multicolumn{2}{|l|}{DC42 \({ }^{45 p} \mathrm{p}^{\text {O }}\) OC71 712 p} \\
\hline CV7006/0C72 & Op. OC75 \\
\hline \multicolumn{2}{|l|}{\({ }^{25 p}\) OC83 \({ }^{28}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10p. OA1O 25p, RAS 5084 F}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{25p. RAS310AF 25p. STC Wire} \\
\hline \multicolumn{2}{|l|}{End 400PIV1A} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IN3193 13p. 1 N3194 14p.}} \\
\hline & \\
\hline
\end{tabular}

\section*{CA PHOTOMULTIPLIER (\(8 \%\))
C 31005 B Caes C31005B Caestum and
Anilmony Cathode Spoctral Anilmony Cathode Spectral
Response Designation RCA 107
or \(\$-11\) Incl P/P \(\mathbf{E 3 8 . 0 0}\)}

\section*{THYRISTORS (8\%)}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { GE2N1774 200v 5a. } \\
& \text { CR } 1.021 \mathrm{C} 20 \mathrm{v} 1 \mathrm{a} . \\
& \text { CR10-1018 } 100 \mathrm{v} \\
& 10 \mathrm{a}
\end{aligned}
\] & \[
\begin{array}{r}
£ 1.20 \\
\quad 25 \mathrm{p} \\
£ 1.00
\end{array}
\] \\
\hline CR10-021 10a & £1.00 \\
\hline CR 10-408 10a & E1.00 \\
\hline CR10.051 \({ }^{100}\) & £1.00 \\
\hline CR10.017 108 & E1.00 \\
\hline 8TX \(921200 \mathrm{R}^{16 \mathrm{a}}\) & \\
\hline
\end{tabular}

SWITCHES (\(8 \%\))

DIGITAL COUNTERS (\(8 \%\))
RELAYS (8\%)
Variey ITM Min. 700020
STABLIZED POWER SUPPLIES (\(8 \%\)

\section*{Grest GX60/10a-60v 10 amp set}

 CAPACITORS (\(25 \%\))

FANS (\(25 \%\)), CENTRIFUGAL BLOWERS, VAC: PUMPS \& MOTORS (8\%)

 insulation
E23.00
 \(1 \mathrm{ph} 50 \mathrm{c} 0.19 \mathrm{azp} 2700 \mathrm{mim} . \mathrm{m}^{2}\) " cast alum. impeller 4
 1. Oe 1 ph 50 cc 2700 rpm 550 ctm tree air. \(7 / \mathrm{h}^{\prime \prime}\) impeller \(\uparrow 4\) biades incl. \(\rho \rho, £ 16.60\).
 Systems. Steam exheusting Pneumatic conveying. Cololing

\(\begin{array}{lll}\text { AMP } & \text {.TRIP } & \text { TYPE } \\ 20 & \text { D } & \text { Westingh } 550 \\ 40 & - & \text { Securex } 5000 \\ 70 & \text { Inst. } & \text { Westingh } 550 \\ 70 & 4 & \text { Heinemann (60c.) } \\ 80 & & \text { AM12 } \\ 80 & \text { inst } & \text { Westingh } 550 \\ 80 & \text { Inst. } & \text { Securex } 5000 \\ 90 & \text { Westingh } 550 \\ 100 & - & \text { Securex } 5000 \\ 200 & - & \text { ETA Magnetic }\end{array}\)

Model 365 (corresponds io 575) Alrblast Frin. 440 O 3 ph 50 C 0.75 hp 2850 rpm . continuaus 160 ctm 12 in wg . nett weight 1 ph 50 c 0.166 hp . 2800 rpm continuous 50 ctm 2 in \(\mathbf{w . g}\) not 1pn 50 c 0.166 hp . 2800 rpm continuous 50 ct
weight 34 tbs . Drice incl. carr \(£ 33.00\). \(8 \%\))
Air Controla type VBL4 200/250 1 ph 50 cc 110 cim free air

Whliem Alday Alcosa rorary vane on troe Single Stage
Vacuum Pump Model HSPOB B HG Rpm 1420. E.E.3 phase Vacuum Pump Model HSPOB B HG Rpm 1420. E. E. 3 phase
induction motor \(1 / 3 \mathrm{hp}\) coni \(220 / 250 \mathrm{vv}\) 380/440v. Clas E, induction motor \(1 / 3 \mathrm{hD}\)
Alcone blower FAD 3-8cfm at 5psi. Rpm 1420. Motor EE 3ph Gest MFG. Vechincl. cerr. \(\mathbf{6 2 9 . 0 0}\).
 Mercury in 2 mins marntains vacuum 635 mm Mercury. Or as

3 phase 2 HP motor \(60 / 50 \mathrm{c}\).. 1800/1500 RPM. 20B/220/440Cat. 2026391 Potter Instruments flange mounting capstan motor 0.2 HP cont 110 v inci. Carriage

\section*{Whrarionic BiOkris \\ SICNAL SOURGES \\ FM AM SIGNAL GENERATDR TYPE 202H \\ One condition
F.M. A.M \\ C.W. \& pulse
coverage 54 to \\ coverage
216 MHz \\ Used to test-
ing and cali-
hration \\ F.M. receiving systems V.H.F. T.V. Mobile and general Communications. Freq range \(54.216 \mathrm{MHz} \div 2\) Bands. R.F stability 1.2 Signal to noise ratio 50 dB below 10 KHz Dimensions \(13^{3 / 4} \times 101 / 4 \times 1\)
PRICE NEW OVER E1,000! \\ OUR PRICE £495 \\ ADVANCE \\ Audio Signal Generator HIB \(15 \mathrm{~Hz}-50 \mathrm{KHz}\) \(200 \mu \mathrm{~V}\)-20Vm \(\pm 2 \mathrm{~dB}\). Sine Wave \& Square Audio Signal Generator JIB \(15 \mathrm{~Hz}-50 \mathrm{KHz}\) \(0.2 \mathrm{~V}-25 \mathrm{~V}\) Generator \(\mathrm{IB} \quad 1 \mathrm{~Hz}-\mathrm{E}_{\mathrm{E}}\) VHF Square wave Generator SG21
 AIRMEC \\ bands \\ Signal Generator 70230 Hz -30 KHz in 3 band \\ PULSE GENERATORS \\ ADVANCE \\ Pulse Amplitude 0 . V -10V Rise Time 10 nsec (typically) \(\mathbf{8 8} 7.50\) Modurn POA Modular Pulse Generator Advance Type Processing units Repetition freas. up to \(20 \mathrm{MHz} \&\) Output pulses to 20 V (50 ohms) Rise \& Fall Output pulses to 20 V (50 ohms) hise ar faluction of complex pulse \& ramp he production of complex pulse \& ramp \(\mathbf{£ 2 5 0}\) MARCONI \\ MARCONI \\ Double Pulse Geneñator TF.1400/S. Min type CT \(434 . \mathrm{c} / \mathrm{w}\) TM 6600 Sec . Pulse gen Negative pulses up to 200 V EM. \(F\). pulses up to 60 V E. M.F. \& Simultaneous + V s-VE pulses up to 20V E.M.F PO.A SOLARTRON \\ Precision Pulse Generator G.O. 1377 100V \\ MARCONI \\ £40 ariable Air Condenser Muirhead Type 11-B 1250 pF Max. \\ AC-DC Converter Typ \\ NEGRETTI ZAMBRA \\ Quick Reading Potentiometer \\ Whetstone Bridge Type \(1401 \ldots\) E4 \\ TV. TEST EQUIPWENT \\ X-Y \& U/V REGORDERS \\ INSULATION TESTERS \\ EVERSHED \& VIGNOLES}

Signal Generator 701 E60
H.F. Signal Generator 201 30kHz-30M Hz in Bands Int.Xral calibrator o/p level variable
 GENERAL RADIO
Unit Oscillator 121 B -A
Unit Oscillator General Ra. P.O.A Freq \(250-920 \mathrm{MHz}\). Accuracy \(1 \%\) Drift \(0.2 \%\) Sutput into \(50 \mathrm{Mms}=150\) MW with PSU HEWLETT PACKARD
HEWLETT PACKARD
H.F.F Signal Generator \(614 \mathrm{~A} 900-2100 \mathrm{MHz}\) ohms. Modulation CWInt. or EXT. FM \& P Pulse S.H.F. Signal Generator \(618 \mathrm{C} 3.8-7.6 \mathrm{GHz} \pm\) \(1 \% 50\) ohms
 \(0.1 \mu \mathrm{~V}-0.8 \mathrm{~V}\). \(\mathrm{£}^{195}\) Signal Generator 612A 450MHz-1230MHz Internal \& Ext. A.M. 50 ohms
Audio Oscillator Type \(201 \mathrm{C} .20 \mathrm{~Hz}-20 \mathrm{KHz}\) Audio Oscillator Yype \(201 \mathrm{C} .20 \mathrm{~Hz}-20 \mathrm{KHz}\)
0.40 dB in 10 dB steps. Distortion less than \(0.5 \%\) Also \(200 \mathrm{CD} \& 200 \mathrm{~B}\) £ 95 MARCONIINTS.
Oscillator TF 1247 20.300 MHz (Suitable for Use with Marconi TF 1245 \& 1245A FM/AM Signal Generator TF 995A/3S 1.5 \(\mathrm{Mhz}-220 \mathrm{MHz}, 2 \mu \mathrm{~V}-200 \mathrm{mV} \begin{array}{r}\text { Superb } \\ \mathrm{f} 385\end{array}\) U.H.F. Signal Generator TF \(1060 \%\) \(450-1200 \mathrm{MHz} .0 .15 \mu \mathrm{~V}-447 \mathrm{mV}\) Sine and pulse mod. facilftes U.H.F \& S.H.F. Signal Generator TF 1058 Phase/AM Signal Generator if 2003 Phase/AM Signal Generator

Video Oscillator \(0.22 \mathrm{D} .10 \mathrm{KHz} \cdot 10 \mathrm{MHz}\) A.F. Oscillator S 12

BRUEL \& KJAER
Portable Sound Level and Vibration Meter
2203 and Octave Filter Set 1613

\section*{SWEEP GENERATORS}

\section*{HEWLETT PACKARD}

気 Sweep schitor 6938 4.BGHz \(£ 495\) JERROLD
Sweep Signal Generator 9008 Centre Freas. \(500 \mathrm{KHz}-1200 \mathrm{MHz}\) Sweep widths narrow as
 single or double pulses 0.2 amp paraphase outputs Simultaneous + VE \& -VE outputs Square wave to 5 MHz 10nsec. Rise time Pulse repetition freq \(-10 \mathrm{~Hz}-1 \mathrm{MHz}\) Puls duration \(0.1 \mu\) sec.100 msec
Pulse Generator OPS 100 C
\(\mathbf{y}\)

Siemens Level Meter 3D \(33510 \mathrm{KHz}-17 \mathrm{MHz}\). Complete sysiem by Siemens. Comprising. 3W. 518 Level Oscillator, 3D. 335 Level Meter. 3 W. 933 Sweep Attachment, 3D. 346 Screen Levelracing 3032 O 3.1200 KHz level Oscillator 3W 29 O 3.1200 KHzPO Level Oscillator Octave Filter 74143A. \(37.5-12.800 \mathrm{~Hz}\) F analysing noise and interference on comms systems. particularly usefut with 7414 psophometer Selective level Measuring Sel 74184 B \(60-1364 \mathrm{KHz}_{\mathrm{H}} \mathrm{POA}\) Measuring
A.T.\& E.
elegraph Distortion Measuring Set Various

OSCILLOSEOPE TEST EQUIPWENT

\footnotetext{
TEKTRONIX
Pulse Generator Type III. 0.5 usec risetıme. Amplitude \(\pm 5 \mathrm{~V} 30\) to 250 nsec difference \(\begin{array}{ll}\text { between trigger and output pulses } & \mathbf{£ 6 0} \\ \text { Time Mark Generator } 180 \mathrm{~A} & \mathbf{£ 8 5}\end{array}\) Pulse Generator 1090.25 nsec Risetime 0.55 V Catibrated variable amplitude. Impe-
dance 50 ohms
}

Wandel \& Golterman VZM 2. Distortion measuring set for phase \& amplitude mod. For multichannel FM Radio Systems up to \(12 \mathrm{MH}^{\circ}\) MARCONI
Sine Squared Pulse \& Bar Generator TF.2905/B \(£ 225\) GRESHAM LION
Waveforn Generator 625 lines. Sine squared Pulse \& Bar P.O.A
taircase

\section*{WANDEL \& GOLTERMAN} Measuring Set VZM

\section*{COMPONENTS}

B. 7971 Displays alphabet \& 0.9 numerals

ACCELEROMETERS

\section*{GE.C Type F}

Graseby insts. Type 821 12G-0-12G £25
Sperty Type \(212502-0100\) Sperry Type 214202-0100
O. A Langham Thompson LA 2
Types up to 100 G Choppers
Elliotit Synchroverter G 1280 Elliot Synchroverter 95908
MODULATORS
SE Labs SE. \(501 / 2 \quad\) £45
Osc. amp demod SE Labs Type SE \(62 / 12\)
TRANS DUCERS
\(£ 35\)
\(\begin{array}{ll}\text { S.E Labs SE } 150 \mathrm{~T} \pm 2.5 \text { ps.i } & \mathbf{£ 3 5} \\ \text { S.E Labs SE } 153 / \text { A7481 } 15 \text { p.s. } & \mathbf{£ 3 5}\end{array}\)
S.E Labs SE \(153 /\) A748 1 is p.S.I
£ 25
S. E Labs SE. 1051000 p

E Labs SE 1654000 p
TEMPERATURE INDICATORS
Made by Ether. Models with Temp. Ranges,
0.600 C. \(0-800\) C \(\& 0-1000^{\circ} \mathrm{C} £ 25-£ 50\) POTENTIOMETERS
3 furn a
Rotation
5 ohms Beckman Type A
\(\begin{array}{lll}5 \text { ohms } & \text { Beckman rype A } & £ 3.00 \\ 50 \text { ohms } & \text { Bourns } & 35005-2.500 \\ \text { £ } 1.00\end{array}\)
\(\begin{array}{llll}50 \text { ohms } & \text { Bourns } & 35005-2-500 & \text { E1.00 } \\ 100 \text { ohms } & \text { Relcon } & 05-810 & £ 1.00\end{array}\)
300 ohms \(\quad\) Relcon 05.810
500 ohms Beckman
\(\begin{array}{lll}500 \text { ohms Beckmari A } & £ 2.50 \\ 500 \text { ohms Colvern } 2501264 & £ 3.00\end{array}\)
\(\begin{array}{lll}500 \text { ohms } & \text { Colvern } & 2501 / 264 \\ 500 \text { ohms } & \text { Colvern } & 2402 / 13\end{array}\)
500 ohms Colvern 2402/13 \(£ 3.00\)
500 ohms Colvern 2501/9 £300

Circuit Tester Ohmeter 0.3 ohms 0.39 ohms
Circuit Tester Ohmeter 0-1000 £18
\(100-200\) kohms \(\quad £ 18\)
Megger Series \(+11250 \mathrm{~V} \ldots \mathrm{E} 12\)
Megger Series III Mk 3250 V E12
+20
Megger 250 V
Megger 500 V
\(\mathbf{6 2 0}\)
\(\mathbf{£ 3 7}\)
\(\mathbf{6 3 7}\)
Battery Megger 500 V
Insulation Tester 10B 500V
£25

\section*{MISGELLANEOUS}

Transfer Osciliator Type 7580 HBy Beckman DC. 15 GHz with counter. 75 MHz 15 GHz E350 Distortion Factor Meter TF. 142 F. Fundamen tal Freq Range \(100 \mathrm{~Hz}-8 \mathrm{KHz}\) Dist measurement ranges \(0.5 \%\) \& \(0-50 \%\) £60 Portable Recener Tester TF.BB8/3.
70 KHz . 70 MHz . \(70 \mathrm{KHz} \cdot 70 \mathrm{MHz}\), Xtal check \(500 \mathrm{KHz} \& 5 \mathrm{MHz}\). 100 mW \& 1 W E6ilator. A.F Power Carrier Deviation Meter TF 791C Carrier Freq. range \(4-250 \mathrm{MHz}\). Freq dev ranges \(010 \pm\) 125 KHz . Input impedànce 50 ohms \(£ 75\) Wave Analyser TF 455E95 Noise Generator TF 1301. 200.1700 \(\mathbf{M H z}_{\mathbf{~} 6 \mathbf{6}}\) ADVANCE

Printer PR 1 Intended for use with almost any kind of counter. 7 digut display, \(2^{\prime \prime}\) wide paper brint-out
Megohmeter RM 160 . For insulation resis.
\(\begin{array}{ll}\text { tance up to } \mathbf{4 0 0} \text { million M ohms } & \mathbf{£ 3 5} \\ \text { Meter } \mathbf{T} 1 & \mathbf{£ 7 5}\end{array}\)
AIRMEC
Modulation Meter 210 £ 75
EDDYSTONE
\(£ 75\)
\(£ 135\)

\section*{HEWLETT PACKARD}

\section*{MUIRHEAD}
.
Farsimile Transmitter Receiver Type 900 .
trom satellite systems
SAVAGE
Amplifier Mark II Star Model 1 KM 22 . 1 KW
WAYNE \(£ 1650\)
WAYNE KERR

\title{
The test equipment people
}

Come and visit Europe's first Electronic Instrumentation Centre

\section*{49-53 Pancras Road London NW1 2QB Tel: 01-837 7781}

> Next to KING'S CROSS ST. PANCRAS

\section*{TEKTRONIX}

The most versatile oscilloscopes ever produced by Tektronix 10 accept Multi race, and special purpose Plugg-ins. etc. A few examples offered below
|AT - OC \(50 \mathrm{Meg} .5 \mathrm{mV} / \mathrm{cm}\) Oual Trace \({ }^{1} 1 \mathrm{~A} 2\) - OC \(50 \mathrm{Meg} 50 \mathrm{mV} / \mathrm{cm}\) Dual Trace \(\begin{array}{r}\text { \& } 90.00\end{array}\) CA-OC 24 Meg. 1 E 4 E69.50 \(10 \mathrm{mV} / \mathrm{cm} \quad \begin{aligned} & \text { E } \\ & 5950.00\end{aligned}\) 545 B DC to 33 Meg calibrated sweep delay
\(£ 325.00\) 546
Meg.
547 7 Oual time base/ oelayed sweep \(£ 275.00\) display. DC 50 Meg. \(\quad £ 325.00\) HEWLETT PACKARO

Model \(130 \mathrm{C} 200 \mu \mathrm{~V} / \mathrm{cm}\) Oscilloscope This
scope is
Mode is a versatile all purpose instrument for laboratory, production line, industrial process
measurements and medical applications. The outputs of rf detectors, strain gauges. transducers, and other low level devices may be viewed directly without preamplification.
The Model 130 C is easy to operate even by The Model 130 C is easy 10 operate even by
inexperienced personnel. Specification: Time nexperienced personnel. Specification: Time
Base: Range - \(1 \mu \mathrm{~s} / \mathrm{cm}\) to \(5 \mathrm{~s} / \mathrm{cm} 21\) ranges in a \(1,2,5\) sequence, accuracy \(\pm 3 \%\), vernier in a \(1,2,5\) sequence, accuracy \(\pm 3 \%\), vernier
provides continuous adjustment between steps and extends the \(5 \mathrm{~s} / \mathrm{cm}\) step to at least \(12.5 \mathrm{~s} / \mathrm{cm}\). Automatic triggering (baseline displayed in the absence of an input signal) Vertical and horizonta! amplifiers. Bandwidth. d.c. coupled, dc to 500 KHz ; ac coupled (input), 2 Hz to 500 KHz ac coupled (amplifier). 25 Hz to 500 KHz at \(0.2 \mathrm{mV} / \mathrm{cm}\)
deflection factor
\(£ 175\) \begin{tabular}{lll}
deflection factor & & \(\begin{array}{c}\text { (175 } \\
\text { Sampling Scpe } \\
1858 \\
\text { OC-3 }\end{array}\) \\
\hline
\end{tabular}

