

WIRELESS WORLD ANNOUNCEMENT

We apologise to readers for inserting an incorrect advertisement for the WIRELESS
WORLD ANNUAL on page a39 of this issue

The correct advertisement appears below

GETIT WHILE ITSGOING

This is the first ever Wireless World Annual. It's got 128 pages including features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include: A General Purpose Audio Oscillator by L. Neison Jones (a constructional project specially commissioned for the annual); Constructional Design for a Small Boat Echo Sounder by John French; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
$£ 1$ from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

```
To: General Sales Department, Room 11, Dorset House Stamford Street, London SE1 9LU.
Please send me copy/copies of Wireless World Annual 1975 at \(£ 1.35\) each inclusive. I enclose remittance value \(£\) (cheques payable to IPC Business Press Ltd).
Name (please print)
Address.
```


wireless world annual 1975

COMMUNICATIONS • ELECTRONICS

LOW COST RC OSCILLATORS

PORTABLE INSTRUMENTS

FREQUENCY ACCURACY

SINE OUTPUT DISTORTION SQUARE OUTPUT SYNC. OUTPUT METER SCALES
SIZE \& WEIGHT

TG152D
Without meter.
£48

FREQUENCY

ACCURACY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT
SYNC. OUTPUT
SYNC. INPUT
METER SCALES
SIZE \& WEIGHT

ANALOGUE

3 Hz to 300 kHz in 5 decade ranges $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz .
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$.
$<0.2 \%$ from 50 Hz to 50 kHz .
2.5 V peak down to $<200 \mu \mathrm{~V}$.
2.5 V r.m.s. sine.
$0 / 2.5 \mathrm{~V}$ \& $-10 /+10 \mathrm{~dB}$ on TG152DM.
7 " high $\times 10 \frac{1}{4}{ }^{\prime \prime}$ wide $\times 5 \frac{1}{2}{ }^{\prime \prime}$ deep. 8 lbs .

TG152DM
With
meter.
f58

1 Hz to 1 MHz in 12 semi-decade ranges. 0 to 1% fine control included on TG200DMP
$\pm 2 \% \pm 0.03 \mathrm{~Hz}$
$7 V$ r.m.s. down to $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
$<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz TG200D, DM \& DMP only. 7V peak down to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{~V}$ r.m.s. sine in phase with output $\pm 1 \%$ freq. lock range per volt r.m.s TG200M. DM \& DMP only. $0 / 2 \mathrm{~V}$. $0 / 7 V \&-14 /+6 d B m$.
$7^{\prime \prime}$ high $\times 10 \frac{1^{\prime \prime}}{} \times 5 \frac{1}{2}{ }^{\text {" }}$ deep. 10 lbs .

TG200 TG200D TG200M TG200DM TG200DMP £57 f60 f67 f70 f74

DIGITAL

FREQUENCY
ACCURACY

SINE OUTPUT
DISTORTION
METER SCALES
SIZE \& WEIGHT
TG66B
Battery
model 545

SHSTEDODOD

VORTEXION

A new range of sound equipment from Vortexion, System 2000 has been designed by our engineers to combine the aesthetics of design in the domestic equipment field with the near flexibility of a modular system. Like all our equipment Vortexion System 2000 is built to last.

No matter what your sound problem, whether hotel or local pop group, ask our Design Consultants how it can be solved with System 2000.

Complete the coupon and well send you our new catalogue.Completely free.

The new Heathkit catalogue is now out. Full as ever with exciting. new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shopsare shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your free copy to browse through.

With the world's largest range of clectronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radiogear, hi-ft equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233
Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs.
Heath (Gloucester) Limited, Iept.WW-65,Bristol Road, Gloucester, Cil 26 FEE . Tel: Cloucester (0452) 29451.

A new oscilloscope from the Heathkit range.
Marine direction finderwith digital read-rut
Solid-state grid dip meter.

The world's most universal audio bridges

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being necessary.

Wayne Kerr's B224 and B642

The B224 is a manually operated bridge, the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

The B642 balances itself automatically. The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above 10Ω impedance and also to inductance and resistance below 10Ω. One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

For more information, telephone Bognor Regis on (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex PO22 9R2
Telex: 86120. Cables: Waynkerr Bognor
A member of the Wilmot Breeden group

NOTE• 0.1% accuracy relates to parallel component measurements above 10Ω impedance 03% accuracy relates to series component measurements below 10Ω
impedance

- Manualoperation only

DECADE BOXES
'Junior' Series-Resistance-1 \%

DECADE BOXES continued
R803 8
High Dissipation-Resistance- 1%

	Decades	Ohms Range	Ohms Resolution	£
HD1	5	0-1.111.100	10	93.00
HD1/L	5	$0-111.110$	0.2 Approx.	98.00
"Point One" Series-Inductance-5\%				
	Decades	mH Range	mH Resolution	£
L1	3	$0-1.110$	1	74.00
L2	2	$0-\quad 110$	1	55.40
L3	2	$0-1100$	10	61.60
"Hundred" Series-Inductance-0.3\%				
	Decades	mH Range	mH Resolution	£
1300	3	O- 1110	1	246.00
L400	4	$0-11.110$	1	320.00
CAPACITANCE BOXES				

Decades
C3
PC3
C4
PC4

Decades
42.00
41.75
41.75
41.00
41.00
51.00
51.00
51.50
51.50
52.00
59.30
61.71
61.71
62.50
68.00
78.00
78.00
72.50
73.00
8850
88.50
85.00

Ohms Resolution

$10 \quad 83.00$
 87.00 88.00
 88.00 $\mathbf{9 4 . 0 0}$
 94.00 113.00
 115.00
 117.00
 122.50 134.00
 134.00
 136.00 141.00
 153.00

Onms Resolution	
10	$\mathbf{2 7 . 4 0}$
1	$\mathbf{2 7 . 1 0}$
10	$\mathbf{2 2 . 3 0}$
1	$\mathbf{2 2 . 0 0}$
10	$\mathbf{1 8 . 2 3}$
1	$\mathbf{1 8 . 1 5}$
1	$\mathbf{3 3 . 0 0}$
1	$\mathbf{3 8 . 8 0}$

pF Resolution
100
22.20

20

	Decades	pF Range			Accuracy	£
VC4	3	50-	11.150		1%	53.00
VC5	4	50-1.	11.150		1\%	75.00
PVC5	4	50-1.	11.150		0 5\%	112.00
SVC5	4	50-1.	11.150		0.1\%	480.00
C500	4	50-1.	11.150		0.2\%	$212.00 \dagger$
SVC5 special	Detals on	applicatio				
Variables						
	pF Range				Accuracy	£
VC1		10-	260		1\%	25.00
PVC1 Mk 2		5-	200		0 5\%	88.00
PVC Mk 2		20-	1,120		0.5\%	80.00
VC2		20-	1.130		9\%	37.00
PVC4		0-	10		1\%	61.00
PVC1/S		20-	120		05%	55.44
Switched						
	uF Range			uF Resolution	Accuracy	E
C140		O-	140	1.0	5\%	$130.00 \dagger$
C100		O-	100	10	5\%	$110.00 \dagger$
C60		O-	61	0.1	5\%	$98.00 \dagger$
C60P		O-	61	01	1\%	$199.00 \dagger$

155.00
$£$
93.00
¢ 74.00
55.40
f
320.00
£
42.00
58.00
64.00
90.00
53.00
75.00
112.00
112.00
480.00
25.00
88.00
80.00
37.00
61.00
10.00
$99.00 t$

D.J. Iloyd Instruments Itd

Brook Avenue, Warsash, Southampton SO3 6HP Tel: Locks Heath 4221
\dagger Packing and Handling extra Prices do not include VAT

The Dymar 1785 portable AM-FM modulation meter.

No need to ask who's in control. It's you!

The Dymar Type 1785 is quickly and easily tuneable anywhere across the entire VHF band and into UHF to encompass the mobile 470 MHz band.

Designed to measure the depth of modulation or frequency deviation of today's demanding mobile and portable transmitters, the 1785 offers four ranges of both peak or trough percentage modulation (3 " $\%$ fsd to 100%) and both positive and negative deviation $(3 \mathrm{kHz}$ to 100 kHz).

The sensitivity over the entire frequency range is better than 2.5 mV into 50 ohms (-40 dbm),
which permits loose coupling to the transmitter under test. And internal noise is typically 44 db below 3 kHz .

Then, like most Dymar instruments, the 1785 is equally at home working from mains supply or in action in the field operating on its own rechargeable NiCd batteries.

With such value-for-money performance, you'll want to drive the 1785 to the limit - and that's why we emphasise that the 1785 is fully tuncable.

Want to know more? Use the Reader Reply Service or contact Dymar direct.

DTMAS

the name in radiotelephones
DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA, Telephone Watford 3732 I. Telex: 923035. Cables: Dymar Watford.

The Dymar range of instruments - designed for the mobile land, marine and air communications industry.

Magnetic winner in the less-space race: the new Brimar M14-100.

Thorn Radio Valves and Tubes LImited Mollison Avenue, Brimsdown, Enfield, Middlesex, EN3 7NS. $\frac{1}{\text { nomm }}$ Telephone: 01-804 1201.

IP 1.L.P. (Electronics)Ltc

SHEER SIMPLICITY!

The thes is a complete mono hybrid preamplifier. ideally suited tor both the device consists of two might qualily amplifiers the first contans freauency equalisation and gain correction, whue the second caters for tone control and
batance.
TECHNICAL SPECIFICATION
Inputs
Magnetic Pick-itp 3mV. FilaA Ceiamic Pick-up Microphone Tuner
Auxillary Auxillary
Input mpedince
Outputs
100 mV
Main outmut Odb (0.775 voits
Active Tone Control
Treble 12 ab at 10 KH ,
Distortion $\quad 0.0 \mathrm{db}$ at 100 bt lat
SignalNoise Ratio
Supply Voltage sensive input
PRICE $£ 4.50+0.36$ V.A.T. $P \& P$ free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd,
 Crossland House.

Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

The HY50 is a complete solla state nybuld Hi-Fi amplifie incorporatimg its own high conductivity heatsink heimet cally sealed in black epoxy iesin. Only five comnec. tions are piovided: Input, output, power hnes and earth.
TECHNICAL SPECIFICATION
Output Power 25 walts KMS unto 8!? Load impedance 4-16?
Input Sensitivity Odb (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1° at 25 watts typically 0.05
Signal/Noise Ratio Hetter thall 7bdb
Frequency Response $10 \mathrm{~Hz} \quad 50 \mathrm{kti} / 3 \mathrm{clb}$
Supply Voltage 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$
PRICE $5.98+0.48$ V.A.T. P \& P free

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address
Signature

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems

TECHNICAL SPECIFICATIONS
Output voltage 50 volts $(25-0-25)$
Input voltage $210-240$ volts
Size L.70.D.90. H. 60 mm
PRICE $£ 6.00+0.48$ V.A.T. P \& P free

Cambridge Audio

for people who listen to music Cambridge Audio Limited

The River Mill
St. Ives
Huntingdon PE17 4EP
Telephone St. Ives 62901

THE TUNER YOU CAN TRUST

This tuner has been designed for use with high quality audio equipment. It has therefore been designed so that only high quality audio signals may be heard. There are no interstation noises, distorted or mis-tuned stations, spurious tuning responses, or other unwanted effects. There are only clear stereo programmes set against a background of silence. When the tuning lamp is out - silence; tuning lamp on - one of a multitude of receivable stations, in perfect tune, and held by powerfula.f.c.

FEATURES

- Solid wood cabinet
* Two-tone front panel
* Pre-select and manual tune
* "Intune" indicator lamp
\star Stereo indicator lamp
* Frequency meter
* Foolproof tuning
* High sensitivity
* Anti-"Birdy" filter

OTHER ITEMS
LP1186 Filter Unit
TBA750 TBA750 TBA 625 C
$\mathrm{SL} 3045 / 6$ SL3045/6
SL301B SL301B
MC1310P
$£ 5.50$ $£ 5.50$
$£ 2.95$ $£ 2.95$
$£ 2.49$ £2.49
${ }^{£} 1.25$
${ }_{\text {£ }}^{\text {£ } 1.60}$
$€ 1.30$ £ 3.88

COWIT'S TIE AMCROWM600

M600 POWER AMPLIFIER

Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8 ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring

1350 watts
 DC-Coupled

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RMS over a bandwidth of DC to 20 kHz . 70 volts RMS at the output terminals, very low noise and distortion. AC/DC selector switch, output terminals, very low noise and distortion. AC/DC selector switch,
plug-in front panel circuit board, built-in fan for cooling and the ability to plug-in front panel circuit board, built-in fan for cooling and the ability to
connect two M600s together to double the power and output voltage, are just some of the features which place the Amcron M600 in the forefront when considering power amplifiers
Driving shakers and vibrators, motors, and difficult speaker systems. providing power for material or components testing or used as a large distribution amplifier, the M600 is equally at home.

Brief specifications

RMS power out
DC output
Power bandwidth Phase response Siew rate
Damping factor (8s?) Hum \& noise THD
Dimensions

+ VAT
\& 15 p
P\&P ea.
45 p max.
33 aestrop view. purton wits sw 900
$\mathscr{g}_{\text {con }} \mathscr{D}_{\text {esign }}$
S.A.E. please for details to:

33 RESTROP VIEW, PURTON, WILTS SN5 9DG

MACINNES LABORATORIES LTD

An evaluation kit, with the MVAM 1 , the CA3123E radio IC, TOKO coils \& ceramic IF fillter, 150 mm Rivlin pot. and the IMI 6 button preset varicap controller is a wailable from Ambit Int., 37 High Street, Brentwood, Essex CM14 4RH for $£ 11.50$ ex vat (Includes a PCB for the construction of a MW electronically tuned radio)
 announcing

The all electric wireless

Abstract

it had to happen a varicap diode to tune AM wireless, and at a price that opens new vistas to the design of radio at all frequencies, and at all levels of sophistication. And just so this momentous event does not go by unnoticed, four leading manufacturers have combined together to produce a complete package approach to incorporating this innovation.

Motorola make the diode. Which is only natural, since they have been producing varicaps for some time. The MVAM 1 is three 500 pF swing diodes, matched to 3% over a 25 v bias range. Use it to tune the antenna, RF and oscillator stages in high quality sets. And the MVAM 2 - two diodes of 300 pF swing each, again with 3% matching.
$\begin{array}{llll}\text { MVAM } 1 & \text { Cr 15:1 min. per section } & \ldots . . .100+£ 1.55 \\ \text { MVAM } 2 & \mathrm{Cr} 18: 1 \mathrm{~min} \text { per section } & 100+£ 0.45\end{array}$

TOKO Inc. make coils and filters for wireless. All electric or not, TOKO coils are the first choice of most radio design engineers. The range is enormous, and covers LF through MF, HF and VHF. Then there are ceramic and mechanical IF filters in a variety of bandwidths for AM/FM applications. For the MVAM project, a set of MW coils for antenna, RF and Oscillator is available; together with a ceramic filter and IF detector transformer.

Rivlin Instruments make a long slider potentiometer. When you have the versatility of electronic tuning, why complicate the issue with cord drives, pointers, pulleys etc. ? This new series (WS150) of wire wound precision potentiometers give direct scale resolution from their 150 mm track length. $100+£ 1.70$ each

IMI (Kynoch) Ltd. make preset push button potentiometer arrays. Preset FM and TV tuning ..and now AM radio tuning without cumbersome mechanical arrangements. Each button is a multiturn preset potentiometer with an interlock to the other buttons in the bank -..... $100+£ 1.90$ each.

Motorola Ltd. Semiconductor Division, York House, Empire Way, Wembley, Mx tel: (01) 9028836
t|x: 21740

\% TOKO

TOKO (UK) Ltd., Shirley Lodge, 470 London Road, Slough,
Berks. SL3 8QY tel: (0753) 48444 tlx: 847185

Rivlin Instruments Ltd., Doman Road., Camberley, Surrey GU15 3DJ
tel: (0276) 21107

Imperial Metal Industries (Kynoch) Ltd.,
Components Division,
P.O. Box 216,

Witton, Birmingham B6 7BA.
tel: (021) 3564848
t|x: 336771

All initial enquiries to Ambit International, who will be supplying comprehensive data on the above products.
Ambit International, 37 High Street, Brentwood, Essex. CM14 4RH (0277) 216029

Ampex and WHAT?" Whar?...

The JAMES SCOTT Alignment Units for F.M. Multí-Channel Tape Recorders.

If you have a sophisticated Ampex Recorder-Align it to the Manufacturers specification using our Alignment Units for F.M. Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your own - we're always interested!
Surprising how often you'll find

Whiteley Electrical Radio Co. Ltd
Mansfield, Notts NG18 5RW, England. Tel: 062324762

Join the Digita Teach yourself the latest techniques of digital electronics
 Computers and calculators are only the beginning of the

 digital revolution in electronics Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few yearsAre you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and containing 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems. Boolean algebra, truth tables, de Morgan's theorem, fhipflops, registers. counters and adders. All from first principles The only initial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons. career prospects and your fundamental understanding of the changing world around you
Also available-a more
advanced course in 6
volumes:

Designer

 Manager EnthusiastScientist
Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the nex.t.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

£3.95
including packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.
\checkmark AT zero rated.

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:
Frequency range:
Output voltage:
Output source resistance:

Output attenuation:
Output attenuation accuracy
Sine wave distortion:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max.
150 ohms unbalanced
(optional 150 ohms unbalanced plus 150/600 ohms balanced/ floating)
$0-100 \mathrm{~dB}$ (eight, 10 dB steps plus $0-20 \mathrm{~dB}$ variable)

Less than $0.002 \% 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

Square wave rise and fall time: $40 / 60 \mathrm{n}$.secs.
Monitor output meter.
Scaled 0-3, 0-10, and dBV $110 \mathrm{~V} / 130 \mathrm{~V}, 220 \mathrm{~V} / 240 \mathrm{~V}$
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high x 83/4"' $(22 \mathrm{~cm})$ deep

Price: 150 ohms unbalanced output: $£ 250$
150/600 unbalanced/balanced floating output. £300

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.

Specification

Frequency range:
Distortion range (f.s.d.):
Input voltage measurement
range:
input resistance:
High pass filter:
Power requirement: Size:
$5 \mathrm{~Hz}_{2}-50 \mathrm{kHz}$ (4 bands) $001 \%-100 \%$ (9 ranges)
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges)
47 K ohms on all ranges
$12 \mathrm{~dB} /$ octave below 500 Hz
$2 \times$ PP9, included
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high \times $8^{3 / 4^{\prime \prime}}(22 \mathrm{~cm})$ deep £200

Now available in reasonable delivery time
RADFORD LABORATORY
Bristol BS3 2 HZ
Telephone 0272662301

WETHERBY • WEST YORKSHIRE LS22 4DH • TEL: 09373541 or $01-8025359$ WW - 028 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

the modern way to measure temperature
A Thermometer designed to operate.as an Electronic Test Meter. Will measure temperature of Air, Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe. and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further detalls to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

The new MS PAGEANT

Mordaunt-Short Ltd. are proud to announce their new high performance loudspeaker system, the MS PAGEANT, incorporating the first transducer of their own formulation and development. By combining high power-handling capacity and exceptional efficiency, the MS PAGEANT achieves accurate reproduction of programme material at truly representative sound levels, while the new Mordaunt-Short bass- and mid-frequency transducer affords outstanding transient response and remarkably low distortion even at large cone excursions.
The MS PAGEANT is thus a full-frequency high-fidelity loudspeaker system to be used to advantage with compatible equipment of virtually any power rating.

Frequency response $60-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Sensitivity 6.5 V r.m.s. (5.3 Watts) for 96 dB at 1 metre. Maximum Sound Level 110 dB . Distortion Below 1% THD, $200 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. Continuous Programme Rating 20 V r.m.s. ($50 \mathrm{Watts} \mathrm{)}$ contoured noise. Amplifier Power Compatibility 15-100 Watts per channel. Dimensions 533 mm high $\times 330 \mathrm{~mm}$ wide $\times 230 \mathrm{~mm}$ deep.
Recommended Retail Price (U.K.) $£ 102.00$ per pair, plus V.A.T.

Mordaunt-Short Ltd

Specialists in High.Fidelity Loudspeakers

Build up the network you need with Barr \& Stroud Active Filter Modules

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated They are equally suitable for general laboratory functions or incorporation into standard equipment. Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.
BARR \& STROUD LIMITED London Office: 1 Pall Mall East, London SW1Y 5AU
Tel : 01-930 1541 Telex: 261877

*EF10 Series - low pass, EF20 Series - hign pass, response down to d.c. $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off. 12-36dB/octave stop-band attenuation.

EF20 Series -hign pas
response up to 1 MHz , $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off, 12-13dB/octave stop-band attenuation.

EF40 and EF41 Universal -band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz - band-pass O up to 200 - band-stop O up to 10 . Supplementary operation in low-pass, high-pass and all-pass delay modes.

WW-017 FOR FURTHER DETAILS

Neluedib

TRANSVERTORS

Valradio sinewave and square wave transvertors now incorporate SILICON transistors resulting in greater reliability and more stable performance at high ambient temperatures, including tropical climates.

A wide selection of types are available to drive practically any equipment within the power rating.
A random selection of types.
$\begin{array}{lll} \\ C 12 / 30 S & \text { Input Output } \\ \text { 12vDC } & 115 / 230 v 30 \text { watts Sine wave }\end{array}$
Price
C24/60S 24vDC $115 / 230 v 60$ watts Sine wave
£40.00 D12/500T
D24/150T 24vDC $115 / 230$ v 150 watts Square wave $£ 39.60$
D12/250/24 12vDC 24vDC 8A £83. 10
Please send for literature WW675
VALRADIO LIMITED
BROWELLS LANE, FELTHAM, MIDDLESEX, TW13 7EN Tel 01 -890 4242/4837

TRANSDUCER and RECORDER

AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560

Fylde Electronic Laboratories Limited.

RIGHT ON TAREET AGAIN

जन्र ATES We've got rhythm!

M252-M253 monolithic rhythm generators

Take one of these new MOS ICs, a few simple instrument osciltators and a variable clock and you've got a complete rhythms section to add to your electronic organ or other instruments

Each IC contains more than three thousand bits of ROM storage, programmed with our standard or your custom content to produce the 12 (M253) or 15 (M252) rhythm patterns.

With the M253 the rhythms can be selected in
combination, letting you swing to the samba or march to the bossa nova just as you like.
Both devices feature:

- Drive for 8 instruments
- Down beat output
- Modulo-32 counter (24 for $3 / 4$ rhythms)
- Simple supply (+5 and -12 V or 17 V and GND)
- External reset

STRIP CHART RECORDERS

Made in USSR

Series H3020 Recorders

Sensitivity: $\quad 8 \mathrm{~mA}$ F.S.D.
Speed of response: 5 Hz
Chart width: $\quad 80 \mathrm{~mm}$ per channel
Chart drive: \quad 230-250V AC mains
Chart speeds: $\quad 0.1 \cdot 0.2 \cdot 0.5 \cdot 1-2.5-$
$12.5-25 \mathrm{~mm} / \mathrm{sec}$
Time and event marker pens fitted.

PRICES:
Single pen model H3020-1 $\mathbf{£ 8 0 . 0 0}$
Three pen model H3020-3 £130.00

MULTI-RANGE UNIVERSAL PORTABLE AC/DC RECORDING VOLTAMMETER H390

Measurements	$5-15-150-250-$
ranges, $A C / D C:$	$500 \mathrm{~mA} .1 .5-5 \mathrm{Amps}$
	$5-15-150-250-$
	500 V
	Accuracy:
Chart width:	$1.5 \% \mathrm{OC} .2 .5 \% \mathrm{AC}$
Chart drive:	100 mm
Chart speed:	$220-250 \mathrm{AC}$ AC mains
	$20-60-180-600-$
	$1800-5400 \mathrm{~mm} /$
PRICE: $£ 78.00$	hour

SWITCHBOARD PATTERN MINIATURE RECORDING MILLIAMMETER H3100

£44.00

Full scale deflection: 1mADC
Accuracy: $\quad 2.5 \%$

DC resistance of
the coil: $\quad 18.100 \Omega$
Chart width: $\quad 80 \mathrm{~mm}$
Chart drive: $\quad 220 / 250 V$ AC mains
Chart speeds:
220/2sov ac main 20-60-180-600$1800.5400 \mathrm{~mm} /$
hour

ALL THE ABOVE PRICES ARE EXCLUSIVE OF CARRIAGE AND VAT
PLEASE WRITE FOR FULL DETAILS TO:

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW-039 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanica! components.	Our product range comprises: Low profile (flatform) Timing Miniature - Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids
	Miniature Relays AZ 420 . . 439 International standard relay 2,4 . or 6 change-overs. Plug-in type saves maintenance costs Coil voltages. 1.2 to 180 Volts D. C 6 to 240 volts A.C Life expectancy to 100 million operations. Balanced spring-held armature allows operation in any mounting position. Relay extends only $3 / /^{\prime \prime}$ from PC bGard when used with right-angle socket.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

4i10

HIREANYSIEOIRMMEHES
Standard \& types to specification are covered below

Mains: Isolating \& Auto IOOVA-6KVA. Small/medium equipment IVA-600VA. 'C' core - open \& oil filled - shell \& astatic.

Audio: Balanced Input - 30
HZ-30KHZ. Output 1.100 W 30HZ-I5KHZ.

Pulse: Thyristor firing \& flash lube trigger

Inductor: Smoothing. Iuned filter. mains filter

Ferrite: Linear. pulse inverter

Wound Electronic Components Ltd Excelsis Works, Gogmore Lane, Chertsey, Surrey KT16 9AP Phone: Chertsey 65147

RCA's new 3-inch scope... an entire servicing system

1. It's an 8 MHz general purpose scope. Typical composite TV video signal.

2. It's a Vectorscope for colour TV AFP C alignment. Colour bar generator used for test signal.

For full information on the new W0-33B, contact RCA Electronic Components
Sunbury-on-Thames, Middlesex Tel: Sunbury 85511 or an appointed RCA (EC) Distributor ELECTRONIC COMPONENT SUPPLIES (WINOSOR) LId
Thames Avenue, Windsor, Berkshire Tel: Windsor 68101
EDMUNDSON ELECTRONIC COMPONENTS Lta $30-50$ Ossory Road, London SE1 5AN Tel: $01-2370404$ BLACK ARROW ELECTRONICS Ltd Millbrook Road. Yate. 8 risiol BSI7 5NX. Tel: Chipping Sodbury 315824

WW-033 FOR FURTHER DETAILS

2. It's a "Quicktracer" Transistor/Diode and Component Tester. Typical junction wave form

4. It's a "ringing" tester for coils, yokes, transformers. Typical ringing test pattern.
5. It includes the WG-400A Direct Law-Capacitance Switch Probe and Cable with BNC type connector, and a special "Quicktracer" probe.

Now Dixons Technical save you up to $£ 135$ on CCTV equipment.

Only someone with the big time buying power of Dixons Technical could bring you an amazing $£ 135$ saving like this on this video duo. The camera alone would cost you $£ 320$. And a comparable monitor would set you back about $£ 100$. Now Dixons Technical bring you the superb viewfinder camera for just $£ 220$, plus VAT. And the $6^{\prime \prime}$ monitor for only $£ 65$.

The TN 63 CCTV Monitor

This 6" model is very advanced for its size. Its horizontal resolution capacity is greater than 600 lines at center so you get a video image that's clearly defined and highly detailed. Since the TN 63 is a studio model there are independent video and sync inputs. And the front mounted control knobs make fast tuning and picture adjustment easy. It's a real giveaway at $£ 65$. Also available, 3 monitors in standard $19^{\prime \prime}$ rack $£ 195$.

The WV-341N Viewfinder Camera

Its compact design and lightweight housing, it weighs just 5.7 kg , makes this camera one of the lightest full performance cameras on the market. And the $4.5^{\prime \prime}$ diagonal viewfinder provides bright detailed images with a resolution of 550 lines at
center. All controls on this camera are within easy reach of the operator. They include brightness and contrast setting for the viewfinder, and an internal/external sync switch. They aso include an optional focus knob, a viewfinder selection switch, an intercom connection, and an on/off switch with pilot light. All are located at the back of the camera. Beam focus and target controls are on the side of the camera where they are unlikely to be misadjusted. At $£ 220$ this camera is quite a buy.

Decades ahead of the rest

LOGITEK produce a range of exciting new products designed to meet the needs of the professional equipment user at realistic prices. One of these is the DB5R decade resistance box. Using thumbwheel switching this unit covers a range of 10 chms to 1 megohm in five decades.

* Metal Firm Resistors.
* 2\% Guaranteed accuracy
* Low Temperature Co-efficient.
* Tough Polystrol Case.
* 4 mm Sockets.
* Ex-Stock Delivery.

* $40-66(+25 p$ P. \& P. $)$

Excluding VAT.
Distributors and Trade enquiries invited
Selected by the Design Council for The Design Centre, London

H \& W Logitek Electronics Ltd.

13 Carron Place, Kelvin Industrial Estate, East Kilbride G75 OUU Telephone East Kilbride 42911

WW-03I FOR FURTHER DETAILS

WW—026 FOR FURTHER DETAILS

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy with crystal controlled oscillator

Simple to use

accepts wide range of input signals with
no manual tuning or adjustment

D ■ L D

The plus factor* in test equipment

PAL TV

Pattern

 Generator PM 5509- Full coverage I•F.; Bands I, III, IV and V - Electronic tuning with 5 preset channels io test patterns (colour and B \& W)
- Adjustable chroma
burst and HF-amplitude

Pye Unicam Ltd
Philips Electronic Instruments Dept
York Street Cambridge England CB1 2 PX York Street Cambridge England CB1 2 PX
Tel Cambridge (0223) 58866 Telex 81733 :

- Special sync, video and VCR outputs
- External video and sound modulation possibility
- NTSC version available: PM 5512

Measureairflow accurately foronly 667.00

The AVM500 gives accurate and immediate metering of airflow. The standard scale is between 0 and 30 metres/ second (70 mph). Other calibrations can be supplied at cost.
Airflow is measured by a constant temperature bridge, supported on a lightweight probe, which is connected by cable to the meter. Operation is by battery. The AVM500 is therefore extremely quick and easy to move and instal. A recording instrument is available.
Please send details of your AVM500. I am interested in wind measurement for
Name
Position
Company
Address

Prosser Scientific Instruments Ltd Lady Lane Estate Hadleigh Suffolk Tel Hadleigh (047-338) 3005

WW-086 FOR FURTHER DETAILS

BYWOOD

The company with the largest range of full spec. devices with new prices from 1 st May

DISPLAYS

| DL707 | $£$ | 1.70 |
| :--- | :--- | :--- | :--- |
| DL704 | $£$ | 1.70 |
| DL701 | $£$ | 1.70 |
| DL747 | $£$ | 2.45 |
| DL750 | $£$ | 2.45 |
| DL746 | $£$ | 2.45 |
| $3015 F$ | $£$ | 1.25 |
| $3017 F$ | $£$ | 2.00 |
| RDS1 | $£ 8.00$ | |
| RDM2 | $£ 24.80$ | |
| DG12 | $£$ | 1.20 |
| $51 T 01$ | | 5.80 |

Other chips and displays usually available ring for details or SAE for catalogue and prices
VAT on clocks. clock chips and displays still 8%
We advise the use of sockets for all ICs, $24 / 28 / 40$ pin £1.00
BYWOOD ELECTRONICS
181 Ebberns Road Hemel Hempstead Herts. HP3 9RD 0442-62757
All prices on this advert exclude VAT
Terms CWO. Access, Barclaycard (Quote card no.)

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road, London N1 1LY. Tel: 01-607-8271

Ice Hockey - 2 or 4 plavers
Football - 2 or 4 plavers

Tennis - 1 or. 2 players There is onlyone way to manufacture video games - one LSI mprom chip

FEATURES:

Digital score read out on screen.
Simulated audio tones.
Bats reflect at five different angles determined by the player.
Automatic ball serve and speed change
All bats can move in any direction.
Compatable with all world wide receivers.
Fully interlaced picture
For the first time, one single LSt chip is avallable which provides seven video games. Tennis, lootbail and ice hockey for two or iour players and a single player, snare the square.
Each of the seven games is, in it's own right, more sophisticated than any other game of it's kind The device runs for weeks on a standard nine volt battery and requires only a few external discreet components to provide a working game. A product of space age technology, this NEW LSI CHIP represents a break through in the video games industry.
Designed for the consumer market it permits the manufacture of elaborate low cost home games.
Logic Leisure are World Distributors for this device and are seeking a limited number of International Video Game Manufacturers for exclusive agencies.

for electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits. Prices on request.
teonex offers more than 3,000 devices They are the Teonex range are nearly always available for performance because the company mposes strici Watie now for lechnical specifications and prices and now operates in morerthan sixty countries, on London Wir 2RY. England. Electronic valves semı-conductors and integrated Tosuply London W11 felex 262256
 WW-0I6 FOR FURTHER DETAILS

SIEMENS

Your guarantee of a good reception.

Designed and developed to meet the most stringent demands of our own equipment, Siemens signal and medium power transistors bring the highest standards of quality and reliability to the GHz range.

They offer a comprehensive choice in both frequency and power ranges. In the frequency spectrum $500 \mathrm{MHz}-5 \mathrm{GHz}$, Siemens give you no less than 20 devices, in a total of 8 package variations. Every one meets the most demanding specifications. Like those on cross-modulation and noise - (only
around 3 dB). And in the power spectrum, outputs range from 200 mW to $1 \frac{1}{2} \mathrm{~W}$. There is also a wide selection of pin diodes or high frequency varactor diodes.

Two other notable features are very competitive prices and short lead times. All of which makes Siemens transistors ideal for use in many high frequency applications. So, if you are involved in antenna amplifiers, CATV/MATV systems, mobile radio, test equipment or any
branch of the industry using high frequency amplifiers or oscillators, send the coupon now for our leaflet.

Siemens Limited, Great West
House, Great West Road, Brentford,
Middlesex TW8 9DG.
Tel:01-5689133.

I
To: Marketing Services Division, Siemens Ltd., Great West House, Great West Road, Brentford, Middx. TW8 9DG.
Please send me your leaflet. My specific interests are:-
\square High frequency transistors \square Pin diodes \square Varactor diodes Oscillators

Name
Position
Company
Address \qquad

Purpose-built servo and actuator systems usins standard components

McLennan Engineering Ltd have considerabte experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques; an important facet of our skill lying in purpose-designing around standard components for speed and economy.

The illustrations show a selection of modules from
the standard range and include the new EM/ 100/100A servo drive system. All items are available
individually or can be supplied engineered to
custom-built systems.

1. EM, 100/100A SERVO AMPLIFIER. A new addition to the
range. A complete servo drive system including
power supply which is eminently suitable for
driving pririted circuit motors and other
servo motors up to $1 / 6 \mathrm{~h} . \mathrm{p}$. EM 100 output
$\pm 24 \mathrm{~V}, 4 \mathrm{amps}$ continuous, 45 amps peak.
EM 100 A - output $\pm 24 \mathrm{~V}, 7 \mathrm{amps}$
continuous, 75 amps peak.
2. DC SERVO AM 1006 S.

With integral potentiometer. Max
continuous output Torque
14.6 kgcm at $7 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
3. LOW INERTIA NC SERVO MOTOH

Output.5W
4. CONT ROL AMPLIFIER EM 40 Output +15 V 0.5 amp
5. TYPICAL PRECISION GEARS 120 to 32 DP

molennon

McLennan Engineering Ltd
Kings Road. Crowthorne, Berkshire.
Tel: Crowthorne 5757/8.

SCOPETMDO2S

The precision scope for
the demanding engineer
3% accuracy - which just about summates this 25 MHz qualtrace Instrument from Scopex. A professional scope by any standards -yet at £225"In a price bracket far below its desigri specification.

- DC-25MHz,
full screen
* Measuring accuracy 3\%
* Signal delay on both channels
- Trig level and polarity from one simple control
* Wide timebase range, $200 \mathrm{~ns} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$
* Sensitivity $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
- High brightness PDA tube
* Lightweight portability

Write or 'phone for details
Scopex Instruments Limited,
Pixmore Industrial Estate,
Pixmore Avenue,
Letchworth, Herts. SG6 1 II Tel: Letchworth (04626) 72771

Forallwhowant to knowabout electroniccircuits

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - iricluding additional circuits - in this magazine size hard cover book has been updated where niecessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

A newbook from Wireless World

ORDER FORM

To: General Sales Department
IPC Business Press Limited,
Room II, Dorset House,
Stamford Street, London SEI 9LU.
Please send me
copy/copies of
Circuit Designs - Number I at $£ i 0.40$ each inclusive. I enclose remittance value $£$. (cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company, egistered in England and a subsidiary of Reed International Linited Registered No 677128 Regd. office Dorset House, Stamford Street, London SEI 9 LU.

High-stability
 receiver

Purpose VHF Receivers provides reception facilities for AM, FM, CW and pulse transmissions.
Model 1990R/i covers the band $25-235 \mathrm{MHz}$. Model 1990R/2 has additional ranges extending the coverage to $25-500 \mathrm{MHz}$.

All 1990R receivers are equipped for high-stability working with either a synchroniser (illustrated) or a 10-channel crystal facility. Provision is also made for operation with externally derived oscillator signals as an alternative to continuous tuning with the free-running local oscillator.

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081
A GEC-Marconi Electronics Company

WW-063 FOR FURTHER DETAILS

ROGERS

 AUDIO TEST EQUIPMENTA comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment but with additional applications in the
electronics industry in general. The equipment is of particular interest to the professional audio engineer. recording studios, broadcasting authorities and educational authorities and

DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. Selling Price: c/w Bench Case £ 175.00 + VAT.

S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measurement of total harmonic distortion. Selling Price: c/w Bench Case £80.00 + VAT.
AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and principally for measuring low level signals in high impedance circuits. Selling Price: c/w Bench Case $£ 75.00+$ VAT.

PS1A. Regulated Mains Power Supply. Selling Price: $£ 18.50+$ VAT.

Model 'A' Noise Gwnerator. A portable battery operated unit designed for carrying out listening tests on loudspeakers. 'Pink' or 'White' noise can be selected and output can be continuous or burst. Output is contin uously variable. Selling Price: £37.50 + VAT.

Full Colour Literature describing the complete range may be had on request
ROGERS DEVELOPMENTS (Electronics) LIMITED 4/14 Barmeston Road, London SE6 3BN. England Telephone: 01-698 7424/4340

ANADEX CF-700

1 GHz COUNTER FOR £475

Features include:-
$\star 1 \mathrm{GHz}$ count rate with 1 Hz resolution

* 30 mv sensitivity with high overload capa-
bility
- 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to 10 k Hz

aspen
 electronics limited

18a HIGH STREET, NORTHWOOD, MIDDX
HA61BN
TELEPHONE NORTHWOOD 27688

Industrial Tape Applications
WW - 1 Te9 FOR FURTHER DETAILS

The International Audio-Visual Aids Exhibition 8/11 July The National Hall, Olympia, London

INTER NAVEX 75 is being held under the auspices of the EFVA/NCAVAE and organised by
Brintex Exhibitions Ltd
178/202 Great Portland Street, London W1N 6NH
EXHIBITION HOURS:
Tuesday, 8th July Wednesday, 9th July Thursday, 10th July 9.30 a.m. to 6.00 p.m. 9.30 a.m. to 6.00 p.m. 9.30 a.m. to 6.00 p.m. Friday, 11th July 9.30 a.m. to 4.00 p.m.

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE ANP This is the tone contro section of the best
pre amp kif currently avallable. Consider the advantages:--"First quality fibreglass
 Low noise carbon film and metal film rosis10rs throughout *inest qualify low-noise lotal stability. *Special decoupling and earthing arrangements to eliminate hum loops. Controis. swithes and inpur sockets mount directly on the boards 10 TOTALLY ontrols mount directly on the board-and so they do. by their shaft bushes! You still have We incorporate the Quitter modification which is most important as it reduces distortion and increases the bass and treble control rang
Ant to back! and may therefore be used in many other applications than $1 \frac{1}{2}$ " from METALWORK AND WODOEN CASES These have been under review for some time F.M. TUNER Thit our range is designed to offer the best possible
 coils to wind no RF cricuits to wire and no alignment is required in fact the whole unit and two ready built and aligned modules comprising the active components. We have frontal size of only in having a tuner as ange in can be mounted on the side of our Balley amplifier meta: work thus furning it into a tuner/amplifier whist onty increasing its width by 1 s in正 extended chassis (no case) is £22 tor mono £25.45 for stereo. Metal case $\mathbf{£ 3 . 5 5}$ STUART TAPE CIRCUITS Our printed circuits and components ofter the easy way to output levels suit Bailey pre amp. Toral cost varies but around $\mathbf{£ 3 5}$ is all you need We can offer tape heads as well it you want new ones
All above kils have fibreglass PCB's. Prices exclude VAT but P\& P is included.
EURTHER INFORMATION ON ALL KITS FREE if YOU send us a 9 in $\times 4$ in. S.A.E EPRINTS POSI f
STUART TAPERECORDERAII articles under one cover 30p
mbly notes $15 p$
Penylan Mill, Oswestry, Salop

S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.
 MAHOGANY CABINET per channel Stereo Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc, are PC mounted for ease of assembly. Tuner section: uses Mullard LP1186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.8 \mu \mathrm{~V}$.THD typ. 0.4%.

PRICE: $£ 47.95+99 p$ p\&p+VAT.

NELSON-JONES STEREO FM TUNER

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

PRICE: Mono $£ 25.46+85 p$ p\&p + VAT;
 With Portus-Haywood Decoder $£ 31.96+85 p$ p\&p+VAT; With ICPL Decoder $£ 29.73+85 p$ p\&p+VAT.

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses
 are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99 p$ p\&p+VAT.

STEREO MODULE TUNER

A low-cost Stereo Tuner based on the Mullard LP1 186 RF module requiring no alignment. The IF comprises a ceramic filter and highperformance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. 30 dB S/N mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85 p$ p\&p + VAT. Mono $£ 22.40+85 p$ p\&p+VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER
Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.)

PRICE: $£ 12.88+25 p p \& p+V A T$.

BASIC MODULE TUNER

Supplied as a printed circuit board with all components and screened Mullard LP1186. to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono $£ 11.11+25 p$ p\&p + VAT; Stereo $£ 13.89+25 p$ p\&p+VAT.
PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. $0.05 \% @ \mathrm{~N}$-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED.
PRICE: $£ 7.68+25$ p p\&p + VAT.
PHASE-LOCKED IC DECODER
Integrated circuit phase-locked stereo decoder based on the MC1310. THD typically 0.3%. Separation $40 \mathrm{~dB} @ 1 \mathrm{KHz}$.
PRICE: $£ 4.27+20 p \mathrm{p} \& \mathrm{p}+\mathrm{VAT}$.

PUSH-BUTTON UNIT

Brief Spec. Tuning, range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection- 70 dB . IF rejection- 85 dB . THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

How mu Damage cost you?

In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because
 they are re-useable again and again and again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care.

PROTEETOMOFFS

To JOHN EDGINGTON \& CO. LTD.
41 Old Woolwich Road, Greenwich, London SE10 9PU (01-858 7014-6)
Send me details of Protectomuffs
Name
Address
\qquad

WW-084 FOR FURTHER DETAILS

11050 microns

that's OCLI's I.R. Filter capability.

OCLI manufacture a wide variety of Infrared Filters which fully cover the 1 to 50 micron spectral region. Strict quality control and inspection ensure that all

OCLI I.R. Filters possess superior performance coupled with the highest degree of environmental
stability and physical durability. The range available includes SQUARE BAND, WIDE

BAND, and LONG \& SHORT WAVELENGTH PASS Filters.

Typical performance characteristics of an OCLI I.R. Square Band Filter used to isolate the CO band in a
pollution detection application are shown below.

Other fields benefiting from OCLI Infrared Filters/Coatings include.

- GAS ANALYSERS/DETECTION SYSTEMS
- PASSIVE THERMAL IMAGING SYSTEMS
- FIRE DETECTION
- OPTICAL PROXIMITY FUSES
- INFRARED SPECTROSCOPY
- INFRARED PHOTOGRAPHY
- SPACE RECONNAISANCE

OCLI
(European Manufacturnng
Division)

OCLI Optical Coatings Ltd., Hillend Industrial Estate, Dunfermline, Fife, Scotland KY11 5JE. Tel. Inverkeithing 3631 (038-34 3631). Telex. 72307.

(JNㅡㄴ) NEW SIGNAL GENERATOR WITH crystal accuracy!
 * Servicing digital transmitting INSTRUMENTS
 * test gear calibration
 * radio measurements
 * TELEMETRY CHECKing
 * HI-FITESTING
 * DIGITAL CONTROL SYSTEMS CHECKOUT
 - DIGITAL EQUIPMENT MAINTENANCE

* QUARTZ CRYSTAL CONTROLLED ACCURACY G STABILITY
* USES PHASELOCK LOOP SYNTHESISER TECHNIOUES
* PRECISE digitally set frequency WITHOUT OUTPUT COUNTER CHECK
* WIDE RANGE FREOUENCY MULTIPLIER
\star FREQUENCY OUTRUT UP TO1MHz
* CMOS \& LOW POWER TTL INTEGRATED CIRCUITS

POWER AMPLIFIER

120 watts RMS into 4 ohms

For full details on our range of mixers, amplifiers and light control units, contact

ICELECTRICS LTD
 15 ALBERT ROAD, ALDERSHOT HANTS. TEL: 025228514

WW-083 FOR FURTHER DETAILS

WW-032 FOR FURTHER DETAILS

useo throughout the worlo. sanwa's experience of 30 yeahs ensures accuracy. helability. versatility. unsurpasseo tester performance COMES WITH EVERY SANWA.

Excellent Repair Service MOOEL P28 E9.76 MOOEL F80THO E25.28 MOOEL JP50 £11.58 MOOEL AT45 £21.52 $\begin{array}{llll}\text { MOOEL BX 505 } & £ 29.12 & \text { MOOEL 380CE } & £ 29.12 \\ \text { MOOEL 36DYTR } & £ 15.28 & \text { MOOEL N101 } & £ 31.81\end{array}$ MOOEL U500X \quad E15.60 MOOEL TGOEO MOOEL A.303TRO $£ 17.45$ MOOEL EM800 MOOEL K3O THO \quad T24.01 MOOEL R1000CB $£ 31.81$
$£ 35.89$
£81.06 THESE PRICES ARE SUBIECI TO ADOITIOHAL CHABGE OF 80 FOR Y 775.2

Cases extra available for most meters, but not sold separately

$$
100 \text { uVf.s. } 0.3 \text { sec.f.s. }
$$

- Multi-channel, 2-6 with full range zero set
- Multi-pen - fibre tip. 6 colours. 16 switched chart speeds - Choice of Z fold or roll chart. Five plug - in preamplifiers switched ranges $100 \mathrm{uv}-500 \mathrm{Vf} . \mathrm{s}$. $250 \mathrm{~mm}\left(.10^{\prime \prime}\right)$ chart width

ENVIRONMENTAL EQUIPMENTS LTD.
Eastheath Avenue, Wokingham,
Berks. RG11 2PP. Tel Wokingham 784922
WW- 080 FOR FURTHER DETAILS

BE FAIR TO YOUR MUSIC
Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored We believe that only a compatible combination of specifications will enable a system to reproduce music.

We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pick up cartridge and
driving any loudspeaker.

Nomrin Aldo Liai it Sail Lanit Salisbury Wits Tol 107221

OLSON

Standard minicases are made from 20 g . mild steel sheets zinc-coated and finished in silver grey hammer tone stove enamel. Front panels made from 18 g . steel. finished in light grey high gloss enamel.

Type	Overall Dimension			Case no vents	Case with vents	Chrome leg
	Width	Height	Depth			
21	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	-	3.57	0.82
22	$8 \frac{1}{}{ }^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	-	4.01	0.82
23.	$10 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	-	4.78	0.88
24	12 ${ }^{\frac{1}{2}}$	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	-	5.22	0.88
25A	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	3.46	3.90	0.82
25B	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{4}{ }^{\prime \prime}$	3.63	4.07	0.82
26A	$8 \frac{3}{4}{ }^{\prime \prime}$	$5 \frac{31}{4 \prime}$	$6 \frac{1}{4}^{\prime \prime}$	4.89	5.33	0.88
26B	$8 \frac{3}{4 \prime \prime}$	$5 \frac{3}{4 \prime}$	$8 \frac{1}{4}{ }^{\prime \prime}$	5.11	5.55	0.88
27A	1214"	$7 \frac{1}{2}$	$5 \frac{1}{2}{ }^{\prime \prime}$	5.33	5.88	0.88
27B	$12 \frac{1}{4}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$8{ }^{\prime \prime}$	5.77	6.32	0.88
28A	$14^{\prime \prime}$	101/ ${ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	6.32	6.87	-
28B	$14^{\prime \prime}$	101/ ${ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	6.87	7.42	-
29A	$10^{\prime \prime}$	4 "	6 "	4.40	4.84	0.88
298	$10^{\prime \prime}$	4 "	8 "	4.67	5.11	0.88
30A	12"	$5{ }^{\prime \prime}$	$6{ }^{\prime \prime}$	4.78	5.33	0.88
308	12"	5 "	8"	5.06	5.61	0.88
31 A	$14^{\prime \prime}$	6 "	$6 "$	5.22	5.77	0.88
31 B	$14^{\prime \prime}$	6 "	8"	5.50	6.05	0.88
61	$15 \frac{1}{2}{ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	7.97	-
62	171 ${ }^{\prime \prime}$	$8 \frac{11}{}{ }^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	9.24	-
63	$16 \frac{1}{2}{ }^{\prime \prime}$	$9 \frac{1}{2}{ }^{\prime \prime}$	$9 \frac{1}{2}{ }^{\prime \prime}$	-	9.24	-
64	151 ${ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	121 ${ }^{\prime \prime}$	-	9.24	-
65	171 ${ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	1212 ${ }^{\prime \prime}$	-	10.56	-
66	161 ${ }^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	$12 \frac{1}{2}{ }^{\prime \prime}$	-	10.56	-

Types 21, 22, 23 and 24 are finished in olive green hammertone with front panels in light straw gloss enamel. Fitted with ventilated rear panels only. No louvres in the base

PORTABLE POWER DISTRIBUTION

COMPLETE WITH GFT CABLE AND 13AMP PLUG
4 SOCKETS 13A. $\quad £ 8.00$
6 SOCKETS 13A. £9.50 4 SOCKETS 13A. + SW. $\mathbf{~} 9.15$ 6 SOCKETS 13A. + SW. £10.10

PLEASE ADD FOR POSTAGE \& PACKING AND V.A.T Trade Counter is open for personalc allers from 9 a.m. to 5.00 p .m. Monday-Friday

GRAMPIAN REPRODUCERS LTD. hanworth trading estate feltham , midolesex telephone 01-894 9141

RADIO MASTS ANTENNAS

This Type 4-754X Array is one of the many new antennas that RADIO MASTS' engineers are currently producing, from simple colinears and yagis to complex arrays for satellite tracking and other applications.
Recent developments include a paging antenna specially developed to radiate on site with deep penetration.
A centre fed dipole to give a 3 dB Gain over a half wave dipole, absolutely beneficial on communal sites where space limitations are a vital factor.
W.e maintain stocks of many antennas and can fulfill orders very rapidly.

RADIO MASTS LIMITED Pond Wood Close, Moulton Park Industrial Estate Northampton, England

Tel. Northampton (0604) 43728. Cables: RAMAR, Northampton

WW-078 FOR FURTHER DETAILS

CONSTRUCTIONAL KITS

Mullard CCTV Camera, P.E. CCTV Camera
P.W. Tele-Tennis, Crofton UHF Modulator

Crofton VHF Modulator
Electronic Dic (Ready Assembled) in aftractive case
P.W. Electronic Orgen Kit.

Further kits will be added to the range Kits are complete, down to the last nut, including attractively finished ready drilled, painted and silk screened panels. A FREE get you going technical Back up service is avallable
APCB service is available for any published design at competitive prices
As well as holding large stocks of electronic components we are also importing a range of competitive products such as Stereo Headphones Telephone Desk Amplifiers Stereo
8 -track Head Cleaner and Demagnetizers Mini Drills etc

ANALOGUE \& HYBRID COMPUTERS

Illustrated the C180. one of our standard range of analogue and hybrid computers which offer high performance and extremely good value for money. This model has 18 IC operational amplifiers all of which may be switched for use as integrators, automatic function selection and meter switching, 3.Four quadrant Multupliers. Individual Pot-Set Facilities, 1\% accuracy, bult-in Stabilised Power Supplies. DVM optional extra Many other features at this very low price of $£ 940$ complete with patching leads and instruction Book

We are spectalists in producing computers designed for your own specific research or engineering requirements at prices which are very little more than those for our standard range
Phone or write for details of our Analogue or Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF PRECISION ELECTRONIC EQUIPMENT 28 Athenaeum Road. Whetstone, London N20 9AE Tel 01-445 7683

WW-079 FOR FURTHER DETAII

PETITE PRECISION!

A 12 V DC POWER TOOL FOR THE DESIGN AND RESEARCH ENGINEER
available in Kit form or Separates

INTRODUCING THE

 TRANSCRIPTION CASSETTE RECORDER

 TRANSCRIPTION CASSETTE RECORDER}

For those who appreciate Quality...

The proven quality of the Forgestone 400 colour television kit now demands a cabinet of equal merit This we can now supply. The finest selected materials carefully reproduce the Jacobean style, which is echoed in the distinctive brocade design of the inner fascia

Mail order
Access \& Barclaycard accepted

Buy as you build-all Forgestone Kitsets are for the constructor of today, each section of the kit is available separately. Please send stamp for further details of these quality products.

Forgestone Colour DevelopmentsLtd

Ketteringham, Wymondham, Norfolk, NR189RY
Telephone: Norwich 810453 (STD 0603)

STABILISED TWIN POWER SUPPLIES TO 30V AT 2AMP

LINSTEAD ELECTRONICS
 ROSLYN RD, LONDON N15 5JB
 01-802•5144

MAIN AGENTS
IRELAND: LENNOX LTD PO. BOX $212 A$ DUBLIN 2 DENMARK: SCANFYSIK AB 13/15 HJORRINGADE DK- 2100 COPENHAGEN

SWEDEN: EMI SVENSKA AB TRITONVAGEN 17 FACK S 17119 SOLNA 1
NORWFY EMI NORSK AS POSTBOKS 42
KORSVOLL OSLO 8
MALAYSIA: LEC Sdn Bhd PO BOX 60 BATU-PAHAT
SOUTH AFRICA:
PROTEA (PTY)
38 FARADAY STREET
JOHANNESBURG

NEW!...the decon-dalo 33PC Quick -Dri
 etch
 -resist marker

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!

Simply draw the desired circuit onto copper laminated board etch - clean

The circuit is ready to use

NO MESS - NO MASKING

 A perfect circuit every time!Still only $£ 1.00$ for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve VAT and post extra. Available now in every country in Europe.

Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371

For those who want the ultimate
in amplifier performance

An Invitation

(Please send me details of the revolutionary Cambridge Classic One) Special introductory price $£ 175.00+$ VAT

Name

Address \qquad

My Local Dealer is

The
 Cambridge Classic One

It changes everything in amplifier technology except the sound

We bring you progress in audio engineering
Cambridge Audio Ltd., Lamb House, Church Street, Chiswick, London W4 2PB Tel: 01-9954551

A SUPERB RAMCE OF PROFFSSIINAL Whatilitililifs AT ROCK BOTTOM PRICFS

As used by Military, Security Firms, Rescue Taams, Shipping Companies. Air Lines, atc.

Teamwork? Several walkie-talkies can work in
conjunction. Our superbly equipped full service
lacilities and test development department ensures
trouble.free use

- To: FULTON TUNING MAIL ORDER, Dept. WW1, 129 Park Road, London NW8
-

Please send me PERSONAL CAIIERS WELCOME PERSONAL CALI
(pars) Modet No

THE SKYFON NV7

 Crystat controlled sup odyne 2 -way walkier-raikes hat are really amazing value Sove $£ 9.50$ off normal retail batreries Complete with carrystrap and call buzzer ON strap and call buzzer ON
OfF, VOL control Etrective range (subtyect to local cond tons) up to 2 miles Transmi and recerve with crisp distor
tion-l'ee clarity Normal Retai per part E 3900
OUR
PRICE
2 $29.50 ~$
per par inc $\mathrm{VAT}+50 \mathrm{p} P$:

My Access Card No Is
Address (Block Caps)
Address (Block Caps)

"'TO LEAD
 IS IMPERATIVE''
 says Vitavox
 Technical Chief

The Power Loutspeaker Range. the 4 KHZ Horn. the Slot Speaker. These are a few of the new innovations in sound reproduction launched by Vitavox Linited in the six years since David Young became Technical
Director of the Company.
There can be few industries in which new techniques arise with greater frequency than in sound reproduction." says David Young. "Wher ever sound equipment is used. more and more is expected ol it - in used. more and more is expected
sensitivity, power. efficiency and sensitivity. power. efficiency and
craftsmanship. To te a step ahead o craftsmanship. To be a step ahead of
demand is vital. Because of this. it is our policy always to carry out as much as possitle of our own research. design and developmenl. We enjoy tackling the more difficult areas of sound reproduction.
The design team at Vitavox combines the youthful enthusiasm of David Young with the long experience of the Companys Technical Manager. Doug Johnstone. who joined Vitavox in its intancy in 1935 .

A fascination for design and a love of music combined to make it natural for David Young to become Technical Director ol the

Company founded by his lather in 1931. At school the sciences and the school jazz band were his two main interests. At home he was never happier than when designing - anything ir on crysial sets to a forge for melting lead. Following a spell in light engineering the joined Vitavox in 1961. at the age ol 19. Two years of prototype design and a period developing the Company's costing and production control system with his brother Neil. now Managing Director of Vitavox. during when he gained his Institution of Works Managers Certificate and Diploma in Works Management. preceded his appointment as Technical Director in 1969.

Despite the many difficulties on the industrial front. the Vitavox story continues at an ever increasing pace. with a growing international demand for their products.
"Quality. not quantity. has always been our practice." says David Young. "We are geared to that and so able to meet the demand which comes. not only from the UK but from 34 countries throughout the world.

VITAVOX
Westmoreland Road Lo
Telephone 01.20.4 4234

GET IT WHILE IT'S GOING

This is the first ever Wireless World Annual. It's got 140 pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include : A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French ; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
$£ 1$ from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

[^0]
wireless world annual 1975

CONMUNCATHNS EEETRONLCS

GROOVAC

!

vacuum record cleaner

Vacuum cleaning is the best way to remove dust. especially fine dust. Now with the Groovac. vacuum cleaning is available for extracting the particles from inside record grooves which are responsible for record and stylus wear - while your record is playing.

For full details please write to:-

[^1]
STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July' 72)

MOTOROLA MC1310P EX STOCK

 DELIVERY SPECIFICATIONSeparation $40 \mathrm{~dB} 50 \mathrm{~Hz}_{z}-15 \mathrm{kHz}$ I Plevel 560 mV rms
Input inmpedance 50 kg

O/P Distortion 03% Power requirements $8-14 \mathrm{~V}$ at 16 mA
Will drive up to 75 mA stereo Power requiremen
KIT COMPRISES FIBREGLASS PCB

(Roller tinned). Resistors IC. Capactiors	ONLY	WHY PAY
Preset Potm \& Compretiensive Instructions	E3.98	MORE?
LIGHT EMITTING DIODE	RED	00st free
Suitable as stereo on mdicator for above	GREEN	$\mathbf{5 9 p}$

MC1310P only £2.15 plus p.p. 10p
NOTE
As the supplier of the first MC1310P decoder kit of which we have sold literally thousands our customers can benefit from our wide experience V.A.T.

Please add V.A.T. to all prices
FI-COMP ELECTRONICS
PORTWOOD INDUSTRIALESTATE, CHURCH GRESLEY
BURTON-ON-TRENT, STAFFS. DE11 9PT

It's New

It's Versatile

it's from Telequipment

Yes indeed!, yet another addition to Telequipment's range.
This time it's a series of low cost, true dual beam oscilloscopes.
Setting new standards for high performance, versatility and value, the 63 series will appeal to the most budget conscious of organisations.
Designed to meet the ever increasing demand for low cost 15 MHz oscilloscopes with plug-ins, the 63 series offers the choice of 5 different vertical amplifiers which include a TV monitor, a differential amplifier and 15 MHz general purpose plug-ins with or without signal delay. Two main frames are available - the D63 with a conventional c.r.t., or the DM 63 fitted with a variable persistence storage tube, both accepting any combination of two from the five vertical plug-ins available. These plugins cover a wide range of requirements in single, dual and four channel operation, in addition to $X-Y$ applications requiring low phase-shift characteristics.
UK provisional prices (excluding VAT)
$£ 342-£ 733$ depending on choice of main

frame and plug-ins.
Write now for details and find out the full scope of
Telequipment's 63 series. You won't be disappointed.

TELEQUIPMENT \ll >

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone: Harpenden 63141
Telex: 25559
Sales and Service throughout the world

wireless world

Electronics, Television, Radio, Audio
JUNE 1975 Vol 81 No 1474

Contents

```
247 Off the record
2 4 8 \text { Digital techniques in recording and broadcasting by J. Dwyer}
254 APRS 75 preview
255 News of the month
    Stereo cinema sound-tracks use Dolby
    Radiopaging service for London
    Electronics at A-level
257 Wireless World Dolby noise reducer-construction by Geoffrey Shorter
264 Letters to the editor
266 A 50MHz oscilloscope-2 by C. M. J. Little
269 Aid for drivers
271 Paris components show
272 H.F.predictions
2 7 3 \text { Electronic circuit calculations simplified-l by S. W. Amos}
277 Time by radio by D. A. Bateman
283 75 years of magnetic recording-4 by Basil Lane
286 Literature received
287 Circards 22: amplitude modulators by J. Carruthers, J. H. Evans,
    J. Kinsler and P. Williams
289 Project: radio telescope at Frensham Heights by J. H. Duncan
291 Space news
292 World of amateur radio
293 New products
296 Real and imaginary by "Vector"
a82 APPOINTMENTS VACANT
al02 INDEX TO ADVERTISERS
```

Price 30p. (Back numbers 50 p. from Room 11 . Dorset House. Stamford Street. London SEI 9LU.)
Editorial \& Advertising offices: Dorset House. Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SE1."
Subscription rates: 1 year. $£ 6$ UK and overseas ($\$ 15.60$ USA and Canada): 3 years. $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: I year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada): 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RH16 3DH. Telephone 044453281
Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

C I.P.C. Business Press Lid. 1975

This month's front cover, showing the tape transport of the RacalThermionic ICR32 communications recorder, a $32 \cdot \mathrm{ch}$ annel machine, introduces the articles on magnetic recording technology in this issue.

IN OUR NEXT ISSUE

Digital wrist-watch

Constructional design, using a liquid-crystal display and c.m.o.s. circuitry, gives long battery life

Active notch filters

Design theory for active circuits to remove single frequency interference such as whistles or hum

Wireless World Dolby noise reducer

The final article will deal with calibration and use of the unit described in May and June

SIXTY-FIFTH YEAR OF PUBLICATION

ibpa

miveridion Acines

microphoner matter most.

Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sound system quality-regardless of the other components in the system. It is false economy at its worst to be a microphone miser. Install Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice intelligibility (and fewer service calls due to microphone problems). For the name of your local sound specialist, write:
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

wireless world

Off the record

Editor:

TOM IVALL. M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 0I-2618443

Assistant Editors:

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-2618429
Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-2618515
ROGER PORT
Phone 01-261 8037
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597

JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

From the Egyptian ivory plaque of 4700 BC to the plastic video disc just on the German market in 1975 AD we have been getting cleverer and cleverer in devising cheap, small, durable media for recording our knowledge, ideas and visions. Passing on the culture is a permanent human obsession - sometimes a very profitable one - and the modern electronics engineer is as much caught up in it as the ancient cave painter or hieroglyphics writer. For several thousand years we have been able to get our information directly off the records simply by looking at them - or listening "live" to the bards. But with mechanical and electrical recording we have given ourselves problems. First of all the information is held on the medium in some special way that calls for reproducing apparatus to make it perceivable. Secondly, the records and reproducers have to be made compatible so that any record can be reproduced in any place it is wanted. Compatibility has become crucial and industrial fortunes can be made or lost on it.

With video records our main preoccupations in the matter of compatibility seem to be with the different recording methods and "standards" adopted by competing manufacturers and with the different television standards used for the reproducers. What everyone seems to have taken for granted is that video records should use television sets as reproducers. Obviously this makes sense in so far as millions of people already have television sets and in so far as we want to record and reproduce broadcast programmes. But the video disc, in particular, has an immensely wide range of possible applications for information storage apart from home entertainment. For example, we may want to use it for holding highly detailed stationary or slowly moving pictures or data - photographs, drawings, diagrams, charts, graphs, text and so on: The television broadcasting system, on the other hand, was designed for presenting moving pictures in "real time" and therefore requires fast scanning, a high information rate and a large bandwidth. To use this for displaying stationary pictures or text would be wasteful from several points of view and would not make the best use of the storage capacity of the video disc (which, for example, might use a whole disc to store one static or slowing moving illustration). As an alternative one could envisage a slow scanning or writing system (e.g. facsimile) with a very fine scanning structure on which two-dimensional information of much higher definition than that possible on the television screen could be presented. Perhaps the television set could be adapted to this requirement.

What of the future? Perhaps, for one thing, we could get rid of the crude necessity of having to mechanically move the recording medium past some transducer in order to obtain our information. What about scanning with light or electron beams, for example? Holography is a possibility. Or perhaps we can develop the idea of digital storage, as used in computers and now coming into sound and vision signal processing, to produce records consisting of binary cells. From these we could extract the information purely by electronic sequential read-out, if a sequential signal is needed, or complete and instantaneous, rather as visual memories come straight from our brain cells. Without doubt the video disc is not the end of the story.

Digital techniques in recording and broadcasting

A summary of recent developments and future trends

by J. Dwyer

It has long been the prevailing view that a properly derived digital signal offers substantial advantages to the sound and television engineer over its analogue equivalent. The most important of these is that the signal to noise ratio of the signal depends on the number of steps into which the signal has been divided and is almost independent of the number of processes the signal is subjected to after the first analogue to digital conversion. Also, the level of the signal when it reaches its destination is not dependent on the gain stability of the circuits or channels through which it has passed, and there are no frequency-dependent phase shifts or other non-linearities during transmission. The signal can be delayed or stored for any length of time without damage. Digital equipment is less likely to need frequent adjustment and maintenance.

Against these advantages a greater bandwidth is needed to transmit a digital signal than its analogue equivalent; a fundamental rule, attributed to Nyquist, Hartley and others, is that the rate at which an analogue signal has to be sampled is twice the frequency of the highest frequency component in the analogue signal. The signal to noise ratio can be improved but only if each sample is defined by sufficient word length.

Operating digital equipment also needs entirely different skills if it is to be used to the best advantage. Some processes which are easy to carry out on analogue signals need more complicated and therefore more costly technology if they are to be used on digital signals, though this effect is mitigated to a large extent by the possibility of multiplexing a number of channels through the same equipment. It may be more convenient to change the signal to analogue form, process it and convert it back, in which case a number of analogue to digital and digital to analogue convertors may be needed in a system, resulting in increased costs.

Perhaps the most serious disadvantage of the digital signal is that poor transmission conditions which would merely deteriorate an analogue signal
may destroy its digital equivalent. A discontinuity in a digital signal may cause a more perceptible disturbance than would result in the analogue.
Nevertheless sound and vision engineers are working towards the day when signals are in digital form from the primary transducer, the microphone or camera, right up to the transmitter and even, in the distant future, up to the receiver ${ }^{2,3}$. In sound engineering much of. the impetus towards digital techniques has been provided by the knowledge that the analogue recorder has reached the theoretical limits of its development and is now proving an obstacle to the reproduction of the highest quality sound.
Perhaps the earliest application of digital techniques to sound engineering came with the realisation that analogue methods did not provide a satisfactory method of delaying a signal. For this reason delay units were built which converted the sound to digital form, delayed the signal, and then reconverted it to analogue form. In the Gotham Delta T101, for example ${ }^{1}$, a word length of ten bits was used to give a theoretical pk -to-pk signal to pk -to- pk noise ratio of 60 dB , which was quite adequate bearing in mind that it would almost certainly be used where its output would form a small part of the overall sound picture and its inherent noise would be masked by the other parts of the final sound signal.

P.c.m. links

Possibly the best-known use of digital techniques in broadcasting has been the use of pulse code modulation of sound signals for distribution between studios and transmitters. The details of the system have been widely reported elsewhere ${ }^{4.5}$. There is nothing new about p.c.m. It was first described in 1938 by Alec Reeves of Standard Telephone Laboratories. But it was not until semiconductors became widely available that the principle could be applied to a practical system.

The BBC has been using p.c.m. links between Broadcasting House and the Wrotham transmitter since September

14, 1972. Sutton Coldfield was connected in November and Holme Moss in February, 1973. The system is now used for transmitters as far north as Kirk O'Shotts. A BBC engineer said, "The main spine is now complete as far as the length of the country and to the west. Without it," he said, "it's impossible to see how stereo could have reached the rest of the country." Indeed the greatest advantage of the system for stereo coverage is that channels can be decoded at the end much as they were encoded before transmission. It is almost impossible to use two analogue lines over long distances that will transmit the two channels without introducing phase and other changes between them which make the use of such lines for stereo impractical. BBC engineers hope that eventually television coverage can be improved by p.c.m. just as stereo radio has been.

The extension of the p.c.m. system has kept. step with the British Post Office's introduction of digital techniques for ordinary telephone lines and the gradual withdrawal of music lines. In early 1973 the GPO awarded contracts to STC, Plessey and GEC to produce pulse code modulation equipment for use over long distances; 24 -channel p.c.m. links had been used for exchanges up to 30 km apart since 1968. The Post Office installed a trial line between Guildford, Portsmouth and Southampton during 1973 and in December the following year they started field trials to initiate the 1,680 channel, $120 \mathrm{Mb} / \mathrm{s}$ line between Guildford and Portsmouth. The 24 -channel local lines had only been capable of $1.5 \mathrm{Mb} / \mathrm{s}$, and the Guildford line was the first highspeed p.c.m. line of a system that will one day cover the whole of Europe, hence its importance to the BBC and the IBA.

As used at present the p.c.m. radio distribution system uses a sampling frequency of 32 kHz , which happens to be four times the sampling frequency used by the Post Office on digitally coded telephone lines. There are 8,192 equally spaced quantizing levels in each of the thirteen channels, each of whose levels is defined by a 13 -bit binary word
plus a parity bit. To each group of 13 samples are added 11 synchronising bits and five auxiliary bits for transmitter remote control, mono-stereo switching and so on, making up a total "frame" of 198 bits. The total bit rate is thus 6.336 Mb / s.
These signals are sent down wideband s.h.f. links suitable for television transmission. The BBC have been developing ways to send p.c.m. signals down the $2.048 \mathrm{Mb} / \mathrm{s}$ links which the Post Office is currently developing for digital transmission. Normally only four sound channels could be accommodated on such a link, but the BBC is researching the means of reducing the bit-rate for each channel so that six channels may be transmitted down a link, with a consequent saving in costs. Engineers have estimated ${ }^{6}$ that the existing 13 channel links could carry 24 channels by the same process.
The accuracy with which an analogue waveform can be dismantled, p.c.m. encoded and then reassembled at the receiving end is determined by the sampling frequency and the number of levels into which the maximum value of that waveform has been divided. Each of those levels is assigned a number, and the level to which the amplitude of the waveform is nearest when the sampling instant arrives has its number transmitted. Thus in Fig. $1 Q_{2}$ will be transmitted at instant t_{1}, Q_{1}, at t_{2}, Q_{1} at t_{3} and Q_{4} at t_{4}. Plainly, if distances x and y are reduced the waveform can be reproduced much more accurately.

It is a measure of the improvement that p.c.m. offers that the signal can actually be improved by adding noise to it. At very low signal levels the distance between quantizing levels becomes an appreciable proportion of the signal magnitude. There is a tendency for small changes in signal level to cause irregular jumps from one quantizing level to another. Since the quantizing jumps may be much larger than the changes in signal level that produced them, the effect can be audible, particularly as some sounds are dying away. The effect is called "crumbling" or "granular distortion".

To counteract it a dither signal is added to the signal which is a square wave, with a frequency of half the sampling rate and an amplitude of half a quantizing level, with a white noise signal superimposed on it. The dither worsens the signal to noise ratio by about 1.5 dB but the resulting noise, if audible, is more continuous and less obtrusive since the dither causes low level signals to cross and recross the quantizing levels at more frequent intervals. The theoretical signal to noise ratio after the dither signal has been added is 70 dB .

The coding error in the transmission can be as much as half a quantizing step, so the quantizing steps have to be made as small as possible. In order to define smaller quantizing steps the number of binary digits which are

transmitted to represent each level must be increased. Each addition of a binary digit to the word length giving the number signifies a doubling of the number of levels and a reduction in quantizing noise of 6 dB . But each addition of a bit to the binary word means an increase in the bandwidth needed to transmit the signal.
Therefore if the bit rate for each word is to be reduced a method has to be found to compress the signal so that changes in level, whether they occur at low level or high, use as many of the available quantization levels as possible. An opposing process has to be applied at the other end to restore the signal to its original proportions.

Companding processes

Broadly there are two methods of companding: instantaneous and syllabic. The instantaneous method of companding alters the gain of the compressor according to the instantaneous amplitude of the signal. In order for the signal to be reconstructed perfectly the signal going into the expander at the receiving end has to be the same as that which left the compressor on transmission. Over an analogue line of any length this condition clearly cannot be met.

With the syllabic method the gain of the compressor is adjusted by a signal derived from the signal envelope by rectifiers with smoothing constants of some milliseconds, thus the control voltage is not critically dependent on the phase characteristics of the signal path. The BBC rejected analogue syllabic companding for stereo. Although they saved two bits per sample, "the elaborate analogue instrumentation was not attractive on the grounds of cost and reliability." ${ }^{6}$ The method had, in fact, been used for compressing the Sound in Syncs signal but was not considered suitable for stereo since two syllabic companders would have to be
used which had identically matched characteristics. The methods the BBC are developing were based on principles similar to the instantaneous discontinuous companders described by Bartlett and Greszc.7.uk?

The disadvantages already attributed to instantaneous companders do not arise in the case of digital transmission because there are no non-linear effects on the transmitted waveform. The only difficulty is to obtain a correct match between the non-linear characteristics of the compressor at the transmitting end and the expander at the receiving end. This can be overcome by introducing the non-linearity after the analogue to digital conversion. The basis of the method is to compress the quantizing steps for low level signals and to allow the quantizing steps to become larger for signals at higher volume. In effect this means that the quantizing steps in a low level signal correspond to a longer word length than is actually transmitted.

The compression curve normally used in telephony, and presently accepted by European broadcasters, is the seven-segment A companding law shown in Fig. 2. Systems have been built which use fewer segments but it has been found that dividing the signal into a greater number produces no substantial advantages. The slope of the curve indicates the number of bits transmitted, so that although the actual number transmitted, a constant, is represented by the dotted line, at low levels the signal is allowed to pass through that numbers of levels which, if the signal were a linear system, would correspond to a signal word length of n bits. Half-way up the curve the slope is $n-4$, which happens to be the same slope as the dotted line, and therefore coincides with the actual number of bits transmitted. High level signals have to be transmitted at a bit-rate less than the actual number transmitted. The seven segment A law is a continuous companding law.

Bartlett and Greszczuk proposed a companding law that was discontinuous. The system has been described ${ }^{8}$ as similar to the operation of a digital voltmeter provided with automatic ranging. The curve is shown in Fig. 3. A signal that varies between zero and one eighth the maximum signal amplitude can use all the available quantizing levels, and the slope here is such that the bit rate is that of an n bit per sample system. As the level increases the "range" is changed and the signal is allowed to occupy the top half of the available quantizing range. Additional information has to be transmitted to tell the receiving equipment which part of the curve the signal is working in.

All the signals in the proposed BBC system are transmitted with a word length of ten bits, but at low level the distance between quantizing levels is the same as would exist in a 13 -bit transmission system. There are four ranges in the system, corresponding to resolutions of $13,12,11$ and ten bits per sample. A scale factor is transmitted to tell the receiving equipment which of the four ranges of signal level the word is operating in. In truly instantaneous companding systems a scale factor is attached to every word, but the BBC have discovered that a factor is necessary only for about every 30 -word samples. The two-bit scale factor is thus transmitted at intervals of about a millisecond, and indicates the peak value of the word group that follows. For this reason the method has features in common with both the syllabic and instantaneous methods and so is called "near-instantaneous" companding. ${ }^{9}$
If ten bits are used per sample and a two-bit scale factor is transmitted every 30 words then the bit rate per channel at a sampling frequency of 32 kHz is $322.13333 \mathrm{~kb} / \mathrm{s}$. Six channels therefore require $1.9328 \mathrm{Mb} / \mathrm{s}$ which, in a $2.048 \mathrm{Mb} / \mathrm{s}$ link, leaves 115.2 kb / s for synchronization, error protection and signalling.

Error protection will be considered
at greater length later on but it has become clear during research that while an error in the most significant bit in each word produces a loud click, an error in the least significant binary digit is imperceptible. Clearly, then, not all of the word needs to be protected against error. Errors in only the first five bits in a linearly coded signal need to be concealed. In a near instantaneous digitally companded signal, however, the most significant bits are only transmitted during a high frequency, high level signal, so there are fewer error-clicks, and only the two or three most significant bits plus the two bit scale factor need protection.

It should be noted that the pro-gramme-modulated noise of the BBC. near-instantaneous digital companding method is less than that of the continuous A law companding method which uses the same number of bits per sample. The BBC method was first described ${ }^{8}$ with the use of an analogue simulation which, when the prototype was built, proved substantially accurate. The prototype is still at the development stage but it is hoped that it will eventually augment existing 13 -bit linear p.c.m. links. A final point here is that there is no distorting interaction, it seems, between near instantaneous companding and any Dolby encoding which may have taken place elsewhere in the chain.

Digital recorders

One of the most keenly awaited developments in sound engineering has been the arrival of a practical digital sound recorder. Although a commercial tape recorder hasn't yet arrived the BBC had built a prototype as long ago as 1972. The digital recorder needs no bias,

Fig. 2. Seven-segment A law currently in use for telephone communication. Q represents the maximum number of digital codes available.

eliminates wow and flutter problems, has much lower noise and distortion and needs less maintenance than the analogue equivalent. In addition, the signal from such a machine can be delayed for whatever period the engineer wishes.

There is the problem that the recorder needs at least a track for each bit in the word length, so a channel reproducing or recording 13 -bit words needs at least 13 record and 13 replay heads -13 track recording in other words. This has meant that the record process and the replay process each need two heads, the tracks from one interleaving with the tracks from the other. There can, therefore, be difficulties when reading from one head and writing into the other because of the different combinations of head spacings.
The BBC digital recorder ${ }^{10}$ was built as a step along the road to making a digital television recorder, which they produced only two years later ${ }^{11}$ and which was shown at the Grosvenor House hotel 1974 IBC exhibition. When they started on the sound recorder, Howard Jones and Alan Bellis and their colleagues at Kingswood Warren decided that it would have to use ordinary instrumentation tape at a reasonably low speed; high energy tape is difficult to obtain and expensive.

Fig. 5 shows the arrangement. Each channel is sampled at 32 kHz and the two channels are interleaved at a clock rate of 64 kHz in the multiplexer. The levels of these signals are then converted into parallel digital 13 -bit codes to which two parity bits and a channel identification bit are added, making a 16 -bit word for each sample, alternate samples for each channel. The "stuffer" inserts framing pulses into the channel at regular intervals to enable timing correction to be carried out.

One of the most important contributions the digital tape recorder is likely to make to audio engineering is that of timing correction, the principle of which is amply demonstrated in the BBC prototype. There are two types of timing error that can occur in tape recording any type of signal. One is dynamic error of the wow and flutter type and the other is a static error produced by incorrect head alignment; it is not difficult to imagine the result of a small error in azimuth when you consider that the packing density on the prototype stereo recorder was 5,000 bits per inch. Computer tapes have typical packing densities of 1,600 bits per inch. The BBC have progressed since then to machines which use packing densities of 15,000 bits per inch, and it only needs a small error for the digit read at the top of the tape to be several clock periods away from the bit read at the bottom of the tape.

On the recording side, synchronizing pulses eight bits long are inserted into the data every 100 bits. This is done by reading the 100 bits into a store at the
correct rate but reading them out slightly faster. This leaves an eight-bit gap at the end of each 100 -bit sequence into which the eight-bit framing pulse can be inserted. This framing pulse is inserted simultaneously on all sixteen channels. Miller coded (or "delay modulated") data contains its own clock pulse and, on replay, this recorded pulse is used to clock the 108 bits of data into a 100 -bit shift register. The eight framing pulses are lost but by now they have fulfilled their function of steering the data stream through the information store. The record process of reading the data into the store slower than it leaves is reversed, so that although the data may have arrived at the replay store irregularly, as dictated by the speed of the clock pulses derived from the tape signal and misalignments between the top of the tape head and the bottom, they leave at a predetermined, regular rate fixed by the rate of the clock pulse which originally fed the information into the input store during record. Although each of the sixteen channels has a store into which the information is read at a rate determined by its own internal clocks, the information is read out at a rate independent of tape speed, determined by the accuracy of the record-read-in/replay-read-out clock. These circuits have been called stuffers and de-stuffers, for fairly obvious reasons. In the prototype, timing errors of $\pm 0.75 \mathrm{~ms}$ were allowed for and a low bandwidth capstan servo control kept the tape speed within these limits.

The machine had two interleaved eight-track record heads and two interleaved eight-track replay heads. The half-inch 3 M 951 instrumentation tape travelled past them at $15 \mathrm{in} / \mathrm{sec}$. The prototype performed with a signal to noise ratio of 72 dB and the crosstalk, mainly attributable to the analogue input and output circuits, was -45 dB . This machine needed improvement in one respect at least, which was that the inevitable errors produced by tape drop-outs caused gross disturbances to the digital signal which had to be papered over by an error concealment

technique. This meant that, if an error occurred, as indicated by the parity bit or bits, the previous correct word was inserted instead. This method is known as zero order interpolation, and although it was partially satisfactory, the treatment of errors needed further research.

For the next two years the $B B C$ Research Department worked on a digital television recorder, and later, with the lessons they had learned from that, they were able to apply more advanced techniques to the improvement of the sound recorder.

Meanwhile Japanese engineers at Nippon Columbia and the OKl Electric Industry Company ${ }^{12,13.14}$ were developing a p.c.m. sound recorder in co-operation with NHK Research Laboratories. They used serially multiplexed p.c.m. trains on two-inch videotape, which

Fig. 3. Four-range "automatic ranging code" companding law. Q represeuts the maximum number of digital codes available. A two-bit control word has to be transmitted in addition to the $n-3$. word length so that, in its basic form, only one binary digit can be saved per word.

Fig. 4. Block diagram of an experimental single-channel near-instantaneous digital compander: (a) pre-emphasis, (b) limiter, (c) linear 13-bit a/d converter, (d) digital delay, (e) compressor - variable length shift register, (f) multiplexer, (g) dither generator, (h) measure digital signal magnitude, (i) record and store magnitude, (j) de-multiplexer, (k) expander-variable length shift register, (l) linear 13-bit d/a converter, (m) de-emphasis, (n) record and store scale factor.

meant that tape consumption was much higher and the tape more expensive. Although eight channels could be accommodated on the tape there might be difficulty in modifying the signal on one channel without affecting the others. This was one reason why the BBC rejected the vtr method of transverse recording. The use of a vtr also meant that the tape recorder would initially be more expensive. In addition, more parity checking might be necessary with serial pulse trains than parallel trains; errors in longitudinallyrecorded pårallel trains can be corrected by the adjacent tracks.

In the vtr system the sampling rate for each channel was 47.25 kHz and the word length was 13 bits plus a parity bit and a phase check bit. The bit rate was $5.67 \mathrm{Mb} / \mathrm{s}$. To make the signal compatible with those from other vtrs a horizontal scan of the tv signal corresponded with three samples of the eight channels. The clock frequency was 7.1825 Hz . It has to be said that this machine is well past the development stage and has been used particularly for "distortion-free" master disc-cutting. It can work at half speed and an advance head has been fitted to enable the groove to be altered automatically for pitch and depth.

The BBC digital television recorder, when it arrived, used one-inch instrumentation tape at $120 \mathrm{in} / \mathrm{sec}$. Two staggered non-adjustable heads, recorded 42 18-thou wide tracks simultaneously. The picture was of broadcast quality, in colour, and showed no timing or skew errors. At first the machine used error concealment throughout to average between the last and the next correct word, but later they improved it by using error correction techniques. Now two thirds of the errors which occur are concealed and one third are corrected. The first four bits of each eight-bit word must be correct but the other bits are not important in an error period. Another phenomenon which helped the development of the machine was that certain peculiarities of the PAL system enabled sampling to happen at less than the Nyquist theoretical minimum, twice the highest frequency
component of the signal ${ }^{15}$. Later the machine was refined so that repeated successive recordings of a signal could be made; on one occasion they recorded a signal 2,000 times, and it ended up both recognisable and in colour.

Timing correction

Although error protection for television signals proved easier than that of sound signals, the timing correction of an analogue television signal is much more critical than correcting the timing of a sound signal. Digital timing correction of analogue-recorded television signals is now one of the main uses of digital techniques in television. Once the BBC had built the television recorder they returned to improving the timing and error correction of the sound recorder.

With the packing densities they were using tape drop-outs were potentially much more serious than in an alogue recorder since a single drop-out could eliminate 200 to 300 bits of information, and a drop-out of this kind is potentially much more damaging to a digital signal, as we have seen.

One concealment method was tased on the fact that concealment works fairly well on isolated errors but not on burst errors. They therefore tried to turn the burst errors into isolated errors by "shuffling the pack of signal samples before we record, and then reshuffling them again after." Thus the theory was that burst errors would be redistributed and picked off one by one. They spread the errors so that there would be ten good words between each error and tried zero-order interpolation on the error when it occurred. This technique

Fig. 5. Record and replay channels of a digital recorder ${ }^{10}$ (a) multiplexer, (b) a/d converter, (c) parity generator, (d) stuffer, (e) delay modulation (Miller) coder, (f) record amp., (g) replay amp., (h) differentiator and slicer, (i) clock regenerator, (j) delay modulation (Miller) decoder, (k) de-stuffer, (l) parity checker, (m) concealment unit, (n) converter, (o) de-multiplexer.
proved unsuccessful. Similar results' were achieved when first-order interpolation was used with the error redistribution technique, which in any case was based on the perhaps dubious assumption that errors would not be of more than a certain length.

They then decided that they would have to develop a full error correction technique instead of merely concealment. In doing so they made the assumption that although the burst errors could knock out 200 or maybe 300 bits, only one track would be affected at a time. To demonstrate this they recorded the signal among four tracks and on decoding disconnected one of them without any damage to the signal except when drop-outs occurred elsewhere in the other three tracks. They have used a cyclic error code, which works so that the signal word is divided by another number and, if the signal is correct, there is no remainder. If there is a remainder the magnitude of the remainder indicates where the error is, after which it can be corrected. No assumptions are necessary about the length of the error. If two tracks should drop out at once a muting circuit could be introduced for a millisecond.

They had learned enough about timing correction from their work on the television recorder to be able to use an asymmetrical idler wheel on the sound recorder and to remove the wow that it produced. This means that the servomechanism of a digital tape recorder need only be crude enough to keep the average speed of the tape fairly constant. As a result of the work the BBC say that an eight- or sixteen-track machine can now be made at competitive cost and tape consumption with an analogue machine. If the same number of tracks are used on a sound recorder as on the television recorder, ten sound channels can be accommodated on one-inch tape. Further, a drop-out can occur in each of the ten simultaneously as long as two drop-outs don't happen in the same channel at once.

There are still disadvantages. Editing is one of them. You cannot splice a

digitally-modulated tape as you can an analogue one, where the noise of the splice is masked by the signal on the fape. This is because the last code of the pre-edit section has to be married exactly to the first code of the after-edit section and with a packing density of 15,000 bits per inch this is impossible to do without causing a severe disruption of the binary information across the tape. Thus editing will have to be done electronically, just as videotape editing is done. There are also difficulties in simply rocking the tap back and forth over the heads to find an edit point. This, the standard method in analogue recording, cannot be easily done on a digital machine.

Nonetheless a master made on a digital machine is competitive with a 16-track Dolbyed master, and the information is easily updated. Synching with a video picture is simple. Masters can be stored in any number of ways (not necessarily on magnetic tape) such as plastic discs or laser-exposed photographic film, and such methods of storage will not introduce any deterioration in the quality of the master.
But the biggest advantage of all is the improved quality. A typical audio recorder produces second harmonic distortion at 50 dB below peak level and third harmonic at only 34 dB below peak level. The entire measured harmonic distortion of the BBC experimental machine was 68 dB below peak level. It is only when you hear this kind of quality from a tape machine that you realise how bad an analogue machine working at $15 \mathrm{in} / \mathrm{sec}$ on half-inch tape is.

Digital future?

If the BBC have developed or are developing a digital mixer they're keeping very quiet about it. They have said that a digital recorder could be used in a studio by itself, but it would be far better to design it in conjunction with a digital mixing desk. Functions such as limiters, equalisers, faders have been built individually but putting them into a practical desk, with the necessity to clock all the different functions within it at exactly the same time and with pulses that are phase-coherent, needs serious thought.

There are some processes, such as equalization and panning, which are much more easily carried out on an analogue signal, and it may be better where only one signal is involved to convert to analogue, process and reconvert. Another of the difficulties of extending digital techniques to all parts of sound and television engineering is that experiments must not interfere with continued high-quality broadcasting. So at least in the introductory period there will be parts of the system that are digital and parts that are analogue, which means that there will need to be a lot of analogue-to-digital and digital-to-analogue conversion. This may be expensive and is bound to
degrade the signal. Therefore an estimate has to be made of how many conversions can be made before the degradation becomes unacceptable.
However, it is important to remember that although a digital circuit to carry out a comparatively simple function may be much more complicated and expensive than the analogue version, this does not mean that the digital mixing console will be much more expensive than the types currently in use, since a number of mixing channels can be multiplexed through the same piece of equipment; much of the expense of a modern mixing desk results from the duplication of the same simple function in each of two or three dozen channels. A memory could store each of the individual settings on each channel; modern automated mixing devices are merely crude memory aids for analogue mixing, and in any case no standard method of accomplishing even this has been agreed.
Another area of research is to devise codes that suit various applications and interfaces between the codes. One type of code, say 13-bit linear p.c.m. may be the best for fading, mixing, and signal processing whereas 10 -bit NIDC may be suited to transmission. Another type of modulation may be suitable for recording. Suitable digital-to-digital interfaces therefore have to be designed to convert from one to the other. The European Broadcasting Union is now engaged in trying to reach common standards for these codes.
It will be a long time, therefore, before digital mixing desks begin to appear. The BBC have set themselves a target of about six years or so to develop the necessary equipment, the life expectancy of their present mixing consoles.
A more likely use of digital technology in the near future may be the extension of satellite coverage to replace terrestrial transmitters. Next year the European Satellite Research Organisation will launch an orbital test satellite as a first step towards the international exchange of digital television programmes by satellite. Initially it was proposed that analogue links would be used for television and communications links but now it is possible that digital programme circuits may be used, and the BBC is engaged in examining the technical possibilities.

Anotner possibility is that s.h.f. frequencies might.in future be allocated to digital signals beamed directly to the home via satellite. Extending radio coverage to the last half per cent of the population is very expensive using ground transmitters. A satellite is much more democratic; it will reach anyone in its line of sight. For the BBC such a development might provide a welcome end to all those grumbles about coverage.

Acknowledgement

The author wishes to acknowledge the help given by the GPO and the BBC in
compiling this article, and wishes to thank particularly Mr Howard Jones, BSc, Mr Alan Bellis, BSc, MIEE; and Dr Bruce Moffat, MA, D Phil, MIEE, M Inst; all of the BBC Research Department, Kingswood Warren; and Mr C. B. B. Wood, MBE, Head of Engineering. Information at the BBC. Also Mr Robert C. Harrison, assistant (special programmes and facilities) to the chief engineer radio broadcasting.

References

1. Blesser \& Lee, "An audio delay system using digital technology," AES Journal, May, 1971, p. 393 2. Geddes, "Broadcasting in Britain 1922-73," Science Museum Publication, HMSO.
2. Baldwin, Stalley, Coffey, Greenfield, Lever \& Taylor, "DICE: the first intercontinental digital standards converter," Royal Television Society Journal, Sept./ Oct. 1974, p. 140.
3. McKenzie, "Stereo radio," Hi Fi News \& Record Review, November 1972, p. 2125.
4. Williamson, "The PCM Story," Hi Fi News \& Record Review, Jan. 1974, p.77, and Feb. 1974, p. 299. 6. Cross, Osborne \& Spicer, "Digital sound signals, the present BBC distribution system and a proposal for bit-rate reduction by digital companding." Collected papers of the IBC. 1974, IEE publication number 119, p. 952.
5. Bartlett \& Greszczuk, "Companding in a pcm system." Symposium on transmission aspects of communication networks, London IEE, 1964, pp.183-6.
6. Osborne, "Digital sound signals; further investigation of instantaneous and other rapid companding systems." BBC Engineering, no.96, November 1973, p. 18.
7. Croll, Moffat \& Osborne, "Near-instantaneous digital compander for transmitting six sound programme signals in a 2.048 M bits/s multiplex," Electronics Letters Vol. 9, no. 14, July 12, 1973.
8. Jones \& Bellis, "Digital stereo sound recorder," Wireless World, Vol. 78, no. 1443, September 1972, p. 432.
9. Digital television recording, Wireless World, Vol. 80, no. 1462, June 1974, p. 185.
10. Iwamura, Hayashi, Miyashita \& Anazawa, "Pulse-code-modulation recording system," AES Journal, vol. 21, no. 7, September 1973, p. 535 13. Sato, "PCM recorder, a new type of audio magnetic tape recorder," AES Journal, Vol. 21, no. 7, September 1973, p. 542.
11. Sound recorder uses PCM, Wireless World, vol. 79, no. 1457, November 1973, p. 548.
12. Digital equipment in broadcasting, BBC Designs Department Liaison Unit leaflet distributed at IBC 74.

Additional sources and suggested reading

The following papers were presented at IBC 74 and are published in the collected papers, IEE Conference Publication Number I19:
16. Fenton \& Bradley, Special effects employing digital pattern generation, p.14.
17. Chambers, Use of digital techniques in television waveform generation, p. 40 .
18. Fletcher, Video analogue to digital converter, p.47.
19. Devereux and Phillips, Bit rate reduction of digital video signals using differential pcm techniques, p. 83.
20. Karuma et al. Digital fields store television standards converter, p. 104.
21. Jones \& Bellis, Experimental approach to digital television recording, p.114.
22. Kitson, Fletcher \& Spencer, Digital time base correction, p. 119.
23. Barnaby \& Crowther, Receiver design concepts for the receipt of digital data from the standard tv signal, p. 249.
24. Hausdorfer, Digital transmission of colourtelevision signals, p. 274.

APRS 75

Details for the Association of Professional Recording Studios exhibition

The eighth international exhibition of professional recording equipment is to be held at the Connaught Rooms, Great Queen Street, Kingsway, London WC2 on Thursday, June 19th (10.00-21.00 hrs) and Friday, June 20th (10.00-18.00 hrs). On the right is a list of exhibitors who will be seen at the show. Further information can be obtained from the association's secretary at 23 Chestnut Avenue, Chorleywood, Herts. As this is a trade exhibition, tickets are required and are available from the above address.

Exhibitors

Ferrograph Professional
 Studio 8Console

Full logic control. Tape motion sensing.Two speeds.Servo-controlled capstan. Constant tape tension. Directreading tape timer (minutes and seconds). Three editing modes. Provision for synchronisation, remote control and remote display panel. Available for line-in/line-out or with mixing and monitoring facilities.IEC or NAB equalisation. Full or
half-track mono, dual track or stereo. Easy access for maintenance. Also available in transportable and rackmounted versions.

For full details contact Ferrograph
Professional Recorder Company,
442 Bath Road, Slough SLI6BB.
Telephone Burnham (06286) 62511. Telex 847297. Cables Brifferro,Slough.

News of the Month

Optical stereo for cinema films using Dolby

Dolby Laboratories have now applied their noise reduction technique to stereo optical sound tracks for cinema playback. Previously, multichannel sound in the cinema has been achieved ky adding a magnetic track to film, with a reported cost penalty of 50%. As first reported in the April 1972 issue of Wireless World News, page 171), the Dolby system was orıginally applied in the cinema to single-channel optical sound tracks, with a resultant A-system noise reduction of 10 dB up to 5 kHz , and rising to 15 dB at 15 kHz (if the medium allows). The new format known as the Dolby Stereo Variable Area (SVA) sound track makes possible high quality, low noise stereo theatre sound reproduction. For several years, engineers have been studying new methods of achieving high quality sound reproduction from optical sound tracks of the type now used in the motion picture industry. One result of the work under-
taken by Dolby Laboratories has been the development of an improved, fully compatible, wide-range monaural optical sound track used in a number of films already in circulation. Another has been the installation in more than 350 theatres of the equipment required to play these sound tracks.

The main characteristics of the Dolby SVA track are stated to be: it is fully compatible for projection in any theatre without adjustment, modification or additions, or in theatres equipped to play monaural Dolby optical sound tracks and in theatres equipped with Dolby A stereo playback decoder (the CP100 cinema processor). A special circuit provides secure centre-screen information requiring only two channels on the actual SVA track. Because conventional variable area techniques are used to make and project the stereo track, there is no premium print cost (as for magnetic stripe). The Dolby SVA track has a usable audio bandwidth of 10 kHz . Crosstalk between channels is better than 20 dB separation at all frequencies, being typically $25-30 \mathrm{~dB}$ and signal-to-noise ratio is $61 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , unweighted).

Paging service for London

London is to have a radiopaging service operational in 1976 and the Post Office is now examining what form a national radiopaging service might take. The decision to bring radiopaging - a system in which people carrying pocket "bleepers" can be contacted while on the move - into London follows a successful trial covering 800 square miles of the Thames Valley (see

One of several new TV outside broadcast vehicles, being completed at the Reading plant of Ampex GB. The photograph shows a videotape recorder for colour, ready for installation in the vehicle and (inset) part of the sound mixer installed in the vehicle sound control booth.

News of the Month, February 1973, p.58). The London system will cover 900 square miles and will cater for 20,000 users initially, rising to a maximum of 100,000 . The Post Office is examining the possibility of providing pagers giving two clearly distinctive bleep tones. This would mean that a user would not be limited to phoning one contact point when his receiver "bleeped." To operate the system, eight transmitters will be used, located throughout London. The service will be controlled from a computer centre which will receive calls to pagers and activate the radio signals which set the pagers "bleeping."
A call to the radiopaging device is made by dialling a 10 -digit number. The first four digits are an STD type code common to all radiopagers and these route calls to computer-controlled terminal equipment. The remaining six digits identify individual paging devices. Calls can be made from any telephone in Britain. If the user does not wish to be disturbed, the bleeper can be switched off completely or, with some types of bleeper having a memory facility, incoming signals are stored until the pager is switched on again.
Example of another type of paging system now in operation and providing a useful service is that called overlay paging and which is working over the Glasgow Fire Service's existing radiotelephone network. Fire officers out on inspection or fire prevention duties can be called for operational duties either individually or in groups at the press of a button.

Electronics at 'A' level

The teaching of Electronic Systems at ' A ' level has, with the approval of the Schools Council, been initiated at nine schools for a trial period of three years*. The trial represents the culmination of six years preparation by Professor G. B. B. Chaplin of the University of Essex with the backing of the National Electronics Council. For the past two years the subject has been taught in an Essex Grammar School and Diplomas have been awarded to successful pupils. In future the Associated Examining Board will assess the results. The syllabus for Electronic Systems comprises three main sections: computer, feedback and communication systems. The syllabus also includes a section on basic electronics. Each main section starts with the human aspects of the system under consideration and then goes on to discuss the fundamental principles involved. Further information can be obtained on both the teaching of Electronic Systems as an ' A ' level subject and the Electronics Link Scheme (concerned with providing technical expertise for those schools which are encouraging the development of project work, involving the use
of electronic techniques, see "National Electronics Council Link scheme," Wireless World, April 1975, p.192) from Professor G. B. B. Chaplin, Department of Electrical Engineering Science, University of Essex, Wivenhoe, Colchester, Essex CO4 3SQ.
*"Electronics in Schools," National Electronic, Review, published by the National Electronics Council, January-February 1975, pp.11, 12.

High Fidelity 75 success

This year's Spring audio show at London's Heathrow Hotel brought forth a number of new products, most exhibitors having at least one new item to reveal for the first time. The show took place from Tuesday April 8 to Sunday April 13 and about 50 exhibitors represented over 80 brand names.

Several completely new ranges of loudspeaker systems were on demonstration, notably those from Celestion, Mordaunt-Short, Wharfedale, Marsden Hall and Lowther. Other new items included turntables from BSR, an amplifier from Cambridge Audio, a preview of a tuner amplifier with touch controls from Metrosound and a cassette deck with unusual styling from Yamaha. We will be publishing more detailed product information on a selection of items from the show in our next issue. A sentiment expressed by one or two major companies who were not exhibiting was that they were missing out at a well organized show and one at which dealers had shown a lot of interest. Rather a sad final note apparent from the show was a general feeling that the Japanese have a lead over British manufacturers of audio electronic equipment, both in styling and reliability - not necessarily a true state of affairs but one which should prevent any complacency from undermining the abilities and experience of the British audio industry.

Gulf radar

Bahrein International, the most important airport in the Arabian Gulf and the centre of air traffic control in the region, is to be equipped with automatic secondary surveillance radar - the first to be ordered for a.t.c. in the Gulf area. Its primary radar is also to be up-dated with a 200 nautical mile equipment on 23 cm

The s.s.r. will be the Plessey Series 200, which, in addition to allowing the identity and height of any aircraft equipped with the transponder to be displayed, will show emergency codes, such as "HIJACK," "SOS" in flashing characters on the controller's screen. The primary radar is to be the Plessey AR-5, designed to work in conjunction with the s.s.r. to form a complete traffic control system. (The secondary radar is

These aerial parts (foreground) are produced by photo-developing their patterns on a sheet of brass, excess material being chemically etched away. The result is four identical parts which are assembled into an aerial array. This quick, economic and accurate method of fabrication has been developed by GTE Sylvania Inc.

so called because the returns are not reflections from the aircraft but are signals transmitted by the aircraft transponder when interrogated by the ground control radar.)

Navel television

Colour telecine has found a new application in the teaching of transcendental meditation. The television production centre of the Students' International Meditation Society is to take delivery of a Marconi B3404 telecine and expect the new capability to play a fundamental part in their teaching programme.

The B3404, which is claimed to be the first machine of its type to have a projector system specifically designed for broadcast work, will produce pictures from 16 mm or 35 mm film or slides and possesses a true instant-start facility with a random-access film programmer for frame selection. The telecine is the second order received by Marconi from SIMS, the society having recently bought five Mk VIII colour cameras for use at Livingston Manor, New York and in a mobile function.

Solid state radio transmitter

What is claimed to be the first fully transistorized a.m. broadcast transmitter for commercial radio stations has
been developed by Harris Corporation and authorized by the Federal Communications Commission for use by US broadcasters. Transistorized components have replaced the vacuum tubes used in conventional transmitters. The design also incorporates a new modulating technique called "progressive series modulation," on which Harris has applied for patents.

The transmitter is a 1,000 -watt model, the size used by half of the $4,446 \mathrm{a} . \mathrm{m}$. radio stations currently operating in the US and which are now more than ten years old, indicating a substantial replacement market.

Quintophonic Tommy

Attending a preview at the Leicester Square Theatre, London, of "Tommy," Ken Russell's film based on the rock opera by Pete Townshend and The Who, we had our ears blasted by excessive sound levels in the auditorium and so were unable to assess the niceties of the Quintophonic Sound used for the sound tracks. Quintophonic Sound is so called because it uses five loudspeaker sound sources in the cinema auditorium - a pair at the front, a pair at the rear and a single "voice" speaker at the middle of the screen. At the Leicester Square Theatre there were in fact two pairs of speakers at the rear, and these pairs had corresponding sound outputs.

On the film the sound is recorded on three magnetic tracks. Two of these tracks are matrixed to provide fourchannel sound by the QS system.

Wireless World Dolby noise reducer

2 - Construction

by Geoffrey Shorter

Abstract

This noise reducer design is intended mainly for hiss reduction in magnetic-tape recording machines. The unit described can be switched to decode commercially available Dolby B-encoded cassette tapes, Dolby B-encoded f.m. radio transmissions (current in the USA), or to encode blank tapes from any source. As an alternative it can be used in trading some of the noise improvement for reduced distortion at peak recorded levels. Part 1 in the May issue gave background to the Dolby system and this part gives details of a design that can be built with or without the help of the Wireless World kit.

This Dolby B noise reduction unit can be used with both open-reel and cassette tape machines. It is intended for decoding Dolby B-encoded tapes and f.m. transmissions, and for encoding and decoding your own tapes.

The circuit diagram is split into three parts: the main signal path, Fig. 12 (top), the subsidiary or side path, Fig. 12 (bottom), and the circuitry used in setting up the unit.

The input signal to be processed from the auxiliary, tuner or tape inputs passes via the switching arrangement of Fig. 13 to point D in Fig. 12 (top). In addition to providing 12 dB of gain, Tr_{1} ensures a proper source impedance for the low-pass filter. Filter components L_{1} and C_{5} provide a gradual attenuation (-3 dB at 28 kHz), while the 19 kHz filter switch brings in additional components to give a response $\pm 1 \mathrm{~dB}$ at 15 kHz , -31 dB at 19 kHz and -22 dB at 38 kHz .

With high-quality open-reel machines whose response is flat up to 19 kHz , the additional filter may be out of circuit when the source is free from spurious signals. But because the bandwidth of signals into the record processor should be the same as that for signals entering the playback processor for proper matching, it is usually advisable to have the filter in, especially with cassette machines having a fastfalling response. If there is any risk of unwanted signals above audibility, for example from a stereo decoder or tape bias oscillator, the filter must be switched in. If such signals are above the compression threshold the noise reduction will not operate correctly.

The direct-coupled pair Tr_{2} and Tr_{3} have a low output impedance for driving the voltage-controlled filter and it is at this point that the signal path is split during encoding. The main signal
path continues via the summing junction following R_{14}

The final directly-coupled amplifier pair Tr_{4} and Tr_{5} must be inverting because on decoding the subsidiary or side signal path is arranged to form a feedback path from its output to input via R_{15} (See Fig. 9c May issue).

For encoding, the signal at point A passes via a series of switches to point B in the side-path section, Fig. 12 (bottom), and is returned to point E after processing. Point G feeds the meter amplifiers. The processed output is available at C, passing through the switching arrangement of Fig. 1,3 to the record output socket, Skt $_{1}$, pin 4.

In decoding, the signal is taken from a recorder via pin 5 of Skt_{1} to point D . The output from $\mathrm{Tr}_{4}, \mathrm{Tr}_{5}$ at point C is passed to the side path at B, through switch $\mathrm{Sw}_{1 \mathrm{~b}}$ in Fig. 13. Decoded output appears at $\mathrm{Skt}_{2}(\mathrm{pin} 5)$ via $\mathrm{Sw}_{1 \mathrm{c}}$.

From the side-path dynamic filter, whose operation was described in the May issue, the signal is amplified by 26 dB by Tr_{6} and Tr_{7}, and extracted at the overshoot suppression diodes, D_{2} and D_{3}. When combined with the main path signal via R_{15} this results in either a boost of up to 10 dB during encoding or a loss of up to 10 dB during decoding. (Diode D_{1} forms part of a temperature compensation network for the f.e.t. bias.) The variable time-constant con-trol-voltage circuit, following Tr_{8} and described last month, also provides an a.c. signal of half the f.e.t. drain voltage. This signal, obtained by attenuating the $26-\mathrm{dB}$ amplified signal with R_{37} and R_{44}, is passed through C_{20} to linearize f.e.t. operation.

Setting-up circuitry (in kit version) Because this noise reduction unit can be used with a variety of tape recorders,
the side-path includes its own 400 Hz oscillator so that a standard-level tone can be recorded, played back and the processor calibrated for the particular tape used. The 400 Hz tone is obtained by switching the side-path circuit (Sw_{3}), to form a Wien-bridge oscillator with $\mathrm{R}_{46}, \mathrm{C}_{27}, \mathrm{C}_{26}$ and R_{45} around $\mathrm{Tr}_{106}{ }_{107}$ \& Tr_{108}. Oscillator output is taken from point E and applied via point F to the processor input, D, by $\mathrm{Sw}_{3 \mathrm{c}}$ and $\mathrm{Sw}_{3 \mathrm{a}}$. Switch $\mathrm{Sw}_{3 f}$ alters the control time constant to prevent oscillator instability. Potentiometers P.V V_{3} and RV_{103} are used to set the level of the 400 Hz tone for both left and right channels respectively, but only the left-channel sidepath circuit is wired to oscillate. This adjustment, and that of $R V_{1}, 101$ and $R V_{2,102}$, are made with the aid of the right channel meter, calibrated in the kit design by a further oscillator (Fig. 14). This oscillator provides a well-defined output of 580 mV , whose accuracy is determined by the supply line regulation of 5%.

For the kit design the oscillator of Fig. 14 , including the components shown by the broken lines and with its output feeding the attenuator of R_{60} and $\mathrm{R}_{61}(\mathrm{a})$, provides the 580 mV signal to calibrate the meter. After this calibration, R_{48} and R_{57} are removed and the second network, (b), of Fig. 14 wired in to provide a 5 kHz sinewave source for aligning the circuit. The input filter coil L_{2} is used temporarily in this oscillator.
The two meter circuits of the kit design use two parts of an LM3900 Norton or current-differencing amplifier in a "perfect diode" arrangement, Fig. 15. Because the circuit is set-up at low levels, R_{55} is temporarily reduced in value to increase sensitivity for these measurements. Additional current gain is provided by Tr_{9}. Only the right-chan-

Fig. 12. Circuit of one channel of the stereo Dolby B noise reduction unit. Upper circuit is of main signal path, input at D, output at C. Point G feeds meter circuits of Fig. 15, while point A or point C feeds the side-path input B (bottom), according to whether encode
or decode is switched by the interface circuit of Fig. 13. Side-path output from E is combined with main signal via R_{15}. Connection shown with broken line forms a Wien bridge oscillator to provide a $400-\mathrm{Hz}$ calibration tone. Output is via oscillator level controls
$R V_{3,103}$ and feeds point F in Fig. 13. This additional circuitry, including potentiometers and $S w_{3 b-e}$ is used on one channel only (the left channel in the kit design). Resistor R_{33} is omitted in left channel if used as an oscillator.

Components

Electrolytic capacitors are 16 -volt working (except $\mathrm{C}_{24}, \mathrm{C}_{14},{ }_{114}, \mathrm{C}_{29}$, and $\mathrm{C}_{31},{ }_{131}$. Polystyrene capacitors may be marked with a " k " multiplier instead of " n ". (Polyester capacitors are colour coded.)

$\mathrm{C}_{1,101}$	10μ electrolytic
$\mathrm{C}_{2,102}$	3n 5\% polystyrene
$\mathrm{C}_{3.103}$	3.9n 5% polystyrene
C. ${ }_{4} 104$	10μ electrolytic
$\mathrm{C}_{5,105}$	2.2n 5% polystyrene
$\mathrm{C}_{6,106}$	$5.6 \mathrm{n} 1 \%$ polystyrene
$\mathrm{C}_{7,107}$	27n 1\% polystyrene
$\mathrm{C}_{8,108}$	10μ electrolytic
$\mathrm{C}_{9,109}$	10μ electrolytic
$\mathrm{C}_{10.110}$	10μ electrolytic
$\mathrm{C}_{11, \ldots 1}$	4.7n 1% polystyrene
$\mathrm{C}_{12,112}$	10μ electrolytic
$\mathrm{C}_{13.113}$	100 n metallized polyester
$\mathrm{C}_{14.114}$	47 or $50 \mu 6$-volt electrolytic
$\widetilde{\mathrm{C}}_{15,1115}$	100 n metallized polyester
$\mathrm{C}_{16,116}$	10μ electrolytic
$\mathrm{C}_{17,117}$	10μ electrolytic
$\mathrm{C}_{18,118}$	100 n metallized polyester
$\mathrm{C}_{19.119}$	100 n metallized polyester
$\mathrm{C}_{20,120}$	330 n metallized polyester
$\mathrm{C}_{21,121}$	10μ electrolytic
$\mathrm{C}_{22.122}$	22p polystyrene
$\mathrm{C}_{23.123}$	10μ electrolytic
C_{24}	$1000 \mu 25$-volt electrolytic
C_{25}	10μ electrolytic
C_{26}	10 n metallized polyester
C_{27}	47n metallized polyester
C_{28}	100 n metallized polyester
C_{29}	$10 \mu 10$-volt electrolytic
C_{30}	33n metallized polyester
$\mathrm{C}_{31,131}$	$10 \mu 10$-volt electrolytic
$\mathrm{C}_{32,132}$	330n metallized polyester
C_{3}	1.5 n disc ceramic
C_{x} (two)	$2.7 \mathrm{n}^{*}$ polystyrene

*Values for 50 to 25μ s change in time constant. For 75 to 25μ s change, as in USA, use 1.8 nF and $39 \mathrm{k} \Omega$.

Resistors $1 / 4$-watt, 5% tolerance unless otherwise stated.

$\mathrm{R}_{1,101}$	470k	$\mathrm{R}_{33}{ }^{+}$	22k
$\mathrm{R}_{2.102}$	47k	$\mathrm{R}_{34,134}$	120k
$\mathrm{R}_{3,103}$	1 k	$\mathrm{R}_{35,135}$	47k
$\mathrm{R}_{4,104}$	470	$\mathrm{R}_{36,136}$	2.7 k
$\mathrm{R}_{5,105}$	43k	$\mathrm{R}^{37,137}$	1k 2\%
$\mathrm{R}_{6.106}$	100	$\mathrm{R}_{38,138}$	47
$\mathrm{R}_{7,107}$	6.8 k	$\mathrm{R}_{39,139}$	15k
$\mathrm{R}_{8,108}$	2.2k	$\mathrm{R}_{40.140}$	270k
$\mathrm{R}_{9.109}$	820	$\mathrm{R}_{41,141}$	270k
$\mathrm{R}_{10.110}$	180	$\mathrm{R}_{42.142}$	220k
$\mathrm{R}_{11,111}$	270k	$\mathrm{R}_{43.143}$	8.2 k
$\mathrm{R}_{12,112}$	3.3k	$\mathrm{R}_{4 \text { 4, 144 }}$	33
$\mathrm{R}_{13.113}$	33k	R_{45}	27k
$\mathrm{R}_{14,114}$	150k 2\%	R_{46}	6.8k
$\mathrm{R}_{15.115}$	180k 2%	R_{47}	1M
$\mathrm{R}_{16,116}$	27k	R_{48}	1 M
$\mathrm{R}_{17,117}$	22k	R_{49}	4.7 k
$\mathrm{R}_{18 \mathrm{a} .118 \mathrm{a}}$	150k	R_{50}	2.2 M
$\mathrm{R}_{18 \mathrm{~b}, 118 \mathrm{~b}}$	150k 2\%	R_{51}	3.9M
$\mathrm{R}_{18 \mathrm{c}, 118 \mathrm{c}}$	10k	$\mathrm{R}_{52.152}$	560
$\mathrm{R}_{19,119}$	1k	$\mathrm{R}_{53,153}$	150k
$\mathrm{R}_{20.120}$	33k	$\mathrm{R}_{54,154}$	150k
$\mathrm{R}_{21.121}$	3.3k 1\%	R_{55}	330k 2\%
$\mathrm{R}_{22.122}$	47k	R_{155}	330k
$\mathrm{R}_{23,123}$	2.2k	$\mathrm{R}_{56,156}$	330k
$\mathrm{R}_{24,124}$	6.8 k	$\mathrm{R}_{57,157}$	1 k
$\mathrm{R}_{25.125}$	2.7 k	R_{58}	10k
$\mathrm{R}_{26.126}$	1 M	R_{59}	3.9 M
$\mathrm{R}_{27,127}$	1.8 M	R_{60}	110k 2\%
$\mathrm{R}_{28.128}$	1 k	R_{61}	10k 2\%
$\mathrm{R}_{29,129}$	15k	R_{62}	15k 2\%
$\mathrm{R}_{30,130}$	6.2 k	R_{63}	6.8k
$\mathrm{R}_{31,131}$	8.2k	R_{64}	82
$\mathrm{R}_{32.132}$	10k	R_{x} (two)	18k*
\dagger Two needed if cal. osc. not used.			
Transistors			
$\operatorname{Tr}_{1,101}, \operatorname{Tr}_{5},{ }_{105}$ 2TX109C, BC109C or equivalent			
$\begin{aligned} & \operatorname{Tr}_{2,100} \operatorname{Tr}_{4,104} \operatorname{Tr}_{6.100} \operatorname{Tr}_{8,109} \operatorname{Tr}_{9} \text { ZTXAll } \\ & \text { or ZTX109, BC109, etc. } \end{aligned}$			
Tr_{3}, ,103, $\mathrm{Tr}_{7},{ }_{107}$ ZTXA21, 2 N 4058 equivalent			
f.e.ts (two) $\overline{2} N 5458$, MPF104, 2SK30D or GR specially selected.			

Diodes
$\mathrm{D}_{1.10 \mathrm{p}} \mathrm{D}_{4.104} \mathrm{D}_{10.11} \quad$ OA9
$D_{2,102} D_{3.103} D_{5.105}, D_{110.111} 1 \mathrm{~N} 914$
$\mathrm{D}_{6.9} 1 \mathrm{~N} 4001$ or 1 N 4002
ZD 1 , ${ }_{101} \mathrm{BZV19C} 8 \mathrm{~V} 2$ (8.2V zener E-line package)
$\mathrm{IC}_{1} \quad \mathrm{LM} 3900, \mathrm{MC} 3401$ or MC3311
IC $_{2}$. L131 or TDA1415

Potentiometers

RV ${ }_{1,101}$	5 k or 4.7 k lin. preset (law)
$\mathrm{RV}_{2.102}$	470 lin. preset (gain)
$\mathrm{RV}_{3,103}$	50 k or 47 k lin. preset ($400-\mathrm{Hz}$ osc. level)
$\mathrm{RV}_{4.104}$	50 k or 47 k log. preset (play cal.)
RV ${ }_{5}$	5 k or 4.7 lin. preset (5 kHz osc. level)
$\mathrm{RV}_{6,106}$	20 k log. preset (record cal.)
$\mathrm{RV}_{7,107}$	5 k or 4.7 k log. preset (f.m.cal.)
$\mathrm{RV}_{8,108}$	1k lin. preset (meter cal.)
RV_{9}	50k dual \log /reverse \log (record balance)
$R V_{10}$	50 k dual \log. (record level)
RV ${ }_{11}$	$5 k$ dual log. (output level)

Inductors

$\mathrm{L}_{1.101} 36 \mathrm{mH} \pm 5 \%$ (Toko 30569 in kit)
$\mathrm{L}_{2,102} 23 \mathrm{mH}, \mathrm{Q} \geqslant 60$ (Toko 30568 in kit)
Transformer $240 / 17 \mathrm{~V}$ nominal
Other parts (all supplied in kit)
Dual $200-\mu \mathrm{A}$ meter, plastic foam wire-ended $14-\mathrm{V} 40-\mathrm{mA}$ lamp \bullet fuse and holder - 7-button switch unit, 6 -pole switch $\left(\mathrm{Sw}_{3}\right)$, mains switch two printed boards o three knobs - three DIN sockets chassis, front panel, screws, tag strip, meter bracket labels, connecting wire, mains lead, strainrelief bush © cabinet.
nel meter is used to measure the low levels.

Circuit options

The unit can of course be constructed without using the kit. Provided that normal good practice is followed in circuit construction, assembly on Lektrokit or Vero circuit boards should be no problem. But for those constructors unfamiliar with normal practice, we recommend using either the full kit or a smaller p.c. board. This smaller board is for a single-channel processor without the switching and setting-up circuitry of the full stereo board, and is available separately.
If similar functions to those of the kit are required the same switching arrangements of Fig. 13 can be used. Selected field-effect transistors are available separately through Wireless World (see panel).
The simplest possible circuit option is for playback of B-encoded cassettes. Designed for use as a noise reduction unit, the circuits have many more facilities than required for a playbackonly processor; nc vertheless, Fig. 12 can
be used in this application with an enormous simplification of the switching. The circuit can be permanently wired in the decode mode, and needs only the switch Sw_{4} in Fig. 13. Point C is permanently wired to point B via Sw_{4} and the signal from the head amplifier wired to point D via the play cal. control. The filter components can be omitted if use is to be always limited to playback of recorded cassettes.

Inclusion of the facility for decoding B-type f.m. transmissions can be added to this basic design simply by retaining $\mathrm{Sw}_{2 \mathrm{a}}$ and $\mathrm{Sw}_{1 \mathrm{a}}$ and associated input circuitry. More simply, the two switches can be combined into one.
Maximum cost-effectiveness is clearly obtained with the encode/decode version, as almost all of the circuitry is common to both modes - see Fig. 9, May issue, page 204. The first basic simplification possible of this switchable family is omission of the f.m. facility. Switch Sw_{2} is eliminated, being permanently wired in the position shown in Fig. 13.
If a separate audio oscillator is available, the circuit of Fig. 14 version
(b), need not be used. If the unit is to be built into a tape machine you may wish to omit the meter circuits, and adopt a simpler switching scheme. But you would then need an a.c. millivoltmeter for setting up. The 400 Hz oscillator wiring, shown by the broken line in Fig. 12, could also be omitted if the same tape is always used. We recommend retention of this feature to take account of tapes with different sensitivities (see part three)

Setting-up procedure

For proper operation, the encoding and decoding signal processors and the intervening signal channel must be matched at all frequencies of interest and all levels. Any errors in channel gain, on a wideband or frequency-selective basis, can produce a mismatch, or error, in overall response. But first, the circuit must be adjusted to provide the correct degree of low-level h.f. emphasis and de-emphasis (10dB at 5 kHz), and the correct threshold level. Matching between encode and decode modes must be checked. Then the processor must be level-matched to the

equipment and media (tape of t.m. radio) it is to be used with; to be covered in part three.

If the circuit of Fig. 12 is constructed without using the kit, apply the following setting-up procedure (see part 3 for kit). You will need an a.c. millivoltmeter and an oscillator, unless you adopt the technique using the circuits of Fig. 14 \& 15 , as in the kit design.
Before starting, make sure that the f.e.t. gates are shorted to earth. Start in the record mode with the noise reduction switched out (also the cal. tone off and the filter out, if used).
-Set law control RV ${ }_{1}$ to produce maximum positive voltage on the f.e.t. source.
-Feed in 5 kHz signal at a level to give 17.5 mV at test point 1 and note signal level at test point 2.
-Switch in noise reduction and adjust gain control $R V_{2}$ to give a $10 \pm 0.25 \mathrm{~dB}$ rise at test point 2 . Note signal level*.
-Remote f.e.t. gate short and adjust law control RV_{1} for a $2 \pm 0.25 \mathrm{~dB}$ drop at test point 2.
-Replace gate short and check that level returns to that identified by*. Finally, remove gate short.

Encode/decode matching check. Without altering the control settings, switch to play mode.

Fig. 13. Switching interface for one channel of Dolby B processor allows decoding and encoding of tapes, recording and simultaneous decoding Dolby f.m. transmissions (current in the USA), encoding of normal f.m. transmissions, and a normal signal for monitoring during recording.
This arrangement is used in the kit design, but could be simplified in other constructions, for instance by omitting Dolby f.m. provision given by $S w_{z}$ Switch $S w_{3 a}$ appears in both channels, but remainder of Sw_{3} is used in one channel only. Pin numbers on kit DIN sockets are indicated for both channels (dashed boxes for left).
-Switch out noise reduction and short f.e.t. gate.
-Feed in 5 kHz signal at a level to give 44 mV at test point 2 .
-Check that signal drops by $10 \pm 0.5 \mathrm{~dB}$ when noise reduction is switched in.
-Remove gate short and switch in noise reduction. Check that signal at test point 2 is $17.5 \mathrm{mV} \pm 0.5 \mathrm{~dB}$.

Decode-only processor. As with the switchable encode/decode version, ensure that f.e.t. gates are shorted to earth, and switch noise reduction off.
-Set law control RV to pinch-off f.e.t. i.e. maximum positive voltage on source.
-Feed in 5 kHz signal to give a level of 44 mV at test point 2 .
-Switch in noise reduction and adjust gain control RV_{2} to give a fall of $10 \pm 0.25 \mathrm{~dB}$ at test point 2 . Note signal level*.
-Remove gate short and adjust law control $R V_{1}$ to give a rise of $2 \pm 0.25 \mathrm{~dB}$ at test point 2 (should be 17.5 mV).
-Replace f.e.t. gate and check that level returns to that indicated by*
-Remove gate short.
Meter and oscillator calibration. If the meter circuits are to be fitted, calibrate them by applying a 580 mV tone and adjusting for a 0 dB reading. One of the meters can then be used to calibrate the 400 Hz oscillator level, if used. (The circuit of Fig. 14 from the kit design could be used if fed from a sufficiently well-regulated supply line; 5% in the circuit of Fig. 12.)
-Apply input signal to point D to give 580 mV at point G.
-Adjust RV_{8} for 0 dB meter reading.
-Operate cal. tone switch (if oscillator fitted).
-Adjust RV_{3} to give 0 dB meter reading.
The unit is now rearly for use. But to

Fig. 14.Oscillator circuit used in kit for generating a $1-\mathrm{kHz}$ tone (a) for calibrating the meters. Though a square wave, the magnitude is chosen to give the same reading as a $580-m V$ sine wave. Circuit is subsequently used to provide a $5-\mathrm{kHz}$ circuit alignment tone at (b) by temporarily using L_{z}

Fig. 15. Meter circuits using "perfect" diode arrangement. Right-channel meter circuit at bottom includes extra gain to allow measurement of low signal levels during alignment.
ensure compatibility with commercial-ly-available Dolby tapes, and to ensure interchangeability of tapes from machine to machine, it must be calibrated using a level-setting tape, to be detailed in part three of this article.

