wireless world
 1.C. crossover networks Using opto-couplers

You would have to look very hard indeed to find a double beam 100 MHz scope with the price and performance of the new Bradley 200. It's a full-size, total capability instrument with the sort of accuracy, sensitivity and versatility that would cost you another $£ 200$ or $£ 300$ from most other manufacturers.

To begin with, its dual channel plug-in has a full 100 MHz bandwidth on every range from $5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$. Vertical input modes
include Y1, Y2, Alternate, Chop and Sum.
Comprehensive trigger facilities include true mixed trigger function on alternate signals.

Its dual delaying timebase plug-in provides timebase A, A intensified by B, with the latter gated or non-gated, B delayed by A, and A and B mixed. There's a comprehensive selection of trigger couplings, too-internal; external and line; AC, DC and LF reject - all of which are available in normal, single
shot or auto modes. Each timebase has a range of $50 \mathrm{~ns} / \mathrm{cm}$ to $1 \mathrm{~S} / \mathrm{cm}$ in 24 calibrated 1,2,5 steps which are set by dual concentric interlocked controls.

Because Bradley engineers started from scratch when they designed the 200, all the latest design techniques and advanced circuitry could be incorporated for the surprisingly low price of $£ 595$ *.

To find out more about the new-generation, value-formoney Bradley 200, just telephone Ashley Stokes on

01-4507811, extension 113. Or write to him at this address:
G. \& E. Bradley Limited, Electral House,
Neasden Lane,
London NW101RR
Telex : 25583
A Lucas Company
*UK Price quoted does not include VAT

> BRADLGY
> electronics

LOW COST TESTERS

PORTABLE IWSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale.
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre.
Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per μ F on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for I_{C} / I_{B} ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
$I_{C B O}{ }^{\&} I_{E B O}: 10 n A, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV ${ }_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$\mathrm{I}_{\mathrm{B}}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{F E}: \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E}: \quad 1 \mathrm{~V} . \mathrm{s} . \mathrm{d}$.acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(\text { sat })} \quad 1 \mathrm{~V} . \mathrm{s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of selected at 10,20 or $30 \mathrm{acc} . \pm 20 \%$. ${ }^{\text {C }} \mathrm{B}$

DIODE \& ZENER DIODE RANGES

$I_{D R}: \quad A s I_{E B O}$ transistor ranges.
$V_{Z}: \quad B r e a k d o w n$ ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-449 5028/440 8686

Prices are ex works less batteries, V.A.T. extra in U.K. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

Our two new ranges of 75 ohm TV distribution cables are now made on an extrusion line unique in Western Europe.

We're one of the most technologically advanced cable manufacturers, using new techniques to produce TV distribution cables at a consistently high standard to tolerances much closer than previously possible. At very competitive prices.

The two ranges:

Aeraxial Semi Air Spaced

 Polyethylene dielectric copper taped braided and polythene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 1.27 mm to 3.05 mm .Solid Polyethylene dielectric copper taped and polyethylene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 0.73 mm to 3.65 mm .

Aerialite will specially manufacture TV distribution cables for any special TV application-also, you can make use of the Aerialite free technical advisory service to help you in the selection and application of distribution cables.

For further information, send for Aerialite's new publication giving full technical specifications of the latest range of TV Distribution Cables.

Testmatic answers testing problems

Edith Parker easily handles all the Testmatic work in a sub-assembly department of 32 people. When a board leaves that department, it's faultiess.

If your product uses elaborate circuitry, it takes skill to faultfind by standard test department methods. But if you put skilled staff on repetitive work, you don't deserve to keep them.

Ansafone's answer was the Testmatic TM30. Repetitive work is what it thrives on-like all machines. It frees qualified staff to do what they were trained to do. And it has other advantages that are just as important.

Mr.S. P. Robinson, a Director of Ansafone states: "An obvious benefit of the Testmatic is that it helps us educate people working on assembly. If they get faulty boards back at once, they feel that much more involved and more responsible. In fact, we don't even see the Testmatic as a tool of the Test Department but as a tool of the Production Department.'

Furthermore, the Testmatic makes money by saving time. Ansafone predict that it will help them reduce routine testing time by half. This is a cool and cautious estimate. There will be people
saying "I-told-you-so" if the saving turns out to be even more dramatic than that.

Once again, that is not peculiar to Ansafone. The common experience is that from the time the TM30 is set up ("set up" rather than "programmed", because the procedure is so simple), it pays for itself in months if not weeks.

[^0]
BIG NEWS FROM BARR \& STROUD Modular Filtering ONE MAIN FRAME-MANY OPTIONS

High Pass

High Pass/Low Pass

and that's only the start!

High Pass/High Pass

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today - the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering by using the reply card.
BARR \& STROUD LIMITED
London Office: 1 Pall Mall East, London SW1Y 5AU Telephone: 01-930 1541 Telex: 261877

Glasgow and London

1 NDE R means meters.

KESTREL RANGE

- Modern styling, with clearfront plastic case.
- Seven models, scale lengths from 1.3' to $5.25^{\prime \prime}$.
- Extensively used by many leading manufacturers of electronic and electrical equipment.
- Available in all ranges, moving coil and moving iron.
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale. DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$. Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

110° Colour Television and

A number of British setmakers are now exporting slim-line colour $T V$ receivers with 110° colourtubes, based on advanced circuitry developed in conjunction with Mullard to meet the special requirements of the European market.

companonts tor the finosir ivsetsintic

Strictly for the enthusiast. Something to get really enthusiastic about. Garrard have some really good things to show you here.

And, as you might expect, something designed to help you get more lifelike sound reproduction - to make life richer for you.

It's time to take a fresh look at Garrard's hi-fi deck range. You'll discover these two superb units offering highly refined engineering, excellent value, plus important features including new belt drive.

Go to your hi-fi dealer and discover how you can get more out of life.

Zero 100 SB Module

Automatic single player. One of the world's most sophisticated trascription turntables, with unique tangential tracking arm; pivoting head reduces tracking error and consequent harmonic distortion, New belt drive system. Record counter monitors stylus wear. Magnetic bias compensation. Fingerlight tab controls. $12 \mathrm{in}, 10 \mathrm{in}$ and 7 in dises can all be played with automatic set down of pick-up arm. All the best features in the present state of the art. Low resonance aluminium-clad base with hinged/lift off cover.

and Garrard know a great deal about it.

AP 86 SB Module

Automatic single player. Performance sets a new standard in medium-priced hi-fi, a heavy, machined diecast platter, screened 4 -pole synchronous motor, and new belt drive, together give highest standards. Wow and flutter typically 0.12% peak, rumble typically
-63 dB (DINB). Bias compensator adjustable to match stylus force separate scales for elliptical and conical styli. Fingerlight tab controls. Low resonance wood grain finish base with hinged/lift off cover.

Gardmers line up

Line MatchingTransformers from Standard to Super Fidelity

It's easy to choose the right Line Matching Transformer from the five Gardners ranges.

The Super Fidelity Series, with a frequency response of 10 Hz to $80 \mathrm{kHz}-0.5 \mathrm{~dB}$, gives the widest possible bandwidth for high accuracy instrumentation and recording applications.

Then there's the Wide and Extra Wide-band ranges. Outstanding performers with a frequency range 30 Hz 20 kHz or more - for the 0.5 dB points. Used a lot by broadcasting and recording companies throughout the world.

The Miniature and Standard ranges provide excellent bandwidth for most purposes, 30 Hz 22 kHz for the 1.0 dB points.

Except for the very smallest in the range, all Gardners Line Matching Transformers are fully magneti-

cally shielded, giving very high hum rejection ratios. Prices start from $£ 3.19$ (recommended retail price) and all types are usually available from stock.

Complete technical information is given in brochure GT. 5 'Audio Frequency Transformers' which we'll be glad to send on request.

So accurate is the balancing of the windings on some of these transformers that, when used as pairs in a hybrid circuit (as illustrated) we can guarantee a rejection of better than $-55 d B$ over the frequency range 50 Hz to 10 kHz and normal rejection of up to $-75 d B$ may be expected;

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Hampshire, BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH.

Look out for this sign it's a good deal more meaningful than most

B \& W are not playing hard to get. Far from it.
We've appointed - very selectively - a national network of Authorised B \& W Dealers to demonstrate, install and service our famous loudspeakers.

You can expect our dealers to have good demonstration facilities, and installation technicians who really know their stuff. Above all, $\mathrm{B} \& \mathrm{~W}$ dealers will maintain the kind of after-sales service you've the right to expect.

Ask to hear B \& W speakers where you see the sign; it could be the beginning of a totally rewarding experience.

B \& W loudspeakers are in great demand abroad. So much so, we have been honoured with the Queens Award to Industry for export achievement.

> We would like to send you a copy of our new book of B \& W loudspeakers and the address of our Authorised Dealer in your area.

Meadow Road Worthing BN11 2 RX Telephone (0903) 205611

The new home of Haltron

Haltron-International specialists supplying the widest range of electronic valves, semiconductors and integrated circuits can now give you even better service. Our modern, much larger factory provides space to expand and meet your requirements. Governments and other users worldwide specify Haltron products for their outstanding high quality and confirmed reliability. This, backed by expertise and efficient handling of export orders ensures a unique universal reputation.

Haltron

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 30J
Telephone: Orpington 27099
Telex: 896141

Mullard r.f. power modules are the products of a real awareness of the designer's problems and a leading position as manufacturers of semiconductors and hylbrid circuits. We have been working with the major manufacturers of mobile radio since its infancy.

BROADGASTING•TELEGOMMUNIGATIOHS•RADAR-NAVAIDS•MILITARY

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1-HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s
This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The Mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 -channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs. $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

[^1]200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ $\pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

Again Racal's reliable instruments make the headlines. Retrieved from the debris of a steelworks fire this frequency divider was found to be still in an operational condition. Not that Racal anticipate all its instruments will survive such treatment but it does indicate the ruggedness and reliability inherent in the design.

However the frequency divider is just one high calibre instrument among many in a new catalogue now available from Racal. Inside is all the information you need to know about the complete range.

9009 Modulation Meter

Completely automatic-no tuning-no level setting
Carrier range extends to 1 GHz
A.M. 0 to 100\% in 6 ranges F.M. 0 to 100 kHz in 8 ranges
Fully portable-mains or battery operation

9025 Frequency Period Meter

Direct reading up to at least 1 GHz
Maximum discrimination against unwanted signals and noise
Fully programmable
Sensitivity better than 50 mV

9061/2 Precision Signal Generator

10 Hz to 160 MHz in 1 or 10 Hz steps
Signal to Noise ratio 145 $\mathrm{dB} / \mathrm{Hz}$

- 100 dB Spurious Levels Full AM/FM Capability
Completely TTL programmable

Three outstanding instruments from Racal's new book - it should be on your desk now.

Racal Instruments Ltd., Tel. WIndsor 69811

Send now for our best seller list
Name \qquad
Position \qquad
Company
Address \qquad
$W W|12| 7 s$

Racal Instruments Ltd Duke Street, Windsor Berkshire, SL4 1SB

RAICALL
The Electronics Group

AudioTest Set RTS 2

and Auxiliary Test Unit ATU1 for professional users

RTS2 Checks Amplifiers, mixers, tape-recorders
For Frequency Response Signal/noise ratio Distortion - Cross-talk Wow \& flutter \cdot Drift \cdot Erasure • Sensitivity Output power • Gain

ATU1 Extends output level and measurement sensitivity.
Provides balanced input/output facilities. Incorporates weighting filters, loading circuits. Has built-in speaker for monitoring purposes.

Send for leaflets RTS2 \& ATU1

FERROGRAPH

A member of the Wilmot Breeden group

Superstars

HIGH-PERFORMANCE MF-HF RECEIVERS for

* P \& T Stations * Civil Aviation Networks
* Maritime Mobile Service

High-grade receiver designs with a choice of tuning wide enough to span the whole world of MF-HF communications.

Here is simply unbeatable performance. Outstanding frequency stability. Unyielding front-end protection. Unrivalled AGC. Plus exceptional dynamic range and blocking characteristics. From this great twosome:

R551 Selection of continuously variable or full frequency synthesis tuning $15 \mathrm{kHz}-30 \mathrm{MHz}$. Supplied to leading P. \& T authorities. Type approved by British Ministry of $P \& T$ and overseas administrations as a ship's main receiver and in use by major shipping companies.

R499 10 switched channels, $255-525 \mathrm{kHz}$ $1.5-30 \mathrm{MHz}$. Optional filters, BFO and carrier reinsertion to provide any or all of CW, MCW, USB, LSB, ISB and DSB modes with choice of bandwidths and remóte control over more than 25 km . In service with P \& T organisations, in civil aviation networks and in coast stations throughout the world

Redifon Telecommunications Limited Radio Communications Division Broomhill Road London SW18 4JQ Tel:01-8747281 Telex: 264029

A member of the Rediffusion organisation

-

K KEF ELECTRONICS LIMITED TOVIL MAIDSTONE ME15 6QP

Tel 062257258 Reg in England No 702392

Research based on the premise that loudspeakers could be made to reproduce sound more accurately by the efficient utilisation of plastics and metal alloys has enabled KEF engineers to evolve the current range of chassis speakers.

Results of research on these materials plus spin-off from other technologies has enabled KEF to achieve precise quality control in production, reliability and accurate sound reproduction under wide extremes of operating conditions.

Many of the world's leading manufacturers recognise these salient points and insist on using KEF drive units in their equipment.

Full details of chassis speakers and dividing networks are available on request.

AMPLIFIERS FOR THE ULTIMATE SOUND SYSTEM IN THE HOME*

STEREO PRE-AMPLIFIER CONTROL UNIT SC242

STEREO POWER
AMPLIFIER SPA 60
*"Sound Investments" classification - Daily Telegraph Magazine Oct 12/73

SC242 stereo pre-amplifier control unit

A pre-amplifier control unit having outstanding performance characteristics in respect of flexibility, distortion, signal to noise ratio, accuracy of response and overload capacity. Of modular design using plug-in glass epoxy circuit boards to a motherboard with hard gold-plated contacts. Output up to 5 v . Will drive any power amplifier. Mains input $100 \mathrm{v}-250 \mathrm{v} .40-60 \mathrm{~Hz}$.

Size $17^{\prime \prime}$ wide $\times 4 \frac{3}{4}{ }^{\prime \prime}$ high $\times 9 \frac{1}{2}^{\prime \prime}$ deep overall. Weight $12 \frac{1}{2} \mathrm{lb}$.

SPA60 stereo power amplifier
A power amplifier capable of supplying 60 watts per channel continuous average power into any load from 4 ohms to 8 ohms at very low distortion. Constant maximum voltage output down to 5 ohms representing approx. 90 watts continuous average power per channel. True complementary symmetry design. Preset adjustable for virtual elimination of crossover distortion, and harmonic distortion to less than 0.006% at half power. Mains input $100 \mathrm{v}-250 \mathrm{v} .40-60 \mathrm{~Hz}$.

Size $17^{\prime \prime}$ wide $\times 4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ high $\times 9 \frac{1}{2}^{\prime \prime}$ deep overall. Weight 17 lb .

The SC242 and SPA60 have a presentation and finish in keeping with the performance. The quality of workmanship is superior to most professional equipment. Send for leaflets for further details.

RADFORD AUDIO LTD. BRISTOL BS $2 H Z$
WW- 027 FOR FURTHER DETAILS

One of our customers puts the achievement of the G800 on record!

This letter is typical of many received by Goldring. If you would like some further evidence, start by writing for a full descriptive leaflet on Goldring Cartridges to: Goldring Limited, 10 Bayford Street, Hackney, London E8 3SE.

Θ

A good-looking lineup-the Arrow miniature rocker brigade! They're reporting for 10 A 250 V ac duty, and just as soon as you call them up, they start saving you assembly time-and panel space. They parade shoulder, to shoulder with their unique snap-in facility securing them tightly in an instant. Eight single and eight double pole versions, 2 and 3 position switching with biased action, pilot lights, illuminated rockers-there's a really wide matching choice. Many to BS3955 and CEE24 standards, and ready to face 100,000 ops and still come out switching!
Ask for the full data on Arrow 1100 series rockers.

16 AMP VERSIONS

The single pole on/off and some changeove versions are now available with a 16 amp rating Send for further details.

FivylUl ARROW-HART (EUROPE) LTD. TrIT PLYMBRIDGE ROAD, ESTOVER,

 TEL: 0752 フ01155 Tex: Scottish Office: 13 Murray Place, Stirling Telephone: 07863823
Arrow switches right across the panel

U.K. Distributors

COMWAY ELECTRONICS LTD.

TT ELECTRONIC SERVICES
HARLOW-Harlow 26777
SUTTON COLDFIELD—021-3554511

LEIGH_-Leigh 5211/2/3
JOHNSTONE, Renfrewshire-
Johnstone 23457

COMBINED ELECTRONIC SERVICES LTD. CROYDON-01-6860505

Overseas Agents in Arabian Gulf, Beigium, Ceylon, Denmark, East Africa, Eire, Finland, France, Greece, Holland, Hong Kong, India, Israel, Italy, Kuwait, Federation of Malaysia, Norway, Philippines, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Trinidad and Western Germany.

If you're stuck for original Christmas presents ideas

 AMTRON offer you a choice of $\mathbf{2 0 0}$

Instruments; Amateur \& Radio Control
Transmitters and Receivers; Measuring Instruments; I.C. Digital Equipment etc. Complete Blister Packs contain full instructions plus solder.

HIGH POWER DC-COUPLED AMPLIFIER


```
\star UP TO 500 WATTS RMS FROM ONE CHANNEL
\star DC-COUPLED THROUGHOUT
\star OPERATES INTO LOADS AS LOW AS 1 OHM
\star FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
```

$\star 3$ YEAR WARRANTY ON PARTS AND LABOUR
The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

[^2]Slewing Rate Load impedance Input sensitivity Input Impedance Protection
Power supply
Dimensions D150-150 watts per channel

8 volts per microsecond
1 ohm to infinity
$1.75 \vee$ for 150 watts into 8Ω
10 K ohms to 100 K ohms
Short, mismatch \& open cct. protection
$120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19" Rackmount, 7" High, 93" ${ }^{\prime \prime}$ Deep

transformers
mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements.

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

Drake Transformers Limited
Telephone: Billericay 51155

Kennel Lane,
Billericay, Essex.

WW-023 FOR FURTHER DETAILS

[ill
 Reg. Office.
 139-141 Havant Road, Drayton, Portsmouth, Hants. PO6 2AA.
 afder

Phoenix Electronics (Portsmouth) Ltd.

Full member of AFDEC - the industry's association of franchised electronic component distributors. NOW - you can get the same service and range of products normally available to industrial customers. Brand new devices from the industry leaders in component manufacture - large stocks on our shelves. Our prices include VAT at the current rate - and carriage on all goods is free.
Send for our catalogue and price list - we'll mail that to you free, too.

and this is standard equipment!

SOUND SYSTEMS AND ELECTRONICS The Capable
MXT-200
Audio Mixer.

COMPARE YOUR REQUIREMENTS WITH THESE FEATURES THEN DESIGN YOUR MXT-200

OR ASK US TO.

Input Facilities

* Up to 15 plug in Mono, 2 group, or stereo input modules per combiner.
* Modules for Microphone, gramophone, Tape, Radio Cine and line sources.
* Exceptionally versatile bass and treble equalisation on one easy to use control.
* Linear motion faders for smooth mixing
* Interlocked pre-fade listen switching.

Output Facilfies

* Mono or Stereo Combiners with large scale VU or PPM metering, fit two combiners for 2 group working.
* Linear motion fader and separate Bass and Treble controls for output signal adjustment.
* Line level output with high overload capability.
*-Monitor Module with PFL/Output switching, headphone socket and line level output.

MXT-200 THE MIXER

The standard equipment is built up in 19 inch frames, each 9 modules wide. The frames may be stacked or placed end to end and housed in a console, rack or cabinet. You only order the input modules you now need. Additional modules may be plugged in the frames as your requirements change.

ASK FOR FURTHER INFORMATION

MANUFACTURERS OF SOUND SYSTEMS AND ELECTRONICS

SM111
20 MHz Dual Trace, battery powered, portable, ideal for both the laboratory and field servicing,
From $£ 299.00$
CT/570/3 NATO version available on application.

SM113

35 MHz Dual Trace, battery powered, portable, high brightness version of the very successful SM111.

£330.00

EM102
30 MHz True Dual Beam , battery
powered, with plug-ins including High Gain Differential and wide band.
From $£ 320.00$

EM102D
True Dual Beam, with delayed sweep,
battery powered, plug-ins with
triggering to $>60 \mathrm{MHz}$.
From $£ 360.00$

Oscilloscopes

SM112/SM599
100 MHz Dual Trace plug-in, portable, lowest cost instrument of this performance on the market.
Only $£ 850,00$

SM112/SM554
50 MHz Four Beam, plug-in very comprehensive, ideal for time correlation and data analysis.
Complete E920.00

Prices quoted apply to U.K. only and exclude VAT.

The SM8 is a general purpose, portable stroboscope ideal for servicing, and maintenance applications and is supplied with a detachable lamp. Range 180 to 15,000 r.p.m. £166.00

E166.00

$$
\begin{aligned}
& \text { Hire For a smais sarge ou can tire any ut the inistuments shown here; singly or as part of a system } \\
& \text { or Buy } \\
& \text { If you we can design for you. } \\
& \text { You save capitaler to purchase the space. You beat obsolescence. } \\
& \text { Why not ring our Hire Department for details? } \\
& \text { Included in the range are Transducers, Recorders, Oscilloscopes, Digital Instruments, Data Systems; } \\
& \text { Magnetic Recorders, Computer Terminals, Modems, Hard Copy. Printers, Facsimile Transceivers. }
\end{aligned}
$$

SELalos $(E M)$ LTd $\begin{aligned} & \text { North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890-1166 Telex: } 23995 \\ & \text { Northern Sales Office, Bessell Lanc, Stapleford, Nottingham. Telephane: Sandiacre } 3255\end{aligned}$ Scottish Office, 18, Sycamore Drive, Hamilton, Lanarkshire. Telephone: Hamilton 28674

d2 Cored So Superspeed ${ }^{\text {d }}$	X' Cored'Solders, Sup
mp Cored Sol	Solders, Aluminium Cor
1 Fluxes, Supe ${ }^{\text {d }}$ 'Type i7 F	ixes, Superspeed Type
uxes, RL 65 ar 2 Scries Fiux	* Sticks Solid Solders,
ers, Wire Solid lders, Chips	lid Solders * Protecti
204, Roscoat It tective Laç	Tricene Printed
ner, Coveros $* 4$ ocene '864'\$	'aints, Pastes,
tes, Creams * , ashers, Rings	Pellets, Slugs
Spirals, Multi-1ple and custo	gned shapes Sc
der Preforms * High temperat	-ow temperat
m Solders and Fluxes * Sur	soldering iron
cluding low voltage transfo	nge of spare r
olders, Superspeed 'XX' Cored	, Superspe
encore Cored Solders, Aluminiu	d Solders * S
pe 17 Fluxes, Superspeed Type	ces, Tricene F
uxes * Sticks Solid Solders, Ing	id Solders, Ba
ips Solid Solders * Protective I	3599, Prote
quer, Tricent Printed Circuit 15	Ant, Briteflo
64 'Solder Pa ${ }^{\text {a }}$, , Pastes, Crear	ial. Types So
ngs, Discs, P ets, Slugs, Shim	es Solder Pre
custom-desi cd shapes Solde	ms, Flux cor
erature and 11 temperature a	lver Bearing A
juperspeed so ' ring iron, Min	Idering instru
1 range of spa arts) $*$ Supers	cpes I and 20
d Solders, Su peed Pro Core	rs, Lamp Co
lum Cored S * Supersp	fard liluxes,
pe 35 Fluxes .ne Fluxes, R	ces, RI, 65 an

35 Fluxes - ne lluxes, R . xes, RI. 65 an

Printed Circu Slugs, Shims Solder Prefor alloys, Silver Miniscope sol Superspeed T Cored Solder Superspeed S Fluxes, RL. 2 Protective Lacqu Pracquer 204, Roscoat Types Solder Paints Par, Coveros * Entocen Solder Preforms, Collars Spirals, Mulithole cored or solid Solder Preforms $*$ High temper instrument (in and 2 Cored 5 Cored Solder Superspeed T and 82 Series Protective La $*$ Entocene ' 8 Washers, Rin
Multi-hole an

Allovs, Alumi Solders and Fluxes $*$ Super

${ }_{7}$ Fluxes, Su es $*$ Sticks S
s Solid Sold older Paints, scs, Pellets,
 Superspeed Cored Solder luxes, Supe Sticks Solt olid Solders older Paints, iscs, Pellets, iscs, Pellets, signed shap ${ }^{4}$ Low temp dering iron,
reparts) * reparts)
eerspeed P erspeed PIb Cored e 35 Flers * Supersp e 35 Fluxes, Tricene ecrive I Its Solid Sol it De Lacquer 3599, Ce-Oxidant, Brit Sreams, Special Shims, Spheres Solder Preforms rature alloys, Sily ing iron, Minisco e parts) * Super peed Pro Cored * Superspeed

perspeed Ty and 2 cored Cored Solder mp Cored So rpeed Standa luxes, Suncr es, RL2 lluxe L 65 and 82 Solid Solders, ve Lacquer 20.4 mical, Cleaner, (scoat Protec cros * Ento cams * W ms, Collars, Spir, 1 s , Multi-hol Aluminium Solders and Fluw cluding low voltage trans former cluding low voltage transformer ers, Encore Cored Solders, Alur perspeed Type 17 Fluxes, Supe 65 and 82 Series Fluxes $*$ Stick Wire Solid Solders, Chips Solid Roscoat Protective Lacquer, Tr overos * En ocene ' 864 ' Solder pirals, Multi, ole and customPreforms * igh temperature um Solders : Fluxes * Supe acluding low age transformer Solders, Su peed 'XX' Cor ders, Encore \quad Solders, Alu red Type izl . Superspecd

WW-018 FOR FURTHER DETAILS
No. 1 in solders for the electronics industry

Enthoven Soiders Limited
Dominion Buildings, South Place, London EC2M 2RE Telephone 01-628 8030. Telex 885737.

> AbEUrate and dirert measurement of sperd withouit coupling to moting parts
 FRAHM resonant reed ICCHOMITERS
for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

Anders means meters

anders electronics limited

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092
WW-028 FOR FURTHER DETAILS

nombrex

WIDE RANGE AUDIO GENERATOR PRICE $\mathbf{£ 2 5 . 9 0}+\mathbf{1 0 \%}$ V.A.T.
$\star 4$ RANGES, $10 \mathrm{~Hz}-100 \mathrm{KHz}$.

* SINE AND SQUARE WAVE OUTPUT.
* DUAL CALIBRATED ATTENUATOR.
* STABILIZED OUTPUT LEVEL 1 V.

Trade and Export enquiries welcome

Westinghouse TV colour tubes guarantee purity in both colour and black \& white

Today's Westinghouse Electric colour tubes, in addition to offering recognised excellence of colour definition, have white field purity. . .vitally important to reception of black and white transmission.

Two 67 cm diagonal versions

 These improved Westinghouse tubes are made available in two configurations - the standard 90° and the 10 cm shorter profile wide-neck 110° version. . . permitting their compatibility to the needs of the larger portion of European TV set manufacturers.
Expanded European facilities

 Pacing the growing demand in Europe for Westinghouse tubes, we have made a permanent commitment to fully support our customer. With trained technical sales personnel in major European cities.- With
warehousing and testing facan ties in Kassel, W. Germany im: Le Mans, France. - With a sus taining European orientedlyth programme.

