wireless

world

MARCH 1974 20p

Electronic piano
 Horn loudspeaker cecctir

$>$

Long-term frequency stability of 2 parts in 10^{7} - that's good!

1

Lock-in range of 1% makes synchronization

And there's no need for a frequency counter-the decade dials indicate directly the synchronized frequency in 100 Hz steps to an accuracy of 2 parts in 10^{7} - better and better!

You could call it Automatic Electronic Precision Tuning.

Digital control of output frequency (after synchronization) over 1% range without retuning signal generator - better still.

Best of all it's less than half the cost of a frequency synthesizer.

And no false locking points or spurious signals to worry about.

OURS ARE THE LONG DISTANCE TUBES.

60\% of marine radars in the world rely on EEV and M-OV tubes. Because ours are the 'long distance' tubes which are made to last and last - even in the most arduous and varying environments.

EEV and M-OV offer one of the world's widest ranges of tubes for radar: magnetrons, hydrogen thyratrons, pulse modulator tubes,
klystrons, duplexer devices, cathode ray tubes. In fact, whatever marine radar tube you want - we make it. To the highest quality standards, and with a swift technical back-up and replacement service. Write for a complete list of EEV and M-OV tubes for marine radar. Or if you have a specific problem, telephone our Microwave engineers at Chelmsford.

The Dymar 1711 is a VHF/UHF Millivoltmeter with a number of clever, and extremely useful, differences.

Take the compact, lightweight RF probe. This houses two high speed rectifying diodes in a full-wave circuit. The resulting low level DC voltage is amplified in a low noise chopper-stabilized DC amplifier. The rectifying characteristic of these diodes is such that below approxi-

mately 30 mV they follow a square law. The result? True rms response.

Then there are the special linearising circuits used on each of the eight voltage
ranges provided. These ensure completely linear readings between one-third fsd and full scale.

And, as you would expect from Dymar, the instrument is fully portable and provided with a comprehensive range of accessories.

Take a look at this brief spec.

Frequency range:	50 kHz to 850 MHz
Voltage range:	ImV fsd to 3 V
Minimum reading:	$300 \mu \mathrm{~V}$
RMS response:	True below 30 mV

Need to know more? Use the Reader Reply Service or contact Dymar direct.

bMMA
 the name in radiotelephones

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 3732I.
Telex: 923035. Cables: Dymar Watford.

AnDERS MEANS METERS...

REGAL RANGE

E New 100° arc high quality meters at low prices.
国 Rugged taut band construction - pivot and jewel available to order

* Sensitivities to $10 \mu \mathrm{~A}$
- Very competitively priced for OEM quantities
. Modern styled meters in matt black plastic cases with flattened arc giving long scale.

TWO MODELS

R55 $2.5 \mathrm{in}(63.5 \mathrm{~mm})$ Scale length R65 3.2in (81.3 mm) Scale length

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, 1-5", 1•8", 2•7", $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1:3"-5.25" scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale.
DC moving coil and $A C$ moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales, DC moving coil and AC moving coil rectified.

Stafford Long Scale 240° 6 models, $3.5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Models KE1 and KE2
Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$ Available in sensitivities from 50 microamps Moving Coil.

Electronic valves (a comprehensive range) semi-conductors (a wide variety)

 integrated circuits... and now a comprehensive range of Hybrid Microcircuits. Prices on request.Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for technical specifications and prices: Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England. Cables: Tosuply London W11. Telex : 262256

AVAILABLE ONLY FOR EXPORT

Write the Specification . of your perfect iron and compare it with an Antex low leakage for delicate
 MODEL X25 Soldering Iron 220-240 100-120 Volts. The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered

precis son Iron-coated
lat
la volts? "live". Tested at 1500 v . A.C. This 25 watt iron with its truly remarkable heat -capacity will easily "out-solder' any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages.
unique construction advantages.
Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$
2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$
Totally enclosed element, ceramic and steel shaft. Bits do not "freeze" and can easily be removed. PRICE $£ 2.05$ (rec. retail) P \& P10p. Suitable for production work and as a general purpose iron.

MODELCCN

220 volts or 240 volts. The 15 watt miniature model CCN also has negligible leakage. Test voltage 4000 v . A.C. Totally enclosed element in ceramic shaft. Fitted longlife iron-coated bit $3 / 32^{\prime \prime}$. 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ $1 / 4^{\prime \prime}$ and $3 / 64^{\prime \prime}$ including Heat Shield. PRICE $£ 2.48$ (rec. retail) P \& P $10 p$.

MODEL C Miniature 15 watt soldering iron fitted $3 / 32$ iron-coated bit. Many other bits available from $3 / 64^{\prime \prime}$, to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24 . PRICE $£ 2.05$ (rec. retail) P \& P10p.

MODEL G 18 watt miniature iron, fitted with long-life iron-coated bit $3 / 32^{\prime \prime}$. Voltage 240, 220 or 110 . PRICE $£ 2 \cdot 26$ (rec. retail) P \& P 10p.

MODEL SK. 1 KIT
Contains 15 watt miniature iron fitted with $3 / 18^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet.
MODEL SK. 2 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$ heat sink, solder, and "How to Solder" booklet. PRICE $£ 3-25$ (rec. retail) P\&P10p.
 PRICE $£ 3.48$ (rec. retail) P \& P 12p.

MODEL MLX KIT
Battery operated 12 v . 25 watt iron fitted with 15' lead and 2 heavy clips for connection to car battery. Packed in strong plastic wallet and with booklet "How to Solder"
PRICE £2.54 (rec. retail) P\&P12p.

ST3 Stand - This stand is made from high grade insulation material with a chromium plated strong steel spring. It is suitable for all models and replaces all previous stands. The two sponges at the side which are easily replaceable, serve to keep the soldering bits clean. Spare bits can be accommodated as shown on the illustration PRICE: £1.00 (rec. retail l P \& P MOp.

ALL PRICES include VAT at 10\%

Please send the following:

Please send the
ANTEX colour catalogue
enclose cheque/P.O./Cash
From radio or electrical dealers, car accessory shops or in case of difficulty direct from: ANTEX LTD. FREEPOST
(Giro No. 258 1000)
NAME

ADDRESS \square

1

... AND SAVE POWER DRAIN, WEIGHT AND SPACE.

By introduction of new electronoptics in electrostatic deflection CRT's, THOMSON-CSF has overcome the limitations of current tubes: considerable increase of power drain of electromagnetic tubes for higher writing speeds, long gun and very high deflection voltages of conventional electrostatic tubes. While providing excellent resolution and brightness, this new generation of large screen electrostatic CRT's has spectacular advantages, due to unique

Characteristics	Unit	TH 8100 TH 8201	OEE 1333	TH 8000
Useful screen dimensions	mm	180×130	255×190	255×190
Tube length	mm	360	450	450
Post-acceleration volage	kV	20	20	25
Deflection sensitivity (min.)	V / cm	10	6	10
Deflexion linearity (max.)	$\%$	2	1	2
Beam current (peak)	HA	30	30	50
Luminance (1)	$\mathrm{cd} / \mathrm{m}^{2}$	65	35	65
Line width	mm	0.4	0,5	0.4

(1) Ar $1 \mathrm{~cm} / \mathrm{\mu s}$ and 50 Hz refresh rate
performances: high deflection sensitivity. bandwidth and writing speed, short gun. The very high deflection sensitivity results in a considerable size and price reduction of power supplies and deflection amplifiers: for the same screen size, power consumption may be reduced by 100 and volume by 3 . These tubes can be provided with internal graticule for large screen oscilloscopy or without graticule for high speed alphanumeric or graphic monitors.

THOMSON-CSF

DOR Heathkit Electronics Catalogue

There's something for everyone in the latest FREE Heathkit

The FREE Heathkit Instrumentation Catalogue describes the latest Heathkit solid-state oscilloscopes, 120 MHz frequency counter with 8 digit readout, $3 \frac{1}{2}$ digit multi meter for measuring AC and DC voltage, current and resistance with automatic switching for DC polarity, Portable FET VOM with 53 ranges on 4 scales, FET/
transistor tester, plus many, many more Heathkit test instruments-all designed for easy assembly and kit-form savings. Send today for your FREE Heathkit catalogue, the world's largest selection of electronic kits-test, marine, amateur radio, b / w television, stereo hi-fi, automotive, home appliances, educational and more.

FREE
 Heathkit Catalogue

offers something for everyone.
Send for your copy today.
VISIT THE HEATHKIT CENTRES

LONDON

233 Tottenham Court Road.
GLOUCESTER (Factory \& Showroom) Bristol Road, Gloucester.

SM 2001 Digital Frequency Response Analyser (Transfer Function Analyser)
Four decade digital display in Cartesian, Polar or Log Polar form, from 0.00001 Hz to 1 kHz . Measurements in ratio or absolute terms. Remote programming for A.T.E. applications standard. Harmonic analysis capability. Suitcase format easity portable. Fully floating and isolated input and output. Very high harmonic and noise rejection. Resolution to 0.1°. BCD output of all information standard.

SM 2003 Frequency Extension Unit Extends the frequency range of SM 2001 up to 1 MHz . Also extends the harmonic measurement capability and reference synchronisation capability of the SM 2001/2 up to 1 MHz . Fully isolated input and output to the high frequency system under test.

SM 2004 Modulator Demodulator Unit Provides for utilisation of SM 2001 with systems having modulated carrier input and/or output. Carrier frequency 50 Hz to 10 kHz . Modulation frequency 0 to 1 kHz . Fully floating
 and isolated inputs and outputs.

SM 2002 Reference Synchronizer . An internal fitment for the SM 2001 F.R.A. to enable synchronisation from external signals. Will synchronise from virtually any wave form of
almost any amplitude. Permits the use of SM 2001 on systems with mechanical or hydraulic inputs. Extends the use of SM 2001 to closed loop testing or part system testing and also
to the measurement of the phase relationships between outputs of any two transducers or other sources.

SM 272 Transfer Function Analyser
0.01 Hz to 10 kHz . Accuracy $\pm 1 \%$ (D version). Optional analogue or digital read out. Much better than 40dB noise rejection. Dynamic range greater than $25 \times$ FSD. Sine, triangular and square outputs. DC offset capability. Cartesian or switchable cartesian/polar display (P version). 10 millivolts sensitivity. Fully isolated input and output. Independent R / O expanders for small angle accuracy. Very low cost.

SM 2008 Computer Interface A complete package of software and hardware to enable computer control of SM 2001 for any system or frequency change.

SM 2006 Two channel converter (Accessory for SM 2001) Accepts two separate channels from any system or vibrating structure and computes the phase and amplitude relationship between them. Enables both channels to go into correlated input with high noise rejection.

Available Soon

SM 2007 Plotter Interface This unit provides for coupling the SM 2001 frequency response analyser directly into any standard $X Y$ recorder. The resultant plots can be of Bode or Nyquist type. Three outputs are provided, 1. Log frequency, 2. A co-ordinate or amplitude.
3. jB . co-ordinate or phase angle. A dynamic range control and automatic pen-lift are further features.

\square ?
 Miniature paging unit

BY AKG THE LEADING SUPPLIERS OF THE FAMOUS MICROPHONES CONSISTENTLY USED IN OUR T.V. BROADCASTING AND SOUND RECORDING STUDIOS.

This highly successful miniature paging unit has many possibilities. The DST11 paging unit incorporates a high quality directional microphone mounted on a solid base fitted with one or three push button switches and indicator light.
Can be wired for remote control operating to work in conjunction with a relay.

DANAVOX (GT. BRITAIN) LTD.

Electro-Acoustic Components and Hearing Aids
"'BROADLANDS" BAGSHOT ROAD,
SUNNINGHILL, ASCOT, BERKS.
TEL: 0990 23732/6: TELEX 847584

When we listen we become engrossed in the music and, with good equipment, we can often obtain the same satisfaction that we would enjoy in the concer hall. Of course, there are differences between the real and the reproduced. Many of these we recognise as such; we come to terms with them and they do not intrude.
More serious perhaps are the distortions which we do not consciously notice but which are nevertheless continuously producing a contradiction between the
actual and the imagined. They produce listening fatigue, a condition detrimental to the true objective. These distortions have little to do with the popular conceptions of HI-FI or LO-FI sound; on the other hand they have much to do with good or bad engineering.
Send postcard for illustrated leafiet to Dept. (WW) Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone (0480) 52561.

QUAD

will not be participating in the forthcoming Sonex Exhibition and regret any inconverience to our customers.

QUAD is a Registered Trade Mark.

Wic ScRilcs

露 KEP KEF ELECTRONICS LIMITED
TOVIL MAIDSTONE ME15 6QP Tel 062257258
Registered in England No 702392

KEF offer you an excellent choice of loudspeaker systems whatever your requirements. The larger speaker systems such as the Concerto are capable of reproducing more extreme bass and handle higher amplifier power. The difference in sound between the largest and the smallest speaker system is subtle - the high quality and detailed engineering is evident throughout.

KEF believe that restricted space need not necessarily restrict performance - visit your KEF dealer and hear what we mean.

Full details of the Coda ${ }^{1}$, Cantor ${ }^{2}$, Chorale ${ }^{3}$, Cadenza ${ }^{4}$ and Concerto ${ }^{5}$ will be sent on request.

Mullard Crossens: making millions of

At Crossens, near Southport, Mullard produce magnetic components in quantity. Every year the plant converts nearly 5,000 tonnes of raw materials into many different products: about one third of the total output is exported. Approximately one half of the products are supplied to the British TV industry and comprise scan coil yoke rings, LOPT cores, loudspeaker magnets and other components: today, most British sets employ Mullard magnetic components.

Crossens, believed to be the largest single plant of its kind in Europe, employs some 750 people. Their skills in this specialist technology have developed out of more than 30 years' experience in the development and production of Magnadur, Ferroxcube, Ticonal and other Mullard brands which are household names to set designers.

magnetic components for TV

And their ability to mass-produce the 40 million components required by industry every year, to the highest standards of performance and reliability, helps British setmakers to produce the finest TV sets in the world.

Mullard

Vortexion QUALITY AMPLIFIERSFOR THE PROFESSIONAL

50/70 WATT ALL SILICON AMPLIFIER
WITH BUILT-IN 5-WAY MIXER USING F.E.T.S
$£ 93.17$
(VAT extra)

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

100 WATT ALL SILICON AMPLIFIER
$\underset{\text { vat extal }}{\text { £139.15 }}$ THE 100 WATT MIXER AMPLIFIER
$\underset{\text { (VVATexta) }}{\text { 42. }} \mathbf{2 0} \quad 20 / 30$ WATT MIXER AMPLIFIER
$\underset{\text { (VAT extal) }}{£ 123.42} \quad$ CP 50 AMPLIFIER
£163-35 200 WATT AMPLIFIER
F.E.T. MIXERS AND PPMs

Vortexion Ltal

TEL: $01 \cdot 542.2814$ and $01 \cdot 5426242 \cdot 3 \cdot 4$ TELEGRAMS: VORTEXION'LONDON SW 19 257-263 THE BROADWAY-WIMBLEDON - SW19 1SF

Testmatic answers testing problems

Edith Parker easily handles all the Testmatic work in a sub-assembly department of 32 people. When a board leaves that department, it's faultless.

If your product uses elaborate circuitry, it takes skill to faultfind by standard test department methods. But if you put skilled staff on repetitive work, you don't deserve to keep them.

Ansafone's answer was the Testmatic TM30. Repetitive work is what it thrives on-like all machines. It frees qualified staff to do what they were trained to do. And it has other advantages that are just as important.

Mr.S.P. Robinson, a Director of Ansafone states: "An obvious benefit of the Testmatic is that I it helps us educate people working on assembly. If they get faulty boards back at once, they feel that much more involved and more responsible. In fact, we don't even see the Testmatic as a tool of the Test Department but as a tool of the Production Department."

Furthermore, the Testmatic makes money by saving time. Ansafone predict that it will help them reduce routine testing time by half. This is a cool and cautious estimate. There will be people
saying "I-told-you-so" if the saving turns out to be even more dramatic than that.

Once again, that is not peculiar to Ansafone.
The common experience is that from the time
the TM30 is set up ("set up" rather than "programmed,"because the procedure is so simple), it pays for itself in months if not weeks.

[^0]

Already seven sizes of Mazda monochrome tubes have received BSI approval for implosion protection to BS $_{417}$ (1972) Clause 18.
Rimguard construction always has given Mazda the edge. Now the new labels indicating BSI certification are additional evidence that Mazda gives top priority to safety as well as
to performance.
So we'd like to ask you a question. Because the answer could make quite a difference to your business - and your future.
The question is:
ARE YOUR REPLACEMENT TUBES AS SAFE AS MAZDA:

Mollison Avenue, Brimsdown,

Join the Digital Revolution

Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This course of four volumes - each $11 \frac{3^{\prime \prime}}{4} \times 8 \frac{11^{\prime \prime}}{}$-- guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

£2.95 Acomplete programmed learning course in 4volumes

£2.95

including VAT, packing \&

surface post anywhere in the world.
Fayment may be made in foreign currencies.
Quantity discounts are available on request.

Guarantee

If you are not entirely satisfied with Digital Computer Logic and Electronics you may return it to us and your money will be refunded in full, no questions asked.
Designer
Manager
Enthusiast
Scientist
Engineer
Student

This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

To: Cambridge Learning Enterprises, 49 Main Street, Hartford, Huntingdon.

Please send me set(s) of Digital Computer Logic and Electronics at $£ 2.95$ for which I enclose cheque/PO/money order value .

Name

Address

Acos for Sound Enjoyment

COSMOCDRD

Cosmocord Ltd., Eleanor Cross Road. Waltham Cross, Hertfordshire. EN8 7NX Telephone: Walthans Cross 27331 Telex: 24294

Please send me your new Martin Speakers Leaflet giving details of the Minidan and Microdan.

Address:

an excellent

OF SOLID STATE RELAY INTERFACES

To ensure the maximum flexibility in meeting todays Interface requirements Fairy Electronics have added to their range of Solid State Polarised Relays a series of Interface Boards retaining the same inherent reliability and long life. Within the series a Universal Board is available allowing the customer the choice of each side stable, one side stable or centre stable, and double or single current working.

FEATURES

- Isolation to BPO requirements
- 6 to 100 volts output single or double current working
- 3 to 100 volts input single or double current working
- No additional power supplies
- Signals to CCITT recommendation V24 to BPO tariff J lines
- TTL logic or V24 signals to teleprinters

TYPICAL APPLICATIONS

TTL logic to BPO tariff J lines
Single current Telegraph Machines to BPO tariff J lines

In meeting Interface requirements for widely diverse applications Fairey Electronics have built up experience and expertise which is almost unique in this field. Hardly an Interface remains a stranger and all can be solyed.

For further details of our Boards and plug in Relays write to:

Handiul of relay know-how.

We are one of the largest manufacturers of Miniature Plug-in Relays in Europe.

Varley miniature plug-in relays including the Miniaturised Bi-stable polarised relay type VPR

If you have a relay requirement or problem contact Varley Technicians now, or send the and Post Office approved relay type 23 are used and approved by most leading electr. onic manufacturers throughout the world.
 The reasons: PERFORMANCE, RELIABILITY, PRICE.

Varley go to great lengths to ensure a consistently high standard of performance and reliability in the manufacture of their range of relays. Ultrasonic cleaning is used throughout manufacture. Each relay is checked under dynamic conditions for contact performance and timing.

Send TODAY for FREE Catalogue with full details of this and other equipment.

LIGHT SOLDERING DEVELOPMENTS LTD

Technics introduce the true sound of music

No doubt your first question is, "Who on Earth are Technics?"
A good question.
Well, quite simply, we're stable-mates of National Panasonic.
In fact, we're the new hi-fi division of the largest manufacturer of electronics in Japan, Matsushita Electric.

Our sole aim in life is to find that elusive quantity: pure, unadulterated sound.

By and large, turntables, cassette decks, speakers, tuners and amps conspire against it.

What they usually offer is a medley of mechanical noises, rumble, wow and flutter.

We, on the other hand, have managed to minimise them.
Because of the enormous resources of our parent company, we were able to spend the necessary time and money developing equipment as free from audio blemish as possible.

As an example of our handiwork, just consider the specifications opposite for our SL110 direct-drive deck. Besides boasting a pretty impressive set of figures, it is, in our biased opinion, one of the handsomest decks around.

Mind you, at $£ 154.95$ (inc. VAT) it ought to be.
The choice of arm* has been left to you, so that you can achieve that final ' n th' of sound.

Even if it is of Julie Andrews.

SPECIFICA－IONS

Type：Direct driwa player system Turntable：

Aluminiur die－cast； 35 cm （ $-3^{22} \%_{2}^{\prime \prime}$ ）dianteter $320 \mathrm{~kg}-\mathrm{cm}^{2}$ （ $09.5 \mathrm{lb}-\mathrm{m}^{2} 9$ iner ial moment， $2 \mathrm{~kg}(4.4 \mathrm{lb})$ veigrt
Turntable speeds： $331 / 3$ and 45 r．s．m
Motor： 20 poles（－otor）-5 poles（stator） ultra low speed electronically commutatec motar
Power supply：Aこ 110．120 2 ze2．240V 50 or 60 Hz ．
Spe $¥ d$ changemethod：
Varisble pitch control：
Electronic＝ゆange
Individualtecjustment by variable resistor，$\pm 5 \%$ adjustment range
Wow and flutter：Less than ac3\％WRMS
Rumble：Better than－ 55 dE （DIN A）
-70 dB （DIN B）
Build－up time：Within $1 / 2$ rotation at $331 / 3$ r．p．m．
Dimensions： $2 C^{1} / 6^{\prime \prime} \times 7^{1}$ 行 $\times 15^{1}$ 绍
（W）$\times \mathrm{H} \times \mathrm{D}$ ）$\quad(510 \times 195 \times 390 \mathrm{~mm})$
Weight： $287 \mathrm{lb}(13 \mathrm{~kg})$ with dust cover
Player base：Aluminium e－cast with audio inzulated leas

TWO WAY STRETCH by Chessell

DIAL-A-SPAN PROVIDES THE BREAKTHROUGH IN THREE-CHANNEL PEN RECORDER FLEXIBILITY

1 METRE CHART WIDTH RESOLUTION:ON 100 mm CHART PLUS Chewell ENGINEERIIIG- 475

CHESSELL LIMITED Broadwatei Tracing Estate - Worthing - Sussex Tel. Worthing 205222

3009 + SL110

This elegant direct drive unit with electronically commutated d.c. motor has only one rotating part.

The virtual elimination of mechanical vibration within the deck realises the full potential of arm and cartridge.
We have prepared an information sheet No. 12 detailing its use with our Series II Improved precision pick-up arms and a copy will be sent to you on request.

The best pick-up arm in the world

Write to SME Limited

Steyning \cdot Sussex \cdot England
Telephone: Steyning (0903) 814321

High quality specialised components from EFJOHNSON COMPANY

Coaxial connectors. High quality miniature coaxial connectors with full SMA mating cempatibility.

Trimmer capacitors.
Miniature and sub-miniature ceramic and teflon trimmer capacitors.

Vero Electronics Limited
Industrial Estate, Chandler's Ford,
Eastleigh, Hants. SO5 3ZR
Tel: Chandler's Ford 2952
Telex: 47551

Exclusive agent and distributor for United Kingdom. Europe also covered by existing chain of Vero Agents.
Exclusive agent and distributor for United Kingdom. Europe also covered

Ceramic insulators.
Through panel type.
Airspace capacitors A wide range of miniature machined plate air variable capacitors offering extreme accuracy and high reliability.

- - trat

Cool lighing for hot parties.

Velvet dim to full brightness at a touch of the finger. Off/on and infinitely variable.

Beta light glow makes switch easy to find in the dark and consumes no current.

Economical too!
As the light is progressively dimmed, so the current consumption drops - think of it as an electric tap. 300 watt capacity, straight replacement for standard light switch.
 Complete kit of parts $£ 2.80$ or
made up $£ 2.90$. 0

Hoł Ignition for cold momings.

The Jermyn capacitor discharge ignition system.

Instant starting in all weathers. Even with a near flat battery, the unit will produce a full sized spark.

Just one of the many advantages of an electronic ignition system, the others are:

High energy spark even at maximum revs.

Complete set of parts to build it yourself for only $£ 7.75$, as described in Practical Wireless and fully approved by the author.

Save 55p
Buy both for $£ 10.00$

Smoother running.
Less strain on battery and starter. Lower petrol consumption.
Long plug life with infrequent adjustment (typically 20,000 miles, gapped at . $050^{\prime \prime}$).

No contact breaker arcing giving long life and less adjustment (typically 20,000-25,000 miles)

the two part feature are available at 25p.

To Jermyn Industries, 125 Vestry Estate, Sevenoaks, Kent.

All Prices Exclusive of VAT.

Please despatch return of post
light dimmer kit Ignition Kits \quad + or - earth
$£ 10$ pair, Enclose cheque or postal order.
BLOCK CAPITALS
JERMYN
NAME
ADDRESS

Whenever it's a matter of designing or making an oscilloscope, remember one essential fact Brimar have a complete range of tubes for operation up to $75 / 100 \mathrm{MHz}$ bandwidth. Many with ex-stock delivery.

The fact is : the current Brimar range of tubes is the largest in Europe - with as many as twenty-five different versions to choose from Brimar are continually revising and updating their range to meet the demands of the market. The latest additions are the Dio-2 30 and D10-240 (4" compact tlat faced tubes) and the Di6-100 (XY plotter)

The quality of Brimar tubes is unquestionably good. Improve your scope - telephone or write for full or abridged data and prices o:-804 1201

TYPES TO ASK FOR:

D_{3-130}	D_{13-51}	D_{14-172}
D_{7-200}	D_{13-471}	D_{14-180}
D_{7-201}	D_{13-600}	D_{14-200}
D_{10-210}	D_{13-601}	D_{14-210}
D_{10-230}	D_{13-610}	D_{16-100}
D_{10-240}	D_{14-150}	$S_{4} D$
D_{13-30}	D_{14-170}	SE $_{5 / 2} A$
D_{13-33}	D_{14-171}	$S_{5} F$
D_{13-47}		

THORN RADIO VALVES \& TUBES LTD

When you use Jackson 'Discon' Trimmers you're using the slimmest trimmers on the market. With a maximum thickness of only 2.8 mm , capacitance ranges up to 40 pF , a Discon miniature ceramic dielectric trimmer capacitor is space saving, with a high capacitance per unit of volume.

With Jackson you know you're using tried and tested components that will give perfect reliability over a long life. And you can have components custom made to suit your individual requirements.

With skilled personnel and modern equipment backed by 45 years of technical know-how, we are your guarantee of a reliable product.

Catalogue No. 10,000
rite for fully illustrated catalogu
JACKSON BROYHERS (LONDON) LIMITED
KINGSWAY, WADDON, CROYDON CR9 4DG.
TEL: 01-681 2754/7. TELEX: 946849.
U.S. OFFICE: M. SWEDGAL

258 BROADWAY, NEW YORK, N.Y. 10007.

1.) Celestion's new super (weeter, 2.) New design 'pressure mid-range unit. 3.) Ultra Linear $12^{\prime \prime}$. Bass drive unit. 4.) A.B.R. ensures controlled bass down to 16 Hz .
5.) Precision crossover for perfect system integration.

A naw Loucspeaker of advanced desig suitable for studio use and for torr a installations of the hig iest quality. UlNTS: HF 200: (dorne "pressure' type MF 500 (Mid-range Dome "presture' type) Ultra linear 12" bass driver and 12" $A B R$. Te erossover has resulted from considerable researci and crossover points are at 500 Hz and 5000 Hz 80 Wa:t Maximurs, 4-8 shm. This monitor loudspeaker system ha; an exceptionally wide and flat frequency response. Verylaw onder harmonic and inter-medulation distortion. Precise responsz to transients. Beautifully maintained polar reipense ensurzs absence of unwanted directional effects and provides a wighly satisfactory stereo image chroughout the listerinfarea. Mazched pairs.
SIEE $45 \times 1 \frac{1}{3} \times 11 \frac{1}{2}$ Natural Teak or Waind Cabinet
Celestion \square
Luusseakeres tor rene eerectioninst ROLA CELESTION LTD.
BTTO WOFKS, FOXFALL ROAD. IPSWICH, SUFFOLK IP3 8JP

The 6130 variable d.c. power unit provides laboratories and test rooms with a new compact supply at an exceptionally low price. Among its many features are separate output and mains switching and individual voltage and current meter.
Price in Great Britain. \&29
Output Voltage $0-30 \mathrm{~V}$ continuously adjustable
Output Current $0-1 \mathrm{~A}$ with four current limit settings of $30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}$. 1A Meter f.s.d. switched 100 mA or 1 A
Input Voltage $220-250 \mathrm{~V} 50-60 \mathrm{~Hz}$ with tappings for 230, 240V
Output Two insulated screw terminals Connections (incorporating 4 mm plug sockets) spaced 25 mm ($1.0^{\prime \prime}$) apart Dimensions $190 \mathrm{~mm} \times 158 \mathrm{~mm} \times 152 \mathrm{~mm}$ $712^{\prime \prime} \times 6^{1 / 4^{\prime \prime}} \times 6^{\prime \prime}$ forward thinking in electronics HATFIELD INSTRUMENTS LIMITED Burrington Way. Plymouth PL5 3LZ, Devon. Tel. Plymouth (0762) $772773 / 4$ Grams: Sigjen. Plymouth. Telex : 46592
South-East Asia: for prompt service and deliveries, contect
Hatfield Instruments (NZ) Lid., P.O. Box 561, Napier, Naw Zealand

Circular type with
or without or without

BULGIN New Multi Range Collet Knobs and Accessories

CAPS
Four styles available which snap fit to knob tops.

KNOBS

Four different types available in five sizes.

A들SBRIES
Pointers, Dials, Stators, Nut covers, all snap fitting to the knobs.

A new and versatile range of twenty collet fixing control knobs, together with various snap on accessories illustrated below, manufactured in Switzerland to our rigorous standards and only available from the House of Bulgin.
There are four basic styles: Circular Knob, Circular Knob with line, Wing Knob and Wing Knob with line. They are available from stock in light grey and black as standard, with dark grey and red versions to special order. Each knob style is available $10,15,21,28$ and 36 mm diameter with collets accepting $14^{\prime \prime} \phi$ shafts as standard. Other shaft sizes to special order.

TYPICAL EXAMPLES OF THE KNOBS \& A SELECTION OF THEIR ACCESSORIES.

Caps

```
Wing type with or Wing yype with or
without indicator
``` available
plain or with
curved arrow.

Pointers \& Dials
Nut Covers

Pointer, also arrow dials.

Transparent dials availabid with or without legending.

Stator

With fine or broad indicato band.
lat with
indicator line. Peaked cap Prestine. rype.

Peaked cap
type.

\section*{STOP PRESS : \\ BULBS FROM BULGIN A NEW ISSUE OF OUR ILLUSTRATED PRICE LIST IS NOW AVAILABLE}

TECHNICAL LITERATURE AVAILABLE ON REQUEST. QUOTE: WW/6/74
 A. F BULGIN \& CO. LTD.

ELECTRONIC COMPONENT MANUFACTURERS
BYE-PASS ROAD BARKING ESSEX IG11 OAZ
TEL: 015945588 (12 lines) P.B.X. TELEX: 897255 WW- 034 FOR FURTHER DETAILS

\section*{The Great Sound of Vitavox}

Nothing succeeds like success.
You met the new Vitavox power range last year. Its success was instantaneous, and has been growing ever since.
Good - but not good enough for us. We have been, and are, continuously improving our units. We want to give you the best value and perform ance - so now we offer you, improved on 1973 the latest . .
- S3 Pressure Unit
- AK 156 Loudspeaker
- H.F. Horn
- Dividing Network

The matchless range -now better than ever... Giving You ...

V/TMI OM
Westmoreland Road, London NW9 9RJ
Telephone: 01-204 4234

Please send me further information on your product range
\(36^{\prime \prime} \times 18^{\prime \prime} £ 4.56\) each inc. VAT
\(36^{\prime \prime} \times 24^{\prime \prime} £ 5.42\) each inc. VAT
Obtainable from sole UK Distributors
AMTRON UK LTD., 4 \& 7 Castle St. Hastings, Sx.
Telephone: HASTINGS 2875

*Attractive designs and colours.
*Washable. *Easily cut to size.
FLUTED PATTERN \(3 / 4^{\prime \prime}\) Thickness Black or Brown \(12^{\prime \prime} \times 18^{\prime \prime} £ 1.90\) each inc. VAT
\(24^{\prime \prime} \times 16^{\prime \prime} £ 2.78\) each inc. VAT

WW-035 FOR FURTHER DETAILS
*Declon speaker front material is a fully reticulated flexible polyester foam.
*Acoustically transparent over all audible frequencies.
DIAMOND PATTERN "3/4" Thickness Black or Brown
\(24^{\prime \prime} \times 16^{\prime \prime} £ 2.97\) each inc. VAT
\(36^{\prime \prime} \times 18^{\prime \prime} £ 4.75\) each inc. VAT
\(36^{\prime \prime} \times 24^{\prime \prime} £ 5.61\) each inc. VAT

 operating efficiency with absolute wearer comfort.
With Minilite, Amplivox have avoided the problems of the old fashioned earplug inserts through ingenious use of an adjustable earpiece. An acoustic tube with sibilant filter replaces the heavier and more familiar boom microphone. Pressure pads are out too, instead there is a non-metallic headband with special bars that give stability without uncomfortable pressure.
Specified for Eurocontrol, Minilite is being widely used in air traffic control, aviation and communications control as well as other branches of industry. Minilite is, undoubtedly, the headset of the seventies. It's just one of the wide range of high-quality specialist products for civil and military use from Amplivox. No-one else offers so much for so little.
To find out more about the Amplivox range of communications products - write today stating your application requirements to:
Racal - Amplivox Communications Limited Beresford Avenue, Wembley, Middx., England. Tel: 01-902 8991. Cables: Amplivox Wembley. Telex: 922101

\section*{From Goldring. New support for the belief that what goes into a record ought to come out of it.}

The Theory is perfectly simple.
A good cartridge should take from a record all the subtle shades of original sound that are stored there, and re-create them for your enjoyment.

The Practice is a little more difficult.
Now Goldring bring the ideal closer with the new 820 series.

A brand new family of cartridges that builds on the advances already achieved by the Goldring 800 series. Providing cartridges that are not only capable of making the most of all that good recording can offer now, but have the capacity to keep pace with new developments in the art of quality recordings.

The 820 series retains the true transparency of sound and the true transduction techniques of earlier designs.

It brings advances in every aspect of design.
The small low-mass diamond point which is mounted on a new type of specially polished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie wire' minimises fore and aft sty'us movement, reducing non-linear distortion to a minimum.

The total effect is a cartridge that, other equipment being equal, can narrow almost to vanishing point the difference between the original recording and the sound that comes out of your speakers.

There are three models in the range. The 820 with spherical stylus. The 820 E and 820 Super E, both with bi-radial styli. Write for details and full specifications.

And satisfy yourself that 'what goes in comes out'.

\title{
BRITAN'S FASTEST SERVICE!
}

A SELECTION FROM OUR COMPREHENSIVE CATALOGUE

\section*{[idijstone Radio}

\section*{Now the EC958/7 High grade professional receiver}

Illustrated brochure from:

\section*{Eddystone Radio Limited}

\section*{THE MINITEST IS PREFERRED}

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean
plastic cover with pressed steel case.
Controls are simple and easy to use.
Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively. Third, high voltage probes. These extend the range to 25 or 30 kV d.c.

Little wonder the Minitest is preferred!
SALFORD ELECTRICAL
INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles,
Manchester M30 OHL
Telephone: 061-789 5081. Telex: 667711
A member company of GEC Electrical
Components Ltd
\(\boldsymbol{E E C}\)

\section*{OVERSEAS AGENTS REQUIRED}

Established British Company has developed a new approach to Spectrum Analysis enabling them to offer a high grade reliable instrument at a fraction of the normal price.
The Spectrum Analyser is a self contained module useable with any general purpose oscilloscope. Any signal from 10 mhz to 850 mhz can be displayed and any multiple of signals up to 400 mhz width can be seen at any one time.
Resolution is better than 25 khz and the price is less than \(£ 100\) (one hundred pounds sterling)/f.o.b. Importers already selling to schools, Universities, and companies involved in the R.F. field who are interested in receiving further information should write to

Box No. 3541

\section*{low cost memory card is easy to interface....}

\footnotetext{
Limiose's low cost Random Access Memary Cord \(\ddagger\) ype RSS 3000 use:s 'stotic' memory chips and is very easy to interfoce with ony equipment. All inputs and ourouts are TTL comparible and no clock or timing considerations ore necessary when reoding oi writing into the memory.

The RSS 3000 features a complefe memory system on a single printed circuit board and measures \(6 \frac{1}{2}\) Inch \(\times 7 \frac{1}{2}\) Inch with a 43-woy edge connector terminotion. Also availoble is a Memory Address Register for exponsion up to 4076 words, and o power supply card suitable for driving up to four RSS 3000 cords of a time.
Fully decoded address lines, Tri-state output, simple asynchronous control lines and low cost makes this system ideal for use os a buffer store in small computers erc.
}
limrose electronics Itd.
8-10 KINGSWAY, AITRINCHAIM, CHESHIRE, WAI4 IPJ
Tel. 0619288063

\section*{Motorola leadswith powerdevices.}

\section*{Whatever your application and whatever your field, Motorola has the perfect power device for the job.}

\section*{Automotive}

Motorola leads with thyristors and transistors for high efficiency, high voltage ignition, and transistors for seat belt interlock systems.

Motorola improves reliability with transistorised voltage regulators and power rectifier bridges for alternators.

\section*{Computers}

Motorola leads with low cost Darlington transistors, permitting CMOS and MOS to interface with large current devices-from milliamps to amps.

Motorola tryristors and triacs are in service in perioherals all over the world.

\section*{Consumer}

Motorola leads with silicon, plastic and metal can transistors, and thyristors for TV convergence, deflection and power supply stages.And Motorola's NPN and PNP Darlington transistors are ideal for today's audio amplifiers.

Industrial
Motorola leads with a unique range of Beam-Fired thyristors for very high power DC to AC inverters.

Our high voltage power transistors and thyristors give smaller, more efficient switching power supplies.

And we're still very much committed to Germanium - the most economic solution for low voltage/high current applications.

Silicon or Germanium transistorsand there are 6 types of device construction available in olastic or metal packages-and monolithic Darlingtons mean that there's a reliable Motorola power device for every application.

\section*{(A) \\ MOTOROLA Semiconductors}

Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middlesex. Telephone: 01-902 8836
European manufacturing facilities at Toulouse and East Kilbride.
Distributors: Celdis Ltd., Reading.
East Kilbride;
GDS (Sales) Ltd., Slough, Dublin;
Jermyn, Sevenoaks; Lock Distribution.
Oldham; Semicomps Ltd., Wembley.
Paris Components Show
Motorola: Aisle-E, Stand 82.

\section*{plug into Black Arrow we have some great connections...}

When you want action in electronic components, plug into a newcomer: Black Arrow Electronics-the new name for Wirelect of Bristol
Still a member of Edward Electronic Holdings Co. Still operating from Bristol. Still the same experienced team.
Only now the service is Nationwide.
This is a newcomer with great connections. Over 20 major manufacturers to call on, and still more in the pipeline. A big new warehouse, holding stock currently valued at \(£ 250,000\)-and growing. The ability through a policy which is based on action, not words, to take your order and turn it round faster than ever before. Why not see how an electronic component supplier should operate. Pick up the phone and plug into Black Arrow.
A new name. A great service!

\section*{Our manufacturing connections:}
A.E.I. Semiconductors Lid. Belling \& Lee Ltd.

Avo Ltd.
A. F. Bulgin \& Co. Lid

Electrolube Ltd.
Evershed \& Vignoles Ltd
J. Lucas (Eleçtrical) Ltd.

Mallory Batteries Ltd.
Multicore Solders Lid.
Shackman Instruments LId.
Vitality Bulbs Ltd.
Weller Electric Ltd
Antex Ltd.
We can connect you with:
Circuit protection Crimp terminals Domestic valves C.R.T's I.C's Indicators Lamps Meters L.E.D's displays Passive components Plugs and sockets Soldering irons Switches Timers Tools and Kits Contact cleaning solvents Connectors Cores Instruments Industrial valves Knobs Mercury cells and batteries Lubricants and greases
Metrohms Oscilloscope cameras Semiconductors Solder Safeblocs Test equipment Terminals

\section*{black arrow electronics}

St. Thomas Street, Bristol BS1 6JW
Or ring Bradley Davies (0272) 209313
We like dealing with people who have good connectionsespecially when the turnround of order is as fast as you say!

PLEASE SEND the new Black Arrow Electronics 200-page catalogue
PLEASE ASK the Black Arrow Engineer to "phone and make an appoiniment Entirely without obligation

\section*{Name}

Company
Address

\section*{Ampexand \\ WHA?}

The JAMES SCOTT Alignment Units for T.R.and E.M. Multi-Channel Tape Recorders.

If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone.

WW-049 FOR FURTHER DETAILS

The Acoustically matched 800 watt audio system includes automatic noise sensing announcement level adjustment devices, multi access and routing facilities, emergency back-up power supply and a range of loudspeakers including the unique Super Cardioid Golf Ball Speaker.

Photo ay permíssion of Bri: sh Airports Author ty.
MANUFACTURERS OF SOUND SYSTEMS AND ELECTRONICS

AUDIX LIMITED STANSTED ESSEX CM24 8HS TELEPHONE: BISHOP'S STORTFORD 813132 (4 lines) (STD 0279)

\section*{You.could} design yourself a reputation around this M-OV tube. - It's the best beam tetrode you can buy. - Offers lowest possible cost per watt - Communications transmitters all over the world depend - and goon clepending - on the famous M-OV TT21.
- Characteristics:Frequency \(30-60 \mathrm{MHz}\), Output Power 174W, Anode Dissipation 37.5W,
Anode Voltage 1250V.

\section*{EEV AND M-OV KNOW HOW. \\ THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE.} Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. G.G.C. 늘

WW-053 FOR FURTHER DETAILS

\title{
Gardners lime up
}

\section*{Line MatchingTransformers from Standard to Super Fidelity}

Gardners)

\section*{GARDNERS}

TRANSFORMERS LIMITED

\section*{The new Rank WOW \& FLUTTER Meter Type 1742}

Fully transistorised
for high reliability

\section*{Versatile}

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy
with crystal controlled oscillator

\section*{Simple to use}
accepts wide range of input signals with no manual tuning or adjustment

\section*{Two models available:}

Type 1742 'A' BS 4847: 1972 DIN 45507
CC1R 409-2 Specifications
Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, PO Box 70 Great West Road, Brentford Middlesex TW89HR
Tel: 01-5689222. Telex 24408. Cables Rankaudio Brentford

\section*{RANK FILM EQUIPMENT}

WW-094 FOR FURTHER DETAILS
 copper soldering bit, catalogued by Adcola, giving you the most comprehensive range of British-made soldering bits yet! Face sizes from \(\frac{1}{32^{\prime \prime}}\) to \(\frac{3}{4}{ }^{\frac{3}{2}}\) Shank sizes \(\frac{1}{\frac{1}{3} "}\) to \(\frac{1_{2}^{\prime \prime}}{}\).

\section*{Packaging} that pleases

Styrene packed soldering bits for easy identification
Package prevents damage to bits Perforated for ease of dispensation

\section*{ADCOLA PRODUCTS LIMITED, ADCOLA HOUSE,} GAUDEN ROAD, CLAPHAM, SW4 6LH
DEPT.WW8SOLDERING BIT SALES.
Please send me your latest soldering bit catalogue

\section*{NAME}

ADDRESS:

\section*{Audio} Test Set

\section*{foramplifiers, mixers tape recorders}

Checks ... frequency response signal/noise ratio distortion
cross-talk wow \& flutter drift
erasure
sensitivity output power gain in one compact unit.

Auxiliary Unit provides extra facilities for Studio testing.

PHASE LOCK LOOP RECEIVERS
Type 1101 Satellite Band. \(136-138 \mathrm{MHz}\).
1.5 dB . Noise Factor. High system gain. Automatic search and lock facility tunes receiver to satellite transmission in range without manual adjustment and enables several satellites to contribute to picture print-out without operator involvement over an extended period. Single channel or manual operation may also be selected. The unit is designed and rated for continuous duty monitoring service. The output drives facsimile picture equipment directly
Type 1202 Telemery. 102 MHz
XM. puse. Automatic signal tracking and locking : \(\quad\) E280

Type 1302 Communications. Single or multi-channel. AM
Type \(1303 \quad 250-470 \mathrm{MHz}\)
Type 1401 Radiometer. Type 1451 Interferometer. 81.5 MHz 151.5 MHz
Type 1402 Radiometer. Type 1452 Interferometer. 408 MHz
1101, 1202, 1302, 1401, 1451: \(4 \frac{t^{\prime \prime}}{} \times 3 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1}{4}\)
1203. \(1303,1452,1402: 6 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime} \times 2 \mathfrak{t}^{\prime \prime}\). Aluminium diecast case

FREQUENCY CONVERTERS
Tyoe 1051 Input frequency as specified in the range 1 to 250 MHz . quency as specified in the range 200 to 700 MH Size: \(4 \frac{1}{2} " \times 2 \frac{11^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{}\). Aluminium diecast case

\section*{RF AMPLIFIERS}

Type 1014 LOW NOISE FRT RF PREAMPLIFIERS
Frequericy: As specified in the range 1 to 250 MH
Frequency: As specified in the range 1 to 250 MHz .
Bandwidth: \(\quad\) As specified from \(1 \%\) to \(20 \%\) of centre frequency.
Noise Factor:
Gain:
Type 1015
Frequency:
Bandwidth:
Noise Factor:
Gain:
Type 1021
Frequency:
Bandwidth:
Noise Factor
Impedance:
Gain:

\section*{Types 1}

Size: \(\quad 1015.1021\). \(3 \mathrm{t}^{\prime \prime} \times 1 \frac{1}{4 \prime}^{\prime \prime} \times 1 \frac{1}{4 \prime \prime}^{\prime \prime}\). Aluminium diecast case
Connectors: BNC. N. UHF, or as specified
Weight:
1.5 dB . 150 MHz .

30 dB . 100 MHz . Adjusiable
LOW NOISE RF/IF AMPLIFIERS
As specified in the range 1 to 150 MHz
As specified from \(1 \%\) to \(40 \%\) of centre frequency
1.5 dB . @ MHz

60 dB . @ MHz. Adjustable -60 dB .
TUNEABLE STRIPLINE PREAMPLIFIERS
350 MHz . to 2 GHz . Continuous varicap tuning
Adjustable.
1.1 dB . @ 350 MHz .2 dB .@ 1 GHz .3 dB .@ 2 GHz

Adjustable

4 oz .

15 dB . 500 MHz 10 dB @ \(1 \mathrm{GHz}\).
V.A,T. applicable at the current rate excepting export orders.

SPECIAL EMERGENCY SERVICE. An emergency service is now available for very rapid delivery of standard and
Illustrated brochure available on request.
special equipment. For further information telephone Mr. P. H. Strudwick, Faversham 2064.

\section*{BIAS ELECTRONICS}

\section*{PROFESSIONAL RECORDERS}
for broadcasting and studio use.
Our range includes console, transportable and rack mounting machines.
 station loggers all to IBA requirements.
BIAS ELECTRONICS LTD.
572 Kingston Road, London SW20

DC/AC SINEWAVE TRANSVERTORS
(transistorised Invertors/Convertors)

All prices \(+10 \%\) VAT. All \(50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}\). Also available \(60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}\) at same'price.
For operating frequency and wave form sensitive equipment such as sound tape recorders, video tape recorders, professional film cameras, sensitive instruments, etc.
Other models avaitable for inputs of 24, 50, 110 and 220 volts DC. Square waveform output also available, generally from stock. Send for informative brochure.

\section*{NBW VAF INCDUSTVE PRICBS \\ ortasas casomens sumy art sersesm}

\section*{EHROMASOMNE Electronics}

Dept. 5.
56. Fortis Green Road, London. N1O 3HN
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
DIGITAL CLOCK \\
MM5314 \\
12 or 24 hour. 4 or 6 digit
50 or 60 Hz eading soltage supply \(\begin{array}{ll}\text { W. March } 1973 . \\ \text { Only } & \text { ع } 7.99\end{array}\)
\end{tabular} & & & \\
\hline & & & \begin{tabular}{l}
A1018 \\
A1005MS \\
similar
\(\qquad\) \\
etc black \& match A1005S
Our Price 55.95
\end{tabular} \\
\hline Mel INY & N & & \\
\hline
\end{tabular}

\section*{Check in one direct}

\section*{move with Brandenburg's new HV meter}

We thought it was about time somebody supplied direct reading meters for high voltage, so we've produced three-one for up to 5 kV , one for 15 kV and one for 30 kV to complement our range of HV power supplies.
The meters are operated by two 9 V internal batteries (800 hours life) linked with a built-in checking facility. Positive or negative ground is available, selected by a front panel switch. And, as with all Brandenburg products, there is a 12 months unconditional guarantee.

Accuracy of \(1 \%\) fsd over voltage range of \(0-30 \mathrm{kV}\) d.c.
- Less than \(1 \mu \mathrm{~A}\) drawn at 30 kV d.c.
- 4.5in (114 mm) scale mirror-backed meter.
\(\square\) Temperature range \(5-35^{\circ} \mathrm{C}\).
- Dimensions only \(7 \times 8 \times 5 \frac{1}{2}\) in high (\(200 \times 145 \times 178 \mathrm{~mm}\)).
\(\square\) Recorder output.
Yet another Brandenhurg piece in the high voltage game

\section*{brandenburg STABILISED HIGHVOLTAGEM}

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey. CR4 6JE, England. Tel: 01-689 0441 Telex: 946149

\section*{mownwwwownwor These Strippers Give YouThe Lot!}

Speedex Wire Strippers give you everything you need for fast, efficient wire stripping. The range includes standard, semiautomatic and fully automatic models and seven different size cutting heads for all wire gauges from No. 8 to 30. They are also available as kits in tough plastic boxes complete with blades. Write now for illustrated literature.

SPECIAL PRODUCTS DISTRIBUTORS LIMITED,
81 Piccadilly, London W1V OHL.
Tel: 01-629 9556. Cables: Speciprod London.
HAMAAMAMAMAMANAMAMA
WW-061 FOR FURTHER DETAILS
HEPWORTH EIECTRONICS
A DIVISION OF B. HEPWORTH \& CO. LTD.
Bank Buildings, Kidderminster.
PRESENT
\begin{tabular}{l|l}
ELECTRONIC & AC-DC \\
DEVELOPMENT & PRECISION \\
CORPORATION & CALIBRATORS
\end{tabular}

DC milli Volt Calibrator MV105
ṪHIS IS ONLY ONE UNIT FROM THE E.D.C. RANGE OF MANUAL OR PROGRAMMABLE VOLTAGE STANDARDS.
Tel: 05622212 or 3 for Data and Price

We're rather good at changing the future. After every I.E.A. exhibition, the world's never quite the same again!

Because the I.E.A. exhibition is the world's unique show window for the latest technical developments in process control instrumentation, automatic test equipment, electronic components, process control, production equipment, scientific instrumentation, computer hardware and data handling equipment.

And because each I.E.A. exhibition acts as a "think tank" for engineers from all over the world, who examine, compare and discuss the developments since the last exhibition.

The exhibition itself continues to escalate. Since its foundation in 1957 it has more than tripled in size. In 1972 it attracted over 700 companies from 22 countries, and 4,824 visitors from 69 overseas countries.
I.E.A. '74 is a special landmark - the first to be held since the setting up of the enlarged EEC.

Olympia, London
Olympia has good bus and underground connections with London's West

End, and is close to the West London Air Terminal. There is a multi-storey car park adjacent to the exhibition hall. Overseas

\footnotetext{
Tollndustrial \& Trade Fairs Limited,
Tolndustrial \& Trade Fairs Limited,
Commonwealth House, \(1-19\) New Oxford
Street, London WCIA IPB, England. Telephone:01-2429011. Telex: 262567. Cables: Indatfa London WCl .
1. Please send me further details and complimentary tickets.for IEA' \(74 \square\)
2. Please send me details of the Conference \(\square\)
3. Please send me details of the special travel \(\square\) hotel.accommodation \(\square\) and package deal \(\square\) facilities offered by the official IEA travel agent.

Name
Company

}
visitors will be provided with special amenities and facilities - information centres, lounges, interpreters and help with travel and accommodation.

Travel
To make your visit trouble-free and enjoyable, our official travel agents, Louis Duforest, will take care of your travel to London, hotel accommodation; and excursions. These can be booked individually or as a "package".

For full details of this comprehensive service, just fill in the coupon.

\section*{International Instruments Electronics Automation Exhibition}

13th-17th May 1974 Olympia, London. Open daily \(10.00-18.00\)

\section*{Z \& I AERO SERVICES LTD.}

THE MANAGEMENT ANNOUNCES WITH REGRET THAT DUE TO RISING COSTS AND STAFF SHORTAGES OUR MAIL ORDER SERVICE WILL HAVE TO BE CURTAILED. NO MAIL ORDERS WILL BE ACCEPTED BELOW \(£ 5.00\) PLUS VAT, I.E. \(£ 5.50\) VAT PAID. OUR EQUIPMENT WILL STILL BE AVAILABLE TO PERSONAL CALLERS ONLY AT OUR RETAIL BRANCH, 85 TOTTENHAM COURT ROAD AND TRADE COUNTER, 44A WESTBOURNE GROVE, W2, WHERE THE ABOVE LIMIT WILL NOT APPLY, MINIMUM ORDER CHARGE FOR ACCOUNT CUSTOMERS IS \(£ 10.00\).

OUR NEW 1973/1974 CATALOGUE OF VALVES, SEMICONDUCTORS, PASSIVE COMPONENTS AND TEST EQUIPMENTIS NOW REAOY. PLEASE SEND f0. 15 FOR YOUR COPY. EXPORT PRICE LIST AVAILABLE TO BONA FIDE FOREIGN CUSTOMERS.

\section*{Head Office:}

44a WESTBOURNE GROVE, LONDON, W. 2

Write now for frez destriptive litryature.
Sole Li.K. Agen for Switheraft () Commectors

\section*{F.W.O.BAUCH LIMITED}

WW- 065 FOR FURTHER DETAILS

\section*{P.C.BORED?}
- not with the

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

\section*{NO MESS - NO MASKING A perfect circuit every time!}

The Decon-Dalo 33 PC marker is now available in France, Germany, Italy, Switzerland, Austria and all Scandinavian countries. Send for details of local supplier.
Please send me further details on the 33PC:
Name
Address
Post to: DECON LABORATORIES LTD.
FREEPOST
PORTSLADE,BRIGHTON,ENGLAND
(No Stamp Needed) Phone O273 414371
I

\section*{ARE YOU LOOKING FOR COMMUNICATION ANTENNAS}

HY-Q ANTENNAS LIMITED, a newly formed company with technical staff having 10 years experience in the development of radio telephone ship to shore, satellite tracking, telemetry and broadcasting antenna, together with a well equipped laboratory are now offering Professional Communication Antennas.
At this time we are able to offer VHF and UHF Yagis. Centre Fed Dipoles covering low and high bands and are rapidly developing further new ranges. Stocks are being maintained and in instances where your orders cannot be supplied from slock, we guarantee delivery within 7 days. We would greatly welcome your enquiries and details of specifications and prices may be obtained by telephoning in the absence of our printed catalogue.

\section*{HY-Q ANTENNAS LIMITED, \\ Pondwood Close, Moulton Park Industrial Estate, Northampton. Tel: Northampton 48129 Cable Address: Hikeant, Northampton, England.}

WW - 068 FOR FURTHER DETAILS

If it's produced by Gardners it must be something special, and it is! Now available, modets 107 A and B are 240 volts a.c from 12 providing battery systems.
Both models offer unusually high output ratıngs enabling the user to operate many conventional loads such as luations where main power supplies are not available.

Gardners inverters are designed to drive any mains operated equipment which is not-unduly sensitive to the difference between sine and square waveforms. Incandescent lamps. TV sets electro tield of possibleaplic
wide hield of possible applications Both the 107A and B models are rated at 300VA (300W U.P.F.) and will accommodate reasonable short term overloads. Price f 67 plus VAT. Brochure GT 28 glad/y sent on request.

\section*{GARDNERS \\ TRANSFORMERS LIMITED}

Gardners Transformers Limited Christchurch Hampshire BH23 3PN Telephone 02-015 2284 TELEX 41276 GARDNERS XCH. WW-069 FOR FURTHER DETAILS

The new battery operated Avo B150 Mk2 measuring
 bridge has all the features that made the B150 the finest you could buy, plus greater sensitivity. And an easier to use, better designed panel.
You still get the positive error-free digital readout. Still the same compactness. Still the same high standard of Avo engineering.

But the newly increased internal sensitivity makes possible the full range of d.c. resistance measurement using only the internal 9 v battery supply.
You can also measure a wide range of inductance, capacitance and resistance at a frequency of 1 kHz using the internal oscillator, or at other frequencies with an external source.

You can take it that there's no better bridge around.
So why look? Contact your nearest Avo distributor for further information.

Avo Limited, Archcliffe Road,
Dover, Kent, England.
Tel: Dover (0304) 202620

WW-071 FOR FURTHER DETAILS

\section*{SCOPEN3D-25}

The precision scope for
the demanding engineer
\(3 \%\) accuracy - which just about summates this new 25 MHz dual-trace instrument from Scopex. A professional scope by any standards yet at \(£ 185\) in a price bracket far below its design specification.

* DC-25MHz, full screen
* Measuring accuracy 3\%
* Signal delay on both channels
* Trig level and polarity from one simple control
* Wide timebase range \(200 \mathrm{~ns} / \mathrm{cm}\) to \(200 \mathrm{~ms} / \mathrm{cm}\)
* Sensitivity \(10 \mathrm{mV} / \mathrm{cm}\) to \(50 \mathrm{~V} / \mathrm{cm}\)
* High brightness PDA tube
* Lightweight portability

Write now, or telephone:

\section*{Scopex Instruments} Limited,
Pixmore Industrial Estate, Pixmore Avenue,
Letchworth, Herts.
Tel: Letchworth 72771 (STD 04626)

\section*{Texas Instruments have found a better way... ... to find a pin outline}

A brand new card index that takes the mental gymnastics out of I.C. layouts and trouble shooting.

The Texas Instruments Pin Configuration Guide will sit tidily on your desk. It contains 44 tab-indexed cards in a flip-top box. At your fingertips - over 250 devices covering series 74 N and the popular 72 and 75 N devices.

For the first time a set of pin configurations which show the package from the bottom as well as the top.
At regular intervals new cards will be produced to update and extend the system.

Texas Instruments - always looking for a better way.

Texas Instriuments MS21 Manton Lane Bedford

Please send me.
.Pin Configuration Guides at \(£ 1.50\) each (including 30 p P \& P) Total Cheque enclosed for \(£\).

Name
Address

\(\qquad\)
\(\qquad\)

In fact the meter you need for general laboratory bench or field use can be found in our range of Multimeters. All are competitively priced and include unique technical features.
Deliveries are currently exstock
For full details send for our new brochure

\section*{cOSMOCORD}

Cosmocord Ltd., Eleanor Cross Road. Waltham Cross, Hertfordshire Telephone: Waltham Cross 27331

WW- 075 FOR FURTHER DETAILS

\section*{Maxi-Super HT 1810 and Maxi-Mini HT 1800 \\ Solder Sippers}

Designed for use when working or re-working P.C. Boards. Permits removal of molten solder from Multi-leg components, enabling easy extraction. The solder is 'sipped' through the nozzle, and automatically ejected when the instrument is next used. A Swiss precision instrument manufactured to a high degree of accuracy
The anti-corrosive outside casing has a knurled finish for more positive grip, and encases plated internal parts.
The Maxi-Super has been designed with a 3.5 kg . spring action recoilless plunger, whilst the Maxi-Mini with its conveniently shaped operating button, has a 2.5 kg . spring action plunger. protected by a channel guard. Both models have been designed with an easy-to-replace 'dupont' teflon screw-in nozzle.

PLEASE FORWARD without obligation further details. \(\qquad\) PLEASE SUPPLY PLEASE SUPPLY Maxi-Mini HT 1800 at \(£ 4.95\) Maxi-Super
1810 at \(£ 6.60\) \(\qquad\) 1800
enclose cheque value \(f\) __POSITION COMPANY

ADDRESS

\section*{HIGH POWER DC-COUPLED AMPLIFIER}

* UP TO 500 WATTS RMS FROM ONE CHANNEL
* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
\(\star\) FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.

\author{
* 3 YEAR WARRANTY ON PARTS AND LABOUR
}

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over \(20,000 \mathrm{~Hz}\). The abllity of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Phase Response Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise \((20-20 \mathrm{kHz})\) Other models in the range

DC-20kHz @ 150 watts + 1db. -Ods. 500 watts rms into 2.5 ohms \(+0,-15^{\circ} \mathrm{DC}\) to \(20 \mathrm{kHz}, 1\) watt \(8 \Omega\) Below \(0.05 \%\) DC to 20 kHz Below \(0.05 \% 0.01\) watt to 150 watts Greater than 200 DC to 1 kHz at \(8 \Omega\) At least 110 db below 150 watts watts per channel

\section*{Slewing Rate} Load impedánce Input sensitivity Input Impedance Protection Power supply Dimensions D150-150 D150-150 watts per channel

\section*{MACINNES LABORATORIES LTD}

MACINNES HDUSE, GARLTON PARK INDJUSTRIAL ESTATE. SAXMUNDHAM, SUFFOLK IP 17 2NL
TEL: (0728) 22622615

\section*{WW-077 FOR FURTHER DETAILS}

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into \(8 \Omega\)

10 K ohms to 100 K ohms
Short. mismatch \& open cct. protection \(120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}\)
19" Rackmount. 7" High, 93** Deep

WW-078 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Si 452 \(\mathbf{\$ 3 5 . 0 0}\) Distortion Measuring Unit. \(15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%\)

J. E. SUGDEN \& CO., LTD. Tėl. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, BD19 5LA

MODEL 8 MK.V

WW-081 FOR FURTHER DETAILS

WW-082 FOR FURTHER DETAILS

OCLI manufacture an extensive range of Infrared Filters cosering the entire 1.0 to 30 micron spectral region.

Filters in these regions presen: an excellent solution to filtering out righ-te mperature radiation without aprreciably limiting the signal from the source being observed. Moreover, they have proven cakakility over wide operating temperatures.

OCLI I. R. Filters are made to exact Customer specifications or a range can be supplied from stock.

Typical fields denefitting from OCLI I.R. Filters include:
- GAS ANALYSERS/DETECTION SYSTEMS
- INFRARED PASEIVE THERMAL IMAGING SYSTEMS
- FIRE DETECTIOA
- POLLUTION DEIECTIOR
- OPTICAL PROXIMITY FUSES
- INFRARED SPE STROSCOPY
- INFRARED PHCOGRAPHY
- SPACE RECONHAISSAMCE

Write for the new OC:I catalcgue and price list of stock I.R. j/ters.

\section*{OCLI}

QPTICAL COATINGS LTD.
Hillerc Industrial Estate, Dunfermline, Fife KY11 5JE. Tel. Inverkeithing 3631 (STD C38-34 3631).

\section*{ENGINEERS}

\title{
Hill: \\ YOURSELF FORA BETTER JOB mm MORE PAY!
}

Do you want promotion, a better job, higher pay? "New Opportunities" shows B.I.E.T. home study course. There are no books to buy and you can pay-as-you-

The B.I.E.T. gutde to success should be read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It

\section*{frifuinicy meiers}
used as standards in many industries
- Accurate to \(\pm 0.3 \%\) or \(\pm 0.1 \%\) as specified
- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors. load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C. and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges \(10-1700 \mathrm{~Hz}\). Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery
ANDERS ELECTRONICS LIMITED
48/56 Bayham Place, Bayham Street. London NW1. Tel: 01-3879092

WW-086 FOR FURTHER DETAILS

\title{
small size BIG performance \\ \\ The New FP-71U TV Camera from Shibaden
} \\ \\ The New FP-71U TV Camera from Shibaden
}

Shibaden's new FP-71U TV Camera brings high quality results within the reach of every CCTV user. It is extremely compactmeasuring less than \(4^{\prime \prime} \times 5^{\prime \prime} \times 12^{\prime \prime}-\) yet the \(2 / 3^{\prime \prime}\) separate mesh vidicon ensures pictures of exceptionally high resolution, (500 TV lines at centre). The lightweight body makes it superbly mobile, total weight is only 3.3 Kg , and the detachable \(3^{\prime \prime}\) electronic viewfinder allows for extreme ease of focusing and composition, so it is the ideal camera for use both in the studio and on location.

The FP-71U features white clip circuitry to eliminate the saturation noise that occurs during recording and playback with a video tape recorder. Provision is made for external synchronisation where more than two cameras are used.
The FP-71U is equipped with an automatic light sensitivity control which takes over to control the light sensitivity in the range from 35 to 100,000 lux. (3.5 to \(10,000 \mathrm{fc}\)). This, together with the special C mount which gives free selection of lenses - wide angle telephoto and zoom help to ensure perfect results every time the FP-71U is in action.
If you would like to see a live demonstration or prefer to receive our technical data sheet, please contact Shibaden's Technical Service Department at 01-203 4242 or write to:

\section*{Just released in complete electronic kit form...: \\ a highquality colour television receiver.}

A really up-to-the-minute kit with all these plus features

9 integrated circuits
Ready-built and aligned IF module

High quality components
Plugs and sockets for easy panel removal
Full technical
construction manual

Thick film resistor units Glass epoxy printed circuit panels

Fully isolated power supply Each module kit available separately

LT supply regulators

\section*{METER PROBLEMS?}

A very wide range of modern design instruments is available for \(10 / 14\) days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-091 FOR FURTHER DETAILS

\section*{ROGERS}

\section*{AUDIO TEST EQUIPMENT}

A comprehensive, versatile range of A cost equipment primarily designed for the measurement of high quality audio equipment, but with additional applications in the electronics industry in general. The equipment is of particular interest to the professional audio engineer, recording studios. broadcasting authorities and educational establishments.

DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. Selling Price: Chassis - \(£ 132.50 . \mathrm{c} / \mathbf{w}\). Case - £140.00 + VAT.
S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A, is the measurement of total harmonic distortion. Selling Price: Chassis - \(£ 56.50 . c / w\). Case - \(£ 62.50+\) VAT.
AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and, principally for measuring low level signals in high impedance circuits. Selling Price: Chassis - £64.00.c/w. Case - \(\mathbf{£ 7 0 . 0 0}+\) VAT.

Model 'A' Noise Generator. A portable Model A Noise Generator. A portable battery operated unit designed for carrying or "White' noise can be selected and output can be continuous or burst. Output is continuously variable. Selling Price:, \(£ 32.50\) +VAT.

ROGERS DEVELOPMENTS (Electronics) LIMITED
4/14 Barmeston Road, London SE6 3BN. England
Telephone: 01-698 7424/4340
WW—092 FOR FURTHER DETAILS

\section*{1"and \(1 / 2 /\) Videotape from Dixonstechnical. At very non-technical prices.}

Our \(\frac{1}{2}^{\prime \prime}\) Tape range.
SCOTCH \(\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}\)

Recommended Price Dixons Price (Exc. VAT)

Average recommended Dixons price price (Exc. VAT)

1075 ft on 8' \(\mathbf{8 1}^{1 "}\) NAB Metal Spool
£15.00
\(£ 7.00\)
\begin{tabular}{lcc}
\hline \begin{tabular}{l}
1500 ft on \(8^{\prime \prime} \times 1^{\prime \prime}\) \\
NAB Metal Spool
\end{tabular} & \(£ 19.50\) & \(£ 7.50\) \\
\hline \begin{tabular}{l}
2150 fton \(8^{\prime \prime} \times 1^{\prime \prime}\) \\
NAB Metal Spool
\end{tabular} & \(£ 20.75\) & \(\mathbf{£ 9 . 5 0}\) \\
\hline \begin{tabular}{l}
3000 ft on \(93^{\prime \prime}\)
\end{tabular} & \\
NAB Metal Spool
\end{tabular}

All Dixtec Video Tapes are of the highest quality; we supply \(\frac{1}{2}\) ''in air-tight containers, also \(1^{\prime \prime}\) on metal spools. Current stocks are high, but so is demand. We recommend you place your order quickly.

Please send me reels of Tape.
Size Dixongth Price
TOTAL PRICE:
I enclose a cheque made payable to Dixons Technical Limited.

NAME
ADDRESS

\section*{NEW STANDARD CASES from OLSON NEW SERVICE FROM STOCK - DESPATCHED BY RETURN OF POST}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & WIDTH & HEIGHT & DEPTH & FRONT PAN DIM. & PRICE & LEG EXTRA \\
\hline 21 & \(6 \frac{1}{2}{ }^{\prime \prime}\) & \(4 \frac{1}{2}{ }^{\prime \prime}\) & \(4 \frac{1}{2}{ }^{\prime \prime}\) & 6"×4" & f2.95 & 70p \\
\hline 22 & \(8 \frac{1}{2}^{\prime \prime}\) & \(5 \frac{1}{2}{ }^{\prime \prime}\) & \(5 \frac{1}{2}^{\prime \prime}\) & 8"×5" & f3. 30 & 70p \\
\hline 23 & \(10 \frac{1}{2}{ }^{\prime}\) & \(6 \frac{1}{2}{ }^{\prime \prime}\) & \(6 \frac{1}{2}^{\prime \prime}\) & \(10^{\prime \prime} \times 6^{\prime \prime}\) & £3.95 & 75p \\
\hline 24 & \(12 \frac{1}{2}{ }^{\prime}\) & \(7 \frac{1}{2}{ }^{\prime \prime}\) & \(7 \frac{1}{2}^{\prime \prime}\) & \(12^{\prime \prime} \times 7^{\prime \prime}\) & f4.30 & 75p \\
\hline
\end{tabular}

Our Trade Counter is open for personal callers from 9 a.m. to 5.30 p.m. Monday-Friday
Cases made from 20swg. zinc coated \(\mathrm{m} / \mathrm{s}\). Front \& rear panels 16 swg . aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

\title{
THE FRUITS OF
}

The SUPER 2000
HIGH IMPEDANCE MULTIMETER
f22.40
Suited to Field, workshop and laboratory use, the
SUPER 2000 is a high sensitivity portabie multo.
rreter with a Grade 1 moverient clear arad simple
treter munh a Gritor scatie and tough simple-to use case
It features:

- WIOE RANGES 0.15 V up to 1.5 kV d.c. 2.5 V up to 1.5 kV a.c. 20 OA up to 5.0 A

- ACCURACY + \(2.5 \%\) a.c. and ti.c.

Complete with case. leats and instructions

CHINAGLIA

WW-096 FOR FURTHER DETAILS

\section*{sheer mialfoling Machines}

\section*{BENCH MODEL}
\(36^{\prime \prime} \times 18\) gauge capacity ... £40.00 carr. free \(24^{\prime \prime} \times 16\) gauge capacity \(\mathbf{f 3 8 . 0 0}\) carr. free Also the well-known vice model of
\(36^{\prime \prime} \times 18\) gauge capacity ... \(E 21.00\) carr. free \(24^{\prime \prime} \times 18\) gauge capacity ... \(\mathbf{5 1 5 . 0 0}\) carr. free \(18^{\prime \prime} \times 16\) gauge capacity ... \(\mathbf{£ 1 5 . 0 0}\) carr. free Add \(10 \%\) VAT to total price of machine

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.
One year's guarantee. Money back if not satisfied.
Send for details:
A. B. PARKER
foLDing Machine works, UPPER GEORGE STREET, HECKMONDWIKE, YORKS. Telephone 403997

WW-098 FOR FURTHER DETAILS

\section*{DAVENPORT}

FULLRANGE LINE SOURCE PUBLIC ADDRESS

\section*{Wind \(\begin{gathered}\text { Laqoutof } \\ \text { SPEAKER UNits }\end{gathered}\) SPEAKER UNITS}

Twelve 8 ' \(\times 5\) " elliptical and one 12' ' twin cone CABINET HEIGHT 66'

SPEAKERS
 SPEAKER UNITS

Eight \(8^{\circ "} \times 5^{\prime *}\) elliptical and one 10' twin cone CABINET HEIGHT 48'

A BROCHURE GIVING FULL SPEGIFICATION; INCLUDING SPECIFIC SOUND PRESSURE LEVELS, FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FROM THE MANUFACTURERS.

\section*{S. B. DAVENPORT LTD.}

ELLES RD., FARNBOROUGH, HAMPSHIRE, ENGLAND TELEPHONE FARNBOROUGH (HANTS) 514551

WW-097 FOR FURTHER DETAILS
 WW-099 FOR FURTHER DETAILS

\section*{\(L /\) pulse generators}

Dual Channel 5 MHz 10 ns \& 20 MHz 5 ns , 10 V outputs, graduated verniers. Single/double pulsers PRF to 50 MHz , risetimes from 2 ns , outputs to 50 V .

\section*{the pulse source...}

WW-101 FOR FURTHER DETAILS

\section*{CHECKMATE PROFESSIONAL TEST PATTERN GENERATOR}

The unique test card edge enables the completely accurate picture alignment of colour and monochrome receivers without the need of a broadcast test pattern. The crystal derived patterns and waveforms make extensive use of digital i.c. logic. The stable and reliable 625 line high resolution patterns are crosshatch dot and white field. Full \(2: 1\) interlace with complete synchronising and blanking waveforms. Continuous tuning over all channels in each band.
B.N.C. video outputs into 75 ohms available for CCTV use on all models. B.N.C. video outputs into 75 ohms available for CCTV use on all models Compact- \(8 \times 3 \times 6\) ins. Light weight \(-3 \frac{1}{2} \mathrm{lbs}\).
\begin{tabular}{ll}
Model CCH-1 UHF Bands IV \& V & \(\mathbf{£ 6 9 . 0 0}\) \\
Model CCH-VVHF Band 1 & \(\mathbf{£ 7 0 . 0 0}\) \\
Model CCH-V2 VHF Band II & \(\mathbf{£ 7 0 . 0 0}\) \\
Model CCH-V3 VHF Band III & \(\mathbf{£ 7 0 . 0 0}\)
\end{tabular}
U.K. customers add VAT. Overseas customers CIF quotations on request. Send for further information from the sole agents

MANOR ENGINEERING
The School House, Crookham Common, Newbury RG15 8EJ, England. Telephone: Headley 487
Telegrams: MANORENG, NEWBURY.

Advanced off-air frequency reference. Phase-locked, with Signal Monitor. A lab standard
Signal source, type 1. Precision frequency reference
Osborne source (W.W. Jan'73), de luxe version
Kit for construction of an Qsborne-based signal source
Full range of items for Cluadrophony (full lists sent with all goods supplied)
CBS-SQ Matrix Decoder using MC1312P (see W.W. Nov 1973) kit (\(\frac{1}{2}\)-hr. to build)
CBS-SD Decoder as above, built and tested production board, uses MC1310P iri holder, inc. LED
Advanced phase-lock-loop Stereo Decoder on board, regulator provision, typically 40dB separation.
Fits any set-full instructions supplied
Stereo Decoder, as above, but in kit form (about 60 mins to build) per pair
Superb \(20 \mathrm{~W} 8 \Omega\) Loudspeakers, as used for "P.E. Rondo", built in white or teak
Easy-to-build Kits for above Loudspeakers, per pair Goldring G101/2 Turntable Chassis, less cartridge Deutsche-Elac STS 144/17 Cartridge, ideal high-quality, low-priced unit for Matrix quad
52.00 +
\(535.50+\)
\(\begin{aligned} & \mathrm{f} 22.90\end{aligned}+\mathrm{f} 1.00\) carr. + VAT \(£ 2.39\)
nstrument Cases, attractively featured with black Vinyl-covered steel top and sides, aluminium front
and back panels. Exclusive!
 + VAT 17p.
Handy little Aluminium Boxes, with lids and screws: Box \(1-5 \frac{3^{\prime \prime}}{4} \times 2 \frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime} \times 1 \frac{12^{\prime \prime}}{}=42 \mathrm{p}\). Box \(2-4^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}=42 \mathrm{p}\). Box \(3-4^{\prime \prime} \times 2 \frac{3}{4}{ }^{\prime \prime} \times 1^{\prime \prime}{ }^{\prime \prime}=42\) p. Box \(4-5 \frac{1}{4}^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}=47\) p. Box \(5-4^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}=42\) p. Box6- \(3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}=34 p\). Box \(7-7^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}=66 p\). Box \(8-8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}=84 \mathrm{p}\). Box \(9-6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}=54\) p. BA bolts, nuts, washers: \(0,2,4,6\), 8. 10 BA. 20p Pkt. of 10 . All prices + VAT.

A FUIL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED. ALI UNMARKED PRICES POST FREE. AS MANUFACTURERS AND DISTRIBUTORS WE WELCOME TRADE AND EXPORT ENQUIRIES. COMMUNICATIONS CONSULTANTS ...INSTRUMENT DESIGNERS . . FOUR-CHANNEL SOUND SPECIALISTS.

\section*{RAPID REPLY ORDER}
Please print clearly and detach coupon along the dotted line
0.A.F.R.
\(\mathbf{£ 8 5} .00+\) VAT \(£ 8.50\)
S.S.I. f66.00 + VAT £6:60
D/LOS.S. \(\mathbf{£ 3 8 \cdot 0 0}+\) VAT \(£ 3.80\)
OS.S. K. \(£ 30.00\) + VAT \(£ 3.00\)
SQ-DEC. K f8. 00 + VAT \(£ 0.80\)
SO-DEC. B. \&T. . \(\mathbf{£ 1 1 \cdot 0 0}+\) VAT \(£ 1 \cdot 10\)
PLL-DEC. B.\&T. . \(\mathbf{f 6 . 9 5}+\) VAT \(£ 0.69\)
FLL-DEC. K.f5-95 + VAT \(£ 0.59\)
PR/LS/teak'white \(£ 44 \cdot 00+\) VAT \(£ 4 \cdot 40\)
\(\mathbf{2 K} / \mathrm{LS} /\) teak/white \(\mathbf{£ 3 7 . 5 0}+\) VAT \(£ 3.75\) \(\mathrm{G} 101 / 2 \ldots \mathrm{f} 23 \cdot 90\) + VAT \(£ 2 \cdot 39\) STS 144/17 \(\ldots \mathbf{f 6} \cdot \mathbf{9 0}+\) VAT \(£ 0.69\)
\begin{tabular}{|c|c|}
\hline Case A & f1.45 + VAT 14 p \\
\hline Case B & f1.95 + VAT \(19 p\) \\
\hline Case C & f1.70 + VAT 17p \\
\hline Box No. & 0 aty \\
\hline Box No. & Oty \\
\hline BA Pkt. & \\
\hline Money by cheq & o/bank dratt. \\
\hline Prease & \\
\hline
\end{tabular}

\title{
(57) Phoenix Electronics (Portsmouth) Ltd.
}

Reg. Office: 139-141 Havant Road. Drayton, Portsmouth, Hants. PO6 2AA.

\section*{affes}

Full member of AFDEC - the industry's association of franchised electronic component distributors. NOW - you can get the same service and range of products normally available to industrial customers. Brand new devices from the industry leaders in component manufacture - large stocks on our shelves. Our prices include VAT at the current rate - and carriage on all goods is free.
Send for our catalogue and price list - we'll mail that to you free, too.
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Please send your catalogue - free! \\
Name \(\qquad\) \\
Address \(\qquad\)
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Pack \({ }^{\text {ACTIVE FILTER }}\) & READ/TEXAS 20w amp. & \multicolumn{3}{|r|}{POWER SUPPLY} \\
\hline 1 Fibreglass PCB (accomo- & Pack
1 & & 2OW/CHANNEL & Stereo \\
\hline dates all filters for one 1.05 & \begin{tabular}{l}
1 Fibreglass PCB \\
2 Set of resistors, capacitors
\end{tabular} & & & \\
\hline \[
\begin{aligned}
& \text { channel) } \\
& 2 \text { Set of pre-sets, solid }{ }^{1.05}
\end{aligned}
\] & pre-sets (not including & Pack & & \\
\hline 2 tantalum capacitors, \(2 \%\) & O/P coupling capacitors) 1.10 & & Fibreglass PCB & 50 \\
\hline metal oxide resistors, \(2 \%\) & 3 Set of semiconductors 2.40 & & Set of rectifiers, & zener \\
\hline polystyrene capacitors \(\quad \mathbf{4 . 2 0}\) & 6 off each pack required for stereo & & diode, capacitors, & \({ }^{\text {fuses, }}{ }_{2.60}\) \\
\hline 3. Set of semiconductors - 2.65 & system & & fuse holders & \\
\hline 2 off each pack required for stereo system & 4 Special heat sink assembly for set of three amplifiers 85 & & Torodial transform & 4.95 \\
\hline & 5 Set of 3 O/P coupling & & & \\
\hline SUITABLE ALSO FOR FEEDING & itors 1.00 & & & \\
\hline ANY OF OUR HIGH POWER & 2 off packs 4,5 required for stereo & & QU & \\
\hline
\end{tabular}

AVAILABLE FROM APRIL 23rd 1974. ORDERS DESPATCHED IN STRICT ROTATION FROM THAT DATE

\section*{PRE-RELEASE OFFER!}

UNTIL APRIL 22nd
(Orders received after April 22nd subject to \(10 \%\) VAT)

\section*{WE PAY YOUR VAT}

Applies to goods advertised on this page only

WW-106 FOR FURTHER DETAILS

\title{
If you want the Cambridge Pot. phone Dover 202620
}

That's the 'phone number of Sullivan, manufacturers of the original Cambridge workshop pot that's designed for the testing and calibration of thermocouples and associated indicators and controllers.
It's completely portable. And now, fitted with the 3334 solid state dc detector, its rugged construction coupled with its ability to maintain its accuracy, makes it a must for either workshop or laboratory. And it weighs just 6.12 kg . You'll find the price is really competitive too.

WW-107 FOR FURTHER DETAILS

Get in touch today for further detailed specification. Just telephone the number above or write to the address below.

\section*{Sullivan}

L Thorn Measurement Control \(\frac{1}{\text { тй }} 1\)

\section*{Still the lowest cost Storage Oscilloscope in the world, the DM64}

When Telequ pment first produced the DM 64 in 19:2 hey vertured that. al \(=36^{*}\) it was probatly the lowest cost dua trice storage oscilloscope in the world Now a year anc colntless users later. it can still be -a_ed es the lowest-cost storage scope \(n\) the world

In keeping with Teleouipment's triction for offering high perormance at a senz Jle price. this instrument features storage time of up to ore hcur \(\equiv\) bandwidtr of 10 MHz at \(10 \mathrm{mv} /\) div sensitivity. X-Y operation \(t y\) switcting vertical amplifiers, and a tirrebse range of \(\mathrm{zsz} / \mathrm{dw}\) \(-100 \mathrm{~ns} / \mathrm{div}\) n 23 calibrated positions

\footnotetext{
- Exclusive of VAT
}

\author{
[3 Bistable storage or convertional displays \\] Up to \(250 \mathrm{~cm} / \mathrm{ms}\) writing speed \\ [Single-shot storage \\ \(\square X-Y\) and invert facilitios \\ \(\square 8 \times 10 \mathrm{~cm}\) display \\ \(\square\) Small-size, lightweight
}

Write or contact us now for full cetails and to arrange e demonstration so thex you may see for yourself the true value of the DM 64

Taktronix U K. Ltc.,
Eeaverton House, P.O. Box 69,
Farpenden. Heats.
Talephone: Marjendon 61251 Telez: 25559

\title{
wireless world
}

Electronics, Television, Radio, Audio MARCH 1974 Vol 80 No 1459

\section*{SIXTY-THIRD YEAR OF PUBLICATION}

The cover picture shows overlapping traces on a three-pen recorder made by Chessell Ltd. Thumb-wheel selectors provide 450 sensitivities and 1999 datum shift settings.

\section*{Contents}

1 Social Responsibility in Communications
2 The Value of School Projects by E. R. Laithwaite
4 An f.e.t. Curve Tracer by L. G. Cuthbert
6 News of the Month
8 Electronic Piano Design - 1 by G. Cowie
14 Conferences and Exhibitions
15 Letters to the Editor
Hi fi equipment standards
Surround-sound with headphones
18 Circuit Ideas
Unusual class A amplifier
Deflection coil driver
19 Horn Loudspeaker Design - 1 by J. Dinsdale
24 Literature Received
25 Microwave Landing Aid
26 Sixty Years Ago
27 Audibility of Phase Distortion by B. B. Bauer
29 Simple f.m. Modulator/Demodulator for a Magnetic Tape Recorder by B. D. Jordan
31 Multimeters by B. Sexton
39. Television Broadcasting from Satellites-2 by D. B. Spencer and K. G. Freeman

44 Checking Peak Inverse Ratings by J. M. Osborne
45 Circards - 12: Wideband amplifiers by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

48 H.F. Predictions
49 Electronic Calculator Components Offer
50 Announcements
51 Motional Feedback in Loudspeakers by H. D. Harwood
52 New Products
56 World of Amateur Radio
al15 APPOINTMENTS VACANT
a 152 INDEX TO ADVERTISERS

\section*{ibpa}

Ress Asscrates
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George \(\mathbf{H}\), Mansell
Publisher: Gordon Henderson

\section*{EEV LEDDICONS.} THE

\section*{ACCURATE COLOUR TUBES.}

The EEV Leddicon is the advanced tube that is accurately made with high purity materials. The benefits of EEV's attention to accuracy are exceptional ease and speed of line up, tube consistency and dependability.

\section*{Accurate registration, geometry.}

Perfect colour registration can be achieved in seconds on a good camera automatic, semi-automatic or manual. Precise grey scales, the toughest test of a camera tube, are easy with the Leddicon.Geometry, too, is precise: a clear picture every time.

Insert to image in seconds.

\section*{A good image gets around.}

Leddicons are in use with most major colour networks-BBC, IBA, CBS, ABC, ABC Australia, NZBC, SRG Switzerland, ORTF France, Polish TV, ORF - Austria, Czechoslovakia TV etc. The tube has a good image. And so does EEV service. Leddicons are available from EEV agents in all markets.

Every station needs EEV Leddicon accuracy. For information and data contact your EEV agent or EEV at Chelmsford, England.

Quick accurate pictures with the accurate tubeEEV's Leddicon.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Photoconductive camera tubes with high sensitivity lead oxide target, for high definition pick-up in monochrome and colour broadcast cameras. Features of these tubes include very short lag, low dark current and unity gamma.} & P8003 & Red channel & 30 mm diameter, separate mesh with extended red response \\
\hline Type & Application & Construction & \[
\begin{aligned}
& \text { P8005 } \\
& \text { P8005B }
\end{aligned}
\] & Monochrome Blue channel & 30 mm diameter, separate mesh with \\
\hline P8000 & Monochrome & 30 mm diameter, & P8005G & Green channel & light bias \\
\hline P8000 B & Blue channel. & integral mesh & P8005R & Red channel & \\
\hline P8000G & Green channel & & & & \\
\hline \[
\begin{aligned}
& \text { P8000L } \\
& \text { P8000R }
\end{aligned}
\] & Luminancecha Red channel & & P8008 & Monochrome & 30 mm diameter \\
\hline P8001 & Monochrome & 30 mm diameter, & P8021 & Monochrome & Mechanically \\
\hline P8001B & Blue channel & separate mesh & P8021B & Blue channel & interchangeable with \\
\hline P8001G & Green channel & & P8021G & Green channel & 1 -inch separate \\
\hline P8001 L & Luminance cha & & P8021L & Luminance channel & mesh vidicons \\
\hline P8001R & Red channel & & P8021R & Red channel & \\
\hline
\end{tabular}

\section*{wireless world}

\section*{Social Responsibility in Communications}

\section*{Editor:}

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

Phone 01-261 8339
KEITH NEWTON
Phone 01-261 8515
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
"Men themselves make their history but in a given environment which conditions them" wrote Friedrich Engels in the 19th century. In the present century the "given environment" is increasingly being shaped by technologists. Electronics and communications engineers in particular are changing that part of the environment which most strongly conditions the humanity of man - the available means for using symbols and messages. The invention of printing led to one cultural revolution. Telecommunications, broadcasting and audio-visual records are resulting in a new cultural revolution, according to a recent book "Communications Technology and Social Policy"*. If this is so, electronics and communications people bear an immense responsibility - in providing the means for influencing man's most central notions of his own existence, values, priorities and relationships. Are they in fact conscious of this responsibility?

The book draws attention to the variety of ways in which broadcasting, among other forms of communication, is being extended and modified, not merely by the provision of more channels but by cable distribution, satellite transmitters and cassette and disc records. One paper argues that this proliferation of communication "outlets" will lead to the "deprofessionalization" of broadcasting organizations - a process comparable with what has been occurring for some time in the church. "There will be little room for the professional elitism that thrived in the situation when the broadcaster not only could presume he knew what was best for the public but was also encouraged to do so by those interested in keeping control over popular culture" say the authors Gurevitch and Elliott. In another paper Dennis Gabor (the inventor of
holography) suggests that the increase of programme choice will probably produce a cleavage in the public: "The educated will choose more and more cultural features, the culturally deprived even more pornography and violence. The technologist could no more than enlarge the choice". Throughout the book the communications engineer appears as a shadowy figure apparently with no will of his own, a mere instrument by which technological change manifests itself.

Of course the technologist can shelter behind the consideration that his job is only to provide the means of communication, not to control the uses to which they are put. From a blinkered point of view this is true. From a wider point of view, if the technologist makes a living (or perhaps a profit) from co-operating in providing and developing the means of communication, either through public corporations or through the commercial system, he is in partnership with the users and therefore has a social responsibility whether he likes it or not. So far, unlike some scientists (viz. the British Society for Social Responsibility in Science) he has not been very vocal about this involvement. We invite him to have his say through this journal.

\footnotetext{
* An international collection of 36 papers by technologists, social scientists, educators, communications experts and the like, published by John Wiley \& Sons Ltd., Chichester, Sussex, price £9.00.
}

Project is a new venture for Wireless World and originated with our belief that the future of electronics lies with the young, and secondly from the knowledge that the journal has been used on innumerable occasions, by schools, colleges, universities and industrial training centres, to provide tutorial material unobtainable elsewhere.

These columns will contain news, information, projects and product information specifically relating to educational electronics and electronics in education. Much will be of interest to the young and the beginner and is intended to be so, but more importantly it will be written with all the authority and experience of Wireless World behind it.

Finally Project is intended as a point of contact between industry and educationists with an electronics interest. We would welcome news, articles, reports and letters for possible use in the journal.

Future Project features will include a report on Link, the scheme which puts voluntary industrial advisers in touch with schools; university radio and television stations; an article describing the radio astronomy project at the Gypsy Hill College at Kingston-upon-Thames and some fascinating new experimental projects for readers to undertake.

\title{
The Value of School Projects
}
by E. R. Laithwaite, D.Sc., Ph.D., F.I.E.E., F.I.E.E.E.
Professor of Heavy Electrical Engineering, Imperial College, London

While the rate of increase of technical and scientific knowledge continues itself to increase with time, the Physics syllabus of an Examining Board stays remarkably stable. I know that many parents are surprised to find that the "A" level Physics paper contains questions on the same topics that were contained in the syllabus when they themselves took the examination, perhaps 25 years ago. Some solid-state electronics will probably have been added, and a dusting of particle physics, just to prevent the Board from appearing decadent, but in the main the same method of teaching is pursued and the pupils, one fears, are subjected to the same set of so-called "experiments", in which the result is never in doubt before the first reading is taken.

I have discovered the basic reasons for this conservative outlook, partly by being Chairman of the Advisory Committee for Physics for one of the Examining Boards for several years, and partly by being a member of the Schools Science and Technology Committee. One of the activities of that Committee was to set out on a fact-finding exercise to discover why school science and electronics teaching was not keeping pace with the demands of a modern technological society.

At first, I thought that the Advisory Committees of Examining Boards had a
free hand to change the syllabus which was entirely in their care, I was told fairly quickly that certain changes in syllabus which I proposed "would never get past the Schools Council". I deduced that the Schools Council was an overlord to all the Boards, which was why the standards of " \(O\) " level or " \(A\) " level exams were much the same whatever the Board.

Not a bit of it! Every Examining Board, I discovered through the S.S.T.C., was a private company and therefore a law unto itself. Like other commercial enterprises, the one thing every Board feared was losing customers, and the easiest way to lose customers was to change the syllabus - why? - because the average, grossly underpaid school teacher had long ago lost enthusiasm for his subject and could not be bothered to learn new material. No, I am being unfair, even to the average teacher. If only a minority of lazy science teachers existed, they would be the ones who would write angry letters to the Board threatening to change to another Board if the syllabus were changed. This undoubtedly was cause number one.

The second cause too, I soon unearthed. I was very quickly told that I could not introduce new material (such as the magnetic circuit concept) which involved a new approach to an old topic "for", I was told, "there are no readily
available, cheap text books which the teacher can use." I had to agree that this was a strong argument. I reported my findings to the S.S.T.C. who promptly sent for a sample of publishers who, when asked if they would welcome the opportunity to publish books containing new science teaching methods, gave us a unanimous "no", for the simple reason that "there was no syllabus which demanded it, so the book would not sell". - Stalemate!

The third reason came to light when I wanted my committee to delete permanent magnetism, as being too difficult for school children. The chief examiner hesitated to doubt my wisdom in this but told me gently that if we deleted the magnetometer in particular, "there would be nothing to set for the practical exam". His counsel was wise, as I found out all too soon. Set a practical question which requires a rubber band and out of perhaps 400 schools will come questions as to what its dimensions should be, its maximum tension, and "where can we buy them?" (or in dire cases with what can we buy them?). But magnetometers present no problem -- all schools have magnetometers!
The school project is likely to be afflicted similarly for the same reason as just outlined, for school apparatus accounts do not run to buying much new
apparatus. At universities, of course, things are better, but the emphasis here is on theory at its highest level and a few years ago no less a place than the Massachusetts Institute of Technology scrapped its electrical machine laboratory in the belief that tomorrow's engineers could learn all they needed from Generalized Machine Theory, which was extremely fashionable at the time. The only thing wrong with Generalized Machine Theory and all its kind is that they represent the ultimate in "organization" of a subject and without, of course, admitting it, they do so in the belief that all the knowledge in their particular subject is now acquired. This stifles any hopes of fostering curiosity and imagination among students of all ages. They become acclimatized to the idea, among others, that nearly all can be explained by theory and that if their experiments, such as they are, disagree with the theory, they must repeat the experiments until they get them "right".

The answer to all this, I am sure, lies with the interesting project, however simple, provided it has the necessary air of mystery to make it exciting. If only we could convince our students that when their measurements failed to confirm the existing theory they may be standing on the threshold of a new era in science, all their laboratory work would take on a new look. First perhaps we should design experiments specifically to discredit theory which has been simplified to make it palatable. The extension of theory just to the point of personal ability exists at all levels of academic achievement. It is still fashionable in engineering departments of universities to take a known problem to which a known solution exists to a reasonable degree of accuracy, and re-specify the data in such a way that the solution is now only possible using the most up-to-date computing machine available, for just as long as the department can afford. A paper is then published on the results, on the strength of which the postgraduate student hopes for higher honours.
The problem of encouraging inventiveness and of teaching the next generation the facts about science begins at school, and therefore should be tackled at school. In sixth form applied mathematics the "good book" says that the frictional force between bodies which are in contact, but moving relative to each other, is \(\mu R\) where \(R\) is the normal reaction between the bodies and \(\mu\) is the "coefficient of friction" which is constant. This leads at once to the idea that if a body is placed on a horizontal plane which is thereafter tilted to greater and greater angles, slipping will occur at a given angle, irrespective of the mass of the body. This angle is known as the "angle of friction", thereby implying that it is a constant for any given pair of surfaces.

