

There's no fun in being an mil product. Long before it begins its working life - way back as a design prototype, in fact - it's being vibrated, bumped, sent hot and cold, and subjected to other horrid experiences. And very much the same sort of things have happened to its components long before they got anywhere near it at all.

That's only the start. For instance during
production, an instrument may undergo as many as 60 separate electrical and mechanical inspections adding up to 120 hours on inspection alone - after having endured 500 hours of those shock tactics at design and trial batch stages.

That's typical mi thoroughness for you. In fact, when it comes to reliability you can be quite sure of one thing: at mi were not playing at it.

SEE US AT:

COVENTRY E.P.G. EXHIBITION, 17-19 SEPT., '74 SOUTHAMPTON E.P.G. EXHIBITION, 24-26 SEPT., '74

PORTABLE NSTRUMENTS

ANALOGUE

FREQUENCY ACCURACY

SINE OUTPUT DISTORTION SQUARE OUTPUT
SYNC. OUTPUT
METER SCALES
SIZE \& WEIGHT
TG152D
Without
meter. 40
FREQUENCY
SINE OUTPUT
DISTORTION
sQuARE OUTPUT
SYNC. OUTPUT
SYNC. INPUT
METER SCALES
3 Hz to 300 kHz in 5 ranges. $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz .
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$.
$<0.2 \%$ from 50 Hz to 50 kHz .
2.5 V peak down to $<200 \mu \mathrm{~V}$.
2.5 V r.m.s. sine. $0 / 2.5 \mathrm{~V}$ \& $-10 /+10 \mathrm{~dB}$ on TG152DM.
$7^{\prime \prime}$ high $\times 10 \frac{1^{\prime \prime}}{}$ wide $\times 5 \frac{1}{2}{ }^{\prime \prime}$ deep. 8 lbs . TG152DM

With
 meter.
 f56

1 Hz to 1 MHz in 12 ranges. Acc. $\pm 2 \%$ $\pm 0.03 \mathrm{~Hz}$.
7 Vr.m.s. down to $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
$<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz .

SIZE \& WEIGHT
$7 V$ peak down to $<200 \mu \mathrm{~V}$. Rise time $<150 n S$.
$>1 \mathrm{Vr}$.m.s. sine in phase with output. $\pm 1 \%$ freq. lock range per volt r.m.s. $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}$. on TG200M \& DM only.

TG200 TG200D TG200M TG200DM
Sine $O / P \quad$ Sine \& Sq. O / P.
f55
f58
Sine O/P Sine \& Sq.O/P
f 65 f 68

DIGITAL

FREQUENCY
ACCURACY

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT
TG66B
Battery
model. 550
0.2 Hz to 1.22 MHz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz
$\pm 1 \%$ from 100 kHz to 300 kHz
$\pm \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 kHz .
2 Expanded voltage $\&-2 /+4 \mathrm{dBm}$.
7 " high $\times 10 \frac{1^{\prime \prime}}{}$ wide $\times 7^{\prime \prime}$ deep. 12 lbs.

TG66A

Mains \&
battery model. \&17

Prices include batteries and U.K. delivery. VAT extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

3 sizes... 4 solutions

Four Westinghouse 67 cm diagonal TV colour tubes. Each one directly responding to the requirements of the European market.

In 1971 we came out with the 90° A67-120X to meet set manufacturers' need for a 67 cm diag. tube. 1972 saw widespread construction of the "slim-line" set and we responded with the 10 cm shorter profile 110° A67-140X.

This year an improved version of this tube is available - the A67-410X

Its "fast-on" technology for solidstate circuitry permits European viewers to obtain a full colour image within 4-5 sec. following switch-on of their receiver.

And recently, owing to the employment by many manufacturers of a narrow neck system, we've introduced the compatible 110° narrow neck A67-150X.

All proving that at Westinghouse we make a point of developing finer products to match the dynamic
needs of the industries we serve. Here in Europe and throughout the world.

For further information on these tubes and the many hundreds of other precision devices for industrial and defense application, please write or call:

Electronic Tube Division

Westinghouse Electric S.A. No. 1
Curfew Yard, Thames Street, Windsor Berks. Phone: 63392.

Take a Quad 50E Amplifier (a good start for any installation)

plug it into your monitor system and it bridges 600Ω lines to drive your speakers.
Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line * from a 0.5 volt unbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.

* or indeed any other impedance from 5 to 250 ohms.
Other advantages appropriate to users of all
sizes include: Excellent power and frequency response (-1 dB).
Low distortion $(0.1 \%$ at 1 kHz at all power levels).
Low background (better than 83 dB referred to full output).
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.
Small size ($4 \frac{33^{\prime \prime}}{} \times 6_{4}^{1 "} \times 12 \frac{3}{4}$ ") -($120 \mathrm{~mm} \times 159 \mathrm{~mm} \times$ 324 mm).

Vorlexion QUALITY AMPLIFIERS FOR THE PROFESSIONAL

50/70 WATT ALL SILICON AMPLIFIER
WITH BUILT-IN 5-WAY MIXER USING F.E.T.S

PRICE
ON APPLICATION

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

PRICE
ON APPLICATION

100 WATT ALL SILICON AMPLIFIER

F.E.T. MIXERS AND PPMs

Vortexion Itd

TEL: 01.5422814 and $015426242 \cdot 3.4$ TEI EGRAMS:VORTEXION'LONDON SW 19 257-263 THE BROADWAY WIMBLEDON, SW19 1SF

KESTREL RANGE

(Modern styling, with clearfront plastic case.

- Seven models, scale lengths from 1.3" to $5.25^{\prime \prime}$.
- Extensively used by many leading manufacturers of electronic and electrical equipment.
- Available in all ranges, moving coil and moving iron.
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$. $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.

Profile 350 edgewise 4.3" scale. DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, 5-5", 8" scales. $D C$ moving coil and $A C$ moving coil rectified.

Stafford Long Scale 240 6 models, $3.5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and 2 Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale $240^{\circ} .2$ models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

A step ahead of the pack Hypervapotron* cooling $+$ Pyrobloc* grids

A complete new line of highly performing TETRODES for LW - MW - SW Broadcasting transmitters from 100 kW up to 1000 kW .

THOMSON-CSF

THOMSON-CSF ELECTRONIC TUBES LTD / BILTON HOUSE, UXBRIDGE ROAD, EALING / LONDON W5 2TT TEL. (01) 57955.11 / TELEX : 25659
France - THOMSON-CSF Groupement Tubes Electroniques / 8, rue Chasseloup-Laubat/75737 PARIS CEDEX 15/TeI. (1) 5667004
Germany - THOMSON-CSF Elektronenröhren GmbH / Am Leonhardsbrunn 10 / 6 FRANKFURT/MAIN / Tel. (0611) 702099
Italy - THOMSON-CSF Tubi Elettronici SRL / Viale degli Ammiragli 71/ROMA / Tell. (6) 381458
Japan - THOMSON-CSF Japan K.K. Kyosho Building / 1.9.3. Hirakawa-cho / Chiyoda-ku/TOKYO ₹ 102 / Tel. (03) 2646341
Sweden-THOMSON-CSF Elektronrór AB / Box $27 \mathrm{CBO} / \mathrm{S} 10251$ STOCKHOLM 27 / Tel. (O8) 225815

At last, what youve been waiting for. The new Heathkit catalogue.

Since receiving the last Heathkit catalogue you've no doubt spent quite a time thumbing through it and deciding which models to build.

You've probably also been waiting in expectation for the next catalogue. And wondering what goodies it holds in store for you.

Believe us, it's been well worth the wait.
The new Heathkit catalogue is now out. And it's the largest ever (64 pages of it). Bulging with new models, new innovations and new ways to make building Heathkit even more interesting.

All the familiar faces will be there too. Like our very popular digital clock for instancethe one on the cover of the catalogue.

There's also a de-luxe version available now. The GC-1029AE. With features like an automatic display dimmer for night operation and an automatic stand-by battery in case of power failure.

Another new model is the AJ-1510A digital FM stereo tuner. In fact, we call it our ${ }^{\circ}$ Computer Tuner'because to select stations you simply tap out the frequency on a keyboard. And the AJ-1510A will lock on to the selected station instantly and precisely.

There's a new instrument in our range too. In the shape of a Semiconductor Curve Tracer-the IT-1121.
Connect it up to an oscilloscope and it'll accurately display operating parameters of virtually any type of semiconductor.

Send us the coupon now and we'll send you your free catalogue, with details of these and other exciting, new models. Or, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is in Tottenham Court Road (where else?) at no. 233 .

The Gloucester showroom is next to our factory in Bristol Road.

Either way, we're waiting to hear from you soon.
Heath (Gloucester) Limited, Dept. WW-94, Bristol Road, Gloucester, GL2 6EE.

Tel: Gloucester (0452) 29451.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited.
Electron House,
Cray Avenue. St. Mary Cray,
Orpingtoll. Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Motorola LED sentriesneverdie.

TheDymar 1680 portable frequency counter

You're working miles from base, there's no power handy, and enough AM about to drive you crazy...

You don't have to have problems in order to appreciate the Dymar 1680 frequency counter. But if they arise you'll know you've got a friend.

At home or away, the 1680 offers a frequency range of from 30 Hz to 600 MHz with exceptionally high sensitivity right across the range.

A high stability crystal time base provides laboratory standard accuracy in workshop or on location - accuracy which is maintained even in the presence of a large proportion of AM on the carrier wave.

The nine-digit LED display reads in MHz , kHz and Hz , with automatically positioned decimal point, and the front panel controls are simple and easy to use.

In the field, the 1680 really comes into its own. Operating from AC mains supply or its own rechargeable batteries, it provides genuine portability at only 5.5 lbs weight and $7.2 \times 10.6 \mathrm{x}$ I.gin dimensions.

Want to know more? Use the Reader Reply Service or contact Dymar direct.

DTMAT

the name in radiotelephones
Designed for the mobile land, marine and air communications industry by

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732 I. Telex: 923035. Cables: Dymar Watford.

3009 + V15 III + SL110

Can be seen but not heard

The best pick-up arm in the world

Write to SME Limited
Steyning - Sussex - England
Telephone:
Steyning (0903) 814321

From milions of hours operuling experience come four NEW Pumbicon Cumer Thbes.

Just because over 80% of the world's colour TV cameras use our Plumbicon Camera Tubes, doesn't mean that we can rest on our laurels. At Mulla d, experience has taught us to anticipate your needs, to keep that extra step ahead. Hence we now offer you four NEW 25 mm Plumbicon Tubes (XQ1083 to 1086) ; that's

Behind Mullard's capability

Mullard's background in electron optics is based on a thorough understanding of vacuum and glass technologies. At Mitcham, part of Europe's biggest Electron optics capability-complete with its own fibre optic drawing plant, we make night vision and low light level TV devices. Years of experience in the design and manufacture of image intensifiers and other electron optical devices has resulted in a capability well geared to today's and tomorrow's requirements. Whether your need is for high volume standard devices, or custom-built specials, Mullard have the experience and the resources to meet it.

For full details abou: Plumbicon and other camera tubes, contact
Mullard Limited, Mullard House,
Torrington Place, London WC1E 7HD.
registered trade mark for Televis on Camera Tubes

Special rate visits to Munich sponsored by Electronics Weekly and Wireless World in conjunction with Page \& Moy Ltd.

RETURN FLIGHT BY SCHEDULED AIRLINES VIA HEATHROW
HOTEL ACCOMMODATION
COACH TRANSFERS BETWEEN AIRPORT/HOTEL AND EXHIBITION
EXHIBITION CATALOGUE AND ENTRANCE TICKETS

RECEPTION PARTY IN MUNICH

ELECTRONICA 74

Electronica 74 is held every two years and is one of the top three European electronics exhibitions.
Products on show this year range from components, semi-conductors to production equipment, instruments and materials. There will be over 1.700 exhibitors from 28 countries, including about 70 from the U.K.

SHORT STAY VISITS £87

You have a choice of three dates giving you 2 nights in Munich :
(a) Thursday 21 st November to Saturday 23rd
(b) Saturday 23rd November to Monday 25th
(c) Monday 25 th November to Wednesday 27th

For all 3 trips you have the choice of the following flights:
Day 1 - Depart Heathrow 09.35 arrive Munich 11.15 Day 3 - Depart Munich 12.00 arrive Heathrow 13.50 or
Day 1 - Depart Heathrow 14.45 arrive Munich 16.25 Day 3 - Depart Munich $\mathbf{1 7 . 1 5}$ arrive Heathrow 19.05
Return flight is by scheduled airline of British Airways or Lufthansa between London and Munich. Accommodation in twin bedded rooms on a bed and breakfast basis at the Esso Motor Hotel. Return coach transfers between hotel and airport. Three days coach transfers between hotel and exhibition. Exhibition catalogue and entrance tickets.
There will be a reception party to welcome you in Munich. A limited number of single rooms are available at a supplement of $£ 6.00$ per person.

EXTENDED STAY VISIT £135.00

If you wish to visit Munich for the duration of the Exhibition we have organised a visit from Tuesday 19th November to Thursday 28th November, allowing 10 days $/ 9$ nights in Munich. The return flight is via Heathrow by scheduled airlines. Single room supplement of $£ 27.00$ per person.

Further details may be obtained by using the form below or by ringing Louise Griffiths:
Tel. No. 0533-51211.

electronica 74
To : EWDS Electronica, Page and Moy Ltd., 136-138 London Road. Leicester LE2 1 EB
Please send me complete details of the short stay visits
the extended stay visit
(please tick which applicable)

Name (please print)

Address
6th Iinternational Trade Fair for
Components and Production Facilities
21st-27th November Munich 1974.

If you're looking
 for trouble you needn'tlook any further.

WW-074 FOR FLIRTHER DETAILS

It's not only technicians who can see the finer points of Eagle multi-meters.

Every handyman notices them too.
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue.
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years.
With parts to service them in no time.
So you can confidently find fault in anything.

Lagle ${ }^{\circ}$

The name on Britain's widest range of electronic equipment.

Please send me the Eagle electronics catalogue containing the complete range of test equipment.
Name \qquad
Address

WW2
Eagle International Precision Centre Heather Park Drive Wembley HAO ISU Telephone O1-903 0144

No half measure!

EVENTS TO 1 MILLION COUNTS PER SECOND

FREQUENCY to 8 MHz

FREQUENCY to 100 MHz

RESISTANCE $.001 \Omega$ to $1,000 \mathrm{M} \Omega$

CAPACITANCE 1 pF to $10,000 \mu \mathrm{~F}$

TIME INTERVALS 0.01 mS to 1 MILLION SECONDS
D.C. CURRENT 0.1 nA to 10 A

The Farnell Digital Measuring System provides a wider range of measurement than is generally possible with digital multimeters.

There's a choice of 3,4 or 6 digit main frames and any module may be used with any frame. The module slips into the main frame on runners and is secured by a locking shaft. Simply and quickly in this way, the instrument is converted to measure voltage, frequency, period, events, resistance, capacitance etc.

An obvious choice when equipping a new laboratory because the display section and power supplies are bought just once -in the main frame. Additional functions are obtained at far less cost than complete single purpose digital instruments by purchasing the required modules.

To obtain a 16 page brochure describing this equipment contact:-

FARNELL INSTRUMENTS LIMITED,
TELECOMMUNICATIONS DIVISION.
SANDBECK WAY, WETHERBY, YORKSHIRE
TELEPHONE 09373541 • TELEX 557294
LONDON OFFICE: TELEPHONE 01-802 5359

che colourcamerathet sivesyoumprethanyour 15000worth.

The ITC CTC-3X is a lot of camera for the money.

E5500 buys you a high performance colour television camera, that can be used in studio, telecine, mobile or remote colourcasting.

It comes complete with f1.8 10:1 zoom lens, servo and cable controlled.

A view-finder monitor which can be easily removed or tilted both upward and downward.

A camera control unit which gives you remote controls including colour
balance, iris, R.B. channel positions and gain, and on-off power and beam.

Plus features such as turret colour temperature correction filters.

A built-iri colcur bar generator.
A set of matched vidicon tubes. (Plumbicon tubes available.)

A waveform colour sampler for easy colour balance adjustment.

All-in-one circuits that require only an AC line cable and signal output coaxial cable. No other outer cable connection is needed.

That's the ITC CTC-3X. A lot of camera for $£ 5500$.

At Dixons Technical, of course.

To: Dixons Technical,

3 Soho Square, London W1. Tel: 01-437 8811 Please send me full details of the ITCCTC-3X colour camera.
NAME
ADDRESS

Audio Test Set

foramplifiers,mixers tape recorders

Checks ... frequency response signal/noise ratio distortion
cross-talk
wow \& flutter
drift
erasure
sensitivity
output power
gain
in one compact unit.
Auxiliary Unit provides extra facilities for Studio testing.

Send for leaflet RTS2

Ferrograph Company Limited Auriema House 442 Bath Road Cippenham Slough Buckinghamshire SL1 6BB Telephone: Burnham (062 86) 62511 Telex: 847297

FERROGRAPH

A member of the Wilmot Breeden group
WW-066 FOR FURTHER DETAILS

1) CONNECTORS

MEAN A LOT TO US THAT'S WHY WE CAN HELP WHEN YOU NEED SUB.
MINIATURE, BNC, UHF,

N, C OR SMA CONNECTORS. WITH AMERICAN UG,
BRITISH DEF, 14, 15, 16
AND 17 OR NATO APPROVALS
WHERE APPLICABLE.
TVADER are problem solving in R.F.
IN ADDITION TO THE BROAD RANGE OF
AMPHENOL R.F. CONNECTORS
INVADER HAVE COAXIAL
CABLE CONNECTION NEEDS SO-

Link up
With
MMADB for R.F Gonncctors and Cable from stock NOW

[^0]
Build up the network you need with Barr \& Stroud Active Filter Modules

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment.
Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.

WW-008 FOR FURTHER DETAILS

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT * OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
 * 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20.000 Hz . The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm , and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth	DC-20kHz@ 150 watts + 1 db . - Odb.	Slewing Rate	8 volts per microsecond
Power at clip point (1 chan)	500 watts rms into 2.5 ohms	Load impedance	1 ohm to infinity
Phase Response	$+0,-15^{\prime} \mathrm{DC}$ to $20 \mathrm{kHz}, 1$ watt 8Ω	Input sensitivity	1.75 V for 150 watts into 8Ω
Harmonic Distortion	Below 0.05\% DC to 20kHz	Input Impedance	10 K ohms to 100 K ohms
Intermod. Distortion	Below $0.05 \% 0.01$ watt to 150 watts	Protection	Short, mismatch \& open cct. protection
Damping factor	Greater than 200 DC to 1 kHz at 88	Power supply	$120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
Hum \& Noise ($20-20 \mathrm{kHz}$)	At least 110 db below 150 watts	Dimensions	19" Rackmount. 7" High, 93* Deep
Other models in the range: D	watts per channel	D150-150 watts per channel	

SAXMUNDHAM, SIJFFOLK IPIT 2NI
TEL: (0728) 22622615

If you want the Cambridge Pot. phone Dover 202620

Abstract

That's the 'phone number of Sullivan, manufacturers of the original Cambridge workshop pot that's designed for the testing and calibration of thermocouples and associated indicators and controllers. It's completely portable. And now, fitted with the 3334 solid state dc detector, its rugged construction coupled with its ability to maintain its accuracy, makes it a must for either workshop or laboratory. And it weighs just 6.12 kg . You'll find the price is really competitive too.

WW-021 FOR FURTHER DETAILS

Get in touch today for further detailed specification. Just telephone the number above or write to the address below.
Sullivan
H. W. Sullivan Limited, Dover, Kent. Tel: Dover (STD 0304) 202620 Telex: 96283
Thorn Measurement Control $\stackrel{1}{\text { nrom }}$ and Automation Division.

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER
WITH UNIVERSAL
END FRAMES AND
turret lug connections

TRANSFORMER WITH TWO HOLE CLAMP AND SOLDER TAG CONNECTIONS

Drake Transformers Limited
Telephone:
Billericay 51155

Kennel Lane,
Billericay, Essex.

SM 202
150 MHz Ultra High Performance Universal Counter Timer
Perhaps the most sophisticated counter timer available under $£ 1000$ and it costs around half that! Full eight decade, 150 MHz , three channel spec. with almost every possible plus feature. Programming option.

SM201
100 MHz Universal Counter Timer
Best value general purpose unit of 6 decade 100 MHz , capability. Three channel input with seven operational modes. Standard or high stability versions.

SM190 Variable Time Base (Computing) Counter Timer

For the industrial user. Five or option- time interval \& ratio modes. Stored ally six decade display, two channels. Total variable time base range $1 \mu \mathrm{~s}$ to 10 secs. Frequency count (totalize)
or non-stored display. Ultra low cost.

SM200
100 MHz Counter Timer Mk3
Six decade, frequency, count, period, time and ratio meter having 100 MHz bandwidth and two-line stop start at very low cost.

SM209
500 MHz Frequency Meter
Nine full decade display. Input circuit giving 1 Hz resolution right up to 500 MHz . Optional I.F. subtraction circuit. Ultra fast warm up very high stability oscillator. 10 mV sensitivity All at a fraction of the price you would expect.

SM2O5B

Automatic Universal Counter Timer (100 MHz)
The automatic one. Completely autoranging in all frequency \& time modes 7 decade display with two channel input and 100 nano-second resolution. Remote programming and BCD output as standard. High stability reference.

> Hire For a small charge you can hire any of the instruments shown here; singly or as part of a system which we can design for you. or Buy If you decide later to purchase the equipment, we can refund part of the hire fee to you. You save your capital and space. You beat obsolescence. Why not ring our Hire Department for details? Included in the range are Transducers, Recorders, Oscilloscopes, Digital Instruments, Data Systems, Magnetic Recorders, Computer Terminals, Modems, Hard Copy Printers, Facsimile Transceivers.

North, Feltham Trading Estate, Fèltham, Middlesex. Telephone: 01-890-1166 Telex 23995 Northern Sales Office, Bessell Lane, Stapleford. Nottingham. Telephone: Sandiacre 7255 Scottish Office,18. Sycamore Drive. Hamilton. Lanarkshire. Telephone: Hamilton 28674

A member of the EMI'Group of Companies International leaders in Electronics. Records and Entertainment

OCLI manufarture an extensive range of Infrared Filters sovering the entire 1.5 to 30 micron spectral region.

Filters in thes regions oresent an excellent solution to filteri-g out high-iempuratere radiation without eppre;iably limiting the signal from the source being observed. Marzoser, they have proven cajability over wide operating temperatures.

OCLII.R. Filters are made to exact Customer specifications or a range can be sufplied from stack.

Typical fields benefitiong from OLL/ I.R. Filters include:

- GAS ANALYSERS/DETECTIOR SYSTEMS
- INFRARED PASSIVE THEPMAL IMAGING SYSTEMS
- FIRE DETECTICN
- POLLUTION DETECTION
- OPTICAL PROXIMITY FUSES
- INFRARED SPECTRDSCOPY
- INFRARED PHOTOGRAPHY
- SPACE RECOHMAISSANCE

Write for the new OCLI catalosse and price list of stock I.R. Filters.

OC-19D
used as standards in many industries

Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified

- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges
$10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request
Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

ANDERSELECTRONICS LIMITED

48/56 Bayham Place, Bayham Street.
Anders means meters
London NW 1. Tel: 01-3879092
WW-035 FOR FURTHER DETAILS

DC/AC SINEWAVE TRANSVERTORS

(transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD BRITISH LEYLAND, including ROVER-TRIUMPH. VAUXHALL. develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Transvertors.

Type	Input Volts	Output	 8% VAT
C12/30S	12	$115 / 230 v 50 \mathrm{~Hz} 30 \mathrm{~W}$ Sine Wave	$£ 35.70$
R12/250/24R	12	247 ADC	$£ 75.55$
R24/250/50R	24	503 Re Regulated	$£ 97.25$
$\mathrm{D} 12 / 400 \mathrm{~S}$	12	$115 / 230400 \mathrm{~W} 50 \mathrm{~Hz}$ Sine Wave	$£ 197.00$
D24/500S	24	$115 / 230500 \mathrm{~W} 50 \mathrm{~Hz}$ Sine Wave	$£ 197.00$

All prices $+8 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$ at same price.
For operating frequency and wave form sensitive equipmert such as sound tape recorders, video tape recorders, professional film cameras. sensitive instruments. etc.
Other models available for inputs of 24, 50. 110 and 220 volts DC. Square waveform output also available. generally from stock. Send for informative brochure.

VALRADIO LIMITED
BROWELLS LANE, FELTHAM، MIDDLESEX TW13 7EN, ENGLAND
TEL: 01-890 4242/4837

STAY ON THE BUTTON!

When you want a quick answer to the who, what and where of the radio and electrical business, this is the book to have around. It's the essential reference work for the busy retailer. Contents include lists of manufacturers, suppliers, concessionaires and wholesalers - all entered alphabetically with addresses and telephone numbers. And there's a guide to proprietary names, a legal section, a technical section and maps showing uhf service areas and vhf field strengths. This 1974 edition is completely updated. Order yours now on the coupon below.
ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1974

Wherever there is appreciation of fine sound reproduction, insistence is upon British loudspeaker systems.

 discerning for their outstanding quality, the products of Mordaunt-Short Ltd. are specified by professionals and by enthusiasts the world over. Choose them for your home - where the finest most concerns you. ...and world•wide.
Mordaunt-Short Ltd

Designers and Manufacturers of Quality Loudspeaker Systems
To receive immediately full information and the name and address of the
Stockists nearest to you, please complete this coupon and return it to us direct.

The symbol of sound quality.

Made from selected highdensity Swedish chipboard, the cabinets are handmade, hand-finished and matched in identically grained pairs.
To ensure consistent sound quality, all speakers are individually tested before leaving our factory. Ask for a K.F. demonstration and hear for yourself.

Hi-Fi Speakers

The KR range consists of five outstanding speaker designs with power ratings from 18 watts (music power) to 90 watts

KR10. A two way, two unit system, typical of K.F. quality and design.
For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100 W PEP at 1200 V H.T. and one TT100 delivers 180 W PEP at 850 V H.T.

EEVand M-OV know how.
LAP 80

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. Tel: 01-603 3431. Telex: 234356. Grams: Thermionic London. SEC WW-006 FOR FURTHER DETAILS

nombrex

MODEL 42
R.F. SIGNAL GENERATOR Price $\mathbf{£ 2 1 . 5 0}+$ V.A.T.

- Wide Range $150 \mathrm{KHz}-300 \mathrm{MHz}$
- Accuracy 2\%
- R.F. Output 50 millivolts minimum
- A.F. Output approximately 1 volt at 800 Hz
- Fully transistorised circuitry
- Powered by 9V battery
- Provision for external supply

Trade and Export enquiries welcome Send for full technical leaflets Post and Packing 35p extra per unit

NOMBREX (1969) LTD., EXMOUTH, DEVON. Tel: 03-952 3515

WW-048 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

New from AEI Semiconductors Four shapes for your diode requirement

These four new diodes - comprising the "M" range - have been developed to meet demands for maximum availability at the lower price sector of the market. A $16 \mathrm{amps}, 600 \mathrm{v}$ diode costs as little as 42 p for quantities of 1000 or more. The range covers 6 to $70 \mathrm{mps}, 50$ to 800 volts.

Suffix ' R ' indicates reversed polarity (i.e. Stud Anode)

AEI Semiconductors Ltd., Lincoln.
Tel: 052229992
Part of GEC Electrical Components Group.
Also immediately available from:
Black Arrow (Electronics) Ltd:
Bristol (0272) 294313
Coventry Factors Ltd: Coventry (0203) 24091
Farnell Electronic Components Ltd:
Leeds (0532) 636311
LST Electronic Components Ltd:
Chelmsford 69543
W.S. McMillan \& Co. Ltd.: East Kilbride 38641/4

SDS Components Ltd.: Portsmouth 65311
T1 Supply Ltd: Slough 33411
J.V.N., Bromley, Kent: 01-464 1245

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below

Power output.

Rated

Maximum:

Distortion.

Pre-amplifier:
Power amplifier.
at rated output
at $25 w$ output:

50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven.
90 watts average power per channel into 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02\% (typically 0.01% at 1 kHz). Typically 0.006%.

Overload margin.
Discinput 40 dB min
Hum and noise output.
Disc
-83dBV Measured flat with noise band width of 23 kHz
-88 dBV Measured with 'A' weighted characteristic
Line:
Size:
Weight:
—85dBV Measured flat.
-88 dBV ' A ' weighted
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb .

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301
WW-057 FOR FURTHER DETAILS

SCOPEX 4D-25

The precision scope for the demanding engineer

3\% accuracy - which just about summates this 25 MHz dual-trace instrument from Scopex. A professional scope by any standards - yet at £185 in a price bracket far below its design specification.

* DC-25MHz, full screen
* Measuring accuracy 3%
* Signal delay on both channels
* Trig level and polarity from one simple control
* Wide timebase range, $200 \mathrm{~ns} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$
* Sensitivity $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
* High brightness PDA tube
* Lightweight portability

Write or 'phone for details Scopex Instruments Limited, Pixmore Industrial Estate, Pixmore Avenue,
Letchworth, Herts. SG6 1jJ Tel: Letchworth (0462) 672771

BRITAIN'S FASTEST SERVICE!

component specialists for the discerning amateur and professional

SOLDERING IRONS

A new range by "ANTEX"
Soldering irons of the highest technical standard, low current leakage, rapid heating, high efficiency.
SK2 Soldering kit including 240v 15 w Iron $£ \mathbf{4 0} \mathbf{~ e a c h}$
MLX12 12 volt portable 25 w Iron for car or boat. 15 ft . lead. In protective wallet.
$£ 270$ each
$\mathbf{X 2 5 / 2 2 0}$ General purpose 240v 25 watt Iron. £2.15 each
X50/TC Temperature controlled Iron. Sensitive SCR controlled temperature sensing. Bit is controlled to within $2^{\circ} \mathrm{C}$ of the set temperature. For 240 v mains operation.
$\mathbf{f 7 . 9 5}$ each
Order as "Soldering Irons" + Part No.

SPARE BITS

Type No.	Size	Suits	Plating	Price
2	${ }^{32}{ }^{\prime \prime}$	SK2	Nickel	32p
3	$\frac{{ }^{\frac{1}{32}}}{}{ }^{\prime \prime}$	SK2	Nickel	32p
4	$3^{3 / 18}$	SK2	Nickel	32p
50	$\frac{3}{32}{ }^{\prime \prime}$	$\times 25$	Iron	44p
51		and	Iron	44p
52		MLX12	Iron	44p

RED L.E.D.s

NEW LOW PRICES TIL 209 30p HP 5082 29p

40669 TRIAC $\mathbf{£ 1 . 0 0}$
400 PIV 8 AMPS PLASTIC
3 PAGE DATA
15p

MC 1310P I.C. $\mathbf{£ 2 . 8 0}$ FM STEREO DEMODULATOR REQUIRES NO COILS! PRICE INCLUDES DATA

OP. AMP

 741/8 DIL NEW LOW PRICE 34p
LOGIC CHECKER

FAST \& EFFECTIVE METHOD OF CHECKING DIGITAL DILI.C.S IN CIRCUIT. INSTANT L.E.D. DISPLAY FULL INSTRUCTIONS $£ 25.85$ 1000 PIN SOCKETS 100 PIN SOCKETS

TR1 DIAC

20p
SUITABLE FOR USE WITH 40669

I.C. PIN SOCKETS

NOW RECOGNISED AS THE STANDARD I.C. MOUNTING £7.00 £1.00

TEST CLIP

FOR DILI.C.s 14 \& 16 PINS ALSO USEFUL AS REMOVAL TOOL £1.95

SEVEN WATT AUDIO I.C.
 TBA 810 S
 £1. 68

FEATURING THERMAL PROTECTION IDEAL FOR CAR RADIO APPLICATIONS SHORT FORM DATA AND CIRCUITS 15p

TIMER I.C. NE 555v
 SHORTFORM DATA \& CIRCUITS 15p

SUPERHET SYSTEM I.C.

CA 3123E
 £1.80

WITH RF AMP. IF AMP. MIXER OSC GC DET. OR VOLTAGE REGULATOR IDEAL FOR CAR RADIOAPPLICATIONS DATA AND CIRCUIT 15p

VHF 5 TRANSISTOR I.C.

 CA 3046 70pDC TO 120 MHz ARRAY 3 PAGE DATA 15p

PMRIIII SPECIALISE IN EDUCATIONAL AND GOVERNMENT ORDERS
-See catalogue for further details.
RMOILI SERVICE PLUS 10\% DISCOUNT OVER £4. NO POSTAGE AND PACKING. TOP QUALITY PRODUCTS ALWAYS BY RETURN COMPREHENSIVE CAT. \longrightarrow

Important Notice "All prices are exclusive of V.A.T. Please add 8% V.A.T. to the final total of your order atter
deducting any discount which may deducting any discount which may be due ".

Q D D DEPT. WW6 7 COPTFOLD ROAD BRENTWOOD ESSEX HECHMDIISO ITD. =

WW-059 FOR FURTHER DETAILS

MODEL B MK. v

CONTRACTORS TO H.M. GOVT. P.O. APPROVED

Adcola LONG LIFE soldering bits are still in use after 100,000 soldering joints, if you use copper bits you will need at least ten of them plus nine bit changes and the cont inual dressing of bit faces to equal this.

Its a must to consider the saving from the use of ADCOLA LONG LIFE soldering bits.

order now ADCOLA LONG LIFE SOLDERING BITS

 Our soldering instruments are second to more!ADCOLA PRODUCTS LIMITED, ADCOLA HOUSE,
GAUDEN ROAD, CLAPHAM, SW4 6LH dept. W W Soldering bit sales.
Please send me your latest soldering bit catalogue
NAME
ADDRESS:

Understand the latest developments in calculators,

 computers, watches, telephones,television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 814^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Digital Computer Logic and Electronics	Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
otr	in 4 volumes:
	1. Basic Computer Logic
	Elements
	Cary Out Logical
	Fiip flops ard
	Offer Order this together with Design of Digital
L1.95 p\&	Systemst or the
Design of Digita Systems	contain over wice as much
Computer	s.
miso covers many	which, as you can say

Designer Manager Enthusiast
 Scientist
 Engineer
 Student
 These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

1. ComputerArithmetic

2 Boolean Logic

3 Arithmetic Circuits 4 Memories \& Counters 5Calculator Design 6 Computer Architecture

To: Cambridge Learning Enterprises, Rivermill House, St. Ives, Huntingdon, Cambs.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name.
Address.

including packing and surface post anywhere in the world. (VAT zero rated). Payment may be made in foreign currencies. Quantity discounts are available on request.

Whiteley Acoustic Hoods
 These strongly made hoods for both outdoor and indoor use are designed to specifications which meet Post Office approval. Suitable for desk, shelf or wall mounting, they are available with or without internal light fittings and doors if required.

WHITELEY ELECTRICAL RADIO CO. LTD., Mansfield, Notts, England. Tel. Mansfield 24762. London Office: 109 Kingsway, W.C. .2. Tel. $01-4053074$ WW-027 FOR FURTHER DETAILS

Purpose-bulk servo and actuator systems usins standard componens

VcLennan Engineering Ltd. have considerable experience n the solution of actuator and servo problems using synchronous, stepping and DC motor techniques, an important facet of our skill lying in purpose-designing around standard components for speed and economy.

The illustrations show a selection of modules frcm the standard range and include the new EM/ 100/100A servo drive system. All items are available individually or can be supplied engineered to custom-built systems.

1. EM $100 / 100$ A SERVO AMPLIFIER. A new addition to the range. A complete servo drive system including power supply which is eminently suitable for driving printed circuit motors and other servo motors up to $1 / 6 \mathrm{~h} . \mathrm{p}$. EM 100 - output $\pm 24 \mathrm{~V}, 4 \mathrm{amps}$ continuous, 45 amps peak. EM 100 A - output $\pm 24 \mathrm{~V}, 7 \mathrm{amps}$ continuous, 75 amps peak. 2. DC SERVO AM 1006 S With integral potentiometer. Max continuous output Torque
14.6 kgcm at $7 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
2. LOW INERTIA DC SERVO MOTOR Output 5W
3. CONTROL AMPLIFIER EM 40 Output $\pm 15 \mathrm{~V} 0.5 \mathrm{amp}$
4. TYPICAL PRECISION GEARS 120 to 32 DP

Tel: Crowthorne 5757/8.

Sound has come a long way. Just look at the magnificent equipment you can buy today! It achieves feats of precise fidelity you only dreamed of a few short years ago.

Sound doesn't stand still. To keep up with all the new developments you need to hear the newest dimensions in sound. You need to talk to the experts
and listen to what the innovators have been up to. You can do all this at the 1974 International Audio Festival and Fair.

It gives you the chance of getting on top of your favourite subject. And gives you an opportunity to test the latest equipment for yourself.

Come see and hear it all. Bring along your friends,too.

Every day of the week we've arranged for special lectures to be given by technical experts. Attend the lectures, you can pick up helpful ideas and useful information.
HE 1974 INTERNATIONAL AUDIO FESTIVAL \& FAIR. OLYMPIA, LONDON. 28 OCT.-3NOV.
Sponsored by the Sunday Mirror. Admission 50p. (incl.VAT)
Monday: 12 noon to $9 p . m$.
Tuesday-Saturday: 10 a.m. to 9 p.m.
Sunday: 1la.m. to 7p.m.

For further information, please write to: Audio Festival and Fair Limited, 9 Argyll Street, London W1V 2HA

Twin Staloilised PowerSupplies

 Each comprising:Two powerful bench supplies.
Continuously variable.
Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5 A
with twenty 1 volt steps and fine
contral.
Voltage set by controls.
f64.50
plus VAT C to 100 mA . 0 to 0.5 A .

2×0 to 30 V 0 to 1 A .
Set by switches and fine control.
Meters switchable for volts. 0 to 100 mA and 0 to 1 A . Re-entrant protection. Pilot indication of overload.
plus VAT

the best for less
Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Iroland, Lennox Laboratory Supplies Led, 3 ,-4 South Leinster Street P.O. Box $212 A$, Dublin 2

Denmmrk, Scanfysik, 13 -15 Hjorringeade, DK 2100, Copenhagen
Sweder, EMI Svenska A/B, Tritonvagen 17, Fack, 17119 Solna Norway, EMI Norsk A/S, Postboks 42 Korsvoll, Oslo 8
Malaysis, Laborntory Equipment Sdn. Bhd., P.O. Box 60 , Batu Pahat Benelux, A.S.E. Led., Nationmlestreet 38, B-2000 Antwerp

u.v.Reacrider, Storage Scope, Scope \& Camera?

The alternative!

RECORDING OSCILLOSCOPES

Medelec Fibre Optic Recording Oscilloscopes are highly versatile top quality general purpose units specially designed for industry and research. They are based on the wide experience gained by Medelec in the exacting field of medical instrumentation.

High quality, low cost recording \& Wideband brilliance modulation
\&Five Recording Modes include Raster
is Simultaneous recording and viewing
\approx Single frame or continuous records from a built-in camera

For full technical details or a personal demonstration of the FOR-4 or any Medelec unit please contact us.

medelec

Medelec Limited Woking Surrey
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

(II) I.L.P. (tentatomestus

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HYS is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Inter nally the device consists of two high quality amplifiers-the first contains frequency equalisation and gain correction, while the second caters for tone control and
TECHN
TECHNICAL SPECIFICATION
Inputs
Magnetic Pick-up $3 m \mathrm{~V}$.R|AA Ceramic Pick-up
Microphone
Tuner
Auxillar
10 mV
100 mV

Outputs
Tape
Main output Odb (0.700 mV volts RMS)
Active Tone controls
Treble $\pm 12 \mathrm{ab}$ at 10 kHz
Bass $\pm 12 \mathrm{db}$ at 100 Hz
Distortion 0.05% at 1 kHz
Signal/Noise Ratio $\quad 68 \mathrm{db}$
Overload Capability 40 db on most
Supply Voltage $\begin{array}{r}\text { sensitive input } \\ +16-25 \text { volts }\end{array}$
PRICE $£ 4.50+0.36$ V.A.T. $P \& P$ free.

The Hソ50 is a complete solid state hybrid Hi-Fiamplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connections are provided: Input, output, powe lines and earth.

TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance 4-16 Ω
Input Sensitivity Oab (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz}+3 \mathrm{db}$
Supply Voltage 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE E5.98+0.48 V.A.T. P \& P free

The PSU50 can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Outputvoltage 25 volts
input voltage $\quad 210-240$ volts
Size L.70, D.90, H. 60 mm
PRICE $55.00+0.40$ V.A.T. P \& P free

TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

CROSSLAND HOUSE • NACKINGTON • CANTERBURY • KENT

CANTERBURY (0227) 63218

If you can't find the lamp you need from the 350 different types of Vitality sub-miniature and miniature lamps just pick up the phone and ask for the Vitality applications service.

Miniature and sub-miniature lamps are Vitality's speciality and the range available is one of the most comprehensive in Europe.

Write for the Vitality catalogue for full details on the range and application notes, or phone us if you have a special requirement for conventional or unusual environments, wherever a light source is needed for illumination, reference, indication or warning.

Vitality Ltd 回

BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TELEPHONE: 028462411 . TELEX: 81295.

Authorised Distributors

Townsend Coates Ltd., Coleman Road, Leicester LE5 4LP. Telephone: 0533768561 .Telex: 34321.
Farnell Electronic Components Ltd., Canal Road, Leeds LS12 2TU. Telephone: Leeds 636311.Telex: 55147.

The symbol of sound quality.

Unit Audio
Superbly made speaker enclosures containing high quality units designed to improve your listening pleasure.
Ask for demonstrations of the KR6, PF6, PF8, MP6, MP138.

Power ratings from 8 watts (music power) to 20 watts (music power).

Illustrated here is the new MP6.

For further information and address of your local stockist write to: K.F. Products Itd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-016 FOR FURTHER DETAILS

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

BIAS ELECTRONICS LTD.
01-540 8808 572 KINGSTON ROAD, LONDON SW20 8DR

H|helectranic
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7
WW-039 FOR FURTHER DETAILS

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On 1" measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD. LONDON WC1X 8AX ('Phone 01-837 7937)

MEET AND MATCH ALL YOUR VTR REQUIREMFNTS WITH THE NEW SHIBADEN SV630

No matter what your requirements in the application of colour VTR, the new Shibaden SV 630 Cartridge Video Recorder will help you in a wide range of differing applications in education, industry, and commerce.
The SV 630 is a $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Colour Video Recorder that guarantees exceptional reliability and picture stability and conforms fully with the EIAJ standard. This extends to full tape compatibility with existing reel to reel EIAJ VTRs, in monochrome. Seperate Audio and Video connections are provided in addition to the EIAJ standard connector. And the unit is capable of record/playback on PAL/SECAM colour standard.

Manual or Auto

Among the outstanding features of this new VTR is the facility to control input levels, both manually or automatically, on audio and video. AGC circuits are used to facilitate this feature while automatic colour control circuits are used in both record and playback circuits to ensure stable and high quality colour reproduction.

Really Easy Operation

Operating the SV 630 couldn't be easier. Once the cartridge is popped in, the keys operate at the touch of a finger putting you in complete command of play, record, fast forward and stop functions . . . the tape rewinds as soon as the programme has finished . . and pops out upon the completion of rewinding.
Anyone can control and operate this new unit right from the word 'go', ensuring a professional performance no matter what the circumstances or where the unit is used.

Write now for full technical specifications or telephone the Shibaden Technical Service at: 01-203 4242.

Hitachi

Shibaden (UK) Limited Lodge House Lodge Road Hendon London NW4 4DQ.

Telephone: 01-203 4242/6

WW- 045 FOR FURTHER DETAILS

The symbol of soundquality.

Outdoor Weatherproof Speakers
Specially constructed for outdoor use with complete weather and water protection built in.
Power ratings up to 25 watts RMS.

An example of a weatherproof speaker
from a range which even includes an underwater speaker.

For further information and address of your local stockist write to:
K.F. Products Ltd., Ashton Road,

Bredbury, Stockport, Cheshire.

WW-018 FOR FURTHER DETAILS

USED THRDUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS EMSURES ACCCMPACY RELLABUUTY VERSATILTTY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVEFY SANW
5 Months' Guarantee
6 Months' Guarami
MOOEL P2B MODE: JP5D
MODEE 360 YTR
MODEL U50BX
MODEL A303TRO
MODEL A303TRD
MODEL K30 THD
MODEL FROTRO

¢9.76	model at 45
f11.58	m00E 380CE
f15.28	MODEL N101
f15.60	MODEL 460ED
117.45	MOOEL EM800
£24.01	MODEL R1000CE

Excillem Pepair Serice

THESE PRICES ARE SUM $£ 2528$
SE PRICES ARE SUBUECT TO AN ADBMTIONAL CHAAGE OF 8\% FOR VA
Cases exira, avalable for most meters, but not sold separatehy.
U-50DX
Please write for illustrated leaflet of these and other specialised Sanwa meters
 el:01-546 4585
WW-023 FOR FURTHER DETAILS

THINKING OF BUYING Sulivan Tayler (110) MEGGER?

THEN CONTACT THE APPOINTED U.K. DISTRIBUTORS:-
REPAIR AND
RECALIBRATION
SERVICE AVAILABLE ON AVO MULTIMETERS

FARNELL INSTRUMENTS LIMITED, SANDBECK WAY. WETHERBY, YORKS'HIRE LS22 4DH TEL: 09373541 TELEX 557294 LOMDOM OFFICE TEL: 01-802 5359

50mHz OSCILLOSCOPE TYPE C1-64

Made in USSR

Power supplies: $115 / 230 \mathrm{~V} \pm 10 \%, 50-40 \mathrm{~Hz}$.
Dimensions: $\quad 300 \times 200 \times 420 \mathrm{~mm}$. Weight: $\quad 19 \mathrm{~kg}$.
PRICE, complete with full complement of connectors. cables, adaptors and accessories $\mathbf{£ 4 7 0}$ exclusive of VAT.

Lightweight, portable, transistorized, dual trace oscilloscope.
Display:
Rectangular CRT 6×10 div. $(48 \times 80 \mathrm{~mm})$ with
illuminated graticule.
Vertical deflection:
Two input channels operated in alternate or chopped modes or algebraically summed.
Bandwidth:
DC to 50 mHz DC coupled.
3 Hz to 50 mHz AC coupled.
Sensitivity:
Channel I and $11: 5 \mathrm{mV} /$ div. to $10 \mathrm{~V} /$ div.
Summing mode: $1 \mathrm{mV} /$ div. max.
Horizontal deflection:
Sweep 'A'-0.1 $\mu \mathrm{s} / \mathrm{div}$. to $1 \mathrm{~s} / \mathrm{div}$.
Sweep 'B'-0.1 $\mu \mathrm{s} / \mathrm{div}$. to $50 \mathrm{~ms} / \mathrm{div}$.
Sweep delay:
$1 \mu \mathrm{~s}$ to 10 s.
Time Base Modes:
' A ' only; ' B ' only: ' A ' brightens ' B '.
' B ' delayed by ' A ': ' A ' and ' B ' chopped or alternate.

MAPLIN ELECTRONIC SUPPLIES

First-class post pre-paid envelope supplied free with every order.

CATALOGUE

Send just 25 p NOW! for our superb 80-page CATALOGUE. It's packed with photographs, illustrations. and pages and pages of detailed data on our completc range of transistors, diodes, I.C.s etc., etc. Seeing exactly what you're buying makes ordering so easy:

LEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (fust send s.a.e. please for leaflet.)

LEAFLET MES 51: Describes a completc electronic organ which can be constructed using our high quality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leaflet MES 51.)

ORGAN BUILDERS
 MES announce the very latest developiment in organ

 circuitry.
THE DMO2

Master Frequencies on ONE tiny circuit board
LOOK AT THESE AMAZING ADVANTAGES t 13 frequencies from C8 to C9. \# Each frequency digitally derived from a SINGLE h.f. master oscillator
Initial luning for the WHOLE ORGAN: ONE Initial tuning for the WHOLE ORGAN: ONE
SIMPLE ADJUSTMENT. *Relative tuning NEVER DRIFTS! \star External control aliows instant une-up to other musicians. \# Outputs will directly drive most types of dividers including the SAJIIO. \# And each
output can also be used as a direct tone source. $\begin{aligned} & \text { Vari }\end{aligned}$ abl DEPTH AND RATE tremulant optional extra Gold-plated plug-in edge connexion. \star Complete fibreglass board (uncluding tremulant if required) ONLY
$3.7 \mathrm{in} . \times 4.5 \mathrm{in}$. V Very low power consumption.
© EXTREMELY ECONOMICAL PRICE. Ready-built. tested for full technical and fuly guaranteed.
DMO2T
(with uremulant) ONLY details. 14.25. (with tremulant) ONLY DMO2 (without tremulant):12.25. weicome SAJl10 7 -stage frequency dividers in one 14 pin DIL package. Sine or square wave input allows operation from almost any type of master oscillator including the DMO2 (when 97 notes are available). Square wave outputs may be modified to saw-tooth by the addition
of a few components. SAJilio: $£ 2.63$ each OR special price for pack of $12: £ 25.00$. Sa.e. please for data sheet.

$\mathbb{C e n t u r i o n}$
PROFESSIONAL QUALITY INSTRUMENT CASES
 rear panel. blue hammer. Detach-
able aluminium front panel finishe

Dimensions in inches.				
Model	W	H	D	Price
120	8	$2+$	6	22.87
220	8	6	$3 \frac{1}{2}$	$\mathbf{5 3 . 7 8}$
221	8	6	$6{ }^{\circ}$	¢4.07
320	120	8	12	$\boldsymbol{8 8 . 4 2}$
Chassis	mode	ex		
Please send s.a.e. for free illustrated leaflet.				

Please send s.a.e. for free illustrated leaflet.
, able aluminium front panel finished in white.

LINEAR I.C.s

CA 3046 14-pin DIL LHOO42C TOS LM380N 14-pin DIL MC1303L 14 pin DII MCI310P 14 pin DIL MFC 8010 MFC 9020 MVR 5, 12 or 15 V TO3 NE56IB 16-pin DIL

WW-005 FOR FURTHER DETAILS

PARKER SHEET METALFDLDNG MA NAINES

BENCH MOOEL
$36^{*} \times 18$ gauge capacity $24^{\prime \prime} \times 16$ gauge capacity Also the well-known vice $36^{\prime \prime} \times 18$ gauge capacity 24×18 gauge capacity $18^{\prime \prime} \times 16$ gauge capacity Add 8% VAT to total price of machin
40.00 carr. free E38.00 carr. free 1 of 21.00 carr. free E15.00 carr. free E15.00 carr. free hine

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
One year's guarantee. Money back if not satisfied.
Send for details:
A. B. PARKER FOLDING MACHINE WORKS, UPDER GEORGE STREET HECKMONDWIKE, YORKS. Telephone 403997

AEL gatwick house, horley, surrey, england Tel: Horley (02934) 5353 Telex: 87116 (Aerocon Horley) . Cables: Aerocon Telex Horley WW—060 FOR FURTHER DETAILS
wW-034 FOR FURTHER DETAILS

Si451 Millivoltmeter
$\star 20$ ranges also with variable control permitting easy reading of relative frequency response.

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

\star very low distortion content-less than 0.05\%
\star an output conforming to RIAA recording characteristic

* battery operation for no ripple or hum loop
\star square wave output of fast rise time
$\mathbf{f 5 0 . 0 0}$
also available
Si452 Distortion Measuring Unit
\star low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc.
J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON, YORKS. BD19 5LA.

Tel: 09762-2501

WW-100 FOR FURTHER DETAILS

DIRECTIONAL WORKING

The array comprising 4×12-element yagis produces a gain of 19 dB over a $\frac{1}{2}$ wave dipole in the frequency range of $420-470 \mathrm{MHz}$. If required, a screen reflector can be added to give a higher front to back ratio (rejection). Similar arrays can be produced in the VHF band, including the aeronautical range. Hy-Q Antennas offer a full range of mounting brackets for these antennas which can be engineered to fit onto almost any structure, including buildings.
Apart from our yagi arrays, we offer for rapid despatch colinear arrays, dipoles, also marine models, ground planes, centre fed dipoles and a range of radio amateur antennas.

HY-Q ANTENNAS LIMITED

Pondwood Close, Moulton Park Industrial Estate, Northampton. Tel: Northampton 48129. Cable Address: Nikeant, Northampton, England.

The symbol of sound quality.

Background Speakers

Outstanding results from small, inexpensive speaker enclosures. Sturdy cabinets either hand veneered in teak or covered in Black Vynide.

Power ratings from 1 watt RMS to 8 watts RMS.

W8DS. One of a range of four small speakers bookshelf or wall mountingslim line, square, wedge

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stock port, Cheshire.

WW-017 FOR FURTHER DETAILS

Minimod

Made in Britain by Gardners...

First of a new range of all-British miniature encapsulated power supplies, the Minimod series is designed and manufactured by Gardners to provide reliable, regulated power supplies in a neat pack designed to plug into your P.C. board. Minimod simplifies development or production of equipment by providing power where
you need it. Minimod provides a choice of a standard 5 volt output (available up to 1 Amp) for digital circuits or 12-0-12 or 15-0-15 volts for linear circuits, using a 230 volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt units, over voltage crowbar is provided ...

Ask Gardners to tell you more about Minimod. Standard or special models can be supplied.

Gardners

Specialists in Electronic Transformers and Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

Gardners Transformers Limited, Christchurch, Hampshire BH23 3PN Telephone 02-015 2284 Telex 41276 Gardners XCH WW- 096 FOR FURTHER DETAILS

WW-036 FOR FURTHER DETAILS

Spectrum Analyser
Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Inpurt Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input "on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width 11 in (28 cm .) Height 4.375 in . $(11.2 \mathrm{~cm}$.) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$.) Nett weight $7.51 \mathrm{bs}(3.4 \mathrm{Kg})$ Gross weight 1 Olbs $(4.5 \mathrm{Kg}$.

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

WW-033 FOR FURTHER DETAILS

CRYSTAL
FREQUENCY STANDARD

OUTPUTS $1 \mathrm{MHz}, 100 \mathrm{KHz}, 10 \mathrm{KHz}$
STABILITY 5 parts in 10^{10}

8 DIGIT INSTRUMENTS
WITH CRYSTAL OVENS
STABILITY 3 parts in 10^{8} SENSITIVITY 10 mV

Audio Connectors

Broadcast pattern jackfields. jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes
XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street.
London W1V 3LE
01-437 1892/3

WW-038 FOR FURTHER DETAILS

COUNTERS

5 DIGIT TYPE 301 32MHz
SENSITIVITY 50 mV
STABILITY 3 parts in 10^{6}
£75

6 DIGIT TYPE

TYPE $501 \quad 32 \mathrm{MHz}$ TYPE 501 M 32 MHz verioion TYPE 70150 MHz
f170 TYPE 701M 50M Hz Marsion $£ \mathrm{f} 205$ £195 TYPE 801AM 300M Hz Memann $£ 285$ £180 Prices exclusive of VAT

Write for illustrated leaflet
Electronic START/STOP version PLUS $\mathbf{f 1 2}$

Thesymbolof sound quality.

Ideal for mobile use. Finished in Vynair for style to match performance. Power rating from 25 watts RMS to 100 watts RMS.
R12DXH. One of a range of six superb Power speakers.

For further information and address of your local stockist write to:
K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

P.A. \& Disco Speakers

Designed to satisfy the demand for high quality sound required by Discotheques and advanced PA systems.

REVERSIBLE ASSEMBLY FRAME FOR PRINTED CIRCUITS Simply assemble,turn over and solder

TRANSFORMERS

BATTERY CHARGER TRANSFORMERS

	Price	Pat
	\%	£
2 Amp 2-6-12 Voits	2.45	35
$4 \mathrm{Amp} 2-8-12$ Volts	3.29	. 35
$6 \mathrm{Amp} \mathrm{6-122} \mathrm{Vols}$	4.95	. 50
12.5 Amp 2-6-12 Volts	7.80	88
rectifiers motincluded		
$\begin{gathered} \text { NEW } \\ \text { PRODUCTS! } \end{gathered}$		
Don't chance it!		
isolate it!		

"SPLASH PROOF" SAFETY TRANSFORMER 750 VA Isolation Unit (Interwinding Screen)
Housed in a tough Fibreglass cass. with Housed in a tough fibregdass cass. with
carving handie. Complete with hegvy duy 3 -core power coble. splash proot outtet plug and socket. Intemal fuse. 110 Volt and 240 Vot versions graltoble.

PRICE $\mathbf{f 2 6 - 2 0}$ CARRIAGE $\mathbf{f} \mathbf{1} \mathbf{3 0}$

12 and 24 VOLTS $\underset{\text { TYPES }}{S_{\text {PRIMARY }}} \underset{\text { PRICE }}{200-240} \begin{gathered}\text { Volts. } \\ \text { Post }\end{gathered}$

AUTO TRANSFORMERS

VA Watts)	Ref. No.	$\begin{aligned} & \text { PRICE } \\ & \text { CASED } \end{aligned}$	PRICE OPEN	POST
Tapped at 115. 220.240 Volts				
$\begin{aligned} & 20 \\ & 75 \end{aligned}$	$\begin{array}{r} 113 . \\ -64 \end{array}$	2.5	1.32. 263	$\begin{array}{r} 0.30 \\ .0 .30 \end{array}$
Tapped at 115. 200. 220.240 Volts. 3.29 0.39				
200	65	5.56	3.96	0.40
300	66		464	0.52
500	67	9.50	8.03	0.67
1000	84	15-92	13.50	0.82
2000	95	29.70	25.30	1.50
3000			33.00	

NEW! $!^{2}$ ANO PANEL METERS

ELECTRONIC MAINS TIMER

A relibibe unit ideai tot timing Bathoon/
 off. Delay: 1.30 mins, wiusubulie Mar Load: 400 VA or 1000 Warts rosistive. Nory Case: 3 zin $\times 3$ binn $\times 2$ in. Fitting hastuctions inclubed Trode Picic: f5-*0. Posst 20 p.

$\frac{1}{4}$-WATT CARBON FILM RESISTORS

 also avalable \ddagger watt at $70^{\circ} \mathrm{C}$ E 12 range $108-1 \mathrm{MD} .5 \%$ tol. above 470KO 10\% tol. at 95p per 100.PLEASE ADD 8\% FOR VAT

A. \quad - (Dept. WW10)

Byre House, Simmonds Road Canterbury, Kent CT1 3RW
Tel: Canterbury (0227) 52436

Calculators, Clocks and Counters

DIGITAL CLOCKS

Professional quality, 6 -digit, 12 or 24 hour display \qquad

New items!

Beautifully finished in executive case, also available as easy-build kit
FREQUENCY COUNTERS
Small, attractively-styled, up-to-the-minute design, $10 \mathrm{~Hz}-30 \mathrm{MHz}$ 6-digit
LED display, also available as easy-build kit ..
High-frequency model $10 \mathrm{~Hz}-220 \mathrm{MHz}$ minimum, still a full 6 -digits and LED display. Also available as easy-build kit
SPECIAL OFFER

CALCULATORS

All prices VAT inclusive until 1st October, 1974 advance
162P 40-step programme desk top
162 R as 162 but includes $\sqrt{ }$
E199
162 as 2 memory, $\%, 16$-digit \qquad
882 memory $\% \sqrt{ }$, hand-held, with rechargeable batteries, charger, case \& desk stand

E175
E145

QUAD

Latest-We have CBS-SQ Logic ICs in stock now! Full logic kit available \qquad ALL ITEMS FOR PE RONDO SUPPLIED BY US

ALL PRICES ARE POST FREE

E115

£33.50 $+\mathbf{E} .68$ VAT £29.50 + £2.36 VAT
$\mathbf{E 5 5}+\mathbf{E 4} .40$ VAT
E45 + E3.60 VAT
E97+E7.76 VAT $\mathbf{E} 5+\mathbf{E} .00$ VAT

£27.00 + £2.16 VAT
PLEASE LET US KNOW AFTER 7 DAYS IF YOUR ORDERIS NOT ACKNOWLEDGED.

A FUIL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED.
AS MANUFACTURERS AND DISTRIBUTORS WE WELCOME TRADE AND EXPORT ENDUIRIES. COMMUNICATIONS CONSULTANTS . . INSTRUMENT DESIGNERS . . FOUR -CHANNEL SOUND SPECIALISTS.

ENGINEERS
YOURSELF FOR A

Do you want promotion, a better job, higher pay?
"New opportunites" shows you how to New Opportunities shows you how to get them through a low cosi home study course.
There are no books to buy and you can pay-asyoutearn.

This helpfull guide to successs should be read by every ambitious engineer.
Send
for this heppatil 76 page FREE book now. Send for this heppoul 76 page FREE book now.
No obligation and nobody will call on you It could be the best thing you ever did.

Gardners line up

Line MatchingTransformers

 from Standard to Super Fidelity

Gardners

GARDNERS
 TRANSFORMERS LIMITEO

WW- 042 FOR FURTHER DETAILS

ELECTRONIC ORGAN KITS

There are 5 superb models in kit-form specially designed for the D-I-Y enthusiast. With our free and generous after sales service you can build in sections. and the whole project can be extended over several months. All specialised components can be purchased separately. We also stock keyboards, volume pedals. MOS master oscillators, ICs. transistors, ETC for W/W synthesiser and W/W electronic piano. Send 50 p for catalogue and vouchers worth $50 p$ or send your own parts list, enclosing SAE for quotation.

ELVINS ELECTRONIC MUSICAL INSTRUMENTS
12 Brett Rai.. Hackney, London E8 1JP. Tel : O1-9868455

Thesymbol of soundquality.

Indoor Column
Speakers
Ideal for Clubs, Cinemas, Concert Halls, Churches etc.; particularly suitable where a coustic difficulties are experienced-especially feedback.
Alternative finishes
available are Black Vynide or Teak.
Power ratings from 10 watts RMS to 30 watts RMS.

W410: One of a range of 4 columns available. 15 ohms impedance, or loov line.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW- 020 FOR FURTHER DETAILS

UNIT AUDIO

Built to professional standards for the discriminating listener MP60/G800 12W RMS $\mathbf{f 8 9 . 9 5}$ + VAT
\star Amplifier comprises over 200 high quality components assembled on a fibreglass P.C.B.
\star Generous safety factors and full short C.C.T. protection provide excellent reliability.

* Handsome teak finished cabinet with tinted cover and matching loudspeakers.
ڤ Autochange version also available from $£ 74.95$ + VAT
For further details contact:
THAMES ELECTRONICS 77-83 Westdale Rd. London SE18 3B0 01-317 8885
WW-058 FOR FURTHER DETAILS

Prices are exclusive of VAT

As soon as you try out one of these versatile little scopes, you'll think of dozens of jobs it can do for you. And at $£ 80$, yau can afford to use it everywherein training, inspection, production control and monitoring for example.
For a small scope, the S51B has an exceptionally big 10 cm by 8 cm viewing area, with a really bright trace. Band width is $\mathrm{DC}-3 \mathrm{MHz}$. Its sturdy construction and easy-to-use controls make it ideal for non-technical operators. It weighs $19 \frac{1}{2}$ lbs and measures just $8^{\prime \prime}$ by $7^{\prime \prime}$ by $15^{\prime \prime}$. The versatility of S51B springs from its combination of low price, big flat screen, plus excellent linearity and calibration. It takes Telequipment to line up a package like that! Ask us for full information.

TELEQUIPMENT <電〉

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

world
 wireless

Electronics, Television, Radio, Audio
 SEPTEMBER 1974 Vol 80 No 1465 SIXTY-FOURTH YEAR OF PUBLICATION

Balloon broadcasting and communications. A system is described which uses helium-filled, tethered balloons as platforms to provide broadcast coverage over large areas.
Digital speedometer using c.m.o.s. The second part of the article will describe the averagespeed indication circuitry, calibration and practical details.

Microphone survey. High quality, semprofessional and professional microphones form the heart of this collation, coupled with a state-of-the-art résumé article.

This month's cover picture shows a checking process in the manufacture of printed circuits for Grundig equipment.

IN OUR NEXT ISSUE (published October 2)

Contents

315 Concepts in electronics
316 A digital speedometer using c.m.o.s.-1 by A. Bishop and A. Woodruff
321 Circuit ideas
Improved accuracy for digital clocks
L.e.d. synchroscope

322 Mobile amateur radio by N. A. S. Fitch
325 Thyristor control of shunt-wound d.c. motors by F. Butler
329 News of the month
Data control on the APT
Dating ancient ceramics
Heart rate computer
332 Pattern recognition circuits by W. K. Taylor and J. J. Witkowski
334 Calculator offer modifications
335 Not such a dummy head by D. J. Meares, B.Sc.
337 Project—a digital clock calendar-2 by J. F. K. Nosworthy and N. J. Roffe
340 Literature received
341 Baxandall tone control revisited by M. V. Thomas, B.A.
343 HF predictions
344 Letters to the editor
Dolby f.m. broadcasting
Quadraphonic quandary
Horn loudspeaker design
347 Electricity and magnetism?-1 by "Cathode Ray"
349 Sixty years ago
350 Transmission lines for the birdwatcher by P. I. Day, B.A.
352 Coming Events
353 "Teleprinter" with a traverse display by Brian T. Evans, B.Sc.
357 Books received
358 World of amateur radio
359 New products
a92 APPOINTMENTS VACANT
a112 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Led

Managing Director: George Fowkes
Administration Director. George H. Mansell
Publisher: Gordon Henderson

[^1]

wireless world

Concepts in electronics

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:

BILL ANDERTON, B.Sc.
BASIL LANE
MIKE SAGIN

Drawing Office:
LEONARD H. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
A. PETTERS (Classified Adveriisements) Phone 01-2618508 or 01-928 4597
JOHN GIBBON (Make-up and copy) Phone 01-261 8353

The recent correspondence in this journal on which way current flows, if it did nothing else, served to remind us of the illusive nature of much of our knowledge. A layman reading the letters might well have been shocked to see obviously learned and intelligent gentlemen taking completely opposite points of view. Surely, the layman might say, this is not a matter for debate; it should be possible to determine which way current flows by observation or experiment. He might then be shown some kind of indicator in a circuit, say a pointer meter or an electrolytic cell, and he would be quite right in saying that observation of such things only tells us that electric current is a directional phenomenon, it doesn't tell us the actual direction of the current. He would finally discover that the whole thing is a matter of convention, and which convention you adopt, negative to positive or positive to negative, depends on who you are.

Much of our physical knowledge does in fact rest on a priori concepts. We start off with a concept of how things are, then we try to fit into it our empirical observations, which in electronics are basically sense data obtained from instruments. If the empirical observations do fit we say that the concept is the truth. This was how the phlogiston theory of matter survived as a coherent system for a good many years before Lavoisier -all the observed facts seemed to support it. But, as we know, this concept proved to be wrong. Very often the a priori concepts are mathematical ones. The concept in the equation $e=E \sin \theta$ is self-sufficient and does not need any empirical support. It is just fortuitous that the behaviour of a certain type of oscillator matches the graphical evaluation of $e=E \sin \theta$, and because of this we say that the output of this oscillator is a sine wave. And we often make the consequent mental jump of thinking that the behaviour of the hardware is governed by the mathematical equation.

Then there is the strange world of logic. Deductive logic is an artificial pattern of relationships in which things are true or false by definition, independently of empirical observations of the "real" world. The patterns can be written out symbolically in the form of truth tables and it is just a fortunate circumstance that we can make electronic devices act as physical models of these truth tables. The hardware merely mimics the concepts but we sometimes make the mistake of thinking that it is controlled by them.

Perhaps the greatest enigma of all is the nature of the electron itself. We have one concept which sees it as a particle and another which sees it as a packet of waves. What is the truth? Is it a thing or is it an event? The fact that a multi-million-pound industry is based on the electron doesn't help us to decide. We cannot get outside our concepts, except when they are no longer the truth.

A Digital speedometer using c.m.o.s.

1-Speed-measuring circuits using inductive pickup

by Adrian Bishop* and Alan Woodruff \dagger
*RCA Limited.
\dagger Formerly RCA, now NRDC.

Abstract

Complementary-symmetry m.o.s. integrated circuitry is well suited to use in the hostile electrical environment of the average car. The authors describe in this two-part article an electronic speedometer and average-speed indicator with numerical readout which can be easily installed, while retaining the existing speedometer.

