wireless

world

MAY 1975 30p

50MHz oscilloscope

Research Instrument

The human ear must be one of the oldest research instruments in the business. Yet many of the ultra-modern Marconi instruments used in today's most advanced research projects owe a debt to it.

At $\mathbf{m i}$, you see, we don't believe in lvory Towers. So we ponder the constant feedback of information from you through our sales engineers far and wide, and keep our ear to the grounds of component technology and measurement trends throughout the world.

Requests, suggestions, remarks, ideas...they all lead us to what you are going to need - or they reveal possible new approaches to the solutions of those needs.

We have our ears in all the national and international committees of measurement standards and recommendations too.

We even lend sympathetic ears to you who need special equipment-and lend ears to PTT authorities, broadcast authorities and defence departments who often set the trends for new standards.

All $\mathbf{m i l}$ instrument specifications are the result of this constant research-specialized P.C.M. test gear, low cost versatile signal generator TF 2015, new generation HF spectrum analyser, automatic TV transmitter monitor..

Be one of the heard-talk to us!
We're listening.

LOW COST VOLTMETERS

POBTABLE NSTRUMENTS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models
 have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE 8 db RANGES: $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz} .-100,-90 \ldots+50 \mathrm{~dB}$, scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be set to a restricted $B . W$. of 10 Hz to 10 kHz or 100 kHz . INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$. On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$. AMPLIFIER OUTPUT: 150 mV at f.s.d

yin
 꽁

BROADBAND VOLTMETERS

H.F. VOLTAGE 8 dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d.

Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz} .-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$. AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} \ldots 300 \mathrm{~V}$
Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$
Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., $\pm 2 \mathrm{pA} . \mathrm{CZ}$ scate.
Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., ± 2 2
LOGARITHMIC RANGE:
$\pm 5 \mu \mathrm{~V}$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d. ± 50
RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$

\%

D.C. MULTIMETERS

VOLTAGERANGES : $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENTRANGES : 3pA $10 \mathrm{pA}, 30 \mathrm{pA} . .1 \mathrm{~mA}$ (1 A for TM9BP)
Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 \mathrm{pA} . L Z$ \& CZ scales.
RESISTANCERANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear.
Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on LZ ranges.

type
 TMps
 £95

Prices include batteries and U.K. delivery. V.A.T. extra Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House;
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30 J.
Telephone: Orpington 27099
Telex:896141

You could easily make our 12-speed chart recorder faster than you thought possible.

Send away for our 12-speed, $10^{\prime \prime}$ chart recorder kit-the IR-18M. And you'll receive a very clear, easy to understand instruction manual with it. Which explains every single step. To make light work of assembly and provide you with a high quality chart recorder a lot quicker than you thought.

And just look what you'll be getting. Multispeed capability. With fast, pushbutton switch selection of speeds from 5 seconds per inch to 200 minutes per inch. To give you all the versatility you need.

You'll also get two input ranges, giving accurate voltage measurements of 1 millivolt and 10 millivolts full scale. Excellent repeatability. And a full scale pen response time of one second many much higher the $1 \mathrm{G}-18$ Solid State kit too. Outputs able using repeatable
1)-comparing favourably with priced recorders. Take a look at Sine-Square Wave Generator from 1 Hz to 100 KHz are availswitch selection.

And its sine and square wave outputs are available simultaneously. With less than 0.1% sine wave distortion. And less than 50 ns square wave rise time.

And, for quick accurate testing of diodes, FETs, transistors, SCRs and triacs, there's the IT-121 Tester kit. Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

You can see these and other Heathkit electronic kits at the London Heathkit Centre, 233
Tottenham Court Road. Or at our showroom in Bristol Road,
Gloucester.
Otherwise just clip the coupon and we'll send you the complete Heathkit catalogue.

Faster than you thought possible. Heath (Gloucester) Limited,
 Dept WW-55, Bristol Road,

Sysisul

VORTEXION

A new range of sound equipment from Vortexion, System 2000 has been designed by our engineers to combine the aesthetics of design in the domestic equipment field with the near flexibility of a modular system. Like all our equipment Vortexion System 2000 is built to last.

No matter what your sound problem, whether hotel or local pop group, ask our Design Consultants how it can be solved with System 2000.

Wide-range universal bridge B602 $0.1-100 \mathrm{MHz}$ source/detector SR268 from Wayne Kerr

SPECIFICATION

B602

Frequency range
Accuracy

Overall impedance range:

SR268

Frequency Range:
Frequency accuracy
Short Term Frequency
Stability:
Output level
Output attenuator
Input sensitivity for
10% meter deflection Input attenuator
Detector bandwidth

100 kHz to 10 MHz
1% up to 3 MHz .1 pF to 10 nF 10Ω to $100 \mathrm{k} \Omega$ $1 \mu \mathrm{H}$ to 10 mH
1 fF to 1 mF
$100 \mu \Omega$ to $100 \mathrm{M} \Omega\left(10 n \int\right.$ to $\left.10 k \gamma\right)$ 10 pH 10 10H

100 kHz to 100 MHz in 9 bands
(SR268L 46.5 kHz to 465 MHz)
$2 \cdots 3 \%$ according to band used
001%
$0.5-2.0 \mathrm{~V}$ according to band used.
3.6.10. 20 dB addıtive steps. 75Ω

1 to $30 \mu \vee$ according to frequency setting
4 steps of $20 \mathrm{~dB} .75 \Omega$
$2-3 \%$ according to band used

For more information, either phone Bognor Regis (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex Telex: 86120. Cables: Waynkerr, Bognor

The B602 transformer ratio arm bridge measures impedance in all four quadrants of the complexplane over the frequency range 100 kHz to 10 MHz . Because of novel features incorporated in the design, values from virtually a short circuit to an open circuit can be measured. This bridge has established a standard of performance and flexibility which is unobtainable from any other radio frequency bridge.

A standard inductor is included in the bridge network in addition to standards of capacitance and resistance enabling a periodic calibration of the scales which are correct at any frequency between 100 kHz and 10 MHz .

There are only two balance controls. One is direct reading in resistance and conductance, the other in capacitance and inductance and there is no interaction between them.

The stability realised allows a discrimination of 0.1\% to be obtained for all types of measurement with a genera! accuracy of 1% over most of the impedance and frequency range

The bridge is shown together with the SR268 Source and Detector which can also be used with other bridges in the Wayne Kerr range over the frequency band 100 kHz to 100 MHz . Nine
frequency ranges are provided by this instrument and a single tuning control adjusts both source and detector to the exact frequency required.

Meticulous screening between the two sections provides freedom from bridge measurement errors due to leakage of the source signal into the detector. Common mode rejection transformers are incorporated in the input and output networks to reduce interference from unwanted signals, and push button attenuators are included to assist the logarithmic detector circuit to indicate approach of the bridge balance point.

Photo by Aerofilms Ltd.

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England.
Telephone: 021-475 2231 Telex: 337081
A GEC - Marconi Electronics Company

WW-191 FOR FURTHER DETAILS

BARR \& STROUD ELECTRONIC FILTERS

The 3 aspects of our service

1. System EF3

A flexible system of filter instrumentation using a modular approach to give plug-in interchangeability. The mainframe carries a power unit and accepts up to two filter units of either Low Pass or High Pass function. Integral switching allows individual or cascade operation and can give Band Pass, Band Stop, Band Separate or Band Combine modes.

2. Active Filter Modules

These are compact, solid state, encapsulated units providing basic filter functions to be customer set for cut-off frequency and characteristic. The present range contains Low Pass and High Pass types with cut-off frequency coverage from 1.0 Hz to 30 kHz in overlapping ranges, with attenuation rates up to $24 \mathrm{~dB} /$ octave/module. Universal modules specifically for Band Pass and Band Stop operation are part of the range.

3. Custom Build Service

If our standard filter range does not meet your specification we welcome the opportunity to study your requirement. Broadly our capability stretches from d.c. to 25 MHz with experience in passive and active designs. We can work to normal commercial standards or strict defence requirements and construction can be as dictated by the environmental conditions of your application.

Glasgow and London

THE NEW P6O INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high.
, Recording with or without tone correction.
*Peak level indicator for tape recording.
Suitable for continual high power operation.
Dual independent tape operation. *Light Emitting Diodes for level monitoring in main and pre-amplifiers. Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages.
RIAA phono correction unaffected by cartridge inductance. Ultra low distortion circuits.
*New tape monitoring, $A-B$ and $A-B-C$ facilities. International state-of-the-art circuitry from Cambridge Audio in Britain.

* To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music
... more variable power than ever before with 13 types available from stock

LB SERIES
LB 200: 0 to 50V a 0 to 2A
LB 500:0 to 30V 'a 0 to 5A
LB 1,000 : 0 to 15 V " 0 to 10A

LA SERIES
LA 100: 0 to 50 V ". 0 to 1A
LA 200: 0 to 30 V " 0 to 2 A
LA 400: 0 to 15V " 0 to 4A

LOT SERIES
LOT 100 : 0 to $\pm 30 \mathrm{~V}$ " 0 to $1 \mathrm{~A} \times 2$ or 0 to $30 \mathrm{~V}=0$ to 2A or 0 to 60 V " 0 to 1 A
LOT 200 : 0 to $\pm 15 \mathrm{~V}$ " 0 to $2 \mathrm{~A} \times 2$ or 0 to 15V " 0 to 4A or 0 to 30 V " 2 A

With the addition of the new LQT Twin Power Supply, offering double the voltage range, the Coutant 'L'Series is ideally suited for the wide range of laboratory and general applications where continuously variable high performance power is essential.

LQ SERIES
LM SERIES
LO 50: 0 to 50V " 0 to 0.5A LM 50:0 to 30V " 0 to 0.5A L0 100: 0 to 30 V " 0 to 1A LM 100: 0 to 15 V "0 to 1 A L0 200: 0 to 15V : 0 102A

OVERSEAS REPRESENTATION

Austria
Dipl. Ing. Peter Marchetti Elektronische Gerate Wien 6
Sandwirtgasse 14 A 1061 Postfach 455 Austria
Belgium
Ets. L. DeGreef S.P.R.L. Electronic Chaussee d'Alsemberg 367 1180 Bruxelles Belgium
Canada
Duncan Instruments 65 Millwick Drive Westor Ontario Canada M9L 1 Y4
Finland Nores \& Co OY Fabianinkatu 32 Helsinki 10 Finland

France

Germany

Holland
no

srae

Italy

Coutant Electronics Limited

Trafford Road, Reading RG1 8JR Tel 073455391 Telex 84519 Coutant take the initiative in new technology

Commerciale Chauvin Arnoux Norway 188 Rue Championnet
Paris 18
France
Zentro-elektrik
7530 Pforzheim
Postfach 2070
Sandweg 20
West Germany
Air Parts International N.V.
Ryswyk (A.H.)
149 Haagweg
P.O. Box 4094

Holland
Rapac Electronics Lid.
P.O. Box 18053

Tel Aviv
Israel
Celdis Italiana S.P.A.
Via Luigi Barzini 20 Milano 20125
Italy

Skandinavisk Elektronik A/S Ostre Aker vei 99 P.O. Bix 99 -veitvedt Oslo 5
Norway
South Africa Dowson \& Dobson
29 Webber Street
Selby
P.O. Box 7764

Posbus
Johannesburg
South Africa
Gunnar Petterson
Box 117
12321 Farsta
Sweden
Automation \& Elektronik Industriestrasse
CH-B604 Voketswil
Schweiz
Switzerland

ELECTROTECH 'STANDBY'

 provides power when no power exists!Now you can be totally independent of a mains power supply. The Electrotech 'Standby' provides up to 500 W of power instantly when connected to a 24 V source. If linked to two ordinary 12 V car batteries the unit will deliver 240 V 50 Hz power for at least $2 \frac{1}{2}$ hours.

- Open circuit on low battery condition
- Electronically protected against short circuits

Will not wander off frequency if battery supply deviates

- Protected against reverse battery connection

Electrotech 'Standby' supplied by
LEKTROKIT LIMITED
Trafford Road, Reading. Berkshire.
Tel: Reading (0734) 55394

The ITC CTC $-3 X$ is a lot of camera for the money. $£ 6500$ buys you a high performance colour television camera, that can be used in studio, telecine, mobile or remote colourcasting.

It comes complete with f1.8 10:1 zoom lens, servo and cable controlled.

A view-finder monitor which can be easily removed or tilted both upward and downward.

A camera control unit which gives you remote controls including colour balance, iris, R.B. channel positions and gain, and on-off power and beam.

A separate mains lead that allows camera to be operated without CCU.

Plus features such as turret colour temperature correction filters.

A built-in colour bar generator.
A set of matched vidicon tubes. A waveform colour sampler for easy colour balance adjustment.

That's the ITC CTC-3X. A lot of camera for $£ 6500$
If you want it fitted with Plumbicon ${ }^{\oplus}$ Tubes with extended red, it will cost you $£ 8125$

Also available is the SC 701P Genlock colour sync. generator at $£ 1265$.

Plus the MEA 7100P six channel special effects generator at $£ 2415$.

At Dixons Technical, of course.
Prices subject to VAT.

Theres only one thing the new Brimar D18-130 tube is short on: length.

More space on the screen with less for the tube - that's what the new Brimar D18-130 offers you for your next portable display instrument design.
With a useful display area of $12.3 \mathrm{~cm} . x$ 10 cm . its overall length is only 310 mm . And that's the shortest length for its screen size of any electrostatic focus industrial tube available.
The tube has a high brightness and good focus performance (under typical operating
conditions a line width of 0.25 mm . can be expected.)
The new D18-130 can be supplied with internal graticule and various phosphors to special order. The standard phosphor is GH, which gives a medium-short persistence green trace. A magnetic shield and twist coil are available.
We'll gladly send you a descriptive leaflet on request.

BRIMAR

Thorn Radio Valves and Tubes Limited Mollison Avenue, Brimsdown, Enfield, Middlesex, EN3 7NS. Telephone: 01-804 1201.

Medelec Limited, with a firmly established reputation earned in the exacting field of medical instrumentation, have developed a range of equipment combining the facilities of conventional oscilloscopes, strip chart and $X-Y$ recorders, to provide unique capability.
Fibre Optic Recording increases the clarity and efficiency of data recording, gives low cost records and extends the field of application to new areas of industrial research and development.
To learn more about Fibre Optic Recording and Medelec equipment send today for a new publication "Medelec Fibre Optic Recording". This gives full information on development, comparisons, economics, case histories and general applications.
Medelec Limited, Woking, Surrey. Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

medelec

These active filters are designed to take over the functions of passive filter networks in audio telecommunications systems. They offer several advantages, in space-saving, economy and reliability.
As a size comparison, one active filter will take up the same space as two Post Office Type 3000 relays. By using the same fixing and terminal holes as the relays, it offers an extra convenience when baseboards are being prepared. By replacing inductive components with solid state devices, filter characteristics have been obtained at less cost, without insertion loss, and with increased flexibility and economy. These new active filters have B.P.O. approval, and have wide applications, in the audio area and in signalling and control systems.

PLASTICS MOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074
WW-221 FOR FURTHER DETAILS

RLIEATIIP

Elektor 3 comes out on 30 April

Abstract

Elektor for lab and leisure —new ideas in electronic projects using modern components. Out every two months till August, then each month.

Use the Elektor printed circuit board service for immediate delivery of high quality epoxy glass boards for all major projects

Also in Elektor 3
Touch control audio preamp.
LED level indicator.
Time lapse cinematography.
High quality disc preamp
Write to us enclosing 35p P.O. or cheque for Elektor 3. If you would like a subscription for the next six issues ($£ 2.70$ to U.K. addresses) send no money, write or phone for subscription card

Elektor Publishers Ltd Telex 965504 6 Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

The FP210K, Shibadens popular 1 Plumbicon camera

FEATURES

- Built in 2-1 interlace sync generator for single camera operation and external - Negative/Positive switch and scan - reverse feature.
- Built in intercom and tally circuits.
- Automatic or remote tris control for zoom lens. Wide range of tenses available.

This is the camera that will operate anywhere - in the studio or on outside location - and guarantee excellent results for a wide range of T.V. requirements in the fields of industry, education and commercial applications.

Equipped with a 5 " electronic viewfinder for accurate picture composition and focus, the FP 210 K is automated to ensure all major functions are easily handled.
If you prefer, a separate mesh type vidicon tube can be used, which, like the 1 " Plumbicon gives high definition picture reproduction.
To see the FP 210 K in action, or for complete technical information, contact Shibaden's Technical Service Department at 01-203 4242/6 or write to:

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output
Rated:

Maximum:

Distortion.
Pre-amplifier:

Power amplifier. at rated output:
at 25 w output

Overload margin
Discinput 40 dB min
Hum and noise output
Disc
-83dBV Measured flat with noise band width of 23 kHz (ref. 5 mV .)
-88dBV Measured with ' A ' weighted characteristic (ref. 5 mV .)
Line:
Size:
Weight:
-85 dBV Measured flat (ref. 100 mV .)
-88 dBV ' A ' weighted (ref. 100 mV .)
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb .

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301
WW-060 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MOUERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery. etc.. etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop, Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price f20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON WC1X 8AX
('Phone 01-837 7937)

CONTINUOUS IMPROVEMENT

We are always at work on better production methods and the use of new materials.

These cartridge fixing screws are moulded in glass reinforced nylon which is only half the weight of aluminium. At 73 p per set you can probably afford them better than the weight of those you are using.

We can send you as many sets as you want by return if you send us the money.

The best pick-up arm in the world

Write to SME Limited
Steyning - Sussex - England
Telep! ،one: Steyning (0903) 814321

impex motors and drive systems off the shelf

A new division of McLennan Engineering Ltd has been formed to stock the full range of Impex Small Electric Motors and drive systems together with a wide range of standard industrial servo components and electronic control systems.

Motors include DC, Uni-directional and Reversible Synchronous and Stepping types offering a comprehensive spectrum of specifications suitable for a wide variety of applications.

In addition to offering an off-the-shelf supply facility for motors and components, McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques.

So whether you require one motor or one hundred; or you simply have a problem about which you would like a second opinion. contact

McLennan Engineering Ltd.
Kings Road, Crowthorne, Berkshire,
Telephone: Crowthorne 5757/8

$\square \sim \square \square \square \square \square \square$
 TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19"' crates small size-low weight-realistic prices.

Fylde Electronic Laboratories Limited.
49/51 Fylde Road Preston PR1 2×0

Telephone 077257560
WW-211 FOR FURTHER DETAILS

High accuracy

with crystal controlled oscillator

Simple to use

accepts wide range of input signals with
no manual tuning or adjustment

Type 1742 ' A ' BS 4847 : 1972 DIN 45507
CC1R 409-2 Specifications
Type 1742 'B' BS 1988: 1953 Rank Kalee
Specifications
Fully transistorised for high reliability

Versatile

Meets in every respect all current specifications
for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc
—.Wilu

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, PO Box 70
Great West Road, Brentford
Middlesex TW8 9HR

Join the Digital Revolution Teach yourself the latest techniques of

 Digital Computer

 Digital Computer Logic and Logic and Electronics

 Electronics} digital electronics
Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.
Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and containing 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

Also available - a more
advanced course in 6 volumes:

1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer. Order this together with Digital Computer Logic \& Electronics for the bargain price of $£ 9.25$.

Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents. also covers many more advanced topics.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

A Self-instructional Course

Logical
circuit
elements
Book
Designing circuits
to carry out
logical functions

Flipílops
and
registers

£3.95
including packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

PE 17 4BR
*Please send me......set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each
*or......set(s) of Design of Digital Systems at £5.95 each
*or......combined set(s) at $£ 9.25$ each.
Name...
\qquad

* delete as applicable.

No need to use a stamp - just print FREEPOST on the envelope.

KOWIT'S TLie AMCRONMGOO

M600 POWER AMPLIFIER

Coupling two M600s together through a socket provided at the back of each amplifier produces a 140 Volt balanced output. This configuration is called an M2000, and produces 2 kilowatts into an 8 ohm load. A peak catching meter, and threshold lights provide convenient front panel output monitoring.

1350 watts
 DC-Coupled

The M600 amplifier is a new high-power amplifier capable of providing 1.350 watts RMS over a bandwidth of DC to $20 \mathrm{kHz}, 70$ volts RMS at the output terminals, very low noise, and distortion, AC/DC selector switch, plug-in front panel circuit board, built-in fan for cooling, and the ability to connect two M600s together to double the power, and output voltage, are just some of the features which place the Amcron M600 in the forefront when considering power amplifiers
Driving shakers, and vibrators, motors, and difficult speaker systems, providing power for material or components testing, or used as a large distribution amplifier, the M600 is equally at home
Brief specifications:
RMS power out $\quad 750$ watts into 8 ohms

DC output
Power bandwidth Phase response
Slew rate
Damping factor (8Ω) Hum \& noise
Hum
THD
Dimensions
1.350 watts into 4 ohms

20 amps (supply fuse limited)
DC to $20 \mathrm{kHz}+1 \mathrm{db},-0 \mathrm{db}, 600 \mathrm{~W}$ into 80
$+0 \mathrm{db},-15 \mathrm{db} \mathrm{DC}-20 \mathrm{kHz}$
$16 \mathrm{~V} / \mathrm{\mu second}$
greater than $400 \mathrm{DC}-1 \mathrm{kHz}$
120 db below 600 Watts
less than $0.05 \% \mathrm{DC}-20 \mathrm{kHz}, 600 \mathrm{~W}$ into 8Ω
$19^{\prime \prime}$ std. rack, $8 \frac{33^{n}}{}{ }^{H}$. $16 \frac{1}{2}^{\prime \prime}$ deep. Wt. 92 lb .

MACINNES HOUSE, CARLTON PARK INDUSTRIAL ESTATE SAXMUNOHAM, SUFFOLK IP17 2NL
TEL: (0728) 22622615
WW-194 FOR FURTHER DETAILS

WW-150 FOR FUR FHER DETAILS

WW-219 FOR FURTHER DETAILS

Studio Sound Mixing Console as supplied to the NORWEGIAN OPERA COMPANY.
Abridged Specification
Mic I/P noise -128 dbm ; Max mic gain 80 db ; Max mic I/P level +2 dbm , line $+26 \mathrm{dbm} ;$ Max O / P level +20 dbm into 600 ohm at 0.05% THD, typically 0.02% at +4 dbm ; Frequency response $\pm 0.5 \mathrm{db}$ from 20 Hz to 20 KHz .

A full range of modules are available giving facilities from standard to comprehensive, and a modular chassis system allowing variable format from a $6 \mathrm{I} / \mathrm{P}-2 \mathrm{O} / \mathrm{P}$ to a $30 \mathrm{I} / \mathrm{P}-24 \mathrm{O} / \mathrm{P}$ desk. Penny \& Giles faders are fitted as standard and PPM metering to BBC or DIN specification if required.

MIDAS AMPLIFICATION 54-56 Stanhope Street, London NW1 3EX. 01-387 7679.

WW- 052 FOR FURTHER DETAILS

annlogue instiuments

TM2

A.C.ID.C. MILLIVOLTMETER 1 mV to 300 V f.s.d.
10 Hz to 5 MHz frequency range $\uparrow 10 \mathrm{M} \Omega$ input impedence Mains or battery operated

Ask for details
 from (©) Furnell

FARNELLINSTRUMENTS LIMITED INSTRUMENTS DIVISION SANDBECK WAY WETHERBY • YORKSHIRE LS22 4DH • TEL. 0937-3541

IPAYEnES-D integrated circuit power omplifier

TPA 50-D Specification

Power Output	100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response	$\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1dB at 150 KHz
Total harmonic distortion	Less than 0.04% at all levels up to 50 watts rms into 15 ohms
Input sensitivity	OdBm
Noise	$-100 \mathrm{~dB}$
Rise time	2 u seconds
Price	£70 plus V.A.T.

100 V Line (C.T.) and balanced inputs available.
For full technical information contact:
H|HELECTRONC
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7
WW-217 FOR FURTHER DETAILS

Keenthase Contacts CLEAN

BY USING A

DIACROM SPATULA

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grrains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents clogging of the
diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive
scratching during use
. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200,300 or 400.
4. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly deficate relays.

- Grain size 200. thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial
- Greains and switching equipment, etc.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays. etc.
Grain size 400 . thickness $25 / 100 \mathrm{~mm}$. one face diamonded For sensitive relays and tiny contacis. Two close contacts facing each other can be individually cleaned. because only one

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556
As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Authorities; also major industrial and eiectronic users throughout the United Kingdom.

WW-011 FOR FURTHER DETAILS

This new frequency multiplier produces an output frequency which is either 60X or 100 X the input frequency. Thus LF e.g., low audio, can be resolved without counting for ages. 60X range converts Hz to RPM with any 1 sec . gate counter. NO WAITING NO RECIPROCALS

Sheltan

INSTRUMENTS LTD., 24 Copenhagen Street, LONDON N1. Tel: 01-278 6273

FREQUENCY MULTIPLIER FX-1

RESOLVE 0.01 Hz IN ONLY FOUR SECONDS OR READ RPM DIRECTLY.
WORKS WITH ANY FREQUENCY METER
ONLY £27.50 $\begin{gathered}\text { inc pqpp } \\ \text { ex vat }\end{gathered}$

WW-053 FOR FURTHER DETAILS

bremell PROFESSIONAL TAPE TRANSPORTS

and multi-channel electronics for studio and industrial use

* Tapewidths up to 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimum up to $152 \mathrm{~cm} / \mathrm{s}$ max

2 and 4 speed models
Finance available

* Reel Capacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

BRENELL ENGINEERING CO LTD

231-5 Liverpool Road, London N1 1LY. Tel: 01-607 8271
WW— 077 FOR FURTHER DETAILS

WW-092 FOR FURTHER DETAILS

Please write for illustrated leaflet of these and other specialised Sanwa meters

SOLE IMPORTERS IN UK.
 ELEGTRONICS LTD,

47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. KT1 $11 P$ Tet:01-546 4585

Now and Forever

Today

With a Quad 33, any pickup can be properly matched to give the finest performance of which that pickup is capable (1).

Tomorrow

The Quad 33 pickup input is uniquely placed to meet the needs of the future (2).

1 (a) Equivalent input noise at the exceedingly low figure of $0.5 \mu \mathrm{~V}$.
(b) An input load which is a pure resistance at all frequencies. $5^{\circ} 0-20 \mathrm{KHZ}$.
(c) An input dynamic range of close on 100 dB , 30 dB better than the finest recordings now available.
(d) Provision to place the pickup dynamic range ($60-70 \mathrm{~dB}$) in proper relation to the amplifier range so there need be no compromise between overload requirements and low noise.
2 Digital mastertapes for disc cutting and further refinement of the pickup cartridge will lead to lower noise and less distortion, and may make a major contribution to better sound in the next decade. The Quad 33 can do full justice to each and all of these possibilities.

Send postcard for illustrated leaflet to Dept. ww Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB.

Telephone (0480) 52561.

QUAD Products of The Acoustical Manufacturing Co. Ltd.
 for the closest approach to the original sound
 QUAD is a Registered Trade Mark

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW-016 FOR FURTHER DETAILS

for electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits. Prices on request.
Teonex offers more than 3.000 devices. They are the Teonex range are nearly always available for competitively priced and they are superlative in immediate delivery Whew for technical specifications and price anainy control. Teonex cancer to Teonex Limited, 2a Westbourne Grove Mews. and now operates in more than sixty countries, on London W112RY. England.
Government or private contract. Ali popular types in Cables: Tosuply London W11. Telex: 262256

Electronic valves, semi-conductors and integrated circuits available only for export.

Now suitable for U.K.,European and American voltages...

Minimod, the versatile British range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

Type Number	Output Voltage	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
PU01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
PU03	$15-0-15 \pm 0.2$	0.10	37	0.1
PU04	$15-0-15 \pm 0.2$	0.20	84	0.1
PU05	$12-0-12 \pm 0.2$	0.12	45	0.1
PU06	$12-0-12 \pm 0.2$	0.24	120	0.2
PU11	$18-0-18 \pm 0.2$.15	50	0.1
PU10	15	± 0.2	.10	37
PU12	12	± 0.2	.10	45
PU13	18	± 0.2	.065	23

> Input voltage ranges $103-126 \mathrm{~V}, 200-240 \mathrm{~V}$.
> $210-250 \mathrm{~V}$. Frequency $50-400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is available on request.
> — \star SPECIAL DESIGN SERVICE
> Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS

Collect Wireless World Circards. And build a valuable dossier on
 Circards is a new and comprehensive system,

 circuit design. launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source.Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well-protected.

Circard sets come in wallets and cost $£ 1.50$ per set. A subscription for 10 consecutive sets costs $£ 13.50$.

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits comparators and schmitts.
2. Waveform generators. 4. AC measurements.
3. Audio circuits: preamplifiers, mixers, filters and tone controls.
4. Constant current circuits. 7. Power amplifiers.
5. Astables. 9. Opto-electronics.
6. Micropower circuits. 11. Basic logic gate círcuits.
7. Wideband amplifiers. 13. Alarm circuits.
8. Digital counters. 15. Pulse modulators.
9. Current differencing amplifiers-signal processing.
10. Current differencing amplifiers-signal generation. 18. Current differencing amplifiers-measurement and detection. 19. Monostable circuits. 20. Transistor pairs. 21. Voltage to frequency converters.

Subjects planned for immediate future
Multipliers and dividers, Code converters, DC amplifiers and choppers, Amplitude modulation and detection, Transistor arrays.

To: General Sales Dept., IPC Business Press Ltd., Room II I Dorset House, Stamford Street, London SEI 9LU
I
I Please send me set no(s)
(a) f. 5.50 each \square^{*}

I I wish to subscribe to set no(s)
(a) £13.50 \square^{*}

I
I I enclose cheque/money order for $£$
I Tick as required/Cheques to be made payable to IPC Business Press Ltd.
|
| Name. .
I
Address. .
I
I Company registered in England. Registered address, Dorset House,
I Stamford Street, SEI 9 LU England. Registered Namber 677128

"'Worldwide Market is our aim,'" says Vitavox MD

Reporting that the 1975 export order book of Vitavox Limited was the biggest in their 44 -year history, the Company's Managing Director, Mr. Neil Young, said: "The expansion and strength of our export programme has always been a top priority with us. In today's industrial and economic climate this priority is more vital than ever"

Getting his priorities right has always been a first essential with Neil Young. On leaving school, where he studied modern languages, he joined the Royal Electrical and Mechanical Engineers: "To see if I had any technical ability". From here he went to English Electric, carrying out research work on technical literature with their Technical Publications Department. He moved on to the EWS Technivision Publications Division and then to Elliott Aviation, in both cases working on technical

VITAVOX
Westmoreland Road London NW9 9RJ Telephone: 01-204 4234
instruction literature for the Services.
In 1962, at the age of 25 , Neil Young joined Vitavox, the firm his father founded in 1931. He then became an Associate of the Institution of Works Management. Seven years later, after a period during which, among other projects, he and his brother David helped to develop the costing and production control systems of the Company, he succeeded his father, the late Mr. Len Young, as Managing Director: Mr. Young senior becoming Chairman of the Company, the post he held until his death in 1974.
"My policy has been to streamline production wherever possible, to continue to up-date production and, of course, to develop our export markets-all policies very much in tune with my father's beliefs."
With a turnover 100 times that of the Company's founding year, a home market as healthy as that for overseas and with the export market currently covering 34 countries across the world, Vitavox today is living proof that Neil Young's priorities are spot on.

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises
Low profile (flatform)
Timing • Miniature • Low contact capacity - Hermetically sealed - Stepping Mains switching • Latching Contact stacks • Solenoids

Impulse Latching Relay AZ 340
Make contacts:
Resistive load: 10 A 240 V AC
Lamp load: 8 A/240 V AC. Compensated fluorescent tubes 3.7 A/240 V AC.

Break contacts:
Resistive load: 8 A/240 V AC. Lamp load: 5 A 240 V AC. Compenseted fluorescent tubes: 3.7 A 240 V AC.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler
UK Division
Equitable House, Lyon Road
Harrow, Middx. HA1 2DU, Tel. (01) 8636329
A member of the worldwide ZETTLER electrical engineering group, est. 1877

"I MADE IT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed \} people will be when they're hearing a programme on a modern radio you made yourself.

> Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

> Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating technatron course, you learn by building!
You build a modern transistor radio . . . a burglar alarm. You learn radio and electronics by doing actual projects you enjoy -making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of radio and electronics are growing faster than they can find people to fill the jobs!

No soldering-yet you learn faster than you

 ever dreamed possible.Yes! Faster than you can imagine, you pick up the technical knowhow you need. Specially prepared step-by-step lessons show you how to: read circuits-assemble components-build things-experiment. You enjoy every minute of it! You get everything you need, tools, components. Even a versatile tools, components. Even a versatie multimeter that we teach you how AT NO EXTRA CHARGE! And this is a course anyone can afford. You can even pay for it by easy instalments.

So fast, so easy,
this personalised course
will teach you even if
you don't know a thing today!
No matter how little you know now, no matter what your background or education, we'll teach you. Step by step, in simple easy-
to-understand language, you pick up the secrets of radio and electronics.
You become a man who makes things, not just another of the mitlions who don't understand. And you could pave the way to a great new career. to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the transistor rou can go on to acquire course you can go on to acquire high-powered technical qualificago right up to City \& Guilds go rig
levels.

Send now for FREE

76-page book-see how
easy it is-read what others say!
Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

IP I.L.P. (Electronics)Lto

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers - the first contains frequency equalisation and gain correction, white the second caters for tone control and balance.
TECHNICAL SPECIFICATION

Inputs
Magnetic Pick-up Ceramic Pick-up
Microphone
Tuner
Auxillary $\quad 100 \mathrm{mV}$
$3-100 \mathrm{mV}$
Outputs
Tape 100 mV
Main output Odb (0.775 volts RMS)
Active Tone Controls
Treble $\pm 12 \mathrm{db}$ at 10 kHz
Bass $\pm 12 \mathrm{dbat}$.
Distortion 0.05\%
Signal/Noise Ratio $\quad 68 \mathrm{db}$
Sigal/Noise Ratio 68 db kHz
Overioad Capability 40 db on most
Supply Voltage $\quad \begin{aligned} & \text { sensitive input } \\ & \pm 16-25 \\ & \text { volts }\end{aligned}$
PRICE $£ 4.50+0.36$ V.A.T. P \& P free

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connections are provided: Input, output, power lines and earth.
TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance $4-16 \Omega$
Input Sensitivity Odb (0.775 volts RMS)
Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$
Supply Voltage ± 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE $£ 5.98+0.48$ V.A.T. P \& P free.

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 50 volts ($25-0-25$)
Input voltage $210-240$ volts
Size L.70. D. 90. H. 60 mm .
PRICE $£ 6.00+0.48$ V.A.T. P \& P free.

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd, Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address
\qquad Signature

Q: HOW CAN YOU MEASURE FREQUENCIES ${ }_{\text {p }}^{\text {y }} 180 \mathrm{MHz}$ WITH A STANDARD 20 MHz DFM? A: BY USING A 'CATRONICS’ PRESCALER!

COMPLETELY AUTOMATIC IN OPERATION, this exclusive unit enables you to measure frequencies between ! MHz and approx 180 MHz without any range switching, input level control adjustment or other operation. The signal is connected to the input socket on the Prescaler and the $\div 10$ output is connected to a standard DFM capable of measuring up to 18 MHz .
Uses 'state of the art' ECL integrated circuits PRICE A O + MAT A full range of Digital Frequency Meters is for accuracy and reliability. Built-in mains PSU or will operate on battery supply for ONLY
Delivery: generally from stock. also available from 5 digit 40 MHz models to Delivery: generally from stock. $\quad 7$ digit 180 MHz models-write for details.

CATRONICS LTD. Dept. 504, 20 THORNTON CRESCENT, OLD COULSDON, SURREY CR3 1 LH
(Tel: Downland 51413)

WW-236 FOR FURTHER INFORMATION
(7) Phonix Electronics (Solent) Ltd
139-141 Havant Road. Drayton, Portsmouth, Hants PO6 2AA

You already know us-get to know us better!
Our catalogue is now only 20p-returnable on your first order.
Our prices on a wide range of semiconductors, i.cs and passive components include VAT, and, despite rising postal costs, carriage is only 20p, too!

THIS MONTH'S BARGAIN OFFER

The Emihus GEMINI 1 POCKET CALCULATOR with the expensive specification-five function operation-percentage key-automatic constant -full floating or fixed decimal point-8 digit display-carrying case-overflow/error indicator. Our ultra-low price of $\mathbf{£ 1 4 . 9 5}$ even includes batteries!

Please send your catalogue-now!
Name
Address

FREQUENCYCOUNTERS high performance reasonably priced electronic instruments

TYPE 801

300MHz 8 Digits 10 mV Sensitivity

 Stability 3 parts in 10^{8} Crystal Oven. Two tone blue case $12 \frac{1_{4}^{\prime \prime}}{} \times 8^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{} \mathbf{f} \mathbf{2 8 5}$| 301M | 32MHz 5 Digit £ 75 | 401 | 32MHz 6 Digit f115 |
| :---: | :---: | :---: | :---: |
| 501 | 32MHz 8 Digit f170 | 701 | 50 MHz 8 Digit $£ 180$ |
| 701 | 80MHz 8 Digit f190 | 801M | 300MHz 8 Digit £285 |
| 901M | 520MHZ 8 Digit £370 | Memon | versions available if not |
| | Start/Stop versions plus f 12 | | suffixed M £25 extra |
| | 101 1MHz 100 KHz 10 KHz Crystal Standard $£ 80$ 103 Off/Air Standard $£ 78$ | | |

Supplied to and acclaimed by professional engineers for a decade

R. C. S. ELECTRONICS

NATIONAL WORKS. BATH ROAD. HOUNSLOW. MIDDX. TW4 7EE Telephone: 01-572 0933/4

WW-207 FOR FURTHER DETAILS

AF OSCILLATOR

 DISTORTION METERS010 Sine/Square

Oscillator
$-10 \mathrm{~Hz}-1 \mathrm{MHz}$
-10V p-p from 50s.
\square sine distortion 0.1\%
\square square risetime 100 ns
low cost high performance INILRLAB instruments
\square made in England by

LYONS INSTRUMENTS
Hoddesdon Herts EN11 9DX
Telephone 67161 Telex 22724
A Claude Lyons Conipany

We enjoy solving other people's problems!

Jasmin take a slightly different approach to their customers and they are proud of the rapport they attain with them. Research and development staff are always available to offer advice on technical issues. This in turn means that Jasmin are able to offer a unique service if you have problems in the following spheres - Complex automatic text and evaluation apparatus. -Digitalized video and Ceefax/Oracle display equipment. - Mini computer orientated systems. -Specialist contract engineering.

BOSTON HOUSE, ABBEY PARK ROAD, LEICESTER LE4 5AN TELEPHONE: 0533-58128/9 TELEX: 341581

ARISTOCRATS IN CONTROL

WW— 144 FOR FURTHER DETAILS

Nagra tape recomiers

 overseas and home enquiries invitedNagra III
Series Machines Fully Overhauled by Factory Trained Personnel. Guaranteed

Please apply to the exclusive UK agents

NAGRAKUロELGKI

 HAYDEN

WW-020 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{4 2 . 5 0}$

Distortion Measuring Unit.
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$
Si 453 \qquad £50.00 Low distortion Oscillator. Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATDN, W. YORKS BD19 5LA

$\frac{1}{2}$ watt ATENUATORS $\frac{1}{2}$ watt TERMINATIONS IMPEDANCE TRANSFORMERS

MANUFACTURED BY ELCOM SYSTEMS INC.

LOW COST
FAST DELIVERIES
FROM

aspen electronics limited

18a HIGH ST NORTHWOOD MIDDX HA6 1BN TELEPHONE NORTHWOOD 27688

naim audio the preamplifier

BE FAIR TO YOUR MUSIC
Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combination of specifications will enable a system to reproduce music We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker

Still only $£ 1.00$ for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve VAT and post extra. Available now in every country in Europe.

Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371

S-2020TA STEREO TUNER/AMPLIFIER KIT

NEW PRODUCT

A high-quality push-button FM Varicap Stereo Tuner combined with a 20 W r.m.s.

NELSON-JONES STEREO FM TUNER

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection-70dB. IF rejection-85dB. THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

> | PRICE: Mono $£ 25.46+85$ p p\&p+VAT; |
| :--- |
| With Portus-Haywood Decoder $£ 31.96+85$ p p\&p+VAT; |
| With ICPL Decoder $£ 29.73+85$ p p\&p+VAT. |

NEW PRODUCT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses
 are used for ease of assembly and to minimize wiring.
Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N} 72 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc). Toroidal mains transformer.

PRICE: $£ 29.95+99 p$ p\&p+VAT.

STEREO MODULE TUNER

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and highperformance IC. Variable INTERSTATION MUTE. PLL stereo decoder IC.
Typ. Spec. Sens. 30 dB S/N mono @ $1.8 \mu \mathrm{~V}$. Tuning range $88-104 \mathrm{MHz}$. LED sig. strength indicator. LED Stereo indicator. THD typically 0.4%.

PRICE: Stereo $£ 26.32+85 p$ p\&p + VAT. Mono $£ 22.40+85 p$ p\&p+VAT.
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRÜCTIONS.

SUB ASSEMBLIES

BASIC NELSON-JONES TUNER

Supplied as a printed circuit board with all components and screening box to build a varicap tuner module. Performance spec as above for complete N-J Tuner. For suitable stereo decoders see below. (Illustrated without screening box.)

PRICE: £12.88 + 25p p\&p+VAT.

BASIC MODULE TUNER

Supplied as a printed circuit board with all components and screened Mullard LP1186, to build a mono or stereo tuner module. Performance spec as above for Stereo Module Tuner complete kit.

PRICE: Mono £11.11 + 25p p\&p+VAT; Stereo $£ 13.89+25 p$ p\&p+VAT.

PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER
Mk II version of this design (WW Sept. 1970). The lowest distortion phase-locked stereo decoder kit available (Typ. 0.05% @ N-J Tuner O/P level). Separation 40 dB up to 15 KHz .
Complete kit comprises PCB and all components, inc. stereo LED.
PRICE: $\mathbf{£ 7 . 6 8 + 2 5 p} p \& p+$ VAT.

[^0]PUSH-BUTTON UNIT
The six-position push-button unit used in our tuners and tuner/amp. Each track has the required diode law for stability of tuning. There are approx. 40 turns on each button and there are six separate moving pointers. An AFC disable switch is incorporated with each button. The unit is finished in black with red pointers.

PRICE: $\mathfrak{£ 3 . 0 0 + 2 0 p} \mathbf{p} \& p+$ VAT.
Please send SAE for complete lists and specifications.
Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs, DE11 9PT.
Tel. Swadlincote (0283 87) 5432. Telex 377106.

GRAMPIAN REPRODUCERS ETD. hanworth trading estate feltham middlesex telephone 01-894 9141

WW-234 FOR FURTHER DETAILS

WW- 026 FOR FURTHER DETAILS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP

 MOTOROLA MC1310P EX STOCK DELIVERY SPECIFICATIONMC1310P only £3-15 plus p.p. 6p
NOTE
As the supplier of the first MC1310P decoder klt, of which we have sold literally thousands, our customers can beneft from our wide experlence

Please add V.A.T. at 8% to all prices
FI-COMP ELECTRONICS
PORTWOOD IND. EST., CHURCH GRESLEY, BURTON ON TRENT, STAFFS. DE11 9PT

PRECISION EXAMPLE OF FRENCH ENGINEERING

Now in use by the following: GPO, BBC, Atomic Energy Authority, British Nuclear Fuels. Weekend TV, Ministry of Defence, Hospitals, Opticians, etc.

UK DISTRIBUTOR
PRECISION PETITE LTD
(Les Applications Rationnelles Paris)
119A HIGH STREET, TEDDINGTON,
MIDDX, UK.
TEL. 01-977 0878
SAE for leaflets, price list and order form

Eliminate TV receiver distortion with Celestion TELEFI

TELEFI

At last you can enjoy TV entertain-

ment with the added pleasure of true
$\mathrm{Hi}-\mathrm{Fi}$ sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own $\mathrm{Hi}-\mathrm{Fi}$ equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Telefi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires $\mathrm{Hi}-\mathrm{Fi}$ TV sound.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener. A range of models is available to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate Joudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Celestion

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 BJP.

Audio

 TestSet

foramplifiers, mixers tape recorders

Checks ... frequency response signal/noise ratio distortion cross-talk wow \& flutter drift
erasure sensitivity output power gain
in one compact unit.
Auxiliary Unit provides extra facilities for Studio testing.

Send for leaflet RTS2

Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SL1 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

FERROGRAPH

A member of the Wilmot Breeden group

WW-235 FOR FURTHER DETAILS

BOARD SIZE	RESIST COATED FIBRE GLASS RESIST COATED												PAPER$1 / 16^{\prime \prime}-102$	
	$5 / 64^{\prime \prime}$ or $3 / 32^{\prime \prime}$ or $1 / 8^{\prime \prime}-1$ oz				1/32"-1 02				1/16"-1 oz					
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$\mathbf{7 5 m m} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51p	45p	63p	51p	$\mathbf{£ 1 . 1 0}$	£1.00	£1.02	92p	51p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	$\mathbf{~} 1.10$	£1.00	$\mathbf{£ 1 . 1 5}$	£1.05	65p	55p	80p	65p	£1.38	£1.25	$\mathbf{~} 1.30$	£1.15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	£1-10	$\mathbf{£ 1 . 0 0}$	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	£1.60	£1.40	£1.65	£1.45	£1.05	85p	£1.25	$\mathbf{£ 1 . 0 5}$	£1.95	£1.75	£2.10	£1.90	£1.05	85p

Extra Discounts 5 sheets $5 \%, 10$ sheets $10 \% ; 20$ sheets $20 \%, 50$ sheets and above 30%.
All goods add 8% VAT + post and packing 30p. 10 sheets or more free. Hurry limited stocks delivery subject to availability. Prices may be changed without notice.
P.S. We also specialise in printed circuit board manufacture. Lowest prices, fastest delivery

WW-195 FOR FURTHER DETAILS

hremel|

PROFESSIONAL TAPE TRANSPORTS

and muhti-channel electronics

$$
\begin{array}{cl}
& * \\
& * \\
& \text { Tapewidths up to } 25 \mathrm{~mm} \\
\text { Finance } & *
\end{array}
$$

BRENELL ENGINEERING CO LTD

231-5 Liverpool Road. London N1 1LY. Tel: 01-607 8271

Why build

 your own?
WE'VE GOT THEM EX STOCK
DO YOU HAVE THE TIME:

$1+10+100+$

£4 £3.50 £2.80 each o design, develop $\&$ perfect To source the components.
To manufacture them. - IS IT REALLY WORTH IT?
Our modules are tuneable from 100 Hz to 20 KHz and need only two external capacitors.
The output frequency stability is 0.1% at 20 KHz . and up to 2V.r.m.s

FOR 24 HR. DESPATCH SEND ORDER TO ADDRESS BELOW OR PHONE 01-668 7151

Redlands, Coulsdon, Surrey, CR3 2HT

Guest Distribution

TRANSFORMERS

NEM! $\mathbf{2}^{\prime \prime}$ AND $4^{\prime \prime}{ }^{\prime \prime}$

$\frac{1}{4}$-WATT CARBON FILM RESISTORS atso available $\frac{1}{4}$ watt at $70^{\circ} \mathrm{C}$ E 12 range $10 \mathrm{~B}-1 \mathrm{MO} .5 \%$ tol above $470 \mathrm{~K} \Omega 10 \%$ tol. at 95p per 100

MINIATURE NEONS

6 mm dia.. 12 mm length leads length approx. 20 mm . Recommended ballast resistor 150 K ohms for 240 Volt

PLEASE ADD 8\% FOR VAT

DEPT WW5, SIMMDNDS ROAD, WINCHEAP. CANTERBURY, KENT.

Tel: (0227) 52436

Problem.

Where to obtain devices for push-pull audio power amplifiers which give good linearity and don't blow up on the slightest overload.

Solution.

M-OV audio beam tetrodes. A pair of KT66s will give up to 50 W and a pair of KT88s will give up to 100 W And M-OV audio triodes, too: a pair of DA42s gives up to 200 W and a pair of DA 100s gives up to 300W.

EEVandM-OV know how.

THE M-O VALVE CO LTD. Hammersmith. London. England W6 7PE Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London SEC E WW-I 34 FOR FURTHER DETAILS

Redan House, 1 Redan Place, London W2 4SA
Telephone: 01-727 0091/2 Telex: 265531
Cables: Edicron London W2
WW-108 FOR FURTHER DETAILS

\square Like the price, it's small in size $11 \times 6^{\frac{1}{4}} \times 16^{\frac{1}{2}}$ in. ideal for the busy workbench.
\square Weighs only 14.3 lb ; not just portable but positively easy to carry.
\square Easy to use
\square Can be used as a Single Beam, Dual Trace or an X-Y oscilloscope.
$\square 10 \mathrm{mV}$ Sensitivity at 10 MHz .
\square Automatically Selects for Chopped or Alternate modes of operation.
\square Automatically Selects for TV Line or Frame Displays.
$\square 8 \times 10 \mathrm{~cm}$ Display Area
\square Nationwide maintenance and user advisory
service available.
Already chosen by over 8,000 customers as the best-value-for money dual trace scope on the market, the D61 at $£ 138$ must be seen to be appreciated

Write for full details now!

TELEQUIPMENT \lliep

Tektronix U.K. Ltd., Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

Telequipment gives you more scope for your budget

wireless world

Electronics, Television, Radio, Audio

MAY 1975 Vol 81 No 1473

Contents

199 Computers and us
200 Wireless World Dolby noise reducer
205 Books received
206 Tidal-wave warnings from the ionosphere
206 Meetings. Announcements
207 Audio Engineering Society 50th Convention
209 News of the month
Video disc player on the market
Bristol community cable TV experiment closes
Underground rescue radio system
211 A 50 MHz oscilloscope by C. M. J. Little
215 Literature received
216 Digital synthesis of frequency by D. C. Ayre and K. G. Woodard
218 New m.o.s. centre
219 Letters to the editor
Interference from pocket calculators
F.m. tuning indicators

Easier to become a radio amateur?
22275 years of magnetic recording- 3 by Basil Lane
226 Circuit ideas
Accurate current generator
Wobbulator
Stabilizing a symmetrical power supply
227 London Electronic Component Show 1975
229 Display devices
235 Noise-confusion in more ways than one- $\mathbf{3}$ by K. L. Smith
238 Oscilloscope capacitance meter by H. v. Z. Smit
239 HF predictions
240 Coastguard v.h.f. repeaters by J. B. Tuke
242 World of amateur radio
243 New products
a79 APPOINTMENTS VACANT
a96 INDEX TO ADVERTISERS

[^1]
wireless world

This month's front cover shows the chassis and printed circuit board of the Wireless World Dolby noise reducer. Principle of operation is described in this issue.

IN OUR NEXT ISSUE

Time by radio

A digital clock synchronized to the atomic frequency standard broadcast at 60 kHz on MSF Rugby

Wireless World Dolby noise reducer

The second article will deal with the circuitry and construction of this unique audio project

Circuit calculations simplified

Quite sophisticated design can be done with simple arithmetic. Part 1 is on calculating resistance values

SIXTY-FIFTH YEAR OF PUBLICATION

ibpa

TO MINIMISE INVESTMENTS AND SOLVE STOCK PROBLEMS

You can increase your efficiency, too, by ordering large or small quantities of any one part, or making up an order of any number of assorted small quantities through the United-Carr Supplies service. We can deliver with more than usual promptitude because we carry such large and varied stocks of CINCH, DOT and FT electronic and electrical components.
Fastenings and assemblies.

So, make United-Carr Supplies your SINGLE SOURCE

 for
CINCH

[^2]
wireless world

Computers and us

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:

GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
MIKE SAGIN
Phone 01-261 8429

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

The "computer on a chip" that we used to talk about ten years ago has now arrived. It is, of course, the integrated-circuit "microprocessor", which, in the space of a cubic centimetre or so and at the cost of a few pounds, provides the central functions of a stored-programme digital computer. Before long this device will be a familiar object in our lives. No doubt we shall see it in cars and washing-machines, in cash registers and petrol pumps, and in a great variety of "distributed processing" applications in industry and commerce. What will its impact be? The average citizen will accept this minor revolution with bland indifference, unaware that once again his mode of life is being subtly changed by technology. The engineer or technically-informed person, though more aware of the potentialities, will display a different form of complacency. Secure in the knowledge that he understands how these things work, how they are designed, manufactured and applied, he will believe that everything is under control. Computers can never exceed the capabilities of those who design and programme them and therefore they can never get out of hand.

These are naive attitudes. Technology has modified the surface pattern of our lives, and hence by introjection our inner selves, since the beginning of man. The Industrial Revolution in Britain changed the mode of life and work drastically and irrevocably. Today the changes tend to creep up and take us unawares. With the computer, for example, while we were worrying that it might usurp human brain power and lead to mass unemployment we did not notice that in one field of use, business and administration, it was subtly changing from a calculating machine into an automated filing system. Suddenly there were "computer banks" that held personal information on us-information we had supplied in tax returns, census answers, and records to do with health, insurance, credit-worthiness, military service and the like. While this information stays distributed in separate computers the threat to privacy and freedom remains a threat. But the danger is that the scattered data could be collated into dossiers. An "identikit" picture of each citizen based purely on data could be used to make decisions about him, without anybody actually speaking to him or telling him that a decision had been made. Remember that this is technologically quite possible. To what extent it becomes reality depends on the ability of our ethics to restrain our technology.

Information collated by computers is also being used to make decisions on a national level. Theoretically the administrators' ability to get more data, quicker, should result in better decisions. But there is the hidden danger of the increasing isolation of the decision maker from his sources of data and his decreasing ability to check their validity.

As engineers and technicians we cannot take refuge in the limitations of computers as we see them now. There are certainly inherent limitations to the capabilities of the conventional stored-programme digital computer in its present form, but there are no inherent limitations to computer technology as a whole-consider, for example, the work that is being done on artificial intelligence. At some point we must realize that we are not mere instruments of technological progress. We must stop and ask ourselves what we want to do with these machines and what effect these technological aims will have on the shape and quality of our lives.

Wireless World Dolby noise reducer

1-An introduction to the Dolby noise reduction system

by Geoffrey Shorter

This noise-reducer design is intended mainly for hiss reduction in magnetic-tape recording machines. The unit can be switched to decode commercially available Dolby B-encoded cassette tapes, Dolby B-encoded f.m. radio transmissions (as in the USA), or to encode blank tapes from any source. As an alternative, it can be used in trading some of the noise improvement for reduced distortion at peak recorded levels. The Wireless World processor can be aligned without any additional test instruments, the circuit board being arranged to provide the necessary alignment and calibration tones. This article gives background to the B system and to the functioning of the noise reducer and subsequent articles describe construction, alignment and calibration of the unit. A complete kit is available only through Wireless World (see panel on page 205)

In audio systems dynamic range can be defined as the ratio of the largest to the smallest programme signal. Dynamic range is typically limited at the high-level end by tape saturation or amplifier signal handling problems: there is usually a fairly well-defined level beyond which compression occurs and distortion rises at a rapid rate. At the other extreme there is a limit on the lowest signal that can be handled, set typically by the noise level of electronic circuits, tape noise, surface noise on discs, or granularity on optical soundtracks.

In concerts, dynamic range can be as high as 90 to 100 dB , but once such programme material has been recorded, dynamic range is reduced to 60 or 70 dB . (When broadcast the range can be as low as 20 to 40 dB .) In this situation there are three options-lose that part of the programme below noise level, distort the peaks, or distort the range by compression either manually or automatically. None of these options is altogether acceptable in itself, all distort the original in some way. What is needed is a way of getting round this limitation of dynamic range without the distortion of overmodulation, without losing programme in noise and without distortion of range. Before discussing various techniques that have been proposed and tried, we will be more specific about what is required.

As well as not introducing any perceptible non-linear or dynamic range distortion of both steady-state and transient signals, any proposed technique for high quality use should not perceptibly alter the signal in respect of frequency response and transient response. Any signal processors must be able to operate to the normal constraints of audio
channels, i.e. operation should not depend on freedom from phase and amplitude versus frequency errors or changes, nor on a linear phase-frequency response; channel overload characteristics should not be worsened. In addition to compatibility with transmission channels, there must be compatibility between processors to the extent that recordings can be interchanged. In reducing perceptibility of noise, there should be no noticeable noise modulation effect and ideally all noises should be reduced by a similar amount, otherwise reducing one kind might unmask another.

Noise-reducing techniques
"Static" methods. The most well-established methods of avoiding the constraints imposed by high noise levels are "static" ones. Examples are the high-frequency pre-emphasis, and subsequent de-emphasis, applied to f.m. broadcasts and gramophone records and the low-frequency preemtphasis used in tapes. They are static because the amount of emphasis given is fixed and does not take account of the signal in any way. At some frequencies, there is thus an intrusion into the possible range of levels that signals can occupy which may mean that some lower than normal limit must be placed on the programme level.

Single-ended methods. An alternative approach is the dynamic one of altering the level of a signal by an amount that depends on the signal level, at either the sending/recording end or at the listening end. In examining such dynamic techniques it is expedient to look at the possibilities from a steady-state signal level point of view, with the thinking that frequency and time-dependent variations
can be seen as special categories within a level classification. In practice, however, the success of each kind will undoubtedly depend on how well complicated timevarying multi-frequency signal patterns are responded to by the processing circuitry; and to whatever psychoacoustic, or perceptual, effects such as auditory masking, can be discovered and made use of.

The simplest kind of device, within our terms of reference, is the low-level noise gate, depicted graphically in Fig. 1(a), which eliminates signals below a certain threshold level. More useful is a stepped noise gate, where signals and noise below a certain threshold are attenuated by a finite amount rather than an infinite amount-Fig. 1(b). There are a host of variants on this theme, Fig. 1(d) showing another possibility.

A number of commercially-available expanders have used the general approach of Fig. 1(b), including H. H. Scott's "dynamic noise suppressor" and R. Burwen's "dynamic noise filter", operating only at low and high frequencies and with a passband that varies according to signal level. The Philips "dynamic noise limiter" is another example, though its operation is restricted to high frequencies. With these devices, the bandwidth restriction at low signal levels must inevitably cause some loss of programme. Further, any reduction of noise level that can be achieved is likely to be modulated by intermittent mid-frequency signal components, giving rise to what is called breathing. Because they are "singleended" these techniques must result in a distortion of dynamic range. Thus you can either have the original dynamic range plus on reduced noise, or a distorted dynamic range and loss of some
low-level information with a reduced noise level-but not both at the same time.

Besides altering the level of lowamplitude signals, a similar expansion can be achieved by expanding high-amplitude signals, Fig. 2(c), but as well as exhibiting the two major disadvantages already mentioned, this would suffer a third. By having a variable-gain element operating at a high level there are obviously greater risks of generating intrusive unwanted signals as a result of overshooting, high non-linear distortion and a high circuit noise level.

Dynamic processing is often carried out prior to recording or transmission. The low-level compression characteristics of Figs. 1(c) and (e) and the high-level characteristic of Figs. 2(a) and (b) both enable average signal level to be increased relative to the noise level. But in themselves they suffer from the same disadvantage as do the expanders. Clearly, single-ended methods are inappropriate to normal high quality reproducing systems.

Complementary methods. The only way of avoiding the difficulty of alteration to dynamic range is by the complementary method-the dynamic equivalent of static "equalization". In complementary systems, signal processing before transmission and recording, normally compression, is followed by an equal degree of complementary processing, normally expansion, prior to audition so that the original dynamic range is restored. Noise added by the medium after compression is reduced by the degree of expansion used. In the expander of Fig. 1(b) the complementary compressor characteristic would be (c) and the complement of (d) would be (e). Likewise, the transfer characteristics of Figs. 2(b) and (c) form another compander system.

Fig. 1. Low-level noise gate (a) simply loses both noise and signal below a certain threshold level. Finite attenuation of low-level signals is achieved with the expansion transfer characteristics of (b) and (d). Such "single-ended" expanders reduce noise at the expense of distorting dynamic range. Compressors at the signal source end can raise low level signal above noise levels, but similarly distort range (c) and (e).

Fig. 2. High-level limiter and compressors (a) and (b) and expanders (c) suffer an additional disadvantage because of processing at a level where distortions would be more obvious.

Fig. 3. Complementary high-level system (a) is able to reproduce original dynamic range while either reducing maximum level to give more overload margin (b), reducing noise (c), or giving a combination of both.

Fig. 4. Low-level complementary system (a) has the advantage that any distortion products are at a low level where they are less likely to be audible.

Another kind of diagram makes it easier to visualize what happens so far as levels are concerned. Fig. 3(a) is a typified highlevel compander characteristic, showing both the compression and expansion curves. Its equivalent level diagram of Fig. 3(b) shows the reduced dynamic range (indicated by arrows) where the maximum level to be handled by the interposing medium is assumed to be the same -the region marked "overload margin" giving an increased margin against overload and thus lower distortion. Fig. 3(a) shows the same reduced dynamic range
produced by the characteristic of Fig. 3(a), but with the intermediate gain shifted so that the low signal levels can be increased in relation to the noise level.

Fig. 4(a) shows low-level compander characteristics, with the level diagram of Fig. 4(b) illustrating the use of the compressed dynamic range to bring up the low-level signals relative to the noise. Fig. 4(c) shows how, by reducing the levels by a constant amount, increased overload margin can be obtained. (Notice the similarity between Figs. 3(b) and 4(c) and between Figs. 3(c) and 4(b), the

(b)

(c)

overload margin

(b)

(c)
(C)

difference being the siting of the region of "linear" operation at either a high level or a low level. Despite the immediate visual contrast between Figs. 3(a) and 4(a) there is clearly a close resemblance between curves 1.)
In practice the characteristic curves do not have the discontinuities shown, corners being rounded to prevent objectionable noise modulation. The curves should be capable of easy realization, be readily reproducible and the two complementary curves must be matched to within the required tolerance.
Two recently-introduced studio companders use the general approach of Fig. 2(b) and (c), but with a threshold that is much lower than indicated. The dbx Inc. compander uses a square-law curve above a certain threshold (-60 dBm), which in logarithmic terms is a $2: 1$ compression ratio. The Burwen "noise eliminator" uses a cubic law (logarithmically, a $3: 1$ compression ratio) above a certain threshold. (A fixed h.f. preemphasis and a level-independent bandwidth are also features of these systems.)
In general, such high level companding techniques suffer from a number of drawbacks: poor tracking between the two processors, high sensitivity to errors in gain in-between processors, overshooting and a risk of overmodulation, both of which could lead to compression in the transmission medium that would go uncorrected on expansion, noise modulation by signals, modulation-product formation as a result of rapid gain changes, all of which are undesirable in a high quality link. High level companders can be very useful however in telephone circuits for example and the Post Office's Lincom-

In most electronic signal processing systems there is usually some maximum level beyond which the signal must not be allowed to go and to which levels are frequently referred. Transfer characteristics are therefore usually given in the quadrant shown in which the point of reference is made to be some arbitrary maximum level, rather than the zero signal level of Figs. I to 4. (A zero at the axes intersection would represent $O d B$ and not an origin as in cartesian coordinates.) In practice such curves are not discontinuous but are smoothly connected to prevent unwanted modulation and to permit easy realization and matching.

Fig. 5. Conventional companders use the equivalent complementary systems of (a) or (b) whereas the Dolby system (A and B) uses an additive to method (c) enabling processing circuitry to be separated from the main signal path.

pex scheme is an example of a compander in which dynamic range is reduced to zero. (Subsequent expansion would not be possible were it not for the fact that information on signal amplitudes is contained in separate pilot or control channel.)
The low-level method (Fig. 4) has a high tolerance of channel gain errors, produces modulation distortion at low signal levels rather than high levels, and there is less risk of overloading the medium. It seems a good idea anyway because one might expect the ear to be less sensitive to lowamplitude effects than to the same effects at high level. This then is the basic companding technique chosen for the Dolby system.

Dolby low-level compander

In conventional companding systems there are two equivalent ways of achieving compression and expansion. One is to derive a control signal, after subjecting the input signal to a variable-gain element (compressor); expansion or "decoding" would then be achieved by the converse process-the control signal being derived prior to a variable-gain element (expander), Fig.| $5(\mathrm{a})$. The equivalent, alternative, way is to derive the control in the compressor part before the variable-gain element and to subsequently expand by using a control obtained after the variablegain device', Fig. 5(b). (The first-mentioned method is used in the dbx and Burwen high-level companders and in the JVC a.n.r.s. low-level compander.)

The Dolby technique makes use of a different approach-with an important difference; compression is achieved by deriving a special low-level signal that is added to the main signal, and expansion is obtained by subtracting a low-level signal from the main one, Fig. 5(c). (Within the low-level processor block, compression is achieved with method (a).)

Of course, the required compander characteristics could have been derived in the normal way, i.e. by direct action of a compressing circuit on the main signal path Figs. 5(a) and (b); but in the low-level approach the whole range need not be subjected to processing. It is obviously in the interests of quality that low-level signals be processed separately, leaving the main signal to a linear path whose quality is not restricted by that of the variable-gain path.

Tracking at high levels becomes easier using this low-level approach, and a tracking error due to channel gain variation would occur at an unobtrusively low level. Additionally with this technique, it is found that sufficiently accurate tracking can be maintained using a control derived from peak and average signal values. Thus the elaboration of an r.m.s.-derived control, which would strictly be necessary for channels having a non-linear phasefrequency response, is avoided.

Notice that in the subtractive part of Fig. 5(c), a negative feedback loop is effectively formed in the low-level "contribution" to the main path. Advantage of this is taken in the Dolby system (and in
the JVC a.n.r.s. system) in that an identical network to that used to produce the additive low-level signal at the encoder, can be used in forming the subtractive component at the decoder, merely by inserting the network in the negative feedback loop of a main path amplifier. Among other things this means a single processor can be used for both encode and decode functions by a suitable switching arrangement.

In a wideband compander of this kind having the kind of characteristic at Fig. 4, a low-amplitude signal below the operating threshold would result in the maximum amount of low-level boost being applied, and on decoding the noise level will be appropriately reduced; a high-amplitude signal would result in no noise reduction. Thus an intermittent high-amplitude signal could modulate the noise level, producing breathing (unless high-level signals were present in the same frequency band as the noise. This breathing can occur in any kind of wideband compander, of course).

In the Dolby A system this effect is overcome by splitting the audio band into sections in the additive signal path, each section having its own compression and control circuitry. A high-amplitude signal in one band will not then prevent noise reduction being obtained in bands above and below. Within each band, the presence of a high-amplitude signal is relied on to mask, that is reduce the perceptibility of, noise components close to that signal. Studies of auditory masking show a shift in the hearing threshold in the presence of a (masking) tone, which effect can extend upward in frequency to a considerable extent; downward to a much lesser extent, the amount depending on the level of the masking tone.

When the economics of band splitting are judged against the extent of this masking effect. the amount of noise reduction required, and the value of threshold level in relation to the benefits of the additive technique, it turns out that four bands give a satisfactory compromise of cost versus performance. Splitting the band with 12 dB per octave filters in the ranges 80 Hz low pass, 80 Hz to 3 kHz band pass. 3 to 9 kHz band pass, and 9 kHz high pass would give a uniform 10 dB boost (and hence noise reduction) to low-level signals. as determined by setting compression threshold at 40 dB below peak operating level. By making the 3 to 9 kHz bandpass filter into a highpass filter, an additional boost is obtained, gradually increasing from about 5 kHz to a maximum at 15 kHz . The lowest band provides reduction in the hum and rumble range, the second reduces mainly broadband noise. tape print-through and crosstalk, while the upper bands reduce hiss.

