Quad broadcasting

Research Instrument

The human ear must be one of the oldest research instruments in the business. Yet many of the ultra-modern Marconi instruments used in today's most advanced research projects owe a debt to it.

At mi, you see, we don't believe in lvory Towers. So we ponder the constant feedback of information from you through our sales engineers far and wide, and keep our ear to the grounds of component technology and measurement trends throughout the world.

Requests, suggestions, remarks, ideas ...they all lead us to what you are going to need-or they reveal possible new approaches to the solutions of those needs.

We have our ears in all the national and international committees of measurement standards and recommendations too.

We even lend sympathetic ears to you who need special equipment-and lend ears to PTT authorities, broadcast authorities and defence departments who often set the trends for new standards.

All mil instrument specifications are the result of this constant research-specialized P.C.M.test gear, low cost versatile signal generator TF 2015, new generation HF spectrum analyser, automatic TV transmitter monitor....

Be one of the heard-talk to us!
We're listening.

LOW COST VOLTMETERS

POBTABLE INSTRUMENTS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}{ }^{\prime \prime}$ scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes $77^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$... 500 V f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz} .-100,-90 \ldots+50 \mathrm{~dB}$. cale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$.
RESPONSE : $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 03 \mathrm{~dB}$
from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM 3 B can be
set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$
On $50 \mu V$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$.
AMPLIFIER OUTPUT: 150 mV at f.s.d.

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... $3 \mathrm{~V} \mathrm{f} . \mathrm{s} . \mathrm{d}$ Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz}-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega$. $\pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with
amplitude proportional to square of input. As TM3 on L.F.

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V}$ 300 V Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale.
CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$ Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., $\pm 2 \mathrm{pA} . \mathrm{CZ}$ scale.
LOGARITHMIC RANGE
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d into $>1 \mathrm{k} \Omega$

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA, 10pA, 30pA ... 1 mA (1A for TM9BP) Acc. $\pm 2 \% \pm 1 \% \mathrm{f}$ s.d. $\pm 0 \cdot 3 \mathrm{pA}$. LZ \& CZ scales.
RESISTANCERANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$ RECORDER OUTPUT: 1 V at f.s.d into $>1 \mathrm{k} \Omega$ on LZranges

type
 f90
 type
 f105 type f110

In subminiature switching, low cost needn't mean low quality! That's the message that British-made Arrow CT series carries round the worldgaining ready acceptance wherever it goes. Those rugged little lever switches pack maximum performance into minimum size and weight. Single and double pole versions with 2 or 3 way action, give a choice of levers in bright chrome or seven colours. They meet ratings up to 2 A at 250 V ac, and with their C.S.A. and U.L. approvals they'Il help you show the flag.

Get the full data on hardy, home-grown Arrow CT sub-mins.

U. K. Distributors

ITT ELECTRONIC SERVICES HARLOW-027-96 26777
Scottish Office
13 MURRAY PLACE, STIRLING FK8 1 DO Telephone: 07863823

WW-040 FOR FURTHER DETAILS

They couldn't be built better if you built them yourself. And you wouldn't get them any faster.

The two instruments you sec here, are available assembled and tested. Which,coming from Heathkit (the world's largest makers of electronic kits) may surprise you.

In fact it has very positive advantages.
To start with the instruments begin life in the same way as kits. With exactly the same high degree of design and engineering. So every component has to be more rugged and reliable than the components in run of the mill instruments.

Then when we build them we don't just stick them on a production line. We hand build them. In precisely the same way as you would if you bought a kit and built it yourself.

And besides getting a more reliable and higher quality instrument you'll also get it faster. Because we'll make sure you get quick delivery.

The SR-255B Chart Recorder.

The SR-255B has pushbutton selection of four calibrated spans: $10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}$ and 10 V full scale. And its variable span capability further extends the range to 100 V . It's got 10 digitally derived chart speeds too-
from 10 to 0.01 inches (or cm) per minute. Every one of which can be instantly selected by the front panel switch.

The IT-1121 Semiconductor Curve Tracer.
Connect the IT-1121 to an oscilloscope and it'll accurately display operating parameters of virtually any type of semiconductor. Bipolar transistors, diodes,SCRs, triacs, FETS.

The IT-1121 is also extremely useful for identifying parameters
 of unknown semiconductors. You can even compare parameters of two transistors at the same time.

Connection to the scope is easy and a switch enables fast, accurate scope calibration.

For more details and a complete catalogue on these and other instruments, just post the coupon today.

Or call in at the London Heathkit Centre, 233 Tottenham Court Road, or at our Gloucester showroom. Heath (Gloucester) Limited, Dept. WW-114, Bristol Road, Gloucester GL2 6EE. Tclephone: Gloucester (0452) 29451.

SOUND SENSE=VORTEXION

VORTEXION Design and manufacture public address equipment to meet a range of specific requirements for AIRPORTS, HOTELS, THEATRES, GOVERNMENT AUTHORITIES, LOCAL AUTHORITIES, SUPERMARKETS, SCHOOLS, SPORTING COMPLEXES, POP GROUPS AND THE LOCAL VILLAGE HALL.

The high fidelity amplifier illustrated has bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T.'s for low noise, low intermodulation distortion and freedom from radio breakthrough

A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or 8-16 ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 0.3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH

BUILT-IN 4-WAY MIXER using the circuit of our reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T Mixer Amplifier, again fully protected against overload and radio oreakthrough. The mixer is arranged for 2-30/60 Ω balanced line microphones, 1-HiZ gram input and 1-auxiliary input followed by bass and treble controls. 100 volt balanced line output OR 5-15 Ω and 100 volt line.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms-15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 -channel F.E.T. mixer. 2-30/60 Ω balanced microphone inputs, 1 -HiZ gram input and l-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. Standard model l-low mic. balanced input and HiZ gram. Outputs available 8/15 ohms OR 100 volt line.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs and overload and short circuit protected outputs for 8 ohms15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is 120 watts on continuous sine wave. Input 1 mW 600 hms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$ Additional matching transformers for other impedances are available
F.E.T. MIXERS and PPM's. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. $4,6,8$ and 10 Way Mixers. Twin 3, 4 and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPM's.

VORTEXION

10
Vortexion Ltd., 251-263 The Broadway, Wimbledor, SW19 1SF.
Telephone : 01-542 2814 and
01-542 6242/3/4.
Telegrams: "Vortexion
London SW19"

INIRODUCINGASPEAKER THAT SOUNDS TOO GOOD TO BE TRUE

Who else can offer infinite variable control over all listening conditions and personal tastes.

Embodied in the LSL Revelation III is a bass response that can be modified by a simple mechanical adjustment converting the enclosure from infinite baffle to a tuned vented port. This, coupled with finger-tipped electronic controls of both the midrange and tweeter, makes the Revelation III, without doubt, the most versatile unit available today - at any price. The possibilities are infinite. Tailor your own sound to complement your own personal tastes and environment.

The three drive units are controlled by a sophisticated cross-over network, researched by the eminent Dr. A. R. Bailey of Bradford University and specially designed to create a flat frequency response whilst minimising transient distortion.

Panel resonance is minimised by a robust hand made enclosure. Constructed with the world's finest materials and choicest veneers.

Distribution is restricted to specialist dealers in order that the potential customer receives the demonstration the speaker merits. Should -you experience difficulty locally, write to us for further information enclosing the name and address of your local specialist dealer. Technical Specifications
Overall frequency response $35 \mathrm{HZ}-22,000 \mathrm{HZ}$. Power Handling Capacity 60 watts speech and music power. 35 watts R.M.S Impedence Nominal 8 ohms. Minimal 6 ohms. D-ive Units.

Tweeter ... -.... Soft domed h.gh frequency unit. Midrange \qquad 5"unit. Bass \qquad 13 " x 8 "unit. Lack of colour sation and other forms of distortion enable the unit to be used athighsound levels without listener fatigue.

() RELELFFIOATII

Br jokroyd Mills, Brediord Road, Batley, Yorkshire. Tel. Batley 473646

Recommended retail price $\mathfrak{£} 73.50$ plus V.A.T.

nnoers menns meters...

PRESTIGE RANGE

- High accuracy and stability
- Clear Sperry Display
- Automatic zero-ing
- High noise rejection (78 db CMR)
- Extremely versatile

Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: $\mathrm{MC} / \mathrm{Mi}$, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vuican Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ sciales. Taut band. DC moving coil and AC moving coil rectified.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale
DC moving coil and $A C$ moving coil rectified. Horizontal or vertical mounting.

Recorders 60 or 120 mm . charts. Non-ink marking. DC moving coil and AC rectified.

Stafford Long Scale 240° 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Kestrel Clear Front. 7 models, $1 \cdot 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, $A C$ moving coil rectified, $A C$ moving iron.

Lancaster Long Scale 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Send for fully illustrated catalogue
RIDERS ELECTROMILS LIMITED
48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-387 9092.

[^0]
New automatic digital bridge from Wayne Kerr

Wayne Kerr's new 8900 is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q, dissipation and dc volts. 2,3,\& 4-terminal. Automatic lead compensation. 4- Quadrant: + ve or - ve C, L, 1/C, G and R.
Overall coverage:

$10 \mu \Omega-200 \mathrm{M} \Omega$	1 nH
$0.001 \mathrm{pF}-20,000 \mu \mathrm{~F}$	10 pv

Accuracy: $0.1 \%(10 \Omega-200 \mathrm{M} \Omega), 0.3 \%(10 \mathrm{~m} \Omega-10 \Omega)$ in all quadrants. Frequency: 1 kHz Outputs: Analog and TTL.

For more information phone Bognor (02433) 25811, or fill in the coupon.

* GIRDACOUSTIC CONE FOR SMOOTHER

RESPONSE (310 mm and 410 mm models only)
*TANOPLAS SURROUND FOR HIGH
STABILITY AND LOW BASS RESONANCE

* IMPROVED AND UP-RATED CROSS-OVER NETWORK

	260 mm $10^{\prime \prime}$	310 mm $12^{\prime \prime}$	410 mm $15^{\prime \prime}$
Power Handling Capacity*	50 W	60 W	85 W
Frequency Response	$27-20,000 \mathrm{HZ}$	$25-20,000 \mathrm{HZ}$	$23-20,000 \mathrm{HZ}$
Intermodulation Products	less than 2%	less than 2%	less than 2%
Impedance via Crossover network	8 ohms (5 ohms min.)	8 ohms (5 ohms min.)	8 ohms (5 ohms min.)

* INTEGRATED PROGRAMME MATERIAL

ALL SPECIFICATIONS SUBJECT TO ALTERATION WITHOUT NOTICE

updating from

SESSATE!

TBA 800-TBA 820

TBA 800 anc TBA 820 are muchcopied high performance audio circuits, developed and patented by
SGE-ATES They are important new low-cost designs for low frequency stages in radio record player and TV equ pment ard allow the component coult to be rejuced by more than 50% compared with discrete component alictio circuits.
Corsiderajle savings can be made on otal component cost. storage cos: and assern.bly time, with incneased performance and reliabilisy. Boty devices are available in volume, ex-stock.

TBA 800: 5 W at 24V/16Q

The ferformance, versatility anc easy appl cat on of TBA 800 have made it the natural choice for the audio stage in tie most advanced colour TV sets manlfaciured in Europe today. Providing a guaranteed 4.4 W (min.: output pcwer al $24 \mathrm{~V} / 16 \Omega$, it works with a supply voltage up to 30 V and
eatures high efficiericy 770% at 4 W jutput) amc very low harmonic cistortion without cross-over problems. The adcificn of a complementary iransistcr output stage will allow power sutput of 15 K .

Its high current r andling capabiliy foutput feak current 2A) makes it suitable for non-audio applicaticns such as vertical ceslectior in large screen B\&W TV sets, or "or criving very high power systems T7e TBA 600 is mounted in ε 12-lead cuad in-line rackage, originaly introduced by SGS-ATES, and row an industry standard. The external coolins tabs of th s aackace enable 25 W to be diss pased without external heat sink, whise uf to 54 can be dissipated us.ng only a small par. of the p inted circuit coppe: aree as heat sink.

7BA 800: dissipation

anc efficiency vs. cutput power

TBA 820: 2 W at $12 \mathrm{~V} / 8 \Omega$

At only $£ 0.70100-999$, the TBK 820 is a low cost, high performance audio amplifier. It is specifically designed for zortable, battery-operated redios, TV receivers, cassette tape recorde's and record players.

Working with supply volteges ranging from 3 V to 16 V , its low cur:ent drain, freedom from motor-boatirc and absence of cross-cver distort on make it the perfect choice for a large variety of applications, including: intercom systems
staff location systems two-way radios telephone monitoring amplifiers ultrasonic door openers inductive transmitters and receivers. The TBA 820 comes in a 14 -leas dual in-line (or quad in-line) plastic package.

(United Kinğdom) L'd.

TBA 820: out put power vs. supply voltage

$\frac{2}{2}<8(w)$
0
(6) (v)

6

$3009+$ SL120

This new turntable offers the mechanical excellence of the SL110 in a more compact form.
ideally suited to our precision pickup arms, its use is detailed in information sheet No. 15, a copy of which will be sent to you on request.

The best pick-up arm in the world

Write to SME Limited

Steyning • Sussex • England
Telephone: Steyning (0903) 814321

Who else but the It alians could have produced the most sophisticated range of mixing and fading facilities ever offered in such a beautifully designed range of equipment.

Yet still apply the most precise and exacting manufacturing standards to provide the operational stability and reliability such complex electronics demand.

This is why we are able to guarantee all Goodmans/Galactron equipment for three years.

And your guarantee will be signed personally by the quality controller who tests it before it leaves the factory in Italy.

Galactron Mk 10
Stereo Integrated Amplifier
A remarkably compact pre and power amp combination with 90 watts RMS per channel. Features 5 mixable stereo inputs, 5 plug-in-modules-two of which can be cross-faded by slide potentiometer.

Galactron Mk 16

Stereo/Quad Amplifier

No comparable equipment has all these 3 functions. 5 inputs, independently mixable and equalised by plug-in modules. Twin graphic equalisers having

10 filters each $(\pm 16 \mathrm{~dB})$ at octave intervals from 32 Hz to 16 kHz . Plug-in quadrophonic decoder panels for discrete and matrix systems allied to 4 output level controls.

Galactron Mk 100

Stereo Power Amplifıer

Originally designed as a monitor amp for recording studios, the Mk 100 is designed for use with the Mk 16 preamplifier. 100 watts RMS per channel output.

Full facts and figures are available from Goodmans Loudspeakers Limited, Downley Road, Havant, Hants.

WW-080 FOR FURTHER DETAILS

Smuller, liphter, imupeintensilicers tornighivision

The small size, lightness and low power consumption of the new Mullard channel image intensifiers, shown here with the larger cascade tube device, considerably extend the range of application of night viewing equipment. They incorporate a multichannel plate to provide a variable luminance gain of up to 100,000 and operate from a 2.7 V battery.

Under normal operating conditions, tube life is likely to be many thousands of hows,

Resistance to highlight overload and ease of gain control give them particular application in low light level television systems as well as direct view equipment.

These Channel devices join the well established range of extremely sensitive and reliable, high gain, - up to 100,000 - cascade tube image intensifiers from Mullard.

Behind Mullard's capability

Mullard's background in electron optics is based on a thorough understanding of vacuum and glass technologies. At Mitcham, part of Europe's biggest Bectron-optics capability - complete with its own fibre optic, drawing plant, we make night vision and low light level TV devices. Years of experience in the design and manufacture of image intensifiers and cther electron optical devices has resulted in a capability well geared to today's and tomorrow's requirements.

Contact us for further information on Image Intensifiers.

SM 2001 A Digital Frequency Response Analyser (Transfer Function Analyser) Four decade digital display in Cartesian, Polar or Log Polar form, from 0.00001 Hz to 1 kHz . Measurements in ratio or absolute terms. Remote programming for A.T.E. applications standard. Harmonic analysis capability. Suitcase format easily portable. Fully floating and isolated input and output. Very high harmonic and noise rejection. Resolu-
 tion to 0.1°. BCD output of all information standard. Only 351b.

SM 2003 Frequency Extension Unit Extends the frequency range of SM 2001 up to 1 MHz . Also extends the harmonic measurement capability and reference synchronisation capability of the SM 2001/2 up to 1 MHz . Fully isolated input and output to the high frequency system under test.

SM 2004 Modulator Demodulator Unit Provides for utilisation of SM 2001 with systems having modulated carrier input and/or output. Carrier frequency 50 Hz to 10 kHz . Modulation frequency 0 to 1 kHz . Fully floating
 and isolated inputs and outputs.

SM 2002 Reference Synchronizer An internal fitment for the SM 2001 F.R.A. to enable synchronisation from external signals. Will synchronise from virtually any wave form of
almost any amplitude. Permits the use to the measurement of the phase of SM 2001 on systems with mechanical or hydraulic inputs. Extends the use of SM 2001 to closed loop testing or part system testing and also
relationships between outputs of any two transducers or other sources.

SM 272 Transfer Function Analyser 0.01 Hz to 10 kHz . Accuracy $\pm 1 \%$ (D version). Optional analogue or digital read out. Much better than 40dB noise rejection. Dynamic range greater than $25 \times$ FSD. Sine, triangular and square outputs. DC offset capability. Cartesian or switchable cartesian/polar display (P version). 10 millivolts sensitivity. Fully isolated input and output. Independent R/Q expanders for small angle accuracy. Very low cost.

SM 2008 Computer Interface
A complete package of software and hardware to enable computer control of SM 2001 for any system or frequency change.

SM 2006 Two channel converter (Accessory for SM 2001)
Accepts two separate channels from any system or vibrating structure and computes the phase and amplitude relationship between them. Enables both channels to go into correlated input with high noise rejection.

SM 2007 Plotter Interface
This unit provides for coupling the SM 2001 frequency response analyser directly into any standard $X Y$ recorder. The resultant plots can be of Bode or Nyquist type. Three outputs are provided, 1. Log frequency, 2. A co-ordinate or amplitude. 3. jB . co-ordinate or phase angle. A dynamic range control and automatic pen-lift are further features.

North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890-1166 Telex 23995
Northern Sales Office, Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 3255
Scottish Office, 18. Sycamore Drive. Hamilton, Lanarkshire. Telephone: Hamilton 28674

"Amper and WHAT?...

The JAMES SCOTT Alignment Units for D.R. and E.M. Multi-Channel Tape Recorders.

Unit Type FMU/1 illustrated was designed at the Royal Radar Establishment, Malvern, to suit Ampex Recorders working of the IRIG intermediat band specification (using ES 100 Electronics) eg. Mode Numbers FR 1200, FR 1260, FR 1300 , FR 1800 L, FB 400 , PR 500

If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive

For Further information and Technical Literature Write or telephone.

(2) JAMES
 [Electronic Enginecring] Ltd
 CARNTYNE INDUSTRIAL ESTATE GLASGOW G32 6AB Tel: 041 . 7784206

TELCON

soft

magnetic shields magnetic alloys and cores

We manufacture a wide range of Mumetal shielding cans and boxes and fabricate shields for CRT's, transformers etc., to customers' own designs. These are made to the highest standards and
have optimum properties (as sole have optimum properties (as sole UK/European manufacturers of Mumetal we have years of experience). For large quantities we recommend the Telform' process which provides maximum uniformity, extra close tolerance and maximum performance. For R \& D and prototype work - try 'Telshield', do -it yourself, wrap around foil. Supplied in handy packs costing around $£ 5.00$ - it's simple and quick to use.

(M)

New Course in Digital Design

Understand the latest developments in calculators,

computers, watches, telephones,

television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip flops and Registers

Offer Order this together with Design of Digital Systems for the bargain price of $£ 9.25$.
Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer
Manager Enthusiast Scieritist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

ComputerArithmetic

 2 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design Computer Architecture
including packing and surface post anywhere in the world. (VAT zero rated). Payment may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, Rivermill House, St. Ives, Huntingdon, Camb:s.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name. \qquad
\qquad

Here's why Ferranti specified OCLI laser coatings at the design stage of their aircraft Laser Ranger and Marked Target Seeker.

Ferranti realised right at the start that it was vital to specify high-quality optical coatings for their aircraft laser systems if optimum performance from mirrors, lenses, prisms, and other components was to be achieved Laser system requirements not only push the per formance of optical components, including coatings, to their limits, but also make any latent shortcomings and flaws more evident. For these reasons, transmission and reflection efficiencies in Ferranti s laser systems were required to be in the $99+\%$ range.
Such efficiencies can only be obtained with welldesigned and properly-applied optical coatings, such as those produced by OCLI Optical Coatings Limited

OCLI OFFERS A FULL LINE OF COATINGS AND OPTICS FOR USE IN ALMOST ANY LASER AND F.L.I.R. SYSTEM.

OCL

OCLI Optical Coatings Ltd., Hillend Industrial Estate, Dunfermline, Fife KY11 5JE. Telephone: Inverkeithing 3631 (038-34 3631)

WW-038 FOR FURTHER DETAILS

You can save time and money with our VHF TV tetrodes/cavities from 2 kW up to 30 kW .

Our newest line of high gain tetrodes with Pyrobloc* grids gives you ruggedness -reliability- low cost.

- THOMSON-CSF Trade mark.

Common Amplification (Class A)		Peak Video output (Class B)		Cavity type
TH 298	2 kW	TH 298	3 kW	TH 18124
TH 361	5 kW	TH 361	15 kW	TH 18116
TH 371	10 kW	TH 371	30 kW	TH 18117

TYPICAL GAIN 16 dB

THOMSON-CSF
THOMSON-CSF ELECTRONIC TUBES LTD / BILTON HOUSE, UXBRIDGE ROAD, EALING / LONDON W5 2 TT TEL. (01) 57955.11 / TELEX 25659

SEDPEMSD-25

The precision scope for the demanding engineer
3% accuracy - which just about summates this 25 MHz dual-trace instrument from Scopex. A professional scope by any standards - yet at $£ 185$ in a price bracket far below its design specification.

* DC-25MHz full screen
* Measuring accuracy 3%
* Signal delay on both channels
* Trig level and polarity from one simple control
* Wide timebase range, $200 \mathrm{~ns} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$
* Sensitivity
$10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
* High brightness PDA tube
* Lightweight portability

THIIK 5 COPES

 THIMK SCOPEKWrite or phone for details
Scopex Instruments Limited, Pixmore Industrial Estate,
Pixmore Avenue,
Letchworth, Herts. SG6 1JJ
Tel: Letchworth (0462) 672771

50mHz OSCILLOSCOPE TYPE C1-64

Made in USSR

$\begin{array}{ll}\text { Power supplies: } & 115 / 230 \mathrm{~V} \pm 10 \%, 50-40 \mathrm{~Hz} . \\ \text { Dimensions: } & 300 \times 200 \times 420 \mathrm{~mm} . \\ \text { Weight: } & 19 \mathrm{~kg} .\end{array}$
complete with full complement of connectors cables, adaptors and accessories $\mathbf{£ 4 7 0}$ exclusive of VAT

Lightweight, portable, transistorized, dual trace oscilloscope.
Display:
Rectangular CRT 6×10 div. $(48 \times 80 \mathrm{~mm})$ with illuminated graticule
Vertical deflection.
Two input channels operated in alternate or chopped modes or algebraically summed.
Bandwidth:
DC to 50 mHz DC coupled.
3 Hz to 50 mHz AC coupled.
Sensitivity:
Channell and II: $5 \mathrm{mV} / \mathrm{div}$. to $10 \mathrm{~V} /$ div
Summing mode: $1 \mathrm{mV} /$ div. max.
Horizontal deflection:
Sweep 'A' $-0.1 \mu \mathrm{~s} /$ div. to $1 \mathrm{~s} / \mathrm{div}$.
Sweep 'B'-0.1 $\mu \mathrm{s} / \mathrm{div}$. to $50 \mathrm{~ms} / \mathrm{div}$.
Sweep delay:
$1 \mu \mathrm{~s}$ to 10 s .
Time Base Modes:
' A ' only; ' B ' only: ' A ' brightens ' B '
' B ' delayed by ' A ': ' A ' and ' B ' chopped or alternate.

BRITAIN'S FASTEST SERVICE!

component specialists for the discerning amateur and professional

ATMYDII EXPRESS direct from MAIN LINE

RED L.E.D.s NEW LOW PRICES TIL 209 30p LD 30A 29p

MC 1310P I.C. £2.80
FM STEREO DEMODULATOR
REQUIRES NO COILS!
3 PAGE DATA 15p
an exciting range of mono amplifier kits. Supplied complete with circuit diagram and assembly instructions, these kits contain all necessary components, printed circuit board. heatsinks, etc.

TYPE NO.	POWER (continuous into 8 ohm)	SENSITIVITY (for continuous power@1kHz)	OUTPUT TRANSISTORS	PRICE
12A	12 watts	700 mV	2×40631	f8.40
25A	25 watts	700 mV	2×40632	f9.75
40A	40 watts	700 mV	2×40633	£10.50
70A	70 watts	700 mV	2×40636	f12.60

suggested power requirements from 19 volts (TYPE 12A) to 42 volts (TYPE 70A)

ALSO . . .

stereo pre-amplifier kit using R.C.A. CA3052 i.c. sensitivity $3 \mathrm{mV} @ 1 \mathrm{kHz}$ output voltage 1 volt r.m.s. designed for use with magnetic pick-up but can be used with crystal pick-up using extremely simple modification suggested. Full specification on request.

40669 TRIAC $\mathbf{f 1 . 0 0}$
400 PIV 8 AMPS PLASTIC 3 PAGE DATA

15p

I.C. PIN SOCKETS

OP. AMP
741/8 DIL NEW LOW PRICE 34p

LOGIC CHECKER

FAST \& EFFECTIVE METHOD OF CHECKING DIGITALDILI.C.s IN CIRCUIT. INSTANTL.E.D. DISPLAY FULL INSTRUCTIONS $£ \mathbf{£ 7 . 2 2}$

TR1 DIAC

22p
SUITABLE FOR USE WITH 40669 100 PIN SOCKETS
£1.00

TEST CLIP

FOR DILI.C.s 14 \& 16 PINS. ALSO USEFUL as removal TOOL $£ 1.95$

SEVEN WATT AUDIO I.C. TBA 810 S £1.32

FEATURING THERMAL PROTECTION IDEAL FOR CAR RADIO APPLICATIONS SHORT FORM DATA AND CIRCUITS 15p

TIMER I.C.

 NE 555vSHORTFORM DATA \& CIRCUITS 15p

SUPERHET SYSTEM I.C.

 CA 3123E $\quad \mathbf{f 1 . 4 0}$WITH RF AMP. IF AMP. MIXER OSC. GC DET. OR VOLTAGE REGULATOR IDEALFOR CAR RADIO APPLICATIONS DATA AND CIRCUIT 15p

VHF 5 TRANSISTOR I.C. CA 3046
 70p

DC TO 120 MHz ARRAY
3 PAGE DATA 15p

माभशाए। FEHMOLICITC hegistration No. 1062424

FRPIDIL SPECIALISE IN EDUCATIONAL AND GOVERNMENT ORDERS -See catalogue for further details.
FRTIILI SERVICE PLUS 10% DISCOUNT OVER £4. NO POSTAGE AND PACKING. TOP QUALITY PRODUCTS ALWAYS BY RETURN COMPREHENSIVE CAT. \longrightarrow

Important Notice "All prices are exclusive of V.A.T. Please add V.A.T
to the final total of your order after deducting any discount which may be due." 246062672

08

Si451 Milivoltmeter

- 20 ranges also with variable control permitting easy reading of relative frequency response.

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

* very low distortion content-less than 0.03\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
$\mathbf{f 5 0 . 0 0}$
also available facilities including L.F. cut switch, etc.

ALL PRICES PLUS VAT
J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON, YORKS. BD19 5LA.

TeI: 09762-2501

This swhytherwe 50 Peerrormshe function of s good denerector

Voltage control sweep 1 decade linear 4 decades exponential

Fast rise time square $<15 n$ s with current sinking capacity for 5 TTL loads.

Trigger pulse

All seven outputs are simultaneously available with amplitudes constant over frequency range

Size: $254 \times 121 \times 157 \mathrm{~mm}$
Wt: 2.2 kg

FEEDBACK INSTRUMENTS LTD

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors, load, power factor or phase shift
* Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and Sealed cases to British and specification. Ranges specification. Ranges
$10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request.
Manufacture and Distribution
of Electrical Measuring
Instruments and Electronic
Equipment. The largest stocks in the U.K. for off-the-shelf delivery.
ANDERS ELECTRONICS LIMITED
48/56 Bayham Place, Bayham Street.
London NW1. Tel: 01-3879092

Thesymbolof soundquality.

Unit Audio

Superbly made speaker enclosures containing high quality units designed to improve your listening pleasure.
Ask for demonstrations of the KR6, PF6, PF8, MP6, MP138.

Power ratings from 8 watts (music power) to 20 watts (music power).

Illustrated here is the new MP6.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

Don't callus! We'll call you!

We know how easily sophisticated instruments can drift imperceptibly away from standard. So, after we've repaired, calibrated and returned your equipment to you, we make a note to remind you when a periodic check or recalibration should be carried out.

Jogging the memory is just one of the little, extra details that help to make up the Bradley Repair and Calibration Service ; but, of course we need to hear from you in the first instance.
$R \& C$ is a separate division of Bradley Electronics with its own 20,000 sq. ft. factory next door to the main London works. We've been rejuvenating instruments for more than 20 years, during which time we've handled virtually every type and make in common use - from simple meters to complicated systems. We will tackle anything in the frequency range $D C$ to 18 GHz and return it to you ready to plug in.

If you need authenticated performance in addition to our normal
guarantee, our Standards Laboratory is approved by the British Calibration Service. It will supply calibration certificates for AC, DC and RF measurements. And our standards, of course, are directly traceable to the NPL and the National Bureau of Standards.

And just to add the finishing touch, we will collect and deliver anywhere in mainland Britain.

G \& E Bradley Ltd

Services Division Sales
Electral House
Neasden Lane
London NW10 1 RR
A Lưcas Company

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today - the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,

WW-033 FOR FURTHER DETAILS
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering from BARR \& STROUD LIMITED
1 Pall Mall East, London SW1 Y 5AU
Tel: 01-930 1541
Telex: 261877

British...

Wherever there is appreciation of fine sound reproduction, insistence is upon British loudspeaker systems.

Thes symbolof sound quality.

Made from selected highdensity Swedish chipboard, the cabinets are handmade, hand-finished and matched in identically grained pairs.
To ensure consistent sound quality, all speakers are individually tested before leaving our factory.
Ask for a K.F. demonstration and hear for yourself.

Hi-Fi Speakers

The KR range consists of five outstanding speaker designs with power ratings from 18 watts (music power) to 90 watts (music power).

KR10. A two way, two unit system, typical of K.F. quality and design.
For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-022 FOR FURTHER DETAILS

Dinstead

TwinStabilised

 PowerSuppliesEach comprising:
Two powerful bench supplies.
Continuously variable.
Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5A
with twenty 1 volt steps and fine control.
Voltage set by controls.
Current continuously monitored
0 to 100 mA , 0 to 0.5 A .

Current limiting protection

2×0 to 30 V 0 to 1 A
Set by switches and fine control.
Meters switchable for volts.
0 to 100 mA and O to 1 A . Re-entrant protection. Pilo indication of overload

the best for less
british made by linstead
Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Ireland, Lennox Laboratory Supplies Ltd, ${ }^{3-4}$ South Leinster Street P.O. Box 212A, Dublin 2

Denmark, Scanfysik, 13-15 Hjorringeade, DK 2100, Copenhagen Sweden, EMI Svenska A/B, Tritonvagen 17, Fack, I71 19 Solna 1

Norway, EMI Norsk A/S, Postboks 42 Korsvoll, Oslo 8 Malaysia, Laboratory Equipment Sdn. Bhd., P.O. Box 60, Batu Pahat Benelux, A.S.E. Led., Nationalestreot 38, B-2000 Antwerp

nombrex

MODEL 41 R.F.SIGNAL GENERATOR Price $£ 44.00$

PLUS 8\% FOR V.A.T

* 150 KHz - 220 MHz on fundamentals.
* 8 clear scales - Total length 130 mm
\star Spin-Wheel Slow Motion Drive 11-1 ratio.
\star Overall Accuracy - $2 \frac{1}{2} \%$.
\star Modulation. Variable depth and frequency
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
\star Powered by 9V Battery.
Trade and Export enquiries welcome Send for full technical leaflets. Post and Packing 50p. extra. NOMBREX (1969) LTD., EXMOUTH, DEVON. Tel: 03-952 3515

WW-071 FOR FURTHER DETAILS

Gardners

Line Matching'Transformers from Standard to Super Fidelity

GARDNERS
 TRANSFORMERS LIMITED

Gardners Transformers Limited. Christchurch. Dorset. BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex 41276 GARDNERS XCH

WW-069 FOR FURTHER DETAILS

One of our customers puts the achievement of the G800 on record!

This letter is typical of many received by Goldring. If you would like some further evidence, start by writing for a full descriptive leaflet on Goldring Cartridges to: Goldring Limited, 10 Bayford Street, Hackney, London E8 3SE.

WW—063 FOR FURTHER DETAILS

The Plumbicon ${ }^{\circ}$ FP1212 ColourTV Camera by SHIBADEN (B) irade mark N.V. Philips

 must mane an effort to ma the min.$9 L 75$ turntable hon higher standards. 9175 turntave higher standard.
to reach even
I burs failtully must make an effort the my lief. equipped Wear Sir., have recently acquired a Golding so cartridge as really mow how satofied', It reveals a whole new darity and tone from records. 'that pervourdy ill a Measure found dull and wally. oo completely meets my requirements. 9 certainly reproduction qualities and of y y now to tel the".

The new FP 1212 Plumbicon colour camera brings to the world of CCTV, a TV camera that embraces many of the features associated with large. commercial broadcast units.

For this you get a light, compact and easy to operate camera that guarantees a very high standard of colour reproduction, even in poor light conditions, because the FP 1212 is fitted with automatic lens control.
Based on three Plumbicon tubes, this new unit has a built in encoder which produces standard colour composite signals from NTSC or PAL, without the need for an accessory unit.
And you get built in facilities such as a colour bar generator, a masking amplifier self contained aperture correction circuit, all of which aid the camera's simple-to-use performance.

If you would like to see the FP1212 in action or require full technical details please contact Shibaden's Technical Service Department at 01-203 4242 or write to :

Hitachi

Shibaden (UK) Limited
BROADCAST \& CCTV EQUIPMENT MANUFACTURERS Lodge House • Lodge Road • Tendon • London NW4 4DQ. Telephone: 01-203 4242/6

Audio Test Set

foramplifiers, mixers tape recorders

Checks... frequency response signal/noise ratio distortion cross-talk wow \& flutter drift
erasure sensitivity output power gain ... in one compact unit.
Auxiliary Unit provides extra facilities for Studio testing.

Send for leaflet RTS2

Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SLI 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

FERROGRAPH
 A member of the Wilmot Breeden group

 studio and ancillary equipments.
Versatile-3, 4,5 or- 6 pole; wide varicty of matching plugs receptacles; readily interchangeable with other leading makes.
Streamlined - simple positive snap-in connection;
cable clamping and latch lock.
Safe-self polarisation; captive insert screw provides rigid assembly and electrical continuity; firm and constant ground contact between mating connector shells through the use of an exclusive Ground Terminal and Contactors.
Low Eust Exstack ©urnitiy Dissumints
Write now for free descriptive literature.
Sole U'K. Agent for Switchcraft QG Connectors

F.W.O.BAUCH LIMITED

49 'Theobald Street. Borehan Wood. Herts. W106 +RY. Telephone: 01-9.530091

WW- 052 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON WC1X $8 A X$ ('Phone 01-837 7937)

New from AEI Semiconductors Four shapes for your diode requirement

These four new diodes - comprising the "M" range - have been developed to meet demands for maximum availability at the lower price sector of the market. A $16 \mathrm{amps}, 600 \mathrm{v}$ diode costs as little as 42p for quantities of 1000 or more. The range covers 6 to $70 \mathrm{amps}, 50$ to 800 volts.

AEI Semiconductors Ltd., Lincoln. Tel: 052229992 Part of GEC Electrical Components Group.
Also immediately available from:
Black Arrow (Electronics) Ltd: Bristol (0272) 294313
Coventry Factors Ltd: Coventry (0203) 24091
Farnell Electronic Components Ltd:
Leeds (0532) 636311
LST Electronic Components Ltd:
Chelmsford 69543
W.S. McMillan \& Co. Ltd.: East Kilbride 38641/4

SDS Components Ltd.: Portsmouth 65311
T1 Supply Ltd: Slough 33411
J.V.N., Bromley, Kent: 01-464 1245

TAKE A CLOSE LOOK

at a professional recorder that offers high performance. excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.
BIAS ELECTRONICS LTD.
01-540 8808 572 KINGSTON ROAD, LONDON SW20 8DR

WW-011 FOR FURTHER DETAILS

The symbol of sound quality.

Indoor Column
Speakers
Ideal for Clubs, Cinemas, Concert Halls, Churches etc. ; particularly suitable where a coustic difficulties are experienced-especially feedback.
Alternative finishes available are Black Vynide or Teak.
Power ratings from 10 watts RMS to 30 watts RMS.

W410: One of a range of 4 columns available. 15 ohms impedance, or 100 v line.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is avail able to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Q \rightarrow B

Loudspeakers for the Perfectionist dItton works, foxhall road, IPSWICH, SUFFOLK IP3 8JP.

Check in one direct

 move with Brandenburg's new HV meterWe thought it was about time somebody supplied direct reading meters for high voltage. so we've produced three-one for up to 5 kV . one for 15 kV and one for 30 kV to complement our range of HV power supplies.
The meters are operated by two 9 V internal batteries (800 hours life) linked with a built-in checking facility. Positive or negative ground is available, selected by a front panel switch. And, as with all Brandenburg products, there is a 12 months unconditional guarantee.

- Accuracy of 1% fsd over voltage range of $0-30 \mathrm{kV}$ d.c.
- Less than $1 \mu \mathrm{~A}$ drawn at 30 kV d.c.
4.5in (114 mm) scale mirror-backed meter.
- Temperature range $5-35^{\circ} \mathrm{C}$.
- Dimensions only $7 \times 8 \times 5 \frac{1}{2}$ in high $(200 \times 145 \times 178 \mathrm{~mm})$.
- Recorder output.

Yet another Brandenburg piece in the high voltage game

brandenburg

STABILISED HIGH VOLTAGE
Brandenburg Limited, 939 London Road, Thornton Heath, Surrey.
CR4 6JE, England. Tel: 01-689 0441 Telex: 946149
Agents or distributors in most principal countries.

NEW ARCHITECTURE IN STEREO AMPLIFIERS

The new Cambridge P60 brings radical changes to stereo amplifier design and operational concept

1. Split Section level control with

normal and overload indication

The new Cambridge Audio P60 Integrated Amplifier represents the outcome of radical rethinking of conventional audio amplifier architecture. For many years now the fundamental fixed gain pre-amplifier with its attendant inadequate headroom bringing limiting, clipping and unwanted distortion has been the order of the day. The volume control, placed after most of the pre-amplifier stages could not be turned down to correct a signal that was already in overload and therefore distorted. Cambridge Audio amplifiers are different. To begin with our compensation for disc equalisation to
the R.I.A.A. standard is more accurate than that of virtually all our contemporeries. For instance, we employ a buffer stage to eliminate the differences in cartridge inductance that plagues other amplifiers (See Readers Letter W.W. December 1973). In the new P60 Stereo Amplifier separate main and pre-amplifier level controls each with L.E.D. indicators permit the user to optimise all signal levels precisely - thereby catering for every variable-without compromise. The result is audibly less distortion with the added bonus of monitoring just where distortion can be introduced first and at what level.

2. Record and Playback facilities for three

 tape recorders used individually or combined.The following block diagram best explains the logic. At first sight the flexibility of the arrangement above is clearly apparent. In addition, interesting new possibilities arise - hitherto unavailable on other products such as the ability to record programme A on Tape

Recorder 1 whilst at the same time replaying programme B on Tape Recorder 2 and recording it on Tape Recorder 3, with full monitoring facilities and the ability to modify the frequency response

Cambridge
Audio
for people who listen to music

More than 350 different types to choose from

Vitality's the name for

 miniature and sub-miniature lamps.If you can't find the lamp you need from the 350 different types of Vitality sub-miniature and miniature lamps just pick up the phone and ask for the Vitality applications service.

Miniature and sub-miniature lamps are Vitality's speciality and the range available is one of the most comprehensive in Europe.

Write for the Vitality catalogue for full details on the range and application notes, or phone us if you have a special requirement for conventional or unusual environments, wherever a light source is needed for illumination, reference, indication or warning.

Vitality Ltd 回

BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK.
TELEPHONE: 028462411. TELEX: 81295.
Authorised Distributors
Black Arrow Electronics Ltd.
Wirelect House, St. Thomas Street, Bristol BS1 6JW
Telephone: Bristol (0272) 294313. Telex: 449150
Farnell Electronic Components Ltd.
Canal Road, Leeds LS12 2 TU
Telephone: Leeds (0532) 636311. Telex: 55147
Townsend-Coates Ltd., Coleman Rd., Leicester LE5 4LP Telephone: Leicester (0533) 768561. Telex: 34321
Valiant Electrical Wholesale Company,
20 Lettice St., Fulham, London SW6 Tel: 01-736 8115
wW-099 FOR FURTHER DETAILS

The symbol of sound quality.

Ideal for mobile use. Finished in Vynair for style to match performance. Power rating from 25 watts RMS to 100 watts RMS.
R12DXH. One of a range of six superb Power speakers.

For further information and address of your local stockist write to:
K.F. Products Ltd. Asnton Road, 8redbury, Stockport, Cheshire.

P.A. \& Disco Speakers

Designed to satisfy the demand for high quality sound required by Discotheques and advanced PA systems.

WW--024 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

HIGH POWER DC-COUPLED AMPLIFIER

 \star UP TO 500 WATTS RMS FROM ONE CHANNEL
 * DC-COUPLED THROUGHOUT
 * OPERATES INTO LOADS AS LOW AS 1 OHM
 * FULLY PROTECTED AGAINST SHORT CCT. MISMATCH, ETC.

* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth	DC-20kHz@150 watts $+1 \mathrm{db},-0 \mathrm{db}$.
Power at clip point (1 chan)	500 watts rms into 2.5 ohms
Phase Response	$+0 .-15^{\circ} \mathrm{DC}$ to $20 \mathrm{kHz}, 1$ watt 8Ω
Harmonic Distortion	Below $0.05 \% \mathrm{DC}$ to 20 kHz
Intermod. Distortion	Below $0.05 \% 0.01$ watt to 150 watts
Damping Factor	Greater than 200 DC to 1 kHz at 8Ω
Hum \& Noise ($20-20 \mathrm{kHz}$)	At least 110 db below 150 watts
Other models in the range: D $60-60$	watts per channel

DC-20kHz@150watts + 1db.-Odb
$+0 .-15^{\circ} \mathrm{DC}$ to $2 \mathrm{OkHz}, 1$ watt 8Ω Below 0.05\% DC to 20 kHz Greater At least 110 db below 150 watts

Slewing Rate

 Load impedance Input sensitivity Input Impedance Protection Power supplyDimensions
D150-150 watts per channel

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10 K ohms to 100 K ohms
Short, mismatch \& open cct. protection $120-256 \mathrm{~V}, 50 \cdot 400 \mathrm{~Hz}$
19" Rackmount, 7" High, 93" ${ }^{\prime \prime}$ Deep

A NEW STANDARD FOR SOUND REPRODUCTION

 HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below.

Power output.

Rated:

Maximum

Distortion.

Pre-amplifier:
Power amplifier at rated output: at 25 w output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven.
90 watts average power per channel into 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006\%.

Overload margin.

$$
\text { Disc input } \quad 40 \mathrm{~dB} \text { min. }
$$

Hum and noise output.
Disc:
-83dBV Measured flat with noise band width of 23 kHz .
-88dBV Measured with 'A' weighted characteristic
-85dBV Measured flat
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

WW-010 FOR FURTHER DETAILS

*Use economical 35mm film. *Pulse operation up to 4f.p.s. *Optional large capacity film magazines.
*Clockwork or electrical operation.

Telford PRODUCTS LTD.

WADSWORTH ROAD PERIVALE GREENFORD MIDDX. ENGLAND Telephone:01.998 1011 Telex:935524 DAVALE A MEMBER COMPANY OF BENTIMA InDUSTAIES LIMTEO

WW—049 FOR FURTHER DETAILS

Industrial Tape Applications

 5 Pratt Street,London NW1 OAE. Tel: 01-485 6162 Telex: 21879WW-100 FOR FURTHER DETAILS

MAPLIN ELECTRONIC SUPPLIES

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101 \T $\begin{aligned} & \text { Please add } 8 \% \text { to the final total. Post and Packing }\end{aligned}$ FREE in U.K. (15 p handling charge on orders under $£ 1$)

First-class post pre-paid envelope supplied free with every order.

CATALOGUE

Send just 25 p NOW! for our superb 80-page CATALOGUE. It's packed with photographs, illustrations, and pages and pages of detailed data on our complete range of transistors, diodes, I.C.s etc., etc. Seeing exactly what you're buying makes ordering so easy!

LEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (Just send s.a.e. please for leaflet.)

LEAFLET MES 51: Describes a complete electronic organ which can be constructed using our highquality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leaflet MES 51)

ORGAN BUILDERS MES aRnounce the very latest development in organ circuitry.
13 Master Frequencies DMO2
took AT THEESE AMAZING AD ONANTAGES * 13 frequencies from $\mathbf{C 8}$ to C 9 . * Each frequency

 to other musicians. \star Outputs will difectly drive most types of dividers including the SAJ IIO. \# And each
output can also be used as a direct tone source able $\begin{aligned} & \text { can also be used as a direcl tone source. * Vari- } \\ & \text { able }\end{aligned}$ AND RATE tremulani optional extra \pm Gold-plated plug-in edge connexion. $\$$ Compleet fibregiass
3.7 board , (including tremulant if required) $\times 4$ Sin. $\&$ Very low power consumpt 3.7 in . $\times 4.5 \mathrm{in}$. \star Very low power consumption.
$\underset{\text { PRICE }}{\star}$ EXTREMELY ECONOMICAL PRICE
and fully guaranteed. DMO2T (with tremulant) ONLY ${ }^{\text {E14.25 }}$ DMO2 (without tremulant) E 12.25 . Trade
Trade enquiries
welcome DMO2 (without tremulant) f 12.25 . welcome
SAJ110 7 -stage frequency dividers in one 14 -pin DIL package. Sine or square wave input allows operation
from almost any type of master oscillator including the DMO2 (when 97 notes are availabir). Square wave Outputs may be modified to saw-tooth by the addition
of a few components. SAJ of a few components. SAJIIO: $£ 2.63$ each OR special
price for pack of $12: £ 25.00$. S.a.e. please for data sheel.

STOP PRESS!

LINEARI.C.S

SYNTHESISERS

We stock all the parts for the "Electronics Today International" synthesiser including all the P.C.B.s required and ail the metalwork including a drilled and printed front panel for a truly professional finish. including a drilled and printed front panel for a truly professional finish. Some of the circuits in this brilliant design are entirely original.
Independent authoritative opinions agree, the E.T.I. International Independent authoritative opinions agree, the E.T.I. International
Synthesiser is technically superior to practically all synthesisers available Synthesiser is technically superior to practic
today. S.a.e. please for our detailed price lists.

Our manufacturing resources could contribute to your success, too! We've chalked up many years of service to ministries, government departments, armed forces, and a formidable list of significant names in industry. They all come to Whiteley for the specialist knowhow and resources we have developed. Can we help you? We can build to your drawings and specification, or put our design departments at your service, as needed. From a small component to a complete system, in audio work, relay switching circuits, control systems, and many other spheres-our facilities are ready. The Whiteley organisation is self-contained. The manufacturing resources are backed by our own toolroom, sheet metal working and press shops, plating and finishing lines, coil and transformer winding shop, plastics moulding shop and a modern new cabinet factory. Capitalise on all these Whiteley facilities-call us in for a look at your next electronics need. You'll be in good company!

ELECTRONIC \& ELECTRICAL DESIGN
PRODUCTION CAPABLLTY
CABINET MAKING
SHEET METAL FORMING/FINSHING

PLASTICS MOULDING

ENCAPSULATION

WHITELEY ELECTRICAL RADIO CO. LTD.

Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074
WW-096 FOR FURTHER DETAILS

Down to your last voltage stabiliser?

Don't give up.
EEV are still making a wide range of rugged, reliable voltage stabilisers and reference tubes.

We are still meeting all requirements including equivalents for types now discontinued by other makers

Write or 'phone for voltage stabiliser data sheets and prices.

EEVand M-OV know how

ENGLISH ELECTRIC VALVE CO LID Chelmsford. Essex. England CM12OU \&é E
Tei 024561777 Telex 99103 Grams Enelectico Chelmsford WW-111FOR FURTHER DETAILS

If it's produced by Gardners it must be something special. and it is! Now available, models 107A and B are precision built inverters providing battery systems.
Both models offer unusually high output ratıngs enabling the user to operate many conventional loads such as lighting and small power tools in situations where

Gardners inverters are designed to drive any mains operated equipment which is not unduly sensitive to the waveforms. Incandescent lamps. TV sets. electric drills are typical of a wide field of possible applications Both the 107A and B models are rated at 300VA (300W UP.F) and will accommodate reasonable short term
Brochure GT 28 gladly sent on request.

Gardners

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited Christchurch Hampshire BH23 3PN Telephone 02-015 2284 TELEX 41276 GARDNERS $\times C H$. WW-070 FOR FURTHER DETAILS

WW-101 FOR FURTHER DETAILS

Brook Avenue, Warsash, Southampton SO3 6HP. Tel:Locks Heath 4221
TelexNo. 477042 JAY JAY - SOTON

U.V. Recorder, Storage Scope, Scope \& Camera?

The alternative!

RECORDIUG OSCILIOSCOPES

Medelec Fibre Optic Recording Oscilloscopes are highly versatile top quality general purpose units specially designed for industry and research. They are based on the wide experience gained by Medelec in the exacting field of medical instrumentation.

ش High quality, low cost recording
\leftrightarrows Wideband brilliance modulation
\& Five Recording Modes include Raster
is Simultaneous recording and viewing
\hbar Single frame or continuous records from a built-in camera

For full technical details or a personal demonstration of the FOR-4 or any Medelec unit please contact us.

medelec

Medelec Limited Woking Surrey
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

Thesymbol of sound quality.

Outdoor Weatherproof Speakers

Specially constructed for outdoor use with complete weather and water protection built in.
Power ratings up to 25 watts RMS.

An example of a weatherproof speaker from a range which even includes an underwater speaker.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-026 FOR FURTHER DETAILS

from
 NEW
 STARWET

Spectrum Analyser

Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm})$. Height 4.375 in $(11.2 \mathrm{~cm})$) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$.) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight $10 \mathrm{lbs}(4.5 \mathrm{Kg}$)

For further details contact the sole distributors of
STARWET equipment.

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

> Special rate visits to Munich sponsored by Electronics Weekly and Wireless World in conjunction with Page \& Moy Ltd.

RETURN FLIGHT BY SCHEDULED AIRLINES VIA HEATHROW
HOTEL ACCOMMODATION COACH TRANSFERS BETWEEN AIRPORT/HOTEL AND EXHIBITION
EXHIBITION CATALOGUE AND ENTRANCE TICKETS
RECEPTION PARTY IN MUNICH
ELECTRONICA 74
Electronica 74 is held every two years and is one of the top three European electronics exhibitions.
Products on show this year range from components, semi-conductors to production equipment, instruments and materials. There will be over 1,700 exhibitors from 28 countries, including about 70 from the U.K.

SHORT STAY VISITS £87

You have a choice of three dates giving you 2 nights in Munich :
(a) Thursday 21 st November to Saturday 23rd
(b) Saturday 23rd November to Monday 25th
(c) Monday 25th November to Wednesday 27th

For all 3 trips you have the choice of the following flights
Day 1 - Depart Heathrow 09.35 arrive Munich 11.15 Day 3 - Depart Munich 12.00 arrive Heathrow 13.50 or
Day 1 - Depart Heathrow 14.45 arrive Munich 16.25 Day 3-Depart Munich 17.15 arrive Heathrow 19.05
Return flight is bý scheduled airline of British Airways or Lufthansa between London and Munich. Accommodation in twin bedded rooms on a bed and breakfast basis at the Esso Motor Hotel. Return coach transfers between hotel and airport. Three days coach transfers between hotel and exhibition. Exhibition catalogue and entrance tickets. There will be a reception party to welcome you in Munich. A limited number of single rooms are available at a supplement of $£ 6.00$ per person.

EXTENDED STAY VISIT £135.00

If you wish to visit Munich for the duration of the Exhibition we have organised a visit from Tuesday 19th November to Thursday 28th November, allowing 10 days $/ 9$ nights in Munich. The return flight is via Heathrow by scheduled airlines. Single room supplement of $£ 27.00$ per person.

Further details may be obtained by using the form below or by ringing Louise Griffiths:
Tel. No. 0533-51211.

To : EWDS Electronica, Page and Moy Ltd., 136-138 London Road. Leicester LE2 1 EB Please send me complete details of the short stay visits
the extended stay visit
(please tick which applicable)
Name (please print)
Address
6th International Trade Fair for

WW-064 FOR FURTHER DETAILS

ENGINEERS

Do you want promotion, a better job, higher Thus helpful guide to success should be read pay? "New Opportunities" shows you how to get them through a low-cost home study course. There are no you-learn. no books to buy and you can pay-as- No obligation and nobody will call on you. It CHOOSEA BRAND NEM FUTURE MERE!
Tick or state subject of interest. Post to the address below.

sheet metal Folding Machines

BENCH MODEL
$36^{\prime \prime} \times 18$ gauge capacity $24^{-} \times 16$ gauge capacity Also the well-known vice £ $\mathbf{E} 8$
$36^{\prime \prime} \times 18$ gauge capacity al of 24" 18 g. $\mathbf{£ 2 1 . 0 0}$ carr. free $18^{\prime \prime} \times 16$ gauge capacity Add 8% VAT to total price of machine

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied.

Send for details:
A. B. PARKER FOLDING MACHINE WORKS, UPPER GEORGE STREET HECKMONDWIKE, YORKS. Telephone 403997

WW-007 FOR FURTHER DETAILS

BUILD
 A PROFESSIONAL TEEEVISION CAMEBA

Complete kits available as designed by "Multard" Includes a comprehensive construction manual, less tube and lens at $£ 60.00+$ VAT. Lens and tubes also available from stock. UHF Modulator Kits at £7. 19 including P. \& P. \& VAT. Allows standard domestic TV to be used as monitor (Modulator also suitable for TV Tennis and other similar games).

Send 5 p stamp for illustrative brochure and price sheet.

CROFTON ELECTRONICS

124 COLNE ROAD, TWICKENHAM, MIDDLESEX TW2 6 QS
Tel. 01-898 1569

Next time you need instrument cases, cabinets or consoles, made in wood talk it over with Whiteley. It could be a very profitable discussion for you. Our new woodworking plant is ready with the most up-to-date machinery, to provide speed and quality in volume production. We can work from your drawings, or design to meet your needs. Tell us the problem. Our specialist experience spans acoustics, heat dispersal and many other problems met in instrument packaging-and it's all at your service.
We can produce cases and cabinets of all kinds, acoustic hoods, desk consoles, wall boards, loudspeaker enclosures etc., in veneers to any specification, polished or lacquered, and finishes in cellulose or melamine. We can assemble the electronics in the case if you so desire. In fact, we can provide as many facilities as you need, from instrument design to sheet metal work and plastics moulding. Many of the big names in industry cure their production headaches by calling in Whiteley. When can we meet you?

ELECTRONIC \& ELECTRICAL DESIGN

CABINET MAKING PRODUCTION CAPABILITY	

PLASTICS MOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

NEW
 LOW COST INSTRUMENTS

Accurate Digital Frequency Setting Wide Range External Control of Frequency Triangle, Squarewave and Low Distortion Sinewave Outputs Simultaneous Outputs

Measures Frequency, Period and Time 30 MHz Frequency Range Sensitive, Protected FET Input

O.M.B. ELECTRONICS,
 RIVERSIDE, EYNSFORD, KENT Tel FARNINGHAM (0322) 863567

WW- 050 FOR FURTHER DETAILS

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:
Frequency range
Output voltage:
Output source resistance:

Output attenuation:
Output attenuation accuracy: Sine wage distortion:

Square wave rise and fall time:
Monitor output meter:
Mains input:
Size:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max.
150 ohms unbalanced (optional 150 ohms unbalanced, plus 150/600 ohms balanced/floating) $0-100 \mathrm{~dB}(8-10 \mathrm{~dB}$ steps $+0-20 \mathrm{~dB}$ variable)
1%
Less than $0.002 \% \quad 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

Price: 150 ohms unbalanced output: $£ 250$
$150 / 600$ unbalanced/balanced floating output: $£ 300$

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibration meter scale.

Specification:

Distortion range (f.s.d.):
Input voltage measurement range:
Input resistance:
High pass filter:
Power requirement:
Size:
Price:
Now available in reasonable delivery time

RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ
Telephone 0272662301

$5 \mathrm{~Hz}_{\mathrm{z}}-50 \mathrm{kHz}$ (4 bands)
$0.01 \%-100 \%$ (9 ranges)
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges)
47 K ohms on all ranges $12 \mathrm{~dB} /$ octave below 500 Hz $2 \times$ PP9 included $17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8^{3 \prime \prime}$ $(22 \mathrm{~cm})$ deep £200

Grenel|

 PROFESSIONAL TAPE TRANSPORTSand multi-channel electronics
for studio and industrial use

Type 19 25 mm model

* Tapewidths up to 25 mm
* Speeds: $3 \mathrm{~mm} / \mathrm{s}$ minimum up to $152 \mathrm{~cm} / \mathrm{s}$ max 2 and 4 speed models
* Reel Cápacity up to 29 cm
* Remote Control Facility
* Tape Tension Control
* Automatic Interlock against misuse
* Special models to customer requirements

BRENELL ENGINEERING CO LTD

231-5 Liverpool Road, London N1 1LY. Tel: 01-607 8271
WW-077 FOR FURTHER DETAILS

Principles and Calculations for Radio Mechanics Part 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics
Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds
Radio Mechanics Course 222.
$1974 \mathbf{1 5 2}$ pp., illustrated $0408001194 \quad £ 1.50$

Rapid Servicing of Transistor Equipment 2nd Edition

Gordon J. King

This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits.
1973 180pp., illustrated $040800116 \times$ £1.90

Rohotics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from
NEWNES-BUTTERWORTH
Borough Green, Sevenoaks,
Kent TN15 8PH. Tel. Borough Green 2247.

MEASURE FREQUENCY ANYWHERE WITH MULTIMETER SIZE INSTRUMENT POWERED BY FOUR PENCELLS

Latest technology miniature device uses four $0.3^{\prime \prime}$ LED digits to display frequency. 5 ranges with coupled decimal point give resolution of 0.1 Hz to 1 kHz in decade steps.

TAKES UP ALMOST NO BENCH SPACE.
LOW PRICE. $£ 79.50$ inc $p \& p$ ex vat. Mains PSU available which fits inside ready drilled case.

Shelton

MINIATURE BATTERY FREQUENCY METER FM-1

FOUR-DIGIT MEMORY DISPLAY
FIVE RANGES 4 ppm CRYSTAL
SIZE $6 \frac{1}{4} \times 3 \frac{1}{4} \times 2 \frac{3}{4}$ in
-including knob and terminals

NSTRUMENTS LTD., 24 Copenhagen Street, LONDON N1 Tel: 01-278 6273

WW- 086 FOR FURTHER DETAILS

GET IT WHILE IT'S GOING

This is the first ever Wireless World Annual. It's got 140 pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include: A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French ; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel.. There is also a reference section packed with useful information.
$£ 1$ from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To : General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU.
Please send me_copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd).
Name (please print)
Address.

Company registered in England No. 677128
Regd. office : Dorset House, Stamford Street, London SE1 9LU

LATEST IN THE RANGE TYPE 101

OUTPUTS $1 \mathrm{MHz}, 100 \mathrm{KHz}, 10 \mathrm{KHz}$
STABILITY 5 parts in 10^{10}
£80

8 DIGIT INSTRUMENTS

WITH CRYSTAL OVENS
SENSITIVITY 10 mV
STABILITY 3 parts in 10^{8}
wireless
world
annual 1975
COMMUNICATIONS • ELECTRONICS

FREQUENCY COUNTERS 5 DIGIT TYPE 30132 MHz
SENSITIVITY 50 mV
STABILITY 3 parts in 10^{6}
£75

6 DIGIT TYPE

40132 MHz
SENSITIVITY 10 mV STABILITY 1 part in 10^{6} £115

TYPE 501 32MHz TYPE 501 M 32MHz Nemenon TYPE $701 \quad 50 \mathrm{MHz}$ f 180 Prices exc/usive of VAT f170 TYPE701M 50MHz wamion f205
 ic START/STOP version PLUS $\mathbf{£ 1 2}$ Write for illustrated leaflet

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS 181818 88^{80} 08088 ||||||||||||||||||||||||

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a pro fessional finish with all details that an electronics engineer would require, including all drilling positions automatically marked.

Ideal for single unit boards or smalt quantities. All at a very low cost -for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30p and the time taken under one hour, including etching to complete.

The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transfers made in required shapes-i.e. edge connedtors, lines, pads, dual in line I.C.'s, 8-10-12. T.O.5 Cans, 3-4 lead transistors, etc. etc., which only require pressing into the required positions on the printed circuit board before etching.

The printed circuit transfer system is a genuine offer to the public and industry. A full money back guarantee is sent with each order, trade prices on application.

List of Prices
Complete system including post and VAT
Individual sheets
Sample sheet

Printed circuit board PCB transfer systems patent applied for

E. R. NICHOLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE
 TELEPHONE NUMBER: 061-480 2179

The symbol of sound quality.

Background Speakers
Outstanding results from small, inexpensive speaker enclosures. Sturdy cabinets either hand veneered in teak or covered in Black Vynide.

Power ratings from 1 watt RMS to 8 watts RMS.

four small speakersbookshelf or wall mounting r corner cabinet fitting

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

. . . and now a comprehensive range of Hybrid Microcircuits.

Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits. Prices on request.
Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for anco rmade mank
technical specifications and prices: Teonex Limited,
AEONEXAILABLE ONLY
FOR EXPORT 2a Westbourne Grove Mews, London W11 2RY, England. Cables: Tosuply London W11 Telex: 262256 \qquad FOR EXPORT ormor

WW - 066 FOR FURTHER DETAILS

 Valves, Industrial Valves, T.V. Picture Tubes, Cathode Ray Tubes, High Reliability Valves and a full range of Receiving Valves always available.

Professional import and export enquiries welcomed.
EDICRDN LIMITED
Redan House, 1 Redan Place, London W2 4SA Telephone: 01-727 0091/2 Telex: 265531 Cables: Edicron London W2

WW-112 FOR FURTHER DETAILS

The Telequipment D61 Oscilloscope

Service engineers, it's all for you in Telequipment's D61. In a robust, compact package you have all the tools of your trade. The D61 gives you single beam, dual-trace and $X-Y$ modes; automatic selection for TV line or frame displays, and for chopped or alternate modes.

The lightweight easily portable D61 provides a wide ranging performance at the minimal cost of $£ 125^{*}$ - a sum quickly recoverable in the time saved by the simplicity and reliability of its operation.

A minimum of controls makes it extremely simple to use and gives room for a large bright $8 \times 10 \mathrm{~cm}$ display. These features, plus the superb triggering qualities built into the instrument make the D61 ideal for the discerning test engineer

For full details contact

Telequipment \ll >

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

wireless world

Electronics, Television, Radio, Audio NOVEMBER 1974 Vol 80 No 1467
 SIXTY-FOURTH YEAR OF PUBLICATION

This month's front cover carries a cloud cover picture obtained from a weather satellite and introduces G. R. Kennedy's article on a weather satellite ground station in this issue.

IN OUR NEXT ISSUE
 (published November 20)

Capacitors survey. Review of the basic parameters of capacitors and types of construction with a comparison clart to aid selection.
Rhombic u.h.f. TV aerial. Design with good gain and directivity, with coaxial to wire transition. for mounting in the loft.
Psychoacoustics of surround sound. Discussion of how well surround sound systems meet the ears' requirements for localization.

ibpa

1.P.C. Electrical-Electronic Press Lid

Managing Director. George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
(C.P.C. Business Press L.td. 1974

Brief extracts or comments are allowed provided acknowledgement to the journal is given

Contents

421	Ambiguity in diagrams
422	Quadraphonic broadcasting by M. J. Carev and J. C. Sager
425	H.F. Predictions for Novenıer
426	Letters to the Editor
	Electronic ignition
	What is e.m.f.?
429	Signal-frequency meter by G. Lomas
435	Weather satellites ground station by G. R. Kennedy
441	News of the month
	Teletext to go ahead
	London traffic control
	Dialling aid for Telex
443	Active cross-over networks by D. C. Read
448	Literature received
449	Audio "74 at Harrogate by Basil Lane
451	Circuit diagram layout by S. W. Amos
455	Optically-coupled v.f.o. by A. K. Langford
457	Sixty years ago
458	IBC notes
459	Non-linearity of air in loudspeaker cabinets by H. D. Harwood
463	Circuit ideas
	Simple Q multiplier
	Collision sensor
464	Meetings
465	World of amateur radio
466	New products
470	Real and imaginary by "Vector"
a 26	INDEX TO ADVERTISERS

422 Quadraphonic broadcasting by M. J. Carey and J. C. Sager
425 H.F. Predictions for November
426 Letters to the Editor
Electronic ignition
What is e.m.f.?
429 Signal-frequency meter $b y$ G. Lomas
435 Weather satellites ground station by G. R. Kennedy
441 News of the month
Teletext to go ahead
London traffic control
Dialling aid for Telex
443 Active cross-over networks by D. C. Read
448 Literature received
449 Audio "74 at Harrogate by Basil Lane
451 Circuit diagram layout bv S. W. Amos
455 Optically coupled v.f.o. by A. K. Langford
457 Sixty years ago
458 IBC notes
459 Non-linearity of air in loudspeaker cabinets by H. D. Harwood
463 Circuit ideas
Simple Q multiplier
Collision sensor
464 Meetings
465 World of amateur radio
466 New products
al26 INDEX TO ADVERTISERS

[^1]

Shake, rattle \& roll.

Welcome to our chamber of horrors. Inside the Shure Quality Control laboratory, some of the most brutal product tests ever devised are administered to Shure microphones. The illustration above shows a "shaking" machine at work on a Shure microphone and noise-isolation mount. It's only one in a battery of torturous tests that shake, rattle, roll, drop, heat, chill, dampen, bend, twist, and generally commit mechanical, electrical and acousticar mayhem on off-the-production-line samples of all Shure microphones. It's a treatment that could cause lesser microphones to become inoperative in minutes. This kind of continuing quality control makes ordinary "spot checks" pale by comparison. The point is that if Shure microphones can survive our chamber of horrors, they can survive the roughest in-the-field treatment you can give them! For your catalog, write:

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
5

wireless world

Ambiguity in diagrams

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE
Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

Phone 01-261 8339
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353

An article in this issue draws attention to the need for meaningful layout, of both symbols and connections, in circuit diagrams. The layout should be meaningful in the sense that a group of symbols and connections should be immediately recognizable as having a particular function-an emitter follower, a multivibrator or whatever it is. This is essentially a matter of pattern. The eye quickly recognizes a familiar pattern without studying all the detail that goes to make up that pattern.

The absence of familiar patterns results in uncertainty of interpretation. There is, however, another source of uncertainty, in the possible ambiguity of the lines we draw in our diagrams. In electronics we have block schematics, theoretical circuit diagrams, logic diagrams, equivalent circuits (e.g. of semiconductor devices) and wiring diagrams, and in all of them the components, elements or units are connected by lines. Thus in a theoretical circuit diagram a line means an electrical connection but not necessarily an actual length of conductor; in a wiring diagram a line does literally mean a length of conductor; and in a block schematic or logic diagram a line usually means a path for information flow but possibly an electrical connection as well.
There is not much of a problem when the whole of a diagram is of a distinct category and is readily seen to be so. But such is the complexity of our modern electronic systems that many diagrams we see printed contain several categories of diagramsthey are hybrids. Thus a line might leave a transistor symbol as an electrical connecting path and arrive at a logic gate symbol as a binary information path. Analogue can mysteriously become digital, and vice versa. A very familiar situation nowadays is the presence of drawings of integrated circuit packages in the middle of theoretical circuit diagrams. The packages have numbered terminals and the lines attached to these terminals therefore seem to be part of a wiring (or printed circuit) diagram, helping one to construct the equipment concerned; but the other ends of these lines are no longer conductors in the physical sense but symbols for electrical connections in the theoretical sense.

Thus the meaning of a line in such diagrams can be ambiguous. It's difficult to see at present how any convention in drawing can avoid this ambiguity. Labelling the lines seems cumbersome and unnecessarily explicit. Does the ambiguity really matter? Perhaps the experience and mental agility of those who use the more complex diagrams are sufficient to cope with the metamorphoses of the lines. But students and beginners in electronics could well be worried by this oddity, especially when translating a "hybrid" diagram into terms of hardware. What is needed is a neat method of showing the status of a line in a particular position which can be readily understood by all, and we commend this problem to our readers.

Quadraphonic broadcasting-current proposals and the way ahead

by Michael J. Carey, B.Sc.(Eng.), A.C.G.I., and John C. Sager, B.Sc.

Abstract

Several proposals for quadraphonic broadcasting have been put forward in the United States of America. This article reviews the merits of these and then discusses the performance of threeand four-channel systems. A three-channel system is advocated for quadraphony with the possibility of using the fourth channel for height information at some future date.

The problem of quadraphonic broadcasting is where to put third and fourth channels while maintaining the existing standards for monophonic and stereophonic listeners. The systems ${ }^{1}$ now before the NQRC* in the USA are agreed on the method of transmitting the third channel. They all co-locate this with the existing stereo subcarrier channel but in phase quadrature, so there is no interference between the three channels.

The need for a fourth channel and the method of encoding to be adopted for its optimum use is discussed later, but if it is necessary the provision of a suitable slot in the frequency spectrum of the f.m. signal is a much more difficult problem, and results in a number of separate solutions being proposed. The reason for this can be seen by considering the present use of the spectrum in the USA. The problem is the SCA (Subsidiary Communications Authorisation) transmissions, occupying the frequency range 61 to 73 kHz (Fig. 1). This makes it difficult to fit in the fourth channel since this is the most suitable place for it.

Two four-channel systems, proposed by Quadracast Systems Inc and RCA, are not compatible with the SCA transmission. They each propose a second double-sideband suppressed-carrier channel using the second harmonic of the 38 kHz stereo subcarrier as the carrier. Providing a full bandwidth channel, the channel spectrum extends from $61-91 \mathrm{kHz}$ (Fig. 2). In the same way that a stereo signal can be generated by switching between left and right channels at 38 kHz a composite quadraphonic signal can be generated by switching between the four channels at 38 kHz .

The system proposed by General Electric (USA) provides for the fourth channel as a vestigial-sideband suppressed-carrier signal with the second carrier again at 76 kHz . The vestigial filtering enables a

[^2]new SCA channel to be provided between 90 and 100 kHz . Here, however, a switchingtype modulator cannot be used and the encoder must incorporate a vestigial sideband filter.

The Zenith Corporation also proposes a vestigial sideband system as one of the two it puts forward. Both these systems leave the SCA broadcasts as they are now and allocate frequencies above 76 kHz for the fourth channel. This is accomplished either by transmitting a single-sideband signal on a 76 kHz carrier or a vestigial-sideband signal similar to the GE system but using a carrier at 90.25 kHz .
The other proposal, by Duane Cooper and Nippon Columbia Co, has two options for the fourth channel. Where there is no SCA, a single-sideband signal of 15 kHz bandwidth is transmitted from 57.72 kHz ; where SCA is to be used the bandwidth is restricted to 3 kHz , so the SCA channel can occupy its present position.

The criteria we used to judge the systems are:

- minimum degradation of the signal-tonoise ratio of the received signal
- minimum extra bandwidth required - simplicity of encoder and decoder. The first and third requirements are selfevident; what may not be obvious is the need to restrict the bandwidth of the signal.