So cut blocks of metal, the first of which has dimensions \(2 \times 2 \times \frac{1}{2}\) in, the second \(1 \times 1 \times \frac{1}{4}\) in, the third \(\frac{1}{7} \times \frac{1}{7} \times\) \(\frac{1}{8}\) in and so on down to perhaps \(\frac{1}{8} \times \frac{1}{8} \times\) \(\frac{1}{32}\) in. Place these blocks with one of their
large faces in contact with a flat piece of glass or plastic sheet and begin to tilt slowly. According to the theory all should begin to slide together. In practice, the first attempts suggest that they are likely to move off in any old order, but after each block has been carefully polished and the glass cleaned with spirit, the blocks will be found to start off in strict order of size, largest first. The student is then encouraged to seek out his own better theory which will fit more practical situations than the simpler one. We have to confess that at school level certainly, and at higher levels in lesser degree, we teach physical subjects to just the right level to make good examination questions!
There are however some encouraging signs. My own speciality in engineering is "linear motors". No sooner had I become a director of a company which manufactures these articles than I was asked to put my mind to the task of designing a kit of parts to operate with a linear motor and provide as much scope for variation of experiment as there is scope for creating models in Meccano. What they wánted could be described as an "electromagnetic construction kit". This is happily now available and I hope will encourage specialists in other subjects to produce similar apparatus.

But note how the pressure to do this came from industry and not the teaching world. Industry knows that only in this way can it hope to avoid the strock which, at present, generally occurs when schooldays (where life is simple and "correct") end and industry or commerce (where life is complex and always incorrect!) begins. The Schools Science and Technology Committee was, however, very conscious of the value of project work in schools and early in its existence the Committee took under its wing the excellent work being carried out at Loughborough by Geoffrey Harrison and his colleagues which was initiated
by the Schools Council under the title "Project Technology". The S.S.T.C. were sufficiently impressed by certain facets, notably the publications distributed to schools, that when Schools Council money tan out, they arranged for continuation of these facets to be financed through the Standing Conference on Schools' Science and Technology - a body set up specifically as the result of S.S.T.C. activity. Among the other works of the S.C.S.S.T. is that of setting up "local centres" where industry and schoolteachers may meet, exchange views, be lectured at, but perhàps most of all, where surplus raw materials from local firms can be distributed to local schools for the widening of project scope within school laboratories.
School projects could be described as "coming face-to-face with Nature" and as such are a "must" at this time. One word of caution only would I venture. "Man shall not live by bread alone" says the Bible, and school science cannot live by projects alone. Complementary to the more formal teaching they must always be and not a substitute for it, nor an end itself. The greatest asset of school projects is the way in which they can creep up on a child and persuade him to become first a little curious, then definitely interested and perhaps finally fanatical about a subject which, if introduced through the more usual teaching channels, he would find entirely unpalatable.

More and more we need women in the engineering professions and again the school project can be the start of it. It is the opinion of most members of S-S.T.C. that most children really make their minds about their future careers between the ages of 10 and 13. It is here that we must teach girls especiaily that technology did more than invent the atom bomb and is therefore not all bad. It is here perhaps most of all that the school project must be geared to make its impact.

\title{
An F.E.T. Curve Tracer
}

\author{
by L. G. Cuthbert
}

Although the junction field effect transistor is not part of any A level Physics syllabus, there are several advantages in spending a short time teaching its basic circuit properties. In cases where the triode valve is taught as the main electronic device a study of the f.e.t. could well follow this as it has many valve-like properties, yet gives students the chance of using a modern electronic circuit element. However, many schools are now using the bipolar transistor at A level and here the f.e.t. could well be studied first since it is a much simpler device to use, thus enabling students to grasp basic concepts without being put off by complications

To study the characteristics of the circuit properties of a device it is not necessary to know why or how it works, only what it does. Therefore, the f.e.t. will be treated as a "black box" with three terminals and the characteristics show the relationships between the voltages and currents at the terminals.

The symbol for an \(n\)-channel j.f.e.t. (there is also a p-type where all the polarities are reversed) is shown (Fig. 1). For normal circuit operation the voltages applied to the terminals are:
- source-connected to earth
- drain-to a positive voltage
- gate-to a negative voltage. This is very important as the f.e.t. may be destroyed if the gate is made positive.
The gate acts as a control terminal and controls the amount of current that can flow between drain and source. As the gate is made more negative, less current flows until eventually no current at all will pass from drain to source. The f.e.t. is a useful device because a small change in gate voltage can produce a fairly large voltage change in a resistor connected to the drain, thus acting as an amplifier. (Fig. 2)
by Ohm's law
change in
\[
\begin{aligned}
V_{\text {out }} & =V_{D D}-I_{D} R_{D} \\
V_{\text {out }} & =\Delta V_{\text {out }} \\
& =R_{D} \Delta I_{D}
\end{aligned}
\]
change in \(\quad V_{\text {out }}=\Delta V_{\text {out }}\)
amplification is \(R_{D} \Delta I_{D} / \Delta V_{G}\)
Quantitative information about the effect of gate voltage on drain current is given by the transfer and output characteristics. These are very similar to the pentode valve curves and in fact the same small signal equivalent circuits can be used for both f.e.t.
and pentode, although the symbols used are different.

The f.e.t. is therefore a very simple device to teach and experiments based on valves can be easily modified to use an f.e.t., thus giving the advantage that pupils are not investigating an obsolete device. In the current second year Applied Electronics course at Queen Mary College, circuit concepts are discussed initially with f.e.ts and then extended to bipolar transistors.

The most useful of the two characteristics shown in Fig. 3 is the output one and it is also the more impressive when displayed on an oscilloscope. Thus, for simplicity, the

Fig. 1. The symbol for an n-type j.f.e.t.

Fig. 2. The f.e.t. as a common source amplifier where, by \(O \mathrm{hm}\) 's Law, \(V_{\text {out }}=\) \(V_{D D}-I_{D} R_{D}\), the change in \(V_{\text {out }}=\Delta V_{\text {out }}=\) \(R_{D} \Delta I_{D}\) and amplification is given by \(R_{D} \Delta I_{D} / \Delta V_{G}\).

Fig. 3. The characteristics of a j.f.e.t.
project described in these notes will concentrate only on displaying the output curves although it is quite possible to modify the system to display the transfer characteristic or, for that matter, the curves for a bipolar transistor.

\section*{The curve tracer as a system}

The output characteristic is a plot of drain current against drain-source voltage for different (equal increment) values of gate voltage. Thus the basic system for displaying these curves needs to be as shown in Fig. 4. However, there are several points that affect the system and lead to simplification in some parts and a more complicated design in others.
1. The drive ramp need not be a linear function of time since the plot is of current against voltage. A highly non-linear ramp does, however, mean that the oscilloscope beam will take significantly different times to cover the same distance on the screen, thus making the brightness of the trace vary.
2. The gate voltage must not be greater than zero. To avoid inadvertent damage to the transistor protection should be provided to prevent \(V_{G}\) becoming positive.
3. The maximum drain current of many f.e.ts is about 10 mA which is within the maximum current capability of a general purpose integrated circuit operational amplifier. This is helpful because the amplifier suggested is short circuit protected (i.e. its output can be shorted to earth or the power supply without damage) and this is a very useful asset for a project being built by students. If a discrete component amplifier were used, separate protection would have to be provided.
4. In the real world nothing ever happens instantaneously so that the ramp and staircase waveforms have the form shown in Fig. 5(a). If the gate waveform is triggered by the falling edge of the ramp waveform it will be changing during the flyback of the ramp voltage and may still be changing during the start of the next cycle and therefore not only would the flyback of the oscilloscope trace follow a different path but the start of the next trace could be distorted. Admittedly the flyback trace will be faint because it occurs much faster but it still, un-
fortunately, is visible. This can be improved by using an "intermediate" triggering waveform (Fig. 5(b)) so that the gate voltage is held constant over the whole of one ramp and the flyback and then the beam is held at the origin while the gate voltage is changed. A further benefit is that the origin is brightened, since the trace is kept there for a relatively long period, thus emphasising its position.

A block diagram of the complete system, taking account of these points, is shown in Fig. 6. The drain current is determined by measuring the voltage developed across a small resistor in series with the drain. Since the drain voltage is measured at the drain terminal, the small resistor has no effect on this measurement, but the potential drop across it will very slightly reduce the voltage at the drain

Details of the circuit, construction, setting-up and sources of component supply will appear in the next issue of Wireless World.

(a)

(b)

Fig. 4. Basic curve tracer system.

Fig. 5. Elimination of the flyback trace using an intermediate trigger. The time scale is exaggerated for clarity.

Fig. 6. Block diagram of the curve tracer.

\title{
News of the Month
}

\section*{Component shortage broken promises}

Component buyers are being fed too many delivery promises and not enough facts on the realities of product availability. This was the essence of a statement made by buyers at a recent meeting held by AFDEC, the distributors' association. Although accepting that distributors have no option other than to accept delivery information supplied by their principals, they believe that the situation is sufficiently serious to merit a far more militant stand by distributors against principals supplying either worthless or no information.

A significant factor in the current shortage situation is the amount of "double ordering" which has taken place to safeguard supplies. Distributors can plan to meet almost any eventuality, but they need two basic contributions from buyers. The first is a firm statement of requirements over as long a period as possible. The second is a reduction in the time now being taken to settle accounts enabling
distributors to maintain stocks at a high level.

AFDEC suggested that, if buyers decide to be honest about their "double ordering", distributors can then reasonably increase demands upon principals without having to face the problems of suddenly carrying vast stocks of products for which orders have suddenly been cancelled.

On a practical point, both buyers and distributors expressed concern about the lack of information from manufacturers on the handling of certain new products. A prime example is the m.o.s. circuit which was introduced with very little warning about the sensitivity of such devices. It was suggested that suitable markings on both the packaging and the devices themselves might overcome some of the handling difficulties still being experienced in this area.

\section*{Radiopaging market opens}

Redifon Telecommunications have received a licence to manufacture and sell in the U.K. a pocket radiopager developed by the Martin Marietta Aerospace Company of Orlando, Florida. The product will be marketed under the name "Redipage". The system has a computer located at a central telephone exchange controlling a network of unattended transmitters sited throughout the required area. A caller wishing to contact the user of the pager will dial a ten-digit number from any telephone.

An experimental public system has been in operation by the Post Office in the Reading area (see News of the Month, "Radiopaging by telephone", Feb. 1973, p.58) and its success is currently being evaluated.

The Redipage system is based on high

Paper money identifier for blind persons. See news item.
speed digital transmissions, each transmitter being allocated one time slot out of a sequence of eight in an eight second transmission cycle. By this means, degradation of the service by mutual transmitter interference is completely eliminated.

Installation of the pagers is expanding rapidly in the U.S. and Martin Marietta have recently announced an order for a central computer controlled system and an initial 10,000 pagers in New York City.

\section*{Reformation for broadcasting}

Siemens has developed a radio receiver system for the reception of transmissions made using the independent sideband (i.s.b.) system \({ }^{1}\), suggested by the Hamburg Institute for Radio Engineering. I.s.b. modulation is a variant of s.s.b. modulation, offering the same advantages as the latter in suppression of interference and reduction of distortion due to fading and inefficient band utilization, but also enables a broadcasting station to double its number of programme channels. The system allows the transmission of two independent programmes over the two sidebands of a carrier. The advantages of i.s.b. can thus be used to prevent the increasing mutual interference between a.m. broadcasting stations, which is devaluing their prime advantage of long range.
I.s.b. modulation is incompatible with present radio sets on m.w. and l.w. and Siemens has made two suggestions for an i.s.b. receiver, the two designs differing only in the method used for suppressing the unwanted sideband. The first version uses phase-compensated carrier regeneration, produces sideband suppression of 40 dB and is compatible with d.s.b., s.s.b. and i.s.b. modulation. The second version includes two i.f. filters with consequent higher i.f. selectivity, which means fewer filters in the a.f. section. The second system is also fully compatible.
1. Langer, E., "AM Broadcasting System Reform, a New Chance for European Radio Setmakers", Siemens Components Report, Vol. Vili No.5, Nov. 1973, pp. 108-111.

\section*{Dot-scan television system}

A closed-circuit television system using a pseudo-randomly scanned matrix of dots to produce the display has been developed by Mullard Research Laboratories and the MEL Equipment Co.

The system was developed for the Royal Aircraft Establishment, who need to simulate different types of scan in their examination of new matrix-type and mechanical systems. It is possible, for instance, to simulate the effect of a sensor using an array of infra-red devices, or to investigate the appearance of multiple-interlaced displays. Areas of different resolution may be displayed on the same scan.

Electrostatic deflection is used in
camera and display, and the spot is allowed 262,000 possible positions in a \(512 \times 512\) matrix. A digital pattern generator controls the spot position, being applied to camera and display with a delay to allow for the propagation time of the video information. Speed of deflection of the spot is such that it can move between any two positions in less than 200 ns . Movement of the spot is programmed by the use of cards and two 49 -word digital stores, which may be controlled by computer.

\section*{Mobile recording for Island}

Island Studios have begun the operation of a 24-track mobile recording unit in the U.K. The 3 M company supplied the recorder, model M79 whose control panel can be detached and used remotely at a distance up to \(30 f \mathrm{t}\) away from the console. The mixing desk (30 inputs, 24 outputs) was produced by Helios Electronics. Complete with kitchen and fridge, sleeping accommodation, heating and air conditioning, the 32 ft long, 8 ft wide vehicle cost \(£ 75,000\). Let's hope that the present materials shortage in the recording industry does not damage the justification of this cost.

\section*{Money identifier for the blind}

A reliable paper money identifier to aid blind business persons has been developed from NASA technology. The device identifies paper money by its sound "signature". As a bank-note passes under a light source, a photo-transistor measures changes in the note's light patterns. These changes are converted into beeping sounds by an oscillator. Since each denomination of paper money has a different pattern, a different series of tones is given off. These differences are easily identified after about three hours' practice. NASA technology which led to development of the device stems from a technique for the semi-automatic inspection of microfilm records first reported in 1969. The Marchak Engineering and Manufacturing Co., Austin, Texas, produces the device commercially. A photograph of the device is shown opposite.

\section*{Static problem eliminated}

A static eliminator bar manufactured by 3M United Kingdom is in use at the EMI record pressing factory. At the plant, records are produced on injection moulding machines. A hot plastic copy is taken from the highly-polished metal master disc, is then partially cooled, trimmed and ejected for packing into sleeves. Despite rigorous precautions, a high static charge was generated as the pressings separated from the metal master. By fitting the bar near the rotary trimmer, static charge dust
and dirt particles from the trimming process are removed.

The model 201 anti-static bar is a self powered, compact device, with no moving parts or wires, that causes localized ionization of the air, producing a conductive path to drain off any charges on an adjacent surface. The bars emit nuclear energy from radioisotopes of polonium 210 which is safely contained in tiny ceramic beads. The source emits positively charged alpha particles which ionize the surrounding air molecules.

\section*{Roadside emergency Help Box}

A system for roadside emergencies called the Help Box has been evaluated in the U.S. which uses a radio transmitter instead of the more usual landline-connected roadside telephone. The unit has been developed by the American District Telegraph Company of New York.

The stranded motorist cannot speak to anyone, but several advantages are claimed for the system. Pulling down a vertical cover to the horizontal exposes a choice of four buttons to press-fire, ambulance, police and car trouble. The appropriate button is pushed and the lid closed.

Impression of the observation and communications tower, Toronto, Canada, which when completed will be \(1805 f t\) high - the tallest self supporting structure in the world.

Moving the lid generates electromagnetically enough electricity to power the transmitter for 2.5 secs, during which time the Help Box sends a tone coded message to a central receiving point. The transmitted signal contains information on the box location and the service required.

All boxes use the same v.h.f. or u.h.f. frequency, the chances of two boxes transmitting at the same instant being very small. The central console can accommodate up to 9,999 box codes.

The system seems ideal for roads carrying heavy traffic which, unlike motorways which have a landline emergency call-box service installed when the road is built, do not have a roadside emergency service. The ADT non-battery radio system is claimed to be vandal proof and cheaper to install and maintain than line systems, due mainly to the absence of cable laying costs. A further application could be in protecting residential and shopping areas against crime.

Enquiries should be sent to the U.K. division, Electric Protection Services, 26 Old Bailey, London EC4M 7HL.

\section*{Cross-channel phone hop stage two}

The first sod has been cut on the Tolsford Hill, near Folkestone, site for a new Post Office radio tower which will greatly enlarge Britain's busiest single international telephone link - a 30-mile microwave radio "hop" across the English Channel to France.

The radio mast already standing on Tolsford Hill has been strengthened to take more aerials. This is the first step in a two-stage programme - the second will be the setting-up of the new tower - which will enlarge the route's call-carrying capacity under major Post Office plans to keep pace with rapidly increasing demand for communications with Europe. It will be ready for service in 1975, when the old mast will be taken down.

This route, from the Tolsford Hill microwave station to its French counterpart at Fiennes, near Loos, handles calls to and from France - people in Britain make nearly four million calls there a year - and carries many international calls routed across France to other countries, principally Italy, Switzerland, Spain, Greece and Yugoslavia.

Britain's international telecommunication services are doubling every five years. Communications with the Continent account for the biggest slice of the Post Office's international telephone traffic. Of the 25 million oversea calls from Britain last year, 20 million were to mainland Europe. By 1975, 77 million telephone calls a year will be flowing between Britain and the Continent.

The new tower will be 64 m (210 ft) high, with six galleries, triangular in plan, spaced at \(6 \mathrm{~m}(30 \mathrm{ft})\) intervals.

\title{
Electronic piano design
}

\title{
Simple touch-sensitive piano using ready-made keyboard - 1
}

\author{
by G. Cowie, B.Sc.
}

\begin{abstract}
The instrument described is a simple touch-sensitive electronic piano which is small and portable. The circuitry is designed on a modular basis using i.cs extensively and is not difficult to construct. It generates tones by an oscillator-divider system, the tones being keyed by individual touchsensitive key circuits. Costing around \(£ 70\) to build, the design is believed to be the most costeffective available, in terms of what it is intended to do, and a commercial instrument with this touch-sensitive feature would seem to cost at least \(\mathbf{£ 3 0 0}\).
\end{abstract}

This design was built to fill a real need; if there had been an acceptable instrument on the market I would have bought it instead of spending three months and \(£ 50\) in making one. I was learning to play the piano and wanted an instrument of my own for practice. As I live in furnished flats, moving frequently, a full-sized upright just was not practicable. The alternatives were a "mini" piano or an electronic piano. I ruled out the first on finding that second-hand instruments were surprisingly expensive because of the demand; moreover they were not portable enough.

This left electronic pianos. I looked at several but they cost a lot of money and I did not like them. The trouble is that they all have the same artificial keying action in which pressing the key beyond a certain point suddenly generates a note of fixed loudness. On the cheaper instru-
ments the note cannot be held after the key is released.
I wanted an instrument which behaved just like a string piano, even if it did not sound much like one. The prototype is quite true to my original intentions: if you play loud the sound comes out loud, if you play very softly the sound hardly comes out at all. In playing a chord, one can make some notes loud and others soft at the same time. There is a "loud" pedal which can be used to sustain notes after the key is released, and the sound dies away just as in a real piano.
The low notes have long decay time constants, and the high notes have very short time constants. The tone is a bit like that of an electric piano, a harpsichord, and an electric guitar. Most listeners find the tone pleasant; it is much less harsh than that of a real piano. In any case to imitate a grand piano perfectly would

be very difficult. Most important of all, the instrument is about the size of a large suitcase and light enough to be carried by one person.

The essential feature of the design is that the volume of sound generated depends on how fast the key is pushed down, a feature not then available to my knowledge on any other electronic piano. This feature is what makes a pianoforte what it is, and its importance was impressed on me by a musician friend with whom I discussed the project. In simple terms, the effect is to add a new dimension, that of loudness, to the sound. Although I made no attempt to vary the tone along with the volume, the characteristics of the human ear and of the power amplifier cause such an effect with my instrument. I find the instrument sufficiently interesting to play that I have not found it necessary to add tone-shaping circuits though this could be done quite easily. The only extra is a swell pedal which is useful for increasing the dynamic range. Functionally, the instrument is much the same as a string piano, except that there is no "soft" pedal. Purists may argue that the key action is not the same as that of a real piano. Strictly speaking this is so, but the art of playing the electronic piano is so similar to the art of playing a real one that there is no difficulty in changing from one to the other.

To produce an electronic imitation of a real piano would be an ambitious undertaking, and potentially an uneconomic one. If the imitation is to be useful by reason of its small bulk and competitive cost then compromises are necessary. The sound that a piano makes has a complex harmonic content. This is not an insuperable difficulty in itself, but the harmonic content varies according to the loudness with which the note is struck, and with time; it is also different for notes of different pitches. Loudness of course varies with time, with a fast attack and slow decay. As if this weren't enough
to contend with, most of the notes employ two or three strings which do not vibrate in perfect unison

The keys of a piano have a characteristic feel when pressed down by the finger: there is a constant resisting force caused by the weight of parts on the inner end of the key, a reactive component caused by the inertia of the fast-moving hammer, and a small amount of friction. The harder one tries to play, the greater the reactive part of the opposing force becomes. From the musician's point of view this characteristic of the piano is most desirable, as it makes it easier to exploit the touch-sensitive loudness which is inherent in the piano. The faster the key goes down, the faster the hammer moves, the harder the hammer hits the strings, the louder the sound. Music tutors exhort one to think of the key speed rather than the pressure. Technically this makes sense as only the final speed of the hammer matters and it is easier to accelerate it by a smooth pressure than by jabbing the key (and the music sounds better). In this piano design, each key is linked to its own timing circuit so that sound output depends on the average velocity with which a key is pushed down.

Various electronic pianos are on the market. Those priced competitively with respect to conventional uprights seem to adopt similar solutions to the problems outlined above. Keyboards are similar to those used in electronic organs, with the same touch, and most of the instruments are not touch-sensitive at all. One infers that the acoustic waveforms are square waves treated by low-pass filters, and by highpass filters for special effects. All have the right sort of fast attack, slow decay as this is very easy to effect for square waves. Again by inference the frequency generation is done by oscillators and dividers as in electronic organs.

\section*{Design considerations}

After preliminary thought and discussion, I decided that my electronic piano would be touch-sensitive, have a sustain pedal, use square-waves as the working waveform, and have twelve master oscillators, using t.t.l. 7493 integrated-circuit frequency dividers to generate the lower pitches. On seeing ready-made organ keyboards and keyswitches I decided to use these and, as five octaves is a standard size, that the little-used top and bottom octaves of the conventional 88 -note piano keyboard could be dispensed with. This simplifies the work considerably and makes the finished instrument significantly smaller and lighter.
The essential features of electronic key circuit are shown in Fig. 1. The key position must be determined electrically, to control an envelope shaper whose output is used to modulate the amplitude of a continuous-pitch waveform. Tone is determined by the pitch waveform, and attack and decay are determined by the envelope. As the piano is to be touch sensitive then the initial height of the envelope must be variable.
A number of envelope waveforms are shown in the Fig. 2. These show a note played and released, a note played and

Table 1. Fundamental frequencies for C-C keyboard
\begin{tabular}{lccccccccccccc}
\hline \begin{tabular}{l}
Octave \\
section
\end{tabular} & C & B & A & A & G & G & F & F & E & D & D & C \\
\hline 1 (osc. freq.) & 2093 & 1975 & 1865 & 1760 & 1661 & 1568 & 1480 & 1397 & 1318 & 1244.4 & 1174 & 1108 \\
\hline 2 (1st div.) & 1046.4 & 987.7 & 923.3 & 880.0 & 830.6 & 783.8 & 739.8 & 698.4 & 659.2 & 622.2 & 587.2 & 554.2 \\
\hline 3 (2nd div.) & 523.2 & 493.8 & 466.2 & 440.0 & 415.3 & 391.9 & 369.9 & 349.2 & 329.6 & 311.1 & 293.6 & 277.1 \\
\hline 4 (3rd div.) & 261.6 & 246.9 & 233.1 & 220.0 & 207.6 & 196.0 & 185.0 & 174.6 & 164.8 & 155.6 & 146.8 & 138.6 \\
\hline 5 (4th div.) & 130.8 & 123.4 & 116.5 & 110.0 & 103.8 & 98.0 & 92.5 & 37.3 & 82.4 & 77.8 & 73.4 & 69.3 \\
\hline 6 (5th div.) & 65.4 & 61.7 & 58.2 & 55.0 & 51.9 & 49.0 & 46.2 & 43.6 & & & & & \\
\hline
\end{tabular}
N.B. For modified C-C keyboard (see text) or an F-F keyboard. range is 43.6 Hz to 1397 Hz .

Fig. 1. Key switching and rate information provides an envelope that modulates signals from a pitch generator (c.w. oscillator).

Fig. 2. These envelope waveforms are determined by switches actuated by keys and the sustain pedal. Diagrams show single and repeated notes with and without sustain action.
sustained, and notes repeated without and with sustain. Generally, electrical key contacts are used to signal the states "up", "down" and "moving" and this can be done by a single contact moving between two busbars. But I found that the simplest and cheapest system must use more contacts to simplify the electronics. An electronic piano must have an electronic switch to block the pitch signal when it is not required; in my circuit a diode is used.

Twelve oscillators generate the twelve pitches for an octave, and the pitches for lower octaves are obtained by dividing by 2, 4, 8, 16 (Table 1).

The oscillators use operational amplifiers instead of \(L C\) circuits - it is cheaper to buy op-amps than to buy special coils. Also, the op-amp circuit is easier to design and can be tuned by a cheap pre-set potentiometer. A detailed discussion of this type of oscillator is given in Electronic Engineering, Nov.1971, page 54. Complex m.o.s. microcircuits are now available which will produce the twelve top-octave frequencies when driven by a radiofrequency master oscillator. Thus all the key pitches are synchronized with the master oscillator and the organ or piano never needs retuning. Such a device would add about \(£ 3\) to the cost of the project
and a suitable (optional) module will be described in part 3 of this article.

Regulated supplies of +5 and -5 volts are provided as a regulated 5 -volt supply was needed in any case for the t.t.l. divider circuits. The advantages of integratedcircuit frequency dividers over discrete dividers in cost, time, space etc are such as to make them the only choice. About half of the piano circuitry is inside the divider i.c. packages.

I devoted much thought to making the key circuits as simple as possible. As there are sixty-one key circuits, elimination of even one component could save hours of work and pounds of hard cash. Wood was the obvious choice of material for the case.. The case is styled after my own conception of how an electronic piano should look, and has no lid as this wasn't essential and would not fit into the design. There is more room at the rear of the case than is strictly necessary; this was deliberate in that making the case too big would cause nothing like as much trouble as making it too small.

\section*{Circuit Description}

Fig. 3 is a schematic diagram of the complete circuitry which is too complex to be drawn in full. Under the keyboard

Fig. 3. Time between \(S_{2}\) and \(S_{1}, S_{3}\) opening as the key is pressed determines loudness of sound, achieved with the key circuit. Twelve \(R C\) oscillators feed 12 dividers (shown above keyboard in diagram), giving 60 of the 61 tones for modulation by the key circuits. For a five-octave kevboard 61 tones are actuall, required, the additional tone (\(C^{7}\)) being provided by a l3th divider, as the i.cs will only divide by a maximum of 16. Outputs from the key' circuits are mixed in the amplifier via the output busbar. Three of the busbars run alongside the keyboard so that three keyswitch leads can be directly soldered to them.
are 61 sets of three normally-closed goldplated wire switches, one set being shown. One pole of each switch is connected to one of three busbars which run under the keyboard. The other poles are wired to a key circuit, which is one of a letter-group of five as there are five octaves; and there are twelve letter-groups. There is a sixth note \(C\) for which an extra key circuit and an extra divider to give \(\div 32\) provided.

Each letter-group of key circuits is fed with signals from an oscillator and frequency divider. The key circuit for one note is drawn in full to show the interconnections.

To each of the 61 keyswitches six connections are made. Three of these are common busbars (bias, damper, swifch), and the other three are bias, damper, and switch signal lines and all go to one key circuit, linking the key to the electronics.

The power supply feeds +5 volts to the oscillators, frequency dividers, summing preamplifier and output amplifier and, via a resistor, to the collector bus which feeds all 61 key circuits. It also feeds an unregulated +8 -volt supply to the switch bus, and -5 volts to the oscillators and amplifiers.

The output bus is a virtual earth line
fed from all 61 key circuits. The bias and damper buses are controlled by the sustain pedal.

\section*{Key circuits}

Though the key circuits appear simple (Fig. 4), each has three sections which are more or less analagous to parts of a string piano. Components \(C_{1}, R_{1}\), \(R_{2}, S_{1}, S_{2}\), form a velocity-measuring circuit which gives the piano its touchsensitive property. The charge in \(C_{1}\), when the key is depressed, represents hammer velocity. Transistor \(\operatorname{Tr}_{1}\) provides isolation between the input and output sections of the circuit - the equivalent in a real piano is a device allowing the hammer to fall back. Capacitor \(\boldsymbol{C}_{2}\) has a charge representing the vibrational energy of a string. Components \(D_{2}\), \(S_{3}, R_{3}\) form the damper circuit, which may be disabled to give a sustain action. Diode \(D_{1}\) blocks the pitch signal when the circuit is on standby and, when the circuit is active, forms a chopper and output circuit with \(\boldsymbol{R}_{4}\) and \(R_{5}\), The discharge times of capacitors \(C_{2}\) vary to imitate the peculiarity of the string piano whereby bass notes die away more slowly than the treble.

Velocity section. Standby "operation is as follows: current flows from the switch busbar, which is at about +8 V , through \(S_{1}, R_{1}, S_{2}\), to the bias. busbar at about +0.7 V , so that \(T r_{1}\) is just, cut off. Capacitor \(C_{2}\) is charged to about +0.4 V. When the key is partway depressed, contacts \(S_{1}\) and \(S_{3}\) open, and \(C_{1}\) discharges toward +0.7 V , with a time constant of 18 ms . (This is a critical time constant that influences the playing properties of the instrument.) When the key is almost fully depressed, \(S_{2}\) opens and the remaining charge in \(C_{1}\) passes through \(R_{1}\) into the base of \(T r_{1}\), which conducts heavily, causing a corresponding charge to appear in \(C_{2}\). If \(R_{2}\) were not included in the circuit, then \(S_{2}\) having opened, a capacitance of \(C_{1}\) times the gain of \(\operatorname{Tr}_{1}\) would be added to \(C_{2} ; R_{2}\) ensures that \(C_{1}\) always discharges faster than \(C_{2}\).

When the key is released, \(S_{2}\) closes first, \(S_{3}\) closes discharging \(C_{2}\), and \(S_{1}\) closes, recharging \(C_{1}\) from the other 60 capacitors in parallel. The resulting current surge does not damage the contacts as they will handle up to 2 A at low voltages, and the power factor of the capacitors is very poor. All the contacts have so far survived 21 months of use. The action of the circuit is such that when
the key is pressed very swiftly, \(C_{1}\) loses potential by only a volt or so, and a potential of nearly five volts appears on \(C_{2}\). When the key is pressed very lightly, \(C_{1}\) discharges almost to the bias voltage, so that a very small charge is delivered to \(C_{2}\).

Envelope section. Capacitor \(C_{2}\), having been charged, begins to discharge in pulses through \(R_{4}, D_{1}\) and the 7493 i.c. (Fig 5) with a time constant \(2 R_{4} C_{2}\). A square chopped signal appears across \(R_{4}\) and is taken out via \(R_{5}\); the amplitude of the signal being \(C_{2}\) voltage minus \(D_{1}\) volt drop. The t.t.l. divider outputs have two transistors in a sort of class B arrangement so source; in the piano circuit this is a nuisance and is blocked by \(D_{1}\). In the low state it acts as a current sink to ground. The voltage applied to the output must not exceed 5 V .

This diode chopper was chosen because it is the simplest modulating circuit with a precisely definable output and a low feed-through of pitch signal in the off state. The impedance of this section is low to reduce the effect of \(D_{1}\) leakage and capacitance in its off state. Hence \(C_{2}\) must be relatively large. The impedance of the velocity section is relatively high to minimize standing currents, hence a current amplifier Tr \(_{1}\) is necessary.
Damper section: When the key is released, \(S_{3}\) closes, discharging \(C_{2}\) through \(R_{3}\) and \(D_{2}\). The value of \(R_{3}\) is made large enough to avoid a key click. A sustain action is effected by raising the potential of the damper bus so that no current can flow into it through \(D_{2}\), and so \(C_{2}\) discharges through the chopper, irrespective of the kéy position. Normally, \(R_{3}, D_{2}\) drain some leakage current from \(C_{2}\). The sustain allows capacitors \(C_{2}\) in circuits on standby to charge up slightly via \(T r_{1}\) until \(D_{1}\) begins to conduct. To suppress this chorus effect, the bias busbar potential is reduced.

Resistor \(R_{4}\) varies from \(1 \mathrm{k} \Omega\) (top C) to \(15 k \Omega\) (low \(C\)) - Table 3 lists values.

\section*{Oscillator circuits}

The 12 oscillators use operational amplifiers in a precision relaxation oscillator circuit (Fig. 5). The output of the op-amp switches between nearly the positive and negative supply voltages. When the output has just gone positive, the negative input voltage starts to change positively as charges. When it reaches the positive input voltage, \(V_{0} R_{i} /\left(R_{1}+R_{2}\right)\), the invering action causes the output to fall negatively, almost instantaneously. The circuit has a bridge configuration which almost eliminates the effect of load and supply voltage. At the instant of switching a differential voltage of \(2 V_{0} R_{1} /\left(R_{1}+R_{2}\right)\) exists at the amplifier inputs, which limits the ratio \(R_{1} / R_{2}\) that can be used at the chosen supply voltage with 709 series op-amps (but not 741 types). Sources of drift in the circuit include offset voltage and bias current changes.

Supplies of \(+5 \mathrm{~V},-5 \mathrm{~V}\) were chosen to simplify the power supply and buffer circuits. This has rendered the oscillators

Fig. 4. Key circuit (one of 61) acts as envelope shaper and modulates input from the dividers to feed amplifier via busbar. The three busbars wired to the three switches run alongside keyboard switches. Optional tone circuit was used on the bottom twelve keys of the author's design to make low tones less harsh.

Table 2. Oscillator resistance values
\begin{tabular}{|c|c|c|c|}
\hline Pitch & Frequency (Hz) & Nom. tuning R (k (2) & \[
\begin{aligned}
& \text { Use } \\
& (\mathbf{k} / 2)
\end{aligned}
\] \\
\hline C & 1108 & 36.5 & \(33+4.7\) \\
\hline D & 1174 & 34 & \(33+4.7\) \\
\hline D: & 1244.4 & 32 & \(30+4.7\) \\
\hline E & 1318 & 30 & \(27+4.7\) \\
\hline F & 1397 & 28 & \(27+4.7\) \\
\hline \(F^{\prime}\) & 1480 & 27 & \(24+4.7\) \\
\hline G & 1568 & 25 & \(24+3.3\) \\
\hline G & 1661 & 24 & \(22+3.3\) \\
\hline A & 1760 & 23 & \(22+3.3\) \\
\hline A \({ }^{\text {a }}\) & 1865 & 21 & \(20+3.3\) \\
\hline B & 1975 & 20 & \(18+3.3\) \\
\hline c & 2093 & 19 & \(18+3.3\) \\
\hline
\end{tabular}
more sensitive to ripple and one-sided supply voltage changes. Frequency depends on the values of \(R_{201}, R_{202}\), \(R_{203}, R_{204}\), and \(C_{201}\), and is set by \(R_{203}\) (Fig. 6). High-stability components are required.

A buffer circuit \(R_{205}, T r_{201}\) is incorporated as the load of the divider input and the discharge current from the topoctave key circuits may be as much as 6.6 mA , which is more than the op-amp can be guaranteed to drive. The 7493 i.c. divides the oscillator frequency by 16 and has outputs for \(2,4,8\), divisors also. It changes state for an input transition from high to low, and has two reset inputs, one of which must be grounded for operation as a divider or counter. The outputs will sink more than 16 mA ample for driving the key circuits. Eleven of the oscillator and divider circuits are as shown, but for \(C\) an overall divisor of 32 is required and so the output \(\div 16\) is wired to the input of another divider stage whose output then feeds low \(C\).

\[
\text { half period } \approx 2 C_{t} R_{t} \frac{R_{1}}{R_{1}+R_{2}}
\]
\[
f \approx \frac{1}{4 C_{t} R_{t}+R_{1}\left(R_{1}+R_{2}\right)}
\]

Fig. 5. Relaxation oscillator uses bridge configuration to keep effects of load and supply voltage changes to a minimum.

\section*{Summing preamplifier}

The summing circuit is a standard op-amp arrangement. Capacitor \(C_{401}\) (Fig. 7) blocks the d.c. component of the output, i.e. the \(C_{2}\) voltages which would be summed to about 25 V . Resistor \(R_{401}\) is not mounted on the board but at a suitable point among the key circuits, thereby using the differential inputs to minimize pickup of unwanted signals. The headphone amplifier likewise is a fairly standard discrete-component op-amp with complementary emitter-follower output. It can be readily altered to drive various loads.

Table 3. Decay time constant resistor values (\(\mathbf{R}_{4}\) in Fig.4). (61 resistors needed.)

Fig. 6. One of 12 RC oscillators which feed the 12 dividers, giving five octave-related tones for each of 12 notes.

Fig. 7. Amplifier accepts inputs from 61 key circuits via output busbar. Discrete-component amplifier can be omitted if headphone operation is not needed.

\section*{Power supply}

The power supply unit (this page) provides regulated voltages of +5 V at 600 mA -5 V at 50 mA , an unregulated +8 V at 250 mA , and a low-voltage a.c. to light an indicator lamp. The twin full-wave rectifier arrangement produces two "raw" d.c. supplies with a minimal voltage loss across diodes. A simple discretecomponent regulator is used for the negative line, and an integrated regulator is used for the positive supply to maximize reliability. The t.t.l. divider circuits may be ruined if a regulator failure causes their supply voltage to exceed 7 V . Regulated supplies assist in maintaining the frequency stability of the oscillators.

\section*{Busbar lines}

A number of wires feed signals and power to all parts of the piano circuitry (Fig. 3.) These wires are for the +5 V regulated power line, the -5 V regulated line, ground potential, the switch bus fed via a resistor from the unregulated

+ supply, the output bus, the bias bus and the damper bus.

The bias bus is returned to ground via a rectifier diode and trimming potentiometer in parallel, so that the bus voltage may be finely adjusted. When the sustain pedal is pressed, thus closing a remote switch, the bias voltage is reduced, cutting off \(\operatorname{Tr}_{501}\) whose base is connected to the bias bus. An emitter-follower \(\operatorname{Tr}_{502}\) is used to control the damper bus, whose potential is 0.7 V below that of \(\operatorname{Tr}_{501}\) collector. Therefore when the sustain pedal is depressed, the damper bus potential rises by 5 V to +4.3 V .

\section*{Keyboard}

The keyboard used in the prototype is a five-octave plastics-keyed C-C electronic organ keyboard of Italian origin, supplied by Elvins Electronics. Other keyboards may be obtained, e.g. from Harmonics Ltd and from Kimber-Allen, and if these are used some of the cabinet dimensions may have to be altered.

For musical reasons it is most preferable that the keyboard be F-F with low \(F\) at 43 Hz . I believe that such keyboards may now be obtained to order. With a C-C keyboard, one has the option of modifying it to F-F by cutting away the bottom five notes and re-attaching them at the top of the keyboard.

Converting the C-C keyboard. Unhook the springs from the bottom ends and poke out the pivot wire. Put the keys aside in order. Cut the frame flush with low \(F\) and cut off the top \(C\) mountings also. Rearrange the \(\mathrm{C}-\mathrm{E}\) portion at the top of the keyboard with the top \(C\) (now top F) above it, and repair the saw cuts with sheet metal and self-tapping screws, being sure to get the key spacing
exactly right. Replace the keys on the board, threading the pivot wire from the bottom end. A similar operation can be performed on the Kimber-Allen keyboard. If you are at all doubtful about cutting up the keyboard, it would
be better to order the \(\mathrm{F}-\mathrm{F}\) version. As the pitch of the mountings varies over an octave, it is not possible to simply shunt the keys down the board.
Constructional details will be continued in a subsequent article.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Parts summary} \\
\hline Power supply (Fig. 8) & Busbar terminations (Fig. 3) \\
\hline Panel fuseholder and 0.5A fuse & Kesistors - \(30,5 \mathrm{~W}\left(\mathrm{R}_{\text {sob }}\right)\) \\
\hline Illuminated push-on, push-off switch (0.5 A , & 3 or \(18 \Omega, 5 \mathrm{~W}\left(\mathrm{R}_{507}\right)\) \\
\hline 250V) & \(1 \mathrm{k} \Omega\left(\mathrm{R}_{503}\right)\) \\
\hline 6.3 plus \(6.3-\mathrm{V}, 1.5-\mathrm{A}\) transformer, or \(9-0-9 \mathrm{~V}\), & \(22 \Omega\) variable (\(\mathrm{R}_{501}\)) \\
\hline 1 A (Osmabet) & 1 A silicon diode (\(\mathrm{D}_{\text {sol }}\)) \\
\hline Bridge rectifier for \(30 \mathrm{~V}, 2 \mathrm{~A}\) & 2N3703 or 2 N 3903 (\(\mathrm{Tr}_{501}, \mathrm{TR}_{502}\)) \\
\hline Capacitors - 1000 and \(5000 \mu \mathrm{~F} 16 \mathrm{~V}\) & Key circuits (Fig. 4) \\
\hline \(100 \mu\) F 6V & Capacitors - 10 F F 10V (sixty one) \\
\hline Resistors - 10 and \(1002, \frac{1}{2}\) watt & \(50 \mu \mathrm{~F} 6 \mathrm{~V}\) (sixty one) \\
\hline Regulator \(5 \mathrm{~V}, 600 \mathrm{~mA}\) (RS Components) & Resistors-1k (\(\mathrm{R}_{1}\)), 10 or \(11 \mathrm{k}\left(\mathrm{R}_{2}\right), 3.3 \mathrm{k} \Omega\left(\mathrm{R}_{3}\right)\) \\
\hline BZY88-C5V6 zener diode & \(\frac{1}{8}\)-watt, \(5 \%\) (sixty one each) \\
\hline BCY 38 transistor & see Table 3 for \(\mathrm{R}_{4}\) values (sixty \\
\hline Three-way mains panel socket (Bulgin) & eight needed) \\
\hline Oscillators and dividers (Fig. 6)' & \(47 \mathrm{k} \Omega\left(\mathrm{R}_{5}\right)\), \(\frac{1}{8}\)-watt \(5 \%\) (sixty one) \\
\hline 709 or 741 op-amps (twelve) & BFY50, BFY51, BFY 52 or 2N697 (sixty one) \\
\hline 2N3708 or BC 107 transistors (twelve) & OA200 (\(\mathrm{D}_{1}, \mathrm{D}_{2}\)) silicon diode \\
\hline Capacitors - 15nF \(5 \%\) polystyrene (twelve) & Hardware \\
\hline Resistors - \(10 \mathrm{k}, 15 \mathrm{k} 18 \mathrm{k}, 30 \mathrm{k} \Omega, 2 \%\) & Keyswitches gold-plated type (sixty two) and \\
\hline 20k, 22k, 24k, 27k, \(33 \mathrm{k} \Omega, 2 \%\) & keyboard from Elvins Electronics at 8 Putney \\
\hline (two each) & Bridge Road, London SW18 1HU. Alternative \\
\hline \(12 \mathrm{k} \Omega 20 \%\) (twelve) & keyboards from Harmonics Ltd, PO Box 32, \\
\hline preset pots (pref. w.w.) 3.3k, & Chiselhurst, Kent BR7 5RU. Alan Douglas, \\
\hline 7493 i.c. dividers (thirteen) & Veroboard \(17 \times 5 \times 0.1 \mathrm{l}\) ((hree) \\
\hline Preamplifier (Fig. 7) & Vero pins (200) \\
\hline 741 op-amp & Vero track cutter and pin inserter \\
\hline Capacitor \(50 \mu \mathrm{~F} 6 \mathrm{~V}\) & Edge connector, 16-way \(0.1-\mathrm{in}\) pitch (two) \\
\hline Resistors - 1k, \(5.6 \mathrm{k} \Omega, 10 \%\) & Flex - 10/0.1mm 50 metres p.v.c. ins. (two) \\
\hline - 10k preset carbon pot & \(16 / 0.2 \mathrm{~mm} \mathrm{5m}\), p.v.c. ins. \\
\hline Headphone amplifier (Fig. 7) & 24/0.2mm 3m assorted colours \\
\hline 2 N 3708 or BC \(107-\mathrm{Tr}_{401}, \mathrm{Tr}_{402}\) & Tinned copper wire - 22 s.w.g. 3 m \\
\hline \(\mathrm{OC} 203-\mathrm{Tr}_{403}\) & \(20 \mathrm{~s} . \mathrm{w} . \mathrm{g} .1 \mathrm{~m}\) \\
\hline 2N3703- \(\mathrm{Tr}_{404}\) & Jack sockets and plugs \\
\hline 2N3705- Tr \({ }_{405}\) & Tagstrip - 6-way (two) and 12-way \\
\hline OA200 silicon diode & Pushbutton switch (to stand 1001b load) \\
\hline Resistors - 8.2, 33 (two), 82, 100 , 10\% & \(\frac{1}{4}\)-in grommets \\
\hline \(\frac{1}{2}\) watt & Cable clamps \\
\hline \(1 \mathrm{k}, 2.2 \mathrm{k}, 5.6 \mathrm{k}, 10 \mathrm{k} \Omega\) (two), \(10 \%\) & \\
\hline 10k preset carbon pot & \\
\hline
\end{tabular}

\title{
1974 Conferences \& Exhibitions
}

Further details are obtainable from the addresses in parentheses

\section*{LONDON}

Mai. 25-27
West Centre Hotel
Coil Winding International ' 74
(Electromation Exhibitions Ltd, Cleveland House, 344a Holdenhurst Road, Bournemouth, Hants)
Mar. 29-31
Post House Hotel
(British Audio Promotions Ltd., 31 Soho Sq., London WIV 5DG)
May 19-23 Bloomsbury Centre and Hotel Russell
IREDA Radio Show 1974
(Victor Brand Associates, 256 Wimbledon Park Road, London, SW19)
July 1-5
Savoy Place
Precision Electromagnetic Measurements
(The 1974 CPEM Secretariat, c/o The Conference Dept., I.E.E., Savoy Place, London WC2R OBL) July 9-12

Imperial College
1974 URSI Symposium on Electromagnetic Wave
Theory
(Conference Dept., I.E.E., Savoy Place, London WC2R 0BL)
July 12-14
Goldsmith College
The History of Electrical Engineering
(I.E.E., Savoy Place, London WC2R OBL)

July 15-19
City University
1974 Frontiers in Education
(Conference Dept., I.E.E., Savoy Place, London WC2R 0BL)
July 23-31 Imperial College
8th International Congress on Acoustics
(International Congress on Acoustics, 47 Belgrave
Square, London SWIX 8QX)
July 23-26
Savoy Place
Circuit Theory and Design
(Conference Dept., I.E.E., Savoy Place, London WC2R 0BL)
Sept. 23-27 Grosvenor House
International Broadcasting Convention
(International Broadcasting Convention, I.E.E., Savoy Place, London WC2R 0BL)
Sept. 24-26
Brunel University
Minicomputer Forum
(Online, Brunel University, Ux bridge, Middlesex) Oct. 22-24

Savoy Place
Linear Electric Machines
(Conference Dept., I.E.E., Savoy Place, London WC2R OBL)
Nov. 26 \& 27
Savoy Place
Plastics in Telecommunications
(The Plastics Institute, 11 Hobart Place, London SW1W 0HL)
Dec. 3-5 Savoy Place
Power Electronics - Power Semiconductors and their Applications
(Conference Dept., I.E.E., Savoy Place, London WC2R 0BL)

\section*{BRIGHTON}

May 7-9
Metropole Convention Centre
Electrical Insulation Conference
(Electrical and Electronic Insulation Association, 8 Leicester St., London WC2H 7BN)
June 4-7 Metropole Convention Centre
Communications '74
(ETV Cybernetics Ltd, 109 Kingsway, London WC2B 6UP)
Aug. 27-29
University of Sussex
Control of New Forms of Guided Land Transport
(Conference Dept., I.E.E., Savoy Place, London
WC2R 0BL)
Nov. 5-8
Metropole Convention Centre
Automatic Testing 74
(Network, 84 High Street, Newport Pagnell, Bucks
MK 16 8EG)
COVENTRY
May 14 \& 15
Lanchester Polytechnic̄
Physiological Measurement
(Departments of Electrical Engineering and Biological Studies, Lanchester Polytechnic, Priory Street, Coventry CV1 5FB)

\section*{EDINBURGH}

Sept. 10-14
University of Edinburgh
Ferroelectricity
(Dr H. Montgomery, Physics Dept., The University, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ)

\section*{GUILDFORD}

Apr. 8 \& 9
University of Surrey
Leaky Feeder Radio Communication Systems
(Miss A. J. Perkins, Dept. of Electronic \& Electrical Engineering, University of Surrey, Guildford, Surrey)

\section*{HATFIELD}

July 15-26
Hatfield Polytechnic
Vacation school on Signal Processing in Modern Telecommunication Systems
(Divisional Secretary (Electronics), I.E.E., Savoy Place, London WC2R 0BL)

\section*{LANCASTER}

Aug. 1 \& 2
University of Lancaster
Microwave Acoustics
47 Belgrave Square
London SW1X 8QX)

\section*{LIVERPOOL}

Apr. 17-19
University of Liverpool
Negative Ions
(The Institute of Physics, 47 Belgrave Square, London SW1X 8QX)
Sept. 18 \& 19 University of Liverpool Electrostatics: Fundamentals, Application and Hazards
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX)

\section*{MANCHESTER}

Apr. 3-4
UMIST
Metal Semiconductor Contacts
(The Institute of Physics, 47 Belgrave Square, London SW1X 8QX)

\section*{NOTTINGHAM}

Sept. 9-14
University of Nottingham
Magnetic Resonance and Related Phenomena
(Professor E. R. Andrew, Dept. of Physics, The
University, University Park, Nottingham NG7 2RD)

Sept. 16-19
University of Nottingham
European Solid State Device Research Conference
(ESSDERC 1974)
(The Institute of Physics, 47 Belgrave Sq ., London SWIX 8QX)

\section*{OXFORD}

Apr. 1-4
University of Oxford
Vacation school on Functional Analysis for
Engineers
(Secretary, Institution of Electrical Engineers, Savoy
Place, London WC2R OBL, quoting the reference LS/CA)

\section*{SOUTHAMPTON}

\section*{Apr. 8-11}

University of Southampton
Computer Aided Design
(Conference Dept., I.E.E., Savoy Place, London WC2R 0BL)
Apr. 8-11
University of Southampton
CADEX '74
(Electronic Engineering Association, 8 Leicester Street, London WC2H 7BN)

\section*{SWANSEA}

Mar. 26-29
Atomic and Molecular Physics
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX)
July 8-11
University College
Aviation Electronics
(Symposium Secretary, SERT, 8-10 Charing Cross Road, London WC2H OHP)

\section*{OVERSEAS (March-May)}

Mar. 26-29
Copenhagen
AES Convention
(Robert Sorensen, Kinovox, Industrievej 9, 3540
Lynge, Denmark)

\author{
Apr. 1-5 Liege
}

Radio Communication in Mines, Roads and Tunnels
(Institut National des Industries Extractives, Rue de
Chera, B-4000 Liege, Belgium)
Apr. 1-6 Paris
International Electronic Components Exhibition
(S.D.S.A., 14 rue de Presles, 75740 Paris Cedex 15, France)
Apr. 2-4
Las Vegas
Reliability Physics
(J. Vaccaro, Rome Air Development Ctr., RBRP, Griffiss AFB, N.Y. 13441, U.S.A.)

Apr. 2-5
Montreux
Electro-optics
(Mack-Brooks Exhibitions Ltd, \(62-64\) Victoria Street, St. Albans, Herts A 11 3XT)
Apr. 16-18 New York City
Optical and Acoustical Micro-electronies
(Polytechnic Institute of Brooklyn, Microwave Research Institute, 333 Jay Street, Brooklyn, New York 11201, U.S.A.)
Apr. 21-24 San Francisco
Circuits and Systems Theory
(Dr. S. P. Chan, Dept. of Electrical Engineering and
Computer Science, University of Santa Clara, Santa Clara, California 95053, U.S.A.)
Apr. 21-26 Los Angeles
SMPTE Spring Conference
(Society of Motion Picture \& Television Engineers, 862 Scarsdale Ave., Scarsdale, N.Y. 10583, U.S.A.)
Apr. 22-26
Amsterdam
Eurocon '74
G. Gaikhorst, clo F.M.E., Nassaulaan 13, The Hague, Netherlands.
Apr. 29-May 1
Orlando
Southeastcon '74
(Claude E. Jones, Mail Point 417, Martin Marietta
Corporation, P. O. Box 5837, Orlando, Florida 32805, U.S.A.)
May 14-17 Toronto

Intermag
(International Magnetics Conference, Box 82, Coopersburg, Penna. 18036, U.S.A.)
May 20-23
Ottawa
Subscriber Loops and Services
(Mrs. Jean Higgerty, Bell-Northern Research, P.O.
Box 3511, Station C, Ottawa, Canada K1Y 4H7)
May 20-24
Davos
Biotelemetry
(International Society on Biotelemetry, Swiss Federal Institutes of Technology, Lausanne EPFL, Switzerland)
May 21-23
Rosemont, Ill.
Coil Winding Chicago '74
(Coil Winding International Exhibitions (Norglebe
Ltd), Cleveland House, 344a Holdenhurst Road, Bournemouth BH8 8BE, Hants, England)
May 29-31
Atlantic City
Frequency Control
(U.S. Army Electronics Technology \& Devices Lab.
(Ecom), Fort Monmouth, N.J., U.S.A.)

\title{
Letters to the Editor
}

\section*{Noise measurement and dB}

Discussion in recent issues on the performance of feedback amplifiers in respect of distortion and, more especially, of noise has been most interesting but, to my mind, rather confusing and inconclusive.

Letters and articles by, among others, Messrs J. Linsley Hood, H. P. Walker, J. Stuart, J. Fison and E. F. Taylor indicate a certain amount of mutual misunderstanding and a possibly misplaced reliance upon theoretical predictions based upon rather abstract mathematical exercises. As a one-time practising design engineer, I sometimes feel that if I read one more self-confident prediction invoking Boltzmann's Constant I shall run screaming.

May I suggest that many readers, myself emphatically included, would be most interested and directly assisted in their work by a lengthy article - or, more probably, a short series - giving in a factual way the results of measurement of noise produced by a variety of circuits and of individual types of components both active and passive, and more especially dealing with the construction and use of apparatus for noise measurement which would lie within the capacity of the individual constructor and technician?

I have met, here and there, a tendency to regard such measurements as impossible for anyone not backed by an array of expensive and complex commercial equipment and a formidable budget. I doubt that this is true, and it tends to restrict practical testing into too few channels. Further, it leads to unquestioning acceptance of pronouncements from wellequipped authorities, when personal tests could be more rewarding. It has been my experience over many years that the engineer who too easily accepts, without experimental check, the calculated results of the theoreticians is in serious danger of knowing for a fact something that just is not so.

Arising from the foregoing, may I make a request? Could some of your contributors refrain from the growing practice of treating the decibel as an absolute electrical unit, rather than as the ratio - well or ill-defined - which it actually is? For example, a writer discussing the matching of tuners to amplifiers derives a simple formula and continues
" . . . where X is the signal strength in dB . . .". There we part company and I retire from the struggle for comprehension, murmuring "dB referred to what?". Signals, including unwanted ones like noise and hum, should surely be expressed in volts, amperes, or fractions thereof; most of us are probably capable of converting to dB referred to some other signal or quantity if that seems helpful.
F. G. Canning,

Portsea,
Australia.

\section*{Hi-fi equipment standards}

In your November 1973 issue the drafts for the coming British hi-fi standard have been compared to the German hi-fi standard DIN 45500. On this occasion DIN 45500 has been typed "mid-fi". This cannot be accepted without response.

Reading and judging the DIN hi-fi standard without knowledge of the methods of measurement and their conditions will lead to erroneous assumptions. DIN 45500 has been worked on and established during the years 1963 to 1966 and partially revised in 1972. The original purpose of the standard was and is to give the consumer (who pays) the means of comparing and judging what hi-fi equipment he buys. This means furnishing the consumer with data he can use and compare. It does not mean establishing a standard with levels as high as can be achieved by the present state of the art. This has remained unchanged. The DIN values are absolute minimum values and must be met, without any exceptions or tolerances whatsoever, in all points by all units of hi-fi equipment of a certain series. Furthermore, if a manufacturer claims better specifications than DIN for his product, such better specifications must be measured according to DIN 45500 and must also be fulfilled by all units of the series. Consequently in design always the rule of "worst case condition" applies. The addition of all tolerances in construction material, e.g. semiconductors, capacitors, is included in the definition "worst case condition". It must not be overlooked that DIN furnishes two criteria: minimum requirements and uniform measuring methods. The latter is deemed a necessity for making competition transparent. When designing an amplifier under application of today's technology and consideration of the "worst case condition" with the goal of observing the \(1 \%\) t.h.d. limit set forth by DIN, the product finally manufactured will then display a t.h.d. of \(0.15 \%\) or better. It would be highly unfair to the consumer to make him pay more money for an amplifier processing programme material and driving loudspeakers having, as a rule, a t.h.d. considerably higher.

The matter is different when looking into signal-to-noise ratio. Everyone having to do with high fidelity knows that one of the most unpleasant experiences is the hiss accompanying a stereo broadcast. Please
permit me to quote in comparison the relevant figures as demanded by DIN 45500 and the BSI standards draft for radio tuners. On first sight the figures for weighted and unweighted signal-to-noise ratio appear to be the same. In reality there are considerable differences, explained by the following facts: In the BSI standard the noise levels are related to a deviation of 22.5 kHz , whereas in DIN a deviation of 40 kHz is set as a measuring condition. This makes the British standard stricter by 5 dB . The BSI provides for measuring conditions according to IEC publication \(268 / 3\). Up to the present, in Germany measuring conditions are set forth in DIN 45405. This standard demands, for weighted signal-to-noise ratio, the application of a weighting curve which raises frequencies around 5000 Hz up to 8 dB from zero. The measuring instrument for this purpose must have a quasi peak-to-peak indication. The peak-to-peak indication and the weighting curve according to DIN 45405 result in a measurement 10 dB lower than if measured according to IEC \(268 / 1\), clause \(7.2,7.3\) and 7.5 , i.e. this particular DIN condition of measurement is 10 dB stricter than BSI (IEC). BSI and DIN provide for a weighted signal-to-noise ratio of 54 dB . If measuring methods according to IEC were applied, DIN would have to quote 59 dB on account of the different measuring methods as outlined above. A figure of 54 dB obtained by measurement according to BSI would directly correspond to a figure of 49 dB measured according to DIN. The figures make evident the influence of the different measuring methods. In contrast to DIN, the BSI standards draft does not differentiate between mono and stereo operation. It furnishes only conditions for mono operation. However, with fm. reception the problem is not hiss on mono reception but hiss on stereo reception. This is the reason why DIN provides for an antenna level of 3.3 nW for both conditions, whilst BSI puts down 0.39 nW for mono only. A possible conclusion would be to propose for a future IEC standard a figure of 60 dB for weighted signal-to-noise ratio measured according to IEC (also BSI) and an unweighted signal-to-noise ratio figure between 46 and 48 dB (IEC/BSI), applying to mono and stereo reception.

Similar conditions exist with the signal-to-noise ratio figures for amplifiers. The BSI draft provides that the total noise output power shall not exceed \(\mu \mathrm{W}\). DIN provides for an unweighted signal-tonoise ratio of 50 dB related to an output power of 50 mW per channel, measured at a position of the gain control which produces 50 mW output power with the signal sources 5 mV for low impedance pickup heads and 500 mV for tuners, tape-recorders, etc.; inputs (for measurements) being terminated for high impedance inputs with \(47 \mathrm{k} \Omega\) in parallel with 250 pF and for magnetic pickups with \(2.2 \mathrm{k} \Omega\). Also, this unweighted signal-to-noise ratio has to be measured with an instrument with quasi peak-to-peak indication according to the measuring methods described in DIN 45405. Comparison: BSI indicates \(1 \mu \mathrm{~W}\).

This equals 2 mV applied to a 4 -ohm speaker. This 2 mV amounts to a signal-tonoise ratio of 47 dB related to a signal of 50 mW , measured according to IEC 268.1 , clause 7.3. The same measurement according to DIN results in a figure of 38 dB for unweighted signal-to-noise ratio, as well as weighted signal-to-noise ratio. This means that the DIN method of measurement is so much stricter that a measuring figure unfavourable by 9 dB shows, compared to BSI, where actually the same condition exists. Also, here it should be considered establishing an unweighted signal-to-noise ratio of 55 to 56 dB . Measuring conditions: Volume control adjusted to between the position 50 mW and the position for rated power, always produced by an input reference signal for high impedance inputs of 500 mV and for magnetic pickup inputs of 5 mV ; inputs (for measurements) being terminated as described above. All measurements according to IEC 268.

Measurements and tests made by independent and neutral German hi-fi magazines and test institutes reveal very often that equipment by well-known manufacturers around the world show testing results below or just achieving the moderate respective minimum figures set forth by DIN 45500.

The British draft for the future IEC standard shows that it is made by people knowing their business. It is correct that in some points the BSI draft sets forth stricter conditions. It is clear that today DIN 45500 can be made stricter in some points without making the product dearer. Admittedly the designing audio engineer very likely has to put in some more brainwork to meet such stricter standards.

The hope is justified that in the near future the international experts will arrive at a universal standard for hi-fi equipment, enabling the consumer (who pays) to judge a piece of hi-fi equipment from any country simply by comparing figures meaning the same. This will certainly promote the cause of hi-fi.
Heinrich Fischelmayer,
Zirndorf,
W. Germany.

Editor's note: Mr Fischelmayer is the chairman of the working group on household hi-fi audio equipment in the German Standards Institute (DIN).

\section*{Frequency shifter for howl suppression}

The method advocated by M. Hartley Jones in "Frequency shifter for howl suppression" (July 1973 issue) is doubtless effective for speech, but whether it is acceptable for music is perhaps a subjective matter. A less obtrusive and less elaborate method is the use of tunable tone filter(s) of adjustable bandwidth, many designs of which are outlined in W.W. Circards - Series 1 ; use of the twin-T filter for a particular application is also described in "Designing a low-frequency
active notch filter", N.B. Rowe, Electronic Engng., April, 1972. Ready-built active filters are already on the market. In many halls it is observed that tendency to howling occurs chiefly at a particular frequency, so that the availability of even one such filter may enable gain to be usefully advanced at other frequencies without noticeable distortion.
K. J. Young,

Derby.

\section*{Using c.m.o.s. devices}

I was interested in the recent correspondence on the problems of handling c.m.o.s. and f.e.t. devices. I wonder what percentage are damaged beyond repair before being wired into apparatus.

Recently I was in a component shop in the Edgware Road, London, area when I heard mention of "f.e.t.". I was intrigued to observe the assistant produce some from a plastic tray with pins separated (no sign of a keeper) and lay them on a glass counter and finally pack them into a plastic bag!

I couldn't but wonder whether any of them survived!

In the light of such an experience, the idea of using special soldering irons and conducting benches seems ludicrous. Or is it? Whilst I have had my share of defunct f.e.t. devices, I am now wondering whether it was, indeed, my fault ...
Ronald G. Young,
Peacehaven,
Sussex.

\section*{Model railway control system}

Most model locomotives are driven through a worm drive which is non-reversible. This prevents the loco from coasting when the power is removed as at (f) in Fig. 1 of \(\mathbf{P}\). Cowan's article in the November issue. The addition of a large flywheel to the motor shaft helps to some extent but it is usually difficult to find room inside the cramped loco body.

Mr Cowan suggests improving the conventional motor by "sawing out the armature slot". If this is done the armature collapses into small pieces. If he means sawing out the armature "tunnel" to take a ring-field magnet then how does he propose to retain the bearing plates at either end? My advice is leave well alone!

The Hornby ring-field motor is far too large to use as a replacement motor and is also not very reliable. Stalled current can be as high as 2 A with some of these motors, giving a power dissipation of 12 W for \(T r_{28}\) and \(T r_{31}\), double the 6 W suggested.

Another problem concerns the total current given in Fig.2. This is just over 3A (with the loco running normally, I assume). As a scale modeller the rail section I use is \(0.9 \mathrm{~mm} \times 1.8 \mathrm{~mm}\) nickel silver with a large "groove" down each side - in fact an exact scale version of 95 lb bullhead rail. The cross-sectional
area of this rail is less than \(1.5 \mathrm{~mm}^{2}\) and even for copper the quoted working current is less than 2.5 A .

Regarding coaches, where do you put the electronics? The inside is detailed with seats and passengers and all the underframe details are there, leaving no room for a heatsink and transistors. Also, no self-respecting railway modeller - as opposed to those who "play trains" uses Trix coaches as they are to a different scale from the locos.

Finally price! I have about 15 locos and 35 coaches at present (in varying stages of construction) and my layout requires 3 main controllers. The total cost for the separate units for each item would be prohibitive if I could find room in each loco for two pieces of electronic circuitry, a motor and drive and an earpiece without displacing the crew and cab fittings.

I feel that this system is not a viable proposition for the serious model enthusiast who can achieve the same, if not better, results for a much lower cost by other electronic circuits.
R. A. Ganderton,

Dunstable,
Beds.

\section*{One-off printed circuit boards}

While developing distributed circuit u.h.f. amplifiers, I found that necessary modifications could be easily and quickly made by covering the copper clad board with Sellotape or Fablon, then cutting round the required circuit shape with a scalpel and peeling the areas to be etched.
Using this method, lines as narrow as \(250 \mu \mathrm{~m}\) are possible, even using boards with \(20 \mu \mathrm{~m}\) of copper. The masking is unaffected by most common etching solutions and the circuit can be drawn on the mask using a fine pointed fibre tip pen.

I wonder why manufacturers do not produce copper clad board already masked. It would protect the copper from dirt and oxidation, which makes etching more difficult, and provide a surface for easy and clear marking out of mechanical as well as electrical details.

The method is of course equally applicable to conventional circuit boards.
M. R. Yeo,

UWIST,
Cardiff.

\section*{Surround-sound with headphones}

While I and a small group of tape recording friends were pleased to see Sennheiser's recordings specially made for headphone listening brought to the attention of readers (Nov. issue, p.544) we feel too much emphasis has been placed on the dummy head, as though it alone were the reason for the success of the recordings. The dummy head may be very impressive, it may even give a subtle improvement, but we find that the biggest improvement is made by the position of the microphones.

To recap on the main objection usually raised against headphone listening: two sounds of equal loudness produced from two separate sources, provided that they are in phase, will appear as one central sound. If the two sound sources are a pair of headphones, the point between the two is, of course, inside the head. Stereo sound, recorded so that the main difference in position of sounds is achieved by the polar diagram of the microphones feeding a different level to each channel, will just swing the sound from side to side inside the head. This will happen if the recordist makes the mistake of trying to position the microphones as nearly as possible in the same place. Of course, when listening via loudspeakers, the sound "over there" is quite acceptable. Surprisingly it is possible to move the sound outside of the headphones, without the complication of a dummy head or the doubtful dependence on fortuitous interpretation by the listener.

The transformation of the headphone stereo sound requires moving the microphones from the "crossed heads" arrangement to, well, "crossed tails" comes to mind as a suitable expression, so that the transducer elements in the microphones are spaced at 150 mm or so. To maintain the "image" the same way round, the microphone leads must reverse channels. It is, of course, easier to position the microphones on their mounting bracket pointing away from each other, and the cables, now sprouting from the microphones near the upright of the stand, can be led away more tidily than when the microphone heads are crossed. It is also interesting to note that, because of the physical size of microphones, it is not practical to bring the two transducers into one place in any case, and this results in a variety of positions with a common variation one above the other, and although it is possible to listen with one's head over to one side, it is not possible to maintain the horizontal polar pattern achieved by the vertically mounted microphones!

So, by the simple expedient of moving the microphones, the sound for the headphone listener has been opened out at least as much as is done by adding a derived difference signal rear channel through several good quality loudspeakers to straight loudspeaker stereo; and whereas the sound over such a loudspeaker system does not properly convey position (although usually an improvement over stereo alone) the two channels on the headphones give accurate 360 degree information to the listener. It would seem that the small but critical time difference, perceived when listening to live sounds, in the arrival of sound at each ear, can in fact be recorded by correctly positioned microphones. This time difference can be included in the loudness difference established by the two microphones and, when presented to each ear without loudness or time difference distortion, the spatial effect is very close to reality. Sounds from the rear appear to come quite solidly from the rear, even if they are being heard for the first time,
and it is rather worrying to find that the spatial effect including the sense of "behind" is actually increased with S.T.C. 4033A microphones switched to "ribbon", even though they can be used as cardioid. This aspect of the performance does not at first make sense if one is thinking from the point of view of simulating the human ear with the microphones, but of course David Hafler has shown that ribbon or "figure of eight" polar diagrams for the microphones will increase the difference signal for side emanating sounds, since the rear of the ribbon is out of phase with the front. It would seem reasonable to suggest that the brain can detect a phase difference between two sounds presented simultaneously, giving us a preference for this information when it is available. This difference signal is not the reason for the sound moving to the outside of the headphones, and relatively inexpensive microphones such as the A.K.G. D19 still give an excellent result.
The success of recordings made in this manner seems to indicate that more attention could be given to the relationship between the microphone spacing and the loudspeaker spacing, so that the time difference that would have been heard several feet behind the microphones is preserved by the recording and played back over the loudspeakers, even though an anomaly will always exist for sound coming from behind the microphones for replay in this manner. This line of thought can be projected further into an explanation for the improvement of stereo with a derived difference rear channel, based on the fact that loudspeakers spaced several feet apart cannot reproduce the sound field of two microphones mounted fairly close together, even though small differences in the microphone position are inaudible. The difference channel, in all its various guises, has an output which coincides with some point along the centre line of the main left and right loudspeakers, and thus, far from increasing the apparent sound source, it has in effect reduced the difference in the sound from the two main loudspeakers, as perceived by the listener, until the position they appear to be in is much more like the position of the two microphones on one stand. Therefore there appears to be an important relationship between the time interval heard by the listener's two ears and the instantaneous phase of the signal. If this can be understood, it may well be a bigger step forward than quadraphony.
John C. Tugwell,
Southend,
Essex.

\section*{Radiating coaxial cables}

We have read with interest your correspondence relating to the use of radiating coaxial cables in communication systems (Sept. and Nov. issues 1973).

Mr Avery refers to the attenuation of "loose braid" (sic) cables in v.h.f. and u.h.f. systems under conditions of contamination by dirt and moisture. As manufacturers of radiating cables using
both types of coupling mechanism, i.e. holes (apertured tape outer conductors) and reduced cover ("open") braids, we have carried out extensive tests on both types of cable and have found no evidence to support the contention that the latter types are susceptible to the effects of adverse environmental conditions.
From tests of attenuation carried out at v.h.f. and u.h.f. we have found that open braid cables laid on the ground, against wall surfaces, covered with wet mud, and immersed in water, exhibit no change in linear attenuation as compared with cables suspended in air clear of external objects. With our apertured tape cable a small increase can be observed at u.h.f. with the cable immersed in water.

Our experimental evidence is supported by the satisfactory performance of working installations, in particular systems operating in NCB mines where braided radiating coaxial cables have been extensively used, in some cases under very adverse conditions.
We are, of course, referring to braided cables specifically designed for this service, where the braid design has been developed to achieve the necessary balance between radiation and linear attenuation, an important requirement in long systems. The open weave cables referred to by Mr Goddard, presumably television downlead type cables having braids with optical cover of the order of \(60 \%\), are not designed for these applications.
J. L. Goldberg and A. J. Willis,

BICC Ltd,
Helsby, Cheshire.

\section*{Soldering-iron leakage}

To-day soldering iron manufacturers make quite a big issue about the leakage to earth of their soldering irons, claiming that this can damage transistors and similar devices. This I am sure is perfectly true. What I would like to know is what is the maximum permissible leakage at which an iron can safely be used on transistors. The reason is that I shall then be able, when I am offered a soldering iron, to ask the manufacturers if it measures up to this particular specification.

I think, to-day, any iron that does not meet this requirement is only suitable for soldering kettles!
A. Sproxton,

Home Radio (Components) Ltd, Mitcham,
Surrey.

Thank you all readers who have written enquiring about the absence of the January and February issues (see announcement on p.30). It's nice to know we have been missed!

\section*{Circuit Ideas}

\section*{Novel 5-watt class A amplifier uses three-transistor feedback circuit}

There are seemingly endless ways of making a feedback loop using two or three transistors. One configuration which has proved valuable is shown on the right. A fraction \(R_{1} /\left(R_{1}+R_{2}\right)\) of the output p.d. is compared with the input in the long-tailed-pair \(T r_{1}\) and \(T r_{2}\) and the resulting current \(I_{1}\) controls the current source \(T r_{3}\). In one application (below) a cheap voltage stabilizer was produced, in which the output p.d. is little less than the unstabilized p.d. and in which the ripple is low (usually incompatible requirements).

In another application the circuit was used to make a \(5-\mathrm{W}\) a.f. amplifier

operating in class A. The usual emitter resistor (bottom) is now combined with the choke d.c. resistance in the collector circuit where it continues to provide d.c. stability with less nuisance value. The peculiar arrangement of \(C, C\) and \(R\) feeding the loudspeaker keeps the feed capacitors properly polarized as the output p.d. swings above and below zero level. A single capacitor could be used instead if the loudspeaker were returned to the negative supply, but power supply ripple would then find its way into the feedback loop.
R. H. Pearson

North East London Polytechnic

\section*{Deflection coil driver for slow-scan television}

The circuit shown was developed for use in the line timebase amplifier of a slow-scan television system operating at 4 Hz . The

\section*{Aerial seal of approval}

Shown here is the new motif which is to be used by members of the British Aerial Standards Council. It will be seen on packaging and point of sale material going out to dealers as soon as existing stocks of packaging material have passed through the production pipelines.

The B.A.S.C. hopes that its "radiation pattern" symbol will quickly become a familiar sight in all places where television aerials are sold as ". . . the sign of a good aerial".

How can the qualities of the new Gale GS401A be conveyed? Not in words certainly. To assess this new speaker, there's nothing for it but to go along to a dealer. He will tell you first that the GS401A carries a seven year guarantee. Then, when you've admired the handsome exterior created by Jon Bannenberg in matt black and chrome, we suggest you use some test equipment. All you have to do is take a good pair of ears. This delicate apparatus will tell you that, for a speaker only \(23 \frac{1}{4} \times 13 \times 10 \frac{3}{4}\) inches, the GS401A combines an unusually high power handling with breathtaking clarity You will also need a favourite record. Preferably the one you use to impress your friends with the quality of your existing equipment. The one with prominent percussion and a wide dynamic range. We have only one serious anxiety With the GS 401 A being the breakthrough it is, we worry that you simply won't believe the evidence of your ears. At the time of going to press, the Gale GS401A can be seen at the following franchised dealers only.

Grahams Electrical Lid Bib-88 Pentonville Road London N1 Hampstead Hi-Fidelity \& 1 Heath Street Hampstead London NW3 6SS Thomas Heinitz Music in the Home 35 Moscow Road London W2 Henry's Radiơ Limited 354 Edgware Road London W2 REW (Audio Visual) Co Centre Point London WC1 Studio 9981 Fairfax Road London NW6 Audio Systems 23 South Street Dorking Surrey Audio Impressions Ltd 32 High Street South Dunstable Beds Complete Audio Systems 32 Grove Road Eastbourne Sussex Hi Fi Corner 1 Haddington Place Edinburgh EH7 4AE Guildford Hi Fi 270 Upper High Street Guildford Surrey Audio Systems 28 Queems Parade Queen Street Horsham Sussex Audio Systems 18 High Street Lewes Sussex Unilet Products Ltd Compton House 35 High Street New Malden Surrey KJ Leisuresound Ltd 101 St Albans Road Watford Herts

Gale Electronĺ́s \& Design Lienited 39 Upper Brook Street London W1Y 1PE

\section*{The Sinclair Cambridge... no other calculator is so powerful and so compact.}

\section*{Complete kit-£24-95!}

\section*{The Cambridge - new from Sinclair}

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further \(\mathrm{E} 5 \cdot 50\) !

\section*{Truly pocket-sized}

With all its calculating capability, the Cambridge still measures just \(4 \frac{1}{2}\) " \(\times 2^{\prime \prime} \times \frac{11}{16}\) ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

\section*{Easy to assemble}

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

\section*{Total cost? Just \(\mathbf{£ 2 7 \cdot 4 5}\) !}

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs \(£ 32 \cdot 95\) - so you're sáving £5.50! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

\section*{Features of the Sinclair Cambridge}
*Uniquely handy package.
\(4 \frac{1}{2}\) " \(\times 2\) " \(\times \frac{11}{16}{ }^{\prime \prime}\), weight \(3 \frac{1}{2}\) oz.
Smart black and tan styling.
*Standard keyboard. All you need for complex calculations.
*Keys react with positive click when pressed.
*Clear-last-entry feature.
*Automatic ('implied') constant no need for separate operating button.
*Common-sense ('algebraic') logic - enter calculations just as you write them.
*Calculates to 8 significant digits: fully floating decimal point positions itself automatically.
*Clear, bright 8 -digit display.
*Unwanted zeros are suppressed.
*Display flashes to indicate overflow.
*Operates for weeks on four U16-type batteries.

\section*{A complete kit!}

\section*{Actual size! \\ \\ \(41 / 2\) in long \(\times 2\) in wide \(\times 11 / 6\) in deep}

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:
1. Coil.
2. Large-scale integrated circuit.
3. Interface chip
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor)

\section*{This valuable book - free!}

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations

Sinclair Radionics Ltd, London Road, St Ives, Hunts. Reg.no: 699483 England VAT Reg.no: 213817088

\section*{Why only Sinclair can make you this offer}

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. Yuu may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!

\section*{Take advantage of this money-back, no-risks offer today}

The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year. Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : \(\mathbf{£ 2 4 . 9 5} \mathbf{+} \mathbf{£ 2 . 5 0}\) VAT. (Total : \(\mathbf{£ 2 7 \cdot 4 5 \text {) }}\)

1To : Sinclair Radionics Ltd, London Road St lves, Huntingdonshire, PE174HJ
Please send me
\(\square\) a Sinclair Cambridge calculator kit at \(£ 24.95-£ 2.50\) VAT (Total : \(£ 27.45\))

Name
Address
\(\square\) a Sinclair Cambridge calculator ready built at \(£ 29.95+£ 3.00\) VAT (Total : £32.95)
* I enciose cheque for \(£\), made
out to Sinclair Radionics Ltd, and crossed.
*Please debit my * Barclaycard/Access
account. Account number
*Delate as required

\section*{Bert. Bert. Best.}

Permit us this momentary bit of self-indulgence, because our intentions are pure: to assist you in choosing the best pickup cartridge for your hi-fi system, within the practical limitations of your audio budget. To begin, if you feel uncomfortable with anything less than state-of-the-art playback perfection, we heartily recommend the Shure V-15 Type III, a cartridge of such flawless performance it is the perfect companion to the finest turntables and tone arms available today - and those coming tomorrow. At a more moderate level of performance and price, we suggest the Shure M75ED Type 2, a superb performer second in trackability only to the Type III. For optimum performance with a limited budget, the yeoman Shure M44E is for you. All in all, these are three great ways to enjoy music with the kind of system you have decided is best for you.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

WW-113 FOR FURTHER DETAILS

\title{
Horn loudspeaker design
}

\title{
Three articles summarizing the development of design theories and concluded with two systems for construction
}

\author{
by J. Dinsdale, M.A., M.Sc. \\ Cranfield Unit for Precision Engineering
}

After a period in the infancy of the gramophone when it was universally employed, the horn loudspeaker has fallen from popularity, due probably to its relatively large size, complexity of manufacture and hence high cost. Although full-range horn systems are used today only by a small number of enthusiasts, most experts are unanimous in acclaiming their virtues as loudspeaker enclosures, especially their high degree of realism and "presence". These articles examine briefly the history of the exponential horn loudspeaker and discuss the theory of horn-loading and the technical requirements of a good design. Comprehensive data are included for a wide range of horns, together with outline designs for a large and a small horn, suitable for domestic use.
The ideal exponential horn consists of a straight circular tube whose cross-sectional area incredses logarithmically along its length from a small throat (at which is mounted the loudspeaker) to a large mouth. Extreme bass notes demand a mouth of very large area (20 to 30 sq . ft) and a horn at least 20 ft in length, whereas extreme treble notes require a horn with dimensions of only a few inches. For this reason most wide-range horn systems will incorporate a number of separate loudspeakers, each with its individual horn of appropriate length and mouth area. To accommodate these horn combinations within a cabinet of reasonable size, the bass and middle horns are generally of square cross-section and are "folded" into a complicated pattern. Unfortunately, the inevitable restrictions and compromises introduced by these departures from a straight axis and circular section can cause serious variations in the frequency response, and much of the art of horn design is concerned with achieving a product of reasonable overall size and cost, without sacrificing any of the astonishing realism which is obtainable from the ideal horn.
The efficiency of a horn system will be typically between 30 and \(50 \%\), a figure to be compared with 2 or \(3 \%\) for a bass-reflex enclosure and less than \(1 \%\) for a totallyenclosed box.
The principal reasons for the evident lack of popularity of the horn probably lie in its dimensions and cost. The overall size of a bass horn, even when folded into a cabinet of reasonable shape, will be larger than a bass-reflex or infinite baffle enclosure of
comparable specification But although one reads occasionally of straight horns up to 20 ft long, excellent results may be obtained from horns of more moderate dimensions; for example a complete horn system may be folded into an attractive cabinet of volume only \(6 \mathrm{cu} . \mathrm{ft}\), a not unreasonable size for domestic listening. The cost of horn enclosures is often considered to be prohibitive, and it is true that there is considerably more work in constructing a folded horn than in other enclosures; furthermore, this is work best performed by craftsmen and not easily adapted to "production-line" methods. Nevertheless, the building of a folded horn is by no means outside the capability of a competent do-it-yourself enthusiast, and it is to these individuals that the practical designs will be directed.
Although the early acoustical gramophones or phonographs employed horns of one type or another to couple the diaphragm to the listening room, and the early electrical reproducers of the 1920s and '30s also used horns, thereafter the horn suffered a setback from which it has never recovered. Certainly, a few companies market horn loudspeaker enclosures, and the occasional articles in the technical press \({ }^{1,2}\) stir up a passing interest, but unless one resorts to the masterly academic treatises by Olson \({ }^{3}\) or Beranek, \({ }^{4}\) or reverts to pre-1940 publications, there is very little information available for the enthusiast who wishes to both design and construct a horn. Recent experience gained by Telfer and others \({ }^{5,6}\) has reinforced the author's opinion that there are many audio enthusiasts who would be interested in constructing a horn enclosure.
After a brief historical survey, these articles examine the theory behind the horn-loaded loudspeaker enclosure and explain the basic points to consider when designing horns. The various compromises adopted by different workers are discussed, especially in the area of folding techniques, and the effects of these compromises on audio quality are studied. Finally, outline designs for two domestic horns are given: a "no-compromise" horn to suit the most fastidious (and enthusiastic) listener, and a "mini-horn" which provides a more limited performance for those with smaller living rooms (and bank balances), and which, while no more obtrusive than most commercial loudspeaker cabinets, will provide extremely clear and natural reproduction.

\section*{Background}

It has been known for many thousands of years that when sound is passed through a tube with a small throat and a large mouth, it experiences an apparent amplification, and from Biblical times man has used rams' and similar naturally occurring horns both as musical instruments and as megaphones. Thomas Edison attached a tin horn to his primitive phonograph in 1877 to couple the minute vibrations of the diaphragm to the air load in the listening area, and to the majority, the term "gramophone horn" conjures up an image of the early gramophones or phonographs designed between about 1890 and 1912, all of which utilised an external horn.

A variety of expansion contours were employed for these early horns, mainly straight conical horns in the earliest machines, but the later gramophones of this period employed large flaring horns with either straight or curved axes depending on the overall length of the horn and the general design of the complete equipment. An analysis of these early horns, carried out in the light of modern acoustic knowledge, reveals a lack of understanding at that time of the operation of the horn as an acoustic transformer. This is surprising since Lord Rayleigh had analysed the "transmission of acoustic waves in pipes of varying crosssection" in Articles 265 and 280 of his classic treatise "Theory of Sound", published in \(1878 .{ }^{7}\)

Lord Rayleigh gave the analysis in Art. 281 for the passage of sound through a conical pipe, and he also made the interesting statement that "when the section of a pipe is variable, the problem of the vibrations of air within it cannot be generally solved". For some years after publication, Lord Rayleigh's results were purely of academic interest, but more general interest was aroused about the turn of the century by the early gramophones, most of which used external conical horns, as in the early HMV "dog" models.

After 1912, a number of manufacturers introduced internal horns with a degree of folding to enable cabinets of reasonable size to be used, and these models held the consumer market during the following 12 years, on account of their compactness and suitability as pieces of furniture. (Even in those early days, the enthusiast must have had
problems in persuading his wife to provide house-room for a large unfolded external horn.)

In the early 1920 s a number of designers carried out theoretical analyses based initially on the work of Lord Rayleigh, but extending the work to be more applicable to the full audio range at domestic listening levels. Among these early analyses must be mentioned the work in America by A. G. Webster \({ }^{8}\) in 1920, by C. R. Hanna and J. Slepian \({ }^{9}\) in 1924 and by P. B. Flanders \({ }^{10}\) in 1927. In Britain independent analyses were carried out by P. Wilson in 1926 writing in The Gramophone magazine and later with A. G. Webb in "Modern Gramophones and Electrical Reproducers", and also by P. G. A. H. Voigt \({ }^{12}\) in 1927.

All of these analyses, except the last, were based on an exponential contour, and were derived from a statement in Art. 265 of Rayleigh's 'treatise. Webster had worked out an approximate theory for other types of horn and had deduced that the exponential was the optimum contour. All these analyses made the assumptions that (a) the crosssection is circular, (b) the axis is straight, and (c) all wavefronts are plane.

However, while it may be reasonable to assume plane wavefronts at the throat of the horn, it is clear that the wavefront at the mouth will be curved (as if a balloon were emerging from the horn, being inflated at the same time). Wilson, who had independently derived the analysis of the exponential horn in 1926 working from Rayleigh's treatise, later published a modified form on the assumption that the wavefront would assume a spherical shape always cutting the
contour of the horn and its axis at right angles.
This assumption, that the curvature of the wavefront would gradually increase from zero (the initial flat wavefront at the throat), satisfies also the condition specified by Hanna and Slepian and later by I. B. Crandall \({ }^{13}\) that the wavefront as it emerges from the open end will be equivalent to that provided by a spherical surface, as opposed to that produced by a flat piston. Voigt, however, had commenced his analysis on the assumption that wavefronts within the horn will be spherical and of the same radius throughout their progression through the horn. This assumption leads to a tractrix curve for the horn contour, and both theoretical considerations and very careful listening tests by the author and others tend to support the claims of the tractrix as the optimum horn contour. The mathematical basis of the exponential and tractrix curves is discussed in a later section of this article.
During the 1920s, 30s and 40 s a large number of experimenters investigated methods of folding horns into small enclosures for domestic gramophone reproducers, and the records of the Patents Office bear witness to the ingenuity of man at overcoming conflicting conditions in the search for perfect sound reproduction.. These designs for folded horns enjoyed a greater or lesser degree of success according to a number of factors including the performance of the loudspeaker motor. Nevertheless, it must be repeated that they were almost invariably of square or rectangular cross-section, and the axis was no longer straight and thus any resemblance between their actual perform-

Fig. 1. Acoustical resistance and reactance against frequency at the throats of a series of infinite horns of different contour.
ance and theoretical considerations was to some extent coincidental.
The advent of the moving coil loudspeaker in 1927 and electrical amplification stimulated further advances in the design of horns, which, because they now no longer had to be connected to the acoustical tonearm, were freed of many of the earlier constraints. Many loudspeaker motor units were designed specifically for horn loading, and it was not until World War II that interest in the horn lapsed in favour of the bass reflex, infinite baffle and other types of loading systems which, although they had the peripheral advantages of smaller physical size, greater ease of design and manufacture and hence lower cost, were decídedly inferior in terms of musical realism.

During this time the designs of Voigt in Britain and of Klipsch \({ }^{14-18}\) in America continued to attract considerable support, especially the ingenious method evolved by the latter in adapting a doubly-bifurcated bass horn design to utilize the acoustic advantages inherent in corner positioning, a design which has now become a classic. Others at this time were experimenting with horn-loaded loudspeakers, notably J. Enoch and N. Mordaunt (whose design was subsequently incorporated in the Tannoy "Autograph" and "GRF" enclosures). Lowther (using a modern version of Voigt's high-flux motor unit) and J. Rogers (whose horn-loaded mid-frequency ribbon is still regarded by many as the ultimate in sound reproduction in this range) and one must not overlook the contributions of H. J. Crabbe \({ }^{19}\) and R. Baldock \({ }^{20}\) in more recent times.
However, it must be emphasised that the multiple reflections, absorptions, resonances and changes of direction inherent in folded horns, together with the uncertainty of function of non-circular sections must inevitably alter the performance of such horns from that of the straight, circularsection horn on which the design may have been based.
Recent years have seen a minor resurgence in the popularity of the horn, caused perhaps by the search for "perfect sound reproduction", and there are many who hope that this trend will continue.
A very readable account of the early history of the horn loudspeaker has been given recently by P. and G. L. Wilson. \({ }^{21}\)

\section*{General theoretical principles}

The following section deals principally with the exponential contour, which is the basic expansion curve used in most high quality horn loudspeakers, and the tractix, which has a more complicated formula, but with a dominant exponential component-indeed the two curves are virtually identical from the throat to about midway down the horn.

\section*{Determination of flare contour}

The theory of the conical horn was originally worked out by Lord Rayleigh, but the first serious attempts to establish a practical working formula for the exponential horn were not made until 1919 and the years following. The basic formulae for the transmission of sound waves through horns have been given in modern terms by V. Salmon \({ }^{22}\)
and others. Beranek \({ }^{4}\) has plotted the acoustical resistance and reactance against frequency at the throats of a series of infinite horns of different contour with identical cross-sectional areas at the throat and at a given point along the axis of the horn, and the resulting curves are shown in Fig. 1 . For optimum loading of the loudspeaker motor, it may be shown that the impedance presented by the throat of the horn should be entirely resistive and of constant value throughout the working frequency range, i.e. the sound transmission should be of unity "power factor". Examination of the curves in Fig. 1 shows that the exponential and hyperbolic contours satisfy this condition most closely.

However, a further condition to be satisfied is that of minimum distortion at the throat of the horn, caused by "air overload". When a sound wave is propagated in air, a series of harmonics will be produced, thereby distorting the waveform. This occurs because if equal positive and negative changes in pressure are impressed upon a mass of air, the resulting changes in volume will not be equal; the volume change due to an increase in pressure is less than that due to an equal decrease in pressure. The rapid expansion and compression of air caused by the propagation of sound waves takes place adiabatically, i.e. there is no net transfer of heat, and the pressure and volume are related by the formula \(\mathrm{pV}^{\gamma}=\) constant, where
\(p=\) pressure
\(V=\) volume
\(\gamma=\) adiabatic gas constant (approx. 1.4 for air under normal room conditions)
This curve has been plotted in Fig. 2, together with a superimposed large sinusoidal change in pressure to illustrate the corresponding distorted change in volume.
If the horn were a long cylindrical pipe, distortion would increase the further the wave progressed towards the mouth. However, in the case of a flaring horn, the amplitude of the pressure wave decreases as the wave travels away from the throat, so for minimum distortion the horn should flare out rapidly to reduce the pressure amplitude as early as possible after the sound wave has left the throat. From this viewpoint it is apparent that the parabolic and conical contours will generate the least distortion due to air overload, and that distortion will be highest for the hyperbolic horn, because the sound wave must travel a further distance before the pressure reduces significantly.
Further inspection of Fig. 1 shows that the acoustical resistance of the hyperbolic horn lies within \(10 \%\) of its limiting value over a larger part of its working frequency range than that of the exponential horn, and for that reason the hyperbolic horn provides rather better loading conditions to the loudspeaker motor. However, in view of the considerably higher air-overload distortion of the hyperbolic horn, the exponential or one of its derivatives is generally chosen as a satisfactory compromise between the hyperbolic and conical contours.
In cases where the advantages of a long

Fig. 2. Adiabatic pressure/volume relationship for air.
slow flare rate are required without the attendanthigh air-overloaddistortion, Olson \({ }^{3}\) has shown that a horn can be made up of a series of manifold exponential sections, commencing with a very short stub of high flare rate at the throat (to minimize distortion) which leads into a longer section of lower flare rate and thence to the main horn of very low flare rate. Klipsch has referred to this technique as the "rubber throat" in his paper on corner horn design. \({ }^{14}\) The mouth acoustical impedance of each exponential section is designed to match the throat impedance of the preceding section, right along the chain. Practically any acoustical impedance relationship with frequency may be obtained by this technique, but the procedure is complicated, and the additional effort cannot generally'be justified for domestic horns.

\section*{Determination of mouth area}

The acoustical resistance and reactance of the exponential horn have been plotted on a normalized scale in Fig. 3, which shows that
the acoustic impedance is entirely reactive below a frequency given by
\[
f_{c}=\frac{m c}{4 \pi}
\]
where \(c=\) speed of sound; \(m=\) flare constant which appears in the basic exponential horn formula
\[
S_{x}=S_{T} e^{m x}
\]
where \(S_{x}\) is the area at distance \(x\) from throat; \(S_{T}\) is the area at the throat.
The frequency \(f_{c}\), known as the cut-off frequency, is the lowest frequency at which the horn will transmit acoustical power, and thus the flare constant defines the lower frequency of transmission by a given horn. The flare constant may be calculated for any given cut-off frequency, and the horn profile may then be constructed. The above statement refers strictly only to horns of infinite length. In horns, as in cylindrical tubes, wavefronts of sounds whose wavelength is large compared with the mouth diameter tend to be reflected back into the horn where they interfere with successive wavefronts. Just as the loading of the loudspeaker motor by the throat of the horn must be largely resistive over the working frequency range for the smooth efficient transfer of acoustical energy, so must be the loading presented to the mouth of the horn by the surrounding air. Beranek has shown \({ }^{4}\) that for the radiation impedance of the mouth to be mainly resistive, the relationship \(C / \lambda>1\) must hold, where \(C\) is the circumference of the mouth of the horn and \(\lambda\) is the wavelength of the lowest note to be transmitted. If the mouth of the horn is not circular, it will behave in a similar way for equal mouth areas, i.e. if \(C=2 \pi r_{m}>\lambda_{c}\) is the limiting condition
and \(\quad S_{m}=\pi r_{m}^{2}>\frac{\lambda^{2} c}{4 \pi} r_{m}>\frac{\lambda_{c}}{2 \pi}\)
where \(\lambda_{c}=\) cut-off wavelength; \(r_{m}=\) mouth radius; \(S_{m}=\) mouth area.
Thusa horn of square section may be employed provided the mouth area exceeds \(\frac{\lambda_{c}{ }^{2}}{4 \pi}\) \(4 \pi\)

Fig. 3. Acoustical resistance and reactance of. an exponential horn.
a different standpoint the behaviour of wavefronts at the mouth of the horn, and deduced that reflection was a minimum when the slope of the profile was \(45^{\circ}\) (i.e. included angle of \(90^{\circ}\)). This will be so where the mouth circumference equals the cut-off wavelength of the horn. It also illustrates the importance of distinguishing between the values of flare constant used for calculating exponential increase in area, and in plotting the profile of the actual horn. Fig. 4 (after Olson) illustrates the effect of foreshortening the horn to a length less than

Fig. 4. Performance of foreshortened horns. Reflections at the mouth cause peaks and troughs in the frequency response near to cut-off.
the ideal. When the mouth circumference becomes less than the cut-off wavelength, reflections at the mouth cause objectionable peaks and troughs in the frequency response at frequencies near to cut-off, and if, in a given design, the mouth dimensions are restricted, it is generally preferable to increase the cut-off frequency to a value which allows the correct mouth area to be adopted, rather than to accept the uneven bass response illustrated in Fig. 4.