Dolby B-type system

The cost and complexity of the A system is not really appropriate to consumer products. Moreover, in slow-speed tape machines in particular the noise spectrum has a different distribution to that occurring in the studio situation, on account of the slower tape speed and thin
 below threshold level in presence of $0 d B$ tones.

oxide layers used in tape cassettes. Fig. 6 gives a typical DIN-weighted noise spectrum taken from a low-noise ferric oxide tape cassette, showing the noise problem is mainly a mid- to highfrequency one. Noise reduction in the B-type system is therefore limited to this frequency range and Fig. 7 shows the amount of boost (hence noise reduction) applied at various input levels; a fixed high-pass filter placed in the subsidiary signal path, as is done with the JVC a.n.r.s. system, would achieve this end. What then, about noise modulation which in the A system was reduced to imperceptible amounts by the multiband feature?
In the B system, such a filter prevents high-level low-frequency tones from activating the compression circuit, so there is no noise modulation by 1.f. components. But there could still be modulation by high-level signals close in
frequency to the filter cut-off. The trick to avoid this, unique to the Dolby B circuit is to move the filter passband higher in frequency, so that the high-level signal would then be below the filter passband. The curves of Fig. 8 show the effect of the variable-frequency filter under the influence of a high-level tone at three different frequencies: the lowestfrequency curve representing the lower limit of the combined filter's translation in frequency. As the figure shows. with a high-amplitude tone of 500 Hz applied, there is some 8 or 9 dB of noise reduction at 10 kHz ; even with a tone at 2 kHz there is still some noise reduction obtained. Had the filter passband remained fixed. these high-level tones would have caused the variable-gain element to operate, resulting in reduced or zero contribution from the subsidiary path, and hence little or 110 noise reduction.

Fig. 9 shows a simplified block diagram

of B-type processors, the encoder at (a), and the decoder at (b) with the same filter and compressor circuitry now in a negative feedback loop. In (b) a phase inversion is clearly required, which in (a) it is not. A simple dodge, that leads to a simplified encode/decode switching arrangement, is to re-site this phase inverter in the main signal path after the summing amplifier. The inverter can now remain in-circuit permanently, forming part of the feedback loop only during decode, Fig. 8(c).
Circuit operation. The way in which the voltage-variable filter and compressor operates is interesting. A fixed high-pass filter, formed by the parallel combination of the 5.6 and $27-\mathrm{nF}$ capacitors (fed from a low impedance source, they are effectively in parallel) and the $3.3 \mathrm{k} \Omega$ resistor determines a turnover frequency of 1.5 kHz (Fig. 10). Imagine that a simple compressor then follows, i.e. a variable attenuator formed by a fixed resistor and the f.e.t. voltage-variable resistor (ignoring the 4.7 nF capacitor). The f.e.t. is to be controlled by a direct voltage obtained after rectification of the signal passed by the filter/f.e.t. combination. Without any direct voltage applied to the f.e.t. gate, as would be the case for inputs of any level below the filter passband and
for low-level inputs within the passband the f.e.t. resistance is nominally infinite. The filter circuit would thus give minimum attenuation of h.f. signals and pass them to the main path, allowing h.f. noise reduction to be obtained. When an h.f. input is of sufficiently high level for the control signal to overcome the f.e.t. bias (this determining the compression threshold), the direct voltage to the gate would cause the f.e.t. resistance to fall, attenuating the signal, and reducing the amount passed to the main path. As the h.f. signal increased, a progressively smaller amount would be returned to the main path. Operation of this principle is shown by the curves in Fig. 7(a), which in fact apply to the Dolby B and a.n.r.s. circuits.

By replacing the fixed resistor with a capacitor (4.7 nF) in series with the f.e.t. resistance a second, variable, high-pass filter is formed. With increasing f.e.t. gate voltage, actioned by an increasing signal frequency and/or level, the filter characteristic rises in frequency, "overtaking" the fixed filter curve to largely determine a new, higher, passband (after equilibrium between signal level control and filter is reached). Thus the frequency at which a significant signal is returned to the main path is raised, as depicted in

Fig. 9. Characteristics of Fig. 8 are realized by a voltage-controlled filter and compressor which adds up to $10 d B$ of subsidiary signal to the main path during encoding (a). In decoding, a similar network is used to subtract from the main path (b), the network forming part of a negative feedback loop. This loop means that identical networks can be used for encoding and decoding. By placing the phase inversion in the main signal path, as shown (c), it can be left permanently in-circuit, simplifying encodedecode switching.

Fig. 10. Output of high-pass filter decreases after the compression threshold, set by gate bias, has been exceeded by the control signal. Response curve of combined fixed and variable filter sharpens when the two turnover frequencies coincide.

Fig. 11. Control-loop integrator has variable attack and decay times depending on speed and amplitude of signal changes. Large transients cause D_{5} to conduct, shortening loop response time. Superposition of a.c. signal on control loop is to allow f.e.t. to operate symmetrically, thus keeping second harmonic distortion to a low level.

Fig. 8, preserving some h.f. noise reduction in the presence of mid-frequency signals. In the region where the two filter curves are close, the combined filter shape is sharpened to around 10 dB / octave, so the effect of the filter action is heightened in this region, and the immunity of the circuit to noise modulation therefore improved.

Dynamic operation

To avoid modulation products being generated by rapid changes of gain in the compressor, which may or may not be cancelled in the complementary expansion process, a long attack time is desirable in the rectifier circuit providing the f.e.t. control voltage. On the other hand, a short attack time is needed to minimize the effect of overshoots, which could have an amplitude equal to the amount of compression.

The extremely elegant solution chosen is to use a time constant that depends on the rate of change of signal. Referring to Fig. 11, the $2.7-\mathrm{k} \Omega$ collector resistor and the $100-\mathrm{nF}$ capacitor allow rapid following of a slowly changing input signal. But the time constant of the $270 \mathrm{k} \Omega\left(R_{41}\right)$ and $330-\mathrm{nF}$ component gives an attack time for the control signal of 100 ms -long enough to prevent audible modulation products being formed. Diode D_{5} is not brought into conduction because the voltage drop across it is never large enough (the discharge time of the $100-\mathrm{nF}$ path being shorter than through the 330nF capacitor). For large transient changes of input signal the potential across the $100-\mathrm{nF}$ rises faster than that at the $330-\mathrm{nF}$ capacitor so D_{S} conducts, reducing

Noise reducer kit

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features:

- a noise reduction of 10 dB at 5 kHz and above
- switching for both encoding (lowlevel h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for
alignment
- suitability for both open-reel and cassette tape machines
The kit includes:
- complete set of components for a stereo processor
- regulated power supply components
- board-mounted DIN sockets and push-button switches
- fibreglass board designed for minimum wiring
- solid mahogany cabinet, chassis. two meters, front panel, knobs.
mounting screws and nuts
Price is $£ 37.10$ inclusive.
Calibration tapes are available, costing $£ 1.94$ inclusive for $9.5 \mathrm{~cm} / \mathrm{s}$ open-reel use and tor cassette (specify which).
Send cash with order, making cheques payable to IPC Business Press Ltd, to:
Wireless World noise reducer
General sales department
Room 11. Dorset House
Stamford Street
London SE1 9LU
attack time to around 1 ms or less. Between these two extremes charging of the $330-\mathrm{nF}$ capacitor is shared by D_{5} and R_{41}, as determined by the p.d. across them.

While the effects of transients are limited by the variable attack time, high amplitude transients require more rigorous treatment. Overshoots, as a result of the control loop not operating quickly enough, are limited to a maximum amplitude of 2 dB by two silicon clipper diodes. When added back to the main path the clipped subsidiary signal can result in a momentary distortion of 1%, lasting for around 1 or 2 ms , but this occurs at a time when, because of the casual transients in the main path, the ear is least susceptible to it.

As with attack time, recovery time is as much a problem-it must be so short that noise reduction immediately following a high amplitude signal is restored within the time the ear takes to recover its normal hearing threshold, but not so short that low-frequency or modulation distortion results. The circuitry ensures a $100-\mathrm{ms}$ decay time normally, but for large sharp reductions in signal level this value is reduced.

In Fig. 11 there is a proportion of a.c. signal from the emitter resistors superimposed on to the direct control voltage. This is to maintain symmetry of operation in the f.e.t. and thus keep second harmonic distortion to a low level by ensuring that
$v_{g d}=v_{g s}$. Therefore an a.c. signal is applied to the gate that is half the value of that at the drain. By this means, and by keeping the signal voltage at the f.e.t. low by the capacitance divider prior to the f.e.t., distortion is reduced from a peak of 0.5% to 0.05% (at 1.5 kHz and -15 dB).

This simplified introduction to noisereducing systems should help in understanding operation of the B-type circuit, to be given in next month's issue in full.
To be continued.
Acknowledgement. We wish to thank Dolby Laboratories Inc. for their cooperation in developing this Wireless World design and particularly Ian Hardcastle for his valuable assistance.

Books Received

The latest editions of the D.A.T.A. book series are now available, covering transistors, semiconductor diodes, digital integrated circuits, linear integrated circuits and semi conductor applications notes. Other annual publications in the series include those on semiconductor heat sinks, sockets and asso ciated hardware, discontinued integrated circuits and discontinued transistors. Each book lists the majority of devices currently available, throughout the world, together with their relevant parameters. London Information (Rowse Muir) Ltd, Index House, Ascot, Berks SL5 7EU.

Radar Precision and Resolution by G. J. A. Bird is aimed at providing the practising engineer with an understandable treatment of the radar uncertainty function together with a foundation of the underlying transform theory Chapters include signal processing methods, Laplace and Fourier transforms, Hilbert transforms and complex analytical signals. Much of the book comprises mathematical treatments and worked examples with diagrams and graphs where necessary. The text concludes with a series of appendices which define terminology used in the book. Price £5.80, cloth. Pp.160. Pentech Press Ltd, 8 John Street, London WC1N 2HY.

Tidal-wave warnings from the ionosphere?

Tidal waves have nothing to do with tides. They are generated by undersea earthquakes: a sudden fall in sea-floor level due to an earth slip transfers energy to the water above. This propagates as a long-wavelength high-speed water wave. In a ship on the ocean the wave may pass unnoticed because, even if the amplitude is great, the gently sloping wavefront makes no impact. When the wave strikes the shore, however, there is a devastating inrush of water. Nowadays geophysicists call this type of wave by its Japanese name, tsunami ("harbour wave").

The islands which form the state of Hawaii are at great risk from tsunamis since they lie in the middle of the Pacific Ocean, which is ringed by earthquake zones. A tsunami warning system for such an area is very desirable, provided that it is reliable and does not give a lot of false alarms. For some time seismologists have attempted to give tsunami warnings, making use of the fact that the earth slip which causes the wave also sets up a Rayleigh surface wave through the sea floor. This travels about 20 times as fast as the tsunami and in principle, with the distance involved, could give the people of Hawaii at least a few hours warning.

Unfortunately the Rayleigh wave is small and of very long period. This makes it difficult to pick out from all the seismic noise which seismometers register all the time. For this reason a new, indirect method of detecting the Rayleigh wave is of great interest since it seems to offer a cheap and reliable way of doing the job. It has been developed by workers at the department of electrical engineering at Hawaii University and in principle involves little more than the monitoring of standard frequency transmissions in the area.

The method is possible because the Rayleigh wave on the sea floor disturbs the water above. The change of sea-floor level in effect lifts the sea surface over a wide area. The sea surface then acts as a huge piston or diaphragm and sends a very-low-frequency acoustic wave (period 30-200 seconds!) upwards into the atmosphere. When this wave reaches the ionosphere it causes a change in the refractive index to radio frequencies. The corresponding changes in the path length of reflected radio wave causes phase delays which are detectable, when the reflected radio waves return to earth, as Doppler frequency shifts. The shift may be small (1 Hz for a 5 or 10 MHz transmission) but detectable if the transmitted frequency and receiver local oscillator are stable enough. In the Hawaii experiments the local standard frequency transmitter WWVH was used, with monitoring receivers on three islands. Observed Doppler shifts were found to correlate well with seismic records of known earthquakes.

The beauty of this indirect method of tsunami detection lies in the fact that the atmosphere both amplifies the acoustic wave and filters out short-period noise. Amplification is the result of decreasing air pressure with altitude, which lengthens the wavelength, and also of the fact that a small change of refractive index of the ionosphere makes a big difference to the path length of a reflected radio wave. Low-pass filtering happens because acoustic waves do not propagate well if the mean path of air particles is comparable with the acoustic wavelength. In the thin air of the ionosphere this discriminates in favour of very-longwavelength acoustic waves.

${ }^{\text {mestinss }}$

LONDON

1st. IEE-Discussion on "Engineering management decisions in the current economic climate", at 17.30 at Savoy Pl., WC2.

Ist. RTS-"Methods of digital coding for television transmission," by I. F. Macdiarmid, at 19.00 at London Weekend Television South Bank TV Centre, Upper Ground, SE1.

6th. IEE/I.Phys.-Colloquium on "Laser instrumentation", at 10.30 at Savoy PI., WC2.
6th. IEE-"Motor car performance: acquisition and analysis of road vehicle service data," by Dr M. T. G. Hughes, at 17.30 at Savoy Pl., WC2.

7th. IERE-Colloquium on "Millimetric wave propagation", at 14.00 at 9 Bedford Sq., WC 1 .
7th. IEE/IERE-"Electromagnetic flowmeter design," by Dr D. Wyatt and Dr J. Hemp at 17.30 at Savoy PL., WC2.
8th. IEE/IERE-Colloquium on "Patient monitoring", at 10.30 at Savoy Pl., WC2.
9th. IEE-Colloquium on "Breakdown phenomena and influence of electrode surfaces in high pressure gases", at 10.00 at Savoy Pl., WC2.
9th. IEE-Colloquium on "Handling information in the day-to-day running of large service organisations", at 10.30 at Savoy Pl., WC2.
9th. IEE-"Motor car performance: acquisition and analysis of road vehicle service data", by Dr M. T. G. Hughes, at 17.30 at Savoy PI., WC2.

12th. IEE/IERE-Colloquium on "Computer simulation of communication systems", at 10.30 at Savoy P1., WC2.

13th. IEE-Discussion on "Transducers for measuring electrical alternating quantities", at 14.00 at Savoy Pl., WC2.

13th. IEE-Colloquium on "Civil applications of underwater acoustics", at 14.30 at Savoy Pl., WC2.
13th. AES-"Measurement of loudspeaker dynamic performance", by Roger C. Driscoll, at 19.15 at the IEE, Savoy PI., WC2.

14th. R.I.Nav.-"Navigation for fishing craft", by Gregory Haines, at 17.00 at the Royal Institution of Naval Architects, 10 Upper Belgrave St, SWI.

14th. IEE-"Spark ignition in the automobile", by C. Bowden, at 18.30 at Savoy P1., WC2.

15th. IEE-"The INTELSAT system after 10 years", by D. J. Withers, at 17.30 at Savoy Pl, WC2.

15th. RTS-"Television cameras-how light, how small?" by W. P. Vinten at 19.00 at London Weekend Television South Bank TV Centre, Upper Ground, SE 1 .

20th. IEE-Colloquium on "Solid state scanning", at 14.30 at Savoy Pl., WC2.
21st. IERE-Colloquium on "The CEI Examination and the Colleges", at 14.30 at 9 Bedford Sq., WC1.

21st. IEE-"Electronic aids for the detection and prevention of crime", by G. Phillips, at 17.30 at Savoy PI., WC2.

22nd. IERE/IEE-Colloquium on "Distributed information systems", at 14.30 at 9 Bedford Sq., WC1.

28th. IERE-Colloquium on "Recent developments in high quality sound", at 14.00 at the Engineering Lecture Theatre, University College, Gower St, WC1.

28th. IEE-"Electronics in medicine," by Dr D. W. Hill at 17.30 at Savoy PI., WC2.

BEESTON

6th. IEE-"Feedback-the history of an idea," by Prof A. G. J. Macfarlane, at 19.00 at The Nurseryman, Derby Rd.

LIVERPOOL

9th. IEETE-"Modern trends in sound reproduction,". by speaker from the GEC at 19.30 at MANWEB Social Club, Thingwall Road.

BRIGHTON

13th. IEE-Discussion on "I am an engineer", at Sussex University.

GLASGOW

8th. SERT-Section AGM and "The certificate of competence in colour television servicing," by A. J. Kenward at 19.30 at Weir Hall, Institution of Engineers and Shipbuilders in Scotland, Rankine House, 183 Bath St.

BIRMINGHAM

21st. SERT-"Modern technology in the service of the police, including the new Birmingham computerized command and control system," by A. T. Burrows at 19.00 at the Byng Kenrick Suite, University of Aston, Gosta Green.

NEWCASTLE

19th. IEE-"Electronics in the service of music", at 17.45 at the University.

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned.

Bib Hi-Fi Accessories Lid have moved to new premises in Wood Lane End, Hemel Hempstead and the new address is: PO Box 78, Hemel Hempstead, Herts HP2 4RH. Telephone Hemel Hempstead 61291.
"Industrial Instrumentation" is the title of a oneweek course which is being organised by the Electronics Division of the Institution of Electrical Engineers (IEE) to take place at the University of Sussex, Brighton, between July 21 to 25, 1975.

A one-day seminar organised by Sira Institute and devoted to "The role of market research in product planning in the instrument industry" will be held at The City University, London EC1 on May 7, 1975. The seminar is designed to interest staff within companies manufacturing instruments and other high-technology products, who are new to market research techniques or who want to brush up their knowledge of them.

The proceedings of the 2nd European ElectroOptics Conference are now available on application to the publishers and organisers, Mack-Brooks Exhibitions Ltd, 62-64 Victoria Street, St. Albans, Herts. The 400 -page hard-covered publication contains 50 papers and 18 abstracts of papers first presented at Montreux, Switzerland in April 1974.

Waycom Ltd, Wokingham Road, Bracknell, Berkshire RG12 IND has successfully concluded negotiations for an exclusive UK marketing agreement with the AVX Corporation of America, manufacturers of monolithic ceramic capacitors.

Tony Chapman Electronics Ltd, 80 High Street, Epping, Essex CM16 4AE, have been appointed exclusive representative, in the UK, of the Vari-L Company, Inc. of Denver, Colorado, USA. Vari-L manufacture wideband signal processing components such as double balanced mixers, transformers, hybrid power dividers/combiners and variable inductors.

Audio Engineering Society 50th Convention

A report on the papers heard and products seen by two of our editorial staff

Part 1 : by W. E. Anderton

Not a great deal of equipment on view at the exhibition was new to visitors, but the majority was of exceptionally high quality, reflecting the standard of modern technology in the field of audio engineering. Among the new items, Quad were showing a prototype of their power amplifier-to be launched during the autumn. No specification is available yet, but the continuous output power is rated at 100 W per channel. The output stage of this power amplifier was the subject of a paper presented at the convention, "Current Dumping Audio Amplifier", by P. J. Walker and M. P. Albinson of the Acoustical Manufacturing Co. The paper described the operation of an output stage design in which linearity of the main current-carrying output transistors has no bearing on the overall amplifier performance, hence the need for biasing and allied problems associated with crossover are eliminated. "The solution presented in this paper relies on the fact that a lowpowered amplifier of one or two watts does not have the same restrictions as one of higher power. It can be simple class A , for example, and the higher cut-off frequencies enable a wide bandwidth to be obtained. Thus we start by providing a low-powered, high-quality amplifier of well defined mutual conductance capable of the full output voltage swing but with limited current capability. Next we arrange that current drawn by the load turns on heavyduty current-dumping transistors which then carry the major part of the output current. This dumping current is separately monitored and fed back to the common input. The amount of feedback is such that the mutual conductance is the same whether or not the current dumpers are operating."

The Dolby cinema units, 364 Cinema Noise Reduction Unit and E2 Cinema Equalizer were on view. Used together, the two permit cinemas to reproduce Dolbyencoded optical sound tracks with high accuracy. The model 364 contains accurate electrical reproducing characteristics for all optical and magnetic sound tracks, selected by push-buttons. The E2 provides four independent types of adjustment: gain adjustment to match projector output to the 364 and to match input requirements of the theatre power amplifier; high-
frequency adjustment to correct sound-head aperture loss; separate high-frequency and low-frequency adjustments for the overall theatre sound system; and 27 independently adjustable level controls for narrow-band filters.

The Bruel \& Kjaer phase meter type 2971 was on demonstration. This instrument, released several months ago, gives direct phase indication from a digital display in degrees and radians or an analogue meter display in radians. Triggering can be achieved on positive or negative going waveform slopes. The instrument's frequency range is 2 Hz to 200 kHz and signal voltage range is 10 mV to 15 V with "out-of-range indication". A d.c. output proportional to phase angle is available and there is also a digital output for use with tape punch or computer systems. If the meter is to be used for relative phase measurements as, for example, in measuring the phase response of a loudspeaker, it is necessary to use the meter in conjunction with a delay line. Other uses include checking the phase characteristics of filters, amplifiers and transformers, mechanical impedance measurement, determination of loss factor and hence the complex modulus of material samples, trim-balancing aircraft
jet engines and general phase measurement of electrical signals.

The latest professional Ampex video recorder was on demonstration during the week. This is the AVR-2 which has an extended range, digital timebase corrector to eliminate drift and offer a wider correction window and contribute to a fast lock-up time-one second in NTSC, two seconds in PAL/SECAM. Ampex credit the fast lock-up time to the timebase corrector, a direct-coupled printed-circuit capstan drive, the new Mark XV video head and the digital servo systems. All the electronic sub-systems are constructed on a modular basis for easy maintenance.

Lecture notes

An all-day session on loudspeakers revealed several interesting and controversial papers. "Loudspeaker evaluation using digital techniques", by J. M. Berman, and "Loudspeaker system simulation using digital techniques", by L. R. Fincham, presented a method of testing loudspeakers to obtain amplitude and phase responses derived from a unit impulse input. Automatic Fourier analysis is necessary for the system to be practical in terms of the length of time taken for measurements. By

Example of a loudspeaker's cumulative display amplitude spectrum-see text.
using an averaging and correlation technique to eliminate noise, the testing can be done without the need of an anechoic chamber. It is also possible to display cumulative display spectra. Similar analysis to that in obtaining the amplitude frequency response can also be carried out but measured at narrow intervals of time after the initial impulse has been received by the measurement microphone. The result, which can be displayed on a visual display unit, has x - and y-axis of amplitude versus frequency, but also a third z-axis representing time to show the pattern of build-up and decay of resonances in the loudspeaker. We hope to publish more details on this system in the near future.

Still on the subject of loudspeaker testing and performance, R. C. Driscoll in his lecture "Narrow-band transient test function", described the development of a test signal whose frequency spectrum can be defined within definite limits that can be varied to order. The idea is to view a selected, limited frequency spectrum produced by the loudspeaker under test so that effects within a single, or between two or more, bands can be observed. The test signal was derived from the observation that the transform from time to frequency domain of a square pulse produced a spectrum envelope $\sin \omega / \omega$. By using the notion of Fourier pairs and producing a function $\sin \omega / \omega$ in the time domain (not easy!), and then transforming this, a frequency spectrum whose "shape" is that of a square "pulse" is obtained. Refining the system allows the width of this defined spectrum pulse to be varied and also the repetition rate. We look forward to hearing the results of this research work, which overcomes the problems of swept sine-wave testing (individual frequencies tested only) and noise measurements (fixed bands of frequencies tested only).
In his lecture "Influence of loudspeaker cabinet walls", H. D. Harwood revealed that doubling the thickness of a cabinet material to reduce colouration could often, surprisingly, make the colouration worse. Several materials used for cabinet construction had been examined during a period of research.
A presentation entitled "Loudspeakersthe Missing Link", by E. Baekgaard, stirred up a discussion on the audibility of phase distortion. The problem has not yet been resolved.

Several papers on digital techniques in audio were presented. "A multiplex stereo decoder with automatic phase error correction", by M. J. Hawksford, described a sub-system which continually monitors and corrects inherent phase errors whether these are generated at source, during reception or within the decoder. "Digital on-line audio processing", by K. Bäder, B. Blessar and R. Zaorski, gave an introduction to the techniques behind the design of digital equipment used in audio processing.

Two interesting papers were presented during the so-called Pop Forum. "Pop Music studios in German Radio; acoustics and recording techniques", by E. J. Volker and F. Moehrke, examined four studios-

Norddeutscher Rundfunk in Hamburg, Südwestfunk in Baden-Baden, Westdeutscher Rundfunk in Köln and Hessischer Rundfunk in Frankfurt. "Multitrack recording techniques", by P. E. Brown, was a retrospective talk on the historical development of this subject up to the present day.

Government sponsors

Strathearn Audio is a new company which has been established on a major scale by the Northern Ireland Finance Corporation (a government body) providing production facilities in Belfast and international marketing headquarters in London. Two papers presented by this company described the theory behind the first product launches planned for later this year. The first paper entitled "A novel planiform loudspeaker system", by R. C. Whelan, described a midrange and high-frequency transducer operating an electrodynamic motor system as applied to a plane radiator (in this case a thin, flat strip of mylar is used as the plane radiator). A conductive ribbon is attached along the centre of the diaphragm and has a series of permanent magnets assembled along its length. It was shown that the strip dimensions could be made consistent with the required sound pressure levels and efficiency. Further, if the unit were operated with its long axis vertical, acceptable dispersion could be achieved.

The second paper, "A new direct-drive turntable with parallel tracking arm", by K. D. Ridler and J. H. Pope, contained several new developments. We are hoping to publish detailed information on this system in a future issue. The prototype appears to be true "state of the art" but two novel features include a ring of l.e.ds for observing fine-speed adjustment and a system of Helmholtz coils and magnet coupled to the short pickup arm whereby tracking weight can be adjusted without any clumsy mechanical operation and can be done while a record is actually playing. The motor and suspension of this turntable are both worthy of explanation in detail but space does not permit.

All in all an excellent convention-our congratulations to exhibitors, lecturers and especially the organizers.

Part 2: by B. Lane

As mentioned previously, there was little new equipment on view in the exhibition (except perhaps the Playboy Bunnies on the AKG stand!) but one particular item noticed, directly related to an unannounced paper by P. A. Fryer of Rank Radio International. This was a signal gating system used for delay gating the output of a
measurement microphone. This device is used to examine the output of a loudspeaker for a specific period of time, after a precise interval timed from the cessation of the electrical input to the loudspeaker : under test.

The measurement technique is designed to provide an amplitude versus frequency plot of a loudspeaker output, for different intervals of time delay. Dr Fryer's findings indicated that delayed resonances with a Q of between one and five were considerably more noticeable than those of high values of Q.

In a paper entitled "The elimination of scratch noise from 78 r.p.m. recordings", and read by Dr Peter G. Craven of the University of Oxford, an electronic system, using the vertical component of the record groove modulation, is used to identify the presence of scratches. This information is then applied to a sample and hold circuit which will switch the lateral information which contains the wanted information. Records are tracked with a stereo pickup cartridge and the output decoded, using a matrix to provide the required information for the sample and hold circuit. Dr Craven pointed out that the system was most effective on early electrical recordings rather than on the more complex acoustic versions.

Duplicating musicassettes

A particularly intriguing paper was jointly read by G. W. R. Taylor and D. L. Watson, Mr Taylor heads the development laboratory at EMI tape and Mr Watson is associated with the development laboratories of EMI records. The two presentations related to the improvement of high-speed duplicated musicassettes.

The introduction related to improvements in the quality of duplicating tapes produced by EMI, namely Type 152 for C60 and Type 161 (C90). It was demonstrated that with the improvement in performance, a reduction in intermodulation distortion occurred and it was possible to make use of the improved high-frequency short-wavelength performance to offset duplicating losses.

Complementing this performance improvement, Mr Watson pointed out that getting the best out of cassette duplication involved considerable care and expertise. In this he particularly referred to the problem of dynamic range and noise. Dangling a "carrot" before his audience, Mr Watson announced that EMI Records had been able to effect significant improvements in this direction by the development of a new electronic circuit which was the subject of a patent application. The demonstration that. followed was a comparison between disc and duplicated cassette using the same original recording. Differences were negligible, indicating that the claims made are of quite a remarkable nature.

As a final note, further information concerning the availability of a bound book containing the papers presented at the convention can be obtained from the society's secretary at 1 Crown Close, Orpington, Kent VR6 6JP.

Video first

The video disc player developed by AEGTelefunken, Teldec of Hamburg and Decca (London) was launched on the West German market on March 17. The machine, which is now known as TeD (Telefunken Decca), was originated in 1965 and first demonstrated in Berlin on June 24, 1970. It uses a thin, flexible plastic disc with hill-and-dale recording at a pitch of around 280 grooves per mm and revolving at 1500 r.p.m. A diamond stylus and ceramic transducer detect the vision and sound signals, which are then modulated on a u.h.f. carrier and passed to the aerial socket of an ordinary receiver. TeD has been developed to the PAL colour standard for sale in Germanspeaking areas at first, but NTSC and SECAM versions have also been produced. Fifty programmes are available on discs costing as little as $£ 2$ and lasting up to ten minutes. It is claimed that by the end of the year, there will be more than 350 programmes. Handling of the discs will not be a problem, as they are "posted" into the machine still in their sleeves, the record being extracted and inserted again automatically, so that the disc itself is not under attack by dust or greasy finger marks. The discs are 0.1 mm thick, 21 cm diameter and weigh 5 g .

The price of the machine in Germany is around DM. 1500 ($£ 266$). In compari-
son with other dise systems and video tape machine it suffers from the short playing time, but scores heavily on the cost. The programme material at $£ 12$ per hour is not much cheaper than unrecorded video tape at $£ 14-£ 18$ per hour (recorded tape will be much more than this) but the machine cost is only half that of the cheapest video tape machine. The chief limitation is that no recording by the user is possible, a snag shared by optical disc systems (Philips VLP, Thomson-CSF, etc.) although the MDR, by Erich Rabe, will overcome this restriction by means of its magnetic recording principle.

A detailed description of TeD was given in Wireless World, August 1970, although development has continued since then.

Bristol community TV experiment concluded

The local community cable television experiment in Bristol closed down on March 14 (see leader, April issue). The experiment provided a considerable amount of valuable information on the role of locally originated television programmes in a city community. Although the licence in theory could have run for another four years, Rediffusion, who conducted the experiment, say they did not consider that any further useful information could be obtained by continuing the experiment.

Bristol Channel was launched in May 1973 as part of an experiment in local television authorized by the Government. It has cost over $£ 200,000$ and been available to 23,000 subscribers to the Rediffusion cable network in the city, at no extra charge. Under the rules of the licence, practically all the programmes presented had to be made in the locality about the locality and by the people of the locality. Rediffusion could see no reason for continuing Bristol Channel within the restrictions of its present licence for what would be several years before the government of the day decided in which way cable television was to develop.

The Greenwich community TV experi-

TeD video player (UK version shown by Decca), now on sale in Germany. The centre push switch selects repeated playing of single frames.

ment closed several months ago. This now leaves only Sheffield, Swindon and Wellingborough of the original five stations licensed.

Rescue radio system

An experimental radio communication system which provides two-way speech contact between underground workers and the surface was successfully used in operations at the Moorgate Tube disaster in London. The equipment consists of mobile base station and a number of special waistcoats containing portable transmitterreceivers, all of which may be rushed to the scene of a fire or other disaster. Each waistcoat contains an integral loop antenna and the three-channel transceiver is designed to leave the operator's hands completely free. Total weight of each transceiver is about 5 lb while the base station equipment, with a weight of 30 lb , is also portable. With this equipment communication can be fully maintained from within steel-framed buildings, cellars, tunnels, caves, mines and similar locations. Each rescue worker is permanently in twoway contact with the base station and a talk-through facility is available which permits person-to-person contact. The transmitter is voice operated: There is no press-to-talk or similar transmit/receive switching. Only two controls are fitted, an on/off switch combined with a volume control and a channel selector. The life of a battery is two hours, the same as that of an oxygen cylinder.

The system, known as Fire Ground radio, is in the early development stages and is not yet generally available. It is being developed by Plessey Avionics and Communications under a contract from the Home Office Directorate of Telecommunications for use by fire fighting services.

Memory store for coloured weather display

A data memory system forms a significant part of an automated weather radar network being developed for the Meteorological Office by the Royal Radar Establishment of Malvern. So far, seven weather radar display stores have been supplied for various stations. The RRE had experimented previously with other forms of storage but all were abandoned through economy or limitations of display or speed.

The memory store is built from Jasmin Electronics' range of digital logic modules. Basically, the system stores digital rainfall data transmitted by radar signals. This data is then converted into a colour code for clear grid type display on a colour television set. Alternatively, it can be logged or further processed by computer. Data is continually updated every 15 minutes and an ordinary tape recorder can be used as a back up store so that recorded data can be displayed at any
time.
The system has sufficient capacity to store up to nine different area pictures or one composite picture covering the entire country. Precipitation data in six degrees from light rain to thunderstorm with large hail is held for a period of two hours. The user can immediately view rainfall distribution in his selected area at any one of nine different times almost instantaneously. Alternatively he could play back the nine pictures in sequence to give a true picture of weather developments both in and outside his own area which in turn would enable him to anticipate conditions hours ahead.

Symposium on broadcasting satellites

The European Space Research Organization held a symposium on broadcasting by satellite at Frascati, Italy from February 12-14. The expressed purpose of the symposium was to bring the technical and operational possibilities and the economic features of this new method of broadeasting sound and television to the notice of potential users. Attendance was by invitation and included demonstrations and presentations by research establishments and industrial companies active in the field.

The first day was devoted to various systems aspects including a presentation by Dr G. J. Phillips (BBC) who expounded on the principles of assigning frequency channels and satellite orbit positions with particular reference to a plan for broadcasting national programmes to European countries. He described trial plans and explained the limitations imposed by technical requirements. The second day was devoted to discussion of receiver design
problems of which Mr E. Alder (S.E.L., Germany) described and demonstrated a method of transmitting two sound signals as digital modulation in an extended backporch period of the line blanking. The method requires modification of the video signal waveform in reduction and displacement of the line-synchronizing pulse and colour burst periods. The final day was devoted to satellite systems.

Whether the conference achieved its purpose is hard to say. Certainly it brought together many of those in Europe concerned respectively with satellite technology, broadcasting and receiver design and some aspects of the subject were discussed ad nauseam. However, attendance by representatives from developing countries seemed disappointingly low and perhaps insufficient attention was given to their problems.

Satellite navigator helps food search

Positional accuracy to within 20 feet is claimed to be obtainable from the RSN2 Satellite Navigator in use by the captain of a scientific research vessel which recently left Southampton on a seven-month voyage prospecting for new food resources.

This first fitting of an RSN2 aboard an ocean going surface vessel was made in $3 \frac{1}{2}$ hours by Redifon Telecommunications engineers. Direct readout of latitude, together with GMT, is given on an illuminated display on the front of the unit which occupies $3 \frac{1}{2}$ cubic feet of space.

Operation is automatic-an inbuilt computer does all the work using information transmitted by six orbiting satellites (see "Navigation by satellite" by W. Blanchard, Wireless World, February 1975, pp.52-57). The ship-Profesor

All three of London Fire Brigade's new control room v.d.u. installations are now operational. At Croydon, pictured here and controlling the entire Greater London area south of the Thames where there are about 965,000 dwellings, IO0 emergency calls are handled each day and passed to the 45 stations in that 420 square mile area.

Siedlecki-is a Polish research vessel working for the International Sea Fisheries Institute and partly financed by the Food and Agriculture Organization of the United Nations.

It will explore the open ocean for new fishing areas, of which maps will be made, and also look for krill, small crustaceans which are the main food of the balin whale and a possible new source of nutritious food.

Communications 76

With enlarged terms of reference, Communications 76 promises to be the largest and most important event in the field of international telecommunications. Subtitled "communications equipment and systems," it now takes in radio, civil, public and private and defence communications interests. The four-day "exposition" is being sponsored by six authorities (Ministry of Defence, Home Office, British Overseas Trade Board, Electronic Engineering Association, Telecommunications Engineering and Manufacturing Association, and the Institution of Electrical Engineers) and will feature an enlarged exhibition, three-tier conference with parallel sessions devoted to the theme subject, user topics and technical matters, and a number of "inward missions". There will be at least four of these, in which the British Overseas Trade Board subsidize parties of senior buyers having specific interests in the four themes.
Each of the four days of the conference, under the chairmanship of $\operatorname{Dr} \mathrm{D}$. M. Leakey, will be devoted to a single theme-radio communications, sponsored by the EEA (first day); civil communications, sponsored by the Home Office (second day); public and private telecommunications. sponsored by TEMA (third day); and defence communications. sponsored by the Ministry of Defence (fourth day). Communications 76 will be held . June 8-11, 1976 at the Hotel Metropole, Brighton.

The first quadraphonic Nowell

The BBC's second experimental quadraphonic broadcast, with a seasonal message this time, will start at midnight on December 23 and will last for about an hour. It will be a nativity play "The First Nowell", based on medieval pageantry to music by Vaughan Williams. As with the first quadraphonic broadcast last July, two groups of v.h.f. stereophonic transmitters will be used. Radio 3 transmitters will carry the front left and right signals and Radio 4 the rear left and right. In the absence of a second stereo receiver, some interesting, though not completely representative effects could be obtained by using a mono receiver, preferably v.h.f., tuned to Radio 4, to provide the rear information from a central position.

A 50MHz oscilloscope

An advanced design using semiconductor techniques $1-Y$ amplifier and X amplifier

by C. M. J. Little, B.A.
Department of Electronics, Southampton University

The oscilloscope design presented in this article is the final result of five years' development and construction work carried out in my spare time. The project started with the purchase of a new Brimar cathode ray tube, the large cash outlay ensuring that an oscilloscope of some sort would eventually be built. From the first rather crude instrument, I became afflicted with a desire for perfection, and the present design is the result of continual improvement. To give an example of the amount of development work that I have done: three versions of the Y amplifier have been built, two of the e:h.t. inverter, two of the Y attenuator, two of the ramp generator, and no less than five of the X amplifier.

The oscilloscope offers all the usual facilities to be found in high quality commercial instruments, such as directlycoupled amplifiers', stabilized e.h.t., calibrated triggered timebase, and wide bandwidth. It lacks dual-trace operation, Y signal delay, and delayed timebase. The performance can be judged from the specification and some waveform photographs which will show the limits of the performance in some respect or other. Although I cannot guarantee these performance figures for all examples built, I am confident that the circuits are repeatable and will work well without further development.

I should point out that this design is complicated and that its construction should only be attempted by those readers with considerable practical experience. It is also expensive, costing at least $£ 80$, which is probably sufficient deterrent to those who are not wholly confident of their ability. However, the finished result is as useful and as easy to use as commercial instruments costing much more. It also seems to be reliable, having survived six months in the hands of the Southampton University Radio Club! It is recommended that the full series of articles is read and digested before starting work on the oscilloscope, as they will be published in the order considered best for description, not for construction. The list of components will, for this reason, be printed with the final article.

Y amplifier

The Y amplifier is a general purpose wide band amplifier, directly-coupled throughout, and with a bandwidth of 50 MHz , although the attenuator degrades this. The basic sensitivity of $100 \mathrm{mV} / \mathrm{cm}$, and all other lesser sensitivities are obtained by switching a $1 \mathrm{M} \Omega$ compensated attenuator in front of the fixed gain amplifier. A switch increases the basic amplifier sensitivity to $10 \mathrm{mV} / \mathrm{cm}$, maintaining the direct coupling but decreasing the bandwidth to 17 MHz . A capacitor-coupled pre-amplifier with a gain
of 100 may be switched in front of the attenuator to increase the maximum gain to $100 \mu \mathrm{~V} / \mathrm{cm}$, but use of this degrades the bandwidth to $10 \mathrm{~Hz}-600 \mathrm{kHz}$. The input impedance is constant at $1 \mathrm{M} \Omega$, 25 pF on all ranges to. allow the use of a "divide-by-ten" probe.

The Y amplifier is divided into two parts, one of which, the pre-amplifier, is mounted in a removable plug-in unit, while the output amplifier is in the main unit next to the tube base. The removable Y plug-in unit facilitates the construction of alternative Y pre-amplifiers. More will

be said about this in the section on modifications.

The Y output amplifier circuit is shown in Fig. 1. The basic configuration is a differential cascode amplifier with Tr_{3} and $T r_{4}$ as the common-base pair, and $T r_{5}$ and $T r_{6}$ the common-emitter amplifiers. The base voltage of $T r_{3}$ and $T r_{4}$ is held at a constant d.c. potential of +14 V , adjustable with R_{2}. The common-mode input voltage is 11 V , this voltage and the emitter resistors R_{13} and $R_{I 4}$ defining the current through each half of the cascode to be 26.5 mA . The mean Y plate potential is therefore about 30 V . The gain of the stage is defined by $R_{t s}$ to be 13 times. L_{3}, L_{4}, C_{7} and R_{16} compensate for a fäll in gain due to capacitive loading at the collectors of Tr_{3} and Tr_{4}. These components are adjusted to give a good pulse response. $L_{1}, L_{2}, R_{8}, R_{9}$ and R_{4} reduce the effect of mismatch and reflections in the wires connecting the output amplifier with the plug in. They were adjusted experimentally to give a reasonable pulse shape. Tr_{2} provides a low impedance feed to the trigger generator.
The Y pre-amplifier circuit is shown in Fig. 2. The main active component is a
$\mu \mathrm{A} 733$ integrated circuit, which is a differential wideband amplifier, and could almost have been designed especially for the present application. Fixed gains of 10,100 and 400 can be selected by shorting various pins on the TO5 package, with a bandwidth of 100 MHz , or the gain may be varied between 10 and 400 with a preset between pins 4 and 9 . The maximum supply voltage is $\pm 8 \mathrm{~V}$ so R_{47} is used to drop the 18 V rail to 15 V . The output common mode voltage is 10.4 V and the input common mode voltage 7.5 V .
The minimum gain of the 733 is 10 , so the total gain of the output amplifier and the 733 is 130 . With a deflexion sensitivity of $8 \mathrm{~V} / \mathrm{cm}$, this gives a final sensitivity of $60 \mathrm{mV} / \mathrm{cm}$. The input stage, therefore, has a gain of about 0.5.
The input stage is a differential amplifier using two junction f.e.ts in commondrain, and two $n-p-n$ transistors in common-emitter. The input stage provides

Fig. 1. The Y output amplifier. L_{1}, L_{2} are ferrite beads.

firstly a high input impedance and secondly, a voltage shift from the 0 V input to the 7.5 V input to the 733 . The collector loads of $T r_{11}$ and $T r_{13}$ are 500Ω in order to ensure a wide bandwidth. At one stage in the design I thought that the Y amplifier might be made fully differential, with two input terminals. This was not done, but explains R_{28} to adjust the common mode rejection to a maximum, and also the current sources $T r_{12}$ and $T r_{14}$. R_{30} adjusts the gain of the whole amplifier, and R_{23} adjusts the common mode input voltage of the 733 to exactly 7.5 V .

The Y shift voltage is applied to the gate of Tr_{15} from a network which provides fine and coarse shift controls. The coarse control acts as a balance adjustment in the $\times 10$ gain position. The shift network is fed from the $\pm 11 \mathrm{~V}$ rails. Input protection is provided by D_{1}, D_{2} and R_{20}.

The $\times 10$ gain switch operates $R L_{i}$, which switches R_{46} across the gain control pins of the 733, increasing its gain to $100 \times$. A reed relay is used here to avoid long leads to the pins of the 733. The capacitance from pins 4 and 9 to earth must be as small as possible.

The final parts of the Y amplifier are shown in Fig. 3 and Fig. 4. The Y attenuator switches a separate section for each gain position. Each section is compensated and has a capacitor to standardize the input impedance. A further discussion of the Y attenuator will be given in the construction section.

The a.c. pre-amplifier has a gain of 100 , and is placed between the attenuator and the input socket. This means that noise generated in the pre-amplifier will be attenuated as the sensitivity of the main amplifier is reduced. The circuit has zero phase shift between input and output, maintaining the convention that up is positive on the screen. The prototype showed instability due to capacitive coupling between the input and output. C_{21} was added to eliminate this, and could be removed if the screening was made more efficient. In particular, $S_{2 b}$ and $S_{2 c}$ could be on separate wafers, with a screen in between. It was not anticipated that the " $\div 10$ " probe would be used with the "AC $\times 100$ " gain position.

This concludes the circuit description of the Y amplifier.

X amplifier

This part of the oscilloscope gave easily the most trouble, and about four completely separate versions of the X amplifier have been built and rejected. At this point I have to admit that I looked at the circuits of various commercial oscilloscopes to see how to overcome the problems I had experienced. The present circuit, shown in Fig. 5, is based on one used by Solartron.

The problem is that the circuit has to provide very fast slew rates with very fast recovery from overload. Consider the X amplifier operating from the $50 \mathrm{~ns} / \mathrm{cm}$ sweep. The total deflexion voltage required is about 170 volts peak to peak, which corresponds to a slew rate
of $340 \mathrm{~V} / \mu \mathrm{s}$. Now the problems really begin when the $\times 5$ expansion switch is operated. The slew rate is now $1700 \mathrm{~V} / \mu \mathrm{s}$! Worse than this, the amplifier will be overloaded for about three-quarters of the sweep, as it is trying to produce a sweep voltage of 850 volts, when it has a maximum voltage swing of about 200 volts. The result of all this is to produce an impossibly non-linear sweep, sometimes even doubling back on itself? The secret is to ensure that all collector-base
junctions remain reversed biased during overload, as a saturated transistor takes too long to recover. It is also equally important to avoid base-emitter junction reverse breakdown for the same reasons. The degree to which the circuit avoids these troubles may be judged from a photograph of a 100 MHz sine wave displayed at $50 \mathrm{~ns} / \mathrm{cm}$ with $\times 5$ expansion.

The basic configuration of the output stage is again a differential cascode amplifier. This is operated between the
-50 V rail and the +130 V rail in order to obtain sufficient voltage swing. The mean output voltage with no spot deflexion is 50 V , which gives a current of 24 mA in each half of the differential amplifier. The bases of $T r_{36}$ and Tr_{37} are held at -24 V by D_{14} and $D_{15} . D_{16}$ to D_{19} prevent the collector voltages from falling below -11 V , thereby avoiding saturation of Tr_{36} and Tr_{37}.

The emitter voltages of Tr_{34} and Tr_{35} are at -39 V , requiring collector voltages

Fig. 2. Circuit diagram of the Y pre-amplifier.

Fig. 3. The Y input circuit and a.c. preamplifier. The attenuator is shown in

of about -27 V on Tr_{32} and Tr_{33}. This p-n-p input stage will accept the full 20 V peak-to-peak sweep voltage without overloading. The constant-current source $\operatorname{Tr}_{3 /}$ prevents saturation of $T r_{32}$ or $T r_{33}$, and sets the overall working point of the amplifier. D_{10} and D_{11} prevent breakdown of the base-emitter junctions of Tr_{32} and Tr_{33}. The gain of the amplifier is adjusted to give a sensitivity of $2 \mathrm{~V} / \mathrm{cm}$ with R_{93}. When the $\times 5$ expansion switch is operated, R_{90} is switched into circuit
via-relay $R L_{2}$ and the sensitivity increases to $400 \mathrm{mV} / \mathrm{cm}$.

To summarize the horizontal deflexion system, Fig. 6 shows the interconnexion of the various horizontal sub units, and also shows the circuit of the external X preamplifier. This has a fixed gain of 4 , and is protected in the same way as the Y amplifier. A switched attenuator provides sensitivities from $100 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$. The $\times 5$ gain relay $R L_{2}$ is operated in the external X position of S_{5}. Although the
external X preamplifier is a negative feedback amplifier no compensation seems to be necessary. (To be continued)

Fig. 4. Y attenuator sections, selected by S_{3} in Fig. 3.

Fig. 5. The X amplifier for both timebase and external signals. Letter symbols refer to Fig. 6.

Fig. 6. The horizontal axis switching and

Specification of the oscilloscope

C.r.t.

Spiral p.d.a. tube operated at 4 kV . E.h.t. derived from feedback-stabilized inverter. Built-in graticule inside tube face. Screen area $10 \mathrm{~cm} \times 6 \mathrm{~cm}$. Directly-coupled retrace blanking.

Calibrator

1 kHz square wave calibrator giving voltage outputs of 5 volts, 1 volt, 0.1 volt. $10 \mathrm{mV}, 1 \mathrm{mV}$ to sockets on front panel. Voltage accuracy $\pm 1 \%$. Time accuracy $\pm 0.5 \%$.

Y amplifier

$1 \mathrm{M} \Omega$. 25pF input impedance. Nineposition switch giving vertical sensitivities of $100 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ in 5.2 , 1 sequence. Switch giving gain increase of $10 \times$ on all ranges. A.c. preamplifier giving gain increase of $100 \times$ for a maximum sensitivity of $100 \mu \mathrm{~V} / \mathrm{cm}$.

Bandwidths (at -3 dB points)
gain $\times 1 \quad$ d.c. -50 MHz , rise time 7 ns
gain $\times 10 \quad$ d.c. -17 MHz , rise time 20 ns
gain $\times 1000 \quad 10 \mathrm{~Hz}-600 \mathrm{kHz}$, rise time $0.5 \mu \mathrm{~s}$

Hum and noise

0.5 cm peak to peak at $100 \mu \mathrm{~V} / \mathrm{cm}$

X amplifier

External input with input impedance of $1 \mathrm{M} \Omega$. Six sensitivities of $100 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$ in 5, 2. 1 steps. Bandwidth d.c. -5 MHz .

Sweep generator

23 switch-selected ranges from $1 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$ in $5,2,1$ sequence. Uncalibrated fine adjustment with $3: 1$ range. Linearity of sweep better than 0.1% except on 50 ns range, when 0.5%. Accuracy of all ranges $\pm 2 \%$.
Expansion switch giving X expansion of
$5 \times$. Usable on all sweep ranges giving a maximum rate of $10 \mathrm{~ns} / \mathrm{cm}$.

Single sweep facility

Triggering

Trigger level control with $+/-$ slope switch. Trigger selector switch giving the following positions:
"Int." A.c.-coupled signal taken from Y amplifier.
"L.f. rej." As int. but via high-pass filter.

These two positions provide stable triggering up to 10 MHz . The minimum signal level is 0.3 cm .
"H.f. sync." Stable synchronization up to 100 MHz with 0.2 cm signal.
'Ext. d.c." External triggering. Minimum level 50 mV at 1 kHz .
'Ext. I.f. rej." Input impedance $1 \mathrm{M} \Omega$.
'Line." Triggering from 50 Hz mains.
Cost to build using mainly new components $£ 80$.

Literafure Received

ACTIVE DEVICES

Burr-Brown have sent us a leaflet on the Model 3660 i.c. instrumentation amplifier, which features a voltage drift of less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and a bias current drift of less than $2 n A /{ }^{\circ} \mathrm{C}$. Common-mode rejection ratio is at least 110 dB and the input impedance is 20G』. Burr-Brown International, 25A King Street, Watford, WD 1 8BT
................ WW401
A booklet from Micro Electronics gives design and applications information on the MEU21/22 programmable unijunction transistors. Applications include oscillators, a TV deflection circuit, delays and s.c.r. control. Micro Electronics Ltd, York House, Empire Way, Wembley, Middlesex . WW402

An eight-page leaflet giving connexions and application notes for several manufacturers' audio integrated circuits is available from Chromasonic Electronics, 56 Fortis Green Road, London N103HN. The cost is 10 p , or free with more than $£ 1$ of components.

PASSIVE DEVICES

We are informed by Plessey that they have published a brochure setting out full information on a range of c.r.t. deflection components for professional use. The publication, which is in English. French and German, is obtainable from Plessey Windings, Abbey Works, Titchfield, Fareham, Hants PO14 4QAWW403

MATERIALS

A brochure entitled Adhesive on both sides describes the uses of double-sided adhesive tapes in various industries. There is a page of characteristics of 14 types of tape made by Tesa Tapes Ltd, Ascot Road, Bedfont. Feltham, Middlesex TW 14 8QP.

WW404

EQUIPMENT

Appliance Components Lid tell us that they have available a leaflet on the ETA series of electronic
delay timers for the range 3 s to 20 m . Appliance Components Ltd, Cordwallis Street, Maidenhead, Berks SL6 7BQ . WW405
Crystal oscillators, compatible with c.m.o.s. circuitry, are available from Lyons Instruments and the Vectron $\mathrm{CO}-236$ range, which covers frequencies from 0.01 Hz to 10 MHz , is described in a leaflet available from Lyons at Ware Road, Hoddesdon, Herts
. WW406

Cambion say that they have issued a brochure of Euro-Card component mounting boards and EuroRack assemblies. Cambion Electronic Products Ltd, Castleton S30 2WR WW407

Transducers using strain gauge, piezo or differential transformer techniques for the measurement of pressure, force, acceleration and displacement are described in a new short-form catalogue from Bryans Southern Instruments Ltd, Willow Lane, Mitcham, Surrey CR4 4UL

WW408

A 64-character, 16-column alphanumeric printer from Gay of Milan. named the Printina, is briefly described in a leaflet from Claude Lyons Ltd. Hoddesdon, Herts

WW409

Digital frequency-synthesis

a new approach

by D. C. Ayre, Dip. Tech. (Eng.); and K. G. Woodard, B.Sc.

Farnell Instruments Ltd

Abstract

Although the idea of the phase-locked loop synthesizer has been in existence for some time, it has never been possible to use the type of phase comparator having infinite pull-in range with a resolution of six digits and still produce a signal with very low residual f.m. This article shows how the residual f.m. can be greatly reduced while retaining a fast response time and high resolution.

In the last few years there has been a vast expansion in semiconductor technology, and in particular in integrated circuits, which has done much for digital circuit design by providing many new building blocks of great internal complexity and overall versatility. It is the introduction of this type of device, and notably high speed dividers up to 1 GHz , that permits a new look at old techniques. One area that has benefited is digital frequency synthesis, using a phase-locked loop, a technique which has been in existence for over forty years.

Fundamentally, the phase-locked loop

Fig. 1. Elementary phase-locked loop.
is a means of controlling the frequency of a voltage-controlled oscillator so that its frequency is equal to a reference frequency or some multiple or sub-multiple of it. For this purpose a phase comparator is required. An elementary phaselocked loop is shown in Fig. 1. This is a first-order system, the error being in phase only. It is this phase error that is used to control the v.c.o. to the correct frequency. As the output of the phase comparator contains oscillator frequency components of high relative level, a low-pass filter is used-Fig. 2. Components of this filter are carefully selected to produce a good

Fig. 2. Typical low-pass filters.

(a)

Fig. 4. Comparator waveforms and their effect.
phase margin in the loop characteristic. As the bandwidth of the loop is usually very much smaller than the oscillator frequency, there is virtually no r.f. fed back to the frequency control of the oscillator.

To make this loop into a basic synthesizer a programmable divider is added-Fig. 3. If the divide-down ratio is very large, then the comparison frequency becomes very low. This frequency may now be getting into the region of the control bandwidth, in which case it will be fed directly on to the frequency control line causing frequency modulation. This has been a limiting area ever since the devices made this type of synthesizer possible. The resolution must therefore be kept relatively low if the residual f.m. and the settling time of the loop are also to be kept low.

Originally, the phase comparator was an analogue circuit using diodes and transformers, similar to a mixer, but with the advent of complex integrated circuits the comparator has become digital, at frequencies that can be reached by digital integrated circuits. The output from these comparators tends to be of a digital nature which is easily filtered if the comparison frequency is high.

The comparator waveforms of Fig. 4, with their inherent problems, are easily produced using modern integrated circuits. The advantages gained by these circuits, such as logic level outputs that indicate the lock condition or the ability to search over a very wide frequency range to allow lock to be obtained, make it worthwhile finding a way to overcome the major disadvantages. A phase comparator of this type but with a ripple-free output would make it possible to build a synthesizer with up to six decades of frequency control and to restrict the unwanted f.m. to negligible proportions.

The area for greatest improvement is in the waveshape of the correction pulses. The present comparators tend to produce a wide energy spectrum with the maximum power in the lower frequency components.

Fig. 5. Comparator energy spectrum.

Fig. 6. Ideal waveform.

Fig. 7. Energy spectrum of (a) ideal waveform, (b) practical system with two stage filter.

Filters that attenuate these components would badly affect the phase response and settling time of the control loop. This means that to be able to effectively remove the unwanted components without altering the loop parameters, it will be necessary to concentrate the more powerful components to higher frequencies as in Fig. 5. Such a waveform would tend to concentrate all of its correction power into a very short time, compared with the time between such pulses.

An ideal waveform is basically a single cycle of a sinewave at a frequency far in excess of the repetition rate-Fig. 6. The energy of this waveform is concentrated in the spectral lines corresponding to the frequency of this sinewave and its harmonics, see Fig. 7(a). In practice, the energy of the low frequency components will increase if the loop is compensating for oscillator drift, see Fig. 7(b). To obtain the best results, it will be necessary to use a very low drift oscillator for the v.c.o.

Frequency-locked signal generator

The prescaler, in Fig. 8, is needed to reduce the maximum input frequency to the presettable dividers to the maximum
clocking speed of the logic used which is approximately 20 MHz in the case of t.t.l. Thus if a resolution of 1 kHz is required of a 100 MHz signal, the comparison frequency will be 1 kHz divided by the prescaler- 200 Hz in this example. The programmable divider is shown with six digits, representing a division ratio of up to 10^{6}, and is typical of modern telecommunications equipment. The comparator output of the system will suffer from the faults previously mentioned; in particular any jitter from the comparator will be magnified by a factor of up to 10^{6}, the value of the programmable divider. To overcome this fault some extra circuitry needs to be added. Fig. 9 shows the system in more detail with the extra blocks.
The output of the v.c.o. and reference lines both drive monostables whose outputs alternatively set and reset the flip-flop to produce a square wave when the frequencies are equal. Once the v.c.o. pulse has set the flip-flop, the output is NAND-ed with the v.c.o. line to see if another pulse appears before the reference pulse resets the flip-flop. If a pulse appears, then the v.c.o. is too high in frequency and the NAND gate produces a "go-down" pulse.

Fig. 8. Frequency-locked signal generator.

The same function is performed with the flip-flop's other output and the reference oscillator pulse to produce a "go-up" pulse when the v.c.o. is too low in frequency. The monostables on the v.c.o. and reference lines provide a delay so that the flip-flop output cannot be combined with its own set or reset trigger which would give false up and down pulses. This method is preferred to relying on propagation delays.
There is now a series of go-up and godown command pulses. When the two frequencies are equal the flip-flop output has an equal mark/space ratio square wave and there are no up or down pulses. In this condition the v.c.o. is free to drift in either direction until a correction pulse returns it to equality. Ultimately, the drift would be balanced against up or down pulses at the sampling rate of 200 Hz . These pulses constitute the residual frequency modulation.

Phase lock

The method of reducing this 200 Hz f.m. is to carry out a phase-lock operation which produces "late" and "early" pulses as soon as the flip-flop output departs from an equal mark/space square wave.

The set pulse and the divider Q output, NAND-ed, produce a "late" pulse, the \bar{Q} output and the set pulse giving an "early" pulse. These are referenced to earth and summed to produce a composite signal. An effect of the summation is to round off the composite signal to form a complete cycle of sine-wave, with a period of typically $100 \mu \mathrm{~s}$. If the v.c.o. drifts low with respect to the reference oscillator the width of the late pulse increases by a small amount, and vice-versa if the v.c.o. drifts high. Thus the balance between the areas contained in the late and early pulses gives an extremely sensitive fine-tuning control of the v.c.o. Moreover, this control is instantaneous in its action since it is an "on-line" control.

This complete cycle of sine-wave is an extremely important point and is the basis of the reduced f.m. system. When the two frequencies are locked, the two areas of the halves of the sine-wave are equal except for a small amount to balance the v.c.o. drift. As can be seen from Fig. 7(a), the cycle is very narrow, typically $100 \mu \mathrm{~s}$ - or less, corresponding to a frequency of 10 kHz . This means that the only f.m. produced by this phase-lock technique is at a frequency of 10 kHz or more, and not at the comparison frequency of 200 Hz , because there are no up or down pulses when locked. This absence of up or down pulses when near phase lock is used to inhibit the phaselock section during "search" to prevent locking onto harmonics.

Performance of a synthesized signal generator

When this system of synthesis is applied to a signal generator it is possible to produce accuracy and stability figures comparable with those produced by a full synthesizer. However, the noise performance of the system cannot be better than

RELATIVE SIDEBAND FREQUENCY
Fig. 10. Typical sideband noise spectrum of a synthesized signal generator.

Fig. 11. Typical $X-Y$ plot of frequency stability.
that of the unstabilized oscillator for the spectrum outside the bandwidth of the phase-locked loop.

The lower components of noise are very much attenuated compared with those of the unstabilized oscillator, while the outer components are hardly affected -Fig. 10. Another factor which will compare unfavourably with the full synthesizer is resolution, which in the case of this synthesized generator is only 1 kHz . This figure is arrived at by a compromise concerning cost, complexity and speed of operation, speed being another factor that compares unfavourably with the more expensive system.

To consider some of the advantages, one has first to consider what is required of the synthesized signal generator. The disadvantages of a standard signal generator are drift and inaccuracy of frequency setting. To overcome these factors several manufacturers have produced add-on synchronizers which solve the problem of inaccuracy and drift but are very inconvenient to use, requiring the frequency to be set manually to a high degree of accuracy before locking can take place. Also if this is done only a short time after the unit is switched on, it is likely to lose lock again.

This add-on synthesizer, however, has none of these disadvantages, being capable of finding and locking on to any frequency dialled up on the thumbwheel switches, even if this means changing range. No external frequency counter is required and no digital display for confirmation of frequency as it is not possible for the system to settle on the wrong

New m.o.s. centre

At a cost of DM 20 million, a plant for the production of m.o.s. components has been set up in Munich. The new facilities comprise six diffusion ovens for doping the semiconductor crystals with impurities and three ion implantation systems for i.cs with particularly low operating voltages. The new plant has been set up by Siemens.
Integrated metal oxide semiconductor circuits require fewer fabrication steps than bipolar circuits, have smaller structures and consume less power. It is therefore possible to accommodate a particularly large number of transistors on a limited area. Engineers were discussing possible methods of manufacturing such circuits as early as 1961; five years later the first samples were on the market. Over the next few years m.o.s. sales are expected to increase at a rate of 30%, a figure well above the average for the components sector.

The new production centre takes the place of a number of widely scattered production locations. Its overall isolation from the environment allows a previouslv unattainable, but now obligatory freedom from dust during the production processes. The dust content of the rooms does not exceed 150 particles/cubic metre. Water with a purity of 10^{-9} ions/litre is available for the photographic masking processes that precede each individual diffusion step. The high degree of purity of the air in the centre with its area of over 1000 square metres is achieved despite the fact that 80 persons are directly involved in the manufacturing processes.

The quality of EMI Colorline cable television equipment is proved daily in systems bringing high quality television to hundreds of thousands of people-particularly in Europe.

Now EMI introduces a new range of modular VHF network amplifiers offering full two-way facilities.

The new range-the Colorline RE1000 serieshas a basic forward bandwidth of $40-300 \mathrm{MHz}$ with optional reverse band-widths of $5-30 \mathrm{MHz}$ or $5-100 \mathrm{MHz}$. At the same time EMI also introduces a unique multi-channel VHF/UHF Distribution Converter. It enables up to seven channels to be converted from a VHF trunk network into the UHF bands for local distribution.

This new equipment, complemented by our Colorline RE900 series of VHF push-pull equipment and by the ME 690 modular series of VHF/UHF

MATV equipment provides the systems designer with an even greater variety of options to meet virtually every requirement of VHF and UHF cable distribution.

As pioneers in the development of high definition television, EMI has accumulated nearly forty years experience in every aspect of television broadcasting-embracing hardware, software and practical operating 'know-how'. This unique breadth of experience makes us highly competent to help you. Contact us at the planning stage.

That's what we're in business for.

EMI

EMI Telecommunications

A member of the EMI Group of Companies.
International leaders in music. electronics and leisure:
EM1 Telecommunications Division. EM1 Limited. EM1 Telecommunications Division. EMI L.
252. Blyth Road. Hayes. Middx. England. Tel: 01 -573 3888 . Telex 25145 . Cables: EMISOUND London.

Go quad for around $£ 50$ (including the speakers!)

Sinclair Project 80 hi-fi modules

If you've thought of switching to quad, you've probably found it an expensive process. Do vou part with your existing stereo amp - which probably cost you a lot in the first place - and replace it with an even more costly quad amp? Or do you buy an expensive add-on kit - often costing as much as $£ 90$ even without the extra speakers?

With Sinclair Project 80 hi-fi modules, vou can keep your existing amplifier ... add a quad decoder, two power amps and a power supply unit .. a couple of Sinclair Q16 speakers and vou've got a high-quality, true quad system which will have cost you onlv £50 or so to convert!

How does SInclalr Project 80 work?

Project 80 is a comprehensive set of hi-fi modules or sub-assemblies. Amps ... pre-amps ... FM tuner ... quad decoder... control units ... evervthing you need to assemble hi-fi units. They're all designed to look alike and are all completely compatible with each other. Simply decide on the specification of the unit (stereo or quad) you want to build ... buy the necessary modules ... connect them up and house them.

You can even build a quad amp entirely from Project 80 modules. Two power amplifiers, a control unit and a power
supply give you a stereo amp for as little as $£ 31.80$ plus VAT. The necessary add-on quad modules cost onlv £36.80 + VAT. Together, they make up a true hi-fi quad amp for only $\mathrm{E} 68.60+$ VAT!

And whenever you choose, you can add extra Project 80 refinements. An FM tuner ... a scratch/rumble filter... higher-output power amps - Project 80 is an enjovable way to develop your own hi-fi system!

Is it difficult to build?

Not at all. All Project 80 module circuitry is complete in itself - all you have to do is connect the external wiring to numbered solder points.

And if you're not so hot with a soldering iron? Use Project 805 kits. Project 805 uses Project 80 modules, but provides special clip-on tagged-wire connections positively no soldering! There are two Project 805 kits - the basic 805 stereo amplifier kit, and the 805Q quad conversion kit.

805Q can be used to convert a Project 80 or 805 stereo system, or vour existing stereo system.

You'll find more details and some system suggestions opposite.

Project 80 hi-fi modules the easy way to true quadraphonics.

Project 80 SO quadraphonic decoder
Combines with and exactly matches Project 80 control unit for true quadraphonics. This unit is based on the CBS SO system and is a complete quadraphonic decoder, rear channel pre-amp and control unit.
Specification
($91 / 2$ in $\times 2$ in $\times 3 / 4$ in.) Connects with tape socket on Project 80

Project 80 power ampllfiers

Two different amplifiers, designed to be used separately or combined, with Project 80 modules or as add-ons to existing equipment. Protected against short circuits and damage from mis-use
240 Specification
($21 / 4$ in $\times 3$ in $\times 3 / 4$ in.) 8 transistors Input sensitivity: 100 mV . Output: 12 W RMS continuous into 8Ω (35 V). Frequency response: $30 \mathrm{~Hz}-100 \mathrm{kHz} \pm 3 \mathrm{~dB}$. S/N ratio: 64 dB . Distortion: 0.1\% at 10 W into 8Ω at 1 kHz . Voltage requirements: $12 \mathrm{~V}-35 \mathrm{~V}$.
Loadimp: $4 \Omega-15 \Omega$; safe on open circuit. Protected against short circuit.

Price: $£ 5.95+$ VAT

Project 80 power supply units
Range of power supply units to match desired specification of final system.