The vast majority of conventional car speedometers use what is known as a "drag cup" system. A flexible drive cable from the gearbox or a road wheel enters the back of the speedometer and rotates a permanent magnet (or magnets) mounted within a light metal "cup". As the magnet rotates, its magnetic field drags the cup round, but this tendency is counteracted by a restraining spring attached to the cup. The result is that the extent of rotation of the cup is proportional to the speed of rotation of the magnet, and by adding a pointer moving over a fixed scale we get the familiar dial speedometer, shown in Fig. 2.

We decided that it would be interesting to design an electronic speedometer that would indicate speed in digital form. It has the value of being an unambiguous display to the point of being authoritarian. At least one of our test drivers commented that whereas 33 miles per hour does not look too bad on a conventional dial speedometer, that speed appearing in-figures when travelling
through town was, for him, a highly restraining influence! A digital electronic speedometer can be extended to include a circuit that can calculate and display average speed in the course of a journey. To avoid the possible confusion that could be caused by showing both speed and average speed together we chose to use only two digits; a switch allows either speed or average speed to be shown on the display.

Before proceeding with the detailed circuit design, it is worthwhile explaining briefly the characteristics of the integrated circuits that are used.

Reliable and economical use of electronic circuits in difficult environments such as automobiles requires that they be capable of operation in very noisy conditions and with wide variations in supply voltage and temperature. C.m.o.s. integrated circuits* are well suited for these stringent require-

[^2]ments, possessing, as major characteristics, (a) operation from a single power supply, between 3 and 15 V , (b) very low power consumption- 10 nW in gates, (c) high noise immunity-typically 4.5 V with a 10 V supply, and (d) wide operating temperature- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The properties of wide supply voltage range and very low power can be translated in practical terms to the use of a simple power supply and the elimination of cooling for the logic. These combine with the high noise immunity and wide operating temperature range of c.m.o.s. to offer cost and performance advantages not only in tough environments but in the broad spectrum of logic applications.

Outline of speedometer

The operation of the digital speedometer is summarized in Fig. 3. A sensing coil picks up variations in the magnetic field produced outside the mechanical speedometer head by a magnet rotating within a drag-cup system. The resulting regularly varying signal is amplified and squared

Fig. 1. The completed speedometer and average speed indicator.

Fig. 2. A conventional mechanical speedometer.
up to produce a pulse train whose frequency is proportional to the speed of rotation of the speedometer magnet. The signal frequency is multiplied to produce a system with a suitably rapid response, and the number of pulses produced over a period of time (determined by a variable oscillator) is counted to give an indication of speed. The readout takes the form of two seven-segment digital displays. The digital speedometer is calibrated against the original mechanical speedometer by adjusting the period over which pulses are counted.

This is the basic speedometer; the speed averaging option operates by taking the multiplied output pulses, dividing them down, and storing them in a counter as an indication of distance travelled. At the same time a master clock generates pulses that are stored in a counter as an indication of elapsed time. Distance is divided by time at regular intervals to give a continually updated display of average speed. True speed is normally indicated on the two digits, with average-speed readout obtained by operating a switch. Several refinements have been built in, including a display dimmer and a sampling rate switch to vary the rate at which the speed readout is updated.

Signal sensing. The first consideration was to decide how to obtain a suitable input signal for the electronic speedometer. The simplest system, and the one which we decided on, uses a coil to sense the rotation of the magnet.

It is almost essential not to have to dismantle the speedometer and this means that the pickup coil must be located outside the case, preferably out of sight behind the facia. As a result the number of turns on the coil has to be of the order of thousands to pick up the weak changes in magnetic field produced by the rotating magnet within the shielding speedometer case.

An optical method may be more elegant, but it would require a specially designed speedometer head, as would a magnetically actuated switch such as a reed relay. More exotic sensing systems using some form of Doppler radar are relatively expensive in do-it-yourself quantities and rather too sophisticated for our needs. It is also necessary to keep the original speedometer within the car for calibration of the digital speedometer and retention of the odometer.

The coil that we decided to use was the familiar British Post Office 3,000 relay coil. We found that it was satisfactory to mount the coil, with tape, horizontally on the rear of the speedometer with the axis of the coil parallel to the back of the speedometer. The best position seemed to be directly above the point of entry of the speedometer drive cable into the head. The use of coaxial cable between the coil and amplifier affords some degree of shielding from electrical noise.
Frequency multiplication. A typical speedometer head produces only tens of
pulses per second (i.e., a signal of tens of hertz) when the car is travelling at $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The time taken to accumulate 50 pulses at this speed and thereby register $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. is of the order of a second. This can be verified by some order-of-magnitude calculations. Disregarding any gearing within the speedometer head, a car driving a speedometer cable from its final transmission drive may thereby generate perhaps $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. at $50 \mathrm{~m} . \mathrm{ph}$., or only 60 Hz . A car with a wheel perimeter of 6 ft travelling at about $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (say 150 f .p.s.) generates only 25 Hz and will take 2 s to acquire sufficient pulses to register its speed.
This means that if pulses from the speedometer are used directly there may be substantial errors, especially if the car is accelerating hard or decelerating, and under such circumstances the delay in registering speed would be particularly annoying. Unless this problem is tackled the speedometer is in danger of being termed an event recorder.
The solution adopted was to multiply the frequency of the pickup pulses by a factor of ten. This means that it takes only tenths of a second to register $50 \mathrm{~m} . \mathrm{ph}$.a response which is perfectly adequate for the most extreme speed changes which occur in even abnormal motoring.
Displays. There are many ways of presenting the final information on vehicle speed; the final choice is dictated both by technical consideration and personal preferences. Operation from the 12 V automobile battery dictates the use of a low voltage display, and a seven-segment type is an obvious choice. Technically such displays fit nicely with standard counter/decoder logic and give an accurate and unambiguous indication of speed; they are also compact and easy to locate in
odd-shaped dashboard fascias. An incandescent filament type was chosen after some thought-it remains visible in sunlight and is relatively inexpensive.

Originally the prospect of a "head-up" type of display seemed very attractive, but its value and safety in a motor-car presently remains a fairly open question. Setting aside any other influences, such as Road Traffic Act, it is technically possible to rejig the logic to get a digital readout reflected from the windscreen.
Power supply. Although the direct operating voltage supplied by an automobile battery is nominally in the range $11-13 \mathrm{~V}$, it can vary from 0 to 22 V . (We decided that we could not include details of designs for the relatively small number of $6-\mathrm{V}$ electrical systems now on the road, and offer our apologies to, among others, owners of elderly Volkswagens and motor-cycles.) In addition to the voltage variations, under certain conditions car electrical systems can generate very nasty transients.

The low power consumption of c.m.o.s. makes it possible to use relatively simple schemes to protect the circuits from these transients. In our scheme we chose a simple zener diode (11V) clamping system and this seemed satisfactory in all our travelling test beds.

Speed-indicating logic

The circuit diagram for the speed-indicating part of the speedometer is shown in Fig. 4. The signal from the pickup coil has a peak voltage of typically $5-10 \mathrm{mV}$, and the amplitude variation in the voltage is dependent on the speed of the magnet (induced e.m.f. proportional to the rate of cutting lines of flux). At low speed the signal is less than 5 mV .

The waveform of the signal from the coil strapped to a speedometer rigged up in the laboratory seemed to be a square wave with a sagging top. Amplification is essential, and because of the sagging and also noise from the ignition, the first amplifier is made into an integrator. In doing this initial tidying up the output waveform from the amplifier becomes somewhat triangular at very low speeds, and therefore a further gain stage with some Schmitt triggering to square things up a bit follows the first amplifier. The industry-standard 747 dual op. amp. in the form of the 14 -lead RCA CA 747 CE is used here. The value of the integrating capacitor C_{I} is dependent on the design of the speedometer and the positioning of the coil, and some experimentation is required to obtain the optimum sensitivity. The integrating amplifier is operated with 100% d.c. feedback via a $10 \mathrm{M} \Omega$ feedback resistor to give excellent bias point stability, and the a.c. gain is determined by the ratio of the integrator capacitor reactance and the impedance of the coil bias network. The second amplifier is of the classical design in which the gain is controlled by the ratio of the resistors R_{1} and R_{2}. The resistors chosen endow the second amplifier with a 10% Schmitt triggering effect, but it is mainly a gain block.

The frequency of the squared signal must now be multiplied up to a suitable value. The method of frequency multiplication uses a c.m.o.s. phase-locked loop (p.l.1.). The value of the technique is that the loop can multiply over a wide range of frequencies and does not need legion resistors and capacitors. The loop is not sensitive to the mark/space ratio of the input, and produces an evenly
spread train of pulses of unity mark/ space ratio.

Other methods of frequency multiplication, e.g., successive frequency doubling, usually produce a burst of pulses for each transition of the input. If the period over which such pulses are counted terminates close to a burst, an erroneous number of pulses are counted. This can be seen from Fig. 5, which shows, in accentuated form, the sort of thing that can happen. The essentials of a p.l.l. are neatly inte-
grated within a COS/MOS (RCA name for c.m.o.s.) CD4046A.

As its name suggests, a phase-lockedloop circuit produces a signal at its output that is locked onto the phase of the signal at its input; any change in the frequency of the input signal is reproduced by the output signal. The key to this facility is the phase comparator.

Consider the phase comparator first of all in isolation. It has two inputs and one output. If the two input signals are of the

Fig. 5. Frequency-doubling techniques compared with a p.l.l. method offrequency multiplication. $N_{F D}$ and $N_{P L L}$ are the number of pulses obtained by each method.
same frequency but out of phase, a pulse is produced, the width of which is equal to the difference in phase between the two signals. If one of the input signals is defined as the principal input, and if the other is the secondary input, and if the phase of the secondary input lags behind that of the principal input, a positive-going pulse is produced at the output of the comparator. If the secondary input leads the principal input, a negativegoing pulse is produced. The comparator only senses rising edges in the inputs. In between output "phase" pulses the output is switched off (i.e., floating). Similarly, when the two inputs have the same frequency and are exactly in phase the output is floating. The output of the comparator is said to give three-state logic levels-high, low, and off.

If the secondary input has a lower frequency than the principal input, the output of the phase comparator is maintained high continuously until the two frequencies are equal. Conversely, if the secondary input has a higher frequency than the principal input, the output of the comparator remains continuously low to rectify the situation.

Whatever the output of the phase comparator, it is filtered using an $R C$ network to provide a control voltage for the analogue voltage-controlled oscillator (v.c.o.). The v.c.o. produces a squarewave signal with a frequency which is proportional to its direct input voltagethe output frequency increases as the direct control voltage increases, and decreases as the control voltage decreases. The frequency range is determined by C_{3} and R_{5}. For example, with $R_{5}=270 \mathrm{k} \Omega$ and $C_{3}=15 \mathrm{nF}$, the frequency range of the y.c.o. runs from 0 to 500 Hz . When the v.c.o. input is zero, the v.c.o. produces no signal; when the v.c.o. input is 10 V it produces a signal of frequency 500 Hz .

Now, if the secondary input signal to the phase comparator is obtained by feeding back the output of the v.c.o., a digital feedback loop is fashioned and a phase-locked loop is produced, the output of which is equal in phase and frequency to the input signal.

Suppose that now the comparator is deceived by sending back, say, only every tenth pulse from the v.c.o. output. The comparator reacts by supplying a voltage to the v.c.o. until it once again receives what it believes to be the correct number of pulses, and the result is that the output frequency is multiplied by ten. This is exactly what happens in the speedometer circuit; the mild deception of the p.l.l. is achieved by using the CD4017AE decade counter to divide the output frequency of the v.c.o. by ten and then feeding the divided signal back to the comparator.

In practice, an important factor that greatly influences the success or otherwise of the frequency-multiplying p.l.l. is the design of the filter between the phase comparator and the v.c.o. In general, $R C$ filters are quite adequate and provide the necessary compromise between avoidance of jitter in the oscillator

Fig. 6. Decoder, driver and display.
frequency while retaining a rapid response to changes in p.l.l. input frequency. It was this compromise that dictated the adoption of filter R_{3}, R_{4}, C_{2} rather than the more common simple $R C$ filter, which has an inferior response time. It is important that the v.c.o. tracks the input changes rapidly to give the speedometer a good response, and the value of R_{4} is the controlling influence here. The value of C_{2} is determined by the minimum frequency of the input signal.

A square wave with a frequency ten times that of the signal from the sensing. coil has now been obtained. The next task is to count the number of cycles of this signal over a suitable period of time to get an indication of the speed of the car. The length of the timing period is chosen so that the number of pulses counted is equal to the numerical value in miles per hour of the speed of the car. The timing period is determined by an $R C$ oscillator, the design of which will be dealt with later.

As the speedometer is to have a twodigit display, pulses are counted by
two CD4029AE binary-coded decimal (b.c.d.) counters. (CD4019AE inputselecting circuits must precede the CD4029s if the average speed option is included; their role will be discussed later.) They are arranged in series so that the first counter registers the "units", and the "tens" overflow into the second counter. The count must be stored for the duration of the subsequent timing period and this can be done in b.c.d. format by using only two CD4056AE latch/decoders, shown in Fig. 6. The counting sequence is as follows:
(1) The counters are reset to zero at the start of the timing period; this also allows the counters to begin counting the input pulses.
(2) At the end of the timing period the "clock" for the counters is disabled and the counter outputs are strobed into the latches, thereby storing the speed for that timing period.
(3) There is then a short period during which the latches are allowed to settle and then the next timing period begins.

Fig. 7. c.m.o.s. timing oscillator circuit, with waveforms. R_{2} varies the frequency.

At this time the counters are reset to zero and the counters begin to accumulate pulses again. This action is termed "clock enable".

The CD4056AE integrated circuit is, essentially, a b.c.d. to seven-segment decoder with latches on the b.c.d. inputs. The b.c.d. counter outputs are entered into the latches by a "low" signal on the strobe input. The circuit also has a logic-level shifting facility that enables it to deliver up to 15 V at the output when driven from signals as low as 3 V . The $10 \mathrm{k} \Omega$ resistors between the CD4056AE and CA 3081 limit the current that can be drawn from the c.m.o.s. circuits. Normally the outputs are "high" or "low", but the CD4056AE can also provide a suitable alternating supply for liquid crystal displays, by use of the display frequency input. The low resistance of the display segments requires the use of a bipolar driving circuit between the CD4056AE and the display. The RCA CA3081 seven-transistor array is used for this purpose.
Timing oscillator. The timing signals to enable and reset the display counters and to latch the count into the latch decoder are obtained from a master low-frequency oscillator. The oscillator, which is shown in Fig. 7, is the usual c.m.o.s. configuration. It is formed by connecting an $R C$ timing network around two invertors connected in series. (The invertors are formed by connecting the inputs of two NOR gates together; invertors formed in this way have a lower output impedance than the simple two-transistor invertor.)

When the output of invertor B is high, capacitor C is charged up, and as a result the input to invertor A is high, and the output of A is low. However, as the capacitor discharges through R_{1} and R_{2} the voltage generated passes through the transfer point of invertor A. As soon as the transfer point is reached, the output of A goes high, the output of B is forced low, and capacitor C is charged "low". However, R_{l} and R_{2} provide a charge path from the output of A to the capacitor, and as soon as the capacitor is charged to the transfer point of the output invertor A, the output of A drops low, forcing the output of A high, and the cycle begins again. The period of the oscillator is approximately $1.4 C\left(R_{1}+R_{2}\right)$ seconds, and can be varied by altering the $100 \mathrm{k} \Omega$ potentiometer resistance R_{2}. This permits the calibration of the digital speedometer against the original one. Resistor R_{3} is included to preserve the stability of the oscillator against power supply and temperature variations. The high input impedance of c.m.o.s. enables the use of high-resistance, low-capacitance timing components. The only proviso is that the capacitor C must be nonpolarized.
Control pulses. The general approach here is to use the decay characteristic of an $R C$ network to determine the point at which a c.m.o.s. invertor switches. A simple monostable circuit is used and the resulting waveforms are shown in Fig. 8.

Fig. 8. Differentiating circuit and NOR gate used as a monostable delay element.

Fig. 9. Timing of the enable, latch and reset pulses.

If a positive-going voltage step (a) is fed into the input of the $R C$ network, the point (b) will follow the positive-going edge instantaneously because there is no charge on the capacitor C. The capacitor then begins to charge through the resistor R, causing the potential of point (b) to fall on an exponential curve to zero. When the potential at point (b) reaches the switching point of the invertor, the output of the invertor, point (3), changes state, so that the output is an inverted, shorter version of the original pulse (provided that the $R C$ time constant is less than the width of the input pulse). The rising edge of the invertor output can be fed into a further $R C$ network to produce another pulse that is delayed with respect to the input pulse.

This is the technique that is used in the speedometer to separate the enable, latch and reset pulses. The timing diagrams are shown in Fig. 9. The CD4041AE quad buffer, which has true and inverted outputs for each of the four buffers, is very useful in this type of application.
Sampling rate. The rate of updating of the speedometer display is a matter of personal preference, and also traffic conditions, and it seems desirable to be able to control the rate at which data is presented. Otherwise, the display changes with every cycle of the master oscillator (i.e., about once a second) and this might prove irritating to the driver in slowmoving traffic. To avoid this a dividing circuit is introduced which allows the
display to change for either $1,2,4$ or 8 cycles of the master clock, although with the devices used other values (up to 64 cycles) could be achieved.

The dividing circuit consists of a CD4024AE seven-stage binary counter and two 2 -input NOR gates, with the counter outputs selected by a four-pole switch. For example, if the fourth stage output of the counter is selected, every eighth clock pulse is fed to one of the NOR gate inputs, enabling the pulse to strobe the latches in the display decoder. This clock pulse also resets the CD4024AE and allows the counter to recommence dividing the clock pulse derived from the master clock. At the other extreme, if sampling at every clock pulse is desired, the CD 4024 AE is bypassed completely and clock pulses are fed directly into the decoders via the NOR gates.

The design of the speed averaging circuit, and details of the power supply and speedometer calibration will be dealt with in Part 2 of the article.

QUIZ for Radio Engineers

1. Can you name ten international distress frequencies?
2. What is the width of Band I?
3. What is the standard frequency transmitted by GBR?
4. What is the resonant frequency of oxygen?
5. How many amateur bands are there?

Can you answer these questions? If not, you need the Wireless World wallchart of frequency allocations. The spectrum from 3 kHz to 300 GHz is displayed on eight logarithmic bands with 15 main categories of transmission identified by a colour key. All the information has been supplied by the ITU, including important spot frequencies which are marked on the chart. This new Wireless World publication provides a compact and valuable source of information suitable for educational establishments, students, radio laboratories, navigators and, possibly, interior decorators. Copies of the chart are available from General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU, price 80 p , including postage and packing.

Circuit Ideas

An l.e.d. synchroscope

In attempting to tune an oscillator to a standard frequency it is convenient to be able to sense the direction of a phase error as one approaches the correct setting. Some instruments provide a cathode-ray tube Lissajous figure display for this purpose, but the hardware required is rather inconvenient and expensive.

It is possible to generate something similar to a Lissajous figure using a few lamps and this is very familiar to power engineers in the form of a lamp synchroscope. With the advent of light emitting diodes, a low consumption version is possible for electronic applications.

A three-lamp system gives the neatest and most elegant display, but it is generally
more convenient to generate four phases from an existing signal source than three phases. Thus the circuit described is a four-lamp system.

The four lamps generate a display rotating once per cycle at the reference frequency. The display brightness is modulated at the frequency of the oscillator to be adjusted. The apparent display is therefore a rotation which appears to have a frequency equal to the difference between the two signal frequencies concerned and a direction indicative of the sense of the frequency difference.

The display is most effective when the lamps are mounted on the smallest practicable pitch-circle diameter.
R. H. Pearson,

North East London Polytechnic.

Improved accuracy for digital clocks

J. M. Osborne's high-standard lowfrequency source (January 1973) can be adapted for use in digital clocks by replacing the NE561B with another phaselocked loop, the NE567V. This i.c. is cheaper, it will run on the same $5-\mathrm{V}$ supply rail as the divider i.cs, and it gives a t.t.l.compatible output which indicates whether its v.c.o. is locked to the incoming carrier. This latter feature can be used to switch pulses from a stand-by frequency source (e.g. a crystal oscillator) into the divider chain during breaks in transmission of the primary standard. The diagram shows how this can be done using a 7401; the l.e.d. goes out when the 567 's v.c.o. is "locked". The v.c.o's free-running frequency is set by R and C. As the 567 is less sensitive than the 561 , the r.f. amplifier may be necessary in some parts of the country.
R. J. G. Lambley,

London SE19.

Mobile amateur radio

A progress report on British activity

by N. A. S. Fitch, G3FPK

In recent years there has been a large increase in the professional use of mobile radio. Many organizations operate radiocontrolled fleets of vehicles in order to achieve greater efficiency. Undertakings such as regional electricity and gas boards, television rental companies, ambulance and fire brigades, police forces, etc., come to mind.

Mobile operation by radio amateurs has also become increasingly popular during the last two decades and figures published earlier this year by the Ministry of Posts and Telecommunications reveal that over 20% of British radio amateurs also hold mobile licences. There appears to be no predominant reason why so many amateurs "go mobile" and all amateur bands from 160 metres to 70 centimetres have their devotees.

Why mobile?

Detailed examination of various factors contributing to the popularity of mobile operation reveals that there are many a mateurs who find this their only way of satisfactorily enjoying their hobby. This situation may be due to any or several of the following reasons. Firstly, some operators find that the erection of outside aerials is not permitted, which means that the fixed station operator must rely upon indoor aerials. Secondly, in densely populated areas, the amateur who can boast that he causes no broadcast or television interference is a very rare, and lucky, individual. Thirdly, some amateurs live in areas from which h.f. and v.h.f. propagation is difficult, such as valleys and heavily wooded districts.

Licence conditions

Although a few radio amateurs experimented with mobile operation back in the $1920 \mathrm{~s}^{1}$ a general interest in the opportunities offered by mobile radio did not develop until some time after World War II. Mobile operation by British amateurs was not permitted from a moving vehicle until 1954 and amateur licences were very restrictive especially concerning operation away from the fixed address. After protracted negotiations between the GPO and the Radio Society of Great Britain, there emerged new licences effective on June 1, 1954, which liberalized amateur activities and in particular created the mobile licence as we know it today.

In the UK the Ministry of Posts and

Telecommunications will now issue a mobile licence to any licensed radio amateur for an annual fee of $£ 1.50$. The call sign remains that of the fixed station but with the suffix $/ \mathrm{M}$, e.g., G3FPK/M. While this licence permits operation from any vehicle or vessel on inland waterways, a separate Mobile Marine licence is available to those wishing to operate from a sea-going vessel. In this case the call sign would be G3FPK/MM. At present amateur radio operation from aircraft is not permitted by the British authorities although it is allowed in other countries including the USA. While there are certain restrictions in the Mobile Marine licence, the ordinary Mobile licence conditions are the same as those for the fixed station as regards power limits and frequencies. Mobile enthusiasts use all the popular amateur bands comprising 160 metres $(1.8-2.0 \mathrm{MHz})$ also known as "Top Band"; 80 m ($3.5-3.8 \mathrm{MHz}$); 40 m ($7.0-7.1 \mathrm{MHz}$); $\quad 20 \mathrm{~m}$ ($14.0-14.35 \mathrm{MHz}$); $15 \mathrm{~m} \quad(21.0-21.45 \mathrm{MHz}) ; \quad 10 \mathrm{~m} \quad(28.0-$ $29.7 \mathrm{MHz}) ; 4 \mathrm{~m}$ ($70.025-70.7 \mathrm{MHz}$); 2 m $(144-146 \mathrm{MHz})$ and $70 \mathrm{~cm}(430-440 \mathrm{MHz})$.

Early equipment

After WW2, large quantities of military radio surplus came on to the market and was sold at "give-away" prices to radio enthusiasts. From the late forties on, the numerous international amateur radio publications printed many articles dealing with the conversion of such surplus to amateur mobile operation, examples being the well known " ZCl " and " B 2 ". It is a tribute to the reliability and ruggedness of such equipment that relics occasionally appear at today's mobile rallies.

As the economy swung back to a peacetime footing, small firms started up, manufacturing amateur radio equipment including, from the mid-fifties, items suitable for mobile use. A few of these firms still exist and have prospered, but the majority are just memories to the older amateurs and meaningless names to the younger generation. One of the first pieces of British equipment specifically designed for amateur, mobile operation was the P.C.A. Radio "Hamobile" 2-metre transceiver, advertised for the first time at the beginning of 1955 and later manufactured by K. W. Electronics Ltd. Looking back through the advertisements in the amateur radio press, with the exception
of the "Hamobile", it seems that the British manufacturers were somewhat slow off the mark in producing mobile equipment. It was not until mid-1959 that the Minimitter Co announced its complete range of amateur mobile gear, including a multiband a.m. transmitter, multiband converter plus a range of aerials.

While the manufacturers were slow in producing commercial mobile equipment, the growing band of active mobiles soon made their own "home-brewed" gear, either by converting surplus military sets or by custom building, using surplus and/ or new components. 160 metres and 2 metres soon became established as the predominant mobile bands, the former because of the inherent simplicity of the gear, the latter having the attraction of being a more exclusive amateur band with no coastal radio stations and Loran interference to avoid. 160 -metre gear was quite simple, the transmitter usually crystal controlled, while the receiving side was often just a simple converter using the long waveband of the car radio as a tunable i.f. strip. Two-metre equipment was always crystal controlled and the circuitry was kept as simple as possible. The receivers could use a high i.f. as selectivity was not a prime requirement. In this period, amplitude modulation was invariably used in 160 and 2 -metre gear.

Mobile rallies

Once mobile operation from a moving car was legalized mobile enthusiasts realized the need for a method of discussing ideas, both technical and operational. Whilst occasional articles appeared in the amateur press on home-built equipment for various bands, it became obvious that meetings were desirable. Thus the idea of the mobile rally was born and it is generally agreed that the first such meeting took place at the Perch Inn, Binsey, near Oxford on October 9, 1955, with an attendance of 23 cars.

During the remainder of the fifties mobile rallies became a feature of the British amateur radio scene. Probably for the first time they provided occasions which could be enjoyed by the wives and children too, unlike the field days, conventions and exhibitions which tended to be exclusively amateurs.

Towards the end of the fifties there was a group of dedicated mobile operators who were disappointed by the lack of serious interest in mobile matters by the amateur radio press. The result was the formation of a group devoted solely to this branch of the hobby and the birth of the Amateur Radio Mobile Society. From modest beginnings the ARMS has grown today to an international organization with members in all continents and many countries, producing a monthly magazine, Mobile News, with an awards programme and a comprehensive information service.

Developments in the 1960s

The decade of the 1960s saw the steady growth of mobile activity as more manufacturers in the UK, USA, and, towards
the end of the period, Japan, also produced equipment either specifically for or suited to mobile use. This encouraged more clubs and societies to promote mobile rallies which gradually became more ambitious. Some of these have become annual events, like Longleat, Derby and Woburn. As equipment and components became plentiful, some of the more important rallies started to include trade shows, a trend pioneered by the ARMS.

Such mobile rallies, whilst offering a pleasant outing for the family, provided ideal venues for mobiles to meet, inspect each other's installations, compare various aerial systems, discuss such important matters as the suppression of electrical interference and the performance of various commercial products. There are many cases where amateurs, not then very interested in mobile operation, learned with some surprise of the excellent results obtained by their mobile confrères, so much so that they were soon "bitten by the bug".

Reciprocal licensing

During the first decade of British mobile operation there was a great increase in the number of motorists taking their cars on touring holidays in Europe. A proportion of these were mobiles who could not, however, normally obtain official permission to operate either fixed or mobile stations in the countries they visited. The stumbling block was the stubborn refusal of successive British governments to grant any amateur licence to non-British subjects. Understandably, no European country felt inclined to grant a licence to a British tourist, with the exception of the Principality of Monaco.
It seemed unlikely that the British government would make the first move, nevertheless somehow the impasse had to be overcome since several continental countries had already concluded agreements allowing reciprocal operation which were proving to be quite satisfactory. The breakthrough eventually occurred in April 1963 when influential Belgian and Dutch members of the ARMS persuaded their respective governments to grant temporary mobile licences to British amateurs who wished to attend the international mobile rally at Verviers in Belgium. The event was a great success, attracting many UK mobiles who, being issued with unique call signs, were eagerly contacted by amateurs world wide.
In the following year, the then Post-master-General announced in Parliament that amateur licences would be issued to aliens on a reciprocal basis since when many such agreements have been concluded between Britain and other countries. The result has been a great increase in "mobiling" holidays on the continent since British amateurs can now obtain mobile licences for many European countries including some in Eastern Europe. There are many benefits arising from the opportunity to operate whilst abroad. Firstly, it enables an amateur and his family to keep in touch with home by arranging schedules with local friends; it may be comforting to learn that the
tomatoes are doing fine and that grannie's pet budgie is well again! Secondly, it gives the roving mobile an opportunity to meet some local amateurs following casual contacts on the air, something which is often completely lacking on more con ventional holidays. Thirdly, it enables the mobile station to try out different aerials in conjunction with a friend back home so that test results can be com pared personally upon return.

The equipment of the sixties

There is little dispute that the sixties, as far as amateur radio is concerned, was the era of single sideband even though this method of transmission was far from new. This period saw a proliferation of s.s.b. transmitters and transceivers from American manufacturers and from one or two British firms as well. It is true to say that the advent of the compact, high-powered s.s.b. transceiver revolutionized h.f. band mobile operation, the undisputed efficiency of the system enabling "DX" to be worked with comparative ease by mobiles on the move. The first generation of these transceivers did not always cover all the popular 10 to 80 -metre bands and they all used valves, although transistorized power supplies supplanted the inefficient rotary converters and vibrator supplies.
Later on, transceivers such as the Sideband Engineers "SB-33" appeared featuring fully transistorized receiver sections, the only valves being in the transmitter driver and output stages. Towards the end of the sixties the Japanese manufacturers were exporting similar equipment in increasing numbers. A useful feature of many s.s.b. transceivers was the inclusion of or provision for voice-operated change over or VOX circuitry, whereby transmission was initiated by the start of speech thus avoiding the need to operate a send-receive switch by hand or foot. This, together with one-knob control, has enabled very safe mobile operation to be achieved.

The aerial is a very important part of
the mobile installation. On 28 MHz and above, quarter wavelength whip aerials are practical but for operation on the 160 through 15-metre bands, some kind of loaded aerial must be used. During this decade, many successful commercial mobile aerials appeared, the more ingenious designs allowing limited multiband operation to be achieved from a single device, obviating the need for stopping the car to swop aerials when changing bands. Probably the most efficient type of aerial for mobile use is the helical or continuously loaded type. Mobiles not wishing to buy expensive commercial aerials resorted to making their own. While many were neat and efficient, others were unsightly and dangerous, fiendish contraptions which did nothing to enhance the reputation of mobile operators.

A factor which influenced the development of new equipment for the v.h.f. bands was the availability of large quantities of surplus business-radio mobile sets, both mobile and base station gear. Due to the ever-increasing demands for more business radio v.h.f. channels, new regulations were enforced which enabled more channels to be accommodated in the designated bands. Although it would have been possible to modify some of the existing sets to make them comply with the new standards, users disposed of their old sets and reequipped their base stations and fleets with the latest models. There were some fine bargains to be picked up; the author and a dozen other local amateurs, for example, bought a number of early Pye "Ranger" transreceivers for 30 shillings apiece in 1966. These high-band models were very easy to re-tune to the two-metre band and several are still in use. Even so, new firms appeared in the sixties which developed and marketed amateur v.h.f. equipment, probably the best known being the "TW" range from Withers Electronics. It's probable that the development of new amateur v.h.f. mobile apparatus was somewhat stifled by the large variety of cheap and excellent professional surplus which

The mobile installation of G3WRV, Grahame Harding, comprising a Heathkit HW-32 $200 \mathrm{~W}, 14 \mathrm{MHz}$ transceiver and an Eagle RF-40 field strength meter.
was eagerly bought by the new class " B " licensees from 1964 onwards, particularly when the 2 -metre band was made available to them.

Developments in the seventies

There are two distinct roads down which the British mobile seems to be travelling depending on whether it is h.f. or v.h.f/ u.h.f. operation which is his main interest. Firstly, considering the h.f. bands devotee, the 1970s to date has seen the virtual takeover of the s.s.b. transceiver market by Japanese companies whose products, until the recent less favourable Pound/Yen exchange rate, represented almost unbeatable value for money. While the earliest productions were generally agreed to be technically inferior to current British and American equipment, the latest models are capable of excellent performance.

The favourable reciprocal licensing situation created a demand for a compact, lightweight, portable multi-band s.s.b. transceiver with built-in a.c. and d.c. power supplies, which has been met by such products as the Yaesu-Musen FT-101. More and more British and foreign cars are being supplied with alternators having outputs of 45 ampères or more. This, combined with the much lower average battery consumption of the solidstate transceivers, greatly lessens the possibility of flattening the car battery when operating mobile. In fact, some amateurs have installed linear amplifiers in their cars capable of the maximum permissible output power of 400 watts peak envelope power. However, high power should be used with a little caution as it has been observed that the short mobile aerials are liable to produce a pretty corona effect.

Secondly, considering the v.h.f./u.h.f. enthusiasts, they have rediscovered nar-row-band frequency modulation and here again, there has been a rapid growth in the number of Japanese f.m. transceivers being bought by 2 -metre operators. This popularity of n.b.f.m. has led to the modification of the band plan to incorporate several channels for f.m. stations whilst 145.000 MHz has become the international mobile calling channel. Many 4-metre and 2-metre operators who do not wish to buy brand new gear continue to purchase the comprehensive range of mobile radio telephones being disposed of by commercial concerns as the latter modernize their radio-controlled vehicle fleets in accordance with the latest ministry regulations. This equipment can be converted quite easily to amateur use with satisfactory results. Once again, the Japanese have jumped upon the bandwagon by producing a s.s.b. transceiver for the 2 -metre band and it is the author's belief that 2 metre s.s.b. operation will increase significantly in this decade.

The repeater concept

In several European countries, v.h.f. repeater networks have become established in the amateur bands, probably the most comprehensive being the West German
system. ${ }^{2}$ In August 1972, the Ministry of Posts and Telecommunications issued a licence to the Radio Society of Great Britain for GB3PI, a repeater installation designed and installed by members of the Pye Telecom Amateur Radio Group and currently operating very satisfactorily from a good location in north Hertfordshire. ${ }^{3}$ The input/output channel spacing is the 600 kHz agreed at the IARU Scheveningen Conference in May 1972 and it is the author's expectation that several more UK v.h.f. and u.h.f. repeaters will be in operation by the end of this decade. These repeaters are a great boon to mobile operators for they make possible contacts over much greater distances from car to car or car to fixed station than would otherwise be possible. Access to this repeater is gained by transmitting a half second, 1.750 Hz tone, usually generated by a tone burst circuit or even a whistle for those with perfect pitch.
Repeaters are not new and they are used extensively by police forces, for instance. However, the input/output frequencies are usually several megahertz apart whereas amateur systems are inevitably much closer spaced, which poses quite severe technical problems for co-sited receivers and transmitters. While these technical problems can be overcome, there remains an administrative one in that someone must be on hand at all times the device is operational in case it should develop a fault.

Mobile operating techniques

Over 4,000 UK radio amateurs hold mobile licences and their operating techniques vary widely. Mobile operating is particularly attractive to those motorists who frequently have to undertake long boring journeys on their own. While many drivers have a car radio or stereo cassette system at their fingertips, both of which alleviate the tedium of a lengthy trip, it is far more satisfying to be able to communicate from the driving seat to the outside world.

Basically there are three types of amateur mobile operator. Firstly, there is the driver who prefers to motor to a suitable location and operate while parked. As long as he uses the car aerial and car electrics he is "mobile" within the terms of his licence. Some take this a stage further and erect a more efficient aerial system outside the car in which case they should sign -/P for Portable. This is a popular pastime with v.h.f/u.h.f. enthusiasts who are frequently to be heard on the 2 -metre and 70 -centimetre bands transmitting from high ground using portable yagi beam aerials. Secondly, there is the amateur who lets somebody else drive while he devotes his attention to operating from the passenger seat. There are many blind and physically handicapped radio amateurs who enjoy their hobby this way as well as those who feel it safer to not drive and operate. Finally there is the competent motorist who operates while driving. With modern "one-knob" control tuning which the single sideband trans-
ceivers offer and the fixed channel a.m. and f.m. equipment for the v.h.f. bands, this is no more hazardous than driving while talking to a passenger.
Operating methods also vary. For example, on the 2 -metre band, the majority of mobiles seem to be content to monitor a fixed channel or two whereon they communicate with other mobile or fixed stations. Activity is high at commuting times and during the evenings when amateurs may be travelling to club meetings. 70.26 Mhz and 145.0 MHz are the agreed mobile calling frequencies in the 4 -metre and 2 -metre bands respectively. Once contact has been established it is usual for the stations to "QSY", that is to change to another channel. Most operating on the h.f. bands these days is co-channel. Either the mobile station tunes to a clear frequency and calls " CQ " inviting replies, or he answers a "CQ" call from another station. The majority of such contacts over longer distances are with fixed stations although a number of mobiles have managed mobile-to-mobile contacts with all six continents. Most mobiles who operate while driving use microphones attached to their head thus leaving their hands free. This, combined with voiceoperated change-over, makes for very safe operating.

Conclusions

It may be thought that there is not much more that can be developed in the field of amateur radio mobile communications but the author thinks this to be far from true. There is the challenge of suppressing the electrical interference from one's own car which will be more difficult if and when plastic-bodied cars appear. A more recent problem, and one likely to increase in numbers, is not that of interference with reception from the car engine, but that of the malfunctioning of electronically controlled fuel injection systems caused by transmitter r.f. energy getting into their "computers" or "brains".

Mobile aerials for the lower frequencies usually exhibit quite narrow bandwidths and so there remains a great deal to be done in perfecting an economic system of automatically tuning such aerials when changing operating frequency. Then there is the quest for the ultimate in noise blan-kers-devices which eliminate pulse-type interference from sources such as ignition circuits-an essential when operating in heavy traffic. Even if the mobile operator has successfully suppressed his own car, he cannot expect every other motorist to do the łame. For v.h.f./u.h.f. mobiles, there is the challenge of inter-continental contacts on s.s.b. via the "Oscar" satellites.

References

1. "Mobile in the early 1920 s ". R. F. G. Thurlow (G3WW); Mobile News April, 1973.
2. "FM repeaters in Germany". T. Bittan (G3JVQ); Radio Communication November, 1972.
3. "Progress report on the GB3PI repeater experiment". R. Baker (G3USB); Radio Communication June, 1973.

Thyristor control of shunt-wound d.c. motors

by F. Butler, B.Sc., M.I.E.E., M.I.E.R.E،, O.B.E.

Abstract

Practical design details are given for a controller which provides over 2 kW output from 230 V single-phase mains. It is conservatively rated and will smoothly vary the speed of any motor, up to $\mathbf{2 h p}$, from standstill to $\mathbf{9 0 \%}$ of the rated full speed. It incorporates simple protective devices and, by omitting a few components, required only for motor control, it can be used as a high-power lamp dimmer or heat regulator.

Many readers will be familiar with the principles of thyristor-controlled lamp dimmers or speed regulators for conventional power tools which incorporate a.c.d.c. series-wound motors. A characteristic of the series motor is that, as the load on it is increased, the machine slows down, whereas it will tend to race on no-load. For some purposes these are acceptable or even desirable properties but in other applications we require a motor which can be set to any desired speed and maintain this speed in spite of load changes. A shunt-wound d.c. machine comes close to meeting these requirements though there is some inevitable drop in speed as the load increases, the fall being most noticeable in small machines with high-resistance armatures. The speed may be controlled by adjustment of the field current or by variation of the armature voltage. Weakening the field serves to increase the speed; reducing the armature voltage, with a fixed field, reduces the speed. For a given motor, torque is proportional to armature current while the horsepower is proportional to the product of torque and speed. Speed reduction necessarily results in reduced power for a fixed maximum armature current.

Electronic speed control

One method of electronic speed regulation calls for constant shunt field excitation while the motor armature is supplied with a train of current pulses of variable shape or duration and hence of variable mean and r.m.s. value.

Two methods of supplying fixed power to one resistive load and controlled variable power to another are shown in Fig. 1. With minor modifications these methods are directly applicable to motor speed control. The diode rectifier bridge supplies fixed mean power to R_{l} which might represent the shunt field winding of a motor. Adjustable mean power in R_{2} is obtained by varying the timing of the
thyristor trigger pulses. Although both circuits give identical waveforms, that using the single thyristor has some advantages and, in what follows, will be used in preference to the other.

When a motor armature is substituted for R_{2}, a number of problems are encountered. First, the rotating armature generates a back-e.m.f. and it will only pass current if the thyristor is triggered on and if, at the same time, the instantaneous forward voltage from the rectifier bridge exceeds the motor back-e.m.f. Next, the armature is inductive and a free-wheel diode must be connected across it to allow circulating current to continue even when the thyristor is blocked. The thyristor gate trigger signal is normally a short-duration pulse with an amplitude of 3 volts or so from a 20 -ohm source. A longer pulse would simplify matters but would require much more mean power from the generator and would cause excessive gate-circuit energy-dissipation.
When used for speed regulation the circuits of Fig. 1 give a poor performance, manifested by gross instability of motor speed, with dangerously high transient currents in the system. On starting from rest, the motor back-e.m.f. is zero and, even with retarded trigger pulses, a relatively large armature current is drawn. The motor speed quickly rises, with the result that the next few trigger pulses fail to turn on the thyristor because, at the firing instant, the motor back-e.m.f. exceeds the output voltage from the rectifier bridge. The speed therefore drops and in due course the thyristor fires again with another current pulse of damaging amplitude. The resulting hunting, overshoot and undershoot or stopgo working is such as to rule out this simple scheme. What is needed is some means of triggering the thyristor, with any desired gate-pulse delay, independently of the motor back-e.m.f. A simple modification which allows this to be done is shown in Fig. 3. The main rectifier-bridge diodes

Fig. 1. Diode-thyristor bridges to produce fixed power in R_{1} and variable power in R_{2}.

Fig. 2. (a) shows current and voltage in R_{1}, while that in R_{2} is shown in $2(b)$.
D supply the motor field directly and feed the armature through the thyristor, while $F W D$ represents the free-wheel diode.

Two auxiliary diodes D_{I} are used to feed the thyristor anode through a resistance R. Regardless of the presence of the motor, the mean power in R is controllable by the thyristor trigger pulse delay, exactly as in a lamp dimmer. There are no backe.m.f. problems associated with the resistive load. The thyristor is fired regularly at times dictated only by the properties of the trigger module. If at any instant, after triggering, the motor backe.m.f. exceeds the bridge output voltage, the motor simply draws no current; otherwise it takes current proportional to the net voltage round its own circuit loop. This apparently trivial modification at once guarantees complete stability and smoothness of operation at all speeds and loads. In practice the resistance R must at all times draw a current which exceeds the thyristor holding current, typically 100 mA . It is convenient to use a low-power mainsvoltage lamp, say 40 W , the brilliance of which serves as a visual indication of speed, useful if the motor is remotecontrolled.
The combination of diodes D and D_{1} effectively isolates the motor and resistor from each other, and it will be seen later that the diodes D_{t}, also provide a convenient source of power for the trigger pulse generator, which itself must be unaffected by the back-e.m.f.

Main power unit

This is virtually a repeat of Fig. 3, with the addition of switches, meters and protective devices. The complete circuit is shown in Fig. 4. On the a.c. side, the line wire includes a switch, a current-limiting fuse, a circuit breaker and a small iron-cored reactor with a shunt capacitor to mains neutral. The circuit breaker is in effect a quick-break switch actuated by a bi-metal strip. The working current is set by the makers at a specified value and the unit will carry this current indefinitely. A 15% overload causes it to trip after about 20

ov
Fig. 3. Basic circuit of power unit showing auxiliary diodes D_{I} and resistive load R.
minutes. It will clear a short circuit in 10 milliseconds but will sustain brief overloads, e.g. motor starting currents, up to three times normal, for about 4 seconds without tripping. The $R C$ combination connected across the armature serves two purposes. With small motors, having armatures of high impedence, the values chosen (22 ohms and 6 microfarads) are such as to shunt away from the armature a substantial portion of the a.c. components of the pulsed current. The capacitor is almost ineffective for this purpose with large machines but it tends to reduce sparking, improve commutation, and cut down r.f. interference.

As regards physical construction, the whole assembly is mounted on an aluminium sole-plate $18 \mathrm{in} \times 8 \mathrm{in} \times \frac{1}{4} \mathrm{in}$, with $\frac{7}{8}$ in ventilation holes drilled below the rectifier bridge. The front panel, 8 in $\times 7 \mathrm{in} \times \frac{3}{16} \mathrm{in}$, carries the armature current meter ($0-20 \mathrm{~A}$ d.c.), the mains switch, a motor switch and the speed control rheostat.
Two of the four main rectifier diodes and the free-wheel diode share a common heat sink, 6 in $\times 3 \frac{1}{2}$ in $\times \frac{1}{4}$ in aluminium. The remaining two power diodes are mounted on insulated plates, each $3 \frac{1}{2}$ in $\times 2 \frac{3}{4} \frac{1}{4} \times \frac{1}{4} \mathrm{in}$. The two auxiliary diodes do not require

special cooling arrangements. The controller cabinet has louvred sides to promote free air circulation and the power resistors are mounted near the top, clear of other components. Construction follows normal practice, avoiding multiple earths and ground loops, and ensuring that go and return wires lie side by side, well clear of the trigger module.

Trigger circuit module

Vatious trigger circuits have been tried, including unijunctions, two-transistor equivalents of unijunctions and blocking oscillators. The best has been found to be a simplified version of the Mullard trigger module, type MY 5001. This is available ready made, although it is easily constructed using a few discrete components. The circuit actually used is given in Fig. 5. The unit, which includes only one active device, a silicon p-n-p transistor, type BFX29 or similar, is capable of triggering thyristors of all types, including the very largest. It provides a train of pulses of variable delay with respect to the zerocrossing instants of the a.c. supply. From the full-wave rectified supply, a 20 -volt zener diode, fed through a 10Ω, 10 W resistor, produces a flat-topped trapezoidal waveform, clipped at +20 V , which dips sharply to zero at twice the supply frequency. The transistor is connected to a small oscillator transformer, collector winding 300 turns, base winding 100 turns, each 36swg wire, wound on an audio-grade ferrite cup core $1 \frac{3}{8}$ in dia. $\frac{1}{8}$ in long. The transistor base is biased to about +10 V mean with respect to the negative line by two $4.7 \mathrm{k} \Omega$ resistors connected across the zener diode. At the start of a trigger cycle, the voltage across $C(0.25 \mu \mathrm{~F})$, is zero. The capacitor begins to charge up exponentially through the $100 \mathrm{k} \Omega$ rheostat and $1.8 \mathrm{k} \Omega$ resistor. As soon as the voltage across C exceeds its base bias, the transistor starts to conduct. Provided that the transformer windings are properly phased, positive feedback starts a self-oscillation. So much current is drawn that the capacitor is rapidly discharged through the transistor, producing a single pulse in the collector winding. This pulse, fed through 22 Ω, triggers the thyristor. Multiple pulses may be produced during some particular half-cycles of the supply frequency but this is of no consequence since the thyristor has already been turned on by the first pulse of the sequence. Pulse-burst trigger signals may indeed be desirable with inductive loads. However, we wish to start timing the next master trigger pulse from the zero-crossing instant of the supply voltage. The circuit provides for this automatically. Whenever the trapezoidal wave across the zener dips to zero, the $50 \mu \mathrm{~F}$ capacitor, charged to about 10 V , retains this charge long enough to drive the transistor base voltage negative with respect to the emitter, causing heavy conduction and very rapid discharge of the timing capacitor.

The small silicon diode across the base winding suppresses pulses of undesired polarity while the damping resistor across the collector coil controls ringing or pulse
overshoot. Peak base current is limited by the 120Ω resistor.

It is clear that another transistor could be substituted for the $100 \mathrm{k} \Omega$ variable timing resistor. This opens up new control possibilities. The extra transistor could simply form a linear (constant-current) charging device or could be used in a feedback system to give current-limiting in the load circuit. With a little more design effort it would be possible to tailor the motor speedtorque characteristic to meet any reasonable requirement. Several such schemes have been tried successfully but most of them require transformers with associated rectifier bridges, $R C$ delay circuits or preset controls. For the task in hand the added complexity is not really justified.

Protective measures

Semiconductor devices, otherwise reliable, are easily destroyed by faults which cannot be cleared fast enough by ordinary fuses or circuit breakers. High-voltage line, transformer or load transients can also cause diode and thyristor breakdown. Special current-limiting fuses are available from several companies but in the case of equipments rated only at a few kilowatts it is worth spending a little more money on the semiconductor devices, choosing those with higher than normal peak voltage and current ratings. Normal fuses or circuit breakers then give adequate protection if the equipment is used sensibly.

One point about thyristors is worth stressing. Even in the absence of gate drive, the sudden application of a high voltage is liable to cause forward breakover into conduction. This is non-destructive if the applied voltage does not exceed the peak forward voltage rating of the device, and if the current is limited by the load to a safe value. To avoid this trouble the rate of rise of voltage ahead of the thyristor can be limited by a suitable $R C$ network or perhaps by a rudimentary $L C$ filter. Unfortunately such measures tend to spoil the voltage regulation or to lower the overall efficiency of the system.

In the present case a small filter reactor of about 30 mH followed by a $0.1 \mu \mathrm{~F}$ capaci tor gives an acceptable compromise. The inductor, consisting of 100 turns of 16 swg wire wound on a laminated Stalloy core with a centre-limb cross-section $\frac{7}{8}$ in $\times \frac{7}{8}$ in (no air gap), saturates with less than full load current and in fact drops about 12 volts at all loads above 1 A r.m.s.

Construction and testing

The main rectifier bridge, auxiliary diode, free-wheel diode and thyristor assembly was built first and wired up as a self contained unit. Heavy-gauge well-insulated wire was used, with solder-lug terminations. Substantial bolts with nuts and lock washers were used to ensure permanent, low-resistance connections.
The trigger unit was then built as a separate module and tested off-line with a temporary power supply. The output pulses, though of large amplitude, are so narrow that they are difficult to see on an oscilloscope. A check was made that the unit would actually trigger a thyristor with
a lamp load. Failure to work will almost certainly be due to reversed polarity of one of the pulse-transformer windings.

The controller was then assembled in its final form, fitted with a 3 A fuse and checked first with a 100 W lamp load and then with a fractional horsepower motor. The fuse was then replaced by one of 10 A rating and the controller tested with a 1 kW heater load.

Some caution is necessary when running large motors. The mains switch on the controller should turn on the trigger pulse generator and motor field supply. When these have settled down, a second switch with the motor armature can then be closed, the trigger module being set for the maximum possible firing delay angle. The motor can then be started slowly by advancing the speed control knob.

When shutting down the motor, the speed control is backed off to zero, the motor switch opened and the mains switch turned off. Attempts to start a large motor at full speed will instantly blow fuses, open circuit breakers or destroy the semi conductor devices. There is nothing remarkable in this since it would be almost equally disastrous to switch a large d.c. motor directly on line without a starter resistance in series with the armature. It is an interesting thought that a conventional starter, with field regulator, no-volt release, overload trip and stepped starter resistance, but with no provision for speed control, costs more than the parts for an electronic controller which performs both starting and speed control functions. Moreover, the electronic unit calls for little or no maintenance.

Since completion, the controller has been tested for long periods with three different motors. The smallest was a DELCO machine, conservatively rated at $1 / 6 \mathrm{hp}$ but easily capable of delivering $\frac{1}{4}$ hp. Fitted with sleeve bearings, the machine ran smoothly and quietly at all speeds up to $1,500 \mathrm{rpm}$. The armature was of relatively high resistance and reactance and it was found that the shunt capacitor took an appreciable part of the alternating component of the pulsed armature current. This capacitor also does something to reduce
.f. interference due to commutation.
The next test was on a MetropolitanVickers motor rated at 230 V , $1 \mathrm{hp}, 2,850-$ rpm. This ran well at all speeds from crawling up to $2,500 \mathrm{rpm}$, with a surprisingly high torque at quite low speeds, although at this end of the range the motor slowed down with an increased load. The last machine to be tried was an aircraft engine-driven generator rated at 100 V , 600 W . Its field was intended to be energised from a 24 V supply and not directly from the brushes. Strictly speaking, to run this as a motor calls for a change in the brush position but this adjustment proved to be impossible because the brush rocker was already at the wrong end of its travel.

The armature impedance was very low and the shunt capacitor thus virtually inoperative. The machine was designed for forced-air cooling and so could only be tested for short periods at anything like full load. Nevertheless it was operated between 0 V and 200 V (twice the rated maximum), at speeds between 0 and 8,500 rpm. At top speed, friction and windage losses were such that the motor, running light, drew about 200W from the supply.

In every case, commutation was spark less at all speeds and loads although sudden load changes provoked mild, harmless sparking until the machines settled down to the new conditions.

With the controller fitted in a grounded metal case and with screened cables to the motor there is surprisingly little radio interference on medium or long waves and nothing is audible on the v.h.f. and television bands. With the controller wiring exposed, no earth on the motor frame and with unscreened cables, interference is of course easily detectable. Listening to this on a transistor receiver allows one to check the regularity of firing of the trigger pulse generator. An erratic note calls for a methodical check of the entire system.

Conclusion

A good deal of work has gone into the development of this controller. The use of auxiliary diodes to feed current to the thyristor anode through a resistance load (in practice a lamp), eliminated an intract-

able hunting phenomenon which took the form of wild fluctuations of armature current and motor speed. The supplementary diodes are in any case required to supply the pulse generator with a full-wave rectified sinusoidal voltage, uncontaminated by the variable d.c. back-e.m.f. of the motor. This latter, if present, results once more in erratic firing, unsynchronized with the supply frequency.

Merely by up-rating the semiconductor devices the scheme appears to be applicable to large motors, certainly up to tens of horsepower, operating from single-phase mains, and without limit from polyphase lines, though of course the trigger module becomes more complicated.

Without modification, the controller also works satisfactorily with resistive loads (lamps or heaters), up to 2 kW , or, by changing fuses and circuit breakers, up to 7 kW at low ambient temperatures. Larger heat sinks are required at loads much above 3 kW . If resistive loads only are to be used, the free-wheel diode, shunt capacitor and resistance and the built-in lamp load can be removed as well as the two auxiliary diodes. We are of course then left with a simple, well-known circuit which has no novel features.

There are known methods of compensating for the voltage drop across the motor due to its armature resistance. This is responsible for the drop in speed which is observed when the load is increased. One simple scheme uses feedback, from a low-value resistor in series with the armature, to advance the firing angle of the thyristor in proportion to the load. The idea must be used with caution since it can easily lead to gross overloading of the controller and the motor. Complete safety requires the addition of an overriding control which will limit the circuit current to a safe value. It must come into action only when this limit is reached, otherwise it tends to counter the effect of the first control.

A word of caution must be given about

Parts list

Resistors ($\frac{1}{2} \mathrm{~W}$ except where specified)
$10 \mathrm{k} \Omega, 10 \mathrm{~W}$
$22 \Omega, 10 \mathrm{~W}$
22Ω
120Ω
$1.8 \mathrm{k} \Omega$
$2.7 \mathrm{k} \Omega$
$4.7 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$ wirewound potentiometer
Capacitors
$6 \mu \mathrm{~F} 1000 \mathrm{~V}$ working
$0.1 \mu \mathrm{~F} 1000 \mathrm{~V}$
$0.25 \mu \mathrm{~F} 350 \mathrm{~V}$
$50 \mu \mathrm{~F} 50 \mathrm{~V}$ (tantalum)
Semiconductors
Silicon power diodes 35A 600PIV
Silicon power diodes 5 A 600 V
Thyristor 30A 600 V
Small signal silicon diode
Silicon p-n-p transistor (Mullard BFX29 or similar)
1 Zener diode 20V 10 W
Miscellaneous
10A single pole switches
10A fuse and fuseholder
10A circuit breaker (BCE. Type K, Catalogue Number A/490)
Ammeter $2 \frac{1}{2} \mathrm{in}, 0-20 \mathrm{~A}$ d.c.
40W 240 V lamp with batten holder
1 Ferrite cup core (audio grade) $1 \frac{3}{8}$ in $\times \frac{7}{8}$ in
Lamination stack (Stalloy or similar), $2 \frac{3}{4}$ in $\times 2$ in $\times \frac{7}{8}$ in
the techniques of current and voltage measurements on equipments of this type. Moving coil d.c. meters and rectifier-type a.c. instruments read the arithmetic mean values of current and voltage. In the a.c. case the meter readings are calibrated in terms of the r.m.s. equivalent for a sinusoidal source. Their readings with pulsed sources must be treated with caution. Thermocouple, dynamometer or movingiron instruments measure true r.m.s. values but in the last two cases, the calibration normally holds good only at low frequencies. High harmonics can cause errors of reading. When measurements of input

Fig. 6. The completed controller.
power, output power and efficiency are being made, there is really no substitute for a wattmeter.

Acknowledgment

Although many British and foreign companies offer a wide range of thyristorcontrolled motor drives (the record for size is probably held by the Americans with a $12,000 \mathrm{hp}$ reversible rolling mill motor), it is still difficult to find much practical information in the literature about small installations. In developing the present unit valuable background material has been gathered from the (American) General Electric Company publication "Silicon Controlled Rectifier Manual".

The Mullard Technical Handbook sȩries also contains a wealth of useful information, particularly Book I, Part 5, "Thyristors and Thyristor-Stacks".

Finally, reference must be made to articles by J. Merrett in Mullard Technical Communications, Vol8, No80, March 1966 on "Thyristor Speed Control of DC Shunt Motors from a Single-Phase Supply", and "Instructions for Selecting a DC Motor for Thyristor Speed Control". These two papers serve to highlight the subtlety and complexity of the problems in developing this control technique.

The Wireless World Annual

Wireless World proudly introduce their Annual. Having the same format as Wireless World, the Annual contains over 80 pages of editorial, including three major constructional features: an audio oscillator, a small-boat echo-sounder and a double phase-locked loop f.m. tuner. Nomographs and formulae are presented for reference purposes and theoretical articles such as, "Estimating signal strength from v.h.f. aerials" and "Loudspeaker Design" provide valuable basic design information.

Containing 14 articles on topics from space electronics to test gear for the amateur, and from a school project to using arithmetic calculators for scientific calculations, the Annual follows the traditions of excellence set by Wireless World itself. Available from leading bookstalls in October, the Annual is priced at $£ 1$ or $£ 1.35$ by post from Room 11, General Sales Dept., Dorset House, Stamford St., S.E.1. Cheques and postal orders should be made payable to IPC Business Press Ltd.

Data control on the APT

A computer controlled data acquisition and processing system is to be used by British Rail to evaluate the performance of various experimental vehicles in a programme of fundamental studies of wheel/rail interaction. The equipment is based on the System 90 midi computer manufactured by Computer Instrumentation Ltd and is due for installation in a laboratory instrumentation coach at the BR Technical Centre in Derby. This latest system will complement data acquisition and analysis now continuing on board the experimental Advanced Passenger Train. The heart of the system is an 8 k processor equipped with two direct memory access (DMA) block transfer channels for high speed data transfer to and from the processor. Principle peripherals include a 32 -channel differential input multiplexer/analogue-digital converter and a Pertec 75 i.p.s. 9 track, 800BP1, NRZ 1 magnetic tape unit. Other peripherals include a 390 Teletype terminal to provide operator control and data printout facilities, and a high speed 500 character per second paper tape reader and a paper tape punch, both of which are mainly intended for programme development and loading operations.

The system incorporates four 100 kHz digital-analogue 12 -bit converters, to be used in conjuction with an $x-y$ plotter, and a 16 -bit parallel output register for the control of other external equipment. Provision is made for up to eight external priority interrupt channels, which can be linked to other electronic equipment or to manual control switches to provide direct programme control. A variable real-time clock or interval timer with a resolution down to $1 \mu \mathrm{~s}$ provides the real time synchronizing and time code signals.

In operation, the CIL computer system will be linked, via signal condi tioning equipment, to numerous force strain, and displacement measuring transducers mounted on the wheels, axles and chassis. During a test run under controlled speed and track conditions, the
analogue signals generated by the transducers will be digitized via the 32 -channel 100 kHz multiplexer/a-d converter. The resulting 12-bit words will be fed to the DMA channel for high speed block transfer to the "System 90" processor where the data will be formatted, together with the timing and channel identifying information, into a form suitable for recording on the nine-track 60 kHz digital magnetic tape system.

During the data acquisition period, there is a capacity for limited real time data analysis such as preset signal level crossing counts to be carried out. Once recorded, however, the data can be replayed using an appropriate analysis software package to perform further processing such as power density spectral analysis. In this way, tabular print-outs can be obtained of channel by channel power density distributions, while the d-a converters enable this information to be plotted out on an analogue $x-y$ plotter. This is typically carried out at the end of each trial on the test train. Further detailed analysis will subsequently be carried out on this data by a large IBM 370 main frame computer.

Electrical fatalities in the home

The major causes of death in the home from electric shock are a lack of appreciation of the dangers and the inadequate supervision of children. This is the implication of an analysis of electric shock fatalities between 1967 and 1971 carried out by Electrical Research Association Ltd. The analysis revealed that about 44\%
of fatalities in England and Wales were caused by "contact with a normally functioning live part". A typical item in this category would be contact with an exposed live conductor of a worn flexible cable.

The report is particularly topical in view of the fact that a new EEC directive is shortly to be implemented in the UK. This directive requires that only safe electrical equipment shall be placed upon the market. No longer is the buyer of electrical equipment so reliant on the old adage that "the buyer beware"-it is even possible that the British buyer may soon be in the position of US consumers who can not only prosecute manufacturers for faulty design or manufacture but can under some circumstances also prosecute them for the consequences of misuse of their products. British manufacturers have made substantial efforts to improve the safety standards of their products, but it now appears that the only major step forward in home safety in this area will be by an effective publicity campaign to reduce the incidence of carelessness, neglect and lack of supervision in the home. "A perspective on fatalities from electric shock in the home in England and Wales for the five years 1967-1971" is available from the Electrical Research Association Limited, Cleeve Road, Leatherhead, Surrey KT22 7SA. Price $£ 12.50$ ($£ 7.50$ to members).

Sputtering techniques improve

A process of sputtering a chromium-nickel film on to the inside surfaces of conical X-ray concentrators has been developed for MIT's Center for Space Research. These glass devices are used in satellite-

This automatic test system designed for testing at component, subsystem and system levels can provide up to 400 complex tests in minutes. The system, designed by Hewlett-Puckard, includes measurement of voltage, resistance, frequency and distortion covering signals from d.c. to 500 MHz .

borne astronomical instruments that measure X-rays from celestial sources. To metallize them effectively, Varian Associates in Palo Alto, California, devised a method for maintaining a uniform plasma discharge along a rod-shaped cathode, which deposits chromium-nickel on to the inside surface of the glass cone.

The growing use of silicon-doped aluminium in semiconductor manufacture is another field which has led to the development of a precise, dependable commercial process for depositing silicon-saturated aluminium on large silicon wafers. The deposition of aluminium conductors is one of the most common operations involved in semiconductor manufacture but which also presents an important problem. When the junction is heat-treated after bonding, silicon from the wafer may migrate into the aluminium conductor. In a thin junction, this process can remove so much silicon from the wafer that the junction may be shorted out. A thick junction is less susceptible to this effect, but reduces the device's speed. To build thin, fast junctions that will not be ruined by heattreatment, semiconductor manufacturers are turning to the use of aluminium that is virtually saturated with silicon. Since this alloy can accept little or no additional silicon, there is no significant loss from the wafer during heat-treatment. Varian's contribution to this approach has been to develop a process involving the simultaneous evaporation of aluminium and silicon sources. Each source is monitored and controlled independently of the other, but their evaporation rates are regulated so as to control with precision the ratio of the two metals in the deposited film.

Heart-rate computer

A device first used by NASA physicians to monitor instantaneously the pulse rates of astronauts performing underwater training activities, is now being used in nonspace medical applications.

The digital cardiotachometer was originally developed to observe on a beat-tobeat basis the heart rates of astronauts undergoing training in a neutral buoyancy simulator, an underwater training laboratory used to simulate the weightless conditions encountered in space. The device provides a numerical display of a subject's pulse rate 0.3 seconds after detecting the second heart beat. The time between two consecutive heart beats is used to calculate a patient's pulse rate in beats per minute. The unit has been designed to operate in conjunction with a standard electrocardiograph unit.

Dating ancient ceramics

A method of detecting forged "ancient" pottery involves the use of a high sensi tivity, low dark-current photomultiplier tube to convert very low light levels into useable electric current. The technique dependent on this property is thermoluminescent dosimetry and was pioneered by the Research Laboratory for Archaeology and the History of Art at Oxford University.
The authenticity problems, relating particularly to early Chinese ceramics, are largely due to the re-use of original moulds found intact when ancient clay kiln sites were opened up. As pottery or ceramics age, grains of quartz in the clay

Massive information flows into and out of a conventional central computer can be eliminated by the use of a distributed data processing system, Locus 16, primarily designed for air traffic control and air defence. The Locus 16 developed by Marconi Radar Systems can be seen (centre background) driving a variety of displays.

End of the production line at the

 Telefusion Group's fully mechanized factory at Kearsley, Lancashire. Hytrac conveyers link the stages of assemblyprinted circuit board construction, test and inspection, cable loom, plug and socket assembly, chassis sub-assembly, chassis assembly and a thorough eighthour soak test of the completed sets.absorb energy from radioactivity. When a specimen is heated, the stored energy is released in the form of light. This lumin escence is very weak and is proportional to the amount of absorbed radiation and therefore to the age of the specimen, since initial firing of the ceramic sets the thermoluminescent "clock" to zero. A photomultiplier tube manufactured by EMI and which makes virtually no contribution to the background count is being used at Oxford to provide very accurate dating. It will be difficult in future to produce forgeries of archaeological specimens such as the T'ang horses and Chinese tomb furniture currently undergoing tests at Oxford.

Electret cartridge introduced

Yet another record cartridge has been launched here in the UK. This one at least has some claim to being unique since the transducing mechanism relies upon the electret principle, but applied in a very unusual way.

The stylus is mounted on two rubber pivot studs which permit the normal orthogonal degrees of movement required of a stereo pick-up. Directly above these rubber studs are two plastic lugs which bear against the ends of two flexible beams which are attached firmly at the upper end. Movement of the stylus causes these beams to flex and the stress in the electret material of the beams produces a change in the standing polarizing voltage across the electret. A passive network is used to convert the output to the characteristic
expected of a conventional magnetic cartridge, thus making it suitable for direct replacement. Manufactured by MicroAcoustics Corporation and imported by Gale Electronics, the new cartridge in its standard form (the QDC-1e) has an 0.002×0.007 elliptical stylus, has a frequency range from $5 \mathrm{~Hz}-20 \mathrm{kHz}$ and operates with a tracking force of 0.75 gm to 1.5 gm . Separation is nominally 30 dB at 1 kHz and 20 dB at 10 kHz . Output is 3.5 mV at $5 \mathrm{~cm} / \mathrm{sec}$ recorded velocity, into a load impedance of 47 k ohms.

Two other versions will become available, a spherical stylus version and a stylus suitable for CD-4 reproduction.

Diagnosis by ultrasonic waves

A computerized system for ultrasonic wave diagnostic images to be memorized on a cassette tape and transmitted to a central hospital via telephone lines for remote diagnosis has been developed jointly by the Nissei Hospital and Toshiba.

Ultrasonic pulses are transmitted into the affected parts of the patient's body and internal tissues are reproduced on a picture tube screen from the reflected echoes. The images are memorized on a cassette tape and processed at a later date when necessary. The telephone line transmitting system makes it possible to form an information-processing network for ultrasonic wave images to be sent to a central computer from a hospital at a remote location, processed there and returned. Through such a network, a remote hospital can receive diagnosis from the relevant specialist physicians in a short space of time.

University College Hospital, London is developing a similar system which does not utilize the intermediate tape medium. Information is transmitted direct to a central computer for storage and image processing.