\section*{Plane and curved wavefronts}

Hitherto, the assumption has been made that successive wavefronts remain plane throughout their propagation through the horn. However, along a straight circular section horn the wavefront must be normal to the axis, and also normal to the walls. (If the wavefront were either approaching or receding from the walls, energy would be either absorbed or supplied; alternatively, the composite wavefront resulting from the original wavefront and its reflection will itself be normal to the walls.) Thus wavefronts transmitted along a cylindrical tube will be plane, while wavefronts transmitted down a conical horn will be spherical. It is therefore clear that the wavefront emerging from an exponential horn will possess a degree of curvature, and that the conventional calculations made on the assumption of the exponential increase of plane wayefronts will be in error (in practice, the actual cutoff frequency will be somewhat altered from that derived theoretically, and the profile errors of the horn are not excessive).

The correct approach to the design of a horn in which the areas of successive wavefronts expand according to a true exponential law is not certain, since any horn profile chosen will per se determine the contour of the wavefronts within it, and in general this contour will be different to that originally assumed. Wilson \({ }^{11}\) decided to assume spherical wavefronts of increasing curvature from zero (plane wavefronts) at the throat of the horn, and on this basis he cal-

LENGTH ALONG HORN AXIS
Fig. 5. Comparison of the exponential and tractrix contours.
culated a modified contour which lies just inside and very close to the true exponential. Fortuitously, if a papier mâché horn is made on a solid former designed to a true exponential contour, the shrinkage of the papier mâché when drying converts the horn very closely to Wilson's modified form. Nevertheless, the prime assumption has been made that wavefronts are spherical and of changing curvature, and it is by no means certain that this is the case.

\section*{The tractrix contour}

Voigt, in his 1927 patent, had proceeded on the more elementary assumption that the wavefronts within the horn must be spherical and of the same radius throughout their propagation through the horn. He based this assumption on the reasoning that if the curvature increases from plane waves (zero curvature) at the throat to a certain curvature at the mouth, then a point on the axis must travel at a faster rate than a point at the wall. Since the entire wavefront must travel at the speed of sound (assumed to be constant throughout the horn) the wavefront has no alternative but to be spherical and of constant radius. This requires that the horn contour should be the tractrix.

The tractrix is the involute of the catenary (the curve adopted by a uniform heavy chain suspended between two points at the same level) and is the curve traced out by a load being dragged along by a man moving in a straight line not passing through the load. It is not the "pure pursuit" curve traced by a missile which always travels towards an escaping target, as is often mistakenly supposed. The length of a tractrix horn of mouth circumference \(\lambda_{c}\), may be expressed as the cut-off wavelength
\[
\begin{aligned}
x= & \frac{\lambda}{2 \pi} \log _{e} \frac{\frac{\lambda}{2 \pi}+\sqrt{\left(\frac{\lambda}{2 \pi}\right)^{2}-y^{2}}}{y} \\
& -\sqrt{\left(\frac{\lambda}{2 \pi}\right)^{2}-y^{2}}
\end{aligned}
\]
where \(y\) is the radius
cf. the equivalent exponential,
\[
x=\frac{\lambda}{2 \pi} \log _{e}\left(\frac{\lambda}{2 \pi y}\right)
\]

Both these curves are shown in Fig. 5.
It will be seen that the tractrix has a dominant exponential term which becomes less significant towards the mouth; in fact for the first \(50 \%\) of their length the exponential and tractrix contours for a given cut-off frequency and throat area are virtually identical, but thereafter the tractrix flares at an increasingly greater rate until it attains its fully developed mouth at \(180^{\circ}\) included angle. In view of the complex nature of the formula, the best way to construct a tractrix is by graphical means, as shown in Fig. 6. The curve thus derived may be used to provide ordinates for the tractrix horn, after some smoothing of the slight discontinuities inherent in the graphical construction.

Whereas the tractrix terminates when the angle between the horn and the axis is \(90^{\circ}\) (\(180^{\circ}\) included angle), the true exponential goes on to infinity in both directions. The
tractrix horn for given throat and mouth dimensions is thus shorter than the equivalent exponential. It has been suggested that with the full tractrix terminating in a mouth of \(180^{\circ}\) included angle, the sound appears to originate from a point just inside the mouth, where the included angle is only \(90^{\circ}\). There is thus some evidence that the tractrix may be terminated prematurely at this point, and if this is done, the mouth perimeter will be \(90 \%\) of the wavelength at cut-off, as shown in Fig. 5, which compares the true and modified exponentials and the tractrix contours.

\section*{Efficiency}

The efficiency of an exponential horn loudspeaker is determined by a large number of parameters, and a comprehensive treatment has been provided by Olson. \({ }^{3}\) Typical efficiencies of bass horns can be as high as \(50 \%\), while mid-frequency and treble horns can have efficiencies of over \(10 \%\), and these figures compare very favourably with bassreflex enclosures (efficiency 2 to \(5 \%\)) and infinite baffles (efficiency generally less than \(1 \%\)). The extremely high efficiency of the horn is not necessarily of value in enabling amplifiers of lower output power to be used. Indeed, some class B output stages may produce a higher distortion level in horns because they need only be operated within the first \(10 \%\) of their capability, at which low levels the effects of crossover distortion are more pronounced.

The principal advantage conferred by the horn's high efficiency is that for a given loudness the amplitude of movement of the loudspeaker motor is appreciably less than with other enclosures. The effects of nonlinearities in the magnetic field and suspension are therefore greatly reduced, and there is less tendency for "break-up" of the cone to occur. Thus the relatively high distortion products normally produced by the loudspeaker motor will be minimized, and, provided the horn itself does not introduce distortion, extremely high quality sound can be radiated.

A further advantage resulting from this reduction in amplitude of movement of the cone is that a form of inter-modulation distortion, caused by variation of the volume of the cavity between the loudspeaker cone and the throat of the horn, may be reduced to negligible proportions.

\section*{Tuning the throat cavity}

The cavity, which must inevitably exist between the loudspeaker diaphragm and the throat of the horn, plays an important function in the design of horn systems, since it can be used to limit the maximum frequency to be transmitted. Although the lower frequency limit may be set with some precision by the flare rate of the horn, in conjunction with the mouth area, the upper frequency limit is ill-defined, being determined by a combination of (a) unequal path lengths between different parts of the diaphragm and the throat of the horn, (b) internal cross reflections and diffraction effects within the horn, especially when the horn is folded, (c) the high frequency characteristics of the motor unit itself, and (d) the effective lowpass filter characteristic presented by the cavity between diaphragm and throat.

Fig. 6. Graphical construction of the tractrix.

Using a straight edge of length equal to the final mouth radius, the tractrix curve is constructed of a series of tangents, length not greater than \(\frac{1}{10}\) the mouth radius, starting at the throat.

It may be shown that a cavity of fixed volume behaves as an acoustic reactance of value
\[
\frac{S_{D}^{2} \rho c^{2}}{2 \pi f V}
\]
where \(S_{D}=\) area of diaphragm, \(V=\) volume of cavity, \(\rho=\) density of air, \(c=\) speed of sound, \(f=\) frequency.
When the cavity is placed between the diaphragm and throat, it behaves as a "shunt capacitance" across the throat itself, and thus by choosing the correct parameters, the cavity/throat combination acts as a lowpass filter at a frequency which may be set by making the cavity impedance equal to the throat impedance at the desired frequency,
i.e. \(\quad \frac{S_{\mathrm{D}}{ }^{2} \rho c^{2}}{2 \pi f V}=\frac{\rho c S_{\mathrm{D}}{ }^{2}}{S_{T}}\)
where \(S_{T}=\) throat area, \(f=\) desired upper frequency limit, whence
\[
V=\frac{c S_{T}}{2 \pi f}
\]

The volume of the cavity may therefore be calculated to provide high-frequency rolloff at a point before the poorly-defined effects (a) to (c) stated above become significant (Fig. 7).

A further benefit resulting from the use of a cavity tuned to prevent mid and high frequencies from entering a bass horn at the rear of a loudspeaker is that the efficiency of transmission of these frequencies by the opposite side of the loudspeaker is greatly increased, thus improving the performance of a mid/high frequency horn mounted at the front of the loudspeaker.

The considerations affecting the practical determination of the upper and lower frequency limits of a particular horn will be considered in more detail.

\section*{Loading the rear of the loudspeaker motor}

Mention has already been made of distortion resulting from the non-linear expansion/ compression characteristics of air. This effect is accentuated when a loudspeaker is horn-loaded on one side only, because the

Fig. 7. Effect of the throat cavity in limiting high frequency performance.
constant resistance characteristic of the throat acts only against excursions of the cone in the forward direction; when the cone moves back it is against a far lower load and hence the excursion will be larger. The ideal way of eliminating this distortion is to load both sides of the loudspeaker by equal horns, or to employ a bass horn for loading the rear of the cone and a middle/top frequency horn to load the front. The design of the mini-horn, to be described, utilizes this feature.

An alternative solution favoured by many designers is to load the rear of the loudspeaker by a sealed compression chamber, the effect of which is to provide a loading similar to the horn. The compression chamber thus reduces the effects of nonlinearity due to uneven loading on each side of the loudspeaker diaphragm, and also presents a better resistive load to the diaphragm because a closed chamber on the opposite side of the diaphragm to the horn itself acts as an "inductive" reactance which tends to balance the "capacitive" reactance presented by the mass reactance of the throat impedance at low frequencies.

Klipsch states \({ }^{14}\) that the volume of this cavity is given by the throat area multiplied
by the speed of sound divided by \(2 \pi\) times the cut-off frequency. This is readily shown as follows:
The air chamber reactance is given by
\[
\frac{S_{D}^{2} \rho c^{2}}{2 \pi f_{c} V}
\]
where \(S_{D}=\) diaphragm area, \(V=\) volume of air chamber.

The throat reactance at cut-off is
\[
\frac{\rho c S_{D}^{2}}{S_{T}}
\]
where \(S_{T}=\) throat area.
Equating these,
\[
V=\frac{c S_{T}}{2 \pi f_{c}}
\]

However, some observers claim that the use of a compression chamber detracts from the realism of the reproduced sound, and advocate either double horn-loading or a combination of horn-loading with directradiation from the other side of the diaphragm; in other words, the most realistic reproduction occurs when both sides of the diaphragm are allowed to radiate.

\section*{Summary}

In summarizing this section, it is clear that there is no universal formula applicable to any aspect of horn design. The reason for mentioning the alternative approaches and for providing a comprehensive list of references is to stimulate others to experiment in those areas where to a large extent results must be evaluated subjectively by very careful comparative listening tests a posteriori.

To quote Wilson: \({ }^{21}\) "It cannot legitimately be assumed that a horn incorporated in a cabinet has the precise characteristics of any particular type of straight horn, whether exponential, hyperbolic, catenary or tractrix, even though their dimensions have been used as guides in its construction. The multiple changes of direction, coupled with reflections and absorptions and internal resonances, are always such as to destroy any legitimate comparison. Every internal (horn) enclosure construction must be judged on its merits as revealed by measurement and by listening tests."

\section*{(To be continued)}

\section*{REFERENCES}
1. Crabbe, H. J., "A Concrete Horn Loudspeaker System, Mk. 2", Hi-Fi News, Oct.-Nov. 1967.
2. "Toneburst", "Low-cost Horn Loudspeaker System", Wireless World, May 1970 and Jan. 1972.
3. Olson, H. F., "Acoustical Engineering", van Nostrand, 1957.
4. Beranek, L. L., "Acoustics", McGraw-Hill, 1954.
5. Cohen, A. B., "Hi-Fi Loudspeakers \& Enclosures" 1 st Edition Rider, 1961.
6. Telfer, G., Private communication, Nov. 1972.
7. Strutt, J. W., Lord Rayleigh. "Theory of Sound" Pt. 2, Macmilian, 1878.
8. Webster, A. G., Proc. Nat. Acad. Sci. Vol. 6 (1920).
9. Hanna, C. R. \& Slepian, J., "The Function and Design of Horns for Loudspeakers", J.A.I.E.E. Vol. 23, Feb. 1924.
10. Flanders, P. B., British Patent No. 245,415, 24th March 1927.
11. Wilson, P. \& Webb, A. G., "Modern Gramophones and Electrical Reproducers", Cassell 1929.
12. Voigt, P. G. A. H., British Patents Nos. 278,098 (1927), 351,209 (1930), 404,037 (1934), 435,042 (1935).
13. Crandall, I. B., "Vibrating Systems and Sound", van Nostrand, 1926.
14. Klipsch, P. W., "A Low-frequency Horn of Small Dimensions", J. Acous. Soc. Am. Vol. 13 No. 2, Oct. 1941.
15. Klipsch, P. W., "Improved Low-frequency Horn", J. Acous. Soc. Am. Vol. 14 No. 3, Jan. 1943.
16. Klipsch, P. W., "A High-Quality Loudspeaker of Small Dimensions", J. Acous. Soc. Am. Vol. 17 No. 2, Jan. 1946.
17. Klipsch, P. W., "A New High-frequency Horn", I.E.E.E. Trans. Audio, Nov.-Dec. 1963. 18. Klipsch, P. W., "Loudspeaker Developments", I.R.E. Trans. P.G.A., May-June 1953. 19. Crabbe, H. J., "Design for a Folded Corner Horn", Wireless World, Feb. 1958.
20. Baldock, R., Hi-Fi News, Vol. 11, April 1967.
21. Wilson, P. \& G. L., "Horn Theory and the Phonograph", presented to 83 rd meeting of Acoust. Soc. Am., April 1972.
22. Salmon V., "Generalized Plane Wave Horn Theory", J. Acoust. Soc. Am. Vol. 17 No. 3, Jan. 1946.
23. Klipsch, P. W., "Loudspeaker Performance", Wireless World, Feb. 1970.
24. Harwood, H. D., "Speakers in Corners", Wireless World, April 1970.
25. Klipsch, P. W., "A Note on Acoustic Horns", Proc. I.R.E., July 1945.
26. Wood, A., "The Physics of Music", Methuen 1944.
27. Moir, J., "High Quality Sound Reproduction" 2nd Edition, Chapman \& Hall, 1961.

\section*{Literature Received}

\section*{GENERAL INFORMATION}

A catalogue which uses no words and which is, therefore, international, is obtainable from Keyswitch Relays Limited, Bendon Valley, Garratt Lane, Wandsworth, London SW 18 4LZ.........WW401

Technical and sales information on miniature switches (including illuminated types), circuit breakers. rotary stud switches and audible indicators (annunciators) is presented in a new catalogue from Highland Electronics Limited, 33-41 Dallington, Street, London ECIV 0BDWW402

Electroforming techniques and new nickel alloy production methods are among the subjects discussed in Issue 38 of Inco Nickel, published by International Nickel Limited, Thames House, Millbank, London SWIP 4QF.. \(\qquad\)
We have received the new Antiference catalogue. which contains descriptions of a full range of radio and television aerials, and folders on a new range of fringe-area v.h.f. aerials and improved folded dipole ranges. Antiference Limited, Ayles bury. Bucks. ...WW404
A wall-chart showing a range of lever-operated, magnetic and inductive limit switches is obtainable from Herbert Controls and Instruments Limited, Spring Road, Letchworth, Hertfordshire.WW405
Issue No. 98 of the Tin Research Institute review Tin and its Uses contains articles on solderable finishes, plastic plating, long-life soldering bits and hot tinning. The publication can be obtained from the Tin Research Institute, Fraser Road, Greenford, Middx., in English, French, German, Italian, Spanish and Japanese editions.WW406

A catalogue describing panels, socket boards, connectors and racks has been sent to us by Tekmar Electronics Lid., 102 High Street, Harrow-on-theHill, Middx., HA1 3LP. Power supplies and crystal oscillators are also included in this Dual-in-line Socket Board and Packaging Hardware catalogue, ..WW407
Lasky's have produced their 1974 catalogue, which contains information on a range of audio, television and communications equipment, together with a selection of test equipment. Lasky's, Audiotronic House, The Hyde, London NW9 6JJ.............WW435
Public address equipment, including amplifiers, microphones, mixers, speakers and accessories is described in a new brochure from Eagle International, Precision Centre, Heather Park Drive, Wembley, Middlesex

The latest issue of the RS Components catalogue is now available, additions being miniature l.e.ds, an i.c. timer and a 5 W audio amplifier i.c. among many others. RS Components Ltd, P.O. Box 427, 13-17 Epworth Street, London EC2P 2HA...............WW437

\section*{EQUIPMENT}

We have received a leaflet on the Bloodhound detector for gas, smoke and combustible vapours from P. H. Electronics, Sandwich Industrial Estate, Sandwich, Kent CT13 9LN.WW408

Information on a range of digital frequency meters, including one 32 MHz instrument which performs this function only and is very simple to use, is contained in leaflets published by Radio Control Specialists Limited, National Works, Bath Road, Hounslow, TW4 7EE.
The third issue of OMR News, devoted to products and their applications in the field of optical mark recognition data-capture techniques has just been published by Data Recognition Limited, Loverock Road, Battle Farm Estate, Reading Berks. RG3 1DX.
High-voltage d.c. insulation testers and fault locators are described in a catalogue sent to us by Hipotronics, Inc., Route 22 - Brewster, New York.....WW41I Varactor-tuned solid-state oscillators operating in the range 0.2 to 20 GHz are the subject of a catalogue published by Watkins-Johnson International, Shirley Avenue, Windsor, Berk shire.WW412
The PEP400 series of scan converters and image storage units is described in a leaflet published by Princeton Electronic Products, Inc., P.O. Box 101, North Brunswick, New Jersey 08902. ..WW413

We have received from CAl Limited, 95A High St., Rickmansworth, Hertfordshire, a booklet on their minicomputer - the Naked Mini - which is a complete computer on one printed-circuit board. It is also available in a cased version.WW414 A new catalogue available from Eagle International, Precision Centre, Heather Park Drive, Wembley HAO ISU describes their full range of audio equipment and specifications. .WW434
A range of digital panel meters for the measurement of voltage, current, temperature and time and for counting events is presented in a leaflet produced by Newport Laboratories Inc. The equipment is distributed by Keithley Instruments Ltd, I Boulton Road, Reading, Berks..
Voitage dividers, attenuators and decade boxes are the subject of a new brochure sent to us by Danbridge (U.K.) Ltd, Sherwood House, High Street, Crowthome, Berks...WW431

\section*{APPLICATION NOTES}

A brochure, obtainable from Penny and Giles Limited, Mudeford, Christchurch, Hampshire, gives design information on the use of zener barriers with intrinsically safe equipment installed in hazardous atmospheres. ...WW415 A manual on the application of Accuride telescopic drawer slides has been published by the Accuride Division of Imhof-Bedco Limited, Colne Way Trading Estate, By-Pass, Watford, Herts, WD2 4NE.
An application note entitled "Numeric and Alphanumeric Display using the ZM1251 Dot Matrix Display Tube" is obtainable from Computer Electronics Division, Mullard Ltd., Mullard House, Torrington Place, London WCIE 7HD. Requests for copies should be on company letter-heads and should quote reference TP1341. .
.WW4I7

\title{
Microwave Landing Aid
}

\section*{Flexible Doppler system which could replace ILS as an aeronautical navaid}

This year the Royal Aircraft Establishment will be starting feasibility studies of a microwave landing aid which could eventually replace ILS (Instrument Landing System) as the principal aircraft landing aid of the world's airports. The new aid, known as MLS (Microwave Landing System), will provide positional information for aircraft by means of the Doppler frequency shift principle, the frequency shift being produced by relative movement between a moving source of radio waves on the ground and a receiver in the aircraft.

This microwave Doppler system has already been proposed by U.K. authorities to the International Civil Aviation Organization (ICAO). Now, an agreement between Plessey Radar, the Ministry of Defence, the Civil Aviation Authority and the Department of Trade and Industry will enable the system to be further developed and submitted complete to ICAO with the support of flight trials. Plessey are building experimental equipment for the studies with Standard Telecommunication Laboratories as sub-contractors.

Aviation people have been aware of shortcomings in ILS for a good many years. First of all there is its inflexibility: aircraft must fly in straight paths down fixed radio beams generated by "localizer" (azimuth) "glideslope" (elevation) and "marker" beacons. Another problem is that ILS cannot be employed on all runways at an airport because it uses ground reflections to form the radio beams, and these, therefore, are vulnerable to irregularities of the site. The "localizer" propagation path in particular is vulnerable to noise caused by re-radiation from fixed and moving objects (e.g. airport buildings and aircraft taking-off) and by locally generated interference. Such problems could be mitigated by the use of narrower radio beams, but at the v.h.f. and u.h.f. used this would require very large aerial arrays. ILS uses broad beams and obtains the required precision by interpolation from the cross-cver of the beams. This confines the region of proportional guidance to a narrow sector and so prevents ILS from providing the aircraft approach procedures
envisaged for the future, for example, glideslopes arranged for noise abatement, approaches for STOL and VTOL aircraft, curved approaches for traffic sequencing, and "missed approach" guidance.

Alternatives to ILS have been under consideration for some years. For example in May 1967 we reported on "Correlation Protected I.L.S." \({ }^{1}\) and in May 1972 on the interferometric system MADGE (Microwave Aircraft Digital Guidance Equipment \()^{2}\) both of which work at microwave frequencies. The first has fallen by the wayside, while the second is intended mainly for military airfields. A further microwave system, now being considered at the same time as MLS, uses narrow radio beams which are scanned either mechanically or electronically across the required space in azimuth and elevation. These beams have to be encoded to indicate their instantaneous pointing angle.

The main advantages of the Doppler MLS, as well as of the scanning beam system, over ILS are greater flexibility of

Fig. 1 Expected coverage of future microwave landing system, Doppler or scanning beam. (FAA stands for the A merican Federal Aviation Agency.)
operation and freedom of siting. They will handle aircraft descending in curved approach paths over a wide range of angles in both azimuth and elevation as shown in Fig.1. This wider operational coverage will also facilitate the landing of STOL and VTOL, private and business aircraft, and will provide landing and "missed approach" guidance in allweather operations for new generations of aircraft.

The path finding principle of the Doppler system is based on a ground transmitter (in the frequency range \(5000-5250 \mathrm{MHz}\)) which provides a linearly moving radiating source. In fact the linear movement is simulated by switching a source of radiation, element by element, along a multi-element antenna array. When the source reaches the end of the array it is returned to the beginning, starting again and giving a scanning action. This is provided for both azimuth and elevation. The azimuth array, for example, is approximately 7.5 m long (about 120 wavelengths) and has 64 elements with a nominal spacing of 1.86 wavelengths. Referring to Fig.2, when the radiating source is approaching the aircraft receiver from the left, as a result of the Doppler shift the received frequency is higher than that of the transmitted frequency; when it reaches the position shown the received frequency equals the transmitted frequency, and when the source is receding from the receiver, to the right, the received frequency, as a result of the Doppler shift, is lower than the transmitted frequency. The Doppler shift frequency, which we shall call \(f_{D}\), is actually proportional to both the relative velocity of source and receiver, which we shall call \(V\), and the wavelength of the source which we shall call \(\lambda\). In Fig. 3, for example, the Doppler frequency as measured in the aircraft receiver is given by \(f_{D}=(V / \lambda) \sin \theta\).

In the receiver \(f_{\boldsymbol{D}}\) is measured, while \(V\) and \(\theta\). are known, so it is possible to obtain \(\sin \theta\). and hence the angular position of the aircraft in relation to the ground antenna array. Because of the scanning action of the radiating source the energy spectrum of the transmitted signal consists of a number of lines. The envelope of this spectrum as received in the aircraft exhibits a strong peak at a particular \(f_{D}\) and this provides part of the information to define the angular position of the receiver as explained. The width of this peak is an inverse function of the array aperture and represents the beam width of the array. The received signal, after detection, is "decoded" by a tracking filter followed by a zero crossing counter which gives a digital measure of \(f_{D}\). The tracking filter eliminates the effects of multi-path signals which are outside the main beam. The Doppler frequency information is finally converted into parameters acceptable to the aircraft's navigation system. These include outputs in digital and analogue form for absolute approach angles, offset from demanded angles and various "flags" and warnings.

Fig 2 Basic illustration of Doppler effect resulting from a linearly moving radiating source on the ground.

Fig. 3 Doppler frequency \(\mathrm{f}_{\mathrm{D}}\) depends on the relative velocity of moving source and airborne receiver, the wavelength of the radiating source and the angular relationship between the airborne receiver and the antenna array.

Of course a complication is introduced by the fact that the airborne equipment is moving as well as the ground radiating source. Unless special steps were taken the accuracy of the Doppler frequency measurement would be affected by the Doppler shift arising from the receiver movement. This problem is overcome by radiating from the ground a second signal, called a reference signal, from a fixed source on the antenna array and at a frequency offset by a small increment from the scanning frequency. Thus the airborne receiver's movement affects both the main signal and the reference signal equally. The receiver in fact detects a beat frequency between the two, and this can be achieved with high accuracy because the uncertainty regarding the transmitted frequency is removed and narrow band processing can be used.

There are 200 channels available for the system in the allocated 5 GHz frequency band, each 600 kHz wide. In a channel, the spectrum space is divided into four sub-channels: one for forward azimuth transmission, using frequency division multiplex, centred at 540 kHz above the lower channel edge; one for elevation at 290 kHz also using f.d.m.; one at 415 kHz for data transmission again using f.d.m.; and one at 120 kHz , using t.d.m., providing a back azimuth service and auxiliary signals for azimuth and elevation.

\section*{References}
1. "ILS for Automatic Landing". Wireless World, May 1967, p. 218.
2. "Could MADGE replace ILS?" Wireless World, May 1972, p. 212.

Viewing the beginnings of commercial radio communications from sixty years on, one gains the impression that even such an unbelievable development as "wireless" still found an entrenched body of opinion which regarded the technique as an interesting toy. This impression is lent weight by the news items and articles which appeared in Wireless World with the purpose of bringing to the attention of readers the sea rescues and commercial and military benefits conferred by the use of radio. One would have hardly thought, for instance, that the value of wireless in bringing help to distressed ships needed much comment, and yet in January 1913 there was lengthy reporting on the performance of the Marconi system in the Volturo, which burnt in mid-Atlantic.

At the less disastrous end of the traffic stream, readers were offered proof that wireless had come to stay based on the new-found facility with which bananas could be scheduled to arrive at Covent Garden in prime condition. The wireless was used to call assistance in the event of breakdown in the banana ship, thereby avoiding the effects of delay on "this delicious and nutritious fruit".

We have previously remarked (September 1973) on the severe tone adopted by the editor of the 1913 letters column. To redress the balance, we give the following extract from a page of advice by "our irresponsible expert". "Amateur (Tooting). - Carborundum is used in the Marconi crystal receiver. It has been found that this substance resists mildew very well and is not easily bent. It acts by virtue of its high resistance. The current finds such difficulty in passing through one way that it does not think it worth while to go back again. The current is thus rectified and produces a tick in the telephones. The Fleming valve acts in a similar way by making things hot for the current, We hope this is clear".

\section*{Telephoning at \(\mathbf{6 , 0 0 0}\) words a minute}

The first step towards providing a service in mid- 1975 for the transmission of digital information over telephone circuits at a rate of 4,800 bits/s for the cost of a telephone call has been taken by the Post Office. The new Datel 4800 service will carry the equivalent of about 6,000 words per minute. The Post Office has placed a contract with Plessey Telecommunications Research for the design and development of a modem to operate at this data transmission rate. Prototypes should be delivered in 1974.

The highest rate of transmission available so far is provided by the Datel 2400 service at 2,400 bits/s.

\title{
Audibility of phase distortion
}

\title{
Pulse testing of all-pass phase shift networks, loudspeakers and human heads
}

\author{
by Benjamin B. Bauer \\ CBS Laboratories
}

The intense interest aroused in scientific circles by matrix quadraphony has resulted in a careful scrutiny of all its components, most important among them being all-pass phase-shift networks (or "psi-networks" as we like to call them). After presentation of our paper on quadraphony at the Audio Engineering Society Meeting in Rotterdam \({ }^{1}\), a discussion was held about wave-shape changes that had been observed in testing psi-networks with square waves. We acknowledged the existence of these changes, but replied that at no time had we noticed audible distortion with psi networks (the results of psychoacoustic testing in which such networks were randomly introduced in paired comparisons being governed strictly by chance \({ }^{2}\)), and concluded by stating that square waves did not seem to be useful for testing psi networks (or, for that matter, loudspeakers). This paper expands our views on this subject.

As every electronics engineer knows, psi networks have been used in audio communications for many years without the slightest perceptible ill effect. Traditionally, they have been utilized for production of single sideband modulation; an important application in modern a.m. and f.m. broadeasting technology is for "symmetricizing" speech waves to increase the modulation index - a psi network sold in the U.S.A. under the trade name "Symmetrapeak" is commonly used for this purpose. Also, a widely employed scheme for producing monophonic records from, and for compatible broadcasting of, stereophonic programs utilizes differential psi networks in the two channels of the stereophonic source.

Prior to the introduction of the SQ system by CBS, the action of psi networks was carefully reviewed at our laboratories using music, speech, square waves, triangular waves, and Gaussian noise sources. These were applied to loudspeakers with the psi network in and out of the circuit. At no time have any of our listeners been able to detect the slightest audible difference. These experiments, naturally, did not prove that some allpass networks might not be capable of altering the quality of sound - they simply meant that the psi networks we designed had not produced such alterations. I presume that similar tests have been
performed by Mr İtoh of Sansui \({ }^{3}\) and by Drs Cooper and Shiga of Nippon/ Columbia \({ }^{4}\) with their systems of matrix quadraphony which also use psi networks. Additionally, one should mention the work of Dr Manfred P. Schroeder, who studied psi networks and established criteria for their audible performance \({ }^{5}\).

\section*{Impulse testing of psi networks}

Let us take a typical psi network of the type used for matrix encoding and study its impulse characteristics. As an example, we selected a 10 -pole network used in an SQ encoder, with straight-line phase shift

Fig. 1 Typical phase shift function, psi (f) of psi network used in SQ encoders.

Fig. 2 The response of the psi network of Fig. 1 (lower trace) to a 1 ms rectangular pulse (upper trace).

Fig. 3 The plot of \(\left(\sin \omega_{n}{ }^{\tau / 2}\right) /\left(\omega_{n}{ }^{\tau} / 2\right)\)
versus log-frequency characteristic from \(20-20,000 \mathrm{~Hz}\), shown in Fig.1. The sinewave response of this network is flat within 0.25 dB over the audible range and its harmonic and intermodulation distortions are virtually unmeasurable. However, if a rectangular wave, e.g., of 1 ms duration, is applied to it, the output has little resemblance to the input, as seen in Fig. 2. The alteration of shape obviously is caused by differential phase delays.

We know, of course, through the use of the Fourier transform, that a single rectangular pulse may be represented in the frequency domain by a continuum from minus to plus infinity with amplitude distribution following the law \(\left.\left(\sin \omega_{n} \tau / 2\right) / \omega_{n} \tau / 2\right)\) shown in Fig. 3, where \(\omega_{\eta}\) is the angular frequency, \(2 \pi f_{n}\), and \(\tau\) is the pulse length in seconds, or by an equivalent line structure in the event of periodically generated pulses. With a 1 ms -wide pulse, the nulls occur at 1 kHz intervals. Any presumption that such a continuum can fairly be used for visual assessment of the performance of a psi network used for conventional speech and music clearly is unwarranted, especially since the presence or absence of the network does not perceptibly influence the audible quality of sound.

Nevertheless, visual inspection of the effect of psi networks upon pulses is, at times, desirable as when one wishes to measure system overload capability or time delay. Some years ago, while developing tests for loudspeakers, similar consideration led us to search for a pulse which would fairly represent the reaction of an acoustical system to transient signals. Reviewing the available signals, one finds at one extreme the delta pulse of infinitesimal duration which is equivalent, in the frequency domain, to a uniform cophase amplitude distribution extending from minus to plus infinity; and at the other, a continuous sine wave signal extending from minus to plus infinity in the time domain, equivalent to a single line-frequency. Either extreme is obviously uninformative. A limited-frequency continuum appealed to us as a reasonable compromise since the delay characteristics of the waves within such a packet would be more or less uniform. In the time domain the limited-bandwidth pulse resembles a bell-shaped amplitude-
modulated sine wave, not unlike the shape of the transient sounds of some musical instruments.

An easy way to obtain the desired function is to pass a \(100 \mu \mathrm{~s}\) or shorter pulse through a \(1 / 3\)-octave bandpass filter. Fig. 4 shows what happens when such a test signal produced through a filter with a mid-frequency of 1000 Hz (top curve), is passed through the psi network (bottom curve). We note that the packet of waves passes through the network with practically no change in the shape of the envelope, albeit the phase relationship at midpoint, predictable from the curve in Fig 1, is modulo \(360^{\circ}\), or \(450^{\circ}\) \(360^{\circ}=90^{\circ}\).

\section*{Impulse performance of loudspeakers}

Since we commonly use loudspeakers to judge sound quality, the performance of loudspeakers with impulsive sounds becomes a matter of interest. Fig 5 shows the response of a high-quality monitor loudspeaker to the \(1 \mu\) s rectangular pulse. A small microphone with flat frequency response placed approximately 18in from the loudspeaker grille picks

Fig. 4 A bandpass-filtered delta pulse (lower trace) with the bandpass-filtered delta pulse passed through the psi network (upper trace).

Fig. 5 The response of a high quality loudspeaker (lower trace) to a lms rectangular pulse (upper trace).

Fig. 6 The bandpass-filtered delta pulse (upper trace) compared with the response of a high quality loudspeaker to the same pulse (lower trace).
up the reproduced pulse. The time delay, (1 \(\mu\) per division), clearly corresponds to the transit time from the loudspeaker to the microphone, plus a small delay within the loudspeaker proper. The reproduced pulse is quite similar to that exhibited by the psi networks but with some added perturbations.

By applying the \(1000-\mathrm{Hz}\) centred \(1 / 3-\) octave filtered packet of waves to the loudspeaker, the result shown in Fig 6 becomes similar to that obtained with the psi network, except that the envelope delay corresponding to the microphonespeaker distance again is noted. The response curve of this particular loudspeaker exhibits a slight hangover, suggesting a somewhat underdamped condition. In CBS Laboratories' high fidelity components testing programme, such \(1 / 3\)-octave band-limited pulses are regularly used for loudspeaker testing \({ }^{6}\). Comparing the shapes of the input and output pulses allows us to study such diverse factors as magnetic dissymmetries, mechanical nonlinearities, acoustical reflections, etc. which otherwise would be difficult to detect.

Having established that psi networks and loudspeakers share similarities with respect to impulsive sounds, one is led to conjecture whether there might not exist an opportunity for improving the performance of both classes of devices. Here we open the door to a debate which probably will continue for a long time to the delight of hi-fi enthusiasts and magazine editors alike.

Will the ultimate perfection of psi networks and loudspeakers, if it were theoretically possible, lead to significant improvements in fidelity? Even to conjecture about this question requires that we define what is meant by audible fidelity in the reproduction of impulsive sounds. Some years ago we measured the interaural delays caused by the human head as a function of frequency and azimuth of sound arrival \({ }^{7}\). The delays were calculated from phase measurements at the ear canal entrances at low frequency, but high-frequency measurements were difficult to perform because of rapid phase changes caused by minuscule head motions, also exhibiting inconsistencies which probably were related to differences between phase and group velocities. Later we attempted to use acoustical pulses with the thought of obtaining group delay characteristics. The results were similar to those exhibited by the psi networks and loudspeakers. Thus, even if one were able to design these latter components to transmit visually unaltered rectangular pulses, the diffraction around the head might prevent the audible effect of such change from being significant, except possibly at very low frequencies.

\section*{Conclusion}

In conclusion, careful auditing of speech, music, impulsive repetitive sounds and Gaussian noises reproduced with and without psi networks through high quality loudspeakers convinced us that the types
of networks we use are not a cause of discernible changes in quality. With respect to distortions occasionally reported by some observers, one is tempted to wonder if an unrelated factor such as a change in frequency response, amplifier overload, etc., might not in fact have been the assignable cause. The phase shifts or time delays exhibited by our psi networks simply have turned out to be inaudible.

Presumably, we should be grateful to Messrs. G. S. Ohm and H. L. F. Helmholtz who discovered that phase does not influence timbre \({ }^{8}\), even if a number of distinguished investigators have described subsequent experiments designed to demonstrate that phase changes can result in alterations of timbre \({ }^{9}\). Shroeder \({ }^{10}\) maintains that small or no subjective changes will be produced by variations of phase spectrum which leave the envelope of the stimulus invariant. The latter condition is attained with the impulse we used in testing psi networks as demonstrated by Figs 4 and 6 , and which we believe fairly represents the impulsive sounds of speech and music. But even the timbre of square waves is unaltered with our psi networks, we conjecture, because loudspeakers and human heads introduce similar differential delays in the path of the signal. Evidently more research into this problem is needed.

\section*{References}
1. Benjamin B. Bauer, Richard G. Allen, Gerald A. Budelman, and Daniel W. Gravereaux, "Quadraphonic Matrix Perspective Advances in SQ Encoding and Decoding Technology;" presented at 44th Meeting of the Audio Engineering Society, Rotterdam, Netherlands, February 22, 1973.
2. Benjamin B. Bauer and Paul Milner, "Some Psychoacoustic Phenomena Related to Quadraphonic Reproduction," presented at the Meeting of the Acoustical Society of America in Boston, Mass., April 10-13, 1973.
3. Ryosuke Itoh, "Proposed Universal Encoding Standards for Compatible Four-Channel Matrixing," J. Audio Eng. Soc., Vol. 20, pp 167-173, (April 1972).
4. Duane H. Cooper and Takeo Shiga, "Discrete-Matrix Multi-channel Stereo," J. Audio Eng. Soc., Vol. 20, pp. 346-360 (June 1972).
5. Manfred R. Schroeder, "An artificial stereophonic effect obtained from a single audio signal", J. Audio Eng. Soc., Vol. 6, pp. 74-79. Also personal communication.
6. Benjamin B. Bauer, "Speaker tests can be relevant to the listening experience", High Fidelitv, Vol. 20, pp. 42-49. June 1970.
7. Benjamin B. Bauer, and Emil L. Torick,
"Diffraction and interaural delay of a progressive sound wave caused by the human head" (Abstract), J. Acous. Soc.Am. Vol. 36, p. \(1933(\mathrm{~A}), 1964\).
8. Herman L. F. Hemholtz, "On the sensations of tone", Dover Publications Inc., New York 1954, 2nd ed., pp.33, 126.
9. David S. Stodolsky, "The standardization of monaural phase", I.E.E.E. Trans. Audio and Electroacoustics, Vol. AU-18, p. 288 (1970). 10. Manfred R. Schroeder, "New results concerning monaural phase sensitivity" (Abstract), J. Acous. Soc. Am. Vol. 31, p. 1579 (1959).

\title{
Simple f.m. modulator/ demodulator for a magnetic tape recorder
}

\author{
by B. D. Jordan \\ Institute for Advanced Studies, Dublin
}

\begin{abstract}
This unit offers an extension of the facilities of a domestic tape recorder to permit its use as an intrumentation recorder employing f.m. principles. The design involves no modification of the tape recorder and thus allows a wide field of application with various makes and types of machines.
\end{abstract}

Magnetic tape as a medium for recording v.l.f. signals or signal levels, suffers at least two serious limitations when using direct recording methods. First, the frequency response rarely extends below about 50 Hz and, second, amplitude instability occurs, caused mainly by surface inhomogenieties in the tape. For the purposes of handling analogue data, where the d.c. component of the signal must be preserved, it is necessary to incorporate some form of signal modulation into the recording process. Most of the commercially available instrumentation tape recorders employ f.m. modulation and many of these have specifications that include a frequency response of d.c. to 2 MHz as well as a great many other facilities that may not be required.

The instrument described was designed to provide a tape recorder with f.m. modulation giving a frequency response of d.c.800 Hz for recording v.i.f. phenomena and utilizing a domestic recorder at a tape speed of \(9.1 \mathrm{~cm} / \mathrm{sec}\). At this tape speed the tape recorder has a frequency response of about \(50 \mathrm{~Hz}-6.0 \mathrm{kHz}\). The carrier frequency was chosen to lie in the midband region, i.e. 3 kHz so that amplitude variations in the tape recorder output would not be excessive within the expected range of frequencies to be handled. In order to minimize the effect of wow and flutter due to the transport system, a reasonably large depth of modulation is desirable. A frequency deviation of about \(\pm 30 \%\) of the carrier was found to be satisfactory.

An integrated phase locked loop, Signetics type NE565, was used as both modulator and demodulator. Fig. 1 illustrates the principle of the phase locked loop. An f.m. signal, \(f_{s}\), is fed to a phase comparator whose reference is the output of a voltage controlled oscillator, \(f_{o}\). The phase comparator is a balanced multiplier which produces the sum, \(\left(f_{s}+f_{0}\right)\) and difference \(\left(f_{s}-f_{o}\right)\) frequencies of the input f.m. signal and the voltage controlled oscillator output. When the loop is in lock, the v.c.o. duplicates the input frequencies so that \(f_{s}-f_{o}=0\), and the output of the phase comparator contains a d.c. component which is proportional to the phase difference between the
input signal and the v.c.o. output. A low pass filter removes the sum frequency component and the remaining d.c. voltage is amplified and used to control the v.c.o. frequency in such a manner as to maintain \(f_{s}=f_{0}\). It is this controlling or error voltage which constitutes the demodulated signal.

\section*{The modulator}

One of the outstanding features of the NE 565 is the high linearity and wide dynamic range of the v.c.o. These characteristics make the device particularly attractive as a modulator. For this purpose the loop can be opened by disconnecting the v.c.o. output from the phase comparator reference input. The modulating signal can then be applied directly to the v.c.o. input, or if required, advantage can be taken of the high gain d.c. amplifier, by applying the modulating signal to the signal input of the phase comparator. The reference input should be returned to earth in this mode of operation. The low pass filter can be omitted by disconnecting \(C_{2}\).

The Fig. 2 shows the complete circuit. The v.c.o. is a relaxation type of oscillator the free running frequency, \(f_{o}\) being determined by the external capacitor, \(C_{1}\), and the charging current controlled by \(R_{1}\). The frequency \(f_{o}\) can be calculated from the expression
\[
f_{o}=\frac{1}{4 R_{1} C_{1}}
\]
\(C_{1}\) can be any value, but \(R_{1}\) has an optimum value of about \(4 \mathrm{k} \Omega\) so as to maintain minimum linearity error. So for our system,
with \(f_{o}=3 \mathrm{kHz}, C_{1}=.021 \mu \mathrm{~F}\). The conversion factor \(K\) for the v.c.o. is given by
\[
K=\frac{50 f_{o}}{V_{c c}} \text { radians } / \mathrm{sec} / \text { volt }
\]

In our case \(f_{o}=3 \mathrm{kHz}\) and \(V_{c c}=6 \mathrm{~V}\). \(K=2 \mathrm{kHz}\) per volt. Therefore in order to limit the depth of modulation to \(\pm 30 \%\) (\(\pm 900 \mathrm{~Hz}\) maximum frequency deviation), the control voltage at the v.c.o. input must not exceed 0.9 V peak to peak. The gain of the d.c. amplifier can be varied by means of the feedback resistor \(R_{2}\). Thus the depth of modulation can be fixed for a given input by means of \(R_{2}\).

\section*{Demodulator}

In this mode of operation the phase locked loop is closed by reconnecting the v.c.o. output to the phase comparator reference input. The low pass filter is formed by connecting \(C_{2}\) between pin 7 and the power rail.

The capture range, \(f_{c}\) of the p.l.1. (i.e. that range of frequencies about \(f_{o}\) over which the loop can acquire lock) is given by
\[
f_{c}=\frac{1}{\pi} \sqrt{\frac{32 \pi f_{o}}{\tau V_{c c}}}
\]
\(\tau\) is the time constant of the l.p. filter formed by \(C_{2}\) and an internal resistance of \(3.6 \mathrm{k} \Omega\). The tracking range \(f_{\mathrm{r}}\) of the p.1.1. is that range of frequencies about \(f_{o}\) over which the v.c.o. once having acquired lock, will maintain lock with the input signal and is given by
\[
f_{t}=\frac{8 f_{o}}{V_{c c}}
\]

Fig. 1. Block diagram of the phase lock loop.

Fig. 2. The complete modulator/demodulator circuit.

Fig. 3. The system frequency response.

To eliminate the residual unwanted sum frequency component present in the demodulated output, a balanced \(T\) filter is incorporated in the output. This was found to be most effective when tuned to \(2 f_{o}\). This is followed by a low pass active filter which has a cut-off frequency at 800 Hz . Because the demodulator of the p.1.1. output is referenced to the positive power rail there is always a standing d.c. potential of about \(0.125 V_{c c}\) below the positive power rail. This can be cancelled out by means of the level shifting facility incorporated in the active filter.

\section*{Performance and testing}

The system was tested using an Akai Model XV tape-recorder at a tape speed of
\(9.1 \mathrm{~cm} / \mathrm{sec}\) and a carrier frequency of 3 kHz . Fig. 3 shows the frequency response of the system. This test was made by recording an f.m. signal produced by applying tones of 5 mV peak to peak from 1.0 Hz to 1.5 kHz to the input. This recording was then played back and the demodulated signals were measured with an oscilloscope. A d.c. test was made by applying d.c. levels from -5 mV to +5 mV to the input. On playback the linearity error of the reproduced levels was less than \(0.5 \%\)
A two-channel system was constructed on a printed circuit board and mounted together with power supply in an instrument case measuring \(10 \times 7 \times 6\) in. No special layout precautions were found to be necessary. The system was incorporated in a 2 -channel d.c. photometer.

\section*{WEPRE BACK!}

Apologies to readers and advertisers for the absence of January and February issues of Wireless World. This was due to severe difficulties in the printing industry. However, we are back with this enlarged March issue which we are confident is up to our normal standard. It includes all the regular features plus the two special articles on an electronic piano and on horn loudspeaker design announced in our December 1973 issue and in press advertisements.

The present issue has a slightly smaller page size than normal-about half an inch shorter. This was made necessary by a change of printing arrangements and problems of paper supply. It does not, however, mean that there is any less reading matter on a page. We shall revert to our normal page size as soon as possible.
at the price, \(\star\) Big, bright readings at \(12 \frac{1}{2} / \mathrm{sec} . \star 26\) ranges measuring DC and AC voltage, current, and resistance. \(\star\) Input impedance of 50,000 megohms and DC accuracy of \(\pm .1 \% . \star 80 \mathrm{~dB}\) series mode rejection from patent strobe-locking design hitherto exclusive to high-priced D.V.M.'s. With auto-zero, the 801 is ready for instant action. Ask us by filling in the coupon how you can obtain the 801 on a 15 day approval without obligation. Or use the reader repiy service for full data first.

\section*{Bryans Southern Instruments}

Bryans Southern instruments Limited, Willow Lane, Mitcham, Surrey CR4 4UL, England. Tel:01-6485134 Telex : 946097 Grams : Bryans Croydon

Please send me details how I can obtain the 801 digital multimeter on a 15 -day approval without obligations.

WW-114 FOR FURTHER DETAILS

\section*{NEW DYNAMCO MULTIMETER WITH'CRANGE}

- A 10000 scale, six function multimeter powered by mains or internal battery.
- Push button operation for function and range sélection.
- Measurement functions: \(100 \mu \mathrm{~V}\) to 1 kV DC, \(100 \mu \mathrm{~V}\) r.m.s. to 500 V r.m.s. \(A C, 100 \mathrm{nA}\) to 1 mA (5A with shunts) DC, 100 nA r.m.s. to 1 mA r.m.s. (5A with shunts) \(\mathrm{AC}, 0 \cdot 1\) ohm to \(5 \mathrm{Mohm},-50^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\).
- The 610 incorporates a custom designed MOS-LS analogue-to-digital converter and its large size 7-segment display gives excellent readability.
- Basic UK price \(£ 155\).

\section*{AOT DYNAMCO}

DYNAMCO CAOT3 LIMITED
CENTRAL WAY ANDOVER HANTS ENGLAND
Telephone: (0264) 65961/8 Telex: 47107 WW-115 FOR FURTHER DETAILS

Competitively priced, quality guaranteed MICROFLAME

WELDMASTER
A compact convenient torch
for both Oxygen/Gas and Airl Gr both Oxypen/Gas and Alf/
Gas for welding, soldering or brazing with: Oxygen or Air and Acetyiene, Propane, Butane, Natura Gas, Flame
Gas or Hydroden. Gas or Hydroden. Flame
temperatures from \(1200^{\circ} \mathrm{F}\) to \(5000^{\circ}\) F. Wide range of atiachments. from MICRO WELDMASTER MICRO WELDMASTER
With micro jewelled welding With micro jeweiled welding
nozzles and injector system \(6000^{\circ} \mathrm{F}\) flames from \(.03^{\circ}\) (. 9 mm) for fusion weiding
metals down to
(\(002^{*}(0.6 \mathrm{~mm})\) from \(\mathrm{EB} .80+\) VAT
CUTMASTER

paired for optimum condition for cutting thinnest stae lates, up to 1 " \((25 \mathrm{~mm})\). Useful where access is dificulf. from \(£\)
(nozzies extra) PLASMASTER rotessional well balanced operating costs, wide control range, for Hol Gas Welding Thermoplastics. Triple connections for Afr, Gas and Nitrogen, olves non oxidising, hotgas jet at controlled velocities, temperalures
between \(200^{\circ} \mathrm{C}\) and \(500^{\circ} \mathrm{C}\). fromeen \(\mathbf{£ 1 3 . 6 0}+{ }^{\circ} \mathrm{C}\) and \(50{ }^{\circ} \mathrm{VAT}\) (nozzlen extra)
gastorches PORTA
The Pos The Portable Oxy/Gas Pack your cholce gives you the your cholce gives you the
opportunity of the right \(5000^{\circ} \mathrm{F}\) flame just where and when you want it. The pack has saved its own cost in
transport and manpower in just one service call. The Butane Cartridge is expendable, the Oxygen
Cylinder is refillable, and by Cylinder is refillabie, and by
using our optionai Charging Adaplor No. 5000 A you may do your own refilling in your home Or workshop. The 230 litre Oxygen Cyunder
has 10 hours capacity with the has 4 welding capp, or 1 hour
No 4 hour with the No 8 twin tip.
320 oramme Butane lasts about thiree times as fong. from \(\mathbf{E 4 0 . 0 0}+\) VAT The range of Microfiame torches are marketed world-wide, and a comprehensive range of
torches, accessories and spare parts are usually avallable from stock. Write or phone to order, for
more information or for more information, or for our
comprehensive range of fully descriptive literature, to the sole UK distributor: MICROFLAME (UK) LTD, ABBOTS HALL, DISS, NORFOLK. TEL: 'BOTESDALE
(STD 037 989) 555

\section*{The Avo DA114}

Over two years of development experience has made the Avo DA 114 the one portable, solid state, digital multimeter that stands up on its own. (Or hangs, reclines or lies flat for
 be measured between 100 mV and 1 kV full range, ac and dc current between \(100 \mu \mathrm{~A}\) and 1 A full range and resistance between \(100 \Omega\) and \(1 \mathrm{M}_{\Omega}\) full range with an overrange availability between 1000 and 1999 (excepton1kV and 1A ranges).

We've completely redesigned and styled it and packed it with features to win you over to digital multimeters.

Note its piano key switches. Functionally simple yet elegant.

Appreciate its non-blink display, its automatic zero correction and, thanks to a breakthrough in instrumentation techniques, its improved stability.

Rely on its internal self-check and calibration system for true peace of mind. And if that wasn't enough,

Just £103.50 (UK trade price) for the mains model and \(£ 135\) for the battery/mains model.

For full specification and name of nearest stockist please write to:

Avo Ltd., Avocet House, Dover, Kent.Tel: Dover (0304) 202620. Telex: 96283.

\title{
Multimeters
}

\title{
A survey of analogue and digital multi-function meters currently on the U.K. market
}

\author{
by Brian Sexton
}

The application of a voltage across a resistance produces a current - a well-known phenomenon rationalized some time ago by a Dr Ohm, who presented the results of his researches to the world in the form of his familiar Law. Simple though the law is, it is still the basis of the circuit. Whatever one's interest in electronics, at some point one needs to know voltage, current or resistance. The instrument used to determine these quantities is usually an analogue or digital multimeter - a short-hand expression meaning an instrument capable of measuring at least voltage and current, and usually resistance.

The analogue, or moving-pointer instrument was the sole method of measurement until a few years ago, when digital techniques became common in all branches of the art. It is not proposed to go into the "analogue versus digital" argument here - both types of meter have their advantgges. The overwhelming advantage of a digital meter is its reading accuracy; a pointer instrument can be reliably read to within around \(1 \%\) of full-scale, whereas a digital display presents no problem in this respect. (One assumes that the measuring accuracy is sensibly related to the reading accuracy.) This feature is, of course, gained at the expense of complexity and digital meters cost, at the very least, twice as much as a good-quality analogue meter. On the other hand, the much simpler pointer instrument will be a perfectly suitable meter for the great majority of work, the electronic variety, using amplifiers to increase sensitivity and input impedance, increasing its usefulness to compare with that of some digital equipment.

The analogue multimeter is a fairly straightforward instrument, its specifications being readily understood. Digital multimeters, in contrast, use a different type of circuit altogether, the requirements of a moving-coil meter display and a digital readout being totally divorced. The circuitry and operation of digital meters have brought a host of "digital" terms to specifications and to clear up any confusion that may exist, it is proposed to deal briefly with the commoner terminology.

\section*{Analogue-to-digital converters}

Although self-explanatory, the a.-to-d. converter is the heart of a digital meter and merits some attention. By means of this circuit, the input analogue (voltage, current or resistance) is converted into one of several forms of digital representation, which can be indicated by a digital display. It takes many forms, but the commonest is the dual-slope integrator, a method of conversion pioneered by Solartron. In this circuit, the input signal determines the slope, in one direction, of a Miller (Blumlein) integrator, the slope in the other direction being dictated by a very precise reference voltage. During the known time interval that the integrator is under the control of the input, pulses are gated to a counter and displayed to represent the input. The integration in both directions reduces the effect of amplifier drifts and clock frequency variations, the accuracy of the result depending chiefly on the precision of the reference voltage. The time interval during which the input controls the integrator is held to one complete cycle of the mains waveform, i.e. 20 ms , so that any 50 Hz or harmonics thereof picked up at the input are effectively cancelled in the integrator.

Several other methods of conversion are in use, but the system described accounts for the majority of instruments at present in use.

\section*{Autoranging}

Some of the more elaborate instruments are automatic to the fullest extent in that they will select the range providing maximum resolution when the input is connected and will display the sign of the measured quantity. Less expensive equipment often displays the sign and indicates when the input exceeds the selected range limit. A further aid to ease of operation is afforded by "leading zero suppression", which simply means that display elements reading zero to the left of the first significant figure are suppressed. For instance, 001.8 would become 1.8 .

\section*{Display}

The cold-cathode numerical indicator tube is still the most used type of display, although light-emitting diode (l.e.d.) arrays are coming into greater prominence of late. The dot-matrix l.e.d. display possesses the advantage that the failure of one diode does not result in the complete loss of one digit.

Flicker on digital indicators is not now a problem. Several years ago, when t.t.l. latched bistables became available cheaply, the stored display was adopted, wherein the last reading is displayed until a new one is obtained, with no rapid counting being visible. Liquid crystals are also coming into favour.

\section*{Resolution}

Digital meters are often described as, say, \(3 \frac{1}{2}\)-digit instruments. This somewhat bizarre designation refers to the way in which a two-fold increase in the range can be obtained by the use of an indicator tube which shows either " 0 " or " 1 " for the most significant digit. The normal range limit would be set at perhaps 0999 mV : with the addition of the "half" digit it becomes 1999 mV , the additional electronics being much simpler than for a full digit. The value of the least significant digit is the resolution.

\section*{Outputs}

It is fairly common practice to provide the displayed reading as an output in binary-coded decimal form, particularly when the instrument is to be used as part of a data-collecting system. The outputs may also be used to drive a printer.

\section*{A.c. measurements}

Some instruments, analogue or digital, are called "true-r.m.s. meters". In many voltmeters, sinusoidal inputs are rectified, the resulting signal applied to the measuring circuits corresponding to the average value of the sinusoid, although the display. is calibrated to read r.m.s. So long as the input remains sinusoidal, this trick is valid, but any departure from this shape causes an error in the reading. Consequently, some manufacturers either introduce correction circuitry or use special a.c. to d.c. converters, providing an output corresponding to the r.m.s. value of any shape of input waveform.

In the short directory which follows, only salient performance figures are given; space does not allow more detailed description.

For the same reason, only one or two instruments from each manufacturer have been included. Prices given are exclusive of v.a.t., which is charged at \(10 \%\).

Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
The DMM2 digital instrument provides for the measurement of alternating and direct voltage and current, and resistance in 17 ranges. Functions are selected by push-button, and the \(3 \frac{1}{2}\) digit neon-tube display has an automatically-positioned decimal point. Overrange and reverse polarity indicators are provided. Power is obtained from a.c. mains, external 12 V d.c. or a rechargeable battery pack.

\section*{Ranges}
\begin{tabular}{|c|c|}
\hline \(V\) d.c./a.c. & 200 mV 2 V 20 V 200 V 1 kV \\
\hline Resolution d.c./a.c. & \(100 \mu \mathrm{~V} 1 \mathrm{mV} 10 \mathrm{mV} 100 \mathrm{mV} 1 \mathrm{~V}\) \\
\hline Accuracy d.c. & \(\pm 0.1 \%\) to \(\pm 0.2 \%\) of reading \(\pm 0.1 \%\) to \(\pm 0.15 \%\) f.s. \\
\hline Accuracy a.c. & \(\pm 0.3 \%\) to \(\pm 0.4 \%\) of reading \(\pm 0.15 \%\) to \(\pm 0.2 \%\) f.s. \\
\hline Input \(R\) d.c. & 10M \\
\hline Input \(Z\) a.c. & (\(1 \mathrm{M} \Omega\) and 150 pF) to (\(10 \mathrm{M} \Omega\) and 40 pF) \\
\hline 1 d.c./a.c. & 200 \(\mu \mathrm{A}\) \\
\hline Resolution d.c./a.c. & 100nA \\
\hline Accuracy d.c. & \(\pm 0.3 \%\) reading \(\pm 0.2 \%\) f.s. \\
\hline Accuracy a.c. & \(\pm 0.5 \%\) reading \(\pm 0.5 \%\) f.s. \\
\hline \(\boldsymbol{R}\) & \(200 \Omega 2 \mathrm{k} \Omega 20 \mathrm{k} \Omega \quad 200 \mathrm{k} \Omega \quad 2 \mathrm{M} \Omega\) \\
\hline Resolution & \(100 \mathrm{~m} \Omega \quad 1 \Omega \quad 10 \Omega 100 \Omega \quad 1 \mathrm{k} \Omega\) \\
\hline Accuracy & \(\pm 0.3 \%\) to \(\pm 0.4 \%\) reading \(\pm 0.15 \%\) f.s. \\
\hline Price & £99 \\
\hline
\end{tabular}

WW500 for further detgits

Avo Ltd, Archcliffe Road, Dover, Kent. CT16 9EN.
Little needs to be said about the well known Avo 8. The Mark 5 version is more accurate (\(1 \%\) of f.s.d. on all d.c. ranges, and \(2 \%\) of f.s.d. on all a.c. ranges). It has a new movement and new cut-out. An interesting point is that the d.c. sensitivity remains unchanged. Apparently, so many thousands of service and instruction manuals relate their test voltage readings to the Model 8 sensitivity of \(20,000 \Omega / \mathrm{V}\) that it has been retained to avoid misleading results. The price is \(£ 40.30\).

The Avometer Type DAll 14 digital meter is a \(3 \frac{1}{2}\) digit instrument with automatic zero drift cancellation, a built-in operational check and a calibration facility. DA114M is mains-powered, the rechargeable battery/mains model being designated DA114B. Overrange and polarity reversal are indicated.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Ranges} \\
\hline V d.c./a.c. & 100 mV 1 V & 10 V & 100V & 1 kV \\
\hline Resolution d.c./a.c. & \(100 \mu \mathrm{~V} 1 \mathrm{mV}\) & 10 mV & 100 mV & 1 V \\
\hline Input \(R\) d.c. & Between 10M \(\Omega\) & and be & er than & 1000 M \\
\hline Input \(Z\) a.c. & \(1 \mathrm{M} \Omega\) in parallel & with no & more tha & n 20 \\
\hline Accuracy d.c. & \(\pm(0.1 \%\) to 0.2\%) & of rea & ing \(\pm 1\) d & igit \\
\hline Accuracy a.c. & \(\pm 1 \%\) of full ran & e, or \(\pm\) & \% of rea & ding \\
\hline / d.c./a.c. & \(100 \mu \mathrm{~A} \quad 1 \mathrm{~mA}\) & 10 mA & 100 mA & \\
\hline Resolution & 0.11 & 10 & 100 & \\
\hline Accuracy d.c. & \(\pm(0.3 \%\) to \(0.5 \%)\) &) of rea & ing \(\pm 1\) d & ligit \\
\hline Accuracy a.c. & \begin{tabular}{l}
\[
\pm 0.3 \% \mathrm{rdg} \pm 1
\] \\
overrange
\end{tabular} & full ra & ge. or \(\pm\) & \[
1.3 \%
\] \\
\hline \(R\) & \(100 \Omega 1 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & . \(100 \mathrm{k} \Omega\) & \(1 \mathrm{M} \Omega\) \\
\hline Resolution & \(0.1 \Omega \quad 1 \Omega\) & 102 & 1002 & 1 k 2 \\
\hline Accuracy & \(\pm 0.5 \%\) rdg \(\pm 1\) & digit & & \\
\hline Price & (DA114M) £103 & 50. (D) & 1148) £ & 135. \\
\hline
\end{tabular}

Bach-Simpson (U.K) Ltd, Trenant Industrial Estate, Wadebridge, Cornwall, PL27 6HD.

Overload protection is strongly featured in the new 260-6P analogue multimeter. The various protective devices include, fuse, varistor and a transistor switch with overload circuit breaker. The instrument has 27 ranges of resistance, alternating and direct voltage and current measurement. These ranges can be extended by a series of 10 plug-in units which enable the basic instrument to be used for various functions including transistor testing, temperature testing and milliohm measurement. An optional plug-in unit provides alternating current measuring facilities up to 250A.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Ranges} \\
\hline \(V\) d.c. Input \(R\) & \[
250 \mathrm{mV} 1 \mathrm{~V}
\]
\[
20.00032 \mathrm{~N}
\] & 2.5 V & 10V & 50 V & 250 V & 500 V & 1 kV \\
\hline Accuracy & \[
\pm 2 \% \text { f.s.d. }
\] & & & & & & \\
\hline \(V\) a.c. Input \(Z\) & \[
\begin{aligned}
& 2.5 \mathrm{~V} \quad 10 \mathrm{~V} \\
& 5.0002 \mathrm{~N}
\end{aligned}
\] & 50 V & 250 V & 500 V & 1kV & & \\
\hline Accuracy & \(\pm 3 \%\) f.s.d. & & & & & & \\
\hline / d.c. & \(50 \mu \mathrm{~A} \quad 1 \mathrm{~mA}\) & 10 mA & 100 mA & 500 m & 10A & & \\
\hline Accuracy & \(\pm 2 \%\) f.s.d. & & & 500m & 10A & & \\
\hline R & \(2 \mathrm{k} \Omega \quad 200 \mathrm{k} \Omega\) & \(20 \mathrm{M} \Omega\) & & & & & \\
\hline Price & ¢ 34.50 & & & & & & \\
\hline
\end{tabular}

WW502 for further details
G. \& E. Bradley Ltd, Electral House, Neasden Lane, London N.W.10. The Type 196 four-digit multimeter measures resistance and alternating and direct voltage within the frequency range 20 Hz to 100 kHz . Overrange facilities on all functions extend each range by \(50 \%\). The maximum reading is 1500 V d.c. and \(15 \mathrm{M} \Omega\) but is limited to 1200 V r.m.s. on the maximum \(V\) a.c. range. The overrange condition is indicated by a " 1 " digit incorporated in the polarity indicating tube. Fully guarded input circuits give a common-mode rejection on d.c. ranges of more than 140 dB at 50 to 60 Hz and d.c. Common and series mode rejection is better than -60 dB on a.c. and mains frequency series-mode noise rejection is better than -60 dB on d.c. ranges. Five neon display tubes are used for readout with polarity indicated automatically. Sampling rate is 10 times per second irrespective of mode selected and hold facilities are provided.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Ranges} \\
\hline V d.c. & 100 mV & & 10 V & 100 V & \multicolumn{3}{|l|}{1 kV} \\
\hline Resolution & \(10 \mu \mathrm{~V}\) & \(100 \mu \mathrm{~V}\) & 1 mV & 10 mV & \multicolumn{3}{|l|}{100 mV} \\
\hline Input/Z & 10GS & 10GO & 10Gת & \(10 \mathrm{M} \Omega\) & \multicolumn{3}{|l|}{\(10 \mathrm{M} \Omega\)} \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 0.01 \%\) of reading \(\pm 1\) digit} \\
\hline \(V\) a.c. & 1 V & 10 V & 100 V & \multicolumn{4}{|l|}{1 kV} \\
\hline Resolution & \(100 \mu \mathrm{~V}\) & 1 mV & 10 mV & \multicolumn{4}{|l|}{100 mV} \\
\hline Input \(Z\) & \multicolumn{7}{|l|}{\(1 \mathrm{M} \Omega\) shunted by less than 50 pF (all ranges)} \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm(0.1 \%\) to \(0.4 \%)\) of reading \(\pm 1\) digit (depends on range and frequency)} \\
\hline \(R\) & 1002 & \(1 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(100 \mathrm{k} \Omega\) & 1 MQ & \(10 \mathrm{M} \Omega\) & \\
\hline Resolution & \(0.01 \Omega\) & \(0.1 \Omega\) & \(1 \Omega\) & \(10 \Omega\) & \(100 \Omega\) & \(1 \mathrm{k} \Omega\) & \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 0.1 \%\) of reading \(\pm 1\) digit} \\
\hline Price & \multicolumn{7}{|l|}{£395} \\
\hline
\end{tabular}

WW503 for further details

Cosmocord Ltd, Eleanor Cross Road, Waltham Cross, Hertfordshire EN8 7NX.

The model 12 battery-powered analogue multimeter has a slide switch for range selection and a colour coded scale to facilitate reading. In addition to voltage, current and resistance ranges, the instrument has

two transistor checking ranges "LI" and "LV" (low current and voltage) which enable the impedance of junctions to be determined at different current levels.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Ranges} \\
\hline V d.c. & 0.25 V & 2.5 V & 10 V & 50 V & 250 V & 1 kV \\
\hline Input \(R\) & \(20 \mathrm{k} \Omega \mathrm{N}\) & & & & & \\
\hline Va.c. & - & - & 10 V & 50 V & \(\cdots 250 \mathrm{~V}\) & 1 kV \\
\hline Input \(Z\) & \(5 \mathrm{k} \Omega \mathrm{N}\) & & & & & \\
\hline Id.c. & 5quA & 25 mA & 250 mA & & & \\
\hline \(\boldsymbol{R}\) & \(3 \mathrm{k} \Omega\) & \(30 \mathrm{k} \Omega\) & \(300 \mathrm{k} \Omega\) & \(3 \mathrm{M} \Omega\) & & \\
\hline " \(\mathrm{Ll}{ }^{\prime}\) & 52 mA & 5.2 mA & \(520 \mu \mathrm{~A}\) & \(52 \mu \mathrm{~A}\) & & \\
\hline "LV'" & 1.5 V & 1.5 V & 1.5 V & 1.5 V & & \\
\hline dB -2 & 0 to +22 dB & - -6 & \(+36 \mathrm{~dB}\) & \(+20\) & \(+50 \mathrm{~dB}\) & \\
\hline Price \(£ 7\) & & & & & & \\
\hline
\end{tabular}

\section*{WW504 for further details}

Dana Electronics Ltd, Collingdon Street, Luton, Beds.
The 4300 digital multimeter has 4 -digit plug-in l.e.d. readout with \(+100 \%\) overranging and leading-zero suppression, the intensity of the display being automatically adjusted to suit prevailing ambient light conditions. The instrument can be powered by either mains or battery. When battery-powered, a switch position provides for digital readout of battery voltage; a chart on the battery case converts battery voltage to the approximate unused battery time remaining, and automatic shut-off at battery voltage recharge level prevents battery damage and the possibility of incorrect readings.

\section*{Ranges}
\begin{tabular}{|c|c|}
\hline V d.c./s.c. & 0.1 V (d.c. only) 1 V 10 V 100 V 1 kV \\
\hline Resolution & \(0.01 \%\) of range (\(10 \mu \mathrm{~V}\) on 0.1 V d.c. and \(109 \mu \mathrm{~V}\) on \(1 \mathrm{Va.c)}\). \\
\hline Input \(R\) d.c. & \(1 \mathrm{G} \Omega(0.1 \mathrm{~V}\) and 1 V ranges) \(10 \mathrm{M} \Omega\) (other ranges) \\
\hline Input \(Z\) a.c. & \(1 \mathrm{M} \Omega\) shunted by 100 pF \\
\hline Accuracy d.c./a.c. & Range, temperature and time dependent \\
\hline /d.c./a.c. & \(10 q \mu \mathrm{~A} \quad 1 \mathrm{~mA} 10 \mathrm{~mA} 100 \mathrm{~mA} 1 \mathrm{~A}\) \\
\hline Accuracy d.c./a.c. & Range, temperature and time dependent \\
\hline Resolution & 10 nA on 100u A range \\
\hline \(\boldsymbol{R}\) & \(1 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega \quad 100 \mathrm{k} \Omega \quad 1 \mathrm{M} \Omega \quad 10 \mathrm{M} \Omega\) \\
\hline Resolution & \(0.01 \%\) of range (\(0.1 \Omega\) on \(1 \mathrm{k} \Omega\) range max.) \\
\hline Accuracy & Range, temperature and time dependent \\
\hline Price & ¢299 \\
\hline
\end{tabular}

The 5800 A is a five-digit instrument capable of measuring direct and true r.m.s. values of alternating voltage, the ratio between two alternating voltages, two direct voltages between resistance and direct voltage or direct and alternating voltage, and will perform four-wire resistance measurements, or direct and alternating voltage, all but direct voltage and ratio determination requiring the addition of ancillary units.