Kit construction

Successful operation of the unit depends on a number of factors. As well as proper matching of the unit, strict adherence to component tolerances and alignment procedure, use of selected f.e.ts, and a low ripple in the supply line are all essential to correct operation. For these reasons the parts for the unit are available as a complete kit.

The printed board of the kit is designed to keep wiring to an absolute minimum; it is for this reason that switches, calibration controls, and DIN sockets are board-mounted types. First thoughts indicated a double-sided board would be needed together with platedthrough holes, but this would make an expensive board. The same effect could be achieved with a larger single-sided board but would result in a large number of links. The relatively large number of controls finally decided the format. To keep board length down, some controls had to be mounted above others, and as there was to be a minimum of wiring, the top controls are mounted on to a separate board. The advantage of this sandwich board technique is a saving of about 24 links.

In the instructions, component numbers for the left-channel have 100 added to the number for the right channel: thus R_{121} is the left channel component corresponding to R_{21} in the right channel.

Kit assembly instructions

A number of pins are supplied with each kit; in fitting them insert from the track side of the board, tap down lightly with a hammer and solder into place. Insert pins as follows

[^2]
close to C_{32} (see Fig. 16)
-three pins in the L_{2} position, marked with broken lines, next to IC_{1}
-one pin at the 5 kHz oscillator output point, marked "osc"
-six pins in the holes marked E, R, L; E, r and 1 between socket Skt_{3} and C_{7}
There are seven links to be inserted on the main board; two further links are used if a tuner is to be connected to the auxiliary input socket, rather than the tuner input. The two f.e.t.-gate links should be looped, to allow easy breaking and making of the gate during alignment. Close-tolerance components, i.e. resistors of 2% tolerance or
better and capacitors of 5% tolerance or better, are separately packed.
-Insert seven or nine links, as appropriate.

- Mount close-tolerance resistors $\mathrm{R}_{21,121}-\mathrm{R}_{14,114}-\mathrm{R}_{15,115}-\mathrm{R}_{18 \mathrm{~b} ; 118 \mathrm{~b}}$ $-R_{37,137}$.
-Follow with close-tolerance capacitors $\mathrm{C}_{2,102}-\mathrm{C}_{3,103}-\mathrm{C}_{6,106}-\mathrm{C}_{7,107}$ $-\mathrm{C}_{11,111}$.
-Mount the remaining fixed resistors and capacitors identified on board, excepting $\mathrm{C}_{30}, \mathrm{R}_{47}, \mathrm{R}_{55,155}$.
Make sure electrolytic capacitors are inserted the correct way round, that is, indented end to the hole marked + . Note that R_{58} to R_{64}, R_{x} and C_{x} will be

left over, in addition to the four components already mentioned.
-Add pre-set potentiometers $\mathrm{RV}_{1,101}$ $-R V_{2,102}-\mathrm{RV}_{3,103}-\mathrm{RV}_{4,104}-$ $R V_{5}-R V_{8,108}$.
There are four types of diodes, easily identified by the quantities supplied. Zener diodes have the connections of the E-line package, the + lead corresponding to the collector position in Fig. 17. Of the others, the OA91 germanium diodes will be the largest and glass-encapsulated; the rectifier diodes will be the four plastics-encapsulated ones; and the 1 N 914 s should be the smallest, of either glass or plastics. The band-end is to correspond with + on the board. Base connections for the transistors are shown in Fig. 17. The field-effect transistors may have various markings but nevertheless will have been specially selected. Transistors $\mathrm{Tr}_{1,101}$ and $\mathrm{Tr}_{5,105}$ must be type ZTX109C, but the remaining n-p-n type may be supplied as either ZTXAll or 109 C . IC_{1} is located so that the end having the indent or other marking corresponds with the board marking. Solder next in place
- diodes $\mathrm{ZD}_{1,101},-\mathrm{D}_{1,101}$ to $\mathrm{D}_{5,105}, \mathrm{D}_{6}$
to $\mathrm{D}_{9}, \mathrm{D}_{10,10}$ and $\mathrm{D}_{1,111}$ to $\mathrm{D}_{9}, \mathrm{D}_{10,110}$ and $\mathrm{D}_{11,111}$
-transistors $\mathrm{Tr}_{1,101} \operatorname{Tr}_{5,105}$ (ZTX109C), $\mathrm{Tr}_{3,103}$ and $\mathrm{Tr}_{7,107}$ (ZTXA21), fieldeffect types, followed by remainder -integrated circuits $\mathrm{IC}_{1} \mathrm{IC}_{2}$.
When positioning the three DIN sockets make sure they are vertical and in line with each other, for appearance's sake. Check functioning of the push-button switches as they are difficult to remove once soldered. As the switch board markings will be covered by the

Fig. 16. Main board markings show seven essential links plus two optional links, for use if a tuner is to be applied to auxiliary socket. Some pin locations are shown. (Boards in kit have a slightly different track arrangement.)

Fig. 17. Socket connections, viewed from "holes". If E-line zener diode is used, as supplied in kit, the + sign on the board should correspond with the position of the collector lead in the E-line package shown right.
switches, identify them before assembly. Take care to push them fully into the board and ensure that they fit squarely: any skew will result in misalignment with the front panel. Fit and solder

> -three DIN sockets
> - switches Sw_{1} to Sw_{6}
> -inductors $\mathrm{L}_{1}, \mathrm{~L}_{101}, \mathrm{~L}_{102}$, but not L_{2}.

Sub-printed board

Components are fitted on to the track side of the subsidiary printed board.
-Solder components $\mathrm{C}_{\mathrm{x}}, \mathrm{R}_{\mathrm{x}}$.
-Solder potentiometers $\mathrm{RV}_{6.106}$, $\mathrm{RV}_{7,107}$.
-Attach plastics adjuster inserts into $\mathrm{RV}_{6}, \mathrm{RV}_{7}$.
-Cut off potentiometer legs flush with the board.
The sub-board should be spaced about 0.09 in away from the top of the main switches to ensure potentiometer

centres line up with the front panel holes. Matchsticks form convenient spacers.
-Lay matchsticks on $\mathrm{Sw}_{2 \mathrm{a}}$ and Sw_{1}
-Position sub-board, check alignment and solder

- Join areas on sub-board marked R, $\mathrm{L}, \mathrm{r}, \mathrm{I}$ to corresponding points on main board using twin-screened cable. Earth at one end only to points marked E.
-Connect link point on sub-board to link point on main board almost underneath.
-Insert links marked "Mpx" for use with $25-\mu \mathrm{S}$ B-Type f.m. transmissions.
Returning to the main board, be careful to align potentiometer spindles horizontally.

[^3]

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features:

- a weighted noise reduction of 9 dB
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines

The kit includes:
-complete set of components for a stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts.
Price is $£ 43$ inclusive.
A single-channel printed-circuit board, including components costs $£ 8.63$. inclusive (excluding edge connector, $£ 1.37$ extra). Selected
field-effect transistors cost 68p each inclusive, $£ 1.20$ for two and $£ 2.20$ for four.

Calibration tapes are available, costing $£ 1.94$ inclusive for $9.5 \mathrm{~cm} / \mathrm{s}$ open-reel use and for cassette (specify which).

Send cash with order, making cheques payable to IPC Business Press Ltd, to:

Wireless World noise reducer
General sales department
Room 11, Dorset House,
Stamford Street
London SE1 9LU
Allow three weeks for delivery.
shorting and dry joints.
-Crop leads to avoid touching chassis.
-Insert thin sheet of card between board and chassis.
-Fix board in position with 6BA screws.

Off-board assembly. Fix in position
-transformer
-fuseholder
-mains switch to meter/switch bracket
-bracket with tag strip under one screw.

At this point you can tape the meter to the bracket temporarily with the piece of foam plastic material between; normally the meter will be held in position by the front panel. Continue with off-board wiring
-transformer secondary to two points of tag strip (not earth tag)
-the two tags to $\mathrm{V}_{\text {in }}$ terminals on board
-meter illumination lamp, in series with R_{64}, to the two tags, the junction to a third tag (not earth tag)
-meter terminals to \pm M.R. and \pm M.L. on board (note + terminals on meter)
-mains cable brown lead to transformer primary via fuseholder and switch
-mains cable blue lead, via switch to transformer primary
-mains cable earth lead to earthed tag on strip
-insert strain-relief bush in hole and pass cable through
-stick on labels: one to identify sockets and play calibration potentiometers, the Dolby Laboratories label on the rear close to socket Skt_{3}, and the third inside chassis close to transformer.
Setting-up procedure for the kit design together with calibration details will be given in part three of this article.

Correction to part 1: Readers of part 1 of this article will have noticed a discrepancy in referring to JVC's a.n.r.s. scheme. Being of the general class of Fig. 5(a), it is incorrect to refer to ". . . a fixed high-pass filter in the subsidiary signal path, as is done with the JVC a.n.r.s. system, ..." (page 203, column 2). It should be clear that the subsidiary signal path of Fig. $5(c)$ is a feature of the Dolby system, and not JVC's. The Dolby filter of course has a variable frequency characteristic, whereas the JVC circuit uses a fixed turnover frequency. In a.n.r.s., the filter is in the main signal path during encoding and the whole compressor is placed in a high-gain negative feedback loop during decoding. It is therefore incorrect to include the parenthetic reference to the JVC technique following the reference to Fig. 5(c) on page 202 (foot of column 3).

Dolby Laboratories tell us the amount of distortion introduced in the processor output as a result of the overshoot suppression diodes operating is a few times higher than the 1% figure quoted on page 205. As mentioned, this distortion is momentary of course, occurring when the causal (not casual, as misprinted!) programme transients mask the distortion. Dolby Laboratories also point out that the variable decay time mentioned in the following paragraph is a feature of the A system only; it is fixed at 100 ms in the B system.

Letters to the Editor

 CONFUSION ABOUT

 CONFUSION ABOUT NOISE

 NOISE}

The March issue carried two articles about noise, one of them with the title "Noise - confusion in more ways than one". For this reader, alas, confusion was worse confounded by Fig. 1 of the article. The lower waveform looked like rectified noise, not band-limited noise as the caption said. Further, the probability density curve sketched and described as being of the Rayleigh type would only be correct for the envelope of narrow band noise. The noise itself has a Gaussian distribution. Perhaps the author meant to say that rectified narrow band noise has a Rayleigh distribution, and so it does, except when subjected to further band limiting whereupon its distribution reverts to Gaussian.
The other article "Low noise wideband amplifier" was reticent about the facts of life concerning the quiescent value of I_{c} and the disturbing effect of base spreading resistance r_{b} in circuits of this kind. If r_{b} were zero, R_{V} and R_{I} values could be scaled to suit R_{S} merely by adjusting I_{c} for a single transistor, increasing I_{c} for low values of R_{S}. This simple procedure is baulked by the presence of r_{b} which provides the only reason for introducing parallel operation. To a good approximation $R_{V}=r_{b}$ $+r_{e} / 2$ and $R_{I}=2 \beta r_{e}$ for a single transistor, where r_{e} is the characteristic slope impedance of the base emitter junction, given by $r_{e}=25 / I_{c}$ when I_{c} is in mA. for n transistors in parallel the effective values of R_{V} and R_{I} for the whole circuit are thus $r_{b} / n+12.5 /\left(n I_{c}\right)$ and $50 \beta /\left(n I_{c}\right)$ where I_{c} is still the current of each individual transistor. The I_{c} and r_{b} values of the circuit described in the article were not given. It would be interesting to know them and check the circuit performance against this simplified theory.
H. Sutcliffe,

Department of Electronic Engineering, University of Salford.

Dr Smith replies:

The point by Professor Sutcliffe concerning an error of omission in Fig. 1 of my article "Noise - confusion in more
ways than one", is quite correct. It also illustrates the interesting difference in intent by various people. Discussions about noise fall quite definitely into two camps. The first describes the statistical noise processes and involves a considerable depth of probability theory. The other effectively takes the stationary parameters characterising the noise (average value, root mean square value or power, and so on), and develops a measurement technique based on power ratios of signals to noise in actual systems. I wished to avoid the first approach, but thought to include Fig. 1 with the express purpose of showing that noise can have a distribution which differs from Gaussian. I find the assumption that noise is always Gaussian is an error often made in early stages of noise studies. (Even Professor Sutcliffe brought in "Gaussian" whenever he could!)
In Fig. 1 the words "envelope of" should be inserted before "band limited", although Professor Sutcliffe had the right idea when he surmised that I had intended to illustrate the detected envelope. My intention was to generate a picture of Rayleigh distributed noise and, as expected when I looked at my notes of the experiment to photograph the output of the detector, they read: "mention that the Rayleigh distribution is obtained after rectifying band limited noise, as follows . .." It is as well to mention that in practice all noise is ultimately band limited.
The output of a linear detector fed with Gaussian noise can be intuitively visualised as having a lop-sided peak at the average (or rectified d.c. output) value on one side of zero. It has zero probability of actually having the value zero, together with a decreasing probability after the peak, again towards zero as the output amplitude increases. This is just the one-sided Rayleigh distribution. Intuition is not a reliable guide to accurate concepts in probability - so do not take it too far! If there is a relatively large signal with the noise, then the output at the detector again tends to Gaussian, the more so as the signal amplitude increases. Also, further band limiting of the detector output will have the effect mentioned by Professor Sutcliffe. This discussion gives me the opportunity to offer a reference in case readers wish to follow up this interesting point ${ }^{1}$.
A small item: the commas in the last equation of the article (p.110) should be points or multiplication signs. The context should be obvious.

Reference

1. J. A. Betts. "Signals processing, modification and noise," Chapter 4. E.U.P.

Mr Grocock replies:

My reticence about the effects of varying the quiesent value of I_{c} was due to the fact that this ground had already been covered by Mr P. J. Baxandall in his excellent article in Wireless World, December 1968. Indeed, this was the
first reference quoted in the first paragraph of my article and I did not feel justified in merely repeating what had already been said by Mr Baxandall.

I agree that parallel operation is only justified by the presence of r_{b} and that R_{V} and R_{I} expressed in terms of individual transistor parameters are as stated by Professor Sutcliffe.

Unfortunately, I cannot quote the values of I_{c} and r_{b} for the circuit described since I no longer have access to the amplifier. However, I take the point made by Professor Sutcliffe; it would have been useful to compare the circuit performance against the values of $r_{b} I_{c}$ and β.

CONTACTS REQUESTED

I am the Rehabilitation Officer for the Rhodesian Society for the Blind and Physically Handicapped. I am also a member of the Friends of the Lions, No. RH/4407/3/75.
I have a Mr Robert Harley on my books who is a registered blind person and whose great joy is in amateur radio communication. I write to enquire whether there is anything you could do to help this man by asking in your magazine for another amateur radio operator to contact Bob Harley (call sign ZEIDO), either from Wales or England, or both for that matter. If this were possible he would be overjoyed. He is an ex Air Force Battle of Britain pilot and besides being blind he has also lost a leg.
(Mrs) I. David,
Greendale, Salisbury,
Rhodesia.

NAVIGATION BY SATELLITE'

I am surprised by the general way in which hyperbolic radio systems are treated in the article "Navigation by satellite" by W. Blanchard (February issue) In particular the Omega system does not suffer from many of the difficulties claimed, as they are not applicable to its mode of operation. The Omega system makes no attempt to "locate" (sic) the transmitters, as it uses a non-directional aerial and has no direction finding ability. The Omega system does not translate time intervals into distances, and it is not necessary to have an absolute time standard at the receiver. The system operates by phase comparison of sequentially transmitted signals, and the only accurate timing links required are between transmitters, a simple requirement.
No mention was made of the strategic implications of the satellite system. No armed force is likely to rely on the Omega system, as the transmitters could easily be silenced during hosti-
lities. It is much more difficult to knock down a satellite.

Finally the experience of Mr Blanchard's space-suited observer is only as stated if the satellite travels in a straight line. In a practical orbit the Doppler shift varies continuously from -D having just passed, and +D being about to pass.
J. R. Watkinson,

The University,
Southampton.

Mr Blanchard replies:

I think Mr Watkinson's misgivings about my article stem partly from my rather idiomatic use of words.

Having used all the hyperbolic systems I mentioned, as well as satellite navigation, for many years, I am well aware of their shortcomings and strengths, and I can assure Mr Watkinson that Omega does indeed suffer from the troubles I mentioned. I don't think anyone would seriously claim that Omega possesses other than moderate accuracy, as I stated.

When I said that earth-bound systems usually have little trouble in locating their transmitters, I meant that measuring the exact site of such a transmitter in terms of some geographical co-ordinate system or other usually presents little difficulty, at least in the better-mapped areas of the world. It is of course very important to know these positions precisely, since all one is doing with any navigation system is to establish where one is by measuring difference of position from some other precisely known point or points. This difference can be expressed in many ways, but in the end they can all be boiled down to a range and a bearing, two ranges, or two bearings (or, of course, more than two).

So when Mr Watkinson says that Omega does not translate time intervals into distance, he is correct inasmuch as the receivers themelves present only time differences, but this information would be quite valueless to the navigator unless it could be turned into geographical co-ordinates. To do this needs a translation from time to distance, and this is done by many users by plotting the time differences on a suitable chart, the chart compilers making the assumption that radio waves travel at a known speed, and therefore that time can be turned into distance. This sort of chart is really a simple and very cheap analogue computer, and of course the same calculation can be performed more precisely by a small digital computer, at considerably higher cost.

I take his last point, and I should probably have stated that my remarks only applied strictly to a satellite travelling in a straight line and not in a quasi-elliptical earth orbit.
Since my article was written, another satellite has been launched and there are now six in orbit.

EMERGENCY POWER GENERATOR

I was most interested in J. M. Caunter's article on generators (February issue) as for some time a colleague and I have been working along similar lines. We have used a heavy-duty dynamo, the normal 22 -amp car type being a little too small. By winding approximately 400 turns of 24 gauge wire over three slots we were able to get $240 \mathrm{~V}, 50 \mathrm{~Hz}$ direct. This requires a little more care in the winding but has several advantages. The lower current makes it possible to use the armature shaft bearings as one slip ring, the commutator segments being joined together form the other. It avoids the use of a heavy and expensive transformer and by using a small battery charger it is possible to excite the field. The use of a regulator is recommended. The residual magnetism is not enough to self-excite from start so a battery and "push to excite" switch is required.

I have achieved 350 watts with 6 amps excitation on a standard dynamo and 450 watts on a heavy-duty dynamo with 2.5 amps excitation. 450 watts is about the limit for this type of lawnmower engine, which, incidentally, I have converted to gas as this is much cheaper and the fumes are less unpleasant.
Maurice W. Garman,
Pinner,
Middlesex.

PERIL OF PUBLISHING

It would be interesting to know how many people with bright ideas or circuits are put off submitting them to Wireless World, knowing that the following month they will be destructively attacked by some even brighter person with large resources behind him. Perhaps these wise guys might remember that good things come from small beginnings.
W. B. Henniker,

Henniker \& Kerr,
Edinburgh.

SERIES AND PARALLEL FEEDBACK

Regarding the answers to my letter published in your February issue, I would like to make three short remarks.

1. I omitted to state the load impedance used in the distortion measurements on operational amplifiers. This was $5 \mathrm{k} \Omega$ in all cases. Below about $3 \mathrm{k} \Omega$ distortion increases rapidly; above that level no significant improvement in distortion was noted. Incidentally, Mr Linsley Hood's $1 \mathrm{k} \Omega$ is below the full output swing capability of the i.cs used.
2. Mr Sandman is correct in saying that his circuit does not suffer from the 'common-mode distortion I mentioned. I .mistook his circuit for a similar one, in which the non-inverting input of A_{1} is used. In that case, the common-mode troubles I remarked upon will arise. My apologies to Mr Sandman.
3. Mr Sandman's remark about the Delft circuit is incorrect. It does have negative feedback around both amplifiers. The positive feedback around A_{2} via R_{1} is compensated by an equal amount of negative feedback through A_{1} and R_{2}. The net result is no positive feedback but the only negative feedback applied to the inverting input of A_{2}.
In my view this circuit is more elegant in so far as it does not require a floating load.
T. Magchielse,

Almelo,
Netherlands.

CAPACITORS AS TRANSMISSION LINES

I found the letter by Mr Azelickis in the May issue most informative; I was aware that the equivalent circuit of the capacitor could be elaborated upon, and certainly to consider the capacitor as a transmission line is an excellent physical interpretation.

The transmission line analogy is the next step up from the simple $L C R$ circuit (resonant circuit) that I used for my description, and the reason that it was neglected was twofold. First, the resonant circuit is the standard equivalent circuit for capacitors, and as I thought the article covered a large amount of material in a rigorous as possible manner, the properties of transmission lines not being understood by everyone (including myself) who would read the article, such an equivalent circuit would be presumptuous on the part of the author. Secondly, manufacturers' information is developed along the lines of the LCR circuit; a transmission line circuit would have kept my typewriter busy making comparisons between the two.
I must confess a mention of the high frequency properties explained in terms of a lossy transmission line for capacitors would have been nice in the article. It is only when attention is drawn to a point that one realises just how much information one has left out. R. A. Fairs,

Mortlake,
London SW14.

VAT new rates

In view of considerable confusion about the new rates of Value Added Tax which came into force on May 1, readers responding to advertisements in Wireless World are advised to check with the advertisers concerned before purchasing goods.

A 50 MHz oscilloscope

2-Sweep and trigger circuits

by C. M. J. Little, B.A.
Department of Electronics, Southampton University

The sweep generator and associated circuitry provide a linear timebase with calibrated ranges from $1 \mathrm{~s} / \mathrm{cm}$ to $10 \mathrm{~ns} / \mathrm{cm}$. The timebase is triggered by the signal on the Y plates, unlike some timebases where the free-running sweep frequency is adjusted to syn-
chronize with the Y signal. A stability control adjusts the threshold of the sweep generator, allowing it to free run or to be triggered. The trigger generator is equipped with a level control and a positive/negative slope switch, which allows the triggering signal to be taken
off different parts of a waveform. This enables a stable display to be obtained from almost any input signal. The

Fig. 7. The sweep generator circuit diagram. Components R_{T}, C_{T} and C_{H} are selected by S_{8} in Fig. 8.

triggering signal may be selected from the Y amplifier, with a choice of a.c. coupling or low frequency rejection (high pass filter), from the 50 Hz mains, or from an external socket. A facility is provided for single-shot operation either triggered or free running, depending on the position of the stability control. A push-button and neon indicator resets the sweep and provides an indication that the circuit is ready to be triggered.

A triggered timebase does not normally produce a trace on the screen in the absence of an input signal, and it is usual to provide an "auto" position on the trigger selector switch. The "auto". function triggers the sweep from an internal oscillator at a fairly low frequency when no triggering signal is present, and also disconnects the trigger level control. This provides a trace at all times and results in immediate lock when an input signal is applied. This facility has not been provided, partly for technical reasons, and partly because I have not found it necessary. I will give a suggestion for a circuit in the final part of the article.

The sweep generator in Fig. 7 will now be described in detail. The circuit is fairly complicated, so a step-by-step explanation of the circuit operation will be given.

Circuit operation

Consider the circuit when the stability control is just off the point where the trace runs free. Tr_{50} is on, Tr_{52} is off, and the base-emitter junction of Tr_{52} is reverse-biased. The voltage at the collector of Tr_{52} is 18 V , and the voltage at the emitter of Tr_{53} is 5.4 V . This positive voltage holds Tr_{54} and Tr_{55} on via D_{32} and R_{137}. The voltage at the junction of D_{35} and D_{41} will assume' a potential of about -2 V , diverting excess current from R_{137} through D_{33}, D_{41} and the resistor chain to the -50 V rail. The start of the sweep voltage is about -8 V at D . The loop $\mathrm{D}_{32}, \mathrm{Tr}_{55}, \mathrm{Tr}_{56}$, D_{35} and D_{33} forms a negative-feedback control loop which tends to hold the start voltage of the sweep constant in spite of the charging current through R_{T}, which varies from $0.6 \mu \mathrm{~A}$ to 2 mA . This control loop works very well, with almost no detectable change in start voltage over all the time $/ \mathrm{cm}$ ranges.

To continue, the emitter of Tr_{60} is at about -14 V . As the base voltage of Tr_{50} will be at $-10 \mathrm{~V}, \mathrm{D}_{39}$ is reverse-biased. The emitter voltage of Tr_{57} is controlled by the stability control, which is adjusted until Tr_{50} is only just on; Tr_{58} plays no part in the circuit operation as its collector is open circuit. Now a negative-going trigger pulse turns Tr_{50} off. Tr_{51} and Tr_{52} turn on and the voltage at the collector of Tr_{52} falls to 6.5 V . The voltage at the emitter of Tr_{53} is now at -6 V , which reverse-biases D_{32} and D_{33}; The Miller run-up circuit $\mathrm{Tr}_{54}, \mathrm{Tr}_{55}, \mathrm{Tr}_{56}$ and C_{T} is now disconnected and the gate of Tr_{54} tries to go negative. This is countered by the emitter of Tr_{56} going

Fig. 8. Sweep-time selector switch and fine sweep-time control. C_{H} and R_{H} are hold-off components to allow Ct time to discharge.
positive. The effect is that the gate voltage of Tr_{54} remains constant and a linear positive-going ramp is produced at the emitter of Tr_{56}. The rate of the ramp is determined by the charging current through R_{T} and the timing capacitor C_{T}. The collector load resistor is returned to the +115 V rail in order to use a high value load resistor, and thus to obtain a high loop gain.
The emitter of Tr_{60} follows the ramp voltage, forward biasing D_{39} and carrying the base of Tr_{50} at the same potential, Tr_{57} is reverse-biased. At a potential of about +3 V , the Schmitt trigger $\mathrm{Tr}_{50}, \mathrm{Tr}_{51}$ and Tr_{52} resets. C_{T} now discharges via R_{137} and D_{32} on one side and $\mathrm{D}_{35}, \mathrm{D}_{34}$ and Tr_{55} on the other. The gate-voltage of Tr_{61} will follow the falling ramp voltage until D_{40} reverse biases. The hold off components, $\mathrm{C}_{85}, \mathrm{C}_{\mathrm{H}}$ and R_{159} maintain the emitter of Tr_{60} positive for an additional time period to allow C_{T} to completely discharge. The hold-off capacitors discharge via R_{159}
and the sweep is ready for another trigger pulse when D_{39} reverse biases and the base voltage of Tr_{50} is again under the control of the stability control. This concludes the circuit operation under normal triggered use.
The single-shot facility takes effect when S_{6} is operated. The rising voltage at the end of the sweep turns Tr_{57} off and Tr_{58} on. Tr_{58} holds the voltage at its emitter at a more positive value than that set by the stability control. This reverse biases Tr_{57} and inhibits the sweep. When S_{7} is pressed, the positive pulse generated turns Tr_{57} on and Tr_{58} off, restoring the voltage at the base of Tr_{50} to its usual value. The sweep may now be triggered, and this is indicated by the neon.

There are a few points that have not been covered in this description. One section of the horizontal selector switch inhibits the sweep in the external X position by shorting $R_{133} . C_{82}$ is shown connected to the +18 V rail, but could equally well be connected to earth. D_{30}, $\mathrm{D}_{34}, \mathrm{D}_{38}, \mathrm{D}_{37}$ and D_{36} protect against breakdown of base-emitter junctions. R_{160} adjusts the finish voltage of the ramp and is used to set the trace length.

The speed selector switch is shown in

Fig. 8, and hardly needs any comment. The hold off components, switched by $\mathrm{S}_{8 \mathrm{a}}$ increase the hold off time for some ranges, and decrease it on others by connecting additional resistors to the -50 V rail.

Trigger generator

The trigger generator is shown in Fig. 9. The input stage is a differential amplifier similar to the Y pre-amplifier input, having the signal input applied to one gate, and the trigger level control voltage to the other. The positive/negative slope switch reverses the two gates. Tr_{73} produces a current output which drives the tunnel diode, D_{50}.

The voltage divider chain $\mathrm{R}_{204}, \mathrm{R}_{205}$ and R_{206} biases the tunnel diode onto the
negative resistance part of its characteristic. R_{207} adjusts the slope of the load line so the tunnel diode just does not oscillate, as illustrated in Fig. 10. This adjustment minimises the hysteresis of the circuit. The current from Tr_{73} moves the load line so the tunnel diode switches alternately from its high voltage state to its low voltage state, and vice versa. The 300 mV step is amplified by Tr_{75} and differentiated by T_{1}. The positive spikes are suppressed by D_{51}, and the negative ones trigger the sweep generator.
When S_{9} is in the h.f. sync position, $\mathrm{S}_{9 b}$ shorts R_{207}. The tunnel diode oscillates at about 10 MHz , providing trigger pulses. The input signal, which may be up to 100 MHz , synchronizes this oscillation and provides a locked trace.

Aid for drivers

Experimental German inductive-loop system to guide motor vehicle drivers to their destinations quickly and safely.

As the roads of the industrialized nations become more and more congested, getting to one's destination by motor vehicle becomes increasingly time-consuming, nerve-wracking and expensive. Electronics has already given some help in the form of the established German traffic information broadcasting system ARI (Autofahrer-Rundfunk-Information) described in the May 1973, p.238, and April 1974, p.95, issues of Wireless World. Even more assistance could come from Germany if a new electronic system giving drivers direct guidance to their destinations, taking account of road conditions, is generally adopted - though at present this does seem a long way off. Called ALI (Autofahrer Lenkungs-und Informations System, i.e. Drivers' Guidance and Information System), this scheme is the result of work by the Telecommunications Technology and Data Process-
ing Institute of the Aachen Institute of Technology, supported by development by the Robert Bosch Research Institute and the firm Blaupunkt-Werke which is a member of the Bosch group. Blaupunkt has been working on the ALI system for two years and recently Wireless World saw a demonstration of it on a test track built at their headquarters at Hildesheim, near Hanover.
The basic idea of ALI is' that the driver tells the system where he wants to go (e.g. a town or motorway exit) by pressing keys on a unit in his vehicle, and then, as he drives along, direction information (e.g. turn left, drive straight on) is automatically transmitted to the vehicle by roadside units just ahead of junctions, exits and so on and presented to the driver on a display unit. In addition to the directions to his destination, the driver receives information on road conditions, the presence of

Fig.1. Simplified schematic of the drivers'guidance and information system, showing a vehicle equipment and roadside equipment communicating with each other by magnetic induction.
obstacles such as traffic jams, and recommended average speeds for rapid progress. For example, on the vehicle display units we saw a Blaupunkt (see photo) there were arrows for direction instructions, the announcement words "icing", "fog" and "traffic jam" and numbers for the recommended average speeds - each of which was lit up as appropriate.
The information transmitted to the vehicles is stored in the roadside units, having been acquired by them mainly from the passing vehicles themselves (those fitted with ALI) and partly by telephone line from a central computer which itself is fed with accumulated information from a large number of the roadside units. (There would be one computer for each of 16 zones in W. Germany - see below.) Exchange of information between the roadside units and the vehicles takes place by means of $2 \mathrm{~m} \times 2.5 \mathrm{~m}$ inductive loops buried beneath the road surface and ferrite rod "aerials" fitted low down on the chassis of the vehicles.
A simplified block diagram of the vehicle and roadside equipments is shown in Fig.1. The "destination" keys which the driver presses in his vehicle have code letters and numbers which are used to give "four-symbol map references on a map of the German Federal Republic. This map is divided first of all into 16 main zones, labelled A to Q , and the first letter symbol keyed-in selects one of these. Each of these main zones is subdivided into 16 smaller zones, and the second keyed letter symbol selects one of these. Thus the first two keyed letter symbols, for example FB, select one of 256 small zones, each of which measures $31 \times$ 31 km . The third letter symbol keyed-in selects an even smaller subdivision area, of $8 \times 8 \mathrm{~km}$. The fourth keyed symbol can be one of nine letters and seven numerals: if a letter is keyed a final destination area, measuring $2.7 \times$ 2.7 km , is selected; while if a numeral is keyed a particular motorway exit is selected. This coding system allows more than 65,000 destinations to be defined.
In addition to the destination key-
board, the vehicle equipment comprises a small transmitter for sending out the pre-selected destination, a receiver which receives the direction instructions from the roadside equipment, and the display panel already mentioned. The "aerial" on the vehicle is a ferrite rod type about 20 cm long. The roadside equipment includes a transmitter and a receiver, the inductive loop in the road, and a programmable memory containing the instructions to be transmitted to the vehicles. This unit is buried close to the roadway.

The roadside equipment transmits call signals continuously. When a vehicle fitted with ALI travels over the loop, the call signal is identified by the vehicle's receiver. This identification serves to switch off the vehicle receiver and simultaneou sly switch on the vehicle transmitter, which then transmits the destination, pre-set on the vehicle's keyboard, to the roadside unit. The message begins with a start signal (coding identical with that of the call signal). Thereupon a 16 -bit destination message is transmitted, three times in succession, and in each case two successive messages are checked for identity.

At this point the vehicle equipment is automatically switched over to reception and the roadside unit to transmission. The roadside equipment transmits a start signal, followed by an 8-bit message of direction instructions, also three times in succession. This concludes the data transmission. The call signals of the roadside equipment which follow are no longer interpreted by the vehicle unit; this is an important teature, in cases where a driver has to stop over a loop.

When the information reaches the vehicle a short "pip" sounds inside the driving compartment and the display panel lights up with the appropriate message. The display brightness can be adjusted and the panel can be switched off by pressing a push-button.

The exchange of data described above takes place in about one hundredth of a second. Duration of transmission is so short that it would still be effective for vehicles travelling at $300 \mathrm{~km} / \mathrm{h}$ ($180 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) for the size of inductive loop used. It is claimed that even at these high speeds the reliability of operation of the system is good because triplicate messages are being transmitted in both directions.

Information throughout the system is stored and processed in binary digital form, but for signalling purposes the binary data is converted into pulse duration modulation and then into frequency modulation for transmission via the loop or ferrite "aerial". Two frequencies are used, obtained in both the vehicle and roadside equipment from a quartz crystal oscillator via a frequency divider with a change-over switch. The crystal oscillator frequency of 4.433 MHz is divided by 40 and by 30 to give respectively the two frequencies

Fig. 2. Announcement display in the vehicle. This has arrows to give directions, warnings of road conditions and recommended speeds.

Fig. 3. Ferrite rod "aerial" for inductive transmission and reception on the chassis of a car.

111 kHz and 148 kHz . Binary data are then encoded as follows: "low" is represented by seven cycles of 148 kHz and 16 cycles of 111 kHz ; "high" is represented by 22 cycles of 148 kHz and six cycles of 111 kHz ; and the "start" signal consists of 30 cycles of 148 kHz and six cycles of 111 kHz . (This "start" signal is the one used for the beginning of the messages and for the call signals from the roadside equipment.)

As for the possible cost of putting the ALl system into operation, Blaupunkt were unwilling to commit themselves too definitely, but they thought that vehicle units could probably be manufactured for about 200DM each (about $£ 36.00$) and roadside equipments for about 1000DM each (about $£ 180.00$). For W. Germany possibly 20,000 road-
side equipments would be needed altogether. Total expenditure might be anything up to 1000 M DM (about £180M). The system has been presented to the Federal German transport ministry and has also been demonstrated to the Common Market scientific body COST (Co-operation Europeenne dans le domaine de la Recherche Scientifique et Technique). Our general impression is that Bosch and Blaupunkt are not themselves very convinced of the economic practicability of the scheme as at present proposed but are anxious to establish their technological lead in this general field of traffic information and guidance. ALI could for example be used for public transport systems within towns, and already several German bus operators have shown interest in it.

Other erasers in the Weircliffe range include
MODEL 6 For tape widths of $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ instrument and video on spools up to $81 / 4^{\prime \prime}$ diameter.
MODEL 7 For tape cassettes ana cartridges not exceeding 8" square and $1^{\prime \prime}$ deep.
MODEL 14 The only commercially available conveyor belt system suitable for continuous operation and having an erase capability of 1200 tapes per hour of all widths up to $2^{\prime \prime}$ video on any spool diameter up to $16^{\prime \prime}$. Degree of erase better than 90 dB . down.

THROUGHOUT THE WORLD WEIRCLIFFE ERASERS HAVE THE APPROVAL OF TAPE MANUFACTURERS, BROADCAST AND TV AUTHORITIES, MANUFACTURERS OF INSTRUMENT, DATA AND COMPUTER EQUIPMENT AND CIVIL AND MILITARY GOVERNMENT DEPARTMENTS

ALICE BROADCASTING GU 100

DELIVERY 6-8 WEEKS

The 'ALICE' GU 100 turntable is a console mounted 'SPARTA' GT-12-SY turntable complete with a 'STANTON' tone arm, less cartridge. This along with a comprehensive 'ALICE' cue-/pre-amp unit is mounted int a hand finished teak console built by our own craftsmen to standards that are hard to beat. Locking castors are used to allow the console to be easily moved to any required operating position

TECHNICAL SPECIFICATION

Input sensitivity
Freq. response
Output level
Stereo separation Power requirements Remote start Cue amp
Turntable acceleration Turntable platter

Platter weight Turntable speeds Console weight Dimensions

5 millivolts for $O d B m$ out at 1 kHz to R.I.A.A. curve.
OdBm into $600 \Omega \mathrm{bal}$, other levels as requested. Outputs appearing on switch craft XLRs.
70 dB typical (electronics only).
240 V 50 Hz or 117 V 60 Hz .
Relay operated.
5 watts RMS to internal speaker less than ${ }_{1 i}^{1 i}$ turn to full rpm.
European (flat platter).
American ($7^{\prime \prime}$ record centre well).
$6 \mathrm{lb}(2.75 \mathrm{~kg})$
$45 \& 33^{1 / 3} \mathrm{rpm} .78 \mathrm{rpm}$ available.
$106 \mathrm{lb}(48 \mathrm{~kg})$.
$221 / 2^{\prime \prime}$ deep, $24^{\prime \prime}$ wide, $32 \frac{1}{2} 2^{\prime \prime}$ high to top of tone arm.

OTHER ALICE PRODUCTS INCLUDE

RACK MOUNTING DISTRIBUTION AMPS 6/24
RACK MOUNTING TELEPHONE BALANCING UNIT RACK MOUNTING PRE-VIEW MONITORS BROADCASTING AND RECORDING CONSOLES, ETC

SEE US AT A.P.R.S. EXHIBITION STANDS 4 AND 5

ALICE BROADCASTING 38 Alexandra Road, Windsor, Berks. Tel. 51056/7. (Stancoil Ltd)
WW-048 FOR FURTHER DETAILS

Paris components show

New semiconductor devices at the Porte de Versailles

Wireless World again made the annual pilgrimage to the Paris component show which, in the past, has been a favourite event for launching new products. This year, however, we were expecting the worst, having been constantly warned of impending doom and recession. Despite these "Job's comforters" the show was a success, with over 1100 exhibitors displaying their wares. In our report we have concentrated on semiconductor devices, in which most development is taking place.
Nippon Electric Company formally launched a microwave f.e.t. Designated the NE244, it is a gallium arsenide device suitable for low-noise amplifiers and oscillators operating between 9 and 12 GHz . The makers say that this device is the first reliable microwave f.e.t. on the market having a m.t.t.f. (mean time to failure), at $125^{\circ} \mathrm{C}$ junction temperature, of 10^{6} hours. Specifications of the f.e.t. are: drain-to-source voltage 10 V ; maximum power gain, at $8 \mathrm{GHz}, 11 \mathrm{~dB}$; typical noise figure, at $8 \mathrm{GHz}, 3 \mathrm{~dB}$. The device is available in several packages, including the stripline case, or the bare chip can be supplied which has a better frequency response because there is no parasitic package-capacitance. NEC tell us that a second-generation device is
under development and sample quantities should be available around July this year. The crux of a microwave f.e.t. is the channel thickness, which is one micron in the NE244. The development device, type NE388, has a channel width of $1 / 2$ micron and is intended for use at around 14 GHz although, say the makers, theoretically it could operate at 20 GHz .
Microprocessors were in evidence, with more companies entering the market, bringing the number of manufacturers to around a dozen. RCA announced the COSMAC - an eight-bit c.m.o.s. register-oriented microprocessor. The l.s.i. device is housed in one 40 -pin and one 28 -pin package and can be powered from an unregulated supply of 4 to 12 V . It is understood that the device will be available about October at a price of around $\$ 400$. Intersil launched the IM6100, a 12 -bit parallel microprocessor on a single chip. This is a silicon-gate c.m.o.s. device consisting of six 12 -bit registers, a programmable logic array to generate control signals, an arithmetic and logic unit, and timing circuitry. The IM6100 is t.t.I. compatible and requires a single 5 V supply.
Advanced Micro Devices also introduced a single-chip processor using m.o.s. technology. The Am8080, which

Development microwave f.e.t. from NEC showing $1 / 2$ micron channel.
is similar to the Intel device, has six 8 -bit registers, which may be used singly or in pairs for both 8 - and 16 -bit operations. The chip is housed in a 40 -pin package and samples should be available in July.
C.c.d. memories made their first commercial appearance at the show with the Fairchild CCD450 - a 1 -kilobyte serial memory using a bur-ied-channel, ion-implanted barrier structure in the registers combined with n-channel silicon-gate m.o.s. structures for timing, charge detection and level conversion circuitry. Nine bidirectional data lines are t.t.l.-compatible and have three-state output buffers for wired-OR application. The device is organized as 1,024 words of 9 bits: the nine c.c.d. registers are shifted in parallel to provide storage and retrieval of ninebit words. Power dissipation in the read and write modes is 250 mW and average random-byte access time is $200 \mu \mathrm{~s}$.
Intel also announced a c.c.d. memory called the 2416. This device is organised as 256 words of 64 bits with address register incorporated on the chip. Any one of the 64 registers can be accessed by applying an appropriate 6 -bit address input. The 2416 has maximum serialdata transfer rate of $2 \mathrm{megabits} / \mathrm{s}$, and an average latency time under 100μ s. Intel have indicated that they may be producing a 32 kbit device in the next year.
Advanced Micro Devices Inc are launching a t.t.l. family of low-power Schottky devices called the Am25LS range, which is expected to be available around July this year. These devices are faster, have improved noise margins and increased fan-out over their 54LS/74LS series. Circuits in the range include a one-of-eight or dual one-offour decoder/demultiplexer, a threestate quad two-input multiplexer inverting or non-inverting - and an eight-by-one serial/parallel two'scomplement multiplier.
The latest m.o.s. circuit from Siemens - a programmable counter module, type SAJ341 - was on display. The device is a continuation of the SAJ series of frequency dividers, and consists of a four-decade up-counter which is connected behind five divider stages

L.e.d.-array driver i.c. from Siemens.
to form an adjustable circuit, capable of comparing the coded timing of a process with the prescribed value. Four-digit quantities, minutes and hours can be counted, compared and displayed.
Another new i.c. from Siemens is the UAA180. Unlike the UAA170, which is a driver module for l.e.d. arrays, illuminating one l.e.d. at a time, the 180 drives up to 12 l.e.ds simultaneously to produce a strip of light of varying length, depending on an analogue quantity. This circuit, with an l.e.d. array, is intended to replace conventional meter movements for displaying quantity and rate of change.
Other new components seen were the 2708, an 8 k erasable m.o.s. programmable ROM, the 3604 , a 4 k bipolar PROM, and the 5101 , a 1 k c.m.o.s. RAM - all from Intel. AEG-Telefunken had a range of power semiconductors claimed to be the first manufactured from neutron-doped silicon. These were high-current diodes, D401 and D401R, with blocking capabilities of 4000 to 5000 V at 800 A r.m.s., and a high-current thyristor, T670N, which has a current capacity of 1500 A r.m.s. at an inverse voltage of 2000 to 2600 V . AEG say that thyristors with a peak inverse of 4000 to 5000 V are under development using n.d.s.

Consumer devices seem to be a popular area and SGS-Ates announced several new i.cs for electronic musical instruments. These m.s.i. and l.s.i. devices will cover the basic functions of an electronic organ and auxiliary functions (rhythm and automatic accompaniment). The new devices are the M081 and M082 m.o.s. circuits for tone generation, the HBF4727AE, a c.m.o.s. frequency divider, the M252 m.o.s. rhythm generator and the M251,
a m.o.s. circuit which automatically generates the accompaniment (bass notes, arpeggios and chords). Another device on show was the TDA1054, a monolithic level-control preamplifier for tape recorders, dictaphones, etc. It is also suitable for compressor-expander application in telephone equipment. The circuit incorporates a low-noise preamplifier, a.l.c. system, high-gain equalization amplifier and supply variation rejection facility all on one chip. SGS-Ates and AEG Telefunken have jointly developed a complete kit of integrated circuits and discrete devices for a PAL television receiver, which we understand is available now.
New from Mostek are the MKM70041 and MKM70042 modules for l.e.d.-display watches, which are 12 hr and 24 hr units respectively. Two gold plated switch contacts provide instant access to either hours and minutes or date and seconds. A third switch contact is used for setting the time. The module is designed to fit existing watch cases which contain three push switches in the bezel and where the back of the case makes contact to the positive terminal of one battery and the negative terminal of a second battery in series.

Digital watch module from Mostek.

HF predictions

Ionspheric forecasting is very much the same in some respects as atmospheric weather forecasting. Seasonal trends are well established but day-to-day variations within a month can only be predicted on a statistical basis when forecasting a month or more in advance. Forecasts of conditions a day or two in advance and the progress of events once they have started meet with fair success. A good success rate is obtained by assuming that tomorrow will be the same as today and applying a measure of psuedo scientific folklore.

Electronic circuit calculations simplified

1 - Resistive circuits

by S. W. Amos, B.Sc., M.I.E.E.

Probably the problem most familiar to the experimenter in electronics, whether professional designer or interested amateur, is the determination of what value of component to use at a particular point in a circuit. Manufacturers' literature can provide useful information but often the designer has to solve the problem himself and in general there are two ways in which he can determine the optimum value for a component. He can make a working model of the circuit using preset components which can be adjusted to give the best performance: measurement of the values of the preset components then gives the required information. Alternatively, and this avoids the need to build a circuit, he can calculate the optimum values of the components. Many of the calculations are extremely simple and it is the aim of this series of articles to show that much circuit design is possible using elementary mathematics. Indeed many calculations require nothing more complicated than Ohm's law: others use formulae which are just as easy to handle. All the numerical examples which illustrate the articles stem from typical practical circuits.
We shall begin with calculations concerning a single resistor and will then consider those on circuits consisting of two resistors in parallel or in series.

Single resistors. In general problems concerning a single resistor are of two types:
(a) those in which the circuit requires for its proper operation a resistor of a particular, value and it is desired to calculate that value.
(b) those in which the resistor value is fixed and the operating conditions in the circuit containing the resistor must be chosen to suit the resistor value. It is desired to determine these optimum operating conditions.

Decoupling resistor. A simple example of calculating a resistor value is provided by Fig. 1 which illustrates an RC combination used to decouple the early stages of a receiver or amplifier
from the final stage. The problem is to calculate the value of the decoupling resistor R. Ideally the resistor should be as large as possible consistent with providing the early stages with an adequate supply voltage. If the final stages have a $9-\mathrm{V}$ supply (likely in a transistor portable receiver) then the early stages will require, say, 6 V so that 3 V can be lost across the decoupling resistor. The mean current taken by the early stages (at 6 V) must be known: let this be 5 mA . We can now determine the decoupling resistor value from a simple application of Ohm's law thus:
Value of decoupling resistor is

Fig.1. A decoupling resistor.

Fig.2. Essential features of the automatic cathode biasing circuit.

Fig.3. One method of biasing a depletion-type f.e.t. using a resistor in the source circuit.
$=\frac{\text { voltage lost across decoupling resistor }}{\text { current taken by early stages }}$
$=\frac{3}{5 \times 10^{-3}}$ ohms
$=600 \mathrm{ohms}$.
The calculation of the value of the decoupling capacitor is dealt with in Part 4.

Biasing circuit. Another example of a calculation of a resistor value is provided by the bias circuit for a valve or f.e.t. class-A amplifying stage in which a resistor is included in the cathode or source circuit. A typical circuit diagram is given in Fig. 2: the grid is returned to h.t. negative via R_{g} and the grid-cathode bias is equal to the voltage generated across R_{k} by the cathode current of the valve. The value of R_{k} is thus determined by the grid bias voltage and the mean cathode current. These values are likely to be given in the literature supplied by the manufacturer or can be determined by examination of the characteristic curves. For an a.f. output pentode, for example, the grid bias may be -8 V and the mean cathode current 40 mA . The required value of R_{k} is given by Ohm's law thus:
value of cathode bias resistor

$$
\begin{aligned}
& =\frac{\text { grid bias voltage }}{\text { mean cathode current }} \\
& =\frac{8}{40 \times \frac{8}{10^{-3}} \text { ohms }} \\
& =200 \mathrm{ohms} .
\end{aligned}
$$

Fig. 3 shows a corresponding f.e.t. circuit. Here the mean source current may be 1.5 mA and the gate-source bias voltage -2 V . Again applying Ohm's law:
value of source bias resistor

$$
\begin{aligned}
& =\frac{\text { gate bias voltage }}{\text { mean source current }} \\
& =\frac{2}{1.5 \times 10^{-3}} \text { ohms } \\
& =1.3 \text { kilohms approximately. }
\end{aligned}
$$

One of the significant features of the circuits of Figs. 2 and 3 is that there is no voltage drop across R_{g} due to grid (or gate) current: the bias voltage required is that developed across R_{k} or R_{s}. Bipolar transistors, on the other hand, have a significant base current and it may be necessary to allow for this in biasing circuits as shown in a later numerical example.

Screen-grid resistor. A good illustration of a simple application of Ohm's law is provided by Fig. 4, which shows the circuit diagram of a class-A voltage amplifier using a pentode valve. For satisfactory operation of such a stage the mean screen-grid potential should be approximately equal to the mean anode potential, and this leads to a simple method of calculating the value of the screen-grid dropping resistor R_{sg}. Over a wide range of operating conditions the screen-grid current of a pentode is a fixed fraction, commonly between one quarter and one third, of the anode current. Because the voltage, across $R_{s g}$ must be approximately equal to that across R_{a}, it follows that $R_{s g}$ should be between $3 R_{a}$ and $4 R_{a}$. A commonly-used value for R_{a} is 100 kilohms and $\mathrm{R}_{\text {sg }}$ should therefore lie between 300 kilohms and 400 kilohms. 330 kilohms is often used.

Load resistor (directly-connected). A problem frequently encountered in electronics is that of obtaining the maximum output power of which a valve or transistor is capable in class-A operation. There is a particular value of load resistance (the optimum load) for which the output power is a maximum and its value depends on the operating conditions of the valve or transistor. The optimum load resistance can readily be calculated from Ohm's law as follows:
optimum load resistance
maximum undistorted anode (collector) voltage swing
maximum undistorted anode (collector) current swing

If the load resistor is connected directly in the collector circuit, as shown in Fig. 5 , then the collector voltage swing is limited in the positive-going direction by the supply voltage and in the nega-tive-going direction by the emitter voltage. If the collector voltage attempts to go below the emitter voltage the collec-tor-base junction becomes conductive and applies a low-resistance shunt across the load resistance. Some typical practical values are shown in Fig. 6, which also shows the maximum undistorted sinusoidal collector voltage swing of which the transistor is capable. The quiescent collector voltage (i.e. its value for no input signal to the transistor) is 7.5 V and the maximum voltage swing is of 4.5 V peak value. Let us

Fig.4. Method of applying positive bias to the screen-grid of a pentode.

Fig.5. A load resistor R_{c} connected directly into the collector circuit of a biopolar transistor.

Fig.6. Representing operating conditions in the collector circuit of a bipolar transistor with a directly-connected load.

Fig.7. A load resistor connected to the collector circuit of a bipolar transistor by a transformer.
suppose that the mean collector current is 0.5 A : then this is also the peak collector current swing and the optimum load resistance is given by:
optimum load resistance
$=\frac{\text { maximum collector voltage swing }}{\text { maximum collector current swing }}$
$=\frac{4.5}{0.5} \mathrm{ohms}$
$=9 \mathrm{ohms}$.
The power delivered into this load is given by $V_{r m s} I_{r m s}$ but it is more convenient to use the equivalent expression $V_{p k} I_{p k} / 2$. Substituting for $V_{p k}$ and $I_{p k}$ we have
output power $=\frac{4.5 \times 0.5}{2}$ watts
$=1.25 \mathrm{~W}$ approximately.
Load resistor (transformer-coupled). It was assumed in the above example that the load resistor was connected directly into the collector circuit. Very often, however, load resistors are connected into the output circuits of valves or transistors by transformers as shown in Fig. 7. This affects the collector or anode voltage swing considerably because the quiescent voltage is now the positive supply voltage, there being no steady voltage drop across the primary winding of the transformer, which is assumed to have negligible resistance. The voltage swings are now above and below the positive supply voltage as shown in Fig. 8.

As a numerical example consider a pentode valve with $250-\mathrm{V}$ h.t. supply and a mean anode current of 35 mA . The anode voltage swing is unlimited in the positive direction but is limited in the negative direction by the curvature of the characteristics. To minimise distortion from this cause the anode voltage should not go lower than say 40 V . Thus the maximum downward anode voltage swing is 210 V and the maximum anode current swing is 35 mA . Thus the optimum load resistance is given by
optimum load resistance

$$
=\frac{\text { maximum anode voltage swing }}{\text { maximum ande }}
$$

$$
=\text { maximum anode current swing }
$$

$$
\begin{aligned}
& =\frac{210}{35 \times 10^{-3}} \text { ohms } \\
& =6 \text { kilohms } .
\end{aligned}
$$

The load into which the power is required may be a loudspeaker of 3 ohms resistance. The turns ratio of the transformer can be chosen to match the optimum load to 3 ohms so that the valve is effectively presented with a resistance equal to the optimum load value. The turns ratio required to effect such a match is n : 1 where

$$
n=\int\left(\frac{\text { optimum load resistance }}{\text { loudspeaker resistance }}\right)
$$

Substituting the appropriate values we have:

$$
n=\sqrt{\left(\frac{6000}{3}\right)}
$$

$=45$ approximately

Thus a transformer with a primary-tosecondary turns ratio of $45: 1$ is required to secure maximum power transfer from the valve to the loudspeaker.

Voltage and current amplifiers. In the previous examples we have been concerned with obtaining the maximum power output from a valve or transistor. This is not always the aim in circuits in which a resistor is included in the output circuit of an active device. Bipolar transistors, for example, are cur-rent-operated devices and in a cascade of transistors the aim of each intertransistor circuit is to transfer current from the output of each transistor to theinput of the next. In Fig. 9 the current output from Tr_{1} splits between R_{c} and the input of Tr_{2} and R_{c} should clearly be as large as possible to deflect maximum current into Tr_{2}. By making R_{c} large the collector potential of Tr_{1} becomes low, almost equal to the emitter potential in fact. R_{c} then determines the collector current of Tr_{1} and if it is made too large Tr_{1} collector current becomes very small so that the current gain of Tr_{1} (which depends on collector current) may become too small. As a compromise we can decide that Tr_{1} mean collector current is 1 mA (giving good current gain) and, if the supply voltage is, say, 18 V then a simple application of Ohm's law gives R_{c} as 18 kilohms. This is large compared with the likely value of the input resistance of Tr_{2} so that the correct conditions for a current amplifier are achieved.

There are occasions when a bipolar transistor is required to feed into a device with a very high input resistance such as a valve: It is impractical to attempt to drive' a current into such a high resistance and the output circuit of the transistor is instead designed to deliver an undistorted output voltage, valves being voltage-operated devices. What should be the value of the load resistor R_{c} when the transistor is required to give an output voltage?

The voltage gain of the transistor is directly proportional to R_{c} and this resistor should therefore be as large as possible provided that the transistor can deliver the required voltage output without distortion. Suppose that an output of IV peak value is required, that the mean emitter voltage is 3 and the supply voltage 15 . Then the quiescent collector voltage could be made 4.5 so that swings down to 3.5 (within 0.5 V of the emitter potential) and up to 5.5 occur during operation. The quiescent voltage drop across R_{c} is $15-4.5=10.5$ and if the mean collector current is $1 \mathrm{~mA}, \mathrm{R}_{\mathrm{c}}$ should, from Ohm's law, be 10.5 kilohms.

Fig.9. In a cascade of bipolar transistors, current must be transferred from Tr_{1} output to Tr_{2} input.

Fig.8. Representing operating conditions in the anode circuit of a pentode with a transformer-connected load.

Fig.10. Basic form of an electronic voltmeter circuit.

Fig. 11. First step simplifying the circuit of Fig. 10.

Meter series resistor. In the circuits so far discussed it was possible to apply Ohm's law immediately to solve the problem. Sometimes, however, some simplification of the circuit is necessary before Ohm's law can be applied. The next circuit to be discussed is such an example.

Fig. 10 shows the essential features of a circuit used in electronic voltmeters. M is a measuring instrument connected between the cathodes of valves V_{1} and V_{2}. The steady voltage to be measured is applied to the grid of $V_{1} . V_{2}$ is included to minimise drift in meter readings and plays no direct part in the measuring process. The problem is to determine the value of the meter series resistor R . To do this we can replace the valves by equivalent circuits. A cathode follower can be regarded as a generator with an internal resistance of $1 / g_{m}$ and with a signal voltage equal to that applied to the valve grid. Thus Fig. 11 is equivalent to Fig. 10. Now in a practical circuit $\mathrm{R}_{\mathrm{k} 1}$ and $R_{k 2}$ are likely to be large compared

Fig.12. Final step in simplifying the circuit of Fig. 10.
with $1 / g_{m}$ and can thus be omitted from the equivalent circuit. If we combine the two resistors $1 / g_{m}$ the circuit takes the simple form shown in Fig. 12, to which we can apply Ohm's law. Suppose the meter requires $100 \mu \mathrm{~A}$ for full-scale deflection and has a resistance of 50 , ohms. Suppose that the mutual conductance of the valves is $2 \mathrm{~mA} / \mathrm{V}$ and that full-scale deflection is required for
a signal of 1 V . The total resistance in the circuit must be $1 /\left(100 \times 10^{-6}\right)$ i.e. 10,000 ohms. To this the valves contribute 1,000 ohms (500 ohms each) and the meter 50 ohms. The balance, i.e. the required value of R, is thus $10,000-1,050=8,950 \mathrm{nhms}$.

Earphone problem. We now turn to problems of the type where the resistor value is fixed and the circuit feeding it has to be adjusted to provide the required performance. An example of such a problem occurs when the load is an earphone of say 2,000 ohms resistance and it is desired to drive it directly from the collector circuit of a transistor. How can we ensure maximum power into the earphone?

We have already discussed directlyconnected loads and Fig. 6 represents the conditions in the circuit. Let us suppose that the supply voltage and emitter voltage have the values indicated in Fig. 6. The quiescent collector voltage is hence 7.5 and the maximum voltage which can be developed across the earphone has $4.5-\mathrm{V}$ peak value. To generate this voltage across a resistance of 2,000 ohms requires a peak current swing, from Ohm's law, given by:

$$
\begin{aligned}
I_{p k} & =\frac{4.5}{2,000} \mathrm{~A} \\
& =2.25 \mathrm{~mA}
\end{aligned}
$$

We thus need to bias the transistor to take a mean collector current of precisely this value. If a smaller mean current is used, the power output will be less than the maximum achievable: if a larger mean current is used, the quiescent collector voltage will be too low and there will be severe distortion of the negative-going collector-voltage halfcycles. One method of obtaining a desired mean collector current is described later in this article. When the transistor delivers its maximum output the collector voltage swings between 12 V and 3 V and the collector current swings between 0 and 4.5 mA . The power delivered into the earphone is given by $V_{r m s} I_{r m s}$ but it is more convenient to use the equivalent expression $V_{p k} I_{p k} / 2$. Substituting for $V_{p k}$ and $I_{p k}$ we have:
power into earphone

$$
\begin{aligned}
& =\frac{4.5 \times 2.25 \times 10^{-3}}{2} \text { watts } \\
& =5 \mathrm{~mW} \text { approximately }
\end{aligned}
$$

which is sufficient to give adequate sound output.

Feeding coaxial cables. Another example of a circuit in which a transistor has to work into a fixed-value load resistor is illustrated in simplified form in Fig. 13, which shows an emitter follower stage used to feed video signals into a coaxial cable. The characteristic resistance of the cable is commonly 75 ohms and if the cable is correctly terminated

Fig.13. An emitter follower used to feed video signals into a coaxial cable.

Fig.14. S is a stereo-mono switch which could lead to severe distortion.

Fig.15. Essential features of the circuit of Fig. 14 with S closed and for the left-hand signal.
at the receiving end this is also the value of the load for Tr_{1}. Suppose it is required to feed a signal of 1 V peak-to-peak value into the cable. A simple application of Ohm's law shows that the current required to generate a $1-V$ signal across a 75 -ohm resistance is approximately 13.5 mA . The transistor must therefore be capable of supplying a peak-to-peak current swing of 13.5 mA .

If the signal fed to the cable were a.f. or any other type with a waveform symmetrical about the time axis the transistor could be biased to take a mean emitter current of 7 mA : a peak-
to-peak current excursion of 14 mA would then be possible. However, video signals are not symmetrical and it is not possible to solve the problem so simply. One way of operating the emitter follower is to arrange for the negative-going extreme of the input signal (sync level, say) to be clamped at 0 V . For zero voltage input the emitter follower would give zero emitter current output. The positive-going extreme of the input signal (white level) will then be at 1 V which will drive the transistor into conduction, the 75 -ohm load ensuring that the emitter current is 13.5 mA .

Stereo-mono switch. Fig. 13 is an example of a circuit where the load is of low resistance and care must be taken to see that the transistor feeding it can supply sufficient current to produce the required voltage output. Sometimes it is not immediately obvious that the load is of low resistance: Fig. 14 is an example of such a circuit.
Tr_{1} is an emitter-follower stage in the left-hand signal chain of a stereo equipment and Tr_{2} is the corresponding emitter follower in the right-hand channel. S is a switch which connects the two channels in parallel for monophonic reproduction. This circuit can produce very unsatisfactory results because the switch drastically alters the operating conditions of the emitter followers. When S is closed Tr_{1} has as its load $R_{e 1}, R_{e 2}$ and the emitter input resistance of Tr_{2} all in parallel. The smallest of these resistances and the one which therefore determines the value of the effective load resistance is the emitter input resistance of Tr_{2}. Thus the essential features of the circuit are as shown in Fig. 15: a significant feature of this circuit is that the effective generator resistance of Tr_{1} and the effective load resistance of Tr_{2} are both equal to $1 / g_{m}$ approximately. Now $1 / g_{m}$ can be as low as 15 ohms if the transistor has a mean emitter current of 2 mA . For such an emitter current, the greatest emitter-current swing possible from Tr_{1} is 2 mA and this, in flowing through the effective load resistance of 15 ohms, generates a signal of 30 mV peak value. This is the greatest output voltage swing which Tr_{1} can deliver without distortion. It is clear from Fig. 15 that if the signal voltage across Tr_{1} load resistance is 30 mV , then the generator voltage is 60 mV and this is therefore the greatest signal input which Tr_{1} can accept without overloading and consequent distortion. From the symmetry of the circuit Tr_{2} similarly overloads for input signals greater than 60 mV peak value.
It would be better to connect the stereo-mono switch between the bases of Tr_{1} and Tr_{2}.