\section*{MARCON}

Scope TF 2200A/1 c/w TV Differential plug \(\mathrm{mV} / \mathrm{Cm} \ldots 190\)
TELEQUIPMENT
Dual Beam Scope 031.ROC-6 \(\mathrm{MHz}^{\text {R }} \quad £ 75\)

screened against external magnetic fields. Scale width and small case dimensions (\(128 \times\) \(95 \times 32 \mathrm{~mm}\)) Accuracy and stability (\(1 \%\) in D.C. \(2 \%\) in A.C.) of indicated reading ranges of accessories. 1000 times overload. Pninted Circuit board is removable without de-soldering. More ranges than any other
meter. Ask for free catalogue
\(\mathbf{1 8 . 5 0}\) Accessories (extra) available to convert Microtest 808 SUpertester 680 into following: SIGNAL INJECTOR, GAUSS
METER. ELECTRONIC VOLTMETER. AMPERCLAMP. TRANSISTOR TESTER. TEMPERA CLAMP TRANSISTOR TESTER, TEMPERA-
TURE PROBE, PHASE SEQUENCE INOICATOR - Se MORE RANGES FOR LESS
MONEYI
AC/DC U4324.
\(006-3 A\) Ranges. Ranges Ranges
\(3-900 \mathrm{~V}\) Aanges. the range of 45 to tance: 500 ohm Ranges Decibel Ranges Decibe
-10 to +12 dB
-10 to +12 dB
Accuracy: \(\pm 2.5 \%\)
All above \(-2.5 \%\)

\(\mathrm{DC} \pm 4 \% \mathrm{AC}\).D
mensions: 167
\(98 \times 63 \mathrm{l}\)
\(98 \times 63 \mathrm{~mm}\)
Only \(\mathbf{E 9 . 2 5}\)

Carriage and packing charge extra
ail items unless otherwise stated. Please note: All instruments offered are secondhand and
tested and guaranteed 12 months unless otherwise stated. ADD 8\% VAT TO ALL PRICES

\section*{DIGITAL VOLTMETERS}

D.C. Digital Voltmeter Solartron Type
LM. \(1420.225 \mathrm{UV}-1 \mathrm{KV}\) in 6 Ranges. \(0.05 \%\) LM. \(1420.225 \mathrm{uV}-1 \mathrm{KV}\) in 6 Ranges. \(0.05 \%\)
DC Accuracy 250 KHz Counter Facility \(\mathbf{£ 2 3 5}\) DC Accuracy
DYNAMCO
DM \(2022 \mathrm{~S} 10 \mu \mathrm{~V}-2 \mathrm{kV}\). Max. reading 3999 g Accuracy \(0.02 \%\) D.V.M DM2004

SOLARTRON

\section*{Autoranging Digital …...... \(£ 9\)} Accuracy \(0.005 \%\) Voltmeter LM 1480 Accuracy: \(0.005 \%, 10 \mu \mathrm{~V}-2 \mathrm{kV}\) DC
Resolution 1 part in 30.000 .20 .000 M inpul Resolution 1 part in 30.000 .20 .000 M input
resistance. 6 Operating modes. Long term accuracy stability Suitable for the Standards foom. Laboratory or Industrial uses
 \(£ 50\)
\(\mathbf{£ 6 0}\)

\section*{SPECIAL OFFER}

Heathkit \(5^{\prime \prime}\) Wide Band Oscilloscope 10.12 U \(4.5 \mathrm{Mc} / \mathrm{s}\) Push-Pull Horizontal and vertical amplifier. Time Base \(10 \mathrm{c} / \mathrm{s}-500 \mathrm{Kc} / \mathrm{s}\) Sensitivity 10 mV at \(1 \mathrm{Kc} / \mathrm{s}\). Fully Guaranteed Also available Audio Signal Generator AG9U
10 Hz to 100 KHz 8 Output ranges 3 mV 10 Hz to 100 KHz . 8 Output ranges, 3 mV -
10 volts \(>0.1 \%\) Distortion \((20-20 \mathrm{Kcs})\) \(\mathbf{£ 2 9 . 5 0}\) Harmonic Distortion Meter \(1 \mathrm{M}-5 \mathrm{BU}\) \(20-2,000 \mathrm{~Hz}-5\) ranges \(1-100 \%{ }^{4}\)
voltmeter ranges \(1-30\) volts \(\quad \mathbf{E 2 9 . 5 0}\) Telequipment D31R Dual Beam Scope DC -
6 Meg 100 mV Sensitivity
\(£ 75.00\) Meg. 100 mV Sensitivity

Dual beam
5 MHz

\(100 \mathrm{mV} / \mathrm{cm}\)
sensitivity, on \(Y 2\). Timebase
\(1 \mu \mathrm{~S} / \mathrm{cm}\) to LIMITED STOCK PRICE STOCK
\(\mathbf{£ 8 9 . 5 0 .}\)
OSCILLOSCOPE CT1436
General Purpose Dual Beam DC 6 MHz flat faced double gun cathode ray tube operating at 46 kV . The time base velocity is continuously variable between \(1 \mathrm{~cm} / \mu \mathrm{sec}\) and TIME BASE Free running or triggered from positive or negative pulses Sweep speed \(1 \mathrm{~cm} / \mu \mathrm{sec}\) to \(1 \mathrm{~cm} / \mathrm{sec}\). Synchronisation, positive or negative going intemal from either channel or externa Intemal 3 mm P/P. External 100 mV P/P Sensitivity \(100 \mathrm{mV} / \mathrm{cm}\); maximum amplifier \(\mathbf{W} 25 \mathrm{mbs}\). 85.00 .

\section*{POWER SUPPLIES} 1.B.M
I.B.M
Power Supplies: Input 115 V
\begin{tabular}{llll}
Power Supplies: Input & \(115 V\) & & \\
\(3 V 5 A\) & \(£ 12\) & \(12 V 15 A\) & \(£ 29\) \\
\(3 V B A\) & \(£ 15\) & \(15 V 2.5 A\) & \(£ 15\) \\
\(6 V 2 A\) & \(£ 8\) & \(20 V 6 A\) & \(£ 20\) \\
\(6 V 6 A\) & \(£ 12\) & \(20 V 15 A\) & \(£ 25\) \\
\(6 V 8 A\) & \(£ 15\) & \(30 V 4 A\) & \(£ 12\) \\
\(6 V 12 A\) & \(£ 18\) & \(20 V 7 A\) & \(£ 20\) \\
\(6 V 16 A\) & \(£ 22\) & \(36 V 2 A\) & \(£ 12\) \\
\(12 V S A\) & \(£ 22\) & \(60 V\) & \(6 A\) \\
\hline
\end{tabular}

H3020 BmA FSO 5 Hz 80 mm per channel \(01.25 \mathrm{~mm} / \mathrm{sec}\) chart drive inc time and event marker
\(\mathbf{H 3 2 4}\) 8mA FSO 100 Hz transistorised pen \(£ 130\) H3248mA FSO 100 Hz transistorised amp, as above £180, 3 pen £275, 5 pen \(\mathbf{~} 435\)
 H3100. Miniature \(1 \mathrm{~mA} \quad 0 \mathrm{C}-80 \mathrm{~mm}\) ehart width. \(20.5400 \mathrm{~mm} / \mathrm{hr} \ldots 44\)
A.P.T. ELECTRONICS

Power Supply SP. 110 D16. D17 20V @4 5A + 10V @ 300mA Power Supply SP.126 0.16. 20V @ 45 E (\(-10 V @ 3 A,+10 V @ 300 \mathrm{~mA}\). \(\mathrm{E12}\).
Power Supply SP. 126 A D \(17.20 \mathrm{~V} @ 4.5 \mathrm{~A}\). -10V@3A.+10V@300mA £14

H30. Ten channel event recorder RECORD \(500 \mu \mathrm{~A}\) single channel 1
RECORD 1 mA version
RUSTRACK BB 1 mA

All mail order and enquiries to 270 Acton Lane，Chiswick，London W4 5DG．Tel：01－994 6275

10 TURN
\％Atc．All

感家客

TRANSISTORS

DIODES\begin{tabular}{l}
SIGNAL \\
OA477 \\
\hline
\end{tabular}OA47 7p
OA70 9p
OA79 10pOA70 9p
OA79 10p
OAB1 8p
OAB5 10pOAB 8 pp
OAB5 10 p
OA90 7p
\(0 A 917 \mathrm{p}\)

IN914 4p
IN4148 4p
RECTIFIER
8 Y 10015 p
BY126 12p
BY 127 12p
\(8 Y Z 1045 p\)
\(8 Y Z 1145 p\)
BYZ 1245 p
\(8 Y Z 1345 p\)
IN40015p
IN4004 \(6 p\)\(N 4004\) 6p
｜N4007 \(7 p\)
ZENER\(33 V\) to 33 V
400 mW 9 p
1 W 18 p 9pTUNNELAEYY150p\begin{tabular}{l}
Varicap \\
88105 \\
\hline
\end{tabular}Low Noise
BRIDGE
RECTIFIERS
\(9 p\)
\(2 N 3053\)
\(\mathbf{9 p}\)
\(2 N 3054\)3N128 \(75 p\)
\(3 N 140\)
\(35 p\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{bridge aECTEIERS} \\
\hline \multicolumn{2}{|l|}{W02 1A 200 V 38 p} \\
\hline & \\
\hline \multicolumn{2}{|l|}{MDA952／2 6a} \\
\hline \multicolumn{2}{|l|}{ZENER DIODES} \\
\hline \multicolumn{2}{|l|}{BZY88 Series} \\
\hline & 400 mW \\
\hline \multicolumn{2}{|l|}{3.3 v 33v． \(5 \%\) 11p} \\
\hline 1.5 Wr & ne 25p \\
\hline \multicolumn{2}{|l|}{10w range \({ }^{\text {a }}\)－} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TH20938p}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{HP5082 28p} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{cc}
\text { MA.2082R } \\
\text { L.D.R. } & 20 \mathrm{p} \\
\hline
\end{array}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{ORP12 60p} \\
\hline \multicolumn{2}{|l|}{NE555 Timer 80p} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{ENC PLUGS at 35p each}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{UHF（N）PLUGS at 50p each} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UHF USWR probe： ex UHF}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{transmiters 65 each
\(+8 \% \mathrm{VAT}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{All the above ane new in original packets}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Piease add 8\％VAT P\＆P 30p}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{POTENTIOMETERS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Lingar or Log
Rolary Pos}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Rotary Pots} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Single } \\
& 17 p
\end{aligned}
\]} & \\
\hline & \multirow[t]{2}{*}{45p} \\
\hline & \\
\hline
\end{tabular}

\(\star \star\) SPECIAL OFFERS
\(\star\)
SPECIAL KOKUSAI MECHANICAL FILTER， \(455 \mathrm{Kc} / \mathrm{S}\)
\(6 \mathrm{Kc} / \mathrm{S}\) overall．Ideal for AM 55 each INC YAT Vat
 OMRON OCTAL RE
75p each \(+8 \%\) VAT 5p each \(+8 \%\) VAT

\title{
BARGAINS NOW AVAILABLE
}

Top class used instruments from such famous names as Tektronix, Hewlett-Packard, Solartron, Philips STC, Racal, etc., etc.

\section*{All in superb condition}

ACOUSTICS EQUIPMENT
A \& K Labs
2603 Microphone Amplifier
COUNTERS \& TIMERS
Howlett Packard
37345 Digits. \(3 \mathrm{~Hz}-5 \mathrm{MHz}\)
52167 Digits. \(5 \mathrm{~Hz}-10 \mathrm{M}\)
52167 Digits. 12 MHz \(245 L 8\) Digits.
ageing rate
ageing rate
252 A Presit Counters. DC-50MHz
5253 B Converter plug-ins. 350 MHz
5254C Converter Plug-ins. 512 MHz
5255A Converter plug-ins. \(3-12.4 \mathrm{GHz}\)
5260A Automatic Divider Unit. DC-1 \(2-4 \mathrm{GHz}\)
(Use.with 50 MHz Counter)

\section*{Marconi}

FT1417/A 6 Digits. \(0-15 \mathrm{MHz}\)
TF24 22 Divider from 300 MHz
DEVIATION METERS, POWER METERS TION METERS
General Radio
1840A A.F. Power Meter 0.1W-20W
Marconi
Marconi
TF791D 4.1024 MHz
TF2502 Power Meter
TF934 Power Meter

Takeds Riken
\(37 \mathrm{BBC} 10 \mathrm{~Hz}-500 \mathrm{MHz}\). 8 Digits. Hi Stab. \(50 \Omega / 1 \mathrm{M} \Omega \mathrm{e}\).
DATA LOGGERS
Dynamco
620210 channel Microscan with 6070 Parallel Strip Printer DIGITAL VOLTMETERS
Boonton
Ranging. Mean/RMS
Dana
3800A Digital Multimeter \(0.1 \%\) Max RDG 1999 e88- 126 \(5320 / 55010 \mu \mathrm{~V} .1 \mathrm{kV}\). Max. Rdg. \(1199990.02 \% \quad £ 310\) \(\begin{array}{llll}5320 / 500 / 75 & \uparrow \mu \mathrm{~V}-1000 \mathrm{~V} \text {. Max. Rdg. } 119999 & 0.02 \%\end{array}\)
5370/600/75 As 5330 DC. AC: Mean \(10 \mu \mathrm{~V}\)-1000V \(£ 248\)

5330/700/71 As 5330 DC. AC:RMS
Dynamco
DM2022. DC \(\quad 0.02 \% \quad 10 \mu \mathrm{~V}\) resolution- 2 kV
DM2140/A1/B1. Mean AC. Converters DM2140/A1/B3 RMS AC. Converters
Hewlett Packard
3440 Complete with 3444A Multimeter Plug-in
3480 Main Frame. 5 Digits, complete with
3482 DC plug-in
3484 Multimeter Plug-in

\section*{Solartron}

LM1420.2 0.05\% \(25 \mu \mathrm{~V}\) resolution to 1 kV DC \(£ 86 \mathbf{8} \mathbf{£ 1 7 1}\) LM14202BA DC and RMS/Mean A.C. LM1219 A.C. Converter. 30 mV -300V Mean Reading
LM1604. Max. Rdg. 19999. iuV-1kV DC
Auto-ranging
"See also "Associated Equipment

Call us now
£549
£325
¢88-£216
\(£ 55\)
\(£ 370\)
189-£432 £324 6-£171 £36-£171 £252-£378

OSCILLOS COPE
279 Display Oscilloscope. DC-10kHz. 4 Trace, \(17^{\prime \prime}\) Tube \(£ 9\)
Coss
CDU150 DC-35MHz. \(5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{DIV}\) dual trace

\section*{Hewlett Packard}

183A DC-250MHz. Complete with 1830 A and \(\begin{gathered}\text { 1840A } \\ \text { Plug-ins }\end{gathered}\)
\(£ 898\) Plug-ins
Tektronix
Tektronix
\(546 \mathrm{DC}-50 \mathrm{MHz}\). Main Frame with delayed sweep dual time base \(\mathbf{\text { b216-£315 }}\) \(547 \mathrm{DC} \cdot 50 \mathrm{MHz}\). Main Frame with delayed sweep dual time
 1 A1 Plug-in for 546 or 547 . DC-50MHz. \(5 \mathrm{mV}-20 \mathrm{~V} /\) Div. Dual Trace
1 A2 Plug-in for 546 or \(547 . D C . ~\)
D
1A2 Plug-in for 546 or 547 . DC. \(50 \mathrm{MHz} 50 \mathrm{mv}-20 \mathrm{~V} / \mathrm{Div}\)
Dual Trace \(585 \mathrm{DC}-80 \mathrm{MHz}\). Main Frame with Delay \(\mathbf{6 6 3 - £ 1 0 8}\) 585 DCBOM 82 Plug-in for 585 . DC-80M Hz. \(100 \mathrm{mV}-50 \mathrm{~V} /\) Div. \(^{£ 216-£ 360}\) Dual Trace \(564 \mathrm{DC}-10 \mathrm{MHz} / 14 \mathrm{GHz}\). Storage or Sampling Main Frame Complete with two plug-ins to selection \(\mathbf{£ 2 0 0} \mathbf{£ 3 1 5}\) 564B Updated Main Frame. Complete with iwo plug-ins to selection \(\mathbf{£ 2 5 0 - £ 4 0 0}\) \(564 \mathrm{~B} / 121 \mathrm{~N} 564 \mathrm{~B}\) Main Frame. Auto Erase. Complete with two plug-ins to selection \(\mathbf{£ 3 0 0 - £ 5 2 0}\) 7014 Counter Plug-in for 7000 Series multi-plug-in
Oscilloscope. DC-500MHz. CRT read-out

\section*{PHASE MEASURING EQUIPMENT}

Solartron
VP250.2 Resolved Component Indicator (Synchro, etc., testing) \(\mathbf{£ 2 9 0}\)
POWER LINE MEASURING EQUIPMENT
Elliott
5000 kVA and kW Meter
£ 30-£45
Swiss /nstruments \(\qquad\) g kW/kVA
Meter. Complete with 3 Clampon Transformers \(\mathbf{£ 2 8 0 - £ 5 7 0}\)
POWER SUPPLIES
Advance
Farnell
Farnell
\(30 / 10.0 .30 \mathrm{~V} .10 \mathrm{~A}\) Pre-set
SSE 0-15V. 1A. Pre-set
\(7 / 10 \mathrm{SC} 0-7 \mathrm{~V}\) 10A. Pre-set D.C. \(7 / 50 \mathrm{SC}\) O-7V. 50A. Pre-set D.C. \(50 /\) LS \(0-50 \mathrm{~V}\). 1A. Pre-set D.C
SSC. 0-15V 1A. Pre-set D.C. SSD 0-15V. 1 A. Pre-set D.C SSG/h o-60V. 10A. Pre-set D.C.
Roband
EGO. \(12 / 12,0-12 \mathrm{~V} .12\). Pre-set D.C
Dana
Dana
Danapack. Battery Pack for Dana DVMs GALVOS FOR UV RECORDERS Bell \& Howell
Selection available to 13 kHz
SIGNA L SOURCES
General Radio
1363 UHF Oscillator (needs power'supply)

\section*{Muirhead}

D880A. \(0.01 \mathrm{~Hz}-11.2 \mathrm{kHz}\). Decade 2 Phase
0890. \(1 \mathrm{~Hz}-111.1 \mathrm{kHz}\). Decade \(0-7 \mathrm{~V}\)

Marconi
TF \(144 \mathrm{H} / 4 \quad 10 \mathrm{kHz} .72 \mathrm{MHz}\) Xtal check, Int/Ext. AM. 50
ohms \(\quad\), 1 (178-£288 TF801D/1. \(10 \mathrm{MHz}-470 \mathrm{MHz}\). Int./Ext. AM and Pulse modulation

\section*{Wayne
\(0220.10 \mathrm{kHz}-10 \mathrm{MHz}\). Video Oscillator}

\section*{Carston Electronics Limited}

Shirley House, 27 Camden Road
London, NW1. Tel: 01-267 4257

PULSE GENERATORS
Philips
PM5775 \(1 \mathrm{~Hz}-100 \mathrm{MHz}\) Rise Time \(1 \mu \mathrm{~s}\) Single O/P £456 PM5776 1 Hz -100MHz. Rise T.me \(1 \mu \mathrm{~s}\). Two O/Ps \(\mathbf{5 5 4}\)

\section*{SWEEP GENERATORS}

\section*{SWEEP GEN}

Hew/ett Packard

TELEPHONE TV AND MICROWAVE
Hewlett Packard
3701/02/03. Microwave Link Analyser £1,100-£2,020
Marconi
OA 2090A. White Noise Test Set (Filters also available at extra
\(\begin{array}{ll}\text { Charge) } \\ \text { TF } 2905 / 5 . \operatorname{Sin} 2 & \text { P \& B Gen. } 525 \text { lines } 60 \mathrm{~Hz} \\ \mathbf{E 6 4 1} \\ \mathbf{E 2 6 0}\end{array}\) TF 2909 Grey Scale Gen. 625 lines

PMilips 5508 Pattern Gen 625 lines PAL UK Systems
£130-£249

\section*{Richmond Mill}

TSP. TV Studio Precision Signal Generator. Sin 2 P \& B Window. Staircase. 525 lines. Requires all drives (Modicaion io 625 ines arranged ar exra charge) \(\mathbf{2 7 8}\)

\section*{Siemons}

REL3K53. Contact Fault Locators. 1 MHz Test Signal Variable levels. High sensitivity
\(£ 85\)
s.T.C.