New record factory in Scandinavia

A new record and tape duplicating factory is to be built by EMI at Amal in Sweden, to serve the fast-growing Scandinavian market. The cost will be approximately $£ 2 \mathrm{~m}$ (21 million kroner) and construction work will start later this year so that the plant can be in production by the end of 1975.

The new factory will supply Norway, Sweden, Denmark and Finland with records and pre-recorded tapes. It will have an initial production capacity of 5 million 12 in records, 1.2 million 7 in records and 850,000 recorded tape units per year.

Moscow TV for N.E. Siberia

Residents of the gold mining town of Aldan in Yakutia, north Siberia, which lies $8,500 \mathrm{~km}$ from Moscow can now view black-and-white and colour TV pro-
grammes direct from Moscow. This has become possible thanks to an Orbita retransmitting station which receives programmes via communication satellites. Over 50 Orbita re-transmitters operate in different parts of the country.

In the near future, "TV bridges" will connect nine socialist countries. Ground receiving-transmitting stations have already been built in Mongolia, Cuba and Czechoslovakia. This system will also be used for multi-channel telephone and telegraph communications.

Electronica 74

On May 31 the total hall space for the sixth International Trade Fair for Components and Production Facilities (Munich, November 21 to 27) was completely booked up despite the strict rules stipulated in the terms of admission. The largest number of foreign exhibitors will come from France, Italy, Japan, Spain and Switzerland, many of these being new to the show and being part of more than 860 main exhibitors.

The sixth International Congress of Microelectronics will take place at the Munich Exhibition Grounds from November 25 to 27 . Its programme will centre on issues of topical interest in the fields of components, assemblies, the related technologies and the application of microelectronics. Organizers of the Congress include the Institute of Electrical and Electronic Engineers.

Carphone service extended

From the first week in August motorists equipped with car radiophones are able to make telephone calls from their cars within a 3,000 square-mile area which includes Wolverhampton, Birmingham, Coventry, Rugby, Northampton and Banbury. This is part of a $£ 600,000$ Post Office project to extend this type of service to five new centres which has previously been available only in London and South Lancashire. Controlled from Birmingham, the new service can handle

By early 1976 the Post Office's car telephone service will be available from seven major centres.
up to 300 users. Transmitters at Turner's Hill near Birmingham and Charwellton, near Rugby, beam telephone calls to and from drivers using the service. The Post Office plans to open four more radiophone services during the next two years.

TV sales down

Deliveries to UK distributors of UK-made colour television receivers reached 136,000 in June-a 21% decrease on June 1973 (172,000), according to the latest statistics compiled by the British Radio Equipment Manufacturers' Association. This brought the total for the first six months to 869,000 , a fall of 14% compared with the same period of $1973(1,015,000)$. UK made monochrome television deliveries for June of 35,000 brought the total for the year to 283,000 , a fall of 47% compared with January to May 1973 $(529,000)$.
These figures show details of UK-made deliveries only, and exclude imported deliveries.

Seminex week in Stockholm

Five davs of semiconductor seminars covering new applications and the state of the art are to be presented during Seminex week in Stockholm later this year. The event is to be held at the Sheraton Hotel between September 30 and October 4, 1974. Each day a different semiconductor technology will be covered by a programme of co-ordinated seminars presented by leading international manufacturers. Engineers, designers, and buyers wishing to attend the Seminex seminars can obtain full information from Seminex ' 74 Sweden, Sveavägen 53, Box 3177, S103 62 Stockholm, Sweden, telephone 08-348522, telex 17473.

Briefly

TV moves to the bedroom. Figures prepared by Marketing Advisory Services indicate that about one in eight of British households own more than one TV set. Usually the second set is in the bedroom, adding more fuel to the saying, "When I was young we made our own entertainment".

3D c.r.t. displays. Included in a $£ 55,824$ research grant awarded to the University of Essex is $£ 11,170$ from the Science Research Council for research into three dimensional cathode ray tube displays.

Water Music. The Rank Organization has patented an idea for lightening the load of heavy duty speaker systems. When set up, hollow walls are filled with water making the cabinet extremely heavy. For transport, the walls are drained and removed from the frame.

Pattern recognition circuits

Simple programmable circuits for optical character recognition and other applications

by W. K. Taylor and J. J. Witkowski

University College London

This article describes a procedure for designing and programming simple operational amplifier circuits for general pattern recognition and optical character recognition. The simplicity is due to the use of constant resistance balanced circuits that are particularly suited for realization as mask or field programmable large-scale integrated circuits.

Methods of designing pattern recognition circuits based on resistors and operational amplifiers have been described ${ }^{1.2}$ but they have the disadvantage that many of the resistor values depend in a complex way on the patterns to be recognized. In the
new method described here the resistors associated with each amplifier have the same constant value irrespective of the patterns selected for recognition, which may range from a single light spot on a dark background to a single dark spot
on a light background. Correct operation is obtained over a wide range of contrast and illumination since only the shape of changes in contrast is significant.

The method will be illustrated by application to the recognition of the digits
 system with o.c.r. input stage.
$0 \ldots 9$, shown in Fig. 1, that are projected by a lens onto a 3×5 matrix of optical fibres. The fibres terminate on N photo transistors $T r_{1} \ldots T r_{N}$ In this relatively low resolution system with $N=15$ it is necessary to use specially designed characters but a considerably higher resolution system that operates correctly with optical character recognition B fount has also been constructed. The phototransistors supply current to the operational amplifiers $A_{01} \ldots A_{O_{N}}$ to produce the negative output voltages $V_{01} \ldots V_{0 N}$ A positive reference voltage V_{R} is added to each and the sums are amplified and inverted to produce voltages $V_{11} \ldots V_{1 N}$ so that $V_{1 r}=V_{0 r}$ - V_{R} is positive for inputs higher than the reference level and negative for inputs darker than the reference level. The voltages V_{11}. . . $V_{1 N}$ are inverted to produce $-V_{11} \ldots-V_{\text {IN }}$ as shown in Fig. 1. The N pairs of voltages $\pm V_{11} \ldots \pm V_{\text {IN }}$ form the inputs to M summing amplifiers through equal summing resistors R.

The circuit is programmed by presenting each pattern to be recognized, in this case each of the ten digits, to the input field and noting the sign of each $V_{1 r}$. If, for example, output V_{21} is required to indicate the presence of digit 1 in the position shown in Fig. 1 then amplifier A_{21} has input resistors to maximize the output V_{21}. For digit 1 the phototransistor $T r$, receives light from a relatively dark region making V_{11} negative and $-V_{11}$ positive. Thus a positive contribution to V_{21} is obtained by removing the resistors connecting V_{11} to the positive input of A_{21} and $-V_{11}$ to the negative input of A_{11}.

In producing the circuit it is preferable to include all resistors initially so that the above programming step leaves the resistors connecting V_{11} with the negative input of A_{21} and $-V_{11}$ with the positive input of A_{21}. Since, however, V_{11} is negative the net effect is a positive contribution to V_{21}. If the phototransistor $T_{r_{l}}$ had received a signal from a relatively light area V_{11} would have been positive and $-V_{11}$ negative. In this case the two resistors represented by the broken line would have been left intact and the two resistors represented by the full line removed. When this process is repeated for all N differential pairs of inputs and for all the M input patterns the circuit is fully programmed.

The voltages V_{21}. . $V_{2 M}$, being analogue, must be converted to a digital "one out of M " code which can then be given a binary code to reduce the number of outputs. This is achieved by the output amplifiers A_{31}. . $A_{3 M}$ operating with common negative feedback produced by the amplifier with the largest positive input. Thus only the amplifier supplied by max (V_{21}. . $V_{2 M}$) has unity gain, the remainder being driven into negative saturation by the excess common negative input.

In practical applications such as the reading of printed information into computers or the sorting of letters it is necessary to increase M considerably above the number of characters to be read in order to include variations in style,

Fig. 2. Analogue voltages $V_{21}-V_{2.10}$ (inverted) produced by constant velocity scanning of the digits $0-9$ from left to right and the corresponding digital recognition pulses $V_{3.1}-V_{3.10}$ (Waveforms \dot{V}_{25} and V_{35} are omitted to save space.)
fount size and vertical position. With large-scale integration, however, this would not present any new problems since the same circuit is used with OR gates combining all the versions of each character in a single output, or a single output code word, so that six final outputs would cover a complete alphanumeric and symbol set.

The circuit as described only functions correctly when the character being read is in the position (or positions) employed during programming. It is convenient, however, to move documents at a constant speed and this presents characters and parts of characters in all possible horizontal positions and combinations of parts of adjacent pairs of characters. A reject circuit is arranged to overcome this difficulty by presenting a large positive voltage V_{c} to an additional output amplifier $A_{3 M+1}$ when the characters are not near the centre of the input matrix. The output $V_{3 M+1}$ thus indicates the reject class and is present for blank paper in addition to off-centre characters. The recognition pulses at the final output thus occur when the characters are approximately central, although the duration of the pulse varies with the character, as shown in Fig. 2. The analogue voltages $V_{21} \ldots V_{2 M}(M=10$ in this example) are shown (inverted) above the output pulse waveforms and it can be seen that the maximum voltage always occurs at the output of the A_{2} amplifier programmed for the particular character image appearing centrally on the retina at the instant of recognition, as determined by the removal of the reject voltage.
The circuit is readily adapted to mask programming techniques during manufacture but experiments have also shown that reliable fusing of the unwanted resistor circuits can be achieved by coincident voltage electrical programming. This field programming method is preferable since the programming is carried out by the user under actual operating conditions. If internal decoding matrices for the desired recognition class inputs are included in the circuit the number of programming inputs is equal to the number of binary coded outputs so that 20 leads would be sufficient for the complete programmable optical pattern recognition unit.

References

1. Taylor, W. K. "Pattern Recognition by means of Automatic Analogue Apparatus", Proc. I.E.E. 106, B No. 26 pp. 198-209, 1959. 2. Taylor, W. K. "Learning characteristics of a trainable pattern recognition machine", IEE/ NPL Conference on Pattern Recognition, 1968.

cuphruar vo $\ldots V_{33}$ NMASMNMMN V_{24}

rumanprator vos

mbumpar
V_{27}

chumblupropisp- v_{28}

V_{38}

V_{29}

$V_{2,10}$

$v_{3,10}$
position of scanning matrix

Calculator offer modifications

Simpler display drive; power supply; clock generator

Since the announcement of our calculator components offer in the March issue (p.49), the manufacturers of the C500 calculator i.c., General Instrument Microelectronics, have devised a simpler method of driving the l.e.d. display. Instead of the discrete transistors shown in the March issue they suggest the use of two integrated circuit drivers. These, the ITT 7105 digit driver and ITT 7103 segment driver,
are shown, with appropriate circuitry for connection to the calculator chip, in the accompanying diagram.
General Instrument Microelectronics have also supplied a circuit for a suitable power supply and a circuit for a clock generator of 80 to 100 kHz . These are shown at the bottom of the diagram.
Correction: In the March article, p.50, left-hand column, penultimate paragraph,
the reference to the frequency of the clock generator should read "80 to 100 kHz ". Apologies for this error.

Calculator system modified to use i.c. drivers for the l.e.d. display; showing also suggested power supply and clock generator circuits. (Power supply transformer is a Radiospares Miniature type with $0-12 \mathrm{~V}$ and $0-12 \mathrm{~V}$ secondaries.)

Not such a dummy head

A potted history of artificial head sound recording

by D. J. Meares, B.Sc.
BBC Research Department

Several recent articles have extolled the virtues and potentials of "artificial head" recording as a means of producing "surround-sound" effects and, as most enthusiasts will be aware, Sennheiser have recently released two documentary discs which demonstrate some of these effects. This article is intended to fill in some of the history of artificial head recording and to look at recent developments in this field.
The concept of using an artificial head for recording stereophonic types of signal is not new; as far back as $1940 \mathrm{De} \mathrm{Boer}^{2}$ was experimenting in this field. In the early days of stereophony, the BBC looked into the use of a relatively crude artificial head, fitted with microphones, as a means for improving the spatial presentation of stereo reproduced by loudspeakers. Although some interesting effects were produced, the stereo results were not signifi cantly different from those produced by the simple spaced-microphone technique, and so this work was discontinued. (High quality stereo headphones were not available at that time.)

More recently two teams of workers in Germany have been concentrating on artificial head recording ${ }^{3.4}$ in connection with work on speech intelligibility, auditory acuity and the evaluation of the acoustic qualities of concert halls, etc., using only aural information (i.e. the listener has no visual information to bias his judgement). One of these teams, the one based at the Heinrich Hertz Institute in Berlin, gave a demonstration of some of their recordings at the time of the 1971 AES Convention. They demonstrated a concert-hall recording made using an artificial head fitted with microphones, the replayed signals being fed directly to a pair of headphones. The second images created by this technique exhibited good left-to-right separation with a marked lack of "in-the-head" sensations. Front-to-back separation, however, was rather poor, and there were frequent occasions where images, which should have been created at the front, appeared to be located behind the listener; further, the images generated by this arrangement were rather broad and diffuse.

In 1973, at the Berlin Radio Show, Sennheiser released a demonstration disc, which was made using the latest "Heinrich Hertz" artificial head (the one shown on
the record sleeve). This comprises a skull construction attached to which are the flesh-like artificial pinnae-facial features and hair are all realistically modelled. The head attempts to match the acoustic properties of a real human head, both externally and internally, as far as the ear drums. At this point the model's ear canals are terminated by an acoustic impedance such that, in the presence of a microphone placed at that point, the correct sound pressure is produced.
The intended method of reproduction, for the demonstration disc, is over Sennheiser "open-air" headphones and this implies that the acoustic signals will have passed through ear canals twice, once in the artificial head and once, during replay, in the listener's head. The signals from the artificial head were therefore processed in an attempt to reduce the errors introduced by this double passage through ear canals.

The recording is, comparatively, a significant improvement on the earlier-mentioned demonstration, and is extremely intriguing in the subjective impressions that it generates. The section of the recording where the narrator moves behind the listener and whispers in his ear is particularly impressive, and offers considerable potential for audience involvement in, say, radio drama.
When examined analytically, however, there are still some errors in the repro-

The section of the recording where the narrator moves behind the listener and whispers in his ear is particularly impressive.
duced sound images. In the recording the narrator is intended to walk in a circle around the listener; in fact his image moves in an ellipse with the major axis going from left to right and with considerable elevation of the image (approximately 70° on average) in front of the listener. There are also occasions when the image of his voice does not occupy a position consistent with the activity verbally described (e.g. the noise made when switching on a light seems rather far from the narrator).

These are the sound impressions given to a listener using open-air (super-aural) headphones. Limited tests have been carried out using "closed-air" (circumaural) headphones and much poorer results were obtained, to the extent that front-to-back ambiguity was once more noticeable.

A most significant point is the fact that different people perceive different things from the recording. This is particularly true of intended front-centre sounds. Here the subjective impressions appear to vary from in front and elevated by 45°, to slightly behind and close to the listencr. This is probably due to the complex way in which the ear perceives the direction of arrival of sound, the most important factor being the intricate changes introduced into the sound waves by the pinnae and ear canals ${ }^{5.6}$. Since these changes will vary from person to person, it is hardly surprising that a single model of the ear is unable to produce a recording which completely satisfies all listeners. That it goes as far as it does is a considerable achievement.

Due to the impressiveness of the Sennheiser recoording several radio dramas have been (or are being) recorded in Germany. At least one of them has already been broadcast as an experiment, and German radio stations plan more such events. The dramas were, in general, recorded using an artificial head manufactured by Neumann and Co of Berlin. This is, in principle, very similar in design to the Heinrich Hertz artificial head, inasmuch as the ears are reasonably lifelike and the ear canals are terminated in a combination of acoustic impedance and microphone. In detail, however, the two heads have slight but possibly significant differences; for example, the Neumann ears are made of a harder rubber and the rest of the head is more stylised. In use the head is intended to be placed on top of its carrying case, to simulate the effect of a half-torso, in a good seat in a concert hall or wherever the recording is to be made.

The author has had limited access to material recorded on the Neumann head and has found, generally, that it is less satisfying than the previously-mentioned Sennheiser disc. In particular, front centre sources are much more difficult to locate, and usually become confused with back centre sources. Whether this is due to the "possibly significant" differences between the Neumann and Heinrich Hertz heads, or whether it is the lack of correction for the double passage through ear canals has not yet been established.

The second Sennheiser documentary disc, released at the 1974 Hannover-Messe, demonstrates a slightly different approach to "dummy head" recording. This method requires a real head and a lightweight stereo microphone assembly. Two condenser microphones are fitted in a curved framework, which is hung loosely in the outer ear, so that the microphone diaphragms are within 10 mm of the entrance of the ear canal. In this way an attempt is made to record the precise nature of sounds at a person's ears. The recording is reproduced in exactly the same way as the artificial head recordings, viz. on open-air headphones. The sound impressions produced by this method are satisfying, inasmuch as a convincing sense of spaciousness and distribution of images is reproduced, but unfortunately theimages are blurred and front/back ambiguity is experienced by most listeners, even though the record sleeve shows precisely where the images ought to be. So compared to the first demonstration disc, the second is rather disappointing.

The same idea, i.e. that of using a real head, has been investigated in some detail by Dr E. T. Rolls of Oxford University ${ }^{7}$. His recordings are made with miniature microphones actually inside the ear canals of the subject. I had the slightly painful pleasure of being involved in one such recording session with some rather surprising results. For me, this recording not only demonstrated extremely good azimuth and distance information, but also a remarkably realistic sense of height, on both the main sound sources and the incidental environmental noises, such as the tape recorder noises and attenuator clicks. The directional acuity was, however, not duplicated nearly as well for other listeners to the recording, implying that each person is attuned, by the process of learning, to the individual characteristics of his own ears ${ }^{5}$.

To quantify these results the recording was used in a crude subjective test to establish the accuracy with which the position of sounds could be reproduced. On average the results were better than those obtained in recent tests ${ }^{8}$ on some matrixed quadraphony systems. Unfortunately, however, the positional errors for this form of head-related recording were concentrated in the front quadrant, other positions being reproduced with greater accuracy. So once again the front-centre images seem to be the illusive ones.

Supposing, however, that future experimentation with one, or other, of the above systems can solve the problem of creating front-centre images with headphones, there still remains the difficulty of adapting the technique for use in normal recording situations. Much of the light music and pop music that is recorded at present is obtained under conditions of gross acoustic imbalance by using many microphones placed fairly close to the individual (or grouped) instruments. Even with orchestral music in "good" concert halls, difficulties have been encountered ${ }^{9}$, in quadraphonic work, in finding acoustically balanced positions for placing coincident groups of

Showing the ear/microphone assembly of the Neumann "head".

Neumann's artificial head shown mounted on its case.

Sennheiser microphone and arificial head assembly.
microphones, and the same difficulty may arise with the artificial head recordings. Furthermore, there is the problem of audience reaction to this sort of device. A normal stereo microphone suspended above one's head at a concert is fairly unobtrusive, but the same cannot be said of an artificial head.

The most likely long-term development of this idea is that the artificial head work may enable investigators to acquire a greater understanding as to how the ear/ brain combination locates a sound from a particular direction, and thence to determine whether it would be possible to simulate the artificial-head sounds (or even better, to simulate true three-dimensional sound sensations) by electrical processing of normal microphone signals ${ }^{3}$. If this could be achieved and if compatible monophonic and stereophonic listening on loudspeakers were possible, we would most certainly have an interesting alternative to the presently proposed quadraphonic arrangements.

Acknowledgement

The author wishes to thank the Director of Engineering of the British Broadcasting Corporation for permission to publish this article.

References

1. Entertainment Electronics at Berlin, Wireless World, vol. 79. 1973, pp.541-4.

Editorial comment, Hi-fiNews, Jan. 1974.
2. De Boer, K. Stereophonic sound reproduction, Philips Technical Review, vol. 5, 1940, pp.107-14.
3. Laws, P. Auditory distance perception and the problem of "in-head localisation" of sound images. Acustica, vol. 29, 1973, pp.243-59.

Blauert, J. and Laws, P. True simulation of loudspeaker sound reproduction while using headphones. Acustica, vol. 29, 1973, pp.273-7. 4. Wettschureck, R., Plenge, G. and Lehringer. F. Distance perception by natural hearing and by head-related-stereophony. Acustica, vol. 29, 1973, pp.260-72.

Plenge, G., Kürer, R., Lehmann, P., Wettschureck, R. and Wilkins, H. New methods in architectural investigation to evaluate the acoustic qualities of concert halls. 85th meeting of the Acoustical Society of America, 1973, Boston, Mass., USA.

Wilkins, H. Head related stereophony-an aid for the comparison and critical examination of different room effects, Acustica, vol. 26, 1972, pp.213-21.
5. Gardner, M. B. Some monaural and binaural facets of median plane localization. JASA, vol. 54, 1973, pp.1489-95.
6. Gardner, M. B. and Gardner, R. S. Problem of localization in the median plane: Effect of pinnae cavity occlusion. $J A S A$, vol. $53,1973$. pp.400-8.

Tobias, J. V., ed. Foundations of modern auditory theory, vol. II New York, Academic Press 1972.
7. Rolls, E. T. Polar frequency response of the human ear, Journal of Physiology, vol. 234, 1973, pp.18, 19.
8. Crompton, T. W. J. The subjective performance of various quadraphonic matrix systems, BBC Research Department report (in preparation), available to subscribers.
9. Meares, D. J. Quadraphony: Techniques involved in four-channel recording and reproduction, BBC Research Department Report (in preparation), available to subscribers.

A digital clock and calendar

Part 2. The logic programme described for the calendar days and months display.

by J. F. K. Nosworthy, M.A., Grad.I.E.E., and N. J. Roffe

It is with this section of the project that it becomes necessary to embark on a logicprogramme, since the loop-cycle count becomes variable. The variation lies in the number of days in a month, and the laws governing this variation can be conveniently dealt with in two parts:

1. The "April-June-September-November" 30 -day rule, which is constant for all years. In this context February is normalized at 28 days.
2. The rules governing leap-years, also century leap-years, which give February an additional day.
Listing therefore the exact logic requirements for Part 1 of the programme: 1. January, March, May, July, August, October, December shall each contain 31 days.
3. April, June, September, November shall each contain 30 days.
4. February shall contain 28 days.
5. The display required for Day 1 in each month is (decimal) 01. Display 00 is not required, i.e. reset to 01 must be provided at the end of each month.
6. The same condition as (4) applies also to the months display, i.e. the reset must be to $01, \operatorname{not} 00$.
Similarly the logic requirements for Part 2:
7. Considering the last two digits of the
year, if the first of these is $0,2,4,6$ or 8 (i.e. even number) and the last is 0,4 or 8 , leap-year conditions exist unless (3) below applies.
8. Again in the last two digits of the year, if the first of these is $1,3,5,7$ or 9 (i.e. odd number) and the second is 2 or 6 , leap-year conditions exist.
9. If the last two digits of the year are 00 , i.e. century, then the tests in (1) and (2) above shall be repeated on the first two digits, and the same criteria shall be applied to them for selection of leap-year conditions.
10. Leap-year conditions entail the insertion of an extra day into the month of February; this day to be numbered and displayed as 29 , which shall supersede 28 as the terminal day for re-set requirements.

The above are of course merely a breakdown of the common rules which we apply to determine whether a year is a leap-year, and therefore contains February 29. In fact, although most people know well enough the rule governing ordinary leap-years, that the year number shall be divisible by four, they do not know the rule governing century-leap-years. This is formally stated above, but in colloquial parlance could be given as "a centuryyear is not a leap-year unless its first two digits are divisible by four". This
means that only every third century-year is a leap-year- $1700,1800,1900$ were not, 2000 will be.

These then are the total logic-programme requirements for the calendar, and consideration of them will show that Part 1 should be regarded as the definitive and permanent programme, with Part 2 added to it as a rider which affects only the month of February. This is in fact how we have treated the programme design. Reference should now be made to Fig. 5, the block diagram for the calendar logic. A data store is provided in the form of a read only memory (r.o.m.), and in this is stored the data on the number of days in each month, i.e. the information as to the days count at which reset should occur; an extra line of data for leap-year February, which is selected when necessary by the leap-year logic gates; display data for each month. The latter is necessary because, although at first sight a simple $\div 12$ sequential count could suffice for the months display, in fact if this were done there would be a great danger of the months display getting out of step with the days-in-the-month data. The data provided therefore ensures that, for any given month, its correct decimal display is given, and this is firmly tied to its correct number of days. The detailed circuitry and operation

Fig. 5. Block diagram for the overall calendar logic.
Fig. 6. Detailed circuit diagram of clock.

of the r.o.m. will be dealt with later, but its principles should be considered at this stage, as follows:
the data stored in the r.o.m. regarding the number of days in the month is in the form of an "error condition", one too many days being stored against each month. This data is continually compared with the current day-count display, and equality between the two actuates both the days reset circuitry and $a \div 12$ counter which selects the next month's data line in the room. Thus. at midnight on January 31 the incoming clock pulse moves the days on by 1 digit to show 32 ; but since this number is that which is stored in the r.o.m. under the January line, and the comparator therefore receives an equality signal. this is immediately cleared and reset to start the next month.

There is one practical difficulty which must be overcome in this process. This lies in the fact that, with the i.c.s which we selected for use as being commonly and economically available, reset to any number other than 0 is not available; and the days display requires of course a reset to 1. Previous designs have overcome this difficulty by wiring the display devices out of step with their decoder/drivers, so that a 0 output from the decoder is displayed as 1. However, we preferred not to do this, and instead we have used an additional logic loop which, when a 00 is detected in the days display, allows an extra clock pulse through to clear this condition. Thus the days display will in
fact read 00 at the beginning of each month, but this will be immediately advanced to 01 ; the time interval involved being 1 second, since access to the clock divider chain at this point happened to be convenient (in principle, there is no reason why the 00 error should not be cleared by the next output pulse direct from the oscillator, so that the error would persist for only $1 / 200.000$ th of a second instead of 1 second, but in practice there is little point in labouring the matter).

From the output of the months, division to the four years digits is carried out conventionally. There are no reset difficulties. since 0000 is acceptable as the initial years loop indication. It is, of course, necessary to sample the years display in order to actuate the leap-year logic; this is done simply by applying the requisite number of NAND gates to the b.c.d. outputs from the years counters and

No. of days in month	Data outputs from /C, \boldsymbol{C}_{2} at actual reset no. ($=$ days +1)					
28	1	0	0	1	0	1
29	0	0	0	0	1	1
30	1	0	0	0	1	1
31	0	1	0	0	1	1

Fig. 7. IC $/$ /IC C_{2} data outputs to comparator. Note mutual cancellation of $C_{1}-B_{2}$.
programming these in accordance with the rules for leap-year selection already given. Indication of a leap-year then results in an output from these screening gates, which selects the alternative February line in the ro.m. as well as illuminating the leapyear indicator (which is simply a l.e.d. driven directly from the output of the gates).

The above describes the principles used in the calendar chain, and detailed des criptions of the various elements involved now follow

Days logic

Clock pulses for the days are derived from the 24 -hour output from the clock section, so that actuation is by a (falling) pulse at midnight. Fig. 6 shows the detailed circuitry. The incoming pulse is gated through G_{l} of $I C_{7}$, which forms part of the reset circuitry and is not relevant at this stage; is inverted twice in order to preserve the pulse polarity; and is passed to the clock input of $I C_{1}$, a 7490 decade counter, which it therefore advances by 1 . The tenth (i.e. terminal) pulse from $I C_{1}$ in turn drives $I C_{2}$. The $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ outputs from $I C_{l}$ and the A, B outputs from $I C_{2}$ are decoded conventionally to drive the days display. Thus, $I C_{l}$ counts the unit days. $I C_{2}$ the tens of days. Additionally, these outputs must be fed to the memory comparator $I C_{3}$; but it will be noticed that in fact only outputs $A_{1}, B_{1}, D_{1}, A_{2}$ are used for this purpose. The reason for this becomes plain on reference to Fig. 9, since
output C_{1} is always 0 and B_{2} is always 1 . No comparison between these two outputs is therefore required, since they effectively represent fixed conditions. The four relevant outputs are fed to $I C_{3}$, together with four outputs from the r.o.m.; $I C_{3}$ providing an EXCLUSIVE OR function whosetruth table is given in Fig. 8. It will be seen that, taking any pair of inputs, when these are equivalent the resultant output is logic 0 , so that $I C_{3}$ acts as a coincidencecomparator between the days display and the data stored in the r.o.m. When coincidence is complete, i.e. when the days show a surplus of 1 and reset is required, all outputs from $I C_{3}$ are at logic 0 . These outputs are combined by $I C_{4}$, a hextuple inverter with open-collector outputs providing wired-or logic; as also is output B_{2} from $I C_{2}$ after inversion by one section of $I C_{6}$. The outputs from $I C_{4}$ are combined into a common load resistor R_{l}; and consideration will show that the result is a logic 0 at all times except for the condition that all $I C_{4}$ inputs are at 0 , when it will become logic 1 . This condition only arises when the days count/r.o.m. coincidence is complete, plus a logic 1 output being present from the B_{2} output of $I C_{2}$; and this is the condition required for actuation of the reset circuitry.

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	0
0	1	1
1	0	1
1	1	0

Fig. 8. Exclusive OR truth table.

The high state thus arising at the output of $I C_{f}$ is used to reset the two days counters $I C_{1}$ and $I C_{2}$ to zero, using the normal reset facility on these blocks. However, as has been said, this reset in itself is inadequate, since it leaves the days display showing 00 when in fact 01 is required. A further logic network is therefore necessary to detect the 00 when it arises and change this to 01 ; this being achieved by the circuitry within the dotted outline in Fig. 6. All the 6 relevant outputs from $I C_{I}$ and $I C_{2}$ (the remaining 2 outputs from $I C_{2}$ are not relevant, since the tens-of-days count always stops at 3 or less) are. after inversion by $I C_{6}$, taken to $I C_{5}$, which is an 8 -input NAND gate. The two remaining inputs to $I C_{5}$ are strapped high (i.e. to $V_{c c}$). In all conditions other than a 00 on $I C_{1}$ and $I C_{2}$, one or more of the inputs to $I C_{5}$ will be low
(because of inversion by $I C_{6}$) and the output from $I C_{5}$ will therefore remain high. For 00 , however, all inputs to $I C_{6}$ go low; all inputs to $I C_{5}$ go high, including the two strapped to $V_{c c}$; and the output from $I C_{5}$ therefore goes low. This is inverted by (part of) $I C_{12}$ and fed to G_{2}, another NAND gate (i.c. numbers around this part of the circuit overlap with those in the next sequence, Fig. 9, since multiple blocks are employed). The other input of G_{2} is fed by 1 Hz clock pulses, as previously described. Since the output of $I C_{12}$ is now high, these pulses are routed through G_{2} and injected into the beginning of the days counter chain at point B, providing a negative-going pulse (G_{2} being a NAND as opposed to AND gate). This pulse advances $/ C_{1}$ by one step, changing the display to 01 and simultaneously, via the route just described, closing G_{2} so that no further pulses are gated through. One further gate, G_{l}, is a practical necessity in this circuitrysince the driving source for the calendar chain is a t.t.l. output, a buffer with opencollector output must be interposed in order to allow the momentary pull-down of the driving line to zero whilst the main drive remains in a high state. $I C_{7}$ (which contains both G_{1} and G_{2}) is therefore an

Fig. 9. Read-onlymemory circuit.
open-collector type (i.e. the circuitry is wired-OR).

This particular "dodge" for obtaining a 1 , as opposed to 0 , reset has, so far as the authors are aware, not been published before. Possibly it will be found to be of use in applications other than the present one. In that case, when possibly a convenient quick-sequence advancing pulse might not be readily available, we would suggest that the clock pulse input to G_{2} be fed from a local oscillator, which would of course allow the 0 condition to be cleared at any desired speed.

Months logic

The circuit for this, including that of the diode-matrix r.o.m., is given in Fig. 9. The B_{2} output from $I C_{2}$ is used to drive the 7493,4 -bit binary counter $I C_{8}$, which is wired as a $\div 12$ counter (n.b. the usual $7492 \div 12$ counter cannot be used for this purpose, as its truth table becomes incorrect above the count of 5). The $I C_{8}$ therefore receives one pulse at the end of each month, advancing its count by 1 . The binary output from $I C_{8}$ is fed to $I C_{9}$, which is a $4-16$-line decoder in a 24 d.i.l. package, decoding any binary input into a one-of-sixteen output. Twelve of these outputs are employed to select a "month" line in the r.o.m. matrix, so that as $I C_{8}$ steps on at the end of each month the new month's data is selected. The output corresponding to February, however, has to receive intermediate processing, since alternative February lines are provided in the r.c.m. for a 29 -day February (leapyear) and a 28 -day February (non-leapyear). The output for this month from $I C_{9}$ is therefore routed through a gating system, $/ C_{7}$, which routes the signal to whichever of the two February lines is called for according to the condition of the years display. Thus, the 12 "month" lines of the r.c.m. matrix are scanned sequentially by $I C_{9}$ in the order shown, which corresponds to the order of the months (Jan $=1$, Dec $=12$), the February alternatives being labelled 3(1) and 2(2), the latter being the leap-year condition.

The r.o.m. matrix itself consists simply of an array of diodes arranged as shown. The precise type of diode used is unimportant provided that the forward conductance is high; this factor is essential. In analysing its operation it is convenient to consider it in two halves, the separation being indicated by the dotted line in Fig. 9. Dealing with the top half of the matrix first, this contains the data on the number of days allowable in each month before reset. A diode in the top line for a given month indicates reset required at (last digit) 1, for months containing 30 days (remembering that reset is required at allowable days +1); a diode in the second line indicates reset required at (last digit) 2 , for months containing 31 days. A diode in the third line changes the reset requirements for the first digit of the days count from 3 to 2 -this facility being required only for the 28 -day February (reset on 29), since for all other months the first digit of the reset number is a 3 . In the absence of a matrix connection, the
three top (in Fig. 9) inputs to $I C_{1 I}$ are floating and therefore assume a high state. This would continue to be the case in the absence of an input signal to the matrix from $I C_{9}$. When, however, a signal from $I C_{9}$ is received on one of the matrix vertical month lines, it will be routed through to an $I C_{11}$ input if a diode is present at the intersection; and in this case, since the output signal from $I C_{9}$ is a logic 0 it will ground, via the diode, the floating high $I C_{I I}$ input, which will therefore assume a logic 0 state. (This is the reason for the requirement previously stated that the diodes must have high forward conductance, since any residual voltage remaining on a supposedly grounded $I C_{I I}$ input would result in incorrect operation.) Thus for example, taking the month of January, the (logic 0) output from $I C_{9}$ will be on output no. 1 which is connected to vertical line no. 1 on the matrix; the top input to $I C_{H}$ has no diode at its intersection with this line, is therefore not connected to it, and will remain at its floating high; the second input will be connected to $I C_{9}$ output via the diode at its intersection, its floating potential will be grounded, and it will be at logic 0 ; the third input, like the first, will remain high. An input code of 101 to $I C_{H}$ thus results. This is inverted (by $I C_{I I}$) to 010 and passed to $I C_{3}$ for coincidencecomparison, as previously described.

The lower half of the r.o.m. matrix contains the data for the months display. This is arranged straightforwardly in b.c.d., the top four lines containing the last digit of the month and the bottom line the extra digit required for the two-figure months. Again, strobing of a vertical line by $I C_{9}$ gives a coded horizontal output to $I C_{10}$ which actuates the months display appropriately.
(To be continued)

Note: Corrections for parts 1 and 2 together with a parts list will be published in the concluding part.

Literafure Received

ACTIVE DEVICES

Brimar have discontinued the loose-leaf presentation of their cathode-ray tube data and have introduced a bound volume to replace volumes 3 and 4 . Tubes are listed in alphabetical order and there is a "tab" index for category indication. The subscription for the book and up dating service is $£ 1$ per year. Brimar Data Service, Publicity Dept., Thorn Radio Valves \& Tubes Ltd, Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS.
A wall-chart giving broad specifications of a range of silicon photodetectors is available from RCA. Devices described include PIN diodes, avalanche types, photovoltaic diodes and detector/preamplifier modules. Electronic Components Division, RCA Ltd, Lincoln Way, Sunbury on-Thames, Middlesex. ... WW401

GENERAL CATALOGUES

Cavern Electronics have sent us a copy of their mail order catalogue of electronic components, containing active and passive components, kits, and assorted hardware. The price is 30 p . plus 11 p postage, the 30 p being refunded with the first order of $£ 3$ or more. Cavern Electronics, 94 Stratford Road, Wolverton, Mitton Keynes MK 12 5LU.

EQUIPMENT

Transducers, input amplifiers and $x-y$ recorders of various types are described in a new short-form catalogue by Bryans Southern Instruments Ltd, Willow Lane, Mitcham, Surrey CR4 4UL. .WW402

Gardners have compiled a new catalogue of stabilized power supplies, inverters, converters and wound components, obtainable from Gardners Transformers Ltd, Christchurch, Dorset BH23 3PN. .. WW403
Full technical details of a range of electronic measuring instruments, power supplies and industrial controls are presented in the 1974 Advance Electronics Data Book, available from Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts . WW404
A very small, high performance data acquisition module is described in leaflet AN6912 from Analogic. The unit contains scanning, signal conditioning, a-to-d conversion and control functions. Analogic Ltd, Monument House, 25-27 Monument Hill, Weybridge KT13 8RT.

WW405

APPLICATION NOTES

Two booklets have been published by Mullard on d.c.-d.c. converters for switched-mode power supplies (TP1442) and radio-frequency interference suppression in these circuits (TP1443). The booklets are available from Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House Torrington Place, London WCIE 7HD. The reference numbers should be quoted WW4 10

MISCELLANEOUS

A group of new publications has just been released by the International Telecommunications Union.
"The proceedings of the Seminar on the Planning of Broadcasting Stations, Sao Paulo, 1973", available at 122 Swiss francs.
"General Graphical Symbols for Radiocommunications" at 26 Swiss francs.
"List of Coast Stations-LV" at 69 Swiss francs.
"List of Ship Stations" 14th edition, at 24 Swiss francs.
All available from General Secretariat of the ITU, Place des Nations, CH-1211 Geneva 20, Switzerland

Two leaflets produced by 3 M describe a range of Hedlok plastic fasteners and a selection of selfadhesive, moulded buffers for the protection of equipment from vibration and scuffing. 3M United Kingdom Lid, 3M House, Wigmore Street, London WIA IET

WW413

Baxandall tone control revisited

Improvements for greater flexibility in tailoring audio signals

by M. V. Thomas, B.A.

Abstract

The main disadvantage of the Baxandall tone control circuit is that if boost and cut are required at a particular frequency a much greater effect occurs at the extremes of the audio range. Modifications are described to limit the degree of this effect.

The Baxandall configuration has for some time been the almost universal choice of audio amplifier manufacturers for their tone control circuits. This is due in no small measure to its simplicity of construction and ease of use, and it is difficult to envisage any improvement of the circuit whilst retaining only two controls. However, once a decision to increase the number of controls is made, the field becomes wide open, the most obvious development being to have each control affecting the level of a limited band of frequencies. Such circuits are obviously much more elaborate than the basic Baxandall type, and require careful design to prevent excessive interaction between the controls. This article describes a modification to the basic Baxandall circuit which greatly increases its versatility whilst maintaining its simplicity.

The main disadvantage of the basic circuit is that it has its greatest effect at the extremes of the audio range, as shown in Fig. 1. For example, if a 6dB boost is required at 4 kHz , one must simultaneously tolerate a much greater boost of perhaps 18 dB at 16 kHz . Furthermore, the turnover frequency of the bass control depends on its setting, but this does not apply to the treble control! This effect is also shown in Fig. 1, and the reason can be seen in Fig. 2, which shows the basic circuit. At very low frequencies the impedances of the capacitors are high and the circuit is essentially resistive. The bass control then acts as a simple gain control and the treble control has no effect. As the frequency is increased, the bass control is progressively decoupled by C_{I} and C_{2}, the relevant time constants being $C_{1} R_{3}$ and $C_{2} R_{2}$. But the relative values of R_{2} and R_{3} obviously depend on the setting of the control, this causing the variation in turnover frequency as shown in Fig. 1. For example, to increase the bass boost, R_{2} must be increased, thereby increasing the $C_{2} R_{2}$ time constant and increasing the turnover frequency. At higher frequencies (above 1 kHz) the bass control is completely decoupled by C_{1} and C_{2}, and the impedance of C_{3} has fallen to a value where the treble control begins to

Fig. 1. Idealized responses of the Baxandall-type tone control circuit.
have a significant effect (capacitor C_{3} is often replaced by two capacitors, one at each end of the track of the treble control, but the effect is basically the same). Resistor R_{5} prevents the bass control from loading the treble control, and the time constant which primarily decides the treble turnover frequency is $C_{3} R_{5}$, which is independent from the control settings. At very high frequencies (above 10 kHz) the treble control acts as a gain control. Resistors R_{1}, R_{4}, R_{6} and R_{9} serve to limit the effect of the controls at their extreme settings, and are comparatively small in value, so they do not affect the basic operation of the circuit.

Whether this difference in mode of action of the bass and treble controls, is advantageous is a difficult question, and one could no doubt argue either way. However, it is about all one can do with a simple $R C$ network, unless completely separate boost and cut controls are used'. Using this approach it is possible to synthesise "step" responses as shown in

Fig. 2. Baxandall-type tone control network.

Fig. 3. Synthesis of "shelf" responses using completely separate boost and cut networks. In the example shown, the maximum overall boost is +12 dB (curve C), but at 20 kHz this overall boost is obtained by applying 40 dB boost and $28 d B$ cut (curves A and B), thereby causing overload or noise problems, depending on which operation is performed first.

Fig. 3, but in order to obtain a flat response it is necessary to simultaneously boost and cut the signal, which can cause overload and noise problems as the two operations are performed in different parts of the circuit, in contrast to the Baxandall arrangement.

Possible modifications of the circuit to limit its effect at the extremes of the audio range were therefore considered. It was decided that the most useful addition would be of separate "effect" controls for bass and treble, which would limit (in a symmetrical fashion) the maximum degree of boost and cut obtainable from the bass and treble controls, and further reference to Fig. 1 shows how this may be done. The maximum boost and cut of the bass control are decided by R_{I} and R_{4} respectively, so the desired result could be obtained by replacing these with variable resistors, but this arrangement has two disadvantages. Firstly, two controls are required, and secondly, changing the values of these resistors will cause some change in the turnover frequency of the bass control. However, the same result can be achieved with neither of these disadvantages, by connecting a single variable resistor directly across the bass control, as shown in Fig. 4. This control

Fig. 4. As Fig. 2, but with the addition of the two effect controls.

Fig. 5. Complete circuit. Resistors can be $\frac{1}{8}$ watt unless shown otherwise.

Fig. 6. Selection of the frequency responses obtainable with the circuit. See text for further details.
simply acts as a potential divider in conjunction with R_{l} and R_{4}. As the resistance of the control is reduced, the fraction of the input and feedback signals appearing across the bass control is also reduced, thereby limiting its maximum effect. A similar modification to the treble control will not have the desired result, because of the fixed turnover frequency of this control; it would indeed reduce the maximum boost and cut of the control, but one could obtain exactly the same frequency response by removing the "effect" control and by having the treble control at a less extreme setting! This state of affairs can be prevented by including a series capacitor, as shown in Fig. 4, so that the "effect" control is operative only above a turnover frequency decided by the values of this capacitor, R_{6} and R_{9}.

The complete circuit incorporating these modifications is shown in Fig. 5, and apart from the additions it is quite conventional. The only extra precaution necessary is to ensure that it has a reasonably high drive current capability, as the impedance of the control network can be comparatively low at some control settings. However, the worst-case maximum output of the circuit is approximately four volts r.m.s. before clipping, which should be perfectly adequate. The transistors used in the prototypes were BC169Cs; these have a $V_{\text {ces }}$ of 30 V , which allows the use of a fairly high supply voltage for the circuit. Transistor Tr_{1} provides a low impedance drive to the network while Tr_{2} and Tr_{3} form a bootstrapped amplifier. The low distortion and low output impedance of this configuration make it an ideal choice for this application ${ }^{2}$. The circuit has a gain of unity with the controls set flat, and C_{2} and C_{10} reduce the r.f. gain to prevent instability. Resistors R_{12} and R_{13} provide d.c. feedback to hold the emitter of $T r_{3}$ at 15 V , this being a useful point to check when testing the circuit. Logarithmic pots are recommended for the two effect controls. The "top" end of each track should be left unconnected so that the
controls will then have their smallest modifying effect when fully clockwise. Resistors R_{5} and $R_{H /}$ in Fig. 5 prevent the effect controls from completely swamping the bass and treble controls when the former are fully anticlockwise; the values shown set the limits at the audio extremes to $\pm 4 \mathrm{~dB}$.

Fig. 6 shows a selection of the frequency response curves which can be obtained from the circuit. The set of curves marked "A" obtained with the effect controls fully clockwise shows the responses with the bass and treble controls at their extreme settings, and set " B " is similar except that this shows the responses with the bass and treble controls at approximately half maximum settings. These curves are almost identical to those obtainable from a conventional circuit-compare for example with those of the tone control circuit in ref. 3. The only difference is that the bass and treble responses have been deliberately arranged to overlap rather more than usual, so as to take fuller advantage of the effect controls. Set "C" is obtained with the bass and treble controls at their extreme settings but with the effect controls set to limit the responses at the audio extremes to the same as those of set " B ", and this clearly shows the advantages of the extra controls. Basically, by the use of these controls it is possible to alter the level of a band of frequencies far more uniformly than with a conventional circuit, and this advantage is very noticeable in use, being considered well worth the extra complexity.

References

1. Hutchinson, P. B., "Tone control circuit", Wireless World, Nov. 1970, pp.538-540.
2. Quilter, P. M., "Low distortion tone control circuit", Wireless World, April 1971, pp.199200.
3. Walker, H. P., "Stereo mixer", Wireless World, June 1971, Part 2, pp.295-300.

HF Predictions
 September

There is no sign of abatement in the current prolonged spell of high magnetic activity. During June and July 40 days were disturbed compared to 24 for the same period of the last sunspot cycle. Comparing with last year there were 30 disturbed days in June and July followed by about ten days per month until February of this year when the current high activity commenced. These disturbances cause a reduction in FOTs shown on the charts. Low latitude circuits are hardly affected, however, and can even show an improvement under these conditions. FOTs on trans-equator routes are at their highest during September.

Dolby f.m. broadcasting

I read with interest your article on the use of the Dolby B system in broadcasting (July issue, page 237).

Any proposal that may result in an improved signal-to-noise ratio, particularly for stereo reception in fringe areas, must receive careful attention. In the well-known Dolby B system, as normally applied in tape recording, low-level signals are boosted in a special way before recording, while a complementary decoder or expander in the replay chain restores the balance at all levels. Compression of the dynamic range before transmission, with a complementary expansion at the receiver, can permit the largest possible signal to be transmitted over the noisy part of the system and there seems to be no technical reason why "companding" should fail to be successful in f.m. broadcasting.

The real question to be faced by the broadcaster in considering schemes of this sort is whether, in order to bring about an improvement for relatively few listeners towards the fringe of a service area, there can ever be a justification for requiring all the owners of existing receivers to replace their equipment or have it modified. I would not deny that the Dolby B system is an effective method of noise reduction, given proper instrumentation at both sending and receiving terminals; the worry is that the introduction of companding at the sender without sophisticated complementary treatment at the receiver inevitably involves a deg radation of the overall fidelity.

Band II/f.m. broadcasting in this country has rightly come to be regarded as a very accurate transmission system and the compatibility of any proposed change in the specification of the transmitted signal is of paramount importance to the owners of the twelve million or more existing v.h.f. receivers. Any realistic appraisal of the possibility that a significant proportion of these receivers would ever be modified must lead to the conclusion that they would not.

Your article does not give sufficient weight to the compatibility aspects of the proposal. Given the simultaneous introduction of Dolby B and a reduction of time constant to $25 \mu \mathrm{~s}$ in the transmissions it is claimed that adequate compatibility is obtained with a 75μ s (American style) de-
emphasis receiver, although others have expressed doubt on this subject. I wonder whether a combination of compander and time constant could be found to match up to the present quality standard given by a respectable-fi, $50 \mu \mathrm{~s}$, European tuner. You call the result "bright"-forgive me if I stick to the old-fashioned word "distorted" and note that you say our millions of established listeners wouldn't get any improvement in signal-to-noise ratio either.

Hence, the responsible broadcaster must consider options that can improve the service for the use of ordinary, existing receivers. As a result of a great deal of work behind the scenes, the BBC has recently installed "variable de-emphasis" limiters for services carrying most of the stereo transmissions. The principle is that for an overwhelming proportion of the time the broadcast is carried out with the conventional 50μ s pre-emphasis, with the assurance that all receivers are fitted with the complementary $50 \mu \mathrm{~s}$ de-emphasis, but when under exceptional circumstances there is a very large amplitude, high frequency, content, a momentary reduction of pre-emphasis (not clipping) is automatically introduced. Over-modulation difficulties arising from the use of preemphasis in the f.m. system can be avoided without having to reduce the gain at low audio frequencies. Very careful testing has shown that the action of this special limiter is barely detectable subjectively by the most expert observer, even when he has access to the original material.

For stereo transmissions we normally allow a smaller margin against overmodulation than we do for mono; this has the effect of improving signal-to-noise ratio by 2 dB or 3 dB and as we gain experience with the variable de-emphasis limiter we may find that a further improvement of perhaps 3 dB or 4 dB can be gained without running into difficulties. The aim will always be to ensure that the ordinary listener with a standard receiver receives the maximum signal level possible, consistent with the minimum distortion of the spectrum for all listeners.

The situation in the United States, where they have a $75 \mu \mathrm{~s}$. time constant as standard and the well-known very severe propagation and reception problems with commercial stations fighting to be heard in their big cities, is hardly a guide to optimum practice here. I believe our army of v.h.f./f.m. listeners can put their wallets away. Head of Engineering Information Department, BBC.

Quadraphonic quandary

I have just read Mr Shelley's article in your July issue. I wish to point out that the contrast he makes between my statement with respect to 90° inter-channel phase shift (Ref. 3, B.B.Bauer et al., "Compatible Stereo Quadraphonic Re^{-} cording System", J. Audio Eng. Soc., Sept. 1971) and that made by Drs Cooper and Shiga (Ref. 4, Cooper and Shiga, "Multichannel Stereo", J. Audio Eng. Soc., June 1972) is not accurately
defined. My paper, referring to experiments performed a decade ago in which we had noted the image spread caused by 90° phase shift, reports on further experiments in which we established that quadrature images, in addition, exhibit a certain amount of lateral shift toward the loudspeaker carrying the leading phase signal. Cooper and Shiga do not directly contradict this result as assumed by Shelley. In their paper they merely state that application of 90° of relative phase shift shows no statistically significant in crease in image spread compared to 45° and $22: 5^{\circ}$ phase angles, which is an entirely different statement.

Referring to the paper of Kohsaka, Satch and Nakayama (volume 20 of the J. Audio Eng. Soc., page 542) from which Cooper and Shiga draw their conclusions, we note that the image spread they observed for the above-mentioned angles is $60^{\circ}, 45^{\circ}$, and 40°, respectively, with the larger angle bracketing a range of observations of 45 to 90°. Kohsaka et al. used noise signals for their experiments. A subsequent study by Takeshi K. Matsudaira and Takeshi Fukami (in volume 21 of the J. Audio Eng. Soc., page 792) under similar conditions of listening, but with signals comprising orchestral sounds, individual musical instruments, and human voice, has established mean image shifts for 90° phase, which average some 30° with standard deviation range varying from 20° to 120° about this average. In the Matsudaira study, the image spread for zero degrees phase shift, in general, is inconsequential; while in the Kohsaka study, 40° spreads have been observed. Why the disparity between the Matsudaira and the Kohsaka data? We don't know. But, we observe that Matsudaira gives us a detailed description of his room and equipment. Kohsaka does not provide us with any relevant information. Therefore we are more willing to accept Matsudaira's data, especially since it closely matches our own experience.

With respect to my 1971 position that the particular system of quadraphonic matrix encoding and decoding should well replicate the sound of the original master tape, this still is an important objective of the SQ system; and indeed it is truer with today's improved full-logic decoders than ever before. However, there is an important difference in attitudes: With greater increase of quadraphonic sophistication in which signal channel blending is employed, it has become evident that slight differences between the master tape and the reproduced quadraphonic performances are always likely to exist. This has led to a change in recording procedures whereby a producer will mix the master tape in such a manner that the decoded image, albeit not necessarily offering a precise match with the discrete tape mix, nevertheless, becomes his primary standard of artistic excellence. With this change in emphasis. in auditing the disc with a suitable decoder the listener by definition hears the approved version of the reproduced sound. I realize that questions will arise about this procedure, because of
the uncertainty about the performance of the reproducing characteristics of the commercial decoder compared with those of the studio decoder. This is not a primordial dilemma, however, for it also exists in the art of mixing stereophonic records. It is well known that the producer mixes the stereo record employing a studio monitor setup which practically never is exactly duplicated in the home of the listener. Thus, an uncertainty exists with respect to the producer's actual intentions even in the stereophonic medium. Quadraphony merely adds a new dimension to this problem which will diminish with time as the better grade of home decoders more closely match in quality the performance of studio decoders.

It seems to me, that with the shift of quadraphonic philosophy from the mere replication of a discrete quadraphonic tape to the creation of the final decoded product, many of the questions raised by Mr Shelley become academic. The producer and the recording director make and approve the SQ record, which, in essence, is their principal function. The various mathematical and philosophical arguments about quadraphony, therefore, become inconsequential.
Benjamin B. Bauer,
CBS Laboratories,
Stamford, Conn.,
USA.

Horn loudspeaker design

I have been following Mr Dinsdale's series on horn loudspeakers (March, May, June) with great interest as I have recently designed and built a three unit horn system, and I thought my experiences might be of interest to those intending to build the Dinsdale loudspeakers.

Coincidentally, I also chose to base the design on the three KEF units used by Dinsdale. The low frequency horn is folded in a similar manner to the Klipschorn and uses a compression chamber behind the B139 driver as well as a small air chamber in front of it connected to a rapid initial flare section, as suggested by Klipsch. This exponential horn was designed for corner use and has a flare cut-off frequency of 50 Hz and a mouth area of 550 sq . in. In use this horn gives an apparently smooth response from 400 Hz down to about 35 Hz , with very high efficiency and an overall clear, undistorted sound. Any resonances present are less noticeable than the natural resonances of the small rooms in which it has been used.

The problems with the system come at the top end and are caused by two factors: colouration and poor dispersion. The colouration, which takes the form of audible resonances in the mid and high frequency ranges, seems to be due to transverse reflections between the walls of the horn, especially in the throat region where the cross-section is almost square. This was confirmed by using a microphone probe which picked out standing waves across the horn whereas longitudinal resonances were not noticed (the mouth area being suf-
ficiently large to obviate reflections). The T27 tweeter simply refused to sound right with any form of horn loading. In fact if the T27 is mounted flush in a baffle as suggested by KEF and is fed with white noise, audible colouration occurs as soon as any hard object is placed within about six inches of the diaphragm!

The top end horns were intended to give good horizontal dispersion over an angle of 90°. This is necessary to preserve the offaxis response which otherwise falls at high frequencies. To this end the mid-range horn was made with a mouth 10 in high and 20 in wide and incorporated four splitters in the throat section to give better angular dispersion of the high frequencies. This technique had only moderate success.

It should be noted that the "plane wavefronts" advocated by various authorities must by their very nature give rise to highly directional propagation, especially at high frequencies. This gives poor mono reproduction and a small stereo listening area. For this reason cinema horn loudspeakers invariably employ some form of diffraction on the high frequency unit, either by a multicellular design ${ }^{2.3}$ or by means of an acoustic diverging lens ${ }^{4}$.

The above faults made the system sound characteristically coloured when compared with professional monitor loudspeakers (the Spendor BC 1 and Rogers BBC monitor) although it sounded fairly reasonable on its own. For any further development of a horn top end I would personally opt for a drive unit specifically intended for "pressure loading" (which means in effect a smaller, lightweight diaphragm loosely suspended) and work along the lines indicated by Klipsch ${ }^{5}$. Conventional speakers do not seem to take kindly to horn loading.

One point which Mr Dinsdale does not seem to have covered in his historical survey is the effect of a time delay due to the length of the low frequency horn; if this is several feet long the low frequencies will be delayed by several milliseconds. In the 1930s it was noticed that this can cause audible echos on some transients and thenceforth the high frequency horns of cinema loudspeakers were moved back so that the drivers were in line rather than the horn mouths. While this is not entirely practical for folded domestic systems, the high frequency horns should be set back as far as possible. Phase matching at the crossover frequency is still desirable, of course, taking into account the phase shifts in the crossover network itself.
I would like to end by suggesting that in order to minimize the size of bass horns more research should be done into the design of corner standing units. The corner horn can be thought of as an acoustic coupling between the drive unit and the conical horn formed by the corner of the room. Freehafer ${ }^{6}$ has analysed a horn of this form, the true hyperbolic horn (not to be confused with the more common family of horns characterized by hyperbolic trigonometric functions and often called "hyperbolic" or "hypex" horns). He was able to do this without making the
usual plane wave assumptions and found that the low frequency response was much better than that of the conical horn to which it is asymptotic. He states that ". . . hyperbolic horns favour the low frequencies to a much greater extent than do the corresponding conical ones. Since the hyperbolic horn differs in shape from the conical only in the curvature near the throat, its better performance must be attributed to that curvature. It appears that the ideal horn shape approaches that of a uniform tube near the throat." This is potentially very interesting for the designer of corner horns as the throat is the only part of the horn over which he has control. Unfortunately due to the complexity of the mathematics involved it would seem that computer simulation of the system is the most promising approach to an optimal corner horn.
D. C. Hamill,

Wimbledon,
London SW 19
References

1. P.W. Klipsch, "A low frequency horn of small dimensions". J. Acous. Soc. Am. 13, p. 137 (1941).
2. L. L. Beranek, "Acoustics". McGraw-Hill (1954). 3. H. F. Olson, "Acoustical engineering". Van Nostrand (1957).
3. W. E. Koch and F. K. Harvey. "Refracting sound waves". J. Acous. Soc. Am. 21, p. 471 (1949). 5. P. W. Klipsch, "A high quality loudspeaker of small dimensions". J. Acous. Soc. Am. 17, p. 254 (1946).
4. J. E. Freehafer, "The acoustical impedance of an infinite hyperbolic horn". J. Acous. Soc. Am. 11, p. 467 (1940).

The author replies:

Mr Hamill provides some valuable comments on his experiences with hornloading the KEF units. In my opinion the B139 is the best available driver for bass horns, and even more impressive results can be obtained from using two or even four such units (connected in parallel) at the throat of a suitably-designed horn. For those with limited space, a single bass horn driven by two (or four) B139s, with one (or two) drivers handling the bass range up to (say) 400 Hz for each channel, employing acoustic mixing within the horn itself, can provide a useful compromise. There is little stereo information below 1 kHz , so this compromise is quite legitimate.

The formation of standing waves across rectangular mid-range horns is all too common an experience, and I feel that the only real solution to this problem is to employ horns of circular section, in spite of the greatly increased difficulty of manufacture. Nevertheless, I have not personally experienced undue distress due to this cause from horns of similar dimensions to those described in my article. Recent experience has now confirmed to me that the Lowther PM6 and PM7 provide the most natural sound in this middlefrequency range, especially when driving circular horns.

I entirely agree with Mr Hamill's comments about the T27, and confirm that it sounds best when mounted flush in a baffle. I would also recommend the

Eagle HT21 (which comes complete with its own diecast rectangular horn) as providing a useful addition to the top range.

The point about time delay is an interesting one: clearly the length of the low-frequency horn will cause phase distortion on transients, and I like the idea of setting the high-frequency horns back so that the drivers are in line. Regrettably, as Mr Hamill points out, this is not entirely practical in the domestic situation. I have of course stressed the importance of phase matching at the crossover frequency, and fully agree that phase shifts in the crossover network itself must also be taken into account.

Finally I endorse wholeheartedly Mr Hamill's call for a concerted attack on the optimum design of the corner horn using computer techniques, and I would be pleased to act as a "clearing house" for any ideas and results which readers of Wireless World may have on this subject. J. Dinsdale.

Calculator i.c.

Regarding the letter from A. M. Coppin in your May issue, it is possible to purchase a seven-segment to b.c.d. encoder chip. National Semiconductor recently announced the DM 86L25 which provides the function in lower power t.t.l. Not having seen detailed specs, I can't say whether the chip would handle the decimal point in a manner suitable for a calculator.

It would certainly be simpler if the calculator chip had b.c.d. output. Furthermore, most calculator chips require that data be entered by simulating keyboard operation. This is another area where some changes could be useful. Also, only one calculator chip that I know of (National's MM 5738) has a "ready" signal to indicate when calculations are complete. This chip is also supposed to permit defeating the keyboard de-bounce circuitry to provide for faster data entry by keyboard simulation.

Reader Coppin should consider publishing the calculator design in Wireless World. It sounds very interesting.
R. E. Smallwood,

Calgary,
Alberta,
Canada.

Electrostatic forces on pickups

As I do not use a record turntable having a plastic dust cover I do not experience the trouble described by Mr M. P. Hide (Letters, June issue) but this fact does not deter me from proposing a solution to his problem. The same cause has given rise to drastic inaccuracies and long-term spurious deflections in indicating instruments with plastic windows. I have found that smearing the plastic with only slightly diluted liquid washing-up detergent, such as Fairy Green, and very lightly polishing-
off to leave an extremely thin film on the plastic surface, has been completely effective for many months after treatment. After treatment, breathing on the surface removes any appearance of smearing. The turntable can, of course, be treated on the underside so that the film is less liable to damage and where dust is less likely to adhere to it.

The maker's recommended playing weights for my Shure V15 type II cartridge are as for the V15 type III unit. Like Mr Hide I use the SME arm. I find no real advantage in using less than 1 gm playing weight, so if he does not already play above the 0.75 gm minimum recommendation I suggest that he so does as a partial solution to his problem.
John A. Young,
Girlsta,
Shetland Isles.
First reaction to Mr Hide's problem of the galumphing pickup arm (Letters, June), why not "paste" some domestically available aluminium foil to the inside surfaces of the plinth cover connected via a pigtail between the hinges to the underside of the pickup arm mounting?

Without even considering the rules of electrostatics it seems highly unlikely that any electrostatic force could exist between two metallic objects tied to the same potential, and electrostatic forces elsewhere should be balanced. If the handling of the somewhat cussed foil to give a wrinkle-free finish should prove a problem, or the choice of an appropriate adhesive, what about aerosol aluminium paint, possibly matting the surfaces first with pumice powder. The pigtail can be attached with masking tape, "spotting in" over this afterwards.
C. Bradshaw,

Cookham,
Berks.

Tuning the electronic piano

I would like to suggest the following method of tuning any locked-divider electronic polyphonic keyboard instrument. 1. Ensure vibrators or tremulants are"off". Tune middle A to 440 Hz , using a fork or BBC test tone transmission.
2. Tune the D below so that it sounds a perfect fifth (zero beat) with the A440. (This should be easily recognized as the commonly heard violin tuning procedure.) 3. Sharpen the D (increase frequency) until it beats with the A at approximately 1 beat per second.
4. Now play the D and the G below it and tune the latter (first to a perfect fifth, then sharpened to I beat per sec.).
5. Continue sounding the G one octave above (392) and tune the C below in like manner.
6. Confine the sequences to the middle octaves (by jumping up one octave as required) and carry on tuning in fifths (adjusting the lower note each time) until the final interval is reached, which is E
(659) sounded with the fifth below (your original A440). This should sound like the other intervals (a perfect fifth slightly diminished).

The musical reason for diminishing each interval is simply that all modern keyboard instruments are"equal temperament" tuned so that they can be played in any key.

To prove the point; if the instrument is tuned in fifths as described without diminishing each interval the final check interval (E to A) will be so diminished as to sound appalling!

For greater precision, if the instrument can be made to sustain, the beats can be counted over 10 seconds, as per the table given in the interesting book by Richard H. Dorf, Electronic Musical Instruments. Kenneth Palmer,
Kensal Rise,
London.

Rectifier meter errors

I was interested to read Thomas Roddam's article pointing out the errors which arise when rectifier meters are used to estimate r.m.s. values of distorted waveforms (May issue).

Roddam deals with the case of a voltage waveform containing fundamental plus third harmonic, the amplitude of the third harmonic being 0.06 times the fundamental. He obtains an r.m.s. value which is 1.03 times the amplitude of the fundamental. Allowing for all possible values of the phase relation between fundamental and third harmonic, Roddam obtains a maximum possible error for the rectifier meter reading of 5%.

I suggest that these values exaggerate the possible error, since a rather more conventional approximation for the square root, viz:

$$
\left(1+h^{2}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2} h^{2}\left(h^{2} \ll 1\right)
$$

gives a true r.m.s. reading of 1.0018 times the fundamental, giving a maximum possible error for the rectifier meter reading of 2.2%.

Using the same approximation with $h=0.12$ the true r.m.s. reading is 1.0072 times the fundamental, giving a maximum possible error of just under 5%.

Perhaps Mr Roddam would care to comment.
P. Williams,

UWIST,

Cardiff.

The author replies:

Mr Williams is, of course, quite right. I cannot explain or excuse my stupidity, because I have always used, for guidance, the simple rule that you cannot trust a meter to better than $(d / 3) \%$, if the distortion might be third harmonic, or $(d / n) \%$ if you know it is all the nth harmonic. My choices of 6% and 12% in the article were intended to give 2% and 4%, and to show that with 12% distortion there is no real room for manoeuvre when claiming a 5% tolerance.
Thomas Roddam.

Electricity and Magnetism? (Part 1)

Riding on an electron: a relativistic approach to the nature of magnetism

by "Cathode Ray"

From a literary quiz: Which book title has been chosen by the largest number of authors?

My guess would be "Electricity and Magnetism". For this purpose I think we might be allowed to include all those who, either to display their striking originality or possibly their sense of priorities, chose "Magnetism and Electricity". These unadorned titles have appeared on the covers of quite a large number of different books, and if we added (as well we might) those really vain attempts to disguise the essential sameness of the subject matter by such expressions as "Elementary . . .","Introduction to . . ." (a favourite device for the more advanced and difficult treatises), "Short Course on . . .", ". . for Beginners", etc., the total would be quite formidable.

Why is it that these two things are as inseparable as bacon and eggs or Morecambe and Wise? Or rather, have become so? For both were well known separately for thousands of years as curious but unconnected phenomena. During all that time electricity was noticed as mysterious attractions and repulsions, and even sparks, when certain substances (such as amber-Greek: elektron) were rubbed together. This was what we call static electricity-the segregation of unlike charges. Current electricity came much later and at first was not identified as having anything to do with it. Magnetism was noticed in the naturally-occurring iron-bearing mineral lodestone, and was named after the Aegean district of Magnesia, where lodestone was found. It too was an affair of attractions and repulsions, and when magnetism and static electricity began to be studied scientifically (17th and 18th centuries) it was found that they conformed to similar laws, notably the laws of inverse squares.

Meanwhile, current electricity had been discovered, and in 1820 Oersted established the first link-up by showing that electric currents produced magnetic effects. Ampère, with prophetic insight, surmised that the magnetic effects of lodestone and other permanent magnets might also be due to electric currents, on a sub-microscopic scale within the magnet material. (This, though much later it proved to be true, must
have seemed most unlikely at the time, as electric currents needed batteries to produce them, and of course the electrical nature of matter was then unk nown.)

Faraday tried to perform the reverse experiment, to produce an electric current by a magnet. He was unable to do this with a stationary magnet, but in 1931 he made the discovery that an electric current could be produced by a moving magnet, and in so doing he laid the foundation stone of electrical engineering. He also did quite a bit towards proving that current electricity is just static electricity in motion, so that they are essentially the same thing.

The link between electricity and magnetism was tightened when Moxwell produced his famous equations defining electromagnetic waves. More recently, in a television broadcast, the late Sir Lawrence Bragg remarked that magnetism is electricity looked at sideways. And so we come to the question: Are electricity and magnetism closely related but fundamentally separate things? Or are they two aspects of one thing, and if so what thing?