PZ5 Specification Unstabilised. 30 V output. Including mains transformer.
Price: $£ 5.95$ + VAT
PZ6 Specification
Stabilised. 35 voutput. Including mains transformer.
Price: $£ 8.95+$ VAT
control unit or similar facility on any stereo amplifier. Separate slider controls on each channel for treble, bass and volume. Frequency response: 15 Hz to $25 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Distortion: 0.1\%. S/N ratio: 58 dB Rated output 100 mV Phase shift network: $90 \pm 10,100 \mathrm{~Hz}$ to 10 kHz . Operating voltage: $22 \mathrm{~V}-35 \mathrm{~V}$

Price: £18.95 + VAT

260 Specification
(21/4 in $\times 3^{3 / 4}$ in $\times 3 / 4$ in.) 12 transistors input sensitivity: $100 \mathrm{mV}-250 \mathrm{mV}$. Output: 25 W RMS continuous into 8Ω (50 V). Frequency response: 10 Hz to more than $200 \mathrm{kHz} \pm 3 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ ratlo: better than 70 dB . Distortion: less than 0.1% at 12 W into 4Ω at 1 kHz . Voltage requirements: $12 \mathrm{~V}-50 \mathrm{~V}$. Load imp: 4Ω min; max safe on open circuit. Protected against short circuit.

Price: $\mathbf{E 7 . 4 5 + V A T}$

PZ8 Specification Stabilised. Output adjustable from 20 V to 60 V approx Re-entrant current limiting makes damage from overload or even shorting virtually impossible witnout mains transformer.

Price: $£ 8.45$ + VAT

Quad system suggestions from Sinclair

1. Add-on quad to existing system:
 12 W per rear Channel RMS

Quadraphonic decoder $+2 \times 240$ amps $+1 \times$ PZ6 power supply + (existing stereo amplifier) $+2 \times$ Q16 speakers + (2 existing speakers) + (turntable). Total Project 80 cost: $£ 57.70+$ VAT
2. Add-on quad to existing system:

25 W per rear channel RMS

Quadraphonic decoder $+2 \times 260$ amps $+1 \times$ PZ8 power supply + (mains transformer) + (existing stereo amplifier $)+(2 \times$ equivalent speakers $)+(2 \times$ existing speakers) + (turntable). Total Project 80 cost: $£ 42.30$ + VAT.
3. Quadraphonic system built from scratch:

12 W per channel RMS
Pre-amp/control unit + quadraphonic decoder $+4 \times 240$
amps $+2 \times$ PZ6 power supply $+4 \times$ Q16 speakers + (turntable). Total Project 80 cost: $£ 110.40+$ VAT.

What more can we tell you?

All project 80 modules are backed by the remarkable no-quibble Sinclair guarantee. Should any defect arise from normal use within a year, we'll service the modules free of charge. And our Consumer Advisory Service is always available if you run into any problems. You'll find Project 80 at stores like Laskys and Henry's - but before you look, why not get really detailed information? Clip the FREEPOST coupon for the fully-illustrated Project 80 folder - today!

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ. Telephone: St Ives (0480)64646.

Project 8050 quadraphonic add-on kit

Converts your existing stereo hi-fi system to quad using solderless connections

Contains following Project 80 units

Project 80 SQ quad decoder/rear channel pre-amp and controls unit

sinclair 016 speaker

Original and uniquely designed speaker of outstanding quality

Specification

(103/8 in square $\times 4^{3 / 4}$ in deep.) Pedestal base. All-over black front. Teak surround. Balanced
2×240 power amps PZ5 power supply unit Masterlink unit On/Off switch plus pre-cut wiring loom with clip-on tagged wire connections, nuts and boits, instruction manual

Price: $£ 44.95$ +VAT
sealed sound chamber. Specia! driver assembly. Frequency response: 60 Hz to 16 kHz power handling: up to 14 W RMS Impedance: 8Ω.
Price: $£ 8.95+$ VAT

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR.

Please send me, by return post, a copy of the fullyillustrated Project 80 folder.

Name
Address

Please print FREEPOST - no stamp needed

Switch to complete protection. Switch to EEV.

A selection from the EEV range. We have more than 300 types of duplexer devices currently in production.

The receiver is one of the most important components in radarecuipment. Andome of the most delicate.

Unless the receiver is completely protected. semsitivity will be degraded and performance adrersely affected.
loucangive your receiver the protection it needs by using EEV duplexer devices.

We can supply high-atuality devicos for all power levels and radar functions. The EEV range includes:

- TR tubes - TR Iimiters primedancl primerless' OPr-TR tubes. OProtectortubes.
- IPIN switches. Solidstate limiters.
- Balanced duplexers. Mixer receivers.
- RF heads. . Ionitor diodes. Noise sources.

EF $\sqrt{2}$ appreciates the importance of
duplexer devices. They are amajor part of
ourtotalmicroware capability.
Backed hy Eumope sbest research. poroductionand test lacilitics. we camprovide cleviceswhich exactly meed your neerls. Whaterer you vant toprotert, tryEEV"s range forsiza. Write or phome For duplexer derice data. ()r, eren better, tell us your precise requirements.

EEVand M-OV know how.

INTERFERENCE FROM POCKET CALCULATORS

Widespread use of the pocket calculator is creating interest in the levels of its radiated interference especially in certain electromagnetically critical environments such as aircraft. Instances have been recorded of interference with radio navigation equipment as a result of the operation of pocket calculators within several metres of aircraft radio direction-finding equipment. I hasten to add that for commercial aircraft, however, tests have indicated that passenger use of pocket calculators has not affected flight deck instrumentation.

As a related example I observed severe interference in the measurements obtained from an electro-encephalograph (e.e.g.) as the result of the operation of a handheld calculator in the vicinity of the e.e.g. pick-up unit. Needless to say, the results of measurements performed under such circumstances would be useless.

It must be pointed out that the signal levels emanating from pocket calculators are not their "exclusive property". Any operating digital processing system suffers from the same malady, and at most computer installations great pains are taken to provide adequate shielding of electromagnetically sensitive components (magnetic tapes, memory unit, etc.).

As a final item of possible interest I would like to quote from an issue of Approach, the naval aviation safety review of the US Navy, December 1974:

"A Word To The Wise

Recent tests by the Canadian Department of Communications have established that handheld electronic calculators cause a degree of interference in ADF signals when the calculator is operated in close proximity to the ADF antennas. It is not necessary that operations be performed on the calculator, only that the calculator be turned on. Pilots should be aware of this and use ADF indications cautiously when hand-held calculators are being used in the cockpit."
Charles Thomas Ristorcelli,
US Navy Postgraduate School,
Monterey,
California, USA.
Later this year we shall be publishing an article by Lt Ristorcelli on radio interference from pocket calculators.-Editor.

CAPACITORS AS TRANSMISSION LINES

I found Mr R. A. Fair's article on capacitors in the December 1974 issue of your magazine interesting and useful. However, this article, as well as many others I had read, omits an equivalent circuit of greatest importance to designers of v.h.f. and u.h.f. circuits.

Tubular and flat ceramic capacitors, especially with high-K dielectric, often exhibit a behaviour of open-ended, lossy transmission line stubs, with periodic impedance peaks and valleys of decaying amplitude ν. frequency.

This transmission line effect can be easily demonstrated by using a grid-dip meter in the oscillating mode. For example, if a 5 nF bare disc capacitor is inserted in the cut inductance for the 100 to 250 MHz band (thus completing the interrupted loop of the inductor), one will observe at least two oscillator drop-out frequencies when tuning through the band, with strong fluctuations of the meter reading between these points. The frequencies of high impedance where oscillator activity ceases depend on many factors: physical dimensions of the capacitor (length of stub) including the location of coil connections to the capacitor's plates, dielectric constant of the ceramic material (propagation constant), etc.

I have seen occasional references in technical periodicals to some "mysterious" and erratic behaviour of bypass capacitors at very high frequencies. I am certain that there is no mystery if one considers such capacitor as a transmission line, and the erratic behaviour of some capacitors of same value can be explained by differences in physical dimensions, in the value of K, location of lead connection to the plates, and losses of the dielectric material, even if capacitance is the same.
Alex Azelickis,
Morton Grove,
Illinois, USA.

SINGLE LAMP F.M. TUNING INDICATORS

Having let several letters on the above subject go unchallenged, I now feel that it is time to speak.

The challengers have in general all fallen into the same trap, which stems from the fact that they have all been intelligent, technical people! The emphasis here is on the "technical", in the electronic meaning, which is not a virtue when trying to understand the requirements of the non-technical, who, almost by definition, do not read Wireless World.

I was recently visiting a friend who had just purchased a new tuner-amplifier. The friend in question is not unintelligent, being well up the ladder in civil engineering, but qualifies as non-technical in the electronic meaning. During conversation I was asked to explain the legend "contour"
against one of the push-buttons of his amplifier. I leave to your readers' imagination the trouble I had.

My friend can cope with his two-lamp system, after it has been explained to him. A person with less intelligence (unfortunately the vast majority) will have trouble even when it has been explained. For instance, both lamps are lit when there is no station tuned at all! Confusion right away.

I agree that the two-lamp system displays more information, if we know how to read it, but is it really useful? It is human nature, I submit, to converge onto the correct point with a less than critically damped oscillation. Once tuned, the a.f.c., which can make use of the extra information, should eliminate the need to readjust, or it is not worth having. Let the interstation mute circuit mute the indicator lamp also, as in our design (June 1974 issue, p.173), and the lamp becomes a "station" indicator rather than a "tuning" indicator proper.

It is hard for people who have been brought up with a soldering-iron in their hand to understand that others have not been blessed likewise, and it is a pity that so much of what is made for the general public has to be designed by these informed ones. Perhaps all design labs should have a "standard idiot" on the payroll to test our efforts. I think we would all get a shock.
J. A. Skingley.

Icon Design,
Purton,
Wilts.

EASIER TO BECOME A RADIO AMATEUR?

Cyril Parsons, 1975 President of the RSGB, will get a great deal of advice on how to run things in Doughty Street but I hope he doesn't take too much notice of the hints dished up by Pat Hawker in your January issue.

There are very good reasons why we should have expansion of amateur radio by making it easier to become an operator. If we don't fill up some of those wide open spaces on the 21 and 28 MHz bands with "operators" the consequences could well be worse than a possible devaluation of the amateur licence. A listen around 21 and 28 on Sundays at local midday will show just how active the real c.w.operators are: the hush is deafening, but not because of "conditions".

Pat Hawker is concerned about mode and band rivalries. Surely they are the same thing and stem from the one cause, that is, the technically competent operator limited to short distance communications due to a lack of a c.w. capability who would give his ears to work s.s.b. dx.

There is a simple and perfectly logical answer to the problem, and that is to remove the requirement for a Morse test from the amateur radio exam conditions. By all means let those of us who would rather use c.w., and I am one of these,
do so. The exam is an anachronism; a bad operator need not be listened to or communicated with.

Having freed our amateur operator from the rigours of the Morse code let us now take the next bold step and emulate the American FCC by getting rid of the requirement to keep a \log of communications. Basically there is no logical reason why an amateur operator should keep a log; who he contacts and at what times are of absolutely no interest to anyone but himself. The only constraint placed on amateur operating is on message content and this is not logged anyway, so away with the \log book; contest operators and certificate claimants will have to make their own arrangements.

Maybe the reason Japan outsells Britain in electronic products by almost ten to one is because the amateur radio operators in the respective countries are in the same proportion.
J. F. Dunglinson, G4CGW, ex 5Z4JX, Blantyre, Malawi.

F.M. TUNING INDICATOR

In Circuit Ideas in the July 1974 issue, J. S. Wilson contributed a d.c. op-amp circuit for general a.f.c. applications in f.m. tuners. I have built a Nelson-Jones tuner and found that the author's "winking l.e.d." tuning indicator extinguished asymmetrically under off-tune conditions.

I have used the contributor's op-amp circuit to provide extra gain in the a.f.c. feedback loop and I have added two l.e.ds, driven by the output (which is limited to 25 mA on short circuit), as a tuning indicator, as shown in the diagram.

The gain of 100 ($1 \mathrm{M} \Omega$ feedback) was too strong for use during tuning but lowering the gain too far reduced the sensitivity of the indicator. The compromise adopted is a gain of $10(100 \mathrm{k} \Omega$ feedback) but a higher gain could be employed for l.e.d. sensitivity with a larger series resistor to buffer the local
oscillator, although its effect on the audio filter ($1 \mathrm{M} \Omega$ decoupled by 100 nF) should be taken into account.
R. D. Post,

London, W 10.

DOPPLER EFFECT

I note the comments made by Mr J. Moir (October 1974) and "Cathode Ray" (December 1974) concerning Doppler effect and respect their views, but I still require convincing that this effect is responsible for the distortion measured, despite the correlation of actual and predicted results. There is no question concerning the existence of phase modulation in loudspeakers, due to the imperfect piston action of the cone.
Although it would seem to be a "red herring" the controversy concerning the simultaneous existence of carrier and sidebands in an electromagnetic propagating medium is elegantly resolved by considering the practical working and results obtained from such devices as the threshold extension demodulator, where we suppress our tendency to think of the signal transformed by the use of Bessel's functions and consider the physical actuality of instantaneous frequency. However, we are handicapped by the elusive nature of the propagating medium and final judgement on this issue must wait for future developments.
There is no such handicap when considering sound propagation in air. The physical properties of the medium are well known. The nature of sound propagation is accepted as the devolution in wave fashion of the adiabatic expansion and contraction of adjacent volumes of air in a periodic manner. The periodic motion is only sinusoidal when the medium is propagating a single frequency. "Cathode Ray" is therefore incorrect when he writes concerning one "small amplitude high frequency wave being carried by that sinusoidally moving air" (my italics). We may resolve the wave into its sinusoidal

components, but, as I tried to explain in my letter published in the August 1974 issue, the conception of the propagating medium, whether it is a loudspeaker cone or air vibrating at two sinusoidal frequencies simultaneously, requires parts of the medium to be in two places at the same time. The physics of the medium preciude this conception which, I stress, is a mathematical transform of the reality.

Finally, can Mr Moir explain how he eliminates the supposedly present Doppler effect from his measuring device? If it exists in loudspeakers then it must be present in microphones and all similar transducers. The problems in deciding whether it is additive or cancelling should take some fairly strenuous analysis to resolve! Of course, the ear, as the final arbiter of good sound, would prove an even more difficult topic for consideration.
David H. Edgar,
Suva,
Fiji.

LIQUID-COOLED

POWER AMPLIFIER

I have studied with great interest Messrs Stefani and Perryman's liquid-cooled power amplifier design (December 1974 issue) and have come up with a few questions.

Have they experienced problems with the power output short-circuiting through the water coolant? (I would assume the "Prestone" inhibitor is to increase corrosion resistance, not decrease conductivity.)

Why have they used MJ4030 and MJ4033 transistors, which can dissipate up to 150 watts each at $25^{\circ} \mathrm{C}$? When using water cooling they could probably have used lower power and therefore probably cheaper Darlington pairs (e.g. MJ900 and MJ1000s which, incidentally, have an $h_{F E}$ of about 6000 at $I_{C}=3 \mathrm{~A}$ d.c. as opposed to 3500 at 10 A d.c.).

What is the input sensitivity to the preamplifier for the rated output?

Apart from possibly changing one or two transistors (such as the BSY95A) for higher voltage equivalents (for example BSY54), would any other components need to be changed to run at (say) 50 volts supply?
Paul Lenartowicz,
Hounslow,
Middlesex.

Dr Perryman and Mr Stefani reply:

No problems have been experienced with leakage currents through the water. The resistance of the water will be of the order of $1 \mathrm{k} \Omega$ and this provides only a slight additional load. However, if any water escapes near the input pins of the transistors the whole stage becomes inoperative and damage may result. Mr Lenartowicz is correct in assuming the purpose of the "Prestone" is to act as an inhibitor of corrosion and organic growth.

The MJ4030 and MJ4033 transistors were selected for their very high peak collector currents, because the amplifier was required to supply large current pulses to saturated iron specimens. If lower currents are needed there may well be more suitable types of output transistor.

The input to the preamplifier for full output of 230 W is approximately 150 mV .

Finally, if the voltage is to be raised substantially it will be necessary to use transistors of higher rating and also to raise the load resistors of the driving stages (marked R_{1} in Fig. 5). For a 50 V supply it is suggested that $10 \mathrm{k} \Omega$ resistors should replace the $5.6 \mathrm{k} \Omega$ ones used in the original circuit. It will also be necessary to increase the signal handling capacity of the preamplifier, and if this is done by raising the voltage to 50 then the $4.7 \mathrm{k} \Omega$ load resistors at the output of the preamplifier should be increased to $10 \mathrm{k} \Omega$.

SOLID STATE
 DIGITAL CLOCK

Several readers have asked whether it is possible to use a larger display in my digital clock (Feb. and Mar. 1975). I used a Texas TIL360 in the original design to reduce to a minimum the printed board area taken up by the display. A larger display can easily be used if required. The procedure is as follows:

1. In place of the TIL 360 on the p.c. board mount a 16 pin dual-in-line i.c. socket.
2. Mount the selected displays on a small piece of Veroboard or p.c. board fitted with 16 wire pins and plug it into the i.c. socket on the main p.c. board.
3. The displays used must be common cathode GaAsP displays. Suitable types are Litronix Data-Lit 4 or Data-Lit 44, or Monsanto Man-4.

These displays give a useful increase in display size without any circuit changes. The peak segment current is about 15 mA ; this represents a peak digit current of 120 mA . The segment current may be increased by reducing the value of R_{24} to R_{30} and R_{16} from 680 ohms. I would not advise an increase in segment current above about $20 \mathrm{~mA}\left(R_{24}-R_{30}\right.$ and $R_{16} \geqslant$ 470 ohms).

Some of the large seven-segment displays require quite large peak currents, particularly the green GaP displays; also, due to saturation effects in gallium phosphide these displays are often unsuitable for high-brightness multiplexed displays of more than four digits.
David D. Clegg,
London SW10.
SDS Components Ltd have told us that they do not handle the MOSTEK clock chip used in the digital clock.

Having read Mr Clegg's articles in the February and March issues with interest I would like to offer some constructive criticism based on my own experiences.

Basically, I cannot accept his argument
for the rejection of mains as the frequency standard. If, as the article suggests, one assumes that the clock will be used mainly for recording off-air programmes then it will most likely be built into or near to any existing radio and recording equipment and thus portability will be of little consequence.

The frequency stability of the mains is sufficiently accurate for the recording of off-air programmes since the BBC uses electro-mechanical time-switches to switch on Open University programmes and the accuracy of these is only a couple of minutes.

If the mains fails you are unlikely to be able to make a recording either!

The use of a crystal controlled frequency standard may be technically more aesthetically pleasing but I feel that in this instance it is unnecessary.

Having accepted the premise that the clock will be closely associated with any existing recording hardware, a better clock chip to use is the Emihus EDC 6051. This is cheaper and as a bonus has full stopwatch facilities which are invaluable when timing programmes or elapsed recording time, etc. Another possibility with this chip would be to combine it with the Emihus ETT 6016 touch tuner and so provide "touch control" of the logic functions.
R. M. Sinden,

East Sheen,
London, SW 14.

Mr Clegg replies:

I can only agree with Mr Sinden's statement that the mains frequency stability is sufficient for the recording of the Open University - Programmes in the early morning, since, as he points out, the BBC uses electro-mechanical time switches. The use of the mains as a frequency standard is also ideal for a four digit domestic clock displaying only hours and minutes; it is not suitable, however, for a six digit clock which also displays seconds, there being little point in a seconds display which is incorrect by more than a few seconds!

The problem of off-air recording in absentia provided the initial incentive to design this clock and I felt that a small, self-contained clock would have many additional uses.
I designed this clock between July and September 1973; were I to start the design today I would probably use the same chip.

ELECTRODYNAMICALLY INDUCED E.M.F.

Only the tip of an electromagnetic iceberg is indicated by C. P. J. Meade's letter in your February issue. Argument as to the true source of electrodynamically induced e.m.f. has continued since Faraday's time. A relativistic hypothesis which seems to have attracted little notice until recent times advances the idea of relative motion between a conductor system and an observer as being a fundamental requirement for such induction ${ }^{1}$. This would
appear to be substantiated by simple experiment ${ }^{2}$, albeit for non-uniformity of magnetic field and motoring behaviour.

Further disputation on this subject may appear futile to your readers; but there is strong personal opinion that each bout of controversy advances our knowledge a little further; and with an intuition akin to that displayed by "Cathode Ray's" reply to Mr Meade, I feel that the hidden portion of our iceberg contains profound secrets relating to the true nature of electricity, magnetism and gravity.
John Gray,
College of Technology,
Belfast.
References

1. "Unipiece Electrodynamic Rotating Machines". J. Gray, Marine Engineers Journal, September 1968, pp.4-6.
2. Various letters throughout 1970 in I. E. E. News, J. Gray, with particular reference to issues dated February 23, 1970 (p.4) and October 12, 1970 (p.4).

TRANSISTOR CIRCUIT DIAGRAMS

We have had the transistor since 1948 but have not yet reached a satisfactory standard method of drawing transistor circuits. The matter is brought to mind by the article "The monostable . . ." in the January issue.

The authors' Fig. 9 contains' a complementary pair of transistors and a negative supply line at the top of the diagrams. What then is the meaning of the sketch which indicates the triggering pulse? Does it mean that the base potential of $T r$, is to be driven in the direction of the emitter, as indicated by a glance at the diagram? Or does it mean that this is the appearance of the waveform as viewed on the screen of an oscilloscope as normally operated? Had I not known the answer before examining this diagram I would not know it now.

In a circuit where all transistors are of the p-n-p type there does exist an argument (in my opinion a very poor one) for having the negative line at the top of the diagram, but what is the argument for so doing when the circuit contains an equal number of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors, and even, as I have seen in some examination questions, only $n-p-n$ transistors?

It is a pity that Mr Amos did not mention this subject in his November 1974 article on diagrams. (Incidentally, I do not like the technique employed elsewhere by Mr Amos of mixing the two conventions in one diagram.)

Bearing in mind the facts that the "positive-upwards" convention has been standardized for so long, and that we must all work with conventionally connected oscilloscopes, should we not retain the positive-up convention as our standard?
Roy C. Whitehead,
Cape Town,
South Africa.

75 years of magnetic recording

3-From steel to plastic

by Basil Lane, Assistant Editor, Wireless World

From 1939 the Magnetophone entirely supplanted other methods of master recording in German broadcast studios. It was this unique state of affairs, discovered by the Allied forces after World War II, that was to revolutionize design in Europe and America from 1945 and sound the death knell for steel tape and wire.

The national political situation in Germany was explosive and international relations were deteriorating fast, the dark years of World War II were drawing in on the Western World. For those outside Germany it was as if the Magnetophone had never been; very few reports on the machine had been written and fewer engineers had heard it. The war was to reduce information on the Magnetophone to nothing and it was not until 1945 that the world (that is the recording world) was to be rocked by the progress made during the war.
In America, progress was slow, probably due to the early embargo on published information about the Telegraphone set by Rood, the President of the American Telegraphone Company some years earlier. Bell Laboratories developed experimental steel tape machines, ${ }^{38}$ and in 1939 made the first ever stereo recording on a magnetic recorder. In this instance the machine used steel tape on two reels locked in synchronism on the same machine. In 1937 the Brush Development Company produced its Soundmirror, a steel tape-loop machine designed for laboratory investigation of transient phenomena. By 1939 they had also introduced a black oxide paper tape, presumably for the Soundmirror.

In 1941 Brush, General Electric and the Armour Research Institute went into production with wire recorders for the armed services. ${ }^{13}$ A young man with a brilliant career ahead, Marvin Camras, developed the long-forgotten a.c. bias method and Armour Research applied for a patent on it. In 1942 Camras designed the Model 50 wire recorder, bought for use by the BBC^{39} and used extensively in airborne service, followed by the Webcor wire recorder used by the US Navy.
Just before the end of World War II, Brush asked Minnesota Mining (3M) to develop better tapes and under Dr Ralph Oace, work commenced in 1944.

The revelation-1945
With the war over and the Allied Forces occupying Germany it became possible to see just how much tape recording had progressed. There are many quite amazing and fascinating accounts of those who studied the German recording techniques, some quite official, forming part of Government committees such as the British . Intelligence Objectives SubCommittee (BIOS) and FIAT the American equivalent, others being quick private investigations by those who had a fascination for these things. Many postwar companies specializing in the production of tape recorders or tape were started by these men, including the Mincom division of 3 M , initially Crosby Enterprises, and Rangertone run by Col. Ranger, one of the American Army engineers in Germany at the end of the war.

The first surprise for those who investigated broadcasting in Germany was the extent to which magnetic recording had been adopted. All broadcast stations had Magnetophones and in addition they were in use in the signals sections of the German Army, the Intelligence and in some cases in use in the telephone system. Almost none of the radio station output was live, since tape was used as a method of censoring the programmes. This idea was developed way back in 1939 as an expediency for political broadcasts, all of which were carefully vetted.

The really surprising feature of those machines at the radio stations was the quality of the output. This had been due to the development by Dr Braummühl and his colleague Weber of the a.c. bias system, first applied experimentally to the K4 Magnetophone. In fact the variety of machines had proliferated and just to give an idea of what had become available the following is a list of those for which the author has documentary record. The K4, also designated R. 24 by the RRG was made with d.c. bias but con-
verted in some instances to a.c. bias by RRG and called the R22. It was originally introduced in late 1938 . There was a dictating machine, the FT-3 few details of which are available. The Tonschreiber b: portable field unit used by the Wehrmacht for signals, fitted with a rotating pitch restoring lead. Tonschreiber c: spring-driven lightweight signals recorder. Tonschreiber d: conversion of the Tonschreiber b for use by war correspondents. Tonschreiber f: dictating machine used as a successor to the FT-3. The A1000-L40 naval communications recorder also known as the RE-3. The R-26: spring driven portable for war correspondents. The model HTS: a high quality studio recorder with a.c. bias, also designated the R122a by RRG. ${ }^{40}$ The K7: studio machine developed in 1945, produced in immediate post-war period.

A stereo Magnetophone had been developed by RRG starting about 1942 using the R22 version of the K4. Approximately four machines were made with stacked stereo record and replay heads. ${ }^{41}$

The Magnetophone

One of the most remarkable features of the Magnetophone machine produced by AEG was how little it differed, in mechanical detail, from those studio and highquality domestic machines we see today.

Fig. 1 is an early K4 Magnetophone showing how the tape is spooled on open platters with a large hub of similar dimensions to the now commonly known NAB reel. In this, and all other machines up to about 1948, the tape is reeled with the oxide out, thus siting the head block, which is interchangeable, on the near side of the machine facing to the back.

On the left of the head block, which contains erase, record and playback heads, is a heavy guide roller designed to reduce longitudinal flutter in the tape to a minimum. To the right of the heads under the cover is the drive capstan and pinch-wheel assembly from which the tape feeds directly to the

take-up spool.

The transport arrangements also included a lifting device which allowed the tape to be moved away from the heads during fast rewind. Three, or in some cases four, motors were used totransport the tape, two being used as reel motors. These motors had an inverse torque versus speed characteristic and were originally commu-tator-type, series wound. Later versions used a.c. motors without commutators.

Constant-speed tape drive was achieved with a two-phase capacitor-type of synchronous motor. Solenoid-operated brakes were fitted to each reel motor and an interlock was provided on the record and play button, reducing the chance of accidental erasure of the tape. The K4 mechanism and subsequent machines to the end of World War II, all followed this arrangement but differed in detail from model to model.

After the general adoption of the K4 by the Reichs Rundfunk-Gesellschaft (RRG) in 1939, there was considerable cooperation between them and AEG in the development of further models. In fact in late 1939, Dr Hans Joachim Braummühl and Dr Walter Weber of the Research Department of RRG developed the a.c. bias system for use in the K4 types in broadcast service ${ }^{21}$. The broadcast version of the K4 was designated R22 or R22a and the subsequent modified versions with a.c. bias were redesignated R122 or R122a.

One of the novel features of all of the Magnetophone models was the use of ringcore heads and longitudinal recording instead of the previous arrangements used on steel-tape machines. A parallel development seems to have been made by British Thompson-Houston in December, 1933, since they made an application for a patent ${ }^{42}$, granted in 1935, which describes various configurations of ring-core heads, including the notion of cross-field biasing* and the use of compressed iron powder cores for erase heads. ${ }^{\dagger}$

Several non-broadcast tape recorders were also produced by AEG during the war years, one of the most remarkable being the version known as the Tonschreiber b. This machine was used principally by the Wehrmacht to record high-speed telegraph signals from a radio ${ }^{43}$. A secondary playback head could then be brought into use to "slow down" the replayed signals without loss of pitch. The head was a rotating drum assembly, shown on the left of the main head block in Fig. 2 and marked with the number 11 .

It consisted of four reproducing heads equally spaced around the periphery and a commutator which connected each head to the replay amplifier for 90 degrees of the revolution. This complete assembly could be driven by a separate variablespeed motor which would revolve the drum in the same direction as the tape. This effectively reduced the head-to-tape speed

[^3]

Fig. 1. An early K4 Magnetophone. The amplifier and speaker were contained in two other separate boxes. (Courtesy AEG Telefunken.)

Fig. 2. A close-up of the transport arrangements of a Tonschreiber b. The picture is taken from a $B B C$ Research Department Report and carries their legends. (Courtesy BBC.)
and thus the pitch of the tone without reducing the rate at which the total signal could be transcribed.

The Tonschreiber b had the facility of being operated at any one of nine tape speeds from $9 \mathrm{~cm} / \mathrm{s}$ up to $120 \mathrm{~cm} / \mathrm{s}$, this being achieved by altering the frequency of the master oscillator supplying the speedregulating synchronous control motor.

This low-powered motor was directly coupled to a more powerful non-synchronous motor which provided most of the torque required to transport the tape. Using this double-motor arrangement thus reduced the power requirement from the oscillator.

The BBC carried out some voice tests using this recorder, and which the author has heard. The effect on playback is quite peculiar, being somewhat akin to the sound of someone talking down a long length of metal pipe. Obviously not intended for high-quality recording, the Tonschreiber b was, however, a very clever device designed for pure signals use.

Stereophonic recording

Although P. O. Pederson had described a method of multiplexing two audio signals on to a telegraphone wire in 1903 and Bell had succeeded in making binaural trans-
missions ${ }^{44}$ by telephone in 1892 , there had been few attempts to record a genuine binaural or stereophonic signal by the time of World War II starting.

There had been one classic example of a stereo magnetic recording made at the American World's Fair in 1939 by Bell Laboratories ${ }^{4}$, but this used a steel-tape machine with two reels of tape of a new alloy called Vicalloy, clamped in parallel on the same transport and driven by a common shaft. The tape speed for this new type of tape had dropped to 16 inches per second, a cut of more than half the speed of the Blattnerphone machines.

However, as far as magnetic recording is concerned, this is where the matter seems to have rested-except for Germany. The broadcast organization RRG had, in 1942, commenced experiments with some prototype models of stereo tape recorders. These were adapted from the model K4 (R122 type) by RRG Laboratories and fitted with the first known examples of a multiple ring-core head with the tracks in the same vertical alignment ${ }^{41}$.
No record pre-emphasis appears to have been applied, the entire equalization being achieved in the replay chain. This was not an entirely satisfactory state of affairs and in the immediate post-war period suggestions made by the BBC to divide equalization between the record and replay amplifiers was adopted.

By the end of the war the Magnetophone had become quite highly developed. The broadcast versions then in use, type HTS, were capable of a very good performance at a tape speed of $77 \mathrm{~cm} / \mathrm{s}$-relative, that is, to the steel-tape and wire machines in use elsewhere. Frequency response was $\pm 4 \mathrm{~dB}$ from 60 Hz to 10 kHz with a signal-to-noise ratio of 35 dB , which improved to 50 dB when the excessive hum in the replay chain was filtered out. The replay amplifier was not particularly well designed since it had a signal-to-noise ratio of only $55 \mathrm{~dB}^{45}$.

At the end of the war a new type of Magnetophone was being developed, called the K7. Parts for the first 16 production models were found in the French sector of occupied Germany and an arrangement
was made for these to be assembled and divided between the French, British and Americans ${ }^{46}$. This machine had several improvements made in the transport, and the bias frequency had been raised to $150-200 \mathrm{kHz}$, but the erase frequency remained at 60 kHz .

Before passing on to note the tape developments in Germany in the period 1939-45, mention should perhaps be made of other interesting machines ${ }^{49}$. The first, called the Kassetengerät, was a playback-only machine using a continuous loop cartridge of $9 \times 5 \times 0.25 \mathrm{in}$. Inside the cartridge was 300 metres of tape, a free loop of which was brought across a rectangular hole cut in the cartridge case. The loop of tape would be slipped over the replay head and capstan and the tape driven at $28 \mathrm{~cm} / \mathrm{s}$. The high-frequency cut-off point was said to be about 4 kHz .

The second idea was a proposal for recording signals on a sheet of magnetic material in the shape of a quarto sheet of paper. No models of this seem to have been made.

Tape manufacture

Mention has been made of the experimental tapes first produced by Fritz Pfleumer and his subsequent co-operation with AEG and IG Farben. By 1936 steel-tape recording had become quite popular in broadcast applications, even to the extent that AEG felt it had to maintain a foothold by patenting a novel thin layer steel foil mounted on a paper backing tape ${ }^{47}$ However, the two companies had by then formulated several satisfactory forms of tape ${ }^{46}$. The earliest of these consisted of spherical particles of iron of $10-15$ micrometres diameter, glued to a paper or cellulose tape with an organic compound ${ }^{48}$. Shortly after, in 1934, it was realized that an improvement in the structure of the coating could be obtained by using a filmcasting technique ${ }^{49}$. Here the magnetic powder was mixed with cellulose or p.v.c.

Fig. 3. The pitch-restoring head from a Tonschreiber b shown dismantled. (Courtesy BBC.)

and a solvent, and was then cast on to a continuous travelling metal band having a highly polished surface. When set, this layer would be affixed to a paper of cellulose base and slit into tape form.

Although this was a big improvement there were still problems in obtaining a good high-frequency performance, due to the large size of the magnetic particles used. The search for suitable alternatives led the chemists of IG Farben to the magnetic oxides of iron $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and gamma $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Thus, by 1935 the company registered an application describing suitable preparations of these two oxides, for use as magnetic powders on tapes ${ }^{50}$. It would appear that little further development on oxides was to occur from this date until after the war, since it had not yet been realized that there was an advantage to be gained from adopting an acicular (needle-like) form of magnetic particle.

Had this happened the tapes found by the Allies might have been much better as in one patent published, IG Farben had clearly discovered the advantages of using magnets to improve particle packing in the stillliquid casting film, and they would have also therefore discovered the advantages of particle orientation.

Historically, therefore, by the end of the war, three types of tape had been developed by IG Farben. The first of these, based on the old film-casting techniques described above, was type C manufactured at Wolfen using a cellulose acetate base. A later, rather odd type was then developed called type L. This was a homogeneous p.v.c. tape in which the oxide and base material were mixed together, plasticized and then rolled into a single-layer film. The finished product was finally stretched to reduce the possibility of deformation on the tape machine. This tape was not too successful for a variety of reasons and its manufacture appears to have ceased in 1945 or 1946. The original plant, manufacturing type L tape, was at Gendorf which was taken as part of the Russian reparations.

The last development right at the end of the war, was type LG manufactured at Wald-Michebach and Ludwigshaven. This was a coated tape using pre-stretched p.v.c. (Luvithermed) as the base material and a coating of the same sort as type C , which used $\gamma \mathrm{Fe}_{2} \mathrm{O}_{3}$ spherical particles as the oxide.

A comment by an investigating official on the quality of these tapes, was that batch uniformity of type C was poor and that, owing to the low elasticity of the base foil, breakage was common ${ }^{46}$. Type L appeared to be quite uniform but suffered from print-through and finally type LG proved a considerable improvement over both types.

During the period 1939 to September 30,1944 , a total of $174,890 \mathrm{~km}$ of tape had been sold from the Wolfen and Ludwigshaven factories together with 3,332 tape machines. This against a nil return from the rest of the world for this type of tape machine!

Reparations and recovery
After the war the Allies developed a policy
of breaking some of the very large monopolistic companies into smaller units and this was to happen to IG Farben. The factory at Wolfen, which specialized in type C magnetic tape and photographic film, became the now well-known Agfa company and the main Ludwigshaven plant became part of Badische Anilin \& Soda-Fabrik (BASF). As for the Magnetophone, it was regarded as quite a novel idea-so much so that many still believe that AEG and IG Farben had deliberately kept its early development secret as part of the initial war and propaganda effort of politicians in Germany before 1939.

Certainly the Allies were not slow to make use of the Magnetophone, a large number of examples being officially and unofficially "exported" to Britain and America. They were also kept in service in the broadcast stations of occupied territories where some were quick to see the same advantages that Hitler had seen-that the tape recording could be used to pre-record political propaganda for simultaneous repeat broadcasts.

This gave rise to one rather amusing incident illustrating a vagary of Magnetophones. It would seem that one of the Allied war chiefs, probably Eisenhower, had to make a broadcast from Radio Luxembourg shortly after its capture and chose to make a tape recording prior to the occasion which would then be transmitted. This was done, and the transmission was well under way, when to everyone's horror Hitler's voice suddenly broke in on the recording. The tape was an old one which had been inadequately erased! The close of this apocryphal tale is that a prompt order came from a furious Eisenhower that fresh tapes were to be used on all future similar occasions.
From here on, the threads representing the development of magnetic recording become much more intertwined, since the rest of the world still had to be convinced that plastic-based tape was better than wire or steeltape.

There had been no development in magnetic recording to speak of in the UK during the period 1939-45; the BBC were sticking to their complement of MarconiStille machines and a few dozen model GE 50 American wire recorders imported some time late in the war years. In fact eight of these were installed in a mobile unit called the "Octopus" and used during the 1947 Olympic Games. However, there was a strong preference for disc recording and their use was extremely limited.
In America the story was somewhat different with two main areas of development almost competing with each other in the search for more versatile means of magnetic recording. Some time in 1940, Marvin Camras, subsequently responsible for a flood of inventions associated with magnetic recording, joined the Armour Foundation and developed a wire recorder using a.c. bias which was then produced by General Electric as the GE 50 and also by the Brush Development Company. A version found its way into USAF service and as a result of a US Navy contract, Brush went on to develop a steel-tape version.

In 1941 Marvin Camras applied, through Armour Research, for a patent on his a.c. bias method, and in 1942 completed the design for the USAF recorder. During 1943 another American company, Webcor, produced wire recorders for the US Navy and in 1944 Minnesota Mining (later 3M) started its first hesitant steps towards developing powder-coated tapes ${ }^{13}$.

This occurred as a result of Brush Development asking Dr Oace of Minnesota Mining to develop a thin tape, coated with magnetic powder. Results were slow in coming, partly because Minnesota had no test gear and had to return samples to Brush for testing. It seems that Minnesota did not even know what they were supposed to be producing until it became obvious, with other developments appearing elsewhere.

In 1946 Brush brought out a new Soundmirror machine quite different from its predecessor, but seemingly entirely developed without reference to the Magnetophone, which by then was well known. The first broadcast use of this machine and its paper tape, coated with spherical particles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$, was during the 1946 New York State political conventions when CBS recorded continuously for 24 hours and then used the material to edit into a "highlights" programme broadcast at the end of the day ${ }^{51}$.

This and later machines and their paper tapes were marketed in the UK from 1949 by Thermionic Products-now Racal Thermionics-who are still firmly in the business of producing magnetic tape recorders.

The birth of an industry

Although tape machines using paper-based tapes were beginning to appear in America during 1.946 and 1947, it was the "liberated" Magnetophone arriving in Britain and America that was to lend a tremendous impetus to a totally new industry. Here in Britain, EMI went to work and by November, 1947 announced its first-ever tape recorder for studio use, the BTR1 console machine. Although much was owed to the Magnetophone, there were many modifications which produced a very creditable performance.

By 1948 the Abbey Road studios of EMI were using the BTR 1 , and some machines had entered service in the BBC. In America two men, Colonel Richard H. Ranger and John T. Mullin, had returned from Europe with samples of Magnetophones and were busily lecturing on their finds. In May, 1946, Mullin demonstrated his machines to a meeting of 250 members of the IRE, and the following day received a visit from Alex Poniatoff and others from Ampex, who showed much interest in the German machines. This meeting led to a fascinating chain of events that started the production of the first Ampex 200 in 1948. John Mullin joined forces with Crosby Enterprises to produce a taped version of the Philcosponsored Bing Crosby Show for NBC in 1947, an event which was to do much to promote the use of tape in broadcasting. Much later Crosby Enterprises were to become what is now known as the Mincom Division of 3 M .

Ranger had also been busy, since he had formed a company called Rangertone, marketing first machines and later tape. Most importantly, tape was a big problem because the German product was far from being completely satisfactory.

By a curious coincidence parallel work by Dr W. W. Wetzel, H. K. Smith and R. Herr of 3 M versus Marvin Camras at Armour resulted in the production of an acicular form of $\gamma \mathrm{Fe}_{2} \mathrm{O}_{3}$ which Camras was first to patent.

The first practical tape from 3M was called type 100 and was a paper-based black-oxide type produced in 1947. It was followed in the same year by type 110 , coated on a plastic base and using the new red oxide.

The world had at last woken up to the tape recorder and if at times the allegiance to the Magnetophone was obvious as in our own RGD domestic console type, much research and development was to ensue, resulting in a vast variety of professional and domestic products by the year 1949.
(To be continued)

References

38. Hickman, C. N. Sound Recording on Magnetic Tape. Bell Laboratories Record Vol 16, April 1937, pp 165-177.
39. "BBC Mobile Recording equipment" Wireless World Vol 50, No 5. May 1944 pp 133-135.
40. Pulling, M. J. L. B.I.O.S. Final Report No 951.
41. Menard, James Z. FIAT Final Report No 705.
42. British Pat. 429,987, (1935).
43. BBC Research Department Report, German Magnetic Recorders, First Report: Tonschreiber b. Report No. C.053, Ser. No. 1945/28, March, 1946.
44. Tinkham, Russell J. Anecdotal History of Stereophonic Recording. Audio May, 1952, pp. 25-31, 91 and 93 .
45. BBC Research Department Report, German Magnetic Recorders, Second Report: The Magnetophone type HTS. Report No. C.053/2, Ser. No. 1946/10, August, 1946.
46. Ranger, Richard H. Further Studies in Magnetophones and Tapes, FIAT Final Report No. 923.
47. British Pat. 489,261 (1938).
48. British Pat. 333,154 (1930).
49. British Pat. 459,884 (1937).
50. British Pat. 466,023 (1937).
51. Chinn Howard, A. Magnetic Tape Recorders in Broadcasting. Electronic Engineering, Dec., 1947, pp. 393-395.

Circuit Ideas

Accurate current generator

Most operational amplifier constantcurrent circuits suffer from the disadvantage that they require a load isolated from ground. The circuit shown uses a grounded load and, using the 741 op-amp, can achieve a Norton equivalent of an ideal current source in parallel with a resistor of greater than $100 \mathrm{M} \Omega$ when delivering one milliamp of current.

The output impedance of the current source is primarily decided by the common-mode rejection of the amplifier used. As current through R_{2} is also approximately constant it does not affect the output impedance.

In the diagram
$\begin{array}{lll}R_{1} & V_{z} & V_{z}\end{array}$
$i=\frac{}{R_{2}} \cdot \frac{-}{R_{3}}+\frac{}{R_{2}}$
(the second term may be neglected if R_{2} is large) and
$R_{4}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.
Normally $R_{L}<R_{I}=R_{2}$ and $i=V_{2} / R_{3}$.
R. Morcom,

Glenrothes,
Fife.

Voltage stabilizing a symmetrical power supply

The following description of a stabilized symmetrical power supply with overload protection may be useful to readers interested in L. D. Thomas's circuit* idea in the October 1973 issue. Voltage stabilization is by adding two transistors.

Considering the positive rail, stabilization is performed by D_{1} cutting off $T r_{1}$ and $T r_{2}$ when the output voltage exceeds the zener voltage minus $V_{b e}$ of $T r_{1}$. Current through R_{I} is kept constant due to the constant negative rail voltage.

In the case of heavy overload of the positive rail, the protection acts as follows. Maximum rail current is determined by R_{1} and the current gain of Tr_{2}. When D_{l} ceases to conduct, the positive rail voltage will drop rapidly, which in turn will decrease the current through R_{2} to the negative rail so that D_{2} will cease conduction too. Then the negative rail voltage rises, switching Tr_{1} and $T r_{2}$ off, followed by $T r_{3}$ and $T r_{4}$.

The power supply is not necessarily
*In L. D. Thomas's circuit, a $2.2 \mathrm{k} \Omega$ resistor should be inserted between the junction of the upper zener diode and R and the reset push button and series $R C$ components.

self-starting when connected to the proper load. A suitable $C-R_{3}$ combination should then be used to switch $T r_{2}$ on. If unconnected, the leak currents of Tr_{2} and Tr_{4} will normally activate the circuit.

The circuit has been an adequate protection of my transformer-coupled 20watt Bailey amplifiers since 1967 . It has not been possible to blow the output fuses or destroy the output transistors.
Ole Holmskov,
Hørning,
Denmark.

Wobbulator

The circuit to be described is derived from a voltage-controlled oscillator mentioned by F. Butler in a $W W$ article of December 1965, page 602. In this the effective inductance of the coil is controlled by the amount of feedback.

The circuit shows how this has been modified to produce a wobbulator circuit which is cheap, and simple to set up. Feedback is now taken, without phase change, via Tr_{3}. This transistor can vary the feedback in accordance with a control voltage at its base. If this is derived from the ramp output of the oscilloscope timebase the frequency of the oscillator will follow the variations in the timebase sweep voltage.

The centre frequency of the sweep may
be varied readily by adjustment of C_{1} and C_{2}. The circuit as described is used at 450 to 500 kHz , but there seems no reason why, with a change of coil, it should not operate at 1.6 or 10.7 MHz . Versions using BC107s, BF115s and BF194s have been made. Resistor R_{x} may need to be varied to give the best waveform with different transistors and probably for use on different frequency bands.

When the ramp voltage, which can be derived from the timebase, cannot be used directly at low impedance it is suggested that an emitter follower should be used and a suitable proportion of the output tapped off the emitter resistor.
E.C.Lay,

Eastbourne.

London Electronic Component
 Show 1975

Exhibitors and exhibition details

The 24th international component show to be held at Olympia, London, from May 13 to 16, will this year have well over 300 participant companies with many of these exhibitors coming from abroad. The show will be open daily from 9.30 to 17.30. Admission is by complimentary ticket but is free to overseas visitors. Sponsor of the show is the Radio and Electronic Component Manufacturers' Federation and it is organized by Industrial Trade Fairs Ltd. The following is a list of exhibitors at the show.

Exhibitors

AB Electronic Components
Abbott Transistor Labs.
Advance Electronics
AEG-Telefunken UK
Aktiebolaget Rifa
Aladdin Components
Albol Electronic \& Mechanical Prods.
Allen-Bradley Electronics
Allotrope
Alma Components
Alston Capacitors
Altoflex
Amphenal
Anglosid
Anglo Weld Equipment
Antiference
Ariel Pressings
Astralux Dynamics
Avel-Lindberg

Bailey, Stamp \& Sons Batchelor Robinson Group
Bauch, F. W. O.
BDO Products
Bell industries
Belling \& Lee
Bepi (Electronics)
Berger Lahr
Bernhard Beyschlag ApparatebauGmbH
Bianchi. Spain
BICC-Burndy
British Insulated Callender's Cables
Bonnella, D. H., \& Son
Bourns (Trimpot)
Brandauer. C. \& Co
Britimpex
British Brown-Boveri
British Central Electrical Co
British Physical Laboratories
British Standards Institution
Bulgin, A. F. \& Co
Burgess Micro Switch Co
Burr-Brown International

Cambion Electronic Products
Cannon Electric (GB)
Cannon-MIT (UK)
CB Transformers
Celdis
C.E.M.R.E.P., France

Centralab
Centre Engineering Inc.
Cerme Electronique
CGS Resistance Co
Cherry Electrical Products (UK)

Chomerics
C \& K Components
Clare, C.P., Electronics
Cole Electronics
Coline
Colvern
Comite Permanent des Foires
Computer Metal Reg'd
Comway Electronics
Concordia Electric Wire \& Cable Co
Connollys (Blackley)
Constanta of Canada
Contraves Industrial Products
Copal Electronics
Coutant Electronics
Critchley Bros
Crouzet
Crystalonics
CSM (Engineering)

Danbridge (GB)
Darstan
Datel (UK)
Daturr
Dau (UK)
Davall. S., \& Sons
Davu Wire \& Cables
DEK Printing Machines
Delta Metal Electronics
Dial Engineering Co
Diamond H Controls
D. J. Instruments

Doduco

East Grinstead Electronic
Components
Eaton's Anodising
Eberle \& Co. Elektro GmbH
Edicron
Efco Composants
Egen Electric
EGM Solders
Elecktor Publishers
Electrical \& Electronic Trades Directory
Electron
Electronic Engineering
Electronic Visuals
Electronics Weekly \& Wireless World Electrothermal Engineering
Elektrim (Electrical Equipment)
Elektromodul
Ellenberger \& Poensgen GmbH
Emme
Erie Electronics
Erma

Ernst Roederstein GmbH
Ero-Tantal GmbH
Erwin Sick Optic-Electronic
Euchner \& Co
Europa Components \& Equipment
Europartners
Evans, Frederick W.
Every Ready (Special Batteries)
Ferranti
Fielden Electronics
Filhol, S. J.
Fischer Elektronik
Flightgrade
Foss Fasteners
FR Electronics
Fried Krupp GmbH
Friedrichsfeld GmbH
Fulmer Components
FW Components
Gardners Transformers
GEC Electrical Comps
GEC Semiconductors
GE Electronics (London)
General Instrument (UK)
Gore, W. L., \& Associates UK
Gorman Machine Corporation
Gould Incorporated
Gresham Lion Electronics
Guest Components Group

Habia KB
Hartmann, Fritz Geraetebau
Hellermann Electric
Hesto (Henkels-Stocko)
Heyco Manufacturing Co
Highuol Connectors
Hinchley Engineering Co
Hird Brown Electronics
Holeywell
Holsworthy Electronics
Hunter Equipment Sales
Hybrid Systems GmbH

Imhof-Bedco
IMI Components Division
IMO Precision Controls
Imperial Metal Industries
Industrial Science
Inselek
Insuloid Manufacturing Co
International Rectifier
Ipar, Spain
Israel Company for Fairs \&
Exhibition
Ivo Counters

Jackson Brothers (London)
Jermyn Manufacturing
Jungbecker, Germany
Juniper Journals

Keithley Instruments
Klar \& Beilschmidt, Germany
Klippon Electricals
Kofod Anchersvej
Krystinel Corp.

Lan-Electronics
LCR Components
Lektrokit
Lemo (UK)
Lerc
Licon Electronics
Limit Tools \& Gauges
Lipa and Isostat (GB)
Littelfuse (GB)
Littex
Livingston Hire
Lloyd, J. J., Instruments
Lloyds Bank
Logik A/S
Londex
London Telephones
Lorlin Electronic Co
Lucas. J.

3M United Kingdom
Magic Dot
Magnetic Devices
Marconi Communications Systems
Markovits, I..
Marston Exterlsior
Marquardt, J. \& J.
Mechanical Enterprises Inc.
Medelec
Mepco Electra Inc.
Mercury House Business Publications
Metway Electrical Industries
Micrometals
Microsystems International
Milton Ross Co
Monsanto
Mullard

National Semiconductors
Nea-Lindberg A/S
Neosid
Newbury Electronics
Newport Instruments
NSF Switches \& Controls

Oscilloquartz S.A.
Ostby \& Barton Co

Papst Motoren Kg
Parmeko
PCB Piezotronics
Pedoka
Pell, Oliver, Control
Perdix Components
Perivale Controls Co

This rectangular-faced instrument cathode-ray tube, type D14-240GH/37, is one of a new range of 14 cm -diagonal tubes being shown by Mullard. For use at bandwidths from 100 to 250 MHz , it has a minimum writing speed of 1.5 ns . Overall length is 385 mm .

A selection of " E '" series capacitors produced by Union Carbide UK at its Aycliffe factory. Twelve case sizes are included in the range, covering 0.1 to 680 microfarads in voltages from 3 to 63 volts.

Permanoid
Pickering Electronics
Plasmoulds
Plastic Capacitors
Plastic Screws
Plastic Seals
Plessey Interconnect
Portescap UK
Preh Werke
Pressac
Pudenz. Germany
Pye of Cambridge
Quality Audio Swpplies (Q.A.S.)
Quebec Dept. of Ind. \& Commerce
Racal Group Services
Radiall Microwave Components
Radiatron Components
Rafi, Faimund Finsterhoelzl.
Raytheon-Tag Components

RCA

RCL Electronics
Redpoint
Rendar Instruments
Research Instruments
Resiśta GmbH
Resistances
Rilton Electronics
RKB Precision Products
Roederstein \& Tuerk GmbH
Ropel. France
Rosenthal China (London)
Roxburgh Electronics
Ryetronic Suppressors

Saarlaendische Kondensatorenfabrik
Saft (UK)
Sakae Tsushin Kogyo
Salford Electrical Instruments
Scanbe Manufacturing Corp
Schoeller \& Co
Scopex Instruments
Sealectro
Seddon \& Bramhall
S.E.E.M.

Sellotape Products UK
Semiconductor Specialist
Semikron (UK)
Siemens
Sifam
Silco, France
Silicon Transistc Corporation Siliconix
Smith Industries (Rugby)
Smiths Industries (Cricklewood)
Sogie
Sonnenschein Accumulatorenfabrik GmbH
Souriau (UK)
South London Electrical Equipment Co SP Elettronica SpA
Special Products Distributors
Spectrol Reliance
Spectrum Controls
Sprague Electric UK
Standard Pneumatic Motor Co
Stanley Palmer, G.A.
Steatite Insulatlons
Stettner \& Co

This new Smiths Industries Hypertac 40-way two-part p.c.b. connector, type HPE, has parallel 0.63 mm diameter contacts set in a 2.54 mm grid. The free connector, containing the pin contacts, is designed for double-sided daughter board mounting while the fixed connector, containing the socket contacts, is designed for mother board mounting.

Model 3540, one of Bourns precision potentiometers to be shown at LECS.

Stocko Metallwarenfabriken
Stolec
Suhner Electronics
Surrey Steel Components
Suvicon
Switchcraft Inc.

Tape Recorder Spares
TDK Electronics Co
Techna International
Techni Measure
Tekdata
Telcon Metals Group
Teledyne Philbrick
Temco
Thomson-Brandt
Thorn Electrical Components
Tinsley Telcon
Tinsley, H., \& Co
Toko UK
Tokyo Cosmas Co
Tokyo Sokki Kenkyujo Co
Transistor A.G.
Transradio
Transtector Systems

Ultra Electronics (Components)
Union Carbide Uk
United Carr Supplies
United Systems Corp. (Monsanto)
United Trade Press
Unitrode

Verity Fans (Holdings)
Vero Electronics
Vitrohm Elektroteknisk Fabrik A/S
V.T.M. (UK)

Wallis Electronics

Waycom
Wego Condenser Co
Weller Electric
Welwyn Electric
West Hyde Developments
Weyrad (Electronics)
Whiteley Electrical Radio Co
Wickmann
Widmaier, Germany
Wilson Automation
Wolsey Electronics
Zettler UK Division

microphoner matter most.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

NEWLOW PRICES! Sinclair Scientific kit (Was £19.95-save £5!)

Britain's most original calculator now in kit form
The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 21.55$ (including VAT).

And as a kit it costs under £15!
Forget slide rules and four-figure

tables!

With the functions available on the Scientific keyboard, you can handle directly
sin and arcasin,
cos and arccos,
tan and arctan,
automatic squaring and doubling.
$\log _{10}$ antilog ${ }_{10}$, giving quick access to x^{\vee} (including square and other roots).
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handied with ease.

So is the Scientific difficult to

 assemble?No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.

Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer-they're still exceptional value. Use the order form.

Components for Scientific kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc.)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific
 functions.

12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case' operation means basic arithmetic kevs each have two extra

Scientific notation
Display shows 5 -digit mantissa, 2 -digit exponent, both signable

- 200-decade range

Reverse Polish Iogic Post-fixed operators allow chain calculations of unlimited length eliminate need for an button.

25-hour battery life
4 AAA manganese alkaline batteries (e.g. MN 2400) give 25 hours continuous use. Complete independence from external power.
(Genuinely pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz . Attractively styled in grey, blue and white.

NEWLOWPRICES S. Now only
 69.95
 (INC. VAT)

At its new low price, the original Sinclair Cambridge kit remains unbeatable value

In less than a year, the Cambridge has become Britain's most popular pocket calculator.
It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Take advantage of this

 money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch-and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.) Simply fill in the preferential order form below and slip it in the post today.
Scientific

Price in kit form $£ 14.95$ inc. VAT Price built $£ 21.55$ inc. VAT. Cambridge
Price in kit form $£ 9.95$ inc. VAT.
Price built $£ 13.99$ inc. VAT.

Features of the Sinclair Cambridge

Sinclair Radionics Ltd,
FREEPOST, St Ives,
Huntingdon, Cambs. PE174BR.
Reg. No: 699483 England. VAT Reg. No: 213817088.

DIGITAL DISPLAYS

DL707
DL704
DL701
DL747
DL750
DL746
3015 F
$3017 F$
RDS1
RDM2
DG 12
Common-Anode 0.3" LED display Common Cathode DL707
Common-Anode 0.3" ± 1 Common-Anode 0.6" LED display Common-Cathode DL747 Common-Anode 0.6" ± 1 Minitron filament 12.5 mm Minitron filament 17.5 mm Itoka filament $2.5^{\prime \prime}$ Itoka filament 5.0" Phos-diode 12.5 mm Phos-diode 4 digit clock display
5LT01
£ 1.70
£ 1.70
£ 1.70
£ 2.45
£ 2.45
£ 2.45
£ 1.25
£ 2.00
£ 8.00
£24.80
£ 1.20
£ 5.80

DIEITIAL CIICIKS

Digitronic 116 six digit clock
Digitronic IIK kit version
Quartz and Stopwatch versions also available please ring for details and prices
Digitronic III Time/date/alarm clock
Chanticleer 4 digit alarm clock
Industrial and laboratory clocks - ring for details or give us your specification.
£31.00
£29.00
£37.50 £19.60
! New Price on Chanticleer £16.60!!

DIEITAL CLOCK CHIPS

CLOCK CHIPS:
MM5314 Basic $12 / 24 \mathrm{Hr}, 6$ digit, $50 / 60 \mathrm{~Hz}$ chip
£ 7.20* 7 seg outputs. Very popular, simple chip. As MM5314 but with additional BCD
£ 9.00 outputs
MK50250
CT7001 6 digit alarm chip with alarm tone out £ 7.60* put, Standard basic alarm facilities Time, Date \& Alarm on one 6 digit £ 9.80* chip. The Alarm can be used in 3 modes including a time switch. Clock-Radio \& Snooze features. 7 seg outputs, $50 / 60 \mathrm{~Hz}$ or 100.8 KHz input frequency.
CT7002 As CT7001 but with BCD outputs not $£ 9.80$ 7 seg.
TMS3952 Stopwatch chip, most reqd. stopwatch £10.50 functions 6 digits (hhmmss or mmssss), 300 kHz input. 7 seg output. Special price
HEEC2 8 digit (HhMmSsss), stop/start/reset, £ 8.50 $50 \mathrm{~Hz} / 60 \mathrm{~Hz} / 100 \mathrm{kHz}$ input, BCD output hard-wired alarm with repeat (snooze). Can also be used as 8 digit decade counter CMOS chip for Liquid-crystal displays, $\quad £ 15.00$ $12 \mathrm{Hr}, 1 \mathrm{~Hz}$ colon, input 32768 Hz or 65536 Hz . Runs on $1: 5 \mathrm{~V}$ hearing aid battery for a year.
MM5316 4 dig direct drive 1 -c or phosphor-diode displays.

* Available in a MHI kit

We advise the use of sockets for all ICs, 24/28/40 pin $£ 1.00$

WW-232 FOR FURTHER DETAILS

WW-226 FOR FURTHER DETAILS

Display devices

Survey of techniques and types on the market

The increasing use of digital techniques in measurement and information processing has, of course, demanded digital methods of displaying the information produced. As a result we have seen the emergence of a variety of electrical devices for displaying numerals, letters of the alphabet, arithmetical signs and other symbols-the general term for these being alphanumeric display devices. A typical device takes the form of a small panel on which any of the numerals 0 to 9 may be shown-particular numerals being selected by switching voltages to appropriate terminals. Several of these panels may be assembled in a row to permit a display of numbers consisting of multiple digits with a decimal point and perhaps plus and minus signs-as, for example, in a digital voltmeter.

There are various ways of generating the characters, and the methods dealt with in the separate sections of this survey are: incandescent filaments, gas-discharge devices, light-emitting semiconductor diodes, electroluminescent panels and liquid crystals. These methods also involve different techniques for constructing the shape of the characters-either forming them in continuous lines, for example with bent wires in gas-discharge tubes, or by patterns of dots or bars. A very popular "bar" technique is that seen in the socalled "seven-segment" display; this has seven bars, arranged like a "square" figure eight, from which any of the ten numerals may be built up by activating individual bars or "segments".

L.e.d. displays

Light-emitting diodes were the first of a new breed of devices to break the hold of displays using gas discharge tubes and filament light sources. Early 1.e.d. devices used gallium arsenide phosphide (GaAsP) material and normally emitted red light. To construct a single-digit seven-segment display, a large rectangular slice or several smaller slices of GaAsP would form each segment. The segments were bonded on to a ceramic substrate by epoxy and then the complete assembly was encapsulated in clear epoxy. The problems with the early devices were-large quantities of GaAsP used, misalignment of segments, optical mismatching between the l.e.d. and clear epoxy, and bubbles forming in the epoxy.

More modern displays use much less l.e.d. material for the same size characters. For small displays, around 0.040 in , fabrication is normally carried out by
diffusing seven junction regions, forming the segments, into a monolithic chip of l.e.d. material. A plastic lens with good optical matching can be bonded to the chip to increase the effective digit size with little light loss. The normal magnification of the lens is $\times 2$ with $\times 2.8$ being a maximum, beyond which point lens aberrations become too great and viewing angle too small. For medium size displays, such as calculator types, segments of l.e.d. material are mounted on a glassfibre or plastic board and protected by a plastic cover which can also be a lens and/or a filter.

For larger displays, magnification is provided by light-pipes or, in the case of transparent gallium phosphide displays, reflector cavities can be used. In the lightpipe method of fabrication the top of a metal pin is used as a support/base as well as the electrical contact. A small piece of l.e.d. material is bonded to the pin and the narrow end of a cone-shaped "pipe" is placed over the l.e.d.-the wide end, which has the shape of a complete segment, goes to the top of the display. This surface can have 20 times the surface of the l.e.d. Glass-impregnated epoxy fills the light pipe and holds the complete assembly in place. When the l.e.d. is illuminated light is reflected off the side walls of the pipe and off the glass particles, giving uniformly diffused light at the surface of the pipe and a bigger and better-shaped segment. The reflective cavity method of construction is used in displays manufactured from gallium phosphide, GaP, because unlike GaAsP, GaP is transparent to red light which is emitted from the sides and bottom of the chip as well as the top. This extra light is reflected to the visible segment area.

L.e.d. materials

The first l.e.ds were produced by epitaxially growing a mixture of 60% gallium arsenide, 40% gallium phosphide on a

Seven-segment numeric l.e.ds.
gallium arsenide substrate. The mixture is in the form of a vapour under pressure and high temperature in a reactor. Diodes. made with the 60/40 mixture emit red light at a wavelength of 650 nm . If the mixture is altered to $80 \% \mathrm{GaP}, 20 \%$ GAs the emission is yellow and at reduced efficiency. GaAsP absorbs its own radiation and light is emitted from only the top of the material. This produces well-defined displays which are inefficient by comparison with other materials, maximum efficiency, for red types, being 2%. One important advantage of GaAsP as a l.e.d. material is its non-linear current/light-output curve-the light output increases faster than the current until a thermal limit is reached. This effect is useful in multiplexed systems where short, high-current pulses are used, because it allows a reduction in total current without sacrificing brightness. Single digits can also be pulsed to achieve the same effect. Non-linearity is also apparent in GaAsP l.e.ds of different colours from red through yellow to green.

A more recent material used in the construction of l.e.ds is gallium phosphide, GaP. Devices using this material are manufactured by epitaxially growing 100% GaP on a GAs substrate. Yields are not yet as high as for GaAsP devices and costs are higher. The main advantage of this material is greater efficiency, due to light emission from all sides of the junction. This type of material needs a dopant to provide emissions in the visible portion of the spectrum. If the GaP is doped with nitrogen green emission occurs at 565 nm ; zinc oxide gives a wavelength of 700 nm (red); to obtain yellow the green can be filtered. Doping with both nitrogen and ZnO will also give yellow if the device is operated at medium current levels. As with GaAsP the efficiency drops for colours other than red but not to the same extent. One disadvantage of GaP is the lack of non-linearity, and saturation of light emission at a certain current. This makes GaP unsuitable for multiplex systems or pulsed applications.

Types of display

The most popular l.e.d. display is the seven-segment type which produces ten numerals. These are available in many sizes and four colours with the segments being single/double bars or dots. Another format called a hexidecimal display has the appearance of a seven-segment display with each segment composed of at least

MANUFACTURERS

Bowmar:	Single 7 -segment; $3 \frac{1}{2}$ and $4 \frac{1}{2}$-digit displays: 9 - and 14 -digit miniature calculator displays, all red.
Contraves:	7 -segment panel meter, red. Decode and drive logic.
IEE:	7 -segment, with or without decode and drive logic, red. Dot-matrix. red.
Opcoa:	7 -segment, red, green, and yellow.
Fairchild:	7-segment, red; 6- and 9 -digit calculator displays, red.
Eldema/Genisco:	: 7-segment, red.
HewlettPackard:	7 -segment, red: dotmatrix 3-, 4-or 5-digit. red;3-or5-digit miniature calculator display, red. Limited alphanumeric, red (hexadecimal).
Sanyo:	7 -segment, red: 6-and 11 -digit dot-matrix panels.
Litronix:	7 -segment, red; dotmatrix, red; 2-, 3-, 4- and 9 -digit miniature calculator displays, red.
Monsanto:	7 -segment, red, yellow. green, orange: dotmatrix, red: hexadecimal, red.
National Semiconductor:	7-segment, red; 6-, 8and 9 -digit miniature calculator displays, red.
Norbain:	7 -segment, red.
Diode-Lite:	7 -segment, red. Decode and constant-current drive; dot-matrix, red; hexadecimal with decode and c.c. drive, red.
FM:	7 -segment, red; panel meter.
Marconi:	l.e.d. arrays to customer's specification.
EEP:	7 -segment, red and green.
Siemens:	7-segment, red, yellow, green or orange.
Spectra-Tek:	7-segment, red; panel meter, decode and drive logic.
Texas:	7 -segment, with and without decode and drive: 3 - and 4-digit dotmatrix, red; hexadecimal, with decode and drive. red.
Toshiba:	7 -segment, red.
Xciton:	7 -segment, red, green, yellow, with and without decode and drive.
Oki:	7 -segment, red: dotmatrix, red.
TEC:	7 -segment, red, green, yellow, with decode and drive; dot-matrix, red, with ROM, drive and clock: hexadecimal, red, with drive.
Plessey:	l.e.d. arrays to customer's specification.
Oshino:	7 -segment, red.

four dots, producing ten numerals and six letters, A to F. For alphanumeric displays providing ten numerals and 26 letters, $14 / 16$ segment displays or 7×5 dot-matrix types are used: the latter is generally preferred.

New devices

Much development is still taking place. Blue emission is one aim, and one method which has been tried is the coating of infra-red devices with a suitable phosphor. This has not been very popular because of low efficiencies. Other materials have been investigated such as silicon carbide, gallium nitride and zinc sulphide-all with little success, the main problem being that semiconductors with the large band gap necessary are very difficult to grow. Recent compounds to be studied for blue emission are indium-gallium phosphide, indium aluminium phosphide and aluminium gallium arsenide, but at the time of writing no commercial device has been announced.

