

Spairline

We don't claim that milactually runs its own airline, of course. But we do claim to be strategically sited for delivery to a remarkably large number of airports. Which is handy for getting those spares airborne in double-quick time. In fact most of our orders are shipped the day they're received.

Then, too, our servicing and spares set-up is unusually large. In fact, our three B.C.S.-approved laboratories in the U.K. issue more calibration certificates for electrical measurement than any other organisation in the country. And our Service Division at Luton Airport is the first organisation of
its kind to be registered on the M.c.D defence contractors' list. We run our own sizeable fleet of vans to ensure the minimum of delay in collection and delivery.

Abroad, there are mi service operations in, among other places, France, Germany, Australia, U.S.A., Canada and South America.

Put all those facts together and you get what is probably the surest and speediest servicing operation in the business. And that holds good whether you're in Manchester or Marseilles, Sydney or São Paulo.

LOW COST VOLTMETERS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}{ }^{\prime \prime}$ scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes 7 " $\times 10^{\prime \prime} \times 6^{\prime \prime}$.

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES: $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 50 \mathrm{CV}$ f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz}-100-90 \ldots+50 \mathrm{~dB}$ scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. RESPONSE : $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be set to a restricted $B . W$. of 10 Hz to 10 kHz or 100 kHz . INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$
On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$. AMPLIFIER OUTPUT: 150 mV at $\mathrm{f} . \mathrm{s} . \mathrm{d}$

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d Acc. $\pm 4 \% \pm 1 \%$ off.s.d. at $30 \mathrm{MHz} .-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
L.F. RANGES : As TM 3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$. AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F

\% \mathbf{x} f105

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} \ldots 300 \mathrm{~V}$ Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$ Acc. $\pm 2 \%, \pm 2 \%$ f.s.d., $\pm 2 \mathrm{pA} . \mathrm{CZ}$ scale
LOGARITHMIC RANGE:
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d. $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d. RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$

\% $\%$. 965

D.C. MULTIMETERS

VOLTAGE RANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. $L Z$ \& CZ scales.
CURRENT RANGES : 3pA, 10pA, 30pA ... 1 mA (1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 p A$. $L Z \& C Z$ scales
RESISTANCE RANGES : $3 \Omega, 10 \Omega .30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges.

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD Tel: 01-4495028/440 8686

Prices include batteries and U.K. delivery. V.A.T. extra Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

Thanks to this new module. . .

. . . we can offer an accurate

and drift-free phase-lock synthesized signal generator tor around $£ 800$

The Farnell range of modular signal generators now includes synthesized models, M1/ADM and M2/ $A D M$, to cover frequency ranges of 100 kHz to 12 MHz and 10 MHz to 108 MHz respectively.

Frequency is controlled by a six decade bank of thumbwheel switches to an accuracy of ± 5 PPM. The oscillator automatically chooses the correct range and seeks the required frequency, a search lamp extinguishing when it has found it. And there the frequency will stay with crysta! accuracy and stability until an alternative is selected. A 1 kHz frequency change takes only milliseconds and a change as wide as 10 MHz to 100 MHz (which involves four range changes) is completed in about five seconds.

Like all Farnell r.f. signal generators and sweepers, there is facility for remote programming via TTL compatible BCD 1248 inputs through a rear connector.

Narrowband sweep application.
The M1/ADM is an excellent narrowband sweeper ideal for setting up receiver filters or discriminator circuits on an individual or production line basis.

Centre frequency is controlled with crystal accuracy and stability by the digital synthesizer module while the frequency modulator unit is used to provide sweep. Full a.m./f.m. modulation facilities are available after alignment tests.

For details of all Farnell r.f. test equipment contact:-

FARNNELL INSTRUMENTS LIMITED, TELECOMMUNICATIONS DIVISION, SANDBECK WAY, WETHERBY, LS22 4DH. YORKSHIRE.
TEL: 0937 3541, TELEX 557294 LONDON OFFICE TEL: 01-8025359

It's a demanding job, viewing a. monitor or data display screen, hour after hour. There's the responsibility. And there is the discomfort and fatigue...... so of ten the result of intense concentration at the display terminal.

Brimar have developed a range of data display tubes with many refinements. The current range now incorporates tubes with bonded, tinted and etched faceplates giving an improved contrast performance and considerably reduced specular reflection, and which are ideal for close range working.

The wide range of Brimar phosphors with varying fluorescent.colours and persistence allows manufacturers to select phosphor screens which are most suitable for their particular data terminal applications. The range extends from 7 inch to 24 inch with an exceptionally comprehensive selection of 15 inch tubes.

28 mm neck diameter
M38-100. 90° deflection Rimguard
M38-101.. 90° defiection Rimguard
M38-102. . 90° deflection Bonded
M38-104 . 90° deflection Bonded
M38-120. . 110° deflection Monopanel
M38-121.. 110° deflection Rimguard
M38-122. . 110° deflection Bonded
M38-140. . 110° deflection Monopanel (with high voltage focus gun)
38 mm necl: diameter
M38-110. 90° deflection Rimguard
M38-111. 90° defiection Bonded
M38-112.. 90° deflection Rimguard

You'd like the complete picture?

Drop us a line or telephone 01-804 1201.
Thorn Radio Valves \& Tubes Lid., Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS
Tel: 01-804 1201
M38-113.. 90° deflection Rimguard

Vortexion QUALITY AMPLIFIERS FORTHE PROFESSIONAL

50/70 WATT ALL SILICON AMPLIFIER
WITH BUILT-IN 5-WAY MIXER USING F.E.T.s
50/70 WATT ALL SILICON AMPLIFIER
plus VAT WITH BUILT-IN 4-WAY MIXER
f125.58
plus VAT
100 WATT ALL SILICON AMPLIFIER
f166.98
plus VAT
THE IOO WATT MIXER AMPLIFIER
f50.82
plus VAT
20/30 WATT MIXER AMPLIFIER
plus VAT
CP 50 AMPLIFIER
$\underset{\text { flus } \mathrm{faT}}{\text { f196 }} 0200$ WATT AMPLIFIER

PRICES
ON APPLICATION

F.E.T. MIXERS AND PPMs

Vortexion Itd

TEL:01.542 2814 and 01.542 6242.3.4 TELEGRAMS:VORTEXION'LONDON SW 19 257-263 THE BROADWAY-WIMBLEDON • SW19 1SF

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING
(6 Position)
('WW' June '73)
Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET front end for excellent cross modulation pertormance and low noise.
3 GANG tuning for high selectivity.
VARICAP tuning diodes in back to back configuration for low distortion.
PHASE LOCKED Stereo decoder with Stereo mute, see below CERAMIC filters for defined IF response.

PUSH BUTTON ituning (with AFC disable) over the FM band ($88-104$) INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM rejection.

IC STABILISED and S/C protected power supply.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Basic tuner module prices start as low as $\mathbf{£ 1 1 . 4 0}$, with complete kits starting at $\mathbf{£ 2 4 . 9 5}$ (mono) + PP 60p. and of course all components are available separately.
Ourlow cost alignment service is available to customers without access to a signal generator. Please send large SAE for special low prices for complete kits. All our other products remain available.
special low prices for complete kits. Alt our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $£ 6.50$ when bought with a complete $N-J$ tuner kit or $£ 7.68$ if bought separately
(P.P. 19p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $\mathbf{£} \mathbf{2 8} \mathbf{5 0}$ plus p.p 50 p including Teak Sleeve.

You can order these goods by Telephone on Access. Simply quote your Access Number.

NEW LOW COST STEREO TUNER

PLEASE PHONE OR WRITE FOR FULL DETAILS No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to N -J Tuner.)

TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30dB S/N Image rejection 40 dB IF rejection 65 dB PRICE: Complete Mono kit $\mathbf{£ 2 2 . 4 0}$ Complete Stereo kit $\mathbf{£ 2 6 . 3 2}$ p.p. 60p. V.A.T. Please add V.A.T. at 10% to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW Phone Repton (028389) 3580

WEN
PRACTICAL PAPERBACKS FOLLEHAM-TAB

Colour TV Repair by Martin Clifford

Basic Audio Systems
£1.40 by Norman H. Crowhurst
£1.60

Everymans Guide to Car
Maintenance
by George Zwick
Matv Systems Handbook $\mathbf{£ 1 . 4 0}$ by Allen Pawlowski

Mobile Radio Handbook
£1. 50 by Leo G. Sands

Rapid Radio Repaır £1.60 by G. Warren Heath

Understanding and Using
the VOM and EVM
£1.50
by John Cunningham
Handbook of Electronic
Tables
£1.40
by Martin Clifford
How to use your VOM and VTVM and Oscilloscope
£1.50
by Martin Clifford
Introduction to Medical
Electronics
by Burton R. Klein

Modern Radio Repair
Technıque
by Art Margolis
Practical Colour TV
Service Techniques by Robert L. Goodman

TV Troubleshooters Handbook
by Editors of Electronic Technician/Dealer

Acoustic Techniques for Home and Studio by F. Alton Everest

199 Colour TV Troubles and Solutions
by R. L. Goodman
IC Projects for Amateur and
Experimenter
by Wayne Green
Japanese Colour TV Service Manual
by Hitachi Etc.
Radio Electronics Hobby Projects
by Editors of RadioElectronics
£1.75
$£ 1.50$
f1.45 £1.90 £1.45
£1.70 £1.95

and
£1. 50
 ce \square

SOLE IMPORTERS INUK
ELECTHONIGS LTD,
GSTON-UPON-T
Tel:01-546 4585

Six figures in six seconds

A precision bridge that balances itself the Wayne Kerr B331

For more information, either Telephone Bognor Regis (02433) 25811 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex PO22 9RL. Telex:36120.

This bridge was designed for use in Standards Laboratories, but ease of operation combined with an in-line readout giving up to 6 figure discrimınation has enabled many other applicatıons to be covered.

The B331 measures directly a wide range of capacitance and conductance values to 0.01% accuracy. The three terminal facility enables small values of capacitance and high values of resistance to be measured at the end of long cables.

Automatic compensation for the series impedance of the measurement leads is given by an advanced design of Kelvin clip. and a low impedance range directly calibrated in resistance and inductance permits four terminal measurements to be made.

Up to four significant figures can be set on each measurement term with push buttons.

The bridge automatically balances itself, the meters indicating the remainder of the measurement value on linear scales. As each pair of decades is introduced with these buttons, the meter sensitivity is increased by a factor of 10 giving an indication of the next figures required in the digital setting sequence. Analog output of both terms permit recording of changing values.

Precision standards are incorporated in the B331. A nitrogen filled capacitor with a temperature coefficient of less than 5 p.p.m. forms the reactive standard and loose wire wound resistors with temperature coefficients of 5 p.p.m. are connected to each set of conductance decades.

SPECIFICATION

Range (for 001% accuracy)
derived reciprocal values
Low Impedance Range
derived reciprocal values
1 pF to $10 \mu \mathrm{~F}$ 10 nv to 100 mv
1 mH to 10 kH 10Ω to $100 \mathrm{M} \Omega$
$100 \mu \Omega$ to 10Ω
10 nH to 1 mH
$10 \mu \mathrm{~F}$ to 1 F

Frequency (internal) $1591.55 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$

Projeot 80

 a brilliant new concept in modular hifi

 a brilliant new concept in modular hifi}

Project 80 is going to be the ultimate in modular hi-fi construction for a very long time to come. It combines the qualities most demanded of any modern domestic system - good circuitry, reliability and fine performance - with other features to be
found nowhere else in the warld. For example, compactness - Project 80 control units are $\frac{3^{\prime \prime}}{4}$ deep $\times 2^{\prime \prime}$ high, and each one is completely self-contained.
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Flexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System
of your choice gives you the best.

Sinclair Project 80

technically
 the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z.40 (18 watts RMS continuous into 4 ohms using 35 V) and Z.6 D (25 watts RMS continuous into 8 ohms using 50 V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules. Any further units likely to be added to Project 80 range will be compatible with those already available.

Guarantee

If, within 3 months of purchasing any product direct from us. you are dissatısfied with it. your money will be refunded on production of receipt of payment. Many Sinclar appointed stockists also offer this guarantee. Should any defect arise in normal use, we will service it without charge.

Stereo 80 Control Unit Size $-260 \times 50 \times 20 \mathrm{~mm}\left(10 \frac{1}{2} \times 2 \times 1 \mathrm{~ns}\right)$ Finish - Black with white indicators and transparent sliders Inputs - Magnetic pıck-up 3 mV RIAA corrected: Ceramic pick-up 350 mV Radıo 100 mV : Tape 30 mV Signal/noise ratio - 60db Frequency range -20 Hz to 15 KHz $\pm 1 \mathrm{~dB} ; 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$ Power requirements -20 to 35 volts Outputs $100 \mathrm{mV}+\mathrm{AB}$ monstoring for tape Controls - Press button tape radıo and P.U. Sliders on each channel for volume bass treble \quad (add £1.19 V.A.T.) $£ 11.95$
Project 80 FM Tuner size $-85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times 1$ ns) Tuning range Dual varicap -87.5 to 108 MHz Detector - I.C. balanced coincidence One I.C. equal to 26 transistors Distortion -0.2% at 1 KHz for 30% modulatıon 4 pole ceramic filter in I.F. section Aerial impedance -75Ω or $240 \cdot 300 \Omega$ Sensitivity -5 microvolts for 30 dB S $/ \mathrm{N}$ ratio Output -300 mV for 30% modulation Power requirements -25 to 35 volts
R.R.P. (add $£ 1-19$ V.A.T.) 11,95
Project 80 Stereo Decoder size $-47 \times 50 \times 20 \mathrm{~mm}(1 \mathrm{~B} \times 2 \times$ sins) One 19 transistor I.C. Channel separation greater than 30 dB Power requirements -25 V Output 150 mV per channel R.R.P. 74.5
(add 74pV.A.T.) $f / .45$
Active Filter Unit separate controls on each channel. Size $108 \times 50 \times 20 \mathrm{~mm}$ ($4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{nms}$) Voltage gain - mınus 0.2 dB Frequency response -40 Hz to 22 KHz controls mınımum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply H.F. cut off (scratch) -22 KHz to $5.5 \mathrm{KHz}, 12 \mathrm{~dB} /$ oct. slope L.F. cut oft (rumble) -28 dB at $20 \mathrm{~Hz}, 9 \mathrm{~dB} / \begin{gathered}\text { oct slope R.R.P. } \\ \text { (add } 69 \mathrm{p} \text { V.A.T.) }\end{gathered} \mathrm{f} 6.95$
Z. 40 Power Amplifier size $-55 \times 80 \times 20 \mathrm{~mm}(2 \mathrm{t} \times 3 \mathrm{3t} \times \mathrm{Znns)} 9$ transistors Input sensitivity. -100 mV Output 18 watts RMS continuous into $4 \Omega(35 \mathrm{~V})$ Frequency response $-30 \mathrm{~Hz}-100 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio -64 dB Distortion - at 10 watts into 8Ω less than $0 \cdot 1 \%$ Power requirements - $\uparrow 2$ to 35 volts: built-in protection aganst overload. ${ }_{(\text {add } 54 \text { pV.A.T. })}$ f 5.40

Z. 60 Power Amplifier size $-55 \times 98 \times 15 \mathrm{~mm}(2 \mathrm{z} \times 3 \mathrm{3z} \times$ 3ins $) 12$ transistors Input sensitivity -100.250 mV Output - 25 watts RMS continuous into 8Ω (50V). Distortion - typically 0.03% Frequency response - 15 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Built-in protection | aganst transient overload and shoit circuiting Load imped.ance |
| :--- |
| -4Ω min. sade on open circuit |
| R. R.P. (add $69 p$ V.A.T.) |

Power Supply Units pz. 8 Stabllised. Re-entrant current limiting makes damage from overload or even direct shorting impossible. Normal working voltage (adjustable) 50 V. R.R.P. $£ 7 \cdot 98+79 p$ V.A.T. Without mains transformer PZ. 635 V . stabilised R.R.P. $£ 7 \cdot 98+79 \mathrm{p}$ V.A.T. PZ. 530 V unstabilised R.R.P. E4-98 + 49p V.A.T.

To Sinclair Radienics Ltd. St. Ives Huntingdon PE17 4HJ
Please send post paid
for which I enclose Cash/Cheque for E \qquad including V.A.T

Name
Address

AMPLIFIER KITS OF Vislinction

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less than 0.01% even at very fow power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone of the system, namely the equalization stage and tone
control stage. positions where most conventional designs control stage, positions where most conventional designs
run out of gain at the extremes of the frequency spectrum. run out of gain at the extremes of the frequency spectrim.
Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75 W Amplifier Mk III Version (modifications as per Hi-Fi News Aprii 1974)

Full circuit description
in handbook
(pack 15-price 30p)

FREE
кrifactem £62.40 post free (U.K.) £0.65
€3.50
V.A.T. Please add 10\%*
to all U.K. orders
(*or at current rate if changed)
£4.25
for further information
${ }_{\substack{\text { E6.30 } \\ \text { E.30 }}}$ please write for FREE L/ST
f0. 30
€ 7.35
£69.75

POWERTRAN

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL
* DC-COUPLED THROUGHOUT
\star OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

```
Power Bandwidth
Power at clip point (1 chan)
Phase Response
Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise \((20-20 \mathrm{kHz})\)
DC-20kHz@ 150 watts + 1db. - Odb 500 watts rms into 2.5 ohms \(+0,-15^{\prime} \mathrm{DC}\) to 20 kHz . 1 watt 82 Below 0.05\% DC to 20 kHz Below \(0.05 \% 0.01\) watt to 150 watts Greater than 200 DC to 1 kHz at \(8 \Omega\) At least 110 db below 150 watts
```

Other models in the range: D60-60 watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection
Power supply
Dimensions

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10 K ohms to 100 K ohms
Short, mismatch \& open cct. protection
$120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19" Rackmount, 7" High, 97** Deep
D150-150 watts per channel

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 20W LINSLEY-HOOD Pk. 1 F/Glass PCB
Pk. 2 Resistors. capacitors. pots
Pk. 3 Semiconductor set
f0. 80
f 1.75
£ 1.75
f 4.70
0.85
€2.15
f 5.60
E 0.85
£2.40
$£ 3.35$

60V REGULATED POWER SUPPLY
Pk. 2 R/Glass PCB
Pk. 2 Resistors, capacitors. pots BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
$\begin{array}{ll}\text { Pk. } 1 \text { F/Glass PCB } & £ 2.05\end{array}$
Pk. 2 Resistors, capacitors, pre-sets, transistors
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set
(with knobs)
£0.75 £ 1.40 £3. 10
£4.95
£ 1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	¢0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cct. F/Glass PCB	f1.00
For details for free list.	mponent packs for this des	e write

TOROIDALT20 +20
Developed from the famous Practical Wireless Texan

20 WATTS/CHANNEL

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at excepionally low cost. Now further developed to include a true Toroidal transformer this limline integrated circuit design, based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers. including scratch and rumble filters, adaptable input selector and headphones socket.

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers. result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth. each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

 Pack1 Fibreglass PCB (accommo. dates all filters for one channel)
2 Set of pre-sets, solid tantalum capacitors. 2\%
metal oxide resistors. 2\% metal oxide resistors, 2\% 3 Set of semiconductors 2 off each pack required for $£ 2$. system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS 2.6

READ/TEXAS 20wamp.
POWER SUPPLY 1.05 f4.20

FOR 2OW/CHANNEL STEREO
0.70 SYSTEM

Pack
f 1.10
f 2.40
1 Fibreglass PCB diode rectifiers. zener diode. capacitors, fuses, 3 Tuse holders
$£ 1.00 \quad$ For quality sets of speakers
${ }^{\text {Pack }} 1$ Fibreglass PCB
2 Set of resistors, capacitors pre sets (not includ ing O / P coupling capa citors)
3 Sets of semiconductors
6 off each pack required for stereo
4 Special heat sink assembly for set of 3 amplifiers
5 Set of $3 \mathrm{O} / \mathrm{P}$ coupling capacitors
2 off packs 4,5 required for stereo system
£2.4

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	E0. 25	2N4302	¢0.60	BC182L	£0.10	M 3481	£1.20	TIP29C	$\underline{50.71}$
2N1613	20.20	2N5087	80.42	BG184L	ع0.11	MJ491	£1.30	TIP30C	$\underline{20.78}$
2 N 1711	c0. 25	2N5210	¢0.54	BC212L	£0.12	MJE521	£0.60	TIP31A	£0.60
2N2926G	$\underline{20.10}$	2N5457	¢0.45	8C214L	£0.14	MPSA05	¢0.30	TIP32A	$\underline{80.70}$
2 N 3053	c0.15	2N5459	¢0.45	8 CY 72	£0.13	MPSA12	¢0.55	TIP33A	£1.00
2N3055	c0.45	2N5830	£0.30	BL529	¢0.85	MPSA14	¢0.35	TiP34A	E1.50
2N3442	E1. 20	40361	£0.40	B6530	¢0. 85	MPSA55	¢0.35	TIP41A	¢0.74
2N3704	Ec 10	40362	¢0.45	BaY56	f1.60	MPSA65	£0.35	TIP42A	$\underline{80.90}$
2N3707	20.10	BC107	£0.10	BF257	£0.40	MPSA66	20.40	\ddagger N914	£0.07
2N3711	¢0.09	BC108	£0. 10	BF259	$£ 0.47$	MPSU05	¢0.60	in916	£0.07
2 N 3819	20. 23	BC109	£0.10	BFR39	£0. 25	MPSU55	c0.70	IS920	£0.10
2N3904	c0.17	BC125	£0. 15	BFR79	£0. 25	SN72721P	c0. 58	5805	£1. 20
2N3906	c0. 20	BC126	£0.15	BFY50	£0. 20	SN72748P	¢0. 58		
2 N 4058	80.12	BC182K	¢0.10	BFY51	¢0. 20	TIP29A	$£ 0.50$		
2N4062	ع0.11	BC2 12K	¢0.12	BFY52	£0.20	TIP30A	£0.60		

for further information please write for FREE LIST NOW!

KIT PRICE only
 £28.25

post free (U.K.)

Pack		Price
1	Set of all low noise resistors	£0.80
2	Set of all small capacitors	£ 1.50
3	Set of 4 power supply capacitors	£1.40
4	Set of miscellaneous parts including DIN sockets, fuses fuse holders. control knobs. etc.	$£ 1.90$
5	Set of slide and push-button switches	£0.90
6	Set of potentiometers and selector switch	£ 1.45
7	Set of all semiconductors	£8.25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	¢2.50
10	Complete chassis work. hardware and brackets	£4.20
11	Preformed cable/leads	¢0.40
12	Handbook	£0. 25
13	Teak Cabinet	£2.75

V.A.T. Please add 10\%*
to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS—Post free (mail order only)
OVERSEAS—Postage at cost + special packing

Dept. WW06

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

P....BORED?

- not with the

 DAIO ${ }^{3} 3 P 6$

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.
The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!
£1. 10 for one-off, $£ 4.40$ for six, $£ 8.80$ for twelve. VAT and post included. Available now in every country in Europe.

WW- 044 FOR FURTHER DETAILS

The new Rank WOW \& FLUTTER Meter Type 1742

Fully transistorised
for high reliability
Versatile
Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy
with crystal controlled oscillator
Simple to use
accepts wide range of input signals with no manual tuning or adjustment

> Two models available:
> Type 1742 'A' BS 4847: 1972 DIN 45507
> CC1R 409-2 Specifications
> Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, POBox 70
Great West Road, Brentford Middlesex TW8 9HR
Tel: 01-568 9222. Telex 24408. Cables Rankaudio Brentford

PRICE STILL ONLY £80 (excl. VAT)

CALCUCOUNTER

* Large eight digit display
* Five functions (+ . $-\times, \div, \%$) with memory
* Automatic constant and chain operations
* All floating decimal calculation system
* Repeat-on add and subtract
* Automatic percentage operation
* Overflow, negative and memory signs
* Sign change key
* Discount/Uplift logic
* Multi-usage of clear key
* Battery-low indicator

D/IS * Count Up/Count Down * Stop Watch function L - Facility to equate counting time to mathematical calculation i.e., cost exercises, time and motion studies
INTRODUCTION PRICE: £38 (excl. VAT)

Q1-616

* This sophisticated calculator is presented in a unique book type casing and is supplied with a high quality suede carrying case. It can be used as a portable unit or run from the mains
* 12 digits with one memory
* Full floating decimal point
* Selectable memory operation with keys or automatic accumulation with a switch
* Overflow negative and memory in use indication
* Leading zero suppression
* Fixed point (2 or 4 places) or floating output
* Adding machine mode
* Item count
* Memory protection
* Automatic power-on clear
* Battery low indicator
* Multi-usage of clear key
* Calculations: Addition, subtraction, multiplication, division, Constant and chain operation, repeat add and subtract. Fully automatic percentage, add-on, discount operation
* Operating temperature $0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$
* AC adaptor socket
* Supplied with dry-cell batteries

SPECIAL PRICE: £45 (excl. VAT)

7-day trial offer-Money-back guarantee

Orders received for any calculators during August/September will be supplied with a free AC Adaptor.

ITTTELH PRODULTS LITIITED

Illustrated brochure and information on your local Distributor from Eddystone Radio Limited,
Alvechurch Rd, Birmingham B31 3PP, England. Telephone: 021-475 2231. Telex: 337081.

A member of Marconi Communication Systems Limited

\star EX-STOCK DELIVERY

* SIX DECADES
\star SCALE FACTOR \& REF LEVEL (adjustable)
$\star 1 \mathrm{nA}$ to 1 mA OPERATING RANGE (std)
* TRUE LOGARITHMIC FUNCTION
* SCALE FACTOR SLOPE $1 v$ per DECADE
* REF. LEVEL 0 Volts OUT for $1 \mu \mathrm{~A}$ IN
\star ACCURACY $\pm 0.25 \mathrm{db}$
* BUILT IN AMPLIFIER
\star ANTI-LOG MODULE AVAILABLE
ancon ld levonshire street

WW-127 FOR FURTHER DETAILS

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules
in standard $19^{\prime \prime}$ crates small size-low weight -realistic prices.

Fylde Electronic Laboratories Limited 49/51 Fylde Road, Preston PR1 2XQ Telephone: PRESTON 57560

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out, and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.
BIAS ELECTRONICS LTD.
01-5408808 572 KINGSTON ROAD, LONDON SW20 8DR

DAVENPORT

FULLRANGE LINE SOURCE PUBLIC ADDRESS

SPEAKER UNITS
SPEAKERS

Layout of SPEAKER UNITS

Eight $8^{\prime \prime} \times 5^{\prime}$ elliptical and one 10° twin cone CABINET HEIGHT 48: •

A BROCHURE GIVING FULL SPECIFICATION; INCLUDING SPECIFIC SOUND PRESSURE LEVELS. FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FROM THE MANUFACTURERS.
S. B. DAVENPORT LTD.

ELLES RD., FARNBOROUGH. HAMPSHIRE, ENGLAND
TELEPHONE FARNBOROUGH (HANTS) 514551

WW-039 FOR FURTHER DETAILS

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250. Look at extracts from the specification below.

Power output.
Rated:

Distortion.
Pre-amplifier:
Power amplifier. at rated output: at 25 w output:

Maximum: $\quad 90$ watts average power per channel into
50 watts average continuous power per channel, into any impedance from 4 to 8 ohms, both channels driven. 5 ohms load.

Zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006\%.

Overload margin. Disc input $\quad 40 \mathrm{~dB}$ min.

Hum and noise output.
Disc:
-83dBV Measured flat with noise bandwidth of 23 kHz .
-88dBV Measured with ' A ' weighted characteristic
-85 dBV Measured flat.
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

The
 Great Sound of Vitavox

Nothing succeeds like success.
You met the new Vitavox power range last year. Its success was instantaneous, and has been growing ever since.
Good - but not good enough for us. We have been, and are, continuously improving our units. We want to give you the best value and performance - so now we offer you, improved on 1973, the latest .

> S3 Pressure Unit AK 156 Loudspeaker H.F.Horn Dividing Network

The matchless range ~now better than ever... Giving You ...

Efficiency

YITAVOX
Westmoreland Road, London NW9 9RJ Telephone: 01-2044234

Please send me further information on your product range

Name
Company \qquad
Address

ENGINEERS

等YOURSELF FORA
 BETTER JOB wim

higher waynt promotion, a better job. higher pay? "New Opportunities"'shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-youbooks
learn.

The B.I.E.T. guide to success should be read by every ambittous engineer. Send for this helpful 76 page FREE book now. No obligation and nobody will cal now. No obligation and nobody will call
on you. It could be the best thing you
ever did. on you. It could be the best thing you
 CHOOSE A BRAND NEW FUTURE HERE! Tick or state subject of interest. Post to the address below.

NAME (Block Capitals Please)
ADDRESS
Other subjects
Accredited by C.A.C.C.
Age
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from - $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price f20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON WC1X 8AX ('Phone 01-837 7937)

IP I.L.P. (Electronics)Lto

Mono electrical circuit diagram with interconnections for steren shown

The HY5 is a complete mono hybrid preamplifier, ideally sulted for both mono and stereo applications. internally the device consists of cono hins quanency equalisat ion and gain correction, while the second caters for tone control and
balance.
TECHNICAL SPECIFICATION
Inputs
Magnetic Pick.up 3 mV .RIAA Ceramic Pick-up Microphone
Tuner
Auxillary
Input impedance
Outputs
Main output Odb (0.775 volls RMS)
Active Tone Control:
Trebte $\pm 12 \mathrm{db}$ at 10 kHz
Bass $\pm 12 \mathrm{db}$ at 100 Hz
0.05% at 1 kHz
Signal/Noise Ratio 68 db
Overload Capability 40 db on mosit
Supply Voltage sensitive input
PRICE £. $4.50+0.45$ V.A.T. P \& P free.
TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

Thesymbol of sound quality.

Outdoor Weatherproof Speakers

Specially constructed for outdoor use with complete weather and water protection built in.
Power ratings up to 25 watts RMS.

An example of a weatherproof speaker from a range which even includes an underwater speaker.

For further information and address of your local stockist write to:
K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-006 FOR FURTHER DETAILS

BY USING A
DIACROM SPATULA

Manufactured in France
British Patents applied for
No other cleaner has all these advantages:-

1. Ontr 100% pure, natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents clogging of the
diamonded surface by residues resulting from use.
3. Alf diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive
scratching during use. scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200,300 or 400 .
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handie is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on
highly delicate relays.

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For quick cieaning of industria. - Gelays and swirching equipment. etc
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$.. both faces diamonded. For smaller equipments, fike telephone relays, computer relays, etc
Grain size 400 , thickness $25 / 100 \mathrm{~mm}$. one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned. because only one
face of the spatula is abrasive

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Authorities: also major industrial and electronic users throughout the United Kingdom

WW-011 FOR FURTHER DETAILS

STRIP CHART RECORDERS

miniature single-pen switchboard pattern recording MILLIAM METER TYPE H3100

SPECIAL FEATURES Rectilinear recording. Large capacity ink-well Provision of separate time marker pen energized from a $24 V$ D.C. source. High/low speed switch for selecting high or low chart speed for each set of change gears.
Full scale deflection 1 mA D.C
D.C. resistance 18100Ω.

Chart drive 220/250V AC.

TEN-CHANNEL EVENT

 RECORDER TYPE H3O Ten individualiy energized pens providing time analysis of switching and sequence of separate operations.6 chart speeds from 20 to $5400 \mathrm{~mm} /$ hour. Chart 110 mm wide 50 ft long. PRICE complete with 10 charts and accessories $£ 62.00$

SINGLE CHANNEL MULTIRANGE UNIVERSAL PORTABLE RECORDING VOLTAMMETER TYPE H390
Voltage ranges: 5 to 500 V AC/DC. Current ranges: 5 mA to $5 \mathrm{~A} \mathrm{AC/DC}$ 6 chart speeds: $20-5400 \mathrm{~mm} /$ hour Chart width: 100 mm .
Chart length: 50 ft .
PRICE, complete with 10 charts and accessories $\mathbf{£ 7 8 . 0 0}$

Chart width 80 mm
Chart length 40 ft .
Chart speeds: 20-60-180-
600-1800-5400mm/hour
Overall dimensions:
$120 \times 120 \times 285 \mathrm{~mm}$.
Price $£ \mathbf{£ 4} .00$

As.

TRANSFORMIFRS

CASED TRANSFORMERS

\begin{tabular}{|c|c|c|}
\hline SAFETY Prim. $120 / 240 \mathrm{~V}$
WATTS
(\& IS \& ATI

\hline \& \&

\hline ${ }^{100}$ \& ${ }_{150}^{149}$ \&

\hline - \& 152 \& ${ }_{12} 9.45$

\hline 350
500 \& (1534 \& 145900

\hline 1000

2000 \& (156 \& (30.70

\hline \& ${ }_{159}$ \& ${ }_{79} 6.95$

\hline
\end{tabular}

MINIATURE \& EQUIPMENT Primaty ${ }^{240 V}$ with Scieem

12 and 24 VOLTS PRIMARY $200-240$ Yoits

	AMPs ${ }_{24}$	TYPE	${ }_{\text {cick }}^{\text {PRICE }}$
${ }_{0}^{12.3}$	- 24.15	${ }_{24}{ }^{4}$	1.36
0.5	${ }_{0}^{0.5}$	${ }_{213}^{113}$	${ }_{1}^{1.59}$
${ }_{4}^{2}$	1	71 18	${ }_{2}^{2.75}$
${ }_{8}^{6}$	3	70 108	-3.56 3.96
10	${ }_{6}^{5}$	${ }_{1} 116$	${ }_{5}^{4.67}$
$\underset{\substack{16 \\ 20}}{ }$	\% ${ }^{8}$	+1168	
${ }_{30}^{20}$	${ }_{15}$	187	13.75
${ }_{60}^{40}$	${ }_{30}^{20}$	${ }_{226}^{232}$	18.26 2252

30 VOLTS

BATTERY CHARGER TRANSFORMERS

2 Amp 2-6-12 Volts
4 Amp 2-8-12 Volt 6 Ampp G-12 Volls
12.5 Amp 2-G-12 Volts
hectifiers ndt included

NEW
PRODUCTS!
Don't chance it!
isolate it!
"SPLASH PROOF" SAFETY
TRANSFORMER
750 VA Isolation Unit
(Interwinding Screen)
Housed in a tough Fibreglass case. with
carrying handle. Complete with heary duty tarnying handle. Complete with heavy duty
3 -core power cable. splash proot outlei plug and socket internal fuse. 110 Volt and 240 Volt versinno ~railable.

PRICE $£ 26$-20 CARRIAGE f 1.30

AUTO TRANSFORMERS

BRIDGE RECTIFIERS
 [0]

ONE AMP Price Two AMP Pric $\begin{aligned} & 50 \text { P.I.V. } 0.25 \\ & 100 \text { P.I.V. } 0.25 \text { P.I.V. } \\ & 0.00 \text { P. }\end{aligned}$ $\begin{array}{lll}200 \text { P.IV. } & 0.28 & 200 \text { P.IV } \\ 500 \text { P. } & 0.30 & \end{array}$ FOUR AMP $\begin{array}{ll}0.30 & 400 \text { P.I.V. }\end{array}$ $\begin{array}{llll}100 \text { P.I.V. } & 0.55 \\ 200 \\ 200 \\ 0.59 & 50 \text { P.I.V. } & 100 \text { P.I.V. }\end{array}$ $\begin{array}{llll}400 \\ 600 & \text { P.I.V.V. } & 0.65 & 2000 \\ 0.75 & 400 \text { P.I.V. } & \end{array}$

2" AND 4 PANEL METERS
 ${ }_{\text {SIZE: }} \quad 2^{60 \mathrm{~mm}}$ Wide SIZE:
45mm.
Deep.
 $0-50$ micro A.
$0-100$
micro A. $0-500$ micro A $0-1 \mathrm{~mA}$
$0-5 \mathrm{~mA}$
$0-10 \mathrm{ma}$ $0-5 \mathrm{~mA}$
$0-10 \mathrm{~mA}$
0.50 mA
$\left.\begin{array}{l}0-10 \mathrm{~mA} \\ 0.50 \mathrm{~mA} \\ 0-100 \mathrm{~mA}\end{array}\right)$
$0-1$
$0-500 \mathrm{~mA}$
$0-1$ AMP
$0-2$ AMP
$0-25$ volt
$0-50$ volt
0
$0-300$ Voli
" 0 Meter
vu Meter
\qquad SIZE 110 mm Wide \times
82 mm High $\times+3 \mathrm{~mm}$ 0 min Oeep.
Movemert
2" AND TRS

- Meer - 5

MINIATURE NEONS

6 mm Dia. 12 mm length, leads length approx. 20 mm
fecommended balliast resistor 150 K ohms for 240 Volt operation.
Postagr 10 p
ELECTRONIC MAINS TIMER A reliable unit ideal for timing Bathroomy
Toilet Ventiliators. Stainway/Cloakroom Lightury etc. Gives up 1030 mins delay before switching off. Oeflay: $1-30$ mins adjustabie Max Load 400 VA or 1000 Wotts resistive. Ivory Case
3 in $\times \quad 3$ 咅in. $\times 2$ in. Fitting Instructions 3 in in $\times 3$ is. in. $\times 2$ in. Fitting Instructions
included. Trade Price: $\mathbf{f 5} \mathbf{5 0}$. Post 20p.

MAINS KEYNECTOR

 The sate, quick. connector for electricalappliances. 13 Amp rating, fused will connect a number of appliances quicky and sofety to the mains. ideat for
testing. demenstrating, window displays. testing. demionstraung, windows displays,
atc. Warning Light interlocked to prevem atc. Warning Light
connacting when live.
Trade Pُice: : $\mathbf{8 2}$.95. Poss 25 p.
QUALITY INSTRUMENT CASE Strongly moulded ot High Gloss Grey interlocking halves secued by four interiocting halves set
corner bolts tsuppliedt) Interior Sire:
$6 t^{\prime \prime} \times 5 t^{\prime \prime}$ Wall Thickness: " $^{\prime \prime}$ Weight $11 \frac{1}{5}$ ous. Price $£ 1.50$. Posi 15

MODEL 8 MK. V

TC SOLVE YOUR INSTRUMENT PROBLEMS CONTACT

Now suitable for U.K., European and American voltages...

Minimod, the versatile British made range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

Type Number	Output Voltage	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
PU01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
PU03	$15-0-15 \pm 0.2$	0.10	37	0.1
PU04	$15-0-15 \pm 0.2$	0.20	84	0.1
PU05	$12-0-12 \pm 0.2$	0.12	45	0.1
PU06	$12-0-12 \pm 0.2$	0.24	120	0.2

Input voltage ranges 103-126V, 200-240V. 210-250V. Frequency $50-400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is avaitable on request.

\star SPECIAL DESIGN SERVICE

Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

The symbol of sound quality.

Ideal for mobile use. Finished in Vynair for style to match performance.
Power rating from 25 watts RMS to 100 watts RMS.
R120XH. One of a range of six superb Power speakers.

For further information and address of your local stockist write to:
K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

P.A. \& Disco Speakers

Designed to satisfy the demand for high quality sound required by Discotheques and advanced PA systems.

WW-007 FOR FURTHER DETAILS

low cost memory card is easy to interface....

[^0]
limrose electronics 1 td.

101. 962928 8863

MAPLIN ELECTRONIC SUPPLIES

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101 - \int Please add 10% to the final total. Post and Packing FREE in U.K. (15p handling charge on orders under $£ 1$)

First-class post pre-paid envelope supplied free with every order.

CATALOGUE

Send just 25 p NOW! for our superb 80-page CATALOGUE. It's packed with photographs, illustrations, and pages and pages of detailed data on our complete range of transistors, diodes, I.C.s etc., etc.
Seeing exactly what you're buying makes ordering so easy!
LEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (Just send s.a.e. please for leaflet.)

LEAFLET MES 51: Describes a complete electronic organ which can be constructed using our highquality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leaflet MES SI.)

ORGAN BUILDERS

 MES announce the very latest development in organ circuitry.
THE DMO2

13 Master Frequencies on ONE tiny circuit board LOOK AT THESE AMAZING ADVANTAGES $\star 13$ frequencies from C 8 to C 9 . . Each frequenc
digitally derived from a SINGLE h.f. master oscillato digitaly derived from a sin WHO h.f. master oncliate SIMPLE ADJUSTMENT. \star Relative tuning NEVER DRIFTS! \star External control allows instant tune-up ypes of dividers including the SAJIIO. \star And each youput can also be used as a direct tone source. \ddagger Vari able DEPTH AND RATE tremulant optional extra \star Gold-plated
fibreglass board (including edge connexion. © Complate if required) ONLY 3.7 in. $\times 4.5 \mathrm{in}$. \# Very low power consumption.
 and fully guaranteed.
DMO2
(with tremulant) ONLY
DMO2

| 214.25. (withou |
| :--- | :--- | :--- |
| DMO2 | SAJIl10 7-stage frequency dividers in one 14 -pin DIL package. Sine or square wave input allows operation from almost any type of master oscillator including the

DMO2 (when 97 notes are available). Square wave DMO2 (when ${ }^{\text {Dut }}$ notes are available). Square wav of a few components. SAJI10: $£ 2.63$ each OR special price for pack of $12: £ 25.00$. S.a.e. please for data sheet

Centurion
PROFESSIONAL QUALITY

INSTRUMENT CASES

 op, base, sides and detachable
rear panel, blue hammer. Detach Dimensions in inches.

Dimensions in inches.				
Model	W	H	D	Price
120	8	$2 \frac{1}{2}$	6	¢2.87
220	8	$6{ }^{\circ}$	31	£3.78
221	8	6	6	84.07
320	120	8	12	88.42
Chassis	mod	4 ext		

SYNTHESISERS

We stock all the parts for the "Electronics Today International" synthesiser including all the P.C.B.s required and all the metalwork including a drilled and printed front panel for a truly professional finish. Some of the circuits in this brilliant design are entirely original Independent authoritasive opinions agree, the E.T.I. International Synthesiser is technically superior to practically all synthesisers available today. S.a.e. please for our detailed price lists.

WW-014 FOR FURTHER DETALLS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

nombrex

MODEL 45 DIRECT READING FREQUENCY METER price $£ 37.00$ + vat

- MEASURES FREQUENCY FROM 10 Hz TO 100 kHz .
- MEASUREMENT INDEPENDENT OF SIGNAL WAVE FORM.
- ACCEPTS INPUT LEVELS FROM 10mV TO 5V.
- four decade switch ranges.
- SENSITIVITY CONTROL.
- calibration control.
- POWERED BY 9 VOLT BATTERY.

Trade and Export enquiries welcome.
Send for full technical leaflets.
Post and Packing 35p extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON
Tel: 03-952 3515

SM-118A

Top quality plus kit building satisfaction

with these Heathkit frequency counters
IB-1100 30 MHz counter with 5 digit readout, 8 digit capability: 100 mV sensitivity: time-base stability $\pm 3 \mathrm{ppm}$. K/IB-1100 kit $£ 74.80$
IB-1101 100 MHz counter with 5 digit resolution. 8 digit capability: $50-100 \mathrm{mV}$ sensitivity: wide range input. K/IB-1101 kit $\mathbf{£ 9 3 . 5 0}$
IB-1102 120 MHz counter with 8 digit readout: $45-125 \mathrm{mV}$ sensitivity: time-base stability better than $\pm 1 \mathrm{ppm}$. K/IB-1102 kit £167.20
IB-1103 180 MHz counter with phase-locked frequency multiplier: $8 \frac{1}{2}$ digit display plus over-range: $50-100 \mathrm{mV}$ sensitivity: time-base stability better than $\pm 1 \mathrm{ppm}$. K/IB-1103 kit $\mathbf{£ 2 2 2 . 2 0}$
(Above kits are also available assembled and calibrated)
The SM-118 and SM-128 have full autoranging capability.
The SM-118 gives guaranteed performance to 30 MHz and the SM-128 to 110 MHz with typical performances considerably better. A front panel sensitivity control gives adjustment of the input amplifier trigger level from 10 mV . and the two preset gate intervals of 1 sec . or 10 mS are switch selectable.
Assembled and calibrated: A/SM-118 $\mathbf{£ 1 4 9 . 0 0}$ and A/SM-128 $\mathbf{£ 2 1 5 . 0 0}$ (Not available in kit form)
Kit prices include VAT and carriage and packing. Assembled prices include carriage and packing but do not include VAT.
For details of these and many more instruments in the Heathkit range send now for two FREE catalogues.

Please send me the FREE HeathkitElectronic Kit Catalogue Electronic Instrument catalogue

Name

\qquad
Address
\qquad

Heath (Gloucester) Ltd., Dept.WW/8/74 Bristol Rd., Gloucester GL2 6EE
(Showroom, factory and head office)
London Showroom: 233 Tottenham Court Road,W.1.

WW-034 FOR FURTHER DETAILS

THEN CONTACT THE APPOINTED U.K. DISTRIBUTORS:-
REPAIR AND
RECALIBRATION
SERVICE AVAILABLE
ON AVO MULTIMETERS

ranall
FARNELL instruments limited, sandbeck way, wetherby, yorkshire LS22 4DH TEL: 0937 3541 TELEX 557294 LONDON OFFICE TEL: 01-802 5359

WW-030 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit-low cost distortion measurement down to $.01 \% \quad \mathbf{£ 3 5 . 0 0}$

Si451 $\quad \mathbf{4 2 . 5 0}$ Si453 $\mathbf{£ 5 0 . 0 0}$ Comprehensive Millivoltmeter Low distortion Oscillator 350μ Volts
sine square
RIAA prices plus VAT
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATON, YORKSHIRE

DIXONS TECHNICAL RE-FII SAIE

ALL STOCKS MUST CLEAR BEFORE REFITTING

Top names at rock bottom prices, right now. All on because we're completely refitting the shop. In future, it will be bigger and better than ever. When you step into Dixons, you're into the largest
range of CCTV and audio visual equipment available in this country.
Everything we sell is of the highest possible quality. And now, it's at the lowest possible price.

SEE WHAT WE MEAN

All Audio-Visual		
VIDEO TAPE RECORDERS	List Price	Sale Price
	Ex. VAT	Ex. Vat
ITC 3113E 1" (Demo Soiled)	f1350.00	£750.00
ITC 321E ${ }^{\prime \prime}$ " EiAd Std. (New)	£420.00	f320.00
ITC 321E ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ EIAJ Colour (New)	$£ 595.00$	f450.00
NATIONAL 3020E $\frac{1}{2}$ " EIAJ Std. (New)	£385.00	£265.00
NATIONAL 3030E $\frac{1}{2}$ " EIAJ Std. Edit.	£588.00	¢430.00
NATIONAL NV 1079 Time Lapse $\frac{1}{2}{ }^{\prime \prime}$	£649.00	£445.00
VIDEO CAMERAS		
ITC CTC 6000	£410.00	£300.00
ITC CTC 5000	£175.00	f130.00
ITC CTC 2002	£215.00	f165.00
ITC CTC 800015 MzH Band Width	£875.00	f650.00
MIRAGE HD 800	f215.00	f165.00
NATIONAL 341 N with $5^{\prime \prime}$ V/Finder	£320.00	£225.00
ITC CTC 4000	£110.00	¢90.00
ITC OD520 Camera in Out Door Housing	£215.00	£170.00
VIDEO MONITORS		
ITC PM 52T 5" Monitor	£105.00	£78.00
ITC PM $9009^{\prime \prime}$ Monitor	£90.00	£75.00
ITC PM 96T 9" Monitor	£95.00	f80.00
ITC PM 171T 17" Monitor	£140.00	£112.00
ITC PM 171TS 17" Monitor with Sound	£160.00	f128.00
ITC PM 201T 20" Monitor	£160.00	f128.00
ITC PM 201TS 20" Monitor with Sound	f17500	f140.00
NATIONAL TN $636{ }^{\prime \prime}$ Monitor	f92.00	f65.00
NATIONAL TN 303 Bank of $3 \times 6^{\prime \prime}$ Montors	£265.70	£190.00
NATIONAL TN 95E $9^{\prime \prime}$ Monitor with Sound national tn 952e Bank of $2 \times 9^{\prime \prime}$ Monitors		
national tn 93E $9^{\prime \prime}$ Monitor	¢95.00	f76.00
NATIONAL TN 932E Bank of 2×9 " Monitors	£195.00	f152.00
PORTABLE VIDEO KITS		
AKAI VT110 Kit $\frac{1}{4}$ " Tape	£595.00	f500.00
NATIONAL 3082 Kit $\frac{1}{2 \prime \prime}$ Tape EIAJ Std.	£750.00	f595.00
NATIONAL WY904 Edit Selector with		
Power Supply	$£ 50.00$	f35.00
AKAI VC 115 Deluxe Photographic	£675.00	¢550.00

New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones,

television , automotive instrumentation. - - .

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.
\(\left.$$
\begin{array}{ll}\text { Digital Compiter } & \begin{array}{l}\text { Also available - a more } \\
\text { elementary course assuming } \\
\text { no prior knowledge except } \\
\text { simple arithmetic. }\end{array}
$$

In 4 volumes:\end{array}\right]\)| 1. Basic Computer Logic |
| :--- |
| 2. Logical Circuit |
| Elements |

Designer Manager Enthusiast
 Scieritist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

1 ComputerArithmetic

$2_{\text {BooleanLogic }}$
3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design ComputerArchitecture

[^1]

Industrial Tape Applications 5 Pratt Street, London NW1 OAE. Tel: 01-485 6162 Telex: 21879

WW-068 FOR FURTHER DETAILS

The symbol of sound quality.

Indoor Column

Speakers
Ideal for Clubs, Cinemas, Concert Halls, Churches etc. particularly suitable where a coustic difficulties are experienced-especially feedback.
Alternative finishes available are Black Vynide or Teak.
Power ratings from 10 watts RMS to 30 watts RMS.

W410: One of a range of 4 columns available. 15 ohms impedance, or 100 v line.

For further information and addres; of your local stockist write to K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

HART ELECTRONICS

AUDIO KITS

F.M. TUNER

This latest addition to our range will be in production late March 74. It is designed to offer the best possible periormance allied to the ease of operation given by push bution varicap no coils to wind. no RF circuits to wire and no alignment is required, in fact the whole unit can be easily completed and working in on evening as there are only 3 transistors. One ic and two ready built and aligned modules comprising the active components. We have abandoned the $1 \frac{1}{2}$ in. $\times 4 \mathrm{in}$. It can be mounted on the side of our Bailey amplifier metalwork thus turning into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in. Cost of tuner chassis (no case) is £22 for mono. E25-45 for stere
extended wooden case to fit tuner and amplifier will be offered shortly. extended wooden case to fit tuner and amplip
BAILEY/BURROWS/QUILTER PRE AMP.
The best engineered kit available of the combined best of three pre-amp designs. This is the kit with no wiring to the controls. switches or inpuls. A comple and sophisticated 5 inpe signal processing stage for any power amplifier requiring up to $1 \frac{1}{2} \mathrm{v}$ input for only $£ \mathbf{E} \mathbf{0 - 5 0}$
Front end only $\mathbf{E T 0 . 4 4}$. Tone control only $£ 17.41$. BAILEY 30 WATT POWER AMPS
Our best selling power amplifier. you cant better its performance or the quality of the kit and at oniy $\mathbf{~} 9.88$ per channel, it's amatin walue for money
Our first venture into instruments and by the way it's selling it won't be long before we're offering others. It is of course unique as $1 t$ measures $D C$ and $A C$ voits. resistance. capacitance period,
Our printed circuits and components offer the easy way to convert any suitable quality deck Total cost varies but around $\mathbf{E 3 5}$ is $\mathbf{3} / 1$ you need. We can offer tape heads as well if you want All above kits have fibreglass PCB's. Prices emclude VAT but P\&P is included
Further information is in our lists FREE if you send us a 9 in. $\times 4$ in. S.A.E.
REPRINTS
Post tree, no VAT
Bailey 30 W 180
STUART TAPE RECORDER
All 3 articles under one cover 30 p
BAILEY/BUHA

Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday.

Five RCA VOM's priced from £8.00 to £32.50*

There are 14 additional RCA Voltmeters to choose from . . All 19 instruments come complete with test leads. Full RCA guarantee (12 months parts and labour). To buy: order from RCA Limited, Sunbury-on-Thames, Middlesex. Phone: Sunbury-on-Thames 85511
*excluding V.A.T.
ELECTRONIC COMPONENT SUPPLIES (WINDSOR) LTD. THAMES AVENUE, WINDSOR, BERKSHIRE Telephone: WINDSOR 68101

EDMUNDSON ELECTRONIC COMPONENTS LTD. 30-50 OSSORY ROAD. LONDON SE1 5AN Telephone: 01-2370404

BLACK ARROW ELECTRONICS LTD.
Wirelect House,
ST. THOMAS STREET, BRISTOL 1
Telephone: BRISTOL 294313

Phoenix Electronics

 (Portsmouth) Ltd139-141 Havant Road
Drayton, Portsmouth. Hants PO6 2AA
Full member of AFDEC - the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFER-

Panel hardware kit.
$2 \times$ F296 fuseholders. 10 fuses. 4 each K107. K430. K498, K499 knobs, $2 \times$ SM270 DPCO switches, $2 \times$ P429/P430 plugs and sockets, 2 each crocodile and pin clips. BARGAIN PACK PEP5-£3.90

Please send your catalogue-free!
Name
Address \qquad
\qquad
 WW- 025 FOR FURTHER DETAILS

TEAC 4-CHANNEL INDUSTRIAL RECORDER

ITA-TEAC
ITA 10-4
MODULAR MIXER

Ten inputs. Four output groups. Four limiters Base, mid, treble EQ. Balanced inputs. Modular construction. Headphone monitoring.
IMMEDIATE DELIVERY.
£ 590 + VAT

sole supplef: NOTE NEW ADDRESS~

TAIndustrial Tape Applications 5 Pratt Street, London NM1 QAE. Tel: 01-485 6162 Telex: 21879

WW-069 FOR FURTHER DETAILS
 WW-024 FOR FURTHER DETAILS

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input $\mathrm{Via} \mathbf{5 0} \mathrm{ohm}$ BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts $A C 50 \mathrm{~Hz} 10$ watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height 4.375 in . (11.2 cm) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight 1 Olbs (4.5 Kg .)

For further details contact the soie distributors of STARWET equipment

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

WirelessWorld FULL COLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$
ORDER FORM
To:IPC Electrical-Electronic Press Ltd.,
General Sales Dept., Room 11,
32 Stamford Street, London SE1 9LU
Please send me.
Wireless World Wallchart of Frequency
Allocations at 80p each inclusive.
Ienclose remittance value $£$
(cheque/p.0. payable to IPC Business
Press Ltd.)
Name
(please print)
Address
Registered in England No. 677128
Regd. office: Dorset House, Stamford Street,
London SE1 9LU

DC/AC SINEWAVE TRANSVERTORS

(transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD, BRITISH LEYLAND, including ROVER-TRIUMPH, VAUXHALL, develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Trans. vertors.

Type	Input Volts	Output	Price \& 10\% VAT
C12/30S	12	$115 / 230 \vee 50 \mathrm{~Hz} 30 \mathrm{~W}$ Sine Wave	£35.70
R12/250/24R	12	24 7A DC	£75.55
R24/250/50R	24	503 A Regulated	£97.25
D12/400S	12	115/230 400W 50 Hz Sine Wave	£197.00
D24/500S	24	115/230500W 50 Hz Sine Wave	£197.00

All prices $+10 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$ at same price
For operating frequency and wave form sensitive equipment such es sound tape recorders, video tape recorders, professional film cameras. sensitive instruments. etc
Other models available for inputs of 24, 50, 110 and 220 volts DC. Square waveform output also available, generally from stock. Send for informative brochure.

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New ... Refurbished . . . Installation . . .
Maintenance . . Overhauls ... Spare Parts . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP.

 EQUIPMENT
SIEMENS

 EQUIPMENTOTHER
EQUIPMENT

SPECIAL EQUIPMENT

$$
\text { TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, } 74
$$

HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800: B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature.
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \mathrm{w} . \mathrm{p} . \mathrm{m} \text {. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and W/T signals up to } 300 \text { w.p.m. } \\
& \text { CODE CONVERTERS converting from } 5 \text {-unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \text { w.p.m. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. }
\end{aligned}
$$

Train for television

Course commences 4th September, 1974
This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma. Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers-including the latest colour sets.

Minimum entrance requirements are Senior Cambridge or 'O' Level, or equivalent in Mathematics and English.

Please send free prospectus to:
Name
Address

PUSH BUTTON SWITCH MODULES FOR P.C. BOARD APPLICATIONS Series 82

Specific advantages

1. Size of the button and the low contact pressure makes for very convenient, fast operation.
2. Shallow unit $.75^{\prime \prime}$ high.
3. Highly reliable gold-plated contacts with long wiping action.
4. Modules can be mounted to provide various numbers in one group.
5. Typical application: telephone switchboard, data input terminals, tone generators.
6. Low noise.

Rating at 5 V d.c.: 100 milliamps.

33-41 DALLINGTON STREET, LONDON ECIV OBD Tel: 01-253 9107
Telex: 267284 Cables: Hielec London E.C.1.

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

Celzstion Loudspeaker Engineering
advances the state of the art to a
new plateau.

Ditton 66 Studio Monitor

1.) Celestion's new super tweeter. 2.) New design 'pressure' mid-range unit. 3.) Ultra Linear $12^{\prime \prime}$ Bass drive unit. 4.) A.B.R. ensures controlled bass down to 18 Hz . 5.) Precision crossover for perfect system integration.

A new Losdspezter of advanced desige suitable for studio use and for home installations of the highest quality. UNITS: HF 2000 (dome 'pressure' type MF 500 (Mid-range Dome "pressure' type) Ulera linear 12" bass driver and 12" $A B R$. The crossover has resulted from considerable research anc crossover points are at 500 Hz and 5000 Hz 80 Wasts Maximem, 48 ohm . This monitor loudspeaker system has an exceptienally wide and flat frequency response. Very low order Jarmonic and inter-medulation distortion. Presise re:sanse to transients. Beautifilly maintained polar respense ensures absence of unwanted directional effects and provides a Fighly satisfactory stereo image throughout the listening EreE. Matched pairs.
SIZE $40 \times$ S \times II Natural Teak or Walnut Cabinet

Celestion

Loudspeakers for the Perfectionist

Linstead Laboratory Instruments

Two powerful bench supplies. Continuously variable. Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In age compact robust case.
In one

N
TWIN STABILISED POWER SUPPLY 2×0 to 30 V 0101 A . Set by switches and fine control. Meters switchable tor volts. 0 to 100 mA and 0 to 1 A . $€ 74.90$ Full overload protection and indication plus VAT

WIDE BAND SIGNAL GENERATOR
Sine square wave wide band high power signal generator $10 \mathrm{Hz-1} \mathrm{MHz}$. 0.6 volts r.m.s. 3 watts into 5 ohms incorporating short circuit protection. Fully transistorised. Nuffield Specification 181

the best for less BRITISH MADE BY LINSTEAO Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Ireland, Lennox Laboratory Supplies Letd. 3-4 South Leinster Street P.O. Box 212A, Dublin 2

Denmark, Scanfysik, 13-15 Hiorringeade, OK 2100, Copenhagen
Swoden, EMI Svenska A/B, Tritonvagen 17, Fack. 17119 Solna
Malaysia, Laboratory Equipment Sdn. Bhd., P.O. Box 60 , Batu Pahat Benelux, A.S.E. Ltd., Nationalostrent 38, B. 2000 Antworp

wireless world

Electronics, Television, Radio, Audio AUGUST 1974 Vol 80 No 1464

This month's cover picture shows part of a Tektronix equipment for dynamic testing of digital and linear i.cs and modules. Device in test socket is an active audio notch filter, having its response curve automatically plotted.
(Photographer Paul Brierley)

IN OUR NEXT ISSUE
 (published September 4)

Electronic speedometer and average speed indicator. Device with digital display and c.m.o.s. electronics operated from a transducer attached to back of existing car speedometer.
Dummy heads. A potted history of artificial head recording for stereo and "surroundsound" effects.
Thyristor speed control for shunt-wound d.c. motors. A design with circuitry for avoiding the speed instability common in the control of shunt motors.

Contents

265 Using channels efficiently
266 The future of medium- and long-wave broadcasting by J. G. Spencer
271 Sixty years ago
272 Circuit ideas
Oscillators:
gated, with rapid start
with current controlled frequency
Wien, with single resistor frequency control
273 Photographic flashmeter by Ralph Lewis
278 Coming events
279 Letters to the editor
281 Flat TV display
282 HF predictions
283 Digital meter for the blind by T. C. R. S. Fowler
286 About people
287 Space news
289 News of the month
Ceefax transmissions
Permanent magnets applications
IBA "container" station
291 What is e.m.f.? by Cathode Ray
293 Pocket v.h.f. transceiver-2 by D. A. Tong
299 Choose the right f.e.t. by T. Jones
301 Aid for city traffic
302 World of amateur radio
303 Bridge oscillators by F. Arthur
306 Books received
307 Research notes
308 Circards-16; current differencing amplifiers by J. Carruthers, J. H. Evans,
J. Kinsler \& P. Williams

310 New products
314 Real and imaginary by "Vector"
a70 APPOINTMENTS VACANT
a86 INDEX TO ADVERTISERS

ibpa

Preses Associses
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson acknowledgement to the journal is given

Price 25 p (Back numbers 40p)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: 1 year, $£ 5$ UK and overseas (\$13 USA and Canada), 3 years, $£ 14$ UK and overseas ($\$ 36$ USA and Canada). Student rates: 1 year, $£ 2.50$ UK and overseas ($\$ 6.50$ USA and Canada), 3 years, $£ 7$ UK and overseas (\$18.20 USA and Canada).
Distribution: 40 Bowling Green Lane, London ECIR 0NE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

Value' is an overworked
and underrated word. But
Developed by engineers for engineers this newcomer from Telequipment is easy to still the most effective way to describe Telequipment's D75 50 MHz Dual Trace portable oscilloscope costing only $£ 460$.

In more detail it is
Lightweight50 MHz bandwidth at $5 \mathrm{mV} / \mathrm{div} \square 15 \mathrm{MHz}$ at $1 \mathrm{mV} / \mathrm{div}$$3 \%$ accuracyMixed sweepCalibrated sweep delayGated triggerBright $8 \times 10 \mathrm{~cm}$ display
handle and offers unprecedented value when compared with other 50 MHz instruments.
Its outstanding specification includes a wide-range dual timebase incorporating sweep intensifying, delaying, mixed sweep and single-shot facilities, an $8 \times 10 \mathrm{~cm}$ CRT operating at 15 kV , and dual-trace operation in the alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz .
Don't take our word for it. Write or telephone for a full specification and a demonstration of the D75 now!

[^2]
wireless world

Using channels efficiently

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc. BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

An article in this issue referring to the forthcoming re-planning of the m.f. and l.f. broadcasting bands draws attention, once again, to the permanent problem of finding enough space in the frequency spectrum for all the radio systems we would like to set up. We tend to be so preoccupied with the frequency spectrum, thinking up ways of making the most efficient use of what bandwidth is available to us, that perhaps we do not pay enough attention to the other constituents of every communications systemtime and signal-to-noise ratio. Do we in fact make the most efficient use of these also?

There is not much we can do with signal-to-noise ratio except to trade it for more information in a given channel, as in the stereo broadcasting system, but time seems to offer more possibilities. It is a sobering thought that every night we switch off for several hours hundreds of megahertz of broadcasting bandwidth and numerous communications channels. However, to make use of all this for day-time purposes we would have to devise systems with storage or recording facilities. But there are plenty of opportunities of making more efficient use of time during day-time operations, particularly in mobile communications where channels are not continuously loaded but tend to be used intermittently for separate messages. Of course with mobile radio the time gaps between messages are already utilized to some extent in systems where different users time-share a single channel-radio taxis, for example. But this is a haphazard process and does not make the best use of the available channel capacity.

One systematic method of utilizing a group of channels efficiently, called dynamic channel assignment, was proposed by J. F. Craine at the recent Communications 74 conference at Brighton. In this the use of a number of channels is controlled automatically by an exchange, rather as in the trunk telephone system. When a call is made from a station the exchange assigns it to a free channel in the same manner as an automatic line exchange would find a free trunk route. The receiving station must then be informed that a call is being made and that its equipment has to be tuned to the appropriate channel.

Another possible system, suggested by S. R. McConoughey of the American FCC, is based on the principle of trading signal-to-noise ratio for more information, as mentioned above. Each user has access to multiple channels and the system simultaneously shares the same radio spectrum with other users. Instead of experiencing channel blocking, a user would observe only a gradual degradation of signal-to-noise ratio as the loading increased.

Undoubtedly such systems would be very complicated, but should certainly be feasible with the present technology of digital processing and large-scale integrated circuits at our disposal. This complication is the price we would have to pay for more efficient utilization of channel capacity.

The future of medium- and long-wave broadcasting

Problems facing the forthcoming planning conference

by J. G. Spencer
BBC Research Department

The organization of broadcasting, in respect of transmitter frequencies and powers, requires a high degree of international co-operation if optimum coverage with minimum mutual interference is to be achieved. This applies particularly in the medium-frequency band, in which a transmitter having a service area radius of, say, 50 km can produce interference by skywave propagation during the hours of darkness at fifty times that distance to other transmissions sharing its frequency channel. This co-operation is organized by the International Telecommunications Union and Fig. 1 shows the three regions into which the world is divided for radio planning purposes.

The present situation in Region 1 is based on the European Broadcasting Convention, concluded at Copenhagen in 1948, and the regional agreement for the African broadcasting area, drawn up in Geneva in 1966. However, the number of transmitters actually operating at the present time in the European area is some three times greater than the number for which provision was made in the plan. Region 3 has currently more than 1800 transmitters in operation but no overall formal plan. By common consent, comprehensive re-planning is well overdue. This conclusion will be endorsed by any-
one in Britain that tunes a m.f. receiver, after dark, across the m.f. band.

It has now been agreed that a Regional Administrative Broadcasting Conference will convene this year in Geneva to commence the re-planning of frequency assignments in the m.f. and l.f. bands for Regions 1 and 3. The first session of this conference is scheduled for October 7th to 25 th, 1974, and will, it is hoped, determine such technical parameters as the channel spacing, modulation system, protection ratios and propagation data to be used in the second session of the conference that will produce the final plan. The date for this second session will be some time in 1975 or 1976.