Does it matter? Scientifically it certainly does, and even people who have no interest in science that is just theoretical and academic must admit that today's useful things have come out of yesterday's abstract theory. Scientific progress is often made by putting together isolated facts and finding that they fit, like a jigsaw puzzle, into some general design. Newton made a big step forward when he found that a lot of pieces fitted together into a Law of Universal Gravitation. This seemed to be one of those things that had to be accepted as fundamental, rather than following from something else. But Einstein (of whom more anon) came along with his General Theory of Relativity, in which gravitation was a side effect. The rest of his life he was searching for a still more unified design.

Much in all those books on Electricity and Magnetism is devoted to expounding the relationships between the two things. They appear as equal partners in a beautifully symmetrical system of mutual support. Oerstec showed that (what was later discovered to be) moving electric charges caused magnetism, and Faraday showed that moving or varying magnetism caused
electricity. In radio waves a moving electric field is creating a moving magnetic field, and the moving magnetic field is creating the moving electric field, and who is to say which comes first or is the more fundamental?

The most significant thing that both do is to produce forces. The lodestone attracted iron filings, and the rubbed amber or glass attracted pith balls or bits of paper. These forces are independent of matter between the attracted bodies; they occur even across empty space. Which is very mysterious indeed.

We try to disguise our ignorance by saying that the forces are due to electric and magnetic fields. But while that is convenient for discussing the facts, it adds nothing to knowledge. Although electric and magnetic fields (and forces) are similar to one another in many respects, there are some essential differences.

Fig. I. q_{1} and q_{2} represents two electric charges concentrated at points. The force between them is proportional to $q_{1} q_{2} / d^{2}$.

The starting point is Coulomb's law. which says that two isolated point charges, q_{1} and q_{2} in Fig. 1, separated by distance d, exert a force on one another proportional 10

$$
\frac{q_{1} q_{2}}{d^{2}}
$$

If the charges are of the same sign the force repels them from one another; if unlike, it attracts. Although there are no such things as point charges, electrons and even positive ions are very close approximations to them.

From the principle that the total force on a charge is the vector sum of all those acting, one can work out the forces between other configurations of charges, such as parallel plates. For convenience it is all done in terms of the fields that are said to surround charges. One isolated point or spherical charge has a radial field; parallel plates have a uniform field; etc. The force on a point charge in an electric field is proportional to the strength of the charge and
the intensity of the field (without the charge).

Theoretically there is a counterpart of Coulomb's law in magnetism, but it suffers the serious disadvantage that in practice there is nothing even approximately like an isolated magnetic pole at a point. However, one gets magnetic fields of the same shapes as electric fields, and the forces work on the same principles.

Coming now to the link-up, we note that a magnetic field has no effect on a stationary charge, but directly the charge moves it experiences a force. That is because a moving charge (usually one of many forming a procession called an electric current) generates a magnetic field, which reacts with the magnetic field already there, just as the electric fields of q_{1} and q_{2} react on one another. So if two charges move relative to one another they experience forces due to both electric and magnetic fields. This makes things rather complicated. But in practice we are interested in moving charges most often when they are currents in wires or some other conductor. Here each moving negative charge (electron) is exactly offset electrically by a positive charge fixed in the structure of the wire. So the wire as a whole is electrically neutral, and the forces that current-carrying wires exert on one another are wholly magnetic.

Correspondingly, when magnets move they cause electric fields. We rely on this very heavily, as it is the principle on which power stations work.

Fig. 2. Two point charges at B and C are moving relative to one another. The accounts given of this state of affairs by observers B fixed to B, C fixed to C, and A stationary at A, disagree fundamentally.

In trying to summarize Electricity and Magnetism in a few paragraphs I have omitted to specify just what is meant by "moving". Take the two "moving" charges, B and C in Fig. 2. So far as an observer A is concerned they are both moving, but if observer B happens to be travelling along with one of them he will say it is at rest and only the other charge is moving. So his charge can't be causing a magnetic field, so it can't affect or be affected by the other charge magnetically. A disagrees totally with this. Observer C travelling with the other charge agrees with B so far as the absence of any magnetic reaction is concerned, but disagrees flatly with him on which charge is causing the magnetic field that all three agree is present.

It should be clear from this example that until we can sort out this problem the study of Electricity and Magnetism is futile.

One thing we can say definitely is that the velocities of charge-carrying and magnet-carrying objects, and the kind (electric or magnetic) and strength of any field present, depend on the state of motion
or non-motion of the instruments used for observing these things.

I started writing this article in November 1962. No; I didn't forget about it or lose it. I've been trying all this time (on and off!) to answer the title question without letting down those kind people who tell me they can understand most of what I write. All the treatises I could find on the subject were either in the mathematical stratosphere or were too vulnerable to the persistent questioner. Even now I fear you may find I have just added to the number of these.

Imagine that there are two observers, equipped with means for measuring strength and direction of electric field (E) and magnetic field (H) or, more likely, magnetic flux density B, which is equal to $\mu H, \mu$ being the local permeability. They are operating in the gap between the poles of a vast magnet (Fig. 3) which maintains

Fig. 3. Two observers, O and O^{\prime}, are measuring electric and magnetic fields between the poles of an extensive magnet. O^{\prime} is moving along direction x with velocity v relative to O. They too disagree over their findings.
a uniform B vertically upward. Observer O is stationary relative to the magnet, but O^{\prime} is moving away from him with constant velocity ν. As fields are three-dimensional, the observers need to agree on their "frames of reference", having x, y and z axes all mutually at right angles as shown. And to make things as simple as possible x^{\prime}, y^{\prime} and z^{\prime} are parallel to x, y and z, and O^{\prime} is moving along x which is in the same line as x^{\prime}.
O reports that there is a positive B along his positive z axis, none along x or y, and no E at all. O^{\prime} reports the same with one exception. His y^{\prime} axis is cutting the magnetic flux. The well-known electrical engineers' generator rule predicts an e.m.f. e equal to $B v l$, where l is the length of a conductor cutting the flux. But the e.m.f. is the result of a field E equal to e / l, which exists by virtue of the motion in B, whether there is a conductor or not. So O^{\prime} finds an electric field along the y^{\prime} axis, and Fleming's righthand rule tells us that it will be negative along $+y^{\prime}$. In his shorthand he would say

$$
E_{y}^{\prime}=-v B_{z}
$$

or, since the counterpart of E is H,

$$
E_{y}^{\prime}=-v \mu H_{z}
$$

If there was also an electric field along the same axis, E_{v}, detectable by O, the total E_{y}^{\prime} would be $E_{y}-v \mu H_{z}$. And if there was a magnetic field H_{y} and also an E_{z}, by the
same arguments we would be able to say

$$
E_{z}^{\prime}=E_{z}+\nu \mu H_{y}
$$

But any magnetic component along x would not be cut by movement in that direction, so E_{x}^{\prime} would be the same as E_{x}, if any. Putting all these together we get

$$
\begin{gather*}
E_{x}^{\prime}=E_{x} ; E_{y}^{\prime}=E_{y}-v \mu H_{z} ; \\
E_{z}^{\prime}=E_{z}+\nu \mu H_{y} \tag{1}
\end{gather*}
$$

Next we ask O^{\prime} for a magnetic report. Having already considered the possible existence of an electric field specified in magnitude and direction by E_{x}, E_{y} and E_{z}, we must be prepared to hear that O^{\prime} finds his movement through such a field causes magnetic effects unknown to O. Suppose, for example, that the lower polepiece was charged positively and the upper one negatively, so that there was a positive $E_{z} . O^{\prime}$ would have reported this, along with anything due to cutting a y component of magnetic field, as in (1). But, unlike O, he would see the + and charges moving past him in the $-x^{\prime}$ direction. So far as he was concerned they would be electric currents, and the corkscrew rule tells us he would see a magnetic field due to these currents, along the y^{\prime} axis. Reference to the textbooks would confirm the O^{\prime} report of a magnetic field equal to $v \epsilon E_{z}$ along the $+y$ axis, ϵ being the local permittivity. This is in addition to any H_{y} noted by O. Similarly, any E_{y} would give rise to a magnetic field - ve E_{y} along z besides any H_{z} noted by O. But the existence of an electric field along x is not seen by O^{\prime} as a current, so $H_{x}^{\prime}=H_{x}$.

Putting these together we have

$$
\begin{gather*}
H_{x}^{\prime}=H_{x} ; H_{y}^{\prime}=H_{y}+v \epsilon E_{z} ; \\
H_{z}^{\prime}=H_{z}-v \epsilon E_{y} \tag{2}
\end{gather*}
$$

(1) and (2) together are a complete formula for predicting how any combination of fields we see will look to someone else moving away from us with constant velocity $\%$. If he happens to be moving towards us, that is covered by a negative value of r. And if his movement is not along or parallel to our x axis, then all we have to do is reorient both our frames of reference so that he is.

After that achievement we may be tempted to put it away for (improbable) future reference. But if we have the true scientific insistence on cross-checking everything, we (O) will change places with O^{\prime} and solve our set of equations (1) and (2) for E and H, to see how our observations E^{\prime} and H^{\prime} will look to the new $\mathrm{Mr} O$. For example, we pick out from (1)

$$
E_{y}^{\prime}=E_{\nu}-\nu \mu H_{z}
$$

and from it immediately get

$$
\begin{equation*}
E_{y}=E_{y}^{\prime}+\nu \mu H_{z} \tag{3}
\end{equation*}
$$

Then, to deal with H_{z} we pick out from (2)

$$
H_{z}^{\prime}=H_{z}-v \epsilon E_{y}
$$

which gives us

$$
H_{z}=H_{z}^{\prime}+v \epsilon E_{y}
$$

and substituting this in (3) we get

$$
E_{y}=E_{y}^{\prime}+v \mu H_{z}^{\prime}+v^{2} \mu \epsilon E_{y}
$$

So

$$
E_{y}\left(1-v^{2} \mu \epsilon\right)=E_{y}^{\prime}+\nu \mu H_{z}^{\prime}
$$

and

$$
\begin{equation*}
E_{y}=\frac{E_{y}^{\prime}+v \mu H_{z}^{\prime}}{1-v^{2} \mu \epsilon} \tag{4}
\end{equation*}
$$

If we are in empty space, μ and ϵ will be μ_{o} and ϵ_{o}, the permeability and
permittivity of space, or the space constants as one ought to call them. (For our comfort, almost the same values apply to air.) One of their basic relationships is

$$
\mu_{o} \epsilon_{o}=\frac{1}{c^{2}}
$$

c being the speed of light in space. So we can substitute $\left(1-v^{2} / c^{2}\right)$ for $\left(1-v^{2} \mu \epsilon\right)$.

Either way, this result is very disturbing. When we changed places with O^{\prime} we saw O moving with velocity $-v$ along our ax is x^{\prime}. Working out the equations for E and H as we did for E^{\prime} and H^{\prime} from position O we would expect them to be the same except for the reversal in sign of v and the interchange of dashed and undashed letters. That is indeed true of (4) except for the factor $\left(1-v^{2} \mu_{o} \epsilon_{o}\right)$ or $1\left(1-v^{2} / c^{2}\right)$. We will find this same factor intrudes into every equation involving v. But it oughtn't to! There is a downright contradiction between the results of solving equations (1) and (2) to give E and H in terms of E^{\prime} and H^{\prime}, which gives us the intruder every time, and deriving the inverse equations for E and H in the same way as we derived those for E^{\prime} and H^{\prime}.

This is quite mad and impossible! Unless perchance the value of the intruder turns out to be 1. But it only is when $v=0$! Admittedly any practical velocity even up to rocket speeds is so much less than the speed of light that the discrepancy would seem to be negligible. But there oughtn't to be any discrepancy between what O sees of O^{\prime} and O^{\prime} sees of O, apart from the reversal of v !

At least we can get rid of the lack of balance between the sets of equations, (1) and (2), and their E and H counterparts if we split the intruder into two equal parts by taking its square root and attaching this to all the equations. For convenience we can give this half-intruder a single symbol, β :

$$
\beta=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Then our original (1) and (2) become

$\left.\begin{array}{l}E_{x}^{\prime}=E_{x} ; E_{v}^{\prime}=\beta\left(E_{y}-\nu \mu H_{y}\right) ; E_{z}^{\prime}=\beta\left(E_{z}+\nu \mu H_{v}\right) \\ H_{x}^{\prime}=H_{x} ; H_{v}^{\prime}=\beta\left(H_{y}+\nu E_{y}\right) ; H^{\prime}=\beta(H)\end{array}\right\}$
and if we derive from these their E and H counterparts, either by solving the above simultaneous equations or by reversing the sign of v to take account of the reversal of viewpoint, we get a set corresponding to (5), with the factor β in the same places.

That gives them a nice symmetrical appearance, but how can we justify the insertion of β when it has no place in the well-tried laws of electro-magnetic induction which we used to arrive at (1) and (2)?

It must be admitted that we are not the first people to puzzle over this. As long ago as 1895 the physicist Lorentz had reached the conclusion that the laws of electricity and magnetism needed to be supplemented by β before the estimates made by observers in motion relative to one another could be reconciled.

This was one of the pieces that Einstein put together a few years later to compose his Special (or Restricted) Theory of

Relativity. Velocity is of course length divided by time, and Einstein showed that the behaviour of Nature could not be accounted for exactly if the basic quantities length, time and mass were, as hitherto assumed, independent of their relative motion. You can hardly expect me to insert a complete treatise on this rather involved subject right here, but there is a simple explanation in "The Electron in Electronics", by M. G. Scroggie, Chap. 10 (Butterworth, 1965). The main results are:
(1) Bodies moving relative to the observer appear to him to have shrunk in the direction of motion by the factor $1 / \beta$.
(2) The time interval between two events occurring in a system in motion relative to an observer appears to him longer by the factor β than it does to an observer moving with it.
(3) A moving mass appears β times greater than the same mass at rest relative to the observer.
(4) Because no frame of reference has any "absolute" status, all have equal status, so while observer A sees B's spaceship has shrunk in the direction he is going, according to (1) above, B notices exactly the same thing about A's. Assuming they have identical models, each sees the other's ship is shorter and heavier than his own and his clocks run slower.

All very well, you may say, but aren't we moving at rather high velocity away from our question of which comes first, the electric egg or the magnetic chicken?

Well, frankly, no. We shall be needing Lorentz-Einstein before we've finished. Meanwhile it may encourage us on our way to note that we already have an answer to the title question. It is the very basis of relativity that no frame of reference has any higher status than another; in other words, all velocities are relative-there can be no fixed point from which to reckon absolute velocity. So although in Fig. $3 \mathrm{Mr} O$ says there is no electric field, $\mathrm{Mr} O^{\prime}$ says there is, and both are equally right. Although there fore it is in practice convenient to have the separate names "electricity" and "magnetism", they are parts of one whole, in the way Bragg meant.

As to priority, electricity must be a hot favourite. Electric charges are things that are there and can be manipulated one by one. Unlike those apparently absolute things, length, time and mass, electric charge is absolute and unaffected by velocity or anything else. It needs no magnetic or other action to bring it into existence.

How about electric power generators, which depend on moving magnets? Well, it is true that they need these for separating already existing charges of opposite sign. But it is not the only way of doing that-there are such things as batteries and rapidly-taken-off nylon underwear-and anyway the magnets rely wholly on electric currents in the first place. Even permanent magnets owe their magnetism to internal electrical action.

So we can conclude that electricity is the fundamental thing and magnetism a by-product.

Can one go even further than that and say that the two things are the same-the forces that pull magnets together and activate magnetic compasses and pull electric motors round (or, in the case of Professor Eric Laithwaite, straight along) are identical with the electrostatic forces that draw pith balls and gold leaves together in electroscopes and make the rapidly-taken-off vest behave as if it was trying to get back on again?

This seems obviously going too far; if it were so, how is it that one can distinguish between electric and magnetic fields? An electrically charged droplet placed in an electric field is urged thereby into motion, but if placed in a magnetic field it takes no notice.

This delicately poised state of our inquiry is perhaps the right moment at which, as Reginald Bosanquet would say, to take the break. Be with us in Part 2 to see the answer to the question, how is it possible to hold that things which can be distinguished are the same.

Sixty Years Ago

The leader page of the September 1914 issue voiced a problem which has recently become a familiar one again but for a different reason. "Our readers will notice that the present issue is a slimmer volume . . . due to the anticipated shortage of printing paper, which is one of the consequences of the war."

Elsewhere in the issue the war occasionally sank into the background. K.K.G., relating his experiences with a kite aerial, "Found that a two-foot kite would take with ease a 36 -gauge 600 foot aerial in a normal wind and keep it there without any trouble. A stouter aerial is somewhat better, but has the disadvantage of requiring a larger kite, and should a gust of wind raise the kite suddenly there is a danger of its soaring off with the receiving set."

Finally, who can argue with the unfathomable depths of wisdom which concluded a piece on psychology and telegraphy "In conclusion, the sub-conscious mind may be likened to the phonograph. The impression made upon the wax record has a conscious source, and from the record it is reproduced mechanically" Pardon?

Corrections

"Electronic ignition techniques". In the article of the above title in our July issue the address given for Future Tecmatics in reference No. 6 should be 4 Arkwright Road, Launton In dustrial Estate, Bicester, Oxon.

In the article "Coloursound System", by J. R. Penketh, May 1974, pin 4 of the first amplifier in Fig. 7 should be connected to line 10 not 9

Transmission lines for the birdwatcher

Basics and relevance of techniques for the Radio Amateur with introductory construction details

by P. I. Day, B.A.
Jesus College, Cambridge

Abstract

A short article on the basics of transmission lines, including a derivation of several equations. Construction details will be of interest to anyone considering building circuits in stripline form. The title is based on a suggestion by Francis Crick, recorded in the book The Double Helix, by James Watson, that he would write a book on Fourier Transforms for the non-mathematician to be entitled "Fourier Transforms for the Birdwatcher".

For many years considerable effort has been devoted by the electronics industries and research laboratories throughout the world to developing and perfecting transmission systems capable of handling the rapidly increasing communications traffic. Britain, France, America and Japan amongst others are developing systems which will operate on overmoded TE_{01} circular waveguides in the range $30-130 \mathrm{GHz}$, the intermediate frequencies for this equipment lying in the range $1-5 \mathrm{GHz}$. This is a compromise between the bandwidth needed to cope with projected rates of digital transmission per channel and the rapidly increasing costs of amplifiers as the frequency is raised. Japan has chosen a starting frequency of 4 GHz whereas Britain has chosen 1.25 GHz . Many of the techniques involved at these lower frequencies have applications in the Radio Amateur bands at 23 cm and above which at present are little used. The frequency range quoted is conveniently covered by stripline or microstrip, the lower frequency being limited by size considerations of the distributed elements, the upper by losses which can rise rapidly with the substrate materials available for amateur use at a reasonable price.

Fig. 1 shows the method of construction of three types of transmission line which may be used at these frequencies; triplate and coaxial lines have the disadvantages that the final circuit form is relatively permanent, not easily adjustable and diffcult for mounting discrete components. None of these disadvantages apply to stripline and for this reason it has been chosen as the transmission medium. In addition, its construction is compatible with printed circuit techniques which are already familiar to many people.

A transmission line may be characterized by two quantities, impedance and propagation constant. These can be understood by considering an infinite length of line. On applying a voltage to one end

Fig. l. Transmission line methods of construction (a) stripline, (b) triplate, (c) coaxial.

Fig. 2. Forward and backward reflected waves on a transmission line.

Fig. 3. Simple means of forming a power splitter.
of the line, a wavefront will propagate down the line at a speed and with an attenuation determined by the propagation constant. The current flowing into the line is simply the voltage divided by the characteristic impedance. If we now apply a sinewave to this line, two points separated by a distance x will have a phase difference between them of $2 \pi x / \lambda_{m}$ at any instant of time; λ_{m} is the wavelength in the transmission line at the applied frequency. There will also be an attenuation in amplitude. These two components are combined by stating that the wave propagates as $\mathrm{e}^{-\gamma x}$, where $\gamma=\alpha+\mathrm{j} \beta, \mathrm{e}^{-\gamma x}$ is the attenuation component, α measured in Nepers/ metre and $\mathrm{e}^{-\beta x}$ is the phase variation, $2 \pi / \lambda_{m}$ radians/metre.

Fig. 2 shows an example of a forward propagating wave, and a wave travelling in the reverse direction due to a generator at the opposite end of the line which will progress as $\mathrm{e}^{\gamma x}$. Due to these two waves we will have a total voltage and current at any point on the line given by

$$
\begin{gather*}
V_{T}=V_{+} \mathrm{e}^{-\gamma x}+V_{-} \mathrm{e}^{y x} \\
I_{T} Z_{0}=V_{+} \mathrm{e}^{-p x}-V_{-} \mathrm{e}^{\gamma x} \tag{10}
\end{gather*}
$$

The voltage measured across the line is in the same sense for both waves, whereas the current flowing is of opposite sense. For our purposes we can usually neglect the attenuation of the line and consider only the phase variations.

In the Appendix the impedance has been derived at the input to a line terminated by an arbitrary load. From this we will consider four conditions of termination which are of further interest. For a correctly terminated line
$Z_{L}=Z_{0} \quad Z_{I N}=Z_{0}$
for a short-circuit $Z_{L}=0, Z_{I N}=-\mathrm{j} Z_{0} \tan \beta x$, for an open-circuit $Z_{L}=\infty, Z_{I N}=\mathrm{j} Z_{0} \cot \beta x$ and if $\beta x=\pi / 2 \quad Z_{I N}=Z^{2} / Z_{L}$

The first three conditions are self explanatory, the last is one which needs some clarification. It may be loosely referred to as the quarter-wavelength transformer effect; $\beta x=\pi / 2$ is equivalent to $x=-\lambda / 4$, the load Z_{L} is transformed by the line to $Z_{0}{ }^{2} / Z_{L}$. We have chosen our reference such that the distances measured away from the generator are positive and those away from the load are negative; this is a common convention and explains the apparently odd use of the negative sign in the transformer example.

Now that we have derived some of the basic situations to be met in transmission lines, we can look at practical uses for them. The quarter-wavelength transformer may be used where power has to be transferred from one impedance level to another. As an example we will consider the situation where power in one line has to be equally split between two other lines of the same impedance with minimum loss; such a circuit is shown in Fig. 3. The lengths of the matching sections of the line are $\lambda / 4$ at the required frequency and have an impedance such that the input to each arm is $100 \Omega\left(70.7^{2} / 50=100 \Omega\right)$ and when these two arms are joined in parallel the input impedance matches the line impedance. This particular example is a member of an infinite series of power splitters using varying numbers of matching lines in each arm and with resistances connected between the arms. Using a quarter-wavelength transformer and a stub we can match any complex impedance into a 50Ω line; such a situation may arise when we have to match a transistor into a distributed circuit. The input impedance to a transistor in common base mode is a low complex impedance which we will denote as $Z_{1}+\mathrm{j} Z_{2}$. We can remove the imaginary component with a stub and then transform the remaining real impedance to the required level. A circuit to perform this function is shown in Fig. 4; the input impedance to the circuit consisting of the transistor and stub in series is
$Z_{\text {in }}=\left(1 / \mathrm{j} Z_{\text {stub }}+1 /\left(Z_{1}+\mathrm{j} Z_{2}\right)\right)^{-1}$
$=Z_{1}+Z_{2}^{2} / Z_{1}$ if $Z_{\text {stub }}=-\left(Z_{2}+Z_{1}{ }^{2} / Z_{2}\right)$

To match this $Z_{\text {in }}$ to 50Ω we require a line of impedance
$Z_{0}=\sqrt{50\left(Z_{1}+Z_{2}^{2} / Z_{I}\right)}$
and length $\lambda / 4$.
Using some typical values $Z_{1}=Z_{2}=5 \Omega$

$$
\begin{aligned}
& Z_{o}=22.4 \Omega \\
& Z_{s u b}=-10 \Omega
\end{aligned}
$$

If the stub impedance is derived from an open circuit 50Ω line then the length should be 0.22λ. This transformer section will have a 25% bandwidth for a v.s.w.r <1.5, and proportionately less for reduced v.s.w.r. limits; this is dependent on the impedance ratios involved (0.45 in our example), the nearer to unity the wider the bandwidth. Wideband transformers may be constructed by using several impedance transformation steps instead of the single step considered here.

Fig. 4. Transistor matching circuit.

Fig. 5. Characteristic impedance curves of a stripline construction.

Fig. 6. Ratio of free space wavelength $\left(\lambda_{0}\right)$ to stripline wavelength $\left(\lambda_{m}\right)$.

Fig. 7. Stripline methods of construction for (a) power splitter, and (b) transistor match.

From the theoretical circuits which we have reached we need some means to realize the practical circuit form. This is best provided by using graphs rather than theory which is inexact for stripline although in other constructions accurate theories can be considered. The graphs we require are those relating the wavelength and impedance to the width of line used and the dielectric constant of the substrate material. Extracts from typical curves are shown in Figs. 5 and 6 for a small range of dielectric constants. If for our examples the board is $\frac{1}{16}$ in thick (metrication is somewhat lagging in certain fields) and with a dielectric constant of 4 and our design frequency is 1.25 GHz ; assuming the speed of light is 3×10^{8} metres/sec then our free space wavelength is $240 \mathrm{~mm}\left(\lambda_{0}\right)$. For the particular lines in which we are interested:

Z_{0}	$H \backslash W$	$\lambda o / \lambda_{m}$	W	λ_{m}
22.4	6.5	1.85	10.3	130
50	2.0	1.75	3.2	137
70.7	1.05	1.70	1.7	141
Ω			mm	mm

The final appearance of the power splitter and of the transistor match is shown in Fig. 7. Note that a resistor has been added between the arms of the power splitter; this is to match any reflected waves in either of the output arms to prevent any further reflections which would otherwise degrade the performance. The actual lengths of the lines are not exactly as those given in the table due to the presence of end effects. This is particularly noticeable at the point where the stub joins the transformer in our second example: a further set of tables is needed to apply these corrections but a useful guide is to assume that at a junction the lines penetrate one another to 25% of the line width. This approximation is suffcient for our purposes and for this reason the curves are not included.

As a final example we will consider a band-pass filter, which although it may not be directly applicable to amateur use, is nevertheless typical of a particular class of filter, namely a quarter-wavelength shorted stub filter. A series of quarterwavelength stubs are placed at quarterwavelength spacing on the main transmission line. The number to be used is determined by the bandwidth and rate of cut-off outside the band. At the design centre frequency the impedance of these stubs appears infinite at the point where they join the main transmission line and consequently have no effect on the signal, but as the frequency alters there is an increasing interaction due to line lengths no longer being a quarter-wavelength long. This type of filter is of the reflection class, all the power either passes straight through or is reflected back, there is no lossy element to absorb any power other than the inherent attenuation in the transmission line and this we have chosen to ignore to simplify the analysis. Fig. 8 shows a filter with eight shorted stubs, designed for a centre frequency of 1.25 GHz and a bandwidth of 600 MHz ,

(2)
 1 cm

Fig. 8. Stripline band-pass filter outline.
constructed on a fibreglass board of in in thickness and with a dielectric constant close to 7. The thinner stubs, those of higher impedance, are slightly longer due to the variation of wavelength with thick ness as given in Fig. 6. The impedance of the six centre stubs is 33Ω, that of the other two 95Ω. The main line at 50Ω is folded to save space and connections may be made to the line either by connectors fed through from the opposite side or by edge connectors. The large areas at the end of the stubs must be adequately connected to the ground plane on the other side, this is probably best achieved by soldering a plate at right angles to the board so that it makes contact to both surfaces.

If the amateur is to attempt construction projects using stripline then he will have to face several problems not encountered by the professional. The design curves are not readily available on a market open to the amateur but are collected in "The Microwave Engineers Handbook" and other similar publications; most research establishments interested in microwaves will have an edition of this handbook which contains all the curves mentioned and much else besides. It is slightly easier to obtain substrate material as the fibreglass board advertised fairly widely in magazines is suitable at the frequencies considered. It must be copper-clad on both sides and will probably have a dielectric constant in the range three to eight, but individuals will have to determine the exact value for themselves. There are many magazines available whose primary function is advertising and many will contain information on suitable materials. A suggested method of construction is to obtain some "cut and strip" material on which it is possible to cut out the circuit and leave opaque
lines on a clear base material, or vice versa as required: this can be used as a photographic mask to produce the finished circuit. The tolerances on the line widths are sufficiently large for non-critical applications that the mask may be produced using a sharp knife and steel rule. A complete circuit can be readily adjusted with the same knife, some adhesive copper tape and a little care. As might be expected the results will depend very much on the quality and accuracy of the design and construction.
It is worth noting that an extremely useful device called a Smith Chart is in existence which allows an analysis of a transmission line network to be carried out geometrically; if any serious work is contemplated the use of such a chart is essential and should be explained in many textbooks on microwaves which will cover the theoretical aspect of this work in far greater detail than is necessary or justified in an article of this type. Unfortunately, as with many subjects, there is no practical manual on the subject. Familiarity with this subject will show that there is more than one approach to any problem, in particular the transistor-matching circuit could have been achieved with a simple matching line without a stub. It is hoped that this article will help to stimulate interest in a subject which is relatively new to many people.

Appendix

The total line voltage and current is given by the two equations
$\boldsymbol{V}_{T}=\boldsymbol{V}_{+} \mathrm{e}^{-\mathrm{j} \beta \boldsymbol{x}}+\boldsymbol{V} \boldsymbol{V}_{-} \mathrm{e}^{\mathrm{j} \beta \boldsymbol{x}}$
$I_{T} Z_{0}=V_{+} \mathrm{e}^{-\mathrm{i} \beta x}-V_{-} \mathrm{i}^{\mathrm{i} \beta x}$
The backward wave V_{-}may be caused by a mismatched termination to the line. The impedance at any point on the line is given by V_{T} / I_{T}, due to the presence of V this is no longer simply given by Z_{0}, but by

$$
\begin{aligned}
& Z_{L N}=Z_{0}\left(V_{+} \mathrm{e}^{-\mathrm{j} \beta x}+V_{-} \mathrm{e}^{\mathrm{i} \beta x}\right) / \\
& \left(V_{+} \mathrm{e}^{-\mathrm{j} \beta x}-V^{\mathrm{j} \beta x}\right) \\
& =Z_{0}\left[\left(V_{+}+V_{-}\right) \cos \beta x-\mathrm{j}\left(V_{+}-V_{-}\right) \sin \beta x\right] / \\
& {\left[\left(V_{+}-V_{-}\right) \cos \beta x-\mathrm{j}\left(V_{+}+V_{-}\right) \sin \beta x\right]} \\
& \text { If the load } Z_{L} \text { is at } x=0 \text { then }
\end{aligned}
$$

$$
\left.Z_{L}=Z_{0}\left(V_{+}+V_{-}\right) / V_{+}-V_{-}\right)
$$

Substituting,
$Z_{I N}=Z_{\theta}\left(Z_{L}-\mathrm{j} Z_{0} \tan \beta x\right) /\left(Z_{U}-\mathrm{j} Z_{L} \tan \beta x\right)$
This is the principal transmission line equation and every condition of interest may be developed from it.

The voltage standing wave ratio on the line is given by Z_{L} / Z_{0} or Z_{0} / Z_{L}, whichever is greater than unity.
v.s.w.r. $=\left|\left(V_{+}+V_{-}\right) /\left(V_{+} \pm V_{-}\right)\right|$

Bibliography

1. "Every graph relating to various forms of transmission line", Microwave Engineers Handbook, Horizon House Publications.
2. Series of articles on designing circuits with a Smith Chart. Hickson, R. A., "The Smith Chart", Wireless World, Vol. 66, Jan.-Mar. 1960, pp. 2-9, 82-85, 141-146.
3. Theory behind stripline-the original authoritative paper, with design graphs. Wheeler, H. A., "Transmission Line Properties of parallel wide strips separated by a Dielectric Sheet", IEEE Trans. TT-13 1965, pp. 172-185.
4. Two articles and a very useful reading list, including other transmission media, Hosking, M. W.-The Realm of Microwaves (Parts 2 and 3), Wireless World, Vol. 79, March and June, 1973, pp. 131-133, 286-290.

Coming Events

"Aspects of Technical Documentation" is a weekend residential conference organized by the Society of Electronic and Radio Technicians, to be held at The BBC Engineering Training Centre, Wood Norton Hall, Evesham, Worcestershire, on October 26 to 28. Registration forms and further information are available from the conference secretary at SERT, Faraday House, 8-10 Charing Cross Road, London WC2H 0HP.
A Radio Amateurs' Examination Course is to be held at Acton Technical College, High Street, London W3 6RD, Wednesdays, $6.30-$ 9 p.m., commencing September 25 . Enrolment is on September 12 and $18,6.15$ to 8.15 p.m.

Industrial electronics is a basic course of 15 lectures for engineers to be held at Twickenham College of Technology on Wednesdays from 9 a.m. to 4 p.m. The course will run twice commencing September 25. 1974, and on February 19, 1975. Further information can be obtained from the course organizer, Twickenham College of Technology, Egerton Road, Twickenham, Middlesex TW2 7SJ.
A City \& Guilds Radio Amateurs` Course (No. 765) will be held at North and West Farnborough Further Education Centre, Cove County Secondary School. St. John's Road, Farnborough, commencing on October 3 at 7.30 p.m. There will also be a Morse Proficiency course beginning on September 30 at 7.30 p.m. at Oak Farm School, Farnborough, Hampshire.
The City \& Guilds Radio Amateurs' Course (No. 765) will also be held by the West Sussex Adult Education Committee at Marle Place, Leylands Road, Burgess Hill, Sussex RH15 8JD, starting September 26 at $7.30 \mathrm{p} . \mathrm{m}$. There will be 30 classes-three terms of ten classes each.
A Radio Amateurs' Course will be held at the Gosforth Secondary School. Gosforth, Northumberland, commencing in September on Tuesdays and Wednesdays from 7 p.m. to 9 p.m. A prospectus and any further details can be obtained from the Principal at the School.
"The Computer as a Design Tool" is an exhibition and conference to be held at the Imperial College, London on September 24-27. Registration for the conference is $£ 56$ for the full programme or $£ 28$ per day. Full information on the double event can be obtained from the organizers CAD '74, IPC Science \& Technology Press, 32 High Street, Guildford, Surrey GU1 3EW, telephone Guildford (0483) 71661.

It's a mod. mod. modular world.

Simplify, simplify! Instead of paying more for bigger, bulkier audio control components, pay less for compact Shure modular components that singly or in combination-handle critical functions flawlessly. Cases in point: (1) the M67 and M68 Microphone Mixers, the original high-performance, low-cost mixers; (2) the M610 Feedback Controller, the compact component that permits dramatically increased gain before feedback; (3) the M63 Audio Master, that gives almost unlimited response shaping characteristics; (4) the M688 Stereo Mixer, for stereo recording and multi-source audio-visual work; (5) the M675 Broadcast Production Master, that works with our M67 to create a complete production console (with cuing!) for a fraction of the cost of conventional consoles; and (6) the SE30 Gated Compressor/Mixer, (not shown above) with the memory circuit that eliminates "pumping." For more on how to "go modular," write for the Shure Microphone Circuitry Catalogue.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

An advanced 4－function calculator in kit form
The Cambridge kit is the world＇s largest－selling calculator kit．
It＇s not surprising－no other calculator matches the Sinclair Cambridge in functional value for money；and buying in kit form，you make a substantial saving．
Now，simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 12 \cdot 50$ ．For under $£ 15$ you get the power to handle complex calculations in a compact， reliable package－plus the interest and entertainment of building it yourself！

Truly pocket－sized

With all its calculating capability，the Cambridge still measures just $4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$ ．That means you can carry the Cambridge wherever you go without inconvenience－it fits in your pocket with barely a bulge．It runs on U16－type batteries which gives weeks of normal use before replacement．

Easy to assemble

All parts are supplied－all you need provide is a soldering iron and a pair of cutters．Complete step－by－step instructions are provided，and our service department will back you throughout if you＇ve any queries or problems．
Total cost？Just $£ 14.95$ ！
The Sinclair Cambridge kit is supplied to you direct from the manufacturer．Ready assembled，it costs $£ 21 \cdot 95$－so you＇re saving $£ 7$ ！Of course we＇ll be happy to supply you with one ready－assembled if you prefer－it＇s still far and away the best calculator value on the market．

Features of the Sinclair Cambridge
㚇Uniquely handy package．
$4 \frac{1}{3}$＂$\times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$ ，weight $3 \frac{1}{2}$ oz．
＊Standard keyboard．All you
need for complex calculations．
＊Clear－last－entry feature．
＊Fully－floating decimal point．
谷Algebraic logic．
＊Four operators $(+,-, x, \div)$ ，
with constant on all four．
关Constant acts as last entry in a calculation．
＊Constant and algebraic logic combine to act as a limited memory，allowing complex calculations on a calculator costing less than £15．
＊Calculates to 8 significant digits．
＊Clear，bright 8－digit display．
关Operates for weeks on four U16－type batteries
（MN 2400
recommended）

Acomplete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch. 10. Soft wallet.

$4^{1 / 3} 3^{\prime}$ long $\times 2$ "wide $x^{11 / 16 \text { " deep }}$

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology

How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.
NOTES
In all cases VAT chargeable is that prevailing at current rates.

Sinclair Radionics Ltd, London Road, St Ives, Hunts Reg.no: 699483 England VAT Reg.no: 213817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

Price fully built : $£ 19.95+£ 2.00$ VAT. (Total : $£ 21.95$)

To Sinclair Radionics L.td, London Road, St lves, Huntingdonshire, PE174HJ
Please send me
\square a Sinclair Cambridge calculator kit at £ $13.59+£ 1.36$ VAT (Total : £14.95)
i a Sinclair Cambridge calculator ready built at $£ 19.95+£ 2.00$ VAT (Total: $£ 21.95$)
*। enclose cheque for $£$ made out to Sinclair Radionics Ltd, and crossed
*Please debit my *Barclaycard/Access
account. Account number

* Delete as required.
wW/9/74

Name
Address

Announcing the world's first monitor loudspeaker with acoustic adjustability

Regardless of the amount of money spent on a high-quality reproducing system, the final result is dependent on the reaction between the loudspeaker and the listening room. The Omal TL6 Ambionic Monitor Loudspeaker is the first in the world to offer acoustic adjustability to match most rooms. It can also be used in the direct or omnidirectional modes without loss of stereo image. Yet another plus factor is the ambiophonic effect!

To achieve this remarkable result, we have mounted the treble units on both sides of the cabinet and the bass unit on one side, this being coupled to a four-section transmission line with mechanically variable ports and damping. The transmission line is unique in that it varries in crosssection to prevent unwanted harmonics and standing waves and has two internal and two external ports. The sound emission from each external port and through the internal ports is controlled by adjustable flaps, mechanically interlinked to provide simultaneous operation from a single control. The ports can be completely or parially closed, giving an increase or reduction of bass depending on the type of sound required. The high frequency units can be electronically attenuated or boosted individually.

Whether your listening room is bright or dull, the ultimate in natural realism of the OMAL TL6 AMBIONIC MONITOR SPEAKER will astound you!!

For comprehensive details, contact
Ambionic Sound Reproducers Ltd.
Dept WW/1 Omal House, North Circular Rd.,
London NW10 7UF Tel : 01-965 8787
A Subsidiary of the Omal Group Limited
BRITISH AND FOREIGN PATENTS APPLIED FOR
WW- 092 FOR FURTHER DETAILS

"Ampex and WHAT?...

The

 JAMESSCOTT Alisnment Units for D.R. and E.M. Multi-Channel Tape Recorders.

The F.M. Alignment
Unit Type FMU/1 illustrated was designed at
the Royal Radar Establishment Malvern to suit
Ampex Recorders working on the IRIG intermediate
band specification (using ES 100 Electronics) e.g. Model
Numbers FR 1200, FR 1260 , FR 1300 , FR 1800L. FB 400, PR 500
If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone.

'"Teleprinter'’ with a traverse display

by Brian T. Evans, B.Sc.

Department of Medical Electronics, St Bartholomew's Hospital, London

A small portable teleprinter using a 32-character alphanumeric display tube has been designed for use in hospital intensive care situations to replace the "quiet mechanical" types originally used.

A traversing-character type of display tube (Burroughs Selfscan) has been interfaced with an "electronic" keyboard (Honeywell) to provide a "teleprinter" which is both quiet and relatively in expensive. This design eliminates the need for line-feed and carriage-return instructions because each new character received is displayed in the right-hand end of the tube and the remaining 31 characters move one place to the left. The display tube, type SSD 01320030 , supplied with basic drive electronics, costs about $£ 80$ which compares favourably with individual l.e.d. matrix displays costing approximately $£ 10$ each. One disadvantage, however, is that the tube and electronics need +250 V at $30 \mathrm{~mA},+5 \mathrm{~V}$ at 160 mA and -12 V at 50 mA supplies, the high voltage being hazardous to the m.o.s. read-only memory (r.o.m.) incorporated in the display.

The present design allows full or half duplex operation at 110 baud with 20 or 60 mA loop current. All eight bits of each incoming character are stored allowing excra facilities to be provided. The eighth bit is used as a "flag" bit to check whether it was produced by the local keyboard or by a distant piece of equipment such as a computer. The "teleprinter" has the ability to blank characters from the display. The logic produces a blanking pulse for every control character presented to the display but this can be overridden by operating a switch at the side of the keyboard. We may therefore examine the unblanked display to check whether some control character such as line feed has been sent. Depressing the switch converts all control characters back to their display form, therefore control character S is displayed as S in the previously blank space. In addition, computer-generated characters with their eighth bit set to one may be blanked off the display leaving only keyboard-generated alphanumerics. It was convenient to use the "here is" key for this function as it is brought out as a separate d.c. contact closure at the back of the keyboard.

The "teleprinter" in Fig. 8 shows some
additional features. To the left of the display, red and green indicator lamps and a thumbwheel switch are provided. In the hospital application the lamps indicate how far the computer has progressed through a nurse-generated command. "Green light on" means the nurse may input a new command; red light on, the nurse has not yet finished the command. Flashing red and green, the computer is executing the command. These lamps are driven from one of the computer's solenoid outputs but it is intended to operate them from unascribed American Standard Code for Information Interchange (ASCII) characters via the "teleprinter" receiver. The thumbwheel switch is used for patient identification so a patient in "bed four"
may be selected, and all commands entered on the keyboard will then relate specifically to that patient. The b.c.d. output of the switch, together with the eight-bit parallel output of the keyboard, is fed to a data logger that multiplexes this information with digitized physiological parameters obtained from each patient. It then transmits this serially to the computer at speeds of up to 1200 baud. Single patient monitoring can be achieved by sending the keyboard output directly to a teleprinter input terminal of the computer at 110 baud.

Mode of operation

The keyboard parallel output is first fed into a universal asynchronous receiver

Fig. 1. Keyboard/display block diagram.

Fig. 2. Display control logic timing diagram. Regular shift pulses output new ASCII data from the shift register to the read-only memory character generator as soon as the last column of the current character has been displayed. New characters are added during the reset period. The foremost right-hand character " A "' is then lost and the next character " B " takes its place at the right-hand end of the display.
transmitter (u.a.r.t.) integrated circuitthe General Instrument type AY 51012. Its serial output operates a t.t.l. compatible high-speed relay via a BC183 driver stage shown in Fig. 5. Because the relay used was not ideal (normally open) and current-operated teleprinters remain inactive during the Mark or "current flowing" state, a shorting switch across the contacts has been provided so as not to break the loop when the teleprinter is switched off. There is a similar restriction on the use of faster solid-state current loop adaptors that also need to be energized before Marking current can flow.
The current loop receiver also uses a high-speed t.t.l.-compatible reed relay shown in Fig. 4. It will just close on 3 V and has an internal resistance of 500Ω (Radiospares). For 60 mA operation the coil is shunted with 100Ω increasing closure current to approximately 35 mA $(60 \%$ of 60 mA$)$. The voltage drop at the receiver loop interface is thus about 5 V , the same as a Data Dynamics 390 teleprinter but higher than that obtained using an optical isolator. One advantage of the reed relay, however, is that polarity of print and key current loops do not have to be preserved. The receiver of the u.a.r.t. is wired to accept an eight-bit word with no appended parity bit. It produces a number of status signalsData Available (DA), Framing Error (FE) and Overrun (OR); a further line, Reset Data Available ($\overline{\mathrm{RDA}}$), allows new data to generate a new DA pulse. If $\overline{\mathrm{RDA}}$ is not generated before new data arrives then $O R$ is generated. In the present design DA is always quickly followed by $\overline{\mathrm{RDA}}$ and so OR is not needed.

The transmitter of the u.a.r.t. is also wired to accept an eight-bit word and to serialize it prefaced with a start bit and appended with two stop bits, the parity bit of this system is not used. As previously mentioned, bit eight is set to zero to denote its keyboard origination and bits
one to seven are taken directly from the keyboard output which also produces a delayed strobe shown in Fig. 5. This is fed in to the data strobe (DS) pin of the u.a.r.t. Two key rollover is achieved by the u.a.r.t.'s double buffering of input data.

The tube operation is quite straightforward. Movement of the neon glow from left to right is achieved by three-phase clocking of the 224 vertical cathodes at the back of the tube. This is similar to the method adopted in Dekatron counting tubes. The maximum glow scan speed is restricted by the reliability of cathode-tocathode glow transfer, and the minimum speed limited by the need of a flicker-free display. The recommended display clock frequency range of $13-18 \mathrm{kHz}$ results in repetition rates from $60-80$ scans $/ \mathrm{sec}$, 14 kHz has been chosen as this meets the needs of both the display tube and u.a.r.t. Transmit and receive clocks of 16 times the chosen baud rate (110) are required, dividing the display clock frequency by eight in a 7493 divider gives an output of 1.75 kHz which is fed to both u.a.r.t. clock inputs. A final transmit-receive rate of 109 baud is therefore achieved from the

```
ABCD_=_===- XY Y 
original 32 character display
Z Y X_--_=_DC B A _-_- ist char.
AZY_
BAZ&
```



```
Y XWA=_==C}CABZ—last char,
Z Y X_=_=-DCBA -ignore'A',
% Z Y extra snitt-E DC B-insert % % ist char.
```



```
CB%=-GFED
        new display
BCDE_-\ldots....-.YZ%
previous characters
shifted one place to the left
```

Fig. 3. New character insertion at right-hand end of display.

14 kHz 555 oscillator leaving a spare $\div 2$ stage in the 7493 divider.

With no characters actuating the tube the glow travels unseen along the back of the cathodes. To illuminate a point on the display one of seven anodes that run horizontally along the front of the tube is selected. The glow is seen through a matrix of pin holes (seven high, 224 long) in an insulating panel separating the anodes from the cathodes. Depending on how far the glow has travelled along the tube a glow will be seen at the intersection of the selected anode as it draws the cathode glow towards it. In this way a general pattern seven high by 224 long may be displayed.

The m.o.s. read-only memory incorporated in the tube electronics generates a set of 64 characters produced one column at a time. The ASCII must not change while the character's five columns are being sequentially read onto the display tube. Code updating is made in the one or two column spaces left between characters. The tube's electronics permit 32 or 36 alphanumeric characters with a two- or one-column spacing respectively. The 32 option has been used as this has better legibility and 32 element shift registers are easily obtainable.

The most difficult part of the design was to satisfy the poorly defined reset timing requirements. Reset must occur within one clock period of the end of the last character, in this case during column six and the 32 nd character as shown in Fig. 2. It may last for between 20μ s and three clock periods but not terminate within $2 \mu s$ of a falling clock pulse. These and other restrictions have easily been met in the present design by using both rising and falling clock pulses as a time reference. The only critical timing period being reset pulse length is well within the tolerance of the circuit which therefore requires no initial adjustment.

The display tube m.o.s. chip generates a data update pulse during the seventh (blanked) column position of each character. This, however, has not been used since it arrives too late to meet the reset timing limitations, instead the teleprinter electronics "force drive" the display tube. The first column of the first character is presented when the clock pulse falls after the reset period. Using the same clock pulse as the display, the "teleprinter" keeps a separate count of the progress of the display through columns and characters. The column counter is a $7493 \div 8$ circuit used with feedback to produce a modulo seven counter, and each time the eight counter state is reached its 111 output operates a 7410 three input NAND gate, whose output is inverted and fed to the counter reset pin as shown in Fig. 4. The counter thus remains in state eight for about 50 ns until state "one" is established (000). The 7410 output is also fed to a $7493 \div 16$ chip via the spare $\div 2$ stage in the 7493 used as a u.a.r.t. clock frequency divider.

State six of the modulo seven counter is also detected by decoding 101 in another three-input NAND gate. This

Fig. 4. ASCH serial receiver and display driver.
pulse is used to trigger a 7405 connected as a monostable providing a $5 \mu \mathrm{~s}$ shift pulse to the refresh shift register. Therefore the SR output is correctly updated during the blanked period six of the display.

The counter's decoded state six pulse is gated with the outputs of the $\div 2$ and $\div 16$ counters in a 7430 eight-input NAND gate producing a pulse that occurs only when the sixth column of the 32nd character is on display. This pulse, which is true for a whole clock period, is fed to input A of a 74121 monostable only firing when input A is low and input B is high, in this case the display clock line is fed to input B so the monostable fires on the rising edge of the clock pulse producing the reset and reset pulses.

It is convenient for the first column of the first character to appear on the display two clock pulses after the fifth column of the last character. Therefore the reset pulse must be between $\frac{1}{2}$ and $1 \frac{1}{2}$ clock pulses long since the first character will begin on the first falling clock pulse after the end reset.
The provision of shift and reset pulses are sufficient to maintain a refreshed display on the tube. However, we also need to update the shift register's content and to transform the incoming eight-bit ASCII into a six-bit form suitable for the display character generator.

The eight-bit ASCII refresh store consists of two General Instrument quad 32 element static shift registers that, unfortunately, do not contain their own recircular logic. This has been provided by two 74157 quad change over t.t.l., switches

1	V_{cc}		$+5 \mathrm{~V}$
2	$\mathrm{v}_{\mathrm{gg}}^{\mathrm{cc}}$		$-12 \mathrm{~V}$
3	V_{gr}		ground
4	Received data available	RDE	ground
5-12	Received data bits 8 -	RDB	
13	Parity error	PE	not us
14	Framing error	FE	
15	Overrun	OR	not used
16	Status word enable	SWE	ground
17	Receiver clock	RCP	
18	Reset data available	RDA	
19	Data available	DA	
20	Serial input	SI	
21	External reset	XR	ground
22	Transmitter buffer	TBMT	not used
23	Data strobe	DS	
24	End of character	EOC	not used
25	Serial output	So	
26-33	Transmit data bits 1-8	TDB	
34	Control strobe	CS	+5V
35	No parity	NP	+5V
36	Two stop bits	TSB	+5V
37. 38	Both true for eightbit word	NB1 NB2	$+5 \mathrm{~V}$
39	Even parity select	EPS	not used
40	Transmitter clock	TCP	

Fig. 6. UART pin connections for teleprinter.
shown in Fig. 4. These are placed between the SR output and the display tube input to avoid driving mixed logic. The SR output can only drive one t.t.l. load, being the 74157 whose output in turn feeds two m.o.s. loads. These are the display tube and SR inputs. With no new data the contents of the SR are taken via the 74157s to the display tube input. As the display moves from left to right the register is also shifted right to produce ABC , etc, at the appropriate time. These characters then re-enter

Fig. 5. Keyboard serializer. This circuit may be used independently to provide a serial current loop output from any parallel ASCII keyboard. Maximum line speed is limited by the reed relays which may be replaced with opto isolators.
at the left end of the SR for subsequent re-use.
To produce the traversing effect the contents of the SR must be shifted to the left therefore losing a character and adding another at the right-hand end. This can be done during the reset period after the right-hand character has been displayed (Z at the output of the $S R$) and the left-hand character " A " has been shifted to the SR output ready for the next scan. This is illustrated in Fig. 3.
The reset pulse also operates the 74157 changeover, temporarily removing " A " from the output lines and replacing it with the u.a.r.t.-generated "\%" character. While reset is still true an extra shift pulse is generated on the falling edge of the clock puise by means of a second 74121 monostable. Thus " $\%$ " is shifted into the SR and "B" is shifted to the output of the SR. When the reset pulse finishes, " B " is fed to the display in time for it to be treated as the first character.

The length of the extra shift pulse is not critical and $5 \mu \mathrm{~s}$ was chosen quite arbitrarily. The minimum reset time must be longer than one half clock period + shift pulse length, and the maximum length is limited to $1 \frac{1}{2}$ clock periods at the fastest clock rate. In practice, with the component values shown in Fig. 4, reset lasts $60 \mu \mathrm{~s}$. In fact the display requires a falling pulse for reset so it is fed with the \bar{Q} output of the reset monostable.

The extra shift pulse is only produced when the u.a.r.t. has generated a "data available" signal which is gated with reset to fire the second monostable. When the gate closes at the end of reset the rising edge is inverted and capacitor coupled to the "reset data available" pin of the u.a.r.t. Since the scan rate of the display is some 60 per second and new data can arrive no faster than ten characters per second (110 baud signalling speed), RDA is always serviced in time to avoid the generation of overrun.

As a precaution the framing error signal is also gated with the output of the extra shift pulse monostable so that incorrect data is not shifted into the SR. It may be preferable to insert some error-denoting character in place of the garbled data rather than ignore it altogether. It was considered that this would only be worthwhile if we were using parity checking as well. All ASCII characters use bits six and seven to define whether the previous five bits describe a numeral; bit $6=1$, bit $7=0$, an alphabetic $6=0,7=1$, a lower case alphabetic 1 l or a nonprinting control character 00.

The teleprinter logic imposed between the SR outputs of bits six and seven and the transposed bit six of the display input ensures that six is only true for numeral ten characters. Other characters, alpha, lower case alpha and control set six to 0 . Therefore lower case alpha will be displayed in their upper case form.

The teleprinter electronics have been assembled on a Vero d.i.p. board having a 32 -way edge connector on one side. The p.c. board is mounted beneath the Honeywell keyboard in an aluminium die-cast

Fig. 8. Complete "teleprinter".

Fig. 9. Internal view of the "teleprinter'" showing general layout.
case. Power supplies are fitted in at the back of the case which is used as a heat sink for the chip regulators. The display tube fits between the top of the case and the keyboard p.c.b. (available from Walmore Electronics Ltd, 10-15 Betterton Street, Drury Lane, London, WC1).

Future developments hope to include a keyboard with special function keys for entering information more easily, and the production of custom printed circuit boards.

Books Received

Transfer Function Techniques for Control Engineers, by D. R. Towill, is suitable for both undergraduate and post-graduate courses in design. After an introductory chapter on control engineering techniques the derivation of transfer functions is dealt with. Root-locus and and pole-zero techniques form the third chapter. The second order linear system is then discussed, followed by the transfer function techniques applied to third-order linear systems. Final chapters deal with the general application of transfer function techniques to linear and non-linear control systems. Price $£ 6.30$ Pp. 514. The Butterworth Group, Borough Green, Sevenoaks, Kent TN 15 8PH.

Piezoelectric ceramics-an application book from Mullard. This publication is a clearly written handbook explaining the piezoelectric phenomenon and describing applications of ceramic crystals. Uses include high voltage generators, pick-ups and transducers, filters and resonators. Many circuit diagrams are provided, together with graphs, colour photographs and tabular information. Price $£ 4$. Pp. 211, available from bookshops

Practical Triac/SCR Projects for the Experi menter (No. 695), by R. W. Fox. As the title suggests, this publication is a collection of circuits suitable for construction by the amateur or technician. All the diagrams are supplemented with an explanatory text, and theory where applicable. The circuits include phase control, motor control, light-activated devices, alarm systems, heating controls and many other useful applications for the component. Two final chap ters deal with the choice of thyristor and cooling considerations. Price $\$ 7.95$ ($\$ 4.95$ paperback) Pp. 192. Tab Books, Blue Ridge Summit, Pa. 17214, USA.

Understanding Telecommunications by Michael Overman. This is a simply-written book suitable for the newcomer to telecommunications. The history of telegraphy, telephone, and radio is traced and the current state of development discussed including multiplex telegraph, and public broadcasting. Following chapters deal with the electron and electricity/electronics showing very simple circuit arrangements and their functions. Morse code and amplitude modulation are among the various methods discussed as a means of transmitting information. Microwave links and satellites are also explained with a final chapter on telecommunications tomorrow. Price £2.25. Pp. 192. Lutter worth Press, Luke House, Farnham Road, Guildford, Surrey.

TVI—still a problem

An analysis of the radio interference complaints for 1973 issued recently by the Home Office Radio Regulatory Department shows that 1,169 complaints of interference to the reception of television and radio programmes were ascribed to "radio transmitters, amateur stations only". This represents just over 4% of the interference from identified external sources although rather less than 2% of all complaints. Over the past six years the number of complaints traced to amateur operation has remained remarkably constant: 1968 1,151; 1969 1,442; 1970 1,161; 1971 1,027; 1972 1,242; and $19731,169$. During this period, although the number of cases of interference to Band I and Band III television has fallen quite steeply, this has been almost exactly balanced by increased interference to Bands IV and V u.h.f. television. It had been thought, a few years ago, that the growth of u.h.f. television would bring about a fairly dramatic and permanent decrease in amateur TVI.
That it has not done so convinces many amateurs that this is in large part a reflection on current receiver design. It is felt that the number of complaints would fall significantly if the modern transistorized u.h.f. television tuner had better signal handling capabilities and was less susceptible to out-of-band signals picked up on the outer-braid of the coaxial feeder cables. In the United States an increasing number of television front-ends use dualgate MOSFETs and other devices offering wider dynamic range than conventional transistors, but there seems little indication that such devices are likely to be used in Europe.
The amateur, of course, himself suffers greatly from electrical interference and the latest report contains some evidence that general electrical noise is no longer declining as it did after the introduction of interference legislation during the 1950 s but may well be increasing once again, although u.h.f. television is less susceptible and the total number of complaints continues to fall. The amateur in urban and suburban environments searching for weak signals is also having to contend with the higher levels of time-base radia-
tion that seem to go with colour television receivers and semiconductor circuitry, producing broadly spreading signals spaced at 15.625 kHz throughout the m.f. and h.f. spectrum.

Sporadic E and sunspot minima

Further evidence of the correlation between periods of intense Sporadic E conditions in Europe and sunspot minima is suggested by such events as those of the morning of July 9 when Sporadic E reflections extended to u.h.f. and brought many signals from Eastern Europe, including Hungary and Bulgaria, roaring in to the UK on 144 MHz . This particular opening may well have equalled or surpassed the Sporadic E openings of July, 1965, another year when we were near the bottom of a sunspot cycle. Signals were so strong that many contacts were made with Eastern Europe by mobile stations. Rather curiously for what should be "a year of the quiet sun" there seem to have been more ionospheric storms affecting h.f. this year than would have been expected. But then the ionosphere never does seem for long to do the expected and there are undoubtedly many secrets still left to be unravelled!

Nell Corry-YL of history

With the recent death of Miss Nell Corry, G2YL, of Tadworth, Surrey amateur radio has lost possibly the only "YL" (young lady) operator ever to have been the first to gain a major operating achievement award: the first "worked all continents" on 28 MHz (ten metres) from Great Britain. The opening of "ten metres" for long-distance communication makes a fascinating story. In October, 1928, Jimmy Mathews, G6LL (still an active amateur), made the first transatlantic contact on 28 MHz and this was followed within a few days by a first contact with the Californian west coast area by Captain Rodman, G2FN. But 1928 was on the declining slope of a sunspot cycle although the significance of this was not recognized at the time. Despite a considerable increase in amateur operation on the band after the transatlantic contacts little regular DX was heard or worked. The memory of 28 MHz DX grew dim and only a few faithful adherents continued to search for any signals, including the many commercial "harmonics" that were being radiated. Now the sunspot minimum was passed and "maximum usable frequencies" were rising again. Signals began to come through on 28 MHz from countries and continents never heard before on the band. One of the most persistent operators on 28 MHz was Nell Corry who when licensed in 1932 doubled the number of YL operators in this country (the other was Miss Barbara Dunn, G6YL). And finally from her station at Walton-on-theHill in October, 1935, she became the first British amateur to work all continentsan event that rated national press coverage.

From all quarters

A low-definition television enthusiast (see "Amateur Television Topics" in the June World of Amateur Radio) is $\mathrm{Mr} \mathrm{H} . \mathrm{J}$. Peachey of London NW9, who in a recent letter to CQ-TV suggests he may be the only person who has continued to carry out experiments in this field ever since 1928. He uses $10,15,30$ and 50 lines for monochrome and 20 lines for colour experiments using the classical mechanical disc but with photo-transistors, transistor amplifiers and $2 \frac{1}{2}$-in cathode-ray tubes.

In the UK quite a number of courses for potential radio amateurs will be open ing as usual in September at technical colleges and similar adult education centres. Most of these courses cover the requirements for the Radio Amateurs Examination, although in a few places additional courses, including Morse classes, are available. One of the most complete sets of courses is that being run by E. C. Palmer, G3FVC, at the Slough College of Technology where basic courses are offered on Friday evenings (including periods of station operation and practice with G3XPL, Morse and RAE theory) and also the same evening special advanced amateur radio courses designed for those who have already passed the RAE and with laboratory facilities for practical work (G3VCT lecturer), covering such subjects as s.s.b., v.s.w.r. measurement, digital frequency meters, digital frequency synthesizers, microwave techniques, slow-scan TV and radio teleprinting. (Details of the Slough classes from: E. C. Palmer, Dept of General Studies, Slough College of Technology, Wellington Street, Slough SLi 1YG.)

In Brief

The total number of British licensed amateurs has now risen to approximately 20,000 of whom just over 15,000 hold the general-purpose Class A licences. . . . Next year's RSGB president will be Cyril H. Parsons, GW8NP, who will become the first holder of a Welsh amateur callsign to hold this office. . . . A Welsh amateur radio convention is being held at the Community College, Oakdale, Nr Blackwood, Gwent on Sunday, September 22 (details from S. W. Rees, 10 Tudor Crescent, High Cross, Gwent NP1 9BS).

A Scottish VHF Convention is being held at the University of Dundee Tower Block on Saturday, September 28, and the speakers will include Geoff Stone, G2FZL, A. J. Oliphant, GM3SFH, Tom Holbert, GM3DXJ, and George Burt, GM3OXX. . . William Eitel, WA7LRU W6UF, and Herbert Hoover, W6APW, have offered to match, up to a total of $\$ 25,000$, donations made to the ARRL Foundation for the amateur satellite programme: it is estimated that Amsat Oscar 8 may cost $\$ 100,000$ to build. . . The Radioklub of the German Democratic Republic has become the 87th member-society of the International Amateur Radio Union.