Customer oriented

In these ways-compatible: pra: duct availability-outstandim: development facilities Ioria technical assistance. . We:, Inn: house Electric respond to dy

The 110° :() A67-140×TV colour tube is 10 cm shorter in profile than the 90° (\%) A67-120X .both offer superb colour definition as well as white field purity for black \& white.

No:ininghouse Electric S.A. ? Cinfow Yard, Thames Street Whinsar Berks. Phone Windsor〔???? I elex 847069 .
i, iNH VA FRANKFURTLONDON all Arl PARIS STOCKHOLM

Westinghouse Electric

What makes you think that we think you are thinking about Terminal Blocks?

Actually, we were thinking that you might be thinking of Indicator Lights, Voltage Selectors, Connectors, or perhaps Metal Pressings or Plastic Components. And we were thinking that, even if you only wanted a few of any or each of these, it would be a pleasure to do business with you.

And you might find it a pleasure to do business with us, especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch, Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order.

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES
 The single source that simplifies.

Let us have your next inquiry - it will be dealt with immediately

CINCH
 (
 (f)
 STOCKISTS

United-Carr Supplies Ltd. Clifton Works, Frederick Road,

Stapleford, Nottingham.
Sandiacre 6003 STD 0602396003 Telex No. 377117

REPAIRS

OF ELECTRICAL MEASURING INSTRUMENTS 7-14 DAYS SERVICE

〈MODEL 8 MK.V

STOCKISTS
ALSO SUPPLIERS OF GEC MUITI-RANGE TEST SETS

WE SPECIALISE IN ASSEMBLIES, AND IN THE REPAIR, CALIBRATION AND CONVERSION OF ALL TYPES OF INSTRUMENTS, INDUSTRIAL AND PRECISION GRADE.

LEDON INSTRUMENTS LTD.

76-78 DEPTFORD HIGH STREET,
LONDON SE8.
TEL: 01-692 2689
Ladstone works gladstone rb fotkestone, keni
TEL: (STD) 030357555
WW-032 FOR FURTHER DETAILS

TR Paintionnils
 and
 plug-in cards
 low cost, high performance units

Limrose's new family of low-cost universal mounting boards, plug-in cards and breadboarding systems is useful for development work, device testing and circuit evaluation.
Delivery is usually ex-stock. For prices and other information please contact

LIMROSE ELECTRONICS LIMITED
8-10 Kingsway, Altrincham,
Cheshire WA14 1PJ.
limrose
Tel. 0619288063

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Enquiry Service for Professiona

 Readers| WW | WW | WW |
| :---: | :---: | :---: |
| WW | WW | |
| WW | WNV | WW |
| WW | Ww | WW |
| WW | WW | WW |
| WW | WW | w |
| WW | WW | WW |
| WW | WW | |
| WW | ww | WW |
| WW | WW | WW. |
| WW | WW | WW |
| WW | WW | |
| WW | WW | WW |

WIRELESS WORLD
Please arrange for me to receive further details of the praducts listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Address

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business .
No. af employees at this establishment.
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in
Gt. Britain, Channel islands or N. Ireland
Postage will be paid by Licensee

WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

inquiry Service for Professional leaders

Wireless World, December 1973

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name.

Name of Company

Address

2

Postage will
be paid by
Licensee

This

is another maxd kimgared construction always has

 been a major safety factor. Now, with this new label behind them, seven different sizes of Mazda monochrome tubes have a further recommendation: BSI approval for implosion protection to $\mathrm{BS}_{4} 15$ (1972) Clause 18 . That label indicates BSI approval and is your seal of safety, so your customers can rely on you. And you can rely on Mazda - for maximum protection.So the question is: Are your replacement tubes as safe as Mazda?

WW-034 FOR FURTHER DETAILS

Linstrand Lalboratory Instrumenis

WIDE RANGE MILLIVOLTMETER High impedance milisivoltmeter with 20 scales total measurement range 60 micro-amp a.c. to 400 voits
d.c. 10 megohm input with overload protectinn frequency range of 500 kHz .

WIDE BAND SIGMAL GENERATOR
Sine-square wave wide band high power signal generator $10 \mathrm{~Hz}-1 \mathrm{MHz}$, $0-6$ volts r.m.s.. 2 watts into 5 ohms incorporating short circuit protection.

means a good deal in electronics Linstead Electronics, Roslyn Works, Rosiyn Road, London N15 5JB. Telephone: 01-802 5144 Ireland, Lennox Laboratory Supplies Led., 3/4 South Lainster Street, PO Box 212A, Duthlin 2
Denmark, Scanfyaik, 13-15 Hjorringgodn, DK 2100, Copenhtagn
woden, EMI Svenska A/B, Tritonvagon 17, Fock, 171 is Solna
Norway, EMI Norsk A/S, Posthoke 42 Korwvoll, Osio 9
Malaysia, Laboratory Equipment Sdn. Bhd.', P.O. Don 60, Datu Pahat
Benolux, A.S.E. Ltd., Nationalentreanz 38, D-2000 Antwarp.

BIAS ELECTRONICS

PROFESSIONAL RECORDERS

for broadcasting and studio use
Our range includes console, transportable and rack mounting machines.
Mono-stereo $\frac{1^{\prime \prime}}{4}, 4$ track $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}, 4$ track $\frac{1^{\prime \prime}}{4}$ slow speed radio station loggers all to IBA requirements.
BIAS ELECTRONICS LTD.
01-947 3121
Unit 8 Coombe Trading Estate, 112-120 Coombe Lane, London SW20 0BA

ESI Nuclear =

Experiments in Physics

Measure 'C' with an LED

* No moving parts
* Accuracy better than 1\%
* Measures velocity in other media
* Easily set up on optical bench

The velocity of light is measured from the phase difference between the output of a light emitting diode modulated at 45 MHz , and the beam reflected back over a 2 m optical bench. The phase is displayed on an educational oscilloscope by beating with a reference signal 25 KHz lower. The algebra, showing that the phase is transferred to the 25 KHc beat signal is suitable for A level work.

Price $\mathbf{f 9 8}$.

See ESI at the ASE Meeting, Leeds, or call ESI Nuclear Ltd., 2 Church Road, Redhill, Surrey. Tel: Redhill 64993.

An associate company of Edwards Scientific International, Mirfield, Yorkshire.

The unconventional magnetron.

A perfect replacement for conventional 200 kW X-band magnetrons, the THOMSON-CSF MCV 1300 is a coaxial unit capable of delivering a minimum peak power output of 200 kW over the frequency range of 8.5 to 9.6 GHz .

Its new structure offers definite improvements in frequency stability and electrical efficiency for all radar applications. Cooled by forced-air and featuring an integral magnet, the tube has been designed
to minimize thermal drift. It is extremely reliable even under the most severe environmental conditions.

For airborne and ground-based frequency adjustable radar systems, the MCV 1300 magnetron is unconventionally useful. Get full details about this tube - one in our new line of coaxial magnetrons - by circling the appropriate number on the Reader Service Card. Or contact us directly.

THOMSON-CSF

THOMSON-CSF ELECTRONIC TUBES LTD / BILTON HOUSE, UXBRIDGE ROAD, EALING / LONDON W5 2TT

When you use Jackson capacitors, you know you're using tried and tested components. Jackson capacitors are made to the most exacting standards under rigorous supervision. As a result, they give perfect reliability over a very long life. What's more, you can have components custom made to suit your individual requirements.

Our skilled personnei and bang up to date equipment are backed by 45 years of experience in the communications field. And that's your guarantee of a reliable product.

8MM. TETFER TRIMMER CATALOGUE NO. 5750

Write for fully illustrated catalogue:
JACKSON BROTHERS (LONDON) LIMITED
KINGSWAY, WADDON, CROYDON, CR9 4DG
TEL: 01-681 2754/7 TELEX: 946849
U.S. OFFICE:
M. SWEDGAL, 258 BROADWAY, NEW YORK, N.Y. 10007.

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality. UNITS. HF 2000 (dome 'pressure' type) MF 500 (Mid-range Dome pressure' type) Ulera linear $12^{\prime \prime}$ bass driver and $12^{\prime \prime}$ $A B R$. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts Maximum, 4-8 ohm. This monitor loudspeaker system has an exceptionally wide and flat frequency response. Very low order harmonic and inter-modulation distortion, Precise response to transients. Beautifully maintained polar response ensures absence of unwanted directional effects and provides a highly satisfactory stereo image throughout the listening area. Matched pairs.
SIZE $40 \times$ IS \times II: Natural Teak or Walnut Cabinet

[^3]
We believe the finest instrument case in the country BEATS ALL COMPETITORS FOR PRICE AND STRENGTH SIZES $5^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}$ PRICE 30p $6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime} \quad £ 1.30$ 9' x $4^{\prime \prime} \times 3^{\prime \prime}$ $8^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 5{ }^{\prime \prime}$ £1.50
 TRADE PRICES ON APPLICATION

FIBREGLASS PRESS MOULDED IN GREY, SUPPLIED WITH 4 RUBBER FEET, 18 SWG ALLOY CHASSIS, 16 SWG ALLOY FRONT PANEL. FRONT PANEL HAS PROTECTIVE FILM FOR MARKING OUT AND PROTECTION. THE CASE HAS TWO SETS OF RUNNERS MOULDED IN WHICH WILL TAKE ALLOY OR P.C. BOARD CHASSIS. SAME DAY OFF-THE-SHELF DELIVERY. PANEL PUNCHING AVAILABLE ON 100 UP. TRADE AND QUANTITY DISCOUNTS ON REOUEST.
V.A.T. ADD 10\% ON TOTAL ORDER + POST AND PACKING 25p. CASH WITH ORDER. N.B.5' $\times 3^{\prime \prime} \times 1 \frac{1}{2}$ " ${ }^{\prime}$ NO FEET OR CHASSIS.
E. R. NICHOLLS,

46 Lowfield Road, Stockport, Cheshire. Tel: 061-480 2179

WW- 041 FOR FURTHER DETAILS

Every picture...

EXAR! EXAR!
 All IN STOCK

EXAR TWO-TIMES IT THE DUAL 555 TIMER IS HERE

xr-567

Like Siqnetics; All You Need!

The XR-567 monolithic phase-locked loop tone decoder is a pin for pin replacement for the Signetics 567. Bandwidth is adjustable from zero to 14%. Logic compatible output with 100 mA current sinking capability \cdot Military and commercial grades in T0-99 and 8 pin dual-in line ceramic packages.

PRICE (£)	$1-24$	25 up	100 up
XR-567N or T	5.55	4.40	3.75
XR-567CN	3.65	3.15	2.55
XR-567CT	3.75	3.30	2.70

What the world needs now EXAR has - a dual timer IC that replaces two 555's, costs less than two 555's (in volume) and saves you valuable PC board space and assembly time.

The XR-2556 does this and more! It contains two independent 555 -type timers on one monolithic chip. As a result, the matching and tracking characteristics of these two sections is far superior to two separate timer packages. Each section is a stable controller capable of producing highly accurate time delays or oscillations - from microseconds to hours. Each section has independent output and control terminals and each output can source or sink 200 mA and drive TTL. Astable and monostable modes of operation are possible.

PRICE (ま) $\quad 1.24$

XR-320

 When OneTimer is EnoughNow is the time to try the low cost XR-320,
PRICE (£)
a single timer similar to the 555 . Timing range
is 1μ sec to 1 hour - Accuracy is 1% (typical)
XR-320

- Temperature stability is $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ - Her-
metic dual-in line package.

All EXAR INTEGRATED SYSTEMS are stocked in volume by

275-281 King Street • Hammersmith • London W6 9NF • Tel. 01-748 3143/2960 - Telex 24443

From Japan's biggest manufacturer of Tape Duplication equipment, the DP4050 reel to cassette copier.
Highest attainable in cassette performance.
Foolproof operation for non-skilled personnel.
Eight times copy speed.
Complete relay-solenoid operation.
Automatic cycle through Record-Rewind-Stop.
Absolute consistency in manufacture through large volume production.
Cassette to cassette version also available.

Otari MX7000
Master Recorder.
From $£ 879$
excl. VAT

3-SPEED - $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ ips or $7 \frac{1}{2} / 15 / 30 \mathrm{ips}$. Electronic speed change. Cast aluminium deck - $1^{\prime \prime}$ thick. Sel-sync. Cannon inputs, optional balanced or unbalanced. Balanced line outputs. Built-in tone oscillator - 700 Hz or 10 kHz . Vu meter reads input, output or bias current. Equalisation and bias controls on front panel. Headphone output. F.E.T.S. all inputs. 2 or 4 channel.

Sole U.K. Distributors:
Scotch 207
UK's LOWEST PRICE
DTARII.
Industrial Tape Applications
105 HighStreet, Eton, Windsor, Berks. Tel: (95) 52663 Telex 21879

WW-044 FOR FURTHER DETAILS

..tells a story...

AVELEY ELECTRIC YOUR
 FIRST SOURCE of LOW COST

Hi-Quality Coaxial Components

Stainless Steel Adaptors covering type N, APC7, TNC and NPM. (SMA) with low VSWR.

Fixed Attenuators from 1-60 dB in Standard and Non Standard values, available in most types of connector.

Low, Medium and High Power Terminations from 0.5 to 500 watts featuring low VSWR.

Large Stocks of Narda Components are held in UK by:-

> AVELEY ELECTRIC LTD.
> Roebuck Road Chessington, Surrey
> Tel: 01-397 8771
> Telex : Avel London 928479

DC/AC SINEWAVE TRANSVERTORS
(transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD, BRITISH LEYLAND, including ROVER-TRIUMPH, develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Transvertors.

Type	Input Volts	Output	Price
C12/30S	12	$115 / 230 \mathrm{v} 30 \mathrm{~W}$ sine wave	$£ 32.45$
C12/60S	12	$115 / 230 \mathrm{v} 60 \mathrm{~W}$ sine wave	$£ 43.60$
D12/120S	12	$115 / 230 \mathrm{v} 120 \mathrm{~W}$ sine wave	$£ 57.00$
D12/200S	12	$115 / 230 \mathrm{v} 200 \mathrm{~W}$ sine wave	$£ 81.80$
D12/400S	12	$115 / 230 \mathrm{v} 400 \mathrm{~W}$ sine wave	$£ 197.00$
D24/500S	24	$115 / 230 \mathrm{v} 500 \mathrm{~W}$ sine wave	$£ 197.00$

All prices $+10 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$ at same price.
For operating frequency and wave form sensitive equipment such as sound tape recorders, video tape recorders, professional film cameras, sensitive instruments, etc.
Other models available for inputs of 24, 50, 110 and 220 volts DC. Square waveform output also available, generally from stock. Send for informative brochure.

BROWELLS LANE, FELTHAM, MIDDLESEX TW13 7EN, ENGLAND TEL: 01-890 4242/4837

ladilat batos conamulamatome

\triangle
straumech

* Full 3 channel, triac controlled lamps in RED, GREEN and BLUE, with a built in 'SHIMMER' mode for exciting effect.
\star ABSOLUTELY no connection between your hi-fi and the display - BUILT-IN microphone picks up any sound within the room and converts it to DANCING LIGHT. (Even speak to it, and it will answer you back).
* GAIN control for setting the sensitivity to any backecround level of sound.
\star Kit comes ABSOLUTELY complete down to the last screw - full instructions, pcb, components, wire, bulbs, mike, etc etc etc. All you need is solder and iron and about two to three hours for assembly. Remember XMAS is just around the corner - makes a fabulous gift.
\star Price INCLUDES all packina, postage and VAT.
\star COMPREHENSIVE after sales service, spares, advice.

Despatch Dept., 12 Grange Road, Romford, Essex RM3 7DU. Ingrebourne 44690, or send SAE for further details:
LARGER MODELS AVAILABLE FOR DISCOTHEQUES
\dagger Pat Pending
COSMIC ELECTRONICS - Manufacturers and suppliers of high quality SOUND/LIGHT and SECURITY svstems. Electronic Consultants for Research and Development.

12 GRANGE ROAD, ROMFORD, ESSEX RM3 7DU. INGREBOURNE 44690

EC958 series of receivers 10 kHz to 30 MHz In world-wide use

Professional high-stability receiver series for a wide variety of applications. The standard version can be used as a self-contained F.S.K. terminal, or as a dual-diversity terminal with common oscillator control. Variants are available for Lincompex terminal use, for specialized network monitoring surveillance and for marine applications.

Simplicity Reliability Economy

Your distributor's address and illustrated brochure obtainable from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP
Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form. Applications include: many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and magnetic shielding.

Radiometal alloys

These high permeability alloys, with their high saturation induction and low electrical losses, are used for transformers and chokes where operating flux density is higher than is possible with Mumetal and where a higher permeability than silicon iron is required. The six grades have applications including: relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys

Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has high incremental permeability at high inductions. It is used for stator laminations, telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are used in echo sounders and ultrasonic devices. Special grades, known at 'Rotelloys', which have superior mechanical properties have also been developed for high speed rotating equipment such as aircraft generators.

STOP ACOUSTIC FEEDBACK

*BY USING A FREQUENCY SHIFT OF 5 Hz THE 'MOTEC HOWL SUPPRESSOR GIVES UP TO 8dB MORE USABLE GAIN BEFORE FEEDBACK. *AN ESSENTIAL
ADDITION TO ANY P.A.
SYSTEM WHERE
MICROPHONES AND
LOUDSPEAKERS ARE IN
THE SAME ROOM.

- hoUSED IN ATTRACTIVE TWO TONE PLASTIC CASE
- PRICE: £29.95 (+10\% VAT) p.p. £1.

MOTEC P.O. BOX 14 ABINGDON, BERKS.

...a very happy ending:

Р....BORED?

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!

The Decon-Dalo 33 PC marker is now available in France, Germany, Italy, Switzerland, Austria and a/l Scandinavian countries. Send for details of local supplier.

[^4]WW-055 FOR FURTHER DETAILS

You could design yourself a reputation around this M-OV tube. - It's the best beam tetrode you can buy. - Offers lowest possible cost per watt - Communications transmitters all over the world depend - and go on depending - on the famous M-OV TT21.

- Characteristics:Frequency $30-60 \mathrm{MHz}$, Output Power 174W, Anode Dissipation 37.5W,
Anode Voltage 1250V.

EEV AND M-OV KNOW HOW.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. Tel: 01-603 3431. Telex: 23435.Grams: Thermionic London. S.6.C.

WW-056 FOR FURTHER DETAALLS
The XR205 monolithic WANEFORM
GENERATOR
KIT
An outstanding offer for the engineer,

Only
816.10

Immediate delivery.

Here's a highly versatile laboratory instrument for waveform generation at a fraction of the cost of conventional waveform or function generators. The kit contains:

1) Two XR205 waveform generator IC's
2) Data sheet and applications notes
3) PC board (etched and drilled, ready for assembly)
4) Detailed assembly and hook-up instructions with parts list, schematic and layout diagram.

Order direct from:

Rastra Electronics LTD.

275-281 King Street - Hammersmith London W6 9NF. Tel. 01-7483143/2960 - Telex 24443
WW-057 FOR FURTHER DETAILS

THE NEW M.I. TF 2015

[^5]A superb new, compact, lightweight M I signal generator for $£ 560$, would you believe?
No, you probably wouldn't. And that puts us in something of a predicament. We know well enough that the new TF 2015 is unique. Even though it measures no more than $111_{1}^{\prime \prime} \times 121_{1 "}^{\prime \prime}$ $5 \frac{1}{2}$ " deep and weighs just 5.4 kg , this is no mere squirt box but a fully-fledged standard signal generator for frequencies between 10 and 520 MHz . What's more, together with its own special clip-on synchroniser it provides the performance of a manual synthesiser at half the usual cost. But how are we going to convince you?
On the four previous pages we've already indicated some of the TF 2015's more remarkable characteristics - and there are quite a few more besides. But you'll never really believe it can be quite as unprecedented, quite as revolutionary, quite as capable as it actually is until you've studied all the facts and figures for yourself - and perhaps had a test
WW-058 FOR FURTHER DETALLS
demonstration to clinch matters. Which is why we very much hope you'll ask us for them - today. The full details are yours for the asking from:

MARCONI INSTRUMENTS LTD., Longacres, St. Albans, Herts, AL40JN, England Telephone: St. Albans 59292. Telex: 23350. A GEC - Marconi Electronics Company.

Probak mitieas to all B.B.C. speafications

 aND VU MiITHS

TO THE BELL SPECIFICATION

OVERSEAS AGENCIES
R.Schmidt Copenhagen Denmark OyChester Theal N.V. Vianello Rieck Elfec Nordstrand Stockholm

Finland Holland Italy Norway Portugal Sweden

The way things are going, you'll soon need a pilot's licence.

Some scopes have as many knobs and dials as a flight deck.

Which is fine if you're working to the ultimate degree of sophistication. But yóu're not, are you?

Hence, the OS3001.
It's got a single time base. How often do you need two? (If your answer is 'often', you need the OS3000.)
But that's the 'one's' only economy. Otherwise it's the same as its big brother.

DC-40MHz; $5 \mathrm{mV} / \mathrm{cm}$ to 40 MHz ; $1 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{MHz} ; 10 \mathrm{~cm} \times 8 \mathrm{~cm}$ screen; signal delay; single sweep; bright line auto free run; and much more for little more than $£ 300$.

So, if you want logical controls, reliable performance, versatility - and a single time base- you want data on the OS3001. If you need two time bases, the OS3000.

Use our enquiry number. And we'll send you all you want. For a pilot's licence, try our competitors.

The Advance OS3001: it's job is making yours easier.

LEARN about MODERN TV Design by building this Heathkit 12" B/W Portable

The new Heathkit GR-9900 portable 12" UHF Monochrome Television kit. A unique chance to double the pleasure available fromtany other television set because you build this yourself.

We've used the latest modular construction and advanced design concepts to produce an outstandingly high performance TV worthy of the Heathkit name. All the main electronics are mounted on two easy-toassemble printed circuit boards--this plus the use of no less than four integrated circuits perform the complex function of IF, video, sound, line and frame scan:
Factory pre-aligned coils make alignment very easy and there are four presetable pushbutton controls for channel tuning-a luxury found in very few other models. The quality and fidelity is therefore excellent, and of a far higher standard than most ready-built televisions in the shops.

The GR-9900 is portable too-equally at home on
the mains or off your 12 volt battery for car, boat or caravan use. Add to this Heath's world renowned experience in the design of equipment for first-time kit builders, and you will be impressed on all counts of engineering, styling, and performance.

The instruction manual is surprisingly simple with big, clear illustrations to map out your way. Would-be TV engineer? Here's your chance to learn-by actually building a television yourself. The manual not only shows you how to get 100% personalised quality control on your own; in the event of anything going wrong, a Trouble-Shooting section enables you to find the faultand, in most cases, to put it right unaided.

The GR-9900 is a kit you'll be proud to build and own: You have a choice of fully finished cabinets in teak or modern white and the kit price, $£ 62.70$ (carriage extra), includes a FREE high performance indoor aerial.

FREE

HEATHKIT CATALOGUE
 Contains something for everyone Hi Fi Stereo, Testers \& Instruments, SWL, Metal Detectors ... even a Battery charger Kit. Mail the coupon. . Today Heath (Gloucester) Limited, Gloucester GL2 6EE.
 Visit the London Heathkit Showroom at 233 Tottenham Court Road Tel 6367349
 (Prices slightly higher than mail order)

Everyone just says...

Good job we know what they mean

The MK. 3 Selectest
has every facility
you need built into it, accuracy. sensitivity and robustness.
The case is made of wipe-clean, tough, lightweight melamine. Terminals accept 4 mm push-in plugs on the front panel. enabling the Selectest to be used horizontally or vertically. The scale incorporates an inset mirror and knife edge pointer.

SALFORD ELECTRICAL INSTRUMENTS LIMITED

Peel Works. Barton Lane, Eccles, Manchester M30 OHL Telephone 061-7895081 Telex 667711
A member company of GEC Electrical Components Ltd.

How much does Transit Damage cost you?
In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because

they are re-useable again and again and again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care.

PBOTETTOMDPFS

To JOHN EDGINGTON \& CO. LTD.
47 OId Woolwich Road, Greanwich, London SE10 9PU (01-858 7014-6)
Send me details of Protectomuffs
Name
Address \qquad
\qquad
..
WW- 066 FOR FURTHER DETALLS

REED TYPE FREQUENCY METERS*

For 220-250V Mains
Measuring range 45 to 55 Hz with resolution of 0.5 Hz .

Dimensions: Barrel 80 mm dia. $\times 71.5$ deep Flange 85 mm square
PRICE $\mathbf{f 7 . 5 0}$ plus V.A.T.
*Made in USSR
AVAILABLE EX STOCK FROM:
Z\&I AERO SERVICES LTD. 44A WEST BOURNE GROVE, LONDON W2 5SF
Tel: 727-5641/2/3
Telex: 261306

Let your ears be the judge

Just close your eyes and listen to the latest in record sound reproduction from Acos.

Our new M6 range of magnetic cartridges can replace your old model and revitalise your Hi Fi system.

A range of stylus tips and tracking weights are available to suit your pick-up arm and your choice of sound.

Acos have produced crystal and ceramic pick-up cartridges and piezo-electric devices for over 30 years.

These new moving magnet types are offered with confidence and will stand comparison with any in the same price range and many higher priced equivalents. Ask for an Acos magnetic cartridge then judge for yourself.

Acos for sound enioyment.

Cosmocord Ltd., Eleanor Cross Road, Waltham Cross, Hertfordshire. Telephone: Waltham Cross 27331

MONEY BACK IF NOT SAT ISFIED all brand new, full spec. Top grade. Free fabulous NEW catalogue. Send SA.E. rod trepilleU's 17p? Til209
 Calculator
$\begin{aligned} & \text { batt/mains } \\ & \text { from£25 }\end{aligned}$
6×2
BIG14 panel clip \&RED LED 28p. GREEN \&clip59p INFRA RED LED £1. IC photo amp4 44p.\& amp/switch 85p

Minitron type 0-9dPDIL $\mathbf{f} 1$-19. SOCKETS 13p.
IL Digital ELDCHchips.
Texas etc with 4 displays $£ 12.6$ displays \& chip Mostek date \& alarm chips. with 6 displays $£ 19$. pcbzif
Hift:All parts \& case. National chip. 4 dig it $£ 20.6 \times £ 23.7$
 741: 8 pin 29p, to99\& 514 pin 27p 74833 p 709 21p $\begin{aligned} & \text { Kully } \\ & \text { fus } \\ & \text { fic }\end{aligned}$ 710 35p 723 59p. 555 timer 79 p ZN414 rx. $£ 1 \cdot 10$ built $£ 8$ 703 rf if 28 p mc 1310 \& led $£ 2.76 \mathrm{mc} 1339 \mathrm{£I} \cdot 20$ TADIOO \& if $£ 2$ 1AMP+ REGULATOR 7805,5 ($87-20$) V.also $12 \& 15 \mathrm{~V} \mathrm{£} 1 \cdot 49$ AUDIO AMPS:mfc4ooo 50p; $1 \& 2 \mathrm{~W} £ 119 ; 3 W £ 1 \cdot 29 ; 6 \mathrm{~W} . .$.
 749269P 74121 49P. \& all others incat. 7777 low prices NEW 16 pin counter/driver $90 / 47 £ 2.25$ DALO p.b.PEN 69 p DIL SOCKETS: Prof esional / gold P. Pins hi or lo Prof ile 8,14,l6 Pin 13p
2 N 3055 33p.four E1. BC107, BC108, BC109 all 7peo
 BC212/3/4 11p BCY7O 13p BD131/2 35p ea. BFY $54 / 2 \beta$ 15pTIS 43 25p 2N2926 OY 7p 2N3053 15p 2N3702/3/4/5/6/7/8/9/10/11 all 9p ea N3904/6 14p HEATSINKS $5 \mathrm{f} /$ T05 $18 \mathrm{f} /$ TO 18 5p.T03: 4 YL 29p TV3 14 p CAPACITORS 25VTO,50, TOOUf 5p. DISCS 4p. PRESETS 5p. CARBON -
 TRITIDS FLUORESCENT LIGHTS,8WIBNI2VOLE2.59 GIEREIDIIGS P.O. BOX 29,BRACKNELL,BERKS.