A digital clock synchronized to a broadcast atomic time standard

by D. A. Bateman, B.Sc.

By combining an electric digital clock with a suitable radio receiver and a pulse discriminating circuit, it is possible to synchronize the clock to a selected time signal. The clock described here is designed to synchronize every minute to the signals broadcast from MSF Rugby, enabling it to be economically "slaved" to an atomic clock and display the nationally defined time scale to an accuracy of 1 ms . Without the radio signals, the clock will run on its own internal quartz oscillator for several weeks before errors of a few seconds accumulate.

An independent and accurate clock (excluding portable atomic clocks) will usually depend on a quartz crystal which is chosen to suit the application. For example, a low frequency crystal $(<100 \mathrm{kHz})$ in a domestic situation should be stable to several parts per million, whereas a selected high frequency crystal operating at a closely controlled temperature can be stable, at no little cost, to parts in 10^{7} per year. The frequency of oscillation of such crystals may in turn be checked directly against atomic clocks, or indirectly via the national and international frequency standards which are broadcast from various radio stations.

Although the rate of the crystal may be suitably uniform, it does not necessarily mean that the clock which it is driving is telling the correct time as this depends on the accuracy or manner with which the clock is set in motion. An example of this frequency checking approach has recently been given ${ }^{1}$ where the temperature-controlled crystal was checked against the BBC 200 kHz transmissions (the frequency of which is controlled by an atomic clock), but even so, it was acknowledged to be difficult to maintain the clock to with in 3 seconds per year.

The alternative approach is to synchronize to specific impulses, a technique which has already been exploited with electromechanical clocks, but electronic clocks synchronized by "wireless" methods have advantages, including accuracy and portability.

The transmissions from MSF Rugby contain time markers, at 60 kHz , taking the form of interruptions of the carrier as in Fig 1. The call sign is given twice in Morse code just before the hour, and corrections for the difference between UTCC and GMT are given each minute in the form of double breaks between
seconds 01^{\prime} and 15, the position and number of "emphasized" markers indicating the sign and magnitude of the correction in tenths of a second. The minute mark - of 500 ms duration -- is identifiably different in the signals and may be detected electronically for synchronization purposes.

Circuit operation

Briefly, the operation of the complete clock, shown in Fig. 2, is as follows. Assuming that the clock is already working, has been set manually to the nearest minute and is receiving the time signals, a special logic circuit detects the minute mark and "primes" the clock for synchronization at 01 seconds. At the instant this event is detected, the seconds display and part of the crystal dividing chain is set to zero and then restarted, and a subsidiary circuit restores the display to 01 seconds. If the clock was running up to 20 seconds slow then the synchronizing pulse would bring it forward; conversely, if up to 40 seconds fast it would be brought back to

Fig. 1. The form of time signals on 60 kHz from MSF Rugby, prior to September 1974.
the correct time. Precautions are taken which ensure that any electrical interference cancels the process, and the clock continues uninterrupted and will synchronize after the next minute mark.

The central timekeeping element of the clock is a 2.097152 MHz quartz crystal divided by 2^{21} to give 1 Hz pulses. An output at 32 Hz is also taken for the minute-mark detecting logic. C.m.o.s. integrated circuits are used to maintain the oscillator and carry out the division for a total dissipation of 3 mW . The final 14-stage binary divider has a reset facility so that the counters may be set to zero and then released, the count being sufficiently far back so that the maximum error is about 0.06 ms from the moment of release.
The digital clock part is conventional, using t.t.1. for further division, and non-multiplexed driving of seven segment l.e.d.-type displays. An input is available for zeroing the seconds and tens of seconds counters, and unless a synchronizing pulse is received at this input, or the dividing chain, the clock behaves as a normal digital clock with a crystal oscillator.
To receive the time signals, a straight t.r.f. receiver with a ferrite rod aerial is

used. The rectified signal is inverted to give output pulses as in Fig. 1, and the bandwidth is made wide enough, together with a suitable gain setting, to ensure that the output follows the "r.f. off" transition to within 1 ms . A.g.c. is not incorporated, because the received signal level is fairly constant, and also because an increase in gain when the transmitter is off would increase the sensitivity to noise.
A block diagram of the minute-mark detecting logic is shown in Fig. 3, and the method of operation is as follows. The output from the MSF receiver is applied to monostable A and gates B and C, the monostable having a period t_{1}, where $t_{1}<1 \mathrm{~ms}$ for a synchronizing accuracy of better than 1 ms . On arrival of the minute mark at 00 seconds, the monostable is triggered and in turn resets the binary counters and the RS flip-flops D and E as shown; for the remainder of the pulse (period T_{1}, Fig. 1) the gate B is opened, passing the 32 Hz pulses to the four-stage binary counter F, flip-flop D being set after a count of 15 has accumulated. (Any interference detected during this period causes a reset and the process is abandoned.) The output from flip-flop D, together with gates C and G, pass the 32 Hz pulses to counter H when period T_{2} (Fig. 1) commences. As before, flip-flop E is set when a count of 15 has accumulated, and again any interference during the count will cause a reset.
The system is now "primed" and ready to pass a reset pulse to the counters at 01 seconds. This is achieved by passing the reset pulse through gate I, which is possible only when both flip-flop E is in the required state and the third input is set to logical 1 , either manually or automatically, by the

Fig. 2. Block diagram of the complete instrument. Standby battery powers the oscillator and counters only, as shown by dotted line.
clock. In order to reduce further the risk of setting the clock to a burst of interference after initial synchronization, this latter facility may be used so that the clock itself will only permit synchronization between seconds 58 and 02.
ln the "primed" state the circuit now awaits the arrival of time marker 01, and when this occurs a reset pulse is transmitted to the oscillator dividing circuit and the seconds counting stages of the clock, causing the clock to display 00 seconds, and monostable J changes
state. This monostable has a period $t_{2}>t_{1}$, and at the end of t_{2} the output of gate K returns to logical 0 causing the display to read the correct time, i.e. 01 seconds; t_{2} is sufficiently brief so that any flicker in the display is undetectable. The output of the monostable also resets the separate display indicating that synchronization has taken place.

The operation is such that the system is "primed" after counting 15 of the 32 Hz pulses during period T_{2} and therefore exposed to the radio signals for a waiting period of about 30 ms . Anyinterference before the seconds marker could put the clock in error by up to 30 ms , but this risk could be reduced by changing the 32 Hz pulse train to some higher frequency and using more counters to count up to say 495 ms ,

when the "prime" interval would be about 5 ms .
As far as can be determined the clock works perfectly in a domestic environment, but a further refinement to ensure foolproof minute-mark detection could take the form of another counter stage following the first four-stage binary. This could be arranged to cause a cancel if a count of 17 were accumulated, indicating that period T_{1} was longer than 500 ms and therefore not genuine.
The performance of the clock may be summarized in the following remarks. After initial setting it will detect the minute mark and synchronize at 01 seconds to an accuracy of 1 ms ; it will similarly synchronize at each successive minute; positive or negative leap seconds are automatically followed; a light shows that the clock is in the synchronized condition; any radio interference detected during the minute mark and the next 470 ms causes the synchronizing process to be abandoned for that minute; once synchronized, the clock may be set so that synchronization is possible only between seconds 58 and 02 ; if the clock is so set, the quartz crystal will enable the clock to be without the radio signals for about 2 weeks before drifting "out of lock"; a battery standby maintains the oscillator and dividing circuits if disconnected from the mains, and on reconnexion the correct time is displayed and synchronized after the next minute mark.
It is quite feasible to synchronize a clock by similar means to other time signals, either from other low frequency transmitters, such as Switzerland's HBG (75 kHz) or Germany's DCF 77 (77.5 kHz), or the "six pips" in domestic

Fig. 4. Pulse-stretching logic to maintain independence from the new NPL time code.
services ${ }^{2}$, all of which have different but identifiable components in their signals.
The clock had been operating satisfactorily since October, 1973, until mid-September 1974 when the National Physical Laboratory introduced a modification to the time signals. The purpose of this change is to broadcast a time code of GMT hours and minutes, so that each minute may be electronically identified without the use of a separate clock or counting from the hourly call sign. The code consists of a number of 10 ms pulses containing the time information in b.c.d. form within the first 200 ms of the originally blank part of the minute marker ${ }^{3}$ (period T_{1}, Fig. 1). Unfortunately, as a consequence of the design, my clock rejected this information as interference! However, by using a pulse stretcher as in Fig. 4, and inserting this between the radio and the minute mark detecting logic, the time code may be blanked out so that the clock synchronizes each minute as before.

Fig. 5. Digital clock circuit diagram.

It is worth emphasising the differences between these two schemes. The NPL time code enables one to have a radio with a decoder which (assuming no problems with interference) gives the nationally defined time, and the ability to switch the "clock" off say, in the evening, and then obtain the correct time within a minute of switching on the next morning. Conversely, if the transmitter goes off the air, as it does for 4 hours per month, the time is not available. The system described here, on the other hand, is a clock which is able to synchronize by radio the seconds and part of the oscillator dividing chain to within 1 ms of the time scale. This method has a greater degree of independence, in that it will continue to give the time without the radio signals. Clearly, a future system could combine the advantages of the two separate approaches.

Construction

These notes and accompanying circuit diagrams represent the clock in its finished form, and as such contain a partial record of its development. The clock is capable of further refinement, either in design or by the use of bought out items, and these notes are intended to give general information, rather than give a detailed circuit description and act as a practical or constructional guide.

Digital clock. This circuit, shown in Fig. 5 , was constructed on a $5 \times 33 / 4 \mathrm{in}$ Veroboard, permitting reasonable spacing between the integrated circuits. The displays were mounted at right angles

to the plane of the board along one edge by wiring the sockets in a wire frame and bridging the 150 current-limiting resistors directly from the 7447 s , this resistor value being as given in a Hewlett Packard data sheet for a current of about 22 mA per segment. Setting of the clock is achieved with a three-position switch on the rear panel by routing to the minute count, either 1 Hz or 32 Hz pulses, enabling a fairly rapid run through of the hours $(32 \mathrm{~Hz})$, to be followed by a slower minute advance, and normal operation. Using this size of board and layout and components as shown in the diagram, no problems were due to interference were experienced. Some power supply connexions have been omitted in the diagram to avoid repetition.

Pulse detecting logic. A $5 \times 33 / 4$ in Veroboard was also used for the circuit of Fig. 6 and the board was bolted to metal strips attached to the clock board, so that all the digital circuitry was in
effect on one large panel, $71 / 2 \times 6$ inches in size.

In order to permit synchronization at any time during the minute, a switch on the rear panel may be put open circuit ($=1$ input to the triple-input gate 7410); with the switch closed a 1 is available only during seconds $58-02$, restricting synchronization to this time slot. Note that the "synchronized" l.e.d. goes on at 58 s and off if synchronized, but remains on if synchronization does not take place.

Crystal oscillator. The 2.097152 MHz crystal was purchased from the McKnight Crystal Co., Southampton, and the oscillator circuit in Fig. 7 is based on the data given in the RCA Application Note ICAN 6086 - "Timekeeping advances through COS/MOS technology." Frequency setting was achieved by monitoring at pin 12 of the seven-stage binary, CD4024AE, thereby avoiding loading of the oscillator. The $18 \mathrm{k} \Omega$ and $6.8 \mathrm{k} \Omega$ resistors in the V_{DD}
leads were left in the circuit after current/voltage experiments. A $33 / 4 \times$ 2in Veroboard was used for the oscillator and divider chain, the whole being mounted in a metal box. The reset control could be operated manually to stop the oscillator and clock, for either releasing the clock near a given time signal, or demonstrating the synchronizing abilities of the clock after having been set wrongly for a number of seconds.

Radio receiver. The 60 kHz radio waves are picked up on an external tuned ferrite-rod aerial, the stepped down output being fed down a 2 m length of coaxial cable to the receiver. The length of cable is not critical, 50 m having been used with only a slight effect on the tuning. Aerial dimensions, number of turns, and value of tuning capacitor are also not critical, but a signal generator is useful in initially finding resonance. Similarly, situation is not critical, a safe and convenient place being floor or

Fig. 6. Pulse detector circuit. L.e.ds are H.P. 5082/4850.

ground level, providing the aerial is not too near a ring main, or other source of switching transients, etc.
A straightforward t.r.f. amplifier, followed by a diode rectifier, d.c. amplifier and Schmitt trigger, comprises the complete receiver as shown in Fig. 8. The r.f. stages are not conventional, and damping resistors were used at an early stage in the design to ensure wide bandwidth; indeed, in the presence of strong signals the tuned amplification could be dispensed with. The circuit shown has a bandwidth of about 400 Hz and, with a low gain setting, gives a 1
output within 1 ms of the r.f. off transition. Constructionally, care had to be taken to prevent oscillation by earthing unused strips on the Veroboard, and mounting in an aluminium box.

Audio oscillator. An LC oscillator was chosen to give a reasonably stable 1 kHz sinusoidal waveform. Although the "modulator" gives a slight click for each "on," this system gives quite adequate pips. Fig. 9 shows the circuit diagram.

Pulse stretcher. In order to maintain
independence from the new NPL time code (introduced in September, 1974) a pulse stretcher is necessary to override the code which ocurrs during the first 200 ms of the originally blank part of the minute mark. Fig. 10 shows the relatively simple modification, which was included on the same board as the pulse detecting logic, together with some additional power supply decoupling, and consists of a monostable and gates interposed between the MSF input buffer transistor and the pulse detecting logic; the monostable timing resistor is about $14 \mathrm{k} \Omega$ for $C=25 \mu \mathrm{~F}$.

Fig. 8.60 kHz radio receiver and pulse shaper. T_{1} is 200 and 33 turns 36 g ; T_{2} is 340 and 57 turns 38 g ; both in

Fig. 9. The 1 kHz oscillator is in Siemens N28/400A pot core.

Fig. 10. Pulse-stretcher circuit.

Fig. 11. Power supply with battery standby. Rectifier and diodes are Electrovalue types.

Power supply. This was developed specifically to give battery standby to the "heart" of the clock, i.e. the crystal oscillator and the clock divider chain, and it is very satisfying to move the clock from one location to another and display the correct time as soon as it is plugged into the mains! The circuit is that of Fig. 10.
Originally, the supply was designed for the relatively heavy current consumption of 1A for l.e.d. displays requiring 22 mA per segment, but the more efficient type finally used was set for about 12 mA per segment by simply lowering the output volts and inserting a series resistor to avoid changing all the 150Ω resistors. When the mains supply is turned off the l.e.d.s and drivers go off without affecting the timing.

The clock logic is driven from a separate 5 V supply with a battery standby, a PP9 giving nearly an hour of continuous reserve: an external socket gives extended capability from a 12 V lead-acid battery if required. The crystal oscillator also has its own battery standby - a PP7 - but this is partly for historical reasons, as when finished at an early stage, the oscillator was left running continuously.

Case. For the case, the attractive Vero D series was used, type 81CD-1U-3 and 8FP-1U-19 front panel. A particular advantage of this (large) case was that the lower panel on which the various circuits and boxes could be generously spaced out, could be unscrewed. A minimum number of items were included in the front panel - an aperture with a red plastic filter to improve the contrast of the displays, the two l.e.d.s showing the presence of MSF and state of synchronization, and pip volume control - the remaining switches and sockets being mounted on a specially included rear panel.

References

1. J. F. K. Nosworthy. "The Cranleigh School quartz-crystal digital clock and ten-millennium calendar," Horological Journal, Vol 116, 3-10, October 1973, and Wireless World, Vol. 80. No. 1463, July 1974 et seq.
2. G. C. Baggott, private communication.
3. B. R. Swabey, National Physical Laboratory.

Sinclair Scientific kit

Britain's most original calculatornow in kit form
The Sinclair Scientific is an amazing calculator. It offers logs, trig, and true scientific notation over a 200-decaderange - features normally found on calculators costing around $£ 50$ or more.

Yet even ready-built, it costs a mere $£ 21.55$ (including VAT).

And as a kit it costs under $£ 15$!
Forget slide rules and four-figure tables On the Scientific, you can handle directly all three trig functions, their inverses,
$\log _{10}$, antilog ${ }_{10}$, giving quick access, to x^{y} (including square and other roots).
plus, of course, the four arithmetic functions and any calculation based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

Sinclair

 Cambridge kitAt its new low price, the Sinclan Cambridge kit remains unbeatable value.

The Cambridge is now Britain's most popular pocket calculator. And it's not surprising. Check the features - then ask yourself what other calculator offers such a powerfulpackage at such areasonableprice.

Take advantage of this money-back no-risk offer today
The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for a year. This guarantee also applies to calculators supplied in built form

Simply fill in the preferential order form below and post it - today!

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE174BR Please send me
${ }^{-}$|Scientific kit - $\mathbf{£ 1 4 . 9 5}$ inc. VAT
\square Scientific built - $\mathbf{£} 21.55$ inc. VAT
17 Cambridgekit - £9.55 inc. VAT
'Cambridge built - £13.99 inc. VAT
*। enclose a cheque for made out to Sinclair Radionics Ltd, crossed.
*Please debit my *Access/Barclaycard account number

*Delete as required

Signed
Name

[^4]Please print. FREEPOST - no stamp required

Sinclair Radionics Ltd,
London Road, St lves, Huntingdon, Cambs., PE174JH. Tel: St Ives (0480) 64646 Rive. no: G99483 England. VAT Reg. no: 213817080

WW-066 FOR FURTHER DETAILS

ON THE RIGHT TRACK . . .?

The new Soundcraft ' $16 / 8$ ' is a sound mixer offering facilities for Eight and Sixteen track recording. Not only does it offer every facility most engineers expect (and some they don't), but it is also very economically priced, and has a technical specification that equals many higher priced consoles. It makes Sound Sense!

SIUUDCRAFT/

4th Floor, 213/5 Tottenham Court Road, London,W1P 9AF. Tel. 01637 0256/7

75 years of magnetic recording

4 - The boom years, 1946 to . . .

by Basil Lane
Assistant Editor, Wireless World

Subsequent to World War II the development of magnetic recording was to proceed at a rapid pace. Applications originally seen for it but unexploited because of the lack of a high state of technology came into being, and totally new applications were found such that today we are hardly able to do anything without coming into contact with some aspect of magnetic recording.

The immediate post war period saw a slight hiatus in the progressive development of magnetic recording, since the tape recorder, as produced by AEG, was a totally new form of machine which was unknown outside Germany.A few paper tape machines had appeared in America in the late 'forties, one of which was the Brush Soundmirror. But what was to influence design from this point in time was the dissemination of a vast amount of intelligence information gleaned from the prostrate German industry by teams of Allied Forces engineers and technicians. The resulting reports were made available to anyone interested and were directly responsible for the eventual production of close copies of the Magnetophone such as the. RGD domestic console machine and its portable professional version.

In America Col. Richara Ranger had retired from his Forces post and set up a company devoted to the manufacture of the Rangertone recorder - looking remarkably like a K4 Magnetophone. ${ }^{52}$. John Mullin, also retired from Armed Service, had managed to send two dismantled machines and 50 reels of tape back to his home where he re-assembled and modified them to an a.c. biased version. ${ }^{53}$ These he used in a series of lectures that opened two remarkable new avenues of commercial development. The first of these was the decision of the directors of Ampex to go in for the manufacture of tape machines, this resulting in the appearance of the first Ampex studio recorder (the model 200) in 1948. So successful were these machines, that twelve were bought by the ABC Network at $\$ 5,200$ each and installed for broadcast purposes.
The second line of development resulting from Mullin's early lecture tour came from the interest shown in the machines by Crosby Enterprises.

Headed by that grand old master of popular ballads, Bing Crosby, this company was probably most directly responsible for the early introduction of magnetic tape into American broadcast studios.

Crosby interest in tape

Briefly, the story is told that Mullin was approached by representatives of Crosby Enterprises who told him that the Philco sponsored radio put out by Bing Crosby was losing its audience quite rapidly. The show was entirely recorded before broadcast and since the only quality medium available for this purpose was disc, the problem of editing the original performance into a slick
series of sound cameos was f_{r} aught with technical difficulties. Many disc to disc transfers had to be made, all of which resulted in a deterioration of quality which was, apparently, responsible for the declining audience. Tape, they felt, might prove to be the solution, and accordingly a demonstration was mounted to test the merits, not only of Mullin's Magnetophones, but also those of an optical system developed by RCA and two machines manufactured by Colonel Ranger as copies of the original Magnetophone. As it turned out the original Magnetophones owned by Mullin won the day hands down and the whole of the 1947-48 season of Crosby shows were recorded using these

Fig. I. Recordon paper disc dictating machine produced by Thermionic Products. (Courtesy of Racal Thermionics Ltd.)

machines and the original 50 reels of German tape. It was not until 1948 that 3 M were to produce a suitable tape for use on the machine (Type 111). ${ }^{13}$

With the success of Mullin's tape machines assured, he spurred on Ampex to complete their first design, the Ampex 200, which represented a real improvement over the Magnetophones. At the same time Col. Ranger was able to improve his own machines, but these were rather smaller and more suited to the domestic market.

Over succeeding years Crosby Enterprises were to employ John Mullin as their chief engineer, the company at first distributing Ampex machines. Subsequently they were to relinquish the Ampex franchise and he bought into the 3 M Company as their Mincom division. However, they appear again later in our story with product developments of their own, before this takeover was to occur.

Here in the UK, EMI had launched its first professional studio machine, the BTR1, in 1947 and had installed it in their own Abbey Road Studios. Like the Ampex 200, the EMI machine was an improvement on the Magnetophone design although the high tape speed of 30 i.p.s. was still in use, due to the rather poor quality of the tape then available. Since the EMI tape factory had not yet gone into full production, initial recordings were made on a Continental tape called Genotone, that clearly owed its origins to the I.G. Farben methods, since it was a homogeneous tape. Shortly after, improved tapes began to appear and the BTRI was converted to offer both 30 i.p.s. and 15 i.p.s.

Although it may appear that Rangertone, Ampex and 3M were clear leaders in the production of post-war professional tape recorders, this was not strictly true, for apart from the slowly reviving AEG Telefunken Company, there were several other companies in America such as Magnecord, which switched from wire to tape machines in 1948, Stancil Hoffman with a multitrack recorder and Brush with their Soundmirror paper tape recorder.

However, it was in the domestic consumer market that the greatest interest was to be created. Never before had there been the technology available to make home recordings which could be edited with the ease of tape, and the first models available in the UK were met with considerable enthusiasm. Just about the first product on the market was the Wright and Weaire deck made by an old established manufacturer of radio components. This came on the market in March 1949, followed closely by a tape recorder from Scophony-Baird for use with film as a sound-track machine, together with the "Sound Magnet" from General Lamination Products and the Brush Soundmirror, imported by Thermionic Products Ltd.

The performance of the Wearite tape deck was modest, giving two-track mono on 0.25 in tape running at 7.5 i.p.s.
and 3.75 i.p.s., and at this stage, with the only tapes available being paper, or imported Continental types of relatively low quality, the frequency response at the slowest speed made it suitable only for speech. In America, tape recording as a hobby got off to a very good start. There had already been quite a wide range of wire recorders available from such companies as Pierce, Brush, Pentron and the Electronic Sound Engineering Company from 1946. By 1947 the Brush Soundmirror tape recorder had been joined by the Ekotape from Webster, already established as a wire reçorder manufacturer and an odd paper disc machine from Brush called the Mail-a-Voice. This machine was later to be re-designed by Thermionic Products Ltd and marketed here under the name of the Recordon. Intended as a dictating machine, the Recordon had the head mounted in the end of a curved arm which was guided in a spiral pattern by a stylus riding in the grooves of a solid disc fitted on the turntable spindle. A special version of this disc was made and marketed in pairs, where the spiral groove would have a random lateral wobble thus "scrambling" the spiral track to prevent replaying on a standard machine. Thermionic made these machines to a UK design but under licence from Brush from 1948 until about 1956, just before its take-over by Controls and Communications Ltd. The UK version of the Soundmirror was also developed into a different unit and marketed under the same licencing agreement.

From 1949 the number of machines
and manufacturers proliferated with such names as Ferrograph from Wright and Weaire, Simon, Reflectograph appearing in the UK and in America Berlant Concertone, Magnecord, Crestwood and Fairchild all appearing on the domestic or business scene. At this stage, all of these were single channel, either single track or two (half) track machines. The industry was poised for the advent of stereophonic recordings.

The birth of stereo tape recorders

The earliest stereo, or rather two channel recording, made by magnetic recording appears to have been that by Bell Laboratories in 1939 , ${ }^{14}$ followed by the Magnetophone recordings of the War years. However, subsequent to this there were some experiments made in 1948, by Marvin Camras, using a three channel staggered head machine recording on wide tape. ${ }^{54}$ Interestingly, Camras made the distinction between binaural and stereo recordings.

The former were made with two microphones placed close together, as if they were a pair of ears; stereo recordings were made with two, widely spaced microphones. However, it was to be some little time more before stereophonic tape recording really became fully developed.

Part of the problem was to design a vertically stacked, multiple track recording and replay head. All of the earliest recordings were made with staggered heads. However, by 1954, EMI had reached the stage of making regular stereo recordings at their Abbey Road studios and in April 1955 the Stereoson-

Fig. 2. The BBC video recorder code-named VERA.

ic tape record was first demonstrated to members of the Press. ${ }^{55}$ This was a two track stereo recording initially mastered at 15 i.p.s. and then duplicated down to 7.5 i.p.s. for domestic consumption.

RCA were not long in following this lead, since in June 1954 they marketed, at first mono tape recordings, and then followed this with two-track stereo recordings in September of the same year. The main disadvantage suffered by RCA was the need to use heads staggered apart by 1.25 in. ${ }^{56}$

Domestic machines to replay these commercial recordings were few and far between and at first the system was encouraged by the sale of stereo heads, such as that offered by Truvox in 1955 or a conversion kit containing the additional heads and amplifiers as marketed in the US by V-M. Recorded tape seemed to become quite popular in America and to a lesser degree over here in the UK American companies such as Omegatape, Ameritape, Bel Canto and Livingstone appear during the early 'fifties, some of these being imported into the UK. Due to the precipitous jump into marketing staggered head recordings, in-line machines were much later on the market in America, some conversion kits and machines appearing in 1957.

All this was rather surprising since both RCA and Ampex had developed in-line heads by 1954 and in fact Ampex had a three-core head in vertical alignment by 1956 which was used for several spectacular public demonstrations. ${ }^{44}$ This Ampex machine was the precursor to the multi-track machines now in regular use in recording studios. One of the earliest machines in use at Abbey Road, after the introduction of the two track BTR3, was a modified Telefunken T9U which was installed about 1958. From this date, the available number of tracks on professional machines was to multiply and tape widths up to two inches employed to accommodate the remarkable maximum of 24 tracks used today.

Video recording

Magnetic recording of pictures seems to have arisen at times in the most unlikely places. Some of the earliest mentions have been already remarked upon, but perhaps the most detailed is contained with a British Patent of 1928, registered by one Boris Rtcheouloff ${ }^{57}$ of 179 Cromwell Road, London! Based on the Poulsen recorder the system used'many ideas developed in later years and is a model of ingenuity.

In practical terms it was to be quite some years before a commercially viable system was to be evolved and by 1953 at least three companies in America and the BBC here were working on early examples.

December 1953 saw the announcement by RCA of one of the earliest machines, capable of not only recording and reproducing black and white pic-
tures, but also colour. This was a linear machine based on established audio methods of recording with the three basic colour signals, red, blue and green being recorded on three tracks with a bandwidth of 1.5 MHz , synchronising signals on a fourth track, a fifth track taking the signal "highs" from 1.5 MHz to 3.5 MHz and finally two audio tracks. This machine consumed tape at a rate of 20ft per second. ${ }^{58}$

Amazingly, 3M claim an earlier experimental video machine developed in 1948 using spinning heads and wide tape to produce transverse recorded tracks and go on to say that Ampex were to adopt these principles in their later machine. However, this remark appeared in an internal publicity document and 1 have found no other references. Certainly Crosby Enterprises developed a working video machine, which appeared briefly in 1954, but this and all other developments were to be overshadowed by the Ampex quad recording system. Mullin claims in his article on the history of American tape recording, that a patent was filed in November 1950, after first recording crude video pictures of aircraft landing and taking off. ${ }^{53}$

The first demonstration of video recording from Crosby Enterprises, now intimately linked with 3 M , was in 1951 and by 1955 when Ampex first demonstrated their machine several models had been made and installed. Here in the U.K. the BBC were busy developing their own short-lived video recorder called VERA, ${ }^{59}$ using the longitudinal recording methods adopted by RCA and Crosby Enterprises. The use of an Ampex quad machine by the commercial television stations precipitated the fall of this monster machine and soon the Ampex standard became standard. The first sight of the latter development was at the NARTB show in May 1956. The remarkable feature of this design was the vertically rotated head coupled with a relatively low tape speed of 15 i.p.s. ${ }^{60}$ This reduction in tade consumption, coupled with remarkable quality, spelled the doom of longitudinal systems which completely disappeared until recently. They were to re-appear in a slightly different context with p.c.m. encoding. (See article on digital recording in this issue.)

Domestic video machines followed six years later after several false starts, with the Toshiba helical scan system ${ }^{61}$ being an early example described in 1961. However, even this type of machine and its competitors were not to establish a really domestic market to this day, although it would seem that the Philips VCR has re-awakened interest on this front.

Cassette and cartridge systems

The tremendous public interest in tape recording was probably one of the principle motivations for the development of cassettes and cartridge. Those

Fig. 3. The first compact cassette recorder marketed by Philips in 1963.
who are old enough and were really interested, may well remember the tremendous confusion caused by one system after another appearing on the market. One of the earliest patents for a cassette (this term is applied to reel-to-reel tape containers), utilising mul-ti-track recording on tape is that secured by Herman S. Heller ${ }^{62}$ in 1949. The cassette was clumsy, using $0.25 i n$ wide tape, but was unusual in that an eight-track record-replay head was proposed, this having been drawn from an earlier patent ${ }^{63}$ secured in 1940.

However, this particular invention did not see the light of day and it was not until George Eash, an American, patented the first commercial endless loop cartridge ${ }^{64}$ in 1957 that the system arrived to stay. This particular machine and system was developed principally for use as a background music source in stores. The first domestic tape magazine to appear was in 1954 and was the 24 track cartridge for use on a machine designed for the blind. ${ }^{65}$

In America, Marvin Camras introduced, in 1959, a tape spool loaded with tape having a special clip on the leader, and a machine which would automatically grab this clip and thread the machine. This, however, had been preceded by a large cassette type of magazine by Cousins, made in 1957. There then followed a series of cassettes and cartridges by RCA, Bell Sound, Fidelipac Echomatic and 3M, the latter being to the RCA design. ${ }^{66}$

An echo of the tape cassette format was seen in the brief appearance of a laboratory prototype machine jointly developed by 3M and CBS in 1960. The tape was 0.125 in wide and was driven at 1.875 i.p.s., the speed later to be adopted by Philips in their compact cassette system. This machine disappeared, but 3M's interest in magazine loading re-emerged in 1962 with a new cartridge and a machine manufactured by Revere, a company they had acquired in 1960.

However, the battle for supremacy was soon to be settled when Nortronics introduced first an eight-track head in 1965 and then followed it with an endless-loop cartridge machine in the same year. The Nortronics head was to be the key that RCA and Lear Jet required to complete the development of their cartridge which appeared later in that same year. The battle entered its final stages when large car manufacturess offered the RCA/Lear Jet system as an optional extra in 1965.
Here in Europe a similar battle was being fought with various formats offered by Grundig, Garrard and BSR, but stealing in under the shadow of all of these was Philips who, in 1963 introduced the first cassette recorder and the compact cassette system.

The survivors of this remarkable "systems war" are to be seen today, but with the possibility of a similar format war developing over video recording.

Digital and other systems

An early application of magnetic recording for systems other than audio or video, was noise and vibration analysis, by Chrysler and General Motors: however even these machines were just used to record audio signals.

Storage of digital signals for computers was effected in the late 1940s and has now developed into a variety of formats including magnetic drum, reel-to-reel tape and cassettes.

Early p.c.m. recordings are described elsewhere in this issue, but one effort worthy of mention is the system used by Rudman in 1954 for the recording of signals in the frequency range $0-150 \mathrm{~Hz}$. ${ }^{67}$
One company still wholly involved in some of the more unusual applications of magnetic recording is Racal Thermionic, which grew out of the old Thermionic Products Ltd. Starting with multi-channel speech recorders for recording air traffic control communications, they have developed from their first crude effort of 1950 to the sophisticated version seen on the front cover.
In the concluding part of this series the latest developments in magnetic recording are discussed together with the history of tape from 1947 to the present day. Also included will be details of some of the more unusual applications for magnetic recording.

References

52. Ranger, Richard H. "The design of Magnetic tape recorders," Tele-Tech, Aug.

1947, pp.56-57, 99-100.
53. Mullin, J. T. "The birth of the recording industry". Billboard, Nov. 18th, 1972.
54. Camras, M. "Early experiences with stereotape recording". IRE Transactions on Audio, March-April 1962, pp.29-31.
55. Clark, H. A. M. et al. "The Stereosonic recording and reproducing system". IRE Transactions on audio, July-Aug. 1957, pp.96-111.
56. Moyer, R. C. "The manufacture of high-fidelity magnetic tape records". IRE Transactions on audio, Jan.-Feb. 1955, pp.9-12.
57. British Patent 288,680 . B. Rtcheouloff, 1928.
58. Lamont, H. R. L. "Colour TV on tape", Wireless World, April 1957, pp.183-187.
59. "BBC's magnetic tape recorder", Wireless World, May 1958, p. 207.
60. "Video tape recording". Wireless World, Sept. 1957, p. 445.
61. "Japanese video recorder". Wireless World, Sept. 1961, p. 472.
62. U.S. Pat $2,468,198$, H. S. Heller, 1949.
63. U.S. Pat. $2,213,631$. H. S. Heller and L. G Butler.
64. U.S. Pat. 2,778,637. G. Eash, 1957.
65. "Long playing magnetic tape". Wireless World, Jan. 1954, pp.32-34.
66. "Twenty years of home tape recording". Tape Recording, Jan. 1968, Vol. 15, No. 2, pp.12-23.
67. Thomasson, D. W. "Recording low frequencies on magnetic tape". Wireless World, Nov. 1954, pp.548-549.

Literafure Received

ACTIVE DEVICES
Three leaflets from Microwave Associates give complete specifications on low-cost P1N diodes (bulletin 4306 A), r.f.-burnout-tested mixer diodes (4125A) and high-power Gunn diodes (4507). The leaflets can be obtained from Microwave Associates Inc., Burlington, Mass., U.S.A.

WW(4306A)401
WW(4125A)402
. WW(4507)403
Gallium phosphide red light-emitting diodes and panel-mounting diode indicators are covered in a leaflet from Oshino Electric Lamp Works Ltd, 2-5-2, Minami-shinagawa, Shinagawa-ku, Tokyo, Japan WW404

Motorola have published an eight-page cross-reference chart of linear i.cs, listing equivalents or near equivalents made by the major semiconductor companies. The chart is available from GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks

Plessey has produced a data book, which gives details of its range of silicon integrated circuits linear and digital types, including the high-speed divider i.cs. The book is available at $£ 1$ from Plessey Semiconductors Ltd, Publicity services, Cheney Manor, Swindon, Wilts SN2 2QW.

A colour brochure from GEC is an attempt to cut through the confusion which tends to obscure the areas of choice when deciding on whether to use t.t.l. or m.o.s. large-scale logic in a system. The booklet is effectively a description of several types of m.o.s. transistor and complementary transistors and the methods used in custom integrated circuit manufacture, using both m.o.s. and bipolar devices. The publication can be obtained from GEC Semiconductors Ltd, East Lane, Wembley, Middlesex HA9 7PP

WW406

APPLICATION NOTES
The 1975 IEEE (American) Standards Catalogue, covering standards used in electronic and electrical engineering, is now available. The list includes the American National Standards published by the IEEE and those developed by the Institute. Single copies of the catalogue are obtainable free from IEEE Standards Department, 345 East 47th Street, New York, N.Y. 10017, USA

WW407
A code of practice on the identification, prevention and avoidance of the effects of electrical interference on electronic equipment has been published by the Electrical Research Association Ltd. Mechanisms of propagation and coupling, layout of equipment and methods of testing equipment are described. The price is $£ 10$ to members of the Association - $£ 15$ for non-members - and the report is obtainable from the ERA Publication Sales Department, Cleeve Road, Leatherhead, Surrey KT22 7SA.

Search, Vol. 10, No. 1, published by General Motors, contains a description of recent research in the field of zinc/nickel-oxide batteries, with particular reference to the reduction in manufacturing costs and their eventual use in cars. The publication is published by General Motors Ltd, Stag Lane, London NW9 OEH
.WW408

EQUIPMENT

The range of test instruments made by Siemens of Munich for communications work is described, in a general way, in a new colour booklet, which is obtainable from Marketing Services Dept., Siemens Ltd, Great West House, Great West Road, Brentford, Middlesex WW409

A comprehensive catalogue from Magnetic Tech nology (a division of the American Vernitron company) presents performance and mechanical information on over 250 servo and d.c. motors tachometers and torque motors. The catalogue is obtainable from Servodata Ltd, Highclere, New bury, Berkshire RG15 9PU at $£ 1$ by post.

National Sound Reproducers Ltd, have produced the new edition of their hire rate card for professional sound reproduction equipment. Equipment newly available for hire includes the

Audio Developments Micro Mixer, Uher portable stereo recorders and two-way radios. The cards are available from 394 Northolt Road, South Harrow, Middlesex HA2 8EY

WW410
A leaflet from RCA describes the AN/ARC-143B transceiver for line-of-sight or satellite working at $225-400 \mathrm{MHz}$. Power output of the transmitter is 30W a.m., 100 W f.m. and f.s.k. The unit will operate with 500 kHz bandwidth modems. The leaflet is available from RCA, Government and Commercial Systems, Government Marketing Services, Moorestown, New Jersey, N.J.08057, USA WW41 1

GENERAL

The series of eurolec guides now include a 338-page publication, entitled "Electronic Manufacturers Alphabetical Listing/UK 1975", or Eurolec 46 for short. It is a listing of 850 UK manufacturers of a wide variety of electronic equipment and components, with information on activities, number of employees, contacts and related companies. The price is $£ 11$ by post and it is obtainable from eurolec. Little Waltham, Chelmsford CM3 3NU.

Airwork Services have sent us a 32 -page, four-colour brochure, describing the activities of their group of companies in the field of aviation and avionics. The booklet, which is in English, French, Spanish and Arabic can be obtained from Airwork Services Ltd, Bournemouth Hurn Airport, Christchurch, Dorset BH26 6EB

Zaar Colour Video Ltd have sent us their list of video services, which include film-to-cassette transfer, slide-to-cassette transfer, editing, recording and viewing facilities and insert filming. The address of Zaar is 339 Clifton Drive South, Lytham St. Annes, Lancashire FY8 ILP .. WW419

PASSIVE DEVICES

Ceramic and polyester capacitors, in various forms, are the subject of a catalogue from ITW Electronics, which includes construction information, application notes, performance and mechanical information. The catalogue is produced by ITW Ltd, Electronics Division, 263 Farnham Road, Slough, Bucks

WW420

Amplitude modulators

Set 22 of Circards, available now, gives circuits for various kinds of modulators, this article providing introductory background

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Paisley College of Technology

If the amplitude of a high-frequency sinusoidal carrier, $c(t)=A$ cos $\omega_{0} t$ is made to vary in sympathy with the instantaneous value of a low-frequency signal $x(t)$ an amplitude-modulated signal is generated which has a spectrum concentrated in the vicinity of the unmodulated carrier frequency, f_{0}. The effect is to shift, or frequency-translate, the spectrum of the modulating signal to produce a pair of sidebands symmetrically disposed with respect to f_{0} as shown in Fig. 1. The resulting wave may be described by: $y(t)=[A+x(t)] \cos \omega_{1} t$, so if, for example, $x(t)$ is a pure tone modulating signal represented by $x(t)=A_{1} \cos \omega \cdot t$ the a.m. output becomes $y(t)=\left[A+A_{1} \cos (\omega, t] \cos \left(\omega_{1} t\right.\right.$ which may be written as $y(t)=A[1+m \cos (1), t] \cos (1)_{0} t$ where $m=A_{1} / A$ is the modulation index, or modulation depth, and has a value $\leqslant 1$ if over-modulation is to be avoided.
The amplitude modulated waveform is shown in Fig. 2, and if this is displayed on an oscilloscope the modulation index may be found from $m=(B-C) /(B+C)$. As well as measuring the modulation index, the oscilloscope may be used to examine the linearity of the modulation process if it has an $\mathrm{X}-\mathrm{Y}$ facility. If the amplitude modulated wave is applied to the Y-amplifier and the low-frequency modulating signal applied to the X-amplifier a Lissajous figure of $y(t) / x(t)$ is obtained as shown in Fig. 3.

The above process is what is generally accepted as understood when referring to a.m. However a family of processes may together be considered as amplitude modulation techniques which include

- a pair of sidebands with carrier (a.m.)
- a pair of sidebands without carrier (d.s.b. or d.s.b.s.c.) or with diminished carrier (d.s.b.d.c.)
- an upper or lower sideband without carrier (s.s.b.) or with diminished carrier (s.s.b.d.c.)
- à pair of single sidebands with independent modulation (i.s.b.)
- one sideband, carrier and a vestige of the other sideband (v.s.b.)

In general, the above systems depend in some way on the use of four basic

Fig. 2,
methods of producing amplitude modulation.

- analogue multiplication
- chopper modulation
- non-linear-device modulation
- direct tuned-circuit modulation

Except for the last method listed, modulation is normally performed at low power levels and the required output power obtained by class-B amplification of the modulated signal.

Analogue modulation, or multiplication, is obtained by applying the modulating signal and the carrier to a circuit providing an output which is a function of the product of its inputs. Output from the multiplier or balanced modulator is ideally a d.s.b.s.c. signal. This arrangement is often convenient for producing an s.s.b.s.c. signal by removing the unwanted sideband and any residual carrier by means of band-pass sideband filter.

Many multipliers or balanced modulators are available in the form of purpose-designed integrated circuits for operation at carrier frequencies of at least 100 MHz . Depending on the nature of the modulating signal, the carrier

Fig. 3.
frequency and the required degree of unwanted-sideband and carrier suppression, the filter can be realized using L-C networks, quartz crystal lattice networks, ceramic disc resonators or mechanical filters. If the same signal is applied to both inputs of a multiplier it acts as a squarer and it, or any other square-law device, may be used to produce an a.m. output as shown in Fig. 4 if $v_{1}(t)=A+x(t)$ and $v_{2}(t)=V \cos (1,1, t$.

Chopper modulation is obtained by chopping the modulating signal at the carrier rate, using either a sinusoidal or a square-wave carrier, and then passing the resulting wave through a band-pass filter centred on the carrier frequency.

The bandpass filter will normally remove the component at the modulating frequency as well as the sidebands centred on the harmonics of the carrier frequency. To ease the requirements of the band-pass filter a balanced chopper modulator removes the low-frequency modulating signal component. The carrier-driven switches are normally realized using diode bridges or field-effect transistors.

Modulation using a non-linear device is achieved by adding the modulatingand carrier-frequency components and then passing the resultant through a bandpass filter centred on the carrier frequency to extract the a.m. signal. The non-linear device should have non-linearity not exceeding second-order and the highest significant modulation frequency should not exceed one-third of the carrier frequency.

Direct tuned-circuit modulation is achieved by controlling the voltage across a parallel-tuned circuit, tuned to the carrier frequency, by means of the modulating signal and pulsing the tuned circuit at the carrier rate with a highpower, class-C amplified carrier pulse. If modulating frequency is too high its rate of increase can be such as to cause the envelope of the a.m. wave to become distorted due to the failure to follow the modulation.

The modulation techniques discussed above which use band-pass filters must provide a filter bandwidth suited to the transmission of the desired signal whilst rejecting all unwanted components. For a.m. and d.s.b. this bandwidth must be

Fig. 4.
twice the highest modulating frequency and for s.s.b. it must be equal to the bandwidth of the modulating signal. In virtually all these cases the sharp cut-off required from the bandpass filter is only obtainable if the centre frequency of the filter is relatively low. Normally the filtration is achieved in the region of 50 Hz to about 1 MHz and the resulting modulated wave heterodyned, or frequency translated, to the required carrier frequency for transmission.

Another way is the phasing method of generating an s.s.b. signal which avoids the problems associated with filter design, but replaces them with the problem of designing a pair of networks (A and B) which are required to maintain a constant 90° phase difference between their outputs whilst their output amplitudes are held constant over the bandwidth of the modulating signal. Selection of either sideband is achieyed by reversing the output from one of the balanced modulators or
by reversing the phase of either the carrier or the modulation to one balanced modulator. Because of the relative ease of inverting an audio signal, the modulating signal reversal is normally the simplest to accomplish in practice.

Titles of cards in set 22 of Circards (available now) are
IC package modulators
Linear amplitude modulator
Modulator using precision rectifiers
Modulated crystal oscillator
Diode bridge modulators
Single sideband generation
FET modulators
Long-tailed pair modulators.
Micropower amplitude modulator
Direct tuned-circuit modulators.

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp.469/70.

New circuit book

"Circuit designs - 1, Collected Cir

 cards" brings together the first ten sets of Circards, introductory articles to each of the subjects, and ten pages of additional circuits. The hardback A4book contains 168 pages, in which 120 cards are rearranged so that each is laid out on one page. A brief introduction precedes the articles, which were previously published in Wireless World, and each of the ten subjects is followed by an up-dating page. Corrections have been incorporated where appropriate.
"Circuit designs" is obtainable through leading bookstalls at $£ 10$ per copy. In case of difficulty order direct by sending remittance for $£ 10.40$ (includes postage and packing) to the address given later, making cheques payable to IPC Business Press Ltd. Advertisement appears on page 27 .

How to get Circards

Order a subscription by sending $£ 13.50$ for a series of ten sets to:

Circards

IPC Electrical-Electronic Press Ltd General Sales Department, Room 11

Dorset House

Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 1.50$, postage included (all
countries). Make cheques payable to IPC Business Press Ltd.

Topics covered so far in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)

8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifiers signal processing
17 c.d.as-signal generation
18 c.d.as-measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators.

Radio telescope project at Frensham Heights School

by J. H. Duncan, M.Sc., Senior Science Master

During 1970 to 1972, as part of an M.Sc. Astrophysics Course at Queen Mary College, London University, it was decided to construct, and operate, a radio telescope of the radiometer type for examining solar radiation at 200 MHz , and at 450 MHz . Thanks are due to the Governors of Frensham Heights for a grant, and to the Royal Society for financial assistance. Also to the Staffs at Queen Mary College and Frensham Heights for advice and assistance. Several senior pupils of the School assisted in various aspects of the work. A parent also generously gave a quantity of very low-cost coaxial cable for the antennae.
I am not going to write a discourse on radio astronomy, as there are many books at all levels of understanding on the subject. Probably the best books, of moderate mathematical difficulty, are "Radio Astronomy" by J. D. Kraus (McGraw Hill), and ${ }^{\circ}$ Cosmic Radio Waves" by I. S. Shklovsky (Haryard University Press). However, there is a great shortage of articles with practical details of equipment. Probably the best available are two articles by J. R. Smith in the Journal of the British Astronomical Association Vol. 75, No. 2, 1965, and Vol. 80, Nos. 5 and 6, 197(). There was also a series of articles by F. W. Hyde in Practical Electronics, June 1971 to March 1972. There is also a book by F.
W. Hyde, "Amateur Radio Astronomy," which is now out of print, and somewhat dated, but which is well worth perusal if a copy can be obtained from your local library service. 1 owe a lot to these authors in the design of the equipment described.

This article is an account of the equipment constructed and operated at Frensham Heights. It was decided to construct phase-switched receivers, as these reduce internal noise levels to a fairly low level. The basic block diagram is shown in Fig. 1. When used in the phase switched interferometer mode, two antennae are used, with a half-wave phasing loop connected to the input as shown in Fig. 2. When used in the Dicke mode, one antenna is connected to one input, and a 75 ohm restive standard load connected to the other input, with no phasing link, as shown in Fig. 3.

The signal picked up by the antenna is immediately amplified at the antenna, and passed by coaxial feeder to the receiver antenna switching unit. For interferometric use, the two antennae should be separated as far as possible, and set out on an East-West baseline so as to get good fringe separation. For the Dicke mode, the greater the area of the antenna collecting surface, the better the signal
The output from the antenna is then

Fig. I. Block diagram of receiver.
amplified further in the receiver r.f. amplifier, and then converted to the i.f. broadband amplifier. This was at 40 MHz , and hàs a bandwidth of about 8 MHz . The signal is now rectified by a full-wave rectifier, and passed through a selective a.f. amplifier tuned to the switching frequency. The signal then passes to the phase.sensitive detector. The minimum

Fig. 2. Aerial and phasing loop connections.

Fig. 3. Dicke mode connection.

Fig. 5.

Eig. 6.

Figs. 4-8. Received signals using 12 Yagi aerials for 450 MHz .

Fig. 8.

Fig. 7.
detectable signal is proportional to \checkmark bandwidth \times time constant. Since the bandwidth is constant at about 8 MHz , several time constants were available at 0.5 secs., 2.5 secs. and 80 secs. This latter gave very smooth traces but the loss of detail was considerable. In this connection, very good quality paper dielectric capacitors must be used, or leakage will give an unknown time constant. The signal now passes to a d.c. amplifier and thence to the pen recorder.

The gain of the receiver must be kept at a constant value and stabilized power supply units must be used. The "markspace" ratio of the switch wave form generator must be adjusted with the aid, of an oscilloscope so that they are equal, or excess noise will appear in the output from the p.s.d.

Initial alignment was carried out using a signal generator, but final adjustment was made with the aid of a noise generator. All this equipment was constructed in the school, and valves were used because first, we were offered several TV sets for dismantling for components, and secondly, the author, being somewhat aged, felt more at home with valves than with transis-
tors. However, attempts are now being made to up-date the receivers by reconstruction using transistors. The pen recorders were also constructed to a design by D. Bollen given in Practical Electronics, October, 1971. There was some trouble with slip in the paper feed device, which occasionally gave distortion in the traces. On one memorable occasion, I had access to 12 Yagi antennae for 450 MHz , and these were strung out along the drive, with what seemed to be miles of cable. There were considerable problems in phasing these correctly, but the traces obtained were excellent (Figs. 4 to 8).

Finally, I would warn anyone attempting to build this type of equipment that it took some two years to get a workable trace, and I am not yet satisfied with the performance. I hope to improve the equipment considerably so that Fourier analysis can be performed on the traces, and also that some galactic, and extra-galacțic sources can be observed. I am also working on a receiver for observing radiation from the planet Jupiter on 20 MHz , using a $4 \frac{1}{2}$ ft . diameter directional-discontinuity ring-antenna.

First African Landsat station

Zaire is to build the first ground station in Africa designed to receive Earth resources data directly from NASA's Landsat satellites. Landsat was originally called the Earth Resources Technology Satellite.

The new ground station to be built near Kinshasa will be able to obtain data from Landsats 1 and 2 as they pass within $3,000 \mathrm{~km}$ of Zaire's capital city. Data from the area which includes most of the African, continent from the northern border of Chad to South Africa and from Kenya to the Ivory Coast must currently be stored on Landsat 2 magnetic tape recorders for transmission to ground stations in the United States. Although Zaire is the first African nation to plan its own Landsat station, 13 African nations and two international organizations have undertaken Earth resources investigations using data of Africa provided by NASA from the two Landsats.

Zaire's new station will be able to produce both computer tapes and photographic imagery using received data. ERTS-Zaire will make copies of data available to scientists and others requesting data of the region. Ground stations are already in operation outside the US at Prince Albert, Canada, and Cuiaba, Brazil. Italy and Iran have agreed in the past year to build their own Landsat stations able to provide coverage of several African nations along the Mediterranean and Red Seas. Canada has also announced plans to build a second station near St. Johns, Newfoundland. Developing nations have found satellite data particularly valuable in learning about their natural resources, mapping geological and man-made features and conducting agricultural research.

Crystals grown in space

Experiments designed to study growing large crystals in space will be conducted during the joint United States-Russian manned space flight during the summer. The experiment, called MA-028 Crystal Growth in Zero Gravity by

NASA, is designed to find out if large, defect-free crystals of value on Earth to the semiconductor industry, can be grown in space. American astronauts and Soviet cosmonauts plan to demonstrate to the world during July that spacecraft manufactured and launched by two different nations can rendezvous and dock in space and their crews can communicate using each other's language to successfully complete the joint mission. The crystal-growing experiments are designed to demonstrate a technique that holds promise in improving communications on the ground.

The experiment consists of six transparent tubes each of which contains three compartments. The outer two compartments will contain different salt solutions which, when mixed, form an insoluble compound which will grow into a crystal. The centre compartment contains pure water and, depending on the crystal to be grown, possibly a small seed crystal.

Future of satellite communications

The key address given in April at the Institution of Electrical Engineers international conference entitled "Satellite Communication Systems Technology" was on the subject "Expanding horizons for satellite communications," given by Mr J. K. S. Jowett, Deputy Director of Engineering at the British Post Office, responsible for radio development. His subject included the discussion of: competition between satellite and terrestrial communications media, the types of service that satellite communication serves best, newlyemerging satellite services, desirable institutional arrangements, major technical and operational features, optimization of traffic capacity and the technological breakthroughs needed for further major advances in this field.
Mr Jowett summarized the answer to the question "To make further major advances in using this new medium what are the areas in which technological breakthroughs should be sought?" in the following areas:

- Frequency re-use within an individual satellite employing either multiple
spot beams and aerial discrimination or dual polarization.
- Frequency re-use within a total system by employing either multiple spot beams and aerial discrimination or dual polarization.
- Commercial use of frequency bands above 10 GHz , more especially between 11 and 14 GHz and subsequently a round 20 and 30 GHz . Very soon engineers will be gaining much-needed practical experience with experimental satellite systems operating in the bands around 11 and 14 GHz .
- Limitation of the freedom of normal movement of satellites by more efficient position control methods, thus permitting a closer spacing of satellites in the geostationary orbit.
- Employment of improved means to control side-lobe radiation of earth station antennas - and of satellite antennas using spot-beams.

Jovian magnetic influences

Data returned by Pioneer 11 suggests that Jupiter's magnetic field, unlike Earth's, may be created by several "ring currents" deep within the liquid planet. Such a complex field close to the planet would be required to explain the field's high-energy particle pattern as well as the bursts of intense radio energy long-observed to emanate from Jupiter at long wavelengths. Planetary magnetic fields are believed to be produced by motions of the liquid material in planets' interiors, through mechanisms similar to those of electric dynamos. Earth and Jupiter are the only known planets with a substantial magnetic field.
Wobbling and tilting like a plate on top of a juggler's stick, Jupiter's field sometimes stretches across nine million miles of space and at other times shrinks in volume by three-quarters or more. Inside this pulsating field are the belts of intense radiation.

Conference on spacecraft antennas

An international conference on "Antennas for Aircraft and Spacecraft" is to be held from June 3 to 5,1975 , at the Institution of Electrical Engineers. The sessions which will take place are: airborne radar antennas; radomes environment; calculation of antenna performance; ESRO studies of antennas for space systems; airborne antennas for satellite links; antennas for spacecraft; antennas for helicopters and light aircraft; h.f. antennas for aircraft; and integrated antennas for antenna rationalization. Enquiries concerning the conference should be addressed to The Manager, Conference Department, Institution of Electrical Engineers, Savoy Place, London WC2R 0BL.

The amateur production line

Group constructional projects usually organised by local clubs and societies have become increasingly popular in recent years but a novel feature of one undertaken recently by six Dutch amateurs at Leiden, Holland, is that each of the six contributed one particular skill to the work, performing the same operation on each of six 144 MHz n.b.f.m. portable/mobile transceivers. One of the group was responsible for the electronic design; another the printed circuit layout; a third the mechanical work and so on. In effect a small "production line" was set up and resulted in six identical equipments. While most group projects tend to adopt well-tried, conventional circuịtry and design features, this was by no means the case for these transceivers, as an outline sent me recently by Dick Rollema, PAoSE, makes clear.
For example the five crystal-controlled receive and transmit channels are derived from five crystals by using in the transmitter section a voltage-controlled-oscillator operating directly on 144 MHz with a control voltage derived from an unusual form of phased-lock-loop n.b.f.m. detector in the single-conversion receiver. The detector, based on a TBA120 i.c., is arranged to provide high a.f. output on signals of about 3 kHz deviation at the 10.7 MHz i.f.

Another feature is a 25 -watt amplifier module with Philips BLY37 output transistor that exactly replaces the battery module when the equipment is operated in a car.

Preparing for 1979

The various amateur groups who are engaged in drawing up plans and proposals for the ITU World Administrative Radio Conference in 1979 have so far come up with six main proposals: ! return to amateurs of the 1.8 MHz band (not available at present in many countries); elimination of "sharing" of the 3.5 MHz band; expansion of the 7 MHz band and elimınation of "sharing" broadcasting; expansion of the 14 MHz band and elimination of sharing
with fixed services (fixed services are presently permitted in the USSR in some parts of the band); expansion of the 21 MHz band by 100 kHz ; establishment of new amateur bands at around $10.1,18.1$ and 24.0 MHz .

While this list may seem unduly optimistic to amateurs who recall how in the past these World Conferences have progressively eaten into the original " 200 metres and down" allocation to amateurs, it is felt that the increasing use of communications satellites for commercial circuits may make such proposals not unrealistic. But as a start it would be extremely welcome if the intrusion of non-amateur stations into exclusive amateur allocations could be reduced, particularly broadcasting between $\overline{7} 000$ and 7100 kHz .

The Union of Swiss Short Wave Amateurs is expected to participate in the ITU's Telecom 75 exhibition at Geneva next October 2 to 8 and an international amateur conference is to be held there on October 4 to 5 .

Using the London repeater

To assist amateurs using the new London $145 \mathrm{MHz}(145.175 / 145.775 \mathrm{MHz})$ repeater the UK FM Group (London) has published a detailed information sheet: "GB3LO without tears - a guide to the proper use of the repeater". This gives essential details of the operation of the 55 -second "time out" arrangement and the "break" facility between overs, both designed to prevent stations from monopolising the repeater for long periods; the excessive deviation inhibitor which chops signals that deviate by more than $\pm 6 \mathrm{kHz}$; and full details of the 1750 Hz tonebursts needed to gain access. The sheet is available from Richard Street, G3TJA, 3 White Ledges, Ealing, London W13 8JB (7p in stamps plus large stamped-addressed envelope, preferably 12 in long).
With the aerials about 750 ft above sea level on the BBC Crystal Palace mast the theoretical line of sight range of GB3LO is about 50 miles.

Powers low and high

A group of British amateurs (G-QRP Club) interested in low power radio communication, preferably under 5 watts, now has a membership of over 60 and publishes a newsletter under the title Sprat. Details can' be obtained from Rev G. C. Dobbs, G3RJV, 61 Park Street, Cleethorpes, South Humberside Among recent suggestions made by club members are the improvement of short aerials for 1.8 and 3.5 MHz , modifications for the Heath HW7 low-power transceiver, aerial tuning units and r.f. meters. The club is supporting the American suggestion of encouraging QRP operation around certain spot frequencies: 3540, 7040 (Europe 7030), 14065, 21040 and 28040 $\mathrm{kHz}(\pm 5 \mathrm{kHz})$ for c.w. and 3640, 7140,

14260,21300 and 28600 kHz for phone.
At the other end of the power scale one notes the increasing number of broadcasting stations now using over a megawatt. For example, Radio Monte Carlo on 218 kHz now uses 1400 kW and the United States Information Agency is reported to be contemplating the construction of 2500 kW transmitters for "Voice of America".

Across the Channel

French authorities have recently re-introduced permits for 405 -line and 625 -line amateur television transmissions between 434.5 and 440 MHz and 1250 and 1260 MHz . These permits are restricted to persons already holding normal amateur licences.

To mark the 50th anniversary of the formation of REF and IARU, French amateurs have been allowed to use the special prefix TK instead of F during May. Among the events of the 50th anniversary meetings of REF in Paris on May 9 to 10 was a mark of homage to the French pioneer General Ferrie at the monument to him which is some 50 metres from the Eiffel Tower, where he established the first transmitter, and an address by General P. Revirieux, F80L, on technical developments in amateur transmission since 1925 ..

French amateurs F8DO, F1AVY and FICVJ have made contacts using lasers and infra-red light-emitting diodes over distances of about 1 km and have reported laser transmissions of about 9 km .

FAV22 radiates standard band-edge frequencies on Sunday mornings as follows: 3500 kHz (1000-1005 GMT); $3800 \mathrm{kHz} \quad(1010-1015) ; \quad 7000 \mathrm{kHz}$ (1020-1025); 7100 kHz (1030-1035); $14000 \mathrm{kHz} \quad(1040-1045) ; \quad 14350 \mathrm{kHz}$ (1050-1055).

In brief

As a result of a clerical error two new amateurs, one in Reading, the other in East Anglia, were both issued with the callsign G8IOR which they used for several months (the Reading claimant is now re-mustered as G8IOJ) . . . The 1975 Convention of the British Amateur Radio Teleprinter Group is being held on Saturday, May 24, at the village hall, Meopham, near Gravesend, Kent (lectures this year start at 1.30 p.m.)... The Maidstone YMCA ARS Mobile Rally is being held on May 25 at the Y Sportscentre, Maidstone, Kent (details from A. S. Walter, G3WXL, 4 Oak Farm Gardens, Headcorn, Ashford, Kent) . . . The prefixes C6A to C6Z have been allotted by the ITU to the Bahamas...A special amateur radio station is expected to operate during the 1976 Summer Olympics from the Montreal, Canada, stadium . . A cross-band duplex r.t.t.y. contact is reported between Alan Hobbs, G8GOJ in South Croydon (144.6 MHz transmit) and G8IDZ in Edenbridge. Kent (432.88 MHz transmit).

PAT HAWKER, G3VA

BIAS
 RECORDERS FOR PEOPLE WHO WORK WITH TAPE

NEW BE1000 MKII TRANSPORTABLE
STYLISH NEW FORMAT GIVING GREATER FLEXIBILITY AND FULL CHOICE OF METERING AND MONITORING FACILITIES INCLUDING BUILT IN MONITOR AMPLIFIER AND LOUDSPEAKER

SECOND GENERATION PLUG IN ELECTRONIC MODULES SWITCHABLE NAB/DIN ACCESSIBLE FROM THE FRONT OF THE MACHINE, FOOLPROOF LOGIC WITH MOTION SENSING. IMPROVED NOISE AND FREQUENCY RESPONSE. ELECTRONIC SERVO TAPE TENSION. PLUG IN HEADBLOCK. EASIER ACCESSIBILITY AND SERVICE ABILITY PLUS THE ACKNOWLEDGED BIAS STANDARDS OF RUGGED CONSTRUCTION AND RELIABILITY

BIAS ELECTRONICS LIMITED

Limiters - Compressors - Expanders - Equalisers

A comprehensive range of Audio Processors designed for the professional user

F600 LIMITER - fast acting with superb dynamic characteristics; suitable for transmitter use.
F690 V-O LIMITER - automatically maintains pre-set music-voice ratio on programme output.