Ranges
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Ranges} \\
\hline \(\checkmark\) d.c. & 1 V 10 V 100 V 1000 V \\
\hline Resolution & \(10 \mu \mathrm{~V} 10 \mathrm{~L} / \mathrm{V}\) (1 mV 10 mV \\
\hline İnput resistance & 1G \(\Omega\) 10G \(\Omega\) 10M \(\Omega 10 \mathrm{M} \Omega\) \\
\hline Accuracy & \[
\begin{aligned}
& \pm 0.008 \% \text { of reading }+0.002 \% \text { f.s. } \\
& \text { (long term) }
\end{aligned}
\] \\
\hline Ratio Price & ```
mV.V d.c., ohms or V a.c. to V d.c.
£1.595
``` \\
\hline
\end{tabular}

\section*{WW505 for further details}

Eagle International, Precision Centre, Heather Park Drive, Wembley, HA0 \(15 U\).

The company's current catalogue contains details of some 13 analogue multimeters ranging in price from \(£ 4\) to \(£ 50\). At the top end of the price range, the K200 f.e.t. voltohmeter has a claimed input resistance of \(10 \mathrm{M} \Omega\) on both d.c. and a.c. voltage ranges. Frequency response is 20 Hz to \(3 \mathrm{MHz} \pm 1 \mathrm{~dB}\).
\begin{tabular}{lllllllll}
\multicolumn{8}{c}{ Ranges } \\
\hline V d.c./a.c. & 0.3 V & 1 V & 3 V & 10 V & 30 V & 100 V & 300 V & 1 kV \\
/ d.c./a.c. & \(30 \mu \mathrm{~A}\) & \(300 \mu \mathrm{~A}\) & 1 mA & 3 mA & 10 mA & 30 mA & 100 mA & 300 mA \\
\(\boldsymbol{R}\) & \(500 \Omega\) & \(5 \mathrm{k} \Omega\) & \(50 \mathrm{k} \Omega\) & \(500 \mathrm{k} \Omega\) & \(5 \mathrm{M} \Omega\) & 500 MS \\
Price & \(£ 46.70\) & & & & & \\
\hline
\end{tabular}

\section*{WW506 for further details}

Farnell Instruments Litd, Sandbeck Way, Wetherby, Yorkshire, LS22 4DH.

The company produces a digital measuring system which favours individual modules for separate parameters rather than a combined instrument. Three mainframes (for 3,4 and 6 digit display units) are used to accept plug-in measurement modules covering direct and alternating voltage, resistance, capacitance, frequency, counting and timing. A feature of the DCV 100 d.c. voltmeter module is its ability to discriminate between a.c. and d.c. signals. This is accomplished by input filtering, a photochopper stabilized operational amplifier and a precision gate. The mainframe costs between \(£ 125\) and \(£ 199\), depending on the number of digits and other facilities.

\section*{Ranges}
\begin{tabular}{lll}
\hline Vd.c. & 99.9 mV 0.999 V 9.99 V & 99.9 V \\
Resolution & 1009 V max. or \(0.1 \% \mathrm{f} . \mathrm{s} . \mathrm{d}\). & \\
Input \(R\) & \(10 \mathrm{M} \Omega \pm 1 \%\) \\
Accuracy & \(0.1 \%\) of reading \(\pm 1\) digit & \\
Price & \(£ 75\)
\end{tabular}

\section*{Bradley 196}
digital
multimeter


\section*{Cosmocord 12 analogue multimeter}


\section*{Eagle}

International
K200 electronic multimeter


Farnell
DCV100 d.c. voltmeter module and mainframe


Farnell DOM100 ohmmeter module


Fenlow 801 digital multïmeter


Heathkit IM-1202 digital multimeter


Hewlett
Packard HP970A digital multimeter

Hewlett Packard 3490A
digital multimeter

The DOM 100 ohms module provides for the measurement of resistance from \(999 \mathrm{~m} \Omega\) to \(1 G \Omega\) full-scale. The measuring circuit is a self-balancing bridge with a front-panel lamp to indicate when the bridge comes to balance. Remote sensing terminals are provided for lead resistance compensation. The resistance of inductive windings can be measured and the power applied to components being measured is less than ImW.

\section*{Ranges}
\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Ranges } \\
\hline\(R\) & \(999 \mathrm{~m} \Omega\) to \(999 \mathrm{M} \Omega\) (in 10 decade ranges) \\
Accuracy & \\
(Less than \(1 \Omega)\) & \(\pm 0.2 \%\) of reading \(\pm 1\) digit \\
(1 \(\Omega\) to \(10 \mathrm{M} \Omega)\) & \(\pm 0.1 \%\) of reading \(\pm 1\) digit \\
\(10 \mathrm{M} \Omega\) to \(100 \mathrm{M} \Omega\) & \(\pm 0.2 \%\) of reading \(\pm 2\) digits \\
\(100 \mathrm{M} \Omega\) to \(1 \mathrm{G} \Omega\) & \(\pm 0.5 \%\) of reading \(\pm 1\) digit \\
Price & \(£ 110\) \\
\hline WW507 for further details (DCV100)
\end{tabular}

WW507 for further details (DCV100)
WW508 for further details (DOM100)

Fenlow Agents: Bryans Southern Instruments Ltd, Willow Lane, Mitcham, Surrey, CR4 4UL.

The Fenlow model 801 has an auto zero facility which allows the instrument to be ready for use within 30 seconds of switching on. Voltage, current and resistance are covered and readout from the \(3 \frac{1}{2}\) digit storage display is by seven-segment fluorescent tubes. On d.c. ranges, series mode rejection is 80 dB and common mode rejection is 126 dB . These figures are maintained during \(\pm 2 \%\) mains frequency variation.

Ranges
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\checkmark\) d.c./a.c. & 200 mV & 2 V & 20 V & 200 V & \multicolumn{2}{|l|}{1200 V} \\
\hline Resolution & \(100 \mu \mathrm{~V}\) & 1 mV & 10 mV & 100 mV & \multicolumn{2}{|l|}{1 V} \\
\hline Input R d.c. & \(1 \mathrm{G} \Omega\) & 10G8 & 10 M 2 & 10M2 & \multicolumn{2}{|l|}{10MQ} \\
\hline Input \(Z\) a.c. & \multicolumn{6}{|l|}{(as d.c. but with 100 pF on 20V, \(200 \mathrm{~V}, 1200 \mathrm{~V}\) ranges)} \\
\hline Accuracy d.c. a.c. & \multicolumn{6}{|l|}{\begin{tabular}{l}
\(\pm(0.1 \%\) of reading \(+0.5 \%\) f.s.) \\
\(+(0.5 \%\) of reading \(+0.1 \%\) f.s. \()\)
\end{tabular}} \\
\hline / d.c./a.c. & 200MA & 2 mA & 20 mA & 200 mA & \multicolumn{2}{|l|}{2A} \\
\hline Resolution & 100 nA & \(1 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) & 1 mA & \\
\hline Accuracy d.c. a.c. & \multicolumn{6}{|l|}{\(\pm(0.3 \%\) of reading \(+0.05 \%\) f.s. \()\)} \\
\hline \(R\) & \(200 \Omega\) & 2kR & 20k? & 200 k ת & 2MS & 20M 2 \\
\hline Resolution & \(100 \mathrm{~m} \Omega\) & \(1 \Omega\) & 108 & 1008 & 1 k / & \(10 \mathrm{k} \Omega\) \\
\hline Accuracy Price & \[
\begin{aligned}
& \pm 10.2 \% \\
& \mathbf{E 1 1 4}
\end{aligned}
\] & of read & \[
n g+0 .
\] & 5\% f.s.) & & \\
\hline
\end{tabular}

WW509 for further details

Hartmann \& Braun (U.K.) Ltd, Moulton Park, Northampton, NN3 ITF.
A wide range of instruments are available from this company. Many are perhaps more suitable for power engineering applications such as the interesting Elavi which measures alternating current and voltage, active current I \(\cos 0, \cos \varnothing, \sin \emptyset\) frequency and resistance. Among the lighter current instruments is the Elavitron 1 electronic multimeter with analogue readout. The instrument presents a resistance of \(200 \mathrm{k} \Omega / \mathrm{V}\) in the ranges between 1 V and 100 V .
\begin{tabular}{lllllllll} 
Elavitron 1 & \multicolumn{7}{c}{ Ranges } \\
V d.c./a.c. & 0.3 V & 1 V & 3 V & 10 V & 30 V & 100 V & 300 V 1 kV \\
/d.c./a.c. & 0.1 mA & 1 mA & 10 mA & 30 mA & 100 mA & 300 mA & 1 A & 3 A \\
\(\boldsymbol{R}\) & \(1 \mathrm{k} \Omega\) & \(100 \mathrm{k} \Omega\) & \(10 \mathrm{M} \Omega\) & & & & & \\
Price & \(\mathbf{~} 37\) & & & & & & \\
\hline
\end{tabular}

WW510 for further details

Heathkit: Heath (Gloucester) Ltd, Gloucester, GL2 6EE.
This kit company has several multi-function meters available. Usually the buyer has the alternative of an assembled version, but the new IM-1202 digital multimeter is offered in kit form only. The instrument has ranges for the measurement of resistance, d.c./a.c. voltage and current. Frequency range is 25 Hz to 10 kHz . Cold cathode tubes are used for readout and a pseudo memory ensures a non-blinking display.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Ranges} \\
\hline V. d.c. & 2 V 20 V 200 V & 1 kV \\
\hline Resolution & 10 mV (lowest range only) & \\
\hline Input \(R\). & \(1 \mathrm{M} \Omega\) & \\
\hline Accuracy & \(1 \% \pm 1\) digit & \\
\hline \(V\) a.c. & 2 V 20 V 200 V & 700 V \\
\hline Resolution & 10 mV (lowest range only) & \\
\hline Input Z & \(1 \mathrm{M} \Omega\) & \\
\hline Accuracy & \(1 \frac{1}{2} \% \pm 1\) digit & \\
\hline / a.c. & \(2 \mathrm{~mA} \quad 20 \mathrm{~mA} \quad 200 \mathrm{~mA}\) & 2 A \\
\hline Resolution & \(10 \mu \mathrm{~A}\) (lowest range only) & \\
\hline Accuracy & \(1 \frac{1}{2} \% \pm 1\) digit & \\
\hline /a.c. & 2 mA 20 mA 200 mA & 2 A \\
\hline Resolution & \(10 \mu \mathrm{~A}\) ( (lowest range only) & \\
\hline Accuracy & \(1 \frac{1}{2} \% \pm 1\) digit & \\
\hline R Resolution & \[
200 \Omega \quad 2 \mathrm{k} \Omega \quad 20 \mathrm{k} \Omega
\]
\[
1 \Omega \text { (lowest range only) }
\] & \(200 \mathrm{k} \Omega 2 \mathrm{~m} \Omega\) \\
\hline Accuracy & \(2 \% \pm 1\) digit & \\
\hline Price & £39.60 & \\
\hline
\end{tabular}

WW511 for further details

Hewlett Packard Ltd, 224 Bath Road, Slough, Bucks, SLl 4DS.
The 3490A multimeter is a five digit integrating instrument which uses a dual slope integrating technique. The basic instrument measures d.c. voltages, a.c. voltages ( 20 Hz to 250 kHz ) and resistance. Ohm measurements can be made using the four-wire conversion technique to eliminate errors due to test lead resistances. Ranging is automatic on all functions. Sixteen frontpanel self tests are designed to assist calibration and fault finding. Each test interrogates an internal parameter and displays the results on the frontpanel. Results are compared with proper values given on a pull-out instruction card. Among the tests are a series of logic tests and measurement of the reference voltage. The display is of the dot-matrix type. Extra optional facilities are available, for instance, the provision of a ratio measurement mode and a sample/hold option.


The HP970A is a digital multimeter designed to be held in the hand. It is self-contained, using a rechargeable battery pack, and presents the readings on a miniature l.e.d. dot-matrix display at the forward end of the unit. The display can be inverted electronically. Ranging is automatic, as is the indication of polarity and placing of the decimal point, which maintains units of volts and kilohms.
\begin{tabular}{ll}
\multicolumn{3}{c}{ Ranges } \\
\hline\(V\) d.c. & \(0.1 \mathrm{~V} 1 \mathrm{~V} \quad 10 \mathrm{~V} \quad 100 \mathrm{~V} \quad 1 \mathrm{kV}\) \\
Input \(R\) & \(10 \mathrm{M} \Omega \pm 5 \%\) \\
Accuracy & \(\pm(0.7 \%\) of reading \(+0.2 \%\) of range) \\
\(V\) a.c. & \(0.1 \mathrm{~V} 1 \mathrm{~V} \quad 10 \mathrm{~V} 100 \mathrm{~V} 1 \mathrm{kV}\) \\
Input \(Z\) & \(10 \mathrm{M} \Omega \pm 5 \%\) with less than 30 pF \\
Accuracy & \(\pm(2 \%\) of reading \(+0.5 \%\) of range 45 Hz to 1 kHz \\
\(R\) & \(1 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega 100 \mathrm{k} \Omega 1 \mathrm{M} \Omega \quad 10 \mathrm{M} \Omega\) \\
Accuracy & \(\pm(1.5 \%\) of reading \(+0.2 \%\) of range) \\
Price & \(£ 137.50\)
\end{tabular}

\section*{WW5 12 for further details (3490A)}

WW513 for further details (HP970A)
Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks.
The company has recently announced the Model 190 a.c./d.c. digital multimeter which has \(5 \frac{1}{2}\) digit resolution and \(0.005 \%\) basic accuracy. Features include \(100 \%\) overranging, \(1 G 2\) input resistance and built-in binary-coded decimal outputs. Measurement ranges cover four of a.c., four of d.c. and five of resistance. The a.c. and d.c. voltage measurements cover 8 decades, from \(19 \mu \mathrm{~V}\) per digit to 1000 V full scale in four ranges. Resistance measurements cover 9 decades from \(1 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) full scale ( \(10 \mathrm{~m} \Omega\) to \(100 \Omega\) per digit). A useful feature, when simultaneous data readings must be recorded from several instruments, is the output hold control which can be used to retain data in the display and the digital output. Model 190 costs \(£ 399\).
WW513 for further details

\section*{Levell Electronics Ltd, Park Road, High Barnet, Herts.}

The TM9BP is an electronic analogue multimeter providing measurement facilities from 3 V or 3 pA full-scale, and resistance to \(1 \mathrm{G} \Omega\). All ranges (including resistance) are linear and have large overload ratings. Features include high input impedance and high a.c. rejection on voltage ranges, low voltage drop on the current ranges \(\left(10^{-3} \mathrm{~V}\right.\) at \(\ln \mathrm{A}, 0.1 \mathrm{~V}\) at 1 mA ) and low test voltage ( 3 mV at f.s.d.) on the linear resistance ranges. Power consumption is low, resulting in a very small warm-up drift and a life of 1000 hours from a self contained battery. The d.c. amplifier has \(100 \%\) series negative feedback applied on the 1 V range, high stability metal film resistors attenuating the negative feedback for ranges below IV. A recorder output is included and switch selects centre zero or left zero.


WW514 for further details

Linstead Electronics, Roslyn Works, Roslyn Road, London N15 5JB.
The company market a range of instr uments for industrial measurement, laboratories, universities, technical colleges and schools. The M2B is a d.c./a.c. analogue millivoltmeter providing 20 ranges from 1.2 mV ( 120 mV d.c.) to 400 V full scale, d.c. or a.c. within a frequency range from 10 Hz to 500 kHz . A decibel scale is also provided for plotting amplifier response, transfer functions, etc.

\section*{Ranges}
\(V\) d.c. \(120 \mathrm{mV} 400 \mathrm{mV} \quad 1.2 \mathrm{~V} 4 \mathrm{~V} \quad 12 \mathrm{~V} 40 \mathrm{~V} \quad 120 \mathrm{~V} 400 \mathrm{~V}\) Input \(R\) Varies from \(2 \mathrm{M} \Omega\) at 30 mV to \(7.5 \mathrm{M} \Omega\) at 400 mV . Other ranges \(10 \mathrm{M} \Omega\)
Accuracy \(\pm\left(2 \frac{1}{2} \%+2 \frac{1}{2} \%\right.\) f.s.d. \()\)
v.a.c. \(\quad 1.2 \mathrm{mV} 4 \mathrm{mV} 12 \mathrm{mV} 40 \mathrm{mV}\)... then as for \(V\) d.c. ranges

Input \(Z \quad 10 \mathrm{MS}\) ?
Accuracy \(\pm\left(2 \frac{1}{2} \%+2 \frac{1}{2} \%\right.\) f.s.d. \()\)
Price \(£ 35\)
WW516 for further details
Marconi Instruments Ltd, St. Albans, Herts.
The TF2670 \(3 \frac{1}{2}\)-digit multimeter is suitable for test room and laboratory measurements of voltage, current and resistance. Decimal point position is indicated automatically by lamps switched by the range selectors. Range overload and reversed polarity conditions are shown by warning indicators. The a-d system uses the dual integration technique, the reference voltage being derived from a low drift Zener with a low temperature coefficient so that the instrument is largely insensitive to moderate variation in ambient temperature. Counting and storage functions are performed by a single large scale integrated circuit. The instrument can be powered by mains, external direct voltage supply or by a rechargeable battery box attachment.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ges} \\
\hline \(V\) d.c. & 200 mV & 2 V & 20 V & 200 V & V \\
\hline Resolution & \(100 \mu \mathrm{~V}\) & 1 mV & 10 mV & 100 mV & 1 V \\
\hline Input \(R\) & \multicolumn{5}{|l|}{\(10 \mathrm{M} \Omega\) all ranges} \\
\hline Accuracy & \multicolumn{5}{|l|}{Varies from \(\pm 0.1 \%\) to \(2 \%\) of reading and \(\pm 0.1 \%\) to \(0.15 \%\) f.s.d.} \\
\hline \(V\) a.c. & 200 mV & 2 V & 20 V & 200 V & 1 kV \\
\hline Resolution & \(100 \mu \mathrm{~V}\) & 1 mV & 10 mV & 100 mV & 1 V \\
\hline Input \(Z\) & \multicolumn{5}{|l|}{1 MS ) and 40.150 pF} \\
\hline Accuracy & \multicolumn{5}{|l|}{Varies from \(\pm 0.3 \%\) to \(0.4 \%\) of reading and \(\pm 0.15 \%\) to \(0.2 \%\) f.s.d.} \\
\hline 1 d.c. & \(200 \mu \mathrm{~A}\) & 2 mA & 20 mA & 200 mA & \\
\hline Resolution & 100 nA & \(1 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) & mA \\
\hline Accuracy & \multicolumn{5}{|l|}{\(\pm 0.3 \%\) of reading \(\pm 0.2 \%\) f.s.d. all ranges} \\
\hline I a.c. & \(200 \mu \mathrm{~A}\) & 2 mA & 20 mA & 200 mA & 2A \\
\hline Resolution & 100 nA & \(1 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) & 1 mA \\
\hline Accuracy & \multicolumn{5}{|l|}{Varies from \(\pm 0.3 \%\) to \(0.7 \%\) of reading and \(\pm 0.3 \%\) to \(0.5 \%\) f.s.d.} \\
\hline \(R\) & \(200 \Omega\) & \(2 \mathrm{k} \Omega\) & \(20 \mathrm{k} \Omega\) & \(200 \mathrm{k} \Omega\) & \(2 \mathrm{M} \Omega\) \\
\hline Resolution & 100 ms & \(1 \Omega\) & 108 & 1008 & \(1 \mathrm{k} \Omega\) \\
\hline Accuracy & \multicolumn{5}{|l|}{\(\pm 0.4 \%\) of reading \(\pm 0.15 \%\) f.s.d. on 20082 range. Other ranges \(\pm 0.3 \%\) of reading \(\pm 0.15 \%\) f.s.d.} \\
\hline Price & \multicolumn{5}{|l|}{£99} \\
\hline
\end{tabular}

WW517 for further details


\section*{Neuberger}

Agents: Kandem Electrical Ltd, 711 \& 715 Fulham Road, London SW6 5UN.

The PKD4 set of measuring and testing instruments is a somewhat unusual approach to multi-function measurements. It consists of a basic moving coil indicator which accepts adaptors in the form of plug-in modules. Up to 12 different modules are separately available, covering d.c./a.c. voltage, d.c./a.c. current, resistance, a multi-range d.c. amplifier, a transistorised a.c. voltmeter and static and dynamic testers for \(\mathrm{n}-\mathrm{p}-\mathrm{n}\) and \(\mathrm{p}-\mathrm{n}\)-p transistors. The meter has two linear scales, 0 to 10 and 0 to 30 (for a.c. and d.c. measurements) and a third non linear scale marked in ohms and decibels. Adaptors are colour coded for quick identification and the ranges of PA2 ( \(V\) d.c.), PA3 ( \(I\) d.c.), PA4 ( \(V\) a.c. and \(I\) a.c.) and PA5 (resistance) modules are as follows.

\section*{Ranges}


WW518 for further details
Pye Unicam Ltd, York Street, Cambridge CB1 2PX
Released only in January 1974, the 4-digit (max.9999) PM2424 digital multimeter measures resistance, d.c. and a.c. ( 40 Hz to 50 kHz ) voltage and current with automatic ranging. Ranging time per range is 200 ms to 330 ms . Dual slope a-d conversion is used, and sampling rate is 3 to 5 samples/sec.
\begin{tabular}{|c|c|}
\hline Vd.c. & 1 V 10 V 100 V 1 kV \\
\hline Resolution & \(100 \mu \mathrm{~V} 1 \mathrm{mV} 10 \mathrm{mV} 100 \mathrm{mV}\) \\
\hline Input \(R\) & More than \(1 \mathrm{G} \Omega\) on 1 V and 10 V ranges. \(10 \mathrm{M} \Omega\) above. \\
\hline Accuracy & \(\pm 0.01 \%\) reading \(\pm 0.01 \%\) f.s. \(\pm 1\) digit \\
\hline \(V\) a.c. & 1 V 10 V 100 V 500 V \\
\hline Resolution & \(100 \mu \mathrm{~V} 1 \mathrm{mV} 10 \mathrm{mV} 50 \mathrm{mV}\) \\
\hline Input \(Z\) & \(1 \mathrm{M} \Omega\) in parallel with 10 pF (all ranges) \\
\hline Accuracy & Depends on range and frequency \\
\hline 1 d.c. & 1 mA 10 mA 100 mA 1 A \\
\hline Resolution & \(100 \mathrm{nA} 1 \mu \mathrm{~A} \quad 10 \mu \mathrm{~A} \quad 100 \mu \mathrm{~A}\) \\
\hline Accuracy & \(\pm 0.2 \%\) reading \(\pm 0.01 \%\) f.s. \(\pm 1\) digit on all ranges except 1 A where it is \(\pm 0.3 \%\) reading \(\pm 0.01 \%\).s. \(\pm 1\) digit \\
\hline /a.c. & 1 mA 10 mA 100 mA 1 A \\
\hline Resolution & \(100 \mathrm{nA} \quad 1 \mu \mathrm{~A} \quad 10 \mu \mathrm{~A} \quad 100 \mu \mathrm{~A}\) \\
\hline Accuracy & \(\pm 0.5 \%\) reading \(\pm 0.2 \%\) f.s. \(\pm 1\) digit on all ranges except 1 A where it is \(\pm 0.7 \%\) reading \(\pm 0.2 \%\) f.s. \(\pm 1\) digit \\
\hline \(R\) & \(1 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega \quad 100 \mathrm{k} \Omega 1 \mathrm{M} \Omega \quad 10 \mathrm{M} \Omega\) \\
\hline Resolution & \(100 \mathrm{~m} \Omega 1 \Omega \quad 10 \Omega \quad 100 \Omega \quad 1 \mathrm{k} \Omega\) \\
\hline Accuracy & Depends on range \\
\hline Price & Not released \\
\hline
\end{tabular}

Racal Instruments, 26 Broad Street, Wokingham, Berks
Model 314A is a general purpose electronic voltmeter for measuring alternating voltage ( 25 mV to 300 V ), direct voltage ( \(\pm 5 \mathrm{mV}\) to \(\pm 300 \mathrm{~V}\) ) and resistance ( \(100 \Omega\) to \(1 \mathrm{G} \Omega\) ). An optional a.c. high voltage probe is available. The instrument is N.A.T.O. approved.
The 9070 Digital Universal Meter measures alternating or direct voltages from \(100 \mu \mathrm{~V}\) to 1.1 kV together with a.c. and d.c. current and resistance, and costs \(£ 211\).

\section*{WW520 for further details}

RCA Ltd, Sunbury-on-Thames, Middlesex TW16 7HW.
The WV38A analogue multimeter measures resistance, direct current, d.c. and a.c. voltages and audio signals in dB units. Extra low 0.25 V and 1V d.c. ranges are included. Frequency response (reference 1 kHz ) of the a.c. voltmeter is within 0.5 dB from 10 Hz to 50 kHz from 2.5 to 50 V full-scale.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Ranges} \\
\hline \begin{tabular}{l}
\[
V \text { d.c. }
\] \\
Input \(R\)
\end{tabular} & \[
\begin{aligned}
& 0.25 \mathrm{~V} 1 \mathrm{~V} \\
& 20 \mathrm{k} 2 N^{2}
\end{aligned}
\] & 2.5 V & 10 V & 50 V & 250 V & 1 kV & 5 kV \\
\hline Accuracy & \(\pm 3 \%\) f.s.d. & & & & & & \\
\hline \(V\) a.c. & 2.5 V 10 V & 50 V & 250 V & 1 kV & 5 kV & & \\
\hline Input \(Z\) & \(5 \mathrm{k} \Omega \mathrm{N}\) & & & & & & \\
\hline Accuracy & \(\pm 5 \%\) f.s.d. & & & & & & \\
\hline I d.c. & \(50 \mu \mathrm{~A} \quad 1 \mathrm{~mA}\) & 10 mA & 100 m & 500 & 10 A & & \\
\hline Accuracy & \(\pm 3 \%\) & & & & & & \\
\hline \(\boldsymbol{R}\) & \(R \times 1 \quad R \times 100\) & \(R \times 10,0\) & 000 & & & & \\
\hline Price & £32.50. & & & & & & \\
\hline
\end{tabular}

\section*{WW521 for further details}

Salford Electrical Instruments Ltd., Peel Works, Barton Lane, Eccles, Manchester M30 0HL

The Super 50 Mark 2 Selectest multi-range meter has three scales with a mirror inset and knife edge pointer to eliminate parallax errors. Current and voltage scales are 0 to 100 with 100 divisions and 0 to 25 with 50 divisions. The third scale, 0 to 1000 ohms, covers all three resistance ranges. The outer scale is 6 in ( 152 mm ) long. Ranges are selected by two rotary, electrically-interlocked, multi-position switches capable of continuous rotation in either direction. The 2.5 kV ranges in the following table are on separate terminals.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Ranges} \\
\hline \(\checkmark\) d.c. & \[
\begin{aligned}
& 250 \mathrm{mV} 2.5 \mathrm{~V} \\
& 2.5 \mathrm{kV}
\end{aligned}
\] & 10 V & 25 V & 100 V & 250 V & 1 kV & \\
\hline Input \(R\) & \multicolumn{7}{|l|}{\(20 \mathrm{k} 8 / \mathrm{N}\)} \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 1.5 \%\) (I.E.C. Class 1.5)} \\
\hline \(V\) a.c. & 2.5 V 10 V & 25 V & 100 V & 250 V & 1 kV & 2.5 k & \\
\hline Input \(Z\) & \multicolumn{7}{|l|}{\[
2 \mathrm{k} \Omega \mathrm{~N}
\]} \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 2.5 \%\) (I. E.C. Class 2.5 ) f.s.d. at 50 Hz} \\
\hline 1 d.c. & \(50 \mu \mathrm{~A} \quad 250 \mu\) & 1 mA & 10 mA & 100 & 1 A & 2.5 A & 10A \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 1 \%\) (I.E.C. Class 1.0)} \\
\hline 1 a.c. & 25 mA 100 m & 250 m & 1 A & 2.5A & 10 A & & \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 2.5 \%\) f.s.d. (I.E. C. Class 2.5) at 50 Hz} \\
\hline \(R\) & \multicolumn{7}{|l|}{\(2 \mathrm{kS} \Omega 200 \mathrm{k} \Omega 20 \mathrm{M} \Omega\)} \\
\hline Accuracy & \multicolumn{7}{|l|}{\(\pm 3 \%\) (zero to mid scale reading)} \\
\hline & \multicolumn{7}{|l|}{\(\pm 5 \%\) (mid scale to \(\frac{2}{3}\) f.s. d.)} \\
\hline & \multicolumn{7}{|l|}{\(\pm 10 \%\) (2 \(\frac{2}{3}\) f.s.d. to f.s.d.)} \\
\hline Price & \multicolumn{7}{|l|}{Approximately \(£ 37\).} \\
\hline
\end{tabular}

WW522 for further details


Neuberger PKD4 multi-function modular measuring set


Racal 9070 digital multimeter

Pye PM2424 digital multimeter


\section*{Sanwa}

Agents: Quality Electronics Ltd, 47/49 High Street, Kingston-uponThames, KT1 1 LP.
The 460 -ED is an analogue multimeter with a \(10 \mu \mathrm{~A}\) meter movement giving a d.c. sensitivity of \(100 \mathrm{k} \Omega / \mathrm{V}\). Frequency coverage on ranges of 30 V a.c. and below is 50 Hz to 100 kHz , and 10 kHz for other a.c. voltage ranges. At the inherent \(100 \mathrm{k} 2 / \mathrm{V}\) sensitivity, the instrument measures up to 300 V d.c. Above this, a high voltage probe is available to measure up to 30 kV at a sensitivity of \(16.6 \mathrm{k} \Omega / \mathrm{V}\).

Ranges


WW523 for further details
Sinclair Radionics Ltd, London Road, St Ives, Huntingdonshire. PE17 4HJ.

The Sinclair DM1 \(3 \frac{1}{2}\) digit multimeter is suitable for d.c. measurements ranging from 1 mV to 1 kV and 1 nA to 1 A and a.c. measurements ranging from 1 mV to 1 kV and \(1 \mu \mathrm{~A}\) to 1 A . Accuracy varies from \(0.4 \%\) on the d.c. voltage scale to \(1 \%\) on the a.c. voltage scale. Full scale error amounts to \(\pm 2\) digits. The instrument is priced in the region of \(£ 49\), and when launched in December 1972 was claimed to be the first digital multimeter to be directly price competitive with professional quality analogue meters.


WW524 for further details
The Solartron Electronic Group Ltd, Farnborough, Hampshire.
When using the fully automatic 7040 digital multimeter, the user selects the function, subsequent operations being fully automatic. The instrument itself samples the input, selects the correct range, illuminates the unit indicator and decimal point as appropriate and displays the measured value together with its polarity. Leading zero suppression is applied. Common mode noise and series (normal) mode noise rejection are achieved by the use of a fully floating input stage with good isolation and integration over an integral number of mains cycles. The integration period is 100 ms , giving high rejection of \(50 \mathrm{~Hz}, 60 \mathrm{~Hz}\) and 400 Hz without the use of filters.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Ranges} \\
\hline \(V\) d.c. & \(100 \mathrm{mV} \mathrm{1V}\) & 10 V & 100 V & 1 kV \\
\hline Resolution & \(10 \mu \mathrm{~V} \quad 100 \mu \mathrm{~V}\) & 1 mV & 10 mV & 100 mV \\
\hline Input R & \(1 \mathrm{G} \Omega 1 \mathrm{G} \Omega\) & \(1 \mathrm{G} \Omega\) & 10 M / & 10 MS \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm(0.02 \%\) to \(0.03 \%)\) reading \(\pm 1\) to 2 digits} \\
\hline \(V\) a.c. & 100 mV 1 V & 10 V & 100 V & 700 V \\
\hline Resolution & \(10 \mu \mathrm{~V} \quad 100 \mu \mathrm{~V}\) & 1 mV & 10 mV & 100 mV \\
\hline Input \(Z\) & \multicolumn{4}{|l|}{\(1 \mathrm{M} \Omega\) with less than 100 pF (all ranges)} \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.2 \%\) reading \(\pm 2\) to 10 digits} \\
\hline 1 d.c. & \multicolumn{4}{|l|}{\(10 \mu \mathrm{~A} \quad 100 \mu \mathrm{~A} 1 \mathrm{~mA}\)} \\
\hline Resolution & \multicolumn{4}{|l|}{1 nA 10 nA 100 nA} \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.05 \%\) reading \(\pm 1\) to 3 digits} \\
\hline \(\boldsymbol{R}\) & \(1 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega\) & 100 & \(\Omega 1 \mathrm{M} \Omega\) & \(10 \mathrm{M} \Omega\) \\
\hline Resolution & \(100 \mathrm{~m} \Omega 1 \Omega\) & 102 & 1008 & \(1 \mathrm{k} \Omega\) \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.05 \%\) reading \(\pm 1\) to 3 digits} \\
\hline Price & \multicolumn{4}{|l|}{£195} \\
\hline
\end{tabular}

\section*{WW526 for further details}

Smiths Industries Ltd, Industrial Instrument Division, Waterloo Road, Cricklewood, London. NW2 7UR.

Multimeter 3 is a portable instrument designed around a 24 -position rotary switch. A.c. and d.c. ranges are identical except for additional low d.c. voltage and current ranges, Volts, resistance and current ranges are selected by push button. Unidirectional components such as electrolytic capacitors and semiconductors can be tested without the need to reverse
leads or terminals - press buttons select the polarity of test voltage and meter movement. A safety cut-out which operates within 5 ms to 10 ms reacts to the rise time of the applied signal, not the movement of the pointer, breaking the circuit before the pointer reaches full scale. The cut-out is equally sensitive in the forward or reverse direction.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Ranges} \\
\hline \(\boldsymbol{V}\) d.c. & 0.1 V 0.3 V 1 V & 3 V & 10 V & 30 V 100 V & 300 V 1 \\
\hline Input \(\boldsymbol{R}\) & \multicolumn{5}{|l|}{\(31.6 \mathrm{k} \Omega \mathrm{N}\)} \\
\hline Accuracy & \(\pm 1 \% \mathrm{f.s.d}\). & & & & \\
\hline \(V\) a.c. & -3V iv 3V 10 V 30 V & OV 30V & \multicolumn{2}{|l|}{100 V 300 V 1} & \\
\hline Input Z & \multicolumn{5}{|l|}{\(5 \mathrm{k} \Omega \mathrm{N}\)} \\
\hline Accuracy & \multicolumn{5}{|l|}{\(\pm 1.5 \%\) f.s.d. ( 25 Hz to 1 kHz )} \\
\hline /d.c. & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(30 \mu \mathrm{~A} 0.1 \mathrm{~mA} 0.3 \mathrm{~mA}\). . .in same multiples to. . 10 A
\(+1 \%\) f.s.d.}} \\
\hline Accuracy & & & & & \\
\hline f. a.c. & \multicolumn{5}{|l|}{\(0.3 \mathrm{~mA} \ldots\) and then same ranges as I d.c. to ... 10A} \\
\hline Accuracy & \multicolumn{5}{|l|}{\(\pm 1 \%\) f.s.d. ( 25 Hz to 1 kHz )} \\
\hline R & \(500 \Omega 50 \mathrm{k} \Omega\) & \(500 \mathrm{k} \Omega\) & \(5 \mathrm{M} \Omega\) & \(50 \mathrm{M} \Omega\) & \\
\hline Price & £38.50 & & & & \\
\hline
\end{tabular}

WW525 for further details


Tekelec-Airtronic Agents: REL Equpment \& Components Ltd, Croft House, Bancroft, Hitchin, Herts SG5 1BU.

A d.c. multimeter with a \(3 \frac{1}{2}\) digit display, the TE923 possesses voltage, current and resistance ranges. Grounded or floating operation ( 500 V ) is provided for and the input can be offset by up to \(\pm 5 \alpha_{\mathrm{C}} \mathrm{V}\). An analogue output of iV is available and an optional digital output is possible. A further option is the TE380, which provides an alarm signal when the reading is either within or outside two preset limits.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Ranges} \\
\hline \(V\) d.c. & \(100 \mu \mathrm{~V}\) to \(1 \mathrm{kV} \mathrm{f.s}\). \\
\hline Resolution & \(0.1 \mu \vee\) to 1 V \\
\hline Input R & \(100 \mathrm{k} \Omega\) to \(100 \mathrm{~m} \Omega\) \\
\hline Accuracy & \(\pm 0.1 \%\) reading. \(\pm 1\) digit \\
\hline 1 d.c. & 100nA to 1A \\
\hline Resolution & 0.1 nA to 1 mA \\
\hline Accuracy & \(\pm 0.2 \%\) reading, \(\pm 1\) digit \\
\hline \(\boldsymbol{R}\) & 1002 to 1GS \\
\hline Resolution & 0.18 to \(1 \mathrm{M} \Omega\) \\
\hline Accuracy & Range dependent \\
\hline Price & Not available \\
\hline \multicolumn{2}{|l|}{WW530 for further details} \\
\hline
\end{tabular}

Wessex Electronies Ltd, Stover Trading Estate, Yate, Bristol, BS 17 5QP.
The California Instruments 8300 offers frequency measurement up to 1 MHz in addition to handling alternating and direct voltage and current, and resistance. A l.e.d. dot-matrix display is used and a comprehensive printer output is provided.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Ranges} \\
\hline Vd.c. & 100 mV 1 V & 10 V & 100 V & 1000V (50\% overrange on highest ranges) \\
\hline Resolution & \[
\begin{aligned}
& 10 \mu V 10 Q_{\mu} V \\
& 1000 \mathrm{M} \Omega
\end{aligned}
\] & \[
1 \mathrm{mV}
\] & 10 mV \(10 \mathrm{M} \Omega\) & 100 mV \(10 \mathrm{M} \Omega\) \\
\hline Accuracy Ve.c. & \(\pm 0.01 \%\) of readi
100 mV 1 V & \(\mathrm{ng} \pm 0\) & \(1 \% \mathrm{f} . \mathrm{s}\).
100 V & 1000V (50\% overrange on highest ranges) \\
\hline Resolution \(Z_{\text {in }}\) & \(10 \mu \mathrm{~V} \quad 100 \mu \mathrm{~V}\) Less than 0.5\% & \[
1 \mathrm{mV}
\] & \[
10 \mathrm{mV}
\] & \[
100 \mathrm{mV}
\] \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.45 \%\) of reading \(\pm 0.05 \%\) f.s.} \\
\hline I d.c. & \(100 \mathrm{mV} \mathrm{1V}\) & 10 V & 100 V & 1000 V \\
\hline Accuracy (d.c.)
(a.c.) & \multicolumn{4}{|l|}{\begin{tabular}{l}
\(\pm 0.03 \%\) of reading \(\pm 0.02 \%\) f.s. \\
\(\pm 0.7 \%\) of reading \(\pm 0.05 \%\) f.s.
\end{tabular}} \\
\hline \(R\) & \(100 \Omega 1 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(100 \mathrm{k} \Omega\) & \(1 \mathrm{M} \Omega\) \\
\hline Resolution & \(10 \mathrm{~m} \Omega \quad 100 \mathrm{~m} \Omega\) & & 102 & 1008 \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.02 \%\) of reading \(\pm 0.02 \%\) f.s.} \\
\hline Frequency & \multicolumn{4}{|l|}{\(1 \mathrm{kHz} \quad 10 \mathrm{kHz} \quad 100 \mathrm{kHz} 1 \mathrm{MHz}\)} \\
\hline \(Z_{\text {in }}\) & \multicolumn{4}{|l|}{Less than \(0.5 \%\) loading of \(1 \mathrm{k} \Omega\) source up to 10 kHz} \\
\hline Accuracy & \multicolumn{4}{|l|}{\(\pm 0.01 \%\) reading \(\pm 0.01 \% \mathrm{f.s}\).} \\
\hline Price & \multicolumn{4}{|l|}{£850} \\
\hline \multicolumn{5}{|l|}{WW527 for further details} \\
\hline
\end{tabular}

West Hyde Developments Ltd, Ryfield Crescent, Northwood Hills, Nơrthwood, Middlesex. HA6 INN.

Imported from Italy, the TS140 analogue multimeter is somewhat unusual in that it does not employ a selector switch for its 50 ranges. Instead, insertion of the test lead plugs is arranged to operate internal switches. It is claimed that the method possesses long term mechanical reliability. In addition to the voltage, current and resistance ranges listed in the following table, the instrument measures reactance, frequency and capacitance. Accessories are available for measurement of light ( 0 to 20,000 lux), heat ( \(-25^{\circ} \mathrm{C}\) to \(+250^{\circ} \mathrm{C}\) ) and e.h.t. up to 25 kV d.c:
Ranges
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\nabla\) dc. & 0.1 V & 1 V & 3 V & 10V & 30 V & 100 V & 300 V 1 kV \\
\hline Input \(R\) & 20 k 2 N & & & & & & \\
\hline V a.c. Input \(Z\) & \[
\begin{aligned}
& 1.5 \mathrm{~V} \\
& 4 \mathrm{k} \Omega / \mathrm{V}
\end{aligned}
\] & 15 V & 50 V & 150 V & 500 V & 1500 V & \(2.5 / 5 \mathrm{kV}\) \\
\hline 1 d.c. & \(50 \mu \mathrm{~A}\) & \(500 \mu \mathrm{~A}\) & 5 mA & 50 mA & 500 mA & 5A & \\
\hline la.c. & \(250 \mu \mathrm{~A}\) & 50 mA & 500 mA & & & & \\
\hline R & \(1 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(100 \mathrm{k} \Omega\) & \(1 \mathrm{M} \Omega\) & \(10 \mathrm{M} \Omega\) & & \\
\hline Price & £15.50 & & & & & & \\
\hline
\end{tabular}

Z \& I Aero Services Ltd, 44A Westbourne Grove, London, W2 5SF.
Imported from U.S.S.R., multimeter Type U4323 has \(V, I\) and \(R\) facilities plus an oscillator output which produces a 1 kHz square wave, and a 465 kHz sine wave modulated by 1 kHz square wave.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Ranges} \\
\hline \(V\) d.c. & \(0.5 \mathrm{~V} \quad 2.5 \mathrm{~V}\) & 10 V & 50 V & 250 V & 500 V & 1 kV \\
\hline Input \(R\) & \(20 \mathrm{k} \Omega \mathrm{N}\) & & & & & \\
\hline \(V\) o.c. & \(2.5 \mathrm{~V} \quad 10 \mathrm{~V}\) & 15 V & 250 V & 500 V & 1 kV & \\
\hline 1 d.c. & 0.05 mA 0.5 mA & 5 mA & 50 mA & 500 mA & & \\
\hline \(R\) & \(1 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega\) & \(100 \mathrm{k} \Omega\) & \(1 \mathrm{M} \Omega\) & & & \\
\hline Accuracy & 5\% f.s.d. & & & & & \\
\hline Price & f7 & & & & & \\
\hline \multicolumn{7}{|l|}{WW529 for further details} \\
\hline
\end{tabular}

\section*{Active filters for loudspeakers Addition and correction}

Values for the capacitors \(C_{3}\) and \(C_{4}\) shown in Fig. 4 of the article published in the December 1973 issue should be
\begin{tabular}{llr}
\(C_{4}\) & h.f. & \(10 \mu \mathrm{~F}\) \\
\(C_{3}\) & h.f. & \(10 \mu \mathrm{~F}\) \\
\(C_{4}\) & m.f. & \(25 \mu \mathrm{~F}\) \\
\(C_{3}\) & m.f. & \(25 \mu \mathrm{~F}\) \\
\(C_{4}\) & l.f. & \(50 \mu \mathrm{~F}\) \\
\(C_{3}\) & l.f. & \(150 \mu \mathrm{~F}\)
\end{tabular}

Components are shown on the active filter card for a power supply regulator not included in the circuit diagram. It is recommended that the transistor mounted above the 2 k 2 pot on the power amplifier circuit board is a plastic 2 N 3904 which can be clipped under the output transistor heat sinks. The lead marked "to ( -ve ) of l.s. \& coupling C" on the power amplifier layout (Fig. 6) should read "to ( - ve) of l.s. coupling \(C\) ". Cut off frequencies, for the 12 dB / octave filters should be \(1 / 2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}\).
Listening tests conducted by the author, comparing the active design with a passive network, produced the following comments from him :
"Convinced theoretically that the active filter approach is better, I needed assurance that it sounded better. With the help of many discerning friends, listening tests were carried out. A remote push-button was used to compare reproduction through active or passive filters. Nobody was told whether the active filter was in circuit when the button was pressed or released, but without exception all preferred the sound produced via the active filter. The remarks made were: 'It is less harsh, the sound is clearer, the cymbal comes through cleanly, the piano notes have no overhang,' etc. The difference is small, but it is unmistakeably there. The advantages are particularly apparent on certain types of music which contains plucked bass, piano and percussion instrumentsthat is, pieces with high transient energy. With some other types of music, it was admittedly hard to tell which was which."

Components of the "on-board" power supply regulator.


D.C. VOLTS \(100 \mu \mathrm{~V}\) to 1000 V
D.C. VOLTS
\(1 \mu \mathrm{~V}\) to 1000 V
A.C. VOLTS
\(10 \mu \mathrm{~V}\) to 1000 V

EVENTS TO
1 MILLION COUNTS
PER SECOND

FREQUENCY to 8 MHz

FREQUENCY to 100 MHz

RESISTANCE \(.001 \Omega\) to \(1,000 \mathrm{M} \Omega\)

CAPACITANCE 1 pF to \(10,000 \mu \mathrm{~F}\)

TIME INTERVALS 0.01 mS to 1 MILLION SECONDS
D.C. CURRENT 0.1 nA to 10 A


The Farnell Digital Measuring System provides a wider range of measurement than is generally possible with digital multimeters.

There's a choice of 3,4 or 6 digit main frames and any module may be used with any frame. The module slips into the main frame on runners and is secured by a locking shaft. Simply and quickly in this way, the instrument is converted to measure voltage, frequency, period, events, resistance, capacitance etc.

An obviouschoice when equipping a new laboratory because the display section and power supplies are bought just once -in the main frame. Additional functions are obtained at far less cost than complete single purpose digital instruments bypurchasing the required modules.

To obtain a 16 page brochure describing this equipment contact:-

FARNELL INSTRUMENTS LIMITED, TELECOMMUNICATIONS DIVISION,
SANDBECK WAY, WETHERBY, YORKSHIRE.
TELEPHONE 09373541 • TELEX 557294
LONDON OFFICE : TELEPHONE 01-802 5359

\section*{LOW COST RC OSCILLATORS}


\section*{ANALOGUE}


FREQUENCY accuracy

SINE OUTPUT DISTORTION SQUARE OUTPUT SYNC. OUTPUT METER SCALES SIZE \& WEIGHT
TG152D
\(\underset{\substack{\text { wimaen } \\ \text { mesel }}}{ } \mathbf{4 6}\)
FREQUENCY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT
SYNC. OUTPUT
SYNC. INPUT METER SCALES

SIZE \& WEIGHT

3 Hz to 300 kHz in 5 ranges. \(\pm 2 \% \pm 0.1 \mathrm{~Hz}\) up to 100 kHz . increasing to \(\pm 3 \%\) at 300 kHz .
2.5 V r.m.s. down to \(<200 \mu \mathrm{~V}\).
\(<0.2 \%\) from 50 Hz to 50 kHz .
2.5 V peak down to \(<200 \mu \mathrm{~V}\).
2.5V r.m.s. sine.
\(0 / 2.5 \mathrm{~V}\) \& -10/+10dB ón TG152DM.
7 " high \(\times 10 \frac{1}{4}{ }^{\prime \prime}\) wide \(\times 5 \frac{1}{2}\) " deep. 8 lbs .

\section*{TG152DM}
wate fin w
1 Hz to 1 MHz in 12 ranges. Acc. \(\pm 2 \%\) \(\pm 0.03 \mathrm{~Hz}\)
7 V r.m.s. down to \(<200 \mu \mathrm{~V}\) with Rs \(=600 \Omega\)
\(<0.1 \%\) to \(5 \mathrm{~V},<0.2 \%\) at 7 V from 10 Hz to 100 kHz .
\(7 \vee\) peak down to \(<200 \mu \mathrm{~V}\). Rise time \(<150 \mathrm{~ns}\).
\(>1 \mathrm{~V}\) r.m.s. sine in phase with output. \(\pm 1 \%\) freq. lock range per volt r.m.s. \(0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}\). on TG200M \& DM only.

TG200 TG200D TG200M TG200DM Sine O/P Sine \& Sq. O/P. Sine O/P Sine \& Sq. O/P £55 £58 \(\mathbf{f 6 5} \quad \mathbf{f 6 8}\)


DIGITAL

FREQUENCY
ACCURACY

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT
TG66B

0.2 Hz to 1.22 MHz on four decade controls.
\(\pm 0.02 \mathrm{~Hz}\) below 6 Hz
\(\pm 0.3 \%\) from 6 Hz to 100 kHz
\(\pm 1 \%\) from 100 kHz to 300 kHz
\(\pm 3 \%\) above 300 kHz .
5 V r.m.s. down to \(30 \mu \mathrm{~V}\) with \(\mathrm{Rs}=600 \Omega\)
\(<0.15 \%\) from 15 Hz to 15 kHz .
\(<0.5 \%\) at 1.5 Hz and 150 kHz .
2 Expanded voltage \& \(-2 /+4 \mathrm{dBm}\).
7 "high \(\times 10 \frac{1}{4}\) " wide \(\times 7\) " deep. 12 lbs .

\section*{TG66A}

Mains \&
battery model. \&17

Moxon Street, High Barnet, Herts. EN5 5SD Tel: 01-4495028/440 8686

Prices include batteries and U.K. delivery. V.A.T. EXTRA. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

\title{
Television Broadcasting from Satellites
}

\title{
Conclusion of a two-part series describing 12 GHz satellite TV receiver design
}
by D. B. Spencer, Ph.D and K. G. Freeman, B.Sc., A.Inst.P., M.I.E.R.E.

It was concluded in our previous article that broadcasting of television signals from a geostationary satellite is feasible at both u.h.f. and s.h.f. Transmission in the u.h.f. band which has been allocated to satellite broadcasting ( \(620-780 \mathrm{MHz}\) ), will probably be chosen by the developing countries, whereas developed countries which have an existing u.h.f. terrestrial television service will probably use the s.h.f. allocation (11.7-12.5GHz for Region 1 , Europe, U.S.S.R. and Africa). Considerations of the transmitter power requirements and channel allocation problems led to the conclusion that such systems would almost certainly use wideband frequency modulation. Possible f.m. 12 GHz receiver designs and microwave technologies will now be considered and these will be illustrated by reference to experimental receivers which have been constructed. Although u.h.f. receiver design will not be discussed specifically, the i.f. processing circuits (amplification, limiting and demodulation) together with a.f.c. techniques are of general application. The tuner required for the u.h.f. system will be similar to that used as the second converter of the s.h.f. double superhet receiver.

\section*{Receiver design problems}

Apart from cost, which as with all consumer products is of prime importance, a number of important factors affect the design of 12 GHz f.m. satellite television broadcast receivers. Either direct reception of the signals in the home or some form of community reception could be used. In both cases the need would initially be for a converter capable of providing a u.h.f. (or possibly v.h.f.) a.m. signal suitable for feeding the standard television receiver which is already in most homes. In the long term specially designed receivers can be envisaged to which the input may be at video or as f.m. at a v.h.f. or u.h.f. intermediate frequency.

Future trends such as the use of several receivers in one home, video tape recorders and also possible local cable TV must be borne in mind. It is also necessary to take into account the possible development of a system of data transmission within the existing broadcast signal, such as that proposed by the B.B.C./T.B.A. \({ }^{2 .}{ }^{3}\). The domestic television receiver may also
be called upon to act as the visual display unit of a domestic data link system. All of these factors may affect the packaging of the parts of the satellite broadcast receiver. Since part of the receiver will probably be near the aerial there would be a need to supply power, and in some cases, a tuning and a.f.c. voltage, up to this unit. The most convenient and elegant solution would be to use the existing u.h.f. television down-lead for these signals together with the satellite signal.

a) double supernet

Although 800 MHz of bandspace has been allocated at 12 GHz to countries in Region 1 it is likely that transmissions to any particular country will be grouped within only part of this band. This eases the constraints on receiver design. We have assumed for this study that all programmes to any one country will be within 400 MHz of bandspace. Assuming a 30 MHz channel spacing this allows a gap of 90 MHz between each programme which should be more than adequate in order to provide adjacent channel rejection.

Fig.1. Double and single superhet receiving systems.

b) single superhet

There are two principal types of receiver suitable for s.h.f. satellite broadcast reception; these are the single and double superhet. In the single superhet design the incoming s.h.f. signal is converted to an intermediate frequency which allows amplification, limiting and demodulation to be accomplished directly. The double superhet consists of two converter stages. The first converts the s.h.f. to a lower frequency at which it is amplified and passed to a second mixer which produces the required intermediate frequency. Two types of double superhet can be considered. In one, the first local oscillator is fixed and a broadband first i.f. amplifier is employed which passes all the required satellite signals. The second oscillator is then tuned to provide reception of the required programme. The alternative form of double superhet has a tunable first local oscillator and a narrow-band first i.f. amplifier which passes only the required programme. A fixed second local oscillator in the second mixer provides the necessary second i.f.

Due to the restricted space available here it is impossible to go into the various advantages of the two types of double superhet in detail. However, if the problems of local oscillator re-radiation, image rejection and cost are considered it seems probable that the first local oscillator will be fixed in frequency and the second tuned.
Fig. I shows possible double and single superhet designs. In the case of the double superhet the incoming 12 GHz signals are mixed with an s.h.f. local oscillator. The resultant u.h.f. signals are passed through an amplifier to a second mixer where they are mixed with a tunable u.h.f. oscillator to produce a v.h.f. i.f. This frequency modulated signal is amplified and limited before being demodulated to produce a video output (with 6 MHz intercarrier f.m. sound). A u.h.f. a.m. modulator then produces a signal which is suitable for insertion into the aerial socket of a standard television set. An a.f.c. signal derived from the frequency discriminator controls the frequency of either local oscillator. The single superhet receiver produces a low i.f. directly from the 12 GHz incoming signal; this is then processed as indicated above.

A problem which is common to both single and double superhet designs is the rejection of the image frequency. (A mixer produces an output for signals spaced at the i.f. away both above and below the local oscillator frequency. Only one of these signals is wanted, the other is known as the image frequency.) In the case of a 30 MHz bandwidth f.m. television signal a protection of approximately 30 dB is required "against an interfering signal whether it be co-channel or image channel interference. Image channel protection is provided by a combination of the contributions from the receiver selectivity, receiver directivity and the position and directivity of the interfering transmitter. Sufficient first image rejection can be provided reasonably easily with the double superhet design since the high first i.f. places the image frequency bands well away from the wanted signal. This is
indicated in Fig. 2a. The first i.f. lies between 500 and 900 MHz and, if a low local oscillator is assumed, the image band lies between 10.4 and 10.8 GHz . The design of a band-pass filter which will pass only the wanted signals is relatively simple. Selectivity must also be provided before the second mixer to reject the second image; this should be achievable using existing techniques.
In \({ }^{\circ}\) the single superhet design a v.h.f. i.f. has to be chosen as low cost amplification, limiting and discrimination circuits would otherwise not be possible. This makes image rejection more difficult. Fig. 2b shows the variations of the signal, local oscillator and image frequencies for a similar tuning range to that assumed for the double superhet. An i.f. of 70 MHz has been assumed for the purpose of illustration together with a 30 MHz signal bandwidth. The signal frequency range is \(11.8-12.2 \mathrm{GHz}\) and if a low local oscillator is assumed this varies between 11.745 GHz and 12.145 GHz (see Fig. 2c). An image frequency band from 11.69 GHz to 12.09 GHz must be rejected.

It is apparent that the selectivity demanded before a conventional mixer calls for a high-Q tunable s.h.f. filter. This must have a bandwidth of 70 MHz and 110 MHz away from the band edge it must have some 30 dB of attenuation. A filter based upon a Yttrium Iron Garnet (YIG) device may provide a suitable solution. At the present time, however, such filters are rather expensive, lossy and also temperature dependent. (A YIG filter consists basically of a small sphere of magnetic material (Yttrium Iron Garnet) which exhibits a gyromagnetic resonance effect. The sphere is positioned in a circuit

(a)

( E )

(C)

Fig.2. Diagrams showing the relationship of the signal, image and local oscillator bands in (a) double superhet (b) single superhet (c) indication of the final image filtering problem.
so that it will couple power between the input and output only at its resonant frequency. The frequency at which this occurs depends upon the magnetic field in which the sphere is situated and this can be varied to provide tuning.)

Perhaps a more elegant solution to the problem of image rejection could be the image rejection mixer. This should be amenable to mass production techniques and it will be considered in more detail later.

Another problem which may have to be solved in the receiver design is that of the prevention of excessive local oscillator power radiation. This again can more easily be solved in the double superhet design where the local oscillator frequency is fixed and sufficiently far removed from the required signal band so that a filter is readily made. In fact this filter could also provide image band rejection. In the case of the single superhet, a filter solution is difficult. An attractive approach might be the inclusion of a nonreciprocal device, such as an isolator, before the mixer. This would pass signals from the aerial but attenuate the local oscillator signal from the mixer. However, it is possible that by suitable allocation of frequencies the local oscillator frequency can be made to lie between channels and be relatively untroublesome.

\section*{Receiver aerial}

The aerial must be considered as an integral part of the receiving system. Its supply and fixing may well prove to contribute a significant proportion of the overall system cost. For individual (domestic) reception the aerial required would probably be a 75 cm diameter parabolic dish or an aerial of similar performance. This would have a beamwidth of about \(2^{\circ}\). A community receiver aerial might well be twice the size of an individual receiving aerial with a subsequent smaller acceptance angle. In both cases they would have to be mounted to withstand all weather's, whilst maintaining a high positional accuracy. As the satellite transmitter would be in an equatorial orbit, it would have to point approximately South with an elevation angle varying from, for example, \(23^{\circ}\) in Northern Scotland to \(33^{\circ}\) in Southern England. The surface profile of a parabolic aerial would have to be accurate to the order of 2 mm

As large numbers of aerials would eventually be required it may be possible to produce them, at a reasonable cost, using a plastic moulding technique. A conductive coating would have to be added to provide a reflecting surface. Similar techniques may be feasible for the construction of the aerial feeder and this could incorporate a bandpass filter.

\section*{Microwave front end}

Since even a short length of low-cost 5.h.f. feeder will incur significant signal attenuation and installation costs, the microwave portion of the receiver will be located at or near the aerial. It
will comprise a mixer with local oscillator followed by some low noise i.f. amplification. Because of the exposed position of this "head-unit" it will have to be designed to withstand all the rigours of the climate.

The mixer may well be constructed using a strip-line technique as this should be compatible with high volume, low cost production. Two such techniques are currently in general use, known as "Tri-plate" and "Microstrip"; they have both been described recently in Wireless World \({ }^{3}\). Tri-plate consists of a sandwich construction of ground plane, dielectric, circuit lines, dielectric and a second ground plane. Microstrip consists of a single ground plane and dielectric upon which are laid the circuit lines. Tri-plate and Microstrip are illustrated in Fig. 3. For our early experimental work with Tri-plate we used 1.5 mm irradiated polyolefin as a dielectric which was backed with copper ground planes (this material is generally known as polyguide). Our later work concentrated on the Microstrip technology, in which the circuits consisted of an alumina substrate with gold ground plane and circuit lines.

All the experimental mixers were of the balanced variety as these are easier to make using strip-line techniques than the apparently simpler single-ended type. The fact that a balanced mixer rejects local oscillator amplitude noise comes as an unnecessary bonus as the i.f. signal limiter will do this anyway.

Some means must be found to apply signal and local oscillator voltages across the mixer diodes. At microwave frequencies this is achieved by means of hybrid rings, which are shown in suitable forms for Tri-plate and Microstrip circuits in Fig. 4(a) and 4(b) respectively. In the Tri-plate version a signal applied to port (1) is divided equally between ports (3) and (4), the two signals being in phase.

A signal applied to port (2) is similarly divided between ports (3) and (4) but in this case there is a \(180^{\circ}\) difference between the two outputs. In the Microstrip hybrid-ring a signal applied to either port (1) or port (2) is divided between ports (3) and (4). The outputs are of equal amplitude but differ by \(90^{\circ}\) in phase in each case. A mixer is constructed by taking ports (3) and (4) to a pair of diodes and applying signal and local oscillator voltages to ports (1) and (2).

The microwave mixer requires a local oscillator power of the order of 10 mW in the region of 11.5 GHz . This can be obtained directly from one of a number of semiconductor two terminal bulk effect devices. Perhaps the best known, and certainly the most widely used, are the avalanche diode and the Gunn device. The avalanche oscillator requires a supply of some 60 V and produces more power than is necessary. A Gunn oscillator on the other hand needs only an 8 V supply and it produces the right amount of power.


Fig.4. Hybrid ring suitable for (a) triplate construction and in (b) microstrip construction.

The local oscillator may be fixed tuned in the case of the double superhet but it must be electronically tunable if the single superhet approach is adopted. (Electronic tuning is possible by the addition of a varactor diode to the resonant circuit of the oscillator.) The temperature stability of Gunn oscillators is generally poor - typically of the order of \(1 \mathrm{MHz} / \mathrm{C}\). As the oscillator would be exposed to wide temperature variations, mounted as it is near the aerial, large frequency variations would occur. Fortunately it appears that the application of a.f.c. using the existing wideband frequency discriminator, together with some temperature compensation, would probably provide adequate frequency stability. Although our experimental receivers used varactor tuned Gunn oscillators, it is interesting to note that experimental transistors have already been made which will oscillate at 12 GHz .

A typical 12 GHz mixer followed by a low noise i.f. amplifier will have a noise figure of the order of 9 dB , whether it be the single superhet 12 GHz / v.h.f. mixer or the first mixer of the double superhet. This noise figure could be improved by several decibels if the mixer were preceded by a low-noise s.h.f. amplifier. Even with current progress in microwave transistor development, the realization of such an amplifier at a reasonable cost in the near future seems unlikely, but it may well be available by the time that a 12 GHz service is implemented.

The output from the head unit will be either a v.h.f. or u.h.f. f.m. signal. This has to be taken to the remainder of the satellite broadcast receiver which will probably be adjacent to the TV set. How this may be accomplished and how power can be fed to the head unit (adjacent to the aerial) depends to a certain extent upon the design of the receiver. These problems will be dealt with in more detail as we go on to consider the double and single superhet designs in more detail.

\section*{Double superhet}

From several points of view the most attractive receiver design appears to be the double superhet which has a fixed s.h.f. oscillator and a tunable u.h.f. oscillator. In a practical receiver a head unit would provide wideband conversion of the received signals to the u.h.f. band together with a broadband low-noise u.h.f. amplifier. The amplifier would prevent cable losses in the u.h.f. downlead and subsequent stages from degrading the system noise performance. Drift in the frequency of the fixed tuned s.h.f. local oscillator due to ambient temperature changes could be compensated for by the application of a.f.c. to the second local oscillator.
D.c. power has to be fed to the head-unit to drive the local oscillator and the low-noise i.f. amplifier. There are two principal ways in which this can be obtained. The first being directly from the mains electrical supply via a
power unit situated perhaps in the attic or loft. The alternative and perhaps the more attractive solution would be to derive this power from the portion of the receiver adjacent to the TV set and feed it up the cable which is used to bring the u.h.f. signals down from the head-unit. If the cable which exists in many homes, from the terrestrial TV aerial system to the TV set, could also be used for the satellite signals then this would prove economical as well as aesthetically pleasing. Problems, however, occur such as possible interference between the satellite u.h.f. f.m. intermediate frequency signals and the terrestrial u.h.f. a.m. signals.
The u.h.f. f.m. intermediate frequency signal from the head unit must be further processed to arrive at a signal which is compatible with a television receiver. A second mixer is necessary to convert the u.h.f. signal down to a v.h.f. signal which may be more easily amplified, limited and demodulated. As the v.h.f. processing circuits are generally applicable to both double and single superhet designs these will be considered later after a discussion of the single superhet.

An important advantage of the double superhet is that a single head-unit could provide a number of outlets in a home, allowing several programmes to be received simultaneously. As a result of this the double superhet approach could also form the basis for a community distribution system. Distribution could be made at u.h.f. as f.m. signals, or these signals could be demodulated and then remodulated onto a u.h.f. carrier as amplitude modulation in a form compatible with a conventional TV set.

\section*{Single superhet}

The single superhet receiver design is shown in Fig. 1(b). In order that extensive use may be made of integrated circuit techniques a low i.f. must be chosen. As has been discussed earlier this makes the problems of oscillator radiation and image rejection more difficult to solve.

A possible solution to the problem of image rejection is the image rejection mixer \({ }^{3}\), which is shown in schematic form in Fig. 5. In this the incoming signal is split and fed in quadrature to two balanced mixers. The i.f. outputs from the mixers are combined in quadrature giving cancellation of the image signal components. An experimental, microstrip, image-rejection mixer uses a tri-plate, meander line hybrid to produce the necessary \(90^{\circ}\) of phase change at the i.f. A wireline hybrid (basically a screened lead which contains a pair of balanced conductors) is also suitable and has been used in an experimental receiver. The image rejection which is achieveable is typically of the order of 24 dB .

A disadvantage with the single superhet design is the need to tune the s.h.f. local oscillator for channel selection. This can be achieved electronically by the addition of a varactor (variable capacitance diode) into the tuned circuit of the oscillator. However, this may result in
a degraded performance as the varactor will lower the circuit Q making the oscillator more temperature sensitive and increasing the f.m. noise.

To avoid an increased system noise figure due to loss in the down lead, and also to provide a signal sufficiently large so that it will not be degraded by stray teirrestrial transmitter pick up, amplification would also be provided at the i.f. in the head unit. The head unit must be supplied with power and a tuning voltage together probably with an a.f.c. signal, preferably all via the coaxial signal downlead cable. This is possible using fairly simple circuit techniques. It might be thought possible to use an existing u.h.f. /v.h.f. downlead cable on a shared basis with u.h.f. terrestrial transmissions. However, this is unlikely, as although v.h.f. 405-line TV transmissions may well have closed down by the advent of satellite broadcasting these frequencies may well be re-allocated to terrestrial broadcasting.

With the single superhet approach only one satellite programme can be received in the home at any time. A single superhet receiver is, therefore, not particularly suited to a community system as this would have to have as many s.h.f. /v.h.f. mixers as there were programme choices. These mixers would have to be preceded by a low noise amplifier and probably a large receiving aerial to make up for the signal loss due to the power splitting between
the multiple mixers. Although the single superhet may upon initial examination appear to be the simplest solution it is thus seen to hold real disadvantages when compared to the double superhet.

\section*{I.F. signal processing}

The requirements for i.f. selectivity, amplification and f.m. demodulation are, in general, similar for both the double and single superhet designs. However, the double superhet will need a second mixer to convert the u.h.f. first i.f. down to a v.h.f. second i.f. It will require a tunable local oscillator and sufficient selectivity in order to reject the second image. These are similar problems to those encountered with conventional u.h.f. TV tuners. A low noise u.h.f. amplifier will be included in the head-unit and if this has sufficient gain the noise figure of the u.h.f. converter will not be important.
The choice of the final i.f. will be a compromise between the desire to use i.c. techniques and the need to achieve adequate selectivity and, for the double superhet, adequate second image rejection. At present, an i.f. centred in the range \(30-80 \mathrm{MHz}\) is probably optimum. If full use is to be made of the available frequency allocation then it would be split into a series of adjacent channels as shown in Fig. 6. If the final i.f. centre frequency is an integral number of half channel widths (b.w./2) then the image channels occupy one full frequency channel,


Fig.5. Outline of the image rejection mixer.


Fig.6. Allocation of the image channel for various intermediate frequencies.

otherwise they occupy parts of two frequency channels. For a given image protection the second situation makes allocation of service areas to give continuous coverage of the earth's surface more difficult.

Although this constraint upon the choice of the final i.f. could well apply to the single superhet it is unlikely to apply to the double superhet as sufficient image rejection can probably be provided by the selectivity of the second mixer. If local oscillator radiation is a problem with the single superhet design, choice of the i.f. to be \((2 \mathrm{n}+1)\), b.w. \(/ 2\), where n is again an integer, will cause this to fall at channel boundaries and it should be relatively untroublesome. In the case of the double superhet sufficient local oscillator radiation protection could probably be obtained in a band-pass filter before the first mixer and this could also provide first image rejection.
The i.f. response must provide acceptable phase and amplitude response within its passband consistent with adequate adjacent channel rejection, to permit efficient use of the available bandspace. The relationship, for example, between signal bandwidth and the filter bandwidth and response must be considered with reference to the differential phase and gain distortions in the demodulated signal. It is possible that in time new developments such as acoustic surface wave filters may prove to be an attractive solution to the filter problem as these could have constant amplitude and group delay response in band and rapid roll-off at the band-edge. It is clear that receiver design problems must be considered before fixing the signal parameters and channel allocations.
Apart from the low-noise input for the single superhet the i.f. amplifier can be integrated as can be the whole of the double superhet second i.f. As signal
strengths over the service area will not vary by more than a few dBs the limiter has only to work over a small dynamic range and this too can be integrated.

A variety of techniques are available for the demodulation of an f.m. signal: these can be grouped into three fundamental classifications as slope, phase shift, and pulse counting discriminators. The slope discriminator makes use of the amplitude versus frequency response of one resonant circuit or alternatively two resonant circuits which have slightly different resonance frequencies. The phase shift discriminator relies on the phase versus frequency characteristic of a resonant circuit or transmission line. A pulse counting discriminator is based upon the generation of a pulse of constant area each time the signal crosses the zero axis; these pulses are than integrated to provide the original modulation. During the course of our experimental work we have tried several different types of broadband f.m. discriminators but the most successful to date appears to be the pulse count discriminator. This type should be amenable to complete integration as it does not rely upon inductors or transmission lines. Our latest experimental, discrete, discriminator has an output voltage versus input frequency characteristic which is linear to well over 100 MHz .

\section*{Automatic frequency control}

Automatic frequency control will almost cettainly be required to cope with oscillator drift. The wideband frequency discriminator used for signal demodulation can also form part of the a.f.c. circuit to provide a wide catching and holding range, The a.f.c. circuit must have low d.c. drift and the i.f. signal frequency corresponding to black level on the picture must be maintained constant by some form of line gating technique. (The d.c. content of a video signal is not constant
with time and without such a gating circuit wider i.f. and discriminator bandwidths would be needed.)

\section*{Receiver packaging and interfacing}

The problems of packaging the 12 GHz receiving system into a head unit and a unit adjacent to, or in, the domestic television set is interrelated with the problem of taking a signal into the television set. As the chassis of present television receivers is connected directly to the mains supply these problems are complicated by the need to consider the safety requirements.

If we consider a present day standard television receiver then the satellite receiver must generate a u.h.f. a.m. signal by remodulation if it is to be completely compatible. Due to problems which may occur in certain sets which use a.f.c. controlled tuners, a vestigial side-band signal may be necessary. Where a slight modification of the standard receiver is possible other techniques may be used. For example, we have successfully coupled the video and sound sub-carrier signals directly into a U.K. receiver which has a single video detector. An optoelectronic coupler was used to provide suitable isolation of the input leads from the receiver chassis. Opto-couplers are now available which provide adequate isolation and have bandwidths extending to several megahertz.

Unfortunately the present trend in television receiver design is towards the use of synchronous demodulation using i.c. techniques which make direct entry at video more difficult. However the growing need for inputs from other sources such as video tape recorders etc., may well change this situation.

In the long term most of the satellite broadcast receiver might be incorporated in a dual or multi-purpose television receiver. The signal from the 12 GHz head
unit could then enter the receiver as a u.h.f. or v.h.f. f.m. signal. One possible system, in which a single head unit could be used to drive a number of receivers, is outlined in Figure 7.

Obviously other configurations can also be envisaged. It is therefore likely that the domestic television receiver will ultimately be rather different from its present form. However, it should be emphasized that if 12 GHz f.m. satellite television broadcasting is introduced it will supplement the existing services, not replace them. There is therefore no question of present day receivers being made obsolete and one would expect that for many years after the inception of a satellite service, converters would be available which would provide signals compatible with conventional u.h.f a.m. receivers.

\section*{Conclusions}

With the present pace of technological progress and the various needs which exist for the expansion of television broadcasting it seems likely that within the next decade we may see the use of satellite television broadcasting direct to the home, or at least to community receiving systems, in at least one country in the world. We have therefore attempted in these two articles to look at some of the problems which may be encountered, together with certain aspects of possible receiver design.

Developing countries with no existing u.h.f. (or even v.h.f.) terrestrial service are likely to adopt the u.h.f. allocation \((620-780 \mathrm{MHz})\) for satellite broadcasting. On the other hand, developed countries with existing v.h.f. and u.h.f. terrestrial services which require more channels will be obliged to choose the s.h.f. allocation ( \(11.7-12.5 \mathrm{GHz}\) for Europe). In either case it is almost certain that wideband frequency modulation will be employed. As far as the U.K. is concerned it should be emphasized that although satellite broadcasting at 12 GHz will be technically feasible within a few years it is unlikely to be used for at least a decade and probably longer. Sufficient v.h.f. and u.h.f. bandspace is available in this country for the provision of up to six terrestrial television channels provided that the present v.h.f. transmission can be phased out.

Because the success of satellite broadcasting will depend crucially upon the availability of sufficiently cheap receivers we have concentrated upon the problem of receiver design - particularly in relation to the use of the new 12 GHz band. Although we have made only passing reference to the necessary advances in satellite, power source and transmitter technology - especially the development of high power sources at 12 GHz these are obviously no less important.

With regard to the reception of 12 GHz it seems likely, particularly in the early stages when costs may be higher, that there would be a strong preference in urban areas to adopt community reception. The growing desire to avoid the pollution of housing estates by a proliferation of
aerials would be a factor in favour of this. However, in rural areas, individual receivers would be necessary because of the high cost of community systems in such situations. Moreover, even in urban areas there would ultimately be some demand for individual reception. Thus although the majority of the population might be able to receive their signals via a community system a truly national service would require a broadcasting system capable of individual reception. Because this may have implications for the choice of broadcast parameters we have therefore concentrated upon the problems of designing individual 12 GHz receivers. In any case, the design of a community system can be regarded as a logical extension of an individual one.

Although some development of microwave components for cheap massproduction will obviously be necessary, current studies indicate that suitable devices capable of meeting the receiver requirements already exist. Of the two principal designs discussed the double superhet appears to offer significant advantages over the single superhet, particularly in the case of a community system or a multiple outlet home system. With either approach the i.f. processing circuits can make extensive use of integrated circuit techniques for amplification limiting and demodulation with resultant cost advantages. In our view, therefore, given sufficient impetus, satellite television broadcasting to the home at 12 GHz is technically capable of realization. Whether it will indeed become a reality depends upon other factors, beyond the scope of these articles.

\section*{References}
1. "TV Information Service", Wireless World, Vol. 79, May 1973, p. 222.
2. C.C.I.R., "Conclusions of the interim meeting of study groups 10 (broadcasting service (sound)) and 11 (broadcasting service (tele-vision)""-C.C.I.R. Geneva, 5-8 July 1972Part 2,Report 215-2.
3. Hosking, M. W., "The realm of microwaves. Part 2. Microwave transmission lines", Wireless World, Vol. 79, March 1973, p. 137. 4. Gunn, J. B., "The Gunn effect", International Science and Technology, No. 46, Oct. 1965, p. 43.
5. Wilds, R. B., "Microwave two phase converters for imageless receivers", Microwave Journal, Vol. 4, No. 9, Sept. 1961, p. 84.

\title{
Checking peak inverse ratings
}

\author{
by J. M. Osborne \\ Westminster School
}

It is sometimes necessary to find the break down voltage of a semiconductor device, either because it is unknown or to determine how far above the manufacturers rating one can go with an individual item.

It is possible to determine this nondestructively with no more than a high resistance voltmeter and a variable voltage supply. The voltmeter serves as a current limiter as well as measuring both leakage current and (by subtraction) the applied voltage. The procedure is to connect the voltmeter in series with the device and apply the variable voltage supply. The voltmeter will read zero so long as there is no leakage current. As the variable voltage supply is raised there comes a point where the voltmeter reading starts to rise. Let us suppose that the meter is a \(10 \mathrm{k} \Omega\) per volt on the 1 kV range. If it reads 50 V then the leakage current is 5 microamps. Suppose that the supply voltage is 750 V ; then the voltage across the device is 700 V which may be taken as the breakdown voltage. If the device was a silicon rectifier, it should be safe to run it in a circuit with p.i.v. of 600 V although the manufacturuer's safe rating for this type number might only be 400 V .

Likewise the collector-base rating of a germanium power transistor can be determined. With germanium devices the leakage is much greater; the point to take is that at which the voltage across the device ceases to rise significantly, i.e. the voltmeter reading increases in step with the supply voltage above this point. Suppose the voltmeter reading increased from 10 to 20 V while the supply increased from 50 to 62 V ; this indicates that the leakage current increases from 10 to 20 microamps as the voltage across the collector-base rises from 40 to 42 V . One could install the transistor with some confidence in a circuit with a 35-V rail.

The voltmeter can be used to measure the voltage of the variable voltage supply, if it is not metered. This is of course much more cumbersome. If the supply has a high internal resistance, e.g. a high resistance potentiometer across a high voltage supply, then allowance might have to be made for the current taken by the voltmeter by loading the supply with a resistance drawing, say, 1 mA .


Current \(i\) is determined by interpreting the \(V_{m}\) reading in microamps. A 10,000 ohm per volt meter has a full scale deflection of 100 microamps on all voltage ranges.

\section*{Wideband amplifiers}

\section*{Introducing wideband techniques; circuits and their performance are discussed in detail in series 12 of Circards}
by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

\author{
Paisley College of Technology
}

Wideband amplifiers are extensively used in instrumentation and communication systems where the signals to be handled may be of an analogue or a digital nature. Such amplifiers are required to provide fairly equal amplification of a large range of frequencies with a lower frequency limit of zero or nearly zero. The high-frequency behaviour of the active devices must be considered in conjunction with the passive network elements to design an amplifier with required characteristics.

Many different circuit models are available for such devices, but not all are necessarily useful. Consider, for example, the bipolar junction transistor models shown in Fig. 1. The three versions of the intrinsic low-frequency equivalent circuit shown in (a), (b) and (c) are highly-idealized models that focus attention on the basic active properties of the device. The low-frequency \(T\) and h-parameter models shown in (d) and (e) are more useful, but are unsatisfactory for predicting amplifier performance in the region of its upper cut-off frequency.

Models that are useful for high-frequency design must provide a more realistic representation of the transistor as a network element. The high-frequency model one chooses is often determined by availability of data, personal preferences and experience or whether the parameters of interest are readily determined by measurement. Fig. 2(a) shows the hybrid equivalent circuit which is a reasonable compromise between accuracy and complexity and which may be reduced to simpler forms for low-frequency and high-frequency calculations.

In high-frequency transistors, \(r_{c e}\) and \(r_{b^{\prime} c}\) are often sufficiently large to be neglected, the former being much larger than the load impedance and the latter much greater than the reactance of \(C_{b^{\prime} c}\) at high frequencies. The simplified form of Fig. 2(b) is often sufficiently accurate for assessing high-frequency performance and this may be reduced to that shown in Fig. 2(c), where \(C_{i n}\) consists of \(C_{b^{\prime} e}\) in parallel with the Miller effect equivalent of \(C_{b^{\prime} c}\). The base spreading resistance \(r_{b b^{\prime}}\) and the product \(g_{m^{\prime}} r_{b^{\prime} e}\) may normally be assumed to be independent of the operating point, \(g_{m}\) increasing and \(r_{b^{\prime}}\) e decreasing as \(I_{E}\) increases. The value of \(C_{b^{\prime} e}\) increases with \(I_{E}\) and the depletionlayer capacitance \(C_{b^{\prime} e}\) varies as \(1 /\left(V_{C B}\right)^{\frac{1}{2}}\) to \(1 /\left(V_{C B}\right)^{t}\).

To obtain a wide bandwidth with the simple cascade of common-emitter stages shown in Fig. 3, the collector coupling re-

(e)

Fig. 2. The hybrid equivalent circuit (a) is a reasonable compromise between accuracy and complexity, and may be simplified for h.f. work to (b) and even (c)

(a)

(b)

(c)
sistors must be made small compared with the input impedance of the following stage, the capacitive component of which causes the gain to fall at high frequencies. Further reduction of \(R_{C}\) to exchange gain for bandwidth is limited by the presence of \(R_{b b^{\prime}}\). Also, if the gain per stage is reduced, more stages must be cascaded to achieve a desired amplifier gain and it becomes increasingly difficult to maintain the overall bandwidth which shrinks as the number of cascaded stages increases. The gain-bandwidth product of the transistors \(\left(f_{T}\right)\) attains a maximum value at a particular value of emitter current, which is often small. Adjusting the emitter current of each stage to its optimum value may result in a small signal-handling capability if significant distortion is to be avoided.

Several techniques are available for improving the achievable stage gain-bandwidth product, the simplest of which is the inclusion of an inductor to compensate for the falling response due to transistor input capacitance. The stages in Figs. 4(a) and 4(b) are said to be shunt-peaked and seriespeaked respectively, the latter being far less effective in improving gain-bandwidth product. The effect of the shunt-peaking inductor is illustrated in Fig. 5 and by correct design the stage bandwidth, for a given gain, can be improved by a factor of about two without lifting the high-frequency gain above its low-frequency value. Too large a value of \(L\) results in overcompensation which produces overshoot and ringing in the transient response. Amplifiers using a number of these stages in cascade may suffer from instability and prove difficult to align.
This problem may be alleviated by making the effective load on each transistor resistive. Referring to Fig. 6, this can be achieved by considering \(L\) and \(R_{C}\) to be in parallel with the series equivalent of the \(C R\) input network, making \(R_{C}\) equal to the equivalent series input resistance and designing \(L\) to produce the same short-circuit time constant for each of the parallel branches. A disadvantage of this constantresistance cascade is that it is no longer possible to vary a network element to adjust amplifier gain or bandwidth, which must be attempted by variation of the transistor parameters, e.g. by adjusting the individual collector currents. The foregoing techniques have the disadvantage that all the cascaded stages interact, any change in the design of one stage normally requiring changes in the others.

As the input capacitance, including that due to Miller effect, plays an important part in limiting the achievable bandwidth, a design approach that attempts to eliminate the effects of internal feedback is useful. The cascode amplifier shown in Fig. 7 employs this technique and it may be considered as a common-emitter common-base cascade, The common-base stage has a very low input impedance, so the common-emitter stage has a current gain approaching \(h_{f e}\) and a very small voltage swing at its collector, resulting in a large reduction of the internal feedback between collector and base. The bandwidth of the common-emitter stage approaches \(f_{\beta}\) and as that of the commonbase stage is much larger, the cascode pro-


Fig. 3. Reducing \(R_{c}\) and increasing the number of stages can reduce overall bandwidth and give poor signal handling.


Fig. 4. Simplest way of improving bandwidth is to add shunt (a) or series (b) compensation. Effect of shunt peaking-the most effective-is shown in Fig. 5.


Fig. 5. Too large a value of \(L\) in Fig. 4(a) results in overshoot and ringing.


Fig. 6. To awoid instability in cascaded circuits of Fig. 4(a), the transistor load can be made resistive.


Fig. 7. Cascode circuit minimizes effect of internal feedback.


Fig. 8. Four basic ways of increasing bandwidth using negative feedback.

(a)

(b)

Fig. 9. Series and shunt feedback applied to a single stage.

(a)

(b)

Fig. 10. Peaking capacitors improve h.f. response of Fig. 9.


Fig. 11. Deliberate mismatching of impedances can improve stability.
vides the voltage gain and current gain of a common-emitter stage with a wider bandwidth than that obtainable with a simple common-emitter amplifier.

Satisfactory design of wideband amplifiers usually requires the interaction between individual stages or elementary building blocks to be negligible, or definable, the mid-band gain to be stable and input and output impedances to be adjustable to desired values. Use of feedback in the design allows these criteria to be approached without undue concern for the variations in transistor parameters and permits bandwidth to be extended at the expense of gain in a controllable manner. While the reduction in gain is a disadvantage it is not an expensive price to pay, bearing in mind the benefits obtained and the relatively low cost of adding extra feedback stages to meet the overall gain requirement.

Another disadvantage of feedback is the increased possibility of oscillation, which may be avoidable at the design stage by using a sufficiently accurate circuit model. In a multi-stage amplifier designed for the highest possible bandwidth before the application of feedback, the cut-off frequencies of all stages will normally be similar. Hence there is a near certainty that the combined phase shift can reach \(180^{\circ}\) while the magnitude of the gain is well in excess of unity. To remove this possibility, by deliberately setting one of the cut-off frequencies much lower than the others, negates the original requirement for maximum pre-feedback bandwidth. General-purpose operational amplifiers, such as the 741-type, have internal stages with high cut-off frequencies, but a dominant lag at about 10 Hz has to be introduced to cope with the possibility of \(100 \%\) feedback.

Four basic feedback configurations may be used to create elementary building blocks. Fig. 8 shows these configurations which may be described in terms of the method in which the feedback is derived and applied. Thus, (a) is series-derived seriesapplied, (b) is shunt-derived series-applied, (c) is shunt-derived shunt-applied and (d) is series-derived shunt-applied. Alternative descriptions of these configurations are in common usage e.g. (a) transimpedance feedback, series-series or simply series, (b) voltage-ratio feedback or series-shunt, (c) transadmittance feedback, shunt-shunt or simply shunt, and (d) current-ratio feedback or shunt-series. Other descriptions include the use of the terms current feedback or voltage feedback. In the former case the signal fed back is proportional to the output current but may itself be a current or a voltage. With voltage feedback the fed-back signal is proportional to the output voltage All four arrangements have the property of increased bandwidth and reduced gain compared with the open-loop values. The input and output impedances become modified as shown in the table, shunt derivation (application) reducing the output (input) impedance and series derivation (application) increasing the output (input) impedance.

The two types of single-stage feedback, series and shunt, are shown in Fig. 9. In Fig. 9(a) the load impedance should be low and the input supplied from a voltage source


Fig. 12. Widely differing input and output impedances make two-stage feedback circuits useful for cascading.
whereas in Fig. 9(b) the load impedance should be high and the amplifier input should be from a current source. The highfrequency response of these elementary blocks may be improved by the addition of peaking capacitors as shown in Fig. 10.
Source and load impedance requirements for stable gain with single-stage feedback can be met by purposely creating a large mismatch between cascaded stages, i.e. by alternating series and shunt feedback stages as shown in Fig. 11. With this arrangement gain-bandwidth product is high, lowfrequency gain may be determined with reasonable accuracy by multiplication of individual stage gains, and there is little interaction between stages. Feedback applied to two stages can offer similar merits, Figs. 12(a) and 12(b) showing series-derived shunt-applied and shunt-derived seriesapplied configurations respectively. Both networks have widely differing input and output impedances and are therefore attractive as basic building blocks for cascaded stages.
Although discrete devices may be used in a multistage realization, the availability of integrated-circuit transistor arrays, containing about five transistors with parameters inherently reasonably matched, are very attractive for many designs. Integrated circuits are available in the form of a longtailed pair which can be operated as singleended or differential-input wideband amplifiers by the addition of external passive components that allow a high degree of flexibility in the selection of gain, bandwidth and signal-handling capability.
Other integrated circuit versions provide emitter-follower input and output transistors to make the input and output impedances high and low respectively. Integrated wideband power amplifiers can be obtained providing bandwidths up to about 8 MHz and outputs of about 14 V pk-pk. Integrated circuits containing pairs of cascode amplifiers and some with gating facilities are also very useful as wideband amplifiers. Modern integrated-circuit logic gates designed for high-speed switching applications may also be usefully employed as low-cost wideband amplifiers by setting the quiescent conditions in a linear part of the transfer characteristic and employing feedback to define the gain.
\begin{tabular}{lll}
\hline Feedback type & \(Z_{\text {out }}\) & \(Z_{\text {in }}\) \\
\hline Fig. 8(a) & increases & increases \\
Fig. 8(b) & decreases & increases \\
Fig. 8(c) & decreases & decreases \\
Fig. 8(d) & increases & decreases \\
\hline
\end{tabular}

\section*{How to get Circards}

Order a subscription by sending \(£ 9\) (U.K. price; \(£ 10.50\) elsewhere) for a series of ten sets to:
Circards
I.P.C. Electrical-Electronic Press Ltd

Genieral Sales Dept.
Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with if not the current one. One set costs \(\mathfrak{f 1}\) U.K. and \(£ 1.15\) elsewhere, postage included.
Cheques should be made payable to
I.P.C. Business Press Lid.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D)
8 astable circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
Subsequent issues will cover alarm circuits. digital counters, pulse modulators. Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the 14th of the month, and the Circard concept was outlined in the October 1972 issue, pages 469/70.

\title{
H.F. Predictions for March
}

The charts are based on a predicted Solar Index of 17, a considerable change since February 1973 when the measured value was 47 . The Solar Index used here is known as IF2 which towards sunspot minimum is generally numerically the same as the more commonly used index of 12 month smoothed sunspot numbers known as R12. However, unlike sunspot numbers it is possible for IF2 to have low negative values at sunspot minimum and this may well be the case at the end of this year. Predicted disturbed days are March 8th to 18th.





\title{
Electronic calculator components offer
}

\author{
"Custom built" calculating systems economically feasible for Wireless World readers
}

Over the past two years the great advances that have been made in m.o.s. l.s.i technology and solid-state display technology have brought about a "calculator revolution". There is now a proliferation of low-cost instruments of varying degrees of calculating power and there are several kits available. While these undoubtedly cater for the majority of users (and pockets), we have been aware for some time now that there are certain individuals whose needs have not been met. These are people - whose involvement with electronics may be professional or amateur - who wish to construct a calculator for a "dedicated"
application, say, in a laboratory, or to a personal design which might incorporate other equipment.

While the prices of ready-made models and kits have fallen rapidly, the one-off prices of the essential components, the m.o.s. integrated circuit and the displays, have not reflected this in any way. These components are often difficult to obtain at the one-off level. The reasons for this are understandable since the high design and development costs of complex m.o.s. circuits have to be paid for as quickly as possible by their application to equipment with a high volume of production. It is only
economic sense for an m.o.s. manufacturer to think (and price) at quantity levels of hundreds of thousands, and the one-off quantity and price simply has no relevance to him. The one-off price of one well known series of calculator chips is still quoted as \(£ 29.00\) although they are incorporated in finished machines costing very little more and even less.

One manufacturer who has seriously considered the one-off market is General Instrument Microelectronics. In April 1973 this firm dramatically reduced the one-off prices of its C500 series of devices and the first type in the series, the C500


8 -digit integrated circuit, came down by about half to \(£ 13.70\). As a result of this Wireless World has been able to make arrangements with Semicomps Ltd for the supply of a "package" of components (not a complete kit), consisting of one 8 -digit calculator i.c. and eight 7 -segment l.e.d. alpha-numeric displays, at an advantageous price (see panel).
The calculator i.c. Housed in a 24 -lead dual-in-line ceramic package, the C500 m.o.s. integrated circuit provides all the electronics needed to perform the arithmetic functions of a four-function calculator. Arithmetic operations are performed algebraically* and the device can handle chain calculations. The "constant" facility operates on all four functions. This feature enables a partial result to be stored by simply pressing a \(K\) contact at any time. Thus, for example, a result can be made a divisor without the need to re-enter it. The i.c. can be used as a simple up/down counter by entering 1 as a constant and actuating the + or - inputs. Raising to a power is achieved by entering the number as a constant and actuating the \(x\) function the required number of times.

The decimal point is fully floating, which, apart from convenience, can make a significant increase in the accuracy of the result after chain calculations.

The need for overflow or underflow indication is eliminated by the fact that during computation the exponent of all numbers from \(1.0000000 \times 10^{-20}\) to \(9.9999999 \times 10^{79}\) is retained. Dividing by powers of 10 will retrieve the decimal point.

A useful simplification is that a "clear" (C) contact can perform three different functions. Operation followed by the entry of a number clears the calculator. Operation followed by the actuation of a "function" contact clears the previous entry only. Thirdly, operation followed by the actuation of a "constant" (K) contact clears a constant and allows a chain calculation to proceed where it is no longer needed.

The number of pins on the i.c. (24) has been kept low for a chip of such complexity by a system of multiplexing. As can be seen from the diagram, certain pins are used for both inputs and outputs. The i.c. generates a strobe pulse at pin 23 which is fed to all keyboard contacts used with the i.c. If any contact is closed during this pulse then the appropriate input is entered. The strobe pulse occupies only a very small proportion of the clock period, the rest being used to actuate the display. Keyboard contact bounce protection is incorporated, enabling very simple keyboards to be used. Simple spring-loaded push switches would prove satisfactory.

Construction of a versatile calculator is relatively simple and requires only a clock generator of 80 to \(100 \mathrm{~Hz}, 18\) low-cost plastic \(\mathrm{n}-\mathrm{p}-\mathrm{n}\) transistors (e.g. ZTX300) and 27 resistors.

The I.e.d. display. This device, type MAN 3 made by Monsanto, is of flat pack construction and has staggered leads which facilitate interconnection.

\section*{Details of the Offer}

1 - eight-digit calculator i.c. (General Instrument Microelectronics, Type C500), plus
8 -- seven-segment l.e.d. alpha-numeric displays (Monsanto, Type MAN3). Data sheets are supplied.
Price for the "package" offer: \(£ 14.00\) plus \(10 \%\) VAT. (In this arrangement individual items cannot be supplied separately.) Not a limited offer.
Orders with cash to: Semicomps Ltd., 5C Northfield Industrial Estate, Beresford Avenue, Wembley, Middx., HA0 1SD.

Purchasers are advised to observe standard m.o.s. device handling precautions as discussed in recent Wireless World correspondence (Oct., Nov., Dec. Letters). The C500 device should not be removed from its black conductive foam packing until it is finally required for assembly.
* Positive values produce no sign on the display whereas negative values produce a minus symbol to the left of the most significant digit.

\section*{Announcements}

Weir Electronics Ltd, producer of power supplies, has announced the formation of a wholly owned subsidiary, Weir Electronic Instruments Lid, Durban Road, Bognor Regis, Sussex, for the manufacture and marketing of a range of low-cost instruments. It is intended that the first series of low priced laboratory instruments' will be introduced early in 1974.

Surrey Electronics, 24 The High Street, Merstham, Redhill, Surrey RHI 3EA, are providing circuit boards and kits for the Hartley Jones "Frequency Shifter for 'Howl' Suppression"' described in the July 1973 issue of Wireless World.

Lowther Acoustics Ltd, Lowther House, St. Mark's Road, Bromley, Kent, have recently moved their manufacturing division to larger premises in Maidstone. The company state that they will be offering a 24 -hour reconditioning service on their loudspeakers including diaphragm replacement.

Bach-Simpson (U.K.) Ltd have announced the appointment of Electroplan Lid, P.O. Box 19, Orchard Road, Royston, Herts, SG8 5HH, as distributors in the U.K. for their model 260-6p taut band multimeter and its range of accessories. The agreement covers all small quantity orders.

Under a recent agreement between Spin Physics Inc. and SE Labs (EMI) Ltd, North Feltham Trading Estate, Feltham, Middlesex, analogue tape recorder users may obtain replacement headstacks for most standard wideband analogue recording systems including Ampex, Bell \& Howell, Hewlett Packard, Leach, Winston, Mincom and SE Labs. These re placement headstacks are tipped with a four-element magnetic alloy, "Spinalloy", claimed to have twice the life of Sendust.

HY-Q Antennas Ltd, Moulton Park Industrial Estate, Northampton is offering v.h.f. and u.h.f. aerials in the range up to 1.5 GHz . A 48 -hours guaranteed delivery service is offered to customers.

Competition resuks from West Hyde Developments: 1st A. Barr, Lefney Products; 2nd B. F. Martin, Mullard Research Laboratories.
"Hi-Fidelity '74" will be held at the Heathrow Hotel, Bath Road from 27th to 31st March inclusive. The first two days are for trade only and the new exhibition will run concurrent with the annual Sonex show. Organizers of Hi-Fidelity ' 74 are Pyser Britex (Swift) Ltd.

Orders for over \(£ 200,000\) worth of v.h.f. radio alarm equipment have been awarded to the Mobile Radio division of GEC-Marconi Electronics by the Home Office. The units consist of portable intruder alarms, feeding decoder displays at a central point via existing v.h.f. radio systems.
Applications for the 1974 Hudswell Research Awards must reach the Institution of Electrical Engineers before March 31, 1974. The awards are to support research in electrical and electronic science and engineering by members of any I.E.E. class who are registered as U.K. research students.

The Institution of Electrical Engineers is to organize a vacation school on "L.f. and d.c. electrical measurement practice", which will be held at the University of Lancaster between the 7th and 9th of July, 1974. Co-sponsors of the school will be the British Calibration Service, the Institution of Electronic and Radio Engineers and the Institute of Electrical and Electronic Engineers. Theory and techniques of measurement up to 100 kHz will be covered at a level suited to professional engineers.
Professor Sir Hermann Bondi, K.C.B., F.R.S., F.R.A.S., chief scientific adviser to the Ministry of Defence, will deliver the Twelth Annual Lecture of the I:E.E. Electronics Division at Savoy Place at 5.30 p.m. on 13th February 1974. The title of his lecture will be "Electronics and human beings".

\section*{About People}

\section*{Royal Society}

At the Anniversary Meeting of the Royal Society on November 30, Sir Martin Ryle, F.R.S. was awarded the Royal Medal. Sir Martin is well-known for his work in radio astronomy, in particular for the development of interferometry aerial arrays, which have made possible the correlation of many radio sources with visible bbjects. The radio catalogues which have been produced as one result of this work are now standard references. One of Sir Martin's greatest contributions has been the building up of a laboratory at Cambridge in which outstanding work has been possible.
The Mullard Medal was awarded to Professor C. W. Oatiey, O.B.E., F.R.S., emeritus professor of electrical engineering at Cambridge in recognition of his contribution to the development of the scanning electron microscope, which has been used to study the performance of semiconductor devices when voltages are applied and to display magnetic domain structures, among many contributions to physical and biological science.
Royal Television Society
Huw Wheldon, O.B.E., M.C., B.Sc. (Econ), who is managing director of BBC Television, has been elected a vice-president of the Royal Television Society. Mr. Wheldon has been closely associated with the programme side of television, notably with the "Monitor" arts review and later as assistant head of Talks (General) and as head of Documentary Programmes. In 1963, he was awarded the Television Society's Silver Medal.
The Institution of Electrical Engineers
George Milington, M.A., B.Sc., F.I.EE has been awarded the 1974 Faraday Medal for his theoretical studies of radio wave propagation. The medal is awarded without regard to nationality, country of residence or Institution membership.
Wilfred Bennett Lewis, C.B.E., F.R.S.C., Ph.D., F.R.S. has been elected to Honorary Fellowship of the Institution in recognition of his contributions to the development of wartime radar and of nuclear energy.
The RL. Hon. the Lord Penney of East Hendred, O.M., K.B.E., M.A., Ph.D., D.Sc., F.R.S. has, been elected Honorary Fellow for his work in the advancement of technological education and in the development of nuclear energy.

\title{
Motional feedback in loudspeakers
}

\author{
"There is no new thing under the sun", Solomon, Eccles., Ch. 1, verse 9
}
by H. D. Harwood, B.Sc. B.B.C. Research Department

This article was written as a result of reading the account in Wireless World \({ }^{1}\) of a commercial embodiment of motional feedback in loudspeakers. This is a subject which has exercised the minds of loudspeaker designers for some time, but it may not be appreciated by all readers for just how long. In my card index, which is selective, not comprehensive, the earliest mention of this subject is a patent No. 231,972, awarded to P. G. A. H. Voigt as early as Jan. 29th, 1924. It may shake many persons, who thought that negative feedback came in with Black and Nyquist ten years later, to realise that the principles and advantages of feedback were appreciated, at least by some persons, as long ago as that, and indicates that what Black and Nyquist did was to place a matter of general knowledge on a formal and sound theoretical basis rather than to originate it, which is what I had been taught. Perhaps our academic readers could supply even earlier references to the use of negative feedback in circuits, but it is remarkable that not only were the advantages of feedback already known at this date but also that it should be applied to as intractable a subject as a loudspeaker.

Voigt used a bridge circuit to extract the motional impedance from the loudspeaker terminals and applied the corresponding feedback to a grid. It was therefore velocity feedback and although it would damp out the primary resonance, would give a \(6 \mathrm{~dB} /\) octave bass cut. On the other hand, he was aware of the effects on distortion as he quotes ". . . circuits where by the change of impedance with change of frequency of the loudspeaker or equivalent circuit is caused to alter the reaction into the grid circuit in such a manner as to compensate for the distortion of the said loudspeaker".

The next reference I have is to a patent by A. F. Sykes, No. 272,622, dated March 20th, 1926. He describes the use of an auxiliary coil or even a microphone to sense the loudspeaker output and refers to a separate coil mounted on the centre pole piece so that the e.m.f. directly induced into his pick-up coil is cancelled. This again would yield velocity feedback.
Then comes a patent by M. Trouton, No. 320,713, dated Aug. 10th, 1928. He uses capacitive pick-up elements to give a
feedback signal which is compared either with the displacement of a very light dummy transducer or with the original signal. He seems to be the first to recognise the need for transposing the signals to give feedback proportional either to velocity or acceleration.

These three cases are mentioned in detail to give an idea of the thoughts on the subject prior to Black and Nyquist's classical papers on feedback. The use of an accelerometer for sensing the cone motion is not mentioned until later.

To obtain a uniform frequency response in the bass, the acceleration of the cone should be held constant, but it does not matter in essence whether the means of obtaining the feedback gives a signal proportional to amplitude, velocity or acceleration as it is simple to derive one from the others. There are, however, certain disadvantages in obtaining the feedback in particular ways.

Voigt's method of using the motional impedance is very attractive but falls down in several ways. The first is the need for compensating the change in resistance of the voice coil as it warms up under the influence of programme, and the compensation must have the same time constant as that of the voice coil without consuming appreciable amounts of power. Furthermore, if the frequency range extends beyond a few hundred hertz the complex variation with frequency of the inductive part of the voice coil impedance must also be taken into account, as it does not behave as a simple inductance owing to the solid iron core. Finally and fundamentally almost impossible to deal with, is the limited length of uniform magnetic flux between the pole pieces. When the amplitude (at low frequencies) of the voice coil exceeds the magnetic field length the average flux cut by the coil decreases. This causes the back e.m.f. to be reduced and, as has been shown \({ }^{2}\), the amplitude of the cone is therefore increased contrary to what one would expect. The falling off in back e.m.f. and therefore feedback will, however, cause the driving voltage also to be increased, thus compounding the non-linearity.

The moving coil method of Sykes does not need the temperature compensation of the previous item but to avoid magnetic non-linearity effects the magnetic field
length available to the pick-up coil must exceed the maximum excursion likely to be used. This involves a rather bulky and expensive additional magnet assembly and, together with the need for accurate compensation of the unwanted directly induced voltage, rules it out on economic grounds.

The electrostatic method of Trouton is relatively simple, but with the large amplitudes involved a considerable spacing between electrodes would be necessary. Even then a push-pull type of pick-up would probably be needed to obtain a linear signal; this would also obviate the need for accurate alignment of the cone relative to the pick-up points.

This leaves us with the accelerometer method which has the advantage of giving directly the signal desired, provided the relatively heavy mass can be coupled to the cone or voice coil former without the intervening struts resonating in the frequency range of interest or without undue loss of sensitivity.

Having now decided on one or other of the means of pick-up the next step is to limit the frequency range over which feedback can usefully be applied to that over which the cone behaves as a simple piston, as it is only the motion of the voice coil which is sampled and cone break-up is not at all controlled by it. This places an upper limit which depends on the cone design and the feedback as to be rapidly* removed above this frequency without causing conditions of instability or creating a rise in output near the cross-over frequency. A similar problem arises in the bass where it is desirable to restrict the frequency range, because of limitations in amplitude. Depending on the cone size and therefore the directivity, it may be also advisable to increase the feedback with rising frequency to compensate for the otherwise rising frequency response and this increases the problem of a rapid crossover.

Finally, having solved all the technical problems in applying the feedback, the question arises as to what we really have gained.

The first facile answer is, of course, an extended bass response. In fact, this extended response could more easily, and
* The average slope cannot exceed 10 dB /octave for reasons of stability.
more cheaply, have been obtained by means of a passive equaliser connected ahead of the power amplifier. It should be made clear at this point that using feedback has not essentially changed the loudspeaker unit one iota, so that if equalisation, by any means, is applied to the bass to the tune of, say, 10 dB , then 10 dB extra power has to be applied to the voice coil. Now this may not matter at low power levels, but if a 10 watt amplifier is needed for the mid-band and it is expected to radiate the same sound pressure in the bass, an amplifier capable of supplying 100 watts will be necessary, and of course the voice coil too must be capable of taking it without burning out. This fact of life applies whether the equalisation is provided by means of feedback or by a simple circuit, and is probably the reason why a 40 watt amplifier is provided with the 8 in unit in the article previously mentioned. Some amelioration is provided by the fact that the peak programme spectrum falls off in the bass \({ }^{3}\), but it still remains that the same power has to be applied whether feedback is used or simple equalisation.

The next point is that if feedback is used a closed cabinet must also be used, for the loading imposed upon the cone by a vented cabinet implies that a constant acceleration from the cone is no longer wanted and the advantages of this loading on the cone motion are therefore not available to the designer.

It must be conceded that waveform distortion can be considerably reduced. Hence non-linearity due to a small closed cabinet, short magnetic field or non-linear suspension can all be reduced to very small proportions. However, in a good conventional design none of these factors need to be a cause of audible distortion and it is largely a question of economics as to whether money is best spent on producing a good design of this type or on providing a cheaper unit using feedback with the necessary accompaniment of having to always buy an associated amplifier with the loudspeaker.
At the moment it is an open question, but with a growing tendency for power amplifiers to be built into loudspeaker cabinets, the day may come when such an attachment is commonplace, although at present it is generally supplied with those more expensive units which have least need of feedback.
To conclude, the use of feedback over a loudspeaker unit is as old as feedback itself, but possesses no magical properties. The market place will decide whether it is the best way of achieving its object.

\section*{References}
1. "Motional Feedback Loudspeaker", Wireless World, Vol. 79, Sept. 1973, pp. 425, 426.
2. Harwood, H. D., "New BBC Monitoring Loudspeaker,", Wireless World, March, April, May, 1968, see Fig. 12.
3. Harwood, H. D., "Loudspeaker Distortion Associated with Low-frequency Signals", Jour. Audio Eng. Soc., November 1972, Vol. 20, No. 9, see p. 721.

\title{
New Products
}

\section*{Recorder module}

A low noise, high sensitivity module, claimed to be more versatile than any other recorder amplifier available, has been developed by Oxford Instruments for their ' 3000 series' single- or two-pen potentiometric recorders.

The new module offers a range of input facilities including \(\times 20\) f.s.d. zero offset. Twenty separate input ranges are provided from 50 V to 100 V f.s.d. with continuously variable sensitivity adjustment.

Other special features include: voltage and current adjustment for source impedance correction, electrical zero adjustment and reverse polarity switch. Oxford Instruments, Osney Mead, Oxford OX2 0DX.
WW 301 for further details

\section*{18 mm vidicon tube}

The Electron Tube Division of EMI Electronics Ltd has introduced an 18 mm vidicon, type 9831.

It is designed to operate in standard 18 mm scan and focus coil assemblies and is primarily intended as a direct replacement in existing compact television cameras. Features include a low wattage heater, separate mesh construction and improved processing of the target layers offering better shading characteristics and sensitivity. The tubes are produced to very close limits and are individually tested immediately prior to despatching to the customer.

With this type of vidicon, EMI claim that the size and weight of the associated scan-


WW 301
ning assembly can be considerably reduced. Specialized formats will include nonbrowning faceplate versions for use in fields of nuclear radiation. A version with a fibre optic faceplate, for direct coupling to an intensifier, eliminates the need for an intermediary coupling lens, providing a much higher light transmission. An ultra-violet sensitive target layer will be available for use in microscopy and for inspection of items which are surrounded by intense red heat. Because this has negligible dark current, it permits the signal current to be integrated over a period of time and enables the tube to be used for low-light scientific purposes. EMI Electronics Ltd, 243 Blyth Road, Hayes, Middlesex.
WW 303 for further details

\section*{Swept function generator}

The Model 750 function generator with internal sweep from Clarke-Hess Communications Research Corporation offers all standard function generator outputs plus an adjustable wide range ramp generator, together with tone burst, external f.m., and phase lock synchronization capabilities. In addition to providing sine, square, or triangular outputs over the dial controllable range from 1 Hz to 2 MHz , the Model 750 can supply swept frequencies from below \(1 / 10\) th of the lowest dial setting up to twice the upper dial setting. For example, on the 20 kHz range, the output may be swept from below 10 Hz to above 40 kHz . Overall operation is thus possible from 1 millihertz to 4 MHz . The internal ramp (sweep) generator is variable in frequency from 1 kHz down to 1 millihertz (periods from 1 ms to 1000 s) in four ranges. Three sweep width ranges allow reasonably accurate variation of the sweep width from twice the dial setting down to less than \(1 \%\) of the dial setting. The internal sweep may free run, single shot, or be triggered from an external source. The rear panel contains sync. and tone burst input sockets, the \(\times 1\) range low frequency expand switch, and the sweep trigger input. The ramp generator supplies 0


WW 304
to 5 V from a \(600 \Omega\) impedance. The main generator provides two \(50 \Omega\) outputs separated in level by 30 dB , the high output supplying up to 20 V p.-p. into an open circuit. Price \(£ 298\) plus v.a.t. Lysons Instruments Ltd, Hoddesdon, Herts.
WW304 for further details

\section*{Adjustable video delay unit}

Matthey announce the introduction of the UN360 adjustable video delay unit. Fitted with BNC connections as standard, the unit has a range of delays from 10 ns to 325 ns in 5 ns steps by switches, and a fine trim of \(\pm 4 \mathrm{~ns}\) by screw adjustment. This unit can therefore be used for delaying signals up to and beyond \(360^{\circ}\) of phase at colour sub carrier in either PAL or SECAM, or N.T.S.C. systems. The response of amplitude/frequency is controlled to within 0.2 dB ripple up to 5.5 MHz to preserve transmission quality video signals.

The unit can also be used in series with the Silver Star video delay units (separate data sheet available), having fixed delays of \(50 \mathrm{~ns}, 200 \mathrm{~ns}, 500 \mathrm{~ns}\), or 1000 ns. The UN360 can be used as a timing tool, a temporary delay line, or a permanent delay installation. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent ST6 3AT.
WW306 for further details

\section*{60 MHz oscilloscope}

Tektronix has introduced a series of general purpose oscilloscopes designated the 5400 series. A range of measurement capabilities are provided by 17 plug-in units. For the full 60 MHz bandwidth with the optional c.r.t. digital readout facility, the basic units are the 5403 three plug-in mainframe, D40 non-storage display module, 5A48 dual-trace amplifier, and 5B42 delayed-sweep time base. The 5 A 48 provides \(5 \mathrm{mV} /\) div sensitivity at 60 MHz and \(1 \mathrm{mV} / \mathrm{div}\) at 25 MHz . Two 5 A48 dual trace amplifiers can be used together for four-trace displays. The 5B42 time base features sweep rates up to \(0.1 \mu \mathrm{~s} / \mathrm{div}\) and a \(\times 10\) magnifier gives a fastest sweep rate of \(10 \mathrm{~ns} /\) div. Fifteen other plug-ins (without c.r.t. readout capability) include a dual-trace sampling

unit covering up to 1 GHz at \(1 \mathrm{mV} / \mathrm{div}\) sensitivity, a differential amplifier offering \(10 \mu \mathrm{~V} / \mathrm{div}\) sensitivity and a \(100,000: 1\) common mode rejection ratio, a differential comparator amplifier with measurement accuracy up to \(0.2 \%\) - and many others. By using two 5 A 14 N four-trace amplifiers, up to eight traces can be displayed with a bandwidth of 1 MHz . Since the 5403 mainframe has three plug-in compartments, multi-function capabilities can be arranged by selection from the present total of 17 plug-in units, and more of these units are to be announced soon. Modular construction enables the 5403 oscilloscope to be converted conveniently from cabinet to standard \(5 \frac{1}{4}\) in rackmount configuration. The price of the 5403 mainframe with D40 display unit and c.r.t. readout facility, is \(£ 631.90\) ( \(£ 443.60\) without readout). The prices of the 5A48 dual trace amplifier and 5B42 time base are \(£ 242.20\) and \(£ 309.30\) respectively. (All prices exclusive of v.a.t.) Tektronix U.K. Ltd, P.O. Box 69, Beaverton House, Harpenden, Herts.
WW3 13 for further details

\section*{Lab power supply}

Just introduced by Coutant Electronics are two twin-output, continuously-variable power supplies in the L Series of laboratory units. Designated the LQT 100 and LQT 200 , the former offers two \(0-30 \mathrm{~V}\) outputs at 1 A , while the latter provides two \(0-15 \mathrm{~V}\) outputs at 2 A .

Each metered unit may be used in a constant current or constant voltage mode, and their outputs can be switched in series or parallel, as well as in a master or slave configuration - particularly useful for differential operational amplifier circuits where common tracking is employed.

The type LQT also has the following principal specifications: mains regulation \(0.01 \%+1 \mathrm{mV}\), constant voltage (c.v.), or +1 mA constant current (c.c.); load regulation \(0.03 \%+3 \mathrm{mV}\) (c.v) or +3 mA (c.c.); ripple voltage \(0.005 \%+0.5 \mathrm{mV}\) \(\mathrm{pk}-\mathrm{pk}\); ripple current \(0.01 \%+1 \mathrm{~mA}\) \(\mathrm{pk}-\mathrm{pk}\); transient response less than \(10 \mu \mathrm{~s}\); operating temperature range +10 to \(+45^{\circ} \mathrm{C}\); and temperature coefficient \(0.02 \%\) per \({ }^{\circ} \mathrm{C}\). Each unit measures \(185 \times\) \(135 \times 150 \mathrm{~mm}\), weighs 5.5 kg and costs

WW 302

£79. Coutant Electronics Ltd, 3 Trafford Road, Reading, RGl 8JR.
WW302 for further details

\section*{Universal measuring bridge}

Avo Ltd announce the introduction of the Universal Measuring Bridge Type B150 Mark 2. This model incorporates not only all the popular features of the earlier model but also greatly improved sensitivity. This improved sensitivity now enables the full range of resistance measurement available to be determined under d.c. conditions using only the 9 V internal battery supply.

Capacitance may be measured up to \(1199 \mu \mathrm{~F}\), inductance up to 119.9 H , and resistance up to \(11.99 \mathrm{M} \Omega\) at a frequency of 1000 Hz using the internal oscillator, or at frequencies between 20 Hz and 30 kHz using an external source. To facilitate the testing of electrolytic capacitors, provision is made for the connection of an external polarising voltage of up to 350 V .

Mechanical digital in-line display of the measured value is retained. When the bridge is balanced the digits and range symbols, indicating the component value, are displayed automatically. This presentation of the component value is claimed to provide maximum reading accuracy, as all multiplying factors are eliminated.

This battery operated bridge has a carrying handle for portability and a foldaway stand on the base allowing the instrument to be inclined at a convenient angle if required. Avo Ltd, Avocet House, Archcliffe Road, Dover, Kent.
WW312 for further details

\section*{Capacitor design kit}

A hybrid circuit capacitor engineering design kit has been introduced by Union Carbide U.K. Ltd. The kit comprises 280 Kemet tantalum and ceramic chip capacitors together with technical literature. It is priced at \(£ 45\).

The tantalum chip portion of the kit contains 80 T400 series capacitors in 20 different \(C V\) ratings and 10 case sizes. The ceramic chip portion contains 200 capacitors in both BX and NPO dielectric and in six popular case sizes. All chips feature a copper barrier layer that enables them

WW 312

to withstand the severe temperatures associated with solder reflow circuit assembly techniques. The tantalum chips will withstand assembly temperatures of \(300^{\circ} \mathrm{C}\) for 20 minutes. Union Carbide U.K. Ltd, 8 Grafton Street, London W1A 2LR. WW 308 for further details

\section*{Digital controlled current} source
A dual-range, digitally-programmable current source, the Hewlett-Packard Model 6145A, provides current outputs from -9.999 to \(+9.999 \mathrm{~m} \cdot \mathrm{~A}\) at compliance voltages up to 100 V d.c. In the times-one range ( \(\pm 9.999\) milliamperes), resolution is \(l \mu \mathrm{~A}\), accuracy is \(l \mu \mathrm{~A}\), and programming speed is \(300 \mu \mathrm{~s}\). An active guard circuit eliminates internal leakage currents so that output voltage can be measured without drawing current from the load.

The 6145A can be programmed from a remote four-digit 8421-b.c.d. source, or locally using front-panel thumbwheel switches.
The Model 6145A can be programmed by computers, programmable calculators, or other digital sources. It satisfies all requirements for system use with:
- Optically isolated digital inputs and outputs that eliminate ground loops.
- Internal storage of all digital input data that eliminates the need to refresh the supply.
- Flexible interface circuitry that ensures compatibility with many programming sources.
- Programmable voltage limiting that protects the supply and the load. The voltage limit can be programmed to any of eight discrete levels. A separate "clear" line programmes the minimum voltage limit.

Feedback signals to co-ordinate the transfer of output data and tell the computer if an overvoltage condition has occurred.
- External analogue input to provide the ability to modulate the programmed output current with a.c.

Programmed inputs to the Model 6145A include 16 bits for current magnitude, 1 bit for sign, 3 bits for voltage limit, 1 bit for voltage "clear" and 1 bit for range.
The Model 6145A digital current source costs £1450. An interface kit is available for interfacing the current source with Hewlett-Packard computers. It consists of a plug-in computer/output card, interconnecting cables and driver software. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks, SL1 4DS.
WW3 10 for further details

\section*{Marine radiotelephone}

EMI Marine has introduced a marine radiotelephone which incorporates all 57 v.h.f. international channels with the addition of 10 private channels when required. Naval and military communica tions are covered by the equipment, which has full Post Office approval and has been environmentally tested.

The radiotelephone features data controlled frequency selection, a method of digital frequency synthesis needing only four crystals aided by a miniature computer to control the 134 frequencies required - a technique which previously has been limited to satellite and military communications. Designated the AP759, and offering full duplex, semi-duplex and simplex operation, the equipment is manufactured by A.P. Radiotelephone, Copenhagen.

Dual-watch facilities are included as standard. This means that two pre-selected channels may be constantly monitored with one-second intervals between switching. When a message is received, the system automatically "locks on" to that channel and holds it until the message has been completed. It then reverts to the monitoring mode. The skipper can, override the system manually if required.

Another feature of the AP759 is that the standard single unit (which is complete in itself as an international radiotelephone) may be simply converted into a 4 -station system, for inclusion in different areas of the vessel, i.e. skipper's cabin,


WW 310
navigator's area, communications room, bridge, etc. Each station has access to the full \(57+10\) channel unit as described, with any station being the master station, which can override the other three. Full indication is given by four coloured lights on each station control panel as to which station is in use at any time.

The radiotelephone units are compactly designed, measuring \(132 \times 380 \times\) 165 mm and have facilities for two extra handsets, and two extension speakers. Distances between individual stations can be up to 200 feet and operating supplies are either 12 or 24 V d.c. (completely isolated) or ships' voltages of 100 d.c. or 230 a.c. Price \(£ 695\) for a complete single system. EMI Marine, Cramptons Road, Sevenoaks, Kent.
WW311 for further details

\section*{Scientific calculator}

Sinclair Radionics have launched their scientific pocket calculator at the Consumer Electronics Show in Chicago. The 12 function Sinclair Scientific is similar to the recently introduced Cambridge, but has an "upper and lower case" keyboard enabling all twelve functions to be obtained using only four function keys.

Apart from the normal operators, plus, minus, divide, multiply, the following additional functions are provided: \(\log _{10}\) antilog \(_{10}\), sine, cosine, tan, arcsin, arccos and arctan. Post fixed operators provide full flow calculation facility on all functions.

The entry and result are displayed as a five-digit mantissa and a signed two-digit exponent ranging from \(10^{-99}\) to \(10^{99}\). The calculator chip was the result of new algorithms for transcendental function devised by Clive Sinclair and special programming techniques by Nigel Searle This enabled the use of a fairly conventional calculator chip which is, however, exclusive to Sinclair. Price will be \(£ 49\) plus v.a.t. and first supplies are expected for the U.K. and Europe by the end of March. Sinclair Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ WW 391 for further details


WW. 391

\title{
Solid State Devices
}

Each section under the title of Solid State is devoted to the new semiconductor products offered by one manufacturer or distributor. The type number and device title is given in bold type, followed by a brief description of features or application. The section is terminated with reader reply card numbers associated with the device numbers of types.
L120, L121 s.c.r. and triac controls. These i.cs by SGS-Ates are complete control systems for thyristors and triacs, using phase control (L120) or burst control (L121). Both units can be operated from a.c. mains or d.c. and generate pulse for direct application to the control element gate. The outputs are short-circuit protected. The circuits are in 16 -pin dual-in-line packs and operate between \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).
BF679/BF680 u.h.f. pair. The two devices are p-n-p silicon planar transistors in one SOT-37 package and are designed to act as r.f. amplifier and mixer/ oscillator in varicap-tuned television frontends. They are pin-compatible with germanium equivalents. The units possess a noise figure of 3.5 dB at 3 mA and 800 MHz and can operate at a junction temperature of \(150^{\circ} \mathrm{C}\) and 24 V supply.
BF479 u.h.f. transistor. Designed for use ₹ in p-i-n diode tuner, the BF479 operates at high collector currents, giving a noise figure of 4 dB at 10 mA and 800 MHz . See article in August 1973 issue, pp 375-7.
L129/130/131. These are three voltage regulators in the three-lead SOT- 32 plastic package, offering load regulation of better than \(1 \%\) of 60 dB ripple rejection and overload/short circuit protection. Output voltage of L 129 is 5 V for 7.5 V to 20 V input, L130 gives 12 V for an input of 14.5 to 27 V and L 131 puts out 15 V for 17.5 to 27 V . Currents are 850,720 and 600 mA respectively. The only external component needed is an output capacitor.

M24 static r.o.m. is a 4096 bit static read only memory in the silicon-gate technology. The memory is organized in 512 words of 8 bits. The unit is t.t.l. compatible and the outputs can from ORed. Access time is 500 ns .
M250 rhythm generator. This device is arranged as a r.o.m., having an internal decoder to select one of 32 rows, which allows 12 rhythms, driving eight outputs to be programmed.
TDA 1200 radio chip. An integrated circuit providing a complete f.m. i.f. amplifier up to the detector. Included in the system are squelch, a.f.c. and delayed a.g.c., stereo switching, tuning meter drive and
a supply regulator. The circuit is in 16-pin dual-in-line form. SGS-Ates Planar House, Walton St., Aylesbury, Bucks.
WW 317 L120, L121
WW 318 BF 679/BF680
WW 319 BF479
WW320 L129/130/131
WW 321 M24
WW 322 M250
WW323 TDA1200

XR-2567 tone decoder. This is a twin version of the Exar XR-567 tone decoder, and includes a voltage regulator in 16 -pin ceramic d.i.p. The unit is intended for frequency decoding in multiple tone communication systems, the centre frequencies extending from 0.01 Hz to 500 kHz . The outputs, which are logic compatible, can sink up to 100 mA at 26 V .

LM354A audio amplifier. This 4W amplifier by EEP is an integrated unit intended for use in television receivers and can tolerate a range of supply voltages from 6 to 24 V . The unit features a directly-coupled input and high input impedance and requires a minimum of external components. A 14 -lead d.i.p. is used with an integral heat-sink.
LH300 Series voltage regulators. These units were designed by EEP to power m.o.s. integrated circuits and require neither external components nor adjustment. Each unit will supply up to 1 A and output voltages are fixed at 12 V (LH312), 15 V (LH315) and 24 V (LH324).
CY2035 Series d-a converters. Using thin-film resistor networks and low-drift operational amplifiers, these Cycon units have a short settling time and low linearity drift \(\left(0.0005 \% /{ }^{\circ} \mathrm{C}\right)\). The output range is selectable and both ends of the range can be adjusted. Versions available are CY2035 (8-bit), CY2135 (10-bit) and CY2235 (12-bit) and the units take the form of an encapsulated module with pins on 0.1 in. centres.
COM 2502 receiver/transmitter. A m.o.s. /l.s.i. module by Standard Microsystems which performs functions associated with asynchronous data communication. Word length, parity mode and number of stop bits are programmable and notable among the other features are double buffering, start bit verification, input protection and tri-state outputs. The COM 2601 is similar but is intended for synchronous operation.
KR2376-XX keyboard encoder r.o.m. This circuit will encode keyboard closures from an \(11 \times 8\) matrix to a 1-but code. Data and strobe tin-state outputs interface directly with t.t.l., d.t.l. and m.o.s. logic.
CY1010/1011 instrument amplifiers. These are two Cycon bipolar input op-amps which are small enough to be sited near remote transducers to reduce noise pick-up. Common-mode rejection is as high as 140 dB , voltage offset drift is 1 \(\mathrm{V} /{ }^{\circ} \mathrm{C}\) and input bias current 30 A . The input and output are both differential. The price of the CY1010 is \(£ 13: 20\), and that of
the close tolerance CY1011 is \(£ 21.45\). The units measure \(1.52 \times 1.15 \times 0.61 \mathrm{in}\). Rastra Electronics Ltd, 275-281 King Street, Hammersmith, London W6 9NF.
WW324 XR-2567
WW325 LM 354A
WW326 LH 300
WW327 CY2035
WW328 COM 2502
WW329 KR2376-XX WW330 CY1010/CY1011
\(\mathbf{L M} / 122 / 222 / 322\) timers. This is a wide-range timer (microseconds to hours) with a built-in voltage regulator providing immunity to supply variations between 4.5 and 40 V . The output drive is from a "floating" transistor, which makes for ease of interfacing, and is provided with a reverse circuit to give an "on" or "off" output during the timed interval. The devices are to be had in TO-5, flat-pack or d.i.p. form and operate between \(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) (LM122) or \(-25^{\circ} \mathrm{C}\) and \(+85^{\circ} \mathrm{C}\) (LM2229.
LM555 timer. This device is intended for precision timing, pulse generation, delay generation, pulse position modulation or ramp generation. It requires a minimum of two external components and the output which is t.t.l. compatible, can source or sink 200 mA . The 555 is available in a metal-can version or in dual-in-line form. Stability is better than \(0.005 \%\) per degree centigrade.

LM139A /239A/339A quad comparators. The packages each contain four separate voltage comparators with voltage offsets of less than 2 mV . The units were designed to use single power supplies, although the split type of supply can be used. The range of permissible common-mode voltages includes ground, even when a single rail is in use. LM139A will interface with t.t.l. and c.m.o.s., while the LM339A, when used with dual supplies, will interface with m.o.s. logic. The output is in the form of an open collector transistor, many of which can be ORed together.
74C \(160 / 161 / 162 / 163\) c.m.o.s. counters. A series of binary \((161 / 163)\) and decade counters with synchronous or asynchronous clear and internal look ahead carry. The circuits are endowed with all the advantages of c.m.o.s. (high noise immunity, wide supply tolerance, etc.), and are available in \(54 \mathrm{C}, 64 \mathrm{C}\) and 74 C versions. National Semiconductor (UK) Ltd, The Precinct, Broxbourne, Herts.

\section*{WW350 LM122 timer series}

\section*{WW351 LM555 timer}

WW352 LM139A quad comparator WW353 74C160 series counters
GPL 120/121/122 l.e.ds. Three gallium phosphide yellow light-emitting diodes are announced by Plessey. The GPL120, which is encapsulated in clear plastic, produces an intensity of 4.7 millicandelas at 20 mA , and can be pulsed at 1 A for much higher intensities. The devices differ in the material used for encapsulation. Plessey Optoelectronics and Microwave Unit, Wood Burcote Way, Towcester, Northamptonshire. WW333

\title{
World of Amateur Radio
}

\section*{More repeaters . . . more licences}

For almost 18 months GB3PI near Cambridge has been the only amateur repeater station in the U.K. But the MPT has now agreed to authorize a second 144 MHz repeater, GB3BC, covering the Bristol Channel area from a site near Pontypool. In addition applications for three more f.m. repeaters are being considered; one would be in the Malvern hills; the second at the Crystal Palace in south London; and the third probably near Alton, Hants. The southern counties station is being prepared by the 50 -strong U.K. FM Group (Southern) and, if authorised will be either at the Four Marks water tower near Alton ( 650 ft a.s.l.) or at Hannington; it would be based on a Storno CQF600 25 -watt solid-state unit, accessed by 1750 Hz tone burst, and including emergency shut-down systems which can be operated manually or over a radio link.

The corgbined total of Class A and Class B licences now exceeds 19,000 : 14,866 Class A; 4272 Class B - plus 253 amateur TV and 4176 mobile licences. This is just a shade less than the total in West Germany where there are over 20,000 amateurs including 900 issued to non-Germans. In the past five years the number of British Class A licences has risen by about \(1500(+12 \%)\); Class B by about 3000 ( \(+230 \%\) ). Reciprocal licences in the G5AAA series for overseas amateurs visiting Britain are now being issued for periods of six instead of three months.

American incentive licensing has significantly increased the number of amateurs holding the privileged extra and advanced licences; during the period 1967 to 1972 extra class licences rose by \(148 \%\), advanced class by \(59 \%\), while technician class decreased by \(12 \%\) and conditional class by \(20 \%\).

\section*{New band plans for v.h.f.}

As a result of recommendations of the v.h.f. managers of the national societies making up the I.A.R.U. Region 1 Bureau, new band plans for the 144,432 and part of the 1296 MHz bands will be introduced from February 1, 1974 and are intended to apply voluntarily to amateurs throughout western Europe.

For British amateurs perhaps the most
radical change is the abandonment of the long-established U.K. system of geographical, zoning on the grounds that this releases a wider spectrum of frequencies for general use. Other important changes include the moving of s.s.b. operation lower in the bands and the suggestion that local operation be confined to the higher frequency parts of each band.

In general each band will follow a similar pattern not unlike that used on h.f. bands. The lowest 150 kHz of each band will be reserved for c.w.; then will come s.s.b. with no fixed upper edge but merging into the sections intended for longer distance contacts on other phone modes; local operation and f.m. repeaters are placed towards the higher frequency ends of the bands, with the exception of 145.845 to 146 MHz which is allotted to space satellites.

Segments are reserved for moonbounce (first 10 kHz ); random meteor scatter ( 144.1 and 432.1 MHz ); rtty (long distance) 144.6, 432.6, 1296.6 MHz ; rtty (local) \(145.3,433.3\) and 1297.3 MHz ; mobile calling 145.5 MHz . Beacons will be moved to \(144.15 \mathrm{MHz} \pm 25 \mathrm{kHz}\) and immediately below 432.05 and 1296.05 MHz ; repeater inputs 145 to 145.225 MHz , with \(\overline{6} 00 \mathrm{kHz}\) spacing to provide outputs between 145.6 to 145.825 MHz . Local operation should be above 145 and 433 MHz .

The launching of a new band plan, involving the recommendation that many thousands of amateurs should voluntarily change crystal frequencies and should use different frequencies for local and long-distance working, is clearly an ambitious undertaking. One result may be to encourage more use of variable frequency techniques and single-channel working. It will be interesting to see how quickly and how effectively the new plans come into general use.

\section*{Tvi and reverse-tvi}

Some 1242 ( \(1 \frac{3}{4} \%\) ) of the 69,270 radio and television interference complaints investigated by the Post Office during 1972 were ascribed to amateur transmitters; this compares with 1027 in 1971, 1161 in 1970, 1442 in 1969 and 1151 in 1968. An unwelcome feature is the doubling in interference to u.h.f. television: 348 complaints compared with 173 in 1971 and 65 in 1970. Many amateurs had hoped that with the coming of threechannel u.h.f. television, television interference (tvi) would rapidly fade into history, but it is clear that many present-day tv receivers do not cope well with strong local signals even when these are far removed in frequency from the tv stations. But Band I still accounts for about half of all tvi complaints.

Amateurs will also note with interest an MPT comment that radiation from tv receiver timebases causing interference to long and medium-wave radio reception has increased significantly "owing to mains-borne r.f. voltages from the semiconductor controlled power supply units
of some large screen colour tv receivers". Certainly in the London suburbs there now seems a higher than ever level of timebase interference extending up through the h.f. bands. Against this the amateur can claim no protection unless it is at a level that affects the reception of local broadcasting stations.

\section*{Death of "Paragon Paul"}

A direct link with the original spanning of the Atlantic by amateur signals has vanished with the death at the age of 84 of Paul ("Paragon Paul") Godley, formerly 2ZE. In November 1921, as a leading American amateur, he came to Britain for the Transatlantic Tests, bringing with him a ten-valve Armstrong "supersonic heterodyne" receiver. He first set up station at Wembley but was discouraged by the high noise levels and departed for Scotland. There in a tent at Ardrossan on the wind-swept west coast he erected an 850 ft Beverage aerial and - fighting off the depressing effects of a heavy cold and the flickering oil lamps - succeeded during the Tests in receiving one Canadian and 27 American amateurs. The first call he logged was IAAW which seems to have been a pirate station, and the first positive identification of an American station was actually made by the British station 2 KW of Sale (Messrs W. R. Burne \& Co).
In a lecture to the Wireless Society of London he reported the rapid progress of amateur radio in the United States and said: "One has far greater hopes of being able to travel greater distances on the shorter wavelengths than on higher wavelengths". But it is doubtful whether these words made much impression on the British amateurs who were then fighting hard to retain their allocation at 1000 metres, threatened by complaints of interference to Croydon Airport.

\section*{In brief}

Pye Telecommunications Contest Group, operating portable in Wales on the 70 , 144, 432 and 1296 MHz bands, won the 1973 R.S.G.B. VHF National Field Day . . . M. P. Hawkins of Chelmsford was the victor in the 1973 National DF Final, successfully finding three carefully concealed 1.8 MHz transmitters 7, \(4 \frac{1}{2}\) and 10 miles from the starting point, in a period of 2 hours 18 minutes . . . Over 1800 different amateurs used the Oscar 6 satellite in its first year in orbit, about 1000 of them outside the United States . . . . The GB3GEC beacon located on the premises of the M-O Valve Company for a number of years has closed down . . . "If you choose a band segment of 100 kHz in the h.f. spectrum, within that segment you can accommodate 1000 c.w. signals, or 333 narrow-shift rtty, or 100 wide-band rtty, or 33 s.s.b. signals, 16 d.s.b., 16 n.b.f.m. or 3 wideband f.m. signals"A. Prose Walker, W4BW of the F.C.C.

PAT HAWKER, G3VA

\section*{Imy \\ cmanJOSTYKIT \\ Josty-the brains behind electronic success! Use Josty's experience.}

First, the background knowledge you need is in 'Amateur Electronics' - the programmed guide to the science for the beginner and a valuable reference book for the professional.

It's the nearest thing to private tuition in book form and it's only \(£ 3.30\).

Inside every copy there's a free circuit board suitable for use with ten different circuits.

Among the dozens of Josty Kits-amplifiers, tuners, filters, receivers - you'll find some out-of-the-way items that are just as easy to assemble. Like the AT65 Psychedelic Light Kit, only \(£ 16\) complete.

Look at the full price list and see just how inexpensive electronic success can be.


\section*{Sinclair Project 80 exciting}


Project 80 tuner
Stereo decoder
Project 80 Active Filter Unit (AFU)

\section*{only \(\frac{3}{4}{ }^{\prime \prime}\) deep \(\times 2^{\prime \prime}\) high}

Living with hi-fitakes on new meaning with Sinclair Project 80. The electronics of these revolutionary new modules are all contained within elegantly designed matching cases no more than three-quarters of an inch deep. They are designed for mounting on any appropriate flat surface by means of \(6 B A\) bolts extending from the rear of each module and which pass through suitably drilled holes. Connections are taken away out of sight in a similar manner. The possibilities opened up by Project 80 are endless - superb hi-fi systems can be installed in ways hithertc only dreamed about and never before made practical. No more cutting out and shaping to put modules in position. A few holes drilled with the aid of templates supplied and the job is done. Now you need never again be faced with problems of keeping the hi-fi from clashing with carefully thought-out furnishing schemes. (That will surely please wives!) Slider controls have been introduced in place of knobs and all modules in the range incorporate new up-dated circuitry with emphasis on performance standards and built-in protection against overload and shorting. The aim was to re-think modular construction completely - to make it infinitely more versatile, even simpler and more reliable - the result - Project 80 - another triumph for Sinclair, and the most exciting construction modules ever

\section*{the slimmest,most elegant hi-fi modules ever made}

\section*{Typical Project 80 applications}
\begin{tabular}{|c|c|c|}
\hline System & The Units to use & Units cost \\
\hline Simple battery record player & 2.40 & \[
\begin{aligned}
& \mathbf{£ 5 . 4 5} \\
& 54 p \vee . A . T
\end{aligned}
\] \\
\hline Mains powered record player & Z.40, PZ.5 & \[
\mathrm{£10.43}_{-£ 1.04 \text { V.A.T }}
\] \\
\hline 30 W RMS continuous sine wave stereo amp. & \[
\begin{aligned}
& 2 \times Z .40 \text { s, Stereo } \\
& 80 ; P Z .6
\end{aligned}
\] & \[
\begin{aligned}
& £ 30.83 \\
& £ 3.08 \text { V.A.T. }
\end{aligned}
\] \\
\hline 50W ( \(8 \Omega\) ) RMS continuous sine wave de luxe stereo amp & \[
\begin{aligned}
& 2 \times 2.60 \text { s, Stereo } \\
& 80 ; \text { PZ.8 }
\end{aligned}
\] & \[
\begin{aligned}
& £ 3383 \\
& -£ 3.38 \text { V.A.T. }
\end{aligned}
\] \\
\hline Indoor P.A. & Z.60, PZ.8 & \[
\begin{aligned}
& £ 14.93 \\
& £ 1.49 \text { V.A.T. }
\end{aligned}
\] \\
\hline
\end{tabular}


Project 80 FM tuner, decoder, and A.F.U may be added as required
Mount Project 80 on a bookshelf. a loudspeaker, a lampshade base a false wall with two 0.16 loudspeakers... almost anywhere

\section*{new thinking in modular hi.fi}

\section*{Stereo 80 pre-amplifier and control unit}

For P.U., radio and tape - Tape monitoring switch
- Simplest ever fixing

Each channel has its own separate tone and volume controls operated by sliders, enabling ideal environmental matching to be obtēined. A virtual earth input stage forms part of the up-dated circuitry that ensures the finest possible quality from all signal sources: Generous overload margins are allowed on all inputs. Clear instructions with template are supplied TECHNICALSPECIFICATIONS
Size \(-260 \times 50 \times 20 \mathrm{~mm}\left(10 \frac{1}{4} \times 2 \times \frac{3}{4} i n s\right)\)
Finish - Black with white indicators and transparent sliders
Inputs-Magnetic pick-up 3 mV RiAA corrected: Ceramic pick-up 300 mV Radio 300 mV : Tape 30 mV
Signal/noise ratio-60dL
Frequencyrange -20 Hz to \(15 \mathrm{KHz} \pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}\) to \(25 \mathrm{KHz} \pm 3 \mathrm{~dB}\)
Power requirements - 20 to 35 volts
Outputs \(-100 \mathrm{mV}+\mathrm{AB}\) monitoring for tap
Controls - Press button for tape radio and P.U. Sliders for volume
bass \((+12 \mathrm{~dB}\) to -14 dB at 100 Hz\()\) treble \((+11 \mathrm{~dB}\) to -12 dB at 10 KHz\()\)
\[
\text { R...Р. } £ 11.95^{+\frac{\text { E.1. }}{\text { V.AT. }} .}
\]

Project 80 FM tuner


4 pole ceramic filter
switchable A.F.C.
state stereo indicating beacon.

Making the Project 80 F.M. tuner and decoder available separately gives a wider choice of systems and saves money where stereo reception may not be required. The tuner is a triumph of electronic design and assures excellent performance. The decoder gives a 40dB channel separation with 150 mV output per channel. Both units may be used with other than Project 80 systems.
TECHNICALSPECIFICATIONS OF TUNER
Size \(-85 \times 50 \times 20 \mathrm{~mm}\left(3 \frac{1}{2} \times 2 \times \frac{3}{4}\right.\) ins)
Tuning range -87.5 to 108 MHz
Detector - I.C. balanced coincidence for good A.M. rejection
One I.C. equal to 26 transistors
Distortion \(-0.2 \%\) at 1 KHz for \(30 \%\) modulation
4 pole ceramic filter in I.F. section
Aerial impedance - \(75 \Omega\) or 240-300 \(\Omega\)
Sensitivity -4 microvolts for 30 dB quieting
Output - 300 mV for \(30 \%\) modulation
Power requirements -23 to 33 volts
p...p. \(£ 11.95\)
£1.19
DECODER
Size \(-47 \times 50 \times 20 \mathrm{~mm}\left(1 \frac{2}{2} \times 2 \times \frac{3}{4} \mathrm{ins}\right)\)
r. f . \(£ 7.45\)
\(-0.74\)
One 19 transistor I.C.

\section*{Guarantee}

If, within 3 months of purchasing any product direct from us, you are dissatisfied with it. your money will be refunded on production of receipt of payment. Many Sinclair appointed stockists also offer this guarantee Should any defect arise in normal use. we will service it without charge For damage arising from mis-use a charge (typically \(£ t \cdot 00\) ) will be made


Sinclair Radionics Ltd. London Road, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646
Z. 40 \& Z. 60 power amplifiers totally short-circuit proof


Intended for use in Project 80 installations. these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced.
Z.40 TECHNICALSPECIFICATIONS

Size \(-55 \times 80 \times 20 \mathrm{~mm}\left(21 \times 3 \frac{1}{8} \times \frac{3}{4} i n s\right) 9\) transistors
Input sensitivity -100 mV
Output -15 watts RMS continuous into \(8 \Omega\) (35v)
Frequency response \(-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}\)
Signal/noise ratio \(-64 d B\)
Distortion - at 10 watts into \(8 \Omega\) less than \(0.1 \%\)
Power requirements -12 to 35 volts
2.60 TECHNICAL SPECIFICATIONS

Size \(-55 \times 98 \times 95 \mathrm{~mm}\left(2 \frac{1}{6} \times 3 \frac{3}{4} \times \frac{3}{4}\right.\) Ins) 1.2 transistors
Input sensitivity \(-100-250 \mathrm{mV}\)
Output -25 watts RMS continuous into \(8 \Omega(45 \mathrm{~V})\)
Distortion - typically \(0.03 \%\)
Frequency response -10 Hz to more than 200 KHz I 1 dB
Signal/noiseratio - better than 70 dB
Built-in protection against transient overload and short circuiting
Load impedance \(-4 \Omega\) min; max. safe on open circuit
Z. 40 R.R.P. \(\mathbf{£ 5 . 4 5 + 0 . 5 4 \text { V.A.T.: Z. } 6 0 \text { R.R.P. } \mathbf { £ 6 . 9 5 + 0 . 6 9 p V . A . T ~ } 1 0 .}\)

\section*{Project 80 active filter unit}

Makes a highly desirable part of any worthwhile system where inputs may be from record, radio or tape. As with Stereo 80. separate controls applied to each channel make it easier to obtain ideal stereo balance.
TECHNICAL SPECIFICATIONS
Size \(-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{n}\right.\) ) \()\)
Voltagegain - minus 0.2 dB
Frequency response -36 Hz to 22 KHz controls minimum Distortion - at \(9 \mathrm{KHz}-0.03 \%\) using 30 V supply

HF cut off (scratch) -22 KHz to \(5.5 \mathrm{KHz}, 12 \mathrm{~dB} /\) oct. slope L.F. cut off (rumble) -28 dB at \(20 \mathrm{~Hz}, 9 \mathrm{~dB} /\) oct. slope
- For scratch and rumble control
R.R.р. \(£ 6.95{ }^{+0.69}\)
- Transistorised active circuitry

\section*{Power supply units}

PZ. 8
Stabilised. Re-entrant current limiting makes damage from overload or even direct shorting impossible Normal working voltage (adjustable) 45 V .
R.R.P. \(£ 7.98+0.79 p\) V.A.T

Without mains transformer
Z. 530 V unstabilised
Z. 6 35V. stabilised
R.R.P. E4.98 + 0.49 p V.A.T. R.R.P.E7. \(98+0.79 p\) V.A.T

To SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ
Please send post paid
for which I enclose Cash/Cheque for \(£\) including V.A.T

Name
Address

\section*{ELECTRONIC INDUSTRIAL THERMOMETER \\ }

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal \(1 \frac{1}{2}\) volt standard size battery. Model "Mini-On \(1^{\prime \prime}\) measures from - \(40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), price f 17.50 Model "Mini-On Hi" measures from \(+100^{\circ} \mathrm{C}\) to \(+500^{\circ} \mathrm{C}\), price f20.00 (V.A.T. EXTRA)
Write for further details to

\section*{HARRIS ELECTRONICS (LONDON),}

138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

WW-122 FOR FURTHER DETAILS

\section*{Newnes Radio Engineer's \\ Pocket Book 14th Edition}

Revised by
A ready reference source for formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate selection of material.
1972188 pp illustrated \(0408000740 £ 1.20\)

\section*{Sound with Vision}

Sound. Techniques for Television and Film
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
1974294 pp illustrated \(0408702362 £ 6.00\)

\section*{Video Recording}

Record and Replay Systems
Gordon White
This book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, advantages and disadvantages of the various systems.
1972216 pp illustrated \(0408000856 £ 3.25\)
Obtainable through any bookseller or from
The Butterworth Group
88 Kingsway, London WC2B 6AB.
Trade counter: 4-5 Bell Yard, WC2


\section*{NEW!}

\section*{THE}

\section*{TELEPRINTER} HANDBOOK
by D. J. Goacher, G3LLZ, and J. G. Denny, G3NTT The new RSGB Teleprinter Handbook covers all aspects of radioteleprinter (rtty) operation, equipment and techniques with particular reference to the interests of amateurs. For the experienced operator it provides, in one volume, all the accumulated information acquired during the past decade, and covers machines of both European and USA origins; for the intending enthusiast it includes all the basic information necessary to master the techniques of rtty operation.
The contents include: theory, practice and standards; teleprinters; associated rtty machines; power supplies; terminal units; auxiliary equipment; frequency shift keying; filters; test equipment; interconnection and control of rtty equipment; operating procedures; glossary; bibliography.
376 pages and hundreds of illustrations and diagrams.
The TELEPRINTER HANDBOOK is available, price £5.35 post free, direct from:

\section*{RADIO SOCIETY OF GREAT BRITAIN 35 Doughty Street, London WCiN 2AE}

\section*{JUST ONE OF}

A RANGE
 DELIVERY...EX-STOCK TO 10 DAYS
THE HIGHEST PERFORMANCE DIGITAL FREQUENCY COUNTERS AT THE PRICE IN THEWORLD EVERYBODY BUYS THEM

\section*{OTHERS IN THE RANGE:-}

4016 DIGIT, 32 MHz , STABILITY 1 part in \(10^{6}\) SENSITIVITY 10 mV