The reasons for this are

- noise per unit bandwidth increases as bandwidth is increased
-bandwidth and phase response of many tuners now in use is restricted
-warbling noises that can occur due to adjacent channel interference would be worse with increased bandwidth
-gain-bandwidth product of the receiver can be kept to the minimum.
The two Zenith systems do not meet any of the above criteria. The Cooper/ Nippon Columbia method does, but the use of an s.s.b. signal is best avoided as it can lead to peaks in the deviation of the complete signal. The remaining three systems are mutually compatible as far as receiver design is concerned. The use of v.s.b. and the SCA channel at 95 kHz can add complications to the transmitters of stations but they do not inhibit the optimum use of the bandwidth by other stations. Each of these systems degrades the overall signal-to-noise ratio by 3 dB (ref. stereo) when the 38 kHz channel is in use, and 9 dB (ref. stereo) when all four channels are in use.

Three- and four-channel systems

Are four channels necessary? It can be shown that a sound field, as it affects an observer, can be represented by an infinite

Fig. 1. Present allocation of the modulation spectrum showing the positions of the monophonic signal, difference signal and "storecast" channel.

Fig. 2. Modulation spectra for proposals currently being assessed by the $N Q R C$. Three systems require the SCA channel to be moved-QSI and RCA(a) and GE(b). Zenith systems, (c) and (d), place the fourth channel at a high frequency and are consequently susceptible to adjacent carrier interference. (Fourth channel in (b) and (d) should have lower sidebands shown flat-topped for the most part. In (d) limits should be 80 and 98 kHz .) The Cooper/Nippon Columbia proposal (e) allows a narrow-band fourih channel and the existing "storecast" broadcast, but a full-band fourth channel would necessitate moving it. (Quadrature channels are encoded with reference to 45°.)

Fig. 3. Graph showing the subjective effect of two-, three- and four-channel transmission systems on the accuracy of sound image location.
number of spherical harmonics in an exactly similar way to the manner in which an electrical waveform can be represented by a Fourier series of harmonics. The nth spherical harmonic requires $2 n+1$ independent coefficients to describe it, therefore N harmonics require

$$
\sum_{n=0}^{N}(2 n+1)=(N+1)^{2}
$$

coefficients in total. Thus to reconstruct a sound field at a remote point there must be a means of transmitting the values of all these coefficients. Also, as the sound field is time varying, the coefficients will also be time varying. It is obviously impractical to transmit enough information to completely describe the sound field so the harmonic series must be truncated.

The simplest non-ideal representation of a sound field is an harmonic series of zero order ($n=0$). This requires one coefficient to describe it and consequently one transmission channel. This corresponds to monophonic sound transmission. A firstorder series representation requires four independent transmission channels to transmit the coefficients, while a second series representation requires nine channels. Increasing the number of spherical harmonics used to re-create the original sound field improves the ability to represent fine detail in the sound field but at the cost of increasing the number of transmission channels required to convey the information.

The above analysis refers to the representation of a three-dimensional sound field. If the representation is limited to two dimensions, i.e. to sound coming only from directions around a horizontal plane, the number of coefficients required is reduced. In this case the total number of coefficients required is $2 N+1$ for N circular harmonics. Again the zero-order representation is the monophonic case but now the first-order representation requires only three coefficients and the second-order only five. A more comprehensive and rigorous analysis of possible surround-sound systems is given in reference ${ }^{2}$.

At this point, one might ask if it is

impractical to use a large number of spherical or circular harmonics to recreate a sound field, how few can we get away with and still make the result indistinguishable, or at least not unacceptably different, from the original as far as the human ear is concerned. Experiments carried out in Japan suggest that, for the two-dimensional case, a first-order representation (three channels) gives good results and that the improvements to be gained by using a second-order representation (five channels) are marginal.

It would appear, then, that for the usual
four-speaker layout, i.e. all speakers in the same horizontal plane, only three channels are required to adequately represent the original sound field, although at least four speakers are required in a practical system because of image location problems when speaker pairs subtend large angles at the head. In fact four channels produce a nonoptimum system as there is too much information for a first-order representation and not enough for a second-order representation. The effect of this extra information is to increase the angular resolution of sound sources appearing to come from directions
close to the location of the speakers. (This effect is much reduced using eight speakers.)

The effect is shown graphically in Fig. 3 which is reproduced from reference ${ }^{3}$. The horizontal scale shows the bearing angle of the intended location of the sound source from the straight-ahead position (0°) and the vertical scale gives a measure of the uncertainty about the intended direction of the sound source experienced by the subjects. In each case four speakers were used but the information was transmitted by the two-, three and four-channel members of a family of transmission systems known collectively as UMX ${ }^{4}$.

It shows clearly that the uncertainty in sound source location is much reduced near the speaker locations (45° and 135°) in the four-channel case (QMX) whereas the resolution is much more uniform in the three-channel case (TMX). The graph also shows just how unsatisfactory is the attempt to transmit surround-sound in two channels (BMX) with any degree of accuracy of location and also the shortcomings of the pairwise technique of mixing single sound sources into a surround-sound field. (The results for the discrete four-channel case were produced by this method,)

An alternative proposal

It seems then, that there is a spare channel available with a quadraphonic broadcasting system for alternative use. The obvious thing to do is to use this channel to convey height information. Experiments ${ }^{5}$ suggest that the addition of height information makes a significant improvement in the realism of the reproduced sound.
If this is done the resulting system must be compatible with the present monophonic and stereo system and also with the threechannel horizontal surround-sound system. This can be ensured by using the baseband channel to carry an omnidirectional signal, the channel on the in-phase 38 kHz subcarrier to carry a left-right signal. the channel on the quadrature 38 kHz subcarrier to carry a front-back signal and the channel on the in-phase 76 kHz subcarrier to carry an up-down signal. This then enables monophonic receivers to use the omnidirectional signal and stereo receivers to use, as well, the left-right signals, as at present. A threechannel receiver would also make use of the front-back signal to create a two-dimensional surround sound system and a full four-channel receiver would use all these and the up-down signal to create a threedimensional surround-sound system.

The method of encoding source material into this format is relatively simple. especially in the case of live material, e.g. concert broadcasts. If an array of four cardioid microphone capsules is placed in close proximity and with their directions of maximum pickup pointed at alternate vertices of an imaginary cube at the centre of which the array is located, then four signals produced contain all the information required by a three-dimensional surroundsound system. By convention. the directions in which the microphones point should be left-front-up (1.f.u.), left back-down (I.b.d.),

Fig. 4. Microphone aiming directions for four-channel, three-dimensional surroundsound pickup.

Fig. 6. Relationship of 19 and 57 kHz pilots showing that composite pilot does not exceed 19 kHz pilot in amplitude.

Fig. 5. Schematic showing principle of sampling four signals sequentially to produce a composite signal.

right-back-up (r.b.u.), and right-front-down (r.f.d.). The arrangement is shown in Fig. 4.

The system is very similar in concept to Blumlein's original coincident microphone technique for stereo sound pickup. The four signals produced may need to be processed by a 4×4 matrix with real coefficients to alter the balance between direction-dependent and direction-independent sound in the signals for a subjectively more pleasing effect. Sources picked up by single microphones can be mixed into a surround-sound field by feeding the signal to all four channels with the gains to each channel adjusted so that the source appears to be located in the desired direction. If the four signals are now sampled sequentially in the order l.f.u., l.b.d., r.b.u., r.f.d., with a repetition rate of 38 kHz and all frequency components above 91 kHz are removed by a low-pass filter it can be shown that the resulting signal is the ane required.
Fig. 5 shows the encoding principle and Appendix 1 sets out the mathematics of the process. In practice an additional pilot would be required. perhaps at 57 kHz , to indicate the transmission of three or four channels as opposed to only two channels. The four channels could be easily recovered using techniques similar to those already developed for decoding stereo broadcasts.

Conclusions

In this article we have reviewed several
proposals for broadcasting surround-sound information and have shown that some of these have to resort to inelegant complications to accommodate SCA transmissions. We have also shown that three channels are sufficient for a horizontal surround-sound transmission system and have therefore suggested that the fourth channel should be used to convey height information in a manner compatible with existing mono and stereo systems and the three-channel horizontal system. It is unlikely that a three-dimensional surround-sound broadcast system based on this is feasible in the near future. However, it is important that the option of eventually broadcasting using such a system should be left open whilst catering in the immediate future for a twodimensional system.
Present needs would be fulfilled by adding a third channel modulating a quadrature 38 kHz subcarrier. This would entail a degradation of only 3 dB or so in signal-to-noise ratio over and above that of the present stereo system. A second pilot tone would be needed to indicate whether all four speakers are required (for the three-channel system) or only the front pair (for stereo). This could conveniently be placed at 57 kHz and if its level were kept sufficiently low the peak deviation caused by both pilots would be no greater than that of the 19 kHz pilot alone (see Fig. 6).

Appendix

The sampling process can be regarded as multiplying each of the audio signals by one of the switching functions in Fig. 7 and adding to produce a composite signal

$$
S=(L F U) A+(L B D) B+
$$

$$
\begin{equation*}
(R B U) C+(R F D) D \tag{1}
\end{equation*}
$$

Each of the switching functions can be expanded as a Fourier series thus:
$A=\frac{1}{4}+\frac{1}{\pi}(\sin \omega t+\cos \omega t+\sin 2 \omega t+\ldots)$
$B=\frac{1}{4}+\frac{1}{\pi}(\sin \omega t-\cos \omega t-\sin 2 \omega t+\ldots)$
$C=\frac{1}{4}+\frac{1}{\pi}(-\sin \omega t-\cos \omega t+\sin 2 \omega t+\ldots)$
$D=\frac{1}{4}+\frac{1}{\pi}(-\sin \omega t+\cos \omega t-\sin 2 \omega t+\ldots)$
where $\omega=2 \times 38 \mathrm{kHz}$. The series are truncated to include only terms in ωt and $2 \omega t$, as $3 \omega t$ and above terms are filtered out prior to modulation of the broadcast transmitter. Substituting into equation 1 and rearranging gives
$S=\frac{1}{4}(L F U+L B D+R B U+R F D)+$ $+(L F U+L B D-R B U-R F D) \sin \omega t$
$+(L F U-L B D-R B U+R F D) \cos \omega t$
$+(L F U-L B D+R B U-R F D) \sin 2 \omega t \quad$ (2) This, together with 19 and 57 kHz pilot tones would be used to modulate the transmitter.

Consider now a spherical co-ordinate system (r, θ, ϕ) aligned in such a way that $\phi=0$ represents up, $\theta=0, \phi=\pi / 2$ represents forward, and $\theta=\pi / 2$ represents left. In this co-ordinate system the polar diagram of an upward-pointing cardioid microphone can be described by $r=$ $0.5+0.5 \cos \phi$.

By applying transformations to rotate this polar diagram to point in the four specified directions gives the following equations for the microphone polar diagrams:
$r_{\text {LFU }}=0.5+\frac{0.5}{3}(\cos \theta \sin \phi+\sin \theta \sin \phi+\cos \phi)$
$r_{\mathrm{LBD}}=0.5+\frac{0.5}{3}(-\cos \theta \sin \phi+\sin \theta \sin \phi-\cos \phi)$
$r_{\text {RRU }}=0.5+\frac{0.5}{\sqrt{3}}(-\cos \theta \sin \phi-\sin \theta \sin \phi+\cos \phi)$
$r_{\mathrm{RFD}}=0.5+\frac{0.5}{\sqrt{3}}(\cos \theta \sin \phi-\sin \theta \sin \phi-\cos \theta)$

Fig. 7. Switching functions used to sample the four audio signals.

If the coefficients of the terms in equation 2 are represented in terms of equations 3 the following equations result:
$r(L F U+L B D+R B U+R F D)=2$,
the polar diagram of an omnidirectional microphone;
$r(L F U+L B D-R B U-R F D)=\frac{2}{3} \sin \theta \sin \phi$, the polar diagram of a horizontal figure-of-eight microphone aligned left-to-right;
$r(L F U-L B D-R B U+R F D)=\frac{2}{\sqrt{3}} \cos \theta \sin \phi$, the polar diagram of a horizontal figure-of-eight microphone aligned front-to-back; $r(L F U-L B D+R B U-R F D)=\frac{2}{\sqrt{3}} \cos \phi$,
the polar diagram of a vertical figure-ofeight microphone.

Therefore the coefficients of the modulating function equation 2 represent respectively, an omnidirectional signal, a left-right signal, a front-back signal and an up-down signal-just as required.

References

1. Optimum quadraphonic f.m. broadcasting system, by L. Dorren and J. Torczyer.

Compatible f.m. broadcasting of panoramic sound, by J. Gibson, R. Christensen and A. Limbery.

Experimental quadraphonic f.m. broadcasting system, by A. Csicastra, J. Foster and J. Metro.

Two proposed quadraphonic f.m. broadcasting systems, by D. Deweger, C. Eilers, P. Fockers and H. Prosser.

Proposal QFMX for use of 4-4-4 QMX matrix in quadruplex coding of f.m. transmission, by D. Cooper.
The SQ broadcasting system, by E. Toric. I.E.E.E. Transactions on Broadcast and TV Receivers November 1973 vol. BTR-19 no. 4. 2. Periphony: with-height sound reproduction, by Michael A. Gerzon, Journal of the Audio Engineering Society January/February 1973 vol. 21 no. 1.
3. Sound-image localisation in multichannel matrix production, by Osamu Kohsaka, Eiji Satoh and Takeshi Nakayama, Journal of the Audio Engineering Society September 1972 vol. 20 no. 7.
4. Discrete matrix multichannel stereo, by Duane H. Cooper and Takeo Shiga, Journal of the Audio Engineering Society June 1972 vol. 20 no. 5.
5. Experimental tetraliedral recording, by Michael A. Gerzon, Studio Sound August, September and October 1971.

"Project"

Pt. 3 of the article "A digital clock and calendar" has been unavoidably postponed until the December issue.

HF predictions

for November

Seasonal change brings F layer MUFs considerably higher by day and slightly lower by night with a small peak occuring before the pre-dawn dip. Layer virtual height, and thus elevation angles, are lower, less than the night value in fact. E layer MUFs, and thus screening frequencies, become lower, so the overall effect is a considerable increase in the available spectrum width by day. This is offset to some extent by larger day to day variation of signal and noise levels.

ELECTRONIC
 IGNITION

Mr Watkinson has given us an interesting article on electronic ignition techniques (July issue). As we are convinced of the superior performance and development potential of the capacitor discharge (c.d.) system, we will confine our comments to the relative merits of contactless and contact derivation of the timing pulse for c.d. units, as laid out in the bottom two lines of Mr Watkinson's table of improvements. This table, incidentally, by means of dot rating, would seem to contain the only criticism of mechanical contact derivation in the article, emphasised of course by the weight of material written on alternative methods of deriving the timing pulse.

We disagree with some of the dot ratings given:

Acceleration or fuel consumption will be improved by the same factor, other things being equal, by a c.d. system using either contact or contactless derivation of timing pulse. Both systems suffer the same systematic and random errors since these are generated mainly in the crankshaft to distributor drive line and not by the actual pick-up system. We have found the c.d. system energy discharge parameters to be the controlling factor.

Increased r.p.m. The importance of points bounce has been greatly exaggerated in the literature. A good contact type c.d. system should feature a bounce suppressed firing circuit. This permits operation up to $12000-15000$ r.p.m. on four-cylinder engines and further if contactbreaker points having a stronger spring are used. Since this will be beyond the range of even most competition engines the distinction between contact and contactless systems is academic. Some other engine factor, e.g. valve bounce, will limit the maximum r.p.m. first.

Servicing. We must include servicing of the c.d. unit itself, and contactless systems are inherently less reliable than contact systems simply because they must use a greater nu mber of components to achieve the same end as a contact system. It can be argued that the contact
system requires points maintenance but in practice, since the points are relieved of their load by the c.d. system, the erosion is negligible. It has been our experience that, provided the distributor cam is lubricated, contact-breaker sets will last 20,000 to 50,000 miles without adjustment. At this mileage interval one would wish to check ignition timing in any case to compensate for crankshaft to distributor drive line errors.
Once again the design of the c.d. unit proper can have a bearing on the servicing demands of the ignition system since some systems can overstress coil and distributor insulation with excessively short pulses of high amplitude. This leads to premature breakdown and occurs regardless of timing pulse derivation.

Breakdown of electronic components, being unpredictable, could leave one stranded miles from anywhere in the middle of the night, possibly on an urgent journey. Would one then rate a contactless system highly or would one prefer a contact system which can be converted to the Kettering system in a few seconds?

We find that claimed advantages of contactless derivation when examined closely are debatable, and that the design of the c.d. unit proper has far more bearing on engine performance and reliability. The high (120 mJ) output of our own system, for example, is advantageous especially on commercial engines when low octane fuel is used. M.p.g. improvements of $10-15 \%$ have been observed under these conditions where lesser energy systems of contact or contactless timing gave no improvement.

D. Anderson,

C D Ignition Ltd,
Currie, Midlothian.

Mr Watkinson replies:

I thought it sufficient to dismiss the contact-breaker by weight of superior alternatives, as any condemnation outright of such an apologetic device would be like carrying coals to Newcastle.

No simplified table, in such a general form as I have drawn, can tell the whole truth, and to clarify the picture the text distinctly says "It (the table) shows the effect of using a particular technique with all other parameters remaining equal. The fact that many of the systems allow parameters to be changed should be borne in mind". If a conventional contact breaker is connected directly to a c.d. type circuit, the improvements I have claimed will be observed. I consider that adding an antibounce circuit constitutes a change of parameters, and in that spirit Note 3 is added to the table. It should be selfevident that adding anti-bounce circuitry increases the circuit complexity to accommodate the shortcomings of the contact breaker.

In any system which eliminates the contact breaker, no anti-bounce circuitry is needed, and thus extra circuit complexity is offset.

Mr Anderson states that with a c.d. system the breaker points are relieved of their load. They are only relieved of their
electrical load; the mechanical wear is still present, particularly on the heel of the moving contact. I cannot accept that any lubrication of the distributor cam would remain effective for the claimed mileage, so if one has to lubricate regularly then one's service intervals have already deteriorated. It is, of course, not necessary to lubricate a contactless system, save for the advance mechanism. In the ultimate contactless system there is no advance mechanism.
I agree that there is little difference in performance between a brand new contact breaker c.d. and a contactless c.d. However, after 10,000 miles with no maintenance I know which will be closer to its original performance. In the first sentence of my article I stated that lengthened servicing intervals were one of the main features of electronic ignition. Having gained so much by the adoption of c.d. ignition, it seems a shame to spoil things by retaining the contacts.
In the conventional cam and breaker system, as the breaker rides up the cam to open, energy is removed from the distributor shaft. As the breaker rides down the cam to close, that energy, which was stored in the breaker spring, is returned to the shaft. As a result the distributor shaft receives alternating torsional excitation at a frequency proportional to the r.p.m. and the number of lobes on the cam. As the advance mechanism contains both mass (centrifugal weights) and compliance (advance springs) we have a potentially resonant situation, and the torsional vibration of the cam relative to the breaker shaft is a source of timing scatter, such that the actual point opening times fall in a statistical distribution around the theoretical time. No anti-bounce circuit can eliminate this. A stronger contact spring makes the problem worse.
In a contactless system, of course, no such problem exists, as the distribution of timings about the mean shows a much smaller deviation.
The technical advancement of the motor vehicle has been deliberately delayed for commercial and economic reasons, and for this reason the modern mass-produced motor car represents the triumph of economics over reliability. I hardly consider that incorporating electronics into the stoneage motor car in pursuit of reliability can be a retrograde step. I respectfully maintain that my article, read correctly, is accurate.

SUICIDE
 SOLDERING

In reply to Mr Clare's letter (July issue) regarding earthing oneself via a wrist band to metal plates, etc., it cannot be stressed too strongly that this practice is highly dangerous and potentially lethal. Surely it is preferable to blow a few f.e.ts than blow oneself into the next world!

The British Standards "Safety Code for Equipment" is all very well provided an unexpected fault doesn't occur.

Why not compromise and wear cotton clothing where possible, install an "earthing bar" (preferably connected to a separate earth from the "mains earth") and earth oneself and tools before and at frequent intervals during the soldering process?
David T. A. Jack,
Bolton,
Lancashire.

Mi Clare replies:

In reply to Mr Jack, I have two comments to make to my previous letter on soldering iron leakage (July issue).

Firstly, if Mr Jack will read my letter, he will observe that I did not mention "earthing" oneself nor the metal foil, only the joining of the two. This, if my understanding is correct, provides no additional path to ground which was not previously in existence, and thus cannot in itself increase the risk of a fault current flowing through the operator.

If the foil is earthed, however, it seems likely to me that any fault current which is going to flow will take a path from the operator's hand (wearing the wrist band and not manipulating the soldering iron) to the wrist band on that hand and hence to earth. This is a much less dangerous path than via the body of the operator, when the fault current could affect the heart directly.

Turning to Mr Jack's "cotton clothing", perhaps he can advise our readers where he obtains these items; all my shirts and trousers contain at least 65% polyester, a well known capacitor dielectric!

WHAT IS
E.M.F.?

I would like to comment on a couple of points arising in the article with the above title published in the August issue. This article was, in fact. the unexpected but welcome outcome of a letter I wrote to Mr Scroggie some months ago saying I had been unable to make sense of the quoted paragraph from his book "Phasor Diagrams".

I am glad to say that as a result of thinking about the opposite-way-round explanation given in the article, I am now quite clear about the details of the original explanation-which, in principle. I prefer.

What puzzled me at the time was, indeed, the statement that "what was generated in L was positive at the A end whereas a voltmeter would show that L was positive at the B end". This, I must say, seemed like double-Dutch when I first read it! However, I do not think the difficulty would have arisen if the paragraph had been worded as follows:
"Looking at Fig. A.1.2. Iet us suppose that a magnetic field linked with the turns of coil L is steadily growing. producing an electric field along the wire iurns. directed from end A to end B. The magnitude of the field, multiplied by the length of the wire, is 10 volts. Electrons in the wire therefore experience a force pushing them lowards end A of the wire, causing a surplus of electrons there and a deficiency at
end B. In other words, B becomes positively charged with respect to A. Etc."

It seems to me that an electric field produced by a varying magnetic field can be said to have magnitude and direction, but cannot properly be said to be "positive at one end". Surely it hasn't got an end? I now appreciate that Mr Scroggie's meaning when he said "positive at the A end" was "as if produced by a positive charge at the A end of the coil". But I think my suggested rewording, i.e. that the electric field along the wire is "directed from end A to end B", is unambiguous and clearer. Naturally any electrons in this field are pushed in the opposite direction to this conventional field direction, thus making the A end of the coil negative with respect to the B end.

One thing in the recent article I did not feel quite happy about, however, appears towards the end of p.292, where it is said "A first impulse might be to say that of course there is an induced e.m.f. in L, positive at B. But further thought should convince us that is nonsense". This did not seem nonsense to me, and is, indeed, what I would myself have said. At this stage I got quite worried, for Mr Scroggie seemed to have argued quite logically that it was nonsense! I think the answer, as Professor Joad would have said, is "it all depends what you mean by 'positive at B '". If it means "as if produced by a positive charge at B ", which is evidently Mr Scroggie's meaning once again, then it is nonsense, but if it simply means that the direction of the induced e.m.f. is such as to make end B positive-which I would have thought was the more generally accepted meaningthen surely the whole sentence is perfectly sensible? I tend to visualize the induced e.m.f. as being equivalent to introducing a little battery in series with the coil, as sketched below.

Thus it seems to me that this "first impulse" explanation is not wrong but is simply a less detailed one than those given by Mr Scroggie.

In conclusion. I would like to say what a superb effort I think the "Phasor Diagrams" book is-a book which I feel ought to be studied most carefully, and
acted upon, by everyone seriously interested in electrical and electronic engineering. As he says, "The current state of presentation of the basic theory of electrical engineering (in its widest sense) is deplorable".
Peter J. Baxandall,
Malvern,
Worcs.

Mr Scroggie replies:

I am most grateful to Mr Baxandall for (1) his outstanding contributions to audio design, (2) his kind assessment of "Phasor Diagrams", (3) the idea of writing "What is an e.m.f.?", and (4) his valuable and constructive criticisms thereof.

I accept without reservation his suggested rewording of my quotation from "Phasor Diagrams". He explains his point so clearly and precisely that there is nothing for me to add.

As regards his second point, I feel that here our roles are reversed. It is the statement that "there is an induced e.m.f. in L, positive at B", which he accepts, that I considered to be so loose and imprecise that (for shock treatment) I went so far as to call it nonsense. The main purpose of my article was to show that this statement was, by itself, inadequate and in fact the reverse of the truth. It might be acceptable as conventional shorthand that we know isn't literally true but which would take too long to express correctly every time (like "the sun is rising"). But such conventions can be misleading, if they are taken at face value and the full story is (as I suspected in this instance) commonly unknown or misunderstood.

To substitute, as Mr Baxandall does in his diagram, a battery for the varying magnetic field, is a good example of the logical fallacy of "begging the question", or assuming what you are setting out to establish. (It also contravenes the teaching principle that the obscure should not be explained in terms of the more obscure; what goes on in a battery is more complicated than an induced magnetic field and nothing is gained by substituting it.)

The electric field which we can deduce from a voltmeter reading is due to the electric charge, positive at B . The only way we can account for the absence of any electric field in the wire is by something we call an e.m.f., and if this is (as stated in the above quotation) also positive at B, then the potential at B must be doubly positive and the field in the wire doubly strong. I still believe I am justified in calling this nonsense. The induced (e.m.f.) field must be equal and opposite to the charge field observed by the voltmeter. "Less detailed" seems an understatement when applied to something that is upside down. I suggest that "an induced e.m.f. positive at $B^{\prime \prime}$ is conventional shorthand for "an induced electric field \times length causing a separation of charges (positive at B) which creates an eleetric field equal and opposite to its own". The important point is that however one regards an e.m.f. it is wrong to say (in this example) that it is positive at B. If the phrase is under stood to mean that it leads to the accumu-
lation of a charge that is positive at B, fair enough; but does everyone understand this?

Again, however, I must admit that describing an induced field as "positive at $A "$ is rather a loose way of saying that its direction is the same as that of the field that would be produced by a positive charge at A, and I have already accepted Mr Baxandall's amendment on this.

Mr Scroggie's descriptions of basic electronics are usually most enlightening but in the August issue he seems to make the matter of e.m.f. and p.d. most confusing. The muddle arises from trying to avoid allowing anything but an electric field to move an electron. It is made worse when he superimposes two equal and opposite p.ds and does not get zero.

His argument makes things complicated from the start when we consider Fig. 3: in the circular "electric field" created by the varying magnetic field where are high and low potential positions? I realise this could be explained in his terms by postulating an infinite number of infinitesimal elements in the circuit but would not the following be easier? (I am not suggesting this is "correct". It has its faults but does quite well in most common situations.)

A varying magnetic field exerts a force directly on an electron without first producing an electric field. So that we can compare the effect of the magnetic field and the electric field we will measure this effect in the same units.

Suppose that in the circuit shown the magnetic field through L is varying so as to have the same effect on an electron as a p.d. of 10 volts positive at A relative to B. This does not itself produce any p.d. between A and B but because electrons will be forced towards A, A will become charged negative with respect to B . When the p.d. due to this charging is 10 volts then the resultant electric field will oppose the effect of the magnetic field and no more current will flow. Measurement of the potential across $A B$ with an ideal voltmeter would show A 10 volts negative of B. If R is now connected across $A B$ this p.d. will drive electrons through R from A to B and if they are not replaced the p.d. will drop. As the e.m.f. is not reduced there would then be a net force on the electrons and their rate of flow would increase until it is enough to
maintain the p.d. of 10 volts across R. (No net force is needed on the electrons in L if L has no resistance.)

This argument can be extended easily to allow for resistance in L. Inductance and transformer action can be explained in these terms if the idea of varying currents producing magnetic fields opposing their change is introduced.

Incidentally, there are several otherwise good textbooks that start by pointing out the usual concept of an electric field as a single valued function of a single valued scalar called potential and then forget this when explaining the effect of a varying magnetic field on an electron.

F. C. Cole,

Sheffield,
Yorks.

Mr Scroggie replies:

Mr Cole's article is evidence of the truth of at least the first sentence in my article.

Having carefully studied his alternative explanation of my Fig. 1 (reproduced in his letter) I have come to the conclusion that it is the same as mine except for his inexplicable attempt to avoid what are generally acceptert as physical facts by substituting for an induced electric field (which is known to exert a force on an electron) the hitherto unknown concept of something that has "the same effect on an electron as a p.d. of 10 volts". If this, and "the effect of the magnetic field" (in the next sentence) are replaced by "the mag netically induced electric field" then his explanation and mine (quoted from "Phasor Diagrams") are identical.

Does Mr Cole deny that a varying magnetic field creates an electric field? If so, how does he account for electromagnetic waves (to say nothing of the unanimous agreement against him on this point)? Does he deny that an electron in an electric field (whether due to charges or to a varying magnetic field) experiences a force proportional to the field strength? And if he does not deny these things, why does he substitute for them his own mysterious "effect"? If anything is muddling and confusing, surely that is. Why should he go out of his way to invent something other than an electric field to move an electron?
I wish he had referred me to where I superimposed two equal and opposite p.ds and did not get zero, as I cannot find it. I did say that in L (more precisely, the region subject to the varying magnetic field) there were two equal and opposite electric fields, one of them due to the equal and opposite electric charges at A and B , and the other magnetically induced. Outside L, where the latter is non-existent, there is only the charge field, and the p.d. due to this is the one read on Mr Cole's ideal voltmeter. But if his voltmeter had as part of it a coil wound close to L and making with it a $1: 1$ transformer, then it too would have equal and opposite fields and would read zero.

As to the accusation of making things complicated at the start with Fig. 3 (a uniform resistive ring around a varying
magnetic field), nothing I said about this was contrary to either physical facts or generally accepted theory. Mr Cole, by apparently denying the creation of a circular electric field (which is the e.m.f.) in these circumstances would seem to be the one who is making things more complicated for himself and us. I hope he accepts that the total p.d. around any closed path is zero. If so, and the circuit is one in which the e.m.f. and the opposing $I R$ drop both happen to be uniformly distributed around it, the absence of any net p.d. between any two points on the circuit is obvious, at least to anyone familiar with Kirchhoff's voltage law. Has Mr Cole a simpler explanation, preferably one that does not involve concepts peculiar to himself?

AMATEUR RADIO REPEATERS

I have just read the progress report by Mr Fitch on mobile amateur radio in the September issue. Mr Fitch suggests that there is only one British v.h.f. repeater station in operation on the 144 MHz band, but he expects that there will be others in operation during the present decade. At present there are three UK repeaters operational and several others are expected to be in use within the next few months.

In addition to the GB3PI installation at Barkway (referred to by Mr Fitch), there is the London repeater GB3LO, now in operation from a site on Epsom Downs, and the Bristol Channel repeater GB3BC, located at an elevated site a few miles from Newport, South Wales.
The London repeater will shortly be moved to the Crystal Palace TV station, which will greatly increase the coverage provided, particularly towards the south and east of London, where there are a number of blind spots in the coverage from the Epsom Downs site.
The Home Office has recently licensed another repeater installation to be installed at an elevated site in Four Marks, Hampshire. It is expected that this repeater will provide good coverage into the south coast area from Worthing to Bournemouth and to the fringes of the coverage provided by the London and Bristol Channel installations.
Other repeaters are planned for East Anglia, Yorkshire, the Midlands and Scotland. A number of licence applications from local amateur groups for repeater stations in the 144 and 430 MHz bands are known to be in preparation for submission to the Home Office, or are at present under consideration by the licence authority.

Mr Fitch is correct in stating that an access tone of 1750 Hz has been standardized for European repeaters; however, the Barkway station GB3PI, which operates co-channel with Bristol, requires a tone burst of 1700 Hz for access.
R. L. Glaisher (G6LX),

Croydon.

Signal-frequency meter

Digital indication of receiver input frequency
by G. Lomas

Abstract

This instrument is a digital frequency meter arranged for a non-zero reset to enable the direct indication of the frequency to which a superhet receiver is tuned. The oscillator frequency is measured and i.f. offset is accommodated in the display.

After reading the article by C. Attenborough' the writer was inspired to construct a digital frequency meter to replace the dial on a poorly-calibrated receiver. This was a simplified version of the one described, and used the 50 Hz mains as a frequency reference: This proved quite adequate for medium wave reception, for which this receiver is mainly used, and surprisingly useful at higher frequencies.

As this first unit was built integral with the receiver, a second version, to be des cribed here, was made for more general use with other receivers. This uses the same basic design, but is self-contained, with its own power supplies, an optional crystal reference, and an amplifier to interface with the receiver. The unit as it stands gives a four-digit display of kHz , but can be readily extended to display from tens of Hz to 20 MHz or more.

Operation

The functional diagram, Fig. 1, will be seen to be on fairly conventional lines. The input signal is taken from the receiver oscillator via the interface amplifier to the gate. The measurement cycle, repeated every 200 ms , is controlled by a sequence of three pulses; reset, gate and store.

The reset pulse first sets the counter, not to zero, but to some value that will compensate for the i.f. offset of the oscillator. The pulse opens the gate and allows the oscillator signal to increment the counter for a period of 100 ms . The store pulse transfers the value reached by the counter to the actual display, which then retains this value until the next store pulse.

The output from the gate is divided by 100 before reaching the counter, thus giving an effective gating period of 1 ms , and a display in kHz . While this may at first sight seem a curious way of achieving a 1 ms gating period, it does in fact offer considerable improvements in the short-term stability and clarity of the least significant digitearly experiments with an actual 1 ms gate always gave a "fuzzy" display of this digit, and a marked ± 1 effect. While a longer gate time, with more division, would perhaps
be even better, this value was chosen as the maximum possible without noticeable lag in response to the tuning control.
The value to which the reset pulse must force the counter is dependent upon the receiver i.f. value and oscillator arrangement. If the oscillator is below the signal frequency, the counter must obviously start at the i.f. value, in order to add this to the count. If the oscillator is above the signal, as is almost invariable, the i.f. value must be subtracted from the count. To do this the counter must start at the tens complement of the i.f. value, so that when the i.f. value has been counted, all the digits of the counter are zero.

The tens complement is 10^{n}-i.f. value, where n is the number of digits in the display, and the i.f. value is to the same scale as the display. For four digits, and an
i.f. of 465 kHz , this is $10000-465=9535$. Similarly, for a five-digit display in kHz , the tens complement would be 99535, so that in all cases the resultant "l" after the addition of the i.f. value falls off the end of the display, as it were, and leaves it at zero.

Circuit design

It was found convenient to break the unit down into several sub-sections, which could be built and tested independently. These are the counter/display unit, the pulse generator unit, the interface amplifier, the crystal reference, and the power supplies.

Counter/display. This is a four-decade latched counter driving neon display tubes, and uses the usual 7490 counters, 7475 stores, and 74141 decoder/drivers. These

Fig. i. Basic diagram of frequency meter operation.
are, however, used in a slightly unusual manner, in order to be able to reset the display to any required value. This involves only the addition of two of the cheapest i.cs; a 7410 gate package, and a 7404 -hex inverter. The method of resetting isexplained as follows.
A single-decade counter-display is shown in Fig. 2(a). This is connected as normal except that the wiring from the 74141 decoder to the tube is "rotated", as shown, five places. If the counter is reset to zero, the tube will indicate the digit " 5 ". The counting action is not affected by this, only the number at which counting starts after the reset pulse. The outputs of the 7490
will not now be the b.c.d. equivalent of the displayed digit, but will be as in the table.

In order to "carry" to the next decade, a negative-going edge is required, coincident with the display changing from " 9 " to " 0 ", which, with normal wiring, is provided by the D output of the 7490 . In this case, it will be seen from the table that the carry pulse is required when the counter goes from 0100 to 0101 . This pulse could be produced by the gating circuit of Fig. 2(b), which produces the carry by detecting the simultaneous presence of output C , and the absence or "not" of outputs A and B. In Boolean terms this is Carry $=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$, and because the 7490 has only true outputs,

Table 1			
Display value at reset	Reset counter to	Carry at counter	Carry logic
0	0	$9-0$	D
1	9	$7-8$	A.B.C.
2	0	$7-8$	A.B.C
3	0	$6-7$	$\overline{\text { A.B.C }}$
	9	$5-4$	A. $\bar{B} \cdot C$ (used)
4	9	0	$5-4$
5	9	$3-4$	A.B.C
6	0	$3-4$	A.B.C
7	0	$2-3$	A.B.C
8	0	$1-2$	$\overline{\text { A.B.C }}$
9	0	$9-0$	A.B.C.D
			D

Fig. 2(a). A typical counter, decoder and display, showing the "crossed" connexions between decoder and display. 'Carry"' to the next decade is enabled by the circuits of (b) and (c) for resets to " 0 " or " 9 ".
each "not" requires an inverter. A further inversion is required from the output of the gate, as this is a NAND gate, and not a true AND gate.

If the counter had been reset to 9 , instead of 0 , and the wiring rotated only four places, decoder 9 to display tube 5 , and so on, the display at reset would be as before. The carry output would now be required as the counter moved from 0011 to 0100 (b.c.d. 3 to 4). The carry circuit then becomes as Fig. 2(c) which uses one less inversion than 2(b). The optimum reset, 9 or 0 , for the display of a given digit by this method is given in Table 1. From this it will be seen that all but the two digits 7 and 8 can have the carry generated by the circuit of 2 (c), covering virtually all practical values of i.f.
The full circuit of the counter/display unit is given in Fig. 3, and is shown arranged for an i.f. of 465 kHz with the oscillator above the signal. The reset value of the display is therefore 9535 , and the carries are generated as explained, using the 7410 and the 7404 . The addition of the 7475 stores does not affect the reset system.
The unit is assembled on a printedcircuit board, which has the ABCD and input A connexions of each 7490 brought out to terminal points, together with the carry-circuit connexions marked ABC XYZ . These are joined with wire links in order to implement the gate connexion required for the reset value chosen. With this arrangement, any circuits not used for a particular carry are available to another. For example, if the i.f. value was the once common one of 110 kHz , and the tenscomplement required at reset, this would be 9890 . Three of these digits could be the normal reset to 9 or 0 , and the units and tens carry taken from output D. The hundreds decade, from Table 1, would be reset to 0 . The carry to the thousands decade would be 1.2.4.8, and could be achieved as in Fig. 3(b).

The board is arranged to take sideviewing wire-ended tubes directly, but the terminations can be wired to sockets for the larger tubes. The anode resistor for the tubes will depend on the types used, and a current of $1 \frac{1}{2} \mathrm{~mA}$ per tube is adequate for this kind of display.

Pulse generator. This produces the sequence of the three timing pulses required by the counter/display unit, and also contains the signal gate and the divide-by- 100 . I.cs used are three 7490 , one 7404 , and one 7413 quad Schmitt gate, and the circuit arrangement is shown in Fig. 4. The $50-\mathrm{Hz}$ input, limited then roughly squared by G_{l}, drives a 7490 connected in the square-wave output mode. The 200 ms square wave at output A is used to open gate G_{2} to the r.f. input for alternate 100 ms periods. The C and D outputs are suitable for use as the store and reset pulses respectively, but are required only during the negative half of output A. These are extracted by gates G_{3} and G_{4} when these are opened by output A inverted by I_{I}. The store and reset pulses are now negativegoing, and require a further inversion to
get the correct polarity. A single inverter I_{2} is sufficient for the reset, but the store output must be able to sink a worst case 50 mA at logic zero with four 7475 stores. This is catered for by the three inverters $I_{3,4.5}$ in parallel. I_{6} is spare, but may be used if more decades are added to the display.

The output from the gate G_{2} is divided by the two remaining 7490 s, which are also zeroed by the reset pulse to give a defined start to the count.

The 50 Hz input is intended for a nominal 6.3 V but will work at half this value. If the crystal reference is used, the gate G_{i} is not really required, and the output can be taken direct to the 7490 . In this case the 7414 could be replaced with the slightly cheaper 7410.

The prototype was constructed on a small piece of Veroboard, and the only layout point to note is that the signal input lead to gate G_{2}, and the G_{2} output lead
must both be kept short, and not inadvertently connected to a long length of copper track.

Interface amplifier. This uses a single 72710 comparator in a regenerative mode, as shown in Fig. 5. The input impedance is about $10 \mathrm{k} \Omega$ at a sensitivity of 50 mV . The worst case frequency response is some 12 MHz , but all those tried have worked well at 20 MHz . The amplifier is assembled

(a)

(b)

Fig. 3(a). Counter display arranged for reset to 9535. If carry circuits and counter connexions are taken to accessible pins at the edge of the circuit board, it is easy to arrange alternative i.f. offsets. A gating arrangement for an i.f. of 110 kHz is shown in (b).

(a)

* $1 / 67404$

Fig. 4(a). Pulse generator circuit. The four Schmitt gates were 7414 in the prototype, but as they are rather difficult to obtain it is suggested that $7413+7440$ be used in its place (7413 in G_{1} and G_{2} positions). A timing diagram for the unit is shown at (b).

Fig. 5. Circuit diagram of the interface amplifier.

Fig. 6. Crystal reference oscillator circuit. The value of $C_{7(r)}$ will depend on the crvstal used.

Table 2	
I.C.	Typical supply current at $5 \mathrm{~V}(\mathrm{~mA})$ with all other connexions open.
7400	12
7404	18
7410	9
7414	24
7474	17
7475	32
7490	32
74141	21

Fig. 7. Power supplv.
on a small printed board, and should be reasonably well screened.
Crystal reference. The circuit used for the actual oscillator is rather unusual, but is compact, and works well with a high-Q bar. The output waveform has a sharp ($<10 \mathrm{~ns}$) trailing edge, ideal for driving a 7490. As shown in Fig. 6, all four sections of a 7400 quad gate are connected in series, and held in a quasi-linear state by d.c. feedback around the first three sections. Positive feedback from the output via the crystal defines the frequency, and the capacitor at the output damps out any tendency to ring at the crystal overtones. The 100 -ohm resistor in the 5 V line ensures starting. The 100 kHz output is divided by 1000 in the three 7490 s , and then to 50 Hz by a half section of a 7474 dual D-type flip-flop. This unit was also made up on Veroboard, and the 7490 s are used in the "square-output" mode only because this makes the interconnexions on the board slightly easier. Calibration is by beating the 100 kHz output with the BBC 200 kHz , although for displays up to four digits this is hardly necessary.
Power supplies. The actual circuit used is shown in Fig. 7, but this can obviously be altered to suit individual circumstances. The 5 V current for all the units as described is around 500 mA , but could be more with some batches of i.cs. If this is derived from 6.3 V the supply should be capable of at least twice this without much voltage drop, or the ripple will be excessive. If the current drain is increased by the addition of extra decades, the MC7805CP regulator will need a higher input voltage, up to say 7.5 V to operate correctly.

Each 5V supply should be taken separately to each unit, from as close as possible to the output capacitor. This is preferably a paper type, with a low r.f. impedance. The interface amplifier requires 6 mA in each line, and the 200 V supply must supply around $1 \frac{1}{2} \mathrm{~mA}$ per tube.

Construction

This is reasonably straightforward but should be tackled in an orderly manner. The power supplies should be completed first, so that these are available for testing the other units. Unless sockets are used, once the i.cs have been soldered in, they are extremely difficult to remove without special equipment. Whilst the probability of a faulty package is very low, it can happen, and a simple tester is well worth while. This need be little more than an i.c. socket on a small board, with the output pins brought out to some form of terminal.

A simple test of supply current should be first, with devices taking more than twice the typical value being suspect (see Table 2). Logic testing can be done on gates, inverters, and stores with a voltmeter on the outputs and the inputs taken to 0 V , or 5 V via a $3.3 \mathrm{k} \Omega$ resistor. Counters can be driven from a 50 Hz supply, similar to Fig. 4, and the 5 Hz output checked with 'phones or a lamp and driver. Decoder drivers are not easily checked except by wiring up a single decade and tube.

When the i.cs or sockets are soldered in place, it is a good plan to test after each one

that the supply rails have not been shorted by a blob of solder.

Sub-assembly testing

Pulse generator. The first test should be supply current, which should be of the order of $90-130 \mathrm{~mA}$. For testing the pulse outputs, a double beam oscilloscope is ideal, but the 5 Hz output is just discernible as a slight dither on a voltmeter around a mean value of 1 V or less. Or it can of course be checked audibly with 'phones. These can also be used to test the count output if a signal of few hundred hertz is fed to the r.f. terminal. For all these tests, of course, the 50 Hz reference must be present at the input of G_{I}. If all the outputs seem present, the unit is probably correct, and further tests can be made in conjunction with the counter/display unit.

Counter/display. Supply current should be typically $300-350 \mathrm{~mA}$ from the 5 V line and $5-7 \mathrm{~mA}$ from the 200 V supply. With the store input taken to 0 V and the reset input left open, the display should be at the chosen reset value. With the reset input also at 0 V and the count input taken to the pulse generator store or reset outputs, the display should count up at 5 Hz when the store input is removed from 0 V and freeze when this is replaced.

With the slow count, the first two decades should be checked to see that the count is in the correct decimal sequence, and that carry to the next decade is at the 9 to 0 transition. The third and fourth decades are treated the same, but with say $50-100 \mathrm{~Hz}$ at the count input. This can be taken from the output of gate G_{l} on the pulse generator if an oscillator is not available. If all seems well, the two units and the power supplies can be joined up and a working frequency meter is now available. It is, of course, quite useful as a straightforward frequency meter, and for occasional use in this role there is no great inconvenience in allowing for the non-zero start to the count.

Interface amplifier. Supply current should be close to 6 mA for both positive and negative lines. The sensitivity at low frequencies can be checked at 50 Hz via a pot-down network with C_{3} temporarily shorted out, and the output taken to the r.f. input of gate G_{2}. The output of this gate can be checked with 'phones, and the minimum input determined. This should be around 50 mV . The high frequency performance up to at least 10 MHz will not differ greatly from this.

Crystal reference. The supply current should be $80-120 \mathrm{~mA}$ and the 100 kHz and 10 kHz outputs can be tested on the counter, allowing for the i.f. offset. The subsequent outputs can be checked via 'phones, or even the receiver a.f. stage, and if present are fairly certain to be correct.

Connexions to the receiver

The ideal take-off point is one of low impedance where additional capacitance will not unduly affect the frequency. If it can be arranged, connexion to the high
potential end of the oscillator padding capacitor is the simplest, and additional capacity may be adjusted out. If the receiver band switching makes this difficult, and the oscillator is a valve or an f.e.t. then the grid or gate resistor can be tapped some $10-20 \%$ from the earthy end. Failing this, a small pick-up coil may be wound over or placed inside the oscillator coil.

The interface amplifier is small enough ($2 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in) to be mounted in most receivers if desired, but should be well screened if this is done. Connexion to the frequency meter should be via coaxial cable and sockets.

Setting up the system

There are no adjustments to be made on the frequency meter itself, except to the crystal trimmer (if fitted) and this is more or less academic with a four digit display.

If the i.f. stages are not tuned to exactly the value used in the design of the meter, then the error will show up as a constant displacement of the same amount and sense as the error. If two known transmissions are received, the difference between the indicated frequencies will be the same as that between the correct values, but both will be low or high according to the error in the i.f. stages.

If, however, the two known transmissions have an indicated difference which is not the true value, then the percentage error is equal to the error in the 50 Hz reference, but opposite in sense. This can be used as a cross check on the mains frequency. In all these measurements, due allowance must be made for the ± 1 "digital" error in each indication, which is inherent in any system where the signal is not phase locked to the reference.

Interference

With a completely self-contained unit, without a crystal reference, no particular problems were encountered. If the crystal is used, then this obviously produces strong signals throughout the r.f. spectrum, and must be well screened from both the receiver and the aerial.

If the power supplies are taken from the receiver, then rather more care must be taken, as all digital circuitry is a potential generator of interference. The worst offenders in this respect are the 74141 decoder drivers, and if the 200 V supply is from the receiver, then inadequate filtering can be disastrous. In any case, the wiring of the frequency meter should be arranged so that no supply currents to any of the sub-units can flow through the metalwork.

Extension of the display

While frequencies greater than 10 MHz can be measured with the four digit display, if one mentally puts a " 1 " in front, an additional stage may be easily added at the most significant end. This can be the same as the existing stage, and if the i.f. is less than 1 MHz , can take its carry from the D output. There are only two i.cs in the system working at the full signal frequency, apart from the interface amplifier, G_{2} and the following 7490 in the pulse generator unit. Most 7490 s will
operate at 20 MHz , and most gates will do better. If even greater frequencies than this are required, then the replacement of this 7490 by a 74196 should take the limit to the region of 30 MHz , but some selection may be needed for G_{2}.

For the display of less significant digits, signals at tens and hundreds of hertz can be taken from i.cs 18 and 19 respectively in the pulse generator unit. These stages will each require a 7475 and 74141 wired to a display tube in a normal manner. Note that the crystal reference is essential to display these lower digits satisfactorily.

For any extensions, the 7475 store line will need extra current sinking capacity; the spare inverter I6 may add sufficient, or an extra package may be necessary. If an extra 7404 is used, the required number of sections should drive a separate store line to the extra 7475 s , and spare inputs taken to 0 V . It may also be necessary to increase the input voltage to the 5 V regulator to 7 V or so.

Mains reference

As the use of this is often dismissed out of hand, the results of actual measurements may be of interest. These were made against an accurate 100 kHz standard, phase locked to the BBC 200 kHz , and taken at times from 8 a.m. to 12 p.m.

The general pattern was a slow cyclic variation over the range $\pm 0.1 \%$, with a period of 10 to 15 minutes, and sometimes longer. Quite often the error did not exceed 0.05% for 10 minutes or more. No particular deviation was noted in the accepted "peak" periods. The greatest deviation measured was $+0.5 \%$. and this occurred regularly each evening about 8.50 to 9.05 . This is possibly designed to put clocks right before the BBC TV news, or possibly a result of a massive switch off by those who don't watch the news.

The practical results confirmed these measurements, and outside this short bad period, medium wave transmissions have never been indicated at more than $\pm 2 \mathrm{kHz}$. from the true value, and still audible at the true indication. At the top end, the standard transmission on 10 MHz has been within $\pm 3 \mathrm{kHz}$ for minutes on end, and never seen to be more than $\pm 15 \mathrm{kHz}$ in error.

It may be that the writer's area (North Cheshire) is specially favoured, but if the above results are all that is required, then the mains reference is certainly worth a try before going to the cost of the crystal unit.

Reference

"Displaying frequency digitally" by C. Attenborough. Wireless World, Dec. 1971, p.597.

Acknowledgment

The author gratefully acknowledges the assistance of J. L. White, of Northern Electronic Designs, during the design and manufacture of printed-circuit boards for the instrument. N.E.D., whose address is 174 Crossbank Street, Oldham, Lancs., is able to supply boards for this instrument.

Weather satellites ground station

Reception of cloud cover pictures transmitted in the 136 MHz band

by G. R. Kennedy

Abstract

This article describes a complete station for the reception of weather satellite cloud cover pictures. Its circuitry is straightforward, with the emphasis placed on economy and reliability. Assuming that a basic electronic workshop and a good quality oscilloscope are available the article is particularly aimed at meteorological, survey, school and university groups who might wish to build equipment in order to operate a compact weather satellite ground station in the field as well as in the laboratory.

The first of a series of weather satellites was launched by the Americans in December 1963. Since then over 20 satellites equipped with Automatic Picture Transmission (APT) have been launched by both the USA and USSR. At the time of writing six or seven weather satellites are transmitting weather pictures in the visible and infra-red portions of the spectrum. Of these, five transmit pictures in the 136 MHz band. These v.h.f. transmissions are of one of two types: APT, which gives a TV type picture of a snap-shot picture taken by the satellite, and Scanning Radiometer (SR) pictures which are continuous scans received in real-time of a rotating camera mirror which sees the earth as the satellite progresses during a pass. APT pictures are usually only in the visible portion of the spectrum, whereas SR pictures may be infra-red (IR), visible, or both, sent in a side-by-side format.

The available weather satellites may be divided into polar orbiting vehicles which send either APT or SR pictures, and geostationary vehicles which send either APT or specially processed APT and SR. Currently, the polar orbiters sending v.h.f. APT are ESSA-8, NOAA-2 (ITOS-D) and NOAA-3, launched by the USA. Some Russian Meteor satellites transmit in the v.h.f. band and use a slightly different, though generally similar system of picture telemetry to the American satellites. The two geo-stationary satellites are ATS-3 over the Amazon, and ATS-1 over the Pacific Ocean. For more details of weather satellites, the reader is referred to refs. 1,2 and 3.

Satellite APT telemetry

All American v.h.f. weather picture transmissions comprise amplitude modulated picture information on a 2.4 kHz subcarrier, which in turn frequency modulates the v.h.f. carrier. The received f.m. demodulated sub-carrier is essentially free
from ignition and similar interference and from the effect of fading due to satellite tumbling and horizon refraction effects at low ground elevation. Some Russian APT satellites use a different and apparently variable sub-carrier frequency and may transmit in both v.h.f. and short-wave bands. The demodulated 2.4 kHz is the video signal required for the replay electronics of the ground station. The pictures of the more recent APT satellites is of 800 lines. It is transmitted automatically for 200 seconds, preceded by an eight-second start and phasing signal. There is then a pause for two or three minutes whilst the satellite orientates itself
for the next picture. During this time a steady peak-white signal is transmitted. The cycle then repeats, a three-second 300 Hz burst of the 2.4 kHz sub-carrier followed by five seconds of peak white lines at the 4 Hz line scan rate, with 12.5 ms black zero carrier phasing pulses. The picture follows, each line being made up of a 12.5 ms white edge pulse followed by the picture modulation varying between black and white. The picture telemetry waveforms are shown in Fig. 1. There are various positioning marks called fiduciary marks, and the letters USA on the picture, and these appear as black pulses on the APT telemetry. APT pictures suffer from

(a)

Fig. 1. ESSA-8 telemetry waveform sequence (APT), (a) peak white inter-picture tone, (b) three-second 300 Hz tone burst, (c) five-second white/black phasing signal, (d) typical picture line.
"pin-cushion" distortion at the corners due to the camera viewing a spherical surface but presenting it as a flat surface. The aspect ratio of the picture is $1: 1$.

Satellite SR telemetry

The scanning radiometer telemetry runs continuously, so that as long as the satellite is in view, the SR signal can be received. Taking NOAA-2 (ITOS-D) as
an example, the sub-carrier is 2.4 kHz as for the APT satellites. The line-scan rate is 48 per minute, i.e., one scan per 1.25 seconds, one-fifth of the APT line scan rate. The pictures are sent side-byside, infra-red first followed by the visible. The SR line scan is shown in Fig. 2. There are two windows in each telemetry line: one preceding the IR position which gives voltage calibration steps and one pre-

ceding the visible position which carries data depending on the line used. The repetition of similar lines occurs every 25 lines. The polarity of the IR transmission is such that a signal equivalent to a peak white signal in the visible portion is cold, and a dark signal is hot. In practice, the dynamic range of the IR picture is far less than that of the visible picture, and unless elaborate steps are taken, the two pictures cannot be read out in real time side by side: either one or the other is displayed. Due to the rotation of the camera view in SR satellites, the resultant pictures have "milkbottle" distortion, that is, the pictures have the appearance of photographs of a flat surface curved round a cylinder ("bottle") and viewed close-to. Commercially some facsimile receiver manufacturers use circuitry to stretch the edges of the pictures to give an approximate Mercator Projection view. The "Index of Co-operation" $=$ (width of scan in inches \times lines per inch) $/ \pi$ is the facsimile equivalent of aspect ratio. The Index of Co^{2} operation for the square ESSA-8 pictures is 255 (267 including start and phasing lines), and 135 for the picture portions of the NOAA-2 transmissions, not including phasing bars, etc.

Ground station

The block diagram of a weather satellite ground station is given in Fig. 3. The tape recorder stores the satellite demodulated sub-carrier signal for later use by the display system, or the picture may be printed in real time during a satellite pass.
The overall sensitivity of the system may be estimated as follows:
Satellite transmitter output $\quad+37 \mathrm{dBm}$
Loss B in TX antenna and feed - 10 dBm
Polarization loss $\quad-3 \mathrm{dBm}$
Path loss at 5° elevation $\quad-147 \mathrm{dBm}$ Signal level at ground $\quad-123 \mathrm{dBm}$
Assume that a typical 50 ohm input f.m. receiver at 137 MHz quietens fully at $1 \mu \mathrm{~V}$ input. Input power is $2 \times 10^{-11} \mathrm{~mW}$ $=-107 \mathrm{dBm}$. Hence 16 dB of gain is required before the receiver. A typical eight-turn helix or 16 -element crossed Yagi antenna would have a gain of about 12 dB . A suitable low noise pre-amp should have a gain in excess of 10 dB , which would allow for other losses not taken into account.

The antenna

Weather satellites vary in the type of transmitted signal polarization. ESSA-8 transmits a right-hand circular signal, and NOAA-2 a linear polarized signal, for example. Since a linearly polarized antenna will lose 3 dB of a circularly polarized signal compared with a circularly polarized antenna, the best compromise is a satellite ground station antenna designed for right-

Fig. 6. Antenna motor drive.
Fig. 7. Pre-amplifier circuit.
Fig. 8. Block diagram of the receiver.
hand circular polarization. There are two possibilities for a practical antenna, a helix or a crossed Yagi array.
Helical antenna. The design parameters for a helix antenna fed against a ground plane are, wavelength, λ, pitch, p, diameter, d and turn length, t. For a small copper conductor the relationship is $p=0.25 \lambda$ $d=0.375 \lambda, t=1.18 \lambda$. For 137.5 MHz this gives $p=21.5$ inches, $d=32.2$ inches and $t=101.4$ inches. For an eight turn helix, 67.6 feet of copper conductor are required. The gain would be 13 dB , the beam width 30° or so between half power points, and the feed impedance 150Ω. Matching can be carried out using a quarter-wave coaxial transformer. For example, a reasonable match to 50Ω coax is given by a $\lambda / 4,1 \frac{1}{4}$ in diameter aluminium tube surrounding a $1 / 4$ section of $\frac{1}{4}$ in helix conductor (Fig. 4). Suitable material for the helix are coppersheathed mains cable ("Pyro"), old car hydraulic copper tube or the braid section of $\frac{1}{4}$ in diameter coax cable. The winding sense is such that, if viewed from the satellite, a particle travelling down the wire of the helix appears to rotate clockwise, or in other words, as though one is screwing down the top of a conventional right-hand threaded jar.
Crossed Yagi array. There are three methods of arranging a crossed Yagi antenna for circular polarization: Fig. 5 (a) feeding two separated Yagis on a cross boom in phase, each Yagi at right-angles axially to the other; (b) feeding two co-axial crossed Yagis on the same axial boom $\lambda / 2$ out of phase; (c) feeding two co-axial crossed Yagis on the same axial boom in phase, but setting one Yagi $\lambda / 4$ up the boom from the other.

Method (a) is somewhat cumbersome, but has the advantage of being convenient for mounting so that the antenna can track from horizon to horizon through zenith for an overhead pass. Method (b) is mechanically more awkward than method (c), which is widely used in commercially available antennas, such as the J Beam $2 / 10 \mathrm{XY}$. For a given feed, the antenna

Fig. 9. Circuit of the first local oscillator.
receives left-hand circular polarization in one direction along the axis, and righthand circular along the other. Polarization can be changed by reversing the polarity of the feed to one dipole. Conventional design formulas apply to these three types of Yagi arrangements ${ }^{4}$. A double tenelement Yagi array of the above type will give a gain of about 15 dB and a beam width of 33° for half power points.

Antenna drive

The simplest method of driving the antenna is to mount it on an azimuth-elevation mount and to move it by hand. For powered drive, the mount may be driven by two d.c. motors. Drive electronics are required to stop, start, reverse and speed control the motors. A suitable circuit is shown in Fig. 6.

The circuit is basically a bridge drive for a $1 / 10$ h.p. series-wound split-field d.c. motor-in the example shown, for a 110 V d.c. motor. Diodes D_{5} to D_{12} are a
series diode bridge which supply the positive and negative rails for the unijunction circuit. For whichever polarity of the 115 V a.c. supply, the diodes supply the unijunction circuit rails with the same polarity. Zener diodes D_{8} and D_{g} in series stabilise these rails at 16.8 V . The unijunction transistor $T r_{1}$, circuit is a relaxation pulse generator, the p.r.f. being determined by C_{1} and R_{7} time constant, and by the current through R_{5} or R_{7} and R_{8}. Potentiometer R_{4} sets the sensitivity and hence "dead band" of the control pot, R_{8}. Due to the forward bias shorting action of $D_{t 2}, D_{t!}, D_{4}$ or $D_{t 0}, D_{13}, D_{4}$, pot R_{8} is across the 16.8 volt unijunction rail. When the wiper of R_{8} is in mid-position, the potential on the wiper rises with the 115 V half cycle. If C_{l} is discharged, D_{7} is forward biased and the potential on $T r_{l}$ emitter rises to approximately the maximum value of eight volts. Potentiometer R_{4} is so adjusted that the peak point of $T r_{1}$ is above this value. Current flows through R_{7} to charge C_{t}

Fig. 10. Mixer local oscillator circuit.

and when the potential at Tr_{I} emitter rises above the wiper potential of R_{8}, D_{4} becomes reverse biased. The voltage level due to the charging of C_{I} through R_{g} and D_{7} forms a pedestal voltage, the pedestal level being determined by the cut off of D_{7}. A ramp voltage then rises on this pedestal due to the further charging of C_{l} through R_{7}. This latter is adjusted so that, with R_{g} wiper at the mid-point, the time constant of R_{2}, C_{I} is too long for the ramp voltage on top of the pedestal voltage on C_{I} to exceed the peak point of Tr_{I}. Since the 16.8 volt rail is un-smoothed it will return to zero volts instantaneously with the zero crossing of the 115 volt sinusoidal supply. As the zener stabilized rail falls in voltage below 16.8 volts, the potential on C_{I} becomes equal to the peak point for the interbase voltage at that instant, and $T r_{1}$ fires, discharging C_{1}. Since the a.c. supply at this moment is ápproaching zero, the s.c.rs are not triggered.

If the wiper of R_{5} is moved from the centre position, the pedestal voltage on C_{I} is raised and the ramp voltage due to C_{I}, R_{7} reaches the unijunction peak point during that half a.c. cycle. Transistor Tr_{f} fires, and the pulse developed across R_{6} triggers whichever s.c.r. is forward biased during the half a.c. cycle. One of the motor series diodes then conducts, and the motor runs. As R_{8} wiper traverses the potentiometer, the triggering of the motor current via the appropriate s.c.r. is earlier in the half a.c. cycle. Hence conventional phase control of the motor takes place.

Fig. 2. NOAA-2 telemetry waveform sequence ($S R$).

Fig. 3. Block diagram of a weather satellite ground station.

Fig. 4. Basic helix antenna.
Fig. 5. Three methods of arranging crossed Yagi antennas for circular polarization.

ESSA-8 (1968-114-A): orbit 2529322
June 10.16Z, shows sun-glint in Sardinia, Corsica area. Note UK, Spain, Italy and North Africa. First run of prints from prototype facsimile machine by G. R. Kennedy on 25.6.74. Paper Kodak white, smooth, glossy bromide, single weight, No. 2 (normal). Crater tube white current 10 mA , black current 30 mA . Brightness pot $=7.00$. Traverse jitter and drum vibration evident on print No. 13.

Receiver preamplifier

As shown earlier, a pre-amp giving at least 10 dB gain at 136 MHz is required for satisfactory reception of weather satellite signals. Since an f.m. system is used, the pre-amp need not have an outstandingly good noise figure, providing a high quality receiver is in use. However, if the receiver to be used is itself somewhat noisy, the pre-amp should be of a reasonably low noise type. There are many circuits available using either bipolar or field-effect transistors. A circuit ${ }^{5}$ is shown in Fig. 7.
$T r_{r}$ is a low noise u.h.f. transistor designed for microstrip circuits. It is a flat device of capstan layout, and is best mounted on a triangle of p.t.f.e. standoff insulators above an earth plane of coppercoated fibreglass. The merit of the circuit is that it is broadband and is thus particularly suitable for the satellite v.h.f. band of $136-138 \mathrm{MHz}$: it gives a gain of at least 15 dB , has a true noise figure of 1.5 dB and is simple to make. Components C_{2}, C_{3} and L_{i} form a broadband input matching circuit for the common emitter transistor. Bias is straightforward, L_{2}, C_{6} and R_{14} form a broadband output matching network for approximately 50 ohms. The circuit consumption is less than 10 mA , so a nine-volt dry battery supply is the most economic. For best overall results the pre-amp should be as near the antenna as possible.

Receiver

The main receiver requirements are as
follows. The satellite transmission bandwidth is usually 30 kHz with a maximum deviation of $\pm 10 \mathrm{kHz}$. A receiver i.f. bandwidth of at least 20 kHz but not more than 50 kHz is thus required. Within the satellite band other types of satellites are continuously transmitting on frequencies very close to those of the weather satellites. Good selectivity is essential to avoid interference from these. The narrow bandwidth dictates the order of stability required. Jitter in a local oscillator will be seen by the detector as signal f.m. The satellite band is within a band of frequencies used by aircraft. These signals are, in the UK, very strong and may cause cross-modulation. A high i.f. is essential to reject image frequencies which might well be on a local civil aircraft channel. High gain-to ensure adequate limiting of amplitude changes in the signal, high gain preceding the limiter is required. The amount of gain depends on how much limiting is required by the detector for linear operation.

All of these requirements, brought together, specify the type of receiver required within narrow bounds-a double superhet receiver with both local oscillators preferably crystal controlled, with a crystal or mechanical i.f. filter and phaselock loop detector meets the requirements mentioned above. A receiver block diagram is shown in Fig. 8. The detailed design of such a receiver is a standard text-book exercise and need not be further dealt with here. However, some sections are worthy of closer examination, particularly the first local oscillator, the crystal filter, the limiter and phase-lock loop detector. The most economical approach is to obtain a surplus v.h.f. receiver, such as from a redundant public service mobile or base station transceiver which should furnish r.f. amp, 1st mixer, 1st i.f., 2nd mixer, 2nd local oscillator and 2 nd i.f. amplifier, even if the original design was for a.m. reception. The remainder of the final receiver can then be built and tested as separate items and added en bloc to the basic chassis.

ESSA-8 (1968-114-A): Orbit 2529422 June 12.08 Z . Weather system to west of Spain: N.W. coast of Spain is on righthand border. Portion of complete satellite picture, produced on first run of prototype facsimile machine by G. R. Kennedy on 25.6.74. Paper Kodak WSG bromide, single weight, no. 2 (normal). Crater tube white current 7 mA , black current 30 mA . Brightness pot 9.00. Traverse jitter and drum vibration evident on print No. 6.

If the second local oscillator is fixed in frequency, such as by crystal control, then the first local oscillator is the frequency determining standard of the receiver. Due to the narrow bandwidth and selectivity requirements of the overall receiver system, the first local oscillator must be either synthesized or crystal controlled. Synthesis implies the digital counting down and heterodyning of a highly accurate source, which may be a high grade transmitter radio source such as WWV or MSF, or more usually, a temperature controlled crystal oscillator, so these two options basically are the same. A crystal oscillator and multiplier first local oscillator is shown in Fig. 9.

Transistor Tr_{5} is an overtone oscillator, the frequency of oscillation being determined by the series resonant frequency of the quartz crystal. The combination L_{7} and C_{17} is tuned to slightly higher in frequency than the crystal frequency. Capacitor C_{16} blocks d.c. from the crystal. The oscillator output is taken via C_{15} to the doubler transistor Tr_{4}. Inductor L_{6} and C_{14} form a series resonant circuit at twice the oscillator frequency and the output is taken via C_{13} to the amplifier $T r_{3}$. An acceptor circuit acting as a trap at the oscillator frequency is formed by L_{10} and $C_{1 I}$ Inductor L_{4} and C_{10} are resonant at the output frequency, and the output is taken via C_{9}. The output level may be conveniently altered in practice by tuning the L_{7} core. With the circuit values shown, approximately 1 mW of 126.80 MHz sine wave is available at the output. This
circuit relies on the accuracy of the crystal. Modern hermetically-sealed metal cased crystals of HC6/U, HC18/U and $\mathrm{HC} 25 / \mathrm{U}$ outline are normally available with $\pm 0.01 \%$ or $\pm 0.005 \%$ tolerance. To take the worst case $\pm 0.01 \%$ crystal at the extreme of its limit, and used in a frequency tripling circuit for the first local oscillator, the error for 137.000 MHz will be 12.6 kHz assuming a 10.7 MHz first i.f. This is approximately half the receiver bandwidth and hence for a transmitted signal being deviated $\pm 10 \mathrm{kHz}$, one half of the deviation per f.m. cycle may be lost. For this reason, a more complex local oscillator may be required if the crystal error cannot be corrected by crystal "pulling" with a parallel capacity, for crystals too high in frequency. Such a circuit is shown in Fig. 10. Here, two crystal oscillators are used; one of these contains one of a number of closefrequency crystals covering the desired range. Such collections of crystals with frequency increments a few kHz apart are often available from redundant aircraft or public utility equipment where close channelling is used. If the family of frequencies is too low, frequency doubling may be used, as shown in Fig. 10. Here j.f.e.ts $T r_{6}$ and $T r_{8}$ are crystal oscillators. The output frequency of $T r_{6}$ is doubled by j.f.e.t. Tr_{7} and applied together with the output of Tr_{8} to the dualgate m.o.s.f.e.t. mixer Tr_{9}. The mixer output is $R C$ coupled to j.f.e.t. amplifier Tr_{10} which has a mixer difference frequency trap L_{13}, C_{37} across its output. Bipolar transistor $\operatorname{Tr}_{I I}$ is a 1 mW output driver. Two crystal frequencies are shown by way of example, but the circuit, which is very flexible, is capable of operation over wide frequency limits, with suitable revision of the tuned circuit values. As before, the crystal tolerances and stability should be borne in mind. However, if a series of crystals of small incremental frequency values is available, correction of output frequency is readily obtained.

Intermediate frequency filter

The narrow but precise bandwidth required for the receiver is difficult to obtain by $L C$ single or double resonant i.f. transformers. A convenient method for specifying the bandwidth is to use a crystal or mechanical filter. The type of filter will depend on the i.f. frequency chosen: mechanical for lower frequencies are available from manufacturers such as Collins or Kokusai, whereas crystal for higher frequencies, such as 10.7 MHz tend to be more readily available from manufacturers such as ITT, Cathodean/Pye, and Salford Electrical Instruments/GEC. A typical 10.7 MHz filter will measure $36 \times 27 \mathrm{~mm} \times 19 \mathrm{~mm}$ high, and will have the following electrical characteristics (ITT 015AD): 3dB bandwidth $\pm 15 \mathrm{kHz}$, minimum attenuation 4.5 dB , minimum stop-band attenuation of 70 dB at $\pm 35 \mathrm{kHz}$ and 90 dB at $\pm 50 \mathrm{kHz}$, terminating impedance 910Ω in parallel with 25 pF and maximum terminated input of 10 mW . It might be
possible to approach the performance of a commercially available crystal filter by constructing a double half lattice crystal filter, but the economics of four or eight close tolerance discrete crystal units is not significantly better than the cost of a single monolithic unit, currently about £16. One cheaper source is to extract a 50 kHz channel crystal filter from a redundant public utility v.h.f. f.m. transceiver. It should be borne in mind that even at centre frequency there is an insertion signal loss of 4.5 dB typically, and also that for optimum performance the terminating impedances should be maintained.
The second part of this article will describe the i.f. filter circuit limiter, p.l.l. system and the display.