A new material recently developed for general l.e.ds is manufactured by epitaxially growing a GaAsP layer on a GaP substrate. This produces a material with the advantages of both current types-a transparent substrate which improves efficiency, generally an order better, and a non-linear characteristic making it suitable for multiplexing. Doping of the material with oxygen/nitrogen produces colours also of better efficiency.

Although there have been new devices such as the "thyropter"-a latching GaP device which, by optical feedback, stays illuminated until switched off-most development seems to be in reducing consumption for increased efficiency, and reducing the amount of l.e.d. material used for lower costs. Another area of development is in displays with integral current limiting and built-in decoder/driving chips. Several dot-matrix and seven-segment types are already available and the next two years should see a significant reduction in the cost of these devices.

Liquid crystal displays

The liquid-crystal effect is a "maverick" in the display field because light is not generated but modulated. A display operates by either reflecting light from its surface or controlling light that is passing through it; in the latter mode the device has been referred to as a light valve: As shown in Fig. 1 a display is basically a glass cell with electrodes across two surfaces of a liquid-crystal material. The electrodes are etched, in mirror images, to form characters, such as seven separate segments, and a voltage is applied across the cell. This alters the optical characteristics of the 1.c. material between opposite electrodes and results in a character being displayed against unaltered I.c. material.
Liquid crystal is the name given to an organic compound which is a physically mobile fluid having a molecular order similar to that of a crystalline solid. If the temperature is raised to a certain point

Fig. 1. Basic liquid crystal cell.
the compound will transform into a normal liquid; conversely if the 1.c. is cooled it reverts to a crystalline solid. Three classes of liquid crystal have been identified and are named smectic, nematic, and cholestric. The smectic structure has parallel orientation of molecules in discrete layers, the nematic structure also has parallel orientation but no layers, and the cholestric structure has parallel orientation within the plane of a layer but the axial direction of each layer is twisted slightly, thus forming a helix through the layers. One characteristic which is common to all l.cs is the long rod-shaped molecules.

Up to date more than half a dozen electro-optical effects in 1.cs have been observed but only two of these are used in displays.

Dynamic scattering

The first l.c. display, produced in 1967, used the dynamic scattering effectFig. 2(a), (b). In this mode the l.c. is doped with an electrolyte producing a resistivity in the order of $10^{10} \Omega \mathrm{~cm}$. As a result of the doping the 1.c. solution conducts current. Under non-energized conditions the molecules align themselves perpendicular to the treated electrodes, and in this condition light can pass through the liquid. When the electrodes are energized the light is scattered due to microscopic variations in the refractive index and disruptions of the molecular alignment. These disruptions are caused by turbulence in the liquid which is a phenomenon that is not well understood, but occurs at a threshold voltage of around $5-10 \mathrm{kV} / \mathrm{cm}$.
Dynamic scattering displays can be used in either the reflective or transmissive mode. Fig. 2 shows a transmissive cell with both electrodes transparent but the rear electrode may be made to reflect light to produce a reflective display. In this mode a contrast ratio of $20: 1$ is possible and the ratio is almost independent of the ambient light level. The appearance is whitish digits on a specular background but the display is not visible in darkness.

In the transmissive mode the appearance is whitish digits on a transparent background and the characters may be viewed in darkness using an auxiliary light source behind the display.

Field effect

The field effect display, often referred to as a twisted-nematic type, was first suggested in 1970. A twisted nematic 1.c. structure occurs when the molecules on the two surfaces of a 1.c. film are con-
strained to lie mutually at 90° so that as light traverses the film the optical axis of the liquid rotates by 90°. This alignment of molecules is achieved in a display cell by treating the electrode surfaces which then produce forces at 90°. To complete the display linear polarizing plates are bonded to the cell with their planes of polarization at 90°. When light passes through the cell it is polarized. The plane of polarization is then twisted through 90° and the light passes out of the cell which appears transparent-Fig. 3(a). When an electric field is applied across the cell the molecules tend to orientate themselves with their long-axis normal to the field. If a threshold voltage necessary to overcome the intermolecular forces, typically $1.5-10 \mathrm{~V}$, is applied the net effect is an untwisting of the helix. In this energized state polarized light traversing the cell will not be twisted and hence is absorbed by the back polarizer plateFig. 3(b). When the field is removed the molecules twist back through 90°. Some molecules, twist to the right, others twist to the left, causing a mottled appearance on the display. This problem was overcome at the Royal Radar Establishment by adding optically active materials to produce a "memory".
The appearance of the display is dark characters on a bright background. This can be reversed by positioning the polarizer plates parallel to one another. Coloured displays can be created by adding dyes to the 1.c. material or selecting special polarizers. Field effect displays can also be used in the reflective mode by adding a diffuse reflector behind the back polarizer. In this mode a contrast ratio of $40: 1$ is possible but, as with the dynamic scattering types, the display cannot be seen in darkness.

The general trend in 1.c. technology is towards field-effect types because of several advantages, as follows:

	field effect	dynamic scatter
Lower drive voltage	$1-10 \mathrm{~V}$	$15-20 \mathrm{~V}$

The main problems of field effect displays are, first, alignment of the glass plates, which is critical otherwise the light rotates through the wrong angle, and second, a 50% light loss in the polarizer plates.

Liquid crystal displays have several advantages over other types in current use but they also have their own problems. These are dealt with briefly below.

Liquid crystals have relatively small temperature ranges, which makes them unsuitable for use in certain environments. The normal range is from -10 to $+60^{\circ} \mathrm{C}$; this can be raised or lowered by selecting the nematic compound. If the l.cs should be subjected to temperatures outside of their normal range they will transform to a solid or liquid, in which case no display will appear. The electronics will still operate, e.g. in the case of a watch, and when the l.cs return to their normal temperature the display will also return.

Liquid-crystal watch display.
Switching speeds of l.cs are comparatively slow; the turn on and off times are given by:

$$
\begin{aligned}
& t_{o n} \propto \frac{\eta}{\Delta \epsilon V^{2}} \\
& t_{o f f} \propto \eta d^{2}
\end{aligned}
$$

where $\eta=$ viscosity, $\Delta \epsilon$ dielectric anisotropy of I.c., $V=$ applied voltage. The switching speed is dependent on temperature cell thickness, frequency of drive voltage and 1.c. material. Typical switching times for both types of display are $t_{o n}=2-10 \mathrm{~ms}$, $t_{o f f}=50-300 \mathrm{~ms}$.

Liquid crystal displays should be driven by an alternating voltage to prevent electrochemical reaction in the cell, such as electrolysis. Any d.c. component in the
drive voltage will shorten the life of the display.

Most a.c. drives are a square wave in the frequency range 25 Hz to 1 kHz . This type of drive is very difficult to multiplex so each segment of the display requires a separate drive circuit-this extra cost is normally offset by the lower current required.

Developments of liquid crystals

Liquid crystal displays, if you will excuse the pun, have a bright future. Much R \& D work is being carried out in order to solve some of the shortcomings of the l.c., such as the susceptibility to hydrolysis by absorbed water vapour and decomposition by exposure to u.v. light. One major breakthrough was in 1973 when a team of chemists led by Dr George Gray of Hull University produced a family of l.cs which are exceptionally stable and almost immune to water vapour contamination and exposure to u.v. light.

Several types of multiplexing have been proposed to overcome the switching limitations of I.c. materials. One of the most promising is a $3: 1$ a.c. coincident addressing scheme that is continually updated at a rate faster than the natural decay of the electro-optic effect.

Other developments include a small flat-panel TV screen based on a $128 \times$ 128 matrix of twisted nematic displays. The TV operates at 25 frames per second with eight shades of grey. Another project is Xerox's "electronic note paper". This system uses a l.c. that changes from transparent to opaque and persists until it is erased by a high frequency field.

RCA scientists have developed a simple technique for observing electron pulses flowing through i.cs by placing some nematic 1.c. on the surface of the device. The minute electric fields produced by the i.c. cause the I.c. to react thus indicating where a pulse is.

The Royal Radar Establishment have developed an electro-optically controlled colour-switch by placing a thin birefringent layer, such as cellophane, between linear polarizers. A l.c. cell then rotates the light and switches a colour or colours on or off.

MANUFACTURERS

AEG Telefunken FE/R:W,I,C: FE/T:I,C.
American
Microsystems: FE/R:C.
British Brown
Boveri: FE/R:IW.
Hamlin: FE/R:W: DS/R:W.C.I \& 8-digit CA; DS/T:C.I \& 8-digit CA.
IEE: FE/R:I; FE/T:I.
LXD: FE/R:W,C.
Marconi: - DS/R; DS/T (for special applications).
Norstron: $\quad D S / R: C, I ; D S / T: C . I$.
Princetown:
Rank:
RCA:
Walter Scott:
Siemens:
Swarovski:
Tekelec:
Thomson CSF:
Toshiba:
(in development)
Code
FE-field effect; DS-dynamic scattering: R-reflective: T-transmissive; W-watch; C-clock; I-instrument; CA-calculator.

Gas discharge displays

Perhaps the most familiar gas-discharge display is the Nixie tube, made by Burroughs and by many others under different names. As an indicator for counters and many earlier types of digital instrument, it was almost unchallenged for many years. It is easy to use, reliable, and gives a very bright display, but suffers from the drawbacks of an anode voltage which is high in relation to voltage levels used in modern equipment and of a stacked array of cathodes, some of the rear ones being partially obscured by those nearer the front. It is still widely used, however, and looks likely to continue for some time.

It takes the form of a common anode with ten cathodes, each cathode being a wire shaped to form one of the characters, the whole contained in a neon-filled envelope. The application of a voltage of 160 V or over between a selected cathode and the anode causes a discharge to be established between the two electrodes. The selected cathode glows red and is viewed through the glass, either from the side or the end. Numerical characters and a few signs are available.

Neon gas discharges are used to great advantage in the more recently developed "plasma panel". In essence, the panel consists of a large number of neon "cells" arranged in a matrix in a flat panel. The rows and columns are bussed and each cell is thereby addressable. For instance, the cell at the intersection of row x and column y will, when the row bus and column bus are connected to V volts, have impressed across it $2 V$ volts, which will fire it. All other cells in row x and column y will have V volts across them and will not fire, assuming that the cell firing requirement is between V and $2 V$. The electrodes and cover are transparent and the glow is seen as a point of light. In many cases the applied voltage is at high frequency and ignition takes place at each reversal of voltage, giving two illuminations per cycle.
These displays are extremely flexible and not restricted in size. For instance, a device named Plasmar and made by National Electronics, is a clock and calendar display exhibiting a six-digit time readout, a six-digit calendar and three letters (WED, etc.) to show the day of the week. Additionally, there are 21 "message blocks" which illuminate a stencil to indicate any fixed indicator such as am, pm , hours, seconds, etc. The displays can be multiplexed.

The use of a.c. discharge possesses several advantages over the d.c. type also in use. The construction of the panel is such that the applied voltage effectively "sees" a capacitance, as the electrodes are separated from the gas by a dielectric casting. The effect of this is to ensure that all areas of the panel are displayed equally brightly, the current being shared by capacitors in parallel on the basis of area. In a d.c. panel, current would not be equally shared; the emissivity of each area of electrode being different with area leads to an effect known as "hogging". D.c. panels also allow the gas to be in contact with the electrode, with consequent limitations in cathode life. There is one advantage of d.c. or unipolar-pulsed panels in that there is an inherent memory, rendering external memory devices redundant. In a.c. types the discharge is continually "refreshed" at a frequency high enough to avoid flicker.
Single-character neon displays are also fabricated in a flat format by, for example, Telefunken. An array of stainless-steel strips in a 14 -segment formation is connected to input pins and faces a common transparent anode. Application of 130 V to any segment causes a discharge between that segment and the common anode in the normal way. The advantage, of course, is that the display is planar, with no obstruction of cathodes.
The phenomenon of fluorescence is used in alphanumeric displays by several firms, mainly in multi-digit tubes, although Tungsol make single-digit devices. In these, a filament produces an electron cloud, which is attracted to a selected, fluorescent anode by an arrangement of grids and anode voltage selection. The multi-digit tubes are multiplexed and the discharge is a bluegreen colour.

MANUFACTURERS

Mullard
Neon indicator tubes for numeric, limited alpha and sign information.
Side or end viewing.
Pins or wire ended.
Orange.
ITT: Neon indicator tubes for numeric, limited alpha and sign information.
Side or end viewing.
Pins or wire ended.

- Orange.

Burroughs: Neon indicator tubes for numerals 0 to 9 ("Nixie" tubes). "SelfScan" alphanumeric dot-matrix panel displays including drive electronics and memory. Up to eight rows of information. "Panaplex II" single row, numeric panel display. 9 or 16 digits.
Nippon Electric: Dot-matrix plasma panels for the display of characters, numerals. graphics and permanent message blocks. Refresh driven. Multiplexed.
National "Plasmac" plasma panel
Electronics:
for use as digital calendar and clock display. Six 7-segment, 1.25 in digits for time; six 0.5 in digits for date; three 14 -segment 1 in alpha characters for day of week; 21 message
blocks. A.c.-driven.
Ferranti: D.c.-driven plasma panel. Dot-matrix characters in 7×5 format. 32 rows of 40 characters. Memory Single row numeric panels. 7 -segment, 0.4 in characters, with decimal points, commas and operational signs. Indicator modules with neon tubes, decode and drive electronics.
Modules match Contraves edge switch housings.
Contraves: Indicator modules with neon tubes, count, decode and drive electronics. Modules match edge switch housings.
AEG-Telefunken: 'Varisymbol" flat. 14-segment, neon indicator modules, with decimal point.
Beckman: Seven-segment neon modules with t.t.l.compatible decode and drive electronics.
TEC:
Neon indicator tube module with counter, latch, decoder and drive electronics.
Spectra-Tek: Panel meter with neon tubes, decode and drive electronics.

Fluorescent indicators

Toshiba:

Tung-Sol:
Futaba:

Multiple, single row. fluorescent tubes for up to 12 digits. Filament voltage 3 to 5.5 V a.c. Seven-segment characters.
Multiple, single-row fluorescent tubes for up to 17 digits. Filament voltage 2.6 to 4.7 V a.c. Seven-segment characters. Single-digit, sevensegment, side-viewing fluorescent indicators. Filament voltage 1.6 V a.c.

Electroluminescent displays

An electroluminescent panel is basically a layer of phosphor, similar to that used in television tubes, sandwiched between two electrodes which may be shaped to produce a seven-segment format. When energized, phosphor between the electrodes emits light and a shape/character is illuminated against passive phosphor.

Electroluminescence will occur when electrons in a semiconductor solid are excited-in the case of phosphor, luminescence is from the excitation of impurity centres to a high energy state which, when returning to the normal energy state, emit photons. The impurity centres are created by doping the phosphor material.

At present there are two categories of electroluminescent displays-a.c. and d.c. energized.

A.c. panels

There are two methods of constructing a.c. panels depending on the application. The first type is called a ceramic panel which is normally the easiest and cheapest to produce. A metal plate is shaped to the required format then a white-enamel reflective-coating is fused to the plate. Powdered phosphor, normally zinc sulphide doped with manganese, is mixed with a binding material and fused on to the enamel surface. While the coating is still hot stannic oxide is sprayed onto the phosphor which forms a transparent conductive electrode. The complete assembly is then glazed with a protective insulating coating apart from a small area where the leads are bonded. An alternating current is applied between the electrode and metal plate and causes electroluminescence. This type of construction is suitable for mass production displays such as exit signs.

The second type of a.c. display is called an organic panel. A glass plate has a transparent conductive film of tin-oxide bonded to it, this film is then coated with a phosphor layer followed by a reflective layer. A back electrode is applied to the panel which is then sealed with a moistureproof layer. Characters can be formed by etching either the front or back electrodes across which is applied the alternating current. This type of display is suitable for :special panels with characters such as a seven-segment display or a dot matrix.

A new type of panel which is constructed similarly to the organic type uses a transparent flexible plastic encapsulation for the front window; this produces a semi-flexible panel about 1 mm thick.

These displays all operate at voltages between 50 and 300 V and at frequencies between 50 Hz and 5 kHz to produce green, blue and yellow light dependent upon the type of phosphor used. By using a fluorescent paint other colours can be produced. The phosphor powder is in a binding material and particles do not touch each other so most of the current flow is capacitive.

The luminance, and to a certain extent colour, is dependent on the frequency of the applied voltage because excitation occurs once every half cycle; above 10 kHz the light output decreases due to electrical loss in the panel. Luminance also increases with voltage; a typical display will emit $8 \mathrm{~cd} / \mathrm{m}^{2}$ at 240 V 50 Hz . The life of a panel is inversely proportional to the frequency and also dependent on the voltage but generally an exponential decay occurs over several thousand hours of continuous use. The panels can be driven from transistor inverters and can be dimmed to extinction by varying the applied voltage.

D.c. panels

These panels are newer and have a higher luminance/voltage ratio with outputs up to $500 \mathrm{~cd} / \mathrm{m}^{2}$ possible. The efficiency is, however, comparable with the a.c. types being around 0.1%. Construction of a d.c. panel is more difficult because a barrier layer has to be formed in the phosphor coating. Zinc sulphide doped with manganese is again used which emits yellow light at 580 nm ; colours from red to green can be obtained by filtering. The construction of a d.c. panel is similar to that of an organic a.c. type. A glass plate has a transparent conductive coating bonded to it and this is etched to produce the required characters. An insulating layer then covers the leads adjacent to the display; next the phosphor layer is applied. In the case of phosphor powder types a mixture of powder and bonding material is applied by spraying or silk-screen. With thin-film types a layer is deposited by evaporation. Finally, a metal backelectrode is applied also in the shape of required characters. The complete panel is then encapsulated.

Before the display will work an irreversible treatment called "forming" has to be carried out to produce the correct characteristics. The untreated panel has a low resistance and does not emit light. A

Seven segment d.c. electroluminescent display.
suitable voltage is applied which causes a decrease in current slowly at first then rapidly as a barrier layer is formed leaving the panel in a high impedancelight-emitting condition. The process is completed by raising the voltage to the normal level.

The powder construction produces panels that operate at around 100 V d.c. with a life-time of up to several thousand hours dependent on the way it is operated. Thin-film panels, however, operate at 10 to 20 V d.c. but with reduced efficiency and life-time. Both types of d.c. panel operate in a resistive mode and suffer from a gradual ageing due to an increase in resistance. The phosphor is specially prepared for each application, the main parameters being brightness, voltage and current. Normal current densities are between 0.5 and $2 \mathrm{~mA} / \mathrm{cm}^{2}$ dependent on brightness, but the mean brightness can be increased by driving the panel with overvoltage pulses although the efficiency remains the same. Pulsed operation can extend the life of d.c. panels and makes multiplexing possible.

Developments of displays

Because electroluminescent panels can be made in almost any format and size, with single areas of up to $500 \mathrm{~cm}^{2}$ and over being prepared, they have an advantage in mimic displays.

Most of the development will be in extending the life of panels, reducing power consumption and drive voltages, and making larger display areas. Westinghouse Electric Co have built a prototype a.c. panel consisting of 12,000 elements suitable for alphanumeric displays or, because the brightness of each element is independently variable, a flat television display is possible.

MANUFACTURERS

GEC
D.c. 4-and 9-digit. 7 -segment, yellow; and user specified.
Phosphor D.c.displays to user's Products: specification.
Saunders-Roe: A.c. displays to user's specification.
Thorn: A.c. panels to user's specification.

Incandescent filament displays

Althcugh these displays are considered old-fashioned, incandescent filament (i.f.) devices still have advantages over other devices. Bulbs emit a bright white-yellow light which may be filtered to produce colours. The bulbs are individually replaceable, have a life of around 10,000 hours and can be driven from t.t.l. logic devices. The main disadvantages of i.f. displays are: if there is a failure it is complete; and when a bulb is switched on there is a current surge due to the low cold resistance of the filament. In addition to conventional bulbs there are filament indicator tubes and seven-segment filament displays.

With i.f. lamp displays there are two modes of operation. The most common is to distribute the emitted light over a
character/segment area; the other mode of display uses direct viewing of the lamps. For seven-/sixteen-segment displays an equal number of bulbs is used, the light from each bulb being directed, by means of a light pipe or lens, to the surface of the display. Projection types of display have a number of bulbs corresponding to the number of complete characters required; the light shines through a stencil of the character and is focused onto the surface of the display. A variation of this system is a single bulb with a rotating stencil.

Directly viewed displays are normally in the form of a matrix of 5×7 individual lamps, the required characters being formed by lighting particular groups of the lamps. These types are very bright and can be used in outdoor displays such as score-boards. To make the display more visible in daylight lenses can be placed over the lamps, but this also restricts the viewing angle.

Stencil displays are the simplest method of conveying information. When a bulb is illuminated behind a transparent film a message or character is displayed. Fibre optic and optical plastic (edge-lit) displays are easily read because the characters can be formed precisely in the required shape. Each bulb in the package directs light along a number of optical fibres or plastic plates which go to the surface of the display. The fibres can either form complete characters or segments of a character, by dots of light. The plastic plates have dots on the surface, in the shape of the characters, which are illuminated; a separate plate is used for each character and the plates stand vertically behind one another.

Indicator tubes use filament wires either shaped to form individual characters or seven segments from which characters can be assembled. The tube is evacuated and when a low voltage, typically 5 V , is applied to a filament/s the character glows. The seven-segment principle is also used in a flat-package display which resembles the seven-segment l.e.d. type.

Even though many solid-state/gasdischarge displays are on the market, i.f. types continue to find applications. Very little development is taking place but, because of the advantages mentioned, these types of display will not be replaced until some significant improvements are made in other types.

MANUFACTURERS

Bulgin:
Illuminated stencil. Any message can be displayed.
Conrac: Matrix of bulbs to form characters.
IEE: 7-and 16-segment fibre optics. Projection types.
7-segment lamp.
Davy:
Apollo:
FR:
Matrix of bulbs to form characters.

7 -and 16 -segment filament.
Shelly/Datatron: 7-and 16-segment fibre optics. Projection types.

Hird-Brown:	Matrix of bulbs to form characters.	Specialities: TEC:	fibre optic. 7 -segment lamp with
Neill:	7 -segment lamp.		logic. Projection.
NEC:	7 -segment lamp and	RCA:	Filament tube.
	illuminated stencil.	Siemens:	Filament tube.
Fuji:	7-segment filament.	KGM :	Edge lit. Matrix of bulbs
Diode-Lite:	7 -segment lamp.		to form characters.
Setpoint:	Matrix of bulbs to form characters.	Okaya:	7 -segment filament. Filament tube.
Tung-Sol:	7 - and 16-segment lamp.	Itoka:	7 -segment lamp.
	Illuminated stencil.	Spectra-Tek:	Filament-tube panel
Master	7 - and 16 -segment.		meter with drive/ decoder logic.

Manufacturers' addresses with UK agents where applicable.

AEG Telefunken UK Ltd, Bath Road, Slough. Berks.
American Microsystems Inc. Adrian Electronics Lid. 28 High Street. Winslow, MK 18 3HF.
Beckman Instruments Ltd, Queensway. Glenrothes, Fife.
Bowmar Instruments Ltd, 1 Ormond Avenue, Hampton, Middx.
British Brown Boveri Ltd, Albany House, 41 High Road, Brentford, Middx.
Bulgin, A. F. \& Co Ltd, Bye Pass Road. Barking, Essex IG11 OAG.
Burroughs Electronic Brokers, 49 Pancras Road, London NW1 (neon indicators): Walmore Electronics Ltd, 11 Betterton Street. Drury Lane. London WC2 (self-scan types).
Cherry Electrical Products, Lattimore Road, St. Albans, Herts.
Conrac Ltd, 346 Kensington High Street, London W14.
Contraves Industrial Products Ltd. Times House, Station Approach, Ruislip. Middx.
Davy \& United Instruments Ltd. Darnall Works. Sheffield S9 4FA.
Diode-Lite Pye TMC Components Ltd, Controls Division, Roper Road, Canterbury. Kent.
EEP Rastra Electronics Lid, 275 King Street, Hammersmith, London W6 9NF.
 Fieldtech Ltd, No. 2 Maintenance Area, Heathrow Airport, Hounslow, Middx.
Elesta Britec Ltd, 17 Devonshire Road, London SE26.
FM Kynmore Engineering Co, 19 Buckingham Street, London WC2.
Fairchild Semiconductor Ltd, Kingmaker House, Station Road, New Barnet. Herts.
Ferranti Ltd, Special Components Department, Gem Mill, Chadderton, Oldham, OL9 8NP.
Fuji Perdix Components Ltd. Perdix House, 31 Green Lane, Chislehurst, Kent.
GEC Ltd. Hirst Research Centre. East Lane, Wembley. Middx.
Hamlin Electronics, 14 New Road, Southampton. Hants.
Hewlett Packard Lid, 224 Bath Road, Slough. Berks.
Hird-Brown Electronics Ltd, Lever Street, Bolton, Lancs.
IEE Counting Instruments Ltd, 5 Elstree Way. Borehamwood, Herts.
$\left.\begin{array}{l}\text { ITT } \\ \text { Sanyo }\end{array}\right\} \begin{aligned} & \text { ITT Ltd, Brixham Road, Paignton, } \\ & \text { Devon. }\end{aligned}$ Sanyo $\}$ Devon.

Marconi Communication Systems Ltd, Radford Crescent, Billericay, Essex.
Marconi Company Ltd, Research Laboratories. West Hanningfield Road. Gt. Baddow. Essex.
Master Specialities Co, Waycom Ltd, Wokingham Road, Bracknell. Berks.
Monsanto Ltd. 10 Victoria Street, London SW1HONQ.
Mullard Ltd, Mullard House, Torrington Place, London WC1E7HD.
NEC $\}$ Nimrod Electronics Ltd, Vann Norstron $\}$ Lane, Chiddingfold, Surrey.
National Electronics Inc. Magnus Electronics Ltd, 23 King Street, London W3.
National Semiconductor, The Precinct. Broxbourne. Herts.
Neill Controls Ltd, Neills Road, St. Helens, Merseyside.
Nippon Electric Co, Impectron Ltd, Impectron House, 23 Kings Street, London W3.
Norbain Electronics Ltd, Norbain House, 44 London Street, Reading RG1 4SQ.
Oki Twentieth Century Electronics Ltd, King Henry's Drive, New Addington, Croydon CR90BG.

Oshino Seatronics Ltd. 22 Finsbury Square, London EC2A 1DT.
Phosphor Products, 100 Drawkins Road, Hamworthy, Poole, Dorset.
Plessey Co Ltd, Optoelectronics \& Microwave Unit, Wood Burcote Way, Towcester, Northants.
Princetown Material Science. Sprague Ltd,
159 High Street. Yiewsley. West Drayton. Middx.
RCA Ltd, Electronic Components Division. Lincoln Way, Sunbury-on-Thames, Middx.
Rank Research Laboratories, PO Box 33. Phoenix Works, Great West Road. Brentford. TW8 9AG.
Saunders Roe Developments Ltd, North Hyde Road. Hayes. Middx.
Setpoint Ltd, Ingate Place, London SW8.
Siemens Ltd, Great West House, Great West Road. Brentford, Middx.
Spectra-Tek, Kirbymoorside. York.
Swarovski Bywood Electronics, 181 Ebberns Road. Hemel Hempstead, Herts.
TEC West Hyde Developments Ltd, Ryfiéld Crescent, Northwood, Middx.
Tekelec Euro Electronic Instruments Ltd, 27 Camden Road, London NW1 1YE.
Texas Instruments Ltd, Manton Lane, Bedford.
Thomson CSF UK Ltd, Ringway House, Bell Road, Deneshill. Basingstoke, Hants. Thorn Electrical, Bond Road. Mitcham, Surrey.
Toshiba UK Ltd, Toshiba House, Great South West Road, Feltham, Middx.
Tung-Sol Walmore Electronics Ltd. 11 Betterton Street, Drury Lane, London WC2.
Xciton Tranchant Electronics Ltd, Tranchant House. 100A High Street. Hampton, Middx.

Ampex and WHAT?...

The JAMES SCOTT Alignment Units for D.R. and E.M. Multi-Channel Tape Recorders.

The F.M. Alignment
Unit Type FMU/1 illustrated was designed at the Royal Radar Establishment, Malvern, to suit Ampex Recorders working on the IRIG intermediate band specification (using ES 100 Electronics) e.g. Model Numbers FR 1200, FR 1260, FR 1300, FR 1800L, FB 400, PR 500

If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone.

James

[Electronic Engineering] Ltd
CARNTYNE INDUSTRIAL ESTATE GLASGOW G32 6AB Tel:041. 7784206

Liquid Crystal Display Connector

These electrical connectors are self-indexing for fast, precise display plug-in, give rigid mechanical support for liquid crystal and other types of digital display panels. They are available in two styles for parallel and 90 mounting.

Manufactured with a rugged glassfilled phenolic body, corrosion and film resistant contact alloy (variety of optional platings available) of high strength, the cone-pointed spring contacts permit high integrity connections for both static and mobile use.

HELLERMANN ELECTRONIC COMPONENTS
For full details and literature: Imberhorne Way East Grinstead Sussex RH19 1RW

Tel. East Grinstead 27411
The TIME SAVERS

The Sinclair DM2 Multimeter.
 Comprehensive. Accurate. Portable. And really rugged.
 Yet only £59. pusuan

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with 0.1% metal - film resistors. The result is excellent accuracy and stability with a very high basic input impedance.

The instrument reads to ± 1999 and has a basic accuracy on the 1 V DC range of $0 \cdot 3 \% \pm 1$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.

The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything - except price!

Features of the Sinclair DM2

5 functions giving 22 ranges DC volts -1 mV to 1000 V AC volts - 1 mV to 500 V DC current $-0.1: 1 \mathrm{~A}$ to 1 A AC current-1 u A to 1 A Resistance-11s to $20 \mathrm{M} \Omega$ Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives a quick, clear reading.
$3 \frac{1}{2}$ digit display
Display reads from 000 to 1999.
Overload indicator.
Protected
Separate fuses for current and resistance circuits.
Accurate
Dual slope integration. High stability.

Rugged construction Tough metal casing takes the roughest treatment - try standing on it!
Two power sources Supplied with a 9 V battery, giving 60 -hour typical life. Mains adaptor also available.
Portable
Weighs only $2 \frac{1}{2} \mathrm{lb}$ approx,
including battery.
Measures only 2 in $\times 9$ in $\times 6$ in approx.
Optional extras
Mains adaptor - $£ 3.19$ inc VAT.
Carrying case - $£ 5.40$ inc VAT.
12-month no-quibble
guarantee

Use it in your laboratory. The D M2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case - it's always ready for use.

All you need to use the DM2 . . . anywhere. Mains adaptor... carrying case... multimeter ... you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque, your Access/Barclaycard number, or an official company order, with the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to arrange a demonstration and get details of prices on 5 or more instruments.

Sinclair Radionics Ltd,
 London Road, St Ives, Huntingdon,

Cambs., PE174HJ.

Tel: St Ives (0480) 64646.
VAT Registration No : 213817088.

The Sinclair DM2 Multimeter: full technical story

DC Volts Range	Accuracy	Input Impedance	Resolution
1 V	$0 \cdot 3 \% \pm 1$ Digit	$>100 \mathrm{M}$ S	1 mV
10 V	$0.5 \% \pm 1$,	$10 \mathrm{M} \Omega$	10 mV
100 V	$0.5 \% \pm 1$ "	$10 \mathrm{M} \Omega$	100 mV
1000 V	$0 \cdot 5 \% \pm 1$ "	$10 \mathrm{M} \Omega$	1 V
Maximum overload- 350 V on 1 V range 1000 V on all other ranges.			

DC Current		Input	
Range	Accuracy	Impedance	Resolution
$100 \mathrm{\mu A}$	2.0\% ± 1 Digit	$10 \mathrm{~K} \Omega$	100 nA
1 mA	$0.8 \% \pm 1$,	$1 \mathrm{~K} \Omega$	$1 \mu \mathrm{~A}$
10 mA	$0 \cdot 8 \% \pm 1$,	100Ω	$10 \mu \mathrm{~A}$
100 mA	$0 \cdot 8 \% \pm 1$,	10Ω	100 kA
1000 mA	2.0\% ± 1	1Ω	1 mA
Maximum overload-1A (fused).			
AC Current			
Range	Accuracy	Frequency Range	
1 mA	1-5\% ± 2 Digits	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
10 mA	$1.5 \% \pm 2$.	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
100 mA	$1.5 \% \pm 2$,	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
1000 mA	2.0\% +2	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
Maximum overload-14 (fused).			
Resistance			
Range	Accuracy	Measuring	
		Current	
$1 \mathrm{~K} \Omega$	$1 \cdot 0 \% \pm 1$ Digit	1 mA	
$10 \mathrm{~K} \Omega$	1.0\% ± 1,	$100 \mu \mathrm{~A}$	
$100 \mathrm{~K} \Omega$	1.0\% ± 1 "	$10 \mu \mathrm{~A}$	
$1000 \mathrm{~K} \Omega$	1.0\% ± 1 "	$1 \mu \mathrm{~A}$	
$10 \mathrm{M} \Omega$	2.0\% ± 1,	100 nA	
Overload protection-50mA (fused).			

THE STORY OF RADIO W M Dalton

WHO KNOWS how many good ideas, abandoned as impracticable in their time, are waiting to be tried again by some man of vision - and perhaps by YOU!
Endlessly fascinating and inspiring, unassuming in style, Mr Dalton's volumes are bursting with all the ideas that led radio engineering from its humble origins to the mighty miracle of colour television from the planets. Compulsive reading for every radio engineer and every radio ham.

PUBLICATION IN MAY

the first three volumes of The Story of Radio by W. M. Dalton m.I.E.R.E. Price to be announced
Vol. 1 HOW RADIO BEGAN
Magnetism and Electricity; Electrical Engineering; Wireless Telegraphy; The Thermionic Valve.
$160 \mathrm{pp}, 28$ line drawings, $13 \mathrm{~b} / \mathrm{w}$ illustrations

Vol. 2 EVERYONE AN AMATEUR
After World War I; Amateur Wireless; The British Broadcasting Company; Home Constructors; The Rediscovery of Short Waves. $168 \mathrm{pp}, 40$ line drawings, $33 \mathrm{~b} / \mathrm{w}$ illustrations

Vol. 3 THE WORLD STARTS TO LISTEN
Receiver Measurements; The British Broadcasting Corporation; Compromise in Design;
Telephones, Talkies and Television. $184 \mathrm{pp}, 52$ line drawings, $35 \mathrm{~b} / \mathrm{w}$ illustrations

IN PREPARATION

Vol. 4 RADIO BECOMES A PROFESSION
All Mains Receivers; Broadcasting Techniques; The Superhet Wins Out; The Service Engineer.
Vol. 5 THE BIRTH OF T.V.
Public Address; All-Wave Receivers; Shorter Waves; High-definition Television.
Vol. 6 THE PRESS-BUTTON AGE
Automatic Radio; Communications Receivers; Television Settles Down; The End of an Era.
Vol. 7 DURING THE WAR AND AFTER: RADIO BECOMES ELECTRONICS Wartime Activities; Post-war Radio and Television; Analog Computers; Digital Computers.

If you would like further information or would like to purchase any of the above books please complete the form and send to:
ADAM HILGER LTD
Publishers
29 KING STREET LONDON WC2E 8JH

Without committing me to any obligation whatsoever, please send me full information on W. M. Dalton's THE STORY OF RADIO Name.
Address. .

Noise-confusion in more ways
 than one

3-Microwave noise generators and aerial temperature

by K. L. Smith
University of Kent at Canterbury

Abstract

Techniques for measuring noise temperature in the microwave region are discussed in this article, together with interesting and in some ways unexpected effects on the performance when attenuation is present at the front end of receivers. Noise from external and sometimes distant sources is considered and its effect on the idea of aerial temperature.

I find that the upper end of the frequency spectrum offers many interesting techniques, as we have seen from the recent series of articles by M. W. Hosking in Wireless World. The main point to bear in mind about microwaves is that distributed techniques are used and lumped circuit components as well as definite voltages and currents, are no longer in evidence. For example, a matched load on the end of a transmission line (waveguide) is not a small resistor, but is often a wedge of lossy material tapered for a number of wavelengths. Certainly the thermionic diode noise sources are out and the distributed circuit ideas have to be exploited for noise generation. The easiest microwave noise source is one of the matched loads heated to a known temperature in an oven ($T_{\text {hoo }}$). For measurements on low-noise receivers, instead of being heated, the load is often cooled by solid carbon dioxide or liquid nitrogen, for instance. This yields a known $T_{\text {cold }}$ value. (" $T_{\text {hot }}$ is then usually room temperature.)
I will now describe the gas discharge tube as a most useful noise source for the microwave region. The tubes are usually similar to a small fluorescent lamp, with heater, the positive column of which is coupled into a microwave system by passing the tube diagonally across a waveguide, as shown in Fig. 9. The noise temperature seen by a receiver connected to the gas discharge source is constant and related to
the electron temperature in the plasma, in a way that can be calculated. It is virtually independent of the current through the tube, but it does depend to some extent on the type of gas and the pressure in the tube, and on the diameter of the discharge. Tubes containing argon have temperatures 9900 K to 11000 K . As an example, tube type N 1067 has a temperature of 11000 K .

The custom in specifying noise tube sources usually involves the excess noise ratio in decibels, so that an argon tube whose noise temperature is 10000 K has an excess noise ratio of

$$
10 \log _{10}\left(\frac{10000-290}{290}\right)=15.25 \mathrm{~dB}
$$

The gas tube source has a limitation and that is once the tube has been made and put into operation, the noise temperature is fixed (as we have seen, it is always at about 10000 K). This temperature is rather high and you might think that it would produce a very large A in the ratio method for measuring T_{e}. So it would, but with a bit of manoeuvring based on the discussion in the next section, we can get over this.

Fig. 9. Electron noise temperature inside an ionized gas tube is surprisingly constant. Tube is placed diagonally across the waveguide to couple or match into the system efficiently.

Effect of attenuation on noise temperatures

At first sight, it might appear that an attenuator with a loss L placed between the output of a source of noise power and the input terminals of an amplifier, could be handled as a stage having a gain of less than one. If this was true the first two terms of the cascading formula could be used directly. The situation is not quite so simple as this in practice, because the attenuator is a lossy passive circuit which contributes thermal noise according to its physical temperature, T_{L}. The use of the excess temperature simplifies the arguments somewhat, at the expense of always having to remember that 290 K has to be added to get the true temperature.

I will now go on to consider how one deals with a lossy network in a system. The problem can be looked at from two points of view. The first considers the output terminals of the attenuator. The attenuator is bracketed in with the source, as it were. The discussion then deals with the question of the source temperature seen by the receiver (whose effective input temperature is, say,$T_{e R}$) considering the original source and attenuator together forming the new source. The other way is to bracket the attenuator in with the receiver to give a new receiver (with new T_{e}) with which to face the original source. Of course, both points of view amount to the same thing, it is just the position in the cascade at which we refer to the noise temperature which differs.

The first requirement is for us to consider the effective input temperature of the attenuator alone. Think of an attenuator of loss L, with a matched source resistance, all in a box at a physical temperature T_{L}. After a little thought, you should see that the available noise power from the output terminals of the whole thing is $k T_{L} B$. The available noise power at the input of the attenuator is $k\left(T_{L}+T_{e L}\right) B$, where $T_{e L}$ is the effective input temperature of the attenuator. This power multiplied by the gain, i.e. $1 / L$, must be equal to the output power
$\frac{k\left(T_{L}+T_{e L}\right) B}{L}=k T_{L} B$ or $T_{e L}=(L-1) T_{L}$
Now we can go ahead and use the equation for T_{e} on page 172 (April issue) to get the overall effective input noise temperature of a receiver with an attenuation of L between its input terminals and the source terminals

$$
\begin{equation*}
T_{e}=T_{e L}+\frac{T_{e R}}{\left(\frac{1}{L}\right)}=(L-1) T_{L}+L T_{e R} \tag{9}
\end{equation*}
$$

Fig. 11 shows diagrammatically a few steps to assist in arriving at this last equation. You will see that attenuation not only increases the receiver's effective input temperature by L, but adds noise of its own, amounting to ($L-1$) T_{L}. A typical example of where you will get this kind of thing is an aerial connected to a receiver via a lossy feeder.

We are now in a position to look at the problem in the other way I mentioned. Suppose the aerial temperature is T_{a} and is connected to the attenuator input terminals, as shown in Fig. 12. The available power coming out of the attenuator is $k\left(T_{a}+T_{e L}\right) / L$, so the temperature seen by the receiver is

$$
\begin{equation*}
T_{a(e f)}=\frac{T_{a}}{L}+\left(1-\frac{1}{L}\right) T_{L} \tag{10}
\end{equation*}
$$

by using equation (8).
This means that the effective aerial
temperature is not only reduced to $1 / L$ of the actual value, but a spurious or masking noise $(1-1 / L) T_{L}$ is added by the attenuator. Whichever way one looks at it, attenuation between aerial and receiver has a nasty effect on the noise performance of a low noise system.

Just to check that equations (9) and (10) are ways of saying the same thing, you might like to calculate the output noise power, $P_{N O}$, in both cases.
From (9) and Fig. 11

$$
\begin{aligned}
P_{N O} & =k\left(T_{a}+T_{e}\right) \frac{B G}{L} \\
& =k\left(T_{a}+|L-1| T_{L}+L T_{e R} \frac{B G}{L}\right.
\end{aligned}
$$

and from (10) and Fig. 12

$$
\begin{aligned}
P_{N O} & =k\left(T_{a(e \Theta)}+T_{e R}\right) B G \\
& =k\left(\frac{T_{a}}{L}+\left[1-\frac{1}{L}\right] T_{L}+T_{e R}\right) B G
\end{aligned}
$$

Fig. 11. Including the attenuator in with the receiver gives a new receiver complete with new overall T_{e} with which to face source.

Fig. 12. Same system as Fig. 11 but now considered from the point of view of . attenuator bracketed in with source to form a new source . . feeding the original receiver.

Factorizing out $1 / L$ in the second equation shows it to be exactly the same as the first.

There is one situation in which an attenuator is useful when dealing with noise. If you have a noise source which has a known fixed, but high noise temperature, you can obtain a lower noise temperature by exploiting equation (10). Of course the attenuator must be a highly accurate calibrated one to give a known value of L. From equation (10) you can see that with no attenuation, $(L=1)$, the temperature seen is that of the source. If L is very large, the first term in the equation becomes negligibly small, so does $1 / L$ in the bracket and the noise temperature seen by the receiver is simply T_{L}, no matter how high T_{a} is-if L is large enough. In most situations, $T_{L}=T_{o}$ or nearly so and if we deal in terms of excess temperatures then equation (10) can be rewritten

$$
T_{a(e f)}-T_{o}=\frac{T_{a}}{L}+\left(1-\frac{1}{L}\right) T_{o}-T_{o}
$$

which is

$$
T_{a(e f)}-T_{o}=\frac{T_{a}-T_{o}}{L}
$$

This argument shows that the effective excess noise temperature of a source is just the actual excess temperature divided by L. L must be a numerical ratio and as virtually all attenuators are calibrated in decibels, you must do a conversion back first. This is easy to do and I will finish this section with a simplè example.

Suppose you have a gas tube noise source whose excess noise temperature is 10000 K . If a 10 dB attenuator at room temperature is placed between it and a receiver, then L is 10 and the result recorded by the receiver is an effective excess noise temperature of 1000 K . If $20-$ dB attenuation is inserted, you would observe 100 K . 30 dB would give 10 K excess temperature and so on. This technique is useful when using gas tube noise sources for measuring performances of low noise receivers and sensitivity of radiometers.

Aerial temperatures

My earlier discussion attempted to highlight the distinction between T_{a} and T_{e}. It underlined the fact that T_{a} measures the noise coming in with the signal. You might be tempted to think that we cannot do anything about a naturally occurring T_{a} and have to put up with it. That is not the whole picture and a much closer look is required.

One of the first questions you might ask is where does the noise external to the receiving equipment originate? We already have partial answers. The sun radiates at noise equivalent temperatures of about 6000 K near the infra-red end of the . spectrum, up to hundreds of thousands of degrees at longer wavelengths. Occasionally the sun produces bursts of noise which are orders of magnitude greater than the "quiet" sun value. The earth radiates at about 300 K over much of its surface away from the poles. The moon and planets radiate at their characteristic temperatures and there
is a general background hubbub (especially at long wavelengths) from the galaxy. At millimetre wavelengths the atmosphere radiates and absorbs, together with acute and rapidly changing effects by rain and clouds-all very much under scrutiny by many observers.

A summary of these effects is illustrated in Fig. 13, where the main curve shows the variation of aerial temperature over the radio spectrum. It is not surprising that S band $(10 \mathrm{~cm}$ wavelength) and X band $(3 \mathrm{~cm})$ figure prominently in space mission communications and radar, because the value of T_{a} in this region is very low, around 10 K . The rise to millions of degrees at long and medium waves is clearly seen. Time spent on careful low noise design of communications receivers at this end of the spectrum would be time wasted. Other considerations, such as good cross modulation and low spurious response performance, become prominent.

From the beginning of the v.h.f. region upwards in frequency, low-noise design for minimum T_{e} becomes important as can be inferred from the parts of Fig. 13 where aerial temperatures lower than room temperature occur. Moving to higher frequencies still, we see a rising T_{a} as water molecules in the atmosphere produce a peak in atmospheric absorption at about 23 GHz . This overlaps another rise at 60 GHz which is explained by the existence of a cluster of molecular oxygen spectral lines around this frequency. The small dip between the peaks near 35 GHz is a window at Q band (8 mm wavelength).

At higher frequencies the atmospheric gases have more and more resonances and propagation becomes impossible, except for very short distances. The atmosphere is virtually opaque until the visible light window at 600000 GHz , except for a few rather foggy windows in the nearinfra-red region. The effective temperature of the atmosphere varies with its physical temperature as well as its opacity. In turn, the opacity varies with the fogginess at any frequency and the physical thickness. The distance to the outer edge is obviously much less looking upwards than along towards the horizon. One would expect the noise from the atmosphere to be greater looking horizontally than vertically, as borne out by the curve on Fig. 13.

The natural production of noise giving high aerial temperatures is not always looked upon as an annoying and expensive interference. Radio astronomers and experimenters who carry out work on atmospheric absorption mechanisms look for and measure changes in T_{a} for their bread and butter. Radio link, radar and space communication engineers on the other hand look on high aerial temperatures as a bugbear. This is a very good example of the saying, "One man's meat is another man's poison."

Radio aerials have quite wide beam widths, although extremely large microwave dishes are built to reduce the pattern width and give a directivity more like a searchlight beam. There are always the side lobes to consider. The aerial temperature recorded by a receiver is the average value

Fig. 10. Typical waveguide gas tube noise sources. Tube is struck by impulse from power supply and operates at 150 mA until switched off. (Mid-century Microwavegear Ltd.)

seen by the aerial beam. Any peaks in the temperature distribution in space (a "point" source like a planet, for instance) will be missed with a broad beam. It is a matter of resolving power as in any other telescope problem.

I briefly discussed this kind of idea in reference 12 under the heading convolution. What this means is that the averaging over the large aerial beam area dilutes the effect of a small hot source and it fades into insignificance. If the aerial beam is small and covers the source, the hot source will be seen at its full or "brightness" temperature.

A very important effect is the possibility
of the aerial beam, and certainly the side lobes looking at the earth, especially in radar or horizontal point to point communication systems. A large contribution to the T_{a} of a low noise receiver can arise from this source. The sun and moon have already been mentioned, but they are small in size and can be avoided with care. The operating frequency, chosen for the lowest T_{a} and available signal power at the receiver, finally gives us the information, which enables the value of $T_{o p}$ to be worked out, thus yielding the signals to noise ratio expected at the output of the system.
(To be continued)

Oscilloscope capacitance meter

Simple measurement technique utilizes the timebase sawtooth waveform to obtain an accuracy better than 5%

by H. v. Z. Smit, B.Sc., B.Eng.(Elec.)

From time to time various methods of measuring the value of a capacitance by means of an oscilloscope have been published ${ }^{1,2}$. Many of these methods depend on the determination of the shape of a phase ellipse and therefore a sine-wave source is essential. Also, the value of the capacitance has usually to be calculated from the readings taken. Thus such methods tend to be of academic interest rather than useful in practice.

In the method described here, which can also be used to determine the capacitance/voltage characteristic of tuning diodes, use is made of only one selected resistor to convert the oscilloscope into a direct-reading capacitance meter covering a range between about 1 pF and several $\mu \mathrm{F}$. The accuracy of measurement is sufficient for most practical purposes. It is necessary for the timebase sawtooth of the oscilloscope to be available externally.

The vertical shift control is first set to fix the zero line on the lowest line of the graticule. The unknown capacitance C and the resistor R are then connected as shown in Fig. 1. Next the vertical deflection control is set for maximum d.c. sensitivity and the horizontal (time scale) is adjusted to give a display such as that shown in Fig. 2. The capacitance value is directly proportional to the vertical deflection after steady state conditions have been reached. This value can be easily read off the vertical centre line of the graticule.

In accordance with the expression given (derived in the Appendix), the value of R should be chosen to give the desired vertical scale factor (pF per cm or $\mu \mathrm{F}$ per cm).

$$
R=T V / v F
$$

where V is $1 /$ sensitivity of y-input in volts $/ \mathrm{cm} ; T$ is the timebase setting in $\mu \mathrm{s} / \mathrm{cm} ; v$ is the sawtooth slope in volts (vertical) per cm (horizontal); and F is the required vertical scale factor in $\mu \mathrm{F} / \mathrm{cm}$.

For example if: $V=20 \mathrm{mV} / \mathrm{cm}, v=0.92$ volts per horizontal cm and $F=1000 \mathrm{pF} /$ cm (required). Choose $T=1 \mathrm{~ms} / \mathrm{cm}$ and the equation gives $R=21.7 \mathrm{k} \Omega$. The display shown in Fig. 2 was obtained with this value of R and for the above con-
ditions. The value of the unknown can be read off as 6700 pF .

Accuracy of measurement depends on the accuracy of the vertical and time scales, the accuracy with which R is known, the accuracy with which the slope of the sawtooth can be determined, the linearity of the sawtooth and finally the reading accuracy which in turn depends on line thickness, graticule quality and
parallax. Errors attributable to these factors are negligible in practice.

The method has the advantage that the limits of valid measurement are immediately apparent in the display. The minimum capacitance which can be measured is limited by stray capacitances to earth and at the input of the oscilloscope. These capacitances do not introduce errors of measurement but make

Fig. 1. Circuit used for measuring the

Fig. 2. Measurement of a 6700 pF capacitor. Time scale is $1 \mathrm{~ms} / \mathrm{cm}$ (corresponding to $1 \mathrm{nF} / \mathrm{cm}$). Voltage setting is $20 \mathrm{mV} / \mathrm{cm}$.

value of capacitor C .

Fig. 3. Measurement of a 2.1 pF capacitor. Time scale is $0.5 \mu \mathrm{~s} / \mathrm{cm}$ (corresponding to $0.5 \mathrm{pF} / \mathrm{cm}$). Voltage setting is at $20 \mathrm{mV} / \mathrm{cm}$ and the oscilloscope input capacitance is 30 pF .

Fig. 4 (a). Timebase sawtooth waveform and (b) the circuit to which it is applied -see appendix.

(a)

(b)
accurate reading of the display difficult, as shown in Fig. 3.

It is possible to measure capacitances an order smaller than the stray capacitance. Fig. 3 shows a 2.1 pF capacitor being measured although the input stray capacitance is 30 pF . Theoretically there is no upper limit to the value of the capacitance which can be measured. In practice, however, the time consumed in taking a reading eventually becomes unrealistic, $100 \mathrm{~s} / \mathrm{cm}$ corresponding to $100 \mu \mathrm{~F} / \mathrm{cm}$, for instance. On the other hand the practical range can be extended by a factor of 20 to 100 by decreasing the value of R. A lower limit to R is reached when the time constant $r C$ (where r is the sawtooth generator output resistance) becomes so great that it "distorts" the waveform on the oscilloscope and a trace similar to that shown in Fig. 3 results.

If reasonable care is taken during the measurement procedure, results can be accurate to well within 5%. Accuracy can be optimized by a suitable choice of R and use of a standard capacitor C whose value is accurately known.

Appendix

Refer to Fig. 4 (a) which shows the timebase sawtooth waveform. Quantity T,
represented by 1 cm horizontal deflection, is by definition the time in $\mu \mathrm{s}$ at which the vertical deflection voltage is v. At any time t voltage is v_{t} and therefore

$$
v_{t}=v t / T
$$

This voltage is applied to the series circuit of Fig. 4 (b) where r is the output impedance of the sawtooth generator, R is the resistance of the calibrating resistor and C is the unknown capacitance. By summing voltages,

$$
v_{t}=v t / T=i R+i r+(1 / C) / i \mathrm{~d} t
$$

Differentiating with respect to t

$$
v / T=(R+r) \mathrm{d} i / \mathrm{d} t+i / C
$$

As $t \rightarrow \infty, \mathrm{~d} / / \mathrm{d} t \rightarrow 0$ and thus $i \rightarrow v C / T$.
The voltage V across R, as applied to the vertical input of the oscilloscope, is equal to $i R$, therefore

$$
\begin{aligned}
V & =v C R / T \\
\text { or } C & =V T / v R
\end{aligned}
$$

By a suitable choice of R and T, any given value of V can be made to correspond with a convenient value of C. Thus if C is replaced by $F(\mu \mathrm{~F}$ per cm$)$ then $F=V T / v R$, where V is now in volts per cm .

References

1. Rider \& Uslon, "Encyclopaedia on cathoderay oscilloscopes and their uses", 1959 edition, pp.14-4 to 14-7.
2. Millay, J., "Progress in semiconductor testing", Tekscope, Nov. 1972, p.3.

HF predictions

Frequency predictions are the expected monthly mean values of HPF. FOT and LUF for a given state of the ionosphere. Since the charts below refer to a specific future period the given state must also be predicted in terms of ionospheric index. A commonly-used index is the 12 -month running-mean sunspot number given by
$R_{12}=\frac{1}{12}\left[\sum_{n=-5}^{n=5} R_{k+n}+\frac{1}{2}\left(R_{k+6}+R_{k-6}\right)\right]$
where R is the mean of daily sunspot numbers for a month represented by its subscript and R_{12} is the smoothed index for the month represented by $k=0$. Hence a prediction of R_{12} requires an extrapolation of the series at least six months ahead of the last available value.

Coastguard v.h.f. repeaters

System in Scotland using solar power

by J. B. Tuke
National Air Traffic Services

When the Civil Aviation Authority assumed responsibility for aspects of HM Coastguard radio communication services one of the difficulties which had to be studied was the problem of communication between coastguard teams, carrying out routine patrol or rescue work, and their base station. The base may be situated some miles from the scene of action, and the rugged terrain of the Scottish coast makes v.h.f. "walkie-talkie" communication more difficult than usual. By its very nature, a coastguard station is unlikely to be situated on very high ground so that practical v.h.f. range is often restricted to no more than a few miles. In the event of an incident it is essential that any coastguard mobile parties are kept in communication with their base, no matter where in their area they are operating. This can only be arranged by the use of "talkthrough" repeaters. The indented coastline with high hills between posed the initial problem, but it also provided the solution since a repeater could be set up on a strategic hilltop having line of sight along the coast.

Unfortunately the most suitable sites are often the most remote and it was soon evident that if the best site was to be used in most cases there could not possibly be an access road or any form of external power supply for the kind of money HM Coastguard could afford.

After consideration, a design formula was evolved which solved both engineering and economic aspects of the problem, reasoning along the following lines. The capital cost of an outside power supply and a road to a remote high site is heavy, likewise the maintenance costs. A selfcontained power supply together with highly reliable equipment, on the other hand, could eliminate the need for a road and outside electricity provided that the installation could operate for, say, a year without attention. Further substantial capital and revenue savings could be achieved if the whole station were no more than a weatherproof container capable of being delivered by tracked vehicle or helicopter. In theory the total capital and running costs of such a device would be very small when compared with the cost of a conventional installation, provided that a solution could be found to the engineering problems. The essential parameters are:

- Total reliability.
- Attention, say, only once a year.
- 24-hour capability.
- Ability to withstand extreme climatic conditions.
Attention was given to obtaining a repeater which had minimal current drain in the receive mode, and looking for a suitable power supply. There was something of a "chicken and egg" situation here as the choice of one was dependent on the other.

Repeater station on Beinn Bheigar in Islay, showing solar panels.

After study of a number of repeater specifications it appeared that the CQF series manufactured by Storno might well fill the bill. These sets are in themselves weatherproof, having been made in the form of a hinged box where the receiver is in the lid and the transmitter in the box, the two folding together with a weathertight joint. The company were enthusiastic to assist and modify a CQF 612 to reduce the standing receiver current to under 50 mA at 24 V . The transmitter remained unmodified and delivered 10 W output for $24 \mathrm{~V}, 1 \mathrm{amp}$ input. An attractive property of the set is its ability to work well with reduced input -the receiver performance remaining virtually unchanged down to 21 V and the transmitter still delivering a good 5 W at this figure. In fact the equipment was found to operate-though with some degradation of performance, of coursedown to as little as 16 V input. This meant that if some form of battery power supply were decided upon a fair amount of latitude existed with regard to input voltage.

Discovery of a suitable battery came about to some extent by chance. A magazine article described extremely longlife cells which at one time were used to operate point motors on railway tracks, and some amateur sleuthing, together with the assistance of the advertising department of the magazine Electron, eventually provided the name of Le Carbone- a company in Sussex manufacturing very-longlife, high-capacity alkaline primary cells. The total life capacity of these cells (type AD 608) is over 2,000 ampere-hours, and it was calculated that this would be sufficient to run the repeater for some 400 days for a capital outlay of some $£ 130$ assuming the receiver to be on continuously and the transmitter to be operating for not more than one hour daily. Thirty of these cells would be used to power the repeater (nominal voltage 1.2 V per cell) with a simple series regulator reducing the initially high battery voltage to 24 . As the end-oflife voltage is around 0.8 V , a figure approaching 24 V total could be expected even a year after installation.

The next question was the physical form of the container. There were severe environmental problems if any sort of portable building were to be considered.

A "hut" on a Scottish hilltop should either be a substantial brick building which simply cannot blow away, or should be something minimal in size and wind resistant-and this latter was decided upon. A metal box 4 ft 6 in square, 2 ft 6 in high with a slightly domed roof was constructed. Internally, a two-storey partition was fitted, the batteries to be housed in the lower portion of the box and the radio equipment in the upper. The weight of the batteries (nearly 9001 l) would surely keep the box immovable even in the worst of gales, as wind resistance is very low compared with its weight. The container would be completely weatherproof, but with adequate ventilation for the battery compartment (essential for the particular cells used as they are air-depolarized), aided in the unlikely event of calm weather by the natural "breathing" of the device due to daily warming and nightly cooling of the environment.

Consideration had been given to using a short end-fed vertical dipole on the roof of the box for an aerial (in fact this has been used as will be described later) but the first installation was to use a conventional mast with end-fed dipole at the top. A small $25-\mathrm{ft}$ mast was decided upon-this is in fact one section of CAA's standard non-directional beacon mast and has four wire guys to hold. it in place.

For purposes of field trials, the North Minch was selected as being most in need of improved communication and typical of the other problem areas in Scotland. The area included the coasts of the Outer Hebrides, the islands of Harris and Lewis, the north-west coast of the Scottish mainland and the northern half of the Isle of Skye. There is a centrally disposed coastguard station in this area situated in the north of Skye at Duntulm, but v.h.f. communication from here was quite impossible to the south and only a limited range could be expected round an arc between approximately 200 and 080 degrees true. Surveys showed that a repeater on top of Meall Nan Suireamach, just south of Duntulm near the Quirang, would "see" almost all of the area to be covered.

Next came the question of transportation. Since reconnaissance showed the site access to be rock-free and with slopes not exceeding 30 degrees, it was decided to use a tracked vehicle (Sno-Trac), which is used elsewhere by the Authority to gain access to some of the more remote Scottish hilltop radio stations in winter. It is a light tracked vehicle, capable of being transported on a three-ton lorry, and makes its way happily over any soft, boggy or heather-covered ground. Because of its very low gear ratio it can carry quite a considerable weight over quite difficult countryside.

The repeater was duly installed in Skye in the summer of 1972. The ascent of the hill proved relatively simple and the station was established without any real problem. Results were excellent from the start, coverage being from Barra right round through Stornoway and down almost to Kyle of Lochalsh. As expected, the power supply lasted just over the year, and
an "expedition" last year and again this year to replace the battery has found the equipment in good order, both electrically and physically.

A further station was installed in 1973this time on top of Beinn Bheigar in Islay. As part of an "exercise" the Royal Naval Air Service at Prestwick agreed to position the repeater by helicopter, the entire station being installed and commissioned on the hilltop in about an hour. In this case the endfed dipole was built on to the top of the equipment container, as the site chosen falls away rapidly on all sides; thus an aerial only some 3 ft high at the base provides adequate cover over the southern area of the Inner Hebrides and right across to Northern Ireland.

Having successfully operated the Skye repeater for over two years, and the Islay one for over a year, we turned our attention to further economies, the battery power supply being the most obvious subject for attack. There were three alternative sources of power for study, wind power, atomic power and solar power. The first was ruled out on mechanical groundswhile there is no shortage of wind on the Scottish west coast, no proven windmill system exists capable of withstanding the wind speeds and icing conditions which would be experienced. Atomic power cells suitable for this application do exist, but require prohibitively expensive installation works due to safety restrictions. This left solar power as the only line of enquiry worth following.

The firm of J. Lucas are actively engaged in this field and a comprehensive study was made by them of our requirements. A hilltop site in the west of Scotland may not appear to be the ideal spot for sunshine, but in fact the study showed that the small requirements of our repeater system could be met without undue difficulty, and for a total cost of about £900. With battery and transport costs escalating rapidly, we could expect to "break even" financially in about three years, even at present levels of expenditure.

A solar panel array delivering something over 1 amp at 24 V in bright daylight is used to charge a bank of secondary cells, and after relating weather conditions which determine charging, battery efficiency and power consumption, it was decided to use 14 Lucas heart pacemaker batteries of 50 ampere hour capacity in a series-parallel arrangement. This number was based on the worst-case premise that there would be no charging at all during the six weeks either side of the winter solstice. In fact there will, of course, be some small amount of charging, so that all calculations have been made with a good margin for error.

Theoretically the system should go on for ever, the only attention required being the topping up of the batteries. It was for this reason that pacemaker models were chosen, as their topping up requirements are minimal. To reduce this still further special oil has been added to the electrolyte, as floating this on top will reduce losses by evaporation.

The solar panel measures $3 \frac{1}{2} \mathrm{ft}$ square and is mounted on the side of the equipment
box facing due south and angled at 55 degrees. As with the primary cells, the batteries are placed in the lower compartment and the system is at present on a year's trial at the Islay site. Indications so far are most encouraging.

There will still be a yearly visit to the site, but as there is no need to transport a large stock of heavy batteries, it will be a simple hill walk to top up the batteries and generally look over the installation, and under these conditions the costs will be only a small fraction of that entailed when the Sno-Trac has to be used.

If all continues to go well two further sites, in Arran and Mull, are to be fitted with solar power systems as they are installed, and the remaining station in Skye will be converted this year when the routine primary battery change becomes due. It is hoped that with reliable radio equipment and solar power, major visits at only threeto five-year intervals will be necessary when the secondary cells themselves have completed their useful life. Visits of this frequency should ensure a reliable and very cost-effective system for many years to come.

Sixty Years Ago

The editorial leader of the May, 1915, issue of The Wireless World in its philosophical attitude towards the essence of wireless telegraphy has not grown outdated in the passing of 60 years. "At such a time as this when the thoughts of the whole world are directed to war, the fact that looms largest in the attention of the general public is that wireless telegraphy is daily proving its utility as a means of establishing communication with ships at sea, both naval and mercantile, with aeroplanes and aircraft, with submarines and on the battlefield. The public imagination has been fired by the revelation of what it can do in regions hitherto untouched, somewhat to the exclusion of recognition of its utility in familiar fields. . . . In fact, it is immaterial whether we look at the manifold activities of the civilized world or let our vision range geographically over the various parts of the globe: whether we confine our attention to the earth or extend it to the air or to the seawe still feel that a stage has been reached in the development of wireless telegraphy which justifies our contention that ubiquity forms its most striking characteristic."

End of "BERU"

The 38th BERU contest, held on March $8-9$, was the last under the traditional scheme of the old "British Empire Radio Union" although the RSGB has stated that a new form of British Commonwealth contest will be introduced in 1976. Fittingly, BERU bowed out in a burst of good h.f. conditions with even 28 MHz opening to Africa, with Australian and New Zealand stations heard at good strength on 7 MHz and with stations towards the west of Canada providing good signals on 14 MHz . This, perhaps more than any other h.f. contest, has always provided something rather better than a point-slogging frenzy, requiring considerable knowledge of the times at which various paths are likely to be open on the different bands to obtain high scores. Many British amateurs would have been prouder to claim they had finished ahead of the field in a BERU contest than, for example, to have won one of the trendy contests such as those providing free holidays to the winner!

Low-cost.s.s.b. generation

In the first enthusiasm for single-sideband operation, many amateurs in the fifties and sixties used phasing-type s.s.b. generation, mostly with wideband networks such as the Dome and "s.s.b. Jr" or commercial units based on similar configurations. The problem was the need for precise values of components that were not too readily affected by temperature or changes in operating frequency. A few amateurs eliminated the need for accurate wideband quadrature networks by adoption of the "third method" though this requires good balance in one pair of mixers to prevent the radiation of a continuous audio tone. Because of these problems and the difficulties of pre-set adjustment amateurs turned increasingly to filter systems based on h.f. or m.f. bandpass crystal filters or m.f. mechanical filters. For the past decade these have been almost universally used both in factory-built and home-built s.s.b. transmitters and transceivers, even though good s.s.b. filters are significantly more expensive than phasing or third method techniques. Filters have proved reliable
in operation and maintain good sideband suppression over long periods without adjustment.

Recently, however, there have been signs that the introduction of digital methods of obtaining 90° phase shifts on r.f. signals (see Wireless World, September 1973) has opened the way to low-cost s.s.b. generators that are much easier to set up and require little adjustment over long periods. A number of amateurs have in the past few months successfully implemented both phasing and "third method" systems based on standard integrated circuits as balanced mödulators and digital phase-shifters.

But possibly still unique is the work of Peter Martinez, G3PLX of Gosport who is now using on 144 MHz a 10.7 MHz s.s.b. generator based on the polyphase technique described and patented by M. J. Gingell of STL (Electrical Communication, vol. 48, No $1-2,1973$) for use in connection with line telecommunications. Some time ago Peter Martinez designed a six-stage polyphase network based entirely on preferred value components (Amateur Radio Techniques, 5th edition, page 181). He has now completed an exciter based on this network in association with a Schottky-clamped 74S74 digital phase shifter, two MC1596 double-balanced modulators, with the "clock" input on 42.8 MHz and s.s.b. output on 10.7 MHz . Sideband suppression has been adjusted to better than 50 dB and he believes that using 1% tolerance resistors it would be quite possible to achieve 40 dB .

It seems likely that this is the first time that the polyphase approach has been successfully used in a v.h.f. transmitterand it is the first reported use of this system in an amateur station. The polyphase network is, in effect, a new way of making a wideband audio phase-shift network and is more tolerant of component values.