5018 DIGIT. 32 MHz STABILITY 3 parts in 108 (erystal oven)
SENSITIVITY 10 mV

7018 DIGIT. 50 MHz STABILITY 3 parts in 108 SENSITIVITY 10 mV
801 A 8 DIGIT, 300 MHz STABILITY 3 parts in 108 SENSITIVITY 10 mV MEMORY VERSIONS ONLY £285 SIVE OF VAT

ELECTRONIC START STOP version PLUS \(£ 10\) MEMORY version PLUS \(£ 25\)
DIRECTLY COUPLED INPUT AND SPECIALS AS REQUIRED Write for illustrated leaflet
Supplied to and acclaimed by professional engineers everywhere who have purchased our electronic instruments for the past 10 years

R. C. S. ELECTRONICS

NATIONAL WORKS, BATH ROAD HOUNSLOW, MIDDX. TW4 7EE Telephone: 01-572 0933/4

\section*{TELEPRINTER EQUIPMENT LIMITED}

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

\section*{CREED EQUIPMENT}

\section*{TELETYPE CORP. EQUIPMENT}

\section*{SIEMENS EQUIPMENT \\ OTHER \\ EQUIPMENT}

SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
HIGH-SPEED TAPE WINDERS \(80-0-80 \mathrm{~V}\) POWER SUPPLY UNITS, etc.
TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS \(14,20,28\) LBXD \& LXD TRANSMIT GROUPS, etc.

TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.

KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

\section*{COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED \\ G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY}

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510,520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10-way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD) -made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH \(71(15 \times 4 B)\)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, \(48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}\), etc.
FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual \(1 / \frac{2}{2}\)
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

\section*{MORSE EQUIPMENT LIMITED}

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and \(\mathrm{W} / \mathrm{T}\) signals up to \(300 \mathrm{w} . \mathrm{p} . \mathrm{m}\).
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

\section*{77 AKEMAN STREET, TRING, HERTS., U.K. \\ Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring}
\begin{tabular}{|c|c|}
\hline  & PAPERBACKS om
\[
A M-T A E
\] \\
\hline nobook of Semicondu & Selecting and Imo \\
\hline suis & Hi-FiS System \\
\hline J. Shane & \\
\hline Basic leetronic Circuls & \({ }^{\text {4 }}\) - Channel Stereo from \\
\hline Simplified & \\
\hline & Japanese Radio. Record \\
\hline Sic Eleatronic Course E1 & \\
\hline & \\
\hline ndbook & 101 \\
\hline Eimbinder & \({ }_{\text {Ster }}^{\substack{\text { Sy } \\ \text { By }}}\) \\
\hline Sic lectronic Tes & \\
\hline M. Gotuleb &  \\
\hline Electricity & By K. Sessions \\
\hline & How to Repair Musical \\
\hline abook & Instument \\
\hline adbook of IC C Circuit & \\
\hline d. Ashe &  \\
\hline Pietorial Guide to Tape Re & New Ways to Dia \\
\hline  &  \\
\hline lified TV. Troule & Se \\
\hline 俍 & \\
\hline Soberl. Goodman & \({ }_{\text {Bren }}^{\text {By. Davidson }}\) Model Car Racing By Radio \\
\hline & \({ }_{\substack{\text { Moodel Car Racing Ey Radio } \\ \text { Control }}}^{\text {E1.40 }}\) \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
©T FOULSHAM-TAB LTD. \\
FV YEOVIL ROAD. SLOUGH. BUCKS.
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

WW-129 FOR FURTHER DETAILS

\section*{TORINNSIITMK II}

\section*{ELECTRONIC IGNITION KIT}

\section*{COMPRISES}

Everything:-
Ready-drilled Case and Metalwork. Cables, Coil Connectors, Silicon Grease, Printed Circuit Board, 5 -year guaranteed components and a full 8 -page instruction leaflet.

WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY 15 MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS: TO GIVE YOU:
Instant all-weather starting. Up to \(20 \%\) fuel saving, Longer battery life, Higher top speed, Faster acceleration. Spark plugs last about five times longer. Misfire due to contact breaker, bounce electronically eliminated, Purer exhaust emission resulting in less air pollution. Contact breaker burn eliminated.

Suitable for all petrol engines up to 8 cylinders
PRICE ONLY £11.62
Ready-built Unit \(\mathbf{£ 1 4 . 8 5}\)
Unit for Motor
Cycles with twin coils
and twin C.B. Points \(£ 23.24\)
(prices include VAT and post
Please state whether Positive or negative earth units are required when ordering.
\& packingl.
(NOT AVAILABLE IN KIT FORM)
SEND FOR YOUR UNIT OR FULL
BROCHURE NOW
FROM
ICE ELECTRONIC SYSTEMS DEPT W.W
114 PARK FARM ROAD
B RMINGHAM B43 70H

\section*{STEREO IC DECODER \\ HIGH PERFORMANCE PMASE LOCKED LOOP}
(as In 'W.w.' July '72)
MOTOROLA MC1310P EX STOCK DELIVERY SPECIFICATION


WW-130 FOR FURTHER DETAILS
Indless Loop Cartridge Units - Designed, Developed, Manufactured.

As used in industrial monitoring alarm and public address systems etc., - by manual or remote control. All enquiries welcomed.

\section*{FITCH TAPE MECHANISMS}

Write or phone:
7a Balham Grove, London, SW12. 01-673 1368.
WW—131 FOR FURTHER DETAILS

7. PRIORY STREET BEDFORD
TELEPHONE 023451961

\section*{17 \({ }_{\text {ıсн }}\) TELEVISION MONITORS \\ - all solid state plug in modules \\ - PRECISION TUBE PROFESSIONAL QUALITY}

\section*{PRICE £70 EACH}

All circuit boards and most components including metal cabinets and tubes available separately. Send 25 p for full circuit diagram, specifications and prices.

OTHER CHEAPER MONITORS AVAILABLE CAMERAS AVAILABLE SHORTLY

CARD READER Pata Products SPEEDREADER
Mechanism and Electronics P.O.A.

\section*{POWER SUPPLIES}
A.EI. R22402.5V to 30V © 2 AR Regutated. fully adjustabie supply voltage and current meters \(\varepsilon 7\). Callers only
Many other L.T. \& H.T. power supplies avallable, piease intorm us of your requirements.

\section*{CCTV CAMERA}
A.E.I. Camera Heads comprising scan coils, focus coil and alignment magnet assembly, opilical focus mechanism
video amplifier, C ' lens mount, al mounted in small hammer finish case.
1 Inct Vidicon and lens NOT supplied. PRICE \&6EACH

\footnotetext{
P.T.F.E.

710075 equipment wire to EL1930 Type A \(\boldsymbol{2}\) per 100 yards. Please check colour
and reel size availability beforeordering
}

Colvern TEN TURN POTS. 500R. \(5 \%\) Lin. \(0.9 \%\). 1.25 each. MULTICORE CABLE, miniature 25 cores of PVC 7/0076 screened overall and PVC sheathed. £2.50 tor 10 yds
RECTIFIER. Texas 1 S103 750 mA 400 P.I.V
4MM SOCKETS. Round yellow only 10 for 30 p . SCR. Texas, plastic TIC45 600 mA 60 Vdrm
20p. each. 20p. each.
CARPENTERS polarised relay SPCO \(2 \times 1000\), complete with base and retaine POT CORES LA3. 40p each
BALL RACES Type RCL :Flanged in. bore \(5 / 16 \mathrm{in}\). dia. Sealed packs, 25 p each.
\[
\begin{aligned}
& \text { DELIVERY } \\
& \text { Almost all small orders are now dis- } \\
& \text { patched by return of post. } \\
& \text { OPENING HOURS } \\
& \text { MONDAY CLOSED. } \\
& \text { TUESDAY to FRIDAY gam-5.30pm. } \\
& \text { SATURDAY 10am-4pm. } \\
& \text { V.A.T. } \\
& \text { PLEASE ADD 10\% V.A.T. } \\
& \text { TO ALL PRICES. }
\end{aligned}
\]

\section*{THE NEW NELSON-JONES FM TUNER}


\title{
PUSH-BUTTON VARICAP DIODE TUNING \\ (6 Position) \\ Exclusive Designer Approved Kits
}

What are the important features to look for in an FM tuner kit ? Naturally it must have an attractive appearance when built. but it must also embody
the latest and best in circuit design such as :-
MOSFET Front end for excellent cross modulation performance and low
PHASE LOCKED
Stereo decoder with Stereo mute, see below.
3 GANG Tunine for high selectivity
VARICAP tuning diodes in back to back configuation fo low distortion. CERAMIC IF filters for defined IF response.
INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM rejection.

LED fine tuning indicators.
PUSH BUTTON tuning (with AFC disable) over the whole FM band. IC STABILISED and S/C profected power supply.
CABINET veneered inside and out.

The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.
Basic tuner module prices start as low as \(£ \mathbf{£ 1 0 . 7 9}\), with complete kits starting at \(£ 23.95\) (mono) + PP 50p, and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send Please send large SAE for our katest All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically \(0.05 \%\) (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price \(£ 5.50\) when bought with a complete \(N-J\) tuner kit or \(£ 7.68\) if bought separately (P.P. 19p.)

PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at \(£ 28.50\) plus p.p 50 p including Teak Sleeve.


\section*{THE RONDO QUADRAPHONIC SYSTEM (20 watis chamwel)}

Complete designer approved kits for this outstanding Quadraphonic Sound System ('P.E.' Sep. '73, etc.) with the following features:-
\(\star\) SWITCHING FACILITIES AND MODULES FOR SQ, QS AND CD4.
COMPLETE LOUDSPEAKER ENCLOSURE DESIGN. MODULAR BUILT IN-AM/FM RADIO.
INDIVIDUAL KITS MAY BE INCORPORATED IN EXISTING EQUIPMENT.
LOW COST. FULLY ENGINEERED. INTEGRAL DESIGN.
KITS AyAilable as published-SEE BELOW.
\begin{tabular}{|c|c|c|c|c|}
\hline CBS SQ* MATRIX DECODER & Complete Kit & \(\mathbf{~} 8.00\) & Post Free Incl. CBS Licence Fee & VAT Extra \\
\hline PREAMPLIFIER BOARD & Complete Kit & £3.00 & Post Free & VAT Extra \\
\hline MASTER VOL./TONE/BALANCE BOARD & Complete Kit & £8.50 & Post Free & VAT Extra \\
\hline POWER AMP. \({ }_{\text {BOARD }}^{\text {STEREO PAIR }}\) AND HEATSINK & Complete Kit per Board & f7.50 & Post Free & VAT Extra \\
\hline POWER SUPPLY BOARD & Complete & £5.00 & Póst Free & VAT Extra \\
\hline MAIN SMOOTHING CAPACITORS (TWO REQD) & Per Pair & £1.50 & Post Free & VAT Extra \\
\hline MAINS TRANSFORMER & Complete Kit & £6.25 & Post Free & VAT Extra \\
\hline CHASSIS-PUNCHED and DRILLED WITH SCREENS & Complete Kit & £3.25 & Post Free & VAT Extra \\
\hline QUAD SELECTOR SWITCH & & £1.30 & Post Free & VAT Extra \\
\hline WOODEN CASE & & f1.75 & Post Free & VAT Extra \\
\hline HARDWARE PACK & & f2:00 & Post Free & VAT Extra \\
\hline CONTROL SECTION FACIA & & £3.50 & Post Free & VAT Extra \\
\hline
\end{tabular}

CONTROL SECTION FACIA
please phone or write for full details
is Available AS published

\section*{OPTO-DEVICES}

Panel mounting LED's
\begin{tabular}{lllll|l} 
RED & \(1-9\) & \(29 p\) & \(10-24\) & \(23 p\) & \begin{tabular}{l}
\(0.325^{\prime \prime}\) RH Dec Point. \\
Common Anode \(1-4 £ 2 \cdot 00 ; 5-24 £ 1 \cdot 80\). \\
GREEN
\end{tabular} \\
Common Cathode 1-4 £2.C0;5-24 \(£ 1 \cdot 80\)
\end{tabular}

You can order these goods by Telephone on Access. Simply quote your Access Number
\begin{tabular}{|lllll|}
\hline \multicolumn{5}{l}{} \\
& OPTO \\
Panel mounting LED's. & & \\
RED & \(1-9\) & 29p & \(10-24\) & \(23 p\) \\
GREEN & \(1-9\) & \(59 p\) & \(10-24\) & \(49 p\)
\end{tabular}
V.A.T. Please add V.A.T. at \(10 \%\) to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW
Now Bes BOLTON GOVENTRY
Branches
DONCALAND STOCKPORT
DONCASTER \& PRESTON

Birmingham \(30-31\) Gt. Western Arcade
(Closed Wed.) Tel.: 2361279 BOLTON 23 Deansgate
Closed Wed.) Tel: 33512
ERADFORD 10 North Parade (Clozed Wea.) COVENTRY 17 Shelton Square The Precl DARLINGTON (Closed Thurs.) Tel 19 Northgate (Closed Wed.) DERBY 97 St. Peter's Sirreet (Closed Wed. dONCASTER \({ }_{3}\) (Closed Wed.) \(\begin{gathered}\text { Tel.: } 41361 \\ \text { Oueengsate, } \\ \text { Watierdale }\end{gathered}\) EDINBURGH 101 Lothian Read (Cliosed Thurs.) GLasGow 326 Argyle St. (Closed Tues.) HELL 7 Whiteriargate (Closed Thurs.) (Closed Wed.) Tel. 28252 IVERPOOL 73 Dale St. (Closed Wed.) ONDON 238 Edgware Rd., (Closed Thurs) IDDLESBRO 106 Newport Rd (Closed We

\section*{ALL PRICES INCLUDE VAT ANO Rill habuan \\ VAT AOD}

\section*{HUGE DISCOUNTS ON LEADING BRAND HI-FI} AKAI 4000DS Tape Unit \(£ 76.95\) (List Price £109.50) Carr, £1 Terms
 AKA GYC46D Tape Unit £104-75 (List Price £149.50) Carr. £1 GOLDRING GL72 T/Table \& P.U. £29.95 GOLDRING GL75 T/Table \& P.U. £34.45 worth over £10 B.S.R. MACDONALD MPO TIT RNTABLES with MAGNETIC CARTRIDGE, PLINTH \& COVER
GARRARD SP25 with G800 SPECIAL PRICE £16.95 Carr. £1 B.S.R. MP60
\(\begin{array}{ll}\text { B.S.R. HT70 with G8007 SPEClAL PRICE } & \text { £ } 23.95 \text { Carr, £ } 1 \\ \text { GARRARD AP76 with G800 SPECIAL }\end{array}\)
GARRARD AP76 with G800 SPECIAL PRICE \(£ 28.95\) Carr. £1

\section*{LINEAR \(20210+10\) Watt AMPLIFIER £29.95 (List Price £39.93) Carr. 45p}

\section*{FANE ULTRA HIGH POWER LOUDSPEAKERS}


 payments
Palr sultable for all purposes


FANE SPEAKERS ' POP ' \(25 / 2\)
 B.S.C.MALISTRAMSFOHMERS



 \(300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}\) For Mullard 510 Amplifer


 \(250-0-250 \mathrm{v} .100 \mathrm{~mm}, 3.3 \mathrm{v} .3 .5 \mathrm{a}\)
\begin{tabular}{l}
\(250.0-250 \mathrm{v}\) \\
\(350-0.350 \mathrm{v}, ~\) \\
\hline \(0 \mathrm{mmA}, 6.3 \mathrm{v} .2 \mathrm{~m} .16 .3 \mathrm{v} .1 \mathrm{~m}\)
\end{tabular}
\(250-0-250 \mathrm{v} .100 \mathrm{mu}, 6.3 \mathrm{v} .2 \mathrm{sa}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}\).


 FILAMENT Or TRANSISTOR POWER PACK TV

 2HARMER
8\&., \(£ 2 \cdot 20.25\).
 OUTPUT TRANSFORMERS
Puab-Pull \(\&\) watte ELB4 to 3 , \(000 \Omega\) to \(3 \Omega\)
 of 15 R
Puinh-Puil ELSA to 3 or 15 a \(10-12\) watts. Push-Pulf Clira Liuear for Mullard 510 , etc
Pugh-Puil \(16-18\) watts, gectionally wound
 BATTERY/MAINS CONVERSION UNITS


Carr. 75p with G800 SPECIAL PRICE \(\mathbf{£ 1 6 . 9 5}\) Carr. £ 1
with G800 SPECIAL PRICE \(£ 17.95\) Carr, £ 1 R.S.C. G66 MkII \(6+6\) WAft Stereo Amplifier
 plus diodes. Rande 2a.202, oidin
 D-al race plate and matching knobs

108 HENCOMAER LANE, LEEDD 13 . Terms C.W.O. or C.O.D. Postage 2 2p extra
under 22.33 p extra over \(£ 2\), or as atated. Trade supplied. ©.A.E. with enquiries. EXPORT ENQUIRIES WELCOMED AND OPERATE A D-DAY WEEEAYS MALL ORDERS NOT TO BE SENT TO BHOPE Shopping Centre Grairger St. (Closed Wed
NOTTINGHAM 19 Market St. (Closed Ther PRESTON A1 Fiiargate Walk, St. George's SHEFFIELD 13 ExChange St. (Closed Thurs.) STOCKPORT 8 Litile Underbank Tel. 480.0777 SUNDERLAND 5 Market Square (Closed Thurs. £10 £14.95

\footnotetext{
\(+\)
}
\(\qquad\)

\author{

}

\author{

} ee .

THY
GE2N1774 200v. \(5 \mathrm{a} . \mathrm{f1} \cdot 20\)
CR1-021C 20v. 5 a. \(\mathbf{E 1} 20\) CR10-101B 100 v .
 CR10-021 10a....... 100
CR10-40B 10a..... 100
 CR10-017 10a..... E1.00
BTX 92 1200R 16 E
1200 v STC \(3 / 40400 \mathrm{v}\). 3a... 50 E2.85
\(\mathbf{5 0}\) CONNECTORS

McMurdo Red Range. Plug RP24 McMurdo Red Range. SKI RS32.
Eng. Elect. Edge. 36 way 0.2 inch
Sylvania Edge. 48 way 0.2 inch

CAPACITORS
20 way.... pair \(\mathbf{£ 1 \cdot 6 0} \mathbf{~} \mathbf{£ 1} \cdot 60\)
Daly Electtolvtic 9000 uf 40 v . 50p; Wego paper \(4 \mu f 400 \mathrm{v} 60 \mathrm{p}\); Dubilier
Metallised Paper Trpe 426100 uf 150v. DC 50p; R.I.C. type \(12971.8 u f 440 \mathrm{v}\).
AC 35p. TCC Visconol 0.1 u 1500 v DC 50p.
MOTORS
GEC fractional \(1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} \mathrm{50c} 2850 \mathrm{ipm}\).
E.E. \(\frac{1}{2}\) hp 230 v .50 c 1 ph 50 c .144 Jrpm complele with cap \(8 \mathrm{~J} / 10 \mathrm{Juf} 275 \mathrm{v}\)... £13.00
carr. £1.00

3 phase 2HP motor 60/50c. 1800/1500 RPM, 208/220/440v........... £21.50
FANS. CENTRIFUGAL, BLOWERS
Alrmax Tyde M1/Y3954 (3 blades) Cast
Aluminium alloy impellet a casing (cores Aluminium alloy impesler \& casing (corres1 ph 50 c 2900 rpm Class "A. \({ }^{\frac{1}{2} \text { " }} 230 \mathrm{v}\). 425 cfm free air weight \(9 \frac{1}{2} \mathrm{lbs}\). incl. p.p. £21.00,
Woods Aerofoil short casing type "S" \(2700 \mathrm{rpm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}\) plastic impeller incl p.p. £11-50.
Woods Aerofoit Code \(7.5280 \mathrm{~K} 200 / 250 \mathrm{v}\). \(1.0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1}{2}\) " impeller 14 blades incl p.p. £13-50.
Servlce Electric Hi-Velocity Fans, suitable for Gas conveving, Cooling Electronic equipment, Air blast or Oil burners. Secomak Model 365 (corresponds \(0575)\) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous incl. carr f41 120 w.g. nett weight 441b, 1oh 50 c 0.166 hp 2800 . ecomak model 350250 v w.g. net weight 341 lbs , price incl. can 50 cfm 2 in . Air Controls type VBL4 200 incl. carr. \(£ 26.00\). free air weight \(7 \frac{1}{1} \mathrm{lb}\) s price incl. o. f . 14.50 c .110 cfm Type VBL5 \(200 / 250 \mathrm{v}\) iph 50 c . 142 cfm
\[
\text { Weight } 10 \text { tibs, price incl.p.p. } £ 18 \cdot 50 \text {. }
\]

William Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8hg up 1029 in . mercury rpm 1420. E.E. 3 phase induction, motor tho cont. 220/250v. \(380 / 440 \mathrm{v}\). E 21.00 incl. catr.
Gast MFG. Vacuum pump 0522-P702-R26X.
Motor \(110 / 120\). A C 1 ph 60 . 1725 . Motor \(110 / 120 \mathrm{v}\). A.C. 1 ph .60 c 1725 rpm . Class E.
10 cuft to 10 in Me. 635 mm Mercury. Or as compressor 10 psi int. of


126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

\section*{YATES ELECTRONICS}

\section*{(FLITWICK) LTD}

\section*{DEPT. WW ELSTOW STORAGEDEPOT}

KEMPSTON HARDWICK BEDFORD
C.W.O PLEASE. POST AND PACKING PLEASE ADD 10p TO ORDERS UNDER 62
Catalogue which contains data sheets for most of the components listed will be sent free on request 10p stamp appreciated.

\author{
CALLERS WELCOME \\ MON.-SAT, 9 a.m.-5 p.m. \\ PLEASE ADD 10\% V.A.T.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{RESISTORS} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(\frac{1}{2}\) W Iskra high stability carbon film-very low noise-capless construction. \(\frac{1}{2}\) W Mullard CR25 carbon film-very small body size \(7.5 \times 2.5 \mathrm{~mm}\). \(\frac{1}{2} \mathrm{~W} 2 \%\) ELECTROSIL TR5.}} \\
\hline & & & & & \\
\hline wates & Tolerance & Range & a vailable & 1-99 & \(100+\) \\
\hline \(\frac{1}{2}\) & 5\% & \(4 \cdot 7 \Omega-2.2 \mathrm{M} \Omega\) & E24 & 1 p & 0.8 p \\
\hline \(\frac{1}{2}\) & 10\% & 3.3M \(\Omega-10 \mathrm{M} \Omega\) & E12 & Ip & 0.8 p \\
\hline \(\frac{1}{2}\) & 2\% & \(10 \Omega-1 \mathrm{M} \Omega\) & E24 & 3.5p & 3p \\
\hline \(\frac{1}{2}\) & 10\% & \(1 \Omega-3.9 \Omega\) & E12 & Ip & 0.8 p \\
\hline \(t\) & 5\% & \(4.7 \Omega-1 \mathrm{M} \Omega\) & E12 & IP & 0.8 p \\
\hline 4 & 10\% & \(1 \Omega-10 \Omega\) & El2 & \(6 p\) & 5.5 p \\
\hline uanti & e applies & selection. Ig & ons on & & \\
\hline
\end{tabular}

\section*{DEVELOPMENT PACK}
0.5 wact \(5 \%\) Iskra resistors 5 off each value \(4.7 \Omega\) to \(1 M \Omega\).
\(E 12\) pack 325 resistors \(£ 2.40\). E24 pack 650 resistors \(£ 4.70\).

\section*{POTENTIOMETERS}

Carbon track \(5 k \Omega\) to \(2 M \Omega\), log or linear ( \(\log \frac{1}{4} W\), lin \(\frac{1}{2} W\) ).
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch, 24p.

\section*{SKELETO் PRESET POTENTIOMETERS}

Linear: \(100,250,500 \Omega\) and decades to \(5 \mathrm{M} \Omega\). Horizontal or vertical P.C. mounting ( 0.1 matrix).
Sub-miniature \(0.1 \mathrm{~W}, 5 \mathrm{p}\) each. Miniature \(0.25 \mathrm{~W}, 7 \mathrm{p}\) each.

\section*{TRANSISTORS}


MULLARD POLYESTER CAPACITORS C296 SERIES
\(400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}\), \(0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}\), IIp. \(0.47 \mu \mathrm{~F}, 13 \mathrm{p}\).
160V: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F} ; 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F}\), 4 \(\frac{1}{2}\) p. \(0.22 \mu\) F, 5 p. \(0.33 \mu\) F, 6 p. \(0.47 \mu F, 7 \frac{1}{2}\) p. \(0.68 \mu F\), 11 p. \(1.0 \mu F, 13 p\)
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}\). \(0.1 \mu \mathrm{~F}, 4 \mathrm{p}\). \(0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, \quad 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p}\). \(0.68 \mu \mathrm{~F}\), 11 p . \(1.0 \mu \mathrm{~F}, 13 \mathrm{p}\). 1.5 \(\mu \mathrm{F}\), 20p. 2-2 \(\mu \mathrm{F}\), 24p.

MYLAR FILM CAPACITORS IOOV \(0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}\), \(2 \frac{1}{2} p \cdot 0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p}\).

CERAMIC DISC CAPACITORS 100 pF to \(10,000 \mathrm{pF}, 2 \mathrm{p}\) each

\section*{ELECTROLYTIC CAPACITORS-MULLARD O15/6/7}
\((\mu F / v) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63\), \(22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4\), \(100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p} .47 / 63,100 / 40,150 / 25\), \(220 / 25,330 / 10,470 / 6.3,7 p .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10\) p. \(470 / 10,680 / 6.3\), \(11 p .100 / 63,150 / 63,220 / 63,1000 / 10,12 p .470 / 25,680 / 16,1500 / 6 \cdot 3,13 p .470 / 40,680 / 25\), \(1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3\), 4700/4, 21 p .


\section*{LARGE (CAN) ELECTROLYTICS}
\(\begin{array}{lllllll}1600 \mu \mathrm{~F} & 64 \mathrm{~V} & 74 \mathrm{p} & 2500 \mu \mathrm{~F} & 64 \mathrm{~V} & 80 \mathrm{p} & 4500 \mu \mathrm{~F} \\ 2500 \mu \mathrm{~F} & 40 \mathrm{~V} & 74 \mathrm{p} & 2800 \mu \mathrm{~F} & 100 \mathrm{~V} & 50 \mathrm{p} \\ & £ 2.60 & 4500 \mu \mathrm{~F} & 25 \mathrm{~V} & 6168\end{array}\) \(\begin{array}{lllllll}2500 \mu \mathrm{~F} & 40 \mathrm{~V} & 74 \mathrm{p} & 2800 \mu \mathrm{~F} & 100 \mathrm{~V} & £ 2.60 & 4500 \mu \mathrm{~F} \\ 25 \mathrm{~V} & 25 \mathrm{~V} & 61.68\end{array}\) HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT \begin{tabular}{llll}
\(0.01 \mu \mathrm{~F}\) & 10 p & \(0.047 \mu \mathrm{~F}\) & 13 p \\
\(0.022 \mu \mathrm{~F}\) & 12 p & \(0.1 \mu \mathrm{~F}\) & 13 p \\
\hline
\end{tabular} POLYSTYRENE CAPACITORS \(160 \mathrm{~V} \quad 2 \frac{1}{2} \%\)
10pF to 1,000 pF E12 Series Values, 4 p each.
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol. North Sea gas, as well as carbon-dust containing air or smoke, This decrease is usually large enough to be utilized without amplification. Full details and circuirs are supplied with each detector.
Detector GDI, \(\mathbf{£ 2 \text { . Kit of parts for detectors including GDI ..Id P.C. board but excluding }}\) case. Mains operated detector \(\mathbf{t s}\)
As above for PP9 battery, \(£ 6.40\).

PRINTED BOARD MARKER
\(97 p\) Draw the planned circuit on to a copperlaminate board with the P.C. Pen, allow to diy,
and immerse the board in the etchant. On removal the circuit remains in high reliff.

\section*{TRANSFORMERS}

All have 240 V Primary
MT 30/2 0-12-15-20-24-30V MT 50/1 \(\frac{1}{2}\) 0-19-25-33-40-50V MT 50:1 0-19—25—33-40—50V MT 50/2 0-19-25-33-40-50V MT 60/1 0 0-24-30-40-48-60V MT 60/1 0-24—30-40—48-60V MT 60/2 0-24-30-40—48-60V

\section*{HEAT SINKS-REDPOINT}

2W 24p 4W 45p TO5 Clip 5p TOI Single 5p
3W 36p 6W 60p TOI 8 Clip 5p TOI Double 8p
METERS \(£ 1.90\)
\(1 \frac{1}{2}{ }^{\circ}\) Scale 500 uA . 1 mA .10 mA .100 mA .
WAVECHANGE SWITCH 23p
\(1 p-12 W, 3 p-4 W, 2 p-6 W, 4 p-3 W\).
ROTARY MAINS SWITCH 32p

THERMISTORS
\begin{tabular}{|c|c|}
\hline VA 1005 & 15p \\
\hline VA 1026 & 15p \\
\hline VA 1033 & 15p \\
\hline VA 1055s & 15p \\
\hline VA 10665 & 15p \\
\hline VA 1077 & 15p \\
\hline R 53 & fl 35 \\
\hline
\end{tabular}

\section*{LINEAR IC s}


\section*{ALUMINIUM BOXES}

AB7 \(2 z^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{2^{\prime \prime}}\)
AB8 \(4^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}\)
\(\begin{array}{ll}\text { AB9 } & 4^{\prime \prime} \times 2 \frac{3}{4}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \\ \text { AB10 } & 4^{\prime \prime} \times 5^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}\end{array}\)
\(\begin{array}{ll}A B 10 & 4^{\prime \prime} \times 54^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \\ A B 11 & 4^{\prime \prime} \times 2 t^{\prime \prime} \times 2^{\prime \prime}\end{array}\)
\(A B 123^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}\)

\section*{50 p 50p 50p 50p
50p 50p 60 p 44p}

\section*{\(A B\)
\(A B\)
\(A B\)
\(A B\)
\(A B\)}

AB14 \(7^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}\)
B16 \(10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}\)
AB17 \(10^{\prime \prime} \times 4 \frac{1}{2} \times 3\)
ABIS \(12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\)
\(84 p\)
\(108 p\)
122p
108p
120p
160 p

\section*{BULGIN MAINS CONNECTORS}
\begin{tabular}{|c|c|c|c|c|}
\hline 3 PIN \(1 \frac{1}{2} \mathrm{~A}\) & \begin{tabular}{l}
CHASSIS PLUG \\
LINE SOCKET
\end{tabular} & \[
\begin{aligned}
& 10 p \\
& 13 p
\end{aligned}
\] & 3 PIN \(1 \frac{1}{2} \mathrm{~A}\) & \begin{tabular}{l}
CHASSIS SOCKE \\
LINE PLUG
\end{tabular} \\
\hline 3 PIN 3A & CHASSIS PLUG LINE SOCKET & \[
\begin{aligned}
& 10 p \\
& 14 p
\end{aligned}
\] & 3 PIN 3A & CHASSIS SOCKET LINE PLUG \\
\hline 3 PIN 5A & \begin{tabular}{l}
CHASSIS PLUG \\
LINE SOCKET
\end{tabular} & \[
\begin{aligned}
& 16 p \\
& 18 p
\end{aligned}
\] & 2 PIN 5A & LINE PLUG \\
\hline
\end{tabular}

\section*{The largest selection}

EX COMPUTER BOARDS



\section*{VEROBOARDS}

REPANCO CHOKES \＆COILS


COIL FORMERS \＆CORES
SWITCHES
FUSES
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{EARPHONES}

Bives
3－WAY STEREO HEAD．
PHONE JUNCTION BOX

PHONE JUNCTION BOX
2－WAY CROSSOVER
NETWORK
TRANSISTOR EQUIVALENT

（Black Vinyl covered）
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{（Black，Vinyl covered）} \\
\hline Brı Lenge & 1 H & \({ }_{5}{ }^{\text {a }}\) & & \(2_{2-}\)\begin{tabular}{c} 
Price \\
\(90 p\) \\
\hline
\end{tabular} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{ALUMINIUM BOXES}} \\
\hline & & & & \\
\hline B．\({ }^{\text {BA，}}\) & \(\stackrel{\times}{\times}\) & ？ & \(\times\) & 14 18 \\
\hline & \(\times\) & 2 & \(\times\) & 11.41 p \\
\hline  & \(\times\) & & \(\times\) & 17 47p \\
\hline \(\mathrm{BAS}^{\text {a }}\)＋\({ }^{\text {a }}\) & \(\times\) & 23 & \(\times\) & 2\％41p \\
\hline baif & \(\times\) & & \(\times\) & 84p \\
\hline Ba7 & \(\times\) & \({ }^{\text {s }}\) & & \(\left.{ }^{2 \times 1}\right]^{668}\) \\
\hline \({ }_{\text {Bag }}{ }^{\text {¢ }}\) & ¢ & \({ }^{6}\) & & 84 p \\
\hline
\end{tabular}

PLEASE NOTE：ALL OUR PRICES INCLUDE V．A．T． MODEL AMTRON KITS
Alowhlmerta
Alowhlmerta
AM/FSM Alten!
AM/FSM Alten!
Nike Pramplifier
Nike Pramplifier
CX2'Chal Hiceiver
CX2'Chal Hiceiver
CX2' Chamuel splitting mit, I, (180
CX2' Chamuel splitting mit, I, (180
Huperhetrolyme Rivin:Contr,
Huperhetrolyme Rivin:Contr,
Pa,loo Contryl Fiel} Strength Mete
Pa,loo Contryl Fiel} Strength Mete
Witalacrech Wiper timer
Witalacrech Wiper timer
-Chamel AFF mixer
-Chamel AFF mixer

\section*{BIB HI－FI ACCESSORIES}

De Luxe Groov－Kleen
Model 42 £1． 84
\(\begin{array}{ll}\text { Chrome Finish Modél } 60 \text { £1－50 } & \end{array}\)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\underset{\text { PLUGS AND SOCKETS }}{ }\)}} \\
\hline & & \\
\hline  & 2 Pin（Spealier） & 0.06 \\
\hline  & 3 Pin & 0.10 \\
\hline Ps \(3710 \times 5\) &  & 0.10 \\
\hline P8 38 1915 & 万 Pin \(2: 0^{\circ}\) & \(0 \cdot 10\) \\
\hline Ps \({ }^{\text {s }}\) & In＇k 2.5 mme Swithet & 0.09 \\
\hline PS \(\mathrm{S}_{1}\) & Jack 3 －5mm Switheel & 0.10 \\
\hline Ps 41 & Jack 1＊Switheol & 0.17 \\
\hline W 12 & Inck Steren Suritheed & 0.26 \\
\hline 1843 & Phome siudie & 0.06 \\
\hline Ps 4 & Plame Davilue & 0.10 \\
\hline PS & Car Aerial & 0.08 \\
\hline PS 4 & Co－Axial Surface & 009 \\
\hline PS ti & Co－Axial Fluah & 0.14 \\
\hline
\end{tabular}



NEW COMP
BARGAINS
Pack
Pack．Qty．

CABLES
\begin{tabular}{|c|c|c|}
\hline Cl & Single Lappel sereen & 0 Of \\
\hline CP 2 & Twin Commma Screen & 0.08 \\
\hline Ci ： & Steren Bereeried & 0.08 \\
\hline cr 4 & Pour Care Cummman Sereen & 0.23 \\
\hline PC 5 & Pour Corre Indi viduady ser & 0.30 \\
\hline CP 6 & Mterophone Pully Bmintell & \\
\hline \(\mathrm{CP}^{\text {P }}\) & Three Cure Mains Catuc & 0.07 \\
\hline C8 \％ & Twin Oval Matins Cahle & 0.06 \\
\hline CP 9 & Speaker Cable & \(0 \cdot 04\) \\
\hline CP 11 & Low Lose Co － Ax alal & 0.10 \\
\hline
\end{tabular}

\section*{CARBON}

POTENTIOMETERS
\[
\begin{aligned}
& +\cdot \mathrm{T}, 1 \\
& 1 \mathrm{M} .2 \mathrm{M}
\end{aligned}
\]
ingle hess Switch
Taulem Lese Sujteh
\begin{tabular}{lll} 
& 0.44 \\
C & 1 K Lin Less Switch & 0.14 \\
VC 5 & 100 K loge ant／－Log & 0.14 \\
\hline
\end{tabular}

\section*{HORIZONTAL CARBON} PRESETS
\[
\begin{aligned}
& \text { t06, } 220,470,1 \mathrm{~K}, 22 \mathrm{~K},+7 \mathrm{~K}, 70 \mathrm{~K}, 22 \mathrm{~K} \\
& 17 \mathrm{~K}, 16 \mathrm{KK}, 220 \mathrm{~K}, 470 \mathrm{~K}, 13 \mathrm{M}, 2 \mathrm{M},+7 \mathrm{M} \\
& \hline
\end{aligned}
\]

SELENIUM BRIDGE RECTIFIERS
chargers． 15 peach． 10 for 55p
REPANCO TRANSFORMERS

Open Mma．－Thurs．

\section*{WORLD SCOOP！}

JUMBO SEMICONDUCTOR PACK
Transistors－Germ and Silicon
Rectifiers－Diodes－Triacs－Thyristors
I，C＇s and Zenners ALL NEW AND CODED APPROX 100 PIECES！
Offering the amateur a fantastic bargain Pak and an enormous saving－identification and data sheet in every Pak
ONLY
\(\mathbb{2}\)

\section*{EX－COMPUTOR BOARDS BY THE BOXFULL！！}

\section*{20 Boards packed with Semiconductors and other} Electronic Components．Each board approx．size \(8^{\prime \prime} \times 7^{\prime \prime}\) ．All known type no．and easily recognisable FANTASTIC VALUE AT \(£ 2.20\) per BOX p \＆p 52p．

SPECIAL PURCHASE by BI－PAK 2N3055．Silicon Power Transistors NPN Famous manufacturers out－of－spec devices free from open and short defects－every one able！！ 115 watts TO3．

Metal Case．
OUR SPECIAL PRICE 8 for \(f 1\).
\begin{tabular}{|c|c|c|}
\hline  & \multicolumn{2}{|l|}{BOOK BARGAIN BUNDLE} \\
\hline  & \multicolumn{2}{|l|}{ data chare} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & 1sis & \begin{tabular}{l}
her construethnal lionks vers．Ein There，etr． \\
1 demeral monatration hook
\end{tabular} \\
\hline  & \multicolumn{2}{|l|}{£2 p \＆p 10p．} \\
\hline  30 & \multicolumn{2}{|l|}{P1 Handmorticn of Tranniatnr} \\
\hline & BP & Intustial J＇ulie s Salve Bquiv． \\
\hline Holles \(1 \neq 13^{*} \times 3^{*} \times 60^{\circ}\) Lerti di Hand 21.95 & BP3 & Hibldhonk of Tested Trail gistor Cimente 40p \\
\hline & BP4 & Internaticual Handlumk of Radio Stations amd FM／T．V． \\
\hline OHI & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\begin{tabular}{l}
Handhook of simpite Tran－ \\
sintor Cirenita 35p
\end{tabular}} \\
\hline & & \\
\hline & BP7 &  \\
\hline & BP & Hennd mud Lomulspeaker
H0p
Hanual \\
\hline & \multirow[t]{2}{*}{BP9} & \multirow[t]{2}{*}{as Practical Testerl Diate Cireuits firr the Hrme constructor 35p} \\
\hline & & \\
\hline & \multirow[t]{2}{*}{BP10} & \multirow[t]{2}{*}{Musern Cryctal anul Tran． pistur set Circuits for beginners} \\
\hline  & & \\
\hline  & BP11 & Practical Transistor Novelty \\
\hline sec 22.6 & \multirow[t]{2}{*}{BP13} & \multirow[t]{2}{*}{Bilectrmic Xoncltien for the
Moterfiat
50 p} \\
\hline 95 p & & \\
\hline tiluc & BP 14 & \begin{tabular}{l}
Second hotok of Tranaistar \\
Equivalents
\end{tabular} \\
\hline & \multirow[t]{2}{*}{} & Equivalents \\
\hline & & Constructors Mannal of Elec－ tranic Circuits for the
home
50 p \\
\hline & 129 &  \\
\hline 12 Range of Carbon Film & & How to make Fsi and T．J． aerlals Pamade 1／2／3 18p \\
\hline watt availathe in Palso of an rted into the following aroupa：－ & 141 & Hawlio servicing for Amuteurs 20p \\
\hline － & \multirow[t]{2}{*}{146} & \multirow[t]{2}{*}{Iligh Findelity Lamdspeaker
etu：lomures
\(\mathbf{4 0 p}\)} \\
\hline 12 & & \\
\hline U118 40p & 158 & Transistor
Nos
Cireuita
Manual
\(15 p\) \\
\hline 万o Mixed fothi ubur－1 Mere．oluns 40 & \multirow[t]{2}{*}{} & Cull Heximu and Construction \\
\hline ， & & \multirow[t]{2}{*}{Radio T．N：and Slectronic Datal look 25p} \\
\hline LeSS THAN ip & & \\
\hline & 174 & \multirow[t]{2}{*}{Transintor
receivers
suiz－miniathre
33 p} \\
\hline & \multirow[t]{2}{*}{} & \\
\hline LOW－NOISE CASSETTES & & Trausistor Test E．uipheent．© \\
\hline Ctio，32p C911，41p & & \begin{tabular}{l}
Manoal of Transigtur Amjin Amplifters \\
A comprehenaive leadio Viate
\end{tabular} \\
\hline & 18 & A comprehellis ve ladio Vikte \\
\hline PI & 18.3 & How to recelve forgign T．V． primpatumes on pour set by ginple moxliferations 33p \\
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Al－ \(\mathbf{K}\) ド Reactatele－Frequency chat for Construckors 150} \\
\hline & & \\
\hline RADIO CONSTRU & & Handionok uf tractiral Flec－ tronic Musical Nowelties 50p \\
\hline ERYDAY & 201 & \begin{tabular}{l}
Practical Transistoriged Nov－ \\
elties for Hi－Fi Enthusiakta
\end{tabular} \\
\hline & \multirow[t]{2}{*}{202} & \multirow[t]{2}{*}{} \\
\hline OR SEND Sp．FOR THE & & \\
\hline LL LIST OF ALL BI－PAK PRODUCTS & RCC &  \\
\hline
\end{tabular}

\section*{-the lowest prices!}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
TRANSFORMERS \\
TH14 (1) with ALIMI) 11.88 P. \\

\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

FRONT PANELS FP12 with knobs \(£ 1 \cdot 20\)


Pastoge ond pocking odd ifo. Overseas odd extro for airmail.

\section*{HART ELECTRONICS}

\section*{AUDIO KITS}
F.M. TUNER

This latest addition to our range will be in production late March ' 74 . It is designed to offie
the best possithe thing. We nave taken great care to look aiter the constructors' point of view and there art
tunt no coils so wind. no RF circuits to wire and no allgnment is required. in tact the whole une ar can be easily complited and working in an evening as there are only 3 trans istors, one iC and two concept of having a tuner as large as the amplifier and this new unlt has a a frontal size of only \({ }_{1 i}\) in. \(x 4\) in. .t1 can be mounted on the side of our Bailey amplifer metalwork thus turning it into a tunerlamplifier whilst only increasing its width by 11 in.
Cost ot tuner cha ssis (no case) is \(£ 22\) for mono, \(£ 25 \cdot 45\) ior stereo, Metal case \(£ 2.55\). An extended wooden case to fit luner and amplifier will be offered shortly.

\section*{BAILEY/BURROWSTQUILTER PRE AMP.}

The best engineered kit available of the comblned best of three pre-amp designs. This is the signal processing stage for any power amplifier requiring up to \(1 \neq v\) input for only \(\boldsymbol{E 2 0 . 5 0}\)


\section*{EAILEY 30 WATT POWER AMPS}
at only \(£ 9.88\) per channel, it's amazing value for mone permance or the quality of the kit and
METALWORK, FRONT PLATES WOOOEN CASE
METALWORK, FRONT PLATES, WOOOEN CASES
These are the things that convert your hooby into cost saving protessional equipment
Remember the finished job looks ofecant the wife won't worry aboui the money you spend Remember if the finished job looks oecant the wife won't worry about the money you spend
Complete metalwork tor Stereo Bailey 30 's, preamp and power supply \(£ 5 \cdot 40\). Metal cover \(£ 160\) Fiont plate \(£ 1 \leq\)

\section*{digital miltimeter}

Our first venture into instruments and by the way it's selling it wan't be long before we're ofriod, time and trequency. Not bad as it measures \(D C\) and \(A C\) volts, resistance, capacitance STUART TAPE CIRCUITS
Our printad circuits and components offer the easy way to convert any suitable auality deck into a very high a Total cost new ones.
All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is inciuded.
Further informatlon is in our lists FPEE if you send us a 9 In, \(\times 4\) in. \(S\). A.E.

\section*{REPRINTS}

Post free, no VAT.
BAILEY 30W. 18p.
STUART TAPE RECORDER
3 articlas under one cover 30D
PRE AMP clrcuit and assemb

SPRING BARGAIN SALE Of brand new components at trade prices.
\begin{tabular}{|c|c|c|}
\hline 200. &  & \\
\hline 860. & 2N4058. Texas & \\
\hline 390. & 2N3704. Texas & \\
\hline 780. & 2 N 3772. Texas & \\
\hline & \({ }^{\text {N3710 }}\) Texas & \\
\hline 19. & CA 30900 O RCA & \\
\hline \({ }_{5}^{30 .}\) & \({ }^{2 N 697 . ~ T e x a s ~ a n d ~} \mathrm{H}\) & 160 \\
\hline 50. & \({ }^{20 \mathrm{Cb}}\) IR & \\
\hline \({ }_{20} 0\). & 0 C 81 D мuiliard & 19 p \\
\hline 20. & ACY 18. Mullard. & \\
\hline 90. & OAZ 235 Mullard & \({ }^{24}\) \\
\hline 30. & \({ }^{2}{ }^{\text {N1613. Texas. }}\) & \({ }_{8 \mathrm{p}}\) \\
\hline 100. & BC212L. Texas & 13p \\
\hline & 2N377. Sylvania & 5p \\
\hline 10. & 2N596. Texas & \\
\hline \[
{ }_{20}^{60}
\] & VS248. Varo (2000iv 2A Bridge) & Op \\
\hline 25. & MJ480. Motorola & \({ }^{358}\) \\
\hline & \({ }^{\text {N }} 388\). Sesco & \\
\hline Resi & & \\
\hline & CLR 1106/115. 1000s. WW Preset Colvern & \\
\hline 800. & 1W WIW 22, Piessey & \\
\hline & & \\
\hline & C437AR/A4000. 400012. 5. Mulle & \\
\hline 400 & C428AR / F80, 80/25. Mullard & 20 D \\
\hline 60. & \({ }^{2503 u} 70 \mathrm{~V}^{\text {c CCL }}\) & \\
\hline 25. & C431 RR H1600. 1600064. Muilard & 77 p \\
\hline 30. & 250341 25v. Plessey & \\
\hline & C432 FR/H2000. 2000/64. Mullard & \\
\hline & 500 N 0400 A 00 Heatsink. Ma & \\
\hline 100. & \(100 \mathrm{Na400} \mathrm{Cl}\) SX Heatsink. Black an & 60p \\
\hline 1. & CRT DPM9.11. Mullard & \\
\hline & CRT 3AZP 31. El-el & \\
\hline & CRT & \\
\hline & CRT & \\
\hline 2. & Co SE140. & \\
\hline & Toner & \\
\hline 300. & 79,840. 3way Phono sie cra & \({ }_{61} 1.12\) \\
\hline 350. & 791844. 5way Phono soc. Ca & \({ }^{\text {85p }}\) \\
\hline 100. & SW \(1587.3 \times 3\) PCO. Push bution & \({ }_{15}\) \\
\hline 200. & \({ }^{4 P} 3 \mathrm{WW}\). Rotary switch & 100 \\
\hline 200. & 6P 5W. Rotary switch & \\
\hline & FM Turner Front end. Guest & \({ }_{\text {E12.00 }}\) \\
\hline & Deram loudspeal e., De & \(\varepsilon 12.00\) \\
\hline
\end{tabular}

\section*{Penylan Mill, Oswestry, Salop}

Personal callers are always welcome, but please note we are closed all day Saturday

\begin{abstract}
MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 micro volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV volt - 52.5 ohrms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External Modulation: Direct or via internal amplifier. A.C. Mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Measurements \(29 \times 12 t \times 10\) in. Secondhand
condition. \(£ 27.50\) each, Carr. \(£ 1.50\).

CT. 52 MINIATURE OSCILLOSCOPE; Portable. Operates from 115 V or
\(250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}\); or \(180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}\). A small compact tropicalised instrument designed to meet requirements of radar and communication engineers and general electronic service. Measures \(9 \mathrm{in} . \times 8 \mathrm{in}\). \(\times 6\) tin. Time base \(10 \mathrm{c} / \mathrm{s}-\) \(40 \mathrm{Kc} / \mathrm{s}\). Y plate sensitivity 40 V per cm . Tube 2 in. Frequency compensated Complete with test leads, Bandwidth up to 1 Mc/s. Single sweep racilities
\end{abstract}

MODLLATOR UNIT: 50 watt, part of BC- 640 , complete with \(2 \times 811\) valves, microphone and modulator transformers etc. \(\mathbf{£ 7} \mathbf{5 0}\) each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3 in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, \(£ 3.50\) each, post 50 p . APN-1 INDICATOR METER, \(270^{\circ}\) Movement. Ideal for making rev. counter. \(\mathbf{~ 1 1 . 2 5 , ~ p o s t ~ 3 0 p ~}\)
AIRCRAFT SOLENOID UNIT S.P.S.T.: \(24 \mathrm{~V}, 200 \mathrm{Amps}, \mathbf{£ 2}\) each, 30 p post.
VARIAC TRANSFORMERS: Input 115 V , output \(0-135 \mathrm{~V}\) at 2 Amps . £3 each 75 p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high \(\times 21\) in. wide \(\times 16\) in. deep, with rear door. \(£ 12\) each, \(£ 2.50\) Carr. OR 4 ft . high \(\times 23\) in. wide \(\times 19 \mathrm{in}\). deep, with rear door. \(£ 8 \cdot 50\), each, \(£ 2\). Carr.
INSTRUMENT CABINETS: \(19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 5 \cdot 00+£ 1.25 \mathrm{carr}\) \(19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . \quad £^{2} 50+£ 1.00\) carr.
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering \(2-8 \mathrm{MHz}\). Power supply 6 V d.c. Good secondhand cond.
\(£ 7.50\) each. Post 60 p . ¿ 50 each. Post 60p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps. \(4,800 \mathrm{rpm}\). Output 115 V a.c. \(13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}\). 1 Ph. P.F.9. \(£ 17.50\) each. Carr. \(£ 1.50\). REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply \(200-250 \mathrm{~V}\) a.c. Polarised relay type 3 SEITR. \(80-0-80 \mathrm{~V} 25 \mathrm{~mA}\). Two stabicondition \(£ 7.50\), Carr. 75 p . WESTON INDUSTRIAL THERMOMETER MODEL 221: \(0-100^{\circ} \mathrm{C}\). 3in. dia. scale. Accuracy \(1 \%\). Precision made coil within-coil structure, Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointer
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range 1200-9600 gausses. \(\pm 2 \%\). S/hand good cond. \(£ 25+60\) p post

TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. as new cond. in original packing case, 425 each; or second hand cond ( order) no part
INSULATION TEST SET: \(0-10 \mathrm{kV}\) negative, earth with amplifier provision for checking ionisation. \(110 / 230 \mathrm{~V}\) a.c. input. S/hand good cond. \(£ 30+£ 1\) carr APN-1 ALTIMETER TX/RX: Freq, approx. 410 MHz . Complete with 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts carr

ANTENNA MAST 12 ft .3 sections with suitable base to mount on the above Mast, to extend to 42 ft . \(£ 1.50\) each +50 p carr
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keving. Crystal or MO control, with temperature compensated MO circuit. CW, MCW and R/T. Frequency: 1.5 to \(20 \mathrm{Mc} / \mathrm{s}\). Modulation: \(100 \%\) O/put impedance : 50 ohms. Audio input: 600 ohms. Valves : Power Amplifier \(2 \times 813\) and Modulator \(2 \times 813\). Power requirements \(200-250\) volts a.c.,
50 cycles. Power out put 300 watts. Dimensions 2 ft . 6 in . \(\mathrm{W} . \times 2 \mathrm{ft}\). D. \(\times\) 5 ft . H. Weight: 800 lbs . Excellent condition, price \(£ 225 \cdot 00\) each.
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency \(225-400 \mathrm{mc} .1750\) channels 100 Kc apart with 18 preset channels Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c hone. Price \(£ 25000\) wach operating cables, control box, headphones, micro POWER SUPPLY suitable for AN/ARC-27: condition.
nput. 24 v d.c. output @ 41 amps fully smoothed. \(£ 45-00 \mathrm{each}\). 250 volts a.c
FREQUENCY COMB GENERATOR HEWLETT PACKARD TYPE 8406A: \(1 . \mathrm{MHz} ; 10 \mathrm{MHz} ; 100 \mathrm{MHz}\). External Trigger. \(£ 65\). Carr. \(£ 1\).
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq range \(3000-10,000 \mathrm{KHz}\). Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction withafreq. meter
CRYSTAL TFST SET TYPE CT.554: Later version of the above model. \(£ \mathbf{} \mathbf{3 0}\). Carr. \(£ 1.50\)
DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . \(50 \mathrm{~Hz} . £ 275\). Carr. at cost.
H.V. TRANSMITTER: \(8000 / 8000\). Output 300 mA . rms. Size: \(12^{\prime \prime} \times 12^{\prime \prime} \times 36^{\prime \prime}\)

COPPER WIRE AERIAL: with insulators, 100ft. long. \(£ 150\). Post 40 p .
TELEPHONE CABLE: (Twin) PVC covered suitable for extension speakers, burglar alarms etc. 200 yds. per roll. \(£ 2.50\) a roll. Post 50 p.
DON10 CABLEWIRE: (Twin) \(1,350 \mathrm{ft}\). on metal reel, \(£ 5\) per reel. Carr. \(£ 1\)
LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists.

\section*{ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).}

\title{
C. T. ELECTRONICS 267 ACTON LANE, LONDON W4 5DG 01-994 6275
}

\section*{MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER}

\section*{semiconductiors}



1049 Mk. 4. D.B. EMI WM2.
Solartron \(\quad\) WM3B.
AD557.
CD513.2.
CD523 5.2.
CD643.
LOW COST
OSCILLOSCOPES

Cossor Solartron 1035. D.B. CD643.1.

1049 MK. 3A. D.B. CD711S.2. WM8.
LM309K 5V. 1A. Voltage Reg.
\(\begin{aligned} & \text { LM723C } 2.37 \mathrm{~V} \\ & \text { Voltage Reg. } 150 \mathrm{~mA} \\ & \text { R2.10 } \\ & \text { \&1.05 }\end{aligned}\)
MFC4000 250 mW Audio .. 60p
TBA800 5 Watt Audio ... 11.50
709 C OP. Amp D.I.L./T099
741 C Op. Amp 8114 D.I 741C Op. Amp 8/14 D.I.L./
T099
55p
748C Op. Amp D.I.L.
747C Dual Op. A
ZN414 Radio I.C. TADIOO Radio I.C. Inc.
Filter
CA3014
CA3018
CA 3028
CA 3036
CA 3036
CA 3046
CA 3048
\begin{tabular}{l} 
CA3048 \\
CA3075 \\
\hline
\end{tabular}
CA3075.
CA 30900
MC 1303 L


\section*{WAREHOUSE \\ 20-24 BEAUMONT ROAD, W.4. \\ SURPLUS COMPONENTS, TEST EQUIPMENT, etc.. etc. \\ THOUSANDS OF BARGAINS}

Test Equipment \(\star\) Oscilloscopes \(\star\) Signal Generators \(\star\) Counters Cabinets \(\star\) Bridges \(\star\) Meters \(\star\) Transmitters \(\star\) Reeceivers \(\star\) Pudio
Supplies \(\star\) Laboratory Equipment \(\star\) Galvanometers Equipment \(\star\) Video tquipment \(\star\) Meters \(\star\) Battery Chargers

\section*{20 TONS OF ELECTRONIC EQUIPMENT}

Resistors \(\star\) Relays \(\star\) Capacitors \(\star\) Switches \(\star\) Transformers
Meters \(\star\) Potentiometers \(\star\) Component Panels \(\star\) Semiconductors Cable \(\star\) Values \(\star\) Etc. \(\star\) Etc. \(\star\) Etc.
Regret no lists available. Personal callers only. Cash and Carry only



REXINE COVERED SPEAKER CABINETS
Suitable for P.A. or DISCO use; takes 12 in. speaker unit. Size approx. \(18 \times 18 \times\) SPEAKER CLOTH
Avaliable in Black or Green; Approx. width 54 in . \(£ 1-75\) yd.
HEADPHONES
Type H-202 Features Mono/stereo switch, Volume contro
Freq. response' \(20-20,000 \mathrm{~Hz}\). Impedance \(4-16\) ohms. \(\mathbf{£ 4 . 5 0}\).



\title{
LentresU.K's LaRgest range of branded and guaranteed DEVICES. (Quantity Discounts \(10 \%\) 12 \(+15 \%\) 25 + 20\% \(100+\) ) (Any one type except where quantity discounts show) Min. Order \(\mathbf{f 1 . 0 0}\) please, Post10p.
}

\section*{INTEGRATED CIRCUITS}

VERY IMPORTANT. ONLY branded I.C's are to the FULL manufacturers specifi-
Calions. ALL others ase not. Henry's sell only branded Integrated Circuits. . From calions. ALL others are not. Henry's sell onty branded Integrated Clircuits ...ifrom
TEXAS... I,T.T. .. FAIRCHILD... SIGNETICS. So why buy alternatives of nee

\section*{Eass To bullo ris by amion}
—EVERYTHING SUPPLIED
 
 TRACK CAR STEREO
carrlpackg with speakers, in pods and fixings \(\mathbf{£ 1 2 - 5 0}\)
PORTABLEBATTERY CASSETTETAPE PLAYER
CAR LIGHTER PLUG and ADAPTOR for all cassette
 Rhis3 £3.30. ROTAL
(List \(£ 52 \cdot 00\) ) \(£ 34 \cdot 52\) (List \& 52.00 )
Stereo cas sette recorder \(\mathbf{£} 59-95\) carripackg 50 p. Pair Ahai ADM microphones f6.95 carrjpackg 20p
WEIN WSOO BATTERY/MAINS CASSETTE RECORDER E12.75
PORTABLE CASSETTE TAPE
Player-tor caror carry around. E7. 25 carr/packg 20p.
HANIMAX POCKET CALCULATOR WITH

MAINS UNIT for BCB08, BC811M \({ }^{\text {£2.85 (state model) }}\)
Hanlmax H101 STEREO COMPACT RECORD Hanimax H101 STEREO COMPACT RECORD
PLAYER \(2 \times 7\) watts. Complete with speakers (List
\(£ 54.50\) ) Price \(£ 39.9 \mathrm{P}^{\text {Plus free pair of stereo phones. }}\)

\section*{BRIDGE RECTIFIERS}

FEATURES
250M/A QUARTER AMP
\(8025 / 05\)
50 PIV
16p




ELECTRONICS FOR EVERY PURPOSE See facing page

\section*{\(\square\) RADIO \\ \(\square\) RADIO \\ EDGWARE ROAD, W2}

FREE BOOKLET All types of Transistors Rectifiers-Bridges SCR's - Triacs Integrated Circuits
 F.E.T. - Light Devices OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION More Devices \(\star\) New Prices \(\star\) New Ranges \(\star\) This is a must for all Semi-conductor Users. (Ask for booklet No. 36.) SEND FOR YOUR FREE COPY TODAY
\begin{tabular}{|c|c|}
\hline TBA8005 WATTIC Suitable alternative to SL403D \(5 / 30\) volt operated. \(8 / 16\) OHM 5 watt output.
With circuits and data \&1.j0. Complete with printed circuit boards and components \(£ 2.75\). &  \\
\hline SInclair IC12 with circuits and data. 6 watt IC with printed operated, \(£ 2.00\) & Ultrasonic Transducers Operate at 40 Khz up to 100 yds, Ideal remote switchplete with data transmitter and receiver new.
circuits. Per pair \(£ 5.90\). TA960 with socket \(£ 1.80\) \\
\hline  & \begin{tabular}{l}
\(3015 F^{7}\) SEG. \\
I.C. size complete with data price 81.70 each (digital clock clrc uits ret
No. 31, 15p).
\end{tabular} \\
\hline TIL209 LED 24P & ea. 22p ea. per 10 \\
\hline
\end{tabular}

BUILD YOURSELF A POCKET CALCULATOR
\begin{tabular}{|c|c|}
\hline A complete kit, packaged in a poly- &  \\
\hline styrene contatner and taking about & \\
\hline 3 hours to assemble-that's the Sinclair & \\
\hline Cambridge pocket calculator from & symanay \\
\hline Henry's. Some of the many features & \\
\hline include interface chip, thick-film & 98 \\
\hline resistor pack, printed circuit board, electronic components pack. Size & 9080 \\
\hline  & 9006 \\
\hline Free of charge with the kit for the more & 1030 \\
\hline advanced technologist is a 32-page & 9080 \\
\hline
\end{tabular}

Price \(£ 24.95-\) VAT assembled read
LIVING SOUND LOW NOISE TOP OUALITY





\section*{A SELECTION OF}

INTERESTING ITEMS
\(3025 \quad\) Compact transistor tester
 1 Kw Dimmericontroller \(\begin{array}{ll}9^{\prime \prime} \text { Twin spring unit } & \text { For } \\ 16^{\prime \prime} \text { Twin spring unit } & \text { Reverbs }\end{array}\) VHF 105 Alreraft Band Convertor \(\mathrm{B} 2005{ }^{4} \mathrm{Ch}\). mlc. mixer
B2004 2 ch . Stereo mixer
 \begin{tabular}{ll} 
PK3 kit. Eich your own \\
C3C41 & \(\$-250 \mathrm{MHz}\) \\
C 3043 & \(50 \mathrm{H} ~\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ZENER DIOdes & SILICON RECTIFIERS \\
\hline \(400 \mathrm{~m} / \mathrm{w}\) BZYB8/BZX83. From 3.3 volt33 volfs 10p each. & 1 amp serles IN4001 to IN4007. From 6p ea \\
\hline 1.3 watts \(5 \%\) Miniature Tubulars IN4700 & \(1 \cdot 5 \mathrm{amp}\) PL4001 to PL4007 from 8p ea \\
\hline series. From 3.3 volt- 33 volt 18p each.
10 watts. Stind. Mounting. zS ser & 3 amp PL7001/IN5400 From 14p ea \\
\hline 6.8 wolts- 100 volts \(5 \% 40\) peach. & for full list 36. \\
\hline
\end{tabular}


\title{
ELEGTROVALUE CATALOGUE 7
}

An \(\mathbf{A}\) to \(\mathbf{Z}\) guide to component buying

Perhaps you have not yet had a chance to know about the latest EV Catalogue (No. 7). It is our best yet. On the index page, between "'Aluminium Boxes" and "Zener Diodes", are over 200 references to contents amounting in all to thousands of items, classified, described, often illustrated, and priced. There are technical diagrams and data. At 25p, Catalogue 7 is excellent value by any standard. With the 25 p Refund Voucher it costs you virtually nothing when you order \(£ 5\)-worth or more. Get your copy and cut out "component hunting" from now on.

\section*{}
\(\star\) A SELECTION FROM EV CATALOGUE 7
TRANSISTORS
Very wide range of types is shown together with grouped and tabulated specifications for each one. Outlines are illustrated, and there is a full range of supporting hardware.
Also near-equivalent tables are given.
I.C.

Here too a wide range of TTL ivpes are shown, together with Over 60 circuit and connection diagrams as well as much other useful information is included.
MINITRON DIGITAL INDICATORS
enen segment filament, compatible with standard logic modules. \(0-9\) and decimal point: 9 mm characters in Suitable 8CD decoder driver
\(\mathbf{3 0 1 5 G}\) showing + or \(-\& 1\) dec. p

E1.15
E1.20

POLYESTER CAPACITORS C. 280
Radial laads for P.C. B. mounting. Working voltage 250 V d.c
\(0.01,0.015,0.022 .0 .033,0.047 \quad\) 日a \(3 p\) \(0.22,5 p ; 0.33,7 p: 0.47,8 p ; 0.68,11 p: 1.0 .14 p: 1.5,21 p\) :

\section*{SILVERED MICA CAPACITORS}

Working voltage 50 ov d.c. 32 stages
Values inpFs-2.2 to 820 in 32 stages \(\quad 20\). \({ }^{88,6 p}\) 4700, 5000 15p: 6800 20p; 8200. 10.000 25p

CERAMIC DISC
\(1000 \mathrm{pF} / 500,2000 / 500,5000 / 500,0.01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50\) \(0.1 \mathrm{mF} / 3\) - \(2 \mathrm{p} \cdot 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}\)

CERAMIC PLAIN
In a range of 26 values from 22 to \(6800 \mathrm{pF} / 50 \mathrm{~V}\) de each 2p

\footnotetext{
POTENTIOMETERS
ROTARY, CARBON TRACK. Double wipers for good
P. 20 SINGLE linear 1000 hms to 2.2 megohms
P. 20 SINGLE log 4.7 Kohms to 2.2 megohms JP. 20 DUAL GANG lin. 4.7 Kohms to 2.2 megohms
JP. 20 DUAL GANG log. 4.7 Kohms to 2.2 megohms JP. 20 DUAL GANG Log/antilog \(10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}\).
JP. 20 DUAL GANG antilog 10 K only Decades of 10.22 and 47 only available in ranges above 6p each.
}


ZENER DIODES
Full range E24 vaiues: \(400 \mathrm{~mW}: 2.7 \mathrm{~V}\) to \(36 \mathrm{~V}, 14 \mathrm{p}\) each: Clip to incresese 1.5 W rating to 3 watts (type 266F), \(\mathbf{5 p}\). VEROBOARD
Copper clad \(0.1 \quad\) metrix-2.5 \(\times 3.75\) ins. \(\quad 24 \mathrm{p}: \quad 3.75 \times\)
3.75 ins.-27p: \(2.5 \times 5\) ins. \(-27 p: 3.75 \times 5\) ins. -30 p . Copper clad 0.15 in, matrix \(2.5 \times 3.75\) ins. \(-16 \mathrm{p}: 3.75 \times\) 3.75 ins. \(27 \mathrm{p}: 2.5 \times 5 \mathrm{ins}\). \(27 \mathrm{p}: 3.75 \times 5 \mathrm{ins},-33 \mathrm{p}\). Vero spot face cutter (any matrix) 43 p .
0.040 pins (for 0.1 matrix) par \(100-30\). 0.040 pins (for 0.1 matrix) per 100-30p.
0.052 pins (for 0.15 matrix) per \(100-30 \mathrm{p}\).

\section*{ELEGTROALIE LTD}


\section*{This is EV Service}

DISCOUNTS
Avaliable on all items except those shown with NETT PRICES. \(10 \%\) on orders from \(£ 5\) to \(£ 14.99\). \(15 \%\) on orders FREE PACKING AND POSTAGE additional mandling orders for \(£ 2\) list value and under there is an GUARANTEE OF QUALITY
All goods are sold on the understending that they conform to manufacturers' specificstions and satisfaction is guarsinte日e is offered for sale
Prices quoted to not inctu VA.T. for wich 10\% must added to total nett value of order. Every effort is made to ensure the correctness of information and prices in this advertisament at time of going to press. Prices subject to ,
GIRO ACCOUNT No. 38/671/4002
Every eftort is made to ensurs the correctness of information and prices in this sdvertisement at time of going to press. All postal communications, mail orders, etc., to head

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TWVO OHB
Telephone Egham 3603, Telex 264475
Shop hours: 9-5.30 daily, 9-1 pm Sats.
NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1 NA
Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1 pm Sats.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27 Swarthmore PA 19081.


5W \& 10W AMPS


These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only \(2 \frac{1}{4}^{\prime \prime} \times 1 \frac{3^{\prime}}{4}\). The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control dircuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

\section*{Now available for 5\%10WAMPS}

Pre-assembled printed circuit boards \(2^{\prime \prime} \times 3^{\prime \prime}\) available in stereo only, will fit 15 edge connector
Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick up cartridges. f1.21.
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.
f1.69.
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. \(£ 1.21\)
Instruction leaflet supplied with all units. Post and Packing and
VAT included in Prices.
enclose \(f\)

8 Tracks/
10W Amps
Stereo Pre-Amps 2
(Please insert quantities and delete those not applicable) Name
Address


Dept B 222/224 WEST ROAD
Ca. Regn. No. 820919

3W Amps/


Stereo Pre-Amps Stereo Tone Controis


4 Bush House Bush Fair, Harlow Essex

PRICES InClusive of V.a.t.
\(\star\) Retail Shop open 9 to 5.30 Mon to Sat.
\(\star\) Post \& Package 10p
* 1974 Catalogue 12p
\(\star\) Tel. Harlow 37739.


\section*{Mullard Polyester Capacitors}
C280 SERIES

C296 SERIES



\section*{f1 BARGAIN PACKS}
10 Silicon NPN Power transistors
(2N3055) testedfunmarked.
30 Plastic FET's unmarked/untested,
similar to \(2 N 3819\).
similar to 2 N3819.
20 TO5 transistors NPN or PNP, state which. 2 to 5 amp untested/unmarked
20 TO 18 transistors PNP like BC178 BC179 etc. untested/unmarked. 30 Plastic 2 N 3055 unmarked/untested
TO220 case. 10 General Purpose, fully tested FET's 500 carbon resistors \(\frac{1}{2}, \frac{1}{2}, 1,2\) watt. 100 Eiectrolytic condensers.
250 Ceramic Polystyrene, Silver Mic etc. Condensers.
Polyester, Polycarbonate, Paper, etc Polyester, Polycarbonate,
condensers. 250 High Stab \(1 \%, 2 \%, 5 \%\) resistors.
1 lb Assorted nuts, bolts, washers, \(1 / \mathrm{l}\) Assorted nuts, bolts, washers
spacers, etc. micro, toggle, etc.
50 Preset Potentiometers. any 5 packs \(£ 4 \quad \star\)


We have been appointed stockist of Amtron high quality construction kits. Uk92 Teleßhone Amplifie UK220 Signal Injector
UK230 AM/FM Antenna Amplifier
UK300 Four channel Radio Controil
UK310 Radio control Receiver. UK325 "GCX2', channel splitting UK330 "GCX2" and channel splitting UK345 Suit 1500 and 2500 Hz . UK415 Resistor Box UK425 Capacitor Box
UK525 VHF tuner 120 to 160 mHz
UK540
LW/MW/FM
UK540 LW/MW/FM funer.
UK790 Capacitive Burglar A
UK835 Guitar pre-amplitier
\(\begin{array}{r}\mathrm{E} 1.89 \\ \mathbf{E} 7.91 \\ \hline\end{array}\)
 \(\underset{£ 3.28}{\substack{\text { £.55 } \\ £ 3}}\) £7.86 £ 8.86 \(£ 6.55\)
£8.69 \(£ 8.69\)
E8.39
£12.44
ع27.54


AUDIOTRONIC Model ATM1 Top value 1.000
opv pocket multi-
 \begin{tabular}{l} 
OUR PRICE £2.95 P\&P 15p \\
\hline AUDIOTRONIC Madel ATM5
\end{tabular} Jewel movement,
attra ctively moutdod
case with edgwise case with edgwise
ohms adiustme ohms adjustment
Ranges: \(0.3 / 15 / 150\) /
\(300 / 1200 \mathrm{AC}\) Ranges: \(0-3 / 15 / 150 /\)
3301200 V AC
12500 ovvl. \(06 / 30 /\) \(300 / 600 \mathrm{VVC}\)
\(15000 \mathrm{ol}^{2} .0-300\)

 Suppliod with battan
test lears and data
 OUR PRICE \(£ 3.50\) MODEL C1092 MULTIMETER
 300 mA . Resistence:
\(\mathrm{R} \times 10\), \(\mathrm{A} \times 100.0\). Complete with battery, test to teads and
data booklet. Size: \(120 \times 73 \times 28 \mathrm{mmm}\). OUR PRICE \(£ 3.75\) MODEL U437 MULTIMETER 10,000opv. A first
class, instrument manjuactured in
USR standards. Ranges: \begin{tabular}{l}
\(2.5 / 10 / 55 / 2501\) \\
\(500 / 1000 \mathrm{~V}\) \\
\hline 100
\end{tabular} 5001000 DC
2.50150250 C
50011000 V A. \(5.5 / 10500 \mathrm{AC}\)
\(\mathrm{DC} / \mathrm{curr}\) ant 100 u \(1 / 101010 \mathrm{maA} 1 \mathrm{~A}\).
Resistence 300 o Resistence 300 oh
\(3 / 30 / 300 \mathrm{k} / 3 \mathrm{Meg}\) ohms. Compl
leads, instuct
carnving caso.
OUR PRICE £4.95

\section*{MODEL TH12}

\section*{20,000 opv. Overload protection. Slide switch \(50 / 15011000 \mathrm{~V}\) DC. O/10/} \(50 / 250 / 1000 \mathrm{~V}\) AC.
 OUR PRICE £5.95 P\&P 15 p \begin{tabular}{l} 
U4323 MULTIM \\
\(20,000 \mathrm{opv}\) Simple \\
\hline
\end{tabular} 200000pv. Simple
unit with audiolif
oscillator Suitabe
it osci, waror. Suitabe
for generat receive
tuning. Ranges: 0.5/2.5/10/50/25 2.5/10/15/250/500/1000V AC. 0.05 0.5/5/50/500mA DC. Resistance: 5/ \(50 / 500\) ohms \(/ 5 / 10 / 100 \mathrm{ob}\) ohms \(/\) /Meg.
Battery
operated. Size: \(160 \times 97 \times\) Battory operated. Size: \(160 \times 97 \times{ }^{\times}\).
40 mm . Supplied in carry ing case com. plete with test leads. OUR PRICE £7.00 P\&P20p


\section*{ALL PRICES EXCLUDE VAT}

\section*{A}

U4324 MULTIMETER


25/500 ohms ohistice: \(5 / 50 / 500 \mathrm{~K}\) ohms/5 Mohns. Decibels: \(-1010+12 \mathrm{~dB}\). Size
\(167 \times 98 \times 63 \mathrm{~mm}\). Supoliid comp lete witt tesst teads, spare diode and OUR PRICE \(£ 8.00 \quad\) P\&P 20p

\section*{TMK MODEL TW50K}

46 ranges, mirror
scale. \(50 \mathrm{~K} / \mathrm{NDC}\)
50 k NAC CC Volts: \(0.125 / 1\)
\(0.25 / 1.25 / 2.5 / 5 / 10\) \(0.5150 / 125 / 250 /\)
\(500 / 2000\) 500/1000. AC Vols
\(1.5 / 3 / 5 / 10 / 25 / 50 /\) 1.5/3/5/10/25/50/ 1000. DC current
\(25 / 500 \mathrm{~A} / 2: 5 / 5 / 25\) \(50 / 250 / 500 \mathrm{~mA} / 5 /\) 10A. Ressistence:
10ki \(100 \mathrm{k} / 1 \mathrm{Meg}\) /
10 OUR PRICE £8.50
 Whag 20 to +81 5018

U435 MUL TIMETER20
\begin{tabular}{l}
75 m \\
100 \\
\hline
\end{tabular}100/250/500/1000Current: \(500 \mathrm{~A} / 1 / 5\).0.5/2.5A AC. Resist-
ance: \(0.3 / 3 / 30 / 300 \mathrm{k}\)
plied comptete with tiacss,
clips and stell carrying
OUR PRICE £8.75 P8P 20p
U4312 MULTIMETER
instrument for
general electrical45e. 667apy.
\(0 / 0.31 / 5 / 7 / 50 / 30 /\)\(600 V D C \& 75 N V\)
\(00103 / 15 / 75 / 30 \%\)\(0 / 0.311 .5 / 7.5 / 301\)
\(60 / 150 / 300 / 600 /\)900 V AC \(0 / 300 \mathrm{uA}\)\(1.5 / 6 / 15 / 150 / 60 /\)
\(600 \mathrm{~mA} / 1 / 15 / 6 \mathrm{~A}\)
1.5/6A AC. 0/200/3k/30k ohms. DCaccuracy \(1 \%\). AC \(1.5 \%\). Knife edgepointer, mirror scale. Complete with
sturdy metal carrying case, leads andOUR PRICE \(£ 9.75\)KAMODEN 360 MULTIMETERHigh sensitivity
DC 100kohm/VAC \(10 \mathrm{kohm} / \mathrm{V}\)5." mirror scale,
overload protectoverload protect
ed. Ranges: 0.5 !\begin{tabular}{l} 
ed. Ranges: 0.5/ \\
\(2.5 / 10150 / 25 / 1\) \\
1500 V DC \(5 / 10\) \\
\hline
\end{tabular}\(1000 \mathrm{VCl} 5 / 10\)
\(50 / 250 / 1000 \mathrm{~V}\)\(501250 / 1000 \mathrm{~V}\)
AC Currant: \(0.01 \mathrm{~mA} / 0.5 / 5\)
\(500 \mathrm{~mA} / 10 \mathrm{~A}\). Resistance: 0.1 \(111011000 \mathrm{ohm} /\)
\(1 / 10 / 100 \mathrm{k}\) ohms

\(10 / 100 \mathrm{M}\) ohms


Decibels onhs.
+62 dB Batrery operated Sive \(180 \times\)
\(140 \times 80 \mathrm{~mm}\). Supotied completem \(140 \times 80 \mathrm{~mm}\).
test leads etc. :
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{AMM} \\
\hline \\
\hline \\
\hline age an
braak
braid \\
\hline 10/25 \\
\hline \(94 \times 3\) \\
\hline and f \\
\hline OUR \\
\hline
\end{tabular}
 \(100 / 250 / 50\)
1000 V
0 0/2.5/10/25/100/
\(250 / 500 / 1000 \mathrm{~V}\) AC O/500 A/5/50/
\(500 \mathrm{~mA} 12 \mathrm{~A} / \mathrm{C}\) 0/60k/6 meg/60 megohm OUR PRICE E10.95 Carr. peid \(\frac{\text { Leather case for above E1.75 }}{\text { HIOKI 750X VOLT-OHM }}\) HIOKI \(750 X\) VOL
MILLIAMETER



 OUR PRICE E11.95 P\&P 40p KAMODEN HM720B FET VOM
 \(1000 \mathrm{VDC} 0 / 2.5 / 10\)
\(50 / 25011000 \mathrm{~V}\) AC.
\(0 / 254 \mathrm{~A} / 2.5 / 25 / 250\) \(0 / 25 u A / 2.5 / 25 / 250\)
mADC.
\(0 / 5 \mathrm{k} / 50 \mathrm{k} / 500 \mathrm{k} / 5 \mathrm{M}\) 500 Megohms
OUR PRICE E14.95 P\&P 300
 OUR PRICE E17.50 P\&P 25p TE4O HIGH SENSIT
AC VOLTMETER AC VOLTMETE
10 Meg input.
10 ranges: \(0.001 /\)
 300 RMS
\(5 \mathrm{cps}-1.2 \mathrm{MHz}\). -40 to +50 dB
Suplied complete
with leads and supplied com
with leads and
instructions.
 OUR PRICE £ 17.50 MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity \({ }^{330}\)
Onms \(/\) Volt AC and DCC
Accuracy \(0.5 \%\) Accuracy 0.5
DC. 1\% AC.
Scale length. SESMm.50uA/
\(01.30 / 7 / 7.5 / 15 /\)
1.50 \(1.5 / 3 / 7.5 / 15 /\)
\(30751501300 /\)
750 \(75 \mathrm{~mA} / 1.5 / 3 /\)
\(7.5 \mathrm{~A} / \mathrm{DC} / 3 / 3 /\)
\(7.5 .15 / 30 / 75 /\)
5 \(150 / 300 / 750 \mathrm{~mA}\)
\(1.5 / 3 / 7.5 \mathrm{AACC}\)
\(0 / 75 / 750 / 300 / 750 \mathrm{mv} / 15 / 3 / 75 / 15 \mathrm{l}\) \(0 / 75 / 150 / 300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /\)
\(30 / 75 / 150 / 300 / 750 \mathrm{~V}\) DC. \(0 / 750 \mathrm{mV}\) / 1.5/3/77.5/5/730/75/150/300/750V
AC. Automatic cut out device. Supp AC. Automatic ceut out device. Supp
lied complete with test leads, manual
and test certiticates OUR PRICE £13.95 P\&P 25p
 Resistance: 0.06 / 0. \(612 / 6 / 20 / 60 / 200 \mathrm{k}\) ohms/2 Mohns. Batteny operated. Supplied complete
with orobes, teads and steel carrying with probes. leads and steel car
case. Size: \(115 \times 215 \times 90 \mathrm{~mm}\). OUR PRICE E10.50 P\&P 20p

L83 TRANSISTOR TESTER Tests ICO and B .
PNP/NPN. Operates
from 9 V battery from 9 V battery.
Instructions suppli OUR PRICE \(£ 3.95\) P\&P 20p
 KAMODEN HM350 TRANSISTOR TESTER High quality
instrument
itst test reverse deak
current and DC curent and DC
current. Ampli-
ficetion fication fac tor of
NPN. PNP, diodes transistors, SCR's
gic. 4 , square
cos. Clebr scale mater
Operates from internal baterie Complete with
instructions, laads
ind OUR PRICE \(£ 12.50\) P\&P 30 p S100TR MULTIMETER TRANSISTOR TESTER Rea, OOOopv. Mirro
scale. Overload protection. 0/0. \(12 /\) \(606 / 12 / 30 / 120 /\)
6000 DC. \(0 / 6 / 301\) \(120 / 600 \mathrm{~V}\) Ac. \(0 / 12 / 600 / A / 12 /\)
\(300 \mathrm{~mA} / 6 / 12 \mathrm{DC}\) \begin{tabular}{l}
\(0 / 10 \mathrm{k} / 1 \mathrm{Meg} /\) \\
100 Meg \\
\hline
\end{tabular}

ransistor tester measures Alpha. Beta
and ICO. Complete with instructions, batteries and leads. TE16A TRANSISTORISED SIGNAL GENERATOR 5 ranges. 400 kH
10
inexpensive
in inexpensive
instrument for instrument for
the handy-man Operates On 9 V battery. Wide
easy to read
 \begin{tabular}{l} 
easy 10 read \\
cale. 800 kHz \\
\hline
\end{tabular} Modulation. \(149 \times 92 \mathrm{~mm}\) Complete OUR PRICE £8.97 P\&P 25p MODEL TE20 RF SIGNAL GENERATOR
 variable audio output.
Accut to 8V. Power requirements:
output
\(105-125 \mathrm{~V}, 220-240 \mathrm{~V}\) AC. Size: 193 \(105-125 \mathrm{~V}, 220-240 \mathrm{~V}\) AC. Size: 193
\(\times 265 \times 150 \mathrm{~mm}\). Complete with test leads etc. OUR PRICE E17.50 P\&P 40p ARF 300 AF/RF SIGNAL GENERATOR All transistorised compact fully
portable. AF sine
wave 18 Hz to 220 kHz . AF square wave 18 Hz to 100 k
Hz . Output Square Hz . Output Squar
Sine wave 10 V . Pine RF 100 kHz to
200MH 200 MHz . Output

\(220 / 240 \mathrm{~V}\) AC operation OUR PRICE \(£ 29.95\) P\& 50p AT201 Decade ATTENUATOR Frequency range 0-
200 kHz . Attanuator
\(0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}\)
steps. Impedence 600 ohms. Input
power maximum 30 dBm . Size: \(180 \times\) power maxir
\(90 \times 55 \mathrm{~mm}\).
\begin{tabular}{|c|c|}
\hline OUR PRICE £12.50 & P\&P 37p \\
\hline \multicolumn{2}{|l|}{MCA220 Automatic} \\
\hline \multicolumn{2}{|l|}{Voltage Stabiliser} \\
\hline Input 88-125V AC or & \\
\hline 176-250V AC. Outpur & \\
\hline 120 V AC or 240 V AC 200V/A rating. P\&P 50 & \\
\hline OUR PRICE \(£ 11.97\) & \\
\hline
\end{tabular}

PS1008 Regulated POWER
SUPPLY UNIT


OUR PRICE £11.97 P\&p 25p PS200 Regulated POWER SUPPLY UNIT

\section*{Solid state. Variab}
output \(5-20 \mathrm{~V}\) DC
up to 2 Amp. Inde
pendent maters to
pendent meters to
monitor voltage and
current. Output

\section*{current, Ou tput
\(220 / 240 \vee \mathrm{AC}\).}

0


OUR PRIČE £19.95

\section*{}

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.


\section*{CLEAR PLASTIC
Size: \(100 \times 80 \mathrm{~mm}\) \\  \(1000 \mathrm{~A} \mathrm{~A}^{\prime}\)
5000 A \\  \\ \begin{tabular}{l}
1 mA \\
\(1 \mathrm{~A} D C^{\prime}\) \\
\(5 A D C\) \\
\(20 V D C\) \\
50 DC \\
\hline
\end{tabular}}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MODEL ED107 EDUCATIONAL METER Size: \(100 \times 90 \times 150 \mathrm{~mm}\) including terminal:} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{A range of high quality moving coil instruments ideal for school experi.
ments and other bench applications. \(3^{\prime \prime}\) mirror scale. The moter movement is easily accessible
to demonstrate internal to demonstrate internal working.}} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & & \\
\hline 10v Dc .. ... & \({ }_{\text {f66.55 }}\) & 300 V DC \({ }^{\text {500 }} \mathrm{mA} \times\) & ¢6.
¢7 77 \\
\hline 15 V DC .. & \({ }^{ \pm 6.55}\) & & \\
\hline 20V DC .... & \({ }^{\text {¢ } 6.55}\) & \(5 \mathrm{~V} / 15 \mathrm{~V}\) DC & \\
\hline 50 VDC & E6.55 & 1A/15A DC & \(\underline{87.70}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
CLEAR PLASTIC MODEL 85P \\
Size: \(120 \times 110 \mathrm{~mm}\)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\(50.4 .\).} \\
\hline \multicolumn{4}{|l|}{} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline 500 mA & \begin{tabular}{l} 
E4. \\
E4, \\
\hline
\end{tabular} & & \\
\hline \multicolumn{4}{|l|}{1 A DC \({ }^{\text {a }}\)} \\
\hline \({ }^{5 A D C}\) C .. .. & & S Meter 1mA.. & E4.30 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 30 A DC & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline 50 S & E4.30 & \({ }^{20 A} A C\) & 0 \\
\hline 150 V & £4.30 & & \\
\hline
\end{tabular}
\(\begin{gathered}\text { IItems with asterisk are Moving Iron } \\ \text { type, all others are Moving Coil }\end{gathered}\)
CLEAR PLASTIC MODEL SDB30
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CLEAR PLASTIC MODEL SD830 Size: \(110 \times 83 \mathrm{~mm}\)}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\({ }^{50.0-500 A}{ }^{\text {a }}\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline  & \begin{tabular}{l} 
¢ \\
f3. 30 \\
\hline 80
\end{tabular} & 10 VDC
20 DC
.. & \(\ddagger 3.40\)
\(£ 3.40\) \\
\hline 500 mA & f3.40 & \({ }_{50 V D C}{ }^{\text {a }}\).. .. & E3.40 \\
\hline \multicolumn{4}{|l|}{14 DC .. .. \(£ 3.40\) 300V DC .. .. \(£ 3.40\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{10ADC .. .. \({ }_{\text {S }}\)}} \\
\hline & & VUMeter & \({ }_{\text {E3. }}\) \\
\hline
\end{tabular}

\section*{EDGWISE MOD}

\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& £ 4.15 \\
& 53.95 \\
& 53.75 \\
& 53.50 \\
& 53.95 \\
& £ 3.85 \\
& £ 3.50 \\
& £ 3.50
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}



CLEAR PLASTIC MODEL 65P
Size: \(86 \times 78 \mathrm{~mm}\)
60.


Super valut tip qualitiy TRIO equipment
TRIO JR599 RECEIVER


Nine wavo-bandz covering \(9.8-29.7\)
MHz, \(144-146 \mathrm{MHz}\) and 10 MHz WWV SSB, CW, AM Mnd FM. AF output is more than 1 Watr. SMotar. Squetich
control. BFO. Variable AF and RF
 for phones. Power requirement fock
240 AC . \(12 / 14 \mathrm{~V}\) DC. Stze: \(270 \times\) \(140 \times 310 \mathrm{~mm}\)
Our Price 1132.50 carr.
TRIO 9R59DS RECEIVER


Four bends covering 550 kHz to 30
MHz continuous and electrical bandspread on \(10,15,20,40\), and 80 mtrs . ohm output and phone jack. SSB- 8
CW , ANL, variable BFO. S Meter and separate band spread dial. IF freq-
uency 445 kHz , audio uency 445 kHz , a dio output \(1 / 2\) watt.
\(V\) ariabis \(R F\) and \(A F\) gain controls.
\(115 / 250 \mathrm{VAC}\) with
Our Price \(542.51 \underset{\text { PAID }}{\text { CARR. }}\) TRIO TR2200 TRANSCEIVER Fully transisto
iseof portable
VHF transceim ised fortable
VHF transceiver
Will transmiter Will transmit and
receive on tix receive on six
channeis between
\(144-146 \mathrm{MHz}\) 1 watt transmitter. 12 V DC
internal or ext. internal or ext
ernal supply. Built-in charger
for Ni -Cad cells. Power/volume
 switch, squelch control, channel sol.
ector, mic. socket, earphona/external speaker socket. Complate with micro-
phone and \(144.48,144.728\) \& 145.32 \begin{tabular}{l} 
crystals. Size: \(134 \times 58 \times 180 \mathrm{~mm}\). \\
OUR PRICE \(£ 79.50 \quad\) Carr.paid \\
\hline
\end{tabular} BELTEK W5400 CAR
TRANSCEIVER TRANSCEIVER


Solid state moblle rrancelver for 12 on DC 12 of Transmits and receives 144 and 146 MHz . Power output 110 W
and 1 W switchable. Controls: On/oft/ volume, squelch and channel seliect-
or. Internal \(3^{\prime \prime}\)
speaker. Complate or. nth dy namic mic. PTT switch, three
wets of crystals for \(144,48,144.6\) and 145 MHz , mounting bracket and ins-
tructlons. Size: \(150 \times 70 \times 220 \mathrm{~mm}\). \(\frac{\text { OUR PRICE E75.00 P\&P 50p }}{\text { M/ANE }}\) WALKIE


SKYFON 1
OUR PRICE \(£ 24.95\) per pair P302 Two Channal 300 mW
OUR PRICE \(£ 52.50\) per pair P1003 Three Channel 1 Watt OUR PRICE 571.25 per pair P\&P 50p per pair
NB, Licence required for use in UK Station INTERCOM


Master and two sub-stetions. Can be
ured on desk or wall mounted. Comp. lete with cable and batteries OUR PRICE £5.25 P\&P 50p
 AND G. W. SMITH \& CO. (RADIO).

LHO2S STEREO HEADPHONES
 Wonderful valu
and excellent

\section*{performance}
combined. Adjust-
Impedence 8 oh
\(20-12,000 \mathrm{~Hz}\). Complete with OUR PRICE 12.25 PgP 30p TE1035 Stereo HEADPHONES ellent response. Foam
rubber earcups. Adiust.
able headband. 8 ofms able headband. 8 ofms impedence. Frequency
response \(25 \mathrm{~Hz}-18 \mathrm{kHz}\) Complete with cable
 OUR PRICE E2.60

HIGH QUALITY
CONSTRUCTION
KITS
WE ARE
APPOINTED
STOCKISTS AT
ALL BRANCHES

Al kits are complete with compre-
hensive easy to follow instructions and covered by full guarantee.
Post and Packing 15p per kit.

\section*{,}

AE 2 Pre-amplifier.
AE4 Flasher
AE5.Astable multi-vibra AE7 MC generato
AE8 Bass filter

\section*{AE9 Treble filter.}

AE 20 Mono amplifier
AF 25 Mixer.....................
AF35 Emitter amplifier.
AF 305 Intercom...........
AF 310 Mono amplifier......
AT5 Automatic light contro AT5 Automatic light contro AT30 Photo cell switch unit. AT50 400W triac light AT562,200W triac light
dimmer/speed control.......
£6.90
AT60 1 channel light control..
AT65
AThannel light control.. \(£ 14.55\)
AT65 3 channel light control.. \(£ 14.55\)
GP304 Circuit board.............. \(£ 4.94\)
GP310 Sircuit board....i.......
GP 10 use with \(2 \times\) AF 310 .
GP 312 Circuit board.........
GU330 Tremolo unit.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECORD DECKS P\&P 50p} \\
\hline BSR McDONALD & \\
\hline C1 14 Mini. & ¢3.95 \\
\hline C129 Mono. & 65.50 \\
\hline C137. & 17.00 \\
\hline 510/TPD. & £12.55 \\
\hline 610. & £11.35 \\
\hline \(610 / \mathrm{TPD}\). & £16.65 \\
\hline & £22,70 \\
\hline 810. & £28.30 \\
\hline MP60 & ¢8.90 \\
\hline MP60/ADC K8. & £11.50 \\
\hline MP60/TPD. & £14.20 \\
\hline HT70. & £12.50 \\
\hline HT70/ADC K7E & £15.95 \\
\hline HT70/TPD....... & £17.80 \\
\hline \multicolumn{2}{|l|}{CONNOISSEUR} \\
\hline BD1 Kit. & £10.20 \\
\hline BD1 Chassis & £12.50 \\
\hline BD2/SAU2/Chassi & £25.50 \\
\hline BD2/SAU2/Plinth/Cove & ¢32.25 \\
\hline \multicolumn{2}{|l|}{GARRARD} \\
\hline 1025T Stereo. & £4.95 \\
\hline 2025TC Less cartridge......... & 66.35 \\
\hline 2025TC/KS40A. & f6.95 \\
\hline SP25 Mk3. & ¢9.25 \\
\hline SP25 Mk3/G800. & \(£ 10.95\) \\
\hline SP25 Mk 4. & £10.90 \\
\hline SP25 Mk 4/M75-6 & £13.90 \\
\hline \(86 \mathrm{SE} . . .\). & £20.00 \\
\hline SL65B. & £11.15 \\
\hline SL72B. & £17.75 \\
\hline SL958. & \(f 28.00\) \\
\hline GOLDRING & \\
\hline G101 Mk2/P/C & £22.50 \\
\hline GL72. & f25.45 \\
\hline GL72P. & ¢33.75 \\
\hline GL75 & ¢32.20 \\
\hline GL75P & £41.65 \\
\hline GL78. & £34.60 \\
\hline GL78/P/C & £56. 25 \\
\hline GL85/P & ¢72.00 \\
\hline \multicolumn{2}{|l|}{RECORD DECK PACKAGES} \\
\hline BSR McDONALD P\& & P\&P 75p \\
\hline 210/SC7M & £7.95 \\
\hline C129. & £9.50 \\
\hline MP60/G800 & £19.50 \\
\hline MP60/TPD/ADC K8. & £16.80 \\
\hline MP60/M44-7. & £17.50 \\
\hline HT70/TPD/ADC K7E & £21.25 \\
\hline 610/TPD/ADC K8. & £19.25 \\
\hline \multicolumn{2}{|l|}{GARAARD} \\
\hline 2025 TC/9TA.HC/D............... & ... \(£ 11.35\) \\
\hline SP25 Mk3/G800 & £18.15 \\
\hline SP25 Mk3/M44E.................. & ... £18.25 \\
\hline SP25 Mk3/M44-7. & £17.80 \\
\hline SP25 Mk3/M55E. & £18.80 \\
\hline SP25 Mk3 Module/M75-6.... & .. \(£ 19.45\) \\
\hline SP25 Mk 4/G800.................. & £19.95 \\
\hline SP25 Mk4/AMC50E (M55E).. & I. \(£ 21.30\) \\
\hline AP76/G800. & f26.75 \\
\hline AP76/G800E & £28.95 \\
\hline AP76/M44-7. & £27.50 \\
\hline AP76/M44E & f28.00 \\
\hline AP76/M55E........................ & ... \(£ 28.60\) \\
\hline AP76/M75ED & £35.20 \\
\hline AP76/M75EJ. & £31.20 \\
\hline GOLDRING & \\
\hline GL72/G800........................ & .. £35.65 \\
\hline GL75/G800. & £40.90 \\
\hline GL75/G800E. & \(£ 43.35\) \\
\hline GL78/G800. & £45.55 \\
\hline GL78/G800E & £48.15 \\
\hline G101/P/C/G800.................. & £23.70 \\
\hline \multicolumn{2}{|l|}{RANK DOMUS} \\
\hline BD2000.............................. & ... \(£ 43.60\) \\
\hline BA4000.............................. & . \(£ 53.95\) \\
\hline \multicolumn{2}{|l|}{BD6000................................. £67.50} \\
\hline \multicolumn{2}{|l|}{WHARFEDALE} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Linton W30 Teak ................ \(\begin{aligned} & \text { ¢23.90 } \\ & \text { Linton W30 White......... } \\ & \text { £25. }\end{aligned}\)}} \\
\hline & \\
\hline
\end{tabular}

\section*{SPECIAL}

BARGAIN! FERGUSON
3406 HI-FI
SPEAKERS
High quality 2 way spataker \(5 y\) stems
25 Watts. \(4-8\) ohms. \(40 \mathrm{~Hz}-18 \mathrm{kHz}\). 25 Watts. \(4-8\) ohms. \(40 \mathrm{~Hz}-18 \mathrm{kprox}\).
Size: \(560 \times 340 \times 255 \mathrm{~mm}\) appren
Wood grain finish with black fronts. OUR PRICE £26.95 PR. P\&P \(f 1\) RUH6 Reflex Horn Speaker Built-in driver
unit. Impedence 16 ohms. Power rating 10W. Response 380 7000 Hz .
app. \(6^{\prime \prime} \times 6^{\prime \prime}\)
Weather and shock protected OUR PRICE E4.97


AUDIOTRONIC CRITERION SPEAKERS
High quality three way
speaker system offerion
a performance better
than more expensive
units. Teak finished
with dark fronts.
frequency response:
\(40 \mathrm{~Hz}-20 \mathrm{kz} .8\)
Maximum power 20 watts. Size: 476
\(\times 232 \times 232 \mathrm{~mm}\). OUR PRICE £27.50 Pr. P\&P£1

\section*{AUDIOTRONIC}

LOW NOISE CASSETTES
ary dial with hours, minutes and seconds. Automatically turns off radio ing will turn on again when fequired.
240 V AC operation. Switch rating \(250 \mathrm{~V}-3 \mathrm{Amp}\) OUR PRICE E5.95 P\&P 30p
HF61 Diode detector.
HF65 FM transmitter
HF75 FM receiver.
HF310 FM tuner..............
HF325 Deluxe FM tuner....
HF330 Dacer HF380 Iw/vht aerial amplifier LF380 broadband aerial amp. M160 Multi-vibrator
M192 Stereo balance me
M1302 Transistor tester.
NT 10 Stabilised power supply
NT300 Stabilised \(p\). supply..... \(£ 12.51\)
NT305 Voltage converter..... \(£ 4.50\)

Amateur Electronics by Josty-Kit, the professional book for the amateur
-covers the subject from basic prin cipals to advanced electronic techniques. Complete with circuit board fo
\(A E 1\) to \(A E 10\) above. OUR PRICE £3.30 (No VAT)

\section*{DT55G DIGITAL CLOCK} MECHANISA
 and aut
\(\begin{array}{lllc}\text { TYPE } & 5 & 10 & 25 \\ \text { C60 } & £ 1.27 & £ 3.00 & £ 7.08 \\ \text { C90 } & £ 2.24 & £ 4.25 & £ 10.00 \\ \text { C120 } & £ 2.73 & £ 5.17 & £ 12.24\end{array}\) C120 £2.73
AUDIOTRONIC
Cr02 CASSETTES
\(\begin{array}{lccc} & \text { TYPE } & 5 & 10 \\ \text { CR60 } & £ 3.92 & £ 7.72 & £ 19.12 \\ \text { CR90 } & £ 5.32 & £ 10.46 & £ 25.22\end{array}\) AUDIOTRONIC
8 TRACK CARTRIOGES \(\begin{array}{lccc}\text { TYPE } & \text { Each } & 5 & 10 \\ 40 \mathrm{M} & 85 \mathrm{p} & £ 4.00 & £ 7.50 \\ 80 \mathrm{M} & \mathrm{f} .15 & \mathbf{£ 5 . 4 0} & £ 10.25\end{array}\) P\&P Cassettes 3 . Carridges 50 each
OVER 10 of either POSTFREE!
EMI LOUDSPEAKERS Model \(35013 \times 8^{\prime \prime}\) with single tweeter/crossover
\(20-20,000 \mathrm{~Hz}\). 15 watts RMS. Available 8 or OUR PRICE
£7.25 each P\&P 37p Model \(45013 \times 8\) " with
twin tweeter/crossover \(55.13,000 \mathrm{~Hz}, 8\) watts
RMS. Available 8 or 15 OUR PRICE E 3.62 each P\&P 25p
 CAMBRIDGE CALCULATOR
To build yourself. Complete kit of parts
with step by step
inst instructions to build
a full specification pocket sized


OUR PRICE £24.95 P\&P free ALSO AVAILABLE READY OUR PRICE £27.20 P\&P 25p Also availahle-
SINCLAIR EXECUTIVE OUR PRICE E35.45 P\&P 25p SINCLAIR EXECUTIVE with MEMORY
\(\frac{\text { OUR PRICE £44.50 P\&P 25p }}{\text { SINCLAIR Project } 80 \text { Modules }}\) SINCLAIR Project 80 Modules Z60 Power Amplifier Stereo 80 Pro-Amplifier. Active 805.
PZ5iget Power PZ6 Power Supply
PZ Popply.
Power Supply
............. PZ8 Power Supply.....
Transformer for P Z
SINCLAIR Projet 80 Pa
 \(2 \times 260 /\) tereo 80/P28............
\(2 \times 266 /\) Steren
POST \& PACKING 35p each.
AUDIOTRONIC AHA101 Stereo Headphone Amplifier
 or tuner
inputs with

separate volume controls for tiach channel. Operates from 9 V battery. OUTPUT: 50 mV and 100 mV .
\(\frac{\text { OUR PRICE } £ 8.50 \quad \text { P\& P 20p }}{1021 \text { Stereo Listening Station }}\) 1021 Stereo and gain selectio
of loudspeakers of loudspeakers
with additional Wacility for stere
feadphone headphone
switching. Two

swain controls, speakers oni-off slide OUR PRICE \(£ 2.25 \quad\) P\& \& 15p MP7 MIXER-PREAMPLIFIER 5 Mic rophone
inputs each with inputs each with
individual gain
controls enablin

facilities. Battery operated. Size: 235 \(\times 127 \times 76 \mathrm{~mm}\). Inputs: Mics. \(3 \times 3 \mathrm{mv}\)
\(50 \mathrm{k} ; 2 \times 3 \mathrm{mV} 600\) ohms. Phono. Mag. 4 mV 50k: Phono Ceramic 100 mV 1
Meg. Output 250 mV 100 k . OUR PRICE £8.97 P\&P 20 EA41 REVERBERATION AMPLIFIER

microphone, g
your amplifier. Volume control and wepth of reverberation control. Beau
walnut cabinet. \(184 \times 77 \times 108 \mathrm{~mm}\). OUR PRICE E7.50 P\&P 20p

\section*{Model A1018} FM TUNER 6 transistor high
guality unit 3IF stages and
double tuned

 OUR PRICE \(£ 9.65\) P\&P 30p ALL PRICES EXCLUDE VAT

\section*{CALL INTO YOUR NEAREST BRANCH OR ORDER WITH CONFIDENCE BY MAIL ORDER \\ CENTRAL LONDON:}

10 TOTTENHAM GT. RD. \(01-6372232\) 27 TOTTENHAM GT. RD. \(\quad 01-6363715\) 33 TOTTENHAM CT, RD. \(\quad 01-6362605\) \(\begin{array}{lll}\text { 42/45 TOTTENHAM CT. RD. } & 01-6360845 \\ 87 \text { TOTTENHAM CT. RD. } & 01.5803739\end{array}\) \begin{tabular}{ll}
\(257 / 8\) TOTTENHAM CT. RD. & 01.580 \\
\hline
\end{tabular} \(\begin{array}{ll}257 / 8 \text { TOTTENHAM CT. RD. } & 01-5800670 \\ 21 \text { OLD COMPTON ST. } & 01-4379369\end{array}\) 3 LISLE ST. WC2 \(\quad 01.4378204\) 34 LISLEST. WC2 \(01-4379155\) 118 EDGWARERD.W2 01-7239789 193 EDGWARE RD. W2 01.7236211 207 EDGWARERD. W2 01.7233271 346 EDGWARE RD. W2 01.2620387 382 EDGWARERD. W2 \(01-7234194\) 109 FLEET ST. EC4 \(\quad 01-3535812\) \(\begin{array}{ll}\text { 378 HARROW RD. W9 } & 01.3532833 \\ & 01.2869530\end{array}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ESSEX} \\
\hline 86 SOUTH ST. ROMFORD & 70-20218 \\
\hline \multicolumn{2}{|l|}{SURREY} \\
\hline \multicolumn{2}{|l|}{1046 WHITGIFT CENTRE, CROYDON 01-681 3027} \\
\hline 27 EDEN ST. KINGSTON. & \(01-5467845\) \\
\hline 32 HILLST. RICHMOND & 01-948 1441 \\
\hline \multicolumn{2}{|l|}{KENT} \\
\hline \multicolumn{2}{|l|}{53/57 CAMDEN RD., TUNBRIDGE WELL5
0892-23242} \\
\hline \multicolumn{2}{|l|}{LEICESTERSHIRE} \\
\hline
\end{tabular}

45 MARKET PLACE, LEICESTE
0533-537678

\section*{ALL BRANCHES OPEN FROM Qam to 6pm MON. TO SAT. \\ HEAD OFFICE AND MAIL ORDER DEPARTMENT}

AUDIOTRONIC HOUSE.
the hyde industrial esiate. THE HYOE, LONDON NW9 6JJ TELEPHONE: 01-205 3735 \& 5651.

MAIL ORDER SPECIALISTS We offer a speedy and efficient
service by mail order.
Remember to add \(10 \%\) VAT to Remember to add \(10 \%\) VAT to carriage and packing and send cash with order to head office.
TO AVOID DELAYS PLEASE
PRINT NAMEAND ADORESS PRINT NAME ANDADORESS
CLEARLY IN CAPITALS.

\section*{}

BARGAIN CENTRE
Many special clearance offers 2nd roit iestam cuint ab. for personal shoppers.

EXPDRT personal exports arranged for overseas visitors at all our branches.
Goods despatched to all parts of the world through our Immediate attention given orders.

CHEQUES ACCEPTED FROM PERSONAL SHOPPERS ONLY WITH BANKERS CARD

All prices correct at
\(12-2-74\) but subject \(12-2-74\) b
to change.

\section*{G．F．MILWARD}

ELECTRONIC COMPONENTS
Wholesale／Retail：

Special Offer ！！！－From Stock－New－Boxed－AND 60\％Discount！ MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No． & Working Voltage Voc． & \[
\begin{aligned}
& \text { Capacitance } \\
& \mu \mathrm{F}
\end{aligned}
\] & Max．Ripple Current at \(50^{\circ} \mathrm{C}\) & Weight & Price \\
\hline 07114472 & 10 & 4700 & 2.5 amps & 102 & 15p \\
\hline 07114682 & 10 & 6800 & 4 amps & 10z & 17p \\
\hline 07115332 & 16 & 3300 & 2.4 amps & 102 & \(15 p\) \\
\hline 07115472 & 16 & 4700 & 3.9 amps & 102 & 17p \\
\hline 07115682 & 16 & 6800 & \(5 \cdot 8\) amps & 11920 & 22p \\
\hline 07114113 & 10 & \(11000+11000\) & 10.6 amps & 302 & 37 p \\
\hline 07214173 & 10 & \(16500+16500\) & 13.4 amps & 40z & 49 p \\
\hline 07215752 & 16 & \(7500+7500\) & 10.5 amps & 302 & 37 p \\
\hline 07215113 & 16 & \(11000+11000\) & 13.8 amps & 4102 & 49p \\
\hline 07216502 & 25 & \(5000+5000\) & 9.6 amps & 3102 & 370 \\
\hline 07216752 & 25 & \(7500+7500\) & 12.6 amps & 4102 & 49p \\
\hline 07118681 & 63 & 680 & 2.1 amps & 102 & 15p \\
\hline \multicolumn{6}{|l|}{106 and 107 Series} \\
\hline 10614153 & 10 & 15000 & 7 mmps & 402 & 57p \\
\hline 10617103 & 40 & 10000 & 12 amps & 710z & \(94 p\) \\
\hline 10710222 & 100 & 2200 & 10 amps & 5102 & 74p \\
\hline Type No． & Voltage & Capacitance & Welght & & Price \\
\hline 10215163 & 16 & 16000 & 802 & & 20 p \\
\hline 10490003 & 20 & 339000 & 1602 & & 30 p \\
\hline 10490001 & 45 & 30000
2000 & 702
1602 & & 25p
50 p \\
\hline
\end{tabular}


A discount of \(10 \%\) may be deducted from above prices on lots of 100 of any one type


SMALL ELECTROLYTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ref．No． H8／2 & Capaclty 2． \(2 \mu \mathrm{f}\) & Voliage 25v & \[
\begin{aligned}
& \text { Price } \\
& 4 p
\end{aligned}
\] & Ref．No． H7／3A & \[
\begin{aligned}
& \text { Capacity } \\
& 64 \mu f
\end{aligned}
\] & Voltage
25 v & Price \\
\hline H8／2A & 3．3uf & 25 v & 4p & H714 & 64 4 f & 15v & 4p \\
\hline H8／3 & 3u1 & 50 v & 4 p & H7／4A & 64uf & 35v & 5 p \\
\hline H8／3A & \(4 \mu\) & 50 v & 4 p & H7／5 & 80ıf & 16v & 4p \\
\hline H8／4 &  & 25 v & 4p & H717 & 100 \(\mu\) & 25 v & 4 p \\
\hline H8／4A & \(5 \mu \mathrm{f}\) & 64 v & 4p & H7／8 & \({ }^{125 \mu}{ }^{\text {f }}\) & 16 v & 5p \\
\hline H8／5 & \(5 \mu\) & 10 v & 4p & H7／8A & 100 \(\mu \mathrm{f}\) & 35 v & \({ }^{\text {p }}\) \\
\hline H815A & \(5 \mu \mathrm{f}\) & 150v & 4p & H719 & 100ut & \(63 v\) & \({ }^{6} \mathrm{p}\) \\
\hline H8／6A & 104f & 10v & 4 p & H7／9A & 125 \({ }^{\text {f }}\) & 4v & 4 p \\
\hline H817 & 10， H & 70 v & 4 p & H7／10 & 125 \({ }^{\text {f }}\) & 25v & 6 p \\
\hline H8／8 & 16uf & 35 v & 4 p & H7／10A & 160uf & \(2 \cdot 5 \mathrm{v}\) & 3 p \\
\hline H8／BA & 164i & 16 v & 4 p & H7／11 & 160 \(\quad\) f & \(25 v\) & 6 p \\
\hline H819 & 20， & 6 v & 2p & H7／11A & 150 \({ }^{\text {f }}\) & 16v & 5p \\
\hline H8／9A & 20ut & 70 v & 4 p & H7／13A & \(200 \mu \mathrm{f}\) & 25v & 8 p \\
\hline H8／10 & 22 \(\mu\) ¢ & 50 v & 4p & H7／14 & 220uf & 50 V & 10p \\
\hline H8／10A & 22 \(\mu \mathrm{f}\) & 100V & 4 p & H7／15 & 220uf & \(25 v\) & 5p \\
\hline H8／11 & \(25 \mu \dagger\) & 12 v & 4 p & H7／15A & 22041 & 35 v & 10p \\
\hline H8／12 & \(32 \mu \mathrm{t}\) & 15 v & 4 p & H6／1A & 250山f & 4v & 3 p \\
\hline H8／12A & 30иf & 10 v & 4 p & H6／3A & 3204f & 2.5 v & 3 p \\
\hline H8／13A & 32－4 & 50 v & 4 p & H614 & 320ut & 10 V & 4 p \\
\hline H8／14 & 40上 & \(25 v\) & 5 p & H614A & \(330 \mu \mathrm{f}\) & 16 v & 5 p \\
\hline H8／14A & 40uf & 16v & \({ }^{4} \mathrm{p}\) & H615 & 330 \(\boldsymbol{4}\) & 25 v & 10p \\
\hline H8／15 & \(47 \mu \dagger\) & 50 V & \({ }^{4}\) & H6／5A & 330山it & 35 v & 15p \\
\hline H8／15A & \(40 \mu \mathrm{f}\) & 35 v & \({ }^{4} \mathrm{p}\) & H6／8 & 470hf & 25v & 10p \\
\hline H714 & 50 ht & 6 v & 3 p & H618A & 470山f & 35 v & 20 p \\
\hline H714 & 50 f & 10 v & 4 p & H6／9A & 400 Lf & 40 v & 20p \\
\hline H712A & 64 \(\mu \mathrm{f}\) & 2.5 v & 2p & H6／13A & 1000 \({ }^{\text {t }}\) & 25v & 16p \\
\hline
\end{tabular}

RECTIFIERS 1 N4007 1200 peak volts， 30 amps peak current， 1 amp mean current． 100 for \(£ 7 \cdot 50,1,000 £ 50\) ．

NEW！NEW！NEW！NEW！
An aerosol spray providing a convenlent means of productng any number of coples of a Printed circuit both simply and quickly．
Method：\(S\) sray copper laminate board with light senslive spray．Cover with transparent film upon which circuit has been drawn．Expose to light．（Ne need to use uitra－violet．）Spray with
developer，rinse and etch in normal manner． developer，rinse and etch in normal manner．
\(\begin{aligned} & \text { Lioht sensitlve aerosol spray } \\ & \text { Leveloper and Etehant }\end{aligned} . .\).
O．．．
\(\frac{\text { Copper－clad Flbre－glass Board－50p sq．it．（max．} 3 \times 4^{\prime} \text { ）}}{\text { NEWER THAN NEWII！}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Flbre Gl IIght－sens produce p five minute &  & pre－treat enabling inted eircul & \begin{tabular}{l}
with \\
to within
\end{tabular} &  & \begin{tabular}{l}
100 mm \\
100 mm 200 mm
\end{tabular} &  &  \\
\hline SILICON & P．N．P． & & & SILICON & N．P．N． & & \\
\hline Type & Voltage & Frequency & Price & Type & Voltage & Frequency & Price \\
\hline BCY 71 & 45 & 200 MHz & 12p & 2 N 3053 & 60 & & 17p \\
\hline BFS． 92 & 100 & 70 MHz & 20 p & 2 N 3707 & 30 & & 12p \\
\hline BFS 95 & 40 & 70 MHz & 17p & 2N 5179 & 20 & 900 MHz & 40p \\
\hline BFX 12 & 25 & 210 MHz & 10p & GERMAN & IUM P．N & ．P． & \\
\hline 2N 2906 & 60 & 200 MHz & 15p & ACY 44 & 50 & 1 MHz & 10 p \\
\hline 2N 3702 & 40 & 100 MHz & 11p & ADY 26 & 80 & 75 watts & E1 \\
\hline 2N 3703 & 50 & 100 MHz & 12p & AF 124 & 20 & 75 MHz & 20p \\
\hline & & & & AFY 19 & 32 & 350 MHz & \({ }^{20}\) p \\
\hline SILICON & N．P．N． & & & ASY 32 & 25 & 5 MHz & 10p \\
\hline BC 108 & 30 & 150 MHz & 10 p & ASZ 21 & 15 & 450 MHz & 20p \\
\hline BC 109 & 30 & 150 MHz & 10p & GET 113 & 32 & & 10p \\
\hline BF 179 & 225 & 125 MHz & 80p & GET 120 & 32 & 2 watts & 10p \\
\hline BF 180 & 30 & 625 MHz & 25p & OC 123 & 50 & 1 MHz & 10p \\
\hline BFW 58 & 80 & 80 MHz & 15p & OCP 70 & Llght－ & sensitive & 20p \\
\hline BFX 43 & 30 & 500 MHz & 20p & 2N 1307 & 30 & 10 MHz & 15 p \\
\hline BFX 86 & 40 & 50 MHz & ．17p & 2 N 1309 & 30 & 15 MHz & 45p \\
\hline BFY 53 & 30 & 50 MHz & 10p & 2 N 443 & 60 & 150 watts & ¢1 \\
\hline 2N 697 & 60 & 40 MHz & 12p & HIGH FR & EQUENC & Y，POWER & \\
\hline 2N 709 & 15 & 900 MHz & 30 p & BFR 64 & 40 & \(1,200 \mathrm{MHz}\) & £1 \\
\hline 2N 718 & 60 & 60 MHz & 12p & BLY 89A & 35 & 650 MHz & £5 \\
\hline 2N 753 & 25 & 250 MHz & 12 p & BLY 93A & 60 & 500 MHz & 65 \\
\hline 2N 744 & 20 & 300 MHz & 12p & BLY 218 & 36 & \(1,200 \mathrm{MHz}\) & ¢2 \\
\hline 2N 1613 & 75 & 60 MHz & 17 p & 2N 709 & 15 & 800 MHz & 15p \\
\hline 2N 2220 & 60 & 250 MHz & 15p & 2N 3926 & 36 & 250 MHz & E1 \\
\hline
\end{tabular}
\(\frac{2 N 2220}{\text { MICROWAVE DEVICES }}\)
\(C L\)
\(B 4\)
\(B X Y\)
\(B X\)
\(B X Y\)


\section*{Marshallis \\ 42 Cricklewood Broadway, London NW2 3ET Tel:01-4520161 Telex:21492 \\ Take advantage of our offer of Nitsuko electrolytic capacitors (before we sell them all) \\ \begin{tabular}{|c|c|c|c|c|}
\hline Voltage & Capacitance & Dimensions DxL (MM) & Quantity & Price \(£\) each \\
\hline \multirow[t]{3}{*}{6 v} & 2200 MF & \(18.0 \times 31.5\) & 10,000 & 0.076 \\
\hline & 3300 MF & \(18.0 \times 40.0\) & 10,200 & 0.090 \\
\hline & 4700 MF & \(22.4 \times 40.0\) & 9,900 & 0.105 \\
\hline \multirow[t]{6}{*}{10 v} & 33 MF & \(6.3 \times 16.0\) & 20,000 & 0.020 \\
\hline & 330 MF & \(10.0 \times 31.5\) & 4.000 & 0.023 \\
\hline & 470 MF & \(12.5 \times 31.5\) & 5,000 & 0.040 \\
\hline & 1000 MF & \(12.5 \times 31.5\) & 37,500 & 0.045 \\
\hline & 2200MF & \(18.0 \times 40.0\) & 18,000 & 0.080 \\
\hline & 3300 MF & \(22.4 \times 40.0\) & 20,460 & 0.100 \\
\hline \multirow[t]{4}{*}{16 v} & 220 MF & \(10.0 \times 31.5\) & 1,000 & 0.030 \\
\hline & 330 MF & \(12.5 \times 31.5\) & 2,500 & 0.045 \\
\hline & 470 MF & \(12.5 \times 31.5\) & 2,500 & 0.050 \\
\hline & 2200 MF & \(22.4 \times 40.0\) & 27,750 & 0.115 \\
\hline \multirow[t]{4}{*}{\(25 v\)} & 220 MF & \(12.5 \times 31.5\) & 2,500 & 0.0475 \\
\hline & 330MF & \(12.5 \times 31.5\) & 47,500 & 0.045 \\
\hline & 470 MF & \(18.0 \times 31.5\) & 13,200 & 0.0571 \\
\hline & 1000MF & \(18.0 \times 40.0\) & 7,000 & 0.090 \\
\hline \multirow[t]{4}{*}{\(35 v\)} & 100 MF & \(12.5 \times 31.5\) & 7,500 & 0.030 \\
\hline & 330 MF & \(18.0 \times 31.5\) & 5,500 & 0.080 \\
\hline & 470 MF & \(18.0 \times 40.0\) & 9,000 & 0.085 \\
\hline & 1000 MF & \(22.4 \times 40.0\) & 3,000 & 0.100 \\
\hline \(50 v\) & 220MF & \(18.0 \times 31.5\) & 2,200 & 0.085 \\
\hline \multicolumn{5}{|l|}{1000. off prices are shown} \\
\hline
\end{tabular}

\section*{INAIIIPLS}

MONEY BACK IF NOT SATISFIED Free fabulous NEW catalogue. Send SAEE. red traid deD's 17p? Til209

aclip22p BIGR panel clip \&RED LED 28p. GREEN \&clip59p
INFRA RED LED EI. IC photo amp44p. \& amp/switch \(85 p\)


\section*{Difity Disnlay LED /30.901.DIL £1.69}

Minitron type o-gdipil f1.19. sockets
Texas etc with 4 displays \(£ 12.6\) displays \(\&\) chip
Mostek date \(\&\) alarm 14 Hit: All parts \& case. National chip. 4dig it \(£ 20\).

 710 35p 72359 p. 555 timer 79 p ZN414 rx.£1:10 built \(£ 8\) 703 rf if \(28 \mathrm{p} \mathrm{mc} 1310 \&\) led \(£ 2.76 \mathrm{mc} 1339 \mathrm{£} 1 \cdot 20\) TAD 100 \& if \(£ 2\) 1AMP + REGU LATOR 7805, \(5(\& 7-20) \mathrm{V}\).also \(12 \& 15 \mathrm{~V} £ 1 \cdot 49\) AUDIO AMPS: mfc \(400050 \mathrm{p} ; 1 \& 2 \mathrm{~W} £ 1 \cdot 19 ; 3 \mathrm{~W} £ 1-29 ; 6 \mathrm{~W} . .\).
 \(74969 \mathrm{P}^{32 \mathrm{P}} 16447639 \mathrm{P} 74063 \mathrm{P}\)
 NEW I6pin counter/driver \(90 / 47 £ 2 \cdot 25\) ( DIL SOCKETS: Profesional/gold P. Pins hior lo Prof ile \(8,14,16 \mathrm{P}_{\text {in }} 13 \mathrm{p}\)
2N3055 33p.four E1. BC107, BC108, BC 109 all 7pea
 FETS:2N3819 19p 2N3823E 20p 4416 E 25 P BC \(182 / 3 / 4\) 10P EC2
2N2926 Oy 7p 2N3053 15p 2N \(3904 / 6\) T4p HEATSINKS \(5 \mathrm{f} / \mathrm{TO} 518 \mathrm{f} /\) TO 18 5p. TO3:4YL 29p TV3 14 p CAPACITORS 25VTO, 50, 100uf 5p. DISCS 4p. PRESETS 5p. CARBON POTS IIP.Switch+1 IPDual 55 PU1TRASONIC TRANSDUCERS £2ea T8T1 DG FLUORESCENT LIGHTS,8W.13"12VOLT E2.59 alaritionigs p.O. BOX 29,BRACKNELL,BERKS.

TRANSFORMERS
SAFETY MAINS ISOLATING TRANSFORMERS
Pri \(120 / 240 \mathrm{~V}\) Sec 120/240V Centre Tapped \&creened
 (Tatts) Welght

 Weight
10 oz a cased P \& P 67D. A 20 Watt version, \(£ 2.02\). P \& P lead and
LOW VOL



\title{
P. F. RALFE
}

\section*{ADVANCE CROSS HATCH \& DOT GENERATORS}

Suitable for 625, 405 \& Video. Switchable sound carrier generator. Offered brand new in original makers cartons. Price each \(\mathbf{1 2 8 . 0 0}\) postage inc.

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v . , irequency up to 250 MHz at 50 watts. Small size only, 2 in. \(x \frac{1}{}\) in. Offered brand new, boxed. Price \(\mathrm{fl} \cdot 50\), inc. P.\&P.
'ALCAB' Sealed rechargeable Nickel-cadmium batteries. Type W3.5, 1.2V at 3.5 Ah. Size as 'U2'. Offered new in packs supplying pp. 5 p. each separately at \(£ 1.25 .+\) pp. 5p. each
Automatic Constant current electronic battery chargers
specially designed for nickel cadspecially designed for nickel cadmiumcells. Metered and fused. Up to
twelve cells can be charged up to twelve cells can be charged up to
750 mA , variable 0.750 mA . Size \(7 \times 6 \times 5 \mathrm{ins}\). Brand new units. Price each \(£ 17\)

Smiths Led Weight indicators, self powered, measures 0 to 20 cwts in I cwt divisions on a \(4^{\prime \prime}\) cirscale meter indicator, 30 feet of cable and heavy duty load cell use with bell crank or actual reading is swt for F.S.D. brand

Cossor Electronic Invertors type CRA 200. A high quality device for producing a \(115 v 400 \mathrm{HZ}\) single phase output. Incorporating the following - Full overlozd protection.
- Full overload prot
- Remote control facilities. - Completely Solid State (Silicon transistors).
- Buile to Aircraft specifications. - I80VA of output continuous. May be run in series operation for 3 phase requirements. Offered brand new boxed units. Price \(\mathbf{£ I 7} 50\) Carriage 50p

\section*{AUDIO OSCILLATORS} Covers \(20 \mathrm{c} / \mathrm{s} 200 \mathrm{~K} / \mathrm{s}\) in Covers \(20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}\) in four ranges. Outpur voltage 1 micro volt to 10 v . in seven ranges. Buit in calibrator. Sine
wave O.P. is excellent over complete wave. Supplied with transmit case, adaptors and circuits and transformer for 240 A.C. \(£ 20\).

MINIATUREAEIUNISELECTORS 12 position \(\times 3\) bank 250 ohm coils, I bridging and 2 non-bridging wipersavailbases. Price E 4 .

BRAND NEW DIGITAL PANEL VOLTMETERS
10MV-1.99VV. 199 Measuring points. nput impedance 100 Mohm . Automatic zeroing. Measurements: \(755 \mathrm{~mm} \times{ }^{\times} \times\) \(72 \mathrm{~mm} \times 72 \mathrm{~mm}\).
OUR PRICE \(\mathbf{~} 24.50\).

\section*{DIGITAL MEASUREMENT Type} 2003 Digital Voltmeter. 31 Digit display. Mazsuring up to 1000 Voles. AS NEW 165 .
'MUIRHEAD DECADE OSCILLATOR' -type D890A. 4 dial type. Frequency up to Khz in 1 Hz steps. ncorporates a 'scope tube for very accurate frequency setting. Condition as new. Price \(£ 105\).

500 MHz FREQUENCY DIVIDER TCD 500. Sensitivity \(10 \mathrm{mV}(1-300 \mathrm{MHz})\), \(50 \mathrm{mV}(300-500 \mathrm{MHz})\). The TCD500 is designed to extend the range of existing
frequency counter by 10 or 100 times to \(a\) maximum of 500 MHz . Completely selfcontained, no external standards required. The TCD500 is suitable for any type frequency counter over 1 MHz . Solid-state, small size. Brand new. Price only \(\$ 100\).

\section*{MUFFIN INSTRUMENT} FANS
Dimensions \(4.5 \times 4.5 \times 1.5\) ins Very quiet running, precision fan specially designed for cooling electronic equipment, amplifiers etc. For lov. AC operation(practise is to run from split primary of mains transformer of use suitable mains dropper). CC only 11 Watts. List price over E 10 each. Our price, in brand new condision, is

\section*{DIGITAL FREQUENCY}

METER type 'FT300'-reads as frequency meter up to 99.99 KHz in three ranges or as tachometer,
99,990 RPM. Solid-state instrument. Clear read-out. Size only 8 in. by Clear read-out. Size only \(8 i n\). by
\(5 i n\). by \(2 \ddagger i n\). Weight \(4 \frac{1}{2}\) ibs. BCD outputs. Operating voltage \(110 / 240\) V. AC. Made by famous manufacturer. These units are brand new in orizinal makers cartons. Our price: \(\mathbf{E S S}\).

POLARAD Model SAB4WA SPECTRUM ANALYSER lOMHz-63GHz. I.F. Markers. Spectrum calibrator. Log/Lin seale. NB. This is not the instrument
with the expensive TWT with the expensive TWT to
replace. Supplied in full working, replace. Supplied in full working
excellent condition. Guarantee.

AVO TYPE I L.C.R. BRIDGE Slide-rule scale Price £75.00.
DERRITRON DIGITAL WHEAT STONE BRIDGE. Model 1075
Reads from I mill-ohm to 9.999 M ohms

\section*{ADVANCE LF SIGNAL GEN.} ERATOR TYPE SG70. Range 5 Hz to 125 KHz . Sine and square Wave. Direct floating output of 4 Watts into 600 ohms. ( 49 V.RMS indicated on calibrated meter). Distortion better than 1\%, at two with 50 db decade attenuator. With
BRA N NEW. Price \(\mathrm{fl} 145 \cdot 00\).
SCHOMANDL PRECISION FREQUENCY METER TYPE FDI WITH FDMI ADAPTOR GPO approved equipment for Radio Telephone Marine servicing etc. offered in as new condition with calibration certificate.
G.E.C. Uniselectors, 8-banks, 25 position full wipe. 75 ohm coil. Not new but excellent working condition. Each E2.
Brand new GEC 3 banks of 25 position uniselectors with fitted suppressor uniselector
\(£ 2.50\) each.
SIX Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with incex. 12 position 6 bank. Absolutely brand new in makers cartons sold complete with base. 16.50

INSTRUMENT CASES
Dimensions: \(10 \times 6 \frac{1}{2} \times 6 \frac{1}{2}\) ins. Incorpor ates large scale 50 uA meter. Ideal for electronic multi-meter construction etc. Brand new with tilt stand. Finished in blue hammer. A very good buy, only f4. PP. 30p each.
TINSLEY type 4363D Vernier potentiometer. Good condition. Price \(£ 75\). FRIGIDAIRE, AIR-CONDITIONING UNIT. Table-top model. 4 inch diameter pipe outlet. Complete and ready for
use. Price fi25. Use. Pri
WAYNE KERR type B52I Component bridge. Accurate measurement of LC \& R, 855 . Excellent order throughout.

\section*{TEKTRONIX OSCILLOSCOPES}

Type 545A with 'CA' plug-in. (Or 'L'). DC-30MHz Type 56lA with 3 Al and 3 B 3 units. DC- 10 MHz . Type 535 with CA plug-in unit. DC- 15 MHz . Type 55I. Double-beam with L\&G units. DC-27MHz.
 Also available:
Dynamco D7100 with 1 Y2 and \(1 \times 2\) plug-ins. Portable, \(D C-30 \mathrm{MHz}\). Hewlett-Packard 175A. 1781 and 1755A plug-ins. DC-30MHz.
TEKTRONIX type 545A OSCILLOSCOPE. Complete with ' CA' plug-in unit. As new. Perfect condition, calibrated to manufacturers standards. Bandwidth to 30 MHz . This offer is too good to miss. Price only \(\mathbf{£ 2 9 5}\) (plus V:A.T.)

Solartron digital voltmeter CT 469 with AC plug-in. DC, 1000 V . AC, 500 V . Many facilities are incorporated in this instrument, c/w handbook. Sold as new condition. Price 6275.

Rohde \& Schwarz URV. \(1 \mathrm{KHz}-1600 \mathrm{MHz}\). UHF milli-voltmeter. Range ImV-20V with probe insertion unit. 475.

\section*{SIGNAL GENERATORS}

Marconi type TF80ID. \(10-485 \mathrm{MHz}\). Excellent. P.U.R.

Marconi type TF867. \(15 \mathrm{KHz}-30 \mathrm{MHz}\). Cl 100.


Rohde \& Schwarz UHF Signal Generator. \(1000 \mathrm{MHz}-1900 \mathrm{MHz}\). In four ranges. Output \(0.7-7 V\) into 52 ohms. Piston type attenuator Price Cl 25.
Rohde \& Schwarz SMCK SHF Signal Generator. \(1.7-5 \mathrm{GHz}\). Price 475.
Hewlett-Packard 202A LF Function Generator. Range. 008 Hz to 1.2 KHz . Sine, square and triangular O.P. waveforms. As new condition. Price \(\mathbf{4 5}\).

MARCONITEST EQUIPMENT. All items have been calibrated, reconditioned and guaranteed.
Wave Analyser TF455E. Frequency range 20 Hz . \(\mathbf{£ 1 0 5}\).
TF893 Audio Wattmeter. Range \(20 \mathrm{~Hz}-35 \mathrm{KHz}\). Power range 20 uW -10W. Impedance \(2.5 \Omega\) to \(20 \mathrm{~K} \Omega\) in 48 steps. Direct calibration in Watts and dbm. Price \(£ 30\).
MARCONI TF340 AF power meters. As above but limited to 6 Watts. \(£ 25\) each.
MARCONI Sensitive Voltmeter type TF2600. As new. ImV300 Volt. Full-scale deflection. 12 ranges, with dbm markings. A modern instrument. Only \(\mathbf{C 5 0}\).
TF2162 MF attenuator. DC-IMHz. O-I|Idb attenuation in \(\cdot 1 \mathrm{db}\) steps. Impedance 600 ohms unbalanced. Price \(\mathbf{£ 5 0}\).
TF2163 U.H.F. Attenuator. DC-I GHz. \(0-142 \mathrm{db}\) in 1 db steps. Z, 50 ohms. Max, power in put 0.5 W . As new Price \(\mathbf{4 7 5}\).
TF80ID/I A.M. Signal Generator up to 470 MHz .
TFI04IB Voltmeter, 300 mV - \(300 \mathrm{~V} .20 \mathrm{~Hz}-1500 \mathrm{MHz} .645\).
MARCONI DOUBLE PULSE GENERATOR TFI400/S. With secondary P.G. Type 6600/1. As new condition. 4105 .
OAl094AHF Spectrum Analyser \(100 \mathrm{KHz}-30 \mathrm{MHz}\). As new.
TFI4I7 Counter, Frequency Meter 7 digits. Plus range extension unit TFI434/2 to 220 MHz . As new.
ADVANCE DVM4 Digital voltmeter. AC/DC. Brand new \(£ 65\).
PO type, 316, Jack Plugs. Complete with leads. Good condition. Price 62 for ten.

DIGITAL MEASUEMENTS DM2003 Digital voltmeter. AC/DC to IKV. Direct readout. New price over \(£ 350\) each. Our price, in full working condition is \(\mathbf{£ 7 5 . 0 0}\).

ADVANCE type TCIA Timer-counter. Solid-state. 6 digit readout. Manual or auto. (electronic) stop/start. As fréquency meter - 1 Hz - 1 MHz , or timer with all facilities. Brand new with handbook, leads, etc. Special offer \(£ 65\).

R216 V.H.F. AM/FM Communications receivers. Coverage \(19-157 \mathrm{MHz}\). Film scale dial 2 frequency crystal calibrator. Plus all other facilities. Complete with A.C. power supply connecting lead. Supplied in full working order in excellent secondhand condition.

PLEASE ADD \(10 \%\) V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

\section*{LEMANIA AIRCREW} CHRONOGRAPHS. Stainless Steel case with screw back; luminous hands and markings. One fifth sec. sweep hand controlled independently of controlled independently of main movement by press to start, stop and return to zero
button. 15 jewel movement. button. 15 jewel movement.
Many of these watches are as new but all have been cleaned and checked. Fitted strap. White face £1855, Black face £19-50 inc. P.\&P. inspection against remittance GS WATCHES all with brushed stalnless steel case with Screw back and black faces. Manufactured by CYMA, VERTEX,
TIMOR, GRANA, WWC, RECORD, SMITHS etc. to a common specificatlon. We will try to meet your requirements for specific manufacturer and quantity orders will be of one manufac-
turer's production. All cleaned and checked. Fitted Strap. £8.95 Inc. P. \& P. We also have limited quantitles of these watches by OMEGA,
LONGINES, BUREN, JAEGER LE COULTRE at \(\begin{aligned} & \text { \&15.50 inc. }\end{aligned}\) GAS CHRO
PV4051/4056 MATOGRAPHY RESEARCH OVEN A large capacity oven of low thermal mass for use between 35 1000 changes of air per min. The oven has forced alr cooled outer surfaces when the internal temperature is high. \(210-250 \mathrm{~V}\),
\(50 \mathrm{HZ}, 2 \cdot 6 \mathrm{KW}, ~ £ 28 \cdot 60\). (C.Pd. England and Wales).
GAS CHROMATOGRAPHY OVEN/ANALYSER UNIT V4050/4055
A somewhat smaller unit than the previous Item for use between 35 and \(500^{\circ} \mathrm{C} .600 \mathrm{changes}\) per min. With cooled outer surface.
nternal dimensions \(20 \mathrm{~cm} \times 48 \mathrm{~cm}\) hlah \(\times 20 \mathrm{~cm}\) deep. Max . heating rate \(50-400^{\circ} \mathrm{C}\) in 6 mins. Max. coolling rate \(400^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) in 4 mins.
England and Wales).

\section*{ONISATION AMPLIFIER PV4075}

A modern high grade low noise solid stafe amplifier to feed a potentlometer recorder. 18 input ranges from \(10-12\) to \(5 \times 10-7\) A
with 5 outputs of 1 mV to 100 mV . Linearity \(0.1 \% \mathrm{f}\). Noise less han \(0.5 \%\) f. 8 . at max. sensitivity. Back off facility. Dimensions \(28 \times 10 \times\)
(C.Pd. U.K.)

43 cm
deep. Wlth operating information \(£ 27.50\). Details of these three and other gas chromatography items are
available-price \(\mathbf{2 5 p}\) (C.W.O. only) Handbooks (complete) available-
Available.

ALL PRICES INCLUDE \(10 \%\) V.A.T.
Servo and Electronic Sales Ltd
Post Orders and Technical enquiries to: "BAYS', HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) TELEX 965265 V.A.T. Reg. No. 201-1296-23 TELEX 965265

WE ARE ANXIOUS TO BUY Synchro Test Equipmen manufactured by Muirhead, SInger-Gertsch etc. Test Dials,
Dividing Heads, Bridges, Standards etc. to expand our testing Dividing Heads, Bridges, Standards etc. to expand our testing
facilities.

RADAR CABLEFORM INSULATION TESTER for check Ing insulation between individual conductors and each oth and ground at preselected voltages up to 10 Kv . Full detalls o

PLESSEY GROUND BASED U.H.F. GROUND/AIR TX/RX FOR EXPORT ONLY OR SALE TO LICENSED USERS
Single Channel Receiver 5820-99-932-5694.
Single Channel Receiver 5820-99-932-5694,
Single Channel Amplifier 5820-99-932-5701
Power Unit for Amplifier 5820-99-932-5700.
Cooler Unit 5820-99-932-3995.
These assemble into a tree standing rack unit providing U.H.F.
comminications over 25.0 to 399.9 MHZ , the T . communications over 225.0 to 399.9 MHz , the TX/Amplifier uni giving 100 W atts R.F. output into 50 Ohms. We have sufficlen
of these units to form 12 complete installations with a number of spare sub-unlts. All are guaranteed new and unused. Ful detalls on request.

\section*{MANUFACTURERS!!}

\section*{Metal Oxide Resistors (ELECTROSIL \& WELWYN)}

\section*{Tantalum Capacitors} (KEMET, ITT, PLESSEY, ETC.)

\section*{Scientific Instruments}

\section*{Electronic Test Instruments \\ Synchros and Servomotors \\ ALL AVAILABLE EX STOCK!}

WE HAVE ONE OF THE LARGEST STOCKS IN THE COUNTRY OF INSTRUMENTS AND COMPONENTS
MANUFACTURERS. TELEX 96j265. RE AVAILABILITY.

OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known. We are now on TELEX.

\section*{MIL SYNCHROS AVAILABLE EX-STOCK} in sizes \(08,11,15,16\), 18 and 23 for 50,60 and 400 Hz operation. In sizes \(08,11,15\). 16,18 and 23 for
Synchro Controi Transiormers
Synchro Control Transmitters

Synchro Control Transmitteral
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receiv
Synchro Torque Transmitters and Receivers
Synchro Resolvers

TAPE STORAGE CANS. Brand new finished steel cans originally intended for 16 mm film but ideal for storing 7 in . reels
of tape. Our last supply of these items was quickly exhausted at 30 p each but as a result of a massive new purchase we can
 V.A.T. Sample can available at 38p inc. P. \& \(P\). and V.A.T.
FLOODLAMPS (WEATHERPROOF) 12 in. 12 in. on FLoodlamps
s 18.25 ing. mount-full details and illustration on application. POLARAD WIDE RANGE DISPERSION SPECTRUM ANALYSER covering 10 MHz Io 40.88 KMHz . Modei SA 84 W information. ELECTROMETHODS LOW INERTIA INTE GRATING MOTORS. Available ex-stock at extremely low prices. For 6, t 2 and 24 V . Operation in stock.
VATRIC SIZE 23 PULSE GENERATORS (Shaft Dlgitizers) Full detaiis and price on application.

PLANNAIR. Axial Flow Fans (with mounting) Type 6PL \(122.331 \mathrm{Mk.2}\). \(61 \mathrm{n} .2,800 \mathrm{r}, \mathrm{p} . \mathrm{m} .400 \mathrm{v}\). 3ph 50 Hz . New and boxed


\section*{DRY REED INSERTS}

Overall length 1.85 in . (Body length 1.1 in .) Diameter 0.14 in . to
switch up to 500 mA at up to 250 v . D.C. Gold clad contacts switch up to 500 mA at up to 250 v . D.C. Gold clad contacts
69 p per doz.: \(£ 4-12\) per \(100 ; £ 30 \cdot 25\) per 1,\(000 ; £ 275\) per 10,000 . Al carriage paid U.K. Heavy duty type (body length 2 in. dameter 0.22 in . to switch up
to 1 A at up to 250 V . A.C. Gold clad contacts, \(£ 1.37\) per doz.
f6.88 per 100 . \(£ 52.25\) per i .000 ; Changeover type \(£ 2.75\) per doz All carriage paid U.K.K. 1000 ; Changeover 1ype \(£ 2.75\) per doz
Operating Magnets 61 per doz.; \(£ 4.40\) per 100; \(£ 38.50\) per 1000
All carriage paid.


\section*{RELAYS \({ }^{\text {PiNO}}\)}

BUILT TO YOUR SPECIFICATION. TIVE PRICES WITH A QUICK DE IVERY SERVICE, QUOTATIONSBY RETURN HOMEAND OVERSEAS. P.O. TYPE UNISELECTORS 8 Level all non bridging 300 ohms \(£ 14.08\) ea.
11 Level \({ }^{\text {o }}\) bridging 10 non bridging 65 ohms
£ 17.38 ea. 4 pole 50 way all non bridging 75 ohms E11.33 ea.
LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED AND ERICS
SON CYLINDRICAL TYPE RELAYS

METERS 2 in. flush round ACIDC with fixing clip \(0-20\) or 0.40 volts, 0.5 amps, all \(£ 2.31\) ea BRIDGE MEGGERS 1000 Volts \(0 / 100\) Megohms with Reslstance Box \(0 / 999\) Ohms, \(\mathbf{£ 8 4 . 7 0 \text { ea }}\)
GALVANOMETERS. MIsrop type BB \(3,000 \mathrm{cycles}\), focal lenth 20 cm , \(£ 19.80\) ea., and Cam GALVANOMETERS. bridge Insts. UNIPIV
4 in . das., in leather case, \(£ 11.33 \mathrm{ea}\).
BULKHEAD FITTINGS. 9 inch dlameter, flat tripod type. Push Bai Switch Lampholder, Sultable for lamps uo to 100 watts, \(£ 300\) tor 400 delivered.
RECTIFIERS. Selenium. Full wave Bridge 24 volts 8 amp, \(£ 500\) for 500 delivered CROUZET SYNCHRONOUS GEARED MOTORS, operating at 3 rDm from 24 volts AC 50 cycles 4
E 1.73 ea. F.H.P.; MOTORS. \(\frac{1}{2}\) h.p. capacitor start \(200 / 210 \mathrm{~V}\) single phase 50 cycles \(1425 \mathrm{r} . \mathrm{p} . \mathrm{m}\). spindle " \(\times 2^{\prime \prime}\), resillent base, \(£ 12.65\) ea.
h.p. \(200 / 210\) volts Capacitor start
h.p.


 IMHOF B
Fliter and directional duct in a standard \(19^{\prime \prime}\) rack mounting assembity with 100/ 125 Volts AC 50 cycles 2800 pm. \(£ 20.90\) e
HIGH SPEED COUNTERS HIGH SPEED COUNTERS £2.03 each
31 in. \(\times 1\) in. 100 Gounts per second with 4 figures. The following DC.
voltages are available 6 v . 12 v . 24 v ., 50 v ., or 100 v . Auxiliary contacts, normally open, 40 p extra
 MINIATURE BUZTERS, 12 volts, with RECTIFIER UNITS WESTALITE TYPE BC 3 3145 In 2001250 vils AC RECTIFIER UNITS WESTALITE TYPE BC \(3-3 / 45\). Input \(200 / 250\) volts AC.
Output up to 6 volts 15 amps DC. Heavily damped \(0 / 20\) ammeter Moving Coil \(2 \frac{2}{2}\) In . reads true charging current, which is regulated by a four position rotary switch and sllding resistance. A ballast is fijted to smooth out mains variations. AC
and DC fuses titted. Size \(17 \frac{1}{d} \mathrm{in} . \mathrm{x} 13 \frac{1}{2} \mathrm{in}\). x 12 im., designed to stand on bench or and DC fuses 1 tited. Size \(17 \frac{1}{4} \mathrm{in}\). \(\times 13 \frac{1}{2} \mathrm{in}\). \(\times 12 \mathrm{im}\)., designed to stand on bench or
if to a wall, \(£ 12.10\) ea MINIATURE DIGITAL INDICATOR. Size of digits in. illuminated by 28 volt lamps, This minlaturlzed digltal display operates on a rear-projection princlpie, when one of th twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digil on the condensing lens through a project|
\(£ 4.40\) ea. Iltusirated details available.
EQUIPMENT WIRE 700076 single sheath PVC. Blue only, 67.17 per 1,000 yds. \(14 / 0076\) Type 11. \(£ 9.371,000 \mathrm{yds}\)

HEADLAMP BULBS S.B.C. 6 volt 36 watt Double contact, \(£ 250\) for 5,000 delivered. RESISTORS EX STOCK IN QUANTITY WIRE WOUND, HIGH STABILITY CARBON
ETC., BEST MAKESAT LOWEST POSSIBLE PRICES. ETC.
ALL PRICES SHOWN INCLUDE CARRIAGE U.K. ONLY AND \(\mathbf{1 0 \%}\) VAT
LONGLEY RD., CROYDON CRO 3LH. PhOn


\section*{Etrachian}

\section*{Telephone Corner}

COMPLETE TELE PHONES NORMAL HOUSEHOLO TYPE AS SUPPLEO TO THE POST OFFICE EX G.PO
Only \(£ 1.05\)
TELE PHONE DIALS

\section*{Onl \(271 / 2 p\) aneraspecer}

Tested and Guaranteed Paks
\begin{tabular}{|c|c|c|c|}
\hline B79 & 4 & 1 N4007 Sil. Rec. diodes. 1.000 PIV lamp plastic & 55p \\
\hline 881 & 10 & Reed Switches \(1^{\prime \prime}\) long 音" \(^{\prime \prime}\) dia. High speed P.O. type & 55p \\
\hline B9 & 200 & Mixed Capacitors. Approx. quantity, counted by weight. P\& P 15p. & 55p \\
\hline H4 & 250 & Mixed Resistors. Approx. quantity. counted by weight \(P \& P 15 p\). & 55p \\
\hline H3 & 100 & Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked & \(p\) \\
\hline H38 & 30 & Short lead Transistors. NPN Silicon Planar types & 55p \\
\hline н39 & 6 & Integrated circuits, 4 Gates BMC 962. 2 Flip Flops BMC 945 & 55p \\
\hline H41 & 2 & Power Transistors Comp. Pair BD 131/132 & 5p \\
\hline H63 & 4 & 2N3055 Type NPN sill power transistors. Below spec. devices & 55p \\
\hline
\end{tabular}

\section*{Q Unmarked Untested Paks}
\begin{tabular}{|c|c|c|c|}
\hline B1 & 50 & Germanium Transistor PNP, AF and RF & 55p \\
\hline \({ }^{866}\) & 150 & \begin{tabular}{l}
Germanium Diodes \\
Min. glass type
\end{tabular} & 55p \\
\hline \({ }^{884}\) & 100 & Silicon Diodes DO-7 glass
Equiv, to 0A200.0A202 & 55p \\
\hline \({ }^{886}\) & 100 & Sil. Diodes sub min IN914 and IN916 types & 55p \\
\hline प16 & 15 & \begin{tabular}{l}
Experimenters Pak of \\
Integrated Circuits, Data supplied
\end{tabular} & 55p \\
\hline H46 & 40 & NPN Silicon Trans. 2N3707-11
range. Iow noise amp & 55p \\
\hline H34 & 15 & \multicolumn{2}{|l|}{Power Transistors. PNP. Germ. NPN \(55 p\)
Silicon TO- 3 Can. \(P\) \& \(P\) Sp exira. \(55 p\)} \\
\hline
\end{tabular}

Make a rev counter
for your car
The 0 ACHO BLOCK. This encapsulated block wir turn for any car with nomal coil ignition system
£1.10 10 ach

\section*{Ex GPO Push-hutton Intercom Telephones}

Exactly as intemal telephone systems still in everyday use where automatic internal exchanfies have not vel taken over. Avallable rircuits and instructions. Necessary 24 pair cable \(22 p\) per yard. Price of each instrument is independent of the number of ways.

\section*{f2.75}

Cable can be sent by Paral per 50 yds: \(73 \frac{1}{2}\)
EXTENSION TELEPHONES
\(71 \frac{1}{2} \mathrm{p}\) each p.p. \(27 \frac{1}{2} \mathrm{p}\) f \(1.37 \frac{1}{2}\) for 2 p.p. 55 p . These phones are extensions and do not contain bells.

\section*{A Cross Hatch Generator \(£ 3.85\) paid}

A complete kit of parts including Printed Circuit Board A four position switch gives X-hatch. Dots. Vertical or struction and realibility. A project in the Sept. 72 edition

Tested, Guaranteed 3819 N Channel FET's
ZN3819 in plastic case
40361 Type NPN Sil. transistors TO- 5 can comp. to H66
40362 Type PNP Sil, transistors Untested, Unmarked


We mold a very large range of fully marked, tested and guaranteed Transistors. Diodes and Rectifiers at very
competitive prices. Please send for Free Catalogue.

Pur very popular 41 Transistors
FULLY TESTED \& GUARANTEED
PNP Silicon alloy. TO-5 can. YPE "A" PNP Silicon alloy. TO-5 can
YYPE "B" PNP Silicon. plastic encapsulation
TYPE - EF"NPN Silicon plastic encapsula
TYPE "G"NPN Silicon, similar ZT \(\times 300\) range
TYPE " \(H^{\prime \prime}\) PNP Silicon, similar ZTX500 range

High-speed magnetic counters

4 digit (non reset)

\section*{Plastic Power Transistors}

\section*{NOW IN TWO RANGES}

These are 40W and 90W Silicon Plastic Power Transistors of the very latest design. available in NPN or We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed terms. RANGE 1 VCE. Min. 15 1.12 \(\quad 13\)-25 \(\quad 26\)-50 HFE. Min. 15
\(\begin{array}{llll} & 22 \mathrm{p} & 20 \mathrm{p} & 18 \mathrm{p} \\ 90 \text { Watt } & 26 \frac{1}{2} \mathrm{p} & 24 \frac{1}{2} \mathrm{p} & 22 \mathrm{p}\end{array}\)
RANGE 2VCE Min. 40
RANGE 2VCE. Min. 40
40 Watt
90 Watt
\(33 \mathrm{p} \quad 31 \mathrm{p} \quad 29 \mathrm{p}\)
90 Watt \(\quad 38 \frac{1}{2} \mathrm{p} \quad 36 \frac{1}{2} \mathrm{p} \quad 33 \mathrm{p}\) Complementary pairs matched for gain at 3 amps , 11p
extra per pair. Please state NPN or PNP on order M380 AUDIO I.C
as featured in Practical Wireless. December issue. complete with application data \(£ 1.10\).
INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive FREE Caralogue. see coupon below

METRICATION CHARTS now available
This fantastically detailed conversion calculator carries thousands of classified references between metric and British land U.S.A.) measurements of length. area volume, liquid measure, weights etc.
Pocket Size 15p. Wall Chart 18p
LOW COST DUALIN LINE I.C. SOCKETS
14 pin type at \(16 \frac{1}{2} p\) each \(\}\)
6 pin type at 18p each \(\}\) Now new low profile type.

We have a large selection of Reference and Technical Books in stock

BUMPER BUNDLES
These parcels contain all types of surplus electronic components, printed panals, switches, potentiometers

2LBS in weight for \(£ 1 \cdot 10\)

\section*{Our famous P1 Pak}
is still leading in value
Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP Printed Circuit Panels Identification Chart supplied rev Circult Panels. Identicach Thart suppled \(11 \mathrm{pP} \& \mathrm{P}\) on this Pak.
Please ask for Pak P.1. only 55 p

> Please send me the FREE Bi-Pre-Pak Catalogue.

NAME
ADDRESS

MINIMUM ORDER 50p CASH WITH ORDER PLEASE: Add 11 p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE. \(\qquad\)

\author{
months best buy \({ }_{\text {ex－stock }}\) \\ All British made＇Calcate＇calculator One of the firstelectronic calculators in the world withnomechanical switches or moving parts．Touch button operation using latest MOS integrated
}

Transistors

\[
\begin{aligned}
& 0 \circ \circ \\
& 8 \stackrel{0}{\mathrm{~N}} \mathrm{O} \\
& \hline
\end{aligned}
\]

ONEN


Mo
웅웅
－
こN
N
\(0.15 \mid 2 N 3709\)
\[
\begin{array}{ll}
09 & 0 \\
10 & 0.1 \\
11 & 0 .
\end{array}
\]

\section*{ロッロ}

Open
9.30 am -5.30 pm
Mon to Sat
Retumof post
service
Barclaycards
accepted


Litronix LED＇s
Sescocem
semi－conductors．
Full range of
Cosmos
Capaciors－
Siemens Nitsuko
Ducati

\section*{Integrated Circuits}

Each month we will show a different range of ic．＇s which are kept in stock．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ty & & Typ & & Typ & & & \\
\hline & & & 17 & & & & \\
\hline CA & \(3 \cdot 38\) & CA & 0.52 & CA 30 & \(1 \cdot 44\) & CD 401 & e 0.51 \\
\hline CA 300 & 2.26 & CA 3029 & 0.63 & CA 305 & 1.84 & CD 401 & － 0.51 \\
\hline CA 3004 & 2.26 & CA 3030 & 1.08 & CA 306 & \(1 \cdot 91\) & CD 40138 & － 0.99 \\
\hline CA 300 & 1.50 & CA 3030 & 1.64 & CA 306 & 2.97 & CD 4014ae & \(2 \cdot 6\) \\
\hline CA 3006 & & CA 303 & 2.92 & CA 306 & 1.42 & CD 40 & \\
\hline CA 3007 & & CA 3033 & 4.93 & CA 306 & ， 4 & CD 4016 & 9 1 （2 \\
\hline CA 3008 & 1.9 & CA 303 & 1.5 & CA & \(2 \cdot 61\) & CD 401 & \\
\hline CA 3008 & 3.2 & CA 303 & 1.52 & CA 306 & \(2: 72\) & CD 4018 & \(2 \cdot 66\) \\
\hline CA 3010 & 0.56 & CA 3036 & 0.90 & CA 306 & 01 & CD 4019 & 1．23 \\
\hline CA 3011 & 0.69 & CA 303 & \(2 \cdot 60\) & CA 30 & \(2 \cdot 1\) & CD 402 & 2.96 \\
\hline CA 3011 & 0 & CA 3038 & \(2 \cdot 60\) & CA 307 & 2.01 & CD 4021 & \\
\hline C4 3012 & 1.11 & CA 3038 & \(3 \cdot 40\) & CA 307 & 2.0 & CD 4022 & \\
\hline CA & 1.30 & CA 3039 & 100 & CA 30 & \(1-46\) & CD 402 & \\
\hline CA 3014 & 1.52 & CA 3040 & 2.95 & CA 307 & －67 & CD 4024 & \\
\hline CA 3015 & 1.40 & CA 3041 & 1.30 & CA 307 & \(3 \cdot 19\) & CO 4025 & 0.51 \\
\hline C4 3015 & & CA 3042 & 130 & CA 308 & & CD 4027 & 1.5 \\
\hline CA 3016 & 2.61 & CA 3043 & 1.73 & CA 3080 & \(1 \cdot 90\) & CD 4028a & \(2 \cdot 34\) \\
\hline CA 3016 & & CA 3044 & 50 & CA & & CD 4023a & \\
\hline CA 3018 & 0.88
1.9 & CA 3045 & 1.50
0.86 & CA 3088 & 1.38
2.18 & & \\
\hline CA 3018 CA 3 C19 & 1.19
0.94 & CA 3046 CA 3047 & 0.86
1.59 & CA 3089e
CA
cogor & 2.18
4.70 & CD 4042 & 2.1 \\
\hline CA 3020 & 1.55 & CA 3047a & 2.92 & CD 4000ae & 0.51 & CD 404 & \(2 \cdot 1\) \\
\hline CA 3020a & 2.01 & CA 3048 & 2.34 & CD 4001ae & 0.51 & CD． 40 & \(2 \cdot 1\) \\
\hline CA 3021 & 1.90 & CA 3049 & 1.96 & CD 4032ae & 0.51 & CO 4045 & \\
\hline CA 3022 & & CA 3050 & 228
1.73 & CD 4006ae & & CD 4046 & \(2 \cdot \mathrm{~B}\) \\
\hline CA 3026 & 125 & CA 3052 & 1.80 & CD 4008ae & \(2 \cdot 53\) & CD 404 & \\
\hline CA 3028 & － & CA 3053 & 0.52 & CD 4003 & & D 4049 & \\
\hline
\end{tabular}

\section*{Diodes \＆Rectifiers}


Prices subject to alteration withoul notice－ prices correct at time of going to press Prices exclusive of VAT

M J3000

M J3001
M J3701
\(M J 4502\)
\(M J E 340\)
\(M J E 370\)
\(M J E 371\)
\(M J E 520\)
\(M J E 521\)
\(M J E 1092\)
\(M J E 102\)
\(M J E 2801\)
\(M J E 2901\)
\(M J E 2955\)

2.47
2.79
0.9
4.44
0.47
0.73
0.80
0.59
0.73
1.93
1.57
1.19
1.56
1.65

Europe 25p．
Commonweal（Air） 65 p （MIn．）
\begin{tabular}{llllllll} 
PIV & 50 & 100 & 200 & 400 & 600 & 800 & 1000 \\
1.5 & 0.08 & 0.09 & 0.10 & 0.11 & 0.12 & 0.15 & 0.20 \\
3 & 0.15 & 0.17 & 0.20 & 0.22 & 0.25 & 0.27 & 0.20 \\
10 & -.84 & 0.35 & 0.40 & 0.47 & 0.56 & \\
35 & 0.84 & 9.92 & 1.18 & 2.15 & 2.52 & \(\mathbf{3 . 6 5}\) & \(\mathbf{4 . 2 0}\)
\end{tabular}

CATHODE STUD ONLY
IN3766（35 amp 800 pv\() £ 3 \cdot 65\) IN3768（35 amp 1000 pv\() £ 4 \cdot 20\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{N3766（35 amp 800 pv）£3．65 IN3768（35 amp 1000 pv ）£4．20} \\
\hline IN34A & 0.10 & BA141 & \(0 \cdot 17\) & BY237 & 0.121 & OA79 & 0.07 \\
\hline ｜N914 & 0.07 & BA142 & 0.17 & BYZ10 & 0.35 & OA81 & 0.08 \\
\hline IN916 & 0.07 & BA144 & 0.12 & BYZ19 & 0.32 & OA85 & 0.10 \\
\hline A．A119 & 0.07 & BA145 & 0.97 & BYZ12 & 0.30 & －490 & 0.07 \\
\hline AA129 & 0.15 & BA154 & 0.12 & －A9 & 0.10 & －A91 & 0.07 \\
\hline BA100 & 0.15 & BY100 & 0.15 & OA10 & 0.20 & －495 & 0.07 \\
\hline BA102 & 0.25 & BY126 & 0.15 & OA47 & 0.071 & OA200 & 0.07 \\
\hline BA110 & 0.25 & BY127 & 0.171 & OA70 & 0.071 & OA202 & 0.10 \\
\hline BA115 & 0.07 & BY140 & 1.00 & OA73 & 0.10 & OA210 & 0.27 \\
\hline
\end{tabular}

Bridge Rectifiers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Plastic} & Metal & rof & nal 0 & ity \\
\hline & 1 A & 2 A & 4 A & 6 A & 5 & 15 & 25 & 50 A \\
\hline 50 & 0.24 & 0.32 & 0.60 & 0.62 & 2.22 & \(2 \cdot 64\) & 3.36 & 12.30 \\
\hline 100 & 0.36 & 0.37 & 0.70 & 0.75 & \(2 \cdot 24\) & 3.00 & 3.60 & 12.36 \\
\hline 200 & \(0 \cdot 30\) & 0.41 & 0.75 & 0.80 & 2.82 & 3.78 & 4.32 & 14.40 \\
\hline 400 & 0.36 & 0.45 & 0.85 & \(1 \cdot 10\) & 3.72 & 4.20 & \(5 \cdot 40\) & 16.38 \\
\hline 600 & 0.40 & 0.52 & 0.95 & 1.25 & & & & \\
\hline
\end{tabular}

AB otentioneters－caroon
Rotary type 45
Singles（Log and linear） 15 pence
Single switched（Log and linear） 21 pence
Doubles（Log and linear） 38 pence
Slider type 58
Singles（Log and linear） 30 pence
Doubles（Log and linear） 50 pence
Presets（Please specliy vertical or horizontal） 0.2 walt 6 pence

\section*{Kellner Construction Kits}

E83 are watt Mono Transistor Amplifier Kit
E815 15 watt Mi－Fi Transistor Amplifier Kit（two for stereo）E4． 68 with Tone Control and Pre－Amp
E830 30 watt Mono \(\psi\) i－ EV5 Distortion Compensator Pre－Amplifier
AV7 Aerial Amplifier．LW，SW．MW．VHF，TiV Channel＇s
UM870 FM Transmitter Kit． \(65 \mathrm{mHz}-145 \mathrm{mHz}\) ．A GPO Licence
is required
MUET Short Wave and VHF Receiver Kit．Companion to
\(\mathrm{UH}_{\mathrm{U}}^{\mathrm{U}} 87027025 \mathrm{mHz}-150 \mathrm{mHz}\)
EW18 Electronic Dice Kit
EW20 Electronic Dice with Sensor Button
ST800 Strobe Light Kit．120W／S＂single channe
Lo350 Psychedelic Light Control，single channe
NT15 Power Supply－4 10 30V， \(1-5 \mathrm{~W}\) ．．
NT85 Professional Stabilized Power Supply， 5 to \(70 \mathrm{~V}, 2 \mathrm{~A}\) ．．\(\quad £_{12.53}^{\text {D800 800W Lisht }}\)
WT7 Aircraft Communication Tuner． \(110-130 \mathrm{mHz}\) ．Built and aligned
\(W T 9\)

\section*{WTg Transmitigned
and allan}

All prices plus \(10 \%\) VAT and plus 15p post and packing． all kits with easy to follow instructions and covered by ourant

Full range of Carbon and Wirewound resistors available．


RELAYS Sill


6 VOLT D.C. 1 make con. 35p. Post 5p.
9 VOLT D.C. RELAY 12 VOLT D.C. RELAY \({ }^{3}\) amo 24 VOLT D.C. 3 c/0 600 ohm coll 75 sp . Post 5 sp . 100 VOLT A.C.
24 VOLTA.C.
Mig. by ITT. 2 h.d. clo contacts. 55 p. Post 5 p.
240 VOLT A.C. RELAY
240 V . A.C. heavy duty c/o contacts. Octal plug in base.
(Similar to illustration below.) Price 75 p . Post 5 p .
HEAVY DUTY SEALED RELAYS
230/240 Volt 2 clo 20 anmp contacts.
110 Volt 2 c/o 20 amp contacts.
Either type f1 25 . Pos! 10 p .

CLARE-ELLIOT Type RP 764I G8 Minature relay. 675 ohm coil. 24 volt D.C. 2 clo. 70 p.
Post Paid.

DRY REED RELAYS
M.f.g. by ERG 12 volt D.C. encapsulated.
Singie clo 650 . Post Paid.

Two clo 85p. Post Paid.
\(\mathbf{S T}^{\text {TWo }}{ }^{280}\) ohm coil \(6 / 12\) V D.C. 3 make contacts metal shrouded 60p. Post Paid.
Large range of
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
BLOWER UNIT \\
\(200-240\) VOII A.C. BLOWER UNIT Precision German bullt. Dynamicatly
balanced,
quitet, continuously
fated reversiblé motor. Consumption 60 mA . Size 120 mm . c'ía. \(\times 60 \mathrm{~mm}\). deep. Price £J.00. Post 30p.
\end{tabular} \\
\hline  & DWER \\
\hline brush assembly \({ }_{50}^{25}\) W ATT TATT \({ }^{\mathrm{E} 1} 1.60\). Post 10 100 WATT \(1 / 5\) Black Silver in. dia brass & vel ceramic construclion, vitroous mel embedded, winding, heavy duty ntinuousily rated. 1/5/10/25/50/100/250/50 E1 15 Post 10p. 5/50/100/250/500/1 \(\mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} / 3 \cdot 5 \mathrm{k} / 5 \mathrm{k}\) ohm ted knob calibrated in Nos. 1-9. It Ideal for above Rheostats, 22 p ea. \\
\hline
\end{tabular}

AEI A.C. MOTOR
 0.25 amp . 900 r.p.m. غ3.50. Post 30 p .

230V/240V COMPACT SYNCHRONOUS GEARED MOTORS Manufactured by either Sangamo,
Haydor Snith Buit-in gearbox,
2RPH, 3 RPH, 6 RPH, 12 RPH .


BIG BLACK LIGHT


BLACK LIGHT FLUORESCENT U.V. TUBES Post 25p. (For use in stan bi-pin intings.) MINI 12 in 3 wate £1. 60 . Post \(15 p\). 9in. 6 watt \(£ 1.30\). Post \(15 p\). Com.



PROG蚛ME TIMERS Each cam operates a c/o micro witch. deal for lighting effects,
animated displays etc. Ex equipment tesited.
4 cam rodel
cam rodel
\(£ 2.50\) post 30 p
V/4T
All prices \(10 \%\) VAT (lop in lle L ) To all orders add \(10 \%\) VAT to total vallue of goods including carriage;

BODINE TYPE N.C.I. GEARED MOTOR (Type J) 71 t.p.m. torque 10 lb . In.
Reversible \(1 / 70\) th
h.p. cycle
Res. amp. (Type 2) 28 r.p.m. torque 20 b. In Reversible \(1 / 801 \mathrm{~h} \mathrm{h.p}\).50 cycle \(\cdot 28 \mathrm{amp}\). The above two precision made U.S. A. motors are offered In
'as new' condition. Input voltage of motor 115 V A.C. Suppiled complete with transtormer for \(230 / 240 \mathrm{v}\) A.C. Input.
Price. either type \(£ \mathbf{£ . 8 4}\) Post 50 p. or less transformer \(\mathbf{£ 2 . 7 5}\). Price. either type \(£ 4.84\) Post 50 p . or less transformer \(£ 2.75\).
Posi 4 Cp.
These motors are Ideal for rotating aerials, drawing curtalns, 600 WATT DIMMER SWITCH
 Easily fitted. Fully guaranteed by makers. WIII
contril ip to 600 watts of all lights except fuorescent at mains voltage. Com
instructions. \(£ 2.75\). Post 25p.
2000 WATT POWER CONTROL for Power tools, Heating, Llghting etc. Incorporating 13 amp . INSULATUON TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con-
struction, suitable for bench or field
w 3 rk, constant speed clutch. Size L. 8 in.,
 1,000 VOLTS, 1,000 megohms \(£ 34 \cdot 00\).

ALL MAIL ORDERS, ALSO CALLERS AT:
57 BAIDGMAN ROAD. CHISWICK,
LONDON, W4 5BE Phone: 01-995 1560

SERVICE TRADING CO.

GENERATORS
MARCONI TF867 STANDARD SIGNAL

\section*{GENERATOR}
 Carrier Frequency.
Range:
\(15 \mathrm{Kc} / \mathrm{s}-\)
 Callbration \(\quad\) Accur-
acy:
Staity: \(\%\) : Atter warm
. up the drift in warm- 10 minute period is
typically, less
les typically, less than
\(0.005 \%\) for carrier freapencior carrier to
\(3.2 \mathrm{Mc/s}\) and less than
un \(3.2 \mathrm{Me/s} / \mathrm{and}\) less than
\(0.01 \%\) from \(3.2-2\). \(0.01 \%\),
\(30 \mathrm{M} /\) /. Output Voltage:
\(0.44 V-4 V\).
impedance: 75 ohms Impedance 75 ohms
nominal for outhuts
 for outputs
\(\begin{gathered}\text { from } \\ \text { for } \\ \text { for } \\ \text { for } \\ \text { outputs }\end{gathered}\)
ohms
from for
\(0.4 \mathrm{Na}-0.4 \mathrm{~V}\).
3 Accuracy: below \(3 \mathrm{Mc} / \mathrm{s} \pm 0.25 \mathrm{~dB}\) of \(\pm 0.7 \mathrm{JV}\). \(3-10 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{~dB}\) or
 DOUBLE PULSE GENERATOR TYPE TF 1400/S \(10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}\). Complete with TM 6600 . Pulse adjustable between \(1.5 \mu \mathrm{sec}\). before and up to \(3,000 \mu \mathrm{sec}\).

PRICE \(£ 145 \cdot 00\)

\section*{MARCONI A.M. SIGNAL GENERATOR TYPE}

\section*{TF801D}
\(10-485 \mathrm{Mc} / \mathrm{s}\) in five ranges. Output \(0 \cdot 1 \mu \mathrm{~V}-1\) Volt E.M.F. External Sine A.D. Frequency \(30 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}\). P.O.A. PHILIPS SQUARE WAVE GENERATOR MODEL GM2314 Range \(15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}\). Duration of square wave puises between \(0.75 \mu \mathrm{sec}\) and \(40 \mathrm{~m} / \mathrm{sec}\). Square wave voltage 10 V

PRICE \(£ 75.00\)
AMPLITUDE MODULATOR TF1102
\(100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}\) Sine-wave from \(20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}\) and \(20 \mathrm{x} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}\) NOISE GENERATOR
MARCONI Type TF987/1 NOISE GENERATOR \(1-200 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{DB} £ 20.00\)
MARCONI TF2092 NOISE GENERATOR £295.00 MARCONI VHF SIGNAL GENERATOR TF 1145 450-1900 Mc/s \(£ 295 \cdot 00\)
PHILIPS VIDEO GENERATOR GM2887 \(£ 95.00\)
HEWLETT PACKARD SIGNAL GENERATOR608B \(10-400 \mathrm{mc}\) in five bands. Output voltage \(0.1 \mathrm{mV}-0.8\) Volt 50 ohm. \(£ 165\).
MARCONI H.F. CIRCUIT MAGNIFICATION METER TF8B6A
A direct reading \(Q\) Meter \(15-170 \mathrm{Mc} / \mathrm{s}\) Magnification 60-7200 Q \(£ 45 \cdot 00\)
MARCONIDISTORTIONFACTOR METER TF142F \(100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} 0.05 \%-50 \%\) Measures all spurious components up to \(30 \mathrm{Kc} / \mathrm{s} \times 35.00\)
MARCONI PULSE GENERATOR TF675E
Repetition Frequency \(50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} 0.15-40 \mu \mathrm{Sec}\) f35 00 MARCON Wequency TF1370
Sine-waves \(10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}\), square waves \(10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}\) Directo outputs up to \(31 \cdot 6 \mathrm{~V}\). Attenuator with three impedances. \(£ 120.00\)
HETERODYNE UNITT TF1221
\(2 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} £ 45.00\)
WAYNE-KERR NOISE GENERATOR
A portable instrument for measuring the nolse factor of radio receiving equipment, metric radar receivers, and radar wide-band i.f. amplifiers in the band \(15 \mathrm{KHz}-160 \mathrm{MHz}\).
MARCONI Type TFI44H STANDARD SIGNAL


GENERATOR
Frequency range: \(10 \mathrm{kHz}-72 \mathrm{MHz}\). Crystal Check: 400 kHz and 2 MHz crystals.
Stability: \(0.002 \%\) in 10 minute interval. FULL SPECIFICATION AVAILABLE ON REQUEST £225

MARCONI TYPE TF801A SIGNAL GENERATOR Frequency range: 10 MHz to 310 MHz . \(\mathrm{O} / \mathrm{P}\) voltage: \(0-100 \mathrm{db}\) relative to 200 mV into 750 hm IV \(\mathrm{CW} 0 / \mathrm{P}\) available. Internal modulation: \(400 \mathrm{~Hz}, 1 \mathrm{kHz}\) and 5 kHz to \(80 \%\) sine or square. E45.00
ADVANCE TYPE D1/D SIGNAL GENERATOR Frequency range: \(10 \mathrm{MHz}-300 \mathrm{MHz}\). O/P voltage: \(\mathbf{1 V}-10 \mathrm{mV}\). \(£ 25.00\)
ROHDE \& SCHWARZ SIGNAL GENERATOR
BN4105 \(30-300 \mathrm{Mc} \pm 1 \%\) Output 3 Volt. £ \(350 \cdot 00\).
HEWLETT PACKARD 8690 SWEEP GENERATOR plus 8693 B Plug-in. \(3 \cdot 7-8 \cdot 3 \mathrm{GHz}\). \(£ 1,695 \cdot 00\).
MARCONI TF995A/2M
AM/FM Generator. \(£ 325 \cdot 00\).

\section*{FANTASTIC VALUE IN OSCILLOSCOPES}

\section*{TEKTRONIX}


COSSOR CDU 110
Dual Channel Transistorised DC-25 MHz at \(5 \mathrm{mV} / \mathrm{cm}\). 0.2 microsec. \(-0.5 \pm 3 \% 5 X\) Magnification extends sweep speed to 40 nanosec. \(/ \mathrm{cm}\). Sweep delay 180 nanosec

Sensational Offer due \(\boldsymbol{t}_{1}\) frustrated export orde DYNAMCO 71 OSCILLOSCOPE

* Fully Transistorised * Dua Channel * Sweep Delay * Rangı DC-30 MHz * Sensitivity 1 mV


The 71 Display Unit contains the cathode ray tube an controls, power supplies, cailbrator, vertical and horlzonti main deflection amplifiers and unblanking amplifier for th
71 series of oscilloscopes. series of oscihoscopes.
On either side of the Display Unit may be plugged in
vertical and horizontal deflection units. units.
The design of the 71 display unit allows its use as a sel
contained osclliqscope with or without plugin units. Waveform: Approximately Squarewave. Amplitudes \(1 \mathrm{kHz} \pm 2 \%\). Rise Time: <1us. Fall Times: < 5 us. Oufpu Impedance: \(50 \mathrm{mV}, 500 \mathrm{mV}: 50 \Omega\). \(5 \mathrm{~V}: 500 \Omega\). Current Ou puf: 10 mA 1 kHz squarewave avallable at loop on front pane

1X2 DELAYED SWEEP TIMEBASE
The type \(1 \times 2\) is a timebase module used to provide normal an delayed sweeps. The module contains two timebases, on
of which ' \(A\) ', Is intended for a main sweep, the other ' \(B\) ', fo delaying the start of timebase 'A'. FIne delay Is achleved \(b\) using a comparator circuif controlled by a callbrated 90 tur knob.
During delayed operation, pulse location is simplified b
the use of a Bright-up Strobe ' \(B\) ' intensified by \(A\) ' \()\), the use of a Bright-up Strobe (' \(B\) ' intensified by ' \(A\) '). To var
the 'hold off' period for maximum repetition rates, the ' \(B\) timebase has a variable velocity control with two calibrater positions ( \(X 1\) and \(X 5\) ).
CALIBRATED SWEEP RATES
\(0.2 \mu \mathrm{~s}\) in 19 callibrated steps. Uncallbrated varlations betwee
SWEEP RATES
10 us/division to 10 ms . Fine control extends the sweep rate 50 ms ( 0.5 second sweep).
Accuracy: \(5 \%\) on all callibrated ranges.
MAGNIFIER
X1 and X10 extends the fastest sweep rate to 20 us
IY2 DUAL CHANNEL. AMPLIFIER
The 1 Y2 Is a wide band, dual channel amplifiter. It features tw identical widebsend preampliers, each with its own inpa to provide single or dual trace displays. In addition the two
channels may be combined algebralcally. channels may be combined algebralcally.

\section*{Unrepeatable offerlimited quantity only!} lian \(\ddagger 249 \cdot 50\)

\title{
to purchase some of the World's finest palibration instruments at savings of
} \(335 \% \mathrm{WNO}\) Wini

\section*{SODECO IMPULSE PRINTING COUNTER}

4 Digit Decimal Counter 0c/second Electrical Reset \& Print-out 24 Volts Type PN117. Brand New.

PRICE £42

PHILIPS VALVE VOLTMETER
MODEL GM6014 Max. \(300 \mathrm{mV}, 1000 \mathrm{~Hz}\)-30MHz. \(£ 30.00\)
WIDE RANGE OSCILLATOR TYPE 400C bY DAWE FANS BY PLANNAIR
\(15 \mathrm{~V}-3\) Phase \(400 \mathrm{c} / \mathrm{s}-11,000 \mathrm{rpm}\). Type IPL41-234 PRICE 44.00 R.C. OSCILLATOR TYPE G432 by FURZEHILL Square and sinewave. \(250 \mathrm{Kc} / \mathrm{s}\). PRICE New Range just arrived! Phone for details.


SINGLE PEN
RECORDER
by Record Electrical. \(3^{\prime \prime}\) chart. sensitivily Size \(8^{\circ} \times 11^{*} \times 6^{\text {h}}\). Offered complete with pen assembly and spare chart. Listed at over \(£ 100\)-lhis month's speciai price due
to bulk purchase... \(£ 39 \cdot 50\) pius \(£ 5 \cdot 00\) packing and carriage
\(500 \mu \mathrm{~A}\) A AILABLE
LEEDS \& NORTHRUP STRIP CHART RECORDER




\section*{DOLENTOMETER}

TEN TURN \(3600^{\circ}\) ROTATION


\section*{COMPUTER ACGESSORIES}

80 COLUMN HAND PUNCHES
 Ideal for stock
control, sales
analysis, back-up
In existing comanalysis, back-up
In existing com-
puter installations, puter installations.
DP training cenDP training cen
ITes,
New New low low cont
model
carriage

DE LUXE MODEL Incorporating tabu-
latinig mechandsm lating mechanlsm.
\& \(79: 50\) plus carriage.
at9.50
and


ELECTRIC HAND VERIFIER \({ }^{\text {E } 89-50}\) plus carri-

All machines supplied with numeric keytops and dust-cove Optional extras alpha keytops and chip tray.

\section*{THIS MONTH'S SPECIAL} MINI COMPUTER OFFER
SAVE 75\% OF
LIST PRICE ON THIS DEC PDP SYSTEM DEC PDP8 4K 1.5 microsecond 51250 . \({ }^{\text {AK CPU plus Teletype }} \mathbf{8 1 3 9 5 \text { . PDPR }}\) ATP plus VDU P.O.A.
ATTENTION: PDP 11 USERS MEMORY UPGRADES
KK, BK, 12K, \(16 K\) SAVE MONEY MEW WIDE RANGE OF SPARES FOR THE FOLLOWING COMPUTERS ICL 1500, ICL 1900, SYSTEM 4. 4100, 803
COSSOR VISUAL DISPLAY DID400. Consisting of Key
board \& Display 402 stand alone capability for alphanumeric board \& Display 402 stand alone capability for alphanumeric
data entry. Availabla from \(£ 500\). Please phone for details. TELETYPE PUNCH
日RPE High-speed punch. Self-contained, consists of punch unlt, base, motor unit. .For use in many data communication
systems. Operating deeds up to 100 systems. Operating speeds \({ }^{\text {up }}\) to 100
characters per second. (1100 words per minute). Avallable for punchlng 5 , 6,77 of 3, level codes, into
chronous, para!!el wire input.

WELMEC \(7 \& 8\) HOLE ELECTRO-MECHANICAL PUNCHES \& READER Models S110 and R82C, 17 char. per sec. Rebullt, available
from slock. E45.

ICT KEYBOARDS
In original packing-Numerical from 54 :50
ICT KEYBOARDS
Magnetic Tape Transporters AMPEX TM4, TM2, TM7, FR300,
Magnetic Tape Transporters AMPEX TM4. TM2, TM7,
18M 7330, POTTER, ICL Magnetic Drums. From \(₹ 75\).
IBM PUNCH CARD EQUIPMENT FULLY GUARANTEED



FREQUENCY CONVERTER MODEL B. 40
50 KVA


HEWLETT PACKARD DIGITAL RECORDER MODEL 565A Data Entry, paraliel to 11 columns, \({ }_{\text {PRICE }}\) e85:00.
Print speed 5 lines per second. HEWLETT PACKARD 200 CD Sine wave Oscillator \(5 \mathrm{~Hz}-600 \mathrm{KHz} 10\) Volts. \(£ 59.00\).

PYE HIGH RESISTANCE OHMMETER MODEL 10B Range from \(0 \cdot 3-20.000\) Megohms
in 4 ranges at 500 V . Used for the measurement of components or circuits ha
capacitance PRICE \(£ 20.00\)


MULLARD VALVE VOLTMETER MODEL E7555/2 PRICE E20.00

WEE MEGGERS BY EVERSHED \& VIGNOLE \(\begin{array}{lll}250 \text { volt } 0.01 \Omega-10 \mathrm{M} \Omega & \text { Series } 3 \text { Mk only } & £ 25 \\ £ 16\end{array}\) 250 volt \(0.02 \Omega-20 \mathrm{M} \Omega\) Series 3 Mk onll

VENNER 3334
Digital Frequency Meter \(0-1 \mathrm{MHz} £ 45 \cdot 00\).

VENNER 3336
Digital Counter Six Digit 0-1 MHz \(\mathbf{£ 5 5} \mathbf{0 0}\).
With 15 Meg Counter extension for above £85.00.

\section*{STOP PRESS}

We have just taken into stock over 20 tons of RF test equipment by various manufacturers. Please telephone us as by the time this advertisement appears, we will have lists available.

WANDEL \& GOLTERMANN
Distortion Measuring Set VZM-1 for colour \(1 . v .625\) linés PAL. \(£ 750\). Distortion Measuring Set VZM-2 \(556 \mathrm{KHz}-12 \mathrm{MHz} £ 250\). and receiver used mainly to measure transmission distortion on \(F M\)




MARCONI TF 2305/8. Sine/Sauared Pulse and Bar Generator for
T. V. 625 system and colour. \(£ 450 \cdot 09\).

TF 2904. Colour gain and delay test set lor NTSC and PAL colour T.V.
systems. \(£ 190 \cdot 00\).


\section*{ PEN RECORDERS \\ JUST OUT - NEW CATALOGUE ON FULL RANGE OF PEN RECORDERS. SEND READER'S CARD FOR FREE COPY. (WW 130) \\ miniature pen recorder}

\begin{tabular}{|c|}
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
MINIATURE PEN RECORDER \\
Provides permanent record of its up to 1 mA . Emmentiy surtab time marker pen provided. Chart wid 80 mm . Chart length 40ft. Chart spee Slow 20-60-180
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


NEW HIGH SPEED PEN RECORDERS 3 MODELS AVAILABLE: requency range OC to \(10 \operatorname{ton}_{2}\) Recording presented in curvilinear coordinates by means ol ink on paper. Built-in solid state amplifier lone par channell provides 8 calibrated sensitivity steps. Two marker pens are provided; one of these can be connected to internal time marker osciliator providing
1 second pulses. This pen can also be used as a process marker to marka desired event on the chan Second marker. pen can be used as zzero' (references line marker or as another event marker. Full SPECIFICATION. Basic error 4\%. Frequency response from OC to 100 Hz 2 \(0.02,0.05,0.1 .0 .2,0.5 .1,2.5\) Width of each recording channel 40 mm Chart speeds ma . 50. 25.250 . Intemai calibrating voltage: 40 mV . Chant lengith; 50 meters. Voltage: \(220 / 250\). COM PLEMENT OF
ACCESSORIES AVAILABLE.


10 CHANNEL EVENT RECORDEH Designed for recording sequences of sequence of machine tool operation, switching sequences, etc. Record is
prespnted in the form of square "pulses prespnted in the form of square "pulses
When energised. pen moves by approxi mately 4 mm . to the right of zero line Response time 100 milliseconds. Char Width capacity 72 hours. Chart speeds \(20-60-180-600-1800-5400 \mathrm{~mm} / \mathrm{hour}\) Size \(160 \times 160 \times 255 \mathrm{~mm}\). Weight 9 bs
£52.00


PORTABLE AC/DC RECORDING VOLTAMMETER Accuracy \(1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}\). Measure ments ranges - AC and DC: 5-15-150 \(250-500 \mathrm{~V}\) DC only 150 mV . Frequency range 45 to \(1000 \mathrm{c} / \mathrm{s}\). Chart width 100 mm . Chart speeds 20-60-180-600 \(1800-5400 \mathrm{~mm} / \mathrm{hour}\). Weight 22 lbs Pince compleete win acess

SINGLE PEN RECORDER








operation on AC
effective coil impedPower supply required: 230 V 50 Hz . Applications: Ideal for record
changing phenomena such as
Temperature: Gas or Liquid Flow Rates. Sound
PRICE \(£ 25.00\)
Clockwork version also available \(£ 29.50\)
These two items are newly reconditioned


MINIATURISED STRIP CHART RECORDER indicates the magnitude of applied currents or voltages by a continuous distortion-free line on pressure sensitive calibrated 0.1 miliiamp d.c. internal esistance 100 ohms. Chart drive moto

Price \(£ \mathbf{£ 5 . 0 0}\)

\section*{Fahilous TES Fiuinment tastew tem Electronic Brokers Ltd.}
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l} 
& SWEEP MARKER & RCL BRIOGE \\
GENERATOR Mod SM 972 & Type P G66 \\
E245
\end{tabular}


MODULATED OSCILLATOR Type IM 866
Up-(0-date radio fecoivers possess such a high degree of sensitivity that. even in radio-service shops. a
fairly high. peftormance oscillator is required. so as to petmit the output signal to be attenuated also at hight frequencies, which is tie condition for avoiding saturation of the input stage in fransistorized radio receivers. This osciliator is provided with a buffer -modulator stage toprevent possibla spurious
modulations. An accurate shielding of the oscillator stage, and an entarged frequency range for catibration of intermediate-frequency stages, are furher featuras which complate the rational design of this instrumant.
Frequency range: :rom 150 KHz to 46 MHz in 6 ranges FM expanded range: \(430-530\) KHz. Frequency accuracy: better than \(1 \%\); If range \(0.1 \%\). Internal madulation: 400
 dB Attensalor: cont inuous, in
VF output voltage: 2 V a aprox


\section*{ All items are brandmew and \\ \(\because\) Selected by Electronic Brokers as the finest value for money obtainable today \\ 

> "SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily-reversed, starting and stopping in less than \(5^{\circ}\) without eiectrical or \(3000 \mathrm{z} /\) in with 35 v at 0.35 mmps through winding. For AC. (synchronous) operation at 120 v ., 50 Hz . Speed 60 rpm 60 Hz ., 72 rpm . STEPPING. Holding torque at 60 steps per second- 100 oz/in. Can be wired to give 100 or 200 step


OPENFRAME shaded pole GEARED MOTORS (Dural gear case)
240 AC . 28 pm . NEW
HIGHTARe(E HIGH TORQUE, approx. overall size: \(3 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{4}^{z^{\prime \prime}} \times\) \(2 z^{2}+\) spindle \({ }^{n}\)-dia. as illustrated. \(£ 3\). P. \& P. 30 p.
Similar to above, 19 rom Similar to above, \(19 \mathrm{rpm}\). . £3. P. \& P. 30 p .
ilorpm with pressed stee) gear case (similar to above i10rpm with pressed steel gear case (si
but slightly smaller). \(£ 3\). P. \(\&\) P. 30 p .
CARTER ELECTRIC
Similar to above with alloy gear case. 60 r.p.m. This
item is ex-equipment but perfect. \(£ 1.95\). P \& P 30p.
SMITHS RINGER-TIMER
Reliable 15 minute times, spring wound (concurrent with time setting) \(15 \times 1 \mathrm{~m} / \mathrm{n}\) divisions, approximately \(\frac{1}{2}\), between
divisions,
ditanel divisions. Panel mounting with chrome
bezel \(3 \frac{\pi}{*}\) dia. \&1 40. 15p. P. \& P.

\section*{FEW ONLY}

Fully stabilised ''Labgear" Power Supply Unit. Imput
\(90-240 \mathrm{v}, 50 \mathrm{~Hz}\). Outputs \(6 \mathrm{v}, 6 \mathrm{D}\) D.C., and \(6 \mathrm{v}+2 \mathrm{v}, 100 \mathrm{MA}\) \(90-240 \mathrm{v}, 50 \mathrm{~Hz}\). Outputs 6 v , \(6 \mathrm{a} \mathrm{D.C}\). , and \(6 \mathrm{v}+2 \mathrm{v}, 100 \mathrm{MA}\). Hum and ripple at full load-less than \(3 M V\) peak to
peak. Stability improvement ratio for \(15 \%\) mains peak. Stability improvement rallo for \(15 \%\) mains
change 1100 . Output impedance 0.005 ohms.
\(91^{*} \times 91^{-1} \times 1241\). Weight \(20 \$ 1 \mathrm{~b}\). £39.50. Carr. \& Pkg f1.50. In manufacturer's carton.
"LABGEAR ELIMINAC"
P.S.U. \(200-250 \mathrm{v}\). 40160 Hz . Alternative outputs fully variable (uarlac incorporated). Output 1. 12v at 5 a
D. C. fuily smoothed. Output 2 . \(12 v\) at 8 a D.C., with
 case. in maker's carton. \(£ 41.50\). Carr. \& Pkg. \(£ 1.50\).


hinged
Bracket \(2 \mathbf{L}^{1^{*}-240 V} \mathbf{A C}\). Pull at coil is approximately \(1 / \mathrm{b}\). K 1


ULTR A PRECISION CENTRIFUGAL BLOWER
by Air Control Ltd.
30 segments individually balanced in
heavy cast alloy case. 2.300 r.o.m. heavy cast alloy case, 2,300 r.p.m.
240 c . C . Very powerful and silent

\section*{}

\section*{SILVANIA MAGNETIC SWITCH}

Now complete with reference magnetl A magnettcally activated switch, vacuum sealed In a glass
envelope. Silver contacts, normally closed. Rated 3amp
 Ideai for burglar alarms, security systems etc, and where
ever non-mechanical switching is requlred. io tor \(£ 2\); P ever non-mechanical switching is requlred. 10 tor \(£ 2\); \(P\)
\(\& P 150.50\) for \(£ 8.50 ; 100\) for \(£ 16.50\). FREE \(P\). \&P. over 10

\section*{NORPLEX}

The famous American fibre-glass copper-clad laminate. Finest quality with woven glass base of Epoxy-resin. Excellent Mech. and Elec conductive properties. Heat resistant, deal for P.C.'s etc. THIS IS, A
SPECIAL PURCHASE AND ONLY AVAILABLE WHILE STOCKS
 Also double-slded \(1 / 32^{\prime \prime \prime} 1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}\). \(£ 1\) per sq. At. Cut slzes ( \(1-10\) sa. ft .) 25p. P. \& P. Full
additional sheet.

\section*{KNOWLE (U.S.A.) MINIATURE MICROPHONE CAPSULES}



ALL PRICES INCLUDE V.A.T.
Whist we welcome official orders from established companies and Educational Depa: tments, it is no longer practical to involce goods under
\(£ 5\). Therefore, please remit cash with orders below this a mount.

ELECTRONIC ORGAN DIVIDER BOARDS built to high industial/computer spec. 5 octave set £i5. Complote with connection data and oscillator dotails.

\section*{COPPER LAMINATE P.C. BOARO}
\(8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16\) in. \(12 \frac{1}{2} p\) sheet, 5 for 50 p
\(11 \times 6 \frac{1}{2} \times 1 / 16\) in \(15 p\) \(11 \times 8 \times 1 / 16\) in 20 p sheet, 3 for 50 p \(11 \times 8 \times 1 / 6\) in 20 p sheet, 3 for 50 p
\(16 ; 4 \times 4 \times 1 / 16 \mathrm{in}\). (Flbreglass), 30p sheet Offcut pack (smallest \(4 \times 2 \mathrm{in}\).) 50 p 300 sq . in P\&P single shoet 4 p . Bargain packs 20p

\section*{TELEPHONE DIALS (New) £1 ea RELAYS (G.P.O. '3000'). All types. Brand NeW from 37 \({ }^{2} p\) ea. 10 up quotations only. Various Colouis \(\mathbf{£ 3} \mathbf{5 0}\). P.P. 25p. Excellent condition. \\ RATCHET RELAYS. ( 310 ohm) Various Types 85p. PP 5p UNISELECTORS (NEW) 25 way 12 Bank (Non Bridging) 68 ohms. £6.
P.P. 30 p. \\ }

PRECISION A.C. MILLIVOLTMETER (Solartion) \(1.5 \mathrm{~m} . \mathrm{v}\). to 15 v : 60 db to 20 db .9 ranges. Excellent condition: f1.50
HIGH CAPACITY ELECTROLYTICS
\(2,200 \mu \mathrm{f}\). 100 v . ( \(1 \frac{1}{2} \times 4 \mathrm{in}\).) 60p. 3,150 \(\mathrm{ff} .40 \mathrm{v} .\left(1 \frac{1}{2} \times 4 \mathrm{in}.\right)\) \(60 \mathrm{p} .10 .000 \mu \mathrm{f}\). 25 v . ( \(\left.1 \mathrm{f} \times 4 \frac{1}{\mathrm{in}}.\right) 60 \mathrm{p} .10,000 \mu \mathrm{f}\). 100 v 16 v . \(2 \times 4 \mathrm{in}\) ) \(60 \mathrm{p} .21,000 \mu \mathrm{t} .40 \mathrm{v}\). \(2 \mathrm{x} \times 4 \mathrm{in}\) ) f1. Post and packing 5 p. 60 p. \(21,000 \mu\) f. 40v. ( \(2 \frac{1}{2} \times 4 i n\).) \(£ 1\). Post and 2,800 pap 100
\(\left.{ }_{\left(4 \frac{1}{i} \times 2 \frac{1}{7} \mathrm{in} .\right)}^{2, \mathrm{f} 1 .}{ }^{\left(4 \frac{1}{\ddagger}\right.} \times 2 \mathrm{in}.\right) .80 \mathrm{p} .15,000 \mu \mathrm{f}\). 63v ROTARY VACUUM PUMPS (GS10) with Motor on Bedplate. £25. P. f. f2.
HIGH VACUUM DIFFUSION PUMPS (Metrovac 093C). New condition. £40. P.P. £2. A.E.I. P10. ION PVERLOAD CUT
OVERLOAD CUT-OUTS. Panel mounting ( \(1 \frac{2}{2} \times 1 \frac{1}{2} \times \frac{1}{2} i n\). ) \(800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{p}\) ea. P.P. 5p
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values, All new modern components. Over 500 pieces £2. (Trlal order 100pcs. 50p.) We are confiden REGULATED
REGULATE POWER SUPPLY. Input 110/240
U.K. ORDERS \(10 \%\) V.A.T. SURCHARGE

\section*{TRANSFORMERS}
a divance "volstat" transformers. Indut 242v. A.C.
CV50. 38 v . at \(1 \mathrm{amp}: 25 \mathrm{v}\). at \(100 \mathrm{~m} / \mathrm{a} .75 \mathrm{v}\). at \(200 \mathrm{~m} / \mathrm{a}\). £2 ea. P.P. 40p.
CV75. 25 v . at \(2 \frac{1}{1} \mathrm{amp} . \mathbf{£ 2} 50\). P.P. 50p.
CV100. 50 v . at \(2 \mathrm{amp}: 50 \mathrm{v}\). at \(100 \mathrm{~m} / \mathrm{a}\). £3. P.P. 50p
CV250. 25 v . at \(8 \mathrm{amp}: 75 \mathrm{v}\). at \(\frac{1}{2} \mathrm{amp}\). £5. P.P. E1.
CV500. 45 v . at \(3 \mathrm{amp}: 35 \mathrm{v}\), at \(2 \mathrm{amp}: 25 \mathrm{v}\). at 3 amp . f7. P.P. E1.
L.t. TRANSFORMER. Prim. 240v. Sec. 13v. at 1.5 amp. 75p. P.P. \(15 p\).
L.T. TRANSFORMER. Prim. 240 v . Sec. 24 v . at \(1 \frac{1}{\frac{1}{2}} \mathrm{amp}\). £1-20. P.P. 20p.
L.T. TRANSFORMER. Prim. \(110 / 240\) v. Sec. \(0 / 24 / 40 \mathrm{~V}\).
\(1 \frac{1}{2}\) amp. (Shrouded). \(\mathbf{£ 1 . 5 0 . ~ P . P . ~ 3 0 p . ~}\)
L.T.TRANSFORMER. Prim. \(110 / 240 \mathrm{v}\). Sec. 28/0/28v. at \(2 \mathrm{amp}: 10.5 \mathrm{v}\). at 1 amp . (Shrouded). \(\mathbf{£ 2} \mathbf{2 5}\). P.P. 40p. L.T. TRANSORMER. Prim. 200/250v. Sec. 20/40/60y, at 2 amp. (Shrouded). £2.25. P.P. 40p
L.T. TRANSFORMER (H.O.) Prim. 200/250V Sec. 18 v . at \(27 \mathrm{amp}: 40 \mathrm{v}\). at \(9.8 \mathrm{amp}: 40 \mathrm{v}\). at 3.6 amp 52 v . at 1 amp : 25 v at 3.7 amp f15. P.P.f2.
H.T./L.T. TRANSFORMER. Prim. 200/250v. Sec. \(1-500 / 0 / 500 \mathrm{v} .150 \mathrm{ni} / \mathrm{a}\). Sec. \(2 \mathrm{3iv}\). at 5 amp. £3. P.P. 75p.
E.H.T. TRANSFORMER. 240 V . Sec. 2.5-0-2.5 K.V. at \(12 \mathrm{~m} / \mathrm{a}: 7.5 \mathrm{v}\). at \(1 \mathrm{amp}: 2.5 \mathrm{v}\). at 2 amp . £2.50. P.P. 35 p . E.H.T. TRANSFDRMER. 240 v . Sec. 1800 v . 50 mA £2.50. P.P. 50p.

250W. ISDLATION TRANSFORMER. 240V. £3-25 P.P. 50p.

1000W. ISOLATION TRANSFORMER. 220/240V. 242v. (c* core type). £12. P.P. £1-50.

2500W. ISOLATION TRANSFORMER (CONSTANT VOLTAGE). Prim. 190-260v. 50 HZ . Sec. 230v. a 10.9 amp. £30. Саाr. £2.

500W. STEP-DOWN TRANSFORMER. wound.) \(240 \mathrm{v} .-115 \mathrm{v} .50 \mathrm{HZ}\). £6.50. P.P. £1

2300W. STEP-DOWN TRANSFORMER
wound.) \(240 \mathrm{v} .-117 \mathrm{v} .50 \mathrm{HZ}\). £22.50. P.P. £2.

MULTICORE CABLE (P.V.C.).
6 core ( 6 colours) 3 'screened, \(14 / 0048.15 \mathrm{p}\). yd. 100 vds 12.50.

20 core ( 2 screened) \(17 \frac{1}{1} p\) yd. 100 yds. £ 15.
24 core ( 24 colours) \(\mathbf{2 0 p}\). yd. \(100 \mathrm{yds} . \mathbf{£ 1 7 - 5 0 .}\)
34 core ( 17 colours) 22 ip . yd. 100 yds . £18.50
4 core ( 17 colours) 25p. yd. 100 yds. \(£ 20\)
inimum order 10 yd
RIBBON CABLE (8 colours)
£1.25 £10
\(\begin{array}{ll}10 \mathrm{~m} . \\ 8 \text { cores. } 7 / \mathrm{mm} \text {, bonded side by side in ribbon form. } & 100 \mathrm{~m} \text {. }\end{array}\)
SMALL MOTOR ( \(1 / 50\) H.P.) 900 R,P.M. \(230 / 250\) v. A.C. £1.50. P.P. 30p.

\section*{RELAYS}

SIEMENS/VARLEY PLUG-IN. Complete with transparen dust covers and bases. 2 pole c/o contacts 35p ea : 6 mak ypes in stock.

12 VOLT H.D. RELAYS ( \(3 \times 2 \times 1\) in.) with 10 amp . silve contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. 5 p.
24 VOLT H.D. RELAYS ( \(2 \times 2 \times \frac{1}{2}\) in.) 10 amp. contacts 4 pole c/o. 40p ea. P.P. 5p
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp ontacts. 75p (with base). P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. \(4 \mathrm{c} / \mathrm{o}\) ontacts 65p. P.P. 5p
SILICON BRIDGES. 100 P.I.V. 1 amp. \(\left(\frac{5}{6} \times \mathbf{i n}.\right)\) 30p 200 P.I.V. 2 amp. 60 p.
24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60p.

\section*{PATTRICK \& KINNIE}

I9I LONDON ROAD • ROMFORD - ESSEX
ROMFORD 44473
RM7 9DD

\section*{Principles and Calculations for Radio Mechanics Paft 1}
R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974152 pp., illustrated \(0408001194 \quad £ 1.50\)

\section*{Rapid Servicing of Trunsisfor Equipment 2nd Edition}

\section*{Gordon J. King}

This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits.
1973 180pp., illustrated 040800116 X £1.90

\section*{Robolics}

\section*{John F. Young}

The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for research workers and those in related fields.
\(1973 \mathbf{3 0 4}\) pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from The Butterworth Group
Borough Green, Sevenoaks,
Kent TN15 8PH. Tel. Borough Green 2247

\section*{CAVERN ELECTRONICS}

\section*{1974 COMPONENTS CATALOGUE}

30p plus 11 p Post and Packing
hundreds of components - illustrations . data
Details of our Credit Scheme included.
Send Cheque or P.O. for 41 p to :-
CAVERN ELECTRONICS
94 Stratford Road, Wolverton MILTON KEYNES MK12 5LU
Retail Counter open Tuesday to Saturday

WW-123 FOR FURTHER DETAILS


\section*{Audio Connectors}

Broadcast pattern jackfields, jackcords. plugs and jacks Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London WIV 3LE
01-4371892/3

The new Oryx 50 is temperature controlled, light, small, easy to handle, rapid heating and high performance. It has a temperature control within \(\pm 2 \mathrm{C}\) and adjusted in seconds whilst running to any value between 200 C and 400 C . Longlife iron-coated tip as standard (11 sizes available).
Oryx De-Soldering Irons--smallmodel SR3A instantly removes solder from printed circuits, etc.. accurate, reliable. simple. PTFE mozzle. Larger instrument SR2 gives more suck, less recoil as only piston moves.
Oryx 50 Iron
1 @ \(\mathbf{E 6} 60\)
Safety Stand \(£ \mathbf{2 . 4 4}\)
```