PAT HAWKER, G3VA

New Products

Wiring testers

Two series of wiring testers have been designed to identify and locate faults in harness and cable assemblies. The MazeMaster series consists of low-cost, wire identification units and the AutoScan series has automatic visual identification of faults found. All the units use solid state circuitry and are self-contained. The complete series of instruments allow testing of from 49 to 9999 points anywhere on a wiring system. Prices of the units start at $\$ 395$. Addison Division of Muirhead Inc., 1101 Bristol Road, Mountainside, New Jersey 07092, USA. WW301 for further details

A.c. calibrator

A frequency range of 1 MHz and a quadrature phase accuracy of ± 0.05 degrees are featured in the model AC-125 absolute a.c. calibrator from Datron Marketing. Output amplitude is 120 V r.m.s. from 10 Hz to 110 kHz and 12 V r.m.s. to 1.2 MHz . An optional amplifier, model PA-1182, extends the basic amplitude range to 1.2 kV at 110 kHz . The absolute accuracy is claimed to be $\pm 0.02 \%+5$ p.p.m. of range $+10 \mu \mathrm{~V}$ over the midband frequency range. An additional feature sets a calibrated offset of up to $\pm 5 \%$ for automatically determining the error, in percent, of the instrument under test. Datron Marketing Ltd, Meteor Close, Norwich Airport Industrial Estate, Norwich NOR 17B.
WW305 for further details

Receiver test set

The TS5026 test set will evaluate the performance of any receiver which operates in the 5 to 1000 MHz frequency range. The unit is battery operated and has two front-panel rotary switches-one for programming the various tests and the other for selecting the nominal noise figure to be tested. The signal output of the instrument is connected to the antenna input of the receiver under test into which a flat r.f. noise source is fed. The audio output of the receiver is connected to the audio input of the unit. The receiver can be set to any frequency from 5 to 1000 MHz for noise figure determination. To test intermodulation and crossmodulation

WW301

WW305
distortion the TS5026 must be used in conjunction with an external band-reject filter. The instrument has a signal output impedance of 50 ohms , an audio input sensitivity of 3 V r.m.s. into 600 ohms and measures $11 \times 6 \times 7 \mathrm{in}$. Astro Communication Laboratory, Tower Street, Coventry CV1 1JP.
WW302 for further details

Coaxial plug

A new type of coaxial plug called the Slimgrip has been specifically designed for use with low loss 75Ω coaxial cable. The main feature of the plug is the method in which it is connected to a cable without soldering. A contact resistance of 1.8 milliohms is claimed for the plug which costs 4.9 p each (1,000 -off) plus v.a.t. Safemoor Ltd, Antenna Division, Crown Road Works, 76 Crown Road, Twickenham, Middlesex TW 1 3ER.
WW304 for further details

Electronic speed control

An electronic speed regulator type ESAI can be connected to either an a.c. or d.c. supply to provide a variable direct output voltage. This unit is suitable for controlling the speed of a motor by varying the input power. The regulator will compensate for variations in output load and will maintain a constant speed to within 2% for a 50% change in load. The input requirements for the a.c. versions are 50,110 or $220-240 \mathrm{~V}$ at 50 Hz , and 12 or 24 V for the d.c. model. The output provided is variable up to 12 V maximum

WW302
at 0.16A. Appliance Components Ltd, Cordwallis Street, Maidenhead, Berks SL6 7BQ.
WW324 for further details

Ratemeter

The type P7973 ratemeter is suitable for general purpose Geiger-Müller and scintillation counting in hospitals and laboratories. The instrument offers ten countrate ranges from 3 to 100,000 c.p.s., seven integrating time constants from 0.1 to 100 s , and two ranges of adjustable discriminator bias. Visual/audible indication of counts is by a moving-coil meter, and a built-in speaker with a muting switch. Recorder outputs are provided at the back of the unit which will supply 1 mA at 100 mV f.s.d. The ratemeter has a 250A positive e.h.t. supply which is stabilized to $\pm 0.5 \%$ over 8 hours and adjustable over the range 100 to 2000 V . Panax Equipment Ltd, Willow Lane, Mitcham, Surrey.
WW316 for further details

Heat sinks

A range of hybrid heat sinks for TO-3 and TO-66 devices has been introduced by Jermyn. The heat sinks are constructed by silver-soldering an aluminium oxide heat transfer washer to preformed $\frac{1}{8}$ in diameter heat pipes. Three configurations are available, either straight with $2 \times$ lin output fins, with heat pipes bent outwards and output fins of $1 \frac{1}{2} \times \mathrm{lin}$, or with heat pipes bent outwards and
terminating in a copper plate for bolting to a cold wall. The output finning arrangements can be designed to meet customers' requirements with the heat pipes being formed during manufacture to accommodate individual p.c.b. layouts. Jermyn Manufacturing, Sevenoaks, Kent,
WW325 for further details

Battery powered recorder

A lightweight, battery powered chart recorder designed by Astro Med is available from SE Laboratories. The model 101-DC weighs 41b and consumes 8 W operating from a 12 V battery. A single channel unit features a channel width of 50 mm , with automatic chart threading, and a heated stylus activating a low-cost heat-sensitive paper. The galvanometer movement incorporates a high-torque mechanism which improves the performance at frequencies above 125 Hz . Sensitivity is 10 mV per $\mathrm{mm} \pm \frac{1}{4} \mathrm{~V}$ f.s.d. with $1 \mathrm{M} \Omega$ impedance. The 101-DC costs $£ 276.50$ from SE Laboratories Ltd, North Feltham Trading Estate, Feltham, Middlesex.
WW300 for further details

Frequency counter

The latest counter from R.C.S. features a measuring range in excess of 80 MHz with a sensitivity of 10 mV at an input impedance of $1 \mathrm{M} \Omega$ in parallel with 20 pF . The instrument, called the 701 A , has a 1 MHz crystal controlled oscillator, contained in an oven, providing a temperature co-
efficient of frequency of seven parts in 10^{9} per ${ }^{\circ} \mathrm{C}$. The display is eight sideviewing numicator tubes with a display time of 1 or 8 sec selectable by pushbuttons. A standard output frequency is available from a BNC socket at the rear of the instrument. The frequency is selectable by gate-time push buttons in decade steps from 0.1 Hz to 1 MHz . R.C.S. Electronics Ltd, National Works, Bath Road, Houn slow, Middx TW4 7EE.
WW311 for further details

Modular connectors

An initial range of seven "snap-in" DIN pattern connectors has been produced by Ariel. The basic unit is a $18 \times 30 \mathrm{~mm}$ thermoplastic moulding which can carry any socket measuring $18 \mathrm{sq} . \mathrm{mm}$. This unit can be custom-made in larger sizes if required. Ariel Pressings Ltd, Wollaton Road, Beeston, Nottingham NG9 2PB.
WW315 for further details

C.a.t.v. repeater amplifier

The type CM7006 "professional grade" repeater amplifier covers the frequency range $40-860 \mathrm{MHz}$. The amplifier, which has been designed for advanced cable systems now under construction in the UK, utilizes microstrip technology and is available with either a single or double output, both options being line powered. The device offers a nominal gain of 20 dB for the single and 17 dB for the double output version with a noise figure of less than 10 dB . Flatness of the frequency

WW300

WW316

WW325
response is $\pm 0.75 \mathrm{~dB}$ and cross-modulation is typically -84 dB for a 30 dBmV output level. Labgear Ltd, Abbey Walk, Cambridge.
WW309 for further details

Video system

A complete video communication system comprising a c.c.t.v. camera, camera stand, 12 in monitor, video compressor and expander, is capable of transmitting and receiving still television images over "dial-up" telephone lines. Sixty seconds are required to transmit a single mediumresolution image, while a magnetic disc is used in the receiver memory to allow indefinite-image storage time with good grey scale. The price of the complete system is $\$ 9,000$ but components of the system may be purchased separately. Colorado Video Inc, Box 928, Boulder, Colorado 80302, USA.
WW312 for further details

Digital panel meter

A d.p.m. replacement for analogue meters has been developed by Exel Electronics. Known as the XL9 it comprises one p.c.b. measuring $10 \times 8 \times 2 \mathrm{~cm}$ with two minitron displays mounted on the reverse side. The XL9 utilizes a feedback digital-toanalogue converter technique and is available in ranges of $1 \mathrm{~V}, 100 \mathrm{mV}$ and $100 \mu \mathrm{~A}$ with special ranges supplied on request. Although the meter is unipolar, negative signals can be indicated by reversal of the input connexions. Standard
facilities include overrange blanking and user selection of the decimal point position. Accuracy is claimed to be better than 1% f.s. ± 1 digit over the temperature range 10 to $40^{\circ} \mathrm{C}$. Power requirement is a standard t.t.l. 5 V supply, with the unit consuming 370 mA for a reading of " 88 ". For indications requiring more than two digits, further displays can be fitted. The XL9 is priced at $£ 15$ each for 100 -off quantities. Exel Electronics Ltd, Wollerton Road, Branksome, Poole, Dorset.
WW313 for further details

Transient suppressor

A silicon bipolar transient suppressor will provide symmetrical protection against large voltages which may cause permanent damage to components. A response time of 1×10^{-12} seconds is fast enough to protect i.cs and m.o.s. devices. The component features a breakdown voltage from 10 to $110 \mathrm{~V} \pm 10 \%$, a peak pulse power (1 ms) of 500 W , and a dynamic impedance of 1.5 to 70 ohms. Bourns Trimpot Ltd, Hodford House, 17/27 High Street, Hounslow, Middx TW3 1TE. WW308 for further details

Modular rotary switch

A modular rotary switch manufactured by Jeanrenaud is specifically designed for p.c.b. use, featuring d.i.l. pins at 2.54 mm pitch for direct mounting. The unit is completely sealed, permitting board cleaning by immersion. Up to five switches can

WW312
be coupled in many configurations. The switch is rated at $60 \mathrm{~V}, 5 \mathrm{~W}$ with a maximum switching current of 100 mA . The contact resistance is less than 40 milliohms and a life expectancy of 50,000 operations is claimed. ITT Components Group Europe, Electrical Products Division, Edinburgh Way, Harlow, Essex CM20 2DE.
WW322 for further details

Battery eliminator

The Transipack type $306 / 20 / \mathrm{K}$, when supplied with $240 \mathrm{~V}, 50 \mathrm{~Hz}$, will provide a 24 V d.c. 20 A supply. The unit, which is suitable for energizing static inverters or charging accumulators, is available with other output voltages and currents up to 1000 A to special order. The off-load output is 29.5 V maximum which drops to 22 V when delivering 20 A . The output ripple is 250 mV pk-to-pk, and protection is by fusing in the input and output circuits. The unit measures $305 \times 229 \times$ 356 mm deep and weighs 20 kg . Industrial Instruments Ltd, Stanley Road, Bromley, Kent BR2 9JF.
WW323 for further details

Video/audio distribution system

The Decca video/audio exchange system enables subscribers to select any one of eight video programmes. Each unit covers up to eight subscribers, and this number can be increased by the addition of further units. Programmes transmitted can

WW322

WW313
be from any source such as off-air or videotape. Talk-back facilities can be provided, as well as remote control with built-in timer alarm. Decca Educational and Industrial Services, Ingate Place, Queenstown Road, London SW8 3NT.
WW314 for further details

Spectrum analyzer

A portable, battery operated, 1 GHz spectrum analyzer from Texscan is claimed to give laboratory class perfor mance. K nown as the AL.51, the analyzer has a measurement range of 120 dB , a sensitivity of better than -100 dBm at 10 kHz resolution and a minimum resolution of 500 Hz . Dispersion is continuously adjustable from c.w. frequency to 1000 MHz . Standard features on the instrument include crystal controlled markers, and automatic phase lock. Texscan Instuments Ltd, 1 North Bridge Road, Berkhamsted, Herts.
WW306 for further details

Low-noise amplifier

The VSS 7451 JP is a low-noise, discrete, microstripline, solid state amplifier for use in the S-band. The device features a solid-state power supply as an integral part of the unit. Typical noise figure is 4 dB and the power output at the 1 dB gain compression point is +11 dBm . The small signal gain is 30 dB with a gain variation of \pm IdB. EMI-Varian Ltd, Hayes, Middlesex.
WW320 for further details

Non-polarized capacitors

Now available from Sprague is a range of miniature, plastic-film encased, nonpolarized capacitors. The devices use a solid electrolyte (Tantalex) and cover the range from $1 \mu \mathrm{~F}$ to $33 \mu \mathrm{~F}$ with voltage ratings up to 50 V . The capacitors are suitable for use in applications where voltage reversals, greater than those which can safely be applied to polarized capacitors, are encountered. The type 184D
devices are available in nine case sizes with either axial or radial leads. Sprague Electric Ltd, 159 High Street, Yiewsley, W. Drayton, Middlesex.

WW310 for further details

Dot matrix display

The Nippon Electric Company have introduced a series of a.c. gas discharge, $x-y$ dot matrix panels for information displays, etc. The displays use either 7×8 or 5×7 matrices to form an alphanumeric character. The displays range from 32 to 256 characters per panel and employ specially developed transparent electrodes to give a greater clarity of character. By using refresher driving with these panels, only one power supply is required. Impectron Ltd, 23/31 King Street, Acton, London W3 9LH.
WW317 for further details

Modular oscilloscope

The 2020 modular display oscilloscope from Autec has a $300 \times 200 \mathrm{~mm}$ display for up to $4 y$ channels. The x and y inputs are calibrated in a $1,2,5$ sequence with an overall accuracy of 5%. The $200 \mathrm{~mm} y$ bandwidth is 15 kHz and the sensitivity is from 10 mV to $20 \mathrm{~V} / \mathrm{div}$. Timebase speeds cover 1 s to $20 \mathrm{~s} / \mathrm{div}$. The y channels may be displayed in the alternate or chopped mode and true $x-y$ facilities may be obtained by replacing the timebase with a y amplifier. The instrument measures $520 \times 450 \times 450 \mathrm{~mm}$ and weighs less than 23 kg . The price range is from $£ 500$ to $£ 700$ depending on options. Autec Elec tronics Ltd, Autec House, Silver Street, Axminster, Devon EX 13 5AH.
WW330 for further details

The type number of the Rogers loudspeaker described in the May issue New Products is $\mathrm{LS} 3 / 5 \mathrm{~A}$, not $\mathrm{LS} 3 / 3 \mathrm{~A}$ as printed

WW306

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Voltage regulators

The LAS 4000 range of thick-film voltage regulators provides protected d.c. outputs and are available in 14 models rated at 170 or 240 W maximum dissipation. The d.c. outputs are $5,6,12,15,20,24$ or 28 V at 10 and 15 A . All the models in the LAS range are covered by a five-year guarantee.
WW350 for further details
Lambda

Thyristor/transistor array

The RCA CA3097E thyristor/transistor array comprises five independent and isolated components on one chip. The devices are an n-p-n transistor, a p-n-p/ n-p-n transistor pair, a zener diode, a programmable unijunction transistor and a sensitive-gate silicon controlled rectifier. The chip is suitable for applications such as timers, oscillators, voltage regulators, etc., and operates over the temperature range -55 to $+125^{\circ} \mathrm{C}$. The price is £1. 023 each 100 off.
WW351 for further details
Celdis

Store interface i.c.

The ZN1025 is a triple-line driver/receiver for interfacing between a computer and store units. The device functions at Schottky speeds giving a typical delay between the transmitter input and receiver ouţput of 22 ns . A power dissipation of typically 250 mW is offered by the interface which is t.t.l. compatible and packaged in either 14-pin plastic flat-pack or d.i.l.
WW352 for further details
Ferranti

Diode laser

A 25 W gallium arsenide diode laser has been introduced by RCA. The device, which is called SG3001, is intended for intrusion alarms, range finding, etc., and is operated by pulsing in the forward-bias direction. Radiation is near infra-red, about a band centred on 9050 angstroms. The duty factor of the pulse current, which must not exceed 0.01% at room temperature, will allow a 500 Hz repetition rate at a maximum pulse duration of 200 ns . WW354 for further details

RCA

Suppliers

Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancashire OL9 8NP.
Celdis Ltd, 37/39 Loverock Road, Reading, Berkshire RG3 IED.
RCA Ltd, Lincoln Way, Sunbury-on-Thames. Middlesex.
Lambda Electronics, Abbey Barn Road, High Wycombe, Bucks HPII IRW.

for people who listen to music Cambridge Audio Limited

The River Mill
St. Ives
Huntingdon PE17 4EP
Telephone St. Ives 62901
WW-103 FOR FURTHER DETAILS

Project 80

 a brilliant new concept in modular hitif

 a brilliant new concept in modular hitif}

Project 80 is going to be the ultimate in modular hi- fi construction far a very long time to come. It combines the qualities most demanded of any modern domestic system -good circuitry, reliability and fine performance - with other features to be
found nowhere else in the world. For example, compactness - Prcject 80 control units are $\frac{3}{4}{ }^{\prime \prime}$ deep $\times 2$ " high, and each one is completely self-contained.
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Fiexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System
of yaur choice gives you the best.

technically the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z. 40 (18 watts RMS continuous into 4 ohms using 35 V) and Z .60 (25 watts RMS continuous into 8 ohms using 50 V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules. Any further units likely to be added to Project 80 range will be compatible with those already available.

Guarantee

If, within 3 months of purchasing any product direct from us. you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair appointed stockists also offer this guarantee. Should any defect arise in normal use. we will service it without charge

Stereo 80 Control Unit Size $-260 \times 50 \times 20 \mathrm{~mm}(101 \times 2 \times 3 \mathrm{ins})$ Finish - Black with white indicators and transparent sliders Inputs - Magnetic pick-up 3 mV RIAA corrected: Ceramic pick-up 350 mV Radio 100 mV : Tape 30 mV Signal/noise ratio - 60 db Frequency range - 20 Hz to 15 KHz $\pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Power requirements - 20 to 35 volts Outputs $100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape Controls - Press button tape radio and P.U. Sliders on each channel for volume bass treble (add £1.19 v.A.T.) f11.95
Project 80 FM Tuner size $-85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times$ 素ins) Tuning range Dual varicap -87.5 to 108 MHz Detector - I.C. balanced Tuning range Dual varcaa to 26 transistors Distorion -0.2% at 1 KHz for 30% modulation 4 pole ceramic filter in I.F. section Aerial impedance - 75Ω or $240-300 \Omega$ Sensitivity - 5 microvolts for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio Output - 300 mV for 30% modulation Power requirements $\begin{array}{r}\text { R.R.P. (add } £ 1.19 \mathrm{~V} \text {. A.T.) } \mathrm{f} 11.95\end{array}$
Project 80 Stereo Decoder size $-47 \times 50 \times 20 \mathrm{~mm}(117 \times 2 \times$ (ins) One 19 transistor I.C. Channel separation greater than 30dB Power requirements -25 V Output 150 mV per channel (add 74 pV.A.T.) f $\mathbf{~ R . P . P . ~} \mathbf{5}$
Active Filter Unit Separate controls on each channel. Size $108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{ins}\right)$ Voltage gain - minus 0.2 dB Frequency response -40 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply H.F. cut off (scratch) -22 KHz to $5.5 \mathrm{KHz}, 12 \mathrm{~dB}$ /oct. slope L.F. cut off (rumble) -28 dB at $20 \mathrm{~Hz}, 9 \mathrm{~dB} / \begin{gathered}\text { loct. slope R.R.P. } \\ \text { (add } 69 \mathrm{p} \text { V.A.T) }\end{gathered} \mathrm{f} \mathbf{6 . 9 5}$
Z.40 Power Amplifier size- $55 \times 80 \times 20 \mathrm{~mm}\left(2 \frac{1}{8} \times 3 \frac{1}{8} \times \frac{3 i n s}{2}\right) 9$ transistors Input sensitivity -100 mV Output 18 watts RMS continuous into $4 \Omega(35 \mathrm{~V})$ Frequency response $-30 \mathrm{~Hz}-100 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio -64 dB Distortion - at 10 watts into 8Ω less than 0.1% Power requirements - 12 to

Z.60 Power Amplifier size $-55 \times 98 \times 15 \mathrm{~mm}\left(2 \frac{1}{4} \times 3 \frac{3}{4} \times \frac{3 i n s)}{} 12\right.$ transistors Input sensitivity $-100-250 \mathrm{mV}$ Output -25 watts RMS continuous into $8 \Omega(50 \mathrm{~V})$. Distortion - typically 0.03% Frequency response -15 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ satio - better than 70 dB Built-in protection against transient overload and short circuiting Load impedance $f 6.95$
$-4 \Omega \mathrm{~min}$. safe on open circuit \quad R.R.P. (add 69 p V.A.T.) E
Power Supply Units pz. 8 Stabilised. Re-entrant current limiting makes damage from overload or even direct shorting impossible. Normal working voltage (adjustable) 50 V. R.R.P. $£ 7 \cdot 98+79 p$ V.A.T. Without mains ransformer PZ. $6 \quad 35 \mathrm{~V}$. stabilised R.R.P. $\mathbb{E 7} \cdot 98+79 \mathrm{p}$ V.A.T. PZ. 5 30V unstabilised R.R.P. £4-98+49pV.A.T.

To Sinclair Radionics Ltd. St. Ives Huntingdon PE17 4HJ
Please send post paid
for which I enclose Cash/Cheque for f \qquad including V.A.T.

Name
Address

Sinclair Radionics Ltd London Rd.. St. Ives Huntingdon PE174HJ Huntingdon

Si. Ives (0480) 64646

AMPLIFIER KITS OF Distinction

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum. run out of gain at the extremes of the frequency spectrum. frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modificaions as per Hi-Fi News April 1974)

Full circuit description
in handbook
(pack 15 price 30p)

FREE
TEAK CASE WITH FULL KITS
$£ 62.40$ KIT PRICE only 5

```
Pack
for power amp.
Set oresistors, capacitors, pre-set
    of semiconductors for power 
    amp. (now using BDY56.
    amp. (now using BDY56,
Pair of 2 drilled, finned heat sinks
Pair of 2 drilled, tinned heat sinks
Set of low noise resistors. capacitors,
    M pre-sets for pre-amp.
l of low noise, high gain semicon
ductors for pre-amp.
\uctors for pre-amp,
Met of potentiometers (including
10 Toroidal transformer complete
10 Toroidal transformer complete
    with magnetic screen/housing primary
    lo-117.234 V. secondaries
tor power amp. fors, power
    0-33 V.25-0-25 V.
```

Price

11 Fibreglass printed-circuit board
12 Sor of resistors, capacitors.
12 Set of resistors, capacitors. ductors for power supply
Set of miscellaneous parts
including DIN skts, mains
input skt. fuse holder. inter-
connecting cable. contro
14 Set of metala
silk screen printed fascia panel and all brackets. fixing
parts etc parts. etc.
15 Handbook
Teak cabinet
2 each of packs 1-7 inclusive .are required for complete stereo system
Total cost of individuall
purchased packs
V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)
for further information
please write for FREE LIST

POWERTRAN

E.H.T, POWERUNIT. 110/240v. 50 Hz giving 5 K.V. at
$50 \mathrm{~m} / \mathrm{a}$. METERED OUTPUT. $£ 17.50$.

COPPER LAMINATE F.C. BOARD
$11 \times 3 \frac{1}{1} \times \frac{1}{10} \mathrm{in} .12 \mathrm{p}$ sheet. 5 for $\mathbf{5 0 p}$.
$10 \times 4 \times \frac{1}{16}$ in. $12 p$ sheet. 5 for 50 p .
$104 \times 5 \frac{1}{2} \times \frac{1}{16}$ in. $15 p$ sheet. 4 for 50 p .
$10 \times 7 \times \frac{1}{1}$ in. 18p sheet. 3 for 50 p .
Offcut pack (smallest 4×2 in.) 50 p 300 sq. in
P\&P single sheet 4 p . Bargain packs 20 p

TELEPHONE DIALS (New) £1 ea RELAYS (G.P.P. ' 30000^{\prime} ') All typos. Brand new rom $37, p$ oa. 10 up quotations only. EXTENSION TELEPHONES (TYDQ 706) Various Colours $\mathbf{E 3}$ 30. P.P. 25p. Exceillent condition.
RATCHET RELAYS. (310 ohm) Various Types 85p. RP 5p.
UNISELECTORS
UNS
(NEW) 25 way 12 Bank (Non Bridging) 68 ohms. $\mathbf{E 6}$.

PRECISION A.C. MILLIVOLTMETER (Solartron) $1 \cdot 5 \mathrm{~m} . \mathrm{V}$

 to $15 \mathrm{~F}: 60 \mathrm{db}$ to 20 db . 9 ranges. Excellent condition. £22-50. P.P. £1.50.
HIGH CAPACITY ELECTROLYTICS

2.200 uf . 100v. ($1 \mathrm{i} \times 4 \mathrm{in}$.) 75p. 3,150uf 40v. ($11 \times 4 \mathrm{in}$.) 60p. $10,000 \mathrm{uf} .25 \mathrm{v}$. ($1 \pm \times 4 \mathrm{in}$.) $60 \mathrm{p} .12,000 \mathrm{ff} .40 \mathrm{v} .(2 \times 4 \mathrm{in}$. 75p. $16,000 \mu \mathrm{f} .16 \mathrm{v} .(2 \times 4 \mathrm{in}$.) 60p. 21,000uf. 40 v . (2. $\mathrm{f} \times$
 $(4 t \times 21 \mathrm{in}$.) £1. $35,000 \mu \mathrm{f}$. 40 v . ($3 \times 4 \mathrm{din}$.) £1. P. \& P. 8 p H.D. ALARM BELLS. 6 in . Dome $6 / 8$ volt D.C. £2.25 P. 50 p

HIGH VACUUM DIFFUSION PUMPS (Metrovac 093C). New condition. f40. P.P. £2. A.E.I. P10. ION Pump Control Units. f17-50.
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{1}{2} \times 1 \frac{1}{4} \times \frac{1}{2} \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{p}$ ea. P.P. 5 p
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces £2. (Trial order 100pcs. 50p.) We are confident you will re-order
REGULATED POWER SUPPLY. Input 110/240v U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

ADVANC
$242 v . A . C$
CV50. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$. €2 ea. P.P. 40p.
CV75. 25 v . at $2 \frac{1}{2}$ amp. $\mathbf{£ 2 5 0}$. P.P. 50p.
CV100. 50 v . at $2 \mathrm{amp}: 50 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} . \mathbf{£ 3}$. P.P. 50 p . CV250. 25 v . at $8 \mathrm{amp}: 75 \mathrm{v}$. at $\frac{1}{2}$ amp. f5. P.P. f1. CV500. 45 v . at $3 \mathrm{amp}: 35 \mathrm{v}$. at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . £7. P.P. E1.
L.T. TRANSFORMER. Prim. 240v. Sec. 13v, at 1.5 amp .75 p . P.P. 15 p .
L.T. TRANSFORMER. Prim. 240v. Sec. 24v. at $1 \frac{1}{\text { i }}$ amp. £1-20. P.P. 20p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$. $1 \frac{1}{2} \mathrm{amp}$. (Shrouded). £1.50. P.P. 30 p.
L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded). £2.25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250v, Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at $98 \mathrm{amp}: 40 \mathrm{v}$. at 3.6 amp : 52 v . at 1 amp: 25 v . 3.7 amp . £15. P.P. £2.
H.T. TRANSFORMER. Pirm $110 / 240 \mathrm{v}$. Sec, 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50p.
E.H.T. TRANSFORMER. $240 \mathrm{v} . \mathrm{Sec} .1800 \mathrm{v} .50 \mathrm{~mA}$. £2.50. P.P. 50p.
1000W. ISOLATION TRANSFORMER. $220 / 240 \mathrm{v}$.242 v . ('C' Core type). £12. P.P. £1.50.
1000W. STEP-DOWN TRANSFORMER. (Double wound) $240 / 110 \mathrm{~V} .50 \mathrm{HZ}$. £12. P.P. E2.
L.T. TRANSFORMER. Prim. 240v. Sec. $16 / 0 / 16 \mathrm{v}$, at 2 amp. £1-60. P.P. 20p.
L.t. Transformer. Prim. 110/240v. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3.15 / 0 / 3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. £1 75. P.P. 20p.
L.T. TRANSFORMER. Prim. 200/240v. ('C' Core) Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at $1.5 \mathrm{~A}: 50 \mathrm{v}$. at 1 amp . £2. P.P. 25p
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Sec. 13.5v. 4A.: 39v. at 2A. £2.50. P.P. 25p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. (' C ' Core) $1 \mathrm{v} . /$ $3 \mathrm{v} . / 9 \mathrm{v} . / 20 \mathrm{v} . / 20 \mathrm{v}$. all at 2 amp . £3. P.P. 35p. Same Secondaries but st 4 amp. $£ 4.25$. P.P. 40p.
L. T. TRANSFORMER. $110 / 240 \mathrm{~V}$. (' C ' Core) Secs. 1v. $/ 3 \mathrm{v} . / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$. at $1 \mathrm{amp}: 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$. E5-25. P.P. 50p.

HIGH-SPEEDMAGNETIC COUNTERS. 4 digit (non roset) 24 v . 40p. P.P. 5p.
5 digit (non-reset) 6-12-24-48v.
(state which) 75p. P.P. 5p.

3 digit 12v. (Reset) 3i $\times 1 \times 1 \times 1 \frac{1}{2} \mathrm{in}$. $\mathbf{E 1}$ each
5 digit (Reset) 12v. £3. P.P. 5p.
MULTICORE CABLE (P.V.C.)
6 core (6 colours) 3 screened, 14/0048. 15p. yd. 100 yds. £12.50.
20 core (2 screened) 17 íp yd. $100 \mathrm{yds}. \mathbf{£ 1 5 .}$
24 core (24 colours) 20p. yd. 100 yds £17.50.
30 core (15 colours) $22 \mathbf{3 p} . y d .100 \mathrm{yds}$. $\mathbf{\text { f18.50. }}$
Minimum order 10 yds
RIBBON CABLE (8 colours)
£1-25
$\mathbf{f 1 0}$
100 m,
10 m .
8 cores, $7 / \cdot \mathrm{mm}$. bonded side by side in ribbon form.
SMALL MOTOR ($1 / 50$ H.P.) 900 R.P.M. 230/250V. A.C. E1-50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea ; 6 make contacts 40 p ea. ; 4 pole c/o contacts 50 p ea. 6-12-24-48v lypes in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. 5p.
24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5 p.
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp . contacts. 75p (with base). P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. 4 c/o contacts 65 p. P.P. 5 p.
SILICON BRIDGES. 100 P.I.V. $1 \mathrm{amp}(3 \times 1 \mathrm{in}$.) 30p 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in)
2 Pole Change-over 60p.

FROM THE SPECIALISTS-POWERTRAN ELECTRONICS
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
3OW BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 2OW LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors, pots Pk. 3 Semiconductor set

GOV REGULATED POWER SUPPLY
£0. 80
f 1.75
£4.70
£0. 85
£2.15
£5.60
£0. 85
2.40
£3. 35

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors
Pk. 3 Semiconductor set BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors capacitors. pre-sets,
transistors
Pk. 35 Slider potentiometer set
(with knobs)
£0. 75

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	£0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cct. F/Glass PCB	£ 1.00
For details of component packs for this design please write for free list.		

TOROIDAL T20 +20
Developed from the famous Practical Wireless Texan

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true Hi -Fi performance at exceptionally low cost. Now further devere this slimline integrated circuit design, based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble filters. adaptable input selector and headphones socket.

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high impedances between the amplifier and the speakers, resul overshoots and resonances. An elegant amplifier damping factor and renders the speakers prone to overshools and resonances. An elegan solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels. of closely defined bandwidth, each of which is led suitable 20 -watt amplifier, based on a proven exas circuit, was also descrited may be stacked and printed-circuit board for this has been designed such that three amplifiers may
mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER
${ }_{1}^{\text {Pack }}$ Fibreglass PCB (accommo-
Fibreglass PCB accom
dates all filters for one channel)
Set of pre-sets, solid tantalum capacitors, 2\% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

UITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.
Pack
1 Fibreglass PCB
2 Set of resistors, capacitors pre-sets (not includ ing O / P coupling capacitors)
3 Sets of semiconductors £4.20
$£ 2.65$ 6 oft ea
system
f0. $70 \quad$ SY
$£ 1.10$
$f 2.40$

4 Special heat sink as

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70 SYSTEM
$\begin{array}{ll}\text { Pack } \\ 1 & \text { Fibreglass PCB }\end{array}$ sembly for
5 Set of $30 / \mathrm{P}$ coupling capacitors 2 off packs 4.5 required for stereo system

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2 N 699	f0. 25	2N4302	f0.60	BC182L	f0. 10	MJ481	¢1. 20	TIP29C	f0. 71
2N1613	£0. 20	2N5087	f0. 42	BC184L	f0. 11	M 4491	f1. 30	TIP30C	f0. 78
2N1711	f0. 25	2N5210	f0.54	BC212L	f0. 12	MJE521	¢0.60	TIP31A	f0. 70
2N2926G	f0. 10	2N5457	f0.45	BC214L	f0.14	MPSA05	f0. 30	TIP32A	f0. 70
2N3053	f0.15	2N5459	¢0. 45	BCY72	f0.13	MPSA12	£0. 55	TIP33A	${ }_{51} 1.50$
2N3055	f0.45	2N5830	f0. 30	8 8529	£0. 85	MPSA14	f0. 35	Tip4a	${ }_{\text {cti }}$
2N3442	£1.20	40361	f0. 40	8 B 330	f0.85	MPSA55	f0. 35	Tipala	¢0.90
2N3704	f0. 10	40362	f0.45	8 BY 56	f1.60	MPSA66	f0. 40		
2N3707	f0.10	BC107	f0. 10	B257	f0.40	MPSA66	f0. 60	iN916	${ }_{\text {E0. }}$
2 N3711	f0. 09	BC108	f0.10	BF259 BFR39	f0.47	MPSU55	f0. 70	15920	f0.10
$2 N 3819$ 2 N3904	f0. f0. 23	$8 C 109$ $8 C 125$	f0.10	BFR79	${ }_{\text {f00. } 25}$	SN72721P	f0. 58	5805	£1. 20
2N3906	f0. 20	BC126	f0. 15	BFY50	¢0. 20	SN72748P	f0. 58		
2N4058	f0. 12	BC182K	f0.10	BFY51	f0. 20	TIP29A	f0.50		
2 N 4062	f0.11	BC212K	f0. 12	BFY52	f0. 20	TIP30A	¢0.60		

for further information please write for FREE LIST NOW!

KIT PRICE only
post free (U.K.)

Pack		Price
1	Set of all low noise resistors	¢0.80
2	Set of all small capacitors	E1.50
3	Set of 4 power supply capacitors	E1.40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders. control knobs, etc.	£1.90
5	Set of slide and push-button switches	$£ 0.90$
6	Set of potentiometers and selector switch	[1.45
7	Set of all semiconductors	f8.25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	£2.50
10	Complete chassis work. hardware and brackets	£4.20
11	Preformed cable/leads	¢0.40
12	Handbook	£0. 25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%*
to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS-Post free (mail order
only)
OVERSEAS - Postage at cost +50 p special packing

Dept. WW09
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER. HANTS SP10 3NN

CAPACITORS

Daly Electroivtic 9000 uF 40 v 50 p p/p 15p:500uF $50 \mathrm{v} 30 \mathrm{p} / \mathrm{p} 10 \mathrm{p}: \mathrm{TCC} 16 \mathrm{pF}+16 \mu \mathrm{~F}$ Type sulo3/1 comprising capacitor Diode and Resistor 40 p p/p 10 D . Dubilit motors
E.E. thp 230 v .50 c 1 ph 50 c .1440 rpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{v}$. 13.00

3 phase 2HP motor 60/50c.. 1800/1500 RPM, 208/220/440v_...... $\mathbf{E 1 2 1 . 5 0}$
Cat. 2026391 Potter Instruments flange mounting capstan motor. 2 HP cont. 110 V
FANS, CENTRIFUGAL BLOWERS
Airmax Type M1/Y3954 (3 blades) Cast ponds to current type $39657 \frac{1}{\frac{1}{2}}$ ") 230 V 1 ph 50 c 2900rpm Class "A" insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{bbs}$. incl. p.n f21 00.
Woods Aerofoil short casing type "S" 2700 rom $220 / 250 \mathrm{~V} 1 \mathrm{ph} 50 \mathrm{c} 6$ " plastic impeller incl. p.p. E11-50.
Woods Aerofoil Code 7.5280 K 200/250V
$1.0 a 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{om}$ 1.0 a 1 ph 50 c 2700 pm
blades incl p. p. f13.50.

Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic for Oil butners. Secomak Model 365 (corresponds to 575) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 441b, 10 h 50 c 0.166 hp 280 . Secomak model 350 La
 Air Controls type VBL4 200/250v 1 ph 50 C .1 free air weight 7 tibs price incl. D.D. $£ 14-50$ Type VBl5 200/250v 1 ph 50 c .172 c Weight 10t bs, pice incl. p.p. $£ 18 \cdot 50$
Nodiam Allday Alcosa Single Stage Vacuum Pump
Modet HSPOB 8 HG. Rom 1420 E.E. 3 phas Mnduction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$. $380 / 440 \mathrm{v}$
Mat Class E ins. $\mathbf{f 2 1} \mathbf{0 0}$ incl. carriage.
Gast MFG. Vacuum pump 0522-P702-R26x. Motol $110 / 120 \mathrm{~V}$. A.C. 1 Ph. 60 c 1725 pDm . Class E .
10 coft to 10 in Mercury In 2 mins maintains vacuum 635 mm Mercury. Or as compressol 10 psi int. or 15 psi cont. $\mathbf{£ 2 5} \mathbf{0 0}$ incl. carr.
Where p.p. not advised add 10 p per f handling and post (in UK). Cash with order. Pe:sonal callers welcome.Open Mon.-Wed. 9.30-5.00 Fri. -Sat 9.30-5.00. Free Car Park adj. PRICES SHOWN ARE EXCLUSIVE OF V.A.I

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

TRHIIIPLS
MONEY BACK IF NOT SATISFIED Free all brand new, full spec. Top grade NEW catalogue. Send SAE
 5
BIG ${ }^{1 / 4}$ panelclip \& RED LED 28 p GREN \&clip $22 p$
INFRA RED LED \&I. IC photo amp 44 p . \& amp/switch $85{ }^{2}$

Difitial Disilel LED ${ }^{1 / 3}$-9pr.out. $£ 1$ 1. 69
 Minitron type $0-9 \mathrm{dPDIL} \mathrm{El} 19$. SOCKETS $13 p$

Calculator batt/mains
from£25 Gロ4GHTRLELDEHCHIPs
Texasetc with 4 displays $£ 12.6$ displays\& chip $£ 14$. pcb£l-49
Hit:All parts \& case. National chip 4 dig it $£ 20.6 \times £ 23$. 1

$741: 8$ pin 29p, to99\&14pin 27p 748 33p $70921 \mathrm{p} \left\lvert\, \begin{aligned} & \text { K1T £469 } \\ & \text { fully }\end{aligned}\right.$ 710 35p 72359 p. 555 timer 79 p ZN414 rx. £I 10 built $£$ 703 rf if $28 \mathrm{Pmc} 1310 \&$ led $£ 2.76 \mathrm{mc} 1339 £ 1 \cdot 20$ TADIOO \& if $£ 2$ IAMP + REGULATOR $7805,5(\& 7-20) \mathrm{V}$.also $12 \& 15 \mathrm{~V} £ 1-49$ AUDIO AMPS:mfc40 oo 50p; I \& 2W£1.19; 3W£1-29;6W... gates 7400 etc $16 \mathrm{P} 741332 \mathrm{P} 7447 \mathrm{£1} \cdot 25$

74TTL 749269 P 7412149 P . \& all others inca
 low prices. NEW 16pin counter/d river 90/47 £2.25 DALO p.cb. PEN 69p.
2\#3055 33 p.four £1. BC107, BC108, BC 109 all 7p ed
IN914 3p ZENERS BZY88 8p. 1A RECTS 50v $3 \frac{1}{2} \mathrm{P}$ POOv 5p. BRIDGE 20p ETS:2N3819 19p 2N3823E 2Op 4416 E 25p BC182/3/4 1o BC212/3/4 11 p BCY70 13p BD131/2 35p ea. BFY5 V2/ 15pTIS43 25p
 CAPACITORS $25 \mathrm{HTO}, 50$, TOOUf 5 P . DISCS 4 P. PRESETS 5 P . CARBON -
POTS l1P.Switch +1 P.Dual 55 S. ULTRASONIC TRANSDUCERS 52 ea
TETITUS ADD 8\% VAT TO PRICES. P.\&P. IOP. CWO BIBR】TITES P.O. BOX 29,BRACKNELL,BERKS
F.M. STEREO TUNER KIT

We have now extented the range of kits for our tuner design (W.W. April/May) to include the switch units, meter drive circuit, power supply, etc. A complete cabinet-metalwork kit will be available in the near future.

If a circuit has been properly designed, it will always function as intended, provided that the construction is correct and the components used are those specified. We believe this is true of our design. A guarantee is therefore offered with each kit which promises you a tuner as good as our prototype

Our kits are not cheap. This is because they are designed up to a quality and not down to a price. They are designed for people who expect to get what they pay for. They are designed for people who want quality and service.

We now have many of these people as our satisfied customers. You can join them by first sending for details without obligation, enclosing an S.A.E. to:

NOU AVALLAELE AT:

85, HIGH HOLBORN, WC1.
13, THE ARCADE, LIVERPOOL ST., EC2.
169, HIGH STREET KENSINGTON W8.
6, EUSTON STATION COLONNADE NW1.

166 VICTORIA STREET, SW1. 12 LONDON ROAD, WEST CROYDON 57 GEDRGE STREET, RICHMOND. Personal shoppers only.
Offers available while stocks last.

The largest selection

EX COMPUTER BOARDS

 for $30 \mathrm{p}+\mathrm{p}$ A 20_{p}

FIBRE-GLASS PRINTED CIRCUIT BOARDS
$6 \pm \times 4^{-}$approx. 2 for 55 p

DECON-DALO 33pC Marker

 Etch reeistant prited circoit marker penVEROBOARDS
Packes containing approz
Bizee, all 0.1 matric $55 p$
REPANCO CHOKES \& COILS RF Chokes
 $\xrightarrow{\text { COILS }}{ }^{\text {DRX1 Crystal eet 31p DRR2 Dual range 45p }}$ COIL FORMERS \& CORES

SWITCHES

DP/DT Togzle 36D SP/ST Toggle 30D

FUSES

EARPHONES

DYNAMIC MICROPHONES

3-WAY STEREO HEADPHONE JUNCTION BOX

2-WAY CROSSOVER

NETWORK
TRANSISTOR EQUIVALENT BOOK 8th EDITION
256 pages of cross references and equivalente
for for Eumpean, American and Japanese
tranaistors. Approximately 9,000 types with

 utmost care frmm manufacturers own
specifleation.

INSTRUMENT CASES

(Black Vinyl covered)

ALUMINIUM BOXES

BA1 ${ }^{\text {5t }}$	$\stackrel{\times}{\times}$		\times	17	48
	\times	${ }^{27}$	\times		42 D
14	\times	4^{*}	\times	$1{ }^{1 /}$	
		${ }^{2!}$	\times	${ }_{2}$	42
BA7 7°				${ }_{24} 4^{+}$	${ }_{70 \mathrm{p}}^{34}$
${ }^{8} 8{ }^{\text {8 }}$	\times	${ }^{6}$		$3^{\text {a }}$	90 D
				${ }^{*}$	

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen
Model 42 £1-95 Chrome Finish Model 60 £1.50

Ref, B. Stylus and Turntable Cleaning Kit 34 p Ref. 36A. Record/Stylus Cleaning Kit 33p Ref. 43. Record Care Kit $22 \cdot 42$ Ret. 31. Cassette Head Cleaner 58p
Rel. 32. Tape editing Kit s1.68 Model 9. Wire Stripper/Cutter 98,

Ref. 32A. Stylus Balance 21.37

ANTEX SOLDERING IRONS
$\mathbf{X} 25.25$ watt 82.05
CCN 240.15 watt 22.48
Model G. 18 watt $\mathbf{E 2 . 2 6}$
SK2. Soldering Kit 23.25
SK2. Soldering Kit
SOLDER: ISSWG Multicore 7oz $\$ 1.61$ 228WG 7oz 21.61. 18SWG 22ft 51p 228wa Tube 33p
ANTEX BITS and ELEMENTS
Bits No
102 For model CN240 $\frac{2}{32}$
104 For model CN240 $\frac{3}{18}$
1100 For model CCN240 $\frac{3}{3^{\prime \prime}}$ 101 For model CCN240 ${ }^{1}$ 1020 For model CCN 240 t 1020 For model G240 $\frac{3}{3}$ 1021 For model G240 1022 For model 1240 s.
50 For model X25
51 For model X25 ${ }^{12}$
52 For model X25 $\frac{3}{18}$
ELEMENTS
ECN 240 E1.30

ECCN $24041 \cdot 3$

EG 240 \&1.n7 EX 25 21.16

ANTEX HEAT SINKS 10p
V AT included to all prices. Please add
lop P. P. U.
please add extra for postang
NEW COMPONENT PAK BARGAINS
Paek
Mo. Qty
Pael
Mo. Qty. Dencription Price
1200
200
$\begin{array}{lll}\mathrm{C} 2 & 150 \\ \text { C3 } & 50\end{array}$

Capacitora mixed values approx. count by weight 0.55

$\begin{array}{cc}\text { count by weight } & 0.55 \\ \text { Prectaion Resistors mired value }\end{array}$

$1-2 \%$
ith W^{+}Reslatora mixed preferred
values

Pieces assorted Ferrite Rods 0.5 Tuming Gange, MW/Lw VHF 0 S 5
Pack Wire 50 metres assorted
colours
0.55
Reed Switches
Micro awitches
Asborted Pots \& Pre-Sets
Jack Sockets $3 \times 3.5 \mathrm{~m}$
Standard Suitch
Paper Conderitch Type
Paper Condensers preferred type
mixed valued
0.5
Electrolytics Trans. types Pack assorted Hardware-
Nuta/Bolts, Grommets etc. $\begin{array}{ll}\text { Nuth/Bolts, Grommets etc. } & 0.5 \\ \text { Mains Slide Switches, } 2 \text { Amp } & 0.55\end{array}$ $\begin{array}{ll}\text { Mains Slide Switches, } 2 \text { Amp } & 0.5 \\ \text { Assorted Tas Strips \& Panels } & 0.55\end{array}$ $\begin{array}{ll}\text { Assorted Tag Strips \& Panels } & 0.55 \\ \text { Assorted Control Knobs } & 0.55\end{array}$ $\begin{array}{lr}\text { Assorted Control Knobs } & 0.55 \\ \text { Rotssy Wave Change Switches } 0.55\end{array}$ Rotssy Wave Change Swita
Relayk 6-24V Operating Sheets Copper Lating
Fibre

Pleane add 10p post and packing
on all component packs, plus a
further 10p on on all component packs, plus
further 1op on pack Nos. C1, C 2,
C19, C20 \& C 21 .
PLEASE NOTE: ALL OUR PRICES INCLUDE V.A.T. MODEL AMTRON KITS
Model No.
Bimple transistor test
Amplifer 1.5 W
Amplifer 1.5 W
AM/FM Antenna Ampliter
4-channel Radio Cont
Radio Control Receiver
'GCX2' Channel splitting unit $1,000 \& 2,000 \mathrm{~Hz}$
Superhetrodyne Radio Control
VHF Tuner 120 to 160 MHz
Rario Control Field Strength Meter
4-Channel AF mixer
Electronics Unit for
Cuitar pre-amplifter
Capacitive \mathbf{D} ischarge

VISIT OUR COMPONENT SHOP

HORIZONTAL CARBON

PRESETS
0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$
SELENIUM BRIDGE
RECTIFIERS
18V. 2A. Ideal for thoae building battery
chargers. 15 p each. 10 for 55p
REPANCOTRANSFORMERS
${ }_{2}$ from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$,
$14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{Ve}$
$40 \mathrm{~V}, 50 \mathrm{~V}$, and $25 \mathrm{~V}-0-25 \mathrm{~V}$. Type
MT50/t
MT50/
MT50/1
MT50/1

18 BALDOCK ST., WARE, HERTS. (A10)
Open Mon,-Sat. 9 -5.30 p.m Tel. 61593

WORLD SCOOP!
 JUMBO SEMICONDUCTOR PACK

Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I,C's and Zenners ALL NEW AND CODED APPROX 100 PIECES!

Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet | in every Pak |
| :---: |
| ONLY |
| 2 |

p \& p 20p
MAMMOTH I.C. PAK

APPROX. 200 PIECES

 Assorted fall-out integrated circuits including: Logic, 74 Series, Linear, Audio and D.T.L. Many coded devices but some unmarked-you to identify.OUR SPECIAL PRIDE
$\mathbf{f 1 . 2 5}$ including V.A.T. \& p. \& p
SPECIAL PURCHASE by BI-PAK

2N3055. Silicon Power Transistors NPN

 Famous manufacturers out-of-spec devices free from open and short defects-every one able ! 115 watts TO3. Metal Case.OUR SPECIAL PRICE 8 for $\mathbf{f 1}$.

LOW COST CAPACITORS
 3p oach
 BOOK BARGAIN

 $500 \mu \mathrm{~F} 50 \mathrm{~V}$ Elect.CASSETTE CASES $\underset{\substack{\text { Holdg } \\ 21.30}}{12.10^{*} \times 31^{*} \times 5^{*} \text {. Lock \& Handle }}$

IT'S NEW

IT'S POWERFUL
$15+15 w$ R.M.S. ANDIT LOOKS GOOD
THE LEGIONAIRE STEREO AMPLIFIERORDER NOW

ONLY £39.95 p. \& p. 50p OR Write for full details

ALL PRICES INCLUDE VAT

CARTRIDGES

$A C O S$ GP92-1SC 200 mV at 1.2 cms,
$A C O S ~ G P 93-1280 \mathrm{mV}$ at $1 \mathrm{~cm} / \mathrm{sec}$ ACOS GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
$\mathrm{ACOSGP96-1} 100 \mathrm{~m} V$ at $1 \mathrm{~cm} / \mathrm{sec}$ TTC J-2005 Crystal/RI Output
TTC J-2010C Crystal/Hi Output
TTC J-2006s Stereo/Hi Output TTC J-2105 Ceramic/Mcd Output including dyylus

TTC J-20.3S Replacement atylus for | above |
| :--- |
| $\begin{array}{c}\text { TTC AT-55 Audio-technics magnetic } \\ \text { cartridge } \\ 4 \pi \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}\end{array}$ |

CARBON FILM RESISTORS The El2 Range of Carbon Film Resistors. t watt avadable in PAKS of 50
assorted isto the following groups:R1 50 Mixed 100 ohms- 820 ohms $\begin{array}{lll}\text { R2 } & 50 \text { Mixed } 1 \mathrm{~K} \text { ohms } 8.8 \cdot 2 \mathrm{~K} \text { ohma } & 50 \mathrm{D} \\ \text { R3 } & 50 \text { Mixed } 10 \mathrm{~K} \text { ohms }-82 \mathrm{~K} \text { ohms } & 50 \mathrm{p}\end{array}$
 THESE ARE UNBEATABLE PRICESTHESE ARE UNBEATABLE PRICES
JUST 1p EACH INCL. V.A.T,
BI-PAK SUPERIOR QUALITY LOW-NOISE CASSETTES C60,32D C90, 41p C120,52p SEE OUR COMPLETE RANGE PRACTICAL ELECTRONICS, PRACTICAL WIRELESS, RADIO CONSTRUCTOR EVERYDAY ELECTRONICS

ELECTRONICS TODAY
INTERNATIONAL
OR SEND 5p. FOR THE
FULL LIST OF ALL
PRODUCTS

BUNDLE
8 Books comprising: I Radio \& Electronle colour code and 1 Radio valve guide PLUS Kadio valve guide PLU8
Other constructional books on
Receivers, EM Tuners, etc. Receivers, EM Tunera, etc.
ALSO 1 General construntion book
GALUE E3. OUR PRICE £2 p \& p 10p. $\underset{\text { Equivalents }}{\text { Had }}$ Transistor Handbook of Ralio, T.V. ${ }^{40 \mathrm{p}}$
Induatrial Tube Industrial Tube \& Valve Equiv.
Handook of Tested
sistor Circuits $\begin{gathered}\text { Tran- } \\ 40 \mathrm{D}\end{gathered}$ slstor Circuits
International Handbook of the World's Short Wave
Radio Stations and FM/TiV. Listinge Handbork of Simple Trand
Bistor Cricuits
Radio and Electronics Radio and Electronics colour
codes and Dsta Charts Sound and Data Charts 15p
Mandeal
Mandeaker

Br P11 beginnerg St
 home
hniversal

$$
\begin{aligned}
& \text { Home } \\
& \text { Universal Gra } \\
& \text { Indicator }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Indicator } \\
& \text { How to make FM an } \\
& \text { aerials Bands } 1 / 2 / 3 \\
& \text { Radio Servicing for An }
\end{aligned}
$$

$$
\begin{aligned}
& \text { High Fidelity } \\
& \text { enclosures }
\end{aligned}
$$

$$
\begin{aligned}
& \text { High Fidelity Loudspeak } \\
& \text { enclosures } \\
& \text { Transistor Circuits Manu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { enclosures } \\
& \text { Transistor } \\
& \text { No. } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { No. } 1 \\
& \text { Coil deign and Construction } \\
& \text { Manual } \\
& \text { Radio T.V. and Electron } \\
& \text { Data book } \\
& \text { Dand }
\end{aligned}
$$

Transiptor

ranselvers Bu
recelver
Transistor Test Equ
Servicing Man
Servicing
Manual of
Ampliffers

A comprehensive Guide- $\mathbf{B 0 0 k} 5$

Guide- Book 5
How to receive foreig
programmee on your
simple modificatiours
AF-RF Reactance-Frequenc
charl for Constructors
Handbook of Practical Ele
irunic Muaical Novelties trunic Musical Novelties 50D
Practical Transistorised Nov Practica Transistorised Nov
elties for Hi-Fi Enthusiast
Handbook
Circuits
Oí Integrate
Equivalents an Substitutes
Reaistor Colour Code Dis

-thelowest prices!

 Bi-PAK StILL LOWEST DA PRICE FULL SPECIFICATIOR
GUARANTEED. ALL FAIOUS MANUPACTURERS

Anifit

NOW WE GIVE YOU 50w PEAK (25w R.M.S.)PLUSTHERMALPROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Max Heat Sink temp. $90^{\circ} \mathrm{C}$.

Frequenoy Response 20 Hz
to 100 KHz

- Distortion better than 0.1%
- Distortion
- Sapply voltage $15-50$ volts
- Thermal Feedback
- Overall size ${ }^{63 \mathrm{~mm}}$ nents have heen used and the Isteat solidion. Onte circuitry incorporated in this powerinul
A.F. enthusiast.
FULLY BUILT-TESTED and GUARANTEED

STABILISED POWER
£3.25 MODULE SPM80

8Pm80 is eapecially designed to power 2 of the A L60 Armplifers, up to
15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorpor ating complete short
circuit protection. With the addition of the Mains "Cransformer BmTR0, circuit protection. With the addition of the Mains "Transformer BrmT80,
the unit will provide outputs of up to $1-5$ amps at 35 volts. Bize: the unit will provide outputs of up to $1-5 \mathrm{amps}$ at 35 volth. Bize:
$63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to bild Audlo Systerns of the highest quality at a hitherto uno titainable price. Also
ideal for many other applications including Dico syyutems, Public TRANSFORMER BMT80 £2•15 p. \& p. 25p STEREO PRE-AMPLIFIER TYPE PA100

INTEGRATED CIRCUIT PAKS

LINEAR I.C.'s-FULL SP		
Type		
72702	DIL 14	
72709 P	DIL	$8 \quad 0.33$
72709	DIL 14	14
72710	DIL 14	14
72741	D1L 14	14
72741 C	T0. 5	80.45
72741 P	DIL	$8 \quad 0.38$
72748 P	IHL	0
201 C	T0-5	0
SL701C	T0-5	$8 \quad 0.50$
SL702C	TO-5	0
AA263	T0-72	$4 \quad 0.80$
TAA293	T0-74 10	10 \$1.00
TAA350A	T0-5 10	10
A03C	T0-5	
7090	T0-5	0.35
A711	T0-5	$10 \quad 0.45$
2N414	T0-18	11
TBA800	DIL	
3 TERMINAL POSITIVE VOLTAGE REGULATOR TO. 3 Plastic Encapsulation HA7805/L129 5V (Equv. to MVR 山A7812/L130 12V (Equv. to MVR $\mu \mathrm{A} 7815 / \mathrm{LI}$; 15 V (Equv. to MVR		
EDSR 3166 TRIPLE 66 BIT DYNAMIC SHIFT REGISTER		
Capacitance. High spe		
Protected Inputs Wired 'O1		
EET AV	ILable	
TEAK VENEERED CABINET for:		
STEREO 20		
TC 20. £3.95 p\&p 30p		
E.M.I. LEK 350 Loudspeak		
clud		
pr. OUR SPECIAL PRICE		
$\mathrm{E}^{\mathbf{2} 0}$ per pair P.\& P. £1. ONLY WHILE STOIKS LAST!		

8 HP80 8TEREO READPHONES, $4-16$ ohms
impedance. Frequency 4 response 20 to $20,000 \mathrm{~Hz}$

TRANSFORMERS

POWER SUPPLIES

The STEREO 20 DUAL-IN-LINE SOCKETS
\qquad DUAL-IN-LINE 1
PROFESSONAL
PROF TYPE No.
T8O 14 pin type.
, Low co
SPS 14
BPS 16

BP8 8 pin type
INDICATOR TUBES

Type	
3015 F	$\begin{array}{l}\text { Deacciption } \\ \text { Minitron } 7\end{array}$

CD $66 \begin{gathered}\text { Characters } \\ \text { side viewing }\end{gathered}$

BI-PAK
CATALOGUE \& LISTS
Send S.A.E. and 10p

Built to a specifcation and NOT a price, and yet still the greatest value on the marke
the PA100 stereo preamp 1 保er bas been conceived from the latest circuit technique Designed er no less than eight silicon planar transistors, \mathbf{t} wo of these are specially elected low noise NPN devices for usc in the input stages, Three switched stereo inputs, and rumble and scratch fiters are features of the rariable bese and treble controle.

SPECIFICATION:

 alised to RIAA curve Tape and P.U. inputa equalined to
rithin $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz . \qquad Bass control
Bass control
Treble control
Filters: Rumble Filters: Rumble (high pass) Signal/noise ratio Input overload
Supply Dimensions

MK 60 AUDIO KIT

TEAK 60 AUDIO KIT

comprising: Teak veneered cabinet size $16 \sigma^{\prime \prime} \times 11^{\prime} \times 31^{\text {, other parta include aluminium chassis, heatsink and }}$

ALIO/AL20/AL30 AUDIO AMPLIFIER
 ALIO/AL20/AL30 AUDIO AMPLIF MODULES

The AL10, AL20 and AL30 units are
 simitar in their appearance and in their
yeneral
apecification. However carelul selection of the plastic power device has
resulted in 3 range of output powers from The versatility of their deaign makes them deal for use in record players, tape recorders,
stereo annplitiers and cassette and cartridge stereo anyplitiers and cassette and
tape players in the car and at home

Parameter	Conditions	Performance
HARMONIC DISTORTION	PO $=3$ WATTS $\mathrm{f}=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-168
INPUT IMPEDANCE	$f=1 \mathrm{kHz}$	$100 \mathrm{k} \Omega$
FREQUENCY RESPONSE $\pm 3 \mathrm{~dB}$	$\mathrm{Po}=2$ WATTS	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENSITIVITY for Rated ofl	$\mathrm{V}=25 \mathrm{~V} . \mathrm{Rl}=8 \Omega \mathrm{f}=1 \mathrm{KHz}$	75 mV . RMs
DIMENSLONS	-	$3^{*} \times 2 \xi^{\circ} \times 1^{\prime \prime}$

The atove table relates to the Alio, Alda and Ab -

Maxirnurn Supply Voltage

 Power outwut fur 2% T.II.D.$(\mathrm{RL}=\kappa \Omega \mathrm{I}=1 \mathrm{KHz})$ -

C. T. ELECTRONICS NOW AT 267 AND 270 ACTON LANE, LONDON W. 4
Now open. Our New Components Shop. These premises are very much arger and will enable us to have greater stocks than we already have. Having all the components under one roof will now guarantee you seedier service on the counter, and on the mail order side. We have problems getting your components then come along. We are open from $9.30 \mathrm{a}, \mathrm{m}$. through till $6.0 \mathrm{p} . \mathrm{m}$. Monday to Saturday. The nearest Underground is Chiswick Park, and there are no parking restrictions

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK W. 4

MICROPHONES

CM10 Crystal Lapel Microphone with Lead and Plug
 Omni Directional Capacitor Microphone with
built in Preamplifier, Cable and Windshield CO96 Cardioid Capacitor Microphone as above, both
 DD5 5 Electret Paging Microphone, on table stand wit DD6 Lavalier Microphonitch, 600 ohms........... DM18HL Cord, 6 metres Cable. 600 ohms $/ 50 \mathrm{k}$. DM73 $\begin{gathered}\text { stand. } 600 \text { ohms } / 50 \mathrm{k} . . .10 m i c \\ \text { Omic Microphone with } \\ \text { desk stand, } 6 \text { metres Cable and Plug. } 50 \mathrm{k} \text { ohms }\end{gathered}$ DM81 Remote Dynamic Microphone, Cassette type DM82 Remote Cassette Cardioid Microphone with DM94 Omni Directional Dynamic Microphon DM614 Pencil Type Dyanmic Microphone with Cable. PROM5 Lavalier Capacitor Microphone with Tie Clip. 5.8 PROM10 Omni Directional Capacitor Microphone with PROM20 Uni-Directional Capacitor Mierophone with 6 PROM25 Capacitor Boom Arm Microphone with Arm, two UD50HL Cardioid Duai tmpedance MIcrophone with

 Suitable for systems up to 20 watts RMS.......... 22.
Dome Tweter. Freq. $2000-18000$ HZ. Cros sover
freq. 3000 HZ . Imp. 8 ohms. Suitable for system
 orea. 3000 HZ . Imp . 8 ohms. Suitable for systems
fren

 Horn Tweter Frea. $2000-18000 \mathrm{HZ}$. Crossover
freq. 3000 HZ . Imo. 160 hmm . Suitable for Horn Tweeter. Freq. $2500-20000 \mathrm{HZ}$. Crossover
frea 3000 HZ. freq. 3000 HZ Imp. 8 ohms. Suitable for
systems up to 40 watts RMS....................... freq. 3000 HZ . Imp. 8 ohms. Suitable for systems up to 30 watts RMS...

CROSSOVERS

CN23 2 Way Crossover Network. Imp. 3 ohms. Cross over 3000 HZ . Suitable up to 15 watts RMS.... Way Crossover Network. Imp. B ohms. Cross-
over freas. 1000 and 5000 HZ . Suitable up to $3 \begin{aligned} & \text { Way Crossoyer Network. Imp. } 8 \text { ohms. Cross. }\end{aligned}$ Way Crossoyer Network. Imp. 8 ohms. Cross-
over freqs. 1000 and 5000 HZ . Suitable up to Way Crossoyer Network. Imp. 8 ohms. Cross-
over 300 HZ . Suitable for systems up to 15

All mail order and enquiries to 270 Acton Lane Tel: 01-994 6275

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 micro volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt - $52 \cdot 5$ ohms. Internal Modulation. $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times 124 \times 10$ in. Secondhand condi
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}, 513 \mathrm{~V}$ and 1025 V a $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament transformer 230 V a.c. input. 4 Rectifying valves type $5 \mathrm{Z3}$. on steel base 19 in . $W \times 11 \mathrm{in}$. $\mathrm{H} \times 14 \mathrm{in}$. D . (All connections at the rear.) Excellent cond. $£ 8.50$ each, Carr. $\{2$.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves microphone and modulator transformers etc. $\mathbf{£ 7 . 5 0} \mathrm{each}$, Carr. $\{2 \cdot 0 \mathrm{on}$
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 50 p. APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter £1-25, post 30p
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, £2 eash, 30p post. VARIAC TRANS FORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at $2 \mathrm{Amps} . £ 3$ each 75p post
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ in. wide $\times 16$ in. deep, with rear door. $£ 12$ each, Carr. $£ 2 \cdot 50$
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne £7.50 each. Post 60p. TYPE PE 218E . ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps. REDIFON TEIEPRINTER RELAY UNIT NO. 12: ZA-41195 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$ T lised valves CV 286. Centre Zero Meter 10-0-10. Size 8in. $\times 8$ in. $\times 8$ in. New condition $£ 7.50$, Carr. 75 p.
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range 1200-9600 gausses. $\pm 2 \%$. S/hand good cond. $x 25+60 p$ post
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated, $£ 10$ each, Carr. $£ 1$
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2C42, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters $0-999$. Valves 6AL5 and 8×6 AK5. $\mathbf{1} 10$ each, 60p post
TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. as new cond. in original packing case, $£ 25$ each; or second hand cond. (excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3 \cdot 30$
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $\mathbf{£} 30+£ 1$ carr. AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjoer. $5-5000 \mathrm{c} / \mathrm{s}$ per sec. S/hand V. gocd cond. $£ 90$, Carr. £2.
SOLAS II SURVIVAL RADIO TX/RX: Automatic morse key or speech.

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB, Line 1 and 2. $£ 200$ each

50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc excellent cond. E40 each. Carriage f5.
10-WAY TELEPHONE SOCKET STRIPS: 3 connections and 10 jackplugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment good cond. E4 each. Post 50 p . . (2 each. Post 30p. the above items. $£ 2$ each. Post 40p.
10-WAY TELEPHONE SOCKET STRIP: 3 connections. Takes standard P.O. ackplugs, 20 , and 10-WAY TELEPHONE LAMP STRIP 20-LINE TELEPHONE UNIT: With plugs; magnetic indicators; and BRIDGE MEGGER: 250 V . (Evershed Vignoles) series 2. $£ 30$ each. Carr. $£ 1$ RRIDGE MEGGER: 2,500 V., series $1 . £ 30$ each. Carr. $£ 1$
TRANSMITTER BC-624: Complete with power supply for $230 \mathrm{~V}, 5$ channel, crystal controlled. Can be modified for 2 metres. Size $19 \times 19 \times 12 \mathrm{in}$. approx Secondhand, excellent cond. $£ 12 \cdot 50$ each. Carr. $£ 2$
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction DEI PENA RF GENERATOR T
DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}$. \times 36 in 230 V input. $£ 35$, Carr. $£ 4 \cdot 00$
COPPER WIRE AERIAL: with insulators, 100 ft . long. $£ 150$. Post 40 p
HIGH VOLTAGE TRANSFORMER: $5000 / 5000$ at 250 mA ; 230 V . A.C. input C
TELEPHONE CABLE: (Twin) 1,350ft. on metal reel. $£ 5$ per reel. Carr. $£ 1$ ANTENNA MAST 30ft. consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ($\frac{7}{8}^{\prime \prime}$ dia.) with base, guyropes and stays etc. $\ddagger 5$ each, Carr. $£ 2$.
ANTENNA MAST 12 ft . 3 sections with suitable base to mount on the above APN-1 ALTLMETER TX/RX, Fieq,
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete wit 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$
MODULATOR UNIT: Complete with, mod. transformer and 2×807 Valves Mounted 19 " chassis, $8^{\prime \prime} \times 8$ ". "As new" cond. $£ 8$ each; or secondhand $£ 5$ each LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS AR88 SPARES; TEST EQUIPMENT ETC. Send $10 p$ for above lists
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF LONDON ONLY

ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

E OF BRANDED AND GUARANTEED
EVICES • TRADE RETAIL • EXPORT
STRIAL SUPPLIED
75 Stock lists on request

CASH AND CARRY PRICES

for callers or by post

\section*{| EXIRA DISCOUNTS |
| :--- |
| Semi-conductors |
| Any one type or mixed |
| SN 74 Series 'IC' |
| 12 + EXRA 10% |
| $25+$ EXIRA 15% |
| $100+$ EXTRA 20% |}

ELECTRONIC COMPONENTS

16 items

Miniature	10.7 MHz
filters	40 p pair

IC IF Unit
CA3089
10.7 MHzIC
$£ 2.94$
IC Clock
MM 5314 single chip
clock with CCT
E9.00
Sinclair 6 watt IC
IC12
with data and $P C$
board $\quad £ 2.10$
$\begin{aligned} & \text { Radio IC chip } \\ & \angle N 414\end{aligned}$
Radio IC chip
LN414
Criccuit
5 watt 1 C chip

Ultra sonic trans-
Utra sonic trans-
ducers
with data/circuits
$\mathbf{£ 5} .90$ pair
Strobe tubes
ZFT8A (similar to 4 A)

7 segment indicators
3015 F with data
$\mathbf{£ 1 . 7 0}$ each
Spring delay units
HP42
$9^{\prime \prime}$ twin spring

Fibre optics
0.01 " dia. mono
$\mathbf{E 5 . 5 0}$ per 100 metres
0.13" dia. 64 fibres
$\mathbf{~} 1$ per metre

f10.50 each

 Radio Control XTALS
 Matched pair for 465
 kHz IF
E 2.00
or all superhet trans
Handsets
ightweight telephone
Lightweight telephone
handsets brand new
complete with dia-
grams for intercoms
$£ 3.00$ pr.
Dual impedance and
microphones
0k/600 ohm quality
cardiod stick mics
with HI-LO and on/off
witches and and on/

professional $£ 10.75$

EASY TO BUILD KITS
BY AMTRON
Everything supplied
\qquad
$\begin{array}{ll}\text { Model } & \text { No. } \\ 310 & \text { Radio control receiver } \\ 300 & \text { 4-channel R/C transmitter }\end{array}$

£p		-	¢ p
3.29	700	Electronic Chatfinch	7.92
6.61	707	Windscreen wiper timer	7.97
6.61	760	Acoustic switch	12.57
1.66	780	Metal Detector (electronic	
4.50			10.91
4.73	790	Capacitive Burglar alarm	7.92
6.61	835	Guitar preamp.	4.99
9.55	840	Delay car alarm	6.99
4.16	875	CAP. Discharge ignition	
4.95		car engine (-Ve Earh)	13.19
5.31	80	Scope Calibrator	2.65
5.31	255	Level indicator	6.98
6.64	525	$120-160 \mathrm{mHz}$ VHF time	11.31
3.29	715	Photo cell switch	8.07
6.90	795	Electronic continuity tester	4.97
6.98	860	Photo timer	15.51
11.31	235	Acoustic Alarm for driver	8.61
21.45	465	Quarz XTAL checker	9.90
kHz	220	Signal Injector	2.65
19.77	390	vox	£13.62
9.47	432	Testakit	21.83
	670	Buffer Battery Charger	7.59
. 24	850	Electronic Keyer	16.37

$\begin{array}{lll} & \\ 690 & \text { OC motor speed Gov. } & \mathbf{9 . 2 4} \\ \text { O. } & \mathbf{3 . 3 1}\end{array}$

:

You can build the Texan and Stereo FM Tuner
TEXAN 20 + 20 WATT IC STEREO AMPLIFIERS

Abstract

Features glass-fibre PC board. Gardners low field transformer. 6-IC's, 10 transistors plug diodes etc. Designed by Texas Instruments engineer 10 transistors plug diodes etc. Designed by Texas Instruments engine for Henry's ad. P. W. 1972 . Supplied with full chassis work. detailed construction handbook and all necessary parts. Full input and control operated. Free teak sleeve with every kit. $£ \mathbf{2 8} .50$ (GB post paid).

STEREO FM TUNER

Features capacity diode tuning, led and tuning meter indicators. stabilized power supply -mains operated. High performance and sensitivity with 8 in $\times 2 \frac{3}{4}$ in $\times 6 \frac{5}{6}$ in
Complete kit with teak sleeve $\mathbf{f 1 1 . 0 0}$ (GB post paid). Join the large band of happy constructors!

TRANSISTORISED

MODULES

Amplifiers with controls

,

EM
SPEAKERS
Special Purchase
13×8 chassis speakers (carr/packing 30p each or 50 p pr)

* 150 TC 10 watt 8 ohm i win cone $£ 2.20$
\$450 10 watt 4. 8, 15 ohm with twin tweeters and crossover $£ 3.85$ each
PW 15 watt 8 ohm with tweeter $\mathbf{f 5}$. PW 15 watt 8 ohm with tweeter $\mathbf{f 5} .25$
$350 \quad 20$ watt $8 . \quad 15$ ohm with twee 57.80 each
*Polished wood ca

EXCLUSIVE

 5 WATT IC AMPLIFIERSSpecial purchase 5 watt output 8 16 ohm with data.

Price $\mathbf{£ 1 . 5 0 ~ e a . ~}$
2 for $\mathbf{f 2 . 8 5}$

UHF TV

 TUNERS

625-line receiver UHF transistorised tuners FM. UK operation. Brand new. (Post/packing 25p each) TYPE B 4 -button pushbutton (adjustable) $£ 3.50$

SPECIAL EQUIPMENT

Brand new ex-WD portable radiation detectors 0-10r complete with power unit,
haversack and probe (CV2247) PRICE $\mathbf{f 9 . 9 7}$ carr/packing $£ 1.00$.
Brand new seal photo multiplier units ideBrand new seal photo multiplier units (de
signed FM fuel tank fire detective f.3.50.
SPECIAL OFFER
Cassette Storage
Rotating unit up to 32

cassettes stackable $\mathbf{£ 3 . 6 0} \mathrm{pp} 15$ p Car unit with bracket for 10 cassettes $\mathbf{£ 2 . 8 0}$ pp 10p

TEST EQUIPMENT mULTIMETER
(carr/packing 35p)

General Test Equipment

HENRY'S HOME ENTERTAINMENT CENTRES LTD

London

354/6 Edgware Rd. W2
376/8 Edgware Rd. W2
372 Edgware Rd. W2
120 Shaftesbury Ave. W1
230 Tottenham Court Rd. W1
144 Burnt Oak B'way. Burnt Oak
Edgware

01-4025854 01-723 0818 01-4028140 01-4379692 1.5801785 01.9527402

190/4 Station Rd. Harrow
Middlesex 01-863 7788
Out of Town
256 Banbury Rd. Summertown
Oxford
55 Gloucester Rd. Bristol $7 \quad$ (0272) 45791

FREE STOCK

LISTS

No 36 Transis
No 18 Disco lighting high power sound
No 17
equipment
Send lar g
addressed envelope with all

SINCLAIR MODULES AND KITS

\$T80 stereo pre-amplififier

Audio filter unit 244.15 walt amplifier 760.25 wat amplitor

 P25 power supplies for 1 or 2240P26 power supplies P26 power supplies (S. Tab)
for 1 or 2740) for or $2 Z 40$ supplies (S. Tab) Pro power supplies (S.
for 1 or 2260
Transformer Transformer for PZ8 FM tuner
Stereo decoder
St il taboo decoder post paid (GB only).