F760 COMPEX-LIMITER - separate peak level limiting, compression and expander-gate

E900 SWEEP EQUALISER - most versatile and comprehensive EQ; continuously variable sweep frequency selectors $\pm 20 \mathrm{~dB}$ range; 0 of $1.5 \& 3$.

F769X 'VOCAL-STRESSER' - combination Sweep Equaliser and Compex-Limiter. EQ switchable 'before' or 'after' Compex section or into side-chain of compressor for total programme control.

E520 PARAMETRIC EQUALISER - two variable sweep sections $20 \mathrm{~Hz}-20 \mathrm{kHz} ; 0.1-5$ octave bandwidth each switchable to High/Low banapass filter.

E500 BAND SELECTION PROCESSOR provides dynamic equalisation in association with external limiter/expander. Any part of the audic spectrum can be bandsplit and selectively attenuated. High and Low-pass $24 \mathrm{~dB} /$ oct sweep filters $100 \mathrm{~Hz}-10 \mathrm{kHz}$ plus Parametric Notch $20 \mathrm{~Hz}-20 \mathrm{kHz} ; 0.1-5$. octave bandwidth. Ideal for mastering applications (disc and cassette); perfect de-essing, HF or LF limiting. Mono to simulated stereo, perfect cross-over.
E560 SELECTIVE LIMITER - PARAMETRIC EQ. Built-in limiter operates on full bandwidth or selectively on the notch content of parametric sweep filter $20 \mathrm{~Hz}-20 \mathrm{kHz}$, $0.1-5$ octave bandwidth. As static EQ provides +20 dB lift/ $>-30 \mathrm{~dB}$ cut. Perfect de-essing; FM pre-emphasis can be established and selectivity attenuated in presence of high HF content.
F300 EXPANDER-GATE plug-in module format; peak and RMS sensing side-chain; range, release, attack and threshold controls. Ideal for multi-touch mix-down
Available in mono and stereo rack or modular formats

WW-092 FOR FURTHER DETAILS

IS CHILTON'S MIXER THE BEST FOR YOUR USE?

Magnetic tapes Itd make the $10 / 2$ above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at $£ 350$ for the basic 10/2.

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TW9 4NS - 01-876 7957 perfectionist

DITTON 44 MONITOR $30 \times 141 / 2 \times 10$ in $(76 \times 37 \times 25 \mathrm{~cm}) 44 \mathrm{w}$ Cut-away illustration showing the Celestion transducers - seen at the top HF 2000 Tweeter, now accepted as the world's finest; at centre, a FC6 mid-range using special rubber suspension, 50,000 Maxwell magnet, and transmission line rear loading; at the base, a FC12, this rugged long coil low resonance unit being tuned to its 43.47 litre hermetically sealed enclosure. On test has accepted quite safely transient signals ten tımes greater than the rated maximum wattage. Now recognised as providing an exceptional standard of sound reproduction by independent reviewers in England, the USA and Europe. A thoroughbred monitor class loudspeaker for the discerning listener, priced absolutely realistically.

ROLA CELESTION LIMITED, DITTON WORKS, FOXHALL ROAD, IPSWICH. SUFFOLK IP3 8J ww-093 FOR FURTHER DETAILS

Spy-trapping? Smuggler-scotching? That's no work for the scores of designers in our 150 -strong engineers' brigade

They're on frontier duties just the same, though. For sometimes they're operating on the very frontiers of human knowledge - as with our remarkable new spectrum analyser, in which they've combined the latest digital storage technology and television display with semi-automatic operation to produce a new generation instrument.

Sometimes, on the other hand, they're helping you to economise - as when they produce a signal generator able to give the performance you need
without the cost of the performance you don't.
There are times, too, when - as a result of free-ranging, exploratory probing - they come up with a revolutionary instrument that was not o-iginally on the agenda at all. An example? The $X-Y$ Memory, a definitive solution to the irritating problem of clear oscilloscope display of very low frequency waveforms.

The fact is: mi maintains what is Europe's largest operation devoted exclusively to electronic test and measuring instruments. And it has the resources, the research facilities, the development potential to match.

M: THE INNOVATORS

New Products

Digital panel meter

Computing Techniques has announced what is claimed to be the first digital panel meter in the U.K. to provide the IEC-standard general-purpose bus interface. The meter, which can be connected directly to other instruments such as printers and computers, provides an accuracy to within 0.05% of reading ± 1 digit. Computing Technigues Ltd, Brookers Road, Billingshurst, Sussex.
WW307 for further details

Television tubes

Thorn has introduced the first in a new range of precision in-line colour tube assemblies. These tubes are marketed with the scanning coils and static convergence magnet assembly permanently fixed to the neck. Static and dynamic convergence, and purity adjustments are accurately set during manufacture, resulting in only minor adjustments by service engineers.

WW305

Thorn Colour Tubes Ltd, Mollison Avenue, Brimsdown, Enfield, Middx. WW305 for further details

Wire-wrapping board

A new type of p.c.b.consists of a board with an etched copper pattern on both sides to provide a rail voltage and ground plane. The board has groups of discrete socket-pins or i.c. sockets, in the $14 / 16$ lead configuration, mounted on it which enables i.cs or header units containing discrete components to be plugged in.
Interconnexion on the pin side of the board can be made by wire wrapping. The boards are provided with rows of in/out pins for the interconnexion of complete boards. Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.
WW312 for further details

Helical filters

Polyplate helical-filters are constructed by electro-depositing a conductor on to a p.t.f.e. dielectric rod. Using these filters in local oscillator circuits, Q values of about 400 at 600 MHz are possible. Polyflon Resine, Via Mezzago, 20050 Sulbiate, Milan, Italy.
WW 318 for further details

Digital integrator

The TS100A is a digital integrator and d.c. millivoltmeter having an input range from 1 mV to 300 V f.s.d. and switched integrator count rates of 30,3 or 0.3 c.p.s. The input level is displayed by a meter while the time integral is shown on a six-digit counter which can be switched to display fractional parts
of a count. Time Electronics Ltd, Botany Industrial Estate, Tonbridge, Kent. WW 316 for further details

Calculators

Three models - the 100, 200 and 300 form the new Oxford range of mains/ battery calculators from Sinclair. The 100 and 200 are both four-function instruments, the latter having a percentage key and memory. The 300 is a scientific calculator. All the units are powered from a PP3 battery or a mains adaptor, and are priced at $£ 12.95, £ 19.95$ and $£ 29.92$ plus v.a.t. respectively. Sinclair Radionics Ltd, London Road, St. Ives, Huntingdon, Cambs PE174HJ. WW 306 for further details

Resistors

A resistor set containing $2,725 \quad 1 / 4 \mathrm{~W}$ carbon film pieces in 170 values from 0.51Ω to $5.6 \mathrm{M} \Omega$ is available from EEP.

The quantity of resistors varies for each value so, theoretically, you run out of all the values at the same time. Energy Electronic Products Corp, 6060 Manchester Avenue, Los Angeles, California 90045, U.S.A.
WW 323 for further details

Capacitors

ITT Components have introduced a range of metallized plastic capacitors using a polypropylene dielectric which gives a low-loss. This range has been designed for application where both pulse and r.m.s. current values are high, such as thyristor time-base circuits. ITT Components Group Europe, STC Ltd, Edinburgh Way, Harlow, Essex. WW313 for further details

WW316

Wire stripper

The Scotchlok TH213 wire stripper will strip wires with conductor areas from 0.75 to $6 \mathrm{~mm}^{*}$. The tool has a pliers-type movement with a spring-loaded return action. 3 M UK Ltd, 380 Harrow Road, London W9 2HU.
WW 321 for further details

Digital comparator

The model 1715 digital comparator has been designed for use with the model 1700 digital ohmmeter to provide simplified testing of resistances. The comparator has three panel l.e.d.s to indicate whether a resistance is below, within or above a selected range. Relay contact closures and d.t.1. outputs are available for operating peripheral equipment. Tranchant Electronics (UK) Ltd, Tranchant House, 100a High Street, Hampton, Middx.
WW301 for further details

Spectrum analyzer

A microwave spectrum analyzer, model 4809 , which operates from 10 MHz to 40 GHz , has been announced by Sys-tron-Donner. The c.r.t. display can be standard or variable-persistence with frequency spans ranging from 10 kHz to 8 GHz and resolution bandwidths of 300 Hz to 1 MHz . The 4809 features an inbuilt digital frequency counter which displays frequency span and centre frequencies. Systron-Donner Ltd, St. Mary's Road, Leamington Spa, Warwicks.
WW303 for further details

Microprocessor-'scope

Hewlett-Packard has combined a 275 MHz oscilloscope, a microprocessor and a $3 \frac{1}{2}$ digit l.e.d. display. This megalomaniac's dream will, say the makers, put an end to graticule counting, mental calculations and conventional 'scope errors. Basically, the instrument is a conventional 'scope in which a microprocessor keeps track of dial settings, computes time intervals and voltage levels to give a digital reading of a measurement in seconds, Hz , volts or percent. The microprocessor will also (to let you know it's working for a living) signal if an erroneous setting is made. HewlettPackard, King Street Lane, Winnersh, Wokingham, RGl1 5AR.
WW 319 for further details

Re-usable circuit board

A re-usable circuit board with a 0.1 in matrix of holes uses pre-tinned solder pins, which are pushed into the matrix in the desired format. Components are then soldered to the pins which may be removed to produce another circuit. A kit comprises five $43 / 4 \times 4$ in boards and 500 pins, and costs $£ 4$ plus v.a.t. Lektrokit Ltd, 3 Trafford Road, Reading, Berks RGl 8JR.
WW302 for further details

Gunn power supply

The type 703B power supply is a stable ripple-free voltage source suitable for energizing a variety of Gunn-diode oscillators. Output range covers 3 to 15 V at up to 2 A , the values being

WW303
indicated on a front panel meter. Current limiting can be set from 100 mA to 3 A and when the limit is reached the supply changes from the constant-voltage mode to constant-current working. A square-wave modulator circuit is included which is suitable for driving p.i.n. diode modulators. Microtest Ltd, 18 Normandy Way, Bodmin, Cornwall. WW 322 for further details

Flat heat pipes

The SK133P and SK166P will accept two T03 or T066 packages respectively. The heat pipes are hollow and flat so the component is bolted through the pipe for maximum heat transfer. Thermal resistance of the pipes is $1.59^{\circ} \mathrm{C} / \mathrm{W}$ at 50 W reducing to $0.43^{\circ} \mathrm{C} / \mathrm{W}$ at 150 W when forced cooled. Solek Ltd, 16 Hollybush Lane, Sevenoaks, Kent.
WW309 for further details

Reference-voltage tubes

The new $Z D$ range of cold-cathode voltage reference and regulator tubes from Hivac is available with voltages from 82 to 139 V . Several versions can be supplied, giving tolerances on the reference voltage from $\pm 1 \%$ to $\pm 20 \%$. Temperature coefficients range from $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Hivac Ltd, Asheridge Road, Chesham, Bucks.
WW308 for further details

Sweep oscillator

The 6700 A sweep oscillator has a frequency range from 400 MHz to 18 GHz . An optional facility provides

WW309

WW308
remote digital programming via a 12 line b.c.d. input.
Plug-in YIG-tuned oscillators are used which can be supplied with a manual $10 \mathrm{~dB} /$ step attenuator or, for the remote version, a 0 to 70 dB binary step attenuator. Marconi Instruments Ltd, Sanders Division, Gunnels Wood Road, Stevenage, Herts.
WW 315 for further details

Power amplifier

The Crown DC300A has now acquired a big brother -- the M600. This new amplifier, while retaining a high performance, will deliver 600 W into an eight ohm load or I KW into four ohms. Built-in cooling and protection circuitry allow continuous high power levels to be maintained. Two M600's can be connected together to deliver 2 kW into eight ohms. Macinnes Laboratories Ltd, Carlton Park Industrial Estate, Saxmundham, Suffolk.
WW304 for further details

Kits

Recent additions to the Heathkit range of instruments are a single-trace 10 MHz oscilloscope and a digital multimeter. The'scope offers a vertical sensitivity of $10 \mathrm{mV} / \mathrm{cm}$, two input channels, and a triggered sweep. The multimeter is a portable unit including rechargeable cells and charging circuit. The meter, which has 26 ranges, will measure direct and alternating voltages from $100 \mu \mathrm{~V}$ to 1000 V and 750 V respectively, direct and alternating currents from 100 nA to 1000 mA , and resistances up to $1000 \mathrm{k} \Omega$. A 100% overrange capability allows measurement up to 1.999 on all ranges except 1000 V d.c. and 750 V a.c. Heathkit (Gloucester) Ltd, Gloucester GL2 6EE. WW3 14 for further details

Dust caps

Lemo are now supplying sprung dustcaps for their range of panel sockets. A moulded disc which has a rubber washer provides a dust-proof seal whenever the plug is withdrawn. Lemo (UK) L.td, 6 South Street, Worthing, Sussex BNll 3AE.
WW3 10 for further details

Cassette winder

A useful accessory for audiophiles is the Bib cassette-tape winder. The gadget is simply located into the spigot holes of the cassette and a handle is turned which, through appropriate gearing, rewinds the tape. A C90 cassette can be wound in about 60 seconds, which is faster than many cassette recorders. The unit is priced at $£ 1.34$ plus v.a.t. and is available from Bib Accessories, P.O. Box 78, Hemel Hempstead, Herts. WW 320 for further details

WW315

WW304

WW314

WW310

I've always felt sorry for William McGonagall, poet and tragedian, whose poetic gems have achieved immortality for all the wrong reasons. In short, as Punch has truly said, McGonagall was the greatest Bad Verse writer of his age

Now he has serious competition, for a distant relative, Vector McGonagall, has submitted the following. As you will see, it has the same sublime disregard of scansion that was typical of our illustrious forebear:

ODE TO COLOUR TELEVISION

Beautiful colour television set so fair Standing so blank in the corner there Awaiting the installation engineer
In the Dun Cow quaffing his lunchtime beer
While the rigger up on the roof does bellow
"Dear me, what a nuisance!" as the clumsy fellow
Drives a nail through his thumb, so sad to be seen
In fixing the antenna on our rooftop green.
Beautiful colour set with your twenty-six inch screen
By far the biggest our road has yet seen
No more from the Joneses shall we have to scrounge a view
Of Trooping the Colour on their mere twenty-two
We can now tell the world fearlessly and without dismay
That Messrs McTavish and Goldstein are installing it today
With a cracking down-payment and a lifetime of rental
And three hundred green stamps as a prized incidental.

Beautiful colour set with your twenty-six inch screen.
And your cathode ray tube so fine to be seen With its shadow-mask invented by Dr Goldsmith some experts do say
With its millions of holes which serve to display
The Rt. Hon. Harold Wilson our Prime Minister so true
In appropriate shades of red and blue
Whene'er he has something of import to state
Or even on nothing he'll profoundly orate.
Meanwhile up on the roof the Storm Fiend doth bray
And the rigger zooms down the unorthodox way

The Dun Cow closes its doors with a clang And the engineer on our front door he doth bang
With unsteady fingers he adjusts all the knobs
While the screen starts to glow with indeterminate blobs
Of colour, so grand and so fine to be seen
On our wonderful, marvellous twenty-six inch screen.

For a toast now to Nipkow, Rosing and Baird let us call,
Campbell Swinton and Zworykin and Shoenberg et al
NTSC, SECAM and PAL who worked like the deuce
To display Fanny Cradock in glorious puce
Our skies may be green and our grass fiery red
With fringing and rainbows around every head
And dot-structures crawling all over the place
Like ants wandering aimless on Dimbleby's face
No matter! The Joneses with envy are green At our opulent set with its twenty-six inch screen.

TUPPENCE COLOURED

Traditionally, what the United States does today, Britain, for better or for worse, gets around to doing four or five years hence. As a case in point you may or may not know that for some time past it has been a common custom in American zoos to provide the gorillas and chimpanzees with colour television sets; the objective, as in human circles, is to ameliorate to some extent the sheer boredom of civilized livìng

Now comes news that at least three British zoos have done the same. For this piece of information I'm indebted to (appropriately enough) the Spectrum column in The Sunday Times. The apes, I'm told, have definite preferences. Michael Parkinson and Russell Harty leave their simian viewers cold; no - it's football, horse opera with plenty of redskins biting the dust, all-in wrestling and Kojak that really gets the old adrenalin pulsating around in the cages.

I don't know whether you agree, but to me that's really interesting for these are precisely the items which are accorded top ratings by the apes' human counterparts on both sides of the Atlantic. It points strongly toward a parity in intelligence between the two factions; indeed, it seems that the apes don't dig girl singers or blue movies, which might, appear to give them something of an edge in the matter of I.Q. In view of this, the question which every thinking person will ask himself is - are we being fair to the gorillas in our midst? Shouldn't they, for instance, be accorded the right to vote? This, is no idle academic question. It's a matter which the Liberal Party in particular would do well to ponder

You, sir, and you, madam, no doubt suppose that the gorilla population of Britain is insignificant and so it is in comparison with that of the United

States, where the whole thing started. But I'm now in a position to reveal exclusively that for some years past, gorilla-smuggling across' the Channel has been rife and on a scale that makes the Pakistani forays seem chickfeed. And if this news has triggered the raised eyebrow, then stand by to hoist the other one also, for a startling announcement is imminent. Here it comes. I can state unequivocably that the sinister, secret organization behind this illegal mass-immigration is not the Mafia but our own electronics industry, no less.

Naturally, you require evidence of this, and evidence you shall have. As every retail service department in this country, and indeed, every buyer, will confirm - in any given piece of electronic apparatus which arrives from the manufacturers, half the main components will be found to be falling off the chassis while the other half are immovably clamped (these, in the very nature of things, are the ones which turn out to be faulty and need replacement). You may have wondered why, and I can now tell you. The manufacturers are using trained anthropoids on their assembly lines. The bits which are falling off represent the immature efforts of young apes; tyros who haven't yet quite got the hang of tightening self-tapping screws. The ones you can't shift at all are those tightened by adults in the prime of lusty gorillahood.

This secret work-force is housed in spartan quarters within factory precincts and, at the cost of a few colour sets, a handful of bananas and the defoliation of Epping Forest, is Britain's answer to the Hong-Kong menace. So successful has this enterprise become that disturbing new moves seem probable; no less a project than to give the anthropoids the status of British citizenship with full integration into our society as the eventual target. Incredible as this may seem, proof is not lacking. The BBC and IBA are already in cahoots with the electronics manufacturers; the former's surfeit of animal programmes and the latter's chimpanzee-orientated advertisements are not, as you have supposed, primarily directed at the human viewership. No - their main purpose, like the Pakistani programmes, is to keep our simian immigrants in touch with the dear old homeland.

Needless to add, the concept of gorilla-labour is no longer a monopoly of the electronics industry. Car users are also experiencing the symptoms and the expression "the engine's missing" has taken on a new connotation. Neither is the practice confined to industry. I can personally attest to the employment of gorillas as bouncers in many Soho strip-clubs and discos, a matter about which I feel particularly sore. It was clearly my patriotic duty to acquaint the British Public with the sinister facts, even though my body may be discovered up some dark alley riddled with Impatt diodes. FOR P.A., STUDIO AND PROFESSIONAL AUDIO EQUIPMENT

TEAC 3340 INDUSTRIAL
The Teac A 3340 professional model is a very high quality. 4 track (separate) recorder. Operating at
$71 / 2$ and 15 i p.s with full built-in sel-sync facility $71 / 2$ and $15 \mathrm{i} . \mathrm{ps}$ with full built-in sel-sync facility
Potential 8 input source (4 line and 4 mic) incorporating separate mixing controls on front panel. in slock NET PROFESSIONAL PRICE ON APPLICA
MICROPHONES
REW Audio Contracts are able to offer the following microphones at professional prices (subject to stock). to bona-fide pro users
AKG SONY
SHURE ELECTROVOICE
CALREC DAN GIBSON BEYER SENNHEISER

RESLO

Phone for a fantastic quotation! 4 CHANNEL PRIGE BREAKTHROUGH!

New Dokorder 8140 Multi-Sync Recorder

Similar facilities to Yeac 3340. Three motors, 3
heads solenoid operation electronic echo Speeds $71 / 2$ and $33 / 4$ i.p.s. 7 in spools. Mic and linemixing
£312 $\begin{gathered}\text { Netip prof } \\ \text { pRice }\end{gathered}$
ALL PROFESSIONAL AUDIO EQUIPMENT AT

NOW AVAILABLE IN U.K. STRAMP STUDIO AND P.A. MIXERS
Fully portable modular mixers precision built to the highest standard in robust flight cases A variety of options available to expand basic formats.
Prices start from $£ 680.00+$ VAT for 12 channel 4 group
AMCRON AMPLIFIERS
Sole London Distributors

SIMPLY ENGINEERED

A straightforward mono sound mixing console but
designed and manufactured for the BBC to their stringent specifications to solve a particular problem.
STAND No. 85

It could have been a nationwide industral radio installation, a new modular stereo production desk, a P.A. system or a new
concept in conference sound staging because it has been all these and others tackled successfully by

SOUND DEVELOPMENTS INSTALLATION DIVISION

Professionals in Systems and Equipment Design, Manufacturing, Installation \& Commissioning Who possess the expertise to engineer complex equipment simply for better performance.

Sound Developments Ltd.
Spencer Court
7 Chalcot Road
London NW1 8LH

Installation Division
Contact: Alan Brill
01-586 1271/4

NEW SHOP NOW OPEN, details below

RESISTORS	TRANSISTORS $\&$ DIODES \square INTEGRATED CIRCUITS \square 14 -pin DIL) MFC40008 \qquad \qquad \qquad \qquad \qquad	PLUGS AND SOCKETS	organ CONSTRUCTION \qquad full constauctional detalls IW OUR Leaflets \qquad ussic organ which can later be useds of a large sophisticaled instrument Lea
POTENTIOMETERS		JACK PLUGS	THE AMAZING DMO2
CAPACITORS Sut-miniature Axial lead electrolyte			organ COMPONENTS
		TRANSFORMERS \qquad	4600 SYNTHESISER \qquad
P.O. Box 3, Rayleigh, Essex. Tel. Southend-on-Sea [0702) 44101 Call in at our new shop 284 London Road, Westcliff-on-Sea, Essex. VAT. Please add 25% to the final total. Post and packing included in U.K. (15p handing charge on orders under £1) First-class post pre-paid envelope supplied free with every order			

(Bll
 Dept. 5
 56, Fortis Green Road, London, N10 3HN
 telephone: 01-883 3705

TRANSISTORS AND DIODES

Typ. $\text { BSY } 29 \text { (SNPN) }$
B0107 (SNPN)
2N7118/2G106 (SPNP)
2N985 (GPNP)
2N1304 (GPNP)
2N1309 (GPNP)
2N1046 (GPNP)
2N1146A (GPN
2N1557 (G)
2N2080 (G)
2N2082 (G)
2N2405 (SN
2N3054 (SNPN)
2N3055 (SNPN)
2N3375 (SNPN)
2 N 4427 (SNPN)
322

300 mw
115 w

150 mw
300 mw
150 mw
150 mw
50 w
90 w
106 w
170 w
170 w
1 w
29 w
115 w
116 w
35 w
10 w

ASZ16/OC26 25p, OC35 45p, $\begin{array}{llll}\text { OC42 } & 45 p, & \text { OC71. } & 12 p, \\ \text { CV7006/OC72 } & 20 p \text {. OC75 }\end{array}$
 10p. OA10 25p, RAS50BAF 25p, RAS310AF 25p. STC Wre End 400 PIVIA 4 for 50 p . IN3193 13p
IN3255 20p.

RCA PHOTOMULTIPLIER

C310058 Caesium and Antit ponse Designation RCA 107 or

INTEGRATED CIRCUITS

THYRISTORS

CR1.021C 2001 a	
CR10.1018 100v	
CR:0.021 10a	¢1.00
CR 10.408 10a	E1.
CR10.051 10a	¢
CR10017 10a	
BTX 92 1200R 16a	

RELAYS

RECTIFIER STACKS $\begin{array}{llll}\text { GEX541B1P2 } & \mathbf{£ 6 . 8 8} & \text { GEX541HP3F } & \mathbf{£ 6 . 0 0} \\ \text { GEK54181P1 } & £ 3.50 & \text { SX751N1B1P1F } & \mathbf{E 6 . 0 0}\end{array}$ $\begin{array}{ll}\text { GE K54181P1 } & \text { E.3.50 } \\ \text { GEX541NB1P1F } & \mathbf{E 6 . 0 0}\end{array}$

 U5028/10 inpui 35 v rms output DC 47 V 480 amps. | naturally ait cooled Inc cart |
| :--- |
| Type G2 |
| Ty |
| 5066 enput | ype

amps $30^{\circ} \mathrm{C}$
C
naturally air cooled Inc carr
$\mathbf{E 2 5 . 0 0}$

Edward High Vacuum 'Speedivac' model VSK 18
 $\begin{array}{lll}\text { net weight } 17 \text { ors } \\ \text { Belling Delay nand reset } L 415 & \text { E6.50 } \\ & \end{array}$ Belling Delay nand reset $L 415$ 5 s 5ipalis Rocker 12 V

CIRCUIT BREAKERS 250VAC AMP TRIP TYPE

AMP	TRIP	TrPE
20		Westingh 550
40	-	Securex 5000
70	ins:	Westing 550
70	4	Hememann (60 c
80	Ins 1	Westingh 550
80	-	Securek 5000
90	Inst	Westungh 550
100		Securex 5000
200	-	ETA Magnetic

DIGITAL COUNTERS

STABILIZED POWER SUPPLIES

$$
\text { Gresham Lion } 6 \times 60 / 10 a-60 v 10 \text { amp sel to } 30 u
$$ E65.00 ind carrage $.5 \% 34 \mathrm{amp}$ inp $205-265 \mathrm{v}$ Oupul 28 v d 5\% 34 amp

Power Elect tnp
amp +10 y 300

Varley ITT Min 700020 V	
Magnetic Dev Type 596E	50 p
2.00	

CONNECTORS
 CA Photomuliplier C31005B Cathode -

CAPACITORS comprising capacilor Diode and Resislor 45pp/p 10 p Dublliter Metalised Paper type $426 ; 00 \mu \mathrm{~F} 15 \mathrm{y}$

FANS, CENTRIFUGAL BLOWERS \& MOTOR
Airmax type
alloy impeller $\&$ casing (corresponds
to current typ
alloy mpeller $\&$ casing icorresponds to current typ

$396571 / 230 \mathrm{Thn} 50 \mathrm{c} 290 \mathrm{rpm}$ Class | mssuation |
| :---: |
| $£ 23.00$ |

Woods Aerotoll shorth casing type S Rei 1ph $50 \mathrm{c} 019 \mathrm{a} 2700 \mathrm{rpm} 6^{\prime \prime}$ cast alum, impeller 4 blades widin casing $2 \% \%^{\prime \prime}$ rotal $51 /{ }^{\prime \prime}$ "weight $51 / \mathrm{lbs} \mathrm{mg}$
pp $£ 13.00$. Aerofoil Code $75280 \mathrm{~K} 200 / 250 \mathrm{v}$
 impeller 14 blades incl pp $£ 14.50$.
Service Electric HI-Velocity Fans sumtable lor Gas combustion Systems Steam exhausting Pneumatic conveying Cooling Electionic equipment. Atr blast for Oit burners Secomak
Model 365 (corresponds to 575) Airblast Fan 440 V 3 ph 50 C 75 hp 2850 rpm continuous 160 ctm 12 in wg nell wergh 1 ph 50 c 0166 hp . 280 opm . Continuous 50 ctm 2 in wg ne weight 341 lbs price uncl carr $£ 33.00$
Air Controls type VBL4 200/250v
Ype VBL5 200/250v 1ph 50c 172 cfm free ay Wergh $10 \% \mathrm{ibs}$ price incl PD $£ 19.50$

Willism Allday Alcoss rotary vane on free Single Stage
Vacuum Pump Model HSPOB \& HG RDm 1420 EE 3 phase duction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. $380 / 440 \mathrm{~V}$ Class Alcon blower FAD
Alcosa blower FAD 3-8cim at 5pst Rpm 1420 Motor EE 3ph
Horpm incl can 22.00
Gast MFG. Vacuum pump 0522.P702.R26x Moto

3 phase 2 HP motor $60 / 50 \mathrm{C}$ 1800/1500 APM. 208/220/440V

Transonics THE swnion oranlsamon

Five million solid-state devices in stock daily, that is' Covering over 2,000 different types. including all the current CMOS range

To keep up with the dozens of additions to our range each week, we are continually issuing new up-dated stock-lists. And they are automatically sent out to all catalogue holders. as well as anyone else who wants them

So ask for your new Transonics catalogue today. And find out about our stocks of ICs. transistors and other solid state devices by Mullard, ITT. Texas, RCA and other manufacturers. They're all part of the Transonics
$5,000,000$ daily stock figure - a vital statistic in your business

Call us now on 01-723 3646 for O.E.M. Sales and 01-7236603 for Distributor Sales. Or use Freepost Transonics Ltd. Freepost London W2 6BR

Transonics

303 EDGWARE ROAD. LONDON W2 6BR. TELEX: 28116

WW-055 FOR FURTHER DETAILS

TRANSISTORS				Type Prucer：		Type Puce 12				True Pricer in		Type Price：		OIODES	THYRISTORS．TRIACS AND TRIACS WITH TRIGGEA			
Tyoe Price		Type Price		BD 115	0.65	${ }^{\text {BF2 } 23}$	0.16			$2 \mathrm{~T} \times 310$	12	2N3790	${ }_{0}^{4.15}$	Type				
AC107	0.35	BC119	0.29	${ }^{80123}$	0.98 0.80	${ }_{\text {BF537 }}{ }^{\text {8F5 }} 3$	${ }_{0}^{0.35}$	C11tt	0.75	27x500	0.12	2N3819	0.35	AA119 0.09				
${ }_{\text {ACl }} 17$	0.24	BC125	0.22	B0130Y	1.42	8F458	0.60	CRS3 140	0.95	27x ${ }^{2}$	0.17	2N3820	0.49 1.45	AA 12980.20	IF VRM	－${ }_{-128 / 30}$		
${ }_{\text {ACl }}^{\text {ACl26 }}$	0．25		0.20 0.15	${ }^{80139}$	－0．50	${ }^{8 F 5459}$	0.63 0.70	${ }^{\text {O4ON1 }}$	0．45		${ }_{0}^{0.42}$	${ }_{2} \mathrm{~N} 3866$	1.70	AA143 AAZ 13 0.10 0.30 0.30	4 A －${ }^{\text {a }}$	－ $30 / 28 / 1-$	38／－1－ $60 /$－	－1－1－
AC1	0.25	BC134	0.20	80135	40	BF597	15	E5024	0.20	2N5	0.86	${ }^{2 N 3877}$	0.25	AAZ1	$6 \mathrm{~A} \quad 29$	－33／44／46	42／56／58 68／80／84	0／100／105
A ${ }^{\text {Cl }}$	0.	135	0.19		0.46	bFR39	0.24	ME6001	0.16	2N696			0.16		8 8A	38／50／52	47／64／61 75／92／97	
AC141K	0.27		0.20		0.48			Me6002		$2 \mathrm{N697}$					10 A 36	－42／60／6	51／74／78 84／104／109	13
${ }_{\text {ACl }}$	0.19	${ }^{\text {BC }} 137$	0.20 0.20	${ }^{\text {BD }} 1388$	${ }_{0}^{0.55}$		0300	ME8001	0.18	2N706	0.12	${ }_{2}{ }^{\text {2N4OO32 }}$	0.43	BA110U 0.35 BA 115 0.12 18	，			
ACl	0．28		0.20 0.30	${ }^{80} 140$	${ }_{0} .62$	BF／43	0.55	MJE341	0.72	2N708	5	2 N 4036	0.52					
${ }_{\text {A }}$	0.25	BC143	0.35	80144	2.19	bFW 10	0.55	MJE370	0.65	$2 N 744$	30	2N4046	0.35	${ }^{\text {BAII4 }}$ Bid 0.17	All	e in pe	per unit First price in each	or．
	0.27	HC1478			0.75		0.55	520	0.85									
${ }_{\text {AC }}{ }^{\text {c } 179}$	0.27		01201	${ }_{\text {BD1 }}^{\text {E3 }}$	${ }_{0}^{0.56}$		1.78	MJE521	1．25	－	${ }_{0}^{0.42}$	2 N	0.15		nd	rype Conn	n data supplied with each	evice Quantity
${ }_{\text {ACl }}^{\text {AC187 }}$	－0．25	${ }_{\text {BC1498 }}$	0.15	BD234	0.75	BEW59	0.19	MJE 3000	1.85	2N930	0.35	2N4126	0.20	PA156 0.15	enquires w			
	25	${ }^{\text {BC }} 15$	0.25	B0519	0.76		0.20	MJE3	74	2 N 1304	0.21	${ }^{\text {2N4236 }}$						
	－ 0.26	（el $\begin{aligned} & \text { BC } 153 \\ & \mathrm{BC} 154\end{aligned}$	0.20 0.20	${ }^{80} \times 18$	1.45	${ }^{85 \times 16}$	2.55	${ }_{\text {MPF } 102}$	O．40	2N1306	0.31	2N4284	0.19	BAX 13 0.06 Bax16 0.07 0.0				
AC194k	0.32	日C157	0.15	80×32	2.55		0.30	MPSA05	0.47	${ }^{2} 1307$	0.22	2N4286	0.19	Bax Bx72	INTEGRATED	CIRCUITS		
ACY28	0.25	158	0.13	16	0.38	30	0.35	MPSAS	0.50	2 N	${ }^{0.26}$		－ 0.13	${ }^{881058} 80.52$	Price（）		SPECIAL OF	
ACY39	${ }_{0}^{0.58}$	（8C159	0.15 0.48	${ }^{\text {BDV }}$	0．99	${ }^{8 \times 8 \times 85}$	0.26 0.26	MPS6565	0．66	2N1693	${ }_{0}^{0.34}$	${ }^{2} \mathbf{N} 42890$	0．14	881108 0.45 88100 0.50	Ca3045 1.40			
AD 142	0.52	BC1 $1678^{\text {c }}$	0.15	8F115	0.20	BFx86	0.26	MPSU	${ }^{0.76}$		0．45	${ }^{\text {2N4291 }}$	－ 0.18	$\begin{array}{\|cc\|}\text { Br100 } & 0.15 \\ \text { Vr1 }\end{array}$	$\begin{array}{ll}\text { Ca3046 } & 0.70 \\ \text { CA3065 } & 1.90 \\ \end{array}$		11 DII． 8	
AD 143 AD 149	0.51 0.48		0.13 0.13	${ }^{8 F 1} 178$	0．45		0.28 0.24 0.28	MPSU55	${ }^{1.26}$	2N18	0.48	2N4871	0.24 0.30		MC 1307 P 1.19	a		
${ }_{\text {AD }} 161$	0.48	${ }_{\text {RCC }}$	0．15	${ }_{\text {8F } 121}^{8 F 123}$	${ }_{0}^{0.25}$	BFY ${ }^{\text {BFY } 40}$	0.53 0.40	OC26 OC 28 O－	${ }_{0}^{0.38}$		0.51 0.36	2N4902	1.30 1.05		MC1310P 2.94	${ }^{4.18}$	£105	500
	0.48 0.25	${ }_{\text {BC1714 }}^{\text {BC17 }}$	O．15	${ }_{\text {BF }}^{8 \times 123}$	0.28 0.25	8F	（0．40 0	OC28	0.65 0.59	2N2218	0.36 0.60	2N5960	0.32		1.01	18	5 Timers	
AF115	0.25	${ }^{\text {BCI } 173}$	0.20 0.22	${ }^{8 F 127}$	0.30 0.25		0	${ }^{\text {OC36 }}$	0.64			${ }^{\text {2N5061 }}$	0．35	E8164 0.55	MC1 133PP 0.76 $M C 1351 P$ 185	TAA 700 4.18 TAAB 40 2.02	£55	00
Aft AF	0.25 0.25	${ }_{\text {BCI }}{ }_{\text {BC7 }}$	0	${ }_{\text {BF }}{ }^{859}$	0.27	BFY52	0.23	${ }_{\text {OC4a }}$	0.25	2 N 2	0.50	2N5087	0.32	$\left\lvert\, \begin{array}{\|cc\|}\text { Er176 } \\ \text { 8179 }\end{array}\right.$	MC1352P 0.82	tals6ia	£205	500
${ }_{\text {af }}^{\text {af }}$	0.50	${ }^{\text {BC1 }} 178$	0.22	${ }^{\text {ef }} 160$	0.22		0.32	${ }^{\circ} \mathrm{OC} 45$	${ }_{0}^{0.32}$			2N5296	0．57	$\begin{array}{ll}\text { B4206 } & 0.31 \\ 72010 & 0.35\end{array}$	MC1358PO	TAD100 $\begin{aligned} & 0.49 \\ & 2.66\end{aligned}$		
AF124	0.25	${ }_{\text {BC179 }}$	0.20	${ }_{\text {BF／} / 62}$	0.45	BFY72	0.31	OC71	0.32	2N2484	0.41	2N5298	0.58		MC1496L 0.87	TBA120S		
AF125	0.25	${ }^{\mathrm{BC} 1798}$	0.21	限163	0.45 0.25	Br15A	0.70	${ }^{\mathrm{OC} 72}$	0.51		0.53		0.85 1.90	$\begin{array}{ll}0481 & 0.12\end{array}$	MC3051P 0.58		PLEASE ADD 8\％FOA	R VAT
－${ }_{\text {AFP126 }}^{\text {AF } 127}$	0.25 0.25		0.11	${ }_{\text {BF } 173}^{\text {8F }} 178$	${ }_{0}^{0.25}$		1.90	${ }^{\text {Oc }}$	0.51	${ }_{2}{ }^{2} 2$	${ }_{0}^{0.12}$	2N5457	0.30		0.43	TBA4800	，	
Aft 39	－ 0.35	［C183K	${ }_{0}^{0.12}$	${ }_{\text {EF }}^{\text {EF } 177}$	0.30 0.33	${ }^{8 P \times 29} 8$	1.90	OC810 OC810	53	2 N	0.22	2N5458	0．85	OA95 0.007	${ }_{0}{ }_{0}$	tba500 $\begin{array}{r}1.99 \\ \hline 1.90 \\ \hline\end{array}$	P8P．UK ¢0．12 PER OR	DER．OVER－
－ $\begin{aligned} & \text { AFF14 } \\ & \text { AF149 }\end{aligned}$	0.45	EC184L	0.13	${ }_{\text {BF }}{ }^{8+179}$	0.33		0.68	－C139	0.76	2 N 2905	0．26	2N5436	1.05	（1） $\begin{array}{ll}\text { OA200 } & 0.10 \\ \text { O202 } & 0.10\end{array}$	MFC6040 0.91	tbas50a		
AF178	0.55	${ }^{\text {BC } 186}$	0.25	${ }^{\text {BFF }} 180$	0.35	8RY39	0.47	OC140	0.80	2 N	0．28	2N6027	${ }^{0.65}$	O2210 0.29	Ne555 0.72 NE556 1.38 1.38	tbas10 \quad2．990 1.99	All otems advertis	magazine
${ }_{\text {AFP }}^{\text {AFI } 180}$	${ }_{0}^{0.65}$	－ $\begin{aligned} & \text { BC187 } \\ & \text { BC208 }\end{aligned}$	0		0.44	${ }_{\text {BRIO }}^{\text {BRY }}$	$\stackrel{4}{0.47}$	OC170	0.25 0.30	2N29	0．13	2 N 5180	0.92		Sl414A 1.91	TBA5200 $\mathbf{3 . 3 4}$		
AF181	0.50	${ }^{\text {BCC212L }}$	0.12	${ }^{\text {BF } 183}$	0.0 .4	${ }_{85}^{85}$	${ }^{0.38}$		0.92	$2 \mathrm{2N}$	0．12	${ }^{2 S C 643 A}$		$\left.{ }^{\text {in } 400151} 0.05\right]$			p（refundab	
${ }_{\text {AF }}^{4} \mathrm{~F}$	0．4．40	$\substack{\text { RCC } 213 \mathrm{~L} \\ \mathrm{BC214L}}$	0.12 0.15		0.26 0.26	－	0.13 0.19		0.85	－	0．21		2.80		${ }_{\text {SN7 } 76003 \mathrm{~N}}{ }^{\text {S．12 }}$		GIRO A／C 23532	
AF279	0.84	UC238	－12	${ }^{\text {BFF } 194}$	－ 0.15	－	－ 0.15	ORP12	0.55	2 N	0．55	3 N140 40250	1.21 0.60	N1004 0.08	2.92	tBA $5400 \mathrm{3.21}$		
All 100 ALIO2	1.10		${ }_{0}^{0.28}$		0.15 0.15		0.52 0.52	R2008 20108	${ }_{2.95}^{2.05}$		${ }_{0}^{0.50}$	${ }_{40327}^{4020}$	0.67			TBA5500 4.10		
Al	1.10	BC2638	${ }^{0.25}$	${ }^{\text {PF }} 197$	0.17		－ $\begin{aligned} & 0.22 \\ & 0.45\end{aligned}$	TAG3／400		${ }_{2}^{2} 31134$	0．60	${ }_{40362}^{40361}$	0．48	IN4007 0.14	SN76013ND ${ }^{\text {a }}$	tBas6oca		
${ }^{\text {All } 13} \begin{aligned} & \text { All }\end{aligned}$	${ }_{2.10}^{0.95}$	${ }_{\text {BC268C }}^{\text {HC267 }}$	0.16 0.14	${ }_{\text {8F }}^{199}$	0.20 0.25	${ }^{\text {BSY }}$	0.45 0.50	tic．44	1.54 0.29		$\xrightarrow{1.32}$	${ }_{40429}^{40362}$	${ }_{0}^{0.80}$	｜1／4148 0.05	SN76023 ${ }^{1.72}$	teas $70 \begin{array}{ll}4.10 \\ 1.17\end{array}$		
AUl 10	1.90	BC294	0.37	${ }^{\text {Brase }}$	0.35		0.80	${ }^{\text {TiC }}$	0.44	$2{ }^{2} 3254$	0．28	${ }^{40439}$	2.67	（N5400 0.15	1.72			
${ }_{\text {A }} \mathrm{A} \mathrm{C}_{1}$	2．40	${ }_{\text {BC300 }}^{\text {BC301 }}$	0.60 0.35	${ }_{\text {BF222 }}$	0.35 1.08 0		0.15 0.40		0.58 0.49	${ }_{2}^{2 N 33}$	－ 0.48	${ }^{\text {ACC12 }} 176$	0.5	｜N5401 0.17	N76023N． 1.95			
BC107	0.40	BC30	0.60	${ }^{\text {BF }}$	15		0.28 1.24 1.28	T1P30A	－ 0.58	$2{ }_{2}$	－ 0.15	ACli4 ${ }^{\text {AC／}}$		IN5403 0.22	SN76033 ${ }_{2.92}$	（18A7200 2.45	毋10	T
	－ 0.12	${ }_{8}^{8 \mathrm{BC} 30}$	0.12 0.10		0.20 0.22	${ }^{\text {Br }} 11116{ }^{\text {81／}}$	1.24		0.6	$2 \mathrm{2N}$	0.15 0.15			$\begin{array}{ll}\text { IN5504 } \\ \text { INS404 } & 0.25 \\ 0.27\end{array}$	SN76530P1．95			
BC10	0.13	вC309	0.15	${ }^{\text {PFF244 }}$	O． 0.18	Bu			0.99	2 N 3	0．11		0.60	IN5406 0.30	SN76533 1.20	teas 10as ${ }^{\text {d }}$		
${ }_{8}^{\mathrm{BCC}}$	0.14 0.13	$\mathrm{BC}^{2} 23$	0．22	BF	45		3.25 2.99	${ }^{\text {TiP3 }}$ TiP4A	1.73 0.80		0.10 0.13	${ }_{\text {ACli8k }}$	0.61	15407	TAA3300 1.76	тва9200 4.23	CALLINGTON	
8C109C	0.14	${ }^{\text {BC44 }}$ ，	1.10	BF256	－		1.98		0.9		2.30			ZENERS	$\begin{array}{ll}\text { TAA350A } \\ \text { TAAA } 35 & 2.02 \\ 0.85\end{array}$	TRA990 TRA9900 4.10 4.10	ORNWALL PL17 8PZ	
	0.13 0.20		${ }_{0}^{1.58}$	${ }_{\text {Br } 2585}^{8525}$	0．49	BU205 81207	$\xrightarrow{1.98}$	Tis43	0.30 1.36	－ $\begin{aligned} & \text { 2N3774 } \\ & 2 \mathrm{~N} 3739\end{aligned}$	0.72 1.15 1	${ }^{\text {AC1 }}$ A 161		w	TAASEO 2.70	TCA2700 4．18		
	0.20		0.22			BU208	${ }^{3.15}$		，		1.70	AD162	0.95		TAA550 0.55	ZN414 1.25	Telephone：Stoke Climsie	dercury
¢ ${ }_{\text {BC1 }}^{\text {BC117 }}$	0.20 0.20	（ers	${ }^{4.425}$	${ }_{\text {EF263 }}$	0.70 0.70	8U209	2.50	171 1×3000	0.16 0.22	$\underset{\text { 2N3773 }}{ }$	1.90 2.90	8C142	0.70	33100V 0.18		U6A995159 2.25	CALGTON.	

HERE'S A 'LOCIGOL' SHOPPING LSST YOU GONTT GFFORD TO MISS!

TERMS: Non-account Customers. Cash with order. Standard P\&P. 40 p . Please add 8% VAT to overall total.

Marshall's

A. Marstiail \& Son (London) Limited Dept w w
42 Cricktewood Broadway London Nw 3 HD Tel

42 Cricktewood Broadway London NW2 3HD Tel 01-452 0161
Everything you need is in our new 1975
catalogue. Available now price 25p
Trade and export enquiries welcome

OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S TTL CMOS \& LINEARS

CA3018A	0.85	CD4043	1.80	65	4.48	SN7448	0.90	SN74157	
CA3020A	1.80	CD4044	1.80	SL414	1.80	SN7450	0.16	SN74160	1.10
CA3028A	0.79	CD4045	2.65	SL610C	1.70	SN7451	0.16	SN7416	1.
CA3035	1.37	CD4046	2.84	SL611C	1.70	SN7453	0.18	SN74162	1.10
CA3046	0.70	CD4047	1.65	SL612C	1.70	SN7454	0.16	SN74163	1.10
CA3048	2.14	CD4049	0.81	SL620C	2.60	SN7460	0.16	SN7416	2.01
CA3052	1.62	CD4050	0.68	SL62 IC	2.00	SN7470	0.33	SN7416	2.01
CA3089E	1.96	LM301A	0.48	SL623C	4.69	SN7472	0.26	SN7416	4.10
CA30900	4.23	LM308	2.50	SL640C	3.10	SN7473	0.36	SN74174	1.25
CD4000	0.36	L005TL	1.50	SN7400	0.16	SN7474	0.36	SN7417	0.9
CD4001	0.36	LM380	1.10	SN7401	0.16	SN7475	0.50	SN74176	1.44
CD4002	0.36	LM38 1	2.20	SN7401A	0.38	SN7476	0.35	SNT4180	1.40
CD4006	1.58	LM702C	0.75	SN7402	0.16	SN7480	0.50	SN74181	1.95
CD4007	0.36	LM709	0.38	SN7403	0.16	SN7481	1.25	SN74190	2.30
CD4008	1.63	8DIL	0.45	SN7404	0.19	SN7482	0.75	SN7419	2.30
CD4009	1.18	14DIL	0.40	SN7405	0.19	SN7483	0.95	SN74192	1.15
CD4010	1.18	LM 710	0.47	SN7406	0.45	SN7484	0.95	SN74193	1.15
CD4011	0.36	LM723C	0.90	SN7407	0.45	SN7485	1.25	SN74196	1.60
CD4012	0.36	LM74ic	0.40	SN7408	0.19	SN7486	0.32	SN7419	1.58
CD4013	0.68	8DIL	0.40	SN7409	0.22	SN7490	0.45	SN74198	2.25
CD4014	1.72	14DIL	0.38	SN7440	0.16	SN7491	0.85	SN74199	2.25
CD4015	1.72	LM 747	1.08	SN7411	0.25	SN7492	0.45	SN76003N	2.92
CD4016	0.66	LM 748	0.60	SN7412	0.28	SN7493	0.45	SN76013N	1.98
CD4017	1.72	LM14DIL	0.73	SN7413	0.35	SN7494	0.82	SN76023N	1.60
CD4018	2.55	LM3900	0.70	SN7416	0.35	SN7495	0.72	SN76033N	2.92
CD4019	0.86	LM 7805	2.00	SN7417	0.38	SN7496	0.75	TAA263	1.10
CD4020	1.97	LM7812	2.50	SN7420	0.16	SN74100	1.25	taa300	1.80
CD402	1.72	LM 7815	2.50	SN7423	0.29	SN74107	0.38	taA350a	2.10
CD4022	1.66	[M7824	2.50	SN7425	0.29	SN74118	1.00	TaA550	0.60
CD4023	0.38	MC1303L	1.50	SN7427	0.29	SN74119	1.92	TAA611C	2.18
CD4024	1.24	MC1310P	2.59	SN7430	0.16	SN74121	0.37	TAA62 1	2.03
CD4025	0.32	MC1330P	0.90	SN7432	0.26	SN74122	0.50	TAA6618	1.32
CD4027	0.43	MC1351P	080	SN7437	0.35	SN74123	0.60	TBA6418	2.25
CD402B	1.50	MC1352P	0.80	SN7438	0.35	SN74141	0.88	tBa651	1.69
CD4029	3.50	MC1466L	3.50	SN7440	0.16	SN74145	0.90	tBa800	1.40
CD4030	0.87	MC1469R	2.75	SN7444A	0.85	SN74150	1.50	tBab10	1.40
CD4031	8.19	NE555V	0.70	SN7442	0.65	SN74151	O.es	t8a820	1.15
CD4037	1.93	NE556	1.30	SN7445	0.90	SN74153	0.85	tBa920	4.00
CD404 1	1.88	NE 560	4.48	SN7446	0.95	SN74154	1.60	DIL sockets	0.17
CD4042	1.38	NE561	4.48	[SN7447	0.95	SN74155	1.6		

PW TELETENNIS KIT- $\mathbf{£ 4 2 . 5 0 ~ + ~ V A T ~ R e p r i n t ~ 7 5 p ~}$ TRY OUR GLASGOW SHOP

POPULAR SEMICONDUCTORS

2N696	0.22	2N3906	0.27	Af 139	0.85	80139	0.71	MPSA56	0.31
2 N697	0.16	2 N 4037	042	AF239	0.65	80140	0.87	OC28	0.765
2N698	0.82	2N4036	d. 67	AF 240	0.90	BF115	0.36	OC35	0.60
2N699	0.59	2N4058	0:18	AF279	0.70	BF117	0.65	OC42	0.50
2N706	0.14	2N4062	0.15	AF280	0.79	BF154	0.20	0 C 45	0.32
2N708	0.17	2N4289	0.34	AL102	1.00	BF159	0.27	TIP29A	0.49
2N916	0.28	2N4920	1.10	8C107	0.14	BF 180	0.35	TIP29C	58
2N918	0.32	2N4921	0.83	BC 108	0.14	Bf181	0.36	TIP31A	0.62
2N1302	0.185	2N4923	1.00	8C109	0.14	BF184	0.30	TIP32A	0.74
2N1304	0.28	2N5245	0.47	BC147B	0.14	$8 F 194$	0.12	TIP33A	1.01
2N1306	0.31	2N5294	0.48	BC1488	0.15	BF195	0.12	TIP34A	1.51
2N1308	0.47	2N5296	0.48	8C1498	0.15	BF196	0.13	TIP35A	2.90
2N1719	0.45	2N5457	0.49	BCI57A	0.16	BF197	0.15	TIP36A	3.70
2N2102	0.60	2N5458	0.45	BCIS8A	0.18	BF198	0.18	TIP42A	0.90
2N2147	0.78	2N5459	0.49	BC167B	0.15	BF244	0.21	TIP2955	0.98
2N2148	0.94	2N6027	0.45	BC1688	0.15	8F257	0,47	TIP305	0.50
2N2218A	0.22	3N128	0.73	BC.1698	0.15	8F258	0.53	TIS43	0.28
2N2219A	0.28	3N140	1.00	BC 182	0.12	BF259	0.55	2TX300	0.13
2N2220	0.25	3N141	0.81	BC182L	0.12	BFS61	0.27	2TX301	0.13
2N2221	0.18	3N200	2.49	BC183	0.12	8FS98	0.25	2TX500	0.15
2N2222	0.20	40361	0.40	BC183L	0.12	8FR39	0.24	2Tx501	0.13
2N2369	0.20	40362	0.45	BC184	0.13	BfR79	0.24	$2 T \times 502$	0.18
2N2646	0.55	40406	0.44	BC184L	0.13	8F×29	0.30	1 N 914	0.07
2N2904	0.22	40407	0.35	BC212A	0.16	8 8×30	0.27	1 N 3754	0.15
2N2905	0.25	40408	0.50	BC212LA	0.16	$8 \mathrm{FX84}$	0.24	1N4007	0.10
2N2906	0.19	40409	0.52	BC213LA	0.15	8FX85	0.30	1N4148	0.07
2N2907	0.22	40410	0.52	BC214L8	0.18	$8 \mathrm{~F} \times 88$	0.25	1N5404	0.22
2N2924	0.20	40411	2.00	BC2378	0.16	8FY50	0.225	IN5408	0.30
2N2926G	0.12	40594	0.74	BC238C	0.15	BFY51	0.23	AA119	0.08
2N3053	0.25	40595	0.84	BC239C	0.18	BFY 52	0.205	BA102	0.25
2N3054	0.60	40136	1.10	BC257A	0.16	8RY39	0.48	BA145	0.18
2N3055	0.75	40673	0.ta	BC2588	0.16	ME 0402	0.20	BA154	0.12
2N3399	0.28	AC126	0.20	8C2598	0.17	ME0412	0.18	8A155	0.12
2N3392	0.15	AC127	0.20	BC301	0.34	ME4102	0.11	881038	0.23
2N3393	0.15	AC128	0.20	ВС307B	0.17	M 3480	0.95	88104 B	0.45
2N3440	0.59	$A^{\text {A C }} 151$	0.27	bC308a	0.15	MJ481	1.20	8Y126	0.12
2N3442	1.40	AC152	0.49	BC309C	0.20	MJ490	1.05	BY127	0.15
2N3638	0.15	AC153	0.35	BC327	0.23	mJ491	1.46	8 8211	0.51
2N3702	0.12	AC 176	0.30	BC328	0.22	MJ2955	1.00	$8 \mathrm{YZ12}$	0.51
2N3703	0.13	AC187K	0.35	8CY70	0.17	MJE340	0.48	OA47	0.06
2N3704	0.15	AC 188K	0.40	BCY7	0.22	MJE370	0.65	OA81	0.18
2N3706	0.15	AD143	0.68	8 CY 72	0.15	MJE371	0.75	0490	0.06
2N3708	0.14	AD161	0.50	BD129	1.00	Mue 520	0.60	OA91	0.06
2N3714	1.38	AD162	0.50	80123	0.82	MJE521	0.70	W021A200	0.32
2N3716	1.80	AF 106	0.40	BD124	0.67	M J 2955	1.20	BY164	0.57
2N3771	2.20	Af109	0.40	80131	0.40	MJE3055	0.75	ST2 diac	0.20
2N3773	2.65	AF 115	0.35	BD132	0.50	MPB113	0.47	40669.	1.0
2N3789	2.06	AF116	0.35	80135	0.43	MPF 102	0.39	T/C44	0.29
2N3819	0.37	AF:17	0.35	80136	0.47	MPSAO5	0.25	C1060	0.85
2N3820	0.64	AF 118	0.35	8D137	0.55	MPPSA06	0.31	RP12	. 6
2N3904	0.27	AF 124	0.30	BD138	0.63	5	0.31		
Prices cor	rec1	May 1975	but al	exclusive	\checkmark A	Poat \& Package 25p			

TRANSFORMERS

Hel Vaweight $120 / 240 \mathrm{~S}$ Sec 120/240 C Contre Tappod \& Sceened

 VAWeighmans)
20
20 [waths)
20
60
60
60
100
12
200
250
25013
35015
50019
70029
100038
150046
200060

$$
\begin{aligned}
& \text { LOW VOLTAGE TFANSFORMERS } \\
& \text { PRIMARY } 200-250 \text { VOLTS } 12 \text { AND/OR } 24 \text { VOLT RANGE }
\end{aligned}
$$

 0

WW-051 FOR FURTHER DETAILS

Bargains in Semi-Conductors, components, modules \& equipment.

Bargains from our FREE Catalogue 20 large pages. filled with real bargains in transistors, I.Cs, components,
equip ment. etc. Send large S.A. E. with 7 p stamp for your FREE copy of 6 th Edith's ad Meanwhie, for prompt delivery why not order from this
TRANSISTOR PACKS ALL AT 50p EACH TESTED \& GUARANTEED

879	4	IN4007 Sil Rec. diodes 1.000 PIV	H39	6	Integrated circuits 4 gates BMC 962
					$\begin{array}{lll} 2 & \text { H1p } & \text { flops } \\ \text { BMC945 } \end{array}$
881	10	Reed Switches. $1^{\prime \prime}$ long $1 /$ B" $^{\prime \prime}$ dia High-speed P.O tyo	H41	2	BD131/BD132 Complementary Plastic Transistors
H35	100	Mixed Diodes. Germ Gold bonded. etc Marked and Unmarked	H65	4	40361 Type NPN Sil Transistors TO-5 can comp. to H66
H38	30	Short lead. NPN Siticon Planar Ex Equipment	H66	4	40362 Type PNP Sil. Transistors TO-5 can comp. to H65

UNMARKED \& UNTESTED PACKS—50p EACH
B1 $50 \begin{aligned} & \text { Germanium Tran- } \\ & \text { sistors PNP. AF }\end{aligned} \quad$ B86 $\mathbf{1 0 0} \begin{aligned} & \text { Sil Diodes sub } \\ & \text { min iN914 and }\end{aligned}$

		and RF			N916 types
B66	150	$\begin{aligned} & \text { Geranium } \\ & \text { odes Min Glass } \\ & \text { type } \end{aligned}$	H34	15	Power Transistors PNP. Germ NPN Silicon TO-3 Can
B84	100	Silicon Diodes DO-7 Min. glass equivalent 10 IN4 148	H67	10	3819N Channel FET's plastic case type

PLASTIC POWVER TRANSISTORS

40 WATT SILICON	
TYpe	Polarity
$40 N 1$	NPN
40 N 2	NPN
40 P 1	PNP
40 P 2	PNP
90 WATT SILICON	
	Polarity
90N1	NPN
$90 N 2$	NPN
90 P 1	PNP
9082	PNP

FIM 380 AUDIO IC (Marked $\left\lvert\, \begin{aligned} & 60745 \text {). Brand new and to } \\ & \text { spec. } 3 \text { watts R.M.S out. With }\end{aligned}\right.$ $\left\lvert\, \begin{array}{ll}\text { data } & \mathbf{E} \mathbf{1} \\ \text { pak No } 1 \text { Short lead semiconductors }\end{array}\right.$
 CAPACITOR DISCHARGE IGNITION KIT Simple to assemble and tit. Improves car peffonance,
$£ 7.50$
Bi-Pre-Pak X-Hatch Generator Mk. 2

- Four-pattern selector switch $3^{\prime \prime} \times 5^{1 / 4}{ }^{\prime \prime} \times 3$
Ready-built
and tested
$£ 9.93$
£7.93
Please add 30 p for postage and packing
Is invaluable to industrial and home user alike. Improved circuitry assures reltability and still better accuracy. Very compaci; self-contained Robusily
butl Widely used by TV rental and other engineers With reinforced fibreglass case, instructions. but less batteries (Three U2 type required.)
* TV SIGNAL STRENGTH METER VAT at current rate
MAINS TRANSFORMERS

MAINS TRANSFORMERS	
A 18 V 1 amp (Sultable for SS 103 ,	$\mathbf{£ 1 . 5 0}$
B 25 V 2 amp (suitable for SS. 110)	$\mathbf{£ 2 . 0 0}$
C. 30 V 2 amp (suitable for SS. 140)	$\mathbf{£ 4 . 5 0}$
Add 350 for P\&P per transformer	

Type A $45 \mathrm{~V} / 1 \mathrm{~A} 27 \mathrm{P}$ B \& C $100 \mathrm{~V} / 2 \mathrm{~A}$ MAINS RELAYS $230 / 240 \mathrm{~V}$ AC 3 60 p
Ex-GPO Telephone Handsets each
To CLEAR. Hundreds of various portable Iransisici radio chassis with FM \& AM 55 (1deal for experimenters Ail in going ooder butno instructions or tuning drives A chaap way to make a bortable Each $\mathbf{E 1 . 0 0}$. 8 assorted zelavs $\mathbf{£ 1 . 0 0}$. Rev Counter device for

222224 WEST ROAD, wESTCLIFF-ON-SEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.

Made and sold direct by Bi-Pre-Pak

Stirling Saund

Today's most challenging values!

AMPLIFIER MODULES

SS100	Active tone control unit to provide Bass and 'Treble facilities ($£ 1.60$
SS101	Pre-amp for stereo ceramic cartridges, radio and tape	£1.60
SS102	Pre-amp for low-output stereo magnetic cartridges, radio and tape	£2.25
SS103	Compact I.C. amp. 3 watts R.M.S. Single channel (mono). On P.C.B size $3^{\prime \prime} \times 2^{\prime \prime}$. Needs 6.22 V supply	5
SS103-3	Stereo version of above. (Two I Cs.)	3.25
SS105	A compact all-purpose power amp. Can be run from 12 V car bat Size $21 / 2^{\prime \prime} \times 13 / 4^{\prime \prime}$. Useful $5 w$ output (mono). Excellent value	

SS140 Beautituly designed. Wil give up to 40 W R.M.S. into A disco use, etc Operates from 45 V DC. Two, in bridge formation will give 80 w R.M.S into 8Ω

FM Tuners

Front End assembly. Ganged tuning with well engineered slow-motion geared drive in robust housing A. F C
tacility. Requires 6-16V Excellent sensitivity $88-108 \mathrm{mH}$

SS202 I F. Stage (with I.C.) Designed to use with SS201 uses I.C. Carefully checked before despatch and SS202, this excellent decoder can also make a stereo tuner of almost any single channel FM tuner Supplied ready aligned. A L.E.M. can easily be fitted

SS300 POWER SUPPLY STABILISER. Add this to your unstabilised your audio system. Money saving and very reliable.