WW-069 FOR FURTHER DETAILS

Maxi-Super HT 1810 and Maxi-Mini HT 1800 Solder Sippers

Designed for use when working or re-working P.C. Boards. Permits removal of molten solder from Multi-ieg components, enabling easy extraction. The solder is 'sipped' through the noz zle, and automatically ejected when the instrument is next used. A Swiss precision instrument manufactured to a high degree of accuracy.
The anti-corrosive outside casing has a knurled finish for more positive grip, and encases plated internal parts.
The Maxi-Super has been dessigned with a 3.5 kg . spring action recoilless plunger, whilst the Maxi-Mini with its conveniently shaped operating button, has a 2.5 kg . spring action plunger, protected by a channel guard. Both models have been designed with an easy-to-replace 'dupont' teflon screw-in nozzle.

The AI-New Bak Talevision Amalyst Moded 1077-PII Cuts troubleshooting time in half.

- Drives solid-state sweeps
- All UHF channels
- 8 VHF channels
- 20 to 45 MHz IF
- Audio, video, sync outputs
The most versatile TV service instrument ever made! For U.S. and European color and black and white TV receivers. Checks every stage from antenna input to grid of the CRT.

With the B\&K 1077-PAL and the signal substitution technique, you are able to inject the signal of your choice anywhere in the TV set and view the results on the set's picture tube.

Receiver Test Patterns

Write for complete details and prices.

Empire ExportersInc.

270-278 Newtown Road Plainview, N.Y. 11803 Cable Address: Empexinc, N.Y.

A Marriage of Perfection

. . . between the world famous 3M Wollensak cassette tape transport and no compromise electronics designed and manufactured in Britain.

The Wollensak transport, renowned for maintaining its high performance throughout years of use, is matched to electronics designed to give reel to reel quality with cassette convenience and economy:

* high reliability ensured by solid state switching;
\star intrinsic low noise further improved by Dolby Noise Reduction System;
\star low distortion at every sage.
* correct equalisation and bias levels for regular and chromium dioxide tapes:
* high overload margins throughout;
* separate amplifiers for microphone, low level line and high level line inputs;
* controlled headphone output;
\star twin peak programme meters.
Recommended retail price $\mathbf{£ 1 5 0 . 0 0}$
(excluding V.A.T.)

$3 M$ and Wollensak are trade marks of the 3 M Company.

NORTH EAST AUDIO LIMITED 5 CHARLOTTE SQUARE NEWCASTLE-UPON-TYNE NE1 4XF

Dolby is a trade mark of Dolby Laboratories Inc.

Join the Digital Revolution

Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This four volume course guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

£2.95 Acomplete programmed learning course in 4 volumes

Guarantee

If you are not entirely satisfied with Digital Computer Logic and Electronics you may return it to us and your money will be refunded in full, no questions asked.
Designer
Manager
Enthusiast
Scientist
Engineer
Student

This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

To: Cambridge Learning, 8a Rose Crescent, Cambridge

Please send me set(s) of Digital Computer Logic and Electronics at $£ 2.95$ for which I enclose cheque/PO/money order value

[^6]
NEW STANDARD CASES from OLSON NEW SERVICE FROM STOCK - DESPATCHED by return of post

TYPE	WIDTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEG EXTRA
21	$6 \frac{1}{2}^{\prime \prime}$	41 ${ }^{\prime \prime}$	4 $\frac{1}{2}^{\prime \prime}$	6"x4"	f2.65	60p
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	8"x5"	f3.00	60p
23	$10 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}^{\prime \prime}$	10"x6"	f3.60	65p
24	$12 \frac{1}{2}{ }^{\prime \prime}$	7.2 ${ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	12"x7"	£ 3.90	$65 p$

Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg. aluminium. Cases finished in Olive green hammertone with front paneis in light straw shade 384. All cases fitted with ventilated rear panels and a very . attractive chrome plated retractable leg can be fitted as an optional extra.

Our Trade Counter is epen for personal callers from 9 a.m.to 5.30 p.m. Monday-Friday

POSTAGE EXTRA $+10 \%$ V.A.T.
DLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ.

Industrial Tape Applications
105High Street, Eton,Windsor, Berks.Tel:(95) 52663 Telex 21879

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from - $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

WW-077 FOR FURTHER DETALLS

LAYOUT OF SPEAKER UNITS

Twelve $8^{\prime *} \times 5^{\prime}$ elliptical and one $12^{\prime \prime}$ twin cone CABINET HEIGHT 66'

FULLRANGE LINE SOURCE PUBLIC ADDRESS

GADINEI HEIGAT Oo

$$
2-2+2
$$

SPEAKERS

LAYOUT OF SPEAKER UNITS

Eight $8^{\prime \prime} \times 5^{\prime \prime}$ elliptical and one 10° twin cone CABINET HEIGHT 48**

A bROCHURE GIVING FULL SPEGIFICATION; INCLUDING SPECIFIC SOUND PRESSURE LEVELS, FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FROM THE MANUFACTURERS.

S. B. DAVENPORT LTD.

ELLES RD., FARNBOROUGH, HAMPSHIRE, ENGLAND TELEPHONE FARNBOROUGH (HANTS) 514551

One-offmanship

The soundartof giving the customer and installer precisely what they need

SNS AUDIO POWER AMPLIFIER SYSTEMS might be bought off the shelf without systems advice, but it's unlikely. The particular needs of particular people usually demand a rack system unlike any other rack system. SNS are very good at one-off systems.
SNS can fairly claim to have the most comprehensive systems planning capability in the complex world of sound. That capability is backed by wide ranging engineering facilities which can be tailored to individual needs and by supreme electronic packaging. You need plenty of experience and expertise to produce oneoff systems. SNS have built up a first class systems engineering and design team, whose experience and ability are placed at your disposal.

Giveusyour problem!

Place a tick in appropriate box. for the facilities you require. We'll send you some interesting details by return.
J am interested in:
\square Specially designed Power Rack \& Console Systems
\square Public Address Mixers/Amplifiers
\square Crystal controlled Tuners
\square Tuner Amplifier Systems
\square Radio Microphone SystemsDistinctive range of specialist Loudspeakers
My specialised requirements are

Name

Address
\qquad
SNS Electronics Group, 851 Ringwood Road, Northbourne, Bournemouth, BHII 8LN, Tel: Northbourne (02016) 5331/4.

W W 4 Setting NewStandards

In Service to Distributors and Installers

WW-079 FOR FURTHER DETAILS

ROGERS

AUDIO TEST EQUIPMENT

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio quipment, but with additional applications in the electronics indusrty in general. The equipment is of particular interest to the professional audio engineer, recording studios
broadcasting authorities, and educational establishments.

DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio ampliffers, recording and transmission equipment. Selling Price: Chassis - f132.50.c/w. Case-f140.00+VAT. S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A. is the measurement of total harmonic distortion. Selling Prics: Chassis - $\mathbf{£ 6 . 5 0 . c} / \mathbf{w}$. Case-£62.50 + VAT.
AM324 AF Millivoltmeter. Designed for voltage measurements in the audio and low RF ranges and, principally, for measuring low level signals in high impedance circuits.
Selling Price: Chassis- $-64,00$. Selling Price: Chassis - £64.00.c/w. Case-£70.00+VAT.

Model 'A' Noise Generator. A portable battery operated unit designed for carrying or 'White' noise can be selected and 'Pink or White noise can be selected and output tinuously variable. Selling Price: $£ 32.50$

ROGERS DEVELOPMENTS (Electronics) LIMITED
4/14 Barmeston Road, London SE6 3BN, England
Telephone: 01-698 7424/4340

WW-081 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tel: 01-6998844 Telex: 896161

EHGTIXERS WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-costB.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever. did.

CHOOSEANEW FUTURENOW

Tick or state subject of interest. Post to address below.

SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE of encine ining
 TECHNOLOGY
 DEPT. BWW 12 ALDERMASTON COURT, READINE RG7 4PF

QL $\sqrt{\text { BWW }} 12$
NAME
BLOCK CAPITALS PLEASE
ADDRESS

THER SUBJECTS
AGE
Accredited by the Council for the Accreditation of Correspondence Colleges.

WW-075 FOR FURTHER DETAILS

One-offmanship acclaimed bya London Hospital
SNS diagnosed the installers multiple problems and solved them

In Service to Distributors and Installers
SNS Electronics Group
851 Ringwood Road, Northbourne, Bournemouth. BH11 8LN
Tel: Northbourne (02016) 5331/4
London Sales Office: 019070057.

As soon as you try out one of these versatile little scopes, you'll think of dozens of jobs it can do for you. And at £70, you can afford to use it everywherein training, inspection, production control and monitoring for example.
For a small scope, the 551 B has an exceptionally big 10 cm by 8 cm viewing area, with a really bright trace. Band width is DC-3MHz. Its sturdy construction and easy-to-use controls make it ideal for non-technical operators. It weighs 16 lbs and measures just $8^{\prime \prime}$ by $7^{\prime \prime}$ by $15^{\prime \prime}$. The versatility of S51B springs from its combination of low price, big flat screen, plus excellent linearity and calibration. It takes Telequipment to line up a package like that! Ask us for full information.

Telequipment Sales
Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 61251 Telex: 25559

wireless world

Electronics, Television, Radio, Audio DECEMBER 1973 Vol 79 No 1458

SIXTY-THIRD YEAR OF PUBLICATION

This month's cover picture shows part of a demonstration of holography by Cambridge Consultants Ltd using a helium-neon laser. The acrylic injection moulding in the foreground is the object being holographically reconstructed. (Photographer Paul Brierley)

In our next issue

Horn loudspeaker design. First part of an article covering the development and appraisal of design techniques. The series will conclude with comprehensive tabulated design data and two constructional designs, for a "mini" and a "no-compromise" horn.
Electronic piano. A constructional design for an instrument which simulates the keying action of a conventional stringed piano and costs about £70.

Publication date. We apologize to readers for the lateness in publication of this issue, resulting from production difficulties at our printers.

ibpa

Meenatupanal Busmes
Press Assoctrates
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
© I.P.C. Business Press Ltd, 1973
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

573 The Costs of Engineering

574 Active Filter Crossover Networks by D. C. Read
577 Realm of Microwaves - 7 by M. W. Hosking
581 Research Notes
582 Experiments with Op-amps - 16 by G. B. Clayton
583 News of the Month
Electronics industry's prospects
Satellite marine navigator
Recording speech from the ear
584 H.F. Predictions
585 Predicting Amplitude Responses by A. J. Key
588 Letters to the Editor
Current flow controversy
Modified Nelson-Jones f.m. tuner
Magnetic pickup loading
593 Radio Control Tone Decoder by C. Attenborough
595 Using Opto-couplers by K. F. Knott
598 Some Thoughts on Transformers by Thomas Roddam
601 Industrial Security by W. E. Anderton
604 December Meetings
605 Circuit Ideas
Phase-locked loop for f.s.k. demodulation
Using the Signetics 555
Combined rumble and scratch filter
Accurate square-law pot
Starting the ring-of-two
607 Television Broadcasting from Satellites by D. B. Spencer \& K. G. Freeman
611 Contrast Expansion Processor by R. J. H. Brush \& P. E. Baylis
613 Books Received
614 Letter from America
615 World of Amateur Radio
616 New Audio Products
619 New Products
621 Real \& Imaginary by "Vector"
622 Editorial Annual Index
A112 APPOINTMENTS VACANT
A138 INDEX TO ADVERTISERS

Substription rates: Home, $£ 4.35$ a year. Overseas, 1 year £5; 3 years $£ 12.50$ (U.S.A. \& Canada 1 year $\$ 13$, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 year $\$ 6.50,3$ years $\$ 16.25$).

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

There are at least three reasons for this.

First, this is an EEV tube and EEV is one of the biggest tube makers in the world. When youreplace with EEV, you know you are getting a tube that you can depend on.

Second, EEV tubes are very competitively priced

Third, you'll find you get more than a good tube from EEV.Our service is quick, efficient, informed.We go to endless trouble to keep our customers out of trouble.

Ask any EEV customer, or try us for yourself.Write for details, or if you have a specific problem'phone us at Chelmsford and ask for extension 428.

Ours	Theirs	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kW)	Frequency (MHz)	Filament ratings (V) (A)
4Cx1000A	$\left\{\begin{array}{l}\text { 4CX1000A }\end{array}\right.$	1.0	3.2	3.0	110	6.09
$4 \mathrm{CX1000}$	$\left\{\begin{array}{r}\text { 4CX1000K } \\ 4 \mathrm{CX1} \\ \hline\end{array}\right.$	1.5	2.7	3.0	30	$6.0 \quad 9.0$
$4 \mathrm{CX5000} \mathrm{~A}$	$\left\{\begin{array}{l}4 \mathrm{CX5} 5000 \mathrm{~A} \\ \text { CV8295 }\end{array}\right.$	5.0	16	7.5	30/110	7.575
4CX10,000D	$\left\{\begin{array}{l} 4 \mathrm{CX10,000D} \\ \text { CV6184 } \end{array}\right.$	10	16	7.5	30/110	7.575
4CX15.000A	4CX15,000A	15	36.5	10	110	6.3160
4CX35,000C	$\left\{\begin{array}{l}\text { 4CX155,000C } \\ \text { CV11107 }\end{array}\right.$	35	82	20	30	10300
BR1161	$\left\{\begin{array}{l} \text { CV9343 } \\ \text { RS726 } \end{array}\right.$	35	100	14	10/30	11155
Ours	Theirs	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kW)	Frequency (MHz)	$\begin{array}{\|l\|} \text { Filament ratings } \\ \text { (V) } \\ \text { (A) } \end{array}$
CY1172	RS2002V	150	220	15.	30	21.350
BW1184	YD1202	80	120	14.4	30	12.2255
BW1185	YD1212	120	240	16.8	30	12.6380
BY1161	RS826	60	120	14	10/30	$11 \quad 155$

EEV AND M-OV KNOW HOW.

ENGLISH ELECTRIC VALVE CO LTD, Chelmsford, Essex, England CM1 2QU. Tel: 0245 61777. Telex: 99103.Grams: Enelectico Chelmsford. S.E.C. LAP 63

The Costs of Engineering

Editor:

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

Phone 01-261 8339
KEITH NEWTON
Phone 01-261 8515
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

In his presidential address to the I.E.R.E. Dr Ieuan Maddock criticized engineers for their apparent lack of awareness of the commercial realities of their work. "Probably the most persistent defect has been the engineer's reluctance to take cost into consideration. . . . In nearly every project I have had contact with . . . I have seen this unwillingness to face the full significance of costs and a realistic appraisal of what they may be. . . . A very few engineering projects stay within the cost forecasts, all too many greatly exceed them. . . . All too often the engineer underestimates the difficulties which will arise as the scale of the project is expanded out of the laboratory or conceptual phase."

Statements of this kind are not exactly revelations: in fact they have become part of the conventional wisdom on engineering. For this very reason they deserve to be taken out and examined from time to time. For example, when someone speaks of engineering costs rising excessively or not staying "within the cost forecasts" this must mean in relation to some pre-determined figure. It is purely relative matter. The questions then arise: who sets this figure; by what criteria is it determined, and by virtue of what superior knowledge? If, in this relative situation, we are going to question the ability of the engineer to keep his costs within a forecast we are also entitled to question the competence of those who make the forecast.

In some cases the cost limit will be set by the customer; in other cases by a group of senior men in a manufacturing company with a mixture of engineering, accounting and management skills. Where the engineering task does not require great originality the cost forecast can be made with some certainty, from experience of earlier projects of a similar kind. But where the engineering has to break new ground technologically there can be no such certainty. The costs are determined by the difficulties which the engineer does not initially know he is going to encounter. The costs are discovered by the engineer as he goes along. This is in the nature of technological progress. People are horrified at the escalating costs of designing the Concorde and the RollsRoyce RB211 aero engine: they should really be horrified at the temerity of those who made the original forecasts.

In some projects the cost estimators are making what is not, in fact, a rational or an empirical judgement but, far more difficult, a value judgement, in which they could well make a mistake: what is the value of this engineering task to those who are going to benefit by it? In some terms the Apollo space programme could be considered a colossal waste of money; in other terms the cost of putting American .men on the moon was socially justifiable because it repaired the morale of the American people after the Sputnik shock.

Of course, there is good engineering and bad engineering. But basically the task of the engineer, as he sees it, is to find the most economical, and elegant, solutions to problems set him by society. If the most economical solution to a problem turns out to cost more than some initial estimate we should look again at the problem and how it has been financially assessed before we blame the engineer.

Active filter crossover networks
 Using i.cs in a flexible design to improve performance of a three-unit loudspeaker system

by D. C. Read, B.Sc

A complete loudspeaker system should have a uniform response, at least when measured in non-reverberant conditions. This implies that a degree of equalization is necessary between the multiple drive units of a system which have different efficiencies at different frequencies. The result is wasted energy and low efficiency when a passive crossover is used as an equalizer in addition to band-splitting. Also, a passive crossover network with the additional frequency dependent impedances between the amplifier and the individual loudspeaker units, required to shape the signal voltages, means that the advantage of a high amplifier damping factor (typically between 20 and 60) is lost. Because of the reduction in damping, the moving coil speaker is prone to overshoots, resonances and transference of internally reffected sounds which re-excite the cone. A solution to these problems inherent in multiple drive unit systems using passive crossover circuitry is the use of active filters with separate drive for each unit; the full transient component of the voltage waveform then has the best chance of being faithfully converted into sound.

In addition to overcoming the damping problem, active filters and separate drive will allow any part of the characteristic to be adjusted to any level, and give a choice of slopes in any part of the frequency band.

On analysis of well established passive crossovers for speakers with enclosure volumes of less than $3 \mathrm{cu} . \mathrm{ft}$, the voltage across units in the range 1 kHz to 5 kHz may be between 8 and 10dB down on those at the extreme ends (i.e. below 300 Hz and above 10 kHz). If the bass were equalized with the mid-band level, 4 dB reduction of pressure response from 200 Hz to 20 kHz would be necessary. The $3-4 \mathrm{~dB}$ bass level change may well be appropriate for speakers on the floor, but the bass performance can be also affected by a corner position, a wall, or a free standing shelf. There is, therefore, a need for bass drive voltage adjustment to allow for these room effects. Resonances that occur between the passive crossover network and the speaker units make it difficult to design and make adjustments. A factor of two change in crossover component value may be necessary because of the changing impedance of the voice coil over the frequency bands. Also, during a frequency response test the resonances can produce a near zero load impedance which
can be unfortunate for the amplifier if it is not protected. If it is protected distortion will occur at these resonant points.
The design to be described was built as a result of the article describing the construction of a transmission line loudspeaker ${ }^{1}$ so that a comparison could be made between the recommended Radford FN10 crossover unit and the active filter. From the voltage/frequency curves for the passive crossover network active filters were designed for a close voltage match. Summarizing the advantages of active filters, we have independently adjustable crossover frequencies and voltage levels, the power amplifier drives the speakers directly and maintains a high damping factor, and intermodulation distortion in the amplifier is reduced as the frequency bands are split before the signal is fed to the amplifier.
Of the circuit configurations available, the active element with a relatively low

Fig. 1. Op-amp used in a dual summing single feedback configuration. See text for the input/output relationship.

Fig. 2. Circuit sections for (a) low pass, 6dB/octave (b) low pass 12dB/octave (c) high pass 6dB/octave and (d) high pass 12dB/octave active filters.

(a)

(b)

(d)
gain was chosen-the so-called "controlled source"-for the following reasons: a minimum number of network elements is required; output impedance is low and characteristic adjustment is simple.

Active filter network

From the general circuit in Fig. 1, and making the usual assumptions for op-amps, the dual summing single feedback configuration is defined as

$$
V_{o}=-\left[\frac{Y_{12 R}}{Y_{12 R}} V_{1}+\frac{Y_{12 Q}}{Y_{12 R}} V_{2}\right]
$$

The frequency pass-band function for low pass is

$$
\frac{V_{o}}{V_{i}}=\frac{-A}{s^{2}+\alpha s+1}
$$

and high pass is

$$
\frac{V_{o}}{V_{i}}=\frac{-A s^{2}}{s^{2}+\alpha s+1}
$$

where A is a positive real constant specifying the gain in the pass-band and $\alpha=\sqrt{2}$ for a maximally flat response.

The band-pass expression has not been included as the active filter circuit gives a performance similar to an $L C$ circuit at resonance. For the band-pass section feeding a mid-range unit, a flat pass band is required with independent control of the upper and lower roll-off characteristics and this can be obtained by putting l.p. and h.p. sections in tandem.

Fig. 2 shows the complete circuit sections for active filters with cut-off slopes of 6 or $12 \mathrm{~dB} /$ octave. A relatively low-gain configuration ensures minimum number of network elements, low output impedance and ease of characteristic adjustment.

Practical circuit

Fig. 3 shows the three-way active filter circuit with each channel fed to a separate 30 W (peak) power amplifier. Fig. 4 shows an

Fig. 3. Complete circuit of the three filter sections. The component values were chosen for a close voltage match to the Radford FN10 passive filter for comparison purposes. Transistor types and alternatives are given in the text.

Fig. 4. Suitable 30W amplifier for use with the active filter sections.

Fig. 5. Board layout for the active filters.
Fig. 6. Component layout of the power amplifier.
coupling capacitor and $R V_{2}$ should be set for 50 mA with the amplifier at room temperature (approximately $24^{\circ} \mathrm{C}$).
From the voltage response for the passive crossover network, the active filter sections are designed for a close voltage match. The slopes required at crossover were met by using $6 \mathrm{~dB} /$ octave and $12 \mathrm{~dB} /$ octave sections in tandem. By using different "break" frequencies, f_{0}, in the 6 and $12 \mathrm{~dB} /$ octave sections, sharp changes in the response curve were softened, to simulate the passive crossover curves (not necessarily providing optimum performance, but providing a direct comparison of the two types for this particular example, in fact lowering the upper crossover frequency by approximately 2 kHz gave an improvement of the performance to my ears). Adjustment of the passband gain in the $12 \mathrm{~dB} /$ octave sections will also change the response curve shape.
To set up the filters when no comparison is to be done, the output from bass/midrange and midrange/tweeter should be equal at the crossover frequencies. This can be achieved simply by the use of a microphone, a signal level meter (VU) and an audio oscillator. Set the input from the oscillator at each crossover frequency in turn and adjust the signal level from each unit to be equal with each unit connected individually.
A second method, for matching with the FN10 passive crossover, also requires an a.f. voltmeter or c.r.o. It is worth first connecting the a.f. voltmeter direct to the audio oscillator to check that the voltage output is constant from 100 Hz to 12 kHz and/or the voltmeter reading is independent of frequency.

Set the b.p. active filter $10 \mathrm{k} \Omega$ pot to $\frac{1}{3}$ clockwise and the frequency to 2 kHz , connect the oscillator to the active filter input and adjust the output for, say, IV across the midrange unit. Reset the frequency to 100 Hz and transfer the voltmeter to the bass unit. Set the 1.f. $10 \mathrm{k} \Omega$ pot for 1 V . For the h.f. unit, set the frequency for 11.5 kHz , reconnect the voltmeter to the tweeter and adjust the h.f. $10 \mathrm{k} \Omega$ pot for 1 V .

Note that for stereo reproduction, six 30 W amplifiers are required for a three unit speaker system. Peak powers of 20 W occurred in all the three bands, and so a low power amplifier for the tweeter is not possible, but only a small heat sink is required

Transistor alternatives

The transistors used in the active filter circuit can be BC 107 or 2 N 3904 (n.p.n.) but the p.n.p. is BCY70, 71, 72 or 2 N 3906. Several other equivalents exist which would be suitable.

References

1. Bailey, A. R. "The Transmission-line Loud speaker Enclosure", Wireless World, May 1972, pp. 215-217.
2. Texas B 68 application report.

Realm of Microwaves

7. Microwave antennae - phased arrays

by M. W. Hosking, M.Sc.
British Aircraft Corporation

The previous article concentrated on types of microwave antenna formed by a radiating aperture, either radiating directly or by reflection. Such an aperture can be considered as formed by a very large number of individual radiators and the radiated pattern as being the product of the individual patterns, i.e. a two-dimensional array. In many cases, it is just not sensible to try and replace say, a dish reflector, with a multielement array when size becomes too great for a single reflector unit. This usually occurs at low operating frequencies and below the microwave band arrays have been well-established as the only practical method of obtaining a reasonable directivity. However, due particularly to improvements in solid-state control devices, arrays are steadily increasing their application in the microwave band.
By controlling the frequency, power and phase from each element of the array, shaped beams can be formed which can be steered without physically moving the antenna. Another important feature is that higher power densities can be produced from an array than from a continuous aperture, as each element can have its own source of power. The overall result is an antenna system capable of radiating single or multiple beams at high power levels which can be electronically scanned over wide angles at rates many times faster than mechanical systems. Microwave arrays, however, do have the disadvantages of cost and complexity and also of weight in airborne applications.
Before indicating some methods of beam steering and beam shaping, it will be useful to outline the basic relationships which affect the array pattern. Using the nomenclature of Fig. 1, we can take the simplest case and ignore all the elements except for any two adjacent ones and also assume that the electric field amplitudes are equal. The electric field of each element can be represented by an amplitude vector having a phase referenced to some convenient point and the total array field will be the sum of those individual vectors. So, taking elements 1 and 2 , with 1 as reference, we wish to find the resultant field in the direction θ.

The relative phase of 2 is influenced first by the physical spacing, S, which produces the path difference $S \cos \theta$ and also by an arbitrary phase, ϕ, which can be selected
by the array operator. Thus, if the electric field amplitude of each element is E the total field of the two-element array can vary between $2 E$ when the vectors are in phase, to zero when they are in phase opposition. In general, the sum is

$$
E(\theta)=E\left[1+\exp j\left(\phi+\frac{2 \pi}{\lambda} \cdot S \cos \theta\right)\right]
$$

By giving ϕ various values and taking the modulus of $E(\theta)$, the field patterns of a two-element array can be plotted and these can be repeated for various values of S.