Licence trends

The Home Office statistics for licences issued at December 31, 1974 show the continuing trend towards Class B (v.h.f. phone-only) licences which now account for virtually one quarter of British amateur licences, having increased by 638 during 1974 compared with an additional 374 Class A licences. All classes of licence continue to show increases during the year with the total now exceeding 25,000 . Fastest rising class of licence is the Class B mobile permit, reflecting the large number of 144 MHz n.b.f.m. equipment now in use and the growing number of "repeaters" to extend their range of operation. Since "mobile" licences are usually held by amateurs having also a Class A or Class B permit the total number of British amateurs is now in the region of 20,500 .
Amateur licences

	$\begin{aligned} & \text { end- } \\ & 1971 \end{aligned}$	$\begin{aligned} & \text { end- } \\ & 1972 \end{aligned}$	$\begin{aligned} & \text { end- } \\ & 1973 \end{aligned}$	$\begin{aligned} & \text { end- } \\ & 1974 \end{aligned}$
Class A	14.065	14,462	14,930	15,304
Class B	3.012	3,718	4,328	4.966
Class A/M	2.666	2.854	3.081	3.424
Class B/M	545	826	1,176	1.549
Television	214	227	254	277
Totals	20.502	22,087	23.769	25.520

Mixed grill

An interesting 20 -page account of the development of the original "radio microphone" (at first called a "telesonic" microphone to disguise the fact that a miniature transmitter was involved before the time when the Post Office introduced licences for this application) has been published by Reg Moores of 117 Horton Road, Brighton, who made the first unit in 1947. He is a former professional ice-skater and amateur radio enthusiast (one-time G3GŻT I believe) and conceived the idea in the thirties. The first model worked on about 28 MHz and later units about 70 MHz using three valves. First operational use was for the 1949 Christmas season ice show "Aladdin" at the Brighton Sports Stadium, with the microphone hidden in the clothes of the skaterperformers, transmitting signals via a closed loop aerial to an R1481 surplus receiver with the output amplified by a 120-watt Vortexion amplifier. Less happily Reg Moores also believes that this was, in effect, the first "radio bug".

An amateur who has held amateur licences for nearly 50 years is H. E. F. Taylor, G6HT of Torquay who was first licensed as 6FZ in January 1926 (although he had previously operated on 400 to 1000 metres using ex-trench sets of the Felsted OTC) but who, from 1928 to 1956, operated in India under the call-signs VU2FS and VU2AT and during the war in the wireless sections of an Indian Auxiliary Force unit and the Royal Signals.

The RSGB 21st National VHF Convention is being held at the Winning Post Hotel, Whitton, Twickenham, Middlesex on May $10-11$ with lecture sessions on the Saturday afternoon and Sunday morning, a dinner-dance on the Saturday evening, trade show and exhibition of homeconstructed equipment and with an anticipated attendance of over 700 (details from "VHF Convention", RSGB, 35 Doughty Street, London WC 1).

Theh.f. beaconsZL2MHF (28.170 MHz) at Mount Climie, New Zealand and PY1CK (28.160 MHz) at Rio de Janeiro, Brazil, are now in operation but a recent hurricane has put 3B8MS, Mauritius, temporarily out of action. Incidentally, does any reader know the location of the single-letter "beacons" that operate around $20,995 \mathrm{kHz}$ and in the 3.5 MHz band? I believe they are part of the American Military Affiliate Radio System. Their. considerable value as a guide to 21 MHz conditions would be enhanced by knowing even roughly where they are located!
R. W. Addie, G8LT recently had a 20 minute r.t.t.y. contact with W2LFL over the Oscar 7 satellite. Battery conditions on the Oscar 6 satellite could mean another year of operatignal life-it was launched in October 1972 and still going strong.

The Amateur Radio Mobile Society's rally, due to be held on May 18 at Northwick Park Hospital, has had to be cancelled.

PAT HAWKER, G3VA

New

 Products
100 MHz counter-timer

A new 100 MHz multifunction countertimer, known as the model 9838, has been added to the range of counter-timers manufactured by Racal Instruments Ltd. The instrument has a basic sensitivity of 10 mV throughout its range, and will directly measure frequency, single and multiple periods or ratios, single and double line time intervals including positive or negative pulses or contact closures and also multiple events. A six-digit filament tube display is provided with gate and overflow l.e.ds to ensure unambiguous measurement in all modes of operation. The counter-timer, which is fully portable, measures $96.5 \times 240 \times 268 \mathrm{~mm}$ and conforms to BS4743 safety recommendations. Racal Instruments Ltd, Duke Street, Windsor, Berks SL4 ISB.
WW315 for further details

Heat Pipe

A forced-cooled heat pipe system uses four 18 in pipes with a fan-cooled condenser section 6 in cubed. The thermal resistance from the pipes to ambient air is $0.05^{\circ} \mathrm{C} / \mathrm{W}$ which allows, say the makers, a dissipation of up to 1.2 kW . The system,
which may be used to cool fluids or banks of power semiconductors, will operate at temperatures up to $150^{\circ} \mathrm{C}$. Solek Ltd, 16 Hollybush Lane, Sevenoaks, Kent.
WW314 for further details

Wire stripper

A pneumatic gun that will cut and strip up to five p.v.c. wires in one operation is now available from ITT. The tool has been designed for fast precision work on cable forms in telecommunication-wiring type operations. Wires from 0.3 to 0.8 mm can be cut and stripped at a speed of around 6,000 per hour. ITT Components Group Europe, Equipment Products Division, Thornton Industrial Estate, Milford Haven, Dyfed.
WW316 for further details

Electroplated p.t.f.e. microstrip

Polyplate microstrip substrates in electroplated p.t.f.e. offer low interface losses due to the absence of discontinuity and chemical adhesives between metal electrode deposit and substrate, as well as good machinability, mechanical strength and adhesion. The makers, Polyflon Resine, of Milan, claim a high pulse propagation speed, high dielectric strength and a dielectric constant essentially unchanging with frequency, making them suitable for L -, S-, C- and X-band wavelengths. Polyfion Resine, Via Mezzago, 20050 Sulbiate, Milan, Italy.
WW322 for further details

Camera tubes

The XQ1410 series of Plumbicon television camera tubes features a resolution of better than 700 TV lines and a typical sensitivity of $400 \mu \mathrm{~A} /$ lumen. The tubes have a 30 mm diameter lead-oxide photoconductive target and use magnetic focusing and deflection. The tubes, which

WW315
are directly interchangeable with the less sophisticated XQ1020 series, have a range of matched deflection coil assemblies available to ensure optimum performance. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW318 for further details

Temperature alarm

The Digilimit 205 is a temperature indicator which operates from thermocouples or resistance thermometers, and has two independent alarm points. The alarms are digitally set to any point in the temperature range and digital circuitry compares the actual and selected temperatures. The output from each alarm is via a solid-state switch which is isolated from the signal input. Control and Readout Ltd, Burrell Buildings, Churchill Industrial Estate, Lancing, Sussex BN 15 8TZ.
WW310 for further details

Coil set

A set of coils for the Motorola MVAM1 varicap diode tuner is announced by Toko. They are medium-wave coils, and the set comprises aerial, r.f. oscillator, detector coils and ceramic filters for use with the $\mu \mathrm{A} 720 / \mathrm{CA} 3123 \mathrm{E}$ integrated circuit series. The set is designated the $6 \mathrm{a} / 3123$ and is obtainable from Ambit International, 37 High Street, Brentwood, Essex.
WW320 for further details

Thermostats

The 28030 series of bi-metal thermostats by Electrovac will switch 4 A at $25 \mathrm{~V}, 50 \mathrm{~Hz}$. It is said to be capable of 10^{5} switching operations and is obtainable with several lead arrangements. Body dimensions are 11 mm diameter $\times 7.5 \mathrm{~mm}$ and there is"a mounting lug. Joseph Electronics Ltd, Westminster House, 188-190 Stratford Road, Shirley, Solihull, West Midlands. WW321 for further details

WW314

WW316

Oscillator

Type TG200DMP is a sine/square-wave RC oscillator with a frequency range from 1 Hz to 1 MHz in 12 semi-decade ranges. The instrument incorporates a fine control calibrated from 0 to $+1 \%$, and an output voltage variable from $200 \mu \mathrm{~V}$ to 7 V r.m.s. Sine-wave distortion is less than 0.1% below 5 V output and between 10 Hz and 100 kHz . Square-wave rise time is less than 150 ns at all frequencies. Levell Electronics Ltd, Moxon Street, Barnet, Herts.
WW308 for further details

Ribbon cable

A new range of ribbon cables includes bonded and extruded types with solid or stranded copper conductors providing a choice of current ratings. The cables have a p.v.c. colour-coded insulation with an operating temperature range from -10 to $+70^{\circ} \mathrm{C}$. Belling \& Lee Ltd, Great Cambridge Road, Enfield, Middlesex.
WW317 for further details

Resistors

A range of resistors from 1Ω to $100 \mathrm{M} \Omega$ is available in a $\frac{1}{4} \mathrm{~W}$ package measuring only 0.25×0.09 in diameter. These miniature components have resistance variations of less than 2% in the temperature range -15 to $+85^{\circ} \mathrm{C}$ with a failure rate of less than $0.001 \% / 1000$ hrs. Jermyn Distribution, Sevenoaks, Kent.
WW319 for further details

Power supplies

Marconi Instruments has introduced a new range of general-purpose d.c. power supplies comprising the TF2153/154/155. These supplies provide a choice of voltages
up to 60 V and currents up to 4 A , with a maximum power of 30 W . Push-buttons alongside the panel-meter select monitoring of output voltage or current, with two sensitivities for each mode. Marconi Instruments Ltd, Longacres, St Albans, Herts.
WW311 for further details

200-way switch

A new switch from Sakae can be supplied for switching $30,50,100$ or 200 ways; the switches can also be ganged. The contacts are arranged on a helical mounting strip, the wiping contact traversing the switch contacts in $3,5,10$ or 20 complete rotations respectively. The indexing mechanism for the switch is contained in a multi-turn dial, giving an accuracy of switching to within $\pm 2^{\circ}$. Techni Measure Dell House, Eastern Dene, Hazlemere, High Wycombe, Bucks HP15 7BT.
WW313 for further details

Coaxial attenuators

The Elcom Systems AT-50 series of calibrated 50Ω fixed attenuators can be used from 0 to 1500 MHz . The devices are rated at 0.5 W c.w. or 1000 W peak power in the temperature range -25 to $+85^{\circ} \mathrm{C}$ and are available as separate components or in sets with values of 1 to 10 dB in 1 dB steps and 10 to 20 dB in 2 dB steps. Aspen Electronics Ltd, 18a High Street, Northwood, Middlesex HA6 1BN.
WW312 for further details

Decade resistance box

The DB5R decade resistance box uses thumbwheel switching to select resistances from 10Ω to $1 \mathrm{M} \Omega$ in five decades. The unit is housed in a plastic box with two
sockets for the output. A chart for selecting resistor values is also available from the manufacturers. H \& W Logitek Electronics Ltd, 13 Carron Place, Kelvin Industrial Estate, East Kilbride.
WW307 for further details

Capacitance meter

A direct-reading capacitance meter with dimensions of $150 \times 85 \times 40 \mathrm{~mm}$ will measure capacitances up to $0.5 \mu \mathrm{~F}$ in five switched ranges. The meter is powered from two 9 V batteries and incorporates a battery-check facility. Chinaglia (UK) Ltd, 19 Mulberry Walk, London SW3.
WW304 for further details

Multimeter

The model 2000 Danameter is one of the few instruments to use a liquid crystal display which, because of the very low power consumption, gives a claimed battery life of one year. The meter will measure direct and alternating voltages up to 1000 V with a resolution of 1 mV , direct current up to 2 A with a resolution of $0.01 \mu \mathrm{~A}$, and ohms up to $200 \mathrm{M} \Omega$ with a resolution of 0.1Ω. Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW303 for further details

Digital to d.c. converter

The model 1501 converts a 14-bit digital input into two d.c. output voltages which are proportional to the sine and cosine of the input phase angle from 0° to 360°. Specifications of the instrument are an accuracy to within $\pm 5 \%$ at $25^{\circ} \mathrm{C}$, and individual outputs accurate to within $\pm 0.1 \%$ f.s.d. at $25^{\circ} \mathrm{C}$.

The input is buffered and includes a storage register that holds each data bit. A positive pulse, t.t.l. level, $2 \mu \mathrm{~s}$ in width

WW317
controls the transfer of data into the input register. The output voltages vary from 0 to $\pm 10 \mathrm{~V}$ d.c. with an output impedance of 1Ω for each source. REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.
WW302 for further details

Level recorder

B \& K Laboratories has announced a portable graphic level-recorder weighing only $7 \frac{3}{4} \mathrm{lb}$. The instrument, type 2306, provides three recording modeslogarithmic a.c. and d.c. in two dynamic ranges, and linear d.c. with variable zero calibration. In the a.c. mode, r.m.s. values of waveforms in the frequency range 1 Hz to 20 kHz are recorded with an accuracy to within $\pm 0.5 \mathrm{~dB}$. In the d.c. modes, sinusoidal signals up to 1.6 Hz may be recorded. B \& K Laboratories, Cross Lances Road, Hounslow, Middx.
WW309 for further details

Mixing desks

Cambridge Electronic Workshop has developed a new range of portable, stereophonic sound-mixing desks for theatre use. Features of the equipment are continuously variable presence-frequency and gain, separate mic. and line inputs and two auxiliary sends with pre/post switching on all ten channels. Other useful items on the desk are cue lights, intercom system, monitoring facilities and loudspeaker switching. The desks, which have 0.1% distortion and input noise better than -126.5 dBm , measure 24 in square \times 1 lin high for the standard version with special requirements on request. Cambridge Electronic Workshop, 8 Perowne Street, Cambridge.
WW306 for further details

p.c.b. assembly frame

The DURO-04 p.c.b. assembly frame will accept boards from $1.5 \times 1.5 \mathrm{~cm}$ up to $30 \times 42 \mathrm{~cm}$. The boards can be located in any position on the frame where they are held in position by special clips. After the components have been inserted they are held in place by closing the lid, which is lined with a foam material. The frame is then turned over to expose the underside of the p.c.bs for soldering. Circuitape Ltd, New Street, Aylesbury, Bucks.
WW305 for further details

Digital i.c. tester

Electro Scientific Industries has introduced an i.c. tester suitable for evaluating t.t.l., d.t.l. and c.m.o.s. logic in d.i.l. packages. The tester, model 1248, does not require a reference i.c. because each device is separately switch-programmed. Tranchant Electronics UK Ltd, Tranchant House, 100a High Street, Hampton, Middlesex TW12 2ST.
WW301 for further details

WW309

WW306

WW305

Microwave detector

A hand-held r.f. monitor has been designed to measure leakage fields emanating from microwave ovens. Operating frequency is $2450 \mathrm{MHz} \pm 25 \mathrm{MHz}$ and the indicated power range is from 0 to $10 \mathrm{~mW} / \mathrm{cm}^{2}$. R. E. L. Equipment Ltd, Croft House, Bancroft, Hitchin, Herts.
WW327 for further details

Modular benching

Modular benching from Modulux is based on standard bench modules with a variety of ancillary equipment including drawers, databoards and trunking. Metal parts of the systems are stove-enamelled and the bench tops are covered in either a laminate or a non-slip material. Modulux, St. Michael's Road, Aldershot, Hants GU12 4JW.
WW326 for further details

Boxes

Boplast polycarbonate boxes are built to VDE standards, will withstand temperatures up to $140^{\circ} \mathrm{C}$, and are water/oil/petrol resistant. The range contains 28 sizes from $35 \times 52 \times 5 \mathrm{~mm}$ rising to $36 \times 20 \times 15 \mathrm{~cm}$ with two sizes available with clear covers. Prices vary from 75 p to $£ 9$ depending on size and quantity. West Hyde Developments Ltd, Ryefield Crescent, Northwood. Middx HA6 1NN.
WW325 for further details

Miniature coaxial cables

Miniature coaxial cables, suitable for applications up to 3 GHz , feature a silverplated copper conductor, p.t.f.e. dielectric, silver-plated copper screen and an outer sleeve, allowing operation in the -90 to $+200^{\circ} \mathrm{C}$ temperature range. Type 50 VMTX is a 50Ω cable with a diameter of 1.17 mm and type 75 VMTX is a 75Ω cable of 1.22 mm in diameter, Waycom Ltd, Wokingham Road, Bracknell, Berks RG12 1ND.
WW328 for further details

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Stripline mixer diodes

Models 5082-2207/10 are passivated silicon Schottky diodes in the beam-lead configuration, intended as mixers for microwave i.cs, microstrip or stripline
application. Lowest noise figure (50822207) is 6 dB at. 9 GHz , with a v.s.w.r. of 1.5:1. Matched pairs are available.

WW350 for further details HewlettPackard

Bipolar RAMS

256-bit bipolar random-access memories in low-power Schottky format. Access time is 45 ns over the temperature range $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and device dissipation is 275 mW . Both models-Am27LS00/1-are organised as 256 words by 1 bit with either tristate ('00) or open outputs.
WW351 for further details
Advanced
Micro Devices

Calculator chip

A m.o.s. calculator i.c., C596 intended for eight-digit "slide-rule" calculators, offers the four arithmetic functions, trigonometric (in degrees or radians) and \log functions. There is also provision for \sqrt{x} and $1 / x$ and a key for π. The chip can be used either in dual-function key calculators or in 35-key single-function units. Floating point or scientific operation can be used, overflow causing the automatic change to scientific notation of mantissa and exponent. The new i.c. has the same pin connexions and voltage levels as the C594 and C595, which means that fourfunction calculators can be uprated very easily.
WW352 for further details
GIM

Peripheral interface

MC6820 is a peripheral interface adaptor for use between input/output equipment and the Motorola microprocessor and contains six registers with a control and selection logic section. Control lines between the microprocessor and p.i.a. give the former control of the latter, although the p.i.a. can interrupt to allow a peripheral unit access.
WW353 for further details Motorola

Power transistors

A range of TO-3 metal power transistors from Thomson-CSF, using the n-p-n triple-diffusion technique. Types are BUX 10 to BUX15, rated at 150 W at between $125 \mathrm{~V} V_{\text {ces }}$ at 25 A and $500 \mathrm{~V} V_{\text {ceo }}$ at 8 A . BUX20 to BUX25 are 250 W devices for up to $500 \mathrm{~V} V_{\text {ceo }}$ at 15 A .
WW354 for further details
Lock

Si rectifiers

Three families of power diodes. The BYX98 family possess a non-rep. surge rating of 60 A and rep. p.r.v. from 300 V to 1200 V . BYX 99 are rated similarly at 160 A and up to 1200 V , and BYX96 are 20 A types at up to 1600 V . All types are in DO-4 encapsulations and reverse polarity versions are available.
WW356 for further details
Mullard

A/d converter

MN 5210 is a family of 12 -bit analogue-to-digital converters with a maximum conversion time of $12 \mu \mathrm{~s}$. Power dissipation is 700 mW from $15-0-15 \mathrm{~V}$ and 5 V rails, and input ranges are 0 to -10 V , $\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ with internal or higherprecision external references. Accuracy of $\pm \frac{1}{2}$ least significant bit is offered over commercial or military temperature ranges. WW355 for further details Tranchant

Thyristor

The CS651 thyristor possess a built-in, auxiliary thyristor which is switched on by a small pulse. When the forward current of this device reaches a high value it is applied to the main thyristor gate. This feature is claimed to provide a $75 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{d} i / \mathrm{d} t$ rating. The unit is in disc form and withstands repetitive p.r.v. of 2.4 kV , continuous limiting current of 650 A and a surge current of 14000 A .
WW357 for further details Brown Boveri

Timer

A product of the Ferranti collector diffusion isolation technique for the provision of digital and linear elements on one chip. A variable-frequency RC oscillator drives a divided-by-4096 counter, the frequency being externally adjustable, and the timed period is $4096 C R$, where C and R are external components.
WW358 for further details
Ferranti

Yellow l.e.ds

Siemens have added yellow-light devices to their range of light-emitting diodes. Types LD35 (3mm) and LD55 (5 mm) are gallium phosphide units, and LD48 contains up to 10 characters per row.
WW359 for further details Siemens

Hewlett-Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks RGll 5AR. Advanced Micro Devices Inc., 901 Thompson Place, Sunnyvale, California 94086, USA.
General Instrument Microelectronics Ltd, 57-61 Mortimer Street, London W 1N 7TD. Motorola Ltd, York House, Empire Way, Wembley, Middlesex.
Lock Distribution, Neville Street, Middleton Road, Oldham, Lancs OL9 6LF.
Tranchant Electronics (UK) Ltd, Tranchant House, 100a High Street, Hampton, Middx. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
-British Brown-Boveri Lid, Albany House, 41 High Street, Brentford, Middx TW8 0BH.
Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham OL9 8NP.
Siemens Ltd, Great West House, Great West Road, Brentford, Middx.

SIEMENS

You'll find the best ideas 10 minutes from Olympia.

- The Siemens approach to Professional Electronic Components.
- Quality Assurance, Standards and Specification harmonisation.
- Memory I.C.'s. Review of Research, Development and current production.
- Modern techniques in Capacitor manufacture and the advantages to the user.
- Analogue I.C.'s for the Industrial user.
- Why Surge Voltage Protectors? A review of the technology and their application.
- Electro-mechanical components for the Electronics Industry.
- Low Speed High Noise Immunity Logic (LSL) : A logic system for industrial applications.

Being a company vitally involved with the future of electronic components, Siemens personnef include leading experts in many areas of our profession. So we've arranged a daily symposium on these 8 subjects.

The Siemens Symposia 1975 will be held at the Kensington Close Hotel, off Kensington High Street, W.8. from Tuesday, May 13th to Friday, May 16 th, between 1.30 pm and 5.30 pm daily.

As space is restricted, please complete the coupon below and return it to us as quickly as possible. We will be delighted to send you a special invitation. Do join us for an interesting and valuable experience.

At the Siemens Symposia 1975 (RECMF Week)

SUPERSONTC SAME DATK-SERTIEE-MEANS QUHITV COWPDVENTS-FARYT

* TRANSFORMERS

$\begin{array}{ll}200 \mathrm{~mW} & \mathbf{5 0 p} \\ \text { Sub-min mains } 6-0-6 \mathrm{~V} 100 \mathrm{~mA} & \mathbf{9 5 p}\end{array}$ $12-0-12 \mathrm{~V} 50 \mathrm{~mA}$
(Size both aporox $30 \times 27 \times 25 \mathrm{~mm})$
 Mains M-24V 125 mA . $0-24 \mathrm{~V} 125 \mathrm{~mA} \mathrm{fi} .55$

(TO99) or 14 -pin DIL $\quad 75 p$ cation circuits and data for all

- organ CONSTRUCTION

A your own Specification
FULL CONSTRUCTIONAL DETAILS in our leaflets
Leaflet MES 51: price
15p. describes a fully 15p. describes a fully
polyphonic basic organ which can later be used as the basis of a large Leaflet MES 52: price
 5pp continues the descrip tion of the MES 50 series organs and shows you how to add a second keyboard with lots
more stops. Further leaflets

(t) THE AMAZING DM02

A ready-built. tested and guaranteed digital master oscillator. Accurately generates the top 13 notes for your ofgan system and reduces the adjustment. New design gives selectable C to C output ranges of (approx.) 4 k to 8 k (thighest) or 2 k to 4 k or 1 k to 2 k . etc., right down to 16 Hz to 32 Hz ! And this new compatiole design is even
smaller: only $3.5 \mathrm{in} . \times 3.7 \mathrm{in}$., including gold-

plated edge connexion
 plated edge connexion DMO2T includes built-in
 frequency shift tremula

DMO2 £12.25 OMO2T £14.25
SAI $110: 7$-stage frequency divider in 14 pin
DIL package Sine or square wave input. Square DIL package Sine or square wave input. Square wave output may be converted to saw-
$\mathbf{f 1 . 8 0}$ each or 6 for $\mathbf{£ 9 . 9 4}$ or 12 for $\mathbf{£ 1 8 . 1 6}$.

- ORGAN

 COMPONENTS| 5.95 | |
| :---: | :---: |
| Sloping fromi 49 -note C to C | f15.83 |
| Stoping-front 61 -note C to C | ¢20.35 |
| Swell pedal with 10 klog pot | f6. 33 |
| *Spring line unit (short) | £3.05 |
| * Spring line unit (long) | ¢8.29 |
| *Reverberation driver module | £5.34 |
| *S.a.e. please. for full details: teaflet MES 24. | |
| Gold-clad phosphor-bronze wire | 30p per yd. |
| Paliadium earth bar 15p per octave length | |
| Contact blocks 2-make (GB2) | 22p |
| Stop tabs, rocker type. not engr | I white. red |
| grey or black) with DPDT switch | |

"ELECTRONICS TODAY INTERNATIONAL 4600 SYNTHESISER

enthesiser. This includes all the PCBs, metal work and drilled and printed front panel giving a truly professional finish. Authoritative opinions agree the EFI international Synthesiser is technically superior to most of todays models. availale shortly s.e please. for price lists and specification
We also stock all parts for the P.E. Synthesiser and Minisonic.

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101

VAT. Piease add 8% to the final total. Post and packing FREE in U.K. (15 p handling charge on orders under $£ 1$)
First-class post pre-paid envelope supplied free with every order

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD - ESSEX ROMFORD 44473

RM7 90D
E.H.T. POWERUNIT. $110 / 240 \mathrm{v}$. 50 Hz giving 5 Kv . a $50 \mathrm{~m} / \mathrm{g}$. METERED OUTPUT. £18.E0. P.P. £1.50.

COPPER LAMINATE P.C. BOARD

$8 \$ \times 6 \times$ it inch, 3 for 75p. P.P. 25p.
$10 \times 4 \times \frac{1}{\text { tinch, }} 5$ for 75p. P.P 25p
$104 \times 5+\frac{1}{6}$ inch, 3 for 75 p . P.P. 25 p .
Offcut pack (smallest 4×2 inch), 75 p. P.P. 25p.
(300 sq. inches).
PRECISION A.C. MILLIVOLTMETER (SOLARTRON) 1.5 mv . to 15 v, , 60 dB to 20 dB . 9 ranges. Excellent condition E24. P.P. £2.

OVERLOAD CUT-OUTS. Panel mounting ($1 \ddagger \times 1 \frac{1}{2} \times \frac{\mathrm{in} \text {.) , }}{\text { O }}$ $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} .-10 \mathrm{amp}$. 45p. P.P. 5 p.

ALL PRICES INCLUSIVE OF V.A.T.

QUADROPHONIC DECODER MODULE. C.B.S./S.O Type, using I.C. MC 1312P. With slight modification direc substitute for P.E. "RONDO" Board. Complete with Data. E4 each.
S.T.C. CRYSTAL FILTERS (10.7 Mhz).

445-LQU-901A (50 khz spacing), £3. P.P. 20p.
445 -LaU-901B (25 khz spacing), E4. P.P. 20 p
V.H.F./U.H.F. POWER TRANSISTORS (Tỹpe BLY38). 3 watt output at $100-500 \mathrm{Mhz}$, E2.25. P.P. 10 p .

HIGH CAPACITY ELECTROLYTICS

2,200uf.at 50 v . 5 E p. P.P. 15 p . 2,200uf. at 100 v . (1 \& $\times 4 \mathrm{in}$.) 90p. P.P. 30p. 3,150uf. at 40v. ($1 \neq 4 \mathrm{in}$.$) 80p. P.P 20 \mathrm{p}$. $10,000 \mu \mathrm{f}$, at 25 v . ($1 \ddagger \times 4 \mathrm{im}$.) 80p. P.P 20 p . $2,240 \mu \mathrm{ft}$ 40 v . $(3 \ddagger \times 1$ in.) 75 p . P.P 25 p.
H.D. ALARM BELLS. 6in. Dome, 6/8v. D.C. E2.75. P.P. 97p.

MULTICORE CABLE. 6-core (6 colouis) 14/0076 Screened P.V.C. 22p per yard; 100 yards at $\mathbf{£ 1 6 . 5 0}$. P.P. 2 p. a yard. 7 -core (7 colours) $7 / 22 \mathrm{~mm}$. Screened P.V.C. 22 p per yard ; 100 yards $£ 16.50$. P.P. $2 p$ per yard. 30-core (15 colours) 25p per yard; 100 yards $\mathbf{E 2 0}$. P.P. 2 p per yard.

RIBBON CABLE (8 colours). 10 m . £1.65. P.P 20p. 100 m .8 -core $7 / \mathrm{mm}$ Bonded side by side £11.50. P.P. E1.

TRANSFORMERS

ADVANCE TRANSFORMERS "VOLSTAT". Input 242v. A.C.
CV. 50 . 38v. at 1 amp; 25v. at $100 \mathrm{~m} / \mathrm{a} ; 75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$. E2.60. P.P. 65p.
CV.75. 25v. at $2 \frac{1}{1}$ amp. E3. P.P. 75 p.
CV.100. 50 v . at 2 amp .; 50 v . at $100 \mathrm{~m} / \mathrm{a}$. £3.75. P.P. 75p. C.V.250. 25 v . at $8 \mathrm{amp} ; 75 \mathrm{v}$. at $\frac{\mathrm{t}}{\mathrm{amp}} \mathrm{f6.50}$. P.P. £1.50.

h.t. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2.E0. P.P. 65p.
L.T. TRANSFORMER "TOROIDAL". Prim. 240v. Sec. 30 v . at $\ddagger \mathrm{amp}$. Size 3 in . dia. thick. £1.65. P.P 20 p
L.T. TRANSFORMER. Prim. 240v. Sec. 27-0-27 at
$800 \mathrm{~m} / \mathrm{a} .7 .5 \mathrm{amp}$ E2.25. P.P 50p.

LT. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$ 1 f.amp. (Shrouded) E1.95. P.P. 50 p .
L.T. TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded) £3. P.P. 50p.
L.T. TRANSFORMER (H.D.). Prim. 200/250v. Sec. 18v. at $27 \mathrm{amp} . ; 40 \mathrm{v}$, at $9.8 \mathrm{amp} . ; 40 \mathrm{v}$. at $3.6 \mathrm{amp} . ; 52 \mathrm{v}$. at $1 \mathrm{amp} ; 25 \mathrm{v}$. at 3.7 amp . £17.50. P.P. £2.50.
L.T. TRANSFORMER. Prim. 240v. Sec. 16-0-16v. at 2 amp. £2. P.P. 50p.
L.T. TRANSFORNER. Prim. 110/240v. Sec. 23-0-23v. at $1.8 \mathrm{amp} . ; 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a} . ; 3.15-0-3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$.
we regret that all orders value under ES MUST BE ACCOMPANIED BY THE REMITTANCE.

HIGH - SPEED MAGNETIC
COUNTERS. 4 digit (non reset)
24 v or 48 v . (state which), $4 \times 1 \times$
5 digit (non reset) 24 v . £1.15. P.P. 15 p .
3 digit 12v. (Rotary Reset) $2 \frac{1}{4} \times 1 \frac{3}{3} \times 1 \frac{1 i n}{2} \mathrm{in}, \mathbf{E 1}, 30$. P.P. $15 p$ 6 digit (Reset) 240 v . A.C. £3.EO. P.P. 25p

RELAYS. SIEMANS/VARLEY. PLUG-IN. Complete with ransparent dust cover and base. 2 pole c/o. 45p; 6 -make contact 50p; 4-pole c/o contact 60p each. P.P. 10p each. 6-1 2-24-48v. types in stock.

12v. 2 c/o 5 amp. H.D. RELAY, 68p. P.P. 15p
240v. A.C. RELAY (PLUG-IN TYPE). 3 c/o 10 amp contact with base. 88p. P.P. 25p.
Alter. 3.10 TURN POTENTIOMETERS (M.P.C.) 10 K ohm. 0.5% Lin. $38 \mathrm{~mm} \times 22 \mathrm{~mm} .14 \mathrm{~mm}$ Standard Spindio E2. P.P. 15p. (Dials E0p each.)
24v. A.C. RELAY (PLUG-IN). 3 pole c/o. 78p. P.P. 15 p. 2-pole change over. E5p. P.P. $15 p$.

BULK COMPONENTS OFFER. Resistors/Capacitors, 600 new components. E2.50. P.P. 35p. Trial order 100pcs. 60 p P.P. 20p.

REGULATED POWER SUPPLY. Input 110/240v., outpu 9v. D.C. $1 \ddagger$ amp., 12 v . D.C. $500 \mathrm{~m} / \mathrm{a}$. £4.75. P.P. 75 p .

MINIATURE "'ELAPSED TIME" INDICATORS. (0 5000 hours), $45 \times 8 \mathrm{~mm} .75 \mathrm{p}$.

POWER UNIT (TRANSFORMER/RECTIFIER). Prim $240 \mathrm{v} .$, output 17 fv . (unsmoothed) at 1 amp . 1.85 . P.P. 45p L.T. TRANSFORMER ("C'" CORE). Prim. 110/240v Sec. $1 / 3 / 9 / 27 v$. at 10 amps. $£ 7.50$. P.P. $£ 1.50$
L.T. TRANSFORMER ("C" CORE). Prim. 200/240v Sec. $1-3-8-9 \mathrm{v}$. All at 1.5 amp .; 50 v . at 1 amp. $£ 2.50$. P.P.50p L.T. TRANSFORMER. Prim. 110/240v. ("C" CORE) Soc. 13.5 v . at 4 amp . ; 39v. at 2 amp. £3. P.P. 50p.
L.T. TRANSFORMER ("C"' CORE). 110/240v. 1/3/9/20 20v. at 4 amp . £5.50. P.P 75 p .
L.T.TRANSFORMER ("C" CORE). 110/240v. Sec. 1-3-9v All at $10 \mathrm{amps}: 35 \mathrm{v}$. at $1 \mathrm{amp} . ; 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$. $\mathbf{£ 6 . 5 0}$ All at 10
P.P. 75 p.

SELF-CUE BROADCAST CARTRIDGE MACHINE

ACCEPTS CARTRIDGE SIZE A, B, C $30 \mathrm{~Hz}-16 \mathrm{KHz} \pm 1 \mathrm{~dB}$ S/N—70dB RESONANCE

123 WINDMILL ROAD BRENTFORD MIDDX

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the bes pre-amp kit currently available. Consider the advantages:-*First quality fibreglass printed circuits with roller tinned finish and all component locations printed on reverse
*Low noise carbon film and metal film resistors throughout. *Finest quality low-noise *Low noise carbon film and metal firm resistors throughout. *Finest quality low-noise ganged controts with matched tracks and shathis cut arrangements to eliminate hum loops *Controls. switches and input sockets mount directly on the boards to TOTALLY ELIMINATE wiring to these components. (We know of one pre-amp kit which claims its
controls mount directly on the board-and so they do, by their shatt bushesl You still have controls mount dir
to wire them up!!
$*$ We incorporate the Quilter modification which is most important as it reduces distortion
and increases the bass and treble control range.
As can be seen from the photograph the tone control unit is very slim tonly $1 \frac{1^{\prime \prime}}{\prime \prime}$ from front to back) and may therefore be used in many other applications than our Bailey METALWORK AND WOODEN CASES These have been under review for some time please send for latest information
F.M. TUNER This latest addition to our range is designed to offer the best possible performance allied to the ease of operation given by push button varicap tuning. We
have taken great care to look after the consiructors point of view and there are no have taken graat care to look atter the constructors point of view and there are no
coils to wind, no RF circuits to wire and no alignment is required. in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors. one ic and two ready buitt and aligned modules comprising the active components. We have abontal size of only $1 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in}$. It can be mounted on the side of our Bailey amplifier frontal size of only $\frac{1}{2}$ in. $\times 4 \mathrm{in}$. It can be mounted on the side of our Bailey ampinial
metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ Cost of tuner chassis (no case) is $£ 22$ for mono. $£ 25.45$ for stereo. Metal case $£ 3.55$ An extended wooden case to fit tuner and amplifier will be offered shorty. STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any sultable quality deck into a very high quality Stareo Tape unit. Input and output levels suit Bailey pre amp. Total cost varies but around $£ 35$ is all you need. We can offer tape heads as well if you want new ones.
All above kits have fibreglass PCB's. Prices exc
FURTHER INFORMATION ON ALL KITS FREE if you sond us a 9 in . $\times 4 \mathrm{in}$. S.A.E. REPRINTS Post free, no VAT
Bailey 30W 18p.
STUART TARERECORDER All 3 articles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits, layouts and assembly notes $\mathbf{1 5 p}$. All prices exclude VAT
Penylan Mill, Oswestry, Salop

NOVEL STEREO FM TUNER

In the April and May 1974 issues of Wireless World there was published by J. Skingley and N. C. Thampson a novel design for an f.m. tuner which combines consistent high performance with the elimination of the critical setting-up procedure required by too many earlier tuners. The front and is a ready reqult pre aligned modur which then feods an amplifier driven built pre-aligned modulo whill screened three section ceramic filter leading to an integrated circuit five-stage limiting amplifier providing excellent a.m. rejection. This is followed by a single coil integrated balanced demodulator from which the audio output may be taken. Temperature compensated varicap tuning allows stations to be selected either by a ten-turn tuning potentiometer or by a choice of six preset push-button controls. Each of the preset controls can be adjusted on the front panel with the settings being indicated by six LED lamps behind an acrylic silk screen printed facia panel insert. Additional circuitry includes temperature compensated AFC restricted to less than station spacing. inter-station muting a single-lamp LED tuning indicator and a linear scale frequency meter. The stereo decoder built on a mear cord is based on well-proven integrated circuit separate bon circuit phase-locked-loop to which has been added active filters to remove sub-carrier harmonics and 'birdies'. The power supply, to ensure station holding stability, uses an integrated circuit voltage regulator which is powered via a low-hum field specially designed TOROIDAL TRANSFORMER.
STYLED TO COMPLEMENT THE WORLD-WIDE ACCLAIMED LINSLEY-HOOD 75W AMPLIFIER

THE FM TUNER KIT YOU HAVE WAITED FOR!

for further information please write for FREE LIST
$* *$

DESIGNER APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage. positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs two equalized and two linear, each having independently equalized and two linear, each having independently has been made practical by highly compact PCBs and a has been made practical by highly co
specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75W/Channel Amplifier
Mk III Version (modifications as per Hi-fi News April 1974)

Full circuit description
in handbook
(pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS
Krractem £62.40 post free (U.K.)

Pack

```
Fibreglass printed-circuit board
    for power amp.
    Set of resistors, capacitors.preset
        for power amp.
        f semiconductors for power
        mp. (now using BDY56.
        BD529. BD530
Pair of 2 drilled. finned heat sinks
    for pre-amp.
        of low noise resistors, c
        pre-sets for pre-amp.
```



```
        ductors for pre-amp.
        Set of potentiometers fincluding
        mains switch)
Set of 4 push-button switches.
        rotary mode switch
        with magnetic complete
        with magnetic screer/housing primary
        33-0-33 V. 25-0-25 V.
```

Price 60.85 £1.70
. 66.50
60.80 £ 1.30
£2.40
£2.05
13.70
¢9. 15

```
Pack
    Fibreglass printed-circuit board
    for power supply
        r resistors. capacitors.
        ductors for power supply
        ductors for power suppl
        including DIN skts, mains
        oput skt. fuse holder. inter
        connecting cable, control
        connec
            4 Set of metalwork parts including
        silk screen printed fascia
        panel and all brackets. fixing
        l
        15 Handbook
            Teak cabinet
        Teak cabinet 
        are required for complet
        stereo system
        Tol
        cost of individualiy
```

V A T Please add 8\%* to all U.K. orders
(*or at current rate if changed)
U K ORDERS—Post free (mail order onlyl
SECURICOR DELIVERY: For Securicor delivery to mainland-add $£ 2$ + VAT per kit. OVERSEAS-Postage at cost +50 p special packing
Dept. WW05
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

QUALITY AMPLIFIER KITS by POWERTRAN
 WIRELESS WORLD AMPLIFIER DESIGNS
 Component packs for a choice of three outstanding amplifiers are stocked together with packs

for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
GOV REGULATED POWER SUPPIY
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets transistors
60.80
f 1.75
f4.70
£0. 85
£2.40
60.75
60.75
$£ 1.40$
f3.10

E 2.05
f4.95

Pk. 3R Rotary potentiometer set £ 1.60
Pk. 35 Slider potentiometer set (with knobs)
2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high-performance Wireless World published design.
TRRPPk. 1 Reply amplifier F/Glass PCB £0.90
TRRC Pk. 1 Record amp./meter drive cct F/Glass PCB
TROS Pk. 1 Bias/erase/stabilizer cct. F/Glass PCB
For details of component packs for this design please write for free list.

TOROIDALT20 +20
Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at excep tionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single $\mathrm{F} / \mathrm{Glass}$ PCB, features all the norma facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

Pack		Price
1	Set of all low noise resistors	¢0.95
2	Set of all small capacitors	f 1.50
3	Set of 4 power supply capacitors	f1.40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders. control knobs, etc.	£ 1.90
5	Set of slide and push-button switches	£ 1.20
6	Set of potentiometers and selector switch	£2.00
7	Set of all semiconductors	£7.25
8	Special Toroidal Transformer	¢4.95
9	Fibreglass PC Panel	E2.50
10	Complete chassis work. hardware and brackets	¢4.20
11	Preformed cable/leads	£0.40
12	Handbook	E0. 25
13	Teak Cabinet	¢2.75

post free (U.K.)
SPECIAL OFFER *

SLIDER POTENTIOMETER SALE!

Most values $1 \mathrm{~K}-1 \mathrm{M}$ lin/log available lly ally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined bandwidth. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER Pack
Pack
$\begin{aligned} & \text { Fibreglass PCB (accommo- } \\ & \text { dates all filters for one }\end{aligned}$ dates all filters for one channel)
2 Set of pre-sets, solid tantalum capacitors. 2% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER ANY OF O £2.6

READ/TEXAS 20wamp.
Pack
£ 1.05
2 Fibreglass PCB Set of resistors, capaci tors pre-sets (not including O / P coupling capacitors)
3 Sets of semiconductors
4.206 off each pack required for stereo
$4 \stackrel{\text { special heat sink as. }}{4}$ sembly for set of 3 amplifiers
5 Set of $3 \mathrm{O} / \mathrm{P}$ coupling capacitors
2 off packs 4,5 required for
stereo system

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70
 2.40 1 Fibreglass PCB Set of rectifiers, zener diode, capacitors, fuses. 3 Toroidal tran
f0.85
f1.00
MORE KITS ON PAGE 55
for further information please write for FREE LIST NOW!

SN72741P
SN72748P
E0.40
$\mathbf{E 0 . 4 0}$

Normal price	Sale Price
$35 p$	$25 p$
$55 p$	$35 p$
$15 p$	$10 p$

V.A.T. Please add 8\%*

to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS - Post free (mail order only)

SECURICOR DELIVERY-for this optional
OVERSEAS-Postage at cost +50 p special packing, handling

Dept. WW05
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER. HANTS SP10 3NN

Bargains in Semi-Gonductors, components, modules \&equipment.

Today's big value in transistors! offers ALL AT 50p EACH \star Tested and Guaranteed

Unmarked untested
PACKS ALL AT 50p EACH

 Four-pattern selector switch $3^{\prime \prime} \times 5 \frac{1}{4}{ }^{\prime \prime} \times 3$ Ready-built and tested

Is invaluable to industrial and home user alike. Improved circuitry assures reliability and still better accuracy. Very compact: self-contained. Robustly built. Widely used by TV rental and other engineers. With reinforced fibreglass case. instructions, but less batteries. (Three U2 type required.)

SUNDRY (P. \& P. add 35p)

MAINS TRANSFORMERS
A. 18 V 1 amp (suitable for SS. 103) B. 25 V 2 amp (suitable for SS. 110 C. 30 V 2 amp (suitable for SS. 140)
BRIDGE RECTIFIERS
$£ 1.50$ f2.00 BRIDGE RECTIFIERS $£ 3.25$

Type A $45 \mathrm{~V} / 1 \mathrm{~A} 27 \mathrm{p}$. B \& C $100 \mathrm{~V} / 2 \mathrm{~A}$

MAINS RELAYS

Ex-GPO Telephone Handsets, each

SS100 Active tone control Unit to provide Bass and Treble facilities (stereo). f1.60
SS101 Pre-amp for stereo ceramic cartridges. radio and tape. $\mathbf{£ 1 . 6 0}$
SS102 Pre-amp for low-output stereo magnetic cartridges. radio and tape. $£ 2.25$
SS103 Compact I.C. amp. 3 watts R.M.S. Single channel \quad Imonol. on P.C.B. size $3^{3} \times 2^{\prime \prime}$. Needs $6-22 V$ supply. $\quad \mathbf{f 1 . 7 5}$
SS103-3 Stereo version of above. (Two I.Cs.) £3.25

SS110 (monol. Two in stereog give first-cliass results. suitable for many domestic applications
SS140 ${ }^{\text {Beautifully designed. Will give up to } 40 \mathrm{w} \text { R.M.S. into }}$

FM Tuners

SS201 Front End Assembly. Ganged tuning with well engineered slow-motion geared drive in robust housing. A.F.C. facility. Requires 6-16V. Excellent sensitivity. $88-108 \mathrm{mHz}$.
SS202 I.F. Stage (with I.C.). Designed to use with SS201 uses
SS203 Stereo Decoder. Designed essentially for use with SS201
SS203 and SS202, this excellent decoder can also make a stereo tuner of almost any single channel FM tuner. Supplied ready aligned. A L.E.M. can easily be fitted.
SS300 POWER SUPPLY STABILISER. Add this to your unstabilised
SS300 supply to obtain a steady working voltage from 16 to 60 V for your audio system. Money saving and very reliable.
£5. 62

- ALL MODULES TESTED \& GUARANTEED
- FULLY DETAILED \& WELL PRINTED INSTRUCTIONS
- Postage-Add 20p for packing \& postage (UK) $+8 \%$ VAT to total value.

Plastic Power Transistors		
40 WATT SILICON	90 w	SILICON
	Trene.a	
40 P 12515 PNP 200	gop 115	

There's more in our latest catalogue: More bargains-better price-values. Send large S.A.E. (6p stamp please) for your free copy. COMPONENTS, EQUIPMENT, AND OF COURSE. SEMI-CONDUCTORS.
TERMS OF BUSINESS VAT Add 8% to total value of order including postage and packing charges. No VAT on overseas orders. POST \& PACKING Add 20p for UK orders. Minimum mail order acceptable--50p. Overseas orders, add $\mathrm{£1}$. Any difference will be credited or charged PRICES Subject to alteration without notice. AVAILABILITY All items available at time of going to press when every effort is made to ensure correctness of information

222224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF. TELEPHONE: SOUTHEND (0702) 46344.

NOW BUILO YOUR OWN

PUSH BUTTON CAR RADID
Easy to assemble construction kit comprising tully solddering is required．All connections are simple push fit type making for easy a ssembly． Fine tuning push button mechanism is fully built and
tested to mate with fested to mate with printed ciccuit board
RMS outpul Speciflcanion：（1）Output 4 watts
 eatage IF Module．Controls volume manual tuning and five
stat push buttons for station selection．illuminated tuning szale covering full．medium and long wave bands．
 and 4 ：deep appron
Speaker including baftle and fixing strip $£ 1.65+37 p . p \& p$ Car Aerial Recommended－－ully retractable $£ 1.37+32 \mathrm{~F}$ ．p \＆ p The Tourist I Kit For the experienced constructor． 12 this model．Same technical
specification as Toursis $T T$$\quad$ Price $\mathbf{£ 7 . 0 0}+90_{\text {p }}$ p p．

COMPIITE STEREO SYSTEM
System 1a．$£ 62.0040$ Watt Amplifier．Viscount III－R102
 mono／stereo，onfotf function and bass and treble filters．Plus headphone socket Specification：
20 watts per channel into 8 ohms（ 40 W peak）．Total distortion＠ $10 \mathrm{~W} @ 1 \mathrm{kHz} 0.1 \%$ Pul．Ifor ceramic cantridges） 150 mV into 3 Meg ．Pu． 2 （for magnetic cantidges： 4 mV e 1 kHz into 47 K ．equalised within ∓ 1 IOB R．I．A．A．Radio 150 mV into 220 K ．（Sensitivities given at full powerl．Tape out flacinies．headphone socket，power out 250 mW p channel．Tone controls and ither characteristics．Bass．+1208 to -1748 ＠ 60 Hz Bass fitter： $6 d B$ per oclave cut．Trebie controi：treble +12 dB to $-12 \mathrm{dBe}=15 \mathrm{kHz}$
 on all niputs．Size approx． $13 \frac{3}{4} \times 9 . \times 3 \frac{3}{1}$ ．

 Complete System with these speakers $\mathrm{f} 6200+\mathrm{f} 5.50 \mathrm{p} \& \mathrm{p}$
System 2．f82．00 Viscount III amplifier（As System 1a） Two Duo Type III matchad speakerrs－Endolosure size approx $27{ }^{\circ} \times 1{ }^{\prime \prime} \times 1$ Two Duo Type III matcherd speakers－Enclo sure size approx． $27^{\prime \prime} \times 13^{\prime \prime} \times 11{ }^{\prime \prime}$ Finished in teak simulate Drive units $13^{\prime \prime} \times 8^{8}$ bass driver．and iwo $3^{\prime \prime}$（approx）．Iweeters 20 watts R．M．S．． 8 ohms trequency range -20 Hz to 18.000 Hz
Complete System with these speakers $\mathrm{f} 82.00+f 6.50 \mathrm{p} \& \mathrm{p}$

PRICES：SYSTEM 1a PRICES：SYSTEM 2
Viscount III R102 Viscount III R102

 Garrard SP 25 with Mag．cartridge Garrard SP 25 with Mag．cantridge de luxe plinth de luxe plinth
and cover $\quad £ 21.00+£ 2.80 \mathrm{p} \& \mathrm{p}$ and cover $£ 21.00+£ 2.80 \mathrm{p} \& \mathrm{p}$
Total if purchased separately：tural： $\mathbf{£ 7 4 . 0 0}$ Total if purchased separately：total： $\mathbf{8 8 7 . 0 0}$
Available complete for only：Available complete for only

$\mathrm{f} 62.00+\mathrm{f} 5.50 \mathrm{p} \& \mathrm{p}$
$£ 82.00+\mathrm{f} 6.50 \mathrm{p} \& \mathrm{p}$

8 TRACK HOME CARTRIDGE PLAYER

Elegant self selector push button player for use with your
stereo system．Compatible with Viscount III system．Unisound stereo system．Compatible with Viscount III system．Uniso
module and the Stereo 21 ．Technical specification Mains modulie and the Stereo 21．Technical specification Mains
input， 240 V ．Dutput sensitivity 125 mV Comparable unit sold elsewhere at $\mathbf{f} 24.00$ approx． $\mathbf{f} \mathbf{1 2 . 9 5}+\mathbf{f} 1.45 \mathrm{p} \& \mathrm{p}$

DECCA STEREO AMPLIFIER CHASSIS

Specification： $4+4$ watts into 8 ohms．Input Sensitivity 4π into 47 K （for magnetic cartridges）．AC Mains only 240 V ． Controls－volume．bass．tueble，on／off
Chassis size $11^{\prime \prime} \times 5 \frac{1}{2} \times 3 \frac{1}{4}$＂approx．
$\mathbf{f 5 . 9 5 + E 1 p \& p . ~}$

Mail orders to Acton．Terms C．W．O．All enquiries stamped addressed envelop
Goods not despatched outside U．K． Leaflets available for all items listed thus＊ Send stamped addressed envelope．All items subject to availability．Prices correc at 1st April 1975 and subject to change without notice．
$\square \square \square$
21 A HIGH STREET．ACTON，LONDON W3 6NG 323 EDGWARE ROAD，LONDON W2
Personal Shoppers EDGWARE ROAD： 9 a．m．$-5.30 \mathrm{p} . \mathrm{m}$ ．Half day Thurs． ACTON：9．30a．m．-5 p．m．Closed all day Wed．

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:

[^4]| | $\begin{array}{r}1 / 99 \\ \\ \hline 0.15\end{array}$ | 100/499 | 500/1000 | | 1/99 | $100 / 499$ 60.537 | 500/1000 | | 1/99 | 100/499 | 500/1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 60.15 | C0. 125 | 60.10 | 7442 | 60.645 | 60.537 | 60.43 | 7494 | 60.495 | 60.412 | 60.33 |
| 7401 | 60.15 | C0.125 | $60 \cdot 10$ | 7443 | 61.275 | 61.062 | 60.85 | 7495 | 60.63 | 60.525 | 60.42 |
| 7402 | 60.15 | 60.125 | 60.10 | 7445 | 60.855 | 60.712 | 60.57 | 7496 | 60.72 | 60.60 | 60.48 |
| 7403 | 60.15 | C0.125 | C0.10 | 7446 | 61.05 | C0. 875 | 60.70 | 74104 | 60.315 | 60.262 | 60.21 |
| 7404 | 60.18 | 60.15 | 60.12 | 7446A | C1. 05 | 60.875 | 60.70 | 74105 | C0.315 | C0. 262 | C0.21 |
| 7405 | c0.18 | 60.15 | 60.12 | 7447 | C1. 05 | 60.875 | 60.70 | 74107 | 60.315 | 60.262 | 60.21 |
| 7406 | 60.375 | C0.312 | 60.25 | 7447A | 61.05 | 60.875 | 60.70 | 74121 | C0.315 | 60.262 | 60.21 |
| 7407 | C0. 375 | 60.312 | C0. 25 | 7448 | 60.855 | CO. 712 | 60.57 | 74122 | 60.45 | 60.375 | 60.30 |
| 7408 | E0. 15 | C0.125 | 60.10 | 7450 | C0. 15 | C0. 125 | 60.10 | 74123 | 60.63 | 60.525 | 60.42 |
| 7409 | £0. 15 | c0. 125 | 60.10 | 7451 | 60.15 | C0. 125 | 60.10 | 74141 | 60.75 | 60.625 | 60.50 |
| 7410 | £0.15 | CO. 125 | 60.10 | 7453 | 60.15 | C0. 125 | 60.10 | 74151 | 60.69 | 60.575 | 60.46 |
| 7412 | 60. 195 | 60.162 | C0.13 | 7454 | 60.15 | CO. 125 | 60.10 | 74153 | 60.69 | 60.575 | 60.46 |
| 7413 | 60.345 | 60. 287. | 60.23 | 7460 | 60.15 | C0. 125 | 60.10 | 74155 | 60.69 | 60.575 | 60.46 |
| 7416 | 60.345 | 60.287 | 60.23 | 7472 | 60.255 | 60.212 | 60.17 | 74156 | 60.69 | 60.575 | 60.46 |
| 7417 | 60.345 | ¢0.287 | 60.23 | 7473 | £0.315 | ¢0. 262 | 60.21 | 74160 | E1.005 | ¢0.837 | 60.67 |
| 7420 | 60.15 | C0. 125 | 60.10 | 7474 | 60.315 | 60.262 | 60.21 | 74161 | 61.005 | 60.837 | 60.67 |
| 7423 | C0. 27 | ¢0.225 | 60.18 | 7475 | 60.465 | 60.387 | 60.31 | 74162 | 61.005 | 60.837 | 60.67 |
| 7425 | C0. 27 | C0. 222 | 60.18 | 7476 | 60.315 | ¢0. 262 | 60.21 | 74163 | 61.005 | 60.837 | 60.67 |
| 7426 | 60.27 | 60.225 | 60.18 | 7480 | 60.435 | C0. 362 | 60.29 | 74166 | E1.425 | 61.187 | 60.95 |
| 7427 | 60. 27 | 60.225 | 60.18 | 7482 | C0. 75 | 60.625 | 60.50 | 74174 | E1.20 | 61.00 | 60.80 |
| 7430 | 60.15 | CO. 125 | 60.10 | 7483 | 60.825 | 60.687 | 60.55 | 74175 | 60.975 | 60.812 | 60.65 |
| 7432 | 60.25 | C0. 225 | 60.18 | 7485 | 61.275 | 61.062 | 60.85 | 74192 | 61.275 | 61.062 | 60.85 |
| 7437 | 60.27 | 60.225 | 60.18 | 7486 | 60.315 | 60.262 | 60.21 | 74193 | E1. 275 | 61.062 | 60.85 |
| 7438 | 60.27 | c0. 225 | 60.18 | 7490 | C0.465 | 60.387 | 60.31 | 74198 | C2.10 | 61.75 | C1.40 |
| 7440 | 60.15 | 60. 125 | C0.10 | 7492 | C0.465 | C0.387 | 60.31 | 74199 | C2.10 | 6.1 .75 | C1.40 |
| 7441 A | 10.825 | 60.687 | 60.55 | 7493 | C0.465 | C0. 387 | 60.31 | | | | |

To secure the above prices, all orders for these devices must exceed $£ 10$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-327 2339 NOW!!!

CL8300	MICROWAVE DEVICES Gunn effect oscillator	9.4 GHz	£40
CL8370	ditto	9.5 GHz	£10
CL8380	ditto	10.5 GHz	f10
CL8390	ditto	11.5 GHz	f10
C18430	ditio	9.35 GHz	£40
CL8450	ditto	9.35 GHz	£40
CL8470	ditto	9.35 GHz	£40
BXY27	Varacter Diode. "S' Band. Cut-off	70 GHz	£1
BXY28	Varacter Diode Cut-off	100 GHz	£1
BXY 32	Frequency Multiplier. " X " Band	150 GHz	¢1
BXY35A/C	ditto	25 GHz	f1
BXY36C/D	ditto	75 GHz	£1
BXY $37 \mathrm{C} / \mathrm{D}$	ditto	100 GHz	E1
BXY38C/E	ditto	120 GHz	£1
BXY39C/D	ditto	150 GHz	¢1
BXY40D/E	ditto	180 GHz	¢1
BXY41C/D/E	ditto	200 GHz	f1

12 VOLT FLUORESCENT LIGHTING

Inverter transformers $13 / 15 \mathrm{~W}$ (circuit included) Current econ 3 my " transistor (600 ma .)
Maximum liyht " transistor (1.3A)
Resistors/capacitors to suit
Lampholders (long lead) (needed with cases)
(short lead)

White enamel case 21 in (postage 30p)
Tube 21 in- 13 W
(Note: tube only supplied if case ordered, to prevent postal damag
$13 W$ fitting ready built and tested-including tube (postage 30p) $\mathbf{f 3 . 7 5}$ Post/packing, 25 p per order except where shown.

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner
Light sensitive aerosol spray
$\mathbf{£ 1 . 0 0}$ plus postage Developer and Etchant

Single-sided Copper-clad Fibreglass Board
Double-sided Copper-clad Fibreglass Board
Boards cut to any multiple of $6^{\prime \prime}$. Max. size $3^{\prime} \times 4$

75 pq st.
f1.00 sq. ft.

50p plus postage

70p 50p 50p

stock

Stock. We mave up packs of 2 Ib gross weight, all are different in content,
and contain a mixture of components from the above list. This is a fantastic. unrepeatable offer that will enable you to get a good stock of spares at a tiny fraction of normal price?
To make things even more interesting TWENTY OF THESE BAGS ALSO CONTAIN A POUND NOTE! TWENTY CUSTOMERS
VERY PLEASED INDEED!
And the price that we are asking? And the price that we are asking?
Only $£ 1.50$ including both postage and VAT!
Rush your order now! This offer is only made to reduce our surplus stock! It is unlikely that in these davs of rising prices we shall ever be able to repeat! Ceramic, Polyester and

* Controls,

Carbon, Wire

* Diodes, Silicon, Germanium

Zener
Transistors, Silicon, Ger manium
manium Al the above are new and unused

$1,000.000$

POTENTIOMETERS

We have bought a huge assortment of volume controls.

Pre-sets. sliders, etc. Alt are n manufacturer's original packing

Manufacturing quantities of some types available.

Write or phone for details.

Sample bag

HOBBY CORNER!

BRAN TUB !