Complete kit NOW £13.59

Also built $\mathbf{£ 1 9 . 9 5}+$ VAT

SINCLAIR
 CALCULATOR KIT

"SLO-SYN'" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. Thase fing motors are easiliy reversed, starting and stopplng In leas than 5° without eiectrical or
 OHz. 72 rpm . STEPPING. Holding torque at 80 steps per second- 100 oziln. Can be wirect oive er revolution with accuracy olis. Diter step non-cumuatio

OPENFRAME haded pole GEARED
MOTORS
 HIGH TOROUE, approx $z^{+}+$spindla q^{x} dia. as

liorpm with preased steel gear caze (simlar to above
but stightly smaller). E3. P . P . 30 pop .

CARTER ELECTRIC

Similar to above with alloy oear case. 60 r.p.m. This SMITHS RINGER-TIMER Rellable 15 minute times, spring wound (concurrent with time eeting) 15×1 min
divisions.
approximately
between divnsions, approximately ip between
divisions. Panel mountng with chrome

FEW ONLY

Fully stabilised "Labgear" Power Supply Unit. Input $50-240 \mathrm{v}$. 50 Hz . Outputs $6 v, 6 \mathrm{a}$ D.C., and $6 v+2 v, 100 \mathrm{MA}$. tum and ripple at full load-less than 3M5 peak to change $1 / 1000: 1$. Output impedance 0 -005 ohms.

"LABGEAR ELIMINAC"
P.S.U. $200-2500.40160 \mathrm{~Hz}$. Alternative outputs fully variabie (variac incorporated). Output 1.12 V at 5 sa O.C. fully smoothed. Output 2 . 12 V at 8 Ba D.C. C. whth
 case. In maker's carton. $£ 27.50$. Carr. \& Pkg . $£ 1.50$.

SILVANIA

 MAGNETIC SWITCHNow complete with reference magnet I A magnetically activaled witch, vacuum sealed in a glass

NORPLEX

 The famous Amerlcan fibre-glass copper-clad laminate. Finest qualitywith woven olass base of Epoxyresin. Excellent Mech. and Elec
conductive properties. Heat resistant, ideat for P.C.'s etc. THIS is A conductive propertles. Heat resistant, ideat for P.C.' etc. THIS IS A
SPECIAL PURCHASE AND ONLY'. AVAILABLE WHIEE STOCKS LASTI Sizes: $12^{*} \times 11^{*} ; 24^{\circ} \times 12^{*} ; 24^{*} \times 24^{*}$; FULL SHEET $43^{*} \times 37^{*}$
 Also double-sided $1 / 32^{*}, 1 / 16^{*}, 3 / 32^{*}$. $£ 1$ per sq. ft . Cut sizes (1-10 sq. ft.)
250. P. \&P. Full Sheet $£ 8$ each. Carr, E 1 for 1 st sheet plus 25 p each additional sheet.

ALL PRICES INCLUDE V.A.T.
Whilst we welcome official orders from established companies and Th. 5. Therefore, please remit cash with orders below this amount.

TAUT SUSPENSION MULTIMETERS

Made in USSR

Type U4324
£9.25*
Sensitivity: $\quad 20.000 \Omega / \mathrm{DC} ; 4,000 \Omega / \mathrm{VAC}$ DC current: $\quad 0.06-0.6-6-60-600 \mathrm{~mA}-3$ Amps. AC current: $\quad 0.3-30-300 \mathrm{~mA}-3$ Amps. DC voltage: $\quad 0.6-1.2-3-12-30-60-120-$ 600-1.200V.
AC voltage: $\quad 3-6-15-60-150-300-600-$ 900 V .
Resistance: $\quad 0.5-5-50-500 \mathrm{k} \Omega$
Diode protected movement. Supplied complete with test leads, spare rectifier diode, operating instructions and fibreboard storage case. Mercury cells $4.2 \mathrm{~V} \quad £ 1.00$ extra.

£16.50*
Sensitivity: $\quad 20,000 \Omega / \mathrm{vAC} ; 4,000 \Omega / \mathrm{NDC}$.
$D C$ current: $\quad 50 \mu \mathrm{~A}-0.5-1-5-10-50-250$ ${ }^{\text {mA-1-5 Amps. }} 0.25-0.5-1-5-10-50-250 \mathrm{~mA}$ 1-5 Amps. 100 mV -0.5-2.5-10-25-50 $100-250-500-1.000 \mathrm{~V}$. 0.5-2.5-10-25-50-100-250-500-1,000V
Resistance: $\quad 0.5 \Omega$ to $300 \mathrm{k} \Omega$.
Automatic cut-out to protect the movement Supplied complete with test leads, batteries, operating instructions and carying case.

Type F4313
£22.00*
Sensitivity: $\quad 20,000 \Omega / v$
AC/CD current: $60-120-600 \mu \mathrm{~A}-3-12-60-$ $300 \mathrm{~mA}-1.2-6$ Amps.
AC/DC voltage: $60-300 \mathrm{mV}-1.2-6-30-120-$ 300-600-1,200V.
Resistance: 0-1 M Ω.
Movement is fully protected by transistorized cutout circuit. Transistor amplifier is used on all AC ranges, thus achieving a common linear scale for both $A C$ and $D C$ measurements.
Supplied complete with test leads, batteries, operating instructions and carrying case.

* Prices are exclusive of VAT

Z \& I AERO SERVICES LTD 44A, WESTBOURNE GROVE, LONDON W2 5JF

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

TELEPRINTERS Models 7B, 54, 75, 444

EQUIPMENT

SIEMENS
OTHER
EQUIPMENT
PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.

TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.

KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-151 FOR FURTHER DETAIIS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250-way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 \mathrm{~B}$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-152 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

> KEYBOARD PERFORATORS for offline tape preparation AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m. MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
> UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
> CODE CONVERTERS converting from 5-unit tape to Morse and vice versa
> MORSE REPERFORATORS operating up to 200 w.p.m.
> TONE GENERATORS and all Students' requirements
> CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

> WW-153 FOR FURTHER DETAILS

77 AKEMAN STREET, TRING, HERTS., U.K.
 Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:

HALF PRICE OFFER! LIMITED PERIOD ONLY!

KODAK RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER	
	$\frac{1}{12}{ }^{\prime \prime}-102$				$\frac{1}{1 \frac{1}{2}}{ }^{-202}$				1\%"-10x				त"-1 02	
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51 p	45p	63p	51 p	f1 10	f1.00	£1.02	92p	51p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1-10	£1.00	£1-15	£1. 05	65p	55p	80p	65p	£1-38	£1-25	£1-30	£1-15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	£1-10	£1.00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	£1.60	£1-40	£1-65	£1 45	£1.05	85p	f1. 25	£1.05	£1.95	£1.75	£2.10	£1.90	£1.05	85p

EXTRA DISCOUNTS!
IF ABOVE SIZES DO NOT MATCH YOUR REQUIREMENTS, ASK FOR QUOTE-CUT TO YOUR SIZE. THIS IS AN OFFER THAT YOU CANNOT AFFORD TO MISSI ACT NOWI

SMALL ELECTROLYTICS								MULLARD ELECTROLYTIC CAPACITORS					
Ref. No.	Capacity	Voltage	Price	Ref. No.	Capacity	Voltage	Price		2 serie	(ELECTROL	CYTIC CAPA	CITOR	
$\mathrm{H} 8 / 2 \mathrm{~A}$ $\mathrm{H} 8 / 3$	3.3 ${ }^{\text {a }}$ F	25 V	4p	H7/5 H7/7	${ }^{80 \mu \mathrm{~F}}$	16 V	4p		Working	Capacitance	Max. Ripple		
H8/3A	$3 \mu \mathrm{~F}$ $4 \mu \mathrm{~F}$	50V	4p	H7/7 H7/8	$100 \mu \mathrm{~F}$ $125 \mu \mathrm{~F}$	10 V 16 V	4p	Type No. Vo	oltage	dc. $\mu \mathrm{F}$	Current at $50^{\circ} \mathrm{C}$	Weight	Price
H8/4	$4.7 \mu \mathrm{~F}$	25 V	4 p	H7/8A	$100 \mu \mathrm{~F}$	35 V	Sp_{p}	07116332	25	3300	3.7 mmps	$10 z$	17p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p	H7/9	100 $\mu \mathrm{F}$	63 V	6 p	07115472	16	4700	3.9 mps	1 zz	17p
H8/6A	$10 \mu \mathrm{~F}$	10 V	4p	H7/9A	$125 \mu \mathrm{~F}$	4 V	4 p	07115682	16	6800	5.8 amps	$1 \frac{1}{102}$	22p
H8/7	$10 \mu \mathrm{~F}$	70 V	4p	H7/10	$125 \mu \mathrm{~F}$	25 V	6 p	07215752	16	$7500+7500$	10.5 amps	$30 z$	37p
H8/8A	$16 \mu \mathrm{~F}$	16 V	4p	H7/10A	$160 \mu \mathrm{~F}$	265 V	3p	07215113	16	$11000+11000$	13.8 amps	4loz	49p
H8/9	$20 \mu \mathrm{~F}$	6 V	2p	H7/11	160 $\mu \mathrm{F}$	25 V	6 p	07214113	10	11000+1000	$\underline{10.6 ~ a m p s ~}$	3toz	37p
H8/9A	$20 \mu \mathrm{~F}$	70 V	4p	H7/11A	150 $\mu \mathrm{F}$	10 V	5 p	07216502	25	$5000+5000$	9.6 amps	3 toz	37p
H8/10	$22 \mu \mathrm{~F}$	50 V	4p	H7/13A	200 $\mu \mathrm{F}$	25 V	8 p	07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} \mathrm{Oz}$	49p
H8/11	$25 \mu \mathrm{~F}$	12 V	4p	H7/14	$220 \mu \mathrm{~F}$	50 V	10p	07118681	63	$16500+16500$	2.1 13.4	10 z	15p
H8/11A	$24 \mu \mathrm{~F}$	275 V	4p	H7/14A	$220 \mu \mathrm{~F}$	16 V	6 p	07214173	10	$16500+16500$	13.4 amps	41 i OZ	49d
H8/12 $H 8 / 12 A$	$32 \mu \mathrm{~F}$ $30 \mu \mathrm{~F}$	15 V	4p	H7/15	$220 \mu \mathrm{~F}$	25 V	${ }^{\text {5p }}$	106 and 10 10616223	cer seri 25				
H8/12A	$30 \mu \mathrm{~F}$ $32 \mu \mathrm{~F}$	10 V 50 V	4p	H7/15A	$220 \mu \mathrm{~F}$ $250 \mu \mathrm{~F}$	35 V	10p	10616223	45	10000	12 amps	71002	C1.12
H8/14	32 $40 \mu \mathrm{~F}$	50 V 25 V	4p	H6/1A $H 6 / 2$	$250 \mu \mathrm{~F}$ $250 \mu \mathrm{~F}$	4 V	3p $\mathbf{3 p}$	10710222	100	2200	10 amps	$5 \frac{1}{2} 02$	74p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p	H6/3A	$320 \mu \mathrm{~F}$	2.5 V	3p						
H8/15	$47 \mu \mathrm{~F}$	50 V	4p	H6/4	$320 \mu \mathrm{~F}$	10 V	4p	Type No. V	Voltage	Capacitance	Weight		Price
H8/15A	$40 \mu \mathrm{~F}$	35 V	4 p	H6/4A	$330 \mu \mathrm{~F}$	16 V	5p	10215163 10490003	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 16000 \\ & 39000 \end{aligned}$	$\begin{aligned} & 8 \mathrm{oz} \\ & 160 \mathrm{z} \end{aligned}$		$40 p$ $50 p$
H7/1A H7/2A	$50 \mu \mathrm{~F}$ $64 \mu \mathrm{~F}$	10 V 2.5 V	4p	H6/5 $H 6 / 5 A$	$330 \mu \mathrm{~F}$ $330 \mu \mathrm{~F}$	$25 v$ $35 v$	$10 p$ $15 p$	10490003 10216802	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{array}{r} 39000 \\ 8000 \end{array}$	$\begin{aligned} & 160 z \\ & 70 z \end{aligned}$		50p
H7/4	$64 \mu \mathrm{~F}$	15 V	4 p	H6/8A	470 $\mu \mathrm{F}$	35 V	20p	10490002	40	21000	$160 z$	-	£1
NEW! NEW! NEW! NEW! An aerosol spray providing a convenient means of prociucing any number of Please calculate the weight of your order and include appropriate postage.													
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No								Not over		Ordinary Parcels	Not over 1216	Ordin	arce/s 53p
								21b		23p	1216		53p
need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.								41 b		30p	16 lb		63p
Light sensitive aerosol spray $£ 1.00$ plus								61 b		36p	1816		68p
Developer and Etchant ..				-• -.	.	50p		810 10 lb		42p	221 b 2215		73p 78p

AMERICAN SWEEP GENERATOR type 452. Covers Irom 5 to 100 MHZ . Has built in
display and 101 DB Push Button RF Attenuator in one DB steps. plus Calibrated Marker Generator covering 5 to 100 MHZ continuous. American Government Contract, so quality
is high. Supplied for 240 V 50 HZ oneration with plugs and leads. Size $13 \frac{1}{2} \times 9 \frac{1}{2} \times 19$ in. Price
$£ 70$ each. Carriage $£ 1.50$.

AMERICAN SWEEP GENERATOK TYDE K 3 15 to 400 MHZ. E300.
AMERICAN AM GENERATOR type 497. 240 V 50 HZ operation $£ 35$.

> BRAND NEW $12^{\prime \prime}$
> LONG PERSISTENCE TUBES
> New stocks-new price. Only $\mathbf{f 6} 50$ (whilst stock lasts) ldeal for SSTV: educational purposes.
Type 120P7A. connetions Type 12DP7A, connections, voltages etc.
Price includes carriage \& VAT.
> Price includes carriage a VAT.

SPECIAL 40 MHZ SCOPE SOLARTRON CDI212 ONLY £50. Has to be a snag. There is-no plug-in Y amps available. 4A-100 nanosecs per cm. to 5 secs, per cm . In calibrated ranges. 20 nanosecs per cm .
with times 5 expansion. 5° flat faced tube with times 5 expansion. 5 flat faced tube.
Trace locator. $0-2$ microsec. signal delify.
Built in calibrator. 1 KHZ square wave. 200 Buit in calibrator. 1 KHZ square wave.
micro volts to 100 volts in 18 calibrated ranges. ube sensitivity 3 . 40 MHZ . 240 V . 50 HZ Input, Complete with lull manual including plug-in circults. Come
and see one working or Carrlage $£ 1.50$.

SINGLE TRACE 40 MHZ PLUG INS for D1212 oscilloscopes now avaliabse at

> SOLARTRON PRECISION ascilloscope tyBPRATORY CD643. DC-15MHz 5 in. Flat face tube. $£ 45$ each.

HARTLEY 13A Double Beam Oscilloscope TB $2 \mathrm{c} / \mathrm{s}$ $-750 \mathrm{kc} / \mathrm{s}$. Band width 5.5 mcs . Sensitivity $33 \mathrm{Mv} /$ cm . Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. £25 each. With accessories $£ 27.50$ ea.

SOLARTRON CD 523 Single Beam Oscilloscope 3db at $10 \mathrm{MHZ;}$
DC coupled down to 1 vol. Max sensitivity.
flat taced PC coupled down to 1 vel. in. flat taced
PDA tube. TB from' secs. per cm . to 0.1 microsecs. per cm. plus times 5 expansion
MARCONI TF 195 M-0/40 KHZ sine Wave MARCONI TF $195 \mathrm{M}-0 / 40$ KHZ Sine Wave Generator
must
go
$£ 725$
MARCONI TF 801B. AM SIGNAL GEN ERATOR. 12 to 470 MHZ . In good working condition $£ 90$.
MARCON1 TF 938 (CT44). Absorption Wattmeter 10 mW to 6 Watts. Input impedance
2.5 ohms to 20 K ohms. Freq. response 2.5 ohms to 20 K ohms. Frea. response flat
at 20 KHZ . Calibrated in volts and dbs. 5in. m ror backed mster $£ 7.50$ ea. P. \& P. 75 p .
MARCONI VVM TFSO41A £22.50
MARCON1 TF 428 C . Measures AC 100 MV MARCONJ TF 428 C . Measures AC 100 MV
to 150 V 20 HZ to 15 MHZ . Measures DC 40 MV
to 300 V . Comple with probe. Standard 240 V
ooeration $£ 12.50$ each. operation $£ 12.50$ each.
MARCONI TF899. Measures 20 MV to 2 V AC.
50 HZ to 100 MHZ . 50 HZ to 100 MHZ . $\mathbf{E} 10$ each.
MARCONI VVM TF
50 MV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ . DC 100 MV 50 MV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ , DC 100 MV
to 300 V . 0 hms 50 to 5 M to 300 V . Ohms 50 to $5 \mathrm{Meg} \mathrm{Ohm}$.In fine con
dition $£ 18$ each.
E.H.T. TRANSFORMERS, e.g. 5 KV at
0.125 Amps and others. Ali 240 volts input. BRAND NEW AMERICAN $\begin{gathered}\text { HIGH } \\ \text { VOLTAGE } \\ \text { CAPACITORS. }\end{gathered}$ VOLTAGE CAPACITORS. 0.15 mfd 120 kV working. $\mathbf{£ 1 5}$ only. Carriage at cost.

MODERN TELEPHONES type 706. Two tone grey. $£ 3.75$ ea. Two-tone g
£3.75 ea.P \& P. $25 p$ ea.
ideal EXTENSION Telephones with standard GPO type dial, bell and lead coding. $£ 175$ ea.

All telephones complete with bell and dial

POTENTIOMETERS

COLVERN 3 watt. Brand new. 25k at 13pea.
MORGANITE Special Brand new, 2-5; 10;
$100 ; 250$: 500K; 1 in. sealed, 17p ea.
BERCO $2 ;$ Watt. Brand new, 5; 10; 50; 250;
ohms: $1: 2.5 ; 10: 25: 50 \mathrm{~K}$ at 15p ea. STANDARD 2 meg. log pots. Current typ 15p ea.
INSTRUMENT 3 in. Colvern 5 ohm 35p ea 50 K and 100 K 50 p ea.
BOURNS TRIMPOT POTENTIOMETERS. B0 $50 ; 100 ; 200 ; 500$ Ohms $1 ; 2 ; 25 ; 5 ; 10$
25 K at 35 pea . ALL BRAND NEW.

LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of $A M$ Radios: Communication Receivers: Filters, etc., in the range of 250 KHZ to 5 MHZ , but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 VAC input. Three controls-RF level; sweep width and frequency. Price $£ 8.50$ A second model is available as above but which allows the range to be extended down in frequency to 20 KHZ by the addition of external capacitors. Price $\mathbf{£ 1 1 . 5 0}$
by the addition of external capacitors. Price $\mathbf{£ 1 1 . 5 0}$.
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased not calibrated).
 ALMA precision resistors $200 \mathrm{~K}, 400 \mathrm{~K} \mathrm{~K}_{4}^{475 \mathrm{~K}}$ K 0.1% 20p ea.

RELAYS

Varley VP4 Piastic covers 4 pole c/o. 15 K
33p ea
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new 37p each. 14 ohm
coil 33 p each. 45 ohm coll 33 p each.
TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450-400-0-400-450. 180 MA
$2 \times 6.3 \mathrm{~V} . £ 3$ ea.

FANTASTIC VALUE
Miniature Transformer. Standard 240V
input. 3Volt 1 amp output. Brand New.
quantity.

Large quantity LT, HT, EHT transformers and
chokes.

Vast quantity of good quality components -NO PASSING TRADE-so we offer - NO PASSING TRADE-SO We Offer 3 LBS. Of ELECTRONIC GOODIES

 for $£ 1 / 50$ post paid.CRYSTALS. Colour 4.43 MHz . Brand New 1.25 ea. P. \& P. 10p
£1 WORTH OF 'UFS'. Six Brand New capacitors all between 15 V and 100 V . Total capac
tance not less than $7,000 \mathrm{mfd}$. P. \& P. 45 p .
CAPACITOR PACK 50 Brand new components only 50 p . P. \& P. 17 p

POTS 10 different values. Brand new. 50p. COMPONENT PACK consisting of 5 pots various values, 250 resistors $\frac{1}{\frac{1}{2}}$ and $\frac{1}{\frac{1}{2} \text { watt }}$
etc., many high stabs. All brand new. Fine value at 50 p per pack, P. \& P. 27 p .
DELIVERED TO YOUR DOOR 1 cwt . of Eleclronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY $\mathbf{f} 3.50$. N. Ireland 2.2 extra.
P.C.B. PACK S\& D. Quantity 2 sq. ft.-no

FIBRE GLASS as above $\mathbf{x 1}$ plus P. \& P. 20p 5 CRYSTALS 70 to 90 kHz . Our choice, 25p.

TRIMMER PACK, 2 Twin $50 / 200$ pI ceramic; TRIMMER PACK, 2 Twin 50,200 pt ceramic;
2 Twin $10 / 60$ pf ceramic; 2 min strips with 4
oreset $5 / 20$ of on each; 3 air spaced preset preset $5 / 200$ of on each;' 3 air spaced preset
301100 pf on ceramic base. ALL BRAND 30100 of on ceramic base. ALL BRAND
NEW 25p the LOT. P. \& P. 10 p.

ROTARY SWITCH PACK-6 Brand New switches (1 ceramic: 1-4 pole 2 way etc.)
50 p . P. \& P. 20 p . C.R.T.'s 5" type CV1385/ACR13. Brand ncw
with spec. sheet. 63 p ea. P. \& P. 35 . Modern Version of VCR 138. Flat faced. Side connectors PDA. £2-50 ea. P \& P 37p

BASES for CV1385 or VCR138 20p ea. P. \& P GRATICULES. 12 cm . by 14 cm . In High Quality plastic. isp each. P. dP.Sp.
PANEL mounting lamp holders. Red or green 9p.ea. Miniature. PANEL mounting lamp wit
holders -10 V 45 MA 5 p ea.

BECKMAN MODEL A. Ten turn po
complete with dial. $100 \mathrm{k} 3 \%$ Tol $0.25 \%-1$ only $£ 2.13$ ea.
with dial $£ 213$ ea
BECKMAN 10 TURN DIALS ONLY.
Brand new $E 2.25$ ea. P \& P.
ELECTROSTATIC VOLTMETERS from a-300 Volts to 0-10KV. S.A.E. with your requirements

DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutcheon. Black whi whit figures. Size 4 in. long \times tin. high $\times{ }^{1 \frac{12}{2} i n}$
deep. Ex-Plessey. E1.40 each. P. \& P. 15 p . LIGHT EMITTING DIODES (Red) from
Hewlett-Packard.
Brand New
Inlormation 5 p .

FIBRE-GLASS PRINTED CIRCUIT Any size $1 \frac{1}{3}$ p per sq.in. Postage 10p per order METEERS. Ernest Turner. Model 402, 100 micro amps. BRAND NEW. Lousy scale E2.25 ea. P. \& P. 25 p.
METERS by SIFAM Type M 42. 25-0-25 micro amp. Scaled $25-0-25$ green. $250-0$
250 red: linear. As new. $£ 30$ ea. P. \& P. 37 p .

VISCONOL EHT CAPACITORS
 BLOCK PAPER CAPACITORS AVAIL ABLE.S.A.E. with requirements
PHOTOCELL equivalent OCP 7t, 13p ea. MULLARD OCP 70 10p each

12 in DISPLAY UNITS
S.A.E. for details.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6-25. P. \& P. 25p. STILL AVAILABLE our 20 MHZ vērsion at $\mathbf{£ 9 . 7 5}$. P. \& P. 25p.

20HZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25p. Sine Wave only £6. 85 each. P. \& P. 25 p.

DON'T FORGET YOUR MANUALS
S.A.E. WITH REQUIREMENTS

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with àny general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6} \mathbf{7 5}$. P. \& P. 25p. (Not cased, not calibrated)

Unless stated-please add $\mathbf{£ 1 - 5 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to $\mathbf{6 . 3 0} \mathrm{pm}$ any day (later by arrangement.)

WW- 049 FOR FURTHER DETAILS 10 volts.

The new Oryx 50 is temperature controlled, light. small. easy to handle, rapid heating and high performance. It has a temperature control within $\pm 2 \mathrm{C}$ and
adjusted in seconds whilst running to any value between 200 C and 400 C . Longlife iron-coated tip as standard (11 sizes available).
Oryx De-Soldering Irons-small model SR3A instantly removes solder from printed circuits, etc. accurate, reliable simple. PTFE nizzle. Larger instrument SR2 gives more suck, less recoil as only
 Microphone Cartridges
a product of MATSUSHITA ELECTRIC
A new series of miniature microphone cartridges utilising the electret principle. The simple construction ersures a low cost reliable component suited to many atidio applications. The cartridges are compatible with standard circuitry by virtue of an inbuilt impedance converter and operate within a voltage range of 2 -
a comprehensive range of the world's finest small electric motors
from SYMOT LIMITED
17 Market Place Heniey-on-Thames Oxon 2663 WW-031 FOR FURTHER DETAILS

WH-MK spacemiser storage system
Cabinets have stove enamelled steel frames in
three heights all of equal width and depth. The
rames are strong and rigid fitted with top and
bottom locating pegs and rear slots making
stacking. wall or frame mounting positive and
simple.
504. $507.508 \quad \mathbf{~} 50.83 \quad £ 5.31$

Less for quantities. 8 . and 8% VAT.

NEST HYOE DEVEIDPM Tel: Northwood 24941/26732

FRnownenile electronics
 Dept. 5
 56. Fortis Green Road, London, N10 3HN. telephone: 01-883 3705

HIOKI 750X VOLT.OHM-

MODEL PL436
20.000 opv DC.
8000 opv AC

Mirror scale.

$6 / 3 / 12 / 30 / 120 /$
600 DC
$1 / 30 /$

$120 / 600 \mathrm{VDC}$.
$50 / 600 \mu \mathrm{~A} / 60$
600 mA .
$10 / 100 \mathrm{~K}$

OUR PRICE E6.97 PEP30p

 $2 C y \pm 3 \% \mathrm{DC}, \pm 4 \% \mathrm{AC}$. Sensitivity:
50,000 opv DC, 5,000 upv AC. 4 inch meter. Built in protection. Size: $57 \times$ OUR PRICE

10 Mag ohms. -20 to +81.5 dB
OUR PRICE f12.50 P\&P 20p

Model HT100B4 MULTIMETER shock proot protected.

s.
9
9
9
1
5
1
1
2
2
2
2
mirror ccater with Sensitivity
100kV. Polarity change
witch. Ranges $0.5 / 25 /$
N/F0/250/500/1.000
Vols $0 C-2.5 / 10 / 50$
$250 / 1,00 \mathrm{~V}$ olts AC .
DC resistence
$0-20$

 to +62 dB Operates from $2 \times 1.5 \mathrm{~V}$ OUR PRICE $\mathbb{1} 17.50$ PRP $40 p$

I

KAMODEN 360 MULTIMETER

\section*{| DC 100 |
| :--- |
| AC 10 k |
| $5^{\prime \prime}$ mir |
| overtoa |
| ed. Ran |
| $2.5 / 10 /$ |
| 1000 V |
| $50 / 250$ |
| AC, Cu |
| 0.01 mA |
| 500 mA |
| Resista |
| $1 / 10 / 10$ |
| $1 / 10 / 10$ |
| $10 / 100$ |
| Decibel |
| t62dB. |
| $140 \times \mathrm{B}$ |
| test lea |
| OUR |
| TMK |
| TMK |
| ELEC |
| Battery |
| 11 Meg |
| ranges. |
| mirror |
| 149×1 |
| $0.3-12$ |
| $3-300$ |}

TE65 VALVE VOLTMETER ${ }^{28}$ ranges. ${ }^{15}-1500$ volts volts $1.5-1500 \mathrm{~V}$
Ressistance up Resistance up to
1000 Megohms. 1000 Meghms.
$200 / 240 \mathrm{AC}$
operation. Com
operation. Com.
plete with probe
and instructions.
OUR PRICE $£ 17.50$
Additional probes ayainab
RF f 2.12 HV $£ 2.50$
LB3 TRANSISTOR TESTER
Tests ICD and B.
PNP/NPN Operates
from 9V battery.
Instructions supplied
OUR PRICE
£3.95 P\&P 20p
MODEL AF. 105 VOM 50,000 opv. M
scale. Meter
protection. 0/3/3/12/60/120/ $300 / 600 / 120$
$0 / 60$

$300 / 30 \mu \mathrm{~A} / 6 /$

$60300 \mathrm{~mA} /$
$12 \mathrm{Amp} .0 / 10 \mathrm{~K}$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$ Meg Oms.-20 12.50 dB.
OUR PRICE 12.50 PGP
LB4 TRANSISTOR
TESTER
Tests PNP or NPN
transistors. Audio
indsistors. Audio
indication. Operates
in two 1.5 V
on
batteries. Complete
batteries. Comple
with instructions
OUR PRICE
$\mathbf{£ 4 . 5 0 ~ P \& P 2 0 p}$
U4341 Multimeter Transistor Tester 27 ranges. 16,700opy
Overload protected. Ranges: $0.3 / 1.5 / 6 /$ / $30 / 60 / 150 / 300 / 900 \mathrm{~V}$
$\mathrm{DC} .15 / 75 / 30 / 150 /$ $300 / 750 \mathrm{~V} \mathrm{AC}$. Current: 0.06/0.6/
 DC current 0 12mA. Resistence
 +51 dB . Supplied complete with leads OUR PRICE f18.50 P\&P 20p TMK 100K LAB TESTER 100,000 opv. $61 / 2$
scale. Buzzer

A

$10 / 100 / 500 \mathrm{~mA} / 2.5 / 10 \mathrm{~A}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Mes $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100 \mathrm{Meg}$ ohms.
Decibels: -10 to +49 dB . Plastic case Decibels: -10 to +49 dB . Plastic case
with carrying handle. Size: 190×172
$\times 99 \mathrm{~mm}$ $\times 99 \mathrm{~mm}$.
OUR PRICE $19.95 \quad$ P\&P 30p
370WTR MULTIMETER

Oecibels: -20 to $\mathbf{+ 6 2 d B}$.
OUR PRICE f19.95 P\&P 30p

OUR PRICE £19.95 P\&P 30p
KAMODEN 72.200 Multitester

.

$$
\begin{aligned}
& \text { High sensitivity } \\
& \text { tester. } 2000000 \text { opv } \\
& \text { Overload protecte }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Overload protected. } \\
& \text { Mirror scale. } \\
& \text { Ranges:- } 0 / 06 / .3 \\
& 2 / 20 / 10 / 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ranges }-0 / 06 / . \\
& 3 / 30 / 120 / 600 / \\
& 1200 v 00
\end{aligned}
$$

$$
\begin{aligned}
& 1200 \vee \mathrm{OC} .0 / 3 \\
& 12 / 60 / 300 / 1120
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12/60/300/11 } \\
& \text { VAC. 0/6uA } \\
& 1.2 \mathrm{~mA} / 120 \mathrm{~mA}
\end{aligned}
$$

$1.2 \mathrm{~mA} / 120 \mathrm{~mA} /$
$60 \mathrm{~mA} / 12 \mathrm{ADC}$
$0 / 12 \mathrm{AAC}-20$
$0 / 12 \mathrm{~A} \mathrm{AC},-20$ to
$+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k} /$
OUR PRICE $£ 22.50$ P\&P 30p

U4317 MULTIMETER

Ranges: $100 \mathrm{mV} / 10 / 100 / 500 / 1000$
$0.5 / 25 / 10 / 25 / 50 / 100 / 250 / 10 / 1250$ \checkmark DC. $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$ $500 / 1000 \mathrm{~V}$ AC. Current: $50 \mathrm{uA} / 0.5 /$
$1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A} D \mathrm{C}$ 1/5/10/50/50/250mA $1 / 5 A$ AC. Res
$0.5 / 1 / 5 / 10 / 50 / 25 / 2$ istance: $0.5 / 10 / 100 / 200$ onms $/ 1 / 3$ / $30 / 300 \mathrm{k}$ ohms. Decibets: -5 to +10 dB
Battery operated Size: $210 \times 115 \mathrm{x}$ Battery operated. Size: $210 \times 115 \times$
90 mm . Supplied in carry ing case com 90 mm . Supplied in carrying case com-
plete with leads.
OUR PRICE $\mathbf{f 1 5 . 0 0}$ MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Ohms/Volt AC
Ohms/Volt AC
and DC.
Accuracy 0.5%
Accuracy 0.5\%
DC. $1 \% A C$.
Scale length:
165 mm.
$0 / 300 / 750 \mathrm{uA}$
$0 / 30 / 750$ uA/
$1.5 / 3 / 7 / 50 / 300 /$
$30 / 5 / 150 / 30 /$
$750 \mathrm{~mA} / 1.5 / 3$ /
$7.5 \mathrm{ADC} 0 /$.3
$7.5 / 15 / 30 / 75 /$
150/300/750mA
1.5/3/150/300/750mV/1.5/3/7.5/15/
0/75/150/30/300/750V 1.5/3/7.5/15/30/75/150/300/750V AC. Automatic cut out device. Supp.
lied complete with test leads, manual
OUR PRICE
ALL PRICES
exclude vat
$6 / 60 / 600 \mathrm{mADC}$
$0.3 / 3 / 30 / 300 \mathrm{~mA} A C$ $0.3 / 3 / 30 / 300 \mathrm{~mA}$
Resistance: 0
0.6/2/6/20/60/200k ohm Battery operated. Supplied complete
with probes, with probes, leads and steel carrying
case. Size: $115 \times 215 \times 90 \mathrm{~mm}$ OUR PRICE E10.50 P\&P 30p
S100TR MULTIMETER
TRANSISTOR TESTER
100,000 opv. Mirror

scale. Oerl protection. 0/0.12/ | $0.6 / 3 / 12 / 30 / 120 /$ |
| :--- |
| 600 V |
| 10 O | 600 V DC. $0 / 6 / 30$

$120 / 600 \mathrm{AC}$
$0 / 12 / 600 \mathrm{~L} / 12 \mathrm{~L} /$
300mA/6/12A DC
$0 / 10 \mathrm{k} / 1 \mathrm{Meg}$
100 Meg
$0.01-0.2 \mathrm{MFD}$.
Transistor tester measures Alpha, Beta
and ICO. Complete with instructions and CO . Complete with instructions,
batteries and leads.
$\frac{\text { QUR PRICE £19.95-P8.P } 25 p}{\text { CI5 PULSE OSCILLOSCOPE }}$
CI5 PULSE OSCIL LOSCOPE
For display of pulsed
and periodic wave forms in elic wave
circuits. VERT. AMP
Band circuits. VERT. AMP.
Bandwidth: 10 MHz .
Sensitivity Sensitivity at 100 kHz
VRMS $/ \mathrm{mm}: 0.1-25$: VRMS/mm: $0.1-25$;
HDR. AMP. Bandwidth: 500 k Hz
Sensitivity ay 100 kH VRMS $/$ mm: $0.3-25$
Preset trigger
running 20-200 OUR PRICE f39.00 Carr. paid
RUSSIAN CI16 Double Beam
OSCILLOSCOPE
OSCILLOSCOP MHz pass band.
Separate $Y 1$ and Y
amplifiers ular $5^{\prime \prime} \times 4^{\prime \prime}$ CRTT. Calibrated triggared to 100 milli-sec/cm
Free unning time base $50 \mathrm{~Hz}-1 \mathrm{MHz}$.
Built-in time base
Calibrator and amplitude casol Cupplied complete with all accessories and instruction manual. OUR PRICE $£ 87.00$

SWR METER Model SWR3
Handy SWR meter for
transmitter antenna
ment, with built-in field strength meter. Accurscy
$\mathbf{5 \%}$. Impediance 5 ? 5\%, mpedence 52^{\prime} Ind
ator 100uA DC. Full scate 5 section collapsib antenna. Size $145 \times 50 \times$
60 mm
OUR PRICE $\mathbf{~} 4.25$
 BR/8. MEASURING BRIDGE
 A now porrabte
bridge oftering
excoilent renge axceilent range and
accuracy at tow cost. Resistance
6 ranges: 0
 hannies $\pm 2 \%$ Capaciry:
$10 \mathrm{pf}-1110 \mathrm{mfd} \pm 2 \%$ Turn Ratio: Bridge Voltage at $1,000 \mathrm{cps}$. Opera ted from 9-volt battery. 100 micro$5^{*} \times 2^{*}$ OUR PRICE $£ 25.00$ P\&P 30 p

TE16A TRANSISTORISED

 SIGNAL GENERATOR 5 ranoer 400 kHzTo
30 ingexpentivi instrument for
thot handy-man
Oporates on $9 V$ battaty. Wide mesy to raod

OUR PRICE £8.97 P\&P 30p MODEL TE20 RF SIGNAL
GENERATOR

Accursey $\pm 2 \%$ Audio
 leads otc. TE-200 RF SIGNAL GENERATOR Accurate wide ra covering 120 kHz -500 ${ }^{\mathrm{MHz}} \mathrm{Hz}$ on 6 bends.

Variable R. F.

attenuetor audio output, X tal socket
for eellibation. 220/240V.
Sixe $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}$
OUR PRICE $\mathbf{E 1 7 . 5 0 ~ P \& P 5 0 p}$
TE22 SINE SQUARE WAVE
AUDIO GENERATOR

Sing 20 cps
to 200 ktz

on 4 barics.
Square 20
Square 20
cps to 30
kHz .
kHze
impodence
50

$200 / 250 \mathrm{~V}$
AC operation. Supplied brand nuw
aumptesed, with instruction manual
OUR PRICE f 24.95 P\&P 50p
ARF 300 AF/RF SIGNAL
GENERATOR
All transistorives
compert full
portbobe. AF
portable AF sinco
WWH/ 18 AFz to 220
Wzi 18 Hz to 10 100k

OUP PRICE E and leant
OUR PRICE £37.50 P\&P 50p
MOOEL MG 100 SINE SQUARE WAVE AUDID GENERATOR Renge 19.
220.000 Hz Hz Squa Wine
Weve $19-100,000 \mathrm{~Hz}$ Square Wove.
Output Sine or S selere wave 10 v . P. to P 81 ze $180 \times 90 \times 90 \mathrm{~mm}$. Operation OUR PRICE £I9. 95
SPECIAL
BARGAIN!
FERGUSON
$3406 \mathrm{HI}-\mathrm{Fl}$

SPEAKERS

 Sise: $580 \times 340 \times 255 \mathrm{~mm}$ mpprox OUR PRICE $£ 22.50$ PR. PR, $£ 1$

Hint que RHEOSTA construction. Windings embedded in
vitroous enamel. Heaw d duty bush wiper.
rating
Singie hole fixing. \%" diamater shafts.
Buik quan
25 WATT 10/25/50/100/500/1000 50 WATT $10 / 50 / 100 / 250 / 500 /$ 1500/5000 ohms
£1.62 P\&P10p
100 WATT $1 / 5 / 10 / 25 / 50 / 250 / 500 /$
2500 ohms. 000 Ohms
$\begin{array}{r}2500 \text { ohms. } 300 \mathrm{Ohms} \\ £ 2.34 \mathrm{PR} \text { P 15p } \\ \hline\end{array}$
CP110 CHASSIS PUNCH SET

 $11 / 8^{\text {" punches complete with gripper }}$
and accessories. $\frac{\text { OUR PRICE } £ 3.00 \quad \text { P\&P } 40 \mathrm{p}}{}$
KE630 3 Station INTERCOM

Master and two sub-stations. Can be
used on desk or wail mounted. Comp used on desk or wail mounte
lote with cable and batteries
OUR PRICE £5. 25 P\&P 50p

Mo sin 20 RM 15 15 01 £7 Mo Twi 55 RM RUR

 OUR PRICE
£7.50 each P\&P 37P
Model $45013 \times 8^{\prime \prime}$ with
twin twoetor/croswover.
T5-13.00 $\mathrm{Hz}, 8$ watts
RMS A .
RMS. Avaiabie 8 or 15 ohms
OUR PRICE $£ 3.62$ each P\&P 35 p

PS200 Regulated POWER SUPPLY UNIT

AUDIOTRONIC LE-102A
INTERCOMS

Basutifully made and finished in useful in the home, office or shop and is suitable for use as baby alarm. Wallor desk mounting
57 mm speaker/mic gives clear 2 57 mm speaker/mic gives clear 2 way communication with on/o
and volume control on master and volume control on master
unit. Operates on 9 V batt. Approx. unit. Operates on
6oft lead.
OUR PRICE $£ 3.95 \quad$ P \& P 30 D TRITON 4318 PORTABLE 8 TRACK CARTRIDGE PLAYER WITH MW/LW RADIO
will play 8 cartridge cartridge
monaurally Channel selector
switch.

bands. Volume and tone controls. Earphone socket. Battery/M ains

OUR

microphone, guitar otc. and output to
your amplifior. Volume control and doptt ot reveriberation control Beand
walmut cabinet. $184 \times 77 \times 108 \mathrm{mmm}$. OUR PRICE E7.50 P\& P 30p
 discriminator Operates on 9 V foed most amplifiers
battery. Covers $88-$ Eantanzic Ready built, resdy for use

Our Price
P \& P 25p
Cambridge Kit. O
Price f13.50 Post
Free
Executive. List $£ 39.00$ P\& P 25 p. Executive Memor
List 549.00 Our Pr f.44.50 P \& P 25p. Scientific. List f49.00 C
Our Pricef27 50 P \& P 25p

MANY OTHER CALCULATORS AS $£ 9.00$ Send for list.

SINCLAIR SYSTEM 2000
STEREO AMPLIFIER
AND TUNER

764. (1) (1)

AMPLIFIER
Amplifier output 8 watts per 0.06%. Silicon transistors. Two pick-up plus radio and tape inputs. zape output and scratch filter OUR PRICE $£ 27.50 \quad$ P \& P 60p.

RECORDER

ZEPHYR TC1500B
CASSETTE RECORDER

Battery
Mains
Mains
Complete
casserte,
corme.
earphone.
OUR PRICE 99.95
P\& P 50p

OUR PRICE $£ 12.95^{5}$ PAIRPRP 50
hansins are complote with compron covered by full guaranteo.
Post and Packing 15p par kit.
AF20 Mono amplifier.......
AF30 Mono proamplifier.
AF35 Emitter amplifier
AF 800.5 W me. amplifis
AF305 intercom.......iti....
AF310/2 MonoAmplifier ATS Automatic líght control AT30 Photo cell switch unit. AT50 400 W viac light ATS6mer/speed controf
ATG0 1 channed light control. AT65 3 channel light control.. $£ 14.5$ GP3304 Circuit board....ifi for use with $2 \times \mathrm{AFF310} \ldots . . \mathrm{E} \mathbf{E 1 . 2}$
GP312 Circuit board GP312 Circuit board....
GU330 Tremolo unit HF61 Diode detector
HF65 FM transmitter
HF75 FM receiver.
HF310 FM tuner.
HF325 Deluxe FM runer......
HF330 Decoder (HF310/3
 HF395 broadband aerial amp.
LF380 Ouadraphonic device. M160 Multi-vibrator.
M191 VU Miter...........
M192 Stereo balance m M1302 Jransistor tester. NT10 etabilised power supply NT300 Stabilised p. supply
NT305 Voltage converter....... NT310 Power Supply 240 A... $£ 4.50$ or $2 \times 18 \mathrm{VD} . \mathrm{C}$ at 2 amps f 5.71

NT315 Power supply 240 V AC
to4,5/15V DC, $500 \mathrm{~mA} . . .$. Amateur Electronics by Josty-Kit, -covers the subject from basic prin cipals to advanced electronic techniq-
ues. Complete with circuit board for AE1 to AE10 listed below
OUR PRICE £3.30 (No VAT)
AE1 100 mW ourput stage
AE2 Preamplifier..
AE4 Flasher......................
AE5 Astable multi-vibrator.
AE7 RC generator
AE8 Bass filtar.

High Quality CONSTRUCTION KITS WE ARE APPOINTED
STOCKISTS AT ALL BRANCHES
pre

E1021 Stereo Listening Station

Ford basincing and genction

of loudspeakers with addition
fachtohor
headthone
 switching. Two
gain controls, speakers on-off side OUR PRICE $£ 2.25 \quad$ P8, P 15p AUDIOTRONIC
LOW NOISE CASSETTES

PE	5	10	
${ }^{0}$	¢1. E27 18	${ }_{\text {E34.20 }}$	${ }_{\text {f10. }} \times 7.08$
C120	E2.73	E5.17	¢12.24

AUOIOTRONIC
8 TRACK CARTRIDGES

P\&P Cassotcos 3p, Cartridges 5p asch
OVER 10 of either POST FREI:
MP7 MIXER-PREAMPLIFIER
5 Microphone
individual gain

complote mixing

 4 mV 50k; Phono Coramic
Meg. Output 250 mV 100k.
OUR PRICE E8.97 P\&P 20p
AUOIOTRONIC AHA101
Stereo Headphone Amplifier

or tuner inputs with

twin stwoo hesdphone outputs and
separate volume controls for each. separate volume controls for esch
channel. Operates from 9 V battery channe. Operates from $9 V$
INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV .
OUR PRICE $£ 8.50$
Also see previous page
Ampacs

SEW PANEL METERS
 SEW PANEL METERS ARE STOCKED AT 3 LISLE ST., 311 EDGWARE RD., \& 152 FLEET ST., or

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure
*Items with asterisk are Moving Iron
CLEAR PLASTIC MODEL SD830

\begin{tabular}{|c|c|c|c|}
\hline 50.4 \& 13.80 \& \multicolumn{2}{|l|}{}

\hline 100uA \& 83.75
63.70 \& \&

\hline 500 u A \& f3.65 \& \&

\hline ${ }^{50.0} 0.50 \mathrm{uA}$ A \& \& \&

\hline 100-0.1004 \& 13.70

5365 \& \&

\hline 5 ma \& ¢3.65 \& - \&

\hline 10 ma \& \& \&

\hline 50 mA \& ${ }^{63.85}$ \& 10 V DC \& ${ }^{\text {¢ }}$. 65

\hline 100 mA \& f3.65 \& 20 V DC \& ¢3.65

\hline 1500 ma \& \& ${ }^{50 \mathrm{~V}}$ \& ${ }_{6} 83.6$

\hline 5ADC \& f3.65 \& 15 VAC \& f3.75

\hline 10 A DC \& 13.65 \& 300 V AC \&

\hline $5 \vee \mathrm{DC}$ \& 83.65 \& Vu Meter \& 13.9

\hline
\end{tabular}

CLEAR PLASTIC MODEL SW100

504 A . ${ }^{\text {a }}$ - 54.60			
	64.60 64.50		
500uA $50.00{ }^{\text {a }}$	f4.30		
1000.0.100uA...	${ }_{4}{ }_{4}^{4} .45$		
1 mA	[4.30		
1 A DC	E4.30		
5ADC	f4.30		
20V DC	E4.30	150 V AC 300 V	
$300 \mathrm{VDC}$. ..	14.30 F4,	VUOMeter	1445 84.90
EDGWISE MODEL PE70 Size: $90 \times 34 \mathrm{~mm}$			
50 u 14.15			
	¢4.10 4.05		
5000 A ..	f3.90		
50.0.50uA ..	f4 10		
$100-0.1000 \mathrm{~A}$.	f4.05		
300V AC	63.95 $\mathbf{4} .30$		

CLEAR PLASTIC MODEL MR 65P
Size
$86 \times 78 \mathrm{~mm}$

500 A ..	f3. 95	\cdots	
1004 A 200 A	${ }_{\text {f3 }}{ }^{\text {f3.85 }}$		
500 A	${ }_{\text {¢ }} 3.75$		
${ }^{50.0 .500 ~}{ }^{\text {a }}$	¢3.85		
100.0.100uA..	¢3.80		
1 mA	E3.70		
${ }^{1.0-1 ~ m A}$	¢3.70		
${ }_{10} 5 \mathrm{~mA}$	63.70 $[3.70$	300 V DC ..	
50 mA	$¢ 3.70$		${ }_{53} 180$
100 ma	¢3.70	50 VAC	f3,80
500 mA	E3.70	150 V AC	13.80
${ }^{1} \mathrm{~A}$ DC	f370	300 V AC	
5A DC	f3.70	500 V AC	E3.80
10A DC	+ 6370	SMeter ind.	54.10
20A DC	f3.80	$1{ }^{\text {I AC }}$ M ${ }^{\text {a }}$	$\begin{array}{r}\text { f3 } \\ 63 \\ \hline 3 \\ \hline 10\end{array}$
30A DC	¢3.85	$5 A$ AC	
50A DC	54.05	$10 A A C$	13.70
$5 \mathrm{5V}$ DC	¢370	$20 A A C$	E370
10V DC	¢3.70	$30 \mathrm{~A} A C$	¢3.70
150 DC 200 DC	$\begin{array}{r}\text { ¢3 } \\ 6 \\ \hline\end{array}$	100 mAAC	- $\begin{array}{r}1370 \\ \hline 170 \\ \hline\end{array}$
50 V OC 150 DCF	6370 6370	200 mA AC	$\begin{array}{r}1370 \\ \text { ¢370 } \\ \hline\end{array}$

CALL INTO YOUR NEAREST LASKY'S BRANCH OR SENO COUPON BELOW FOR FREE HI-FI PRICE LIST

CENTRAL LONDON	
OXFORDS	01
3 LISLE ST. WC2	01-437
34 LISLEST. WC2	$01-4379155$
118 EDGWARERD. W2	01.723978
193 EDGWARERD. W2	01.7236211
207 edgware ro. W2	01.7233271
3 l edg ware rd. W2	01-262 0387
346 EDGWARE RD. W2	$01-7234453$
382 EDGWARE RD. W2	01.723419
109 FLEET ST. EC4	01.3535812
152/3 FLEET ST. EC4	01.3532833
10 totitenham ct. rd.	01.6372232
27 tottenham ct. rd.	01.6363715
33 tottenham ct. RD.	$01-6362605$
$42 / 45$ tottenham CT. RD.	01.6360845
257/8 tottenham ct. rd.	01-580 06
ESSEX	
86 SOUTH ST. ROMFORD	
	20218

VICTORIA CIRCUS, SOUTHEND
VICTORIA CIRCUS, SOUTHEND
(OPening September)

KENT	
53/57 CAMDEN RD., TUNBRIDGE WELLS 0892-23242	
LEICESTERSHIRE	
45 market place, leicester	
NORTHAMPTONSHIRE	
73 ABINGDON STREET, NORTHAMPTON (Opening late October)	
SHROPSHIRE	
30 WULFRUM WAY, WOL VERHAMPTON	
SURREY	
(1) 01-681 3027	
(Opening September)	

16 CORPORATION ST., 8IRMINGHAM
$021-2363503$

ALL BRANCHES OPEN FROM
 9am to 6pm MON. TO SAT

NO DEPOSIT TERMS available on most goods for personal callers CHEQUES TO THE VALUE OF f30 ACCEPTED FROM PERSONAL SHOPPERS WITH BANKERS CARD. IN OTHER CASES
AND FOR AMOUNTS IN EXCESS OF £30. PLEASE ALLOW TIME FOR CLEARANCE. BANKERS DRAFTS ACCEPTED.

COMPLETE TELEPHONES NOAMAL HOUSEHOLD TYPE AS SUPPLED TO THE POST OFFICE EX G.P.D Only E 1. 05

TELEPHONE DIALS
Only $271 / 2 \mathrm{p}$ a.s.n, mecen

	4	$\begin{aligned} & 1 \mathrm{~N} 4 \\ & 1.00 \end{aligned}$	55p
B81	10	Reed Switches $1^{\prime \prime}$ long $\frac{1}{1^{\prime \prime}}$ dia High speed P.O. type	55p
	100	Mixed Diodes. Germ. Gold bo etc. Marked and Unmarked	
нзв	30	Short lead Transistors. NPN Silicon Plamar types	
нз9	6	Integrated circuits. 4 Gate BMC 962. 2 Flip Flops B	
H41	2	Power Transistors Comp. Pair $8 \mathrm{D} 131 / 132$	
H63	4	2N3055 Type NPN Sil. powe sistors. Below spec. devices	
H65			
¢66		$\begin{aligned} & \text { PP Sill } \\ & .10 \mathrm{H} \end{aligned}$	

Unmarked Untested Paks

| B1 | $\mathbf{5 0}$ | Germanium Transistors
 PNP. AF and RF. | 55p |
| :--- | ---: | :--- | :--- | ---: |
| B66 | $\mathbf{1 5 0}$ | Germanium Diodes
 Min. | |
| B8iass type | | | |

Make a rev counter

for your car
The TACHO BLOCK. This encapsulated block will turn for any car with nomal coil liniition system

2-1

EXTENSION TELEPHONES

$71 \frac{1}{2} p$ each p.p. $27 \frac{1}{2} p, \mathbf{E} 1.37 \frac{1}{2}$ for 2 p.p. 55 p.
ptiones are extensions and do not contain bells.

Electronic Transistor Ignition f6.60

Now in kit form, we offer this "up-te-the-minute electronic ignition system. Simple to make, full instructions supplied, with these outstanding
features: transistor and conventional switchability burglar-proof lock-up and automatic alarm, negative and positive compatibility.

New X-Hatch

Our new, vastly improved Mark Two Cross-H Generator is now available. Essential for Featuring plug-in 1Cs and a more sensitive sync. pick up circuit. The case is virtually unbreakable-ideal for
 (includes VAT and P \& P , but no batteries)
$\underset{\text { AUDOLIC }}{1 \times 13}$ The ICs. These are specially selected to a higher grade and re fartastic litte 3 wan audio 16 only capacitors and two potentiometers to make an amplifie with volume and tone control. The quality is good and
has to be heard to be believed.

Over 1,000,000 Transistors in stock

We hold a very large range af marked, tested and guaranteed Transistors. Diodes and Rectifiers at very

Our very popular 4 p Transistors
TYPE A PUP Siten alloy TO 5 can
TYPE "B" PNP Silicon, plastic encapsulation.
TYPE "E" PNP Germanium AF or RF.
TYPE "F"NPN Silicon plastic encapsulation.
TYPE 'H" PNP Silicon similar ZTX500 range

8 rienars fon $£ 1 \cdot 10$

UHF
TV Tuner Units
Brand new by a famous manufacturer
Data supplied $£ 2.75$

Plastic Power Transistors
NOWINTWO RANGES
$\begin{aligned} & \text { These are 40W and 90W Silicon Plastic Power Tran- } \\ & \text { sistors of the very latest design, available in NPN or }\end{aligned}$
$\begin{aligned} & \text { sistors of the very latest design, available in NPN or } \\ & \text { PNP at the most shatteringly fow prices of all time. }\end{aligned}$
We have been selling these successfully in quantity to
We have been selling these successfully in quantity to
$\begin{aligned} & \text { under our Tested and Guaranteed terms. } \\ & \text { RANGE } 1 \text { VCE. Min. } 15 \\ & \text { 1-12 } \\ & \text { RA-25 }\end{aligned}$ 26.50
0 Wart HFE. Min. 15
$\begin{array}{lll}22 p & 20 p & 18 p \\ 26 \frac{1}{2} p & 24 \frac{1}{2} p & 22 p\end{array}$
90 Wat
RANGE 2VCE. Min. 40
RANGE 2VCE. Min. 40
$\begin{aligned} & 40 \text { Watt } \\ & \text { gu Watt }\end{aligned}$
$\begin{array}{lll}33 p & 31 p & 29 p \\ 38 \frac{1}{2} p & 36 \frac{1}{2} p & 33 p\end{array}$

Please state NPN or PNP on order
High-speed magnetic counters
INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive FREE Catalogue, seo coupon below

METRICATION CHARTS Now available
This fantastically detailed conversion calculator carries thousands of classified references berween metric and volume. liquid measure, weights etc. Pocket Size 15p. Wall Chart 18p.

LOW COST DUALIN LINE I.C. SOCKETS $\left.\begin{array}{l}14 \text { pin type at } 16 \frac{1}{2} p \text { each } \\ 16 \text { pin type at } 18 p \text { each }\end{array}\right\}$ Now new low profile type

BOOKS
ence and Technical
Books in stock.
BUMPER BUNDLES
These parcels contain all types of surplus electronic ransistors and diodes, etc

2 LBS in weight for $\mathrm{\Sigma} 1 \cdot 10$

Our famous PIPak

is still leading in value
Full of Short Lead Semiconductors \& Electronic
Components, approx. 170 . We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some inform
11 p \& P on this Pak.
Please ask for Pak P.1.only 55p

Please send me the FREE Bi-Pre-Pak Catatogue.

ALL PRICES INCLUDE 10\% VAT
adoress

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE Add 15 post and packing per order.
EXTRA FOR POSTAGE.

TV.Test Engineers

As one of the largest manufacturers of T.V. and audio equipment, ITT can offer excellent opportunities to experienced Test Engineers as a result of continuing expansion of the colour T.V. Test Department at their Radlett Works.

These are responsible positions involving diagnosis of faults on colour T.V. chassis; assessing performance of chassis against specifications and standards; maintaining fault records and reporting quality trends.

ONC Electronics or C \& G Final Certificate with colour endorsement is desirable coupled with several years' experience in a T.V. Test or Service Department. The ability to supervise and co-ordinate the work of a team of Test Technicians and assist in their training would be an advantage.

A good salary will be offered together with generous additional benefits including assistance with relocation, where appropriate.

Write with details of your experience to Mrs J. D. Calnan, ITT Consumer Products (UK) Limited, Radlett Works, Colney Street, St. Albans, Herts, ALz 2EG.

ITT

Colour Television Servicing

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
$£ 4.40$

Newnes-Butterworth,
 Borough Green, Sevenoaks, Kent TN15 8PH.

SERVICE TRADING CO

A.C. MAINS TIMER UNIT

PROGRAMME TIMERS

VERY SPECIAL OFFER
Miniature Roller Micro Switch. 5 amp.
c/o contacts. Mig. BONNELLA. NEW. Price
10 for $£ 1.50$. Post 10 p . (Min order 10.110 m . (Min, order
As above without roller. 20 for $£ 2.00$. Post 1 , HONEYWELL' PUSH BUTTON, PANEL
MOUNTING MICRO SWITCH
ASSEMBLY
Each bank comprises of a change-over
rated at 10 amps 240 volt A.C. BIack
knob 1 In. da. Fixing hole in. Prices:

(Illustrated)'
for quantitles.
COIN MECHANISM (Ex-London Transport)
 Precision built
EP .50 Post 60 p.

230-250 VOLT A.C. SOLENOID

24 VOLT DC SOLENOIDS
UNIT containing: 1 heavy duty solenoid approx. 25 lb . pull
 1 heayy duty I make relay. Price: $\mathbf{f z} \mathbf{5 0}$. Post 60 p . ABSOLUTE
BARGAIN.

$\left\{\begin{array}{l}\text { xis } \\ 25\end{array}\right.$

POWER RHEOSTATS

New ceramic construction, vitreous

 Black SilverSkirted knob calibrated in Nos. I-9. If Black Silver Skirted knob
in. dia brass bush. Ideal for above Rheostats, 22 p ea.

STROBE! STROBE! STBOBE!

FOUR EASY TO BUILD KITS USING XENON WHITE LIGHT FLASH TUBES, SOLID STATE TIMING + TRIGGERING CIRCUITS, PROVISION FOR EX-
EXPERIMENTERS "ECONOMY" KIT
Adjustable 1 to 30 Flash per sec. All electronle com-
Conents including Xenon Tube + instructions $£ 6.30$ Post 30p.
industrial kit
Ideally sultable for schools, laboratories etc. Roller
IIn printed circuit. Adjustable 1-30 f.p.s., approx. output of Hy-Lyght. Price $\mathbf{£ 1 4 . 0 0}$. Post 50p.
HY-LITE STROBE MK IV
Designed for use in large rooms, halls and utillzes a sillca tube, printed circuit. Speed adjustabled
Light output greater than many (so called 4 joute) strobes. Price $\mathbf{£ 1 4 . 0 0}$. Post 50p.
'SUPER' HY-LIGHT KIT
Approx. times the lloht output of our well proven-
Ha-Lyoht strobe.
Reactor control clrcuit producing an Intense white ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE for the Super Hy-Lyght Kit including eflector. E8-60. Post 60,
FOR HY.LYGHT STROBE Incl. reflectori $\mathbf{2 5} 75$.

COLOUR WHEEL PROJECTOR
Complete with oil filled
$200 / 240 \mathrm{~V}$ AC. Features ex
tremely efficient optical

I R.P.M. MOTOR a

COLOUR WHEEL

6 INCH (Motor not availab.e separately.)
COLOUR WHEEL ONLY. Price
E4.50.
$\star \star * * * * \star \star t \star * \star t$
BIG BLACK LIGHT
BIG BLACK LIGHT

stage. display. discos etc. P.F. ballast is essential
with these buibs. Price of matched ballast and bulb BLACK LIGHT FLUORESCENT U.V. TUBES

 $*$ plete ballast unit and holders for either
$* \pm 1-70$. Post 25 p . $9 \mathrm{in} . x 12 \mathrm{in}$. measures approx.).
U.D.1. SINGLE CHANNEL

* 750 WATT MANUAL/AUTO
* DIMMER

750W Solid State Fader with three functions. Manuel
fade: Auto fade-up: Auto fade-down. Automatic cycling up and down. Functions selected with ithree
position rocker swith. Two ranges of cycling for
Plashing or Slow biending'. Ready buill module $6^{\prime \prime} \times 3^{\prime \prime}$ * glass fibre board incorporating 10 amp TRIAC. Two or $*$ flashing effects. PRICE £15.00 Post 30p.

GENERAL ELECTRIC POWERGLAS TRIACS
 f1.30. Po
Diac 18p.
INSULATION TESTERS (NEW)
Test to I.E.E. Spec, Rugged metal construction, sultable for bench or field
work, constant speed clutch. Size L. 8 In., W. 4 In. H. 6 in., welght 6 ib 500 VOLTS, 500 megohms E28.00. Post 60 p .

INSULATED TERMINALS Available in black, red white
yellow. bue and green. New 12 p

DRY REED RELAYS

M.f.g. by ERG 2 voit D.C. encapsulated. Post P ald
Single clo 65p. Post Patd. Two c/o 85p. Pos

STC 280 ohm coil $5 / 12$ V D.C. 3 make contacts metal shrouded 60 p . Post Paid. Large range of other types avauable.

BLOWER UNIT
200-240 Volt A.C. BLOWER UNIT Precision German bullt. Dynamically reversilb, quiet, continuously rated
Consumption 60 mA
Size 120 mm . Size 120 mm . cia. $\times 60 \mathrm{~mm}$. deep.
Price $£ 3 \cdot 00$. Post 30 p .

PRECISION CENTRIFUGAL BLOWER Mfg. Airflow Developments Lid,. Heavy Duty,
continuously rated, smooth running $230 / 240 \mathrm{~V}$
A.C. motor Size: $16 \times 14 \mathrm{~cm}$. (case only) A.C. motor. Size: $16 \times 14 \mathrm{~cm}$. (case only)
OAL 15 cm . Aperture $6 \times 6 \mathrm{~cm}$. f .50 .50 OAL 15
Post 50 p

230/240 VOLT A.C. EXTRACTOR FAN KIT Comprising of impeller, continuously rated motor, motor housing and fixings as illustrated. Price £1.75. Post 25p. (Total inc. VAT \& Post E2.16.)	
230V FAN ASSEMBLY	
Continuously rated removable aluminium blades. Price $\mathbf{E 1 - 0 0}$. Post $20 p$.	

230/240V SYNCHRONOUS GEARED MOTOR Manufactured by either Sangamo, Haydon or Smith. Built-ingear
2 RPH, 3 RPH, 6 RPH, 12 RPH.

PARVALUX TYPE SD2. 200/250 VOLT A.C. D.C. HIGH SPEED MOTOR Speed 9.000 r.p.m. approx. or 3.200 r.p.m. if used
with built-in governor, of variable speed over a wide range if used in conjunction with our £2.00. Post 35 p.

600 WATT DIMMER SWITCH Easily fitted. Fuliy guaranteed by makers. Will coscent at mains voltage. Complete with simple instructions. $£ 2.75$. Post 250 .
2000 WATT POWER CONTROL
For Power tools. Heating, Lighting etc. incorporating 13 amp
$\underset{\substack{\text { High Visibility } \\ \text { Panel Mounting }}}{\text { LED }}$
Panel Mounting 16 inch lens. Typical parameters 2 volt
$20 \mathrm{ma.a}$ all types. Supplied complete with snap in mountings
and data. Red 4 for $£ \uparrow \cdot 00$, Green 3 for $£ 1.00$, Yellow 3 for $£ 1.00$. Post 10p. (Min. order $\mathbf{£ 1 . 0 0}$.

LED READOUTS

Available in red or green. $£ 1.65$, post $10 \mathrm{p}: 4$ for

METERS NEW! $2 \frac{1}{2} \mathrm{in}$. FLUSH ROUND

ALL MAIL ORDERS. ALSO CALLERS AT
57 BRIDGMAN ROAD. CHISWICK,
LONDON, W4 5BE. Phone: 01 -995 15.60

SHOWROOMS NOW OPEN
AMPLE PARKING

9 LITTLE NEWPORT STREET LONDON, WC2H 7JJ.

FANTASTIC INSTRUMENT BARGAINS

A rare opportunity to purchase electronic instruments by leading manufacturers at rock bottom prices.
This high quality equipment, surplus to our present requirements, is in good working brder and has been regularly maintained to the manufacturer's own standards.
One hundred different types of instruments are offered, representing more than $£ 15,000$ worth of equipment. Just look at the prices. the lowest ever for equipment of this quality.
Ask for the catalogue sheet of the full range today.
Instruments may be viewed by arrangement only at the address below. Please telephone for an appointment.
Please check availability of instruments by telephone when ordering.
Calibration Service. Please ask for quotation.