Components

Resistors- R		
Fig. 6	1	680, 10W
	2,3	47
	4	2.5 k
	5	1 k
	6	47, 1/4W
	7	111
	8	5 k
	9, 10	3.3k, 2W

Fig. $7 \quad 11 \quad 4.7 \mathrm{k}$ 3.7 k
1 k 100 220
$\begin{array}{lll} & \text { Fig. } 9 & 14 \\ & 15 & 6.8 k\end{array}$ 47 k
1 k
970 19470
15 k

Fig. 10

22	100 k
23	100
24	100 k
25	270
26	100 k
27	100
28	330 k
29	10 k
30	330 k
31	10 k
32,33	270
34	100 k
35	$270,1 / 4 \mathrm{~W}$
36	47 k
37	6.8 k

Capacitors-C
Fig. 610.
Fig. 7 2, 3 3-25
$45 n$
$5 \quad 1000$
$6 \quad 12$
7, 810 n
Fig. $9 \quad 9 \quad 10$
10 3-20
11 3-30p
121
13 2.2p
14 3-20p
152.2

16 100p
1722
181000
19 6.8p
$20 \quad 1000$
Fig. $10 \quad 21 \quad 0-7 p$
22 1n
23 47p

Diodes- D
$\begin{array}{lllll}\text { Fig. } 6 & 1,2 & \text { 1N1616 } & 8 & 6.8 \text {, zener } \\ & 3,4 & \text { 1N1616 } & 9 & 10 \mathrm{~V}, \text { zener } \\ & 5,6 & \text { 2N4444 } & 10,11 & \text { 1N1616 } \\ & 7 & \text { 1N1612 } & 12,13 & \text { 1N1616 }\end{array}$

Inductors- L (t-turns)
Fig. $7 \quad 18 \mathrm{t}, 22$ swg on $1 \mathrm{k}, 1 / 2 \mathrm{~W}$ resistor $26 \mathrm{t}, 22 \mathrm{swg}$ on $10 \mathrm{k}, 1 / 2 \mathrm{~W}$ resistor $310 \mathrm{t}, 36 \mathrm{swg}$ torroid wound on $\frac{1}{4}$ in dia. ferrite ring
Fig: $943 \frac{1}{2} \mathrm{t}$, 20 swg close wound on $\frac{1}{4}$ in mandril then opened 1 t thickness between each turn
$510 \frac{1}{2} t, 20$ swg close wound on $\frac{1}{4}$ in mandril then opened it thickness between each turn
$66 \frac{1}{2}$ t, 20 swg close wound on $\frac{1}{4}$ in mandril then opened it thickness between each turn
$75 \frac{1}{2} \mathrm{t}, 20 \mathrm{swg}$ close wound on $\frac{1}{4} \mathrm{in}$ mandril then opened lt thickness between each turn

Fig. 10	8	0.2μ
	9	0.15μ
	10	7.0μ
	11	0.1μ
	12	0.5 μ
	13	0.2μ

Transistors- Tr

Transistors-Tr		
Fig. 6	1	2N1671
Fig. 7	2	$11 \mathrm{~S}-1757 \mathrm{~B}$
Fig. 9	3,4	TIS18
	5	2N708
Fig. 10	$6,7,8$	2N5245
	9	3N141
	10	2N5245
	11	TIS18

Crystals- X
Fig. $9 \quad 1 \quad 63.4 \mathrm{MHz}$

Fig. $10 \quad 2 \quad 51 \mathrm{MHz}$
24 MHz
63.4 MHz

51 MHz
24 MHz

Integrated Circuit-IC
Fig. 13 1CA3076

References

1. Fishlock, D. (Ed), "A guide to Earth Satellites", Macdonald London 1971. SBN 356 03867 X . Library of Congress Cat. Card No. 79167624.
2. "APT Users Guide", Environmental Science Services Administration, Document C52-8, from Superintendent of Documents, Government Printing Office, Washington DC 202402, USA.
3. "Direct Readout Weather Satellites", Astronautics and Aerospace Engineering, Vol. 1, April 1963, pp 61-66.
4. Glazier and Lamont, "The Services Textbook of Radio", Vol. 5 (Transmission and Propagation), p 392 et seq; HMSO 1958.
5. Hathaway and Belcher, "A State of the Art 2-Meter Preamplifier", QST, Vol. LV No. 4, April 1971, pp 92-93.

News of the Month

Teletext to go ahead

The Government, through the Home Office, has approved the introduction of broadcasting of live textual and graphical information on television by the CEEFAX/ ORACLE technique for a two-year experimental period. (Test transmissions have been in progress for some months, but "live" information means information that is expected to be of real use to the recipients.) The purpose of the two-year experiment is to assess the demand for the service, to decide what form it should take and to estimate the scope for the manufacture of television sets equipped with decoders. The BBC has already started live broadcasts on BBC 1 (on September 23) and Independent Television will probably start through the London Weekend programme company in May 1975. A complete specification of the standards adopted (outlined in the May 1974 issue, p. 115) has been published jointly by the BBC, the IBA and BREMA (the set makers' trade association), and can be obtained from them at a price of 50 p .

Experimental receivers, which are essentially conventional colour television sets equipped with decoders, have been demonstrated by Decca, GEC and Mullard. At present the decoders cost about $£ 400$, and the system will not be viable for widespread use by the public until the decoder cost has been reduced to the region of $£ 10-£ 30$ probably by the use of large-scale integrated circuits.

At a recent demonstration of ORACLE, at the IBA's new engineering headquarters, Crawley Court near Winchester, engineers showed how "on air" editing can be carried out using a small Honeywell digital computer. A video display unit incorporating a typewriter was used to type the pages of information, which were automatically fed into the computer's magnetic disc memory. The output system transmitted the pages (each 24 rows of 40 characters per row) in sequence over a microwave link to the IBA's Croydon transmitting station, where they were injected into the field blanking period of the normal television signal (on lines 17, 18, 330, 331) for transmission from the Crystal Palace aerial.

Eventually tests of the system will be made on v.h.f. transmissions, to be ready
for the time when the v.h.f. television bands are "re-engineered" for 625 -line pictures. Italian and German broadcasting organizations are already studying the system.

The following is an abbreviated description of the adopted standard. Data lines: initially two per field, $17,18,330,331$. Page format: 40 characters per row, 24 rows per page including page header (page address, system name, and digital clock read-out). Magazines and content: up to 100 pages, up to eight magazines. Transmission sequence: page sequential; blank rows may or may not be transmitted; in this way magazine cycle time can be optimized. Character coding: eight bits including parity ISO-7 (BS 4730: 1971) i.e., ASCII with selected "national usage" characters, includes upper and lower case. Control characters: (a) for flashing characters. (b) seven colours plus white (by individual on/off control of RGB; (c) subtitle and newsflash "boxing"; (d) graphics. Data protection: all words include some form of error protection; the character codes by odd-parity bit and others (control characters) have the extra protection of inserted "Hamming code" error bits. The characters so coded are magazine identification, page address, row address and "clock time" for time-coded pages. Bit format: non-return to zero, pulse shape is roughly raised cosine. Bit rate: $6.9375 \mathrm{Mb} / \mathrm{s}(444 \times$ line frequency). Access time: with 100 pages and one magazine only, maximum waiting time is approximately 24 seconds (blank rows transmitted).

London traffic control phase two

Work on the computer and data transmission contract for the latest phase of the Greater London Council computerized Area Traffic Control system is now following the completion of the phase one computer system which now controls 400 road junctions in Central London. The extension work to this, now in its final stages, allows the number of junctions under control to be increased to 500 . The new contract will enable a further 500 junctions to be brought under computerized control, laying claim to be the most up-to-date traffic control system in Europe. The transmission system is being supplied by the Plessey Company while Siemens have delivered the third Siemens type 306 computer plus auxiliary equipment to New Scotland Yard.

Radio love call stirs Darwin

Residents of Darwin, Northern Territory capital of Australia have been standing by to hear something unusual on their radios -the mating call of a toad broadcast by radio in an effort to recapture 11 cane toads.

A school teacher took these toads to Darwin from Queensland where they have been a pest for his botany students. Their

Main control room of the closed circuit television studio at the Depariment of Health and Social Security headquarters training department, Hinchley Wood. Rediffusion Industrial services installed the equipment. Shown here are the monitors, control panel for remote control camera and a video tape recorder.

escape has sparked off an intensive hunt, with Darwin Conservation Society offering $\$ 5$ a head for the capture of each toad. The president of the Northern Farmers' Association, Mr David Veal, said the reward should be \$A1000 (\$US1500) a toad, paid by the Education Department. The Minister for Northern Territory, Dr Rex Patterson rejected this as dangerous and unworkable since thousands of toads might mysteriously arrive from Queensland if there was a big price on their heads in the Northern Territory. Dr Patterson suggested playing toad calls on the city's two radio stations to help people find the escapees. He also emphasized the threat of the toads to the Northern Territory which has no toad of any kind. Cane toads could become a menace if they were to breed in the northern coastal plains, an area of thousands of square miles, feeding on moths, insects and beetles, many of which performed vital tasks for the upkeep of their environment.

Dialling aid for Telex

A new dialling aid for Telex machine operators has been made available nationally during October. The callmaker aid is a small automatic dialler linked to the Telex machine so that instead of rotating the dial by hand, calls are made simply by slipping a small plastic card into the auto-dialler (see photograph). The device is a modified version of the card callmaker which is already being used in association with telephones.

Users of Britain's 50,000 Telex machines will be able to use the dialing aid developed by the Post Office, for making calls within the UK and to mainland Europe. Although it cannot yet be used for international Telex calls which involve dialling and keying, Post Office engineers are examining the possibility of developing a Telex dialling aid which will do this.

The advantages of this method of dialling are said to be that human error is eliminated, it does away with the need to consult directories or dialling instructions; also, while the callmaker dials the number, the calleris free to examine documents or continue a conversation. Numbers are stored on small plastic cards measuring $3 \frac{1}{2}$ in by $2 \frac{1}{4} \mathrm{in}$, with one card for each number represented by punching a pattern of holes according to a simple guide supplied with the callmaker. This then forms a permanent record for future use.

The callmaker's dialling unit uses a photo-electric principle to read the punched out code on the dialling card.

Light-fingered touch

A new type of touch-sensitive display input device for use in data processing systems made its first public appearance as part of an air traffic control exhibit in the GECMarconi Electronics pavilion at this year's Farnborough International Air Show. The device known as Digilux, operates like a programmable keyboard and is used in a similar way to the "touchwire" system used in the Flight Data Processing System at the London Air Traffic Control Centre at West Drayton.

The advantage of the new technique is that it is "wireless" and does not rely on physical contact between the finger and a bare wire conductor; instead it uses narrow infra-red beams which form an invisible grid over the display screen. A finger placed on the face of the screen intercepts two beams at right angles and the location of the finger is rapidly determined and signalled to the computer.

As there are no touch contacts on the screen or wires to them, there is no obscuration of the screen itself. The system is unaffected by room lighting because the beams are infra-red. In addition, Digilux

Card callmaker automatic dialling system for Telex machine operators. See accompanying news item.

retains all the advantages which the touchwire technique has over the conventional keyboard as a computer entry device; it is faster, less prone to error, needs very little time for learning and can offer a significant saving in space.

Dial-a-ride

The first major sponsored "dial-a-ride" system in the UK started operation in Harlow at the beginning of September and is known locally as the "Pick-me-up" service. The system uses three Ford Dormobile vehicles providing an urban transport service which allows passengers to telephone their particular travel requirements to a control centre, which in turn co-ordinates the available vehicles in order to meet these requirements. It offers a door-to-door service which combines the advantage of travelling by car and by bus. While retaining the flexibility and convenience of a car, dial-a-ride is cheaper for the passenger because the vehicle is shared. The Harlow version of the concept revolves around a control centre which is in constant twoway radiotelephone communication with the vehicles. Each of these is equipped with RC665 mobile radiotelephones supplied by GEC-Marconi Electronics Ltd and the project is being sponsored by the Transport and Road Research Laboratory of the Department of the Environment in order to evaluate the viability of this new form of public transport.

IEE establishes microprocessor group

"Microprocessor applications" is the title of a new group which has been formed under the aegis of the IEE to fulfil a need in this area of advancing technology. Because of the continuous flow of information in this field, meetings will be held every two months, mainly at Savoy Place, London.

The aim of the group is to provide a multidisciplinary forum for the discussion of techniques associated with the uses of microprocessors and the technical aspects of microprocessor applications, and to identify areas in which research and development are required. Areas of particular interest will be: instrumentation, aviation, telecommunication, signal processing, medical instrumentation, process control, pollution monitoring and data collection.

Further information and membership application forms can be obtained from the Secretary, IEE, Savoy Place, London WC2R OBL, quoting the reference $\mathrm{LS}(\mathrm{CA})$.

Briefly

Inspec milestone. The Institution of Electrical Engineers' world information service reached a milestone in the dissemination of information when it published the 1,000 th issue of Physics Abstracts on the 16th September.

Active crossover networks

Using a single bass speaker in a stereo system

by D. C. Read, B.Sc.

Abstract

The author finds that active crossover networks, giving better speaker damping and improved transient response, sound better than passive ones as well as being easier to adjust. But the system first designed (December 1973 issue) needed six amplifiers. This article therefore describes three ways to reduce size and cost, by using a common bass unit with 1 -cu.ft sealed enclosures, by using the bass unit with $0.33-\mathrm{cu}$.ft enclosures, and by omitting the bass unit. Alterations to active filter circuit values for these options are given together with a modification to the "full" six-unit system.

The first and most obvious economy in the previous active crossover design was to follow the well-tried example of Baxandall* using the fact that lowfrequency sounds are non-directional and have a mixed mono and stereo system. Fortunately, for modern living rooms of average size, this non-directional effect extends well into the audio band. By combining a single bass speaker with a pair of relatively small mid-range/tweeter boxes working in stereo there is an immediate saving of one power amplifier, its driving filter circuit and one large enclosure.

Although one filter and amplifier assembly would be unchanged, the other would be smaller, with about one-third of the components removed from the filter (front board in photograph) and two power amplifier boards instead of three. An added practical advantage is that the bass speaker can be placed in any convenient position to suit the general room layout.

Choice of bass crossover

Having decided on a combined bass arrangement, the first requirement was to determine where in the audio band to make the change between mono and stereo operation. In doing this work, the ease of adjustment afforded by active filters was most helpful.

The single bass unit, KEF type B139, was installed in a box of about $5 \mathrm{cu} . \mathrm{ft}$ and then subjected to listening tests in a normal-size living room. For experimental purposes, the middle and upper frequency sounds were produced by units in the transmission-line enclosures described in the previous article. Simple

[^3]A-B switching allowed repeated comparison between this combined bass set-up and the complete 2×3-way system, i.e. between mixed mono and stereo, and full audio-band stereo.

Initially, the bass speaker was fed with combined signals from the two channels up to about 490 Hz : this was the bass crossover frequency already in use for the transmission-line speakers.

But stereo separation was not then maintained over the whole band: the single source of low frequencies could be identified and located when moved. The crossover point was then lowered by successive amounts until, with it set at 150 Hz , the mono bass effect disappeared. Thus, when compared against the full 2×3-way stereo it was found that the 1.f. speaker could be placed virtually anywhere in the room, facing in any direction, without noticeable change in the stereo image.
The $150-\mathrm{Hz}$ crossover frequency determined as above provided for satisfactory
(i.e. undetectable) mono bass for a stereo installation working in a room measuring about 15 feet square. In a listening room with dimensions considerably greater than this, however, the presence and location of the single source of 1.f. may become apparent, and it will then be necessary to lower the stereo-to-mono changeover point.

To move the changeover point either way, the response curves of both the midrange band-pass filter (high-pass) and the bass-unit low-pass filter must be modified by altering the roll-off frequencies of the 6 dB and 12 dB /octave circuits (the circuits surrounding $I C_{3} / \operatorname{Tr}_{5}$ and $I C_{4} / T_{6}$ in Fig. 2). As the change of frequency in each instance is likely to be relatively small, the appropriate new component values can be deduced by simple linear scaling. For readers who wish to re-calculate circuit constants, perhaps to satisfy the requirements of different units or considerably changed listening conditions, the pro-

Fig. 1. For the common-bass system the mid and upper-ranges use B110 and T27 drive units, as in the original design. Graph shows axial response of Bl 10 in a 1-cu.ft sealed box (upper solid iine). T27 curve (broken line) shows an upper crossover of about 4 kHz is suitable. Lower B110 curve shows axial response for a small, 0.33 -cu.ft sealed box, for which slope correction is needed (see Fig. 5). Acoustic response curves taken with a writing speed of $80 \mathrm{~mm} / \mathrm{s}$ and a paper speed of $3 \mathrm{~mm} / \mathrm{s}$.
cedure is given in a section at the end of this article.
The component-scaling process is straightforward. In all instances, suppose the existing crossover frequency is f_{I} and the wanted frequency is f_{2}. Suppose also, for example, that the required frequency shift is that necessary to lower the crossover point (to raise it each multiplying factor would, of course, be inverted). In the feedback circuit to input 3 of $I C_{3}$ (Fig. 2), either the two C values (33 nF) or the R values ($2 \times 56 \mathrm{k} \Omega$ and $36 \mathrm{k} \Omega$) must be increased in the ratio f_{1} / f_{2}. For the $T r_{\text {s }}$ input circuit increase either the series C (to $f_{1} / f_{2} \times 0.033 \mu \mathrm{~F}$) or the two shunt $R \mathrm{~s}$ (both to $f_{I} / f_{2} \times 62 \mathrm{k} \Omega$).

Similarly, in the $I C_{4}$ circuit, new values are found for the input 3 components such that either the $100 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$ resistors or the 33 and 68 nF capacitors are increased by the factor of f_{1} / f_{2}. The $T r_{6}$ input circuit is modified in the same way as for Tr_{5}.

As a further practical point relating to the use of a single, combined bass system as suggested here, note that the power amplifier described in the first article (Fig. 4 of the December article) is
easily able to provide the necessary drive for a single unit taking l.f. signals from both channels, or even from four channels.

Smaller mid and upper range stereo

 unitsWith the optimum changeover point between stereo and mono working now established, it was necessary to construct a pair of small enclosures with speakers to produce the mid and upper audio frequencies. Identical units to those already used (KEF types B110 and T27) were used.

An obvious minimum requirement here was that the bass response of the midrange unit must extend at least to 150 Hz . Past experience suggested that for this an enclosure volume of about $1 \mathrm{cu} . \mathrm{ft}$ would be suitable. Accordingly, a sealed box of this size was made, with dimensions 10×20 $\times 9$ in. Damping was provided by a thick coat of car underseal on all internal sur faces and the box was filled with about $\frac{1}{2}$ lb of long-fibre wool: an inside layer of $2-\mathrm{in}$. foam plastics material would be a suitable alternative.

With the units installed, the assembly was tested in non-reverberant surroundings. As the B1.10 axial response given in

Fig. 1 shows, the arbitrary estimation of enclosure volume was about right and obviates the need for slope equalization in the mid-range band-pass filters. The T27 response curve, drawn dotted in Fig. 1, shows that an upper crossover frequency of 3.5 to 4 kHz was suitable here; the overall 6 dB /octave slope is easily offset by making the high-pass filter l.f. roll-off more gradual.

Fig. 3 illustrates the three active filter responses as finally set for the mixed system. These curves are the voltage outputs from the full circuit given in Fig. 2, with $R_{2}=33 \mathrm{k} \Omega, R_{3}$ shorted and R_{5}, R_{6}, C_{l} omitted. Note that two each of the band-pass and high-pass filters shown in Fig. 2 are needed but only one low-pass circuit

Overall response with combined bass

To check the overall acoustic output of the total system, the bass speaker together with a 1 -cu.ft mid-range/tweeter assembly was tested in non-reverberant surrounding. Fig. 4 shows the complete response.
Note that only one of the stereo pair was used to obtain the curve of Fig. 4 because large differences in phase response

Fig. 2. Circuit diagram of active filter unit shows mostly different component values from earlier circuit (Dec. 1973 issue). Values for R_{2} to R_{6} and C_{1} are given in the text. Resistors can be lowwattage types but should preferably be $\pm 2 \%$ tolerance.

Fig. 3. Active filter responses for commonbass system. Curves are voltage outputs from Fig. 2 circuit, with $R_{2}=33 k \Omega, R_{3}$ shorted and R_{5}, R_{6}, C_{1} omitted.

Fig. 4. Axial acoustic output for B139 unit in separate l.f. enclosure and 1-cu.ft box using B110 and T27, in nonreverberant surroundings.

Fig. 5. Correction circuit used in bandpass filter to compensate for response of 0.33-cu.ft box in Fig. 1. Other components in (a) give part of the $18 \mathrm{~dB} /$ octave roll off at the top of the passband $\left(C_{2}, R_{4}\right)$ and R_{6} determines in-band slope (see text for value of R_{2}).
between individual units of the same type (e.g. as exhibited by different examples of the B 110 unit) resulted in a spikey response with almost complete cancellation at some points. Such disparity in phase performance is, of course, a well-known failing of cone radiators; plane-driven electrostatic speakers are much more consistent in this respect. However, in normal domestic surroundings, multiple reflection tends to smooth out such variations in combined response and therefore largely overcomes the problem.

Active-filter phase response

While on the subject of phase performance, it should be mentioned that this was an aspect of active-filter operation which was carefully considered at an early stage. For the full stereo installation outlined in the December article, the various filter phase responses were calculated and their combined effect on acoustic performance tested. Specifically, this was compared to performance with the conventional passive-network equivalent. Detailed results of these tests have not been given because they showed only that even the largest differences in phase characteristic, particularly those occurring in the crossover regions, had little effect on sound output. The one observable change was a frequency redistribution, without increase in amplitude, of troughs and peaks in the overall response.

Even smaller stereo speakers

Although the combined-bass speaker enclosure used in the mixed system can be of any suitable shape and put in any convenient out-of-the-way corner, the mid-. and upper-range assemblies must of necessity occupy particular positions, divided and directed so as to obtain the intended stereo effect. But, in rooms where space is at an absolute premium, even the 1 -cu.ft enclosures used as above may be too large. To meet this objection and to exploit other properties of active filter, notably their possible use in correcting speaker response deficiencies, a pair of 0.33 -cu.ft boxes was built (dimensions $8 \times 6 \times 12 \mathrm{in}$) to form part of a modified stereo/mono system using the same units

(a)

(b)
as before, i.e. one B139 and two each B110, T27.

Mid-range unit slope correction

The 1f. axial response of a B110 in a 0.33 -cu.ft enclosure is given by the lower, dashed, curve up to 1 kHz in Fig. 1. This shows that slope correction is needed in the band-pass filters which provide input signals for the mid-range units. An $R-C$ network feeding Tr_{4} can be used for such equalization. In Fig. 5a, the correction network is re-drawn with appropriate values. Here, R_{3}, R_{5} and C_{t} give a $6 \mathrm{~dB} /$
octave bass lift over the required frequency range as shown in Fig. 5b.

Components R_{4} and C_{2} provide a similar slope as part of the overall 18 dB / octave roll-off at the top end of the pass band. The value of R_{6} determines the amount of in-band slope obtained for the whole circuit.

Using the values shown in Fig. 5a, the band-pass filter output response is as shown full line in Fig. 6. The other two filter responses remain as before but are included here to show how they relate to the modified band-pass curve.

Complete amplifier for one channel. Front board is modified active filter, including l.f. section and voltage regulator, not needed for the other channel. Note reduced-size heat dissipator for h.f. power amplifier.

Fig. 6. Filter response for small enclosure, using values of Fig. 5 (a). Curves A and B are obtained with high-pass part of bandpass filter removed (by taking output from $T r_{4}$ emitter) and apply for an inexpensive system using only the 0.33 -cu.ft enclosures (see Fig. 7).

Fig. 7. Axial acoustic response for B139 unit in separate enclosure and 0.33-cu.ft box, in non-reverberant surroundings, showing dip at 2 kHz before and after correction. Curve A applies when commonbass unit is not used, and high-pass filter of bandpass section is removed (to the right of T_{4}). Improvement at B is obtained by making $C_{1} 100 \mathrm{nF}$ and R_{6} $270 \mathrm{k} \Omega$.

Mid-range dip correction

Fig. 7 gives the axial response in nonreverberant surroundings of the smaller mixed system, i.e. of the single B139 bass unit together with the B110/T27 combination in a 0.33 -cu.ft enclosure. It shows that the bass response has been considerably improved, but there remains a large dip around 2 kHz . Fortunately, since the response region requiring correction occupies a narrow range of frequencies mainly below the h.f. crossover point, the dip can largely be filled by creating a suitable peak in advance of the upper band-pass filter roll-off. This is done by adjustment of feedback over the first of the 741 P amplifiers ($I C_{2}$ in the low-pass section of the band-pass filter). Fig. 8, which shows the roll-off characteristic for a 741P gain setting of 2.74 , achieved with $R_{1}=47 \mathrm{k} \Omega$ and $R_{2}=27 \mathrm{k} \Omega\left(\right.$ gain $=1+R_{I} /$ R_{2}). (Peak height can be changed by altering gain slightly.)

With this modification to the band-pass filter circuit the overall response appears double-humped as illustrated in Fig. 6 by taking the upper dotted curve. The resulting acoustic response of the system is then as shown in Fig. 7 with the broken dip-corrected curve replacing the full-line one between 1.2 kHz and 3.8 kHz .

Miniature full stereo arrangement
A simpler stereo system was set up by using only the B110 and T27 units in the 0.33 -cu.ft boxes, i.e. without the large combined bass enclosure. This economy also dispenses with about half of the filter circuitry; the parts now required are just the low-pass sections of the original band-pass filters and the two unmodified high-pass sections for the T27 tweeters. Further equalization must be added to give the B110 units extra l.f. response and thereby compensate for the absence of the B139 speaker.

In Fig. 6, the dotted line from 230 Hz to 20 Hz (curve A) shows the output from $T r_{4}$ in Fig. 2. Because the $I C_{3} / T r_{5}$ circuit is not included in this reduced-scale system, it is therefore the low-pass response applicable to signals feeding the B110 units. The high-pass filters and output characteristics remain as before.

The axial response of one B110/T27 assembly (0.33 -cu.ft box) as used for this full stereo arrangement is given in Fig. 7 by taking the full-line curve plus dip correction above 200 Hz and adding to it broken curve A below this frequency. Evidently, bass is still lacking below 100 Hz . Curve B gives a possible 4 dB maximum improvement here, and corresponds with the curve B filter response illustrated in Fig. 6. For such additional 1.f. output, C_{l} in the correction network (Fig. 2 or Fig. 5a) becomes $0.1 \mu \mathrm{~F}$ and R_{6} is increased to $390 \mathrm{k} \Omega$.

More bass boost than is shown by curve B in Fig. 7 could be obtained by other changes to the $R-C$ network values, but, whenever extra l.f. response is sought from the B110 in this way, there is a danger that excursion of the cone drivingcoil might become too great; limiting and consequent distortion is then inevitable. For this reason such increased bass output must be accompanied by a restriction in overall listening level, especially for music with a heavy bass component.

Note that both the A and B filter curves give steady l.f. increase down to about 80 Hz after which the response gradually levels off and the B110 characteristic takes over. This is a deliberate compromise. It not only helps to overcome the problem of excessive cone movement but also gives some protection against spurious low-frequency signals such as those caused by rumble.

Use of combined bass for

quadraphony

A mono-bass arrangement using activefilter circuits to the design described in this and the earlier article has been applied to a quadraphonic installation. When considering the extension of a split-band, multiple-speaker stereo system to quadraphony, the prospect of doubling-up yet again on most of the equipment is a daunting one, and any possible saving in outlay-especially if this can be done without reduction in performance-is an

Fig. 8. Peak of appropriate height to compensate dip in Fig. 7 obtains for $R_{2}=27 \mathrm{k} \Omega$, with $R_{1}=47 \mathrm{k} \Omega$ in $I C_{2}$ circuit.

Fig. 9. Original active crossover design (December) can be improved by lowering upper crossover frequency to 4 kHz . New component values shown above.
attractive proposition. The use of a single bass speaker offers just such an economy.

Obviously, twice the (stereo) complement of filters and amplifiers serving the mid and upper frequency ranges must be provided. For this quadraphonic application, however, the only change necessary in the basic circuit of Fig. 2 is that four mixing resistors, each of $200 \mathrm{k} \Omega$, are now needed to combine the 1.f. signals at the input to $I C_{4}$. Although this input point is not a virtual earth, there is no danger of crosstalk between the four contributing channels because their outputs are fed from constantvoltage sources as represented in Fig. 2 by the circuit containing $T r_{1}$ and $T r_{2}$. Low output-impedance amplifiers in this position were, of course, already a necessity to prevent interaction between the stereo channels and, equally important, between the filters.

Although the foregoing outline suggests that bass combination is as easy to achieve for quadraphony as for stereo, there is a difficulty which may arise concerning the matrix system used and its effect on channel combination at low frequencies. In particular, the SQ coding system, and more especially the better

QS system, which makes use of phase as well as amplitude relationships to improve separation, could create interaction problems at frequencies where the channels are combined. If this happened, it would be difficult to predict the subjective result; it would certainly depend on the programme content.*

Modification to original system

Readers who have either built or considered building the full 2×3-way system may be interested in a modification to the filter circuit given in Fig. 2 of the December 1973 article.

The change concerns the upper crossover frequency which has been lowered to 4 kHz . In the original design, a 6 kHz crossover was chosen so that a direct comparison of performance could be made with the Radford FN10 passive network. But as mentioned in passing (p. 576 of that issue), the subjective effect was improved by shifting the crossover down by 2 kHz ; the reason for this improvement

[^4]was not obvious at the time. However, subsequent discussion with the maker of the KEF B110 unit revealed that coupling between coil and cone becomes increasingly less stable at frequencies above about 3 kHz (hence the response peak at 5 kHz as shown in Fig. 1 of this article). By reducing the mid-range response in this region and making more use of the available lower-end output from the T27 tweeter, adverse effects from the B110 are avoided.

Fig. 10 shows the relevant parts of the circuit, taken from Fig. 3 of the December 1973 article, showing amended values.

Component layout. Photocopies of printed board positive transparencies, together with component layouts and a response curve for the modified crossover, are available from the Wireless World editorial office. Please send a stamped and addressed envelope for these.

Appendix

Circuit below applies to a low-pass filter where C_{a}, C_{b} and R_{a}, R_{b} are the component values to be determined.

First, choose a suitable value for C_{a} (in $\mu \mathrm{F}$) and thus find a value for a number, k, where $k=2 \pi C_{a} f_{o}$. In this expression, f_{o} is the 3 dB -down frequency which can be related to a wanted crossover frequency (normally at the 6 dB -down point) by inspection of the appropriate curve.
Next, calculate

$$
\oint m=\frac{\alpha^{2}}{4}+(G-1), \text { where } \alpha=\sqrt{ } 2
$$

maximally flat response, overall gain $G=1+R_{i} / R_{2}=2$ (nominal value).
Hence,

$\left.\begin{array}{l}C_{b}=m \cdot C_{a} \\ R_{a}=\frac{2}{\alpha k} \\ R_{b}=\frac{\alpha}{2 m k}\end{array}\right\}$ giving the remaining values.
In the high-pass case $C_{c}(\mu \mathrm{~F})$ is chosen to find k from f_{o} as before. Assuming $\alpha=\sqrt{ } 2$ and $G=2$
$C_{d}=C_{c}$ (as chosen)

$$
\begin{aligned}
& R_{c}=\frac{\alpha+\sqrt{a^{2}+8(G-1)}}{4 \cdot k} \\
& R_{d}=\frac{4}{\alpha+\sqrt{a^{2}+8(G-1)}} \cdot \frac{1}{k}
\end{aligned}
$$

Having thus established the basic curve shapes, further adjustments will have to be made to achieve the optimum performance. For example, Fig. 1 shows that the T27 tweeter output tends to fall at the higher frequencies and this tendency is counteracted by moving f_{o} for the $6 \mathrm{~dB} /$ octave section of the high-pass filter to about 10 kHz . This 'softens' the roll-off shape and also gives the wanted rising characteristic.

A similar technique was used to compensate for unit deficiencies at the I.f. end of the band. Other forms of response adjustment, such as roll-off "corner sharpening" and in-band dip correction are achieved as already described by altering the appropriate op-amp gains.
The above points are mentioned as a guide to the various ways in which active filters can be tailored to fit particular requirements. But, obviously, there are as many combinations and permutations of adjustment method as there are conditions to satisfy; it is largely a matter of trial and error which form is chosen to obtain the best result.

Literature Received

ACTIVE DEVICES

Beckman Instruments Ltd, Components International, have issued an eight-page technical bulletin providing complete information on their Model 881 Universal Active Filter. It includes performance specifications, mechanical characteristics, environmental specifications, and a number of response curves for particular applications and is available free from Mrs J. Shields, Product Administrator, Beckman Instruments Ltd, Queensgate, Glenrothes, Fife, Scotland. WW400

Jermyn have in stock the second edition of the General Electric Semiconductor Data Handbook. This is a selector guide, followed by full data and applications information on all the current GE semiconductor products including thyristors, transistors, diodes, triacs, unijunctions, opto-devices and many others. Price $£ 2.75$, post free, from Jermyn, Sevenoaks, Kent.

Fairchild's current issue of its house magazine, Progress, contains features on transmission-line signal quality, the input impedance of operational amplifiers, the compatibility of c.m.o.s. devices to e.c.l., the use of a multiplexer to adapt r.a.m. addressing to a c.r.t. display format and several other items. Extel PR, Pemberton House, East Harding Street, London EC4A 3JP.
.WW40I

GENERAL CATALOGUES

Heathkit has issued a new catalogue containing several new products, including a remarkable new f.m. tuner with a digital display of frequency, numerical dialling of tuning or punched-card tuning. Heath (Gloucester) Ltd, Gloucester GL2 6EE.

WW402
The latest 1974 catalogue from Radio Resistor shows a range of components from Piher, Greenpar, Spectrol, Dubilier and many others. The Radio Resistor Company Ltd, PO Box 193, 5 Platina Street, London EC2P-2JA.

The RS Components Ltd August/September catalogue has been sent to us and is now available from RS Components Ltd, PO Box 427, 13-17 Epworth Street, London EC2P 2HA.

WW404
JSH Electronics Inc. have announced the publication of their 25th Anniversary Price List. The product range includes valves, transistors, diodes and i.cs from most American manufacturers, but also has details of a comprehensive range of Japanese and European products. JSH Electronics Inc., 8549 Higuera Street, Culver City, California 90230, USA.

The new Motorola McMOS Data Book contains detailed specifications of nearly 70 c.m.o.s. functions and also contains a comprehensive range of design information. Price $£ 2.50$, inclusive of postage and packing. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.

A wide range of instrument and electronics tools are listed in the Speciprod catalogue: Special Products Distributors Ltd, 81 Piccadilly, London WI. WW406

EQUIPMENT

A brochure describing and illustrating a kit PAL television receiver has been received from Forgestone Components, Ketteringham, Wymondham, Norfolk.
. WW407
Hellerman Electronic Components have issued a four-page leafet, reference HEC 501F, on their new Fibrocon connector for multimode optic bundles. WW408

A handbook in three languages has been issued by Zeissler, which illustrates and describes in detail their range of mechanical component parts for electronic equipment. Zeissler D 521 Troisdorf, POB 1147, Koln, Germany. WW409

Varta have sent a technical leaflet on sealed nickelcadmium cells. It contains data on various modes of charging, circuitry of suitable devices, mains fail circuits and the Varta TSL fast-charging system. Varta (Great Britain) Ltd, Hermitage Street, Crewkerne, Somerset.WW410

APPLICATION NOTES

A designer's handbook, entitled Engineering the most out of and into digital panel instruments, is now available from Analogic at $£ 2$. The manual is divided into three parts - installation, theory of operation and product design and maintenance. Analogic Lid, Monument House, 25-27 Monument Hill, Weybridge KT13 8RT.

Hewlett Packard note AN948 describes the performance to be expected from the use of the HP5082$4350 / 51 / 60$ isolators as line receivers in a t.t.l.-t.t.l. compatible NRZ data-transmission link. The note is available free from Hewlett-Packard Ltd, 224 Bath Road, Slough, Berks SL1 4DS. WW411

Audio '74 at Harrogate

by Basil Lane

Harrogate, one of the popular watering places of the North, is a charming town that has all the advantages of graceful architecture, beautiful surrounding countryside and one of the most enjoyable annual audio exhibitions in the calendar. What makes it so enjoyable is not only the friendly atmosphere generated by the warm-hearted Yorkshire folk, but the superb setting of the Majestic Hotel, venue for the exhibition, and having grounds that could grace many a stately home.

Suffice it to say that obviously Harrogate is one of the audio journalists' favourite annual events. This year, to use a cliché, it was bigger and better, with a total of 80 exhibitors, many of whom seem to have deserted the London shows for this and similar events. Another outstanding feature was the number of new products being previewed, where one normally would have expected them at the Audio Fair, Olympia.

In reporting on these new products, it is only possible to describe those that were seen (and heard!) and so some apology must be due to those exhibitors that I was unfortunate enough not to get round to.
An outstanding impression was of a polarization of extremes in demonstration. On the one hand there were those with a fairground policy of generating maximum noise to attract visitors like bees round a honeypot and those that chose a realistic discreet-and also very popular-presentation that gave a better chance of evaluation and after, conversation. Talking to the proponents of the two philosophies it was evident that although the big sounds would fill a demonstration room in no time at all, the real business seemed to be done by those who chose quieter demonstration material.

Products on show

On the ground floor I have distinct recollection of the AKG stand, since it had large photographs of Playboy Bunny Girls and when I was around-few visitors! A lightweight headphone called the K 140 was being demonstrated for the first time together with some pickups for use with acoustic guitars. The well-known importer
of Japanese products, JVC (UK) Ltd, occupied a stand on the ground floor and a demonstration room elsewhere and were showing several extensions to their range of products. The Model $1669 \mathrm{U} / \mathrm{F} / \mathrm{S}$ stereo cassette deck represents the top of their line of cassette recorders and features their own noise reduction system called A.N.R.S. (automatic noise reduction system). Sonab seemed a little sombre, perhaps because their electronics are all in black cases. A range of omni-directional loudspeakers went on show for the first time, the OA14 with a power-handling capacity of 40 W and containing five drive units; the OA12, a little smaller, but still handling 40 W , this time via three drive units and the OD11, smallest in the range, a 40W unit with two drivers. Also on show for the first time was the R3000 receiver, in a smart unobtrusive low-line case.

Rank Radio International, on show here but not, it seems, at the Audio Fair, were predictably crammed out with audiophiles anxious to see the new ranges launched earlier this year at the Spring Radio Show in London. Evidence of the enthusiasm of visitors was shown in the large attendances at the superb lecture (more of a homely chat) given by their technical staff at another hotel opposite. This was a welcome flashback to the days of Gilbert Briggs, containing something for everyone.

National Panasonic are usually a popular stand for the visitor and their room
was well packed much of the time. They had chosen Audio ' 74 for the launch of many additions to both their own-name range and also to the Technics $\mathrm{Hi}-$ Fidelity brand. Notable among the latter was the RS676US cassette deck-a precursor to a new style which we will be seeing much more of in the future. This is the front-loading machine where all controls are on the front, enabling other equipment to be stacked on top. Claimed to have a high performance (and a high price), this machine excited considerable interest.

It seems almost inevitable that every audio exhibition will bring its collection of new loudspeakers, each said to be the finest things since sliced beans! Those I spotted included a remarkable venture by EMI-Keesonic into a hi-fi range of two. A high performance unit, the 353, which seemed capable of a phenomenal output and a smaller "bookshelf" unit, the 253. The former, which I heard (and felt!) at some length, sounded very crisp and I noted that a professional record cleaner was used extensively to avoid the obvious intrusion of surface noise due to dust.

EMI were using, and raving about, the Naim power and new pre-amplifier, of which more later. Monitor Audio presented two additions to their range of loudspeakers, the MA3 and the MA 7 , with a nicely balanced programme of music. Hayden Laboratories introduced the American Fisher range which not only

Fig. 1. One of the new Leak range of audio equipment, the 2100 amplifier.

Fig 2. The Fisher 514 receiver forms part of a range of audio products including loudspeakers.

Fig. 3. A cassette deck by JVC featuring their own noise reduction system. The model is the $1669 U / F / S$.

Fig. 1. Voxson equipment featured unusual styling and was coupled with a range of matching furniture.
included loudspeakers of unusual appearance but a very comprehensive range of quadraphonic receivers.

A new name to me, Voxson, manufactured in Italy by an EMI Group sub sidiary, showed a stylish loudspeaker together with a comprehensive range of audio equipment and an interesting range of integrated furniture. Taking a very soft-sell line was Linn Products who had a large and very nice sounding loudspeaker, the Linn-Isobarik PMS, tucked away in the corners of their room. This was complemented by the Isobarik DMS which has a unique and patented bass "generator" concept.
Also in this room were the Naim Audio Products including their new preamplifier, the NAC12. A fascinating feature was the complete absence of tone controls and a specification which included an overload capability in the magnetic pickup input permitting a maximum of 2 V at 20 kHz . Maintaining this overload factor over the audio spectrum has been made possible by designing the initial pre-amplifier stage to be linear, with a small gain and then dividing the job of equalization into two separate parts. The NAP160 power amplifier was being used with the pre-amplifier and is, to quote the designer, "One of the few power amplifiers designed to drive loudspeakers." (!)

Not forgetting that tuners and receivers need aerials, Antiference made an interesting display of their latest product, the Rotenna aerial rotator for either f.m. or TV aerial arrays. Capable of providing a rotation through a full 360°, the Rotenna has a simple proportional control in a neat box with a single knob on the top surface.
One of the most amazing sights was to be found at the Marantz room-a large room with a wall completely shelved with different types of audio equipment. The demonstration was smoothly controlled from a central disc-jockey console and proved very popular with the public. New models included a loudspeaker said to have a revolving tweeter panel (!?) "so that properly mirrored sound images can be obtained".
Sanyo showed a new cassette recorder, the RD4600, which has a solenoid operated transport, ferrite head and variable angle VU meters. The DXK 2000 receiver was one of two new receivers also shown.

A new idea for FM tuners was exemplified by the Toshiba ST-910 digital synthesizer tuner which incorporated an l.e.d. frequency display and a computer-like memory capable of storing information for preset tuning of up to seven f.m. stations.

Finally to mention a publicity gimmick that proved very popular. Scandyna, now distributed by a new company, Scan dinavian Audio Systems Ltd, were issuing circular stickers printed with a yellow sun-like face carrying a broad smile, this being over the company name. The "smile" was an allusion to their new product marketing manager, a jocular (and always smiling) Bill Smiley!

If you're looking for trouble you needn'tlook any further.

It's not only technicians who can see the finer points of Eagle multi-meters.

Every handyman notices them too.
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue.
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years.
With parts to service them in no time.
So you can confidently find fault in anything.

Eagle

The name on Britain's widest range of electronic equipment.

[^5]WW- 059 FOR FURTHER DETAILS

Tucked away near the ceiling, Hi-Balls take up no floor space, look good, yet produce sounds which you would expect only from speakers ten times theirsize-and five times their price....

Power handling-45watts programme available in white, black, purple, orange and red with matt black rim
8Ω impedance
£36 per pair
packed in pairs inhandy 'carry-home' carton
10 Goldsmith Street, Nottingham. Telephone: (0602) 44223

Layout of circuit diagrams

The importance of standard patterns

by S. W. Amos, B.Sc., M.I.E.E.

The circuit diagram is the most useful of electronic diagrams. It shows how equipment works, is used for maintenance and as a source of information for preparing other diagrams such as wiring schedules and printed card layouts. Moreover, there is a movement in the technical literature on electronics, particularly that intended to assist maintenance, to reduce the amount of conventional text and to present more information on the circuit diagram: some of the techniques being used were described in an earlier article.* Because of this increased emphasis on the circuit diagram it is becoming more necessary to make the diagrams clear and easy to follow. Much time and frustration on the part of the reader can be saved by taking care in the layout of the diagram: on the other hand poor layout can easily make a familiar circuit unrecognizable. There is little doubt that the importance of good layout is insufficiently appreciated and it is hoped in this article to underline its importance by examining a number of published circuit diagrams of analogue equipment and showing how they can be improved.

Circuit diagrams are read in much the same way as a written or printed page of text. The direction of signal flow in well-laid-out diagrams is from left to right and from top to bottom, the order in which words are arranged on a page (and incidentally the order in which the picture elements are scanned in a television system). The process by which a group of component symbols is recognized as constituting a particular circuit arrangement is similar to that by which a group of letters is recognized as constituting a particular word. A word can thus be compared with a basic circuit arrangement such as that of the emitter follower. A group of words constitutes a sentence and a sentence can convey a thought or idea. Similarly a group of basic circuit arrangements can form an electronic equipment capable of carrying out a particular function, e.g., a number of basic circuits together constitute an a.f. amplifier. If the word order in a sentence is poor, the

[^6]
(a)

(e)

(b)

(c)

(d)

(f)

(g)

(h)

Fig. 1 The standard patterns formed by the essential connections in the circuit diagrams of a number of basic circuits are shown above: the circuits are identified in the text.
reader may be obliged to return to the beginning of the sentence more than once before the meaning becomes clear. Similarly if the individual circuits of an equipment are not well arranged so as to give a clear signal fiow in a circuit diagram, the reader may have difficulty in understanding it. Groups of sentences form a paragraph and an electronic paragraph would presumably be the full circuit diagram of a complex item of equipment such as a television receiver. The analogy could be pressed further and it is possible to find electronic equivalents to chapters and complete books, but we can deduce a number of valuable points from the analogy between the smaller groups. For example, the reading of text is impeded if words are misspelt: this is equivalent, in circuit diagrams, to arranging the symbols for the components of a familiar circuit in an unfamiliar way so that the circuit is difficult to recognize. This occurs too frequently in circuit diagrams and some examples are given later.

Reading is also made difficult if the words in a sentence are arranged in a peculiar order so that several scans of the sentence are necessary to reveal its meaning. In circuit diagrams this means bad arrangement of the basic circuits of an equipment so that signal paths are difficult to follow, again a common fault.

When words are printed or written in lower-case lettering, most acquire a characteristic shape or outline. This is conferred on them by the ascending strokes of letters such as $\mathrm{b}, \mathrm{d}, \mathrm{h}$ and the descending strokes of letters such as g, q and y. Experienced readers become so familiar with commonly occurring words that they recognize them at a glance from their outline and have no need to appreciate the individual letters of the words. The distinctive outline vanishes, of course, if the words are printed in upper-case lettering: all words then have a rectangular outline. This advantage of lower-case lettering is understood by the authority responsible for motorway signs which are always printed in lower case. There is a precisely analogous effect in circuit diagrams: the common basic circuit arrangements can be recognized from the shape conferred on the diagrams by the essential connections. Fig. 1 illustrates these characteristic shapes for a number of common electronic building bricks. In these the active element can be a valve or a transistor and is represented by a circle. Very few other component symbols are shown (there are no resistors at all!) yet few experienced electronic engineers will have any difficulty in recognizing: (a) common-emitter (or earthed-cathode) amplifier, (b) common-base (or earthed-

Fig. 2 An astable multivibrator drawn in an unconventional manner.

Fig. 3 A redraw of the circuit diagram of Fig. 2 in a more familiar layout.

Fig. 4 Two NAND gates interconnected to form a bistable multivibrator.

Fig. 5 A complementary multivibrator circuit-but it doesn't look like a multivibrator.

Fig. 6 A redraw of the circuit diagram of Fig. 5: in this form it is clearly a multivibrator.

Fig. 7 Circuit diagram of a stage in an f.m. receiver.

Fig. 8 From this redraw of Fig. 7 it is clear that the circuit is that of a Colpitts oscillator.
grid) amplifier, (c) emitter (or cathode) follower, (d) phase splitter, (e) multivibrator, (f) Miller integrator, (g) Hartley oscillator and finally (h) Colpitts oscillator. Clearly if common circuit arrangements are to be instantly recognized, the basic pattern of the diagram must be preserved despite elaboration of the diagram by signalinjection, signal-removal, d.c. or bias connections. Unfortunately the basic form of the diagrams for the common circuits is not always preserved: there is, to return to the analogy, some bad electronic spelling and a simple example is given in Fig. 2.
At first sight this appears to be a twostage common-emitter amplifier with feedback but more detailed examination shows that the feedback is 100% and is positive. Enlightenment now dawns: it is a multivibrator circuit. How much more obvious this would have been if the circuit diagram had been drawn in the conventional way shown in Fig. 3. The crossing of the oblique lines is the trade mark of the multivibrator (see Fig. 1e) and should always appear. There is, of course, a legitimate use for the circuit arrangement of Fig. 2 and this is in teaching. There is virtue in introducing the multivibrator circuit to students as an amplifier with two stages and 100% positive feedback. It is perhaps more likely in future that the multivibrator will be introduced as a
circuit composed of two inter-connected gates as shown in Fig. 4.

One of the ways of improving the clarity of circuit diagrams is to avoid unnecessary crossings of lines and thus there is a strong temptation to draw the circuit diagram of a complementary multivibrator as in Fig. 5 where the number of crossings has been reduced to the absolute minimum of zero. Unfortunately Fig. 5 does not look like the circuit diagram of a multivibrator and it is better to present the diagram in the form shown in Fig. 6 in which the single crossover instantly stamps the diagram as that of a multivibrator. Fig. 6 introduces the complication that the transistors must have individual supply terminals but this cost is worth paying to secure instant recognition of the circuit.

The confusion caused by bad electronic spelling is worse confounded when the circuits are more complex than those so far discussed. Consider, for example, Fig. 7 which is the circuit diagram of a stage in an f.m. receiver. It takes considerable time and it may be necessary to redraw the diagram several times before the following features of the circuit become clear:
(a) It is a Colpitts oscillator with C_{11} and C_{14} as the two fundamental capacitors (see Fig. 1h).

(b) The transistor is d.c. stabilized by the potential divider and emitter resistor method, R_{9} and $R_{I 0}$ forming the potential divider and $R_{H /}$ the emitter resistor.
(c) C_{15} completes the resonant circuit formed by $L_{7}, C_{10}, C_{11}, C_{14}$ and the varicap diode.
These are all essential features of the circuit and should be emphasized in the circuit diagram. There are doubtless several possible layouts of the diagram which do this satisfactorily. One possibility is shown in Fig. 8. This shows $C_{I S}$ as an integral part of the resonant circuit with C_{11} and C_{14} clearly in series across L_{7}. The essential feature of the Colpits oscillator is that the inductor is effectively connected between collector and base, the tapping point on the capacitive potential divider going to emitter. These connections are clear in Fig. 8, the capacitive tapping being returned to the emitter via C_{12}. Finally R_{9} and R_{10} are arranged vertically in line, the standard arrangement for a potential divider.

Another example of bad electronic spelling is the circuit diagram of Fig. 9 taken from the service manual of a Continental hi-fi sound system. It is a puzzling diagram and in particular it is difficult to see how the loudspeaker can receive an input, being apparently connected between chassis and the supply line for the early stages. The difficulty in reading the diagram arises chiefly because a number of the recommendations which are normally observed in drawing circuit diagrams have been ignored. The principal points which need attention are the following:
(a) R_{2} and R_{4}, the potential divider providing base bias for $T r_{2}$ should be in line vertically.
(b) The decoupling components R_{12} and C_{2} should be closely associated. R_{24} and C_{10} are also decoupling components and should be closely associated with each other and to the remainder of the circuit.
(c) R_{18}, R_{20} and D_{2} constitute the collector circuit of Tr_{4} and should be arranged vertically.

Fig. 9 Circuit diagram of an a.f. amplifier.

Fig. 10 From this redraw of Fig. 9 the circuit can be recognized as that of a

(d) $T r_{6}$ and $T r_{8}$ are a complementary pushpull pair and should be in line vertically.
(e) $T r_{10}$ and $T r_{12}$ form a single-ended pushpull output stage and should also be in line vertically.
(f) R_{14} applies negative feedback to Tr_{2} emitter. Signal flow in this resistor is in the opposite direction to that in the rest of the circuit and it is usual to position such resistors below the chassis line.
Even when all these points have been attended to, there is still some freedom in the layout of the diagram. One possible version is given in Fig. 10, from which it can be seen that the amplifier is a fairly conventional Tobey-Dinsdale circuit.

Some words have alternative spellings, e.g., jail and gaol. The electronic analogy is a circuit which exists in two forms, i.e., with different names. An example is the bootstrap circuit and its alternative form can be deduced in the following way.

The circuit diagram of the bootstrap circuit is given in Fig. 11. It is used to

Fig. 11 A bootstrap circuit.

Fig. 12 A redraw of Fig. 10 with R_{3} in the collector circuit.

Fig. 13 The Miller integrator circuit.
generate a linearly-rising voltage across C_{1}. As C_{l} charges through R_{1} and R_{2}, the voltage across C_{1} is transferred by emitterfollower action to R_{3} and then via C_{2} to R_{2}. Hence the voltage across R_{l} scarcely changes during the charging process which means that C_{l} receives a substantiallyconstant charging current: this is the condition required to generate a linear ramp voltage across C_{l}.

In essentials Fig. 11 represents a transistor connected in series with a resistor R_{3} across a battery. R_{3} is shown in the emitter lead but it could equally be in the collector lead and this change would make no difference to the operation of the circuit provided R_{t}, R_{2}, C_{t} and C_{2} are connected to the same points as in Fig. 11. When this is done the circuit diagram has the form shown in Fig. 12. Now $R_{2} C_{2}$ is a long-time-constant network used to transfer signals without change in waveform from the emitter to $R_{1} R_{2}$ junction. In effect C_{2} provides a signal-frequency shortcircuit between these two points. Such a network is necessary in Fig. 11 because of the difference in the zerofrequency voltage level at the two points. In Fig. 12 we can say, as before, that C_{2} provides a signal-frequency shortcircuit between emitter and $R_{1} R_{2}$ junction but here C_{2} can be omitted and R_{1} can be directly connected to the emitter. R_{2} now acts as an unnecessary drain on the battery and can be omitted. The circuit now has the form shown in Fig. 13. C_{l} charges from the battery via R_{1} and R_{3} and the circuit operates in the same way as Fig. 11. Fig. 13 is, of course, the Miller integrator circuit and thus we can con-
clude that the bootstrap and Miller integrator are the same circuit.

The analogy between text and circuit diagrams has been used in this article to underline the need for careful layout of circuit diagrams to achieve ease of reading. Logical arrangement of basic circuits on the diagram is necessary to give clear signal-flow lines and the basic circuits must be consistently presented in their standard layouts to make them easily recognizable. Some standard layouts and some recommendations for the preparation of circuit diagrams are given in B.S.3939: Graphical Symbols for Electrical and Electronics Diagrams. The analogy has proved useful but is not perfect: what, for example, is the text equivalent of a negative feedback loop?

Portable television camera

The new Marconi Mk.VIIIP colour camera made its first appearance at the International Broadcasting Convention. The camera can be used with a standard Mk.VIII control unit and retains the Mk.VIII features of automatic registration and colour balance. Three 1 -in lead oxide photoconductive tubes are used and the viewfinder c.r.t. is a 1 -in type with magnifier.

The camera unit itself contains linescan output stage, the three head amplifiers, a talkback facility and viewfinder electronics. An auxiliary pack, shoulder-frame mounted or carried on a trolley, contains field-scan and line generator, video stages and power unit, together with another talk-back station to enable communications between camera and auxiliary stations.

Industry finances report

The 1974 edition of "Company financial performance in the electronics industry" has been published. This covers the latest available results of over 300 of the industry's major companies and reveals how the consumer goods sector grew fastest of all up to 1972/73, while growth in the capital equipment sectors was very much slower.

The report provides an insight into the performance of companies in the industry with an annual turnover in excess of $£ \frac{1}{2} \mathrm{~m}$. It also enables comparisons to be made between companies in the six sectors of the industry covered and for the industry's results as a whole to be compared with previous years.
The report shows that the decline in the industry's profitability from 1969 halted in 1971/72 when pre-interest profits as a percentage of net capital employed reached 13.5%. By $1972 / 73$ this had recovered to 20.1%. Only the computer sector recovered less strongly, although the instruments sector did not experience good profitability throughout the whole period covered. The sector with the highest profitability-consumer goods-achieved the lowest export/ sales ratio, while the reverse was true for the computers sector. The report for $1969 / 70,1972 / 73$ is available price $£ 1$ postage paid from Neddy Books, NEDO, Millbank Tower, London SWIP 4QX.

Sonex Europe 75

The annual Sonex audio exhibition will take place at the Centre Airport Hotel, Heathrow, during April 25-27 next year, with two trade and press review days on April 23 and 24 . Organizers of the exhibition, British Audio Promotions Ltd, delayed arrangements in order to meet the Hi-Fidelity Group who have now made a unilateral decision to continue with their own private exhibition.

Corrections

Reducing amplifier distortion. A. M. Sandman, author of this article in the October issue, points out the omission of a $1-\mu \mathrm{F}$ capacitor in series with the $100 \mathrm{k} \Omega$ resistor in Fig. 11. In Fig. 10 the emitter resistors for Tr_{2} and Tr_{3} should be taken to the $-10-\mathrm{V}$ supply. In the second line from the bottom on page 369 (column one) the equals sign should, evidently, be a minus sign. Mr Sandman wishes to acknowledge use of the facilities of the Research Department of Anaesthetics at the Royal College of Surgeons.
Novel stereo tuner. There are two small alterations to the circuit of Fig. 6 in the April issue, besides that mentioned on page 129 of the May issue. Components C_{2} and R_{15} should be made 100 nF and 470Ω. In the printed circuit board a connection from Tr_{12} (a BC179 and not a 109) emitter to the supply line was omitted. In Fig. 14, the BC109 collector and emitter annotations were transposed in error. If the integrated circuit type TBA750 is used in place of the $\mathrm{SBA} 750, R_{23}$ should be made $8.2 \mathrm{k} \Omega$.

Optically coupled v.f.o.

A method for complete isolation of a high-frequency oscillator from its load, using a l.e.d./photodiode-transistor combination

by A. K. Langford, G4ARY

The method of transmitting information by amplitude modulation of a beam of light is not new (e:g. "Light-emitting diode -application to a short-path television link", Wireless World, Aug., 1964). Normally the light is pulsed or voicemodulated, but the transmission of high frequencies has been limited by the characteristics of the incandescent lamp. With the introduction of the light-emitting diode, the frequency range of the transmitting element was extended well above the audio spectrum. This was followed by the production of the optically coupled isolator (o.c.i.), which has the transmitting element (a l.e.d.) and the detector (a photodiode, or phototransistor) in close proximity within the same package. Primarily, the o.c.i. has been developed for d.c. isolation in digital and analogue circuits, in order to eliminate ground-loop currents. They may also be used as replacements for pulse transformers and mechanical relays. It is only recently, with the introduction of high-speed o.c.is, such as the $5082-4350$ series and the 5082-4360 device by Hewlett Packard, that the useful frequency range can be extended to beyond 10 MHz . This is quite sufficient for most v.f.o. applications in amateur equipment.

The prime consideration in the con-
struction of a variable-frequency oscillator is the long-term frequency stability with respect to changes in ambient temperature. Attention to careful layout and choice of components can reduce this problem to acceptable levels. A problem not so easily dealt with is the frequency instability of the v.f.o. due to a varying load. For example, when the v.f.o. is directly coupled to a high-level mixer stage in a receiver, or a modulated $/$ keyed stage in a transmitter. The usual procedure is to place one or more buffer stages between the oscillator and the fluctuating load. This can introduce instability and noise because of the loose coupling to the oscillator. The optically coupled isolathor offers a simple solution.
The operation of the 5082-4350 series is as follows. A light-emitting input diode is optically coupled with a p-n photodiode which drives a high-speed transistor. The GaAsP input diode emits photons in proportion to its forward current. These photons are received by the p-n photodiode detector and amplified by the transistor. The current transfer ratio

$$
\frac{I_{\text {collector }} \times 100}{I_{\text {led. }}} \%
$$

is typically 11% for the 4350 device and 22% for the 4351 . The 4360 package
incorporates a linear amplifier driving a Schottky transistor in the output circuit, and exhibits a current transfer characteristic of typically 600%, with an improved frequency response (20 MHz).

Although the 4360 is the best choice for simplicity of design, because of the high gain it offers, the 4350 device was chosen as the most practical for amateur use. Consequently, both the circuits described in this article use the low-cost 5082-4350 device.

Circuit description

An emitter-coupled Colpitts-type oscillator is used for the v.f.o. The bipolar transistor chosen for Tr_{I} is the low-noise 2N3707, which in the experience of the author, produces an oscillator with excellent stability when used in this configuration. The v.f.o. can operate over the range 1.5 to 5.7 MHz , without changing either of the feedback capacitors in the emitter-base circuit of $T r_{1}$. As this transistor is used in the common collector mode, the l.e.d. section of the o.c.i. can be placed in the collector supply with little effect on the operation of the oscillator. The l.e.d. is forward biased by the 6 mA current flowing through Tr_{1}, resulting in a d.c. collector current in the photodiode transistor of typically 0.7 mA .

Fig. 1. Oscillator, optically coupled isolator and first stage of amplification.

Fig. 2. Final circuit with preamplifier, output amplifier and automatic limiting control (oscillator omitted).

Fig. 3. Construction of the broadband output transformer for Tr_{6}.

Fig. 4. Output curves of Fig. 2. Voltages are peak-to-peak across the secondary winding loaded with a 65Ω carbon resistor.

(b)

Fig. 5. Alternatives to Fig. 1 using integrated circuits.

The output stage of Fig. 1 is a broadband amplifier with d.c. coupling between $T r_{2}$ and Tr_{3}. The output is maintained ($\pm 1 \%$ over the frequency range of the v.f.o.) at about 2 V peak-to-peak, by the automatic limiting control (a.l.c.) action of $T r_{4}$ and $T r_{5}$. Both the v.f.o. and the amplifier stage are fed from a common 12 V regulated supply.

For greater output, a second broadband amplifier can be added, Fig. 2. This increases the output to 25 mW into 65Ω from 1.5 to 5.7 MHz . For simplicity, the output from Tr_{3} is coupled via a capacitor to the base of Tr_{6}. The method of biasing Tr_{6} is unusual for an output stage, but provides protection against overdrive or v.h.f. instability from a reactive load. The power output may be increased considerably by decreasing the value of the 220 -ohm collector supply resistor for Tr_{6}, but care should be taken not to exceed the ratings for the transistor by operating into an incorrect load. The collector-to-output matching device is a broadband transformer, constructed as shown in Fig. 3. The output voltage may be kept constant by the action of the a.l.c. circuit, Tr_{7} and associated diodes. The output voltage is adjustable by the setting of Tr_{2}.

The circuit of Fig. 2 also provides for keying of the output by "lifting" the negative rail to $T r_{6}$, and simultaneously switching Tr_{7} on, via the $56 \mathrm{k} \Omega$ resistor to the base of Tr_{7}. The $5 \mu \mathrm{~F}$ capacitor and the a.l.c. network produce a pleasant keying characteristic.

Modulation may also be applied to the base of Tr_{7}, with forward bias provided by adjustment of R_{2}. The setting of R_{2} will be governed by the depth of modulation required.

Construction

The oscillator section should be built with particular attention to physical ruggedness and good-quality components. The oscillator should be screened from the amplifier. The prototype was built on a printedcircuit board 6 cm wide by 11 cm long, and this was mounted 1 cm above an earth plane. Because of the relatively high r.f. currents present around $T r_{6}$, the bypass capacitors should not be omitted from the $T r_{6}$ emitter rail. In the circuit of Fig. 2 an 82 pF capacitor may be necessary from the base of Tr_{3} to ground to ensure complete stability. This should not be required in the circuit of Fig. 1.
L_{l} is 42 turns of 36 s.w.g. enamelled copper wire, close wound on a 6 mm former, with an adjustable iron-dust core, and metal screening can. C_{l} and C_{2} are chosen to give the required tuning range in conjunction with adjustment to the core of L_{i}.
L_{2} is a broadband transformer comprising 14 turns of 28 s.w.g. enamelled copper wire, trifilar wound on a 12 mm o.d., 6 mm i.d., 3 mm -thick ferrite ring, Fig. 3: The three strands of wire are twisted together, for tight coupling, before winding. The connections to the six free ends are shown in Fig. 3.

Fig. 6. Assembled v.f.o.

Conclusion

The 5082-4350 device can provide a useful output without further amplification. When used in the common emitter configuration, with a 470Ω resistor in the collector circuit of the photodiode transistor, an output of 200 mV p.-p. was obtained at 5 MHz . (The d.c. current transfer ratio of the o.c.i. used in the prototype was 13% at 6 mA in'put.) Greater output was obtained at lower frequencies. However, if the frequency range of the v.f.o. is to be large, the output will need to be regulated and further amplification will be required.

The performance of the circuit in Fig. 2 is shown in Fig. 4. The uppermost trace is the output with no a.l.c. applied. The lower traces are with minimum effective a.l.c. (2) over the range 1.5 to 5.5 MHz , and with maximum a.l.c. (5) applied. The output can be reduced further by taking the reference voltage (Fig. 2) from the collector of $T r_{6}$. Although the output waveform of the prototype appeared "clean", a low-pass filter should be used if the output of the v.f.o. is to be fed directly to an antenna.

Keying of the final amplifier, and also intermittent disconnection of the 12 V supply to the amplifier section, produced no detectable shift in oscillator frequency. A crystal oscillator was used as a reference because the large changes in input signal to the monitor receiver (a Lafayette HA800 A) were sufficient to "pull" the first oscillator of the receiver.

Although the final design is relatively complex, it must be realized that if a narrow band is to be covered (e.g. the c.w. band of 80 metres) then tuned inductors may be used to advantage. However, the present design can be used as a v.f.o. for all of the 160 - and 80 -metre bands by the switching of C_{2} only.

For those constructors who prefer to use integrated circuits, the construction may be simplified by using an i.c. for the linear amplifier section. The circuit around $T r_{2}$ and $T r_{3}$ may be replaced by the Plessey SL201B d.c. coupled 10 MHz amplifier (Fig. 5(a)). However, the current drain is increased by 4 to 5 mA , and the supply
resistor from the 12 V line is reduced to 330Ω. A circuit was also built using the more expensive SL612C (current drain typically 3.5 mA at 6 V). This is a lowdistortion broadband amplifier with 70 dB a.g.c. capability, and the simple circuit shown (Fig. 5(b)) gave a very good performance.

The various circuits discussed in this article have been used to demonstrate the practicability of using an optically coupled isolator device such as the H.P. 5082-4350, as probably the ultimate solution to the isolation of a variablefrequency oscillator in all types of communications equipment.

Sixty Years Ago

Whoever it was had the idea of using "wireless" as a means of communication between Australian farmers and central stations, Mr W. King Witt, vice-president of the Wireless Institute of Victoria, is the first reported propounder of the notion in Wireless World. In an issue largely preoccupied with news of the war, there appears an unsigned report on a tour carried out by Mr Witt, after which he was moved to point out that the use of wireless would reduce "the terrors and disadvantages of loneliness".
"In illness or emergency of any description it would only be necessary for the farmer to seat himself at this instrument and tap out with the key before him his cry for help or his order for a new cultivator. From the transmitter the waves would flash like ripples in the ether, to be gathered in by the cobweb of wires at the central station; and in half the time that would ordinarily be taken, help would be at hand, or the new machine on the road. And, maybe, in the evenings the wireless would crackle busily with private gossip or invitations from one to another 'come round and see us'. "Thus would loneliness be banished."

According to the Australian High Commission, there are now around 8,000 licensed operators, working with nine central stations.

Digital television recording and quadraphonic broadcasting

Two engineers from the BBC Research Department, A. H. Jones and F. A. Bellis, demonstrated at the International Broadcasting Convention an experimental magnetic tape machine for the digital recording and playback of PAL colour television pictures (as illustrated in our June issue, p.185). Colour bars, a test pattern and a few minutes of a light entertainment programme were shown on monitors. The machine is basically a 42-channel data recorder using 1 -inch tape (the tape transport supplied by S.E. Labs (EMI) Ltd) and the digital information representing the signal waveform is recorded directly on the tape without high frequency bias. Tape speed is 120 inches per second-about eight times that of a conventional transverse v.t.r.
The television signal is sampled at a sub-Nyquist rate of 8.867 MHz (twice the PAL colour subcarrier frequency) and the samples are digitized to give 8 bits per sample. This flow of digital information is then divided among the 42 tracks to achieve a sufficiently low digit packing density on the tape to be suitable for the machine. In fact each track accepts and delivers information at a maximum rate of about $2.6 \mathrm{Mbits} / \mathrm{s}$, and with the tape speed of $120 \mathrm{in} / \mathrm{s}$ this gives a packing density of 22,000 bits per inch. The binary code used for recording is called the "delay modulation" or "Miller" code and has been chosen partly because it allows a clock signal to be extracted from the data so that a separate clock channel is not required. (See "Digital stereo sound recorder" Wireless World, Sept. 1972, pp. 432-435 for details.)

Processing circuitry in the digital recorder consists of 42 identical p.c. boards, each carrying all that is needed to process the signal on one track for both recording and replay. Control of these boards is effected by "housekeeping" circuits, pulses from which are distributed via a bus-bar system. The division or "demultiplexing" of digital information into the 42 channels-and the subsequent multiplexing on playback-is done by distributing the signal along bus-bars, with multi-phase clocks to direct it into and out of the appropriate channels. To change the recording format, all that is needed is an alteration in the "house-
keeping" circuits (a relatively small job), and the mạin processing circuits stay unchanged.

Going back to analogue television recording, RCA showed at the IBC a new v.t.r., the TR-70C, which operates with the proposed new "quad II" recording format. This format, for PAL 625 -line pictures, is intended to improve machine performance and provide a second programme audio channel, but mainly to reduce tape consumption costs by operating with a tape speed of $7 \frac{1}{2}$ inches per second, half the normal quadruplex recorder speed.

Quad broadcasting

The aims of the National Quadraphonic Radio Committee are to determine the basic channel requirements from the surround-sound reproduction standpoint, to clarify the technical issues between proposed systems that meet these requirements, and to fix f.m. signal specifications based on the best available data. Formed in 1972, the committee is sponsored by the US Electronic Industries Association and will report to the FCC early next year, according to E. M. Tingley in a paper given at the IBC.

Subjective listening tests were conducted last year to assess the listening characteristics for systems having two, three or four transmission channels. Closed-circuit tests of f.m. broadcast systems proposed by five companies have just been completed and over-the-air tests are now being run.

The systems proposed basically differ in their handling of a fourth transmission channel, a third channel being accommodated with the existing stereo subchannel but in phase quadrature with it. The third and fourth channels would carry front-to-back and diagonal difference signals. The article starting on page 422 reviews the systems, but three of them stand out as significantly different from Dorren's widely-reported system.

One of the two RCA proposals is for a three-channel transmission system, presumably having the virtue of not consuming any more spectrum space. The Zenith proposal is interesting in that an option is the use of $57-\mathrm{kHz}$ subcarriers
to provide signal-to-noise ratio improvement with a companding technique having variable pre- and de-emphasis. The control information would be in doublesideband suppressed-carrier signals in quadrature and the controls would operate on the amplitudes of the four inputs at the transmitter and the four outputs at the receiver in a frequency-dependent way to ensure tracking.
The system of especial interest is the Cooper/Nippon Columbia proposal in which the $38-\mathrm{kHz}$ sub-channels would be coded, while still having compatibility with stereo receivers, to allow a quadraphonic performance to be obtained with only a matrix decoder. Other things being equal, this would seem highly attractive from the consumers' viewpoint in that existing receivers would not need con-version-merely addition of simple 4-2-4 matrix decoder for quadraphony. The three and four-channel options would provide the consumer with the maximum amount of choice.
The results of the subjective listening tests, without the f.m. link, will be published soon, and they covered localization tests using bursts of a chirp signal with a pink noise background to all four speakers to simulate musical material. The results are said to suggest that the amount of crosstalk is a "major factor in influencing listener acceptance" of musical quadraphony.
On the closed-circuit tests, adjacent, alternate and co-channel interference was assessed, together with signal-to-noise ratios, intermodulation and multipath distortion, and the radiated spectrum under worst-case conditions. For over-the-air tests, being conducted over a 30 -mile link in San Francisco, subjective quality will be assessed from recordings, and compatibility with mono and stereo receivers in cars will be checked from recordings made while the vehicle is driven over a certain course.

SCA interference into the mono stereo and quadraphonic services are being checked, as well as the converse case, where distortion and signal-to-noise ratio and amplitude response are also assessed. Amplitude, separation and single-tone distortion versus frequency using a swept sine wave are included.

Non-linearity of air in loudspeaker

cabinets

Examination of distortion caused by different types of loading at low frequencies

by H. D. Harwood. B.Sc.