Propagation

Among the important factors in determining the optimum utilization of the m.f. and I.f. bands are the propagation characteristics of the medium. These are illustrated, for the range of distances of interest for a ground-wave service, in Fig. 2 , which shows field strength as a function of distance for a base-fed vertical-mast radiator of the type commonly used at m.f. and l.f. transmitters. The curves labelled with frequency values represent the ground wave, while those labelled with values of mast height, h, represent the

Fig. 1. ITU regions for radio planning purposes.
sky wave. Some features of this figure will bear explanation for readers unfamiliar with the subject.
(i) The curves are drawn for a constant cymomotive force of 300 volts. The cymomotive force is numerically the limiting value of the product of the field strength and the distance from the transmitter as this distance is reduced towards zero. This extrapolation ignores effects in very close proximity to the aerial (within about one wavelength). The product has the dimensions of voltage ($\left(\frac{E}{d} \times d\right)$ and the term is usually abbreviated to c.m.f. or alternatively written as $E_{d} d_{o}$. The c.m.f. of 300 V in these curves corresponds to a radiated power of 1 kW for a short aerial ($h<\lambda$), reducing to about 0.5 kW for $h=$ 0.575λ. The magnitude of the radiated signal can alternatively be expressed in terms of the effective monopole radiated power (e.m.r.p.). This can be regarded as the signal produced when the stated power is fed into a perfect, lossless, vertical radiator of height much less than one quarter wavelength. As implied above, a c.m.f. of 300 V corresponds to an e.m.r.p. of 1 kW .
(ii) The level and shape of the sky-wave curve depends on the vertical radiation pattern (v.r.p.) of the transmitting aerial and hence on the radiator height. For values of h approaching zero, the v.r.p. follows a cosine law relative to the angle of elevation above the horizontal. This produces the sky-wave curve for $h \ll \lambda$ and holds with reasonable accuracy up to about $h=0.2 \lambda$. As h is further increased, the radiation becomes more concentrated in the horizontal plane, and the high angle radiation illuminating the ionosphere is correspondingly reduced, until a value of $h=0.475 \lambda$ is reached. The corresponding sky-wave curves are omitted from Fig. 2 for the sake of clarity. Had they been shown, they would be of similar shape to those for $h<\lambda$ and $h=0.475 \lambda$ and would fall between them. As h is increased beyond 0.475λ, the main-lobe radiation above the horizontal is further reduced but a side lobe appears in the v.r.p. that produces a relatively rapid increase in high-angle radiation. This is manifested in the sky-wave curves by the characteristic double-humped shape. The progressive increase in the near-field sky-wave at
distances up to some 100 to 200 km is caused by the high-angle side-lobe radiation while the progressive fall in the sky-wave at greater distances results from the continuing reduction in the illumination of the ionosphere by the main lobe. With simple base-fed mast radiators, if h is increased beyond 0.575λ the proportion of the input power that is radiated in the horizontal plane falls and the proportion radiated at high angles increases. Both of these features are undesirable for a groundwave service. Also, if h is reduced much below about 0.15λ, the radiation resistance falls sharply and the reactive component of the impedance rises. As a result, the losses in the earth resistance rise with consequent loss of efficiency and it may become difficult, particularly at l.f., to secure correct matching between transmitter and aerial over the required bandwidth.
(iii) Fig. 2 should not be regarded as universally valid. It represents one specific set of conditions. For example, the curves are drawn for good ground conductivity typical of that found over much of the U.K. If the propagation path were all over the sea, the ground-wave field strength at 1500 kHz would be about an order higher and if it were over ground of poor conductivity it could be an order lower. The sky-wave field strength also depends to some extent on the ground conductivity in the vicinity of the aerial.

Fig. 2 illustrates very clearly one fundamental restriction on ground-wave services. A limit to the satisfactory service range at night is set by the minimum acceptable ratio of ground-wave to skywave. The sky-wave curves are plotted assuming unity reflection coefficient in the ionosphere. In fact, over the range of distances and diurnal periods of interest in planning, the sky-wave will suffer about 10 dB ionospheric attenuation at m.f. and about 15 dB at l.f. Thus, if we assume that a 10 dB ratio of ground to sky-wave is the minimum to give a service acceptably free from fading and differential sideband distortion, the maximum service range is given in Fig. 2 for m.f. by the distance at which the sky-wave and ground-wave curves intersect, or, for 1.f., at which the sky-wave is 5 dB greater than the ground-wave. This limit is independent of transmitter power but is very dependent on transmitter frequency.

One of the main factors limiting the total number of transmitters that can be accommodated in a given area and a given band is the interference between co-channel, and to a lesser extent adjacentchannel, transmitters that occurs after dark as a result of long-distance sky-wave propagation. Fig. 3 shows a sky-wave propagation curve applicable to the m.f. band. The level of the sky-wave signal can only be predicted statistically. It is subject to continuous fluctuation, varying from minute to minute due to turbulence in the ionosphere, with additional longerterm changes over periods of hours, days, seasons and years, the causes of which are not all fully understood. As a result, the sky-wave propagation information

Fig. 2. Field strength from base-fed vertical aerial on ground of good conductivity.
Layer height 100 km , with unity reflection coefficient; c.m. $f .=300 \mathrm{~V}$; transmitting aerial velocity factor $=0.9$, physical height $=h$; ground reflection factor $=1.9$; loop receiving aerial.
available to the planners is continually being up-dated as more measurement data are collected. Fig. 3 is a recently-proposed curve based on the continuing studies in this field carried out by the members of the International Radio Consultative Committee (CCIR) and the European Broadcasting Union (EBU). It shows the median field strength as a function of distance for a c.m.f. of 300 V .

Co-channel and adjacent-channel

 interference and basic planning lattices The essence of the planning problem is how to give listeners the maximum number of programmes consistent with an acceptable level of interference from other transmitters. The two important sources of interference are transmitters sharing the same channel and those in the two adjacent channels; transmissions at greater frequency spacings can be ignored in this context. It is first necessary to determine the channel frequency spacing. In Europe,

Fig. 3. Sky-wave propagation curve.
this is at present 9 kHz over most of the bands in question but this is not necessarily the optimum.

The protection ratio, i.e. the ratio of wanted to interfering signal for a given degree of impairment, is shown in Fig. 4 as a function of channel spacing. This is the curve recently adopted by the CCIR and is based on the performance of current receivers. It is plotted in terms of the relative protection ratio, that is the protection ratio at the stated frequency spacing, relative to that for co-channel interference, to give the same level of impairment of reception.

Suppose that we have to accommodate, in a fixed frequency band, a given number of transmitters within a finite area. If we adopt a large channel spacing, say 15 kHz , adjacent-channel interference will be negligible but the number of channels available will be reduced; as a result the geographical separation between cochannel transmitters will have to be reduced, and co-channel interference will be greatly increased. On the other hand, if we reduce the channel spacing to, say, 5 kHz , giving many more channels, cochannel interference will be reduced at the expense of a large increase in adjacent-channel interference. Somewhere between these limits there will be an optimum spacing, and this has been calculated on the basis of idealized transmitter location plans in the form of a regular geometrical lattice. The simplest form of elementary lattice is shown in Fig. 5. The transmitters sharing channel n

Fig. 4. Relative protection ratio. Curve A: limited degree of modulation compression at transmitter. Curve B: high degree of modulation compression at transmitter. Curve C: as Curve A but with a.f. bandwidth restricted to about 4.5 kHz at transmitter. Curve D: as Curve B but with a.f. bandwidth restricted to about 4.5 kHz at transmitter.
are disposed at the corners of an equilateral triangle of side D, which is repeated as necessary to fill the area being planned. Transmitters sharing channel $n+1$ and $n-1$ are similarly arranged, with the three individual channel lattices meshed so that each triangle of co-channel stations has one adjacent-channel station at its centre. With this arrangement, assuming that the layout of Fig. 5 is continuously repeated, each transmitter is surrounded by a ring of six co-channel transmitters at a distance d and six adjacent-channel transmitters at a distance $D / \sqrt{ } 3$.

This elementary model is obviously over-simplified, for example it gives us nowhere to locate the transmitters on channels $n+2$, so the next step is to distort the lattice to provide for a practicable number of channels. An example is illustrated in Fig. 6; the elementary cell of the lattice has become a rhomb, which again can be repeated as required to cover the area, with provision for 26 channels. The lattice gives the ratio of co-channel to adjacent-channel distance. From the sky-wave propagation curve, of which Fig. 3 is an example, this ratio of distances can be translated into a ratio of interfering signal levels. The relative impairment produced by co- and adjacentchannel interference is then obtained from Fig. 4. From studies of this type, based both on idealized lattice models and on actual transmitter site plans, it appears that the optimum channel spacing is very close to 8 kHz and many broadcasting authorities, including the BBC, will urge that 8 kHz should be adopted as the standard m.f./l.f. channel spacing in the forthcoming plan.

This lattice model is useful not only for channel spacing calculations, it is a powerful general-purpose tool for planning. It is quite feasible to construct a lattice for a hundred or more channels, the total number available in the m.f. band, but this would be of little practical use since in any one lattice it is assumed that all transmitters are of substantially identical powers, and we would not wish to be limited only to one size of transmitter. A practicable method, of planning an area the size of an ITU region would be to decide how many categories of transmitter power are needed. Let us assume we require three, low power for purely local coverage, medium power for large conurbations and high power for regional areas. These three categories of transmitter could then each be allocated its own section of the m.f. band. Fig. 2 shows that the lower

Fig. 5. Elementary planning lattice.
frequency channels are more suitable for large-area coverage and the higher frequencies for small areas. A separate lattice could then be prepared for each transmitter category, the co-channel distance (D in Fig. 6) being adjusted to suit the power, from about 1000 km for the low-power lattice to about 4000 km for the high power one. To avoid awkward adjacent-channel problems at the junction points in the spectrum where differing power bands adjoin, one or two channels could be allocated at each junction as international common-wave channels. These could be used by very-low-power transmitters on an unplanned basis but perhaps subject to an upper limit on the total power radiated by any one country on any one channel. Such a limit could be adjusted according to the area of the country concerned.

Strict adherence to a lattice-plan geographical distribution of transmitters would give, in an ideal situation, optimum area coverage. However, what we usually require is not optimum area coverage but optimum population coverage. Furthermore, we have also to take account of local terrain. Who wants a m.f. transmitter on top of a granite mountain of low ground conductivity in the middle of a desert where nobody lives? These factors can be allowed for. If a transmitter were required to be at a given specific location, it could be assigned the channel frequency appropriate to the nearest available lattice position but its permitted radiated power would be reduced by an amount sufficient to ensure that the interference caused to its co-channel and adjacent-channel neighbours would not exceed that produced by strict adherence to the theoretical lattice plan. It has been calculated that a displacement of 10% of the co-channel distance would entail a power reduction of between 2 dB and 4 dB but a higher, power could be permitted if the displaced transmitter employed a directional aerial system.

One of the planning parameters that the Geneva conference will have to decide is the acceptable co-channel protection ratio. The EBU is recommending that this shall be 30 dB . Nobody pretends that interference at this level is negligible but it should be remembered that it will, in the great majority of cases, occur only at night and will be suffered only by listeners at the fringe of a transmitter service area.

The value of this protection ratio determines the ratio of the radius of the transmitter service area to the co-channel distance. Thus, if the approach to planning is that a stipulated, fixed number of transmitters must be accommodated in a fixed number of channels in a given area, this determines the co-channel distance and the co-channel protection ratio then determines the interferencelimited service area.

On the other hand, if the approach is that a given service area per transmitter is required with a given co-channel protection ratio at its limit, then the value of that protection ratio determines the cochannel distance, and hence the number
of transmitters that can be accommodated in each channel.

The options: ground-wave or sky-wave, alternative modulation systems
Two assumptions have been implicit in the foregoing discussion, first that m.f. broadcasting, in Europe at least, will be planned mainly on the basis of groundwave services and, second, that the modulation system used will continue to be double sideband a.m., as in the past. In the course of the wide-ranging discussions that have been going on among broadcasters during the run-up period to the forthcoming conference, both of these assumptions have been called into question. Let us consider first the question of ground-wave versus sky-wave.

There are three possible approaches to the planning of the m.f. band.
(i) To plan for two separate transmitter networks, one for sky-wave coverage at night, the other for groundwave coverage by day.
(ii) To plan for maximum ground-wave coverage in daylight, considering only ground-wave interference and ignoring the incidence of sky-wave-propagated interference during dark hours.
(iii) To plan for maximum coverage by ground-wave services at night, regarding the increased coverage during daylight as a welcome bonus.

It has been argued that system (i), above, is technically the most efficient since it would give the listener the greatest choice of programmes both by day and by night, and this is undoubtedly true. However, it is subject to a number of disadvantages. Firstly, a sky-wave service is subject to fading and to the distortion resulting from selective sideband fading. Recent developments in technology may permit the production of inexpensive synchronous-detector receivers that eliminate the non-linear distortion produced by fading signals but no such receivers that are reasonable in price and easy to tune have yet appeared on the market. In any case the linear spectrum distortion will remain and, certainly with the envelopedetector receivers that are in universal use at present, sky-wave signals can only be regarded as providing a low-grade service. Secondly, sky-wave propagation is efficient because the signal attenuates only slowly with distance and a highpower transmitter can serve a very large area. The sky-wave network would therefore consist of relatively few high-power transmitters, spaced very widely apart. In Europe, where most countries are small compared to a sky-wave service area, this means that most if not all of the programmes available to listeners would originate outside their own countries. Language difficulties would severely limit the choice of programme material; indeed it is difficult to imagine what the programme could consist of apart from music, and this is not likely to have a wide appeal in view of the poor quality obtained from a sky-wave channel. In many countries also, the idea of providing access

Fig. 6. A 26-channel lattice.
to extra-territorial broadcasting services may be politically unacceptable. Thirdly, we must consider the confusion produced in the minds of listeners by the twice-daily switchover from ground-wave to sky-wave network. These switching times would not be fixed but would cycle throughout the year with the changing seasons. The result would probably be that only the most dedicated radio enthusiasts would know what programmes to expect on what channels. To those lacking that degree of interest, the m.f. band would have all the characteristics of a lucky dip. Also, the performance of both networks would be sub-standard for a period around the switching time because the transition from day to night propagation conditions is gradual and not instantaneous. To summarize, although this proposal has features that appeal to engineers in so far as it is technically elegant and efficient, it does not appear on balance to have much to offer to the average listener that he would find of value.
System (ii) is not really practicable. Sky-wave interference would be so heavy after dark that the services would be virtually unusable. In winter months in high latitudes, this condition would apply over most of every day.

We are thus left with alternative (iii), to base our planning on ground-wave services taking into account the night-time level of sky-wave interference, and this will probably be the decision of the conference for planning the greater part of the m.f. band. There are two important applications, however, for which a section of the m.f. band might be set aside for skywave services. One is for domestic broadcasting in countries covering very large areas (the USSR is an obvious example in Region 1). The other is if it is decided to permit part of the band to be used specifically for external or international services.

Turning now to the question of alternative modulation systems, the possibility of using some form of single-sideband (s.s.b) transmission system for broadcasting in the l.f. and m.f. bands has been extensively canvassed during the last few years. The advantage to be gained by such a system, compared to double-sideband (d.s.b.) modulation, is either a reduction of interference with the existing number of transmitters or an increase in the number of transmitters that could be
accommodated with existing interference levels. The disadvantages are the heavy cost to the public of re-equipping with new and probably substantially more expensive receivers, and the difficulty of maintaining adequate broadcasting services during the interim period while the changeover is taking place. A further advantage frequently claimed for s.s.b. is that it reduces the non-linear distortion produced by selective-sideband fading in sky-wave propagation conditions. This is not strictly true; the reduction of this form of distortion is primarily due to the use of synchronous detection which is necessar! in s.s.b. receivers, not to the modulation. system itself.

Compatible single-sideband (c.s.s.b.) preserves the correct modulation envelope but confines the transmitted energy very largely to the carrier and one sideband. It is designed for receivers with conventional envelope detectors. As with the other s.s.b. systems discussed below, any overall improvement in the planning situation would rely on the use of new receivers with the appropriate narrower i.f. bandwidth. Recent international discussions have, however, tended to reject c.s.s.b. on the grounds of distortion in receivers with reasonably simple i.f. filters that are not phase corrected. Also, it would rule out the option of using synchronous-detector receivers to reduce non-linear distortion on fading signals.

Vestigial-sideband (v.s.b.) can be regarded as derived from a d.s.b. transmission by the use of an asymmetrical filter with 6 dB attenuation at the carrier frequency. It gives full transmission of one sideband and full suppression of the other sideband beyond a certain distance from the carrier (e.g., 1 kHz). Provided that the modulation depth is restricted to 70% or 80%, i.e., the carrier component has an amplitude 2 dB or 3 dB greater than the peak sum of the sidebands, this system has a substantial degree of compatibility with existing receivers. For a given carrier-to-sideband ratio the compatibility is slightly better than with s.s.b.-pluscarrier.

Single-sideband (s.s.b.) with no carrier transmitted is widely used in commercial point-to-point communication networks. It has the advantages that it eliminates the carrier-beat component that is a significant part of adjacent-channel interference and also reduces the level of ionospheric intermodulation ("Luxembourg effect"). It has the disadvantages that there is no means for operating a satisfactory a.g.c. system and also that the receiver must synthesize the demodulating carrier with an accuracy of about 10^{-6} without a reference component in the transmission to assist it. It is also not compatible with existing receivers.

SSB with carrier component overcomes the two major drawbacks of the system referred to above by radiating a carrier component. If the peak sideband
level were restricted to about 70% of the carrier amplitude, this system would have a reasonable measure of compatibility with existing envelope-detector receivers.

Independent-sideband (i.s.b.) with no carrier transmitted is similar to s.s.b. but uses the upper and lower sidebands to carry two different programmes. It has the same advantages and disadvantages as s.s.b. and, in addition, it makes very stringent demands on the receiver design if adequate rejection of the unwanted sideband is to be achieved. This latter point is considered further below.

ISB with carrier component is similar to i.s.b. but with the addition of a carrier component to provide a.g.c. and assist in the regeneration of the demodulating carrier. Two different methods of operating this system may be distinguished. In the first method, the two sideband signals are radiated from the same transmitter. In this case the field strengths and fading characteristics of the two signals are sensibly identical at the receiving site, the common carrier component provides adequate a.g.c. information for both, but the receiver is required to achieve a high degree of unwanted sideband suppression. With this method of operation, the system is not compatible. In the second method, the upper and lower sideband signals are radiated from two transmitting stations which are geographically separated. In this case the two signals would require protection ratios of about 20 dB against mutual interference in order to prevent confusion of the receiver a.g.c. system by the carrier of the unwanted transmission. This method would require a lower degree of unwanted sideband suppression in the receiver and would also have a measure of compatibility with existing receivers if the carrier component were sufficiently large, say 3 dB greater than the peak sideband.

CSSB is not regarded as a serious contender for the reasons outlined above. SSB and i.s.b. without carrier are thought to be impracticable, primarily because of the difficulty in providing satisfactory a.g.c. in the receiver. VSB is receiving support in some quarters in Europe but is not generally a preferred system. It offers, in comparison to s.s.b.-plus-carrier, slightly better compatibility but requires a larger channel spacing. Also, being a s.s.b. system at high modulation frequencies, it requires a synchronous-detector receiver for distortionless detection but, being d.s.b. at low modulation frequencies, the regenerated carrier must be phase-locked to the carrier component of the incoming signal. This phase-locking represents a further complication in the receiver that is not required for s.s.b. or i.s.b.

SSB and i.s.b., in both cases with a carrier component, are the two alternatives to d.s.b. that are currently receiving most attention in Europe.

Part of the argument in favour of s.s.b., in all its forms, is that the relatively complex receivers required will not prove to be unduly expensive in view of the rapid
developments now taking place in technology. This may be true but, in the U.K. at least, the great majority of sound radio listening on the m.f. and l.f. bands is with battery portable receivers. It is therefore necessary, in order to make the new receivers acceptable to the public, that not only must the initial cost be reasonable but the battery drain must also not be excessive. This latter requirement may well be difficult to satisfy. One prime requirement in receivers for either v.s.b., s.s.b. or i.s.b. is to re-generate a demodulating carrier. For s.s.b. or i.s.b. this need not be phase-locked to the incoming carrier and can have a frequency error of up to 2 Hz . It can therefore be produced either from the incoming carrier component by filtering and amplitude limiting or by locking a free-running oscillator, or by generating it locally in a synthesiser of high accuracy without reference to the incoming signal. For v.s.b. the demodulating carrier must be phase-locked to the incoming carrier and the option of using a locally-synthesised frequency without reference to the incoming signal is not practicable.

Of the various methods proposed, the local-synthesis method is the one most likely to give reasonable ease of tuning. In any method deriving the demodulating carrier directly from the received signal or locking a free-running oscillator to it, there is difficulty in reconciling the conflicting requirements of ease of tuning with those of immunity to fading and spurious locking to adjacent-channel signals or to sidebands of the wanted signal.

Receivers for i.s.b. would need to provide adequate rejection of the unwanted sideband. If the two separate sideband signals associated with each carrier were radiated from the same transmitter, a rejection of at least 40 dB would be required. This would be impracticable by i.f. selectivity alone and would require the use of post-detector quadrature networks giving a constant 90° phase shift over the whole modulation-frequency band. For broadcasting use this bandwidth extends from, say, 50 Hz to 5 kHz and the problems of production of such networks to the required tolerances and at an economic price may be very difficult to solve. If the two sideband signals were radiated from geographically separated transmitters they would require protection, in their respective service areas, against mutual interference as discussed above. Assuming a protection ratio of about 20 dB , this would ease the requirement for unwanted-sideband suppression. The quadrature-filter technique would still be necessary but the tolerances in the filters could be considerably relaxed.

Receivers for any new modulation system would need to be compatible with d.s.b. transmissions, which would still be radiated during the changeover period. VSB receivers, and i.s.b. receivers with 40 dB unwanted-sideband suppression, would be automatically compatible since they would in effect treat an incoming d.s.b. signal as v.s.b. or i.s.b. and demodulate it normally. SSB receivers, and
i.s.b. receivers with a lower order of un-wanted-sideband suppression would require some additional circuit features in order to cope with d.s.b. The simplest method would probably be to provide a conventional envelope detector, with an appropriate adjustment of the i.f. bandwidth if necessary, brought into circuit by a manually-operated or automatic switch. If it were decided to change the system of modulation to v.s.b. or s.s.b.-plus-carrier, it is difficult to foresee precisely how the process of conversion would be organized. Two alternative methods might be possible. One would be to set aside a portion of the m.f. band for use by transmitters operating on the new system and expand this in successive stages as suitable receivers were purchased by an increasing proportion of the public. The alternative would be to convert trans--mitters, a few at a time, initially to a more-or-less compatible form of s.s.b. with an enhanced carrier component and preserving the original d.s.b. channel spacing and later, in the final stages of the transition, convert to full non-compatible s.s.b. with closer-spaced channels.

With either method, the successive stages of conversion would need to be implemented by all countries in the planned area proceeding in unison. Eventual completion of the changeover could only be realized when virtually all listeners had acquired receivers suitable for the new system. Unless the receivers were fully acceptable to the public in terms of first cost, running costs and operational convenience, there would be a danger of the conversion plan remaining in its interim stages for an indefinite period. During this period, owners of old-type receivers would suffer increased distortion, increased interference and possibly a restriction in their choice of programmes, with no compensating advantages.

If the new system were i.s.b.-pluscarrier, conversion would still have to be on a stage-by-stage basis as the new receivers came into use but international planning would be far simpler. It could be left to individual countries to convert their own channel assignments to i.s.b. operation with two programmes per channel, if and when they wished, or to continue indefinitely with d:s.b.

Thus, even if the decision of the Geneva conference is to aim for the ultimate conversion of the m.f. and I.f. bands to operation with some novel modulation system, this conversion would have to be spread over a considerable period of time. The immediate plan will have to be based on d.s.b. operation, at least over the greater part of the bands in question.

One cautionary note. Although the present situation on the m.f. and I.f. bands in Europe owes little to formal planning, it is the result of a great deal of empirical cut-and-try experience. It is, therefore, not to be expected that the outcome of the planning conference will be a staggering reduction in interference levels all round. The most we can hope for is a moderate improvement.

Channel frequencies and bandwidth

Apart from the fundamental requirements of good planning, i.e. ensuring that transmitters are put in the right places and on the right channels and that there are not too many of them, there are some other measures that can be adopted in order to minimize interference. If all transmitter carrier frequencies of receivers were made integral multiples of the channel spacing (i.e., with 8 kHZ spacing, all carrier frequencies and i.fs would be on 8 nkHz with n integral), the interference resulting from spurious responses in receivers (image channel and the like) would produce carrier beats either at zero frequency or at the channel spacing frequency. This would be much less troublesome than the present situation where such interference can produce whistles anywhere in the audio-frequency range. With present-day receiver designs this proposal would not give any great benefit because of the tolerances in i.f. values. With future improvements in receiver manufacturing techniques, particularly if simple types of frequency synthesizer are used as local oscillators, the potential benefit may be realizable. The conference may well decide that the proposal is worth implementing as far as frequencies are concerned.

Another operational measure that is being adopted by a number of broadcasters, including the BBC, is the limitation of the modulation-frequency bandwidth of m.f. and l.f. transmitters. The principle of this is that the sidebands corresponding to modulation frequencies above about 5 kHz are so heavily attenuated in present-day receivers that they do not contribute significantly to the quality of the received programme but do contribute significantly to the interference produced in the adjacent channels. It has been suggested that the audio frequency bandwidth transmitted should be limited to no more than one half the channel frequency separation. Then, if the receiver i.f. bandwidth were similarly limited, adjacentchannel interference would not occur. If this suggestion were adopted, it would mean that the quality of reproduction for all listeners, at all times, would be limited for a benefit needed by only fringe area listeners after dark. The preferred BBC practice is to equip l.f. and m.f. transmitters with low-pass filters at the modulation input that have a slightly rising response between 1 kHz and 4.5 kHz and then a fairly rapid cut above 5 kHz . This has been found to give a modest benefit in adjacent-channel interference with no perceptible degradation of quality on average receivers.

How do we make the best use of the m.f./.f. bands?

When the Geneva conference has completed its task, the broadcasters have to decide how to make best use of the channels they have got.
In the U.K. we have hitherto tried as far as possible to duplicate our main programmes in the m.f./l.f. and the v.h.f. bands but, with Radio 1 and 2 sharing one v.h.f. channel and the Open University
and schools transmissions taking over the Radio 3 and Radio 4 v.h.f. networks from time to time, this policy has become progressively harder to implement. With increasing demands for specialist programmes for language minorities, road information to motorists and so on, it may well be that duplication is a luxury that we shall have to abandon. Should this be so, it is obviously desirable that the allocation of services between the m.f./.f. and v.h.f. bands should take account of the characteristics of the channel and the requirements of the programme and its audience.
Some types of specialist audience are easy to distinguish, for example motorists. The m.f. and l.f. bands offer many advantages for a programme intended primarily for car radio reception. The area of coverage of transmitters is greater, particularly at the lower carrier frequencies, than with v.h.f., hence the receiver requires less frequent re-tuning and the motorist is less frequently distracted from his primary duty of keeping himself and other road users alive. The signal level is more consistent and less liable to the extreme variations that occur close to ground level at v.h.f. The superior quality and signal-to-noise ratio possible with v.h.f. are less important in the unfavourable acoustic environment of a car and even the dynamic compression that we are compelled to use on the m.f. and l.f. bands, to improve the signal-to-noise ratio, can be a positive advantage for car reception where soft passages tend to become inaudible against the high acoustic noise level.
Another listening situation in which m.f./ l.f. would often be preferred to v.h.f. is for what might be termed the mobile audience; the housewife carrying a portable receiver round the house to provide a background to the daily chores or the picnicker with a portable receiver on the beach. The standingwave pattern existing at v.h.f. inside houses can produce a situation in which either a v.h.f. portable will not work satisfactorily in some positions or the signal will fluctuate and periodically drop below a usable level as the listener moves about. In the open air, the receiver is usually standing on the ground, and the field strength at ground level of a v.h.f. signal horizontally polarized, as the great majority of Band II transmissions are, is theoretically zero and in practice often nearly so.

The audience to whom the characteristics of v.h.f. would appear to be most suitable are those listening at home on a fixed receiver, particularly those to whom sound radio is a major contributor to their home entertainment and who are prepared to acquire a receiver giving high-quality reproduction. Perhaps one could attempt a generalization, that m.f. and l.f. are better suited to casual listening and v.h.f. to serious listening. Having done this, we are not much further forward unless we can classify programmes into those intended for casual and for serious listening. That is a rather more difficult problem, bearing in mind that what is memorable to one listener is trivial to another. Perhaps we should be thankful that some problems in broadcast-
ing do not fall to us, the engineers, to solve.
Acknowledgements. The author wishes to thank the Director of Engineering of the BBC for permission to publish this article and his colleagues in the BBC Research Department for assistance in preparing it.

Sixty Years Ago

From our August, 1914 issue . . .
"The efforts to solve for the vision the problem or problems of space which the telephone has solved for the ear bears a close enough resemblance to some of the problems in the wireless field to permit us to follow with sympathetic interest the endeavours which scientists are making to reach a practical solution. Hopeful results were foreshadowed in a communication made during the past month to the Academy of Sciences in Paris by Professor Lippmann on behaif of M. Georges Rignoux, who has devoted himself to this subject for many years. M. Rignoux has now devised an improved apparatus to which he has given the name of Telephote, and which is just a scale of shade and light. There is a transmitting and receiving apparatus connected by two wires. At the transmitting station a concave mirror throws the rays of a 200 candle-power Nernst lamp upon the object which is to be reproduced at the other end of the wire. Each point thus illuminated is shown through a magnifying glass upon a screen composed of cells of selenium metal, of which the electric resistance varies in accordance with the intensity of the light thrown upon it. An electric current is passed through this screen, and, thanks to the peculiar properties of selenium, is transmitted in varying strength according to the amount of light on each portion of the screen. The currents are transmitted over a wire to the receiver, which emits through a Nicol prism rays of light corresponding in intensity with the current received. These rays are cast through a lens upon a revolving mirror, which reflects upon a screen a picture of the light and shade of the object at the other end of the wire, drawn in small rays of light. M. Rignoux claims to have succeeded in his laboratory in thus producing letters of the alphabet, and he is hopeful of further progress."

Circuit Ideas

Wien oscillator with single component frequency control

Unlike the conventional Wien bridge oscillator, this circuit uses a single-gang potentiometer to control the frequency of oscillation. This is achieved by making the components in the two arms of the bridge in a large ratio to one another, in such a way that the attenuation of the network alters only slightly as one of the resistors is varied. Such a change of attenuation can then be compensated for by the usual thermistor in the negative feedback path of the maintaining amplifier.

Attenuation of the Wien network in the circuit, at zero phase shift, varies from 12 to 11.01 as the potentiometer is varied from zero to $150 \mathrm{k} \Omega$; the frequency of oscillation varies by $10: 1$.

The circuit shown has been built and operates from 340 Hz to 3.4 kHz ; it gives a constant output over the range. A loglaw variable resistor is essential to achieve an even distribution of frequencies as the spindle is rotated. A 709 C op-amp was used as one was to hand, but a 741 opamp could be used without the need to include external frequency compensation components in the circuit.
P. C. F. Healy, RAF Medmenham, Bucks.

Oscillator with currentcontrolled frequency

The principle of this circuit is based on the current-controlled Wien bridge built up by four diodes of the type 1N4148 and by two capacitors of the same capacitance, C. Current is fed to the bridge by means of the current-mode amplifier of the National Semiconductor LM3900.

For an amplifier of this type, which can be taken as a "super" transistor with a β of 10^{6}, small variations of input voltage v_{i} result in frequency changes over a wide frequency range.

The resonant frequency of the oscillator is directly proportional to the control current. The circuit designed can operate in the frequency range from about 10 Hz to 50 kHz in which the proportionality between current and frequency holds. In this range the changes in frequency are caused by current variations from about 1 to $10^{4} \mu \mathrm{~A}$. The recommended value of C is 700 pF . Assuming an ideal operational amplifier, the voltage gain needed is $R_{2} /\left(R_{1}+R_{2}\right)>3$.
Kamil Kraus,
Czechoslovakia.

Gated oscillator with rapid start

The transistor is used as a conventional phase-shift oscillator, with its operating frequency determined by $C_{2}, C_{3}, C_{4}, R_{5}$, R_{3}, and the input impedance of the transistor. With the components shown the frequency of operation is about 1 kHz .

With +5 V present at the input, diode D_{1} is forward biased via R_{1}, thus almost 100% negative feedback is applied to the oscillator via D_{1} and C_{l} preventing oscillation. When the input signal goes to 0 V , diode D_{l} is reverse biased, removing the
negative feedback. At the same time, the edge of the input pulse is applied to the transistor base, thus "kicking-off" the oscillator on its first half-cycle.
The value of C_{l} is chosen so that the oscillator starts rapidly, but with no overshoot on the first half-cycle.

The first half-cycle is always in phase with the falling edge of the input signal. G. F. Butcher, Cheltenham,
Glos.

Photographic flashmeter
 Measures incident light and indicates directly in f-numbers

by Ralph Lewis

A flashmeter is a type of photographic lightmeter which measures the light produced by electronic flashlamps, prior to taking a picture, and enables the camera's lens aperture to be set to the appropriate f-number for the light measured. It differs from a conventional exposure-meter in that it is required to include, in the actual measurement, the effect of the duration of the light as well as its intensity. Also, because of the difficulty of preventing some portion of ambient light energy being measured with the flashlight (it's not usually convenient to have to make measurements in a darkened room), the lower sensitivity of an instrument designed for incident light measurements is generally preferable to that of one designed to measure reflected light-although this is by no means meant to imply that all flashmeters measure only incident light.

To take some of the apprehension out of estimating exposures when using
electronic flash lighting, the use of a meter is a great aid. It can be almost essential when shooting colour transparencies where the allowable latitude in exposure is small, especially when more than one lamp illuminates the subject, each from a different position, Bracketing half a stop either way as a safeguard may get you by with a still subject, but with a live one the best shot usually turns out to be the one that's over exposed.
In the instrument described (see photo) incident light is measured and indicated on a meter directly calibrated in f-numbers from $f 2$ to $f 64$ in three ranges. The film speed selector enables films of 12 ASA to 650 ASA to be set and the sensing element is contained in a probe attached to the meter by a short lead. This allows readings to be taken in situations where placing the body of the instrument in a similar position would disturb the subject.

The duration of light pulses likely to be
encountered will vary between one or two microseconds for a high-speed unit and about three and a half milliseconds for a low voltage studio flash, with probably something in the region of one millisecond being the most common.

Although the author did not have access to a high-speed lamp, tests were made with a light-emitting diode fed from a low impedance sinewave source of constant amplitude over a frequency range of 50 Hz to 500 kHz . Placing the l.e.d. half an inch from the photocell enabled the integration of a train of light pulses of constant mark/ space ratio to be timed. The time required for the voltage on the integrating capacitor to reach a set value was the same at all frequencies ($R L A_{2}$ in Fig. 1 was bridged for this test), and it is fairly safe to assume that the instrument will cope with the fast rise and short duration of a high-speed unit.

The complete circuit of the flashmeter

Fig. 1. Complete circuit diagram of the fashmeter.
is shown in Fig. 1. The light sensing element is a silicon photodiode operating in the photoconductive mode, which is connected in series with a battery and a capacitor for the duration of the flash. The photocurrent is integrated over the period by charging the capacitor to a potential directly proportional to the duration and intensity of the illumination, and inversely proportional to the magnitude of the capacitance. That is,

$$
V_{C}=\frac{1}{C} \int_{t_{1}}^{t^{2}} i \mathrm{~d} t
$$

Where t_{l} and t^{2} are the times of the beginning and end of the flash pulse. The capacitor voltage is measured by an f.e.t. voltmeter which has an input resistance in excess of ten thousand megohms, so that the charge is not appreciably reduced by the measuring instrument before it can be read.

The purpose of the diode D_{2} is to prevent photocurrent produced by ambient lighting being integrated at the same time as the flashlight current. If a reverse biased junction diode is connected to a current source (very high resistance) and the reverse current is below the saturation level, the p.d. across the diode is, for practical purposes, zero and it is not until the current closely approaches the saturation limit that the p.d. begins to rise. Once saturation is reached, the p.d. is independent of the diode and is dependent solely upon other factors in the circuit.

By choosing a diode with a suitable value of reverse current, one can ensure that the cathode of D_{l} is clamped to chassis potential until the current in it exceeds the
reverse current requirements of D_{2}, thus preventing the photocurrent caused by a reasonable amount of room lighting being passed to the integrating capacitor.

A Texas Instruments TIL77 was chosen as the photodiode because its spectral response is very similar to that of the human eye. Normally, silicon photodiodes are most sensitive in the infra-red region, and filtering is necessary to prevent the heat radiation which accompanies xenon flash discharges from overriding the effect of the visible emission.

To increase the sensitivity of the TIL77 (reduced by internal filtering) a large chip has been used and its self-capacitance is rather high—nominally 750 pF at -3 volts. Such a high value of self capacitance could cause difficulties if one were to use it to measure the instantaneous intensity of a high-speed flash, as would the capacitance of the screened probe lead-some 400 pF . However, in this circuit, all the capacitances are, in a sense, in parallel and charge concurrently; so that the effect of the self capacitances is not to ruin the pulse response but to waste some of the charge that would be passed to the integrating capacitor if they were not present.

A factor of the diode capacitance to be considered is its variation with any change in value of the reverse voltage applied. At the beginning of the integration the voltage across D_{1} is 9 volts, while at the end, it is 9 volts minus the potential on the integrating capacitor. This varies from 12.5 mV ($\frac{1}{8}$ full scale with a 650 ASA film) to 5.09 volts (f.s.d. with a 12 ASA film), and represents a change of approximately 4 volts in the diode voltage.

The diode used by the author measured

The complete flashmeter.

380 pF at 9 volts and 500 pF at 3 volts, so that, allowing for a 1 volt fall in battery voltage during a period of use, a variation of something in the region of 25% is possible. The effect of this must be made insignificant by the choice of a suitable minimum value for the integrating capacitance.

A reed relay has been used to connect the photodiode to the integrating capacitor for the duration of the flash. Without this switching the intensity of the room lighting would have to be very precisely controlled because, if it did not cause saturation in D_{2}, the capacitor would choose this path to discharge, and if it provided more current than was required by D_{2} the difference would charge up the capacitor and, in quite a short time, make nonsense of the flash reading.

Another reed switch is utilized to trigger the flash unit while the gating reeds are closed. To prevent the contacts being welded by the current in the flash unit's own trigger circuit, a thyristor has been interposed to isolate them from it.

The reeds $R L A_{1}$ and $R L A_{2}$ are activated by a common coil $M D_{12}$. When the "flash" switch S_{4} is closed the charge on C_{5} momentarily energizes the coil and causes the contacts to close for approximately 5 milliseconds.

Of the two reed switches used the one chosen for $R L A_{2}$ must be the one that closes at the lower energizing current in the coil. (One can easily ascertain this by connecting the coil in series with a 9 -volt battery and a variable resistor and slowly reducing the resistance while transferring the leads of an ohmmeter from one set of contacts to the other, until one closes.) This more or less ensures the flash is not triggered before $R L A_{2}$ is closed. To make certain, a 0.5 ms delay is introduced into the gate circuit of the thyristor $S C S_{I}$. After the flash trigger pulse has been initiated by conduction in the thyristor, $R L A_{2}$ remains closed for about 4.5 ms to allow the complete flash to be integrated. The times are very approximate and may need to be increased slightly to suit individual reeds but should be kept as short as possible consistent with reliable operation. A slight increase in the values of C_{1} or C_{5} may therefore be required.

The f.e.t. voltmeter makes use of a unity-gain differential amplifier utiliżing source followers with complementary bipolar transistors in the c.s.-c.e. configuration. The output resistance is considerably reduced with this arrangement because any shunting of the source-collector load resistance, tending to lower the voltage across it, will tend to raise the f.e.t. gate potential and increase the drain current which flows mainly into the base of the bipolar transistor. This would cause an increase in the collector current and correct the voltage across the load.

The lowering of the output resistance is necessary to prevent its adding significantly to the values of the multiplier resistances, especially on the higher filmspeed ranges. The output resistance "seen" by the meter circuit in Fig. 1 is in the teens of ohms and is inversely proportional
to the product of g_{m} and beta in each f.e.t. bipolar pair. It will not, however, be constant because g_{m} is very dependent on drain current which varies due to the wide range of potentials seen by the gate of $T r_{1}$. But, with good bipolar transistors, beta will be the major factor and the resistance will be small enough to be ignored throughout the range of gate potentials occurring with the higher film speeds.

Another important advantage of this combination is that the voltage gain becomes very close to unity, which is not possible with an f.e.t. alone unless a very high load resistance can be used.

The ratio of the values of the fixed components R_{4} and R_{27} to the variable component R, in the resistor network used to balance the source potentials of Tr_{I} and Tr_{4} is much less than usually specified in similar circuits. This is to enable unmatched transistors to be used; but even with this value some adjustment of the values of either R_{4} or R_{27} may be required to obtain balance because of the spread in the characteristics of available f.e.ts. The aim should be to increase the value of one rather than reduce the value of the other so as to cause as much as possible of the drain currents to flow into the bases of Tr_{2} and Tr_{3}. However, it may be necessary to do both.

I suggest that constructors set a lower limit of $3 \mathrm{k} \Omega$ for R_{4} and R_{27} and, if still unable to set zero, they should try another $10-15 \mathrm{k} \Omega$ if necessary. The main thing is to achieve balance while providing the highest possible degree of feedback. (No difficulty in setting zero has been experienced despite the large variable component.)

Variation of exposure in a camera follows a geometric progression and, as the sensing circuit is linear, the meter must be scaled geometrically if it is to be read directly in f stops. A limit is therefore set to the number of stops that can be included between zero and full-scale. Because each stop occupies twice the scale length of the one preceding it, the divisions become progressively more cramped towards the lower end of the scale, and for the sake of clarity and accuracy, four stops is really the limit, while three is to be preferred. If one opts for three, an overall range of 2.8 to 664 can be encompassed in three overlapping ranges- f 2.8 to $\mathrm{f} 8, \mathrm{f} 8$ to f 22 and f 22 to f 64 . An additional f2 calibration point can be inserted between " 0 " and $\mathbf{2} 2.8$ for good measure if desired.

I suggest that each stop be divided into thirds, as this is generally considered to be the limit of accuracy that it is possible to work to in practical photography. (For instance: Kodak issue speed correction sheets accurate to one-third of a stop for "Ektachrome E3" sheet and roll film.) A scale designed along these lines will look like the one in Fig. 2. The f 2 point is at $\frac{1}{16}$ f.s.d., the $f 2.8$ at $\frac{1}{8}$ f.s.d., the $f 4$ point at $\frac{1}{4}$ f.s.d., the f5. 6 point at $\frac{1}{2}$ f.s.d. and the f8 point at full scale.

The third and two-third stop calibration points are found by noting the number of

Fig 2. Direct reading scale designed to fit a SEW SW100 meter.
degrees encompassed by the preceding whole stops divisions and multiplying it by 1.26 and 1.59 respectively. For example, if the original scale is divided into 90. degrees, then 22.5 degrees are included between f 4 and f5.6. So 22.5×1.26 or 28.35 degrees from the f 4 mark is the position for the 55.6 plus one-third stop mark, and 22.5×1.59 or 35.8 degrees from the f 4 mark is the position for the f5.6 plus two-thirds stop mark.

There are two obvious methods available to expand the scale by six stops in two ranges. The first is by introducing neutral density filters of 0.9 and 1.8 density between the photocell and the illumination. The second is to increase the value of the integrating capacitance by eight times and sixty four times respectively. The advantage of the first is that the range of illumination falling on the cell is the same on each range and makes the linearity requirements of the photocellover a very wide range of illumination considerably less stringent. The advantage of the second is that it is simpler mechanically because suitable switches are readily available, whereas a filter switch would have to be fabricated specially, and would add considerably to the complexity of the probe housing.

A disadvantage of the second method would be if the photocell were unable to respond linearly to the range of illumination entailed. The range of film speeds catered for is 12 ASA to 650 ASA, which represents a change in illumination equal to five and two-thirds stops, or just over $50: 1$. Adding the complete scale of the meter, which is ten stops, gives an

Fig. 3: Graph of light current vs. illuminance for the TIL77.
overall change of fifteen and two-thirds stops, or over $50,000: 1$.
Texas Instruments do not supply data covering such a rānge and only give a graph covering 2.5 to $1,000 \mathrm{~lm} / \mathrm{ft}^{2}$ for the TIL77, as it was originally intended for use at the low light levels encountered with ordinary exposure meters (see Fig. 3). Mullard publish a graph for their BPY13 over the range 10^{2} to 10^{5} lux $\left(1 \mathrm{~lm} / \mathrm{ft}^{2}=\right.$ 10.76 lux) but even if the two are taken together, the total range is less than 4000:1. However, both graphs display an extraordinary degree of linearity and give the impression that they might continue indefinitely, and it was on the assumption that the TIL77 would maintain linearity throughout the range-required that the second method was tried. After comparing readings with a 0.9 density filter in front of the probe on the f8-f22 range with those on the 22 -f64 range without a filter, they were found to be identical. so the second method was the one adopted.
-Adjustment for different film speeds is accomplished by switching the resistors R_{9} to R_{27} in series with the meter M_{1} so that the voltage required for full scale deflection is increased by 2^{\dagger} for each decrease in the ASA index table.

A table illustrating the method of calculation of the resistor values is overleaf. The minimum f.s.d. of 0.1 volt was decided apon as it allows a reasonable portion of the multiplier resistance to be external to the meter, and means that on the highest voltage range there is sufficient potential across the photodiode-even with some fall in battery voltage-to ensure its correct operation.

The choice of values for the three integrating capacitances is affected by a number of considerations. They should not be so large that the correct exposure is indicated without any neutral density between the cell and the illumination, because the inclusion of a filter here is a convenient way of compensating for the different sensitivities of individual diodes during calibration. Large capacitances also require large peak currents to produce the necessary p.d. and require high levels of cell illumination to produce them. Looked at from the other point of view, the smallest capacitance C_{2} must not be so small that it is easily discharged by the input resistance of Tr_{1}, or leakage in the "range" switch S_{2} and the "reset" switch S_{I}. The combination of C_{2}, the cell capaci-
tance and the capacitance of the probe lead must also be large enough to sufficiently swamp any change in the cell capacitance mentioned previously.

If a value of $0.1 \mu \mathrm{~F}$ is adopted for C_{3}, the diode and probe lead capacitances make up little more than 1% of it and can be neglected initially to simplify calculations. C_{4} then becomes $0.8 \mu \mathrm{~F}$ and C_{2} plus the diode and lead capacitances become 12.5 nF . A 25% variation in the nominal capacitance of the photodiode is 750 pF divided by four, or 187.5 pF . As that represents only 1.5% of 12.5 nF , it will not introduce any noticeable error into the results. Also the value of C_{4} will not place any strain on the current capabilities of either components or battery because the peak current with a 1 ms flash duration will only be about 10 mA .

This can be calculated from basic principles on the assumption that the peak current is likely to be between two and three times the mean value and the maximum voltage is practically 5 volts.

$$
\begin{aligned}
& I_{\text {mean }}=\frac{V C}{t}=\frac{5 \times 8 \times 10^{-7}}{10^{-3}}=4 \mathrm{~mA} \\
& I_{\text {peak }} \simeq 4 \times 2.5 \text { or } 10 \mathrm{~mA}
\end{aligned}
$$

Having obtained the current, one can, as a matter of interest, obtain a figure for the probable peak illumination falling on the photocell. A glance at Fig. 3 shows the sensitivity to be $2 \mu \mathrm{~A}$ per $50 \mathrm{~lm} / \mathrm{ft}^{2}$. Therefore, the peak illuminance would be

$$
\frac{10^{-2}}{2 \times 10^{-6}} \times 50 \text { or } 2.5 \times 10^{5} \mathrm{~lm} / \mathrm{ft}^{2}
$$

Taking the average value of the diode capacitance as 656 pF , adding the probe lead's 400 pF and subtracting the sum from 12.5 nF , one is left with $11,444 \mathrm{pF}$ as the value of C_{2}. (This value is calculated merely to illustrate the next point. The actual value required is most easily found by trial and error during the calibration so that variations from the nominal values are automatically taken care of.)
Of three 2 N 3819 s tested by the author none had an input resistance of less than
5×10^{11} ohms. With a figure like that and an 11.44 nF capacitance, the time taken for a fall of 10% from the full scale reading is approximately nine minutes with a 650 ASA film. With slower films it is proportionately longer, and even if the resistance were no larger than 10^{10} ohms it would still take at worst about 11 seconds.

Leakage in the switches can be kept very low by suitable choice of insulation and modern capacitors can have extremely high leakage resistances so that stability of indication can be more than adequate if care is taken in the construction.

Before going on to the construction, it would be as well to refer briefly again to D_{2}. A suitable value for its reverse saturation current was found to be 10 nA . This value allows a fair amount of room lighting in which to take the readings, while at the same time being too small a percentage of the mean current required to charge C_{2} to the f 2.8 point with a 650 ASA film to matter whether or not the 10 nA is wholely provided by ambient lighting or part of it by the flashlight. In other words, any current bypassing C_{2} to bring D_{2} to saturation will not be missed.

Construction

A view of the component layout is shown in Fig. 4. Everything is attached to the front panel with the exception of the "flash sync" jack socket J_{I} which is secured to the side of the case alongside the probe lead. The transistor circuitry is laid out on the piece of Veroboard shown at the top of the panel and the relay circuitry on the piece in the centre, between the meter and S_{5}. The integrating capacitors are shown at the bottom, wired directly to the "range" switch S_{2}; and the thyristor, R_{1} and C_{I} connect directly to the tags of J_{I}.

To realise the extremely high input resistance of the f.e.t. when it is connected into circuit, certain precautions must be taken. The gate wire of Tr_{I} should not be connected to the Veroboard but bent around, a wire joined to it and taken to the pole of S_{2}, which should have ceramic

Table of resistor values for the "film speed" switch $\mathbf{S}_{\mathbf{s}}$

film speed ASA	volts f.s.d.	total multiplier resistance for 50- A meter. k Ω	circuit ref.	nearest preferred value after subtracting meter resistance of $1,000 \Omega$. k Ω	\% error
650	$0.1 \times 1=0.100$	2.00	R_{9}	1.0	0
500	$0.1 \times 2^{1 / 3}=0.126$	2.52	R_{10}	1.5	-1.4
400	$0.1 \times 2^{2 / 3}=0.159$	3.18	R_{11}	2.2	+0.9
320	$0.1 \times 2=0.200$	4.00	R_{12}	3.0	0
250	$0.1 \times 2 \times 1.26=0.252$	5.04	R_{13}	4.0	- 1.0
200	$0.1 \times 2 \times 1.59=0.318$	6.36	R_{14}	5.6	+4.5
160	$0.1 \times 2^{2}=0.400$	8.00	R_{15}	6.8	-2.9
125	$0.1 \times 2^{2} \times 1.26=0.504$	10.00	R_{16}	9.1	+1.1
100	$0.1 \times 2^{2} \times 1.59=0.636$	12.70	R_{17}	12.0	+2.6
80	$0.1 \times 2^{3}=0.800$	16.00	R_{18}	15.0	
64	$0.1 \times 2^{3} \times 1.26=1.00$	20.10	R_{19}	20.0	+4.7
50	$0.1 \times 2^{3} \times 1.59=1.27$	25.40	R_{20}	24.0	-1.6
40	$0.1 \times 2^{4}=1.60$	32.00	R_{21}	30.0	-3.2
32	$0.1 \times 2^{4} \times 1.26=2.01$	40.20	R_{22}	39.0	-0.5
25	$0.1 \times 2{ }^{4} \times 1.59=2.54$	50.90	R_{23}	51.0	+2.2
20	$0.1 \times 2^{5}=3.20$	64.00	R_{24}	62.0	-1.6
16	$0.1 \times 2{ }^{5} \times 1.26=4.02$	80.40	R_{25}	82.0	+3.3
12	$0.1 \times 2{ }^{5} \times 1.59=5.09$	102.00	R_{26}	100.00	-1.0

insulation. Paxolin is definitely not a suitable insulating material for this switch. The "reset" switch S_{1} must have similarly low leakage. Being unable to procure a ceramic push-switch, I tried an Eagle miniature push-switch and found it to be quite satisfactory. The gate side of $R L A$, must also be kept off the circuit board and connected directly to the pole of S_{2}. In this most sensitive part of the circuit-as far as leakage is concernedall wiring should be self-supporting, and even when insulated should be prevented where possible from touching anything not directly connected to it. If all these precautions are taken meter indications will remain stable for a considerable period of time in a dry room. In humid conditions however, it may be necessary to moistureseal the case and include a bag of desiccant inside.

A convenient way of measuring the reverse current while testing the suitability of diodes for the D_{2} position is by making use of the high input resistance of the f.e.t. voltmeter. By temporarily replacing one of the integrating capacitors with a 10 megohm resistor, and connecting the diode under test between the 9 -volt negative rail and the gate of $T r_{I}$, the value of its reverse current can be obtained from the reading on the meter in conjunction with the table of multiplier resistances. Start with S_{5} in the 12 ASA position and increase the film speed setting until the meter reads full scale or thereabouts. Obtain the voltage that this represents from Fig. 4 and divide it by 10^{7} to obtain the diode current. For example, the 650 ASA setting is represented by 0.1 volt at full scale. Dividing this by 10^{7} gives 10 nA . The exact current is not critical but should be a little higher rather than lower than 10 nA .

Any ordinary silicon diode may be used in this position and any you have in your possession should be tried first. If not successful in finding one to suit among them, you will probably have to purchase five or six to find one suitable. A word of caution: if connecting them for test with solder, allow plenty of time for them to cool to room temperature before taking a reading, and shield them from the light and heat of any bench lamps. Even the ones in black containers are sensitive to the effect of radiant heat on reverse current.

The probe housing is made from a Bulgin D105/white lampholder which is first stripped down and the screwhole in the plastic end-cap enlarged to take a Bulgin cable sleeve No. 8819 tightly. The probe lead is a yard of screened-twin $7 / 0.1 \mathrm{~mm}$ p.v.c. which is a good fit for the sleeve. If sufficient length of braid is splayed out, it can be clamped between the end-cap and the metal barrel when assembled. The photodiode is secured to the ends of the twin-lead by beads of solder so that when assembled the lens lies just below the end of the barrel. After assembly the diode can be centralized either by packing glass wool around it or by making a polythene washer with a hole which just allows the cell case to
slide through, and which is a friction fit in the barrel.

Constructors using the SEW meter could if they wished photocopy the scale in Fig. 2 and make a single weight print of it to the size required. The print could then be fixed to the reverse side of the original metal scale with dry mounting tissue or some other suitable adhesive. Precise sizing is not possible with bromide paper because of its stretching during processing, but, with care, the error in the length of the scale would be too small to be important with regard to the needle swing and would automatically be allowed for in the calibration.

Calibration

The calibration procedure described is not meant as a precise scientific method but it does enable the instrument to be adjusted to produce the results that any individual photographer will expect from his own meter.

It will be necessary to have, already made up, a flash sync lead of about 20 ft in length, terminated with plugs to suit J^{\prime} and the flash unit in use.

Before proceeding further, constructors would be wise to check the linearity of the film-speed settings. Do this by connecting a suitable potential divider between the 9 -volt negative rail and chassis, so that by connecting $T r_{\text {, }}$ gate to the slider its potential can be varied from zero to minus $5 \frac{1}{2}-6$ volts. Set S_{5} to 650 ASA and the pot. to give f.s.d. Then reduce the "film-speed" switch settings by one-third stop intervals, noting the accuracy with which they correspond with the meter calibration marks. It will be necessary, from time to time, to adjust the gate voltage in order to cover the full range. Any deviation from the marks, in excess of that expected due to the errors listed in the table plus the tolerance of the resistors used, can be noted and either corrected or an allowance made during the calibration.

A neutral density of approximately 0.9 should be fitted to the probe at the beginning otherwise you will be unable to make a sensible assessment of the amount of ambient lighting in which to carry out the calibration.

To start with, both the probe and the flash-head should be fixed to stands 10 feet apart. (There is no magic in the distance but it makes guide-number computation simple and is probably the average flash-to-subject distance used in flash photography.) The flash unit should preferably be mains powered so that the capacitor is charged to a fixed voltage (assuming a stable mains supply) throughout the tests, and does not vary as some battery powered units with battery-saving circuitry do. If a unit without mains facilities must be used, always trigger the flash immediately the charge cycle is completed, by waiting for the audible oscillation to just cease--that is when the charge is at its peak. The light output between recycling limits may vary by as much as one-third of a stop.

Fig. 4. Layout of components, showing the probe in front.

Fig. 5. Sectional diagram of the probe housing (not to scale).

Switch the meter on, set the "film speed" switch to 650 ASA and pressing the "reset" button, adjust "zero set". With the flash disconnected, turn the "range" switch to select C_{3} and operate the "flash" switch S_{4}. If the meter needle moves more than its own thickness, keep operating S_{4}, while reducing the room lighting until it doesn't.

Switch on the flash and connect the sync lead. Turn S_{s} to a film speed that you know requires a stop between f 8 and f 22 with this flash at 10 ft in this particular room. Press S_{4} and note the reading. Reset and repeat several times to satisfy yourself the reading is consistent. When satisfied, add or remove neutral density to or from the amount in the probe housing until the meter indicates the precise stop anticipated.

Having satisfied yourself that the readings are consistently accurate, turn S_{5} until the meter reads exactly full scale. If unable to position the meter needle exactly on the mark with S_{5}, vary the
position of the flash-head relative to the probe while taking readings at each position until a precise full scale indication is achieved.

Next, turn to the C_{4} position of the "range" switch and connect capacitors in parallel to the approximate value of $0.8 \mu \mathrm{~F}$ to the switch tag. Adjust the exact capacitance until flash readings are precisely three stops less than the one obtained in the previous paragraph.

Switch back to C_{3} and ascertain whether or not the "film speed" switch is in such a position that its setting can be reduced by three stops. That is, it must be set to a higher speed than 80 ASA. If it is not, set it now to 100 or 125 ASA and adjust the lamp-to-probe distance for exactly f.s.d.

Set S_{5} nine exposure indices lowerwhich will be 12 or 16 ASA and set the "range" switch to the C_{2} position. Starting with a value of 12 nF for C_{2}, gradually adjust the value until you obtain precisely f.s.d.-taking into account any
deviation in the linearity noted in the ranges of S_{5} earlier. Check before accepting these readings that they are not being unduly influenced by room lighting, because its effect will be more noticeable on this range than either of the others.

Any inconsistency in the results (that cannot be attributed to the light source) may be caused by failure of the relays to synchronize properly. It may be necessary to increase the value of the timing capacitors as mentioned previously.

To test the functional accuracy of the original meter, a set of test exposures were made of a grey card placed a fixed distance from the camera. The camera lens was set to the 10 ft engraving on the lens mount to minimize any error caused by lens extension and a one-dioptre supplementary lens added to enlarge the image. The probe
was clamped in the centre of the image field-at the point of focus-with the card resting centrally against it for each exposure. A flash unit was positioned one side of the camera and its distance and power varied to give exact f-stop readings from f4 to f 32 with a 125 ASA film. Exposures were made at the appropriate stops and a contact print made on a common sheet of paper. (The central portion of the card from each exposure is shown side by side in Fig. 6.) The difference in density between the negatives was less than one-third of a stop in the central area of the card and if one can take the mean density as correct any error is within onesixth of a stop- 10% approximately. (Theoretically, one could make a fractional adjustment to the value of neutral density in the probe to place the mean density

Fig. 6. A series of exposures taken of a grey card at various lens stops with a 125 ASA film. The exact stop was indicated by the flashmeter. Left to right: $f 4, f 5.6, f 8, f 11, f 16$, f22 and f32 (see text).

Components list
 Semiconductors
 D_{1} TIL 77
 D_{2} 1S44 (see text)
 $T r_{1}, \operatorname{Tr}_{4}$ 2N3819
 $T r_{2} \operatorname{Tr}_{3}$ 2N3702 or similar
 SCSI, CRS 1/40 or similar

Capacitors

$C_{l} 0.47 \mu \mathrm{~F}$ polyester
$C_{2} 12.5 \mathrm{nF}$ nominal less the lead and photodiode capacitance.
Adjust during calibration. See text.
$C_{3} 0.1 \mu \mathrm{~F}$ polyester
$C_{4} 0.8 \mu \mathrm{~F}$ nominal. Adjust during calibration. See text.
$C_{5} 2.2 \mu \mathrm{~F}$ electrolytic, 10 V .

Resistors

$R_{I} 100 \mathrm{k} \Omega$
$R_{2} 100 \Omega$
$R_{3} 2.2 \mathrm{k} \Omega$
$R_{4} 4.7 \mathrm{k} \Omega$, may require adjustment.
See text.
$R_{5} 4.7 \mathrm{k} \Omega$
$R_{6} 10 \mathrm{k} \Omega$
$R_{7} 5 \mathrm{k} \Omega$ linear
$R_{8} 200 \mathrm{k} \Omega$, h.s. 1%.
R_{g} to R_{26} h.s. 1%. See table for values.
$R_{27} 4.7 \mathrm{k} \Omega$. May require adjustment. See text.
$R_{28} 4.7 \mathrm{k} \Omega$
All resistors may be 5% tolerance except where stated.

Switches

$S_{1} \quad$ Extremely low leakage push switch. See text.
$S_{2} \quad$ Single-pole, 3-way ceramic rotary switch.
$S_{3 a, b}$ d.p.c.o. push-switch. Bulgin SM419/2 or similar.
$S_{4} \quad$ s.p.m.b. push-switch. Bulgin SM365 or similar.
$S_{5} \quad$ Single-pole, 18-way rotary switch. Bulgin S435 or similar.
$S_{\sigma a, b}$ d.p.c.o. slide switch. Bulgin SM596/2 or similar.
$S_{7} \quad$ 3-pole, 2-way rotary on-off switch. Third pole short circuits meter for transit.

Relays

$R L A_{1}, R L A_{2}$ Miniature reed relays
$M D_{12} 12$-volt, 120 a.t. coil.
Obtainable from Electrovalue Ltd.
Meter
M_{I} SEW SW 10050μ A f.s.d.
Probe housing
1 Bulgin D105/white MES lampholder.
2 Bulgin sleeve bushings. P/No. 8037.
1 yard twin screened $7 / 0.1 \mathrm{~mm}$ p.v.c. or similar.
J_{I} Jack socket or similar.
$B_{I}, B_{2} \mathrm{PP} 3$ batteries with connectors.
Neutral density filters in 5 cm gelatin squares are available (through photographic retailers) from Kodak Ltd, and one each of $0.9,0.3$ and 0.1 density should enable a suitable pack to be built up. (Note: the density of an undyed gelatin is approximately 0.05 or $1 / 6$ th stop.)
"on the button", but as one could not be certain of the speed of the film used-to the necessary degree of precision-it is not very practical.)

Compared with some modern commercial instruments, the one constructed by the writer may be larger ($7 \frac{3}{4} \times 5 \frac{1}{2} \times 3 \frac{1}{4}$ in) than many would like-due to the use of many standard sized components and the large meter employed-but there is no reason why it could not be reduced in size if miniature parts are used throughout.

Coming events

Two courses to be held at Norwood Technical College, Knight's Hill, London SE27 OTX are: Modern Colour TV Receivers covering recent circuit techniques and development of 110° colour television receivers, lasting nine weeks from 6.30 to $8.30 \mathrm{p} . \mathrm{m}$. each Tuesday evening commencing October 8, fee $£ 3$; Optoelectronics covering optoelectronic and liquid crystal technology, systems and applications, lasting nine weeks from 6.30 to 8.30 p.m. each Thursday evening, commencing October 10 , fee $£ 3$.

Two courses at The Polytechnic, Queensgate, Huddersfield HDI 3DH are: Large and Medium Scale Integration-applications in circuit design, a two-day residential course on September 18, 19; also an introductory course on the principles of integration and on basic ideas in digital and linear systems. Further details are available from the above address.

The Systems Reliability Service of the UK Atomic Energy Authority is running in collaboration with Liverpool University a course on An Introduction to Reliability Assessment, Theory and Practice, to be held at the University from September 16 to 17. It includes the mathematics of probability and its application to testing and maintenance of equipment. Applications at a fee of $£ 160$ ($£ 135$ for associate members of SRS) exclusive of v.a.t. and accommodation should be sent to Mr A. C. Wilson, Systems Reliability Service, U.K. Atomic Energy Authority, Wigshaw Lane, Culcheth, Warrington, WA3 6AT.

Integrated Circuit Design Workshop is a weekly afternoon laboratory design course of ten weeks duration beginning on November 13 at the Barking Precinct of North East London Polytechnic, Department of Electrical Engineering, Longbridge Road, Dagenham, Essex RM8 2AS. The course extends over two academic terms and the fee is $£ 7.50$ for each part.

Harlow and District Amateur Radio Society, Mark Hall, Essex will be holding their annual Mobile Rally on Sunday, September 22 at Netteswell Comprehensive School, Harlow. There will be trade stands, bring and buy, free entrance and car park etc. Contact for the rally is B. W. Nappey, G3YDl QTHR.

Letfers to the Editor

Tuning electronic pianos

Readers who are tempted to construct the novel design of electronic piano by G. Cowie, and who try to use the tuning method outlined in the third part of his article (May), will find themselves faced with a very difficult task. Tuning any instrument to equal temperament is not easy, but the job is straightforward, if a little arduous, if the method used by professional piano and organ-tuners is employed.

The main difficulty arises because the major third is such an imprecise interval. An instrumentalist who can vary the pitch of his instrument (a violinist, for example) will say that he varies the interval of his major thirds (and minor ones, for that matter) according to the mood and tension of the music; yet the interval still sounds in tune. The same cannot be said of the mathematically defined intervals of an octave, fifth or fourth. I put these intervals in that order deliberately, because we can tolerate mis-tuning least in the octave, more so in the fifth, and most in intervals like the third, sixth, second and seventh.

This suggests that we should tune a scale by means of the intervals to which the ear is most acutely sensitive, the octave (I am neglecting the unison, since it is not relevant to laying a scale) and fifths and fourths. This sounds simple enough, but this is where the arduous part comes in. Because in the Western world we are used to music in dodecaphonic scales (containing twelve intervals) we like to be able to use these intervals freely to construct scales starting on any key-note. It is also convenient to be able to modulate from key to key at will without losing proper tuning, and herein lies the problem. A scale of C major, for example, constructed mathematically by using the exact ratios of the octave ($1: 2$) and the fifth ($2: 3$) has twelve intervals which are not all equal, and when these are used in other keys, the different sized intervals occur in the wrong places, making the scale out of tune. In equal temperament, all intervals are theoretically made equal. Like George Orwell's animals, some turn out, in practice, to be more equal than others, but as an ideal to aim for, it is satisfactory.

In order to make the intervals equal,
the intervals are "bent" slightly, the fifths being made slightly flat and the fourths slightly sharp. Octaves are of course tuned exactly. Around middle C , the amount of this flattening or sharpening is a little less than one beat per second on average, and takes a careful ear to hear and quantify it. It is easiest to notice if the interval is first tuned exactly (no beats apparent) and then narrowed or widened slightly accordingly.