AUDIO HI-FI

CROWN
High Power Loudspeaker Units Dual Power Amplifiers
Stereo Recorders
COUNTERS AND TIMERS
COUNTERS AND TIM
HEWLETT PACKARD
5246 L .50 MHz . 6 digit counters 5252A. 350MHz Pre-scaler plug-ins 5253B. 512 MHz Converter plug-ins
£230.00 £200.00 MARCONI
TF2401. Main Frames
On application
TM7558. Plug-ins
TM8267. 110 MHz Plug-ins
TM8094/1. 0.3-2.5GHz Plug-ins
DIGITAL VOLTMETERS
DIGITALVO
DM2022. DC 0.02\% 10uV resolution $-2 \mathrm{KV}$
£150.00 DM2 140/A1/B1. Mean AC Converters $£ \mathbf{£} \mathbf{2 0 0 . 0 0}$ DM2 140/A1/B3. RMS AC Converters $£ 64.00$ SOLARTRON
LM1420.2.DC. 0.05\% 2.5 uV resolution to 1 KV
£110.00

$$
\begin{gathered}
\text { Thn }
\end{gathered}
$$

TELEQUIPMENT D43

from: $\mathbf{£ 8 0 . 0 0}$
 £240.00

 £500.00
OSCILLOSCOPES

TEKTRONIX

545B. DC-33MHz. Main Frames with Time Base
$\mathrm{CA} . \mathrm{DC}-24 \mathrm{MHz}$. Dual Trace Plug-ins for 545A/B
DYNAMCO
7100 . DC-30MHz. Main Frames $\quad \mathbf{£ 1 5 0 . 0 0}$ 1 Y 2 . $D C-30 \mathrm{MHz}$. Dual Trace Amplifier Plug-ins
1Y4. 625 lines TV Monitor
1×1. Time Base Plug-ins
1×2. Time Base Plug-ins with Delay MARCONI
TF 2203 DC -15 MHz . Dual Trace. Battery/ Mains

TELEQUIPMENT

D. 43 DC- 25 MHz . Main Frames with Time Base
A. DC- 15 MHz . Single Trace Amplifier Plug-ins
J. DC-25MHz. Single Trace Amplifier Plug-ins
£250.00

OSCILLOS
 TELFORD

C. Moving Film Camera 35 mm variable
speed On application

$\mathbf{£ 3 0 . 0 0}$

POWER SUPPLIES
FARNELL
SSF. O-15V. 15A. $\frac{1}{2}$ Pre-set
SSD. 0-15V. 3A. Pre-set ROBAND
EGO 12/10. 0-12V. 10A. Pre-set
£23.00

RECORDERS
BELL \& HOWELL
5-124. Ultra Violet Light Beam. 18 channels (Galvos to 13 KHz available at extra charge)
£60.00
5-127. As above with 12 channels $\quad \mathbf{£ 1 8 0 . 0 0}$ SIGNAL SOURCES
GENERAL RADIO
$\begin{array}{lll}\text { 1362. UHFO scillator (both need a } & \mathbf{£ 8 0 . 0 0} \\ \text { 1363. UHFO scillator Power Suply) } & \mathbf{£ 9 0 . 0 0}\end{array}$ HEWLETT PACKARD
$608 \mathrm{C} .1 \mathrm{MMHz}-470 \mathrm{MHz}$. External Ampli
tude Modulation $\quad \mathbf{£ 1 1 0 . 0 0}$
$608 \mathrm{E} .10 \mathrm{MHz}-480 \mathrm{MHz} . \quad £ 190.00$

612 A. $0.45-1.23 \mathrm{GHz}$. Internal or External Amplitude Modulation
£300.00 MARCONI
$801 \mathrm{D} / 1.10 \mathrm{MHz}-470 \mathrm{MHz}$. Int/Ext. AM and Pulse Modulation $£ 250.00$ TF $2005.20 \mathrm{~Hz}-20 \mathrm{KHz}$. Twin Oscillators $£ 220.00$ TF 2OIOMETER
HO 32 C .21 KHz . Beat Frequency
Oscillator
$\mathbf{£ 9 0 . 0 0}$
WAYNE KERR
0.22D. $10 \mathrm{KHz}-10 \mathrm{MHz}$. Video Oscillator $\mathbf{£ 1 1 0 . 0 0}$ SWEEP GENERATORS
HEWLETT PACKARD

8693B. 3.7-8.3GHz Plug-ins
$£ 410.00$
(other Plug-ins on application)
LEPHONE TV AND MICTROWAVE
HEWLETT PACKARD
423A. 12.4GHz Crystal Detectors
$£ 28.00$

SIEMENS

REL3K53. Contact Fault Locators
£140.00
STC 74166 . Milliwatt Test Sets $\quad £ 140.00$ STC 74184 B. Selective Measuring Sets $£ 132.00$ STC 74306 . Oscillators $10 \mathrm{KHz}-20 \mathrm{MHz} \mathrm{f} 110.00$ WANDEL \& GOLTERMAN
WANDEL \& GOLTERMAN
TFPS 75.1 .3 MHz . Selective Oscillators $\mathbf{£ 1 4 0 . 0 0}$ $\begin{array}{ll}\text { TFPS75. } 1.3 \mathrm{MHz} \text {. Selective Oscillators } & \mathbf{£ 1 4 0 . 0 0} \\ \text { TFPM43. } 14 \mathrm{MHz} \text {. Selective Meters } & \mathbf{£ 2 2 5 . 0 0}\end{array}$ VZM1 Differential Phase Meters (TV) $£ 318.00$ VZMG1 Sampling Attachments $£ 77.00$ WAVE ANALYSERS

AIRMEC/RACAL

$248 \mathrm{~A} .5-300 \mathrm{MHz}$. Harmonic Analysers $£ 125.00$ 853. $30 \mathrm{KHz}-30 \mathrm{MHz}$. Harmonic

Analyser (75 ohms)
$\mathbf{£ 1 1 0 . 0 0}$
ASSOCIATED EQUIPMENT

HONDA

W15. Petrol driven Water Pump. $1 \frac{1}{2}$ inch
outlet. Brand New
£25.00

Carston Electronics Limited
Shirley House, 27 Camden Road, London NW1.
Tel: 01-267 4257

THE NEW NELSON－JONES FM TUNER
 PUSH－BUTTON VARICAP DIODE TUNING （6 Position）
 Exclusive Designer Approved Kits

 the latest and best in circuit design such as：－

```
MOSFET front end for excellent cross modulation pertomance and low noise.
3GANG tuning for high selectivity.
VARICAP tuning diodes in back to back configuration for low distortion
CERAMIC filters tor defined if response．
PHASE LOCKED Stereo decoder with Stereo mute，see below
LED fine tuning indicators． PUSH BUTTON tuning（with AFC disable）over the FM band（ \(88-104\) ）．
IC STABILISED and S／C nrotected power supply．
CABINET double veneered against warp．
```

reliability and excellent limiting／AM rejection of working tuners spread across the world．

Basic tuner module prices start as low as $\mathbf{£ 1 2 . 3 1}$ ，with complete kits starting at $£ 26.95$（mono）＋P．P．65p．and of course all components are available separately．
Our low cost alignment service is available to customers without access to a signal generator．Please send large SAE for our latest price lists which details all of the many option
remain available．
PORTUS AND HAYWOOD PHASE LOCKED DECODER（W．W．Sept． 70 ）．Still the lowest distortion P．L．decoder available．THD typically 0.05% lat Nelson－Jones Tuner O／P level）！Supplied complete with Red LED．
Price $£ 7.02$ when bought with a complete N－J tuner kit or $£ 8.29$ if bought separately（P P 21p）
PLEASE NOTE．Existing tuners are readily convertible and kits／parts are available for this purpose
TEXAN AMPLIFIER．We have designed the tuner case and metalwork to match the Texan amplifier（see photograph）．Complete designer approved Texan kits are available at $£ 30.78$ plus P．P． 65 p including Teak Sleeve

NEW LOW COST STEREO TUNER Available as basic or complete kits

Basic stereo tuner $\mathbf{f 1 5}$ post free Basic mono tuner $\mathbf{£ 1} 2$ post free 6 position push button units with integral pots $£ 2.92$ ．
TYP．SPECIFICATION $2 \mu \mathrm{~V}$ for $30 \mathrm{~dB} \mathbf{S} / \mathrm{N}$
Image rejection 40 dB
IF rejection 65dB

VAT at 8% is included in all prices

No alignment required．Mullard LP1186 front end module used with Ceramic IF and IC amplifier．Push button tuning（ 6 position）with Interstation Mute，restricted range AFC，single LED tuning indicator，phase locked IC decoder，and complete metalwork and veneered cabinet．Complete with IC regulated PSU and full assembly instructions．（Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner．）

PRICE Complete stereo kit $£ \mathbf{2 8 . 4 2}$
Complete mono kit £24．19
P．\＆P．65p

BENTLEY ACOUSTIC CORPORATION LTD．

7A GLOUCESTER ROAD，LITTLEHAMPTON，SUSSEX．Tel． 6743 ALL PRICES SHOWN INCLUDE＇Y．A．T

年

为

 $1 \begin{aligned} & 0 \mathrm{C} 25 \\ & \mathrm{OC} 28 \\ & \mathrm{OC} 29\end{aligned}$
OC 0.42
0.42
0.42
0.68
 OC 38
$\mathrm{OC4}$
$\mathrm{OC4}$
OC 43
OC 44 ๓ะロํํ
\qquad

ELEGTROMLU

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE (U.K.)

POTENTIOMETERS

pOLVCARBONATE

ng Voltage- 250 V d
values in mF: 0.0047; 0.0068: $0.0082 ; 0.1 ; 0.012$

Working voltage 100 V

silvered mica

 CERAMIC DISC

Ceramic plate
in a range of 26 values from 22 to $6800 \mathrm{pF} / 50 \mathrm{~V}$ d.c
each 2 p

THE BEST 100 TRANSISTORS Taken from our catalogue 7					
2 N 1307 2 N 2646	${ }_{51} 7$	AF200U	70	BDI35 BDi36	37p
2 N 3053	26	B1906	${ }^{60 p}$		83p
2N3054	60 p	BA138	318	BF1	${ }^{15 p}$
-		${ }^{\text {B8173 }}$	${ }_{34 \mathrm{p}}^{24 \mathrm{p}}$	BFR39	年
2N3703		88109	18 p	BF×29	33p
2 N 3704	$11 p$	BC107A	15 p	BFX84	p
(${ }^{2 N 3705}$	18p	BC1078 BC1098	${ }_{14 \mathrm{p}}^{15}$	${ }_{\text {Bry }}{ }_{\text {Bry }}$	
2N3819	25 p	BC108C	14 p	BY164	St
2 N 40	11 p	вC109B	18 P	C10681	${ }_{420}$
43	93 p	$\mathrm{BCl}^{\text {O9CC }}$	18 p	C106	
(${ }^{2} \mathrm{~N} 5062 \mathrm{O}$	${ }_{20}$	BC147A BC147	12 p 13	C1406	
2 N 54	32 p	${ }^{\text {BC1 }} 14 \mathrm{BB}$	12 p	M ${ }^{4} 4$	f1.35
40361	48p	${ }^{\text {BC1 }} 149 \mathrm{C}$	14 p	MJ2955	
40362	44 p	${ }^{8 C 1588}$	${ }^{15 p}$	MJE371	9 p
${ }_{4}^{40602}$	${ }_{\text {46p }}^{4.35}$	${ }^{8 C 159}$	-15p	MJE5	${ }^{81 p}$
40669	${ }_{\text {E1 }} 1.10$	BC1688	${ }_{12 \mathrm{p}}$	MJE2955	
AC15		BC1698	13	0491	${ }_{6}$
AC151R	${ }_{27 p}^{23 p}$	- ${ }_{\text {BC1 }}^{\text {BC1798 }}$	130		
AC153		BC182L	${ }_{268}$	Tip32A	${ }_{80 \mathrm{p}}$
AC176	$24 p$	BC184L		TipalA	-
		BC212L	12 l	${ }^{\text {T1P42A }}$	0
${ }_{\text {AC }}{ }^{\text {ACigk }}$		BC257A	149	WTX3	30p
${ }^{33}$	${ }^{1} 1.92$	BC259B		21×304	23p
AD 136	E1.11	8C758	30 p	2T×500	$14 p$
AD149 AD 161		ED130	980p	504	45p
AD162		BD 132	52 p		

RESISTORS											
Code Watts Ohms 1 to $9 \begin{gathered}\text { co to } 99 \text {, } 100 \mathrm{up} \\ \text { (see note below) }\end{gathered}$											
$\begin{gathered} \mathrm{C} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{MO} \\ \mathrm{MW} \\ \mathrm{WW} \\ \mathrm{WW} \\ \text { codes: } \end{gathered}$		${ }_{4}^{4.7-470 \mathrm{~K}}$	1.3 1.3	1.1	0.9 nett						
		$4.7-10 \mathrm{M}$	1.5	1.2	0.97						
	$1 / 2$	$\xrightarrow{4.7-10 \mathrm{M}} 1$	${ }_{4}^{3.2}$	${ }_{3.5}^{2.5}$	${ }^{1.92}$ nett						
		0.22-3.98		10	2.						
		退 $\begin{aligned} & 1-10 \mathrm{~K} \\ & 1-10 \mathrm{~K}\end{aligned}$	9	${ }_{10}^{8}$	${ }_{8}^{6}$						
	Codes: $\mathrm{C}=$ carbon film, high stabilíty, low noise MO = metal oxide Electrosil TR5 Ultra Low noise										
5% except wW 10\% ± 0.050 below 10 , and or the same ohmic value and power rating. NOT mixed values.(Ignore fractions of one penny on total value of resistor order.) Prices for 100 up in units of 100 only.											

ELECTROLYTIC CAPACITORS

 $\begin{array}{llllllll}\text { Axial Leac } & & & \\ \text { q. }\end{array}$
ALUMINIUM BOXES

JACKS AND PLUGS

2 circuit unswitched S 1/SS 2 circuit 2 break contacts S1/BB 3 circuit unswitched (Not GPO) S3/SSS 3 circuit with 3 break contacts $53 / 8 B B$ 2 circult with chrome nut and black/white/red/green or with 2 break contacts S5/BB Miniature 3.5 mm 2 circuit. (back) 2 break contacts $\mathrm{S} 6 / \mathrm{BB}$
2 circuit screened topentry P1
side entry SEP1
Line socket mono 231
Line socket stere
3 circuit unscreened. black/grey/white P4
2 circuit, unscreened, blackwhite/red/black/
Miniature 3.5 mm 2 circuit unscreened various colours P6

INSULATED SCREW TERMINALS

DIN CONNECTORS

2 way loudspeaker	Socker ${ }^{10 \mathrm{p}}$	ug
3 way audio ${ }^{\text {a }}$	Socket ${ }^{\text {Sop }}$	
uudio 880°	Socker ${ }_{\text {S }}$	ug
way audia	Socket 13p	Plug 15p

S-DEC
Unsurpassed for "breadboard work" can be used indefinitely
without deterioration. Components just push into piug holes
 T-DEC
For more advanced work with 208 contacts in 38 rows. Will take
one 16 lead carrier $\mathbf{~} \mathbf{3} \mathbf{3} \mathbf{6 3}$. (Carriers supplied separateit $)$. COVERS \& HEATSINKS

ANTEX soldering irons

DESOLDERBRAID 66p
WAVECHANGE SWITCHES
1 pote 4 way 4 pole 6 way
3 pooe
TAG SRII 48 way
each 29p
NUTS, SCREWS, ETC
4BA NUTS 28:
$\frac{1}{2}$ " 4 B Screws 28 p :
6BA NUTS 28p " 48 Screws 28p:
 Plain spacers
Other sizoun
Oizes available

ENAMEL COPPER WIRE in 2 ounce reels $32.3446 \mathrm{p}:$

MAGNETO LQuiD	RRYSTAL SWICHES SPECIALI.CS

YOU NEED CAT SEVEN

Satalogue 7 - 112 (green and Vellow covers) of Electrovaiue accessories. materiats. tools. Well illustrated and detailed information. 25p post free with spending voucher worth 25 p

DISCOUNTS

hose shown with NETT | PRICES 10% on orders from |
| :--- |
| E5 to E 14.99. |
| 15% on orders |

FREE PACKING

 AND POSTAGE for mail for pre-paid mall orders and under there is an anditional handing charge of 10 . Overseasorders-carriage charged ats cost GIRO AC No. 38/671/4002

ELEGTROMALUE LTD

Pease address all communications, mail-orders. erc., to head office at Englefield Green and
enquiries needing a written answer.

28, ST. JUDES ROAD, ENGLEFFELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603, Telex 264475 Shop hours: 9-5.30 dailv. 9-1 pm Sats. NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1NA Telephone (061) 432494
Shop hours: Daily 9-1 and 2-5.30pm; 9-1pm Sats.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27
Swarthmore PA 19081 .

QUALITY GUARANTEE All goods are sold on the under
standing that they conform to manufacturers' specifications and
 such-no rejects, 'ssconds' or
sub-standard sub-Standard
offered for sale Prices quoted do not include
V.A.T. for which V. A. T. Por which 8% must be
added to total nett value of added to total nett value of
arder.
Even effort is made

 going to press. Prices subict
to alteration without notice

W明展 Printed Circuit System

is simple, inexpensive, and fits into low-cost West Hyde cases. The System comprises six cards (two styles, three sizes), connectors and five types of board guide. Connectors are
double-sided and all contacts gold-plated. Shown: Mod-301 case with boards 421 guides 31!. 21 -way connectors. Prices: Mod-301 (including chassis)
$£ 3.95$: Connector 21 -way

77p; Boards 421 \& 422 f1.
up to eight DILs on each board); Card guide pairs 311 £2.26. Prices include P. \& P. and 8\% VAT. Much less for quantities.
LEDs with chromium-plated screwed case suitable for
LEDs with chromium-plated screwed case suitable for 5.5 mm . hole or 1 off inc. P\& P and 8% VAT 1 offinc. P\&P and 8% VAT $\begin{array}{lrrr}1 \text { off inc. } & P \& P \text { and } 8 \% \text { VAT } & 1 \text { offinc. } & P \& P \text { and } 8 \% \text { VAT } \\ \text { Cased red } & 59 p & \text { w/o case } & 30 p\end{array}$ Cased green
Much less for quantities. Send for catalogue. Prices correct August
1974 1974.

Rod. 2

The design of these cases permits the instrument to be built or serviced within their external panels. 48 shapes

Width	Height	Depth	1 off	Width	Height	Depth	9 off
A $4.5^{\prime \prime}$	3"	6.5"	£3.59	M 4.5"	3 "	13"	£4.41
B 4.5 "	7"	$6.5{ }^{\prime \prime}$	£4.41	N 4.5"	7"	$13^{\prime \prime}$	¢5.40
C 4.5 "	$10^{\prime \prime}$	$6.5{ }^{\prime \prime}$	£4.88	O 4.5"	$10^{\prime \prime}$	$13^{\prime \prime}$	$\mathrm{f6.84}$
D $9^{\prime \prime}$	3"	$6.5{ }^{\prime \prime}$	£4.88	P 9"	3"	$13^{\prime \prime}$	¢5.40
E $9^{\prime \prime}$	7"	$6.5{ }^{\prime \prime}$	f5.40	Q 9"	7"	$13^{\prime \prime}$	f6.84
F 9 ${ }^{\prime \prime}$	$10^{\prime \prime}$	$6.5{ }^{\prime \prime}$	f6. 22	R 9 ${ }^{\prime \prime}$	$10^{\prime \prime}$	$13^{\prime \prime}$	£8.74
G 13"	3"	$6.5{ }^{\prime \prime}$	£5.40	S $13^{\prime \prime}$	3 "	$13^{\prime \prime}$	f6.84
H $13^{\prime \prime}$	7"	$6.5{ }^{\prime \prime}$	£6. 22	T 13"	7"	$13^{\prime \prime}$	£8.74
I $13^{\prime \prime}$	$10^{\prime \prime}$	6.5 "	f6. 84	U 13"	$10^{\prime \prime}$	$13^{\prime \prime}$	£10.13
J 18"	3 "	6.5 "	f6. 22	V18"	3"	$13^{\prime \prime}$	¢8.74
K 18"	7"	$6.5{ }^{\prime \prime}$	£8.74	W18"	7"	$13^{\prime \prime}$	f10.13
L. $18^{\prime \prime}$	$10^{\prime \prime}$	6.5 "	£10.13	$\times 18^{\prime \prime}$	$10^{\prime \prime}$	$13^{\prime \prime}$	f12.09

Prices include screws, rubber feet, one or two chassis according to size, P \& P and 8\% VAT. Prices correct August 1974.

WEST HYDE (WH

WEST HYDE DEVELOPMENTS Ltd, Ryefiad Cres., Nartiwood Hills, Northwood, Midax HA6 1NN Tol: Northwood 24941/26732

HART ELECTRONICS avolo kirs

F.M. TUNER This latest addition to our range will be in production late March 74. It is designed to offer the best possible performance allied to the ease of operation given by push button varicap tuning. We have taxen great care to wook after the constructors pore in fact the whole unit can be easily complated and working in an evening as there are only 3 transistors. one IC and two ready built and aligned modules comprising the active components. We have abandoned the concept of having a tuner as large as the amplifier and this new unit has a frontal size of only $1 \frac{1}{2}$ in. $X 4$ in. It can be mounted on the side
of our Bailey amplifier metalwork thus turning it into a tuner/amplifier whilst onty increasing its width by $1 \frac{1}{2}$ in.
Cost of tuner chass (no case) is $\mathbf{~} \mathbf{Z 2}$ for mono, $\mathbf{£ 2 5 . 4 5}$ for stereo. Metal case $\mathbf{£} .55$. Cost of tuner chassis (no case) is $\mathbf{Q 2 2}$ for mono, $\mathbf{f 2 5 . 4 5}$ for stereo
An extended wooden case to fit tuner and amplifier will be offered shorty
BAILEY/BURROWS/OUILTER PRE AMP. The best engineered kit avaitab of the BAILE Y/BURAOWS/QUILTER PRE AMP The best engineered kit available of the witches or inputs. A complete and sophisticated 5 input signal processing stage for any power amplifier requiring up to $\frac{1}{2} v$ input or only $£ 26.50$. Front end only $£ 10.44$. Tone control oniy E11.41.
BAILEY 30 WATT POWER AMPS. Our best selling power amplifier, You can't better its
performance or the quality of the kit and at only $£ 9.88$ per channel. it's amazing value for performa.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck into very high quality Sterso Tape unit. Input anc We can offer tape heads as well if you Want new ones.
All above kits heve fibreglass PCB's. Prices exclude VAT but P\&P is included
FURTHER INFORMATION ON ALL KITS FREE if you send us a $9 \mathrm{in} . \times 4 \mathrm{in}$. S.A.E. REPRINTS Post free, no VAT. Bailey 30W 18p.
STUART TAPE RECORDER All 3 articles under one cover 30p

Penylan Mill, Oswestry, Salop
 Personal callers are always welcome but please note we are cosed all day Saturday

ANALOGUE AND HYBRID COMPUTERS

C180 Features:

18-I.C. Operational Amplifiers, 1% accuracy Automatic Function Selection and Meter Switching, 3 -Four Quadrant Multipliers Individual Pot-Set Facilities, built-in stabilised power supplies, D.V.M. optional extra Price $£ 850$ complete with patching leads
 We manufacture a range of inexpensive specialists in producing computers to your own specifications. Why pay more than you can afford for a computer which does not quite do what you want? You will be pleasantly surprised at the cost of an analogue or hybrid machine built to your own requirements.

Phone or write for details of our Analogue or Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF ANALOGUE AND HYBRID COMPUTERS 28 Athenaeum Road, Whetstone. London N.20. Tel. 01-445 7683

C.I.E.L.

4/6 rue Victor Hugo - $\mathbf{9 4 1 9 0}$ Villeneuve St Georgs, France
4000 TYPES OF SEMICONDUCTORS AND TUBES

CATALOGUE ON REQUEST

Transistors I.T.T. Si NPN					Price in \mathbf{f}			
	Vcoov	1 cm A	Ptot mW	F Mhz	$\begin{aligned} & \text { per } \\ & 100 \end{aligned}$	$\begin{aligned} & \text { per } \\ & 500 \\ & \text { each } \end{aligned}$	$\begin{gathered} \text { per } \\ 1000 \\ \text { pach } \end{gathered}$	$\begin{aligned} & \text { por } \\ & 5000 \\ & \text { each } \end{aligned}$
8F123	30	30	330	35	0.17	0.15	0.14	0.13
BF127	30	25	330	335	0.16	0.14	0.13	0.12

Phoenix Electronics

 (Portsmouth) Ltd139-141 Havant Road,
Drayton, Portsmouth, Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors
Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFERSpecial transistor kit. 4 each JFETs and PUJTs, 4 each plastic power NPN and PNP transistors, plus $4 \times 1 \mathrm{~A} 400 \mathrm{~V}$ bridgescatalogue value $£ 6.88$. BARGAIN PACK PEP6- $\mathbf{£ 4 . 9 0}$

Please send your catalogue-free!
Name
Address \qquad

STEREO IC DECODER HIGH PERFORMANCE PMASE LOCKED LOOP (as In 'W.W.' July '72)		
specification		
KIT COMPRISES FIBREGLASS PCB ONLY WHYPAY (Roller tinned). Resistors, I.C. Capaciors, Preser Potm. \& Comprehensive Instructions. \quad f3.98 MORE?		
light emitting diode Suitable as stereo 'on' indicator for above	GRED	$\begin{aligned} & \text { 29p } \\ & -29 p \end{aligned}$
MC1310P only £3.15 plus p.p. 6p		
NOTE As the supplier of the first MC1310P decoder kit. of whlch we have sold literally thousands, our customers can benefit from our wide experience. V.A.T Please add V.A.T. at 8% to all prices		
FI-COMP ELECTRONICS BURTOM ROAD, EGGIMTON, DEREY, DEG GGY		

Wilkinsons

Po type No 2 Switchboard Lamps 6 unit tor easy lamp repit $\frac{1}{} \mathrm{Ozs}$. reading 0 to 9 with decimal points. quick disconnect rear of

GEARED MOTORS 3 r.p.m. 24 volts AC. 4 wats $£ 3.50$ each 24 volt Transformer with 240

 BUZZERS
$6-12$ volts. tone adjuster 50 with each as illus.
 25 P each for lots of 50
All prices sho LONGIEY RD L. WILKINSON (CROYDON) LTD. TONGLEY HOUSE WW-083 FOR FURTHER DETAILS

ErPPEPAK ADDIO BARGAIIS STEREO D DECOOER

 incl. P. \& P. and VAT

A ready built unit ready for connection to the I.F. stages of existing F.M. Radio or Tuner. A tell-tale light can be connected. The unit is a small printed circuit no further adjustment necessary. A L.E.D. is recommended as the indicating light, suitable device available from us at $36 \frac{1}{2} p$. Instructions included

1 Oncl. P. \& P. and VAT On P.C. Board with all components or 2 on one board for £2.86. Order Code I.C.A 1/S. These amps, are supplied with a free booklet on connecting up, specifications and easy to build projects using the I.C.A. 1.

5W \& 10W AMPS

 5Wonv£1.98 10W only £2.49
 incl. P. \& P. and VAT.

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1^{\prime \prime}}{4} \times 1 \frac{33^{\prime \prime}}{4}$. The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for $5 \% 10 W$ AMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only. will fit $\cdot 15$ edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. $\mathbf{~ 1 1 . 2 1 . ~}$
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges. $£ 1.69$.
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.
£1.21.
Instruction leafiet supplied with all units. Post and Packing and
VAT included in Prices.

\qquad

\qquad
3W Amps/
rols
\qquad

``` 5W Amps (Please insert quantities and delete those not applicable
Name
```

Address
BI-PREPAK
Dept 8 222:224 WEST ROAD WESTCLIFF ON SEA, ESSEX SSO 9DF Ca. Regn Na. 820919

TELEPMOME SOUTHEND (0702) 46344

R.S.T. VALVE MAIL ORDER CO.
 Blackwood Hall, IGA Wellfield Road,
 R.S.T.

 PY
PY
PY
PY8
BP4
BP61
T41
U25
U26
U19
U40
U80
UA
UA
UB
UB
UC
UB
UB
U Industrial Valves
5728/
67 ALSW
5727 j

Indust	Valves	5Z4G	12E14	828	6alsw
183GT	3B28		13D1	829 B	$5727 /$
1 B 24	3 B 29	6AF4A	13 El	830 B	2D21W
1 B 35 A	3 C 22	6AK5	28D7	860	5749
$1 \mathrm{B63A}$	3 C 23	6AMb	29 Cl	866	5750
1 N 21	3C24/249	6AM6	53KU	868 A	8751
1N21B	3 C 45	6AN5	76 BI	886 E	5802
1N23B	3CX100A6	6AN8	75 Cl	8274	5814
1N290R	3 E 24	6ars	8381	881 R	5823
122A	$3 \mathrm{~J} / 121 \mathrm{E}$	6A36	85A1	891 R	5840
1×2B	$3 \mathrm{~J} / 160 \mathrm{E}$	6AU4GTA	85A2		5963
	$3 \mathrm{~J} / 170 \mathrm{E}$	6AUSGT	90 AG	954	5965
248	$3 \mathrm{P} / 150 \mathrm{E}$	6AU6	90AV	956	
$2 \mathrm{AB15}$	3Q/195E	6avigta	90 Cl	966	6008/
2 C 26 A	384	6AW8A	90 CG	967	6AQ5W
2 C 34	$3 \mathrm{~V} / 340 \mathrm{~B}$	6A X5GT	90 Cy		6021
$2 \mathrm{CS9A}$	3V/390A	6B4G	95A1	1625	6067
2 C 43	$3 \mathrm{~V} / 390 \mathrm{~B}$	6 BABA	100TH		6058
2 D 21		6BK4	15082	2050	6059
2D21W	4.125A	6BK7A	15083	2050W	6060
2 E 26	4-250A	6BL7GTA	150 Cl	2051	6061
2 J 31	4.400 A	6BN6	150C2		6082
2 J 33	4 B 32	6BR7	150 C 3	4003 A	6063
2 J 50	4 C 35	$6 \mathrm{B87}$	150 C 4	4212 D or E	6084
2 J 54	$4 \mathrm{CX} 2 \mathrm{0B}$	$6 \mathrm{BX7GT}$	250 TH	4242A	6065
2356 A	4 E 27	6BZ6	328	4313 C	8067
2 K 25	4 J 50	${ }^{6} \mathrm{CB6}$	329	43284	${ }^{6072}$
2 K 26	4 J 52	${ }^{6} \mathrm{CH} 6$	631-P1	4687	6073
2 K 28	4.362 A	6CL6		6544	6074
2K45	4 J 03	$6^{6} 4$	705A	6545	6080
2X2A	$4 \times 150 \mathrm{~A}$	6DK6	715A		6097 C
	4X150D	${ }^{6 D Q 6 B}$	716 B	5642	${ }_{6130}$
3A/107A	4X250B	${ }_{6} 6 \mathrm{EA8}$	723A/B	5644	${ }^{6136}$
3A/108A		${ }_{6}^{6 \mathrm{~F} 33}$	7254	${ }_{8670}^{8651}$	6189
$3 \mathrm{~A} / 108 \mathrm{~B}$	5B/251M	6H6(metal)		${ }^{8670}$	6197
3A/109B	6B/252M	6K7GT	801 803	-5672	${ }_{6202}^{6201}$
3A/110 ${ }^{\text {3 }}$	5B/255M	BVBGT	805	${ }_{\text {8687 }}$	${ }_{6203}$
3A/146J	5B/256M		807	5696	6205
$3 \mathrm{~A} / 167 \mathrm{M}$	$5 \mathrm{~B} / 257 \mathrm{M}$	11E3	808	${ }^{6702}$	6360
3A5	${ }^{6} \mathrm{C} 22$	11 E13	811	6718	6442
3B/240M	5 D 21	12 AY 7	8114	5719	${ }_{6}^{6463}$
3B/241M	SR4GY	12B4A	812 A	${ }^{5725} /{ }_{\text {A86W }}$	6550 6807
3B24	6U4GB	12BY7A	813	6A86W	6807

6928	CV28	CV404
6939	CV81	CV415

Abstract

 6939

 GXU2
GXU3
GXU4
GXU50 $\left\lvert\, \begin{aligned} & \text { ME1403 } \\ & \text { ME1404 } \\ & \text { ME1500 } \\ & \text { ME1501 }\end{aligned}\right.$ Q8108/45
Q8150/15
Q8150/80
Q8150/38
Q810

CV2325
CV2381
cV2466
CV2516
CV2519
CV2520
CV2022
CV2721
CV2901
CV3523
CV3929
CV3986
cy 3888
CV3691
CV3898
CV4001
CV4002
CV4003
CV4004
CV4005
CV4006
CV4007
cV4008
CV4009
CV4010
CV4011
CV4012
CV4013
cV4014
CV4015
CV4018
CV4017
cV4018
CV4019
OV4020
CV4022
CV4028
cV4024
CV4025
CV4028
cV4033
CV4035
CV4038
CV4039
CV4040

CV4043	E180\%
CV4044	E18100
CV4046	E18200
CV4048	E186F
CV4053	E188CC
CV4056	EA50
CV 4059	EA52
CV4060	EA76
CV4062	ECOS
CV4063	ECF804
CV4064	EF50
CV4079	EF54
CV4501	EP55
CV4502	EF804
CV4503	EFP60
CV4504	EL91
CV4607	EN30
CV4508	EN31
CV5060	EN32
CV6004	EN91
CV6008	ESU74
CV6045	E8U76
DA30	ESU77
DA41	P6os7
DA42	F6060
DA100	F6061
DET22	P6063
E55L	FXX219
E800C	PX 2225
E80\%0	FX227
E80F	G1/371K
E80L	Q120/1B
E80T	Q150/2B
E810C	G180/2M
E81L	G240/2D
E82CC	9400/1 K
E8300	GN4
E83F	GTIC
E880C	GTR120W
E900C	GTR150MS
E90L	GU18
E91H	GU20/21
$\mathrm{E}_{62} \mathbf{C C}$	GU50

7476
7480
7482
7483
7484
7486
7400
74911
7482
7493
7444
7495
74988
7497
7
 74167
74170
74174
74176
74176
7490
7491
74192
74193
74194
7496
74196
7497
7498
74199

LOW PROFILE 14 pln DH,
16 ptn, DIL, 17 p . Stockist of English M.O. Valve Co. Mullard, S.T.C.
FROM 1ST APRIL ALL ORDERS SUBJECT TO V.A.T. AT APPLICABLERATE. THIS MUST BE ADDED TO TOTALORDERPRICEINCLUDING POSTAGE.

Torms of Business: Mon. to Sat. Open to callers 9 a.m. to 5 p.m. Closed Sat. I p.m. to 3 p.m. Express postage $5 p$. for one valve; Ip each additional valve. Express postage: 3p for one transistor, and Ip for each additional. Over 10 post free. All orders over 65 post free. Valves tested and released to A.R.B. expecification if required. (Full valve availability list on request, S.A.E.) Prices correct when going to press.

SOLID STATE HIGH SPEED CUT-OUT

THIS UNIT CAN PAY FOR ITSELF IN 50 NANOSECONOS

HIGH SPEED CUT OUT current 1 Amp. ${ }^{\text {no }}$ maxivolraties ato
It can prevent hours of fault finding

Price $\mathbf{£ 2 . 5 0}$ plus 10 por post and packing. Inserted in series with low voltage power supplies this cut out will protect your expensive power transistors. Acts as a high speed switch which opens when current reaches the cut out rating. closes again when current is reduced or the supply switched off. Advantageous when experimenting with H.F. power transistors as on ordinary fuse is far too slow to save short circuits. Max voltage 30 vohs. Modals

PHYSICAL \& ELECTRONIC LABORATORIES LTD.
28 Athenaeum Road, Whetstone, London, N. 20.
Tel: 01-455 7683

HEWLETT PACKARD

430C Microweve power meter
 H01-8401A Leveller amplifier.

8709A Synchronizer.
8734 A Pin modulator $7.0-12.4 \mathrm{GC}$ 8734B Pin modulator $1.0-12.4 \mathrm{GC}$
8732 A Pin Modulator $1.8-4.5 \mathrm{GC}$ 797D Directional Coupler 1.9-4.1 GHz 8436A Bandpass filter 8-12.4GC 431C Power mater.
524D Counter frequency measurement $10 \mathrm{~Hz}-500 \mathrm{MHz}$
185A 800MHz Sampling oscilloscope.
185 B Sampling oscill
TEST SET FREQUENCY RESPONSE CT381
Frequency range:
$10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated
ranges. Accuracy $\pm 3 \%$ of the indicated centre frequency.
F.M. deviation: (nominal) $0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$ $0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$
$0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$ $0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$
falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. Output impedance
75 ohms resistive
Power supplies:
Mains $100-120$
M0-500 $/ \mathrm{c}$ - 20 V and $180-250 \mathrm{~V}$. Frequenc

JOHN CRICHTON

Electronic Equipmert 558 Kingston Road. London, SW20 Inland VAT add 8\% Prices shown include P \& P. oth Carriage extra for overseas orders Viewing by appointment please. Phone 01-540 9534

TINSLEY TYPE 4363E AUTO VERNIER

 POTENTIOMETER.PYE Precision vemier potentiometer 7568 0.002%. SULLIV
TIAL DIVIDER.
Range:
Input: 1. 2. 5. 10. 20. 50, 100, 200. 500. 1000V. Output: 1 V .200 ohms N. Accuracy of Ratio: 0.001% or better. CROPICO TYPE P1O PRECISION D.C. POTENTIOMETER. Main Dial: 17 steps of 0.1 or 0.01 V according to the range selected; incordia. copper studs faced with which has of dia. copper studs faced with a 10% gold
silver alloy. the multileaf phosphor-bronze brushes are self cleaning. Accuracy $\pm 0.00 \% \%$. L30047 CAMBRIDGE UNIVERSAL BRIDGE.
Voltmoter Valve CT54 (Micovac), with mains power supply (power supply not
available separately). In strong metal case available separately). In strong metal case
with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ with full operating instuctions. $2.4 \mathrm{~V}-480 \mathrm{~V}$
AC or OC in 6 ranges. 1 ohm to 10 Megohm in 5 ranges. Indicated on ${ }^{4} \mathrm{in}$. scale
meter. Complete with probe, $£ 12.50 \mathrm{including}$ p. and p. (Leads extra.)

TEKTRONIX

NON-PLUG-IN UN
OSCILLOSCOPE.
$524 A D$. DC-10M Hz. £100. MAIN FRAME OSCILLOSCOPES 543. $\mathrm{OC}-30 \mathrm{MHz}$. 547. DC-50MHz $545 . \mathrm{DC}-30 \mathrm{M} \mathrm{Hz} .545 \mathrm{~A}$. DC-30MHz.
545 B . DC- $33 \mathrm{MHz} .551 . \mathrm{DC}-27 \mathrm{MHz}$. 545B. DC- 33 MHz .
PLUG-IN UNITS.
$\left.\begin{array}{l}\begin{array}{l}\text { Type } 1 \mathrm{~A} 1.50 \mathrm{mV} / \mathrm{cm} \text { to } \\ 20 \mathrm{~V} / \mathrm{cm} 5 \mathrm{mV} / \mathrm{cm} .\end{array} \\ \begin{array}{l}\text { type } 1 \mathrm{~A} 2.50 \mathrm{mV} / \mathrm{cm} \text { to }\end{array}\end{array}\right\} \begin{aligned} & \text { Not available } \\ & \text { separately }\end{aligned}$ Type $1 \mathrm{~A} 2.50 \mathrm{mV} / \mathrm{cm}$ to
$20 \mathrm{~V} / \mathrm{cm}$. Type B. $0.005 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} /$ cm to $20 \mathrm{~V} / \mathrm{cm}$.
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
Type $\bar{D} .1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type G $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type $\mathrm{L} .5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} / \mathrm{cm}$
to $20 \mathrm{~V} / \mathrm{cm}$. Type M. 0.0
Type M. $0.02 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$.
Digital readout parameters. Pulse amplitude, pulse risetime and fallitime, pulse R116. 10-NS PROGRAMMABLE PULSE GENERATOR
with Delay.
PASSIVE PROBE P6006 with 1ox attenuation. designed for oscilloscopes
having an input resistance of 1 megohmm and input capacitance of up to 55 pf. Price £10.
PROBE P6OB5 10X. 10 megohm. 12.5 pf . 500 V D.C. max. Length 6 ft . Price f15.

MUIRHEAD FREQUENCY ANALYSER TYPE D-669-B
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$, Accurgcy
better than 1.5%. Input voltage $300 \mathrm{~V}-100 \mathrm{~V}$ for full scale deflexion. Smatest indication $15 \mu \mathrm{~V}$. Maximum input voltage 300 V r.m.s. Price £95. Full spec. on request.
MUIRHEAD 2-PH. L.F. DECAD
MUIRHEAD 2-PH. L.F. DECADE
OSCILLATOR Type 0880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ fcon-
tinuously variable tinuously variable above $0.1 \mathrm{c} / \mathrm{s}$).
V.L.F. $0.01 \mathrm{c} / \mathrm{s} 0.1 \mathrm{c} / \mathrm{s}$ in ste
V.L.F. $0.01 \mathrm{c} / \mathrm{s} 0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Ranges $\times 1 \times 10 \times 100+0.05 \%$ Ranges XO. 1. V.L.F. $\pm 0.1 \quad\} \begin{aligned} & \text { After }\end{aligned}$ T.F.801D/1/S A.M.SIGNAL GENERATOR. Freq. range: 10 MHz to 485 MHz . Built-in crystal calibrator. Internal and exteinal sine a.m. External pulse modulation. Calibration Accuracy: Using erystal calibrator, within $\pm 0.2 \%$ over entire frequency range. R.F. outOA. 1094 A/3 H.F. SPECTRUM ANALYSER with L.F. extension unit type TM6448. relative amplitudes up to 60 dB . Spectrum width 0.30 KHz . Sweep duration: $0.1,0.3,1$, 3. 10. 30 sec . and manual. Fult spec on request. 6695.
OA.1094AS H.F. SPECTRUM ANALYSER. Freq, range: 3 MHz to 30 MHz in nine steps, spectrum width 0 to 30 KHz Sweep
distortion: $0.1,0.3,1,3,10,30$ secs and distortion: $0.1,0.3,1,3.10,30$ sacs. and manual. Fuli spec. on request. £445,
SUPPIY ROAN input IIOV O-50V at 5 Amperes cont. varlable, overload cut-out. 849 .
REMSCOPE SO1/740 STORAGE
OSCILLOSCOPE,
Fluorescence: Yellow, resolution: 40 lines $/ \mathrm{cm}$ E.H.T.: 8 kV . display time: 10 minis- 1 hr
approx., storage time: 1 week approx. $¥ 128$. epprox., storage time: 1 week approx. $\mathbf{Z 1 2}$ CD 1212 WIDE-BAND GENERAL
PURPOSE OSCILLOSCOPE
Emploving plug-in pre-amplifiers for single or dual trace displays
Wide-band pre-amplifier CX 1251 . Bandwidth:
$\mathrm{DC}-40 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm\{\mathrm{dB}) ; 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc} / \mathrm{s}$ $A C$ coupled ($-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$). Rise time B nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Dual trace pre-amplifier CX 1252. Bandwidth. DC $-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with
fine gain control. Full specification on request $£ 128$.
T.F.8018/3/S A.M. SIGNAL GENERATOR Freq. range: 12 MHz to 485 MHz in five bands Built-in crystal calibrator. Full spac. on request $\mathbf{t 2 2 0}$.
CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} \pm 1 \% . \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range: 100% to $20 \mathrm{kc} / \mathrm{s}$. distortion range. $10 \% 1.30 \%$ approx. 500 mV to 130 V basic range, 50 mV to 1300 V extreme limits. Full spac. on request $£ 98$.
AVo MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted or measures valves on a simple good/bad basis. $f 55$.
Avo CT
AVO CT 180 VALVE TESTER. As above but in portable valise form. $£ 65$

JOHN FLUKE

821A VOLTMETER: $\pm 0.01 \%$ absolute accuracy. infinite input resistance at nil
over entire $0-500 \mathrm{~V}$ range. stancard over entire 0-500V range. stancard
cell reference. polarity switch. teut-band cell reference, polarity switch, taut-band
suspension meter. in-line readout with suspension meter. in-line readout with
automatic lighted decimal, no zero automatic
803. DIFFERENTIAL DC/AC VOHTMETER. AC voltage 0-500V in 3 ranges. OC voltage 0 - 600 V in 4 ranges. Full spec. on request.
TF. 937 F.M./A.M, SIGNAL GEENERATOR. Freq. range 85 KHz to 30 MHz . The carrier freq. can be standardized against a built-in dual freq. crystal calibrator. which is complete with miniature loudspeaker as an aural beat detector. $\mathrm{EB7}$
TF. $114 \mathrm{H} / \mathrm{S}$ SIGNAL GENERATOR. FRE quiency range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability 0.002%. High discrimination. plus crystal calibrator. Good r.f. Waveform at alt fre tor. Full spec. on request. $£ 220$.
TEST SET DEVIATION FM NO 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a total of eight bands: the deviation ranges ar
0 to $5 \mathrm{kc} / \mathrm{s}, 0$ to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. e 4 B .

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS
 60
100
200
250
350
500
750
1000
2000
300 750
1000
2000
3000
6000

Pri 120/240
Weloht

> | $7.0 \times$ |
| :--- |
| $9.9 \times$ |
| $9.9 \times$ |
| $12.9 \times$ |
| 12.1×1 |
| $14.0 \times$ |
| 14.0 |
| 17.2 |
| 0 |
| 17.2 |
| 0 |
| 21.6 |
| 0 |
| 23.5 |
| |

 0×8.0

$\times 8.6$ | 6.0 |
| :--- |
| 8.6 |
| 8.6 |
| 8.6 |
| 10.2 |
| 10.2 |
| 10.2 |
| 11.8 |
| 11.8 |
| $\times 14.0$ |
| 14.0 |
| $\times 18.1$ |
| $\times 19.7$ |
| $\times 29.3$ |
| 10 | Σ

2.55
3.79
4.17
7.39
9.25
11.35
13.30
21.20
27.40
49.25
78.53
135.89

 $\begin{array}{r}P \& P \\ p \\ 22 \\ 36 \\ 36 \\ 52 \\ 67 \\ 82 \\ : \\ \\ \hline\end{array}$

LOW VOLTAGE TRANSFORMERS

Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8% FOR V.A.T. including P. \& P.
BARAIE electronics
3,THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8
NEAREST TUBE SIATIONS ALDGATE \& LIVERPOOL ST.

A. Marshall (Loñdon) Limited Dept. WW

42 Cricklewood Broadway London NW2 3HD Telephone 01-4520161 Telex 21492

Everything you need is in our New Catalogue available now price 20 p (100 pages of prices and data)

Cali in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcomé

Popular Semiconductors

$2 N 456$	0.75	$2 N 2906 A$	0.37	$2 N 4289$	0.34
$2 N 456 A$	0.75	$2 N 2907$	0.40	$2 N 4919$	0.84

2N457A 2N457
2N490
2N491 2N49
2N49

2N49 \begin{tabular}{ll|ll|ll}
$2 N 492$ \& 3.99 \& $2 N 3053$ \& 0.32 \& 2 N4922 \& 0.84

$2 N 3054$ \& 0.60 \& $2 N 4923$ \& 0.83

\hline 2N493 \& 4.20 \& $2 N 3055$ \& 0.75 \& $2 N 5172$ \& 0.12

$2 N 493$ \& 4.20 \& $2 N 3055$ \& 0.75 \& $2 N 4923$ \& 0.83

2N696 \& 0.15 \& $2 N 3390$ \& 0.26 \& $2 N 5174$ \& 0.12

$2 N 697$ \& 0.15 \& $2 N 33$
\end{tabular}

2 N697
2N698
2N699
2N699
2N706

	2N706	0.16
2N706A	0.18	2
2N700	0.14	

2N708
2N709
2N709
2N711

2N718	0.30
2N718A	0.21
2N72	$\mathbf{0 . 4 9}$

2N720	0.49	$2 N$
2N721	0.50	$2 N$
2N914	0.25	$2 N$
2N	0.21	

2N721
2N914
2N916
2N918

2N916	0.22	0
2N918	0.47	2
$2 N$	0.47	

2N918	$0-47$	2
2N929	0.30	2
2N1302	$0-19$	$2 N 3$
2N1303	019	$2 N 3$

$2 N 1302$	0.19	2N3638A	0.15	40395	0.65
2N1303	0.19	2N3639	0.27	40406	0.44
2N	0.17	40407	0.33		

$2 N 1303$	0.19	$2 N 3641$	0.17	40407	0.33
$2 N 1304$	0.24	$2 N 3702$	0.11	40408	0.50
$2 N 1305$	0.24	$2 N 3703$	0.12	40409	0.52

$\begin{array}{ll}2 N 1305 & 0.24 \\ 2 N 1305 & 0.31 \\ 2 N 1307 & 0.22\end{array}$
2N1307
2N1308
2N1308
2N1309
2N1309
2N1671
2N1671A
2N1671B
2N1671B
$2 N 1671 \mathrm{C}$
2N1671C
2N1711
2N1907
2N19
2N2
2N21
$\begin{array}{ll}\text { 2N2102 } & 0 \\ \text { 2N2147 } & 0.2 \\ \text { 2N2148 } & 0.9 \\ \text { 2N2160 } & 0\end{array}$
2N2148
2N2160
2N2192
2N2192
2N2192A
2N2192A
2N2913

2N2193A	0.61
2N2194	0.73

2N2220	$0-45$	$2 N$
2N2221	$0-41$	$2 N$
2N2221A	$0-40$	$2 N$
2N2222	$0-40$	$2 N 3$

$2 N 2222$	0.40	$2 N$
2N2222A	$0-50$	$2 N$
$2 N$	$2 N$	

2N2222A	0.50	$2 N$
2N2368	0.31	$2 N$
2N2369	0.20	$2 N 39$
2N2369A	0.27	$2 N$

2N2369	0.20	$2 N$
2N2369A	$0-222$	$2 N$
2N2646	0.77	$2 N$
2N2647	1.12	$2 N$
2N2904	0.55	$2 N$

$\begin{array}{ll}\text { 2N2904 } & 0.55 \\ \text { 2N2904A } & 0.70 \\ \text { 2N2905 } & 0-48 \\ \text { 2N2905A } & 0.50 \\ \text { 2N2906 } & 0.31\end{array}$

Integrated Circuits TTL

SN7400	16p	SN7411	25p	SN7438	35 p	SN7460	16p	SN7485	f4.58	SN74119	f1.92	SN74160	£1.58	SN74191	f_{1}
SN7401	${ }^{16}{ }^{\text {¢ }}$	SN7412	28p	SN7440	16p	SN7470	30p	SN7486	45p	SN74121	57p	SN74169	¢1.58	SN74192	£2.05
SN7401AN	38p	SN7413	50p	SN7441	8^{85}	SN7472	$38 p$	SN7490	65	SN74122	80.	SN74162	11.58	SN74193	£2.30
SN7402	16p	SN7416	45	SN7442	85	SN7473	449	SN7491	¢1.10	SN74123	72p	SN74164	£2.01	SN74196	f1.58
SN7403	16p	SN7417	30p	SN7445	¢1-59	SN7474	489	SN7492	15p	SN74141	£1.00	SN74165	£2.01	SN74197	f1.58
SN7404	$24 p$	SN7420	16p	SN7446	12	SN7475	5\%	SN7493	65	SN74145	f144	SN74167	£4:10	SN7419B	f3.16
SN7405	24p	SN7423	37p	SN7447	f.30	SN7476	45p	SN7494	$85 p$	SN74150	f1.44	SN74174	f1.80	SN74 199	£2.88
SN7406	45p	SN7425	37p	SN7448	¢1.50	SN7480	75	SN7495	80p	SN74151	f1.10	SN74175	£1.29		
SN7407	45p	SN7427	45p	SN7450	16p	SN7481	f1.25	SN7496	f1.00	SN74153	f1.09	SN74176	£1.74		
SN7408	25p	SN7430	16p	SN7451	$16 p$	SN7482	$817^{\text {p }}$	SN74100	f2.16	SN74154	f1.66	SN74180	£1-44	Plus	child
SN7409	33p	SN7432	45	SN7453	16p	SN7483	f1.20	SN74107	43p	SN74155	11.55	SN74181	£5.18	9,000 S	se
SN7410	${ }^{16 p}$	SN7437	35p	SN7454	$16 p$	SN7484	${ }^{95}$	SN74118	£1.00	SN74157	f1.09	SN74190	£1.95	DTL	

Diodes \& Rectifiers

PIV	50		100	200		400		600	BOO		1000
1.5	0.08		0.09	0.10		0.11		0.12	0.15		0.20
3	015		0.17	0-20		0.22		025	0.21		0.20
10	-		0.35	0.40		0.47		0.56	-		-
35	0.84		0.92	1-18		2.15		2.52	3.65		4.20
Cathode Stud Only				IN3766 (35 amp 800 pv) £3.65				IN3768 (35 amp 1000 pv)) E -20
IN34A	0.10	BA102	0-25	BA145	011	BY237	$0.12 \frac{1}{2}$	0447	0.071	OA90	0.07
IN914	0.07	BA110	0-25	BA154	0.12	BZ10	0.35	OA70	$0.07 \frac{1}{2}$	0491	0.07
IN916	0.07	BA115	0.07	BY100	0.15	BYZ11	0. 32	0473	0.10	0495	0.07
AA119	0.07	BA141	1.17	BY126	0.15	BYZ12	0. 30	OA79	0.07	DA200	0.07
AA129	0.15	BA142	0.17	Br127	$0.17 \frac{1}{2}$	OA9	-10	OA81	0.08	OA202	$0 \cdot 10$
BA100	0.15	BA144	0.12	BY140	1.00	OA10	0-20	OA85	0.10	OA2 10	0-271

Potentiometers Linear or Log
Rotary Pots Single Doub
Rotary Switche
Sliders
FULL RANGE OF CAPACITORS STOGKED SEE CATALOGUE FOR DETAILS

PRESETS Horizontal or Vertic
0.1W $6 p$

Telatennis. Play on your own TV. SAE for detais-as described in PW, July, 1974-
Special discounts

Liquid Crystals - f13-00 Ex-stock. SAE kit using LCDs.

Scorpio Car Ignition Kit-f11.50 +
BSTBO246 E1.05 Transformer $\begin{array}{lll}1 \\ 1440 \mathrm{~V} & \mathrm{fl} 10 & \text { MINITRON } \\ \text { DL707 } & \mathrm{f} 2.35 \text { or } 4 \text { for } \mathrm{f8} \cdot 00\end{array}$

PC Marker Pen Dalo 33PC Price 87p
Zeners 400MW 11p
1W 17p 3.3V-4

Heatsinks - Redpoin
TO5
$6 \mathrm{~W} 16^{\prime \prime} \times 4^{\prime \prime} \quad$ undrilled
4W4 $4^{\prime \prime} \times 4^{\prime \prime} \quad$ drilled $2 \times$ TO3
2 W1 $2^{\prime \prime} \times 4^{\prime \prime} \quad$ undriled
$4 W 14^{\prime \prime} \times 4^{\prime \prime} \quad$ undrilled

Resistors			Tant Beads	
w	Tol	Price	Value	
$\frac{1}{1}$	5\%	1p	.1/35	$14 p$
1	5\%	T-5p	.22/35	$14 p$
$\frac{1}{2}$	5\%	2p	.47/35	$14 p$
1	10\%	2.5p	2.2/35	140
2	10\%	6p	4.7/35	$18 p$
$2 \frac{1}{2}$	5\%	7 p	$10 / 16 \mathrm{~V}$	18p
5	5\%	9p	47/6.3V	20 p
10	5\%	10p	100/3V	$20 p$

Veroboard
$2.5 \times 3 \frac{3}{4}$
$2.5 \times$
3.5
$3 \frac{3}{2} \times 5$
$2 \frac{1}{2} \times 17$
PINS $\times 36 \quad 24 p \quad 24$
Trade and Petail supplied

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 4.68$ per single col. centimetre (min. 3 cm).
LINE advertisements (run-on): 66p per line (approx. 7 words), minimum two lines.
BOX NUMBERS: 30p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.) PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Tuesday, September 17th for the October issue subject to space being available.

The MEL Equipment Company Limited, which is part of the International Philips Group of Companies, designs, develops and manufactures a wide range of professional electronic equipment for both military and civil applications. Our product range includes radar and radio systems for communications and guidance on land and sea and in the air, and microwave linear accelerators for cancer therapy.
We believe that credit for a large part of the Company's excellent reputation is due to our Test Engineers who have responsibility for ensuring that our equipment meets the exacting specifications which are necessary in our field. At present, we have vacancies for the following test personnel.

SENIOR TEST ENGINEERS

Defence and Avionic Systems Group

For fault-finding on all stages of communications and radar equipments, from PCB's to complete systems. Candidates should have analogue and digital experience, with knowledge of microwave, digital and pulse techniques; or experience of fault-finding and test on military communications equipment.

At least ONC, or an equivalent level of knowledge built up from experience, is required.

Linear Accelerator Division

For testing and fault-finding on a wide variety of electronic units, and carrying out measurements in microwave bands on waveguide assemblies.
At least ONC or an equivalent level of knowledge.

Digital Auto-Test Department

For operating a GR1790 Digital Circuit Analyser to test digital assemblies, including the development of test programs. Suitable candidates for this post might be recent electronics graduates, or test engineers with previous digital experience.
The Company offers attractive salaries and fringe benefits for these positions including at least four weeks holiday a year and an annual bonus. Assistance with moving to this pleasant part of Sussex will be given if required.

Please write or telephone for an application form (quoting reference No.WW 12/8 124) to Mr M. A. Burns, Personnel Officer, The MEL Equipment Co Ltd., Manor Royal, Crawley, Sussex. Telephone: Crawley 28787 Ext. 219.

APPOINTMENTS

Jointhe EMI ServiceTeamat Hayes
We urgently require

The international music electronics and leisure Group.

required for the repair and calibration of a wide range of electronic instrumentation, including oscilloscopes, DVMs, pulse generators, power supplies etc.
Applicants should be aged at least 18 years and should have had at
least two years background in electronics. Further training will be given in appropriate cases.

Close Circuit Television Engineers

for the servicing and commissioning of CCTV, VTRs etc.
Applicants should be aged at least 19 years, and must have had some experience in television receiver servicing.

For both of these positions, starting salary will be up to $£ 2,300$ per annum according to age, experience and ability. $37 \frac{1}{2}$ hour week, plus paid overtime.
Don't delay, for further details telephone or write to M. Ford, 01-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Hayes, Middlesex.

ELECTRONIC VACANCIES

Engineers
Draughtsmen Designers
Service and Test Engineers
Technicians Technical Authors
Sales Engineers

£1,600-£5,000
 pa

Permanent or Contract

APPOINTMENTS

Radio/Electronics Officers

 Does it make sense

 Does it make sense to settle for second best?

 to settle for second best?}

When you're thinking about your career and your family's future, it would be wise to think of Shell. Whether you're in the service now or ashore for the time being, you will already know a lot about us. Our British flag fleet of about 80 ships (with more on the way) is widely diversified, carrying many different cargoes-bitumen, luboils, crude, LNG, chemicals and black and white products. That means that you don't have to be stuck in one particular kind of tanker for long periods. You can move up and move around with equal familiarity. Our large and increasing investment in
training underwrites our determination to ensure that we will achieve our intended service periods of $4 \frac{1}{2}$ months, and underlines our confidence in the future of the Fleet. When it comes to pay, you'll find our salaries are highly competitive. You can earn between $£ 2,972$ (with general certificate and DTI radar certificate) and $£ 6,156$ (including MNTB electronics certificate). Your experience and qualifications will determine the point at which you can enter this scale. Leave too is generous - at the rate of 183 days per year served. All officers are members of the company pension scheme and
certificated officers can take their wives to sea whenever they wish, which includes two free air fares a year. If you are returning to the service after a spell ashore or already in service, we'll be pleased to tell you all about the extra benefits that Shell can offer you as a Radio/Electronics Officer in our fleet. Write or phone, reversing the charges:

Shell Tankers
(UK) Limited,
STP/I3, (WW/9/74)
Shell Centre, London SE17PQ. Tel: oI-934 4I72 or 3968.

SERVICE ENGINEERS

Three vacancies exist for Engineers to service our range of Scientific and technical instruments which include Fraction Collectors, U.V. Monitors, Gamma Counters, Beta Counters, Chemical Analysis equipment and Photometers.
Applicants should have a good working knowledge of transistor circuitry and Digital techniques. Some mechanical experience would be an advantage but enthusiasm and an ability to work on ones own is essential.

A. SCOTLAND

Area to include part of Northern England and as far south as Newcastle. Most convenient residence Glasgow-Edinburgh area.
B. WEST LONDON

To cover West London and Southern England.

c. CROYDON

For a less experienced younger person to work and train in our workshop with a view to field service at a later date. Encouragement would be given for further study.
The Company offers good salary and benefits including Volvo car (except C). Pension Scheme, B.U.P.A. assisted membership, Bonus scheme.

Write or phone for application form:
SERVICE MANAGER.
232 ADDINGTON ROAD,
SELSDON, SOUTH CROYDON CR2 8YD.
Tel: 01-657 8822

Customer Engineers

As one of the largest and most successful computer manufacturers, we place particular importance on the maintenance of a high level of customer service. Our equipment is among the most atvanced in the world today. Highly sophistimated hardware used by top companies and organisations in commerce, industry. science and government

Our Customer Service organisation is, therefore, immensely important to us if we are to maintain the high standards we have set ourselves over the years, during which we have pioneered much of the advanced technology in use today throughout the industry.

We're looking for Customer Engineers to carry out, to a high professional standard, all electronic and electro-mechanical work concerned with installation, modification, refurbishing, preventive and remedial maintenance on Sperry Univac equipment in the UK.

We require men with \equiv knowledge of electro-ic or mechanical
fault-finding techniques. In addition to technical competence, essential requirements are a pleasant personality and the ability to maintain a good relationship with customers. Full product training will be given.

To Engineers looking for the best in salaries, vacancies exist in most parts of the country. Conditions and fringe benefits are what you would expect when you join a company within the international Sperry Rand organisation. Future career prospects in the computer field are excellent.

For vacancies in London or the South write with full personal and career details to Personnel Manager, Ref. WW. Sperry Univac, Univac House, 160 Euston Road. London NW1. Telephone 01-387 0911. For vacancies in the Midlands and North write with full personal and career details to Personnel Manager. Ref. WW. Sperry Univac, Lynnfield House, Church Street, Altrincham, Cheshire. Telephone 061-928 7731.

Engineers for T.V. Design \& Development

 South Africa: $£ 3500-£ 5000$Experienced Engineers are invited to accept the challenge of the new T.V. industry in South Africa. Barlows T.V. Ltd., a new subsidiary of Barlow Rand Ltd., one of the largest companies in South Africa, have been chosen by the South African Government to start Television Receiver manufacture this year, in co-operation with Rediffusion. This venture means new career opportunities for experienced engineers to join the design and development team we are setting up.

You will be based at our modern laboratory at New Germany, 12 miles from the attractive coastal resort of Durban, and close to beautiful residential areas. Apart from the climate, South Africa offers: relatively low - cost shopping ; low income tax-as little as 8\% in some cases; unrivalled outdoor sporting and pleasure facilities.

There are opportunities at senior level for engineers
qualified to degree or equivalent standard where experience and proven ability in T.V. Receiver design are of primary importance.
For intermediate positions some years' experience in T.V. Receiver design would be particularly advantageous.
Starting salaries, depending on experience and qualifications, will be in the range $£ 3500$ - $£ 5000$. Benetits include - medical aid which covers 80% of all medical costs - pension and life assurance scheme - generous relocation for you and your family to South Africa.
Interviews will be held in the U.K., and in the firstinstance, please write with brief career details to:
D. E. Taylor, Barlows T.V. Ltd.,
c/o MSL Advertising Services Ltd., 17 Stratton Street, London W1X 6DB.

Electronics Appointments Register

Why are you looking for a job, when we've got a job looking for you?

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronic Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.
 Graduate Appointments Register
Please send me details of how to enrol on one of your Appointment Registers
Name

Address

IOR

ELECTRONIC

 DESIGN ENGINEER (SPECIALISED TEST AND AUTOMATION EQUIPMENT)
JOB FUNCTION:

Design of (a) test equipment for use in the production of semi-conductor devices and (b) electronic systems for automated production of devices.

AGE:

Not really important, but probably in 25-35 age bracket. EXPERIENCE:
Wide knowledge of present-day electronic techniques including l/Cs, F.E.T. etc.
An awareness of the problems of high current and high voltage measurements would also be advantageous.

QUALIFICATIONS:

Are less important than experience-but we anticipate that the ideal man will be educated/experienced to about HNC level.

SALARY:

Negotiable-according to qualifications and experience.
APPLYTO:
Mr. R. Sutton: Personnel Manager,

\|NTERNATIONAL RECTIFIER

Telecommunications Engineers

Please write or telephone for application form to:

CABLE \& WIRELESS

A. Davidson

(Dept. A831/295)
Cable \& Wireless Limited,
Theobalds Road,
London WC1X 8RX
01-2424433 Extn 211.

We are world leaders in the vital modern technology field of telecommunications - owning, engineering, and operating a vast network of international Satellite Earth Station, Submarine Cable, Radio, Telephone, Telex and Data Communication systems
As a result of the considerable expansion in demand for our services we have a number of career openings at various levels for Engineers in the following fields:

Satellite Systems/Earth Stations

Record Systems

Data, telegraph, telemetry, telex, message switching etc.

Terrestrial Radio Systems

MF, HF, VHF, UHF, SHF, Microwave, Tropospheric Scatter and TV Broadcasting

Transmission Systems

Communication channels for telephony, VFT, high-speed data and broadcasting.

Telephone Systems

Both national and international ; also audio and wideband landline systems.

Test \& Quality Assurance/Control Development \& Production Technical Writing

Although based at our central London Head Office or in our Development and Production Division in S.E. London, several of the openings will provide opportunities for periodic visits overseas. We offer realistic salaries and excellent conditions of service including generous leave and pension arrangements, sports and social club and other benefits.
If you are experienced in any of the above spheres, whether or not you are professionally qualified, we shall look forward to hearing from you.
 but they're pretty complex themselves, and sometimes they need the understanding of a trained Customer Engineer to sort out their problems.

IBM's expanding sales and the continuous development of new, more sophisticated systems means that we need more Customer Engineers. Men like you who already have a knowledge of electronics and are looking for a place in the front line of computer technology.

We'll give you the sort of training it takes to service and maintain our medium and large-scale systems. An on-going training matched to IBM's evolving range of computer products, to keep your expertise right up to the minute.

In addition to electronics knowledge, to ONC/HNC qualification level (or equivalent), you'll need a logical approach to mechanical problems and the ability to get on well with people at all levels in a wide range of businesses.

In return we'll start you on a good salary, with the best big-company benefits, and the prospects you'd expect from IBM - where promotion is on merit.

Find out more about the opportunities in Computer Servicing with IBM in the London area by writing today with brief details of career to date to: Anne Dare, IBM United Kingdom Limited,
389 Chiswick High Road,
London W4 4AL, quoting
ref:WW/92275.

Merton, Sutton and Wandsworth Area Health Authority (Teaching) Wandsworth and East Merton Teaching District

AN OPPORTUNITY IN ELECTRONICS

A vacancy exists in the Electronics Section of the Department of Medical Physics. The work involves the design, development and manufacture of a wide variety of medical and research instruments; in particular, the solution of problems arising from the use of cardiac pacemakers. Experience with digital integrated circuits very desirable.
Salary on Technician Scale III £1,845 to $£ 2,337$ or Technician Scale II £2,166 to £2,787 (salary under review) depending on age and experience.

Please apply for application forms to the

Hospital Secretary's Office, St. George's Hospltal, Hyde Park Corner, SW1.

SHIOR REMNER

Senior Engineer required, 26 plus, to take charge of rapidly growing Londonbased service/development department. Good academic qualifications required, B.Sc. or H.N.C., but preference given to applicant with proven experience in professional audio equipment, audio or digital tape recording techniques.
Applicants should be free to undertake UK and European travel on service visits, exhibition attendance and technical liaison with manufacturers. An excellent opening for a responsible person looking for a fulfilling position with basic service duties along with some management and general company responsibilities.
Vehicle provided. Salary $£ 2,100$ to $£ 2,500$ according to age and experience. Please write to:

AVCOM SYSTEMS LIMITED
 Stanlake Mews
 London W12 7HA

[4045

SERVICE ENGINEER

required for the installation, commissioning and servicing of X-Ray and Cobalt Units and other Radiotherapy equipment both in this country and abroad. X-Ray Unit servicing experience essential. Excellent remuneration and car provided.
Details of training and experience to: The Technical Manager,
T.E.M. Instruments Limited,

Gatwick Road,
Sussey, RHIO 2RG.

CITY OF LONDON POLYTECHNIC

Department of Psychology

Tectmicioin Grade III

A vacancy exists in the above department for a Technician to assist in the Development and construction of apparatus, including electronic circuitry. ment for a Technician to assist in the Development and construction of apparatus, including electronic circuitry.
The successful applicant will be familiar with standard test equipment and its use and should be capable of making a practical representation of ideas presented to him.
Salary in the range $£ 1,650$ to $£ 1,920$ plus $£ 174$ L.W.A. plus Threshold payments.
For further details please telephone 01-283 1030 extension 486.
Written applications should be ad. dressed to:

Dr I. Balanescu,
Department of Psychology,
City of London Polytechnic,
Central House,
Whitechapel High Street,
London El 7PF.