BBC Research Department

Abstract

In most work involving sounds we assume that air behaves as a perfect medium and that effects due to non-linearity are absent. For the sound pressure levels at which most of us listen this is indeed the case but considerably higher levels exist inside sound-producing devices. Distortion due to the high sound pressures inside a horn' has been recognized for some time, but apart from some claims as to the advantages of using the air stiffness of a closed cabinet, to the author's knowledge nothing has been written as to nonlinearity in cabinets. This article deals with the various non-linear effects which are produced in different types of enclosure.

Let us start with the simplest case, that of the closed loudspeaker cabinet.

It is well known that mounting a loudspeaker unit in a closed cabinet raises the resonance frequency to an extent which depends on the volume of the cabinet and on the effective area of the cone. In some designs the engineer has deliberately made the stiffness of the enclosed air much greater than that of the suspension/spider stiffness as it has been claimed that the air stiffness is more linear and that this arrangement results in considerably less distortion at low frequencies. In fact some go further and claim that if the cabinet is also filled with absorbent then isothermal expansion and rarefaction take place and that the air stiffness is then perfectly linear. The argument is that if the usual gas equation $p v^{\gamma}=k$ is taken and y is made equal to 1 , then perfectly linear stiffness results. That this is fallacious is evident if we consider a rigid airtight piston with a volume V behind it in a cylinder. Suppose we displace the piston forwards by a volume also equal to V so slowly that we have isothermal conditions, then the pressure falls to one-half the original value. If, on the other hand, we slowly displace the piston inwards from the rest position again by a volume V, we have infinite pressure, and the stiffness is clearly nonlinear.

Now we can calculate the non-linearity due to various percentage volume displacements of a cone in a cabinet and hence the effect on amplitude assuming the air stiffness to be the major component of the mechanical impedance and isothermal conditions. The sound pressure is the double differential of the amplitude and we can thus find the distortion due to various volume displacements. In practice this is largely second harmonic in nature. Now it matters not whether this volume displacement, and hence sound level in the
room, is caused by a small piston operating at large amplitude or by a large piston operating at small amplitude, for a given volume displacement we get a given sound level at a given frequency. We can therefore draw up a graph relating the maximum sound level in a given room volume for a given size cabinet, cut-off frequency and say 3% of second harmonic distortion, independent of the size of loudspeaker unit employed, but assuming that the axial response/frequency characteristic is uniform down to the cut-off frequency and then falls off abruptly at 12 dB /octave. This graph is shown in Fig. 1.

As we would expect, for a given cutoff frequency the volume required for the cabinet increases with an increase in sound level, and for a given sound level decreases with an increase in lower cut-off frequency. As an example for a cut-off of 40 Hz and a sound level of 105 dB , a volume of 65 litres ($2 \frac{1}{4} \mathrm{cu} . \mathrm{ft}$.) would be required.

Fig. 1. Relation between Sound Pressure Level for 3% of second harmonic distortion in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ and volume of closed cabinet, assuming various lower cut off frequencies and isothermal conditions.

Several points should be noted here. Firstly that since below the lower cut-off frequency the moving system will be stiffness controlled, the amplitude will be constant as the frequency is reduced, so that the distortion due to the air stiffness is undiminished but as the frequency characteristic is falling at 12 dB /octave the level of the second harmonic will be even greater. A second point is that under these conditions, for a given degree of distortion at cut-off, the number of occurrences of this distortion per unit of time will be increased as the cut-off frequency is increased, for the bandwidth over which the distortion takes place is correspondingly wider. Furthermore, since the distortion is largely second harmonic in nature, it follows that partial rectification is taking place with a corresponding displacement of the cone from its centre position, and still further increase in distortion due to non-linearity of the magnetic field, too.
Finally Avedon ${ }^{2}$ has shown that it is not possible in practice to obtain true isothermal conditions by using normal acoustic fillings, a γ index of about 1.2 being the lowest he could achieve. From this aspect the air-spring distortion will be even higher than that calculated for Fig. 1.
In spite of its apparent simplicity the air-spring type of loudspeaker is therefore not as innocent as some of its protagonists would like us to think.

Vented cabinet loudspeakers

A common method of reducing the distortions associated with excessive cone velocity and amplitude is to use a vented cabinet, which also has the advantage of increasing the range of the low-frequency response. In this type of design, the acoustic compliance of the air in the cabinet resonates with the inertance of a vent at a specified low frequency as a Helmholtz resonator, and the device acts
as an acoustic impedance transformer presenting a high impedance to the rear of the loudspeaker cone and a low impedance to the air. Now a vent may be divided into two extreme classes. It may consist of a simple orifice, that is, a hole whose length is small compared with its diameter, or it may consist of a pipe whose length is large compared with its diameter. The acoustic radiation resistance of the vent is independent of its area, and the vent area is therefore often made much smaller than that of the cone as this avoids, or reduces, the need for a pipe in series with the orifice to obtain a given inertance. It follows, however, that the sound particle velocity in the vent for a given overall sound pressure must be high. The vent is not streamlined and therefore turbulence will be generated; it is clear that this will be greatest when the vent is short, and therefore have a small area for a given inertance, so that the velocity is correspondingly high. Some guidance is therefore desirable as to how small the orifice may be before appreciable non-linearity distortion is generated. If, however, a pipe is connected in series with the vent in order to increase the area for a given inertance, then distortion due to the finite sound pressure or to turbulence may take place in the pipe, and these represent other design limits. These limits are examined here to see how present high quality loudspeaker designs lie with regard to them and to obtain generalized design data, applicable to any loudspeaker, for this form of distortion.

The two main recent investigations of acoustic non-linearity of orifices are by Bies and Wilson ${ }^{3}$ and Ingard and Ising ${ }^{4}$. In both experiments Helmholtz resonators were employed in order to obtain high particle velocities, without the use of a source of excessively high sound pressures in the latter case, and in both cases to enable short orifices to be examined. In the former experiment the orifice was 28.5 mm long and 90 mm in diameter and is therefore representative of actual vents in loudspeakers; in the second case the orifice was made much shorter to emphasize the end effects and was only 0.1 mm long and 6 mm in diameter, thus representing an extreme case. Note, however, that in both cases the diameter is much larger than the length.

Bies and Wilson show in their Fig. 1 that the acoustic resistance of the orifice is constant for particle velocities up to about $600 \mathrm{~mm} / \mathrm{s}$, gradually rising in value above this velocity as turbulence sets in. Ingard and Ising show in their Fig. 21 good agreement with this conclusion, although they indicate that the resistance may not be perfectly constant even for lower velocities. On the other hand, waveform traces are given in their Fig. 2, which show no visible harmonic distortion even for velocities* of $2.7 \mathrm{~m} / \mathrm{s}$.

[^7]As a compromise between these two values it is worth examining a round figure for maximum velocity of $1 \mathrm{~m} / \mathrm{s}$. Note that the figure for the critical velocity is independent both of the size of the orifice and of frequency. However, the total percentage distortion obtained for a given sound pressure depends on the size of the orifice, and there is therefore from this point of view an advantage to be obtained in using a fairly large orifice in loudspeaker design.

Against this conclusion is the fact that a large orifice will need a pipe in series with it to enable a given value of inertance to be obtained, and when high sound pressures are propagated along a pipe distortion is generated, in the first place mainly of the second harmonic type.

Thuras et al ${ }^{5}$ give the second-harmonic distortion in a planewave, e.g., in a pipe as

$$
p_{2}=\frac{(y+1) \omega p_{i}^{2} x}{20 \sqrt{2} p_{0} c}
$$

Fig. 2. Minimum pure-tone sound levels at vent resonance frequency in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ for various size orifices and vent resonance frequencies before nonlinearity is appreciable from orifice.

Fig. 3. Minimum programme sound level in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ for various size orifices and vent resonance frequencies before nonlinearity is appreciable from orifice.
where p_{l} is the fundamental pressure in Pa, γ is the ratio of specific heats, $\omega=2_{\pi} f$, f is the frequency in hertz, c is the velocity of sound in $\mathrm{m} / \mathrm{s}, x$ is the distance in m , and p_{0} is the static pressure in Pa.
The levels of the third and higher harmonics are appreciably lower than that of the second harmonic. It is seen that for a given sound pressure in the pipe the distortion is independent of the diameter of the pipe but proportional to its length and to frequency. Increasing the diameter of the pipe would for the same inertance, require a greater length; however, the sound pressure in the pipe would be less and the resulting distortion would be lower. Fortunately, in the present case, the distortion is least at the low frequencies at which a vent is used.
Finally, high sound pressures in the pipe also involve high velocities, and turbulence will occur in the pipe above a critical velocity, the value of which is a function of diameter. Reynolds showed for steady flow the ratio $v_{c} d / \eta$ is a constant, where ν_{c} is the velocity in m / s, dis the diameter in m , and η is the Sl kinematic viscosity, i.e., the dynamic viscosity divided by the density. In fact the constant, called Reynolds number, is not really fixed but for the present circumstances it is about 2300.

Note that in this case the critical velocity is inversely proportional to the diameter of the pipe with a corresponding effect on sound powers available.

Distortion due to an orifice

From the information provided in the previous section it is possible to calculate the sound levels produced by orifices of various diameters when the sound velocity is the maximum specified and for vent resonance frequencies in the range of $30-100 \mathrm{~Hz}$, values commonly used.

Olson ${ }^{6}$ gives the peak amplitude of a $100-\mathrm{mm}$ diameter piston mounted in an infinite baffle and radiating a sound power of 1 watt as 114 mm at 40 Hz , this being equivalent to an r.m.s. velocity of $10 \mathrm{~m} / \mathrm{s}$. The far-field sound level in a listening room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ for an omnidirectional source for this sound power ${ }^{6}$ will be 102 dB w.r.t. $2 \times 10^{-5} \mathrm{~Pa}$, or for a velocity of $1 \mathrm{~m} / \mathrm{s}$ a figure of 82 dB will be obtained. Now it was shown elsewhere ${ }^{7}$ that the programme spectrum is such that the power in an octave band at 40 Hz is about 10 dB below the peak signal level, and for a vent velocity of $1 \mathrm{~m} / \mathrm{s}$ this would permit a peak programme sound level of 92 dB and pro rata for other vent resonance frequencies. To take a practical case, in which all the low-frequency sound may be regarded as coming from the vent, such as the BBC studio monitoring loudspeaker previously described ${ }^{7}$ in Wireless World, the axial response-frequency curve is -5 dB at 40 Hz with respect to the midband figure. This means that for a vent velocity of $1 \mathrm{~m} / \mathrm{s}$ an overall peak programme sound level of 97 dB could be achieved. In fact this loudspeaker is capable of delivering a sound level of 103 dB and no complaints of bass distortion have so far been made. It appears therefore that the criterion has
been too severe and that owing to the high Q of the orifice the change in total impedance caused by a small change in the resistive component is insignificant. In other words, the level of distortion generated for this value of vent velocity is too low to be audible.

It would appear to be more practical therefore to take the figure from Ingard and Ising just below the one which gives detectable waveform distortion, particularly as their experimental setup represents an extreme case and will therefore err on the safe side. The figure for vent velocity is then some $5 \mathrm{~m} / \mathrm{s}$, i.e., 14 dB higher than before, in which case there is some 8 dB in hand in the case of the studio monitoring loudspeaker mentioned, before appreciable distortion is generated. As could be expected from the cause of the nonlinearity, the distortion is symmetrical, i.e., consists essentially of odd-order harmonics, largely the third, provided the vent is also reasonably symmetrical.

It is possible to draw up a set of criteria for the maximum pure-tone sound levels at the vent resonance frequency which should not be exceeded for vents of various sizes, and the corresponding peak programme sound levels which can be generated, assuming the response-frequency characteristic of the loudspeaker to be uniform down to these frequencies and the spectrum distribution to be that previously determined. These two sets of criteria are shown in Figs. 2 and 3. For this purpose the curve of programme spectrum ${ }^{7}$ has been regarded as a straight line over the frequency range concerned. The error is less than 1 dB , and in view of the data this simplification is fully justified.

The importance of the orifice area on the distortion level may be illustrated by a practical example. Fig. 4(a) and (b) show the level of the fundamental from a miniature loudspeaker using a vented cabinet fitted with alternative pipes of differing diameters such that the ratio of the vent areas is about $2: 1$. To make the results more obvious, the vents used were of very small diameters but their lengths were so adjusted that the vent resonance was the same in each case, about 45 Hz . (Owing to the parameters chosen the sound output at the vent resonance frequency was well below that in the midband.) The curves shown are the reverse of the customary ones in that they show the levels of fundamental for a constant level (-30 dB) of distortion for the third harmonic. It will be seen that, as expected, a higher sound level can be radiated around the vent resonance frequency for the larger vent than for the smaller one.

Fig. 4(c) also shows clearly the effect of the size of the orifice itself on the distortion level. In this case the orifice was made the same size as that of the smaller vent, but the larger diameter pipe was placed in series with it to give the same resonance frequency as before. It will be observed that in spite of the use of the larger diameter pipe the distortion level was determined by the size of the orifice and at approximately the same level as that of the smaller vent.

Distortion in a pipe

Nonlinearity of medium at high sound pressures. As stated earlier, Thuras' formula for this form of distortion is

$$
p_{2}=\frac{(y+1) \omega p_{1}^{2} x}{20 \sqrt{2} p_{0} c}
$$

and it is evident that unlike distortion from an orifice the distortion here is proportional to the frequency and to the length of pipe. The simplest arrangement seems to be to plot p_{2} versus frequency for a $100-\mathrm{mm}$ length of pipe.

As an example the sound levels permissible for a distortion level of -30 dB , i.e., 3%, may be taken, a figure which corresponds to the degree of distortion just visible on the waveform trace on an oscilloscope and the same as that used earlier.

Rearranging the formula for distortion in a pipe we obtain

$$
\begin{aligned}
& p_{1} \frac{20 \sqrt{2} \gamma p_{0} p_{2} c}{(\gamma+1) \omega x} \\
& \text { (} \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

Fig. 4. Level of fundamental tone for 3% third harmonic distortion from miniature loudspeaker fitted with various vents. (a) pipe diameter 18 mm , (b) pipe diameter 25 mm , (c) orifice 18 mm , pipe diameter 25 mm .

Fig. 5. Minimum pure-tone sound levels at vent resonance frequency in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ from vent pipes of 100 mm length and various diameters for 3\% second harmonic distortion.
or

$$
p_{I}=\frac{20 \sqrt{2 \gamma} p_{o} c}{(y+1) \omega x} \cdot \frac{p_{2}}{p_{I}}
$$

For a value of $p_{2} / p_{1}=0.03, \omega=50 \mathrm{~Hz}$ and $x=100 \mathrm{~mm}$, the value of p_{I} is

$$
p_{I}=3.3 \times 10^{5} \mathrm{~Pa}
$$

with a corresponding particle velocity $p_{I} /$ $\rho c=7.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$.

This will generate a sound level of 145 dB w.r.t. $2 \times 10^{-5} \mathrm{~Pa}$. from a vent of 100 mm diameter in a room of $2000 \mathrm{ft}^{3}$ $\left(60 \mathrm{~m}^{3}\right)$, and as can be seen from the formula given above the sound level for a given percentage distortion will be inversely proportional to frequency. The values for pure tones and various diameter vents are plotted in Fig. 5. As with an orifice, even higher values will be permissible for the programme sound level.

In comparing these values with those of Fig. 2, it should be remembered that they are for a pipe of $100-\mathrm{mm}$ length and that in practice a length of $200-\mathrm{mm}$ is common for simple vented loudspeakers.

There are some cases, however, such as the labyrinth types of loudspeaker, where the length of the pipe may be as much as one quarter of a wavelength, at say, 40 Hz . In such a case the length would be over 2000 mm and the distortion would be correspondingly higher, not quite proportional to length as there would exist a standing wave in the pipe, but nevertheless very much higher than in a simple vented cabinet, or alternatively for the same degree of distortion the permissible sound levels might well have to be about 20 dB lower.

In the case of the ordinary vented cabinet, for a given degree of distortion for this cause, much larger sound pressures may be developed by using a pipe than by a simple orifice. If, therefore, the sound pressures required are such as to lead to distortion from the latter cause, then the additional use of a pipe would appear at first sight to reduce distortion because for a given inertance a larger diameter orifice will be needed if a pipe is also employed in series with it; but this is not the whole story. It is now necessary to examine the effects of high particle velocity in the pipe.

Distortion due to turbulence in a pipe. As stated earlier, Reynolds gives the relationship for the critical velocity for laminar flow in a pipe as $V_{c} d \eta=K$, where $K \approx 2300$. Now it is assumed in this formula that the pipe is long, which can be interpreted as meaning that the length is greater than, say, five times the diameter.

Under these conditions $V_{c}=350 \mathrm{~mm} / \mathrm{s}$ for a pipe of $100-\mathrm{mm}$ diameter and pro rata for other diameters. However, just as the Q of an orifice is high and small changes in the resistive component of the impedance were found not to have a significant effect on nonlinearity, so also the Q of a pipe is high and a similar state holds. Unfortunately no known measurements exist of the effect of frequency on
turbulence in pipes, so it will be necessary to assume that the same conditions apply as for orifices. It was shown earlier that for an orifice the lowest velocity which gave rise to detectable distortion of the waveform was approximately ten times that at which nonlinearity due to turbulence commenced. A similar ratio will be used here giving a value of $3.5 \mathrm{~m} / \mathrm{s}$ for a $100-\mathrm{mm}$ diameter pipe. The critical velocity is seen to be inversely proportional to diameter while the sound pressure in a room for constant velocity in the pipe is proportional to (diameter) ${ }^{2}$; the minimum sound pressure in a listening room is therefore proportional to pipe diameter and of course proportional to frequency. This relationship is shown in Fig. 6 for pure tones. As with an orifice, the programme overall sound pressures can be higher and these are shown in Fig. 7; in common with Figs. 2 and 3, distortion is largely third harmonic.

On comparing Fig. 6 with Fig. 2 it will be seen that for large vents the use of a pipe reduces the sound pressure permissible, but that as the diameter is reduced this condition changes until at diameters smaller than those shown in the figure, higher sound pressures would be permissible. Unfortunately, it is in the former case that pipes are most often desirable to obtain a given inertance. In practice, except for labyrinth-type loudspeakers, the position is not quite as bad as this

Fig. 6. Minimum pure-tone sound levels at vent resonance frequency in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ for various diameter long pipes and vent resonance frequencies before distortion is appreciable.

Fig. 7. Minimum programme sound levels in room of $2000 \mathrm{ft}^{3}\left(60 \mathrm{~m}^{3}\right)$ for various diameter long pipes and vent resonance frequencies before distortion is appreciable.
appears to make it, for the pipes employed with large vents are rarely the length postulated, i.e., five times the diameter. In these circumstances the maximum sound pressures capable of being produced will lie somewhere between the two conditions. It is clear, however, that adding a pipe to a large vent can only result in a reduction of the permissible sound pressure.

Finally, it should be remembered that the turbulence both from an orifice and in a pipe has the effect of reducing the Q of the inertance, this will result, as a secondary effect, in a reduction in the output of the loudspeaker at the vent resonance frequency.

Conclusions

Nonlinearity distortion from high sound pressures or velocities is an inescapable property of all types of loudspeaker cabinet. It may be caused by high sound pressures in a closed cabinet, by turbulence at the orifice of a vented cabinet by turbulence in a pipe or even by high sound pressures in a pipe. Employing such data as is available calculations have been made of the minimum sound levels to be expected in a listening room of $2000 \mathrm{ft}^{3}$ $\left(60 \mathrm{~m}^{3}\right)$ before distortion from these sources is audible, and for vented cabinets of the Helmholtz type that from high sound pressures in the pipe has been shown not to be a limiting factor in practice although it may well be so for a labyrinth-type of cabinet. For small vents distortion from the orifice predominates while for large vents pipes are to be avoided as far as possible. Design data for these conditions have been drawn up.

Acknowledgements

Thanks are due to Director of Engineering for permission to publish this article.

References

1. Rocard, Y., "Sur le propogation des Ondes sonores d'amplitude finie," Comptes Rendues pp.96, 161, 1933.
2. Avedon, R. C., "More on the airspring and the ultra compact loudspeaker," Audio, June 1960, p. 22.
3. Bies, D. B. and Wilson, O. B., "Acoustic Impedance of a Helmholtz Resonator at very high Amplitude," $J A S A$, Vol. 29, p.711, 1957. 4. Ingard, U. and Ising, H., "Acoustic Nonlinearity of an Orifice," $J A S A$, Vol. 42, p.6, 1967.
4. Thuras, A. L., Jenkins, R.T. and O'Neil, H. T., "Extraneous Frequencies generated in Air carrying Intense Sound Waves," JASA, Vol. 6, p.173, 1935.
5. Olson, H. F., Acoustical Engineering (Van Nostrand, Princeton, N.J., 1957).
6. Harwood, H. D., "New BBC Monitoring Loudspeaker," Wireless World, Vol. 74, pp.2-5, pp.74-78, pp.114-117, 1968.

About People

James H. H. Merriman, C.B., O.B.E., M.Sc., A.Inst.P., F.I.E.E., F.K.C., Hon. D.Sc (Strathclyde), took office as President of the Institution of Electrical Engineers, on October 1, 1974, having been a Deputy President and a Chairman of its Electronics Divisional Board. He is one of ten past presidents elected from the Post Office since 1873. He joined the Post Office at the Research Station, Dollis Hill, in 1936 after graduating in Honours Physics and following postgraduate research at the University of London. He went on to serve principally in engineering research and development and management of national and international telecommunications, becoming senior director of development in 1969.
In December 1969 he was appointed by the University of Strathclyde, Glasgow, as visiting professor in the Department of Electronic Science and Telecommunications and was awarded, in 1974, by that University, Honorary Directorate of Science. In 1972 he was awarded a Fellowship at King's College (F.K.C.), University of London, and in 1971 was appointed by the Council of the IEE to serve on the governing body of the Imperial College of Science and Technology for four years.

Dr Herbert A. Schulke, Jr, of Washington, DC, has been named general manager of the Institute of Electrical and Electronics Engineers (IEEE). Dr Schulke succeeds Donald G. Fink who has been general manager since IEEE was formed in 1963 and has held the additional position of executive director since 1972. Mr Fink will continue to serve the Institute in an executive role until his retirement in 1976. He plans to devote a substantial segment of his time to furthering co-operation by IEEE with other engineering organizations.
A Fellow of IEEE, Dr Schulke has had 28 years of experience in electronics and communications. He presently serves on the Administrative Committee for the IEEE Aerospace and Electronics Systems Society, and has had several technical papers published in the field of network theory, communications, research and development management and engineering management. He holds the B.S. degree from the US Military Academy at West Point and M.S. and $\mathrm{Ph} . \mathrm{D}$. degrees in electrical engineering from the University of Illinois.

Circards

Sets 16,17 and 18 of Circards are on the sub ject of current differencing amplifiers. Set 16 , on signal processing, is now available (see October issue). Set 17, on signal generation, will be available at the end of November and Set 18, on measurement and detection, during December. Order a subscription to Circards by sending $£ 13.50$ for a series of ten sets to: Circards, IPC Electrical-Electronic Press Ltd, General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU. Make cheques payable to IPC Business Press Ltd.

Circuit Ideas

Simple Q multiplier

Transistor i.f. amplifiers at 470 kHz using bipolar devices commonly use transformers with an unloaded Q of about 50 and a working Q of around 30 . If the bipolar device is replaced by an f.e.t., the transformer primary and secondary connections interchanged, and an f.e.t. added to the transformer to neutralize losses, much better performance can be obtained. Using the same transformer with its unloaded Q of about 50 , a working Q of 100 is obtainable in the new circuit when followed by a similar stage. Resistor R controls the Q multiplication and if its value is too low oscillation will occur as $Q \rightarrow \infty$. Provided this situation is not approached, and reasonable decoupling precautions taken, there will be no problems with spurious oscillation. Automatic gain control may be applied in the usual way.
J. A. Short,

Ashford,
Middlesex.

Collision sensor for electronic "animals"

Most published designs for electronic "animals" use either microswitch probes or load sensing for obstacle location, both of which have their limitations. The system to be described has only one fault and two moving parts.

The first two NAND gates serve to enable either the front or real collision sensor. The collision sensor consists of a half-inch bail-bearing mounted on three sewing pins arranged so that when the "animal" hits an obstacle the ballbearing will rise, thereby breaking the circuit between points 1 and $2 / 3$ which causes the output of one of the NAND gates to go low.

It should be a fairly simple task to incorporate this circuit into most of the published designs.
M. W. K. Cottrell,

London NW8.

direction of travel

LONDON

1st. IEE-Colloquium on "Broadcast camera tubes and the future", at 14.30 at Savoy P1, WC2.

1st. R. Inst-"John Tyndall's demonstrations on sound 1854-1882," by Prof Charles A. Taylor at 20.45 at The Royal Institution of Great Britain, 21 Albemarle St, W1.

4th. IEE/T.Phys-Colloquium on "Integrated injection logic", at 14.30 at Savoy P1, WC2.

4th. IEETE-"Television-the challenge and the choice," by T. B. McCrirrick at 18.00 at the IEE, Savoy PI, WC2.

6th. IERE-Colloquium on "Batteries and power sources," at 10.00 at 9 Bedford Sq , WC1.

6th. I.Phys-Meeting on "How electron beams change surfaces", at 10.00 at Imperial College, SW7.
7th. IEE-"The use of lasers in scientific investigation," by M. J. Kear at 18.30 at Savoy PI, WC2

7th. RTS-"Full specification international colour television receiver," by S. C. Jones and R. E. Gray at 19.00 at London Weekend Television South Bank TV Centre; Upper Ground, SE1.

11th. AES-"Normal hearing and its susceptibility to damage," by Dr J. J. Knight at 19.15 at the IEE, Savoy PI, WC2.

12th. IERE/IEE-Colloquium on " 25 th anniversary of stored programme computers", at 10.00 at the Royal Society, 6 Cartion House Terrace, SW1.

14th. IERE-"Recent progress in millimetric waveguide systems," by R. W. White at 18.00 at 9 Bedford $\mathrm{Sq}, \mathrm{WC1}$.

14th. RTS-"Beam indexing colour television tubes," by Prof. J. A. Turner at 19.00 at London Weekend Television South Bank TV Centre, Upper Ground, SE1.

19th. IEE--"The principles of colorimetry and its application to colour television," by E. W. Taylor and W. N. Sproson at 17.30 at Savoy P1, WC2

20th. IEE-Colloquium on "Advanced information processing in industrial inspection", at 14.30 at Savoy Pl, WC2.

20th. IEE-System X: a strategy for telecommunications," by L. R. F. Harris at 17.30 at Savoy P1, WC2.

20th. IEE-"Stored programme control," by Dr K. Warren at 18.00 at Thames Polytechnic, Riverside House Annexe. Beresford Street, SE18.

21st. IEE/IEETE--Demonstration of "The use of closed circuit television facilities" at 14.30 at the BBC Staff Training Studio, Shepherds Bush, W12.

21 st . IEE-Colloquium on "Measurement and control in highway engineering", at 14.30 at Savoy PI, WC2.

21st. RTS-"A television camera for the cameraman," by P. Groves at 19.00 at London Weekend Television South Bank TV Centre, Upper Ground, SE1.

22nd. I.Phys-Conference on "Materials of electrical and magnetic interest", at 10.00 at the Geological Society, Burlington House, Piccadilly, W1.

22nd. IEE-Colloquium on "Analytical instrumentation", at 10.30 at Savoy PI, WC2.

25th. IEE-Colloquium on "Weather radar for quantitative rainfall measurement and developments in data remoting", at 14.30 at Savoy PI, WC2

26th. IEE-"Adaptive quantization of speech
and data signals," by Dr D. J. Goodman at 17.30 at Savoy PI, WC2

27th. IEE-Colloquium on "The design and application of microwave transistors", at 14.00 at Savoy PI, WC2
27th. IERE-"The US Navy navigation satellite system," by W. F. Blanchard at 18.00 at 9 Bedford $\mathrm{Sq}, \mathrm{WCl}$.

28th. IEE-."Photomultiplier tubes and related devices," by J. Sharpe $8^{*} 17.30$ at Savoy P1, WC2

28th. IERE--"CAD of type 2-phase lock loops," by P. Atkinson and A. Lillen at 18. 5) at 9 Bedford Sq, WCl.
28th. IEE-"Sound in broadcastung," by P. M. Weitzel at 18.30 at King's College, Strand, WC2

ABERDEEN

14th. IEETE-"Standby generation," by H. A. Smedley at 19.30 at Earls Court Hotel, 96 Queens Road.

AYLESBURY

14th. IEE-"Lighting a television studio," by D. C. Lightbody at 19.30 at Aylesbury College, Oxford Road.

BIRMINGHAM

13th. IERE-"Using digital integrated circuits," by J. A. Scarlett at 19.15 at the City of Birmingham Polytechnic.

13th. RTS-"Ceefax/Oracle" at 19.00 at ATV Centre, Broad St.

29th. SERT-"The control aspects of the advanced passenger train," by R. W. Stokes at 19.00 at the Byng Kenrick Suite, University of Aston, Gosta Green.

BOURNEMOUTH

6th. IEETE-"Measurement of electromagnetic interference and transients in aircraft electrical systems," by G. A. Jackson at 19.30 at the Viscount Club, Sea Road, Boscombe.

CAMBRIDGE

21st. IEE/IERE-"Digital adaptive electronic circuits," by Dr I. Aleksander at 18.30 at the Üniversity Engineering Laboratories, Trumpington St.

CARDIFF

13th. IERE/IEE-"Mobile radio in the era of spectrum congestion," by Prof W. Gosling at 18.30 at the Dept of Applied Physics \& Electronics, UWIST.

CHELTENHAM

12th. IERE/IEE-"Radar approach to weather forecasting," by Prof E. D. R. Shearman at 19.30 at the GC Club, GCHQ, Benhall.

12th. IEETE-"Protective multiple earthing," by J. B. Rudge at 19.30 at MEB Social Club, Hesters Way. CHESTER

20th. IEETE-"Sounds interesting," by J. D. MacEwan at 19.30 at Chester College of Further Education, Eaton Road, Handbridge.

COVENTRY

7th. IERE/IEE--"The 25 -metre steerable aerial at the radio and space field station," by J. A. McGiuney at 18.30 at Lanchester Polytechnic.
EDINBURGH
6th. IERE-"Calculator technology," by R. Bilton at 19.00 at Napier College.

GLASGOW

7th. IERE--"Calculator technology," by R. Bitton at 19.00 at Glasgow College of Technology.
GUILDFORD
6th. IERE-"Why 110° colour?" by A. W. Lee at 19.00 at Lecture Theatre F, University of Surrey.

HULL

13th. SERT-"In-car entertainment," by D. A. Faries at 19.30 at Hull College of Technology.
21st. IEETE-"The use of keyboards as input devices," by J. A. Purdie at 19.30 at Bullock Lecture Theatre, College of Technology, Queen's Gardens.

JORDANSTOWN

12th. IERE/IEE-"50th anniversary of broadcasting in Northem Ireland" (speaker from the BBC), at 19.00 at The Ulster College.

KINGSTON-UPON-THAMES

26th. SERT-Chairman of SERT to give address followed by "Quadraphonics", by Dr. K. Barker at 19.00 at Kingston College of Further Education.

LIVERPOOL

13th. IERE--"Satellite earth stations 1962-1974,"
by D. I. Dalgleish at 19.00 at the Dept of Electrical Engineering \& Electronics, University of Liverpool.

LOUGHBOROUGH

12th. IERE/IEE-"Stereophonic and ambisonic reproduction of sound," by Prof P. B. Fellgett at 19.00 at Room J002, Edward Herbert Building, the University.

MANCHESTER

14th. IERE-"Medical electronics," by E. T Powner at 18.15 at the Lecture Theatre $\mathrm{R} / \mathrm{H} 10$, UMIST.
21st. SERT-"TTT CVC8 colour TV receiver," by A. E. Thomas at 19.30 at Room D7, Renold Building, UMIST, Sackville St.

NEWPORT (IoW)

15th. IERE-"Automatic weather stations," by H. R.S. Page at the Technical College.

PLYMOUTH

13th. IERE/IEE-"The life and work of a sound recording engineer," by R. Auger at 19.00 at The Main Lecture Theatre, Plymouth Polytechnic.
PRESTON
21st. IEETE-"Sounds interesting," by J. D. MacEwan at 19.15 at Preston Polytechnic, Corporation St.

READING

14th. IERE-"Hy brid computers and their applications," by Dr R. L. Davey at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park

REDHILL

6th. IEE-"Medical electronics-in and out of the operating room," by Dr D. W. Hill at 19.30 at the Mullard Research Labs, Cross Oak Lane, Salfords.

20th. IEETE-"The CEEFAX system of information by television," by S. M. Edwardson at 19.30 at Redhill Technical College, Gatton Point.

SWINDON

12th. IERE/IEE-"Colour television," by D. Barnes at 18.15 at The College, Regent Circus.
26th. IEETE-"Stereo broadcasting" (speaker from BBC), at 19.30 at King's Head Hotel, Wood Street.
YORK
14th. IERE--"Development of digital transmission systems," by G. H. Bennett at 18.30 at York College of Further Education.
Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

New exhibition

for London

A new electronics exhibition is to be held in London from April 13 to 15 in 1976, the year the IEA exhibition, previously held at Olympia, London, moves to the new exhibition centre in Birmingham.

Grosvenor House has been booked for the new event, which is being organized by the Evan Steadman Group. They say "Grosvenor House was the venue some 15 years ago for the electronics shows. The industry will be pleased at the clock being put back to the days when a route march was not required in order to acquire information; when the venue was in central London; when union labour was not mandatory merely to lift a hammer; and when stand space did not represent the major item of the publicity budget".

"First-timer" 1.8 MHz tests

From Stewart Perry, W1BB, comes news that this year's 1.8 MHz Transatlantic and Transpacific tests are being specially directed towards the encouragement of "first time" 1.8 MHz long-distance contacts by amateurs who have never previously worked across the oceans on this band.

Dates for the 42nd Transatlantic tests are on the Sunday mornings of November 17, December 22, January 12 and February 9 from 0500 to 0730 GMT. British and other European stations should use 1825 to 1830 kHz and listen for North American stations between 1800 and 1807 kHz , with American stations calling only during the first three minutes of each 15 -minute period.

The emphasis on first-time contacts is to overcome any belief that with improved equipment, aerials and know-how, 1.8 MHz DX has become commonplace. For many amateurs on both sides of the Atlantic the thrill of working across "The Pond" with low-power 1.8 MHz equipment remains an eagerly sought-after experience.

Activity on 24 GHz

A number of microwave distance records are held by L. W. G. Sharrock, G3BNL and A. Wakeman, G3EEZ. These include the world record for 21 GHz with a 45 -mile ($72-\mathrm{km}$) contact between Cleeve Common, near Cheltenham and Clee Hill in Shrop shire in 1972. Recently, after receiving permits for operation on the new band of 24 GHz which replaces 21 GHz , they repeated this performance to establish a 24 GHz record of 45 miles using crystalcontrolled equipment with 4 mW output and 16 -inch dish aerials. Contact was made with sufficiently high signal-to-noise ratio for them to feel confident that contact could be made over significantly longer distances and their target is 150 km .
A few years ago, Fred Brown, W6HPH/G5AWI showed that on the lower u.h.f. and microwave bands effective use can be made of single and double conical reflectors to overcome the difficulty of constucting true parabolic dish reflectors, with relatively little loss of performance. Dr Dain Evans, G3RPE, has recently carried out some intriguing
investigations into the shapes of dustbin lids and has discovered that many of the smoothly-rounded type of ordinary galvanized-iron lids make excellent microwave reflectors to at least 10 GHz .

The v.h.f. scene

In World of Amateur Radio for October 1970 I reported the attempts by Geoff Mackenzie-Kennedy, VE2AIO, near Montreal, Canada to establish transatlantic contacts crossband on 50 and 70 MHz by means of either auroral or multi-hop sporadic E propagation. But despite considerable effort on both sides of the Atlantic this was not achieved.

Now Geoff Kennedy, after being abroad for 34 years, is back and hoping to settle in Scotland where he hopes to obtain an amateur licence and pick up again his attempts to work crossband across the Atlantic. He remains convinced that it is mainly the problems of time difference, interest and proper equipment, particularly aerials, that have so far frustrated these attempts. While in Montreal on several occasions he has heard multi-hop sporadic E transmissions from the United Kingdom just below the 50 MHz band. Similarly he still feels that long-haul auroral sporadic E transmission on 144 MHz remains a possibility. At present the 70 MHz distance-record for amateurs remains at 1430 miles for a contact between Scotland and Gibraltar in June 1967.

For many years a footnote to the British amateur licence has stopped amateurs from using a series of eleven spot aeronautical frequencies between 144.0 and 144.9 MHz . A recent Home Office decision makes it clear that these restrictions have now been lifted for eight of the spot frequencies $(144.09,144.18$, $144.27,144.36,144.45,144.63,144.7$ and 144.81 MHz), leaving only three forbidden frequencies: 144.0, 144.54 and 144.9 MHz .

By the time these notes appear, Oscar 6 will have completed two years in orbit, by far the longest-lived and most successful of the Oscar series of amateur space satellites, although for some time the battery condition has limited operation of the frequency translator to three days a week. There is also a possibility that it may have been joined by Oscar 7, since the latest news is that this may be launched as a piggy-back package with an ITOS satellite on or after October 22. The Oscar 7144 to 28 MHz and 70 cm to 144 MHz translators will not be commanded "on" for the first three days after launch, and will then be in use on alternate days. Late news of Oscar operations can be gleaned from a weekly "Oscar net" on Sundays at 10.15 am on 3780 kHz or from the weekly RSGB news bulletins on GB2RS on the 3.5 and 144 MHz bands. International "AMSAT" nets also operate on 14,280 and $21,280 \mathrm{kHz}$. Several British amateurs are reported to be nearing a hundred countries worked through the Oscar 6 satellite.

As the number of v.h.f. repeaters, both operating and proposed, grows steadily,
the Home Office has made it clear that they consider that only one such station is likely to be authorized to cover any given area and imply that this normally means a separation of about 100 to 150 miles between approved sites unless there are exceptional propagation problems. Among the places which have already been approved or which repeater stations have been proposed are: Bacton, Barnsley, Martlesham, Newquay, Buxton, Belfast, Birmingham, Four Marks (Hants), Myndd Machen, Barkway, Central Scotland, Crystal Palace, Aberdeen, Malvern Hills, Scottish Highlands and Torbay.

To mark the centenary of the birth of Marconi, the Italian amateur radio society ARI is organizing a special v.h.f./u.h.f. contest for Morse operation between 1600 GMT on November 2 and 1600 GMT on November 3 on 144, 432 and 1296 MHz open to all amateurs in IARU Region 1 (Europe and Africa).

In brief

The International Amateur Radio Club in Geneva is discontinuing the issue of the special "Contribution to Propagation Research Awards" from the end of the year. More than 1000 diplomas, representing over a million reports, have been issued in ten years. . . . The American magazine $C Q$ operates a "dial-a-prop" service providing latest information on propagation conditions and forecasts by means of recorded messages. . . . Appar ently in the United States anyone can bring a lawsuit against anyone else for any sum of money and for any reasonnevertheless American amateurs are concerned at the attempt by the neighbours of one amateur to bring a one-milliondollar lawsuit against him over a question of TVI involving some $\$ 2000$ legal costs. . . . The Canadian amateur, David Dudley, VE3BVD, operating the VE3HUM club station of the Humber Technology Amateur Radio Club was overall winner of this year's achievement as leading British contestant. . . . According to the newsletter of the Derby and District amateur radio society the following callsigns really do exist: W1NDY, K1NKY, SM0KE, W0MAN, 5Z4GT and SPITS. ... Fifty years ago the Radio Society of Great Britain chose an emblem-no, not the wellknown aerial/capacitor/earth symbol but a design consisting of "the Union Jack surrounded by a frame aerial with the head of Mercury as a crest". . . . And in September 1924 Dr. W. H. Eccles, one of the prominent scientists associated with the RSGB in its early days, made a speech attacking the attempts by the Government to restrict amateur operation. He said: "One cannot reiterate too forcibly that it was the amateurs who discovered the valuable properties of short waves across long distances. Up to three years ago the commercial companies and the experts thought the short waves were no use.for long ranges."

PAT HAWKER, G3VA

new Products

Loudspeaker units with ribbed cone

A new dual concentric drive unit by Tan noy is claimed to incorporate significant advances in performance and reliability compared with earlier models. The new Girdacoustic unit has a freely-suspended stiff-cone assembly possessing high damping. The plastics-lacquered fibrous cone is stiffened by attaching radial ribs on the cone rear (see illustration) allowing quick transmission along the ribs, a new sealed plastics foam surround (Tanoplas) acting as a resistive termination. Response to transients is claimed to be improved and typical amplitude response curves show a smoother response than its predecessor. Power handling capacity is improved (50, 60 and 85 watts for the 10,12 and $15-$ in units) by a new four-layer voice-coil assembly. The nylon-based paper cylinder is epoxy-resin bonded with the coil, allow-

WW323
ing operation up to $170^{\circ} \mathrm{C}$. Crossover network has been redesigned for the high powers using solid-dielectric capacitors. A range of cabinet finishes is available, Tannoy Products Ltd, Norwood Road, London SE27.
WW323 for further details

Instrument gearbox

An instrument gearbox, the MG8, has been produced by PSB Instruments, and is designed for use with 42 mm diameter d.c. motors, such as the Impex 9904120 10801 low-inertia type. The gearbox is of the same diameter as the motor and can be specified to provide ratios of $5,10,20$, 50,100 and $200: 1$ as standard, with others to special order. The length of the box is 16 mm and the 4 mm spindle is offset by 10.4 mm . PSB Instruments Ltd, Palmerston Road, Harrow, Middlesex HA3 7RL.
WW303 for further details

Digital programmer

The Digitimer type D100 has been designed to generate precisely timed pulses for use in electrophysiology. The timing standard used is a 2 MHz crystal with digital counting techniques to provide the delays. The instrument will recycle to provide a regularly repeating programme of pulses or will carry out a single cycle and then wait for re-triggering. The length of the cycle is variable between $10 \mu \mathrm{~s}$ and 1000 s . A matrix board is provided on the front panel which allows signals, generated either internally or externally, to be combined in a variety

WW303

wW314
of ways. The vertical columns carry input waveforms and the horizontal rows feed output stages. Signals on the same row may be ORed together while adjacent rows implement the AND function. Pulse trains may be formed and signals can be gated by external logic signals. Digitimer Ltd, 37 Hydeway, Welwyn Garden City, Herts AL7 3BE.
WW314 for further details

Pocket frequency counter

The FM-1 is a hand-held frequency counter using l.s.i. circuitry. Five frequency ranges from 999.9 Hz to 9.999 MHz full scale are provided with a resolution from 0.1 Hz to 1 kHz for the decade steps. The input sensitivity is 100 mV at 150 kHz , decreasing to 300 mV at 1 MHz . The input is protected against overloads and is claimed to withstand 250 V a.c. for 10 ns . All readings are \pm one count where a count is equal to the range resolution. The meter, which is powered by four pencells, measures $159 \times 82 \times 69 \mathrm{~mm}$ and is manufactured by Shelton Instruments Ltd, 24 Copenhagen Street, London N1. WW305 for further details

Charge neutralizer

The Zerostat is a pistol-shaped instrument for the neutralization of electrical charges (static) on the surface of records, among other objects. The manufacturer claims that it avoids the disadvantages of methods involving fluids, which they say are not completely effective and tend to leave a sticky residue. The device generates about 500 nanocoulombs of ionized air

WW305
at each squeeze of the trigger, which are attracted to oppositely-charged surfaces, thereby neutralizing them. No power is needed and each application will deal with around 100 sq.in of surface. Cost is $£ 6.69$ inclusive of VAT and postal charges. Zerostat Instruments Ltd, 9 Station Road, St Ives, Huntingdon, Cambs PE1 7 4BH.
WW309 for further details

Decade voltage source

A six-digit, decade voltage generator with a maximum resolution of $1 \mu \mathrm{~V}$ is announced by General Resistance. The DAS66-A will provide ± 2 p.p.m. $/{ }^{\circ} \mathrm{C}$ outputs in three ranges up to 100 V at 30 mA , with a setting accuracy of $\pm 0.005 \%$, for use in instrument calibration, as a reference or in stability testing. Long-term output stability is ± 10 p.p.m. over 24 hours and the output is floating. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NW 1.
WW304 for further details

Transducer head amplifier

The D7M is a transducer supply and signal amplifier for use with linear variable differential transformers or other types of inductive transducer, with special relevance to the requirements of machinetool position measurement. The unit provides 5 V at 5 kHz to energize the measuring element, the output of which is amplified and rectified to produce a $10 \mathrm{~V}, 10 \mathrm{~mA}$ maximum output. The whole is contained in a die-cast box with DIN connectors: two presets are provided for gain and zero adjustment. A low-pass

WW304
filter rolls off at 250 Hz . RDP Electronics Ltd, Upper Villiers Street, Wolverhampton. WW310 for further details

Phase meter

Phase-angle measurements to an accuracy and resolution of 0.1% are performed by the Krohn-Hite 6400 digital meter. Sinusoidal, triangular, square or positivelypulsed waveforms can be accepted, between 100 mV and 120 V r.m.s., and the 4-digit, 7 -segment display indicates phase angle directly in degrees. An analogue output of $10 \mathrm{mV} /$ degree is provided. Particular attention has been paid to the reduction of inaccuracies caused by crossover distortion and noise, and the two input signals can be of widely differing amplitudes. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berkshire. WW307 for further details

High-voltage divider

A high-voltage divider is now available from Wallis Electronics. This divider enables measurement of voltages up to 100 kV d.c. with a load current of typically $130 \mu \mathrm{~A}$. The instrument uses calibrated metal-film resistors arranged in a guarded corona free assembly. Forced air cooling is employed and a 3in meter indicates the applied voltage. Two output sockets are provided for monitoring by a d.v.m. Stability is nominally 1 p.p.m. and the accuracy of the divider is $\pm 1 \%$ with a temperature coefficient of 10 p.p.m. $/{ }^{\circ} \mathrm{C}$. Wallis Electronics Ltd, Meadow Road, Worthing, Sussex BN11 2RW. WW319 for further details

WW310

Impulse generator

A calibrated impulse generator type CIG-25, recently announced, provides impulses at variable repetition rates between 1 and 100 Hz . The repetition rate is accurate to within $\pm 10 \%$ of the dial setting with a pushbutton for the generation of a single impulse. An internal fixed attenuator assures a v.s.w.r. of not more than 1.7 to 1 . Polarity of impulses may be selected on the instrument which measures approximately $12 \times 8 \times 6$ in and weighs 6lb. Penril Corporation, 5520 Randolph Road, Rockville, Maryland 20852, USA.
WW311 for further details

Low-profile socket

An 8-pin d.i.l. socket, type UL083, has been introduced for application where component height is restricted. The socket area for the i.c. has been recessed; therefore the socket height is the complete

WW319

520MHz counter

This eight-digit counter/timer from RCS is intended for work in the 470 MHz communication band and exhibits a clock oscillator stability of ± 2 parts in $10{ }^{9}{ }^{\circ} \mathrm{C}$. The full range of time and frequency measurements is possible. Input impedance is $1 \mathrm{M} \Omega$ and 20 pF , or 50Ω, and a lowpass filter can be selected for audio work. An additional input will accept t.t.l. logic signals. Radio Control Specialists Ltd, National Works, Bath Road, Hounslow, Middx TW4 7EE.
WW308 for further details

height on the p.c. board. Double-sided spring contacts are used with a tin/nickel alloy finish. This alloy is claimed to give comparable qualities to gold such as good solderability. Jermyn Manufacturing, Sevenoaks, Kent.
WW312 for further details

Pin-insertion machine

The majority of Vero circuit-board terminal pins can be a pplied by means of their new pin-insertion machine at rates of over 30 per minute. A vibratory feeder orientates and presents the pins to the insertion head, which is controlled by a foot pedal. A sighting device enables easy alignment of the pre-drilled hole with the pin. The machine requires 240 V a.c. and an 80 p.s.i. air supply. Packets of 10,000 pins especially selected for use with the inserter are available. Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.
WW302 for further details

Zero force sockets

A zero force socket suitable for m.o.s./ l.s.i. i.cs consists of a housing, two moving parts, tapered ramps and contacts. As the i.c. is inserted the tapered ramps force the pins against the terminals to ensure positive contact. The sockets are available in $24,28,38$, or 40 -pin configuration with automatic ejection of the i.c. if required. Molex Electronics Ltd, 14 Yeading Lane, Hayes, Middlesex.
WW318 for further details

Numeric display

A small l.e.d. display, which is only 0.1 lin high, is available in two or threedigit packages, coded 508L-7432/7433 respectively. Both are common-cathode m.o.s.-compatible displays. Power con-

sumption is less than 0.5 mW per segment with a peak current of 2 mA per segment. The price of the $508 \mathrm{~L}-7432$ is $£ 3.31$ each and for the $7433 £ 4.97$ each both at the 100-off rate. Celdis Ltd, 37/39 Loverock Road, Reading, Berks RG3 1ED.
WW316 for further details.

Digital multimeter

The model 21 multimeter measures capacitance, resistance and a.c./d.c. volts. Four voltage ranges from 2 to 2000 V , and resistance ranges from $2 \mathrm{k} \Omega$ to $2000 \mathrm{k} \Omega$ are provided plus four capacitance ranges $2,20,200$ and 2000 nF with a corresponding resolution of $1,10,100$ and 1000 pF . The last three digits flash when in overrange. The meter is powered by four NiCad rechargeable batteries, the life of which is extended by a push-to-read button. The unit measures $7 \times 1 \frac{3}{4} \times 3 \frac{1}{4}$ in and weighs $120 z$. The meter is supplied complete with leads, batteries, charger and carrying case and priced at $£ 130$. Data Technology Corp., Sherwood House, High Street, Crowthorne, Berks.
WW315 for further details

A.m. receiver i.c.

The Signetics NE546A monolithic receiver i.c. is now available from Lock Distribution. The chip comprises a.r.f. amplifier, mixer oscillator, i.f. amplifier, a.g.c. detector, and voltage regulator. Specifications for the device are typically 2.5 V sensitivity with a s.n. of 40 dB in a temperature range from -40 to $+85^{\circ} \mathrm{C}$. Power requirements are $9-15 \mathrm{~V}$ at $15-22 \mathrm{~mA}$ and packaging is the 14 -pin d.i.l. format. Lock Distribution, Neville Street, Middleton Road, Oldham, Lancashire OL9 6LF.
WW300 for further details

WW318

WW316

D.c.-to-d.c. converter

The PC15 range of converters consists of 21 models giving three input and seven output voltage ratings. Each unit has an output rating of 15 W . Several models have two outputs which can be connected in series or parallel. All of the devices incorporate short-circuit and overload protection. Input voltages range from 10 to 120 V d.c. with outputs from 1.1 to 3.5 kV d.c. Operating temperature range is -20 to $+55^{\circ} \mathrm{C}$ and all models measure $88 \times 64 \times 105 \mathrm{~mm}$. Distronic Ltd, 50-51 Burnt Mill, Elizabeth Way, Harlow, Essex. WW317 for further details

Crystal oscillators

The range of ITT temperature-controlled oscillators is extended by the addition of types TCX04 and TCX08, working at specified frequencies between 4.8 MHz and 12 MHz . Stabilities are ± 0.5 p.p.m. between $15^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ for the $4(\pm$ p.p.m. $-55^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$) while the 8 stays within 1.5 p.p.m. from $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. The output is either a clipped sinusoid or is made available at an open collector. ITT Components Group Europe, Quartz Crystal Division, Edinburgh Way, Harlow, Essex CM20 2DE.
WW306 for further details

Power relay

A miniature power relay, primarily intended for use in car electrical systems, is introduced by B \& R Relays. The V23033 is robustly constructed and will switch a current of 7.5 A , breakdown occurring when 500 V r.m.s. is across the contacts, which are rated at 120 W . The relay is designed for printed board mounting, and the standard coil voltages are 6,12 or 24 V . Contacts can be either one make or one changeover. B \& R Relays Ltd, Temple Fields, Harlow, Essex. WW301 for further details

WW315

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Priority encoder

An eight-bit priority encoder i.c. in the c.m.o.s. family. Eight inputs are assigned priorities and the input with the highest priority is encoded to 3-bit pure binary.
WW350 for further details
Motorola

H.f. power transistors

Three devices for use in h.f. transmitters, producing 10,30 or 70 W p.e.p. at 12 V in the band $1.6-30 \mathrm{MHz}$ (single-ended). Maximum $B V_{C E S}$ is 36 V and $B V_{E B O} 4 \mathrm{~V}$. Gain/bandwidth is 100 MHz minimum and large-signal current gain a minimum of 10 . Type numbers are S10-12, S30-12 and S70-12. Made by Communications Transistor Corporation.
WW351 for further details
Walmore

Plastic MOSFETS

MEM630 series of low-cost devices in plastic packages, otherwise equivalent to the MEM616 range. All are n-channel, depletion-mode transistors with inputprotection diodes. MEM630 is for f.m. radio r.f. amplifiers, MEM631 for use in v.h.f. amplifiers (noise 3.5 dB at 200 MHz) and MEM632 for v.h.f. and h.f. mixers (conversion gain in 105 to 10.7 MHz application is 20 dB).
WW352 for further details

l-kbit RAM

1024-bit bipolar random-access memory, the 93L415, with a static power consumption of 200 mW , or 250 mW at $75^{\circ} \mathrm{C}$. Access time is 80 ns . Power dissipation compares with m.o.s. devices, but speed is much higher. Output is at t.t.l. levels.
WW353 for further details Fairchild

Linear i.cs

Harris Semiconductor HI-506A and HI-507A 16 and 8-channel analogue multiplexers possess overvoltage protection, break-before-make switching and $\pm 15 \mathrm{~V}$ input range. Both compatible with d.t.l., t.t.1. and c.m.o.s. and dissipate 7.5 mW at standby. HA- 2530 has a slew rate of $320 \mathrm{~V} / \mu \mathrm{s}$ with a power bandwidth of 5 MHz . Offset current is 20 nA .
WW354 for further details
GDS

Counter-displays

Modular system of counters, decoders and 7 -segment displays, with latches, mounted in anodized aluminium surrounds. Dis-
plays are assembled to requirements with edge connectors for the t.t.l. imputs. The units are available in m.o.s.compatible form.
WW355 for further details Spectra-Tek

Trimmable chip capacitors

Two types of chip capacitor for use in hybrid microcircuits by Dionics, Inc. The capacitors consist of separate rectangles of aluminium on a silicon dioxide dielectric which is grown on a silicon substrate. Each area of aluminium is connected in circuit by wire, the adjustment being made by cutting wires. The back of the substrate is gold plated and is bonded to the microcircuit eutectically. Type C-700 exhibits a maximum capacitance of 94 pF , while C1248 possesses separate areas in binary sequence (hence the name), enabling setting between 1 and 15 pF in 1 pF steps. Maximum working voltage is 50 V and temperature coefficient is $+35 \pm 15$ p.p.m./ ${ }^{\circ} \mathrm{C}$.
WW356 for further details Walmore

Power divider

A series of miniature two-way divider/summers by Olektron in the 10 kHz to 500 MHz range. Power applied to the "sum" port 'is shared equally by ports \dot{A} and B, both in phase, while two signals at ports A and B are summed vectorially at the "sum" port. The device is in the TO-5 package.
WW357 for further details
TCE

10A regulator

A regulator from Motorola in the TO-3 configuration providing 10 A at 100 W . Output voltage is adjustable from 2 to 35 volts and the output is short-circuit protected.
WW358 for further details
Celdis

Opto-isolator

A two channel isolator using GaAs l.e.ds and silicon n-p-n transistors to provide 50% current transfer, InA leakage and 1500 V insulation between input and output. WW359 for further details

Guest

M.o.s.driver

A device to convert t.t.l. signals to the 15 V level needed by m.o.s. dynamic RAMs. Operating speed is 31 ns for 15 V swing into 200 pF . The 9607 device is aquad driver and is equivalent to the 3207 A , but using less than half the static power.
WW360for further details
Fairchild

Varactor diodes

The VUE series from ITT is intended for high-order frequency multiplication at output frequencies from $4-14 \mathrm{GHz}$.
WW361 for further details

2-kbit PROM

Intersil IM5604 electrically programmable ROM organized as 5124 -bit words. The unit is t.t.l.-compatible, has a programming time of less than 1 second for all bits and output capability of 16 mA at 0.45 V . Access time is 50 ns .
WW362 for further details
Celdis

Programmable dividers

The Plessey SP8685A and B are programmable divide-by-10 or 11 counters, operating at up to 500 MHz , for use in synthesizers. The clock input is biased internally and is capacitor-coupled. Division ratio is controlled by two e.c.l. 10 k inputs and is $10: 1$ when either input is high or $11: 1$ when both are low. The package is 16 -pin di.i.l.
WW363 for further details
Plessey

V-f converter

The F4701 exhibits a maximum nonlinearity of 0.01% full-scale from $0-10 \mathrm{kHz}$ output frequency. The output takes the form of 5 V pulses or is made available at an open collector, protected by a shunt diode. The package is $1.5 \times 1.5 \times 0.4 \mathrm{in}$ and is pincompatible with other units of this general type.
WW364 for further details
Ambleside

Suppliers

Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex.
Walmore Electronics Ltd, 11-15 Betterton Street, London WC2H 9BS.
General Instrument Europe S.p.a., 20149 Milano, P.zza Amendola 9, Italy.
Fairchild Semiconductor Ltd, Kingmaker House, Station Road, New Barnet, Herts. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.
Spectra-Tek UK Ltd, Ings Lane, Kirk bymoorside, York YO6 6DW.
Tony Chapman Electronics Ltd, 3 Cecil Court, London Road, Enfield, Middx EN2 6DL.
Celdis Ltd, 37/39 Loverock Road, Reading, Berks RG3 1ED.
Guest Electronic Distribution Ltd, Red lands, Coulsdon, Surrey CR3 2HT.
ITT Components Group Europe, Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex.
Plessey Semiconductors, Cheney Manor, Swindon, Wilts SN2 2QW.
Ambleside Electronics Ltd, Sentry House, Frimley Road, Camberley, Surrey GU15 2QN.

"'More things in Heaven and Earth . . .'

Maybe you remember the discussion we had a while ago about the mysterious "Raudive" voices which allegedly appeared on unused tapes? That provoked far more correspondence than any other single topic, which seems to indicate that interest in the unknown is still strong, even in our brash, material world. At any rate, that's my excuse for mentioning another spooky little incident, particularly as it's got an electronic content.

A friend of mine-let's call him Jimdabbles in geology as a pastime and two years ago he took a holiday in Devon with a view to collecting specimens on the moors there. One day, as an aside, he visited a moorland village to locate an old woollen mill which, in the distant past, had been associated with his forebears. He found it to be a complete ruin, with the site overgrown with bushes and trees and the mill itself largely razed to the ground. The property was now owned by the Electricity Board who had utilized the leat to drive a small generator for emergency use.

On applying for permission to explore the ruins, Jim was surprised to find that the local manager was a chap he'd gone to school with, a coincidence that was the open sesame to a conducted tour beyond the locked gates. He was particularly interested in the mill cottage, about which he already knew something from old family records. He knew, for instance, that the mill leat ran right underneath it; that over a century ago a little girl had been drowned there under rather questionable circumstances and that the cottage was supposed to have been haunted, but whether the last two circumstances were connected, he had no idea.

Part of one wall was all that remained of the cottage; the leat had clearly flowed under it but large trees now flourished where the floors had been. As a memento of this eerie place Jim extracted a granite stone from the remains of the wall and in due course brought it home with him. Here it lay around for a while until Mrs Jim suggested that it would be interesting to have it psychometrized. As I'm sure you know,
that's a process in which a medium handles a given object and writes his or her impressions.

Jim, who privately thought it would be a good way of exposing such nonsense, agreed, but stipulated that it should be done on an experimental basis. First, he chipped off a fragment of stone so that it was unrecognizable as part of a building; he then sent it to a far-away friend without giving any hint of its history; this friend passed it to another who knew someone who was an amateur practitioner of psychometry. There was thus no possibility that the ultimate recipient could have acquired any data.
Sometime later a "reading" was received and Jim's scepticism was shaken by the accuracy of its description, which mentioned inter alia, a strong smell of decay and decomposition, a place of "sinister happenings" and a death by drowning in the vicinity. The writer further strongly urged that the stone should be disposed of quickly-preferably in water. Mrs Jim soon saw to that.
The sequel came this summer when the old mill was again visited. This time Jim had with him a scintillation type of detector for the purpose of trying to locate significant radioactive deposits on the moors (he didn't find any, incidentally!). However, purely on impulse, he switched it on near the ruins and was startled to get readings which, although far from danger level, were much higher than any he'd obtained from the granite-strewn moors. With the instrument in its most sensitive condition the reading in the roadway was seven times the normal, while when the wall was contacted the needle went off-scale. This time Jim couldn't get into the site because the manager was away, so he couldn't determine whether the wall represented a peak or whether the maximum was further in. Moving away from the site did, however, cause a drop in readings.

Now Jim is wondering whether there might be some connection between the extraordinary accuracy of the psychometry reading and the relatively high incidence of gamma radiation. Incautiously he put forward this hypothesis to a senior colleague, a man not without honour in electronics research, who had no hesitation in damning it out of hand. Extra-sensory perception was a nonsense; all mediums were frauds-and so on.

All right; let's admit that Jim's hypothesis is just a long shot with not a shred of hard evidence to back it. But in the absence of an alternative rational explanation it strikes me as thoroughly unscientific to condemn it without investigation. One swallow doesn't of course make a summer, but this example, although extreme, is not isolated. Dogma is not an uncommon feature of research life.
Is such an attitude symptomatic, I wonder, of a defect in our modern mass-attack approach, particularly in industry? Today's graduate emerges from university with a head bursting in an effort to contain a mountain of semi-digested data; thereafter his research life will consist of assigned tasks and a struggle to keep abreast of developments in integrated circuits and black boxes. He won't have the time or the freedom to
explore a research tributary if there's apparently no percentage in it. All the pressures conspire to keep him to the tramlines of conventional thought and to encourage the dogma that all the natural laws are enshrined in text-books.

As a money-making policy for industry this, in the short term, may be fair enough; but despite its monumental cost, most of what passes for research today is really development; a fining and refining of the cruder technologies of the past. It's perhaps salutory to reflect that the fundamental laws which we use and the devices which we proudly regard as twentieth-century products were in fact nearly all the results of nineteenth-century research presented to us by a handful of men working with pitiably simple instruments.
"A little learning is a dangerous thing." True. But perhaps not so dangerous to research as the inner conviction that all that there is to know is already known and that any project which doesn't fit readily into the existing framework oflaws is impossible. If James Watt had been steeped to the ears in thermodynamics theory, would he still have possessed the naivety to translate the message of the kettle lid? And would Marconi have got wireless telegraphy off the ground if he'd had prior knowledge of the complexities of ionospheric propagation?

So, back to Jim's hypothesis. Of course it's far-fetched, but no more so than the concept of electromagnetic wave propagation would have been at the start of the nineteenth century. After all, radiation from inanimate objects is known to be information bearing in that it can give an accurate assessment of age. If it was subsequently shown that, by some means we presently know nothing about, the information content is far more complex, then the possibilities are enormous. And if the idea was shown to be a nonsense, surely it's better to know than not to be sure?

The WW Annual

Wireless World proudly introduce their Annual. Having the same format as Wireless World, the Annual contains over 80 pages of editorial, including three major construction features: an audio oscillator, a small-boat echo-sounder, and a double phase-locked loop f.m. tuner. Nomographs and formulae are presented for reference purposes and theoretical articles such as "Estimating signal strength from v.h.f. aerials" and "Loudspeaker design" provide valuable basic design information.

Available from leading bookstalls in November, the Annual is priced at $£ 1$ or $£ 1.35$ by post from Room 11, General Sales Dept., Dorset House, Stamford St., S.E.1. Cheques and postal orders should be made payable to IPC Business Press Ltd.

Sinclair's $4^{\text {th }}$ dimension in high fidelity

Project 80

Tre slim modules for building stereo h-fi with FM

Project 805

Project 80 made even easier to bulla

Project 805SO

The add-on assembly that gives you quadraphony

016Loudspeakers

The square speakers for 4 channel listening

Four channel listening has arrived!

Thanks to Project 80 versatility and marvellous compactness, adding two more channels is easy, efficient and ecónomical - you simply add on Project 805S2, or select the necessary modules from the Project 80 range detailed on the fourth page of this advertisement. Another way is to start with the new Project 805 (which is Project 80 complete in one pack) and add 805 SO to it. Our technicians have adopted the CBS SQ matrix principle to carry the rear left and right channels since it is already clearly the most widely used method in quadraphonic recordings. The decoder, however, can be modilied to discrete systems without difficultly. Sinclair suitability for quadraphonics by no means stops with Project 805SO.The Q. 16 , always a superb loudspeaker in its own right becomes one of the best ways of creating effective ambience without taking up too much space or money. Project 80 quadraphonic modules are ready now for you to enjoy both stereo and true quadraphonics sight away with better reproduction from mono records ās well.

Forward with Project 80 into

Everything you want in one pack to build the world's most advanced modular hi-fi WITHOUT SOLDERING

1 Stereo 80 Control Unit
For mag. and ceramic cartridges, radio and tape.
2 Project 80 power amplifiers
Two Z.40s to give $8 / 8$ watts R.M.S
output per channel.
3 Power supply unit
One PZ. 5.
4. Connecting wires

All wires plus nuts, bolts, screws etc.
5 Project 805 Masterlink
For input and output connections.
6 Mains switch block and instructions manual (not illustrated).

SINCLAIR RADIONICS LTD London Rd, St. Ives, Huntingdon PE174HJ Telephone St. Ives (0480) 64646

This is Project 80 made even easier to build

You have seen how the marvellously compact Project 80 modules (only $2^{\prime \prime}$ high $\times \frac{3^{\prime \prime}}{4}$ deep) are so adaptable and easy to install. Now, with Project 805, this wonderful system is made easier still to put together. In this, you have not only all the Project 80 modules in one pack for building an $8 / 8$ watt R.M.S. hi-fi amplifier - there is also a loom of colour coded wires cut to lengthand tagged for clipping on so that you don't even have to solder ! Input and output connections go via the 805 Masterlink panel. With the explicit stage-by-stage large 32 page instructions manual included, it becomes easy for anyone, no matter how inexperienced to install an ultra-modern assembly so advanced in appearance and design that it sets brand new concepts in domestic hi-fi - and of course, you can convert to quadraphony just whenever you wish by adding 805SQ. Only Sinclair know-how and manufacturing facilities could hope to bring you such quality and versatility.

TAGGED WIRES CUT TO LENGTH•NO SOLDERING

Project 805

the complete ready-to•build hi-fi STEREO AMPLIFIER

Project 805 comprises a Stereo 80 Pre-amp/Control Unit with input for both magnetic and ceramic cartridges, radio, tảpe; separate bass and treble cut/ lift, and volume controls $2 \times \mathrm{Z.40}$ power amplifiers, PZ. 5 power unit, 805 Masterlink, wire loom, instructions manual, etc. down to nuts, bolts and washers. For technical specifications, see fourth page of this advertisement

true quadraphonics... Now!

1. Project 80 SO decoder with controls.
2. Two $Z .40$ power amplifiers.
3. PZ.5 power pack
4. Project 800 Masterlink unit

5 Wire loom, with clip-on tags - NO SOLDERING!
6. (Not illustrated) Instructions manual, nuts bolts, washers, etc.

The most effective and economical way to enjoy this spectacular breakthrough in hi-fi listening

Add afourth dimension to your stereo sound

It's so simple to convert to quadraphonics when you already have Project 80, or are about to start with Project 805. Project 805SQ is a complete add-on system at the heart of which is the Project 80 SQ decoder. It uses the CBS.SQ matrix principle, by now the widest used method of containing four sound channels within the groove of the record. Project 805SQ includes two power amplifiers, power supply unit, connecting wire loom, 8050 Masterlink, switch block and instructions manual. The 80SO decoder (also obtainable separately) has independent tone and volume slider controls on the two rear channels for matching true four channel sound to domestic environment. Project 805SO is money saving too since you do not have to scrap existing Project 80 equipment to enjoy the newest and most exciting form of home listening in the entire history of sound, and your Project 80 quadraphonic assembly is compatible with stereo and mono records.

- Frequency response $\pm 3 \mathrm{db} 15 \mathrm{~Hz}-25 \mathrm{kHz}$
- Rated output 100 mV
- S / N ratio 58 dB
- Distortion 0.1\%
- Power requirements 22-35 volts
- Phase shift network $90^{\circ} \pm 10,100 \mathrm{~Hz}-10 \mathrm{kHz}$
- Adaptable to discrete (CD4) use

Project805SQ

The output from any good stereo cartridge feeds into Stereo 80 and passes via the tape outlet to the 80SQ decoder. Here the signal is separated into its constituent 4 channels, those for the front being accepted by the Stereo 80, those for the rear going from the decoder to the two additional power amplifiers and speakers.

£44.95

$+£ 3.60$ VAT (R.R.P.)

Guarantee ${ }^{\text {If, within } 3 \text { months of purchasing any product direct from us, }}$ you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair Appointed Stockists also offer this guarantee. Should any defect arise in normal use within 2 years, we will service it without charge, For damage arising from mis-use a nominal charge will be made.

Project 80 quadraphonic modules may be purchased separately if required. The Project 80SO decoder may be used with anv other amplifier having tape and monitoring facilities. Z40 or $\mathbf{Z 6 0}$ power amps can be used as required.

The Project 80 programme to date

KEEP THIS PAGE FOR HANDY REFERENCE USE THE PRIORITY ORDER FORM IN CASES OF DIFFICULTY

Stereo 80 pre-amp/control unit

$260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{4} \times 2 \times \frac{3}{4}$ ins.) separate slider controls on each channel for treble, bass and volume. INPUTS - Mag. P.U 3mV (RIAA corrected) ceramic -300 mV , Radio 100 mV , Tape 30 mV . S/N ratio 60 dB . Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}$. OUTPUTS -2.5 V rms max (30 V . supply) and tape plus AB monitoring. PRESS BUTTONS for P.U. Radio and Tape. Operating power - 20 to 35 V . Black case with white indications

Project 80 F.M. tuner

Size $85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times \frac{3}{4}$ ins.). Tunes 87.5 to 108 MHz . DE TECTOR - I.C balanced coincidence (I.C equivalent to 26 transistors) Distortion - 0.2% at 1 KHz for 30% modulation. SENSITIVITY - 5 microvolts for 30 dB quieting. Output -300 mV for 30% modulation. Aerial imp. -75Ω or 240-300 Ω. Dual Varicap tuning. 4 pole ceramic filter. Switchable A.F.C. Operating power 23-30 volts.

$$
£ 13.95 \underset{\substack{\text { VAT (R.R.P. } \\ \hline \text { E1.12 }}}{ }
$$

Project 80 stereo decoder
Size $47 \times 50 \times 20 \mathrm{~mm}$. For adding to Project 80 FM tuner. With one I.C equal to 19 transistors, and LED indicator which glows on tuning in stereo signal.

Project 80 active filter unit (A.F.U.)

Size $108 \times 50 \times 20 \mathrm{~mm}$. Useful where there is need to eliminate unwanted high frequencies (scratch, whistle, etc) or low (rumble). Volyage gain minus $0 \cdot 2 \mathrm{~dB}$. Frequency response (filter at zero) 36 Hz to 22 KHz . H.F cut (scratch) variable from 22 KHz to $5 \cdot 5 \mathrm{KHz} 12 \mathrm{~dB}$ /octave slope. L.F cut (rumble) -28 dB at 28 Hz , slope $9 \mathrm{~dB} /$ octave.
£7.45 $\underset{\text { VAT (R.R.P.) }}{60 p_{1}}$
Project 80 power amplifiers
Intended for use.in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced
2.40

Size $-55 \times 80 \times 20 \mathrm{~mm}$
9 transistors
Input sensitivity -100 mV
Output - 12 watts RMS continuous into $\& \Omega(35 v)$
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm\{\mathrm{dB}$
S/N ratio-64dB
Distortion -0.1% at 10 watts into 8Ω at 1 KHz Power requirements -12 to 35 volts

£5.95 ${ }^{+880}$

Sinclair Radionics Ltd., London Road St. Ives Huntingdonshire PE174HJ
Telephone St. Ives (0480) 64311
R.O. St. Ives: Reg No. 6994583 Eng.