The method, then, is as follows: tune A $(440 \mathrm{~Hz})$ exactly with a fork; take the A below middle \mathbf{C} (which the divider circuits have tuned for you) tune up to E, up to B, down to F sharp, down to C sharp, up to G sharp, down to D sharp, up to A sharp (B flat), down to F, down to C, up to G, down to D , and if you are lucky, up to A . The first time round, you will probably find you have overdone the interval "bending", but work back in the opposite direction and adjust slightly until you have laid a perfect, equally tempered scale, then celebrate by playing the entire 48 Preludes and Fugues by J. S. Bach, written for just such a keyboard instrument.

Interested readers can find an excellent article on tuning and temperament in Percy Scholes' Oxford Companion to Music, which gives more details than I can.
David K. Taylor,
Charlbury,
Oxford.

FM tuning indication

I have been following the articles on the f.m. tuner in Wireless World with some interest, as some of the principles involved resolve long standing difficulties inherent in most other units. I must, however, make a number of points with respect to the single lamp tuning indicator described by Mr Skingley in the June issue.

Firstly, I do not agree that adjustment for a maximum response is essential for the understanding of the layman. If one regards, in a more general sense, a human being and a machine as a part of a control loop, there are many instances in which the layman has to make some adjustment to achieve a particular setting, rather than a maximum. When driving a car in a builtup area, for example, the driver adjusts the accelerator to maintain a speedometer reading of $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., which, if safe, is the optimum speed at which to travel.

Secondly, I maintain that the output of an f.m. tuner contains more information than that of an a.m. tuner to assist tuning. The a.m. tuner output can only show that a tuning error exists, i.e. output less than maximum, whereas an f.m. tuner output can show whether the tuning is set to too high a frequency or too low. The output of the f.m. tuner is thus bidirectional, in common with most analogue transducers used in control, whereas the output of the a.m. tuner is only proportional to the modulus of the tuning accuracy. It is for this reason that a.f.c. is more easily accomplished on f.m. tuners than on a.m. tuners.

Thirdly, on psychophysical grounds, because of the logarithmic nature of human senses, it is easier to detect when two quantities are the same, or which of the two is greater, than it is to make an absolute estimation of a single quantity. In addition, absolute estimation is highly dependent on ambient conditions, which is why, for instance, street lights look very dim if they are on in broad daylight.

If one plots Mr Skingley's graph of diode current versus input voltage on a logarithmic vertical axis, to obtain eye response, the peak is less pronounced and, more important, in the area of correct tuning, it is very flat.

Fourthly, in an unnecessary attempt to condescend to the layman, Mr Skingley's circuit literally throws away half of the information provided by the tuner, in as much as the "long tailed triple" is a modulus circuit, which effectively lowers the tuning information to that of an a.m. tuner.

The non-technical user can establish from a single light system that an error exists but he cannot tell which way to turn the knob, so that there is no longer a fiftyfifty chance of making the tuning worse before it gets better.

In one commercial tuner I have seen, two lights were incorporated, whose lenses were in the form of arrows, so that one was in no doubt as to which way to tune. A colleague has pointed out that when tape recording from a distant station with a.f.c. out, the two-light system would be the only one usable, as with a single light it is necessary to make an exploratory movement of the tuning to find out which side of the maximum one is, which could spoil the recording.

Finally, I humbly submit that a maximum reading "magic-eye" valve, as found on some old f.m. tuners, with its linearly sensed display (displacement rather than brightness), is theoretically superior to a single logarithmic l.e.d. I do of course intend this last remark to be philosophical rather than sardonic!
J. R. Watkinson,

Institute of Sound and Vibration Research, Southampton.

Plug-in p.c.boards

It was refreshing to read the letter from Mr R. N. Goodman of The Decca Record Company in your April issue. Too often the emphasis during the design stages of a p.c.b. based product is to "cost reduce" without true consideration of the longer term cost improvement which can be gained by a slightly higher first buy price.

Mr Goodman underlines the very major advantages of the two part connector; the type he mentions in his letter, the ISEP male, is probably the most reliable connector of its type in service in its various versions worldwide.

The misfortune of dropping a board utilizing this connector type does not necessarily mean replacement; the profile
of the insulating section ensures exact alignment of contacts before electrical connection is made. This same profile gives considerable protection against accidental damage.

Increasingly other manufacturers are realizing the very real advantages of the two part connector, a trend we are confident will continue.
M. A. Tebbutt,

ITT Components Group Europe,
Milford Haven,
Pembrokeshire.

Electrostatic forces on pickups

The electrostatic forces on Mr Hide's pickup (Letters, June) have been in the reverse direction to those on mine.

I recently purchased a Goldring GL78P/C deck fitted with a G820E cartridge incorporating an elliptical stylus. I found that the reproduction occasionally suffered from momentary breaks as if there was a bad connection in the circuit. An alternative, more robust, G800 cartridge was free from the failing.

While re-checking the playing weight (1.5 gm) and balance of the arm with a record on the turntable I found that the arm appeared to be well out of balance. On removing the record to make the appropriate adjustment the arm was found to be perfectly balanced.

A telephone call to the makers revealed that a very small addition to their quoted maximum playing weight of 2.0 gm can cause the moving magnetic element to "bottom" on its protecting surround. The electrostatic force added to the intended playing weight was causing the excessive stylus pressure.

I have overcome the effect by reducing the playing weight position to a little under 1 gm , but the actual playing weight must be a very variable quantity depending on the state of charge of the record. In fact it is possible to play a record using the electrostatic attraction alone. May I add that I always brush my records with the simple Watts Parostatik Disk Preener (with a moistened inner wick) before use.

I have not tried to measure the added effective weight as something more sophisticated than a simple stylus balance seems to be needed to avoid discharging the record.

Can any reader offer a more satisfactory approach to ensure constant, known stylus pressure?
R. G. Holder,

Moordown,
Bournemouth.

My own gramophone equipment does not suffer from Mr Hide's problem (Letters, June) but I can suggest two remedies which I used successfully in a different situation. Both involve spraying the affected area with a stream of ionized particles, and are in widespread use in industry where electro-
static fields would otherwise be troublesome or dangerous. Besides reducing any undesired forces on the pickup, static elimination may be expected to help to keep records clean.

The first, and much the superior method consists of a radioisotope of polonium, suitably encapsulated, which emits alphaparticles. These particles are harmless to life, since they cannot penetrate the skin, but are extraordinarily effective in neutralizing e.s. fields. Packaged emitters are available on annual lease from the 3 M Company, though their issue is restricted for obvious reasons, and might exclude domestic users. The annual cost is also quite high, roughly equal to that of Mr Hide's equipment.

An alternative is to ionize the air in the vicinity of the field. This may be done by applying a high alternating voltage between suitable electrodes; a commercially available assembly consists of a pointed cone surrounded by á coaxial annulus, and insulated by p.t.f.e. I used about 5 kV , from an ignition transformer advertised in Wireless World. It is essential to limit the secondary current by inserting a resistor in the primary circuit, otherwise the electrode could kill even Mr Hide's friend's cat, if his friend has not already done so.
S. J. Pardoe,

Datac Ltd,
Altrincham,
Cheshire

Amateur computer society

The AFACO (French society of amateur computer builders) has just been created. Coming after the US Amateur Computer Society and the English Amateur Computer Club, its purpose is to establish a link between people interested in building their own e.d.p. machines. A newsletter will be published every two months and sent to all members. To the best of my knowledge, it is the first French association of this kind. Right now we are about thirty members and I would like to be able to increase this number.

Membership of AFACO for the year July 1,1974 to June 30,1975 costs 30 French francs (35 for overseas members) and includes all copies of the "Bulletin de l'AFACO".
Michel Dreyfus,
Association Française des
Amateurs Constructeurs d'Ordinateurs, 42 Rue de la Barre, Villa No. 3,
95880 Enghien,
France.

Doppler in loudspeakers

Mr J. Moir, in his article "Doppler distortion in loudspeakers" (April issue), must explain his second paragraph more precisely. The concept of a loudspeaker cone vibrating at two or more sinusoidal frequencies involves a mental mathematical (Fourier) transform. At a particular instance in time, an element of the cone
can only be in one spatial position. If we try to draw graphically the combined effect of several sinusoidal coil currents on the cone, we make the same transformation as the transducer to arrive at a single complex waveform. This is the actual wave performed by the cone (apart from distortion). Physically the cone cannot move in any other way than that determined by the transformation.

Without disagreeing with Mr Moir's mathematical analysis, the Doppler effect is also physical and must be explained by physical movement. Unless this is seen to be the case, some of us will still contend that Doppler effect in loudspeakers does not exist.
David H. Edgar,
Ascension Island,
South Atlantic.

Electronic piano design

I was pleased to read Mr Cowie's series of articles "Electronic piano design", which should appeal to a great many readers. However, I feel that many will not part with the $£ 70$ required to construct this instrument without a critical review of the circuits, especially since there is considerable circuit duplication.

I consider that this particular design can be improved in both technique and cost, and I would suggest that the serious constructor consults recent literature before starting this project. The booklet Integrated Circuits for Electronic Musical Instruments, 1973 from ITT Semiconductors, Foots Cray, Sidcup, Kent, is one such example. This is a useful, practical booklet, giving background information and alternative approaches to that described in Mr Cowie's article but using modern electronic techniques, and it also describes some purpose-built integrated circuits intended for electronic musical instruments.

On the scheme of cost reduction the 12 tone oscillators could be replaced by simpler circuits. One alternative is to use the dual op-amp type 747 instead of the 741 , thus reducing the number of i.cs by six. A more cost effective solution would be to employ just two t.t.l. 74137 hex Schmitt trigger packages. Since these will directly drive the 7493 dividers used in the design, a total of ten integrated circuits, 12 transistors, and 36 resistors would be eliminated.

Not only are simpler designs possible than the one described so far in the article, but more complex designs can be easily built with the available i.cs at about the same cost and employing techniques such as those for the formation of sound by tuned filters or by sound synthesis.
Keith Mitchell,
Maidstone,
Kent.

Flat colour television display

Experimental device uses gas discharge to excite colour phosphors

An experimental flat colour television display device, using colour phosphor elements excited by electrical discharges in gas, has been developed in Japan at the research laboratories of Hitachi (see News of the Month, July issue). Measuring 160 mm wide and 120 mm high, the panel is constructed as a "sandwich" of front and rear glass covers with, in the middle, flat strip electrodes running vertically and horizontally to form gas discharge cells where they intersect. Details of the construction can be seen from Fig. 1. The cathode strips, running horizontally, have circular holes etched in them, exposing the surface of a glass insulating layer, and within each hole a washer-shaped ring of phosphor is deposited on the glass. In the centre of the phosphor ring the glass insulating layer has a hole in it which exposes the surface of an anode strip electrode, running vertically. The cells so formed are filled with a xenon gas mixture, and the electrical discharge in each cell takes place between the wall of the cathode hole and the central anode, passing across the phosphor ring and exciting it into fluorescence.

There are 19,200 of these cells, arranged into horizontal rows of 160 cells and vertical columns of 120 cells, with a spacing of 1 mm between cell centres. Along a row the colour phosphors are deposited in a red, green, blue, red, green blue sequence, and each column has the same phosphor colour in all its cells. In each cell the gas discharge takes place when a voltage is applied across the anode and cathode electrodes intersecting at that point, and the brightness of the cell fluorescence is determined by the current in the discharge. The area of the cathode (wall of the hole) is sufficient to allow a discharge current of more than 2 mA . Peak luminance for the red phosphor is $9,300 \mathrm{~cd} / \mathrm{m}^{2}$, for the green phosphor $37,800 \mathrm{~cd} / \mathrm{m}^{2}$ and for the blue phosphor $4,800 \mathrm{~cd} / \mathrm{m}^{2}$.

To display a television picture on this structure the information in the television signal must be converted into appropriate patterns of direct currents to be applied to the anode-cathode matrix of electrodes. The method of doing this is shown in the block schematic Fig. 2. Red, green and blue colour signals derived from a con-

Fig. 1. Simplified cross-sectional view of the display panel.

The display panel with a television test picture.
ventional television receiver are digitized into six bits by an analogue-to-digital converter and the digital information is fed into memories sequentially. The information corresponding to one row of the display (160 cells) is read out of the memories and converted into two sets of three-bit pulse-width-modulated (p.w.m.) signals. These p.w.m. signals are made up of different combinations of three pulse lengths, $5 \mu \mathrm{~s}, 9 \mu \mathrm{~s}$ and $20 \mu \mathrm{~s}$. This allows eight combinations altogether and each combination represents a particular level of an eight-level grey scale.

The drive circuits of the display anodes are composed of two constant current sources of two magnitudes. The two sets of p.w.m. signals are connected to these sources so that modulation of the luminance can be obtained by the addition of two magnitudes of p.w.m. currents. Since the display panel has only 120 rows, half of the television picture is displayed without interlacing. A full television image is obtained by using signals of alternate horizontal lines of a field. The luminance of the display has a linear relationship to the input levels, i.e. to the total current pulse width.

In Fig. 1 the "subsidiary anode" wires produce subsidiary discharges in the grooves in the rear glass cover. Charged particles, metastables and photons generated in a subsidiary discharge diffuse throught a channel cut in the cathode electrode (not shown) into the main discharge space of each display cell. The

Fig. 2. Driving system for the display panel.
purpose of this is to decrease the breakdown voltage and shorten the build-up time of the display discharges.

The resolution of the display is 1 mm , while the area luminance (white) is $17 \mathrm{~cd} / \mathrm{m}^{2}$. Power consumption is 14 watts and the efficiency (white) is $0.051 \mathrm{~m} / \mathrm{W}$ (although a luminous efficiency of 0.5 lm/W has been obtained in a test cell using a green phosphor). The contrast ratio obtainable (between the highest and lowest display discharge light levels) is 8:1. The chromaticity co-ordinates of the colour phosphors are: red, $x=0.56$, $y=0.31 ;$ green, $x=0.22, y=0.68 ;$ and blue, $x=0.17, y=0.14$.

The information presented here has been supplied by Masakazu Fukushima of the Central Research Laboratory of Hitachi in Tokyo.

Books Received

Electrical and Electronic Equipment for Yachts, by John French, is suitable for people concerned with the performance, reliability and future development of marine electrical and electronic equipment. The book is written in "layman's" language with many photographs and illustrations including maps of all the main coastal waters throughout the world which show the positions of direction finding beacons with the frequency and type of transmission from each one. There are fifteen chapters in the book each dealing with a separate topic, covering virtually every aspect of marine equipment. Price $£ 5.50$. Pp. 238. Adlard Coles, Granada Publishing, 3 Upper James Street, Golden Square, London W1R 4BP.

Integrated Circuits and Transistor Gadgets Construction Handbook, Radio Receiver Construction using ICs and Transistors, both by B. B. Babani and priced at 60 p each. Pp. 96. Babani Press, The Publishing Division, Babani Trading and Finance Co Ltd, The Grampians, Shepherds Bush Road, London W6 7NF.

Electronics-A Handbook for Engineers and Scientists, by G. H. Olsen, is intended for nonspecialists and those who find formal texts unsuitable. The opening chapters introduce passive components and their response to changing voltage and current. A further chapter deals with semiconductor devices. The book then goes on to explain indicating instruments, power supplies, amplifiers and oscillators. Final chapters provide an introduction to logic and digital circuits, and miscellaneous measuring instruments. Price £7. Pp. 482. The Butterworth Group, Borough Green, Sevenoaks, Kent TN 15 8PH.

Six pocket data books entitled Transistorsdata table Europe band 1, USA band 3, Japan band 5, Diodes comparison tables, Thyristor Triac Diac UJT and PJT data table, and Transistor comparison table, are split into four sections, each section being written in a different language (English, French, Italian and German). The books are priced from $£ 1.25$ to $£ 1.50$. Electro-Replacement Ltd, 30 Rushgrove Avenue, Colindale, London NW9 6QR.

HF predictions for August

It should be noted that whilst HPF and FOT curves are applicable for routes tc and from the U.K. the LUFs shown are for reception in the U.K. only. This is because atmospheric noise level at a given GMT is not the same at all receiver locations. They are also dependent on transmitter power and aerial gain. The curves shown are for point-to-point services. They would be about the same for domestic reception of high power broadcasts but a few megahertz higher for the amateur service.
Generally poor conditions experienced during the past few months should improve during autumn.

Digital meter for the blind

A three-decade instrument with audible balance indication

by T. C. R. S. Fowler, B.Sc.

University of Bristol

A combined recording level indicator and d.c. voltmeter built in 1972 for a blind man was the forerunner of the instrument to be described here. In the voltmeter mode the original instrument indicates the magnitude of the voltage by the frequency of an audible output note, and a 12 -way switch enables any one of twelve reference voltages to be switched in for comparison. The reference voltages rise in constant-ratio (" 3 dB ") increments from 50 mV to 2.26 V , an external attenuator being used at the input to provide higher voltage ranges as required.

At a later stage, the requirement arose for a wider range of reference voltages and it was decided to select the references by means of rocker switches in a binarycoded decimal array. Resistance measurement is now made possible, the complete instrument becoming a 3 -digit voltohmmeter costing around $£ 15$.
Instead of giving a continuouslyvariable output frequency controlled directly by the input voltage, the digital instrument includes a comparator which causes the audible output frequency to change abruptly, generally from a steady high note to a steady low note, as soon as the reference voltage is made to exceed the voltage being measured; only if the two voltages are very nearly equal does the output frequency "dither" in the intermediate range. All three types of output sound are clearly identifiable, even by the non-musica!!

The 12 rocker switches are arranged in three columns of four, with weightings of $4,2,2$ and 1 in each column, most significant digit column on the left. In addition, a lever bar like the spacer bar on a typewriter actuates a microswitch and enables one further least significant digit to be added and removed repeatedly and easily. Thus the full-scale reading is " 10.00 " rather than " 9.99 ", and the stabilized voltage is set to 10.000 V when calibration is carried out.

To take a measurement, all rocker switches are initially set to "off" (left-hand side down); a high note output should result. The switches are then operated in order, starting with the most significant " 4 ", each being left on if the note does -not change, but switched off again if the note changes. Finally a stage is reached
when operating the lever bar causes the note to change. The state of the rocker switches, representing the numerical value of the quantity being measured in 3 -digit decimal form, is then read by touch by the operator.

Circuit description

Fig. 2 is the circuit diagram of the instrument with the reference voltage generator network shown in block form; the circuit of this network is given in Fig. 3 , in which S_{4} to $S_{I 5}$ inclusive are the 12 rocker switches, and S_{16} the microswitch actuated via the lever bar.

An equivalent circuit for a reference voltage generator of this type comprises a direct voltage generator variable in steps between the terminal voltages - of the stabilized power supply used and of a constant output resistance R_{0} equal to that of all the digital-to-analogue network resistors in parallel. Here the equivalent generator is variable in 10 mV steps from 0 to +10 volts, and $R_{0}=0.4 R$, where R is the resistor associated with the most significant "4", viz. R_{t} in Fig. 3. (It may be of interest to note that where the extra least-significant-digit facility is provided, as by R_{13} and S_{16} here, the relationship $R_{0}=$ $0.1 n R$ holds for any number of decades, where R is the "most significant" (lowest) resistor of the network and n is the
numerical value associated with it.) To keep power consumption reasonably low yet the values of R_{o} and the highest resistors R_{12} and R_{13} not unduly high, a value of approximately 5000 ohms was chosen for R. In practice, a $4.7 \mathrm{k} \Omega$ (nominal value) high-stability resistor, measured and found to be of 4720 ohms, was used in the prototype for R_{I} and as the basis for all the other resistors in the reference voltage network, giving $R_{o}=$ 1888Ω and $R_{12}, R_{13}=1.888 \mathrm{M} \Omega$. In the prototype, a "main" resistor close to the required value was used in combination with one or more "auxiliary" resistors, in parallel, in series, or in series-parallel configurations; for example, for R_{2} and R_{3} a high-stability resistor of nominal value $10 \mathrm{k} \Omega$ was used as the "main" resistor; shunting it with two resistors, nominally $470 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$ respectively, gave the required value in both cases. Where, as in this example, the parallel resistors were of relatively high value, carbon film types were considered adequate.

On the 10 V and $100 / 1000 \mathrm{~V}$ settings, switch $S_{2,4}$ connects the output of the reference voltage generator directly to the inverting input of the comparator $I C_{1}$ (a " 741 " operational amplifier). On the other ranges, resistive attenuators are used, the constant output resistance R_{0} of the reference generator giving attenuation.

Fig. 1. The complete instrument. The multiplier lead may be substituted for one of the crocodile clip leads.

The voltage present between the input terminals is applied, virtually unattenuated on the $1 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V ranges, and attenuated by a factor of ten on the higher ranges, between the " 0 V " line and the non-inverting input of the comparator $I C_{1}$, switch $S_{2 B}$ being used to make the necessary connections. On the former group of ranges the $10 \mathrm{k} \Omega$ resistor R_{18} and diodes D_{1}, D_{2} and D_{3} give overload protection, and R_{18} with C_{2} provide smoothing; on the higher ranges R_{18} is replaced by the $1: 10$ attenuator network $R_{17}, R_{19}, R_{20}, R_{2 l}$ and R_{22}, the last two resistors providing a small positive bias voltage which compensates for the effect due to the input current of $I C_{l}$ and the rather high output resistance (about $200 \mathrm{k} \Omega$) of the attenuator network.

The input resistance on the 50 V and 100 V ranges is very approximately that of $R_{I 7}$ and $R_{I g}$ in series; viz. $2.22 \mathrm{M} \Omega$. For the 500 V and 1000 V ranges the multiplier lead is used, adding approximately 20 megohms. Thus the instrument has a resistance of approximately 22,000 ohms per volt on the 100 V and 1000 V ranges, and 44,000 ohms per volt on the 50 V and 500 V ranges.
The output state of the comparator $I C_{1}$ is indicated by the audible output of the instrument, which is generated by Tr_{l}, $T r_{2}$ and associated components forming an astable circuit, the emitter follower Tr_{3}, and the loudspeaker. Generally, of course, the output voltage of the comparator is "hard over" at either the upper or the lower limit, and the values shown for R_{23},
R_{24}, R_{35} and R_{36} were chosen to give a very distinct, though not extreme, frequency change when the comparator switches. The values of the capacitors C_{4} and C_{5} in the astable circuit were made unequal for power economy. The tonal quality of the output sound is considered not unpleasant, although the provision of a jack socket for headphone operation as an alternative to the loudspeaker might nevertheless be a worthwhile addition.

The connection of R_{23} to the "B + " line is used to give a rough audible indication of the positive battery voltage-if this is low, both frequencies from the astable circuit are appreciably lower than with the nominal 18 volts, though still remaining clearly distinguishable from each other. If the " $\mathrm{B}-$ " voltage is very low, the astable

Fig. 2. Circuit diagram of the meter. Resistors marked with an asterisk are high-stability.

Fig. 3. Reference voltage generator network.
circuit will not operate. A further case of non-operation of the astable circuit should be mentioned here; it will not start if the B - voltage is switched on after the $B+$ voltage; this trouble can be obviated by the use, as in the prototype, of a twoposition rotary wafer switch for S_{1}, the wafer contact being filed if necessary to ensure that the B - supply is always switched on first. No such filing proved to be necessary in the prototype, and nonstarting has not been a problem.

The comparator offset adjustment potentiometer R_{39} is set so that on all the voltage ranges, with all the rocker switches set at "off", and the input leads shortcircuited, the high output note results, but pressing the bar to add one least significant digit produces the low output note. (Once set, R_{39} should seldom need to be readjusted, so this trimmer is mounted on a circuit board rather than on the control panel.) The relevant reading is thus that obtained from the rocker switches when these have been set so that pressing the bar causes the output frequency to change; the extra least significant digit added by pressing the bar should not be included in the reading.

The necessary 10 -volt stabilized supply is generated by means of a second 741 operational amplifier $I C_{2}$. Reference diode D_{7} is nominally a 7.5 V type, but in the interest of power economy it is run in this circuit at under 2 mA and gives a reference of about 6.9 V . The accuracy and stability of the " 10 -volt" line are nevertheless reasonably satisfactory, variations being typically less than $\pm 5 \mathrm{mV}$ after an initial settling period. If a suitable digital voltmeter is available, the monitoring terminal T_{3} and fine adjustment facility provided by R_{40} on the control panel make it easy for a sighted person to check and if necessary readjust the line to 10.000 V .

The reference diode voltage also controls, via temperature compensator D_{6}, the base voltage of $T R_{4}$ which provides at its collector the selection of "constant" currents required for the various resistance ranges. These currents are $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$ and $50 \mu \mathrm{~A}$, respectively, for the $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ ranges, and $5 \mu \mathrm{~A}$ for both the $1 \mathrm{M} \Omega$ and the "HR" range. Thus the full-scale voltage is 1 V on the first two of these ranges (switch S_{2} at positions 6 and 5 respectively, S_{3} at "R"), and 5 V on the other three (S_{2} at position $4, S_{3}$ at "R", "IM" and "HR" respectively).

Since the current from Tr_{4} on each range is not completely independent of collector voltage, it is best to trim resistors R_{25} to R_{28} inclusive to give the correct current when the maximum resistance for the particular range is being measured, viz. $1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ respectively, using a digital current meter between the resistor and the negative (" 0 -volt") input terminal. Once the correct current has been set up, the current meter should be removed from the circuit (or short-circuited) to eliminate the voltage drop introduced by it; accurate measurements of resistance should then be possible. The high-stability resistor R_{29} is switched in on the "HR" range; when R_{25} has been trimmed to give the requisite $5 \mu \mathrm{~A}$
on the $1 \mathrm{M} \Omega$ range, switching to the " HR " range should give a full-scale reading with no external resistor connected, i.e. with input terminals open-circuited. In the prototype it was preferred to set the current marginally on the low side, giving an open-circuit reading on the " HR " range of 0.995 , so that the open-circuit reading would remain measurable even if there were a slight upward drift subsequently; using this method the quantity x, the reading obtained as a fraction of full-scale, referred to later, is strictly the reading divided by 0.995 , but a good approximation for x when close to unity is obtained by subtracting the reading from 0.995 , and subtracting the result from unity, e.g. a reading of 0.975 , giving a difference of 0.02 , would give $x=0.98$. (If the open-circuit reading changes after a time, say to 0.997 , this new value should of course be substituted for 0.995 in calculating x.) It might be worthwhile to add a front-panel trimmer for R_{25}, to enable the open-circuit reading to be set to full-scale each time the "HR" range was used, enabling x to be read directly.

Diodes. D_{4} and D_{5} and the 60 mA fuse are included to protect $T r_{4}$ in the event of voltages being applied when the instrument is set to measure resistance; a high positive voltage will be "isolated" by the resulting high-resistance state of D_{4}, while if a negative voltage is applied D_{s} clamps the collector of Tr_{4} to the " 0 -volt" line, the fuse blowing if the current through the diodes is excessive. The current-generating circuit is disconnected from the input terminals in all caser except those in which the two selector switches, S_{2} and S_{3}, are correctly set for a resistance measurement.

Choice of code

The $4,2,2,1$ code was selected for use in this instrument in preference to the binary $8,4,2,1$ code to make it impossible to set up a number greater than 9 in any decade, as this might be confusing. The digits 2 to 7 inclusive in each decade can thus each be set up in two different ways, which fact can be used for occasional "cross-checks", and for short cuts in getting a reading, e.g. if the first " 2 " has been found too large, the " 1 " in the same decade should next be tried, "by-passing" the second " 2 " switch, to save time in getting the reading.

It would appear that a $4,3,1,1$ code and a $3,3,2,1$ code would offer similar advantages, and there may be little to choose between these three codes from either mathematical or "hardware" considerations, but perhaps some "human factor" reason why one of the three codes is to be preferred. If it has not already been done, it would seem desirable to resolve this choice as soon as possible, so that an optimum standard code for this type of instrument can be made widely known.

Mains power supplies

Mains-derived d.c. supplies of similar voltage, viz. nominally +18 V and -3 V , may be used in place of the batteries; as mentioned above, there is considerable latitude on these values, +12 V and -2 V being adequate. The " $B+", " B-"$ and "-" input terminal may conveniently be
used for the connections, and as long as the on/off switch S_{I} is left at "off" the batteries need not be removed; but if the positive supply voltage to be used exceeds the battery voltage the positive battery lead should be unclipped to prevent unwanted conduction through diode D_{1}; diode D_{2} will of course continue to give overload protection as long as the positive rail remains connected to a low-impedance voltage source.

Construction

Fig. 1 is a photograph of the instrument, for which a die-cast box approximately $10.75 \times 6.75 \times 2.25 \mathrm{in}$. has been used.

All the signal terminals, switches and controls are mounted on the lid of the box, with labelling as shown for the benefit of sighted users or helpers. On the underside of the lid are the two electronic circuit boards -one carrying the d -a resistor network, the other all the active devices and associated components-most of the interconnecting wiring, and the fuseholder. The two boards have flexible lead connections and may be pivoted away from the underside of the lid for servicing, if necessary.

Only the battery housing and the loudspeaker are fitted to the lower part of the box. These are connected by flexible leads to the relevant points on the underside of the lid, so that the instrument can be operated with the lid removed and inverted for servicing, as shown in Fig. 4. A pivoted flap locked by a single knurled nut gives access to both battery housing tubes, one of which houses two PP4's for the positive supply, the other two SP2's for the negative supply. The loudspeaker is mounted facing downwards, a number of holes drilled in the base of the box, and the rubber feet which support the unit, providing an adequate air path for the sound; the speaker thus occupies no top panel space, and should also remain relatively dust-free.

For all external connections 4 mm socket terminals are used. The two terminals on the left in Fig. I are the signal input terminals. For these two plain crocodile clip leads are provided, together with a third lead (not shown in Fig. 1) with an insulated probe clip and a multiplier box a few inches from the 4 mm plug end, containing a series resistor chain which gives the multiplier lead a resistance of approximately 20 megohms. This multiplier lead is used, in either the positive (upper terminal) line or negative (lower terminal) line, as appropriate, in the measurement of positive and negative voltages in excess of 100 volts: it converts the 50 -volt and 100 -volt ranges to 500 -volt and 1000 -volt ranges. (Neither input terminal is connected to the case. Either can be so connected, as required.)

A little to the right of the input terminals are a monitoring terminal and screwdriver adjustment potentiometer for the 10 -volt stabilized supply, while a fourth terminal, in the upper right-hand corner, enables the reference voltage present at the comparator to be monitored or connected to other equipment.

The two remaining terminals, also on the right-hand side of the panel, monitor the positive and negative battery voltages respectively. The instrument can be used to
measure its own battery voltages, the positive one directly; the negative voltage can be measured by connecting to it the negative terminal of a 4.5 -volt battery, measuring the net positive voltage and subtracting it from the external battery voltage.

Operation

The rocker switch array and l.s.d. microswitch bar are clearly shown in Fig. 1. To the left of them are the on/off switch and volume control, and above them (i.e. further from the operator) are the two range selection switches. The right-hand range selection switch is set to the most anti-clockwise position (" V ") for all voltage readings, and to the next position (" R ") for all resistance ranges except " 1 M " (1 megohm), for which the third position of the switch is used, and "HR" (high resistance), for which the fourth, most clockwise, switch position is used.

With the right-hand switch set at "V", the left-hand range selection switch gives voltage ranges of $100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}$, and 1 V (again), starting at the anti-clockwise limit. The first two of these ranges are converted to 1000 V and 500 V respectively by using the multiplier lead in place of one of the two direct input leads, as described above. On the $500 \mathrm{~V}, 50 \mathrm{~V}$ and 5 V ranges the numerical value obtained from the rocker switches must be divided by two (or the switch weightings thought of as $2,1,1, \frac{1}{2}$ instead of $4,2,2,1$), so that the other ranges, on which the numerical value obtained is directly relevant, seem likely to be preferred except where maximum resolution is required.

With the right-hand range selection switch set at " R ", resistance ranges of 1000 ohms, 10,000 ohms and 100,000 ohms are obtained from the left-hand switch set at positions 6 (most clockwise), 5 and 4 respectively. For the 1 megohm and high resistance ranges the left-hand switch is set at position 4 and the right-hand switch at " 1 M " or "HR" as required.

Measurement of resistance is straightforward on all but the "HR" range, i.e. the rocker switches having been set and read, and the position of the decimal point

x	0.50	0.667	0.75	0.80	0.833	0.875	0.90	0.95	0.98	0.99
R (megohms)	1	2	3	4	5	7	9	19	49	99

determined according to the range in use (as in voltage measurements), the numerical value obtained is a reading in ohms of the resistance connected between the input terminals. On the "HR" range the same constant current supply is used as on the 1 megohm range but, as R_{29} is included in the circuit, the reading obtained represents the resistance of this and the external resistor in parallel, from which the value of the latter can be calculated $(R=x /(1-x)$ megohms, where R is the external resistor being measured and x the reading obtained as a fraction of full-scale). This method is used to avoid the necessity for an even lower constant current supply on the "HR" range than the 5 microamps required on the 1 megohm range, as ideally the current used should be large compared with possible variations in comparator input current for the latter to cause negligible inaccuracy.

Using the expression $\frac{1}{1-x}-1$ megohms for R, may be found to simplify the mental arithmetic; the " -1 " may be ignored with little error at very high resistance values. Where only a rough measurement of a high resistance is required, it may be found expedient to do a rough interpolation between a few memorized spot values on the "HR" range as shown in the table.

For the blind user wishing to avoid mental arithmetic completely, a comprehensive conversion table in braille for the "HR" range could be prepared, and might be worthwhile if many high resistance measurements to maximum accuracy were required. The "HR" range is the one rather complicated range to use on this instrument, but the facility it gives was considered worthy of inclusion.

In setting up the rocker switches according to the frequency (high or low) of the audible output, the operator performs manually a sequence of a type which is carried out electronically in certain a-d

Fig. 4. The unit can be operated when opened for servicing.
converters; this may sound laborious, but in practice proves quite quick and acceptable. A blind user has reported, after only a few days' use, that setting the switches takes very little time indeed, and has pointed out that when using his moving-coil multimeter he must allow a little time for the needle to settle before clamping it; and he considers the few seconds involved in setting the switches a small price to pay for the accuracy of the voltage and resistance measurements, which was just not available to him previously.

The readout from the rocker switches is of course of a clear and positive nature, requiring no braille labelling, and is hence readily usable also by blind people not familiar with braille, as well as by sighted people.

About people

J. Stuart Sansom, O.B.E., F.I.E.R.E., has been appointed director of studios and engineering at Thames Television. Mr Sansom began his career in television in 1953 with a firm working on the development of high-quality telerecording systems, joining Television Wales and West in 1957 to become head of maintenance. He later went to ABC Television as head of development, in which capacity he was involved in the investigations into colour television systems prior to the final choice of PAL. He became chief engineer of Thames in 1966, and was appointed technical controller in 1970. Mr Sansom has served on many committees, including the EBU Technical Committee.

J. Stuart Sansom

Five years ago came the now legendary message of July 20, 1969, 4.17.40 p.m. Eastern Daylight Time, "Houston, Tranquility Base here. The Eagle has landed". Less than seven hours later, Neil Armstrong cautiously placed his foot on the moon and was joined after a few minutes by Edwin Aldrin. More than two hours were spent on the lunar surface, taking photographs, collecting rock and soil samples and deploying scientific instruments. Forty-six pounds of the moon were collected for return to Earth.

Six Mercury flights between 1961 and 1963 proved man could survive in space; ten Earth-orbiting Gemini flights in 1965 and 1966 proved man could work in space, that he could control spacecraft to rendezvous and dock with another, that he could stay in space for up to two weeks and that he could work outside the spacecraft and do meaningful work on these "space walks". Also conducted were three unmanned flights, testing the Satum 1B rocket and Apollo command and service modules. The price for this development has been high: $\$ 392$ million for Mercury, $\$ 1.28$ billion for Gemini and $\$ 21.349$ billion for Apollo up to the first manned lunar landing. Three astro-nauts-Grissom, White and Chaffeedied in the Apollo 204 fire while testing their spacecraft on the launch pad less than a month before their scheduled Earthorbit flight. Their deaths, the highest cost so far, delayed the programme but resulted in improvements in the spacecraft which made it a safer and more reliable vehicle.
Two lunar landings, and the four that followed in the early 1970s, gave scientists around the world a variety of sample material, photographs and electronic data that will keep them busy for years. Five of the six scientific stations left on the surface of the moon were still transmitting data when the Apollo follow-on manned flight programme, Skylab, was launched.

The 12 Americans who left their footprints in the lunar dust totalled 166 manhours of surface exploration. They traversed almost 60 miles and brought about 850 pounds of rock and soil samples back to Earth. They left 60 major scientific experiments on the moon and conducted 34 more in lunar orbit.

Apollo, in early planning, was scheduled for ten landing attempts, but one and then two more were cancelled because of cuts in NASA funding. Apollo's final cost$\$ 25$ billion. Some of the preliminary. findings from Apollo were as follows:

- a definite and reliable lunar history time scale;
- general agreement that the dark "sea" regions are extensive lava flows and that most of the craters are projectile impacts;
- a variable magnetic field much stronger than expected and an interior also hotter than expected;
- distinct differentiation between the chemical composition of the moon and that of the Earth, a significant constraint on the theory that the moon was originally a part of the Earth. Data did not rule out, however, any of the three major theories on the moon's origin-separation, capture from circumsolar orbit, or formation from a dust cloud surrounding the Earth.
Withdrawal of funds from the Apollo programme has switched the emphasis of space exploration to deep space probes and the Earth-orbiting Skylab project, so developments are still coming thick and fast.

Apollo-Soyuz test project

The first co-operative space venture between Russia and the United States will include in-orbit docking of a US Apollo Command Module with a Soviet Soyuz spacecraft in the summer of 1975. This will be accomplished using a docking module designed to accommodate the two spacecraft and provide a passageway from one to the other. After the docking phase of the mission, the two spacecraft and the docking module will separate. Equipment consisting of a transmitter mounted in the docking module and a receiver mounted in the Apollo Service Module utilizes twofrequency v.h.f. Doppler tracking, de-

Astronauts selected for a Skylab mission are assisted by scuba divers during a neutral buoyancy test to simulate extravehicular activities.
veloped by Raytheon. The link will measure extremely small variations in separation velocities between the two modules as they gradually drift apart out to 500 kilometres. This technique, known as low-low satellite tracking, will enable small anomalies in the Earth's gravitational field to be identified.

As part of a long-term National Aeronautics and Space Administrationsponsored programme aimed at earthquake hazard assessment, these measurements will supplement other studies of the tectonic plate structure of the Earth. Movement of these plates is associated with continental drift and fault systems such as the well-known San Andreas Fault in California.

Although previous space communications have been relayed between ground stations using communications satellites, the Apollo-Soyuz project will make the first use of a satellite to relay television and other communications from spacecraft to Earth stations. The Applications Technology Satellite (ATS-F) will provide the link and will permit communications during approximately 50% of the mission and will greatly increase the amount of real-time data available to investigators on the ground as well as television coverage of the flight.

The $1,270 \mathrm{~kg}$ ATS-F, measuring 15.7 m from tip to tip of its solar panels and 8.4 m in height, will carry a nine-metre parabolic steerable antenna through which Apollo-Soyuz transmissions will be relayed. Orbiting at $35,900 \mathrm{~km}$, ATS-F will point its antenna toward the edge of the Earth as seen from that altitude, waiting for the spacecraft to appear over the western horizon and generate a signal for the manned spacecraft to lock-on to. Apollo, using a wide-band antenna, will transmit telemetry, voice communications and live TV to the satellite. Signals will then be relayed to a ground station near Madrid, Spain, and the ground station will then relay them via other satellites to the Johnson Space Center, Houston, Texas.

Exploring the outer planets

The traditional approach in exploring a new planet has been to begin with a fly-by mission, then an orbiter mission, and then send a spacecraft to fly into its atmosphere. However, with the experience gained by trips like Pioneer 10 's safe passage through Jupiter's enormous radiation belts, as well as advances in atmosphere probe technology, scientists are now thinking about plunging directly into the atmospheres of planets like Jupiter, Saturn and Uranus. Relatively small and cheap atmosphere probe spacecraft would make it possible to take the somewhat increased risks.

The cold outer planets are believed to be made of the primordial material from which the solar system was formed. Mainly because of the low temperatures that prevail in that part of the solar system, objects can still be found where the evolution has been so slow that conditions today are not so very different
from what they were at the time of their formation. By combining studies of several planets, scientists can compare and learn more about the formation of the individual planets, the formation of the solar system and the evolution of Earth.

Two spacecraft are destined for Venus in 1978. A detailed investigation of Venus's atmosphere and clouds will be conducted which could provide information leading to a better understanding of our own atmosphere. Experiments will deal with the composition and structure of the Venus atmosphere down to the surface, the nature and composition of the clouds, the circulation pattern of the atmosphere and the radiation field in the lower atmosphere. The upper atmosphere and the magnetic and radiation environment of the planet will also be studied.

NASA will use two Pioneer-class spacecraft for the mission. One of these will launch four scientific probes toward the surface of Venus and then enter the atmosphere itself, transmitting additional data to Earth until it burns up. The sister ship will have been placed in orbit around the cloud-shrouded planet about a week earlier to study the planetary conditions before entry of the probes.

The probe portion of the mission will be a bus, a large probe and three small probes. The spacecraft will be spinstabilized, use solar power, and will weigh, including probes, about 832 kg at launch. The trip from Earth to Venus will take 125 days and will include two or three mid-course manoeuvres. Like its sister craft, the Venus orbiter will be spinstabilized, use solar cells for power and weigh about 517 kg at launch. The trip from Earth will take about 190 days. The spacecraft for the atmosphere probe is scheduled to be launched in May, 1978, about three months prior to the launch of the orbiter. Both will arrive in the vicinity of Venus within a few weeks of each other in December, 1978.

By comparing the atmospheres of Venus, Mars and Earth, it is hoped to be able to construct a better model of the Earth's atmosphere for use in predicting long-term changes in climate as well as short-term effects caused by environmental pollution.

Understanding weather patterns

Study of terrestrial weather patterns does not depend purely on probes to the outer planets. The first Synchronous Meteorological Satellite, SMS-A, was launched from the Kennedy Space Center during May. From its initial position $34,781 \mathrm{~km}$ over the equator, just off the coast of Brazil, the satellite will transmit electronic data to produce day and night pictures of the Western Hemisphere every 30 minutes; receive and transmit environmental information from up to 10,000 manned and unmanned data-collection platforms; transmit and relay weather data and pictures to hundreds of small receiving stations; and monitor solar flare activity for future manned spacecraft and supersonic aircraft flights.

The basic payload of the spacecraft consists of a telescope/radiometer, called the Visible Infrared Spin-Scan Radiometer (VISSR), providing both infrared and highresolution visible photography, a communications system for data collection and distribution and a space environment monitoring subsystem. Nine channels of VISSR data are transmitted from SMS over a 25 MHz bandwidth r.f. link to a command and data acquisition station during the 18 to 20 degrees of satellite rotation that the radiometer views the Earth, or during 30 ms of the total 600 ms satellite spin period.

The received data is fed to a synchronizer/data buffer, which stores the data during the 30 ms Earth-viewing time for stretching or reducing the bandwidth for simplification of handling. The Earthviewing and 480 ms stretched data-

Satellite tracking station in Raisting, West Germany.
transmission times are synchronized to ensure completion of both transmissions within the nominal spin period. Telemetry and command transfer is on v.h.f. during orbit transfer and S -band on station. The VISSR operates 1.7 GHz downlink and 2.0 GHz uplink.
The tropics receive half of the sunshine that strikes Earth and fuels the atmosphere's circulation. Much of this solar heat is first stored in the tropical oceans and then transferred from sea to air, carried upward and transported from the tropics by high-velocity winds. These inadequately understood processes affect weather conditions all over the Earth.
Infrared heat detection photographs measure atmospheric temperatures and show colder areas as lighter shades and warm areas as darker portions of the picture. The signal is transmitted from the spacecraft and is transformed to a visual photograph by a laser which is modulated by the video signal. The film is a dry silver type, developed by heat instead of the usual liquid, and the pictures have a resolution of about half a nautical mile, compared with about two to four miles for the Automatic Picture Transmission units now in use throughout the world.

Communications and data-handling subsystems for atmosphere exploration consist of four distinct areas: telemetry, tracking, command and control and the antennas. Telemetering of the instrument and spacecraft data can be accomplished using encoders employing redundancy techniques for reliability, spacecraft clocks, tape recorders and S-band and v.h.f. transmitter.

Redundant v.h.f. transmitters telemeter data in real time and operate in the 137 MHz band, employ p.c.m./p.m. and radiate a minimum power of 1 W .

The p.c.m. telemetry for the Atmosphere Explorer Satellite (AE-C) was as follows: telemetry-p.c.m. 16,384 b.p.s. real time and tape record, p.c.m. 131,072 b.p.s. playback; transmitter - v.h.f. 137.23 MHz , S-band 2289.50 MHz , p.c.m./ p.m.; encoder-main frame channels at 16 eight-bit samples per second, subcommunication channels at one eight-bit sample per four seconds and one eight-bit sample per eight seconds.

Spin-off

It is cheaper to search for some kinds of weeds from 65,000 feet in the air than from the ground. A case in point is the "Dudaim melon", considered one of the worst weeds in California. It is an annual inedible variety of cantaloup introduced from India in 1953. In asparagus, Dudaim melon plants quickly grow to the tops of the 20 -metre-high ferns to spread out to 100 m diameter. The weed effectively smothers the asparagus to decrease yield by 60%, with a reported loss of up to $\$ 3$ million annually. In one 80 -acre field, interpretation of infrared photographs from a NASA Earth Resources Aircraft flight revealed a probable Dudaim melon infestation that had not been detected after 100 man hours of ground survey.

News of the Month

Ceefax news

The BBC is seeking Government approval to carry "real" news in its experimental Ceefax transmissions. Using the unified "system 3" Ceefax format, distilled from the original BBC and IBA proposals (see May News, page 115), the number of pages will be increased to reach 100 in the autumn. Up-to-date information such as news headlines, sports results, weather forecasts, travel news, TV and radio programmes, stock market reports, best selling records, shopping news, recipes, and a host of others including information for specialized audiences (by transmitting at arranged times) will be possible if the "pilot" transmissions are given the goahead. This phase of Ceefax transmissions will enable demand to be assessed for different kinds of information. Anyone who can obtain a Ceefax decoder will be able to receive the information, to be transmitted initially on all BBCl transmitters.

Decoders using conventional t.t.l. circuits and taking advantage of all the facilities available will be expensive. But it is expected that l.s.i. chips will be available in the near future that will bring cost down by an order of magnitude. Simplifications in the decoder are possible, for example by displaying only upper or lower case characters, or by displaying just one line at a time. The pilot run should also provide manufacturers with information about what options or compromises are appropriate and possibly a whole range of decoders will become available as well as being built in to receivers.

Pick-up in permanent magnets

New applications for permanent magnets are being developed in the applications laboratory at Mullard's Crossens magnetic materials plant in Southport. Electromagnets requiring high continuous alternating fields have until recently provided the only means of switching a magnetic field, by taking advantage of the non-permanent magnetic properties of certain materials. It is possible however to use magnetic "keepers" through which
the fields of a permanent magnet can be switched by comparatively low currents lasting only a few milliseconds. The field can be concentrated through the keeper or directed through the lower surface of the magnet so that ferrous objects can be picked up or dropped at will using very low, short duration current pulses.
Of the types of magnetic components manufactured at Crossens, all are processed from basic raw materials with the exception of nickel-zinc high frequency soft ferrites where the powder is preprocessed before arrival at the plant. All ferrites are based on iron oxide with additives. The three basic magnetic materials manufactured are: Ferroxcube, a versatile soft ferrite ceramic material; Magnadur, a hard ferrite ceramic material for permanent magnets and Ticonal, the classic metal permanent magnet.

IBA container station opens

The first of a new type of u.h.f. television relay station has recently been opened by the Independent Broadcasting Authority at Morpeth, Northumberland.
This low-power relay station on Channel 25 should improve reception on Tyne Tees Television programmes for about 9,000 people in those parts around Morpeth where reception of the high-power transmitters at Pontop Pike has been unsatisfactory.

All the transmitting equipment at Morpeth, for both ITV and BBC channels, is installed within a "steel container". This method enables much of the technical equipment to be assembled before transportation of the complete container
on a special purpose-built vehicle to the site. All equipment used in these new stations relies entirely on semiconductors.

Viewers should use Group A aerials with the aerial rods vertical and carefully positioned to receive good signals from the direction of the transmitter which is about $1 \frac{1}{2}$ miles north-east of Morpeth.
Viewers who can receive the recently started BBC transmission from the Morpeth relay should find their aerials equally suitable for the reception of Tyne Tees programmes.

Flight simulation developments

Four XY recorders form part of a sophisticated flight simulation system for the training of Lockheed Tristar and BAC1-11 pilots and flight engineers operated by Court Line Aviation. As the trainees sit in a detaled simulation of the aircraft cockpit, every movement of their aircraft is plotted through take-off, flight and landing.
To plot each stage of the simulated flight, the recorders can be operated in a number of modes as selected by a central computer. At the start of a flight, the console operator selects a large scale mode and the recorder plots the location of major ground features, radio beacons etc. When this is completed, the operator selects the "track" mode and the recorder is ready to plot the computerized data on aircraft movement, up to take-off. Meanwhile, a second recorder has been set to the smaller scale and plots ground features of the flight itself. Every moment of the flight is plotted on this recorder

Engineer seen operating the remote unit of a Tellurometer microwave measuring system during winch-out of "Graythorp One", the world's largest oil rig, on the first stage of its 250 -mile journey to BP's Forties Field.
until the trainee pilot reaches his landing approach. Then the first recorder comes in again to record landing at the larger scale and the second recorder changes over to plot his glide-slope down to the runway also at the larger scale. In the de-briefing room, four charts are available for discussion, showing all aircraft movements including its actual position in a simulated crisis situation compared to the theoretically correct position. The system was manufactured by Redifon and uses Bryans Southern recorders.

Design Council competition

An annual competition to encourage the art, science and practice of engineering design in mechanical, electrical and electronic engineering in universities, colleges and polytechnics has been announced by the Design Council. Called the "Molins" prize, the scheme has been sponsored by Molins Ltd, precision engineers, and will be administered by the Design Council in association with the Institution of Mechanical Engineers and the Institution of Electrical Engineers. Prizes will be given annually and the competition will be open to students (excluding postgraduates) following diploma or degree courses in engineering, engineering science or related disciplines at a university college or polytechnic in Great Britain. Each college will be allowed only one submission per year and three principal prizes of $£ 500, £ 250$ and $£ 100$ will be given. Full details and submission forms for the competition can be obtained from Anthony H. L. Key, The Design Council, 28 Haymarket, London SW 1.

Audio exhibitions merger?

It has been decided at an open meeting held by British Audio Promotions Ltd, to set up a committee to organize a united representative audio show next spring. This year's spring show near London Airport was split into rival factions, Sonex and a new group known as Hi-Fidelity '74. It was agreed at the meeting that dissension did not serve the needs of the manufacturers, importers or, least of all, those of the consumer.

Bus monitoring system

It takes more than a time-table to run 900 buses and transport 560,000 passengers daily. Dublin, like any other large city, has a traffic problem and, although the existing radio control system has improved traffic communications in vehicles that have it fitted, a greater degree of vehicle control is required to improve traffic-flow and maintain running costs at a reasonable level. The radio control system could not be extended because of the limited radio frequencies available so, because of the large number of vehicles involved, an automatic vehicle monitoring system has been

Riggers at work positioning the antenna elements in the first ring of a v.h.f. array which EMI is building for the third-of-a-mile high communications tower in Toronto, Canada. When completed, the antenna complex will radiate most of Toronto's f.m. and TV broadcasts.
developed by a consortium comprising Storno Ltd, Digital Systems Ltd, Leasco Ltd and Digital Equipment Co.

The main problem is providing high speed "polling" of individual buses. This has been overcome by a data transmission system capable of handling high-speed information. A base computer automatically interrogates each bus in service every two minutes via a radio link. A data store in the bus automatically responds with the vehicle's location and other relevant information. This is then stored in a second computer and, on request from a human traffic controller, the information is transmitted over telephone lines to a visual display unit at each garage. The visual display unit shows a map of the route requested, together with the scheduled and actual position of each bus on that route. The controller thus obtains instant warning of buses running too close, those running behind schedule, traffic jams, breakdowns and so on, and remedial action can be taken through the two-way radio telephone link direct with individual buses.

The automatic vehicle monitoring system is now being installed and a pilot scheme will be in operation by April 1975. By 1976 it is expected that the entire Dublin bus fleet will be equipped.

IBC 1974 breaks new ground

The organizers of the International Broadcasting Convention feel that the event this year is even more international than ever before. Describing it as an industry event organized by the broadcasting industry, they announce that 40% of the papers
given will be by overseas authors. This year's Convention has a higher-than-usual proportion of papers on sound broadcasting (25%), with E. M. Tingley's paper on the work of the EIA National Quadraphonic Radio Committee (USA) in assessing multichannel broadcast systems promising to be one of the most interesting.

Session topics include studio operations (includes dummy-head stereo), signal origination (includes Ceefax/Oracle), satellite broadcasting, recording and storage, service planning, transmitter monitoring and testing, transmitter and transposer design, and maintenance philosophy. As well as these "formal" sessions, there are less formal specialist ones on Ceefax/ Oracle, service planning and quadraphony. The Convention will be held at Grosvenor House, Park Lane, September 23 to 27. The display area has 57 exhibitors. IBC Secretariat is at the IEE, Savoy Place, London WC2R 0BL.

Doram dedicated to amateurs

The Electrocomponents Group, of which RS Components is a member, has established a new subsidiary company named Doram Electronics Ltd, dedicated to the needs of amateur radio, electronics and hi-fi enthusiasts. The Doram range will be described in a 64 -page catalogue which, priced at 25 p including postage, is available from PO Box TR 8, Wellington Road Industrial Estate, Leeds LS12 2UF. The catalogue will incorporate full particulars of each product including, where applicable, circuit diagrams, operating parameters, photographs and dimensional diagrams, in addition to the price of each individual item.

Briefly

New ITU member. By its accession to the International Telecommunication Convention (Montreux, 1965), registered on May 27, 1974, by the General Secretariat of the International Telecommunication Union, the Republic of the Gambia became the 147 th member country of the ITU.

Voltage drop. A Hewlett-Packard vector voltmeter fell (accidentally) 180 feet from a BBC aerial mast. When it was plugged in and switched on, it was found to be working perfectly.

Crystal ball. Readers may have noticed the APRS (Association of Professional Recording Studios) exhibition reported in the July issue was labelled 1975. We are not really clairvoyant as this took place in June.

Yo yo-ing egg prices. R. Whittaker, secretary of Thames Valley Eggs, was outright winner of the accountants' Dial a Computer competition for his plan to help stabilize egg prices by using a computer terminal to accurately forecast egg production.

What is e.m.f.?

Can it be distinguished from p.d.?

by M. G. Scroggie

A curious thing about the subject of electricity (and magnetism), on which most of what appears in this journal depends, is that the more elementary and fundamental the aspects of it the less likely are you (and I mean you) to be able to give a clear account of them. This is hardly surprising, because so many teachers and textbooks are hazy and contradictory in this area. In part this is because education is, as someone has pointed out, a process of diminishing deception. One does not simply begin at the beginning, go on to the end, and then stop. The way two-yearolds are taught English at home lacks some of the finer points that will be included when they go over the ground again and again at school and university. Some of the grammatical usages that were accepted from us in infancy would have been blue-pencilled if they had appeared on our exam papers. What distinguishes the subject of electricity is that by the time students get on to practical applications they are so often too involved in them to go back to the beginning and learn the basics properly.
This line of thought was stimulated by the discovery that someone whose name is a respected household word in Wireless World and beyond, and who has made world-famous contributions to circuit design, was baffled by my description of what happened in a circuit consisting of a coil in a steadily changing magnetic field connected to a resistor (Fig. 1). He saw it in Phasor Diagrams, Appendix 1, where I had tried to justify my assertion that no generally accepted distinguishing line between electromotive force (e.m.f.) and potential difference (p.d.) existed. (Incidentally, in the eight years since the book appeared no one has ventured to refute this claim.)
To enable you to amuse yourselves with the game of "Beat the Expert" I quote in full the passage that puzzled him:
"Looking at Fig. 1 let us suppose that a magnetic field linked with the turns of the coil \mathbf{L} is steadily growing at such a rate that the electric field strength it creates in the wire, multiplied by the length of the wire, is equal to 10 volts, positive at the A end. Electrons in the wire are consequently attracted towards that end, causing a surplus there and a deficiency at B. In other words B becomes positively charged with respect to A. The surplus electrons find their way through R to B, constituting a positive current
from B to A. This increases until the p.d. across R falls short of the 10 volts of field generated by L by only enough to leave a surplus capable of driving the current from A to B through the resistance of L. For simplicity we shall assume this is zero. There is then no resultant electric field in L . The field due to \mathbf{B} being positively charged with respect to A is equal and opposite to that due to the varying magnetic field linking L."
What confused my friend, of course, was my saying that what was generated in L was + at the A end whereas a voltmeter would show that L was + at the B end. The "electricity made easy" books, and even some quite serious textbooks, make no attempt to describe in electrical terms what happens in a generator of electricity but instead liken it to a pump which can make water flow upwards, against its natural downward tendency due to gravity. Or, evading explanations altogether, they simply state as a fact to be accepted that certain things such as dynamos and batteries have this almost magical capability called, for want of a better word, electromotive force, which makes an electric current flow from - to + (inside the dynamo or battery) instead of from + to - as happens everywhere else.

The less superficial books then go on to deal with energy and power in this context. If current is found to flow into the negative terminal of a device and out at the positive (I am accepting the conventional direction of current flow as that of positive charges and opposite to that of electrons) then the device is (or contains) a generator of electrical energy. The current through a motor or resistor, on the contrary, goes in at the positive end, a fact which can be taken to show that it is receiving electrical energy and converting it into some other form such as mechanical energy or heat. Of course a bit more explanation is needed to cover the situation where a battery is being charged and the current is going in at the positive end, notwithstanding the continued presence there of an e.m.f.

This is the point at which an explanation of the difference between e.m.f. and p.d. (both reckoned in volts) is in order. It is also the point at which the books fall into hopeless disorder. If they are not inconsistent with themselves in their later chapters (and there is a strong possibility that they will be) they will certainly be inconsistent with one another.

In saying this I am not being so arrogantly critical and know-all as I may sound. The
teaching of that celebrated mathematician Lewis Carroll, through the mouth of his spokesman Humpty Dumpty, governs the teaching of electrical theory: "When I use a word it means just what I choose it to mean." So if someone chooses to make "e.m.f." mean something different from another person, or even from what he himself says elsewhere, that is his privilege. But in practice it is enormously convenient if technical terms, such as this, can always be relied upon to mean exactly the same thing. We should never forget, however, that even when one standard meaning has been established, that meaning is what everyone collectively concerned chooses to make it mean; it is not something imposed on man by nature.

Fig. 1 Even such a simple circuit as this can generate doubt and discussion.

Not only are technical terms arbitrary; so are concepts. Fields, for example. We find them a very convenient concept for discussing certain observed natural phenomena. But I am sure that if there was another planet inhabited by beings having a knowledge of electricity and magnetism roughly at the same stage as our own they could well be found to account for the same facts in terms of basically different concepts.

Be that as it may, even on our earth the fact that people have different explanations for the action of basic electric circuits doesn't mean that some of them are bound to be wrong. Some people find one way of looking at a thing clearer and more helpful than another.

All this adds up to saying that I make no claim that the paragraph quoted from Phasor Diagrams is the one true revelation on the subject and all others are dangerous heresies. I am not at all sure that if I were coaching some simple soul having no high ambitions in the realms of electrical science I would not decide he would find the simpler and more conventional treatment adequate for his purpose, and less likely to confuse him. In that case, being free from the obligation of going into detail about the action of an e.m.f., I would undoubtedly find it expedient to follow the simplified books and show a battery rather than L. It looks simpler and more practical, being familiar to all in such things as electric torches. (But it would be the very devil to explain from first principles.)

Right now, however, I am addressing people who may be wizards at using integrated circuits but sometimes find themselves in trouble because of a hazy and half-forgotten understanding of those first principles; or anyone who finds the mere statement that an e.m.f. makes possible the
reversal of the "natural" direction of current inadequate when he is forced back to those principles by an unusual problem, and who finds my quoted paragraph raises more questions than it answers.

First of all, bowing respectfully to Humpty Dumpty, I must state the facts and conventions I intend to use.

Electric charges come in two opposite kinds or polarities, conventionally called positive and negative. It is a physical fact, not a convention, that charges of the same polarity ("like charges") repel one another, and unlike charges attract. The space between opposite charges is in a peculiar state distinguished by the fact that it exerts a force on any charge therein. The name given to this state is electric field. The direction of the force on a charge in it is deemed to be the direction of the field, and is indicated in diagrams (such as Fig. 2) by lines, called lines of force. But of course these lines must not be taken to imply that the force itself has a line structure. Conventionally the direction (sense) of the field is that in which a positive charge ($+Q$ in Fig. 2) is urged by the force, and therefore (because of the like-charge fact) is from positive to negative of the charges creating the field. The strength of the field is suggested in diagrams by the closeness together with which the lines of force are drawn, and in SI units is reckoned in volts per metre. In a uniform field the p.d. between two points on the same line of force is equal to the field strength multiplied by the distance. But in general one has to integrate the product along the distance between the two points, taking account of its angle with the force.

A movement of charges in any direction is known as an electric current. 6.24×10^{18} electrons per second passing any point on the path of flow is a current of one ampere.

There is another way of creating an electric field, without using any charges. A variation of magnetic field strength, or the movement of a magnetic field, will do. In Fig. 3 the shaded area is a cross-section of space (occupied, perhaps, but not necessarily, by an iron core) through which a magnetic field passes at right angles. As long as the magnetic field is constant, no electric field is created by it. But suppose now that the magnetic field, of the polarity conventionally regarded as directed away from you through the paper, increases at a constant rate. At once an electric field appears anticlockwise around the magnetic field. It is strongest at the circumference of the shaded area, and decreases directly with the radial distance from it because that is how the length of the circular lines of force increases, spreading the fixed number of volts generated by the variation of the magnetic field over a greater distance. (It also decreases as the path shrinks, inside the core, because there the amount of magnetic field enclosed decreases as the square of the radial distance from the centre.)

Note that with this kind of electric field the well-known rule that each line of force begins from a positive charge and ends on a negative charge, as in Fig. 2, does not hold.

If, in an electric field, charges are more or less free to move because the space is electrically conducting, an electric current is
caused. In Fig. 2, if the charges creating the field are not replenished from outside they will cross the field space as currents until they have neutralized one another, bringing field and current to an end. Usually only the electrons will so move, since positive charges are bound to the structure of the material, but the end result is the same. In Fig. 3, if the arrow-headed circle represents a wire ring, current will flow around it in the direction shown. (We know this because Lenz's law tells us that the magnetic field created by this induced current will tend to counteract the change in magnetic field causing it. If the magnetic field is indeed localized by a ferromagnetic core, current will flow in this core with the same effect, which is why magnetic cores are laminated to break up conducting paths.)

What happens energywise when a charge moves in an electric field (however created) is important. If it is allowed to move as a result of the field force, it receives energy from the field. In empty space (as in a cathode-ray tube) this energy gives it increasing velocity (kinetic energy), but along a uniform wire the velocity due to a constant field is constant, and the energy is given off as heat. If by any means the charge is made to move against the field force, energy has to be given to it. In SI units, if a charge equal to one coulomb moves through a p.d. of one volt, the energy received or given is one joule. Current is the amount of charge moved per second, so a current of one

Fig 2 The usual electric field conventions.

Fig. 3 Induction of an electric field around a varying magnetic field.

Fig. 4 The usual way in which the resistance r distributed through L is shown in this equivalent diagram.
ampere flowing through a p.d. of one volt means that energy is received or given at the rate of one joule per second. Energy per second is better known as power, and so is its SI unit, the watt. Nearly everyone knows what follows from all this, namely that volts \times amps $=$ watts, but not so many could say why.

Now at last we can look back at Fig. 1. L is a length of wire situated in a uniformly changing magnetic field. It is shown as a coil because a convenient method in practice would be by means of a high-permeability core through the coil and also through another coil in which current was made to grow at such a rate as to produce the prescribed result, namely a steady ten volts between A and B, positive at B, as easily checked by a voltmeter. We can say, then, that there is 10 V p.d. between the horizontal leads, and therefore an electric field between them, with the upper (B) lead positively charged relative to the lower (A). L being ignored for the moment, the only route the surplus electrons in A can take under the influence of the field to neutralize the positive surplus in B is via R. So a current flows through R , conventionally from \mathbf{B} to \mathbf{A}. Without L it would be very short-lived and the p.d. would disappear.

With L connected, but without the varying magnetic field, and assuming L to have no resistance, the charge would have passed instantaneously through it in preference to the resistance of \mathbf{R}. Electrons already in the L wire would be situated in the electric field created by the charges on A and B and would respond very smartly to it. The fact that when the magnetic field through L varies they do not do so, but on the contrary B remains positive to A in spite of a continuous flow of charges through \mathbf{R} is very remarkable indeed and should lead us to consider it carefully.

A first impulse might be to say that of course there is an induced e.m.f. in L , positive at B. But further thought should convince us that is nonsense. Our voltmeter has shown that B is charged positive to A, so there must be an electric field between them, conventionally directed towards A. But in spite of this no electrons are being caused by it to take the easy route through L . The only possible explanation is that the electric field towards A due to the charges must be neutralized by an equal and opposite field due to the varying magnetic field. The induced field must, therefore, total ten volts, positive at A. The two electric fields cancel out, in L only, since that only is influenced by the varying magnetic field.

One of the things that puzzled my friend was my mention of electric fields in the L wire, since one of his recollections of electricity and magnetism was the impossibility of an electric field inside a perfect conductor. But only the theory of opposing fields (which paradoxically had also puzzled him) explains this fact.

Attentive readers will have noticed that my approach just now was slightly different from the book; in fact, exactly the opposite. This was not accidental. Teachers will probably agree that where one approach fails another may succeed. It may be that my assumption this time that B and A were
already oppositely charged by some unexplained agency, however unpractical, will to some readers make the establishing of the polarity of the induced field needed to explain the observed facts somewhat clearer. The book began more realistically with the induced field, positive at A and so directed upwards. By the law of attraction between unlike charges it attracts electrons to that end and away from B until the electric field set up by them, positive at B, exactly balances the induced field in L. It does not balance it anywhere else. In particular it drives current through R, which would speedily dissipate the charges if it were not for the continued existence of the induced field in L. Even an infinitesimal drop in the charge field results in a net field in L and therefore a flow of electrons downward through it, which in a steady state will be exactly equal to that upward through R . In other words, a current around the circuit.