De-Soldering Tools SR3A $£ 5.06$
SR2 $\mathbf{E 6 . 6 5}$
Prices include P. \& P. and VAT.

```

\section*{WH•MK spacemiser storage system}

Cabinets have stove enamelled steel frames in three heights a!l of equal width and depth. The frames are strong and rigid, fitted with top and bottom locating pegs and rear slots making stacking. wall or frame mounting positive and simple.
\begin{tabular}{lllr} 
121, & 122, & 123, & 124 \\
251, & 252, & 253 & \(\mathbf{£ 4 . 0 7}\) \\
501, & 502, & 503 & \(\mathbf{£ 6 . 1 6}\) \\
254, & 257, & 258 & \(\mathbf{£ 1 0 . 6 7}\) \\
504, & 507 & 508 & \(\mathbf{£ 5 . 8 3}\)
\end{tabular}
504. 507, 508 £10.01

All prices include P. \& P. and VAT.


Contil Mod-3 cases are in six sizes andoffer Mod-301 £3.54 Mod-304 £4.20 the manufacturer of sma!l instruments an attractive low cost case available ex-stock. Made in blue PVC-coated steel and complete with front and rear panels and chassis, they are light, strong and rigid. PCB and PSU mounting systems available. Prices include P. \& P., VAT, feet and screws


TRIMMER PACK, 2 TWIn \(50 / 200\) pt ceramic: 2 Twin \(10 / 60\) pf ceramic; 2 min strips with 4
preset \(5 / 20\) pf on each; 3 air spaced prese \(30 / 100 \mathrm{pf}\) on ceramic basé. ALL BRAND
NEW 25 the NEW 25 p the LOT. P. \& P. 10 p. ROTARY SWITCH PACK- 6 Brand New switches ( 1 ceramic; \(1-4\) pole 2 way etc.).
50p. P. \& P. 20 p .
FLAT FACEO 4* Twin Beam Tube. Type CV2193. (Cossor 89D). Green Trace Brand New. \& 4 each. P \& P 37p.
C.R.T.'s \(5^{\prime \prime}\) type CV1385/ACR13. Brand new with spec. sheet: 63 p ea. P. \& P. 35 p . TUBE type VCR 138 £2 ea. P. \& P. 37p. Numetal hields 60p ea.
BASES for CV1385 or VCR138 20p eà. P. \& P.
GRA. GRATICULES. 12 cm . by 14 cm . in High
Quallty plastic. \(15 p\) each. P. \& P. 5 p . PANEL mounting lamp holders. Red or green.
9p ea. Miniature. PANEL mounting lamp with 9p ea. Miniature. PANEL mounting lamp with

BECKMAN MODEL A. Ten furn po complete with dial. \(100 \mathrm{k} 3 \%\) Tol 0
only \(£ 2.13\) ea.
Also \(450 \mathrm{~K} 0.5 \%\) with dial \(£ 2.13\) ea.
Also \(\mathbf{4 5 0 \mathrm { K }} 0.5 \%\) with dial \(£ 2.13\) ea
ELECTROSTATIC VOLTMETERS from \(0-500\) Volts to \(0-10 \mathrm{KV}\). S. A.E. with your require FIBRE
FIBRE GLASS PRINTEO CIRCUIT BiARO. Brand new. Single sided up to \(21^{\prime \prime}\) perst. in. Double sided. Any size 1 p per sq. In ostage 10p per order.
INTEGRATEO CIRCUIT test clip by AP inc. Gold Plated clip-on. Brand
boxed. 100 ea. P. \& P. 10 p .
OECADE OIAL UP SWITCH-5 DIGIT Complete with escutcheon. Black with white


LIGHT EMITTING OIOOES (Red) from Hewlett-Packard. Brand New 38p ea

SANGO 50 micro amp meter. \(2 \mathrm{l}^{\prime \prime}\) dlameter Ex-brand new radiation equiR. \(£ 1-25\) ea. P. \& P 17p.
FIVE
FIVE moving coll meters \&2 P. \& P. 37p. VISCONOL EHT CAPACITORS \(0.05 \mathrm{mfd} 2.5 \mathrm{kv} 50 \mathrm{pee} . \quad 0.01 \mathrm{mfd} 5 \mathrm{kv} 40 \mathrm{pea}\) 0.05 mtd 8 kv 50 p ea .0 .01 mfd 10 kv 50 p ea 0.002 mfd 15 kv 65 p ea. 0.1 mfd 4 kv 35 p ea OUBILIER 0.1 mid 5 KV ; 0.1 mfd 7.5 KV ; 0.25 mfd 7.5
P. \& P. 15 p .

OTHER BLOCK PAPER CAPACITORS HOMABLE. S.A.E. with requirements. PHOTOCELL equivalent OCP 71, 13p ea Photo resislor type Clare 703 (TO5 case). Two MULLARO OCP70 10p each.

\title{
SPECTRUM ANALYSER MODULE \\ FREQUENCY RANGE 10-850 MHZ
}

Only requires any general purpose oscilloscope to enable the user to look at any frequency in the above range. Standard mains input. A professional instrument priced at \(£ 68.00\). Plus V.A.T. at \(10 \%\). S.A.E. for brochure.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £5.50. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at \(£ 9 \cdot 25\). P. \& P. 25p.

\section*{20HZ to 200KHZ \\ SINE AND SQUARE WAVE GENERATOR}

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. \(£ 785\) each. \(\mathrm{P} \& \mathrm{P} 25 \mathrm{p}\). Sine Wave only £5.85 each. P \& P 25p.

\section*{TRANSISTOR INVERTER}

12 V to 1.5 KV 2 MA . Size \(1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}\). Multi tapped secondary and output level control makes possible large range of voltage and current output combinations without modification. Very flexible unit at \(\mathbf{£ 2 . 9 5}\) each P. \& P. 25p.

\section*{NEW WIDE RANGE WOBBULATOR}

5 MHZ to 150 MHZ (Useful harm onics up to 1.5 GMZ ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect \(6.3 \mathrm{~V} A C\) and use within minutes of receiving. All this for only \(55 \cdot 75\). P. \& P. 25p.

Unless stated-please add \(£ 1-50\) carriage to all units.

\title{
VALUE ADDED TAX not included in prices-please add 10\% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)
}

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

\section*{APPOINTMENTS VACANT}

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London, SE 1.
PHONE: Allan Petters on 01-261 8508 or 01-928 4597.
Classified Advertisement Rates are currently zero rated for the purpose of VAT.

\title{
Maintenance Engineers
}

\section*{Data Communications Network}

We have two interesting new vacancies, due to continuing rapid expansion in services to memberfirms, for electronics engineers in our Communications Group. The group is responsible for fault-handling on three major networks: one is well-established, with two Argus 400 s driving 1700 digi-tv displays in various parts of London; the second, now being commissioned, links 150
Olivetti teleprinters to two DEC PDP 11/40s, to provide a Remote Data Entry (RDE) service for London Members; the
third, also being commissioned, extends the Argus system UK-wide via

PDP 11 s in major centres. Quite exceptionally high service levels are achieved, faults being located and repaired extremely rapidly. The engineers we require are qualified to at least ONC level, experienced in maintaining data communications systems, and probably aged 25-35.
They will work rotating 8 hour shifts between 9 a.m. and 7 p.m.


\section*{The Centre Engineer}
will record and progress faults, in particular diagnosing their whereabouts and initiating maintenance action. He has a sound knowledge of the principles of tv and data transmission. Starting salary probably £2,250-£2,700.

\section*{The Field Engineer}
will at first work chiefly on the RDE network. He is skilled in rapid fault location, and preferably has some knowledge of the principles of tv transmission.
Starting salary probably £1,750-£2,250.

These are permanent career positions with full fringe benefits. To reply please 'phone or write briefly to Ben Mee, The Stock Exchange, London, EC2N 1HP (01-588 2355 ext. 8064).

\section*{ASSISTANT PROJECT ENGINEER FOR COLOUR SORTING MACHINES}

A responsible man with drive and initiative is required in our development department to work directly under a project leader. He will require a working knowledge of both electronics and mechanics, and be capable of working with the minimum of supervision.
Why not ring 01-980 6041 for an informal discussion. or write to:


Sortex
3590

\section*{RADIO OPERATORS JOIN THE POST OFFICE FROM AGE 19}

A job in the Post Office Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunication, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is £1,450 a year, including contributions to a compulsory pension scheme, with an additional allowance averaging \(£ 300\) for shift duties. After two years, satisfactory service your pay becomes \(£ 1,840\), rising to a maximum of \(£ 2,450\) at age 26 years. If you are over 19 years of age your salary is dependent upon age at entry.

There are opportunities for further promotion to positions with a basic salary of \(£ 3,475\) and prospects for advancement into Senior Management.

Forfurther information, write to the Inspector of Wireless Telegraphy ( L57, ), IMTR/WTS, Room 643, Armour House, St. Martins-le-Grand, London ECIAIAR.

\section*{Looking for a Career? Not just a job? in Electronics}

Our Industrial Applications Department is currently engaged on an extensive research programme covering a wide range of electro-magnetic interference topics. in particular the interference characteristics of electrical lectronic equipment and systems from avionics to computers. The programme includes investigation of new measuring techniques and development of specialised circuit and measuring instruments where necessary. The equipment in our laboratories is fully up to date and highly sophisticated

We would like to hear from you if you are interested in radio. electronics, communications and related fields. Basically what we are looking for are young people with potential. as opposed to experience, in these areas. Whether you are qualified to ' \(O\) ' Level or ' \(A\) ' Level standard or whether you have a relevan ONC/HNC qualification for come to that. a degree in electrical/electronic engineering we would very much like to discuss with you the career prospect we offer.

Full on-the-job training will be provided and you will be encouraged to obtain further technical qualifications by day-release. Course and examinatio fees will be paid and one week's revision leave will be provided each year over and above your normal three weeks holiday entitlement.

Commencing salaries are fully competitive and are reviewed annually to match performance. Wherever possible we like to promote from within the organisation.

ERA offers extremely attractive working conditions in a pleasant par of the Surrey countryside. Amenities include transport, plenty of car park space and a thriving sports and social club.

If you have studied to 'A' level standard in science subjects and have an interest or some experience in electronics, this could be just the opportunity for you We need a Junior Electronics Technician in our Physical Chemistry Department for duties which include construction of new apparatus and maintenance of electronic instruments used in chemical laboratories We will give you time off so study for further qualifications.

In addition to an attractive salary, which is regularly reviewed, we offer excellent conditions of employment including a bonus scheme


Please apply quoting ref. ZH674 to the Personnel Officer (Research). Glaxo Laboratories Ltd.. Greenford. Middlesex.

\title{
Interested in computers, radio and radar? \\ special \(£ 100\) award on
}

Train to
become an
expert in air
traffic control
engineering
Vacancies exist for 3-year apprenticeships in the National Air Traffic Services of the Civil Aviation Authority. This is an excellent opportunity for enthusiastic young men and women who want to work with advanced computer, radio and radar systems, navigational and automatic landing aids.
passing the first year's examinations. Promotion prospects are wideranging and opportunities exist for selected candidates based on performance and potential to pursue a course of study for a degree.

Entry Qualifications: If you will be over 16 or under 20 on 1 September 1974 you should or expect to have GCE passes in English Language, Mathematics, and one of the following-Physics, Physics with Chemistry, Mechanics or Mechanical Science. Normally the standard will be at A level for Mathematics and the Science subject, but applicants under 18 will be considered if they have the above subjects at O

Full Pay During Training: Apprentice Technicians receive starting pay of \(£ 883\) £1427 (reviewed periodically) according to age, plus annual increments and a

\section*{There is scope, variety and responsibility as a}

\section*{Radio Technician}

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.
ENTRANCE QUALIFICATIONS
You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.
Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.
Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: \(£ 1383\) (at 19) to \(£ 1836\) (at 25 or over); scale maximum \(£ 2158\) (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.


\section*{ELECTRICITY SUPPLY COMMISSION OF MALAWI}

\section*{COMMUNICATION ENGINEER}

The commission invites applications from suitably qualified persons for the above post.

Candidates should have a full City and Guilds Technological Certificate and at least five years' experience of V.H.F./F.M. radio; Power line carrier or multi-channel single sideband radio and equipment, and supervisory systems using relay logic/solid state digital techniques.

The successful candidate will be required to train a Malawian Engineer who will succeed him at the end of the contract period. Formal training experience will therefore be an advantage.

Salary, inclusive of tax free gratuity of \(25 \%\), will be in the scale \(£ 2,913-£ 3,281\), in addition the post carries the following fringe benefits:-

Housing with basic furniture at nominal rent;
Free medical attention for the employee and his family;
Vacational leave at the rate of four working days for every completed month of service plus local leave of twelve working days per annum;

Education allowances;
Removal expenses and air fares from and to the place of engagement.

Please apply to MALAWI BUYING AND TRADE AGENTS, Recruitment Section 32/34 St Johns Wood Road, London NW8 8RA for application form, quoting reference B. 173 .
[3516

\section*{ELECTRONIC EVALUATION ENGINEER}

We are manufacturers of the specialist range of Leak and Wharfedale \(\mathrm{Hi}-\mathrm{Fi}\) products and the demand for our quality products, which are designed, developed and manufactured to precise published specifications, is continually increasing. The company's policies, therefore, include controlled expansion, continuous improvement to current products and the extension of our product range.
A vacancy is available in the Engineering Function for an Electronic Evaluation Engineer to provide a technical support service on product evaluation and the sypply of factored products. This will involve him in the assessment of performance, con struction, safety and suitability of factored products and others and the preparation of written reports. This position will also and product planning for the preparation and assistance with the technicàl specifications required
Applicants should be educated to HNC or degree level and have had a minimum period of four years project or product experience in Hi-Fi Electronics or a closely related field
The company's premises are located at Idle, Bradford, convenient for travelling from both Bradford and. Leeds and near to the
pleasant rural surroundings of the Aire Valley. pleasant rural surroundings of the Aire Valley
The company can offer competitive employment conditions including free life assurance and contributory pension scheme.
Application forms may be obtained from:

J. R. Murgatroyd,

Personnel Officer,
Rank Radio International,
Bradford Road, Idle,
Tel: 612552
RANK RADID INTERNATIONAL

\section*{Customer \\ As one of the largest and most successful equipment both in the UK and Europe.} computer manufacturers, we place particular importance on the maintenance of a high level of customer service. Our equipment is among the most advanced in the world today. Highly sophisticated hardware used by top companies and organisations in commerce, industry, science and government.

Our Customer Service organisation is, therefore, immensely important to us if we are to maintain the high standards we have set ourselves over the years, during which we have pioneered much of the advanced technology in use today throughout the industry.

We're looking for Customer Engineers to carry out, to a high professional standard, all electronic and electro-
 echanical work concerned with installation, modification, refurbishing, preventive and remedial maintenance on UNIVAC

We require men with a knowledge of electronic or mechanical fault-finding techniques. In addition to technical competence, essential requirements are a pleasant personality and the ability to maintain a good relationship with customers. Full product training will be given.

To Engineers looking for the best in salaries, vacancies exist in most parts of the country. Conditions and fringe benefits are what you would expect when you join a company within the international Sperry Rand organisation. Future career prospects in the computer field are excellent.

For vacancies in London or the South write with personal and career details to Personnel Manager, Ref. WW, Sperry Univac, Univac House, 160 Euston Road, London NW1. Tel:01-3870911.

\section*{Skilled in TV.} Blectronics?

\section*{Here's a job to put you to the test}

With the coming of colour TV, there has been a tremendous upsurge of opportunities for electronics people. It's an industry which is growing fast and at ITT in Hastings, this growth has been particularly apparent. Production is increasing rapidly to keep pace with the continuing demand for our sets throughout Europe.

Here in Hastings, we're looking for top-notch senior engineers to join our Test Engineering team. It's a job calling for formal electronics training followed by extensive practical experience of TV test as a Service Engineer, in the Forces or in industry.

If you'd like to put your ability to the test with ITT, we'd like to hear from you. It's an opportunity which, if you have the expertise we are looking for, could take you into the training areas of the Company. Generous additional benefits include pension and sickness schemes and assistance with re-location expenses where appropriate.

Write now with full details of your qualifications and experience to David Harris, Personnel Officer, ITT Consumer Products (UK) Ltd, Theaklen Drive, Hastings, Sussex TN34 IYL.


\section*{TESt angineers}

\section*{UP TO £2,600}

Excellent career development opportunities are open to you at IAL.
Positions are immediately available within our rapidly expanding Electronics Engineering Division which will involve you in Testing, and Trouble Shooting on the most advanced solid state electronic assemblies and a wide range of sophisticated systems
Interested? We are looking for men of ability with drive and initiative who have good practical experience and a sound technical background particularly in the data field. We would like to hear from you today. Excellent conditions and benefits include membership of a contributory pension and life insurance scheme.
IAL are a member of the British Airways Group and are engaged in aviation services, communications, electronics engineering and printing world wide

\section*{Write or call for interview to:}

Mr. R. Radcliffe, Personnel Officer (UK \& E)
International Aeradio Ltd.,
Aeradio House, Hayes Road,
Southall, Middlesex.
01-574 2411

\section*{IAL international aeradio}

\section*{SERVICE ENGINEER}

A vacancy exists in our Service Department for an experienced SERVICE ENGINEER with suitable qualifications, for servicing HF and VHF SSB and PM equipment.

Salary will be over \(£ 1800\), dependent upon qualification and experience.

\section*{SALES ASSISTANT}

A young, lively person holding a Class \(A\) or \(B\) Radio Amateurs' licence is required to assist the Sales Manager. If you are interested in joining our team, we would be pleased to hear from you. Further details from the Managing Director, Western Electronics (U.K.) Ltd., Osborne Road, Totton, Southampton. Telephone: Totton 4930.


We require young Electronics Engineers, with HNC or equivalent, who will learn to operate and maintain our advanced and highly sophisticated electronic equipment at transmitting stations throughopt the country, bringing independent television and independent local radio into millions of homes.


Much of our work concerns the maintenance of remote unattended stations. Our mobile teams-the flying squad of the IBA-may be called on to rectify a fault at short notice-it may be during the year's worst thunderstorm or the hottest day of the summer. It could be
a false alarm-something that needs a good temperament to rush to a stormswept hillside when all is well, but more often there is a real job to be done.
You could join us-IBA run a special 18 month training course to give you a comprehensive knowledge of operations and maintenance techniques, plus an additional recognised qualification. To succeed you must be flexible about hours, willing to travel, able to drive and prepared to undertake a demanding training course. We'll pay you a training salary of between \(£ 1,461\) and \(£ 1,851\) and on successful completion of your training you will move to \(£ 2,253\) with progression to \(£ 2,880\) or more.
Interested? Simply write or 'phone for full details and application forms to:
The Personnel Officer,
Independent Broadcasting Authority, Crawley Court, Winchester,
Hants. SO21 2QA. Tel: Winchester 822599.


\section*{SERVICE ENGINEERS}

\section*{Take on Tomorrow's Technology as an IBM Computer Customer Engineer.}

Get to grips with the latest developments in electronics and electro-mechanical design and you can really call yourself a Service Engineer. Let's face it-a lot of today's electronics are derived from computer-technology so it makes sense to get to the heart of it-computer servicing.

We'll train you thoroughly to service and, maintain medium and large scale systems, data recording, teleprocessing and data entry terminals. In fact, your training will be continuous because there will always be something new to learn. Our technology is continually evolving. So as our systems develop so will your engineering techniques.

You should be educated to ' \(O\) ' level with a logical mind and a good mechanical aptitude. Knowledge of electronics is necessary for all but those primarily interested in working on Data Recording.

In addition you'll need the ability to communicate with people at all levels, the enthusiasm to work without supervision and be willing and able to accept responsibility.

Starting salaries are substantial.You'll enjoy aboveaverage fringe benefits and prospects for promotion are particularly good in an organisation that promotes from within, on merit.

Right now we have opportunities throughout the UK, so if you're looking for a start with one of the world's top companies, write to Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL quoting ref. WW/91889

\section*{telesonic marine ltd.}

\section*{MARINE ELECTRONICS ENGINEER}

Are you experienced in installing and servicing marine electronic equipment such as Radar, Navigation Equipment, and radio telephones? We require such a man for a fascinating job travelling to luxury yachts, etc., all round the country. If you live near London and are able to drive, a good salary awaits you working in idyllic friendly atmosphere.

\section*{LONDON BOROUGH OF HILLINGDON \\ VISUAL AND AURAL AIDS TECHNICIAN}
suitably qualified and experienced person required to assist in the day to day maintenance and repair of visual and aural aids equipment in schools.
Salary £1,521-£1,749 p.a. incl. L.W. Current clean driving licence essential.
Ref: E/28/180. Closing date 31 January, 1974.
Application forms available from and returnable to Personnel Officer, Belmont House, 38 Market Square, High Street, Uxbridge, UB8 1TR.
[3421

\section*{UNIVERSITY OF LIVERPOOL SCHOOL OF EDUCATION TECHNICIAN (avA and CCTV)}

Invitations are invited for the above post to have overall responsibility for the AVA and CCTV provision in the School
Applicants should be qualified and experienced in the fields of electronics and Audio Visual Aids and be capable of working on their own initiative and supervising other technicians. This is a new post with interesting possibilities for deve:oping new forms of work in the field of Educational Technology. Salary within a range up to \(£ 2,382\) per annum according to qualifications and experience.
Further particulars and application forms may be obtained from the Registrar, The University, P.O. Box 147 , Liverpool, L69 3BX. Quote ref RV/WW/80663.
[3537


\section*{Hamilton College of Education} require a

\section*{TELEVISION ENGINEER (COLOUR UNIT)}
to join a team engaged in the operation, maintenance and development of the College service. At present the service consists of a two channel colour mobile control room with distribution facilities within the college.
Experience in video tape recorders and/or colour cameras and monitors an advantage. Normal colour vision and driving licence essential. Annual leave will be 4 weeks.
Salary will be in the range \(\$ 1530.12100\) (N.J.C. Grade IV, \(V\) and VI) depending on qualifications and experience. (Salary scales are at present under review.)
Further information and application forms may be obtained from the College Secretary by telephoning Hamilton 23241, or writing as soon as possible to:

COLLEGE OF EDUCATION
Bothwell Road, Hamilion,
Lanarkshire, ML3 OBD.


Candidates, men only, preferably between 28 and 35, should normally be citizens of and permanently resident in the United Kingdom and have a British educational background. They must have relevant instructor and at least 5 years' trade experience after training. Some training/teaching experience in a technical institute or recognised work training department is also essential.

SALARY: QRials 2400 ( 6250 approx.) a month, tax free. Free furnished accommodation or allowance in lieu; car allowance QR400 a month; two months' annual leave, passage paid; free medical service; return air fares. Three year contract, renewable, suaranteed by British Council. 73 AM/
132 , 132.

Write quoting relevant reference number to THE BRITISH COUNCIL (APPOINTMENTS) 29 BRESSENDEN PLACE, LONDON SWIE SDD for
further particular's and application form to be completed as soon as possible.
has a vacancy for a trainee Sound Maintentance Engineer. Applicants should have a good technical background, preferably to 'A' Level standerd, and have a keen interest in the practical aspects of sound engineering. Starting salary \(\mathbf{f 1 , 6 6 2}\) p.a. 4 weeks holiday. Subsidised staff restaurant.

INDEPENDENT TELEVISION NEWS LIMITED ITN HOUSE, 48 WELLS ST., LONDON WIP 3FE TEL: 01-637 2424.

3412

\section*{Broadcasi Television}

The following vacancies exist for enthusiastic young engineers to work in our newly equipped studios:
1. VISION ENGINEER.
2. SOUND ENGINEER.
3. VIDEOTAPE ENGINEER.

Previous experience in television preferred but enthusiasm essential.
Qualifications: Attending a course leading to HNC or equivalent.
Salary: Commensurate with qualifications and experience. Plus various fringe benefits.

Apply in writing to:
P. Haines, Ewart \& Co. (Studio) Ltd., Wandsworth Plain, London, SWI8 IET.
 and have a good knowledge of digital circuitry, then you may have what it takes if you also have previous field service experience, particularly on computer products and if you have an H.N.C. or similar qualification, you are more likely to have what it takes.

We are looking for field engineers to work on our world-famous range of PDF mini-computers. We have openings both for site and mobile engineers, located throughout the country but mainly in the South East of England.

The work is varied and challenging, and the rewards are suitably high.

If you are interested, please write or telephone for an application form to our Personnel Department quoting reference WW 122.
DIGITAL EQUIPMENT COMPANY LIMITED
Fountain House, Butts Centre, Reading RG17QN. Tel. (0734) 599049


 
 I the pdp gionts

\title{
Communications Engineer's
}

Career Development Opportunities - up to £2,800

There are excellent career opportunities within the final inspection department of IAL open to engineers who have a sound theoretical and practical understanding of basic electronics.

These positions of responsibility involve varied and interesting work associated with a wide range of communication equipment including Control and Monitoring Aids for Data Handling Centres, Air Traffic Control Consoles, with associated hardware, and M.F. Navaids.

Applicants should be able to demonstrate competence in standard electronic test procedures. Benefits include holiday air fares for you and your family at nominal cost.

To find out more, and to arrange an interview please contact: Mr. R. Radcliffe, Personnel Officer (U.K.),

\section*{Aeradio House,} Hayes Road, Southall, Middlesex. Tel : 01-574 2411

\section*{Supervisory Project Engineer}

Thames Television has a vacancy for a Supervisory Project Engineer, who will be based at their Teddington Studios in Middiesex, to co-ordinate the Company's requirements on building work and to liaise with architects and other building consultants to achieve the required results.

The successful applicant will be responsible to the Head of the Engineering Department and will be part of a team providing a complete service to the Company for all capital projects

Applicants should preferably be qualified to the requirements of the Professional Engineering Institutions: They must have a wide knowledge of all aspects of Television and a basic knowledge of buildings techniques. An ability to analyse the users' needs and translate these into practical information is also required.

Interested applicants are invited to write, in confidence, giving brief details of age, qualifications and experience to: The Staff Relations Officer. Thames Television Limited. Teddington Lock. Teddington. Middlesex


If you tell us why this circuit does not operate you could be the 20-25 year old technician who after a suitable training period would join our Test Team. Peter Waugh, our Chief Designer, will be pleased to receive your answer-and the reason for reading Wireless World advertisements!
Scopex is a rapidly-expanding company offering many opportunities for advancement. Salary is commensurate with the position offered.
Reply to:
Mr. P. Waugh,
Scopex Instruments Ltd.,
Pixmore Industrial Estate,
Pixmore Avenue, Letchworth,
Herts. SG6 1JJ
Tel: Letchworth 72771

\section*{ with Europer's largest IV assembly plant}

Yes - we're No. 1 in Europe. And to keep it that way, we need a strong, top class team of engineers. Here is your chance to join them. We need. . .

\section*{SENIOR ELECTRONIC DESIGN ENGINEERS}
who will work on all aspects of electrical design of television receivers. The successful applicants are likely to hold a degree or HNC in Electrical/Electronic Engineering and will have had a minimum of two years' experience in solid-state design, preferably in consumer electronics.

\section*{ELECTRONIC DEVELOPMENT ENGINEERS}

If you are qualified in RADAR, COMMUNICATIONS, RADIO or TELEVISION, you could be the type of person we are looking for to fill vacancies in our Engineering Liaison Laboratory. Due to continuing expansion of this company, a Development Engineer and a Senior Development Engineer are required.
Normal company benefits apply for the above positions and assistance can be given with re-location expenses. Salary will be negotiated according to qualifications and experience.
Please write or telephone for an application form to Geoff Connolly.
THORN CONSUMER ELECTRONICS (GOSPORT) LTD., Fareham Rd., Gosport PO13 0AU. Tel.: Fareham 6181.

\section*{ELECTRONIC VACANCIES}

Engineers
Draughtsmen Designers
Service and Test Engineers
Technicians Technical Authors
Sales Engineers
£1,600-£5,000 ра
Permanert or Contract

Phone MICHAEL NORTH 01-388 0918 MALLA TECHNICAL STAFF LIMITED
334 Euston Rd., London NW1 3BG

\section*{X-ray Field Engineers}

Our current expansion programme now calls for experienced electromechanical engineers to support our existing field staff. They will become involved in a variety of interesting activities covering the installation. service and maintenance of diagnostic medical X -ray equipment in hospitals.
Progressive opportunities exist in a number of our Branches throughout the UK.
Applicants should be qualified to ONC or City \& Guilds equivalent and previous experience on any of the following- X -ray engineering, closedcircuit television, electronics, logic circuitry-would be a distinct advantage.
Good salaries and fringe benefits will be offered to the successful applicants and a company car will be provided as soon as an acceptable stage of proficiency in our product is reached.
For further details and application form please contact:

\section*{television \\ ENGINEERS}

Our colour television operation is highly
successful. Continued growth has created vacancies for enginuers with a flair for tackling the wide variety al projects handied by the Post Design Section of our laboratories at Chessington.

This Sectjot is involved in all engineering aspects of our countrywide colour and monochrome television rental organisation

Applications are invited from engineers with a sound knowledge of audio equipment television receivers and or experience of quality assurance work

Foronal qualifications. whilst desirable are not exsential. where an applicant can demonstrate his practical ability

Fxcellent salaries are oflered. up to \(£ 2.600\) p.a and generous assistance with relocation expenses nay be given where appropriate

Interested?
Then writelo:-
Iohn Sinclair.
Rediffusion Consumer Elecironits Lid
Fullers Way South.
CHESSINGTON Surrev'

\section*{ELECTRONIC ENGINEERS}

In 1961 we introduced the world's first electronic desk-top calculators, with the trade name of ANITA. There have been many changes in technology since then, but we have remained leaders in the field and our calculators have been sold in many countries around the world including the U.S.A. and Japan. Due to further expansion of our activities with calculators and more complex systems we have vacancies for service engineers at our National Service Centre at Hemel Hempstead. Our range of electronic business equipment is wide and our engineering requirements are correspondingly varied. We are now seeking additional staff ranging from junior technicians (with day release, where appropriate) to qualified, experienced engineers. The positions are permanent and we offer first class conditions of employment. Please write or telephone for an application form from D. D. Davies, SUMLOCK COMPTOMETER LTD., 1, FROGMORE ROAD, HEMEL HEMPSTEAD, HP3 9RJ, HERTS. TEL: 0442 61771

3427

\section*{OPPORTUNITIES IN AUSTRALIA for VIDEO/CTV/CCTV TECHNICIANS}

Progressive Company, member of major Australian Group expanding rapidly in video field requires experienced Technicians in colour TV, video system, closed circuit TV systems including cameras.
Top salary, car supplied, assistance in travelling and housing.
Locations-HOBART, MELBOURNE, SYDNEY.
Telephone
ANNE GRAHAM,
LONDON 6360541
for further details

\section*{THURROCK TECHNICAL COLLEGE} Woodview, Grays, Essex.
TECHNICIAN GRADE TI-3 to join an enthusiastic team providing a Resources ( \(A / V\) Aids) service to the College.
The person
skills in appointed will have knowledge and Video (C.C.T.V.) following servicing fields:
Recorders.
A proven capacity for faultfinding on electronic equipment will count more than formal qualifications.
Opportunities for day release provided,
Salary Scale: Up to \(\{1,644\) per annum, according to age, qualifications and experience.
Application forms are obtainable from the College Administrative Officer, to whom they should be of this advertisement.

\section*{CIVILIAN INSTRUCTORS GRADE III}

Two posts for men with the Ministry of Defence (Army at Catterick Garrison, Yorkshire
POST I
Instructor Grade III (Telecoms-Wireless and Line)-required to teach Royal Signals technicians the basic principles of electricity, nicians the basic principles of electricity, together with the maintenance of curren service telecommunications equipment.
POST 2
Instructor Grade 111 (Telecoms_Line and Radio)-required to teach Royal Signals telegraphists Morse and Keyboard operating Selection is by message handling procedures. posts applicants must be experienced in the subject generally and where appropriate, possession of ONC, C\&G or equivalent qualification is desirable
Salary Scale: \(\{1971\) (at aged 28 years and over) rising by four annual increments to currently under review and any adjustment is expected to be retrospective to I lanuary 1974 ). Prospec
promotion of pensionable appointment and technical study and day release will be granted wherever possible.
Write for application forms and specimen test papers to CEPO Catterick. Peronne Lines. Catterick Garrison. Yorkshire. Closing date for receipt of completed forms: 11 March 1974

\section*{TECHNICIAN/ ENGINEER AT THE OPEN UNIVERSITY}

The Electronics Laboratory designs and develops electronic equipment for The Open University which includes home instruction kits.
We have need of a Technician/Engineer to assist on new designs, improving existing designs and the development of test sets for them. He may also assist with the design of research aids, the preparation of television demonstrations and assist occasionally at Summer Schools.
The job will involve some construction work although the applicant muse show a keen interest in modern electronics and a desire to learn.
Salary on Technician Scale Grade 4: 61848E2163 per annum.
Contributory pension scheme, 18 days annual leave, plus a week at Christmas and Easter when the University is closed. There are prospects of promotion.
Further particulars and application forms are available from The Personnel Manager (EL6), The Open University, P.O. Box 75, Walton Hall, Milton Keynes, MK7 6AL. Applications should be returned as soon as possible.

【 3496

\section*{Royal Holloway College}
(Unlverslty of London)
Egham HIII, Egham, Surrey
ELECTRONICS TECHNICIAN
required in the Physics Department. Candidates should have ONC, HNC or equivalent qualifications. Duties will include assistance with practical classes and research. Preference in vacuum and electronics techniques, 4 weeks in vacuum and electronics techniques. 4 weeks holidays a year plus discretionary days. Salary sonnel Officer at the above address.
[3501

\section*{TEST ENGINEERS}

The leading U.K. manufacturer of high grade TV monitor's require Test Engineers for their expanding Test Department.
Situated in the Berkshire town of Maidenhead, the Company offers pleasant working conditions, good salaries and friendly environment. Duties will cover the testing and trouble-shooting of monochrome and colour TV monitors together with other ancillary sophisticated TV broadcast equipment manufactured by the company. Previous experience of TV equipment would be an advantage. Please apply to :

\section*{PROWEST ELECTRONICS}

\section*{Boyn Valley Road,}

Maidenhead, Berks.
Maidenhead 29612

\section*{NEW ZEALAND MINISTRY OF TRANSPORT}

Applications are invited for the undermentioned vacancies:

\section*{TEECCOMMUNICATION ENGINEERS}

Salary: Salaries are in the range up to \(\$ 8637\) per annum.
Duties: To work on systems planning, equipment procurement and installation for communications and navigation aids. The work lies in the fields of civil aviation, road transport traffic law enforcement, meteorological services and marine services. Appointees will be located in Weilington.

Qualifications desired: Applicants should preferably be corpciate members of the I.E.E. or of equivalent status.

Passages: Fares for appointee and his wife and family will be paid.
Incidental expenses: \(U_{p}\) to \(N Z \$ 120\) for a single man and up to \(N Z \$ 800\) for a married man can be claimed to cover the cost of taking personal effects to New Zealand.
Application forms and general information are available from the High Commissioner for New Zealand, New Zealand House, Haymarket, London SWIY 4TQ with whom applications will close on April 26th 1974.

Please quote reference B13/5/33 when enquiring.

\title{
Development Engineers
}

\section*{Colour Television Receiver Design Up to \(£ \mathbf{} \mathbf{3 2 0 0}\)}

GEC (Radio and Television) Limited are among the top five leading British designers and manufacturers of colour television. Because of considerable expansion in new markets and other new product areas we need to considerably strengthen our development teams. The work is interesting and varied and close-knit teams work 'informally' on projects, reporting through to the Chief Engineer. There will also be opportunities to work on peripherals such as video record and playback devices, data display and remote control systems. We would like to hear from engineers experienced in tuner, signal and scanning circuits design.
Qualifications to degree or HND standard are desirable but of paramount importance is three or four years" experience in the above or similar fields, preferably with a knowledge of mass production requirements.
Salaries are negotiable up to \(£ 3200\) according to age and experience. Other fringe benefits include excellent contributory pension and sickness schemes, more than three weeks' holiday and relocation expenses if appropriate. This is an excellent opportunity to work for a major British Company, vigorously expanding and where promotion prospects are positive.

Please write or telephone with brief career details to:
Mr. E. Norris, Technical Director,
GEC (Radio and Television) Limited,
Wexhám Road, Slough, Bucks.
Telephone: Slough 24541.

\section*{RADIO OPERATORS}

Leaving the Service in the next 18 months? If your trade involves radio operating, you qualify to be considered for a Radio Officer post with the composite signals organisation.
On satisfactory completion of a 7 months specialist training course, successful applicants are paid on a scale rising to \(£ 2,893\) p.a.; commencing salary according to age- 25 years and over \(£ 2,126\) p.a.
During training salary also by age, 25 and over, \(£ 1,607\) p.a. with free accommodation The future holds good opportunities for established status, service overseas, and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Applications only from British born U.K. residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.
Full details from :
```