SPECIAL F.M. TUNER OFFER TO SAVE YOU £5

Buy Stirling Sound Units SS201, 202 and 203 together to make a first class stereo F M. tuner, total advertised price £17.12 and it will cost you only giving a genuine saving of $£ 5$.
£12.12

Plastic Power Transistors

40 WATT SILICON

90 WATT SILICON
Type No. Gain VCE Polarity Price Type No. Gain VCE Polarity Price

$40 N 1$	15	15	NPN	20p	9ON 1	15	15	NPN	25p

4ON2	40	40	NPN	30p	$90 N 2$	40	40	NPN	35p
$40 P 1$	15	15	PNP	20p	$90 p$	15	15	PNP	25p
$40 P 2$	40	40	PNP	$\mathbf{3 0 p}$	$90 P 2$	40	40	PNP	$\mathbf{3 5 p}$

$40 P 2$	40	40	PNP	30p	$90 P 2$	40	40

TERMS OF BUSINESS: VAT at current rate must be added to tetal value of order including postage and packing charges. No VAT on overseas orders. POST \& PACKING Add $20 p$ for UK orders. Minimum mail order acceptable £1. Overseas orders. add £1 lor postage. Any difference will be credited or charged. PRICES Subject to alteration without notice. Availability All items available at time of going to press when every effort is made to ensure correctiness of information

TO BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX

THE NEW SEMICONDUCTOR SOURCE

 C 10
C_{1}
C 10
C 10
C 1
C
C
C

DESIGNER APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articłes (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs. two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (modifications as per Hi.fi News April 1974)

${ }_{1}^{\text {Pack }}$ fibreglass printed-circuit board

for power amp. of iesistors. capacitors, pre-sets
for power amp. for power amp.
amp. tnow using BDY56. BD529 BD5301
Pair of 2 drilled. finned heat sinks
Fibreglass printed-circuit board
Set of for pre-amp
Set of low nolse resistors. capacitors.
pre-sets for pre low to for pre amp. low norse. high gain Set of potentiometers lincluding Set of 4 ins switch) of 4 push button 5 wilches
rotary mode sw dal transformer complete with magnetic screen/housing primary 0.117 .234 V , secondaries

Pack
Fibreglass printed circuit board 2 Set of resistors capacitors of resistors capacitors.
secondary fuses semicon ductors for power supply miscellaneous parts including DIN skts. mains input skt, fuse holder. inte connecting cable, control $〔 6.50$

60.80
£1.30
¢2 70
¢2.40
.
3.70
9.15
of metalwork parts including
silk screen printed fascia
panel and all brackets. fixing
panel and all brackets. fixing
parts. etc.
Handbook
Teak cabinet
Teak cabinet
are required for complete stereo system Total cost of individually purchased packs

Price
£0.65
£3 50

f4 25

V A T Please add 25\%*
to all U.K. orders
(\%or at current rate if changed)
UK ORDERS—Post free (mall order only)
SECURICOR DELIVERY: For Securico! delivery to mainland-add £2 + VAT per kit.
OVERSEAS - Postage at cost +50 p special packing
Dept. WWO6
POWERTRAN ELECTRONICS
portway industrial estate
ANDOVER, HANTS SP10 3NN

Unless otherwise siated all prices are
EXCLUSIVE of V I Please add 25% to all orders Carriage orders under $£ 5$ plus 33 p
Over $£ 1000$ post \ddagger ree

All mail order and enquiries to 270 Acton Lane, Chiswick, London W4 5DG. Tel: 01-994 6275 SEMICONDUCTORS

METAL BOXES

METAL BOXES				
aluminium boxes ideal for veroboard WITH BASE \& P.K. SCREWS				
AB7	2% " Long	5", Wide	$1 /{ }^{1 / 2,}$, hgh	55 p '
AB8		$4^{\prime \prime}{ }^{\prime \prime}$	11/2,	55
${ }_{\text {ABro }}$		51/ ${ }^{\text {\% }}$	1/2.	55
AB11		21/2"	'"'	65p
${ }_{\text {AB1 }}^{\text {AB } 12}$	${ }^{\text {3'丷 }}$	${ }_{4}^{2}$	${ }_{2}{ }^{\prime \prime \prime}$	${ }_{77 p}^{50 p}$
AB14	${ }^{\prime \prime}$	5 "	2\%"	90 p
${ }_{\text {ABI }}^{\text {AB15 }}$	${ }^{\prime \prime}$	\%",	${ }_{3}{ }^{\prime \prime}$	${ }_{\text {c1. }}$
${ }_{4 B 17}$		41/2"	$3^{\prime \prime}$	c1. 10
AB18				E1.32
AB19	$12^{\prime \prime}$	$8^{\prime \prime}$	$3^{\prime \prime}$	E1.80
aluminium boxese with sloping top PANEL-IDEAL FOR PRE-AMPS. ETC.. USING SLIDER CONTROLS				
AB20 $8^{\prime \prime}$ "Long $9^{\prime \prime}$ Wide $31^{1 / 2 "}$ " High at back $2^{\prime \prime}$ High at front 6" Slope to tront With ${ }^{2} K$ Screws AB21 As above but $10^{\prime \prime}$ Long AB22 As above but $12^{\prime \prime}$ Long				$£ 2.20$
				¢2. 20 ¢2. 60
BNC PLUGS at 35 p each UHF (N) PLUGS at 50 p each C CONNECTORS at 50 p each				
All the above are new in original packets Please add 8\% VAT P\&P 30p				
MULTI-CORE				
CABLE				
20 way $14 / 0076+$ Screen at $70 p$ per yard + postage.				
Phone for details.				
POTENTIOMETERS Linear or Log Rotary Pots Rotary Switched			Single	Double
			45p	
			25p	

QUALITY AMPLIFIER KITS by POWERTRAN
 WIRELESS WORLD AMPLIFIER DESIGNS
 Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are electronics

packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots
Pk. 3 Semiconductor set
GOV REGULATED POWER SUPPLY Pk. 1 F/Glass PCB
Pk. 2 Resistors. Capacitors. pots Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors. pre-sets. transistors

Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set
1.60
(with knobs)
£2.70

STUART TAPE RECORDER

E 0.85
E2.40
f2.40
£3.35

£0.75

f 1.40
£3. 10
f2.05
$£ 4.95$

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design.
TRRP Pk. 1 Reply amplifier F/Glass PCB £ 0.90
TRRC Pk 1 Record amp/meter drivecot F/Glass PCB
TROS Pk. 1 Bias/erase/stabilizer cCt F/Glass PCB
or details of component packs for this design please write for free list.

TOROIDAL T20 + 20

Developed from the famous Practical Wireless Texan

Designed by Texas engineers and published in a series of articles in Practical Wareless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this include a true Toroidal transformer, upon slimline integrated circuit design, based upon
a single F/Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

Pack		Price
1	Set of all low noise resistors	£0.95
2	Set of all small capacitors	$£ 1.50$
3	Set of 4 power supply capacitors	$£ 1.40$
4	Set of miscellaneous perts including	
DiN sockets. fuses. fuse holders.		
control knobs, etc.		

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	80.28	2N5459	¢0.45'	BC184L	¢0.11	MC1351	£1.05	SN72741P	¢0.40
2 N 1613	¢0.20	2N5461	c0. 60	BC212L	£0.12'	MFC4010	ع0.95	SN7274BP	c0.40
2 N 1719	c0.26	2N5B30	80.30	BC214L	¢0.14	MJ481	ع1.20	TIL209	¢0.30
2N2926G	c0.10	40361	¢0.40	BCY72	c0.13	MJ49 ${ }^{\text {a }}$	ع1,30	TIP29A	£0.E0
2 N 3055	20.48	40362	c0.45	80529	20.85	MJE521	c0. 60	TIP30A	¢0.60
2 N 3442	£1. 20	BC107	¢0.10	80530	¢0.85	MPSA05	¢0. 25	TIP29C	¢0.71
2N3704	¢0.10	BC10日	c0.10	BDY56	ع1.80	MPSA12	c0.58	TIP30C	¢0,78
2N3707	¢0.10	BC 109	80.10	BF257	¢0.40	MPSA14	E0.35	TIP41A	£0.74
2N3711	10.09	$8 \mathrm{BC109C}$	ع0.12	BF259	c0.47	MPSA55	c0. 25	TIP42A	¢0.90
2N3904	¢0.17	BC 125	20.18	8FR39	£0.25	MPSA65	¢0.35	1 N914	¢0.07
2N3906	¢0.20	BC126	c0.16	BFA79	c0.28	MPSA6B	¢0.40	1 N916	¢0.07
2 N 4062	80.11	8C182	$\underline{80.10}$	BFY51	¢0.20	MPSU05	¢0.80	15920	¢0.10
2 N 4302	c0.60	8 C 212	80.12	8 FY52	80.20	MPSU55	¢0.70	5605	£1. 20
2 N 5087	20.42	8 Cl 182 K	$\varepsilon 0.10$	CA3046	c0.70	SBA750A	c2. 50	FILT	5
2N5210	ع0.E4	8 BC 212 K	c0.12	LP1188	E6. 60	SL301	¢1.30	FM4	£0,80
2N5457	50.45	BC182L	¢0.10	MC1310	¢2.90	SL3045	E1.60	SFG10.7M	ع2,80

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem. described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

for further information please write for FREE LIST NOW!

SPECIAL OFFER *

SLIDER POTENTIOMETER SALE!
Most values $1 \mathrm{~K}-1 \mathrm{M}$ lin/log avaitable

	Normal price	Sale Price
	Single	$35 p$
$25 p$		
Dual	$55 p$	$35 p$
Knob	$15 p$	$10 p$

V.A.T. Please add 25\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS - Post free (mail order only) SECURICOR DELIVERY-for this optional ervice (Mainland only) add L . OVERSEAS-Postage at cost +50 p special packing, handling

Dept. WWO6
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER. HANTS SP10 3NN

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473 RM7 9DD
E.H.T. POWERUNIT. $110 / 240 \mathrm{~V} \quad 50 \mathrm{~Hz}$ giving 5 Kv at $50 \mathrm{~m} / \mathrm{a}$ METERED OUTPUT £18.50. P.P E1. 50

PRECISION A.C. MILLIVOLTMETER (SOLARTRON PRECISION A.C. MILLIVOLTMETER (SOLARTRON)
 TELEPHONE DIALS (new) £1. P.P. 15 EXTENSION TELEPHONES (Type
706). Various colours. $£ 3.95$. P.P. 75 p RATCHET RELAYS (310 ohm) Various types E1.20. P.P. 20p UNISELECTORS (New) 25 way, 12
Bank (Non bridging) 68 ohms. $£ 6.50$. P.P. 50 p.

1,000 TYPE KEY SWITCHES
Single $2 \times 4 \mathrm{c} / \mathrm{o}$ Locking. 50p. PP. 10p Bank of $4-2 \times 4$
c/o each switch (one biased). E1.20. P.P 15 p
OVERLOAD CUT-OUTS. Panel mounting
$800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} .10 \mathrm{amp} 45 \mathrm{p}$. P P. 5 p
U.K. orders + 25\% V.A.T. surcharge

QUADROPHONIC DECODER MODULE. C.B.S./S. Q. Type, using I.C. MC 1312 P . With slight modification direct substitute using I.C. MC ${ }^{2}$.
for P.E. RONDO" Board Complete with Data $£ 4$ each.
S.T.C. CRYSTAL FILTERS (10.7 Mhz)

445-LQU-901A (50 Khz spacing). £3. P P 20p
V.H.F./U.H.F. POWERTRANSISTORS (Type BLY38) 3 wat output at $100-500 \mathrm{Mhz}$ £2.25. P.P 10 p .

H.D. ALARM BELLS. 6in Dome. 6/8v D.C. £2.75. P.P 97p.

MULTICORE CABLE. 6-core (6 colours) 14/0076 Screened P V C. 22p per yard; 100 yards at $£ 16.50$. P.P 2p a yard 7 -core (7 colours) $7 / 22 \mathrm{~mm}$ Screened P.VC $\mathbf{2 2 p}$ per yard, 100 yards $£ 16.50$. P. P. 2p per yard 30 -core (15 c
yard
RIBBON CABLE $(8$ colours) 10 m © 1.65 . P.P. $20 p$ 100 m -core $7 / \mathrm{mm}$ Bonded side by side $\mathrm{E11.50}$. P.P

TRANSFORMERS

ADVANCE TRANSFORMERS "VOLSTAT". Input $242 v$
A.C. 50.38 v at 1 amp .25 v . at $100 \mathrm{~m} / \mathrm{a}: 75 \mathrm{v}$ at $200 \mathrm{~m} / \mathrm{a}$
£2.50. P.P 65 p
C.V.75. 25 v . at $2 \frac{1}{2} \mathrm{amp}$ €3. P.P. 75 p .
C.V. 100.50 v at $2 \mathrm{amp}, 50 \mathrm{v}$ at $100 \mathrm{~m} / \mathrm{a}$ £3.75. P.P. 75 p C.V.250. 25 v at 8 amp 75 v at $1 / 2 \mathrm{amp}$ £6.50. P.P £ 150 C.V.500. 45 v at 3 amp 35 v at 2 amp £ 10 . P.P. £1 75 H.T. TRANSFORMER. Prim $110 / 240 \mathrm{~V}$. Sec. 400 V . 100 m/a £2.50. P.P. 65 p
L.T.TRANSFORMER "TOROIDAL". Prim. 240v Sec. 30v at $1 / 2$ amp Size 3 in dia thick $£ 1.65$. P.P 20 p
L.T.TRANSFORMER. Prim. 240 v . Sec. $27-0-27$ at $800 \mathrm{~m} / \mathrm{a}$
L.T. TRANSFORMER. Prim. 110
amp. (Shrouded) E1.95. P. P. 50 p
L.T. TRANSFORMER PrIm $200 / 250 \mathrm{v}$ Sec $20 / 40 / 00 \mathrm{v}$ 2 amp (Shrouded) £3. P.P. 50p
L.T. TRANSFORMER (H.D.). Prim. 200/250v. Sec 18 v at 27 amp 40 v at 98 amp . 40 v . at 3.6 amp .52 v at 1 amp . 25 v . at 3.7 amp £17.50. P.P. £2. 50
L.T. TRANSFORMER. Prim 240 v Sec $16-0-16 \mathrm{v}$ at 2 amp ع.2. P.P $50 p$.
L.T. TRANSFORMER PRIM. 120-0-120v. Sec 12 v at amp 70p. P.P. 20p
L.T. TRANSFORMER PRIM. 240 v Sec 18 v 1 amp £1. P. 20 p

WE REGRET THAT ALL ORDERS VALUE UNDER E5 MUST BE ACCOMPANIED BY THE REMITTANCE.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v or 48 v (state which) $4 \times 1 \times 1$ in. 65 p
 5 digt (non reset) 24 v £1.15. P.P

3 digit 12 v . (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$ in $£ 1.30$. P.P
5p 6 digit (Reset) 240 V A C £3.50. P.P 25p

RELAYS. SIEMANS /VARLEY. PLUG-IN. Complete with transparent dust cover and base 2 pole c/o. 45p; 6-make contact 50p; 4 -pole c/o contact 60p each P.P. $10 p$ each. 6. 12 -24-48v types in stock.

12v. 2 c/o 5 amp. H.D. RELAY, 65p. PP $15 p$
240v. A.C. RELAY (PLUG-IN TYPE). $3 \mathrm{c} / 010 \mathrm{amp}$. contact with base. 85p. P. P 25 p.

10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm. 0.5% Lin $38 \mathrm{~mm} \times 22 \mathrm{~mm} .14 \mathrm{~mm}$ Standard Spindle £2. PP i5p (Dials 50p each.)

24v. A.C. RELAY (PLUG-IN). 3 pole c/o 75p. P.P. 15 p 2-pole change over 55p. P.P. 15 p
BULK COMPONENTS OFFER. Resistors/Capacitors. 600 new components £2.50. P.P. 35p Trial order 100 pcs 60p P.P. 20p

REGULATED POWER SUPPLY. Input $110 / 24 D V$, output 9v D C $1 \frac{1}{2}$ amp.. 12 v . D.C $500 \mathrm{~m} / \mathrm{a}$. £4.75. P.P. 75 p.

MINIATURE "ELAPSED TIME" INDICATORS. (0-5000 MINIATURE "ELAPS
hours), $45 \times 8 \mathrm{~mm} 75 \mathrm{p}$.

POWER UNIT (TRANSFORMER/RECTIFIER). PrIm 240 v , output $171 / 2 v$ (unsmoothed) at 1 amp £1.85. P. P. 45 p. L.T. IRANSFORMER ('C' CORE). $200 / 240 \mathrm{~V}$ Secs 7-3-8.9.v. All at 1.5 amp 50 v at 1 amp £2.50. P.P. 50 p
 3-9.27v All at 10 amp f7.50. PP \& it 5
 L.T. TRANSFORMER ("C"' CORE). $120 / 120 \mathrm{v}$. Secs [.T. TRANSFORMER ("C"' CORÉ). $110 / 240 \mathrm{~V}$. Secs

WEW PRACTICAL PAPERBACKS F母EM FOULGHAM-TAB

the complete shortwave LISTENERS' HANDBOOK
by Hank Bennet
E2. 10

ELECTRONICS \&
PHOTOGRAPHY
by Robert M. Brown \& Mark Olsen
£1.85

GETTING THE MOST OUT OF YOUR ELECTRONIC
CALCULATORS
by William L. Hunter $£ \mathbf{1 . 8 5}$

INDEXED GUIDE TO MODERN ELECTRONIC CIRCUITS
by Robert L. Goodman $£ 1.90$

MODEL SAIL. AND POWER BOATING
by remote
control
by George Siposs
£1.80

RF AND DIGITAL TEST EQUIPMENT YOU CAN BUILD edited by Wayne Green $£ 1.95$

AMATEUR FM CONVERSION \& CONSTRUCTION
PROJECTS
by Ken Sessions, Jnr.
£2.10
CAR-STEREO SERVICE \&
INSTALLATION
by Paul Dorweiler \& Harry
Hansen
£1.95

COLOUR TV TROUBLES (FACTBOOK)
by The Editors of Electronic
Technician/Dealer $£ \mathbf{2 . 3 0}$

ELECTRONIC TEST
EQUIPMENT - and how to use it
by Joe Risse
£1.85
ELECTRONICS UNRAVELLED - A new commonsense approach
by James Kyle
£1. 90
SIMPLIFIED COMPUTER PROGRAMMING - The easy RPG way by Kelton Carson $£ 1.95$

Ex-BEA CONTROL UNITS by UNIVAC

A free-standing, modern style diecast case consisting of:

2-50way gold-plated plug. and sockets: sub-assembly with 3-multiway switch assemblies: 4-decade push button assembly with electrical reset: 2 -decade push button assembly with electrical reset: single bank 8 -push button assembly: 1 -decade lamp assembly: 1 - 2 -decade lamp assembly; $1-12 \times 3$-lamp assembly: 4 -decade thumb wheel assembly; $16=$ bit inline card code assembly: $6-13$ way plus and sockets

Limited stocks at 212.50 ea plus 12 carriage

MARCONI TF801A/1 Signal Generator 10 to $310 \mathrm{MHZ} \mathrm{E55} \mathrm{ea}$
MARCONI TF801B Signal Generator £120 ea
MARCONI TF801C Signal Generator f180.
MARCONI TF791B Carrier Deviation Meter £30 ea
MARCONI TF934/2 FM Deviation Meter $£ 35$.
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New $\mathbf{£ 7 5}$ ea
MARCONI TF1020A RF Power Meter 50 and 100 Watts. As New $\mathbf{5} 50$ ea.
MARCONI TF1094A/S HF Spectrum Analyser Late model. Must go. £160.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz} \mathbf{f} 25 \mathrm{ea}$.
KELVIN \& HUGHES Single Channel Recorders with spare paper $\mathbf{E 1 8}$ ea.
HEWLETT. PACKARD Power Meter 1 mV to 300 V dB scale $£ 20$.
DAWE Digital Printer type 3094A. As new

£27.50 ea.

WESTON THERMOPROBE -60 to +100 degrees Centigrade $£ 70$.
WANDEL \& GOLTERMAN TFEK41 Level Meter $\mathbf{f 6 0}$.
PROSSER SCIENTIFIC INSTRUMENTS
Model A100 Waveform Generator. Multi wave forms $\mathbf{£ 1 6 0}$.
bhode \& Schwarz Admittance Meter VLUK-BN3511, As new $\mathbf{£ 1 4 0}$.
TEKTRONIX Oscilloscope type 545B. Main frame only. As new condition $£ 370$.
hewlett Packard db Oscilloscope type 175A. $3 \mathrm{~dB}-50 \mathrm{MHZ}$ twice. Large $6 \times 10 \mathrm{~cm}$ screen $\mathbf{E 1 8 5}$.
AIRMEC 4 trace Oscilloscope. DC to 3 MHz . Good condition $\mathbf{E 5 0}$.
PYE SCALAMP GALVANOMETER. Hammer grey. Tested $£ 5$ ea.
SOLARTRON Multipurpnse stab PU type 1094.

ALSO MODERN STYLE TYPEWRITER KEYBOARD
 \section*{with 21 separate function keys. Housed in}

 slimline diecast case. Transistorised. No information but a "buy" at $\mathbf{£ 1 5}$ ea plus $£ 2$ carriageStandard mains input. Outputs: +250V DC 200MA: + 18 V DC 2A: + 6 V DC 8A: -3.5 V DC 100MA: -6 V DC 8A: $-18 V$ DC 4A: $25 V$ AC 150MA. All DC lines will withstand shortcircuits to earth. With copy of manual $\mathbf{£ 2 0}$ ea. DUAL TRACE PLUG-IN units for CD1212 Scopes DC- 24 MHz £35 ea.
TEKTRONIX Colour Monitor type 654 £550. MARCONI TF2950 Mobile Radio Test Set $\mathbf{£ 6 5 0}$. TEKTRONIX RM527 Waveform Monitor $£ 250$. TELONIC Sweep Generator SM2000/1. Main frame with $0-20 \mathrm{kHz}$ plug-in $£ 300$.
COLLINS RECEIVER $\mid P-10 U L R$. 90 MHz to 10 GHz in 8 bands. Panoramic. Analyser or DF modes. With power unit $£ \mathbf{3 5 0}$ ea.
HUNDREDS OF SQ. FT. packed with CLEARANCE ITEMS, TEST GEAR ETC. All individually priced. CALL or SEND for LISTS.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16$ in. Suitable for Colour TV servicing. Price $£ 85$ each including copy of manual.
CAPACITOR PACK 50 Brand new components only 50p. P. \& P. 27 p .
P.C. MOUNT SKELETON PRE-SETS. Screwdriver adjust 10.5 and 2.5 M (a) 2 pea .
M .500 .250 and 25 K a) 4 p ea. Finger adIM. 500,250 and 25 K (a) 4 p ea . Finger adjust 10.5 and $25 \mathrm{~K}(a)$ 5p ea. Min. P. \& P. 15 p .

> Eeehive Trimmer 3/30 pf. 8rand new. Oty 1-9 13p ea. P. \& P. $15 p$: $10-99 \quad 10 p$ ea \& \& P. 25p: 100-999 7pea. \&. \& P. free.

DELIVERED TO YOUR DOOR 1 cwt. of Electronic Scrap chassis. boards. etc. No Rubbish. FOA NLY P.C.B. PACK S \& D. Quantit
tiny pieces. 50 p plus P. \& P. 25 p
tiny pieces. 50p plus P. \& P. 25p.
TRIMMER PACK, 2 Twin 50/200 of ceramic

HARTLEY 13A Double Beam Oscilloscope TB 2c/s-750 kc / s. Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$. Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. $\mathbf{£ 3 0}$ each.
2 Twin $10 / 60$ pf ceramic: 2 min strips with 4 preset $5 / 20$ pf on each: 3 air spaced preset $30 / 100$ pf on ceramic base. ALL BRAND NEW 25p the LOT. P. \& P. 15 p . PHOTOCELL equivalent OCP 7-1. 13p ea MULLARD OCP70 10p ea.
GRATICULES. 12 cm . by 14 cm . in High
Quality plastic. 15 p each. P. \& P. 8p.

> | Vast quantity of good quality components |
| :--- |
| - NO PASSNG TRADE-so we offer |
| 3 LB. of ELECTRONIC GOODIES |
| for $£ 1.50$ post paid. |

HF Crystal Drive Unit. 19 in. rack mount. Sisndard 240 V input with superb crystal oven by Labgear (no crystals) f5 ea. Carr. 62.
ROTARY SWITCH PACK-6 Brand New switches (1 ceramic: $1-4$ pole 2 way etc.) 50p.P.\& P. 25 P.
BOURNS TRIMPOT POTENTIOMETERS.

TELEPHONES

MODERN STYLE 706 BLACK OR TWO-TONE GREY $\mathbf{e 3} .75$ ea. P. \& P 45 D . STYLE 7006 TWO-TONE GREEN OR GREY $£ 3.75$ ea. P. \& P. 45 p , HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37 p DIALS ONLY. 75 p ea. P. \& P. 30 p . STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746 E3.00 ea. P. \& P. 45p.

DON' FORGET your manuals S.a.e. WITH reoulrements

LOW FREQUENCY WOBBULATOR

20: 50: 100: 200: 500 ohms: $1: 2: 2.5: 5: 10$:
25K at 35p ea. ALL BRAND NEW. RELIANCE ALL BRAND NEW
500 ohms: 10 K at 35 . mounting. 270: 470 500 ohms: 10 K at 35p ea. ALL BRAND NEW. VENNER Hour Meters-5 digit, wall mount $\overrightarrow{\text { P. \& } \text { \& P. } 5 \text {. } 5 \text { p. }}$
TRANSFORMERS. All standard inputs Gard/Parm/Part. $450-400-0-400-450$. 180 MA. $2 \times 6.3 \mathrm{v} .4 \mathrm{ea}$.

FANTASTIC VALUE			
Miniature	Transformer. SALandard $240 V$		
input. $3 V$	I amp output. Brand New.		
65p ea.	P. \& P. 20p. Discount for		
quantity.			

quantity.
FIBREGLASS PRINTED CIRCUIT BOARD.
IBREGLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided.
high Value printed board pack, no two boards the same-no short leaded computer boards. $\mathbf{\text { f }} .75$ post pard
METER PACKS-3 different meters for $\mathbf{£ 2}$. P. \& P. 55p.

RESETTABLE COUNTERS-4 digit by Stonebridge/Sodeco. 1.000 ohm coil. $\mathbf{E 2}$ ea. P. \& P. 35p.

For alignmen̆t of Receivers, Filters, etc, 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level, sweep width and frequency. Order LX63. Price $\mathbf{E 8 . 5 0}$ P. \& P. $35 p$ As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price $£ 11.50$ P. \& P 35 p. Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz soth models can be used with any general-purpose osciloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 nz sweeping. An external sweep voltage can
of the controls (not cased. not calibrated).

20 HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR
In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25p. Sine Wave only $\mathbf{f 6 . 8 5}$ each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3V AC and use within-minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased. not calibrated.)

TRANSISTOR INVERTORS			
TYPE A Input: 12V OC	TYPE B Input: 12V OC	TYPE C Input: 12V to 24 V 0 C	\|. $\quad \begin{aligned} & \text { TYPE D } \\ & \text { Input: } 12 \mathrm{~V} \text { to } 24 \mathrm{~V} \text { OC }\end{aligned}$
Output: 1.3kV AC 1.5MA	Output: 1.3kV DC 1.5 MA	Output: 1.5 kV to 4 kV AC 0.5 MA	Output: 14 kV OC 100 micro amps at 24 V . Progressively reducing for lower input voltages
Price $£ \mathbf{\$} \mathbf{4 5}$	Price $\mathbf{£ 4 . 7 0}$	Price $£ 6.35$	Price £11

> MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
> STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. 25p.

Uniess stated - please add $£ 2.00$ carriage to all units.
 VALUE ADDED TAX not included in prices-please add 8%
 Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Tel.: Reading 582605/65916

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

74 Series T.T.L. I.C'S

bi-pax still lowest in peice full specification GUARAhterd. all fanous manufacturers

sion SYNCHROS
 EX STOCK Requirement Schedules please

FOR YOUR PRODUCTION REQUIREMENTS USE ALPS PANEL METERS
FULL RANGEPRICE LIST-SAE PLEASE!
Substantial quantity discounts to manufacturers

TYPE SR			
Oias	13	78	92
m	${ }_{56}^{4}$	${ }_{63}^{6}$	${ }_{72}$
50 ma	59.93	${ }^{4} 4.18$	8.42
500.4	${ }^{5323}$	${ }^{53.83}$	E1.08
1 m 4	2313	¢373	$\underline{598}$
15 s 0 C	E3.60	E3, 34	E1.09
samic	23.73	E.37	\&1.2

T/PE SA65E

al aboye prices include
P. 2 P. and VAT

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS METERS AND CONNECTORS

$S_{\text {ervo and }}$ Electronic Sales Ltd

24 HIGH ST., LYDD, KENT. Tel. Lydd 20252 (STD 0679) VAT No. 201-1296-23 TELEX 965265
 (ELERTR PAPR
TELEPRINTER PAPER. Siandard rolls, 1 ply $\mathbf{4 . 4 0}$ per doz 2 piy E4.40 per doz. 3 oly $£ 4$.
your order now

We are agents for

The Japan Servo range of Servomotors, Generarors, Gearboxes, etc
The Tamagawa Seiki range of Servomotors, Special purpose motors, Syncrews, Aircraft Instruments, etc The Nippo Denki range of Miniature AC and DC Servo and Special purpose Motors.
The Nikko Denshi range of Quartz Crystal Oscillators and Crystal Filters
The Alps Keiki range of Panel Meters. High.quality coupled with realistic prices.
The Tomita range of manufactured Ferrites and Winding achines
ease advise us of your requrements, we are extremely ompetitive for production quantities

PANEL DISPLAY RECORDING CAMERA. Manutactured A.G.I. pecifically for the recording of complex instrument displays on $21 / 4$ in x 125 soc and lime exp Focusing at 175 to 50 ott in 18 steps Apenture stigs. F3. 5 to \&22. Prismatic virwtinder and tacility for viewing direct on ground glass screen. Rotating fitter attachment Cord film advance and
shutter cock with septe Euton control and efectrical release facitity (24 V DC) Spool holds 40 exposures. Camera may be wall mounted on bracket supplied Tripod mounting socket provided. In wooden case. Two grades
available as new Grade A $£ 35.50$ (inc. P and P and VAT) Somewhat used but serviceable Grade B E28.40 (inc. P \& P and VAT).
TAPE STORAGE CANS. Brand new finished sreel cans originally supply of these items was quickly exhausted at 30 p each but as a result of massive new purchase we can now offer a case of 55 at $\mathbf{E 5 . 6 5}$

SERVO SYSTEM TEST EQUIPMENT IN STOCK
anction analyser - inctude generators. etc Why not reserve by quipment demonstrazed? CONTINENTAL CUSTOMERS Beauvals (also Channet Islands) and Belgium

acy. Fitted strap. White face $\mathbf{£ 1 8 . 3 0 \text { . Black }}$
watcloes: Inapection against remittance
 GS WATCHES all with biushed stain.
less stee case with screw back and black
taces Manufactured by CYMA VERTEX taces Manufactured by CYMA VERTEX
RECORD etc. to a standard specification Completely overhauled Fitted strap quanuties of these wearches have limited quanuties of these warches by OMEGA
LONGINES. BUREN HAMIITON LONGINES. BUREN HAMILTON
JAEGER LE COULTRE and IWC a

 Operating Magnets 95p per doz, $\mathbf{E 6 . 9 5}$ per 100 . E67 per 1.000 All carriage pard UK. parating Coila for 12 v supply to accept up to four standard reads $£ 2.50$ Hosvy duty type. (Body length 2 in) Diameter 0 22 at up to 250 vAC Gold clad contacts $\mathbf{E 1 . 4 5}$ per doz. $\mathbf{E 6 . 9 5}$ per 100 ,
$\mathbf{E 5 2 . 0 0}$ per 1.000 . Changeover Heavy Duty rype $£ 2.80$ per doz All carriage pald UK
Magnets for

OVER 300,000 IN STOCK!
MULTIWAY AND R.F. CDNNECTORS

$$
\text { by twenty diferent companies! } 5 \text { requirements quoting Nato numbers }
$$

BARGAINS NOW AVAILABLE

Top class used instruments from such famous names as Tektronix, Hewlett-Packard, Solartron, Philips, STC, Racal, etc., etc.

ALL IN SUPERB CONDITION

Call us now

Shirley House, 27 Camden Road
London, NW1. Tel: 01-2674257

REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA. 41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3SEITR. $80-0 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter $10-0-10$. Size 8 in . x 8 in . x 8 in . New condition. £8.50. Carr. 75p.
SOLARTRON PULSE GENERATOR TYPE G1101-2: $\mathbf{£ 7 5 . 0 0}$ each. Carr. £2.00.
TELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds per min. second hand cond. (excellent order) no parts broken. $£ 15$ each. Carriage $£ 3$. INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand, good cond. $£ 30+£ 1$ carr. BRIDGE MEGGER: 250V. (Evershed Vīgnoles) series 2 . £30 each. Carr. £1. BRIDGE MEGGER: $2,400 \mathrm{~V}$., series 1 . £30 each. Carr. £1.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. £17.50. Carr. $£ 1.50$.
TYPE 174/I FREQUENCY SHIFT ADAPTOR (Northern Radio Co.): Convert mark and space frequencies from the output of one or two Receivers into d.c. pulses. Suitable to operate Teleprinters or similar devices. 110/220V. Further details on request s.a.e. £55 each. Carr. £1.50.
TELEGRAPH TERMINAL UNIT (A.T.E.) TYPE TFSS? Converts signals from Receivers into d.c. pulses. Complete with monitor. $£ 75$ each. Carr. $£ 2$.
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ (can be used beyond 6 MHz). Probe in circuit - voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}-100 \mathrm{~V}$ in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5 \%$. $£ 30$ each. Carr. £1.
NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): $£ 125$ each. Carr. £1.
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges. Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $\mathbf{E 5 5}$ each. Carr. $£ 1$
RHODE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges, 220V. £75 each. Carr. $£ 2$.
CT- $\mathbf{3 8}$ ELECTRONIC MULTIMETER: A.C./D.C. volts $1-10,000$ A.C./D.C. current $1 \mu \mathrm{~A}-25 \mathrm{amps} . £ 30$ each. C̣arr. $£ 1,00$.
PHILIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $70-20 \mathrm{~dB}$, probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum. $£ 35$ each. Carr. $£ 1$
TF-1345/2 DIGITAL FREQUENCY COUNTER: Range $10 \mathrm{KHz}-100 \mathrm{MHz}$ with extension units. Details on request, s.a.e. £100. Carr. £2.
UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in. scale meter 2.5 mW . $£ 40$ each. Carr, f1.
MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request. £250 each. Cart. $\mathbf{£ 5}$.
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz}$. £55. Carr. £1.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50-MILE RADIUS OF LONDON
ONLY.

SIGNAL GENERATOR AIRMEC TYPE 701: $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges. £65. Carr. SIGN
TF-1
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £25. Carr. £2.
BPL A.C. MILLIVOL'TMETER TYPE VM.348-D Mk. 3: 2 millivolts-2 volts, 6 ranges. £30. Carr. £1.
WAYNE KERR WAVEFORM ANALYSER A.221: Low scale 0-1200 c/s. High scale $1-20 \mathrm{Kc} / \mathrm{s}, 600$ ohns. Harmonic level is $\mathbf{0}-55 \mathrm{~dB}$ in 12 steps. £75. Carr. $£ 1.50$. SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on request. £200.
MARCONI DUAL TRACE UNIT TM-6456: £ 30 . Post 60p
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq. $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW FM, Modulated Pulse - 40-400 pulses per sec. Pulse Width $-0.5-10$ microsecs. Timing - Undelayed or delayed from 3-300 microsecs from external or internal pulse. Output - 1 milliwatt max., 0 to -127 dB variable. Output Impedance 500 . Price: $£ 120$ each $+£ 2$ carr
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: 12 in . x 12 in . x 36 in 230 V input. £40. Carr. £4.
FIREPROOF TELEPHONES: $£ 25.00$ each, carr. $£ 1.50$
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $\mathbf{£ 3 0 . 0 0}$ each, carr. $£ 3.00$.
SMOOTHING UNIT (for the above): $£ 10.00$ each, carr. $£ 2.00$.
X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. £125 each.Carr. £1.
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$. $\mathbf{\varepsilon} 35$ each, 75 post. BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anode, 7.9mA. Mnfr. Watkins \& Johnson. $£ 85$ each. Carr. £1.

TEKTRONIX TIME MARK GENERATOR TYPE 180-S1: $5,10,50 \mathrm{MHz}$. 665 . Carr. £2.
TRANSISTOR ANALYSER TA 1001 (K.\&N. Electronics Ltd): £95. Carr. £3.
CHRONOTON MODEL 25E: $0.4-10$ seconds in seven ranges. £50. Carr. £1.
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to I volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV -I volt - 52.5 ohms. Imternal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains 200/250V, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements 29 in . x $121 / 4 \mathrm{in}$. x 10 in . Secondhand condition. $£ 32.50$ each. Carr. $£ 2.50$.
ROTARY INVERTERS: TYPE PE. 218 E - input $24-28 \mathrm{~V}$ d.c., $80 \mathrm{Amps} .4,800 \mathrm{rpm}$. Output 115 V a.c. 13 Amp $400 \mathrm{c} / \mathrm{s}$. 1Ph. P.F.9. £20.00 each. Carr. £2.50. LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT, ETC. Send $10 p$ for above lists.

ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TD THE TDTAL PRICE (including post or carriage)

If wishing to call at
 stores, please telephone
 for appointment
 W. MILLS

DIRECT ELECTRONICS LTD.

ELECTRONIC V̈OLTMETER CT343. Steel-cased. 110-250 Vac. $3^{\prime \prime}$ meter 12 scaies. 1.2 mV to 400 volts. Min. reading 0.1 mV Exit meter +ampl. signal fac's. $£ 5500$ ($£ 2.00$). $19^{\prime \prime}$ unit only, $£ 45.00$ (Callers)
AF SIQ. OEN CT420 same module. $90 / 1.5 \mathrm{~V}$ Batt. (metered) $200 \mathrm{~Hz}-8 \mathrm{KHz}$ cont.
range. Out $4 \mathrm{~V} / 5 \mathrm{k} \Omega$ direct or $1 \mathrm{~V} / 25 \mathrm{O}$ and $10 \mathrm{mV} / 0$. Ω atten $100 / 500 \mathrm{~Hz}$ catib range. Out $4 \mathrm{~V} / 5 \mathrm{k} \Omega$ direct or $1 \mathrm{~V} / 25 \Omega$ and $10 \mathrm{mV} / 0.1 \Omega$ atten. $100 / 500 \mathrm{~Hz}$ calib. £65.00 ($£ 2.00$).
BC221T FREQ METER $125 \mathrm{kcs}-20 \mathrm{Mcs}$ in canvas case. P.O. A.
RECT. SUPPLY UNIT NO. 25. Allweather type. $\uparrow 10-250$ Vac. Conserv. rang. 600 Vdc/80ma Super-smgothed +12 Vdc 0.9 A Super-smoothed $+20 \mathrm{Vac} / 2 \mathrm{~A}$ screened + Bias. $£ 32.50$ ($£ 2.00$). Plugs extre.
Dhto No. $10.12 \mathrm{~V}+12 \mathrm{~V}$ (or 24 V) dc $3 / 6$ amps. Un-smoothed. $£ 25.00$ (E 1.50). MINE DETECTOR No. 4A. KIT No. 1 Ref. ZA27931/1. New in transit cese. P.O.A. CREED REPERFORATORS. 7TR/3. P.O.A.
TELEPRINT TERM UNIT MARK $4 \mathrm{c} / \mathrm{w} 299$ AN Relay. New cond. £40.00. Used £30.00 ($£ 1.00$).
VIDEO MONITORS. Variety (Callers-' as seen')
PYE WESTMINSTER R/T Control units. mics, speakers (Callers - 'as seen'). MODULAR TELEPHONE EQUIPMENT. Mostly new. Incl; 80-0-80 power
packs; VF test sets; Filters: Transformers: Vibrator-Tuners, etc. (Callers). PHILIPS FLEXIPHONE Programme control unit ET3098. DP $4 / 5$
Tett/call back. White finish. New POA. TYPEWRITER TELEORAPH (used but good) 9A/9B Imperial. Rollfeed. Cased $£ 16.00$ ($£ 3.00$), uncased $£ 12.00$ (Callers).
MODERN STEROGRAM CABINET8. $31 / 2$ to $41 / 2 \mathrm{tt}$. approx. From $£ 2.50$. Legs $6^{\prime \prime}$ to 12". From 20p set of 4. Table/Frame Bases and TV Stands in Metal or Wood from £1.00 (Csillers or P.O.A.)
RELAYS E UNISELECTORS. Teledhone types. G.E.C., Siemens. Plessey. Sealed
Miniatures (Cellers). Miniatures (Csilers).
ORAM/TAPE MOTOR8.115 Vac. Use 2 or with transformer. Packaged 40p each A.E.E. BITUMEN POTTED TRANBFORMERS. $110-250 \mathrm{~V}$ Pri. Scr. $45 / 1 \mathrm{amp} \mathrm{sec}$ £3.00 (50p).
QRESHAM DITTO. 240 V Pri. Scr. $270-0-270 / 80 \mathrm{ma}+45-0-45 / 40 \mathrm{ma}+$
$6.3-0-6.3 / 2.7$ smp secs $£ 450(50 \mathrm{p})$. 6.3-0-6.3/2.7 8mp secs $£ 4.50$ (50 p).

CURRENT TRANSFORMER. 250VA tapped $0.3 / 1.8 / 2.4 / 3.0 / 3.6 / 4.2$ amps £9.50 ($£ 1.50$).
CAPACITORS: Motor-Start $20 \mu \mathrm{~F} / 440 \mathrm{VaC}$ ($£ 1.00$ (15p); also Paper Blocks amd large value electrolytics up to $25.000 \mu \mathrm{~F} / 25 \mathrm{~V}$. From 40 p .
GEC REGENERATOR UNIT (NO. HE 31105) Probably for dessicants, atc.. $£ 3.50$ (50p).
FLUORESCENT tubes, fittings and diffusers, 2^{\prime} to $8^{\prime}, 1 / 2$ price or tess (Callers).
RACK\$ ${ }^{\prime} 6^{\prime}$ etc.). Panels and Covers for same. Cabinets etc po A
RACKS (6' etc.). Panels and Covers for same. Cabinets etc. P.O.A.
8PECIAL ITEM: SOUND RECORDING and REPRODUCING UNII Type 2. Rack-equip A8A (1OU/16873). Substantial spares (Units-Gearboxes-Sapphires. etc.). Details and PLASTIC SPOOLS, $1 /{ }^{\prime \prime} \times 93$ ". P.O.A.
MANY OTHER ITEMS: Test-equipment / Teleprinter-peripherals / Components / Meters/ Connectors / Cables / Ferrite Rods and Cores / Speakers / Selenium Rectifiers, etc., in stock.
CALL IN ON US OR WRIIE YOUR REQUIREMENTS. WHOLESALE ENQUIRIES WELCOMED. (U.K. CARRIAGE, ETC.) SHOWN ADD 8% VAT TO TOTAL. CASH WITH ORDER EXCEPT $8 Y$ PRIOR ARRANGEMENT.

34 LISLE ST., LONDON WC2H 7BD
TEL. 01-437 2524

RADFORD HD250
High Definition Stereo Amplifier

A new standerd for sound reproduction in the homel We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impadence from 4 to 8 ohms, both channale drivan.
Maximum power output: 90 watte ev. par channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or meesured as it is below inheremt circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watta, less than 0.02% ar rated output (Typically 0.01% at 1 Khz)

Hum and noiso: Disc, -83dBV measured flat with noise band width 23 Kh (ref

Line - 85 dBV measured fitet (ref 100 v)
$-88 d B V \quad A "$ weighted (ref 100 V)
Hear the HD250 at

SWIFT OF WILMSLOW

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export onquiries:' Wilmslow Audio, Swan Works, Bank ALL RADFORD SPEAKER DRIVE UNITS \& CROSSOVERS IN STOCK

SERVICE TRADING CO

RELAYS $\begin{gathered}\text { SIEMENS PLESSEY } \\ \text { MINIATURE RELAYS }\end{gathered}$

OPEN TYPE RELAYS

6 VOLT D.C. 1 make con. 35p. Post $15 p$
9 VOLT D.C. RELAY
12 VOLT D.C. RE LAY
24 VOLT D.C 4 cos 300 ohm coil 85 p . Post 15
ENCLOSED TYPE RELAYS
24 VOLT D.C. M.ig iTT 3 h.d. do contacts 55 p. 55 VOLT A.C. 100 VOLT A.C 240 VOLT A.C. RE LAY 220/240 VOLT AC RELAY Base 15p extra
ARROW 230/240V AC $2 \mathrm{c} / \mathrm{ol} 15$ amp contacts 110 VOLT A.C
CLARE-ELLIOT Type RP 7641 G8 MANY OTHERS FROM STOCK, PHONE FOR OETAILS

BLOWER UNIT $200-240$ VOIt A.C. BLOWER UNIT Precislon German bult. Dynamically
balanced, quiet, continuoualy rated, calanced, quiet, continuously rated, Slye 120 mm . dia. $\times 60 \mathrm{~mm}$. deep.

PRECISION CENTRIFUGAL BLOWER
Mig. Airflow Developments Lid, continuously
rated
SUB-MINIATURE REED RELAY 3-9 VOLT D.C.

VARIABLE VOLTAGE TRANSFORMERS Carriage extra INPUT 230 v.A.C. $50 / 60$
 OUTPUT VARIABLE $0 / 260$ BRAND NEW. All types. 0.5 KVA (Max. $21 / 2$ Amp) 1 KVA (Max. 5 Amp) 1 KVA (Max. 5 Amp) 3 KVA (Max. 10 Amp) 3. KVA (Max. 15 Amp)
4 KVA (Max. 20 Amp) (max. 37.5 Amp) Amp OPEN TYPE
(Panal Mounting)

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts Screened. Primary two separa
vots for 115 or 230 volts. Secondary two 115 volts a vots for 115 or 230 volts. Secondary two 1155 volts at 150 VA
 c5.00. Carr 80p.

LT TRANSFORMERS

AUTO TRANSFORMERS

Step up step down 0 $115,200 / 220 / 240$ volts. 300 watt $\mathbf{6 6 . 2 0}$ Post 60 p. 500 wat1 $£ 9.20$ Post 75 p 1000 watt $£ 12.00$

20 r.p.m. GEARED MOTOR
230/240 volt 20 . p.m. motor $\mathbf{~} \mathbf{1} 12$ VOLT
REVERSIBLE MOTOR

BODINE TYPE N.C.I.
GEARED MOTOR
(Type 1) 71 r.p.m. torque 10 lb . in .
Reversible $1 / 70 \mathrm{~h} \mathrm{~h}$.p. cycle 38 amp

$£ 10.00$
 $£ 11.50$ $£ 1650$
 $£ 16.50$ $£ 30.00$
 $\begin{array}{r}£ 30.00 \\ £ 33.00 \\ \hline\end{array}$
 $£ 60.00$ $£ 102.50$
 $£ 10.00$

\qquad
$0-115$
150 VA
parallel 2-20 60 Post 70 p .
.90 Post 70 p . $\mathrm{c9.00}$ Post 70p.
$\mathrm{69.20}$ Post 70 p.
$\mathbf{6 9 . 9 0}$ Post 70 p f9.90 Post 70 p
f10.40 Posi 70 p .
enquifies. precision made U.SA motors ar precision. made vilage of motor $115 v$ A.C.
condition. Input vither
plete with transtormer for $230 / 240 v$ A C. Price, either iype $\mathbf{£ 6 . 2 5}$ Posi 65 p. of less Post 50 p .
These motors are ideal for rotating Berials. drawing curtains.
dispiay stands. vending machines. etc. etc.

BENDIX MAGNETIC CLUTCH

TRIAC
 precision product for long term reliablity, $\mathbf{f 1 . 0 0}$ Post 10p.

STROBE! SIROBE! SIRO:E!

FOUR EASY TO BUILD KITS USING XENON WHITE LIGHT FLASH TUBES, SOLID STATE TIMING + TERNAL TRIGGERING. 230-250v. A.C. OPERATIONAANGE OF 4 STROBE KITS FROM STOCK. DETAILS

```
**************************
```

BIG BLACK LIGHT

- 400 Watt. Mercury vapour uitra violet lamp.
- Innumerable industrial applications also ideal for
stage. display. discos etc. P.F. ballast is essential
slage display. discos etc. P.F. ballast is essential
with these bulbs. Price of matched ballast and bulb
£18.00. Post £1. Spare buib £8.00. Post 40p.
BLACK LIGHT FLUORESCENT U.V. TUBES
4ht. 40 with E5. 50 (callers only) 2 ft . 20 watt E4.25. Post 40 p .

NICKLE CADIUM BATTERY

METERS NEW

84 mm. DIAMETEA
MO65/1, 1 amp DC. MO65/15, 15 mmp DC
SO65/5,5 5 mp AC. SO65/10, $10 \mathrm{amp} A C$.
00 mm . DIAMETER

$65 C 5 / 5050 \mathrm{amp}$ DC M/C

$65 \mathrm{~L} / 300$. 300 vot AC RMC $\mathbf{E 2 . 7 5}$ pont 20p.
$84 \mathrm{~mm} . \times 5 \mathrm{smm}$. RECTANGULAR METERS

CARTER 230 VOLT A.C.
GEARED MOTOR

'FRACMO' 240VOLT A.C 50 cycle SINGLE PHASE GEARED MOTOR
with mounting feet. 8rand Now

REVERSIBLE MOTOR

ROTARY VACUUM AIR
COMPRESSOR AND PUMP

240VA.C. SOLENOID OPERATED FLUID VALVE
Rated 1 p.s.i. will handle up to 7 p.s.i. Forged

A.C. MAINS

TIMER UNIT

Based on an electric clock with 25 amp.
single-pole switch. Which can be preset for
any period up to 12 hrs, ahead to switch
on for any length of time. from 10 mins. to 6 . audible timer is alst
hrs. then switch off. An additional 60 min. a
incorporated. Ideal for Tape Recorders. Lights. Electric Blankets.
hrs. then switch of An additionarders. Lights. Electric $81 a n k e t s$,
incorporated. Ideal tor Tape Recordin. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times$
etc Attractive satim copper tinish.

PROGRAMME TIMERS

230/240 Volt A.C. 15 RPM Motors.
switch . Ideal for lighting effects,

ment lested
2 similar to illustration
2 cam model
4 cam model

cam model

UNISELECTOR SWITCHES - NEW
BANK 25 WAY FULL WIPER 25 ohm coil, 24v. D. operation c6-90. Posk 30p.
Operation 8 BANK 25 WAY FULL. WIPER 25 ohm
coil, 24 v . D.C. C7.90. Post 30p.
8 GANK 25 WAY FULL. WIPER
24 V . D.C. operation E9.50. Post 40
SERVICE TRADING CO:

LONDON. W4 5BB. Phone: 01-995 1560

- SHOWROOMS NOW OPEN

AMPLE PARKING Tel.:01.437 0576

9 LITTLE NEWPORT STREET LONDON, WC2H 7J

DIGITAL CLOCK KIT. FANTASTIC OFFER

on our Quality Units.
Ready made - or the most comprehensive Kit and Instructions you have ever seen. Very quick to build. No knowledge of electronics required.
£14.40 in Kit Form
$£ 1.60$ VAT $p \& p$

Ready built
Fully tested
VAT p\&p £1.90

KIT COMPRISES:- or separately at:-	£
1 MOS CLOCK CHIP 12-24 hr option	4.00
4 0.63"' LED Displays (latest HI BRI Type)	5.00
1 Segment Driver Chip	0.30
1 Pack Resistors, Caps., Transistors, switch	1.20
1 Double Sided Glass Fibre P.C. Board	1.00
1 Double Wound Mains Transformer	1.00
1 Circuit / Assembly Manual	0.50
1 Futuristically styled Case (state colour)	3.00

Yellow, Orange, Red, Black, White, Mauve, Green, Blue.
C.W.O. to:

Pulse Electronics Ltd., Dept. W.W. 1.
202 Shefford Road, Clifton, Beds. Tel. 0462813453.

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail :
369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339
CALLING All INDUSTRAIL Buvers!!

We are glad to say that it is now possible to supply from stock the following integrated circuits. ALL ARE BRANDED, FULL SPECIFICATION devices offered a unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

	1/99	100/499	500/1000		1/99	100/499	500/1000				
7040	¢0.15	£0.125	£0.10	7422	¢0.645	£0.537	$\underline{1} .43$		1/99	100/499	500/1000
7401	£0.15	£0.125	£0. 10	7443	£1.275	£1.062	£0.85	7494	¢0.75	¢0.62	£0.50
7402	£0.15	£0.125	¢0. 10	7445	£1.20	£1.00	£0.85	7495	$\underline{6} 0.63$	¢0.525	£0.42
7403	£0.15	£0.125	£0.10	7446	£1.35	£1.12	£0.80	7496	£0.72	¢0.60	£0.48
7404	£0.18	£0.15	£0. 12	7446 A	£1.05	£0.875	£0.70	74104 74105	¢0.315	¢0.262	¢0. 21
7405	£0.18	£0.15	¢0.12	7447	¢1.05	¢0.875	£0.70	74105	£0.315	£0.262	¢0. 21
7406	¢0.48	£0.40	¢0.32	7447A	¢1.05	$\underline{60.875}$	£0.70	74107	£0.315	¢0. 262	¢0.21
7407	£0.48	£0.40	¢0.32	7448	¢0.855	¢0.712	¢0.57	741.21	£0.315	¢0. 262	c0.21
7408	£0.15	£0.125	£0.10	7450	c0.15	c0. 125	£0.10	74122	£0.45	£0.375	¢0.30
7409	£0.24	£0. 20	£0.16	7451	£0.15	c0. 125	£0.10	74123	£0.63	£0.525	¢0.42
7410	£0.15	£0.125	£0.10	7453	¢0. 15	c. 0.125	£0.10	74141	£0.75	£0.625	¢0.50
7412	¢0.195	£0.162	£0.13	7454	¢0.15	co. 125	£0.10	74151 74153	£0.69	£0.575	£0.46
7413	¢0.345	$¢ 0.287$	£0.23	7460	£0.15	£0.125	¢0.10	74153	$£ 0.69$	£0.575	£0.46
7416	£0.345	¢0.287	£0.23	7472	£0.255	¢0. 212	C0.17	74155	¢0.69	£0.575	£0.46
7417	¢0.345	$¢ 0.287$	£0.23	7473	£0.33	¢0.27	¢0.22	74156	¢0.69	£0.575	£0.46
7420	¢0.15	¢0.125	£0.10	7474	£0.315	¢0. 262	E0.21	74160	¢1.35	£0.22	£0.90
7423	¢0. 27	£0.225	£0.18	7475	£0.465	£0.387	£0.31	74161	¢1.12	$£ 0.22$	£0.90
7425	¢0. 27	£0.225	¢0.18	7476	£0.315	¢0.262	£0.21	74162	£1.005	60.837	£0.67
7426	£0.27	¢0. 225	¢0.18	7480	£0.435	£0.362	£0.29	74163	£1.005	¢0.837	¢0.67
7427	£0. 27	¢0.225	¢0.18	7482	¢0.75	¢0.625	£0.50	74166	£1.425	¢1.187	$£ 0.95$
7430	¢0.15	c0. 125	£0.10	7483	¢0.825	£0.687	£0.55	74174	£1.20	£1.00	¢0.80
7432	£0.25	¢0.225	¢0.18	7485	¢1.275	£1.062	£0.85	74175	£0.975	£0.812	c0.65
7437	£0.27	¢0.225	c0.18	7486	¢0.315	¢0.262	£0.21	74192	£1.275	£ 1.062	¢0.85
7438	£0.27	£0.225	¢0.18	7490	£0.465	¢0.387	£0.31	74193	£1.275	£1.062	¢0.85
7440	£0.15	¢0.125	£0.10	7492	¢0.465	C0.387	£0.31	74198	£2.10	£1.75	£1.40
7441 A	£1.05	¢0.87	£0.70	7493	£0.465	¢0.387	£0.31	74199	¢2.70	£2.25	f.1.80

To secure the above prices. all orders for these devices must exceed $£ 10$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-3272339 NOW I!

MICROWAVE DEVICES				$1,000,000$ POTENTIOMETERS We have bought a huge assortment of volume controls.	ELECTROLYTIC			
CL8370	ditro	9.45 GHz	£40		CAPA	ORS		
CL8380	ditto	10.5 GHz			Several thousand of each of			
CL8390	ditto	11.5 GHz	£10		to clear!			
CL8430	ditto	9.35 GHz		Pre-sets. sliders etc All are				
CL8450	ditto	9.35 GHz		Pre-sets. sliders, etc. All are	ALL NEW STOCK			
CL8470	ditup	9.35 GHz		in manufacturer's original packing.	$5 \mu f 10 \mathrm{~V}$ $\mathbf{3 5 p}$ dozen $50 \mu \mathrm{f} 10 \mathrm{~V}$ $\mathbf{3 5 p}$ dozen			
BXY27 BXY28	acter Diode " S " Band, Cut-off	70 GHz	f1					
BXY28 BXY 32	aracter Diode. Cut-off	100 GH	E1	Manufacturing quantities of some types available.	100 f 10V V 35p dozen			
BXY35AC	to	150GHz			330 ff 16 V - 45p dozen			
BXY36C/D	to	75 GH	£1	Write or phone for detail	330 $\mathrm{ff} 25 \mathrm{~V} \quad 60 \mathrm{p}$ dozen			
BXY37C/D	to	100 GHz			$\begin{aligned} & 330 \mu \mathrm{3} 3 \mathrm{~V} \\ & 2200 \mu \mathrm{f} \end{aligned}$	80p dozen f1 dozen 50p each		
BXY $38 \mathrm{C} / \mathrm{E}$ BXY $39 \mathrm{C} / \mathrm{D}$	ditto	120 GH		Sample bag 100 mixed $\mathbf{\text { £ } 2 . 5 0}$	$15000 \mu \mathrm{f} 25 \mathrm{~V} \quad 50 \mathrm{p}$ each			
BXY400/E	difto ditto	150 GHz						
BXY41C/D	ditto	200 GHz						
12 VOLT FLUORESCENT LIGHTING				HOBEY CORNER!				
100				BRAN TUB ! ! ! \star Resistors, Wire-wound and Carbon * Capacitors, Silver-mica, Paper, Ceramic, Polyester and	$100+\frac{1}{1}$ WATT RESISTORS 100 CERAMIC capacitors 100 OIOOES			
Inverter transformers 13/15W (circuit included) 'Current economy" transistor (600 ma .)								
				$\begin{gathered} \star \text { Controls, Volume, Pre-set, } \\ \text { Carbon, Wire } \end{gathered}$				
Resistors/ca	rs to suit		15p	* Carbon, Wire	100 CERAMIC CAPACITORS			
Lampholder	lead) (needed with cases) lead)	Pair Pair	30p	* Transistors, Silicon, Germanium	100 POLYSTY CAPACITORS POSTAGE 25p			
White enam	21 in (postage 40p)		70p					
Tube, 21 inNote: tube			5p	All the above are new and unused stock.	100 CERAMIC CAPACITORS 50 MULLARO POLYESTER			
13W fitting	俍	30p) \ddagger		We have made up packs of 21 b gross weight. all are different in content.	POSTAGE 25P ${ }^{\text {CAPACITORS }}$ PACK NO. 4			
\qquad				and contain a mixture of components from the above list. This is a fantastic. unrepeatable offer that will enable				
An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.				you to get a good stock of spares at a tiny fraction of normal price!				
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray £1.00 plus postage Developer and Etchant 50p plus postage				TWENTY OF THESE BAGS ALSO CONTAIN A POUND NOTE! TWENTY CUSTOMERS WILL BE VERY PLEASED INDEED! And the price that we are asking? Only $\mathbf{£ 2 . 0 0}$ including both postage	POSTAGE 25p			
				-ITRANSISTOAISED SIGNALTRACER KIT ITAANISTOASEO SIGNALINJECTOR KIT				
				P6 25p PACK No. 6				
Single-sided Copper-clad Fibreglass Board 75p sq. ft. Double-sided Copper-clad Fibreglass Board $\mathbf{f 1 . 0 0}$ sq. ft . Boards cut to any multiple of $6^{\prime \prime}$. Max. size $3^{\prime} \times 4^{\prime}$.				and VAT! Rush your order now! This offer is only made 'to reduce our surplus stock! It is unlikely that in these days of rising prices we shall ever be able to repeat!	100 RESISTORS 100 CAPACITORS (ASSORTED TYPES)			
				OSTAGE 25p	PACK No 8			

REMEMBER!
ALL GOODS PLUS 25% V.A.T.

D 5 B , 5
 10 CHAPEL ST. LONOON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF8OID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ 〔.225. MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A. ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz} £ 125$ HGN MS4U AM/FM $9.6-240 \mathrm{mHz}$. N.Dev.Fac
ROHDE\& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADYANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$

OSCILLOSCOPES

TEKTRONIX 661 Sampling scope with 4 S 1 \& 5T1A plug-in units. 3 GHz . $£ 200$
TEKTRONIX 545A with CA unit. DC-30mHz. Price only $£ 295.00$

TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with 'CA' plug-in.
TEKTR ONIX 585A. DC -80 mHz with type 82 plug-in.
TEKTRONIX 654B. Storage oscilloscope
TEKTRONIX 502, 200uV Sens, X-Y
TEKTRONIX C27 Polaroid Camera. Series 125 with 560 series adapter.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600/S secondary pulse unit. $£ 105$.
MARCONI TF91D deviation meter. $4.1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation MARCONI $455 E$ Wave Analyser $£ 120$.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. $£ 75$.
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$
ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus $\log / \operatorname{lin} A F$ meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BN10913 (late type) 1 mV -10V. With ' T ' type insertion unit, free probe and attenuator heads $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$
COSSOR 1453 True RMS milli-voltmeter. Excellent $£ 75$.
AIRMEC TYPE 210 modulation meter. Excellent condition.
WAYNE KERR B51 LCR Bridge. Excellent condition. $\mathbf{£ 5 5 .}$
ADVANCE type SG68 low distortion A.F. oscillator. $1.5 \mathrm{~Hz}-150 \mathrm{kHZ}$ Sine and scuare wave. Battery operated $£ 75$
MARCONI type TF936 Impedance Bridge. $\mathbf{£ 8 5 . 0 0}$.
GERTCH Phase Angle V. Meters. Range $1 \mathrm{mV}-300 \mathrm{~V}$, in 12 ranges. SOLARTRON oscillator type CO $546.25 \mathrm{~Hz}-500 \mathrm{kHz}$. $£ 30.00$. GAMBRELL Precision 4 Decade Resistance Box. 1-11, 110 ohms £24.50.