74166 Milliwatt Test Sets
32- E 41
74166 Milliwatt Test Sets
7418 Selective Measuring Sets
74216. Noise Generators. \(20 \mathrm{~Hz}-4 \mathrm{kHz}\)

74306 B . Oscillators \(10 \mathrm{kHz}-20 \mathrm{M} \mathrm{Hz}\)
£83
£81-£162
E72-£99
74600 R.F. At
9.0; 90. Odb
74832 B Selective Level Measuring Sers
Att: 0.9 :

Wandel \& Gotteman
TFPM43 14 MHz . Selective Meters
ZMi Differential Phase Meter (TV)
£203-£459
VZMG1. Sampling Attachment (complete)
WAVE ANALYSERS
Aimmec/Racal
5-300MHz. Harmonic Analysers
\(£ 119\)

\section*{ASSOCIATED EQUIPMENT}

Weyfinge
390 4 Digit Printers with interface to Solantron LM 1420.
2.DVM 2.DVM
£125-£182
RF2606 Differential Voltmeters. \(0-1000 \mathrm{~V}\)
\(£ 108\)
Siemens
Multizet. R.F. Voltmeters. 0.100 V
£4+
Racal
T3000 FM Tape Recorder. 4 channels. 5 kHz at Hi Speed. CAT 98B3. Headset and Mic/Amplifier. Complete £630 MP
Surface Pyrometer \(50-600^{\circ} \mathrm{C}\) (with Probe) \(+\begin{gathered}\text { Uncalibrated } \\ £ 17+\end{gathered}\)
Marconi
TF2167 R.F. Amplifier. 50 kHz - BOMHz. \(10 \mathrm{~W} \quad £ 490\)

\section*{SOPHISTICATED BARGAINS!}

To find a Time Domain Voltmeter (correlator if you like) and a Transter Function Analyser on the second user market is a rare thing. We have just one of each for immediate sale. Check the replacement prices!

Solartron
JM 1860 Time Domain Voltmeter DC-10kHz. 1 Sec. \(-31 / 2\)
hours Averaging Time
JM1600/JX1639
0.00001 Hz .159 .9 kHz . Cantesian, Polar, Log polar Phase resolution 10 minutes of arc. Floating Interface \(£ 2,069\)

\footnotetext{
\(\ddagger\) Price on application
}

BENTLEY ACOUSTIC CORPORATION LTD \(7 A\) GLOUCESTER ROAD，LITTLEHAMPTON，SUSSEX．TeI． 6743 ALL PRICES SHOWN INCLUDE V．A．T．
\(\qquad\)

> न్స్
いいい
0.53
1.76
1
0.53
1.76
1 Mi？1.41Pc900
0.47 Py Prson

 －M

\section*{［－－－The SECOND－USER Computer Specialists}

\section*{COMPUTER SALES Peripherals and Systems for Data Processing Systems，Equipment and Components}

Niecon and

PDP8L 8K Processor（pictured below）
PDP11／15 4K Processor
PDP11／20 24K Processor
RF11／RS11 Discs
DEC High Speed Reader Punch for PDP8I
DEC MODULES．Send for list．Up to \(\mathbf{4 0 \%}\) discount from new price
PDP11／20 Processor housed in 6 ft ．rack
cabinet complete with console Teletype
Cabinet complete with console Teletype
DEC 6ft．Rack Cabinets．
Ring nöw for prices．Other models becoming available all requirements．

\section*{Keyboards}

NEW REED－SWITCH KEYBDARDS BY CLARE－PENDAR WITH
 READ ONLY
MEMORY
ASCII－ CODED OUTPUT 68 －key pasitions plus 11 instruction keys．Positive logic．Inpui valtage －12V OC \(+5 V\) INCREDIBLE PRICE （DUE TO SPECIAL PURCHASE）\(+\mathbb{£ 2 9 . 5 0} \mathbf{~ P \& P}\)

PAPER TAPE PUNCH／VERIFIER KEYBOARDS．Full alphanumeric
keyboard with 65 keys +4 shit keys in 4 －bank layout iso coded operatiry speed up to \(25 \mathrm{ch} / \mathrm{sec}\) M
rontrol panel Price \(£ 25+£ 350\) P\＆
RED
REED．SWITCH 4－BANK ALPHA－NUMERIC KEYBOARD mounted
 JUST ARRIVED－SPECIAL
PURCHASE OF DISK STORAGE
DRIVES BY CDC WILL ACCEPT
6 SPEED OISK．PACKS AVAILABLE EITHER 2 OR 4 MEG CAPACITY
NEVER OFFERED BEFORE PRICES NEVER OFFERED
FROM \(¥ 5000\)
1 Add \(8 \%\) VAT to alt prices shown．

\section*{4 CHANNEL POTENTIOMETER}

Four 10 k potentiometers mounted at \(90^{\circ}\) to each other and mechanically interlinked through hoop system to Joystick. \(85^{\circ}\) travel of control covers complete resistance track. Ideal for use in Quadrophonic remote control, synthesiser etc. applications Supplied with circuit details

P.C. mounting. Size 55 mm \(55 \mathrm{~mm} \times 22 \mathrm{~mm}=£ 6.00\) Postage \& Packing \(30 p+V A T\)

Allen \& Heath Ltd
Pembroke House Campsbourne Road Hornsey, London N8 Telephone 01-340 329

Wilkinsons rears :aysme Buit to your own specifications and require-
 ments. The best known of all relays with a large variety of contact arrangements.
Complete banks of contacts made to order and Complete banks of contacts made to order and
component parts supplied. We offer the highest quality at competitive prices with a highest quality at comperitive prices with a
quick delivery service. Quotations by return home and over
MINIATURE UNISELECTOR P.O. Type 2201a orders. MINIATURE DIGITAL INDIGATOR size of digits \(\$\) the inch illum
weight \(3 / 2\) O2s, reading o 109 with decimal points. 4.50 ea

HIGH SPEED COUNTERS E1.75 arch \(31 / 2\) in \(x\)
4 fogures. The following D.C voltages are available
Auxi|ary contactis. normatly open, \(\mathbf{4 0 p}_{\mathrm{p}}\) extra
We are stockists of Stuar Turner pumps and \(\qquad\)
\(\qquad\)
centrituqal types for water supply, garden display
drainage are all available from us. sent for lists
All prices shown are carriage'paid UK onty but subject to VAT at the stand
L. WILKINSON (CROYDON) LTD, LONGLEY HOUSE

\section*{DIRECT ELECTRONICS LTD}

\section*{STOP PRESS!!}

Due to an important development in our telecommunications division - which is now operational - all items advertised in July WW and other stock except telephones and telephone apparatus are now offered at HALF PRICES as long as available. Many bargains.
N.B. We now supply and install intercom's and telephones - new and recovered including instruments, kits or systems and parts.

If it's telephony ask us - we can probably do it.

\section*{34 LISLE STREET LONDON WC2H 7BD}

Tel: 01-437 2524

\section*{TRANSFORMERS}

Data Sheets available for the following standard types:
Audio W104-W105. High grade input. Mains. A range of three sizes I5VA, 24VA Symmetrically balanced primary and \& 50VA. Each size offers secondaries of secondary to aarth. Magnetically \(6 \mathrm{~V}+6 \mathrm{~V}, 12 \mathrm{~V}+12 \mathrm{~V} . \quad 15 \mathrm{~V}+15 \mathrm{~V}\) \& scresned. Ratios \(1: 1 \& 1: 2\) or \(2: 1\). \(20 \mathrm{~V}+20 \mathrm{~V}\). Primaries \(120 \mathrm{~V}+120 \mathrm{~V}\) for Frequency response \(30 \mathrm{~Hz}-30 \mathrm{KHz}\). series - parallel connections.
Pulse W401. Thyristor/Triad firing
transformer 1:1:1 ralio. Potted and PCB wire leads.

Sub-Miniature Mains. 1.2VA. Primary Pulse W411. Flash-tube trigger trans- 240 V . electrostatic screen. Secondaries of former. Primary pulse 250 V -secondary \(3-0-3 \mathrm{~V}, 12-0-12 \mathrm{~V} \& 20-0-20 \mathrm{~V}\). PCB or clamp pulse lOKV. Potted and flexible leads. mounted.

\section*{Wound Electronic Components Ltd.}

Excelsis Works, Gogmore Lane, Chertsey, Surrey KT 16 9AP Phone: Chertsey 65147
WW-048 FOR FURTHER DETAILS

\title{
Mail order protection scheme
}

\footnotetext{
Members of the Periodical Publishers Association have given to the Director General of Fair Trading an undertaking to refund monies sent by readers in response to mail order advertisements (except for classified advertisements) placed by mail order traders who fail to supply goods or refund the monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. Publishers in membership of the Periodical Publishers Association are making these refunds voluntarily and readers' claims can only be entertained in cases where the mail order advertiser is the subject of liquidation or bankruptcy, where proof of payment can be established and if lodged within three months of the date on which the advertisement appeared. Any claims received after the three month period will be considered at the discretion of the publisher.
}

WW - 089 FOR FURTHER DETAILS

\title{
If you want the finest Video Lenses in the world, you want Tamron Lenses.
}

\title{
They're available from us.
}

Dixons Technical bring you world famous Tamron
lenses, because we go out of our way to find you the very best.

Why not come in and give our Tamron lenses the eye. While you're in, see all the other video equipment we have.

Step into Dixons Technical. Soon.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{1" Cameras fixed focal length} \\
\hline 0618J & \(6.5 \mathrm{~mm} \mathrm{f1.8}\) & & £65.00 \\
\hline 2519] & \(25 \mathrm{~mm} \quad 11.9\) & & \(£ 29.00\) \\
\hline PCO5 & 12.5 mm & Converter for above & £17.00 \\
\hline PC20 & 50 mm & Converter for above & \(£ 17.00\) \\
\hline \multicolumn{4}{|l|}{2/3" Cameras fixed focal length} \\
\hline 0420 & \(4.5 \mathrm{~mm} \quad 2\) & Without iris & £55.00 \\
\hline 0815 & 8.5 mm 11.5 & & £38.00 \\
\hline 0816 & 8.0 mm 11.6 & Without iris & £31.00 \\
\hline 1618-3 & 16 mm & & £24.00 \\
\hline 1616 & 16 mm & Without iris & £11.00 \\
\hline \multicolumn{4}{|l|}{\(1^{\prime \prime}\) Cameras Zoom} \\
\hline 20Z4J & \(20-80 \mathrm{~mm}\) & 22.5 4:1 & £79.00 \\
\hline 25Z4J & \(25-100 \mathrm{~mm}\) & f1.8 4:1 & £150.00 \\
\hline 18Z6) & \(18-108 \mathrm{~mm}\) & 22.5. 6:1 & £135.00 \\
\hline
\end{tabular}

\section*{Qur noise reducer is something to shout about}

\section*{Wireless World Dolby noise reducer}

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features:
a weighted noise reduction of 9 dB
- switching for both encodina (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts.
Price is \(£ 43\) inclusive
A single-channel printed-circuit board, with f.e.t costs \(£ 2.50\) and \(£ 8.63\) with all components inclusive (excluding edge connector, £1.37 extra). Selected field-effect transistors cost 68 p each inclusive, £1. 20 for two and E2. 20 for four.

Calibration tapes are available, costing \(£ 1.94\) inclusive for \(9.5 \mathrm{~cm} / \mathrm{s}\) open-reel use and for cassette (specify which).

> Send cash with order, making cheques payable to IPC Business Press Ltd, to: Wireless World noise reducer General sales department Room 11, Dorset House Stamford Street London SE1 9LU
> Allow three weeks for delivery.

\section*{DOLBY KIT ORDER FORM}

Please supply me with the complete Wireless World kit for a Dolby noise reducer.
I enclose remittance value \(£ 43.00\) inclusive \(\square\)

\section*{Name}

Address

Additional items required

\section*{APPOINTMENTS VACANT}

DISPLAYED APPOINTMENTS VACANT: \(£ 6.08\) per single col. centimetre (min .3 cm). LINE advertisements (run on): 86 p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 35p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World. Dorset House, Stamford Street, London SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Wednesday, August 6, for the September issue subject to space being available.

\section*{Radio Communications Engineers Yourf future withMarconiinScotland}

At Hillend, we are in volume production of the 'Clansman' - the world's most advanced vehicle communications system ever devised for military use.
A third of the size of the equipment it replaces, the Clansman vhf/fm transmitter-receiver combines compactness with high performance reliability by making extensive use of micro-miniature components. It incorporates both analogue and digital capability with a range of over 50 KM . It has a data performance up to 20 Kbits per second and can be used in single and multi-set roles including unattended operation. Volume production of such complex and vital equipment creates an exciting challenge for Engineers to join us in the following areas:

\section*{Test and Commissioning Engineers/Test Technicians}

To assist in the commissioning and troubleshooting of automatic test equipment and to perform systems testing, recording test results and diagnosing and correcting malfunctions in the equipment.

\section*{Post Design}

Services Engineers
To examine current equipment and re-design as necessary to incorporate latest developments. Applicants for all vacancies will preferably hold relevant qualifications but wide experience in the radio field is considered equally important. Exservicemen with the relevant backgrounds are welcome to apply.

Hillend offers you an attractive way of life with plenty of relatively cheap housing on the coast or in the country. Edinburgh is also close by and sporting and recreational facilities abound in the Scottish countryside.
For full details and an application form, please return the coupon to:
Mr D Bennett, General Manager, Marconi Space \& Defence Systems Limited, Hillend Industrial Estate, By Dunfermline, Fife.

Please send me details of career opportunities at Hillend

Name

Address

Qualifications

Position interested in

\section*{APPOINTMENTS}

\section*{PRODUCTION MANAGER IN NEW ZEALAND}

We have a vacancy in one of our factories for a Production Manager. The factory employs about 100 people and specialises in Audio, RF equipment and Monochrome Television
The man we are seeking must have previous experience and a proven record in the techniques of Production Control and Management
The position can be permanent or on a 2-year contract
The company would be responsible for air fares of the appointee and his dependants. Salary would be negotiable up to NZ\$10,000 and a company car would be provided
Applications seeking further information if required, and comprehensive details of personal details and experience, together with a photograph, should be addressed in confidence to:

General Manager
Consolidated Audio Limited
P.O. Box 56-063

Dominion Road
AUCKLAND 3, NEW ZEALAND
(4809)

Natural Environment
Research Council

\section*{British}

\section*{Antarctic} Survey

\section*{ELECTRONIC ENGINEER} (graduate or H.N.C.) required for maintenance, development and operation of radio-echo sounding equipment. This is a pulsed equipment. This system working at 60 radar system working at
MHz used in aircraft to measure ice thickness in the measure ice thickness in the
Antarctic. The same equipment is used on the surface to measure glacier flow
Candidates should be familiar with radar theory familiar with radar theory
and digital logic, and have and digital logic, and have
experience in design and experience in design and
construction in these fields.
The successful candidate will be based in Cambridge will be based in Cambridge (Scott Polar Research Insti-
tute) and must be prepared to work in the Antarctic for periods of up to four months.
Salary according to age and experience from \(\mathfrak{£ 2 , 0 1 2}\) In addition, a Cost of Living Supplement of \(£ 229.68\) per annum is payable
Please write for furthe details, stating full qualifications to
The Establishment Office British Antarctic Survey 2 All Saints Passage
CAMBRIDGE CB2 3LS
Tel: Cambridge (0223) 61188
4786

\section*{880
880 \\ Opportunities in the ELECTRONICS FIELD}

Men with analogue or digital qualifications / experience seeking higher paid posts in: TEST - SERVICE - DESIGN SALES

Phone: Mike Gernat, Ref. W.W
NEWMAN APPOINTMENTS 360 Oxford Street, W.1. 01-6290501

\section*{TECHNICIAN}

Applications are invited for the post of Electronics Technician in the Department of Chemistry. The successful electronic equipment in use in the teaching and research laboratories of the department, and design and construc various items of advanced electronic equipment for research purposes. Experience in these fields of work is essentia The appointment, which will be for two years in the firs instance, will be on the scale \(£ 2.439-£ 2.895\) per annum Good working conditions and generous holidays Secreary University Com the Hegistrar Swansea, SA2 8PP to whom they should be returned Monday, September 15, 1975.

\title{
Professional Engineers
}

RACAL AMPLIVOX COMMUNICATIONS LTD. is a member of the internationally famous multi-million pound RACAL ELECTRONICS GROUP. We are world leaders in the design and manufacture of acoustic and electronic communications products as well as electro-medical equipment. The Company exports a large proportion of its production and our continuing success in achieving this means that we can provide a high degree of job security and opportunities for advancement. Due to planned expansion we now have vacancies in our Research and Development Department for a

PRINCIPAL ENGINEER (ACOUSTICS)
To be responsible for the design and development of a wide variety of acoustic transducers, headsets and hearing protectors for the professional and military markets, from inception to successful production.

\section*{SENIOR ENGINEER (ACOUSTICS)}

To join the team developing products noted above
SENIOR ENGINEER (ELECTRONICS)
\& ENGINEER (ELECTRONICS)
To join a team involved in the development of a wide variety of professional products in the audio frequency range. Experience of detail circuit design essential.

\section*{CALIBRATION /TEST GEAR ENGINEERS}

For instrument calibration to EOD standards. Involvement with test gear design and construction, increases the interest of this position.

\section*{TECHNICIAN ENGINEERS}

To assist Senior Engineers on development aspects of the whole range of the Company's products. These positions provide opportunities for gaining wide experience. DRAUGHTSMEN

With experience in the light mechanical/electronics industry. The wide range of products and markets, plus our in-house plastic moulding facility, provides an unusually interesting range of projects.

The company pays highly competitive salaries, allows generous holidays and operates a first class contributory pension and life assurance scheme.

\title{
Communicate with Racal
}

\author{
Please write, enclosing brief details of your qualifications and experience to \\ Mr. J. R. White-Personnel Manager \\ Amplivox Limited, Beresford Avenue, Wembley, Middx.
}

\section*{GOVERNMENT OF BOTSWANA EXECUTIVE ENGINEER}

To be responsible to the Assistant Director of Telecommunications for (a) co-ordination of planning, installation and maintenance of all telecommunications equipment, (b) supervision of Senior Assistant Engineers, (c) expenditure control, (d) preparation of annual estimates and (e) short term planning for network extension.

Candidates, between 40-55 years of

\section*{ASSISTANT ENGINEER}

To undertake station maintenance at Lobatse for the Department of Posts and Telecommunications.

Candidates, preferably aged between 30 and 45, must hold the Intermediate City and Guilds Certificate and have a minimum of five years' relevant experience after training. A thorough knowledge of automatic
age, must possess a recognised degree in Telecommunications Engineering and have at least 5 years' professional experience.

Starting salary up to maximum of \(£ 4,410\) in scale \(£ 2,440\) to \(£ 5,600\) p.a. according to qualifications and experience, which includes an allowance, normally tax-free, in scale \(£ 756\) to \(£ 2,004\) p.a.
exchange and subscribers apparatus maintenance is necessary and some carrier experience would be an advantage.

Starting salary is up to a maximum of \(£ 3,530\) p.a. in the scale \(£ 1,530\) to £3,900 p.a. This includes an allowance, normally tax free, of \(£ 390\) to \(£ 1,752\) p.a. according to marital status.

Engagement for both posts is for one tour of 24-36 months in the first instance Gratuity \(25 \%\) of total basic salary. Generous leave. Subsidised accommodation Family passages. Children's education allowances and holiday visit passages Interest free car loan of \(£ 900\) and tax free Appointment Grant of up to \(£ 300\) payable in certain circumstances.

The posts described are partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.