Fig. 2 shows some of the patterns which can be produced from two elements as a function of spacing and phase difference; these particular combinations having been chosen because they form the basis of various other types of antenna. Note, for instance, the difference in pattern between
the $S=\lambda / 4, \phi=\pi / 2$ doublet and the $S=\lambda / 2, \phi=0$ doublet. In the former, the main beam lies in the direction of the axis and is termed an end-fire array. The righthand element behaves as if it were a reflector, in this case it is leading the other element by $\pi / 2$, and it is not necessary to current-feed this element to produce the end-fire pattern, as it will re-radiate the field induced by its partner.
This arrangement forms the basis of the Yagi array which at the lower frequencies is most commonly used as a domestic v.h.f. antenna. The case when $S=\lambda / 2, \phi=0$ is termed a broadside array, as the pattern is now normal to the array axis and is the most usual case. In practice, something must obviously be done about the twin radiation patterns and a reflecting screen can either be placed behind the array to reflect half the

Fig. 2. Radiation pathern from a simple fro-clement array can assume mant shapes, depending on the spacing and the phase difference between the feeds. For spacings greater than $\lambda / 2$, the pattern starts to break up into an increasing number of lobes.
radiation back again; or alternatively it can be absorbed.
With a larger number of array elements, N, all being fed with or receiving equalamplitude fields the overall radiation pattern is still found by summing that of each separate element. In this case, the above equation becomes a geometric series whose sum is
where

$$
\begin{aligned}
E(\theta) & =\frac{E \sin (N \psi / 2)}{\sin \psi / 2} \\
\dot{\psi} & =\phi+\frac{2 \pi}{\lambda} S \cdot \cos \theta
\end{aligned}
$$

It is usual to work with the radiation power pattern, $P(\theta)$, which is the square of the field amplitude pattern and also to normalize the amplitude to the peak value of the electric field. This peak value is simply $N . E$ so that theoretically the radiation pattern of a uniform (equal amplitude) array is

$$
P(\theta)=\frac{\sin ^{2} N / 2(\phi+(2 \pi / \lambda) S \cdot \cos \theta)}{N^{2} \sin ^{2} \frac{1}{2}(\phi+2 \pi S \cdot \cos \theta)}
$$

So far, nothing has been said of the radiation properties of the individual elements themselves; they could be dipoles, waveguide horns or any form of directive radiator. The second equation applies to an array of isotropic sources and is sometimes called the array factor. When applied to any array of directive elements, the radiation pattern is obtained by multiplying the radiation pattern of an individual element by the array factor. In practice, however, things are not quite that simple as the radiating properties of each array element are modified by the presence of its neighbours in the array. Thus, accurately predicting side-lobe patterns and wide-angle beam distortion in a large array becomes quite a task and usually involves much empirical information. The array factor contains all of the parameters which can be varied to alter the array pattern and because of this, is worthy of further study, even if in practice an ideal spacing or phase difference has to be modified to counteract mutual coupling.

A special case of the uniform array considered so far, is the uniformly illuminated array wherein there is no phase difference given to the element feeds. Taking the broadside case, the doublet patterns of Fig. 2 show that a half-wavelength element spacing is needed and we can substitute into the last equation for $\phi=0$ and $S=\lambda / 2$. The denominator has a sine function which can be replaced by its argument, so that the equation becomes

$$
P(\theta)=\left[\frac{\sin \frac{1}{2}(N \pi \cos \theta)}{\frac{1}{2} N \pi \cos \theta}\right]^{2}
$$

which is of the form $[(\sin x) / x]^{2}$ and is the same type of pattern as that produced by the uniformly illuminated rectangular aperture, covered in the last article. The 3-dB beamwidth occurs when $P(\theta)=0.5$, which is when $x=1.39$. For arrays in which N is greater than about 5 , the $3-\mathrm{dB}$ beamwidth can be simplified to $102 / N$ degrees. The directivity of this array can also be simply expressed as being equal to the number of elements, N.

Fig. 3. When designing arrays having a Tchebyscheff amplitude distribution, a direct trade-off can be made between the half-power beamwidth and the sidelobe level. In this case, all sidelobes have equal amplitude.

A factor to be borne in mind when choosing the element spacing for an array is the appearance of what are termed grating lobes, analogous to the interference fringes of optics. These occur whenever the path difference between elements in a particular direction is a multiple of 2π radians and they take the form of a radiation lobe equal in amplitude to that of the main one. For an array which covers all angles from broadside to end-fire, then the element spacing must be $\lambda / 2$ or less to prevent grating lobes, but they can also be suppressed for larger spacings by using directive elements at the expense of the full coverage.

The aperture antenna, a dish reflector for example, has been compared to a twodimensional array in which the number of
elements is very large and the preceding article showed how the radiated pattern, particularly the side-lobe level, could be varied by the type of amplitude distribution across the aperture. In that case, the amplitude taper could only be produced by the feed antenna and reflector geometry, thereby restricting the taper to a few fairly simple distribution laws such as uniformly illuminated and cosine. These restrictions do not apply to the array where one has control of the feed to each individual element and can therefore produce any type of amplitude distribution.
In practice, there are a number of standard distributions on which most array beam-shaping is based and, while it is not necessary to get involved with the mathematics, the main functions are interesting. It has already been shown that the uniformly illuminated aperture-one across which the electric field amplitude and phase is constant-is the most efficient distribution and gives the highest directivity. However, the first sidelobe level is only 13.2 dB below the main beam and many microwave systems require a much lower rejection. With the loss of about 2 dB in directivity, a cosine distribution gives a sidelobe level of about -23 dB .
Another important and widely-used distribution is based on a mathematical function called a Tchebyscheff (also spelt Chebyshev) polynomial. Defined as $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$, this can be expanded as a series, for instance $T_{6}(x)=$ $32 x^{6}-48 x^{4}+18 x^{2}-1$ and by putting $x=\cos \psi / 2$, the coefficients of this series can be equated with those of the complete form of the first equation. If the field amplitude at each element across the array is then varied in accordance with this polynomial, the radiated pattern will follow a Tcheby-

Fig. 4. Series-fed array (a) introduces more phase-shifter loss than the parallel arrangement (b), but requires more duplication of control circuitry. In each case, the phase-shift is given by $\phi=(2 \pi S / \lambda) \cos \theta$ radians. For very short pulses, the transit time across the array produces distortion and a compensating delay of $S \cos \theta$ must be introduced (c).
scheff law. The result will be a pattern consisting of a single main lobe and sidelobes, but all of the sidelobes will be of equal amplitude and the beamwidth of the main lobe will be a minimum.
Aperture efficiency is quite high and sidelobe levels more than 35 dB below the main lobe can be obtained for a loss in gain of about 1 dB below that of the uniformly illuminated aperture. Fig. 3 shows the dependence of beamwidth on sidelobe level. This Tchebyscheff polynomial is a very useful one and is also used extensively in microwave filter design where by specifying a tolerable band-pass ripple the rate of cutoff is maximized. In this case the resonator coupling impedances are made to follow the coefficients of the series.
A special case of the Tchebyscheff polynomial is when the sidelobes are zero and the function then becomes a binomial series. Allowing the feeds to the elements to follow the binomial coefficients, the sixthorder series for instance being 16152015 61 , results in a relatively wide beamwidth and for larger numbers of elements a wide variation in amplitude. Consequently, the Tchebyscheff amplitude taper is more popular. There are many other variations of beam shaping by amplitude taper, depending on application; when a Tchebyscheff distribution is applied to directive elements, the sidelobe level decreases instead of remaining constant due to the multiplication of the patterns. Thus, a small reduction in beamwidth is possible by making the array factor have increasing sidelobes which become uniform when multiplied by the element pattern. Another version is to use a modified form of $(\sin x) / x$ distribution which produces sidelobes that decay very rapidly in amplitude away from the main beam. This is useful in low-angle tracking radar, beth in reducing the antenna noise figure and in keeping out spurious signals from the ground.

Electronic steering

Enough then of beam shaping by amplitude tapering and on to the major feature of the array: that of electronically varying the direction of the main beam. Within the angular coverage restricted by the appearance of grating lobes and pattern distortion, the array beam may be pointed in any direction by varying the phase shift between elements. Further, the beam can be switched from one position to another at rates which are orders of magnitude faster than those obtainable by mechanically moving the antenna.
Fig. 2 and the first equation showed that for half-wavelength spaced elements the main beam is broadside $(\theta=0)$ when there is no incremental phase shift between elements ($\phi=0$). The beam may be repositioned at some other angle, θ, by making $\phi=(2 \pi / \lambda) S \cos \theta$. For example, an inter-element phase shift of 45° would incline the main beam at about 75.5° to the. horizontal. The array elements may be either series-fed or parallel-fed as shown in Fig. 4 and the phase shifters themselves could take on a variety of circuit forms. This is an application for which the p-i-n diode (described in part 5) finds much

Fig. 5. Offset frequency method of scanning produces an inter-element phase shift by mixing the received signal at each element with a harmonically related frequency increment.

Fig. 7. Swept-frequency scanning varies the phase because of the frequency-dependant length of line between each element. A fairly wide sweep is necessary and scanning is limited to only one plane, but this method does eliminate the complex phase-shift circuitry of other types of array.

Fig. 6. In this method due to Prof. Huggins, the phase difference is produced in a tapped delay line and preserved in the mixing process at each element.
application and for medium power arrays a circuit such as that of Fig. 8 of that article might be used.

It can be envisaged from Fig. 4 that quite large quantities of microwave components are used in an array. Besides the passive feed circuitry which must be duplicated for each element even a simple phase shifter like the one referred to uses eight diodes to produce 22.5° increments of phase shift; so a square array of say 100×100 elements would have of the order of 10,000 feed branches, matching circuits and phase shifters and 80,000 diodes. Each of the diodes must be connected to the logic control circuitry-invariably a computerand it is apparent that the series-fed array can operate with the same signal applied to each phase shifter as the phase states are all the same.
With the parallel-fed array, each phase shifter contributes a different amount of phase, although this is periodic with 2π radians, so that the control circuitry is more complex. To offset this, the series-fed array is more lossy as most of the signals have to suffer the insertion loss of several phaseshifters whereas they are only affected by one phase shifter in the parallel-fed case.
A problem which arises in phased arrays of this type is due to the path length from one end of the array to the other. Taking the series-fed case, if the array is long and the signal pulse width is short, then it is
possible for the first element in the line to have largely finished radiating the pulse before the last one has started. The result on a radar system is to have a badly distorted input signal and loss in detection efficiency.
The total path length difference across the array is made up from the inter-element differences, $S \cos \theta$. If the signal in the feed to each element is delayed by successive increments of $S \cos \theta$, the result will be a smooth wavefront with no signal distortion as depicted in Fig. 4(c). The delay elements themselves might be similar in form to the phase shifters, but would use the p-i-n diodes to switch additional lengths of transmission line in and out of circuit.

This, then, is the basis of scanning an array beam by varying the phase shift between each element. Invariably this is done digitally, either by switching a ferrite phase shifter between states or by switching p-i-n diodes on and off. The main beam of the array therefore jumps from one position to the next with the smallest jump corresponding to the smallest available phase increment. Analogue, or continuouslyvariable phase shifters, such as might be obtained by using varactor diodes instead of p-i-n diodes, are not yet practical due to the difficulties in manufacturing diodes with identical tuning curves and the more complex control circuitry required. Nor is there any great advantage in analogue operation
as the digital array beam can be steered in increments of about a beamwidth and can scan its allotted sector in space in a time close to a pulse width.

Typically, the array might consist of a group of half-wave dipoles or openended waveguides spaced a half-wavelength apart and arranged in the form of a square. A 2.5° beamwidth, X-band $(8,200$ to $12,400 \mathrm{MHz}$) array might contain 2,500 elements in a 50×50 square. Each element can then be given a row and column identity in the matrix and allotted its appropriate phase by the control circuit. The control circuit itself can be as complicated as required, ranging from a couple of $360 / 651$ computers with vast memories for automatic radar systems to a continuous-loop tape recording for continuous scanning, with the operator making all the decisions.

Although common, particularly for lightweight airborne application, beam steering by digital phase shifters is not the only way of doing the job. A technique particularly useful in a receiving array is the offset frequency method depicted in Fig. 5. Each array element has its own mixer, to which the received signal is directed, but the local oscillator frequency to each mixer varies by a fixed increment, Δf, along the array. The local oscillator frequency is itself derived from another mixing process in which the filtered harmonics, Δf, from a pulsed oscillator are added to a stable frequency, f. The scanning rate of the beam is given by $d \theta / d t=(\lambda / S) \Delta f \sec \theta$ and is thus proportional to the rate at which the basic oscillator can be pulsed. Popular at the lower end of the microwave spectrum, this method has been used in r.f. propagation studies.

Another way of steering the beam using frequency control is called the Huggins method and is shown in Fig. 6. The transmitter frequency f_{o} is mixed with another control frequency, f_{c} and the i.f. $f_{o}-f_{c}$ is extracted and fed to an array of second mixers, one to each element. At the same time, a sample of the control frequency is fed through a delay line from which regular taps pass to the second mixers. The portion of f_{c} which travels the delayed route still preserves its frequency identity, but is out of phase with the portion at the first mixer by an amount $\phi=2 \pi f_{c} \tau ; \tau$ being the time delay at each element. At the second mixers, the sum frequency is taken at the output which is the original frequency retarded in phase by the amount ϕ. Thus, changing the control frequency changes the element phase proportionally and thereby the angle of the radiated beam.

If certain limitations in performance can be tolerated, then all of the complex phaseshift circuitry associated with the previous arrays can be eliminated and use can be made of the frequency-dependent properties of the element feed structure. The method is known as frequency scanning, a simple arrangement being shown in Fig. 7 which consists of a long length of transmission line with periodic tapping-off points to the array elements. Waveguide is commonly used as the transmission line, folded into a serpentine-like shape to increase its length. The electrical length of the section of line between elements is $2 \pi L / \lambda$ radians and is

Fig. 8. Reflectarray combines the principles of the dish reflector and the phased array and cuts out most of the feed distribution circuitry. Phase of each element can be adjusted to compensate for feed errors and for sidelobe level and scanning symmetry.
thus a function of frequency and is chosen so that at a particular frequency, the beam points in a given direction, usually broadside.

As the frequency is increased, the interelement phase increases and the array beam will scan on one direction along the line of the array. Conversely, a decrease in frequency will scan the beam in the opposite direction. Speed of scan depends on the rate at which the frequency can be changed and can thus be fast, but large frequency excursions are required for wide-angle scanning. A frequency-scanned linear array such as this radiates a fan-shaped beam and only scans in one plane, coverage in the orthogonal plane requires the complete antenna to be moved.

Alternatively, a two-dimensional planar array can be made from rows of frequencyscanned linear arrays. Instead of moving the complete structure, coverage in the nonscanning plane can be provided by one of the phase-shift methods previously described. This type of system is known as a phase/frequency array and has found considerable application in mobile search radar on land and in ship-borne acquisition radar.

Finally, we can come full circle in comparing the two-dimensional array of elements with the solid dish antenna and mention the "reflectarray"; a hybrid version of those two and one which is now receiving design attention. As shown in Fig. 8, the
solid dish of a conventional reflector is replaced by an array of elements, typically open-ended waveguides, but the feed horn design and the aperture illumination requirements remain similar to those described in the previous article. By using this type of feed, the complicated powerrouting network to each element can be eliminated and a single transmitter can be used as the source. The reflection and phase shift properties are produced by loading each waveguide element with shuntmounted $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diodes as shown.

Their impedance changes between a short and open-circuit depending on the bias control current. A signal entering the waveguide travels a certain distance down the guide and then is reflected out again by one of the diodes, or by the short-circuit at the end of the guide. By varying the position of the diodes in the guide from element to element and by switching the appropriate ones to short or open-circuit, the relative phase between elements can be controlled. Besides steering the beam, this individual control can also be applied to the sidelobe level and to aperture phase errors from the feed.

The degree of individual control available within the array also enables many radiated beams to be generated simultaneously so that the antenna system can look in several directions at once.

Detecting sparks in tankers

Electrostatic sparks are believed to be a cause of explosions in oil tankers. For diagnosing risks of "static" it is useful to have a sensitive spark detector. Dr J. N. Chubb and his associates at U.K.A.E.A. Research Group's Culham Laboratory have obtained promising results with a simple radio receiver, shock excited by the energy from an electrostatic discharge.

The receiver consists of a resonant loop aerial, broadly tuned to 38 MHz (bandwidth 2 MHz), followed by a Plessey SL 611 wideband integrated amplifier.

Tests made with an artificial spark generator showed that weak static discharges are easily detected. A $19-\mathrm{mm}$ sphere charged to 1 kV , discharging to a plane surface, with a charge of 3 nanocoulombs and an energy of 2 micro-joules was detectable at 10 metres. (This compares with the energy of 1 mJ required to produce sensation on the human skin and 0.2 mJ for ignition of a petrol vapour-air mixture.) A useful feature of the detection system is that it is not sensitive to corona discharges.

For diagnosing tanker problems, it is suggested that receivers inside dark, empty tanks be used to trigger cameras for flash photography of the splashes and falling drops of water etc. which may be responsible for triggering an explosion. To prevent false operation from atmospherics it will be necessary to use two spaced receivers inside the tank and two outside. Coincidence circuits can then be used to distinguish between genuine in-tank "static" and atmospherics.

Is ball lightning a trapped radio wave?

Ball lightning is a rare natural phenomenon which takes the appearance of luminous spheres, about 20 cm in diameter, which float some 50 cm above the surface of the ground. Ball lightning can also occur in and around flying aircraft. Dr R. C. Jennison of the University of Kent has described how he saw such a ball emerge from the pilot's compartment of a passenger aircraft and float down the aisle to the rear. Other observers have seen balls above the trailing edge of an air-
craft's wing in flight. This seems incompatible with the notion that the balls are made of hot plasma, since they should then be carried off in the slipstream.

Dr Jennison's own explanation is that the balls are the optical manifestation of what he calls a "phase-locked loop" of r.f. energy, meaning a standing wave which is somehow constrained to oscillate in a confined' volume of space. The glow could then be explained in terms of a gas discharge energized by the radio wave. Such a packet of radio energy could exist in empty space and does not require the presence of a gas. Being merely a radio wave it could, if electrically bound to a moving conducting surface such as an aircraft wing move freely through the air with the 'plane. The optical radiation must eventually drain the energy of the wave, causing its disappearance. The size of the ball should depend mainly on the radio wavelength, which fits in with the observation that balls do not shrink in size during their lifetime (of about a minute).

The origins of the balls is not known, but presumably they are products of the thunderstorms with which they are associated.

Do whales hear with their lungs?

Whales emit sounds over a huge range of frequency, from around 20 Hz to well into the ultrasonic region. The lowest frequencies are likely to be of use for communication over long ranges, and it would be of interest to know how they are transmitted and received.

A physicist at the U.S. Undersea Centre, San Diego, California, suggests that whales' lungs may act as Helmholtz resonators. The lung volume of a fin-back whale is about 2,000 litres, and should give a resonance at 20 Hz . This could perhaps be used as'a filter to sort out faint incoming sounds from background noise. (Whales are believed to be able to detect sounds from other whales over a much longer distance than is possible with human technology.) The whale might adjust the tuning of its lungs by swimming at different depths. In this way differences in the sizes of the animals could be catered for.

Nuclear forces linked with electromagnetism

Physicists at the European Nuclear Research Organization (CERN) at Geneva have made an important observation which may help to forge a theoretical link between radioactivity and electricity and magnetism.

The discovery was made when highenergy neutrinos from CERN's 28 GeV accelerator were shot through a bubble chamber. The neutrino is a particle with no charge and no mass. Not surprisingly, it seldom interacts with other particles: most of the neutrinos which arrive in vast numbers from the sun pass right
through the earth without hitting anything. Occasionally, however, a neutrino does interact with another particie. Until the CERN experiment the observed result had always been destructive: the neutrino was transformed into an electron or a mumeson, a change characteristic of the mysterious nuclear "weak force" which is responsible for radioactivity.

A few years ago two theoretical physicists (Steven Weinberg and Abdus Salam) suggested that the nuclear interactions caused by the "weak force" could be considered as electromagnetic interactions. For this to be true, however, it must be possible for neutrinos to hit other particles without being transformed into something else, but merely deflected. This is what has now been observed. Neutrinos have been detected which have collided with neutrons without changing into electrons or mesons. Mathematicians are hard at work defining the links between the weak force and electromagnetism, which are now seen as different aspects of the same thing.

New frequency for interstellar communicators?

When the idea of communications with extra-terrestrial civilizations was first seriously discussed, the most likely frequency was thought to be $1,420 \mathrm{MHz}$. This is the frequency emitted by neutral hydrogen in space, and as such would naturally capture the attention of astronomers, who are greatly interested in the distribution of hydrogen in the universe.

This choice of frequency has now been challenged by two American astronomers, F. D. Drake and Carl Sagan of Cornell University. They point out that for transmissions in the plane of our own galaxy the "hydrogen line" frequency is noisy, simply because of all the hydrogen in the galaxy. Why not use a "clear channel"?
Choice of a "clear channel" resolves itself into avoiding known noise. Noise from the sky has several known causes, all of which correspond to particular noise spectra. These are the universal blackbody radiation at 2.7 K ; quantum noise of the radiation itself, which occurs because r.f. energy comes in "packets"; noise from the atmosphere; and the hydrogen line. When all these are taken into account the least noisy part of the r.f. spectrum is at frequencies of a few gigahertz.
Molecular resonances of hydrogen and the hydroxyl group OH occur in this region, at 1420 and 1667 MHz . This leaves a "water hole" in between, possibly of interest to alien life forms if they are also associated with water. Drake and Sagan point out that, within the "water hole", there is another natural frequency, 1652 MHz , connected with the centre of mass of the water molecule. This is not a noisy frequency, and would perhaps be a likely choice for our water-involved cousins in another world.

Experiments with operational amplifiers

16. Voltage to frequency conversion

by G. B. Clayton*, B.Sc., F.Inst.P.

A voltage-frequency converter is used to generate a sequence of pulses with repetition frequency proportional to the magnitude of a d.c. voltage. A simple circuit which employs operational amplifiers to perform this function is illustrated in Fig. 16.1.

Amplifier A_{1} acts as an integrator and amplifier A_{2} acts as a regenerative comparator with hysteresis. Assuming the output of amplifier \boldsymbol{A}_{2} is at its positive saturation limit, $V_{o s a t}^{+}$, diode D is reverse biased and the output of the integrator falls linearly at a rate determined by the magnitude of a positive d.c. input voltage. When the integrator output reaches a voltage level $-V_{o \text { sat }}^{+}$ (R_{1} / R_{2}) the output voltage of A_{2} switches to its negative saturation limit, diode D becomesforward biased and the integratoroutput runs up rapidly. Amplifier \boldsymbol{A}_{2} switches back to positive saturation when the integer output reaches a positive voltage level of magnitude $V_{o s a t}^{-}\left(R_{1} / R_{2}\right)$. The integrator output then falls linearly again.

Assuming the time taken for the integrator output to run up is much less than the run down time and since the run down time is inversely proportional to the d.c. input voltage, the frequency of oscillations is directly proportional to the d.c. input voltage. If the switching time of the comparator is negligibly small the frequency of oscillations is given by the relationship

$$
\begin{equation*}
f \xlongequal{=} \frac{e_{i}}{C R} \cdot \frac{R_{2}}{R_{1}\left(V_{o s a t}^{+}-V_{o s a t}^{-}\right)} \tag{16.1}
\end{equation*}
$$

In the circuit of Fig. 16.1 the finite switching time of amplifier A_{2} allows an integrator output swing somewhat larger than $\left(R_{1} / R_{2}\right)\left(V_{o \text { sat }}^{+}-V_{o s a t}^{-}\right)$and the frequency of oscillations is thus less than that predicted by eq. 16.1.

Typical waveforms appearing at the output of each amplifier are shown in Fig. 16.2. The traces were obtained with an applied input voltage larger than that for which the circuit converts linearly in order to show the effect of the finite switching time of the comparator. The graticule line cutting across the middle of each trace represents the d.c. zero level of the trace. A close inspection of the waveforms reveals the d.c. levels at which switching occurs. In the case of the traces shown integrator run up time

[^7]

Fig. 16.1. Voltage to frequency conversion using one op-amp as an integrator and the other as a regenerative comparator with hysteresis.

Fig. 16.2. Waveforms at the outputs of the op-amps in Fig. 16.1. Top: integrator output; bottom: comparator output. Vertical scale, $10 \mathrm{~V} / \mathrm{div} . ;$ horizontal scale, $0.1 m s / d i v$.
is not negligible compared with the run down time, so that linearity of voltage to frequency conversion may be expected to have deteriorated at these frequencies. Deterioration in linearity is also to be expected at the lower frequencies because of inte-
grator drift. An offset balance potentiometer adjusted to cancel out integrator drift extends the lower frequency limit for linearity of voltage to frequency conversion.
The range of linear operation for the converter may be examined by applying various input voltages and measuring the frequency of oscillation for each value of input voltage. Input voltages in the range, say, 10 mV to 20 V are suggested. Results are conveniently plotted on logarithmic scales because of the wide range. The effect of adding an offset balance potentiometer to cancel integrator drift should be examined. It is also instructive to change component and power supply values. By examining the effect of such changes on the circuit waveforms the function of each component in relationship to the action of the complete circuit may be better understood.

News of the Month

U.K. electronics prospect bleaker

The conclusion reached by a National Economic Development Office (NEDO) report on the U.K. electronic industry's prospects up to 1977 is that "Although home market growth prospects are on balance slightly better than during 196871, trade prospects are worse, and this adds up to a slowing down of the industry's growth overall". Although the prospects for home market growth look favourable when compared with the growth seen between 1968 and 1971, a comparison with available data for the major European countries shows that growth in the U.K market during 1968-71 was "markedly lower than in West Germany, France and Italy, and that prospects for future growth are no better than in these countries (and in telecommunications, distinctly worse)". The report points out the value of the computer market as one of the worst in comparison with European countries - $£ 183 \mathrm{M}$ in 1971 compared with West Germany's $£ 310 \mathrm{M}$ and France's $£ 250 \mathrm{M}$. No improvement on this situation is seen for the future.
The report states, "The size of the industry, as measured by its gross production, is projected approximately to double by 1977 . . . The fast growing sectors are those on the professional and industrial side which depend on the strength of investment, mainly in the private sector. These are computers, instrument and control engineering, and control and automation systems Projections of components production are, not surprisingly, very similar to those for the industry as a whole."
The seventh edition of the "Annual statistical survey of the electronics industry" has also been published recently by the Electronics Economic Development Committee. The survey shows that, in 1972, total sales of electronics products increased considerably after the 1971 recession - by 17% over 1971 at current prices. The consumer goods sector was the main growth area. The colour television market strengthened further in 1972 and contributed to a record demand for components. Sales of colour TV sets nearly doubled the 1971 figure to reach over $£ 200 \mathrm{M}$ in 1972. Total turnover for the industry for 1972 was $£ 1,500 \mathrm{M}$.

Satellite navigator for world shipping

Redifon Telecommunications have recently demonstrated their new satellite navigational equipment for marine navigation and exploration. The new equipment, known as the Redifon Satellite Navigator, is housed in a single desk-top cabinet which contains the satellite receiver, a computer and an electronic display. It receives its navigational information from five Transit satellites which continuously orbit the earth and signals are processed by the computer to give the ship's position by a direct readout of latitude and longitude.

The new equipment achieves the incredible accuracy of better than 500 feet or about half the length of a modern tanker. The service is available over the entire earth's surface regardless of weather conditions and the equipment can be set up in less than three minutes at the commencement of the ship's voyage. No further adjustments are needed during the course of the voyage.

Redifon Telecommunications foresee the main application for the new equipment on long distance ocean carriers. Its accuracy is sufficiently high to make it a suitable aid for naval vessels, for survey ships and for cable laying.

Electronic safety helmet

An accident prevention product to help give greater safety in industry maintenance has recently been launched by the Chaloner Electronics Company of Northwood, Middlesex. It is their safety helmet for technicians, which incorporates a "personal warning" device for high voltage detection.

This helmet has been specifically designed to present an audible warning of the presence of an overhead live conductor to a technician who, in the course of working on nearby industrial equipment, might in error (and particularly at night) approach a live conductor, thus placing himself in danger of electrocution. An electronic warning device is sealed into the helmet and, as the technician approaches the high voltage conductor, the detector triggers a high-frequency tone generator causing a pulsed signal to be fed into two transducers mounted into that part of the safety helmet directly above the ears -the volume of the signal changing in relation to its distance from the high voltage conductor:

The system is powered by two zincsilver batteries sealed into the helmet and connected for use by an external plug, which fits into a charging connector at the rear of the helmet; it is then fully operational throughout the time between recharging cycles (up to a maximum of fifteen hours). The batteries have up to three years' life.

Recording by ear

A technique for making clear speech recordings in a noisy environment by plugging a mini-microphone into the ear has
been established by scientists at the Battelle Institute, Frankfurt, West Germany. The problem of external noise is usually overcome by using a microphone which records speech signals at the larynx of the speaker. In principle it is possible to record speech at any part of the skull, since the vibrations produced by the vocal tract are transferred to the cranial bones. These in turn excite the air column of the ear.