USE THIS PRIORITY ORDER FORM IN CASES OF DIFFICULTY

To Sinclair Radionics Ltd.
Please send, (carriage paid in U.K.)

For which I enclose \mathbf{f}
Fhequer including vash/

NAME

ADDRESS

E.H.T. POWERUNIT. $110 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ giving $5 \mathrm{~K} . \mathrm{V}$. at $50 \mathrm{~m} / \mathrm{A}$. METERED OUTPUT. £17.50.

COPPER LAMINATE P.C. BOARD
$11 \times 3 \neq \times$ in. $12 p$ sheet. 5 . for $50 p$.
$10 \times 4 \times+$ in. 12 p sheet. 5 ror 50 p .
$10 \times 7 \times 1$
Offcut pack (smallest $4 \times 2 \mathrm{in}$.) 50 p 300 sq . in.
P. \& P. single sheet 4p. Bargain packs 20p.

TELEPHONE DIALS (New) $£ 1$ ea. RELAYS (G.P.O. '3000'). All types, Brand now from 37p ea. 10 up quotations only.
EXTENSION TELEPHONES (Type TO6) EXTENSION TELEPHONES (Type 706) Various Co
condition.
RATCHET RELAYS. (310 ohm) Various Types 85p. P.P. 5p
Bank (Non Bridging) 25 way 12
Bank (Non Bridging) 68 ohms. f6.

PRECISION A.C. MILLIVOLTMETER (Solattion) $1.5 \mathrm{~m} . \mathrm{v}$. to 15v: 60db to 20db. 9 ranges. Excellent condition. £22-80. P.P. £1-50.
HIGH CAPACITY ELECTROLYTICS
$2,200 \mathrm{uf}$. 100 v . ($1 \mathrm{i} \times 4 \mathrm{in}$.) $78 \mathrm{pp} .3,150 \mathrm{\mu f} 40 \mathrm{v} .(1 i \times 4 \mathrm{in}$.) 60 p . $10,000 \mu \mathrm{f}$. 25 v . ($1 \pm \times 4 \mathrm{im} \mathrm{in}$.) $60 \mathrm{p} .12,000 \mathrm{\mu if} .40 \mathrm{v}$. ($2 \times 4 \mathrm{in}$.)
 (4 I $\times 2$ in.) $£ 1.35,000 \mu$. 40 v . (3×4 tin.) £1. P. \& P. 8 p . H.D. ALARM BELLS. 6 in. Dome 6/8 volt D.C. E2.2B. P.P. 50p.

HIGH VACUUM DIFFUSION PUMPS (Metrovac 093C). Now condition. £40. P.P. E2. A.E.I. P10. ION Pump Control Units. E17.50.
OVERLOAD CUT-OUTS. Panel mounting ($1 \mathrm{i} \times 11 \times \mathrm{fin}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp}$. 35 p e8. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 piecos $\mathbf{\text { f2 }}$. (Trial order 100 pcs . 50p). We are confident you will re-order.
REGULATED POWER SUPPLY. Input 110/240v. Output 9 v . DC. $1 \neq \mathrm{amp}$. 12 v . D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 30p.
U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. Input 242v. A.C.
CVEO. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$, at $200 \mathrm{~m} / \mathrm{a}$, £2 ea. P.P. 40p.
CV75. 25v, at $2 \frac{1}{5} \mathrm{amp}$. 22 -50. P.P. 50p.
CV100. 50v. at $2 \mathrm{amp}: 50 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50p. CV250. 25v. at 8 amp : 75 v . at it amp., EE. P.P. E1.
CVEOD. 45 v at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . E7. P.P. £1.
L.T. TRANSFORMER. Pim. 240v. Sec. 13 v . at 1.5 amp .75 p . P.P. 15 p .
L.T. TRANSFORMER. Ptim. 240v, Sec, 24 v , at 1 i amp. $£ 1$ 20. P.P. 20p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$ $1 \$$ amp. (Shrouded). £1-50. P.P. 30p.
L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp . (Shrouded). £2.25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250V Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $9.8 \mathrm{amp}: 40 \mathrm{v}$. at 3.6 amp 52 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at 3.7 amp . £15. P.P. £2.
h.t. TRANSFORMER. Pim. $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$ £2. P.P. 50p.
E.H.T. TRANSFORMER. 240v. Sec. 1800 v . 50 mA . E2.50. P.P. 50p.
L.T./H.D. TRANSFORMER. $210 / 240 \mathrm{v}$, output 17 v at 60 amp . £1250. P.P. £1
L.T. TRANS FORMER. $110 / 240 \mathrm{v}$. ('C. Core). Secs. $1 / 3 / 9 / 27 \mathrm{v}$. at 10 amps . $\mathbf{£ 6 5}$. P.P. 75p.
L.T. TRANSFORMER. Prim. 240v. Sec. 16/0/16v, at 2 amp. £1-60. P.P. 20p.
L.T. TRANSFORMER. Pim. 110/240v. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3 \cdot 15 / 0 / 3 \cdot 15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. £1.75. P.P. 20p
L.T. TRANSFORMER. Pim. 200/240v. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at 1.5 A : 50 v , at 1 amp. E2. P.P. 25p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' CoIe). Sec. $13.5 \mathrm{v} .4 \mathrm{~A} .: 39 \mathrm{v}$, at 2 A . £2.50. P.P. 25 p .
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core) $1 \mathrm{v} . /$ 3v./9v./20v. $/ 20 \mathrm{v}$, all at 2 smp . E3. P.P. 35p. Same Secondaries but at 4 amp. £4.25. P.P. 40p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. (C^{\prime} Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$. at $1 \mathrm{amp}: 50 \mathrm{v}$, at $750 \mathrm{~m} / \mathrm{a}$
f: $5 \cdot 25$. P.P. 50 p .

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v of 48 v . (state which) $4 \times 1 \times 1 \mathrm{in}$. 40p. P.P. 5p.
5 digit (Non-reset) 24v, 75p. P.P. 5p.
3 digit 12v. (Rotary Reset) $2 \frac{1}{\frac{1}{2}} \times 1 \frac{3}{4} \times 1 \frac{1}{6}$ in. f1 each.
3 digit 12v. (Reset) 3 : $\times 1 \times 1$ in. £2.25. P.P. $5 p$.
6 digit (Reset) 240v, A.C. E3.50. P.P. 10p.
MULTICORE CABLE (P.V.C.)
6 cole (6 colours) 3 scleened, $14 / 0048.15 p$. Yd, 100 yds
f12.50. 20 cors.
20 core (2 screened) 17 ip yd. 100 yds. $\mathbf{£ 1 5}$.
30 core (15 colours) $22 \frac{1}{2} \mathrm{pd}$ y. 100 yds. $£ 18 \cdot 50$
Minimum order 10 yds 22 p yd 100 yds . $\mathbf{£ 1 8 . 5 0}$.
Minimumorder 10 yds.
RIBBON CABLE (8 colours)
f1-25
f10
10 m.
8 cores. $7 / \cdot \mathrm{mm}$. bonded side by side in tibbon form.
100 m .
SMALL MOTOR (1/50 H.P.) 900 R.P.M. 230/250v. A.C.
$\mathbf{£ 1} 50$. P.P. 30 p .
£1 50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG.IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea.; 6 make contacts 40p ea.; 4 pole c/o contacts 50p ea. 6-12-24-48v. types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 mmp , silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. $5 p$. 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{1}{2} \mathrm{in}$.) 10 amp . contacts 4 pole c/o. 40p ea. P.P. 5 p.
240v. A.C. RELAYS. (Plug-in type), 3 change-over 10 amp contacts. 75p (with base). P.P. 5 p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65p. P.P. 5p
SILICON BRIDGES, 100 P.I.V. 1 amp $\times \frac{1}{8} \times \frac{7}{8} \mathrm{in}$.) 30p.
200 P.IV. 2 amp. 60p. 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in).
3 Pole Change-over 60p.
2 Pole Change-over 45p.
WE REGRET THAT ALL ORDERS VALUE UNDER f5 MUST BE ACCOMPANIED BY REMITTANCE.

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD ESSEX
ROMFORD 44473 RM7 9DD

MODEL

USEO THROUGHOUT THE WORLD. SANWA'S EXPERIENCE OF 30 YEARS ENSURES
ACCURACY, RELIABULTY VERSATILTY, UNSURPASSED TESTER PERFDRMANCE ACCURACY, RELIABULTTY VERSATILTY, UNSURPASSED TESTER PERFDRMANCE COMES WITH EVEFY SANWA
6 Months Guarantee
MODEL P2B
MOOEE JP50
MODEL
MODE 505
M
MODE 360 YTR
MODEI U50DX

MOOEL K3D THD

Please write for illustrated leaflet of these and other specialised Sanwa meters

QUALITY ELEGTRONIGS LTD.
 47-49 HICH STREET, KINGSTON-UPON-THAMES, SURREV, KT1 11P

ww-012 For furkter detalls

ANALOGUE AND HYBRID COMPUTERS

C180 Features:
18-I.C. Operational Amplifiers, 1% accuracy Automatic Function Selection and Meter Switching, 3-Four Quadrant Multipliers. Individual Pot-Set Facilities, built-in stabilised power supplies, D.V.M. optional extra Price $\mathbf{f 8 5 0}$ complete with patching leads.
 We manufacture a range of inexpensive analogue and hybrid machines and are specialists in producing computers to your own specifications. Why pay more than you can afford for a computer which does not quite do what you want? You will be pleasantly surprised at the cost of an analogue or hybrid machine built to your own requirements.

Phone or write for details of our Analogue or Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF ANALOGUE AND HYBRID COMPUTERS
28 Athenaeum Road, Whetstone, London N.20. Tel. 01-445 7683

Ultra-modern walkie talkies from one of the largest manufacturers of electronics communications equipment. Controls: ON/OFF VOLUME: PUSH TO SPEAK and CALL SIGN. Precision made for distortion free reception and trouble free operation. Selfcontained. completely portable units.
FULTON TUNING
129 Park Road, London NW8
Tel: 01-262 6660. Callers welcome.

Marshallis

A. Marshall \& Son (London) Limited Dept. w w

42 Cricklewood Broadway London NW2 3HD Tel: 01-452 0161
\& 85 West Regent Street Glasgow G2 20D Tel: 041-332 4133
Everything you need is in our new catalogue available now price 20p
Trade and export enquiries welcome

SPECIAL OFFER FOR ONE MONTH ONLY

This month we offer all brand new prime material as e special gesture to readers of W/W at give-away bargain prices. Only available for this limited period and subject to our present stock remaining unsold. Private individuals, trade and industrial enquiries welcome.

SIEMENS ELECTROLYTICS

xial			$T_{\text {rpe }}$	$1+$	$100+$	Type		$100+$	Type		$100+$
${ }^{\text {Type }}$	$\stackrel{i+}{60}$	$100+$	$22 \mu / 25 v$		${ }_{5}^{5 p}$	220/40	7 p	${ }^{615}$	4700/25v	33p	
47/100v	6 p	$5 \frac{1}{2}$	22 $\mu / 40 \mathrm{v}$		5p	220/100v	$1 \mathrm{IFp}^{\text {1 }}$	14p			
$1{ }_{1} / 40 \mathrm{v}$	E_{p}	$5 \frac{1}{p} p$	22 $/$ /63v	6 p	5p	470/16v	6 p	5 p			
1/1/100v	5 p	4 ${ }^{\frac{1}{2} p}$	22 $/ 100 \%$	$6 p$	5tp	470/25v	8 p	$7 \frac{1}{2}$	Can Typ		
2.2/25v	$6 p$	${ }_{5 \frac{1}{2} \mathrm{p}}$	47 $\mu / 16 \mathrm{v}$	$5 \frac{1}{2} \mathrm{p}$	5 p	470/40v	101p	9 ${ }^{\frac{3}{4}}$	1000/40v	23 p	21p
2.2/63v	5 p	$4 \frac{1}{2}$	47p/25v	5 p	$4 \frac{1}{p}$	1000/16v	$11 p$	10p	1000/63v	25p	23p
4.7/16v	${ }^{6 p}$	$5\} p$	47 $/$ /63v	$5 \frac{1}{2} p$	5 p	1000/25v	12p	11p	2200/25v	34p	31p
47/40v	5 p	${ }^{4} \mathrm{p}$	100/63v	$7 \frac{1}{1} \mathrm{p}$	6解	1000/40v	$13 \frac{1}{2} \mathrm{p}$	12t $\frac{1}{p}$	2200/40v	39p	36p
4.7/63v	$5 \frac{1}{2}$	5 p	100/100v	111 1	10률	1000/63v	25p	23 p	2200/63v	53p	49p
$10 \mu / 40 \mathrm{v}$	6 p	$5 \frac{1}{2} p$	220/10v	5 p	4p	2200/16v	15p	14p	4700/25v	46p	43p
10~/63v	6 p	5 \%	220/16v	$\mathrm{fp}^{\text {p }}$	$5 \frac{1}{2} p$	2200/25v	20p	22p	4700/63v	88p	82p
10/ $/ 100 \mathrm{v}$	${ }^{6} \mathrm{p}$	5p	220/25v	7p	$\mathrm{bp}^{\text {p }}$	4700/16v	24p	22p	10,000/25v		65p

DUCATI ELECTROLYTICS

Type	$1+$	$100+$									
1/W/16v	. 5 p	$4 \frac{1}{1} \mathrm{p}$	22/1000	5 p	$4 \frac{1}{3} \mathrm{p}$	470/25v	7 p	$6 \frac{1}{2} p$	1500/63v	23p	20p
$1 \mu / 350 \mathrm{v}$	6 p	5p	47/50w	$5 p$	$4 \frac{1}{1} \mathrm{p}$	470/63v	$\mathrm{Bp}^{\text {p }}$	7 p	1500/100v	30p	28^{2}
2.2/25v	$5 \frac{1}{2} p$	5p	50/50v	$5 p$	$4 \frac{1}{2} p$	470/100v	8 p	7p	2200/6.3v	12v	10p
2.2/63v	$5 \frac{1}{1} \mathrm{p}$	5p	$68 \mu / 4 v$	3 p	${ }^{2} \frac{3}{4} \mathrm{p}$	680/6.3v	$7 p$	61 p	2200/16v	12p	tDp
$2 \cdot 2 / 350 \mathrm{v}$	6 p	5	100/3v	4p	${ }^{31} \mathrm{p}$	680/16v	$7 p$	$6 \frac{1}{2} p$	2200/25v	18p	16p
3.3/25v	$5 \frac{1}{2}$ p	5p	100/50v	6 p	5p	680/25v	10p	8 p	2200/40v	30p	25p
$3.3 / 40 \mathrm{v}$	$5 \frac{1}{2} \mathrm{p}$	$5 p$	100/63v	6 p	5 p	680/40v	14p	$1 \mathrm{idp}^{\text {p }}$	3300/6 3v	19p	15p
3.3/63v	$5 \frac{1}{2}$	5p	100/100v	7p	6p	680/63v	20p	15p	3300/16v	15p	14p
4.7/100v	6 p	5 p	150/6.3v	4 p	$3 \frac{1}{2}$	1000/10v	${ }^{6}$ p	4 p	3300/25v	20p	18!p
4.7/350v	6 p	5p	150/40v	6 p	439	1000/16v	${ }^{8}$	7 p	3300/63v	45p	40p
$6.8 / 350 \mathrm{v}$	6p	5p	150/63v	6_{6}	$5 \frac{1}{2}$	1000/40v	10p	$8{ }^{3} \mathrm{~s} p$	4700/6.3v	18p	15p
10//100v	5 p	41 ${ }^{1}$	220/40v	6 p	51 p	1000/63v	18p	15p	6800/6.3v	18p	15p
$10 \mu / 350 \mathrm{v}$	$6 p$	$5 \frac{1}{2} p$	330/6-3v	4p	31p	1500/6.3v	${ }^{9}$	8 p	6800/6.3v	18p	15p
22/6.3v	5 p	4p	330/25v	$6 p$	5p	1500/16v	10	9 p	6800/10v	19p	16p
22/40v	5 p	4 p	$330 / 40 \mathrm{v}$	$7 p$	$5_{3}{ }^{\text {p }}$	1500/25v	15p	13p	6800/25v	38p	34p
22/50v	4 p	$3 \frac{1}{6}$	470/6.3v	${ }^{4} \mathrm{p}$	3 3p	1500/40y	20p	17p	6800/40p	39p	35p
									10.000/6-3v	20p	18p

Miscellaneous Electrolytics Special

Type NTK Axial $2200 \mu / 16 \mathrm{v} \times 17 \mathrm{kpcs}$. $330 \mu / 25 \mathrm{v} \times 17 \mathrm{k}, 1000 \mu / 10 \mathrm{~K} .2200 \mu / 10 \mathrm{v}$, $3300 \mu / 6-3 \mathrm{v}$. Minimum order 1 kpcs price 2.5 p each. Mullard $40 \mu / 16 \mathrm{v}, 50 \mu / 6.4 \mathrm{v}, 64 \mu / 10 \mathrm{v}$. $68 \mu / 25 \mathrm{v}, 80 \mu / 16 \mathrm{v}, 640 \mu / 25 \mathrm{v}$, $1000 \mu / 16 \mathrm{v}$ price $£ 3.00 / 100 \mathrm{pcs}$.

SLIDER POTS AB METALS STOCK AVAILABLE

	1k	2k	5 k	10k	25k	50 k	100k	250k	500k	1 M	2M
Single	150	200	-	-	50	450	100	700	150	400	350
Souble	200	250	200	-	-	600	600	900	400.	200	400
Single	-	-	400	-	350	-	100	450	500	500	600
${ }^{20 G}$ Double	-	-	650	400	170	250	200	300	450	450	400

LOG $\left\{\begin{array}{l}\text { Single } \\ \text { Double }\end{array}\right.$
5 for f 1 or

Special f2 Bargains

 $\begin{array}{lll}\text { 1) } 7400 \times 15 \mathrm{pcs} & \text { 2) NESSS } \times 4 \mathrm{pcs} & \text { 3) } 741 \mathrm{BDIL} \times 8 \mathrm{pcs}\end{array}$ $\begin{array}{lll}\text { 5) } & \text { 8191 } \times 50 \mathrm{pcs} & \text { 6) } 7402 \times 14 \mathrm{pcs} \\ \text { 7) } 40669 \times 3 \text { pcs }\end{array}$
4) OA90 $\times 50 \mathrm{pcs}$ $\begin{array}{ll}\text { 9) RL4850 LED } \times 10 \mathrm{pcs} & 1017404 \times 14 \mathrm{pcs}\end{array}$ 11) $0447 \times 40 \mathrm{pcs}$

TELETENNIS KIT SPECIAL

Easy to build. No need to modify your T.V. just plugs in to aerial socket-fun for all ages. Instructions with complete kit or 30p on request. Contains all electronic components. Case not supplied. SAE for further details.

OFFER CLOSES SATURDAY 30th NOVEMBER

Phone or call in today. No minimum order
01-452 0161/2/3
Alt prices exclusive 8% VAT. P/P 20p on orders less than $\mathbf{f 1 0}$ then at cost

OUR NEW GLASGOW SHOP IS NOW OPEN

[^8]
D D D A E E 10 CHAPEL St. LONDON NW1 Phone 01-723 8753

SIGNAL GENERATORS

MARCONI TF80ID/IS. $10-480 \mathrm{mHz}$ P.O.A.
MARCONI TF801B/2S. $10-480 \mathrm{mHz}$ E225
MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A
MARCONI TFI370 RC Oscillator $10 \mathrm{kHz}-10 \mathrm{mHz}$. Sine/Square ROHDE \& SCHWARZ SMAF (illustrated) AM/FM $4-300 \mathrm{mHz}$ ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator. P.O.A ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power genera
RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A.
ADVANCE SG2। VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $£ 25$.

OSCILLOSCOPES

TEKTRONIX 555 (Late model) with two 'L' plugins and '2lA' and '22A' plug-ins.
TEKTRONIX 545A with CA unit. DC -30 mHz .
Price only $\mathbf{E 2 9 5} .00$
TETRONIX 531 DC- 15 mHz with L type plug-in
TETRONIX 535 DC-I 5 mHz with L typa plug-in
ITT. METRIX miniature portable scope. DC-10mHz. Brand new. $\mathbf{6 5 0}$. NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. E 105 .
MARCONI TF79ID deviation meter. $4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}$ deviation
MARCONI TFI342 low-capacitance bridge 0.002pfil,ilifpf. Resistance $1-1000 \mathrm{M} .0 \mathrm{hm}$. $£ 85$.
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$. ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNIO9I3 (late type) ImV-10V. With ' T ' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excellent. $£ 75$.
ADVANCE PG54 Pulse generator. AS NEW
SOLARTRON EMI006 production-line resistance tolerance check-set. $0-15 \mathrm{Mohm}$ digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition. WAYNE KERR B52I LCR Bridge. Excellent condition. $\mathbf{4 5 5}$.
EDDYSTONE 770R VHF Receiver covering $19-165 \mathrm{mHz}$.
As mew. $£ 125$

MUFFIN INSTRUMENT FANS
 Dimensions $4.5 \times 4.5 \times 1.5$ ins. Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers etc. For 110 V . AC operation(practise is to run from split primary of mains transformer or use suitable mains dropper). ClO each. Our price, in brand new condition, is K .50 .

POLARAD Model SAB4WA SPECTRUM ANALYSER
trum calibrator. Loz/Lin spale
trum NB. This is not the instrument with the expensive TWT to replace. Supplied in full working excellent condition. Guarantee.

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs 50S. 30p. BNC sockets 50Ω. 25p. N. Type plugs 50Ω. 50 p . Burndept plugs. 40p. Burndept
sockets. 40 p . Miniature PYE. 20p. Miniature sockets. 20p.
All connectors are brand new.
Immediate delivery. Please add appropriate postage.

DURATRAK VARIACS type IOOL 230 V . AC Input. O-230V. AC Output, at 8 amps. Brand new units, less control
knobs. Price only $£ 15 \cdot 00$. Carriage $£ 1$. MIN: HELIPOTS
500Ω Beckman Linearity Tolerance 0.075% (IO Turn). $1 \mathrm{~K} \Omega$ Beckman
Linearity Tolerance 0.25% (10 Turn). 20Ω Colvern CLR 26/6310/9s (3 Turn). $5 \mathrm{~K} \Omega$ Colvern (10 Turn).

AVO VALVE TESTERS Brief-case type 160. Full working condition throughout. 665.

AERIAL CHANGE/OVER RELAYS of current manufacture designed espec ially for mobile equipments, coil voltage 12 v . frequency up to 250 MHz at 50 watts. small size only, 2 in. $\times \frac{7}{\frac{b}{i n}}$ in. Offere

RACAL/AIRMEC VHF/UHF Millivoltmeter type 301A. Frequency range $50 \mathrm{~Hz}-900 \mathrm{mHz}$. Voltage range $300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-axial input 50 and 75 ohms BNC connectors. DC Ranges $100 \mu \mathrm{~V}$-IOV in ten ranges. Light-weight mains operated instrument in as new condition with handbooks. from stock.

HEWLETT-PACKARD RF POWER METER
Type 432A. Power range $1 \mu W$ lomW in 7 ranges. Frequency range zeroing. With 478A co-ax mounts and carrying case. In excellent condition.
HEWLETT PACKARD/
BOONTON TYPE B900B
Peak-power calibrator. Measures Peak-power calibrator. Measures
true peak power $\pm .6 \mathrm{db}$ absolute. Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, fullscale. RF Impedance 50 ohms.

POLARAD MICROWAYE RECEIVER
Model ' R ' with tuning unit type RMT. Frequency range 4.2 GHz 7.65 GHz . AM/FM. In working condition. Price $E 75$.

PLEASE ADD 8% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK W. 4
 MICROPHONES
 CASSETTES

$\substack{\text { CM10 } \\ \text { CM20 } \\ \text { CN73 }}$
CO2
 CO98 Cardit in Preamiliffer Cable and Windeshield. DD1 Cassette Dynamic Micronhone with Piugs for
 DD8 gooseneck snd swith , DM18HL Cual impedances Cabile, 600 ohms $1 / 50 \mathrm{k}$. withe.
 DM81 demote stand, 6 metres Cable and Pluy. 50 k . ohms

 PROM5 Lavalier Capactitor Microphone with Tie cilip. 5.8 PROM10 Omnl Drectional Capacitor Microphone with PROM20 Unl-Eirectlonal Capacitior Microphone with PROM25 Capacltor Boom Arm Mlerophone with Arm, two UD50HL Cardyold Dual Impedance micierophone with

VALVE AMPLIFIERS

PRICES INC. VATRobust units sultable for most PA/DIsco uses.
5 watt 2 inputs, Vol Treble Bass Controls.4 Inputs with treble, Bass Controls. C 75.904 Inputs with separate vol. controls plus master
vol. treble, bass. . $45-90$
4 imputs each with Independant vol, trebie and4 imputs each with Independant vol, treble and MICROPHONE MIXERS

Marshallis
A. Marshall (London) Limited Dept. WW
42 Cricklewood Broadway London NW2 3HD Telephone 01-452 0161 Telex 21492
\& 85 West Regent Street Glasgow G2 2QD Telephone 041-332 4133

Everything you need is in our New Catalogue available now price 20 p (100 pages of prices and data)

Call in and see us 9-5.30 Mon-Fri
Trade and export enquiries welcome

Popular Semiconductors

$\begin{array}{llllll}\text { 2N456 } & 0.75 & \text { 2N2906A } & 0.21 & 2 N 4289 & 0.3 \\ \text { 2N456A } & 0.75 & \text { 2N2907 } & 0.22 & \text { 2N4919 } & 0.8\end{array}$

$\begin{array}{llllll}\text { 2N456 } & 0.75 & \text { 2N2906A } & 0.21 & \text { 2N4289 } & 0.34 \\ \text { 2N456A } & 0.75 & \text { 2N2907 } & 0.22 & 2 N 4919 & 0.84 \\ \text { 2N457A } & 1.35 & \text { 2N2907A } & 0.24 & \text { 2N4920 } & 0.99\end{array}$ $\begin{array}{llllll}\text { 2N457A } & 1.35 & \text { 2N2907 } & 0.22 & \text { 2N4919 } & 0.84 \\ 2 \text { 2N490 } & 3.16 & 2 N 2907 A & 0.24 & 2 \text { N4920 } & 0.99\end{array}$ $\begin{array}{llllll}\text { 2N490 } & 3.16 & \text { 2N2926 } & 0.11 & 2 \text { N44921 } & 0.73 \\ \text { 2N491 } & 3.58 & 2 N 3053 & 0.32 & 2 N 4922 & 0.84 \\ \text { 2N492 } & 3.99 & 2 N 3054 & 0.60 & 2 N 4923 & 0.83\end{array}$ $\begin{array}{llllll}\text { 2N491 } & 3.58 & \text { 2N3053 } & 0.32 & 2 \text { N4922 } & 0.84 \\ \text { 2N492 } & 3.99 & \text { 2N3054 } & 0.60 & 2 N 4923 & 0.83 \\ \text { 2N493 } & 4.20 & 2 N 3055 & 0.75 & 2 N 5172 & 0.12\end{array}$ $\begin{array}{llllll}\text { 2N493 } & \mathbf{4 . 2 0} & \text { 2N3055 } & 0.75 & \text { 2N5172 } & 0.12 \\ \text { 2N696 } & 0.22 & \text { 2N3390 } & 0.26 & \text { 2N5174 } & 0.22 \\ \text { 2N697 } & 0.18 & \text { 2N339: } & 0.23 & \text { 2N6175 } & 0.26\end{array}$ $\begin{array}{llllll}\text { 2N697 } & 0.16 & \text { 2N3391 } & 0.23 & \text { 2N6175 } & 0.26 \\ \text { 2N698 } & 0.40 & \text { 2N3391A } & 0.29 & \text { 2N5176 } & 0.32 \\ \text { 2N699 } & 0.45 & \text { 2N3392 } & 0.13 & \text { 2N5190 } & 0.92\end{array}$
2N699
2N706
2N706A
2N708
$\begin{array}{ll}2 N 708 & 0.17 \\ 2 N 7799 & 0-42 \\ 2 N 711 & 0.50\end{array}$
$\begin{array}{lllllll}2 N 711 & 0.50 & 2 N 3403 & 0.19 & 2 N 5245 & 0.47\end{array}$
2N718
2N718A
2N718A
2N720
2N721
2N914
2N916
2N91
$\begin{array}{llllll} & & 2 N 3417 & 0.21 & 40389 & 0.6 \\ 2 N 929 & 0.32 & 2 N 3638 & 0.15 & 40394 & 0.50 \\ 2 N 1302 & 0.30 & 2 N 3638 A & 0.15 & 40395 & 0.54\end{array}$
$\begin{array}{llllll}\text { 2N1302 } & 0.19 & \text { 2N3638A } & 0.15 & 40395 & 0-6 \\ \text { 2N1303 } & 0.19 & \text { 2N3639 } & 0.27 & 40406 & 04 \\ \text { 2N3641 } & 0.17 & 40407 & 0.3\end{array}$
$\begin{array}{lllllll}2 N 1303 & 0.19 & 2 N 3641 & 0.17 & 40407 & 0.33 \\ 2 N 1304 & 0.24 & 2 N 3702 & 0.11 & 40408 & 0.50 \\ 2 N 1305 & 0.24 & 2 N 3703 & 0.12 & 40409 & 0.52\end{array}$
$\begin{array}{llllll}2 N 1306 & 0.24 & 2 N 3703 & 0.12 & 40409 & 0.52 \\ 2 N 1307 & 0.31 & 2 N 3704 & 0.14 & 40410 & 0.52 \\ 2 N 1307 & 0.22 & 2 N 3705 & 0.12 & 40411 & 2.25\end{array}$
2 N 1
2 N 1
2N1671A
$2 N 1671 \mathrm{~B}$
$2 N 1671 \mathrm{C}$
2N1671C
$2 N 1711$
0.
2N1907
2N2102
2N2102
2N2147
2N2148
2N2
2N21
$\begin{array}{llllll}2 N 2192 A & 0.40 & \text { 2N3722 } & 1.80 & \text { AC1117 } & 0.0 \\ \text { 2N3773 } & 2.65 & \text { AC126 } & 0.20 \\ \text { 2N2913 } & 0-40 & \text { 2N3779 } & 3.15 & \text { AC127 } & 0.20\end{array}$
2N2193A 0.61
$\begin{array}{ll}\text { 2N2194 } & 0.73 \\ \text { 2N2194A } & 0.30\end{array}$
2N2218A
2N2219
2N2220
2N2221
$\begin{array}{ll}\text { 2N2222 } & 02 \\ \text { 2N2222A } \\ 0 & 025\end{array}$
2N236B
2N2369
2N2369A
$\begin{array}{ll}\text { 2N2369A } & 0.22 \\ \text { 2N2646 } & 0.55 \\ \text { 2N2647 } & 1\end{array}$
$\begin{array}{lll}\text { 2N2647 } & 1.12 & \text { 2N40 } \\ \text { 2N2904 } & 0.22 & 2 N 40 \\ \text { 2N2 } & \end{array}$
$\begin{array}{lll} & 2 N 2904 A & 0.22 \\ \text { 2N2904A } & 0.224 & \text { 2N4059 } \\ \text { 2N2905 } & 0.24 & \text { 2N4060 }\end{array}$
2N2905A 0 -2.26
$\begin{array}{ll}\text { 2N2905A } & 0.26 \\ \text { 2N2906 } & 0-19\end{array}$

Integrated Circuits TTL

														SN74191 E1-9
SN7400	16p	SN7411	25p	SN7438	35 p	SN7460	16p	SN7485	f1.58	SN74119	f1.92	SN74160	11.58	SN74192 E2-05
SN7401	15p	SN7412	2 p	SN7440	$16 p$	SN7470	300	SN7486	45p	SN74121	57p	SN74161	¢1.58	SN74193 £2.
SN7401AN	38p	SN7413	50	SN7441	85	SN7472	$3{ }^{\text {pp }}$	SN7490	650	SN74122	80	SN74162	¢1-58	SN74196 f1-
SN7402	15p	SN7416	45p	SN7442	85	SN7473	$44 p$	SN7491	11-10	SN74123	12p	SN74164	f2-01	SN74197 f1
SN7403	16p	SN7417	300	SN7445	¢1.59	SN7474	48	SN7492	75	SN74141	51.00	SN74165	£2.01	SN7419B f3-1
SN7404	24 p	SN7420	16p	SN7446	12	SN7475	59\%	SN7493	65p	SN74145	f144	SN74167	£4-10	SN74199 [2
SN7405	24p	SN7423	37p	SN7447	¢.30	SN7476	45p	SN7494	$85 p$	SN74150	f144	SN74174	£1.80	SN76023Nf16
SN7406	45p	SN7425	37p	SN7448	f1.50	SN7480	15p	SN7495	80	SN74151	f1.10	SN74175	¢1.29	
SN7407	45p	SN7427	45p	SN7450	${ }^{16 p}$	SN7481	f1-25	SN7496	1100	SN74153	${ }^{1} 1.09$	SN74176	51.74	Quantity
SN7408	250	SN7430	${ }^{16 p}$	SN7451	16p	SN7482	${ }^{87}$ p	SN74100	[2.16	SN74154	¢1.66	SN74180	£144	Discounts
SN7409	33p	SN7432	45p	SN7453	$16 p$	SN7483	£1-20	SN74107	43p	SN74155	¢1.55	SN74181	f5-18	available
SN7410	16p	SN7437	35p	SN7454	16 p	SN7484	${ }^{95}$	SN74118	f100	SN74157	¢1.09	SN74190	f1-95	request.

Diodes \& Rectifiers

PIV	50	100	200	400	600		0	OPTO \& LEDs			
1	0.06	$0.06 \frac{1}{2}$	0.07	0.07	0.09		10				
1.5	0.08	0.09	$0 \cdot 10$	0.11	0.12		15	- 0			
3	0.15	0.17	0.20	0.22	0. 25		21	$0-20$	0.20 diameter 33p		
10	-	0.35	0.40	047	0.56			-	DL707 22.35 or 4 for $\mathrm{f8}$-00		
35	0-84	0-82	1.18	2,45			65	4.20	Minitron $\mathbf{f 1 . 5 5}$		
Cathode Stud Only				IN3766 (35 amp 800 pv) ¢3.65				IN3768 (35 amp 1000 pvi f4. 20			
in34A	0.10	BA102	0.25	BA145	0.17	8Y237	0-121	OA47	$0.07 \frac{1}{2}$	0490	0.07
IN914	0.07	BA110	0.25	BA154	0.12	8210	0.35	OA70	$0.07 \frac{1}{2}$	OA91	0.07
IN916	0.07	BA115	0.67	BY 100	0.15	BYZ11	0.32	OA73	$0 \cdot 10$	OA95	0.07
AA119	0.07	BA141	0.17	BY126	0.15	BYZ12	0.30	OA79	0.07	OA200	0.07
AA129	0.15	BA142	0.17	BY127	01717	OA9	0.10	OAB:	0.08	OA202	0.10
BA100	0-15	BA144	$0 \cdot 12$	BY140	1.00	OA10	0-20	OAB5	0.10	OA2 10	$0-27 \frac{1}{2}$

Bridge Rectifiers

TELETENNIS KIT
Due to popular demand we are now able to
offer a fantastic saving on list prices. Ideal ofere a for whole favily. No need to modify your TV set, just plugs in to aerial socket. A Resistor Pack $\begin{array}{ll}\text { A Resistor Pack } & \mathrm{fl} 100 \mathrm{p} \mathrm{\&} \mathrm{p} 20 \mathrm{p} \\ \text { B Potentiometer Pack } & \mathrm{f1} .25 \mathrm{p} \mathrm{\& p} 20 \mathrm{p}\end{array}$ C Capacitor Pack Pack D Semiconductor Pack F Transformer G PCBs
H Switches \qquad p\&p 20 p . Special Prices complete kit
£42.00. p\& 50 S Sections A-F incl. f23-50.
p\& 30 p . Assembly instructions with comp\&p 30 p . Assembly instruc
plete kit or 30 p on request.

PC Marker Pen.
Dalo 33PC price ${ }^{87 p}$. Zeners 400MW 11p
iW $17 \mathrm{p} \quad 3.3 \mathrm{~V}-4 \mathrm{~V}$. IC sockets-8DIL 16 p 14 DIL 17p, 16 DIL 20p.

Liquid Crystals.

Scorpio Car Ignition Kit.

$\mathrm{E} 11.50+\mathrm{VAT}$,	440 V		
BSTBO246	$\mathrm{f1.05}$	Transformer	$\begin{array}{l}\mathrm{f1.10} \\ \mathbf{£ 2 . 7 5}\end{array}$

	1	0.15	0.1	0.45
2.5×37	$28 p$	${ }^{20}$	-	148
2.5×5	${ }^{30 p}$	${ }^{30}$	-	14 p
3 \times ¢ 3	300	30°	-	
${ }^{3} 4 \times 5$	${ }_{4}{ }_{\text {p }}$	${ }^{35}$	-	24 p
$2 \frac{1}{2} \times 17$	E1:21	${ }^{95}$	${ }^{16 p}$	69
Pins $\times 36$	24	24p		
$\times 200$	${ }_{89}$	${ }^{\text {g2p }}$		

Potentiometers

Linear or Log Single Double Rotary Pots
Rotary Switched
Full range of capacitors stocked
See catalogue for details
Presets
Horizontal or Vertical
$0.1 W^{6 p}$
$0.2 W \mathrm{Ep}$

Construction Kits
$\begin{array}{lll}\text { AV7 } & \text { Aerial Amps } & \mathbf{6 2 . 0 4} \\ \text { UH570 } & \text { Transmitter } & \mathbf{5 2 . 7 4} \\ \text { MUE7 } & \text { Receiver for above } & \mathbf{5 3} 2 \mathbf{2 2} \\ \text { EW18 } & \text { Electronic dice } & \mathbf{6 6 . 5 3} \\ \text { EW20 } & \text { Electronic dice + sensor } & \mathbf{5 7 . 7 9}\end{array}$
Mail Order
OUR NEW GLASGOW
SHOP IS NOW OPEN!

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals ... New ... Refurbished . . . Installation . . . Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT

 OTHER EQUIPMENT
SPECIAL EQUIPMENT

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPCONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250-way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type $48 \mathrm{~A}, 48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$ COILS-39A, 40A, 40E, etc. P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc. EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.
ww 201 for further details

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

WW 202 FOR FURTHER DETAILS
77 AKEMAN STREET, TRING, HERTS., U.K.
Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

The largest selection

EX COMPUTER BOARDS

Packed with transistors, diodes, capacitors
and reolstora
COMPONENT VALUE il
In 3for ONLY 55p $+\mathrm{p} \dot{\mathrm{d}} \mathrm{p}$ 30p
SPEIAL. AEABOV PLUB Pow

${ }_{4}$ for $30 \mathrm{p}+\mathrm{p} \& \mathrm{p} 20 \mathrm{p}$
FIBRE-GLASS PRINTED CIRCUIT BOARDS

DECON-DALO 33pC Marker
${ }_{98 \mathrm{p}}^{\text {Etch resef }}$, $98 p$ each

VEROBOARDS

Packe containning approx., 50 sq. Ina. various
sizes, all 0.1 matric 55 p
REPANCO CHOKES \& COILS

 COLSS
COIL FORMERS \& CORES

SWITCHES
DP/DT Toggle 36p SP/BT Toggle 30D

FUSES

11° and $20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$,
$500 \mathrm{~mA}, 1 \mathrm{~A}, 1-5 \mathrm{~A}, 2 \mathrm{~A}$ QUICK-BLOW 5 p ea.

EARPHONES

DYNAMIC MICROPHONES B1223. 200 ohms plus on/off switch and
2.5 mm and 3.5 mm plugs 81.85

3-WAY STEREO HEADPHONE JUNCTION BOX

2-WAY CROSSOVER

NETWORK

K4007.80 ohms Imp. Insertion loss 3dB \&1-21
TRANSISTOR EQUIVALENT BOOK

8th EDITION

266 pages of crose references and equivalents
 more than 56,000 substitites have been
acluded. The tables wert compiled with the
 speciflatione The maot comprehensive
Equivalente mooke on the market ONLY $£ 1.85$

INSTRUMENT CASES

SBlack Vinyl covered) No Nength

(Black Vingl covered)				
NV. ${ }^{\text {Nog }}$	width	52^{*}	$\stackrel{\text { Height }}{\times}$	$2^{*}{ }_{\text {* }}^{\text {Price }}$
BV2 110	\times	${ }^{8 \prime}$		
ALUMINIUM BOXES				
	$\stackrel{\times}{\times}$	${ }_{4}^{24}$	\times	1148
BA3 ${ }^{\text {4* }}$	${ }^{\times}$	${ }^{2}$		$\begin{array}{ll}18 & 42 \mathrm{l} \\ 18\end{array}$
BA4 57*	\times	${ }^{4}$	\times	$1{ }^{18} 5$
	\times	${ }_{2}^{21}$	\times	2^{*} 42p
${ }_{\text {BA }} \mathrm{BAF}^{\text {\% }}$	\times	${ }_{5}{ }^{2}$		$1^{1} 1^{34 p}$
BA8 8°	\times	6°	\times	${ }_{3}{ }_{3}{ }^{20}$
				$2^{\circ} 85$

BIB HI-FI ACCESSORIES
De Luxe Groov-KIeen
Model 42 £1.95 Chrome Finish Model 60 £1-50

Ref. B. Stylus and Turntable Cleaning Kit 34p Ref. 38A. Record/Stylus Cleaning Kit 33p Ref. 43. Record Care Kit $82 \cdot 42$ Ret, 32. Tape editing Kit 21.68 Model 9. WIre Strlpper/Cutter 83F

Ref. H1-Fi Cleaner 31p
Ren 32A. Stylus Balance :11.37
Ref. J. Tape Head Cleaulng Kit 62p Ref. 56. H1-Fi Stereo Hints \& Tips 42p
ANTEX SOLDERING IRONS |PLUGS
X25. 25 watt 42.05 CCN 240.15 watt 22.48 Model G. 18 matt 29.26 3K2. Soldering Kit-23.25 STANDS: $8 T 1$ \&1 SOLDER: 138WG Multicote 7oz 21.61 228WG 7oz 81-61. 188WG 22ft 51p 228WG Tube 33p
ANTEX BITS and ELEMENTS Bita No.
102 For model CN240
104 For model CN20
104 For model CN240
1101 For model CCN240
102 For model CCN240 ${ }^{2}$
1020 For model G240 $\frac{10}{\frac{1}{2}}$ 1021 For model $\mathbf{6 2 4 0} \mathrm{t}^{*}$ 50 For model X25 $\frac{\pi^{\prime \prime}}{12}$
${ }_{50}^{51}$ For model $\times 255^{*}$ 52 For model X25 ${ }^{\frac{1}{10}}{ }^{\circ}$ ECEMENTS 240 e1.3

ECCN 240 \&1.32

ECN 240 21.30	ECCN 240 \&1.
EG 240 21.07	EX 25
\&1.18	

ANTEX HEAT SINKS 10p
 piease add extra for postage

NEW COMPONENT PAK

BARGAINS

${ }_{\text {Pack }}^{\text {Pat }}$

Description

Reglstors raized
count by weight
Capacitorn mized values approx.
count by weight
Precision Precision Reslstors mixed values
$1-2 \%$
1 th W Resistors mixed pref ${ }_{\text {values }}$
Piecea assorted Ferrite Rods 0.55 Tuning Gangs, MW/LW VHF 0.55 Pack Wire 50 metres assorted
colours
Reed Switches
Micro switches
Assorted Pots \& Pre-Sets ack Sockets $3 \times \times 3.5 \mathrm{~m}$
Standard Switch Type Paper Condensers prefer maper Condensers preferred types
mixiued
0.55 Electrolytics Trana. types
Pack assorted Handware-
Nute/Bolta, \mathbf{G} rommets Iains Sulde B , ritommets etc. 0.55 sorted Switches, $2 \mathrm{Amp} \quad 0.55$ Asorted Tag Strips \& Panels 0.55 Asborted Control Knobs $\quad 0.50$ Rotsy Wave Change Switches0.55 Relays 6-24V Operating sheets Copper Laminate appros.
$10^{*} \times 7^{*}$
Fibreglass printed circuit boaris Please. aidd 10 p post and 0.55 on all component packs, plus a
further 10 p on pack Nos. Cl, C^{2}
further 10 p on pack
$\mathrm{C19} 9, \mathrm{C} 20$ \& C 21 .

Pg 1 D.I.N. 2 Pin (Speaker)
PS 2 D.I.N. 3 Pin
PS 4 D.I.N. 5 Pin
Ps 5 D.I.N. 5 Plin 240°
PS 6 D.I.N. 6 Pin
P8 8 Jack 2.5 mm Bcreened
PS 9 Jack 3 .5mm Plastic
PS 10 Jack 3.5 mm Screened
PS 11 Jack ${ }^{2}$ " Plastic
PS 12 Jack ${ }^{10}$ " Screened
PS 13 Jack Stereo Screened PS 14 Phono
PS 16 Car Aerial
INLINE SOCKETS
PS 21 D.I.N. 2 Pin (Speaker) P8 22 D.I.N. 3 Pin PS 23 D.I.N. 5 Pla 180° PS 24 D.I.N. 5 Pin 240° PS 25 Jack 2.5 mm Platic PS 26 Jack 3.5 mm Plastic PS 27 Jack ${ }^{\text {n }}$ " Plastic
PS 28 Jack ṫ" Screened
P8 29 Jack Stereo Plastic PS 30 Jack Stereo Soreene Ps 31 Phono Screene P8 32 Car Aeria

SOCKETS

PS 35 D.I.N. 2 Pin (Speaker) 36 D.I.N. 3 Pln PS 37 D.I.N. 5 Pin 180°
PS 39 Jack 2.5 mm Switcie
P8 40 Jack 3.5 mm switched
PS 41 Jack 3.5 mm Switched
PS 42 Jack Btereo Switch
PS 43 Phono Slugle
PS 44 Phono Double
PS 46 Co -Axial Surface
PS 47 ConAxial Flugh

LEADS

ends approx. 3 metres long (coded) 0.20
enter 2 pin D.I.N. plug to

CABLES

CP 1 Single Lapped Screen
OP
CP 3 Stereo Screened
Four Core Common Screen
Four Core Individually Bcreened 0.30
Microphone Fully Braided Coble 0.10 Three Core Maina Cable Twin Oval Mains Cabl Speaker Cable

CARBON

POTENTIOMETERS
${ }^{\mathrm{L}} \mathrm{Cog}$ and Lin
1M, 2M
single Less 8 witc
$\begin{array}{ll}\text { VC } 3 & \text { Single D.P. Switch } \\ \text { Tandem Lese Switch }\end{array}$
VC 41 K Lin Leas Bwitch vc $5 \quad 100 \mathrm{~K}$ Log anti-Log

HORIZONTAL CARBON

PRESETS
0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$
SELENIUM BRIDGE
RECTIFIERS
8V. 2A. Ideal for those bullding batter hargers. 15p each. 10 lor 55 p
REPANCOTRANSFORMERS
fro
$\xrightarrow{2} 1$

2

PLEASE NOTE: ALL OUR PRICES INCLUDE V.A.T. MODEL AMTRON KITS

$\underset{\substack{\text { Model } \\ \text { UK }}}{\text { N }}$

Slmple transintor teater
Amplifer 1.5W
AM/FM Antenna Amplifier
Mike Pre-amplifier
-channel Radio Control Transmitte
'GCX2' Channel solittin
-GCX2' Channel splitting unit $1,000 \& 2,000 \mathrm{~Hz}$
Superhetrodyne Radlo Control Recelv
VHF Tuner 120 to 160 MHz
VHF Tuner 120 to 160 MHz
Windacreen Wiper tumer
4-Channel AF mixer
Electronice Uult for
Gapacitive Digeharg

VISIT OUR COMPONENT SHOP

18 BALDOCK ST., WARE, HERTS. (A10)
Open Mon.-Sat. $9-5.30$ p.m Tel. 61593

Type MT50/t

MT50/1

Frice $21-93$ 820

WORLD SCOOP!
 JUMBO SEMICONDUCTOR PACK

Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I,C's and Zenners ALL NEW AND CODED
APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet in every Pak

ONLY E2p\&p20p

MAMMOTH I.C. PAK

APPROX. 200 PIECES
Assorted fall-out integrated circuits including: Logic, 74 Series, Linear, Audio and D.T.L. Many coded devices but some unmarked-you to identify.

OUR SPECIAL PRICE
f1. 25 including V.A.T. \& p. \& p

SPECIAL PURCHASE by BI-PAK

2N3055. Silicon Power Transistors NPN Famous manufacturers out-of-spec devices free from open and short defects-every one able I 115 watts TO3.

Metal Case.
OUR SPECIAL PRICE 8 for $\mathbf{£ 1}$.

LOW COST CAPACITORS BOOK BARGAIN

 $-01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{p}$ each$500 \mu \mathrm{~F} 50 \mathrm{~V}$ Elect.

3p each
CASSETTE CASES

IT'S NEW
IT'S POWERFUL
(15+15w. RMS) AND-
IT LOONS GOOD!
THE
LEGIONAIRE
STEREO
ORDER NOW
ONLY E39.95 p. \& p. 50p OR Write for full details

R3 50 Mixed 10 K ohms $8-82 \mathrm{~K}$ ohmas $\quad 50 \mathrm{p}$ THESE ARE WNBEAms 1 Meg. ohms 80^{0} JUST ID EACH INCL PRICE
BI-PAKSUPERIORQUALITY LOW-NOISE CASSETTES C60,32D C90,41p C120, 52p SEE OUR COMPLETE RANGE PRACTICAL ELECTRONICS,

PRACTICAL WIRELESS, RADIO CONSTRUCTOR, EVERYDAY ELECTRONICS
ELECTRONICS TODAY
INTERNATIONAL
OR SEND 5p. FOR THE
PRODUCTS

BUNDLE
8 Books comprising:
2 Transistor Equivalent books
1 Radio \& Electronic colour code and data chart
1 Radio val

Oth valve gulde PLUS
Other constructional
Receivers, EM Tuners, etc.
ALSO 1 General construction book
${ }_{82} \mathrm{p}$ \& p 10p.
Handbook of Transistor
Equivalents \& Subetitutes
BP2 Handbook of Radio, T.V. ${ }^{40_{D}}$
Yndustrial Tube \& Valve
Equiv.
Handbook of
Handbook
Internatlonal Handbook of
the World's Short Radio Stations and FM/T.V. Listings
Handbook
BP5 $\underset{\text { Handbook of simple Tran }}{\text { sistor Circuits }}$
Bistor Circuits
Radio and Electronies colour
codes and Datro Cbarrs 15 p
Sound and Loudspand
Sound and Loudspeaker
Manual 38 Practical Tested $\begin{gathered}\text { Diode } \\ \text { Circults for the } \\ \text { constructor }\end{gathered}$ tome

PP11 beginners
BP11 Practical Tr
$13 \begin{gathered}\text { Circulta } \\ \text { Electronic } \\ \text { N }\end{gathered}$
BP14 Second book $\begin{gathered}\text { Motorist } \\ \text { Equivalente }\end{gathered}$

Constructors Manuai of Elec
tronte Circults for the
tronic
home
Universal

$$
\begin{aligned}
& \text { Universal Gra } \\
& \text { Indicator }
\end{aligned}
$$

Indicator

$$
\begin{aligned}
& \text { How to make FM ar } \\
& \text { aeriala Banda } 1 / 2 / 2 / 3 \\
& \text { Radio Servicing for Ar }
\end{aligned}
$$

High Fidelit
enclowures
Tranisitor
Tanistor Circuits Man
No. 1 Ing and Construction
Manual
Radio T.
R.

Radio T. $\begin{gathered}\text { Data book }\end{gathered}$

Trangistor
sub-minia 2
receivers aub-miniat
reanistor Test
Servicing Manual
Ranent
Servicing Manual
Manual of Trambistor Aud
Manual of
A comprehensive Radio Val
Guide-Book 5
How to receive for
programmes on your set
AF-RF Reactance-F
AF-RF Reactance-Frequency
chart for Constructors
150
Chart for Constractors 15
tronh in usical Novellies 50
Fractical Transistr rised Nov-
elties for $\mathrm{Hi} 1-\mathrm{HH}$ Enthusiaste
Handbooik oi Integrate
Circuits
Circuits Equivalents an
Bnbititutes
Subatitutes
esistor Colour Code
Calcriator
Dis

-the lowest prices!

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION L The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Max Hent gink temp. $80^{\circ} \mathrm{C}$.

- Supply voltage $15-50$ volts

STABILISED POWER MODULE SPMBO

8Pm80 is especially designed to power 2 of the A' L60 Amplifiers, up to latest components and circuit techniques Incorpor sting complete short cIrcuit protection. With the addition of the Malls Transformer BmT80 $63 \mathrm{~mm} \times 105 \mathrm{mma} \times 20 \mathrm{~mm}$. Theme units enable you to build Audio Systems of the highest quality at a hitherto ono btainable price. Also
ideal for many other applications including: Disco $8 y$ yucks, Public TRANSFORMER BMT80 $£ 2 \cdot 15$ p. \& p. 25p

STEREO PRE-AMPLIFIER

 TYPE PA100
INTEGRATED CIRCUIT PARS

Mandiacturera "Fall Outs" wish include Functional and Part. Functional Units. These are, classed as 'out-of

3 TERMINAL POSITIVE
To. 3 Plastic Encapsulation

8HP80 STEREO HEADPHONES, $4-16$ ohm

 Impedance, Frequency response 20 to $20,000 \mathrm{~Hz}$Stereo/mono switch and volume controls

TRANSFORMERS

POWER SUPPLIES

The STEREO 20

Built to a specification and NOT a price, and yet still the greatest value on the market,
the PA100 stereo preamplifier has been conceived from the latest circuit techniques. the PA 100 stereo preamplifier has been conceived from the latest circuit techniques.
Designed for use with the AL 60 power amplifier system, this quality made ont incorporates no less than eight silicon planar transistors,
Three switched stereo inputs, and rumble and scratch filters are features of the
PA100, which also has a BTEREO/MONO switch, volume, balance and continuously PA100, which also has a 8TERE
variable bass and treble controls. SPECIFICATION:

All input voltages are for an output of 250 Km . within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz .
MK 60 AUDIO KIT
Bass control
Treble control
Treble control (high pass) Scratch (low pass)
Signal/noise ratio Signal/ noise ratio
Supply
Dimensions

DUAL-IN-LINE
SOCKETS

The above table relates to the ALL 0, AL20 and AL3 modules. The following table

MODULES
The Aldo, Al 20 and alan units are general specification. However, $\left.\begin{array}{c}\text { careful } \\ \text { selection of the plastic }\end{array}\right)$ power device has selection of the plastic power der ce
resulted in range of output powers from
B. 3 to 10 watts R.M. \mathbf{B} The versatility of their design makes them
ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge
stan stereo ampliters and cassette and
tape players in the car and at home

RICE
$\pm 15 \mathrm{~dB}$ at 20 Hz
$\pm 15 \mathrm{~dB}$ at 20 kHz 100 Hz
8 kHz
better than +65 dB
+26 dB
+35 volts at 20 ma
+35 volts at 20 m
$292 \times 82 \times 85 \mathrm{~mm}$
only $£ 13 \cdot 15$
 TEAK 60 AUDIO KIT

PA 12. PRE-AMPLIFIER SPECIFICATION
The PA 12 pre-amplifer hat been deatigned to match into Frequency response

${ }^{20 \mathrm{~Hz}-50 \mathrm{KHz}(-3 \mathrm{~dB}}$

 Bass control- 12 dB at 60 H treble control- 14 dB at 14 KHz

Brightlife
lillus:rated
neons
PC/A
PC/E C,
$P C / F$
$P P / A$

of 25,000 hrs. life. The 0.5" dia. are red or white, the $0.375^{\prime \prime}$

contil handles

(1) No. 265.55. Anodised aluminium centre bar. Black plastic brackets with moulded-in core. 75 mm @ $\mathbf{£ 1 . 0 1 .}$
Five more sizes up to 254 mm .
2) No. 281.1. Nylon. 112 mm . Load 50 Kg. @ 46p 3) No. 277. Ali., ground polistred anodised 88mm. @ 98p. 120 mm (4) No. 268 . Satin ali. 57.5 mm . 98p;
 very comfortable. 75 mm . @ 30p. Prices include 8\% VAT.

The Contil DPM is a complete instrument built on a single board with the O.E.M. in mind. Believed to be the lowest cost $2 \frac{1}{2}$ digit DPM avaliable, it requires Ranges available are 200 . Ranges avalable are $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, unihold. All models normally available ex stock

contil

 hatimalil
three heights all frames ights all of equal width and depth. The frames are strong and rigid, fitted with top and bottom locating pegs and rear slots making
stacking or frame mounting positive and simple.

simple				1 off	4 off	7-3t-me
121.	122.	123.	124	14.10	$£ 3.74$	
251.	252.	253		16.15	¢5.60	504
501.	502.	503		£10.58	¢9.61	
254,	257.	258		$£ 5.83$	£5.31	
504.	507.	508		$£ 9.93$	$£ 9.02$	

$\substack{\text { Pricescoreet } \\ \text { seperemeer 1974 }}$ WEST HYDE (WII
WEST HYDE DEVELOPMENTS Ltd, Ryefieid Cres., Nontiwood Hills, Northwood, Middx HAG INN Tel: Northwood 24941/26732

JOHN CRICHTON
 Electronic Equipment

558 Kingston Road, London, SW20 Inlard VAT add 8\% Prices shown include P\& P. othe prices gladiy on request. Viewing by apoointment plea Phone 01-540 9534

TEST

CT381

Frequency range:
$10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly catibrated $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly catibrated centre frequency.
F.M. deviation: (nominal)
$0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$
$0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$
$0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$
falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$.
Output impedance:
75 ohms resistive
Power supplies:
Mains 100-120V and 180-250V. Frequency $50-500 \mathrm{c} / \mathrm{s}$. Consumption 340 W (nominall). Belling Lee radio frequency interference Sinter type wave $\mathbf{£ 1 5}$.

HEWVLETT PACKARD

430C Microwave power meter. H01-8401A Leveller amplifier. 8709A Synchronizer.
8707A RF unit holder.
8734B Pin modulator $7.0-12.4 \mathrm{GC}$ 87348 Pin modulator $1.8-4.5 \mathrm{GC}$ 8431A Bandpass filter 2-4GC. 797D Directional Coupler $1.9-4.1 \mathrm{GHz}$. $£$ 185A 800MHz Sampling oscilloscop 185B Sampling oscilloscope.
TINSLEY TYPE 4363E AUTO VERNIER POTENTIOMETER.
PYE Precision vernier potentiometer 7568 $1 \mu \mathrm{~V}$ to 1.90100 V in two ranges. Accuracy 0.002\%.

SULLIVAN T2100 PRECISION POTENTIAL DIVIDER
Range:
Input: 1. 2, 5, 10, 20, 50. 100, 200, 500. 1000 V . Output: $1 \mathrm{~V}, 200$ ohms N . Accuracy of Ratio: 0.001% or better. CROPICO TYPE P1
POTENTIOMETER.
Main Dial: 17 steps of 0.1 or 0.01 V according to the range selected: incorporating a double pole switch which has $\frac{5}{18}$ dia. copper studs faced with a 10% gold silver alloy. the multileaf phosphor-bronze L30047 CAM8RIDGE UNIVERSAL BRIDGE.
Voltmeter Valve CT54 (Micovac), with mains power supply (power supply not
available separately). In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ $A C$ or DC in 6 ranges, 1 ohm to 10 Megohm in 5 ranges. Indicated on 4 in. scale meter. Complete with probe, $\mathbf{£ 1 2 . 5 0}$ including

TEIKTRONIX

NON-PLUG-IN UNIT
OSCILLOSCOPE.
515A. DC $-15 \mathrm{MHz} . ~ £ 150$.
$524 A D$ DC- 10 MHz . $£ 100$.
MAIN FRAME OSCILLOSCOPES
543 . DC- 30 MHz . 547. DC-50MHz.
$545 . \mathrm{DC}-30 \mathrm{MHz} .545 \mathrm{~A}$. DC -30 MHz . 545 B . DC-33MHz. $551 . \mathrm{DC}-27 \mathrm{MHz}$ PLUG-IN UNITS.
Type $1 \mathrm{~A} 1.50 \mathrm{mV} / \mathrm{cm}$ to
$20 \mathrm{~V} / \mathrm{cm} 5 \mathrm{mV} / \mathrm{cm}$. $\left.\begin{array}{l}\text { Type } 1 \mathrm{~A} 2.50 \mathrm{mV} / \mathrm{cm} \text { to } \\ 20 \mathrm{~V} / \mathrm{cm} \text {. }\end{array}\right\}$ separately. $20 \mathrm{~V} / \mathrm{cm}$. $0.005 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} /$ cm to $20 \mathrm{~V} / \mathrm{cm}$.
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type D. $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type G.
$0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
Type L. $5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}, 0.05 \mathrm{~V} / \mathrm{cm}$
to $20 \mathrm{~V} / \mathrm{cm}$. $\mathrm{Type} \mathrm{M} .0 .02 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$
230 DIGITAL UNIT
Digital readout parameters. Pulse ampliwidth. pulime interval. R116. 10-NS PROG

PULSE GENERATOR

PASSIVE PROBE P6006 with 10X attenuation, designed for oscilloscopes having an input resistance of 1 megohm and input capacitance of up to 55pf.
Price $\mathbf{~} 10$. Price f10.
PROBE P6065 10X. 10 megohm, 12.5 pf . 500 V D.C. max. Length 6 ft .

MUIRAEAD FREQUENCY ANALYSER TYPE D-669-B.
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$. Accuracy better than 1.5%. Input voltage $300 \mu \mathrm{~V}-100 \mathrm{~V}$ for full scale deflexion. Smallest indication
15 uV . Maximum input voltage 300 V r.m.s. Price f95. Full spec on request.
MUIRHEAD 2-PH. L.F.DECADE
OSCILLATOR Type D880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ (continuously variable above $0.1 \mathrm{c} / \mathrm{s}$). V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Hourly frequency stability
Ranges $\times 1 . \times 10 \times 100 \pm 0.05 \%$ After Ranges XO. 1. V.L.F. ± 0.1 \} hours. T.F.BO1D/1/SA.M.SIGNAL GENERATOR. Freq. range: 10 MHz to 485 MHz . Built-in a.m. External pulse modulation. Calibration a.m. Ext Using crystal calibrator within $\pm 0.2 \%$ over entire frequency range. R.F. outout level $0,1 \mu \mathrm{~V}$ to 1 V source e.m.f. £249. OA. 1094A/3 H.F. SPECTRUM ANALYSER with L.F. extension unit type TM6448. Freg. range: 100 Hz to 30 MHz Measures relative amplitudes up to 60 dB . Spectrum width $0-30 \mathrm{KHz}$. Sweep duration: $0.1,0-3$. 1 , 3. 10. 30 sec . and manual. Full spec on request. $\mathbf{O A} 10954$.
OA.1094A/S H.F. SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine
steps. spectrum width 0 to 30 KHz . Sweep distortion: $0.1,0.3,1,3,10,30$ secs. and manual. Full spec. on request. $£ 445$.
T. 111 ROBAND TRANSISTORIZED SUPPLY. Mains input 110 V or 230 V , output $0-50 \mathrm{~V}$ at 5 Amperes cont. variable, overload cut-out. £49.

REMSCOPE SO1/740 STORAGE

 OSCILLOSCOPE.Fluorescence: Yellow, resolution: 40 lines/cm E.H.T.: 8kV, display time: 10 mins- 1 h CD 1212 WIDE.BAND GENERALPURPOSE OSCILLOSCOPE
PURPOSE OSCILLOSCOPE.
dual trace displays.
Wial trace displays. $\mathrm{DC}-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) ; 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ AC coupled ($-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$). Rise time 8 nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ nine calibrated ranges with fine gain control. Dual trace pre-amplifier CX 1252 . Bandwidth: $\mathrm{DC}-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise
time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ time: 14 nanosec approx. Sensitivity,
$\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine catibrated ranges with
fine gain control. Full specification on request. $£ 128$.
T.F. $801 \mathrm{~B} / \mathbf{3} /$ S A.M. SIGNAL GENERATOR. Freq. range: 12 MHz to 485 MHz in five bands. Built-in crystal calibrator. Full spec. on request $£ 220$.
CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} \pm 1 \%, \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range:
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, distortion range: $10 \%, 30 \%$, 100% 20kcs 0.5% readable Signal input: approx 500 mV to 130 V basic range, 250 mV to 1300 V extreme limits. Full spec. on request C98. comprehensive characteristics to be plotted of measures valves on a simple goodibad basis. 555.
AVO CT 160 VALVE TESTER. As above but in portable valise form. $\mathbf{f 6 5}$

JOHN FLUIKE

821A VOLTMETER: $\pm 0.01 \%$ absolute

 accuracy, infinite input resistance at nil over entire o-500V range, standard suspension meter. in-line readout with automatic lighted decimal, no zero controls.803. DIFFERENTIAL DC/AC VOLTMETER. AC voltage $0-500 \mathrm{~V}$ in 3 METER. $A C$ voltage $0-500$ vertage $0-500 \mathrm{~V}$ in 4 ranges.

TF. 937 F.M./A.M. SIGNAL GENERATOR. Freg. range 85 KHz to 30 MHz . The carrier dual freq crystal calibrator, which is complete with miniature loudspeaker as an sural beat detector. 187.
TF.114H/S SIGNAL GENERATÔR. FTequency range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability: 0.002%. High discrimination. plus crystal calibrator. Good r.f. waveform at all fre-
quencies. Protected thermocouple level moniquenciul. full spec. on request. $£ 220$.
TEST SET DEVIATION FM
TEST SET DEVIATION FM No 2. The
carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a total of eight bands: the deviation ranges are

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail :

HALF PRICE OFFER! LIMITED PERIOD ONLY!

KODAK RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER ก゙ォ"-1 oz	
	$\frac{1}{3 \prime \prime}-102$								$\mathrm{m}^{*}-102$					
	Single Sided		Double sided		Singie Sided		Double SIded		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51p	45p	63p	51p	f1-10	£1.00	£1.02	92p	51 p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1-10	f1.00	£1-15	£1.05	65p	55p	80p	65p	£1.38	£1-25	£1-30	£1-15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	£1-10	f1.00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	£1.60	£1.40	£1.65	£1.45	£1.05	85p	£1.25	£1.05	£1.95	£1.75	£2.10	f1.90	£1.05	85p

EXTRA DISCOUNTS!
ORDER 25 SHEETS OF ANY ONE TYPE-DEDUCT 20\% ORDER 100 SHEETS OF ANY ONE TYPE-DEDUCT 30\%
IF above sizes do not match your requirements, ask for quote-cut to your size.
THIS IS an offer that you cannot afford to missi act nowi

SMALLELECTROLYTICS							
Ref. No.	Capacity	Voltage	Price	Ref. No.	Capacity	Voltage	Price
H8/2	$2 \cdot 5 \mu \mathrm{~F}$	16 V	4p	H7/5	$80 \mu \mathrm{~F}$	16 V	4p
H8/3	$3 \mu \mathrm{~F}$	50 V	4p	H7/7	$100 \mu \mathrm{~F}$	10 V	4p
H8/3A	$4 \mu \mathrm{~F}$	50 V	4p	H7/7A	$150 \mu \mathrm{~F}$	16 V	5p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p	H7/9A	$125 \mu \mathrm{~F}$	4 V	4p
H8/6A	$10 \mu \mathrm{~F}$	10 V	4p	H7/10A	$160 \mu \mathrm{~F}$	25 V	3p
H8/8A	$16 \mu \mathrm{~F}$	16 V	4p	H7/11	$160 \mu \mathrm{~F}$	25 V	6 p
H8/9A	20uF	70 V	4p	H7/11A	$150 \mu \mathrm{~F}$	10 V	5p
H8/10	$22 \mu \mathrm{~F}$	50 V	4p	H7/13A	$200 \mu \mathrm{~F}$	25 V	8p
H8/11	$25 \mu \mathrm{~F}$	12V	4p	H7/14	$220 \mu \mathrm{~F}$	50 V	10p
H8/12	$32 \mu \mathrm{~F}$	15 V	4p	H7/14A	$220 \mu \mathrm{~F}$	16 V	6p
H8/12A	$30 \mu \mathrm{~F}$	10 V	4p	H7/15	$220 \mu \mathrm{~F}$	25 V	5p
H8/13A	$32 \mu \mathrm{~F}$	50 V	4p	H7/15A	$220 \mu \mathrm{~F}$	35 V	10p
H8/14	$40 \mu \mathrm{~F}$	25V	5p	H6/1A	$250 \mu \mathrm{~F}$	4 V	3p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p	H6/3A	$320 \mu \mathrm{~F}$	2.5 V	3p
H8/15A	$40 \mu \mathrm{~F}$	35 V	4p	H6/4	$320 \mu \mathrm{~F}$	10 V	4p
H7/1A	$50 \mu \mathrm{~F}$	10 V	4 p	H6/4A	$330 \mu \mathrm{~F}$	16 V	5p
H7/2A	$64 \mu \mathrm{~F}$	2.5 V	2p	- H6/5	$330 \mu \mathrm{~F}$	25 V	10p
H7/4	$64 \mu \mathrm{~F}$	15 V	4p	H6/5A	$330 \mu \mathrm{~F}$	35 V	15p

NEW! NEW!NEW!NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method; Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray £1.00 plus Developer and Etchant 50p postage

MULLARD ELECTROLYTIC CAPACITORS					
071 and 072 saries					
	orking	Capacitance	Max. Ripple		
Type No. Vo	Itage	Vdc. uF $^{\text {F }}$	Current at $50^{\circ} \mathrm{C}$	Weight	Price
07116332	25	3300	3.7 amps	$10 z$	17p
07115472	16	4700	3.9 amps	102	17p
07115682	16	6800	5.8 amps	1 1oz	22p
07215752	16	$7500+7500$	10.5 amps	302	37p
07215113	16	$11000+11000$	13.8 amps	$4 \frac{1}{2} \mathrm{Oz}$	49p
07214113	10	$11000+1000$	10.6 amps	310z	37p
07216502	25	$5000+5000$	9.6 amps	$3 \frac{1}{2} \mathrm{oz}$	37p
07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} \mathrm{Oz}$	49p
07118881	63	680	$2 \cdot 1$ amps	10 c	$16 p$
07214173	10	$16500+16500$	13.4 amps	4102	49d
106 and 107 series					
10616223	25	22000	17 amps	100z	f1-12
10710222	100	2200	10 amps	5 t Oz	74p
Type No. Vol 10215163	$\begin{gathered} \text { oltage } \\ 16 \end{gathered}$	Capacitance 16000	Weight $80 z$		Price 40p
10490003	20	39000	1602		50p
10216802	25	8000	702		50p
10490002	40	21000	$160 z$	-	E1
A further 10\% discount on lots of 100 of any one type.					
Please calculate the weight of your order and include appropriate postage.					
Not over		Ordinary Parcels	Not over 121b	Ordina	Parcels 53p
21 b		23p	141b		58p
41 b		30p	161b		63p
61 b		36p	18 lb		68p
81 b		42p	2016		73p
10 lb		48p	221 b		78p

Eftionsidu

COMPLETE TELEPHONES NORMAL HOUSEHOLD TYPE AS
Onll 99 p

ELEPHONE DIALS
Only $25 p$

Tested and Guaranteed Paks

B79 4	1 N4007 Sil. Rec. diodes. 1.000 PIV lamp plastic	50p
B81 10	Reed Switches $1^{\prime \prime}$ long $\frac{1}{8}{ }^{\prime \prime}$ dia. High speed P.O. type	$50 p$
H35 100	Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked	50p
प38 30	Short lead Transistors. NFN Silicon Planar types	
H39 6	Integrated circuits. 4 Gates BMC 962,2 Flip Flops BMC 945	50p
H41 2	Power Transistors Comp. Pair BD 131/132	50p
H63 4	2N3055 Type NPN Sil, power transistors. Below spec. devices	50
H65 4	40361 Type NPN Sil. transistors TO-5 can comp. to H66	50p
H66 . 4	40362 Type PNP Sil. transistors TO-5 can comp. to H65	

Onmarked Untested Paks

81	50	Germanium Transistors PNP. AF and RF,	50p
B66	150	Germanium Diodes Min. glass type	50p
B84	100	Silicon Diodes DO-7 glass Equiv, to OA200. OA202	50p
886	100	Sil. Diodes sub. min. IN914 and IN916 types	50p
B83	200	Transistors, manufacturers, rejects, AF, RF, sil and germ.	50p
H26	40	NPN Silicon Trans. 2N3707-11 range, low noise amp.	50p
H34	15	Power Transistors, PNP, Germ. N Silicon TO-3 Can. P \& P 5p extra.	50p
H67	10	3819 N Channel FETs plastic case type	50p

Make a rev counter

for your car
The 'TACHO BLOCK. This encapsulated block will turn for any car with nomal coil inear and accu
f1.00 each

EXTENSION TELEPHONES

Electronic Transistor

Now in kit form, we offer this "up-to-the-minute"
electronic ignition system. Simple to make fult electronic ignition system. Simple to make, fulk
instructions supplied, with these instructions supplied, with these outstanding
features: transistor and conventional switchability, burglar-proof lock-up and automatic alarm. negative and positive compatibility.