For further particulars you should apply, giving brief details of experience to: CROWN AGENTS, M Division, 4 Millbank, London SW1P 3JD, quoting reference MK/WF

\section*{RADIO OFFICERS}

Do you have PMG I, PMG II, MPT 2 years' operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to \(£ 3,242\) pa; commencing salary according to age -25 years and over \(£ 2,383\) pa. During training salary also by age, 25 and over \(£ 1,724\) pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered

Full details from:

\section*{Recruitment Officer}

\section*{Government Communications Headquarters \\ Room A/1105, Priors Road, Oakley \\ Cheltenham, Glos GL52 5AJ \\ Telephone Cheltenham 21491 Ext 2270}

Natural Environment Research Councll
British Antarctic Survey

Expedition requires graduate or H.N.C. PHYS̃İCISTS and IONOSPHERIC TECHNICIANS for work in Antarctica. Applicants should be qualified in electronics and a working knowledge of thermionic valves is essential. They valves is essential. They
should be prepared to work Should be prepared to work
without supervision and be - without supervision and be capable of improvisation in
adverse situations. Successadverse situations. Success-
ful applicants will be trained ful applicants will be trained
before sailing for Antarctica in October of November. Candidates must be prepared to commence work immediately after selection.
Applicants must be single, aged 22-30 and physically fit.

Salary from \(£ 2,241\) per annum depending on qualifications and experience with annual increments. Low income tax, polar clothing and messing free.

If you are interested in seeing a largely unknown, remote and fascinating part of the world, please write, stating full qualifications to:
The Establishment Officer
British Antarctic Survey
2 All Saints Passage
CAMBRIDGE CB2 3LS
Tel: Cambridge (0223) 61188
4782

MEDICAL RESEARCH COUNCIL
CYCLOTRON UNIT
requires

\section*{ELECTRONICS}

TECHNICIAN
to work in a small group concerned with the construction, development and servicing of solid state equipment used in the biological sections of the Unit. H.N.C. or equivalent qualification is a minimum requirement and relevant practical experience an advantage. Salary in the range \(£ 2526-£ 3687\) (including London Weighting) according to age and experience.

Write, giving full details, to The Director MRC CYCLOTRON UNIT
Hammersmith Hospital, Ducane Road London, W12 OHS
for its Monitoring Service near Reading. Duties involve operation of radio receiving apparatus, including Radio Teletype terminal equipment, monitoring of plain language Morse transmissions, research listening duties (including schedule checking and band scanning), and correcting logging and routeing of incoming material. Essential qualifications are: ability to type international Morse code in plain language at 25 w.p.m aural or visual recognition of signalling codes used in or visual recogntions communication systems, operational experience of modern receiving equipment and understanding o radio propagation and frequency usage. Perfect hearing. Candidates will be expected to attend for Morse typing and signal recognition test. Salary \(£ 2,022\) p.a. \(\times E 111\) to \(£ 2,577\) p.a. max plus \(121 / 2 \%\) shift allowance. Write for application form to Personnel Officer. BBC. Caversham Park. Reading RG4 8TZ, enclosing addressed foolscap envelope

\section*{Radio Operators. How to see more of your wife
without losing sight of the sea.}

Join the Post Office Maritime Service. We have openings for Radio Operators at several of our coastal stations The work is just as
interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is \(£ 2,905\) with further annual

\title{
Her \\ Majesty's Government Communications Centre
}

HANSLOPE PARK, MILTON KEYNES MK19 ;BH
has vacancies in the following fields of \(R \& D\) work:
(a) VHF/UHF COMMUNICATIONS
(b) COMMUNICATION FIELD TRIALS
(c) ACOUSTICS
(d) MICROWAVES
(e) GENERAL CIRCUIT DESIGN - ANALOGUE, DIGITAL
(f) STATISTICS/OPERATIONAL ANALYSIS/SYSTEMS

\section*{ANALYSIS}

Most posts will be at Hanslope Park but some, in particular (f). will be in London. Posts in London carry a London allowance of \(£ 410\) per annum in addition to the salaries quoted below.

Candidates for post (f) should be experienced scientists/engineers who have specialised later in one of the required fields. An ability to deal with non-technical people is essential.

Appointments will be made within the grades of Higher Scientific Officer except for (d) and (f) where appointments may also be made within the Senior Scientific Officer grade. The appointments will be established within Government Service with a non-contributory pension scheme

\section*{Higher Scientific Officer}

Applicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered. They should have one of the following qualifications:
(a) A degree in a scientific or engineering subject.
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above.

In addition the following relevant experience is required
(a) Applicants with 1 st or 2 nd class honours degrees -- at least two years' post-graduate experience.
(b) Applicants with other qualifications -- at least five years' post qualifications experience.

Salary Scale: \(£ 3254\) - £4454 with entry point dependent upon experience beyond the minimum required

\section*{Senior Scientific Officer}

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.

Applicants should have obtained a 1 st or 2 nd class honours degree and have had a minimum of four years' appropriate post-graduate experience.

Salary Scale £4185-£5778. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum

Applications. stating the field of work and the grade required, should be made to

Administration Officer
HM GOVERNMENT COMMUNICATIONS CENTRE
Hanslope Park
Hanslope
MILTON KEYNES MK19 7BH

\title{
Senior Technical Officer
}

There is a vacancy for a Senior Technical Officer in the Telecommunications Maintenance Section of British Airways Group Management Services. He reports to the Superintendent of Telecommunications Maintenance and is responsible for the organisation of a staff of 20 . This team provides a full maintenance service for a wide range of equipment including data-systems, CCTV, CRT display devices, also audio and general telecommunications systems. His responsibilities include the provision of technical training for staff, the development of specialised test equipment and the maintenance of repair standards. He has frequent liaison with other engineering sections and the user departments.
Applicants should have at least 5 years' experience in the repair or design and development of Telecommunications equipment, with responsibility for the control of staff. He should be qualified to at least HNC or an equivalent level in an electronics or telecommunications subject, and a higher standard would be an advantage.
The post is based at Heathrow Airport and carries a starting salary of \(\mathfrak{£} 3,841\) including London Weighting. Other benefits include an excellent contributory pension scheme, a first class sports and social club and opportunities for concessional holiday air travel worldwide.
Applications, including details of age and experience, quoting reference 480 /WW / MA, should be addressed to:

Manager, Selection Services, British Airways, P.O. Box 10 Heathrow Airport, London, Hounslow, TW6 2JA

\section*{waltham forest college}

\title{
RADIO \& TELEVISION TECHNICIAN
}

\author{
Salary Scale T. \(3 £ 2,736\) to \(£ 3,030\) p.a. inclusive of London Weighting
}

To be responsible for servicing, maintenance and repairs to colour and monochrome television receivers, radios, closed circuit television, and electronic test equipment.
You will be required to prepare laboratory and workshop apparatus for class use, and to construct and test prototype equipment. Candidates should hold the City \& Guilds Radio and Television Servicing Certificate and have appropriate experience. You will be required to order equipment and stores, and maintain stock control. Ability to instruct in operation of equipment would be an advantage. Housing accommodation is available in approved cases
Application forms from the Personnel Officer, Town Hall, Forest Road, London E1 74 JF (Te): 01-5275544, ext. 332).

Natural Environment
Research Council

\section*{British Antarctic Survey}

WIRELESS OPERATOR MECHANICS required for expedition to spend approximately 30 months in Antarctica.
Applicants must be single and aged \(22-30\) and should have experience of maintaining and operating SSB transmitters and receivers Transmitters and receivers. Teleprinter experience desirable.

Salary from \(£ 2,060\) per annum depending on qualifications and experience. Low income tax, polar clothing and messing free.

If you are interested in seeing a largely unknown, remote and fascinating part remote and fascinating part
of the world, please write to: of the world, please write to:
British Antarctic Survey
2All Saints Passage
2 All Saints Passage
CAMBRIDGE CB2 3LS
Tel: Cambridge (0223) 61188

\section*{Top Recording Studio} requires
EXPERIENCED MAINTENANCE ENGINEER
Please reply in writing to: Miss L. Packham 8-10 Basing Street, London, W11 (4794)

\section*{UNIVERSITY OF SURREY}

Salary Scale: Technician 4 £2247-£2628 p.a.
Applications are invited for the position of

\section*{TECHNICIAN}
in the Electronics Workshop of the Physics Department. The successful candidate will work with a small team, under the general direction of a Chief Technician, who are involved with the design, construction, modification and servicing of a wide range of electronic equipment

Several years' relevant experience together with a minimum qualification of ONC or equivalent will be necessary.

Application forms available from the Assistant Secretary (Personnel), University of Surrey, Guildford, Surrey GU2 5XH.

\section*{AGENT REQUIRED}
U.K. Company invites applications from interested parties for the Australian Agency for a wide range of Mobile and Static Telescopic Lattice Towers, manufactured in the U.K.

Substantial markets have been developed in major countries of the world and the potential for the Australian Continent is regarded as unlimited in the fields of Radio Communications and Flood Lighting

It would be most desirable that the proposed agency be negotiated with the principal of an existing business with established connections (by virtue of existing selling agencies of other products) within either or both of the fields of Commercial/ Amateur Radio / Contractors Plant.

An open area of approx. 2,000 square feet would be required to unload containers and store tower sections. Longest piece 7 metres, heaviest piece 180 kgs

See this journal for Product Advert

Please write, giving full relevant history and interest in proposal to:

\author{
STRUMECH ENGINEERING LTD. \\ Portland House, Coppice Side, Brownhills Walsall, WS8 7EX England
}

\section*{\((1)\) PIONEER}

Due to the enormous growth in sates of this top quality product we require

\section*{AUDIO SERVICE ENGINEERS}
to work in our recently extended service area.
Applicants must be in possession of a high standard of knowledge in sophisticated Hi-Fi products and be capable of complimenting the work of an enthusiastic experienced team of audio engineers

We are offering:-

> A generous salary based on qualifications and experience.
> A basic \(371 / 2\) hour week with opportunity of overtime. Luncheon vouchers.
> Three weeks' holiday
> Generous staff purchase scheme
> First rate congenial working conditions

\footnotetext{
Please apply to Service Manager, Shriro (U.K.) Limited, Shriro House, The Ridgeway, Iver, Bucks. Telephone: Iver (0753) 652222
}

\section*{Telecomms Engineertechnicians}

\section*{Careers abroad with IAL}

We handle contracts for many of the world's developing countries. In general, it involves maintenance of telecommunications systems which are vital to those countries development
So the men we send to work on those contracts must be good - qualified to ONC or HNC standard and experienced enough in the following areas to handle responsibility with confidence

\section*{Radio Communications}

VHF and UHF, ground-to-air R/T and HF equipment using SSB, ISB, FSK techniques

\section*{Airfield Navaids}

ILS, CRDF, VOR, DME, NDB, and ATC tower equipment.

\section*{Marine Electronics}
radar, R/T, ship TV, autopilot gyro and navigational equipment.
Salaries are high by UK standards - up to around \(£ 4,500\). And with free accommodation and no local income tax, anyone working for us abroad keeps what he earns.
Find out more about these world-wide opportunities with IAL by writing to or phoning John Nisbet,

\section*{\(\square\) \\ QUANTEL LIMITED \\ An expanding Electronics Company specialising in the \\ APPLICATION OF DIGITAL TECHNIQUES TO TELEVISION requires JUNIOR DEVELOPMENT ENGINEERS}

Graduates in Electrical Engineering or Electronics with an interest in the design of professional television equipment using both Analogue and Digital Circuit techniques are required to support the present programme of work
Quantel is the only British Company delivering digital television systems. Broadcast quality digital timebase correctors from the Quantel range are currently in use
throughout the world with helical scan video tape recorders
The company provides first-class opportunities for career development in modern, well-equipped
laboratories situated in the centre of Newbury.

\section*{Please apply in writing to: The Personnel Officer Quantel Limited 18 West Mills \\ NEWBURY, Berkshire}

\section*{Crown Agents}

\section*{SWAZILAND COMMUNICATIONS OFFICERS}

The Royal Swaziland Police Force require Senior Technical Officers to undertake either a) Field
Maintenance or b) Installation and commissioning of the Police communications equipment and to control the apprentice workshops, the technical stores and the second line servicing.

Both posts include on-the-job training of small groups of technician trainees.
Candidates, preferably under 30 years of age MUST have had relevant apprenticeship or Armed Services Training as an
electronic/radio technician with several years subsequent experience with VHF / UHF systems including transmitters and associated equipment to third line service standard.

Salary in the scale \(£ 3,300\) to £4,410 p.a. which includes an allowance, normally tax free, of \(£ 1,068\) or \(£ 1,884\) according to marital status. A gratuity of \(25 \%\) basic salary is payable. Other benefits include free passages, government housing at moderate rental, children's holiday visit passages. An interest-free car loan of \(£ 900\) and an appointment grant of £300 may be payable.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.
For further particulars you should apply, giving brief details of experience to
CROWN AGENTS, M Division, 4 Millbank, London SWIP 3JD, quoting reference MK/WF.

\section*{PRODUCTION ENGINEER}

For responsible work on smail batch
production and testing of electronic
instruments. HNC or equivalent qualifications preferred with experience of electronic equipment manufacturing and testing methods TEST ENGINEER
To assist the manager of a department which manufacture, tests, and services a range of important recorders Experience of electronics and electro-mechanical instruments essential. We offer an attractive salary related to qualifications and experience. Sickness benefits, profit sharing scheme and pension scheme. Three weeks' annual holiday increasing with employment time
Apply to Apply 10:
Mr. R. Johnston (Production Engineer) Mr. D. W. Saunders (Test Engineer) Environmental Equipments Limited Eastheath Avenue, Wokingham, RG11 2PP, Berks. Tel. Wokingham 784922

\section*{ELECTRONIC ENGINEERS}

Applications are always invited from Engineers with a background of test and \(R\) and \(D\). Bias to Avionics useful.

Technical Reserves 362 Euston Road London, NW1 Tel: 3881609

\section*{TECHNICIAN TRAINEES}

Intelligent practical young school leavers offered opportunities to train ultimately as Public address and sound recording Engineers, Day release scheme, must be of smart appearance and live with parents in Central London area. Write or telephone for interview to:-

Mr. G. Hansen
Griffiths Hansen (Recordings) Ltd
12 Balderton Street, London W1Y 1TF
Tel. 01-499 1231

\section*{THE UNIVERSITY OF HULL}

\section*{GRADE 6 TECHNICIAN}

Applications are invited for the post of Videotape/Telecine Engineer in the Audio Visual Centre. Principal duties comprise the operation (including electronic editing) and full maintenance of a range of VTR machines (mostly 1" Ampex). The post is an exacting and responsible one in a well equipped unit working in ETV to broadcast standards. The ideal candidate will have relevant HNC or City \& Guilds qualifications, together with operational experience in either broadcast or high standard closed circuit television.

Starting salary (Grade 6) \(£ 2,844\), rising to \(£ 3,450\). Applications, giving the names of two referees to the Technical Staff Officer, University of Hull (from whom further details may be obtained) by 31st July, 1975, quoting Ref. AV/1/2.

\section*{MANAGING ENGINEER}

\section*{TELEVISION \& RADIO/SERVICING}

This new post demands a candidate with extensive practical knowledge of domestic television receivers, radio, audio and allied equipment. He must be qualified to HNC or equivalent standard and have the ability to successfully and efficiently operate a newly commissioned workshop.
* Salary negotiable
\(\star\) Attractive conditions of service and pension fund
\(\star\) Vehicle provided
Applications in the strictest confidence with full details of career to date to be received by 11 th August, 1975.
Personnel Officer, Greater Peterborough Regional Co-operative Society Ltd., Park Road, Peterborough. PE1 2TA.

\section*{UNIVERSITY OF STRATHCLYDE DEPARTMENT OF PSYCHOLOGY}

\section*{ELECTRONICS TECHNICIAN}

\section*{Grade 5}

Applications are invited for the above post from suitably qualified and experienced candidates. The work is in general varied and of a non-routine nature and involves the operation, maintenance and construction of a wide range of electronic equipment for laboratory classes and research projects. The successful applicant will be responsible for the organisation and setting up of equipment for under graduate laboratory classes and the servicing of such equipment.
Salary Scale: £2,439-£2,895 per annum, with placing according to qualifications and experience. Holiday arrangements for 1975 will be honoured.

Applications in writing, quoting reference P.30, should be made to The Personnel Officer, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, G1 1XW.
(4805)
home office

\section*{Senior}

Telecommunications Engineers (up to £6340)
to be responsible for the planning, provision and maintenance of telecommunication installations for police, fire, prison and other services. These range from mobile communication with police cars and officers on beat duty to large and sophisticated control and information rooms requiring message-switching and computer-access facilities, Increasing use is being made of information-handling by digital data.

Current vacancies are in the Forward Planning and Research Section, Central London, ensuring that maximum benefit is obtained from technical advances; Engineering Section, Central London. responsible for planning specific operational schemes; and the Central Communication Establishment, Harrow, Middx, which provides laboratory and engineering support to the Directorate of Telecommunications as a whole.

Candidates must have an appropriate degree or equivalent qualification, and will normally be expected to be chartered engineers with several years' relevant professional experience.

Starting salary (Central London) £5130 to £6340 according to qualifications and experience; £150 less at Harrow. Non-contributory pension scheme. Prospects of promotion

For further details and an application form (to be returned by 11 August 1975) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours) or London 01-8391992 (24-hour answering service). Please quote ref: \(T(Q) 85\).

4798

\section*{The Audiology Unit Royal Berkshire Hospital, Reading}

\section*{"Hearing Aid Evaluation and Usage"}

A RESEARCH ENGINEER (SCIENTIFIC OFFICER) qualified in electronics, electro-acoustics or applied physics is required for the above two year project (with the possibility of collaboration with Reading University and perhaps the opportunity of higher degree studies).
Salary (Scientific Officer scale) \(£ 1,689-£ 2,998\) depending on qualifications plus threshold, under review.
Applications naming two referees to: The Unit Administrator, Royal Berkshire Hospital, Reading RG 1 5AN.
Further details from Dr. R. J. Bench, The Audiology Unit, Royal Berkshire Hospital, Tel. Reading 85111 , Ext. \(541 / 308\).

\section*{ARTICLES FOR SALE}

\section*{Hair Transplant}

For free brochure, clip this ad. and send to: Room 6
HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road. Sheffield

PM SERVICES

\section*{CRYSTALS FOR PROFESSIONAL AND AMATEUR USE}
'Ne can supply crystals to most commercial specifications, with an express service for that urgent order. For the amateur we carry a large stock of the more popular frequencies, backed by a quick service for those "Specials
Please send SAE for details or telephone between 4 30-7 p.m. and ask for Mr Norcliffe

7A AR ROWE PARK ROAD, WIRRALL MERSEYSIDE L49 OUB
Tel. 051-6778918 (until 7 p.m.)

\section*{APPOINTMENTS}

\section*{AMPEX}
requires following personnel to meet its expanding worldwide operations.
A) Television Systems Management

B] Television Systems Engineers
C) VTR + Colour Camera Training Instructors
D) VTR + Colour Camera Service Engineers
E) Television Sales Personnel
F) Colour Camera Support Engineer

Some of the positions are located overseas all would involve international travel
Good salary - Prospects - Pension.

Please send resume including experience, past achieyements and qualifications to:

Personnel Officer AMPEXINTERNATIONAL

72 Berkeley Avenue
Reading, Berks
Telephone: Reading (0734) 55341

\title{
TWO SERVICE ENGINEERS
}
required for
TANDBERG (UK) LTD

The subsidiary of Nor manufacture of top quality HI FI . The successful candidate will receive a salary up to \(£ 2500\) P.A. Working a five-day week and based at our Haringay London office at Haringay. Experience essential.

Please apply in writing to:-
TANDBERG (UK) LTD.
167 Hermitage Road London N4 1 LZ

\section*{Service Engineer} to work on

\section*{Professional Audio Equipment}

For our London based Service Department (Near Marylebone Station) to maintain a range of Professional audio equipment (Nagra, Sennheiser, etc.).
An attractive salary and four weeks' holiday will be offered to the right man. Interviews to be carried out in London

Please apply in writing marked confidential to:
The Managing Director Hayden Laboratories Limited

Hayden House
17 Chesham Road
Amersham
BUCKS.