Using a condenser microphone with a probe tube worn comfortably in the ear, Battelle scientists have succeeded in producing voice recordings of better quality than those made with a throat microphone. The speech recordings were "easier to understand", scientists report.

Records made with an ear microphone were analysed to reveal the frequency pattern, and compared with those recorded by a microphone near the mouth. Fifteen people took part in the experiments, to give a wide variety of different voices and sounds. Loss in volume took place at the higher frequencies. Transmission loss via the auditory route increases with rising frequency, and is dependent on the pitch of the sound. A loss of 10 dB per octave for the spoken vowel "a" is reported and a loss of 5 dB to 7 dB per octave for " i ".
Good quality reproduction was achieved by electronically compensating for the volume loss at the higher frequencies with an active network amplifying the speech signal by 6 dB per octave rise.

Multi-colour 3D video

The Central Research Laboratory of Hitachi has developed a method for storing and reproducing multi-colour threedimensional images in high storage density holograms. The holographic memory consists of memory elements that are used to record information in a storage medium as interference fringe patterns. The system is made up of a laser beam, memory elements, hologram illuminator and screen. High density storage of the images is made on 35 mm film.

Images can be moved or switched simply by manipulation of the film. This method can be used for three-dimensional colour display of advertisements and educational, medical, recreational and other matters. In the future, as the components for this method are made more compact, three-dimensional moving pictures and three-dimensional television programmes will become possible.

High density data packing for tape

Bell \& Howell has made a breakaway from the traditional analogue method of instrumentation tape recording with the introduction of a digital electronic system which provides 33,000 bits of data per inch on each track of the tape with an accuracy equal to one error in 10^{7} bits.

Designed to be used with Bell \& Howell's type VR-3700B instrumentation magnetic tape recorders, this high density p.c.m. technique - known as "enhanced non-return to zero" - allows more data
to be packed on to tape than has been possible before. The density of $33 k$ bits/in., applicable at any recorder speed, means that one 15 in reel of tape recorded at the highest density on 28 tracks can replace 28910 in reels of compatible tape operating at the standard density of 800 bits/in.

This high density recording facility is particularly useful in applications such as geophysical exploration where the remote nature of the sites and the vast quantities of data required to be recorded presents major problems in the storage and delivery of tapes.

In such applications, p.c.m. has the advantage of being able to provide the high frequency response of direct recording (to 4 M bits/in., or 2 MHz) with the wide dynamic range of f.m. $(50-60 \mathrm{~dB})$. In contrast, direct recording provides only $20-$ 30 dB . In fact, the dynamic range of the system is only limited by the number of bits generated by the analogue-to-digital converter for each data sample.

Mullard policy on valve guarantees

Mullard have issued the following statement concerning their future policy on valve guarantees: "For many years there has been a strong feeling in the radio and TV trade about the amount of time and effort involved in obtaining replacements

Ravtheon Company scientist plugs a diode into a model of the aerial array developed in a NASA-sponsored programme for receiving microwave energy beamed to earth from an orbiting satellite. Solar cells on board a satellite fixed in position relative to the earth, and such as to be in continuous sunlight, would change the sun's energy to direct current electricity. This would be converted into microwave energy and beamed to earth where giant arrays, like this model, could receive and reconvert it into usable electrical power.

for valves failing under guarantee. With the coming into force of the Supply of Goods (Implied Terms) Act, many of the major setmakers have introduced, or will introduce, comprehensive guarantees of their products. Traditionally Mullard have guaranteed their valves fitted in such equipments against failure for a period of 90 days. Moreover, they have covered the trade for a similar period against failure of valves purchased for maintenance purposes.
"With effect from November 1st 1973 Mullard will buy out their guarantee with the trade. Since there will be valves in wholesalers' and dealers' stocks and in first equipments in the pipeline (all of which will carry a 90-day guarantee) there will be a special discount of 10 per cent off the recommended trade price, in lieu of guarantee, on valve purchases made between November 1st 1973 and February 28th 1974. On March lst 1974 - by which time the guarantees on valves in pipeline sets will have expired - the discount will be eight per cent for a further six months. This will ensure that all stocks held by wholesalers or in dealers' maintenance stocks will have been used and the 90-day guarantee satisfied. After September 1st 1974 a discount of six per cent, in lieu of guarantee, will come into force. The company considers that this is a generous allowance in view of the known low failure rate of its valves."

Surround-sound circuits

The Motorola SQ surround-sound chip, type MC1312P, mentioned in our article "Surround-sound circuits" in the March issue, is now readily available from Jermyn Industries. The one-off price of $£ 2.24$ includes a royalty payment to CBS. A printed circuit board for the March issue single-chip circuit will be available shortly, as will the chips MC1314 and MC1315P.

Briefly

Muck '74 - a national two day farm waste event, comprising field demonstrations, commercial exhibits, conference sessions, case studies and educational displays, will be held at the National Agricultural Centre, Stoneleigh, on March 27 and 28, 1974. Perhaps the electronics industry should do something about this.
Hi-Fi Factory. Demand for audio products in the hi-fi range is now so strong in home and overseas markets that Thorn Consumer Electronics have opened a special factory, at Harold Hill in Essex, solely to produce hi-fi equipment. The factory is expected to have a production rate of 5,000 units per week by the end of this year.

H. F. Predictions for December

The winter anomaly of increased absorption at middle latitudes can be offset by the availability of higher daytime frequencies. Day-to-day variations in circuit performance will be greater however - up to three times that experienced during summer months. Paths in mid-to-high latitudes are subject to periods of very poor working lasting several days; low latitude paths have much smaller seasonal variations.
Although the charts are calculated for specific paths between the UK and destinations as marked they give a general picture of frequency availability for North America, South America, South Africa and the Far East.

Predicting amplitude response

Graphical method for op-amp circuits

by A. J. Key, B.Sc., M.I.E.R.E.

Operational amplifiers allow easy modification of the gain-frequency response of an amplifier, but prediction of the response can be tedious. This article describes a simple graphical method of assessing response of any op-amp correction circuit to within 1 dB .

For sinusoidal voltages the voltage gain of the simple op-amp circuit of Fig. 1 is V_{i} / V_{o} $=-Z_{2} / Z_{1}$ within certain limitations. If Z_{1} and Z_{2} are resistors, say $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$, then the magnitude of the gain is 10 , or 20 dB and is independent of frequency. If Z_{1} or Z_{2} or both consist of combinations of resistors and capacitors then the impedances, and hence gain, vary with frequency. This is the situation considered in this article. The boxed text on the next page illustrates the problem.
We need to consider two basic circuits only, Figs. 2 \& 3. Fig. 2 circuit has a constant gain, in this case 20 dB , and therefore the response is flat.
The circuit of Fig. 3 has gain, the modulus

Fig. 2

Fig. 3

of which is $1 / \omega C R_{1}$. Clearly, with fixed values of C and R, the gain will be inversely proportional to frequency. Plotted in decibels on log-linear graph paper, it will be a straight line (Fig. 4).
Fig. 4

Fig. 5

Two properties of the graph are apparent. The intersection of the curve with the $0-\mathrm{dB}$ axis occurs at $1 / \omega C R_{1}=1$ i.e. when $f_{t}=1 / 2 \pi C R_{1}$. Using the values of C and R_{1} in the circuit gives $f_{t}=1 \mathrm{kHz}$. The slope of the curve is 6 dB per octave. When using logarithmic graph paper it is easier to obtain this slope by using the ratio 20 dB per decade.
From Fig. 4 and the response of Fig. 2, we can obtain the response of any correction circuit.
As a starter, look at the system of Fig. 5.
The gain is Z_{2} / Z_{1}, and as Z_{2} consists of a series combination, we know that its value can never fall below either the resistance of R_{2} or the reactance of C. So we can predict that the overall response can never be below that for the resistor or the capacitor. Superposing the flat response of Fig. 2 with the
response (Fig. 4) of Fig. 3 and shading the areas below each curve as impossible zones, we get Fig. 6.

Remember that we are really trying to obtain the resultant of a real, or resistive, component, and an imaginary, or reactive, component, the magnitude of the real term being given by the R_{2} / R_{1} curve, the magnitude of the imaginary term being $1 / \omega C R_{1}$ curve. The resultant can of course be obtained by taking the square root of the sum of the squares in the normal way, but this is only significant when the two terms are of the same numerical order of magnitude. When either term dominates numerically at high or at low frequencies, the resultant approximates to the greater of the two terms. If the curves are greater than 6 dB apart, the error involved in approximating the resultant to the upper of the two curves is less than 1 dB . At 6 dB apart, the correction required is 1 dB ; at the intersection when the two terms are equal, the correction required is 3 dB .

Fig. 6

So the overall response follows the boundary of the shaded area of Fig. 6, except near the intersection when they are less than 6 dB apart. Corrections of 3 dB at the intersection, and 1 dB at the 6 dB divergence points can be applied to give the result (Fig. 7).

Parallel circuits

What about parallel circuits? Solutions of these may be undertaken with the modification that for impedances in parallel we know that the impedance of the combination can never be greater than the impedance of either.

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Consider, for example, an extension of our previous circuit; an extension which may well be required in practice for stabilization. A $1-\mathrm{M} \Omega$ resistor is added in parallel with the feedback arm, as shown in Fig. 8.

Firstly, the response of our original circuit can be obtained giving the result of Fig. 7.

The response of Fig. 9 is flat, so we can shade in impossible zones above the two curves and get Fig. 10, and at the intersection, the boundary can be modified to give the final response of Fig. 11.

Corrections for parallel curves

So far we have only used the system for combining curves whose slope relative to each other is 6 dB per octave. What about curves which are parallel to each other?

It is obvious that horizontal responses imply resistive components and zero phase shift, while lines at $6 \mathrm{~dB} /$ octave imply reactive components and 90° phase shift. We know it is only when these two curves approach to within 6 dB of each other that the resultant is significantly different from one or other of the curves. But how about parallel curves implying in-phase rather than quadrature addition? As might be imagined, the limits are now wider and if the curves approach within 18 dB of each other, 1 dB or more differences will occur between the resultant and one or other of the curves.

We are saying that in two circuits such as Fig. 12 if $R_{2} / R_{1}>18 \mathrm{~dB}$, then the total resistance is within ldB of either R_{1} or R_{2}. So in Fig. 10 we were justified in neglecting the interaction of one curve on the other over the band where they are parallel, as the curves are here more than 18 dB apart. A quick calculation on Fig. 8 can be made to estimate the error involved. At low frequencies the capacitor is effectively an open circuit and the circuit becomes Fig. 9 with a gain of 40 dB . But at high frequencies, the capacitor is effectively a short circuit and the circuit becomes Fig. 13, with a gain of 19.2 dB . Compare this to the value of 20 dB taken from Fig. 11 and you can see that this curve is correct to within 1 dB .

So if curves are parallel and within 18 dB of each other we must apply a correction to obtain the resultant, and this correction depends on the closeness of the curves. This correction is given in Table 1.

Table 1. Correction for parallel curves

Difference apart $\mathbf{d B}$	Correction $\pm \mathbf{d B}$
0	6
6	3.5
10	2.5
18	1

Summary of method

The basic method is summarized by the following set of rules.

For the operational amplifier system represented by Fig. 1 :

- Impedances Z_{1} and Z_{2} should first be written as combinations of series and parallel elements in terms of a single,

Algebraic method

Most simple impedance combinations can be written in terms of functions of the type $j \omega T$ and $1+j \omega T$. Gain of the op-amp system can usually therefore be expressed in terms of products of such functions, and as the response of each function can be drawn, the total response of the products can be obtained by summing the individual graphs when plotted logarithmically.

For example, supposing we have the system of Fig. A, the gain can be shown to be

$$
\frac{R_{2}}{R_{1}} \cdot\left(\frac{1+j \omega C_{2} R_{2}}{j \omega C_{2} R_{2}}\right) \cdot\left(1+j \omega C_{1} R_{1}\right)
$$

so by plotting the individual responses for these three terms and then adding them, the overall response can be obtained. The stages are shown in Fig. B. So if the overall gain can be written in terms of products, then the response can be fairly easily obtained.

The big word of course, is "if". A considerable amount of algebraic manipulation is involved even in simple circuits to write the gain in terms of products of the right form. For instance, if we required the response of the circuit shown in Fig. C, then as the gain could only easily be expressed in terms of the sum of these functions, the above method of adding the individual responses would not be valid.

A

B

c

convenient, multiplying ohmic factor. If Z_{1} is a simple resistor, then this resistor would be the most convenient factor.

- The impedance-frequency characteristic for each impedance should be obtained from that for each component, as dB above or below this factor.

1. For elements in series, the resultant is never less than that of any one of the elements.
2. For elements in parallel, the resultant is never greater than that of any one of the elements.
3. For curves intersecting with relative slopes of $6 \mathrm{~dB} /$ Octave, the resultant follows either of the individual curves, except where the curves approach to within 6 dB of each other, when a correction is required according to Table 2

Table 2. Correction for relative slopes of $6 \mathrm{~dB} /$ octave

Difference apart $\mathbf{d ~ B}$	Correction $\pm \mathbf{d B}$
6 dB	1 dB
0 dB	3 dB

4. For parallel curves, the resultant follows either of the individual curves unless they are less than 18 dB apart, when a correction is required according to Table 1.

- The impedance-frequency characteristic of Z_{1} is then subtracted from that of Z_{2} to obtain the overall voltage gain of the system.

Example

As an example I have plotted the response for the circuit of Fig. 14.

Fig. 15

(a)

(b)

(e)

(c)

(f)

Letfers to the Editor

Sale of "walkie-talkies"

Mr Harris's letter (November issue) is kindly meant, but it is dangerous to invite Authority to further interferences.

Transmitting without a licence is properly illegal, and the Ministry of Posts and Telecommunications could be encouraged to make it even riskier by increasing their detection effort. However, owning a transmitter, without a licence, I believe to be not illegal: certainly it should not be, and controls on who owns them are not needed. It is use that must be controlled, and unlicensed use curtailed. This may be splitting hairs, but laws must sometimes be like this in order to be fair.

One service that H.M. Customs and Excise could perform is to ensure that each imported unit has a large notice warning that it must not be used by unlicensed people.
D. Ferguson,

Basingstoke,
Hants.

Fast printed circuit etching

Inspired by Mr Ferguson's letter in the July issue, I would like to tell the readers about a simple method for fast p.c.b. etching which I have been using successfully for several years.

Instead of the classical ferric chloride solution, I use a mixture of one part hydrochloric acid to three parts 40% hydrogen peroxide. This solution strips the board clean of unprotected copper in less than 30 seconds.

Both chemicals are nasty and should be treated with due respect. Skin contact must be avoided, and the etching should be carried out with all windows upen and within close reach of a running tap. The reaction releases a fair amount of heat, which again speeds up the process. A splash of water, though, is all that is needed if the fizzing gets too drastic.

The etching may be carried out in any shallow plastic or glass container. As no sediment is formed, the only agitation required is a gentle rocking of the tray in order to disperse the heat.

The solution should be mixed immediately before use, as the peroxide decays fairly quickly once mixed with the acid. The ratio of the ingredients
is fairly critical, although too much peroxide works better than too little. It is advisable to test the solution with a bit of scrap board before plunging in one's newly finished masterpiece.

J. Langvad,

Radford Electronics Ltd,

> Bristol.

Television information systems

The recent description of television information systems (e.g. "Oracle," W.W. July) leads me to suggest a possible development. If each programme carried an identification code a receiver could be preselected to switch from the stand-by state automatically when the desired programme commenced. This would eliminate the irritating need to watch unwanted programmes in order to catch the start of a wanted one.

J. Keith Carter,

Maidstone,
Kent.

TV picture interference

I was interested to read the articles on Ceefax and Oracle, the proposed B.B.C. and I.B.A. information services ($W W$ May and July issues).

Since the commencement of the tests for these systems my television receiver (Bush colour model CV 2211S) has displayed three lines of moving coloured dots approximately one inch from the top of the picture on all three u.h.f. channels. When inspected more closely these dots can be seen to flash on and off in a periodic manner as one would expect from a data pattern, although the data pulses for both systems should occur in the field blanking period.

At first I thought that this interference was peculiar to my receiver, but I have more recently found that other colour receivers (all of different manufacture) in the Guildford area suffer from this complaint, although monochrome receivers seem to be immune.

I am writing to ask if other readers, especially those in the Guildford area, can confirm or provide an explanation of my observations, in the hope that it can be proved whether or not the moving dots are related to the Ceefax or Oracle transmissions.
D. C. Cooper, Guildford,
Surrey.
Comment from the B.B.C.:
I think we must disclaim responsibility for the three lines of moving coloured dots which your correspondent Mr D. C. Cooper sees approximately one inch from the top of his television picture on all three u.h.f. channels.

The experimental transmission of Ceefax takes place only on the BBC-2 network and the fact that Mr. Cooper sees it on
all three channels is, I think, conclusive evidence that it is not due to these tests. The Ceefax pulses are, as Mr. Cooper correctly states, located in the field blanking period but of course some strange happening in the flyback of a receiver could make signals in the vertical interval visible within the picture area. I cannot think of any mechanism which would make the Ceefax pulses give coloured dots and I am sorry that I cannot offer an explanation, unless it should be found that all the receivers suffering from this effect are being fed from a cable distribution system which is slightly faulty.
C. B. B. Wood,

Head of Engineering Information
Department,
Broadcasting House,
London, W 1.

V.H.F. receiver performance

I feel the need to reply to Mr R. G. Young who, in your July issue, was searching for an all-consuming "figure of goodness" for stereo receivers. As you can tell from my address, I am at a disadvantage as far as the British receiver specifications are concerned, having seen just a few. Here in America, a receiver is a combination tuner and amplifier, but Mr Young refers only to tuner circuitry so I'll confine my reply to that section.

Sensitivity is a most important specification in tuners but one that should be weighed along with others and not be made to stand alone. The signal-to-noise ratio should definitely not be overlooked as it is involved in a tradeoff with sensitivity. The tradeoff provides an explanation to the situation Mr Young mentioned in his letter. To complicate matters, this tradeoff is itself involved in a tradeoff with harmonic distortion. Add frequency response to the other three factors and you arrive at a fairly reasonable "figure of goodness". These specifications are present in most British spec. sheets I've seen.

To give you an idea of American tuner spec. sheets, we grapple with the aforementioned measurements plus: station selectivity, stereo separation, image rejection, i.f. rejection, a.m. suppression, intermodulation distortion and, unfortunately, just as many that are as useful as counting the knobs on the front panel. Even with all these specifications, the approved "figure of goodness" over here is still derived from just plain listening.
Joseph Zakar,
Brooklyn, N.Y., U.S.A.

Current flow controversy

I was very surprised to find (Nov.'73 issue) the big guns of "Cathode Ray" ranged at the electron flow rebels. I assumed that Mr Roddam's sarcastic broadside was the
end of the battle and the whole problem was to be quietly shelved - the usual reaction of the "establishment" to a problem is to pretend it does not exist.

Also, I am saddened, not by Mr Scroggie's lack of support (his current has gone the conventional way ever since I've read him and that is more years than we both like to think of), but by the hoary old excuses and red herrings he trots out as opposition. Let us take them one by one.
"Use of electron flow would cause a great upset as all device arrows would need to be reversed" Why? Do Mr Scroggie and Mr Roddam imagine we teach our trainees using reversed device symbols? Of course not; the electrons flow against the arrows (the conventional school has to consider this so in the zener diode). If the conventional mob need arrows on devices to remind them which way their current flows then I'm sorry for their mental processes. We managed with valves to know which way current went, though it always struck me as ludicrous that the conventional supporter had to say that electrons left the cathode and went to the anode and so current went from anode to cathode - what a fairy story!

Next upset - "a great many carriers are holes. . . ." Aren't holes just a convenient way of explaining what happens when valence electrons move, albeit reluctantly, in the opposite direction? And as for positive ions - well, well, Mr Scroggie, please; are there no such things as negative ions? So all square here I think.
"Reversing nearly all the text books". I would estimate 40 to 50% of American text (including its Armed Services) and 20% of British text is in terms of electron flow. In any case I see no reasons for the drastic step of reprinting all literature, and I really believe Mr Scroggie is deliberately creating problems here. Our advocacy is merely to use electron flow as the accepted convention so that from " R " day all current arrows would point the same way on circuit diagrams and, as Cathode Ray himself points out, V and I arrows would conveniently coincide.

Under the "Too much, too late" heading the text leaves me frankly amazed at the red herrings, and the (forgive me or "Cathode Ray") seemingly deliberate false notions introduced.

I've already stated I see no reason for reversing diode etc. symbols - we rebels manage very well as they are.
"The electric fields would have to be changed round" and + and - reversed!! For heaven's sake why? Electrons move from neg to pos; reversing these merely introduces worse confusion, for the electron would now go the wrong way and our batteries etc. would be backside first. If Mr Scroggie really believes what he has written here he is geriatric; but I suspect he's at his old game of "getting us going".

As for left- and right-hand rules; if the current finger points to the current source no change is necessary (again, though, L and R are conventions and the rules only aids to memory, so I think far too much is being made out of these objections).

Mr Scroggie also mentions flow from surplus to deficit. Just what electron flow is, in fact, and so the water analogy is not upset.

Finally consider Mr Scroggie's nom de plume - "Cathode Ray." What is a cathode ray? If it is pos particles he is faced with the phenomenon that they must have negative energy since by leaving the phosphor in a c.r.t. they are causing the emission of light energy. No such freak idea is involved with the electron, since it is the energy imported by its arrival which causes the phosphor to glow. I know of no member of the conventional school that teaches the c.r.t. in terms of conventional current, and who can blame them for about facing at this point?

In case Mr Scroggie gets the impression that I'm anti-"Cathode Ray" I may say I've spent an hour or two arguing with colleagues and, what will please him more, minutes in practical demonstration, to convince them of his correctness in the great "transformer controversy". So although a great admirer of this great man (I mean this very sincerely) I must remain in this case a rebel.
D. V. Ellis,

Waterhouses,
Co. Durham.

The impression 1 get from the correspondence on this subject is that those who want electrons to be made positive rather than negative imagine that electronics is the only field of work which has to be consulted on the matter. Surely this is taking a rather parochial view?

Chemistry and physics today abound in electrons, and those who suggest that it would be simple to alter polarities to suit the New View of electronics must be ill-acquainted with chemists and physicists. Moreover, on a point of logic, it could easily be argued that the present atomic nuclei are rightly made "positive", since they all differ in some point other than polarity and can be readily recognized both physically and chemically. The electron, on the other hand, is reasonably termed negative as the word suggests an absence of any but the minimum number of qualities.

From another point of view, electronics people are principally (though less so daily) concerned with metallic conductivity, and it is to be expected that they will regard this as normal, and anything else as abnormal. People beyond electronics are usually inclined to regard metallic conductivity as a special and unusual case.

The difficulties experienced in teaching students appear to spring from trying to teach one special subject in a vacuum. If a historical approach were used, or if the student were also familiar with some theoretical chemistry, the negativeness of the electron would not seem particularly strange.
P. C. Smethurst,

Bolton,
Lancs.

I would like to take up a little more space in your correspondence columns and comment on the various letters published about current flow symbols' and thank the writers for their remarks, significantly the kindest being from those involved in teaching.

In my original letter ${ }^{2}$ I asked why agreement could not be achieved on the direction of current flow arrows on circuit diagrams and agreement by writers on what they meant by "current". I did not, as stated by Thomas Roddam in his funny letter, "call for lots of lovely arrows, depending on whether electrons or holes are the current carriers". I did ask that current arrows on circuit diagrams should have the same meaning.

Current flow arrows on circuit diagrams are of very considerable help in the understanding of circuits and virtually essential where current flow is switched to several different paths and where the current in parts of the circuit changes direction. Such circuits are not by any means of interest to device makers alone. Those associated with the training of television servicemen, for instance, know how helpful are current arrows and it is at this level of training where so much must be done.
"Cathode Ray" ${ }^{3}$ also seems to have missed my main point. He mentions hole and positive ion carriers. I asked if there was any serious objection to dealing with electron flow and calling it electron current or current. Arrows indicating the direction of electrons or electron current were the matter of agreement, not the direction of carriers, majority or otherwise.
"Cathode Ray's" rather gloomy discussion of the problems arising when explaining to students about the "positive direction of current. . ." does not have to cause too much despondency. Just don't talk about the "positive direction of current. . : . ." (whatever that may mean) but keep to the direction of electrons, which is understood.
Happily I am not in a geriatric ward and the electron direction convention does not lead to assumptions which make my "imagination boggle", as it apparently does to "Cathode Ray". Nor to Mr R. C. Whitehead or his students and readers apparently.

In passing may I take this opportunity of thanking "Cathode Ray" for the valuable lessons he has given me during many years. Knotty (to me) odd problems like the 90° phase shift in double tuned transformers, Miller feedback and the oscillator depending upon it and many other things have been made clear and thus easily passed on to others. "The thoughts of Cathode Ray" have been most welcome. May there be many more. C. H. Banthorpe, Northwood, Middlesex.

1. Letters August 1973.
2. Letters June 1973.
3. Which Way Does Current Flow? by "Cathode Ray". Nov. 1973.

VAT and prices

Further to the correspondence on VAT, it is interesting to note that Messrs G. W. Smith, while stating "All prices are subject to 10% VAT" in a Wireless World ad., do go to the trouble of adding in the VAT in their display in the Daily Telegraph Magazine [enclosed]. This latter approach is surely more realistic?

What would those advertisers, who do not include VAT in their prices, do if offered whisky at 60 p a bottle - when asked to add $£ 2$ or so duty at the time of purchase?

I feel strongly that since VAT and other taxes must be paid, they should be included, as seems to be done at all our local shops, petrol pumps, wine merchants and so on. When dealing with those who do not include VAT in their quoted prices, I feel like asking whether they have left out anything else. For example, is their profit to be added separately? Overheads - have I to pay something on top for those? Surely a price is a price is a price!
J. Tyler,

Camberley,
Surrey

Editor's note: The Minister for Consumer Affairs, Sir Geoffrey Howe, has stated in the House of Commons that anyone who quotes a price for goods which excludes VAT and does not make it clear that VAT is to be added when the goods are sold is at risk of prosecution under Section 11(2) of the Trade Descriptions Act.

Using c.m.o.s. devices

Your correspondent in the October issue, Mr Peter Seddon, has asked a question regarding c.m.o.s. devices, as to the necessity of the handling precautions recommended by the manufacturers. He points out, quite rightly, that there are protection diodes built into all commercially available c.m.o.s. devices, so are all the precautions needed?

Briefly, the answer is yes.
It is well known that anyone moving in a normal environment will become electrostatically charged. Normally, though, the charge disappears rapidly owing to frequent contacts with many objects leaking the charge to ground. However, it is not unusual for the charge to reach several tens of kilovolts if materials such as nylon and other plastics (clothing, carpets, etc.) are involved. No semiconductor device yet built will be capable of withstanding such a discharge across it.

Normal handling of semiconductors with low impedance does not usually present a problem, provided these extreme conditions are avoided.

In c.m.o.s., the problem is more alike since, owing to the high input impedances, the static charge may be continually building up during handling. The gate oxide insulation in a c.m.o.s. device is about 1000 angstroms thick, and will rupture with voltages over 100 V applied, a voltage
which can easily be built up on an input-pin of a d.i.p. when handling the package.

To protect the c.m.o.s. elements, diodes are included on all inputs of a chip. However, as always, Murphy's law has its say, and the protection is gained at the expense of input impedance and speed.