To clinch our understanding of this state of affairs it is instructive to consider it energywise. Suppose we have in our hand a positive test charge, Q. If we carry it by any air route from the A to the B lead we find we
have to exert a force ("like charges repel") over that distance, and therefore impart to it a certain amount of energy. If we take the trouble to measure that energy we find it is equal to $Q V, V$ in this case being 10 . If we now let go of Q it will fly back to A and hit it with the release of the energy we gave it. Alternatively, if we slip it in at the top end of R it will flow through it steadily, releasing the energy as heat, until it reaches A. When it gets to the foot of L it is able to go right up to B without our giving it any energy at all. How so? Because, of course, there is nonet electric field in L. Is this then a way of beating the law of conservation of energy? Not at all; the energy comes from whatever is keeping the magnetic field steadily growing.

The basic principles having, I hope, by now been made clear to all, we can proceed to do away with one unrealistic assumption, namely, that L has no resistance. (Actually in these days it is not altogether unrealistic, as superconductivity is being introduced into practical electrical engineering, but most of us expect some internal resistance in our sources of electricity.) The modification is quite simple. We can treat L as a
resistanceless source in series with a resistor r (Fig. 4). Although L still generates its full 10 V , this is divided between r and R, so the p.d. between A and B is less than 10 V .

Actually, of course, r is distributed along L, but the principle is the same. We have already seen the extreme case of this, in Fig. 3 , if the ring is a uniform wire. Throughout its length there is a uniform anticlockwise induced field, which makes the electrons in the wire go round and round clockwise. But there is never any net redistribution of charges, so no charge electric field, so no p.d. between any two points on the wire. We have an e.m.f. without a p.d. If on the other hand R and L were removed from Fig. 1 leaving the leads charged we would have a p.d. without an e.m.f.

If all this makes you think that the distinction between e.m.f. and p.d. should be quite clear and give no scope for disagreement, consult any two or three dozen textbooks on this point. And finish up with the latter part of Appendix 1 in Phasor Diagrams. That book as a whole shows that for practical purposes there is no need to bother about making the distinction.

A pocket v.h.f. transceiver

2. Construction and setting up

by D. A. Tong, B.Sc., Ph.D. (G8ENN)

Because of the relatively few wound coils in the transceiver its construction should be reasonably straightforward provided that full miniaturization is not attempted, and provided some previous experience of r.f. circuitry is available. Interaction between circuits in the receiver is only likely in the sections associated with $\operatorname{Tr}_{21.22,23}$, and this is the section which requires the greatest care in layout. The same applies to the r.f. section of the transmitter. Other potential trouble areas are in the treatment of the earth returns around $I C_{8}$ and in the prevention of rectification of transmitter output in Tr_{1} or IC.

Intending constructors are advised to obtain manufacturers' data sheets for all the i.cs used in the circuit, and in particular the application notes published for the SL630 and SL612 ${ }^{7}$. The earth layout shown in Fig. 3 for the SL6 12 should be followed. Concerning the second point above, one needs to bear in mind that rectification cannot occur in a device unless r.f. voltages reach the junctions and that resistors make adequate r.f. stoppers but only if the leads between the resisive element and the transistor are very short. In Fig. 1 the connections from $T r_{1}$ should be no longer than say 6 mm . It
is also good sense to construct the r.f. output section as far as possible from the modulator input. Capacitor C_{17} was used in the originals to shunt away any r.f. voltage picked up on the microphone wires. These were only 3 in long and inside the metal case of the transceiver. If

Fig. 10. Dummy load and output level tester for the transceiver.

Fig. 11. Field strength meter for setting up the helical aerial.
an external microphone wire is used, further filtering may be required.

The circuitry diagrams (Figs. 1 and 3) may appear to show some redundant components, or rather, some whose functions are not immediately obvious. It is emphasized that the circuit is the result of several months of careful experimentation with a breadboarded system and over one year of daily operational use. Every component has at least one function and any alterations or omissions should not be undertaken lightly and preferably not at all.

Testing and alignment

Assuming that a version of the transceiver has been constructed, the following procedure should be adopted.
(1) Do not connect the battery until testing is complete and the transceiver is working properly, because its internal resistance is low enough to cause serious damage in the event of a wiring error or accidental shortcircuit. Connect the transceiver to a variable supply with variabie current limit.
(2) Begin with the current limit set to 30 mA and slowly increase the supply voltage from zero while depressing the transmit switch repetitively. $V R_{I}$ should be at the R_{27} ' end of its rotation and R_{27} should be shorted out. This ensures that

Fig. 15. Layout of components, through links, and some of the cross-links as seen from side A (component side) of the printed circuit board. For reasons of space, only the digits in the component identifiers are shown. Thus for example $C_{2 I}$ is shown as 21 and R_{9} as 9.

Fig. 12. Mask for side B (non-component side) of the double-sided printed circuit board. Black areas represent unetched copper.

the "normal" receiver mode is selected and that the receiver is not squelched. If everything is in order the receiver current' will be about 25 mA at 9.6 volts and the transmit current will be anything between 2 and 100 mA depending on whether or not $T r_{\text {s }}$ is oscillating. Hiss should be audible in the loudspeaker.
(3) Monitor the receiver's switched h.t. line (e.g., at one terminal of $V R_{t}$) using a voltmeter and mute the receiver by rotating $V R_{I}$. (If muting is impossible, reduce R_{28}; see step 15.) After about ten seconds the voltage should drop rapidly to zero, and then "blip" on for about 200 ms ; every three seconds. This oscillation should also be visible on the light emitting diode.
(4) Rotate $V R_{l}$ to its other extremity (i.e., unmute the receiver). At the next receiver "on-period" the receiver should latch on, the h.t. should remain high, and the receiver should bleep until the transmit button is pressed momentarily. After this the receiver will still remain on but instead of the "bleep", background noise will be audible and will be affected by the setting of the volume control.

Assuming that everything so far is working correctly, the receiver r.f. sections should next be aligned as follows.
(5) Adjust $L_{f 0}$ until oscillation occurs as detected by an external receiver, or by a sensitive absorption wavemeter lightly coupled to L_{10}, or by a sudden change in the receiver noise level. (If $L_{5,6,7,8,9}$ are far from the correct tuning point, the change in noise level may not be perceptible.) The setting is quite critical.
(6) Adjust L_{9} for maximum local oscillator injection (i.e., maximum receiver output with a modulated input signal).
(7) Adjust L_{8} as for L_{9}. The tuning is much sharper since L_{9} is heavily damped by Tr_{23} collector.
(8) Peak L_{7}, L_{6}, and L_{5} at the desired operating frequency.
(9) The physical separation between L_{6} and L_{7} should be just greater than that which gives maximum output signal from the receiver (the a.g.c. voltage at pin 7 of $I C_{2}$ gives a useful indication of signal strength).
(10) The separation of L_{8} from L_{9} affects the receiver gain and should be set so that front-end noise in a fully aligned receiver just fails to initiate a.g.c. action.
(11) After each alteration to the separation of $L_{6,7}$ and $L_{8,9}$ their tuning should be reset. The process is iterative.
(12) If the r.f. tuning has been carried out correctly the receiver output noise level will be high and will vary markedly as $L_{6,7,8}$ are tuned and to a lesser extent as L_{5} and L_{6} are tuned.
(13) Final precise setting of the local oscillator frequency is carried out by fine adjustment of L_{10}.
(14) Remove the short from R_{27} and check the range of control of $V R$, . Normally the squelch threshold will be at about midrotation of $V R_{1}$. Reduce R_{27} to mute earlier, reduce R_{28} to mute later.
(15) It is likely that the threshold for the first i.f. a.g.c. line is not correct due to tolerances in $D_{4}, I C_{2}$ and $I C_{8}$. The thresh-

Fig. 14. Details of soldering technique and r.f. coil construction.
old can be altered by changing either R_{35} or R_{36}. If miniaturization is not important, they could with advantage be replaced by a potentiometer. The correct threshold is the one that gives the best compromise between signal-to-noise ratio for medium strength signals and overload on very strong signals. Monitor pin 7 of $I C_{8}$ while testing.
(16) The squelch control alters two thresholds; that for audio muting and that for holding "on" the receiver when a signal is detected during sampling. If the two thresholds differ noticeably, the former can be adjusted separately by altering R_{55}.
(17) The value of R_{38} determines the extent to which the squelch threshold is un-
affected by interference pulses. If overcompensation occurs its value should be increased. Conversely, if the receiver "bleeps" on interference R_{38} should be reduced.

Transmitter adjustment proceeds as follows

(18) Set current limit on the power supply to 100 mA . Connect a temporary jumper lead across the transmit switch. Monitor the transmitter frequency on a receiver and adjust $L_{\text {, }}$ until Tr_{s} oscillates. This should cause the power supply current to increase considerably.
(19) Connect a monitoring circuit such as that shown in Fig. 10 to the transmitter

Fig. 16. A battery charger which can fully charge two transceivers (at the correct charging rate of 20 mA) in 14 hours. The zener diode ensures that the voltage applied to the set never exceeds a safe value even if the battery should accidentally become disconnected while the radio is on charge and in use.

Fig. 17. A "terminal" which allows a transceiver to recharge from a car battery via the feeder from the car aerial.
output and if possible connect an oscilloscope to the detector output as shown. Initially tune $L_{1}, L_{2}, L_{3}, L_{4}$ for maximum output with no modulation then tune for best modulation linearity consistent with an output near to the maximum while whistling near the microphone.
(20) Adjust $L_{I I}$ until the output frequency is exactly right.
(22) Connect the transceiver to the helical whip aerial and readjust L_{3} and $L_{\text {, for best }}$ results using a field strength meter (e.g., as shown in Fig. 11).

Miniaturization

The following details of the printed circuit layout used for the two prototypes are intended only as a guide to those interested in making miniaturized versions of the device. Such a project should definitely only be attempted by those possessed of a high degree of skill and experience. Success depends on extreme attention to detail and on rigorous checking at all stages, bearing in mind that the removal of a component from the completed board is not easy. The reliability of the finished product depends very much on the care taken in the construction of the p.c. board.

The wiring plan for the printed circuit is shown in Fig. 12 and refers to the "B-side", that is, the opposite side to that bearing the components. The component side of the board (hereafter ealled the "A-side") is covered by a copper earth plạne which is continuous except for discs about 2 mm in diameter around each component hole. These discs are removed after etching and drilling by using a large drill (e.g., number 5) as countersink. Notice that not all holes should be treated in this way; the ones that should not are shown in Fig. 13.

The printed circuit board (which should be made from epoxy/fibre-glass laminate with copper on both sides) represents a lot of work after it has been etched and drilled, and it is important that it is not damaged in subsequent soldering operations. It is therefore well worth checking every transistor, resistor, and capacitor with an ohmmeter before soldering them in. If any component does have to be removed, a desoldering tool of the suction type is invaluable.

Most earthy component leads are soldered directly to the earth plane on side A, but in the region around $I C_{8}$ an earthy section of copper on side B is used as an earth return. It is necessary to first solder in all the earthy components because there is not enough room to do so when all the other components are mounted. The earthy components are marked with an asterisk in the components list. Each component should be ticked off on this list immediately after it is fitted. There are also a number of links used to connect a copper band on side B to the earth plane on side A. These should be fitted at an early stage and are shown in Fig. 15. Mounting and soldering details are shown in Fig. 14 and the detailed component layout in Fig. 15.

It is advisable to connect resistors 28 , 36,38 , and 55 temporarily on to short flying leads until their final values are

Diodes	
D_{1}	1N4148
D_{2}	1N4148
D_{3}	1N4148
${ }^{*} D_{4}$	BZY88 C
D_{5}	1N4148
D_{6}	1N4148
D_{7}	1N4148
D_{8}	l.e.d.
D_{9}	1N4148
D_{10}	1N4148
D_{11}	1N4148
D_{12}	1N4148
D_{13}	1N4148
D_{14}	1N4148
D_{15}	1N4148
D_{16}	1N4148
D_{17}	1N4148
Transistors	
Tr ${ }^{1}$	ZTX530
Tr	ZTX109
Tr_{3}	ZTX502
Tr ${ }_{4}$	BFS97
Tr ${ }_{5}$	V405A
Tr ${ }_{6}$	BFX44
* Tr_{7}	2N4427
Tr ${ }_{8}$	ZTX109
$T r_{9}$	40823
Tr_{10}	ZTX109
$T r_{11}$	ZTX500
Tr_{12}	ZTX109
Tr_{13}	ZTX109
*Tr ${ }_{14}$	ZTX500
Tr_{15}	ZTX109
Tr_{16}	ZTX502
Tr_{17}	ZTX109
Tr_{18}	ZTX500
Tr_{19}	2N5460
${ }^{*} \operatorname{Tr}_{20}$	ZTX109
Tr_{21}	40673
Tr_{22}	40673
Tr_{23}	V405A
Tr_{24}	2N5457

Integrated circuits

$F L_{2} \quad$ Vernitron FM-4 (Monolithic ceramic bandpass filter, 10.7 MHz)
$F L_{3} \quad$ Vernitron FM-4 (Monolithic ceramic bandpass filter, 10.7 MHz)
$F L_{4} \quad$ Murata BFB-455A (455 kHz single ceramic resonator)

Coils

All coils except $L_{1 /}$ are made by winding s.w.g. self-stripping enamelled copper wire on to ISKRA $1 / 5$-watt carbon film resistors type UPM033. The resistance value is unimportant provided it is greater than say $200 \mathrm{k} \Omega$. These resistors have dimensions $6 \times 2.3 \mathrm{~mm}$.

The wire is soldered as close to the body of the resistor as possible and should be close wound initially. Tuning is carried out by stretching the coil during testing and alignment.
$L_{1} 8$ turns, centre-tapped $L_{6} \quad 6 \frac{1}{2}$ turns
$L_{2} 8$ turns $\quad L_{7} 7$ turns
$L_{3} 6$ turns $\quad L_{8} 9 \frac{1}{2}$ turns
$L_{4} 3 \frac{1}{2}$ turns $\quad L_{9} 8$ turns
$L_{5} 6$ turns tapped at $1.5 \quad L_{10} 11$ turns turns from the earthy $L_{I /} 10$ turns on end FX1886 toroid

RF chokes

$R F C$, 2 turns on FX1115 ferrite bead
$R F C_{2} 2$ turns on FX1115 ferrite bead
$R F C_{3} 3$ turns on FX1115 ferrite bead
$R F C_{4} 3$ turns on FX1115 ferrite bead
$R F C_{5}$ A commercial $10 \mu \mathrm{H}$ choke was originally used here but a duplicate of $R F C_{4}$ should be equally effective.

Quartz crystals

X_{I} 5th overtone type at one-half the transmitter frequency.
X_{2} Fundamental type, frequency 10.245 MHz .
X_{3} 5th overtone type at a frequency equal to $\frac{1}{2}($ receiving frequency- 10.700$) \mathrm{MHz}$.
All three crystals should be in the wire ended miniature holder type $\mathrm{HC} 18 / \mathrm{U}$.

Controls

$V R, 100 \mathrm{k} \Omega$ preset linear potentiometer. "SQUELCH".
$V R_{2} 5 \mathrm{k} \Omega$ linear potentiometer (edge-type). "VOLUME".
S_{t} push-to-make switch. "TRANSMIT".
S_{2} double-pole changeover, with centre-off, miniature toggle switch. "ON (NORMAL) /OFF/ON (NO BLEEP)". In position A the receiver is held permanently in the "bleep-disabled" mode.

Miscellaneous

P_{1} Miniature two-pin polarized socket (RS Components) used for battery charging.
P_{2} Belling Lee miniature coaxial socket type L1465 used for the aerial feed and also for battery charging.
Battery: 9.6 -volt, 200 mAH , nickel cadmium accumulator type 8VBI8, SAFT (U.K.) Ltd., Castle Works, Station Rd., Hampton, Middlesex.

$* I C_{1}$	TBA221 (Mullard TO-5 version of $\mu \mathrm{A} 741$)
$* I C_{2}$	LM 372 (National Semiconductors)
${ }^{I} I C_{3}$	MP102B (Plessey Microelectronics)
$* I C_{4}$	MP102B (Plessey Microelectronics)
$* I C_{5}$	MP104B (Plessey Microelectronics)
${ }^{I} I C_{6}$	MP102B (Plessey Microelectronics)
$* I C_{7}$	SL630 (Plessey Microelectronics)
$I C_{8}$	SL612 (Plessey Microelectronics)

Filters

$F L_{l} \quad \begin{aligned} & \text { Murata CFS-455I (Ceramic ladder filter; } \\ & 455 \mathrm{kHz} \text {) }\end{aligned}$
Fig. 13. The black marks show the holes which should not be countersunk into the copper foil on side A (component side) of the printed circuit board.

Microphone: Low-impedance ex-hearing aid magnetic type.
Loudspeaker: $2 \frac{1}{4}$ in diameter moving coil. An impedance of 35 ohms would give a better match to the SL630 output but in the two original transceivers, 8 -ohm loudspeakers are used.

Sources of components

Polystyrene capacitors:
Tantalum electrolytic capacitors:
Ceramic capacitors:
Resistors, ISKRA typ UPM 033 (
Diodes:
Transistors
Ferranti types (all ZTX and BFS97):
BFX44 (Mullard), 2N4427, V405A:
40673 (RCA), 40823 (RCA):
2N5460, 2N5457 (Motorola)
Integrated circuits;
TBA221 (Mullard), LM372 (National)
MP102B, MP104B, SL630, SL612
Quartz crystals:
Filters
Vernitron FM-4
Murata CFS 4551, BFB-455A
J
(Note: although CFS455I was used in the prototypes, the 4 kHz bandwidth is a bit too narrow and the CFS 455 H (b.w. 6 kHz) would be better. Also the smaller and cheaper CFR 455 H would give a performance adequate for most purposes. The p.c. board layout is designed to take any of these filters.)
No specific suppliers can be quoted for the remaining components but most should be obtainable through advertisers in Wireless World or Radio Communication. This also applies to the other components. Farnell and R.S. Components will only supply components against an official order from registered companies.

Key:
A Doram Electronics Ltd, P.O. Box Tr8, Wellington Road Estate, Leeds LS 12 2UF.
B G.S.P.K. Ltd., Hookstone Park, Harrogate HG2 7BU.
C J. Birkett, 25 The Strait, Lincoln LN2 1JF.
D Swift-Hardmans Electronic and Automation Distributors, Hardale House, Baillie Street, Rochdale.
E Farnell Electronic Components Ltd., Canal Road, Leeds LS 12 2TU.
F A. M. Lock, Neville Street, Middleton Road, Oldham, Lancs.
G R.E.L. Equipment and Components Ltd., Croft Howse, Bancroft, Hitchin, Herts SG5 1BU
H S.D.S.-WEL Components Ltd., Hilsea Industrial Estate, Portsmouth PO3 5JW,
I Senator Crystals, 36 Valleyfield Road, London SWl6 2HR.
J Home Radio of Mitcham, 234-240 London Road, Mitcham, Surrey.
K Amateur Radio Bulk-Buying Group, 20 Thornton Crescent, Old Coulsdon, Surrey CR3 ILH.
determined during testing. The horizontally mounted coils should be spaced about 6 mm from the earth plane. Components which have no mounting holes and which are soldered on to the back or at the side of the board after everything else is fitted are $D_{9}, T r_{24}, D_{i S}, R_{56}, C_{60}, C_{62}, C_{63}$, C_{64}, C_{66}, C_{17}. Capacitors 25 and 61 share one mounting hole. Certain linking wires are also required on side B or A (whichever is most convenient). Some are shown dotted on Fig. 15 and the rest of the necessary external connections, also on Fig. 15.

Note that the layout drawing and p.c. master include the version of the local oscillator shown in Fig. 4, except that no provision is made for the two trimmer capacitors. Resistors 67 and 68 each have only one mounting hole on the board and capacitors 54 and 55 are intended to mount on the A side and are not shown in Fig. 15.

Space is also allowed on the p.c. layout for two transmitter crystals which were to be switched as shown in Fig. 15. Both of the prototypes eventually used only one channel for receive and transmit. The netting switch was also not used. Neither was the combined edge-type volume control and on/off switch which the p.c. board was originally designed to accept.

Thic author wishes to emphasize that the printed circuit layout is published purely for the guidance of skilled constructors. No responsibility can be accepted for anyone who gets into difficulties with such an intricate piece of construction, and if one has the slightest doubt about one's ability to complete the project successfully using the information given in this article and bearing in mind that a full understanding of the circuitry may be essential during trouble-shooting, it should not be attempted.

Fig. 19. This shows the transceiver opened to give full access to both sides of the printed circuit board. It is fully operational in this condition.

Appendix 1. Performance figures

Transmitter

Average r.f. output: greater than 100 mW .
Modulation: greater than 90% amplitude modulation capability.
Speech processing: symmetrical a.f. clipper with subsequent low-pass filter.
Crystal frequency: $f_{\text {our }} / 2$.

Receiver

Modulation: a.m. only.
Intermediate frequencies: 10.7 MHz and 455 kHz .
First i.f. bandwidth: $<200 \mathrm{kHz}$ at -3 db .
Second i.f. bandwidth: 4 kHz at $-6 \mathrm{db}, 10 \mathrm{kHz}$ at -70 db .
A.g.c. range: 100 db approximately.

Squelch: Triggers reliably on signals which are too weak to be readable ($<0.2 \mu \mathrm{~V}$). Compensated against impulsive interference. A rotation of the squelch control through 90° from the noise threshold setting changes the threshold to $0.6 \mu \mathrm{~V}$.
Noise limiter: post-detection active system mutes the receiver during noise pulses.
Battery economiser: On-time 200 ms approx.; off-time 3 seconds. Begin sampling about 10 seconds after last squelch opening. Receiver locks "on" with inputs greater than or equal to $0.2 \mu \mathrm{~V}$. Receiver "bleeps" at full volume when a signal is received after the sampling mode has been regained.
Spurious responses: see following table. The first crystal frequency is 67.075 MHz , and the second is 10.245 MHz .

MHz	dB		
211.92	-72	$211.01-$	$10.70-80 \mathrm{~dB}$
190.52	-64	$189.61-$	$9.79-$
144.85	0	$143.94-62$	0.455 not
123.45	-42	$122.54-$	detectable
77.77	-53	$76.86-$	
56.37	-90	$55.46-$	

Frequencies in the middle column represent the image response of the second mixer. They will be 62 dB below the corresponding figure in the left-hand column.

Appendix 2.

Battery charging

The circuit of a battery charger which charges. two of these transceivers simultaneously in 14 hours is shown in Fig. 16. It was built inside the shell of a $13-\mathrm{amp}$ two-way mains adaptor and is shown in the photograph in Part 1 (July).

In a car the transceiver can be charged from the car battery via the feeder from the car aerial. The circuit of the adaptor to be fitted into the car is shown in Fig. 17. There is no adverse effect on the performance of the transceiver.

References

1. "Hand-portable transceiver", D. A. Tong, Wireless World, April 1972, 154-160.
2. "Noise Silencer for AM Receivers", D. A. Tong, Wireless World, October 1972, 483-484.
3. "Impulsive noise reduction in radio receivers", W. Gosling, The Radio and Electronic Engineer, 43, No. 5, May 1973, 341-347.
4. "A battery-saving circuit for portable communication receivers", D. A. Tong, Wireless World, March 1972, 124-125.
5. Antennas, Kraus, McGraw-Hill, 1950.
6. "Wide-frequency-range tuned antennas and circuits", A. G. Kandoian and W. Sichak, I.R.E. National Convention Record, Part 2, Antennas and Components, 1953, 42-47.
7. SL600 Series Application Manual, The Plessey Company Ltd., Plessey Semiconductors, Cheney Manor, Wiltshire.

Choose the right f.e.t.

Blind use of any old f.e.t. can result in disastrous circuit performance and possibly catastrophic failure of a device. These notes should help you select an appropriate device for the six applications illustrated.

by T. Jones

Siliconix Ltd

Constant current source

In one of the lesser-used applications, the f.e.t. approaches the ideal current source. Operation in the pinch-off (see Fig. 1) region results in virtually-constant I_{D} for large variations in $V_{D S}$ and constant $V_{G S}$. This is due to the low output conductance ($g_{o s s}$) of the f.e.t. defined by $\Delta I_{D} / \Delta V_{D S}$. It is related to the more commonly used term "dynamic impedance" $\left(Z_{D}\right)$ of a current source by $Z_{D}=1 / g_{\text {oss }}$. For good regulation $g_{\text {oss }}$ should be as low as possible.
Fig. 2 shows a basic current source. Resistor R_{S} is used to set the value of $V_{G S}$ and thus the value of constant I_{D}. For a given I_{D}, the required value of $V_{G S}$ is

$$
V_{G S} \approx V_{p}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)
$$

which enables R_{S} to be calculated from $R_{S}=V_{G S} / I_{D}$.
If R_{S} is made variable, a wide range of V_{p} and $I_{\text {DSS }}$ values can be accommodated provided $I_{\text {DSS }} \nless I_{D}$. However, if a nominal I_{D} is required and trimming of R_{S} is not practical, choose an f.e.t. with small "data sheet" spreads of V_{p} and $I_{\text {DSS }}$.
The resultant dynamic impedance of Fig. 2 is

$$
Z_{D}=\frac{1+R_{S} G_{f s}}{g_{o s s}}
$$

and therefore high $g_{o s s}$ devices are desirable.

Figure 1

Another requirement for good regulation is that the drain-to-source voltage $V_{D S}$ is maintained above the pinch-off voltage, otherwise $g_{o s s}$ will be greatly increased (and dynamic impedance reduced). Ideally $V_{D S}$ should be at least twice the value of V_{p}. Therefore, for correct operation the total voltage across the f.e.t. and R_{S} should be a minimum of $2 V_{p}+V_{G S}$.
In certain circumstances the permitted voltage drop across the current source may be limited. If so, choose an f.e.t. with a low V_{p}.

Figure 2

Figure 3

Fig. 3 shows an improved current source using two cascaded f.e.ts. The resulting dynamic impedance is

$$
Z_{D}=\frac{g_{f s}\left(1+R_{s} g_{f s}\right)}{g_{o s s 1} g_{o s s} 2}
$$

Analogue switch

Figure shows an n-channel junction f.e.t. in a basic analogue switch configuration. The on-resistance $r_{\text {DS }}$ should be as low as possible if a significant error in the sampled voltage is to be avoided. The error due to $r_{D S}$ (at low frequency) is

$$
e_{i n \cdot} \frac{R_{S}+r_{D S}}{R_{S}+R_{L}+r_{D S}}
$$

where R_{S} is the signal source impedance and R_{L} the load impedance.
In the off condition, the f.e.t. exhibits a certain amount of drain-to-source leakage
current ($I_{\text {Doff }}$) which gives rise to an error voltage developed across R_{L}. The error due to $I_{D o f f}$ at low frequency is $I_{D o g} \cdot R_{L}$. For this reason, $I_{D o f f}$ must be correctly specified.

Figure 4

To turn the f.e.t. off, the gate must be driven negative with respect to the source by at least the value of V_{p}. Thus the required drive voltage is

$$
V_{G(m i n)}=V_{p}+V_{\text {analogue(} p k)}
$$

If the available drive voltage is limited, use low V_{p} devices.

Voltage-controlled resistor

Where operated with very low values of $V_{D S}$, f.e.ts exhibit predictable changes in $R_{D S}$ for given changes in $V_{G S}$. Under such conditions, f.e.ts can be considered as a resistor whose value is determined by the value of the applied $V_{G S}$. Hence the term voltage-controlled resistor.
This characteristic makes the f.e.t. an ideal candidate for potential divider, attenuator and a.g.c. applications. Circuit shows an n-channel junction device used in a basic potential divider. Here, the $R_{D S}$ should be significantly lower than R_{L}. The $R_{D S}$ can be defined as $R_{D G} /\left(1-V_{G S} / V_{p}\right)$, where $R_{D S O}=R_{D S}$ at $V_{G S}=0$.

As can be seen in the graph, the output characteristics are extremely linear in the

Figure 5

Figure 6
研
region $\left|V_{D S}\right| \ll\left|V_{p}\right|$. This bilateral characteristic can be used to advantage for the a.g.c. of low-level a.c. signals. If, however, $V_{D S}$ exceeds $0.1 V_{p}$, the output characteristics becomes markedly non-linear.

Low frequency amplifier

Under normal amplifier operation, the gate/ source junction is a reverse-biased diode which presents a high impedance to the input signal. It is this high input impedance which makes the f.e.t. superior to its bipolar counterpart if loading of the input signal is to be avoided. The input impedance can be characterized by the gate current I_{G} which should be specified at the $V_{D G}$ and I_{D} required for normal operation.
Circuit shows the basic common-source amplifier. The gain is

$$
\frac{g_{f_{s}} \cdot R_{L}}{1+g_{f_{s}} \cdot R_{\mathrm{s}}}
$$

and if R_{S} is decoupled at the frequencies in question by a suitable capacitor, it becomes $\approx g_{f_{s}} R_{\mathrm{L}}$.

Graph shows a typical transfer characteristic. As $g_{f s}$ is the slope of the characteristic at any given point, $g_{f s}$ is a maximum when $V_{G S}=0$. The $g_{f_{s}}$ at any other point on the curve can be found from $g_{f s}=g_{f s 0}(1-$ $V_{g g} / V_{p}$) or $g_{f s} / \sqrt{I_{D s s} / I_{D}}$, where $g_{f s 0}=g_{f s}$ at $V_{g s}=0$ and $I_{D S S}=I_{D}$ at $V_{g s}=0$.

Drain current decreases with increasing temperature by approximately 0.7% degC. This phenomenon can result in undesirable

Figure 7

variations in stage gain. Fortunately, this drift can be minimized by another effect which causes the effective $V_{G S}$ to decrease by approximately $2.2 \mathrm{mV} / \mathrm{degC}$. This latter phenomenon causes I_{D} to increase with increasing temperature. Minimal d.c. drift will occur at the point where the two effects cancel each other. This point can be defined as $I_{D Z}=I_{D S S}\left(0.63 / V_{p}\right)^{2}$, where $I_{D Z}=I_{D}$ for zero d.c. drift. High- V_{p} devices must be biased to low values of I_{D}, with a resultant drop in $g_{f s}$.

For low-noise applications, care should be taken in specifying the noise performance of the device. The major contribution of noise is from $1 / f$ noise. This is normally characterized by manufacturers as "en" (short-circuit equivalent noise voltage in $\mathrm{nV} / \sqrt{\mathrm{Hz}}$) at various spot frequencies. However, for high signal-source impedances, the effect of noise current (i_{n}) becomes significant; since, at low frequencies, i_{n} is a function of gate leakage current, low I_{G} is desirable. Both i_{n} and I_{G} should be specified at the operating values of $V_{D S}+I_{D}$.

Electrometer circuit

The high input impedance of the f.e.t. makes it the ideal choice for electrometer applications. The basic electrometer circuit shown uses two and an inexpensive operational amplifier. Transistor Tr_{1} is a source follower with ${T r_{2}}^{2}$ acting as a dynamic source impedance. Resistor R_{f} sets the measuring range and R_{1} through R_{3} provide intermediate scaling. Choose $T r_{1}$ to have low $I_{\text {GSS }}$, and the $I_{\text {DSS }}$ of $T r_{1}$ and $T r_{2}$ to be matched as closely as possible; although R_{4} will null some mismatch in addition to nulling the offset of the op-amp. Typically, $T r_{1}$ and $T r_{2}$ would be a dual f.e.t.

The value of the feedback resistor $\left(R_{f}\right)$ is the reciprocal of the measuring range, with a scaling factor of unity.

Figure 9

Differential amplifier

The circuit below uses three junction devices in a differential amplifier configuration. The $I_{D S S}, g_{g_{s}}$ and $V_{G S}$ of $T r_{1}$ and $T r_{2}$ should be matched as closely as possible; the $V_{G S}$ match should be specified at the operating value of $I_{\boldsymbol{p}}$. If good matching is ensured, the gain is

$$
\frac{g_{f_{8}} R_{L}}{1+g_{o s} R_{L}}
$$

Using low $g_{o s}$ devices, this approximates to $g_{f s} R_{L}$.
In practice, $T r_{1}$ and $T r_{2}$ may be either a matched pair of discrete devices or a dual f.e.t. Dual f.e.ts tend to be cheaper than their matched-pair equivalent and, with the increasing use of monolithic duals, are inherently more reliable. Also, with the two semiconductor elements in close proximity in the same package, either two-chip or monolithic, thermal behaviour is more predictable.

Figure 10

The common-mode gain of the differential stage is approximately

$$
\frac{g_{f s} R_{L}}{1+2 Z_{s} g_{f s}}
$$

assuming perfect matching of the f.e.ts and load resistors, and where Z_{s} is the source impedance.
Therefore inclusion of Tr_{3} as a current source presenting a high dynamic source impedance greatly reduces the commonmode gain. The minimum $I_{\text {DSS }}$ of Tr_{3} must be the sum of Tr_{1} and Tr_{2} bias currents.

Further reading

Siliconix application notes Field Effect Transistor Current Source, by J. S. Sherwin
FETs As Analogue Switches, by Shelby Givens Biasing FETs For Zero D.C. Drift, by Lee L. Evans

Salvation for city traffic

"New eyes, new ears and a new voice for drivers" is the claim for a communication system developed by Toyota known as Multifunctional Automobile Communication (MAC) which consists of four subsystems: two to transmit danger signals to the driver, one designed to reduce congestion by helping him to choose the most traffic-free route through a crowded city area, and one offering a personal radiotelephone service.

Already tested on two prototype vehicles in Tokyo, one of the world's most congested cities, the MAC installation consists of a telephone handset (or microphone and speaker), a push-button keyboard and a visual display panel mounted near the driver's line of sight. An integrated system of high- and low-power radio transmissions links it continuously with a central control centre which acts as a "funnel", channelling routine and emergency information to the driver as well as connecting him to other telephone users, either fixed or mobile.

Warnings of fog, accidents, severe congestion or other emergencies are broadcast from a traffic control centre, from low-powered "leak" cables laid beside busy roads and motorways, and direct from emergency vehicles such as police cars, ensuring complete coverage of vehicles in the area. A receiving unit in the car continuously monitors emergency broadcasts from central and roadside transmitters, and automatically tunes and adjusts the volume of the normal car radio to relay them to the driver.

Information normally conveyed by road signs-speed limits, pedestrian crossings, banned right or left turns, etc.-is reinforced by a visual display and audible warning signal inside the car. The display unit on the two Toyota prototypes is an illuminated panel on top of the facia which can present up to 34 different messages; simultaneously a warning bell indicates the degree of danger by sounding at varying frequencies.
The signals are transmitted by loop aerials embedded in the road surface, and received by an unobtrusive pick-up coil mounted under the rear bumper.

A computerized traffic information centre collects data from several hundred key road junctions. Using his telephone keyboard the driver can simply select the code number of any intersection on his intended route, and receive a visual display of the density of traffic approaching that point from all directions. Instant information allows him to choose the best route even more effectively than regular traffic broadcasts without the interruption of other programmes.

Outgoing calls using the telephone system are made by "dialling" the number required on the push-button selector. Instead of each car having a fixed telephone number, the numbers are allocated
to individual drivers, who can use the equipment in any car by inserting a plastic card. Incoming calls are routed to the vehicle in which the subscriber is travelling, and his outgoing calls are automatically charged to his account.

The transmission network of the MAC system, a joint project between Toyota, the Nippon Denso Company and the Japanese Industrial Technology Agency, makes maximum use of limited available channels. Two types of channel, voice and pulse-code, are used, with combinations of channels designed to cover a complete city area without mutual interference. Broadcast stations may transmit to an area, by leaky cable to a particular stretch of road, or to a single point near a traffic hazard. The system automatically switches channels when a vehicle moves from one zone to another, maintaining constant radio contact.
With attention currently being focused on alternative means of city transport, Toyota makes a final point, "The MAC system is a valuable tool for solving urban transport problems, but it need not be limited to the automobile. It can be modified and applied to many of the new transport systems now being developed around the world".

High-fidelity Designs

One of the most popular subjects with both professional engineers and amateur electronics enthusiasts is the high-quality reproduction of sound. One of the ways in which we are constantly made aware of this is in a stream of requests for photocopies of articles which have become standards in the field. Issues of the journal become unobtainable within weeks and, while photo-copies are useful, they are not very presentable, particularly in the way photographic illustrations are reproduced.

In an effort to ensure that these articles are available more easily, we have collected a number of them together in a new book, entitled "High-fidelity Designs". The designs we have reprinted cover the whole range of equipment needed for a comprehensive system, including tape, discplaying equipment, radio, amplifiers, speakers and headphones. The articles treat both the design of the units and practical aspects of construction and form, in effect, a course on the design of highfidelity systems.
The book is now available at a price of $£ 1.00$ from booksellers, or $£ 1.35$ by post from General Sales Dept, IPC ElectricalElectronic Press, Room 11, Dorset House, Stamford Si, London SE1 9LU.

Radford Electronics

We have been asked by Radford Electronics to inform our readers that Radford Electronics Ltd and associated companies have no connection with Radford $\mathrm{Hi}-\mathrm{Fi}$ Ltd.

World of Amateur Radio

Speech processing

Although the benefits bestowed by effective processing of audio signals for s.s.b., a.m. and n.f.b.m. transmissions have been known to amateurs for many years-and the technique of speech clipping of an s.s.b. signal on its r.f. waveform to avoid in-band harmonics advocated since 1964 -it is only in the past two or three years that this system has been at all widely used. Yet with careful engineering and adequate power capability of the transmitter, effective gains equivalent to about a 10 dB power increase can be achieved, provided that some of the benefits of clipping (plus the disadvantages of non-linear operation) are not already being obtained by "flattopping". A 400 -watt p.e.p. transmitter (the legal limit in the UK) can be given the "talk power" of a 4 kW p.e.p. rig. Good speech clipping can thus be as effective as the addition of a high-power linear amplifier.

A number of add-on systems using r.f. clipping for use with existing transmitters have been appearing on the market, several of them based on an a.f./s.s.b.-at-v.l.f/a.f. closed-loop system that allows the unit to be directly inserted between the microphone and an unmodified transmitter. A system of this type, for broadcast applications, was described at IBC70 by engineers of "Radio Liberty". For amateurs a pioneer system of this type was the very successful Comdel CSP-11 made in the United States. A recent British unit is the Datong Electronics "universal r.f. clipper" based on c.m.o.s. and op-amp integrated circuits with phasing-type 60 kHz s.s.b. generation and digital r.f. phase shifter. Other r.f. clippers include a G3LLL unit specifically for the Yaesu FT101 transceiver and the RF Magnum Six.

This is a trend that provides amateurs with at least part of the benefits of the infinitely-clipped Lincompex signals of professional communicators.

Microwave progress

The increased amateur activity on the microwave bands is significantly raising the standards of achievement. During May, members of the Barry Radio Society
(GW4BRS) and George Birt (GM30XX) extended the British 10 GHz distance record with a contact between Snowdon and the Cairnsmore of Carsphairn, a distance of 151.4 miles (243.6 km). Both stations used 10 mW Gunn diodes and 3 ft dish aerials.

A few weeks later George Birt carried some 70 lb of equipment almost $2,000 \mathrm{ft}$ up Snaefell in the Isle of Man and was rewarded with 10 GHz contacts with G8BKE, St Bee's Head, England; GM3DXJ at both Abbey Head and the Mull of Galloway in Scotland; and GW4BRS again on Snowdon: four countries linked on microwaves in the same day.

Similar enthusiasm is reported from Australia where early this year Des Clift, VK2AHC (formerly G3BAK), Dave Ralph, VK2SB, and Norman Champion, VK2ZND, set up a new Australian record for the 5.8 GHz band with a $59-\mathrm{km}$ contact, using home-made horn aerials having gains of about 23 dB . The same path was also spanned on 3.4 GHz and 10 GHz .

Bandwidth compression experiments

An interesting series of experiments in bandwidth compression has been taking place in Australia where J. A. Adcock, VK3ACA, of Preston, Victoria has been successfully developing a technique long recognized as feasible but extremely difficult to achieve in practice: compression of the audio baseband by broadband frequency division before transmission, with compensating frequency multiplication within the receiver. Experiments using an ingenious mechanical technique for frequency division were carried out some 30 years ago by Dr D . Gabor, but J. A. Adcock has succeeded in halving the audio baseband electronically, using analogue computing elements. Although there remain certain forms of distortion which he believes stem from inaccuracies in the low-cost analogue integrated circuits (795), he has reached the stage where individual voices are quite recognizable and intelligible through the system: "The results are good enough to be exciting," he reports. He feels that with further development it might even be possible to contemplate such a system as a potential means of reducing the shortage of medium-wave broadcast channels in Europe-no easy matter owing to the susceptibility of music to distortion in frequency compression.

Moonbounce and satellites

During one of the 144 MHz moonbounce (E-M-E) tests by WA6LET using the $150-\mathrm{ft}$ dish aerial at Stanford Research Institute, California, 37 contacts were made with 25 amateur stations in 13 States and two Canadian provinces. Most contacts were made using c.w. but VE2DFO, W6PO and K8III were contacted on s.s.b.

Lowest power was 150 watts to a 40 element colinear array used by WA6GUY.

Among recent British amateurs to gain the Satellite DX Achievement Award are F. V. Kershaw, G3GKI, and W. A. Scarr, G2WS, a former president of the RSGB. An American station, K4TI, who has already "worked all states" through Oscar 6 , is the first to work and achieve confirmation from stations in five out of the six continents: he now needs only Asia for an Oscar WAC.

In brief

An American amateur, Bill Parker, W8DMR, is using an all-solid-state imaging device, based on a Fairchild 100 by 100 element charge-coupled device, to transmit his amateur television test pattern. . . . Noel B. Eaton, VE3CJ, has been formally elected the seventh president of the International Amateur Radio Union, formed in Paris in 1925. . . . News bulletins in Morse code (18 w.p.m.) are transmitted on the ARRL headquarters station, WIAW, several times each week: a convenient time for British listeners is 2030 GMT on Tuesdays and Thursdays (frequencies include 3580, 7080, 14080 and 21080 kHz); for "night owls" the bulletins also go out Mondays to Fridays at 0000 GMT. . . . Top scoring stations in the 6th Giant r.t.t.y. flash contest were I6NO, IIBAY and W3EKT; the only British entrant in the transmitting section was G3RDG who finished 38th, reports Professor Franco Fanti. . . . He also reports that the-winner of the 4th Worldwide ssTV contest was W9NTP: again only one British entrant, G3IAD, who finished eleventh. . . . The GB3PI Mark 2 repeater station is now in operation at Barkway. . . . Tibet and Zanzibar have been deleted from the ARRL list of countries. . . . The death has been reported of Bill Pope, G3HT, who was first licensed as PZX in 1911. . . A Radio Amateurs Old-Timers Association net is planned for the first Thursday of each month at 1100 local time on 3740 kHz with G2DX as net control. . . . It is proposed to start a Radio Society at the University of Durham and anyone interested should get in touch with Peter Whittle, G4BBU, 1 Blinco Road, Urmston, Manchester or during term at Chad's College, South Bailey, Durham.... Sixty years ago, in July 1924, amateurs staged an early demonstration of mobile radio when a special coach, containing a 440 -metre amateur station 6 ZZ , was attached to a north-bound LNER express train and showed the feasibility of telephony to and from a moving train. . . A v.h.f. convention is to be held in Dundee on September 28. . . . The special call GB3BIJ will be used on h.f. bands from the Scout and Guide Jamboree on Brownsea Island from August 20 to September 1 (G8FFG/P on 144 MHz). .. GB3RN will be operational from HMS Belfast from August 3 to 10 and during Portsmouth Navy Days August 24 to 26.

PAT HAWKER, G3VA

Hewlett-Packard offers total capability in RF signal generators

The Hewlett-Packard range of RF Signal Generators provides you with a state-of-the-art instrument for almost every application and every budget.

It begins with the compact Model 8654A, ideal for use in field service conditions or as an economical instrument in lab and . production applications.

Then comes the high performance Model 8640 in two versions, the " A " with dial readout and the " B " with 6 -digit counter readout and phase-lock, both suitable for the stringent fullperformance testing of virtually any type of HF, VHF and UHF receiver.

And finally, the plug-in Model 8660 system, combining the precision, stability and programmability of a synthesizer with the modulation and output control features of a signal generator. Also available in two versions, the "A" for systems applications and the "B" with its calculator derived keyboard for bench use, the 8660 is ideally suited for testing modern communications systems and for use in automatic test applications.

Outstanding spectral purity and noise performance are just two of the features of the Hewlett-Packard family of signal generators. There is a lot more that would interest you. You ought to get the details.
Just write to Hewlett-Packard Ltd, 224 Bath Road, Slough, Berks. SL1 4DS.

A complete kit!

Actual size!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch.
10. Soft wallet.

It's a mod. mod. modular world.

Simplify, simplify! Instead of paying more for bigger, bulkier audio control components, pay less for compact Shure modular components that singly or in combination-handle critical functions flawlessly. Cases in point: (1) the M67 and M68 Microphone Mixers, the original high-performance, low-cost mixers; (2) the M610 Feedback Controller, the compact component that permits dramatically increased gain before feedback; (3) the M63 Audio Master, that gives almost unlimited response shaping characteristics; (4) the M688 Stereo Mixer, for stereo recording and multi-source audio-visual work; (5) the M675 Broadcast Production Master, that works with our M67 to create a complete production console (with cuing!) for a fraction of the cost of conventional consoles; and (6) the SE30 Gated Compressor/Mixer, (not shown above) with the memory circuit that eliminates "pumping." For more on how to "go modular," write for the Shure Microphone Circuitry Catalogue.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

$\Rightarrow 14 \mathrm{H}=$

Bridge oscillators

by F. Arthur, Ph.D.
City of Birmingham Polytechnic

A bridge oscillator is one employing both positive and negative feedback at the inputs of an operational amplifier. By this means it is possible to imitate, using only resistors and capacitors, a high- $Q \quad L C$ oscillator which manifestly behaves in the same way, i.e. with high frequency stability and low harmonic distortion; although neither of these properties can be associated with the often misnamed Wien bridge circuit shown in Fig. 1. The latter does not possess a bridge structure and only shows the properties described when modified to include negative feedback via a resistive arm as in Fig. 5. Nevertheless, it is the most common form and such oscillators are commercially available with a $10 / 1$ variation in frequency per dial turn and overall coverage of $10^{6} / \mathrm{l}$ from, say, 1 Hz to 1 MHz . They possess two major advantages over $L C$ oscillators, viz.;
(1) They have a wideband tuning capability. Thus, whereas in an $L C$ oscillator a $10 / 1$ variation in L or C produces a $3 \cdot 16 / 1$ variation in frequency, a $10 / 1$ change in the R or C of a Wien bridge network produces a 10/1 change in the oscillation frequency.
(2) At frequencies below several kilohertz the linear inductors required for an $L C$ oscillator become unwieldy and expensive.

The two other common forms of $R C$ bridge circuit, the balanced form of the symmetrical twin T, Fig. 2, and the bridged T, Fig. 3, possess similar advantages over $L C$ networks. Furthermore, with the proviso that when used in an oscillator the same amplifier is used in all three $R C$ configurations, they produce an output with lower harmonic distortion and better frequency stability than the Wien bridge.
Bridge oscillators are not, however, exclusively of the $R C$ type. Another form in common use is the Meacham bridge shown in Fig. 4, which employs a crystal instead of an $R C$ network in the frequency selective arm. The existence of feedback via R_{1} and R_{2} increases the frequency stability and decreases the harmonic distortion compared to that of an oscillator in which the frequency is controlled by a crystal alone. The factor of improvement is of the order of the amplifier gain.

Since the behaviour of each of the three $R C$ bridge networks is very similar the earlier sections of the ensuing discussion will give a comparison (from the standpoint of harmonic distortion and frequency stability) of oscillators in which they are incorporated.

This will be followed by an examination of the Meacham bridge. The final section will deal with the problem of amplitude stabilization.

Harmonic distortion

In a self-starting oscillator the amplitude of oscillation increases until the amplifier gain \times feedback fraction is unity. In the process, the active device will, for any real output swing, be operating over a large portion of its characteristics and consequently non-linearity distortion will be introduced. The harmonics thus produced may be treated as additional signals within the feedback loop and each harmonic will be acted upon by the factor

$$
K_{n}=\frac{H_{o}}{H_{a}}=\frac{1}{\left(1-A B_{n}\right)}
$$

Fig. 1. Wien network, which becomes a bridge when completed by a resistive arm.

Fig. 3. Two forms of bridged T network,
giving identical results.

Fig. 4. Meacham bridge crystal network.

where H_{o} is the harmonic distortion in the oscillator, H_{a} the harmonic distortion in the amplifier, A the amplifier gain and B_{n} the feedback fraction for the nth harmonic. At the frequency of oscillation, f_{o},

$$
\begin{align*}
& \quad A B_{o}=1 \text { and } K_{n}=\frac{1}{A\left(B_{o}-B_{n}\right)}, \\
& \text { i.e. } \quad\left|K_{n}\right|=\frac{1}{|A|\left|\left(B_{o}-B_{n}\right)\right|} \tag{1}
\end{align*}
$$

Since it is desirable to produce an almost sinusoidal output then the harmonic distortion should be small. Each of the harmonics produced in the amplifier is modified by the factor $\left|K_{n}\right|$ and for a well designed network this factor should be as small as possible. For a given amplifier this will occur when $E_{o}-B_{n}$ is large.

The more selective the feedback network

Fig. 2. Twin T RC network.

Fig. 5. General form of Wien oscillator.
the greater is the value of $\left|B_{o}-B_{n}\right|$ and, for a given degree of amplifier distortion, the more pure will be the output wave. From this point of view, therefore, the relative quality of two oscillators can be obtained by comparing their respective $\left|K_{n}\right|$ factors. Such a comparison will now be made for oscillators employing the feedback networks shown in Figs. 2, 3 and 5.

Wien bridge. To incorporate the Wien bridge into an oscillator, the amplifier must have both an inverting and non-inverting input terminal. Since the frequency selective arm of the bridge has a maximum transmission at resonance then it is connected to the non-inverting terminal and negative feedback is applied via the resistive arm to the inverting input.
Assuming the amplifier input resistance is large compared to $a R$ and R_{2} the feedback fraction is given by Appendix 1 as

$$
\begin{equation*}
B=\frac{1}{(x+j u / a b)}-B_{r} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
x & =1+\frac{1}{a^{2}}+\frac{1}{b^{2}} \\
u & =\left(\omega / \omega_{0}-\omega_{0} / \omega\right) \\
B_{r} & =\frac{R_{2}}{\left(R_{2}+R_{1}\right)}
\end{aligned}
$$

Substituting for B_{o} and B_{n} in Eq. (1) gives $\left|K_{n}\right|=x a b / A\left\{\left(x^{2} / u^{2}+(1 / a b)^{2}\right\}^{\frac{1}{2}}\right.$ and this takes the values shown in Table 1 for the second and third harmonics.
Table 1

	K_{2}	K_{3}
$a=b=1$	$6.69 / A$	$4.5 / A$
$a=b=\sqrt{3} / 2$	$3.39 / A$	$2.53 / A$

Obviously the larger is the value of A the smaller are the factors K_{2} and K_{3}. Thus for the completely unbalanced bridge where there is no resistive feedback and the amplifier gain $=x$ then $K_{2}=6.69 / x$. Using an amplifier gain of $100 x$ reduces this factor a hundredfold but requires the introduction of resistive feedback in which the feedback ratio is controllable to within 1% of $1 / x$.

Twin T. The twin T , being a minimum transmission network, is connected in the negative feedback loop when employed in oscillator circuits. The transfer response of the unloaded network is given by references 1,2 and 3 as

$$
\frac{v_{o}}{v_{i n}}=\frac{1}{1-4 j / u}
$$

where $u=\omega / \omega_{o}-\omega_{o} / \omega$ and $\omega_{o}=n^{\frac{1}{c}} C R$. The sensitivity ${ }^{3}$ of this function with respect to n, i.e. $\mathrm{d} \mid\left(v_{o} / v_{\text {in }}\right) / / \mathrm{d} n$ is a maximum for $n=1$ and this accounts for the fact that in oscillator circuits it is more generally seen in the form shown in Fig. 6. For this reason attention will be restricted to this type of network in which

$$
B_{t}=B_{r}-\frac{1}{1-4 j / u}
$$

where $B_{r}=R_{2} /\left(R_{1}+R_{2}\right)$. Making the rel-
evant substitutions in Eq. 1 gives the results shown in Table 2.

Table 2

K_{2}	K_{3}
$8.85 / A$	$1.81 / \mathrm{A}$

From a comparison of Tables 1 and 2 it would seem, therefore, that the twin T oscillator shows lower harmonic distortion. Unfortunately, variation of the oscillator frequency requires that three elements be altered simultaneously. In general, therefore, twin T oscillators are only used in cases of fixed frequency operation.

Bridged T. The bridged T network may take either of the forms shown in Fig. 3, there being no difference in their behaviour. Since the circuit is a minimum transmission network it is used in the negative feedback. arm as in Fig. 7 to provide the frequency selectivity necessary in an oscillator.

The feedback fraction $B_{b i}$ is given by: ${ }^{1}$

$$
B_{b t}=B_{r}-\frac{(m-2 j / u)}{\left(m-j\left(m^{2}+2\right) / u\right.}
$$

where $B_{r}=R_{2} /\left(R_{1}+R_{2}\right)$ and $u=\left(\omega / \omega_{o}-\right.$ $\left.\omega_{o} / \omega\right)$. Substituting for B_{o} and B_{n} in Eq. 1 gives:

$$
\left|K_{n}\right|=\frac{1}{m^{3} A}\left(2+m^{2}\right)\left(m^{2}+\frac{\left(m^{2}+2\right)^{2}}{u^{2}}\right)^{\frac{1}{2}}
$$

which leads to the results shown in Table 3, where the factors $m=2.5$ and $m=3$, since they approximately correspond to the values for m where $\left|K_{2}\right|(m=2.5)$ and $\left|K_{3}\right|(m=3)$ are at their minimum.

Table 3

m	K_{2}	K_{3}
1	$6.69 / A$	$6.3 / A$
2.5	$2.55 / A$	$2.14 / A$
3	$3.22 / A$	$2.08 / A$

Frequency stabilization

The frequency of oscillation is identically that for which the phase shift round the loop is zero. If some parameter of the amplifier should change and produce a phase shift then the oscillation frequency will change to re-establish the zero phase condition. For example, if the change in the amplifier produces a phase shift of, say, 1° and if the phase shift of the bridge network in the neighbourhood of the oscillation frequency is -10° per 1000 Hz then there will be an increase in the oscillation frequency of 100 Hz . Obviously the greater the rate of change of phase with frequency of the bridge the greater will be its frequency stability.
The 100 Hz change in oscillator frequency due to the parameter change in the amplifier was calculated on the basis that

$$
\Delta f=\frac{\Delta \phi}{S_{f}^{\prime}}
$$

where $\Delta f=100 \mathrm{~Hz}, \Delta \phi=1^{\circ}=$ phase shift

Fig. 6. Twin T oscillator.

Fig. 7. Bridged T oscillator.

Fig. 8. Variation of frequency stability factor with frequency.
in amplifier, and $S_{j}^{\prime}=\mathrm{d} \phi / \mathrm{d} f=0.01^{\circ} / \mathrm{Hz}$, which is the rate of change of phase with frequency of the frequency-determining network. From a practical point of view it is much more important to know the fractional change in frequency i.e. $\Delta f / f_{o}$. Consequently, in making a comparison of the frequency stability of oscillation it is usual to use a stability factor $S_{f}=f_{o} S_{f}^{\prime}$ of the frequency selective network as the basis of the comparison. A phase shift of $\Delta \phi$ in the amplifier then produces a fractional change of $\Delta f / \Delta f_{o}=\Delta \phi / S_{f}$.

As shown in Appendix 2, S_{f} for each of the three networks so far considered has a maximum value of 0.5 A for the twin T , $0.47 A$ for the bridged T and $0.22 A$ for the Wien bridge. When S_{f} is plotted as a function of f / f_{o}, for $A=$ constant $=10$, the curves take on the form shown in Fig. 8. Increasing A produces curves with a similar shape but with a higher peak value and a faster rate of fall off. It can be seen from these curves that, again, the twin T , inherently, gives the best oscillator.

Meacham bridge. The Meacham bridge oscillator shown in Fig. 9 combines the
properties of a high- $Q L C$ circuit and an almost balanced bridge network to effect an extremely precise frequency standard, with the highest stability of any cricuit yet devised. The positive feedback is frequency dependent attaining a maximum at the series resonant frequency of the crystal. Assuming there is no phase shift in the amplifier, oscillation takes place at this frequency.

Using the equivalent series model of the crystal the feedback fraction $B_{m b}$ is given by:

$$
B_{m b}=\frac{R_{\mathbf{3}}}{\left(R_{3}+r+j \omega L+1 / j \omega C\right)}-B_{r}
$$

where $B_{r}=R_{2} /\left(R_{1}+R_{2}\right)$. Substituting $N=$ $r / R_{3}=1 /(L C)^{\frac{1}{2}}$ and $Q=L / r$ this becomes

$$
B_{m b}=\frac{1}{(N+1)+j N Q u}-B_{r}
$$

This equation is of the same form as Eq. (2) for the Wien bridge, the factors $N+1$ and $Q N$ being analogous to x and $1 / a b$ respectively. By analogy it follows that the factor K_{n} for the Meacham bridge may be obtained using the earlier results and replacing x and $a b$ by their analogies. Hence

$$
K_{n}=\frac{(N+1)}{A Q N}\left\{\frac{(N+1)^{2}}{u^{2}}+Q^{2} N^{2}\right\}^{\frac{1}{2}}
$$

For all harmonics $u=\left(\omega / \omega_{o}-\omega_{o} / \omega\right)>1$ so that $(N+1) / u^{2}>(N+1)$. Furthermore, since Q is very large (typically 20,000) and providing N is not too much smaller than unity this approximates to

$$
K_{n}=\frac{(N+1)}{N A}
$$

which is completely independent of the resistive side of the bridge.

In a similar manner by substituting for $x=(N+1)$ and $Q N=1 / a b$ the expression for the frequency stability factor S_{f} at the frequency of oscillation is (Appendix 2)

$$
S_{f}=-\frac{(2 Q N A)}{(N+1)^{2}}
$$

This function is geometrically symmetrical about $N=1$ and has a maximum value of $-Q A / 2$ at this point.

Amplitude stabilization

The amplitude stability of an oscillator is the sensitivity of the oscillation amplitude V_{o} to variations in temperature, supply voltage etc. In particular, the amplitude stability factor is defined as

$$
S \mu=\frac{\Delta V_{o} / V_{o}}{\Delta \mu / \mu}
$$

where μ is the parameter within the oscillator which is subject to variation. Obviously, the lower the value of $S \mu$ the more stable will be the output amplitude and frequently amplitude control elements are used to provide the necessary stabilization.

To demonstrate the function of these control elements imagine that the feecback resistor R_{2} of the Wien bridge network increases with the voltage across it. If the output amplitude should increase then R_{2} and hence the feedback fraction $R_{2} /\left(R_{1}+R_{2}\right)$ will increase. This reduces the voltage fed back and causes a decrease in output.

Fig. 9. Meacham bridge oscillator, showing the crystal as a tuned circuit:

Fig. 10. Characteristics of a $6 \mathrm{~V}, 0.36 \mathrm{~W}$ tungsten-filament bulb.

One form the stabilization element may take is a tungsten filament lamp. Typically these lamps have a characteristic of the form shown in Fig. 10 in which case over a wide voltage range the resistance R_{2} is given by:

$$
R_{2}=R_{o}+K V_{r} ; V_{r}=\text { volts across lamp. }
$$

Under oscillatory conditions

$$
B_{r}=\frac{R_{2}}{R_{1}+R_{2}}=\left(\frac{1}{3}-\frac{1}{A}\right) \text { and } B_{r} V_{o}=V_{r}
$$

therefore

$$
\mathrm{d} B_{r}=\frac{K R_{1}}{\left(R_{o}+K V_{r}+R_{1}\right)^{2}} \mathrm{~d} V_{r}=\frac{\mathrm{d} A}{A^{2}}
$$

But

$$
\begin{aligned}
\frac{R_{1}}{R_{o}+K V_{r}+R_{1}} & =1-B_{r}=\frac{2}{3}+\frac{1}{A} \\
& \simeq \frac{2}{3} \text { for large } A
\end{aligned}
$$

Hence

$$
\frac{\mathrm{d} A}{A} \bumpeq \frac{2 K A}{3\left(R_{0}+R_{1}+K V_{r}\right)^{2}} \mathrm{~d} V_{r}
$$

and

$$
S_{A}=\frac{\mathrm{d} A / A}{\mathrm{~d} V_{o} / V_{o}}=\frac{2 K}{3 A\left(R_{1}+R_{o}+K V_{r}\right)} \frac{\mathrm{d} V_{o}}{\mathrm{~d} V_{r}} V_{o}
$$

Since $V_{r}=1 / 3 V_{c}$ then $\mathrm{d} V_{r}=1 / 3 \mathrm{~d} V_{o}$ and

$$
S_{A}=\frac{2 K V_{o}}{9 A\left(R_{1}+R+K / 3 V_{o}\right)} .
$$

In the limit as K tends to infinity then S_{A} tends to a maximum of $2 / 3 \mathrm{~A}$.

The amplitude control element may take many different forms. In the Meacham bridge circuit the resistor R_{2} needs to increase as V_{o} increases. Practically this may be accomplished using an f.e.t ${ }^{4,5}$. The output voltage is rectified and used to control the drain-source resistance of the f.e.t. Quantitively the stabilization factor may beassessed in a manner similar to that used for the Wien bridge.

Appendix 1

For the Wien bridge the voltage, v_{f}, fed back is given by:

$$
\begin{align*}
v_{f}= & \frac{\frac{a R}{(a R+b / j \omega C)} \cdot \frac{b}{j \omega C}}{\frac{1}{j \omega b C}+\frac{R}{a}+\frac{a R}{(a R+b / j \omega C) j \omega C}}-B_{r} \\
= & \frac{a b R}{(a / b) R+(b / a) R+a b R+1 / j \omega C+j \omega C R^{2}} \\
& -B_{r} \\
= & \frac{1}{\left(1+1 / a^{2}+1 / b^{2}+\frac{j \omega C R-j / \omega C R}{a b}\right)}-B_{r} \\
= & \frac{1}{x+j u / a b}-B_{r} . \tag{Al}
\end{align*}
$$

where $x=1+1 / a^{2}+1 / b^{2}, u=\left(\omega / \omega_{o}-\right.$ $\left.\omega_{o} / \omega\right)$ and $\omega_{o}=1 / C R$.

Appendix 2

From Appendix 1 it follows that at the frequency of oscillation

$$
B_{w b}=\frac{1}{x}-B_{r}
$$

Also, at this frequency the loop gain$A B_{w b}=1$ so that $B_{w b}=1 / A$. It follows that $B_{r}=1 / x-1 / A$. Substituting for this factor in Eq. Al gives

$$
\begin{equation*}
B_{w b}=\frac{\frac{x}{A}+\frac{\dot{j} u}{a b}(1 / A-1 / x)}{x+j u / a b} \tag{A2}
\end{equation*}
$$

The loop gain $A B_{w b}=\left|A B_{w b}\right| \phi$ where $\phi=$ phase shift. Assuming there is no phase shift in the amplifier, $\phi=\phi_{w b}$ (phase shift of $B_{w b}$). Hence from Eq. A2

$$
\phi_{w k}=\tan ^{-1} \frac{A u}{x a b}(1 / A-1 / x)-\tan ^{-1}(u / x a b)
$$

$$
S_{f}=f_{o} \frac{\mathrm{~d} \phi}{\mathrm{~d} \omega}=\left[\frac{A}{x a b}\left\{\frac{1}{A}-\frac{1}{x}\right\}\right.
$$

$$
\times\left\{\frac{1}{1+\{A u / x a b(1 / A-1 / x)\}^{2}}\right\}
$$

$$
\left.-\left(\frac{1}{x a b}\right)\left(\frac{1}{1+u^{2} / x^{2} a^{2} b^{2}}\right)\right]
$$

$$
\begin{equation*}
\times\left[1+\omega_{o}^{2} / \omega^{2}\right] \tag{A3}
\end{equation*}
$$

When plotted as a function of $\omega / \omega_{o}, S_{f}$ takes a maximum value when this ratio is unity. Under this condition Eq. A3 simplifies to give

$$
S_{f}=\frac{2}{x a b}(-A / x)
$$

$$
=-0.22 A \text { when } a=b=1
$$

Similarly for the twin T

$$
\begin{aligned}
B_{r}= & 1 / A \\
B_{u}= & \frac{(1 / A-1)-4 j / A u}{(1-4 j / u)} \\
\phi_{n}= & \tan ^{-1}(4 / u(A-1))+\tan ^{-1}(4 / u) \\
S_{f}= & \left\{1+\omega_{o}{ }^{2} / \omega^{2}\right\}\left\{\frac{-4}{u^{2}(A-1)+16 /(A-1)}\right\} \\
& -\frac{4}{u^{2}+16} .
\end{aligned}
$$

At $\omega=\omega_{o}, u=0$ and $S_{f}=-A / 2$.
Finally, for the bridged T

$$
\begin{aligned}
B_{r}= & 1 / A+2 /\left(m^{2}+2\right) \\
B_{b t}= & \frac{\left\{m / A-m^{3} /\left(m^{2}+2\right)\right\}-j\left(m^{2}+2\right) / A u}{m-j\left(m^{2}+2\right) / u} \\
\phi_{b t}= & \tan ^{-1}\left(m^{2}+2\right) / A u \alpha \\
& +\tan ^{-1}\left(m^{2}+2\right) / m u ; \\
\alpha= & m / A-m^{3} /\left(m^{2}+2\right) \\
S_{f}= & \left\{1+\omega_{o}^{2} / \omega^{2}\right\}\left\{\frac{\left(m^{2}+2\right)}{A \alpha}\right\} \\
& \times\left\{\frac{1}{u^{2}+\left(m^{2}+2\right)^{2} / A^{2} \alpha^{2}}\right\} \\
& -\frac{\left(m^{2}+2\right) / m}{u^{2}+\left\{\left(m^{2}+2\right) / m\right\}^{2}} .
\end{aligned}
$$

Substituting $m=2.5$ and $\omega=\omega_{o}$ (i.e. $u=0$) gives $S_{f}=-0.47 A$.

References

1. Mehta, B. M., Electron. Engg., Sept. 1967, p. 582.
2. Girling, F. E. J. and E. F. Good, Wireless World, Oct. 1969, p. 461.
3. Valley, G. E. and H. Wallman, "Vacuum Tube Amplifiers", McGraw-Hill, New York (1948), Chapter 10.
4. Strauss, L., "Wave Generation and Shaping", Second Ed., McGraw-Hill (1970), Chapter 16.
5. Clarke, K. K. and D. T. Hess, "Communication Circuits", Addison-Wesley, 1971, Chapter 6.