New X-Hatch
 Our new iv improved Mark Two Cross Hath

Generator is now available. Essential for aligmment of colour guns on all TV receivers. Featuring plug-in ICs and a more sensitive sync. pick the engineer's toolbox-and only measures $3^{\prime \prime} \times 5 \frac{1}{4}$

(includes P \& P, but no batteries)

We have just received a large consignment of LM380 ICs. These are specially selected to a h
are marked with the number SL 60745
This fantastic little 3 watt audio IC only requires two capacitors and two potentiometers to make an amplifie with volume and tone control. The quality is good and
Non
complete with data and projects book

Over 1,000,000 Iransistors

 in stockWe hold a very large range of fully marked, tested and guaranteed Transistors. Diodes and Rectifiers at very
Our very popular 4p Transistors
FULLY TESTED \& GUARANTEED
TYPE "A"" PNP Silicon alloy, TO-5 can.
TYPE "B" PNP Silicon, plastic encap
TYPE - FF"NPN Silicon plastic encapsulation TYPE "G" NPN Silicon. similar ZTX300 range TYPE' ${ }^{\prime \prime} H^{\prime \prime}$ PNP Silicon, similar ZTX500 range

8 hilurs forf 1.00

 UHF TV Tuner UnitsBrand new by a famous mánufacturer
Data supplied $\mathbf{f} 2.50$

Plastic Power

 Transistors
NOW IN TWD RANG
 These are 40 W and 90W Silicon Plastic Power Tran sistors of the very latest design availate sistors of the very latest design. available in NPN or PNP at the most shatteringly low prices of all time PNP at the most shatteringly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them all parts of the world and we are proud to offer them under our Tested and Guarante日d terms. RANGE I VCE. Min. 15 HFE. Min. 15 $\begin{array}{llll}\text { 40 Watt } & 20 p & 18 p & 16 p \\ 90 \text { Watt } & 24 p & 22 p & 20 p\end{array}$ RANGE 2 VCE . Min. 40 HFE. Min. 40 $\begin{array}{llll} & & & \\ 40 \text { Watt } & 30 p & 28 p & 26 p \\ 90 \text { Watt } & 35 p & 33 \dot{p} & 30 p\end{array}$ Please state NPN or PNP on order.
 High-speed magnetic counters ex. G.P.O 4 digit (non-reset) $4^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime} 30$ p
 INTEGRATED CIRCUITS
 We stock a large range of I.Cs at very competitive FREE Catalogue. see coupon below
 METRICATION CHARTS now available This fantastically detailed conversion calculator carries thousands of classified references between matric and British (and U.S.A.) measurements of length. area. Pocket Size $\mathbf{1 5 p}$.
 \qquad
 LOW COST DUALIN LINEI.C. SOCKETS 14 pin type at 15 p each
 16 pín type at 17 p each $\}$ Now new low profile type
 We BDOKS Books in stock
 BUMPER BUNDLES
 These parcels contain all types of surplus electronic components, printed panels. swithos. potentiometers.
 2 LBS in weight for $\mathbf{f 1 . 0 0}$
 Our famous P1 Pak
 is still leading in value

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 \& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors. Plases ask tor Pak P P. onty 50_{p}

Please send me the FREE Bi-Pre-Pak Catalogue
I enclose a large SAE with 5p stamp.
PLEASE ADD VAT AT CURRENT RATE.
ADDRESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE
Add 15 p post and packing per order. OVERSEAS AD
EXTRA FOR POSTAGE.
Buy these goods with Access.

TRANSISTORS

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING

(6 Position)
Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low nolse.
MOSFET front end for excellent
3 GANG tuning for high selectivity.
YARICAP tuning diodes
VARICAP tuning diodes In back to back configuration for low distortion. CERAMIC filters for defined IF response. \qquad
PHASE LOCKED Stereo decoder with Stereo mute, see below LED fine tuning indlcators
LED fine tuning indleators.
PUSH BUTTON tuning (with AFC disable) over the FM band (88-104).
IC STABILISED and S/C protected power supply.
CABINET double veneered against warp.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.
Basic tuner module prices start as low as $\mathbf{£ 1 2 . 3 1}$. with complete kits starting a £26.95 (mono) + P.P. 65p. and of course all components are available separately. Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $£ 7.02$ when bought with a complete \dot{N}-J tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21 p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits
 are available at $\mathbf{£ 3 0 . 7 8}$ plus P.P. 65 p including Teak Sleeve.

NEW LOW COST STEREO TUNER Available as basic o o complete kits

Basic stereo tuner £15 post free. - Basic mono tuner $\mathbf{£ 1 2}$ post free. 6 position push button units with integral pots $\mathbf{E 2 . 9 2}$.

TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30 dB S/N Image rejection 40dB IF rejection 65 dB
INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW
No alignment required, Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner.)

PRICE Complete stereo kit $£ \mathbf{£ 8 . 4 2}$
Complete mono kit $£ \mathbf{2 4 . 1 9}$
P. \& P. 65p

Phone Swadlincote (0283 87) 5432 Telex 377106

A VCO FXII by FHACHI 1 Hz to 100 KHz for $£ 5.75$ P. \& P. 15p.
 Size: 2 in. long; $1 \frac{1}{8} \mathrm{in}$. wide; $\frac{5}{8}$ in. high. Input: 12 to 24 V DC (not centre tapped) 18 V input giving 10 volt constant amplitude output.
 Requires only a 1 meg ohm potentiometer to tune entire range-or can be swept with a sawtooth input. Enormous possibilities-music; synthesizers; filters; communications; frequency modulation, etc. Detailed application sheet with all purchases.

FHACHI RAMP MODULE FX21

24 volt DC input for 18 volt sawtooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ (eg 50 mfd electrolytic gives sweep of approx 1 cm per second). In or out sync capability. Price $£ 5.75$. P. \& P. 15p.

FHACHI FILTER MODULE FX31

Designed for use with VCO FX11 and RAMP FX21. This completes the 3 building blocks required for a basic low-frequency Spectrum the 3 building blocks required fors 100 HZ to 50 KHZ . The additional components Analyser that covers 100 HZ to 50 KHZ . The additional components
required are discrete resistors and capacitors, etc. (No inductances

Fibre glass P.C. board to mount FX11, 21 and 31 ready drilled. Connection details and list of additional component required supplied with each order. £2.50 P. \& P. 30p.

TEKTRONIX 5458 Oscilloscopes. From As
Now to well sued condition. Main frame. Prices from $£ 225$.
AT LAST-50 MHZ TWICE for under
HEWLETT PACK0.
PACK Oscilloscope
Typo 175 for $£ 195$.

AMERICAN SWEEP GENERATOR type TRM 315 to 400 MHZ £ 300 .
AMERICAN AM GENERATOR Type 497. 4 to 400 MHZ . Supplied with leads. etc.. for
240 V 50 HZ operation $£ 35$.
BRAND-NEW 12in.
LONG PERSISTENCE TUBES
New stocks-new price. Only E6-50
IWhilst stock lasts)
Ideal for SSSV. educaional purposes.
Type 12DP7A. connections. voltages etc.
Price includes carriage \& VAT.

MODERN TELEPHONES type 706. Two-
tone grey $£ 3.75$ ea. Two-tone green $\mathbf{~} \mathbf{3} .75 \mathrm{ea}$. tone gry $£ 35$ ea. P. \& P. 25 pea .
Black
Ideal EXTENSION Telephones with standard
GPO P. \& P. 25 p.

All telephones complete with bell and dial
CONSTANT VOLTAGE
TRANSFORMERS
S. Kilowatt etc.
S.A.E. with requirements.

FENLOW LOW FREQUENCY ANALYSER type SA2 with recorder, £175.
SOLARTRON CD523 Single Beam Oscilloscope 3 db at 10 MHZ : 1 mV max sensitivity
DC coupled down to 1 vol. 4 in. flat faced PDA DC coupled down to 1 vol . 4 in . flat faced PDA
tube. TB from 1 secs. per cm . to 0.1 microsecs per cm. plus times 5 expansion $£ 50$.
MARCONI TF 195M-0/40 KHZ Sine Wave Generator $0 / 40$
must go 57.25 .

Large quantity LT, HT. EHT transformers and
chokes.
Vast quantity of good quality components 3 LB. of ELECTRONIC GOODIES
for E 1.50 post paid.
CRYSTALS. Colour 4.43 MHz . Brand New

Beehive Trimmer $3 / 30 \mathrm{pf}$. Brand new. Oty $1-913 \mathrm{p}$ ea

 Brand new. Qty 1 1-9 13p ea P. \& P. 15 p :10-99 10p ea, P. \& P. 25p: $100-999$
7p es P \& P fies. CAPACITOR PACK 50 Brand new compo nents onty 50 p. P. \& P. 17 p . P.C. MOUNT SKELETON PRE-SETS Screwdriver adjust 10. 5 and 2.5M@ 2pea $1 \mathrm{M}, 500,250$ and $26 k$ a) $4 p$ er Finger ad.
just 10,5 and 2.5 M a 3 p ea. 1 M .500 .250 and 25 K @ 5p ea. Min P. \& P. 10 p . 1000pf FEED THRU CAPACITORS. ONIY Soid in packs of 10-30p. P. \& P. 10p. RECTANGULAR INSTTRUMENT, FANS,
 DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY $£ 3-50$. N. Ireland $£ 2$ extra. P.C P PACK 5 a D. Quantit 2 sa for P.C.B. PACK S \& D. Quantity 2 sq. ft. - no
tiny pieces. 50p plus P. \& P. 20p. tinv.e.
FIBRE GLASS as above $£ 1$ plus P. \& P. 20p. TRIMMER PACK, 2 Twin $50 / 200$ pf ceramic: 2 Twin $10 / 60$ pf ceramic: 2 min strips with 4 preset $5 / 20$ pf on each: 3 air spaced prese
$30 / 100$ of on ceramic base. ALL BRANO NEW 30/100 pf on ceramic base
25p the LoT. P. \& P. 10p.
ALMA precision resistors $200 \mathrm{~K}: 400 \mathrm{~K}: 497 \mathrm{~K}$:
998K: 0.1% 27p ea.: $3.25 \mathrm{~K} .5 .6 \mathrm{~K} .13 \mathrm{~K}-0.1 \%$ 20p ва.

RELAYS
Varley VP4 plastic
33p: $5.8 \mathrm{BK}-\mathbf{4 0 p}$ ea.

HF Crystal Drive Unit. 19 in . rack mount Standard 240 V input with superb crystal ove
by Labgear (no crystals) $£ 5$ e8. Carr. $£ 1.50$. ROTARY SWITCH PACK-6 Brand New switches
50 p. \& P Modern Version of VCR 138. Flat faced. Side
connectors PDA. $£ 2: 60$ ea. P. \& P. 37 p .

BASES for above 20p. P. \& P. 15p.
GRATICULES. 12 cm . by 14 cm . in High
Quality plastic. 15p each. P. \& P. 5p.
PANEL mounting lamp holders. Red or green 9p ea. Miniature. PANEL m
holders-10V 15 MA Ep ea.

BECKMAN MULTITURN DIAL Model RB. Brand new. £1.90.P. \& P. 1 Op.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand New. Single. or Double sided. Any size $1 \frac{1}{2} p$ per sq. in. Postage 10p per order.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand Ne
Information 5 p . Holders 1 p .

METERS. Ernast Turner Model 402. 100 micro amps. BRAND NEW
hence f.2.25 ea. P. \& P. 25 p .
METERS by SIFAM type M 42. 25-0-25 micro amp. Scaled $25-0-25$ green: $250-0-$
250 red: finear. As new. $\mathbf{E 2 . 9 5}$ ea. P. P. 37 p .

VISCONOLEHT CAPACITORS 0.05 mfd 2.5 kv 50 pea e. 0.01 mfd 5 kv 40 pe ea
0.05 mfd
8 kV 50 pea .0 .01 mfd 10 kv 50 pea

BLOCK PAPER CAPACITORS AVAIL.
ABLE. S.A.E. with requirements.
PHOTOCELL equivalent OCP 71, 13p өa.
MULLARD OCP70 10p ea.

LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of $A M$ Radios; Communication Receivers: Filters, etc., in the range of 250 KHZ to 5 MHZ , but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 V AC input. Three controlsRF level; sweep width and frequency. Price $\mathbf{£ 8} \mathbf{5 0}$. P. \& P. 35p.
A second model is available as above but which allows the range to be extended down in frequency to 20 KHZ by the addition of external capacitors. Price $\mathbf{£ 1 1 5 0}$. P. \& P. 35p.
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

DON'T FORGET
 YOUR MANUALS
 S.A.E. WITH
 REQUIREMENTS

MAKE YOUR SINGLE EEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6-25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. 25p.

20HZ to 200KHZ
SINE AND SQUARE WAVE GENERATOR
In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 8.85$ each. P. \& P. 25p. Sine Wave only f6-85 each. P. \& P. 25p.

MARCONI TF 1331 Double Beam Oscillo scope $\mathrm{DC}-15 \mathrm{MHZ}$. Sensitivity $50 \mathrm{mv} / \mathrm{cm}$. 5 in . flat face tube. TB $0.1 \mathrm{michosec} / \mathrm{per} \mathrm{cm}$. to $0.02 \mathrm{micro} \mathrm{sec} / \mathrm{per} \mathrm{cm}$. with expansion. Complete with copy of manual $£ 95$.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

Unless stated-please add $£ 1.50$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., Otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

FABULOUS

STANDARD SIGNAL
GENERATOR
Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Rise time less than InS Ex-Demonstration. New condition in manufacturer's original carton.
ADVANCE SQUARE WAVE GENERATOR SG21

 cis
VAT
TO ALL PRICES

OUR PRICE £ 35 P/P £1.50 s: 18 Also available SG21A
$100 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.

Little used DEC PDP8 systems available for immediate delivery at special prices as a result of cancelled project

* 256 Data Tracks
* 1000 bits/inch
* 8 Megabits
* Speed 3000 rpm
* Access time 10 millisec
* Data transfer rate 1.65 megabits/sec.
* Recording bit density 1050 bpi
* Complete with electronics for interfacing to DEC PDP8
Vermont 1004 Memory Drum
* 128 Data Tracks
* 650 bits/inch
* 4.4 Megabits

Speed 3000 rpm
RING NOW FOR LATEST ON BRAND NEW DRUMS OR EX-DEMONSTRATION MODELS

WIDE RANGE OF SPARES FOR THE FOLLOWING COMPUTERS ICI 1500, ICL 1900, SYSTEM 4, 4100 803, AMPEX, atc.

COSSOR VISUAL DISPLAY DID400. CON
sisting of Keyboard \& DItsplay 402 stand alone
capability, for alphanumeric data
from $£ 500$. Please phone for details.

PDP8E 12 K Processor complete with
Facit 4001 High Speed Reader (500 cps) Data Dynamics BRPE 114 Punch (110 cps) Sperry J 1018
Line Printer
Rack-mounted in double cabinet
PDP8E 4K Processor complete with
Facit 4001 High Speed Reader (500 cps) Data Dynamics BRPE 114 Punch (110 cps) ASR33 Teletype
A PHONE CALL CAN SAVE YOU A BOMB! RING NOW FOR PRICE!

SRECIAL OFFER OF COLDUR T.V.
AND F.M. MEASURIN G EQUIPMENT
BY WANDEL AND GOLTERMANN
tion distortion for Colour T.V. Sub carrier (PAL Systems) $\mathbf{E 4 9 5 . 0 0}$
VZM2 Measuring set for measuring phase and amplitude modula-
tion distortion for Multichannel FM radio systems with tion distortion for Multichannel FM radio systems with base bands
up to $12 \mathrm{Mc} / \mathrm{s}$. VZM83 Generator and Receiver .00
distortion on FM radio link systems. Superimposed signal
E275.00

PROGRAMME BOARDS BY SEALECTRO

These boards are basically a multi-pole multi-throw switch device running shorting or plugging in pins. Ideal for prototype work. etc. Boards available in 2 planes. $24 \times 50 £ 29.20 \times 11 £ 15$.

ALPHANUMERIC

 nikIe TUBES B7971The AIphanumeric NIXIE tube has the ability to display all the letters of the alphabet, numerals 0 thru 9 and specia characters in a single tube.

From the standpoint of both reatability teche provides many unione tivphanumeric NIXIE * All DC operation *Uniform. continuous line

- Memory with simeighi
- Miemory with simple
high ambient light
\star Long life with no loss of brightness
- Character height $2 \frac{1}{2}$ ins.

Price only 990
JUST ARRIVED NIXIE TUBES
NUMERIC ONLY. PHONE FDR
DETAILS LARGE QUANTITIES

HERE! NOW! FOR IMMEDIATE DELIVERY!

AV07 f19.50

guaranteed 12 mond checked, one free calibrationths with
Leads and
Leather cases for extra.
Ever-ready cases above $\mathbf{E 3 . 5 0}$. meter to be used enables the case f5. 5 . *Please note: X stands for full
tropicalised, Splash-prof mu-metal shield. Splash-proof and

TELETYPE PUNCH

BRPE High-speed punch, Self-contained, consists of punch
unit, base. motor unit. For use in many data co

characters perating speeds up to 100 characters per second 11100 words per
minutel. Available for punching 5.5 .7
or 8 . level codes. into $11 "$.

WELMEC 788 HOLE ELECTRO-MECHANICAL PUNCHES \& READER
Models S110 and
from stock. $£ 45$.

ICT KEYBOARDS

In original packing-Numerical from $£ 4.50$.
In original packing Alpha-numeric. Prices from $\mathbf{£ 1 5 . 0 0}$
Magnetic Tape Transporters AMPEX TM4. TM2. TM7, FR300. IBM 7330. POTTER. From £89.00.

TAPE READERS

Photo-electric Readers for all colour paper 1CL Type $2640(250 \mathrm{cps})$. Elliott T2/94 (250 cps). Elliott D4/42 ($500-1,000 \mathrm{cps}$) Available with full
Prices from $£ 220$.
HEWLETT PACKARD DIGITAL RECOROER MDOEL 565A Data Entry, parallel to 11 columns. Print speed 5 lines pe

Stol ITVES

TEKTRONIX 453A Listed at over $£ 1300$ Special Offer this month- $£ 795$

SPECIAL OFFER OF TELEPHONE CARRIER TEST EQUIPMENT An unusual offer of a system up to $15 \mathrm{Mc} / \mathrm{s}$ for the measurement
of level attenuation on telephone carrier equipment and wid Sand radio relay systems. Oscillator $10 \mathrm{Kc} / \mathrm{seq}-17 \mathrm{Mc} / \mathrm{s}: 303355$ Level 3 Selective Meter 10 $\mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$: 3 W 933 Sweep Attachment; 3D346 Large Screen Level Tracing Receiver. Offered as complete system as Special Offer less than Half-Price
 Also available manual point to point sysiem
$3 W 518$ Selective Level Oscillator $40 \mathrm{Kc} / \mathrm{s} 77 \mathrm{Mc} / \mathrm{s}$
3D 335 Selective Level Meter $10 \mathrm{Kk} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}$
£950.00

2

LIMITED QUANTITY Made to meet the most stringent Government Service Standards
DC40 MHz DUAL TRACE Solartron C.T. 484 oscilloscope. $\mathbf{3} \%$ accuracy. Dual Trace Displays. DUAL TRACE Y AMPLIFIER. Bandwidth:
 Sensitivity: ${ }^{56 \mathrm{pF}}$. Measuring Accuracy: $\pm 5 \%$
S M.
 dirpct $\pm 3 \%$. 100 nanosecs/ $1012 \mathrm{secs} / \mathrm{cm}$.

 Sensitivity: ${ }^{2} 1 \mathrm{M} . \mathrm{ohm} 40 \mathrm{pF}$. Sensitivice: 1 M.ohm 40 pF. Acuracy: $\pm 3 \%$.
Impedance: INTERNALCALLBRA YMPLLFIER PLUG ALSO

 AVMe: 8 nanosecs. Sensitivit. 22 pF Measuring Input impedance: 1 im | Input impedance: |
| :--- |
| Accuracy $\pm 5 \%$ dirct. |
| $\pm 3 \%$ with calibrator. $\mathbf{1 4}$ |
| 30.50 |

THE VERY, VERY LATEST COSSOR
4000-50MHz DUAL TRACE OSCILLOSCOPE
$5 \mathrm{mV} / \mathrm{cm}$ Sensitivity. $10 \mathrm{~ns} / \mathrm{cm}$ to 2 sicm Timebase. Calibrated Sweep. Galed Trigger.
SPECIAL PRICE FOR THIS MONTH ONLY
£ 349.50

RCA 301 TAPE DECK MODEL 381 Technical Data. ${ }^{2}$ " wide Magnetic Tape.
Powne supalies: c / s. Single phase Magnetic recording head. read/write and erase. Seven channels each head. Speed $30^{\prime \prime} /$ sec. forward or reverse. PRICE $£ 29.50$ Phice E2S. 50 The recording density of 333 characters per $90^{\circ} / \mathrm{sec}$. during rewind. . inch is maintained, thus giving the nominal
10.000 characters per second. Maximum diameter of 8 " tape reel. Accommodates 1200f. of Magnetic Tape which gives a minimum of 1.150 ft . available for recording.

MINITRON

K.G.M. Type 3015F 7 Segment display showing figures $0-9$ pius decimal point. Character pf 9 mm height. In 16 DIL case NEW LOW PRICE E1.2 SN 7477 NBCD
Decoder Driver E 1.00
Potaniondars

TEN TURN 3600° ROTATION

E11.75

AC CLAMP VOLTAMMETER Specification
Specification
Measurement ranges:--Current 10-25-100
 Accuracy 4%. Scale length 60 mm . Overai
dimensions $283 \times 94 \times 36 \mathrm{~mm}$. Weight 1.5 lbs

SPECIAL PURCHASE OF ADVANCE
 EX-DEMONSTRATION TEST EQUIPMENT

Advance PG56 Double Pulse
Generator
Independently variable. $2 \mathrm{~Hz}-3 \mathrm{MHz}$ Pulse Width Delay $70 \mathrm{nS}-0.2$ secs. in 19 steps. Rise Time better than 10 OS . External trigger and internal rate generator. $£ 120$

Advance PG52 Pulse Generator

Repetition frequency up to 20 MHz and output puises up to 20 V into 5 ohms with rise and fall times of 5 nS . Also produces complex ramp wave forms not obtainable from conventional pulse generators. Fully protected against short circuit. $£ 275$

Advance T.V. Dot and Cross Hatch Generator SG73
Output in form of modulated signal at VHF and UHF at level suitable for aerial sockets of receiver Two Ranges
Band III on fundamental (MOD)
Band IV \& V On Harmonics (- MOD)
Modulation 405 Lines or 625 Lines
£49.50 EX-DEMONSTRATION BRAND NEW

IP) IL.P.(twentoremeve

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid
preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers - the first contains frequency equalisation and gain correction, while the second caters for tone control and balance.
TECHNICAL SPECIFICATION Inputs

Magnetic Pick-up 3 mV .RIAA Ceramic Pick-up
Microphone
Tuner
Input impedance
Outputs
100 mV
Main output $\mathrm{Odb}(0.775$ volts RMS)
Active Tone Controls
Treble $\pm 12 \mathrm{db}$ at 10 kHz
Bass $\pm 12 \mathrm{db}$ at 100 Hz
Distortion $\quad 0.05 \%$ at 1 kHz
Signal/Noise Ratio
Overload Capability
sensitive inpu
Supply Voltage $\quad \pm 16-25$ volts.
PRICE $£ 4.50+0.36$ V.A.T. P \& P free.

The HY50 is a complete solid state hybrid $\mathrm{Hi}-\mathrm{Fi}$ amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connec. tions are provided: Input, output, power lines and earth.
TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance 4-16 Ω
Input Sensitivity Odb (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$
Supply Voltage ± 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE $£ 5.98+0.48$ V.A.T. $P \& P$ free

The PSU50 can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 25 volts
Input voltage $210-240$ volts
Size L. 70, D. $90, \mathrm{H} .60 \mathrm{~mm}$.
PRICE $£ 5.00+0.40$ V.A.T. P \& P free.

AUDIOTRONIC Model ATM1

OUR PRICE $£ 3.25$

booklet. Size: $121 \times 73 \times 29 \mathrm{~mm}$.
OUR PRICE f 3.95 P $\&$ P 20 p

U4323 MULTIMETER

2.5/10/15/250/500/1000V AC. $0.05 /$ $\times 10 \times 100 \mathrm{~mA}$ DC. Resistance : 500 장․ $500,5 \mathrm{k} \Omega .50 \mathrm{~kg}$ cente scale)
Battery
Operated.
Size:
$160 \times$ 40 mm . Supplied in carrying case comOUR PRICE $£ 7.70$ P\&P30p

HIOKI 730X
 OUR PRICE PGP 30p.

U4324 MUL TIMETER load grotected 20,6000py Ranges $60 / 120 / 600 / 1200 \mathrm{~V}$
$\mathrm{DC} .3 / 6 / 15 / 60 / 150$ DC. $3 / 6 / 15 / 60 / 150$ /
$300 / 600 / 900 \vee \mathrm{AC}$. Current: $0.06 / 0.6$.
$6 / 60.60 \mathrm{~mA} / 3 \mathrm{DC}$ $0.3 / 3 / 30 / 300 \mathrm{~mA}$ /
 25/500 ohms/0.5/5/50/500k ohms/5
Mohms. Docibels: -10 to $+12 d B$. Size $167 \times 98 \times 63 \mathrm{~mm}$. Supplied comp
lete with test leads, spare diode and OUR PRICE 99.25

 ance: $0.3 / 3 / 300300 \mathrm{k}$ ohms. Size: $205 \times 110 \times 84 \mathrm{~mm}$. Sup.
plied complete with leads, crocodile
clios OUR PRICE £8.75 P\&P 30p U4312 MULTIMETER extramely sturdy
instrument for general etectrical
guse. 667 or use. 6670py
$0 / 0.3 / 1.5 / 7.5 / 30 /$ $60,150300 / 600 /$
900 DC
75 mV . $0 / 0.3115 / 7.5 / 30 /$ $601150 / 300 / 600 /$
$900 V A C C 0 / 300 u A /$ $9.5 / / 6 / 15 / 150 / 60 \mathrm{~A}$
$600 \mathrm{~mA} / 1 / 1.5 / 6 \mathrm{~A}$
 DC. 071.5/6/15/ $1.5 / 6 \mathrm{~A}$ AC. O/200/3k/30k ohms. DC accuracy 1%. $\mathrm{AC} 1.5 \%$. Knife edge
pointer, mirror scale. Complete with sturdy, metal carrving case, leads and
instructions OUR PRICE £10.25 P\&P50p U91 Clamp VOLT AMMETER For measuring AC voltage and current without breaking circuit. Ranges:
$300 / 600 \mathrm{~V}$ AC. Current: $10 / 25 / 100 / 250 / 500 \wedge$:
Accuracy 4% Size 283 x Accuracy 4%. Size 283×1
$94 \times 36 \mathrm{~mm}$. Complete with carying case, leads
and fuses. OUR PRICE £13.50

MODEL 500 30,000 opv with
overload protect-
 $100 / 250 / 500$
1000 VO 1000 DC
$050 / 5010 / 25 / 100 /$ $250 / 5001000 \mathrm{~V}$
$\mathrm{AC} .0 / 50 \mathrm{H} / 5 / 50$ 500 mA .12 ADC
$0 / 6 \mathrm{k} / 6 \mathrm{me} / 60 \mathrm{~m}$ OUR PRICE $£ 13: 95$ Ceather case for above $£ 1.75$
+

HIOKI 750X VOLT-OHMNILLLIAMETER

KAMODEN 360 MULTIMETER

 $1 / 10 / 100$ ohms/
$1 / 10 / 100 \mathrm{k}$ ohms/ $/$ $10 / 100 \mathrm{M}$ ohms.
Decibels -20 to +62 dB . Battery operated. Size: $180 \times$ $140 \times 80 \mathrm{~mm}$. Supplied complete with OUR PRICE E17.50 P \& P 40p

TMK MODEL 117 FET ELECTRONIC VOLTMETER Battery operated.
11 Meg input 26. 11 Meg input, ${ }^{4}$,
ranges. Large $41 /{ }^{\prime \prime}$
mirgor scale. Size: mirror seale, Size:
$149 \times 17 \times 60 \mathrm{~mm}$. $\begin{aligned} & 0.3-12000 \mathrm{DC} \\ & 3-300 \mathrm{OMS} \text { AC. }\end{aligned}$. 8-800V P.P.

DC current $0.12-$ 12 mA . Resistence
 12 mA . Resistence up to 2000 MOhm

up 10 2000MOhms. Decibels: -20 to
+51 dB Supplied complete with leads and instructions. 18.50 P8P 200 TMK IOOK LAB TESTER
 scale. Buzzer
short circuit short circuit check.
Sensitivity 100000 Sensitivity
opv DC. $5 \mathrm{k} / \mathrm{V}$ AC opv DC. $5 k / V A C$
DC Volis: $0.5 / 2.5 /$ 10/50/250/1000V
 $500 / 1000 \mathrm{~V} D C$.

$$
\text { current } 10 / 100 \mathrm{u} \mathrm{~A}
$$

$10 / 100 / 25 / 10 \mathrm{~A}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100 \mathrm{Meg}$ ohms. $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Meg ohms.
Decibels: -10 to +49 dB . Plastic case Decibers: -10 to +4 dB . Plastic case
with carrying handle. Size: 190×172
$\times 99 \mathrm{~mm}$. OUR PRICE £19.95 P\& 19 30p 370WTR MULTIMETER

ran $0 / 0$ 250 $0 / 2$
 rang 00. 250

 anges. 20,000opv.$0 / 0.5 / 2.5 / 1050$.
$250 / 50 / 2100 \mathrm{l}$ 250/500/1000V DC.
$0 / 2.5 / 10 / 50 / 250 /$ $500 / 1000 \mathrm{~V}$ AC $0 / 50 u A / 1 / 10 / 100$ $0 / 100 \mathrm{~mA} / 1 / 10 \mathrm{~A}$ AC. $0 / 5 \mathrm{k} / 50 \mathrm{k} / 500$ $5 \mathrm{Meg} / 50 \mathrm{Meg}$
Decibels: -20 to +62 dB OUR PRICE £19.95 P\&P 30p KAMODEN 72.200 Multitester High sensitivity
tester. 200,000 opy Overload protected
Mirror scale.
Ranges: $00.06 / .3$
$3 / 30 / 120 / 600 /$ 1200 V DC. 0/3
$12 / 60 / 300 / 11200$ $\mathrm{AC} .0 / 612 \mathrm{~mA}$
$1.2 \mathrm{~mA} / 120 \mathrm{~mA}$ $600 \mathrm{~mA} A C,-20$ to
$0 / 12 \mathrm{~A}$
$+63 \mathrm{~d} .0 / 2 \mathrm{k} / 200 \mathrm{k} /$
 $+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k} /$ DUR PRICE E 22.50 P\&P $30 p$ U4317 MULTIMETER Migh sensitivity
instrument for fiel
 Knife edge pointer,
86 mm . mirror scale. Overload protectio
Ranges: $100 \mathrm{mV} /$
$0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ $500 / 1000 \mathrm{~N}$ AC. Current: $50 \mathrm{LA} / 0.5 /$ 1/5/10/50/250mA/1/5A DC. $0.25 /$ $0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{AC}$. Res. istance: $0.5 / 300 \mathrm{k}$. Decibels: $-510+10 \mathrm{~dB}$ Battery operated. Size: $210 \times 115 \times$
90 mm . Supplied in carrying case com90 mm . Supplied
plete with leads. OUR PRICE £16.50 P\&P 40p MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Ohms/Volt AC

and DC.

 Accuracy 0.5\%DC. 1\% AC. Scale length:
 165 mm.

$0 / 300 / 750 \mathrm{u} /$ $30 / 75 / 150 / 300 /$ 750mA/1.5/3/ | $7.5 A$ DC. $0 / 3 /$ |
| :--- |
| $7.5 / 15 / 30 / 75 /$ |
| | $7.5 / 15 / 30 / 75 /$

$150 / 300 / 750 \mathrm{~mA} /$
$1.5 / 3 / 7.5 A \mathrm{AC}$.
$0 / 75 / 150 / 300 / 75 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /$ $30 / 75 / 150 / 300 / 750 \mathrm{~V}$ DC. $0 / 750 \mathrm{mV} /$
$15 / 3 / 75 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ AC. Automatic cut out device. Supp. lied complete with test leads, manual OUR PRICE £52.00 P\&P50p

$A L P B C E$

OUR PRICE f 8.95 P \& P 30p
MODEL AF. 105 VOM 50,000 opv. M
scale. Meter $0 / 3 / 3 / 12 / 60 / 120 /$ 300/600/1200V DC 0/6/30/120/
$300 / 600 / 1200$ $0 / 30 \mu \mathrm{~A} / 61$ $60 / 300 \mathrm{~mA} /$
12 Amp. $0 / 10 \mathrm{~K} /$ $1 \mathrm{~m} / 10 \mathrm{~m} / 100$
 OUR PRICE £12.50 P\&P 30p. LB3 TRANSISTOR TESTER PNP/NPN. Operate Instructions sup
£3.95 PRIC

LB4 TRANSISTDR TESTER	
Tests PNP or NPN	
transistors. Audio	-
indication. Operates	
batteries. Complete	
with instructions etc.	
OUR PRICE	

$\mathbf{~} 14.50$ P\&P 20p Transistor Tester 27 ranges. 16,700opv,
Overload protected.
Ranges: $03 / 1.5 / 6$. Rangead protected.
Ranges: $0 / 1.5 / 6 /$
$30 / 60 / 150 / 300 / 90 \mathrm{~V}$ $30 / 60 / 150 / 300 / 900 \mathrm{~V}$
DC. $1.5 / 7.5 / 30 / 150 /$ DC. $1.5 / 7.530 / 150 /$
$300 / 750 \mathrm{AC}$
Current: $0.06 / 0.6 /$ Current: $0.06 / 0.6 /$ 6/60/600mA DC.
$0.3 / 3 / 30 / 300 \mathrm{~mA} A$
 $0.3 / 3 / 30 / 300 \mathrm{~mA}$
Resistance: 0.06

$0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ ohms $/ 2$ Mohms with probes, leads and steel carrying case. Size: $115 \times 215 \times 90 \mathrm{~mm}$.
OUR PRICE $\mathbf{£ 1 0 . 5 0 \quad \text { P\&P } 3 0 p}$ S100TR MULTIMETER
TRANSISTOR TESTER 100,000opv. Mirro
scale. Overioad protection. $0 / 0.12 /$
$0.6 / 3 / 12 / 30 / 120 /$ 600 V DC. $0 / 6 / 30 /$ $120 / 600 \mathrm{~V}$ AC.
$0 / 12 / 600 \mathrm{~A} / 121$ $300 \mathrm{~mA} / 6 / 12 \mathrm{~A} D$ $0 / 10 \mathrm{k} / 1 \mathrm{Meg} /$
100 Meg.
100 Meg.
-20 to +50 dB .
Transistor tester measures Alpha, Beta
and ICO. Complete with instructions, OUR PRICE £19.95 P\& P 25p CI5 PULSE OSCILLOSCOPE For display of pulsed forms in electronic
circuits. VERT. AMP circuits. VERT. AMP.
Bandwidth: 10 MHz .
Sensitivity 100 H Sensitivity at 100 kHz
VRMS $/ \mathrm{mm}: 0.1-25$; HOR. AMP BandSonsitivity ay 100 kHz
VRMSS $\mathrm{mm}: 0.3-25$

$$
\begin{aligned}
& \text { Preset triggered sweep } \\
& \text { 1-30000 }
\end{aligned}
$$

-3000usec. Free running 20-200 kHz in nine ranges. Calibrator pips.
$220 \times 360 \times 430 \mathrm{~mm} .115-230 \mathrm{~V}$ AC. OUR PRICE f43.00 Carr. paid RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band
Separate $Y 1$ and Y 2 amplifiers. Rectang-
amp $5^{\prime \prime} \times 44^{\prime \prime} C R T$ ular 5" $54^{\prime \prime}$ CRT.
Calibrated $t r i g g e r e d ~$ sweep from 0.2 Lsec .
to $100 \mathrm{milli} \mathrm{sec} / \mathrm{cm}$. Free running time
base $50 \mathrm{~Hz}-1 \mathrm{MHz}$.
Buit-in time base Cuiltibrator and amplitude Calibrator Supplied complete with
and instruction manual.
OUR PRICE £87.00 Carr. paid
SWR METER Model SWR3
Handy SWR meter for
transmitter antenna align-
ment, with built-in field strength meter. Accuracy 5%, Impedence 52^{\prime} Indic
ator 100 uADC . Full scale 5 section collapsible
antenna antenna.
60 mm .
OUR PRICE f4 25
P\&P 30p

MODEL TE15 GRID DIP METER ates as Grid Dip.
Oscill
Osion Oscillator, Absorb tion Wave Moter and
Oscillating Datector. Frequency range
$440 \mathrm{kHz}-280 \mathrm{MHz}$ $440 \mathrm{kHz}-280 \mathrm{MHz}$ in six coils. 500 uA operation. Size:
$180 \times 80 \times 40 \mathrm{~mm}$ OUR PRICE $£ 19.95$
 P\&P 30p

TRANSISTORISED L.C.R. A.C BR/8' MEASURING BRIDGE
 A new portable excellent range and accuracy at low
cost. Resistance: 6 ranges: 0.1 ohm-11.1 megohm $\pm 1 \%$ Induct.
ance: 6 ranges: 1 microhenry- 111 ance: 6 ranges: 1 microhenrv-111
henries $\pm 2 \%$ Capacity: 6 ranges: 10pf $-1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio: Bridge Voltage aq $1,000 \mathrm{cps}$. Operated from 9 -volt battery. 100 microamp meter indication.
$5^{\prime \prime} \times 2^{\prime \prime}$
OUR PRICE $£ 25.00$ P\&P $30 p$
TE16A TRANSISTORISED
 with instructions and leads.
OUR PRICE $£ 8.97 \quad$ P\&P 30p

AC operation. Supplied brand new guaranteed, with instruction manual
and leads. OUR PRICE $\mathbf{f} 24.95$ P\&P 50p

ARF 300 AF/RF SIGNAL
 $1 V$ maximum.
$220 / 240 \mathrm{~V}$ andions and leads. Complete OUR PRICE $\mathbf{~} 37.50$ P\&P50p

MODEL MG 100 SINE SQUARE

220.000 Hz Sine

Wave 19-100,000 Hz Square Wave. Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation 220/240V.A.C.
OUR PRICE £19.95 P\&P 50p

SPECIAL BARGAIN!
FERGUSON
3406 HI-FI
 SPEAKERS High quality 2 way speaker systems. Size: $560 \times 340 \times 255 \mathrm{~mm}-18 \mathrm{kHz}$. Wood grain finish with black fronts. OUR PRICE $£ 22.50$ PR. P\&P $£ 1$

 Com stereo iack plug.

aUR PRICE | OUR PRICE $£ 2.60 \quad$ P\&P 30p |
| :--- |

SUPO Regulated POWER SUPPLY UNIT

OUR PRICE £19.95 P\&P 50p
AUDIOTRONIC LE-102A INTERCOM

Beautifully made and finished in
two tone ivory/buff, the LE-102 useful in the home, office or shop alarm. Wall or desk mounting 57 mm speaker/mic givas clear 2 -
way communication with on/of way communication with on/o unit. Operates on 9 V batt. Approx
60 ft lead. OUR PRICE f3.95 P \& P 30p

TRITON 4318 PORTABLE

 8 TRACK CARTRIDGE PLAYER WITH MW/LW RADIO Conaurally. Channel
selector solecto
switch.
 bands. Volume and tone controls. operation. OUR PRICE £11.95 P\& P50p

EA41 REVERBERATION AMPLIFIER $\begin{array}{llll}\begin{array}{l}\text { Self contained, } \\ \text { transistorised, } \\ \text { battery operated. }\end{array} & 9 & 2\end{array}$ Simply plug in microphone gu itar otc. and output to
your amplifier your amplifitier. Volume control and
depth of reverberation control. Beau depth of reverberation control. Beau-
walnut cabinet. $184 \times 77 \times 108 \mathrm{~mm}$. OUR PRICE $£ 7.50 \quad$ P\&P $30 p$

SPECIAL OFFER! SAVE OVER 50%

AMSTRAD 8000/2 Stereo amplifier 7 watts per channel rms. Inputs for tuner tape, phono. Headphone socket. List price $£ 29.95$ OUR PRICE f12.95 P \& P 60p
SPECIAL OFFEB! CONVERT YOUR STERED SYSTEM $104 D$ SOUND
FOR UNDER f16

Exclusive offer of GOODWIN 4CHANNEL CONVERTER and a pair of AD15 10 watt 8 ohm bookshelf speakers enables you to add 4D sound to your existing systern. details. Normal retail value $£ 25.50$ OUR PRICE 15.80 P \& P £1 GOODWIN CONVERTER available Ply

We carry a tremendous range of both pocket and desk calculators from as little as $£ 9$.
Owing to the demand it is not possible to include them in this advertisement, so send for our latest price list or call into any
branch

SINCLAIR SVSTEM 2000

2000 AMPLIFIER

 Amplifier output 8 watts per 0.06%. Silicon transistors. Two pick-up plus radio and tape inputs. tape output and scracch filter. OUR PRICE £27.50 P \& P 60p.

2000 FM TUNER

Exceflent selectivity and sensitivity. Twin dual-varicap tuning. 4 pole ceramic filter. 19 transistor
stereo demodulator giving 40 dB separation. Distortion 0.2% output. Fantastic Value. List $£ 39.95$ OUR PRICE $£ 27.50$ P \& P60p.

SINCLAIR ICI2

INTEGRATED
CIRCUIT

AMPLIFIER

 complete withprinted circuit OUR PRICE 11.50

SINCLAIR Project 80 Modules 240 Power Amp. $\quad 85.95$ P \& P P 15p

 FM Tuner
Stereo Deco

 SINCLAIR Project 80 Packages

TE1021 Stereo Listening Station For balancing

switching. Two
gain controls, speakers on-off stide OUR PRICE $£ 2.25$ P\&P 15p AUDIOTRONIC
LOW NOISE CASSETTES $\begin{array}{lccr}\text { TYPE } & 5 & 10 & 25 \\ \text { C60 } & \mathbf{5 1 . 5 7} & £ 3.00 & £ 7.08 \\ \text { C90 } & \mathbf{£ 2 . 2 4} & £ 4.25 & £ 10.00\end{array}$ $\begin{array}{llll}\mathrm{C90} & £ 2.24 & £ 4.25 & £ 10.00 \\ \mathbf{£ 1 2 0} & £ 2.73 & £ 5.17 & £ 12.24\end{array}$ AUDIOTRONIC
8 TRACK CARTRIDGES $\begin{array}{llcc}\text { TYPE } & \text { Each } & 5 & 10 \\ 40 \mathrm{M} & 85 \mathrm{p} & £ 4.00 & £ 7.50 \\ 80 \mathrm{M} & £ 1.15 & £ 5.40 & £ 10.25\end{array}$ P\&P Cassettes 3 p , Cartridges 5 p each
OVER 10 of either POSTFRE MP7 MIXER-PREAMPLIFIER imputs each with
individual gain
controls enabling complete mixing
facilities. Battery facilities. Battery operated. Size: 235
$\times 127 \times 76 \mathrm{~mm}$. Inputs: $\times 10 \mathrm{k} ; 2 \times 3 \mathrm{mV}$. 600 ohms. Mies. $3 \times 3 \mathrm{mV}$ ono Mag.
$4 \mathrm{mV} 50 \mathrm{k} ;$ Phono Ceramic 100 mV . 4 mV 50k; Phono Ceramic 100 mV 1
Meg . Output 250 mV 100 k . OUR PRICE £8.97 P\&P 20p AUDIOTRONIC AHA101 Stereo Headphone Amplifier Stereo He
All silicon,
transistor
transistor,
amplifier op ates from mag
netic, ceramic netic, cer
or. tuner

twin stereo headphone outputs and separate volume controls for each
channel. Operates from 9 V batter INPUTS: 5 mV and 100 mV battery. OUTPUT: 50 mV per channel. OUR PRICE £8.50 P\&\& 30p

$-V W W$	HIGH QUALITY CDNSTRUCTION
JOSTYKIT	KITS WE ARE APPOINTED STOCKISTS AT ALL BRANCHES

All kits are complete with compre hensive easy to follow instructions and Post and Packing 15p per Post and Packing 15 p per kit. AF 20 Mono amplifier.. AF25 Mixer............ilit AF80 0.5 W mic. amplifier AF 305 Intercon. -......... M160 Multi-vibrator.
M1302 Transistor tester
M191 VU Meter................
M192 Stereo balance mete LF380 Quadraphonic device. AT30 Photo cell switch unit
AT50 400W triac light AT56 ${ }^{\text {dimmer/speed control }}$ ATG0 1 channeel ligh control AT65 3 channel light
GU330 Tremolo unit
HF61 Diode detector
HF65 FM ransmitte
HF310 FM tuner
HF325 Deluxe FM tuner.......
HF330 Decoder (HF310.325
 HF330 Decoder (HF310/32
GP312 Circuit board
GP304 Circuit board
HF380 I w/vht aerial amplifie
HF395 broad HF395 broadband aerial amp
NT10 Stabilised power suppl
100 mA 9 g
NT 300 Stabilised p. supply. or $2 \times 18 \vee$ D.C. at 2 amps NT305 Voltage converter... NT315 Power supply 240 V
to4 $5 / 15 \mathrm{~V}$ DC 500 mA.
\qquad
\qquad Amateur Electronics by Josty-Kit, covers the subject from basic prin-
cipals to advanced electronic techniaues. Complete with circuit b
AE1 to AE10 listed below.
OUR PRICE E3. 30 (No VAT)
AE 100 mW output stage
E3 Dieamplifier..
AE3 Diode r
AE5 Astable multi-vibrator
AE7 RC generator.
AE8 Bass filter...
E9 Treble filter.
E10 CCIR filter

Also see previous page

ALL PRICES EXCLUDE VAT

SEW PANEL METERS
 SEW PANEL METERS ARE STOCKED AT OUR 3 LISLE ST., 311 EDGWARE RD.. \& 152 FLEET ST., BRANCHES or ordar by post.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quántity discounts available. Send for fully illustrated brochure

CALL INTO YOUR NEAREST LASKY S BRANCH OR SEND COUPON BELOW FOR NEW 16 PAGE HI-FI PRICE LIST

86 SOUTH ST. ROMFORD 20218
205/206 CHURCHILL WEST, 070261224
VICTORIA CIRCU5, 5OUTHEND
KENT

53/57 CAMDEN RD., TUNBRIDGE WELL5
0892-23242
LEICESTERSHIRE
45 MARKET PLACE, LEICESTER
O533-537678
MORTHAMPTONSHIRE
73 ABINGION STREET,
NORTHAMPTON (OPENIng November)
STAFFORDSHIRE
30 WULFRUM WAY, WOLYERHAMPTON

SURREY	
1046 WHITGIFT CENTRE, CROYDON	
	01-681 3027
27 EDEN ST. KINGSTON	01.5467845
38/40 EDEN ST., KINGSTON	01-546 1271
32 HILL ST. RICHMOND	01-948 1441
WARWICKSHRE	

116 CORPORATION 5T., BIRMINGHAM
$021-2363503$

OUR CUSTOMER

SERVICES DIVISION at head olfice will answer all your enquiries $-~$
just ring $01-2001321$

NO DEPOSIT TERMS available on most goods for personal callers

chedues dí the value of fjo.

 ACCEPTED FROM PERSONAL SHOPPERSWITH BANKERS CARD. IN OTHER CASES AND FOR AMOUNTS IN EXCESS OF E30. please allow time for clearance. bankers drafis accepted
All prices correct at 25/9/74 but
subject to shange without notice E.\&O.E.
Audiotronic Group of Compantes

FANTASTIC INSTRUMENT BARGAINS

This is our second list of high-quality equipment, surplus to our present requirements. It is all in good working order and has been regularly maintained to the manufacturers' own standards. Instruments may be viewed by arrangement only at the above address. Please telephone for an appointment.
Please check the availability of instruments and ask for a quotation by telephone or telex.
A Calibration service is available. Please ask for a quotation.

AUDIO HI-FI

Sale Price
Crown
High Power Loudspe Stereo Recorders
£70-£80 BRIDGES
Wayne Kerr
6012. LCR Bridge. Wide Frequency range

SR268. Source and Detector B221/Q221. LCR Bridge COUNTERS AND TIMERS Hewlett Packard
521612 MHz 7 Digits
it Counters
$£ 320$
524650 MHz .6 Digit Counters $\quad £ 190-£ 290$ 5252 A 350 MHz . Pre-Scaler plug-ins $£ 100-\mathbf{£ 1 2 0}$ 5253 B 512 MHz . Converter plug-ins $\mathbf{£ 1 0 0 - £ 1 9 0}$ Marconi
TF2401, Main Frames On Application $\begin{array}{ll}\text { TM7558, plug-ins } & \text { On Application } \\ \text { On Application }\end{array}$ $\begin{array}{ll}\text { TM8267, } 110 \mathrm{M}-\mathrm{MH} \mathrm{Hz}, \text { plug-ins } & \text { On Application } \\ \text { TM Application }\end{array}$ TM8264.1.0.3-2.5GHz. plug-ins On Application TM8094/1, 0.3-2.5GHz. pl
DIGITAL VOLTMETERS
Dana
3800A. Digital Multimeter. 0.1\%. 3 Digits
£140-£180 Dynamco
DM2022, DV. 0.02\% 10 $\mu \mathrm{V}$
resolution- 2 KV
£130-£290
DM2 140/A1/B1. Mean AC Converters $£ 200$ DM2140/A1/B3. RMS AC Converters Hewlett Packard
3440 and Range of plug-ins (complete) $\mathbf{f 6 0 0}$ Solartron
Solartron
LM1420. 2. DC. $0.05 \% 2.5 \mu \mathrm{~V}$
resolution to 1 KV
£110-£190

OSCILLOSCOPES

Cossor

CDU150. DC $-35 \mathrm{MHz} .5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{DIV}$ dual trace
£400

Dynamco
7100 . DC- 30 MHz . Main Frames $\mathbf{£ 1 0 0 - £ 1 5 0}$ 1 Y 2 . DC -30 MHz . Dual Trace Amplifier Plug-ins
Y4. 625 lines TV Monitor
1×1. Time Base plug-ins
1×2. Time Base plug-ins with Delay
Hewlett Packard
1200A. $X-Y$ or standard Dual Trace DC- 500 KHz
MF2203. DC-15MHz. Single Trace
Battery/Mains $\quad \mathbf{£ 4 0 - £ 8 0}$ Telequipment
Telequipment
D. 43 . DC -25 MHz . Main Frames with
Time Base $\mathbf{£ 6 0 - £ 7 0}$

$25-£ 40$ $£ 60$
 £20-£40

£30-£60
£180

80

Wayne Kerr
$0.22 \mathrm{D} .10 \mathrm{KHz}-10 \mathrm{MHz}$. Video Oscillator $\mathbf{£ 1 6 0}$ SWEEP GENERATORS

Hew/ett Packard

8693B. 3. $7-8$. 3 GHz plug-ins
(Other plug-ins on application)

TELEPHONE TV AND MICROWAVE

Hewlett Packard

423 A .12 .4 GHz Crystal Detectors $\quad £ 28$
3701/02/03. Microwave Link Analyser $£ 2,520$
OA 2090A. White Noise Test Set
£712
(Filters also available at extra charges)

Richmond Hill

TSP. TV Studio Precision Signal Generator Sin 2
P \& B, Window. Staircase (req. all drives) $\mathbf{£ 5 8 0}$ Siemens
REL3K53. Contact Fault Locators. 1 MHz Test
Signal variable levels. High sensitivity $£ 140$

STC

74166 . Milliwatt Test Sets $£ \mathbf{3 7}$
74184 B . Selective Measuring sets £132
74216. Noise Generator.
$20 \mathrm{~Hz}-4 \mathrm{KHz}$. $\mathbf{£ 2 3 0 - £ 2 6 0}$
74306 B . Oscillators $10 \mathrm{KHz}-20 \mathrm{MHz} \quad \mathbf{~} 110$
74832B. Selective Level Measuring Set
$\mathbf{f 8 0} \mathbf{£ 1 0 0}$
Field Telephones (Hand Generators) £10
Wandel \& Goltermann
TFPS75. 1. 3 MHz . Selective Oscillators
TFPM43. 14 MHz . Selective Meters
$£ 140$
VZM1. Differential Phase Meters (TV)
VZMG 1. Sampling Attachments

WAVE ANALYSERS

Airmec/Racal
$248 \mathrm{~A} .5-300 \mathrm{MHz}$. Harmonic Analysers $\mathbf{£ 1 2 5}$
ASSOCIATED EQUIPMENT

Honda

W15. Petrol-Driven Water Pump. $1 \frac{1}{3}$-inch
outlet. Brand new
CMB. 11 B. Capacitance Comparator $£ \mathbf{3 0}$
Hewlett Packard
412A DC. Electronic Multimeter On Application

General Radio
1362. UHF Oscillator (both need a
$£ 80$

Carston Electronics Limited
Shirley House, 27 Camden Road, London NW1.
Tel: 01-2674257

You are looking at one of the most expensive turntables in the world.

DENON
 GYNIE-ON कolibiMEIA

The Proiessional Audio Brand

DENON
 EY NIPPON COLUMEIA DIRECT DRIVE TURNTABLE

The Denon Direct Drive Turntable is one of the most advanced in the world. Designed to exacting broadcasting and studio standards. Made to perfection-with up to 40% of components, including the motor, hand-built.

Denon's reputation (it's used by all broadcasting stations and 80% of studios in Japan) appeals to connoisseurs, who respect professional features like the unique elliptical deck casing and so-solid plinth . . to cut resonance dramatically.

The Denon player's principal quality is its precise control of rotational speed. Continuously monitored and governed by a magnetic speed sensor, applied to a comparison circuit, it results in a detection frequency at $33 \frac{1}{3}$ rpm of about $1,100 \mathrm{~Hz}-$ more than 10 times the resolution of rival methods.

The same equipment (turntable, plinth and dust cover) is also available with a tone-arm board capable of accepting most top-quality arms.

Integrated Amplifiers

Denon/Nippon Columbia, among the world's top Hi Fi manufacturers, also produce two superb integrated amplifiers - model PMA 350Z and PMA 500 -compatible in quality with the Denon player.

Sole UK Distributor:

JOHNSONS OF HENDON LTD

Colney Street, St. Albans AL2 2EA, Herts.

TRANSFORMERS

CASED AUTO TRANSFORMERS
115V mains lead input and U.S.A. 2 pin outiets. 20VA E2.
LOW VOLTAGE TRANSFORMERS

```
Ref. AmIMARY 200-250 VOLTS 12 AND/OR 24 VOLT RANG
Ref.
& & P& P
```

都

CONTACT
HENRY'S
FIRST
see facing page
ELECTRONIC COMPONENTS
AND EQUIPMENT
Retail Trade Educational - Export
Industrial Supplied
VAT TO BE
for addresses
Let us quote for your requirements

AMPLIFIER KITS OF Gistinction

DESIGNER－APPROVED KIT

In Hi－Fi News there was published by Mr Linsley－Hood a series of four articles（November 1972－February 1973 and a subsequent follow－up article（April 1974）on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage．power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels．The powe amplifier is complemented by a pre－amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system，namely the equalization stage and tone control stage，positions where most conventional designs run out of gain at the extremes of the frequency spectrum． Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter．There is a choice of four inputs，two equalized and two linear，each having independently adjustable signal level．The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer．

Hi－Fi News Linsley－Hood 75 W Amplifier
Mk III Version（modifications as per Hi－Fi News April 1974）

Full circuit description
in handbook
（pack 15－price 30p）

```
Pack Fibreglass printed-circuit board
2 Set for power amp.
3 Set of semiconductors for power
    samiconductors for power
        BD529, BD530)
4}\begin{array}{l}{\mathrm{ Pair of 2 drilled, finned heat sinks}}\\{5}\\{\mathrm{ Fibreglass printed-circuit board}}
4 Fibreglass printed-circuit board
6 Set of low noise resistors, capacitors,
        low noise resistors,
        pre-sets for pre-amp
    Set of low noise. high gain semicon-
8 Set of potentiometers lincluding
mains switch)
9 Ser of 4 push-button switches.
10 Toroidal transformer complete
        with magnetic screen/housing primary:
        0-117-234 V, secondaries
        ductors for pre-amp.
        33-0-33 V. 25-0-25 V.
                Price
                co.85
                f1.70
                *
                    66.50
                        tors.
                                £1.30
                                £2.70
                £2.70
    £2.40
£3.70
                            £3.70
                    £9.15
                    11 Fibreglass printed-circuit board
                    12 Set of resistors. capacitors.
                secondary fuses, semicon
                    ductors for power supply
        ductors for power supply
        l
        mput skt. fuse holder. inter
        knobs
        14 Set of metalwork parts including
        silk screen printed fascia
        silk screen printed fascia
        panel and all brackets, fixing
        parts, etc.
        15 Handbook
        Teak cabinet
        2 each of packs 1-7 inclusive
        are required for complete
        stereo syslem
        purchased packs
```

FREE
TEAK CASE WITH FULL KITS
$£ 62.40$ post free（U．K．）
$€ 0.65$
C 3.50
V．A．T．Please add 8\％＊
to all U．K．orders
（＊or at current rate if changed）
f4． 25
for further information
please write for FREE LIST

£6．30
¢0．

£7．35
POWERTRAN

fast service．

IMAIIIIS ELEBTMDIIGS ITI
58－60 GROVE ROAD， WINDSOR，BERKS．
SEND C．W．o．add vat to all prices in U．K．pep 15P．Europe 25p．overseas 65p

MONEY BACK IF NOT SATISFIED． LARGE STOCKS．LOW PRICES． ALL BRAND NEW TOP GRADE FULL SPEC DEVICES．CALLERS WELCOME．

CATALOGUE／LIST FREE SEND S．A．E

Dinital Displays

MINITRON 3015 F
O－9DP $£ 1.15 \mathrm{ea}$ LED $0.3^{\prime \prime}$ digit
$0-9 D P$ \＆1．49 ea JUMBO LED 0．6＂ JUMBO LED $0.6^{\prime \prime}$
$0-9 D P$
§ 2.25 ea LIQUID CRYSTAL 6 digit 118

LEDS

14 P
MINI PIN SOURCE OR RED DIFFUSE LEDS． 209 STYLE．NO CLIP．14P ea THL209 RED LED \＆CLIP 17P ea BIG ：＂RED LED \＆CLIP 18P ea ORANGE \＆GREEN LEDS：
MINI 251 ea．BIG \＆CLIP 33p ea INFRA RED LED $11.2 N 577733 \mathrm{P}$ ．

DIGITRL ELDCK

AY5］ 2244 DIGIT CLOCK supplied with 14 pin socket \＆data 44.25 MM5311／14 6 DIGIT CLOCK with 2 pi （ $\begin{array}{ll}3 \text { BDIGIT DVM AY5 } 3500 & \$ 7.50 \\ \text { SDIGIT COUNTER／DRIVER } & \$ 7.50\end{array}$

CASSETTE

 mechanics昰代2 STEREO CASSETTE MECIANISM． As used in imported types costing floo．Only requires supplied．Send for data 15 p ．

H1FC6030 52p	741 29p MFC4000 35p
MFC6040 90p	55567 p 2N 114 £1．09
HFC8010 $\quad 1.10$	
HFC8040 il	
NE531 35V／us ¢2	115w／To3 or 90w plastic
NE536 FET OPA§2	2N3819E 16p 2N3053 17p
	BFY50／51／52／53 al1 18p
NE550 2v ref 79p	1 A 0 Vrect 4 p ea 1，1914 4p

 COPPER CLAD VEROBOARD 0.1
 3䋆 $5^{\prime \prime}$ 29p．3腬xI7＂$£ 1.50$ DIL IC＇s BOARDS $6 \times 44^{\prime \prime} £ 1.50$
24 way edge connector 60 p 36way 90p．PLAIN $3^{3}{ }^{\text {² }} \times 17$ § 1
iI손（0）
PRINTED CIRCUIT BOARU KIT $£ 1.69$ COPPER BOARD 6x4＂40p． HEATSINKS HEATSINKS TV4 12 plos ea

CAPACITORS

2m pacitors eanterpourtu
 POTS Aburegin ROTARY：12p．SWITCH 13p．DUAL $38 p$ SLIDERS：SINGLE 26p．DOUBLE $48 p$ ． SWI TCHES：SPST 18p．DPDT 25p．
MINI 1＂：SIST 39p．PUSH 39p． MINI ${ }^{\prime \prime}$ ：SIST $39 p$ ．PUS！ 39 p.
BENCH PONER SUPPLY $3-12 \mathrm{~V}$ \＆. DIN PLUGS all 13p ea．Sockets 9p TRANSFORMERS $1 \mathrm{~A} 5 / 12 \mathrm{~V} \ddagger 1.3$ BHA 0002 HODULE 15 WATT AMP 55 Oill sochets

PROFESSIONAL
GOLD PLATED
8 GREY NYLON．
8,14 or 16 pin
onLY 15 p each．

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS} ELECTRONICS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pot Pk. 3 Semiconductor set 20W LINSLEY-HOOD 20W LINSLEY-H
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set

60V REGULATED POWER SUPPLY

Pk. 1 F/Glass PCB

k. 2 Resistors, capacitors, pots BAILEY-BURROWS PRE-AMP Pk. 1 F/Glass PCB
£2.05
Pk. 2 Resistors, capacitors, pre-sets transistors
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set
(with knobs)
£0.75
£ 1.40 £3. 10
£4.95
f 1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this high performance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	60.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cct F/Glass PCB	£1.00

For details of component packs for this design please write for free list.

TOROIDALT20 +20
Developed from the famous Practical Wireless Texan

20 WATTS/CHANNEL

FREE

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true Hi - Fi performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design. based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble filters adaptable input selector and headphones socket.

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

$\underset{1}{\text { Pack }}$ Fibreglass PCB (accommo-
fareglass PCB faccom channell
2 Set of pre-sets, solid tantalum capacitors. 2\% metal oxide resistors, 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.
POWER SUPPLY
Pack
1 Fack 1 breglass PCB
1 Fibreglass PCB
2 Set of resistors, capaci-
iors presets (not includ
ing O/P coupling capacitors)
3 Sets of semiconductors f4.20 system

4 Special heat sink as
sembly for set of 3
amplifiers
Set of $30 / \mathrm{P}$ coupling
capacitors
capacitors
off packs 4,5 required for stereo system

FOR 2OW/CHANNEL STEREO E0.70 SYSTEM
ack
Set libeglass PCB diode, capacit. zener fuse holders 3 Toroidal transformer

ENQUIRIES WELCOME
For quality sets of speakers

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	¢0:25	2N4302	¢0.60	BC182L	¢0. 10	MJ481	£1.20	TIP29C	¢0.71
2 N 1613	¢0. 20	2N5087	f0.42	BC1B4L	f0. 11	MJ491	¢1.30	TIP30C	f0.78
2N1711	¢0. 25	2N5210	£0.54	BC2 12 L	¢0.12	MJE521	¢0.60	TIP31A	£0.60
2N2926G	¢0.10	2N5457	¢0.45	BC214L	¢0.14	MPSAO5	¢0. 30	TIP32A	£0.70
2N3053	£0. 15	2N5459	¢0.45	BCY72	¢0.13	MPSA12	c0. 55	TIP33A	£1.00
2N3055	¢0.45	2N5830	f0. 30	BD529	¢0. 85	MPSA14	c0. 35	TIP34A	f1.50
2 N3442	f1. 20	40361	¢0.40	BD530	c0. 85	MPSA55	c0. 35	TIP41A	£0.74
2N3704	¢0.10	40362	£0.45	BDY56	f1.60	MPSA65	c0. 35	TIP42A	¢0.90
2N3707	¢0.10	BC107	¢0. 10	BF257	c0. 40	MPSA66	c0.40	IN914	£0.07
2 N3711	¢0.09	BC 10 B	¢0.10	BF259	c0.47	MPSU05	c0.60	IN916	¢0.07
2 N 3819	¢0. 23	BC109	f0.10	BFR39	c0. 25	MPSU55	c0. 70	IS920	£0.10
2N3904	¢0.17	BC125	f0.15	BFR79	c0. 25	SN72721P	¢0.58	5805	£1.20
2N3906	60.20	BC 126	¢0.15	BFY50	¢0. 20	SN72748P	£0.58		
2 N4058	c0. 12	BC182K	£0.10	BFY51	£0. 20	TIP29A	¢0.50		
2N4062	c0. 11	BC2 12 K	¢0.12	BFY52	¢0.20	TIP30A	¢0.60		

for further information please write for FREE LIST NOW!

Pack		Price
1	Set of all low noise resistors	E0.80
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capacitors	f1.40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders, control knobs, etc.	£1.90
5	Set of slide and push-button switches	60.90
6	Set of potentiometers and selector switch	f 1.45
7	Set of all semiconductors	f8. 25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	£2.50
10	Complete chassis work. hardware and brackets	£4.20
11	Preformed cable/leads	£0.40
12	Handbook	£0.25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%*

to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS—Post free (mail order only)
OVERSEAS—Postage at cost $+50 p$ special packing

Dept. WW11

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN
TRANSISTORS \& DIODES

95p

SWITCHES

Edwards High Vacuum "Speedivac" model VSK1 B range 25.760 torr contact ratings 250 v . 5 a . volume $4.2 \mathrm{cu} . \mathrm{cm}$. max. working pressure
17 ozs.
$15 \mathrm{lb} / \mathrm{sq}$. in. gauge net weight
 Stackpole min. rocker 125v.10a. 250 v -10 5a............................20p
Tippalite Rocker 12 v $\underset{\text { AMP }}{\text { CIRCUIT BREAKERS 250VAC }} \underset{\text { TRIP }}{\text { TYPE }}$.each E1.20

AMP	TRIP	TYPE
2.0	D	Westingh. 550
40		Securex 5000
7.0	Inst.	Westingh. 550
7.0	4	Heinemann (60 c .) AM 12
8.0	Inst.	Westingh. 550
8.0		Securex 5000
9.0	Inst.	Westingh. 550
10.0		Securex 5000
20.0	-	ETA Magnetic

DIGITAL COUNTERS
Veeder Root Mech. Reset 4 dig.50p
STABILIZED POWER SUPPLIES
Gresham Lion GX60/10a- 60 v .10 amp . set to $30 \mathrm{v} . . . \mathrm{F} . \quad \mathbf{f 5} \mathbf{6 0}$ incl. carriage Lambds CC28v-inp 205-265v. output

RELAYS

$$
\begin{aligned}
& \text { Varley Min. } 700 \Omega 12 \mathrm{v}, \ldots \ldots \ldots \ldots . .5 .50 \mathrm{50p} \\
& \text { Siemens Min. } 1215 \mathrm{y}
\end{aligned}
$$

Magnetic Dev. Type 596E...............52.00
CONNECTORS
\(\begin{aligned} \& McMurdo Red Range. Plug RP24

\& McMurdo Red Range. SKT RS32\end{aligned} ··· . . .\)| $\mathbf{5 6 p}$ |
| :---: |
| $\mathbf{9 0 p}$ | Eng. Ellect. Edge 36, way 0.2 inch pair 1.00

Sylvania Edge. 48 way 0.125 inch
 Continental microminiature 28 1080in26 $£ 1-30$

CAPACITORS

Daly Electrolytic 9000uF 40v 50pp/p 15 p ; $500 \mu \mathrm{~F} 50 \mathrm{v} 30 \mathrm{p} \mathrm{p} / \mathrm{p} 10 \mathrm{p}:$ TCC $16 \mu \mathrm{~F}+16 \mu \mathrm{~F}$
 Metallised Paper type $426100 \mu \mathrm{~F} 150 \mathrm{v} 50 \mathrm{p} / \mathrm{p} / \mathrm{p} 25 \mathrm{p}$; RIC $1.8 \mu \mathrm{~F} 440 \mathrm{v}$ a.c. $35 \mathrm{p} \mathrm{p} / \mathrm{p} 10 \mathrm{p}$. MOTORS
E.E. $\frac{1}{2}$ hp 230 v . 50 c 1 ph 50 c .1440 rpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{v} . . . \mathbf{£ 1 5 5 0}$

3 phase 2 HP motor 60/50c.. 1800/1500 RPM, 208/220/440v. inc. carr.
Cat. 2026391 Potter Instruments flange mounting capstan motor. inf cont. 110 Hz DC 4 amp
FANS, CENTRIFUGAL BLOWERS
Alrmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller \& casing (Corres-
 425 cfm free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. p. £21.00.
Woods Aerofoil short casing type "S" 2700rpm $220 / 250 \mathrm{v} 1 \mathrm{ph}$
impeller incl. p.p. $\mathbf{E 1 1}-50$.
Woods Aerofoil Code 7.5 280K 200/250v. $1.0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1}{2} "$ impeller 14 blades incl p.p.£13-50.
Service Electric H i-velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic conveying, Cooling Electronic equipment, Alr blast for Oil burners. Secomak Model 365 (corresponds
to 575) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 pm , continuous 160 cim 12 in w.g. nett weight 441 b . price incl. carr. $£ 41.00$. Secomak model 350250 v 1 ph 50 c 0.166 hp . 2800 rpm continuous 50 cfm 2 in . w.g. net weight 34 lbs , price incl. carr. $£ 26.00$.

Air Controls type VBL4 200/250v 1 ph 50 c .110 cfm free air weight $7 \frac{1}{2} 1 \mathrm{bs}$ price incl. p.p. $£ 14 \cdot 50$.
Type V8L5 200/250v 1 ph 50 c .172 cfm free air. Weight $10 \$$ bbs, price incl. p.p. $£ 18 \cdot 50$
William Allday Alcosa Single Stage Vacuum Pump M Mod HSPOB 8 HG . Rpm 1420. E.E. 3 phase
induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. $380 / 440 \mathrm{v}$. Class E ins. $¥ \geq 1.00$ incl. carriage.
Gast MFG. Vacuum pump 0522-P702-R26X Motor $110 / 120 \mathrm{v}$. A.C. 1 ph .60 c 1725 rpm . Class E.
 10 cuft to 10 Oin Mercuiy in 2 mins maintains vacuum.
 635 mm Mercuty. Or as com
$\$ 5$ psi cont. $£ 25-00$ incl. carr.
Where p.p. not advised add 10p per $£$ handling and post (in UK). Cash with order. Pe:sonal callers welcome.Open Mon.-Wed. 9.30-5.00 Fri.-Sat 9.30-5.00. Free Car Park adj. PRICES SHOWN ARE EXCLUSIVE OF V.A.T.