Manufacturers therefore choose to provide what they consider will be "adequate" protection, to fit the circuit performance demanded of the c.m.o.s. In practice, provided that the manufacturer's recommendations are followed, no problems should be encountered.
So I would advise Mr Seddon to banish all nylon fabrics from his work area, ground all his test equipment and only remove the c.m.o.s. d.i.p. from its conductive plastic or from the alu-rail with a di.i. inserting tool (shorting the legs together) as he inserts it into his circuit board. If he wishes to disregard this advice, he may perhaps not have any difficulties, depending on his particular working conditions. However, since m.s.i. and l.s.i. c.m.o.s. circuits may constitute a considerable financial outlay, I would suggest it is better to be safe than sorry! Falk Uebe,
Motorola Semiconductor Products Inc., Geneva,
Switzerland.

Radiating coaxial cables

In his reply to Mr Goddard (November letters) Mr J. R. Avery states that loose-braided coaxial cables are susceptible to the contaminating effects of dirt and moisture, and goes on to imply that the cable attenuation is thereby increased. In the National Coal Board we have probably wider experience than anyone in the field of radiating cables, and conditions in our mines can be as dirty and wet as one would expect to find anywhere. In seven years' research into the subject, I have not been able to detect any increase in attenuation of loose-braided cables attributable to surface contamination or to their positioning, with braid covers as low as 67% and frequencies up to 170 MHz , even in the very wet Longannet mine (on Mr Avery's own doorstep) where the very first v.h.f. mine radio system is still operational. Other workers I know would agree with me and extend the frequency range well into the u.h.f. band. I have, on the other hand, seen evidence that some cables having longitudinal slots or larger discrete holes in the outer conductor are so affected in the u.h.f. region.
It is possible that Mr Avery is confusing loose-braided coaxial cables with unscreened twin or "ribbon" types of feeder; these certainly are susceptible to surface contamination and careless positioning, a price one pays for their cheapness. Perhaps, also, it is the coupling loss rather than the cable attenuation that Mr Avery has in mind; here, some effects of the environment may be expected, but these apply equally to the various cable constructions.

We prefer to use loose-braided coaxial cables for these purposes, for their flexibility, cheapness, and an all-round performance at least as good as that of any "better" construction. Incidentally, we also prefer to call them "leaky feeders" and so keep an open mind about the precise nature of the fields.
D. J. R. Martin,

National Coal Board,
Mining Research and Development
Establishment,
Burton-upon-Trent,
Staffs.

A. D. Blumlein

I am grateful to you for publishing the last paragraph in Mr R. N. Baldock's letter on page 451 of your September issue. As a direct result, I received a letter from the brother of one of the airmen killed in the Halifax bomber crash at Welsh Bicknor on 7 June 1942, which was the disaster when Alan Dower Blumlein also perished.

May I appeal through your columns to the next-of-kin or former friends of others who were killed on that historically important flight-testing of the H 2 S equipment - the equipment which later came to be called "the bomber's eye", and which altered the entire course of the war within 12 months? I am extremely anxious to include in the biography of A. D. Blumlein a brief biography of all who died with him, and still need particulars of: 33372 Sqn Ldr R. J. Sanson; 115095 Plt Off D. J. D. Berrington; 751019 Flt Sgt G. Millar; 571852 LAC B. D. G. Dear; and 1271272 AC2 B. C. F. Bicknell. All of these gentlemen were based at Defford R.A.F. Station. G. S. Hensby was a civilian attached to T.R.E., Malvern, who, before the war, had been engaged in cosmic-ray research at Birkbeck College, London.
F. P. Thomson,

39 Church Road,
Watford WD1 3PY,
Herts.

Power amplifiers

In the June issue of $W W$ (p. 291) the description of the seventh Circard series gives various class A circuits with their attendant efficiencies. I believe that in circuit 3(b), the efficiency is not $12 \frac{1}{2} \%$, but actually only $6 \frac{1}{4} \%$, if the bias across the transistor is equal to half the supply voltage V_{s}. This is so becausethe maximum positive output swing is only $V_{S} / 4$, as can be seen by considering the transistor to be momentarily cut off. This feature was pointed out in a much earlier letter of mine ($W W$ August 1969, p. 381) regarding a class A amplifier design of Mr Abelson. The efficiency of such an arrangement can be improved for equal load and collector resistance if the bias voltage across the active device is $V_{\delta} / 3$. This allows a maximum efficiency of 8.33%. It was also
mentioned in that letter that optimum efficiency occurs if the collector resistance is $\sqrt{2}$ times the load resistance, for a bias voltage across the active device of $0.29 V_{s}$. Although these may seem to be small points in the present Circard context, they are important to assure symmetrical limiting in $R-C$ coupled amplifiers.
John Vanderkooy,
University of Waterloo,
Ontario,
Canada.

Microphone measurements

With reference to Mr R. V. Hartopp's letter (August issue) in which he suggests sensitiyity to be equivalent to "effective area", the trouble with his idea is that ordinary microphones do not measure acoustic intensity. They commonly measure sound pressure (omnidirectional) or particle velocity (figure-of-eight pattern) or a combination of the two (cardioid).

Surely the different types of microphone should have their sensitivities expressed in terms of the ratio of the two quantities most relevant. A Bruel \& Kjaer capacitor microphone has its sensitivity expressed in terms of sound pressure and voltage input to a specified impedance. A preamplifier for a capacitor microphone is totally unsuited to accept the output from a ribbon microphone, for instance. There is really no relevance of a universal parameter for microphone sensitivity measurement.

In order to aid comparison between microphones with an electrical output of the same form (low Z line for instance), but which are sensitive to different parameters of the sound field, surely they should all be tested in a plane-wave free field.

In that case it is the sound pressure (level) rather than the intensity (level) which is almost universally used in acoustics as an amplitude parameter. After all a microphone is usually used as a replacement for the human ear, and the ear is sensitive to sound pressure.

Care must be taken when reading early works on acoustics as the word "intensity" was used loosely to include sound pressure. An example is the work of Fletcher and Munson where they established the equi-loudness contours. They called the amplitude axis "intensity level" whereas it would appear that sound pressure level would be the relevant parameter.
Richard Schürmann,
Hawthorn East,
Vic.,
Australia.

Modified Nelson-Jones
 f.m. tuner

I was interested in the latest modifications to the Nelson-Jones f.m. tuner (June issue), particularly the lower gain version.

Surprisingly the author does not mention a further advantage of this modifi-

cation, namely the elimination of the coil L_{4} and its alignment needs. L_{4} can be eliminated without a gain reduction by converting Tr_{4} to a common-emitter stage and $R C$ coupling this to the mixer, as shown in the diagram. This can be readily done on the original p.c. board and makes no difference, so far as I can tell, to the results.

While testing the original version of the tuner I noticed that when receiving a weak station the background noise was high with the tuning meter at the correct central position, but less noise was obtained, at the expense of distortion, by off-tuning slightly to one side or the other. This strongly suggested a dip in the centre of the i.f. filter response.

The circuit was tested on a wobbulator, feeding in the i.f. signal at the input to the Tr_{4} stage and monitoring the amplitude of the signal at the input to the TAA661B. There was indeed a large dip in the centre of the response. After some time I found that this effect disappeared with the p.c. board removed from the metal box, so the trouble was due to earth loops caused by earthing the board to the box at all four metal pillars.

Removing the track from around three of the pillars, leaving only one connection to the box near the aerial input, removed the "dip" and gave a significantly better performance on weak signals.
D. J. Robinson,

Carlton,

Nottingham.

The author replies:

I have read Mr Robinson's letter with some interest and have done a few calculations. I feel that, although Mr Robinson states that the circuit works well, it is a little troubled by the high value of the base-collector capacitance (around $2-3 \mathrm{pF}$ for the BC 213 L) for fully satisfactory operation at 10.7 MHz , and the gain will therefore be somewhat lower than possible. Due then to "Miller" effect the gain will not be very high, although I grant it will be higher than in my "lower gain version".

Apart from the above, the reason why I did not suggest the use of the transistor $T r_{4}$ without L_{4}, as suggested by Mr Robinson, is that I wanted to dispense with the gain of this stage since it appeared only to be contributing a high level
of interstation noise without giving any improvement in signal-to-noise level on usable signals.

On Mr Robinson's other point regarding apparent i.f. feedback causing a dip in the i.f. response, I certainly have not had experience of this effect so far as I can remember, but equally I accept that such a fault is possible, especially in a receiver where all devices are above average gain and the overall gain is thus very high. His cure seems a reasonable one in the circumstances though it might be easier to clear the copper round the three holes by countersinking slightly on the copper side with a large drill, and then using small insulating washers under these screws on the circuit side, with a compensating thickness of metal washer on the one remaining connection.
L. Nelson-Jones.

Magnetic units

I think that the discussion on magnetic units (June issue p.299, July p.332) should not be closed without mention of the International Standard ISO 1000 which has been published this year (1973-02-01). The title is "SI units and recommendations for the use of their multiples and of certain other units".

In the foreword of this standard on SI units you will find a list of the member bodies which approved it in June 1972. The United Kingdom is, of course, included. SI units have been legal units in the Federal Republic of Germany since 1969. So the basic units of T (tesla) and A / m for the induction and field strength are compulsory in work on magnetism.

We agree with "Cathode-Ray" and with ISO 1000 that people engaged in work on magnetism will have to change to SI units whether they are forced to do so by law or not.

There is still the problem of the best multiples for day-to-day use. For small inductions the mT (millitesla) should be used but for field strength you will already find here the old A/cm and the "new" unit kA / m (factor of 10). The question of whether the A / cm or the kA / m is the better multiple of the basic unit A / m is still open here. There is also the problem of the best multipie for the energy product of permanent magnets.
Karl Reichel,
Essen 1,
Germany.

"Thirdmethod" for s.s.b.

1 read Mr Turner's article in the September W.W. with interest, having worked on similar lines. However, I cannot agree with all the comments on the "third method". Essentially the third method is a phasing system in which the quadrature audio signals are produced by modulating the quadrature audio sub-carriers. In both degradation of audio quadrature will result in an unwanted sideband in accordance with the relationship
sideband suppression $=20 \log \cot \delta 2$ where δ is the total phase error at the second pair of balanced modulators. This gives a maximum error of $\pm 3 \frac{1}{2}^{\circ}$ for 30 dB suppresion.

The low pass filters in the audio channels will be perhaps 5 -pole devices, producing a phase shift of the order of 200° at the ends of the audio band. Matching these phase shifts to say 2° (allowing $1 \frac{1}{2}^{\circ}$ for r.f. phase error) seems to me to be comparable with maintaining a 90° difference to the same accurancy.

Turning now to the r.f. phasing, $1 \frac{12^{\circ}}{}$ at 25 MHz is a time interval of 166 ps . I doubt if such accuracy can be maintained by a logic system in the face of time and temperature even if the initial error is trimmed out, but would be interested to hear what Mr Turner does achieve.
B. Priestley,

Slough,
Bucks.

Making printed circuits

P. C. Smethurst's clever suggestion that electrolytic etching of printed circuits might be of use to the amateur may fall down on the probability, indeed certainty, that hair-line separations will result betwen conductors of different potential. And that will be a never ending source of trouble.

His idea for increasing the high conductivity of 10% sodium chloride (a completely dissociated salt) by adding vinegar (a dilute solution of a weak acid) would also appear to require reservations. A similar amount of water would be cheaper and almost as ineffective.
Roy Markham,
John Innes Institute,
Norwich.

Magnetic pickup loading

I was extremely interested in Reg Williamson's obseŕvations in the June issue on magnetic pickup loading since I have been aware of the effects noted for some time, particularly with regard to magnetic pickup response testing via an R.I.A.A. frequency test record and R.I.A.A.-equalised preamplifier. I was triggered into looking more deeply into the subject on receipt of a note from Reg requesting details of the loading I adopt when evaluating the R.I.A.A. equalisation of hi-fi amplifiers, and also during the investigation of an incompatible response readout from a topflight cartridge. In the latter respect I now employ constant-velocity test discs and take the signal from across the recommended load via about 100 pF of screened cable.

From the equalised preamplifier's point of view the presence of cartridge impedance appearing in the negative feedback path can be quite dramatic, as Reg has intimated. To secure the intrinsic equalisation response I commonly employ a signal e.m.f. via a source of about 700 -ohm fed from a filter providing the reciprocal of the R.I.A.A.-equalisation
response. This is the same sort of response provided by a magnetic pickup playing an R.I.A.A. frequency test record (but without the effects of mechanical resonances), which means that if the amplifier's equalisation is accurately engineered the output will be essentially "flat" over the spectrum.

Curve A in Fig. 1 shows such a response taken from the Dual CV120 amplifier. The remaining curves were taken from the same amplifier when magnetic cartridges of the types indicated were connected through about 150 pF of screened lead to the amplifier in series with the R.I.A.A.-filtered signal source, modified to look like 48 ohms. The setup thus performing as though the signal e.m.f. was derived from the cartridge. These curves clearly reveal how the treble response is affected by the loading and the impedance of the cartridge appearing in the n.f.b. path. The turnover frequency, of course, is a function of the L, C and R components involved. The input load of the Dual is $47 \mathrm{k} \Omega$. in common with most other amplifiers.

The family of curves in Fig. 2 was derived in the same manner, but with

sources as fig. $?$
amplifier Keletron KSA 1500 MK I

sources as fig. 1
the Keletron KSA 1500 Mk II amplifier. This also has a $47 \mathrm{k} \Omega$ pickup load and, as with the Dual, features the common series feedback loop containing reactance to provide the R.I.A.A. equalisation.

The curves show, of course, that it is the high-frequency part of the response which is affected, but it is difficult from these to determine how much of the deviation from "flat" is contributed by the loading and how much by the pickup impedance effect on the feedback.

The curves in Fig. 3 were also derived in the same manner as those in Fig. 1, but this time the amplifier is the Cambridge P50, where the first stage is not associated with the R.I.A.A. equalisation, the first stages in this model operating aperiodically. The input impedance is resistive over the complete spectrum, a scheme which, in fact, was deliberately employed partly to eliminate unwanted modifications to the pickup cartridge response. The high-frequency roll-off on these curves, therefore, would appear to be a direct function of the loading, as highlighted by Reg Williamson.

From the amplifier testing aspect, I feel it would be unfair to plot the R.I.A.A. response with cartridge simulation since there can be no "standard" in this respect. It would be impossible for a manufacturer to arrange his R.I.A.A. equalisation to yield a "flat" output on all cartridges, and corrective switching would be out of the question. At least the test from a signal of lowish resistive source reveals how well the designer has engineered the intrinsic equalisation, while the curves in Fig. 3 give some impression of the "sensitivity" of the resistive load and shunt capacitance on a cartridge's treble response!

The reactive n.f.b. path effects are eliminated by a preamplifier "buffer", assuming series feedback, between the cartridge and the equalised stage, but there are few amplifiers using this approach to date, Cambridge being one exception. The curves indicate that the value of the inductive component of the cartridge can have a significant effect on the actual equalisation at the treble end (compare curves B, for example, in Figs. 1 and 2 with curve B in Fig. 3), but in some cases a drooping treble due to loading effects tends towards correction by the n.f.b. path effect.

This neatly brings up the question as to whether s / n tests should be performed with the input being connected to a simulated source impedance, such as a pickup cartridge to the pickup input, bearing in mind the nature of the power in the noise over the spectrum when the source is primarily inductive. Many manufacturers give the s / n referred to a short across the selected input, which of course reveals any noise sources present in series with the input circuit.
Gordon J. King,
Brixham,
Devon.

Radio control tone decoder
 Logic circuitry replaces resonant reeds

by C. Attenborough

The unit to be described is a tone decoder suitable for use in multi-channel radiocontrolled models. It performs the function of the resonant reeds commonly used to detect which modulation frequency is being transmitted, but has the advantage that the range of audio input frequencies can exceed an octave. This cannot be done with reeds because the reed, resonant at f, will also be activated by the second harmonic of $f / 2$, giving ambiguous outputs. The decoder is also unusual in possessing an ideal band-pass-filter characteristic (steep sides, flat top), an improvement on resonant reeds, which have the characteristic of a high- Q tuned circuit. The new decoder, therefore, does not demand such great accuracy of the transmitter modulation frequency.

The basic element of the decoder has the characteristic shown in Fig.1, which will be referred to as a digital high-pass characteristic. Such a characteristic, when passed through an inverter, gives a digital low-pass characteristic. It will be shown later how several basic elements with different critical frequencies, plus some
simple gating circuitry, can give digital band-pass characteristics.

Fig. 2 shows the circuit of the basic element. R_{x} and C_{x} determine the critical frequency ($150 \mathrm{k} \Omega$ and $0.015 \mu \mathrm{~F}$ give a critical frequency of 900 Hz). If, during one cycle of the input, C_{x} charges enough for the output voltage of the buffer emitter follower to exceed the upper trigger voltage of the Schmitt, S, then the output of the Schmitt goes to logic " 0 ". If one input period is not long enough for this to occur, then the Schmitt output remains at logic " 1 ". At the output of the Schmitt, therefore, there is a pulse waveform when the input frequency is below the critical value, and a logic " 1 " when it is above the critical value as shown ${ }^{-}$in Fig.3. To give a continuous logic " 0 " below the critical frequency and logic " 1 " above it, the D-type edge-triggered flip-flop B_{2} is used, its D input being connected to the output of S. The flip-flop is clocked by a positive-going edge which occurs at the end of the time during which C_{x} is charging. The Q output assumes the state
the D input was in before the clocking edge. It is this property of the flip-flop which enables it to deliver a static output even when the D input is a pulse train.
The signals to discharge C_{x} and to clock B_{2} are provided by B_{1} which divides the

Fig.1. Frequency characteristic of basic element.

Fig.5. Logic to perform the function of Fig. 4.

Fig.7. Time-division multiplexing.

Fig.4. The derivation offour pass-bands
from four basic elements.

Fig.6. Circuit to constrain all flipflop Q outputs to "0" in the absence of an input signal.

input frequency by two and thus removes mark/space ratio variations. If this were not done, the C_{x} charging time would be affected, not only by the frequency of the input, but by mark/space ratio variations. Tr_{2} discharges C_{x} via D_{2} and D_{3} when the $B_{1} Q$ output is at logic " 1 ". D_{1} and D_{2} reduce the dependence of the critical frequency on the supply voltage to about 1% for a change from 4 to 5 volts. Tr_{1} and S generate fast rise time t.t.l. level pulses from the input signal to trigger B_{1}.

To obtain n non-overlapping band-pass characteristics, we need $n-1$ basic elements with different critical frequencies. (The components to the left of the broken line in Fig. 2 may be common to all the basic elements.) Fig. 4 shows the characteristics of four basic elements with different critical frequencies, the five distinct bands with these critical frequencies as their edges, and the logic equations for these bands. Fig. 5 shows these expressions implemented with NAND logic.

Transmitter battery power may be conserved by not transmitting when all controls are in a neutral position. This means that the lowest frequency band (the first band in Fig.4) cannot, be used. Because we cannot know which state B_{1} will settle in when the input signal is removed, some way of defining the state of the output bistables is necessary. Fig. 6 shows a circuit which will ensure that all the output bistables' Q outputs go to a logic " 0 " when the input signal is removed. The period of the retriggerable 74122 monostable must be greater than the period of the lowest input frequency; if this condition applies, then because it is retriggerable, the monostable's output will be at logic " 1 " while an input is present. When the input signal to the decoder is removed, the monostable's output will assume the logic " 0 " state; because it is connected to the CI.FAR inputs of all the output bistables, all the output Q terminals will be forced to logic " 0 ".

It has already been stated that B_{1} makes the decoder independent of mark/space ratio variations of the input signal. It follows that mark/space modulation of the transmitter modulating signal may be used to provide proportional control channels in addition to multiple on/off channels provided by the tone decoder itself. It has been suggested that time-division multiplexing of the modulating signal is feasible with the new decoder. If signals in bands $1,2,3,4$ and 5 are applied to the transmitter modulator in sequence, then (see Fig.4) at the decoder outputs, 1, 2, 3, 4 and 5 will go to logic " 1 " and return to logic " 0 " in succession. A modified form of output gating, shown in Fig.7, routes a decoder input signal in band 1 out of output 1 , a signal in band 2 out of output 2 , and so on. Since the inputs may be modulated in mark/ space ratio or (within any one band) in frequency, it seems that multiple channel proportional control should be possible with a time division multiplexed modulating signal: this presumes, however, some method of holding analogue data in each channel, while other channels are being addressed.

Using opto-couplers

An investigation of the noise characteristics of opto-couplers used with bipolar drivers

by K. F. Knott, B.Eng., Ph.D., M.I.E.E., University of Salford

One of the newer devices at present becoming available in i.c. form is the opticallycoupled isolator, sometimes referred to as the solid-state relay. In this device a gallium arsenide light-emitting diode (l.e.d.) and a silicon photo-transistor are adjacent on the same chip. The light from the forwardbiased l.e.d. is detected by the collector-base diode of the photo-transistor and causes current flow between the collector and emitter. By modulating the l.e.d. current it is possible to transfer a signal from the l.e.d. circuit to the photo-transistor circuit. Basically the device is a unilateral current amplifier, with incremental current gain typically in the range 0.1 to 1.5 for commercially available devices. Since the coupling between input and output is optical there is very good electrical isolation between them. Isolation to d.c. may be of the order of 1 to 5 kV , and the stray capacitance between input and output may be lpF or less.

In some applications the inherent noise of the device is unimportant; however there are some applications where one requires to know the noise behaviour so that an optimum performance can be obtained. Examples of such applications are: the elimination of ground loop signals from sensitive measuring systems, where the connection of more than one mains operated instrument completes a ground loop in which interference signals can be induced; the protection of patients from the danger of electric shock due to faulty grounding of patient monitoring systems; the extraction of small signals from circuits at a high d.c. potential (for example, one may be interested in the fluctuations of current flow to an electrode which requires a large accelerating voltage). The ultimate sensitivity in such applications is set by the inherent noise of the opto-coupler. This article describes the results of an investigation of the noise behaviour of 15 samples of opto-couplers obtained from three different manufacturers (type numbers CNY43, TIS111, MCT2).

Equivalent noise circuit

Preliminary measurements showed that the output noise current of the device was independent of the input termination. Therefore, the simplest equivalent circuit for the noise has one noise current source located at the output terminals as shown in Fig. 1. The symbols in Fig 1 are:
$I_{D}=$ l.e.d. bias current
$r_{d}=$ 1.e.d. dynamic resistance
$i=$ small signal input current
$A_{i}=$ small signal current gain
$I_{\text {CEO }}=$ photo-transistor direct collector current
$i_{n}=$ short circuit output noise current
$i_{0}=$ short circuit output current
The noise factor of the circuit is found as follows:

$$
F=\frac{\text { total mean square output }}{\text { noise current }} \text { mean square output noise } \begin{gathered}
\text { current due to } R_{S}
\end{gathered} .
$$

The narrowband value of F is found if the spectral density of i_{n} is used in the equation rather than the mean square value. The spectral density of i_{0} due to R_{S} is:

$$
\begin{aligned}
& \left.\frac{\overline{i_{0}^{2}}}{\Delta f}\right]_{R_{S}}=\frac{4 k T R_{S}}{\left(R_{S}+r_{d}\right)^{2}} A_{i}^{2} \\
& \therefore F=1+\frac{\left(\overline{i_{n}^{2}} / \Delta f\right)\left(R_{S}+r_{d}\right)^{2}}{4 k T R_{\mathrm{S}} A_{i}^{2}},
\end{aligned}
$$

where $\overline{i_{n}^{2}} / \Delta f=$ spectral density of i_{n} at frequency f. By differentiating this equation with respect to R_{S} one finds that F is minimum when

$$
\boldsymbol{R}_{S_{(o p t)}}=r_{d}
$$

which gives,

$$
F_{o p t}=1+\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{r_{d}}{k T}
$$

where $i_{n}=$ noise current in $\mathrm{A} / \sqrt{\mathrm{Hz}}$
If it is assumed that the diode obeys the exponential law one may write,

$$
\begin{align*}
r_{d} & =\frac{k T}{q} \frac{1}{I_{\mathrm{D}}} \\
\therefore F_{o p t} & =1+\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{q I_{D}} \tag{1}
\end{align*}
$$

($q=$ electronic charge $=1.6 \times 10^{-19} \mathrm{C}$)
It is seen from equation (1) that the noise performance of the device will depend on how $\left(\frac{i_{n}}{A_{i}}\right)^{2}$ varies with I_{D}.

Experimental results-opto-coupler

Values of i_{n}, A_{i} and also cut-off frequency, f_{B}, were measured for 15 samples of devices obtained from three manufacturers. Complete noise spectra were taken for each sample over the range $10 \mathrm{~Hz}-100 \mathrm{kHz}$. In order to minimize the effects of collectorbase feedback capacitance the cascode test

(b)
circuit of Fig. 2 was used. This test circuit is also useful as a post-amplifier.

In general there were no great differences between the three types of device tested so for clarity's sake the results are presented for one low-noise and one high-noise sample irrespective of type number.

The spectra of these two samples are shown in Figs. 3 and 4, with I_{D} as a parameter. Fig. 5 gives the variation of A_{i} and f_{B} with current for the two samples, and Figs. 6 and 7 show $\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{I_{D}}$ as a function of I_{D} at spot frequencies of 100 Hz and 1 kHz respectively. If the minimum value of $F_{o p s}$ at 1 kHz is calculated for the lower noise device according to equation (1) a value of 38 dB is obtained corresponding to I_{D} $=500 \mu \mathrm{~A}, R_{S_{\text {(op })}}=50 \Omega$ and $f_{B}=40 \mathrm{kHz}$. This device on its own therefore has a very high noise factor and also has the disadvantage of a low value of optimum source resistance. Obviously power gain is required preceding an opto-coupler if a reasonable noise performance is to be obtained.

Transistor-opto-coupler

Theory. The simplest circuit one can devise is that shown in Fig. 8(a) where the 1.e.d. of the coupler is inserted directly in the collector of a common-emitter stage so that the transistor collector current is equal to the diode current I_{D}. In Fig. $8(\mathrm{~b})$ the noise generators of the bipolar transistor and the opto-coupler have been included. By considering the various contributions to the output noise current one arrives at the expression for overall noise factor given below,

$$
F=F_{b i p}+\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{r_{e}{ }^{2}}{4 k T \lambda R_{S}}
$$

where $r_{e}=$ incremental emitter resistance of bipolar transistor,

$$
\lambda=\left(\frac{\beta r_{e}}{\beta r_{e}+R_{S}}\right)^{2}
$$

($\beta=$ common-emitter current gain of bipolar transistor, $F_{b i p}=$ spot noise factor of bipolar transistor stage.)
Now, since the diode and bipolar transistor currents are equal,

$$
\begin{align*}
r_{e} & =r_{d}=\frac{k T}{q} \frac{1}{I_{D}} \\
\therefore F & =F_{b i p}+\left(\frac{i_{n}}{A_{i}}\right)^{2} \cdot \frac{1}{q I_{D}} \cdot \frac{r_{e}}{4 \lambda R_{S}} . \tag{2}
\end{align*}
$$

If a low-noise transistor is used one can make an initial simplifying assumption that the transistor is noise-free compared with the coupler even when the power gain is taken into account. In this instance R_{S} coincides with the value for maximum power transfer i.e. $R_{S}=\beta r_{e}$ and $\lambda=\frac{1}{4}$. The second term on the right hand side of equation (2) then is equal to

$$
\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{\beta q I_{D}}
$$

The optimum noise factor then occurs at the same value of I_{D} as in the previous case.

To test the validity of the assumption that the transistor is virtually noise free, suppose

Fig. 3. Noise spectra-low noise sample.