\section*{Avery-Hardoll}

Manufacturers of Meter Pumps for Petrol and Fuelling Equipment for Aircraft, require a

\section*{TECHNICAL SERVICE ENGINEER}
resident in West Yorkshire, who has reached ONC in electrics or electronics and preferably has had experience in electro-mechanical servicing
The duties are concerned with the commissioning, diagnosis of faults, and rectification of electronic equipment associated with liquid flow measuring devices, mainly on readout and control.
Permanent staff position with a Company car, four weeks' holiday after one year of service, contributory pension scheme, etc

Please write with brief details of experience to date to
Personnel
Manager
Avery-Hardoll Ltd.
Downley Road
Havant,
Hants PO9 2NW
4688

\section*{SITUATIONS VACANT}

CCTV and Audio Visual Aids Technician (Grade 5) with special responsibility for Television Studio and equipment. At least 6 years' experience in electronics. TV Studio experience desirable. HNC. HND. Advanced City \& Guilds or equivalent, Some evening work. Salary \(£ 2,850\) \(£ 3,306\) (incl. London Weighting). For more details apply to the Vice Principal, Morley College, 61 Westminster Bridge Road. London

WIDELY experienced qualified comms, equip ment, radio, television engineer requires PT/ Eve/Weekend job, business. etc. Mid. East exp. London area. Box No. WW 4825.

\section*{ARTICLES WANTED}

WANTED, all types of communications receiv ers and test equipment. Details to R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley 4986.
SURPLUS COMPONENTS, Equipment and Comiputer pane 772501 .
WANTED -
WANTED surplus capacitors, resistors and transistors in bulk for cash. - Electronic Mai]order Ltd., Ramsbottom. Bury, Lancs. Tel (STD
70682) 3036 .
(4751
SURPLUS COMPONENTS, Equipment and Com puter panels wanted for cash. Ring Southamp ton 722501.
WANTED typu 64Si coPlaner THODE b General Radio Marshall 11 Armaner THODE by Portland, Dorset

\section*{NEW GRAM AND SOUND EQUIPMENT}

GLASGOW. Hi Fi, Cassette Decks. Tape Record ers, Video Equipment, always available we buy. sell and exchange for Hi Fi sets and photographic equipment. VICTOR MORRIS Audio Visual Let, 340 Argyle Street, Glasgow. G1, 8/10 Glassford Street, Glasgow, G2, 31 Sauchiehall Street, Tele: 041-221 8958.

\section*{There is scope, variety and responsibility as a Radio Technician}

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Techician and you have the prospect of a steadily developing career in a demanding and ever expanding field.

\section*{ENTRANCE QUALIFICATIONS:}

You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.

Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.

There are N.A.T.S. locations throughout the U.K. but vacancies exist principally in the south.

Salaries c. \(£ 2,375\) (at 19) to \(£ 3,094\) (at 25 or over); scale maximum \(£ 3,606\). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.

\section*{\(\angle A^{2}\)}

\title{
GLASGOW COLLEGE OF TECHNOLOGY PART-TIME B.Sc. DEGREE (C.N.A.A.) IN \\ \\ ELECTRICAL ENGINEERING \\ \\ ELECTRICAL ENGINEERING \\ with choices in Power or Electronic subjects
}

Holders of a good HNC or HND in Electrical/Electronic Engineering or related disciplines may be eligible to enter the above course commencing 18th August. 1975. If you are interested in the above course, write or telephone now for application form and further details to:
The Academic Registrar, Glasgow College of Technology, North Hanover Place, Glasgow, G4 OBA. (Telephone: 041-332 7090).

\section*{The Shop Window for the Very Best...}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TOSHIBA VALVES} & Type & Price Each (p) & Type & \begin{tabular}{l}
Price \\
Each (p)
\end{tabular} & \begin{tabular}{l}
DIODES \\
Type Each (p)
\end{tabular} & \multicolumn{2}{|l|}{INTEGRATED cincuits} \\
\hline Trpe & Price (0) & AD149 & 40 & BD124 & 75 & BA115 7 & Type & Prich \\
\hline OY87 & 30.0
30.0 & AD161 & 38 & \(8 \mathrm{BD131}\) & 45 & BA145 14 & TAA550 & 49p \\
\hline OY802 & 30.0
28.0 & AD152 & 38 & BD132 & 39 & BA148 19 & taA700 & ¢2.95 \\
\hline EF80 & 29.5 & AF114 & 24 & BD160 & ¢1.39 & B4156 & tBal20as & ¢1.00 \\
\hline EF183 & 34.5 & AF115 & 21 & 8 D 235 & 4. & 8Y127 12 & teal20SO & ¢1.00 \\
\hline EF184 & 34.5 & AF116 & 22
19 & 80237
\(80 \times 32\) & f240 & BY199 27 & T8A4800 & £1.40 \\
\hline Eh90 & 35.5 & AFII \({ }^{\text {AF }}\) & 19
50 & \({ }_{8}^{80 \times 115}\) & 12.40
20 & BY206 21 & T8A5200 & ¢ 2.35
¢ 1.75 \\
\hline PC900 & 24.5 & AF139 & 35 & 8 BF 160 & 15 & BY238 25 & TBA5400 & f1.75 \\
\hline \({ }_{-} \mathrm{PCC89}\) & 41.0
410 & AF178 & 45 & \&F167 & 20 & OA90 & tBa560CO & ¢2.40 \\
\hline PCC189
PCF80 & 41.0 & AF180 & 45 & BF173 & 20 & OA202 7.5 & tBa800 & f1.50 \\
\hline \({ }^{\text {PCFFE }}\) & 31.5
39.0 & AF181 & 46 & BF178 & 35 & IN60/0A91 5 & TBA9200 & £2.90 \\
\hline PCF801 & 42.0 & AF239 & 40 & BF179 & 40 & NEW TOSHIBA TUBES & TBA9900 & ¢2.90 \\
\hline PCF802 & 40.0 & Af240 & 60 & BF180 & 31 & 19** A49/191X 848.95 & TCA2700 & ¢2.90 \\
\hline PCL82 & 39.0 & 8C107 & 11 & BF181 & 32 & 20-5100.J822 E50.75 & ETTR6016 & ¢2.00 \\
\hline PCL84 & 39.0 & 8 Cl 108 & 10 & BF184 & 25 & 22* 456/120X E54.25 & SN76013N & ¢1.50 \\
\hline PCL85 & 44.5 & \({ }_{8 C 109}\) & 14 & BF185
BF194 & 25
9 & eht multipliers mo & ChROME & 8RC) \\
\hline PCL86 & 41.0 & \({ }_{8 \mathrm{BC} 113}\) & 13 & \({ }_{\text {BF }}\) 8F95 & & & Pric & Each \\
\hline PFL200 & 59.5 & & 19 & \({ }_{\text {BF }}{ }^{\text {BF }} 196\) & 10 & 2HO 950MK1,960 & & f1. 70 \\
\hline PL36 & 55.6 & BC117 & 14 & 8F197 & 12 & 2T0 950MK2. 1400 (1) & & ¢1.85 \\
\hline PL84 & 25.0 & BC125B & 15 & BF198 & 23 & & & E1.85 \\
\hline PL504 & 64.5 & \(8 \mathrm{BC132}\) & 25 & \({ }_{8} \mathrm{C} 200\) & 25 & 2 TAK 1500 (\(23^{\circ} \mathrm{A} 24^{\circ}\)) & & £2.00 \\
\hline PL508 & 87.0 & BC135 & 15 & BF218 & 30 & EHT MULTIPLIERS - C & our & \\
\hline PL519 & c1.50 & 8 C 137 & 19 & BF224 & 23 & 11 TAQ ITT CVCI. 2 \& 3 & & ¢ 4.50 \\
\hline PY8800 & 35.6 & BC138 & 26 & 8F258 & 34 & ITN GEC/Sobell & & f4. 50 \\
\hline PY500A & 85.0 & 8 Cl 42 & 23 & 8 8F336 & 28 & 11 TAZ GEC 2110 & & ¢4.85 \\
\hline & & BC143 & 25 & BF337 & 35 & 11 TAM Philips 68 & & f4.50 \\
\hline \multicolumn{2}{|l|}{SEMI CONDUCTORS} & BC147 & 11 & 8F355 & 54 & 11 TBD Philips 550 & & ¢ 4.50 \\
\hline & Price & BC147* & 11 & BFx86 & 28 & 3rCW Pye 691/693 & & f. 3.50 \\
\hline Type & Each (p) & BC148 & 10 & BFY50 & 19 & 1 Tr Decea 30 Series & & ¢4.50 \\
\hline AC127 & 17 & SC149 & 10 & BFY52 & 20 & 11 TAQ Decea 'Bradford' & & f4.50 \\
\hline AC128 & 13 & 8C153 & 15 & BSY52 & 35 & 3TCU Thorn 3000/3500 & & \(f 5.00\) \\
\hline AC141K & 25 & 8 Cl 154 & 15 & \({ }^{\text {BT106 }}\) & \(f 1.20\) & 1thas Thoin 8000 & & ¢1.90 \\
\hline AC142K & 25 & BC157 & 14 & BU105/02 & ¢1.95 & 11 HAB Thorn 8500 & & f4. 25 \\
\hline AC15: & 20 & BC158 & 10 & BU108 & cz. 10 & & & \\
\hline AC154 & 18 & BC:59 & 11 & 8U208 & f2.95 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{PRICES SUBJECT TO \(25 \%\) V.A.T. All goods subject to sotilemant}} \\
\hline AC155 & 18 & \({ }_{\text {BC173 }} \mathrm{BC} 178 \mathrm{~B}\) & 18 & E1222 & 30 & & & \\
\hline AC156
AC 176 & 20
22 & BC 178 B
BC 182 L & 20
12 & M C O 3140 & 45
15 & \multicolumn{3}{|l|}{discount of \(5 \% 7\) days and \(2 \%\)} \\
\hline \({ }^{\text {AC } 187}\) & 19 & 8C183L & 12 & OC72 & 16 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{No postege charges or minimum}} \\
\hline AC187K & 24 & 8 Cl 187 & 25 & R2003 & ¢2.00 & & & \\
\hline AC188 & 17 & BC214! & 15 & R20108 & f2.00 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Write of phone for full detalle now.}} \\
\hline AC188K & 26 & BC328 & 28 & RCAI6334 & 80 & & & \\
\hline AD142 & 45 & BC337 & 19 & RCA16335 & 80 & & & \\
\hline
\end{tabular}

\section*{-.InPrices, Quality and Service.}

\section*{BUDGET MINI AUDIO MIXERS}

With Professional Facilities
Slider Faders * Tone Controls * Monitoring * VU Meter
Mono or Stereo * Ready to use or kits
Details Ref. wW
PARTRIDGEELECTRONICS
21-25 Hart Road, Benfleet, Essex

Build a mixer to your own
spec using our easy to wire ALDID NDDLLES
For full details contact Richard Brown at Zero 88. 115 Hatfield Road
St Albans. Herts, AL1 4JS Tel 63727

\section*{MICRO \\ ELECTRONIC \\ TRANSMITTER}

Receive on a

\section*{VHF RADIO}

The smallest Transmitter available in the UK.

Only \(2^{\prime \prime} \times 1 .{ }^{\prime \prime}\). Can pick up and transmit minute sounds and voices. Range 500 yards plus. Can be worn round the neck held in the hand. or operated in a drawer Works almost anywhere, uses PP3 battery (very long life). Completely self contained, transistorised printed circuit Used the world over. Fully guaranteed Latest model now dispatched.
Transmitter
£15.50
If required, Pocket Radio for receiving transmissions
P. \& P. 45p. MAIL ORDER AND COD Welcome

Mulhall Electronics, (WW)
Ardglass, Co. Down, UK. BT30 7SF.
Tel: 039-684 461

COLOUR. UHF and TV SPARES. Colour and UHF lists available on request. New cross aerial in-put type \(£ 11 \mathrm{p} \& \mathrm{p} 45 \mathrm{p}\). CRT reactivator kit for colour and mono 1680 pep 60 p Signal kit for colour and mono 16.80
strength rexper kit \(£ 18.00\). P/P
45 p . 625 TV . If strength suitable for Hi Fi amp or tape recording. £6.75 P/P 35p. Bush CTV 25 . New conver gence panels plus yoke and blue lat., \(£ 3.85\). P/P 40p. New Phillps single standard conver gence panels complete, incl. 16 controlls, coils. P.B. switches, leads \(£ 3.75\), P/P 50 p . New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, f9.20, P/P 55p. Mullard AT \(1023 / 05\) Convergence Yoke \(£ 2.30 \mathrm{p} / \mathrm{P}\)
50p. Multard or Plessey Blue Laterals, 75 p P/ 50 p . Multard or Plessey Blue Laterals, 75 p P/P
20 p . BRC 3000 type Scan Coils, \(£ 2.00\) P/P 40 p .
 Delay Lines DL20, f3.50, DLIE, DLI,
35p. Lum Delay Lines. \(50 \mathrm{p}, \mathrm{P} / \mathrm{P}\) 15p. EHT Colour Quadrupler for Bush Murphy CTV 25 \(111 / 174\) series. \(£ 7.50\). P/P 60 p ERT. Colour Tripler ITT TH \(25 / 1 \mathrm{TH}\) suitable most sets. \(£ 2.00\) P/P 35p. GEC 2040 colour tripler \(£ 1.75\) P/P 35p. Colour surplus/salvaged Phillips G8 panels part complete; Decoder, \(£ 2.50, \mathrm{IF}\) incl. 5

 50p. B9D valve bases 10p. P/P 6p. VARICAP TUNERS. UHF ELC 1043 NEW, \(£ 4.20\). ELC1043/ 0.55 .00 . ELC1042 (VHF) \(£ 5.50\) Salvaged VHF and UHF Varicap tuners, £1.40, P/P 25.p. UHF

 Philips. Bush, Decca. Integrated
transd tuners \(84.50 \mathrm{P} / \mathrm{P}\)
60 p Murphy \(600 / 700 \mathrm{ser}\) ies com. UHF conversion kits incl. tuner, drive assy, 625 IF amplifier, 7 valves, acces, housed THORN 8.50 Dual standard time base panel \(50 \mathrm{p} P / \mathrm{P}\) 5:0p PHILIPS 625 IF amplifier panel incl. ect., 50 P P/P 45 p . VHF turret tuners AT7650 incl. valves for K.B. Featherlight Philips 19TG170, GEC 2010, etc., f2.50. PYE miniature incremental for 110 to 830. Pam and Irvicta, \(£ 1.00\). A.B. miniature with UHF njection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Ferguson, HMV. Marconi. \(61.00 \mathrm{P} / \mathrm{P}\) all tuners 50 p . Mullard \(110^{\circ}\) mono scan couls. new suitable all standard Pmips, Stella, Pye, Ekco, Ferranti, Invicta, f2.00, P/P 35 p . Large selection LOPTS, FOPTS available for most popular makes. \(200+200+100\) MFD 350 E Electrolytic \(\mathrm{IL}^{2} .00 \mathrm{P} / \mathrm{P}\) 20p MANOR N.W.6. Shop premises, callens welkome (No N.W.6. Shap premises, "allers welkome. (No. and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE. MONDON N 8751. VAT PLEASE ADD \(25 \%\) TO ALL PRICES.

\author{
CRYSTALS \\ fast delivery of prototypes and production runs INCLUDING: \\ Statek LF crystals in TO5 package Buckman Filter crystals \\ Interface Quartz Devices Limited \\ 29 Market Streot, Crawkeme, Somersa Tel. (046031) 2578. Telex: 46283
}

IBM Golfball Typewriter with input/outpul E140. ITEL automatic paper tape Golfball type All with guarantee, etc. Model 2000 FLEXO WRITER c/w desk, etc. f375. Model 1 Flexo Writers from f50. MDS 1320 LINE PRINTER. AS
 culator, £28. EMI Audio Echo Unlts (rotating drum type), f55. S-Band Travelling Wave Tube Amp. f45. Solartron CD 1440 Double Beam Scope, 8120 . Elliott keyboard Tape Punch, \(f 19\) Various professional tape recorders available COMPUTER APPRECIATION, Godstone 3106 Otford 3256. (Callers by telephone appointmen only, please).

SURPLUS TEST EQUIPMENT AND RADIO AMATUER GEAR. Bench power suppliers 200 / 400 v. Precision millivolt meters. chart recor ders, Varguard. Cambrides. etce, etc.. precision stanards room equipment. B\&H COMPONENT LTD Dept WW, 61, Cheddington Road Pipstone Cheddington (0296) 66844. . LUA 9 . Te

PAL COLOUR BAR GENERATOR FP684R \(£ 120\) Telequipment D54 oscilloscope f160. Both as new. - D. J. Densham, Lowerfield, Lapford

Lapford 241
(4833
ENAMELLED COPPER WIRE
\begin{tabular}{|c|c|c|}
\hline S.W.G & \(1 / \mathrm{R}\) Re? & (s) Reel \\
\hline 10.14 & ¢2.05 & ¢1.15 \\
\hline 15-19 & ¢2.15 & ¢1.20 \\
\hline 20.24 & ¢2.20 & ¢1.25 \\
\hline 25-29 & ¢2.25 & £1.30 \\
\hline 30.34 & ¢2.35 & £1.38 \\
\hline 3540 & £2.50 & £1.45 \\
\hline
\end{tabular}

COPPER SUPPLIES
102 Parrswood Road, Withington, Manchester 20

\title{
B. BAMBER ELECTRONICS \\ 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 1 OE \\ TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)
}

TERMS OF BUSINESS: CASH WITH ORDER
ALL PRICES INCLUDE POST AND PACKING (UK ONLY)
EXPORT ENQUIRIES WELCOME. CALLERS WELCOME TUES.-SAT. PLEASE ADD VAT. MINIMUM ORDER £1 PLEASE BICLOSE STAMFED ADDRESSED ENVELOPE WITH ALL ENOUIRIES

\section*{HANDI-PACKS}
T.V. PLUGS (metal type), 6 for 50p. T.V. SOCKETS (metal trpe). 5 for 50 p. T.V. LINE CONNECTORS (back-to-back skt.). 5 for 50 p .
TO3 TRANSISTOR INSULATOR SETS, 10 for 50p
MIXED ELECTROLYtICS, large bag. E1.00.
PC BOARD WITHDRAWAL HANDLES, mixed cols. 8 for 50 p .
SOLDER, 20SWG, 60/40 alloy, annr.-
OAB1 DIODES. 15 for 25p
OC200 TRANSISTOR S, 6 for 50 p . PERSPEX COIL FORMERS, \(1 / 4 \mathrm{in}\). 1/2in. dia.. 5 for 25p.
TURRET TAGS, \(1 / 16\) th in. dia., 25p pack.
ROTARY SWITCHES, min. 4 pole 2 way. 2 for 50p.
TELEPHONE TYPE EARPIECE INSERT, 50 p.
REEDS (for reed relays) Single-pole make, 5 for 30p.
MULLARD TUBULAR CERAMIC TRIMMERS. 1.18 pt. 6 for 50 p.
(as featured in Rad. Comm. Jan. p.25) mixed. 20 for 25 p . If CANS, \(1 / 2\) in square, suitable for rewind. 6 for 30p.
24V MIN. REED RELAYS, encapsulated single-pole make. 2 for 50 p .
24V 2.8W LAMPS, MES type. 6 for 20p. CHASSIS TAGES. 25 p pack.
CABLE CLIPS, for nailing cable, 15p
Mackiature slider switches, 2 pole. 2 way 5 for 50 p.
pole. \(\mathbf{B S Y A}\) ThANSISTORS, 6 for 50p 6.3V. 0.3A CAPLESS LAMPS, 10 for 25P.
PNP AUDIO TYPE TO5 TRANSISTORS, 12 for 25p.
BLACK PLASTIC KNOBS, \(1 / \mathrm{In}\). dia \(1 /\) in . spindle. 4 for 50 p .
RINGS MAGNETS, 7 mm outside dia . 20
for 50p. MULLARD 150 V REG. (Equiv.
\(150 \mathrm{E} 22^{2}\) MUL
\(150 B 2\) MULLARD \(150 v\)
OA2) (new. boxed). 40 p .