Recuitment Officer,
Room A/1105,
Government Communications Headquarters,
Priors Road, Oakley, Cheltenham
Glos., GL52 5AJ.
Telephone Cheltenham 21491 Ext. 2270.

```

\section*{THE KINGDOM OF SAUDI ARABIA \\ Broadcasting Station Engineers and Technicians}

The Ministry of Information of the Kingdom of Saudi Arabia invites applications for Service in its MF and HF broadcasting system in the undermentioned posts.
Contracts will be for two years in the first instance, renewable thereafter. and successful applicants will be based in Riyadh, Jeddah or Dammam.
Candidates will be required to provide written proof of their technical competence. A good knowledge of the English language is required.

The age limit is 55 years.

\section*{STÁtion maintenance engineers}

Applicants must possess a diploma in Electrical or Telecommunications engineering, equivalent to the British B.Sc. (Eng.), H.N.D. (Higher National Diploma) or H.N.C. (Higher National Certificate) and have had several years practical experience in the operation, maintenations and studio complexes.
Salary: Minimum 5000 Saudi Arabian Rials per month, subject to negotiation during interview, plus allowances.

STATION MAINTENANCE TECHNICIANS
Applicants must possess a recognised certificate of technical competence equivalent to the British O.N.D. (Ordinary National Diploma) or O.N.C. (Ordinary National Certifiexperience in the operation and maintenance experience in the operation and santena and maintenance of broadcasting studios. Salary: Minimum 3000 Saudi Arabian Rials per month, subject to negotiation during interview, plus allowance.
Allowances (all successful candidates). An: nual housing allowance equal to two months' salary, or a maximum of SR 8000. Car allowance or SR 300 per month.
Incomie Tax: Salaries and allowances are subject to Saudi Arabian Income Tax. Details will be given to applicants.
Interviews: Selected applicants will be interviewed in Paris; Brussels, Frankfurt, Amsterdam and Brighton.

Applications: In writing to the Personnel Manager. Preece Cardew \& Rider, of 165/ 167. Preston Road, Brighton BNI 6AF, Sussex, England who have been instructed to
act on behalf of the Ministry of Information, quoting reference GET/PERS./3071.
[3513

\section*{The University of Leeds}

DEPARTMENT OF PHYSIOLOGY

\section*{CARDIOVASCULAR UNIT}

Applications are invited for the post of EXPERIMENTAL OFFICER in Electronics. A degree or HNC is required. Responsibilities inciude PDP12 and PDP8 computers, electronic equipment in three physiological laboratories and three
hospital catheter laboratories, and the supervision of four electronics technicians. Salary scale £1563-£2187. Preliminary enquiries may be made to the Director of the Cardovascular Unit, Department of Physlology, The University, Leeds, LS29JT.
Forms of application and further particulars from the Repistrar, The Universify, Leeds LS2 9JT (please quote 43/12/CI).

\title{
CREATIVE DEVELOPMENT ENGINEERS Up to \(£ 3000\)
}

If you are keen to develop your career by working for an expanding Company in the forefront of Telecommunications/ Systems Design then read on:
We are looking for young engineers with a degree or HNC in electronics or others with at least two years' experience in the following fields:

Message Switching-Hardware and Software
Ràdio-H.F. and Microwave
Broadcast-Sound and Vision Transmitters
You will be responsible for the development of the above equipments from initial design through to final production.
The Company is situated in the developing county town of Chelmsford only 35 mins. by train from London. Generous relocation allowances will be paid to successful applicants and assistance with obtaining accommodation is available.
For further information complete the attached coupon and send it to:

Gordon Short.
Marconi Communication Systems Ltd.
Marconi House. New Street,
CHELMSFORD, Essex. CM1 1PL.
or telephone Chelmsford 53221 Ext. 114.
NAME
ADDRESS

AGE PRESENT POSITION
Marconi
Communication Systems

A GEC-Marconi Electronics Company

\section*{Technician Engineer (Solid State Circuits)}

If you know about solid state circuitry read this - then ring us - but you must be experienced in maintenance, design and construction of solid state electronic circuits, preferably in communications and CCTV.
If you are the right man - preferred age range \(25 / 40\) - you will share the responsibility for the maintenance of a wide range of sophisticated electronic devices and a radio communications network. Technical competency in your field will lead to additional design and installation responsibilities under guidance of the Company's electro-mechanical research and development group.

The job is based in Central London and starting salary is up to \(£ 2.100\). If you think you can handle it, phone 01-405 5200 (reversing charges) to tell us about yourself, and to get more details.

\title{
radiolaudio/ tv engineer \\ \\ QUALITY-CONTROL
} \\ \\ QUALITY-CONTROL
}

The opportunity has arisen at our Liverpool Laboratories for a suitably-qualified engineer to join a small team concerned with the technical appraisal of domestic radio, audio and T.V. products.

This is an especially interesting position involving the examination of samples from the U.K. and abroad. The standards of quality required for inclusion in our Mail Order Catalogues are secured by direct personal contact with our suppliers.

Applicants should be qualified to at least HNC standard, and are unlikely to have less than five years' production experience in the domestic radio and television field, including a close association with design
and manufacturing activities. A familiarity with quality-control and inspection procedures would be an added advantage.

An attractive salary will be offered to the successful applicant, together with generous relocation expenses where necessary.

Reply, giving details of yourself and your career to:- John Cordrey, Appointments Manager, Littlewoods, JM Centre, Old Hall Street, Liverpool X.

\title{
Littlewoods
}

\section*{RADIO TECHNICIANS}

The Ministry of Posts and Telecommunications has vacancies for Radio Technicians at Government Buildings, STAN MORE near (Canons Park Underground). Radio Technicians are also liable to be employed at Waterloo Bridge House, Waterloo Road, S.E. 1 (opposite Waterloo Station).
- Applicants must be at least 19, have a sound knowledge of electricity and radio combined with 2 years practical workshop experience of maintenance and the use of radio/electronic test gear, and hold GCE 'O' level passes in English Language, Mathematics and/or Physics, or City \& Guilds Telecommunications. Technician Intermediate Certificate or equivalent qualifications.
- Future prospects of promotion to Telecommunications Technical Officer grades and above.
- Pay-according to age- \(£ 1,383\) at 19 rising by annual increments to \(£ 2,158\) plus London Weighting.
- Hours-41 gross, 5 day week.
- Paid Holidays-18 days a year rising to 22 days afte. 10 years total service, plus public and privilege holidays.

For application forms and interview apply to:-

\section*{Mlss ). P. Chapman}

MINISTRY OF POSTS AND TELECOMMUNICATIONS
Personnel Services Branch (RT)
Room 203, Waterioo Bridge House
Waterloo Road, London SEI 8UA

At ICN Instruments we are continuing to grow fast in the dynamic field of

\section*{NUCLEAR MEDICINE}

WE REQUIRE

\section*{SERVICE REPRESENTATIVES}
in the South East and North Midlands to work with our full range of Scintillation Counters and imaging equipment. Qualifications to the level of H.N.C. in electronics engineering or a background of electronic application in physics or chemistry would be desirable.
The job is demanding with considerable travel involved but will give satisfaction to those who can work independently and with initiative.
Earnings are likely to be in excess of \(£ 2,500\) per annum plus superannuation scheme and a company Cortina 1600 XL.

\section*{MAKE YOUR CHANGE NOW}

Telephone or write to:
The Sales Manager,
ICN Pharmaceuticals (UK) Limited, Instruments Dlvision,
2 Riverdene Industrlal Estate,
Molesey Road, Hersham, Surrey.
Tel: Walton-on-Thames 44441


International leaders in Electronics, Records and Entertainments.

EMI

EMI Sound \& Vision Equipment Ltd., major U.K. suppliers of cable TV and transmitting aerial equipment are expanding their business in all areas. Recently awarded contracts have created opportunities for:-

\section*{Electronics Engineers}

With design experience of VHF/UHF broadband active and passive devices using modern techniques, to work on new developments in the cable TV field.

\section*{AerialEngineers}

With a knowledge of transmission line techniques associated with VHF/UHF transmitting aerial projects of advanced design. Preference will be given to engineers willing to climb mast structures and available to travel in the U.K. and abroad for short periods.

Attractive salaries will be paid and assistance with removal expenses will be given where appropriate.

Please write or telephone:-Mr. K. E. Goodman, Personnel Department, EMI Limited, 135, Blyth Road, Hayes, Middlesex. Tel: 01-573 3888 Ext. 2523.

\section*{Radio Technicians}

Do you have an interest in Airline Radio backed by at least 5 years' general radio experience? Then you could work for one of the world's largest airlines, servicing radio equipment.
Located at Heathrow your pay would start at \(£ 38.24\) (Daywork Monday-Friday) rising to \(£ 40.17\) after approximately 3 months' familiarisation. There are opportunities for advancement leading to a salary of \(£ 43.12\) per week plus shift pay. Salaries are currently being reviewed.
There is an excellent contributory pension scheme. Other benefits include a first-class sports and social club and opportunities for concessional holiday travel worldwide.
If you are interested please write or phone for an application form quoting reference 188/WW/BW to:
Manager Selection Services, British Airways -Overseas Division. PO Box 10. Heathrow Airport - London, Hounslow TW6 2JA. 01-8975329.

\section*{PERSONABLE CHEMISTS or PHYSICISTS}

Currently in the Electronics Industry

\section*{TO DEVELOP SALES OF IMPORTANT CONDUCTING and INSULATING COATINGS}

Applicants should be experienced in production or quality control in at least one of the applicational fields to be covered, which include:Cathode Ray Tubes, Capacitors, Resistors, Potentiometer Tracks, Cables, Silk Screen Printing, Screening and Anti-Static Developments.

Applicants should be qualified to at least HNC level and be in the preferred age range 26-35 years. Successful applicants will be based in the north or south of England.

Good salary subject to regular review, Ford Cortina 1600 XL, changed every 25,000 miles, modern contributory pension scheme, B.U.P.A., Life Insurance and other fringe benefits.

Applications including Curriculum Vitae marked Personal to :-
G. J. D. BROOKS,

ACHESON COLLOIDS COMPANY, PRINCE ROCK, PLYMOUTH PL4 OSP


\section*{SONY \\ Bench Service Engineers}

Due to continued growth, we now have vacancies for additional Bench Service Engineers at the following locations:

\section*{Central Service Centre, Ascot Road, Bedfont.}

\section*{Bristol, Halesowen, Leeds, Ely, and Central London.}

Applications are invited from Engineers with previous experience of TV (Colour \& Monochrome), Radio. Hi-Fi, Cassette/Tape Recorders and V.T.R. servicing. Preference will be given to holders of C \& G certificates but practical ability may outweigh formal qualifications.
Our progressive grading system, which is approved by the Pay Board, has a basic starting salary of up to \(£ 2,054\) p.a. depending upon the grade achieved by examination. With Company Bonus and Overtime, Grade One engineers can obtain earnings around \(£ 2.400\) in the first year. Other benefits include L.Vs, Contributory Pension and Generous Staff Purchase schemes.
Interested candidates are invited to apply with details of past experience, age and current salary to:
The Personnel Manager, SONY (UK) LIMITED,
Pyrene House, Staines Road, West,

UNIVERSITY OF LIVERPOOL HECTRONCS TECHNCLIAN ENGNEER

An Electronics Technician/Engineer is required for a position in the Electronics Workshop of the Department of Electrical Engineering and Electronics. This post would be suitable for a person holding either H.N.C. or C. \& G. Final Certificate for telecommunications technicians with practical experience of the lay-out of printed circuit boards and the use of linear and digital integrated circuits. The successful applicant will assist in the development and production of a wide range of instruments used in the teaching and research laboratories of the Deparement. Initial salary within a range up to \(£ 2,382\) per annum, according to qualifications and experience. Application forms may be obtained from the pool, L69 3BX. Quote Ref RV/WW/80713
[ 3568

\section*{EIECTRONCS TECHNCLIA/ENGINEER TO DEVELOP TEACHING EQUIPMENT}

The Electronics Laboratory designs and develops home instruction kits for the Open University.
We now need a Technician/Engineer to assist on new designs, the improvement of existing designs, and the development of test sets. He will also help to design electronic equipment for research work, and may assist in the preparation of television demonstrations, and assist at summer schools.
Salary in the range of \(£ 1650-£ 1920\).
Contributory pension scheme. 18 days annual leave, plus a week at Christmas and a week at Easter, when the University closes down. There are prospects of promotion.
Application Forms and further particulars are available from The Acting Personnel Manager (ETS), The Open University, P.O. Box 35. Walton Hall, Milton Keynes, MK76AL. (Telephone Milton Keynes 74066 Extension 3068). Applications should be returned as soon as possible.

\section*{ELECTRONICS ENGINEER}

Guildford Engineer required for interesting work on a wide range of devices and systems used by and for blind people.
A sound basic knowledge of analogue and digital techniques, together with several years experience in a field of design, development and maintenance is necessary. Some experience of light electro-mechanical devices would be an advantage. Applications in writing, giving full details of education, qualifications and experience, including present post and salary, to Personnel Officer, Royal National Institute for the Blind. 224 Gt . Portland Street, London WIN 6AA.


\section*{UNIVERSITY OF THE WEST INDIES-JAMAICA}

Applications are invited for the post of

\section*{SENIOR}

LABORATORY TECHNOLOGIST
(ELECTRONICS)
in a laboratory serving the needs of the Faculties of Medicine and Natural Sciences. Applicants should have at least five years' experience in electronics and workshop practice. Duties will include the servicing and maintenance of existing equipment, the construction and testing of experimental, electro-mechanical, scientific and medical instruments. A practical knowledge of printed circuit techniques will be an asset. Appointee should possess an O.N.C., City and Guild. Certificate or equivalent.
Salary scale: \(\$ \$ 3,300-1 \$ 5,160\) p.a. ( \(£ 1\) sterling \(=\mathbf{\$} \$ 2.00\) approximately .

Reply, stating age, experience, relevant qualifications and the names and addresses of two referees to the ViceDean, Faculty of Natural Science, University of the West Indies, Mona, Kingston 7, Jamaica, W.I.

\title{
Electronics
} Engineers

\section*{Lecture on computer servicing.}

ICL, Europe's leading computer manufacturer, is looking for Electronics Engineers to teach the practicalities of computer servicing.

At the largest training centre of its kind in Europe, first of all we will ground you in computer technology and education training. We will then ask you to train Customer Engineers to such a standard that they will be able to maintain computers at optimum operational specification.

You will need to have a thorough competence in electronics and the ability to put across your own first-rate knowledge. Ideally, you will have an HNC or Forces' training in electronic engineering and at least three years' experience, preferably in digital electronics or computers.

Based at the training centre in Letchworth, Herts, your starting salary will commence at \(£ 2200\). ICL depends on talent and rewards it accordingly. You will be encouraged and expected to progress; your development could be throughout the ICL Group. Relocation expenses will be considered where appropriate.

For an application form, write to A E Turner, quoting reference WW 588 C , at International Computers Limited, 85/9r Upper Richmond Road, Putney, London SWI 5 2TE.

International Computers
think computes-think ICL


\section*{Electronics Appointments Register}

\section*{We cangetyou abetterjob than you can get yourself.}

The best jobs don't necessarily appear in the sits. vac. columns.

They are often to be found in the Electronics Appointments Register.

Our individual approach gives you a wider choice - we have lots of jobs on our specialised registers and we may well have one tailor-made for you.

The service is absolutely free to you and completely confidential.

In effect we offer you the chance to find your ideal job, all for the cost of a phone-call.

So capitalise now on your specialised knowledge.
Call 01-734 6536, or fill in the coupon and we will send you an enrolment form by return of post.


Graduate Appointments Register
Please send me details of how to enrole on one of your Appointment Registers:
Name
Address
Please Indicate Salary Range \(\boldsymbol{£}\)
Post to G.A.R. 76 Dean Street London W.1. 01-734 6536

\section*{BRITISH RELAYTV} require

\section*{Electronic/ \\ Telecomms Technician}

To operate small service department dealing with the maintenance and performance testing of cable television equipment.
Practical experience with ability to produce results without direct supervision is of primary importance.
Applicants should be qualified to ONC or City and Guilds Final Technicians certificate (or equivalent).
This is a permanent pensionable position with salary commensurate with qualifications and experience.
Please write, giving summary of experience to date, qualifications, etc., to:

\section*{Technical Manager}

British Relay Ltd (Div.1)
41 Streatham High Road LONDON SW16 1EP


One of Britain's most successful small computer companies requires two first-class LOGIC DESIGN ENGINEERS
with considerable design experience in the computer field

SALARY NEGOTIABLE UP TO \(£ 3,000\) p.a.

Please apply in writing to: Andy Reichert Co-ordinator, Product Development Ventek Ltd
112 North Acton Road London, NW 10 01-965 9722
giving full details of career to date, including present and expected salary.

\section*{Radio Survey Engineers Overseas Careers Posts}

Radio Survey Engineers are required for overseas locations to work on VHF UHF narrow band and broad point-to-point and tropospheric scatter links. Applicants will have had 3-5 years' experience in their respective fields and preferably hold qualifications up to at least Ordinary National Level.
The Engineers' duties will include practical field survey work and a knowledge of test methods and associated equipment will be required. Experience in path loss assessment methods under varying propagation conditions will be required, together with the ability to give advice and support to field construction teams at all stages up to and including the commissioning phase.
They must be able to organise survey work and enjoy applying their own initiative in a challenging, but attractive environment
These appointments offer excellent tax free salaries and allowances and in addition, free furnished accommodation, free medical attention and free passages to the United Kingdom every two years.
Please apply in writing to:
Personnel Officer (Overseas)
Recruitment Officer (DTOO1),
International Aeradio Limited
Aeradio House, Hayes Road, Southall, Middlesex,
or telephone 01-574 2411 for application form.

\section*{The Middlesex Hospital London W1N 8AA \\ Department of Clinical Measurement}

Electronic Technician required as soon as possible for work involved in the design, development and maintenance of medical electronic equipment. Applicants should have experience in the layout and wiring of small signal analogue and digital circuitry and will be part of a team of engineers and technicians. Opportunities exist for day release for further study. Salary on Whitley B Scales, Medical Physics Technician III £1.719-£2.211 p.a. plus £126 London Weighting.
Application forms obtainable from the Establishment Officer, The Middlesex Hospital, London W1N 8AA (Tel: 6368333 Ext. 536).


\section*{BOTSWANA ASSISTANT ENGINEER}

\section*{GRADE I}

Required by the Posts and Telecommunications Department to be responsible for an area including rural automatic exchanges; open wire carrier systems, VF telegraphs, some plant and 2 GHz microwave equipment.
Candidates, preferably \(30-45\) years, must hold the City and Guilds Final Certificate in Telecommunications or an equivalent qualification and have a minimum of five years' experience, excluding training, in a transmission/radio field, Candidates with some knowledge of automatic exchange and subscriber apparatus will be preferred.
Commencing salary including Supplement will be in the range. of \(£ 2,300\) to \(£ 3,280\). A substantial gratuity is also payable. Because of lower rates of Income Tax in Botswana, the gross emoluments are roughly equivalent to UK salaries of
\(£ 3,450\) to \(£ 4,550\) for a single man
\(\mathbf{£ 4 , 2 5 0}\) to \(£ 4,900\) for a married man with two children Other benefits include - Subsidised Accommodation; Holiday Visit Passages; Education Allowances; Free Family Passages; Appointment Grant \(£ 100 / £ 200\) and Car Loan Normally Payable; 24-36 Month Tour.
The post described is partly financed by Britain's programme of aid to developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience to

\section*{}

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/730428/WF.
Racal Communications Limited, who are engaged in the design and manufacture of professional communications equipment, have vacancies at their Thanet Division in Ramsgate, Kent for
SENIOR TEST ENGINEERS,
TEST ENGINEERS AND TESTERS who will be involved in the testing of sophisticated P.C.B. and modular assemblies. A knowledge of transistorized transmitter and receiver techniques is required, and previous experience of production testing would be an advantage.
For the right men these are excellent opportunities to become involved in an ambitious new enterprise.
In addition to the vacancies at our Thanet Division, we also require Test Engineers and Testers at our Company in Bracknell, Berkshire, to work on similar equipments. Housing may be available both in Bracknell and Ramsgate for suitable applicants.
These positions command good salaries together with excellent conditions of service including sick pay and pension schemes.

\section*{Communicate with Racal}
If you are interested, please write, enclosing brief details of previous experience, stating the area preferred, to :
Mr. A. J. Franklin,
Personnel Manager,
Racal Communications Limited,
Western Road, Bracknell,
Berkshire.

The Post: Designer/ Development Draughtsman
The Job:
The Product:
Experience:
Qualifications:
Location: Interested?

Electromechanical Design

Small Mechanical Assemblies PCB Layouts Proven Ability
\(\begin{gathered}\text { Development }\end{gathered}\)
Marine Communications Equipment
Receiver and Transmitter 2 Years in Linear Circuit Design Degree or HNC Standard Croydon

Phone: Sarah Lemmon - 01-684 9771 International Marine Radio Company Ltd., Peall Road, Croydon CR9 3AX

\section*{ITT Marine}

\section*{PHILLIPS MEDICAL SYSTEMS LTD.}

\section*{require \\ SERVICE ENGINEER}

\section*{IN NORTH LONDON}

Suitable applicants should have experience in electro-medical and closed circuit TV equipment.
Applicants with minimum ONC or equivalent qualifications and relevant experience should apply in writing to :-

> The Personnel Manager,
> Philips Medical Systems Ltd., 45 Nightingale Lane, London, S.W. 12 .

\section*{A really worthwhile job}

\section*{(Electronic Test Technicians)}

GEC Medicial Equipment Limited, based in North Wembley, is a world wide leader in the manufacture of a wide range of medical diagnostic \(X\)-ray apparatus which is every day helping sick and injured throughout the world.
Because of the ever increasing demands for our equipment both at home and overseas and in order to maintain the high standard of reliability of our products, we need additional electronics test technicians with practical electrical/electronic experience, preferably qualified to City and Guilds or ONC standards.
The work involves testing and fault finding on a wide variety of medical \(X\)-ray apparatus to associated units such as close circuit television and image intensifiers using orthodox and specialist test equipment.
There are excellent opportunities for career development. If you would like to know more about working with this company please write giving details or telephone P. B. Blackmore, Personnel Officer, GEC Medical Equipment Limited, East Lane, North Wembley, Middlesex. Tel: 01-904 1288.

\section*{TECHNICIANS}

We are engaged in the manufacture and servicing of sophisticated audio electronic equipment for the music industry. Due to expansion there are now vacancies for Technicians experienced in this field and top salaries plus fringe benefits are being offered. For further details please phone or write, giving qualifications and experience to:

MAVIS LTD.,
lla Sharpleshall Street, London N.W.I.
Tel. 7227161.
[3327

\section*{WORK IN CENTRAL AMERICA}

Radio Technician needed for Guatemala. Radio Engineer needed for Hondutas.
Work with the British Volunteer Programme.
Information: Fran Chadwick, Overseas Volunteers, 41 Holland Park, London, W.11.

\section*{HI-FI AND AUDIO SPECIALISTS \\ have vacancies for the following positions:}

\section*{TELEVISION AND AUDIO SERVICE ENGINEERS}

\section*{SENIOR SERVICE ENGINEER}
to take charge of busy department
SERVICE ENGINEERS
bench and field work
CCTV SERVICE AND
INSTALLATION ENGINEERS
for expanding department
WORKSHOP MANAGER AND
PROGRESS CHASER
to take charge of busy service department
Must be able to organise work flow and deal with customers. Applicants with previous experience preferred.
Top wages, permanent positions.
Please write, giving brief career details, or telephone

Mr. Mark Murray
REW AUDIO VISUAL CO
REW House 10/12 High Street Colliers Wood SWig 2BE. Tel: \(01-5409684\)

\section*{HI-FI ENGINEERS}

This could be the opportunity you've been looking for. Due to continued expansion we are looking for experienced engineers to join our teams in Liverpool. Manchester and Preston.
You will be fully experienced in servicing a wide range of audio equipment and will be capable of supervising a modern, busy workshop.
Salary negotiable around \(£ 1,750\).
Assistance with re-location expenses will be given by the company


Applications in writing to The Managing Director Hardman Radio
33 Dale Street
Liverpool L2 2 HF

\section*{COMMUNICATIONS ENGINEERS welungborough}

Career opportunities offered by Britain's leading communications company to qualified

PAX AND PABX
Estimating and Project Engineers
ALARM \& CONTROL
Estimating and Project Engineers
SOUND BROADCASTING
Estimating and Plaining Engineers
TECHNICAL AUTHOR Assistance with relocation to this delightful part of England.
Write or phone H. Hill,
RELIANCE SYSTEMS LTD.,
Turnells Mill Lane, Wellingborough, Northants NN8 2RÉ. Tel. 093335000.
[3514

UNIVERSITY COLLEGE
OF NORTH WALES, BANGOR SCHOOL OF
PHYSICAL \& MOLECULAR SCIENCES

\section*{EIECTBOMCS TECHMCLIAN GRADE 5}

RE-ADVERTISEMENT
Applications are invited for the post of Electronics Technician Grade 5 in the above mentioned School.

The successful applicant would be concerned with the servicing and maintenance of existing electronic equipment for teaching and research and with the development and construction of new specialised equipment.

Applicants should have had several years' practical experience in digital and linear solid state electronics, preferably in industry. coupled with theoretical knowledge to about H.N.C. standard.
Salary at an appropriate point on scale :-
\(£ 2,007-£ 2,382\) per anrium.
Pension Scheme.
Applications (two copies), giving full details of age, qualifications and experience together with the names and addresses of two referees should be submitted to the Secretary and Registrar, mitted to the Secretary and Registrar, Bangor, by not later than the 29th March, 1974.


\section*{GENERAL MANAGER MALAWI}

We aré seeking an executive capable of managing a well established and profitable radio manufacturing Company within the M.D.C. group.
The company specialises in the manufacture of transistor portables for AM application on M.W. and S.W. Plans are in hand for the use of ICs in the near future.
The applicant should be a good administrator with a knowledge of accounts budgets and financial controls: He will be solely responsible to the Board of Directors for the efficient and profitable operation of the Company. A knowledge of semi-conductor technology as applied to the set making industry would be an advantage.
Salary would be negotiable. Other benefits include a \(25 \%\) gratuity on the completion of a 3 -year contract; passages paid for the Officer, his wife and family if residing outside Malawi, a Company car and house would be provided.
Please apply to MALAWI BUYING AND TRADE AGENTS, Recruitment Sectlon, c/o Berners Hotel, Berners Street, London, W1A 3BE for application form and further particulars quoting reference number B180.
[3564

\section*{SENOR IEST \& SERVICE ENGINEER} TEIECOMS IEST EQUIPMENT
Applications are invited for the above position. Candidates should possess H.N.C. (electronics), City and Guilds final certificate (telecomms) or equivalent qualifications, and have a minimum of five years applicable experience. A knowledge of digital circuits and basic programming will be a decided advantage.
The successful candidate will become a member of a small group providing service on a wide range of high precision measuring instruments for the telecomms industry. The work will include installation and proof testing of computerised automatic measuring systems at customers' premises.
The position offers a salary in the range of \(£ 2400-£ 2900\) with generous annual bonus and a pension scheme. Excellent working conditions for \(37 \frac{1}{2}\) hour week.

\footnotetext{
Send application and resume to:
WANDEL \& GOLTERMANN (UK) LTD.
40-48 HIGH STREET
ACTON, LONDON, W3
Telephone : 01-992 6791
}

\section*{roterotorotorotorororotorotero Grow with Pye as a development engineer \\ We at Pye Audio Products are making a whole new range of sophisticated audio products, at our modern Stevenage plant, including car radios, radiograms and stereo equipment. We now have an interesting and rewarding opportunity for a Development Engineer. \\ Because of the continual demand for our equipment and therefore expansion of our product range, we need someone to work in our laboratory, who is capable of self-motivation and possesses the ability to work on a com plete project with the minimum of supervision. \\ Ideally the person we are looking for will be qualified to a minimum of HNC in Electronic Engineering and have experience in design techniques for \\ R.F. (A.M. and V.H.F. stereo reception) and A.F. (powers up to 20 watts) applications, as applied to equipments for domestic markets. He will be dealing mainly in equipment for large volume production with costs playing an important part of the approach to a project. \\ Salary level and benefits are commensurate with a major company serving an international market. \\ Are YOU looking for a position with good prospects and opportunity for career development? Come and grow with PYE. \\ Write briefly to: Gillian Charter, Pye Limited, Audio Products Division, Caxton Way, Stevenage or telephone for an application form: Stevenage 50241 \\ Pye Audio Products, Caxton Way, Stevenage. Tel: Stevenage 50241 \\ A Member of the Pye of Cambridge Group}
 in the Cable TV Department:of EMI Sound and Vision Equipment Ltd., Hayes, Middlesex.

\section*{Section Head MATV}

We need an outstanding engineer to lead a small team in the design and development of VHF/UHF cable television products.

He will be required to help formulate equipment policy and be responsible for the execution of the agreed product development plan within time and cost budgets.

The man we require will probably be in his early thirties, with several years' experience in the development of electronic equipment in the RF field. Applicants must have an engineering degree or equivalent and preference will be given to Chartered Engineers.

Starting salary will not be less than \(£ 3500.00\) and there is a contributory pension scheme. Assistance with removal expenses will be given where appropriate.

Please write giving brief details of experience to: Mr. K. E. Goodman, Personnel Department, EMI Limited, 135, Blyth Road, Hayes, Middlesex.

\section*{THE CONTINUALLY EXPANDING MILLBANK ELECTRONICS GROUP \\ Be!lbrook Estate, Uckfleld, Sussex, TN22 1PS \\ Tel: Uckfleld (0825) 4166 REQUIRES A \\ TEST ENGINEER}

Must be experienced in the testing and servicing of audio power amplifiers, mixers and associated equipment.
This is a Staff position and carries full benefits including membership of a private medical scheme.
If you are Interested please apply In writing enclosing curriculum vilae to Mr Keith Goodsell, Production Manager.

\section*{University of Bath Educational Services Unit \\ TECHNICIAN}

\section*{Closed Circuit Television}

The successful applicant for this position will service the television and film equipment in the Unit, and would also be expected to assist in productions. Previous experience in television servicing and qualifications to O.N.C. or equivalent is desirable.

The starting salary will be within the range \(£ 1700-£ 2160\) according to qualifications and experience.

Application forms and further particulars are available from The Registrar (S), University of Bath, Claverton Down, Bath BA2 and should be returned as Bath BA2 and should be returned as soon
\(73 / 153 \mathrm{R}\).

\section*{ELECTRONICS TECHNICIAN}
with interest in telecommunications required.
Apply: Physiology Department, University College, Galway.

\section*{TECHNICAL PERSONNEL}
are required at
RANK VIDEO LABORATORIES
to operate and maintain a wide range of sophisticated electronic broadcast equipment, including AVR-1 machines, flying spot telecine, ment and Cassette Duplicating machinery. A broadcast background is desirable.

The position will be in Wardour Street, London, W.I, but applications should be made initially, giving brief details of experience to:-

The Divisional Personnel Manager Rank Film Laboratories Limited

North Orbitai Road
Denham, Uxbridge
Middlesex UB9 5 HQ
or telephone Denham 2323 for application form.

\section*{LONDON BOROUGH OF} HOUNSLOW EDUCATION DEPARTMENT

\section*{AUDIO VISUAL AIDS TECHNICIAN (T.1/3)}
required at Chiswick Polytechnic, Bath Road, W.4, to join a team of two others to service five departments. Applicants should preferably have experience of modern teaching aids including closed circuit television but persons with an interest in educational technology will be considered. 36 hour week with some evening duties, required. Salary scale \(£ 777-£ 1,749\).

Application forms from The Principal, Chiswick Polytechnic, Bath Road, Chiswick, W.4. Closing date: 14 days after publication. Tel. 01-995 3801.
[3519

\section*{City of London Polytechnic Psychology Section \\ ELECTRONICS TECHNICIAN GRADE 3}

A vacancy exists in the above department for a technician dealing with the design, development and construction of various electronic equipment. The successful applicant should be familiar with recent techniques and have some experience with
digital as well as analogue circuits.
Salary in the range \(61,650-61,920\) plus London Weighting Allowance of Cl 74 .
Applications should be made in writing to Dr. Balanescu, Psychology Section, City of London Polytechnic, and the names of two referees.
[3494 [3494

\section*{EXPERIENCED AUDIO TESTER}

REQUIRED BY
LEADING MUSICAL COMPANY
FOR TRANSISTOR AND VALVE MIXERS, AMPLIFIERS AND ECHO UNITS. 66 OFFLEY ROAD 11 S.W. 9 01-7356568

\section*{Workshop Service Engineers}
to repair calculator printed circuit boards. Good basic electronic knowledge required and experience in a Service Department. Salary up to £2200.
Apply to:
Mr. V. Knight,
Automatic Business Machines
Limited,
104 New Kings Road,
Fulham, London, S.W.6.
Tel: 01-7365196.

\section*{TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON \\ QUALIFIED OR NOT!}

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES avalable in most instances.

CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
\(37 \frac{1}{2}\) hour, 5 -day, working week.
WRITE or phone for application forms quoting reference WW


\title{
IOR \\ ELECTRONIC \\ DESIGN ENGINEER
}
(Specialized Test and Automation Equipment)

JOB FUNCTION: Design of (a) test equipment for use in the production of semiconductor devices and (b) electronic systems for automated production of devices.
AGE: Not really important, but probably in 25-35 age bracket.
Wide knowledge of present day electronic techniques including I/Cs, F.E.T., etc.
An awareness of the problems of high current and high voltage measurements would also be advantageous.
QUALIFICATIONS: Are less important than experience - but we anticipate that the ideal man will be educated/experienced to about HNC level.
APPLYTO:
Mr R. Sutton, Personnel Manager

INTERNATIONAL



Hurst Green Oxted Surrey RH8 9BB Oxted 3215

\title{
EIECTRONICS Maintenance \＆Prototype Construction
}

Reckon you＇ve got a flair for electronics？If so，we＇d like to hear from you．We are a highly successful expanding outfit， among the leaders in the field of electronic components．To get the most out of our wide range of new equipment，we need a number of highly skilled technicians who really know what they＇re doing．There＇s plenty of work，lots of money to be made，and a secure long－term future，plus good prospects for promotion if you＇re interested．

For full details call 01－300 9017 at any time（24 hour answer service）．
ITT Semiconductors，Footscray，Kent．

\section*{Semiconductors 工卫卫}


\section*{CENTR̈AL ELECTRICITY GENERATING BOARD South Eastern Region}

\section*{DUNGENESS POWER STATION}

VACANCY:

\section*{INSTRUMENT MECHANIC}

Applications are invited for the post of Craftsman (Instruments) at Dungeness Nuclear Power Station Romney Marsh, Kent.
£45
The successful candidate can earn up to per week. including productivity bonus payma good Instrument Mechanic to broaden his experience in the field of modern electronics.
Applicants will be considered from candidates with experience of electronic instrumentation and/or closed circuit television.
The employment offers generous holidays with pay (plus one day off with pay each month). sick pay scheme, contributory pension scheme, canteen facilities and Sports \& Social Club, etc.
- A rented council house may be available to a married man living outside the normal daily travel area.
Applications in writing giving full details of age, experience and career to date, should be sent to


STATION SUPERINTENDENT. CENTRAL ELECTRICITY GENERATING BOARD. DUNGENESS NUCLEAF POWER STATION. ROMNEY MA TSH. KENT, TN29 9PP. To arrive 8th Aoril, 1974, quoting Vacancy No. 5068/74. (WW)

\section*{CIRCUIT DEVELOPMENT ENGINEERS TELEVISION SYSTEMS SALARY RANGE \(£ 7,000\) (OPEN)}

\begin{abstract}
The Grass Valley Group. Inc. (USA), a leading manufacturer of television line and terminal equipment, has immediate openings for highly qualified circuit development engineers. Specifically, we are looking for creative and resourceful people who are capable of carrying ideas through to com pleted products. Applicants are expected to be familiar with the latest solid state devices and techniques, and preferably should have experience in the design of video switching systems, video processing systems, and possibly digital video systems. Some experience in television studio operations and techniques is also desirable. Educational requirements are a C.E. or a B.SC. in electronic engineering. A minimum of five years' design experience is required.
If you are interested in a challenging and rewarding career with an expanding company, please airmail a resume of your educational and technical background, work experience, and personal history to William L. Rorden, Chief Engineer, The Grass Valley Group, Inc., P.O. Box, 1114, Grass Valley, California 95945, USA. Resumes need not be formal; how ever, we are interested in learning as much about you and your experience as possible. Immediate consideration will be given and response made to suitable applicants, with a view toward arranging personal interviews in London in early 1974. All resumes will be treated in confidence. References will be required at or prior to the time of interview.

Grass Valley is a small town located in the foothills of the Sierra Nevada mountains in northern California, adjacent to summer resort and ski areas, and \(21 / 2\) hours from San Francisco.
\end{abstract}

\section*{Storno}

RADIO COMMUNICATION SYSTEMS We have vacancies for:

SERVICE TECHNICIANS
for our Service Department based in Camberley. Applicants should be familiar with transmitter/receiver practice and have practical knowledge of radio communications.

\section*{ELECTRONIC TEST TECHNICIANS}
based in Camberley to work on preparation, development, test and fault finding of special \(\mathrm{FM} / \mathrm{VHF} / \mathrm{UHF}\) communications and control systems, preferably with previous experience in radio communications technology and control systems.

FIELD SERVICE TECHNICIANS
in the Greater London area. Applicants should have experience in fault finding and testing of UHFNHF radio equipment. Current driving licence essential. company vehicle provided.

\section*{REPAIR GROUP TECHNICIANS}
based in Camberley to work on fault finding and repair of electronic sub-assemblies and main equipments.

\section*{SALARIES UP TO £2000 PER ANNUM PLUS OVERTIME.}

The Company has much to offer those who are interested in the sophisticated, modern world of radiotelecommunications and who can demonstrate their ability in this field.
Please contact: The Personnel Officer, Storno Ltd., Frimley Road, Camberley, Surrey. Telephone 027629131

\section*{ \\ A Long-term future in BRISTOL \\ DRAUGHTSMEN}
are required to support our Technology teams who are currently working on a number of new and exciting projects in both our Guided Weapons and Electronics \& Space Systems Groups. Applicants must have previous design, detail or layout experience in an electronic or electrical environment. Some experience of printed circuät board layout and design would be desirable for electronics applicants.

Please phone or write to
Mr. P. M. Farmer,
Personnel Officer (Ref. GW/231), British Aircraft Corporation, Guided Weapons Divisione Filton, Bristol, BS99 7AR.
Tel: Bristol 693831 Ext. 778

THE GRASS VALLEY GROUP, INC. G

\section*{Electronics Engineers}

In order to fully meet our future programmes we find it necessary to strengthen our existing design teams and are therefore seeking experienced electronics engineers for positions in one or other of the following design areas.
R.F. Engineering as required in the development of F.M. and A.M. tuners. Audio engineering as required in the development of tape recorders and highfidelity amplifiers.
Candidates should be of graduate or equivalent status with proven ability in one of the above areas or a related area. Good salaries will be offered and the prospects in these expanding teams are excellent. Help can be given with removal expenses where necessary.
Applicants are invited to write or telephone in the first instance for an application form to: Personnel Officer, Decca Radio \& Television, Golf Course Lane, Leicester. Tel. 0533872101 Ext. 54.

\section*{DEPBR}

\section*{Electronic Technicians \\ WALSGRAVE HOSPITAL}

Electronic Technicians are required for the Electronics Department dealing with the maintenance of a wide variety of electronic and electro-medical apparatus.

Applicants must possess H.N.C.. H.N.D. or O.N.C. in electronics or equivalent City and Guilds Certificate.

General diagnostic maintenance experience in the electronic field is necessary. Training in maintenance of specialised hospital equipment will be given.

Salary scale from \(£ 1,719\) to \(£ 2,211\) p.a. Additional payments are made if overtime is required.

Applications stating age, qualifications and experience, together with two referees should be sent to the Group Engineer, Coventry Hospital Management Committee, P.O. Box 92, The Birches. Tamworth Road, Keresley End, Coventry
Coventry Hospitd Monagement Comnittee

\section*{Avionics Inspector}

Due to continued growth and expansion in our Avionics Service Centre, an interesting opportunity exists for an experienced electronic test engineer to join our Quality Control team as Avionics Inspector.

\section*{Have You?:}

ONC or equivalent
Practical electronic equipment experience including calibration Working knowledge of Ministry and C.A.A. procedures.

If so, you could be the engineer we are seeking


Attractive salary negotiable from \(£ 2,200\)
3 weeks' paid annual leave, excellent sickness benefits, and contributory pension scheme.

Please apply immediately for interview:
Mr. M. J. Hinge, FieldTech Limited, Heathrow Airport (London), Hounslow, TW6 3AF. Tel: 01-759 2811, ext 28.

Electro-Medical Service Department requires

\section*{ENGINEERS}
for testing and servicing electronic apparatus. Applicants should be aged 20-30, and should be of O.N.C. standard.

Apply in first instance in writing to:

\section*{SIEREX LMMITED}

Electro-Medical Department,
Heron House, Wembley Hill Road, Wembley, Middlesex, HA9 8BZ

Men with analogue or digital qualifications/ experience seeking higher paid posts in: TEST - SERVICE - DESIGN - SALES

Phone Roger Pearce 01-629 7306
NEWMAN APPOINTMENTS
360 Oxford St. W.1.
3345

\section*{QUEEN MARY COLLEGE (University of London)}

Computer Science Laboratory
Applications are invited for the post of

\section*{ELECTRONICS TECHNICIAN}

The newly formed Computer Science Laboratory contains two Interdata minicomputers with a variety of peripherals including discs, drum, cassette, sophisticated graphics terminal, etc., which are to be used for teaching undergraduate and postgraduate students and computer science research. A third computer will be installed during 1974.

An electronics technician (Grade 5) is required to design and construct simple peripheral interfaces, and to be responsible for the day to day maintenance of the minicomputers. Applicants should preferably have some experience in the maintenance of digital systems. The post does not involve shift work
Salary in the range \(£ 2007 \times £ 75\) to \(£ 2382\), plus \(£ 175\) London Weighting.
Applications to Assistant Secretary (Establishment), (WW) Queen Mary College, Mile End Road, London E1 4NS, giving details of age, qualifications and experience

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

Pre: Brochure, without obligation to: BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL P.O.BOX 156, JERSEY, CHANNELISLANDS

NAME ADDRESS

Electrical Machines, Power Systems, Communication Systems, Electronic Instrumentation Systems, Control Engineering and Digital Electronic Systems, Design of Pulse and Digital Circuits and Systems,
The Course, which commences in October 1974, may be taken on a Ful! Time, Part Time, sandwich or Block Release basis, and is open to applicants who will have graduated in Engineering or Science, or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the tenure of its Advanced Course Studentships.

\section*{Research in Electrical Engineering}

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Phil. or Ph.D. in any of the above subjects.
Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref: M.Se. 5 ), The U'niversity of Aston in Birmingham, BIRMINGHAM B4 7PB.

THE UNIVERSITY OF ASTON IN BIRMINGHAM
 .

\section*{YOUR CAREER in RADIO \& ELECTRONICS ?}

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I:E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio \& Electronics School, P.O. Box 156, Jersey, C.I.
Please send FREE BROCHURE to
NAME Block

ADDRESS
Caps.
................................................................. 34

BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL
[3330

\section*{M.Sc. Course in Electrical Engineering}

\section*{LOUGHBOROUGH TECHNICAL COLLEGE}

Principal: F. Lester, B.Sc., Ph.D., F.R.I.C.

\section*{department of electrical engineering}

Applications are invited for places in September 1974 to study for the

\section*{Diploma in Radio, Television and Electronics}

Applicants for this three-year full-time course should expect to gain ' O ' level or good CSE grades in Mathematics and a Science subject and be keenly interested in electronics. A large element of practical work and two periods of industrial placement are included. Students will also sit for Parts I and II of the City and Guilds Technicians Certificate in Radio, Television and Electronics.
Further details may be obtained from:
G. M. Allen, B.Sc.(Eng.), D.L.C., C.Eng., M.l.E.E.,

Head of Departiment of Electrica! Engineering,
Loughborough Technical College,
Radmoor, Loughborough, Leics. LEII 38T.
Tel: 5831

\section*{SOUTHALL}

COLLEGE OF TECHNOLOGY

Beaconsfield Road, Southall,
Telephone: 01.5743448

\section*{CEI PART II \\ Options by PART-TIME STUDY}

Electronics-Telecommunications, etc.,
The Engineer in Society
Apply: Head of Department of Electrical and Electronic Engineering [3491

\section*{TECHNICAL TRAINING}

Get the qualifications you need to succeed. Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering \& Programming. Also self build radio
kits. Free details from: International Correspon. dence Schools, Dept. 734D3, Intertext House, Londón, SW8 4UJ.

190
AATICLES WANTED

\section*{ELECTRO-TECH} COMPONENTS LTD.
Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot/
ELECTRO-TECH
COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580
[37

\section*{WANTED}

RC 460/S
FREQUENCY SYNTHESISER by G.E.C.
Non-working model may be considered. Write W. S. Metcalf,
1 Macfarlane Close, Impington, Cambs., or telephone Histon 2365

Buyer will collect.
Other type of Synthesiser may be considered.

\section*{COLOUR TV SERVICING}

Make the most of the current boom. Learn the techniques of servicing Colour \& Mono TV sets through new home study courses: approved by leading manufacturers. Also radio and audio courses. Free detaits from: International Correspondence Schools., Dept. 734D2, Intertext House, London, SW8 4UJ.

\section*{WANTED} 830/7 RECEIVER
Faulty unit considered. Buyer will collect.

Write:
J. DOWSETT,

9 Common Hill, Saffron Walden, or phone Saffron Walden 22693
(after working hours)
13574

\section*{CAPACITY AVAILABLE}

\section*{PRINTED CIRCUIT AND \\ ARTWORKED DESIGNED}
and prepared. Development test and repair of electrical equipment. Batch reproduction capacity. Tech-Art Electronics,
29 Clyde Road, Stanwell, ASHFORD, Middlesex Tel: Ashford (69) 58942

〔 3520


CARDIFF
University of Wales Institute of Science and Jechnology

\section*{Department of Applied Physics M.Sc/DIPLOMA COURSE IN ELECTRONICS}

Applications are invited for places in the full-time one-year M.Sc:/Diploma course in Electronics. commencing 2nd October, 1974 .
Further details can be obtained from the Academic Registrar, UWIST, King Edward VII Avenue. Cardiff, CF 13 NU
Application forms should be completed and returned
to the College as soon as possible.

Scholarships Awarded by the Institution of Electrical Engineers

The Council of the Institution of Electrical Engineers will consider for award this year Undergraduate and Postgraduate Scholarships with a maximum value of \(\mathbf{6} 600\) per annum. The closing date for the receipt of applications is lst May, 1974 and late applications can. not be considered.
Full particulars of the conditions governing the award of these Scholarships may be obtained from:-
The Education and Training Officer at the Institution of Electrical Engineers, Savoy Place, London WC2R OBL.
[ 3505

\section*{CITY \& GUILDS \\ EXAMINATIONS}

Make sure you succeed with an ICS home study Make sure you succeed with an ICS home study
course for \(C\) \& \(G\). Electrical Installations, Tele. course for C \& G Electrical Installations, Telecommunications fechnicians and Radio Amateurs Schools, Intertext House, Dept. 734D, London, SW8 4UJ.

TAPE RECORDING ETC.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ RECORDS MADE TO ORDER } \\
\hline DEMO DISCS & VINYLITE \\
MASTERS FOR & PRESSINGS \\
RECORD COMPANIES & \\
\hline
\end{tabular}

Single discs, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records
PRESSED IN VINYLITE IN OUR OWN PLANT PRESSED IN VINYLITE IN OUR OWN PLANT. NEUMANN STEREO/MOnO Lathes. We cut for many Studies UK/OVERSEAS. SAE list.

PO Box 3, Hawk Street Carn
\[
\text { Tel. } 2273
\]

\section*{IMMEDIATE CAPACITY}

Available for electronic assembly. Batch or prototype work, cableforming, wiring and \(P C\) assembly.

BSF INDUSTRIES
26 Goodways Drive, Bracknell, Berks. Phone: Bracknell 28243
\([3.132\)

\section*{ELECTRONIC DESIGN ASSEMBLY}

Highest quality at competitive prices Contact :
MULTIFORM ELECTRONICS LTD. 27 Ferry Road, Teddington, Middlesex Tel. 01.9779389

MARCONI TF1073, 100dB STEP ATTENU MARCONI TF1289, VSWR INDICATOR MARCONI TF1237, NOISE GENERATOR MARCONI TFT91D, DEVIATION METER, \(4 \mathrm{MHz}-1 \mathrm{GHz}\)
£ 15000
MARCONI TF995A/1, AM/FM
SIGNAL GENERATOR, \(2-216 \mathrm{MHz} \ldots \ldots 30000\)
MARCONI TFB94A, AUDIO TESTER \(100 \mathrm{~Hz}-27 \mathrm{kHz}\)
£30.00
ADVANCE
\(15 \mathrm{~Hz}-50 \mathrm{kHz}\), AF SIGNAL GENERATOR,
\(£ 3000\)
AIRMEC 252 SIGNAL GENERATOR, 30 Hz -
AIRMEC 251, 10 kV IONISATION TESTER \(\underset{£ 2500}{ }\)
WAYNE KERR VHF FREQUENCY STAN DARD, 12 channel …................ \(£ 20.00\)


PYE ELECTROSTATIC GALVANO-
METER, \(0-20 \mathrm{kV}\), malns.
BRIT PHYS. LABS. CZ960 COMPONENT
COMPARATOR.................... \(£ 40.00\)
BRIT, PHYS. LABS. CZ457/3 COMPONENT COMPARATOR, with Automator UNIT
TEKTRONIX 524AD OSCILLOSCOPE
TEKTRONIX 535 OSCILLOSCOPE, with 1A2 dual trace plug in unit, plus type \(L\) plug
in unit, as new, recently calibratedjoverhauled

FRIDEN FLEXOWRITER, good condition
with tape readef...................
\(£ 120.00\)
FRIDEN FLEXOWRITER, less tape reader. suitable as spares
GRESHAM LION WAVEFORM GENERA.
TOR, 625 line staircase
TOR, 625 line staircase ................ \(£ 25.00\) GRESHAM LION WAVEFORM GENERA
GRESHAM LION COMPOSITE WAVE-

GRESHAM LION MS1, RANDOM NOISE

\section*{IEST EQUIPMENT}

\section*{ROHDE \& SCHWARI SIGNAL} GENERATOR BN41155 \(30-300 \mathrm{MHz}\) A.M. AIRMEC SIGNAL GENERATOR Type
701 30KHz-30MHz. MARCONI BEAT FREQUENCY OSCILLATOR 0-20MHz. ........ MARCONI SIGNAL GENERATOR
TF762B \(300-600 \mathrm{MHz}\). MARCONI VIDEO OSCILLATOR ROHDE \& SCHWARZ DIAGRAPH BN356t 30-300MH TEKTRONIX OSCILLOSCOPE Type
524D DC-10MHz.
¢70.00 NAGARD DOUBLE-PULSE GENERA. NOR Type 5002A.O. 1Hz-MMZ2... \(£ 65.00\) AIRMEC MODULATION METER Type
210 3-300MHZ. .................... \(£ 00.00\) \(2103-300 \mathrm{MHz}\).
ROHDE \& SCHWARZ SIGNAL GENERATOR BN41404 AM/FM \(\begin{array}{r}\text { R-300MHZ. } \\ £ 600 \cdot 00\end{array}\)
MARCONI 'Q' MAGNIFICATION
METER TF 329 G. MARCONI PULSE GENERATOR Type TF67E ADVANCE SIGNAL GENERATOR
C2/H Push-button seleclivity .... \(£ 30-00\) ADVANCE AUDIO GENERATOR Model HI 15Hz-50KHz. ........... \(£ 20.00\) MARCONISIGNAL GENERATOR TYP
TF 801 A
\(10-300 \mathrm{MHz} . . . . . . . . . . . . . . . . . . ~\)
5000 MARCONI VALVE VOLTMETER TVDE ARMEC SIGNAL GENERATOR AIRMEC SIGNAL GENERATOR Type
\(20130 \mathrm{KHz}-30 \mathrm{MHz}\).
PLEASE ADD \(10 \%\) VAT-CARRIAGE \(£ 1.50\)
 MARCONI SIGNAL GENERATOR TYpe MARCONI SIGNAL GENERA TOR TyPe TF801B/3/S \(12-485 \mathrm{MHz}\). ............ \(£ 11000\) MARCONI SIGNAL GENERATOR Type ROHDE \& SCHWARZ UHF ATTENU. ROHDE \& SCHWARZ UHF ATTENU\(50 \mathrm{ohm} 0 \cdot 600 \mathrm{MHz}\). ............... \(£ 60.00\) AIRMEC SIGNAL GENERATOR TyDe
\(201 \mathrm{~A} ~\)
\(30 \mathrm{KHz}-30 \mathrm{MHz}\). AIRMEC 853 WAVE ANALYSER \(30 \mathrm{KHz}-30 \mathrm{MHz}\). ................... 550.00 AIRMEC BRIDGE HETERODYNE
DETECTOR TYpe 775 ......... \({ }^{6} 6500\) BERCO MAINS VOLTAGE STABILISER Type CVS 4240 volt 32 amp. \(£ 75.00\) HEWLETT-PACKARD UHF SIGNAL GENERATOR TyPe 614A \(800-2300 \mathrm{MHz}\).
ROHDE \& SCHWARZ UHF TEST RECEIVER BN1523 \(280-940 \mathrm{MHz} . \ldots . £^{4} 40 \cdot 00\) ROHDE \& SCHWARZ DEVIATION MARCONI CIRCUIT MAGNIFICAMARCONI CIRCUIT MAGNIFICAMARCONI VARIABLE ATTENUATOR Type TF338B. ................... \(£ 10.00\) MARCONI OUTPUT POWER METER E.M.I. OSCILLOSCOPE Type WMB E.M.I. OSCILLOSCOPE Type WM8 AVO VALVE CHARACTERISTIC
METER Complete with hand-book
\(£ 55.00 \mathrm{n}\)
 0

THE FOLLOWING ITEMS INCLUSIVE OF VAT. PLEASE ADD 20p for Post and
Packing, except where stated. TERMS : STRICTLY CASH WITH ORDER

\section*{WANTED}

\section*{ALLTYPES OF ELECTRO-} NIC COMPONENTS, SURPLUS STOCKS and TEST EQUIPMENT


SUPPLIERS OF LOWLIGHT LEVEL
AND SECURITY SURVEILLANCE
CLOSED CIRCUIT TELEVISION SYSTEMS
NOW APPOINTED SOLE AGENTS FOR MULLARD ELECTRO-OPTICAL DEVICES
- VIDICON TUBES
- PLUMBICON TUBES MONOCHROME OR R.G.B., IN SETS OR SINGLE - SILICON VIDICONS - IMAGE INTENSIFIERS

Quality Test Equipment Fully Tested and Recalibrated
TEKTRONIX SPECTRUM ANALYSER TYPE 49110 MHz to 40 GHz
-1IOdBM resolution, portable, solid state, a very fine instrument
and a current production item, complete with accessory kit. PRICE and \({ }^{2}\) c
\(\mathbf{6}, 200\).
\begin{tabular}{|c|}
\hline TEKTRONIX 524AD ©85.
HEWLETT PACKARD 175A. so MHz scope with dual,
channel plug in type 1750 B , spare high gain. \(5 \mathrm{mV} / \mathrm{cm}\) type 1752A plug in and delay time base type 1781 B plug in. 6400 TELEQUIPMENT S32AR. 140. HEWLETT PACKARD 130B. \(1 \mathrm{mV} / \mathrm{cm}\) DC vertical and horizontal input \(1 \mathrm{uS} / \mathrm{cm}\) time base, excellent single beam scope \\
\hline
\end{tabular}

HEWLETT PACKARD 8690B sweep generator main frame
6400 . 6400.
Plug i

Plug ins for the above instru. ment: HO1 8692B 1.7 .4 TYPE HO1-8692B,
GHz brand new 6550 .
GHz brand new 6550 . TYPE 8693B 4-8 GHz good condition
HEWLETT PA00.
PACKARD
693 D \(\begin{array}{ll}\text { HEWLETT PACKARD } \\ \text { sweeper generator } 4-8 & 693 \mathrm{GHz}\end{array}\) sweeper generator stightly older equipment but skil in 8 god
FROM 150 .
TELONIC PD3B sweep generator \(100-250 \mathrm{MHz} 40\) watts \(0 / \mathrm{P}\) \(\ddagger 200\).
TELONIC PD3 as above but 4 watt o/p 4100.
TELONIC SM2000 with LHZM plug-in. 0.5 to 110 MHz sweeper 1100.
MARCONI TF 801A/1 C25. MARCONI TF 801A/1.C25.
MARCONI TF 801 B C-D/1 MARCON
from \(\in 95\).

Large quantity of crystal detectors and coaxial line com-
ponents avaitable. Send for ponents avaitable. send for


PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high speed copying. Drive circuit, \(35 \times 80 \mathrm{~mm}\). for 1 mA L.H. zerp meters to ED 1477.
Gold 8 -way Edge con supplied.
 Built and aligned \(£ 12.00\) £11.40 \(£ 10.80 \quad £ 10.20\) ERNEST TURNER PPM meters. Below scalings stocked. Type
\(642.71 \times 56 \mathrm{~mm} \mathrm{f} 9.90: 843.102 \times 79 \mathrm{~mm} \mathrm{f11.77}\) Twin movement, scale \(86 \times 54 \mathrm{~mm} £ 31.00\)


PUBLIC ADDRESS : SOUND REINFORCEMENT loudspeakers are in the same vicinity a coustic feedback (howl-
round) occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz the tendency to howling at room resonance frequencies is
destroyed and an increase in gain of 6 -BdB is possible before destroyed and an increase in gain of 6-8dB is possible before both sperech and music.
SHIFTERS IN BOXES
SHIFTERS IN BOXES with overload LED, shift/bypass switch \(\mathrm{B} \$ 4491\) mains connector and housed in strong diecast boxe finished in attractive durable blue acrylic. Jack or XLR audio connector
 Output impedence \(\quad 2 \mathrm{Kohmm} 20\) or 800 ohm 20 or 600 ohm BAL
 Complate kit and board \(£ 21.00\) Including ps.u and article DESIGNER
Board built and aligned E28.00 mains transormar APPROVED SURREY ELECTRONICS The Forge, Lucks Green, Cranleigh,


RESISTOR BARGAINS
BRAND NEW MILITARY SPEC.


Subject to stocks remaining and \(10 \%\) V.A.T.
C.W.O. P. \& P. 10 p per order, min. aty. 10 can be mixed

\section*{ELLIOTT BLUNT AUDIO LTD.}

40 York Street, Twickenham, Middx., TWI 3L

\section*{PRECISION}

POLYCARBONATE CAPACITORS
Close tolerance. High stablitity. Extremely low leakage
All 63 V D.C. Pius or minus \(1 \%\) tolerance: \(0.47 \mu \mathrm{~F}-58 \mathrm{~s}\);
 - 2.75 . Also avallable \(\pm 2 \%\) and \(\pm 5 \%\), ex. Stock. TANTALUM BEAD CAPACITORS: Values avallable
16120 v or 25 v ; 22. OuF at \(6 / 10 \mathrm{v}\) or \(16 \mathrm{v} ; 33.0 \mathrm{uF}\) at EV or 10 V 47. JuF at 3 V or 6 v : \(100 \mu \mathrm{~F}\) at 3 v
for \(£ 4.00\).
TRANSISTORS: BC107, BC108, BC109; all at 9p each 6 for S1p; 12 for 96 . May be mixed for quantity price
BC1s2 and BC212 at 10 p each; AF178 at 30p each. All brand new and marked. Full spec. devices.
POPULAR DIODES IN914 6p each; 8 for \(45 p\); 18 for 90p. IN916-8p each; 6 for \(45 p\); 14 for \(90 p\). IS44- 5 p each;
11 for \(50 p\); 24 for \(£ 1\). All brand new and marked. NEW LOW PRICE 400 mW Zeners, Values avallable
\(4.7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9.1,10,11,12,13.5,45 \mathrm{~V}\). Tol, \(55 \%\)
 14 tor 4 d . Speclal offer 8 of each voltage ( 66 zeners)
\(\varepsilon 3.65\). RESI RESISTORS. Carbon fim \(5 \% \cdot\) i W at \(40^{\circ} \mathrm{C}, 1 / 3 \mathrm{~W}\) at \(70^{\circ} \mathrm{C}\) R2, \(27,33,39,4 \Omega, 56,68,82\) and their decades, High stabillty low notise. All at 1 p each; sp for 10 of any one value; 70 p for 100 of any one value. Special pack-10 of each value
\(2.2 \Omega\) to \(2.2 \mathrm{M} \Omega\) ( 730 resistore) \& 5 . \(440 V\) A.C CAPACITORS.

 £1.15p eac
SILICON PLASTIC RECTIFIERS 1.5 Amp. Brand new wire-ended DO27, looplV at 7p each or 4 tor \(26 p\) :
400 PIV at 8 p each or 4 for 30 p ; 800 P iv at 11 p each or 4 for 42 p .

Ip post and packing on all orders below \(£ 5,00\) Export Orders-please add cost of alr/eea mall PLEASE ADD \(10 \%\) V.A.T. TO ALL ORDERS
Send S.A,E. for lists of other ex-stokc items, L.E.D's
disc capactiors, electrolytics etc. Wholesale price ilsts MARCO TRADING
Dept. D3, THE MALTINGS, STATION ROAD, WEM SALOP. Ter: NANTWICH (CHESHIRE) 63291

WIRED TELEVISION SPARES
AMPLIFIER type TA 902 at \(£ 6.60\)
AMPLIFIER type RA 211 at \(£ 5.50\)
AUBSCRIBERS Tap type RE15广-40, RE141-28,
RE161.34. All at El. 10
SPLITTERS type RD501, RD502, RD503, RD504, RD505, RDIIl. All at 88p each GREENPAR COAXIAL CONNECTORS typ

GE27517-C3. GE27519-C3, GE27574-C15, GE27886. All at 22p each
SEALECTRO SUB.MINIATURE
type 3000. 3002, 3003 RE CONNECTORS 100, \(3102,3103,3003,3005,3014,3024\), 775. All 22 , 3104, 3105, 3114, 3124, TEXAS OP-AMPS tYDE SN TEXAS OP.AMPS type SN 72771 at \(£ 4\) each PLESSEY DUAL COMPARITORS type SL717
at 55 each
DISC CERAMICS \(01 \mathrm{f} 50 \mathrm{y}, \mathrm{w}, 02 \mathrm{uf} 50 \mathrm{v}, \mathrm{w}\) at 50 p per 100
MORGANITE BIPOLAR LADDER SWITCHES X BAND 5 mW GUNN DIODES at m 3 each MORGANITE BINARY LADDER NETWORKS
 5 K at \(£ 10\) each, type \(211 . \mathrm{A} 12\) loK at \(£ 5\) each, type \(262 \mathrm{~B}-100 \mathrm{~K}\) at \(£ 8\) each J. BIRKETT

25 The Strait, Lincoln LN2 1JF
Tel: 20767

BUILD OR EUY a


The smallest transmitter available in the UK. Only \(2^{\prime \prime} \times 1^{\prime \prime}\). Fits in the palm of your hand. Can pick up and
transmit volces and minute sounds. Receive on a VHF transmit volces and minute sounds. Receive on a VHF
radio. Excellent range. Cen be worn round the neck, held in the hand or operated on a shelf. Works almost anywhere. Uses PP3 battery (very Long Lifel Simply switch on; no other connections Completaly self con tained. Transistorised, printed circult. Used the world over. Many applications. Fully giteed.
ASSEMBLED UNIT
£15.50
Kit with step-by-step assembiy
structions f11.50
required
transmitter
Insurance/P \& P. 45p
MULHALL ELECTRONICS (WW) DIRECT SALES (cown, UK, BT30 7SF Peter Spencer (Linden items only) Peter Spencer (Londan Agent),
39 Oxford Gardens Londen wio. Tolephane: 9893564 ,
RAE licence required