Fig. 4. Noise spectra-high noise sample.

a sample calculation is carried out at 1 kHz for the lower-noise sample of opto-coupler using the following values,

$$
\begin{aligned}
\beta & =500 \\
I_{D} & =500 \mu \mathrm{~A} \\
\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{q I_{D}} & =6.25 \times 10^{3}
\end{aligned}
$$

If it is assumed that the bipolar transistor is free of $1 / f$ noise at 1 kHz ,

$$
F_{b i p}=1+\frac{\left(r_{e} / 2\right)+r_{b b^{\prime}}}{R_{S}}+\frac{R_{S}}{2 \beta r_{e}}
$$

where $r_{b b^{\prime}}$ is the base spreading resistance. Since R_{s} has been chosen equal to βr_{e},

$$
F_{b i p}=1+\frac{1}{2}+\frac{1}{2 \beta}+\frac{r_{b b^{\prime}}}{\beta r_{e}}
$$

The last two terms in this equation will usually be much less than one,

$$
\therefore F_{b i p} \approx 1.5
$$

The overall value of F will therefore be,

$$
F=1.5+\frac{6.25 \times 10^{3}}{500}=14 \text { or } 11.5 \mathrm{~dB}
$$

The overall value of F, excluding transistor noise, will be:

$$
F=1.0+\frac{6.25 \times 10^{3}}{500}=13.5 \text { or } 11.3 \mathrm{~dB}
$$

Optimum noise factor calculations. The optimum noise factor is given by

$$
\begin{equation*}
F_{o p t}=1+\frac{1}{\beta} \cdot\left(\frac{i_{n}}{A_{i}}\right)^{2} \cdot \frac{1}{q I_{D}} \tag{3}
\end{equation*}
$$

Use of Figs. 6 and 7 and equation (3) allows $F_{\text {opt }}$ to be calculated as a function of I_{D} for various values of β at spot frequencies of 100 Hz and 1 kHz . Figure 9 shows sample results for $\beta=500$.

Results-opto-coupler plus bipolar

The circuit of Fig. 8(a) was constructed using an unselected BC169 bipolar transistor in the common-emitter stage. The overall noise factor at $f=1 \mathrm{kHz}$ and I_{D} $=480 \mu \mathrm{~A}$ was measured as a function of R_{S}^{\prime} using the lower noise sample of optocoupler. The results are shown in Fig. 10. It is seen that the optimum source resistance is equal to βr_{e} but a 4:1 range of R_{S} could be tolerated for only a 1 dB change in F. Alternatively, a 4:1 range in β could be tolerated.
The value of $F_{\text {opt }}$ corresponding to $R_{S}=\beta r_{e}$ was then measured as a function of I_{D}. The results are shown in Fig. 11. Also shown on Fig. 11 is the curve calculated using equation (3) and the measured values of β. There is good agreement between the measured and calculated values of $F_{\text {opt }}$.

The good agreement between experimental and theoretical results justifies the simplifying assumptions made in the theory. The noise performance of both the high noise and low noise samples will be nearly optimum at a diode current of $500 \mu \mathrm{~A}$, but one must bear in mind the reduced bandwidth and current transfer ratio at this current when designing any particular system. The combination of a bipolar stage and a low-raise opto-coupler has a noise

Fig. 5. Current gain and bandwidth as a function of I_{D}

Fig. 6. $\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{I_{D}}$ as a function of I_{D},
$f=100 \mathrm{~Hz}$.

Fig. 7. $\left(\frac{i_{n}}{A_{i}}\right)^{2} \frac{1}{I_{D}}$ as a function of I_{D},
$f=1 \mathrm{kHz}$.
factor low enough to use as a second stage and perhaps even low enough to use as a first stage. However, the combination of a bipolar stage and the high noise sample of opto-coupler would have to be preceded by a stage of power gain in order to obtain a low overall noise factor.

A conservative worst case design using the high noise sample with a bipolar having a range in β of $150-600$ would be:

$$
\text { Set } \begin{aligned}
R_{S} & =16 \mathrm{k} \Omega \\
I_{D} & =500 \mu \mathrm{~A} .
\end{aligned}
$$

Precede this combination with a further low-noise bipolar stage having an available power gain of 30 dB .

Fig. 8. Transistor-opto-coupler combinatien.

Fig. 9. Calculated $F_{o p t}$ assuming noise free bipolar stage.

Fig. 10. F as a function of R_{s} for an actual circuit.

Fig. 11. Measured and calculated $F_{\text {opt }}$ as a function of I_{D} for an actual circuit.

Some thoughts on transformers

What sets the limits in design

by Thomas Roddam

If you want a transformer you may set about getting it in any one of a variety of ways. At first sight the easiest is to work for a large organization which has its own group of transformer designers. You simply say what you want, wait, and up comes something which is too big for the job. That group was not hired to make your life easy, but to keep the number of sizes of lamination and bobbin held in the stores to a minimum. The experts are not usually too good if you want something really subtle, either. The extreme in elaboration that I can think of was the designer who had to design a new grinding machine to get the close tolerance he needed for the bobbin of a really closely defined transformer. Other ways are to use the nearest item you can find in someone's stock list, wind it yourself on the kitchen table, or find one of the smaller manufacturers who will make a single transformer, either because one is all you want, or as a prototype.
This last solution splits, in theory, into two possibilities. Either you go cap in hand, and say what you want the transformer to do, leaving it to the manufacturer to design it when he has time, or you design it yourself. If you leave it to the manufacturer he may have to fit it in with the main task of keeping the business running, or he may have a mysterious "designer", who is never seen and who, I suspect, either does this in spare time from his proper job, or is the lab boy at the local tech. There is a third possibility, the one which set me thinking about this article when I first heard about it: you bodge up a design. You take an existing design and ask for something the same, but different. The specific example which first introduced me to this method was the man who had been buying transformers for a 10 watt amplifier system. He changed nothing but the number of turns and then complained that he could not get 20 watts out with a higher supply voltage.

It appears to me that even if what you require is extraordinarily simple, for example a unity ratio isolating transformer, you should do some of the design work yourself. That simple isolating transformer may land you in trouble. I have met off-theshelf units which, in the interests of economy, were designed to work at rather high flux densities. In consequence there was a sharp current peak which led to a good deal of confusion. The whole situation has become more complicated with the need to build power transformers to work at higher frequencies. If you want to handle 100 watts at 1 kHz , or 20 kHz , you will not get much help from your little man round
the corner. You will not get much help from most of the textbooks, either.

What makes the variety of transformers interesting is the fact that the rules seem to change. Of course the essential theory is the same, but the limiting factor for one set of conditions turns out to be unimportant for another set, because a factor which looked after itself has become predominant. It is this question of what sets the limits which I propose to examine.
The simplest transformer we use is the ordinary 50 Hz mains transformer. The two limits in normal design are the flux density in the core, and the current density in the wire. Magnetizing current, as such, is not often a problem; nor, to my mind, is core loss. It is wrapped up by the matter of flux density, which always needs to include an idiot factor. If you provide taps, will someone set to 220 V and connect to a nominal 240 V which is actually 250 V ? Will the transformer be used in one of those places where they would rather have some power at 45 Hz than a black-out at 50 Hz ? Current density is quite simply a matter of the transformer getting hot. We should consider the regulation, or so the books say, but we are more and more passing the job of controlling the final level to some clever circuits, and in many applications we find that we should like even more transformer resistance than we dare include.

A very simple guide to mains transformer design which I found somewhere or another, and which seems to give a good place to start, is that the core cross-sectional area should be

$W^{\frac{1}{2}} / 5 \mathrm{in}^{2}$

where W is the power to be handled. I know we should not use inches, but the cores people's stock is all described in inches. A 25W transformer should, on this basis, fit nicely on a square stock with a one inch centre limb. I shall have a go at deriving this expression in an appendix, but I have a nasty feeling that with my choice of parameters I shall get a different numerical factor. The object of all these guide equations is really nothing more than offering a good starting point for the first rough design. A better method is to look back at earlier designs, if you have any, or to try to work out from the catalogue what the other chap did, at least as far as core size is concerned.

The ordinary, everyday, aspects of the design you must look up in the book. Now we are all using silicon rectifiers straight into capacitance smoothing the addition of a screen is even more important. You may
want to know the magnetizing current, for calculating the protection circuit, but it really is safer and easier to measure it.

When we leave the simple world of the 50 Hz power transformer it seems natural to move to the 400 Hz power transformer. If we were to do nothing special, but just design as before for a reasonable flux density just below saturation, and take no further thought, we should be in trouble. The laminations which were gently warm would now be very hot indeed. Each lamination is, of course, of finite thickness, which for the bread and butter world is 0.015 in . The thickness is a small short-circuited turn, and there are rather a lot of them. Each of these turns is rather loosely coupled to the primary, and the effect of the short-circuited turns depends on both the coupling and the resistance of the turn. A detailed analysis was done by Caver, but it is pretty obvious that if we use thinner laminations the coupling to each one will be weaker, and its resistance higher. The iron-masters have decided for us that 0.004 in is the right thickness to use for a 400 Hz : there is no point in doing a lot of calculation and finding that it should be 0.003 or 0.005 . The chaps who make the stuff think that Milton was writing about them.

A difficulty with thin laminations is that they are so thin. Fortunately we can get C-cores, which are easy to put together, have rather better magnetic properties and, because so many users prefer them, have made it almost impossible to find a source for small quantities of the 0.004 in laminations. You do not need a guidance equation for C-cores: the maker tells you the power he, or his predecessor, would expect each size to handle.
Apart from this matter of using the thinner material, the key criteria are the same at 400 Hz as they were at 50 Hz : flux density safely below saturation, current density below overheating.

It is interesting to notice that we could have made our 400 Hz transformer with the 0.015 in laminations if we had kept the flux density very low. Of course this would have meant using a much bigger transformer. But this is exactly what we do when we construct an audio output transformer. At the largest signal level at the lowest working frequency we allow the flux density to be moderately high. Suppose we choose $B=10000 \mathrm{G}$ at 40 Hz . For the same signal level at 400 Hz the flux density will be only 1000 G . Observations on real transformers show that the eddy current loss effect is not significant. If we use 0.004 in laminations to make transformers to operate from about

1 kHz upwards we can see the effect of the eddy current loss. Instead of the frequency response being that of an $L R$ circuit it becomes deformed. Not much, it is true, but the effect is observable.

Power applications of higher frequencies have been with us for much longer than most people think but with the development of the transistor and the thyristor it became so much easier to get powers in the range from tens of watts to tens of kilowatts that the attitude of the power user became completely transformed. One range of frequencies in common use is roughly 1 kHz to 1.5 kHz . I do not wish to go into matters of circuit design, but there are often good reasons when the older practice of using a tuned transformer is not practicable. The transformer designer is required to produce, let us say, a transformer to handle 200 VA at 1 kHz , with the primary and secondary volts specified.

In one sense there is no special problem. A probable core is selected, and the number of turns needed to give the right flux density is examined to see if they can be wound with wire which will carry the current. Then, just as we used thinner core material when we changed from 50 Hz to 400 Hz , so we must seek out the appropriate thickness for 1 kHz . Unfortunately this drives us into the country of "specials", the things you can't get, and couldn'tafford if you could get them. If you just use 0.004in material at its full flux density the core will get very hot, which is particularly undesirable when all the power being wasted has been produced rather expensively with semiconductor devices.

It is at this point that we fix a new design criterion, or perhaps more correctly a new starting point. We choose our core loss. The procedure is one of ruthless guesswork. Guess the size of core which will be needed: this gives us the weight. Guess a reasonable core loss, perhaps 3% of the total power. From these two figures we can find the core loss per unit weight and then turn to the manufacturer's data sheets to find the approximate flux density. From now on the design is straightforward but, at first, tedious. If your guess is wrong, and the transformer is obviously too big or too small, you must guess again. If the first shot was not too far out, the second design will be satisfactory. The beginner may need to have a third shot, and the more advanced designer, once the size is about right, may want to vary it to trade iron losses against copper losses. A point worth noticing in this kind of transformer is that iron losses are always with us, even if we are not using any output. This can be significant in battery operated systems which are only lightly loaded for most of the time.

For operation at high audio frequencies, that is above the classic 400 Hz , it is tempting to consider the use of nickel-iron alloys. These are available as thin laminations, in a range of sizes, and in materials of high permeability and high resistivity. In an ideal world they would be perfectly suited for many applications. For some reason which I cannot understand, obtaining any of these laminations is an extremely frustrating operation.

The really fashionable power trans-

Fig. 1. Genesis of the no-waste lamination.
formers nowadays are those used in transformerless power supply units. It will not surprise the older readers who remember the domestic comments about wireless to learn that one design, at least, of these transformerless supply units has three transformers inside it, instead of the usual single trảnsformer. As every schoolboy knows, the only phrase written by the great Macaulay which remains in my memory, these power supplies simply rectify the mains, to give some 300 odd volts, and then use an inverter running at some $20-50 \mathrm{kHz}$ to get some transformable a.c. The part of the system where you have to be clever, or extra clever, is passing the message back from the output to the inverter side, where all the control takes place and which is quite firmly connected to the mains. When you recall that you can get these units which provide 100 A at 5 V you will see that the control must be on the primary side, where if the efficiency were ideal the current would be less than 2A.

In fact these are only the latest in a long line of d.c. to d.c. converters, and are related to other power converters. It is a new highspeed, high-current rectifier which has brought the possibility of this particular system into being. The lower power systems, and the $10-20 \mathrm{~W}$ level has had a good many applications, have been very tempting subjects for operation in the $20-50 \mathrm{kHz}$ range, but there are some rather interesting problems in the design of the transformer. At first sight it is attractive to use a toroidal core of the very thin nickel iron material which is, in theory, available. The thinness is essential to avoid eddy-current losses. Toroids are, however, a nuisance for winding unless you have a suitable winding machine, and even then there are some problems. Another serious difficulty for most of us is the problem which you meet when you learn to ride a bicycle: it is the problem of getting started. To get one core is much more difficult than getting 100 .

The answer, if you have a need for only one unit, or as happens if you are selling to the impoverished Third World, perhaps fifty units, is to use ferrite cores. These are cheap and are easily available. The choice is then between the pot cores and the double E's or E and I forms. Pot cores have the great advantage that they are self-shielding. The external field is very small, and this can be important. However, these cores are basically designed for producing inductors. The important thing, when you are making an inductor, is that you should be able to
bang on a fixed number of turns, and come hell or high water you should get a defined inductance. I know that there have been changes since the days when iron filings were stuck to sheets of paper (ferrocast) or little spheres of carbonyl iron were all glued together with something or another but in spite of the wonders of progress the permeability of ferrites is not strictly defined. Inductor cores are therefore made to have fixed permeability by the simple process of introducing an air gap. The apparent permeability is therefore very low.
If we were to construct a high frequency transformer ignoring this factor we should carry out our design calculations in terms of the flux density, and the important detail of getting enough copper. We should take account of the rather tedious detail that ferrites do not get the heat away as well as laminations, and cannot stand a high internal temperature gradient. But after all this, we might still be in trouble. The devices must carry the useful current and the magnetizing current. It is the same problem as the elliptical load line we met so long ago in audio amplifier design.
I am well aware that ferrites do not come in the no-waste proportions, least of all the pot cores. In practice, in order to get low leakage inductance, a ferrite-cored transformer will be under-filled, and anyway, we are after guide-lines. The ratio of magnetizing current to useful current is derived in the appendix, and is

$$
\frac{I_{m}}{I}=\frac{B}{500 \mu a}
$$

If we take $\quad B=2000$
we get

$$
\begin{aligned}
\mu & =100 \\
\frac{I_{m}}{I} & =\frac{1}{25 a}
\end{aligned}
$$

Remembering that a is half the centre limb width of an E , and is thus, on a typical core, about $\frac{1}{5} \mathrm{in}$, we get

$$
\frac{I_{m}}{I}=\frac{1}{5}
$$

Things are really worse than this. We are thinking about d.c. converters, which operate with square waves. This value of I_{m} is the sine-wave r.m.s. current, but the actual current is a linear run up, and the unhappy devices concern themselves with the current peak. The devices must be bigger, or driven harder, and as this current is handled by the devices the losses will be higher. We must, therefore, use a material and core style which gives us the highest possible permeability. The alternative is to increase the size, both to increase a and also to allow us to reduce B.
I am not concerned here with the right answers: the important thing in beginning a design is to ask the right questions. The magnetizing current question is one which we need to ask in any low permeability situation, right back to the old-fashioned output transformer in the anode of a single pentode. The general question of the rough size is worth asking yourself even if the actual work of designing the transformer is to be passed on to someone else.

All this discussion has been in terms of a square stack of no-waste shape. It is fairly clear, I think, that if we vary the thickness of the stack we shall vary the voltage which can be applied to the winding for the chosen flux density. This assumes that we keep the same number of turns of the same wire gauge. The transformer wattage is thus directly proportional to the stack width. If we go into more detail we shall find a limiting process produced by the increasing turn length, but the mechanical difficulties are usually the dominating ones. When we turn away from the no-waste lamination we can reason roughly like this: keeping the turns the same for a given centre limb area, the current will be proportional to the window area. Thus the wattage is proportional to the window area.

Some of the results do not agree with the results of a perfectly general analysis. It is unfortunate that most analytical solutions to problems explain why such and such does so and so. We do not want to know why this transformer gets hot at a loading of 150 watts : we want, with less scientific precision, a transformer that stays cool, and is manufactured from standard parts. General solutions are always attractive when you are doing the theory, because you wrap up the whole problem in one bumper bundle: the bundle is an end in itself.
I had intended to conclude with the corresponding expression for inductors carrying direct current: indeed, I have done so in the appendix. The result is to give a core area of

$$
A=\left(V I_{2}\right)^{2 / 3} / 25 \mathrm{in}^{2}
$$

At first I was rather unhappy about the result which showed up, which did not take account of the range of working currents. This result looks quite sensible, and a quick check on a 100 -watt unit, say $100 \mathrm{~V}, 1 \mathrm{~A}$, shows the transformer to have a core area of $1.5 \mathrm{in}^{2}$ and the inductor to be 0.85 , or just over half the size. Notice that, like the statisticians who draw little men, or little ingots of gold, to compare different systems, I have not been too clear about what size means.
Any design is a compromise: if you can save energy in getting your rough solution you can use the time to get the best compromise.

Appendix

Core properties based on one no-waste
 \section*{lamination}

The no-waste condition ties all the lamination dimensions together, so that a standard shape can be used to establish guide formulae. The figure shows how a pair of Is is stamped out of each pair of Es. The window must have dimensions a by $3 a$ for this simple picture to be true. A further simplification for the analysis is to assume that we make the core thickness $2 a$, giving a square stack. The coil winders find this very attractive.
The core area is then $4 a^{2}$.
The window area is $3 a^{2}$.
The mean magnetic path is $12 a$, if we consider what happens if we slit the E down its centre line.
The volume is $48 a^{3}$.

In spite of the fact that all the bright young men will complain, the basic dimension a is expressed in inches, because that is how the cores are specified.

The volts/turn for this core is given by

$$
\begin{aligned}
\frac{V}{N} & =\frac{4.4 B A_{f}}{10^{8}}=4 \cdot 4 B \cdot 4 a^{2} \cdot 6 \cdot 45 f \cdot 10^{-8} \\
& =113 \cdot 5 a^{2} B f \cdot 10^{-8}
\end{aligned}
$$

The window area is not full of copper. The assumption is that one half is primary and one half secondary, that copper occupies $\pi / 4$ of the available space and that only a fraction p is left after we have provided a bobbin and all the other wastage. The primary copper thus occupies an area of

$$
\frac{\pi}{4} \cdot \frac{1}{2} \cdot p \cdot 3 a^{2}=\frac{3 \pi}{8} p \cdot a^{2}
$$

If we make

$$
\begin{aligned}
p & =0.85 \text { and operate at } 1000 \mathrm{~A} / \mathrm{in}^{2} \\
\text { or } p & =0.565 \quad 1500 \mathrm{~A} / \mathrm{in}^{2}
\end{aligned}
$$

we get the very agreeable result that

$$
N I=1000 a^{2}
$$

Multiplying this by the expression for V / N :

$$
V I=113.5 B f a^{4} \cdot 10^{-5}
$$

If now $\quad B=12.35 \times 10^{3}$

$$
V I=14 f a^{4}
$$

And at 50 Hz

$$
\therefore V I=700 a^{4}
$$

The core area was, as we saw

$$
\begin{aligned}
A & =4 a^{2} \\
\text { so that } \quad V I & =\frac{700}{16} \cdot A^{2}=43.8 A^{2}
\end{aligned}
$$

Now $V I$ is the power which the transformer will handle, and to find the size of transformer for a given power, $W=V I$, we simply take a core area of

$$
A=(W)^{\frac{1}{2}} / 6.6
$$

The difference between this and the form $(W)^{\frac{1}{2}} / 5$ which I have been using on unknown authority, can be attributed to a number of factors. The unknown x may not have used no-waste laminations and he certainly used different values for the flux and current densities. If we allow for the frequency to be 20% low, we should get a figure of 6 , but that seems to be over cautious.

Of course it does not matter. It is extremely rare to know the exact power which a transformer will need to handle. This is an expression for guidance, and should not be regarded as anything more.
At 400 Hz the situation is, as I have pointed out, rather different. We are given the ratings for C-cores, which are not the no-waste shape anyway. What is also significant is that the flux density can be higher. Forgetting all this, and just putting in 400 for f.

$$
\begin{aligned}
V I & =\frac{5600}{16} A^{2}=350 A^{2} \\
A & =(W)^{\frac{1}{2}} / 18.7
\end{aligned}
$$

The weight of the core will be about $12 a^{3} \mathrm{lb}$, and if we take what I think is a rather low core loss figure of $1 \mathrm{~W} / \mathrm{lb}$ at 50 Hz the core loss will also be $12 a^{3}$. The area of core surface which is not shielded by the bobbin is $72 a^{2}$, so the dissipation of heat must be

$$
12 a^{3}(W) / 72 a^{2}\left(\mathrm{in}^{2}\right)=\frac{a}{6} W / \mathrm{in}^{2}
$$

For values of a less than about 2 in, which is the size we are always considering, this implies quite a moderate temperature rise.

Let us now turn our minds to the magnetizing current. The inductance of the primary is given by

$$
\begin{aligned}
L & =\frac{1.259 N^{2} 4 a^{2} \cdot 6 \cdot 45 \mu 10^{-7}}{12 a \cdot 2 \cdot 54} \\
& \approx N^{2} a \mu 10^{-6}
\end{aligned}
$$

The magnetizing current is

$$
\begin{aligned}
& \\
\text { and } & \\
\text { giving } & =V / 2 \pi f L \\
V & =\left(4 \cdot 4 B N \cdot 4 a^{2} \cdot 6 \cdot 45 f\right) / 10^{8} \\
I_{m} & =\frac{113 \cdot 5 B N a^{2} f}{2 \pi N^{2} a \mu f \cdot 10^{8} \cdot 10^{-6}} \\
& =\frac{18 B a}{N \mu 100}=\frac{0.18 B a}{N \mu}
\end{aligned}
$$

The useful current, the one we use for working out the power, is

$$
I=1000 a^{2} / N
$$

so that

$$
\frac{I_{m}}{I}=\frac{0.18 B}{1000 \mu \cdot a}
$$

or, to make it a bit simpler, we can approximate to

$$
I_{m} / I=B / 5000 \mu a
$$

For the input inductor of a 50 Hz fullwave rectifier system we already have one simple rule:

$$
\text { Inductance } L=\left(V / I_{1}\right) \times 10^{-3}
$$

to maintain continuous current flow. Here V is the output voltage and I_{1} the minimum working current. A designer will be lucky if he can get an energy storage density given by

$$
\frac{L I_{2}{ }^{2}}{\mathrm{Vol}}=0.1
$$

where I_{2} is the maximum current, or

$$
L I_{2}{ }^{2} \bumpeq 50 a^{3} \times 0.1=5 a^{3}
$$

This is, of course, only one point on the Hanna curve. In accordance with the rule that numbers are chosen to give simple answers, let us take

$$
\text { Then } \begin{aligned}
I_{2} & =5 I_{1} \\
L I_{2} & =5 V \cdot 10^{-3} \\
L I_{2}{ }^{2} & =5 a^{3}=5 V I_{2} \cdot 10^{-3} \\
a^{3} & =\left(V I_{2}\right) \cdot 10^{-3} \\
a & =\left(V I_{2}\right)^{1 / 3} / 10
\end{aligned}
$$

so that the area of the centre limb is

$$
A=4 a^{2}=\left(V I_{2}\right)^{2 / 3} / 25
$$

This is the world's most professional broadcaster The Uher 4000 Report IC

A cartridge in a pear tree.

What a superb Christmas Gift a Shure V-15 Type III would be! With it you could hear the true sound of pipers piping, drummers drumming, rings ringing. As the giver, you would make a Hi-Fi enthusiast supremely happy not only at Christmas time but throughout the years to come. As a last resort, if nobody else takes the hint, why not give one to yourself!

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
84 Blackfriars Road, London SE 8HA
Telephone (01) 9283424
\square Please send me the full details of Shure cartridges.
\square Please recommend the appropriate model for use with my equipment.

Arm or Unit \qquad
Amplifier \qquad
Name
Address \qquad

WW 12

Industrial security

A survey of the necessity, techniques and equipment available and the effectiveness of such equipment in combating industrial espionage

by W. E. Anderton, B.Sc.

Assistant Editor, Wireless World

Espionage used to be the subversive operation of "secret services" but with the encouragement of competitive free enterprise, and the massive sums of money involved in the development and operation of large industrial companies, espionage has spread. The value of "classified" information has led to the growth of a commercial industry manufacturing devices for the illegal acquisition of information and also for protection against this occurring. The commercialism of this development has become apparent by the discovery that companies selling "bugging" (eavesdropping) devices to one "side" are selling anti-bugging devices to the very people who are being bugged! - a distasteful situation to which few of the technical or commercial people involved have given sufficient political consideration. However, there is more to information security than bugging and the intent of this article is to describe the electronic equipment now deemed necessary for the full security of an establishment which contains information worth stealing.

Two levels of security are necessary. The first is the physical protection of property, from the perimeter fence which can be fitted with seismic or laser detectors (the modern equivalent of the moat), through the grounds and entrances covered by low-light television equipment to the last-ditch alarm system, the most sophisticated of which can detect movement in a room by means of ultrasonic devices. The second level of security is the protection of information itself - guarding against bugging by detection of alien devices or by transmitted message scrambling, a process which has now reached a high degree of sophistication.

The term "industrial espionage" is apparently disliked by its practitioners, who prefer the euphemism "aggressive market research", which they define as the practice of securing knowledge about competitors by any and every possible means.

[^8]operating at around 90 MHz , mounted on the back of a standard telephone microphone insert or actually built into a standard insert. Either way, the bug is a direct plug-in replacement for the standard microphone insert and can be fitted in a second or two. The bug is powered by the telephone line current and, if undetected, can operate almost indefinitely. The telephone line itself acts as an aerial.

In most countries, government security organizations use direct wire tapping, or re-arrange the 'phone wiring using an elementary "third wire" technique so that the microphone becomes active even though the handset is on its rest. Industrial espionage agents generally use more elaborate methods, because the direct wire tapping techniques draw current from the telephone lines and are readily detected by conventional telephone line monitoring equipment.

Yet another telephone bug utilizes the magnetic field that exists around the hybrid transformer in the base of the telephone handset. The bug, often disguised as a telephone diary or ashtray, is placed close to the telephone so that an inbuilt coil can detect the handset's local magnetic field.

Perhaps the most ominous of all telephone tapping devices is one known as the "infinity transmitter" - a device which can be used over telephone lines thousands of miles long.

Other types of detectors are used to receive sounds through concrete and brick walls. These consist of a small radio transmitter (usually f.m.), a hearing aid microphone and batteries and have a range of about 400 yards. Sound can usually be picked up within 20 to 30 ft of the microphone, depending on any obstacles between the receiver and the sound source.