Books Received

Radio Wave Propagation, by Armel Picquerand, is suitable for radio engineers who want a better understanding of the phenomena. The initial chapters of the book summarize the present state of our knowledge of wave propagation as far as it concerns the telecommunications engineer. Following chapters give graphs which can be used for the calculation of the principal parameters of communication circuits. An appendix gives a brief review of those concepts of mathematical physics required for the comprehension of the theoretical discussions in this book. Price £10. Pp. 343. Macmillan, 4 Little Essex Street, London WC2 RLF.

Electrotechnology Basic Theory and Circuit Calculations for Electrical Engineers, by M. G. Say, starts with a chapter on units and physical quantities. A second chapter deals with the physical nature of electric charge and conduction and then explains the effects in practical terms. A third chapter deals with network analysis, starting with basic circuit parameters and outlining some of the short-cut techniques devised to solve particular groups of problems. The book concludes with a chapter on special techniques of circuit analysis. Price $£ 1.70$. Pp. 176. Newnes-Butterworths Ltd, Borough Green, Sevenoaks, Kent TN 15 8PH.

Electronic Circuit Analysis, by Wade, Edwards and Clark, has been designed for technical college students. An engineering approximation approach is used to provide an understanding of practical electronic circuits. The basic circuit theories required are Ohm's law, Kirchhoff's laws, Thévenin's and Norton's theorems. Numerous diagrams and worked examples are included to illustrate the analytical techniques employed. Price $£ 12$ ($£ 8.25$ paper back). Pp. 640. John Wiley and Sons Ltd, Baffins Lane, Chichester, Sussex.

Slow Scan Television Handbook is suitable for the amateur interested in s.s.t.v. After a brief historical introduction the book explains the basic principles involved together with some popular circuits used in s.s.t.v. A chapter on monitors gives several full circuit diagrams and parts lists. Subsequent chapters deal with flying spot scanners, live vidicon cameras, colour equipment and applications of audio filters. The book concludes with chapters on test gear and commercial equipment. Price $£ 2$ plus 20p postage and packing. Pp. 248. British Amateur Television Club, c/o "White Orchard", 64 Showell Lane, Penn, Wolverhampton, Staffs WV4 4TT.

Questions and Answers Integrated Circuits, by R. G. Hibberd, is a pocket book aimed at helping students or technicians understand i.cs. The sections in the book are: basic aspects of i.cs., i.c. technology, digital, linear and m.o.s. i.cs., m.s.i. and l.s.i. and applications. Price 75p. Pp. 96. Butterworth \& Co Ltd, Borough Green, Sevenoaks, Kent TN 15 8PH.

The Bruneval Raid, by George Millar, is not a technical book, but a well-researched description of the events leading up to the decision to capture an intact German radar ground station in 1941. British and German scientists had reached a comparable state of knowledge in the development of radar, but the German grounc systems were beginning to constitute a probleı for Bomber Command. It became known that station existed near Le Havre at Brunevs and Combined Operations pulled off the rai which was useful not only in the acquisition os the relevant information, but in supplying a very necessary boost to morale at a particularly dismal period of the war. Price $£ 2.50$. Pp. 208. Bodley Head Ltd, 9 Bow Street, London WC2.

Now available from RCA is the 74 series of, data books which comprise COS/MOS Digital Integrated Circuits-SSD-203B, Thyristors, Rectifiers and Diacs-SSD-206B, Power Transistors and Power Hybrid Circuits--SSD-204B, RF Power Devices-SSD-205B, Linear Integrated Circuits and MOS Devices application notes-SSD-202B, and Linear Integrated Circuits and MOS Devices Selection Guide-SSD-207B. All the volumes are priced at $£ 1.50$ or $£ 6$ for the set of six. RCA Ltd, Sunbury-on-Thames, Middx TW 16 7HW.

Logical Design of Switching Circuits, by Douglas Lewin, is a tutorially-written book intended as a text for courses on logical design with an engineering approach rather than the more usual mathematical treatment being adopted. The book initially explains the principles of switching and the design of combinational switching circuits and sequential circuits. Subsequent chapters deal with circuit implementation, automatic design, and logic design with complex integrated circuits. A final chapter gives an introduction to computers and computer programming. Throughout the book problems with worked solutions are provided to aid private study. All the logic symbols in the book follow the American MILSPEC system. Price £4.75. Pp. 404. Thomas Nelson \& Sons Ltd, 36 Park Street, London W 1Y 4DE.

Basic Audio Systems, by Norman H. Crowhurst, Mobile Radio Handbook, by Leo G. Sands, and Rapid Radio Repair, by G. Warren Heath, priced at $£ 1.60$ ($£ 1.50$ Mobile Radio Handbook) are the latest additions to the Foulsham-Tab series. Foulsham-Tab \& Co Ltd, Yeovil Road, Slough, Bucks.

Pioneer of Science and Discovery: Michael Faraday and Electricity, by Brian Bowers, is the story of Faraday from early life to retirement. Although it is not a technical book, many of Faraday's experiments are explained together with photographs and diagrams. Price £2.25. Pp. 96. Priory Press Ltd, 101 Gray's Inn Road, London WC1X 8TX.

Electrical Indicating Instruments, by G. F. Tagg, is suitable for engineers concerned with the design and manufacture of instruments. This book describes general instruments as well as providing information on components and the overall performance. After a chapter on general principles, the suspension and control systems are discussed followed by a chapter on damping and response times. Subsequent chapters deal with permanent magnets and the book concludes with chapters on dynamometer, thermal and electrostatic instruments. Price £6. Pp. 227. Butterworth \& Co Ltd, Borough Green, Sevenoaks. Kent TN 15 8PH.

Research Nofes

New encapsulation for thick film circuits

Work on the visual prosthesis for blind people at the Institute of Psychiatry, London (see WW, May 1971, pp.214-217) has brought to light a promising method of encapsulating integrated and hybrid circuits. The prosthesis will make use of four-layer thick film hybrid circuits implanted beneath the scalp and wired through a hole in the skull to the visual cortex of the brain. Coupling to photo-electric units (a crude television camera) outside the body will be inductive, eliminating lead-outs through the skin which might be entry points for infection.

The problem is to make the fairly complex circuits fit into the small available space. Although integrated circuits are themselves small the usual kinds of encapsulation increase the volume perhaps several hundred times. Mr P. E. K. Donaldson, the electronic engineer on the project, has established that a thin covering of a silicone compound may provide adequate protection. He has been testing circuits encapsulated in this way immersed in a warm saline solution to simulate conditions in the body, with good results. Silicone seems at first sight to be an unsuitable encapsulant because it allows water vapour to pass. However, water vapour as such is not harmful and the silicone does not allow enough to pass to form liquid water on the circuitry.

Radio spectrometry on the fringe of the universe

According to one familiar system of cosmology the velocity away from the Earth of distant stars and galaxies is proportional to their distance from us. The velocity can be detected by optical spectrometry because it causes light to be Doppler-shifted to a lower frequency. This is the "redshift" and it causes the characteristic emissions of light from hot elements in the stars to be shifted to longer wavelengths.

Two compact radio galaxies of the "quasar" type (quasi-stellar objects) with enormous redshifts were recently identified by optical telescopes. They are presumably among the most distant objects in the visible universe. The radio astronomers
have now taken a more careful look at them. Ten observatories in different parts of the world (including Cambridge) have collaborated to make measurements of the strength of the radio emissions on different frequencies and so compile a radio spectrum of the emission.

Both quasars have a low-frequency cut-off at a few hundred MHz but are still transmitting at full strength at the highest frequency measured $(85 \mathrm{GHz})$. Both show a peak at about 1 GHz . One has a dip at 20 GHz . There is some evidence (not conclusive) that one is fluctuating in strength over periods of a few weeks. If confirmed this will give an indication of the size of the object since there is good reason to believe that fluctuations do not occur at rates shorter than the time it takes light- to traverse the source. On this basis the evidence suggests a diameter of about one light month for the fluctuating quasar. Compare this with the diameter of around 100,000 light years for a galaxy like our own and it is clear that quasars emit astonishingly large amounts of power for their size. The two quasars in question are around 8000 million light years away and therefore represent the universe at a primitive stage. Perhaps contemporary galaxies emit so much less energy because most of the available fuel has been used up in the meantime.

Nature, June 21, 1974, p. 743

Transistor absolute thermometers

Most semiconductor thermometers operate by sensing either a change in bulk resistance (as in a thermistor) or a change in the forward voltage drop of a $\mathrm{p}-\mathrm{n}$ junction with temperature. A variation on the theme has been explored at Manchester University. It uses the change of short-circuit collectorbase leakage current with temperature. This leakage depends on the Boltzmann factor $q / k T$ and is therefore a measure of temperature. If the transistor thermometer is calibrated at one known temperature it becomes an absolute thermometer for other temperatures. Comparisons with other forms of thermometer such as mercury-in-glass and copper-Constantan thermocouples show agreement within $0.5^{\circ} \mathrm{K}$ over the range $100-400^{\circ} \mathrm{K}$.

Physics Bulletin, June 1974, p. 225

Ultrasonic tumour detection

Careful engineering at the Royal Marsden Hospital has produced an ultrasonic detection system capable of finding very small tumours in the liver and other organs. The system works by preserving information which is usually discarded. This is the scatter by very small irregularities such as tiny blood vessels, whose presence in unusual places can indicate abnormal tissue. To avoid losing these small signals in the presence of much larger ones it is necessary to amplify the received signals in low noise amplifiers which compress the
strong signals while preserving the weak ones. Objects down to about 2 mm diameter are then detectable at the frequency and pulse length used.

Primary cell

A new primary cell with good power-toweight ratio was discovered by accident during laser research in the U.S.A. The cell is based on lithium and carbon with liquid compounds of chlorine as electrolyte-all relatively cheap materials. It has a power-to-weight ratio eight times that of a dry Leclanché cell and better shelf life.

The laser research involved dissolving rare-earth compounds in liquid chlorine compounds such as phosphorus oxychloride and seeing if the passage of a current caused emission of light. It did, but the research workers also noted that the rare-earth metal was being plated out on the anode while the cathode released chlorine gas. They correctly interpreted this as a sign that they had the makings of a primary cell-without the rare earth compounds, of course.

Science, May 3, 1974, p. 554

Laser superhets at work

Radio operators are familiar with the effect of switching on the b.f.o. of a receiver when there is no signal present. "Mush" appears in the audio output. This arises in part because the b.f.o. beats with i.f. noise, down-converting it to audio frequencies.

A similar effect is put to good use in a laser device for monitoring air pollution designed at the Jet Propulsion Lab. at Cal. Tech., U.S.A. The "laser heterodyne radiometer" detects the infra-red radiation which is emitted by pollutants on characteristic wavelengths.

A fast germanium photoconductor is illuminated simultaneously by the infra-red emission of the gas and by a tunable laser (the "b.f.o.") on approximately the same wavelength. The beat-noise output of the photocell is amplified in a wide band $(600 \mathrm{MHz})$ i.f. amplifier and detected. The researchers calculate from their laboratory tests that the system should detect ozone in a layer of air about 1 km thick at concentrations down to 2 parts in 10^{9}.

Lasers are also potentially useful in astronomy, but this time as up-converters where the "i.f." is higher than the signal frequency. The point is that the photomultipliers which are used to measure the light from stars are not sensitive at long wavelengths. If long-wavelength "light" is up-converted the sensitivity improves. In experiments at Arizona University a crystal of lithium iodate was used as the frequency changer. The crystal was pumped with a high peak output ruby laser which generated TEM-00 mode oscillations. At the high power the crystal is optically nonlinear and frequency changing takes place when light from the telescope is introduced along with the laser light.

Science, May 3, 1974, p. 570 (monitor)
Nature, June 14, 1974, p. 638 (conv.)

Current-differencing amplifiers

1-signal processing circuits

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Abstract

Three sets of Circards cover current-differencing amplifiers of the LM3900 kind. This article introduces the first, dealing with signal processing, and two subsequent ones will discuss generation and measurement and detection applications.

In the process of improving on previous designs a stage is reached where further advances are won only with great difficulty. At that point the problem has to be changed if it is to be solved. Conventional operational amplifiers have reached a very high level of performance but the demands from industry were for still lower cost and for more functions in a given space. This could be met by packing four amplifiers into a standard 14 -pin dual in-line package, using two pins for the power supplies and two inputs/one output for each amplifier. Unfortunately the chip size then increases to a level where yields fall off and the costsaving in the packaging is partially neutralized.

When this conclusion was set alongside the continuing demand for amplifiers capable of operating from a single supply such as car batteries, a discontinuity appeared in the design process-an integrated-circuit amplifier was designed that depended on the difference between two input currents for its performance rather than the voltage differencing action of the conventional operational amplifier with its input long-tailed pair. The resulting design is brilliant, simple in concept but very subtly implemented.

To take advantage of its novel characteristic the user must re-think his philosophy. Most functions that can be carried out with operational amplifiers can be carried out with current-differencing amplifiers; the configurations may look similar; the component values may be comparable. This surface conformity can obscure the underlying differences, and the user should be chary of attempting a direct transposition of familiar circuits. The problems are similar to those faced by valve designers when transistors first appearedtransistors could be forced to operate in the known valve circuits but alternative arrangements were soon found to exploit the unique properties of these cold and fragile new devices that lacked the warming glow of the familiar friends.

It is to be assumed that what we are now seeing is but the first generation of current-
differencing amplifiers, devices that seek to capture the largest possible market by accepting compromises in many areas. Before this article is published there may be high frequency/low noise/high power current-differencing amplifiers on sale, but the basic design techniques should be applicable to these just as users of the 709 can transfer their skills to the super $-\beta$, infinite bandwidth, zero drift op-amps that every self-respecting manufacturer now seems able to offer. In this article two subcircuits are discussed which when combined give the prototypical form of the current-differencing amplifier now available as a quad amplifier in 14-pin dual in-line form.

One of these sub-circuits is a very old friend. Fig. 1 shows a common-emitter amplifier driving a common-collector or emitter follower stage. The current in the input stage is low enough, while a high current gain minimizes the output impedance. If overall feedback is applied as in Fig. 2, the transimpedance of the circuit is reasonably well-defined by R_{3}, i.e., for an input current i, the output voltage swing is close to $-i R_{3}$. This is assuming high enough gains that the input behaves as a virtual earth to signals. The quiescent $V_{b c}$ of $\approx 0.6 \mathrm{~V}$ prevents accurate low-level d.c. amplification, and this is a limitation shared by the monolithic i.c. based on this concept.

The voltage transfer function is nonlinear with a steep slope corresponding to a fairly high voltage gain, from a few tens to a few hundreds depending on supply voltage, resistance values, etc. An input resistor can be added to produce an elementary see-saw amplifier and the resulting voltage transfer function as shown in Fig. 5 is linearized by the negative feedback. Use of a voltage source shortcircuits the negative feedback in the circuit of Fig. 2 which is intended as a current in/voltage out or transimpedance stage.

The circuit is the d.c. feedback pair and is already one of the most versatile problemsolvers for the hard-pressed designer. In monolithic i.c. form the ready availability of constant-current sources allows them to replace R_{1} and R_{2}; as in Fig. 6. Two benefits accrue. First, the increased dynamic resistance boosts the gain, and secondly the transistor currents can be tightly controlled against wide variations in supply voltage and temperature. This latter effect ensures that the voltage gain is stabilized as well as being increased.

A second sub-circuit which is also well known is now added. Fig. 7 shows the current-mirror which plays the dual role in these amplifiers, to that played by the longtailed pair in operational amplifiers. For well-matched transistors operated at equal $V_{b e}$, the collector currents are comparable. The differences arise partly from inevitable imbalance in the transistors, partly because as shown the base currents contribute an error and partly because the collector-emitter voltages may differ. When
a current-mirror is added to the d.c. feedback pair from Fig. 6 then a complete, albeit limited performance, currentdifferencing amplifier results (Fig. 8).

With negative feedback added the third source of error listed above is removed, because the collector potential of $T r_{2}$ is constrained to equal that of Tr_{3} base, i.e., $T r_{1}$ and $T r_{2}$ have comparable $V_{c e}$ values as well as identical $V_{b e}$ values. With resistive feedback the output voltage is controlled by the difference between the two input currents. That at the inverting input would normally flow on through the feedback path (provided Tr_{3} base current is small) while that at the non-inverting input is mirrored in the current drawn by Tr_{2} collector, reducing the net input. Both currents are normally positive. Transistors $T r_{1}, T r_{2}$ are inoperative for negative currents while that in the inverting input may have either polarity. As a main advantage of the amplifier is that it can perform complex functions while requiring only a single-polarity supply, negative currents are not normally present except for some a.c./pulse circuits. Additional networks are provided in the practical amplifiers to clamp the inputs on negative voltage swings.

A more detailed description of the practical circuit will be given in a following article. This set of Circards (no. 16) is concerned with signal amplifying and processing, which will be followed by a series on the generation of signals and waveforms. In each of these areas novel solutions can be found, and we can only hope as users to match the ingenuity of the designers of these new amplifiers.

Titles of cards in set 16 of Circards are
1 Current differencing amplifiers
2 Basic amplifiers 1
3 Basic amplifiers 2
4 Logic gates
5 High voltage amplifiers
6 Power amplifiers
7 Bandpass amplifiers
8 Notch filters
9 Low-pass/high-pass filters
10 Gain-controlled amplifiers

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5-\mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastics wallets keep the cards in good condition.)

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits on other cards. The Circard concept was outlined more fully in the Octrber 1972 issue of Wireless World.

How to get Circards

Order a subscription by sending $£ 13.50$ for a series of ten sets to

Circards
IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs £1.50, postage included (all countries). Make cheques payable to IPC Business Press Ltd.

Topics covered so far in Circards are
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital circuits
15 pulse modulators
Three sets deal with the uses of current differencing amplifiers-the first, set 16 , being available shortly. Further sets will cover two-transistor circuits, multipliers and dividers, code converters, d.c. amplifiers and choppers, amplitude modulation and detection, transistor arrays, a.f. oscillators and voltage-to-frequency converters.

New Products

Power source

A power source capable of delivering 250 VA single-phase output over the frequency range 45 Hz to 20 kHz is available from Wessex. Known as the model 251 T , two or three can be combined with the appropriate oscillator to provide a 500 or 750 VA three-phase supply. The unit employs overload protection by means of sensing both the magnitude and phase of the load current. Instantaneous reset occurs when the overload condition is corrected. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BS 17 5QP. WW31 1 for further details

Portable oscilloscope

Telequipment have introduced the D32, a portable, dual trace, 10 MHz oscilloscope with a provisional price of $£ 250$ inc. batteries. It will operate continuously for four hours on its internal batteries which are trickle-charged, from a built-in charging unit, when the instrument is powered from the mains supply. The

D32 measures $105 \times 235 \times 288 \mathrm{~mm}$ and facilitates a $70 \times 56 \mathrm{~cm}$ c.r.t. which uses a 3 kV accelerating potential. A maximum sensitivity of $10 \mathrm{mV} /$ division is offered by both vertical amplifiers with the full bandwidth response. Television triggering faciities are incorporated and the dualtrace display is automatically switched from chopped sweep to alternate mode at sweep speeds above $0.1 \mathrm{~ms} /$ division. Tektronix UK Ltd, Beaverton House, PO Box 69, Harpenden, Herts.
WW313 for further details

Fan-top heat sinks

Clip on, fan-top heat dissipators for TO-5 transistor cases are claimed to more than double the allowable dissipation in free air. The TXBF-032-025B type dissipators employ beryllium copper spring fingers finished in black cadmium, and measure $\frac{1}{4}$ in high by $\frac{3}{4}$ in diameter. GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW314 for further details

RF speech clipper

A self-contained speech clipper which plugs in series with a microphone will effectively give ten times the peak power from a transmitter. The speech input signal is translated to a 60 kHz s.s. suppressedcarrier signal and then amplified and "clipped". The signal is then filtered and demodulated to give an audio output with a greatly increased average-to-peak voltage ratio and greatly reduced harmonic distortion. The circuit, which uses c.m.o.s. and operational amplifiers, has an input sensitivity at 1 kHz (at clipping threshold) of 8 mV pk-to-pk and an input impedance of $60 \mathrm{k} \Omega$. The s / n ratio at clipping threshold is 45 dB and the degree of r.f. clipping
obtainable before the input stage begins to limit is 26 dB . The unit, which uses a PP9 battery, costs $£ 45+$ v.a.t. Datong Electronics Ltd, 11 Moor Park Avenue, Leeds LS64BT.
WW300 for further details̀

Insulated heat pipes

An electrically-insulated, thermally-conductive range of heat pipes is now available from Jermyn. The pipes, which are constructed from copper or stainless steel, have a ceramic insert along part of the tube and a wick material composed of continuous amorphous silica fibres which will withstand temperatures of up to $1,000^{\circ} \mathrm{C}$. Multi-input assemblies can be manufactured with electrical isolation but thermally coupled to provide central cooling and thermal equalization. Jermyn Manufacturing, Sevenoaks, Kent.
WW302 for further details

Flameproof resistors

A range of self-extinguishing resistors named Flameproof act as fuses when overloaded instead of igniting as is the case with standard types. The resistors, which exist in ranges from $\frac{1}{4}$ to 10 W , are available in values from 10Ω to $1.5 \mathrm{M} \Omega$ (depending on rating) and with tolerances of 2 or 5%. Electrosil Ltd, Corning Electronics Europe, PO Box 37, Pallion, Sunderland, Durham SR4 6SU.
WW301 for further details

Display screens

A series of $25 \times 18 \mathrm{~cm}$ display screens housed in modular cases have input terminals connected directly to the scan coils and have a transistorized e.h.t.

WW311

WW302
WW314

WW300

WW309
system fitted. A special blanked-off section is incorporated in the design for installing additional circuitry as required. The blanked-off sections are a similar size in each module but these sections can be sized to customer requirements. The photograph shows a wobbulator module, a complete instrument available from Chiltmead Ltd, 7/9 Arthur Road, Reading, Berks. WW309 for further details

Record brush

A record brush from Decca utilises over a million synthetic, electrically conductive fibres each with a diameter of nine microns. These fibres are small enough to penetrate the grooves of a record and remove any dust that may be present. The brush also has an aluminium top that allows static present on the disc to be discharged through the bristles into the body of the user. The record brush comes complete with its own cleaner/stand and costs $£ 4.95$ inc. v.a.t. Decca Special Products, Ingate Place, Queenstown Road, London SW8 3NT.
WW315 for further details

Print-out calculator

The Centex 330 calculator features a silent print-out based on a thermal printing system developed by Contex Research. This system is completely solid state and will print at a speed of 45 digits per second. The calculator incorporates memory storage, overflow/underflow, percent operation with discount/nett feature, floating/ fixed decimal point, and buffered keyboard. The buffer function stores all the information entered and automatically prints it in the correct sequence during calculation. The calculator, which is manufactured in Denmark, weighs approximately 4 lb and costs $£ 169$ plus v.a.t.

Broughton \& Co Ltd, 6 Priory Road, Clifton, Bristol. WW316 for further details

L.e.d. dual sockets

Augat Inc. have introduced a new range of l.e.d. (or filament) display sockets suitable for mounting on p.c. boards. The sockets, which can be ganged up to ten units by means of a special extension, have gold-over-nickel-plated beryllium copper contacts which will accept round or flat leads. The range of sockets include models with 7 and 16 pins, as well as inclined sockets at $45^{\circ}, 60^{\circ}$ and 90°. Rastra Electronics Ltd, 275-281 King Street, London W6 9NF.
WW305 for further details

Breadboards

A range of breadboards and bus strips with a 0.1 in grid allows discrete components and i.cs to be plugged in and removed without soldering. Each terminal consists of five inter-connected tie points formed from prestressed, spring-loaded nickel/silver alloy giving secure mechanical and lowresistance electrical connections. The components plug in the breadboard and are interconnected with 24 s.w.g. hook-up wires. Bus strip is used to connect to a power supply. Jermyn Manufacturing, Sevenoaks, Kent.
WW310 for further details

U.h.f. power amplifier

The latest addition to the MPD range of class A amplifiers is the model LWA $510-20$. This unit will deliver 20W saturated power over the frequency range 500 to 1000 MHz . The amplifier requires a d.c. supply of 24 V at 5.5 A to provide a
gain of 48 dB with a noise figure of 10 dB and harmonics of -20 dB minimum at 1 dB compression. Microwave and Electronics Division, REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.
WW312 for further details

Gain/phase meter

The model 305-PA-3009 gain/phase meter will give a direct digital readout of phase angle from -180° to $+360^{\circ}$ with input signals from 2 Hz to 500 kHz at levels from 1 mV to 150 V . An accuracy of $\pm 0.1^{\circ}$ in the frequency range 50 Hz to 50 kHz and $\pm 0.25^{\circ}$ from 2 Hz to 500 kHz is quoted for the meter. The instrument, which will also measure signal gain, has a switch to select reference voltage, signal voltage, signal/reference voltage ratio or signal/reference phase angle. These four quantities are also available simultaneously as proportional analogue voltages. A warning lamp is incorporated, indicating where the reference or signal levels exceed or fall below the permitted ratings of the input channel. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NW 1 .
WW317 for further details

Multiway connectors

The 30600 series of plug and socket connectors is designed to' provide multiway patchboard programming on automatic test and computer equipment. The units feature a screw-operated insert/extract mechanism together with polarising pins. A variety of configurations up to 300 ways are available with each 1 mm diameter, gold-on-silver plated pin having a rating of 7A at 250 V r.m.s. The plug is fitted with a removable metal cover for access and the socket has drilled flanges for mounting on

WW315

WW316

WW305
equipment. Channel Electric Equipment Ltd, 18 Cross Street, Reading, Berks RG1 1BR.
WW319 for further details

Hand-held multimeter

This multimeter is based on the Chinaglia $80 \mu \mathrm{~A}$ moving coil unit. Range selection is by means of test lead sockets, and indication is on six coloured scales. The fullscale ranges are 100 mV to 1.0 kV d.c., and 5.0 V to 1.5 kV a.c., $100 \mu \mathrm{~A}$ to 1.0 A d.c., and 5.0 mA to 0.5 A a.c., $10 \mathrm{k} \Omega$ to $1.0 \mathrm{M} \Omega$, and decibels from -10 to +65 dB . The instrument's sensitivity is $10 \mathrm{k} \Omega / \mathrm{V}$ d.c. and $2 \mathrm{k} \Omega / \mathrm{V}$ a.c. with an accuracy of $\pm 2.5 \%$ d.c. and ohms, $\pm 3.5 \%$ a.c. The meter, which is powered by $2 \times 1.5 \mathrm{~V}$ batteries, measures $90 \times 90 \times 28 \mathrm{~mm}$ and weighs 165 grams. Chinaglia, 19 Mulberry Walk, London SW3.
WW304 for further details

Differential a.c. amplifier

The type 9454 differential amplifier exhibits a common mode rejection of 130 dB at 1 kHz and intermodulation products of 0.003% typical. The bandwidth of the 9454 is 0.1 Hz to 2 MHz at the -3 dB point. The gain may be set to within 1% over the range 100 to 19 dB . The controls for the instrument include bandwidth selection, high and low pass filters switchable in decade steps, line reject and external filter facilities, which may be switched in or out. L.e.ds are provided to indicate prefilter overload, and gain uncalibrated. The physical dimensions of the unit are $18 \times 87 \times 285 \mathrm{~mm}$. Brookdeal Electronics Ltd, Market Street, Bracknell RG12 1JU, Berks.
WW303 for further details

WW304

WW303

Miniature axial fan

The 126 LF is a $50 / 60 \mathrm{~Hz}$ axial fan with a rotational speed of 2700 r.p.m. at 50 Hz and a corresponding maximum delivery of 13 litres/second. To obtain this delivery the motor requires 11 W at 240 V and will rise in temperature by $35^{\circ} \mathrm{C}$. The fan has a fivebladed, glass-filled, flame-retardant impeller mounted in a diecast aluminium alloy housing. The motor is a two-pole, shadedpole induction type with built-in impedance protection. A life expectancy of five years is claimed under normal generating conditions and in a temperature range from -10 to $+70^{\circ} \mathrm{C}$. The assembly is mounted by two square flanges containing fixing holes. Amphenol Ltd, Thanet Way, Whitstable, Kent CT5 3JF. WW308 for further details

Videodelay unit

A variable video delay unit type UN3/9 can be inserted into 75Ω coaxial cable via BNC connectors to provide a delay from 3 ns to 9 ns , which is the equivalent of two to six feet of cable. The device is also useful in situations where temperature variations cause a delay change, in which case the unit is simply readjusted. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent.
WW325 for further details

Instrument cases

Two series of small instrument cases have now been added to Imhof-Bedco's range of enclosures. Series A cases are available in three sizes and have a single extrusion on each side with the top and bottom
covers being formed to meet the side extrusions. The B series, available in four sizes, have extrusions at both the top and bottom of the sides which are joined by protruding handles. Adequate ventilation is provided on all models and an adjustable tilt foot is available as an optional extra. Imhof-Bedco Ltd, Ashley Works, Ashley Road, Uxbridge, Middlesex UB8 2SQ. WW307 for further details

High-power op-amp

The IS 741 H 150 is a high-power op-amp capable of driving loads as low as one ohm. The manufactures claim that the unit will deliver nearly 200W continuously into four ohms making it suitable for servo, switching and audio applications. The device is a hybrid type with thermal compensation, and an electrically-isolated heat sink. The amplifier, which plugs into a nine-pin socket, features 0.01% harmonic distortion at $1 \mathrm{kHz}, 30 \mathrm{~dB}$ gain at 150 W , and a unity-gain bandwidth of 2 MHz . Application notes are available on request. Integral Systems, 500 Waltham Street, North Wilmington, Massachusetts 01887.

WW326 for further details

Ferrite cores

Mullard have announced a new series of four ferrite transformer cores. The cores have been developed for use in high frequency $(25 \mathrm{kHz})$, switched-mode power supplies from 50 to 500 W . The improved ferrite material used in the construction maintains its magnetic characteristics at temperatures greater than $100^{\circ} \mathrm{C}$. The cores are E-shaped and by means of bolts

WW308

WW325

WW307

WW326
through grooves in the outer arms, two can be clamped together to make a transformer core assembly. For further information a booklet is available. Requests for copies, quoting reference TP1450, should be made on company-headed paper to: Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House: Torrington Place, London WC1E 7HD.
WW306 for further details

Variable oscillator

Ampex have introduced the VS- 10 variable speed oscillator for professional audio recording applications. The unit is specifically designed for use with the Ampex MM-1100 and AG-440 series of recorders and is available with a four-digit electronic display. A range of ± 1 full tone in quartertone steps is offered with a coarse/fine variable speed adjustment. The device, which will drive up to three recorders, weighs 2.5lb. Ampex Ltd, Acre Road, Reading, Berks.
WW320 for further details

Multiturn potentiometer

A carbon-track multiturn preset potentiometer suitable for fine tuning applications is available with a rotation of either 25 or 40 turns. Designated the 197, the potentiometer offers a standard resistance of $100 \mathrm{k} \Omega$ linear and diode law, with "specials". in the range 100Ω to $4.7 \mathrm{M} \Omega$ linear, and $1 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega \log$. The device has a slipping clutch stop and has a life of 100 traverses in both directions within the temperature range of -30 to $+60^{\circ} \mathrm{C}$. AB Electronic Components Ltd, Abercynon, Glamorgan CF45 4SF.
WW318 for further details

Miniature cut-out switch

A cut-out switch designed to prevent overload damage to motors and transformers is actuated by an overcurrent conditions only. In the "off" position a button projects which can only be reset manually. The switch mechanism incorporates a trip-free release, and three mounting options are available for central, slip-in or flange-withmap fixing. The overall size of the switch is $40 \times 15 \times 11 \mathrm{~mm}$ and the maximum, ratings are 15 A at 24 V a.c./d.c., 6 A at 240 V a.c. with a breaking capacity of $10 \times$ input current. Swiss Instruments \& Components Ltd, Swissinco House, Roebuck Road, Chessington, Surrey.

WW327 for further details

Proximity switch

The model $8-210$ solid-state proximity switch from Elliot Relays has a sensing distance, for ferrous metals, of 0.25 $\pm 0.05 \mathrm{in}$, and 0.10 ± 0.01 in for a
precision version. These distances are approximately 50% less for non-ferrous metals. The switch, which weighs 1.5 oz , is housed in moulded epoxy resin with solder/push-on terminals. The device features a response time of 3 ms for rapid and repetitive operation, together with different output options. Reverse polarity and momentary (60 s) short-circuit protection is incorporated in the unit, which will supply 100 mA at $20-30 \mathrm{~V}$ d.c. into a resistive or inductive load. Elliott Relays, 70 Dudden Hill Lane, London NW 10 1DJ. WW328 for further details

Etch-resistant transfers

A transfer set comprising ten cards has been introduced by PCB Transfer Systems. Each card has a different set of shapes such as d.i.l. i.cs, edge connectors, bands, etc., with board No. 1 being a mixed collection of symbols. The method of using these transfers is to rub down the p.c.b. with abrasive paper in order to clean it. Place the tacky side of the symbol down on the p.c.b. and rub the reverse side with a ball pen, lift off the film and smooth over by rubbing with the released paper to ensure that there is no "lift off" at the edges. The p.c.b. now only requires etching. The transfers can be rubbed away with wire wool to reveal the copper shape required. A complete set of ten cards costs £2; individual cards can be purchased for 22p each. E. R. Nicholls, 46 Lowfield Road, Stockport, Cheshire.
WW329 for further details

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Photodiode array

A two-dimensional self-scanned array of photodiodes called the IPL2D1 has been announced by IPL. The device consists
of a matrix of 64×64 sensors and is intended for measurement of width/area, particle counting, character recognition or similar applications. Scanning speeds are up to 5 MHz giving over 1,000 frames per second. The device is on a silicon chip $\frac{1}{4}$ in square encapsulated in a 24 -lead d.i.l. package with a glass window. Customer "specials" can be produced with arrays from 5×20 up to 200×200 sensors using m.o.s. techniques. The price of the standard device is $£ 200$ each for 100 up quantities.
WW 350 for further details
IPL

Dual gate f.e.t.

Two new dual gate f.e.t.s from Motorola offer a common source power gain of 10 dB and a noise figure of 6 dB maximum at 500 MHz . The $3 \mathrm{~N} 209 \mathrm{TO}-27$, and 3N210 micro-H package feature a low reverse transfer capacitance of 0.03 pF - maximum and built-in input protection zener diodes. The devices have a maximum drain-source voltage of 25 V and maximum power dissipation of 300 mW . .WW 351 for further details Motorola

Silicon power transistors

The 2N6469, 2N6246, 47 and 48 are epitaxial base p-n-p power transistors featuring high gain at high current. Another series called the $2 \mathrm{~N} 6470,71$ and 72 are $\mathrm{n}-\mathrm{p}-\mathrm{n}$ types and may be used as complements to the above types. All of the transistors are in the TO-3 package and have a power dissipation rating of 125 W at case temperatures up to $25^{\circ} \mathrm{C}$. They differ in voltage ratings and in the currents at which the parameters are controlled. WW 352 for further details

RCA

Clamper/damper diodes

A series of silicon diodes called CD-1 and DG-1 are designed for clamping circuits in horizontal deflection systems and damper applications. The diodes have a glass passivated construction and are hermetically sealed. The peak forward surge current at $75^{\circ} \mathrm{C}$ is 50 A with an average forward current at $50^{\circ} \mathrm{C}$ of 1.5 A . The typical forward recovery voltage is 30 V for CG-1 and 25 V for DG-1.

WW 353 for further details

General Instrument

Suppliers

Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset. Motorola Semiconductors, PO Box 8, 16 Chemin de la Voie-Creuse, 1211 Geneva 20, Switzerland.
RCA Ltd, Solid State-Europe, Sunbury-on-Thames, Middlesex.
General Instrument Europe S.p.A., 20149 Milano, P.zza Amendola 9, Italy.

Real and Imaginary

by "Vector"

Ju'st drop me a line . . ?

Of all the sacred cows which ruminate at our expense over this sceptr'd isle, none are more permanent features of the landscape than the Post Office and the two broadcasting authorities. There's a curious love/hatred relationship between them and us; we heave a brick at one or the other now and again but it never occurs to us to have them put down and to replace them with an improved breed. The landscape without them would be rather like The Stag at Bay without the stag.

One reason for this, I suppose, is that they were there before we , were born; institutions which always have been and always 'will be and which, like the laws of the Medes and Persians, alter not. Which is by no means the case, of course. The Post Office's monopoly in matters of telegraphic and telephonic communication dates back to less than a century; the BBC as a corporation is not yet 50 years old, while the IBA has chalked up a mere 20 years. So while it may be heresy to consider their destruction, it's by no means treasonable to question where the arm-lock they collectively exercise upon communications is justified.

Let's look at the Post Office first. Seemingly inviolate by reason of its monopolistic powers, it goes on losing millions every year while it fights a losing battle against events. Its parcel- and letter-carrying service is demonstrably much inferior to what it was 50 years ago; so also is its telegram service, which has been priced almost out of existence. On the credit side, it's making strenuous efforts to improve the telephone service although, perhaps inevitably, there's a school of thought that doesn't agree with the approach.

To return for a moment to letter-carrying, the reasons for the deterioration are plain to see. One is the sheer bulk of correspondence which now has to be handled and another is the high cost of labour necessary to move what is literally a mountain of paper around the country every day. Faced with such a situation, it's characteristic of a Civil Serviceorientated monopoly to put a perfunctory patch on the creaking structure in the
pious hope that the mechanism will continue to grind along until retirement, when the buck will pass to somebody else. As for the general public, they can lump it; they have to, because there isn't an alternative carrier.

It only needs a little touch of the Jules Verne to see that the letter, as we know it, is an archaic method of communication. I see that a recent estimate of the average cost of producing a business letter puts the figure at $£ 3$, which doesn't get us off to a promising start. Surely, in view of the electronics technology now available or in early prospect, the rational approach would be to dictate a communication to an office machine for automatic transference to a reciprocal device at destination, where a permanent record could be made if required? Private correspondence could be similarly dealt with; it could easily be arranged that no outside access to the message was possible.

I'll come back to this shortly but for the moment let's digress on to radio communication and broadcasting in particular, which is another thing we tend to accept without question.

Now, in terms of keeping in touch with mobile objects such as ships, aircraft and land vehicles, radio is the only feasible method, but for entertainment dissemination it could be a very different story. True, a case for the continuance of sound broadcasting can be advanced on the basis of its use by motorists; privately, I've an uneasy feeling that car radios, by diverting concentration, may be the cause of more accidents than is generally admitted, but we won't argue that one. Instead, let's put television broadcasting under the spotlight.

As a system it wastes power. In order that the signals should reach the places we want them to, they must also dissipate themselves unprofitably in all sorts of useless ways-in girderwork, building and even (as recent correspondence in Wireless World has pointed out) in trees. With the quasi-optical ranges obtainable at v.h.f. and u.h.f. we have to have a proliferation of stations in order to cover such a small area as the UK and even then with a degeneration in sig./noise ratio all the way. The video component takes up a lot of bandwidth in relation to the amount of information it carries, while further sizeable sections of the band have to lie fallow in the cause of station separation; this is serious because r.f. bandwidth is an inelastic commodity and in acutely short supply.

As you'll have gathered by now, over in the blue corner, sparring away busily with all digitals, is radio's traditional enemy the cable. If, instead of broadcasting the TV signals, you transfer them from analogue to digital form and pipe them to destination, all sorts of advantages accrue. En-route signal distortion is considerably reduced; there are no fringe areas of reception because the signals can conveniently be boosted at intervals; a far more efficient use is made of the power input (you're not wasting kilowatts any more) and a greater choice of pro-
grammes becomes possib e. Whereas, under the broadcast system, four services are the maximum for the foreseeable future, line communication by coaxial cable, waveguide or possibly the fibre-optics approach, can provide as many as you want.

The advantages by no means end there; the receiver itself becomes simpler; the unsightly assortment of fishbone arrays which clutter our rooftops could be turned into scrap and re-cycled, while the picture itself would be freed from the vagaries of the ionosphere and troposphere, with co-station interference a thing of the past. With plenty of bandwidth to play with, something approaching realism in colour reproduction could be achieved, either by transmitting full R-G-B information or even, perhaps, by moving to sevencolour reproduction! Over and above all this, the radio frequencies now allocated to television broadcasting would be freed for other and more vital services where radio communication is essential.

Unfortunately, there's just one leetle snag in these proposals, namely that neither industry in its factories and offices, nor Joe Bloggs in his semidetached, has anything more wideband than a nineteenth-century telephone line connecting him with the outside world. Nor, as far as I can see, have they any prospect of getting a wideband service in the reasonably near future. Which brings us back to the Post Office and its monopoly. Presumably their standpoint is that they've neither the money nor the effort.

Fair enough. But we're no longer in the nineteenth century; we're almost in the twenty-first, and our information is still being humped around by the ton instead of by weightless electrical signals. So why not remove the Post Office monopoly on installing cable for money and let private enterprise see what it can do? If broadcasting as we know it founders in the process, what does it matter if it's replaced by something better?

In the USA they order things differently and—let's admit it-not always for the best. But over there, cable systems seem to be making significant headway after only a relatively short period, and although at the moment they don't offer any real threat to the "off-air" broadcasts there are already over 90,000 installations in New York. Other cities are following suit.

To conform with the requirements of the Federal Communications Commission, four kinds of access channels are provided, namely, public, educational, government and leased. Of these, the public access channel is a new phenomenon: the cable company provides a minimal amount of equipment-cameras, v.t.rs and so onand anyone who fancied his or her chance with entertainment or a message can have five minutes' free time, or longer if it's paid for at cost. This "do-it-yourself" local broadcasting tramples across the mystique-laden fields of professional programme production. It might catch on; it might die the death; but at any rate one can never accuse the USA of reluctance to have a go.

Photograph by courtesy of British Aurport Autherity.

This is the tube for rapid tuning, long life and complete reliability.

The light weight M5057 is a unique EEV 4 mm pulse magnetron which operates at pulse lengths as short as 4 nS with high rates of rise in voltage. high rates of rise in voltage.
For the clearest answers to all questions of high definition radarcommercial or military - ask our microwave enginmicrowave engin-
eers at Chelmsford. Write or 'phone for data.

London Heathrow is the world's busiest
international air terminal. At peak periods it
London Heathrow is the world's busiest
international air terminal. At peak periods it handles over 800 flights a day, and over 20,000,000 passengers a year. To avoid ground collisions, controllers must know where everything is at all times - in must know whereeverything is at all times - in
all weathers.

At Heathrow they get a clear view even in fog with high-definition radar incorporating EEV's millimetre wave magnetrons.

EEV has one of the most extensive and EEV has one of the most extensive and the world.

EEV's M5059 is an 8mm frequency agile magnetron with advanced piezo-electric tuning.

ETS.

EHiAMAREOUTE electronics

AUDIOTRONIC Model ATM1 Top value 1.000

OUR PRICE $£ 3.25 \quad$ P\& P 15p

AUDIOTRONIC Model ATM5

-20 to 46 dB
DUR PRICE E6.97 PEP30p.

U4323 MULTIMETER

20,000 opp Simple
unit with audiolf oscillhtor. Suitable
for general receiver tuning, Ranges; $500 / 1000 \mathrm{VC}$.
55/10115/250/500/1000V AC 0.05 $\times 10 \times 100, \times 1,000 \times 10,000$ (50SS. $500 \Omega .5 \mathrm{k} \Omega$. $50 \mathrm{k} \Omega$ centre scalo) Battery operated. Size: $160 \times 97 \times$ plote with test leads.
OUR PRICE $£ 7.00$

KAMODEN 360 MULTIMETER

$10 / 100 \mathrm{M}$ ohms.
Decibels -20 to
Decibels -20 to

$+62 d 8$. Battery | $140 \times 80 \mathrm{~mm}$. Supplied compleate with. |
| :--- |
| $180 \times$ | test leads etc.

OUR PRICE E17.50 P\&P40p
TMK MODEL 117 FET
ELECTRONIC VOLTMETER Battary operated.
11 Meg input. 26 ranges. Large 4 4/4."
mirror scale. Size: mirror scale, Size:
$149 \times 11760 \mathrm{~mm}$.
$0.3-120000 \mathrm{DC}$
$\mathbf{0}$. a.3-12000V DC.
$3-300 \mathrm{FMS}$ AC $8-800 \mathrm{PP.P}$.

12 mA . Resisterche
 +51dB. Supplied complete with leads
and instructions
and instructions.
TMK 100K LAB TESTER
100,000opv. 6 \%
Slarl. circruit check,
Sens itivity 100.000 Opv DC 5k/ V AC
DC Voits: $0.5 / 2.5$ / 10/50/250/1000 V AC. 3/10/50/250/
 $500 / 1000 \mathrm{~V}$ DC.
current $10 / 100 \mathrm{u} / 10 /$ current $10 / 100 / 500 \mathrm{~mA} / 2.5 / 10 \mathrm{~A}$. Riesistence: $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meg} / 100$ Meg ohms.
Decibels: -10 to +49 dB . Flastic case Decibels: -10 to +49 dB . Flastic case
with carrying handle. Size: 190×172 OUR PRICE £19.95 P\&P 30p 370WTR MULTIMETER ranges. 20.000 op
0 0/9.5/2.5/10/50 / 0/2.5/10/50/250/ $500 / 1000 \mathrm{~V}$ AC.
$0 / 50 \mathrm{uA} / 1 / 10 / 100$ mA/1/10A OC. 0/100mA/1/10A $5 \mathrm{Meg} / 50 \mathrm{Meg}$
Decibels: -20 to 62 dB OUR PRICE $£ 19.95 \quad$ P\&P 30p KAMODEN 72.200 Multitester

$$
1
$$

 > 12 12 v

 (12A AC. -20 to
$+63 \mathrm{~dB} .0 / 2 \mathrm{k} / 200 \mathrm{k}$ $2 \mathrm{Meg} / 200$ Megohms.
OUR PRICE $£ 22.50$
 VDC. 0.5/2.5/10/25/50/100/250/ 500/1000V AC. Current: 50uA/0.5/
$1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A}$ DC. $0.25 /$ 1/5/1/5/10/50/250m A/1/5A AC. Res. istance: $0.5 / 10 / 100 / 200$ ohms s $/ 1 / 3 /$
$30 / 300 \times$ ohms. Decibels: -5 to +10 dB $30 / 300 \mathrm{k}$ ohms. Declbels: -5 to +10dB
Battery operated. Size: $210 \times 115 \mathrm{x}$ Battery operated. Size: $210 \times 115 \times$
90 mm . Supplied in carry ing case com90 mm . Supplied
plete with leads. OUR PRICE $£ 15.00$ P\&P 40p
MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Onms $/$ Volt $A C$ and DC. DC. 1% AC.
Scale length:

165 mm .
$0 / 300 / 750 \mathrm{~A}$
$15 / 2$
$0 / 300 / 750 \mathrm{LA} /$
$1.5 / 3 / 7.5 / 15 /$
$30 / 75 / 150 / 300 /$
$30 / 75 / 150 / 300 /$
$750 \mathrm{~mA} / 1.5 / 3 /$
$7.5 \mathrm{~A} \mathrm{DC} 0 /$.3
$75 / 15 / 30 / 75 /$
$150 / 300 / 750 \mathrm{~mA}$

$1.5 / 3 / 7.5 \mathrm{~A} / \mathrm{AC}$.
$0 / 75 / 50 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /-$ $1.5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ AC. Automatic cur out device. Supplied complete with test leads, manual OUR PRICE $\mathbf{f 4 9}$

ALL PRICES

EXCLUDE VAT

TE65 VALVE VOLTMETER | 28 ranges. DC volts |
| :--- |
| $1.5-1500 \mathrm{~V}$. AC |
| volts $1.5-1500 \mathrm{~V}$. |
| Resistance up to |
| 1000 Megohms . |
| $200 / 240 \mathrm{~V}$ AC |
| operation. Com. |
| plete with probe |
| and instructions. |
| OUR PRICE $£ 17.50$ PRP 50p |
| Additional Probes available: |
| RF $£ 2.12$, HV $£ 2.50$ |

LB3 TRANSISTOR TESTER Tests ICO and B.
PNP/NPN. Operates from 9 V battery. OUR PRICE
£3.95 P\& P 20p
MODEL AF. 105 VOM

£4.50 P\&P 20p U4341 Multimeter 8 Transistor Tester. 27 ranges. 16,700opv. Overload protected.
Ranges: $0.3 / 1.5 / 61$ Ranges: $0.3 / 1.5 / 6 /$
$30 / 60 / 150 / 300 / 900 \mathrm{~V}$ 30/60/150/3/30/900V
DC. $1.57 .5 / 30 / 150 /$ $300 / 750 \mathrm{~V}$ AC
Current: $0.06 / 0.6 /$ $6 / 60 / 600 \mathrm{mADC}$
$0.3 / 3 / 30 / 300 \mathrm{~mA} A C$ Resistance: $0.06 /$
$0.6 / 2 / 6 / 20 / 60 / 200$ Battery Battery operated. Supplied complets
with probes, leads and steel carrying OUR PRICE $\mathbf{f 1 0 . 5 0 \quad \text { P\&P 30p }}$ S100TR MUL TIMETER TRANSISTOR TESTER 100,000opv. Mirr
scale, Overioad protection. $0 / 0.12 /$
$0.6 / 3 / 12 / 30 / 120 /$ $0.6 / 3 / 12 / 30 / 120 /$
600 V DC. $0 / 6 / 30 /$ $600 \mathrm{~V} D C .0 / 6 / 30 /$
$120 / 600 \mathrm{AC}$ $10 / 6 / 600 \mathrm{~A} / 12 /$
$300 \mathrm{~mA} / 6 / 12 \mathrm{ADC}$ $300 \mathrm{~mA} / 6 / 12 \mathrm{~A}$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg} /$
-20 to +50 dB.
$001-0.2 \mathrm{MFD}$
$0.01-0.2 \mathrm{MFD}$
Transistor tester measures Alpha, Beta Transistor tester measures Alpha, Beta
and 1CO. Complete with instructions, OUR PRICE £19.95 P\&P 25p KAMODEN HMG500 insulation resistance tester

Complete with
deluxe carrying
OUR PRICE £19.95
 OUR PRICE £19.95 P\&P 30p CI5 PULSE OSCILLOSCOPE
For display of pulsed
and periodic wave-
forms in electronic
circuits Bandth: 10 MHz .
Sensitivity at 100 kHz ;
VRMS/mm: $0.1-25$:
VRMS/mm: 0.1-25
HOR. AMP. Band.
Width: 500 kHz .
Sensitivity ay 100 kH
VRMS/mm: 0.3-25
Preset triggered sweep 1 -3000usec. Free running 20-200
kHz in nine ranges. Calibrator pips.
$220 \times 360 \times 430 \mathrm{~mm} .115-230 \mathrm{VAC}$.
OUR PRICE $£ 39.00$ Carr. paid
RUSSIAN CI16 Double Beam OSCILLOSCOPE 5 MHz pass band.
Separate $Y 1$ and $Y 2$ amplifiers. Rectang ular $5^{\prime \prime} \times 4^{\prime \prime}$ CRT.
Calibrated triggered Cweep from 0.2 usec .
to 100 milli- 2 . to 100 milli -sec $/ \mathrm{cm}$.
Free running time Free running time
base $50 \mathrm{~Hz}-1 \mathrm{MHz}$
Built-in time base

TRANSISTORISEO L.C.R. A.C. BR/B MEASURING BRIDGE

A now portable
bridge offering excellent range and
accuracy at tow accuracy at ow
cost. Resistance:
 ance: 6 ranges: 1 microhenry -111
henries $\pm 2 \%$ Capacity: 6 ranges
10 pf. 11110 mid ${ }^{6}$ ranges: $1: 1 / 1000.1: 11100$ Ratio: $\%$ Bridge Voltage at $1,000 \mathrm{cps}$. Opera-
ted from 9 -volt batterv. 100 micro-

TE16A TRANSISTORISED

SIGNAL GENERATOR

Sise: $149 \times 149 \times 92 \mathrm{~mm}$. Complete
with instructions and leads. OUR PRICE £8.97 P\&P 30p MODEL TE20 RF SIGNAL GENERATOR
Six bands. 120 kHz -
260MHz. Dual 260MHz. Dual output
RF terminals. Separate
 $\begin{array}{ll}\text { Accuracy } \\ \text { output } \\ 2 \% & \text {. Audio }\end{array}$
 Ieads etc. TE-20D RF SIGNAL
GENERATOR

trenuator audio output. Xtal so
for calibration. $220 / 240 \mathrm{~V}$ a.c.
Brand new with instructions. Size $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 170 \mathrm{~mm}$.
OUR PRICE $£ 17.50 \quad$ P\&P 50p
TE22 SINE SQUARE WAVE
AUDIO GENERATOR

AC operation. Supplied brand new
guaranteed, with instruction and leads.
ARF 300 AF/RF SIGNAL

\section*{PS200 Regulated POWER

 | SUPPLY UNIT
 Solid state. Variable output $5-20 \mathrm{~V}$ DC pendent meters to monitor vol tage and current. Output Size: $190 \times 136 \times$ 98 mm .
 OUR PRICE 19.95
 P\&P 50p | |
| :---: | :---: |
| | |
| POWER RHEOSTATS | |

 Microphone
Carefully machined, top grade steel.
Contains $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{\prime \prime}$ and $1 / 8^{\prime \prime}$ punches complete with gripper
and accessories. OUR PRICE E3.00
KE630 3 Station INTERCOM

SPECIAL
BARGAIN
FERGUSON
3406 HI-FI
SPEAKERS
 Size: $560 \times 340 \times 255 \mathrm{~mm}-18 \mathrm{kHz}$ approx
Wood OUR PRICE E22.50 PR. P\&P £1
AUDIOTRONIC LE-102A
INTERCOMS
 fully made and finished in two tone ivory/buff, the LE-102A is
useful in the home, office or shop useful in the home. office or sh
and is suitable for use as baby alarm. Wallor desk mounting 57 mm speaker/mic gives clear and volume control on master unit. Operates on 9 V batt. Approx.
60ft lead. OUR PRICE

Moving co
for Ianguag
teaching.
teaching.
communi.
cations etc.
Headphone impedence 16 ohms. Mic-
rophone impedence 200 ohms.
OUR PRICE f5 95
HANIMEX HRC 3075
CASSETTE RADIO

incectrom radio or through buil
plete with batteries. earphone
OUR PRICE $£ 25.00$ P\& P 50p
TRITON CT. 555 CASSETTE
RECORDER

OUR PRICE E9.95 P\&P50p
TRITON 4318 PORTABLE 8 TRACK CARTRIOGE PLAYER WITH MW/LW RADIO Will play 8 cartridge Channel
selector
medium and long wave
bands. Volume and tone controls. Earphone socket. Battery/Mains OUR PRICE f 11.95 P\&P50p MODEL MG 100 SINE SQUARE TE WAVE AUDIO generator Renge 19 . 220.000 Hz Sine Wave $19-100,000 \mathrm{~Hz}$ Square Wave. Output Sine or Square wave 10v. P. to P
Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation Size $180 \times 90 \times 90 \mathrm{~mm}$. Operation OUR PRICE E19. 95

Ample output to feed most amplifiers perates on 9 V battery. Covers $88-$
108MHz. Ready built, ready for use OUR PRICE E8.95 Stereo Multiplex Adaptor 55.95 extra

FM TUNER
quality unit-
3 IF stages and double tuned
For use with most amplifiers. Covers OU UR PRICE $£ 13.50 \quad$ P\&P 30p

HIGH QUALITY CONSTRUCTION KITS WE ARE APPOINTED
STOCKISTS ALL BRANCHES

All kits are complete with comprecovered by full guarantee. Post and Packing 15p per
AF 20 Mono amplifier............ $£ 4.80$
AF30 Mixer...........ifier
AF35 Emitter amplifier.:
AF80 0.5 W mic. amplifier
AF305 Intercom......ifier
AT5 Automatic light control..
AT30 Photo cell switeh unit..
dimmer/speed cont
ATS6 $2,200 \mathrm{We}$ triac light
AT60 $\begin{aligned} \text { dimmer/speed control....... }\end{aligned}$ AT65 3 channet light control..
 AP304 Circuit board..........
GP310 Stereo pre-mplif
GP310 Stereo pre-amplifier
for use with $2 \times$ AF 310 .
GP312 Circuith $2 \times$ AF3
GU330 Tremolo unit
HF61 Diode detector
HF65 FM transmitter
HF65 FM transmitte
HF75 FM receiver.
HF310 FM tuner
HF330 Decoder (HF310/325) HF380 Iw/vht aerial amplifier
HF395 broadband aerial amp. LF380 Quadraphonic device.
M191 VU Meter...
M192 Stereo balance me
M1302 Transistar tester \qquad NT10 Stabill sed power supply
NT300 Stabilised p. supply.... $£ 12.51$
NT305 Voltage converter NT305 Voltage converter...... £4.5
NT310 Power Supply 240 AC or $2 \times 18 \mathrm{~V}$ D.C. at $2 \mathrm{amps} \quad £ 4.8$
to4.5/15V DC, 500 mA AC
Amateur Electronics by Josty-Kit Ahe professional book for the amateu
-covers the subject from basic prin cipals to advanced electronic technic
ues. Complete with circuit board fo UEs. Complete with circuit board fo
AE1 to AE 10 listed below. OUR PRICE E3.30 (No VAT)

100 mW ou tput stage........ \quad 〔1.50	

AE4 Flasher..................
AE6 Monostable multi-vibrato
AE8 Bass filter
AEE Treble filter.
1021 Stereo Listening Station
For balancing
and gain selection
of loudspeakers
with addoitional
facility for stereo
headphone
switching. Two
switching. Two
gain controls,
speakers on-off slide
headphone socket. OUR PRICE E2.25 P\&P 15p AUDIOTRONIC
LOW NDISE CASSETTES

TYPE	5	10	25
C60	$£ 1.57$	$£ 3.00$	$£ 7.08$
C90	$£ 2.24$	$£ 4.25$	$£ 10.00$
C120	$£ 2.73$	$£ 5.17$	$£ 12.24$

8 TRACK CARTRIDGES
TYPE
40M
80 M
$\begin{array}{llll} & \mathbf{E P} .15 & \mathbf{£ 4 . 0 0} & \begin{array}{l}\text { £7.50 } \\ £ 5.40\end{array} \\ £ 10.25\end{array}$
FM TUNER
tivity. Twin dual-varicap sensing
stereo demic filter. 19 transisto separation. Distortion 0.2% output OUR PRICE f 27.50 P \& P60p

MP7 MIXER-PREAMPLIFIER

5 Microphone
inputs each with
individual gain

facilities. Battery operated. Size:, 235 $\times 127 \times 76 \mathrm{~mm}$. Inputs: Mics. $3 \times 3 \mathrm{mV}, 235$
$50 \mathrm{k}, 2 \times 3 \mathrm{mV} 600$ 俍 $4 \mathrm{mV} 50 \mathrm{k} ;$ Phono Ceramic 100 mV 1 Meg. Output 250 mV 100 k .
OUR PRICE $£ 8.97$
AUDIOTRONIC AHA101
Stereo Headphone Amplifier
All silicon,
transistor
amplifier ope
ates from ma
ates from mag
netic, ceramic
or
or tuner
inputs with

inputs with
twin stereo
headphone outputs and separate Volume controls for each
channel. Operates froin 9 V INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV . OUR PRICE $£ 8.50 \quad$ P\&P 30

Also see previous page
Alu palces
Excluot mat

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

©
 about Hifi

CALL INTO YOUR NEAREST LASKYS BRANCH OR SEND COUPON BELOW FOR FREE HI-FI PRICE LIST

 481 OXFORD ST 3 LISEE ST. WC2
34 EISEST. WC2
118 EDGWMRE RD $\begin{array}{ll}118 \text { EDGWARE RD. W2 } & 01-437820 \\ 01-437915\end{array}$ 193 EDGWARE RD.W2 $\quad 01-7239789$ $\begin{array}{ll}107 \text { EDGWARE RD. W2 } & 01-723621 \\ 311 & 01-7233271 \\ \text { EDGWARE RD. W2 } & 01-2620397\end{array}$ $\begin{array}{ll}311 \text { EDGWARE RD. W2 } & 01-2620387 \\ 346 \text { EDGWARE RD. W2 } & 01-7234453 \\ 382 \text { EDGWARE RD. W2 } & 01-7234194\end{array}$ $\begin{array}{ll}382 \text { EDGWARE RD. W2 } & 01-7234194 \\ 109 \text { FLEET ST. EC4 } & 01.3535812 \\ 152 / 3 \text { FLEET ST. EC4 } & 01.3532833\end{array}$ $\begin{array}{ll}10 \text { TOTTENHAM CT. RD. } & 01-6372232 \\ 27 \\ \text { TOTTENHAM CT RD. } & 01-6363715\end{array}$ $\begin{array}{lll}33 \text { TOTTENHAM CT. RD. } & 01-6363715 \\ 01-6362605\end{array}$ 42/4S TOTTENHAM CI. RD. $01-6360845$ $257 / 8$ TOTTENHAM CT. RD. $01-5800670$

ESSEX
86 SOUTH ST. ROMFORD
20218

KENT
K3/57 CAMDEN RD., TUNBRIDGE WELS 0892-23242
LEICESTERSHIRE
45 MARKET PLACE, LEICESTE
$0533-537678$

SURREY

SURREY	
1046 WHITGIF CEETRE, CROYOO	
27 EDEN ST. KINGSTON 32 HILL ST. RICHMOND	01.5467845 $01-948141$
WARWICKSHIRE	
116 CORPORATION ST., BIRMINGHAM	
ALL BRANCHES OPEN FROM 9am to 6pm MON. TO SAT.	
	Centre at

YATES ELECTRONICS

(FLITWICK)LTD.
DEPT. WW ELSTOW STORAGEDEPOT KEMPSTONHARDWICK BEDFORD

RESISTORS

TW iskra high stability carbon film-very low noise-capless construction. \#W Mullard CR2S earbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. $1 \mathrm{~W} 2 \%$ ELECTROSIL TRS.

Power watts	Tolerance	Range	Values available	1-99	Price $100+$
$\frac{1}{1}$	5\%	$4.7 \Omega-2.2 \mathrm{M} \Omega$	E24	1.3p	1.1p
t	10\%	3.3M $2-10 \mathrm{M} \Omega$	E12	1.3p	1.1p
1	2\%	$10 \Omega-1 \mathrm{M} \Omega$	E24	3.5p	3p
$\frac{1}{1}$	10\%	$1 \Omega-3.9 \Omega$	E12	1.3p	I.1p
$\frac{1}{4}$	5\%	$4.7 \Omega-1 \mathrm{M} \Omega$	E12	1.3p	$1.1 p$
4	10\%	$1 \Omega-10 \Omega$	El2	8p	$7 p$

DEVELOPMENT PACK

0.5 watt 5% lskra resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$. E12 pack 325 resistors $£ 2.40$. E24 pack 650 resistors 44.70 .

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear ($\log \underset{\mathrm{t}}{\mathrm{t}} \mathrm{W}$, lin $\ddagger \mathrm{W}$).
Single, 14p. Dual gang (stereo), 49p. Single D.P. switch, 28p.

SKELETON PRESET POTENTIOMETERS

Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizont
Sub-miniature 0.IW, 5p each. Miniature 0.25W, 7p each.

SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI

The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an elactrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol. North Sea gas, as well as carbon-dust containingair or smoke. This decrease is usuliy large enough to be and circtor GDI Suitable case 50 Smol
Detector GDi, gas leak detector $\mathbf{£ 1 2 6 0 ; 1 2 / 2 4 v}$ battery operated 68.40 ; 12v battery operated two remote sensors $€ 12.80$.

NOTE The battery operated kits incorporate our potented circuit to minimise battery drain. Typically 120 mA for 12 v . These kits contain all parts required with the exception of case. Suitable case mains operated kit \mathbb{E}..60. Battery operated kits $\mathbf{E 5}$.
C.W.O PLEASE. POST AND PACKING PLEASE ADD IOp TO ORDERS UNDER 2.

Catalogue sent free on request. IOp stamp appreciated.

PLEASE ADD 10\% V.A.T.

MULLARD POLYESTER CAPACITORS C296 SERIES
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 31 \mathrm{p} .0 .15 \mu \mathrm{~F}$ 4tp. 0.2μ F, 5p. $0.33 \mu F, 6 p .0 .47 \mu F$, 74 p. $0.68 \mu F$,
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}$. $0.033 \mu \mathrm{~F}, 0.047 \mathrm{~F}, 0.068 \mu \mathrm{~F}$, 3 pp .
 $1.5 \mu \mathrm{~F}, 20 \mathrm{p}$. 2-2 $\mu \mathrm{F}$, 24p.
MYLAR FILM CAPACITORS IOOV CERAMIC DISC CAPACITORS $0.001 \mu \mathrm{~F}, 0.002 \mu, 0.005 \mu, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$,
3 p . $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.023 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 6 \mathrm{p}$. 100 pF to $10,000 \mathrm{pF}, 2 \mathrm{peach}$.

ELECTROLYTIC CAPACITORS-MULLARD OI5/6/7
($\mu \mathrm{F} / \mathrm{V}$) $1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$, $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4$, $100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,20 / 6 \cdot 3,220 / 16,330 / 4,6 p .47 / 63,100 / 40,150 / 25$, $220 / 25,330 / 10,4763,7$ p. $68,63,150,4,220,40,130 / 16,1000 / 410 p .470 / 10,680 / 6 \cdot 3$, $1000 / 16$, $1500 / 10,2200 / 6 \cdot 3$, $18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3$, 4700/44, 21 p.

SOLID TANTALUM BEAD CAPACITORS
$12 p$
$0.1 \mu \mathrm{~F} 35 \mathrm{~V}, 2 \cdot 2 \mu \mathrm{~F} 35 \mathrm{~V}, 22 \mu \mathrm{~F}$ 16V, 0.22 $\mu \mathrm{F} 35 \mathrm{~V}, 4 \cdot 7 \mu \mathrm{~F} 35 \mathrm{~V}, 33 \mu \mathrm{FIOV}, 0.47 \mu \mathrm{~F} 35 \mathrm{~V}, 6 \cdot 8 \mu \mathrm{~F} 25 \mathrm{~V}$ $0.1 \mu \mathrm{~F} 35 \mathrm{~V}, 2 \cdot 2 \mu \mathrm{~F} 35 \mathrm{~V}, 2 \mu \mathrm{~F} 16 \mathrm{~V}, 0.22 \mu \mathrm{~F} 35 \mathrm{~V}$
$47 \mu \mathrm{~F} 6.3 \mathrm{~V}, 1.0 \mu \mathrm{~F} 35 \mathrm{~V} 10 \mu \mathrm{~F} 25 \mathrm{~V} 100 \mu \mathrm{~F} 3 \mathrm{~V}$.