```

 CARBON FILM RESISTORS
 High Stab. IW or \$W 5%.1p, 62p/100, }£4.50/1000 (22\Omega2-2M2) E12
RESISTOR KITS ONR.1M E12 SERIES
23E12KIT.-25 of each value (Total of v10), \&3.10
Metal Fllm KW 5%.1fp, \&1.10/100; £8.2F/1000
C.W.O. P.\&P. 100 On orders Under \&5. Overseas extra.
Lelghton Buzzard, Beds., LU7 9AQ.

SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS

Comprising. Teletypewriter \{page printer) type Π - $2718 / \mathrm{FG}$
(known as Kleinschmidt 160 Reperforator- Transmitter (tape printer) type $\Pi-272 A / F G$ with table $\operatorname{FN}-65 / F G$. Both units are supplied with change wheels for 45 \& 50 Bauds the whole equipment operates on 115 or 230 V 50 cycles in very choice condition £55. (carr £4).
VARIACS 25 amp 0.270 v as new less handie o cover $£ 22$. (£2) TRANSFORMERS $240 / 110.3 \mathrm{KVA}$ New $£ 15$. ($£ 1.50$)
Constant Voltage 500 watt f 1 B . (f 1) ditto 125 watt $£ 8$, (75p). FRACMO MOTORS 240 V AC th.p. 6000 prm $£ 4.50$ (37p) AVO CT3B Electronic Meters f 18 . ($£ 1$) BC221 £12. (f1) AMPEX VIDEO TAPE $2 \mathrm{in} \times 1670$ new fg . (50 p) SINTERED NICKEL CADMIUM ACCUMULATORS 1.2 V
$7 \mathrm{a} . \mathrm{h}$. size $90 \times 30 \times 60 \mathrm{~mm}$ with electrolyte and instructions BOp 7a.h. size $90 \times 30 \times 60 \mathrm{~mm}$ with electrolyto and instructions 80 p
(8p) PRINTED CIRCUIT KITS $£ 1.25$. (21p). CT53 $£ 10$. ($£ 1$). (8p) PRINTED CIRCUIT KITS £1.25. (21p). CT53 £10. (£1).
FERRIC CHLORIDE 25 p a1b. (18p) 10ibs $£ 2.50$ (paid) FERRIC CHLORIDE 25p a 1 b . (16p) 1010s ©2.50 (paid)
KENT CHART RECORDERS 115 vAC E20. (E 1.50) MULTi-
 (£1). FRIEDEN FLEXOWRITERS £80 (£4) tape to suit £1 for 3. RACAL MAI 18 D DUAL DIVERSITY Switch now $£ 50$.
 comprises A. E.I. Transistorised Module. Relay. \& all electrical components for 115 or 240 c A.C. operation $£ 1.75$ (16 p). Loads of surplus to ctear. Large S.A E. for list ALL PLUS VA.T.

233-237, Boundary Road, St. Helens, Lancs. 86

SITUATIONS VACANT

CAN YOU WRITE CLEAR, concise technical Chandbooks? If you think you could, and have a horough understanding in electronics, why not join us as a technical author. Obviously, previous experience would be an advantage but is not necessary as many parts of the country. Starting salaries are high many parts of he coutry for advancement Box No WW 3414 .
DiALYSIS ORDERLY required for the Regional: Denal Unit at St. Leonard's Hospital (in conjunction with St. Bartholomew's Hospital). Success-
ful applicant will be responsible for the preparaful applicant will be responsible for the prepara-

tion, cleaning and maintenance of equipment. The post is most suitable for a young man wishing to post is most suitable for a young man wishing to engineering. Average pay $£ 31.60$ per week including overtime. Applications in writing stating age, experience and the names of two referees, to the | Hospital Secretary, St. Leonard's Hospital, Nuttall |
| :---: |
| 13509 | UNIVERSITY COLLEGE HOSPITAL

MEDICAL SCHOOL
T HERE is a vacancy for an Electronics Technician Medical Unit. Applicants Should have a suitable, recognised quali-
fication in Electronics or Telecommunications, and fication in Electronics or Telecommunications, and ing to Whilley Council scale from $£ 1440+£ 126 \mathrm{~L}$. W. Application forms from the Secretary. Quoting ref
MU/2.
[3506 H1-FI AUDIO ENGINEERS. We require experito enced Junior and Seniors and will pay top rates

JAPANESE radio importers require engincers for to work in our London office near Moorgate under| to work in our | |
| :--- | :--- |
| ground station. Tel.: | $01-628$ |
| 15157 | |

ARTICLES FOA SALE

A ARVAK ELECTRONICS. 3-channel sound-light
 Strobes,
9096 .
$\mathrm{B}_{2}^{\text {UILD }}$ in. x it in a DEWBOX quality plastic cabinet \mathbf{B}_{2} in. $\mathbf{x} 22^{2}$ in. \mathbf{x} any length. D.E.W. Ltd. (W.),
Ringwood Rd.: Fernwood, Dorset. S.A.E. for leafiet Write now-Right now.
$\mathbf{B}_{1970}^{A C K}$ copies of Wireless World for sale, 1961B 1970 almost complete. Offers. Harris, 'Chisleor telephone Lanreath 367 . 3508

MARX-LÜDER ELECTRIC MOTORS

A range of high eficiency reversible D.C. motors are now
offered complete with stackable epicyclic gears piving
 24, 30, $60,72,90,120,360$. Extra gear sets extend the
range to in most renuirements. Four sizes of motor with piite gears are available all with 6 v windings and output

Max. gearbox torque $2 \mathrm{~kg} . \mathrm{cm} \ldots \ldots \ldots . .$.
EM/136P/1 Spare gear set with 3, 4, 5, 6 ratlos.. $1 / 70$

EM/141P// Spare gear set with 3, 4, 5. 6 ratios 1.80

MOTORS without gearboxes:
EM131 0.8 watt: $20 \mathrm{~g} . \mathrm{cm}$ torque; $8000 \mathrm{rpm} ; 017 \mathrm{~mm} .3 .95$ EM 3661.5 watt: $40 \mathrm{~g} . \mathrm{cm}$ toraue; $8000 \mathrm{rpm} ; \mathrm{O} 21 \mathrm{~mm} \quad 3.82$ EM139 42 watt; $160 \mathrm{~g} . \mathrm{cm} ;$ torque; $8500 \mathrm{rdm} ; 030 \mathrm{~mm} 3.60$ EM1418 watt; $3209 . \mathrm{cm}$ torque; $8000 \mathrm{rpm} ;$ O 30 mm .420 Sugpested applications. Laboratory stirrers, pump
drives, servo systems, positioning of aerials. dampers, doors elc., powering , trains, botains garage doors, etc.

'Motivator' Curtain Cord Controllers

A few of these new units have lust become avallable on wall behind curtains without showing. Can be connected directly to exjsting corded curtalins. Incorporates internal auto limit switches and power suppl)
operated remotely by 3 -way switch (supplied)
Motivator Model 8 with 2 year battery pack. Kit
Fully assembled and tested as above 18.00 Motivator Model M with mains power supply, Kit.$\quad 22 \cdot 00$ fully assembled and tested as above 30.00 Additional intormation giadly sup.
prices are inclusive in U.K. only.

MAIL ORDER ONLY FROM
AID-US PRODUCTS
Dept. W1, 8 Hillview Rd., Pinner HA5 4PA, Middlesex

COLOUR. UHF and TV SPARES. Colour and inyle sandard convergence panels. New Philips G6 16 controls, coils, P.B. switches. leads, etc. and circuit data 23.75 , or with yoke $55.00, \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. New colour Scan Coils, Mullard or Plessey plus
vergence yoke and blue taterat,
$£ 10.00$, Mullard AT1025/05 Convergence Yoke, $£ 2.50, \mathrm{P} / \mathbf{P}$ 25 p . Mullard or Piessey Blue Laterals, $£ 1.25, \mathrm{P} / \mathrm{P}$
 Delay Lines DL20, £3.50, DL1E, DL1. £1.50 P/P
25p. Lum. Delay Lines, 50 , P/P 15 p . EHT Colour Quadrupler for Bush Murphy CTV 25 111/174 series. \&8.25, P/P 25p. EHI Colour Tripler ITT TH25/1TH suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. KB CVC1 Dual Stand. eonvergence panels complete incl. 22 controls.
f 3.75 , $\mathrm{P} / \mathrm{P} 35 \mathrm{p}$. CRI Base Panel, $\mathrm{£} 1.75, \mathrm{P} / \mathrm{P} 15 \mathrm{p}$. Makers Colour surplus/salvaged Philips G8 panels
 base, 75 p . P/P 15 p . GEC 2040 panels, Decoder $£ 3.50$, T. Base, $£ 1.00$, RGB and Sound, $£ 1.00$. P/P
25 p. Pye
CI70
Colour LOPT assembly incl. EHT output and Focus Control, £3.50, P/P 35p. B9D valve bases 10p, P/P $6 p$. VARICAP TUNERS. UHF
ELC 1043 NEW, ${ }^{2} 4.50$, Philips VHF for Band 1 and 3, $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. UHF TUNERS NEW, Tran sistorised, $£ 2.85$ or incl. slow motion drive. $£ 3.85$ 4 position and 6 pos. push-button transistd. $£ 4.95$.
UHF/VHF
basic
integrated $\mathrm{UHF} / \mathrm{VHF}$ basic integrated tuners, $£ 3.25$. Cyldon
UHF yalve tuners, $\mathrm{f1} 50$. All tuners P / P 30
 25p. MURPHY $600 / 700$ series complete UHF Conversion Kits incl. tuner, drive assy... 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly
$£ 7.50 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. SOBELL/GEC 405/625 Dual standard switchable IF amplifict and output chassis incl. cet. base panel, $£ 1.00 \mathbf{P} / \mathbf{P} 35 \mathrm{p}$. PHILIPS $\kappa 25$ IF amplifier panel incl. cct., f1.00 P/P 30 p . VHF turret cuner AT7650 incl. valves for K. B. Featherlight. Philips 197G.170, GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1.95$ A.B miniature with UHF iniection suitable K.B,
Baird, Ferguson, 75 p . New fireball tuners Ferguson, Baird, Ferguson,
HMV , Marconi,
$£ 1.90$
P / P all tuners 30 p . Large Helection LOP1s, Scan Coils, FOPTs available for most popular makes. P YE/LABGEAR transistd. Masthad UHF Booster, 55.75 , Power Unit, $£ 4,65 \mathrm{P} / \mathrm{P}$ 30 p or Setback battery operated UHF Booster, 84.65
P/P 3 p . MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28,59 , 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAIL
ORDER: 64 GOLDERS MANOR DRIVE, LONDON ORDER: 64 GOLDERS MA
N.W.11. Tel. 01-794 8751.
CONSTRUCTION AIDS-Screws, nuts, spacers etc. in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels. etched
aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send 6 p for list. Ramar Constructor Services, 29 Shelbourne Road. Stratford on Avon
Warwks.

128

JAN CRYSTALS
 Fast delivery of prototype and production $\underset{\text { all }}{\substack{\text { military } \\ \text { frequencies; } \\ \text { qualitystals. Competitive prices } \\ \text { crystals a } \\ \text { a } \\ \text { speciality. }}}$ Details from:
 INTERFACE INTERNATIONAL 29 Market Street ${ }^{\text {Crewkerne, }}$ Somerset Tel: (046031) 2578 . Telex: 46377 .

${ }^{77} \mathbf{3 5 2 1}$
MARINE radio telephone. Old Redifon GR60. instruction manual. $£ 15$ ono. Ring $01-876 \quad 7917$ (Richmond, Surrey).
$\mathbf{R}^{\text {ADIO TELEPHONE EQUIPMENT. Expand your }}$ units. PYE, COSSOR, G.E.C., ULTRA-BURNDEPT. units. PYE, Bassor, Marine. Lowband AM and FM
etc., High Band, Mar Exports to Africa and Middle East. Spa-Radio, 335 , 3229
337. High Road. Cheltenham, Glos. QUANTITY of V.H.F. mobile equipment and small PIV coraponents. S.A.E. for lists. Quantily of 1000
 Sandall, Amber Croft, Higham, Derby, DE5 6EH
SELLING Wireless World (1930-1939). £3.95 per Denbs. ${ }_{[3587}$
$\mathbf{S}^{\text {TYLII. Finest quality }}$ Magnetic Cartridges: most Crystal \& mond, Diamond/Sapphire, Double Sapphire Sapphire, at lowest prices. Quick Service. FREE
LIST sent for S.A.E. FELSTEAD ELECTRONICS LIST sent for S.A.E. FELSTEAD ELECTRONICS
(WW) LONGLEY LANE, GATLEY. CHEADLE, CHESH1RE SK8 4EE. TRANSISORISED U.H.F. T.V. tuner units for

"W ${ }_{\text {1924-73 }}^{\text {LRELESS }}$ worplete with magazines for indices. Offers, Batley 474939.

6 LABGEAR distribution amplifiers, 14 signal

1500 PIECES of copper clad bakelite for printed

EXCLUSIVE OFFERS
 NEVER BEFORE OFFERED

		ORLDRANSPOR LINB KW digital n line ampp remote co er input POINT-T mineslisers prices on		ANGE A.F. CoMM 8.8.B. er all full inputs, STRIP RA d diveratity n. \qquad	
HIGHEST QUALITY $19^{\prime \prime}$ RACK MOUNTING CABINETS \& RACKS CABINETS					
	Ininche	inct			
	69		13		
CE	8		${ }^{24}$	77	
${ }_{\text {CP }}$	6	24	26	11	
	${ }^{64}$				
OT	70	${ }^{69}$	27		
${ }_{\text {DE }}$	52	40	$2+$		
DE	75	22	${ }_{26} 6$		
	70				
Ds	${ }_{69}$	30	12	${ }_{63}$	
soles. turn and mult-way Catine					
Htioht in Channel					
RDRR					

¿ PRINTER, High speed 1000 lines p.m.
\star TAPE READER, High speed $5 / 8$ track 800° c.p.m

- 400 Channel Spectrum Analyser

Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD-DORSET
BHI6 6ER

BLOWER MOTORS

Small double ended blower for use on 6 to $28 v$. DC.
Size overall $6 \times 32^{\prime \prime}$. New $£ 1,90$.

POTENTIOMETERS

Oual gang 10 K ea. section w.w. with knob and dial
$2 \mathrm{y}^{\prime \prime}$ dia. fi .25 .
TRIMMERS
20 pf air spacèd ceramic, 10 for 60p.

C.R.Ts

Type 5SP11A O.Gun tube £17-60. Type 3JP1 £9.40.

ATTENUATORS

N type, in 10 and 16 dB 4 watt disp. $£ 1.90$ each.
H.V. CONDS

2 uf 7.5 KvW k £4.40, and $2 \mathrm{ut} 12.5 \mathrm{Kv} £ 4.62$.

RACK BLOWERS

By. Imoffs, $19^{\prime \prime}, 5^{\prime \prime}$ high, $14^{\prime \prime}$ deep, 240 v , motor, $\mathbf{\& 5}$,

RACK CABINETS

$19^{\prime \prime}$ size ext. $4^{\prime \prime}$ high, $22 \times 22^{\prime \prime}$ useable int. size $36^{\prime \prime}$ high.
with front door, $\mathrm{E} 11^{2}$.

R.F. SWITCHING RELAYS

With 12v. coils uses reeds for 75 ohm coax circs. as
2 NC and iNO RF circ. pius 2 NO aux contacts, size 17 $\times 1 \times 1^{1 \prime}$ ex equip. $55 p$ each.

LINEAR AMPLIFIERS

Red ifon type GA406, 2 to $18 \mathrm{Mc} / \mathrm{s}$, provision for 4 channels $19^{* *}$ rack unit with int. 240%. P.U. rating 500 w . CW or
750 w PEP. Note supplied less valyes 2 type OY4-400 or slm . req., all other circs. solid state. $£ 40.70$.

TRANS

H. T. types Pri. 230 v . Sec. 2.6 KV . at 600 MaOC (Bi. Phase) choke £1.50. also $380 / 420 \mathrm{v}$. 3 phase isolatlon trans. 600 watts, E17.60.

LAB TYPE MAINS FILTER

By Filtions $2 \times 25 \mathrm{amp}$. 250 v AC 0 to $400 \mathrm{c} / \mathrm{s} £ 22$.

TEST GEAR

TF801A Sig. Gen. 10 to $310 \mathrm{Mc} / \mathrm{s}$ with spare valve kit,
E44. TS505 Elec. Multimeters DC volts 0 to 1000 in 9 1000 Meg in 7 ranges. RF to $500 \mathrm{Mc} / \mathrm{s}$, Res. 1 ohm to $50 \mathrm{c} / \mathrm{s} \mathrm{I} / \mathrm{P}, £ 24.80$. TS 382 AF sine wave $0 \mathrm{scc} 20 \mathrm{c} / \mathrm{s}$ to 200 Kc in 4 ranges, O/P $14 v$ to 100 in 7 ranges, built-in

TS452 SWEEP GEN

5 to $100 \mathrm{Mc} / \mathrm{s}$ with mafker generator, $3^{\prime \prime}$ display, o/p
atten. etc. 115 v . $50 \mathrm{c} / \mathrm{s} / \mathrm{P}$, E40.15.

MOTOR DRIVE UNIT

Motor $115 \mathrm{v} 1 / 12$ th HP . O/P 110 RPM to $:$ rev in 3 min in
stages, elec G.B. £17-60

NOTE:

TEST GEAR SUPPLIEO WITH 240/110v. Trs where eq. Tested and Supplied with copy or insirucion ook where available.
lso new stock Items available.

COAXIAL LEADS

BNC to BNC 75 ohm 1 metre, $\mathrm{E}_{1.50} .50$.
BNC to BNC 50 ohm 1 metre, $£ 1.50$.
UHF 10 UHF 50 ohm 1 metre, $£ 1.47$.
N to N type 50 ohm 1 metre, $£ 2.03$.
UHF to Croc clips 1.5 mt ., 玉 $\mathbf{E 1 . 0 7 \text { . }}$
Other lengths and combinations available on request.

All above prices include carr. and VAT.
SAE for List or enquiry.
Carriage charges apply to mainland only.

A. H. SUPPLIES

57 MAIN ROAD
SHEFFIELD S9/5HL
444278 (0742)

Private enquiries, send $5 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO.LTD.
Q.C.C. WORKS, WELLINGTON CRESCENT, NEW MALDEN, SURREY. 01-942-0334 \& 2988

BRAND NEW FULI SPEC. DEVICES

U.K, CUSTOMERS ADD 10% VAT TO TOTAL

MICROCIRCUITS: 709 31p; $71041 \mathrm{p} ; 723$ 58p 741 (14 pin) 37p; 74841 p ; SNT6013-07 $1 \mathrm{II} \cdot \mathbf{7 0}$. TRAN. SISTORS: 2N3053 19p; 2N3055 48p; AC126/7/8 18P; AF114/5/6/7 18p; BC107A 12p; BC107B 13p; BC108C 13p; BC108B 12p; BC109 I1P; BC109B 12p; OC72/81 18p. ZENERS: BZYBB $44 / 45 / 70 / 71$ 12p; RECTIFIERS: 50 V 4 $\frac{1}{1 p}$; 100 V 5 p ; $200 \mathrm{~V} 5 \frac{1 \mathrm{p}}{}$; 400 V 6p; 800V 6S: 50 V 4tp; $100 \mathrm{~V}^{5 \mathrm{P} ;} 200 \mathrm{~V} 5 \frac{1}{2} \mathrm{P}$; 400 V SOLDERCONS 1 P. 14 PINAC IW CARBON FIIM RESISTORS. 10 PEN 68p per 7p. PANEL MOUNTING LED with data 22 p . Prices at 4th January. Check our list.
Discounts start at 10% for $10+$ Semicondustors of one type.
JEF ELECTRONICS (W.W.3)
Yoik House, 12 York Drive, Gra
Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or at cost if more. LIST FREE
Satisfaction or your money back. PROMPT SERVICE

Lodge Trading Company

For Amplifiers, Speakers with and withou cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials. Flex, and Cables, Large stocks of components.

ALL AT WHOLESALE PRICES
A VISIT WILL SAVE YOU MONEY
5 Day Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE. N, FINCHLEY, LONDON, N. 12
01-445 2713, 01-445 0749

J. LINSLEY HOOD LOW DISTORTION AMPLIFIERS IN KIT FORM

1. 10 Watt Class A $£ 5.25$
2. 20 Watt Class B f 20 (Incl. P.SU
3. 20-75 Watt Direct coupled $\mathbf{£ 1 1 . 8 0}$

Also 'Texan' Amplifier Kits in pack form' Bailey, Texas, Toshiba and Sanken Systems. Send large SAE for detailed lists

TELERADIO HI FI

325 Fore St., London N9 OPE 01-8073719 (Closed Thursdays)

TRANSFORMER LAMINATIONS Enormous range in Radiometal, Mumetal and H.C.R., also "C' \& "E'" cores. Case and Frame assemblies
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantitios of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

WILMSLOW AUDIO The firm for speakers!

Baker Group 2538 or 15 ohm .

 Baker Group 35, 38 or 15 ohmBaker Deluxe $12^{\prime \prime} \mathrm{d} /$ cone
Baker Major
Baker Major Module
Baker Regent
Celestion PST
Celestion PST8 (for Unilex)
Celestion MFIO00 horn
Celestion HF1 300.
EMI $13 \times 8,38$ or 15 chm
EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} 3,8,15 \mathrm{ohm}$.
EMI $13 \times 8, \mathrm{t} / \mathrm{tw} .450,3,8,15 \mathrm{ohm}$
EMI 13×8 type 3508 ohm
Fane Pop 100 watt 18
Fane Pop 60 watt $15^{\prime \prime}$
Fane Pop 50 watt $12^{\prime \prime}$
Fane Pop 25/2 12"
Fane Pop 15 watt 12
Fane Crescendo 18
Fane Crescendo $15 \ldots . .$.
Fane Crescendo 12 A or 12 B
Fane Crescendo 12BL
Fane $807 \mathrm{~T} 8^{\prime \prime}$ roll surr. 8 or 15 ohm
Elac 59RM109 $15 \mathrm{ohm}, 59$ RMII 48 ohm
Elac $6 \frac{1}{2}$ " d/c rold surr. 8 ohm.
Elac 4" tweeter TW4
Goodmans 8P 8 or 15 ohm
Goodmans IOP 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans ISP 8 or 15 ohm
Goodmans IBP 8 or 15 hm
Goodmans 12PD 8 or 15 ohm
Goodmans 2 PG or 15 ohm
Goodmans Audiomax I2AX
Goodmans Audio 100
Goodmans Axenc 100
Goodmans Axiom 401
Goodmans Twinaxiom 8
Goodmans Twinaxiom 10
Kef T27
Kef Tis
Kef B110
Kef B1 200
Kef B139
Kef DN8
Kef DNI2
Richard Allan CG8T 8"d/c 8 ohm
Richard Allan CG8T 8 d/c 8 oh
Wharfedale Super 10 RS/DD
£6. 60
 $\mathbf{6} \cdot \mathbf{5 0}$
$\mathbf{£ 9 . 7 5}$
$£ 7.50$ 67.50
$£ 9.50$ $\mathbf{6} 9.50$
$\mathbf{£ 7 . 0 0}$ 67.00
62.55 £2.55
610.45 610.45
$£ 6.16$ $66 \cdot 16$
$£ 2.15$ $£ 2.15$
$£ 2.35$ ± 2.35 63.60 £8-25 88.25
622.50 ± 12.50
± 13.00
± 13.00
± 11.00 £6.40 $£ 6.40$
$£ 4.40$ $£ 4.40$
$E 47.50$ $\begin{array}{r}647.50 \\ \\ \hline 36.00\end{array}$ E36.00
629.00 630.00 $£ 3.85$
$£ 2.65$ £3. 35
(E1.21 ©4.49 £4.70
611.65
$£ 18.00$
$\$ 13.00$
613.00
$\leftarrow 15.25$
615.25
614.50
614.50
69.65
639.65
69.50
69.50
66.60
£6.60
$615 \cdot 10$
66.79
66.79

Wharfedale Super 10 RS/DD Wharfedale Linton II kit (pair) Wharfedale Glendale (pair)
Wharfedale Dovedale (pair)
Richard Allan Twinkit each
Richard Allan Triple 8 each
Richard Allan Triple each
Richard Allan Super Triple each
Goodmans DIN 20 each
Fane Model I each
Helme XLK25 (pair)
Helme XLK50 (pair)
Kefkit II each
Kefkit III each
STC.4001G Super Tweeter

PRICES INCLUDE VAT
Cabinets, for HiFl and PA., wadding, vynair ete Send for free booklet-"Choosing a Speaker"

FREE with orders over $£ 7$-HiFI Loudspeaker enclosures book
All units guaranteed new and perfect. Prompt despatch
Carriage and insurance: Speakers 35p each, Kits 75 p each ($£ 1.50$ pair) Tweeters and crossovers 20p each.

$$
\text { Telephone Wilmslow } 29599
$$

(Discount Hifi/radio sales at 10 Swan Street

WILMSLOW AUDIO, Dept WW,

Swan Works, Bank Square, Wiimslow, Cheshire SK9 IHF

WW-141 FOR FURTHER DETAILS

DEIMOS LTd

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO
single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT 0227-68597

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, lished in 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote.
E. A. SOWTER LTD.

Transformer Manufocturers and Designers
7 Dedham Place, Fore Street, Ipswich IP4 IJP

GAS DETECTOR AND ALARM
published show that on average every 12 mine. a fire occurs inecently body home and these fires often hreak ont at night when the family is anleep.
Don't live in a iool's paradise IT COULD HAPPEN To You. Have Don't live in a iool's paradise IT COULD HAPPEN TO YOU. Have
the It itest electronic protection. Install SAGA (our smoke and za
glarm). This uses the fantastic clectronic senser Gs slarm). This uses the fantastic clectronic sensor G.D.I which "sme l1s" meauring approx. $5^{*} \times 33^{*} \times 4 k^{*}$. SAGA hus its own internal alarm, aiso a alupiy to external hells. You just pluy it in to the maint
Snecial intruiuctory price-complete kit of parts including the case £5.99 or made up tested and working $\mathbf{2} 6.89$ plas 3ny post and packing.
HONEYWELL PROGRAMMER
This is a druan type timing devce, the
drum being calibrated in equal div.
sious for switch setting purposes with
trips which are inthitely adjustahle
for position. They are also arranged
to allow 2 operations per and
to allow 2 operations per switelh per
rotation. There are tis changeover
mitcro suitches each of 10 amp type
ricro switches each of 10 amp type
operated 14 y the trips thins 15 circults
operated liy the trips thns 15 circult,
may be changed per revolution. Drive
motor is maing opjerated 5 revs per
min. Some of the many usea of this timer arre Machinery control,
Boiles fring. Digpensing and Vendms machines, Display Boiler ffing. Digpensing and Vending machines, Misplay liphting
animated and signs, Signuling, etc. Price from makers prolably over $\& 10$ each. Byecial anip price' $£ 6 \cdot 33$ plue 25 p post and lneumance.
Don't mise this terrinc bargin.

MINIATURE SEALED RELAY
American made. Our Ref, No. RELA1. Measures
mity i^{1} wide $x \frac{1}{0}^{\circ}$ thick and T° high and it's a double change over. we don't know the contact rating but estluate this at $3 / 5$ amps. The col
resfitiance is 600 ohms anil $9-12$ volt will close it Ideal for rnodela and miniaturised equipment
It's a plug in relay but we unpply complete Nith It's a plug in relay but we supply complete Nith
hase. Price 33p including base.

I5A ELECTRICAL PROGRAMMER

Learn in your sleep: Have ratin
playing and kettle boiling as you awake-switch on lights to ward come home to. All these and many other thirigs you can lo it roa invest in an electrical programmer. Clock on/off switeh. Suritch on time can he set anywhere to stay on up to 6
 hours. Indenendent $\mathbf{i n} 0$ minute
memory iogger. A teautiful unit. Pric

MULLARD AUDIO AMPLIFIERS taga, daza supplied.
Model 1153500 m W- power output 72 p . Model 1172750 mW power output 94 p . Model EP9000 4 watt pouer output £1. 60 .
EF $\$ 001$ twin chatuel or Btereo pre EPM, \&1.9日.

5T2 MULTI-SPEED MOTOR
CURRENT CATALOGUE AND NEXT
12 MONTHLY SUPPLEMENTS
66p. POST PAID

EXTRACTOR FAN
Snitable for kitchens, bathrooms, iactories, changing romes. etc. Compact. quilet. Dia, By In. With $5 k$ in.
ian biades. Kit comprise, motor, fan blades. alieet metal cowling, pull switch, mains connector and Dxing
brankets. £2.75. $30 \mathrm{p} \mathrm{p} . \$ \mathrm{~s}$.
SOLDER GUN
A Inluat for every husy man. gives almost instant heat also ill
job. 100 watt
$£ 2.47$ plus past \& 1 ins
job. 100 watt $£ 2.47$ plus post \& 1118.20 .
SLIDE SWITCHES

	SLIDE SWITCHES
	Slide Suiteh. 2 pole change over parnel moun
	by two 6 BA screwa. Size ajprox. $1^{\prime \prime}$.. l" rated 2 lamp. 8 p each, 10 for 72 p .
	Ditto as above but for printed circuit
	${ }^{630}$.
	Sub Miniature Slide Switch. DPDT 19 mm
	approx: letween fixing centres. 14 p each or 10 21-26.

UNISELECTORS

As used in antomatic switch boaris, etc. 24v. operated. New-at

${ }_{3}{ }^{\text {ay }}$ Bank (ull	£4.40	5 Bank	
3 Bank + C	¢4.40	8 Bank	88.80
3 Bank + Split C	£440	10 Bank	¢0.90
+ Bank	25.50	12 Bank	£T200

12 VOLT $1 \frac{1}{2}$ AMP
This comprises double-wound $230 / 240 \mathrm{~V}$ mallus transformer with full wave rectifer 20 p post \& vacking.
Heavy Duty Mains Power Pack. Out wht voltage adjustahle from to 15 amp at 15 V . This really is a bigh power heavy duty unit with dozens of workshop uses. Output voltage adjustment is very quicksimply interchange pust on leads. sillcon rectifers and smoothing by
$3,000 \mathrm{mF}$. Price $£ 6-33$ plus 65 p post.

PLEASE ADD 10% VAT

 BARGAIN LIST AVAILABLE. 25p.ADD 25p POSTAGE IF ORDER IS UNDER $£ 5$

[^1]

Compact-sized VOM for schools and service shops. Easy-to-read 2 color scale. Double jeweled 2\% meter. Single positive action switch. Stabilized 1% resistors.

SPECIFICATIONS:

- Sensitivity: $D C$ Volts $-20,000$ ก $/$, $A C$ Volts $-10,000 \Omega / \mathrm{V}$ - Accuracy: DC $\pm 3 \%$ of Full Scale, $A C \pm 4 \%$ of Full Scale Resistance: $4 \mathrm{~K} \cap$ with 35Ω Midscale, $40 \mathrm{~K} \Omega$ with 350Ω Midscale Decibels: $-20 \sim+62$, Upper Freq Limit 7 kHz - Power scurce: One (1) AA 1.5 V Eveready 915 or Equal - Size \& Weight: $116 \times$ $84 \times 39 \mathrm{~mm}, 300 \mathrm{~g}$.

B CLAMP TESTER

MODEL CT-300

SPECIFICATIONS:

- Range of Measurement AC: A 6A,15A,60A, 150A 300A, AC; V $150 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$ Resistance: $1 \mathrm{~K} \Omega$ (center: 30Ω) internal battery and fuses: UM- 3 battery, 1.5 volts, 0.1A fuses (9.5 ~ 11.5)), Max. cirulit voltage: 500 V Size \& Weight: $190 \times 85 \times 45 \mathrm{~mm}, 320 \mathrm{~g}$ Accessories: Test leads, Leather carrying case.

- For catalog, please write to.

TAISEI ELECTRONICS CO., LTD.
C.P.O. Box 847. Tokyo, Japan

Cable Address: "NESCOELECTRO TOKYO Telex: $\mathbf{J} 24788$ SIGMARON Tel: 256-9054, 9055

The Tounc renerelion Relay

Flatform Relay AZ 521
Cradle relay with 4 changeovers, dustproof cover. with single or bifurcated contacts
Contact material
Fine silver, silver palladium gold nickel, fine silver with hard gold flashing. silver cadmium oxide. Switching 2A12.5A
capability 110 V/125VD.C.~ 30 W/100VA
Operating
power
ca. 400 mW
Coil voltage maximum 60 V
Surface area $36 \times 30 \mathrm{~mm}$
Height 11 mm

Zettler UK Division
 Equitable House Lyon Rd., Harrow, Middx. HA1 2DU Tel. (01) 8636329 Please look us up at the I.E.A., Stand No. 657

WW-143 FOR FURTHER DETAILS

प(ज1) listo 0 storse

tel.3Phone cable. Plastic covered grey 4 -core coloured

 ELECTRICITY SLOT METERS (6p. in slot for A.C. Mains, Fixed
 Reconditioned as new 2 years, guarantee.
$M O D E R N ~ D E S K ~ P E O N E S, ~ r e d ~$
MODERN DESK PEONES, red, Green, ,thue or topaz, 2 tone grey
 lite case wieh junction box bandset. Thoroughly overhauled,
 lite case with junction box handset. Thoroughly overhauled.

 lite case with unction box. Thoroufluy overhauled. Guaranteed.
87.75 per unit. Wiring dlagram on requeat. Aend 8 . A. The "sy" Set. This trancelver, welght approx. si

23 LISLE ST. $\binom{437}{2969}$ LONDON W.E. 2
Open all day Saturday

[^2]
THE TEXAN

HI QUALITY AMPLIFIER BY TEXAS
Booklet \& Pants List 35p Post Incl

FULL KIT OF PARTS
 $£ 29.50$

or READY MADE
£38.50
PACK 1. RESISTORS
PACK 2. SMALL CAPS
PACK 3. LARGE CAPS
PACK 4. SUNORIES
PACK 5. SWITCHES
PACK 6. CONTROLS
PACK 7. SEMI CONO
PACK 7. SEMI CONO
PACK 8. TRANSFORMER PACK S. P.C. BOARO PACK 10. CHASSIS ETC
PACK 11. CABLES \& LEADS
PACK 12. TEAK CABINET
POST EXTRA
$\begin{array}{lr}\text { pp 15p } & 80 \text { p } \\ \text { pp } 15 p & £ 1.50 \\ \text { pp } 15 p & \text { f } 140\end{array}$
$\begin{array}{ll}\text { pp 15p } & £ 1.50 \\ \text { pp } 15 p & £ 1.40 \\ \text { pp } 150 & £ 2.50\end{array}$
$\begin{array}{ll}\text { pp } 15 p & £ 2.50 \\ \text { pp } 15 p & f 1\end{array}$
$\begin{array}{rr}\text { pp 15p } & £ 1 \\ \text { pp 15p } & £ 1.45 \\ \text { pp } 15 \mathrm{p} & \mathrm{f8} .25\end{array}$
$\begin{array}{ll}\text { pp 15p } & \text { £8.25 } \\ \text { pp 25p } & \mathbf{f 5 . 9 5}\end{array}$
pp 15p f 2.50
$\begin{array}{ll}\text { pp 25p } & \mathbf{6 4 . 5 0}\end{array}$

NOW ON DEMONSTRATION AT
$\begin{array}{lr}\text { pp 15p } & 40 \mathrm{p} \\ \text { pp 30p } & \text { e2.75 }\end{array}$
VAT EXTRA
TELERADIO HI FI
325/7 FORE ST., EDMONTON, LONDON, N9 OPE 01.8073719

SPECIAL NOTICE

TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and Allied TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or may have available after stocktaking, or
wishing to make space for more important items. We are particularly interested in large items. We are particularly interested in large
quantities of components, raw materials, etc

BROADFIELD \& MAYCO
DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
London, N12 8JG.
Telephone:
01-445 0749 01-445 2713
01-958 7624

OVERNIGHT

Prototype Printed Circuits Fastest in London Area 48 hour and Overnight Services
Electronic \& Mechanical Sub-Assembly Co. Ltd., Highfield House, West Kingsdown, Nr. Sevenoaks, Kent
Tel: West Kingsdown 2344

WE PURCHASE

OSCILLOSCOPES, SIGNAL GENERATORS,
PEN RECORDERS, COMPUTERS, RECEIVERS PLEASE SEND US YOUR LISTS. best prices paio.
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

SPOT CASH
CHILTMEAIS LTD.
7. 9. 11 Arthur Road. Readium.

Rerks.
Tel: 582 605

EX-COMPUTER STABIIISED POWEA SUPPIIES RECONDITIONED, TESTED AND GUARANTEED

Ripple $<10 \mathrm{mV}$. Over-voltage protectlon on all except $24 \mathrm{v}, 7 \mathrm{~A}$. unit. $120-130 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$ Input. Stepdown transformer to sult about $E 3$.
$\begin{array}{lll}5-6 \mathrm{v}, ~ 8 \mathrm{~A} . & \text { Post \& Packing } £ 1.50 \\ £ 12 & 24 \mathrm{v} .7 \mathrm{~A} . & £ 14\end{array}$
$\begin{array}{ll}5-6 v .12 A . & £ 14 \\ 5-6 v .16 A . & £ 16\end{array}$
PAPST FANS $4 \frac{1}{1} \times 4 \frac{1}{2} \times 2$ in. 100 cfm . £3.50 (30p).
PAPST FANS 6in. da. x 2tin. deep Type $7576 £ 5 \cdot 00$ (30 p).
WOODS FANS 6in. Plastle rotor $\mathbf{£ 6 . 0 0}$ (36p).
ELECTROLYTICS
$4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} .10,000 \mu 50 \mathrm{v}$.
$4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55 p (14 p)
$10,000 \mu 35 v ., 5,000 \mu 35 v ., 40 p$ (12p)
$2,000 \mu 30 \mathrm{v} ., 1,000 \mu 16 \mathrm{v}$. , wire ends 15 p (6 p) $4,000 \mu 100 \mathrm{v}, 4 \frac{1}{2} \times 2 \frac{1}{2} 55 p$ (22p)
EX-COMPUTER PC PANELS $2 \times 4 / n$., min. 35 transistors with data 50p (12p). 25 boards for $£ 1$ (30 p)
PANELS WITH 4 POWER TRANSISTORS SIM OC28 50p (10p).
QH Bulbs, 12v, 55w.
250 Mixed Resistors 250 Mixed Capacitors 200 SI Planar Diodes Mlcroswitches.. $60 p(9+p)$ 0p (7ip) 8 for 50p (9p) MIn. Glass Neons . 8 for $50 \mathrm{p}(6 \mathrm{p}$) 10-way Terminal Blocks ... 10 for 55 p (15p)

Postage and package shown in brackets
Please add 10% VAT to TOTAL
KEYTRONICS
Mall Order only
44 EARLS COURT ROAD, LONDON, W. 8 01-4788499

APPLICATIONS OF OPERATIONAL AMPLIFIERS

by Burr-Brown
PRICE $\mathbf{4 7} \mathbf{7 0}$
THE TRUE SOUND OF MUSIC by Hans Fantel Price $£ 2.65$ LOGICAL DESIGN OF SWITCHING CIRCUITS by D. Lewin

Price $\mathbf{6 5} \mathbf{0 0}$
New Edition
HOW TO LISTEN TO THE WORLD by BBC Price $\mathbf{E 2 . 0 0}$ HIGH FIDELITY AUDIO AMPLIFIER CIRCUITS by Texas Instruments

Price $£ 1 \cdot 10$
SHLICON RECTIFIER HANDBOOK by Motorola Price $£ 1.30$ MANUAL OF ACTIVE FILTER DESIGN by J. L. Hilburn Price 66.50 DESIGNER'S HANDBOOK SOLIDSTATE POWER CIRCUITS by RCA TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard Price $£ 1.90$ RADIO \& ELECTRONIC LABORATORY HANDBOOK by M. G. Scroggie
REFERENCE DATA FOR RADIO ENGINEERS by I.T.T. Price $£ 10.25$ SEMICONDUCTOR CIRCUIT
DESIGN VOL I \& II by B. Norris
Price $£ 10.00$ set
*ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m

A DEXTER
 DIUMASWITBH
 ALLOWS COMPLETE

 LGHTING CONTROL

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $\mathbf{£ 3 . 5 2}$ Kit form $\mathbf{£ 2 . 9 7}$
$\begin{array}{lll}600 & \text { watt } £ 3.52 & \text { Kit form } £ 2.97 \\ \mathbf{3 0 0} & \text { watt } £ 2.97 & \text { Kit form } \mathbf{£ 2 . 4 2}\end{array}$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
as sumpleo
19 KING STREET
CHESTER CH1 2AH Deparmenrs, hospithes.

Tel: 0244-25883.

OEPARTMENIS, HOSPHLIL
LgCAL AUTMORITES, teCAL AUTMORTHE

ARTICLES WANTED

CASH AVAILABLE for surplus semiconductors
PRINTED Circuit Board in 6 widths: 2 in , 24 in. $\mathrm{P}_{3} \mathrm{in} ., 3 \frac{\mathrm{in} . .4}{} 4 \mathrm{in}$. and 5 in . x any length: $1 / 16$ in. single-sided fibreglass, 2 p per 3 sq. in. Double sided $1 p$ per sq. in. P \& P pp per order. SAR quotations for other sizes and quantity dise Essex CM7 6LY. Tel. Braintree 25254 .
VACUUM is our speciality. New and second-hand $\sqrt{\text { rotary }}$ pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from EAO^{2}. V. N. Barrett (Sales) Ltd. 1 Mayo Road, Croydon. 01-684 9917
WANTED, Wireless World 1930-1932 inc. Publisher's bindings preferred. Litherland, 11 Birch [3415
$W^{\text {ANTED, }}$ alt types of communications receivers Electronics, Ltd., Ashville Old Hall, Ashville Rd. London. E.11. Ľey. 4986.
60 KHz MSF Rugby and 75 KHz Neuchatel Radio 60 Receivers. Signal and Audio outputs. Small compact units. Two available versions 135 and ${ }^{2} 60$
$600{ }^{7490}$ I.C.s wanted. Must be new and full nf. spec. Cash waiting, phone Whitchurch (Bucks) 680.

BOOKS, INSTAUCTIONS, ETC.

SEVERAL "Wire'ess World" 1950/54, $1965 / 73$ | B97 SLR. |
| :--- |
| $[3583$ |

WORLD RADIO TV HANDBOOK 1974 (published December). $£ 3.15$ inclusive. Delivered from Denmark it ordered before publication! David McGarya, PO Box 114W, Edinburgh EHI 1HP. Ask bout quantities, two and up.

COURSES

R ADIO and Radar M.P.T. and C.G.L.I. Courses R Write: Principal, Nautical College, Fleetwood, FY7 $8 J Z$.

OVERSEAS AGENTS REQUIRED

See important announcement on page 40.

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or A small production runs. Also PC Boards Assemplies. Suppliers to P.O., M.O.D.B etc. Export enquiries welcomed, 3 Ba Walerand Road, London, 161
SE 13 PPE . Tel . $01-8521706$.
A SSEMBLY, alignment and wiring work under$A_{\text {taken. }}$ Outworker can do up to 50 hours per week to a high standard. Collection and delivery by arrangement. Ian Bowden, 165 Lancaster Road, New Barnet, Herts. 01-440 2979.
$B^{\text {ATCH Production Wiring and Assembly } 10}$ B sample or drawings. Deane Electricals, 19B Station Parade, Ealing Common, London, W.S. Tel: 1-992 8976
$\mathrm{D}^{\text {ESIGN, development, repair, test and small pro- }}$
duction of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG ELECTRONICS, 54 Lawford Road, London, N.W. 1-267 9201
DESIGN and Development of electronic circuits and systems. Experienced and qualified engineers vaihable for analogue or digital projects. Box No. WW 3300 .
D AVANT ELECTRONICS-have capacity available Dor batch electronic assembly of PcBs, units and panels. 11 Croft Close, Shrewsbury, Salop. Teiephone: Shrewsbury 50550
CAPACITY available to the Electronic Industry. $C_{\text {Precision }}^{\text {Aprned }}$ parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB.
PRINTED CIRCUITS, quick service, competitive prices, roller tinning, drilling etcetera. Short $\begin{array}{lll}\text { runs } \\ \text { ton, Yelcomed. Jamiesons, } \\ \text { torkshire. Tel: }(0262) & 4738 & 77877 \text {. }\end{array}$ SMALL Batch Production, wiring, assembly, to sample or drawings. Specialist in printed circuit assembles. D. Electronics, 42 Bishopssild Harlow. Essex. Harlow 33018

\section*{NEW GRAM AND SOUND EQUIPMEMT
 GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle S.., Glasgow, C. 2.
 RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SECONDHAND
 $\mathrm{H}_{\mathrm{S}}^{\mathrm{RO}} \mathrm{R} 40$ etc., etc., AR88, CR100, BRT400, G209, LI S640, etc., etc.. in stock.-R. T. \& I. Electronics, | Ltd., Ashville Old Hall, Ashville Rd., London, E. 11. |
| :--- |
| Ley |
| 1986 . |}

SETVEICE \& REPAIRS

A UDIO ENGINEER, available shortly, seeks cominstal:ations in consultalive, advisory, creative, instal.ational or sub concract
offers to Box No. WW 3580 .
ELECTRONIC test equipment repair service E offered on Avometers, Signal Generators Pulse/ A.M./F.M./C.W./A.F., Frequency Counters, D.V.M.s, P.S.U.S, Oscilloscopes. Production test problems? Why not try us. "Q" Services Electronic Camberley) Ltd., 29 Lawford Crescent, Yateley, PREELANCE
FREELANCE technical author/electronics engineer - invites etquiries for technical writing commissions

SCRATCHED TUBES. Our experienced polishing S service can make your colour or munochrome tubes as now again for only $£ 2.75$, plus carriage 75 p . With absolute confidence sent, to Retube Ltd. . North
Somercote, Louth, Lincs, or , phone $0507-85$ 300. 127 Somcreote, Louth, Lincs, or 'phone 0507.85
SIGNAL' generators, oscilloscopes, output meters, wave voltmeters. frequency meters, multi-range meters, etc., etc, in stock. Lid., Ashville Oid Hall, Ashvile Rd \rightarrow London, E. 11 Ley. 4986

IF quality, durability matter, consult Britain's oldes I transfer service. Quality recorsls from your suitable tapes. (Excellent tax-free fund raisers for schools).

 Modern studio facilities with Steinway Gr-nd.-Sound[3433

VALVES WANTED

[^3]MANUALS AVAILABLE

MARCONI	Solartron	COSSOR	tekironix	TELEQUIPMENT			ADVANCE	PYE	FURZEHILL
TF329G	AS516	339	422	S31	TF1041	CT436	TC1A	CAMBRIDGE	0160
TF801B	AS517	1035	511 AD	S32A	TF1100	CD523S. 2	T2	BANTAM	1684
TF801B/3/S	ASW51A	1049	515A	043	TF1101	AD557	TC2A	REPORTER	HEWLETT PACKARD
TF8010	SRS 1518151A	E.M.I.	524 AD	WAYNE KERR	TF1104/1	CD71 1S	D1	radivet	2000 D
Tf867A	SRS 1528152 A	WM2	531	B221	TF1300	CO814	D2	211	130A
TF868A	VF252	WM8	541	8121	TF1345/2	00910	J	Racal	BC221
TF885	C0546	WM16	541A-B	B521		CO1014	AIRMEC	SA28	hartley 13A
TF886A	0300		555			CD1016	701	SA33	AVO CT38

This is only a small example of the manuals we have in stock. S. A.E. with your enquiries - we may be able to help

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INIEX TO ADVEIRTISERS

Appointments Vacant Advertisements appear on pages 115-147

You can't afford to ignore the new Bradley 234. It's a two-channel, eight digit 100 MHz Counter Timer that offers all the facilities you would expect from an expensive instrument - but at the very realistic UK price of $£ 275$.
The 234 provides
Frequency, Totalise, Period, Period Average, Ratio, Time Interval Average down to 25 ns and Time facilities in a compact and sturdy package. The 10 MHz clock is temperature compensated; alternatively, you can specify, for a moderate extra cost, a high stability clock in a temperature controlled oven.
And there's a third ' C ' channel for an external clock, or for ratio measurements.

Solid state circuitry incorporates an HF filter which permits low frequency measurements to be made in the presence of high frequency interference. Other features include display storage and standby mode facility. And the Bradley 234 comes complete with a rugged, impact-resisting case and combination carrying handle and adjustable stand.

To find out more about the 234 Counter Timer, one of the new generation of precision instruments from Bradley, please telephone 01-450 7811. Ask for Jim Clarke on Ext. 113. Or drop him a line at the address below.

Price quoted does not include VAT

G \& E BRADLEY LIMITED
Electral House, Neasden Lane,
London, NW10 1 RR
Telephone : 01-4507811
Telex : 25583
A Lucas Company

> BRADLEY
> electronics

Multicorethe complete answer for printed circuit soldering.

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

Extrusol and Multipure.

EXTRUSOL Exiruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MUITI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

Ersin Multicore Savbit.

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Multicore products. please write on your company s letterhead direct to:
Multicore Solders Limited, Maylands Avenue. Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.

[^0]: The Wayne Kerr Testmatic TM30 tests circuit boards, cableforms, and sub-assemblies. Capable of 30 separate DC measurements, which it does in seconds. For complete information, post this coupon-or call Bognor Regis (02433) 25811.

 Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO22 9RL Telex 86120 Cables: Waynkerr Bognor.
 A member of the Wilmot Breeden Group. __ WW-March

[^1]: J.BULL (Electrical) LTD.
 (Dept.W.W.) 7 PARK STREET, CROYDON CROIYD Callers to 10213 TAMWORTH ROAD, CROYDON

[^2]: WIRE H.C. Copper, P.V.C. Insulated 24 A.W.G. (0.2 sq. m.m.) in PV.C. Colours Black Yellow, Bliue or ES.75 including VAT and postage. Larger Reels available C.W.O.
 H. A. WAINWRIGHT \& CO. LTD. 9A Farncombe Street, Farncombe, Godalming,

 Tel. Godalming 23545

[^3]: WE buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.-Walton's, 55 Worcester St.