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE

hanslope park, mllot keynes mk 19 7Bh

has vacancies in the following fields of R \& D work:
(a) HF Communications
(b) VHF/UHF Communications
(c) Communication Field Trials
(d) Acoustics
(e) Optics including Infra-Red
(f) Small Mechanisms
(g) Component reliability and environmental testing
(h) Statistics/Operational Analysis/Systems Analysis

Most posts will be at Hanslope Park but some will be in London.
Candidates for post (h) should be experienced scientists/ engineers who have specialised later in one of the required fields. An ability to deal with non-technical people is essential.
Appointments will be made within the grades of Scientific Officer, Higher Scientific Officer and Senior Scientific Officer in accordance with the definitions given below. In addition to the salary scales quoted, all posts attract the Threshold Agreement Payment (at present $f 125$ p.a. extra) and a noncontributory pension.

SCIENTIFIC OFFICER

Applicants should not be more than 27 years of age and should have one of the following qualifications:
(a) A degree in a scientific or engineering subject
(b) Degree-standard membership of a Professional Institution
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject
(d) A qualification equivalent to (c) above

Salary Scales: $£ 1,592$ to $£ 2,675$ with the entry point determined by qualifications and experience.

HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered. Formal qualifications are the same as for Scientific Officer above but in addition the following experience is required:
(a) Applicants with 1 st or 2nd class honours degreesat least 2 years post-graduate experience
(b) Applicants with other qualifications-at least 5 years post qualification experience
Salary Scale: $£ 2,461$ to $£ 3,371$ with entry point dependent upon experience beyond the minimum required.

SENIOR SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age, although the upper age limit may be waived if experience of special value can be offered.
Applicants should have obtained a list or 2 nd class honours degree and have had a minimum of four years appropriate post-graduate experience.
Salary Scale: $£ 3,157$ to $£ 4,441$. Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.
Applications, stating the field of work and grade required, should be made to:

> HM Government Communications Centre Administration Officer
> Hanslope Park
> Hanslope
> MILTON KEYNES MK19 7BH.

A job in the Post Office Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunications, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is $£ 1,567$ a year, including contributions to a compulsory pension scheme, with an additional allowance averaging $£ 300$ for shift duties. After two years' satisfactory service your pay becomes $£ 2,054$, rising to a maximum of $£ 2,622$ at age 25 years. If you are over 19 years of age your salary is dependent upon age at entry.

There are opportunities for further promotion to positions with a basic salary of $£ 3,475$ and prospects for advancement into Senior Management.

For further information, write to the Inspector of Wireless Telegraphy (L527), MRSD/ET17. Room 643, Armour House, St. Martin's-le-Grand, London ECIAIAR.

RADIO OFFICERS

Do you have PMG I, PMG 11, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa; commencing salary according to age- 25 years and over $£ 2,245$ pa. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.
The future holds good opportunities for .established status, service overseas and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.
Full details from:
Recruitment Officer,
Government Communications Headquarters,
Room A/1105, Priors Road, Oakley,
Chelterham, Glos GL52 5A
Telephone Cheltenham 21491 Ext 2270

UNIVERSITY OF EXETER DEPARTMENT OF PHYSICS

Applications are invited for the post of

ELECTRONICS TECHNICIAN

Duties will involve repair and recalibration of commercially produced instruments and construction and testing of prototype equipment in a weH-equipped Electronics Workshop.
Applicants should be experienced in the repair of transistor circuitry and be prepared to extend their knowledge to integrated circuits.

The appointment will be made on the scale for Technician Grade 11 salary 61,650 to © 1,920 plus (current threshold payments).

Applications in writing, before 4 th October, giving full personal particulars and details of qualifications and experience should be sent to The Secretary of the University, Northcote House, The Queen's Drive, Exeter EX4 4QJ. Please quote Ref, 1/79/5048.
[3993

CRAIGLOCKHART
 COLLEGE OF EDUCATION EDINBURGH
 TECHNICIAN

(AVA and CCTV)
Applications are invited from persons with relevant experience and qualifications to join a small team engaged in the operation, maintenance and development of the College AVA/CCTV service.
Although most of the work will be of a general visual aids nature, applicants should have TV and audio servicing experience, and possess a current driving licence.
The salary will be in the range 61,242 to E 1,644 (BAR) to 41,869 (NJC Grade 11 , 111 and V), plus current threshold allowance. The post is superannuable and there is Application forms and further particulars be obtained from the College Secretary, to whom completed forms should be returned by 15 th September, 1974.

Craiglockhart College of Education,
219 Colinton Road,
EDINBURGH EH14 1D
Telephone 031.4339961
[4006

$\mathbb{T} \mathbb{N}$ SOUND ENGINEER

ITN have a vacancy for a Sound Engineer to maintain a wide variety of sound equipment, including sound mixing desks, studio and film sound equipment and tape recordingmachines, and associated equipment. Applicants should be experienced in this field and be prepared to work either a 5 -day week or on a shift pattern. Contributory pension scheme, free life insurance 4 weeks' holiday. subsidised staff restaurant.

Telephone Personnel 01-637 3144 for application form.

Salary from $£ 2,323$ to $£ 3,275$ depending on experience.

THE POLYTECHNIC OF NORTH LONDON Holloway Road N7 8DB

Department of Chemistry

Laboratory Technician Grade IV

is required in the Spectroscopy section of the Department. The technician will be mainly responsible for the running and maintenance of a Perkin Elmer R12B NMR and should also be familiar with Spectroscopy instruments. A practical knowledge of electronics would be an advantage.
Candidates should hold C\&G/IST Ordinary Certificate or an equivalent qualification and have seven years' experience.
Salary in the range $\mathbb{£ 2 . 0 2 2}$ to $£ 2.337$ inclusive of London Weighting Allowance. In addition, the Threshold Agreement is applicable. For further details and application forms please apply to:-

Head of Department of Chemistry
The Polytechnic of North London
Holloway Road
London N7 8D8
[3999

OXFORD AREA
 HEALTH AUTHORITY (TEACHING) Churchill Hospital, Oxford

CHIEF or SENIOR

 ELECTRONICS TECHNICIANrequired for the Electronics Laboratory of the Department of Radiation Physics, for work mainly with radiotherapy and radiolsotope counting equip
ment
The work includes both development and ment The work indiudes woth deve circuitry and integrated circuits is essential; experience of logic design is desirable.
The apoointment may be as Medical Physics The qualifications normally expected are:-
Grade III ONC, HNC or appropriate
 to 22.211 (under review).
 review).
Further information can be obtained from Dr. T, R Munro, Physicist-in-charge, Department of Radia-
tion Physics. Churchill Hospital (Oxford 64841 Ext. 665)
Applications should be sent to him by September
18 th .1974.

THE CITY UNIVERSITY PHYSICS DEPARTMENT
There are vacancies in the Physics Laboratories for the following positions:

TECHNICIAN

experienced in construction and servicing of electronic equipment;
TECHNICIAN
experienced in the running of under-graduate physics laboratories;

JUNIOR TECHNICIAN

for training in laboratory techniques and organisation. School leavers would be eligible and would be allowed part-time day release to follow an approved course.
Salary scale: Posts 1 and $2: \ldots 1,848$ to $£ 2,163$ per annum plus $£ 228$ London Allowance, point of entry dependent on age, qualifications and experience. Post $3:, 4798$ per annum (at age London Allowance. In addition threshold payLondon Aflowance. In addition threshold payimplemented.

Application forms available from The Personnel Officer. The City University, 5t. John Street London ECIV 4PB, telephone 2534399 ext. 334. Please quote reference PD/4.

Opportunities for Electronic Engineers

Here's an opportunity for electronic engineers to join the company which invented the world's first electronic calculator. Today we are a leader in our field in Britain and are part of the Rockwell Organisation, world famous for its space and microelectronic technology

Our continued expansion in calculators and more complex systems now leads to vacancies for electronic engineers.
At our national service centre at Hemel Hempstead our requirements in engineering are nearly as wide as the range of business equipment we produce

Now we are seeking additional permanent staff ranging from junior technicians (who will be eligible for day-release training where appropriate) to fully qualified and experienced engineers

The working week is from Monday to Friday and we offer the excellent salary and conditions of employment you would expect from an industry leader.
Write, 'phone or call for full details of these positions and an application form to: Mr. D. D. Davies, Sumlock Anita Ltd., 1 Frogmore Road, Apsley, Hemel Hempstead, Herts. Tel: Hemel Hempstead 61771.

Sumlock Anita Ltd.
Rockwell International

TELEVISION COMPANY BASED IN CENTRAL LONDON RANK VIDEO

requires

ELECTRONICS ENGINEERS

for maintenance on advanced television broadcast equipment including Video Tape Recorders and Telecine machines.
Experience and knowledge of computers and computer controlled systems desirable.
In the first instance please 'phone the
GENERAL MANAGER on 01-734 2235.

Opportunities in Communications

Men with a good communications knowledge are required to be responsible for the maintenance of radio, closed circuit television and public address systems on London Transport.
A sound knowledge of some, or all, of the following systems is required:-

1. V.H.F. radio fixed to mobile, including leaky aerial communication systems.
2. Closed Circuit Television.
3. Audio playback machines and Public Address.

The possession of City and Guilds Certificates (or equivalent) in the above subjects would be an added advantage.
The basic rate of pay is $£ 37.33$. The average earnings including
variable bonus are $£ 41.50$ for a 5 day ($\mathbf{4 0}$ hour) week. Additional payments are made for overtime. (These rates of pay are currently under review).
These positions offer free travel for you on London Transport's road and rail services and special facilities on main line trains also travel concessions for your wife and family on London Transport trains and mainline trains, sick pay and pension schemes.

Please apply in writing to:-
London Transport (Ref. RTVL),
Chief Signal Engineer's Department,
270 Bollo Lane, Acton, W.3.
or telephone Mr. Crowder on
01-7489564
LONDON TRANSPDRT

Technical Advisers

To deal with problems of a technical nature and advise customers on queries relating to radio television, tape recorders, washing machines and all similar products.
This requires a good working knowledge of these products and the ability to convey technical information by telephone and correspondence. The work is interesting, varied and would provide a workshop engineer with the opportunity to use his technical abilities and further his career in the technical/commercial aspect of customer liaison. We provide, of course, product familiarisation training.
Excellent conditions of employment include monthly staff status. general annual bonus and annual salary reviews, pension/life assurance, sickness benefit scheme and one month's annual holiday.
Please write or phone for an application form.

Personnel Officer,
 Combined Electronic Services Ltd.,
 604 Purley Way,
 Waddon, Croydon CR9 4DR
 Tel. 6860505

Senior Television Installation Engineer

A Television System Design House - London Area - expanding rapidly U.K. and overseas, requires qualified and highly capable installation engineer to head up department.
Position calls for either experienced middle-aged engineer or younger man motivated by enthusiasm and determination. Top grade salary and benefits offered.

Box WW 4028

MERCURY ELECTRONICS BROADCAST SYSTEMS ENGINEERS

Mercury is rapidly expanding its systems engineering services throughout the international broadcast industry, and is looking for more young engineers to complement our
in Uxbridge and in Westbury, Wiltshire.
You will be responsible for the progressing
of projects from initial proposal stage through of projects from initial proposal stage through planning and installation to commissioning,
under the direction of a senior project under the
You will be required to use considerable initiative and should have a good theoretical initiative and should have a good theoretical knowledge of broadcast television and practical knowledge of broadcast television
engineering with qualifications to HNC Electronics standard. Overseas travel will be involved.
Generous salary by negotiation.
If you have the ability and drive to make a successful career with us, write or telephone
to:- Mercury Electronics
6 Rockingham Whart
Rockingham Road Uxbridge, Middlesex Tei. Uxbridge 39876

〔 3982

CHELSEA COLLEGE
 University of London

TWO

ELECTRONIC TECHNICIANS

GRADE 2B

required for the construction and maintenance of equipment and apparatus and to assist in the running of Electronics and Physics Undergraduate Teaching Laboratories, one in the College Main Building at Manresa Road, Chelsea, London SW3 and the other at the Pulton Place Annexe, Fulham SW6.
Day release facilities for approved courses. Salary Scale $£ 1,752$ to $£ 2,022$ per annum including London Allowance, plus payments under a Threshold Agreement. $37 \frac{1}{2}$ hour week, generous holidays.

Application forms and further details from Mr. M. E. Cane (2B ET) WW. Chelsea College, Pulton Place, Fulham London SW6 5PR.

TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large s / c flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey 63243

SERVICE ENGINEER EXTRAORDINARY NEEDED

Experience of digital pulse techniques very valuable. Post relates to field service of advanced pulse height analysis systems. Exciting challenge, good prospects and pay.

Please reply in confidence to:Managing Director, INTERTECHNIQUE LIMITED Cottrell House
53-56 Wembley Hill Road
Wembley, HA9 8BE.

Telecommunications Engineer

Harlow

The Electrical Products Division of 3M Company, who are major suppliers of specialised jointing and terminating systems to telecommunications organisations, are seeking a Technical Service Engineer for their laboratory in Harlow.

The Technical Service Group provides an advisory and back-up service to our Marketing groups and customers, and this position will therefore involve both field engineering and iaboratory applications work.

Applicants should have a general background in telecommunications techniques, preferably with experience in modern practice in jointing, connecting and terminating cables with a major communications company.

This position will suit a self-motivated man, preferably in the age range 25 to 40 with a degree, HND or HNC in a relevant subject.
An attractive salary and excellent prospects are available for the right man plus, of course, the range of benefits one would expect from a major international company.

Please write giving brief details to:
Howard Miners, Personnel Department, 3M United Kingdom Ltd., 3M House, Wigmore Street, London W 1A 1ET.
$3 M$ Company is an international organisation making and marketing high technology products for industry, medicine, commerce, education and the home.

Our Crawley Service Centre needs a Hi-Fi supervisor

We're looking for someone with solid and successful managerial experience and more than a passing interest in the technical side of $\mathrm{Hi}-\mathrm{Fi}$. The post is that of Servicing Supervisor of our Crawley Hi-Fi Department. We're offering $£ 2.400$ p.a., a 5 -day week, three weeks holiday, an excellent pension plan, a bonus scheme, high-quality working conditions and equipment.

Write or phone, pretty quickly, to
DAVID REES, Dixons Photographic Ltd.,
Dixon House,
18-24 High Street,
Edgware,
Middx.
Tel. No. 01-952 3150.
3983

Come and meet us.You'll like us.

BP RESEARCH CENTRE SUNBURY

Research Assistant Electronics

We require a research assistant in our Exploration and Production Research Division at Sunbury to maintain and operate equipment used in seabed and oceanographic surveys for offshore engineering purposes. He will assist in the development of such equipment and in all aspects of these marine surveys from initial planning to final plotting of results. One post will also require him to participate in field trials, preferably at sea.

Applicants aged up to 30 years should have an HNC or equivalent in electronics. Consideration, however, will be given to candidates with an ONC or ' A ' level standard who have relevant experience. Experience of building and maintaining electronic equipment is necessary.

Fringe benefits include: non-contributory pension scheme, four weeks', annual leave, rising salary scale, London Allowance, staff restaurant and excellent sports and social facilities.

Please write giving brief details of age, qualifications and experience, quoting reference ZH .887 , to: The Manager, Central Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London EC2Y 9BU.

Electronics/ Instrument Engineer

An electronics/instrument engineer is required to repair and maintain the laboratory's electronic equipment. Some development/ design work may be involved. Candidates should possess relevant qualifications.
Previous experience of this type of work would be an advantage but training will be given if necessary.
Based initially at COCKFOSTERS but moving to GRAVESEND in two to three years time.
Salary on a scale rising to $£ 3238$ p.a.

Applications giving age, details of experience etc. quoting Vacancy Number 1267/74 should be sent to the Personnel Officer (Recruitment), Bankside House, Sumner Street, London S E 1 to arrive by

South Eastern Region

ELECTRONIC TECHNICIANS

required by oil exploration company to take a two-year assignment on marine seismic survey vessel. Applicants should have a sound electronics background and be single.

For more details, telephone:
Mr. QUINN, 01-568 7391
[4044

BRIGHTON POLYTECHNIC LEARNING RESOURCES

Television and Audio Visual Engineering

To set up and operate a central electronics workshop and carry out on site servicing at the other three Polytechnic locations in Brighton. Good experience in CCTV or proven colour servicing ability essential and must be prepared to work on the newest types of colour video recorders, colour cameras, sound and film systems, etc. Applicants for this challenging job in an attractive town should have a driving licence, a pleasant personality and enjoy working with staff and students.

Salary on scales $£ 1,644-£ 2,235$ (plus threshoid agreements).
Further information from the Bursar, Brighton Polytechnic. Moulsecomb, Brighton, to whom applications should be returned by 30th September.

The Secretary, Department of Electronics, Government of India, Vigyan Shavan Annexe, Maulana Azed Road, NEW DELHI 110011, invites tenders for the following:
Supply, Installation and Commissioning of a complete Computer System-Jadavpur University, CALCUTTA.

Due in New Delhi on or before 3.00 pm on 1st OCTOBER, 1974.

Tender documents relating to the above enquiry can be obtained from the Co-ordination Branch, India Supply Mission, India House, Aldwych, LONDON WC2B 4NA, on payment of Rs. 100 ($£ 5.26$) quoting S.3059/74/ET.
[3989

AGENTS

TOP AGENTS WANTED

Professional electronics manufacturing company requires

EXCLUSIVE AGENTS THROUGHOUT THE WORLD
to distribute steady-selling industrial instruments and stabilised power supply units. Individuals or companies with appropriate market knowledge should contact:

Box No. WW4018

PERSONAL

VINTAGE RADIO VALVE COLLECTOR

Exchange notes. Will visit U.K. HUCKELL
285 Military Road,
Cremorne, N.S.W., Australia
(ollege, (University of London) Egham Hill, Egham, Surrey.

TECHNICIANS

Experienced Electronics Technician (Grade 4) required in the Physics Department. Salary on the scale E1848-E2163.
Applications together with the names and addresses of two referees should be sent to the Personnel Officer as soon as possible.

EIECTRONIC IEST ENGINEERS MARHAM—Norfolk

We require an engineer conversant with complex electronic circuitry-analogue and digital, with at least five years' practical experience of fault-finding on transistorised communication receivers.
Applicants between 25 and 50 years of age who want to further their career by applying their skills to some of the most advanced electronic systems in the world, this could be the opportunity.

10-28 Underwood Street, London N1 7JT.
4033

Findyourplace inBritishGas

COMMUNICATIONS AND INSTRUMENTATION MAINTENANCE

Eastern Gas wish to recruit a Maintenance Technician to be based at their Communications and Instrumentation Workshop at Hertford.
The duties which are both varied and interesting, involve all aspects of maintenance on the Region's Integrated Communications System which incorporates the use of Microwave Radio, Telemetry and Electronic/Pneumatic Instrumentation.
An O.N.C. or equivalent qualification plus a knowledge of one of the above is desirable but not essential for applicants with proven ability in communications or instrumentation.
The salary will be in a range rising to $£ 2,250$ per annum, and there are excellent opportunities for promotion to Senior Technician with a salary rising to $£ 2,544$ per annum, plus Threshold payment of $£ 2.40$ per week. National Salary Scales are currently under review.
Considerable travelling within the Eastern Region of British Gas will be necessary and a current driving licence is therefore essential.
Write for an application form to: H. A. Lloyd, Personnel Officer, Eastern Gas, Star House, Potters Bar, Herts., or telephone him on Potters Bar 51151.

COURSES

YOUR CAREER in RADIO \& ELECTRONICS ?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam,; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio \& Electronics School, P.O. Box 156, Jersey, C.I. Dept. WWC 94.
Please send FREE BROCHURE to
NAME Block
\qquad
\qquad

BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL
$\lceil 3996$

MARCONI INSTRUMENTS LIMITED

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senipr Test Technicians or Technician Engineers according to experience and qualifications. Our production and servicing programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at St . Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW749. for application form to:

Mr. P. Elsip,
Personnel Officer,
Marconi Instruments Ltd,
Longacres, St. Albans, Herts.
Tel: St. Albans 59292

SOUTHALL
 college of TECHNOLOGY

Beaconsfield Road, Southall, Middlesex

Telephone: 01-574 3448
CEI PART II
Options by

PART-TIME STUDY

in
Electronics - Telecommunications etc.
The Engineer in Society
Apply:
Head of Department of
Electrical and Electronic
Engineering

CONSTRUCTION PLANS

Cameras, Transmitters, Scramblers, Detective Electronics, plus many more
new hobby catalogue AIRMAILED $\$ 1.00$

TS

Post Box 618, Rotterdam, Holland
I3924

CARBON FILM RESISTORS-E12 SERIES
High Stab. IW OR iW 5%. 1p, $75 \mathrm{p} / 100, \mathrm{E} 5 \cdot 50 / 1000$
$(22 \Omega-1 \mathrm{M} \Omega)$.
($22 \Omega-1 \mathrm{M} \Omega$).
$10 E 12$ RESISTOR KITS 22Ω-1MR E12 SERIES
10E12 KIT 10 of each value (Total of 570 t \ddagger W, $£ 3.65 ;$
WW, $£ 3.85 ; .25 E 12 \mathrm{KIT} 25$ of each value (Total of 1425)

METAL FILM KITS ALSO AVAILABLE.
CAtAlogue No. 3 (Approx. 2000 Parts) 20p.
C.W.O. P. \& P. 10 p on orders under $£ 5$. Overseas at cost.
B.H. COMPONENT FACTORS LTD
Lept
WW, 61 Cheddington Road, PITSTONE

Dept. WW, 61 Cheddington Road, PITSTONE,
Nr. Leighton Buzzard, Beds. LC7 9AQ.
Cheddington (0296) 668446

LOW PASS, HIGH PASS, BAND PASS
L. C. FHLTERS

* VERSATILE DESIGN SERVICE
* FAST PROTOTYPE DELIVERY
* VOLUME PRODUCTION CAPABILITY R. JAMES,

23 WHOMSLEY CLOSE, NEWARK, NOTTS.

CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices all frequencies; LF crystals a speciality. Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset
Tel: (046031) 2578. Tetex: 46283.

DOUGLAS For Transformers

Comprehensive stock range \star Rapid prototype service
 Quantity production orders.

Douglas Electronic Industries Ltd.,
Eastfield Road, Louth, Lincolnshire LN11 7AL.
Tel: Louth (05-07) 3643 Telex: 56260

COVENTRY COLOUR

Bush C.T.V. 25 mark three colour T.V.'s $£ 80$ serviced in our work shops all with new tuners.
Non-workers from $£ 40$.
25in. Wired Colour T.V.'s 445 working, $£ 30$ non-working.
Aerial conversion kits complete and tested $£ 15$.
New Thorn 150020 in B/W receivers E35.

Discount for quantity

COLOURCARE

ARDEN STREET, COVENTRY. Tel: 020379400

RECORDS MADE TO ORDER	
DEMO DISCS MASTERS FOR RECORD COMPANIES	VINYLITE PRESSINGS
Single disics, 1-20, Mano from your tapes. Quantity PRESSED IN VINYLITE NEUMANN STEREO/M many Studios UK/OVER DEROY PO Bex 3, Hawk St Tel.	, delivery 4 days to 1,000 records OWN PLANT. Is. Finest quality es. We cut for AE list. forth, Lancs.

CAPACITY AVAILABLE

CAPACITY AVAILABLE

for printed CCT Boards of all types. Production delivery 4 weeks.
KNOPP ELECTRONIC SERVICES LTD. 259 Coggeshall Road, Braintree, Essex, CM7 6EF
Tel: Braintree 25254 [3938

[^3]

Comprising. Teletypewriter (page printer) type Π - $271 \mathrm{~B} / \mathrm{FG}$ (known as Kleinschmidt 1 60) Reperforator-Transmitter (tape printer) type TT-272A/FG with table FN-65/FG. Both units operates on 115 or 230 V 50 cycles in very choice condition £55. (carr £4).
ELECTRONIC TIMER KITS $0-8 \mathrm{sec} 10100 \mathrm{sec}$ comprises A.E.I. Transistorised Module. Relay and all electrical components for 115 or 240 VAC Coperation $\mathrm{f} 1.75(25 \mathrm{p}) \mathrm{VAT}$ 20p. Veeder root 4 - digit resettable counters $115 \mathrm{~V} £ 1.25$ (8p). Printed Circuit Kits. £ 1.25 (25p) total with VAT $£ 1.65$.
AMPEX VIDEO TAPE 2 in. $\times 1670$ NEW $£ 9$ (50 p). AVO AMPEX VIDEO TAPE 2 in. $\times 1670$ NEW 19 (50p). AVO
CT38 Electronic Test Meters $£ 18$ (f 1). FERRIC
 recorders 115 V AC $\mathrm{f} 20(1 \cdot 50)$. Multipoint Kent Chart
 $8 \frac{1}{2} \mathrm{in}$. rolls 3 -ply. carbon/buff manilla 60 p per roll (32 p). $8 \frac{1}{2}$ in. rolls 7 ply NCA no carbon required, white. $£ 1$ (32p) in. 2 in . core, white. $£ 2$ per box of 8 rolls (52 p)
in.. 2 in . core, buff, f 2 per box of 10 rolls (52 p) Friden Tape $£ 2$ per box of 6 rolis (52 p), Loads of surplus to clear. Large SAE for List

ALL. PLUS VAT 8\%

CASEY BROS.

233-237, Boundary Road, St. Helens, Lancs. 86

25in. WIRED COLOUR TVs. Bush CTV25 (domestic chassis) with colour bars displayed $£ 45$ + VAT; Non Workers Tube O.K $£ 35+$ VAT; Non Workers Tube U.S. $£ 20+$ VAT. 19 in. G.E.C. 2028 available. Quantity discount over 10 Sets. C.W.O. 25 in . AERIAL COLOUR TVs. Bush CTV25 Thorn SECOND.C. Stokenchurch, High Wycombe, sucks. Tel: 024 026 (Radnage) 3321 . (2 mins. off M40 Motor way. West Wycombe turnoff.) 140

BUILDING or PURCHASING an AUDIO MIXER

pre-amp, autofade, V.U. or audio monitor, V.E. mixer, driver or power supply etc. .
First consult:

PARTRIDGE ELECTRONICS

 Ref. W.W.21-25 Hart Road, Benflect, Essex
Established 23 years
[43

SITUATIONS VACANT

C ${ }_{\text {service }}^{\text {ITY }}$ importio and audio equipment. Interesting work, good wages and prospects. L/Vs hours 9ant-5pm, 5 day week.
Ring Secretary 253-8031
[3935
ELECTRONICS ENGINEER, graduate level to help E design and produce specialised audio equipment in a small company. A young, practical enthusiast able to organise and take responsibility would be particularly suitable. Apply in writing with details of
qualifications and experience
io qualifications and experience
Surrey Electronics, The Forge, Lucks Grevor Bronk,

Cran| Surrey Electronics. The Forge, Lucks Green, Cran- |
| :--- |
| leigh, Surrey GU6 7BG. |
| 14024 | ELECTRONICS TECHNICIAN-required for fur person appointed will join a small team in a wellperson appointed will join a small team in a well-

equipped laboratory. He will be responsible to a graduate electronics engineer for maintenance of a wide range of patient-orientated electronic equip nient. Development of special-purpose systems is undertaken, and safety and purchase decisions are made on new equipment. Minimum qualifications of the following grades depending on experience
 Further details of the work may be obrained by telephoning M. L. R. Jenkins. Plymouth 68080 Ext 369. Application forms are available from the Hos pital Secretary, North Friary House, Greenbank Terrace, Plymouth PL4 8QQ.
[4027
HI-FI AUDIO ENGINEERS. We require experiHenced Junior and Seniors and will pay top rates

LONDON Borough of Brent, Willesden College of LTechnology, Denzil Road, London NW10 2XD, Department of
LECTURER I
(two postral Practice on C and G Radio/TV Electronics Tech nician and Mechanic courses, and on \mathbf{C} and G Telecommunication and Electrical Technician
courses. Candidates for both posts should be well courses. Candidates for qualified with industrial experience. SALARY: qualified with industrial experience. SALARY fications and experience. Further details and application forms may be obtained from the TRANCHANT Electronics has a vacancy in its young Electrical Engincer with good practical knowledge and ability to work on own initiative as back-up for the field sales force. The position will involve dealing with sales and technical enquiries. Condition of employment are good and salary will be related to experience. Applications giving full details of age, qualifications and experience should be sent to The Personnel $\begin{array}{ll}\text { Manager, } & \text { Tranchant Electronics } \\ \text { 100A High Strect, Hampton, Middlesex. } & \text { Limited } \\ {[3986}\end{array}$ UNIVERSITY OF LEEDS: Electronics Technician U(Grade 3) required. This is a newly established post of assistant to a Grade 5 technician in an
Electronics Workshop jointly serving the DepartElectronics Wiophysics, Pure and Applied Zoology and ments of Bient Sciences. Duties include construction, modification and repair of a variety of electrical and electronic equipment. Applicants should preferably electronic. O.C. or an equivatent C and G Qualification with 4-5 years relevant expericnce (including training). Appointment will commence on or after 1st October 1974. Applications giving details of experience, age and qualifications shry Department to Professor A. C. T. North, Astbury Department
of Biophysics, University of Leeds. Leeds LS2 9JT.

1401

ARTICLES FOR SALE

ARVAK ELECTRONICS,
converters, from
f18.channel
Strobes,
$£ 25$.
sound-light
Rainbow Strobes, $1132 .-98 \mathrm{~A}$ West Green Road (Side Door) London N15 5NS. 01-800 8656.
A MPEX FR1400 14 channel Instrumentation ReWherder, only 72 hours on clock, f185. FLEXO
 ASCII coded with serial pulse input/output avail able. Hardly used, $£ 185$. Singer 7151 Telegraph Adapter Unit, £15. H-P 6 speed mag. tape (new) f38. FRIDEN 5 register, 13 digit calculator displayEcho, £75. i4 dc Amplifiers (a lot). £14. HIGHEST QUALITY NEW AND SECONDHAND WORD PROCESSING MACHINES ALWAYS AVAILABLE FROM $£ 300$ to $£ 800$. Computer Appreciation. Phone Raymond ffoulkes. Godstone 3106, or Richird $B^{U I L D}$ IT in a DEWBOX quality plastic cabine \mathbf{B}_{2} in. $x^{2 \frac{1}{d}}$ in. x any lengq. D.E.W. Ltd. (W.),
Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet Write now-Right now.
COLOUR VALVES, PL508, PL509, PY500/A.

COLOUR T.V.'s-Bush CTV25 displayed working Cerat Large discounts for 3 -up , Non-workers
 CONSTRUCTION AIDS-Screws, nuts, spacers, punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and
board, one-off or small numbers. Send $9 p$ for list board, one-off or small numbers. Send 9 p for tist.
Ramar Constructor Services, 29 Shelbourne Road, Ramar Constructor Services, 29 Shelbourne Road,
Stratford on Avon, Warwks. Tel. Stratford on Avon Stratford on
(std 0789)
4879

COUTANT STABILISED power supplies $110 / 240 \mathrm{~V}$ 50 Hz input $24-32$ yolt output S / C and overload
protection, unused tested 1 amp- $15 ; 2 \mathrm{amp}-£ 20$. Tel. $01-8766898$. COLOUR. UHF and TV SPARES. Colour and suitable for $\mathrm{Hi}-\mathrm{Fi}$ amp or tape recording, $£ 6.75, \mathrm{P} / \mathrm{P}$ 35p. Bush CTV25 colour, new power units complete, incl. mains TX, Electrolytics, rectifiers, etc., $£ 2.50$ carr. 80 p . New convergence panels plus yoke and
blue lat., $£ 3.85$, P/P 40 p . New Philips single standard convergence panels complete, incl. 16 controls, coils P.B. switches, leads and yoke $£ 5.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, $f 10.00, \mathrm{P} / \mathrm{P} \quad 40$.
Mullard AT1025/05 Convergence Yoke . $\mathrm{E} 2.50, \mathrm{P} / \mathrm{P}$ 35 p . Mullard or Plessey Blue Laterals, 75 p P/P 20p. BRC 3000 type Scan Coils, $£ 2.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. 25p. Lum. Delay Lines, 50p. P/P 15 p . EHT Colour Quadrupler for Bush Murphy CTV 25 . EH1 1174 serien
£8.25, P/P 35 p . EHT Colour Tripler ITT TH25/TH suitable most sets, $\mathrm{E}_{2} .00$, P / P 25p. KB CVCI Dual Stand. convergence pancls compiete incl. 22 controls £3.75, P/P 35p. CRI Base Panel, f1.75, P/P 15 p ,
Makers Colour surplus/salvaged Philips G 8 panels Makers Colour surplus/salvaged Philips G8 panels
part complete: Decoder. $£ 2.50$, IF incl. 5 modules

 $75 \mathrm{p}, \mathrm{P} / \mathrm{P}$ 20p. B9D valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P} 6 \mathrm{p}$. VARI VHF for Band 1 and 3 . 12.85 incl. data. Salvaged VHF and UHF Varicap iuners, $£ 1.50, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. UHF TUNERS NEW, Transistorised, £2.85 or incl. slow
 button transistorised, $\begin{aligned} & \text { e4.95. Al tuners } \\ & \text { MURPHY } \\ & 600 / 700 \\ & \text { series } \\ & \text { complete UHF } \\ & \text { Conver- }\end{aligned}$ 35. sion Kits incl. tuner, drive assy., 625 IF amplifier, fraves, accessories housed in cabinet plinth assembly,
£7.50 P/P 50 p . SOBELL/GEC $405 / 625$ Dual standard ${ }_{\text {switchable }}$ IF amplifier and output chassis incl. cct. base panel, fi.00 P/P 35 p . PHILIPS 625 IF panel incl. cct., $£ 1.00 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips
 A.B miniature with UHF injection suitable K B Baird, Ferguson, 75 p . New fireball tuners Ferguson,
HMV. Marconi, $£ 1.90 \mathrm{P} / \mathrm{P}$ all tuners 30 p . Mullard ${ }_{110^{\circ}}{ }^{\circ}$ mono scan coils, P / P all tuners suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, most popular mese PYE LOPTs. FOPTs avalable for most popular makes. PYE/LABGEAR transistd. Mast${ }^{30} \mathrm{p}$ or Setback battery operated UHF Booster, $£ 4.65$ f1. $00 \mathrm{P} / \mathrm{p}$. $200+200+100$ Microfarad 350 v Electrolytic. LANE, LONDON. N.W. 6 (No. 28, 59,159 Buses or ORDER: 64 GOLDERS MANOR Brit. Rail). MAIL HUNTS COMPACITORS 1000 mF S0v 50 p each.
 Haldane (North) Halesfield (1) Telford Stre (WW2), Hel: $0952-586644$. Halesfield (1) Telford, Shropshire. LOW COST IC MOUNTING. Use Soldercon IC VAT) for strip of 100 to 40 pins. $£ 1.50$ (pIL's. 70 p (plus 12 p VAT) for 3 strips of 100 . Instructions supplied. SINTEL. 53 c Aston Street, Oxford.
$\mathrm{M}^{\text {IRROR, Aluminising, optical filters and }}$ I4036 M ponents, vacuum coatinp Frew-Smith com ${ }_{70003}{ }^{94}$ Main Street, Prestwick, Ayrshire. Tel. 0292 $\mathbf{M}_{\text {generator }}^{\text {UR Phid state }} 405 / 625$ S \& V I.F. Sweep generator with marker pips; Aces and Manual.

new. Cost $£ 120$. Offers. Ring: New Milton | (Hants) |
| :--- |
| PHOTO ELEECTRIC COUNTERS, Batch's |
| [4004 |
| 10660 | Write for details and price to Electrocount, 3 BaskerWrite for detals and price to Electrocount, ${ }^{3}$ Basker-

ville Road, Wandsworth Common, London, S.W. 18 .
PRINTED CIRCUIT, Manufacture, design, ArtRhodium or Tin. Tinning imersion or Roller, Screenprinting, Runslimit 500 units. Estimates by return post or Phone: W.K.F. ELECTRONICS, Welbeck SUPERB
SUPERB Instrument Cases by Bazelli, manufacof 174 types. Send for free list. Brazelli Instrument Cases. Dept. 22, St. Wilfrids, Foundry 'TEST' LOGIC WITHOUT A 'SCOPE. New probe for details and bonus offer to SAPPHIRE IN. STRUMENTS CO.. 25 Friar Road. Brighton BNi 6NG. Buy direct from Manufacturers and Save TELEQUIPMENT DOUBLE BEAM 'SCOPE DS4, I as new. Approx. 100 hrs. use 1160 . Burge, "EvenTELEVISION VALVES, ANY' 5 - 50 p, ANY ${ }^{14012} 100$ 1- 56.50 . ECC82 EF80, EF 183 , EF184, PC86/88, PCF80/802. PCL82/84/85/805/86, PL $36 / 504$, PY 33 / $88 / 800$. P\&P 10p. Electronic Mailorder, Ramsbottom, Bury, Lancs. Tel (Std 070 682) 3036. TRANSFORMERS, high grade, vacuum inpreginated, 24 v , full wave 10 A . Complete with battery chargers and high current power supplies. E7.75 each. Electronicon Ltd, $203-269$ Foleshili Road, Coventry CV1 4JG. Telephone: 020327377. VACUUM is our speciality. New and second-hand rotary
coaters, etc.
Silicone
difusion outfits. accessories.
rubber or varnish outgassing coaters, etc. Silicone rubber or varnish outgassing
equipment from $£ 40$. V. N.
Barrett (Sales) equipment from ${ }^{〔 40 \text {. V. N. Barrett }}$ (Sales) Lidd.
124

SPECIAL NOTICE

TO ALL MANUFACTURERS

in the

ELECTRONIC, RADIO, TELEVISION

 and ALLIED TRADES.Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantitics of components, raw materials, etc

BROADFIELD \& MAYCO
DISPOSALS LTD.
21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone:
$01-445 \quad 0749 \quad 01-445 \quad 2713 \quad 01-958 \quad 7624$

COLOUR TV's

Bush CTV 25 displayed working 690 plus VAT Large discount for 3 up non-workers available. screen sizes, new condition.

SUMIKS

1532 Pershore Road, Birmingham 30 Tel: 021-458 2208

EXPRESS

Prototype Printed Circuits
Fastest in London Area
also medium production runs, call-offs, etc Electronic \& Mechanica Highfield House, West Kingsdown,

Tel: West Kingsdown 2344

BRAND NEW FULL SPEC DEVICES

 MICROCIRCUITS AD144 30p: A3/TO 59P; 723/14 60p: 741/8 38p; 741/14 30p; 741/TO99444p; 748/838pRECTIFIERS: 1N4001 6P; 1A1kOV 5p; 1A200V 5ip; 1 A 400 V
TP: RANSISTORS: $2 N 3055$ 48p; AC126 20p; AC127 24p; AC128 23p; AC176 20p; AF114 19p; AF115 19p; AF116 19p;
AF117 20p; BC107B 16p; BC108B 15p; BC109C17p; BCY70 SP: BFY50 20p; BFY 51 20p; BFY52 20p.
ZENER DIODES: BZY88C 100; E24 Serios,
SOLDERCONS: EA per 1000. Ferrite Beads $\mathbf{£ 1 . 3 0}$ per 100
ALO PC Pen 60p. Red Panel LED 20p. Discount 10% on $10+15 \%$ on $30+$; 30%,
conductors of one type. (Prices at 22nd July),
JEF ELECTRONICS (WW9)

York House, 12 York Wive, G,

Mail Order Only. C.W.O. P. \& P. $12 p$ per order mini mum. Goods offered from stock for prompe delivery.

HENGSTLER
Manufacturers of counters and counting systems

Ex.COMPITE STABIIISED POWER SUPPIIES

RECONDITIONED, TESTED AND GUARANTEED

Rlpple < 10 mV . Over-voltage protection 120-13Cv. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about $£ 3$
5-6v. 8A. Post \& Packing £ $\mathbf{£ 1} \mathbf{~ 7 0}$ 5-6v. 12A. £14

PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{n} .100 \mathrm{cfm}$ £3. 50 (30 p).
PAPST FANS 6In. dia. $\times 2 \frac{3}{3} \mathrm{in}$. deep Type $7576 £ 5 \cdot 00$ (30 p)
TRANSISTORS p\&p10p
BC107/3/9 BC147/8/9 BC157/8/9 al 9 p BF180 25p BF182/3/40p BF184 17p BF187 13p BFW10 55p BF336 35p 7418 DIL 34p

ELECTROLYTICS

$12,000 \mu 100 \mathrm{~V}, 5 \times 2 \frac{1}{2} \mathrm{dia}$
£1 (25p) $30,000 \mu 25 \mathrm{v}$

65p (20p) $4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55 p (15 p) $10,000 \mu 35 \mathrm{v} .5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$ (12p)
$4,000 \mu 100 \mathrm{v} ., 4 \frac{1}{2} \times 2 \frac{1}{2} 55 p$ (22p)
EX-COMPUTER PC PANELS $2 \times 4 i n$ 25 boards for $£ 1$ (30p).
QH Bulbs, 12v. 55w.
250 Mixed Resistors
250 Mixed Capacitors
200 Si Planar Diodes
Microswltches. $50 p$ (7p)

Min. Glass 60 p (11p) $50 p$ (8p)

Postage and package shown in brackets

Please add $\mathbf{1 0 \%}$ VAT to TOTAL

KEYTRONICS

Mall Order only
44 EARLS COURT ROAD, LONDON, W. 8 01-478 8499

RMMODN CENKABR

TELEPHONE CABLE. Plastic covered grey 4 core coloured coded. $7!p$ per yard
ELECTRICITY SLOT METERS (5 p in slot) for A.C. mains. Fixed tariff to your requirements. Suitable for hotels, etc. 200/250v. 15 A £7.42. 20 A. £8.25. P.P. 75p. Other amperages available. Reconditioned as new. 2 years guarantee.
MODERN DESK PHONES, red, green, blue or topaz, 2-tone grey or black, with internal bell and handset with 0-1 dial $\mathbf{5 5 . 5 0}$.
5-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled, guaranteed. Price $£ 5.25$. Send s.a.e.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled. Guaran teed. $\mathbf{£ 6 . 7 5}$ per unit. Send s.a.e.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed. £7.75 per unit. Send s.a.e.
The " 83 " Set. This transceiver, weighs approx $5 \frac{1}{2}$ lbs. and measures $3 \frac{1}{2} \mathrm{in}$. $\times 5 \frac{1}{2} \mathrm{in}$. $9 \frac{4 i n}{2}$. It is a 4 frequency channel set $41-44 \mathrm{mc} / \mathrm{s}$. Crystal Controlled and operates from a dry battery H.T./L.T. 94/1. v. I.E. Ruben Mallory Type No. 1 and employs the following 14 valves 3A4 1 off; 11.46 off; 1T4 4 off; 1S5 1 off; 1A3 2 off. $£ 3.50$ plus 75 p P. \& P.
All prices subject to fluctuation
Multi Relay Units, Group selectors, Final end selectors and Relays in stock, 20 -way jack strips and tip ring and sleeve plugs. For callers only
23 ISIE SI. ((2369) IONDON W.C. 2
Open all day Saturday

EXCLUSIVE OFFERS NEVER BEFORE OFFERED WORLD-WIDE RANGE COMPLETE TRANSPORTABLE B.F. COMMUNICATIONS CENTRE housed in AIr Conditioned TRAILE H Receivers and one COLLINS Receiver all fully tuneable control, with line ampliffers and inputs, operating position and remote control facilities and ancillary on applicatlon.
PEILCO HC-150 PONT-TO-PONT STRIP RADIO EF RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$. Ten fully tuncable channela

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS Owr Height Width DABEETR Depth Hack Panel

Our	Height	$\xrightarrow{\text { Widith }}$	${ }_{\text {Depth }}$	Hack P	
$\frac{\boldsymbol{R}_{\mathrm{CD}}}{}$	in inches	in inches	in inches 13	$\begin{aligned} & \text { Space in } \\ & 68 \end{aligned}$	${ }^{\text {Prios }}$
CL	30	60	36	42	212.50
CR	69	30	20		224.00
DM	70	20	26	138	$\underline{21.00}$
FA	85	22	36	160	22200
FB	74	21	22	70	¢18.00
FC	52	25	22	47	217.0
FD	40	22	24	72	£14.00
FE	72	22	21	68	218.0
FG	11	19	18	10	£11.00
FH	15	21	17	11	812
FJ	15	21	15	12	£12.00
FN	70	24	20	68	¢1700
FL	84	22	17	80	£21.00
FM	70	72	27	120	220.00
FP	76	22	18	70	218.00
	Also Co	oles. twin	and multi- RACK8	way Cabl	
Our	Height in	Channel	Rack Para		
Ref.	inches	Depth	Space	Base	Prico
RF	85	3	79	15	211.00
RG	57	2	51	14	£9.00

We have a large quantity of "blta and plecer" wo cannot list-pleaio send ua your requirements we can probably help-all onquiriez answered.	
Ne	-
Marconi Marin	830.0
U.R.A 8 Teleprinter Converter	
Portable Malna Battery Floodligh	
400 channel Pulse Helaht Spectrum Analyze	
Almec 245 L.F. 150 watt Oaciliators	
Solartron CD 1015 Oscilloscopes	240
Solartron 5,25000 cyc. Oscillator	
Dawe 630 Phase Meters	
Southern Inst. 1800 F.M. Met	
Belling Lee T.V. Relay Equipmen	
Addo 0/8 track Tape Punches	£48.00
Tally $\mathrm{S} / 8$ track Tape Readers	
80 columu Csril Hand Punches	
$\star 75$ foot sectlonal self supporting Tou ers	
\star Auto Rlectric Carilion Chlmes	
CV-157 Hoftman ISB/SSB Conv	
$\star 10$ foot Triangular Lattice Mast Sections 6 Inch sldes	
* Ditto 15 foot with 15 inch sides	
* Casella Absmann Electric Hygrom	
We have a variel assortment of industrial and professional Cathode Ray Tubes available. List on requeat.	
\star Haynea 500 watt $230 \mathrm{v} . / 115 \mathrm{v}$. Inolation Tranaformers	
* Flamn Microware Attenuating $4 / 12$ GMC	
40-page liat of over 1,000 different items in itook svailsble-keep one by you.	
INSTRUMENTATION TAPE RECORDER-REPRODUCERS	
AMPEX	
FR-600	
$1^{\prime \prime}$ and $\frac{1}{2}^{\prime \prime} 14$ and 7 tracks 4 speeds Trans-	
istorised	
MINCOM	
$\begin{aligned} & \text { CMP-100 } \\ & 1^{\prime \prime} \frac{1}{2} 1^{\prime \prime} 7 \text { tracks } 6 \text { speeds } \end{aligned}$	
E.M.I.	
TD-1	
$t^{\prime \prime} 4$ tracks 7 speeds	
Several other smaller decks.	
Full details on request.	
Prices of above are from $\mathbb{C l} 100$ to $\mathbf{£ 4 0 0}$.	

COMPUTER HARDWARE

\star CARD READER $80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}$.
\star PRIN TER, High speed 1000 lines p.m. 800 c.p.m
Prices on Application
PLEASE ADD V.A.T, TO ABOVE
P. HARRIS

ORGANFORD - DORSET
BH16 6ER
BOURNEYOUTH-6505

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3. 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm Baker Deluxe. 8 or 15 ohm 87.75 Baker Major 3.8 or 15 ohm Baker Regent. 8 or 15 ohm E 10.75 Baker Superb. 8 or 15 ohm Celestion PST8 (for Unilex) Celestion MH 1000 horn. 8 or 15 ohm EMI $13 \times 8,3,8$ or 15 ohm EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} 3.8$ or 15 ohm EMI $13 \times 8.350 .8$ or 15 ohm EMI 13×8.20 watt bass EMI $2 \AA^{\prime \prime}$ tweeter 8 ohm EMI 8×5.10 watt. d/c, roll/s 8 ohm Elac 59RM 109 15ohm, 59RM1148 ohm Elac $6 \frac{1^{\prime \prime}}{2} \mathrm{~d} /$ cone, roll/s 8 ohm Elac TW4 4" tweeter Fane Pop 15 watt 12
Fane Pop 25/2 25 watt 12 Fane Pop 40. $10^{\prime \prime} 40$ watt Fane Pop 50 watt. 12^{n}
Fane Pop 55, 12" 60 Fane Pop 55. $12^{\prime \prime} 60$ watt Fane Pop 60 watt, 15
Fane Pop 100 watt. $8^{\prime \prime}$
Fane Crescendo 12A or B, 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s, 8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s. 8 or 15 ch.
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. $\mathrm{roll} / \mathrm{s} .8 \mathrm{ohm}$. Goodmans 10 P 8 or 15 ohm Goodmans 12P 8 or 15 chm Goodmans 12P.D 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4018 or 15 ohm Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm Kef T27
Kef T15
Kef B1 10
Kef B200
Kef B200
Kef DN8
Kef DN12
Richard Allan CG8T 8"d/croll/s STC4001G super tweeter Wharfedale Super 1ORS/DD 8 ohm Fane 701 twin ribbon horn Baker Major Module each Fane Model One each Goodmans DIN 204 ohm each Helme XLK25 (pair) Helme XLK30 (pair) Helme XLK50 (pair) Kefkit 2 each Kefkit 3 each Peerless 3-15 (3 sp system) each Richard Allan Twinkit each Richard Allan Triple 8 each Richard Allan Triple each Richard Allan Super Triple each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit (pair) Wharfedale Dovedale 3 kit (pair)

> PRICES INCLUDE VAT

Cabinets for PA and HiFi , wadding. vynair, etc.
Send stamp for free booklet "Choosing a Speaker
FREE with orders over E7-"HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect Prompt despatch.
Carriage: Speakers 38p each, tweeters and crossovers 20 p each, kits 75 p each (pair $£ 1.50$).

WILMSLOW AUDIO

Dept WW

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HFTel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

WW-072 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C'' \& "E' cores. Case and Frame assemblies.

MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAO, N. 16

Tel: 01-249 2260

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, szudios and broadcasting authorities, and were estab-
lished in 1941 . Early deliveries. Compecitive prices. Large or small quantities. Ler us quote.
E. A. SOWTER LTD.

Transformer Manufacturers and Designers
7 Dedham Place, Fore Street, Ipswich IP4 IJP
Telephone 0473 52794

THE ONLY
COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 15 p (plus 4 p postage) for 48 page booklet
providing all necessary information on Record Care.

CECIL E. WATTS UMITED Darby House
Sunbury-on. Thames. Middx

Private enquiries, send $5 p$ in stamps for brochure THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. WORKS, WELLINGTON CRESCENT, NEW MALDEN, SURREY. 01-942-0334 \& 2988

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC SPOT CASH
CHILTMEAD ITTH. 7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

The Young Generation Relay

Flatform Relay AZ 630
Polarised relay with 1 changeover contact holds operated position with no signal present. Contact material:
Fine silver, silver cadmium oxide fine silver with hard gold flashing.
Switching $1 \mathrm{~A} / 2.5 \mathrm{~A}$
capability 110 V/125VD.C
Operating
power 30 W/100 VA

Drop-out
excitation ca. $150 \mathrm{~mW} / 10 \mathrm{~ms}$
Coil voltage maximum 60 V
Surface area $27.5 \times 15 \mathrm{~mm}$
Height 11 mm

Zettler UK Division
 Equitable House Lyon Rd., Harrow Middx. HA1 2DU Tel. (01) 8636329

WW-012 FOR FURTHER DETAILS

SYNTHESISER SOUNDS SUPREME

BY DEWTRON-THE UP-FRONT PEOPLE YOU can build professional standard synth. equip. ment from our modules if you can read and soldert E.g. pitch-to-voltage enables your creatio guitar etc. Send 15 p NOW for full catalogue. 10 years experience from-

254 Ringwood Road, Ferndown, Dorset.

New surplus stock as illustrated. AC 240 volts. Input power 100va. Instant heat at touch of trigger switch in handle. Constructed in
PROGRAMME

and hot water on/off twice a day. Suitable for any electrical appliance up to 3 amps 240 volts A.C.

New surplus stock as illustrated. Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ Smiths Time Switch with 24 hour dial which is simple to set to switch on/off twice per day at any times required. Also fitted with two lever switches which can be set to operate two circuits which can tinuous, or off Mounted in robust white plastic casing Drilled for fixing on back supplied with wiring instructions. Ideal for shop lighting
and many other applications. CAE FOR CATALOGUEWIO WHEELHOUS \& SON 9/13 BELL RDAD, HOUNSLOW. PHONE 01-570 3501

TEXAS INSTRUMENTS. SEMICONDUCTOR CIRCUIT DESIGN VOL. III

by B. Norris Price $\mathbf{E 5} \mathbf{2 5}$

THE TRANSISTOR \& DIODE DATA BOOK FOR DESIGN ENGINEERS VOL. by Texas Instruments. Price $\mathbf{£ 2 . 2 5}$
MOTOROLASEMICONDUCTORS EUROPEAN CONSUMER DEVICES Price $\mathbf{6 4 . 2 5}$
SEMICONDUCTOR DEVICES TESTING (5 . 25 FET APPLICATIONS HANDBOOK by J. Eimbinder. Price $\mathbf{E 2} .00$

SOLID-STATE HOBBY CIRCUITS MANUAL by RCA. Price $\mathrm{fl} \cdot 15$
ELECTRONICS: A HANDBOOK FOR ENGINEERS \& SCIENTISTS by G. H. Olsen Price 67.25

TELECOMMUNICATIONS by J. Brown. Price 63.20
DICITAL ELECTRONIC CIRCUITS \& YSTEMS by N. M. Morris. Price $\mathcal{E 2} .40$ MICROPHONES: DESIGN \& APPLICA TICIN by L. Burroughs. Price $£ 10.00$
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D J. Seal. Price $£ 4.00$
*ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET,
ONDON, W2 1NP
Phone 7234185
Closed Sat. 1 p.m.

Classifieds continued from p. 108
Articles for Sale Continued
60 KHz MSF Rugby and 75 KHz Neuchatel Radio Receivers. Signal and Audio outputs. Small compact units. Two available versions $£ 35$ and $£ 60$
Toolex, Bristol Road, Sherborne (3211), Dorset.
ARTICLES WANTED

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spotl

ELECTRO-TECH

 COMPONENTS LTD.315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580

G RAMPIAN or B.B.C. type Cuterheads complete WW 4029.
$W^{\text {ANTED, }}$ all types of communications recesvers Electronics, Ltd., Ashville Old Hall, Ashville Rd Electronics, Lendon. E.11. Ley. Ashville Oid Hall, Ashville Rd. 1631

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS
 126 Headstone Road Harrow, Middlesex
 Tel: 01-965 6864

Wanted. Goodmans speakers 35 Hz . Audiom 51
Bass. Midax 650 and Trebax 100 . Also crossover unit XO/950/5000 and quantity two Goodmans variable attenuators. Tel. Office 0314438791 ext. 261.
Home $031 \quad 334 \quad 3777$ or write Davies, 32 Cairnmuir Home 03』 3343777 or write Davies, 32 Cairnmuir
WANTED-OI Telegraph keys for colle 14014
$W_{\text {J. Elwood. P.O. Box }}$ keys for collection. 93534 U.S.A.

IRTROACACTY AVAILABLE

A IRTRGNICS LTD., for Coil Winding-large or slies. Smali production runs. Also PC Boards
Suppliers to
P.O., M.O.D., etc. Export enquiries welcomed, 3 a Walerand Road, London, BATCH Production Wiring and Assembly ${ }^{61}$ $\mathrm{B}_{\text {sample }}^{\text {ATCH or drawings. Deane Electricals. }}$ Prong Station Pampade, Ealing Comroon, London, W.5. Tell: ${ }_{01-992} 8976$. Ealing Comrnon, London, W.S. Tel. CAPACITY available to the Electronic Industry. grinding both in metais and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Lid., 1 Mackintosh Lane, E9 6AB. Tel. 01-985 7057 .
CApaCity availlable for design, construction Cest and assembly of electronic/electrical prototypes. test rigs and panels. Tecalemit Development Lid. Valley Ruad, Plympton, Plymouth PL7 3RN. Tel: $\mathrm{D}^{\mathrm{ESIGN}}$, development, repair, test and small production of elcetronic equipment. Specialist in production of printed circuit assemblies. YOUNG 01-267 02.01.
D ${ }^{\text {ESIGN }}$ and dèvelopment of electronic circuits and available for Experienced and qualified Engineers
WW 3BELS, Nameplates, Fascias on anodised Laluminium. Any quantity, superb quality, fast delivery. G. S. M. Graphics Lid., 1-5 Rectory Lane, Guisborough (02873-4443). Yorks.

(4005 PRINTED CIRCUITS, quick service. competitive prices, roller tinning, drilling etcetera. Short runs North Humberside YO16 ${ }^{1-5}$ WeB Westere. Bridlington,	77877 . Humberside YO16 4QB. Tel. (0262) 4738 or
14025	PRINTED CIRCUIT boards assembled to sample 14025 Torquay S S Devings. C. Bowman, 35 Park Hill Road. $\mathbf{S}^{\text {MALL }}$ Bateh Production, wiring assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics. 2 Bishopsfield, Harlow. Essex. Harlow 33018 . 2

$\mathbf{R}_{\text {Details AMATEUR well planned postal course. }}^{\text {ADI }}$ Warren Court, Westcliffe Rd., Southport, Lancs.

PEAK PROGRAM METERS TO BS4297
 In any public-address system, where the michophones and
loudspeakers are in the sime vicinity acoustic freedhock how round) occurs if the amplification exceeds a critical value. By
shifting the audio spectrum fed to the speakers by a few Hertz the tendency to howling at room resonance frequencies is destroyed and an incrasese in gain of $6-88 \mathrm{BD}$ is possible before
the onset of feedback. The 5 Az shift used is imperceptible on both speech and music.
SHifTERS IN BOXES with overload LED, shittbypass switch. BS4491 mains connector and housed in strong giecast boxes finishe nectors
Type

SURREY ELECTRONICS

n, Cranleigh
Surrey GU6 7BG. (STO 04866) 5997

R ADIO and Radar MP.T. and C.G.L.I. Courses FY7 8 JZ

NEW GRAM AND SOUND

EQUIPMENT

GLASGOW.-Recorders bought, sold, exchanged; varneras, etc., exchanged for recorders or viceClASGOW HI FI, Recorders, Video, Communications Reciever always available we buy sell and exchange for photographic equipment. Vicior Morris
Audio Visual Lid. 340 Argyle Strect. Glasgow, G.2: 31 Sauchiehall Street. Glasgow, G.1; $8 / 10$ Glassford Street, Glasgow, G.2. Tel. 041-221 8958.

PERSONAL

INFLATION--E. K. Sandeman would like to mitter near "Kinusmead", Fech modulated trans Cross.

RECEIVERS AND AMPLIFTEAS-
 SURPLUS AND SECONDHAND

$H_{\text {S640, etc., etc., AR } 88, ~ C R 100, ~ B R T 400, ~ G 209 ~}^{R O}$
 Ltd., Ashicle Old Hall, Ashville Rd., London, E. 11 . 165
Ley. 4986 . SiGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, etc, etc., in stock- -R. T. \& I. Electronics Led., Ashville Old Hall, Ashville Rd., London, E. 11
Ley. 4986 .

EEREVICE AND REFAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $£ 1$. Somercote Louth, Lincs, or 'phone 0507-85 300 .

[^4][^5]
NEW RANGE-TRANSISTOR INVERTORS

TYPE A
Input: 12V DC
Output: 1.3kV AC
1.5MA

Price $£ \mathbf{3} .45$

TYPE B
Input: 12V DC
Output: 1.3kV DC 1.5MA

Price $\mathbf{f 4 . 7 0}$

TYPE C
Input: 12V to 24V DC
Output: 1.5 kV to 4 kV AC 0.5MA

Price $\mathbf{f 6 . 3 5}$

TYPE D
Input: 12V to 24V DC Output: 14kV DC 100 microamps at 24 V . Progressively reducing for lower input voltages. Price $£ 11$

Postage \& Packing 36p. Add V.A.T. at 8\%

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

INIDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 91-108

Page	Page	Paoz
Acoustical Mfg. Co. Ltd. ${ }^{3}$	Hall Electric Ltd.	Parker, A. B. 42
Adcola Products Lid. 32	Harris Electronics (London) Ltd. 29, 39	Pattrick \& Kinnie 60
A.E.I. Semiconductors Ltd. 29	Harris, P. 109	Phoenix Electronics (Portsmouth) Ltd. 87
Aero Electronics Ltd. 42	Hart Electronics (London) 86	Physical \& Elec. Labs. Ltd. 86
Ambionic Sound Reproducers Ltd.5 56	Heath (Gloucester) Ltd. 7	Powertran Electronics 60, 61
Anders Electronics Lid. 5, 26	Hengstler G. B. Lid. 109	
Arrow Electronics Ltd. 31	Henry's Radio Ltd. 68, 69	Quality Electronics Ltd. 40
		Quartz Crystal Co. Ltd. 110
A.S.P. Ltd. ..	Hitachi-Shibaden (U.K.) Ltd	
	HY-Q Antennas .. 43	Radford Acoustics Ltd. 30
		RCS Electronics
Barr \& Stroud 22		Rola Celestion Lid. 32
Barrie Electronics Ldd. 89	Icon Design .. 62	
Bentley Acoustic Corp. Ltd. ${ }^{\text {B }}$ Ben ${ }^{84}$	I.L.P. (Electriconics) Ltd. 37	Samsons (Electronics) Ltd. 67
B.I.E.T. \qquad $\begin{array}{r} 10 \\ 48 \end{array}$	Industrial Tape Applications Ltd. 41, 43	S. E. Laboratories (EMI) Ltd. 24,25
Bi-Pak Semiconductors 64, 65	Integrex Ltd. 84	Scopex Instruments Ltd. 30
Bi-Pre Pak Ltd. 80, 87	Invader Components Ltd. 21	Scott, James (Elec. Eng.) Ltd. 56
Bias Electronics Ltd. 38	1.T.F. Audio Fair 35	Service Trading Co. .a............................. 92
Broadfields \& Mayco Disposals 108	108 45	Sinclair Radionics Ltd. .. 108 Sintel
	J. H. Associates Lid \qquad 45	
Cambridge Audio 57		Sowter, E. A., L.td. - 110
Cambridge Learning 33		Special Product Distributors Ltd. 46
Carston Elec. 83		Strumech Eng. Ltd.
Chiltmead Ltd. Eectronics Lid.	K.F. Products Ltd. 28, 38, 40, 44, 46, 49	Studio Electronics Sugden, J. E. \& Co. Ltd.
C.I.E.L. ... 86	Keytronics Ltd. 109	Sullivan, H. L. 23
Colomor (Electronics) Ltd. 71		Surrey Electronics 111
Communiqué 81		Swmiks ... 108
Crichton, John	Lampit J. ... 81	Symot ... 75
	Laskys 77, 78, 79	
	Levell Electronics Ltd. ... Linstead Electronics Lin	Telequipment Products (Tektronics U.K.) Ltd ... 50
D.E.W. Ltd. ... 110	London Central Radio Stores 109	Telford Products Ltd. 49
Deimos Ltd. .. 110		Teonex Ltd. . .i.
Dixons Technical CCTV Ltd. 19		Thames Electronics .. 6_{6}
Dymar Electronics Ltd.	Macfarlane, W. \& B. 62	Toko (U.K.) Lid.
	Macinnes Labs. Lid. 22	Trampus Electronics 62
	Mark Down ... 63	Turner E. Electrical Insts. Ltd. 40
	McLennan Eng. Ltd. 34	
	Maplin Electronic Supplies 42	
Eagle International 17	Marconi Instruments Ltd. cover ii	Ultron United Carr Supplies
East Cornwall Components 45		United Carr Supplies Readers Card
	Medight Crystal Co. .. 108	
Electroniica ${ }^{\prime} 74$................................. 16	Mills, W. ... 67	
Electro-Tech. Components Lid. 70	Milward, G. F. 73	Vortexion Lid. .. ${ }_{4}$
ElectrovalueElvins Electronic Musical Instruments		
	Modern Book Co. \qquad 111	
	Motorola Semiconductors Ltd. ${ }_{9}^{9}$	Wayne, Kerr, The, Co. Ltd. 110
	Mullard Ltd. 15	West Hyde Developments Lid.7.75, 86
	Multicore Solders Ltd. cover iv	Westinghouse Electric ${ }^{2}$
Ferrograph, The, Co. Ltd. \qquad 21		West London Direct Supplies 88
Fi-Comp Electronics 87		Wheelhouse, C. W. \& Son 111
Future Film Developments Ltd. 45	Newnes-Butterworth 81	
	Nombrex (1969) Ltd. 29	
Gardners Transformers Ltd. \qquad 44, 48 Greenwood Electronics \qquad 52	OCLI Optical Coatings Ltd. 26	I. Aero Services Lid. 41, 70
	OMB Electronics 75	Zettler GmbH

[^6]

Looking to world markets? Then you've got an interest in common with Arrow 79 Series - lever and pushbutton miniature switches, U.K. - made to meet world standards. With BS 3955, CSA, SEMCO (CEE) and other international approvals, they are dedicated to winning maximum acceptance for your product. And with their 4A, 250V ac rating, they meet many of your switching needs with the panache of a world traveller. As well as metal lever on-off switches, the series includes moulded lever and pushbutton types-ideal for meeting double insulation standards. Terminals are spade, screw or wire lead, as you wish. Ask for data on 79 series-the very acceptable switch range.

EIUHIIII ARROW-HART (EUROPE) LTD. YLYMBRIDGE ROAD. ESTOVER, TEL: 0752701155 Telex: 45340 Cables: ARROWHART PLYMOUTH
Arrow switches right across the panel

Scottish Office 13 MURRAY PLACE, STIRLING FK8 1 DO Telephone: 07863823
U. K. Distributors ITT ELECTRONIC SERVICES HARLOW - 027-96 26777 RENFREWSHIRE Johnstone 23457 LEIGH-Leigh 5211/2/3 SUTTON COLDFIELD -021-355 4511 BRISTOL-0272 290125 JERMYN INDUSTRIES. SEVENOAKS - 51174 COMWAY ELECTRONICS GRACKNELL-0344 24765 S.A.S.C.O. LTD. CRAWLEY - 029328700 GLASGOW - 041-22 $16152 / 3$

Multicorethe complete answeffor printed circuit soldering.

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

Extrusol and Multipure.

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

Ersin Multicore Savbit.

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Multicore products, please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue. Hemel Hempstead, Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.

[^0]: Invader Components Limited,
 30 Tribune Drive,
 Trinity Trading Estate,
 Milton, Sittingbourne, Kent.
 Tel: Sittingbourne 70533
 Telex: 965313

[^1]: Price 25 p (Back numbers 40p)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SEI 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworid Bisnespres 25137 London. Cables, "Ethaworid, London S.E.1."
 Subscription rates: 1 year, $£ 5$ UK and overseas (\$13 USA and Canada), 3 years, $£ 14$ UK and overseas ($\$ 36$ USA and Canada). Student rates: 1 year, $£ 2.50$ UK and overseas ($\$ 6.50$ USA and Canada), 3 years, $£ 7$ UK and overseas (\$18.20 USA and Canada).
 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^2]: *An article on the properties and applications of c.m.o.s. circuitry, written by P. A. Johnson, appeared in our August, 1973, issue.

[^3]: Build a mixer to your own
 spec. using our easy to wire
 ALDID MDDLLES
 For full details contact Richard Brown at Zero 88, 115 Hatfield Road,
 St. Albans, Herts, AL1 4JS Tel. 63727

[^4]: E TAPE RTEORDING ETC.
 IF quality, durability matter, consult Britain' oldest transfer service. Quality records from you suitable tapes. (Excellent fond raisers for schools)
 Modern studio facilities with Steinway Grand. Sound News. 18 Blenheim Road, London, W4 Tel. 01-995 i661. Blenheim Road, London, $\underset{[4009}{4}$

[^5]: ## VALVESWANTED

 WE buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.-Walton's, 55 Worcester $\begin{aligned} & \text { St. } \\ & \text { Wolverhampton. }\end{aligned}$ (62

[^6]:

 at a price it excess of the recommended maximum price ahown on the cover, and that it mall not ber