VEROBDARO

0.1	0.15
26p	$22 p$
$28 p$	$28 p$
$28 p$	$28 p$
$34 p$	$34 p$
$95 p$	$77 p$
$130 p$	$108 p$
$86 p$	$72 p$
$=$	$51 p$
$=$	$18 p$
	$15 p$
$62 p$	$62 p$
$52 p$	$52 p$
$20 p$	$20 p$

JACK PLUGS AND SOCKETS

Standard screened 28p 2.5 mm insulated Standard insulated $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ insulated Stereo screaned $\quad 40 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened | Stareo socket | 20p | 2.5 mm socke |
| :--- | :--- | :--- |
| $\mathbf{3 0 p}$ | 3.5 mm | |

D.I.N. PLUGS AND SOCKETS

2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin, 7 pin Plue 12p. Socket 8p.
4 way screened cable, 25 p/metre.
BATTERY ELIMINATOR
9 V mains power supply. Same size as PP9 battery.

PRINTED BOARD MARKER
97p
Draw the planned circuit on to a copper laminate board with the P.C. Pen ailow to dry and immerse the board in the etchant. On removal the circuit remains in high relief.

```
E.H.T. POWERUNIT. \(110 / 240 \mathrm{~V}\). 50 Hz giving \(5 \mathrm{~K} . \mathrm{V}\). at \(50 \mathrm{~m} / \mathrm{a}\). METERED OUTPUT. \(£ 17.50\).
COPPER LAMINATE P.C. BOARD
\(11 \times 3 t \times\) 亩 in .12 p sheot. 5 for 50 p .
\(10 \times 4 \times\) Tr in. 12 p sheat. 5 for 80 p .
\(10+\times 51 \times\) to in . 15 p sheer. 4 for 50 p .
\(10 \times 7 \times \frac{1}{\tau}\) in. 18 p sheet. 3 for EOp .
Officut pack (smaliest \(4 \times 2\) in.) sop 300 sq . In.
P\&P singie sheat 4p. Bargain packs 20p
```

TELEPHONE DIALS (New) f1 ea.
RELAYS (G.P.O. '3000'). All typos. Brand RELAYS (G.P.O.
new from 37, ea. 10 dip quotations only.
EXTEMSION TEL EPHOMES (Typa 706) Various Colours £3.50. P.P. 25p. Excellent condition.
RATCHET RELAYS. (310 ohm) Various Types 85p. P.P. 5p.
UNISELECTORS (NEW) 25 way 12 Bank (Non Bridging) 68 ohms. £6. P.P. 30p.

PRECISIONA.C, MILLIVOLTMETER (Solartron) $1.5 \mathrm{~m} . \mathrm{v}$. to 15 v : 60 db to 20 db . 9 ranges. Excelient condition. ع22-60. P.P. £1-50.

high capacity electrolytics

$2,200 \mathrm{uf}$. 100 V . $(11 \times 4 \mathrm{in})$.78 sp . $3,150 \mathrm{uf} 40 \mathrm{v} .(1 i \times 4 \mathrm{in})$.60 pp . $10,000 \mathrm{uf}$. 25 v . ($1 \pm \times 4 \mathrm{lin}$.) $60 \mathrm{p} .12,000 \mathrm{uf} .40 \mathrm{~V}$. ($2 \times 4 \mathrm{in}$.)

 h.D. ALARM BELLS. 6 in. Dome 6/8 volt D.C. e2-25 H.P. Sop.

HIGH VACUUM DIFFUSION PUMPS (Motrovac 093C). Now condition. £40. P.P. E2. A.E.I. P10. ION Pump Control Units. E17-50.
OVERLOAD CUT-OUTS. Panei mounting ($1 \frac{1}{\ddagger} \times 1 \ddagger \times i \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1 \cdot 8 \mathrm{mmp} / 10 \mathrm{amp}$. 35 p ea. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces $£ 2$. (Trial order 100 pcs . 50 p .) We are confident you will re-order.
REGULATED POWER SUPPLY. Input 110/240v Output 9v. DC. 1 1 amp. 12 v . D.C. $500 \mathrm{~m} / \mathrm{s}$. £4. P.P. 30p

TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. input 242v. A.C.
cver. 38 v . at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}$. at $200 \mathrm{~m} / \mathrm{a}$ £2 ө日. P.P. 40 p .
CY78. 25 v . at 2 f amp. $\mathbf{\text { E2-50.P.P. } 5 0 \mathrm { p } \text { . }}$
CV100. 50 V , at $2 \mathrm{amp}: 50 \mathrm{~V}$, at $100 \mathrm{~m} / \mathrm{a}$. E3. P.P. 50 p . CV250. 25 v , at 8 amp : 75 v . at $\$ \mathrm{amp}$. £5. P.P. E1. CVE00. 45 v . at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . E7. P.P. E1.
L.T. TRANSFORMER. Prim. 240v. Sec. 13v. at 1.5 amp. 75 p . P.P. 15 p .
L.t. TRAMSFORMER. Pilm. 240 v . Sec. 24 v . at 1 t amp. E1•20. P.P. 20p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$. $1 \ddagger$ amp. (Shrouded). £1.60. P.P. 30p.
L.T.TRANSFORMER. Prim. 200/250v.Sec. 20/40/80v. at 2 amp. (Shrouded). £2-25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250v Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$ at $9.8 \mathrm{amp} ; 40 \mathrm{v}$. at 3.6 amp 52 v , at $1 \mathrm{smp}: 25 \mathrm{v}$. at 3.7 amp . E1E. P .P. E .
H.t. TRANSFORMER. Prim $110 / 240 \mathrm{v}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{Q}$. E2. P.P. 50p.
E.H.T. TRANSFORMER. 240 v . Sec. 1800v. 50 mA . E2.E0. P.P. 50 p.
1000W. ISOLATION TRANSFORMER. 220/240v. 242 v . ('C' Core type). £12. P.P. £1-50.
1000w. STEP-DOWN TRANSFORMER. (Double wound) $240 / 110 \mathrm{v}$. 50 HZ . £12. P.P. £2.
L.T. TRANSFORMER. Prim. 240v. Soc. 16/0/16v. at 2 amp. E1-60. P.P. 20 p .
L.T. TRANSFORMER. Ptim. 110/240v. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$, at $300 \mathrm{~m} / \mathrm{a}: 3.15 / 0 / 3.15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. at $1.8 \mathrm{gmp}: 50 \mathrm{v}$.
ع1.75. P.P. 20p.
L.t. TRAMSFORMER. Prim. 200/240v. ('C' Cote). Socs. $1 \mathrm{v} / / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. ail at $1.5 \mathrm{~A}: 50 \mathrm{v}$. at 1 amp . £2 P.P. 25p.
L.T. TRANSFORMER. 110/240V. ('C' Cote). Sec. 13.5 V . 4A.: 39v. at 2A. $\mathbf{E 2}$-50. P.P. 25p. L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' COIO) 1 w / $3 \mathrm{v} . / 9 \mathrm{v} . / 20 \mathrm{v} . / 20 \mathrm{v}$, all at 2 amp. E3, P.P. 35p, Same Socondaries but st 4 amp. 24.25 . P.P. 40 p. L.t. TRAMSFORMER. 110/240v. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$, at $1 \mathrm{amp}: 50 \mathrm{v}$, at $750 \mathrm{~m} / \mathrm{a}$ $1 \mathrm{v} . / 3 \mathrm{v} / \mathrm{Fvv}$, all at
E5-25. P.P. 50 p .

HIGH-8PEEDMAGMETIC COUNTEAS. 4 dight (non resset) 24v. ol 48 v . (state which) $4 \times 1 \times 1 \mathrm{ln}$.
40p. P.p. 5 p .
5 digit (non-reset) 6-12-24-48v.
(state which) 75p. P.P. 5p.
3 digit 12v. (Rotary Reset) $2 \ddagger \times 1 \neq 1 \ddagger \mathrm{in}$. $\mathbf{E 1}$ each.
3 digit 12v. (Reset) 3i $\times 1 \times 1 \mathrm{in}$. £2-25. P.P. 5p.
5 dight (Raset) 12v. £3. P.P. 5p.
MULTICORE CABLE (P.V.C.).
6 core (6 colours) 3 screenod, $14 / 0048.1$ pp. yd. 100 yds 12.50

20 core (2 screened) 17 ip yd. $100 \mathrm{yds}. \mathrm{f15}$.
24 core (24 colours) $20 \mathrm{p} . \mathrm{yd} .100 \mathrm{yds}. \mathrm{£17.50}$. core (15 coiours) 22 tp. yd. 100 yds . 118.50 Minimum order 10 yds
RIBBON CABLE (8 colours)
£1-25
$\mathbf{£ 1 0}$
10 m .
100 m.
8 coies. $7 / \mathrm{mm}$. bonded side by side in ribbon form.
SMALL MOTOR (1/50 H.P.) 900 R.P.M. $230 / 250 \mathrm{v}$. A.C. 11-50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea; 6 make contacts 40 p ea. ; 4 pola c/o contacts 50 p es. $6-12-24-48 \mathrm{v}$ types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$) with 10 amp. Bilver contacts 2 pole c/o 40p ee.; 2 pole 3 way 40p, P.P. 5 p.
24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{3} \mathrm{in}$) 10 amp . contacts.
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp. contacts. 78p (with base). P.P. 5p.
P.A.R, BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 68p. P.P. 5p.
SILICON BRIDGES. 100 P.I.V. 1 amp. ($1 \times \frac{1}{\dagger} \times \frac{\mathrm{i}}{\mathrm{i}} \mathrm{in}$.) 30 p 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60p.
2 Pole Change-over 45p.
PATTRICK \& KINNIE
191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473
RM7 9DD

IvATIPLS
 MONEY BACK IF NOT SATISFIED

 all brand new, full spec. Top grade. Free fabulous NEW catalogue. Send SA.Edata soupin LED 5 /7p. Til209 \& clip $^{2} 22_{p}$
BIG'/4 panel clip \& RED LED 28p. GREEN \& clip 59 p
INFRA RED LED E . IC photo amp4 4p. \& amp/switch 85p
\|inff libilig LED $1 / 3$ 0-9Dp.DuL. El-69
Minitron type 0-9dpDIL $£ 1 \cdot 19$. SOCKETS 13p. IL DIGITRL ELDEHchips
Texas etc with 4 displays $£ 12.6$ displays\& chip $£ 14$. pcb£l 49
Mostek date $\&$ alarm chips with 6 displays $£ 19$.
Hif:All parts \& case. National chip. 4 dig it $£ 20.6 \times £ 23.1$
 741:8pin 29p, to99\& 14 pin 27p 748 33p 709 21p $\left.\right|_{\text {Kully }} ^{\text {K } 1 T}$ £ 469 710 35p 72359 p. 555 timer 79 p ZN414 rx. 11 100 buile $£ 8$ 703 rf if $\mathbf{2 8 p} \mathrm{mc} 1310$ \& led $£ 2.76 \mathrm{mc} 1339 \mathrm{£} 1 \cdot 20$ TAD 100 \& if $£ 2$ 1AMP+ REGULATOR 7805,5 (\&7-20) V. also $12 \& 15 \mathrm{~V} £ 1 \cdot 49$ AUDIO AMPS : mfc4ooo 50p; $1 \& 2 W £ 1 \cdot 19 ; 3 W £ 1 \cdot 29 ; 6 \mathrm{~W} .$. gates 7400 etc $16 \mathrm{P} 741332 \mathrm{P} 7447 \mathrm{cl} \cdot 25$ $7470 / 7232 \mathrm{P} 74747639 \mathrm{P} 749063 \mathrm{P}$ 749269 P 7412149 P \& al I others in cat
NEW 16 pin counterdriver $90 / 47$ \& 2.25
mimy low prices. NEW 16 pin counter/driver $90 / 47$ \&2.25 DALO p.cb.PEN 69 p DIL SOCKETS: Professional / gold P.P in in hior lo Prof ile 8,14,16Pin 13p 2M3055 33p.fourfi. EC107, BC108, EC 109 all 7pea
 BC212/3/4 11p BCY7O 13p BD131/2 35 p ea. BFY $51 / 23$ 15pt 2N2926 oy 7p 2 N 3053 15p $2 \mathrm{~N} 3702 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 111$ 11

日lratumilas P.O. BOX 29,BRACKNELL,BERKS.

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP

 (as in 'W.W.' July'72)MOTOROLA MC1310P EX STOCK DELIVERY

Separation: 40dB $50 \mathrm{~Hz}-15 \mathrm{kHz}$ SPECIFICATION

KIT COMPRISES FIBREGLASS PCB Preser Potm. \& Comprehensive Instuctions

LIGHT EMITTING DIODE $\begin{aligned} \text { ONLY } & \text { WHYPAY } \\ \text { E3-98 } & \begin{array}{l}\text { MORE? } \\ \text { post free. }\end{array} \\ \text { RED } & 29 p \\ \text { GREEN } & 59 p\end{aligned}$

MC1310P only e3.15 plus p.p. $\mathbf{6 p}$
NOTE
As the supplier of the first MC1310P decoder klt, of which we have sold literally thousands, our customers can benefit from our wide experience.

Please add V.A.t.
BURTON ROAD EGO ELECTRONICS
BURTON ROAD, EGGINTON, DEREY, DE6 6GY

Audio Connectors

Broadcast pattern jackfields, jackcords. plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
01 - 437 1892/3

TRANSOORMERS

LOW VOLTAGE TRANSFORMERS PRIMARY $200-250$ VOLTS $1:$ ANDJOR 24 VOLT RANGE						
Ref.	${ }_{12 \mathrm{~V}}{ }^{\text {Amps. }}{ }_{24 \mathrm{~V}}$	Weight	S/ze cm.	Secondary WIndling	¢	P
111	0.50 .25		$4.8 \times 2.9 \times 3.5$	$0-12 \mathrm{~V}$ at $0.25 \mathrm{~A} \times 2$	1.34	22
${ }_{21}^{213}$	1.0 	$1{ }^{4}$		$0^{0-12 V}$ at $0.5 A \times 2$	1.58	${ }_{22}^{22}$
18		212	7.0x $8.7 \times 7 \times 7$	${ }^{0.12 V} \mathrm{at} 14 \times 2$	- 2.09	22
70	6	${ }_{3} 8$	$8.9 \times 8.0 \times 8.7$	$0-12 \mathrm{Vat3A} \mathrm{\times 2}$	2.95	36 42
108		58	$9.9 \times 8.9 \times 3.6$	$0-12 \mathrm{at} 4 \mathrm{~A} \times 2$	3.96	52
72 116	10	${ }_{6}{ }^{4}$	$9.9 \times 8.6 \times 3.6$	$0-12 \mathrm{~V}$ at5A 5	$4 \cdot 67$	52
117	${ }_{16}^{12}{ }^{6} 8$	${ }_{8}^{612}$		${ }^{0-12 V} 0$	${ }_{7} 5.61$	$\begin{array}{r}52 \\ 52 \\ \hline\end{array}$
115	2010	188	$14.0 \times 9.6 \times 1.8$	0-12V at $10 \mathrm{~A} \times 2$	${ }_{9} 9.20$	${ }_{6}^{52}$
	3015		$14.0 \times 12.7 \times 7.8$	$0-12 \mathrm{~V}$ at 15A×2	16.94	82
	6030		$17.2 \times 15.3 \times 4$	$0-12 \mathrm{Vat} 30 \mathrm{~A} \times 2$	22.50	
Ref	Amps	Ight	Size cm.	Secondary Taps		\& P
112			$6.1 \times 5.8 \times 4.8$		f.	
79	1.0	24	$6.1 \times 5.8 \times 4.8$ $7.0 \times 6.7 \times 6.9$	$0-12-15-20-24-30 \mathrm{~V}$	¢	${ }_{36}^{22}$
$3{ }^{3}$	2.0	34	$8.9 \times 7.7 \times 7.7$	".	$3 \cdot 18$	36
20	3.0 4.0	48	$9.9 \times 8.3 \times 8.8$ 9.9×8.6 9.6	".	3.96 4.67	42 52 4
51	5.0	${ }_{6} 12$	12.1× 8.6×10.2	"	5.83	52 52
${ }_{1}^{117}$	6.0	$8^{8} 0$	$12.1 \times 9.3 \times 10^{2} 2$	". ."	6.94	52
	${ }^{8.0}$	129	12.1 $14 \times 11.8 \times 10.2$	" "		${ }_{67}^{67}$
	10.0		$14.0 \times 10.2 \times 11.8$	50 völt"range		
Ref.	Amps.	Weloht	Size c	Secondary Taps		P
${ }^{102}$	0.5	112	$7.0 \times 6.4 \times 6.1$	0-19-25-33-40-50	2.09	${ }_{30}$
103	1.0	${ }_{5}^{2} 12$	$8.3 \times 7.4 \times 7.0$	".	3.08	36
${ }_{105}^{104}$	3.0	-5 ${ }_{6}^{812}$		"	5.79	42 52
106	4.0	100	$12.1 \times 10.5 \times 10.2$	",	7.69	52
107	6.0	120	$14.0 \times 10.2>11.8$	".	11.38	${ }^{62}$
${ }_{118}^{118}$	8.0 10.0	${ }^{18} 80$	$14.0 \times 12.7>11.8$ $17.2 \times 12.7814 .0$	" "	${ }_{12}^{12.40}$	${ }^{97}$
Ref.	Amps.	Weight	Size crs.	60 Vólt range		\& P
124		${ }_{2}{ }_{4}$				
126	1.0	34	$8.9 \times 7.7 \times 7.7$	0-24-30-40-48-60	2.97	
127	2.0	64	$9.9 \times 9.6 \times 8.6$	",	4.67	42
123	4.0	-1312	$12.1 \times 1 \times 19.9$	" "	7.11 9.20	${ }_{6} 5$
40	5.0	1200	$14.0 \times 10.2=11.8$	".	10.83	67 67
${ }_{121}^{120}$	8.0	158 25	$14.0 \times 12.1 \times 11.8$	".	${ }^{13} 5$	${ }^{82}$
122	8.0 10.0	${ }_{25} 25$	17.2 $\times 12.7 \times 114.8$		1591	
189	12.0	2900	$17.2 \times 14.0 \times 14.0$		21.60	
			transform	S WITH SCRE		
Ref.	MA		Size cm.	Volts		P
238			$2.8 \times 2.6 \times$			
212	1 A	14	$6.1 \times 5.8 \times 4$	${ }_{0-6}{ }^{3-0.6}$	1.4	${ }_{22}$
13	100	4	$3.9 \times 2.6 \times 8.9$	9-0.9	1.23	10
${ }_{207}^{235}$		0	- $4.8 \times 2.9 \times 2.5$	-9, $0-9$	1.67	10
208	14, 1 A	112	$7.0 \times 6.4 \times 6.1$	${ }_{0} 0-8-9,00-8-9$	3.00	30
${ }_{21}^{236}$	200, 200		$4.8 \times 2.9 \times 3.5$	$0-15,0-15$	1.67	${ }^{10}$
221	700 (D.C.)		$7.0 \times 6.1 \times 3.1$	${ }_{20-12-0-12-20}$	1.75	${ }^{22}$
206	1A, 1A	212	$8.3 \times 7.7 \times 7.0$	0-15-20, 0	4.05	${ }_{38}$
204	500, 500	2	$8.3 \times 7.0 \times 7.0$	0-15-27	3.10	${ }^{38}$
204	1A, 1 A	34	. $\times 7.7 \times 7.7$	5-27, 0-15-27	3.15	38

Carriage via B.R.S.
Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

```
PLEASE ADD \(10 \%\) FOR V.A.T. including P. \& P.
```


BARIRIE electronics 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

ww- 029 FOR FURTHER DETAILS

Collins TCS R/T 1-5-12 mcs in 3 bands, v.f.o. plus crystals 25 watt out	125.00	$\begin{aligned} & \text { P.P. } \\ & E 2.00 \end{aligned}$	Frequency Counter Marconi TF 1345/2 Complete with		P.P.
Frequency meter 125-20,000 kcs w/calibration books with A/C power supply	E25.00	f1.50	Stand and 4 Plug-in Units-220 mcs. Good condition Beckman Frequency Time Counters Model 7360 JH . . .	£60.00	65.00 62.00
Solartron Storage Scope QD 910...................... .	£40.00	£3.00	Output Power Meter TF $340 . . .$. . $3 . .$.	E10.00	¢1.00
Telechrome Square Sign Wave Generator	£ 10.00	¢1.00	Airmec Signal Generator 300 kcs to 30 mcs 7 Bands Standard Signal Generator GRC (USA) Type 205/B	820.00	E2.00
Mullard TV Line Selector Type L 190 Voltage Regulator Lang Thompson 220 or 240 out at 100 BA	$£ 10.00$ $£ 45.00$	11.00 63.00	Standard Signal Generator GRC (USA) Type 205/B 7 Bands 9.5 kcs to 30 mcs . Spectrum Signal Analiser Model SB/I2 with Tuning	£35.00	£2.00
Pye Rangers VHF Transistorised Radio Telephones Mobiles			Head 2 mcs- 2.40 mcs. Signal Generator TF 93785 kcs-30 mcs 8 Bands Effective	¢100.00	£6.00
	$\begin{array}{r} £ 10.00 \\ £ 40.00 \end{array}$	$\begin{aligned} & £ 1.00 \\ & £ 2.00 \end{aligned}$	Signal Generator TF $93785 \mathrm{kcs}-30 \mathrm{mcs} 8$ Bands Effective L. Length of film Scale 50 ft .	E40.00	¢2.00
Wayne Kerr VHF Frequency Stand	68.00	¢1.00	Invertors Leland Airbourne		
Test Card C Videcon	¢10.00	£1.00	28v DC Input Output 115/200-115v 2.2 to 6.5 amps		
1"Videcon	67.00	£0.50	400 cs $750 / 750$ vg $3 / 1$ Phase with Built-in Stabilisers.	± 10.00	£2.00
Voltexion 4 Way M	68.00	f1.00	600/I Electrical Gearbox High Torque 12-24v Electronic		
Aircraft Modulator Unit (Radio/Tel) 440-LRV 3B	64.00	E1.00	Brake. Rough exterio	65.00	fl 00
Radar Aircraft No Indicator	¢15.00	£1.50	Racal Digital Frequency Meter Modul SA520. As new		
Tape Cartridge Players Built-in 10 Watt Amp	E10.00	£1.00	condition	£48.00	£2.50
Amplifier Clark and Smith	¢8.00	¢1.50	Electrolytic Capacitors 60v Working. Brand New.		
As above with VHF Radia	¢15.00	£1.50	Unused	60.45	10.10
Phamphomic 25 Watt Amplifier and 4 way Mixer with Base Treble Controls.	¢15.00	£1.50	Mixed Surplus Components Pack. Not less than 35 useful components.		¢0.15
Delay Lines 1-300 Milli Secs Adjustable	E12.00	£1.50	Modern Design Telephones	¢3.50	¢0.55
Decca Radar Marine Complete	175.00	£5.00	Klaxton Horns 24v 240v 250v	63.00	¢0.40
Metrix Wobulator	¢12.00	£1.00	Capacitors -22uF 12 v Working	60.30	¢0.10
Resistance Bridg	¢ 10.00	£1.00	Ferrograph Series 7 Perfect con	¢85.00	£2.00
Sperry Gyro's MK 4	68.00	£0.50	Racal Universal Frequency Counter New Condition		
Dubilier Radio noise filters $9-20 \mathrm{amps}$	75p	£0.50	CT 488	6150.00	63.00
Inverter 24 v. input out 28 v .400 kys	63.00	60.75	Solartron Cd 1212 Oscilliscope with 2 plug in units, i		
Stand and 4 Plug-in Units-220 mes. Good condition	660.00	£5.00	23 mcs DB I, 40 mcs SB.	¢130.00	£5.00
Beckman Digital Voltmeter Type BIE 2116 and Ratio			Solartron Pulse Generator GO 1005	¢45.00	£2.00
Met	$\underline{45} 00$	£2.00	Solartron Digital Voltmeter Type LM 902.2	£25.00	£1.00
Vacuum Compressor Pump with 240 V	¢15.00	f1.50	Wave Analiser Dawe Lns. Type 705B with operation		
Ferrograph 3 Speed Series 6	650.00	£2.00	manual.	¢45.00	£3.00

Mail order only to:
 DEPARTMENT (M)

B \& T ELECTRONICS (U.K.)

'"SLO-SYN'" 3-LEAD SYNCHRONOUS STEPPING MOTOR

 per revolution with accuracy of 0.10° per step non-cumulative. Torque characteristics can be 100 or 200 steps

OPEN FRAME shaded pole shaded pole
GEARED MEARED

 10rom with pressed ste. £3. P. \& P. 30p. \& P. 30p. 110 orpm with pressed steel gear case (s
but silontly smaller). $\mathrm{Ez3}$. P. \& P. 30 p .

CARTER ELECTRIC

SMITHS RINGER-TIMER

Rellable 15 milnute times. spring wound
(concurrent with time sestring)
divisions. ap mind
approximately
between divisisons. approximately
divisions. panel mounting with chroen
cheme divisions. Panel mounting with ehrome
bezel $3 \mathrm{z}^{*}$ dia. $£ 1 \cdot 40$. 15 p . P. $\& \mathrm{P}$.

FEW ONLY

 Hum and ripple at full ioad-less than 3MV peak to peak. Stablily Improvement ratio for 15% malns

"LABGEAR ELIMINAC'

P.S.L. $2200-250 v .401 / 60 \mathrm{~Hz}$. Alternative outputs fully

ULTRA PRECISIOK CENTRIFUGAL BLOWER
by Air Control Ltd.
 Limited number only $£ 8.95$ P Pap.

Now complete with reference magnet! A magnetcally activated switch, vacuum sealed In a glass
envelope. Silver contacts, normaily closed. Rated jamp envelope. Silver contacts, normafly closed. Rated 3 amp ideal tor burglar alarms, security systems etc. and where-

NORPLEX

The famous Amerlcan fibre-glass copper-clac laminate. Finest qualit:
with woven olass base of Epoyy-resin. Excellent Mech. and Elec.

 25d. P. \& Pal sheet.
addional sher

FAN
BLOWER
Precialion-bulit in Germany Dynamically balanced mains
unit $(200 / 240)$ continuous
 doep. Back plate lis tapped
 P. \& P. 25D.

ALL PRICES INCLUDE V.A.T.
Whilst we welcome offcial orders from estabilished companles and
Educational Departments it Educational Departments, it is no longer practical toinvoice ooods under
\&5. Therelore, please remitt cash with orders below this amount.

ELEGTROALDE

Present

ELECTRONIC COMPONENTS FOR THE WIDEST POSSIBLE RANGE OF APPLICATIONS

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE (U.K.)

ELECTROVALUE "SPECIALS'

Amongst an extensive range of specialised electronic Magneto Resistors Liquid Crystal Displays Hall Effect Probes Touch Switch I.C.
Photo-efectronic devices

FERRITE COMPONENTS

pot cores in a wide range of useful sizes:
Rouble Aperture Cores:
Ring Cores

TRANSISTORS

Vary wide range of types is shown together with grouped illustrated. and there is a full range of supporting hardware Also near-equivalent tables are given.

I.C.s

Here too a wide range of TTL types are shown. together with linear and special purpose types. Over 60 circuit and connection
diagrams as well as much other useful information is included

MINITRON DIGITALINDICATORS
Seven segment filament, compatible with standard logic modules. $0-9$ and decimal point: 9 mm characters in
16 lead DIL.
$\mathbf{f 1} 20$ 3015 G showing + or driver 744 f1.20

CAPACITORS

Radial leads for P.C.B. mounting. Working voltage 250 V d.c.
$0.01,0.015,0.022,0.033 .0 .047$ $0.068 .0-1.0 .15$
$0.22,5 p: 0.33 .7 p: 0.47,8 p: 0.68,11 p: 1.0 .14 p: 1.5 .21 p:$
$2.2 .24 p$ tantalum bead
$0.1,0.22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 1.5 / 20 \mathrm{~V}$
$2.2 / 16 \mathrm{~V}, 2.2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6.3 \mathrm{~V}$
$2.2 / 35 \mathrm{~V} \cdot 2.2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6.3 \mathrm{~V}$ ea. 14 p $10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V} .47 / 6.3 \mathrm{~V} .100 / 3 \mathrm{~V} .6 .8 / 25 \mathrm{~V}, 15 / 25 \mathrm{~V}$ \&a. 20 p POLYCARBONATE
Values in mF: 0.0047: 0-0068: 0.0082: 0.1: 0.012 , $\begin{array}{ll:l}0.015 \\ 0.018: 0.022: 0.027: 0.033: 0.039: 0.047: 0.056: ~ & \text { ea. 3p } \\ 0.082: 0.1\end{array}$

Working vottage 100 V d
Working vortage 0 ovd.c.
$0.1: 0.12: 0.154 p: 0.185 p ; 0.22$
$0.277 \mathrm{p}: 0.338 \mathrm{p}: 0.39: 0.47$
0.27 7p:0.33 8p
$0.5612 p: 0.68$

SILVERED MICA

alues in pFs- 2.2 to 820 in 32 stages $\quad 2700$ ea. 6 p 1000. 1500 7p: 1800 8p: 2200 10p: 2700. 3600 12p
$4700.50015 p: 680020$ 20. $8200.10,000$ 25p.

CERAMIC DISC
$0.1 \mathrm{mF} / 3 \rightarrow$ ach $2 \mathrm{p}: 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}, 0.01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50$.

CERAMIC PLATE

each 2 p renge of 26 values from 22 to $6800 \mathrm{pF} / 50 \mathrm{~V}$ d.c

POTENTIOMETERS

ROTARY, CARBON TRACK. Double wipers for good
contact and long working life
P. 20 SINGLE linear 1000 hms to 2.2 megohms
Pa. 14 p P. 20 SINGLE log. 4.7 Kohms to 2.2 megohms JP. 20 DUAL GANG lin. 4.7Kohms to 2.2 megohms JP. 20 DUAL GANG log. 4.7 Kohms to
JP. 20 DUAL GANG Log/antilog 10 K .22 K .47 K . JP. 20 DUAL GANG antilog 10 K only
解 10 extra
Dacades of 10.22 and 47 only available in ranges above $6 p$ each.

Slider

inear or log. 4.7 K to 1 meg . in all popular values $\begin{array}{ll}\text { Escutcheon plates, black, white or light grey } & \text { ea. } 30 \\ \text { Control knobs. blkwhy/red/yel/grn/blue/dk. grev/lt grey ea. } 10\end{array}$

ZENER DIODES
Full range E24 values: 400 mW : 2.7 V to 36 V . 14 p each
$1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V . 21 p each: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V . 67 p each
20 W 7.5 V to 75 V 94 p . Clip to increase 1.5 W rating to 3 watt
type 266 F). 5 p.
20 W 7.5 V to 75 V 69 peach

VEROBOARD

Conper clad 0.1 matrix -2.5×3.75 ins. $27 \mathrm{p}: 3.75 \times 3.75$ clad 0.15 in. matrix 2.5×3.75 ins.-20p: 3.75×3.75 ins.30p: 2.5×5 ins. $-\mathbf{3 0 p}: 3.75 \times 5$ ins.- $\mathbf{3 6 p}$.
Vero spot face cutter (any matrix) $\mathbf{4 3 p}$. Vero spot face cutter (any matrix) 43 p
0.040 pins (for 0.1 matrix) per $100-35$ p
0.052 pix) $100-30$
0.052 pins (for 0.15 matrix) per 100- 35

APPOINTED DISTRIBUTORS

CATALOGUE 7

SECOND PRINTING Igreen \& yellow cover)
112 pages, thousands of items, illustrations, diagrams, much useful technical information. The 2nd printing of this cata logue has been updated as much as possible on prices. it still costs only 25 p post free and still includes a refund voucher for $25 p$ for spending when ordering goods list value $£ 5$ or more.

COVERS \& HEATSINKS
Many types including:
TO3 Transisto
HEATSINK
Type 6 WI Extruded aluminium $1^{\circ} \mathrm{CTN}$, uncrilled
drilled $2 \times$ TO3
KNOBS
All for ${ }^{\prime \prime}$ " shafts in a very wide range of types from utilitarian S-DEC
Unsurpassed for "breadboard work" can be used indefinitely whsurpassed for breadboard work can be used indefinitely andconnectautomatically. Slot for control panel. 70 holes $\mathrm{E1} .98$ T-DEC
For more advanced work with 208 contacis in 38 rows. Will take
one 16 lead carrier. $\mathbf{£ 3} \mathbf{6 3}$. MCarriers supplied separately.) DESOLDERBRAID 6π strip
25 mtr reel

ELECTROLYTIC CAPACITORS

 \(\begin{array}{lllllll}
\)| Afial Lead | |
| :--- | :--- |
| 0.47 | 3 V |$\quad 6.3 \mathrm{~V} \quad 10 \mathrm{~V} \quad 16 \mathrm{~V} \quad 25 \mathrm{~V} & 40 \mathrm{~V} & 63 \mathrm{~V} & 100 \mathrm{~V}\end{array}$

This is $\boldsymbol{E} V$ Service

GIRO ACCOUNT No. 38/671/4002 DISCOUNTS
Availabie on all items except those shown with NETT
PRICES. 10\% on orders from $£ 5$ to $£ 14.99 .15 \%$ on orders
FREE PACKING AND POSTAGE
 GUARANTEE OF QUALITY
All goods are sold on the understanding that they conform as such-no rejects. "seconds or sub-standard merchandise is offered for sate.
Prices quoted do not include V.A.T. for which 10% must be added to torat nett value of order. Everv effort is made to ensure the carrectness of information and prices in this
adverrisement at time of going to press. Prices subject to
afteration withcut notice.

ELEGTROALIUE LID

Every effort is made to ensure the correctness of information
and prices in this advertisement at time of going to press. and prices in this advertisement at time of going to press.
All postal communications. mail orders. etc.. to Head OHfice
at Egham address. Dept WW5 S.A.E. With enquiries requiring

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603, Telex 264475
Shop hours: 9-5.30 daily, 9-1 pm Sats
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M191NA
Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1pm Sats.
S.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27 Swarthmore PA 19081

The Iargest selection

BRAND NEW FULLY GUARANTEED DEVICES.

bC150	0.20	ныд	0.55
${ }_{\text {BCl5 }}{ }_{\text {BCI }}$	${ }_{0}^{0.22}$		${ }^{0.68}$
${ }_{8}^{8 \mathrm{CCH3}}$	${ }_{0} .31$	111135	0.44
154	0.33	131136	0.44
	20	Bb	0.50
58	0.13	B1138	0.55
	0.13	в1139	0.61
	0.50	Blol	$0^{0.66}$
161	0.55	B1)	88
	0.13	810175	0.86
cis	0.13	B1176	${ }^{0.68}$
${ }_{80}{ }^{\text {Cli }} 69$	0.13	${ }^{1317178}$	0.72
(17)	0.13	${ }^{\text {BDI }} 78$	072
HC171	0-18	${ }^{\text {BD } 179}$	0.77
172	0.18	${ }^{\text {BD180 }}$	${ }_{0}^{0.77}$
${ }^{\mathrm{BCC}} 173$	${ }^{0.18}$	${ }_{\text {BDI }} 18.5$	${ }^{0.72}$
${ }^{\text {BC1 }} 17$	016	${ }^{8186}$	${ }^{0.72}$
BC175	0.24	BD185	$0 \cdot 77$
${ }_{3 C 178}$	0.21	${ }^{\text {BDI }} 188$	83
${ }^{\text {BCl }} 18$	$0 \cdot 21$	BD189	${ }_{0.83}^{0.83}$
${ }^{\mathrm{BCC} 79}$	$0^{0.21}$	${ }^{\text {RD190 }}$	${ }_{0}^{0.83}$
${ }^{\mathrm{BCL}} \mathbf{8} 80$	${ }_{0}^{0.27}$	${ }_{\text {BDI }}$	-0.94
${ }^{12 C 139}$		${ }_{\text {BDIH7 }}$	0.99
${ }_{\text {BC182L }}$	0.16	BD198	0.99
${ }^{\mathrm{BC}} 1818$	0.18	${ }^{\text {RDD } 199}$	1.05
	- 0.16	${ }_{\substack{\text { RD2 } \\ 18205 \\ 18205}}$	${ }_{0}^{105}$
${ }_{13184}$	0. 2	131206	.88
BC136	0.31	$\mathrm{BDL2}^{\text {a }}$	1.05
${ }^{\mathrm{BCl} 8^{2}}$	${ }^{0.31}$	${ }^{\text {BD208 }}$	${ }_{1}^{1.105}$
${ }_{\text {RC208 }}$	${ }_{0} .12$		${ }_{0}$
BC209	0.13	BF	50
BC212L	14	${ }_{\text {RF118 }}$	0.77
${ }_{\substack{18,2131}}^{8 C 2}$	0.14	${ }_{\text {BFIL19 }}^{\text {BF1 }}$	0.77 0.50
${ }_{13} 18225$	0.28	BF123	0.55
1 BC	0.39	BF125	0.50
вC:01	0.30	RF127	0.55
вC302	0.27	18F152	0.61
всзо,	0.35	${ }^{\text {BFP153 }}$. 50
RC30+	$0 \cdot 40$	BFIS4	. 70
вC4to	0.34	BF155	${ }_{53}$
BC 460	$0 \cdot 40$	${ }^{\text {BFP}}$	${ }_{0}^{0.53}$
всуз4	$0 \cdot 27$	BFI57	${ }_{0.81}^{0.81}$
BCY30	0.28	${ }^{\text {BFF } 58}$	${ }^{0.61}$
всу31	$0 \cdot 29$	BF5 59	${ }_{0}^{0.68}$
вCY32	0.33	${ }^{\text {BFF }} 160$	0.44
Rex 33	$0 \cdot 24$	BFITI2	${ }_{0}^{0} 0.44$
${ }_{\text {BCY }}$	0.28	${ }_{13 \mathrm{~F} 144}$	0.44
${ }_{16 \mathrm{CY} 71}$	0.22		0.44
${ }_{8 \mathrm{CH} 72}$	0.16	${ }^{\text {BFI } 167}$	0.24
3CZ210	0.22		${ }^{24}$
BCH	${ }^{28}$	bF177	-39
B812	0.28	${ }^{\text {BFF }} 17$	
${ }_{18116}$	0.88	${ }_{\text {BFI }} 18$	0.33
${ }_{\text {B1121 }}$	66	BF180	$0 \cdot 33$
BD123	0.72	BF18	0.33
124	0.78	BF182	044

KING OF THE PAKS Unequalled Value and Quality CIDFE PAVG NEW BI-PAK UNTESTED

Pay No.	Description (: lass Suh-Min. (ienera) Purpose Gernanium Dioiles	$\begin{array}{r}\text { Price } \\ 0.55 \\ \hline\end{array}$
$\frac{01}{02}$		
	611 Mived Germanium Tranbietora AF/RF	0.55
$\overline{\text { U }}$	75 Genianium Gold Bonded Sub-Min. like OA5, OA	0.55
$\overline{\mathrm{U}}+$	30 Germaniutu Transistors like (C81. AC128	0.55
U5	60200 mA But-Min. Sliiconl Diomes	0.55
U 6	308 Bil. Planar Trand. NPN liki BsY95A. 2N	55
U ${ }^{7}$	16 Sil. Rectiflers TOP-HAT 7 fluma lltg. RAN	
$\stackrel{7}{8}$	50 gil. Planar Dichles Do-7 (flase 250 mA Ilike $\mathrm{OA} 2 \mathrm{no/20}$	0.55
U9	20 Mixeri Voliager. 1 W'att Zener Disides	
U10	20 BAY 50 charte emorake Dioxime D)-7 (iluse	5
Ŵ11	20 PNP Sil. Planar Trans. T0-5 likt 2X1132, 2N24	
U13	30 PXP-NPN Sill. Tranistors OC200 \& 24.104	0.55
$\overline{\text { U14 }}$	150 Mixed sllicon and Germanturn Diodet	
$\overline{\text { U15 }}$	20 SPN Sil Planar Trune, To-5 like BPY51, 2 N	0.55
U16	103 Amp Sllicon Rectifera Stuil Type up to 1000PIV	
$\overline{\text { U17 }}$	30 Germanium PNP AF Trunistors TO-5 like ACY 17.22	55
U18	868 Amp Siliconn Rectifiere B BZ13 Type up to 600 PIV	5
ד19	25 Sllicon NPN Transisturs like BCl08	
$\overline{\text { U20 }}$	121.5 Amp Rilicun Rectiders Top Hat up to 1000 PlV	0.55
U21		
U23	25 MADT's tike MHz Seriea PNP Transistors	55
U24	20 Germanium 1 Amp Rectifiers GJM Series up to	
$\overline{\text { U25 }}$		55
U26	${ }^{30}$ Fast Bxitchlug Bilicon Diodes like IN914 Micro-M	
U29		1.10
U32	25 2ener Diodes 400nn W Do-7 cave 3 -18 volts mixed	
U33	15 Plantic Case 1 Amp silicon Rectifiers IN 4000 Serie	55
U34	30 Silicon PNP Alluy Tran4. T0-5 BCY26 $28302 / 4$	
U35	25 silicon Planar Trantistors PKP T(-18 2 2N2906	0.55
$\overleftarrow{436}$	20 Silitcon Planar NPN Transistors TO-5 BFY50/51/52	
U37	30 Silicon Alloy Transistors $80 \cdot 2$ P \times P $\mathrm{OC} 200,2 \mathrm{~S} 322$	
U38	20 Fast Switching silicon Trans. NPN MHz 2N3011	
U39	30 RF. Qerm. PNP Transistors $2 \mathrm{Ni} 303,5$ TO-5	0.55
U40	10 Dual Traneistors 5 lead TO-5 2 N2060	0.55
V+3	25 sil Trans. Plastic T0-18 A.F. BC113	
U44	20 Sil. Trans. Plastic To-5 BClibispen	0.55
U45	73 ABCR . TOit up to b00FH	110
$\overline{4} 46$	20 Unijunction trankistora similar to T1843	0.55
W47	is 70221AB ylatic triace 50V 6 A	
$\overline{\mathrm{U}+8}$	9 NPN SII. pouer transistors like 2 N 3055	
	yower trans. 6 OW like $2 \mathrm{N5} 294 / 629$	

QUALITY TESTED SEMICONDUCTORS

No. 20 Ked spot Iransistors PN 16 White spot R.F. trankint	

Matcheit transisisurs OCC4//5/8/8i/81D

4 OC 75 tranisistirs
50 OC
2

4 AC 128 trankisiotars PNP ligh gain
4 AC 1266 tran aistors PNP
OC 81 type trawistors
OC
AT type tranisistors
AC 127 pre ranistorns
AF 117 Ypee trangistors

\qquad
OA 81 diodes
OA99 Germanium tiludes sub- min. 1 N6:
Bilcon power rectitiers BYZ 13
Gilicon tranititors $2 \times 2 \mathrm{~N} 696$.
gillicon switch transistins 29706 NPN
Silicon swith tranaietors 2×708 NPN

(code
$\substack{\text { Bilicoll } \\ 2 M 2906}$

8 BY100 type rllicon rectifiers

8th EDITION 250 pages

POWER TRANS BONANZA

il marke

10011A	750 ma	${ }_{\substack{\text { 1 Anpp } \\ \text { Mastic }}}$,1	
(100)	${ }^{(80} 0.08{ }^{16}$				
0.05	0.06 0.07	${ }_{1}^{1 \mathrm{~N}+001}$	0.08		${ }_{0}^{0.15}$
0.06			0.07	0.12	0.22
0.08	0.15	1 N 4004	0.08	0.15	${ }^{0.30}$
0.08					${ }_{0} .38$
12	0.19	4006	0.11		
14	- 0.35			0.30	0.58

ALARGE RANGE OF TECHNICAL
and data books are now
avallable ix. stock
SEND for free list.

FREE

 orders valued $\varepsilon 4$ or oreer BRAND NEW TEXAS
GERM. TRANSISTRS
Coded Coded

$8.233+5 \mathrm{~B}$
8829378
8.0394 A
2N2060 NPN SII. DUAL

-the lowest prices!

FROMIST APRILALL ORDERS SUBJECT TO V.A.T. AT APPLICABLERATE. THIS M Express postage: 3 p for one transistor, and Ip for each additional. Over 10 post free. All orders over

Wilkínsons

BUILT TO YOUR SPECIFICATION HIGHEST QUALITY AT COMPETILIVERY SERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS.
LARGE STOCKS HELD OF G.E.C SON GYLINDRICAL TYPE RELAYS.
MINIATURE UNISELECTOR PO type 2201A 2 bridging 1 type Relay 50 volt 250 ohm coidging wipers $f 8.80$ eal
PO type 2 UNISELECTORS PO type 2 UNISELECTORS all 25 outlet 8 leve 1 bridging 10 non briaging 65 ohms $£ 17$ ea. 4 pole 50 way all non bridging 75 ohms f11 ea. LOCK 1T with a double pole on-off Key operated switch 2 amp 250 volt supplied with two PO ale keys 10 each. MINIATURE DIGTithboard Lamps 6 volts $\mathbf{£ 1 5 . 4 0}$ per 100, 24 volts $£ 22$ per 100
 unit for easy lamp replacement $£ 4.40$ ea.
GEARED WOTORS 3 r.p.m. 24 volts AC. 4 watts $\mathbf{E 3 . 3 5}$ each 24 volt Transformer with 240 GRIDGE MEGGERS 1000 Volts
BRIDGE MEGGERS 1000 Volts $0 / 100$ Megohms with Resistance Box $0 / 999$ ohms, 88.70 ea. We 2 gang types. Toggle switches Push and Rotary. action types. Microswitches. Standard
and and 2 gang types. Toggle switches Push and Rotary action types. Microswitches. Standard
Carbon. Wire Wound Virreous enamelled. High Stability types of Resistors. All British Meters
Volts. Microamps. Milliamps. Volts. Microamps. Milliamps.
LONGIEY RO L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE

C.I.E.L.
 $4 / 6$ rue Victor Hugo - 94190 Villeneuve St Georgs, France 4000 TYPES OF SEMICONDUCTORS AND TUBES

CATALOGUE ON REOUEST

Transistors 1.T.T. Si NPN					Price in £			
	Vcoo V	Icm A	Ptot mW	F Mhz	$\begin{aligned} & \text { per } \\ & 100 \\ & \text { each } \end{aligned}$	$\begin{aligned} & \text { per } \\ & 500 \\ & \text { each } \end{aligned}$	$\begin{aligned} & \text { per } \\ & 1000 \\ & \text { each } \end{aligned}$	$\begin{aligned} & \text { per } \\ & \text { 5900 } \\ & \text { each } \end{aligned}$
BF123	30	30	330	35	0.134	0.123	0.113	0.106
BF127	30	25	330	335	0.133	0.116	0.106	0.100

 associated with drilling thin materialsit drills interlocking holes for instance.

$\frac{1}{1 "}^{\prime \prime}-2 \frac{1_{2}^{\prime \prime}}{}$ in $\frac{1_{8}^{\prime \prime}}{}$ steps or $6-36 \mathrm{~mm}$ in 3 mm teps. Both with $\frac{1}{2}$ " shanks f10.75

The now Oryx 50 is temperature controlled, light, small. easy to handle, rapid heating and high performance. It has a mperature control within $\pm 2 \mathrm{C}$ and value between 200C and 400 C . Longlife value between tip as standard (11) sizes available).
Oryx De-Soldering Irons-small model SR3A instantly removes solder from printed circuits, etc., accurate, reliable. simple. PTFE mozzle. Larger instrument SR2 gives more suck, less recoil as only piston moves.

Oryx 50 Iron De-Soldering Tools $1 @$ £6.60
Safety Stand £2.44 SR2 £6.65

unpainted					
12	7	7	1277 f6.11	unpainted	Less for quantities. Prices
16	12	7	16127 f10.52	58 p	include steel panel with feet
19	10	10	191010 ¢14.48	50p	and screws, P. \& P. and VAT.

WH-MK spacemiser storage system Fin

simple.	1 off	4 off
121. 122. 123. 124	¢4.07	13.70
251. 252. 253	£6.16	$\mathbf{\$ 5 . 5 0}$
501. 502. 503	£10.67	± 9.68
254. 257. 258	£5.83	£5.30
504. 507. 508	$\mathrm{f10.01}$	£9.08

Less for quantities.

Thisesme WEST HYDE (1/1)

WEST HYDE DEVELOPMENTS Ltd, Ryefied Cres., Northwood Hills, Northwood, Middx HAS INN. Tel: Northwood 24941/26732
(+VAT+50p carripackin
packing), as illustrated.

EARN YOURSELF EASY MONEY, WITH PORTABLE DISCO EQUIPMENT DISCO MINI A complete portable disco,
fitted mixer/preamp, 2 dechs all facilties fitted mixer/preamp, 2 decks all facllyties, ces.50 As above but with Slider Con
100 watt amplifier for above
SDLS 100100 watt mixer/amplifier with silder conirois
R55 50 watt mixer/amplifier
R10 100 watt
R100 100 watt mixer/amplifier
DIISCO AMP ${ }^{100}$ watt mixerlampliffer
${ }^{400,}{ }^{40}$ watt Mixer Amplifier
DISCO MIXER/PREAMPLIFIERS
(OP for up to 0 -100 watt amplifers)
SDLI (rotary controis)
SDLII (silder controls)
Disco vox
disco preamp
DJ100 100 watt power amplifier for above DJ30L Mk III Slider Controls DJ30L Mk III Slider Controls

MINIATURE AMPLIFIERS
AMPLIFIERS (carr
4-300, 0.3 watt 9 volt
100, 1 watt 9 volt
3001,3 watt 9 volt
555, 3 , watt 12 volt
E1208, 5 watt 12 volt
608, 10 watt 24 volt
410,10 watt 28 volt
E1206, 30 watt 45 volt
E1210, $2 t+2$,
E1210, $24+24$ watts 12 volt
RE500, 5 watt IC mains op $\begin{gathered}\text { controls } \\ \text { SAC14, } \\ \text { SA }\end{gathered}+7$ watt Stereo with controls
 SP40-6 2Z40 Stereo 800| 28
SP60 2 28 SP60 2Z60 Stereo 801P28
Transformer PZB

NEW SINCLAIR PROJECT 80
Stereo Pre-Amplifier
Audio Filter Unit
2Z40 15 watt Amplifier
2Z 80
25
PZ5 Mod. for 1 on 2 Z40
PZ6 Mod. (S Tab) 1 on $2 Z 40$
PZ8 Mod. (S Tab) 1 on $2 Z 60$
TRANSORM
NEW FM TUMER
DECODER
SPECIAL PURCHASES
UHF TV TUNERS
CHANNELS 21 TO
Brand new translstorised geared output. \&2.50 post 20 p .
PUSHBUTTON UHF TV TUNER New purchase of 4 button fransistorlsed uhf tuner. $£ 3.50$

+ post 20 p .

All types offered subject to ávallabillyy. Price correct at notice. 10% VAT to be added to ail orders. Export Supplied.
FIBRE OPTICS
0.01 diam. Mono Filament $\mathbf{5 5}-50$ per 100 metre reel.
0.13 diam. 64 FIbres Sheathed, $£ 1.00$ per metr
SPRAYS 15 mm . dtam. Mares Talls. $\& 8.50$

CERAMIC FILTERS
now in stock
40p per pair

FOR EVERY

PURPOSE

470 C 6/7719 volt 300 MA (Includes Mult-Adaptor for

 $\mathrm{SC202} 31617179$ volt 400 mA HC244R Stabilised version
 P11 24 volt 500 mA (chass 1)
P15 26128 volt 1 amp ((chassis) P1080 $12 v 1 \mathrm{amp}$ (chassis) P1081450 0.9 amp (chassis)

 E7.80 post 20 D

$$
\begin{aligned}
& \text { SE101A } 3 / 19112 \text { volt } 1 \text { amp (Stab. } \\
& \text { RP164 } 671 / 9121 \mathrm{amp} \text { (Stab.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { £12.75 post 25p } \\
& \boldsymbol{\varepsilon 1 3 . 4 5} \text { post } 30 \mathrm{p} \\
& \hline
\end{aligned}
$$

GARRARD BATTERY TAPE DECK
 Volt tape decks. Filtiod
recordifley snd oscilla-
tond

top quality SLIDER CONTROLS Bomm stroke high quality controls complete with
knobs (post, etc., wisp any quantity).
SKingles Loo and Lin
 ${ }_{\text {each. }}^{250 \mathrm{~K}, 50 \mathrm{~K}, 1} 1 \mathrm{Meg}$, 45p ${ }^{\text {Gannod }}{ }^{\text {Log }}$ and Lin

Complete with knobs.

buILD THE NEW

HENELC

STEREO FM TUNER
A completely new high stability stereo FM
tuner. Features variable capacity diode
tuning, stabiliser power supply, IC Decoder, high gain low nolse. IF stages, LLED indictetors. Tuning, meter, AFC, eas to construct and use.
Mains operated. Sll Mains operated. SIIm modern design with flibeg glass PC, teak cablnet
etc. Available as a kit to build or ready built.
 periormance with a realistic price. (Parts list and constructional detalls. Ref. No. ${ }^{5}$ 300.)
Henry'B are sole distributors UK

Kit price
$\mathbf{1 2 1 . 0 0 (+ V A T)}$
ORBUILT AND TESTED EA4-.05 (+VAT)

LOW COST HI-FI SPEAKERS

ALWAYS BARGAINS FOR CALLERS

Lenrys U.R'S LRRGEST RANGE OF BRANDED AND GUARANTEED DEVICES. (Quantity Discounts $10 \% 12+15 \% 25+20 \% 100+$) (Any one type except whare quantity discounts show) Min. Order f1.00 pleese; Post10p.

G．F．MILWARD

ELECTRONIC COMPONENTS

Wholesale／Retail ：

HALF PRICE OFFER！ LIMITED PERIOD ONLY！

RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER$\frac{\div}{14}{ }^{n}-1 \text { oz }$	
	$\frac{1}{32}{ }^{2}-102$				$\frac{1}{3}{ }^{\prime \prime}-202$				데－102					
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Single Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8p	16p	15p	14p	13p	8p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	51 p	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51 p	45p	63p	51 p	£1－10	¢1． 00	£1．02	92p	51 p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1－10	£1．00	£1－15	£1－05	65p	55p	80p	65p	£1．38	f1－25	£1．30	£1－15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	f1．00	90p	f1－10	f1． 00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	｜f1．60｜	£1－40	£1．65	f1．45	f1．05	85p	£1－25	£1．05	f1．95	f1．75	£2．10	£1．90	f1．05	85p

EXTRA DISCOUNTS！ORDER 25 SHEFTS OF ANY one type－DEDUCT 20\％ ORDER 100 SHEETS OF ANY ONE TYPE－DEDUCT 30\％
If ABOVE SIZES DO NOT MATCH YOUR REQUIREMENTS，ASK FOR QUOTE－CUT TO YOUR SIZE． THIS IS AN OFFER THAT YOU CANNOT AFFORD TO MISS！ACT NOWI

Small electrolytics								MULLARD ELECTROLYTIC CAPACITORS				
Ref．No．	Capacity	Volage	Pice	Ref．No．	Capaciy	volage		边	4700			（itp
			${ }_{\substack{4 p \\ 4 p \\ 4 p}}^{\text {a }}$		${ }^{\text {S0uF }}$							
H8\％／4	${ }_{4}^{4.74 \mathrm{~F}}$	${ }_{\text {25V }} 5$	${ }_{4 p}^{4 p}$	$\xrightarrow{\text { H77／8 }}$			¢				旡：	
н8／5	5_{4}	10v	${ }_{4}$	H779A	${ }^{\text {a }}$	${ }_{25}^{45}$	${ }^{6}$		隹			
${ }_{\text {H }}^{\text {H8／6A }}$		100	${ }_{4 p}^{4 p}$	Hyphas	（1600F	${ }_{\text {25V }}^{255}$						
	${ }^{164}$	16V	${ }_{2}$	H7112		$\xrightarrow{100}$	${ }_{80}$		$\xrightarrow[\substack{22000 \\ 10000}]{ }$	7 amps	$\underset{\substack{1020 \\ i, 0 z}}{\text { or }}$	¢
	$\xrightarrow[\substack{20 \mathrm{~F} \\ \text { 20uF } \\ \text { 20 }}]{ }$	\％ov	${ }_{40}^{2 p}$	HTh14				1071022100				
				H7115A		25v			cosiciad	Neigh		
H8／11		$\underset{\substack{122 \\ \hline 15 \mathrm{~V} \\ \hline 15}}{ }$	${ }_{\substack{4 p \\ 4 p}}^{\substack{\text { ap }}}$	He/					coiscoo	${ }^{1} 1080$		
¢	cosk	lov	${ }_{\substack{4 p \\ 4 p}}^{4}$		边 320 H			${ }_{\text {At }}$	dols of	lany one		
	cole	$\substack{\text { ciev } \\ 105}$	${ }_{\substack{50 \\ 49}}$	${ }_{\text {H6／5A }}^{\text {Hef }}$	cos	${ }_{\text {35V }} 5$	${ }_{\text {cop }}^{10}$	Prease catcuatet the				
H88，1／5	474F		${ }_{\substack{4 p \\ 4 p}}^{\text {ap }}$	${ }_{\text {He } / 8 \mathrm{Sa}}$	470 F	${ }^{35 V}$	208	Not	Ordinay Parcels			
		10 V										
		2.51						${ }_{8}^{810}$	$\begin{aligned} & 36 p \\ & 48 p \\ & 48 p \end{aligned}$			¢

TEKTRONIX 545 B Oscilloscopes. From A New to well used condition. Main frame. Prices from C^{225}.
TEKTRONIX 502 A Oscilloscopes. Brand NEW. Guaranteed. P.O.A. HEWLETT PACKARD Oscitloscopes type
175A Dual 50 MHz . 225 .

CONSTANT VOLTAGE
TRANSFORMERS
1 Kilowatt eic.
S.A.E. with requirements.

AMERICAN SWEEP GENERATOR TYPE 452. Covers from 5 to 100 MHZ. Has built in
display and 101 OB Push Button RF Attenua. tor in one DB ateps., plus Calibrated Marker Generator covering 5 to 100 MHZ continuous.
American Government Contract, so quality American Government Contract, so quality
is high. Supplled for 2400.50 HZ operation with plugs and leads. Size $13 \frac{1}{270} \times 9 \mathrm{i} \times 19 \mathrm{in}$. Price

AMERICAN SWEEP GENERATOK TYDE TR

AMERICAN AM GENERATOR type 497. 40 to
240 V 50 MHZ . Supplied wl
50 HZ operation E 35 .

12" LONG

PERSISTANCE TUBES

deal for SSTV; educational purposes. ype 12DP7A. Connections, vollages etc.
Grand New Boxed $E 7.50$ each including carriage and VAT.

SPECIAL 40 MHZ SCOPE SOLARTRON Cizi2 ONLY E50. Has to be a snag. There T8-no plug-in Y amps available.
T8-100 nanosecs per cm. to 5 secs. per cm . In 24 calibrated ranges. 20 nanosecs per cm .
with times 5 expansion. 5^{*} fiat faced tube. Trace limes \mathbf{i} extor. oxpansion. microsec. sianal deley suitt in catibrator. 1 microsec. signal square wave. 200 micro volts to 103 volts in 18 calibrated ranges. hoosts this to better than 200 mV per cm . at
40 MHZ . 240 V . 50 HZ input. Compiete with 40 MHZ . 240 O . 50 HZ input. Compiete with full manual including plug-in circuits. Come
and see one working or Carrlage $£ 1.50$.

SINGLE TRACE 40 MHZ PLUG-INS for 2512 ascilloscopes now available at

EX-MINISTRY CT436

Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16$ in Suitable for Colour TV Ser vicing. Price $£ 85$ each including copy of manual.
gOLARTRON CO 523 Single Beam Oscillo-
SOLARTRON CO 523 Single Beam Oscillo3 Cope 3 db at 10 MHZ ; 1 mV max sensitivity
OC coupled down to 1 vol. Ain. flat faced PDA tube. TB from 1 secs.. per. cm . to 0.1 micrasecs. per cm . plus times 5 expansion
MARCONI TF TS5M-A/40 KHZ Sine Wave Generalor $0 / 40$ Volts output Metered. These must go $£ 7.25$.
MARCONI TF $201 B$. AM SIGNAL GEN. ERATOR. 12 to 470 MHZ . In good working condition 890
WARCONI TF 238 (CTAA). Absorption 2.5 ohms to 20 K ohms. Freq. response flat 2.5 .hms to 20 K ohms. Frea. response flat
at $2 \theta \mathrm{KHZ}$. Callbrated in volts and dbs. 5in.
m rrer backed mater $£ 7.50$ ea. P . \& P . 75 p . m rrer backed meter $£ 7.50$ ea. P. \& P
MARCONI VVM TF1041A $£ 22.50$.
MARCON1 TF 428C. Measures AC 100MV to 150 V 20 HZ to 15 MHZ . Measures DC 40 MV o 360 V . Complete with probe. Standard 240 V operation $\mathbf{£ 1 2} 50$ each.

MARCONI TFAse. Measures 20MV to $2 V$ AC. So HZ to 100 MHZ . 10 each
MARCONI VVM TF
50 MV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ . OC 100 MV to 300 V . Ohms 50 to 5 Meg 0 hm . In fine condition cie each.

E.H.T. TRANSFORMERS, e.g. 5 KV at

 BRAND NEW AMERICAN HIGH t20kV working, f2PACITORS. 0. Cach. Carriage at cost.MODERN TELEPHONES type 706. Two tone rey, E3.75 ea. Two-tone green E3.75 ea. Black E3.75 ea. P. \& P. 25 p ea.

Ideal EXTENSION Telephones with standard GPO type dial, bell and lead coding. $\mathbf{E 1} 175$ ea.

All telephones complete with bell and dial.

POTENTIOMETERS

COLVERN 3 watt. Brand new, 25; 50k all at 13p ea.
MORGANITE Special Brand new, 2.5; 10;
BERCO 27 Watt. Brand new, 5; 10; 50; 250;
OAms: 1; 2.5; 10; 25 ; SOK at 15p ea.
STANDARD 2 meg. log pots. Current type NSTRUMENT 3 in . Colvern 5 ohm 35p ea. 50k and 100 K 50p ea.
BOURNS TRIMPOT POTENTIOMETERS. 20; 50 ; $100 ; 200 ; 500$ ohms; t;

SOLARTRON D 300 range Oscilloscope Single Beam DC to 6 megs. Price £25 each.

RELIANCE P.C.B. mounting: 270;
500 ohms; 10 K at 35 p ea. ALL BRAND NEW.
 $998 \mathrm{~K} ; 1$ meg 0.1% 27p ea.; 3.25 k , 5.6 k , 13k$0.1 \% 20 \mathrm{p} \mathrm{ea}$

RELAYS

Varley VP4 Plastic covers 4 pole c/o. 15 K 33p ea
CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new 37p each. 14 ohm 33p each. 45 ohm coll 33p each.
TRANSFORMERS. All standard inputs. Gard/Parm/Part. 450-400-0-400-450. 180 MA $2 \times 6.3 \mathrm{v}$. 23 ea

> FANTASTIC VALUE Miniature Transformer. Stand 240 V imput. 3 Volt 1. amp output. Brand New. 65pp ea. P \& 15 p . Discount for quantity.

Large quantily LT, HT, EHT transformers and

Vast quantity of good quality components -NO PASSING TRADE-so we offer 3 LBS. of ELECTRONIC GOODIES for $\mathbf{E 1} 50$ post paid.

CRYSTALS Colour 4.43 MHz Brand Now. E1.25 ea.P. \& P. 10 p .
£1 WORTH OF 'UFS'. Six Brand New capacitors all between 15 V and 100 V . Total capaci-

CAPACITOR PACK 50 Brand new compo-
POTS 10 different values. Brand new. 50p.
P. $\&$ P. $17 p$.
COMPONENT PACK consisting of 5 pots various values, 230 resistors and $\frac{1}{4}$. Watt
etc., many high stabs. All brand new. Fine value at 50 p per pack. P. \& P. 27p.
DELIVERED TO YOUR DOOR ${ }^{1}$ cwt. of
Electronic Scrap chassis, boards, etc. No Electronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY $£ 3.50$. N. |reland $£ 2$ Rubbi
extra.
P.C.B. PACK S\& O. Quantity 2 sq. ft.ーn~

FIBRE GLASS as above E1 plus P. \& P. 20 p. 5 CRYSTALS 70 to 90 kHz . Our choice, $\mathbf{2 5 p}$. P. ${ }^{\circ}$ P. 15 .

TRIMMER PACK, 2 Twin 50/200 pt ceramic; preset $5 / 200 \mathrm{pf}$ on each; 3 air spaced wreset 301100 of on ceramic base. ALL BRAND
NEW 25 p the LOT, P \& 100 .

MARCONI TF1331 Double Beam Oscilloscope DC15 MHZ. Sensitivity 50 $\mathrm{mv} / \mathrm{cm} .5$ in. flat face tube TB $0.1 \mathrm{microsec} / \mathrm{per} \mathrm{cm}$ to $0.02 \mathrm{micro} \mathrm{sec} / \mathrm{per} \mathrm{cm}$ with expansion. Complete with copy of manual $£ 120$.

ROTARY SWITCH PACK-6 Brand New switches (1 ceramlc; $1-4$ pole 2 way etc.).
50 p. P. \& P. 20 . Raplecement TUBES for COSSOR 1035 \& 3. Used-guaranteed. E3 es. P. \& P. 37p. C.R.T.'E $5^{\prime \prime}$ type CV1385/ACR13. Brand ncw

Modern Version of VCR 138. Flat faced. Side connectors PDA. £2.50 ea. P \& P 37p.
BASES for CV1385 or VCR138 20p ea. P. \& P. 15 p
GRATICULES. 12 cm . by 14 cm . In High
PANEL mounting lamp holders. Red or green pea. Miniature. P ANEL mounting lamp with

BECKMAN MODEL A. Ten turn po
 BECKMAN 10 TURN DIALS ONLY
Brand new E2.25 ea. P. \& P. 10 p . ELECTROSTATIC VOLTMETERS from
$0-300$ Volts to $0-10 \mathrm{KV}$. $\$. A . E$. with your requirements.
DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutcheon. Black with white deep. Ex-Plessey. $£ 1-40$ each. P. \& $P^{\times}, 15$ p.

LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38 p ea.
Iniormation 5p. Holdjrs 1 p . iniormation 5p. Holdars 1p.

FIBRE-GLASS PRINTED CIRCUIT BOARD. Brand New. Singie or Doubie sided.
Any size $1 \frac{1}{2} p$ per sq.in. Postage 10p per order METERS. Ernest Tumer. Model 402. 100 micro amps. BRANO NEW
hence $£ 2.25$ ea. P. \& P. $25 p$
METERS by SIFAM type M 42. 25-0-25 micro amp. Scaled $25-0-25$ green: $250-0-$
250 red: linear. As new. E3-50 ea. P. 8 P. 37p.