* Resistor

Capacitors, Silver-mica, Paper,

- 100 RESISTORS 100 RESISTOR
100 CERAMIC
CAPITORS CAPACITORS
100 POLYSTYRENE CAPACITORS
50 MULLLARD POLYESTER POSTAGE 25P

20 ASSORTED UNUSED MARKED, TESTED TRANSISTORS BC108 ETC.
POSTAGE 25p \qquad PACK NO. 5

\qquad
100 RESISTORS 100 CAPACITORS
(ASSORTEDTYPES)

Marshall's

A. Marshall \& Son (London) Limited Dept. w w

42 Cricklewood Broadway London NW2 3HD Tel: $01-4520161$
\& 85 West Regent Streel Glasgow G2 2QD Tel: 041-332 4133
Everything you need is in our new 1975 catalogue. Available now price 25 p
Trade and export enquiries welcome
OUR RANGE COVERS OVER 7,000 ITEMS THE LARGEST SELECTION IN BRITAIN TOP 200 IC'S TLL, CMOS \& LINEARS

CA3018A	0.85	CD4043	1.80	NE565	4.48	SN7448	0.90	SN74157	0.95
CA3020A	1.80	CD4044	1.80	SL414	1.80	SN7450	0.16	SN74160	1.10
CA3028A	0.79	CD4045	2.65	SL610C	1.70	SN7451	0.16	SN74161	1.10
CA3035	1.37	CD4046	2.84	SL611C	1.70	SN7453	0.16	SN74162	1.10
CA3046	0.70	CD4047	1.65	SL612C	1.70	SN7454	0.16	SN74163	1.10
CA3048	2.11	CD4049	0.81	SL620C	2.60	SN7460	0.16	SN74164	2.01
CA3052	1.62	CD 4050	0.66	SL621C	2.60	SN7470	0.33	SN74165	2.01
CA3089E	1.96	LM301A	0.48	SL623C	4.59	SN7472	0.26	SN74167	4.10
CA30900	4.23	LM308	2.50	SL640C	3.10	SN7473	0.36	SN74174	1.25
CD4000	0.36	L005TL	1.50	SN7400	0.16	SN7474	0.36	SN74175	0.90
CD4001	0.36	LM380	1.10	SN7401	0.16	SN7475	0.50	SN74176	1.44
CD4002	0.36	LM381	2.20	SN7401AN	0.38	SN7476	0.35	SN74180	1.40
CD4006	1.58	LM702C	0.75	SN7402	0.16	SN7480	0.50	SN74181	1.95
CD4007	0.36	LM709	0.38	SN7403	0.16	SN7481	1.25	SN74190	2.30
CD4008	1.63	8DIL	0.45	SN7404	0.19	SN7482	0.75	SN74191	2.30
CD4009	1.18	14DIL	0.40	SN7405	0.19	SN7483	0.95	SN7492	1.15
CD4010	1.18	LM 710	0.47	SN7406	0.45	SN7484	0.95	SN74193	1.15
CD4011	0.36	LM723C	0.90	SN7407	0.45	SN7485	1.25	SN74196	1.60
CD4012	0.36	LM741C	0.40	SN7408	0.19	SN7486	0.32	SN74197	1.58
CD4013	0.66	80.L	0.40	SN7409	0.22	SN7490	0.45	SN74198	2.25
CD4014	1.72	14012	0.38	SN7410	0.16	SN7491	0.85	SN74199	2.25
CD4015	1.72	LM 747	1.05	SN7411	0.25	SN7492	0.45	SN76003N	2.92
CD4016	0.66	LM 748	0.60	SN7412	0.28	SN7493	0.45	SN76013N	1.95
CD4017	1.72	LM 14DIL	0.73	SN7413	0.35	SN7494	0.82	SN76023N	1.60
CD4018	2.55	LM3900	0.70	SN7416	0.35	SN7495	0.72	SN76033N	2.92
CD4019	0.86	LM 7805	2.00	SN7417	0.35	SN7496	0.75	TAA263	1.10
CD4020	1.91	LM7812	2.50	SN7420	0.16	SN74100	1.25	TAA300	1.80
CD4021	1.72	LM7815	2.50	SN7423	0.29	SN74107	0.36	taA350a	2.10
CD4022	1.66	LM7824	2.50	SN7425	0.29	SN74118	1.00	TAA550	0.60
CD4023	0.36	MC1303L	1.50	SN7427	0.29	SN74119	1.92	TAAG11C	2.18
CD4024	1.24	MC1310 ${ }^{\text {P }}$	2.59	SN7430	0.16	SN74121	0.37	TAA62 1	2.03
CD4025	0.32	MC1330P	0.90	SN7432	0.28	SN74122	0.50	taA661B	1.32
CD4027	0.43	MC1351P	0.80	SN7437	0.35	SN74123	0.60	TBA641B	2.25
CD4028	1.50	MC 1352P	0.80	SN7438	0.35	SN74141	0.85	tBa651	1.69
CD4029	3.50	MC1466L	3.50	SN7440	0.16	SN74145	0.90	tBa800	1.40
CD4030	0.87	MC1469R	2.75	SN7441AN	0.85	SN74150	1.50	tba8 10	1.40
CD4033	5.19	NE555V	0.70	SN7442	0.65	SN74151	0.85	tBA820	1.15
CD4037	1.93	NE556	1.30	SN7445	0.90	SN74153	0.85	tBA920	4.00
CD4041	1.86	NE560	4.48	SN7446	0.95	SN74154	1.50	DIL sockets	0.17
CD4042	1.38	NE561	4.48	SN7447	0.95	SN74155	1.50		

PW TELETENNIS KIT- $\mathbf{£ 4 2 . 5 0 ~ + ~ V A T ~ R e p r i n t ~ 7 5 p ~}$ TRY OUR GLASGOW SHOP

POPULAR SEMICONDUCTORS

2N696	0.22	2N3906	0.27	AF139	0.65	BD139	0.	MPSA56	0.31
2N697	0.16	2N4037	0.42	AF239	0.65	BD140	0.87	OC28	0.765
2N698	0.82	2N4036	0.67	AF240	0.90	BF115	0.36	OC35	0.60
2N699	0.59	2N4058	0.18	AF279	0.70	BF117	0.55	OC42	0.50
2N706	0.14	2N4062	0.15	AF280	0.79	BF154	0.20	0 C 45	0.32
2N708	0.17	2N4289	0.34	AL102	1.00	BF159	0.27	ItP29A	0.49
2N916	0.28	2N4920	1.10	BC107	0.14	8 F180	0.35	IIP29C	0.58
2N918	0.32	2N492	0.83	BC108	0.14	BFi81	0.36	TIP31A	0.62
2N1302	0.185	2 N 4923	1.00	BC109	0.14	BF184	0.30	TIP32A	0.7
2N1304	0.26	2N5245	0.47	BC147B	0.14	BF194	0.12	TIP33A	1.01
2N1306	0.31	2N5294	0.48	BC148B	0.15	BF195	0.12	tip34a	1.51
2N1308	0.47	2N5296	0.48	BC149B	0.15	BF196	0.13	tIP35A	2.90
2N1711	0.45	2N5457	0.49	BC157A	0.16	BF197	0.15	JIP36A	3.70
2N2102	0.60	2N 5458	0.46	BC158A	0.16	BF 198	0.18	TIP42A	0.90
2N2147	0.78	2N5459	0.49	BC167B	0.15	BF244	0.21	TIP2955	0.98
2N2148	0.94	2N6027	0.45	BC168B	0.15	BF257	0.47	T1P305	0.50
2N2218A	0.22	3N128	0.73	BC169B	0.15	BF258	0.53	TIS43	0.28
2N2219A	0.26	3N140	1.00	BC182	0.12	BF259	0.55	2TX300	0.13
2N2220	0.25	3N414	0.81	BC182L	0.12	BFS61	0.27	2TX301	0.13
2N2221	0.18	3N200	2.49	BC 183	0.12	BFS98	0.25	2TX500	0.15
2N2222	0.20	40361	0.40	BCIB3L	0.12	BFR39	0.24	2TX501	0.13
2N2369	0.20	40362	0.45	BC 184	0.13	BFR79	0.24	ZTX502	0.18
2N2646	0.55	40406	0.44	BC184L	0.13	BFX29	0.30	1 N 914	0.07
2N2904	0.22	40407	0.35	BC212A	0.16	BFX30	0.27	1 N3754	0.15
2N2905	0.25	4040B	0.50	BC212LA	0.16	BFX84	0.24	1N4007	0.10
2N2906	0.19	40409	0.52	BC213LA	0.15	8 FX85	0.30	1 N 4148	0.07
2N2907	0.22	40410	0.52	BC214LB	0.18	BFX88	0.25	1 N5404	0.22
2N2924	0.20	40411	2.00	BC237B	0.16	BFY50	0.225	in5408	0.30
2N2926G	0.12	40594	0.74	BC238C	0.15	$8 \mathrm{FY51}$	0.23	AA 19	0.08
2N3053	0.25	40595	0.84	BC239C	0.15	BFY52	0.205	BA102	0.25
2N3054	0.60	40636	1.10	BC257A	0.16	BRY39	0.48	BA 145	0.18
2N3055	0.75	40673	0.73	BC2588	0.16	ME0402	0.20	BA154	0.12
2N3391	0.28	AC 126	0.20	BC259B	0.17	ME0412	0.18	BA155	0.12
2N3392	0.15	AC127	0.20	BC301	0.34	ME4102	0.11	BB103B	0.23
2N3393	0.15	AC 128	0.20	BC307B	0.17	MJ480	0.95	881048	0.45
2N3440	0.59	AC151	0.27	BC308A	0.15	MJ481	1.20	BY126	0.12
2N3442	1.40	AC152	0.49	BC309C	0.20	MJ490	1.05	BY127	0.15
2N3638	0.15	AC153	0.35	BC327	0.23	MJ491	1.45	BYZ 11	0.51
2N3702	0.12	AC 176	0.30	BC328	0.22	MJ2955	1.00	$8 \mathrm{YZ12}$	0.51
2N3703	0.13	AC1B7K	0.35	BCY70	0.17	MJE340	0.48	OA47	0.06
2N3704	0.15	AC188K	0.40	BCY7 1	0.22	MJE370	0.65	OA81	0.18
2N3706	0.15	AD 143	0.68	BCY72	0.15	MJE371	0.75	OA90	0.06
2N3708	0.14	AD 161	0.50	BD121	1.00	MJE520	0.60	OA91	0.06
2N3714	1.38	AD162	0.50	BD 123	0.82	MJE512	0.70	WO21A2	0.32
2N3716	1.80	AF 106	0.40	BD124	0.67	MJE2955	1.20	BY164	0.57
2N3771	2.20	AF 109	0.40	BD131	0.40	MJE3055	0.75	ST2 diac	0.20
2N3773	2.65	AF 115	0.35	BD 132	0.50	MP8113	0.47	40669	1.00
2N3789	2.06	AF: 16	0.35	BD135	0.43	MPF102	0.39	TIC44	0.29
2N3819	0.37	AF117	0.35	BD136	0.47	MPSA05	0.25	C1060	0.65
2N3820	0.64	AF118	0.35	BD137	0.55	MPSA06	0.31	ORP12	0.60
2N3904	0.27	AF124	0.30	138	0.63	MPSA55	0.31		

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS
Pri $120 / 240 \mathrm{~V}$ Sec $120 / 240 \mathrm{~V}$ Centre Tapped \& Screened $\begin{array}{cc} & \\ \text { Ref. } & \text { VA } \\ \text { No. } & \text { (Watts) } \\ 07 & 20 \\ 149 & 60 \\ 150 & 100 \\ 151 & 200 \\ 152 & 250 \\ 153 & 350 \\ 154 & 500 \\ 155 & 750 \\ 456 & 1000 \\ 157 & 1500 \\ 158 & 2000 \\ 159 & 3000\end{array}$ $1.0 \times 7.0 \times 6.0$
$9.9 \times 7.7 \times 8.6$
$9.9 \times 8.9 \times 8.6$
$12.1 \times 9.3 \times 10.2$
$12.1 \times 11.8 \times 1.8$
$14.0 \times 10.8 \times 11.8$
$14.0 \times 13.4 \times 1.8$
$17.2 \times 14.0 \times 14$
$17.2 \times 16.6 \times 14.0$

$21.6 \times 13.4 \times 18.1$ | E |
| :---: |
| 2.80 |
| 4.37 |
| 4.89 |
| 8.13 |
| 8.83 |
| 11.88 |
| 13.65 |
| 28.51 |
| 2.15 |
| 3.23 | p

38
45
45
53
73
73
73
91
\vdots
\vdots
 Ref.
No.
113
644
64
66
67
84
933
95
73
 $£$
1.67
2.90
4.12
5.82
8.82
13.68
18.31
24
24.20
35.09

LOW VOLTAGE TRANSFORMERS

Flammias lut．
 WKODSOK，BERKS．

5056O WREVE RO

SLAT RED LED 0．3＂ DIGIT 0－9DP 89p ea
GFEEN\＆ELLOW \＆1．40 JUWBO LED 0．6＂ 747 DISPLAY £2． 25 ea．
$3015 F ~ 0-9 D P ~ £ 1 ~ e a . ~$ ZENON FLASH TUBE

LEDS 209 STYLE ONLY 13p ea TIL 209 WITH CLIP RED 15p ea TIL 211 \＆CLIP GREEN 29p ca LARGE 0．2＂\＆CLIP RED 17 p ea LARGE O．2＂CLIP GREEN 30p ea 2O9 STYLE OR $\cdot 2$＂ORANGE 29p ea
INFRA RED LED $£ 1.2 N 5777$ 33p，

TEC12 PHOTO AMP／SCMITT／RELAY
DRIVER or LED TTL INTERFACE 81 p

FLUORESCENT LIGHTS 12V MADE IN UK 8 WATT 13＂£3． 13 W 22＂£3．50

IC AY51224 4 DIGIT CLOCK MM5311／4 6 DIGIT CLOCK $£ 7$
CASSETTE mochanics
NEW 8tk CARTRIDGE MECHANISM £8 STEREO CASSETTE MECHANISM £ 13.7 Sultable for＇PW ASCOT＇recorder with heads etc． 9 AEND 15 p for DATA

INTEGRATED CIRCUITS

9 DIL14	Lu377
555 TIMER 54 p	LM380 2\％AF 47 p
$703 \mathrm{RF} / \mathrm{IF}$ 26p	Lи381 2xPre ¢2
709 T099 23p	LИ3900 4xOPA69p
709 DIL 14 23D	YC1303 £1．20
710 DIL 14 345	MC． 1306
723 Reg 54 p	HC13108LEDE 2，65
741 DIL 8 27p	WC1312 SQ £ 2.10
741 DIL 14 29p	पC1330 6\％p
741 T099 29p	MC1339 2xPre 11
7472×741 70p	UC1350
748 DIL 8 33p	N区536 fetopa $£ 2$
7805 5V ¢1．40	NF540 Driver ¢1
7812 \＆ 15 f 1.40	NR550 2vRef 79p
6013 6W AF £ 1	NK555 Timer 55p
38 SIG GEN ¢3	NE556 $2 \mathrm{x}^{\prime \prime}$ £ 1.20
CA3028 \＆1	NE560 PLL £3．15
3046	NE561 PLL £3． 15
Ca3048 $£ 2$	NR562 PLL £3，19
CA3052 i1．50	NK565 PLL £ 2， 69
Ca3054 11	3x72709 709
Lx300 2－20V \＆2	SN72741 74126
LN3D1 OPA 45p	SN72748 7483
1M304 0－40V 3	SN76660 IF
LY307 OPA 49p	SN76611 IFe 1.25
LM308 H1Bo 95p	
2．M309K 5V ¢ 1.48	TBA810 7WAF 99
M372 IF ¢1．80	ZN414 RX ¢ 1.09
SPECIAL OFFERS	
2N3055 FULL HIGH SPEC 115m 37p 741C 8PIN DIL 27p．MFC4000B 33p NE555 TIMER 55p．ZN414 RX £1．09	
BC109 9p．2N3819e 16p．BFY 51 15p	
T母田	
＋1／	7473／74／76
7400 GATES 13p	7475
7404 INVERT．17p	7490
7401／2／10etcl 4 p	7491／2／3／4
7413 SCMITT 31p	7410074175
7440 BUFFER 14p	74121
7447 DRIVER 89p	74123
470 \＆ 7472 29p	74141（\％7441

TRANSISTORS \＆DIODES

C127 \＆ 128 16p ACl 87
ADI 49 AD149 AD161
EC107
8 BC107
wC1 09 WC147／8 12C1477／8／9
FC157／8／9 BC167／8／9． BC177／8／ BC182／3／4A\＆E10p BC212／3／4A\＆L11p $\begin{array}{lll}\mathrm{BC} Y 70 / 1 / 2 & 17 \mathrm{p} \\ \text { TD } 131 & 8 & 132 \\ 39 \mathrm{p}\end{array}$ ID 131
AFRS1
BFR50/51

$$
\begin{aligned}
& \text { RFR50/51 } \\
& \text { RROSO }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { RFR } 50 / 51 & 23 \mathrm{p} \\
\text { BYRS8 } 250 \mathrm{~V} & 29 \mathrm{p}
\end{array}
$$

$$
\begin{array}{ll}
\text { BYRE8 } 250 \mathrm{~V} & 29 \mathrm{p} \\
\text { BFY } 50 / 1 / 2 & 15 \mathrm{p}
\end{array}
$$

$$
\begin{array}{ll}
\text { BFY 50/1/2 } & 15 p \\
\text { R } 8 \times 19 / 20 / 21 & 16 p
\end{array}
$$

$$
\begin{aligned}
& \text { NJE2955 } \\
& \text { KJE3055 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{WJ} \\
& \mathrm{MP}
\end{aligned}
$$

$$
\begin{aligned}
& M P 1 \\
& O A S \\
& 0 A S
\end{aligned}
$$

$$
\begin{array}{ll}
0 A 81 \& & 0 A 91 \\
\text { TIP } 29 & 8 \\
\hline
\end{array}
$$

TIP 31 \＆ 3269 p 2N3904／5／6T17p 15 p
FULL SELECTION IN OUR FPEE

NEW TRAMPUS FULL SPEC PAKS

PAK A 10 RED LEDS our cholce $£ 1$
 $\begin{array}{lllllll}\text { PAK } & 10 & \text { EC182 } & £ 1 . \mathrm{F} & 11 & 2 N 3704 & £ \\ \text { PAK } & 8 & \text { BFY } 51 & £ 1, H & 9 & 2 N 3819 e\end{array}$

SZY88 400 m ZENER DIODES 9 BRIDGE RECT
BR100 DIAC 25 p

HATCEING $16 p$ INS．BUSH SET1Op

Vero man Mmy COPPER CLAD VEROBOARD 0.1

 DIL IC＇s BOARDS 6×4＇$£ 1.50$ 24 way edge connector 60 p ， 36 way 90p．PLAIN 3\}"x17" £1,
FACE CUTTER 45p．FEC ETCH PAK 50

PRINTED CIRCUIT BOARD KIT $£ 1.69$ DECON NO MESS ETCH PAK NEW 69p
DECON DESOLDER BRAID REEL 59 p HEATSINKS
5F／TO5 \＆ $18 \mathrm{~F} / \mathrm{T} 0185 \mathrm{p}$ ea．TV4 15 p TV3／T03 16p．EXTRUDED 4＂ 4 Y1 29p TGS308 GAS DETECTOR £ 1.80 ea． LOGIC PROBE TTL TESTER PEN £5 CAPACITORS
CERAMIC 22pf to 0.1 up 50 v 5 p ELECTROLYTIC： $10 / 50 / 100$ uf in
$10 \mathrm{v} 5 \mathrm{p}, 25 \mathrm{v} 6 \mathrm{p} .50 \mathrm{v} 8 \mathrm{p} .2 \mathrm{uf} / 10 \mathrm{v} 5$ $10 \mathrm{v} 5 \mathrm{p}, 25 \mathrm{v}$ 6p．50v 8p．2uf／10v 5p
$1000 \mathrm{uf} / 25 \mathrm{v} 18 \mathrm{p} .200 / 500 \quad 25 \mathrm{v}$ 9p POTENTIOMETERS（POTS）AB or EGIN LIN or LOG ROTARY 13p．SWITCH 14 p KNOBS 7p．PRESETS 6PRESISTORS 1 1p SWITCHES：SPST 18p．DPDT 25p， Din plugs all 12p．Sockets 10p． ALI CASES AB5／AB7 50p．AB13 65p TRANSFORMERS 1 A 6v6v or $12 \mathrm{v12y}$
Only $\mathrm{f} 1,34.100 \mathrm{~mA}$ type CT 75 p ．
Only $£ 1,34.100 \mathrm{~mA}$ type CT 75 p ．
Dik sochets

LEX PROFILE

8，14．\＆ 16 PIN 13p
SOLUERCON STRIPS
SOLDERCON STRIPS

REDIFON TEL．EPRINTER RELAY UNIT NO，12：ZA－41196 and power
supply 200－250V a．c．Polarised relay type 3 SEITR． $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$ ．Two stabi－
lised valves CV 286．Centre Zero Meter $10-0-10$ ．Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times 8 \mathrm{in}$ ．New
condition．$£ 8.50$ ．Carr． 75 p ．
condition．$£ 8.50$ ．Carr． 75 p ．
SOLARTRON PULSE GENERATOR TYPE G1101－2：$£ 75.00$ each．Carr．
$£ 2.00$ ． ¢2．00．
TELEPRINTER TYPE 7B；Pageprinter 24V d．c．power supply，speed 50 bauds per min．second hand cond．（excellent order）no parts broken．$\$ 15$ each．Carriage
C3．INULATION TEST SET： $0-10 \mathrm{kV}$ negative，earth with amplifier provision for checking ionisation． $110 / 230 \mathrm{~V}$ a．c．input．S／hand good cond． $\mathcal{E} 30+f_{1} 1$ carr． BRIDGE MEGGER：250V．（Evershed Vignoles）series 2．$\{30$ each．Carr．$\{1$. BRIDGE MEGGER： $2,500 \mathrm{~V}$ ．，series 1 ． $\mathbf{z} 30$ each．Carr．fi．
CRYSTAL TEST SET TYPE 193：used for checking crystals in freq．range $3000-10,000 \mathrm{KHz}$ ．Mains 230 V 50 Hz ．Measures crystal current under oscillatory conditions and the equivalent resistance．Crystal freq．can be tested in conjunction with a freq．meter． 617.50 ．Carr．$£ 1.50$.
TYPE $174 / 1$ FREQUENCY SHIFT ADAPTOR（Northern Radio Co．）：Convert． mark and space frequencies from the output of one or two Receivers into d．c． pulses．Suitable to operate Teleprinters or similar devices．110／220V．Further details on request，s．a．e．$£ 55$ each．Carr．$£ 1.50$ ．
TELEGRAPH TERMINAL UNIT（A．T．E．）TYPE TFS3：Converts signals
from Receivers into d．c．pulses．Complete with monitor．$\& 75$ each．Carr．$f^{2} 2$ ． from Receivers into d．c．pulses．Complete with monitor．$£ 75$ each．Carr．$£ 2$ ．
FURZHILL SENSITIVE VALVE VOLTMETER V．200：Freq． $10 \mathrm{~Hz}-6 \mathrm{MHz}$ （can be used beyond 6 MHz ）．Probe in circuit voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges；full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$ ．Without probe $100 \mu \mathrm{~V}$－ 100 V in 6 decade ranges；full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$ ．Accuracy $\pm 5 \%$ ． $\ddagger 30$ each．Carr． 61.
NOISE FIGURE METER TYPE 113A（Magnetic AB，Sweden）：$£ 125$ each．
Carr．$£ 1$ ． Carr．$£ 1$ ．
PRECISION PHASE DETECTOR TYPE 205：Freq． $0.1-15 \mathrm{MHz}$ in 5 ranges． Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input．$\$ 55$ each．Carr．$£ 1$ ．
ROHDE \＆SCHWARZ HF MHLLIVOLTMETER： $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH， $1 \mathrm{mV}-1 \mathrm{~V}$ in 7 ranges， 220 V ．$£ 75$ each．Carr．$£ 2$ ．
ROHDE \＆SCHWARZ VHF WATTMETER TYPE NAK：with matching indicator， 30 ซatts， $200-470 \mathrm{MHz}$ ．$£^{25}$ each．Post 70 p ．
CT－38 ELECTRONIC MULTIMETER：A．C．／D．C．volts 1－10，000 A．C．／D．C． current $1 \mu \mathrm{~A}-25$ amps．$£ 30$ each．Carr．$£ 1.00$
PHILIIPS VALVE VOLTMETER TYPE GME014： $1-300 \mathrm{mV}$ in 6 ranges， $70-20 \mathrm{~dB}$, probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum．$£ 35$ each．Carr．£1．
TF－1345／2 DIGITAL FREQUENCY COUNTER：Range $10 \mathrm{KHz}-100 \mathrm{MHz}$ with extension units．Details on request，s．a．e．§100．Carr．fo 2.
UHF MICROWAVE MILITWATTMETER TYPE 14：Direct reading，can be used to measure power from 100 MHz upwards．F．S．D．on 4 in．scale meter 2.5 mW ．$£ 40$ each．Carr．$£ 1$ ．

MARCONI HF SPECTRUM ANALYSER OA．1094／3．Further details on request．$£ 250$ each．Carr．$£ 5$.
Q METER： $30 \mathrm{MHz}-200 \mathrm{MHz}$ ．555．Carr．fol．
ALL U．K．ORDERS SUBJECT TO 8\％VALUE ADDED TAX．THIS MUST BE ADDED TO THE TOTAL PRICE（including post or carriage）．

SIGNAL GENERATOR AIRMEC TYPE 701： $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges． 665．Carr．£ 1.50
TF－1278／1 TRAVELLING TUBE WAVE AMPLIFIER：\＆125．Cart．$£ 2$. BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk． $3: 2$ millivolts－2 volts， 6 ranges．$£ 30$ ．Carr．$£ 1$ ．
WAYNE KERR WAVEFORM ANALYSER A．321：Low scale 0－1200 c／s． High scale $1-20 \mathrm{Kc} / \mathrm{s}, 600$ ohms．Harmonic level is $0-55 \mathrm{~dB}$ in 12 steps． $\mathbf{8} 75$ ． Carr．$£ 1.50$ ．
SPECTRUM ANALYSER TYPE MW．69S（Decca）：Further details on request．\＆20
MARCONI DUAL TRACE UNIT TM－6456： $\mathfrak{f 3 0}$ ．Post 60p
SIGNAL GENERATOR TS－403B／U（or URM－61A）：（Hewlett Packard）． A portable，self－contained，general－purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing－wave ratios，antenna and transmission ine characteristics，conversion gain，etc．Both the output freq．and power are
indicated on direct－reading dials． $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$ ．Freq．－ $1800-4000 \mathrm{Mc} / \mathrm{s}$ indicated on direct－reading dials． $115 \mathrm{~F}, \mathrm{AC}$ ， $50 \mathrm{c} / \mathrm{s}$ ．Freq．－ $1800-4000 \mathrm{Mc} / \mathrm{s}$ ． secs．Timing－Undelayed or delayed from 3－300 microsecs from external or internal pulse．Output－ 1 milliwatt max．， 0 to -127 dB variable．Output Impede－ ance－ 500 ．Price： $\mathbf{£ 1 2 0}$ each $+£^{2}$ carr．
H．V．TRANSFORMER： $8000 / 8000$ ．Output 300 mA ．rms．Size： $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ 36 in .230 V input．$\$ 40$ ．Carr．£4．
TELEPHONE CABLE：（Twin） $1,300 \mathrm{ft}$ ．on metal reel． $\mathbf{\$ 7 . 5 0}$ per reel．Carr． f 1 FIRE－PROOF TELEPHONES：$\$ 25.00$ each，carr．$£ 1 \cdot 50$
TF． 2000 A．F．SIGNAL SOURCE：$\$ 175 \cdot 00$ ，carr．$£ 1 \cdot 00$ ．
POWER UNIT： $110 / 230$ volts a．c．input． 28 volts d．c．at 40 amps output．$£ 30 \cdot 00$
each，carr．$£ 3.00$ ． each，carr．©3．00．
SMOOTHING UNIT（for the above）： $\mathbf{£ 1 0 \cdot 0 0}$ each，carr．$£ 2 \cdot 00$ ．
X－BAND MODULATOR CALIBRATOR TYPE MC－4420－X：Mnfr．James cott．$\$ 125$ ea．，Carr．£1．
HP－766D DUAL DIRECTIONAL COUPLER： $940-1975 \mathrm{MHz}$ ．\＆ $\mathbf{7 5} \mathrm{ea}$ ， 75p post．
BACKWARD WAVE OSCILLATOR TYPE SE－215： 6.3 heater， 105 V Anode， 7.9 mA ．Mnfr．Watkins \＆Johnson． 885 ea．，Carr．£1．

TEKTRONIX TIME MARK GENERATOR TYPE 180－S1： $5,10,50 \mathrm{MHz}$ ．
f65．Cart．f2． ©65．Carr．f2．
TRANSISTOR ANALYSER TA 1001 （K．\＆N．Electronics Ltd．）：£95．Carr．£3． ABSORPTION FREQUENCY METER（Measurements Corporation） CHRONOTON MODEL．25E： $0.4-10$ seconds in seven ranges．\＆50．Carr．£1 AIRMEC MODULATION METER TYPE 409：AM or FM，3－600 MH゙Z． 655．Carr．£2．
LISTS OF EQUIPMENT AVAILABLE：MOTORS；TELEPRINTERS； AR88 SPARES；TEST EQUIPMENT ETC．Send $10 p$ for above lists． LONDON ONLY．

WW-156 FOR FURTHER DETAILS

ALL MAIL ORDER BY RETURN.G.OD.SERVICE WELCOME (

We are open from 9.30 a.m. -6.00 p.m. Monday-Saturday
All mail order and enquiries to 270 Acton Lane, Chiswick, London, W4 5DG. Tel : 01-994 6275

SEMICONDUCTORS

| $\star \star$ SPECIAL OFFERS $t \rightarrow$

LM309K SV I.C.:

p Price 1-45p. $100-$ esp. ea. 1,000 -50p. ea. $10,000-1$
p
p

 each + V.A.T. Carriage $£ 1.00$.
SIEMENS CONTRACTORS, Over $1,000 \mathrm{In}$
stock. All types. Phone or write for details. stock. All types. Phone or write for details. METAL OXIDE RESISTORS TRA/5// in TO3 VOLTAGE

stock. All values. 1-off price 3p each. Discount | stock. Antity. |
| :--- |
| on quas. | 10 TURN TRINPOTS by Bourns, Mec, L036 12 V 800 mA Painton, etc. All values in stock. 50 p each.

Discount on quantity. L037 15V 450mA ,
DIGITAL INTEGRATED CIRCUITS

 뭄 움 SN7443
SN744
SN744
SN744
SN744
SN745
SN745
SN4753
SN745
SN7460

Prices include P. \& P. and VAT.
Also available without panel and screws. Prices correct April 1975.
 thin materials-it drills interlock ing holes for instance. $\frac{1}{4}-2 \frac{1}{2}$ in $\frac{1}{8}$ steps or $6-36 \mathrm{~mm}$ shanks- $\mathrm{f}^{11} 66$. Both with $\frac{1}{2}$ and $36-60 \mathrm{~mm}$. $30.78^{\frac{1}{2}}-2 \frac{1}{2}$ and $36-60 \mathrm{~mm}$ E30.78. all prices include P. \& P. and 8% VAT.

Less for quantities. Prices
include steel panel with feet and screws, P. \& P. and 8% VAT.
5. ing holes for instance. $\mathbf{E 2} .12^{1 \frac{1}{4}} \quad$ starting from a $\frac{71^{\prime \prime}}{16}$ hole. cut£2.12 Ing clean like apunch and die. $1 \frac{1}{2}{ }^{\prime \prime} \mathbf{£ 2 . 4 7} \quad$ Ideal for notching clearances Prices correct April 1975. on flanges of cabinets or

Brightlife neons (illustrated are PC/A or C, PC/F, $\mathrm{PC} / \mathrm{E}, \mathrm{PC} / \mathrm{G}$ or I . PP/A or B, O and S) are brighter and give an average of 25.000 hrs . life. The $0.5^{\prime \prime}$ dia. are red are red amber or white. these have three cap shapes and all may be supplied for 115.240 V or the PP neons in 110.240 , and 440 V with $6^{\prime \prime}$ or $30^{\prime \prime}$ leads.

WEST HYDE (WI)

WEST HYDE DEVELOPMENTS Lid, Ryefield Cres., Northwood Hills, Northwood, Middx HA6 1 NM Tel: Northwood 24941/26732 WRITE OR 'PHONE fOR NEW fREE CATALOGUE Telex: 923231 WW-224 FOR FURTHER DETAILS

WW-215 FOR FURTHER DETAILS

Henryis Rado

LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT. LOW PRICES- MEAN LESS VAT.

You can build the Texan and Stereo FM Tuner TEXAN 20 + 20 WATT IC STEREO AMPLIFIER

Features fibre glass PC board. Gardeners low field
transformer. 6.1 Cs 10 transformer, 6-1Cs, 10 transistors plug diodes etc. Designed by Texas Instruments engineers for Henry's
and F.W. 1972 . Supplied with full chassis work dind and P.W. 1972. Supplied with full chassis work. detailed construction handbook and all necessary parts. Full input operated. Free teak sleeve with everykit 93100 (Cain. $\times 2 \frac{3}{4} \mathrm{in} . \times 6 \frac{5}{8} \mathrm{in}$. main HENELEC STEREO FM TUNER HENELEC STEREO FM TUNER

Features capacity diode tuning. led and tuning meter indicators, stabilized power supply-mains operated. High performance and sensitivity with unique station indication ecoder. Overall size in teak sleeve $8 \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$.
$\times 6 \frac{5}{6}$ in. Complete kit with teak sleeve $\mathbf{£ 2 1 . 0 0}$ (Carriage 50p). Built and tested $\mathbf{£ 2 4 . 9 5}$

NEW SPECIAL PURCHASE

AM/FM TUNER MODULES
Mullard type LP1179 and LP 1171
These two modules together form a high quality AM/FM luner covering the long, medium and VHF broadcast
bands. Requires only 16 resisiors and capacitors switch to complete.
Supplier with circuits and spec. data
L.P1179

Coverage $87-108 \mathrm{MHz}$
Bandwidth 300 K
Signal to noise at lit
LP1171
LP1171
AM Bandwidth 6.5
Sensitivity 1 ImV
Buitit-in AGC

suitable Ferrite aerial $\mathbf{£ 4} \mathbf{0}$

AMPLIFIERS WITH CONTROLS							
E1210	12 volt $2 \frac{1}{2}+2 \frac{1}{2}$ watts 8 onms			f8.25			
SAC14	Mains $15+15$ watis 8 ohms			f11.75			
SAC30				f14.95			
CAO38	9 volt $1 \frac{1}{3}+1 \frac{1}{4}$ watts 8 ohms			f6.95			
CA068	12 volt $3+$	3 wat	ts 8 ohms	f10.50			
MULLARD MODULES							
LP1157AM/Type LP1185 10.71.F. Unit LP1 186 10.7 F/M Tuner Gorler Perm. F/M Tuner				50			
				54.58			
				\$4.85			
				\$4.20			
FM AND AM TUNERS AND DECODERS							
FM5231 (tu 2) 6 -volt FM tuner				¢7.95			
				¢7.95			
SD4912 decoder for tu 3				¢7.95			
SP621 6-volt stereo FM tuner				¢14.80			
Sinclair FM tuner				f11.95			
Sinclair decoder for above				¢7.95			
				¢4.80			
				f13.95			
A1005M (s) decoder for above				¢7.50			
PREAMPLIFIERS							
Sinclair	Stereo 60 PreamplifierCART/TAPE/MIC INPUTS 9 votr			¢6.75			
E1300				[2.85			
E1310	Stereo 3-30mV mat cart 9 volt			¢4.75			
	Stereo 3mV tape head 9 volt			¢4.95			
3402				¢5.95			
EO25	Stereo 5-20mV Mag. cart. mains Mono $3-250 \mathrm{mV}$ Tape/cart/flat. 9 volt			¢1.95			
POWER SUPPLIES - Mains input (* chassis-rest cased)							
470C. $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$with adaptors			*P1081 45 volt 0.9A	57.80			
			P12 $4 \frac{1}{2} 12$ volt				
P500 9 volt 500 mA HC244R $3 / 6 / 7 \frac{1}{1 / 9}$ vol		13.20	$0.4{ }^{-1} 1 \mathrm{mp}$	£7.15			
			SE101A 3/6/8/12 vo				
* 400 mA stabilised		${ }^{65} 50$	1 amp stabilised	£12.75			
		£3.30	P1076 3/41/6/71/9/12				
*P15 28 volt $\frac{1}{2}$ amp *P1080 12 volt 1A		¢3.30	voit $\frac{1}{2} \mathrm{amp}$	£4.20			
		£4.70	SE800A 1-15 volt				
			$a-\frac{1}{2} A$ stabilised	£17.50			

SINCLAIR MODULES
AND KITS

TEST EOUIPMENT MULTIMETERS
(carr/packing 35p)

44324 20KDV with case U4311 Laboratory meter U4315 40 k , with case U4317 20KRU with case 4431320 KQV with
steel case U4317 20K $\mathrm{K} V$ with case U4341 33KRV plus transist U4323 20 K QV plus 1 KHz 465 KHz OSC with case THL33D (L33DX) 2 KQV
tobust
TP5SN 20KRV
(Case f2.00)
TPS 10 S 2 KDV
TW20s 20 kNV
TW50k 50 knV
 tester
New Ravelutionary
B80 M Mulititester

+ TE15 5 Grid live mete
$440 \mathrm{KHz}-28 \mathrm{MHz}$

$120 \mathrm{KHz-500mHz}$
$+\mathrm{TK22D}$ AF generator
20 Hz 200 KHz
$*$
- hm350

VAT 8\% EXTRA
ON ALL ITEMS
FREE:
SEND NOW FOR OUR NEW FREE LIST No. 36 FOR OUR COMPLETE RANGE OF OVER 10,000 SEMICONDUCTOR DEVICES AT NEW LOW PRICES

TRANSISTORS

AND INTEGRATED IC'S
 Cosmos " 4000 series" ICs from 25p each Linear Op-Amps from 40p each
Signotics Phase Lock ICs
RCA Linear ICs
TO3 Power Devices in PNP and NPN
$B C 107$ añ̀d " $B C$ range" from 12p
Range of "OC" types
Plastic Power Devices, Rectifiers, Zener Diodes up to 10 watts
Power Regulator ICs and many others DIL SOCKETS 8 PIN 14p 14 PIN $15 p$
16 PIN 17p $\quad 24$ PIN £1.15 28 PIN £1.25

NOMBREX TEST

EQUIPMENT
MODEL 35 STABILISED POWER SUPPLY
A Short-circuit proof power supply delivery
up to 30 v at 1 A . Built-in volts and ammeters. $£ 34.00$
MODEL 40 WIDE RANGE AUDIO SIGNAL GENERATOR
A high stability signal generator using the low distortion Wien bridge principle, $£ 34.00$ MODEL 41 RF SIGNAL GENERATOR
Covering 150 KHz to 220 MHz in eight ranges. Built-in AF mod. Output up to 50 mV .
MODEL 42 WIDE RANGE RF SIGNAL GENERATOR
Covering 150 KHz to 300 MHz in eight ranges. Highest range in harmonic. $£ 24.50$ MODEL 43 RC BRIDGE
Null indicating bridge for resistors and capacitors. Resistance range 10 R to 10 M $\pm 2 \%$ at Centre Scale. Capacity range $10 \mu \mathrm{~F}$ to 10 pF
£26.00

MODEL 44 INDUCTANCE BRIDGE

Measures $1 \mu \mathrm{H}$ to 100 H in four ranges $\pm 5 \%$ accuracy. 0 measurement from MO. $1-1.000+10 \%$. $£ 34.00$ 10 Hz to 100 KHz in four ranges. Input from 10 mV to 5 v $£ 36.00$
All models except Model 35 are internally
powered from 9v battery (extra). Carriage and packing all models 37p.

THE NEW VIDEO SPORT ELECTRONIC BALL GAME (FOOTBALL, TENNIS HOLE IN THE WALL) $£ 37.50$ inc. VAT 8. f1. 50 CARRIAGE/PACKING \& IN-
SURANCE. SURANCE.

NOW OPEN SUPERMARKET:COME AND BROWSE ROUND THE NEW COMPONENTS SUPERMARKET AT 404 EDGWARE ROAD. BARGAINS AT 404 EDGWARE ROAD
COMPONENTS, ETC. WATCH FOR
FURTHER DEVELOPMENTS!

EXTRA DISCOUNTS

Semi-conductors. Any one type or
mixed SN 74 Series IC' $12+$ EXTRA $10 \% 25+$ EXTRA $15 \% 100+$ EXTRA 20\%.

TRANSISTORS AND DIODES

FANS, CENTRIFUGAL BLOWERS \& MOTOR

$$
\begin{aligned}
& \text { Airmax Type M1/N3954 } \text { Al }^{\text {(3 }} \text { blades) Cast } \\
& \text { Aluminium alloy impetler \& casing (corres } \\
& \begin{array}{l}
1 \mathrm{ph} 50 \mathrm{C} 2900 \mathrm{rpm} \text { Class }{ }^{2} \mathrm{~A}^{2}{ }^{\frac{2}{2}} \text { insulation } \\
425 \mathrm{cfm} \text { free air weight } 9 \frac{1}{2} \mathrm{lbs} \text {. inc. p.p }
\end{array} \\
& \begin{array}{l}
425 \mathrm{~cm} \\
\mathrm{E} 23.00 .
\end{array} \\
& \text { Woods Aerofoil short casing type S. Ref }
\end{aligned}
$$

14 blades incl p.p. $\mathbf{E 1 4} 50$.

Service Electric Hi-Velocity Fans. suitable for Gas
combustion Systems. Steam exhausting. Pneumatrc combustion Systems, Steam exhausting. Pneumatic conveying, Cooling Electronic equipment. Air biast
for Oil burners. Secomak Model 365 (corresponds to 575) Airblast Fan. 440 v 3 ph 50 c 0.75 hp 2850 rpm .
continuous $160 \mathrm{ctm} 12 \mathrm{in} \mathrm{w.g}$.nett weight 441 b .
 price incl. carr. £45.00. Secomak model 350250 v
1 ph 50 c 0166 hq .2800 rom continuous 50 cm 2 in . w.g. net weight 34 ibs. price incl. carr. $E 30.00$.

Air Controls type VBL4 200/250 1 ph 50 c 110 cfm
free air weight 7 l lbs price incl. p.p. $\mathbf{£ 1 5 . 5 0 .}$ Type VBL5 $200 / 250 \mathrm{~N} 1 \mathrm{ph} 50 \mathrm{c} .172 \mathrm{cfm}$ free air
Weight $10+1 \mathrm{bs}$, price incl. p.p. $£ 19.50$. Weign 10 4 bs price incl.p.p. William Allday Aicosa rotary vane oil free Single Stage
Vacuum Pump Model HSPOB 8 HG. Rpm 1420.E.E. 3 phase induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. 380/440v. Class E ins. incl. carr. £28-00.
Alcosa blower FAD 3.8 cfm at 5 ps . Rpm 1420
Motor EE 3 ph 50 c thp 1400 rpm . incl. carr. E28.00.
Gast MFG. Vacuum pump 0522-P702-R26X. Motor $110 / 120 \mathrm{v}$ a.c. 1 ph 60 c 1725 pmm . Class E. 10cuft to
10 in Mercury in 2 mins maintains vacuum. 635 mm Mercury. Or as compressor 10 psi int. or 15 psi cont.
incl. carr. $\mathbf{~} 28.00$. incl. carr. $£ 28.00$.
3 phase 2 HP motor 60/50c. $1800 / 1500$ RPM, 208/220/440V

$$
\begin{aligned}
& \text { Cat. } 202639 \text { Potter Instruments flange mounting capstan motor. } \begin{array}{r}
\text { incl. Carriage } \\
\text { DC } 4 \text { amp }
\end{array} \text {. } 27.50 \text { inc. carr. } 110 \mathrm{v}
\end{aligned}
$$

Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash with order. Personal calters welcome. Open Mon.-Wed. $9.30-5.00$ Fri.-Sat.
$9.30-5.00$. Free Car Park adj. PRICES SHOWN ARE EXCLUsIVE OF VA.t.

W. \& B. MACFARLANE
 126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

P. F. RALFE
 10 CHAPEL ST. LONDON NW1. Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF80ID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ E225. MARCONI TFI44H 10kHz- 72 mHz P.O.A. ADVANCE SG63D. AM/FM $7.5-230 \mathrm{mHz}$ E125 HGN MS4U AM/FM $9.6-240 \mathrm{mHz}$. N.Dev.Fac.
ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG21 VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $\mathbf{E 2 5}$.

OSCILLOSCOPES

TEKTRONIX 661 Sampling scope with 4S1 \& 5T1A olug-in units. 3 GHz . $\mathbf{2 0 0}$.
TEKTRONIX 545 A with CA unit. DC- 30 mHz . Price only $\mathbf{E 2 9 5} .00$

TEKTRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in TEKTRONIX 535 DC-15 mHz with L type plug-in TEKTRONIX 545B DC- 30 mHz with 'CA' plug-in.
NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged

MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. $£ 105$.
MARCONI TF791D deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$
MARCONI 455E Wave Analyser $\mathbf{£ 1 2 0}$.
MARCONI TF2600 Valve Voltmeter 1 mV -300V. Excellent. $£ 75$
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$.
ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNI0913 (late type) $1 \mathrm{mV}-10 \mathrm{~V}$. With 'T' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
ADVANCE PG54 Pulse generator. AS NEW.
SOLARTRON EMI006 production-line resistance tolerance check-set. $0-15 \mathrm{Mohm}$ digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition.
WAYNE KERR B52I LCR Bridge. Excellent condition. 655.
RACAL SA520 Digital Frequency counter/timer. 300 kHz . $\mathbf{£ 4 7 . 5 0}$.
CAMBRIDGE A.C. Test Set. $£ 75.00$
GAMBRELL Precision 4 Decade Resistance Box. 1-11. 110 ohms. $£ 24.50$.

BOXER INSTRUMENT

FANS
Dimensions $4.5 \times 4.5 \times 1.5$ ins. Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers etc. For 110 V . AC operation(practise is to run from split primary of mains transformer or use suitable mains dropper). CC
only 11 Watts. List price over $£ 10$ each. Our price. in brand new condition, is $\mathbf{£ 4 . 5 0}$.

> POLARAD Model SA84WA
> POLARAD Model SABAW
SPECTRUM ANALYSER
> $10 \mathrm{MHz}-63 \mathrm{GHz}$. i.F. Markers, Spec-
> trum calibrator. Logílin scale. NB. This is not the instrument with the expensive TWT to replace. Supplied in full working. excellent condition. Guarantee

MANY TYPES of RF plugs and
sockets in stock:-
BNC plugs 50Ω. 30p. BNC sockets 50Ω. 25p. N. Type plugs 50』. 50p. Burndept plugs. 40p. Burndept sockets. 40p. Miniature PYE. 20p. Miniature sockets. 20p

All connectors are brand new.
Immediate delivery. Please add appropriate postage.

MINI HELIPOTS

500Ω Beckman Linearity Tolerance 0.075% (10 Turn). IK Ω Beckman Linearity Tolerance 0.25% (10 Turn). $5 \mathrm{~K} \Omega$ Colvern (10 Turn).

AVO VALVE TESTERS
 Brief-case type 160. Full working

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12v. frequency up to 250 MHzat 50 wates. Small size only. 2 in . $\times \frac{7}{} \mathrm{in}$. Offered brand new, boxed. Price EI•50, inc. P.\&P.
RACAL/AIRMEC VHF/UHF Millivoltmeter type 301 . Frequency range
$300 \mu \mathrm{~V}$

- 3 V
V in eight ranges. Co-axial input 50 and 75 ohms BNC connectors. DC Ranges $100 \mu \mathrm{~V}$ - 10 V in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. Other makes of voltmeter also available

EDDYSTONE U.H.F. RECEIVER type 770 S.
Continuous coverage from 500 approx. $10 \mu \mathrm{~V}$ absolute. Completely self-contained with speaker. Excellent condition

HEWLETT PACKARD/

BOONTON TYPE 8900B Peak-power calibrator. Measures
true peak power +.6 db absolute. true peak power $\overline{ \pm}, 6$ do 2bsolute.
Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, fullscate. RF Impedance 50 ohms.

[^5]PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU

Ex-BEA CONTROL UNITS by UNIVAC A free-standing, modern style diecast case consisting of:

2-50way gold-plated plug and sockets; sub-assembly with 3 -multiway switch assemblies; 4-decade push button assembly with electrical reset: 2-decade push button assembly with electrical reset; single bank 8-push button assembly; 1 -decade lamp assembly; 1-2-decade lamp assembly: $1-12 \times 3$-lamp assembly: 4-decade thumb wheel assembly; 16-bit inline card code assembly: 6-15way plug and sockets.

Limited stocks at E12.50
ea plus $£ 2$ carriage

MARCONI TF801A/1 Signal Generator 10 to 310 MHZ £55 ea.
MARCONI TF801B Signal Generator $\mathbf{£ 1 2 0}$ ea. MARCONI TF801C Signal Generator $\mathbf{£ 1 8 0}$. MARCONI TF791B Carrier Deviation Meter £30 ea.
MARCONI TF934/2 FM Deviation Meter £35.
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As New 275 ea.
MARCONI TF1020A RF Power Meter 50 and
100 Watts. As New $\mathbf{f 5 0}$ ea.
MARCONI TF1094A/S HF Spectrum Analyser. Late model. Must go. $\mathbf{£ 1 6 0}$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{MHz}$ £25 ea.
KELVIN \& HUGHES Single Channel Recorders with spare paper £18 ea.
HEWLETT PACKARD Power Meter 1 mV to 300 V dB scale $£ 20$.
DAWE Digital Printer type 3094A. As new
E27.50 ea.
WESTON THERMOPROEE -60 to +100
degrees Centigrade $\mathbf{£ 7 0}$
WANDEL 8 GOLTERMAN TFEK41 Level Meter $\mathbf{£ 6 0}$.

PROSSER SCIENTIFIC INSTRUMENTS

Model A100 Waveform Generator. Multi wave forms $\mathbf{~} 160$.
RHODE \& SCHWARZ Admittance Meter VLUK-BN3511. As new £140.
TEKTRONIX Oscilloscope type 545B. Main frame only. As new condition $\mathbf{£ 3 7 0}$.
HEWLETT PACKARD DB Oscilloscope type 175A. 3dB-50MHZ twice. Large $6 \times 10 \mathrm{~cm}$ screen £185.
AIRMEC 4 trace Oscilloscope. DC to 3 MHz . Good condition $\mathbf{5} 50$.
PYE SCALAMP GALVANOMETER. Hammer grey. Tested $\mathbf{£ 5}$ ea.
SOLARTRON Multipurpose stab PU type 1094.

ALSO MODERN STYLE TYPEWRITER KEYBOARD

with 21 separate function keys. Housed in slimline diecast case. Transistorised. No information but a "buy" at £15 ea plus $£ 2$ carriage

Standard mains input. Outputs: +250 V DC 200MA: +18 V DC $2 \mathrm{~A}:+6 \mathrm{~V}$ DC $8 \mathrm{~A}:-3.5 \mathrm{~V}$ DC 100MA; -6 V DC $8 \mathrm{~A} ;-18 \mathrm{~V}$ DC 4A: 25 V AC 150MA. All DC lines will withstand shortcircuits to earth. With copy of manual $£ 20$ ea. DUAL TRACE PLUG-IN units for CD1212 Scopes DC-24MHz £35 ea.
TEKTRONIX Colour Monitor type $654 \mathbf{£ 5 5 0} \mathbf{5}$. MARCONI TF2950 Mobile Radio Test Set $\mathbf{f 6 5 0}$. TEKTRONIX RM527 Waveform Monitor $£ 250$.
TELONIC Sweep Generator SM2000/1. Main frame with $0-20 \mathrm{kHz}$ plug-in $£ 300$.
COLLINS RECEIVER IP-10ULR. 90 MHz to 10 GHz in 8 bands. Panoramic. Analyser or DF modes. With power unit $£ 350$ ea.

HUNDREDS OF SQ. FT. packed with CLEARANCE ITEMS, TEST GEAR ETC. All individually priced. CALL or SEND for LISTS.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16$ in. Suitable for Colour TV servicing. Price $£ 85$ each including copy of manual.

CAPACITOR PACK 50 Brand new componerts only 50p. P. \& P. 27p
P.C. MOUNT SKELETON PRE-SETS. Screwdriver adjust 10,5 and $2.5 \mathrm{M} @ 2 \mathrm{pea}$. 1M. 500. 250 and $25 \mathrm{~K} @ 4 \mathrm{p}$ ea. Finger ad just 10. 5 and 2.5M@3pea. 1M. 500. 250 and 25K @ 5pea. Min. P. \& P. 15p.

> Beehive Trimmer $\mathbf{3 / 3 0}$ pf. Brand new. Qty $1-9.13$ ea. P. \& P. 15 p $10-99$ 10p ea. P. \& P. 25 p: 100-999 7p ea. P. \&\& P. free.

DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis. boards. etc. No Aubbish. FOR ONLY £4. N. Ireiand $\mathbf{E 2}$ extra, P.C.B. PACK S \& D. Quantity 2 sq. f.-no tiny pieces. 80p plus P. \& P. 25p.
TRIMMER PACK, 2 Twin 50/200 pf ceramic:

HARTLEY 13A Double Beam Oscilloscope TB 2c/s-750 kc / s. Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$. Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s} . £ \mathbf{3 0}$ each.

2 Twin 10/60 pf ceramic; 2 min strips with 4 preset $5 / 20 \mathrm{pf}$ on each: 3 air spaced preser $30 / 100$ pf on ceramic base. ALL BRAND NEW 25p the LOT. P. \& P. P. 15 p. PHOTOCELL equivalent OCP71. 13p ea. MULLARD OCP70 10p ea. GRATICULES. 12 cm . by 14 cm . in High Quality plastic. 16p each. P. \& P. 8p.
Vast quantity of good quality components -NO PASSING TRADE-so we offer 3 LB. of ELECTRONIC GOODIES for E 1.50 post paid.

HF Crystal Drive Unit. 19 in . rack mount. HF Crystal Drive Unit. 19 in. rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) E5 ea. Carr. E2.
ROTARY SWITCH PACK-6 Brand New witches (1 ceramic: 1-4 pole 2 way etc.) BOURNS TRIMPOT POTENTIOMETERS.

TELEPHONES

706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P 45p. STYLE 7006 TWO-TONE GREEN OR GREY £3.75 ea. P. \& P. 45p HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37p DIALS ONLY. 75p ea. P. \& P. 30p.
STILL AVAILABLE MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746 £ 3.00 ea. P. \& P. 45p.

20: 50: 100: 200; 500 ohms: 1 25K at $\mathbf{3 5 p}$ ea. ALL BRAND NEW.
 KK at 36p ea. ALL BRAND NEW.

RELIANCE P.C.B. mounting. 270: 470 500 ohms: 10 O. at 35p ea. ALL BRAND NEW. VENNER Hour Meters- 5 digit. wall mount -sealed case. Standard mains. £3.75 ea.
TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450-400-0-400-450. 180 MA. $2 \times 6.3 \mathrm{v} . \mathrm{El}_{\mathrm{ea}}$.

FANTASTIC VALUE

Miniature Transformer. Standard 240 V input. 3 V 1 amp output. Brand Now. 65p ea. P. \& P. 20p. Discount for
quanily.
FIBREGLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided. Any
HIGH VALUE PRINTED BOARD PACK. no two boards the same-no short leaded computer boards. $\mathbf{E 1 . 7 5}$ post paid.
METER PACKS-3 different meters for $\boldsymbol{E} \mathbf{Z}$. P. \& P. 55p.
RESETTABLE COUNTERS-4 digit by Stonebridge/Sodeco. 1.000 ohm coil. $£ 2$ ea. P. \& P. 35p.

$$
\begin{aligned}
& \text { E.H.T. CAPACITORS } \\
& 1 \mathrm{mfd} 7.5 \mathrm{KV} \text { working. } 2 \mathrm{mfd} 5 \mathrm{KV} \text { working. } \\
& 8 \mathrm{mfd} 2.5 \mathrm{KV} \text { working. } 0.5 \mathrm{mfd} 10 \mathrm{KV} \\
& \text { working E2 each. } \\
& \text { RAPID DISCHARGE } \\
& 1 \mathrm{mfd} 5.6 \mathrm{KV} \text { £2.50 ea. } 0.9 \mathrm{mfd} 15 \mathrm{KV} \\
& \mathfrak{£ 3 . 5 0} \text { ea. } 0.15 \mathrm{mfd} 120 \mathrm{KV} £ 7 \text { ea. Carriage } \\
& \text { extra. }
\end{aligned}
$$

LOW FREQUENCY WOBBULATOR

DON'T FORGET
YOUR MANUALS
S.A.E. WITH

REQUIREMENTS
For alignment of Receivers, Filters LOW FREQUENCY WOBBULATOR width and frequency. Order LX63. Price f8.50 P. \& P. 35p.
As above but can have extended cover range down to 20 KHz 35p.
Both models can be used with any general-purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability. with the exception of the controls (not cased, not calibrated).

20 HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25 p. Sine Wave only £6.85 each. P. \& P. 25p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Fult instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{6 7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

TYPE A
Input: 12VDC
Output: 1.3kV AC 1.5MA
Price $\mathbf{£ 3 . 4 5}$

TRANSISTOR INVERTORS
TYPE B
input: $12 V D C$ 1.3kV DC 1.5MA

Input: 12 V to 24 V DC Output: 1.5 kV to 4 kV AC 0.5 MA Price $\mathbf{E} 6.35$
Postage \& Packing 36p

TYPE D
Input: 12 V to 24 V DC
Output: 14 kV OC 100 micro amps at 24 V Progressively reducing for lower input voltages

Price $\mathbf{E 1} 1$

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $£ 9.75$. P. \& P. 25p.

Unless stated - please add $£ 2.00$ carriage to all units.
 VALUE ADDED TAX not included in prices-please add 8\% Official Orders Welcomed, Gov.|Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

CONSTRUCTIONAL KITS

in stock:
Mullard CCTV Camera, P.E. CCTV Camera,
P.W. Tele-Tennis, Crofton UHF Moduiator,

Crofton VHF Modulator,
(Retronic Dic (Ready Assembled) in attractive case
P.W. Electronic Organ Kit.

Further kits will be added to the range. Kits are complete, down to the last nut, including
attractively finished ready drilled, painted and silk screened panels. A FREE get you going technical Back up service is available.
A P.C.B. service is available for any published design at competitive prices.
As well as holding large stocks of electronic components we are also importng a range ofrack Head Cleaner and Demagnetizers, Mini Drilis, etc.

CROFTON ELECTRONICS

124 Colne Road,
Tele: 01-898 1569

 MULLARD POLYESTER CAPACITORS C28O SERIES MULLARD POLYESTER CAPACITORS C296 SERIES

 MINIATURE CERAMIC PLATE CAPACITORS
 0.1. $30 \mathrm{~V}, 5 \mathrm{~S}$.

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$

mil SYNCHROS
 EX STOCK Requirement Schedules please

 TYPE TAD

FOR YOUR PRODUCTION REQUIREMENTS USE
ALPS PANEL METERS BULK USER AND "ONE OFF
PRICE LIST-SAE PLEASE

TYPE SR

$\begin{aligned} & \text { Dims. } \\ & \text { ins. } \\ & \text { mmm } \end{aligned}$	$\begin{aligned} & 72 \\ & \times \\ & 56 \end{aligned}$	$\begin{aligned} & 78 \\ & \times \\ & 63 \end{aligned}$	
${ }^{50} \mathrm{\mu} \mathrm{~A}$	$f 3.93$	[4.18	84.4
$500 \mu \mathrm{~A}$	${ }^{13.23}$	¢3.83	${ }^{4} 4.08$
ImA	13.13	63.73	¢3.9
15vOC	63.60	1384	
nov	63.73	¢39	

Servo and Electronic Sales Ltd

 24 HIGH ST., LYDD, KENT. TEL: LYdd 20252 (STD 0679) VAT No. 201-1296-23 TELEX 965265TELEPRINTER PAPER. SI andard rolls. 1 ply $\mathbf{E 4 . 4 0}$ per doz
2 ply $£ 4.40$ per doz. 3 ply $\mathbf{£ 4 . 8 0}$ per doz. 4 ply $£ 5.10$ per doz. All 2 ply $\mathbf{£ 4 . 4 0}$ per doz. 3 ply $\mathbf{£ 4 . 8 0}$ per doz. 4 ply $\mathbf{£ 5 . 1 0}$ per doz. All
P.Pd. U.K. Telex your order now! SOLAR CELLS. Ferranti silicon MSUBE. active area 390

 GAS CHROMATOGRAPHY RESEARCH OVEN
PV4051/4056 (0ther GC items in stock)
A large capacity oven of low thermal mass for use berween 35 and
$400^{\circ} \mathrm{C}$. Provides a forced air circulating system vielding 1000 changes of air pet min. The oven has forced air cooled outer surfaces when the internal temperature is
$2.6 \mathrm{KW} . \mathbf{£ 3 1} .50$ (C.Pd. England and Wales)
IONISATION AMPLIFIER PV4075

A modern high grade low noise solid state amplifier to feed a with 5 outputs of 1 mV to 100 mV . Linearity 0.1% f.s. Noise less | than 0.5% |
| :--- |
| $28 \times 10 \times 4.5$ at max sensitivity. Back off facility. Dimensions |
| 10 cm deep. With operating information $\mathbf{£ 2 8 . 5 0}$. | Details of these three andother gas chromatography items, price 25p

(C W. O. only) Handbooks (complete) C.W.O. only). Handbooks (complete) available.
A.C. MAINS to $27 V$ D.C. POWER SUPPLY UNITS.
These interesting $27 V$ O.5A units (will happily provide 700 mA These interesting 27 V 0.5 A units (will happily provide 700 mA
indefinitely) are built into an attractive grey-finished instrument case, provision being made tor base or side mounting.
meable entry grommets are mounted in the base of the unit. The choke capacity smoothed output is solid state stabilised against variation in input voltage and output current, and
input and output fuses with spares are fitted. The output operates a built-in S.P.C.O. relay to switch for instance an
alarm circuit. Input voltage is $200-250 \mathrm{~V}$ A.C in 10 V steps. alarm circuit. Input voltage is $200-250 \mathrm{~V}$ A.C. in 10 V steps.
while the transformer secondary carries two taps. All terminations to a Grelco block. There is adequate room for other equipment
within the ventilated case. which is $12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$ deep. Brand Ion with circuit, only $£ 4.95$ inc. P. \& P. and VA
IDEAL FOR ALARM SYSTEMS SUPPLIES SOLARTRON REFURBISHED TEST EOUIPMENT SOLARTRON REFUREISHEDTEST EQUIPMENT and VAT.
CD1016 osciloscope $D C-5 M H z ~ r a c k ~ M T E ~$
$1 \mathrm{mV} / \mathrm{cm}$ on Y 2 , £ 90 CD 1212 oscilloscope main frame fully checked. $\mathbf{£ 8 0} \mathbf{i n c}$ carr. England \& Wales. Plug ins available
CD1220 oscilloscope DC-40MHz with dual trace and wide band preamp. plug ins. $£ 145$ inc. carr. England \& Wales and VAT.
C01400 oscilloscope OC -15 MHz with 3 plug ins. f 145 inc. carr. England \& Wales and $V A$
CT436 Oscilloscope. Ł85 inc. carr. and VAT.
Why not reserve by telephone and spend a day by the sea when you collect and have your equipment demonstrated?
CONTINENTAL CUSTOMERS - We have a direct link by air CONTINENTAL CUSTOMERS-We have a direct link by ait
from Lydd to Beauvais (aiso Channel Islands) and are $35-45$ minutes' drive from Oover-Fo
links with France and Belgium.

ALL PRICES INCLUDE 8\% VAT

Stainiess Steel case with
screw back: luminous hands and markings. One fith sec.
sweep hand controlled inde sweep hand controlled inde
pendently of main movement pendently of main movement
by press to start, stop and return to zero button. 15 jewel
movement. Many of
wavehes are as new but all
and have been completely over-
hauled and checked for accuracy. Fitted strap. White face $£ 18$. $\mathbf{3 0}$. Black face $\mathfrak{f 1 9 . 2 5}$

GS WATCHES all with brushed stainless steel case with screw back
and black faces. Manufactured by CYMA. VERTEX. RECORD. otc.. to a standard specification. Completeiy
overhauled. Fitted strap. $£ 8.85$ inc P.\&P. We also have limited quant
ies of these watches by OMEGA ties of these watches by OMMEGA
LONGINES. BUREN. HAMILTON JAEGER LE COULTRE and IWC a
$\mathbf{f 1 5 . 3 0}$ inc. P. \&P.

DRY REED INSERTS

Dverall length 1.85 in . Soody length 1.1 in . Diameter 0.14 in . to
switch up to 500 mA at up to 250 vDC . Gold clad contact
 10.000. All carriage paid U.K.
Operating Magners 95 p 1000. All carriage paid U eeds fan Coiz for 12 v supply to accept up to four standard Heavy duty type. (Body length 2 in) All carriage paid U.K. up to 1 A . at up to 250 vAC Gold clad contacts. $£ 1.45$ per
dozz: $\mathbf{£ 6 . 9 5}$ per $100 ; \mathbf{5} 2.00$ per 1.000 . Changeover Heavy Duty type $£ 2.80$ per doz. All carriage paid U.K.
Magnets for HD reeds $\mathbf{~} 1.50$ doz. Very few coils available tor

OVER 300,000 IN STOCK! MULTIWAY AND R.F. CONNECTORS

Metal Oxide Resistors (ELECTROSIL \& WELWYN)
Tantalum Capacitors
(KEMET, ITT, PLESSEY, ETC.)

Fantastic DUAL BEAM PURPOSE PORTABLE OSCILLOSCOPE MISCELLANEOUS TEST ELU OF OUR SAMENSIVE RANGES EXTENSIVE RAN UHF ATTENUATOR MARC
INSTRUMENTS TF2163S
$0-142 d B$ in $18 B$ steps.
As used by H.M. Forces OSCILLOSCOPE CTA36

EIECTROLYTIC CAPACITOR
BRIOGE BY B.P.L
£125

OIGITAL VOLTMETER
SOLARTRON LM1420. 2
$2.5 \mathrm{HV}-1 \mathrm{KV}$ in 6 ranges.
0.05\% VHF ALIGNMENT SCOPE

VHF ALIGNMENT S
MARCONI TF1104

Out put (Nom) $100 \mathrm{jV}-100 \mathrm{mV}$. Swoep With 500
f150
OOUBLE PULSE GENERATOR
MARCONITF1400/S
Ministry rype CT434. CW Secondary
Pulse Generator plug in TM6600. Negative pulses up to 200VEMF. +VE pulsative up to 60 V EMF and simultaneous pulses
+VE and -VE pulses
_10 up to 20 V EMF.
TRANSFER OSCILLATOR BECKMAN 7580H BCL 15 GHz with counter. 7.5 MHz -
156 Gz without coumer $\mathbf{f 7 9 5}$ Sensitivity 100 m . RMCTOR DISTORTION FACTOR METER MARCONI TF142F Fundamental
$100 \mathrm{~Hz}-8 \mathrm{KHz}$

R

ability to display all the lube has the alphabet, numerals 0 the letters of the characters in a singto thru 9 and special

Characteristics, the Ajphanumpric Nixify and etectrical
 Manyunique benefits incliuving $\star 170 \mathrm{~V}-21 \mathrm{~mA}$ IIE tube provides

- Uniform, continuous sline coration
\star Meamony with simple solid surarecters of of equal height

- Cheracter Leiggitite 2 with.

Price only 990 each plus 16
Bases for above 60 p each
DISCO
Itra-IOSTARRIYEGINUR MCITY ORDER independent life. high quality. 200 V D.C. Current points. Supply voltag
100 ms . Characture 1.4. Shand Cucture height 0.5 . Pulse durtation
manufacturers new. overall suaranteed. manufacturers new, guaranteed. Sverall size Price $1-25$ fl.0quirements. Type $85+95853$ to
$1000+$ price on application. 90 . $100+80$ p. SPECIAL OFFER OF COLOUR T.V AND F.M. MEASURING EQUIPMENT BY WANDEL AND GOLTERMANA

VZM 1 Measuring set for measuring phase and amplitude tion distortion for Colour $T V . V$ Subb carrier (PAL Systems)

E495.00
VZM2 Measuring set for measuring phase and amplitude ruodulation distortion VZM83 Generator and Receiver used VZM83 Generator and Receiver used to measure transmission
distortion on FM radio link systems. Superimposed signal $52 / 304 / 556 \mathrm{kHz}$. $\mathbf{E 2 7 5 . 0 0}$
PROGRAMME BOARDS BY SEALECTRO
These boards are basically a multi-pole multi-throw switch device consisting of a X-Y Matrix with two contact decks in the Z Plane shorting or plugging in pins. Ideal for prototype work, etc. Boards available in 2 planes. $24 \times 50 £ 29.20 \times 11$ E15.
Pins now available at 15 p each.

Stimpress

AMPEX SP-300 FM/DIRECT RECORDER/ REPRODUCER 4 Channels. Speed $1 \frac{1}{8} .3$. $7 \frac{1}{2} 15$ ips. Flutter 0.15% at 151 ips . Frequency Response
Instrumentation 50 Hz to 40 Hz at 15 ips . Audio

SPECIAL OFFER OF TELEPHONE

CARRIER TEST EQUIPMENT
An unusual offer of a system up to $15 \mathrm{Mc} / \mathrm{s}$ for the measurement of level attenuation on telephone carrier equipment and wide band radio relay systems.
SIEMENS sweep frequency system consisting of 3 W 518 Level Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$: 30335 Leve Selective Meter $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}: 3 \mathrm{~W} 933$ SweepAttach ment: 3D346 Large Screen Level Tracing Receive Offered as a complete system as a 32 M 701 Special Offer less than Half-Price
£1950.00 Also available manual point to point system consisting of: 3 W 518 Selective Level Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$ 3D335 Selective Level Meter $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$

Price Per Pair $\mathbf{£ 9 5 0 . 0 0}$

Cossor CDU fully transistorised P.O

LIMITED QUANTITY Made to meet the most stringent Government Service Standards DC40 MHz DUAL TRACE
Solartron C.T. 484 oscilloscope. 3\% accuracy. Dual Trace Dis. plays plays. DUAL TRACE ${ }_{\text {DC }}-24 \mathrm{Mc}$. Rise Time: 14 nanosacs D.C.- Senstivivy: $^{50} \mathrm{mv/cm}$. input impedance

direct. $\pm 3 \%$ with $\mathbf{C l}$ nanosecs/ $/ \mathrm{cm}-5$ secs/en) or
TME BASE. 100 nan TIME BASE. variable up to 12 secs cm . continuously
Swaep expansion $\times 5$. Accuracy: $\pm 3 \%$
Sc/
. Sweep expans. Bandwidth: D.C.C. $/ \mathrm{Vm}$. input
x AMPLFIER. Sensitivity: 200 mm 40 pF
 INTERNAL CALIBR AMPLIFIER PLI MC/S. RISE WIDE BAND Bandwidh: D.C. $-40 \mathrm{mv} / \mathrm{cm}$.
AVAILABLE: Band AVAILABLE, 8 nosecs. Sensitivity 22 pF Measuring Time impedance: 1 M .
Accurscy:

HERE! NOW! FOR IMMEDIATE DELIVERY!

colibration. Inc batrs. Test Set
model
9 7X £28 8X £38
$X \underset{\text { Leads }}{ } \mathrm{Ex} 28 \quad 8 \times 2$
Eves rady cass enabiles the meter to be used while in is

Plesse note: X
and mu-metal shield.

6 V

 25A

Power Supplies

10\% VARIABLE VOLTAGE HIGH CURRENT HIGH STABILITY HIGH RELIABILITY These power suppries were designed for conitinuous upperation in compruter equipment. Manutactured to highess engineering standand meters: C Corere Transiormer.

£25

MULTI OUTPUT POWER SUPPLIES
Ex-Computer offered at mere fraction of original manufacturer's cost.
 Advances DC197
6 C 7.5 Amp . 6 V 1 IAmp . 28 V 9 Amp . PRICE $£ 35$ BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK Model 88

currents of voltages by the magnitude of applied line on pressure sensitive tinuous distortion free movement scale calisitive paper. Moving coil internal resistance 100 ohms. Chart Drive motor Chart speeds 90 " per hour f 39 our $\mathfrak{Z 3 9}$
SINGLE PEN RECORDER by Record Electrical $3^{\prime \prime}$ chart sensitivitit 1 milliamp chart speed
1 and $6^{\prime \prime}$ per hr Size $8^{\prime \prime} \times 11^{\prime \prime} \times 6^{\prime \prime}$. Offered complete with pen assembly. Listed at over £ 120 - this month's special price due to bulk 1 mA version f 50 $500 \mu \mathrm{~A}$ version $\mathbf{f 6 0}$

Res Ohms	Percemt	Manufacturers	Model
50 100		Beckman	${ }_{A}$ ARS
200	0.5	Beckman	
500	0.1	Beckman	
500	1.0	Relcon	HEL107.10
2 K	0.5	Becknan	SAl101
2 K	0.25	Beckman	7218
2 k		Reliance	GPM15
2 K		Genatal Controls	GPA 15/4
$5 \mathrm{5k}$		Relcon	07-10
$5 \mathrm{5k}$		Colvern	CLR2503
10k	0-1	Beckman X	
15 K		Colvern	CLR2402
25 K	05	Helipot	SAJ337
30 K	0.1	Beckman	
30 K	05	Becknein	SA1692
50 K		Reliance	${ }^{07.10}$
50k	05	Beckman	A.
100K	0.1	Beckman	
100k		Cavem	2501

THREE TURN 780° ROTATION
FIFTEEN TURN 5400° ROTATION

NEW "Strobette" STROBOSCOPEtachometer

Combined Stroboscope-Tachometer. 200 to 6000 flashes per minute. 200 to 6000 r.p.m. Accuracy 3% or better. Beam angle 80° Flash Duration: 10 to 25 microseconds. Light colour Xenon white 500° Compact lightweight (27 oz) easy to use one/off and on switch.

FANTASTIC BUYS IN PEN RECORDERS

Carriage and packing charge extra on Please note: all instruments offered are second-hand and NEW CATALOGUE AVAILABLE EARLY IN THE NEW
all items unless otherwise stared.
tested end guarenteed 12 months unless otherwise stated.
VEAR. WRITE VAT
IF
all items unless otherwise stated. tested and guaranteed 12 months unless otherwise stated. VEAR. WRITE IF VOU WISH TO RECEIVE A COPY. TO ALD 8\% VAT
TOICES

ELECTRONIC BROKERS LIVIITED

The largest selection

BIB HI-FI ACCESSORIES

EX-COMPUTER STABILISED POWER MODULES

complete 日9p each

LOW COST CAPACITORS

 .01 uF 400 V 3p each3p each
10p each
DECON-DALO 33pC Marker Etch reistant printed circult marker pen

VEROBOARDS

Packs contajuing approx
sizes, all 0.1 matric 55 p
REPANCO CHOKES \& COILS

 ${ }_{\text {DRX1 Cryetal set 31p }}^{\text {COHRS }}$ DRR2 Dual range 45p

COIL FORMERS \& CORES

NORMAN $t^{\prime \prime}$ Corea \& Formers 8 p
\boldsymbol{F}° Cores \& Formers 10 p
SWITCHES
DP/DT Toggle 36p 8P/ST Togyle 30p

FUSES

$11^{\circ} \mathrm{and} 20 \mathrm{~mm}, 100 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$,
$50 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$ QUICK-BLOW 5 p ea.