ROTARY SWITCHES 9 way 4 pole (separate waters, plastic), 1/4in. spindle. 40p each.
FERRITE COILS on \(3 / 8\) in. dia ferrite rings. 3 for 50p.
HEATSINKS (Approx. 3in. \(\times 4\) in. \(\times 2\) in. high). 12 fins (drilled tor \(1 \times\) TO3 transistor), 8rand new, 45p each.
VHF RF CHOKES (wound on \(2.2 \mathrm{~K} 1 / 2 \mathrm{~W}\) Resistors). 5 for 35 p.
SMALL CHROME HANDLES, \(1 / 1 /\) in. dia. tapped 48A (with screws \& washers). 2 pair for 40 p .
RELAYS, single ploe, change over. 12 DC approx. \(3 / 3\) in. \(\times 1 / 2 \mathrm{in}\). \(\times 1 / 4 \mathrm{in}\)., 35 peach. AT LAST WE HAVE A STOCK OF the trimmers you've all been ASKING FORI
2.6 pf .10 mm circular. ceramic trimmers (for VHF/UHF work), 3 pin mounting. 5 for 50p.
CERAMIC HIGH VOLTAGE PILLARS (metal ends. tapped 4BA). approx. 1 in long. 10 for \(60 p\).
CURLY
18 in closed. approx 4 core telephone-type 18 in . closed. approx. 5 ft . extended. 2 for STUD RECTIFIERS, BYX42/300R, 300 V at 10A, \(\mathbf{3 0 p}\) each, or 4 for \(£ 1.00\). TRANSISTOR HEATSINKS, 10 make \(2 \times\) TO18 ransistors. screw in clamps. block
size 1 in \(\times 1 / 2\) in. \(x 1 / a i n\) with 2 holes for size 1 in. \(\times 1 / 2 \mathrm{in} . \times 1 / 4\)
mounting, 3 for 50 p .
dUBILIER ELECTROLYtics. 50uF 450 V , 2 for 50 p .
DUBILIER ELECTROLYTICS. 100uF 275 V .2 for 50 p .
PLESSEY ELECTROLYtics. 470uF, 63 V . 3 for \(\mathbf{5 0} \mathrm{p}\).
TCC ELECTROLYTICS. \(1000 \mathrm{uF}, 30 \mathrm{~V}, 3\)
for 60 p. for 60p.
PLESSEY ELECTROLYTICS. 1000uF. 180 V . 40p each (3 for \(£ 1.00\)).
dUBILIER ELECTROLYTICS. 5000 mfd . at \(35 \mathrm{~V}, 50 \mathrm{p}\) each.
dUBILIER ELECTROLYtics. 5000uF 50 V . 60p each.
dUbiliér electrolytics. 5000 mfd

ITT ELECTROLYTICS. 6800 mid , at 25 V . high grade, screw terminals, with mounting clip. 50p each.
PLESSEY
10000 mfd a GLECTROLYTICS. PLESSEY CATHV. 75p each.
0.04 uF CATHODRAY CAPACITORS. terminals 1.50 . 2.5 KVDC . srow

\section*{PLUGS AND SOCKETS}

25-WAY ISEP PLUGS AND SOCKETS, 40p set. (1 plug +1 skt). Plugs and sockets sold separately at \(\mathbf{2 5 p}\) each
DIN SKTS. 5 pin. 250 deg., 4 for 50 p . DIN SPEAKER SKTS. 2-pin, 4 tor 50p. ANDREWS 44AN FREE SKTS. (N.type) for \(\mathrm{FH} 4 / 50 \mathrm{~B}\) or \(\mathrm{FHJ4/508}\) cable. E1.00 each.
BULGIN ROUND FREESKTS. 3 pin, for mains input on test equipment. etc., 25p each.
SO23
SO239 BACK TO BACK SOCKETS, E1.25 each.
BNC INSUL
NO 65 Let PL259 PLUGS (PTFE). Brand new, 50p each. or 5 for \(£ 2.25\).
Reducers for above 15p each.
SO239 SOCKETS (PTFE). Brand new (4 hole fixing type). \(\mathbf{5 0 p}\) each, or 5 for \(\mathbf{£ 2 . 2 5}\). N-TPPE SKTS. 14 hole chassis mounting. 500 hms , small coax lead type). 50p each. BNC PLUGS (Amphenal. new, packed) \(35 p\) each (4 for \(£ 1.20\)).
BNC SOCKETS \((4\) hole
BNC SOCKETS (4 hole chassis mountung. lead type). 35p each (4 for \(\mathbf{E 1 . 2 0 \text {). }}\)
GREENPAR (GE30015) CHASSIS LEAD TERMINATIONS (These are the
units which bolt on to the chassis. the lead is secured by screw cap. and the inner of the coax passes through the chassis). 30p each. 4 for \(\mathbf{~ 1 . 0 0}\).

\section*{VALVES}

Qavo3/10 (ex equipment). 75 p each.
2C33A (ex. equipment). \(£ 1.00\) each.
aOV02/6 (ex. equipment), \(£ 1.00\) each
\(4 \mathrm{Cx2508}\) (ex, equipment), \(\mathbf{E 2 . 1 0 \text { each }}\) \(4 \times 2508\) (ex. equipment), \(\mathbf{5 1 . 5 0}\) each EFFO (new) 25p. EZ81 (new) 25p.

MAINS TRANSFORMERS
All 240 V input, voltages quoted approx.
(Please quote Type No only when ordering)
TYPE 10/2 \(10-0.10 \mathrm{~V}\) at \(2 \mathrm{~A}, \mathbf{E 1 . 5 0}\).
TYPE 18/2 18 V at \(2 \mathrm{~A}, £ 1.65\).
TYPE 28/4 28 V at \(4 \mathrm{~A}, 125 \mathrm{~V}\) at 500 mA . £4.00.
TYPE 129400 V at 20 mA .200 V at 10 mA , 6.3 V at \(500 \mathrm{~mA}, ~ £ 1.25\).

TYPE 72703400 V at 10 mA . 200 V a \(5 \mathrm{mAA}, 6.3 \mathrm{~V}\) at \(400 \mathrm{~mA}, \mathbf{E 1 . 2 5}\). TYPE 70462 250-0-250V. 50.0.50V ,

TYPE 125BS, approx 125 V at 30 mA . 65p.
MAINS ISOLATING TRANSFORMER (ex. equip.)., in metal cases. totally enclosed.
tapoed mains input \(110-240 \mathrm{~V}\) erc tappe mans input. \(110-240 \mathrm{~V}\) erc. . output
240 V at \(3 \mathrm{~A}+12 \mathrm{~V}\) at 0.5 A . \(£ 11.00\). AS ABOVE, output 240 V at \(12 \mathrm{~A}+12 \mathrm{~V}\) at \(3 \mathrm{~A}+22 \mathrm{~V}\) at \(2.5 \mathrm{~A} . \mathrm{E27.50}\). RADIOSPARES 500WATT AUTO TRANSFORMER, \(100 / 110 / 150 /\)
\(200 / 220 / 240 / 250 \mathrm{~V}\) taped input and 200/220/240/250V tapped input and oulput step up or step down facility, ex new
equip. \(\mathbf{E 6 . 0 0}\).
HIGH QUALITY SPEAKERS, 8 3/ \(\mathrm{in} \times 6 \mathrm{n}\) elliptical. 2in. deep. 4 ohms , inverse magnet, rated up to 10 W . \(£ 1.50\) each, or 2 for \(£ 2.75\) (Quantity discount avalable) VARIABLE STABILISED PSU, solid state. 240 VAC input, output 0.24 VDC at \(500 \mathrm{~mA}+32 \mathrm{~V}\) at 50 mA (approx) Size
 E5.00 each
5 k ohm pots. 3 turn for above. 75 p each 5 k ohm pots. 3 turn, for above, 75 p each MANUFACTURERS - SEND SAE FOR OUR LATEST BARGAIN CAPACITOR LIST EQUIPMENT
Cambridge. Westminster, Motofone. Europa series. Send s a e. for full details, stating requirements, frequency. channel spacing.

\section*{SURPLUS BARGAINS}

\section*{EASTER LINEANGUS}
chart recorders, model A601R chart recorders, model A601R
\(500-0-500 u\).a. f.s.d. \(110 \mathrm{~V}_{\mathrm{AC}}\), 500-0-500u.a. f.s.d. 110 A , ,
as new, with manual. \(\mathbf{~} 35.00\) as new, Karr. E1). Kent Chart recorders single point \(\mathbf{£ 2 0}\).
multipoint \(£ \mathbf{3 0}\) (f 150) multipoint \(\mathbf{£ 3 0}\) (E 1.50).
A.E.I. 4 -stage seque A.E.I. 4 -stage sequential transistorised electronic timer, many applications, inc 3 channel auto-light- flasher (750 watts 240 v). Circuits provided for fully interrupted and dim/bright flashing. Modification instructions and mains transformer. £4.50 only (50p).
Printed circuit Kits. £1. 25 (30p).
Instant Heat Soldering Irons. 240 v 100 watt £2.65 (30p)
Veedor root 4 digit resettable counters \(115 v\) AC £1. 25 (10p)
AMPEX VIDIO Tape \(2^{\prime \prime} \times 1670^{\prime}\). New \(\mathbf{f 9}\) (50p).
Ferric Chloride 25p lb (20p), 10 lbs for \(\mathbf{f 2 . 5 0 (4 5 p)}\)).
TELEPRINTER PAPERS and TAPES. \(8 \frac{1}{2}{ }^{\prime \prime}\) wide. 3-ply carbon. buff manilla \(60 p(35 p)\). ditto 7 -ply NCR. no carbon required \(£ 1\) (35 p). TAPES, \(7^{\prime \prime}\), white \(\mathbf{\varepsilon} 2\) per 8 rolls (65 p). \(11_{1 \prime \prime}^{1 \prime \prime}\) buff E2 per 10 rolls (65 p). \(1^{\prime \prime}\) tape suit Friden, etc, \(\mathbf{E} 2\) per 7 rolls (65 p).
\(B \& R\) VHF change over coaxial relays 50 V DC operating coil \(2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \mathrm{f} 1.25\) (15p).
35 watt Mains transformer outputs 2. 3. 6 20. \(24,27,30 . £ 1.25\) (\(25 p\)).

All prices plus (p\&p) total plus VAT \(8 \%\).
Large S A.E for lis
CASEY BROS, 235 Boundary Rd. St Helens, Lancs.

WOLTHAM 20W Audio Power Amplifier Module (1974) confidently challenges any pertormance spec. on request Audio Fluttermeter to BSise8 E95.000 inc. Sydney House. 35 Villiers Road Watford (3875\%). \((4799\)

MULLARD ferrite cores LA 309 to 500 kHz
 kHz
\(1 . \mathrm{D}\)
50.8 pmm . Widely used in frequencies from \(1 . \mathrm{D}\)
50.8 mm. Widely used in frequencies from
500
kHz to 2 Mhz . 50 p . Small toroids O.D. \(\begin{array}{lll}500 & \mathrm{kHz} & \text { to }{ }^{2} \mathrm{Mhz} \text {. } 50 \mathrm{p} \text {. Small toroids o.D. } \\ 127 \mathrm{~mm} \text {, 1.D } 6.35 \mathrm{~min} \text { effective permeability }\end{array}\) 700,50 for \(£ 2.50\). Enquiries invited for other ferrites, cores. beads, tubes, etc. Ceramic formers L23 mm diam. 13 mm Bore 1 end
 8 mm other end 4 mm 100 for \(£ 1.50\). Very
large quantities of all above components ex stock. Also avallable large quantities of poly. ester, Ceramic, Polystyrene and Electrolytic oapacitors relays key switches, etc. Please add \(25 \%\) V.A.T. to all orders. Matl order only Xeroza Radio, 1 East Street, Bishop's Tawton Devon.
(4817

16MMB \& H 631 Sound projectors c/w speaker and transformers E135. - Hilton cine. 9 Wes Hill, Dartford -T. 20009.

115

HUNDREDS of Dual Standard Colour TV's for
sale. Contact: \(\mathbf{S}, \mathrm{H}\) C Televisions Lid.. 024 \(\begin{array}{ll}\text { sale. Contact: } \\ 026 \text { (Radnage) } & \text { S. } \\ \mathbf{3 3 2 1} .\end{array}\)

VacuUM is our speciality, new and second. hand rotary pumps, diffusion outflts, accessorles, coaters, etc. Sllicone rubber or varnish (Sales) Lid., 1 Mayo Road, Croydon. 01-684 9917.

60 KHz MSF Rugby and 75 KHz Neuchatel Radin Receivers Signal and audio outputs. Toolex, Bristol Road. Sherborne (3211) Dorset

CONSTRUCTION AIDS - Screws, nuts, spacers, etc., in small quantities. Aluminium, panels punched to spec. or plain sheet suppled Fas cla panels etched aluminium to individual requirements. Printed circuit boards - masters,
negatives and board, one-off or small numbers. negatives and board, one-off or small numbers.
Send \(9 p\) for list. Ramar Constructor Services Send 8 p for list. Ramar Constructor Services,
20 Warks. Tel. Stratford on Avon isty 0789, 4879 .
Are you obtaining the full benefit from the disposal of your electronic and computer scrap?
As refiners of base and precious metals we purchase manufacturers' and distributors' scrap arisings and redunda
components including \(\qquad\)
Contact us
ETC
personal attention

The commercial smeling a nefining co. itd. T71, Farringdon Rd, London EC1R 3 AL -01-837 1475

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\[
\begin{aligned}
& 555 \\
& \text { TIMERS }
\end{aligned}
\]} & \multicolumn{2}{|c|}{\[
\begin{gathered}
741 \mathrm{C} \\
\text { OP-AMPS }
\end{gathered}
\]} \\
\hline 25+ & 39p & 25+ & 23p \\
\hline \(100+\) & 35p & \(100+\) & 19p \\
\hline \(250+\) & 32p & \(250+\) & \(17 p\) \\
\hline & & 100+ & \(1000+\) \\
\hline 1 N4001 & & \(2.5 p\) & 2.0p \\
\hline 1N4002 & & 2.8p & 2.2p \\
\hline 1 N4003 & & 3.2p & 2.5p \\
\hline 1 N4004 & & \(3.6 p\) & \(2.9 p\) \\
\hline 1 N4005 & & 4.3p & \(3.6 p\) \\
\hline 1 N4006 & & 4.7p & 4.0p \\
\hline 1 N4007 & & 4.0p & 4.2p \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
Add Vat @ 8\% \\
Minimum order charge \(£ 5\)
\end{tabular}} \\
\hline \multicolumn{4}{|r|}{\[
\begin{aligned}
& \text { JUNIPER } \\
& \text { ECTRONICS }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|c|}{PD B0x 61,} \\
\hline \multicolumn{4}{|c|}{Southamplon} \\
\hline
\end{tabular}

\section*{fibre optic suppliers \\ MARE'S TAIL Decorative Display. 22" dia. \(7,000+\) Fibres \(£ 10.00\)}
 FIBROFLEX SIZE 41.760 Strand \(£ 1.50\) per metre; 10 m E12.00
CROFFOM 1610 Fiexible 64 Strand Plastic Light Conduit. Active Dia. PLABTVC OPTICAL MONOFIBREFFexibie Light Guide Dia 10. 20. 40.60

 OPTIKIT 1032 m CROFON \(1610+5 \mathrm{~m}\) ョech FP20, FP40, FP60 £4. 80 PTIKITs Ans Five Retro-Refiectors for Optical/Inffe-Red beam systems. lias. \(22 / 36 / 44 / 83 \mathrm{~mm}+150 \mathrm{~mm}\) Strip \(£ 2.50\)
ULTRASONIC TRANSDUCERS SSNsitive \(40 \mathrm{kHz} \mathrm{T}_{\mathrm{x}} / R \mathrm{R}\) pair \(\mathrm{E3.50}\) ULTRASONIC TRANEDUCERS *NEW \(* 25 \mathrm{kHz}\) Tx/Rx parr \(\mathbf{E 3 . 5 0}\) GED/AMBER/GREEN Of NEUTRAL 50 mm sq. \(70 \mathrm{p} ; 75 \mathrm{~mm}\) sq \(£ 1.40\) OPTOLECTRONICS LINHT SOURCES E DETECTORS MV54 2 mm Red LED 20p. MLED500 1092 Red LED 20p. MLED92 Infre Rod Emitrer 30p. MLS 203 Photo-Thyristor \(\mathbf{E 1 . 2 0 .}\).
2N5777 High Sensitivity Photo-Darington 25 V 50 p
MRD 1502 mm High Sped Photo-Transistor (4 uS) 40 V 70 p,
Please add \(8 \%\) VAT to prices. S.A.E. please for shor form/data

TEKTRONICS 541A OSCILLOSCOPE V.G.C. with trolley and plug-in unit, \(£ 120\) o.n.o. Evenings or weekends. telephone Southampton 444266. (4834

LIMSLEY-HOOD 75 watt amplifiers construc ted and serviced. Filter switch click and mains borne interference supppression klit for mark 3 . Which in10P ex stock, £2.95 P\&P 10p. I. G. Bowman, 35 Park Hill Road, Torquay, South Devon.

MARCONI TF86TA Si'Rnal Generator in good Working order. 15 KHZ to 30 mHz lin elveven bands. Offers Crowthorne (Berks) 5651. [4828

HONEYWELL G-115 PROCESSOR Module with \(4 k\) store, Power Supply Module, and Control Con sole (System installed 1971). ALL \(£ 165\). Honey Well Series 200 Magtapes (4 with controller) £65 per unit or \(£ 275\) the lot. Friden JUSTOWRITER, automatic paper tape justifying type writer equivalent to IBM "Executive," 5290 .

AARVAK SOUNDLIGHT CONVERTORS E9: Strobes \(£ 21\) ! Sequencers 527 ! . wetc., etc. Bumper Catalogue:- \(98 \mathrm{a}(\mathrm{W})\) West Green
Road N 15 5NS. \(01-8008656\).

ANY OFFERS? Historic bound copies of 15 volumes of Wireless World 1920 to 1930 , almost complete. Write Box WW 4796 .

\section*{COVENTRY COLOUR}

Wired G.E.C. 19 -inch complete with tested tube, \(£ 40\). Aerial conversion kit, £15. Bush C.T.V. 25-inch colour TVs, serviced to retail standards, no further work necessary, £95 G.E.C. 19 -inch serviced to retail standard, £85 Discounts on 4 or more sets, all prices subject to V.A.T

\section*{COLOURCARE}

Arden Street, Earlsdon, Coventry
Tel: Coventry STD (0203) 79400
4802

\section*{FOR SALE: \\ MARINE RADIO EQUIPMENT}
by Marconi, Redifon, etc., main and emergency transimtters, receivers, autoalarms, VHF R/T and spares.

Above also wanted
Box WW 4800

\section*{THE SCIENTIFIC WIRECO.}

Copper - Nickel - Chrome - Eureka -
Litz - Manganin Wires.
Enamelled - Silk - Cotton - Tinned Coverings
* No minimum charges or quantities
* Trade and export enquiries welcome.
- S.A.E. brings List.
P.O. BOX 30, LONDON E4 9BW

\section*{..... RING ALLAN PETTERS ON}

01-261 8508 OR

01-261 8423

Low cost ic mounting. Use Soldercon ic socket pins for 8 to 40 pin Dils, 70 p (plus 5p VAT) for strip of 100 pins, E1.50 (plus 12 p FAT) for 3 strips of 100 , E4, (plus 32 p VAT) for 1,000 . Instructions supplied. Send for sam\begin{tabular}{l}
ple. Sintel, 53 c Aston Street. Oxford. Tel: \\
(67 \\
\hline 8.6203 .
\end{tabular}

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram, e3.66 plus Vat. 'Jumbo' LED digits (16mm high) type eoonomy DL/747 only \(£ 2.04\) each plus VAT, post free. Greenbank

TRANSFORMERS. Pri.200/240V\& Sec.12, 15, 20 24, 30 V . 1 A £2.10 p.p. 38p. 2A £3.10 p.p. 38p

 \({ }_{43}, 60 \mathrm{~V} .1 \mathrm{~A}\) £2.75 p.p, \(38 \mathrm{p}, 2 \mathrm{~A}\) £4.45 p.p. 42 p
 p.p. 67p, 6A f10 p.p. 82p. Open type, table top connections. Quotations for sizes up to 500 VA. Add \(8 \%\) V.A.T, TRANKIT ELECTRICAL, 192 SILVERTONHILL' AVENUE, HAMILTON ML3 7 PF .