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1_{4}^{\prime \prime}}{} \times 1 \frac{3_{4}^{\prime \prime}}{4}$. The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5\&10WAMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only, will fit 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.
$£ 1.55$
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.
Instruction leaflet supplied with all units. Post and Packing included in Prices.

Oept 8222224 WEST ROAD WESTCLIFF ON SEA. ESSEX SSO 9DF. TELEPMOME SOUTHEND (0702) 46344.

The technological frontiers :Jasmin encilneers the may
 COMPLEX AUTOMATIC TEST AND

A satisfied customer is the most important asset any company can have. Become a 'satisfied client' by contacting us for advice and a progressive approach to your problem.

BOSTON HOUSE, ABBEY PARK ROAD, LEICESTER. LE4 5AN TELEPHONE: 0533-58128/9 TELEX: 341581

WW-074 FOR FURTHER DETAILS

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV - 1 volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 warts. Measurements $29 \times 12 \ddagger \times 10 \mathrm{in}$. Secondhand condition. $£ 27 \cdot 50$ each, Carr. $£ 2.00$.
MODULATOR UNTT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7.50$ each, Carr. $£ 2 \cdot 00$.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{2 3} \cdot 50$ eqch, post 50 p . APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. $\AA 1 \cdot 25$, post 30 p.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps. $\mathbf{E 3}$ each. 75p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft , high $\times 21$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, Carr. $£ 2.50$.
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond. $£^{6} \cdot 50$ each. Post 60 p .
ROTARY INVERTERS: TYPE PE.218E-input $24-28 \mathrm{~V}$ d.c., 80 Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s} .1$ Ph. P.F.9. $£ 17.50$ each. Carr. $£ 2.00$. REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{Bin}$. $\times 8 \mathrm{in}$. New condition $£ 7.50$, Carr. 75 p .
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range $1200-9600$ gausses. $\pm 2 \%$. $\mathrm{S} /$ hand good cond. $£ 25+60 \mathrm{p}$ post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2 C42, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters
$0-999$. Valves $6 \mathrm{AL5}$ and $8 \times 6 \mathrm{AK} 5 . \mathrm{10}$ each, 60 p post.
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $\mathfrak{f 2 5}$ each; or second hand cond.
(excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3 \cdot 00$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $S /$ hand good cond. $£ 30+£ 1$ carr. AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjoer. 5-5000c/s per sec. S/hand V. good cond. $£ 90$, Carr. ${ }^{2} 2$.
VRC 19X MOBILE TRANS/REC: $152-174 \mathrm{mc}$ F.M. Power o/put 25 watts. Input voltage 24 v . d.c. Weight 801bs. $£ 35 \cdot 00$ each, carr. $£ 3 \cdot 00$.
BRIDGE MEGGER: 250 V. (Evershed Vignoles) series 2. $£ 30$ each. Carr. $£ 1$. BRIDGE MEGGER: 2,500 V., series 1 . $£ 30$ each. Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscilatory
conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 15$. Carr. $£ 1.50$. Crystal freq. can be tested in conjunction
ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS N

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout, BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB. Line 1 and 2. $£ 200$ each. Carr. 55 .
50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc.,
 plugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment, plugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment,
good cond. $£ 4$ each. Post 50 p . good cond Ef each. Post ${ }^{50 \mathrm{p}}$. ${ }^{£} 20$ each. Post 30 p . ${ }^{2}$. the above items. f^{2} each. Post 40p. 10-WAY TELEPHONE SOCKET STRIP: 3 connections. Takes standard P.O. Jackplugs; 201 or 316; and 10-WAY TELEPHONE LAMP STRIP. f 3 the pair. Post 50 p .

DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . 50 Hz . £275. Carr. at cost.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in} . \times$ 36 in. 230 V input. $£ 35$, Carr. $£ 4 \cdot 00$.
TELEPHONE CABLE: (Twin) $1,300 \mathrm{ft}$. on metal reel. $£ 5$ per reel. Carr. $£ 1$.
ANTENNA MAST 30ft. consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ($\stackrel{1}{8}^{n}$ dia.) with base, guyropes and stays etc. $£ 5$ each, Carr. $£ 2$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete wit. 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. f 4 each, Carr. £ 1.50 .
AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$.
MODULATOR UNIT: Complete with mod. transformer and 2×807 Valves. Mounted 19^{*} chassis, $8^{\prime \prime} \times 8^{*}$. "As new" cond. $£ 8$ each; or secondhand $£ 5$ each. Carr. both types $f 1 \cdot 50$.
FIRE-PROOF TELEPHONES: $£ 25 \cdot 00$ each, carr $£ 1.50$.
TF. 2000 A.F. SIGNAL SOURCE: $£ 175.00$, carr. £ 1.00 .
WESTON INDUSTRIAL THERMOMETER MODEL 221: $0-100^{\circ} 3$ inch. dia. scale. Accuracy 1%. $£ 3 \cdot 00$, post 30 p.
POWER UNIT: 1101230 volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30 \cdot 00$ SMOCh, carr. f3.00.
SOLARTRON PLUG-IN UNIT TYPE C X-1251: Wideband 40 MHz . $£ 30$ ea., 75ppost.
SOLARTRON DUAL. TRACE CX-1252: 24 MHz . E^{35} ea., 75 p post. . Scott. £125 ea., Carr. f1.
HP-76iD DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$. £35 ea. 75p post.
BACKWARD WAVE OSCILLATOR TYPE SE-215: 6.3 heater, 105V Anode, 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ ea., Carr. £1.

LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send $10 p$ for above lists. ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF ALL CARRIAGE

If wishing to call at stores, please telephone for appointment.

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213 and Bedford 740605 (STD 0234).

Audio Connectors

Broadcast pattern jackfields, jackcords plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
$01-437$ 1892/3

BUILT TO YOUR SPECIFICATION. HIGHEST QUALITY AT COMPETILIVERY SERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS. PO type MINIATURE UNISELECTOR including
JACK 12 outlet. 2 bridging 1 non-bridging wipers. this compact ratchet-driven 3 -level Uniselector is a standard design and occupies no more
PO type 2 UNISELECTORS all 25 outlet 8 leve
non bridging wipers 300 ohms 514 eas 11 eve 1 bridging 10 non bridging 65 ohms $£ 17$ ea.
4 pole -50 way all non bridging 75 ohms $£ 11$ ea. HEADPHONES Balanced Armature, 1600 ohms, type DHR 5 B(ZA29475). £2.50 each
 unit for easy lamp replacement $\mathbf{£ 4 . 5 0} \mathrm{ea}$.
CHARGING RECTIFIERS full wave bridge type, 24 volts 8 amps. 500 available, f1 each BELL SETS PO type No. 25 twin approx. 400 available. E200 HIGH SPEED COUNTERS $\mathbf{~ 1 . 7 5}$ each MINIATUREBUZZERS
$6-12$ volts. with
$3 \operatorname{lin} . \times 1 \mathrm{in}$. 10 counts per second
with 4 figures. The following D C 6- 12 volts. with
tone adjuster 50 p
each as illus. each as illus.
 Non

All prices shown are carriage paid UK only but subject to VAT at the standard rate
STDCKISTS OF ALI STUART TURNER PUMPS, CENTRIFUGAL TYPES 10 ANI 12 AVAILABIE NOW LONGLEY RD., CROYDON. CRO 3 LH. Phone O1-684 O236. Grams: WILCO CROYDON

'"SLO-SYN' 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily reversed, starting and stopplng in less than 5° without electrical o mechanical braklng. Simple relay clicuit can be applied to give DC., to winding tor a max mum holding torque o 60 Hz .72 rom . STEPPING. Holding torque at 60 steps per second- 100 ozlin. Can be wired to give 100 or 200 steps
 OPEN FRAME shaded pol GEARED MOTORS
 HIGR TOOROUE, approx.

 110 rom with pressed steel gear case silillar to above
but sll ahily smaller). E3. P. \& P. 30 .

CARTER ELECTRIC
SImilar to above with alloy gear case. 50 .r.p.m. This
Item Is ex-equipment but perfect. E 1.95 . P \& P 30p.

SMITHS RINGER-TIMER

 Rellable 15 minute times, spring wound concurrent with time setting) $\begin{aligned} & 15 \times 1 \mathrm{~min} \\ & \text { divisions. } \\ & \text { approximately } \\ & \text { between }\end{aligned}$ divisions. Paneel mounting with chrome bezel $3^{3}{ }^{\prime \prime}$ dia. $\approx 1 \cdot 40$. 15 p. P. \& P.FEW ONLY Fully stabillsed "Labgear" Power Supply Unit. Input Hum and ripplie at full ioad-less than 3 MV peak to peak. Stability Improvement ratio for 15% mains
 £1.50. In manufacturer's carton.

"LABGEAR ELIMINAC"

P.S.U. $200-250 \mathrm{v}$. $40 / 60 \mathrm{~Hz}$. Alternative outputs fully
 riepie content. Outout 3. 20v at i0a A.C. $22^{\prime \prime} \times 2 z^{\prime \prime}$ flush

ULTRA PRECISION CENTRFUGAL BLOWER
by Air Control Ltd. 30 segments Indvildually balanced In
heavy cast alloy case. $2,300 \mathrm{r}, \mathrm{p} . \mathrm{m}$ heavy cast alloy case. $2,300 \mathrm{r}$ r.p.m.
240 y A.c. Very powerful and ilitent
running. $5^{5 *}$ dia. $3^{* \prime}$ Inlet dia. Outlet flange $3^{3} \times \mathbf{2 t}^{+4}$
Limited number only $£ 8.95$ pot p d

SILVANIA

 MAGNETIC SWITCHNow complete with reference magnet/ A magnetically activated switch, vacuum sealed in a glass
envelope. silver contacts, normally closed. Rated 3 amp
 Iteal tor burglar alarms, security systems ene. yo for
ever
\& P;

NORPLEX

 with woven plass base of Epoxy-resin. Excellent Mech. and Elec.
conductlve properties.

 25 p P. \& P Full Sheet Ea each. Carr. El for 1st sheet plus 25 p each additional sheet.

FAN/
BLOWER
Precisionobuilt In Germany. Drynamically balanced manint
unit (200/240) continuous rated, reverifte 60 MA on
 doen Back plate 1 tapped
for

$$
\begin{aligned}
& \text { S. \& \& Plar ansp. }
\end{aligned}
$$

ALL PRICES INCLUDE V.A.T.
Whilst we welcome official ordors from estabilished companies and Educational Dopartments, it is no longer practical to invotce goods unde
E5. Therefore, please remit cash with orders below this amount.

HART ELECTRONICS
 AUDIO KITS

F.M. TUNER This latest addition to our range is designed to offer the best possible performance allied to the ease of operation given, by push button varicap tuning. We to wind, no RF circuits to wire and no alignment is required. in fact the whole unir can be easily completed and working in an evening as there are only 3 transistors, one ic and
two ready built and alignsd modules comprising the active components. We have two ready built and alignsd modules comprising the active components. We have
abandoned the concept of having a tuner as large as the amplifier and this now unit has a frontal size of only $1 \frac{1}{2}$ in. $x 4$ in. It can be mounted on the side of our Bailey amplifier
 Cost of tuner chassis ino case) is $\mathbf{£ 2 2}$ for mono, $£ 25.45$ for stereo.
An extended wooden case to fit tuner and amplifier will be offered shortly.
BAILEY/BURROWS/QUILTER PRE AMP. The best engineered kit availabie of the combined best of three preamp designs. This is the kit with no wiring to the controls. switches or inputs. A complete and sophisticated 5 infut signal processing stage for any
power amplifier requiring up to $1 \frac{1}{2} v$ input for only $\mathbf{E 2 6 . 5 0}$. Front end only E 10.44 . Tone power amplifier req.
control only $£ 11.41$.
BAILEY 30 WATT POWER AMPS. Our best selling power amplifier, you can't better its money.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck into a very high quality Stereo Tape unit. Input and offer tape heads as well if you want new ones.
All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is included.
FURTHER INFORMATION ON ALL KITS FREE if YOu send us a $9 \mathrm{in} . \times 4 \mathrm{in}$. S.A.E REPRINTS Post free. no VAT.
BAILEY 30 W Power Amplifier 18 .
STUART TAPE RECORDER All 3 articles under one cover 30p.
STUART TAPE RECORRER AII 3 articles under one cover 30p.
BAILEV/BURROWS/GUILTER Preamp circuits, layouts and assembly notes $15 p$.

Penylan Mill, Oswestry, Salop
Personal callers are always welcome, but please note we are closed all day Saturday

NOPhoenix Electronics (Portsmouth) Ltd. 139-141 Havant Road. Drayton, Portsmouth. Hants PO6 2AA

Full member of AFDEC--the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFER-

Small-signal silicon transistor kit 5 each-BC108, BC178, BC205, BC208 BFY51, BSY95A, ME1120, ME8003 and 2 N 2926 -catalogue value $\mathbf{f 6} \mathbf{2 0}$.

BARGAIN PACK PEP1——460.

Please send your catalogue-free!
Name
Address ...

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the
Bailey and Baxandall loudspeakers

- some of which have been accepted as standard in the industry.

highfidelity designs

\mathfrak{f} from newsagents and bookshops or $£ 1.35$ (inclusive) by post from the publishers. A book from WirelessWorld

TAUT SUSPENSION MULTIMETERS

Made in USSR
For ex-stock delivery*

$\mathbf{U 4 3 1 7} \mathrm{f} 16.50$

U4323 £7.70

TRADE ENQUIRIES INVITED
PLEASE WRITE FOR FULL DETAILS

SPECIAL OFFER OF L.E.D.S
Twelve Light Emitting Diodes Type HP5082/4850, 0.20 mm dia., bright diffused red light. Operating current 20 mA at 1.65 V . ONLY f1. 75 incl. P.P. and VAT
1-AMP SILICON RECTIFIERS

20 pieces	1N4001	50 p.i.v.	$\mathbf{f 1 . 1 2}$
$"$	1N4002	100 p.i.v.	$\mathbf{f 1 . 2 5}$
$"$	1N4003	200 p.i.v.	$\mathbf{f 1 . 3 5}$
$"$	1N4004	400 p.i.v.	$\mathbf{f 1 . 4 5}$
$"$	1N4005	600 p.i.v.	$\mathbf{f 1 . 5 5}$
$"$	1N4006	800 p.i.v.	$\mathbf{f 1 . 8 5}$
$"$	1N4007	1000 p.i.v.	$\mathbf{f 2 . 1 0}$

This is a special offer and minimum quantity of 20 pcs must be ordered. These prices are inclusive of P.P and VAT.

11.5 AMP THYRISTORS

BTX47-1200R P-GATE Reverse blocking Thyristors. Peak reverse voltage 1200 V . Trigger voltage 3.5 V £2.00*

Inclusive of P.P. and VAT.

PHOTO-CONDUCTIVE CELLS			
ORP12	f0.60*	0RP69	£0.60*
ORP60	f0.60*	0RP90	f1.10*
0RP61	f0.45*	ORP93	f1.10*

Please write for full catalogue and Price List of Valves, Semi-conductors, Test Equipment and Passive Components.

Minimum Account Order \& Charge f10.00 + VAT, otherwise cash with order. Prices are exclusive of VAT unless indicated. When remitting cash with order please add $\mathbf{f 0 . 5 0}$ per Multimeter or f 0.15 in $£$ for other items.
MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE
*Prices are exclusive of VAT
Tel. 7275641 44A WESTBOURNE GROVE, LONDON W25JF Telex 261306

WW-046 FOR FURTHER DETAILS

SOLAR PANELS

Size overall $10^{\prime \prime} \times 4^{\prime \prime}$, sensor $33^{\prime \prime} \times 6^{\prime \prime}$ consists of 63 separate cèlls at present connected in series to give O / P of $26 \mathrm{~V}(30 \mathrm{VO} / \mathrm{C})$. On test these gave $0 / \mathrm{P}$ of 26 V at 25 Ma (this reading obtained in Sheffield in July). Can be connected to give $6,9,12 \mathrm{~V}$, etc, at higher Ma. New ex-USAF surplus. Price $£ 16.50$ per panel.
TABLE CABINETS
Size $41^{\prime \prime}$ long, $27^{\prime \prime}$ high, $15^{\prime \prime}$ deep at bottom, $7^{\prime \prime}$ at top. These have sloping front; usable size $39^{\prime \prime} \times 15^{\prime \prime}$, vertical panel at front $1^{\prime \prime} \times 39^{\prime \prime}$, all panels removable. Note store soiled, otherwise okay. Price $£ 15$. COAXIAL LEADS \& FITTINGS
Jumper leads BNC 50 or 75 ohm. 1.5 metres $£ 1.57$ ea.
Jumper leads UHF 50 ohm, 1.5 metres $£ 1.55$ ea.
Jumper leads UHF to BNC $50 \mathrm{ohm}, 1.5$ metres $£ 1.57$ ea.
Test leads BNC. UHF 50 or 75 ohm to Insul. Clips, all 1.5 metres, all $£ 1.10$ ea. BNC. UHF 50 or 75 ohm sockets, single nut type, with solder tag, 45 p ea. N type 50 ohm plugs for UR6760p ea.

EVENT RECORDERS

These are a 15 -channel unit, chart speed $3^{\prime \prime}$ per min. for use on 240 V $50 \mathrm{c} / \mathrm{s}$. Uses heat-sensitive paper, stylus operated by solenoid; selfcontained unit. only needs ext. contacts to operate. Good cond., $£ 14.50$. RECTIFIER UNIT
G.P.O. type Rectifier Charger unit I/P 200/250V. 50c/s, O/P 27.5 V DC, smoothed at 75 amps, uses transistor-controlled Reactor to control O/P with high and low voltage protection. Price $£ 75.60$.
METER UNIT

METER UNIT

Dual meter unit, as 270° scale meter with 1 Ma FSD, scale marked 0 to 20, and centre reading 100-0-100 μ a meter, centre mark only, in $3 \frac{1}{4}{ }^{\prime \prime} \times 3 \frac{1}{4}{ }^{\prime \prime}$ case, $2 \frac{3}{4}$ " dia. glass, ex equip tested. Price $£ 3.38$. METER CONT. No. 1
Portable type Geiger Counter, scale .1 to $10 \mathrm{Mi} /$ Rongt per Hr , complete with probe head and G.M. tube, supplied with plug in mains P.U. and carrying case, new. boxed and tested. Price $£ 6.10$. DUAL O/P STAB D.C. P.U.
Small general purpose unit, 240 V I/P, intended for incorporation into equipment but can be used on bench. Adaptable to give any voltage in range 5 to 15 V at up to 100 Ma on ea circ, regulation $10 \mathrm{Mill} / \mathrm{N} 0$ to 110 Ma , current limit adjustable 10 to 110 Ma S/C proof, as two electrically separate O / Ps, term block connections, size $150 \times 95 \times$ 55 mm . Indicate voltages req. when ordering. Price $£ 15.90$.

ONLY
f11.95
Latest style Telephone Amplifier is completely automatic with detached plug-in
speaker. Placing the receiver on to the speaker. Placing the receiver on to the
cradle activates a switch for immediate cradle activates a switch for immediate
operation. Many people can listen at a operation. Many people can listen at a
time. Increase efficiency in office. shop. time. Increase efficiency in office. .shop.
workshop. Perfect for "cconference "calls: leaves the user's hands free to make notes. eaves the user'shalt
consult . No long waiting. saves time with long-distance calls, useful for the
hard of hearing Fully transistorised. Ond Off switch, volume control. Direct tape recording model at E12.95. P. \& P. 48p C.W.O. 10 -day price refund guarantee

Telecom. Standards. Supplied with $3-$ core wire. Just plug into power socket. Ready for use. Crystal-clear communication from room to room. Operates over a $\frac{3}{4}$-mile range. On/Off switch. Vol. control. Useful as office intercom, baby alarm, invalids. No G.P.O. licence reqd. Full price ref. if returnedin 10 days. 12 months
service guarantee. P. \& P. 60 p.

> WEST LONDON DIRECT SUPPLIES (W/W) 169 Kensington High Street, London W. 8

FOR EX STOCK DELIVERY OF:

B.P.O. COMPONENTS

Manufacturers', Trade and Export Enquiries welcomed, quoting BPO and/or Manufacturers'Reference numbers.

TELEPHONE \& WIRELESS COMPONENTS LTD.
147 The Broadway, London, NW9 7EA
Tel: 01-203 2814 Cables: Telwirco London NW9

TRANSFORMIRS

SAFETY ISOLATING

iwats		Case	Dpen	Post	
60	149	7.35	${ }_{0}^{\mathrm{t}} \mathbf{\mathrm { f }} \mathrm{80}$	${ }_{4}{ }_{400}$	${ }_{0}^{1}$
100	150	${ }^{8.22}$	${ }^{0.80}$	460	0.52
${ }^{200}$	151	10.20	${ }^{0.80}$	740	0.52
250	152	11.68	${ }^{0.80}$	${ }^{8.88}$	085
350 500	${ }^{153}$	1410	$0 \cdot 80$	1080	${ }^{0.80}$
750	154 155	${ }_{24}^{15.68}$	${ }^{1080}$	12.38	1.00
1000	156	32.19	1.00	26.50	1.20
1500	157	38.18	1.00	30.34	$0 \cdot \mathrm{~A}$
2000	158	45.20	240	${ }^{3468}$	$0 . \mathrm{A}$.
3000	159	66.50	2.40	53.35	DA

MINIATURE \& EQUIPMENT

Primary 240 v with Screen

BRIDGE

 RECTIFIERS

\qquad

 Price30 VOLTS

60 VOLTS

$\frac{1}{4}$ WATT CARBON FILM RESISTORS

AUTO TRANSFORMERS					
va	Ref.	PRICE	${ }_{\text {Prugs }}$	PRICE	
(Wans)	Mo.	${ }_{\text {Cesedd }}$	${ }^{288} 3$ pin	Open	Post
200	65	5.40 6.40	0.15	4.50	0.40
${ }^{300}$	${ }^{56}$	7.27	015	5.28	0.52
550	67	9.99	0.15	8.29	0.67
${ }^{750}$	83	12.56	0.75	9.76	0.82
1000	84	15.70	0.75	1240	0.82
${ }_{2000}$	${ }_{95}^{93}$	19.88 30.10	${ }_{1}^{0.74}$	16.58	1.50 1.50
3000	${ }_{73} 9$	- 43.15	$\underset{1}{1.90}$	${ }^{22.05}$	1.50 1.90
				32.00	1.90

BATTERY CHARGER TRANSFORMERS

2Amp 2-6-12 volts
4 Amp 2-6-12 Volts 6 Amp G-12 Volts RECTIFIERS NOT ${ }_{7}^{7.80}$

NEW

PRODUCTS! Available shortly Don't chance it! isolate it! PANEL METERS

SIZE 110

\qquad $4^{4 \prime}$ | SIZE |
| :--- |
| 82 m |
| Diee | | Deep. |
| :---: |
| Movement | | IR |
| :---: |
| $\substack{\text { hin } \\ 250}$ | $0-50$ micie A

0,1000
0 $0-1000$ micra A

$0-500$ micro A. | $\substack{0-50 \\ 0-5 \mathrm{~mA} \\ 0-5 \\ \hline}$ |
| :--- |

 Lamps 55p per set.

MINIATURE NEONS

 Volt operatit
Posstage IOp.
ELECTRONIC MAINS TIMER
A relibbla unit ideal for timing Bathroorrf Toilet Ventilitars. Stai wayYMiaakroom Lightimy
ett. Gives up to 30 mins. delay before swithing off. Delay: $1-30$ mins. adiusstabte. Max Load. 400 VA or 1000 Watrs resistive, voor Case $3_{\text {3in }}^{\frac{3}{\text { in }}} \times 3^{3^{3} \mathrm{in} .} \times 2$ 2in. Fitting Instructions included. Trade Picie: 55.80 . Post 20p

MAINS KEYNECTOR

 The safte, quick, comnector for electicalappliances. 13 Amp rating. fused wil connect a number of appliances quicky and safely to the mains ideal for testing: demonstrating winsow displays. eft. Waming Light interiocked to prevem
conneting when Trade Price: E2: 95. Post 25 p .

C1001 MULTIMETER

 Overload protection250 ua movement. clear scale
Ranges - AC Volts $0-10,50,250.1000 \mathrm{~V}$ DC Volts 0-5. 25. 125, 500. 2500 V Current 0-50 ma
Resibls 20 Kins $0-6$ Mohms
Carrying Case. Test Prods and Batteries included. Size: $11.5 \times 8.3 \times 2.7 \mathrm{~cm}$.
Size: $11.5 \times 8.3 \times 2.7 \mathrm{~cm}$
Price 99.85 . Post 200

WW-043 FOR FURTHER DETAILS

ELVINS ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Rd., Hackney, London E8 1JP. Tel: 01-986 8455

STEREO IC DECODER
 HIOH PERFORMANCE PHASE LOCKED LOOP
 (as In 'W.w.' Juiv '72)

MOTOROLA MC1310P EX STOCK DELIVERY

Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ 1/P level: 560 mV ims

SPECIFICATION
O/P level : 485 mV plstortion: 0.3% Input Impedance: 50k Ω.

Will drive up to 75 mA stereo 'on' Por requitement

KIT COMPRISES FIBREGLASS PCB	ONLY	WHYPAY
(Roller tinned). Resistors, I.C., Capacitors,	E3-98	MORE
Preset Potm. \& Comprehensive Instructions	post free.	
LIGHT EMITTING DIODE	RED	29p
Suitable ses sereo		

MC1310P only $\mathbf{£ 3 . 1 5}$ plus p.p. 6p
NOTE
our customers can beneff from our wide experience.
Please add V.A.'.T. at
FI-COMP ELECTROMIC
BURTON ROAD, EGGINTON, DEREY, DEG GGY

\section*{SERVICE TRADING CO
 VARIABLE VOLTAGE TRANSFORMERS
 INPUT 230 v. A.C. $50 / 60$

OUTPUT VARIABLE $0 / 260$ v. A.C BRAND NEW. All types. 200 W (1 Amp) 0.5 KVA (Max. 21 Amp) 1 KVA (Max. 5 Amp) 3 KVA (Max. 15 Amp) 4 KVA (Max. 20 Amp) (Max. 37.5 Amp) $\cdots . f 102.50$ Amp OPEN TYPE (Panel Mounting)
 L.T. TRANSFORMERS

 Large selection of other types in stock, phone for details.
 300 VA ISOLATING TRANSFORMER
 $115 / 230-230 / 230$ volts. Screened. Primary two separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts at 150 VA each for 115 or 230 volts output. Can be used in series or parallel
connections. Full tropicalised. Length 13.5 cm . Width 11 cm .
Height 13.5 cm . Weight 15 lb . SPECIAL OFFER PRICE Only Y5.00 Carr. 80p. TYPE MSQP $200 / 250$ Volt 2 -ON/2-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted manualfy pre-s
diecast case.
e4-75 Post 25 p .
 A.C. MAINS TIMER UNIT

COIN MECHANISM (Ex-London Transport)
Unit containing. selector mechanism for $1 p .2 p \& 5 p$ coins.
Micro switches. relays. solenoid-operated hopper. 24 vott D.C. Precision built to high standard. Incredible VAlue at only
$\mathbf{Z} .50$ Post 60 .

230-250 VOLT A.C. SOLENOIO

24 VOLT DC SOLENOIDS
UNIT containing: 1 heavy dury solenoid approx. 25 lb . pull
 1 heavy duty 1 make relay. Price: $\mathbf{£ 2} \mathbf{5 0}$. Post 60p. ABS OLUTE
BARGAIN.

LONDON, W4 5BB. Phone: 01-995 1560

FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERING CIRCUUTS, PROVISION FOR EX.
TERNAL TRIGGERING, 230-250v. A.C. OPERATION. EXPERIMENTERS "ECONOMY" KIT ponents including Xenon Tube + instructions $\mathbf{~} .6 .30$.
Post 30 p . Post 30p.
INDUSTRIAL KIT
Ideally sultable lor schools, laboratories etc. Roller output of Hy-Lyght. Price $\mathbf{£ 1 4 0 0}$. Post 50 p
hy-lite strobe mi iv
Designed for use in large rooms, halls and utilizes a Light output greater than many (so called 4 Joule) strobes. Price $£ 1400$. Post 50p.
'SUPER' HY-LIGHT KIT
Hy-Lyaht strobe the output of our well proven
Variable speed from 1-13 flash per sec.
Reactor control circuit producIng an Intense white
light. ONLY E22.00. Post 75 p .
ATTRACTIVE, ROBUST, FULLY VENTILATED reflector. f8.00. Post 60p. FOR HY-LYGHT STROBE Incl. reflector, £5.75.. Post 25p.
 Complete with oil filled colour wheel. 100 watt lamp. tremely efficient optica system. $\mathrm{f18-50}$. Post 50p.

I R.P.M. MOTOR and

200/240 W WHEEL
左 55.60 .
Post 40p. (Motor not available separately.)
6 1NCH COLOUR WHEEL ONLY. Price $£ 4.50$. Post
$\star \star \star$
BIG BLACK LIGHT
400 Watt. Mercury vapour ultra violet lamp. Extremely compact and powerful source of u.v.
Innumerable industrial applications also ideal for
stage. display. discos etc. P.F. ballast is essential stage. display discos etc. P.F. ballass is essential
with these bulbs. Price of matched ballast and bulb £16.00. Post $£ 1$ Spare bulb $£ 7.00$. Post 40 p.

4ft. 40 watt Price f5 50 (Cat U.V. TUBES $k \star \star$
84.25. Post 25 . 12 in . 8 watt $\mathrm{f1.60} \mathrm{} .\mathrm{Post} \mathrm{15p} \mathrm{} .\mathrm{9} \mathrm{in}. \mathrm{6wattf9.30} \mathrm{}$. 15p. Complete ballast unit and holders for either $9^{\prime \prime}$ or $* * \star *$
U.D.1. SINGLE CHANNEL. 750 watt MANUAL/AUTO DIMMER
750W Solid State Fader, with three functions. Manual
fade: Auto fade-up: Auto fade-down. Automatic cycling, up and down. Auto fade-down. Automatic
position rocker switch. Two ranges of with three "Flashing' or "Slow blending, Ready built of cycling for $6^{\prime \prime} \times 3^{\prime \prime}$ more modules for top quality colour blending and

GENERAL ELECTRIC POWERGLAS TRIACS
10 amp. Glass passivated plastic Triac. Latest device from
U.S.A. Long term reliability. Type $5 \mathrm{C} \quad 146 \mathrm{E}$ 10 amp. 500 PVV . f1.00. Post 5 p. finclusive of data and application sheet) suitable Dlac 18p.

INSULATION TESTERS (NEW) struction, sultable for bench or fleld Wrk, constant speed clutch. Siz
W. 4 in ., H. 6 in ., weight 6 ib
 60 p . 1,000 VOLTS, 1,000 .megohms

INSULATED TERMINALS Available in black. red. white.
vellow, blue and green. Now 12 p

 (1) Coll ohms; (2) Working d.c. volts; (3) Contacts: (4)
Price HD=Heavy Duty. All Post Pald. ("Including Bese) 6 VOLT D.C. 1 make con.
c/0 5 ap
12 VOLT D.C. RELAY
24 VOLT D.C. $3 \mathrm{c} / \mathrm{o} 600$ ohm coil 75p. Post 10 p .
$4 \mathrm{c} / 0300$ ohm coil 85 p .
24 VOLT A.C
240 VOLTA.C. RELAY ITT
DIAMOND H, Heavy Duty Relay

HEAVY DUTY SEALED RELAY
220/240 VOLT AC RELAY
CLARE-ELLIOT Type RP 7641 G8
Miniature
Post Paid.
DRY REED RELAYS
Single c/o 65 p . Post Paid. Two clo 85 p . Post Paid
STC ${ }_{280 \text { ohm coll } 6 / 12 \text { V D.C. } 3 \text { make contacts metal shrouded }}$ 60 p . Post Paid. Large range of other types available.

600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 watts of all lighting except fluor-
escent at mains voltage. Complete with simple 2000 WATT POWER CONTROL
For Power tools. Heating. Lighting etc. incorporating 13 amp .
outlet and mains lead. $\mathbf{£ 8} \mathbf{8} \mathbf{0}$ Post 27 p .
High Visibility
Panel Mounting
EDS
25 Inch mounting, -16 inch lens. Typical parameters 2 volt
20 m.a. all types. Supplied complete with snap in mountings and data. Red 4 for $£ 1.00$, Green 3 for $£ 1 \cdot 00$, Yellow 3 for $£ 1 \cdot 00$.

LED READOUTS
in DP ${ }^{\prime \prime}$ high characters. 14-pin D.C.L. E 6.00 post paid.
METERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND available as D.C. Amps $1.5,10,15$ or A.C. Am
1.5 .10 .15 .20 Both iypes $£ 2.00$. Post 15 p .

SERVICE TRADING CO.
PERSONAL CALLERS' ONLY

SHOWROOMS NOW OPEN

AMPLE PARKING
9 LItTLE NEWPORT STREET
LONDON. WC2H 7 SS.

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLO UCESTER ROAD, LITTLEHAMPTON, SUSSE

\qquad
 0.20 AF1
0.58
0.551
0.94
0.25
AF18
0.2

0.76	
0.3	
0.31	
0.61	
39	0.42
127	0.47

$\mathrm{A} \cdot 25$	OC
0.25	
0 OC 2	
0.31	
OC 2	

0.31
0 OC 2
0.31
0 OC 2

0 OC 2	0.22	OC36
0.22	OC38	0.38

2.75
0.
0.

BA | N38696 |
| :--- |
| N3988 | Terms of husiness. Cash or cheque with order. Despatch charges:- Orders below 45 add 10 p per otal. Orders over £10 post free. All orders cleared same day. Any parcel Insured against

damage in transit for 3 p extra per parce. Conditlons of sale available on request. Please enclose

MIL SYNCHROS AVAILABLE EX-STOCK In sizes $08,4,45,16,18$ and 23 for 50,60 and 400 Hz operation. Synchro Control Transformers
Synchro Control Transmitters
Synchro Conirotriansmiters Transmitters Synchro Torque Transmitters and Recelvers

WE ARE ANXIOUS TO BUY Synchro Test Equipment manufactured by Muirhead, Singer-Gertsch ett. Test Dlats,
Dlviding Heads, Brldges, Standards etc. to expand our testing Dlviding H
facilities.
SOLAR CELLS. Ferrantj silicon MSIIBE, active area 390 sq. mm. Open Cct voltage 550 mV at 3000 lumens $/ \mathrm{sq}$. It. Sht.
Cct. Current 60 mA . Ootimum load 90 hm ms . Dia. 34 mm . Thick${ }^{\text {ness. } 6 \mathrm{~mm} \text {. mtg thrd }} 1 / 4-28$ unf 2A. Ex Made up panel $£ 1.35$ PANEL DISPLAY RECORDING CAMERA. Manufactured A.G.I. Specifically for the recording of complex Instrument
dispiays on $2.1 / 4 \mathrm{in}$. $x 2.1 / 4 \mathrm{in}$, shots. Fitted 80 mm F3.5 lens. Shutter speeds $1 / 100,1 / 50,1 / 25$ sec. and time exp. Focussing at 1.75 to 50 ft . In 18 steps. Aperture sttgs F3.5 to F22. Prismatic viewfinder and facility for viewing direct on ground glass screen.
Rotating filter attachment. Cord film advance and shutter cock with septe. Button control and electrical release facility ($24 \mathrm{~V} D \mathrm{DC}$)
witer Spool holds 40 exposures. Camera may be wall mounted on bracket supplied. Tripod mounting socket provided In wooden
case. Two grades available 'as new' Grade A $\mathbf{~} 35.10$ (inc. P. case. Two grades available 'as new' Grade A e 235.10 (inc. P.
and P. and VAAT. Somewhat used but serviceable Grade B
$E x i n g$. E2t.08 (Inc. P. \& P. and VAT).
X-Y PLOTTER OUTPUT UNIT. End of production run.
chart area 32in. x 11in., with drives etc. Lydd callers only $£ 27$ WEE MEGGERS, 250 V E12.53. RECORD MEGGERS, 500 V

10
27V 500mA D.C. STABILISED P.S.U.
With circuit. These interesting 27v 0.5A units (will happily provide 700 mA indefinitely) are bullt into an attractive grey-
finished instrument case, proviston belng made for base or side mounting. Cable entry grommets are mounted in the
base of the unit. The chome cancity state stabilised against variation in input voltage and ouftout current, and input and output fuses with spares are fitted. The
output operates a built-in S.P.C.O. relay to switch for insiance output operates a built-in S.P.C.O. relay to switch for insiance
an alarm circuit. There is adequate room for other equipment
withln the ventlated case, which is $t^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$ deep
$£ 4.43$ EACH (P.Pd U.K.)
Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors (KEMET, ITT, PLESSEY, ETC.) Synchros and Servomotors ALL AVAILABLE EX STOCK IN MANUFACTURING QUANTITIES

SPECLALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& CONNECTORS

Servo and Electronic Sales Ltd

Pont Orders and Technical enquiries to: 24, HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) V.A.T. Reg. No. 201-1296-23

TELEX 965265
Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066

Tickets available to professional readers S.A.E. Please

STAINLESS STEEL VACUUM CONTAINERS FOR LiquIDS. Capacity 2 U.S. galls. fitted with dellvery taps.
Brand new In cartons- 22 (C. Pd. U.K.). N.E.P. Mod. 1050 © Channel U/V Recorder. Fitted 5 galvos. With P.S.U. tor 230 v . A.C. $14 \times 10 \times 12$ in. (recorder) and
$14 \times 10 \times 8$ in. (P.S.U.). $£ 220.00$ (inc. carr. \& V. T .)
FI-CORD MODEL 202 PORTABLE RECORDER with case

 take 8 minleture lead acid batteries. $9 \times 6 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$. Wt. $6 \frac{1}{1} \mathrm{lbs}$.
Full data s.a.e. ESY R REED INSERTS

All carriage paid U.K
Heavy duty type (body length 2in.) diameter 0.22in. to switch
up to 1 A a up to 250 V . A.C. Gold clad contacts, $£ 1.38$ per
 type £270 par doz. All carriage pald U.K.
Operating Magnets 8 Ep per doz.; $£ 4.45$ per 100; $£ 3800$ per 1000.
All carriage paid U.K.
Operating Coils for 12 y supply to accept up to four standard
reeds $£ 2.20$ per doz.; $£ 12.30$ per 100 . All carriage paid U.K.

ALL PRICES INCLUDE 8\% V.A.T.

LEMANIA AIRCREW CHRONOGRAPHS

Stainless Steel case with screw markings. One fifth sec. sweep hand controlled inde-
pendently of maln movement pendently of maln movement
by press to start, stop and by press to start, stop and
returnto zero button. 15 jewel
movement meturn to zero button.
movement. Many of these
watches are as new but all have been completely over-
hauted all have been completely over-
hauled and checked for
E18.25, Black face $£ 19.20$ inc accuracy. Fitted strap. White face $£ 18.25$, Black face $£ 19.20 \mathrm{inc}$
Inspection against remittance GS WATCHES all with brushed stainless steel case with
screw back and black faces. Manufactured by CYMA. VERTEX, SCTew back and black faces. Manufactured by CYMA. VERTEX, RECORD, etc., to a standard specification. We will try to meet
your requirements for specific manufacturer and quantity orders
will be of one manufacturer's production. Completely overhauled. Fitted strap. $\& B \cdot 80$ inc. P. \& P. We aiso have limited quantities of these watches by OMEGA,
LONGINES. BUREN, JAEGER LE COULTRE at $£ 15 \cdot 25$ inc. TELEPRINTER PAPER. Standard rolls. 2 ply 3 ply E4. 10 per A.C. SUPPLY PANEL for 19in. rack mounting carrying two
2 VVA Varlacs with double brush assemblis 2kVA Variacs with double brush assemblies providing four
Individually fused and metered outputs of uo to 4 kVa and 270 v In excellent condition at $\mathbf{\varepsilon A 8 . 5 0}$ including carriage and V.A.T.
in (U.K. mainland)

TAPE STORAGE CANS. Brand new finlshed steel cans of tape. Our last supply of these items was quickly exhausted
at 30 pe each but as a result of a masely at 30 pe each but as a result of a massive new purchase we can
now offer a case of 55 at $£ 5.25 \mathrm{inc} . \mathrm{P}$. \& P . and V.A.T. Sample
order 10 for $£ 4.10$ inc. \mathbf{P}. P .

OVER 300,000 IN STOCK!

 Multiway and R.F. Connectors by twenty different companies!Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

hursit
 ELECTRONICS

92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

HE 100 100 WATT POWER AMP MODULE

* Includes large black anodised heatsink-no further heatsinks required.
\star Top grade glass-fibre P.C.B.
\star Uses high quality components.
\star Fully protected-short/open circuit proof.
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

```
\star Power output
\ Distortion
\star Frequency response
\(\star\) Signal to noise
\(\star\) Input sensitivity
\(\star\) Input impedance
\(\star\) Supply volts
```

106W. R.M.S. into 8Ω
0.8\% at full 0/P. Typ. 0.4\%
$15 \mathrm{~Hz}-23 \mathrm{kHz}$
Better than-96dB
OdB (0.775V)
$10 \mathrm{k} \Omega$
45-0-45V

```
Price \(\mathbf{£ 1 5 . 1 2}\) inc. VAT. (ready built) OR
Complete kit (including P.C.B. and all components) f11.88 inc. VAT. Enclose 50p postage \& packing.
```

Power supply for HE 100 (including transformer, capacitors, rectifier) $\mathbf{f 8 . 9 5}$ inc. VAT. Postage \& packing 85p.

Pre-amps etc., also available.
SAE for details.
CALLERS WELCOME

WW-105 FOR FURTHER DETAILS

WW-113 FOR FURTHER DETAILS

In the search for quality it helps to know where to look. Hi-Fi Year Book tells you everything you need to know, with separate illustrated sections for every major category, giving you prices and specifications of over 2,000 products And it's got directories of dealers and manufacturers - plus a host of articles on the latest hi-fi developments and their application. So if you want information like you want hi-fi, order your copy today because it sells out pretty quickly! £2.00 inclusive from the publishers.

To: Room 11, IPC Electrical-Electronic Press Ltd. d Dorset House, Stamford Street, London SE1 9LU
1 Please send me copy/copies of Hi-Fi Year Book 1975 at $£ 2.00$ per copy inclusive I enclose remittance of f
(cheque/P.O. payable to IPC Business Press Ltd).
I NAME

```
(please print)
ADDRESS
```


ITITELHANNOUNCES "THE MIDGET SCIENTIST"

 STOP WATCH FUNCTION

FEATURES

* Eight Digits with one memory
* TEN Functions $\left(+,-, X, \div \%, x^{2}, \sqrt{x,}, \bar{x}\right.$, Count Up. Count Down)
* Full floating Decimal Point
* Algebraic mode operation
* Automatic accumulation memory
* Constant or chain operation
* Repeat add and subtract
* Fully automatic percentage, add-on, discount operation
* Automatic power-on clear
* Battery low indication
* Leading zero suppression
* Low power consumption
* AC/DC Power source available

STOP WATCH FUNCTION

The Midget Scientist can count time, at intervals, forwards and backwards. It can count time in any fraction of a second with an accuracy of up to one tenth of a second. Time can be equated to mathematical calculations.
The Midget Scientist is an ideal calculator for time and motion studies, timing and costing long distance calls and thousands of similar applications.

BEST VALUE FOR MONEY AT E35 (including VAT)

ITTTELH PRDDUETS LITITTED
IMP HOUSE, 35 MALDEN WAY, KINGSTON BY PASS, NEW MALDEN, SURREY.
Telephones: 949-2430 949-3186

APPOINTMENTS VACANT

LINE advertisements (run-on): 66p per line (approx. 7 words), minimum two lines. BOX NUMBERS: 30p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.) PHONE: Allan Petters on 01-261 8508 or 01-261 8423 .
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Tuesday. November 5th for the December issue subject to space being available.

Planning and Installation Engineer

Pie TVI has recently won a $\mathfrak{t} 7.7$ In contract to supply a complete colour tele vision hodadeasting swisem to the Middle Eist Sultanate of Onan. This is just one example of our rapide espansion in the field of hroadeasting sistems, which has created a need for high calithe

Planning Engineers/Installation and Commissioning Engineers

for colour television Transmitter and Studio projects, in the U.K. and overseas.
Applicants should be well experienced in current UHF and VHF Colour TV Transmitters and peripheral equipment or professional TV Studio equipment and techniques.

Engineers will be based in Cambridge but Installation and Commissioning Engineers can expect to spend periods on overseas projects. A current driving licence is essential.

Pleasc write, with a brief outline of
iour qualifications and career so far, to
Mrs. I. A. Macnab, Personnel Manager.

(D) Pye Po Box 41 coldhams Lane Cambridge CB 13 JU

Opportunities in the
ELECTRONICS FIELD

Men with analogue or digital qualifications/ experience seeking higher paid posts in: TEST - SERVICE - DESIGN - SALES. Phone Mike Gernat. Ref. WW.

NEWMAN APPOINTMENTS 360 Oxford St. W1

01-629 7306

HI-FI and AUDIO ENGINEERS

This could be the opportunity you've been looking for

Due to continued expansion Hardman Radio, the North-West's largest Hi-Fi Group, are looking for enthusiastic $\mathrm{Hi}-\mathrm{Fi}$ and Audio Engineers with bench experience to join our teams in Liverpool, Manchester and Preston. Excellent salary together with good working conditions and future prospects.

Phone or write to:

The Managing Director, Hardman Radio,
33 Dale Street, Liverpool L2. Tel: 051-236 2828

Radio/Electronics Officers

 Does it make sense

 Does it make sense to settle for second best?

 to settle for second best?}

When you're thinking about your career and your family's future, it would be wise to think of Shell. Whether you're in the service now or ashore for the time being, you will already know a lot about us. Our British flag fleet of about 80 ships (with more on the way) is widely diversified, carrying many different cargoes-bitumen, luboils, crude, LNG, chemicals and black and white products. That means that you don't have to be stuck in one particular kind of tanker for long periods. You can move up and move around with equal familiarity. Our large and increasing investment in
training underwrites our determination to ensure that we will achieve our intended service periods of $4 \frac{1}{2}$ months, and underlines our confidence in the future of the Fleet. When it comes to pay, you'll find our salaries are highly competitive. You can earn between $£ 2,972$ (with general certificate and DTI radar certificate) and $£ 6,156$ (including MNTB electronics certificate). Your experience and qualifications will determine the point at which you can enter this scale. Leave too is generous - at the rate of I83 days per year served. All officers are members of the company pension scheme and
certificated officers can take their wives to sea whenever they wish, which includes two free air fares a year. If you are returning to the service after a spell ashore or already in service, we'll be pleased to tell you all about the extra benefits that Shell can offer you as a Radio/Electronics Officer in our fleet. Write or phone, reversing the charges:

Shell Tankers (UK) Limited,
STP/I3,(WW/11/74) Shell Centre, London SE17PQ. Tel: or-934 4172 or 3968.

Could you stabilise this by design?

This is only one example of the sort of work that our engineers do in the design and development laboratories of the Submarine Systems Division of S.T.C.
We are looking for graduate or similarly qualified engineers with experience of a year or more in electronic design and development. An analogue background will be preferred.
This is what we have to offer:-

A Secure Future:

We are the world's largest supplier of repeatered submarine telephone cable systems. Most of our product is exported and our order books are healthy - $£ 43 \mathrm{~m}$ of orders so far this year. We are also the technological leaders in our field and through our design and development teams we are continuously improving on our fine record of innovation and reliability.

Money:

Starting salary will be up to $£ 3,000$ depending on experience. Your salary progression will be determined by your own performance, responsibilities and potential. Generous relocation expenses will be paid where appropriate.

A Satisfying Job:

You will design and develop wideband analogue amplifiers, filter networks (using C.A.D.), repeater supervisory circuits,
terminal transmission equipment or advanced test gear. You will be designing a product of supreme quality, for once laid a system must operate for 25 years without fault or maintenance.

Training :

We shall offer training to those whose experience of analogue circuitry is limited. Encouragement is given to engineers who wish to obtain corporate membership of the I.E.E.

Career Development:

You will be given every opportunity to develop and take responsibility. There is much scope for advancement in the Engineering Department and other functions of the company. Promotion is given on the basis of merit.

Travel:

Opportunities may exist for you to spend periods abroad on cable laying and commissioning operations. In 1975 this might take you to Spain, Italy, Israel, the Greek Islands, Australia, New Zealand or New Guinea.

Interested?

If you would like our special information pack 'phone David Stenhouse on
01-476 1401, or write to him at:Standard Telephones and Cables Limited, Submarine Systems Division, Henley Road, North Woolwich, E. 16.

A job in the Post Office Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunications, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is £1,567 a year, including contributions to a compulsory pension scheme, with an additional allowance averaging $£ 300$ for shift duties. After two years' satisfactory service your pay becomes $£ 2,054$, rising to a maximum of $£ 2,622$ at age 25 years. If you are over 19 years of age your salary is dependent upon age at entry.

There are opportunities for further promotion to positions with a basic salary of $£ 3,475$ and prospects for advancement into Senior Management.

For further information, write to the Inspector of Wireless Telegraphy (L528), MRSD/ET17. Room 643, Armour House, St. Martin's-le-Grand, London ECIAIAR.

HAYDEN LABORATORIES LTD

Sole UK Distributors for Fisher Radio

A vacancy has arisen in our London Service Department for an

ENGINEER

to carry out servicing work on the above products. We are seeking an enthusiastic and conscientious worker with a good understanding of amplifier and receiver techniques and a standard of workmanship consistent with the quality and reputation of this product range.

Good working conditions, four weeks annual holiday, salary by negotiation. Interviews to be carried out in London.

Please reply in writing to:

Sales Director,

Hayden Laboratories Ltd.
Hayden House,
17 Chesham Road,
Amersham, Bucks.
HP6 5AG
14143

TELEVISION ENGINEER

required to join a small but enthusiastic team operating a

TELEVISION UNIT FOR HORSERACING

If you have an HNC, City and Guilds, or equivalent qualification and have experience in operating and maintaining outside broadcast television equipment and VTRs together with a willingness to travel and to work in a demanding field, then this Company offers you:-

1 the opportunity to join an organisation that is forward looking and is planning to develop and expand in the field of television and electronics;
2 a job that is located in varied surroundings on British racecourses;
3 a basic salary of between $£ 2,700-£ 2,900$ plus current threshold provisions and expenses when on location.
If you are interested, please write or telephone for a
Company form to:-
Mr. F. T. Dixon, Racecourse Technical Services Ltd., 88 Bushey Road, London, S.W. 20

Tel: 01-947 3333

There is scope variety and responsibility as a Radio Technician

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.

ENTRANCE QUALIFICATIONS:

You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in telecommunications.

Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.

Vacancies exist at locations throughout the United Kingdom and particularly near London (Heathrow), London (Gatwick) and Stansted

Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.

Salaries c. £1695 (at 19) to $£ 2210$ (at 25 or over) ; scale maximum $£ 2575$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.

To: Mr. R. F. Simons,
National Air Traffic Services,
STE (Recruitment) Bletchley Park, Bletchley, Milton Keynes, Bucks.

Please send me application form for entry as Radio Technician.

NEW PRODUCT OPPORTUNITY FOR AN ELECTRONIC DEVELOPMENT ENGINEER

CAV are international leaders in the design and manufacture of diesel fuel injection systems and low voltage electrical equipment. We are expanding our manufacturing facilities to keep pace with world-wide demand and our planned development programme is designed to keep us in the forefront of diesel fuel systems technology.

A unique opportunity is available for an experienced and innovative electronics engineer to join a small team in the Instrumentation section of our research laboratories in West London. You will be working on varied types of circuit development, both analogue and digital, mainly concerned with measurement of the per-

ACTON
formance of diesel engine fuel systems.

We are looking for an engineer with formal qualifications to at least H.N.C. standard together with the experience, analytical ability and enthusiasm needed to make a significant contribution to our new product development programme.

We can offer an attractive salary together with the kind of benefits you would expect from a large international group. Why not write now, or better still phone The Personnel Department, CAV, P.O. Box 36, Warple Way, Acton, London W3 7SS. Telephone 01-743 3111 and tell us what you can offer.

Electronics Appointments Register

We know a lot of companies who would like to meet you.

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronics Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.

Graduate Appointments Register
Please send me details of how to enrol on one of your
Appointment Registers:
Name
Address

Electronic Technicians Arabian Gulf $£ 5050$ pat

Required by a large oil company in the Arabian Gulf. Responsible for maintenance and repair of communications and electronic equipment in which applicants must have had 10 years' experience. Must have theoretical and practical experience in the troubleshooting and repair of microwave and multiplex equipment, VHF and HF. Additional requirement for technician with experience of latest digital electronics including mini-computers. Benefits include air conditioned housing, 30 days annual UK paid leave, excellent recreational facilities and free medical care. Married housing however is extremely scarce and one wouid probably have to go on single status initially taking 14 days leave every 4 months. Contracts are one year renewable with an expected employment period up to $4 / 5$ years.
Our clients wish to fill these positions as soon as possible so please apply immediately with a brief career résumé, quoting reference ELT 457. Interviews will be held regionally where possible.

APPOINTMENTS

Hield Service Dingincers

COMPUTERS

Mini to Main Frame £2,500 to £3,500 p.a. + car/allowance BUSINESS MACHINES

Electro-Mechanical/Electronics £1,700 to $£ 2,500$ p.a. + vehicle

Eric Stack	London	$01-6370781$
lan Baker	Manchester	$061-8325857$
Ed Murphy	Birmingham	$021-6431994$

lan Baker
Birmingham 021-643 1994

MINISTRY OF DEFENCE

Require

TELECOMMUNICATIONS PERSONNEL

for employment with the British Forces in Germany. Duties include responsibility for the provision and maintenance of the permanent telecommunications networks and equipment serving the British Army of the Rhine and liaison between Forces on field exercises and the German Post Office. Posts may be in Berlin or the British area of responsibility in the Federal Republic of Germany.

Candidtates, who should be British subjects, must hold ONC in Engineering, including a pass in Electrical Engineering A, or an equivalent or higher qualification or have at least 5 years' relevant experience. They should also have practical experience of at least one of the following; lines and transmission systems; auto and manual exchanges; subscriber apparatus and PBXs; radio station practice involving microwave relay equipment. Knowledge of German would be an advantage. Starting salary, at present under review, will be $£ 1722$ plus Foreign Service Allowance of up to $£ 1120$ per annum with an additional allowance equal to London Weighting (£228 p.a. at present).

For fuller details and application form write to, Ministry of Defence, SPM4h(PE), Lacon House, Theobalds Road, London WC1 8RY or telephone 012420222 extn. 6650.
(4165)

NATIONAL PHYSICAL LABORATORY, DIVISION OF MARITHE SCIENCE
 vacancies at
 TEDDINGTON, MIDDLESEX
 and
 HYTHE, HAMPSHIRE.

ELECTRONIC DEVELOPMENT

A number of interesting posts with a wide range of duties are available at the above locations.
We use analogue and digital circuits, audio and radio frequencies, land and sea based equipment, together with computers to handle our results.
Assistant Scientific Officers, with an interest in electronics, are required to join small teams at both sites to help us maintain and develop our systems, and to assist in trials on ships and offshore structures.
Excellent opportunities exist to obtain broad practical experience and to study for higher qualifications leading to a worthwhile career.
The minimum qualifications are 4 GCE or CSE Grade 1 subjects, to include Maths, Science and English Language. Salary ranges from $£ 887$ (at age 16) to $\mathcal{f 1 , 5 4 7}$ (at age 25) rising to $£ 1,899$.
If you would like further details you may telephone Mr. R. F. Johnson or Mr. R. W. Cuffe at the numbers shown.

Mr. R. F. JOHNSON: 01-977 3222 Ext. 4165 during working hours or Woking 65942 evenings and weekends.
MR. R. W. CUFFE: Hythe, (Hants) 3065 (STD 042-14) in working hours, or Hythe 6804 evenings and weekends.
Alternatively, write to Mr. H. B. Boyle, Officer-in-Charge, Department of Industry, National Physical Laboratory, Division of Maritime Science, St^{t} John's Street, Hythe, Southampton, Hampshire, SO4 6YS, quoting Reference MS/INST
$[4072$

CAMBRIDGESHIRE AREA
HEALTH AUTHORITY (TEACHING)
Peterborough Health District

Appointment of

X-RAY ENGINEER

to be based at Peterborough District Hospital and become a member of a small team engaged upon the commissioning, maintenance and repair of a wide range of diagnostic X-ray apparatus. Candidates should possess HNC (Electronics) or equivalent, but consideration will be given to suitable candidates with ONC who are proceeding to a higher qualification.
Salary scale offered is $\mathbf{£ 2}, 601$ to $\mathbf{£ 3}, \mathbf{3 9 0}$.
Possession of a car is desirable, travelling expenses being payable in accordance with agreed scales for Health Services staff.
Application forms and job description obtainable from the Group Engineer, Peterborough District Hospital, Thorpe Road, Peterborough, to be returned completed within 14 days of the appearance of this advertisement.

TELEVISION ENGINEER

to work in beautiful BOURNE MOUTH
We seek urgently a qualified electronics engineer with video experience to join our present team. Salary will be circa $€ 2500$ p.a. (according to experience). Ability to work on owf initiative desirable. Responsibilities include service and repair of video equipment (monochrome/colour), system installation and customer liaison. Congenial conditions in our reputable family business.
Write stating age and experience to:-
SOUNDCRAFT AUDIO VISUAL LTD.,
CU MNOR HOUSE, CU MNOR RD., BOURNE MOUTH

Royal Holloway College (University of London)
Egham Hill, Egham, Surrey TECHNICIANS

Experienced Electronic Technician (Grade 4) required in the Physics Department. Salary on the scale f1848-£2163.
Applications together with the names and addresses of two referees should be sent to the Personnel Officer as soon as possible.

Electronics Engineers upto $£ 5000$

Many jobs which would suit you down to the ground - either in the U.K. or overseas are never advertised. Yet it will cost you nothing whatever to give yourself the opportunity to be considered for them
Join the Lansdowne Appointments Register - used by hundreds of employers to select electronics engineers. You have nothing to lose, everything to gain - and it's all conducted in strict confidence. So post the coupon - find out exactly how you can make use of a service which is all the more valuable for being free!
To: Stuart Tait, Lansdowne Appointments Register, Design House. The Mall, London W5 5LS. Tel: 01-579 6585
Please send me further details.
Name...
Age (20.45 only) Address
\qquad

Test Engineers

We are looking for men with at least two years' experience in testing of electronic equipment and with an ONC or equivalent qualification to join our Test Department.

We are a small friendly company close to Thornton Heath Pond; a subsidized staff restaurant provides a three-course lunch.

If you would like to know more, please write or telephone:

Jonathan Smith

International Marine Radio Co. Ltd.
Peall Road
Croydon CR9 3AX
Telephone 01-6849771

T.V. Engineers for New Zealand

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation.
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.

If you,

- Have 5 years experience, preferably some in colour.
- Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.

Telecommunications is a field which West Midlands Gas is continually developing and expanding. The scope of its applications justifies the maintenance of a separate department forming part of the Directorate of Management Services. Arising from promotion and expansion within the Department, vacancies now exist for the following positions:

ASSISTANT ENGINEER (Telephone Systems) A795

($£ 2637$ to $£ 3111$ plus Threshold Allowance)

Working in the Communications Planning Section of the Department, an engineer is required to assist in the planning and implementation of telephone switching systems Candidates should be qualified at least to H N C or C \& G full Technolems. Candicat G Post Office or a Telecommunications Manufacturer on duties encompassing telephone systems design and work on telephone traffic calculations. A knowledge of both common esign who Region's ays include large PABX and ond Region's systems include large PABX and tandem switching installations Familiarity with multi-channel microwave network, loud-speaking and public
address systems would be an advantage.

TELECOMMUNICATIONS TECHNICIANS (5 Posts) A683

(Salaries initially up to $£ 2808$ plus Threshold Allowance)
Technicians are required to install and maintain microwave radio networks, U.H.F. radio systems for telemetry and V.D.U.s, digital supervisory systems and extensively used V.H.F./U.H.F. mobile R/T systems.
More than 70 of our V.D.U.s in operation throughout West Midlands Gas rely on telecommunications networks, and one technician will be required to assist in the installation and maintenance of these units
Candidates of O.N.C. level or equivalent having some experience of the above range of electronic equipment and wishing to further their careers in a sophisticated telecommunications environment are invited to apply.
Whilst normally based at Solihull, the work will involve travel throughout the Region.
Salaries on first appointment are normally in a scale rising to $£ 2475$ with progression on demonstrated ability to £2808. Further progression to £3000+ is possible for suitably qualified and experienced technicians.

In appropriate cases, generous relocation allowances are available for persons appointed to any of the above posts.
Applications quoting the appropriate reference number should be made n writing, to include full personal particulars and be addressed to The Senior Personnel Officer, (Headquarters and Marketing), West
Midlands Gas, Wharf Lane, Solihull, West Midlands, B91 2 JP .

CUSTOMER ENGINEERS

BURNDEPT is anxious to recruit a number of Engineers for the Customer Engineering Department, to design control equipment for mobile radiotelephone systems and to meet customer requirements.

This work offers a great deal of variety and opportunity for personal initiative.
We would prefer engineers with mobile radiotelephone experience, but we would be interested to discuss career opportunities with engineers having a practical background in audio or telephone switching techniques.

A pleasant, friendly environment and a good salary is available to the right people.
Assistance with moving expenses will be provided if necessary.
Apply: D. W. TAYLOR (Personnel Manager),
Burndept Electronics (ER) Ltd.,
St. Fidelis Road, Erith, Kent. Tel: Erith 39121.

BBC EQUIPMENT

Power Road, Chiswick

(Near Gunnersbury, Acton Town, and Chiswick Park Tube Station)

LABORATORY TECHNICIANS
 (Salary £1,872 to $£ 2,364$)

C. \& G. Part 1 Telecommunications or Electronics Course 270 or 280 O.N.C. or equivalent.

For details of work, Pension Scheme, rates of pay and other conditions of employment please telephone: Mr. P. W. Green 01-994 8541 or write to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA quoting reference 74.E. 4081 W.W. and enclosing a selfaddressed foolscap envelope.

CHELSEA COLLEGE UNIVERSITY OF LONDON

TELEVISION TECHNICIAN

A Television Technician (Grade 5) is required to operate and maintain a wide range of audio and video equipment. The successful candidate will be expected to work closely with academic staff and students, and assist in the interpretation of their requirements in television terms. The television service at the College is expanding and the installation and commissioning of new equipment will present additional responsibilities Salary Scale: £2235- $\mathbf{2 6 1 0}$ per annum (including London Allowance). Application forms from Personnel Officer, Chelsea College, (WW) Manresa Road, London, SW3 6LX. [4141

CHIEF TECHNICIAN

For Guildford County College of TechnologyEducational Television Unit. To take charge of a team of technicians responsible for technical and routine operations of a well established College Television Service and be responsible to the Senior Lecturer-in-Charge
Applicants should hold relevant technicians qualifications and have a sound knowledge of colour television systems. Experience with HelicalScan. V.T.R.'s and Vidicon cameras essential, together with an interest in the uses of television and other audio-visual equipment as teaching aids. Some knowledge of, or experience in, television studio and mobile production techniques an advantage.
Salary up to $£ 2,360$, according to qualifications, age and experience.
Application Form from Vice-Principal, Guildford County College of Technology, Stoke Park, Guildford. Tel.: Guildford 73201.

COUNTY COUNCIL 4174

University of Surrey
Audio Visual Aids Unit

Technicians

Grade 2B
($\mathbf{(1 5 2 4 - \mathbf { ~ 1 1 7 9 4) }) ~}$
The AVA Unit is responsible for projection and allied services in 26 Central Lecture Theatres, and also provides services of photography, film and television for teaching and research throughout the University. These new posts are for skilled technicians who will be responsible for installation, maintenance and repair of a wide range of Audio Visual equipment ranging from slide projectors to televisions. The Unit is well equipped for. electronic and mechanical servicing, and instrument making and repair work. Experience in one or more of these fields is essential, although training in specific techniques will be given where necessary.
Applications immediately on forms available from
Assistant Secretary (Personnel), University of Surrey, Guildford. or Tel: Guildford 71281, ext. 452.

University of Edinburgh

 Electronics JechnicianDEPARTMENT OF RESTORATIVE DENTISTRY
The work is mainly concerned with medical electronics and electromyopraphy. The successtul candidate will be concerned with maintenance and modification of a wide range of and development in electronics as related to dentistry. The post offers challenging and rewarding work in a new and expanding field.

Applicants should hold H.N.C. or equivalent in appropriate subjects. Salary will be on scale £2007-£2382 p.a. (under review), plus threshold payment. Assistance with relocation expenses is available if necessary.
Applications, quoting the post reference no. A064, and giving full details of age and qualifications, together with the names and addresses of two referees, should be addressed to the Personnel Officer, University of Edinburgh, 63 South
Bridge, Edinburgh EH1 1LS. Telephone $031-6671011$ ext. 4446 The closing date for applications is 30th October, 1974

GUY'S HOSPITAL
 Department of Clinical Physics and Bioengineering
 ELECTRONICS TECHNICIAN/ENGINEER

MEDICAL PHYSICS GRADE III

Applications are invited for the post of Electronics Technician/Engineer to join a small team engaged upon the maintenance, repair, and calibration of a wide range of electromedical equipment.
Candidates should have an ONC, HNC or equivalent in electronics with at least three years experience in maintenance and servicing of electronic instruments. Salary Scale $£ 1,719$ to E2,211 plus London Weighting plus Threshold Allowance.
Application forms available from the Personnel Officer, Guy's Hospital, St. Thomas Street, London SE1 9RT. Tei: 01-407 3662 Ext 68.

Papua New Guinea

Radio Technical Officers

Applications are invited from suitably qualified and experienced personnel for the posts of Technical Officer (Radio) and Senior Technical Officer (Radio) with the Civil Aviation Agency of the Department of Transport. There are twelve positions available working on the installation and maintenance of a variety of electronic communications equipment and appointments will be made at three levels of seniority based on experience and qualifications.

Candidates should have successfully completed City and Guilds Technician Courses, Part III Full Technological Certificate or HNC. A minimum of 6 years' relevant experience is required, with at least 3 years' involvement in a field of radio work closely related to civil aviation communications.

Conditions of service
Period of engagement is for two years (renewable in most instances). General entitlements are very attractive and include a generous gratuity (approx 25% of salary combined with attrac tion allowance), education allowance for dependent children attending school overseas, return air passages with personal effects and luggage allowance, low cost married and single accommodation, and generous leave conditions.

Pay per annum
Expressed in SA. Current rate of exchange $\$ \mathrm{~A} 1=62 \mathrm{p}$.

Leval	Salary	Altraction Allowance			Gratuity
TO1	2035	3500	1500		
TO2	2275	4200	1800		
STO1	2755	4200	1800		

Please write or telephone immediately for an application form and full details of the posts. The Papua New Guinea Public Service Board Representative, 22 Garrick Street, London W.C.2. Telephone: 01-240 1780.

14133

Radio and TV Engineers for Green Shield

In order to provide our customers with a complete after sales service, we are setting up a new department at one of our warehouses in High Wycombe.

This is a great opportunity for first rate engineers who really know their way around radios, TV's (colour and mono) and other allied products.

We will be forming a completely new team and everyone will enjoy a good starting salary together with a company estate car, an annual bonus, special purchasing privileges,

GREEN
SHIELD
Stamps

stamps
use of our private Country Club, good holidays plus other benefits. There are excellent prospects for promotion too.

You will be based at High Wycombe and, if that entails moving house, we will make a generous re-location allowance.

So for full details, please phone or write to: Eddie Farrell, Personnel Officer, Green Shield Trading Stamp Company Limited, Green Shield House, Station Road, Edgware, Middlesex
HA8 7AQ.

Outside Broadcast

Systems Engineer

Pye TVT Limited specialises in outside broadcasting equipment and broadcasting systems, serving single organisations or whole countries.
We have a good career opportunity for a Systems Engineer to undertake system planning and design of outside broadcast vehicles.
Duties will include planning and design of vehicles, their wiring, air conditioning and ventillation equipment, plus preparing various schedules, data and test procedures relating to Video, Audio and Central system functions. Applicants should be aged between 25 and 40, with qualifications to $\mathrm{HNC} / \mathrm{HND}$ electrical standard and directly relevant practical experience.

We offer an excellent salary and good promotion prospects. There are also many fringe benefits, including relocation expenses in approved cases. 14132

Please apply to :
Mrs. J. A. Macnab, Personnel Officer

MARX-LUDER STACKABLE EPICYCLIC GEARED ELECTRIC MOTORS

A range of high efficiency reversible D.C.
motors are now offered complete with stackable epicyclic ofars giving all the wear ratios: $3,4,5,6,12,15,18,20,24,30$, as shown. Extra gear sets extend the
renge to fit most requirements. Four sizes of motor most requirements. Four
6 v windings pile gears and
EM136P 1 $\frac{1}{2}$ watts: 5000 rpm : size $24 \times 24 \times 74 \mathrm{~mm}$ Max. gearbox torque 2kg. cm
EM $136 \mathrm{P} /$ Sppre gear set with 3.4 .5 .6 ratios EM 14 1P8watts: 5000 rpm ; size $35 \times 35 \times 109 \mathrm{~mm}$
 EM145P 20 watts: 7000 rpm : size $52 \times 52 \times 180 \mathrm{~mm}$ Max. gearbox torque $10 \mathrm{~kg}, \mathrm{~cm}$
EM $146 \mathrm{~F} ~$
O EM146P 30 watts: 4000 pmm :size $52 \times 52 \times 200 \mathrm{~mm}$

MOTORS without gearboxes
EM1310.8 watts $20 \mathrm{~g} . \mathrm{cm}: 8000 \mathrm{rpm}: 017 \mathrm{~mm}$
EM136 1.2 watts: 40 cm .5000 r EM1394. 2 watts: $160 \mathrm{~g} . \mathrm{cm} ; 5000 \mathrm{rpm}: 030 \mathrm{~mm}$ EM1418watts; $320 \mathrm{~g} . \mathrm{cm} ; 4500 \mathrm{~mm}: 030 \mathrm{~mm}$ SPECIA LOFFER "Motor pack". All motors above 3.95
3.80
3.60
4.20 Suggested applications. Laboratory equipment,
pump drives, servo systems. positioning of aerials. stirrers. doors, power for models trains, boats, drills, cutting wheels etc

```
        S.A.E, forDATA SHEETS
```


"Motivator" Curtain Cord Controllers

A fow of these new units have just become available.
Ulira slim design, e. o . size $40 \times 185 \times 185 \mathrm{~mm}$. Screws 4 . on wall behind curains without showing Can be con nected directly to existing corded curtains. Incorporates internal auto limit switches and power supply. May be operated remotely by 3 -way switch (supphied). Motivator Model 8 with 2 year battery pack. Kit
Fully assembled and tested as above Motivator Model M with tested as above Fully assembled and tested as above Additional information glady supplied on request. 3.00
prices are inclusive in $U K$ K k. ${ }^{22.00}$ MAILORDER ONLYFROM
AID-US PRODUCTS
Dept. WW2, 8 Hillview Rd., Pinner
HA54PA, Middlesex

TECHNICIAN

with electronics experience, for interesting and varied work connected with children's heart disease.
Grading according to experience and qualifications.
Write with details to:
Consultant-in-Charge,
Department of Clinical Physiology, The Hospital for Sick Children, Great Ormond Street, London WCl
[4188

BBC EQUIPMENT

Power Road, Chiswick

(Near Gunnersbury, Acton Town, and Chiswick Park Tube Station)

SENIOR LABORATORY TECHNICIANS

(Starting Salary $£ 2,424$ to $£ 2,676$)
C. \& G. Full Technological Certificate in Telecommunications or Electrical Technicians with Industrial Electronics or Communications (Courses 271 or 281) H.N.C. or equivalent.
For details of work, Pension Schemes, and other conditions of employment please telephone Mr. P. W. Green 01-994 8541 or write to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA quoting reference 74.E. $4079 \mathrm{~W} . \mathrm{W}$. and enclosing a self-addressed foolscap envelope.

Require at Head Office, Chester

SECOND ENGINEER

Applications are invited from candidates possessing appropriate qualification and/or experience for the post of Second Engineer.