EARPHONES

Crystal 2.5 mm plug 42 p
8 ohme $2 \cdot 5 \mathrm{~mm}$ plug
8 ohms 3.5 mmp
plug 22 p
DYNAMIC MICROPHONES
B123. 200 ohms plus on/oft
2.5 mm and 3.5 mm plugs 21.85
3-WAY STEREO HEAD-
PHONE JUNCTION BOX
2-WAY CROSSOVER
NETWORK
K4007. 80 ohme Imp. Insertion loss 3dB 81.21
TRANSISTOR EQUIVALENT BOOK

 more than 56,000 subrititutes havi hee been
notluded. The tabies were compien with the
 specifichtion. The moat comprehensive
Equivalents Bool on the market tmand ONLY £2.30

INSTRUMENT CASES

(Black Viayl covered)				
$\mathrm{BVI}^{8{ }^{\circ}}$	\times	51"	\times	2^{*} * 81.35
BV2 ${ }^{11^{*}}$	\times	${ }^{6}$	\times	3* 11.75
ALUMINIUM BOXES				
BA1 6t ${ }^{\circ}$	\times	2 2	\times	1 P 48p
${ }^{\text {BA3 }}{ }^{\text {c }}$	\times	${ }_{4}$	\times	${ }_{17}^{17} 498$
${ }^{\text {B4A }}$	$\stackrel{\times}{\times}$	21	$\stackrel{\times}{x}$	
BAB6 ${ }^{-}$	\times	${ }^{2}$	\times	
BA7 $7^{\prime \prime}$	\times	${ }^{-}$	\times	
${ }^{18} 8^{*}$	\times	6°	\times	10
${ }^{9} 6^{*}$	\times	${ }^{\text {- }}$	\times	${ }^{*}$ 70p

De Luxe Groov-Kleen Model 42 £1.95 Chrome Finish Model 60 \&1.50

Ref. B. Stylus and Turntable Cleaning Kit 34 Ref. 364. Record/Styfus Cleaning Kit 33p Ref. 43. Record Care Kit 22.42 Ref. 31. Casaette Head Cleaner 38p Model 9. Wire Atripper/Cutter 93p

ANTEX SOLDERING IRONS
$\mathbf{~} 25.25$ watt 22.05
CN 240.15 watt 22.48 Model G. 18 watt $22: 26$ KK2. Soldering Kit 83.25 STANDE: ST1 21 SOLDER: 188 WG Multicore $70 z \$ 1.61$ 2SWG \&1-16. 18

ANTEX BITS and ELEMENTS

 Bita No.102 For model CN240 $\frac{3}{32}$ n
104 Por model CN240 $\frac{3}{1 i}$ "
100 For model CCN240 1100 For model CCN240 3. ${ }^{\text {² }}$
1101 For model CCN240 1101 For model CCN240 $t^{\prime \prime}$ 1020 For model $6240 \frac{12}{32}$ 1021 For model 0240 t 4 1022 For model G240 귤
50 For model X25
50 For model $\times 25{ }^{\frac{1}{4}}$
52 For model X25 ELEMENTS
ECN 240 E1.30 ECCN 24081.32
ANTEX HEAT SINKS 10p V A.T Included in all prices. Please add
10p P. AP. (U.K. only). Overseas orders-

NEW COMPONENT PAK

 BARGAINSPack
Mo. Oty.
C1 200

Plecer assorted Ferrite Rods 0.54 Tuning Gangs, MW/LW VEFO. 54 Pack Wire 50 metres assorted colours
Reed Switche Micro awitches $\begin{array}{ll}\text { Assorted Pots \& Pre-Scts } & 0.54 \\ 0.54\end{array}$ $\begin{array}{ccc}\text { Jack Sockets } 3 \times 3.5 \mathrm{~m} & 2 \times \\ \text { Standard Switch Type } & 0.54\end{array}$ Paper Condensers preferred typ
mixed valued
0.5 Electrolytics Trans, typea 0.54 Pack asoorted Hardware-
Nute/Bolts, Grommets Mains Slide Switches, 2 Amp 0.54 Assorted Tag Strips \& Panels 0.54 Assorted Control Knobs Relaye 6-24V Operating Sheets Copper Iaming 0.54

Please

PLEASE NOTE: ALL OUR PRICES INCLUDE V.A.T. AMTRON KITS

Model No UK 65

Simple tranaistor test
Amplifier $1 \cdot 5 \mathrm{~W}$
AM/FM Antenna Amplifier
Mike Pre-amplifier
4-chamnel Radio Control Transmitter
'GCX2' Channel plititing unit $1,000 \& 2,000 \mathrm{~Hz}$
'GCX2' Channel pplitting unit 1,500 \& $2,500 \frac{\mathrm{~Hz}}{}$.
Superbetrodyne Radio Contro
VHF Tuner 120 to 160 MHz
VhF Tuner 120 to 160 MHz
Windacreen Wiper time
${ }^{4-C h a n n e l ~ A F}$ mixer
Electronice Unit for Metal Detector

VISIT OUR COMPONENT SHOP

18 BALDOCK ST., WARE. HERTS. (A10)
18 BALDOCK ST., WARE, HERTS. (A10)
Open Mon.-Sat. 9.5 .30 p.m Tel. 61593

Ref. P. Hi-Fi Cleaner 31p
Ref. J. Tape Head Cleaning Kit 62p ef. 56. Hi-Fi Stereo Hinta \& Tips 42

WORLD SCOOP!

Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I, C's and Zenners ALL NEW AND CODED APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet in every Pak
f2p\&p30p PS 2 D.I.N. 3 Pin $\begin{array}{ll}\text { PS } 2 & \text { D.I.N. } 3 \text { Pin } \\ \text { PS } & 3 \text { D.I.N. } 4 \text { Pin }\end{array}$ PS 4 D.I.N. 5 Pin 180° PS 5 D.I.N. 5 Pin 240° PG 7 D.I.N. 7 Pin PS 8 Jack 2.5 mm Screened PG 9 Jack 3.5 mm Plastle Ps 10 Jack 3.5 mm Screened P8 12 Jack Jock Prastic PS 13 Jack Stereo Screened PS 14 Phono
PS 15 Car Aeria
PS 16 Co-Axial
INLINE SOCKETS
PS 21 D.I.N. 2 Pin (Speaker) PS 22 D.I.N. 3 Pin PS 23 D.I.N. 5 Pin 180°
PS 24 D.I.N. 5 Pin 240° PS 25 Jack 2.5 mm Plastic Ps 26 Jack 3.5 mm Plastic PS 27 Jack $\frac{10}{4}$ Plastic PS 28 Jack ${ }^{\text {de }}$ Screened PS 29 Jack Stereo Plastic PS 30 Jack Stereo Soree PS 32 Car Aerial

SOCKETS

PS 36 D.I.N. 2 Pin (Speaker) PS 36 D.I.N. 3 PIn PS 37 D.I.N. 5 Pin 180° PS 38 D.I.N. 6 Pin 240°
PS 39 Jack 2.5 mm Switcied PS 40 Jack 3.5 mm Switched PS 41 Jack $\frac{1}{4}$ " Switched PS 42 Jack stereo Switched PS 43 Phono Single
PS 44 Phono Double
PS 46 Co-Axial Burfac
PS 47 Co-Axial Flush

LEADS

LS 1 Speaker lead 2 pin D.I.N. plug to open
ends appror. 3 metrea long (coded) 0.20
CABLES
CP 1 Single Lapped Screen
$\begin{array}{llll}\text { CP } & 2 & \text { Twin Common Ser } \\ \text { CP } & 3 & \text { Stereo Screened }\end{array}$
CP 4 Four Core Common Screen
$\begin{array}{lll}\text { CP } & 5 & \text { Four Core Individuality screened } 0.30 \\ \text { CP } & 6 & 0.23\end{array}$

CP 8 Twin Oval Mains Cable
$\begin{array}{ll}\text { CP } & \text { 9 } \\ \text { CP } 10 & \text { Speaker Cable } \\ \text { Low Losa Co-Axial }\end{array}$
CARBON
POTENTIOMETERS
$4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$
1M, 2M
$\begin{array}{ll}\text { VC } 1 & \text { Single Less Switch } \\ \text { VC } 2 & \text { Single D. P. Switch }\end{array}$
VC 3 Tandem Less Switch VC 4 1K Lin Less Switch

HORIZONTAL CARBON

PRESETS
0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 7 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$
SELENIUM BRIDGE RECTIFIERS chargers. 15p oach. 10 for 55p
chat
REPANCOTRANSFORMERS
240 V . Primary. Secondary voltages available
from selected tappinge $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$, $14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V},{ }^{2} 31 \mathrm{~V}, 33 \mathrm{Ve}$
40 V, and $25 \mathrm{~V}-0-25 \mathrm{~V}$.

Type

MT50/h
MT50/1
MT50/2
,
ONLY
MAMMOTH I.C. PAK APPROX. 200 PIECES Assorted fall-out integrated circuits including: Logic, 74 Series, Linear, Audio and D.T.L. Many coded devices but some unmarked-you to identify.

OUR SPECIAL PRICE
E1. 25 including V.A.T. \& p. \& p.

SPECIAL PURCHASE by BI-PAK

2N3055. Silicon Power Transistors NPN Famous manufacturers out-of-spec devices free from open and short defects-every one able 1115 watts TO3.

Metal Case.
OUR SPECIAL PRICE 8 for $\mathbf{£ 1}$.

CYANOACRYLATE C2 ADHESIVE

OUR PRICE ONLY 54p

 for 2 gm phialBATTERY HOLDERS
Takes 6 h.p. 7s complete with lermina
clip and lead. 34 p each.

CARTRIDGES

ACOS GP92-180 200 mV at $1-2 \mathrm{~cm}$
ACOS GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{scc}$
ACOSGP96-1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$ ACOSGP96-1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$

TTC J-2006S Stereo/Hi Output

TTC J-2105 Ceramic/Med Output includitry sty fue
TTC J-22038 Replacement stylua f TTC AT-55
cartridge
$4 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$ CARBON FILM RESISTORS The E12 Range of Carbon Film Resistors t. watt available in PAK8 of 50 pieces,
assorted into the following groups:R1 50 Mixed 100 ohme 820 ohme $\begin{array}{ll}\text { R2 } & 50 \mathrm{Mixed} 1 \mathrm{~K} \text { ohms }-8 \cdot 2 \mathrm{~K} \text { ohms } \\ \text { R3 } & 50 \mathrm{Mixed} 10 \mathrm{~K} \text { ohms }-82 \mathrm{~K} \text { ohmas }\end{array}$ R4 50 Mired 100 K ohme -1 Meg. ohms 50 JUET lp EACH INCL. V.A.T.
BI-PAK SUPERIOR QUALITY LOW-NOISE CASSETTES $\frac{\text { C60, 32p C90, 41p C120, 52p }}{\text { SEE OUR COMPLETE RANGE }}$ SEE OUR COMPLETE RANGE PRACTICAL ELECTRONICS
PRACTICAL WIRELESS, RADIO CONSTRUCTOR, EVERYDAY ELECTRONICS, ELECTRONICS TODAY INTERNATIONAL OR SEND 5p. FOR THE FULL LIST OF ALL
PRODUCTS

BOOK BARGAIN BUNDLE
8 Books comprising:
Transistor Equivalent books
1 Radio \& Electronlc colour code and data chart 1 Radio valve gulde PLUB Other congtructional books on
Receivera, EM Tuhers, ttc.
ALso I General contruation book VALUE £3. OUR PRICE £2 p \& p 10p.
BP1 $\begin{gathered}\text { Handbook of } \\ \text { Equivalents }\end{gathered} \begin{gathered}\text { Transistor } \\ \text { Substitutes }\end{gathered}$
 the World's Bhort Wave the Worid s Short Wave
Radio Stations and FM/T.V. Lhatings
Landbook
$\underset{\text { Bistor Circuits }}{\text { Him }}$ Bistor Circuits
Radio and Electro

Sound anubl
$\begin{array}{cc}38 \text { Practical Terted } & \begin{array}{c}50 \mathrm{D} \\ \text { Diode }\end{array} \\ \text { Circuits for the } \\ \text { Home }\end{array}$

BP10
BP11 Practical
Circuits
Electronic
Motorist
Second book
Equivaients

tronle Circuits for the
home
hop

$$
\begin{aligned}
& \text { Universal Gra } \\
& \text { Indicator }
\end{aligned}
$$

How to make FM a
aerials Bandi 1/2/3

High Fidelity Loudgpeak

enclosures
Transistor Circuits Manu
No. 1
Coil Cesign an
Manual
Radio T.V.

receivers
Transistor Test Equ
Servicing Manual
Manual of Tranaist
Araplffers
A comprehensive Radi
Guide-Book 5
How to receive foreign T
programmea
programmes on your set
Bimple modifications
AF-RF Reactance-Frequency
chart for Construs
chart for Constructors $15 p$
Handbok of Practical
tronicok of Mrical Novicalties Eler-
Practical Tranit
Practical Transistevelised Now-
elties for Hi-
Handbook cir Integrated
Oircuits
Handbook
Circuits
Substitute
Integrated
35

-the lowest prices!

74 Series T.T.L. I.C'S
bi-pais still lowest in price foll speolification guaranterd. all pamous mantpacturers

	1	25	$100+$
SN7400	0.15	0.14	0.13
SN7401	0.15	0.14	0.13
SN7402	0.15	0.14	0.13
6N7403	0.15	0.14	0.13
SN7404	0.15	0.14	0.13
SN7405	0.15	0.14	0.13
8N7406	0.39	0.34	0.31
8N7407	0.39	0.34	0.31
8N7408	0.25	0.24	0.23
8N7409	0.25	0.24	0.23
SN7410	0.15	0.14	0.13
BN7411	0.25	0.24	0.23
8N7412	0.28	0.27	0.28
8N7413	0.32	0.31	0.30
9N7416	0.30	0.89	0.28
gN7417.	0.30	0.29	0.28
SN7420	0.15	0.14	0.13
SN7422	0.30	0.29	0.28
8N7423	0.40	0.39	0.38
SN7425	0.40	0.39	0.38
8N7426	0.40	0.38	0.38
SN7427	0.40	0.38	0.38
SN7428	0.45	0.42	0.40
SN7430	0.15	0.14	0.13
SN7432	0.40	0.38	0.38
8N7433	0.42	0.40	0.38
8N7437	0.35	0.32	0.30
gN7438	0.35	0.32	0.30
8N7440	0.15	0.14	0.13
8N7441	0.74	0.71	0.64
8N7442	0.74	0.71	0.64
9N7443	21.20	11.15	21.10
8N7444	21.20	£1.15	21.10
sN7445	81.60	\&1.65	£1.50
8N7446	\&1.20	21.15	$\underline{1.10}$
8N7447	£1.10	${ }^{81.07}$	£1.05
gN7448	\&1.10	£1.07	£1.05
8N7450	0.15	0.14	0.13
SN7451	0.15	0.14	0.13

$\begin{array}{cccc} & 1 & 25 & 100+ \\ \text { GN74153 } & £ 1.00 & 0.95 & 0.80\end{array}$

man

NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUSTHERMALPROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £4. 25

- Kax Heat Sink temp. $90^{\circ} \mathrm{C}$.

Frequeney
to 100 KHz

- Distortion better than 0.1%
- Supply voltage $15-50$ volts

- Thermal Feedback

STABILISED POWER MODULE SPM80

8Pm80 is especially designed to power 2 of the \mathbf{A} Lfo Amplifiers, up to
15 watt (r.m.s.) per channel simultaneousty. This mod ule embodies the atest components and circuit technlques lincorporating complete shor he unft will provlde outputs of up to 1.5 amps at 35 voits. Bize: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also
ideal for many other applications including: Disco Syutem, Public TRANSFORMER BMT80 f2.75 p. \& p. 40p

STEREO PRE-AMPLIFIER

 TYPE PA100
INTEGRATED CIRCUIT PAKS

Manufacturers "Fall Outs' which inclade Funotional and Part-Functional Unita. These are classed as'outor
 PaI No. Contents
$\mathrm{UIC} 00=12 \pm 7400$
UIC $01=12 \times 7401$
 UTCO3 $=12 \times 7403$
UTCO4 $=12 \times 7404$ UIC0
UICO5
$=12 \times 7404$
UIC UIC07 $=8 \times 7407$
UIC10 $=12 \times 7410$ UIC20 $=12 \times 7410$
UIC UIC30 $=12 \times 7430$
UIC40 $=12 \times 7440$ UIC41 $=6 \times 7441$
UIC42 $=5 \times 7442$
Pris
0.54
0.54
0.54
0.54
0.54
0.64
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54

Dcatlons. but are Pak No. Contenta	Pricy
DIC $46=5 \times 7446$	0.54
UIC48 $=5 \times 7448$	0.54
U1050 $=12 \times 7450$	0.54
U1351-12 $\times 7451$	0.54
UIC53 $=12 \times 7403$	0.54
U1C64 $=12 \times 7454$	0.54
UIC60 $=12 \times 7460$	0.54
UTC70 $=8 \times 7470$	0.54
UIC72 $=8 \times 7472$	0.54
$\mathrm{V1073}=8 \times 7473$	0.54
U1C74 $=8 \times 7474$	0.54
UIC76 $=8 \times 7476$	0.54
UTC80 $=5 \times 7480$	0.54
UTC81-5 $\times 7481$	0.54
U1C82 $=5 \times 7482$	0.64
UIC83-5 $\times 7483$	0.54
UIC86 $=5 \times 7486$	0.54

IINEAR I.C.'E-FULL SPEC.							
Type No.		. 25	${ }^{100+}$	DTL 930 SERIES			
72702	0.60	0.48	0.45				
72709 P	0.20	0.19	0.18	Type	1	25	100+
72710	0.35	0.33	0.30	BP930	0.15	0.14	0.13
72741	0.30	0.29	0.28	BP932	0.16	0.15	0.14
72741 C	0.28	0.27	0.26	BP933	0.18	$0 \cdot 15$	$0 \cdot 14$
$72741{ }^{1}$	0.30	0.29	0.88	BP935	0.16	0.15	0.14
72747	0.85	0.80	0.75	BP936	0-16	0.15	0.14
72748 P	0.38	0.36	0.34	BP944	$0 \cdot 18$	0.15	0.14
SL201C	0.59	0.45	0.40	BP945	0.30	0.28	0.25
SL701C	0.50	0.45	0.40	BP946	0.15	0.14	0-13
SL702C	0.50	0.45	0.40	BP948	0.30	0.28	0.25
TAA263	0.80	0.70	0.60	BP951	0.70	0.65	$0 \cdot 60$
TAA293	$\& 1.00$	0.95	0.80	BP962	0.15	0.14	0.13
TAA350A	$\varepsilon 1.85$	$\varepsilon 1.80$	11.70	${ }^{\text {BP99093 }}$	0.45	0.43	0.40
PA703C	0.28	0.26	0.24	BP9094	0.45	0.43	
PA709C	0.20	0.19	0.18	BP9097	0.45	0.43	0.40
[A711	0.35	0.33	0.30	BP9099	0.45	0.43	0.40
76003	81.50	1.45	£1.40				
76023	11.60	81.45	1.40		A		
LM380	¢1.00	0.93 0.97	${ }_{0}^{0.90}$	CAT	OG	8	
NE555	0.65	0.63	0.60				S
NE556	0.95	0.93	0.90	Send	S.A.	and	10p

A revolution in the recording industry

Comprehensive facilities include sync on all channels, servo controlled capstan, modular electronics, variable speed (optional). relay solenoid operation.

Fully modular electronics using plug-in PCBs throughout. Separate sync and replay amps give identical levels. Switchable VUs with slow decay. Individual oscillator for each channel, Dolby
A switching facility.

Compact console presentation for easy portability. $£ 1,790+$ VAT. Full console optional extra.

Itam

Industrial Tape Applications, 5 Pratt Street, London NW1 OAE. Tel: 01-485 6162/7833. Telex: 21879.

WW-109 FOR FURTHER DETAILS

Robotics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
1973304 pp., illustrated $0408705222 £ 6.00$
Obtainable through any bookseller or from NEWNES-BUTTERWORTH

Borough Green, Sevenoaks,
Kent TN15 8PH. Tel. Borough Green 2247.

OUADROPHONIC

TAPE PLAYERS

Tape Transports
Brenell Mark V Series III Tape Decks mounted on Imhof Case IMP503/1915 size 21 in. wide \times en in. front to back and 10 in. high overatil itcluding deck. This
rugged unit can be purchased segarately or fited with the amplifiers described rugow. others are avallable giving up to eight tracks.
Playback Pre-amplifiers
A self-powered unit size 19 in. $\times 5 \frac{1}{2}$ in. $\times 4$ in. deep with four plug-in low noise
preamplifiers giving iv output into 100 ohm line.
Quad Power Amplifiers
A complete amplifier size 7 In. $\times 10 \frac{1}{12}$ in. $\times 4$ in. high with four plug-in power supply.
sut

Ask about tape controlled teaching equipment, with Illuminated panel display, for typewriting and playing the piano or organ.

DEIMOS LIMITED
Simmonds Road, Wincheap Industrial Estate,
Canterbury, Kent.
Tel: 022768597

Wilkinsons

BUILT TO YOUR SPECIFICATION HIGHEST QUALITY AT COMPETITIVE PRICES WITH A QUICK DE-
LIVERY SERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS.
P.O. type 2201a MINIATURE UNISELECTORS including Jack 12 outlet 2 bridging 1 non-bridging is of unique design and occupies no more space than standard 3000 type Relay. $£ 8.50$ each. P.O. Type 300 ohms $f 14$ each Eleven-level 1 bridging 10 non-bridging 65 ohms. $f 17$ each. P.O.Type 3 Uniselectors 25 outlet 4 level including single homing arc 1 bridging 3 non-bridging wipers 100 ohms . E10.50each. ype Relays. also P.O. type High Speed open Relays 88 and 89 series. latest type $100 \mathrm{AM} 2 \times$ 53 ohms $£ 3.50$ each.
BRIDGE MEGGERS 1.000 volts range $0 / 100 \mathrm{meg}$-ohms/infinity with resistance box $£ 85$. MINIATURE DIGITAL INDICATOR size of digits finch illuminated by 28 volt midget flanged lamps. weight 31 ozs. reading 0 to 9 with decimal points. quick disconnect rear of unt for easy lamp replacement $\mathbf{5 4 . 5 0}$ ea.
HIGH SPEED COUNTERS $£ 1.75$ each $3 \frac{1}{2}$ in. $\times 1$ in. 10 counts per second with 4 figures. The
 open. 40 p extra.

All prices shown are carriage paid UK only but subject to VAT at the standard rate. LONGLEY RD., CROYDON, CRO 3LH. Phone 01-684 0236. Grams: WILCO CROYDON

SEMICONDUCTORS
 TRANSISTORS \& DIODES

AC126	0.15	BC267A	0.12	BSX60	0.60	2N2926R	0.10
AC127	0.16	BC300	0.30	CRS3/05	0.31	2N3053	0.15
AC128	0.15	BC301	0.28	CRS3/10	0.38	2N3054	0.38
AC141	0.16	BC303	0.30	CRS3/20	0.42	2N3055	0.42
AC142	0.18	BC307B	0.10	CRS3/40	0.65	2N3415	0.12
AC176	0.16	BC328	0.15	OA5	0.60	2N3442	0.80
AC187	0.20	BC338	0.15	OA9	0.20	2N3714	1.16
AC188	0.20	BC377	0.20	OA10	0.37	2N3715	1.21
AC128K	0.25	BCY32	1.07	OC44	0.08	2N3716	1.28
AC141K	0.28	BCY39	1.25	OC45	0.08	2N3771	1.25
AC142K	0.26	BCY70	0.13	0C70	0.08	2N3773	2.18
AC176K	0.28	BCY71	0.18	OC71	0.08	2N3904	0.12
AC187K	0.30	BCY72	0.12	OC75	0.08	2N3906	0.12
AC188K	0.28	BDY60	0.61	OC139	0.45	2N4036	0.38
AD142	0.46	BDY61	0.53	OC140	0.65	2N4123	0.12
AD143	0.40	BDY62	0.45	OC205	1.25	2N4124	0.12
AD149	0.48	BDY90	2.28	OC206	1.25	2N5064	0.25
AL102	0.65	BDY91	2.16	OC207	1.40	ICS	
AL103	0.65	BDY92	1.75	TIC47	0.35	TAA435	0.55
BA102	0.15	BD131	0.32	2N697	0.11	TAA611	0.68
BC107	0.14	BD132	0.44	2N930	0.14	TAA861	0.68
BC108	0.13	BD135	0.32	2N1302	0.15	TBA560	2.90
BC109	0.14	BD136	0.34	2N1303	0.15	TBA570	1.20
BC147	0.10	BD137	0.36	2N1304	0.18	TBA641	0.88
BC148	0.10	BD138	0.38	2N1305	0.18	LM309K	1.80
BC149	0.10	BD139	0.41	2N1306	0.22	7 seg LED	
BC153	0.15	BD140	0.45	2N1307	0.22	DL704	1.19
BC157	0.11	BDY10	0.85	2N1308	0.23	DL707	0.90
BC158	0.11	BDY 11	0.90	2N1309	0.23	DL747	1.75
BC159	0.11	BDY20	0.80	2N2102	0.32	All prices	clusive
BC160	0.28	BDY38	0.60	2N2904	0.17	VAT. Post \&	packing
BC161	0.30	BFY50	0.20	2N2905	0.18	0.20 extra. M	atching
BC171A	0.10	BFY51	0.18	2N2905A	0.20	charge (Gai	only)
BC171B	0.10	BFY52	0.19	2N2926G	0.10	0.20extra/pa	
BC168B	0.10	BSX19	0.14	2N2926O	0.10	SENO S.A	FOR
BC26 1A	0.10	BSX20	0.15	2N2926Y	0.10	COMPLET	
LYNXELECTRONIES LONDON)LTD,							
8 CULLEN WAY, LONDON NW10							
Tel. 01-965 2243							

Standard minicases are made from 20 g . mild steel sheets zinc-coated and finished in silver grey hammertone stove enamel. Front panels made from 18 g . steel, finished in light grey high gloss enamel.

Type	Overall Dimension			Case no vents	Case with vents	Chrome leg
	Width	Height	Depth			
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	-	3.57	0.82
22	$8 \frac{1}{}{ }^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	$5 \frac{11}{}{ }^{\prime \prime}$	-	4.01	0.82
23	$10 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	-	4.78	0.88
24	1219 ${ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	-	5.22	0.88
25A	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	3.46	3.90	0.82
25B	$6 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$61_{4}{ }^{\prime \prime}$	3.63	4.07	0.82
26A	$8 \frac{3}{4}{ }^{\prime \prime}$	$5 \frac{3}{4}{ }^{\prime \prime}$	$6 \frac{1}{4}^{\prime \prime}$	4.89	5.33	0.88
26B	$8 \frac{3}{4}{ }^{\prime \prime}$	$5 \frac{3}{4 \prime}$	$8 \frac{1}{4}{ }^{\prime \prime}$	5.11	5.55	0.88
27A	12191"	$7 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	5.33	5.88	0.88
27B	1214"	7. $\frac{1}{2 \prime}^{\prime \prime}$	$8{ }^{\prime \prime}$	5.77	6.32	0.88
28A	$14^{\prime \prime}$	101/ ${ }^{\prime \prime}$	$6 \frac{1}{}{ }^{\prime \prime}$	6.32	6.87	-
28B	$14^{\prime \prime}$	$10 \frac{1}{}{ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	6.87	7.42	-
29A	$10^{\prime \prime}$	4 "	$6{ }^{\prime \prime}$	4.40	4.84	0.88
29B	$10^{\prime \prime}$	4 "	$8{ }^{\prime \prime}$	4.67	5.11	0.88
30A	$12^{\prime \prime}$	5"	$6{ }^{\prime \prime}$	4.78	5.33	0.88
30B	12"	$5{ }^{\prime \prime}$	$8{ }^{\prime \prime}$	5.06	5.61	0.88
31A	$14^{\prime \prime}$	6 "	6 "	5.22	5.77	0.88
31B	$14^{\prime \prime}$	6 "	8"	5.50	6.05	0.88
61	151 ${ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	-	7.97	-
62	171/3'	$8 \frac{1}{2}^{\prime \prime}$	$9 \frac{1}{2}{ }^{\prime \prime}$	-	9.24	-
63	161 $\frac{1}{2 \prime \prime}^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	912"	-	9.24	-
64	151/'	$7 \frac{1}{2}^{\prime \prime}$	1212 ${ }^{\prime \prime}$	-	9.24	
65	171 ${ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	1212"	-	10.56	-
66	161 ${ }^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	1212 ${ }^{\prime \prime}$	-	10.56	-

Types 21, 22, 23 and 24 are finished in olive green hammertone with front panels in light straw gloss enamel. Fitted with ventilated rear panels only. No louvres in the base.

PORTABLE POWER DISTRIBUTION

COMPLETE WITH 6FT CABLE AND 13AMP PLUG

4 SOCKETS 13A.	$£ 8.00$
6 SOCKETS 13A.	$£ 9.50$
4 SOCKETS 13A. + SW.	$£ 9.15$
6 SOCKETS 13A. + SW.	$£ 10.10$

PLEASE ADD 8\% FOR V.A.T. including P. \& P.
Trade Counter is open for personal callers from 9 a.m. to 5.00 p.m. Monday-Friday
OLSON ELECTRONICS LTD.,

ㄴ - - - The SECOND-USER Computer Specialists

COMPUTER SALES Peripherals and Systems for Data Processing Systems, Equipment and Components

Little-used PDP8E 12 K system including: High Speed Paper
Tape Reader. High Speed Paper Tape Punch. Memory Drum. . lust arrived-PDP8L 4K processor with 8K extender box.
A phons call could save you a bomb / Ring now for price Other modals becoming available all the time-let us knon

your reouirementa.

Peripherals

BRAND NEW
ECONOMY RANGE OF 80 COLUMN
HAND PUNCHES $\mathbf{5} 69.50$ Plus Carr. \& VAT
 numeric kevtops and dust cover and covered by aur 12 month guaramtee. Optional entras: Alphenumesic Kertopss. Chistray and Wrack K Mifg,
Ideal tot stock control. sales anslyis. back-up in ein Idesal tor stock control. sales analyis. back-up in existing computer installations. DP trinining centres. schools, etc. Add 8\% VAT to ell prices shown

PAPER TAPE PUNCHES \& READERS

OEC High-Speed Paper Tape Reader/Punch for PDP81. Hardly
used. Or special price $£ 1,500$. used. Our special price $£ 1,500$.
OATA DYNAMMICS 1114 Rack-Mounted 110 cps Punch, as
new. Mounted new. Mounted in sound-reducing rack cabinet sond com.
plete with control and interface electronics and power supply unit with short circuit and overload protection.
operation up 10110 cps . Our special price $£ 550$.
FACIT 4060 Rack-Mounted 150 cPs Punch. Heavy duty punch suitable for all types of tape inc. Mylar. UNUSED SURPLUSA BARGAINATE595.
 FACIT
Reader.
rack-mounted Speed
ver-
hannel $\begin{array}{ll}\text { sion. } & 5 / 6 / 7 / 8 \text { channet } \\ \text { dielectric } & \text { readar for speds }\end{array}$ using separate spooler). one
BRAND NEW unit available paciking- OUR manufacturer's

packing- OUR
PRICE E855.00. One little-
used second-hand unit also available at $£ 650.00$
TALLY
424
Brush Reader.
asynchronously at speeds up to 60 cps in either direction. Rack-mounted complete with spools. © 125.00 .
FERRANTI TR5 photoelectric transistorised reader. 300 cps . FERRANTI TRS photoelectric transistorised reader. 300 cps
$5 / 6 / 7 / 8$ channel tape. Mains-operatad. Price $\mathbf{E 9 0} 00$. INVAC Photoelectric Reader, Motorless. Solenoid-operated
solid state unit to read any $5 / 6 / 7 / 8$ hole tape at speeds up to 20 cps. Compact unit $6 f^{\prime \prime} \times 4^{*} \times 6^{\prime \prime}$ Power Requirements
Solenoids -26 VVDC 2 A. Amplifier $-12 V D C 500 \mathrm{~mA}$. Price Solenoid
$\mathbf{£ 5 5 . 0 0}$.
FERRANTI TR2 Photoelectric Reader
$200 \mathrm{cps}, 5 / 7$ channel tape. Price $£ 35.00$.
TERMINALS
And HAZELTINE VDUs. p.o.a
and

Keyboards

ELECTRO-MECHANICAL NUMERIC AND ALPHA

 NUMERIC KEYBOARDS
character keys and 8 instruction keys.
Alpha-numeric with 47 character keys

PAPER TAPE PUNCH/VERIFIER KEYBOAROS. FU alphanumeric keyboard with 65 keys +4 shift keys in 4 -bsnk
layout. ISO coded. Operating spead up to 25 ch . sec . Mounted in attractive case with control panel. Price £25+ f 3 3. 50 P\&P.
REED-SWITCH 4-BANK ALPHA-NUMERIC KEYBOARD mounted on printed circuit board with ASCII coded outpur. Ideal for data displays. computer programming 12 insto

 DDARDS. No metalict wivithes or KEntry-

 $-26 \mathrm{VOC} \mathrm{mA} .-12 \mathrm{~V} 60 \mathrm{~mA}+6 \mathrm{~V} 5 \mathrm{~mA}$. Price
JUST ARRIVED-FABULOUS BRAND NEW KEYBOARDS WITH READ ONLY MEMORY AND ASCII TTL 8 -bit, two-key rollover: strobed ROM. 4-bank board w positions +11 in bar. Ideal for com munications equip
ment. Complete with associated integrated
circuitry. Power supply connections and
binary-coded outputs are made to a printed card connector at

APPOINTMENTS VACANT

Advertisements accepted up to 12 noon Wednesday, May 7th, for the June issue subject to space being available.

Potential relating to Pye Telecom's future in a situation where worldwide demand for radio communication products is increasing considerably and constantly. Potential in an organisation where the only limiting factor is your own ability. Potential for pleasant living in one of the most attractive parts of Britain. And finally, potential in any of these three major areas of the Company's activities:

Development

Lab work on portable, mobile, fixed station and digital equipment. BSc is preferred, but lower qualifications with sufficient RF experience and interest may be acceptable. Age range is $21-28$ and you will probably have either a recent qualification or a relevant background of 3 years in radio communication equipment. It's a pleasant working atmosphere, with small team operation, using the very latest RF technology. If you merit advancement. it's there for the taking.

Systems

You'll be involved as a member of an engineering team in planning systems including VHF/UHF links, fixed stations, extensive control functions
and a range of mobile, portable radios and ancilliaries. Close marketing involvement includes customer contact. Experience of VHF/UHF equipment and telecommunications practice are preferred, but if you're young and qualified you may well be eligible.

Commissioning

Testing, installing, commissioning and surveying for systems in both the UK and overseas after a 6 -month training programme. HNC or C \& G Final are ideal qualifications, but ONC or C \& G Inter plus experience of either installing, testing, servicing or maintaining radio equipment may be an acceptable alternative. A current driving licence is essential.

If your background is appropriate find out more. All the information you need will be yours as soon as you phone or write to Richard Turner at:

Pye Telecommunications Ltd
Newmarket Road. Cambridge CB5 8PD
Telephone: Cambridge 61222

NATIONAL AUDIO VISUAL AIDS CENTRE 254 Belsize Road, London, N.W.6.
 CCTV and Sound Techician for Training Department

[^6]
VISUAL AND
 AURAL AIDS TECHNICIAN

Applications are invited from suitably qualified persons to maintain and repair a range of Audio and Video equipment including T.V. Receivers in schools and other Education Establishments.

Average weekly earnings including bonus up to 550 per 40 hour week.

CROYDON

Applications to (or further particulars may be obtained from) The Superintendent, Croydon Education Committee, Service Centre, Princess Road, Croydon, CR0 2QZ. Tel: 01-6849393.
[4506

Radio Operators. How to see more of your wife without losing sight of the sea.

 salary, you'll get an average allowance of $£ 450$ a year for shift duties and there are opportunities for overtime.

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For moreinformation, write to: ETE Maritime Radio Services Division (L534), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand,London, ECIA 1 AS.

Production Engineer (TV Systems)

As leading, worldwide designers and makers of TV broadcast equipment and services. Pye TVT have excellent opportunities for a Production Engineer. Preferably in his early 30 s he should be experienced in short-run batch production in the electronics industry. with a minimum of ONC in Electronic Engineering through an apprenticeship. He should enjoy working in a challenging environment, where job responsibility is properly delegated and a commonsense approach is vital. The work involves:
\star Methods Engineering/Aspects of work study
\star Evaluating new assembly processes

* Influencing new design
* Designing cableforms, producing assembly/wiring diagrams, instructions and planning layouts
* Control throughout the production cycle on an instructing/troubleshooting capacity
We offer a competitive starting salary and full employee benefits, including assistance with relocation expenses in approved circumstances.
Please write, with details of qualifications and career, to: Mrs J. A. Macnab. Personnel Manager

- 1 밈 1 LIMITED,

Manufacturers of modern.FM radio communication systems for all branches of industry, transport and Public Authorities require additional

TEST TECHNICIANS

based in Camberley to assist in the final testing of personal and mobile radio equipment and sophisticated control systems.
Knowledge of RF, digital and thick film techniques desirable with academic levels to ONC or C. \& G. Final, but for an applicant with exceptional experience and knowledge these qualifications may be waived.
Pleasant working conditions, good salary and overtime. Opportunities for further study and training.
Hours: Monday-Thursday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-4.45 \mathrm{pm}$.
Friday:
$8.15 \mathrm{am}-1.00 \mathrm{pm} .1 .30 \mathrm{pm}-3.30 \mathrm{pm}$.
Apply: The Personnel Officer,

Storino
 LIMITED,

Frimley Road,
Camberley. Telephone: 027629131

TEES257

The Independent Local Radio Station based on Teesside is seeking technical staff. The staff will be responsible to the Chief Engineer for the full range of operational and maintenance requirements, including outside broadcasts.

The studios, based in Stockton, will be equipped with the most up-to-date stereo equipment, and transmissions are expected to start early this summer.

Salaries offered will reflect the experience of the candidate and there will be a contributory pension scheme.

Please write, giving brief career and personal details, to:

The Chief Engineer
"Tees 257"
74 Dovecot Street
Stockton-on-Tees
Cleveland

Communications Engineer
 NORTH SEA GAS AND OIL

Conoco North Sea Inc., a Company actively engaged in the development of gas and oil discoveries in the North Sea, are seeking a Communications Engineer for their London (West End) office.
His main responsibilities will be to co-ordinate and plan com munications services to support the Company's drilling and production activities, which will of course involve frequent travel to the drilling operations bases at Dundee and Great Yarmouth, and to the gas production facilities at Mablethorpe in Lincolnshire.
Candidates aged $30-35$ should possessaDegree in Electrical/ Electronic Engineering, and have several years practical ex perience in radio systems engineering. A working knowledge of current Post Office radio and transmission regulations is very desirable, pa ticularly with relationto North Sea Exploration and Production activities.

The post car-ies a highly competitive salary, there is a non-contributory Pension Scheme and there are good promotional prospects.

Write, giving full details of career history to.R.E. Horley, Conoco North Sea Inc., Park House, 116 Park Street, London W1Y 4NN.

Looking

 for a new job?
Perhaps we canhelp!

> We have regular contact with hundreds of Electronics and Electrical companies needing qualified technicians and engineers and can therefore help you find an interesting and well paid job. All you need do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Technical Services Bureau, 3A South Bar, Banbury, Oxfordshire. Banbury (0295) 53529

Technical Services Bureau is a division of Technical \& Executive Personnel Ltd and is solely concerned with job placement in the Electronics and Electrical Industries

Please send me an "Application for Employment" form NAME \qquad ADDRESS

Electronics Engineer

Telemotive UK Limited is a company in association with a major USA manufacturer with world leaderships in the radio control of industrial machines, systems, and processes, in collision prevention, in remote positioning, and in other industrial electronics activities.
Our principal products are founded on the near field induction effect and on other inductive techniques in the 300 kHz band. No other UK company has a comparable product line, and our business therefore offers engineering opportunities of unusual interest. Training in our techniques is provided.
Our current requirement is for a young engineer with versatile abilities because at different times his work will involve application engineering, production testing, commissioning of systems on customers' sites, field and base service, the anglicisation of designs originating in other countries, and a measure of production control. In each of these fields there is scope for personal engineering contributions.
The position involves some travelling within the UK and will take the engineer into a wide variety of industries. The base from which he will work is in Byfleet, Surrey.

Telemotive is a good employer. It only employs people who are exceptional in their particular job. and it treats them accordingly. The salary will depend upon the capability of the chosen applicant.

Please forward personal details to

CATV - MATV ENGINEERS
 AND
 TECHNICIANS

Canada's Leader in cable Television requires personnel for research and production Departments.
Openings for research in amplifier, Passives, Converter Designing.
Opening for Director of Electronics Engineering-should have CATV or related experience.
Electronics person strong in leadership, Methods and Mechanical Acumen required for capacity of Production Manager.
Good Salaries, generous benefits.
Please Airmail complete Personnel History and references to:

Mr. J. E. Thomas,
Lindsay Speciality Products Ltd.,
50, Mary St.,
W. Lindsey, Ontario,

Canada.

Senior Maintenance Engineer Tape Duplicating

The Tape Duplicating Co., the leading independent production company in this field, require an experienced electronics engineer to take charge of the calibration and maintenance of the extensive, modern electronic and electro-mechanical equipment at their plant in Waltham Abbey.
Applicants, aged 22-25, with at least ONC, should preferably have experience of tape recording techniques and be capable of working with the minimum of supervision.
A good salary, commensurate with age and experience, will be paid and there are opportunities for well-paid overtime.

> Apply, Personnel Manager, (ref. RMW) The Tape Duplicating Co. (Gt. Britain) Ltd. Audio Works, Cartersfield Road, Waltham Abbey, Essex, EN9 1 JF
> Tel: Lea Valley 712712.

WEST SUSSEX COUNTY COUNCH INSTRUCTOR ELECTRONICS

Industrial Training Centre, College Road, Crawley. The person appointed will be required to give industrial training in electronics to First Year "Off the job" trainees at both Craft and Technical level. Candidates for this post should possess qualifications of at least an appropriate Ordinary National Certificate level. The present salary scale is $£ 1,900 \times £ 54$ (3) $\times \notin 57$ (9) to a maximum of $£ 2,575$ (under review) plus London Allowance and current Threshold Payments. The commencing point on the scale is determined by qualifications and previous experience. Application forms and further particulars may be obtained from the Manager (Electrical) at the above Centre. Requests for application forms should be made within 14 days of this advertisement.

Opportunities in the ELECTRONICS FIELD

Men with analogue or digital qualifications/ experience seeking higher paid posts in: TEST - SERVICE - DESIGN - SALES. Phone Mike Gernat. Ref. WW.

NEWMAN APPOINTMENTS

 360 Oxford St. W1 01-629 7306
COVENTRY AREA HEALTH AUTHORITY ELECTRONIC TECHNICIAN GRADE H

Electronic Technician is required to take charge of the Medical Engineering Maintenance Department dealing with the maintenance of a wide variety of electronic and electro medical apparatus. Applicants must possess HNC or HND in Electronics or equivalent qualifications.

Several years experience in the field of Electronic Engineering in particular diagnostic maintenance is necessary. The ability to manage and supervise staff will play an important part of the job and training in the maintenance of specialised hospital equipment will be given.
Salary from $£ 2,601-£ 3,390$ p.a. plus Threshold. Additional payments are made if overtime is required.
There are many advantages of living and warking in Coventry so find out more by writing, stating age, qualifications and experience together with the names of two referees to the Area Works Officer, Coventry Area Health Authority, The Birches, Tamworth Road, Keresley End, Coventry CV7 8NN.

: . . you most of all, naturally. Mainly because, by joining the world's largest exporter of radio-telephone equipment you will inevitably open up for yourself career advantages that very few companies can provide. Pye Telecom is growing at an ever-increasing rate - and the potential for its products has as yet been only fractionally utilised.
But the work you do will also be vital to an incredible number of others. Very frequently, life itself depends on the efficiency of the UHF and VHF equipment you'll be working on. Police, firemen and ambulance staff are a small sample of the extensive range of users. Which explains the exacting specifications of the test procedures in operation - and why previous fault-finding and testing experience is an essential requirement. If it relates to communications equipment, so much the better, but this is not absolutely essential. More important is practical proficiency, which may well have been gained in the armed forces.
Find out more right now by phoning or writing to Mrs Audrey Darkin at:

Cambridge Works, Elizabeth Way,
Cambridge CB4 1DW. Tel: Cambridge 58985

UNIVERSITY OF LIVERPOOL
Department of Physics

OPERATOR

Required to assist with running a 12 MeV Tandem Van de Graaff Accelerator. Candidates must possess an HNC or equivalent qualification, and practical experience of installation and maintenance of one the following: electrical machinery, electric equipment, vacuum systems. Salary on the csale $£ 2,439-£ 2,895$ p.a. plus bonus for shift work (at present 30%).

Application forms may be obtained from the Registrar, The University, P.O. Box 147, Liverpool L69 3BX Quote ref. RV/427/WW.
[4618

VISION ENGINEER

required to join small team operating a

TV Unif for Horseracing

 If you have an HNC or equivalent qualifica-tion and have experience in operating and tion and have experience in operating and maintaining mobile TV equipment and with a willingness to travel and to work in a demanding field, then this Company offers you:
1 the opportunity to join an organisation that is forward looking and is plaming television and electronics;
2 a job that is located in varied surroundings on British race courses;
3 a basic salary between $£ 2,700-£ 3,375$ plus expenses when on location.
Telephone: The Secretary, Racecourse TechSW20. 01.947 3333. $\quad \begin{aligned} & \text { Bushey Road, } \\ & 14594\end{aligned}$

RADIO OFFICERS

Do you have PMG 1. PMG II, MPT 2 years operating experience?

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3.242$ pa: commencing salary according to age -25 years and over $£ 2.383$ pa. During training salary also by age, 25 and over $£ 1.724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

Recruitment Officer,
Government Communications Headquarters, Room A/1105, Priors Road, Oakley, Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270 Instructor

Effective training is vital to keep Pye of Cambridge as one of Britain's leading electronic groups.
With this in mind, we seek an electrical and electronic engineering instructor to join the well-equipped Pye Technical Training Centre.
The work involves instruction. both theoretical and practical, of first-year craft and technician trainees in the electrical and electronic part of their course. This means lecturing, demonstrating and supervision, to develop basic skills and knowledge.
The man appointed will need as a minimum qualification ONC or C \& G final or equivalent: HNC or equivalent and previous training experience would be desirable, but we are prepared to give necessary training in instructional techniques. He should also have factory experience of current assembly and wiring techniques, including printed circuits.
This vacancy could suit an electronic technician interested in training, as well as a more experienced person.
We offer a good starting salary and the benefits and job security of a major international group. Please send details of qualifications and experience to:
T. D. Humphreys. Personnel Manager

Pye of Cambridge Ltd
St Andrews Road Cambridge
CB41DP Tel: Cambridge (0223) 58985

Southern Television Limited

requires an
ENGINEER

A vacancy has occurred for an Engineer at DOVER to undertake the operation and maintenance of broadcasting equipment.

Candidates should be aged 23-30 and qualified to minimum H.N.C. in Electronics, or preferably a Degree. Previous experience in the Broadcasting Industry would be an advantage.

Working conditions are excellent and include Pension, Life and Accident Insurance Schemes and four weeks annual holiday.

Please apply in writing to:-

> The Personnel Administrator, Southern Television Limited, Northam, Southampton SO9 4YQ

FOREIGN AND COMMONWEALTH OFFICE

We have a continuing commitment for

BROADCAST RELAY ENGINEERS

To serve a one year (unaccompanied) tour of duty on the Island of Masirah (off the coast of Oman).
Applications are invited from engineers with experience of the operation and maintenance of high powered transmitters, and who hold a third year City and Guilds Certificate in Telecommunications or its equivalent.

SALARY:

£6,563 per annum plus a cost of living supplement of $£ 229.68$ per annum. In addition a tax free allowance of $£ 480$ per annum is payable for a single officer, or 6985 per annum for a married unaccompanied officer.
Free furnished accommodation and passages are available.

For an application form and further details, please write to:

> Recruitment Section
> Foreign and Commonwealth Office
> Hanslope Park
> Hanslope
> Milton Keynes MK19 7BH

Jointhe EMI ServiceTeamat Hayes
 We urgently require

Electronic Repair \& Calibration Engineers

for the repair and calibration of a wide range of electronic instrumentation, including oscilloscopes, DVMs, pulse generators, power supplies etc.
Applicants should be aged 18 years and should have had at least two years background in electronics. Further training will be given in appropriate cases.

Close Circuit Television Engineers

for the servicing and commissioning of CCTV, VTRs etcApplicants should be aged at least 19 years, and must have had some experience in television receiver servicing.
For both of these positions, there will be attractive starting salaries according to age, experience and ability.
$37 \frac{1}{2}$ hour week, plus paid overtime.
Don't delay, for further details telephone or write to M. Ford, 01-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Hayes, Middlesex.

ELECTRONIC CRAFTSMEN

Is your present job routine and uninteresting ?

We are a research establishment and our craftsmen are engaged on a wide variety of work in the fields of prototype and small batch wiring and assembly, test and inspection, maintenance fault finding and repair. Why not join us and enjoy working in first class conditions in the country.

You can expect gross earnings including overtime of $£ 45$ per week, and we can offer good housing at low rental (for applicants who reside outside the radius of our Assisted Travel Area) together with 3 weeks paid holiday with holiday bonus, free pension and excellent sick benefit scheme.

Applicants who should have served a recognised apprenticeship or have had equivalent training together with experience in one of the fields detailed should 'phone Tadley 4111 (STD 07356 4111) Ext. 5230, or write to:

INDUSTRIAL RECRUITMENT OFFICER (PA/79/WW) PROCUREMENT EXECUTIVE
MINISTRY OF DEFENCE
AWRE ALDERMASTON
READING, BERKS.
RG7 4PR.

20p. BRC 3000 type Scan Coils, $£ 2.00$ P/P 40 p. Delay Lines DL20, £3.50, DL1E, DL1. £1.50, P/P. 25p. Lum Delay Lines, 50p, P/P $15 p$. EHT Ćolour Quadrupler for Bush Murphy CTV 25 111/174 series, $\underset{\text { suitable most sets. } £ 2.00 \text { P/P } 25 \text { p. KB CVCl Dual }}{ }$ suitable most sets. $£ 2.00 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. KB . CV controls Stand, convergence panels complete incl. 22 controls
$£ 2.75$, $\mathrm{P} / \mathrm{P} 35 \mathrm{p}$. CR1 Base panel, 75p. P/P 15 p . Makers Colour surplus/salvaged Philips G8 panels part complete; Decoder, £2.50, IF incl. 5 modules, £2.25. T. Base, £1.00, P/P 25p. CRT base, 75p, P/P 15p. GEC 2040 panels, Decoder, £3.50. T. Base £1.00, P/P 35p. CRT Base 75p, P/P 20p. B9D valve bases 10p, P/P 6p. VARICAP'TUNERS. UHF ELC 1043 NEW, £4.50. Philips VHF for Band 1 and 3 , $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85$. 4 position and 6 pos. push-button transistorised, $£ 4.95$.
All tuners P/P 35 p . MURPHY $600 / 700$ series comAll tuners P/P 35p. MURPHY 600/700 series com625 IF amplifier. 7 valves, accessories housed in cabinet plinth assembly, $£ 7.50 \mathrm{P} / \mathrm{P}$ 50p. GEC $405 / 625$ Dual standard switchable IF amplifier and output chassis incl. cot., $£ 1.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$ THORN 850 Dual standard time base panel, 75p P/P 35p. PHILIPS 625 IF amplifier panel incl. cct., 75 p . P/P 30 p . VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19 TG170, GEC 2010, etc., $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, £1.00. A.B. miniature with UHF injection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Ferguson, HMV, Marconi, El.80 P/P all tuners 30p. ard Philips, Stella, Pye, Ekco, Ferranti, Invicta $£ 200$ ard Philips, Stella, Pye, Ekco, Ferranti, Invicta, £2.00,
P/P 35p. Large selection LOPTs. FOPTs available for most popular makes. $200+200+100$ Microfarad for most popular makes, $200+200+100$ Microfarad 172 WEST END LANE, LONDON, N.W.6. Shop premises, callers welcome. (No. 28, 59, 159 Buses or ORDER: 64 GOLDERS MANOR DRIVE, LONDON. N.W.11. Tel. 01-794 8751 .

HIGH intensity electronic sirens for Police1 ambulances emergency cars. Representatives wanted World Wide. Polar Electronics. Box 710 -
3191 Horten, Norway. 3191 Horten, Norway.
[4597 OW COST IC MOUNTING. Use Soldercon IC
socket pins for 8 to 40 pin DIL's. 70p (plus $5 p$ VAT) for strip of 100 pins, $£ 1.50$ (plus 12 p VAT) for 3 strips of $100, £ 4$ (plus 32 p VAT) for 1,000 . 53 c Aston Street, Oxford. Tel: 086543203 . 167

VACUUM is our speciality, new and second-hand. rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from £40. V. N. Barrett (Sales) Ltd., 1 Mayo Road, Croydon. 01-684 9917.

VALVE TESTER AVO 160. Portable suitcase model with handbooks, $£ 50$ o.n.o. St Albans 69236.
[4622

VALVES 1930 to 1975 types in stock, many obsolete. List 15p. Transistors. List 15p. We buy new and boxed valves, also tranisistors. Cox Radio (Sussex) Ltd., The Parade, East Wittering,
Sussex, West Wittering 2023 .

VIDEO TAPE RECORDER. Ikegami TVR 301tape and handbook 100 . program lbs. 69236 tape and handbook, $£ 100$ o.n.o. St Albans 69236.

60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small,
compact units. Two available versions. Toolex, Bristol Road, Sherborne (3211), Dorset. Toolex,
 Hill, Dartford 20009.
$16 \mathrm{MM} B \quad \& \quad \mathrm{H} 631$ Sound Projector, C/W Hill, Dartford 20009.

ARTICLES WANTED

SURPLUS Components, Equipment and Computer panels wanted for cash. Ring: Southampton

TELEPHONES WANTED. Candle stick type o older (Foreign \& English). 01-722 4151. [4624

WANTED, all types of communications receivers Electronics, Ltd., Ashville Old Hall, Ashville Rd., London. E.11. Ley, 4986. $[63$

WE BUY modern 16 mm sound projectors. Burgess
Lane \& Co. Ltd., Thornton Works, Thornton Lane \& Co. Ltd., Thornton Works, Thornton
Avenue, Chiswick W.4. 994 5752/5953.

ELECTRONICS VACANCIES

Ministry of Defence Experimental Establishment in the Lake District requires experienced electronics mechanics to build, develop and diagnose a wide range of instrumentation.

Rate of pay for 40-hour, 5-day week $£ 33.41$ plus Productivity Bonus of $£ 4$ and Cost of Living Allowance of $£ 4.40$ per week.

The posts are pensionable, there is a sick pay scheme, three weeks' annual paid holiday and an assisted travel scheme. There is a prospect of housing accommodation within a reasonable period for a married man, hostel accommodation is immediately available for single men.

If you have served a recognised apprenticeship or have had equivalent service training and would like to work in a beautiful part of the country, send for an application form to:

Personnel Officer,
Ministry of Defence (Procurement Executive),
Eskmeals,
Bootle Station,
CUMBRIA LA19 5YR

Telephone: Ravenglass 214/5/6

THIS COULD BE YOUR OPPORTUNITY

 TO WORK AS AN
ELECTRONIC ENGINEER

IN

TELEVISION

With the continued increase in our sales we are looking for more engineers to work on the testing and commissioning of the studio broadcast equipment we make, which ranges from amplifiers and monochrome cameras to outside broadcast vans and our latest colour camera, all employing the latest semiconductor circuit techniques.
As an independent and well established company we have kept a young and flexible outlook and attach great importance to people fitting in. Apart from an above average salary we also offer free life and health insurance, a pension scheme of course, and a subsidised canteen as well as a congenial environment which we think is very important. We will help with relocation expenses where necessary. Andover is a growing town in an attractive part of rural Hampshire, close to Salisbury and Winchester and within easy reach of London and the South Coast.
You should be about 23-30 and have experience of working in a professional electronic atmosphere, not necessarily in television. Ability to fault find down to component level is essential and you should have a good knowledge of digital and linear circuit techniques.
Either telephone Mic Comber at Andover 61345 (reverse charge if you wish) or write with brief details so that we can send you an application form for you to use to tell us all about yourself.

Electronics Engineers a change of appointment?

Due to increasing demand for diagnostic medical X-ray equipment, and because of the introduction of new and more sophisticated apparatus, we are now looking for engineers with good electronics experience to take up a variety of challenging positions.
These include test, design, development and evaluation (environmental test) engineering, and attractive salaries will be offered to suitable applicants.
For application form, please write to or telephone :-
The Personnel Manager, GEC Medical Equipment Ltd., East Lane, North Wembley, Middx. Tel : 01-904 1288.
[4589

BRITISH NUCLEAR FUELS LIMITED

Windscale and Calder Works
Sellafield, Nr. Seascale, Cumbria
if YOU ARE A TME SERVED
INSTRUMENT MECHANIC
we can offer you varied and interesting work in a modern, expanding industry, covering the maintenance of flow, level and pressure measuring instruments, electronic and nucleonic instruments and complex pneumatic and electronic control systems and computors.
*Rate of Pay: $£ 47.60$ a week, including bonus earnings
*Good Holidays
*Assisted Travel Scheme
*Cantributory Pension Scheme
*Excellent Sports and Social Facilities
*External educational concessions
*Housing at economic rents within easy reach of Wasdale, Eskdale and Ennerdale
*Hostel accomodation for single men and married men awaiting housing
Men of skilled status with relevant experience are invited to write for an application form (quoting reference SE202) to the Work Labour Manager at the above address or telephone Seascale 333 Extension 291 between 8.30 am and 4.00 pm on any weekday.

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large o A small production runs. Also PC Boards Assemplies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed 3a Walerand Road, London, SE13 7PE. Tel. 01-852 1706
[61

BATCH Production Wiring and Assembly to sample or drawings. Deane Electricals, 19B 01-992 8976 .

CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial | Engineering |
| :--- |
| Tel. $01-985$ |
| 7057. |
| $[14$ |

CAPACITY available for the Assembly of ElecTronic or Electrical Components P.C.B.'s, etc. Jupiter Road, Norwich NR6 6SU. Remploy Lid.

ESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG Electronics Ltd., 184 Royal College Street, London,
[29

CNGINEER makes anything unusual. Inventors models, displays. Special tools and equipment. Seymour, 30 Devonshire Drive, Stapleford, Nottingham.
[4229

FABELS, NAMEPLATES, FASCIAS on anodised L aluminium or perspex. Any quantity, superb quality, fast delivery. G.S.M. GRAPHICS LTD., 02873-4443) YORKS. GUISBOROUGH (Te 02873-4443), YORKS.

SMALL Batch Production, wiring assembly, to D sample or drawings. Specialist in printed circuit assemblies, D. \& D. Electronics, 42 Bishopsfield, Harlow, Essex. Tel: Harlow 33018.

COURSES
R ADIO and Radar M.P.T. and C.G.L.I. Courses.
FY7 8JZ. Principal, Nautical College, Fleetwood,
[25

NEW GRAM AND SQUND

 EQUIPMENTGLASGOW HI FI, Recorders, Video, Communications Reciever always available we buy sell and exchange for photograpbic equipment. Victor Morris 31 Saucbiehall Street, Glasgow, G.1: $8 / 10$ Glasgow, G.2; Street, Glasgow, G.2. Tel: 041-221 8958 . [11

RECEIVERS AND AMPLIFIEAS-
 SURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209, - 1 S640, etc., etc., in stock.-R. T. \& I. Electronics, Lid., Ashville Old Hall, Ashville Rd., London, E. 11.
Ley.
[696. Ley. 4986.

GIGNAL generators, oscilloscopes, output meters, S wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics Ltd., Ashville Oid Hall, Ashville Rd., London, E. 11 Ley. 4986.

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing serve can make your colour or monochrome With absolute confidence send to Retube Ltd. North $\begin{array}{lll}\text { Somercote Louth, Lincs, or 'phone } 0507.85 & 300 .\end{array}$

VALVES WANTED

WE buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.-Walton's, 55 Worcester ${ }^{\text {St.. }}$

ARTICLES FOR SALE

LE	
Economise on Semiconductors All prices include VAT	
\star Lower 741 C prices $100+24 \mathrm{p}$	* Plastic 3 terminal Regulators
\star Low Price CMOS	Ow price DIL sock

Pye of Cambridge Ltd
St Andrews Road Cambridge
CB41DP Tel: Cambridge (0223) 58985

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \(10+\) \& \& \multicolumn{4}{|l|}{TL Mixed prices} \\
\hline \multicolumn{3}{|l|}{709C Op Amp + data 8 pin OIL} \& 34 \& 32 \& 30 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
7400 \& 17 \\
7402 \& 17
\end{tabular}}} \& \({ }_{18}^{10+}\) \& \({ }_{15}^{25+}\) \\
\hline \multicolumn{3}{|l|}{723C Reg. + data 14 pin DiL} \& 65 \& 63 \& 59 \& \& \& 18 \& 15 \\
\hline \multicolumn{3}{|l|}{741C Op Amp + data 8 pin DIL} \& 30 \& 28 \& 28 \& \[
\begin{aligned}
\& 7402 \\
\& 7403
\end{aligned}
\] \& 17 \& 18 \& 15 \\
\hline \multicolumn{3}{|l|}{748 C Op Amp + data 8 pin OIL} \& 39 \& 37 \& 35 \& 7404
7405 \& 18 \& 17 \& \({ }_{18}^{18}\) \\
\hline \multicolumn{3}{|l|}{NE555 Timer + data 8 pin DIL} \& 65 \& 62 \& 59 \& 7410 \& 17 \& 18 \& 15 \\
\hline \multicolumn{3}{|l|}{CA3046 Array 14 pin DIL.} \& 76 \& 13 \& 69 \& 7413 \& 36 \& 34 \& 32 \\
\hline \multicolumn{3}{|l|}{TDA1405 Reg. 5 V 850mA} \& 100 \& 92 \& 85 \& \& 70 \& \({ }^{16}\) \& \({ }^{16}\) \\
\hline \multicolumn{3}{|l|}{TOA1412 Reg. 12 V 500 mA} \& 100 \& 92
92 \& 85 \& \[
\begin{aligned}
\& 7447 \\
\& 7473
\end{aligned}
\] \& 90
30
38 \& 05
38
38 \& 60
34 \\
\hline \multicolumn{3}{|l|}{TOA1415 Rag. 15V 450mA} \& 100 \& 92 \& 85 \& 7474 \& 35 \& \({ }_{3}^{33}\) \& 31
34 \\
\hline \multicolumn{3}{|l|}{BC107,108, 109} \& 10 \& 9.5 \& 9 \& 7476

7486 \& 38 \& -38 \& 34
24

\hline \multicolumn{3}{|l|}{BC182, 184} \& 11 \& 10.5 \& 10 \& 7486
7490 \& 55 \& 52 \& 49

\hline \multicolumn{3}{|l|}{BC212. 214} \& 12 \& 11.5 \& 11 \& \multirow[t]{2}{*}{7492
7493
74121} \& 55 \& 52 \& 49

\hline \multicolumn{3}{|l|}{HP Red LEO $1^{\prime \prime}$} \& 18 \& 18 \& 15 \& \& ${ }_{4}^{55}$ \& 42 \& 40

\hline HP Red LE \& \& \& 19 \& 17 \& 16 \& \& \& \&

\hline \multicolumn{3}{|l|}{DIL Sockets.} \& 8 pin 11 \& 10 \& 9 \& \multicolumn{4}{|l|}{CMOS Mixad Prices}

\hline low profil \& \& \& \multirow[t]{2}{*}{14 pin 12

16 pin 13} \& 11 \& 10 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4000 \\
& 4001 \\
& 4002 \\
& 4007
\end{aligned}
$$} \& \& 17^{+} \& $25+$

\hline \& \& \& \& 12 \& 11 \& \& \& 27 \& 25

\hline \& \& \& \& \& \& \& \& 27 \& 25

\hline BC109C \& 11 \& B7X88C- \& \& 1 N 914 \& \& 4011 \& \& 27 \& 25

\hline BC177 \& 18 \& 3V3-15V \& 11 \& 1 H 4001 \& 5 \& 4012 \& \& 27
80 \& ${ }_{5}^{25}$

\hline BC178 \& 18 \& 2N3702 \& 12 \& 1N4002 \& \& 4015 \& \& 60 \& 140

\hline BF244 \& \& 2N3704 \& \& 1N4004 \& 7 \& 4023 \& \& 27 \& 25

\hline BF244B \& 27 \& 2N3708 \& \& 1N4148 \& 5 \& 40027 \& \& ${ }_{0} 0$ \& 8

\hline BFY51 \& \& 2N3055 \& 48 \& \& \& 4030 \& \& 63 \& 57

\hline
\end{tabular}

AY-5-1224 Digital Clock IC, 12 or 24 hn . 7 segment or BCD outputs, drives LED Minitron. LED displays. Simple interfacing. 16 pin DIL IC + data + circuits $£ 4.65$. HP $5082-77400.3^{\prime \prime}$ digits $\mathbf{f 2 . 0 0}$. IC $+40.3^{\prime \prime}$ digits $\mathbf{E 1 2}$. IC $+40.3^{\prime \prime}$ digits + transistors + transformer £14.00
E18A810AS 7W Audio Amp. Thermal protection + data + circuit $£ 1,20$
TCA940 1 OW Audio Amp. Thermal protection. curremt limit + data + circuit $£ 2.60$ TAD100 Radio IC + filter + data $£ 1.60$
Carbon film High Stability ${ }_{6} W \mathrm{~W} 5 \%$ resistors 10 ohm- 2 m 21 p ea., $10 \mathrm{9p}, 100$ 80p same value. By return service. Prices indude VAT. P \& P 10p (UK) overseas at cost. All items new TI, Motorola, Mullard, SGS etc. SAE lists, enquiries. Data sheets 4 p . Colleges etc. supplied.

SILICON SEMICONDUCTOR SERVICES

41 Dunstable Road, Caddington, Luton LU1 4AL

EUSINESS OPPORTUNITIES

C AND G EXAMS

Make sure you succeed with an ICS home study course for C and G Electrical Instalation Work \&
Technicians Radio/TV/Electronics Technicians. Technicians Radio/TV/Electronics Technicians.

COLOUR TV SERVICING
Make the most of the current boom! Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers.

TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV. Audio. Computer Engineering and Programming. Also self-build radio kits: Get the qualifications you need to succeed.
Free details from:
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept 734, Intertext House, London SW8 4UJ. Dept 734, Intertext House, London SW8 4U,
Or Phome 01-622 9911 (anl hours).

SERVICE \& REPAIRS

ABRASIVE CLEANING
 of

Buildings, Factories, Transport Chassis, Containers, Induserial Plant, Stone. Steel and Concrete Structures.

For professional apinion:
PALMTREE SANDBLASTING LTD. 67 HAWORTH ROAD, BRADFORD, YORKS. TEL. BRADFORD 492318. [4631

Hair Transplant
 For free brochure, clip

 this ad. and send to:Room 6
HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road, Sheffield

\author{

[4224
 | [422 |
| :--- |

}

EME TAPE RECORDING ETC.

RECORDS MADE TO ORDER	
DEMO DISCS	VINYLITE
RECORSD COMMPANIES	PRESSINGS

Single discs, 1-20. Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. NEUMANN STEREO/MOno Lathes. We cut for many Studios UK/OVERSEAS. SAE list.