LADDERS unvarnished 14ft 1 ln , closed, 25!t in extd. 221.40 delivered. Tel: Telford 586644

\section*{COURSES}

RADIO and Radar M.P.T. and C.G.L.I Courses. Write: Princlpal, Nautical College, Fleetwood FY7 8JZ.

\section*{EURO CIRCUITS LTD}

Due to GOVERNMENT V.A.T. REGULATIONS the cost of the additional office work involved in applying our \(21 / 2 \%\) discount is prohibitive We have no option but to reluctantly withdraw cur discount for the present This does not reflect our policy but is directly due to GOVERNMENT REGULATIONS We hope you will join with us in looking forward to better times and to a more sane fiscal policy.

\section*{EURO CIRCUITS LTD}
(Manufacturers of Printed Circuit Boards)
Hightield House, West Kingsdown, Nr. Sevenoaks, Ken Tel: West-Kings down 2344
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECORDS MADE TO ORDER} \\
\hline DEMO DISCS MASTERS FOR RECORD COMPANIES & \begin{tabular}{l}
VINYLITE \\
PRESSINGS
\end{tabular} \\
\hline \begin{tabular}{l}
Single discs, 1.20. Mon from your tapes. Quantit PRESSED IN VINYLITE Delivery 3 - 4 weeks. Sle NEUMANN STEREO/M many studios UK/OVER \\
DEROY \\
PO Box 3, Hawk St
\end{tabular} & \begin{tabular}{l}
reo, delivery 4 days 25 to 1,000 records UR OWN PLANT abels. Finest quality athes. We cut for SAE list. \\
RDS \\
arnforth, Lancs.
\end{tabular} \\
\hline
\end{tabular}

\section*{CAPACITY AVAILABLE}

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assem plies. Suppliers to PO. M.O.D., etc. Export en quiries welcomed. 3 a Walerand Road, London SE13 7PE. Tel: 01-852 1706.

Batch Production Wiring and Assembly to sample or drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W. 5 rel: 01-992 8976.

CAPACITY available to the Electronic Industry Precision turned parts engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 jig borer Write for lists of full plant capacity to C.B Industrial Engineering Ltd., 1 Mackintosh Lane E9 6AB. Tel: 01-985 7057

CAPACITY available for the Assembly of Elec tronic or Electrical Components P.C.B.s, etc Small or large bateh production. Remploy Ltd., Jupiter Road, Norwich NR6 6 SU

SMALL Batch Production, wiring assembly to sample or drawings. Specialist in printing cirsample or drawings. Specialist in printing cir hopsfield, Harlow, Essex. Tel: Harlow 33018.

LABELS, NAMEPLATES, FASCIAS on anodised aluminium or perspex. Any quantity, superb quality, fast delivery. G.S.M, Graphics Ltd. 1.5 Rectory Lane, Guisborough (Tel. 02873 .

PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices, quotations on request, roller tinning, drilling, etc.- speciality Smamiesons Automatics Ltd, \(1-5\) Westgate, Brid lington, \(N\). Humberside, for the attention of Mr. J. Harrison. Tel: (0262) 4738/77877. (18)

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circuit assemblies. lege Street, London NW: 9NN. 01-267 0201. (29

DESIGN - DIGITAL - ANALOG. Development and production of electronic and electro-mesh circuits. Kel Electronic. 3 Baskerville Rd Wandsworth. London, S.W.18. 4801
\begin{tabular}{|c|}
\hline ARTICLES FOR SALE \\
\hline ELECTRONIC KITS \\
requires reliable firms well \\
connected in own markets \\
for handling exclusive sales \\
in countries where no \\
organisation yet exists. \\
- \begin{tabular}{c}
Send enquiries to: \\
AMTRON \\
Casella Postale 4160, \\
Milano, \\
Italy
\end{tabular} \\
\hline
\end{tabular}

COUNTERS, 6 DIGIT ELECTRO-MECHANICAL with manual reset finished in grey plastic with manual reset finished in grey plastic.
23V.D.C. at 40 I.P.S. \(£ 2.25\) ea. \(24 \mathrm{~V} . \mathrm{D}, \mathrm{C}\) at 25

VALVES RADID TV TRANSMITTING INDUS TRIAL 193(' to 1975, 2200 types stocked, many obsolete, list \(20 p\), s.a.e. for quotation. We buy new and boxed valves. - Cox Radio (Sussex) Ltd., The Parade. East Wittering. Sussex, Wes Wittering 2023
(4789

A CLEARANCE, 1,000 values to sell, 1930 -1975 all new-boxed. - Sensible offers please,
Gifford Ltd., Basingstoke PH. \(\quad \mathbf{~ J ~}\)
(481.

VALVE BARGAINS. Any \(5.45 \mathrm{p}, 10-75 \mathrm{p}, 50-£ 3.60\) ECC 82 ECL 80 EF \(80 / 183 / 184\) PC 86/88 PCF 80 802 PCL \(82 / 84 / 85 / 805\) PL \(36 / 504\) PY \(33 / 81 / 800 / 88\) :00PL14. COLOUR VALVES, 12p each PL508/509 PY 500A. No VAT required. P\&P under \(£ 1 / 10 \mathrm{p}\). £1 to \(£ 3 / 15 p\). Above \(£ 3 / 20 p\). Money back guaranee - LANCASHIRE MAIL ORDER, 6 WILLIAM STREET, STUBBINS RAMSBOTTOM BURY
LANCS.
14807

\section*{RECEIVERS AND AMPLIFIERS -}

HRO Rx5s, etc., AR88, CR100. BRT400, G209 S640, etc, etc., in stock. R.T. \& I. Electronics Lid. Ashville Old Hall. Ashville Rd., London. E11 Ley 4986.

\section*{SIGNAL Generators, Oscilloscopes, Outpu} Meters, Wave Voltmeters, Frequency Meters. Multi-range Meters, etc., etc.. in stock. R. \& I. Electronics, Lid., Ashville Old Hall, Ash

\section*{A Giant}

SEMICONDUCTOR DICTIONARY in Quals. 793 paged
THE BIGGEST BARGAIN EVER OFFERED IN THE FIELD OF ELECTRONICS. This excellent electronics dictionary in 7 languages is the result of an intensive volumes are contained \(\uparrow .373\) pages. Although published at \(£ 16\) we are pleased 10 make a special offer of this important reference work to readers at \(\mathbf{£ 6 . 5 0}\) eer set, carriage 75 p. The volumes ara in leather styled finish and must have cost over E10 to print.

POWER SUPPLIES FOR ELECTRONIC EQUIPMENT. J. R Nowvicki. Published recently in 2 vols. A full treatment of all power supplies is given. Originally £4. 50 per volume. Bargain price \(£ 4\) for the 2 volumes postage 50 p.
CONFIDENTIAL FREQUENCY LIST HANDBOOK. Takes the raps off and reveals for the first time the Hush Hush secrets regarding frequencies used by Ministry organisations. C.I. A.. coastguards, spy stations, handle. \(\mathbf{C 2} .50\) plus p. \& p. 25p.

FREE. THE TECHNICAL \& SPECIALISED BARGAIN BOOK BULLETIN. Contains technical, radio, electronics, scientific and specialised books at bargain prices. Published monthly and FREE THE BARG
FREE, THE BARGAIN BOOK GAZETTE. Contains thousands of interesting books at bargain prices. Subjects include hobbies. transport, aviation, collecting. etc. Something for everybody.
DEPT. W.W. GERALD MYERS (Bookseller \& Publisher). 138 Cardigan Rd., Leeds 6. Callers Weicome. Please add extra postage for
(4814)

\section*{SERVICE AND REPAIRS}

\section*{PHOTO ETCH \\ LIMITED}

9 LOWER QUEEN STREET PENZANCE, CORNWALL, TR18 4DF
Prototype or long run - we will supply your printed circuit requirements Also facilities for Design, Assembly and Test
Prompt and efficient service assured

> T PENZANCE (D73E) 4a7E

AUDIOMASTER BACKGROUND MUSIC . . service, sales. Tape programmes. P. J. Equip.
ments, 3 Onslow Street, Guildford 4801 . 12

TUBE POLISHING, mono \(£ 5.63\), colour \(£ 5.94\). C W.O. Return varriage and VAT paid. Phone: C.W.O, Return carriage and North Said. Phone: Lough, Lines.

THOR-HOLE CONVENTIONAL P.C.B.'s gold plating, roller tinning, prototypes, silk screen ing, drilling. All or part service. ELECTROnut, Herts. Tel. Waltham Cross 38600 or 20344

184

\section*{VALVES WANTED}

We Buy new valves, transistors and clean new components, large or small quantities, all de tails, quatation by return - Walton's, 55 Wor cester St.. Wolverhampton.

HENGSTLER
Manufacturers of counters and counting systems

8 HENGSTLER GB LIMITED.
NAZEING NEW ROAD
BROXBOURNE, HERTS, EN10 6SX TELEPHONE: HODDESDON 68451 TELEX: LONDON 263243

\section*{GUIDEBOOK OF ELECTRONIC CIRCUITS}

By John Markus PRICE: £13.85
PRINCIPLES OF TRANSISTOR CIRCUITS
by S. W. Amos. PRICE: £3.45
COLOUR TELEVISION SERVICING
by G. J. King. PRICE: £4.90
SOLID STATE HOBBY CIRCUITS
by RCA. PRICE: £1.20
MODULATION SI UNITS
by F. R. Connor. PRICE: £1.25
TRANSMISSION \& DISPLAY OF
PICTORIAL INFORMATION
by D. E. Pearson. PRICE: £6.20
IMPROVING YOUR HI-FI
by J. Earl. PRICE: £3.25
DESIGNING WITH TTL INTEGRATED CIRCUITS
by Texas Inst
PRICE: \(£ 5.40\)
TRANSISTOR AUDIO \& RADIO
CIRCUITS
by Mullard.
PRICE: £2.05 INTEGRATED CIRCUITS DATA BOOK by Signetics. 2 Vols.

PRICE: \(£ 4.55\)
APPLICATIONS OF LINEAR
INTEGRATED CIRCUITS
by E. R. Hnatek. PRICE: £13.55
* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.
SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1 NP
Phone 7234185
Closed Saturday 1 p.m.

PRINTED CIRCUIT
BOARDS
QUICK DELIVERIES
Prototypes and small runs by return
Longer runs 7 days
Drilling. Roller Tinning.
For Photography,
Machining, Gold Plating. Silk Screening, the lot
Harold Fisher (Plastics) Limited
Grove Mills, Gynn Lane, Honley, Huddersfield

\section*{EURO CIRCUITS}

WK 2344

Due to GOVERNMENT V.A.T. REGULATIONS the cost of the additional office work involved in applying our \(21 / 2 \%\) discount is prohibitive. We have no option but to reluctantly withdraw our discount for the present. This does not reflect our policy but is directly due to GOVERNMENT REGULATIONS. We hope you will join with us in looking forward to better times and to a more sane fiscal policy.

EURD CIRCUITS LTD
Manufacturers of
Printed Circuit Boards

Mighfield Mouse
West Kingsdown
Nr. Sevenoaks, Kent.

\section*{American Made Quality Products. Prompt DeliveryExcellent Pricing}

B\&K Television Analyst Model 1077 - PAL
Cuts troubleshooting time in half! Checks every stage of black-and-white and color TV receivers from antenna input to grid of CRT. Drives solid-state sweeps, all UHF channels, 8 VHF channels, 20 to 45 MHz IF, audio, video, sync outputs.

\section*{B\&K Solid State Sweep/Marker Generator \\ Model 415 - PAL}

Four instruments in one - sweep generator, marker generator, marker adder and bias supply (3) plus the demodulator probe. Easy to use. Available for CCIR frequencies.

Write for complete catalog and prices.

Empire Exporters Inc.
270-278 Newtown Road Plainview, N.Y. 11803
Cable Address: Empexinc, N.Y. Telex: 96-7880

\section*{Wilmslow Audio THE firm for speakers!}

Baker Group 25, 3, 8, or 15 ohm Baker Group 35, 3' 8 of 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3, 8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm
Celestion HF1 3008 or 15 ohm Celestion MF 1000 horn, 8 or 15 ohm Decca London and X over Decca DK 30 and \(X\) over
EMI \(13 \times 8,150 \mathrm{~d} / \mathrm{c}, 3,8\) or 15 ohm EMI \(13 \times 8\), Type 350
EMI \(13 \times 8,25\) watt bass
EMI \(21 / 4^{\prime \prime}\) tweeter 8 ohm
EMI \(8 \times 5.10\) watt, \(d / c\), roll/s 8 ohm Elac 59RM 10915 ohm . 59RM 1148 ohm Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Fane Pop 15 watt \(12^{\prime \prime}\)
Fane Pop 20T 10"' 20 watt
Fane Pop 25 T 30 watt \(12^{\prime \prime}\)
Fane Pop 50 watt, \(12^{\prime \prime}\)
Fane Pop \(55,12^{\prime \prime} 60\) watt Fane Pop 60 watt. \(15^{\prime \prime}\) Fane Pop 100 watt, 18' Fane Crescendo 12 A or B, 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18,8 or 15 ohm Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\), rolls/s, 8 or 15 ohm Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans \(12 \mathrm{P}-\mathrm{D} 8\) or 15 ohms Goodmans 12P-G 8 or 15 ohms Goodmans Audiom 1008 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom \(8^{\prime \prime} 8\) or 15 ohm Goodmans Twinaxiom 10" 8 or 15 ohm Kef T27
Kef 110
Kef B200
Kef B1 39
Kef DN8
Kef DN 12
Kef DN13
Richard Allan HP8B 8" 45 watt Richard Allan CG8T 8" d/c roll/s STC 4001 G super tweeter Baker Major Module, each Goodmans Mezzo Twinkit, pair Goodmans DIN 20.4 ohm , each Helme XLK25, pair Helme XLK30, pair Helme XLK50, pair
Kefkit 1, pair
Kef kit III, eac
Peerless \(3 / 15(3 \mathrm{sp}\). system) each
Richard Allan Twinkit, each
Richard Allan Triple 8, each Richard Allan Triple, each Richard Allan Super Triple, each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit, pair Wharfedale Dovedale 3 kit, pair All Radford, Gauss, Castle, Jordan Lowther, Tannoy units in stock
INCLUDING VAT AT \(25 \%\) ON HI-FI, \(8 \%\) ON PRO AND PA
Cabinets for PA AND HiFi, wadding, Vynair, etc. Send stamp for free booklet Choosing a Speaker FREE with all orders over \(£ 7\) - HiFi Loudspeaker
Enclosures Book

All unite are guaranteed new and perfect Prompt despatch
Carriage: Speakers 38 p each, \(12^{\prime \prime}\) and up 50p each. tweeters and cross-overs 25p each, kits 75 p each (1.50 pair)

\section*{WILMSLOW AUDIO} Dept. WW
Loudspeakers \& Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF . Discount HiFi, PA, atc: 10 Swan Street, Wilmslow. Radio, HiFi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213

\section*{EXCLUSIVE OFFERS}

\section*{WORLD-WIDE RANGE NEVER BEFORE OFFERED} complete transportable h.f. communca-

 \({ }_{2}\) to \(30 \mathrm{~m} / \mathrm{cs}\) digital readout synthesised irequency control, with line amplifiers and inputs, operating position and remote control facilities and anciliary equipment. Pou
on application.

\section*{application}

PELLCO HC-150 POINT-TO-POINT STRIP RADIO EF RECEIVERS
0.5 kes with synthesisers. Single and diversity reception on 1sB, 198, ssB with 4 sub-bands to each channel. Full details and prices on application.

HIGHEST QUALITY 19* RACK MOUNTING CABINETS \& RACKS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Our Height Ref. in inches}} & \multicolumn{2}{|l|}{Wid CABINETS} & \multirow[t]{2}{*}{Rack Panel} & \multirow[t]{2}{*}{} \\
\hline & & Width & Depth & & \\
\hline & & in inches & in inches & Space in ins. & Price \\
\hline CL & 30 & 60 & 36 & 42 & £12.50 \\
\hline CR & 69 & 30 & 20 & & C24.00 \\
\hline DM & 70 & 20 & 26 & 138 & c21.00 \\
\hline FA & 85 & 22 & 36 & 160 & E22.00 \\
\hline FC & 52 & 25 & 22 & 47 & C17.00 \\
\hline FG & 11 & 19 & 18 & 10 & c11.00 \\
\hline FH & 15 & 21 & 17 & 11 & E12.00 \\
\hline FJ & 15 & 21 & 15 & 12 & c12.00 \\
\hline FN & 70. & 24 & 20 & 68 & ¢17.00 \\
\hline 116 & 11 & 21 & 17 & 9 & £15.00 \\
\hline 127 & 16 & 20 & 12 & 14 & £15.00 \\
\hline LL8 & 10 & 20 & 10 & 9 & ¢15.00 \\
\hline LL9 & 17 & 21 & 17 & 14 & ¢15.00 \\
\hline LL. 10 & 52 & 21 & 18 & 46 & cıisiou \\
\hline & Also Co & oles, Lw & d multi- & ay Cabine & \\
\hline
\end{tabular}

Or Height \(\begin{gathered}\text { OPEN RACES } \\ \text { Channel Rack Panel }\end{gathered}\)

COMPUTER HARDWARE
C CARHREADER 80 col. 600 c.p.m.
* PRINTER, Hikh speed 1000 limes p.in. \(800 \mathrm{c} . \mathrm{p} . \mathrm{m}\).
Prices on Application
PLEASE ADD V.A.T. AT APPROPRIATE
P. HARRIS

ORGANFORD-DORSET BH16 6ER

\section*{VIDEO HIRE}

EQUIPMENT, EDITING, OPERATORS' STUDIO FACILITIES ETC.
THE MOST EXPERIENCED VIDEO COMPANY IN THE BUSINESS.
R.E.W.
R.E.W. House,

10,12 HIGH STREET,
COLLIERS WOOD,
LONDON, SW19 2BE PHONE: 01-540 9684

TAPE \(\star\) TAPE \(\star\) TAPE
EMI PROFESSIONAL LOW NOISE TAPE \(7^{\prime \prime} \mathrm{LP} 1800^{\prime} \ldots . . . \underbrace{\prime} 30\) (10 for \(£ 21.00\)) \(101 / 2^{\prime \prime}\) LP \(3600^{\prime}\) NAB \(£ 5.60\) (10 for \(£ 51.00\)) Hi-dynamic cassettes C90 64 p (10 for \(£ 6.30\)) Hi-dynamic cassettes C90 64 p (10 for \(£ 6.30\))
\(\times 1000\) cassettes C90...89p (10 for \(£ 8.70\)) Please add 20 p P\&P and then \(8 \%\) VAT to orders
FRASER-MANNING LTD. 40 TUDDENHAM ROAD, IPSWICH, IP4 2SL
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{J. LISLEY Y00} \\
\hline \multicolumn{3}{|l|}{HIGH QUALITY AMPLIFIERS AND TEST EQUIPMENT available from} \\
\hline \multicolumn{3}{|l|}{TELERADIO HIFI} \\
\hline \multicolumn{3}{|l|}{Examplas:} \\
\hline 75 Witt Amplifier P.A. Moduls & Kit \(£ 11.00\) & Made £14.9 \\
\hline Pri-amp Module & Kit \(£ 10.25\) & . \(£ 14.5\) \\
\hline P.S. Units from & Kit £ 13.70 & £15. \\
\hline F.M. Tuner. Basic Kit & ¢30.00 & p\&p \(70 p\) \\
\hline Da Luxe Kit & £35.00 & p\&p \\
\hline Sterea Decoder. Made & £ 5.85 & \\
\hline Millivoltmeter Kit & £13.00 & \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Tax extra. P\&P extra (min. 25p)}} \\
\hline & & \\
\hline
\end{tabular}

325 Fore St, Edmonton, London, N. 9 91-807 3719 Closed Thursdays

\section*{Quality Products Made in America}

Blonder-Tongue
Field Strength Meter - FSM2 Superb quality and performance. Complete line of MATV and CATV products available.
Astatic - Choose from over 60 different microphones for public address, studio, commercial sound and recording microphones. Quality sound repraduction since 1930. Complete line of Astatic cartridges, needles and arms.
Atlas Loudspeaker - complete line of public address speakers and microphone stands.
Trusonic - speaker systems to meet every indoor and outdoor requirement.
Irish Tape - premium quality tape available in cassette, 8 -track, open reel and video.
Gromes Precision - public address amplifiers
Consolidated Wire and Cable
AVA - coaxial connectors
Teleco - telephone answering
instruments
Perma Power - portable PA
Systems
Utah - complete line of hi-fi speakers and accessories
Automatic Garage Doors, TV Tube Brighteners, Remote Controls
Write for illustrated catalog and specifications for these products.