VISCONOL EHT CAPACITORS
 BLOCK PAPER CAPACITORS AVAILABLE.S.A.E. with requirements.

ННOTOCELL equivalent OCP 71, 13p ea. MULLARD OCP7 10p each

HARTLEY 13A Double Beam Oscilloscope TB $2 \mathrm{c} / \mathrm{s}$ $-750 \mathrm{kc} / \mathrm{s}$. Band width 5.5 mcs . Sensitivity $33 \mathrm{Mv} /$ cm . Calibration markers 100kc/s and $1 \mathrm{Mc} / \mathrm{s}$. £25 each. With accessories $£ 27.50$ ea.

20HZ to 200KHZ
 SINE AND SQUARE WAVE GENERATOR

12 in. DISPLAY UNITS

S.A.E. for details.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £5-50. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at £9-25. P. \& P. 25p.

- =aw

DON'T FORGET
YOUR MANUALS
S.A.E. WITH REQUIREMENTS

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $10 \cdot 7$ or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only £5.75. P. \& P. 25p.

Unless stated-please add $\mathbf{£ 1} \mathbf{5 0}$ carriage to all units.

VALUE ADDED TAX not included in prices-please add 10\%

 Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with OrderOpen 9 am to 6.30 pm any day (later by arrangement.)

[^3]

Telephone Corner

COMPLETE TELEPHONES NORMAL HOUSHODO TYPE AS
SUPPIIED TO THE POST OFFCE EX G.P

Only $£ 1.05$

TELEPHONE DIALS

879	4	1N4007 Sil. Rec. diodes 1.000 PIV lamp plastic	55
881	10	Reed Switches 1" long $\frac{1}{\frac{1}{6} " ~ d i a . ~}$ High speed P.O. type	P
H35	10	Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked	
. 38	30	Short lead Transistors. NPN Silicon Planar types	p
H39	6	Integrated circuits, 4 Gates BMC 962. 2 Flip Flops BMC 945	55 p
H41	2	Power Transistors Comp. Pair BD 131/132	
H63	4	2N3055 Type NPN Sil. power tran sistors. Below spec. devices	55p
H65	4	40361 Type NPN Sil. transisto TO-5 can comp. to H 66	
H66	4	40362 Type PNP Sil. transistors TO-5 can comp. to H 65	55p

D Unmarked Untested Paks

\%	50	Germanium Trans.	5 p
	150	Germanium Diodes Min. glass type	pp
B84	100	Silicon Diodes DO-7 glass Equiv. to OA200. OA202	55p
${ }^{886} 1$	100	Sil. Diodes sub. min IN914 and INS	5p
${ }^{883} 2$	200	Transistors, manufacterers. rejects, AF, RF, sil and germ	55p
H26	40	NPN Silicon Trans 2N3707.11 range, low noise amp.	55p
${ }^{\text {H34 }}$	15	Power Transistors. PNP, Germ. N Silicon TO-3 Can. P \& P 5p extra.	55p
H67	10	3819 N Channel FET's plastic case type	55p

Make a rev counter
 for your car

The 'TACHO BLOCK. This encapsulated block will turn
any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev. counter for any car with nomal coil ignition system
11.10 acah

Ex GPO Push-button Intercom Telephones
Exactly as internal telephone systems still in everyday use where automatic internal exchanges have not yet
taken over. Available in 5,10 or 15 ways. Complete with circuits and instructions. Price of each instrument is independent of the number of ways. Please phone for latest details of cable.
£2.75
EXTENSION TELEPHONES $7 \frac{1}{2} p$ each p.p. $27 \frac{1}{2}$ p. $£ 1.37 \frac{1}{2}$ for 2 p.p. 55 p.
phones are extensions and do not contain bells.

New X-Hatch

Our new, vastly improved Mark Two Cross-Hatch Generator is now available. Essential for alignment of colour guns on all TV receivers Featuring plug-in ICs and a more sensitive sync. pickthe engineer's tooltox-and only measures $3^{\prime \prime} \times 5 \frac{1}{4} \times$

Ready buikt
unit only
10.92

We have just received a large consignment of LM380 are marked with the number SL60745. This fantastic little 3watt audio IC only requires two capacitors and two potentiometers to make an amplifier
with volume and tone control. The quality is good and has to be heand bo
 Transistors in stock

We hold a very large range of fully marked. tested and guaranteed Transistors. Diodes and Rectifiers at very
competitive prices. Please send for Free Catalogue

Our very popular 4 p Transistors

 FULLY TESTED \& GUARANTEEDTYPE "A" PNP Silicon alloy, TO-5 can. TYPE "B" PNP Silicon, plastic encapsulation. TYPE ' 'E" PNP Germanium AF or RF.
TYPE "F" NPN Siticon plastic encapsulation
TYPE "G"NPN Silicon, similar ZTX300 range
TYPE "H" PNP Silicon. similar ZTX500 range.
8 RELAर') Fon $£ 1-10$ UHF TV Tuner Units
Brand new by a famous manufacturer
Data supplied $£ 2.75$

Plastic Power Transistors

NOW IN TWO RANGE

These are 40W and 90W Silicon Plastic Power Tran sistors of the very tatest design. available in NPN or PNP at the most shatteringiy low prices of all time We have been selling these successfully in quantity to under our Tested and Guaranteed terms, HFE. Min. 15
40 Watt
90 Watt
$\begin{array}{lll}22 \mathrm{p} & 20 \mathrm{p} & 18 \mathrm{p} \\ 26 \frac{1}{2} \mathrm{p} & 24 \frac{1}{2} \mathrm{p} & 22\end{array}$
RANGE 2VCE. Min. 40
RANGE $2 \mathrm{VCE}, \mathrm{Min}$.40
HFE, Min 40
40 Watt HFE. Min 40
$\begin{array}{llll} & 33 p & 31 p & 29 p \\ 90 \text { Watt } & 38 \frac{1}{2} p & 36 \frac{1}{p} p & 33 p\end{array}$
High-speed magnetic coumers
4 digit (non-reset) $4^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime} 33$ p P \& P $5 p$
INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices (rrom $11 p$ each). These
FREE Catalogue. see coupon below.

METRICATION CHARTS NOw available
This fantastically detailed conversion calculator carries housands of classified references between metric and volume land U.S.A.) measurements of length. are volume. liquid measure, weights etc

- Low cost dualin line ic. sockers

LOW COST DUAL IN LINEI.C. SOcKETS

Books
Books in stock.

BUMPER BUNDLES

These parcels contain all types of surplus electronic components. printed pan

2 LBS in weight for $£ 1 \cdot 10$

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electronic Cemponents. approx. 170. We guarantee at least 30 \& NPN and quality factory marked Transistors PNP Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors. this Pak
Please ask for Pak P.1.only 55_{p}
\qquad
ALL PRICES INCLUDE 10\% VAT

[^4]MINIMUM ORDER 50p. CASH WITH ORDER PLEASE EXTRA FOR POSTAGE Buy these goods with Access.

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK W. 4

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $+1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 micro volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$ Consumption approx 40 watts. Measurements $29 \times 12 \ddagger \times 10 \mathrm{in}$. Secondhand condition. $£^{27} 50$ each, Carr. $\ell^{2} 00$.
POWER SUPPLY UNIT PN-12A: 230 V a.c. input $50-60 \mathrm{c} / \mathrm{s}, 513 \mathrm{~V}$ and 1025 V at $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament transformer 230 V a.c. input. 4 Rectifying valves type 523 . $2 \times 5 \mathrm{~V}$ windings at 3 Amps each and 5 V at 6 Amp and 4 V at 0.25 Amps . Mounted on steel base $19 \mathrm{in}$. W $\times 11 \mathrm{in} . \mathbf{H} \times 14 \mathrm{in}$. D. (All connections at the rear.) Excellen cond. 58.50 each, Carr.
MODULATOR UNIT: 50 watt, part of $\mathrm{BC}-640$, complete with 2×811 valves microphone and rodulator transformers etc. 4
CATHODE RAY TUBE UNIT: With 3in. tube, Type $3 E G 1$ (CV1526) colour reen, medium persistence complete with nu-metal screen, m. APN-1 INDICATOR METER, 270° Movement. Ideal for making £1.25, post 30 p .
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $£ 2$ each, $\mathbf{3 0 p}$ post. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps. $£ 3$ each
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ n . wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, Carr. $£ 2.50$
CLASS "D" WAVEMETER NO. 1 MK. H: Crystal controlled heterodyne requency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond E7.50 each. Post 60p.
ROTARY INVERTERS: TYPE PE.218E-input $24-28 \mathrm{~V}$ d.c., 80 Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 17.50$ each. Carr. $£^{2 \cdot 00}$ REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power upply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabilised valves CV 286. Centre Zero Meter 10-0-10. Size 8in. $\times 8 \mathrm{in} . \times 8 \mathrm{in}$. New condition $£ 7.50$, Carr. 75p
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range $1200-9600$ gausses. $\pm 2 \%$. S/hand good cond. $£ 25+60$ p post
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{\mathrm{in}} \times \times 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each, Carr. $£ 1$
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2C42, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters $0-999$. Valves 6AL5 and 8×6 AK5. $£ 10$ each, 60 p post.
TELEPRINTER TYPE 7B; Pageprinter 24V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ cach; or second hand cond. excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3 \cdot 00$
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£ 1$ carr. AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjoer. 5-5000c/s per sec. S/hand V. good cond. £90, Carr. £2.
COITAS II SURVIVAL RADIO TX/RX: Automatic morse key or speech. $500 \mathrm{KHz} ; 2182 \mathrm{KHz} ; 8364 \mathrm{KHz}$. $£ 40$ each. Carr. $£^{2}$.

ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout
BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB. Line 1 and 2.6200 each Carr. £5.
50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc.,
 plugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment, plugs to suit. Similar to PL68. Complete with oft. cord. Ex-equipment,
good cond. $t 4$ each Post 50 p .
$10-W$ en ${ }^{62}$ each. Post 30 p . W . the above items. $£^{2}$ each. Post 40 p . STRIP: 3 connections. Takes standard
10 -WAY TELEPHONE SOCKET P.O. Jackplugs; 201 or 316; and 10-WAY TELEPHONE LAMP STRIP. 20-LINE TELEEPHONE UNIT: With plugs; magnetic indicators; and switches in metal case. Size $8 \times 8 \times 19 \mathrm{in}$. 65 each. Carr. $£ 1$.
BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. £30 each. Carr. $£ 1$. BRIDGE MEGGER: $2,500 \mathrm{~V}$., series 1 . $£ 30$ each. Carr. $£ 1$.
TRANSMITTER BC-624: Complete with power supply for 230V. 5 channel, rystal controlled. Can be modified for 2 metres. Size $19 \times 19 \times 12 \mathrm{in}$. approx Secondhand, excellent cond. $£ 12.50$ each. Carr. $£ 2$
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction DRIPENA RF GENERATOR TY
DELPENA RF GENERATOR TYPE E. $15: 15 \mathrm{~kW}$ at 500 Hz ; input 440 V 3 ph H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}$. [35, Carr. $£ 4 \cdot 00$
COPPER WIRE AERIAL: with insulators, 10 ft. long. $£ 1 \cdot 50$. Post 40 p .
HIGH VOLTAGE TRANSFORMER: $5000 / 5000$ at 250 mA ; 230V. A.C. input t15 each. Carr. $£ 2$
TELEPHONE CABLE: (Twin) $1,350 \mathrm{ft}$. on metal reel. $\mathbf{f 5}$ per reel. Carr. £ 1 ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections (\mathbf{z}^{*} dia.) with base, guyropes and stays etc. $£ 5$ each, Carr. $£ 2$.
ANTENNA MAST 12 ft .3 sections with suitable base to mount on the above Mast. Extends to 42 ft. $£ 1.50$ each, Carr. $£ 1$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete wil. 28V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. $\notin 4$ each, Carr. $£ 1.50$
AVO VALVE TESTER CT. 160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$.
MODULATOR UNIT: Complete with, mod. transformer and 2×807 Valves. Mounted 19^{*} chassis, $8^{\prime \prime} \times 8^{\prime \prime}$. "As new" cond. f^{8} each; or secondhand f^{5} each. LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS;

If wishing to call at
stores, please telephone
for appointment.

stores, please telephone
for appointment.
Phone: 01-808 9213 and Bedford 740605 (STD 0234).

Samson's
(ELECTRONICS) LTD.
LONDON, N.W.I 9 \& 10 CHAPEL ST., LONDON, N.W.I $01-7237851$

6ft. mains input lead. Screw terminal
output 22.00 p.p 35 p .

 \section*{input. $£ 1.50$ p.p 32 p .}

AMOS "C" CORE CHOKES
10 M/H 25 amps., 88.75 , carr. $£ 1.00$.
FRACTION TRANSFORMERS
OFAKERS PRICE

LEMARK Pri. $240 \mathrm{v} . \mathrm{Sec}$. 40 v . 6a $5-0-5 \mathrm{v}$
 24v. 630 mia twice. 24 v . 65 mla and 115 an .
2a. auto tap on primary. Open fram 2 a auto tap on primary. Open fram
table top connections $£ 3.50$ carr. 50

OMRON RELAYS TYPE MK2P plug in type. 70p, post 10 p . As above

STC RELAYS
STC RELAYS
Type 250XCE 2500 ohm
2 H.D. CO contacts set to 2 H.D. CO contacts set to
puli in at $22 v$. with base
and cover. 60 p , post. 5 p .

 \qquad

 12 volt 2 amp TRANSFORMER enclosed In metal case. Size $5 \times 4 i \times 3$

 connects. New $\mathrm{ET} \cdot \mathbf{5 0}$, carr. E 1 .

Popular Semiconductors

侤VALVES

 A lot of these valves are imported and
prices vary tor each delivery, so we we
reserve the right to change prices for
new stock when unavoidable.

$\begin{array}{r}2 \\ 0.40 \\ 0.45 \\ 0.40 \\ 0.40 \\ 0.50 \\ 0.40 \\ 2.00\end{array}$
VAT
EXT

1 T
$1 \times 2 \mathrm{~A}$
$1 \times 2 \mathrm{~B}$
$2 \mathrm{KR25}$
$3 A 4$
3 D 6
3 S 4 융앙웅영ㅇㅇㅇ영

 TRANSISTORS $\begin{aligned} & \text { Please write of phone for Curreni price } \\ & \text { of the transistors, diodes }\end{aligned}$

	£		$£$
G3	8.00	866A	1.10
G6	-60	931A	5.80
H_{4}	7.00	954	0.50
P3	0.75	955	0.40
P4	1.00	956	0.30
L6GT	0.60	957	0.40
C15	1.60	1629	0.50
C17	1.00	2051	0.80
C18	0.90	5933	3.00
F5	1.00	6057	0.60
FL1	0.80	8060	0.60
FL12	1.05	6064	0.50
FL14	0.90	6065	0.70
VIDICON TUBES		6080	2.20 2.00
		8020	4.00
		9001	0.30
EMI types		9002	0. 50
9677A \&		9003 9004	0.55 0.30
96776		${ }_{8006}$	${ }_{0} .30$
20.00 ea.		C.R. TUBES	
		DG7-5	12.00
L15	1.0	DG13-2	18.00
0.17	0.95	DG13-3	12.00
OP12	1.05	MW13-3	15.00
OP19	8.00	\checkmark CR139	8.00
OPL 1	0.95	38P1	4.00
OPL13	$1 \cdot 20$	88D	9.00
OPL14	1. 10	88 J	8.00
5L6GT	0.75	88L	800
5W4	0.50	SPE	AL
5Z4GT	0.70	VAL	
0 C 5	0.80	CV2339	45.60
D6G	1.10	JP917D	43.00
	0.70	K301	7.00
	0.60	K305	19.00
	0.55	K308	14.50
	0.60	K337	14.50
23A/B	7.50	KRN2A	6.00
03	5.50	V246A/	
5	12.00		28.00
7	0.60	3J/92/E	35-00
13	$5 \cdot 50$	725A	22.50

TEXTRONIC 585 OSC!LLOSCOPE DC to 100 MHz . Separate time bases
with delay and 5 X magnifier. Time base A: 0.05 microsecs to $2 \mathrm{sec} / \mathrm{cm}$ in
24 stages also continuousiy variable between steps. Time base B: 2 microsecs to $10 ~ s e c ~ i n ~$
microsec to stages. Delay 10 microsec to 10 sec. Complete with
type 81 adaptor enabling use of all type 81 adaptor enabling use of all
letter series plug ins. Type 80 plug-in (less probe) also available.
MARCONI TF 1060 SIGNAL GENERA TOR. Freq. range $450-1250 \mathrm{MHz}$ in one itectiy calibrated band. Output pisto 0.15 microvolts -445 mV ohms. Modulation: internal signal $1000 \times z$
at 30%. External pulse 1 microsec or longer at 30%. Ext
at 30 v min
SOLOTRON CD SH00
OSCILLOSCOPE SYSTEM
Available with a choice of 'Y'' or 'X'
plug-ins: wide band 1MHz, high gain
diferential, standard time base, slow
spread. delayed sweep. Prices on
application depending on combination
selected.

500/250W MEDIUM WAVE BROAD- CAST TRANSMITTERS. Price and details on application.

M.O. for ET 4336 TX (see description
previous issues) $£ 8 \cdot 50$. P. \& P. $£ 1.50$. HIGH CAPACITY CONDENSERS $40 \mathrm{VDC})$ surge $£ 1 \cdot 10$. SPRAGUE 20,000 MFD 55 VDC E1-30.
MALLORY $20,000 \mathrm{MFD} 30 \mathrm{~V}$ (45 VDC MALLORY 35,000 MFD 15 V (20VDC surge) SANGAMO 20,000 MFD $50 \mathrm{~V} £ 1 \cdot 30$. SCHLUMBERGER B 1200 99db UHF SCHEUMBERGER O 500a SYNC. OSCILPLESSEY PR 524 DUAL DIVERSITY RECEIVER. Solid state, six pre-selected eceiver selection and indication. Complete with FSK ferminal unit and spare coils for turret tuners. All housed in table top cabinet. RACAL RA T17E COMMUNICATIONS -anded ROHDE \& SCHWARTZ MICROWAVE ration, 50 . $£ 120.00$ TF 1102 AMPLITUDE MODULATOR or F.M. output of any signal generator with nput waveforms to the modulator may be sine, square, pulse or picture at any level
up to hy impedance, Mod ievel monitored on panel meter, $£ 40 \cdot 00$

Open 9-12.30, 1.30-5.30 p.m. * except Thursday 9-1 p.m.

TF1043C VTVM A.C. voltage range 300 M to 300 V in 7 ranges, $20 \mathrm{Hz-1500} \mathrm{MHz}$. D.C volitage ranges 300 MV 1000 V in 8 ranges
TF 10418. Spec. as for 1041C. $£ 52 \cdot 50$.

HEWLETT-PACKARD

$185 A 800 \mathrm{MHz}$ SAMPLING OSCILLO SCOPE WITH 188A DUAL TRACE PLUG-IN. Full spec. and P.D.A
175A 50MHz Oscilloscope
5248 COUNTER FREQUENCY MEA. SUREMENT: 10 Hz to 10.1 MH 2 , Accuracy: 1 count. Automatic positioning of decimal point. Period measurement: $0-10 \mathrm{kHz}$, reads in seconds, miliseconds or microsecinds, Decimal point automatically positioned. Dispiay on Complate w 101 100M 525 B 100 plug-ins: $525 A 10$ to 100 MHz , 525 B . Price
to $220 \mathrm{MHz}, 526 \mathrm{~A}$ video amplifier. Premer to $220 \mathrm{MHz}, 526 \mathrm{~A}$ vo on application.
200CD WIDE RANGE OSCILLATOR 5 Hz to 600 kHz f 60.00
616B SHF SIGNAL GENERATOR. Freq. range $1,75 \mathrm{GHz}-4,2 \mathrm{GHz}$, Mod. F.M., C.W. Pulse and Ext. A.M., output $0.1 \mathrm{uV}-200 \mathrm{~mW}$. Price on application. TF 1258A VHF SPECTRUM ANALYSER for analysis and measurement of Radar
Equipment. Frequency range 190 to 230 MH with crystal check points. Sweep wldth 0.5 Io 5 MHz , output pulse delay (a) $85-175 \mathrm{HSec}$
(b) $0.7-14 \mathrm{mSec}$ with $\times 1$ and $\times 2$ multiplier and $\dot{-} 2, \times 1, \times 2$ multiplier. Output $2 \mu \mathrm{~V}$ to 20 mV with $\times 10$ mulitplier. $£ 200$

TF TM70 R-C OSCILLATOR
SQUARE AND SINE WAVE. Frea
SInewave 10Hz-10MHz

 $10 \mathrm{~Hz}-100 \mathrm{kHz}$. Direct output: slnewave
$0-31.6 \mathrm{~V}$ rms., $10 \mathrm{~Hz}-1 \mathrm{MHz}$, squarewave
$0-73.2 \mathrm{mp}$. $0-73.2 \mathrm{pp} \quad 10 \mathrm{~Hz}-100 \mathrm{kHz}$. Attenuator
range: -50 dB to +10 dB . Impedance $75,100,600 \Omega$. Price upon application TYPE
supply,
0.30 V steps of $10,1,0.1 \mathrm{~V}$ up to 3 THYRISTOR TEST SET, complete un tested $£ 50$.

[^5]EESUIPMENT PAID FOR TEST AND COMMUNICATION

TF. 801 D/IIS SIGNAL GENERATOR. $0.1 \mathrm{uV}-1 \mathrm{~V}$ source e.m.t. Dial calibrated in volts, decibels and power relative to thermal
noise. Piston type attenuator. 50Ω output noise. Piston type attenuator. 50Ω output
impedance. Internal modulation at
1 kHz at up to 90% depth, also external sine and pulse modulation. Bullt-in 5 MHz crystal

TEKTRONIX

OSCILLOSCOPES
571A-G00MHz, separate P.S.U. £150 $561 \mathrm{~A}-10 \mathrm{MHz}$, solid state, complete with 3A1 dual trace vert. and 3B3 delay time base plug-ins P.O.A.
$541 \mathrm{~A}-33 \mathrm{MHz}$, Choice of plug-ins. P.O.A LA265A(545A)-33MHz, separate time bases with delay. P.O.A.
$545-15 \mathrm{M} \mathbf{~ H z}$. Soparate time bases with delay. Price on application.
PLUG-IN UNITS
CA-24 MHz dual trace $50 \mathrm{MV}-20 \mathrm{~V}$. $\mathrm{G}-20 \mathrm{MHz}$ differential $50 \mathrm{MV}-20 \mathrm{~V}$ $\mathrm{L}-30 \mathrm{MHz}$ fast rise time $5 \mathrm{MV}-20 \mathrm{~V}$ $\mathrm{D}-\mathrm{High}$ gain differential 1 MV -50V. N 600 MHz sampling $10 \mathrm{MV}-\mathrm{cm}$. $53 / 54 \mathrm{C}$. Dual trace $33 \mathrm{MHz}, 60 \mathrm{MHz}$ 0.05-20v.

3 PHASE AUTO TRANSFORMER, wye
input 400 v , wye output $241.5 / 230 / 218.5 \mathrm{w}$
50 c 18 kVA . Made by Westinghouse of USA Brand new in origlnal cases $£ 60.00$ including
UK transport.

PLEASE ADD 10\% VAT

294 TF AUDIO TESTER. Combined A.F. Generator $(0-25 \mathrm{kHz})$, Output meter (up to
2 W . at 600,15 and 3Ω, , and valve voltmeter ($0-800 \mathrm{~V}$), with stepped and variable attenua-
tors. 80 . tors. £B0

TF I 400 S DOUBLE PULSE GENERATOR WITH TM E600/S SECONDARY PULSE UNIT, For testing radar, nucleonics, 'scopes, counters, filters etc. SPEC. TF $1400 \mathbf{S}$. Rep. frea. 10 Hz to 100 kHz , pulse width 0.1 to 100 u sec., delay -1.5 to +3000 sec . rise time 30 Nsec . SPEC. TM 6600/S. As for TF1400S except pulse width 0.5 to 25μ sec., delay 0 to $+300 \mu \mathrm{sec}$. E230.
TF 528B OSCILLATOR AND DETECTOR UNIT $£ 50-00$.
TF 1226B, TFI225A, TF 577A. WHITE MOISE TEST SET $\mathbf{~} 185 \cdot 00$. Full spec. on requesi.

RACAL UNIVERSAL COUNTER/TIMER
SA550 (CTA88) SA550 (CT488) line read-o
Faciliti
inctude: Fnctujo: d
inct frequen
measureme measurem pulse, period
ratio,
time totalising
measur
ments. Input sensitivity variable from 300 MV etc. Full spec. on request. £145. self-check

PLEASE NOTE

Unless offered as "as seen ALL EQUIPMENT
hauled mechanically and electrically our own laboratories

FOR EXPORT ONLY TRANSMITTERS: BC 610 Hallicratters. RCA ET 4336 also modified version of increased output to 700 w . COLLINS TYPE 231D $4 / 5 \mathrm{kw}$., 10 channet, autotone and manual tuning. All above complete installation and spare parts. TRARSGEIVERS $19,19 \mathrm{HP}$. $38,62$. C-13 TRANSMITTERS RACAL COMMUNICATIONS EQUIPMENT We are able to offer a comprehensive selection from the range of this modern high class equipment including, receivers, L.F. Converters, SSB adaptors, panoramic adaptors, diversity switches, transmitter driver units, linear amplifiers can be built to customers' requirements. Please send us your enquiries.

ARA SPARES. We hold the largest stock
R.F. METER 0-8 amp. 24" (U.S.A.) \&y-so

29/41FT. AERIALS each consisting of ten 3 ft . Jin. dia. tubular screw-in sections.
1 ft . (6 -section) whlp aerial with adaptor to fit the 7 in . rod, insuiated base, stay plate and stay assemblies, pe9s, reamer, hammer, etc. Absolutely brand new and complete
ready to erect, In canvas bag. $£ 7.50$ new. Carriage $£ 1 \cdot 50$.
TELEPHONE TYPE "J" (Troplcalised) SWITCHBOARD
SO line AUTOMATIC PRIVATE
TELEPHONE SWITCHBOARD
Price of each of the above on applicatlon.

10 Goldhawk Rd., London, W. 12 Tel. 01-7430899

Special rate visits to Munich sponsored by Electronics Weekly and Wireless World in conjunction with Page \& Moy Ltd.

RETURN FLIGHT BY SCHEDULED AIRLINES VIA HEATHROW

HOTEL ACCOMMODATION
COACH TRANSFERS BETWEEN AIRPORT/HOTEL AND EXHIBITION
EXHIBITION CATALOGUE AND ENTRANCE TICKETS
RECEPTION PARTY IN MUNICH

ELECTRONICA 74

Electronica 74 is held every two years and is one of the top three European electronics exhibitions.
Products on show this year range from components, semi-conductors to production equipment, instruments and materials. There will be over 1,700 exhibitors from 28 countries, including about 70 from the U.K.

SHORT STAY VISITS £87

You have a choice of three dates giving you 2 nights in Munich :
(a) Thursday 21 st November to Saturday 23rd
(b) Saturday 23rd November to Monday 25th
(c) Monday 25th November to Wednesday 27th

For all 3 trips you have the choice of the following flights
Day 1 - Depart Heathrow 09.35 arrive Munich 11.15 Day 3 - Depart Munich 12.00 arrive Heathrow 13.50 or

Day 1 - Depart Heathrow 14.45 arrive Munich 16.25 Day 3 - Depart Munich $\mathbf{1 7 . 1 5}$ arrive Heathrow 19.05
Return flight is by scheduled airline of British Airways or Lufthansa between London and Munich. Accommodation in twin bedded rooms on a bed and breakfast basis at the Esso Motor Hotel. Return coach transfers between hotel and airport. Three days coach transfers between hotel and exhibition. Exhibition catalogue and entrance tickets. There will be a reception party to welcome you in Munich A limited number of single rooms are available at a supplement of $£ 6.00$ per person.

EXTENDED STAY VISIT $£ 135.00$

If you wish to visit Munich for the duration of the Exhibition we have organised a visit from Tuesday 19th November to Thursday 28th November, allowing 10 days $/ 9$ nights in Munich. The return flight is via Heathrow by scheduled airlines. Other facilities similar to the short ștay visit. Single room supplement of $£ 27.00$ per person.

Further details may be obtained by using the form below or by ringing Louise Griffiths:
Tel. No. 0533-51211.

6th international Trade Fair for Components and Production Facilities 2.1st-27th November Munich 1974.

To : EWDS Electronica, Page and Moy Ltd., 136-138 London Road, Leicester LE21EB
Please send me complete details of the short stay visits the extended stay visit
\square
(please tick which applicable)
Name (please print)
Address
\qquad

Z \& I AERO SERVICES LTD.

THE MANAGEMENT ANNOUNCES WITH REGRET THAT DUE TO RISING COSTS AND STAFF SHORTAGES OUR MAIL ORDER SERVICE WILL HAVE TO BE CURTAILED. NO MAIL ORDERS WILL BE ACCEPTED BELOW $£ 5.00$ PLUS VAT, I.E. £5.50 VAT PAID. OUR EQUIPMENT WILL STILL BE AVAILABLE TO PERSONAL CALLERS ONLY AT OUR RETAIL BRANCH, 85 TOTTENHAM COURT ROAD AND TRADE COUNTER, 44A WESTBOURNE GROVE, W2, WHERE THE ABOVE LIMIT WILL NOT APPLY, MINIMUM ORDER CHARGE FOR ACCOUNT CUSTOMERS IS $£ 10.00$.

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: 5808403

WE WANT TO BUY:
special purpose valves. please offer us YOUR SURPLUS STOCK. MUST BE UNUSED.
C.A.A. Approved for inspection and C.A.A. Approved for inspection and
release of electronic valves, tubes,
klystrons, etc.

A REASONABLE INCOME, GOOD SICKNESS AND PENSION SCHEMES - AND THE WELFARE STATE, OF COURSE.

But are they enough?

There are sometimes circumstances when assistance just can't be provided by any of themespecially if it's needed in a hurry-and particularly if it's needed for your wife-or your child.

The EEIBA can give immediate help or comfort to people (or their dependants) who are, or have been, in the electrical and electronics industries and whose circumstances are changed by illness, accident, or old age. Help in the form of an automatic invalid chair, a Patient Operated Selector Mechanism, a sewing machine for a disabled person, an artificial kidney, a cooker for a pensioner, a flat for an elderly person.

A donation of as little as f 1 a year from you goes a long way. Can you be sure you won't be the next to need help from the EEIBA ?

If it were your colleague in need wouldn't you like to help?

The Electrical and Electronics Industries Benevolent Association
8 Station Parade
Balham High Road, London SW12 9BH Telephone: 01.6730131-2

Principles and Culculations for Radio Mechanics Part 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974152 pp., illustrated 0408001194 £1.50

Rapid Servicing of Transistor Equipment 2nd Edition

Gordon J. King
This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits.
1973 180pp., illustrated 040800116 X £1.90

Rohotics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from
The Butterworth Group
Borough Green, Sevenoaks,
Kent TN15 8PH. Tel. Borough Green 2247.

SERVICE TRADING CO

VARIABLE VDLTAGE TRANSFORMERS Carriage extr
 NPUT 230 - A. 50/60 OUTPUT VARIABLE $0 / 260$ v. A.C. BRAND NEW. 0.5 KVA (Max. 2 Amp) KVA (Max. 5 Amp) KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) (Max 37 .5 Amp) OPEN TYPE (Panel Mounting) All pri
f 9.00

pe No. Sec. Taps	Price	Post
30, 32, 34, 36 v . at 5 amps	E0.90	$45 p$
$30,40,50 \mathrm{v}$. at 5 amps .	f9. 15	60
10, 17, 18 v . at 10 amps	27. 20	50p
$6,12 \mathrm{v}$. at 20 amps .	1860	60 p
17, 18, 20 v . at 20 amps .	¢9.15	60 p
8, 12, 20 v . at 20 amps .		${ }^{600}$
12.20 .24 v at 10 amps	${ }_{68.75}$	50 p
4, 6, 24, 32 v . at 12 amps .	c8.60	60
6 and 12 v . at 10 amps .	24.30	40p

VOLTAGE CHANGING

TRANSFORMER

M.f. to highest W.D. spec. Auto wound, and tapped $6-130$,
$160-200-250$ at least $2 K V A$. Can also be used as $230-20 \mathrm{~V}$ 115 V . out for U.S.A. equipment, or reverse to obtain 240 V . from 115V. The Ideal translormer for making up solid state constant voltage unit, by use of laps the following voltages may be
obtanned: $30-40-50-70-90$ Voits at 10 amps. Welght 40 ibs.,

300 VA ISOLATING TRANSFORMER
volts for 115 or 230 volts. Screened. Primary two separate 0-115
vecondary iwo 115 volts at 150 VA each for 115 or 230 volts output. Can be used in series or parallel

VENNER TIME SWITCH TYPE MSQP
$200 / 250$ Voit 2 -ON $/ 2$-OFF every 24 hours at any
manually pre-set time. 20 amp contacts. Fitted die-cast case. Tested and in good condition
e4.75 Post 25 .
A.C. MAINS TIMER UNIT

single-pole switch. which can be preset for

 UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 241 . C . operation 66.90. Post 30p.
coil, 24 v . D.C 67.90 . Post 30 ohm 8 BANK 25 WAY FULI WIPER 8 日ANK 25 WAY FULL WIPER
24 V D.C. operation E 9.50 . Post

MINIATURE UNISELECTOR SWITCH

PROGRAMME TIMERS

2301240 Volt A.C. 15 RPM Motors
Each cam operates a clo micr

 6 cam model 3 RPM 24.00 post 35 p.

VERY SPECIAL OFFER Miniature Roller. Micro Switch. 5 amp.
co contact. Mfg. BONNELA. NEW. Price
10 tor 10 for $£ 1.50$ Post 10 p . (Min order 10.)
As above without roller. 20 for $£ 2.00$. Post
'HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBL Eate
rated
at 10

24 VOLT DC SOLENOIDS

UNIT containing $\frac{1}{}$ heavy duty solenoid approx. 25 lb . pull
at 1 in . travel. 2 solenoids of approx. 1 lb . pull at it in. travel 6 solenoids of approx. 4 oz. pull at in in. travel. Plus i 24 V D.C.
1 heary duty 1 make relay. Price: E2. 50 . Post 60 p. ABSOLUTE

${ }^{*}$ FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERIASH CRCUITS, PROVIIION FOR EX.
TERNAL TRIGGERING. R30-250v. A.C. OPERATION. TERNAL TRIGGERING. 230-250V. A.C. O
EXPERIMENTERS "ECONOMY". KIT Adjustable 1 to 30 Flash per sec. All electronic com-
ponents Including Xenon T Tube + Instructions $\mathbf{\varepsilon 6 . 3 0 ,}$ Post 30p.
industrial kit
Ideally suitable for schools, laboratorles ent. Roller
lin printed circuit. Adjustable $11-80$ f.p.s., approx.
output of Hy-Lyght. Price $\mathbf{£ 1 4 0 0}$. Post 50p.
hy-lite Strobe mk iv
Desloned for use in large rooms, halis and utillzes a Silica tube, printed clicuit. Speed adjustable 1-20 f.p.p. strobes. Price f14.00. Post 50p.
'SUPER' HY-LIGHT KIT
A Variable speed from 1-13 fash per sec.
Reactor control circuit pro
attractive, robust, fully ventilated metal Case for the Suder Hy-Lyght kit including FOR HY-LYGHT STROBE incl. reflector, E5.75. Post 25p

COLOUR WHEEL PROJECTOR Complete with oil filled colour wheel. 100 watt lamp.
$200 / 240 \mathrm{~V}$ AC. features extremely efficient optical system. $\mathbf{\text { fl8.50. Post }} 50$ p
I R.P.M. MOTOR and
COLOUR WHEEL
 $200 / 240$ volt A.C. 1 .p.p.m. motor. and wheel $£ 5.60$.
 BIG BLACK LIGHT

 E16.00. Post E1. Spare bulb f7.00. Post 40p.
BLACK LIGHT FLUORESCENT UV BLACK LIGHT FLLUORESCENT U.V. TUBES
ift. 40
watt. Price
E5 50. Post

 *t ** **********************

High Visibility LED'S Panel Mounting

25 inch mounting. 16 inch lens. Typical parameters 2 yoit
20 m.a all types. Supplied complete with snap in mountings and data. Red 4 tor $\varepsilon 1$ (00, Greem 3 tor $£ 1.00$, Yellow 3 for $£ 1.00$,

LED READOUTS
Available in red or green. $\mathbf{£ 1 . 6 5}$. post 10 p. 4 for
GENERAL ELECTRIC POWERGLAS TRIACS
 Diac 18 p .

INSULATION TESTERS (NEW) Test to L.E.E. Spec. Rugged metal con-
struction, suitable for bench or field struction, suitable for ben,
w Tk. constant speed culch.
W.

> 4 All prices 8\% VAT. (8 p in the f) To all orders add 8% VAT to total value of goods including carriage/ packaging.

3NSULATED TERMINALS Available im black. red white.

RELAYS

 SIEMENS PLESSEY MINIATURE RELAYS

DRY REED RELAYS
M.f.g. by ERG 12 volt D.C. encapsuiated.
Singie clo 650 . Post Paid. Two c/o 85 . Post Paid.

STC 280 oirm coil $6 / 12$ V D.C. 3 make contacls metal shrouded 600. Post Paid. Large range of other types available BLOWER UNIT 200-240 Volt A.C. BLOWER UNIT Precision German bulti. Dynamically
balanced,
guiet, continuously fated, balanced, quiet, continuously rated,
reversible motor. Consumption 60 mA , Size 120 mm . 'Lla. $\times 60 \mathrm{~mm}$. deed.

PRECISION CENTRIFUGAL BLOWER Mfg. Aifilow Developments Ltd. Heavy Duty. continuously Pated. smooth runcing, $230 / 240 \mathrm{v}$ A.C. motor. Size: $16 \times 14 \mathrm{~cm}$. case only). OAL 15 cr . Apertura $6 \times 6 \mathrm{~cm}$ f6.50. Post 50 p .
 230V FAN ASSEMBLY
 removable wluminium blades. Price $\mathbf{£ 1 . 0 0}$

240V A.C. SOLENOID OPERATED FLUID VALVE
Rated 1 p.s.i. will handle up to 7 p.s.i. Forged
brass body, stainless steei core and spring. it in b,sp. Inlet//autet. Precislon made. Brittsh mit
PRiCE: f1/5. Post 25 . Speclal quantlty. NEW in orlginal packing.

FOOT SWITCH
Suitable for Motors, Drills, etc. etc.
5 amp. 250 Yolt. Price 75 p. Post 15 p .

230/240V SYNCHRONOUS GEARED MOTOR
Manufactured by either Sangamo.
Haydon or Smith. Built-in gearbox.
2RPH, SPH 6 RPH 12 RPH .
Price 90 p. Post 10 p.

PARVALUX TYPE SD2. 200/250 VOL A.C. D.C. HIGH SPEED MOTOR Speed 9.000 r.p.m. approx. or 3.200 r.p.m.
with buit-iry governor, or variable speed
wide range if used in conjunction w Dimmer Stwit

600 WATT DIMMER SWITCH

Easily fitted. Fully guaranteed by makers. Will
control up to 600 watts of all lighting except fiuorcontrol up to 600 watts of all lighting except ffuor-
escent at mains voltage. Complete with simple instructions. $\mathbf{E 2} 75$. Post 25 p

METERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND available as D.C. Amps 1, 5, to. 15, 20 or A.
$1,5,10,15,20$ Both types £2.00. Post $15 p$.

All mail orders, also callers at:
57 BRIDGMAN ROAD, CHISWICK,
ONDON. W4 5BB. Phone: 01.9951550

If you're looking for trouble you needn'tlook any further.

It's not only technicians who can see the
 finer points of Eagle multi-meters.

Every handyman notices them too.
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue.
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years.
With parts to service them in no time.
So you can confidently find fault in anything.

Eagle

The name on Britain's widest range of electronic equipment.

WHO SUPPLIES

U.K. Kompass lists 33,000 products and services from 28,000 of the leading companies in the United Kingdom.
A new source of material can solve your problems.

$$
-£ 18.75
$$

Price
Price
C.B.I. Members $=£ 9.75$

- $£ 13.7$
3 Year Orders - $£ 13.75$ per edition 3 Year Orders
There is no charge for post and packing

Order your copy now.

KOMPASS PUBLISHERS LTD

R.A.C. House, Lansdowne Road, Croydon CR9 2HE.

Tel: 01-686 2262

FABULOUS

ADVANCE SQUARE

WAVE GENERATOR
SG21
Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Rise time less than inS Ex-Demonstation. New condition in manufacdurer's original carton.

ADVANCE TV. DOT AND CROSS HATCH

9xchivi 100 mads coning

Termination continua
Accuracy $\pm 5 \%$.
Accuracy 1 output on open circuit 2 V .
Maximum
RISE TME lies than inS up 500 mV RISE TIME less that ins up to 500 mV .
TRIGGER OUTPUT
TIN 50 ohm external ter 0.2. $0.4,1.0,2.2 \mathrm{~V}$ into 50 ohm external tet--
mination maximum output on open circuit 4 V ,
 Undulated signal at a rial
ADD $8 \% \quad$ output in form of $\begin{aligned} & \text { give } \\ & \text { VHf and } \\ & \text { UHF }\end{aligned}$ VHF and of receiver.
sockets sockets Ranges
Two Rumental (MOD)
Band III-On fund Harmonics
Band IN $\&$ M Band $I I$-on \& on Harmonics (V Lines
Band V Lines of 625405 Lines
TO ALL PRICES

Hamputars filatessuriss

MEMORY DRUMS--
 SAVE OVER 50\% ON
 ORIGINAL COST

Sperry Floating Head J101 Memory System

* 256 Data Tracks
* 1000 bits/inch
* 8 Megabits
* Speed 3000 rpm
* Access time 10 millisec
* Data transfer rate 1.65 megabits $/ \mathrm{sec}$.
* Recording bit density 1050 bi
* Complete with electronics for interfacing to DEC PDP8
Vermont 1004 Memory Drum
* 128 Data Tracks
* 650 bits/inch
* 4.4 Megabits
* Speed 3000 rpm

RING NOW FOR LATEST ON BRAND NEW DRUMS OR EX-DEMONSTRATION MODELS

WIDE RANGE OF SPARES fOR THE FOLLOWING COMPUTERS ICI 1500, ICL 1900, SYSTEM 4. 4100 803. AMPEX, etc

COSSOR VISUAL DISPLAY DID 400. sisting of Keyboard \& Display 402 stand alone
capability for alphanumeric data entry. Available rom $\mathbf{E 5 0 0}$. Please phone for details.

Little used DEC PDP8 systems available for in mediate delivery at special prices as a result of cancelled project

PDP8E 12 K Processor complete with
Fact 4001 High Speed Reader (500 cms)
Data Dynamics BRPE 114 Punch (110 cps)
ASR33 Teletype
Sperry dinar 8 megabit Memory Drum
Rack-mounted in double cabinet
PDPBE 4 K Processor complete with
Facit 4001 High Speed Reader (500 cps) Data Dynamics BRPE 114 Punch (110 cps) Complete in cabinet

A PHONE CALL CAN SAVE YOU A BOMB! RING NOW FOR PRICE!

SUBSTANTIAL SAVINGS FROM LIST PRICE OF THIS DEC MINI COMPUTER
PDP8I 8K Processor
Fecit High Speed Reade ASR33 Teletype
£1,950

ALPHANUMERIC dixie

TUBES B7971

The Alphanumeric NIXIE tube has the alphabet, numerals 0 the letters of the characters in a single tube 9 and special

From the standpoint of both readevil electrical characteristics. the Alphas ty and tube provides many unique benefit fits including NIE * All $D C$ operation * Uniform, continuous line - Memory with simetg

* Memory with simple
solid state drive circuits
hugh ambient fight * Long life with no loss of figments brightness
- Character heine iss of brightness

Price only 990
JUST ARRIVED NIXIE TUBES DETAILS ONLY. PHONE FOR DETAILS LARGE QUANTITIES

HERE! NOW! FOR IMMEDIATE DELIVERY!

AVO's 7 \& No. 1 (Similar to No.
${ }^{\text {Fully }}$ tested and checked tor to NoM) AVO MODE Pres calibration
7X, £26.00
8X, £33.00
Test Set No
similar to 1 panclimatic Avo model 9 . specifications of
 Everready case above $£ 3.50$.
used while in its camables th Please note: X case $£ 5$.
splash-proof an stands for fully trope

TELETYPE PUNCH
BRPE High-speed punch. Self-contained consists of punch
 For use in many data communication
systems. Operating speeds up to 100
characters per second 11100 words per minute). Available for punching 5.6.7.
or 8 . level codes. into $\frac{11_{1}^{\prime \prime}}{}$. ${ }^{\prime \prime}$ " tape. Syn-

WELMEC 7\&8HOLE ELECTRO-MECHANIMAL PUNCHES \& READER

Models $\mathbf{S 1 1 0}$ and R82C

 tom stock. $\mathbf{E} 45$IT KEYBOARDS
IT KEYBOARDS
In original packing -Alpha. numeric. Prices from $£ 15.00$.
Magnetic Tape Transporters AMPEX TM4, TM2. TM 7. FR 300.
TAPE READERS
TAPE READERS
hoto-electric Readers for all colour paper 1 CL Type $2640(250 \mathrm{cps})$. Elliott T2/94 (250 cps). Elliott D4/42 (500-1.000 cps). Available with full

[^6]

THE WORLD FAMOUS 545 Series DC to 30 MHz range. Can be used to operate with Tektronix letter series plug-in unit for virtually
${ }_{\text {vilasic }} £ 175$ imain Fra
Textronix 545 completet with
$f 235$
Also available: ALSO Also available:
TEKTRONIX 545A with CA 545B plug-inf255 TEKTRONIX 535 with CA plug-in $£ 175$

INCREDIBLE SOLARTRON OFFERS!

Digita Voltmeters Type LM $1420 £ 195$
Type 1420.2 £235
Type ${ }^{420.2 B C}$ (Remote Ranging) $£ 325$ Type - 420.2BM (DC + Wide Band Mean ACSEnsing DVM) £395
Wide Range of spares for Solartron Data Loggars Compact 1 and Series 2 .

Power Supplies

Portable Power Supply

+7 Volts $-0-7$ Volts at 1.5 Amps . Solid State Stabilised, four outputs High limit + or -10 Volt at 1 Amp . Low limit + or -5.6 Volt at 2 Amp . incredible Savings. Cost over $£ 25$ to produce.
PRICE: £12.50 and
send for further int ormation. $\mathbf{f 4 5}$

Potanionatars

Carriage and packing charge extra o
guaramteed 12 months uniese otherwise stated

7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK

PRICE f25 $90^{\%} / \mathrm{sec}$. during rewind. The recording density of 333 characters per inch is maintained. thus giving the nominal read and write rate of 10.000 characters per second. Maximum diameter of 8 "tape reet.
Accommodates 1200 t. of Magnetic Tape. which gives a minimum of 1.150 f . available for recording.

MINITRON

K.G.M. Type 3015F 7 Segment display showing figures 0-9 plus decimal point. Character pf 9 mm height. In 16 DIL case. NEW LOW PRICE E1.25
Decoder Driver E1.00.

RCA 301 TAPE DECK

 MODEL 381Technical Data.
Power supplies: Power supplies: Input 208-230V AC 60 c / s. Single phase Magnetic recording head. read/write and erase. Seven channels each

TEN TURN 3600° ROTATION

\section*{	SPECIAL OFFER
The Sinclair Scientific.	
logs, trig and arithmetic.	\quad NEW "Strobette"} Logs, trig and arithmetic. All at the touch of a button. At last there's a pocket calculator which gives you log and trig functions instantly.

Fuil 12 -function Fuil 12 -function machine
With the functions

 With the functionavailable on the scien
tific lific keyboard, you ca
handle directly $\log _{10}$
antilog antilog directly $\log _{10}$.
arcsin, cos and arcsin, cos and arccos, \tan and arctan, auto
matic squaring, auto matic squaring, auto
matic doubling.
fincluding square and (including square and
other roots), plus, other roots, plus, of
course, addition, subraction, multiplication
division and any calcu lations based on them
7 -digit scien 7 -digit scientific decade range. Reverse Polish 200 -
and 25 -hour battery

 ONLYE49.50

WANDEL \& GOLTERMANN

Distortion Measuring Sel VZM- 10 Mersuring Set VZM- 2566 KHz t.v. 625 lines

 Distontion Measuring Sel VZM-83 52/304/556KHz generator and receiver used mainly to measure transmission distor-tion on FM radio link systems. $£ \mathbf{2 4 5}$. Voltage \& Lexel Meter $10 \mathrm{KHz}-14 \mathrm{MHz}$ TFPM 43 measuring range 8v-

Solartron C.T. 484 oscilloscope. DC- -40 MHz .
3\% accuracy. Dual Trace Displays.
TIME BASE. 100 nanosecs $/ \mathrm{cm}-5$
$\mathrm{secs} / \mathrm{cm}$ or continuously variable up $\mathrm{secs} / \mathrm{cm}$ or continuously variable up to $12 \mathrm{secs} / \mathrm{cm}$. Sw
Accuracy: $\pm 3 \%$.
X AMPLIFIER. Bandwidth: D.C.$150 \mathrm{KC} / \mathrm{s}$. Sensitivity: $200 \mathrm{mV} / \mathrm{cm}$ M.ohm 40 pF . INTERNAL
CUFACY: $\pm \mathbf{3 \%}$.
DUACE Bandwidth: D.C. - $24 \mathrm{Mc} / \mathrm{s}$. Rise
 Time: 14 nanosecs. Sensitivity: 50
£149.50 $\mathrm{mV} / \mathrm{cm}$. Input Impedance: 1 M .
WIDE BAND Y AMPLIFIER PLUG ALSO AVAILABLE. Bandwidth: D.C. $-40 \mathrm{Mc} / \mathrm{s}$. Rise Time: 8 nanosecs. Sensitivity: 50 $\mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$. Input Impedance: 1 m .0 hm 22 pF . Measuring

Sitirrass

VERY LATESTTEKTRONIX 100 MHz Dual Trace Oscilloscope 465
Listed at over $£ 1000$. Our Price $£ 775$. TEKTRONIX 453A Listed at over $£ 1300$ Special Offer this month $£ 795$

ELECTRONIC BROKERS LIMITED

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS a CONNECTORS Servo and Electronic Sales Ltd
Post Ordors and Technical enquiries to: 24, HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) V.A.T. Reg. No. 201-1296-23

Also at 45a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066

PSU35. A trabilised 0-20v. D.C. 1A P.S.U. In kit form. Deviation $<1 \%$ for mains variation of $\pm 10 \% \%<2-5 \%$ for over 0.100% load. Vottage range $0-20 \mathrm{v}$, current $0-100 \mathrm{~mA}$ and $0-1 \mathrm{~A}$. Input
10 or 220 v . A.C. 50 Hz . Normally $\mathrm{E} 35-50$. Our Price $£ 26-99$ P, \& P. \& VAT inc.).
PSU82, A stabilised 4-35v. D.C. 2.5A P.S.U. in kit form. Stability as above. Ripple $<3 \mathrm{mV}$. Overload-short cet. pro-
tected. 1110 or 240 v . A.C. 50 Hz . Normally $£ 58.00$. Our Price \&43.50 (P. \& P. \& VAT Inc.).
R \& CKlt-form Substitution Boxes. RSB15. Enables switehed
selection of $361.5 \mathrm{~W} .5 \%$ resistors from 10 W to 10 Mw in selection of 361.5 W . 5% resistors from 10 W . to 10 Mw in
approx. stepped ratios of $1.5: 1$. Normally $£ 10.15$. Our Price £7.80 (P \& \& P. \& VAT Inc .)

A.M. Signal Generator Kit. SG55. $400-950 \mathrm{KHz}$ and A.M. Signal Generator Kit. SG55. $400-950$ KHz and
$950-160$ KHy modulated or unmodulated output. RF o'put
100 mC . AF o'put 2 v . P/P. Fitted attenuators. Normally $£ 13.55$, Our Price ह10-45 (P. \& P. \& VAT Inc.)
MF Wattoneter Kit. WM45. Switched N.I. Ioads 4, 8 and 16Ω.
For Use up to 250 KHz . Ranges 1.5 and 15W. F.S.D.' Meas. Limit For use up to 250 KHz . Ranges 1.5 and 15 W . F.S.D.' Meas. Limit
5 mW . Normaily $£ 15.00$. Our Price $£ 11.50$ (P. P. \& VAT Inc.). Special discount to educational establishments. Your
choice of any 20 kits . Sublect to further 10% discount.

Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors (KEMET, ITT, PLESSEY, ETC.) Synchros and Servomotors ALL AVAILABLE EX STOCK IN MANUFACTURING QUANTITIES

Variac-Duratrak V8H. 240 v . to $0-270 \mathrm{v}, 50 \mathrm{~Hz}$. 3A. With knob \&
dial. Shrouded tnnes, E10.25 (inc. P. \& P, \&AT). Polarad Spectrum Analyser. SA84W. 10 MHz to 40.88 GHz . Ether. Transistorised A.C. Mains Stabiliser. $\quad 190-280 \mathrm{v}$.
50 Hz in. Oufput $220-240 \mathrm{v}$. (adjustable). 1000 VA. $17^{\prime \prime} \times 7^{\circ} \times 11^{\circ}$. 50 Hz in. Output $220-240 \mathrm{~V}$. (adjustable). 10
$\mathrm{E} 42 \cdot 50$ (inc. carr. U.K. Mainland \& VAT).
Schomandi Frequency Moter. FDI $30-900 \mathrm{MHz}+$ L.F. adaptor. zas.0 (inc. carr. a VAT).
 Push-button gearbox $1,5,25,125 \mathrm{~mm} / \mathrm{min}$. iwin intni. amps
Giving 10 mV -10V range, variable sens. elect. zeroing, twin event markers.
carr. \& VAT).
N.E.P. Mod. 10506 Channel U/V Recorder. Fitted 5 galvos.

ALL PRICES INCLUDE 10% V.A.T. DRY REED INSERTS

Overall length 1.85 in . (Body length 1.1 in .) Diameter 0.14 in . to
 70 p per doz.; $\mathrm{EA}_{\mathrm{E}}^{\mathrm{E} \cdot 15}$ per
All carriage paid U.K.
Heavy duty type (body length 2 in .) diameter 0.22 In. to switch up to 1 A. at up to 250 V . A.C. Gold clad contacte, $£ 1.40$ per doz.;
E6 Bs per $100 ; £ 52.25$ per 1,000 ; Changeover type $£ 2.75$ per doz. All carriage paid U.K
Operating magnets 65 p per doz.; £4-50 per 100; $£: 32.50$ per 1000 .
All carrlage paid U.K. Al carrlage pald U.K
Operating Coils for $12 y$ supply to accept up to four standard
reeds $£ 2.20$ per doz.; $£ 12.30$ per 100. All carrlage paid U.K.

Cambridge Audio need more of the best people to build more of the best audio products

In the past eighteen months we've introduced many new products. Firstly, an advanced stereo tuner employing new techniques and the latest integrated circuits. Next was a mark two version of the well reviewed and widely acclaimed P50 amplifier. For higher power requirements we built the P110 amplifier currently regarded by many as the finest British amplifier available at any price. On the export side the T75x, P70x and P140x have proved remarkably successful and have already established the Cambridge. name for outstanding performance,

Cambridge Audio Limited
The River Mill
St. Ives
Huntingdon PE17 4EP
Telephone St. Ives 62901
quality and good looks in many new overseas markets. This April we showed the all-new Cambridge Audio P60 Stereo Amplifier. This unit incorporates many features not found on any amplifier built anywhere in the world. Audio enthusiasts and music lovers alike appreciated all the new features that we had engineered and we are certain this amplifier will soon become our most popular product, possibly even a world classic. And there's a lot more to come from Cambridge Audio - new products, new ideas. But to speed our programme we need more really good people - you perhaps.

for people who listen to music

Vacancies exist for technically capable personnel in many areas of the company. Applicants should be audio enthusiasts above all else and as highly qualified as possible. Work may be based in London or St. Ives. Apply to the Chief Engineer, Cambridge Audio at the address below giving full personal particulars.

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 4.68$ per single col. centimetre (min. 3 cm). LINE advertisements (run-on): 66p per line (approx. 7 words), minimum two lines. BOX NUMBERS: 30p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.) PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisements accepted up to 12 noon Tuesday, August 20th for the September issue subject to space being available.

Opportunities in Electronics

Train to be an Electronics Technician

If you are 16-20 years old and would like a career in Electronics, our special 3 year training scheme provides the opportunity you are looking for. We are offering you the opportunity to become an Electronics Technician in a fast expanding industry with an ever increasing demand for those with the ability to
understand the practical workings of complex electronic equipment Our scheme includes well paid employment whilst training and day release to attend college to study for the City and Guilds Electronics Technician Certificate. In addition to a practical interest in electronics you will require 'O' levels or CSE Grades in

Maths, Physics and English. Telephone, or write to the Training Officer, G \& E Bradley Ltd., Electral House, Neasden Lane, N.W. 10. 01-450 7811.

A LUCAS COMPANY 3970

Senior audio visual technician

Kodak Limited has a vacancy for a Senior Audio Visual Technician in the presentation section of the AV Production Unit which is based at Ruislip.

He will be primarily responsible for the assessment and organisation of equipment servicing, and participate in testing, servicing and developing special items. He will be involved in the design of $A N$ presentation areas and the judgment of presentation standards both technically and aesthetically.

Aged between 25 and 40, he must have a sound practical knowledge of relevant electronics and mechanics and have experience of workshop practice and organisation. He must have the ability to work on his own initiative with imagination. A background knowledge of photography and sound reproduction would be an advantage. A current driving licence is essential as the job entails occasional travel within the U.K., sometimes at short notice. In return we offer a good starting salary and excellent employee benefits.

Please write giving details of experience and salary to:
Personnel Manager, Kodak Limited, Victoria Road, Ruislip, Middiesex, HA4 00.J.

ELECTRONIC VACANCIES

Engineers Draughtsmen Designers Service and Test Engineers
Technicians Technical Authors
Sales Engineers

Permanent or Contract

Phone MICHAEL NORTH
01-388 0918
MALLA TECHNICAL STAFF LIMITED
334 Euston Rd., London NW1 $\underset{195}{\text { 19BG }}$

RADIO

OPERATORS JOIN THE POST OFFICE FROM AGE 19

Communications Instructors and Supervisors

Saudi Arabia (Jeddah)

Saudi Arabian Airlines, a member of IATA, is a fast expanding corporation and now requires the following men:

INSTRUCTORS Telephone

to train Saudi students in theoretical and practical maintenance of telephone exchanges, equipment and circuitry. Other duties will include on-the-job training, planning courses, instructing pupils from initial to final stages, assisting the Communications Maintenance Department in their overall activities, particularly in the area of circuit and system planning and budgeting for future training needs in conjunction with other Course Instructors.
Applicants should have at least 5 years' experience in the practice and instruction of telephone technical communications.

Teleprinter

to train Saudi students in theoretical and practical maintenance of teleprinter equipment and circuitry. Other duties qualifications and experience will be as above, but in the field of teleprinters. In addition, applicants will be required to set up procedures for routine maintenance, also major check procedures and to set acceptable standards of criteria for equipment used.

Radio

To train local students in the practical and theoretical maintenance of radio equipment. He will teach basic electronics, physics, chemistry and the repair of KHV, VHF, single side band, public address systems, etc
Applicants should have a good standard of education at least
5 years' experience in the practice and instruction of radio
technical telecommunications.

SUPERVISORS Technical Services

To supervise the installation, maintenance and repair of Saudia radio trans-ceiving, video and public address systems and associated equipment and circuitry. He will also assist the Staff Manager in the planning, engineering and cost estimating of new equipment and prepare provisioning recommendations for spares, etc.
Applicants should have certified training and 4-6 years' shop experience in the maintenance and overhaul of a wide variety of electronic communications equipment (i.e: HF, VHF, UHF).

Teleprinter

To supervise the installation, maintenance and repair of Saudia teleprinter equipment and associated circuitry. He will also assist the Staff Manager in the plarning, engineering and cost estimating of new facilities and prepare provisioning recommendations for spares. etc. He will conduct on-the-job training of Saudi nationals.
Applicants should have certified training and 4-6 years' experience in the shop repair and overhaul of a wide variety of teleprinter equipment.

Commencing Salaries will be $£ 5,622$ per annum and benefits include free and reduced rate air travel, and relocation expenses.

Please apply with full personal and career details to Mr. A. Dannenberg, Manager of Employment, Saudi Arabian Airlines, c/o TWA Inc., 101 Champs-Elysées, 75008, Paris, France.

$$
1
$$

NEW HEBRIDES SENIOR RADIO TECHNICIAN

Required by the Condominium Radio Department to maintain transmitting and receiving equipment for postal, interisland and domestic services, local and overseas shipping, aircraft, and broadcasting studios-housed in the Radio Station and at our stations.
Candidates must have HNC plus at least five years experience of maintaining telecommunications equipment including side band telephone/teleprinter circuits and telex equipment. Candidates with ONC or City and Guilds with appropriate experience may also be considered. The ability to speak and read French is desirable but not essential. Initial tour 3 yrs. Some touring involved. Salary in the Scale $\mathbb{£ 3 , 2 6 9}$ to $\mathbb{£ 4 , 0 2 4}$ p.a. Gratuity $\mathbf{2 0 \%}$ total salary drawn. There is no local income tax in New Hebrides at present.
Other Benefits include: Free return air passages, subsidised housing, generous leave on full pay, free medical attention, education allowances and holiday visit passages.
For further particulars you should apply, giving brief details of experience to:

hroun agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/730852/WF.

Field service Engineers

Ansamatic Ltd require men with an electronics background and experience of bench or field service.

Vacancies exist in Leeds and several S.E. England territories.

We offer a satisfying career with your own personal company vehicle and responsibility for your area.

Commencing salaries are up to $£ 2,250$ depending upon qualifications and experience and for ambitious men, there are prospects of fast promotion to supervisory grades.

To find out more contact:
J. N. Ground

Ansamatic Ltd
Viatron House 928 High Road London N12 9SL Tel: 01-446 2451

ANSATIRTIL
telephone answering systems

RADIO AND TELEVISION ENGINEERING

SOUTH AFRICA

A major television manufacturer is extending its activity in South Africa to take advantage of the introduction of colour television due to occur next year, and wishes to strengthen its team by the addition of:-

CHIEF TEST EQUIPMENT ENGINEER (TELEVISION)

who will head up a small department developing and maintaining test equipment for colour TV production. Salary c. $£ 5,000$.

DEVELOPMENT ENGINEER (RADIO)

responsible to the Chief Engineer, but able to work on his own initiative, on radio development work. Salary c. $£ 4,000$.
Qualifications, although desirable, are not essential, the requirement being for practical engineers with both the ability and experience to make a genuine contribution to the engineering team.
Write in the first instance, giving full details of experience and background to:

Box number: WW 3937

IRELAND TECHNICAL OFFICERS

 (VHF Radio/Radar)required in the Radio Service of the Department of Transport and Power.

Salary: $\mathbb{£ 1 , 9 4 5 - £ 3 , 0 3 5}$. Entry up to $£ 2,484$ possible. Non-contributory pension. Widows and Orphans pension scheme.
Maximum age-limit: 50 years
Essential:
(a) Technician Engineering Diploma Course in Telecommunications and Electronics of Kevin Street College of Technology, or equivalent,
or
(b) City and Guilds Course 271 (formerly 300). Advanced Studies in Telecommunications and Electronics, or equivalent,
or
(c) Maintenance experience in one or more of: Radio Communications, Radio Navigational Aids, Radar Digital Equipment.
All candidates will be expected to display a sound theoretical and practical knowledge of electronics.
Candidates other than those eligible under (c) above, must have adequate practical experience in the maintenance of electronic equipment.
It is intended to make at least 10 appointments from this competition.

CLOSING DATE: 5th SEPTEMBER 1974

For application forms and more details write to the Secretary (1/B), Civil Service Commission, 45 Upper O'Connell Street, Dublin 1, Ireland.
[3939

QUALITY ASSURANCE

Due to expansion of our Quality Assurance Department we now have vacancies for experienced inspectors and testers.

We are also seeking two experienced and ambitious Engineers 10 join our Test Methods Department to organise cost effective production of a wide range of advanced state-of-the-art products. Salary negotiable dependant on experience and qualifications and subject 10 regular review.

Working conditions are excellent including a subsidised canteen and staff social club.

Telephone or write to:
David Stiles
Redifon Telecommunications Limited
Broomhill Road
Wandsworth
London SW 184 JQ
Telephone: 01-8747281

If you want a better job, apply yourself.

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised. More and more companies are using the Electronics Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Our confidential service costs you nothing.

Send in the coupon-we'll mail you by return.

Graduate Appointments Register
Please send me details of how to enrol on one of your Appoiniment Registers:
Name
Address

Age limits 20-45.
Post to G.A.R. 76 Dean Street London WI. 01-7346536

Medical

Electronics Technician
for

Bromplon Hospitial

to undertake the design, construction and maintenance of electronic equipment used in the hospital e.g. instrumentation, amplifiers, transducers, oscilloscopes, optical recorders, mass spectrometer, analogue computers and T.V. systems.

Applicants should have a good working knowledge of electronics and be qualified to O.N.C. standard or equivalent.

Day release will be provided for further approved education.
Salary will be on the scale of $£ 1,656-£ 2,337$ per annum according to experience (plus cost of living allowance).
Applications to Personnel Manager, Brompton Hospital, Fulham Road, London SW3 6HP.

UNIVERSITY OF LONDON TELEVISION SERVICE

requires

TELEVISION ENGINEERS

1. A Senior Engineer is required to supervise the installation of a new studio for the Institute of Education, and subsequently to be responsible for day-to-day operation and maintenance of the unit in association with the University's Audio-Visual Centre.
Experience in broadcast or educational studio operations is required, together with a sound knowledge of helical-scan recording techniques.
Starting salary (after authorised increase in October 1974) in the range $\{3,636-£ 3,990$, rising by annual increments averaging $£ 180$ to $£ 4,896$
2. A Television Engineer is required primarily to maintain and operate a growing videotape copying service, and also to work with studio staff on television production when required.
Detailed knowledge of a wide range of helical-scan videorecorders is required, and preferably some knowledge of videotape transfer problems.
Salary either as Post 1 above or in the scale $£ 2,580$ rising by 8 annual increments to $£ 3,990$, according to qualifications and experience.
Interviews for these posts will be held in early October. Applications, with a statement of educational and technical qualifications and relevant experience, and the names of two referees, should be sent by 31 st August to:

The Director

University of London Audio-Visual Centre 11 Bedford Square, London, WCIB 3RA

Electronic Development Engineers E. London £2,000-£3,000

The Submarine Systems Division of STC is the world's largest supplier of submarine cable systems. We are also the technological leaders of this field and our business is growing rapidly.
Repeaters are placed every few miles in a submarine cable system to boost the signals. Once laid they must work continuously for at least 25 years without maintenance. To achieve this reliability they must be designed and manufactured to the highest standards.
We are now developing a new generation of cable systems capable of handling television signals and telecommunications traffic. For this we require experienced engineers to develop wideband (analogue) amplifiers, filter networks and supervisory circuits, to specify and design special testing methods and apparatus, and for performance planning.