PO-Box 3, Hawk Street, Carnforth, Lancs.
Tel. 2273
182

\star PHONE YOUR
\star
CLASSIFIED ADVERT
TO
ALLAN PETTERS
01-2618508
$\star \quad 01-2618423$

The Shop Window for the Very Best.

TOSHIBA VALVES		Typo	$\begin{gathered} \text { Price } \\ \operatorname{Each}(p) \end{gathered}$	Type	$\begin{array}{r} \text { Price } \\ \text { Each }(p) \end{array}$		integrated CIRCUITS	
Type OY87	rice 4 p 30.0	AD149	40	80124	75			$\underset{\substack{\text { Price } \\ \text { Each }}}{ }$
DY802	30,0	AD161	38	80131	45		taA550	49 p
${ }_{\text {fCC }} \mathbf{8 2}$	2\%.0	AD162	34	8 B 132	39	PA148	TAA700	
EF80	29.5	AF114	24	8D160	. 39	8A154/201	tbaizoas	51.00
EF183	34.5	AF115	21			${ }^{8 Y 4} 26$	tbalzosa	
EF184	34.5	AFt16	22	80237	52	${ }^{8 Y 127 ~ 12}$	TBA4800	
EH90	35.5	Af117	19	80×32	£2.40	$8 Y 199$ $8 Y 206$	T8A5200	c2.35
${ }^{\text {PCOPOO}}$	24.5	${ }_{\text {AFI }}^{\text {AF }}$	5	AFTEO	15	$8 \mathrm{BY238}$ 25	T8A5300	${ }_{\text {c1. }}^{\text {c1. }}$
${ }^{\text {PCCC89 }}$	${ }^{40.0}$	AFI78	45	${ }_{8 F / 67}$	20	OA90 6	TBA5400	
		AF180	45	af173	20	OA202 7.5	tBabool	cies
${ }_{P C \text { CFF6 }}$	37.0	AF181	45	8F178	15	IN60/OA91	TBA9200	c1,50
PCFEOO	42.0	AF239	40	日Fi3a	40	NEW TOSHIBA TUBES	taag90a	${ }_{52} 2.90$
PCF802	40.0	AF240	6	111750	${ }^{31}$	19"A49/191X 248.95'	tca2700	¢2.90
PCLS2	39.0	BCl^{107}	11	${ }^{\text {affi81 }}$	32	${ }_{20-5100 J 822}$	ETTR6016	¢2.00
PCLS4	390	${ }^{\text {ACCOB }}$	10	8 FF 184	${ }^{25}$		76013ND	${ }^{5150}$
${ }^{\text {PCuss }}$	44.5	${ }_{8 C 1095}$	${ }_{14}$	EF165	5	EHT MULTIPLIERS Mo	Chrom	(BrC)
PCLas	41.0							Each
PFL200	89.5	BCLIGA	19	${ }_{\text {EF } 196}$	${ }_{10}{ }^{\circ}$	$2 \mathrm{HD} 950 \mathrm{MK1}, 960$		¢1.70
	55.5 25.0	${ }_{\text {BC11 }}$	14	${ }^{\text {af1 }} 197$	12			C1, 85
${ }^{-1504}$	25.9 64.5	${ }_{80}^{8 \mathrm{Cl} 1258}$	25	${ }^{815198}$	23	2 TAK 1500 ($23^{-\frac{4}{4} 24^{-} \text {) }}$		${ }_{\text {el }} 1.85$
PL508	67.0	EC132	25	${ }^{\text {af }} 200$	25			c2.00
PL519	11.50	${ }^{\text {ECL3 }}$	15		${ }^{30}$	EHT MULTIPLIERS - Coid	OUR	
	35.5	${ }^{\text {8C3 }}$	19	-	23	HTAQ ITT CVCL 28		c4. 50
${ }^{\text {Pr } 800}$	33.0	${ }_{8 C 142}$	${ }_{23}^{26}$	${ }_{8 F 3}{ }^{\text {P28 }}$	34 38	ITN GEC/Sobell		C4.50
PY500A	85.0	${ }_{8 C 143}$	25		28 35	11 TAZ GEC 2110		C4.85
SEMI CONOUCTORS		8 C 147	11	Bf355	54	${ }^{111 \text { TBO Philips } 550}$		${ }^{\text {c. }}$
$T_{\text {Trpe }}$	Price	BC147A	11	BFx86	28	3TCW PYe 691/693		
	Each (p)	${ }^{\text {BC148 }}$	10	BFY50	19	1 TH Decca 30 Series		f4.50
AC127		BC149	10	BFY52	20	11 TAQ Decca 'Bradford'		c4.50
${ }^{\text {A C12 }} 18 \mathrm{k}$		${ }^{86} 153$	15	Bs552	${ }^{36}$	TTCU Thorn 3000/3500		f5.00
	25	${ }^{\mathrm{BCL} 54} 5$	15	B7106	${ }^{\text {c1 }} 120$	11 HAA Thorn 8000		
${ }_{\text {AC }}$ (5151	20	${ }_{8 \text { BC158 }}$	10	${ }_{\text {Butio }}$	c1.95	11 HAB Thorn 8500		44.25
AC154	18	8 C 159	11	\#U208		PRICES SUBJECT TO 8\% V.A.T. Alt goods subject to settiement discount of $5 \% 7$ days and 2% monthty No postage charges or minimum order values. Wrize or phone for full detalls now.		
	${ }^{18}$	${ }_{\substack{8 C 1788}}^{8 C 173}$	88		30 45			
AC176	22	BC1822	12	0 C 71	15			
${ }^{\text {AC187 }}$	19	BC183L	12	-C72	16			
${ }_{\text {AC188 }}{ }^{\text {AC187\% }}$	24 17	${ }_{\substack{8 C 187 \\ \mathrm{BC} 2145}}$	26 15 15	R20088 R2010	¢2.00 E2.00			
AC18BK	26	${ }^{\text {8C328 }}$	28	RCAI6334				
AD142	45	вС337	19	RCAI6335	80			

omPrices, Quality and Service.

B. BAMBER ELECTRONICS
 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 $10 E$
 TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

ELECTROLYTIC CAPACITORS AXIAL LEAD AND SINGLE ENDED
MFD 6.3 V 10 V 16 V 25 V 35 V MFD 6.3 V 10 V 16 V 25 V 35 V 50 V $\begin{array}{lllllll}222 & 30 p & - & - & - & - & 40 p \\ 33 & - & 30 p & 35 p & 40 \rho & 40 p & 45 p\end{array}$
 $\begin{array}{llllllll}120 & 35 p & 40 p & - & 45 p & 60 p & - \\ 330 & 40 p & 40 p & -1 & 50 p & 75 p & - \\ 340 & 40 p & 45 p & 60 p & 75 p & 95 p & 95 p\end{array}$ $\begin{array}{lllll}330 & 40 p & 45 p & 60 p & 75 p \\ 470 & 45 p & 60 p & - & 95 p \\ 1000 & - & 95 p & 95 p\end{array}$ $1000-$

Trede enquiries welcome for quantity

MAINS TRANSFORMERS

 TYPE $10 / 210-0-10 \mathrm{~V}$ approx. RMS TYPE 125BS Approx. 125 V at 30 mA ${ }_{7}^{65 p}{ }^{\text {Pr }}$TYPE 72703400 V at 10 mA . 200 V at $5 \mathrm{~mA}, 6.3 \mathrm{~V}$ at 400 mA . $£ 1.25$
TYPE 18/8 18 V a 8 A . $£ 4.50$ each
$\mathrm{TYPE}_{\mathrm{E} .00} 16 / 616 \mathrm{~V}$ at 6 A .45 V at 100 mA .
TYPE
TYPE $28 / 428 \mathrm{~V}$ at 4 A . 125 V at 500 mA TYPE 129400 V at $20 \mathrm{~mA}, 200 \mathrm{~V}$ at 10 mA .6 .3 V at 500 mA . $£ 1.25$ TYPE 70462 250-0-250V. 50-0-50V. 6.3V. $\mathbf{£ 1 . 7 5}$

RADIOSPARES 500-WATT AUTO TRANSFORMER, 100/110/150/200 $220 / 240 / 250 \mathrm{~V}$ rapped input and output.

MAINS ISOLATING TRANSFOR:MER, 375 VA , tapped primary, 240 V output. new. £6.00
MAINS ISOLATING TRANSFORMER. (ex equip), in metal cases, totally enclosed. tapped mains input, $110-$
240 V etc. output 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ 240 V etc. ${ }_{\text {at }}^{0.5 \mathrm{~A} \text {. } £ 11.00} \mathrm{l}$
 at 3 A
carriage E .
+

MISCELLANEOUS MAGNETIC DEVICES PROGRAM9 MERS. contain 9 microswitches with 9 adjustable drums for period switching many switching apolications $£ 1.00$ each ITT HIGH-GRADE ELECTROLYTICS. 6800 mfd at 25 V . screw terminals. complete with capacitor clip for vertical mounting. 50p each (quantity discount available).
PLESSEY ELECTROLYTICS, 10,000 mfd at 63 V . size $115 \times 51 \mathrm{~mm}$. 75 p each. MULTICORE CABLE, $\frac{1}{2}$ " dia. PVC covered, in. 22 ft . lengths with plug and screened +1 twin screened (ideal mobile screened lead) $£ 2.10$ each
TWIN HEAVY DUTY CABLE, PVCcovered, $50 / 0.25 \mathrm{~mm}$. 15p per metre or
CURLY
£10.20 CURLY LEADS, 4 -core telephone-type
18 in . closed, approx. 5 ft . extended, 2 for 18 in . closed, approx. 5 ft . extended, 2 for 20p.
MANUFACTURERS AND COMPONENT RETAILERS WEASE NOTE:
We have large stocks of electrolytic all at very competitive manufacturers, quantities.
Sand S.A.E. for latest list by return.
VALVES
Qav03/10 (ex equipment) 75 peach 2C39A (ex equipment) £1.00 each aOV02/6 (ex equipment) $£ 1.00$ each $4 \mathrm{Cx250B}$ (ex equipment) $£ 2.10$ each DET- 22 (ex equipment) 2 for $£ 1.00$ EF80 (new) 25p, EZ81 (new) 25p

PYE RADIO-TELEPHONE EQUIPMENT
Cambridge. Westminster, Motofone, Europa series. Send s.a.e. for full details.
stating requirements, frequency, channel stating requirements, frequency, channe spacing. etc.

TERMS OF BUSINESS: CASH WITH ORDER. ALL PRICES INCLUDE - POST \& PACKING (UK ONLY) EXPORT ENQUIRIES WELCOME. PLEASE ADD 8\% VAT. CALLERS WELCOME BY APPOINTMENT MINIMUM ORDER £1 PLEASE ENCLOSE STAMPED ADDRESSED ENVELOPE WITH ALL ENOURIIES

PYE MF TRANSMITTERS

$2 \times 58254 \mathrm{Ms}$ in final. VFO 340 to 540 kHz (can be modded upward). $2 \times$ 58254 Ms in Modulator, cw/mew (can be modded for AM), units complete. but and PSUl brand new, boxed 52000

PLUGS AND SOCKETS

 TV PLUGS (metal type) 6 for 50 TV SOCKETS (metal type) 50p TV LINE CONNECTOAS 5 for 50p PL259 (PTFE) PLUSS 50p each or 5 for $£ 2.25$SO239 (PTFE) SOCKETS 50p each or 5 for $\mathbf{£ 2} 25$
20p set (1 1 EP PLUGS and SOCKETS 40p set
sockets sold separately at

25p each DIN SPEAKER SKTS. 2 -pin, 4 for 30 p ANDREWS 44AN FREE SKTS (NTYPE) for FH $4 / 50 \mathrm{~B}$ or $\mathrm{FH} J 4 / 50 \mathrm{~B}$ cable £1.00 each
SO239 BACK-TO-BACK SOCKETS f1.25 each BNC INSULATED SOCKETS (single hole type) 65 p each

HIGH-QUALITY SPEAKERS

$8 \frac{3}{3} \mathrm{in}$. \times 6in. elliptical, 2 in . deep, 4 ohms inverse magnet, raed up to 40 Watts, £1.50 each, or 2 for $£ 2.75$ (quantity discount available).

ELECTRONIC IGNITION

FOR YOUR CARI

Cut petrol costs by up to 15%. Install Electronic Ignition in your car in minutes. Reduces petrol consumption, increases overal performance. Prolongs contact ing so much easier Each unit (British manufacture) tested and quaranteed for years/ 50.000 miles. IMPORTANT STATE POSITIVE EARTH or NEGATIVE EARTH when ordering. $\mathbf{£ 1} 1.80+$ VAT (94p). Post paid.

TENLESTEQUIPMENT

 FENLAND $3+3$ AUDIO MIXER, 6 -channel. separate bass, treble, andslider fade on each slider fade on each channel. Mint RACAI $125 \mathrm{MHz}_{\text {L }}$ RACAL ${ }^{2}$ MUENCY METER DIGITAL FREOUENCY METER. Type $801 \mathrm{R} / 2$, new condition. $£ 2$ sensitivity, 8 -digit readout
nen ROHDE AND SCHWARZ SIGNAL GENERATOR. SMAF, $4-300 \mathrm{MHz}$. AM/FM, attenuation to 0.05 microvolt. deviation and modulation metered. complete, but needs attention. $£ 300.00$ ROHDE AND SCHWARZ FREQUENCY DEVIATION METER FMV. AM/FM, $20-300 \mathrm{MHz} £ 300.00$ MARCONI UHF SIGNAL GENERA TOR.TF762B. $300-600 \mathrm{MHz}$. $£ 50.00$ MARCONI STANDARD SIGNAL GENERATOR.
30 MHz . 100.00
MARCONI AMPLITUDE MODULA TOR.TF1 102. E35.00
MARCONI VALVE MILLIVOLTMETER. TF899A, £30.00
MARCONI STANDARD SIGNAL GENERATOR. TF144H. 10 kHz 7.2MHz. £195.00

WAYNE KERR VHF FREQUENCY STANDARD. 12 -channel. E 20.00 AIRMEC BRIDGE HETERODYNE AIRMEC SIGNAI GENER
Type $20130 \mathrm{kHz}-30 \mathrm{MHz}$ f75 RATOR HEWLETT PACKARD UHF SI GENERATOR. Type 614A. 8002300 MHz . $\mathbf{£ 1 7 5 . 0 0}$
SOLARTRON DIGITAL VOLTMETER. Type LM1420/2, with "TRUE RMS AC UNIT". $10 \mathrm{mV}-1000 \mathrm{~V}$, 5 -digit display. new condition. £400.00
SIGNAL AND SCHWARZ POWER SIGNAL GENERATOR. SMLM. $30-$ GRESHAM LION 625-LINE PULS BAR/STAIRCASE GENERATOR £25.00
TEKTRONIX 524D SCOPE. DC$10 \mathrm{MHz} . £ 70.00$

ARTICLES FOR SALE CONT

SURPLUS BARGAINS

EASTER LINE ANGUS
chart recorders. model A601R
$500-0-500 u$.a. f.s.d. 110 v AC.
as new, with manual. $£ 35.00$
(carr. f1).
Kent Chart recorders single point $\mathbf{£ 2 0}$. multipoint $£ 30$ ($£ 1.50$).
A.E.I. 4-stage sequential transistorised electronic timer, many applications. inc 3 channel auto-light flasher (750 watts 240 v). Circuits provided for fully inter240 v). Circuits provided for fuly inter-
rupted and dim/bright flashing. Modification rupted and dim/bright flashing. Modification instructions
only (50 p).
Only (50p)
Printed circuit Kits. $\mathbf{£ 1 . 2 5}$ (30p).
Printed circuit Kits. $£ 1.25$ (30p)
Instant Heat Soldering Irons, 240 v 100 watt Instant Heat
$\mathbf{£ 2 . 6 5}$ (30 p).
Veedor root 4 digit resettable counters 115 v AC £1. 25 (10p).
AMPEX VIDIO Tape $2^{\prime \prime} \times 1670^{\prime}$. New f9
(50p)
Ferric Chloride 25p lb (20p), 10 lbs for £2.50 (45p)
TELEPRINTER PAPERS and TAPES, 8 $\frac{1}{2}^{\prime \prime}$ wide, 3 -ply carbon, buff manilla 60 p (35p) ditto 7 -ply NCR, no carbon required $£ 1$ (35p). TAPES, $\frac{7}{8}{ }^{\prime \prime}$. white $£ 2$ per 8 rolls (65 p).
 $11 "$ buff $£ 2$ per 10 rolls $(65 p$).
Friden, etc. $£ 2$ per 7 rolls (65 p).
Friden, etc. $£ 2$ per 7 rolls (65 p).
B \& VHF change over coaxial relays 50 v B \& R VHF change over coaxial relays 50 v
DC operating coil $2 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{1}{4} \times 2 \frac{1}{4}^{\prime \prime} \mathbf{~} 1.25$
 (15p).
35 watt Mains transformer outputs 2, 3.6. 20. 24, 27, 30, £1.25 (25p)

All prices plus (p\&p) total plus VAT 8%.
Large S.A.E. for list.
CASEY BROS, 235 Boundary Rd, St Helens, Lancs.

ENAMELLED COPPER WIRE

s.w.G.	1 lb Reel	
-	${ }_{\text {f2 }}^{\text {f2. } 15}$	${ }_{\text {c1i.20 }}$
20-24	E2.20	c1.25
- 3 -35-39	¢ $\begin{aligned} & \text { f2.25 } \\ & \text { 2 } 2.35\end{aligned}$	${ }_{\text {f11.38 }}$
35-40	¢2.50	¢1.45

All the above prices are inclusive in U.K.
COPPER SUPPLIES
102 Parrawood Rd., Withington, Manchester 20 Telephone 061-224 3553

MANUFACTURERS OF AUDIO MIXER SYSTEMS NEW PEAK READING - VU METER SYSTEMS

Which glves the advantages normaliy only assoclated with PPM systems at much lower cost.

21/25, Hart REF. W.W.W. Benieot, Estex.
(Estabilshed 23 yeara)
$(43$

MINI ACCUMULATORS

volt MULTI-USE Sealed Lead Acid Rechargeable Cells.
Size L450-1.4" $\times 1.1^{\prime \prime} \times$ $0.44^{\prime \prime}$.
3 for $£ 1.85$ inc. P. \& P.
Size GA2-1.7" $\times 1.3^{\prime \prime} \times$ Size
$0.5^{\prime \prime}$.
3 for $\mathbf{E} 2.35$ inc. P. \& P. GARFIELDS, 269 Rye Lane, London, SE15 14017

MINIATURE
 FM/VHF TRANSMITTER

KIT REQUIRING FIVE SIMPLE
SOLDERED SOLDERED
CONNECTIONS. CONNECTIONS.
SIZE $2^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$. IZE $2^{\prime \prime} \times 1^{\prime \prime} \times$.
RANGE UPTO. 500 YARDS.

COMPLETE WITH MICROPHONE
AND BATTERY.

EXPORT ENQUIRIES WELCOME. OUR PRICE COMPLETE
 £6.75

Return post delivery. Not licensable in U.K. S.A.E. for further details: EES, THE AIRPORT, EXETER.

PM
 ELECTRONIC SERVICES

CRYSTALS FOR PROFESSIONAL AND AMATEUR USE

We can supply crystals to most commercial specifications. with an express service for that urgent order. For the amateur we carry a large stock of the more popular frequencies, backed by a quick service for those "Specials"
Please send SAE for details or telephone between $4.30-7 \mathrm{p} . \mathrm{m}$. and ask for Mr. Norcliffe.

7A, ARROWE PARK ROAD, WIRRAL, MERSEYSIDE L49 OUB.
Tel: 051-677 8918 (until 7 p.m.)

Going DIGITAL?

PLANS AND DATA
Module 1: Crystal Counter-TImer, Frequency Meter, event Counter and stopclock, 4 Gelger Circult. 4 Diglts. 85 p . Module 2: FET Multimeter-volts, current, capacitance, eslstance, a crystal-calibrated audio Also TV Dopplar Detection, 68p. Mul
Alarms (Intruder, Baby, Optical). 75p. 10p P. \&P. orders under 52.
R \& E Publicatlons, Highlands, Needham Market, Suffolk IP68DR.

Designers of advanced circuits since 1969. 4602

WE SELL

 CONSTRUCTION PLANSPhonevision, Television Camera, Police Radar Detector, Voice typewriter, Scrambler, Answering machine

COURSES

Detective-Electr, $\$ 36.50$. Security-Electr, $\$ 43.50$. Telephone Eng, $\$ 59$.

OVER 750 ITEMS
Ask for Catalogue-Alrmalled $\mathbf{\$ 0 . 7 5}$
T. STRIK,

Postbox 618, Rotterdam, Holland.

SALES AND SERVICE ADVERTISEMENTS

£6.08 per single column centimetre. 01-261 8508

SUB-MINIATURE MAINS TRANSFORMERS SCN-0-240V/12V-0.12V, $50 \mathrm{~m} / \mathrm{a}$ max. 28 mm W , 20 mm H. 26 mm D 90p each. PHONO LEADS
Phono Plug to Phono Plug, Single Screened Grey
Phono Plug to Phono Plug, Single Screened Grey
Cable, Length 2 Yards \ldots. Min. 5 for 90 p
(Single Sockets available with above Sp each)
CERMET TRIMMERS
Morganite Type 81E, SK ohms ... Min. 5 for 61.00 (Mar

LI'NWAY ELECTRONICS
843 Uxbridge Road, Hayes End, Middx. UB4 8HZ,
Tel. 01-573 3677
[4626

ELECTRONIC KITS

requires reliable firms well connected in own markets for handling exclusive sales in countries where no organisation yet exists.

Send enquiries to:
AMTRON

Casella Postale 4160, Milano, Italy

Build a mixer to your own
 spec. using our easy to wire
 ALDID MDDLLES
 For full details contact Richard Brown at Zero 88, 115 Hatfield Road.

St. Albans, Herts, AL1 4JS Tel. 63727

CRYSTALS Fast delivery of prototypes and production runs. INCLUDING :	
	ystals in TOS pack
${ }_{\text {Buckm }}$	crkstals and mobile radio crystals
As	neral purpose crysta
$\begin{gathered} \text { Inte } \\ 29 \end{gathered}$	Quartz Devices Limite et Street, Crewkerne, Somerset. (046031) 2578 Telex: 46283

CARBON FILM RESISTORE-E12 SERIES
High Stab. IW OR IW 5\%. 1p, 75p/100, e5.50/1000 $10 E 12$ RES 10 TOR KITS $22 \Omega-1$ M Ω E12 SERIES

Regulated power EOUPDIY modules. New In original packlng. ATC $24 \mathrm{~V} / 2 \mathrm{p}, \mathrm{A}$, s10. Fenlow $\pm 15 \mathrm{~V} / 1 \mathrm{~A}$, with
 Marconi D-A Converters TF2402, E22. Code Convertor Const Temip. Water clirculatore type F-Junior (± 0.10) Used, E50. Transformers $50 \mathrm{~V} / 30 \mathrm{~A} £ 20.7 .5 \mathrm{KV} / 0.015 \mathrm{~A}, \mathrm{E7}$, Honeywell Chart Recorders fiss. Solartron VF252 Pre-
clsion Millivoltmeter R35. Solartron CA512 V.S.W.R. Indlcators $£ \pm 5.400 V, 250 \mathrm{~mA}$ Benth Power Supplies $£ 15$. Hatfield Ins. PUM1/16 400 cycle Generators E3v. Mulrhead 2PH. Dec. Osc., $\begin{aligned} & \text { £3e. Many other ltems avallable. } \\ & \text { Please add } \mathrm{f} 1 \text { carriage and } 8 \% \text { VAT. }\end{aligned}$ METAL FILM KITS ALSO AVAILABLE, CATALOGUE No. 3 (Approx. 2000 Parte) 24p. C.W.O. P. \& P. 10p on orders under $£ 5$. Overseas at cost.
B.H. COMPONENT FACTORS LTD
Dept. WW Cheddington Road PITSTONE,

S.I.G.A. TRANSFORMERS

\star We offer a comprehensive coil winding service including Laminated. C-Cored and Toroidal Transformers for many applications.

* Large or small quantities at competitive price and delivery.
\star S.I.G.A. Toroidal A.W. range for Audio Power Supply Units includes

REF SECONDARY WINDINGS

O.D. (cms.) HT.

$2840-45 \mathrm{v} 1 \mathrm{~A} \mathrm{rms}$	9.5×4.4	66.69
285 25-0-25v 2A rms	10.8×5.1	£8.63
291 33-0-33v 4A: 25-0-25v 0.2A rms	14.0×5.7	£14.57
$3010-33 \mathrm{v} 2 \mathrm{~A}$: 0-33v 2A rms	12.1×4.4	£10.47
Primaries: $0-235 v 50 \mathrm{~Hz}$, screened.	Prices include P\&	and VAT.
Dimensions are approximate.	Quantity discount	available.

Sunderland Road, Sandy, Beds SG19 10Y. Tel: Sandy (0767) 81266.

SINTEL

Data and circuits
supplied with order supplied wille separately (send s.a.e.)
"Economy DL704 Red $0.3^{\prime \prime}$ LED 7 seg display
0L707 Red 0. $3^{\prime \prime}$ LED 7 seg display C. Anode DL707 Red O.3"LED 7 seg display C. Anode
FND5000 Fairchild Superdigit . $25^{\prime \prime} 7$ seg LED Red C.C $£ 1.35$ NSN33 Type $12^{\prime \prime} 3$ digit LED C. C. Red fil 85 Red C.C. $£ 1.15$ NK50250 Ale

75492 LED dig driver $£ 1.02 ; 75491$ quad seg driver
(9.30am to 7 pm) g send s.a.e. for list.
$32768 \mathrm{kHz}\left(2^{16}\right)$ Hid preision crystal with CMOS to provide KOcps for clocks (circuiit provided) 19SK Cavculator Keyboard: 18 keys plus On/Off switch. $£ 3.90$ $\begin{array}{ll}\text { SOLDERCON IC Socket Pins } \\ \text { (suplied in strips of too pins) } & 100 \text { pins for } 500 \\ 300 \text { pins for } £ 1.50\end{array}$ (supplied in strips of 100 pins)

1300 pins for $\mathrm{f1.50}$ Instructions included 3000 pins for $£ 10.50$ Nylond s.a.e. sorts available-samples encl. with any pin order. NCA CNOS at new low prices-send s.a.e. for stock (price list,

ADD VAT at 8\%-Add 10p p.\&D, for orders under $\mathrm{E}_{2} 203$
SINTEL, 53 A ASTON STREET, OXFORD Tel: 086543203

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone :
$01-445 \quad 0749 \quad 01-445 \quad 2713 \quad 01-958 \quad 7624$
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.

We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

PRECISION

POLYCARBONATE CAPACITORS

All High Stability-Extremoly Low Leakage					
440 V AC ($\pm 10 \%$)		63			
$0 \cdot 1 \mu \mathrm{~F}\left(1 \mathrm{t}^{*} \times \frac{1}{}{ }^{*}{ }^{*}\right)$	${ }^{50 p}$		$\pm 1 \%$	$\pm 2 \%$	\pm 5\%
	59p	$0.47 \mu \mathrm{~F}$	${ }^{56}$	46p	${ }^{36} \mathrm{p}$
$0 \cdot 25 \mu \mathrm{~F}$ ($1 \mathrm{l}^{*} \times \mathrm{il}^{\prime \prime}$	627	$1.0 \mu \mathrm{~F}$	68 p	56p	48 p
$0.47 \mu \mathrm{~F}$ (1)"× ${ }^{\text {\% }}$	71 p	$2 \cdot 2 \mu \mathrm{~F}$	80 p	6.5	55 D
	750	$4 \cdot 7 山 \mathrm{~F}$	\&1.30	21.05	85 p
$0 \cdot 68 \mu \mathrm{~F}$ ($2^{\prime \prime} \times{ }^{\text {a }}$)	80 p	$6.8 \mu \mathrm{~F}$	81.64	81.29	81.09
	91p	$10 \cdot 0 \mu \mathrm{~F}$	22.00	81.60	21.40

 TANTALUM BEAD CAPACITORS-Values available: $10 \cdot 0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22 \cdot 0 \mathrm{FF}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; 33.0 FF at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}$ at 3 V . AlL at 10p each, 10 for 95 p , b0 for 84.
TRANSISTORS $\mathrm{BC107/8/9}$
$\mathrm{BC114}$ $\mathrm{BC153/7/8}$
$\mathrm{BC182/182L}$
 POPULAR DIODES 1N914 6p, 8 for $45 \mathrm{p}, 18$ for 90 p 24 for. $11.00 ; 1 \mathrm{~N} 41485 \mathrm{p}, 6$ for $27 \mathrm{p}, 12$ for 48 p ; 1 N 4001
 $6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}$,
$15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$. All at 7 p each, 6 for $39 \mathrm{p}, 14$ for 84 p. BPECLAL OFFER: 100 Zeners
for 550 . SESISTMO
RESIBTORS-High atability, low noise carbon film 5%. $2 \cdot 2 \mathrm{M} \Omega$. ALL at 1 p each, 8 p for 10 of any one value, 70 p for 100 of any one value. SPECLAL PACK; 10 of each value 2.2Ω to $2 \cdot 2 \mathrm{M} \Omega$ (730 resistors) 25 .
SHILCON PLABTIC RECTIFIERS- -1.5 amp. brand new
wire ended D027; 100 P.I.V. $7 p$ (4 for 26 p) 400 P.I.V. 8 p wire ended
(4 for 30 p).
BRIDGE RECTIFIERS - $21 \mathrm{amp}, 200 \mathrm{~V} 40 \mathrm{p}: 350 \mathrm{~V}$ 45p; 600 V 55 p .
SUBZINLATURE VERTTCAL PRESET8-0.1W ONIV. $2.2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$,
$100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 680 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega$.
PLEASE ADD 10p POST AND PACKING ON ALL COST OF SEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERS.
Bend S.A.E. for lista of additional ex-siock items.
MARCO TRADING (Dept. DII) Tha Oid School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5

Illustrations in Applied Network Theory
F.E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.

1973240 pp., illustrated 040870425 X cased $£ 5.00$ 0408704268 limp £2.50
Obtainable through any bookseller

Newnes-
 Butterworths

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

EXPRESS
PRINTED CIRCUITS - ROLLER TINNING GOLDPLATING - FLEXIBLE FILMS. ETC Electronic \& Mechanical Sub-Assembly Co. Ltd Highfield House, West Kingsdown Nr. Sevenoaks, Kent Tel: West Kingsdown 2344

EXCLUSIVE OFFERS

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

		Widt ${ }^{\text {c }}$	Abmersi		
Ref. 2	inches	in ${ }^{\text {inches }}$	in inches	Space in inv.	
CT	${ }^{69}$	21	13	68	810.00
${ }_{\text {OR }}^{\text {ct }}$	${ }_{69}^{30}$	60 30	${ }^{36}$	42	¢122.00
${ }_{\text {DM }}$	70	${ }_{20}^{30}$	${ }_{26}^{20}$	138	
FA	85	22	36	160	
FC	52	25	22	47	
FD	${ }^{40}$	22	24	72	814.00
${ }_{\text {FGF }}$	11	19			
${ }_{\text {FH }}$	15	21	17	11	
FJ	10	21	15	12	21
FL	84	22	17	80	0
LL6	11	21	17	9	
LL7	16	20	12	14	¢15.00
LL8	10	20	10		215.00
LL9	17	21	17	14	¢15.00
	${ }^{\text {Alao }} \mathrm{Co}$	tmin	mutit	Cabl	

Our Height Channel Raek Panel
Ref. in inches Desthen

COMPUTER HARDWARE

\star CARD READER 80 col. 600 c.p.m. \star PRINTER, High speed 1000 lines p.m. 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARB!S

ORGANFORD-DORSET

Wilmslow Audio

 THE firm forspeakers!

Baker Group 25, 3, 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm

 7.75 Baker Deluxe, 8 or 15 ohm 88.50 Baker Major. 3 or $15 \mathrm{ohm} . . .$. $\mathbf{£ 1 0 . 7 5}$ Baker Regent. 8 or 15 ohm 88.00 Baker Superb. 8 or 15 ohm $\mathbf{E 7 . 7 5}$ Celestion HF 1300 Mk II Celestion MH 1000 horn. 8 or 15 ohm EMI $13 \times 8,3,8$ or 15 ohm EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} .8 \mathrm{ohm}$ EMI $13 \times 8.350 .8$ or 15 ohm EMI $13 \times 8.350 .8$ or 15 ohm.EMI 13×8.20 watt bass 8 ohm EMI 13×8.20 watt bass 8 ohm $\ldots .$.
EMI $B \times 5.10$ watt d / c. roll/s 4 or 8 ohm EMI B $\times 5.10$ watt d / c. roll/s 4 or $8 \mathrm{ohm} .$.
ELAC $59 R M 10915 \mathrm{ohm}, 59 R M 1148 \mathrm{ohm}$ ELAC 59RM 10915 ohm 5
ELAC $6 \frac{1}{2^{\prime \prime}} \mathrm{d} / \mathrm{c}$, roll/s 8 ohm Fane pop 70
Fanep $\operatorname{l.}$................................... $£ 15.50$
Fane Crescendo 12 A or B, 8 or 15 ohm
Fane Crescendo 15, 8 or 15 ohm
Fane Crescendo 18,8 or 15 hm
Fane 701 Horn
Fane 801T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s $8 \mathrm{ohm}$.
Goodmans 8P 8 or 15 ohm $\mathbf{E 5 . 0 0}$
Goodmans 10P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12P-D 8 or 15 ohm
Goodmans 12P-G 8 or 15 ohm
Goodmans Audiom 1008 or 15 ohm
Goodmans Axent 2008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twin Axiom $8^{\prime \prime} 8$ or 15 ohm
Goodmans Twin Axiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27
Kef B1 10
Kef B139
Kef T15
Kef DN12
Kef DN13
Richard Allan CG8T 8 ohm
STC4001G Super Tweeter
Wharfedale Super 10 RS/DD
Castle Super 8 RS/DD
Tannoy $10^{\prime \prime}$ HPD
Tannoy 12" HPD
Tannoy $10^{\prime \prime}$ HPD
Radford BD25
Radford MD9
Radford HD3
Radford FN 12
Radford FN 12
Baker Major Modul
Baker Major Module . . .
Goodmans DIN 20 (4 ohm)
Goodmans DIN 20 (4 ohm)
Helme XLK25
Helme XLK30
Helme XLK50
Kef kit I
Kef kit III
Peerless 20/2
Peerless 20/2
Peerless 30/2
Peerless 30/2
Peerless 20/3
Peerless 50/4
Peerless 3/15
Richard Allan Twinkit
Richard Allan Twinkit
Richard Allan Triple 8
Richard Allan Triple 8
Richard Allan Triple 12
Richard Allan Super 12
Wharfedale Linton 2 kit
Wharfedale Glendale 3 kit
Wharfedale Dovedale 3 kit
PRICES INCLUDE VAT

Cabinets for PA and HiFi. wadding. Vynair etc. Send stamp for free booklet "Choosing a Speaker" FREE with orders over $\mathbf{f 7}$-HiFi Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage: Speakers 38p each, $12^{\prime \prime}$ and up. 50peach. tweeters and cross-overs $25 p$ each, kits $75 p$ each ($£ 1.50$ pair)

WILMSLOW AUDIO Dept. WW

Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount HiFi, PA etc: 10 Swan Street. Wilmslow. Radio, HiFi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel: (Loudspeakers) Wilmslow 29599, (HiFi etc.) Wilmslow 26213

VIDEO Hire

EQUIPMENT، EDITING, OPERATORS‘ STUDIO FACILITIES ETC.

THE MOST EXPERIENCED VIDEO COMPANY IN THE BUSINESS

R.E.W.
R.E.W. HOUSE,
10, 12 HIGH STREET,
COLLIERS WOOD,

LONDON, SW19 2BE PHONE: 01-540 9684

J. LINSLEY-HOOD

New Phase Locked Loop F.M. TUNER (As per Wireless World Annual). Basic kit of parts

* £29.95 (tax £2.40) Available in pack
form as follows:

Pack 1. Res. and capacitors $\mathbf{5 3 . 0 0} 2$. Semi conductors and I.C" Pack 1. Res. and capacitors $\mathrm{f3.00}$ 2. Sami conductors and 1.Cs
$\mathbf{f 6} .25$ 3. Tuner head $\mathrm{f5} 50$ 4. P.C. boards and drawings $\mathbf{~} 1.50$ f6.25 3. Tuner head f5.50 4. P.C. boards and drawings $\mathrm{f1.50}$ 5. Teask finish slever ma.00 8. Meter and muting modula $\mathbf{f} \mathbf{2} .50$ 9. Regulated power supply $£ 5,0010$. Stereo decoder. Ready made $£ 7.50$ 11. Push button and trimmer pack $£ \mathbf{2} .50$ (*Excludes packs No. 8, 10 and 11.) Tax extra.

TELERADIO ELECTRONICS
325 Fore Street, Edmantom, London N9 OPE. 01-807 3719
SA.E. for further details of above and other Linsley-Hood superior low distortion designs.

SOWTER TRANSFORMERS
 FOR SOUND RECORDIMG AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authoritics and were estab- lished in 194 . Early deliveries. Competitive prices. Large or small quantities. Let us quoke.
 Transformer Manufocturers and Desizners 7 Dedham Place, Fore Street, Ipswich IP4 UP

WORLD RADIO TV handBook 1975
 A Complete Directory of International Radio \& TV
 Price $\mathbf{E 3 . 7 0}$

THE AUDIO HANDBOOK by G. J. King. Price $\mathbf{6 5 . 1 5}$
COLOUR TELEVISION SERVICING by G. J. King. Price 84.65
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. Price $£ 3.50$
110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CON STRUCTOR by R. M. Marston. Price £ 1.95
DIGITAL COMPUTER STRUCTURE 8 DESIGN by R. Townsend. Price $\mathbf{£ 2 . 8 5}$ TOWERS' INTERNATIONAL TRAN SISTOR SELECTOR by T. D. Towers. Price $£ 3.15$
VIDEOTAPE RECORDING by J. F. Robinson. Price $\mathbf{6 5 . 0 0}$
SLIDE-TAPE \& DUAL PROJECTION by R. Beaumont-Craggs. Price $£ 3.20$ REFERENCE DATA FOR RADIO ENGINEERS by ITT. Price $\boldsymbol{E l l} 1.00$
TRANSISTOR MANUAL by G.E. Price $£ 1.30$
\star PRICES INCLUDE POSTAGE *
THE MODERN BOOK CO.
SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 1NP
Phone 7234185
Closed Sat. 1 p.m.

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH CHILTMEAD LTID.
7, 9, 11 Arthur Road, Reading. Berks.

Tel: 582605

GONDON CENTRAR Readio Storiss

TELEPHONE CABLE. Plastic covered grey 4-core coloured coded. $9 p$ per yard.
ELECTRICITY SLOT METERS (5 p in slot) for A.C. mains. Fixed tariff to your requirements. Suitable for hotels, etc. $200 / 250 \mathrm{v}$. 15A. E8.38. 20A. 69 -30. P.P. 75p. Other amperages available. Reconditioned as new. 2 years guarantee.
MODERN TYPE DESK PHONES, red, green, blue or topaz, 2-tone grey or black, with internal bell and handset with $0-1$ dial $\mathbf{~ 6 . 5 0}$. 5-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled, guaranteed. Price $\mathbf{6 5} \mathbf{2 5}$. Send s.a.e.
IO-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled. Guaranteed. $\mathbf{6 6} \mathbf{7 5}$ per unit. Send s.a.e.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed. 67.75 per unit. Send s.a.e.

The " 88 " Set. This transceiver, weighs approx. $5 \frac{1}{2} \mathrm{lbs}$. and measures $3 \frac{1}{2} \mathrm{in} . \times 5 \frac{1}{\mathrm{inn}} . \times 9 \frac{1}{\mathrm{in}}$. It is a 4 -frequency channel set $41-44 \mathrm{mc} / \mathrm{s}$. Crystal Controlled and operates from a dry battery H.T./L.T. 94/I. v. I.E. Ruben Mallory Type No. I and employs ${ }^{\circ}$ the following 14 valves: 3 A4 1 off;
 11.46 off; IT4 4
plus 75 P. \& P.

QUARTERLY CHECK METERS I5A £3.90. 20A £4:22. P. \& P. 50p.
All prices subject to fluctuation
Multi Relay Units, Group selectors, Final end selectors and Relays in stock, 20-way jack strips and tip ring and sleeve plugs. For callers only.
23 ISIE ST. (2389) LOKDON W.C. 2 Open all day Saturday

STEREO DISC AMP

10-OUTLET DISTRIBUTION AMP

PEAK PROGRAM METERS TO BS4297
 aso 200 KHz varsion for high speod copying.

Orive circuiti, $35 \times 80 \mathrm{~mm}$. tor 1 mA L.H. zero meter to BBC
EO 1477 . Goidd 8 -way edge con supplied.
 ERNEST TURNER PPM meters. scalings $1 / 7$ OR-22/ +4 . Type $642.71 \times 56 \mathrm{~mm} £ 12.60 ; 643.102 \times 79 \mathrm{~mm} \mathbf{f 1 5 . 0 0}$.
Twin movement. scale $86 \times 54 \mathrm{~mm} £ 37.00$.

PUBLIC ADDRESS : SOUND REINFORCEMENT In any public-address systern where the microphones and
 shifing the eudio specrrum fed to the speakers by a few Hertiz
the tendency to howling at reom resonance frequencies is the tendency 10 howling at room resonance frequencies is
destroyed and an increase in gain of $6-8 d B$ is possible before the onsel of feedback.
SHIFTERS IN BOXES with overload LED. shithbypass switch, BS4491 mains connectior and housed in strong diecast boxes
finished in atractive durable blue acrlic. Jack or XLR audio confinishe
neetcor
nectors.
ITher
Input imped

SHIFTER CIRCUIT BOARDS FOR WW July 1973 article
 SPECTRUM SHIFTER: variable shifte, $\mathbf{0 . 1 - 1 0 0 0 H z}$.

SURREY ELECTRONICS

 The Forge, Lucks Green, Cranleigh,Surrey GU6 7BG. (STD O4866) 5997
CASH WTTH OROER. less 5\% UK post free. add VAT

EX-GOMPUTER STABILISED POWER SUPPLIES

RECONDITIONED, TESTED AND GUARANTEED
Ripple $<10 \mathrm{mV}$. Over-voltage protection, ${ }_{120}^{\text {Riple }} 130 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. Stepdown transformer to suit about \&3. P \& P \&1.80.

PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. 240v. $50 / 60 \mathrm{c} / \mathrm{s}$. 63.50 (35p)
PAPST FANS 6; dia $\times 2$ 23 deep, type 7576
E5.00 (35p). 250w light dimmers $\in 2.70$ (15p)
TRANSISTORS ${ }^{\text {\& }}$ \& $10 \mathrm{p}_{\mathrm{p}}$
 ${ }^{\text {BFI }} 2 \mathrm{~N} 3819$ 25p. 20 pF . BF336 35 p p. 7418 dil 28p. 2 N 377 I E1.10. BDI31 40p. NE555 67p.
electrolytics
$30,000 \mu 25 \mathrm{v} ., 68,000 \mu 16 \mathrm{v} ., 15,000 \mu 30 \mathrm{v} ., 65 \mathrm{p}(35 \mathrm{p})$. $5,000 \mu 35 \mathrm{v} .40 \mathrm{p}$
$2,000 \mu$
50 v .
with 35 p (11 p).

EX COMPUTER PC PANELS $2 \times 4 \mathrm{in}$. 25 boards El (35 p).
OPCOA 7 seg led display SLA- 77 mm characters
 150 mixed 60 p (11p)
250 mixed resistors. \qquad . .6 .60 c
$\cdots 4$ forfi
.4 for fi
20A. 100 piv Si RECS
2N3055 Equiv
200 Si Planar Diodes.
SMALL ELECTROLYTICS
$2.2 \mu 10 / 16 \mathrm{v} ., 10 \mu 35 \mathrm{v} ., 50 \mu 40 \mathrm{v} ., 100 \mu 40 \mathrm{v}$., 100μ $6 \mathrm{v} ., 150 \mu 10 \mathrm{v} ., 64 \mu 10 \mathrm{v}$. 12 for 45 p (7p) PIHER PRESETS 100 m W

12 for 50 p (6p)
Postage and packing shown in brackets
Please add 8\% VAT to TOTAL
KEYTRONICS
Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 01-4788499

DIRECT ELECTRONICS LTD.

EX-MINISTRYINSTRUMENTS \& EQUIPMENT ELECTRONIC VOLTMETER CT343. Steel-case (20in. $\times 10 \mathrm{in} . \times 13 \frac{1}{2} \mathrm{in}$.D). $110-250 \mathrm{v} / 50-400 \mathrm{~Hz}$ mains. 3 in. meter 12 scales. 1.2 millivolts to 400 volts. Extemal metering and A.C. output fac's. £55.00 ($£ 2.00$). W/o case 19 in. unit only $\mathbf{£ 4 5 . 0 0}$
AF SIG. GEN. CT420 case as above. Batt op $90 / 1.5 v$ (check metered) 200 to 8.000 Hz continuous switched range. Output $4 \mathrm{v} / 5 \mathrm{k}$ ohm direct or $1 \mathrm{v} / 75 \mathrm{ohm}$ and $10 \mathrm{mv} / 0.1 \mathrm{hm}$ attenuated. 100 and 500 Hz callibrator $\mathbf{£ 6 5 . 0 0}$ ($£ 2.00$).
BC221T FREQUENCY METER in canvas carrying
MINE DETECTOR No.4A KIT No. 1 Ref: ZA27931/1. New in transit case. P.O.A.
RECT. SUPPLY UNIT No.25. All-weather type $110-250 \mathrm{vac} 45 / 65 \mathrm{~Hz}$ in. Conservative rating sonvothed $+20 \mathrm{vac} / 2 \mathrm{~A}$ screened + bias. $£ 32.50$ (f 2.00), plugs extra.
DITTO No. 19 Bench type $12 v+12 v$ (or $24 v$)dc 3/6amps $£ 25.00$ ($£ 1.50$)
CREED REPERFORATORS 7TR/3. P.O.A
TELEPRINTER TERM UNIT MARK 4 dw 299
AN Relay. New Cond. $\mathbf{~} 40.00$. Used $\mathbf{£ 3 0 . 0 0}$ AN Relay (1.00)
TYPEWRITER TELEGRAPH (used but good) 9A/9B Imperial. Rolifeed. Cased $\mathbf{£ 1 6 . 0 0}$ ($\mathbf{(5 3 . 0 0}$). uncased £12.00 (callers).
GEC REGENERATOR UNIT (No. HE31105) £3.50 (50p)
A.E.E. BITUMEN POTTED TRANSFORMERS. 110-250v Pri. Scr. 45/1 amp sec $£ 3.00$ (50p).
GRESHAM DITTO 240v Pri. Scr.270-0-270/80ma
$+\quad 45-0-45 / 40 \mathrm{ma}+6.3-0-6.3 / 2.7 \mathrm{mp}$ secs £4.50 $50-45 / 40 \mathrm{ma}$
PYE WESTMINSTER R/T CONTROL UNITS, MICS and SPEAKERS as seen (callers).

SPECIALITEM
SOUND RECORDING and REPRODUCING UNIT Type 2. Equip A8A Rack-Mounted. Ref: 10U/16873. Also substantial qty spares (Units-Gearboxes-Sapphires. etc.). Details and prices on application.
MANY OTHER ITEMS of Test equipment/Teleprinter - peripherals/Components/Meters/Connectors. etc.. in stock.
CALL ON US OR WRITE YOUR REQUIREMENTS. WHOLESALE ENQUIRIES WELCOMED. (U.K. CARRIAGE. ETC.) SHOWN. ADD 8\% VAT to TOTAL. CASH WITH ORDER EXCEPT BY PRIOR ARRANGE
MENT: 34 LISLE ST., LONDON WC2H 7BD MENT: 34 LISLE ST., LONDON WC2H 7BD

ACl25	$11 p$	BC142	35p	BFIIS	22	MJ491	130p	ZTX109 13p	2N2369 14p	2N4059	10p	
ACl26	$11 p$	BC143	35p	BFI67	23p	MJE340	45p	ZTX300 14p	2N2484 30p	2N4060	3p	
ACl27	11p	BCI47	7 P	BFI70	23p	MJE370	72p	ZTX301 14p	2N2904 20p	40360	35p	
ACl28	$11 p$	BC148	7p	BFI73	25p	MJE371	84p	ZTX302 18p	2N2905 18p	40361	36p	
AC141	18p	BC149C	8p	BFI77	26p	MJE520	68p	ZTX303 15p	2N2906 20p	40362	38p	
AC142	18p	BC157	10p	BF178	28p	MJE521	80p	ZTX304 24p	2N2926RB	40409	50p	
AC176	11p	BC158	8p	BFI79	33p	MJE2955	99p	ZTX500 15p	7p	40410	50p	
AC187	12p	BC159	9p	BFI80	33p	MJE3055	565p	ZTX501 15p	2N29260 8p	40411	200p	
ACI88	$11 p$	BC169C	12p	BFI81	33p	MPSA12	50p	ZTX502 19p	2N2926 YG	40594	65p	
ADI 40	46p	BC171	12p	BF182	33p	MPSA06	30p	ZTX503 45p	9p	40595	75p	
ADI 42	55p	BC177	18p	BF184	22p	MPSA56	32p	2N404 26p	2N3053 18p	40600	69p	
ADI43	50p	BC178	17p	BF185	22p	MPSU06	62p	2N696 15p	2N3054 45p			
AD149	43p	BC179	18p	BF194	10p	MPSU56	78p	2N697 13p	2N3055 49p	FETs		
ADI61	36p	BC182	10p	BF195	10p	OC26	40p	2N698 30p	2N3441 80p	BF244	36p	
AD162	36p	BCl 83	10p	BF196	14p	OC28	55p	2N706 12p	2N3442	MPFIO2	30p	
F114	13p	BC184	$11 p$	BF197	15p	OC35	48 p	2N708 18p.	140p	MPFI03	30p	
AFII 5	13p	BC212	$11 p$	BF200	32p	OC36	52p	2N914 18p	2N3702/3	MPFI04	30p	
AF116	13p	BC213	10p	BF257	32p	OC41	15p	2N918 40p	P	MPF105	30 p	
AFI 17	13p	BC214	14p	BFR39	30 p	OC42	$15 p$	2N929 20p	2N3704/5	2N3819	20p	
AFI 18	50p	BC237	12p	BFR40	30 p	OC44	$11 p$	2N930 18p	2N370419	2N3820	57p	
AFl21	33 p	BC238	11p	BFR4I	30p	OC45	$11 p$	2N1131 18p	2N3705/6	2N3823	50p	
AFI24	30p	BC239	12p	BFR79	30p	OC70	$11 p$	2N1132 18p	10 p	2N5457	30 p	
AFI25	30p	BC307	11p	BFR80	30 p	OC71	$11 p$	2N1302/3	2N3707 11p	2N5458	30p	
AFI 26	30p	BC308	11p	BFR8I	30 p	OC72	$11 p$	17p	2N3708/9	2N5459	30 p	
AFI27	30p	BC309	12p	BFX29	30p	OC73	50p	2NI304/5	9p			
AFI39	33p	BCY70	18p	BFX 30	30p	OC74	30p	$21 p$	2N3771	M		
AFI81	45p	BCY7	22p	BFX84	26p	OC81	12p	2NI306/7	170p	3 N 128	75p	
AFI86	48p	BDII5	55p	BFX87	20p	OC82	12p	28p	N3772	3 N 140	85p	
AF239	38p	BDI21	100 p	BFX88	24p	OC83	20p	2NI308/9	180p	3 N 141	75p	
BC107	9 p	BD123	100 p	BFY50	15p	OC84	18p	28p	2N3773	40603	58p	
BCl08	9 p	BD124	65p	BFY51	$15 p$	OC200	50p	2N1613 20p	220p	40673	58p	
BC109	10p	BD131	40p	BFY52	15p	OC201	50p	2N1711 20p	2N3866 70p			
BC115	20p	BDI32	45p	BS $\times 19$	16p	TIP41A	65p	2N2218 21p	2N3903/4	UJTs		
BC135	17p	BD153	65p	BSX20	16p	TIP42A	70p	2N2219 20p	15p	TIS43	26p	
BCl36	17p	BDI56	${ }^{60}$ p	BSX21 -	- 22p	TIP2955	70p	2N2220 19p	2N3905/6	2N2160	80 p	
BCl37	17p	BDY60	75p	BU105	220p	ZTX107	$1{ }^{12 p}$	2N2221 20p	15p	2N2646	35p	
BCl38	17p	DY61	65p		95p		10p	2N2222 20p	2N4058 15p	2N4871		
TT		S INTE			ITS	CA3046 LM301		Amp with ext			$\begin{aligned} & 50 \mathrm{p} \\ & 40 \mathrm{p} \end{aligned}$	
7400	13p	7425	30p	7475	48p	LM307		Am with int. co			50p	
7401	14p	7427	37p	7476	34 p	MC1310		less Stereo Oec				
7402	14 p	7430	14 p	7480	50p	MC1312 $M C 3401$		hannel SQ Deco ad Op Amp + ve			220p	
7403	16p	7432	25p	7482	76p	MFC6040		adronic Amp Attenua			.90p	
7404	16p	7437	27p	7483	95p	MF C8070		- Voltage Swltch			250p	
7405	16p	7440	16p	7485 I	140p	NE536	FET	Op Amp To99			280 p	
7406	42p	7441	$65 p$	7486	$41 p$	NE555 NE556		er 8 PIN DIL.			${ }^{50}$	
7407	42p	7442	60 p	74893	340p	NE556						
7408	16p	7445	95p	7490	40p	NE561		with Am Demod	$16 \mathrm{Pl}$.325p	
7409	28p	7447	75p	7491	80p	NE562		with VCD 16	DIL		.325p	
7410	$14 p$	7448	80p	7492	50p	NE563		FM/1F Demod 16	PIN Dil		$300 p$	
7412	30 p	7450	16p	7493	40p	NE566		Function Genera	${ }^{8}$ PIN			
7413	${ }^{30} \mathrm{p}$	7451	16p	741002	200p			Amp with ext con	P 8/14 PIN			
7414	60p	7460	16p	74107	45p	710		Amp witage Comp	P14 PIN		35p	
7416	33 p	7470	30p	74121	34p	741		mp with Int co	8		23p	
7417	36 p	7472	27p	74122	76p	747		74714 PIN DI				
7420	13p	7473	36p	74141	65p	748		Amp with ext com	8 PIN DIL		34p	
7422	25p	7474	34p	741422	250p	ZN414 ICL8038		Radio Recel			$\begin{aligned} & 110 \mathrm{p} \\ & 250 \mathrm{p} \end{aligned}$	

[^7]Al goods brand new
Visitors, by appolntment, welcome.
Colleges, Govt., etc. orders welcome.

Data sheets on advert-
ised I.C.s 10p each $\begin{aligned} & \text { NEW I.C. NE5t3 } \\ & \text { High performance }\end{aligned}$

LOW-FREQUENCY ANALYSER

$50 \mathrm{~Hz}-50 \mathrm{kHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E.

PRICE $£ 27$ p\&p 75p
Board, modules and all components (excluding P.U.).

12" CRT

Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new, boxed, $£ 4$ each. Carriage $£ 2$.

100MHz SCOPE TUBES

MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM \times 10CM RECTANGULAR. Y SENSITIVITY 3V PER CM \times SENSITIVITY IIV PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACE ROTATE COILS.
V.A.T. at 8\%

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605

LNIDEX TD ADVERTISERS

Appointments Vacant Advertisements appear on pages 79-91

Page	Page			Page
Aero Electronics Ltd. 21, 31	Gardners Transformers Ltd.		Q. Max Electronics Ltd.	1
Aero Electronics Lers. ${ }^{\text {Acoustical Mfg. Co. Ltd. } 22}$	Grampian Reproducers Ltd.	31	Quality Electronics Ltd.	
Adam Hilger Ltd. 50	Greenwood Electronics cover		Quartz Crystal Co. Ltd.	94
Ambientaccoustics				
Ancom Lid. \qquad 46				
Arrow Hart (Europe) Lid. 35	Hall Electronics Ltd.	2	Radford Acoustics Ltd.	9
Asden Electronics Litd. 29	Harris Electronics (London) Ltd. 14,		Radio TV Components (Acton) Ltd.	59
	Harris P. ...		Ralfe, P. Fil.t.........	66 16
	Hart Electronics (London)	54 28	Rank Film Equipment	16 27
Barrie Electronics Ltd. 61	Heath (Gloucester) Ltd.	3	Resonance	54
Barrie Electronics Ltd. 7	Hellerman Electronic.	47	R.E.W. Audio Visual Co.	94
Barr \& Stroud .. 19	Henry's Radio Ltd. .	65	Rola Celestion Ltd.	32
Bentley Acoustic Corp. Ltd. 78	H.H. Electronics	20	R.S.T. Valves Ltd.	68
B.H. Component Factors Ltd. 71		12 13		
B.I.E.T. ...74, 75	Hitachi-Shibaden (U.K.) Ltd.			
			Samsons (Electronics) Ltd.	70
Bias Electronics Ltd. 34	I.L.P. (Electronics) Ltd.	26	Scott James (Electron Eng.) Ltd.	47
Black, J. .. 93	Industrial Tape Applications Ltd.	76	Service Trading Co.	${ }_{71}$
Brenell Eng. Co. Ltd. \quad.............................. 21	Integrex Ltd.	30	Servo	21
Broadfields \& Mayco Disposals 93			Shelton Instruments Ltd.	43
Bull, J., Electrical Ltd. 70				51
Bywood Electronics 46	J.H. Associates Ltd.	${ }_{28}^{28}$	Sinclair Radionics Ltd. 40, 41, 44, 45, 48,	
			Sintel ..	93
			S.M.E. Ltd.	15
Cambridge Audio Ltd. 87	Keytronics Ltd.	95	Sowter, E. A., Lid.	
Cambridge Learning 17			Special Products Distributors Ltd.	
	Ledon Instruments Ltd.	21	Sugen, J. E. \& Co. Lid.	28
Chiltmead Ltd.	Letrokit Ltd.		Surrey Electronics	95
Chromasonic Electronics	Levell Electronics Ltd. -	94		
Computer Sales \& Services 78	London Central Radio Stores	77		
Consort Electronics Ltd. 33	Lyons Instruments	27	Technomatic Lid.	
Coutant Electronics	Lyons instruments		Telequipment Products (Tektronix U.K.) Ltd	36
Crofton Electronics			Teleradio Special Products	
C.T. Electronics Ltd. 63	Macinnies Labs Ltd.		Thorn Radio Valves \& Tubes Ltd.	11
	Macfarlane, W. \& B.	$\begin{aligned} & 66 \\ & 52 \end{aligned}$	Trampus Electronics	62
	Maplin Electronic Supplies		T.O. Supplies	
Decon Labs. Ltd. 29	$\begin{aligned} & \text { Marco Trading Co. } \\ & \text { McLennan Eng. Ltd. } \end{aligned}$			
Deimos Ltd. 76	Marconi Instruments Ltd. cover			
Direct Electronics Ltd. 95	Marshall, A., \& Sons (London) Lid.			38
Dixons Technical Ltd. 10	McKnight Crystal Co.	93	United-Carr Supplies	38
	Medelec Ltd.	12		
	Midas Amplification	19		
East Cornwall Components 33	Mills, W. ©...	60	Valradio Ltd.	
Eddystone Radio Ltd. 6	Milward, G. Fi, ${ }_{\text {Modern }}$ Book Co..	94		
Electronic Brokers Ltd. 72, 73	Multicore Solders Ltd. ${ }^{\text {cover }}$		Vortexion Ltd.	
Electronic Mech. Sub Assembly Co. Ltd. 93				
Elektor Publications Ltd.is, 13	Naim Audio	29		
English Electric Valve Co. Ltd. 35, 42	Newries Butterworth	76	Wayne, Kerr, The, Co. Ltd. .	
E.M.I. Telecommunications 39				
Eurotype ... 35			West London Direct Supplies ...	
	OMB Electronics ..		Whitley Electrical Radio Co. Wilmslow Audio	12 94
	Olson Electronics Ltd.		Wilkinson, L. (Croydon) Ltd.	76
Farnell Instruments Ltd. 20			Wireless Word Circards	
Ferrograph, The, Co. Ltd. 32	Pattrick \& Kinnie			
Fi-Comp Electronics 31	P. \& B. Products			
Flyde Electronic Labs Ltd. .7................... ${ }^{\text {a }} 16$	Powertran Electronics 55,	57	Z. \& I. Aero Services Ltd.	63
F.W. Electronics 93	Precision Petite Ltd.	31	Zettler GmbH	25

[^8]

Oryx SR3A desoldering tool. Ideal where components are tightly grouped. Instantly removes unwanted solder from printed circuits etc. Accurate, reliable, speedy, and safe.
 Due to expansion we are seeking
additional distributor/stockists. Due to expansion we are seeking
additional distributor/stockists. lightweight (only 7oz.) and compact construction, it can be manoeuvred in even the most awkward areas.

\qquad
push onto the stem of the iron. It
has the unique advantage that you
can change the element in

seconds.

The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$.) Adjustment $\left(200^{\circ}-400^{\circ} \mathrm{C}\right)$ can be made whilst iron is operating using the same tip. Light, compact and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature. safety stand

\title{

What's new in Soldering Chemicals?

\section*{Multicore's R \& D

Multicore's R \& D Laboratories are still making news-three important new chemicals for electronics manufacturers.

MULTICORE PC 26 ROSIN FOAM FLUX

A completely new general purpose liquid soldering flux particularly suitable for the automated soldering of all types of printed circuits. PC 26 provides a unique combination of desirable properties

- Complies with U.K. Ministry Flux Specification D.T.D. 599A.
- Eliminates "icicles" and "bridging".
- 0.5\% max. halide content and yet gives better soldering than non-approved fluxes with high halide contents.
- Leaves negligible flux residues so p.c. boards are dry after soldering, can be handled and inspected easily and have better sales appeal.

MULTICORE PC 81

SOLVENT CLEANER \& FLUX REMOVER

A unique blend of polar and non-polar solvents formulated fordegreasing electronic hardware prior to soldering as well as for removing rosin flux residues including ionizable activators after soldering. Its intermediate boiling range of 71 to $80^{\circ} \mathrm{C}$ and selective solvency make it ideal for vapour degreasing.

The bolling range of PC. 81 is higher than fluorinated solvents (approx $46^{\circ} \mathrm{C}$) and lower than either trichloroethylene $\left(87^{\circ} \mathrm{C}\right)$ or perchloroethylene $\left(121^{\circ} \mathrm{C}\right)$. Also its solvency properties for rosin flux removal aresuperior to fluorinated solvents without in any way affecting most electronic hardware. As a result, PC. 81 solvent will performits vapour cleaning function longer and more effectively than fluorinated solvents whose vapour condensation ceases at $46^{\circ} \mathrm{C}$ with a consequent end to flux removal.

Solvent evaporation rate is substantially lower than that of the fluorinated solvents making it more economical to use inopen tanks and vapour degreasers.

Multicore PC. 81 is a highly stabilized solvent blend, extremely resistant to thermal or chemical breakdown during prolonged heating or as a result of the introduction of activators from the solution of rosin during its working life. Its relatively narrow boiling range and high stability make it readily useable again without property changes after distillation.

PC. 81 can also be used for cold cleaning and to reinforce ultrasonic cleaning. Even though its toxicity is relatively low, well ventilated areas are required.
PC. 81 is expected to be particularly welcome as it is non-flammable and non-combustible under the new British "Highly Inflammable Liquid" Regulations.
Supplied in one gallon metal cans and 45 gallon steel drums.
Specific Gravity ($20^{\circ} \mathrm{C}$) $\mathbf{- 1 . 2 5 6}$
Boiling Range -- $71-80^{\circ} \mathrm{C}$
Toxicity (TLV) —— 340 ppm
Residue on Evaporation- less than 10 ppm

ully meets the requirements of the new UK Defence Standard 59-47/issue 2 and U.S. Spec. MIL-I-46058C, which are becoming mandatory for the protection of many electronics assemblies against adverse environment, contamination and attack bychemicals.
PC. 54 is a two-part epoxy resin system which is conveniently mixed in equal parts by volume. It may be applied by dip, spray or brush to either one or both sides of p.c. boards and components where it forms a thin tough coating after curing. PC. 54 will dry in 1 hour under normal ambient conditions and developits full properties after several days at roomtemperature or it may becured in 2 to 4 hours at $65^{\circ} \mathrm{C}$. A glass fibre brush can be used to remove the coating locally to enable rework and repair.

Other Multicore Soldering Chemicals include a complete range of liquid fluxes and the following special chemicals.
PC 2 Multicore Tarnish Remover Cleans tarnish from metal surfaces prior to soldering.
PC10AActivated Surface Preservative Applied after pre-cleaning, preserves solderability and need not be removed.

PC 10D
A special version of PC 10A for application by roller coating machines.

PC 90 Peeloff Solder Resist and

PC91 Thinners

A temporary solder resist for edge-connector contact areas etc. Replaces masking tape.

PC 41 and PC 43
Solder Bath dross inhibitors.
PC 52 Protective Coating
One-part conformal coating. Can be soldered through.

PC 70 Thinners
Compatible Solvent blend for use with all rosin fluxes, PC 10A and PC 52.

Please write for Technical Bulletins on your Company's letterhead for products which interest you to:

ERSIN

MULTICORE SOLDERS LIMITED
Hemel Hempstead, Herts. HP2 7EP
Tel: Hemel Hempstead 3636 Telex 82363

[^0]: PHASE-LOCKED IC DECODER
 Integrated circuit phase-locked stereo decoder based on the MC1310. THD typically 0.3%. Separation $40 \mathrm{~dB} @ 1 \mathrm{KHz}$.
 PRICE: $£ 4.27+20 p$ p\&p+VAT.

[^1]: Price 30p. (Back numbers 50p, from Room 11, Dorset House, Stamford Street, London SE1 9LU.) Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
 Subscription rates: 1 year, £6 UK and overseas ($\$ 15.60$ USA and Canada); 3 years, $£ 15.30$ UK and overseas ($\$ 39.80$ USA and Canada). Student rates: 1 year, $£ 3$ UK and overseas ($\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ($\$ 20.00$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281.

 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 © I.P.C. Business Press Ldd, 1975

[^2]: Send now, stating possible requirements, for free and post free catalogue.
 United-Carr Supplies Ltd., 112 Station Road, Ilkeston, Derbyshire DE7 5LF.
 Tel: llkeston 7871^{11} STD 06072 78711. Telex 377117.
 C.H.F.A.d.

 WW-148 FOR FURTHER DETAILS

[^3]: * See concluding part of this series.
 \dagger In practice, BTH may have had some sort of co-operative agreement with AEG since a later patent was taken out by BTH on behalf of AEG.

[^4]: unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

[^5]: MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. $1.5-220 \mathrm{mHz}$. O-100kHz Deviation.
 $1 . \mathrm{VV}-100 \mathrm{mV}$ output Sold in excellent condition. P.O.A.

[^6]: in drect support of courses for lectures and trainers from education and industrial and lishments. Additional interest in photography and reprographic processes desirable..
 Salary negotiable according to qualifications and experience.
 Further details from Col. Parker. Tel: 01.624 8812.
 [4612

[^7]: Minimum Order $£ 2$
 Pieaso add \%\% VAT to total

[^8]: Printed In Great Britain by Hazelis Offeet Ltd., Leigh Road, Slough, Bucks., and Published by the Proprietors I.P.C. Electrical-Electronic Prass Lutd.i Dorset House, Stamford St., Loudon, SE1 9LU telephone

 OF bALE AND
 of by way of Trade at a price in excess of the recommende maximum price ahown on the cover, and that it shall not be
 cover by way of Trade or affed to or as part of any publicatlon or advertiging, literary or pictorial matter whatsoever.