\section*{Morhan Exporting Corp.}

270-278 Newtown Road
Plainview, N.Y. 11803
Cable Address: Morhanex, N.Y.
Telex: 96-7880

WW - 008 FOR FURTHER DETAILS

Postage and packing shown in brackets
Please add \(25 \%\) VAT to TOTAL

\section*{KEYTRONICS}

\section*{Mail Order only.}

44 EARLS COURT ROAD, LONDON, W. 8 01-4788499

PRECISION POLYCARBONATE CAPACITORS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 440 V A & (\(\pm 10 \%\)) & & \(63 \vee\) Range & \(\pm 1 \%\) & \(\pm 2 \%\) & \(\pm 5 \%\) \\
\hline 0.14 F & (11/2"x \(x^{1 / 2}\)) & 50p & \(0.47 \mu \mathrm{~F}\) & 56 p & 46p & 36p \\
\hline \(0.22 \mu \mathrm{~F}\) & & 59p & \(1.0 \mu \mathrm{~F}\) & 66 p & 56p & 46 p \\
\hline \(0.25 \mu \mathrm{~F}\) & (12\%"的") & 62p & \(2.2 \mu \mathrm{~F}\) & 80 p & \({ }^{65 p}\) & 55p \\
\hline 0.47 \({ }^{\text {F }}\) & & \(71 p\) & 4.74 F & E1.30 & ¢ 1.05 & \({ }^{85}\) p \\
\hline \(0.5 \mu \mathrm{~F}\) & (14, "x \(\mathrm{x}_{4}{ }^{\prime \prime}\)) & 75 p & 6.8 .8 F & E1.64 & 1.129 & c1.09 \\
\hline 0.68 uF & (2"x\%") & 80p & \(10.0 \mu \mathrm{~F}\) & E2.00 & ¢1.60 & f1.40 \\
\hline \(1.0 \mu \mathrm{~F}\) & (2"x/3") & \(01 p\) & 15.0.4F & ¢2.75 & £2.15 & £1.90 \\
\hline 2.04 F & (2"x1") & ¢1.22 & 22.0p \({ }^{5}\) & E3. 50 & ¢2.70 & ¢2. 55 \\
\hline
\end{tabular}

TANTALUM BEAD CAPACITORS - Values available:
\(0.1 .0 .22,0.47,1.0 .2 .2 .4 .7 .6 .8 \mathrm{H}_{\mathrm{F}}\) at \(15 \mathrm{~V} / 25 \mathrm{~V}\) or \(35 \mathrm{~V}: 10 \mathrm{~F}\) at \(0.1 .0 .22,0.47,1.0,2.2 .4 .7 .6 .8 \mu \mathrm{~F}\) at \(15 \mathrm{~V} / 25 \mathrm{~V}\) or \(35 \mathrm{~V}: 10 \mu \mathrm{~F}\) at
\(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at 6 V or \(16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 4.7 \mathrm{~F} \mathrm{~F}\) \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at 6 V or \(16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}\)
at 3 V or \(6 \mathrm{~V}: 100.0 \mu \mathrm{~F}\) at 3 V . ALL at lop each. 10 for 95 p . 50 for E 4 . TRANSISTOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TRANSIS} \\
\hline AC128 & 14p & BC183/183L & \(11 p\) & BFY50 & 20p \\
\hline BC107/8/9 & 9 p & BC184/184L & 12p & BFY51 & 20p \\
\hline BC114 & 12p & BC212/212L & 14p & BFY52 & 20 p \\
\hline BC147/8/9 & 10p & BC547/558A & 12p & AF178 & 30 p \\
\hline BC153/7/8 & 12p & BFF194/195 & 12p & OC71 & 12 D \\
\hline BC182/182L & 11p & BF196/197 & 13p & 2N305 & 50p \\
\hline
\end{tabular}

 OO7 8\% PR PICE ZENER DIODES-400MW. TOI. \(\pm 5 \%\) at 5 mA . Values available \(3 \mathrm{~V} .3 .3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V} .6 .2 \mathrm{~V} .68 \mathrm{~V} \mathrm{~V} .7 .5 \mathrm{~V} \mathrm{~V}\)
\(8.2 \mathrm{~V} .9 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V} .12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V} .22 \mathrm{~V}\). \(24 \mathrm{~V}, 27 \mathrm{~V}\). 30 V . All at 7 p each, 6 for 39 p , 14 for 84 p . SPECLAL. OFFER. 100 Zeners for 4.50
RESISTORS-High stability
RESISTORS-High stability, low noise carbon film \(5 \%\), \(1 / 2 \mathrm{~W}\) at
\(40^{\circ} \mathrm{C}, 1 / \mathrm{WW}\) at \(70^{\circ} \mathrm{C}\). EI2 series only -from 2.28102 .20 . ALl at 1 p each, gp for 10 of any one value, 78 p for 100 of any one value SPECIAL PACK: 10 of each value \(2.2 \Omega\) 10 2.2 MO) (730 resistors)
£5.

SILICON PLASTIC RECTIFIERS- 1.5 amp brand new wire ended DO27; 100 P.I.V. 7p (4 tor 26p). 400 P.I.V. 8p (4 for 30p). BRIDGF RECTIFIERS \(-21 / 2 \mathrm{amp}, 200 \mathrm{~V} 40 \mathrm{p}, 350 \mathrm{~V} 45 \mathrm{p}, 600 \mathrm{~V} 55 \mathrm{p}\). SUBMINIATIRF VFRTICAL. PRFSETS-0.1W only. ALL at \(10 \mathrm{k} \cap .15 \mathrm{k} \Omega .22 \mathrm{k} \Omega .47 \mathrm{k} \Omega .68 \mathrm{k} \Omega\). \(100 \cap\). \(250 \mathrm{k} \Omega .680 \mathrm{k} \Omega .1 \mathrm{M} \Omega\). 2.5MO.5MO.

PLEASE ADD 15p POST AND PACKING ON ALL ORDERS BELOW E5. ALL EXPORT ORDERS ADD COST OF SEA/AIR MAIL.

PLEASE ADD \(25 \%\) VAT TO ORDERS
Wholesale price lists available to bona fide companies

\section*{MARCO TRADING}
(Dept. D7)
The Old School, Edstaston. Nr. Wem. Shropshire
Tel. Whixall (Shropshire) (STD 094872] \(464 / 5\)
Minicost Tra

\section*{STEREO DISC AMP \\ ins in. Batanced ines out Excellent disiontion and LF} performance MEETS IBA SPECIFICATION E95.00.

\section*{10-OUTLET DISTRIBUTION AMP}
 Meets \(1 B A\) signal path spectication Complete boxed unit \(\mathbf{f 9 4 . 0 0}\).

PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high speed copying.
Drive curcuit \(35 \times 80 \mathrm{~mm}\) tor \(1 \mathrm{~mA} L \mathrm{LH}\) zero meter to BBC
ED1477 Goid 8 way edge con supplied
Complete kit and aligned \(\quad \mathrm{E} 12.00 \quad\) Built and
 \(64271^{\circ} \times 56 \mathrm{~mm}\) \&12.60 \(643.102 \times 79 \mathrm{~mm} £ 15.00\) \(64271 \times 56 \mathrm{~mm} £ 12.60643 .102 \times 79 \mathrm{~mm} £ 15.00\)
Twin movement scale \(86 \times 54 \mathrm{~mm} \mathbf{5 3 7 . 0 0}\).

PUBLIC ADDRESS : SOUND REINFORCEMENT to any public address system where ine micriophones and
loudspeakers are in the same vicinity accoustic feedback inuwl loudspeakers are in the same vicinnty acoustic reedback inowl shifting the audio spectrum ted to the speakers by a few Hertz the tendency to howing at romo resonance trequencres is
destoyed and an inciedse in qain of 68 dB is possible betore destroyed and an incin
the onset of teedback
SHIFTERS IN DOXES
SHIFTERS IN BOXES with overiodd LEO shifi bypass switch
 nectors
Type
Input, mpedance
Output impedance
PRICE

\begin{tabular}{c}
2 Kohm \\
\(\mathrm{E5B} 00\) \\
\hline
\end{tabular}

Complele kit and board \(£ 24.00\) Including pse and DESIGNER
 SPECTRUM SHIFTER: variable shifts. \(0.1-1000 \mathrm{H}\)
SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

- DC-25MHz,
full screen
- Measuring accuracy 3\%
- Signal delay on both channels
* Trig level and polarity from one simple control \({ }^{*}\)
* Wide timebase range, \(200 \mathrm{~ns} / \mathrm{cm}\) to \(200 \mathrm{~ms} / \mathrm{cm}\)
- Sensitivity \(10 \mathrm{mV} / \mathrm{cm}\) to \(50 \mathrm{~V} / \mathrm{cm}\)
- High brightness PDA tube
* Lightweight portability

Write or 'phone for details Scopex Instruments Limited, Pixmore Industrial Estate,
Pixmore Avenue,
Letchworth. Herts. SG6 1JJ
Tel: Letchworth (04626) 72771

\section*{LOW FREQUENCY ANALYSER}
\(50 \mathrm{~Hz}-50 \mathrm{kHz}\) ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

Board, modules and all components (excluding P.U.).

\section*{12" CRT}

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new. boxed, £4 each. Carriage \(£ 2\).

\section*{100MHz SCOPE TUBES}

MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM \(\times\) 10CM RECTANGULAR. Y SENSITIVITY 3V PER CM \(\times\) SENSITIVITY IIV PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACE ROTATE COILS.
brand new boxed. \(\mathbf{£ 3 0}\) each. Carriage f 2.

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 59-73

Printed in Great Britain by QB Ltd., Sheepen Road, Colchester, and Published by the Proprietors I.P.C. ELECTRICAL-ELECTRONIC PRESS LTD., Dorset House, Stamford St., London, SE1 9LU telephone 01-261 8000. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch LId. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service. Ltd. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd.: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News
Distributors Inc. 155 West 15 th Street, New York, N.Y. 10011 . CONDITIONS OF SALE AND SUPPLY. This periodical is sold subject to the following conditions namely that it shall not without the written consent of the publishers first given be lent, re-sold, hired out or otherwise disposed of by the way of Trade at a price in excess of the recommended maximum price shown on the cover, and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

\title{
Teril THIS CARTRIDGE CAN EQUAL THE PERFORMANCE OF ALL THESE
}

SHURE M44/7 \(£ 7.45\)
 GOLORING G800 \(£ 8.10\) Rec. r.p.

\section*{THE}

tenorelSTEREO 'MAGNEDUCT' CARTRIDGE TECHNICAL SPECIFICATIONS:

Separation.
Frequency Response
Compliance.
Output.
Playing weight.
Channel Balance
Tip Mass.
Stylus Radius.
Load. .
Weight.
Inductance
DC Resistance.
Measuring Records.
More than 25 db at 1000 Hz
15 to 25000 Hz
\(20 \times 10^{-6} \mathrm{CM} / \mathrm{DYNE}\)
5.5 mV at \(1000 \mathrm{~Hz}-5 \mathrm{~cm} / \mathrm{sec}\)
\(1 \frac{1}{2}-3\) grammes 2 db at \(1 \mathrm{KHz}-\mathrm{dB}\)
1 mg
.0006-15u (colour white)
.47 K ohms
7 grammes
550 mH
520 ohms
DECCA SXL 2057 B + K QR 2009
a cartridge of tomorraw...TDORT!

The fastest bird in the business
Distributors of cartridges, styli, record cleaners, condenser microphones, headphones, and adaptors etc. Guaranteed 24 hour despatch service

\title{
What's new in Soldering Chemicals?

\section*{Multicore's R \& D

\section*{Multicore's R \& D Laboratories are still making news-three important new chemicals for electronics manufacturers.}

\section*{MULTICORE PC 26 ROSIN FOAM FLUX}

A completely new general purpose liquid soldering flux particularly suitable for the automated soldering of all types of printed circuits. PC 26 provides a unique combination of desirableproperties.
- Complies with U.K. Ministry Flux Specification D.T.D. 599A.
- Eliminates "icicles" and "bridging".
- 0.5\% max. halide content and yet gives better soldering than mon-approved fluxes with high halide conterits.
- Leaves negligible flux residues so p.c. boards are dry after soldering, can be handled and inspected easily and have better sales appeal.

\section*{MULTICORE PC 81 SOLVENT CLEANER \& FLUX REMOVER}

A unique blend of polar and non-polar solvents formulated for degreasing electronic hardware prior to soldering as well as for removing rosin flux residues including ionizable activators after soldering. Its intermediate boiling rangeof 71 to \(80^{\circ} \mathrm{C}\) and selective solvency make it ideal for vapour degreasing.

The boiling range of PC. 81 is higher than fluorinated solvents (approx \(46^{\circ} \mathrm{C}\)) and lower than either trichloroethylene (\(87^{\circ} \mathrm{C}\)) or perchloroethylene (\(121^{\circ} \mathrm{C}\)). Also its solvency properties for rosin flux removal aresuperior to fluorinated solvents without in any way affecting most electronic hardware. As a result, PC. 81 solvent will perform its vapour cleaning function longer and more effectively than fluorinated solvents whose vapour condensation ceases at \(46^{\circ} \mathrm{C}\) with a consequent end to flux removal.

Solvent evaporation rate is substantially lower than that of the fluorinated solvents, making it more economical to use in open tanks and vapour degreasers.
Multicore PC. 81 is a highly stabilized solvent blend, extremely resistant to thermal or chemical breakdown during prolonged heating or as a result of the introduction of activators from the solution of rosin during its working life. Its relatively narrow boiling range and high stability make it readily useable again without property changes after distillation.

PC. 81 can also be used for cold cleaning and to reinforce ultrasonic cleaning. Even though its toxicity is relatively low, well ventilated areas are required.

PC. 81 is expected to be particularly welcome as it is non-flammable and non-combustible under the new British "Highly Inflammable Liquid" Regulations.

Supplied in one gallon metal cans and 45 gallon steel drums.
Specific Gravity (\(20^{\circ} \mathrm{C}\)) - 1.256
Boiling Range - \(71-80^{\circ} \mathrm{C}\)
Toxicity (TLV) —.... 340 ppm
Residue on Evaporation- less than 10 ppm

\section*{MULTICORE PC 54 CONFORMAL COATING}

Fully meets the requirements of the new U.K. Defence Standard 59-47/issue 2 and U.S. Spec. MIL-I-46058C, which are becoming mandatory for the protection of many electronics assemblies against adverse environment contamination and attack by chemicals.

PC. 54 is a two-part epoxy resin system which is conveniently mixed in equal parts by volume. It may be applied by dip, spray or brush to either one or both sides of p.c. boards and components where it forms a thin tough coating after curing. PC. 54 will dry in 1 hour under normal ambient conditions and developits full properties after several days at room temperature or it may be cured in 2 to 4 hours at \(65^{\circ} \mathrm{C}\). A glass fibre brush can be used to remove the coating locally to enable rework and repair.

 roller coating machines

PC90 Peeloff Solder Resist and
PC91 Thinners
A temporary solder resist for edge-connector contact areas etc. Replaces masking tape.

PC 41 and PC43
Solder Bath dross inhibitors.
PC 52 Protective Coating One-part conformal coating. Can be soldered through.

PCC 70 Thinners
Compatible Solvent blend for use with all rosin tluxes, PC 10A and PC 52.

Flease write for Technical Bulletins on your Company's letterhead for products which interesi you to:

MULTICORE SOLDERS LIMITED
Hemel Hempstead,Herts. HP2 7EP
Tel: Hemel Hempstead 3636 Telex 82363```

[^0]: Please look us up at the International Fire Exhibition, London, 28 July-1 August, 1975. Stand No. 1, Grand Hall, Olympia. WW-004 FOR FURTHER DETAILS

[^1]: TERMS: PRICES AS LISTED ARE IN BRITISH POUNDS \& PENCE. SEND BANK CHEQUE OR PERSONAL CHEQUE WITH ORDER. ENCLOSE RECEIPT IF INTER. POSTAGE MONEY ORDER IS USED MASTERCHARGE, BANKAMERICARD ACCEPTED. CABLE DEMAELINTL

 DEMA Electronics International

[^2]: Price 30p. (Back numbers 50p, from Room 11, Dorset House. Stamford Street, London SEI 9LU.) Editorial \& Advertising offices: Dorset House, Stamford Street, London SEI 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables. "Ethaworld, London SEI."
 Subscription rates: 1 year. $£ 6$ UK and overseas ($\$ 15.60$ USA and Canada); 3 years, $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
 Distiibution: 40 Bowling Green Lane, London ECIR ONE. Telephone $01-8373636$.
 Subscriptions: Oakfield House. Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281.

 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 © I.P.C. Business Press Lid, 1975

[^3]: by W. E. Anderton
 Assistant Editor, Wireless World

[^4]: Two
 hemispherical radomes house the antenna, transmitter and receiver for the 3 cm type WF3 windfinding radar manufactured by Plessey Radar.

[^5]: "And verily I say unto you, that if Parliament shalt have radio then so shalt we have TV." This is what happened at the Holy Sepulchre Church, Cambridge where an overflow of the student congregation had to be accommodated in the church hall across the road. The service is conveyed by a closed circuit TV link combined with a sound system.

[^6]: Parts list
 $\mathrm{R}_{1} \ldots . .10 \mathrm{M} \Omega$ Mullard CR25. Electro-value. $R_{2} \ldots .330 \mathrm{k} \Omega 0.125$ watt carbon composition. Doram.
 $\mathrm{R}_{3} \ldots .100 \mathrm{k} \Omega 0.125$ watt composition. Doram.
 $\mathrm{R}_{4} \ldots . .1 \mathrm{M} \Omega 0.125$ watt carbon composition. Doram.
 $\mathrm{R}_{5} \ldots . .1 \mathrm{M} \Omega 0.125$ watt carbon domposition. Doram.
 $C_{1} \ldots . \ldots 22 \mathrm{pF}$ Mullard C333 series. R.S Components. (Min. Cer. Cap.)
 IC ${ }_{1} . .$. . SCL-5425-AF Trans-World Scientific Ltd, Short St, High Wycombe, Bucks.
 IC $_{2}$....SCL-5424-AF Trans-World
 $\mathrm{X}_{1} \ldots .$. MTQ-32-12 Motorola
 VC 1MTT-02 Motorola.
 Both Motorola components from Pambry Electronics Ltd, 45 High St, Burnham, Bucks.
 Case.....155-72 Gleave \& Co, 111 St Johin Street, Clerkenwell, London ECIV 4JA.
 Printed circuit boards: Photoetch Ltd, 9 Lower Queen Street, Penzance, Cornwall TR18 4DF.
 Display: Type LC-201135-0000: Brown Boveri and Company. Albany House, 41 High Street, Brentford, Middlesex TW8 OBH .

[^7]: * Small alterations in capacitance are best expressed as percentages and for small percentages the resulting frequency change is half that of the capacitance change, e.g. a 4% change in capacitance gives a 2% change in resonance frequency. Large alterations in capacitance are best expressed as the ratio of the maximum to the minimum capacitance and here the resulting ratio of maximum to minimum resonance frequency is the square root of the capacitance ratio, e.g. a $9: 1$ capacitance ratio gives a $3: 1$ resonance frequency ratio.

[^8]: CONTINENTAL CUSTOMERS - we have a direct link by air from Lydd
 to Beauvais (also Channal Islands) and are $35-45$ minutes' drive from Dover.Foikesione with direct hovercraft and sea links with France and