BOXER INSTRUMENT
 FANS

Dimensions $4.5 \times 4.5 \times 1.5$ ins. Very quiet running. precision fan specially designed for cooling electronic equipment, amplifiers (practise is to run from split primary of mains transformer or primary of mains suitable mains dropper). CC only II Watts. List price over fl 10 each. Our price, in brand new condition is $\mathbf{£ 4 . 5 0}$

POWER SUPPLIES

WEIR Electronics modular unit Model OCAR. Regulated \& sta bilised.0-7V@2A. £9.50. APT Electronics. model TCV250. Dual-scaled metered supply. Cur rent limiting. Variable 0-50V@ -2A. £70.00. 0-40V @ 3A, - $£ 75.00$.

MANY TYPES of RF plugs and

 sockets in stock:-BNC plugs 50Ω. 30 p . BNC sockers 50Ω. 25 p . N. Type plugs 50Ω. 50 p . Burndept plugs. 40p. BYE. 20p Miniarure sockers. 20p.
Alt connectors are brand new. mmediate delivery. Please add appropriate postage.

AEI miniature uniselectors. Type 2200C. 3 banks. 1 bridging, 2 non-bridging wipers. 12 positions. Coil resistance 50 ohms. Complete with bases. Brand new. $£ 4.50$ each 20-way BPO Jack strips to accept 316 type Jack plugs. Also quantity of 316 plugs available. All good condition.

AVO VALVE TESTERS Brief-case type 160 . Full working condition throughout. E65.

 condition throughout. 665.AERIAL CHANGE/OVER RELAYS of current manufacture designed espec ially for mobile equipments, coil voltage
12 v . frequency up to 250 MHz 50 warts mall size only, 2 in. $x 7$ in. Offered Small size only, 2 in. $x \notin \ln$. Offered

RACAL/AIRMEC VHF/UHF Milli-

 voltmerer rype 301A. Frequency range $50 \mathrm{~Hz}-900 \mathrm{mHz}$. Voltage range $300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-axial inpur 50 and 75 ohms BNC connectors. DC Ranges $100 \mu \mathrm{~V}$ - 10 V in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. Other from stock.
EDDYSTONE RECEIVER

type 770R
Continuous coverage from 27.165 mHz . AM/FM. Also 770 u , $150-500 \mathrm{mHz}$.. and model 770S, $500-1000 \mathrm{mHz}$. All in first cla

HEWLETT PACKARD/

BOONTON TYPE 8900B

Peak-power calibrator. Measures true peak power $\pm .6 \mathrm{db}$ absolute. true peak power $\pm .6$ b absolute.
Frequency range $50-2000 \mathrm{Mhz}$. RF Frequency range $50-2000 \mathrm{Mhz}$. RF
power range 200 mW peak, fullscale. RF Impedance 50 ohms. P.O.A.

MARCONI TF995A2/M AM/FM

 R.F. SIGNAL GENERATORS $1.5-220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation. lent condition P. OPLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

from' thé tést'équipment people
by special agreement electrontc Brokers can now offer the world ARD, BRUEL \& KJOER, RADIOMETER, BOONTON, etc. at tremendous savings on Manufacturer's List Prices
 STOCK AT THIS LOW PRICE

HEWLETT PACKARD

Model 130C $200 \mu \mathrm{~V} / \mathrm{CM}$ OSCILLOSCOPE
This scope is a versatile all purpose instrument for
aboratory, production line. industrial process
The outputs of if detectiors. Strain
transducers, and other low level devices may be viewed directly without preamplification
The Model 130 C is easy to operate even by
inexperienced personne
Specification: Time Base Range - 1 us $/ \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm}$, 1 then a 25 sequence, accuracy $\pm 3 \%$; vernier provides continuous PRICE: adjustment between steps and extends the $5 \mathrm{~s} / \mathrm{cm}$ step to at least 175 complete
$125 \mathrm{~s} / \mathrm{cm}$ $125 \mathrm{~s} / \mathrm{cm}$
Automatic triggering (baseline displayed in the absence of an input SEE IT AT Automatic triggering (baseline displayed in the absence of an input OUR NEW
signal) vertical \& horizontal amplifiers
Bandwidth: d.c coupled, dc to 500 KHz , ac coupled (input), 2 Hz (amplifier). 25 Hz to 500 KHz at $02 \mathrm{mV} / \mathrm{cm}$ deflection factor

TEST EQUIPMENT
Much sought after equipment made by the major manufacturers in this field viz. Bruel \& Kjoer Hewlett Packard, Radiometer, etc avalable now with short delivery cycle
Types include A.F. Oscillators Types include A.F. Oscillators
Voltmeters. Bridges. Scopes. Distortion Analysers. etc Examples rom our range include
AUDIO OSCITLATORS - Hewlett Packard Type 201C $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Max output 425 V into 600 ohms Attentuator $0-40 \mathrm{~dB}$ in 10 dB steps. Response $\pm 1 \mathrm{~dB}$ full range Distortion at 1 watt and above 50 Hz is less than 0.5%. $£ 95.00$
Also types 200 CD and 200 B available
VOLTMETERS - Hewlett Packard Type 400 H . Freq. range $10 \mathrm{~Hz}-4 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}(12$ ranges). Accuracy $1 \%(50 \mathrm{~Hz}$-500KHz). $2 \%(20 \mathrm{Hx} .1 \mathrm{MHz}) \mathbf{E 8 5 . 0 0}$ Also types 400E, 400D \& 400L are available
DISTORTION ANALYSER - Hewlett Packard Type 331 A. STEREO SIGNAL GENERATOR Radiometer Type SMG 1 LEVEL RECORDER - Bruel \& Kjoer Type 2307A. B FO - Brue \& Kjoer Type 1022A And many others -- Specification and price on request

HEWIETT PACKARP

F.M. A.M. SIGNAL GENERĀTOR TYPE 202H This superb generator in grade one cond
 CW and pulse coverage 54 to 216 MHz
Used to testing and calibration of F.M. receiving systems Freq. range $54-216 \mathrm{MHz}+2$ Bands. R. M . Freq. range $54-216 \mathrm{MHz}+2$ Bands. R.F. stability 0.01%
RF output $0, ~$
 ratio
$183 /{ }^{\prime \prime}$.
PRICE NEW OVER £1.000!

Flectronic Brokers litd
49.53 Pancras Road

London NW 12 QB
Telephone 01-8377781 add 8% VAT TO ALL PRICES Flease note All instruments offered ar
secondhand and tested and guaranteed 12 months unless otherwise stated

OUR PRICE £495
fabulous equipment on next 2 pages from Electronic Brokers - The test equipment people!

Whmbionly inolnt

SIGNAL SOURGES

Unit Oscillator. General Radio Type 1209C Freq. $250-920 \mathrm{MHz}$. Accuracy 1% Driti 0.2% Output into 50 ohms $=150 \mathrm{MW}$ with PSU
1201 - CQ1B as illustrated
$\mathbf{£ 2 1 5}$ ADVANCE
Audio Signal Generator HIB $15 \mathrm{~Hz}-50 \mathrm{KHz}$, 200 uV Audio Signal Generator JIB $15 \mathrm{~Hz}-50 \mathrm{KHz}$ $02 \mathrm{~V}-25 \mathrm{~V}$ (E (B) VHF Square Wave Generator SG21
 AIRBORNE INST. LABS
Power Oscillator 124
AIRMEC

O. A

Signal Generator $70230 \mathrm{~Hz}-30 \mathrm{KHz}$ in 3 bands Signal Generator $701 \quad \mathbf{E 6 0}$ H. Signal Generar 20130 Kz -ЗOMHzin Bands. Int Xtal calibrator o/p level variable 1 KHz Ext Mod $30 \mathrm{~Hz}-10 \mathrm{KHz} \quad £ 75-£ 115$ DAWE
Wide Range Oscillator $400 \mathrm{C} \quad 0.1 \mathrm{~Hz}-1 \mathrm{KHz}$ output 16-20V obtainable between each o/p erminal \& Earth, when output control set to
GENERAL RADIO
Unit Oscillator 1218 -A
HEWLETT PACKARD
U.H.F. Signal Generator $614 \mathrm{~A} 900-2100 \mathrm{MHz}$ \% Accuracy Output $0.1 \mathrm{uV}-0.2 \mathrm{~V}$ into 50 hms. Modulation: CWInt or EXT FM \& Puls s.H.F. Signal Generator $61 \mathrm{BC} 3.8-76 \mathrm{GHz}$ ignal Generator $6088 \quad 10.400 \mathrm{MH}$ 0.1 uV -0.8V $\mathrm{E195}$ £495 MARCONIINTS
Oscillator TF 1247 20-300MHz (Suitable fo

Meters)

SPEGTRUM ANALYSERS

POLARAD

Spectrum Analyser TSA with STU- 3 A Plug in 1.30 Hz adjustable system gain 120 dB Sensitivity - 77.90 dBM R.F. attenuation 0.100 dB PO.A Above with R.F. Tuning Unit STU.1A
10.1000 MHz
P.O.A And R.F. Tuning Unit STU-2A $910-4560 \mathrm{P}$ P.A

MARCONI

H.F spectrum analysers OA. $1094 \mathrm{~A} / 3$ carrier range 3.30 MHz . Sweep width up to 30 KHZ 60 dB amplitude differences measureable Also L.F. Extension unit for above TM. 6448

SWEEP GENERATORS

HEWLETT PACKARD

Sweep Oscillator $692 \mathrm{D} \overline{2}-\overline{4 \mathrm{GHz}}$
$£ 495$
JERROLÓO
Sweep Signal Generator 900B Centre Fregs $500 \mathrm{KHz}-1200 \mathrm{MHz}$ Sweep widths narrow as 10 KHz to 400 MHz wide 50 hms .

Modular Pulse Generator Advance Type PG. 52 System of 5 Signal generating \& Processing units. Repetition freqs up to $20 \mathrm{MHz} \&$ Output pulses to 20 V (50 ohms) Rise $\&$ Fall times 5 nsec . Its versatility enables the production of complex pulse \& ramp waveforms not obtainable from conventional pulse generators
Double Pulse Generator PG 56
Pulse Amplitude 0.1V-10V. Sq. wave 0-10V Rise Time 10 nsec . (typically) $£ 87.50$ ulse Generatot PG 55 P.O.A MARCONI
Double Pulse Generator TF 1400 /S. Min type CT. $434 \mathrm{c} / \mathrm{w}$ TM 6600 Sec . Pulse gen Plug in $10 \mathrm{~Hz}-100 \mathrm{KHz} \quad 100 \mathrm{nsec}-100$ usec Negative pulses up to 200V E.M.F., + V pulses up 1060 V E.M.F. \& Simultaneous + VE \&-VE pulses up to 20V E.M.F. P.O.A SOLARTRON
Precision Pulse Generator G.0.1377 100V single or double pulses 0.2 amp paraphase outputs Simultaneous + VE $\&-V E$ outputs Square wave 105 MHz 10nsea, Rise time
Pulse repetition freq. - $10 \mathrm{~Hz}-1 \mathrm{MHz}$ Pulse duration 01 usec- $100 \mathrm{msec} \quad £ 125$

Siemens Level Meter $3033510 \mathrm{KHz}^{-17 \mathrm{MHz}}$ Complete system by Siemens. Comprising: $3 W .518$ Level Oscillator, 30. 335 Level
Meter. 3 W .933 Sweep Attachment. 30.346 Meter. 3W. 933 Sweep Attachment. 30. 346 Screen Level racing Recelver. P. P.A. level Oscillator 3 W 29 O $3-1200 \mathrm{KHzPO}$ S.T.C.

Octave Filter $74143 \mathrm{~A}, 37.5-12,800 \mathrm{~Hz}$. For analysing noise and interference on comms. psophometer P.O.A Selective level Measuring Sel 74184B $60-1364 \mathrm{KHz}$....................... Measuring Set 74831A
P.O.A. A.T.\&E.
elegraph Distortion Measuring Set Various types 5 BV 58V3,
MURPHYRADIO
Receiver VHF field strength RX. 506 \& necrference measuring set c/w Power Unit

OSEILIOSCOPE TEST EQUPWENT

Amplitud Signal
 Generator Type range 350 KH
 range 35 500 Mhz
 Ampriable)
 Amplitude $40 \mathrm{mV}-10 \mathrm{~V}$

 OSSOR

Camera Drive Unit 14319 speed

 CEKTRONIX $0-55 \mathrm{~V}$ Calibrated 109025 nsec Risetime dance 50 ohmsRESISTANCE 8 DECADE BOXES

Tinsley Vernier Potentiometer Type 3126 B . A and measurement standards areas $£ 125$ DORAN

Whetstone Bridge Type $1401 \ldots . . .$	
Whetston	MARCO 8 ridge Type 355

Decade Potentiometer TF. 22
Variable Air Condenser Muirhead Type 11-8 1250pF Max.
AC-DC Converter Type AC-DC For use with

TV. TEST EQUIPWENT

measuring set for phase \& amplitude Distortion multichannel FM Radio Systems up to 12 MHz MARCONI
Sine Squared Pulse \& Bar Generato GRESHAM LION
Waveforn Generator 625 lines. Sine squared Pulse \& Bar
Waveform Generator 625 lines staircase
MARCON
Colour Gain \& Delay Test Set TF. 2904 £17
WANDEL \& GOLTERMAN
Measuring Set VZM

COMPONENTS

ACC ELEROMETERS

G.E.C. Type F

Graseby Insts $\mathbf{£ 2 . 5 0}$
Sperry Type 212502-0100 12G E25 Spery Type 214202-0100
Langham Thompson LA 2
Types up 10 100G. Choppers
Ericcson N. 29834 Hz
Elliott Synchroverter G. 1280
Elliot Synchroverter 95908
MODULATORS
S E Labs SE 441 /2
Osc amp demod SE Labs. Type SE 545
Osc. amp demod. SE Labs. Type SE $62 / 12$
TRANSDUCERS
S.E Labs SE $\uparrow 50 \mathrm{~T} \pm 25$ p.si

E Labs SE 250/A5962 1000 p
SE Labs SE 150850 p .s.i
S.E Labs SE 1051000 p. s
S.E. Labs SE, 1654000 p.s.i.

TEMPERATURE INDICATORS £2
Made by Ether. Models with Temp. Ranges POTENTIOMETERS OTENTIOMETERS

Res. OHMS MNFTR. TYPE PRICE
$\begin{array}{lll}5 \text { ohms } & \text { Beckman Type A } & £ 3.00 \\ 50 \text { ohms } & \text { Bourns } & 35005-2-500 \\ £ 1.00\end{array}$

500 ohms Beckman A $£ 2.50$
500 ohms $\begin{array}{ll}\text { Belvern } \\ \text { Coln } & \text { 2501/264 } \\ \text { £3.00 }\end{array}$
500 ohms Colvern 2402/13 £300
500 ohms Colvern 2501/9 $\{3.00$
500 ohms Relcon 07-10

X-Y \& U/V REGORDERS

-Y Recor
X-Y Recorder HR $92 / 1$ E.150 BELL \& HOWELL
UV Recorder 5/127, without Galvo's $\mathbf{~} 225$ X-Y Recorder 20021
 \section*{ELECTRONIC ASSOCIATES
 \section*{ELECTRONIC ASSOCIATES
 INSULATION TESTERS}

EVERSHED \& VIGNOLES
Circuit Tester Ohmeter $0-3$ ohms $0-39$ ohms Circuit Tester Ohmeter $0-1000$ ohms $100-200$ kohms Megger Series +II 250 V Megger Series III Mk. 3250 V Megger 250 V
Megger 500 V
Batiery Megger 500 V
£20

Insulation Tester 108500 V £25

MISGELLANEOUS

Transfer Oscillator Type 7580H8y Beckman DC- 15 GHz with counter $75 \mathrm{MHz}-15 \mathrm{GH}$ without counter Sensitivity 100 mV (R.M.S.

MARCON

,
Distortion Factor Meter TF. 142F Fundamen
tal Freq. Range $100 \mathrm{~Hz}-8 \mathrm{KHz}$ Dist. measurement ranges $0-5 \%$ \& $0-50 \%$ ©60 Precision Crystal Calibrator $1374,10 \mathrm{KHz}$ check points up to 10 MHz . 100 KHz check £40 Portable. Recener Tester TF. 888/3 1 KHz M . Ktal check $500 \mathrm{KHz} \& 5 \mathrm{MHz}$ 100 mW \& 1 W scilator. A.F Power $\quad \mathbf{£ 6 9}$

cossor

Batery Charger CC9915
Burtery Charger BE $370 \ldots £ 50$
ADVANCE
Recorder Calibrator HC. 20 £20
Megohmeter RM 160 . For insulation resisance up to 400 million M ohms $\mathbf{~} 35$ Printer PR 1 Intended for use with almost any kind of counter. 7 digit display. $2^{\prime \prime}$ wide paper
E55 Mrint-out
Carrier Deviation Meter TF.791C. Carrier Freq.
range $4.250 \mathrm{MHz}_{2}$. Freq dev. ranges 0 to
5 KHz 0 to -25 KHz . 0 to $\pm 75 \mathrm{KHz} \& 0$ to \pm
125 KHz . Input impedance 50 ohms $\mathbf{£ 7 5}$

The testequipment people

Come and visit Europe's first Electronic Instrumentation Centre

49-53 Pancras Road London NW1 2QB Tel: 01-837 7781

Next to KING'S CROSS ST. PANCRAS

OSCILOSGOPES
 $\&$ PLUCS INS

Portable Double Beam Oscilloscope Solartron Type CD 1400 DC-15MHz. Sensitivity 100 $\mathrm{UV} / \mathrm{Cm}$ with the following Plug-ins available CX 144 ! Wide Band Amp. CX 1442 High Gain D.C. Diff. Amp; CX 1443 Genera Purpose Time Base Unit; CX 1444 Sweep Delay Time Base $\begin{array}{r}\text { £160-£180 }\end{array}$ ADVANCE. Storage Scope OS 2200 P.O A.E.I.

Miniature Oscilloscope CT $52 \times$ Sensitivity Freq. Range $10 \mathrm{~Hz}-1 \mathrm{MHz}$. Ideal for Audio work. Fully portable in metal transit case $£ 35$ cossor
Dual Channel Scope CDU120. Sensitivity 50 $\mathrm{mV} / \mathrm{cm}: \mathrm{DC}-60 \mathrm{HMz}$: Rise time 6 nsec . $\mathbf{3} 325$ Dual Channel Scope CDU150-CT531 Sensitivity $5 \mathrm{mV} / \mathrm{cm} . \mathrm{DC}-35 \mathrm{MHz} \quad £ 495$ 50 MHz Dual Trace Scope 40007 nS Rise Time $5 \mathrm{mV} / \mathrm{cm}$ Sensitivity. Calibrated Sweep Delay. Gated Trigger X-Y Display. © $\quad \mathbf{£ 3 7 5}$ HEWLETT PACKAFD Oscilloscope 140A. c/w 1415 A Time Domain Sampling Scope 185 B OC- 3.5 GHz £ $\quad £ 395$

VOLTMETERS

H.F. Mullivoltmeter Philips Type GM 6014 . also for $100 \mathrm{mV}-30 \mathrm{~V}$. Meter equipped with dB cale. Accuracy at 30 KHz less than 3% F S D Amplitude characteristic flat within $\pm 5 \% £ 55$ ADVANCE Volimeter VM 80
B.P.L. Voltmeter TVM 1063

DAWE Valve voltmeter 613B P.O.A (RMS)
LUKE

AC/CD Differential Voltmeter Model 803 $0-500 \mathrm{~V}$ Null Ranges. $10,1,0.1 \& 0.01$ volts | Differential Voltmeter 821A | $\mathbf{E 1 2 5}$ |
| :--- | :--- |
| 10 | | HEWLETT PACKARD

$1 \mathrm{mV}-1000 \mathrm{~V} 1 \%$ Accuracy. Can also be used as Ohmeter \& Ammoter MARCONI
Wide 8and Mullivoltmeter TF 1371 £65 Sensitive Valve Voltmeter TF 1100. $100 \mathrm{uV}-300 \mathrm{~V} \quad \mathrm{AC}$ freq. coverage
$10 \mathrm{~Hz}-10 \mathrm{MHz}$. Meter has dB scale facility $£ 85$ Valve Voltmeters TF 1041 TF 1041 A a TF1041B. General Specs. 0.300 V AC $0-1000 \mathrm{~V}$ DC Resistance to 500 Mohms
Voltmeter No 3 CT208 TFQ58-2. $100 \mathrm{mV}-150 \mathrm{~V}$, multiplier extends AC range to $1.5 \mathrm{kV} \mathrm{DC} 50 \mathrm{mV}-100 \mathrm{~V}$ Freq. range 20 Hz to

screened aganst external magnetic fields cale width and smail case dimensions ($128 x$ $95 \times 32 \mathrm{~mm})$. Accuracy and stability $(1 \%$ in Simplicity and ease of use indicated reading ranges of accessories. 1000 times overioad Printed Circuit board is removable withou de-soldering More ranges than any other meter Ask for free catalogue $\quad \mathbf{£ 1 8 . 5 0}$ Accessories (extra) available to convert Mrcrotest BO \& Supertester 6BOR into METER ELECTRONIC VOLTMEIER AMPER CLAMP. TRANSISTOR TESTER TEMPERA URE PROBE PHASE SEQUENC INDICATOR - Se MORE RANG MOR LESS MONEY!
meter
$U 4324$
U4324.
$0.06-3 A$ Range
$0.3 A$
Range Ranges. Ranges
$3-900 \mathrm{~V}$ Ranges.
Raver Ranges. Freq.
the range of 45 0 kHz Resis
ance. 500 ohm o 5 Mohm - 5 Ranges Decibel $-1010+12 \mathrm{~dB}$

DC. $\pm 4 \%$
$98 \times 63 \mathrm{~mm}$ Only $£ 9.25$

ATTENUATORS

ADVANCE A. 63 Turret Attenuator Coaxial $0-50 \mathrm{~dB}$ in 1.0 dB steps. Freqs. up 10
$\mathbf{~} \mathbf{E 2 2}$ MARCON
Variable Attenuator TF338B £20 TF 2162 0-111 dB in steps of 0.1 dB . Freq s TC Altenuars

DIGITAL VOLTMETERS

DC. Digital Voltmeter. Solartron Type OC Accuracy 250 KHz Counter Facility $£ 235$ DYNAMCO
DM $2022 \mathrm{~S} 10 \mathrm{uV}-2 \mathrm{kV}$. Max. reading 39999 Accuracy 0.02% D V.M DM2001
D.V.M DM2004

VIDAR

integrating D.V.M 520. 6 Ranges 10 mV - 1000 V Guarded, can be floated to \pm
500 V High measurement speed with ultimate 500 V . High measurement speed with ultimate CMR No filters Up to six times faster than other calibrator Manual. Automatic und Remote operation. Wideband Freq and period measurements are standard. Fastest AutoRanging 10 mV F.S. Range built in, eliminated ext. pre-amp. no loss of CMR. Freq. Range $10 \mathrm{~Hz} \cdot 2 \mathrm{M} \mathrm{Hz} \quad £ 39$

RECORDERS

Brand New
Brand New
H 30208 mA FSD 5 Hz 80 mm per channel. $0.1-25 \mathrm{~mm} / \mathrm{sec}$ chart drive inc. time and event marker
$\mathbf{H} 3208 \mathrm{~mA}$ FSD 100 Hz transistorised amp as H320 8 mA FSD 100 Hz transistorised amp, as
above £180, 3.pen $\mathbf{£ 2 7 5 , 5}$ pen. $\mathbf{£ 3 5}$ H390 AC/DC recorder. 5 mA .5 amps. 5 -volts- $500 \mathrm{~V} 20.5400 \mathrm{~mm} / \mathrm{hr}$. E78 H3100... Miniature 1 mA DC-80mm char width. $20-5400 \mathrm{~mm} / \mathrm{h}$
H30. Ten channel event recorder
RECORD 500uA singie channel
RECORD 1 mA version

FOUR CHANNEL

Recorder . £385
Replay only £237
VAT ond crarioge extro

or university use mounted in an Imhof steel case size $21^{\prime \prime}$ wide $\times 19^{\prime \prime} \times 10^{\prime \prime}$ high overafl.
Weight 25 Kg .
In line record and replay heads with abitity to erase
and record on individual tracks. Mk. 5 Brenell Deck - 331/4. $71 / 2$ and 15 i.p.s. $81 / 4$ spools -
This equipment, which has simple controls, is specially designed for reliability and easy maintenance. All the amplifiers plug in Features include jack sockets for input and
output lines on the front panel with extra D.I.N. sockets at the back. Built in four x output lines on the front panel with extra D.I.N. sockets at the back. Built in four x
8 watt power amplifiers availabte. 8 watt power amplifiers available.

DEIMOS LIMITED
Simmonds Road, Wincheap, Cantorbury, Kont. Tel. 022788597

THE RADIO SHOP

16 CHERRY LANE BRISTOL BSI 3NG

THYRISTORS

How to save over 53 on BASF $/ 2$ Videotape. Buyitrightnow from Dixons Technical.

Usually $£ 6 \cdot 42$, Dixons Technical bring you world-renowned BASF Video Tape on 1200ft. 5" spool for the amazing price of just $£ 2 \cdot 95$.

The tape is perfect for portable and mains operated $1 / 2^{\prime \prime}$ Video Tape machines. Make sure you don't miss out.
Order now with our coupon, or call in at Dixons Technical.
To: Dixons Technical Ltd, 3 Soho Square, London W.1.
Tel: $01-4378811$
Please send me.....spool(s) of BASF Video Tape.
lenclose a cheque/money order for
NAME
ADDRESS
\qquad
 Technicallid

Wilkinsons neavs : \% misu

 arengements, known throughout the world We have years of experience in
aben widing this type of Relay to your own specification Complete Banks of
bontacts made to order, and component parts also supplied We offer the very contacts made to order, and component parts aliso suppled We offer the ver thghest quality at competitive pricess, and are Specialists in Expor orders.
WE CAN SUPPLY FROM STOCK a completer renge of G.EC. Miniature
 change over contacts A EI. 88 and 89 series, latest type 100
reference $3 / 412 \mathrm{~W}$ two change over contacts also availabie. P.O. rype 2201 MINIATURE UNISELECTORS including Jock 12 oution 2 bridging 1 non-bridging sipers CABLE for P.A.X. Wiring $10 / 0076$ PVC insulated 15 pair $£ 10$ per 100 yard coil. 20 prid 1 Ing Evershed and Vignoles ERIDGE MECCER TESTERS Series one. 1000 Volts Range O to 100 Megohms
 MOTORS made in France 3 r 4 wats very powertul reversible 24 wits $A C E 4$ ench CARED operated on 230/240 voits AC with transformer $£ 2$ bach SPEAKERS by Ploseyoy, $31 / \mathrm{hinch}$ diy 11 .
 Auxllary contacts, normally open. 40 p extra
PRECISION PORTABLE VOLTMETER O to 160 volts $A C / D C 8$ inch scale in pol
hunged filop $£ 10$ each Resistance supplted to extend range to 820 volts $£ 1$ extra. MINIATURE DIGITALINDICATOR size io extend range 10820 voits El extra. weight $31 / 2$ oas. reading 0 to 9 with decimal points, quick disconnect rear of unit lor easy lamp replacement. \&4.50 eas
Revised Relay Meter, Swich, and Potentiometer lists now avalable All prices shown are carriage peid Revised Relay Meter, Swich, and Potentiome
UK only but subject to VAI at the standard rate

LONGLEY RD., CROYDON, CRO 3LH. Phont 01.68̊ 0236. Grame WILCO CROYDON WW-071 FOR FURTHER DETAILS

4 CHANNEL POTENTIOMETER

Four 10 k potentiometers mounted at 90° to each other and mechanically interlinked through hoop system to Joystick. 85° travel of control covers complete resistance track. Ideal for use in Quadrophonic remote control, synthesiser etc. applications. Supplied with circuit details.

Type 1 P.C. mounting. Size $55 \mathrm{~mm} \times$ $55 \mathrm{~mm} \times 22 \mathrm{~mm}$ (less stick) $=$ $£ 6.00+$ Postage \& Packing $30 p+$ VAT
Type 2 Tag wiring size $80 \mathrm{~mm} \times 80 \mathrm{~mm} \times$ 35 mm . $£ 6.60+$ Postage \&
Packing $30 \mathrm{p}+$ VAT.
Allen \& Heath Ltd.
Pembroke House. Campsbourne Road Hornsey, London N8
Telephone 01-340 3291

BULK BUYERS. We are bargains for any of you who carriage at cost. For sam	clearing one of our stores can buy in bulk. Prices le, send double the lowes	and in consequence will given are ex our Croydon st price and add sufficient for	have some extra special ore or will be despatched postage.
	3ial		
	${ }^{10}$ cherer oor sibct		
	3		
			62.0 OrY HLm
	J. BULL (ELECTRICAL) LTD. (Dept. W.W.) 102/3 TAMWORTH ROAD, CROYDON CRO 1 XX		

NEMTH $2^{\prime \prime}$ AND $4^{\prime \prime}$
 PANEL METERS

C 1000 MULTI-METER

Special price $£ 3.25$ Post 20°

1/4-WATT CARBON FILM RESISTORS

MINIATUAE NEONS

 Saliast resistor 150 K ohms
10 tor 50 p. Postege 10 p .

PLEASE ADD VAT

[DEPT wwa) SIMMONDS ROAD, win CANTERBURY, KENT.

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: £6.08 per singlè col. centimetre (min. 3cm). LINE advertisements (run on): 86 p per line (approx. 7 words), minimum three lines. BOX NUMBERS: 35 p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World. Dorset House, Stamford Street, London SE1 9LU). PHONE: Allan Petters on 01-261 8508 or 01-261 8423
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Wednesday, June 4th, for the July issue subject to space being available.

FINAL ACCEPTANCE ENGINEERS SALARIES UP T0 $£ 3,000$ CAMBRIDGE

Our client, Cambridge Scientific Instruments Ltd, is a world leader in the manufacture of high resolution scanning electron microscopes. They have an urgent requirement for a number of Electronics Test Engineers who will initially work on fault finding on modules. After a short induction period they will move on to complete systems. Further career development could involve a move into R / D or Sales. These vacancies have come about because of internal promotions to other areas - it is the

Company's practise to develop staff into positions of more responsibility.
For these jobs experience is more important than paper qualifications, although an HNC could be useful. Candidates should have a good basic knowledge of I.C.'s and be familiar with modern Test Equipment.
If you would like to work with a Company you can grow with, write or 'phone, quoting Ref CSI/WW to

Geofirey King,

Cambridge Recruitment Consultants,
The River Mill, London Road, St Ives, Huntingdon, Cambs., PEI7 4HIJ.
Tel: St Ives (0480) 65040.

ThePolytechnic

of NorthLondon

Laboratory Technician

Grade 4

Applications are invited for the appointment of an experienced Technician in the Department of Electronics and Communications Engineering.
The work is interesting and involves the operation and maintenance of high grade test equipment in an Audio Engineering Laboratory, which has its own Anechoic Chamber participation in Research and Development, and the general responsibility for the efficient running of the day-to-day requirements of the laboratory for students' experiments and project work. Normal background experience: at least 7 years (including training period); normal education level, with ONC or OND in appropriate subjects and/or specialist qualifications in the field of Audio/Acoustics.
Salary Scale: £2247-£2628 per annum plus £411 London Allowance.
Application forms obtainable from the Establishment Officer, The Polytechnic of North London, Holloway Road, N7 8DB.
Further details obtainable from Mr . S. A. Elliott (01-607 6767 extn. 289).

RADIO TECHNICIANS

Are you a Radio Technician with a City and Guilds Intermediate Telecommunications Certificate or equivalent, plus 1 year's practical workshop experience? If so, then why not join the Home Office. There are vacancies in Central London (near Waterloo Station) and the Home Office Laboratory at Canons Park, Stanmore.

Pay:

is $£ 1695$ at 19 , rising to $£ 2575$ *plus a cost of living supplement which is at present $£ 19.14$ a month. In addition, London Weighting Allow ances of $£ 410$ a year in Central London and £260 at Stanmore are payable.
(*Currently under review)

A Secure Future

with a non-contributory pension scheme. prospects of promotion and a generous leave allowance. Five day week of 41 hours

Interested?

Then telephone or write for an application form to Mr J. J. Willis, Directorate of Radio Technology, Room 514, Waterloo Bridge House, Waterloo Road, LONDON SE1 8UA Telephone 01-2753006.

"Make something practical by looking with us into the future."

Engineers! If you are interested in electronics, data transmission, digital systems, this could be of great importance to you.

How does Jeoff Samson, STC's Director, Switching, approach the problems of techno logical change? How does he see the mix between pure research and the practicalities of the telecommunications business? How far can an engineer be encouraged to experiment while working with current technologies?

STC - one of the world's leading companies in telecommunications and a pioneer of the new British Telephone Switching System, TXE4 -- is looking for professional and technical engineers at all levels of experience for Advanced Systems Development, Application Engineering, Systems Design and Integration, and Circuit and Logic Design.

STC - on record!

To answer some of the questions you might be expected to ask about us, Ken Corfield, STC's Managing Director, and three of his colleagues Jeoff Samson, Jock Marsh, Neville Cooper - have chosen to make a record, each explaining the thinking behind the tasks and challenges of his own specific area of responsibility, and outlining the opportunities within STC. In this way, you can build up a picture of the company as a whole: its attitudes, approach to business, present and long-term views.

You can have a free copy of this record now. Send for it. Play it. Listen to it. Consider whether you like the sound of us. It could mean a lot to you. your future -and ours!

Standard Telephones and Cables Limited
A British Company of ITT

Radio Operators. How to see more of your wife without losing sight of the sea.

The work is just as
interesting, just
as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further

RADIO OFFICERS

Do you have PMG I, PMG II. MPT 2 years operating experience?

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3,242$. pa: commencing salary according to age-25 years and over $£ 2.383 \mathrm{pa}$. During training salary also by age, 25 and over $£ 1.724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

Recruitment Officer,

Government Communications Headquarters, Room A/1105, Priors Road, Oakley, Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

UNIVERSITY OF SURREY ELECTRONIC ENGINEER

Applications are invited for the above position in the Electronic Workshop of the Psychics Department. The person appointed will work, together with two other members of the technical staff, under the general direction of a Chief Technician.
Applicants should have a good electronics background, a sound theoretical knowledge and should have experience in the development and construction of computer interfacing and be familiar with nucleonic instrumentation Qualification: HNC or equivalent. Salary scale: $£ 2,844-£ 3,450$.
For further details and application forms please apply to the Staff Officer, University of Surrey, Guildford, Surrey GU2 5XH or Tel: Guildford 71281, Ext. 452.

THE ROYAL NATIONAL THROAT, NOSE \& EAR HOSPITAL
Gray's Inn Road, London WC1X 8DA

PHYSICIST
 (BASIC GRADE)

Applications are invited for a newly established post of Physicist (Basic Grade) for work in the field of hearing disorders and the applications of hearing aids. Suitable candidates will have a degree in Physics and should have experience in electronics and acoustics. He /she will be based in a new elec-tronic-acoustics laboratory and in the Hearing Aid Centre.
Salary scale £2046-£2562+£312 London Weighțing + current Threshold payments.
Applications giving details and names of two referees to Senior Administrative Assistant.

Kensington and Chelsea and Westminster Area Health Authority

North East District

MEDICAL PHYSICS TECHNICIAN

Applications are invited for the post of Medical Physics Technician Grade IV at the Middlesex Hospital. Salary according to Whitley Council 'B' Scales. Duttes will involve a wide variety of work in Physiological measurement including work in the Department of Cardiolog.y Day work in the Department of release faclities for study at approved release facilites for st
Colleges can be arranged

Applications, with fu'l details of career to date and quoting two referees, should be sent to Establishment Officer. The Middlesex Hospital. London. W1N 8AA. Closing date for applications 2nd June. 1975

Electronics Development Engineersdevelop in Cambridge

Develop your career in an expanding industry where increasing worldwide demand for our radio-communications equipment provides a career path limited only by personal ability. Develop your quality of living in an area that has all you need - a university city with plenty of amenities, attractive reasonably-priced housing, enjoyable countryside and only 50 miles from London and the coast.

Engineers will be involved in design/development on portable, mobile, fixed station and digital equipment. BSc is preferred, but lower qualifications with sufficient RF experience and interest may be acceptable. Age range is $21-30$ and you will preferably have up to 5 years relevant experience of radio-communication equipment. It's a pleasant, small-team working atmosphere, using the very latest $R F$ technology.

Generous assistance with relocation expenses is just one part of an attractive salary and benefits package. For more information phone or write to Richard Turner at:

ELECTROSONIC LTD.

S.E. LONDON

MANAGER ELECTRONIC TEST DEPARTMENT

Electrosonic Ltd. are seeking a candidate, having wide experience in a production test shop. Technical ability in analogue and digital circuitry is essential together with experience of supervising the work of others and a commercial awareness.

Duties will include the organisation and day-to-day running of the test shop with technical assistance, training of junior engineers, the introduction and programming of automatic test equipment and supervision of quality control.

The Company is leader in the rapidly expanding fields of lighting control, audio and audio visual systems and offers a wide range of interesting work in an attractive environment and excellent conditions of employment

Apply: Personnel Director, Electrosonic Ltd., 815 Greenwich Road, Charlton, SE7 8LT. Tel: 01-855 1101

APPOINTMENTS

Electronics Test Engineers: career openings that affect all sorts of people...

. you most of all, naturally. Mainly because, by joining the world's largest exporter of radio-telephone equipment you will inevitably open up for yourself career advantages that very few companies can provide. Pye Telecom is growing at an ever-increasing rate - and the potential for its products has as yet been only fractionally utilised.
But the work you do will also be vital to an incredible number of others. Very frequently, life itself depends on the efficiency of the UHF and VHF equipment you'll be working on. Police, firemen and ambulance staff are a small sample of the extensive range of users. Which explains the exacting specifications of the test procedures in operation - and why previous fault-finding and testing experience is an essential requirement. If it relates to communications equipment, so much the better, but this is not absolutely essential. More important is practical proficiency, which may well have been gained in the armed forces. Find out more right now by phoning or writing to Mrs Audrey Darkin at:

Pye Telecommunications Ltd

Cambridge Works. Elizabeth Way. Cambridge CB4 1 DW Tel: Cambridge 58985

Opportunities in the ELECTRONICS FIELD
Men with analogue or digital qualifications/ experience seeking higher paid posts in: TEST - SERVICE - DESIGN - SALES Phone Mike Gernat. Ref. WW.

NEWMAN APPOINTMENTS 360 Oxford St. W1 01-629 0501

ST. HELIER HOSPITAL Carshalton, Surrey MEDICAL PHYSICS TECHNICIAN GRADE IV
for District Medical Physics Department. Salary scale from £1773 p.a. rising by annual increments to £2463 plus £312 London Weighting Allowance.
Further details can be obtained from Chief Technical Officer - 01-644 4343, Ext. 375.
(4673)

UNIVERSITY OF LEEDS DEPARTMENT OF PHYSIOLOGY cardiovascular unit
Applications are invited for the post of

EXPERIMENTAL OFFICER
 mes

A degree is required, Responsibilities include PDP12 and PDP8 computers, electronic equipment in three physiological laboratories and three hospital catheter laboratories, and the supervision of four electronics technicians. Preliminary enquiries may be made to the Director of the Cardiovascular Unit, Department of Physiology. The University, Leeds LS
9 JT . Form
Forms of application and further particulars may be obtained from the Registrar. The University of Leeds, Leeds LS2 9 JT quoting reference number $105 / 1 / \mathrm{Cl}$, to whom applications
should be returned as soon as possible.

RADIO TECHNICIAN FOR CENTRAL AMERICA

Needed to work in Guatemala with the Radio Schools Movement, training a team of Guatemalans in the maintenance and repair of station equipment. A British Volunteer Programme post.
Information
Paddy Coulter, Overseas Volunteers/C11R 41 Holland Park, London W. 11

4661

COMPUTER ENGINEERS

All Systems Go

Target to $£ 4,500$ p.a

+ Car or allowance Many locations

Eric Stack
MALESTAFF
01-388 1607
362 Euston Road
London, N.W. 1

4678

Service Engineer

to work

Professional Audio Equipment

For our London based Service Department (Near Marylebone Station) to maintain a range of Professional audio equipment (Nagra, Sennheiser. etc.)
An attractive salary and four weeks' holiday will be offered to the right man. Interviews to be carried out in London.

Please apply in writing marked confidential to:

The Managing Director
Hayden Laboratories Limited
Hayden House
17 Chesham Road
Amersham BUCKS.

Hayden Laboratories Ltd

O TO TOLOTOROIOLOL Design/ Development Engineers

Is your future in Cambridge?

To a Design/Development Engineer, Cambridge means Pye. And Pye means a better future. Labgear is one of the Pye Group and manufactures cable TV systems and TV service equipment. We have a vacancy in a team engaged in the design and development of M.A.T.V. and C.A.T.V. distribution equipment, associated test gear and filter networks ranging from single channel band width to wide band applications covering from $40-860 \mathrm{mHz}$. Candidates will have at least 2 years' experience in high frequency circuit techniques, and keen to develop with the job. Education to HNC (Electronics) or equivalent standard is preferred.
We offer an attractive starting salary, which is negotiable, assistance with relocation expenses, and considerable company benefits.
Please write or telephone for an appointment to:
Mr. C. G. Houghton Personnel Manager

$(1) / 2$ Labgear Ltd

Abbey Walk Cambridge
CB1 2RQ Tel: Cambridge 66521
(4683)
rororororotororotora

ERA
 HF COMMUNICATIONS PROBLEMS

Within the Materials Sciences Division of ERA Ltd., a leading contract research organisation, work has been proceeding for a number of years on non-linear problems associated with materials used in radio communications systems.

We need an experienced person to undertake a major role in this research, which will be mainly of an experimental nature with scope for theoretical development, concentrating on the HF band. As this work has not yet commenced, the person appointed will be able to influence its direction from an early stage. Liaison with clients, designing, building and operating laboratory equipment will also be involved.

Age and paper qualifications are not so important as relevant experience (from radio "ham" upwards) and this will be reflected in the salary offered.

The person appointed will be encouraged to submit ideas on the direction of future research.

ERA laboratories and offices are located in pleasant surroundings and are within easy reach of London. There is a contributory Pension Fund and entitlement to relocation expenses, if relevant. Amenities include full canteen facilities and an active Sports and Social Club.

Please submit curriculum vitae to, or ask for Application Form from, Miss E. Cox, Personnel Officer, Electrical Research Association Ltd., Cleeve Road, Leatherhead, Surrey KT22 7SA. Leatherhead 74151.

PRODUCTION MANAGER

for small quartz crystal manufacturing plant
in

NEW ZEALAND

An opportunity exists for a Production Manager familiar with all aspects of quartz crystal manufacturing for the communications market. Past experience should encompass grinding, vacuum plating and finishing to frequency. The company, Hatfield Crystals Ltd., has recently entered the field of quartz crystal filter manufacture thus, although not an essential, it would be useful if the applicant has knowledge of quartz crystal design, particularly monolithic crystal filters in the 10.7 MHz band.
The successful applicant must be prepared to reside permanently in New Zealand and will be sponsored through the Migration Department of the New Zealand High Commission. The company is located at Napier, North Island, in a temperate climate not unlike the South of France. An attractive salary together with the usual fringe benefits will be offered.

Applicants to write in the first instance to:
The Managing Director
HATFIELD INSTRUMENTS LTD.
Burrington Way
Plymouth, PL5 3LZ
Devon

Electronics

Technicians

career opportunities in Yorkshire

Holset Engineering is the world's largest manufacturer and technical leader in the field of sophisticated original equipment for the diesel engine industry and other automotive applications. We employ over 1,600 people and occupy modern, well-equipped premises close to the centre of Huddersfield.

Opportunities exist for experienced electronics/instrument technicians to work in our development department. You should be experienced in the operation and maintenance of electronic and electro-mechanical measuring devices. A technical qualification would be an advantage.

An attractive salary, excellent working conditions, company pension and free life insurance schemes, plus 32 days holiday per annum will be provided. We will also pay removal expenses to the West Riding, which abounds in reasonably priced housing, pleasant countryside and excellent civil, social, educational and recreational facilities.

Please write or telephone for an application form to: P. G. Phipps, Personnel Development Manager

Holset Engineering Co. Ltd., PO Box A9, Turnbridge, Huddersfield, HD1 6RD.

HOLSET
 TV Broadcasting Project Engineers

Fully experienced broadcasting engineers are needed to help the growth of Pye TVT as a leading international designer and nanufacturer of TV broadcasting systems and equipment.
The applicants appointed as Project Engineers (Commercial) will closely liaise with all relevant departments in defining and design of Studio, Outside Broadcast and sometimes radio schemes to meet customers' specific requirements or Transmitters. They will be responsible for the preparation of tenders and will assist in their.negotiation. which will involve some travel overseas. They should be qualified to at least HNC level and fully experienced in either design, installation or operation of TV Studio and / or Outside Broadcast vehicles, or Transmitters.

The appointments are based in Cambridge, and relocation expenses will be paid where applicable. There is a good starting salary, with a pension and other company benefits.
Please apply, with brief details of experience, to:
Mrs. J. A. Macnab, Personnel Manager,

DEVON AREA HEALTH AUTHORITY

 (PLYMOUTH HEALTH DISTRICT)
CORNWALL \& ISLES OF SCILLY AREA HEALTH AUTHORITY

Medical Physics Department, Plymouth General Hospital, Freedom Fields

ELECTRONICS TECHNICIAN

required for further expansion of the electronics service. The person appointed will join a small team in a well-equipped laboratory. He will be responsible to a graduate electronics engineer for maintenance of a wide range of patient-orientated electronic equipment. Development of special-purpose systems is undertaken, and safety and purchase decisions are made on new equipment. Minimum qualifications: ONC or HNC. Some travel in S. Devon and Cornwall necessitates a current driving licence. The appointment will be in either of the following grades depending on experience:-

Medical Physics Technician III
(£2,190-£2.817
Medical Physics Technician IV

$$
(£ 1,773-£ 2,463)
$$

Further details of the work may be obtained by telephoning Mr. L. R. Jenkin, Plymouth 68080, ext. 369. Application 'forms are available from the Sector Administrator, North Friary House, Greenbank Terrace, Plymouth PL4 8QQ.

ELECTRONICS DEVELOPMENT ENGINEER

A new opening has been created in the Ealing area for a highly skilled Electronics Engineer to join a new team within a newly created small research and development laboratory within a new small production and prototype unit.

The Engineer required will have strong innovative abilities as well as sound modern technical skills to design. develop and prove advanced circuitry. He will work with two highly skilled industrial Designers and other support skills to bring an idea through to a full production item.

While the area of electronic interest ranges over all aspects of advanced security devices, the prime ability of the man required will be in the RF field. Transmitters. receivers, scanners, RF detection systems and associated audio

The interests of the C.D.I. group of companies covers military, paramilitary electronics: police support electronics; technical intelligence retrieval devices and systems; pulse induction metal detectors; night vision systems and body armour.

The group is relatively new having been formed in June 1972 and to date has concentrated on building a marketing capability to support its already existing strong innovative abilities. It is now filling in the centre sections thereby creating a very good opportunity for a young man of outstanding ability to grow with the group. Profit sharing, health and pension schemes are operated

Please write to the Managing Director giving complete and thorough details of your qualifications in relation to our needs and your expected salary requirements. All replies will be held in strict confidence.

FREELANCE CONTRACT ELECTRONIC DESIGN AND DEVELOPMENT ENGINEERS

In addition to the staff Development Engineer required we are also seeking very high calibre Design and Development Engineers to work on specific projects on a freelance contract basis.
We are also interested in purchasing outright or on a royalty basis fully developed devices which fall within our armas of interest.
We are open to discuss sound ideas which we can develop. manufacture and market or any combination which makes sound commercial sense.
If any of this interests you then please write to the Managing Director clearly stating what you have to offer.

I. I.I.Holdings limited

3 Old Pye Street, London SW1P 2LB
a

Technical Security Ltd, Pulse Induction Ltd, Night Vision Systems Ltd, Body Armour Ltd.

SITUATIONS VACANT

HI-FI AUDIO ENGINEERS. We require experienced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. 01-437 4607.

MEDICAL RESEARCH COUNCIL CYCLOTRON UNIT, requires an Electronics Technician to work in a small igroup concerned with the construction, development and servicing of solid state equipment used in the biological sections of the Unit. ONC or equivalent is a minimum requirement and relevant practical experience an advantage. Salary, according to age and experience, in the range $£ 2,214-£ 3,375$ particulars to The 'Director, MRC Cyclotron particulars to The Drector, Mrc cyclotron London W12 oHS.

UNIVERSITY OF LEEDS. Electronics Technician
UNIVERSITY OF LEEDS. Electronics Technician 1 Grade 3 required in the department of Physiology. The person appointed would be responsible, under the head of the department the construction, modification and maintenance of electronic equipment associated with research and teaching of biological studies. Must search and teaching of biological studies. Must tions, circuit diagrams, sketches and manuals. Applicants should hold ONC or equivalent qualifications in relevant subjects. Salary is in the range of $£ 2,013$ - $£ 2,343$ according to qualifications and experience. Applications stating age, qualifications and full experience, logether with the names and addresses of two referees should be addressed to Mr. E. French, Repartmental Superintendent Department of Physiology, Medical Multipurpose Building. Mount Preston Street, Leeds LS. 2

ELECTRONICS TECHNICIAN required in Department of Psychology. University of Reading Should have or be completing final C \& G in Electronics Servicing or equivalent. Salary in scale E 2439 -f2895 p.a. (Grade 5). Apply with names of 2 referees and full details, quoting Ref. T.ZZ.23A, to Assistant Bursar (Personnel), UGiversity of Reading, Whiteknights, Reading

RADIO OP/TECH, 8 years marine experience, requires demanding shore post outside UK. Coms net/point to point experience. Weldon, 1 Fendon Road, Cambridge. (4707

Telecommunications Technicians

London Transport's technology is constantly developing to meet ever increasing demands. - especially in the vital area of telecommunications.
The maintenance of existing telephone switching and transmission equipment must therefore be carried out to the highest standards. We are accordingly looking for men with a good knowledge of telecommunications to assume responsibility for maintaining, testing and fault finding on -Automatic Telephone Exchanges and associated equipment (including electronic exchange intercom. systems) as well as PCM and Carrier Transmission Systems. The work involves shift duties.
You should have a sound knowledge and experience of one of these job categories, preferably with City and Guilds Certificates (or equivalent) in telecommunications subjects. The basic rate of pay, including bonus, is $£ 54$ for a 5 day (40 hour) week. Additional payments are made for overtime, night work and rostered Saturday and Sunday duties.
Weekly earnings average $£ 76$ which include payment for rostered overtime at weekends, London Weighting and the current threshold payments.
In addition, you will enjoy valuable FREE TRAVEL on London Transport bus and train services at all times with special reductions on British Rail. There are also special concessions for your wife and family on London Transport trains and British Rail.
A good pension fund and sick pay arrangements are provided. Please telephone Mr Crowder on 01-748 9564 or apply in writing to:- London Transport (Ref: ATL),
ChiefSignal Engineer's Dept,270Bolio Lane, A cton, London W3.

© LONDON TRANSPORT

NEW HEBRIDES
 SENIOR RADIO TECHNICIAN
 (TWO POSTS)

* Tour 2 years
* Gratuity 25% of basic salary
* Free Family passages
* Furnished quarters at reasonable rental
* Children's education allowances and holiday visit passages
* Appointment grant up to $£ 300$ payable
* Interest free car loan of £600
* Outfit allowance
* No income tax payable in the New Hebrides at present

Required by the Condominium Radio Department to maintain transmitting and receiving equipment for postal services, local and overseas shipping, aircraft and the broadcasting studio, both that housed in the Radio Station and equipment at outstations. Some touring will be needed.

Candidates, preferably over 25 years of age MUST have an HNC or a City and Guilds Fina Certificate with at least 5 years' experience relevant to at least three of the following relevant to at least three of the following categories:-1) H.F. transmitter and receivers
using SSB. ISB and AM modulation; 2) VHF using SSB. ISB and AM modulation; 2) VH
radio telephone systems; 3) Telex systems radio telephone systems; 3) Telex Systems Broadcasting transmitters; 5) LF Beacons A knowledge of French would be an advantage.

Salary in scale $£ 3,725$ to $£ 5,390$ p.a. which includes an allowance, normally tax-free, in scale $£ 462$ to £1,662 p.a. according to qualifications, experience and marital status.

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development.

For further particulars you should apply. giving brief details of experience to: CROWN AGENTS, M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/750304/WF

Avery-Hardoll

Manufacturers of Meter Pumps for Petrol and Fuelling Equipment for Aircraft, require a

TECHNICAL SERVICE ENGINEER

resident in West Yorkshire, who has reached ONC in electrics or electronics and preferably has had experience in electro-mechanical servicing.
The duties are concerned with the commissioning, diagnosis of faults, and rectification of electronic equipment associated with liquid flow measuring devices, mainly on readout and control.
Permanent staff position with a Company car, four weeks' holiday after one year of service, contributory pension scheme, etc

Please write with brief details of experience to date to:
Personnel
Manager
Avery-Hardoll Ltd.
Downley Road
Havant,
Hants PO9 2NW
4688

ARTICLES FOR SALE

PDP 85 MINICOMPUTER with 8 k core, complete with ASR 33 and software package, $£ 750$. ICL 1901 system with KSR 33 \& Cassette Unit, f525 REVOX A 700 audio recorder (new) £698. Mon roe Model 1210 Monrobot ' small desk com${ }_{\&}$ puter incorporating ASR memory drum, $£ 225$. Most FLEXO. WRITERS available from f50 upwards. Singer PROGRAMMABLF, PRINTING CALCULATOR, 30 step, 5 memory, f48. Singer Calculator display ing 'stack' on CRT, f28, (These calculators are DTL,'TTL \& offer interesting potential) Ferranti mag. memory DRUM, £29. S Band Travelling Wave Tube Amplifier, c/w TWT, f45. Electronic Associates VARIPLOTTER; analogue plotting table woth X and Y amplifiers. 495. Elliott keyboard paper tape punch (ISO) WRITERS and ITEL TERMINALS from s450 WRITERS and ITEL TERMINALS from £450 S/hand, and $f 700$ NEW. COMPUTER APPRECI-
ATION, Castle St., Bletchingley, Surrey RH1 4 NX . Godstone 3106 ; Otford 3256.

FANTASTIC VALUE COMPONENT PACKS. Transistors Thyristors Diodes Zeners Capacitors knobs switches resistors plugs sockets electrolytics mica, paper, etc. (Semiconductors unmarker p untested). $41 b$ net $£ 1+P . P$. P Hymas, 10 Westcott Place, Swindon, Wilts.
(4674

BUDGET MINI AUDIO MIXERS

 With Professional FacilitiesSlider Faders * Tone Controls \star Monitoring \star VU Meter
Mono or Stereo \star Ready to use or kits

Details Ref. WW

PARTRIDGE ELECTRONICS 21-25 Hart Road, Benfleet, Essex

CMOS SPECIALISTS Trade - export - enquiries welcome		
CD4000aE	Dual $31 / \mathrm{P}$ NOR + INVERTE	
CD4001aE	Quad $21 / \mathrm{P}$ NOR	35p
CD4002AE	Dual $41 / \mathrm{P}$ NOR	35p
CD401 AE	Quad $21 / P$ NAND	35p
CD4012AE	Dual $41 / \mathrm{P}$ NAND	350
CD4013AE	. Dual D-type flip-flop + S\&R	
CD4016AE	Quad bilateral switch	72p
CD4017AE	Decode counter divider	
CD4021AE	B stage static shitt register	172p
CD4023AE	Triple $31 / \mathrm{P}$ NAND	35p
CD4025AE	Triple $31 / \mathrm{P}$ NOR	35p
CD4027AE	Dual J-K master slave flip-flop	99p
CD4046AE	Micropower phase locked loop	249p
CD4047AE	Mono/a stable multivibrator	159p
CD4049aE	Hex inverter/bulfer.	
CD4050AE	Hex buffer ((non-1nvering)	
CD4071BE	Quad 2I/P OR	
CD4072BE	Quad $41 / \mathrm{P}$ OR	
CD40738E	Triple $31 / P$ AND	45p
CD4075BE	Triple $31 / P$ OR	45p
CD40818E	Quad $21 / P$ AND	45p
CD4082BE	Dual $41 / \mathrm{P}$ AND	45p
CD4098BE	Dual monostable + reset	
CD45118E	$B C D$ to 7 segment latch decoder dri	
5082.7740	7 segment LED display decoder drive	$\begin{array}{r} \text { 297p } \\ \text { 199p } \end{array}$
Data sheets 5 p . Add 25% VAT $\times 20 \mathrm{p} p \mathrm{p}$. All devices guaranteed to manufacturers' specifications		
CMOS SPECIALISTS, 29 Mancheater Streot London, W. 1 (Mail Order Only)		
(4669		

"Motivator" Curtain Cord Controllers A few of these niw units have just become avalable Ultra slim design, e.g. size $40 \times 185 \times 185 \mathrm{~mm}$ Screws flat on wall behind curtains without showing Can be connected disectly to existing corded curtains.
Incorporates internal auto. limit switches and power supply. May be operated remotely by 3 -way swith (supplied)
Motivator Módel B with 2 -year battery pack Kit Fully assembled and tested as above Fotvator Model M with mains power supply Kit 24.00 Fully assembled and tested as above $\quad 30.00$ Additional intormation gladly supplied prices are inclusive in U.K only

MAIL ORDER ONLY FROM
AID-US PRODUCTS
Dept. WW6, 8 Hillview Rd.,

SURPLUS BARGAINS
 EASTER LINE ANGUS

chart recorders, model A601R 500-0-500u.a. f.s.d. 110 v AC as new, with manual. $\mathbf{£ 3 5 . 0 0}$ (carr. E1). Kent Chart recorders single point $\mathbf{E 2 0}$. multipoint f 30 (E 1.50).
A.E.I. 4 -stage sequential transistorised electronic timer, many applications, inc 3 channel auto-light. flasher (750 watts 240 V). Circuits provided for fully interrupted and dim/bright flashing. Modification instructions and mains transformer. £4.50 instructions
Printed circuit Kits. $£ 1.25$ (30 p)
Printed circuit Kits. £1.25(30p). £2.65 (30p).
Veedor root 4 digit resettable counters 115 v AC $£ 1.25$ (10 p).
AMPEX VIDIO Tape $2^{\prime \prime} \times 1670^{\prime}$. New $£ 9$ (50p).
Ferric Chloride 25p lb (20p). 10 lbs for £2.50 (45p).
TELEPRINTER PAPERS and TAPES, $8 \frac{1^{\prime \prime}}{}{ }^{\prime}$ wide, 3-ply carbon. buff manilla $60 p$ ($35 p$), ditto 7 -ply NCR, no carbon required $\mathbf{E 1}$ ditto
(35p). TAPES. $\frac{7}{1}^{\prime \prime}$, white $£ 2$ per 8 rolls (65 p). (35p). TAPES. $7^{\prime \prime}$, white $£ 2$ per 8 rolls (65 p).
$\frac{11}{11^{\prime \prime}}$ buff $£ 2$ per 10 rolls ($65 p$). $1^{\prime \prime}$ tape suit $\frac{11 " \text { b }}{1 / 2}$ buff f2 per 10 rolls (65 p).
Friden, etc, $\mathbf{£ 2}$ per 7 rolls $(65 \mathrm{p})$.
Friden, etc, $\mathbf{£ 2}$ per 7 rolls (65 p).
B \& R VHF change over coaxial relays 50 V
B \& R VHF change over coaxial relays 50 V
DC operating coil $2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \mathbf{£ 1 . 2 5}$ DC ope
(15p).
35 watt Mains transformer outputs 2, 3, 6 . 20.24, 27, 30. £1.25 (25p).

All prices plus ($p \& p$) total plus VAT 8%.
Large S.A.E. for list.
CASEY BROS, 235 Boundary Rd. St Helens,
Lancs.

THORD-BENDIX high performance U.H.F. receiver . Front-End :' units. Crystal controlled, at present aligned for converting U.H.F. T.V. Channels to Band I or Band III (State Preference). Solid State, with $3 \cdot A F 239$ and 4 other transistors. 9V operated. crystals not included. Easily returned to commercial U.H.F. or amateur 70 cm bands. Notes and circuit inHigham. Derby, DE5 6EH.

TECHNICIANS

Plasma Physics and Nuclear Fusion Research
Culham Laboratory, situated just east of Abingdon in Oxfordshire, requires Professional and Technology Officers Grade IV for varied and interesting work

THE JOB

Assisting in the development, commissioning and operation of apparatus associated with experiments in the fields of Plasma Phvsics and Nuclear Fusion Research.

QUALIFICATIONS

ONC (electrical or mechanical engineering) or City and Guilds Electrical or Mechanical Technicians Final Certificate, and a recognised apprenticeship is essential

EXPERIENCE

in any of the following techniques would be an advantage:
High and Ultra High Vacuum and leak testing. High Voltage, High Current Systems. High Energy switching circuits. TRiggering and Timing systems Control equipment. Power supply units. Cryogenics

SALARY

in the range $£ 1,975$ to $£ 2,810$ a year plus threshold pay

HOUSING

Rented accommodation available for married officers living beyond daily travelling distance.

INTERESTED?

for an application form and further details write to
The Senior Personnel Officer Culham Laboratory, Abingdon
Oxon OX14 3DB (ref. A506/25/45)
or telephone Oxford 41721 ext 250

Culham
Laboratory

for a career in electrophyșiology

We are looking for a recent graduate in physiology/pharmacology or a similar discipline to join the Toxicology Department, of the Wellcome Research Laboratories, Berkhamsted, as an Electrophysiologist. Accountable to the head of the Department, the successful candidate would be required to develop and supervise the work of the electrophysiology unit in assessing drug reaction in domesticated and laboratory animals. Experience or an interest in electronics is essential
The research laboratories are modern and well equipped with excellent experimental facilities. They are situated in pleasant countryside close to Berkhamsted, a small country town 30 minutes from London (Euston) by train As a leading Pharmaceutical Company we offer excellent conditions of employment, including help with re-location expenses where appropriate Please write or telephone for an application form quoting reference PB5 to: R. P. Woolridge, Senior Personnel Officer, The Wellicome Foundation Limited, Berkhamsted, Herts. Tel: Berk. 3333.
4643

THIS COULD BE YOUR OPPORTUNITY TO WORK AS AN
ELECTRONIC ENGINEER

TELEVISION
With the continued increase in our sales we are looking for more engineers to work on the testing and commussioning of the studio broadcast equipment we make. which ranges trom amplitiers and monochrome cameras to outside broadcast vans and our latest colour
camera, all employing the latest semiconduc. camera, all employing
tor circuit techniques.

As an independent and well established company
we have kept a young and flexible outlook and attach great importance to people fitting in. Apart from an above average salary we also offer tree life and health insurance. a pension scheme of course, and a subsidised canteen as well as a
congenial environment which we think is very important. We will help with relocation expenses where necessary. Andover is a growing town in an attractive part of rural Hampshire, close to Salisbury and Winchester and within easy reach of London and the South Coast
You should be about $23-30$ and have experience of working in a professional electronic atmosphere, not necessarily in television. Abilty to fault find down to component level is essential and you should have a good knowledge of digital and linear circuit techniques. Either telephone Mic Comber at Andover 61345 (reverse charge if you wish) or write with brief details so that we can send you an application form for you to use to tell us all about yourself.