Opportunities exist for them to assist in the overseas commissioning and laying of new systems.
We are looking for graduate or similarly qualified electronic engineers with at least two years experience in the design and development of advanced analogue circuits or similar equipment.
Starting salaries will be between $£ 2,000$ and $£ 3,000$. depending on qualifications and experience, and the Company offers good fringe benefits.

For an information pack on the work of our Submarine Systems Division, conditions of service, and an application form, please phone David Stenhouse on 01-476 1401, or write to him at: Standard Telephones and Cables Limited, (WW 15/8) Henley Rd., N. Woolwich, London E16.

B B C

Equipment Department
have vacancies for Senior Laboratory Tech. nicians to work on the test and commissioning of newly manufactured equipment and systems to BBC design. The equipment employs both digital and analogue techniques over the fre. quency range d.c. to 1000 MHz . Applicants should preferably be qualified to HNC or C \& G. Full Technological Certificate level in appropriate subjects.

Starting salary will be in the range $\{2,040$ to $\mathbf{8 2 . 2 5 0}$ and rise by annual increments of Cl 105 to $\mathbf{6 2 5 6 5}$, plus cost of living Threshold Pay. ments currently $104 \mathrm{p} . \mathrm{a}$.

Suitably qualified Senior Technicians progress to Engineering Technician whose salary maximum is $£ 2,940$. The posts are pensionable, based at Chiswick, within easy reach by tube (Gunnersbury or Acton Town Station) and road (M4, North and South Circular).

For Application Forms please write to the Engineering Recruitment Officer, British Broadcasting Corporation, Broadcasting House, London WIA IAA quoting reference 74.E.4056/WW. Closing date for completed application forms 14 days after publication.
[3976.

UNIVERSITY OF SOUTHAMPTON

Electronics Technician

required by Physics Department to assist in a programme of balloon borne X and gamma ray astronomy. The work involves development of electronic systems for long duration flights at very high altitudes.

The appointment requires a versatile man able to take responsibility for the operation of equipment on field trials and prepared to equipment on field trials and prepared to
undertake a limited amount of foreign travel. undertake a limited amount of foreign travel.
Candidates should have broad experience with Candidates should have broad experience with
the construction or maintenance of radio communication systems or be able to show a high standard of up-to-date constructional ability. HNC or equivalent qualification desirable, but considerable relevant experience with a minimum qualification at ONC would be considered.

The appointment, which is initially for two years, will be made at Grade 5 (non-established) on the salary scale $\mathbf{6 2 , 0 0 7}$ - $\mathbf{1 2 , 3 8 2}$ per annum.

Applications, giving details of age, qualifica. tions and experience and the names of two referees should be sent by 30 August 1974 to the Deputy Secretary's Section. The Uni. versity, Southampton SO9 5 NH , quoting referversity, Southampton SOS SNH, quoting refer-
ence WW $264 / \mathrm{T}$.
$[3964$

DATEK SYSTEMS LIMITED

The company has vacancies at Senior, Junior and Trainee levels in its Test Department to work on small digital systems used in phototypesetting. The man for the senior position will probably be HNC or degree level, but more importantly will have at least 5 years experience in electronics with emphasis on digital systems. Potential leadership ability in the test environment would be valuable. The Junior and Trainee will ideally be capable of achieving O.N.C. level but above all must have an active interest in electronics.

Telephone:
Mr. PIYASENA
01-904 0061
[3961

Making a career in Electronics is a fine time to think about Graphic Art

Mention Crosfield Electronics to anyone in the graphic arts or printing industry and you're liable to hear some pretty interesting stories. Like the one about our electronic scanners in colour reproduction, our industrial cameras/ enlargers, our computers, electro mechanical systems, and the fact that our Magnascan was the first digital enlarging colour scanner to be marketed in the world.
And that's just a beginning.
If you'd like to join the electronic leaders in the graphic arts and printing field, are interested in the potential of perhaps living and working abroad, see if one of these positions fits your ambitions.

Installation
 Service Engineers

For experienced electronic engineers capable of applying their experience to a wide range of industrial applications, there are quite a few interesting positions open.
There's the chance to travel abroad extensively providing a complete installation and back-up service for complex colour scanner/separators in trade houses. Young men at least 22 years old with experience in computers, radar/ fixed/variable pulse techniques will also be considered.

Test Engineers

Practical electronic engineers with experience on systems testing and finite equipment will be interested in these positions. A minimum of HNC electrical engineering and practical interest in constantly changing technology is essential. A knowledge of analogue and digital techniques is desirable.
These positions would suit engineers between 22 and 35 years old with at least 3-5 years industrial experience.

Technicians

Successful technicians with ONC or equivalent qualifications will get a tremendous amount of experience at the bench testing electronic sub assemblies, and repairing, modifying and testing relevant design specifications. Excellent opportunities for College or University graduates, or young technicians with some industrial experience behind them.
Salaries will be according to qualifications and experience. and we offer excellent company benefits.
If you're interested in any of these positions phone or write to: J. Phillips, Crosfield Electronics Ltd., 766 Holloway Road, London N.19. Tel: 01-272 7766.

CROSFIELD ELECTRONICS LIMITED

1972

LBC have vacancies for Audio Maintenance Engineers. Applicants should have experience in the maintenance and testing of broadcast equipment.
The positions will involve shift work. Salaries in accordance with ACTT/ ABS agreement.

LBC,
Communications House, Gough Square, London, EC4

Coláiste na hollscoile
Gaillimh
(University College, Galway)
Department of Physiology

PHYSIOLOGY TECHNICIAN

to maintain physiological apparatus. The post requires some Electronics, Metalwork \& Telecommunications. City \& Guilds qualification in Physics, Electronics or Telecommunications required or equivalent.

Salary Scale- $\mathbb{E 1 , 8 5 1 —} \mathbf{E 2 , 1 6 3 (4 \times 5 7 8)}$
Applications to Professor of Physiology from whom further particulars may be obtained.

ANTARCTIC EXPEDITION

Wireless Operuior Mechanics

required immediately for British stations in Antarctica.

Applicants, preferably single and aged $22-50$, should have experience of maintaining and operating SSB transmitters, and receivers. Teleprinter experience desirable.

Salary from $£ 1,688$ per annum, all found overseas. Low income tax. Bonus for satisfactory service.

Applications to:
BRITISH ANTARCTIC SURVEY, 30 Gillingham Street, London, SWIV 1HY. Tel: (01) 8343687.

NORTHAMPTON COLLEGE OF TECHNOLOGY

Department of Engineering

LECTURER I TELECOMMUNICATIONS

To teach Telecommunication Technician course students, with specialist knowledge in Telephony. Applicants should possess appropriate qualifications and have suitable industriz experience. Applicants will be expected to commence duties on list September.
thereafter
Salary Scale $11.800-12.874$, according to experience and qualifications.
Forms of application and further particulars may be obtained from the Chief Administrative Officer, Northampton College of Technology, St. George's Avenue, Northampton. NN2 6JB, telephone 34286 , to wham completed applications should be returned by the 26 August.

THE LONDON HOSPITAL
(WHITECHAPEL)
LONDON, E1 IBB

Electronics Technician

required for the Department of Medical Physics. Duties will include routine maintenance of electronic equipment, including the SL. 7510 Mev Linear Accelerator, and participation in research and development Minimum ation qualification ONC or equivalent. Some experience in electronics essential. Day release for further study will be allowed.
Further information may be obtained from Mr. P. Bennett, Chief Physics Technician, at the above address, tlephone 01-247 5454 ext. 158. Please write or telephone David High, at the above address, telephone 01-247 5454 ext 388 for application form.

IONDON BOROUCH OF HARBOW

 TECHNICIANUp to $\mathbf{~ 2 , 1 0 3 *}$
A Technician/Engineer in Television and Sound is required for a post in the Film and Television Department. Duties will include the technical operation and routine maintenance of a C.C.T.V. Studio requiring electronic and mechanical skills and knowledge in the television field. Relevant City and Guilds or H.N.C. Qualifications are desirable and Aurther in service training will be considered.
*Plus threshold payment

Application forms from the Harrow College of Technology and Art, Northwick Park, Watford Road, Harrow, Middlesex, HA2 3TT. Telephone 01-864 441| Ext. 31.

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON

QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.

APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference WW

MARCONI INSTRUMENTS LTD,
Longacres, St. Albans, Herts
Tel : St. Albans 59292
Luton Airport, Luton, Beds
Tel : Luton 33866
A GEC-Marconi Electronics Company

CHILTERNS GROUP

Second Engineer (Telecommunications)

Applications are invited for the position of Second Engineer in the Telecommunications Section of the Group Engineer's Department, based at Bedford, to lead a team of engineers engaged on installation, preventive maintenance and fault location on a wide range of telecommunications apparatus.

Applicants should preferably be qualified to at least HNC standard and must have had experience with VHF, fixed and mobile radio equipment and automatic telephone exchanges. Experience with digital alarm and telemetry systems would be an added advantage.
Salary: $£ 2,775$ to $£ 4,000$ per annum plus $£ 90$ per annum allowance. In accordance with the NJB Threshold Agreement a further $£ 104-£ 125$ is also payable as a supplement to salary.
Applications in writing should be sent to The Manager, Chilterns Group, Eastern Electricity, Prebend Street, Bedford, so as to be received by 22nd August, 1974.

13946

SERVICE ENGINEER EXTRAORDINARY NEEDED

Experience of digital pulse techniques very valuable. Post relates to field service of advanced pulse height analysis systems. Exciting challenge, good prospects and pay.

Please reply in confidence to:Managing Director,
INTERTECHNIQUE LIMITED Cottrell House
53-56 Wembley Hill Road
Wembley, HA9 8BE.

SOUND TECHNIQUES require a TECHNICAL ENGINEER

o look after the day to day running of the equipment at their Chelsea Recording Studio. The successful applicant will be part of a losely knit professional team and be expected to work without supervision and use his own initiative.
Salary is by negotiation and after a probationary period will include a profit sharing bonus and non-contributary pension scheme.

Applicants, who should preferably be working in a multi-track recording studio environment at present, should send a fulf resume of their areer to date to JOHN WOOD
SOUND TECHNIQUES LIMITED
46A OLD CHURCH STREET
LONDON S.W.3.
All applications will be treated in the strictes: confidence.

TECHNICIAN

with electronics experience, for interesting and varied work connected with children's heart disease. Grading according to experience and qualifications.

Write with details to:
Consultant-in-Charge,
Department of Clinical Physiology, The Hospital for Sick Children, Great Ormond Street, London, W.C.1.

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our production and servicing programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at St. Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW748, for application form to:

Mr. P. Elsip,
Personnel Officer
Marconi Instruments Ltd,
Longacres, St. Albans, Herts.
Tel: St. Albanc 59292

Tu0 moun initio
Member of GEC-Marconi Electronics

Avery-Hardoll

Manufacturers of Meter Pumps for Petrol and Fuelling Equipment for Aircraft, require two

TECHNICAI SERVICE ENGINEERS

One to be resident in Wiltshire and the other in West Yorkshire. The successful candidates will have reached ONC in electrics or electronics and preferably have had experience in electromechanical servicing.

The duties are concerned with the commissioning, diagnosis of faults, and rectification of electronic equipment associated with liquid flow measuring devices, mainly on readout and control.

Permanent staff position with a Company car,
four weeks' holiday after one year of service, contributory pension scheme, etc.

Please apply in writing, giving brief details of experience to date, to:

Personnel Manager, Avery-Hardoll Ltd., Downley Road,

 Havant, Hants.

A member of the

Even computers needa little understanding

Computers may make life more simple, but they're pretty complex themselves, and sometimes they need the understanding of a trained Customer Engineer to sort out their problems.

IBM's expandingsales and the continuous development of new, more sophisticated systems means that we need more Customer Engineers. Men like you who already have a knowledge of electronics and are looking for a place in the front line of computer technology.

We'll give you the sort of training it takes to service and maintain our medium and large-scale systems. An on-going training matched to IBM's evolving range of computer products, to keep your expertise right up to the minute.

In addition to electronics knowledge, to ONC/HNC qualification level (or equivalent), you'll need a logical approach to mechanical problems and the ability to get on well with people at all levels in a wide range of businesses.

In return we'll start you on a good salary, with the best big-company benefits, and the prospects you'd expect from IBM - where promotion is on merit.

Find out more about the opportunities in Computer Servicing with IBM in the London area by writing today with brief details of career to date to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL, quoting ref:WW/92275.

IBM

IECHNICAL DEVELOPMENT MANAGER HIGH VACUUM TECHNOLOGY

A Physics Graduate, aged about 40 , is required to head a technical group engaged in high voltage, high vacuum technology.
The Group will evaluate developments and, as appropriate, will introduce innovations to manufacturing processes which have, in part being current for some 25 years. The Manager may initially secure a detailed appreciation of the problem areas through secondment for a period of six months to an associated U.S. Company.
This is a challenging appointment, and there are opportunities for further advancement within the organisation. Location is North West London.
Please reply giving full personal and career details to Position Number AKT 4495, Austin Knight Limited, London, WIA IDS.
Applications are forwarded to the client concerned, therefore companies in which you are not interested should be listed in a covering letter to the Position Number Supervisor

UNIVERSITY OF THE WITWARTERSRAND,

Johannesburg, South Africa
EDUCATIONAL TECHNOLOGY UNIT

The Unit is building a broadcast colour television complex. The following vacancies exist:

(a) Head of Television Engineering

Senior Engineers currently involved in colour broadcasting and who hold appropriate qualifications are invited to apply. Experience with all forms of studio equipment and operational procedures is necessary and some proven organized ability could be advantageous.
(b) Assistant to the Head of Television Engineering
Applications are invited from people who have had several years experience in broadcast colour television. The successful applicant would probably be of assistant engineer or engineer grade in the UK broadcast industry.
Salary for both posts will depend on qualifications and experience.
Interested persons should obtain the information sheet relating to these posts from Miss J. Lloyd, London Representative, University of the Witwatersrand, London Office, Chichester House, 278 High Holborn London WCl. England with whom applications should be lodged not later than 30th August, 1974. An airmail copy should be sent to the Registrar, University of the Witwatersrand, Jan Smuts Avenue, Johannesburg, South Africa.
Interviews will be conducted in midSeptember.
[3967

LEWISHAM
 HEALTH
 DISTRICT

Electronic and Biomedical Technician Grade II

This is a new post based at Lewisham Hospital. The successful candidate will be responsible to the Group Engineer for maintenance of Electronic and Biomedical Equipment.
H.N.D. in Electronics and experience of Medical Electronics required.
Salary scale $£ 2,040-£ 2,661$ p.a. plus $£ 126$ London Weighting Allowance.
Applications to Group Engineer, Yeomanry House, Bromley Road, Catford, S.E.6.

13931

UNIVERSITY OF SUSSEX SCHOOL OF APPLIED SCIENCES
 ELECTRONICS ENGINEER

(Technician Grade V)
Experienced electronics engineer required to be responsible for the servicing of equipment within the Materials Science Division. Duties also include some development work on projects associated with the research programmes being carried out in the Laboratories.
In the near future, it is anticipated that the successful candidate will have the opportunity of becoming fully involved in the operation of the University's Electron Microscopy Service Suite for which additional training (if necessary) would be given.
Salary on scale $£ 2,007$ - $£ 2,383$ per annum. Applications giving full details of age, qualifications and experience should be sent to the Laboratory Superintendent, School of Applied Sciences, University of Sussex. Applied $\begin{aligned} & \text { Sciences, } \\ & \text { Brighton } 8 N I ~ 9 Q T . ~\end{aligned}$.

13936

Electronic/ Communications Engineer

Rank Xerox is a name linked with the future. Currently we're engaged in the development of new and existing machines and communications equipment, including our telecopier. There is currently in hand an extensive programme of work on products which are destined to be among the most significant ever produced by the Company.
We have a requirement for an engineer to participate in the design of a new business system. They will work within a small team on the design and development of circuitry. which could involve very high frequencies.

Applicants should be qualified to honours degree level with 3 years' experience in the electronics industry, preferably in the telecommunications field. Experience in the design and development of solid state circuitry at very high frequencies and digital circuitry would be an advantage.

The Company offers above average salaries and fringe benefits includịng generous assistance with relocation expenses where appropriate.

Please write or telephone to Alan Preston, Rank Xerox Limited, P.O. Box 17, Bessemer Road, Welwyn Garden City, Herts. Tel. Welwyn Garden 28177.

3962
RANK XEROX

RADIO OFFICERS

Do you have PMG 1, PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa; commencing salary according to age- 25 years and over $£ 2,245$ pa. During training salary also by age, 25 years and over $£ 1,724$ $p a$ with free accommodation.
The future holds good opportunities for established status, service overseas and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:
Recruitment Officer,
Government Communications Headquarters,
Room A/1 105 , Priors Road, Oakley,
Cheltenham, Glos GL52 5A)
Telephone Cheltenham 21491 Ext 2270

GILBERT AND ELLICE ISLANDS TELECOMMUNICATIONS TECHNICIAN (MARINE)

required by the Posts and Telecommunications department, based at Tarawa, for the installation and maintenance of ship stations on Colony vessels. He will be in sole charge and will be required to supervise and train local officers assigned to him.
Candidates must hold relevant City and Guild Certificate and be familiar with the installation and maintenance of radio, radar and electronic navigational equipment on small ocean-going trading ships. up to IKW out-put, or teleprinter and experience of spares requirements associated 5 unit equipme an advantage. Equipment comprises Decea 202 and RM 314, radar, Marconi or Redifon communications and Kelvin Hughes navigation equipment.
The initial tour would be for 21 to 27 months.
Salary in the range $£ 2,980$ to $£ 4,580$ p.a. which includes an allowance, normally tax free, of 61,506 to 62,568 p.a. Terminal gratuity $\mathbf{2 5 \%}$.
Other benefits include: free passages, outfit allowance, generous leave on full pay, subsidised housing, free medical attention, education allowances and holiday visit passages.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of Foreign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience to:

Hroull agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/740630/WF.

13933

COURSES

- 0 H $/$ M	COLLEGE OF TECHNOLOGY
Beaconsfield Road, Southall, Middlesex CEI PART-T Electronics-T The En Apply: Head of Department	Telephone: 01-574 3448 STUDY ications, etc., Society and Electronic Engineering [3943
AGENTS	CAPACITY AVAILABLE
	CAPACITY AVAILABLE for printed CCT Boards of all types. Production delivery 4 weeks. KNOPP ELECTRONIC SERVICES LTD. 259 Coggeshall Road, Braintree, Essex, CM7 6EF Tel: Braintree 25254 [3938
Professional electronics manufacturing company requires EXCLUSIVE AGENTS THROUGHOUT THE WORLD to distribute steady-selling industrial instruments and stabilised power supply units. Individuals or companies with appropriate market knowledge should contact: Box No. WW3963	CONSTRUCTION PLANS Cameras, Transmitters, Scramblers, Detective Electronics, PLUS MANY MORE NEW HOBBY CATALOGUE AIRMAILED $\$ 1.00$ TS Post Box 618, Rotterdam, Holland

ELECTRONICS TECHNICIAN

The Department of Medicine has a vacancy for an Electronics Technician (Grade 3) to work with a wide variety of apparatus used in Medical Research. The succersful applicant will work with a small team on the design, development and maintenance of such apparatus. A working knowledge of Analog and Digital integrated circuit techniques would be an advantage, together with the desire to work on new and interesting projects. Applicants should have at least the equivalent of O.N.C. or practical experience of not less than five years. Salary $\{1,650-£ 1,920$.
Apply: Senior Assistant Secretary, University of Birmingham, P.O. Box 363, Birmingham BIS 2TT.

TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large s / c flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd.,
56/60 Guildford Street, Chertsey 63243
[39
TAPE RECORDING, ETC.

RECORDS MADE TO ORDER	
DEMO DISCS	VINYLITE
MASTERS FOR	PRESSINGS
RECORD COMPANIES	

from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery $3-4$ weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEAS. SAE list. DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs. Tel. 2273

ARTICLES WANTED

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS
 126 Headstone Road Harrow, Middlesex Tel: 01-965 6864

[34

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spotl

ELECTRO-TECH

 COMPONENTS LTD.315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580

We've got prices to put power in your profits

HID
 COMPONENTS (PRESTONLIMITED

 Telephone: 55034 Telex: 677122.

SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS

Comorising. Teletypewriter (page printer)type TT-271B/FG (known as Kleinschmidt 160) Reperforator-Transmitter (tape printer) type $\Pi \cdot 272$ AFG with table FN-65/FG. Both units are supplied with change wheels. the whole equipment operates on 115 or $\mathbf{2 3 0 V} 50$ cycles in very choice condition E55. (carr E4).
ELECTRONIC TIMER KITS 0.8 sec to 100 sec comprises A.E.I. Transistorised Module. Relay and all electrical
compr vents for 115 or 240 VACoperationf 1.75 (25 plyat compr.zents for 115 or $240 \mathrm{VACoperation} \mathrm{E} 1.75(25 \mathrm{p}$) VAT
20 p . Veeder root 4 -digit resettable counters 115 f 1.25 (8 p) . Printed Circuit Kits. E1.25 (25 p) total with VAT E 1.65 AMPEX VIDEO TAPE $2 \mathrm{in} \times 1670$ NEW E 9 (50 p). AVD CT3B Electronic Test Meters £ 18 (E1). FERRIC CHLORIDE 25 p a lb. (16 p). 10 lb E 2.50 (paid). Kent Chart recorders 115 AC E20 ($1-50$). Multipoint Kent Chart recorders $£ 30$ ($£ 1.50$). TELEPRINTER Papers and Tape $8 \frac{1}{2} \mathrm{in}$. rolls 3 -ply. carbon/buff manilla 60 p per roll (32 p) $8 \frac{1}{2} \mathrm{in}$. rolls 7 -ply NCR no carbon required. white. $£ 1$ (32 p)
 Friden Tape $\mathbf{C} 2$ per box of 6 mills (52 pl. Loads of surplus to clear. Large SAE for List.

CASEY BROS.

233-237, Boundary Road, St. Helens, Lancs. 86

LOW PASS, HIGH PASS, BAND PASS

L. C. FILTERS

* VERSATILE DESIGN SERVICE
* FAST PROTOTYPE DELIVERY
* VOLUME PRODUCTION CAPABILITY R. JAMES,

23 WHOMSLEY CLOSE, NEWARK, NOTTS. [3956

SIGNAL DIODES

CG2H at 7p, CG46H at 7p, CG61 at 8p, CG62 at 7p, CG63 at 8p,
CG65 at 8p, CG66 at 7p, CG67 at 7p, CG70 at 7p,CG611 at 8p, CG651 at 7p, CG652 at 7p, CV425 at Bp . CV478 at 8 P , CG82 at 7p, CG83 at 7p, CG84 at 5 p , CG94H at 5p. Unmarked Gold
Bonded Diodes at $£ 3$ per 1000.250 mW VOLTAGEREFERENCE DIODES type MR3A at 44p. MR4A at 44p. G.E. S.C.R.'s 200 PIV 100 amp type C50B at $£ 2 \cdot 20$ each, Type C32B 200 PIV 25 amp at ${ }^{33 \mathrm{p}}$, Type C140B200 PIV 25 amp at 44 p . DISC
CERAMICS $01 \mu \mathrm{f} 50 \mathrm{v} . \mathrm{w}_{1}, 02 \mu \mathrm{f} 50 \mathrm{v} . \mathrm{w}$., both at é per 100. COMMUNICATION SERIES OF I.C.'s Untested consisting of 1xR.F., 3xIIF. F., 2xVOGAD, 2xAGC, $1 \times$ Mike Amp, $2 \times \mathrm{Double}$
Balanced Modulators, $1 \times$ Mixer. The 12 l . C.'s with date for $£ 3$. PRESS FIT THYRISTORS. 8 amp 50 PIV at 22p, 100 PIV at $25 \mathrm{p}, 300$ PIV at $33 \mathrm{p}, 400$ PIV at $44 \mathrm{p}, 500 \mathrm{PIV}$ at 50 p .
14 PIN DIL NPN TRANSISTOR ARRAY like CA 3046 untested with data 5 for 55p.
X BAND GUNN DIODES with data at $£ 1.65$.
STRIP LINE 2GHz TRANSISTORS at $£ 3$ each
VHF TUNING VARACTORS 80 pf at 4 volt, 57 pf at 8 volt at Sp each.
OIVIDE BY 4 COUNTERS 180 MHz untested with data 4 for
E1.50.

J. BIRKETT

25 The Strait, Lincoln LN2 1JF. Tel. 20767

HI FIDELITY MODULES made and rested.
 Linsley Hood, D.C. coupled 75W \&14.00*
Linsley Hood. pre-amp (75 W) 13.50

 *Excl. Heat Sinks.
TELERADIO HIFI, 325 Fore St., London, N9 OPE.
$[33$
$01-807$ 3719. (Closed Thursday.) ${ }^{325}$ (33

JAN CRYSTALS

Fast delivery of prototype and production military quality crystals. Competitive prices
all frequencies; LF crystals a speciality. Details from

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset
Tel: (046031) 2578 . Telex: 46377 . Tel: (046031) 2578. Telex: 46377.

PRECISIDN POLYCARBONATE CAPACITORS

TANTALUM BEAD LOW LEAKAGE. $0.1,0.22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or or 35 V : avallable $10.0 \mu \mathrm{~F}$ a
 95p: 50 for $£ 4.00-$

[^7]
ARTICLES FOR SALE Cont.

GLASS FIBRE P.C. KITS

SIMPLE, PRECISION, CUT-STRIP PROCESS For amateurs, laburatories and industiv: one-off's, prototypes on single-sided 1 oz bosrd. Draw circuit layout on resist with pen, pencil. etc. p.c.b. to pre-packed etching chemicals. All materials supplied in standard kits, e.g., 3 off $3^{\prime \prime} \times 4^{\prime \prime} £ 2.25$; 2 of $4^{\prime \prime} \times 65^{2.00 ;} 2$ off $4.5^{\prime \prime} \times 4.5^{\prime \prime}$ $£ 2.50$; 1 off $4.5^{\prime \prime} \times 8^{\prime \prime} £ 2.25$; P \& P 12p

GLASS FIBRE P.C. BOARDS
1 oz copper in widths up to $8^{\prime \prime}$. Single-sided: 2 p per 3 sq in. Double-sided: 1 p per sq in. No cutting charge. P \& P 10p per sq
Double-sided $2 \mathrm{sq} \mathrm{ft} £ 1.00$: \mathbf{P} \& P 20p. No

KELTRONEX LTD
5 Barra St., Glasgow G20 0AX $041-9461600$

[3818

BUILDING or PURCHASING an AUDIO MIXER

pre-amp, autofade, V.U. or audio monizor First consult:

PARTRIDGE ELECTRONICS
21.25 Hart Read, W.W, Benfleet, Essex

Established 23 years
143

ENAMELLED	PER	E
S.W.G.	1lb reel	'zib reel
10 to 14	51.90	51.05
15 to 19	E2.05	81.15
25 to 29	$\varepsilon 2.10$	E1.20
30 to 34	E2. 20	E1.28
35 to 40	£2.35	£.1.35
All the above price INDUSTRIA	s are inclus AL SUPP	$\ln ^{\ln }$
102 Parswood Rd., W	ithington. 061-224	achester 20

High Stab. WW OR iW 5\%. Ip $75 \mathrm{p} / 100$, $£ 550 / 1000$
High Siab.
$(22 \Omega-1 \mathrm{M} \Omega)$.
RESISTOR KITS 22 Ω-1M Ω E12 SERIES

METAL FILM KITS ALSO AVAILABLE
CATALOGUE No. 3 (Approx. 2000 Parts) 15p.
C.W.O. P. \& P. 10 p on orders under $£ 5$. Overseas at cost
E.H. COMPONENT FACTORS LTE

Nr. Leighton Buzzard, Beds. LU7 9 AQ Cheddington (0296) 668446

SITUATIONS VACANT

BRAZIL United Nations Association International erested in teaching. Living allowance and air fares paid. Comati U.N.A.I.S. 93, Albert Embankment, S.E.1. Tilephone 7354431 . Athert Embank-
$[3957$

CITY importers require electronic engineers to service radio and audio equipment.
Interesting work. good wages and prospects. L/Vs. hours 9am.5por. 5 day week.
ELECTRONIC EXPERIENCE WANTED. Engincers, lechnicians or testers required to assist eams preparing clectronic equipment manuals. Writng experience preferable but not essential. Interesting work on sites in London and Home Counties. Ex-
cellent remuneration around $£ 3,000$ p.a. (more for cellent remuneration around
specialised digital knowledge). Box No. WW 3979.
T-I-FI A UDIO ENGINEERS. We require experienced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. 01-437 4607

ARTICLES FOR SALE

A ARVAK ELECTRONICS, 3-channel sound-light A converters, from £18. Strobes, £25. Rainoow Strobes, 1 132.-98A West Gree
London N15 5NS. $01-8008656$.
B_{2} UILD IT in a DEWBOX quality plastic cabinet Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet Write now-Right now.

COLOUR T.V.'s-Bush CTV25 displayed working c90+VAT. Large discounts for 3 -up. Non-workers available. Rediffusion wired Muno T.V.s all screen sizes, new condition. Surmiks, ${ }_{\text {Birmingham, } 30 \text {. Tel. } 021-458 \text { 2208. Pershore Road }}$

COLOUR UHF and TV SPARES. Colour and UHF lists available on request. 625 TV . If unit, suitable for $\mathrm{Hi-Fi} \mathrm{amp}$ or tape recording, $£ 6.75, \mathrm{P} / \mathrm{P}$ 35 p . Bush CTV25 colour, new power units complete incl. mains TX, Electrolys panels plus yuke and carr. ${ }^{80 \mathrm{p} \text {. }}$ New convergence panels plus yoxe and
blue lat., $£ 3.85$. P/P 40 p . New Philips single standard blue lat., $\mathrm{E} .85 . \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Philips single standard
convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yoke $55.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$. New Colour Scan Coils, Mullard or Plessey plus con vergence yoke and blue lateral, $£ 10.00$. $\mathrm{P} / \mathrm{P} 40$. Mullard AT1025/05 Convergence Yoke. $22.50, \mathrm{P} / \mathrm{P}$ 35p. Mullard or Plessey Blue Laterals, $75 \mathrm{p} P / \mathrm{P}$ 20 p . BRC 3000 type Scan Coils, $£ 2.00$, P/P 40 p . Delay Lines DL20. $£ 3.50$. DLIE, DL1. 11.50 . P/P 25p. Lum. Delay Lines. 50p, P/P 15 p . EHT Colour Ouadrupler for Bush Murphy CTV $25111 / 174$ serics £8.25, P/P 35p. EHT Colour Tripler ITT TH25/1TH suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. KB CVCl Dual Stand. convergence panels complete incl. 22 controls ${ }_{\text {Makers }}$ Colour surplus/salvaged Philips G8 panels part complete; Decoder, $£ 2.50$. IF incl. 5 modules.
 $15 \mathrm{p} . \mathrm{GEC} 2040$ panels, Decoder, $£ 3.50$. T. Base,
£1 00 RGB and Sound, $£ 1.00$ P P/P 35 p . CRT Base 75 p . P/P 20 p . B9 B valve bases 10 p . P/P 6 p . VARICAP TUNERS. UHF ELC 1043 NEW, $£ 4.50$. Philips VHF for Band 1 and 3 . $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW. Transistorised, $£ 2.85$ or incl. slow
 MURPHY $600 / 700$ series complete UHF P/P 35p. MURPHY $600 / 700$ series complete UHF Conver-
sion Kits incl. tuner, drive assy., 625 IF amplifier, sion Kits incl. tuner, drive assy., 625 IF amplifier
7 valves, accessorics housed in cabinet olinth assembly t.
$£ 7.50 \mathrm{P} / \mathrm{P}$ P 50 p . SOBELL/GEC $405 \cdot 625$ Dual standard switchable IF amplifier and output chassis incl. cet. E1.50 P/P 35 p THORN 850 Dual standard time base pancel. £1. $00 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. PHILIPS 625 IF amplifier panel incl. cct., $\{1.00 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B Featherlight. Philips 19TG170. GEC 2010. etc.. $£ 2.50$. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1.00$ A.B minature with UHF iniection suitable K.B HMV . Marconi, $£ 1.90 \mathrm{P} / \mathrm{P}$ all tuners 30 p . Mullard Philips. Stella. Pye, Ekco, Ferranti. Invicta, P/P 35p. Large selection LOPTs. FOPTs available for most ponulat makes. PYE/LABGEAR transistd. Masthead UHF Bosster. $£ 575$. Power Unit. $£ 4.65 \mathrm{P} / \mathrm{P}$
 P/P $30 \mathrm{p}, 200+200+100$ Microfarad 350 v Electrolytic.
f1.00 P/P 20 p . MANOR SUPPLIES, 172 WEST END £1.00 P/P 20p. MANOR SUPPLIES, 172 WEST END
LANF. LONDON. N.W 6 (No. 28, 59,159 Buses LANE. LONDON. N.W. 6 (No. 28. 59.159 Buses or
W. Hampatcad Bakerloo and Brit.
Rail . MAIL W. Hamptcad Bakerloo and Brit. Rail). MAIL
ORDFR: 64 GOLDERS MANOR DRIVE, LONDON, N.W.II. Tel. 01-794 8751 .

CONSTRUCTION AIDS-Screws, nuts, spacers etc. C in small puantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters. negatives and board, one-off or small number Shelbourne Road. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon.
Warwks.

HALLICRAFTERS RBX-2 receiver 130-210 $1 \mathrm{MHz} £ 50$. Receiver $88 \quad 2-20 \mathrm{MHz}$ accurate tuning $£ 20$ with power pack and spares. Receiver R10 tuning around $3,000 \mathrm{MHz} £ 20$ with power unit. Other items from 25p to £20. SAE list. JDR,
Roydonbury, Harlow CM19 5DU. Tel (Daytime) Roydonbury, Harlow CM19 5DU. Tel (Daytime)
[3950

LADDERS 8ft 10 in closed-21ft extended, $£ 23.54$, L delivered. Home Sales Ladder Centre (WW2), Haldane (North) Halesfield (1) Telford, Shropshire.
Tel: $0952-586644$.

MIROR Aluminising, optical filters and com1 ponents, vacuum coatings. Frew-Smith Optics,
94 Main Street. Prestwick, Ayrshire. Tel. 0292 94 Maill
70003.

MULLARD Ferrite cores LA3 50p. LA4 75p, VILA2100 50p. Enquiries invited for other errites riags, beads, rods etc. Mc Murdo PP10 edge plugs Ex brand new equipment 12p. Also 10 Covers for sockets with cable clamps and screws 3p each. Me Murdo BllA relay sockels Ex new equipment 10 p each 100 fo: $£ 7.00$. 1000 for $£ 50$. Very large quantities of all above components Ex stock. Also available large quantities of polyester, ceramic, polystyrenc and electrolytic capacitors, relays, key switches etc. Add 8% VAT to all | orders, thail order only. Xeroza Radio. I East |
| :--- |
| Street, Bishop's Tawton, Devon. |
| |
| 3955 |

WN the best 48 page components catalogue
around! For only 50 p post free. Box No. WW 3952.

SCAN coils type KV9P1 by Choomosen suitable for posi free Dixon Technical, ${ }^{1 /}$ vidicons as square, $£ 11.50$ posi free Dixon Technical, 3 Soho Square, London.

Guide to

Broadcasting Stations

 17th EditionA new edition of a title which has sold more than 250,000 copies The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical and alphabetical order The book also contains useful information on radio receivers aerials and earth, propagation signal identification and reception reports.
1973206 pp., illustrated
059200081 75p

Illustrations in
 Applied Network Theory
 F. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated
$040870425 \times$ cased $£ 5.00$
0408704268 limp £2.50
Obtainable through any bookseller or from

The Butterworth Group
88 Kingsway, London WC2B 6AB
Showroom: 4-5 Bell Yard, WC2.

SINTEL

234500

CTsicuint
CT5001
CTK501 (while stocks Last|
SP 3522 dighta $.55^{\prime \prime}$

Send $4 \frac{1}{2}$ p for our new price list which includes speciel prices for
MK50250N with LEDS. Minitrons or SP352s.

THE TEXAN

 HI QUALITY AMPLIFIER BY TEXAS

fuLl Kit of parts

£29.50

 or READY MADE$\mathbf{£ 3 8 . 5 0}$
PACK 1. RESISTORS
PACK 2. SMALL CAPS
PACK 3. LARGE CAPS PACK 4. SUNDRIES PACK 5. SWITCHES PACK 7. SEMICONDUCTORS PACK 8. TRANSFORMER PACK 9. P.C. BOARD
PACK 11. CABLES \& LEADS PACK 12. TEAK CABINET POST EXTRA 15p 80 p NOW ON DEMONSTRATION

TELERADIO HI FI

PRINTED CIRCUITS AVAILABLE
W.W. F.M. TUNER (Apr-May 74) set

LINSLEY-HOOD Class A. Ampl. 10 W
LINSLEY. HOOD D. C Coulled 75
POPNIRELESS F.M. TUNER ICRATA
bailey-quilter Pre-Amp.
TOSHIBA Pre-Amp.
QUADRAPHONIC SYSTEM
S.A.E. for further information

TELERADIO ELECTRONICS
325-7. FORE ST., LONDON, N9 OPE

Classifieds continued on p. 85

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3. 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3,8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Regent. 8 or 15 ohm Celestion PST8 (for Unilex) Celestion MH 1000 horn, 8 or 15 ohm EMI $13 \times 8.3 .8$ or 15 ohm EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm

 EMI $13 \times 8.350 .8$ or 15 ohm EMI 13×8.20 wattbass EM1 $2 \frac{1}{4}{ }^{\prime \prime}$ " weeeter 8 ohm EM1 8×5.10 watt d / c, roil/s 8 ohm Elac 59RM 10915 ohm .59 RM 9148 ohm Elac $6 \frac{1}{2}$ " $\mathrm{d} /$ cone, roll/s 8 ohm Elac TW4 4" tweeter Fane Pop 15 watt $12^{\prime \prime}$ Fane Poo 25/2 25 watt 12 Fane Pop 40. $10^{\prime \prime} 40$ watt Fane Pop 50 watt. $12^{\prime \prime}$ Fane Pop 55, $12^{\prime \prime} 60$ watt Fane Pop 60 watt. 15 Fane Pop 100 watt. 18 Fane Crescendo 12A or B. 8 or 15 ohm Fane Crescendo 15,8 or 150 hmFane Crescendo 18.8 or 15 ohm Fane Crescendo 18,8 or 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \cdot \mathrm{d} / \mathrm{c}$ roll/s. 8 or $\uparrow 5 \mathrm{oln}$ Fane $807 \mathrm{~T} 8^{\prime \prime} \cdot \mathrm{d} / \mathrm{c}$, roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm Goodmans Axiom 401.8 or 15 ohm Goodmans Twinaxion ${ }^{\prime \prime}$ or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27 Kef T27
Kef T15
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN13
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll $/ \mathrm{s}$ STC4001G super tweeter
Wharfedale Super 10RS/DD 8 ohm Fane 701 twin ribbon horn
Fane Model One each
Goodmans DIN 204 ohm each
Helme XLK25 (pair)
Helme XLK 30 (pair)
Helme XLK50 (pair)
Kefkit 2 each
Peerless 3-15 (3 sp. system) each
Richard Allan Twinkit each
Richard Allan. Triple 8 each
Richard Allan Triple each
Richard Allan Super Triple each
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale 3 kit (pair)
Wharfedale Dovedale 3 kit (pair)
Pricesinclude vat

Cabinets for PA and Hifi, wadding, vynair. etc.
Send stamp for free booklet "Choosing a Speaker"
FREE with orders over $\mathrm{E7}$--"HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect.

Prompt despatch.

Carriage: Speakers $38 p$ each, tweeters and crossovers 20p each, kits 75 p each (pair $£ 1.50$).

WILMSLOW AUDIO
 Dept WW

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.) 10.95 62.25
$\mathbf{E} 50$ $£ 2.50$
$£ 3.75$ $\mathbf{5 8 . 2 5}$
$\mathbf{5 6} .60$ $\begin{array}{r}65 \\ \mathbf{f} 2.50 \\ \hline\end{array}$
$£ 2.80$
$£ 3.50$
ع. 21
$\mathbf{f 6} .80$
$\mathbf{f 6 . 9 5}$
± 8.50
$\mathbf{4} 11.00$
$\mathbf{f 1 2 . 5 0}$
f132.00
$\mathbf{f} 22.50$ £29.00 $£ 49.90$
$\mathbf{4} .95$ $\ddagger 3.85$ $\mathbf{~} 7.00$ 5.00

E5.30
$\mathbf{f} 12.95$
$\mathbf{f 1 6 . 7 5}$
f 15.75
$£ 12.00$
$\mathbf{f 7 . 2 5}$
f17.25
$£ 8.25$
$\mathbf{£ 9 . 0 0}$
5.25
68.00
12.75
$£ 2.00$
$\mathbf{£} .50$
$f 2.75$
f6. 19
23.00
10.75
f9.90
$\mathbf{f 9 . 7 5}$
E22.00
$\mathbf{F} 14.95$
$E 39.95$
E 23.50
$\mathbf{1 5 . 0 0}$
88.25
13.00
18.50
. 21.50
寝 25 $\mathbf{5 2 . 5 0}$

HENGSTLER
Manufacturers of counters and counting systems

EXCLUSIVEOFFERS NEVER BEFORE OFFERED

We have a Jarge quantity of "blta and piecen" We cannot list-please atend us your requirementa we can probably help-all enquifien snawared.			
400 channet Pulse Height Apectrum Analyzers P			
	ec 245 L.F. 150 watt Osciliato		
	Eolartron CD 1015 Oacilloscope		
	Eddystone Recelver Cablneta		
	Solartron 5/25000 cyc. Oscilta		
	Dawe 630 Phase Meters		
	Southern Inst. 1800 F.M.		
	Belling Lee T.V. Relsy Eq		
	Addo 5/8 track Tape Punchers		
	Tally 5/8 track Tape Reader		
	80 column Card Hand Puncl		
	75 foot sectional seli sup		
	Auto Electric Carillon Chi		
	CV-157 Hoftman ISB/SSB Coi		
	10 foot Triangular Lattice Mant 8 inch sldes		
	tio 15 foot		
We have a varied assortment of industrial and professional Cathode Kay Tubes avallable. List on request.			
Racal MA-250 Decadc Cenerators Racal RA-98 8.S.B./D.8,B. Adaptors Avo Gelger Counters, new Servomex 2 KV V Voltage Regulators Donble Co-axlal Blowers 0×6220 v. A.C. Ampex 8.E. 10 Avto Degaussers Uniselectors 10 bank 25 way full wipe R.C.A. 5 element $420 \mathrm{~m} / \mathrm{cs}$ Yagi Beamg Hapnes 500 watt $230 \mathrm{v} . / 115 \%$. Isoiation Transformers			
Mulrhead D. 888 Analysers			
	Laboratory Radio Interference Filtera Cawkell Type 1471 Variable Fitters		
40-pase tist of overerailabie- Kreep one by you.			

 RECORDER-REPRODUCERS

AMPEX FR-600 1 and $\frac{1}{2}{ }^{\prime \prime} 14$ and

COMPUTER HARDWARE

* CARD READER 80 col. 600 c.p.m.
\star TAPE READER High speed $5 / 8$ track

$$
\sigma_{\text {ricac }} 800 \text { c.p.m, }
$$

Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P HARRIS
ORGANFORD - DORSET
BOURNEEOOTH-85051

EX.COMPITER STABIISED POWER SUPPIIES

RECONDITIONED, TESTED AND GUARANTEED

Ripple $<10 \mathrm{mV}$. Over-voltage protection 120-130v. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about $£ 3$
 5-6v. 12A.
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. ع3.50 (30p).
PAPST FANS 6in. dia. x 2吾in. deep Type $7576 £ 5.00$ (30 p)
TRANSISTORS p\&p10p
BC107/8/9 BC147/8/9 BC157/8/9 o al 9p $\mathrm{BC} 107 / 879 \mathrm{BC} 147 / 8 / 9 \mathrm{BC} 157 / 8 / 9 \quad \mathrm{p}$
$\mathrm{BF} 18025 \mathrm{p} \mathrm{BF} 182 / 3 / 40 \mathrm{p}$ BF184 17p BF 187 13p BFW10 55p BF336 35p 7418 DIL 34p

ELECTROLYTICS

$12,000 \mu 100 \mathrm{v}, 5 \times 2 \frac{1}{2}$ dia
£1 (25p)
$30,000 \mu 25 \mathrm{v}$
65p (20p)
$4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55p (15p) $10,000 \mu 35 \mathrm{v} .5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}$ (12p)
$4,000 \mu 100 v ., 4 \frac{1}{2} \times 2 \frac{1}{2} 55 p(22 p)$
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{in}$. 25 boards for $£ 1$ (30 p).
QH Bulbs, 12v. 55w. \qquad 50p (7p) 250 Mixed Resistors \qquad 60p (13p) 250 Mixed Capacitors
\qquad
\qquad 50p (11p)
50p 200 SI Planar Diodes $\ldots \ldots \ldots{ }^{50 p}$ (8p)
Microswitches................ 8 for 50p (10p) Min. Glass Neons 8 for 50p (7p)

Postage and package shown in brackets
Please add 8\% VAT to TOTAL

KEYTRONICS

Mall Order only.
44 EARLS COURT ROAD, LONDON, W. 01-4788499

CRAMPIAN REPRODUCERS LIMITED Hanworth Trading Estate. Fettham. Miodlesex. Telephone: 01 - 8949141.

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPNENT We are suppliers to many woilknown companies, studios and broacasing authorities and were ciad. Large or small quankities. Let us quores. Large or smail quankicich Let us quore.
T. Dedhansformer Manufacturets and Desieners 7 Dedham Place, Fore Street, Ipswich IP4 IIP Thlephone 047352794

THE ONLY
 COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 15 p (plus 4p postage) for 48 page inookle tion on Record Care.
cecil e. watts umited Darby House
Sunbury-on-Thames, Middx.

EXPRESS

Prototype Printed Circuits
Flatform Relay AZ 521 Cradle relay with 4 changeovers, dustproof cover, with single or bifurcated contacts
Contact material
Fine silver, silver palladium,
gold nickel, fine silver with hard gold flashing
silver cadmium oxide
Switching $2 \mathrm{~A} / 2.5 \mathrm{~A}$
capability 30 W 100 VA.C.~
30 W/100VA
Operating
power
ca. 400 mW
Coil voltage maximum 60 V
Surface area $36 \times 30 \mathrm{~mm}$
Height
11 mm

ZETTLER

 Zettler UK Division

Equitable House Lyon Rd., Harrow Middx. HA1 2DU Tel. (01) 8636329

WW- 023 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH

CHILTMEAD LTD.
7, 9, 11 Arthur Road, Readingi, Berks. Tel: 582605

Fastest in London Area
Also medium production runs, call-offs, etc Electronic \& Mechanical Sub-Assembly Co. Ltd,
Highfield House, West Kingsdown, Nr. Sevenoaks, Kemt. Tel: West Kingsdown 2344

SYNTHESISER SOUNDS SUPREME BY DEWTRON-THE UP-FRONT PEOPLE YOU can build professional standard synth. equipment from our modules if you can read and solder! E.g. Pitch-to-voltage ennables your creation guitar etc send 15 S NOW for full catalozue. 10 end 15P NOW for full catalogue. years experience from-

> D.E.W. LTD.,

254 Ringwood Road, Ferndown, Dorset.

COLOUR TV's

Bush CTV 25 displayed working $\mathbf{6 9 0}$ plus VAT Large discount for 3 up non-workers available. Rediffusion used Mono TV's all screen sizes, new condition.

SUMIKS
1532 Pershore Road. Birmingham 30
Tel: 0214582208

SPECIAL NOTICE

TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and ALLIED TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc.

BROADFIELD \& MAYCO
DISPOSALS LTD.
21 Lodge Lane, N. Finchleý,
London, N12 8JG.
Telephone:
01-445 0749
01-445 2713
01-958 7624

PEAK PROGRAM METERS TO BS4297
aleo 200 KHz version for high speed copying. Drive circuit $35 \times$ BOmm. for 1 mA L.H. zero meter to BBC
ED1477. Goid 8 -way edge con supplied.

PUBLIC ADDRESS : SOUND REINFORCEMENT In asy public-addrass system, where the microphones and
loudspeakers are in the sme vicinity atoustic feedback howround ${ }^{\text {occurs }}$ if the amplifiction exceeds a criticicil value. 日y
shifting the audio soectrum fed to the speakers by a few Herrz shitting the audio spectrum fod to the speakers by a few Herrz
the tendency to howing at room resonance trequencies is destroyed and an increase in gain of $6-8 d 8$ is possible before SHIFTERS IN moint
SHIFTERS IN BOXES with overload LED. shiftbypass switch. BS4491 mains connector and housed in strong diecast boxes
finished in attractive durable blue acrylic. Jack or XLR audio connectors.
 SHIFTER CIRCUIT BOARDS FOR wW July 1973 article
 SURREY ELECTRONICS The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. (STD O4866) 5997
CASH WTH ORDER. less 5\% UK post free. add VAT

Classifieds continued from p. 82
STUDIO sound control desk needs attention to "Miring, and mechanical construction. Consists of "Marconi"" faders, units and amplifiers. Approx. $\begin{array}{lllll}\text { size } & 4 \frac{1}{\prime}^{\prime} & \times & 5^{\prime} & \times \\ \text { tape } & 2 t^{\prime} \text {. Also:- "Ampex" } 14 \text { channel } \\ \text { deck. } & £ 350.00 \text { o.n.o for more details write }\end{array}$ to:--S. Whitaker, Flat 2, 224 Bramhall Lane Davenport, Stockport. Cheshire. Bramhall [395j
SUPERB Instrument Cases by Bazelli, manufacof tured from heavy duty PVC faced steel, choice of 174 types. Send for free list. Brazelli Instrument Halton, LA2 6LT, near Lancaster. Foundry Lane,
VaCUUM is our speciality. New and second-hand rotary pumps, diffusion outfits. accessories. coaters, etc.
equipment
from
\& 1 Mayo Road, Croydon. 01-684 9917. (Sales) [24 VALVES, large stocks, 1930 to 1974, many Cox obsolete types. S.A.E. for quotation. List, 10p. West Wittering 2023.
60 KHz MSF Rugby and 75 KHz Neuchatel Radio 00 Rzceivers. Signal and Audio outputs. Small, compact units. Two available versions $£ 35$ and $£ 60$. Toolex, Bristol Road, Sherborne (3211), Dorset.

[^8]
BOOKS, INSTRUCTIONS, ETC.

COMMERCIAL RADIO INFORMATION Bulletin. Packed with facts on the IBA local radio stations, Radio Luxembourg and the offshore stations. Send
20 p for sample copy or $£ 1.50$ for 10 issues to Com20 p for sample copy or $£ 1.50$ for 10 issues to Commercial Radio News Agency, $67-69$ Chancery
Landon
WC2A
IAF.

CAPACITY AVAILABLE

$\mathbf{A}^{\text {IRTRONICS LTD., for Coil Winding-large }}$ plies. small production runs. Also PC Boards Assemplies. Suppliers to P.O. M.O.D., etc. Export SE13 7PE. Tel. $01-852$ 1706.

TEXAS INSTRUMENTS. SEMCONDUCTOR CIRCUIT DESIGN VOL. III

by B. Norris Price $\mathbf{\$ 5} \mathbf{2 5}$
THE TRANSISTOR \& DIODE DATA by Texas Instruments. Price $£ 2.25$ ERS VOL. MOTOROLASEMICONDUCTORS EUROPEAN CONSUMER DEVICES Price $\mathrm{E4} 25$
SEMICONDUCTOR DEVICES TESTING EVALUATION by C. E. Jowett Price $\$ 5 \cdot 25$ FET APPLICATIONS HANDBOOK by J. Eimbinder. Price $£ 2 \cdot 00$

SOLID-STATE HOBBY CIRCUITS MANUAL by RCA. Price fl 1 IS
ELECTRONICS: A HANDBOOK FOR ENGINEERS SCIENTISTS by G. H. Olsen Price $\mathbf{6 7} .25$
TELECOMMUNICATIONS by J. Brown. Price $\mathbf{E 3} \cdot 20$
DIGITAL ELECTRONIC CIRCUITS * MICROPHONES: DESIGN APPLICA TION by L. Burroughs. Price $£ 10.00$
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. Price $\mathbf{4 4} \cdot 00$
ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 INP
Phone 7234185
Closed Sat. I p.m.

$\mathrm{B}_{\text {sample }}^{\text {ATCH }}$ Production Wiring awings. Deane Assembly to Station Parade, Ealing Common, London, W.S. Tel: | Station Parade, Ealing Common, London. W.5. Tel |
| :--- |
| 01092 |
| 1096 . |

CAPACITY available to the Electronic Industry. Crecision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JG BORER. Write for lists of full plant capacity to C.B. Industrial Tel. $01-985$ 7057.' Mackintosh Lane, E9 6AB

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG 01-267 0201.
$\mathrm{D}_{\text {systems }}^{\text {ESIGN }}$ and development of electronic circuits and systems. Experienced and qualified Engineers available for analogue or digital projects. Box No

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printed circuil assemblies. D. \& D. Electronics, 2 Bishopsfield.
Harlow, Essex.

> COURSES
> R ADIO AMATEUR well planned postal course. Warren Court, Westcliffe Rd., Southport, Lancs.

> R ADIO and Radar M.P.T. and C.G.L.I. Courses FY7 8JZ. Principal, Nautical College, Fleetwood

NEW GRAM AND SOUND EQUIPMENT

GLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2.

REGEIVERS AND AMPLIFIERS

SURPLUS AND SECONDHAND
$\mathrm{H}_{\text {S640 R }} \mathrm{R} 5 \mathrm{~s}$, etc., AR88, CR100, BRT400, G209, Std., Ashville, otc., in stock.-R. T. \& I. Electronics,
Leybville Rd., London, E. 11.
Ley. 4986 .

New surplus stock as illustrated. AC 240 volts. Input power 100VA. Instant heat at touch of trigger switch in handle. Constructed in
PROGRAMME

Designed to
switch central heating
and hot water on/off twice a day
Suitable for any electrical appliance up to 3 amps 240 volts A.C.

VAT paid.
New surplus stock as illustrated Size $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$
Smiths Time Switch with 24 -hour dial which is simple to set to switch onvoff twice per day at any times required. Also fitted with two lever switches which can be set to operate two circuits which can tinuous, or off. Mounted in robust white plastic casing. Drilled for fixing on back supplied with wiring instructions. Ideal for shop lighting and many other applications.
SAE FOR CATALOGUE WITH MANY OTHER BARGANS TO
C. W. WHEELHOUSE \& SON

9/13 BELI ROAD. HOUNSLOW. PHONED1-570 3501

ELECTRONIC test equipment repair service L offered on Avometers, Signal Generators Pulse/ A.M./F.M./C.W./A.F., Frequency Counters, D.V.M.s, P.S.U.S, Oscilloscopes. Production test problems? Why not try us. "Q'" Services Electronic $\begin{array}{ll}\text { (Camberley) Ltd., } \\ \text { Camberley, Surrey. Yateley } 871048 . & \text { Yateley, } \\ \text { [13 }\end{array}$

SIGNAL generators, oscilloscopes, output meters, Wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London, E. 11.
L64.
L986.

SERVICE AND REPAIRS

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage Nop. Somercote, Louth, Lincs, or 'phone 0507-85 300. [27

VALVES WANTED

WE buy new valves, transistors and clean new components, large or small quantities, all details Wolverhampton.

RECEIVERS AND AMPLIFIERS
 SURPLUS AND SECONDHAND
 TWO pair walkie talkies' "GEC" COURIER" carying straps. £24 pair o.n.o. Phone 01-303 6231
 〔3954

NEW GRAM AND SOUND ECUIPMENT
 CLASGOW HI FI, Recorders, Video, Communicaexchange Reciever always available we buy an Audio Visual Ltd., 340 Argyle Street, Glasgow, G.2; 31 Saucbiehall Street, Glasgow, G.1; 8/10 Glassford Street, Glasgow, G.2. Tel. 041-221 8958.
 FOR CLASSIFIEDS
 RING
 ALLAN PETTERS
 01-261 8508/8423

NEW RANGE-TRANSISTOR INVERTORS
TYPE A
Input: 12V DC
Output: 1.3kV AC 1.5MA
Price $\mathbf{£ 2 . 9 5}$
TYPE B
Input: 12V DC
Output: 1.3kV DC 1.5MA
Price $\mathbf{f 4} \mathbf{2 0}$
TYPE C
Input: 12V to 24V DC
Output: 1.5 kV to 4 kV AC 0.5MA
Price $\mathbf{f 5} \mathbf{5 5}$
\section*{TYPE D}
Input: 12V to 24V DC Output: 14kV DC 100 microamps at 24 V . Progressively reducing for lower input voltages. Price $£ 11$
Postage \& Packing 36p. Add V.A.T. at 8\%

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

INIDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 70-82

Pagr	Page	Pam
Aero Electronics Ltd. \qquad Ancom Ltd. A.S.P. Ltd. \qquad A.s.P	Harris Electronics (London) Ltd. 16, 21	Quality Electronics Led. ${ }^{6}$
	Harris, P. ... 83	Quartz Crystal Co. Ltd. 84
	Hart Electronics 25	
	Heath (Gloucester) Ltd. 22	
	Hengstler G.B. Ltd. ${ }^{83}$	
	Henry's Radio Ltd. 52, 53	Radford Audio Ltd. 15
	Hi Fidelity Designs 31	Rank Audio Visual 12
B. \& T. Electronics (U.K.) 46	Highland Electronics Ltd. 30	RCA Ltd. ... 26
Barrie Electronics Ltd. 45		R.S.T. Valves Ltd. ... 50
Bell \& Howell Lid. ${ }^{3}$		
Bentey Acoustic Corp. Ltd. ${ }^{68}$		
Bentley. K. J. \& Partners Le................................. 16		
B.I.E.E.T. Semiconductors ... 48.49	I.L.P. (Electroniss) Ltd. 17	Samsons (Electronics) Ltd. 58
Bi-Pak Semiconductors ... 56	1mtech Products Ltd. 13	Service Trading Co.
Bias Electronics Ltd. 15	Industrial Tape Applications Ltd. 25, 27	Servo \& Electronics Sales Ltd. 68
Broadfields \& Mayco Disposals 84	Integrex Wald Chart .. 28	Sinclair Radionics Ltd. 8, 36, 37
		Sowter, E. A., Ltd. 84
		Special Product Distributors Ltd. 18
Cambridge Audio 69	J.H. Associates Ltd. 26	Sumiks $1 . ~$84Surrey85
Cambridge Learning 24.24		
C.I.E.L.		
Colomor (Electronics) Ltd. 57	K.F. ProductsKeytronics Ltd.L...84	
		Teleprinter Equipment Ltd. ${ }^{29}$
		Telequipment Products (Tektronix U.K.) Ltd. Teleradio Special Products Thorn Radio Valves \& Tubes Litd. Toko (U.K.) Ltd.
		Trampus Electronics 45
	Ledon Instruments Led. .. 19	
		United-Carr Supplies Readers Card
East Cornwall Components 30		
Eddystone Radio Ltd. 14		
Elecironica .-.. 4, 61, 6^{6}	Maplin Electronic Supplies 21	
Electronic Mech. Sub Assembly Co. Lid. ${ }^{8} 846$	Marshall, A., \& Sons (London) Litd................. 59	
Electrovalue .. 47	MeKnight Crystal Co. ... ${ }^{84}$	
Elvins Electronic Musical Insts. 6		Watts, Cecil E., Ltd. 84
English Electric Valve Co. Ltd. 39	Milward, G. F. ... 54	Wayne. Kerr. The, Co. Ltd. ${ }^{\text {W }}$
	Modern Book Co. \qquad 85 Multicore Solders Ltd. \qquad cover iv	West Hyde Developments Ltd. cover iii
		Wheelhouse .. 85
		Wilkinson, L. (Croydon) Ltd. ${ }^{50}$
Farnell Instruments Ltd. 2, 22		Wilmslow Audio 83
Fi-Comp Electronics 45	Nombrex (1969) Ltd. 21	
Foulsham-Tab Ltd. ${ }^{6}{ }_{4}$		
Fylde Electronics Labs. Ltd. 14		
Gardners Transformers Ltd. 20		$\begin{aligned} & \text { Z. \& I. Aero Services Ltd. ... } 68 \\ & \text { Zettler } \end{aligned}$
Grampian Reproducers Ltd. ${ }^{\text {a }}$........................... 84		

[^9]

3 sizes... 4 solutions

Four Westinghouse 67 cm diagonal TV colour tubes. Each one directly responding to the requirements of the European market.

In 1971 we came out with the 90° A67-120X to meet set manufacturers' need for a 67 cm diag. tube. 1972 saw widespread construction of the "slim-line" set and we resonnts with the 10 cm shorter profile 110° A67-140X.

This year an improved version of this tube is available - the A67-410X.

Its "fast-on" technology for solidstate circuitry permits European viewers to obtain a full colour image within $4-5 \mathrm{sec}$. following switch-on of their receiver.

And recently, owing to the employment by many manufacturers of a narrow neck system, we've introduced the compatible 110° narrow neck A67-150X.

All proving that at Westinghouse we make a point of developing finer products to match the dynamic
needs of the industries we serve. Here in Europe and throughout the world.

For further information on these tubes and the many hundreds of other precision devices for industrial and defense application, please write or call:

Electronic Tube Division,
Westinghouse Electric S.A. No. 1
Curfew Yard, Thames Street, Windsor Berks. Phone: 63392.

Multicore Solder preforms, a little something for automatic processes.

Multicore Preforms.

Multicore precision made solder preforms come in virtually any shape or size. Rings, washers. discs, pellets, and lengths of solder tape-in most soft solder alloys. Designed, with or without flux cores, to make the most of automatic soldering processes.a solder preform is simple and accurate to use. It's just positioned between the parts to be soldered and the temperature of the metal surfaces raised to about $50^{\circ} \mathrm{C}$ above the melting temperature of the solder. The solder preform does the rest. Heating techniques can include gas flame hot plate oven conveyor. induction coils.resistance/electrode soldering, hol gas and infra-red.

Multicore Solder Preforms just get on with the job. Automatically.

Our Solder Creams,

 something else again...New Multicore Solder Creams are designed for electronics assembly where quality is vilal. Like manufacturing diodes. for instance or making a tuner chassis, or soldering thickfilm circuits.

A finely graded solder alloy powder in a thixotropic organic vehicle. It's often quicker, cheaper. easier and more reliable than other soldering techniques. It's different. It doesn't spil or need stirring. It can be applied by syringe, automatic dispenser or screen printing - giving instant soldering with good spread. strong joints with low contact angles It can act as a temporary adhesive during assembly and the clear colour flux residue - without solder globules - simplifies inspection.

There are three types of Multicore Solder Cream - one of them may be just what you ve been looking for.
Approved USA Federal Specification OO-S-571E

Multicore Product Ref.	XM 27330	XM 27298	XN 27328
Alloy Composition	62/36/2 Sn/Pb: Ag	130/40 Sn/19	$96 / 4 \mathrm{Sn} / \mathrm{A} 8$
Melting Point or Liquidus ${ }^{\circ} \mathrm{C}$	179	188	221
Recommended Flow Temperalure ${ }^{\circ} \mathrm{C}$	239	250	280
Typical Application	Low Melking Point Soldering ol silver and gold-plated surfaces	General purpose joints requiring high quality soldei crean	Higher lemperal ure resistant joints. Lead free. Higher joint strenglh than $\mathrm{Sn} / \mathrm{Pb}$

On Qualified Products List of U.S.A. Defense Supply Agency

For full information on these or any other Multicore products. please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempslead 3636. Telex: 82363.

[^0]:

 witiog in to the manory.

 The R55 0020 featuras a contipleta mangry syat om an a sirgle pitied citebit boand

[^1]: * delete as applicable.

[^2]: Telequipment <霛>
 Tektronix U.K. Ltd.

[^3]: 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

[^4]: NAME

[^5]: TEST EQUIPNENT
 for direct line for all enquirles regard-
 ing test equipment only, phone

[^6]: HEWLETT PACKARD DIGITAL RECORDER MODEL 565A

 OSCILLOSCOPE CT 436
 Commercial Designation Solarton CD1014
 General Purpose Dual Beam DC.6MHz flat faced double gur cathode ray rube
 operating at 1.6 kV . The time base velocity is continuously verizho
 TIME BASE Free running or itrggerad from positive or negative pulses. Sweep speed 1 cm music to $1 \mathrm{~cm} / \mathrm{mec}$. external continuous waves.
 external continuous
 Internal $3 \mathrm{~mm} \mathrm{P} / \mathrm{P}$,
 External 190
 Sensitivity $100 \mathrm{mV} / \mathrm{cm}$. maximum on Y 2 amplifier $1 \mathrm{mV} / \mathrm{cm}$,
 Size $9 \frac{1}{2} " \times 11 \frac{1}{2}^{\prime \prime}$
 PRICE: $\mathbf{E 6 9 5 0 .}$

[^7]: 25in. WIRED COLOUR TVs. Bush CTV25 (domestic chassis) with colour bars displayed E45 +VAT; Non Workers Tube O.K. $£ 35$ +VAT; Non Workers Tube U.S. $£ 20+V A T$. I 9 in. G.E.C. 2028 available. Quantity discount over 10 Sets, C.W.O.
 $\mathbf{2 5}$ in. AERIAL COLOUR TVs. Bush CTV 25 Thorn 2000 G.E.C. 2028 (90+VAT (displayed working). SECONDHAND COLOUR, Lower Church Street, Stokenchurch, High Wycombe, Bucks. Tel: 024 026 (Radnage) 3321. (2 mins. off M40 Motorway, West Wycombe turnoff.)

[^8]: ARTICLES WANTED
 Wanted, all types of communications receivers Electronics, Ltd.; Ashville Old Hall, Ashvilie Rd. London, E.11. Ley. 4986.

 163

[^9]:

 at a price in excess of the recommended maximum price ahown on the cover, and that it ahall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any namathorised cover by way of Trad or affixed to or as part of any pubilcation or advertining, literary or pictorial matter whatsoever.