The post is concerned with the commissioning and maintenance of communication equipment throughout the Manweb area and supervision of engineers and craftsmen engaged in such work.

The equipment includes systems for data transmission, teleprinters, carrier communication, voice frequency signalling, radio and automatic telephony.

Previous experience with electronics is essential.
Salary within the range $£ 2,775 / £ 4,000$ per annum, plus $£ 90$ per annum availability allowance, and $£ 145.95$ threshold payment.

Applications, giving full details, should be sent to the Secretary (Personnel), Manweb, Head Office, Sealand Road, Chester CH1 4LR, to arrive not later than 28th October, 1974.

TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large s / c flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd.,
56/60 Guildford Street, Chertsey 63243

BIAS ELECTRONICS LTD.

have recently moved to larger premises and to meet the demand for our internationally acclaimed professional tape recorders require

TEST ENGINEERS

with experience on high quality audio and tape recording equipment;

JUNIOR TEST ENGINEERS

with plenty of enthusiasm and the desire to gain experience in profes. sional audio;

ELECTRONIC WIRE MEN/ASSEMBLERS

capable of working to high standards and with the opportunity to progress to test and inspection.
Take this opportunity to join a dynamic expanding company where you will be regarded as one of the team and not just a number. Good rates of pay and profit sharing scheme.
For further information write or phone
BIAS ELECTRONICS LTD.
572 KINGSTON ROAD
LONDON, SW20 8DR
$01-5408808$ or $01-5409818$

ASSISTANT DIVISION MANAGER

Electronics

Newcastle Upon Tyne

British Gas are looking for an Assistant Division, Manager to be responsible to the Manager (Electronics and Instrumentation) for the evaluation and development of electronic instrumentation and communication equipment for use throughout the Gas Industry, and for the provision of electronic services within the Research Station.
You should have a good honours degree or the equivalent in electrical or electronic engineering, and at least four years in the development of electronic instrumeptation.
Salary will be in the range $£ 4335-£ 5559$.
Application forms may be obtained from the Manager/ Administration and Planning, British Gas, Engineering Research Station, Killingworth, PO Box 1LH, Newcastle Upon Tyne NE99 1LH, quoting reference RD/ERS/439/471/WW. Closing date for applications 31st October.

Find your place in British Gas

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY PRINCIPAL TECHNICAL INSTRUCTOR TECHNICAL INSTRUCTOR (COMMUNICATIONS)

Applications are invited for the above positions to staff a course leading to the Diploma in Communications of this University. Equivalent to 3 years of full-time study, this is a sandwich course extending over $4 \frac{1}{2}$ years, and will train the high level sub-professional personnel required by the communications industry in Papua New Guinea.

Principal Technical Instructor

Under the general control of the Head of the Department of Electrical Engineering. the appointee will be responsible for detailed syllabus development, forward planning and administration, selection and ordering of equipment, and supervision of staff. He will also assist in the teaching programme.
Applicants should have extensive practical experience in communications, experience in training, in technical teaching and have administrative ability. Possession of tertiary qualifications would be an advantage. The successful applicant will be required to take up his duties at the earliest possible date.

Technical Instructor

The appointee will be required to teach technical subjects within the Diploma in Communications course and to assist the Principal Technical Instructor with planning and syllabus development Applicants should have good practical experience in communications, suitable technical qualifications and desirably experience in the field of technical teaching.

Salary:

Principal Technical Instructor: $\mathbf{\$ A 1 1 , 9 7 0}$ range $\mathbf{\$ A 1 2 , 9 2 1}$ per annum
 Technical Instructor
 : $\$ A 7,756$ range $\$ A 8,694$ per annum
 or: $\mathbf{\$ A 8 , 9 2 9}$ range $\mathbf{S A S}, \mathbf{4 4 3}$ per annum

according to qualifications and experience. Allowances additional to salary totalling \$A1,260 are payable in certain circumstances. Other benefits include fully furnished housing supplied at a nominal rental. 6 weeks leave per annum, with fares paid to Australia; lower taxation than Australia.
Applications in duplicate should include full particulars of age, nationality, marital status and family, if any. qualifications, experience, present post, date of availability and the names and addresses of three referees from whom confidential enquiries may be made
Lae, the gateway to the Papua New Guinea Highlands, is a pleasant tropical town situated on the Huon Gulf. The town's population totals approximately 5.000 Europeans and 25.000 Papua New Guineans. Sporting facilities are particularly well catered for and the 18 -hole golf course is con sidered the best in the country.
Applications close on 15th November. 1974, and further particulars on Lae and the position may be obtained from

The Registrar,

The Papua New Guinea
University of Technology,
P.O. Box 793,

LAE: PNG.

RADIO OFFICERS

Do you have PMG I. PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 3.096$ pa; commencing salary according to age- 25 years and over $£ 2,276$ pa. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.
The future holds good opportunities for established status. service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:
Recruitment Officer,
Government Communications Headquarters,
Room A/1105, Priors Road, Oakley,
Telephone Cheltenham 21491 Ext 2270

TRAIN TO BE AN ELECTRONICS TECHNICIAN

GELLER
 BUSINESS EQUIPMENT LTD.,

distributors of electronic calculating and dictating equipment, require a young man 17 plus as a trainee electronics technician. A well paid interesting career for an intelligent person prepared to work and study.
Write or phone to:
GELLER BUSINESS EQUIPMENT LTD.
15 PERCY STREET, LONDON, W1 Tel: 01-580 1614

DEVELOPMENT ENGINEERS AND PROJECT ENGINEERS

Required by a rapidly expanding Electronic Engineering Company producing R.F. Dielectric Heating Equipment.
Applicants should have some theo retical and practical experience of high power R.F. Techniques, though this need not necessarily be in the field of diefectric heating.
Salary is negotiable in the range of £2,500-£3,500.
Applications, giving age, details of experience and qualifications should be addressed to :-

STRAYFIELD LIMITED,
1 Tessa Road,
Reading, Berks. RG1 8NT.
$[4186$

FIELD SERVICE ENGINEERS

COMPUTERS

Mini to main frame £2,500-£3,500 p.a.

+ company car/allowance

BUSINESS MACHINES

Electro/Mech/Electronic £1,800-£2,400 p.a.

+ company vehicle/allowance
M.S.R. SERVICE

01-388 1607
362 Euston Rd. London, N.W. 1

SITUATIONS VACANT

F.W.O. BAUCH LIMITED have a vacancy for a T. SERVICE ENGINEER seeking interesting and varied work in the professional broadcasting and recording industry. Applicant would be responsible for servicing high quality condenser microphones and should have a good basic knowledge of electronics and some mechanical aptitude. Experience in broadcasting or recording engineering would be an advantage, but is not essential, as training would be given. Excelient working conditions and above average salary. Apply to: F:W.O. Bauch Limited, 9530091 [4138
$\mathrm{H}^{\mathrm{I}} \mathrm{FI}$ AUDIO Junior and Seniors and will pay experito get [19
TEST ENGINEER required, varied work in audio field plus some digital. Future managerial prospects with small growing company. Salary com mensurate with ability. Write full details Box
WW4171. Harrow area.

WANTED-Radio and Electronic Technicians for workshops in London NW1. Working on $£ 1,500$ to $£ 2,500$. Luncheon vouchers. Flexible hours, overtime opportunities. City and Guilds intermediate or equivalent experience an advantage. Why not ring for more information Mick Ryall 01-485 4100 ext. 13 during the day or Peter Fischer $01-886$ 9307 evenings.

14176
YOUNG working foreman/manager for small I expanding Audio manufacturing company. Excellent future prospects. Good salary for hard worker. Tel: 01-868 0443 .
[WW4!72

ARTICLES FOR SALE

A ARVAK ELECTRONICS, 3-channel sound-light A converters, from f18. Strobes, $£ 25$. Rainbow Strobes, $£ 132$.-98A West Green Road (Side Door),
London N15 5NS. $01-800$ 8656.

A $^{\text {LL }}$ types of Electronic Components supplied on A_{7} days free approval with priced invoicesimply return if unsuitable-competita
Quotations on request. Box $W W$

COLOUR T.V.'s-Bush CTV25 displayed working C $£ 9+$ VAT Large discounts for 3 -up. Non-workers available. Redifusion wired Mono T.V.'s all screen sirmingham, 30 . Tel. $021-458$
2208.

COLOUR, UHF and TV SPARES. Colour and CUHF lists available on request. 625 TV . If unit, suitable for Hi -Fi amp or tape recording, $\mathrm{E}_{\mathrm{F}} .75, \mathrm{P} / \mathrm{P}$ 35p. Bush CTV 25 colour, new power units complete, incl. mains TX, Electrolytics, rectifiers, etc., $£ 2.50$. carr. 80p. New convergence panels plus yoke and blue lat., $£ 3.85, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yoke $£ 5.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Colour Scan Coils. Mullard or Plessey plus convergence yoke and blue lateral, $110.0, \mathrm{P} / \mathrm{P}$
Mullard AT1025/05 Convergence Yoke, $\mathrm{E} 2.50, \mathrm{P} / \mathrm{P}$

 Delay Lines DL20, £3.50, DL1E, DL1. £1.50, P/P 25p. Lum. Delay Lines, $50 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 15p. EHT Colour Quadrupler for Bush Murphy CTV $25111 / 174$ series. £8.25, P/P 35p. EHT Colour Tripler ITT TH25/1TH suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. KB CVC1 Dual Stand. convergence panels complete incl. 22 controls,
 Makers Colour surplus/salvaged Philips G8 panels
 ${ }_{150}$ GEC 2040 pancls, Decoder, $£ 3.50$. T. Base ${ }_{£ 1.00 \text {. RGB and Sound, } 11.00 \text {, P/P } 3 \text { 3p. CRT Base }}$ $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 20p. B9D valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 6p. VARICAP TUNERS. UHF ELC 1043 NEW, $£ 4.50$, Philips VHF for Band 1 and 3 , $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $\mathrm{E}_{3} 85.4$ position and 6 pos. pushbutton transistorised, $£ 4.95$. All tuners P/P 35 p . MURPHY 600 Kits incl. tuner, drive assy., 625 IF amplifier, sion Kits incl. tuner, drive assy, 625 IF amplifier, £7.50 P/P 50 p . SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cct., ${ }_{\text {E1. }} 50 \mathrm{P} / \mathrm{P} \quad 35 \mathrm{p}$. THORN 850 Dual standard time base panel, $£ 1.00 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. PHILIPS 625 IF amplifier panel incl. cct., $£ 1.00 \mathbf{P} / \mathbf{P} 30 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010 , etc., $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1.00$. A.B miniature with UHF injection suitable K.B, Baird, Ferguson, 75 p . New fireball tuners Ferguson,
HMV Marconi, $£ 190$
P / P
all tuners 30 p . Mullard 110°. mono scan coils, new, suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P/P 35p. Large selection LoPTs. FOPTs available for most popular makes. PYE/LABGEAR transistd. Masthead UHF Booster, $£ 5.75$, Power Unit, $£ 4.65$ P/P 30 p or Setback battery operated UHF Booster. £4.65 $\mathrm{P} / \mathrm{P} 30 \mathrm{p} .200+200+100$ Mierofarad 350 v Electrolytic, £1.00 P/P 20p. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28, 59,159 Buses or ORDER: 64 GOLDERS MANOR DRIVE LONDON N. W. 11. Tel. 01-794 8751 . 60

BRENT AND HARROW
Area Health Authority (HARROW DISTRICT)

巾

NORTHWICK PARK HOSPITAL AND CLINICAL RESEARCH CENTRE
Watford Road, Harrow, Middlesex, HA1 3UJ. Tel: 01-864 5311
ELECTRONICS TECHNICIAN
required to service and calibrate a wide range of equipment used for medical, surgical and engineering purposes. The successful applicant will work closely with medical and other professional staff.
Salary: Grade III-£2,316-£2,943 including London Weighting, plus threshold payments.
The hospital will have over 800 beds by 1975 and is closely allied with the Clinical Research Centre. Good staff facilities and a pleasant working atmosphere. Active social clüb. Temporary single accommodation may be available.
Further particulars and application form from Miss P. Knight, Staffing Officer, Personnel Department, Ext. 2001.

Engineering Instructor

The Independent Broadcasting Authority requires an Electronics/Electrical Engineer with previous training experience to join a small training unit based at its Stockland Hill Transmitting Station near Honiton in Devon; appropriate relocation expenses will be paid where necessary.
With line responsibility to the Senior Engineer - Training, the Engineer will assist with syllabus preparation; advise instructional methods and visual aids and lecture and demonstrate to staff. Current instruction is largely concerned with training station staff in the maintenance of new and existing television transmission equipment; other courses, current and planned, include workshop practice and R.F. and video measurement techniques:
Candidates should be experienced instructors and should hold HNC in Electrical or Electronic Engineering or an equivalent qualification. They should have at least 3 years experience in television transmission engineering, preferably including operation and maintenance of UHF colour transmitters; a good knowledge of solid state devices, logic systems and circuitry, and associated techniques is essential.
Starting salary will be in the range of $£ 3,238-£ 3,928$ per annum.

Those interested should write or telephone for an application form quoting Ref. No. W/W/2556 to:- The Assistant Personnel Officer - Recruitment \& Training, Independent Broadcasting Authority, Crawley Court, Winchester, Hants. SO2I 2QA. Tel: Winchester 822599.

ESSENTIAL BOOKS

MOBILE RADIOTELEPHONE EQUIPMENT HANDBOOK

Radio Book Catalogue

Gives circuits, data and illustrations plus some valuable modifications for amateur use for commercial radiotelephone equipment including PYE and other popular makes. Available mid-November. £4.75, p.p. 35 p.
HOW TO MAKE 2M \& 4M CONVERTORS FOR AMATEUR USE
Fully comprehensive. Contains circuits, lay-outs, components lists, diagrams and full instructional notes. 60 p. p.p. $15 p$.
HOW TO MAKE WALKIE-TALKIES FOR LICENSED OPERATION

40p. p.p. 15 p

THE THEORY OF GUIDED ELECTROMAGNETIC WAVES
The most comprehensive book yet written about waveguides, transmission lines, cavity resonators. Over 500 pages. Ideal for anyone interested in RADAR and UHF. Published at $£ 11.50$. Special offer $£ 4.50$, p.p. 50 p.

RADIO BOOK CATALOGUE

Send for this fully comprehensive catalogue of radio books. Free
THE BARGAIN BOOK GAZETTE
Contains thousands of interesting new and out of print books at bargain prices. Subjects include all types of hobbies, collecting.
1001 interests. Published regularly and sent free on request.
GERALD MYERS (Publisher \& Bookseller), 138 Cardigan Rd., Headingly, Leeds 6. (Callers welcome.)

Classifieds continued from page A113 Articles for Sale-continued
COMPLETE Akai portable VTR system, comprisins camera, pistol grip, iv tuner, rf converter portabe tape recorder in carrying case with shoulder cables. All very chat microphone, tapes and al ion. $£ 600$ o.n.o. Phone $01-5680151$ for demonst ion.
CONSTRUCTION AIDS-Screws, nuts, 14137 etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements μ rinted circuit boards-masters, negatives and Oard, one-off or small numbers. Send $9 p$ for list stratford on Ayon, Warwls, Tel Stratford on Avo (std 0789) 4879 . Wark. Jel. Siralford on Avo

EX-GOVERNMENT MULTITRACK, studio and E professional tape recorders, from 150 . S.A.E. details. A. E. Wright and Son, 10 Church Street,
Dowlais,
$[4173]$

FLEXOWRITER (paper tape typewriter) £38 Ekco th counter-1imer, 18 . Electronic Assoc Mas A ARIPLTER ($\mathrm{X}-\mathrm{Y}$ plotter) $\mathrm{El45}$. Ferrant meter \&6 Memory DRUM, £49. Solartron ac volt with serial pulse input/output available. Hardly used, $£ 185$. Singer 7151 Telegraph Adapter Unit 115. H-P 6 speed mag. tape (new) is8. 400 Hz Inverter, £9. EMI Studio Echo, £75. EMI L4 portable tape recorder, £66. HIGHEST QUALITY NEW AND SECONDHAND WORD PROCESSING MACHINES ALWAYS AVAILABLE FROM $£ 300$ TO $£ 800$. Computer Appreciation. Phone Raymond ffoulkes, Godstone 3106, or Richard Totman,
Otford 3256 . FOR SALE new and surplus components, test J ACOUSTICAL Society America 1962-68. Offers $\mathbf{F}^{\text {ALISMILE }}$ equipment for sale suitable for receiver and power unit. Mr. Shann, 112 Great Titchfield Street, London, W.I. 01-636 8280. 14194
LADDERS 8 ft 10 in closed- 21 ft extended, $£ 23.54$ delivered. Home Sales Ladder Centre (WW2), Haldane (North)
Tel: $0952-586644$.
LOW-COST I.C. MOUNTING. Ideal for the amateur, essential for development work and industry. (WW), Oak Lodge, Tansley, Derbyshirec

MARCONI TF801B/2 $12-425 \mathrm{MHz}$ Signal GenScope, £20 PSG-1 T Y Sig, GEN Telequip. 720 6877 evenings.
M^{1} URPHY solid state $405 / 625$ S \& V I.F. Sweep As new. Cost with marker pips; Accs and Manual. Three Acre Drive, Barton-on-Sea, Hants. Tel: New
Milton (Hants) 610660 .

MUlLard ferrite cores LA3 100 to 500 kHz 200 kHz 50 p . Toroids approx sizes 0.D. $101.6 \mathrm{M} . \mathrm{M}$. 1.D. $50.8 \mathrm{M} . \mathrm{M}_{2}$ Widely used in frequencies from $12.7 \mathrm{M} . \mathrm{M}^{1}{ }_{1} . \mathrm{D} .6 .35 \mathrm{~min}$ effective permeability 700 50 for $£ 2.50$. Enquiries invited for other ferrites cores, beads, tubes etc. Ceramic formers L23 M.M diam. 13 M.M. Bore 1 end 8 M.M. other end 4 M.M. 100 for $£ 1.50$. Very large quantities of all above components ex Stock. Also available large quantities of Polyester, Ceramic, Polystyrene, and Electrolytic capacitors relays, key switches etc. Please add 8% V.A.T to all orders. Mail order Only. Xeroza Radio, 1 East Street, Bishop's
Tawton, Devon.
[4185
NEW unused digital multimeter mains or battery all normal A / C D/C ranges. Four digits 0.1% Phone after 7.00 p.m. 01 -560 1084 [4184
$\mathrm{O}^{\text {SCILLOSCOPE Solartron CD }} 122024 \mathrm{MHz}$ dual £120. Farnham 21071 .

SINCLAIR Calculators. Lowest ever prices. Cam O bridge-ready built, $£ 18.95$. Scientific, $£ 26.50$. Executive Memory, 531 . Prices fully inclusive mail order only. Valence Electronics. 2A Canal Street, Droylsden, Manchester.
[4152
SUPERB Instrument Cases by Bazelli manufacfured from heavy duty PVC faced steel, choice Cases, Dept. 22, St. Wilfrids. Foundry Cases,
Halton LA2 6 LT , near Lancaster.

R ADIO, T.V. and other valves, large stocks, $1930-$ 974. Many obsolete. S.A.E. for quotation. Price list 15 p . Also available a large range of transistors
and Styli Cox Radio. The Parade, East Wittering,
Sussex. WEST WITTERING 2023.
I4092
TOSHIBA Cathode Ray Tubes Type 75AKBI, 3" 1 Flat face high definition tube suitable for tran istorised oscilloscope. New and unused. $£ 9.50$ eac plus VAT. Phone Canterbury. 68597.

VaCUUM is our speciality. Nuw and second-hand $V_{\text {rotary pumps, diffusion outfits, accessories, }}$ coaters, etc. Silicone rubber or varnish outgassing
 Wireless world 0143 Copies, offers for the lot to Box No. W.W. 4156.

24 Battery Chargers. Basic 6 amp 2 Charecr £36. Automatic Trickle Charge, £48. 12 amp Charger for charging two battery banks simultaneously with independent automatic trickle harge, $\mathrm{C62}$. Prices + VAT + Del. Send for leaflet or end cheque or PO to Lark Electronics Ltd.. 33 | Western Road, Lymington, Hants. Tel. Lym |
| :--- |
| or 5806 . |
| 14142 |

60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small compact units. Two available versions. Toolex
Bristol Road. Sherborne (3211), Dorset.

ARTICLES WANTED

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!
ELECTRO-TECH
COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580

```
[37
```

GRAMPIAN or B.B.C. type Cutterheads complete WW 4029 parts. Any condition accceptable. Box No

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS
 126 Headstone Road Harrow, Middlesex Tel: 01-965 6864

WANTED MARCONI BRIDGE TYPE TF 868 A024

Please contact
Mr. Campbell at Aberdeen 52816.

$\mathbf{W}^{\text {ANTED }}$ all yper of communcations recevers Electronics, Ltd., Ashville Old Hall, Ashville Rd. London, E.I1. Ley. 4986.
[63

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or plies small production runs. Also PC Boards Assemplies. Suppliers to to P.O.B. M.O.D.., etc.
enquiries welcomed
3a Waport enquiries welcomed.-35
SE13 7PE. Tel. 01-852 1706.

HITHEII Ilesigit Antisiltains

UNIT 5 NEWNHAM INDUSTRIAL ESTATE PLYMPTON, DEVON. TEL: PLYMOUTH 30494 ELECTRONIC OESIGN CONSULTANTS WITH ENGINEERING AND SMAL PRODUCTIONP
$B^{\text {atch }}$ Production Wiring and Assembly to sample or drawings. Deane Electricals, 19B ${ }_{01-992} 8976$. Ealıng Common, Londo, W.S. ${ }_{[20}$
CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and rinding both in metals and plastics. Limited capaor lists of full plant capacity to CB . Industrial Engineering Ltd., 1 Mackintosh to C.B. Industrial Tel. 01-985 7057. 1 Mackintosh Lane, E9 6AB.
COMPONENT ASSEMBLY, Wiring and Test of, P.C.Bs, Electronic panels and Chassis, Prototypes designed, Batch production undertaken. DAVANT ELECTRONICS, 11 Ellesmere Road, Shrewsbury. Tcl. Shrewsbury 50550 or Bomere Heath
(Shrews) 682 .

DESIGN, development and production of Electronics circuits and systems. P.C.B. design, layout and production. Assembly and wiring of boards and equipment. Midland Electronic Services,
5 Pass Ave., Whittington Staffs. Phone [4181
$E^{\text {LECTRONIC }}$ and Electro-Mechanical design and development services offering one off design or plete systems. D.C.A. Electronics, 19 Church Street Warwick. Tel. Warwick 44992.
LABELS, Nameplates, Fascias on anodised Lamminium. Any quantity, superb quality, fast Guisborough (02873-4443), Yorks. ${ }^{14005}$
MANCHESTER, Small batch production, wiring assenb to sample or drawings. Specialists Rad

$\mathbf{S}^{M A L L}$ Batch Production, wiring assembly, to assemblies D \& D. Specialist in printed circuit assemblies. D .
Harlow, Essex. Harlow
$\mathbf{3} 2018$.

NEW GRAM AND SOUND

EQUIPMENT

$G^{\text {LASGOW HI FI. Recorders, Video, Communica }}$ tions Reciever always available we buy sell and exchange for photographic equipment. Victor Morris Audio Visual Ltd., 340 Argyle Street, Glasgow, G. 2 31 Sauchiehall Street, Glasgow, G.1; $8 / 10$ Glassford
Street, Glasgow, G.2. Tel: 041 I-221 8958 .
[11

RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SECÓNDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209 Lid., Ashville Old Hall, Ashville Rd., London, E.11 Ley., Ashv
Ley
SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-rang Lid., Ashvilte Oid Hall, Ashville Rd., London, E. 11 Ley., 4986 .

SERVICE AND REPAIRS

ESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circu assemblies. YOUNC London NW1 9 NN . Ö1-267 0201. $\mathbf{S C R A T C H E D}$ TUBES. Our experienced polishing
 Wubes as new again for only $£ 2.75$, plus carriage $£ 1$ With absolute confidence send to Retube Ltd., North Somercote Louth, Lincs, or 'phone 0507-85 300

TAPE RIECORDING ETC

IF quality, durability matter, consult Britain's suitable tapes. (Excellent fund raisers for schools). Modern studio facilities with Steinway.Grand. Sound News, 18 Blenheim Road, London, W4 Tel. 01-995 1661 .
[4009

RECORDS MADE TO ORDER	
DEMO DISCS	VINYLITE
RECORSERS FOR	POMPANIES

Single discs, 1-20. Mono or Stereo, delivery 4 days PRESSED IN VINYLITE IN OUR TO ONN RLANTS PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3 -4 weeks. Sleeves/Labels. Finest quality many Studios UK/OVERSEAS. SAE list

DEROY RECORDS

PO Box 3, Hawk Street, Carnforth, Lancs.

JALVES WANTED

$\mathbf{W E}^{\text {E }}$ buy new valves, transistors and clean new components, large or small quantities, all details, | quotation by return.-Walton's, 55 Worcester |
| :--- |
| Wolverhampton. |
| 62 |

ARTICLES FOR SALE

We've got prices

 to put power in your profits

\square COMBINED PRECISION COMPONENTS (PRESTON)LIMITED 194-200 North Road, Preston PR1 1 YP Telephone: 55034 Telex: 677122

Rhode \& Schwarz
UHF Selective voltmeter $470 / 960$ MHZ Type USVF HF Test RX $280 / 940 \mathrm{MHZ}$ with harmonic opp up to Wandel Goltermann
Colour TV distortion measuring set 625 line Type VZM1.
Racal
RX Terminal Type R119 AM/SSB Compris/ng RA117 RX Terminal
with sideband adaptors, etc.
Collins
Collins
AM/SSB Digital synthesised readout TX/RX $2 / 30$
MHZ 500 W Type KWT-6 MHZ 500W Type KWT-6
Pye Telecom
Insertion loss scanner No24A 50 KHZ to 8 MHZ .
VM1 Marine RIT $24 \vee \ddot{6} \mathrm{chn}$ With xiais chn $6, \ddot{8}, 10,12$ W14FM ${ }^{16}$; 3 CHN U $/$ B Dash mount $12 \ddot{V}$
PTC 101010 W audlo P/A 24 V Ideal f
PTC Westminster 6 to 12 V convertor
Marconi Suppressed zero voltmeter TF1377
UHF Convertor unit L/O Freq 400 to 900 MHZ
BRENT ELECTRONICS \& COMMUNICATION
Cromwell Avenue, Grimsby, S/Humberside (0472) 550°
1 Cromwell Avenue, Grimsby, SjHumberside (0472) 5560t
24 HOUR ANSAPHONE

CARBON FILM RESISTORS-E12 SERIES $\underset{(22 \Omega-1 M \Omega)}{\text { High }}$ Stab.
RESISTOR KITS $22 \Omega-1$ M 2 E12 SERIES
OE12 10 E 12 KIT 10 of each value (Total of 570$) \pm$ W, $£ 3.65$
$\frac{1}{3} \mathrm{~W}, £ 3.85 ; .25 E 12 \mathrm{KIT} 25$ of each value (Totai of 1425)
 METAL FILM KITS ALSO AVAILABLE.
CATALOGUE No. 3 (Approx. 2000 Parts) 20 p.
C.W.O.P. \& P. 10 p on orders under £5. Overseas at cos
B.H. COMPONENT FACTORS LTD

Dept. WW, 61 Cheddington Road, PITSTONE,
Nr. Leighton Buzzard, Beds, LU79 9 AQ.
Cheddington (0296) 668446
Cheddington (0296) 668446
(32

SURPLUS BARGAINS

KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS

Comprising. Teletypewriter (page printer)type TT- $271 \mathrm{~B} / \mathrm{FG}$ (knowrias Kleinschmidt 160) Reperiorator-Transmitter fape printer) type supplied with change wheels, the whole equipment operates on 115 or 230 V 50 cycles in very choice condition £55. (carr £4).
ELECTZONIC TIMER KITS 0.8 sec to 100 sec comprises A.E.I. Transistorised Module, Relay and all electrical components for 115 or $240 \mathrm{VACoperation} £ 1.75(25 \mathrm{p}$) VAI 20p. Veeder root 4 -digit resettable counters $(8 \mathrm{p}$) Printed Circuit Kits, $£ 1.25$ (25p) total with VAT $£ 1.65$ AMPEX VIDEO TAPE 2 in. $\times 1670$ NEW $f 9$ (50p). AVO CT38 Electronic Test Meters $£ 18$ ($£ 1$). FERRIC CHLORIDE 25 palb . (16 p). 10 lb e 2.50 (paid). Kent Chart recorders 115 V AC $£ 20$ (1.50). Multipoint Kent Chart recorders $£ 30(\mathrm{E} 1.50)$. TELEPRINTER Papers and Tape
$8 \frac{1}{2}$ in, rolts 3 -ply, carbon/buff manilla 60 p per roll $(32 \mathrm{p})$ $8 \frac{1}{2} \mathrm{in}$. rolts 3 -ply, carbon/buff manilla 60 p per roll (32p) $8 \frac{2}{2}$ in. rolls 7 -ply NCR no carbon required, white, $£ 1(32 \mathrm{p}$), $\frac{7}{5} \mathrm{in} ., 2 \mathrm{in}$. core, white, E 2 per box of 8 ralls $(52 \mathrm{p}$). it in.. 2 in. core, butf
Friden Tape f 2 per box of 6 rolls (52 p). Loads of surplus to Friden Tape f 2 per box.
clear. Large SAE for List.

$$
\text { ALL PLUS VAT } 8 \%
$$

CASEY BROS.

233-237, Boundary Road, St. Helens, Lancs, 86

EXPRESS

Prototype Printed Circuits Fastest in London Area
Also medium production runs, call-offs, etc Electronic \& Mechanical Sub-Assembly Co. Ltd.
Highfield House, West Kingsdown,
Nr. Sevenoaks, Kent.
Tel: West Kingsdown 2344

CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices Details from

INTERFACE NNTERNATIONAL
29 Market Street, Crewkerne, Somerse
rel: (046031) 2578. Telex: 46283.
[35

BUILDING or PURCHASING

 an AUDIO MIXERpre-amp, autofade, V.U. or audio monitor, V.E. mixer, driver or power supply etc. First consult:

PARTRIDGE ELECTRONICS
21-25 Hart Road, Benfleet, Essex
Established 23 years \qquad

Build a mixer to your own
spec. using our easy to wire
ALDID MDDLLES
For full details contact Richard Brown at Zero 88,115 Hatfield Road, St. Albans, Herts, AL1 4JS Tel 63727

[^9]
ECONOMIZE ON SEMICONDUCTORS

All prices include VAT

$\begin{array}{ll}\star \text { Special low prices on 741C } & \star \text { Plastic } 3 \text { terminal Regulators } \\ \star \text { Economical Digital Clock IC } & \star \text { Low-price DIL Sockets }\end{array}$
1+ 10+ 25+ Low-price DIL Sockets

AY-5-1224 Digital Clock IC, 12 or 24 hr operation, 7 segment or BCD outputs. Drives LED, Minitron. Neon displays. simple interfacing. 16 DIL pack + circuits. IC + data E4.65. H-P 5082$77400.3^{\prime \prime}$ digits $\mathbf{£ 2 . 2 0}$. IC $+40.3^{\prime \prime}$ digits $\mathbf{£ 1 2 . 5 0}$. IC, $40.3^{\prime \prime}$ digits, transistors and transformer £15.00

TCA940 Audio Power Amplifier $10 \mathrm{~W}+$ data + circuit $\mathbf{£ 2 . 6 0}$ TAD100 Radio IC + IF filter + circuit $\mathbf{£ 1 . 6 0}$ DIL Sockets 8 pin 11p: 14 pin 12p: 16 pin 13p
Carbon film High Stability $\frac{1}{4}$ W 5\% Resistors. 10 ohm-2M2 1p ea. 10 9p. 100 80p same value By return service. Prices include VAT. P \& P 8p (UK). overseas at cost. All items new, TI, Motorola. Mullard, SGS, etc. SAE lists, enquiries. Colleges, etc., supplied.

SILICON SEMICONDUCTOR SERVICES 41 Dunstable Road, Caddington, Luton, Beds LU1 4AL

 40
DOUGLAS For Transformers
 Comprehensive stock range \star Rapid prototype service
 \star Quantity production orders.

Douglas Electronic Industries Ltd. Eastfield Road, Louth, Lincolnshire LN11 7AL. Tel: Louth (05-07) 3643 Telex: 56260

ELECTRONIC

 VACANCIESEngineers
Draughtsmen - Designers
Service and Test Engineers
Technicians - Technical Authors
Sales Engineers

£1,600-£5,000

Permanent or Contract
Phone MICHAEL NORTH 01-387 0742
MALLA TECHNICAL STAFF LIMITED
334 Euston Rd., London NW1 $\underset{\mid 95}{3 B G}$

COVENTRY COLOUR

* Bush CTV 25 colour TV's serviced to retail standards no further work necessary - $\mathbf{6 8 0}$.
\star GEC 19ins E70: 25 ins wired colour TV's working $£ 70$ N.W. Aerial conversion kits for the above excluding tuner $\mathrm{fl5}$ single standard monogrome. Quantity only P.O.A. All prices subject to VAT

COLOURCARE

arden street, COVENTRY
Tel: Coventry STD (0203) 79400

CLASSIFIEDS

Lineage $\quad 66$ p Per line (Min. $£ 1.98$)
Displayed $£ 4.68$ Per Single Column Centimetre
$\frac{1}{4}$ Page \quad £68.64
$\frac{1}{2}$ Page $\quad £ 135.96$
Full Page £264
Write to:
Allan Petters,
Wireless World, Dorset House, Stamford Street, London SE1 9LU.
Or ring 01-261 8508 or 01-2618423

COMMUNICATIONS DIVISION MANAGER

To implement control and develop the expansion of our Communications Division. A no-limit post for the man with a convincing track record and thrustful personality - Ideally 30-36, the successful applicant must have a success record in sales to overseas governments and engineering experience in HF SSB and VHF FM, together with ability to develop administration and sales structure. Willingness to travel world-wide and to think in terms of a starting salary of $£ \mathbf{£}, 500$ with income profit linked thereafter.
Quickly to
AEL
Mr. M. H. Nicholas, AERO ELECTRONICS (AEL) LTD, Gatwick House, Horley, Surrey RH6 9SU. Tel. (029-34) 5353.

THE POLYTECHNIC OF NORTH LONDON Holloway Road, N7 8DB

Department of Chemistry

APPLICATIONS ARE INVITED FOR THE FOLLOWING APPOINTMENTS:

1. LABORATORY TECHNICIAN GRADE 4 is required in the Spectroscopy section of the Department. Duties will involve operation, maintenance and construction of electronic and scientific instruments. Applicants should have experience in electronics, but specific knowledge of spectroscopic instruments is not essential. Normally, candidates should hold C \& G/IST Ordinary Certificate, ONC, or an equivalent qualification and have seven years' experience.
2. LABORATORY TECHNICIAN GRADE 3 is required immediately for work in the instrument service section of the Department. The person appointed will be required to assist in the running of the chromatography laboratory and also to undertake some routine constructional work and maintenance of equipment. Normally, applicants should hold C \& G/IST Ordinary Certificate, ONC, or an equivalent qualification and have three years' experience.
SALARY SCALES (inclusive of London Weighting Allowance)

$$
\begin{array}{ll}
\text { Grade } 4 & £ 2,022-£ 2,337 \\
\text { Grade } 3 & £ 1,824-£ 2,094
\end{array}
$$

In addition, the Threshold Agreement is applicable.
Apply for further details and application form to the Head of the Department of Chemistry, The Polytechnic of North London, Holloway Road, London N7 8DB.

CHELSEA COLLEGE

University of London

[^10]
Berkshire College of Educatiòn

Educational Technology Department

Television Technician required to assist in the day-to-day operation and maintenance of the Television Studio, mobile recording unit and all college television facilities including video-tape recorders.

Some experience in closed circuit television and/or qualification in TV Servicing an advantage.

Salary Technician Grade IV $£ 1.866$ £2. 187 p.a, pius Threshold payment (f146p.a.).

Application form together with further particulars available from the Senior Administrative Officer. Berkshire College of Education, Woodlands Avenue. Earley. Reading. Berkshire. To be returned by 31 st October. 1974.

4200

TEST ENGINEERS

Redifon Telecommunications L+d, London SW18, have a vacancy for an enthusiastic. practical man with some experience of Volume Production Testing in the electronics industry. Phone 01-874 7281 and ask for David Stiles. 4198

Electronics

Technician

An electronics technician is required to join a small team working on the construction of novel scientific equipment and on the repair and maintenance of existing instruments and apparatus.
Applications are invited from young, careerminded technicians with some experience of similar work. Ideally you will be 20-25 years of age and will have obtained, or be studying for suitable City \& Guilds or ONC qualifications. Specialised on-job training will be tions. Specialised on-job training will be
provided and consideration will be given to provided and consideration wifl be
day release for partly qualified staff.
We are situated in a pleasant part of rural Surrey. Benefits include free transport to and from local stations, assistance in finding local accommodation, a non-contributory pension scheme and an active sports and social club.
Please reply to the Personnel Officer,
Beecham Pharmaceuticals,
Research Division, Brockham Park, Betchworth, Surrey. Betchworth 3202.

To: IPC Electrical Electronic Piess Ltd, Room 15, Dorset House, Stamford Street, London SE1 9LU.
Name
Please enrol me as a subscriber to
Address
Electrical Review for 1 year at $£ 10.75$.
I enclose cheque/p.o. to the value of ε.

Cheques should be made payable to
 IPC Business Press Ltd.

Size: $9^{\prime \prime} \times 6^{\prime \prime}$. 440 pages. £3.98 incl. postage.

MAIL THIS COUPON NOW.
To: IPC Electrical-Electronic Press Limited. General Sales Dept., Room 11, Dorset House, Stamford Street, London SE1 9LU.
Please send me \qquad copies of Electrical Who's Who 74-75. I enclose cheque/p.o.
number \qquad to the value of (£3.98 per copy inclusive). Cheques should be made payable to IPC Business Press Ltd.

NAME
ADDRESS
 Electrical Who's Who.
It's completely updated, with over 10,000 entries. And it includes key names in all branches of the electrical industry: supply, manufacturing, contracting, consulting and trading - as well as Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, and their firms and organizations.

STAY ON THE BUTTON!

When you want a quick answer to the who, what and where of the radio and electrical business, this is the book to have around. It's the essential reference work for the busy retailer. Contents include lists of manufacturers, suppliers, concessionaires and wholesalers - all entered alphabetically with addresses and telephone numbers. And there's a guide to proprietary names, a legal section, a technical section and maps showing uhf service areas and vhf field strengths. This 1974 edition is completely updated. Order yours now on the coupon below.
ELECTRICALAND ELECTRONIC TRADER YEAR BOOK 1974

HENGSTLER
Manufacturers of counters and counting systems

DEVELOPMENT PROBLEMS ?

LET US HELP YOU. We are experienced in the design and development of audio and logic systems for industry We also have capacity for small batch production and test.
Latest techniques-high quality-compotitive rates THAMES ELECTRONICS
77-83 Westdale Lendon Rd. SE18 3B0 01-3178885

```
    WE PURCHASE ALL FORMS
OF ELECTRONIC EQUIPMENT
    AND COMPONENTS, ETC.
                SPOT CASH
        CHILTMEAD LTID.
```

7, 9, 11 Arthwr Road, Reading,
Berks.
Tel: 582605

EXPRESS

PRINTED CIRCUITS - ROLLER PINNING
GOLDPLATING - FLEXIBLE FILMS, ETC. Electronic \& Mechanical Sub-Assembly Co. Ltd
Highfield House, West Kingsdown Nr. Sevenoaks, Kent
Tel: West Kingsdown 234

SINTEL

Data and circuits supplied with orders.
or available separately or available separa
(4 $\frac{1}{2} p$ stamp each).
Calculator Keyboard (to order)-Ideal for C500, suitable f
 MK50250N Alarm Clock IC SP3522 digits . 55

 Soldercon IC socket pins in strip of $\mathbf{1 0 0} \mathbf{7 0 p}+\mathbf{8 \%}$ VAT $=75 \mathrm{D}$ SINTEL, 53c ASTON STREET. OXFORD

Wilmslow Audio

THE firm for speakers!

Baker Group 25,3,8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3,8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion PST8 (for Unilex) Celestion MH 1000 horn, 8 or 15 ohm EMI $13 \times 8.3 .8$ or 15 ohm EM1 $13 \times 8,150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} 3.8$ or 15 ohm EMI $13 \times 8.350 .8$ or 15 oh EMI 13×8.20 watt bas EM 18×5. $10 \mathrm{watt}, \mathrm{d} / \mathrm{c}$, roll $/ \mathrm{s} 8 \mathrm{ohm}$ Elac 59RM 10915 ohm. 59RM 1148 ohm Elac $6 \frac{1}{2}^{\prime \prime} \mathrm{d} / \mathrm{cone}$, roll/s 8 ohm Elac TW4 $4^{\prime \prime}$ tweeter
Fane Pop 25/2 25 watt 1
Fane Pop $40,10^{\prime \prime} 40$ watt
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, 12" 60 wa
Fane Pop 60 watt. 15"
Fane Pop 100 watt, $18^{\prime \prime}$
Fane Crescendo 12A or B. 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm Fane 807T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}, \mathrm{roll} / \mathrm{s}, 8 \mathrm{ohm}$ Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4018 or 15 ohm Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef T15
Kef 8110
Kef B200
Kef B139
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan CG8T 8"d/c roll/
STC4001G super tweeter
Wharfedale Super 1ORS/DD 8 ohm
Fane 701 twin ribbon horn
Baker Major Module
Fane Model One each
Goodmans 2 N 4 ohm each
Helme XLK25 (pair)
Helme XLK50 (pair)
Kefkit 2 each
Kefkit 3 each
Peerless 3-15 (3 sp. system) each Richard Allan Twinkit each
Richard Allan Triple each
Richard Allan Super Triple each
Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit (pair) Wharfedale Dovedale 3 kit (pair)

PRICES INCLUDE VAT

Cabinets for PA and HiFi, wadding, vynair, etc.
Send stamp for free booklet "Choosing a Speaker'
FREE with orders over $£ 7$ - ''Hifi loudspeaker enclosures" book
All units guaranteed new and perfect.
Prompt despatch
Carriage: Speakers $38 p$ each, tweeters and crossovers 20 p each, kits 75 p each (pair f1.50).

WILMSLOW AUDIO

Swan Works, Bank Square, Wilmslow, (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

[^11]EXCLUSIVEOFFERS NEVER BEFORE OFFERED WORLD-WIDE RANGE COMPLETE TRANSPORTABLE H.F. COMMUNICA TIONS CENTRE housed in Air Conditioned TRAILER Receivers and one COLLINB Reeeiver all fully tuneable 2 to $30 \mathrm{~m} / \mathrm{cs}$ digital readout synthesiaed frequency control, with line amplifiers and inputs, operating ${ }^{\text {position }}$ equipment. Power input 115 F or 230 V A.C. Full detalls PHILCO HC-150 POINT-TO-POINT STRIP RADIO HI RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{os}$. Ten fully tuneable channels to 0.5 kcs with synthesisers. Single and diversity reception
on ISB, DSB, SSB with 4 sub-lands to each channel

HIGHEST QUALITY 19* RACK MOUNTING CABINETS 量 RACKS Our Height Width CABNETS Depth Rack Pavel

Our	Height	Width	Depth	Hack Panel	
Ref.	in inches	in inches	in inches	Space in in	Price
CD	69	21	13	68	810.00
CL	30	60	3 f	42	£12.50
CR	69	30	20		$\underline{24.00}$
DM	70	20	26	138	221.00
FA	89	22	36	160	£22.00
FB	74	21	22	70	no sides $\mathbf{E 1 8 . 0 0}$
FC	32	25	22	47	£17.00
FD	40	22	24	72	21400
FE	72	22	21	68	218.00
FG	11	$1!$	$1{ }^{1 /}$	10	E11.00
FH	15	21	17	11	\$12.00
FJ	15	21	15	12	¢12.00
FN	70	24	20	68	81700
FL	84	22	17	80	$\underline{21.00}$
FM	70	72	27	120	£20.00
FP	i6	22	18	70	£18.00
	Alao Co	olen, twin	nd multi RACES	way Cabine	

Our Heightin Chanrel Rack Panel
 We have a large quantity of "bits and pieces"
we cannot liat-please send us your requirement
we can prohably help-all enquiries answered we can protably help-all enyuiries answered.
$\star \quad 15^{\circ}$ dia. Reel fibreboard Transit Cases,

strapped. 10 for * Ruatrak Chart Recorders $1 \mathrm{~m} / \mathrm{a}$ (New)		
	Marconi Marine Speech Inve	
	URA 8 Teleprinter Converte	
	Portable Maine Bat	
Portable Maine battery Floodlights 224.00		
	Airnec 245 L. F. 150 watt Obcillato	
	Solartron 5/25000 cyc. Oscilator	
	Shouthern Inst. 1800 F.M. M	
	Belling Lee T.V. Relay Equipme	
	Adde 5/8 track Tape Punches	
	Tally $5 / 8$ track Tape Readers	
	80 column Card Hand Punches	
	75 frot sectional self supporting To	0
	Auto Electric Carillon Chimes	
	CV-157 Hoffman 1SB/88B Convert	
$\hat{\star}$	10 foot Triangular Lattice Mast Sections 6 mech sides	
	Ditto 15 fout with 15 lnch sides	
	Casella Assmann Electric Hygr	
We have a varied assortment of induatrial and professional Cathode Ray Tubes avaliable. List on request.		
	acal MA-150 Byntheaise	295.00
	Racal RA-98 s.S.B./D.S.B. Ads	
	Racal RA-63 S.8.B. Allapt	60.00
	Racal 8A 21 and SA 52 Count	
	o Geiger Counters, new	
	Servomex 2 KVA Voltage Reguiators	
	Double Co-axial Blowers $6 \times 6220 \mathrm{v}$. A.	
	Ampex 8.E. 10 Auta Degaussers	
	Uniselectors 10 bank 26 way full wipe	
	R.C.A. 5 element $420 \mathrm{~m} / \mathrm{cs}$ Xagi B	
	Haynes 500 watt $230 \mathrm{v} . / 115 \mathrm{v}$. Isolatlon Transformers	
	Muirhead D. 888 Analyee	
	ratory Radio Interference Filte	
	Ampex Model 375 Audio Recorders	
	in. dia. Meteorologlcal Balloon	
	ann Microwave Attenuators $4 / 12$ GMC	240.00
	PREE	
40-page list of over 1,000 different items in stock avaitable-keep one by you.		

INSTRUMENTATION TAPE RECORDER-REPRODUCERS

AMPEX

FR-600 and FR-100 $1^{\prime \prime}$ and $\frac{1^{\prime \prime}}{2^{\prime \prime}} 14$ and 7 tracks 4 speeds Trans istorised

MINCOM
CMP-100
E.M.I.
$\mathrm{TD}_{\boldsymbol{t}_{\wedge^{\prime \prime}}} \mathbf{4}$ tracks 7 speeds Several other smaller Full details on request. Prices of above are from \&100 to f 400.

COMPUTER HARDWARE
\star CARD READER 80 col. 600 c.p.m. \star PRINTER, High speed 1000 lines p.m. 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD - DORSET
BOURNEMOUTH-E5051

Ex-COMPITER STABIILSED POWER SUPPIIES

RECONDITIONED, TESTED AND

 GUARANTEEDRipple $<10 \mathrm{mV}$. Over-voltage protection 120-130v. $50 \mathrm{c} / \mathrm{s}$ Input. Stepdown transformer to sult about $£ 3$.
 $5-6 \mathrm{~V} .12 \mathrm{~A}$. $£ 14$
PAPST FANS $41 \times$ at $\times 2 \mathrm{in} .100 \mathrm{cfm}$. 240v. $50 / 60 \mathrm{~Hz}$. $\mathbf{x 3} .50$ (30p).
PAPST FANS 6in. dia. $x{ }^{2} \frac{3}{1} \ln$ n. deep Type 7576 £5 00 (30 p).
Few only bin. PAPST $£ 4$ (30 p)
TRANSISTORS p\& p 10p BC107/8/9 BC147/8/9 BC157/8/9 all 9p BF180 25p BF182/3/40p BF184 17p BC167 13p BFW10 55p BF336 35p 7418 DIL 34p
2N3771 £1•10, 2N344150p, BD131 40p

ELECTROLYTICS

$30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v} 65 \mathrm{p}$ (20p) $4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55 p (15p) $5,000 \mu 35 v ., 40 \mathrm{p}(12 \mathrm{p})$
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{ln}$. 25 boards for $£ 1$ (30 p).
QH Bulbs, 12v. 55w.
150 mixed HI-STABS 250 Mixed Resistors 250 Mixed Capacitors 200 SI Planar Diodes
MIcroswltches.....
50p (7p)

MIn. Glass Neons
2N3055 EQUIV. . 60p (11p) 60p (13p) 60p (11p) 50p (8p) 8 for 50p (7p)
Postage and packing shown in brackets

Please add 8\% VAT to TOTAL

KEYTRONICS

 Mail Order only.44 EARLS COURT ROAD, LONDON, W. 01-4788499

PEAK PROGRAM METERS TO BS4297

also 200K Hz version for high speod copying.
Drive circuiti $35 \times 80 \mathrm{~mm}$, for 1 mA L.H. zero meter to BBC
ED 1477 . Goid B -way edge con supplied. Di47. God B-way edge con supplied off 10 off 50 off
 ERNEST TURNER PPM meters, scalings $1 / 7$ OOR-22/ 2 . Type $642.71 \times 56 \mathrm{~mm} \mathrm{f} 10.90: 643.102 \times 79 \mathrm{~mm} \mathrm{C} 12.90$
Twin movement. scale $86 \times 54 \mathrm{~mm}$ £ 31.00

PUBLIC ADDRESS : SŌUND REINFORCEMENT a any public-address system, where the microphones and
oudspeakers are in the same vicinity acoustic feedback (howit oundil occurs if the amplification exceeds a critical value. B shiting the audio spectrum fed to the speakers by a few Hert
 the onset of feedback. The 5 Hz shift used is imperceptible on
booth speech and music. both speech and music.
SHIFTERS IN BOXES
SHITEA1 mains connector and housed in strong diecast boxes Binished in antractive durable blue acrylic. Jack or xLR autio con
fill nectors.

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

QUARTZ CRYSTAL
UNITS from

- $1.0-80.0 \mathrm{mHz}$
- fast delivery
- high stability - TO DEF 5271-A

WRITE FOR LEAFLET AT-1 MCKNIGHT CRYSTAL CO. hardiley industrial ESTATE, HYTHE
SOUTHAMPTON SO4 6ZY
TEL. HYTHE 8961
STD CODE 0421

TRANSFORMER LAMINATIONS Enor mous range in Radiometal, Mumetal and H.C.R., also "C's "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

PRECISION

POLYCARBONATE CAPACITORS
All Eigh Stability-Extremely Low Leakage

	59p		${ }^{56 p}$			
	62p		${ }^{680}$			
47	71p	$2 \cdot 2 \mu$	80 p			
5	75 D	$4 \cdot 7 \mathrm{~F}$	11.30	21		
ก $68.4 \mathrm{~F}^{\left(2^{*} \times 1^{\prime}\right)}$	80 p		11.64	21		
0uF ($2^{* *} \times 1^{\prime \prime}$)	918	10.04	22.00			
0μ	12	15.	42.75			
TANTALUM BEAR CAPACITORS-Valuea avallable $0.1,0.2,0.47,1.0,2.2,4.7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 2 \overline{0} \mathrm{~V}$ or $3 \overline{5} \mathrm{~V}$ $10.0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or 6 V ; $100.0 \mu \mathrm{~F}$ at 3 V . ALL at 10 D each, 10 for 95 p . 50 for 44 .						
TRANSISTORS ${ }^{\text {P }}$ (${ }^{\text {BCIP }}$		C183/183L	B	BFY 50		
BC107/8/9 9p	BC18	+/184L		BFY51		
BC114 12p		2/212L				
BC147/8/9 10p	BC64	7/588A		AF178		
BC153/7/8 12p				OC71		
BC182/182L	BFl8			2N3055		
POPULAR DIODES-1N914 8p, 8 for $45 \mathrm{p}, 18$ for 90 p B7p; 002 6p; 003 6tp $0047 \mathrm{pp} ; 0057 \mathrm{pp} ; 0068 \mathrm{pp} ; 00781 \mathrm{p}$.						
$6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.3 \mathrm{~V}, 10 \mathrm{v}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V}, 15 \mathrm{v}$,						
$18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$. All at 7 p each, or 39p, 14 for 84p. SPECLAL OFFER: 100 Zeners for						

4.60.

RES18TORS- HIgh stabllity, low noise carbon film 5%,
 for 100 of any one value. SPECIAL PACK; 10 of each value 2.2Ω to $2.2 \mathrm{M} \Omega$ (730 resplotors) ts.
SHLICON PLABTIC RECTIFIERR- 1.5 amp. brand new
wire ended DO27: 100 P.I.V. 7 D (4 for 26 p) 400 P.IV. 8 D wire ended DO27; 100 P.I.V. 7p (4 for 26p) 400 P.I.V. 8
(4 for 30 p): 800 P.I.V. 11 (4 for 42 p) BRIDGE RECTIFIERS-24 amp, 20
600 V 55D.
SUbMiniature vertical presets-0.1W only ALL at 3 p each; $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$
$2 \cdot 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 10 \mathrm{k} \Omega .15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ ${ }_{2}^{2} \mathrm{M} \Omega \Omega$.
PLEASE ADD 10p POST AND PACKING ON ALI
 T OF BEA/AIRMAIL.
PLEASE ADD 10\% V.A.T. TO ORDERS.
Send S.A.E. for lists of additional ex-stock items.
MARCOTRADING (Dept. D\|)
The Old School, Edstaston, Nr. Wem, Shropshire
Tel. Whixall (Shropshire) (STD 094872) 464 (Proprs,: Minicost Trading Ltd.)

SPECIAL NOTICE

TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and ALLIED TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc.

BROADFIEILD \& MAYCO DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
Lóndon, N12 8JG.
01-445 0749 $\quad 01-445 \quad 2713$
01-958 7624

THE ONLY
COMPREHENSIVE
RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 15p \{plus 4p providing all necessary informa tion on Record Care.

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx

SYNTHESISER SOUNDS SUPREME

BY DEWTRON.THE UP.FRONT PEOPLE
YOU can build professional standard synth. equipment from our modules if you can read and solder! E.g. pitch-to-voltage enables your creation guitar etc. Send 15 p NOW for full catalogue. 10
D.E.W. LTD.

254 Ringwood Road, Ferndown, Dorset.

TR DEIMOS LTD
 TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichanne
 SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT 0227-68597

[^12]

New surplus stock as illustrated AC 240 volts. Input power 100VA. Instant heat at touch of trigger switch in handle. Constructed in robust plastic casing with work light in from and $4^{\prime} \times 3$-core cable

PROGRAMME

 and hot water on/off twice a day. Suitable for any electrical appliance up to 3 amps 240 volts A.C.

```
£5.40
P&P
```

VAT paid.
New surplus stock as illustrated. Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3$ Smiths Time Switch with 24 -hour dial which is simple to set to switch onfoff twice per day at any times required. Also fitted with two lever switches which can be set to operate two circuits which can each be set to operate on Time Switch twice per day, all day, contiving. on back suplied with wiring instructions. Ideal for shoplightiong fixing on back supplied with wring instructions. ideal for shop ligition
and many other applications. SAE FOR CATALOGUE WITH MANY OTHER BAN
C. WHEELHOUSE \& SON 9/13 BELL ROAD, HOUNSLOW. PHONE 01-570 3501

MOTOROLA

Linear Integrated Circuils DATA BOOK

Price $\mathbf{6} 2.00$

ELECTRONIC SECURITY SYSTEMS by L. G. Sands. Price $\mathbf{6 3 . 3 0}$

MANUAL OF ACTIVE FILTER DESIGN by Hilburn. Price $\mathbf{E 6 . 4 5}$
LOGICAL DESIGN OF SWITCHING CIRCUITS by D. Lewin. Price $\mathbf{E 5 . 0 0}$
INTEGRATED ELECTRONICS by Millman. Price $\mathbf{4 . 2 0}$
INDUSTRIAL ELECTRONICS by N. M. Morris. Price $\mathbf{E 2 . 7 5}$
DIGITAL INTEGRATED CIRCUITS by National Semiconductors. Price $£ 2.00$
APPLICATIONS OF OPERATIONAL AMPLIFIERS by J. G. Graeme. Price $£ 7.90$
FIELD EFFECT TRANSISTORS IN INTEGRATED CIRCUITS by Wallmark. Price E4.70
A GUIDE TO FORTRAN IV PROGRAMMING by D. McCracken. Price $£ 3.70$
CIRCUIT DESIGN IDEA HANDBOOK by B. Furlow. Price $\mathbf{8 8 . 2 5}$
$\star A L L$ PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.

GONDON CENTRAS TADLO STDREE

TELEPHONE CABLE. Plastic covered grey 4core coloured coded. $7 \leqslant p$ per yard.
ELECTRICITY SLOT METERS (5p in slot) for A.C. mains. Fixed tariff to your requirements. Suitable for hotels, etc. 200/250v. 15 A. £8.38. 20 A. £9.30. P.P. 75p. Other amperages available. Reconditioned as new. 2 years guarantee.
MODERN DESK PHONES, red, green, blue or topaz, 2-tone grey or black, with internal bell and handset with 0-1 dial $\mathbf{5 5 . 5 0}$.
5-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled, guaranteed. Price $\mathbf{5 5 . 2 5}$. Send s.a.e.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled. Guaranteed. $£ 6.75$ per unit. Send s.a.e.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed. $\mathbf{8 7 . 7 5}$ per unit. Send s.a.e.
The " 88 " Set. This transceiver, weighs approx. $5 \frac{1}{2} \mathrm{lbs}$. and measures $3 \frac{1}{4} \mathrm{in}$. $\mathbf{x} 5 \frac{1}{2} \mathrm{in}$. $9 \frac{1}{2}$ in. It is a 4 frequency channel set $41-44 \mathrm{mc} / \mathrm{s}$. Crystal Controlled and operates from a dry battery H.T./L.T. 94/1. v. I.E. Ruben Mallory Type No. 1 and employs the following 14 valves: 3A4 1 off; 11.46 off; 1T4 4 off; 1S5 1 off; 1A3 2 off. £6.50 plus 75p P. \& P.
QUARTERLY CHECK METERS 15A £3.90. 20A f4.22. P. \& P. 50p.
All prices subject to fluctuation
Multi Relay Units, Group selectors, Final end selectors and Relays in stock, 20 -way jack strips and tip ring and sleeve plugs. For callers only.
23 LSLE ST. (${ }^{4937} 296$ LONDNW W.C. 2
Open all day Saturday

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI GLU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 66 p PER LINE. Average seven words per Rine. Minimum THREE lines.

- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 30p.
- Cheques, etc., payable to "Wireless World" and crossed " \& Co."
- Press Day October 31st, 1974 for December, 1974 issue. Subject to space being available.

NAME

ADDRESS
\qquad
\qquad

NEW RANGE-TRANSISTOR INVERTORS

TYPE A
Input: 12V DC
Output: 1.3kV AC 1.5MA
Price $£ 3.45$
TYPE B
Input: 12V DC
Output: 1.3kV DC 1.5MA
Price $\mathbf{£ 4 . 7 0}$
TYPE C
Input: 12V to 24V DC
Output: 1.5kV to 4kV AC 0.5MA
Price $£ 6.35$
TYPE D
Input: 12V to $2 \boldsymbol{*}$ DC Output: 14kVDC 100 microamps at $24 V$. Progressively reducing for lower input voltages.
Price $£ 11$
Postage \& Packing 36p. Add V.A.T. at 8\%
7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

INIEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 99-118

[^13]

The Ultimate Draws a Little Closer

How can the qualities of the new Gale GS401A be conveyed? Not in words, certainly. To assess this new speaker, there's nothing for it but to go along to a dealer. He will tell you first that the GS401A carries a seven year guarantee Then, when you've admired the handsome exterior created by Jon Bannenberg in matt black and chrome, we suggest you use some test equipment. All you have to do is take a good pair of ears. This delicate apparatus will tell you that, for a speaker only $23 \frac{1}{4} \times 13 \times 10 \frac{3}{2}$ inches, the GS401A combines an unusually high power handling with breathtaking clarity. You will also need a favourite record. Preferably the one you use to impress your friends with the quality of your existing equipment. The one with prominent percussion and a wide dynamic range. We have only one serious anxiety, With the GS401A being the breakthrough it is, we worry that you simply won't believe the evidence of your ears. At the time of going to press, the Gale GS401A can be seen at the following franchised dealers only

LONDON
The B a O Centre 228 Bishopsgate EC2
Granaris Electrical LImited $88-88$ Pentonville Road N1 Hampstead HiFidelly 91 Heath Street Hampstead NW3 Henry's Racio Limlted 354 Edgware hoad W2
laskys 152 Fleet Streel EC4
Laskys 42 -45 Tottenham Court Road W1
REW Audlo Visual Co Centre Point WC1
REW Audio Visual Co 146 Charlng Cross Road WC2
Studio 9981 Fairtax Road NW6
Ilve Smortall \& Co 16D 4th Floome 35 Mascow Road W2 EDFORDSIRE
Audio Impr misions Limited 32 High Street South Dunstable CMESMIRE
Chester Sound Studlos Limited 1 Mercia Square Frodsham Street Hi-Fi Centre Green Lane Wilmslow Cheshire
Wanstal Mirl Limited 25 The Parade Barbican Plymouth sssex
Essex Hi-FI Centre 210 London Road Hadlelgh
Chew \& Ostourne LImited 14 A High Street Epping
askys 86 气outh Street Romlord
GLOUCESTGRSilire
Radferd Hi Fi $53-54$ Gloucester Road Bristol 7
hampshial
Feetore Limited 269 Commercial Road Portsmouth Leisura
Lanceshiat
Mardman Radfla 33 Dale Street Liverpool
F Bentell Limited 78 Westifeld Road Blackpoo
Hardman Radla Gulldhalt Arcase Lancaster Road Preston Hardman Radid 12 St Mary's Gate Mancheste
middlesex
Henry's Radlo 194 Station Roüd Harrow
NOTTINGMAMSHIRE
Nottingham Hi-Fi 156 Alfreton Road
Flêtóne Limited 92 St: Mary's Road Southampton
STAFFORDSHIRE
Laskys 30 Wulfrum Way Wolverhampton
SURREY
Audlo Systems 23 South Streat Dorking
Unilet Products LImited Comition House 35 High Street Now Malden SUSsEX
Exposure Limited 19 Richardson Road Hove Audio Systems 18 High Street Lewes
Audlo Systems 28 Oueens Parade Oueen Street Horsham Jettries Radlo Vision 7a Albert Parade Eastbourne WILTSMIRE
Fleetone LImited 60 Commerclal Road Swindon
Fleetone Limited 11-13 Salt Lane Sallsbury
WARWICKSHIRE
Laskys 116 Corporation Street Blirmingham
Ken Whittle Limited 788 Stratiord Road Sparkhill Birmingham
YORKSHIRE
Scarborough Hi-Fl 54 Aberdem Walk Scarborough Selective Sound Systems 4 Kaowles Lane Gomersal Cleckheaton Audio Projects 10 Blenheim Terrace Woodhouse Lane Leeds Micron Audio Limited 172 Baslow Road Sheffield
The HI-Fi Studio 8 Byram Street Hudd erstie
Eric Wiley 64 Beancroft Road Castteford
northern treland
sCOTLAND
Mi-Fi Corner 1 Haddington Place Edinburgh
Talisman Hi-Fi 111 Stockwell Street Glasgow

\title{

What's new in Soldering Chemicals?

\section*{Multicore's R \& D

Multicore's R \& D Laboratories are still making news-three important new chemicals for electronics manufacturers.

MULTICORE PC 26 ROSIN FOAM FLUX

A completely new general purpose liquid soldering flux particularly suitable for the automated soldering of all types of printed circuits. PC 26 provides a unique combination of desirable properties.

Complies with U.K. Ministry Flux Specification D.T.D. 599A

- Eliminates "icicles" and "bridging".
- 0.5\% max. halide content and yet gives better soldering than non-approved fluxes with high halide contents.
- Leaves negligible flux residues so p.c. boards are dry after soldering, can be handled and inspected easily and have better sales appeal.

MULTICORE PC 81
 SOLVENT CLEANER \& FLUX REMOVER

A uniqueblend of polar and non-polar solvents formulated for degreasing electronic hardware prior to soldering as well as for removing rosin flux residues including ionizable activators after soldering. Its intermediate boiling range of 71 to $80^{\circ} \mathrm{C}$ and selective solvency make it ideal for vapour degreasing.

The boiling range of PC. 81 is higher than fluorinated solvents (approx $46^{\circ} \mathrm{C}$) and lower than either trichloroethylene ($87^{\circ} \mathrm{C}$) or perchloroethylene ($121^{\circ} \mathrm{C}$). Also its solvency properties for rosin flux removal are superior to fluorinated solvents without in any way affecting most electronic hardware. As a result, PC. 81 solvent will perform its vapour cleaning function longer and more effectively than fluorinated solvents whose vapour condensation ceases at $46^{\circ} \mathrm{C}$ with a consequent end to flux removal.

Solvent evaporation rate is substantially lower than that of the fluorinated solvents, making it more economical to use in open tanks and vapour degreasers.
Multicore PC. 81 is a highly stabilized solvent blend, extremely resistant to thermal or chemical breakdown during prolonged heating or as a result of the introduction of activators from the solution of rosin during its working life. Its relatively narrow boiling range and high stability make it readily useable again without property changes after distillation.

PC. 81 can also be used for cold cleaning and to reinforce ultrasonic cleaning. Even though its toxicity is relatively low, well ventilated areas are required.
PC. 81 is expected to be particularly welcome as it is non-flammable and non-combustible under the new British "Highly Inflammable Liquid" Regulations.

Supplied in one gallon metal cans and 45 gallon steel drums.
Specific Gravity $\left(20^{\circ} \mathrm{C}\right)-1.256$
Boiling Range - $\quad 71-80^{\circ} \mathrm{C}$
Toxicity (TLV) - . - $\mathbf{3 4 0} \mathrm{ppm}$
Residue on Evaporation - less than 10 ppm

MULTICORE PC 54 CONFORMAL COATING

Fully meets the requirements of the new U.K Defence Standard 59-47/issue 2 and U.S. SJEE. MIL-I-46058C, which are becoming mandatory for the protection of many electronics assemblies against adverse environment, contamination and attack by chemicals.
PC. 54 is a two-part epoxy resin system which is conveniently mixed in equal parts by volume. It may be applied by dip, spray or brush to either one or both sides of p.c. boards and components where it forms a thin tough coating after curing. PC. 54 will dry in 1 hour under normal ambient conditions and develop its full properties after several days at room temperature or it may be cured in 2 to 4 hours at $65^{\circ} \mathrm{C}$. A glass fibre brush can be used to remove the coating locally to enable rework and repair.

Other Multicore Soldering Chemicals include a complete range of liquid fluxes and the following special chemicals.

PC 2 Multicore Tarnish Remover
Cleans tarnish from metal surfaces prior to soldering.

PC10AActivated Surface Preservative Applied after pre-cleaning, preserves solderability and need not be removed.

PC10D
A special version of PC 10A for application by roller coating machines

PC 90 Peeloff Solder Resist and
PC91 Thinners
A temporary solder resist for edge-connector contact areas etc. Replaces masking tape.

PC41 and PC 43
Solder Bath dross inhibitors.
PC 52 Protective Coating
One-part conformal coating. Can be soldered through.

PC 70 Thinners

Compatible Solvent blend for use with all rosin fluxes, PC 10 A and PC 52.

Please write for Technical Bulletins on your Company's letterhead for products which interest you to:

MULTICORE SOLDERS LIMITED
Hemel Hempstead, Herts. HP2 7EP
Tel: Hemel Hempstead 3636 Telex 82363

[^0]: Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers' requirements.

[^1]: Price 25p (Back numbers 50p)
 Editorial \& Advertising offices: Dorset House. Stamford Street. London SEI 9LU Telephones: Editorial 01-26। 8620: Advertising 01-26| 83.39.
 Telegrams/Telex. Wiworld Bisncspres 25137 London. Cables. "Ethaworld. London S.E. 1.
 Subseription rates: 1 jear $£ 5$ UK and overseas (\$13 USA and Canada). 3 years. £14 UK and overseas ($\$ 76$ USA and Canada). Student rates: 1 year. $£ 2.50$ UK and overscas ($\$ 6.50$ USA and Canada). 3 years. ¢7 UK and overseas (\$18.20 USA and Canada)
 Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 018373636.
 Subseriptions: Oakfield House. Perrymount Rd. Haywards Heall. Sussex RH16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weehs in advance and to return envelope bearing previous address.

[^2]: *The Electronic Industries Association-sponsored National Quadraphonic Radio Committee is due to report to the FCC early next year, see p. 458 -Ed.

[^3]: *Low-cost high-quality loudspeaker, (part 2) by P. J. Baxandall, Wireless World vol. 74 1968, pp.316-9.

[^4]: * In mono reproduction of SQ and QS records, sounds intended for the centre back are heavily attenuated, and with QS records, left back and right back sounds would be 7.7 dB down on the front sounds-Ed.

[^5]: Please send me the Eagle electronics catalogue containing the complete range of test equipment.
 Name \qquad
 Address \qquad

 WW3
 Eagle International Precision Centre Heather Park Drive Wembley HAO 1SU Telephone 01-9030144

[^6]: *"Presenting maintenance information", Wireless World, October, 1973.

[^7]: * Since the nonlinearity is in the orifice, which radiates into the air, it is the velocity waveform we are concerned with not that of the pressure in the cavity which is relatively sinusoidal.

[^8]: 85 West Regent Street, Glasgow G2 2QD
 Or Telephone 041-332 4133

[^9]: HI FIDELITY MOOULES made and tested. Linsley Hood, Class A …................ E7.25* Linsley Hood, D.C. coupled 75W E14.00* | Linsley Hood, $\mathrm{pre-amp}$ (75 W) …......... 113.50 |
 | :--- |
 | 68.50 |

 *Excl. Heat Sinks.
 TELERADIO HIFI, 325 Fore St., London, N9 OPE. 01.807 3719. (Closed Thursday..) [33

[^10]: ELECTRONICS TECHNICIAN GRADE 3 required for interesting work in Applied Acoustics research group. Salary scale £1,878 to $£ 2,148$ per annum including $£ 228$ London Allowance plus Threshold Payments. Further details and application forms from the Departmental Superintendent (3AA), Departments of Physics and Electronics. Pulton Place, London SW6 5PR.

[^11]: J. LINSLEY-HOOD 75 very low distortion Hi Fi Amp Power Amplifier. Latest version
 Complete kit of parss to bulid,
 p.c.b, res, caps, output transistors
 or Made and tested

 Heavy Duty Heat Sink for 2 transistors
 ", $\begin{gathered}£ 14.95 \\ £ 1.00\end{gathered}$
 Power Supply Unit. Stereo
 KIt for 50 watt Stereo, incl. p.c.b.
 Zener and rectifiers, etc.
 Transformers $30-0-0$ and $24-0-24 \mathrm{~V}$
 Hardware
 Pre-Amplifier
 Kit of Parts for Mono, incl. Switches and Controls
 Stereo version TOTAL COST, STEREO, WITH CHASSIS AND

 $£ 9.70$
 $\mathbf{E 1 5 . 7 5}$
 CASE, EXCLUDING TAX
 $£ 59.50$
 Material also available separately or in pack form Article reprint 40p. Leaflets S.A.E.
 Please add postage and V.A.T. at curfent rate

 TELERADIO HI FI
 325-7 FORE STREET, LONDON N9 OPE 01-807 3719 Closed on Thursdays

[^12]: COLOUR TV's
 Bush CTV 25 displayed working 490 plus VAT large discount for 3 up non-workers available. REDIFFUSION WIRED MONO TV's. all screen sizes, new condition.

 SUMIKS
 1532 Pershore Road, Birmingham 30 Tel: 021-458 2208

[^13]:

 disposed of by why of Trade at a price in oxcoss of the reoommended maxmum price shiowin on the cover, snd that it aball not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any