INK
LINK ELECTRONICS LTD.
Walworth Industrial Estate.
Andover. Hampshire, England
Andover. Hampshire, England Telephone: Andover (0264) 61345

QIGITAL CLOCK CHIP, AY-5-1224, with data and circult diagram, $x^{3} .66$ plus VAT. 'Jumbo LED digits (16 mm high) type economy DL/747 only $£ 2.04$ each plus VA' ${ }^{\prime}$, post free. Greenbank Electronics, 94
Merseyside
New
A Merseyside L62 5AG.

COLOUR, UHF and TV spares. Colour and
UHF Lists avallable on request. 625 TV. If unit, suitable for $\mathrm{HI}-\mathrm{FI}$ amp or tape recording, $\mathfrak{E B} .75$ $P / P 35$ p. Television construction cross hatch kit, e3.85, P/P 15 p Bush CTV 25. New convengence panels plus yoke and blue lat., $£ 3.85, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Philips single standard convergence panels complete, incl. 16 controls, colls, P.B. switches. leads and yoke £5.00. P/P 40p. New Colour Scan Conls, Mullard or Plessey plus convergence yoke and blue lateral, £10.00, P/P 40 p . Mullard AT1025/05 Convergence Yoke, E2.50. P/P 35 p . Mullard or Plessey Blue Later. als. 75 p P/P 20 p . BRC 3000 type Scan Colis,
 DL1, 51.50 , P/P 25p. Lum Delay Lines, 50 p P/P 15p. EHT Colour Quadrupler PI 25 111/174 series, 38.25 EHT Colour Tripper ITT TH25/iTH suitable most sets, $£ 2.00$ P/P. 25 p . KB CVC1 Dual Stand. monvergence panels complete incl. 22 controls ${ }_{2} .75, \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. CR1 base panel, $75 \mathrm{p}, \mathrm{P} / \mathrm{P} 15 \mathrm{p}$ Makers Colour surplus/salvaged Philips G8 manels part complete; Decoder $£ 2.50$, IF incl. 5 modules, $£ 2.25$. T. base, $£ 1.00, \mathrm{P} / \mathrm{P}$. 25 p . CRT base, $75 \mathrm{p}, \mathrm{P} / \mathrm{P} 15 \mathrm{p}$. GEC 2040 panels, Decoder, $£ 3.50$. T. base $£ 1.00, \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. CRT base 75 p , P/P 20p. B9D valve bases 100, P/P 6p. Varicap Tuners. UHF ELC 1043 new, $£ 4.50$. Philips VHF for Band 1 and 3 . $£ 2.85$ incl. data. Salvaged VHF and UHF varicap tuners, $£ 1.50$, por incl. slow metion drive 53.854 position or incl. slow motion drive, ${ }_{6}$ pos. push-bution transistorised ${ }^{\text {and }}$ and ${ }^{6}$ pos. push-button transistorised. $\mathbf{E 4 . 9 5}$. All tuners UHF Conversion Kits incl. tuner, drive plete 625 IF amplifier, 7 valves, accessories assy., 625 if amplifier, ${ }^{\text {noused }}$ in cabinet plinth assembly, $57.50 \quad \mathrm{P} / \mathrm{P}$ 50 p . GEC $405 / 625$ Dutl standard switchable IF amplifier and output chassis incl. cet., $£ 1.50$ $\mathrm{P} / \mathrm{P} 35 \mathrm{p}$. Thorn 850 Dual standard time base panel. 75 p P/P 35 p . Philips 625 IF amplifer panel inct. cct. 75p, P/P 30 p . VHF turret tuners AT7650 incl valves for $\mathrm{K} . \mathrm{B}$. Featherlight Philips 19TG170, GEC 2010, etc. 82.50 . Pye miniature incremental for 110 to 830, Pam and Invicta, $£ 1.00$. A.B. miniature with UHF injection suitable K. B. Baird, Ferguson, 75 p .

New $£ 1.80 \mathrm{P} / \mathrm{P}$ all tuners 30 p . Mullard 110° mono scan coils, new suitable all standard Philips. Stella, Pye. Ekco, Ferranti, Invicta, $f 2.00$, P / P 35 p . Large selection LoPTs, FOPTs available for most popular makes. $200+200+100$ Mlcrofarad 350 v Electrolytic, $\dot{f} 1.00 \quad P / P \quad 20 \mathrm{p}$. Manor Supplies, 172 West End Lane, London, N.W.6. Shop premises, callers welcome. (No. 28, 59 , 159 Buses or W. Hampstead Bakerloo and Brit. | Rail). Mail order: $64 \begin{array}{c}\text { Golders Manor } \\ \text { London, N.W.11. Tel. } \\ 01-794 \\ 8751 .\end{array}$ |
| :--- |

CORNWALL POLRUAN

In this unspoilt haunt of Daphne Du Maurier - now Lady Browning - and her sister, Angela Du Maurier.

A comfortable miniature hotel with views of historic Fowey Harbour. Bookings now being accepted.

Write for a personal reply to:

The Proprietor

Fit. Lt. E. H. (lan) Martin, D.f.M., RAF (Ret'd) Holly House Polruan, Cornwall or telephone Polruan 478

AIRCRAFT H.F. Rx type R4 187 and Control Box these are a crystal controlled $A x$ intended for remote control and will provide up to 24 channels in the range 2.8 to 1 B Mc / s. The $R \mathrm{x}$ is a dual conversion type with 2 RF stages.
I.F. filter. N.L. BFO, $0 / \mathrm{P}$ stage. etc.. uses 16 B 7_{g} I.F. filter. N.L. $8 F O$, O/P stage. etc.. uses $16 \mathrm{B7g}$
valves, 1st IF $2.15 \mathrm{Mc} / \mathrm{s} 2 \mathrm{nd}$ IF 100 Kc . Normal powe valves, ist IF $2.15 \mathrm{Mc} / \mathrm{s} 2 \mathrm{nd}$ IF 100 Kc . Normal power
$1 / \mathrm{P} 24$ and 19 vDC or 200 v HT and 19 vDC crystals I/P 24 and 19 V DC or 200 v HT and 19 v DC erystals
requrred HC6/u type not supplied. supplied with control requrred $H C 6 /$ u type not supplied, supplied with contro
box, circs and notes in good S / H condition, $£ 16.20$. OPTICAL HEAD UNITS were part of Colour TV forward projection system, main head unit mounted on base with fine and coarse adjustments of position contains optical mirror $141 / 2^{\prime \prime}$ dia. approx. $112^{\prime \prime}$ deep at centre with centre hole $31 / 2^{\prime \prime}$ mounted in circular housing $27^{\prime \prime}$ long $19^{\prime \prime}$ total weight approx 112 lbs. unit also contains defiection and focus coils for CRT but CRT
not fitted in good S/H condition. $£ 48.60$.
FOSTER ELEC MAINS STABILIZERS I/P 230V $50 \mathrm{c} / \mathrm{s} 0 / \mathrm{P} 230 \mathrm{v}$ at $+-1 \%$ at 60 amps 14 KVA max. I/ P variation +9 or -17% these units are not enclosed. were used for Colour TV studio lighting. Uses motor driven Variac with Trans, could also be used to supply 0 to $35 \mathrm{v} A C$ at 60 amps . good S / H condition. $£ 81$
A. H. SUPPLIES

57 MAIN ROAD. SHEFFIELD S9 5HL TEL. 444278 (0742)

NOTTINGHAMSHIRE

 COUNTY COUNCILRADIOTELECOMMUNICATIONS SYSTEM
Tenders are invited for the supply and installation of a radio-communications system for the Planning and Transportation Department. Further details can be obtained from the Supplies Officer, Nottinghamshire County Council, Rolleston Drive, Arnold, Nottingham. The closing date for the receipt of tenders is Friday, 27th June, 1975.

A. SANDFORD

Director of Administration

Ministry of Agriculture and Natural Resources

Chief Radio Mechanic

Salary up to $£ 5,017$ (this includes a tax free element of $£ 3,330$) + Tax Free Gratuity

To be responsible directly to the Project Manager Viphya Pulpwood Project for the installation and maintenance of up to 32 VHF radios and 2 SSB radios. He will be responsible for planning and equipping the radio workshop as well as fault location and repair of all battery operated (Magneto) field telephones on the Project.

Applicants should have a minimum City and Guilds Certificate in Radio Communications or equivalent qualification. Previous experience of Pye Radio Telephones is essential and experience of Pye low-power SSB (HF) radio telephones would be desirable

Generous paid leave with free passages and baggage allowance. Education allowances and subsidised housing. Loan for the purchase of a car. Free medical attention

Please apply to MALAWI BUYING AND TRADE AGENTS, Recruitment Section, c/o Berners Hotel, Berners Street, London W1A 3BE for application form and further details quoting reference number 819/D.

Depot Engineers

Due to continually increasing commitments we need to expand our shore based engineering staff at our service depots at Aberdeen,
Newcastle and Tilbury.
The work is concerned with installation and service of our world famous communication equipment on board commercial vessels of all types.

In some instances opportunities may exist for overseas travel.
The ideal candidate will probably have served as a Radio or Electronics Officer at sea and will have three or more years sea service.

A company vehicle is provided for business and personal use.
If you are interested and would like to know more please write or telephone (reverse charges) to:

Jonathan Smith,
International Marine Radio Co. Ltd.,
Peall Road, Croydon, CR9 3AX
Telephone 01-6849771

ITT Marine

BORED LOOKING THROUGH THE JOB ADS?

The best jobs don't necessarily appear in the sits. vac columns.

They are often to be found in the Electronics Appointments Register.

Our individual approach gives you a wider choice- -we have lots of jobs on our specialised registers and we may well have one tailor-made for you.

The service is absolutely free to you and completely confidential.

In effect we offer you the chance to find your ideal job, all for the cost of a phone-call.

So capitalise now on your specialised knowledge.
Call 01-734 6536, or fill in the coupon and we will send you an enrolment form by return of post.

Electronics Appointments Register

Please send me details of how to enrol on one of your Appointment Registers:
Name
Address

Post to G.A.R. 76 Dean Street London WI. 01.734653 h

ENGINEER/TECHNICIANS ELECTRONICS

An unusual job for versatile and able men

Energy, Natural Resources and Environmental Problems are our concern. To keep pace with world-wide demand we have further vacancies for Engineer/Technicians.

They will plan, prepare and maintain sophisticated electronic systems in our laboratories at Borehamwood, then instal, operate and maintain them in the field - and the "field" could be a vessel in the North Sea, an aeroplane over South American jungle or a tent in Africa - we operate world-wide.

Qualification to HNC level is desirable but more important is practical ability and a broad experience of modern instrumentation including digital techniques. An appetite for hard work and willingness to accept responsibility are essential qualities. Familiarisation training will be given.

Field assignment will normally total six months a year. So the vacancies are better suited to younger single men. Appointments are permanent and pensionable; realistic salaries are augmented by generous field allowances.

Hunting
For a detailed job description and application forms, apply to:
The Personnel Manager
Hunting Surveys \& Consultants Ltd.
Elstree Way, Borehamwood
Herts WD6 1SB

Audio Visual Adviser

Applications are invited for the post of Audio-Visual Adviser in the newly established audio-visual unit of the Uskmouth Training Centre, based at Uskmouth, West Nash, Nr. Newport, Mon., serving Power Stations, Transmission districts and other locations within the South western Region of the Generating Board.
The unit possesses CC TV recording equipment for use on location or in its own fully equipped studio, together with a comprehensive range of other audio-visual equipment.
The successful cndidate will control the unit staff and will be capable of directing and producing audio-visual aids including video tapes for training and other purposes. The candidate must have a working knowledge of CC TV applications and will probably have an engineering background but other backgrounds may be considered. He should be qualified to HNC level or its equivalent in his field.
The salary will be within the range $£ 3529$ to $£ 4754$
Application forms may be obtained by telephoning Bristol 32251 . Ext. 324 or by letter to the Personnel Manager, and should be returned to him by not later than 13 th June, 1975, quoting Vacancy No. $110 / 75 / W W$.

GILFORD INSTRUMENTS

LTD.
An expanding company supplying Spectro Spectrophotometers and associated analytical Instruments for use in Universities and Hospitals, require an

ELECTRONIC SERVICE TECHNICIAN

The applicant will be based at Teddington, but further prospects will depend on ability. Young persons will receive every encouragement for further studies.

Telephone 01-977 0918
or write 48 Church Road, Teddington, Middx. \qquad

[^5]ARTICLES FOR SALE

555	741C		
TIMERS	OP-AMPS		
$25+$	$\mathbf{3 9 p}$	$25+$	$\mathbf{2 3 p}$
$100+$	$\mathbf{3 5 p}$	$100+$	$\mathbf{1 9 p}$
$250+$	$\mathbf{3 2 p}$	$250+$	$\mathbf{1 7 p}$
1N4001		$100+$	$1000+$
1N4002		$\mathbf{2 . 5 p}$	$\mathbf{2 . 0 p}$
1N4003		$\mathbf{2 . 8 p}$	$\mathbf{2 . 2 p}$
1N4004		$\mathbf{3 . 2 p}$	$\mathbf{2 . 5 p}$
1N4005		$\mathbf{3 . 6 p}$	$\mathbf{2 . 9 p}$
1N4006		$\mathbf{4 . 7 p}$	$\mathbf{3 . 6 p}$
1N4007	$\mathbf{4 . 0 p}$	$\mathbf{4 . 0 p}$	
AddVat@25\%; Minimum order charge $£ 5$			

JUNIPER ELECTRONJCS
PO Box 61, Southampion

SUB-MINIATURE MAINS TRANSFORMERS

SCN-0-240V/12V-0-12V. $50 \mathrm{~m} / \mathrm{a}$ max 28 mm W. 20 mm $H 26 \mathrm{~mm}$ D. $£ 1.00$ each PHONO LEADS
Phono Plug to Phono Plug. Single Screened Grey Cable length 2 yards...Min 5 for £ 1.00 (Single sockets available with above $6 p$ each CERMET TRIMMERS $81 E$, 5 K ohms
Norganite NEONS, 240V, RED
Circular Flange: $\sigma^{\text {Head }} 3 / 6^{\prime \prime}$ dia, White Plastic Tapered Body $11 / 2^{\prime \prime}$ long. Connection Leads protrude $2^{\prime \prime}$ Min 5 for $£ 1.00$

TRANSISTORS, BRANDED, FULL SPEC
Type BFY 64 Min 10 for $£ 1.00$ All prices include VAT. and postage CW.O
OR Call at our self-service retail premises (Mon.-Sat 9.30-6.00)

LINWAY ELECTRONICS
843 Uxbridge Road, Hayes End, Middx. UB4 8 HZ Tel 01-573 3677

44, 30 V 1A

 $48,60 \mathrm{~V} .1 \mathrm{~A} £ 2.75 \mathrm{p} . \mathrm{p} .38 \mathrm{p}, 2 \mathrm{~A} £ 4.45$ p.p. 42 p , 3A £6.70 p.p. $52 \mathrm{p}, 4 \mathrm{~A}$ £7.80 p.p. 67p, 5 A £8.65 p.p. $67 \mathrm{p}, 6 \mathrm{~A}$ £10' p.p. 82 p . Open type, table lop connections. Quotations for sizes up to 500 VA. Add 8\% V.A.T. TRANKIT ELECTRICAL, 192 SILVERTONHILL AVENUE, HAMILTON ML3 7PF.

ANTIQUE RADIO ENTHUSIASTS: For all your ANTIQUE RADIO ENTHUSIASTS: For all your requirements in radio 1920 to 1945 contact íull 1975 catalogue now available, price 40 p post paid. Tudor Rees. 64 Broad St, Staple Hill, Bristol, BS16 5 NL . Tel: 0272 565472.

LINSLEY-HOOD 75 watt amplifiers constructed, converted and repaired. Kit of parts for switch click and mains borne interference supprespacking. I. G. Bowman, 35 Park Hill Road, rorquay, S . Devon. (4649

51 MM B. \& H. 631 Sound Projector C/W Speaker and Transformer, £135. Hilton, 9 West Hill. Dartford 20009.
(4574

AARVAK ELECTRONICS, 3 Channerl soundLight Converters from $£ 17$; Strokes, $£ 21$; Leght Converters from fi7; Strokes, f21; (W) West Green Road (side door) Lond 98A N15 5NS 01-800 8656 (side door), London

TRANSFORMERS

Similar to RS components obsolete types

$196-038$	$£ 6.80$
$196-044$	$£ 5.48$
$196-325$	$£ 1.94$
$196-331$	$£ 1.79$
$196-347$	$£ 2.18$

Add 8\% VAT. Post $25 p$
APEX TRANSFORMERS LIMITED
station road southmolton n. devon ex3z bll

Electronics Technologist Quality Assurance
 YOU are a qualified Electronics Technologist
 - possess extensive practical knowledge of radio and T.V
 - have experience in devising methods of test
 - are able to develop manufacturing specifications for a wide range of equipment.

WE have an opportunity for you to join the Merchandise Technical Services team in Nottingham to initiate quality assurance work on ranges of audio and other electronic products bought for resale in our stores

Conditions of employment are first class and include excellent pension and profit sharing bonus schemes. Help with relocation expenses is available

Please write to :- J. F Pattison, Employment Manager,
The Boots Company Ltd.,
Station Street, Nottingham NG2 3AA.

Jointhe EMI ServiceTeam at Hayes

We urgently require

Electronic Repair \& Calibration Engineers

for the repair and calibration of a wide range of electronic instrumentation, including oscilloscopes, DVMs, pulse generators, powersupplies etc
Applicants should be aged 18 years and should have had at least iwo years background in electronics. Further training will be given in appropriate cases

Close Circuit Television Engineers

for the servicing and commissioning of CCTV, VTRs etc Applicants should be aged at least 19 years, and must have had some experience in television receiver servicing
For both of these positions, there will be attractive starting salaries according to age, experience and ability

$37 \frac{1}{2}$ hour week, plus paid overtime

Don't delay, for further details telephone or write to M. Ford, 01-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Hayes, Middlesex.

APPOINTMENTS

ENGINEER
 (With TV design experience).

R.S. Components Limited, Britain's biggest distributor of electronic components requires a high calibre engineer, between 25 and 45 years of age, who possesses a thorough understanding of TV service.

This new post within our Group offers a good opportunity for an engineer who is eager to further his experience to become our resident expert on the component requirements of the service industry.

Duties will include component evaluation, specification and answering customers' telephoned technical enquiries. Additionally, the candidate will be expected to maintain a close liaison with the service industry and manufacturers, which will involve some travel around the U.K.

This new important post commands a good salary commensurate with ability and there is every opportunity for advancement. Excellent working conditions, generous holiday entitlement and pension scheme

Qualifications - HNC or Degree Standard
Write giving brief résumé of your career to date or ring for an application form to:
Chief Engineer, RS Components Limited 13-17 Epworth Street, London EC2P 2HA Tel. 01-253 1222.

Economise on Semiconductors
All prices include VAT

\star Lower 741C prices $100+24 \mathrm{p}$
\star Low Price CMOS
\star Plastic 3 terminal Regulators
* Low price DIL sackets

AY-5-1224 Digital Clock IC. 12 or 24 hr .7 segment or BCD outputs. drives LED Minitron, LED displays. Simple intarfacing. 16 pin DIL. IC + data + circuits f4.65. HP 5082.77400.3" digits $\mathbf{f 2 . 0 0}$. IC $+40.3^{\prime \prime}$ digits $\mathbf{f 1 2}$ IC $+40.3^{\prime \prime}$ digits + transistors + transformer f14.00
TBA8 10AS 7W Audio Amp. Thermal protection + data + circuit $\mathbf{f 1} .20$
TCA940 10W Audio Amp. Thermal protection, current limit + data + circuit $\mathbf{£ 2 . 6 0}$ TAD100 Radio IC + filter + data $\mathbf{f 1 . 6 0}$
Carbon film High Stability $\frac{1}{6} W 5 \%$ resistors 10 ohm- 2 m 2 ip ea., $109 \mathrm{p}, 10080 \mathrm{p}$ same value ${ }^{*}$ By return serwice. Prices include VAT. P \& P 10p (UK) overseas at cost. All items new TI,

SILICON SEMICONDUCTOR SERVICES

41 Dunstable Road, Caddington, Luton LU1 4AL

We know some of the best jobs in the $£ 2000-£ 5000$ p.a. bracket. But do we know about you?

Unless you fill in this coupon and post it off to us, there are hundreds of rewarding jobs you ll never get to hear about. You'll either miss them reading your paper or they just won't be advertised. And all you needed to do to be considered as a candidate was to have your name entered on our register. It costs you nothing but a 7 p stamp and could make all the difference to your future. What are you waiting for?

lansdowne

Appointments Register

OESIGN development repair test and smal production of electronic equipment. Specialist in production of printed circuit assemblies. lege Street, London NW1 9NN. 01-267 0201. (29

CAPACITY available to the Electronic Industry Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 jig borer Industrial Engineering Ltd. 1 Mackintosh Lane E9 6AB. Tel: 01-985 7057

Find out more by writing to Stuart Tait, Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 6585 (any time - 24 hour answering scrvice).

Please send me a full explanation of your free service.

Address

\qquad

WW $31 / 5$

CAPACITY AVAILABLE

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printing circuit assemblies. D. \& D. Electronics, 42 Bishopsfield, Harlow, Essex. Tel: Harlow 33018.

CAPACITY available for the Assembly of Electronic or Electrical Components P.C.B.s, etc.. Small or large batch production. Remploy

ENGINEER makes anything unusual. Inventors models, displays. Special tools and equipment. Seymour, 30 Devonshire Drive, Stapleford, Nottingham.

BOOKS

A Giant

SEMICONDUCTOR DICTIONARY
in evals. 1939 paged
THE BIGGEST BARGAIN EVER OFFERED IN THE
THE BIGGEST BARGAIN EVER OFFERED IN THE dictionary in 7 languages is the result of an intensive collaboration between scientists and technicians. In 2 volumes are contained 1,373 pages. Although published at $£ 16$ we are pleased to make a special offer of this important reference work to readers at $£ 6.50$ per set, carriage 75 p. The volumes are in leather styled finish and must have cost over £10 to print
POWER SUPPLIES FOR ELECTRONIC EQUIPMENT. J. R. Newicki. Published recently in 2 vols. A ull treatment of all power supplies is given. Originally $£ 4.50$ per volume. Bargain price $£ 4$ for the 2 volumes postage 50 p.
FREE. THE TECHNICAL \& SPECIALISED BARGAIN BOOK BULLETIN. Contains techn cal. radio, electronics, scientific and specialised sent free on request.
FREE, THE BARGAIN BOOK GAZETTE FREE, THE BARGAIN BOOK GAZETTE. Contains thousands of interesting books at bargain
prices. Subjects include hobbies, transport aviation, coliecting, etc. Something for everybort Published monthly and sent free on request.
DEPT. W.W. GERALD MYERS (Bookselier \& Publisher). 138 Cardigan Rd., Leeds 6. Callers Welcome. Please add extra postage for abroad.

LABELS, NAMEPLATES, FASCIAS on anodised aluminium or perspex. Any quantity, superb quality, fast delivery. G.S.M. Graphics Ltd. $1-5$ Rectory Lane, Guisborough (Tel. 02873 4443). Yorks
(26

PRINTED CIRCUIT BOARDS - Quick deliveries, competitive prices, quotations on request, roller tinning, drilling, etc., speciality small batches, larger quantities available. Jamiesons Automatics Ltd, 1-5 Westgate, Bridlington, N. Humberside, for the attention of Mr. J. Harrison. Tel: (0262) 4738/77877. (18)

WANTED MARINE RADIO COMMUNICATIONS EQUIPMENT

Must be type-approved to B.P.O. standards for existing and new stations, and of U.K. or European manufacture
Items required include main receiver, emergency receiver, main transmitter (MF, IF, HF and AM, CW, MCW, SSB) and autokeyer
Please send full details of equipment available, location, price, and any spares available to:

Box No. WW4685

Are you obtaining the full benefit from the disposal of your electronic and computer scrap?

As refiners of base and precious metals we purchase manufacturers and distributors scrap arisings and redundant componen including

PRINTED CIRCUITS•RELAYS TRANSISTORS PLUGS CONNECTORS

Contact us
for prompt and

The COMMERCIAL SMELTING \& REFINING CO.Ltd. 171, Farringdon Rd.,LOndon EC1R 3AL-01- -837 1475

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS

126 Headstone Road Harrow, Middlesex Tel. 01-965 2243

hOLIDAYS

WE SELL CONSTRUCTION PLANS
Police-Radar-Detector, Open Channel. Electro Ball, Telephone Scrambler, Quarter Mike, Tail Transmitter, TV Camera, Infinity Transmitter, Voice Typewriter, each plan are US. $\$ 7.50$ Play TV Ping Pong $\$ 11.50$, Infra Red TV Camera $\$ 1100$, Infra Red Mike $\$ 13.50$ Martinı Olive Mike $\$ 13.50$. Catalogue $\$ 0.75$. T. Strik, Postbox 618 Rotterdam, H OLLAND
 Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley 4986

SURPLUS COMPONENTS, Equipment and Com puter panels wanted for cash. Ring Southamp

TELEPHONES WANTED. Candle stick type or older (Foreign \& English). 01-722 4151. (4624

TAPE RECOFDING ETC.

RECORDS MADE TO ORDER

DEMO DISCS
VINYLITE
MASTERS FOR
PRESSINGS
Single discs, 1.20, Mono of Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT Delivery $3-4$ weeks Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes We cut for many studios UK/OVERSEAS SAE list

DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs Tel. 2273

RECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND

```
HRO Rx5s, etc., AR88, CR100. BRT400, G209 640, etc., etc., in stock, R. T. \& I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London
```

[^6] ville Rd., London, E.11. Ley 4986.

EDUCATIONAL	
CANDGEXAMS	
Make sure you succeed with an ICS home study course for C	
and G Electrical Installation Work \& Technicians, Radio/TV/Electronics Technicians. Telecomms Technicians and Radio Amateurs.	
Make the most of the current boom! Learn the techniques of servicing Colour and Mono TV sets through new home study courses, appraved by leading manufacturers	
TECHNICAL TRAINING	
Home study courses in Electronics and electrical Engineering. Maintenance, Radıo. TV. Audio, Computer Engineering and Programming. Also self-build radio kits. Get the qualifications you need to succeed	
Free detanls from.	
INTERNATIONAL CORRESPONDENCE SCHOOLS Dept. 734, Intertext House, London SW8 4UJ or phone 01-622 9911 (sll hours)	

(439)

COURSES

RADIO and Radar M.P.T. and C.G.L.I Courses Write: Principal, Nautical College, Flectwood FY7 8JZ

VALVES WANTED

WE BUY new valves, transistors and clean new components, large or small quantitios, all de tails, quotation by return - Walton's, 55 Wor cester St., Wolverhampton.

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage Ltd North Somer conce send hetube 2507-85 300 Somercote, Louth, Lincs. or phone 0507-85 300 .

AUDIOMASTER BACKGROUND MUSIC SEI vice, sales. Tape programmes. p. J. Equip ments, 3 Onslow Street, Guildford 4801. (12

NEW GRAM AND SOUND EQUIPMENT

GLASGOW. Hi Fi, Cassette Decks. Tape Record ers, Video Equipment, always available we buy, sell and exchange for Hi Fi sets and photographic equipment. VICTOR MORRIS Audio Visual Lid, 340 Argyle Street, Glasgow G1, 8/10 Glassiord Street, Glasgow, G2, 3 Sauchiehall Street, Tele: 041-2218958

TERMS OF BUSINESS: CASH WITH ORDER
EXPORT ENQUIRIES WELCOME CALLERS WELCOME TUES.-SAT PLEASE ADD 25% VAT. MINIMUM ORDER £ 1 please enclose stampeo adonessed enveiope with all enouriries

15082 MULLARD 150 V Reg. (Equiv OA2) (new, boxed). 40p.
ROTARY SWITCHES 9 way, 4 poie each.
each. \mathbf{N}-TYPE SKTS. (4 hole chassis mounting 50 ohms, small coax lead type). 50 p each. BNC PLUGS. (Amphenol, new, packed) 35 p each. (4 for $\mathrm{E1.20}$)
BNC SOCKETS (4 hole chassis mounting lead type) 35 p each (4 for $£ 1.20$) GREENPAR• (GE30015) Chassis Lead Terminations. (These are the units which bolt on to the chassis, the lead is secured by screw cap, and the inner of the coax passes through the chassis) 30p each. 4 fo E1.00
FERRITE COILS on 3/ain dia territe rings HEATSIN.
high) 12 fins (dritled for $1 \times 2 \mathrm{in} \times 2 \mathrm{in}$
$\times \mathrm{TO} 3$ transistor). Brand new. 45 p each. $\times 103$ VHF RF, chokes (wound on $22 \mathrm{~K} 1 / 2 \mathrm{~W}$ Resistors). 5 for 35 p .
SMALL CHRONE HANDLES, $1 / 4 \mathrm{in}$. dia. $11 / \mathrm{in}$. between holes. 1 in . clearance,
tapped 4BA (with screws and washers). 2 tapped 4BA (with screws and washers). pairs for 40p. RELAYS, single pole, change over, 12 V ITT HIGH-GRADE ELECTROLYTIC. 6BOO ITT HIGH-GRADE ELECTROLYTIC. 6BOO capacitor clip for vertical mounting. 50p each (quantity discount available)
 mid at 63 V , size $115 \times 51 \mathrm{~mm}$. 75 p each (Quantity discount available) TV PLUGS (metal type) 6 for 50p TV SOCKETS (metal type) 50p TV LINE CONNECTORS 5 for $50 p$ PL259 (PTFE) PLUGS 50p each or 5 for
C2.25. SO239 (PTFE) SOCKETS 50p each or 5 for $\mathbf{£ 2 . 2 5}$
25-WAY ISEP PLUGS and SUCKETS 40p set (1 plug +1 skt). Plugs and sockets sold separately at 25 peach.
BNC INSULATED SOCKETS (single-hole type) 65 p each
DIN SPEAKER SKTS. 2-pin, 4 for 30p

STANDARD JACK PLUGS, $1 / 4 \mathrm{in}, 4$ for 50p.
ANDREWS 44AN FREE SKTS (N-Type) for $\mathrm{FH} 4 / 50 \mathrm{~B}$ or $\mathrm{FHJ} 4 / 50 \mathrm{~B}$ cable £1.00 SO239 E1.25 each

VALVES

Qavo3/10 (ex equipment) 75p each 2C39A (ex equipment) 1.00 each. OOVO2/6 (ex equipment) $£ 1.00$ each $4 \mathrm{CX2508}$ (ex equipment) $£ 2.10$ each. 4×2508 (ex equipment) $£ 1.50$ each DET-22 (ex equipment) 2 for $£ 1.00$.

MAINS TRANSFORMERS

$240 V$ in. voltages quoted approx RMS
TYPE $10 / 210-0-10 V$ at 2 A £1.50.
TYPE 10/2 10 -0-10V at $2 \mathrm{~A}, \mathrm{E} 1.50$. TYPE 1258 S Approx. 125 V at 30 mA 65p. TYPE $727 / 3400 \mathrm{~V}$ at $10 \mathrm{~mA}, 200 \mathrm{~V}$ at 5mA. 6.3 V at $400 \mathrm{~mA}, £ 1.25$
TYPE $16 / 616 \mathrm{~V}$ at 6 A .45 V
£4.00 $16 / 616 \mathrm{~V}$ at $6 \mathrm{~A}, 45 \mathrm{~V}$ at 100 mA TYPE $28 / 42 B V$ at $4 \mathrm{~A}, 125 \mathrm{~V}$ at 500 mA . E4.00.

TYPE 129400 V at $20 \mathrm{~mA}, 200 \mathrm{~V}$ at 10 mA | $63 V$ at 500 mA, |
| :--- |
| TYPE 70462.25. |
| 250.0 | $\begin{array}{lll}\text { TYPE } 70462 \quad 250-0.250 V \\ 6 & 50-0-50 V\end{array}$ 6 3V. £1.75. $\begin{array}{ll}\text { RAOIOSPARES } & \text { 500-WATT AUTO } \\ \text { TRANSFORMER, } & \text { O }\end{array}$ TRANSFORMER, $100 / 110,150 / 200$

$220 / 240,250 \mathrm{~V}$ tapped input and output step up or step down facility, ex new equip s6.00.

MAINS ISOLATING TRANSFORMER, 375VA. 1 tap
new $£ 6.00$
MAINS ISOLATING TRANSFORMER (ex equip), in metal cases, totally enclosed tapped mains input. $110-240 \mathrm{~V}$ etc.. output 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at 0.5A. £11.00. $A S$ ABOVE. output 240 V at $12 \mathrm{~A}-12 \mathrm{~V}$ a
$3 \mathrm{~A}+22 \mathrm{~V}$ at $2.5 \mathrm{~A} £ 27.50$.

ELECTROLYTIC CAPACITORS ALL SEATRONICS MANUFACTURE

$C S A=A X I A L$ LEADS
CSB = SINGLE ENDED
MINIMUM ORDER OF 100 OFF

HIGH-QUALITY SPEAKERS

$83 / \mathrm{in} \times 6 \mathrm{in}$ elliptical, 2 in deep, 4 ohms
inverse magnet. rated up to 10 Watts $\mathbf{~} \mathbf{£ 1 5 0}$ each or 2 for $£ 2.75$ (quantity

ELECTRONIC IGNITION

 FOR YOUR CAR!Cut petrol costs by up to 15%. Install Electronic ignition in your car in minutes. Reduces petrol consumption, increases overall performance. Prolongs contact breaker and spark-plug life. Makes slaring so much easier. Each unit (British years 50,000 miles IMPORTANT: STATE POSITIVE EARTH or NEGATIVE EARTH Post paid.

TEST EQUIPMENT

MARCONI STANDARD SIGNAL GEN ERATOR. TFB67/2. $15 \mathrm{kHz}-30 \mathrm{MH}$ £100.00.
MARCONI AMPLITUDE MODULAOACAL 125 MHz 5.00
ACAL 125 MHz DIGITAL FREQENCY METER. Type 801R2, 0.01 V to 1 V E275.00.
TEKTRONIX 524D SCOPE. DC- 10 MHz . ¢ 70.00 .
MARCONI STANDARD SIGNAL GENERATOR. TF144H, $10 \mathrm{kHz}-72 \mathrm{MHz}$. E195.00.
ROHOE AND SCHWARZ FREQUENCY DEVIATION METER.
SOIARTRON DIGITAL
SOLARTRON DIGITAL VOLTMEYER. Type LM1420.2, with "TAUE RMS AC
UNIT" 10 mV -1000V, 5 -digit display, new ROHOE AND SCHWARZ POWER SIGNAL GENERATOR. SMLM 30300 MHz , up to 5 V output. E 300.00 . MANUFACTURERS - SEND SAE FOR OUR LATEST BARGAIN CAPACITOR LIST.

PYE RADIO-TELEPHONE EQUIPMENT
Cambridge, Westminster, Motofone. Euro-
pa series. Send s.a e for full details, stating pa series. Send s.a e for full details. Stating requirements, frequency, channel spacing, ELECTRONIC SERVICES

CRYSTALS FOR PROFESSIONAL AND AMATEUR USE

Ne can supply crystals to most commercial specifications. with an express service for that urgent order. For the amateur we carry a large stock of the more popular frequencies. backed by a quick service for those "Specials"
Please send SAE for details or telephone between $4.30-7 \mathrm{p} . \mathrm{m}$ and ask for Mr. Norcliffe.

TA ARROWE PARK ROAD, WIRRALL MERSEYSIDE L49 OUB
Tel. 051-6778918 (until 7 p.m.)
(58)

MUIRHEAD Pametrada D489E Wave Analyser, handbook. spares. Gertsch FM3 Frequency
Meter $.001 \% 20-100 \mathrm{MHz}$ Both checked and acMeter $.001 \%$ 20-100 MHz. Both checked and ac-
curate. - Hythe (Kent) 67378 .

VACUUM is our speciality, new and secondhand rotary pumps, diffusion outfits, accessor les,, coaters, etc. Silicone rubber or varnish (Sales) Lud. 1 Mayo Road, Croydon. $01-684$ 9917 .
(24
60 KHz MSF Rugby and 75 KHZ Neuchatel Radio Receivers Signal and audio outputs. Small, compact units. Two avallable versions

MURPHY A 92 ("Stationmaster ") condition immaterial, but must be complete. Hill, "Hillside," Peaslake, Guildford. Dorking 730186.

CLEARING distributor stocks, transistors, diodes, components, etc. Sample pack 65p incl. postage or send stamp for list. Redhawk worth. Herts. Mail Order only. (4499

MAINS POWERED Motorola i.c. FM Stereo Decoder for Quad FM tuner, as fatured in February Hi-Fi News. Kit of parking 20 p . I and tested $\begin{aligned} & \text { fowman, } 85 \text { park Hill Road. Torquay }\end{aligned}$ Devon.

fibre optic Gupplierg
 MARE'S TAIL Oecoiative Display $22 "$ dia $7.000+$ Fibres $\mathbf{E 1 0 . 0 0}$ FIBROFLEX SIZE 1440 Surand Flexible Glass Light Conduit. 1.14 m

 CROFFON 1610 Flexible 64 Strand Plastic Light Conduit. Active Dia

 $100 \mathrm{~m} £ 14.00$. $\mathrm{FP} 6010 \mathrm{~m} £ 4.00 ; 100 \mathrm{~m} £ 30.00$
 OPTIKIT $L 66$ Convex Glass Lenses Dia $7 / 14 / 21 / 26 / 47 / 55 \mathrm{~mm} £ 3.00$
OPTIKITS RRS Five Retro-Reflectors for Optical/Infra-Red beam system OPTKITs RRS Five Retro-Reflectors for Opical/
Digs. $22 / 36 / 44 / 83 \mathrm{~mm}+150 \mathrm{~mm}$ Strip $\& 2.50$
ULTR SONIC TRANSOUCERS ULTRA SONII TRANSDUCERS SONSITVE 40 kHz T $x /$ R \times pair $£ 3.50$ CIRCULAR POLARISERS Reduce glare om all tyon CIRCULAR POLARISERS Reduce glare om all TYDAs of instrume
RED/AMBER/GREEN OF NEUTRAL 50 mm so 70 p ; 75 mm sq. $\$ 1.40$ OPTOLECTRONICS LIGHT SOURCES 2 DETECTORS MV54 2 mm Red LED 20p. MLED 500 TO92 Red LED 20p.
$\times C 209-R e d ~(~$
mmm) 20 p . XC209-Y, XC209-G (Amber, Green) 30 p. XC209-Red (3mm) 20. XC209-Y, XC209-G (Amber, Green) 30p
MLED92 Intra Red Emitier 30p. MLS 203 Photo. Thyristoe $\mathbf{E 1 . 2 0}$.
2N5777 High Sensitivity Photo 2N 5777 High Sensitivity Photo Darlington 25 V 50 p .
MFD 1502 mm High Speed Photo-Transistor (4 uS) 4 MRD 1502 mm High Speed Photo-Transistor (4 uS) 40 OV 70 p
Piease add 8% VAT to prices. S. A.E. please for shor form/dour

Build a mixer to your own

a adio modules
For full details contact Richard Brown at Zero 88. 115 Hatfield. Road St Albans. Herts. AL1 4JS Tel. 63727

Hair Transplant

For free brochure, clip this ad. and send to: Room 6 HAIR TRANSPLANT INTERNATIONAL 502 Ecclesthall Road, Sheffield

CRYSTALS

Fast delivery of prototypes and pros- stion funs

INCLUDING:

Interface Quartz Devices Limited 29 Market Street, Crewkeme, Somerse
Tel. (046031) 2578. Telex: 46283

CONSTRUCTION AIDS - Screws, nuts, spacers, etc., in small quantities. Aluminium panels punohed to spec. or plain sheet supplied Fascia panels etched aluminium to individual requirements. Printed circuit boards - masters, negatives and board, one-off or small numbers Send 9p for list. Ramar Constructor-Services, 29 Shelbourne Road, Stratford on Avon, Warks. Tel. Stratford on Avon (STD 0789) 4879.

LADDERS unvarnished 14 ft 1 in , closed $25 f t$ 4in extd. $£ 21.40$ delivered. Tel: Telford 586844

LOW-COST I.C. MOUNTING. Ideal for R. \& D. 1000 pin sockets £4. S.A.E. details and sample. Trial pack 50p (pi\&p 8p). P.K.G. ELECTRONICS,
Oak Lodge, Tansley, Derbyshire. (4665

TELEQUIPMENT SERVISCOPE MINOR, good condition 520 . 12 Adley Semiconductors resitivty meter. With probes, new 5180 . Lamden, 7

WIRELESS WORLD complete years 19491950 $1951 \quad 1952 \quad 1954 \quad 1962 \quad 1965$ 1970, offers? Buyer collects, Bromley. P.O. Box WW'4675

GEC/MARCONI V.H.F. High Band 12.5 spacing base Station and 14 Mobiles (R660 and 665) With Selcall complete with high gain Aerials

LOW COST IC MOUNTING. Use Soldercon IC socket pins for 8 to 40 pin DILs, 70 p (plus
5 p VAT) for strip of 100 pins, fl.50 (plus 12 p $5 p$ VAT) for strip of 100 pins, fl. 50 (plus 12p
VAT) for 3 strips of 100 , 44 (plus 32 p VAT) for 1,000. Instructions supplied. Send for sam ple. Sintel, 53 c Aston Street. Oxford. Tel:
086543203 .
 Baker Group 35, 38 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3, 8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 1300 Mk II Celestion MF 1000 horn, 8 or 15 ohm EMI 13×8
EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} .8 \mathrm{ohm}$ EMI $13 \times 892390 \mathrm{FP} 10$ watt 3.8 ohm EMI $13 \times 8,350.8$ or 15 ohm EMI $13 \times 8,20$ watt bass 8 ohm ELAC 59RM 10915 ohm 59RM 1148 ohm £2.75 ELAC $6 \frac{1}{2} 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Crescendo 12A of B 8 or 15 ohm . £3.25 Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18,8 or 15 ohm Fane 701 Horn
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm. Goodmans 8P of 15 ohm . Goodmans 10P 8 or 15 ohms Goodmans 12P 8 or 15 ohms Goodmans 12P-D 8 or 15 ohms Goodmans 12P-G 8 or 15 ohms Goodmans Audiom 2008 or 15 ohm. Goodmans Axtent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twin Axiom 8" 8 or 15 ohm Goodmans Twin Axiom 10" 8 or 15 ohm Kef T27
Kef B110
Kef B139
Kef T15.
$£ 8.00$
$\mathbf{8} .50$
\qquad $£ 9.50$
$£ 11.00$

$£ 11.00$
$£ 9.50$ $€ 9.50$ $€ 8.00$ 14.50 $£ 6.20$ 10.20 E2.00 2.35 3.25 .65
.75

Kef T15.
Kef DN 12
Kef DN13
Richard Allan CG8T 8 ohm STC4001G Super Tweeter Wharfedale Super 10 RS/DD Castle Super 8RS / DD Tannoy $10^{\prime \prime} \mathrm{HPD}$ Tannoy 12"، HPD Tannoy HPD Radford BD25
Radford MD9 Radford MD9
Radford TD3 Radford FN 12 Baker Major Module Goodmans DIN 20 (4 ohm) Goodmans Mezzo Twinkit Helme XLK 25 Helme XLK30 Helme XLK 50 Kef kit 1
K'ef kit III
Peerless 20/2
Peerless 30/2
Peerless 20/3
Peerless 50/4
Peerless $3 / 15$
Richard Allan Twinkit
Richard Allan Triple 8
Richard Allan Triple 12
Richard Allan Super 12
Wharfedale Linton 2 kir
Wharfedale Glendale 3 kit
Wharfedale Dovedale 3 kit
PLUS VAT AT 25%
Cabinets for PA and HiFi, wadding. Vynair, etc Send stamp for free booklet "Choosing a Speaker FREE with orders over $£ 7$ - HiFi Loudspasker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage: Speakers $38 p$ each. iweeters and cross-overs 20ρ each, kits 75ρ each ($£ 1.50$ pair)

WILMSLOW AUDIO

 Dept. WWLoudspeakers: Swan Works, Bank Square Wilmslow, Cheshire SK9 1 HF . Discount HiFi, PA etc: 10 Swan S treet, Wilmslow. Radio, HiFi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213

WW-060 FOR FURTHER DETAILS

EX-COMPUTER STABILISED POWER SUPPLIES

RECONDITIDNED, TESTED AND GUARANTEED

Ripple $<10 \mathrm{mV}$. Over-valtage protection, $20.130 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$. Stepdown transiormer to suit about f3. P \& P $£ 1.80$.
$5 / 6 \mathrm{v}, 8 \mathrm{~A} . \mathrm{E} 12$.
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}, 240 \mathrm{v}$ 0/60 c/s. $£ 3: 50$ (35 p).
PAPST FANS 6; dia $\times 2 \frac{3}{1 / 6}$ deep, type 7576 C5.00 (35p). 250w light dimmers $\mathbf{6 2 . 7 0}$ (15p) TRANSISTORS p \& p 10p
BC107/8/9 BC147/8/9 BC157/8/9 all 9p (85025p. BF182/3 40p. BF184 17p. BFW10 55p €1.10. 8D131 40p. NE555 55p.
electrolytics
$2.800 \mu 100 \mathrm{v} 80 \mathrm{p}(20 \mathrm{p}) 2.240 \mu 100 \mathrm{v} 75 \mathrm{p}$ (20p) $4.500 \mu 25 \mathrm{v} 60 \mathrm{p}$ (13p). $30.000 \mu 25 \mathrm{v}, 15.000 \mu$ 30 v . 65 p (35p) $5.000 \mu 35 \mathrm{v}$. 40p (15p). 2.000μ
50 v . with clip 35p (11p) $2.200 \mathrm{~m} 63 \mathrm{v} 35 \mathrm{p}(11 \mathrm{p})$

EX COMPUTER PC PANELS 2×4 in 25 boards $£ 1$ (35p).
OPCOA 7 seg led display SLA- 77 mm characters with dec. point....
QH bulbs $12 v .55 \mathrm{w}$.
50 mixed HI STABS
250 mixed resistors
250 mixed rapacitors 20A. 100 piv Si RECS.

SMALL ELECTROLYTICS
$22 \mu 10 / 16 \mathrm{v} . .10 \mu 35 \mathrm{v} .50 \mu 40 \mathrm{v}$. $100 \mu 40 \mathrm{v}$ $00 u 6 v ., 150 u 10 v$. $64 u 10 v, 300 \mu 10 v$

PIHER PRESETS 100 mW
220, 470, 4k7, 10k, 100k
12 for 50p (6p)
Postage and packing shown in brackets
Please add $\mathbf{2 5} \%$ VAT to TOTAL
KEYTRONICS
Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 $01-4788499$

No. 1000 BRAZING TORCH
Up to $5,000^{\circ} \mathrm{F}$

'CRAFTSMAN'S' TORCHES un to $6.000^{\circ} \mathrm{F}$

WW-077 FOR FURTHER DETAILS

EXCLUSIVE OFFERS

All Racal Unuts are in new condition.

COMPUTER HARDWARE

CAR1) RREADELS 80 col. 600 c.p.m.
 800, c.anin.
Prices on Application please add V.a.t. TO above AT APPROPRIATE RATE
P. HARRIS

ORGANFORD-DORSET
BH166ER
BOURNEMOUTH-865051

MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

VIDEO HIRE

EQUIPMENT, EDITING, OPERATORS' STUDIO FACILITIES ETC.
THE MOST EXPERIENCED VIDEO COMPANY IN THE BUSINESS
R.E.W.
R.E.W. HOUSE,

10, 12 HIGH STREET,
COLLIERS WOOD,
LONDON, SW19 2BE PHONE: 01-540 9684

APRS
 '75
 Exhibition
 of

Professional Recording Equipment

Connaught Rooms Great Queen Street Kingsway London

FREQUENCY STANDARD SD-11

Portable, battery operated 1 MHz and 10 MHz outputs phased locked to Droitwich on 200 KHz . Low spurious FM Int. /ext. aerial. low hyphen signal inhibit. Further data on test equipment and components from:
BURNS ELECTRONICS, 43a Chipatead Valley Road, Coulsdon, Surrey CR3 2RB. Tel. 01-668 7766.

J. LINSLEY HOOD HIGH QUALITY AMPLIFIERS AND TEST EQUIPMENT available from TELĖRADIO HI FI 325 Fore Sireet, Edmonton London, N. 9 (01-807 3719)		
Examples:		
75 Watt Amplitior P.A. Modula	KII £11.00	Made $£ 14.95$
Pre-amp Module	Kil $£ 10.25$	- £14.50
P.S. Units Iram	Kit $£ 13.70$	£15.30
F.m. Tunar, Basic Kit	£30.00	
De Luxa Kit	£35.00	
Stereo Dacoder, Made	\& 5.85	
Millivoltm ater Kit	£13.00	
Low Distortion Oscillator Kit	£ 8.95	
Tax extra, P/P extra		
FOR detailed and ILLUSTRATED LISTS SEND S.A.E.		

SEE PAGE 62
 LYNX ELECTRONICS

Add 15% extra
to cover increased VAT

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading, Berks. Tel: 582605

STEREO DISC AMP
 FINS OR BROADCASTING ANDDISC MONITORING

 Merformance MEETS IBA SPECIFICATION E95.00.
10-OUTLET DISTRIBUTION AMP

 GENERAL SUUDO WORK * FEEDNG MULTPLE SLAVE PA Meets IBA signal path specification Complete boxed unit f94.00PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high spead copying.
Orive crircuit $35 \times 80 \mathrm{~mm}$ tor $1 \mathrm{~mA} L H$ zero meter to BBC Completekit $\quad \mathbf{1 2 . 0 0} \quad$ Bult and aligned " $\mathbf{£ 1 7 . 0 0}$ ERNEST TURNER PPM 17.00 $64271 \times 56 \mathrm{~mm} £ 12.60 .643 .102 \times 79 \mathrm{~mm} £ 15.00$

PUBLIC ADDRESS : SOUND REINFORCEMENT

 SHIFTERS
SHIFTERS IN BOXES with Overloar LER shift bypass switch BS4491 mains connector and housed in stiong diectas hoxes
turnshed in antractive durable blue actylic Jack or xLA autio con rectors

Shifter circuit boabds for und July 1973 article
Complete kit and board E24,00 Inctuding psu and DESIGNER SPECTRUM SHIFTER: valiable shits, $0.1-1000 \mathrm{~Hz}$

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

PRECISION POLYCARBONATE CAPACITORS

440 V AC ($\pm 10 \%)$			63 V Range	± 18	$\pm 2 \%$	$\pm 5 \%$
0.14 F	(11/2" $x^{1 / 2}{ }^{\prime \prime}$)	50 p	$0.47{ }_{\mu} \mathrm{F}$	$56 p$	46p	36p
$0.22 \mu \mathrm{~F}$	(13"***)	59p	10,5	$66 p$	56p	16p
0.254 F		62 p	$2.2 \mu \mathrm{~F}$	80 p	$65 p$	55p
0.47 F	(124. $\mathrm{x}^{3 / 4}{ }^{3 /}$)	71 p	$47 \mu \mathrm{~F}$	¢1.30	¢1.05	859
0.54 F		75p	684F	¢1. 64	\&1.29	c1.09
$068{ }_{4} \mathrm{~F}$	(2" x^{4} ")	s0p	$100_{\mu} \mathrm{F}$	£2.00	E1.60	\$1.40
${ }^{1.0} 0_{\mu} \mathrm{F}$	(2"x ${ }^{3 / 4}{ }^{\prime \prime}$)	91 p	$15.0{ }_{4}{ }^{\text {F }} \mathrm{F}$	¢2.75	£2,15	¢1.90
2.0.F	(2"×1')	¢1.22	$22.0 \mu \mathrm{~F}$	E3.50	£2.70	¢2 55

TANTALUM BEAD CAPACITORS - Values available $0.1 .0 .22,0.47 .1 .0 .2 .2 .4 .7 .6 .84 \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or $35 \mathrm{~V}, 10_{\mu} \mathrm{F}$ at
$16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at 6 V or $16 \mathrm{~V}, 33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or 6 V : $100.0 \mu \mathrm{~F}$ at 3 V . ALL at 10 p each. 10 for 95 p . 50 for EA . TRANSISTOR

AC128	14p	BC183/i831.	$11 p$	BFY50	20p
BC107/8/9	9p	BC184/184L	12p	BFY51	20 p
BC114	12p	BC212/212L	14p	BFY52	20 p
BC147/8/9	10p	BC547/558A	12p	AF178	30 p
BC153/7/8	12 p	BFiP/195	12p	${ }^{0} \mathrm{C} 71$	120

POPLLLAR DIODES-1N9146p. 8 for 45p. 18 for 90 p ; IN9168p. 6 for 45 p . 14 for 90p: 15445 p .11 for $50 \mathrm{p}, 24$ for 11.00 ; 1 N 41485 p .

I.OW PRICE ZENER DIODF $5-40 \mathrm{MW}, \mathrm{Tol} . \pm 5 \%$ at 5 mA Values available: $3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}, 6.2 \mathrm{~V} .6 .8 \mathrm{~V}, 7.5 \mathrm{~V}$ $8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{p}, 114$ for 84 p SpF 22 V OFFER 100 Zeners for 55.50
RFSISTORS $-H$ High stability, low noise carbon film 5%. 12 W at $40^{\circ} \mathrm{C}$. $1 / 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 series only- from 2.2010220 . ALL at 1 p SPCCIAL PACK 10 of tach value 2.20 to 2.2 MO (730 resistors)

SILICON PLASTIC RECTIFIERS- 1.5 amp . brand new wire ended DO27: 100 P.E.V. 7 p (4 for 26p). 400 P.IV. 8 p (4 for 30 p). BRIDGE RFCTIFIERS $-21 / 2 \mathrm{amp} .200 \mathrm{~V} 40 \mathrm{p} .350 \mathrm{~V} 45 \mathrm{p} .600 \mathrm{~V} 55 \mathrm{p}$. SUBMINIATLRF VFRTICAL PRESETS-0.IW only ALL at
 $2.5 \mathrm{Ma}, 5 \mathrm{M}$.
PLEASE ADD 15p POST AND PACKING ON ALL ORDERS
BELOW ES. ALL EXPORT ORDERS ADD COST OF SEA/AIR
PLEASE ADD 25% VAT TO ORDERS
Send S.A E for lists of additional ex-stock items.

MARCO TRADING

(Dept. D6)
The Old School, Edstaston. Nr. Wem Shropshire
Tel. Whixall (Shropshire) [STD 094872) 464/5

INTERNATIONAL TRANSISTOR SELECTOR

Orer 10,000 USA, EURO., JAP. BRITISH TRANSISTORS, ELECTRICAL, MECHANICAL SPECIFICATIONS,
MANUFACTURERS AND AVAILABLE SUBSTITUTES
by T. D Towers, M.B.E. Price E3.40
1975 EDITION
THE RADIO AMATEUR'S
by A.R.R.L
HANDBOOK

VIDEOTAPE RECORDING
THEORY AND PRACTICE
by J. F. Robinson \qquad Price £4.85

OPERATIONAL AMPLIFIERS
Design 8 Application
by Barr Browr \qquad Price $\mathbf{£ 4 . 6 0}$

DIGITAL ELECTRONIC
CIRCUITS AND SYSTEMS by N. M. Morris Price £2.55

COLOUR TV with Particular Ref to PAL SYSTEM
by G. N Patchett Price $\mathbb{E} 5.25$
\star PRICE INCLUDES POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

$$
\begin{gathered}
\text { 19-21 PRAED STREET, } \\
\text { LONDON, W2 INPP } \\
\text { Phone } 7234185
\end{gathered}
$$

Closed Sat. 1 p.m.

ARTICLES FOR SALE

Tha Shop Wincow for the Very Becti:

TOSHIBA VALVES		Type	Each (p)	Type	$\begin{aligned} & \text { Price } \\ & \text { Each (D) } \end{aligned}$	DIodes	INTEGRATED	
Type	Price (0)				75	84115		Price
DY87	30.0	AD161	38	${ }_{\text {BD }}$ 8019	45	BA145 14	TAA550	Each
OY802	30.0	ADi62	38	B0132	39	BA148 19	TAA700	[? 295
EFC80	28.0 295	AF114	24	80160	51.39	BA154/201 11	TBAT20AS	11.00
EF183	34.5	AF115	21	80235	49	8Y126	tBalzosa	51.00
EF184	34.5	AF116	22	80237	52	BY199 27	TB44800	¢1.40
EH90	35.5	AF117	50	B0x32	¢2.40	BY206 21	\%45200	¢2. 35
PC900	24.5	AF118	35	8 8F160	15	BY238 25	TP45300	¢1.75
PCC89	40.0	AF178	45	BF 167	20	$0 \mathrm{AgO} \quad 6$	TBA560CO	¢1. 75
PCCi89	41.0	AF178 ${ }_{\text {AF }}$	45	BFI73	20	OA202 7.5	TBA800	E1.40
PCF80	31.5	AF181	45	BF178	35	IN60/OA91	TBA9200	$¢ 2.90$
PCF86	39.0	AF 239	40	BF:79	40	NEW TOS-IIBA TUBES	TBA9900	¢2.90
PCF801	42.0	AF240	60	BF180	31	19**49/19Tx E48.95	ICA2700	C2. 90
PCF802	40.0	BC107	11	BF181	32	20. $5100 \mathrm{~J} 322 \quad 650.75$	ETtR6016	¢2.00
PCL82	39.0	BC108	10	BF184	25	22**5j/120X 554.25	SN76013ND	E1.50
PCL84	39.0	BC_{109}	14	8F185	25	EHt MUltipliers mo	OCHROME	(BRC)
PCL85	44.5	BC109C	14	BF194	9			
PCL86	41.0	BC113	13	BF195	8	2HD 9¢0MK1. 960		Each f1 70
PFL200	59.5	BCi16A	19	BF196	10	2TO 95JMk2. 400		¢1.85
${ }^{\text {PLL36 }}$	55.5 25.0	BC117	14	8F197	12	20AK 15CC (17- \& 19)		¢1. 85
PL504	64.5	BC125B	15	BF198	23	2 TAK 5503 (23.824^{*})		¢2.00
PL508	67.0	BC132	25	8F200	25			
PL519	¢1.50	BC 135 BC 137	15	8F218	30	EHT MULTPLIEAS - Col	OUR	
PY88	35.5	$8 C 138$ 8 Cl 188	19	8 8F228	23	1 TAGIT CVCl. 2 \& 3		$¢_{64.50}$
PY800	33.0	${ }_{8 C 142}$	23	${ }_{8 F 3} 8$	34	INN GEC/ Fobell		C4. 50
PY500A	85.0	$8 \mathrm{CC143}$	25	- 3337	35	11 TAN PTILSS 68		64.85 4.50
SEMI CONDUCTORS		BC147	11	BF355	54	11 TBO Phdips 550		c4.50
		BC147f	11	BFX86	28	3TCW Pye 691/693		c3 50
Type	Each (p)	BC148	10	BFY50	19	1 TH Decce 30 Series		¢4.50
AC127	17	BC149	10	EFY52	20	11 TAa Desca Bradlord'		C4.50
AC128	13	BC153	15	BSY52	35	3 TCU -hoin 3000/3500		c5 00
AC141k	25	BC154	15	BT106	¢1.20	11 KAC T TJIn 8000		¢1.90
ACi42K	25	8C157	14	8U105/02	¢1.95	11 HAE Tomin 8500		¢4. 25
AC151	20	BCI58	10	8U108	¢2.10			
AC154	18	8 CCl 59	11	BU208	C2.95			
AC155	18	BC173	18	E1222	30	All gjods subject t	边	
AC156	20	$8 \mathrm{CC1788}$	20	MJE340	45	d sccunt of $5 \% 7$ d		
AC176	22	BC182L	12	OC7	15	won-hily.		
$\mathrm{ACl}^{8} 8$	19	8 Cl 183 L	12	0672	16	No sostage charg		
AC187K	24	BC187	25	A2008日	¢2.00	No sote values	minimum	
AC188	17	BC214t	15	A20108	C2.00	Write or phone for		
ACl 88 K	26	BC328	28	RCA1633.4	80			

r.InPrices, Quality and Service

LOW FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{kHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

PRICE $£ 27$ p\&p 75p
Board. módules and all components (excluding P.U.)

12" CRT

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new, boxed, $£ 4$ each. Carriage $£ 2$.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 82-98

For the first time . . . under your dashboard . . . a 100 watt long-range SSB radiotelephone elegant in design and outstanding in performance.
In a vital field, where design has in the past been neglected, Redifon has produced a radiotelephone masterpiece - the Redifon Safari.

REDIFON
 TELECOMMUNICATIONS
 ...on land and sea

Redifon Telecommunications Ltd., Broomhill Road, Wandsworth, London.
Telephone: 01-874 7281. Telex: 264029.
\%

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manutacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder It's the solder they have depended on for consistent high quality for more than 30 years

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible

There are well over 1.000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture

Savbit Alloy - dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits

965 Silver Solder - highest strength soft solder Melting point $221^{\circ} \mathrm{C}$. Bright and non-toxic. Replaces high temperature brazing alloys

95 A alloy - Melting range $236-243^{\circ} \mathrm{C}$. For electrical connections subjected to peak temp of approx $240^{\circ} \mathrm{C}$.
H.M.P. alloy - Melting range 296-301 C Highest melting point soft solder for high service temperature applications
T.L.C. allov - Melting point $145^{\circ} \mathrm{C}$. Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components.
L.M.P. alloy - Melting Point $179^{\circ} \mathrm{C}$. For soldering silver plated surfaces such as ceramic capacitors and soldering gold

Alu-Sol Multicore Solder - for soldering aluminium
Arax acid-cored solder - for non-electrical applications or pre-tinning of parts of difficult solder ability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to

Multicore Solders Ltd.

Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex: 82363

[^0]: To: General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU.
 Please send me copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value $£$
 (cheques payable to IPC Business Press Ltd).
 Name (please print)
 Address

 Company registered in England No. 677128
 Regd. office: Dorset House. Stamford Street, London SE1 9LU

[^1]: 프 AUDIO
 Kernick Rd, Penryn Cornwall, England

[^2]: -two pins for the transformer input, marked $\mathrm{V}_{\text {in }}$ close to IC_{2}
 -four pins for right and left meter outputs, marked \pm M.R., \pm M.L.
 -two pins in resistor R_{47} position
 -one pin at the end of R_{51} close to $I \mathrm{C}_{1}$ (see Fig. 16)
 -one pin each at the end of $R_{55}, 155$

[^3]: -Solder dual potentiometers RV_{9} ($\log /$ reverse \log), $\mathrm{RV}_{10}, \mathrm{RV}_{11}$
 -Check underside of board for solder

[^4]: Address

[^5]: CAPACITY AVAILABLE

 AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assemplies. Suppliers to P.O. M.O.D., etc. Export enquiries welcomed. 3a Walerand Road, London SE13 7PE. Tel: 01.8521706.

 BATCH Production Wiring and Assembly to gample or drawings. Deane Electricals, 19B Sitation Parade, Ealing Common, London, W.5. Tel: 01-992 8976

[^6]: SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc etc., in stock. R. T \& I. Electronics, Lid., Ashville Old Hall, Ash