The transmitters used in these devices are very simple but obviously it has not been the means of transmission which has had to be developed but miniaturization and economical battery operation. Some units switch on their transmitter only when there is a sound signal to transmit or, more ingeniously, may be provided with a power source consisting of a simple tuned circuit, diode, and large storage capacitor (imposing a size
disadvantage). The source is connected to a short aerial and, when tuned to a local broadcasting station, receives and stores sufficient power to operate a lowpowered bug almost indefinitely.

Many large organizations, rather than attempting to solve their possible bugging problems, merely trample them to death by installing r.f. white noise generators. These then flood the surrounding area with r.f. noise and effectively jam any radio transmitter within several hundred feet. These r.f. generators are an antisocial means of defeating bugging intrusion for they jam all radio signals within their area of operation - legitimate or otherwise.

A more subtle means of protection is to detect devices by means of simple field strength measuring meters. This is not completely effective for, as mentioned before, some devices only transmit when there is information to be transmitted, or are remotely switched on after it is known that the room which has been bugged has been officially cleared.

A typical field strength measuring meter would probably include the following features (taken from the catalogue of a model in present use): an output meter scaled to read microvolts or dB relative to $1 \mu \mathrm{~V}$, the dynamic range being from $10-100 \mu \mathrm{~V}$ and $0-40 \mathrm{~dB}$ relative to $1 \mu \mathrm{~V}$; attenuators which may be switched into the i.f. amplifier permitting voltages up to 90 dB above $1 \mu \mathrm{~V}$ to be measured; a sensitivity and measure switch to allow the operator to increase the sensitivity when monitoring low level signals; frequency range switch and tuning controls (v.h.f. from 34 to 225 MHz and u.h.f. from 225 MHz to 850 MHz). The application of such a meter would be much wider than bug detection, but it is typical of the type of instrument which can be used.

While it is not possible to code direct communication by speech between individuals, it is possible to code or scramble transmitted messages and thus almost eliminate the possibility of divulging information en route.

Cryptography

The art of enciphering written messages is centuries old and has reached a high degree of sophistication with the develop-
ment of digital processing equipme it. Only recently, however, has voice enciphering become possible through the speed of electronic devices necessary to code the complex sound variations of the voice which occur at high speed. The earliest units used during the second world war mixed up different frequency bands within the voice spectrum - hence the term scrambling.
A modern data enciphering system is shown in Fig. 1. Most data enciphering devices simply combine the binary representation of a message character with a pseudo-randomly generated binary key character to yield the cipher character to be transmitted. A method of coding and decoding (illustrated in the table)

Table

called bit stream encryption uses an exclusive OR function both in the encoding and decoding process. If the key character changes upredictably from character to character as in the case of a true random number series, then the result is unbreakable. To be completely safe, a cryptographic system needs a large number of codes available, an extremely long, random-like, non-linear key system, an automatic random starting point and a sophisticated interconnection between various registers and logic within the code generator.

Now to the more demanding and complicated procedure of voice encoding. Why place such a high premium on transmission by voice where written data would appear to suffice? Voice is fast and convenient, it provides immediate conversation, it allows more freedom of expression and aids positive recognition of the other party.

Fig. 2 shows the basics of a voice enciphering system analogous to the data enciphering system already described. The voice signal enters the device in analogue form and is digitized (for example in the same way that sound signals are digitized for p.c.m. transmission). The digital key characters control whatever the enciphering process involves and are prompted by a sync signal from a crystal controlled generator. This sync signal is also combined and transmitted along with the enciphered signal in order to permit synchronization of the key generator in the deciphering device at the receiver.

The latest and best proven solution for commercial/industrial purposes appears to be the rolling code band scrambler. This utilizes the principle that the shorter the message segment between code changes, the more difficult it is to defeat the code. These scramblers follow the principles shown in Fig. 2

Fig. 1. Block diagram of a data enciphering system. Data enters in binary form. As soon as the sensor determines that an acceptable character is present, it requests the key generator to provide a key character. The cipher character is obtained by combining data and key characters.

Fig. 2. Schematic voice enciphering device. Voice signals enter in analogue form and are digitally processed for enciphering. Digital key characters control the enciphering process - either digital or analogue.
and, by rapidly and automatically changing the permutation/inversion combination in an otherwise fixed band scrambler, the time needed to break the system is greatly extended.

As an estimate of the problem facing the interceptor of a coded message, the following describes part of the operation of a commercially available unit: "The clear voice input is split into five frequency bands from 377 Hz to $2,477 \mathrm{~Hz}$, then rearranged (or scrambled) into five output bands, also from 377 Hz to 2477 Hz . The rearrangement is accomplished by a heterodyne process which shifts and may or may not invert the frequency bands. Theoretically there are 3,840 possible combinations. Most combinations offer little loss in intelligence (Example: inversion of the upper band only). . . . Each 0.25 second, a new combination is selected automatically, by the output of the random code generator. The code generator has over $2,000,000$ possible user codes selected by thumbwheel switches behind a locked front panel. In addition, the customer selects one of $16,000,000$ code families by simple internal connections, thus customizing his units".

Potential aggressive market researchers should by now be starting to go green. There's more to come, but first, to shed a ray of hope, the most accessible information for interception, tampering or pure destruction is that which is stored and processed by computer, and this affects all of us.

Computer security

If there were no computers, the information explosion of the last 20 years or so would have bogged us down in a mass
of uncollated, unused, unstored facts -_ only one sign of our rapidly growing dependence on computer facilities for dealing with vast quantities of classifiable information. But despite the apparent complexity and high speed operation of computer circuitry, its contents are as insecure as a telephone call.

High levels of security are important, not only from intentional damage or pilfering but from accidental damage to software by fire or high temperatures and humidity. Damage to hardware (core stores, processing circuitry etc.) can be caused by the proximity of high intensity magnets, but even fixed or mobile radio transmitters within a mile or two of a computer installation can slow down or prevent information transfer to and from tapes and discs. It is possible to use radio or radar transmitters to interrupt data flow for fairly long periods of time but damage to information on file would be impossible so this hazard occurs only in real time operation.

Information carried by external circuits or picked up on supply leads can be extracted easily either by direct cable tap or by current transformer probes which do not need the line to be actually broken into. Interpretation of intercepted data is no problem if it is in one of the few computer languages, but it can be ciphered in exactly the same way as the encryption techniques described. Radiation from switching circuitry, which acts as a low power transmitter, can be detected at quite long ranges. This type of interception is considered a risk only for highly classifiable information as the process of translating the switched signals is vastly complicated.

Array of "aggressive market research equipment" kept in the museum of an electronics company.

Cause	Identification	
	min.freq. (Hz)	min.ampl. (dB)
Cutting and burning	550	10
Climbing	350	35
Tunneling	600	25
Rain, hail, thunder, aircraft, ground movement etc.	Reject by comparison of several adjacent fence sections and rejection of signals which are similar.	
Magnetic fields	Identify frequencies and filter out.	
Stone throwing, lightning, animals and birds	Accept only frequencies above 500 Hz and couple to a "one shot" excluding circuit.	
Wind	Accept only frequencies above 500 Hz and apply comparison of fence sections check.	

Electromagnetic shields around an installation can protect it from disturbance by local transmitting stations, and notable installations using shields are the LACES Cargo Computer and the B.O.A.C. Boadicea computer both at London airport. High performance shields can also protect from external detection. These are used on a large number of worldwide Government security installations, where illegal computer interrogation is regarded as a serious problem.

So, in many cases before information can be obtained from a computer, or damage done to it, access must be obtained to the installation itself, and, in this context and many others where physical protection of property is necessary, intruder warning systems play a large part in information security.

Perimeter protection - low light TV
Perimeter or fence protection can provide an initial degree of high security, but
only recently have several inherent problems neared solution. Such a system needs to be able to discriminate between false alarms; either natural (hail, rain etc.) or man made (aircraft noise, articles thrown at the fence etc.), needs high reliability, the ability to couple with a wide range of alarm systems and the capability of expansion from small to large perimeters.

Signals due to deliberate intrusions can be caused by cutting, burning, climbing, tunnelling, dismantling, sabotage of sensors, scaling or acid attacks.

Experiments conducted by EMI in the development of an ideal perimeter protection system have shown significant differences in the frequency spectra of mechanical shock waves between deliberate intrusions and other disturbances. All simulated attacks have appreciable energy above 1 kHz whereas incidental disturbances occupy a lower frequency band, this suggesting the use of tuned filters for the elimination of false alarms.

Experimental results show that oxyacetylene cutting caused two signals, a signal at 4.2 kHz due to the flame and at 1.4 kHz due to equalization of stresses as the rods in a pre-stressed construction snapped.

The sensor often used in previous systems is known as the "geophone" and consists of a spring suspended metal mass within a magnetic "cage", relying on the effect of induced voltage in a coil as the inner moves with respect to the outer due to vibration. The geophone has a useful operating range from 0 to 400 Hz and hence, being at its most sensitive in the false alarm region, would not provide a signal processing unit with sufficient information to enable accurate discrimination between real and false alarms. As a comparison, a piezoelectric sensor has a substantially flat frequency response from 10 Hz to 5 kHz .

Assuming that the most appropriate sensor is being used, the problem of signal identification becomes one of monitoring specific aspects of frequency, amplitude and duration characteristics. "Prints" of the characteristics of each type of foreseeable intrusion can be stored for comparison with alarm signals and the basic signal conditioning solutions are summarized in the accompanying table.

Despite this high degree of development necessary in a fail-safe perimeter protection system, the degree of safety can be greatly enhanced during night conditions by linking with closed circuit TV surveillance.

Once an alarm has been sounded, there still remains the problem of monitoring the area from where the alarm has sounded. A closed circuit TV system, requiring no licence to operate, can provide this facility and, as no radio broadcast transmission is involved, the system is relatively safe from eavesdroppers. In high security areas, it is desirable for the cameras and the perimeter fence system to operate from a 12 V d.c. supply installation which will run off trickle charging batteries to prevent blackout in the event of mains failure. The distance between cameras and monitor screens is not subject to any limitations and may be anything from a few hundred feet to several miles with picture information carried by a coaxial line similar to a normal TV aerial feeder.

For viewing in poor light, image intensifiers can be used in conjunction with a camera tube and, typically, can be used in illumination conditions down to 100^{4} lux (equivalent to a moonless cloudy night). A three-stage cascade image intensifier may amplify light by a factor of 50 to 80 thousand. An even more advanced degree of security can be obtained by a c.c.t.v. system developed by Film and Television Production Services, which will detect a change of the video waveform caused by a movement or change in the external monitored environment. When a picture disturbance takes place on a single channel, several events take place. Whichever picture is on the monitor is cancelled and the
"disturbed" channel is selected and automatically switched to the monitor. A warning light and numerical indicator displays the selected channel number and an internal audible alarm sounds.

A plethora of well-known devices are available to detect and warn of intruders to a building, infra red and ultrasonic detectors being among the most advanced used in this aspect of security.
Security systems based on conventional sonar devices have suffered in the past from the problem of false alarms, but now equipment can discriminate between different types of motion within its range. The AFA-Minerva Fidela 3 ultrasonic detector is capable of distinguishing between intermittent movements such as flapping curtains, and the consistent movement of an intruder.

Magnetics for security

A system of great potential for security is the use of magnetic materials as a storage medium of information for recognizing the validity of identity, whether it be for obtaining access to a building or drawing money, goods or services by use of a credit card. Different levels of security can be obtained by the storage capability of the medium, the type of material used (special materials, i.e. with different properties to those of recording tape cannot be "read" with standard replay heads) and a combination of these two factors.
The U.K. is five to ten years behind the U.S.A. in the establishment and usage of this form of security, but technology in the U.K. is well advanced and EMI is -already involved in applications such as cash dispenser cards, where credit cards are coated with a magnetic material, checked and authenticated (or not) by a dispenser to provide the card holder with a sum of money. Shops too are using magnetics in security with magnetic stock control tags to set off an alarm if goods are taken unpaid for through the exit with the tag still attached.

The applications here seem limitless material handling, data handling, credit cards and so on. In the future, pre-paid cards for use in automatic vending machines or slot meters for heating, car parking etc., would need protection from fraud by a high level of security, which conventional and special magnetics can provide.

State of the art

First. A laser beam directed at the window of a room in which a conversation is being held can detect vibrations caused by speech waves. A glass movement of a few microns at a few kilohertz will necessitate a receiver bandwidth in the receiver of nearly 1 GHz with a laser operating at 1000 mm (300 terahertz). Readily achievable with modern technology. Coventional laser inter-
ferometers can detect movements of 1 A and a detection of 0.01 A has been claimed.
Secondly. The American taxpayer annually provides $\$ 1,000 \mathrm{M}$ for the American National Security Agency set up by the Pentagon in 1952. This amount is about the same that Britain spends on her entire education bill. The N.S.A. is the world's largest agency dealing with codes, ciphers and electronic communication devices, but it is, above all, responsible for designing and operating the many spy satellites in space, rapidly becoming the longest arm of espionage.

Thirdly. Quote from the technical director of a company supplying spy and anti-spy equipment, "I've never given the political implications much thought."

December

 meetings
LONDON

3rd. IEETE - "Sounds interesting" by J. D. MacEwan at 18.00 at the I.E.E., Savoy Pl., WC2.
4th. IEE/E.Mech.E - Discussions on "Problems in applying control theory" at 17.30 at Savoy Pl., WC2.
4th. IEE - "Ferro-non-linear oscillators in electrical power networks" by G. H. Cherkez at 18.30 at Savoy P1., WC2.

5th. IERE - "Use of split PPI techniques in clutter and other investigations" by P. D. L Williams at 18.00 at 9 Bedford Sq., WC1.
6th. IERE - "TEC, ERB and the Technician engineer" by A. J. Kenward at 18.00 at 9 Bedford Sq., WC1.

7th. IEE/I Prod.E. -- "The production of microelectronic components" at 17.30 at Savoy PI. WC2.

10th. I.Mech.E. - "Computer developments within British Rail Engineering Ltd" by C. J. Hudson at 17.30 at 1 Birdcage Walk, SW1.

10th. IEETE - "New mathematics: is it relevant to modern science and engineering?" by N. Gowar at 18.30 at the Faraday Room, the I.E.E., Savoy Pl., WC2.

12th IERE - Colloquium on "Impact of microelectronics on instrument design" at 14.30 at 9 Bedford Sq., WC1

12th. IEE - "Electronics in urban transport" by H. H. W. Losty at 17.30 at Savoy PI., WC2.

12th. BKSTS - "Film operations in a regional television station" by J. Cooper and D. Dickinson at 19.30 at Thames Television Theatre, 308-316 Euston Rd., NWI.
17th. IEE - "The development of an integrated digital network" by W. T. Duerdoth at 17.30 at Savoy Pl., WC2.

19th. IEE - Colloquium on "High resolution masking for electronic devices" at 14.30 at Savoy Pl., WC2.

19th. R. I. Navigation - "The pay off from improved marine navigational aids" by R. Maybourn and W. Mateer at 17.00 at the Royal Institution of Naval Architects, 10 Upper Belgrave St., SW1. 20th. IEE - "A high speed intercomputer link" by Jan Dewis at 18.30 at Savoy Pl., WC2.

BRIGHTON

4th. IERE - "Future telecommunications projects in space" by W. M. Lovell at 18.30 at Brighton Technical College.

BRISTOL

5th. IERE - "Liquid crystals" at 19.00 at No. 4 Lecture Theatre, School of Chemistry, University of Bristol.

CARDIFF

12th. IERE/IEE - "Developments in data communications" by M. B. Williams at 18.30 at the Department of Applied Physics, UWIST.

CHATHAM

5th. IERE - "Electronics systems for the space environment" by A. J. Price at 19.00 at the Medway \& Maidstone College of Technology.

EXETER

6th. IEETE - "Decca navigator system" at 19.30 at the Imperial Hotel.

FAREHAM

5th. IERE - "Inertia navigation" by G. U. Rands at 18.30 at H.M.S. Daedalus.

GUILDFORD

5th. IEE - "Developing countries and the engineer" by Prof. P. D. Dunn at 19.30 at the University of Surrey, Stag Hill.

LEEDS

13th. IEETE - "Fibre optics" at 19.00 at Kitson College, Cookridge Street.

LIVERPOOL

12th. IERE - "R.f. sputtering of thin films" by E. F. Lever at 19.00 at the Department of Electrical Engineering and Electronics, University of Liverpool.

LOUGHBOROUGH

4th. IERE - "The impact of advances' in electronics in electrical heating processes" by J. E. Harry at 19.00 at Edward Herbert Building, Loughborough University of Technology.

MANCHESTER

13th. IERE - "The application of electronics in telephone exchange switching" by F. W. Croft at 18.15 at Renold Building, UMIST.

NEWCASTLE UPON TYNE

12th. IERE - "Computer controlled telephone exchanges" by Dr. M. T. Hills at 18.00 at Main Lecture Theatre, Ellison Building, Newcastle upon Tyne Polytechnic.

19th. IEE/IERE - Colloquium on "Computers in marine automation" at 10.00 at Henderson Hall, University of Newcastle upon Tyne.

SOUTHAMPTON

12th. IERE - "Stored program control of telephone exchanges" by B. L. Nuttal at 18.30 at the Lanchester Theatre, University of Southampton.

SWINDON

4th. IERE -- "Space technology and the future" by G. K. C. Pardoe at 18.15 at The College.

PLYMOUTH

5th. RTS - "CEEFAX" by S. M. Edwardson at 19.30 at Westward Television Ltd.

Circards

The next article in the Circards series, No. 12, "wideband amplifiers", will be published in the January issue.

Tuners and Tuner-amplifiers

The concluding part of "Tuners and Tuner Amplifiers", due to be published in this issue, has been unavoidably postponed.

Teleprinter terminal unit uses phase-locked loop

This unit uses the MC131OP integrated circuit intended for stereo multiplex decoders. The device contains a phaselocked loop which I have found suitable for demodulating teleprinter f.s.k. signals because it requires only a small input signal for phase lock, gives a visual imdication when phase lock has occurred, and is relatively cheap and readily available. Fig. 1 shows the main circuit which consists of the phase-locked loop, a d.c. amplifier, and a Schmitt trigger. Fig. 2 shows the driving circuit.

Audio f.s.k. signals are applied to the input of the phase-locked loop via an input attenuator and a d.c. blocking capacitor. When the loop locks, the lamp lights, the free-running frequency being set by \boldsymbol{R}_{1}. A shift in audio frequency causes the loop to lock on to the new frequency, resulting in a change in the d.c. level at the output of the loop. This change is amplified by Tr_{1} and Tr_{2} after first filtering out any a.f. component which also appears at the output of the loop. The operating point of the amplifier is set by R_{2} so that the change in voltage at a collector swings either side of the zener diode's breakdown voltage. This voltage is applied to the input of the Schmitt trigger. The result of the voltage causes $T r_{3}$ to
switch on and $T r_{4}$ to switch off, and vice versa. Thus the f.s.k. signal is converted into a square wave switching signal suitable to feed a teleprinter.

The magnet driving circuit consists of two 2 N 3055 transistors driven from the Schmitt trigger. These drive the teleprinter receive magnet via a reversal switch to allow reception of reversed r.t.t.y. signals. No surge protection was needed. My version drives a Creed 7B teleprinter and works well on all frequency shifts from 100 to 1000 Hz . It also appears to work well under conditions of random noise.

To set up, tune in r.t.t.y. signal and adjust level control so that about 300 mV of signal is fed into the input of the p.11. Adjust R_{1} until lamp lights and remains alight on both mark and space tones (nọ flicker). Adjust R_{2} until printer operates. K. S. Beddoe, G3YOM,

Titchfield,
Hants.

*Adjust to give 60mA
through teleprinter receive coil

- Fig. 2. Teleprinter drive fed from Fig. 1 circuit.
V Fig. 1. Demodulator for f.s.k. uses phase-locked loop.

Switch spark quench for inductive loads

The circuit may be used to suppress arcing of switch contacts, an especially troublesome problem when switching large inductive loads. The chosen controlled rectifier must pass the full circuit current during the switch-off period and must be capable of operating at voltages in excess of twice the supply voltage. The 2 N 4443 quoted in the example will work up to 500 V and will

switch short pulses of current of up to 80A although for this rating the current pulses must not be longer than 8 ms ; for longer pulse times suitable de-rating must be applied. The capacitor provides the gate drive to turn the s.c.r. on, $\approx 0.7 \mathrm{~V}$, and uses the initial part of the circuit switch-off transient as the thyristor turn-on pulse. It is essential that the thyristor is fully turned on.
E. Potter

Sheffield University

Simple pulse shaper or relay driver

To obtain pulses of a required duration and constant amplitude, one would normally use a monostable circuit. In most cases a simpler circuit can be made using the economical Signetics 555 integrated circuit. This device can provide output pulse currents of up to 200 mA and can drive a relay directly from input pulses which may have a duration of less than a microsecond.
The circuit shown uses the 8-pin dual-inline NE555V or the equivalent TO-99 type NE555T. It provides output pulses of a duration equal to $1.1 R_{3} C_{2}$; this can range from microseconds to many minutes, but R_{3} should not exceed $20 \mathrm{M} \Omega$. Output pulse amplitude is a little less than $V_{\text {cc }}$, the exact value depending on output current. Rise and fall times are about $0.1 \mu \mathrm{~s}$.

In the circuit, the input pulse amplitude must cause the voltage at pin 2 to fall to $V_{c d} / 3$ or less. Inclusion of R_{2} reduces the required amplitude of the pulse considerably. The value of C_{1} should be chosen so that the input time constant is appreciably greater than the fall time of the leading edge of the input pulses to minimize pulse attenuation. The 555 can be triggered by a current of $0.5 \mu \mathrm{~A}$ from pin 2 for $0.1_{u} \mathrm{~s}$.

The 555 operates with negative-going trigger pulses. If positive-going pulses with a steep trailing edge are available, the 555 can be triggered on the negative-going trailing edge. However, the use of positivegoing pulses results in the output being delayed until the trailing edge of the input pulse occurs; with wide input pulses this may be unacceptable.

To operate a relay directly, the relay coil may be connected in place of the load, in which case an input pulse causes the relay to close for a time $1.1 R_{3} C_{2}$. A diode must be connected across the relay coil to suppress transient voltages developed across the inductive load when the current in the coil is switched off. Such transients may damage the 555 and they have been found to cause automatic re-triggering of
the circuit as a result of pick-up. If retriggering occurs, the relay fails to open. Not all types of diode give adequate suppression to prevent re-triggering; I found the gold-bonded types (such as the OA47) suitable.

If the relay and diode are connected between pin 3 and $+V_{\mathrm{cc}}$, the coil will normally be energized, but the relay will open for the pre-determined time when the input pulse triggers the circuit.

The relay should be rated to operate from a potential approximately equal to that used for $V_{c c}$ at a current of not more than 200 mA . A small electromagnetic counter could be used instead of a relay. J. B. Dance,

Alcester, Warwickshire.

Combined rumble and scratch filter

It is widely accepted that a respectable audio amplifier should have both highpass and low-pass filters, the normal approach being to design them as two separate stages. The widely differing turnover frequencies suggest that the two filters could be simply combined into a composite filter performing both functions with little interaction between the sections. The circuit given is an amalgam of the filters proposed by H. Walker (May \& June 1971 W.W.) with slight modifications to certain component values due to component availability. Typical procedure would be to calculate the components required for the isolated filters and then to combine the stages in series at the input to each transistor, the first giving $12 \mathrm{~dB} /$ octave and the second a further
$6 \mathrm{~dB} /$ octave at the turnover frequencies. Comparison of the circuit with the originals makes the design obvious. Components may be switched to provide different turnover frequencies as required, but switching to completely remove a filter is more complicated.
P. I. Day,

Jesus College,
Cambridge.

Self-start for ring of two

A common method of providing selfstarting for the ring-of-two circuit is to connect a resistor between the bases of the two transistors. This has the disadvantage that it reduces the stabilization ratio. The circuit shown here also has a single resistor for self-starting but there is no degradation of the performance. Any change in the current through the starting resistor R is cancelled out by a change in the current through $T r_{1}$ and so there is no net effect on the normal operation of the circuit, provided of course that there is still a reasonable current through Tr_{1}. Even a value as low as $39 \mathrm{k} \Omega$ produced no noticeable alteration of the performance of the circuit shown in the diagram, while a $1 \mathrm{M} \Omega$ resistor between the bases reduced the stabilization from 5×10^{4} to 2×10^{4}.
Colin R. Masson,
Edinburgh.

Square-law potentiometer

The circuit shown was developed to give a bias for a varicap diode, varying as the square of the angle of rotation of a potentiometer control. If this angle is θ and $k=$ θ / θ_{o} where θ_{o} is the full angle of rotation, we have, letting v be the offset voltage for the second transistor,

$$
\begin{gathered}
V_{o}-v=(1-k) R(I+V / k R)+V \\
V=k\left(V_{o}-v-I R\right)+k^{2} I R .
\end{gathered}
$$

Thus if $R^{\prime}=R$ so that $I=\left(V_{o}-v\right) / R$ we obtain $V=k^{2}\left(V_{0}-v\right)$. An experimental test using transistors of type 2N5172, a $10-\mathrm{k} \Omega$ helipot and $V_{o}=9$ volts yields a square-law response to better than $\pm 1 \%$ over the range $0.1<V<8.5$ volts.
F. N. H. Robinson,

Clarendon Laboratory, Oxford.

Television broadcasting from satellites

First of a two-part series describing the scope and limitations of v.h.f., u.h.f. and s.h.f. transmission by satellite

by D. B. Spencer, Ph.D and K. G. Freeman, B.Sc., A.Inst.P., M.I.E.R.E.
Mullard Research Laboratories

Since the world's first high definition television service was started in London in 1936 there has been a phenomenal growth in television broadcasting throughout the world. Now many countries have at least one national programme-often in colour. Regular exchanges of programmes take place between countries within a continent by means of terrestrial links, and between different continents by means of telecommunication satellites. Many European countries have to share the existing v.h.f. and u.h.f. television bands with their immediate neighbours and the consequent limitation of bandspace available to each country severely limits the number of programme channels which they can provide. The reception of television programmes in the home direct from an orbiting satellite may prove to be one means of providing additional channel capacity.
In the U.K. there is sufficient u.h.f. bandspace available for four national television channels, and when all the 405 -line transmissions are phased out (which is not likely before 1985) one or possibly two further 625 -line channels could be provided at v.h.f. At the present time therefore, limitation of bandspace available for television transmissions is not a problem in this country. However, it is still desirable to consider the needs of the future and possible developments. Recent Government White Papers ${ }^{1,6}$ discuss the possible future U.K. trends in broadcasting in some detail.
In the developing nations, there is often a problem of rapidly building up even one national television service. This may also be accomplished by means of a satellite broadcasting system.

Methods of TV service extension

Apart from conventional v.h.f. and u.h.f. terrestrial television broadeasting it is now becoming feasible to broadcast television signals from an orbiting satellite direct to the home. In 1971 the World Administrative Radio Conference of the ITU authorized the use of further bandspace for various forms of broadcasting including satellite broadcasting ${ }^{2}$. For Region I (Europe, Africa and the USSR) it authorized use of the band $620-780 \mathrm{MHz}$ for satellite broadcasting of frequency modulated television signals subject to these signals not causing interference with existing terrestrial systems. The band from $2.5-2.69 \mathrm{GHz}$ was allocated
to satellite broadcasting on a shared basis with fixed and mobile services. Use of this band is restricted to national and regional programme broadcasts to community receivers. Allocation of a band from 11.712.5 GHz (s.h.f.) was on a shared basis between satellite and terrestrial broadcasting and the fixed and mobile services. Two other bands, namely $41-43 \mathrm{GHz}$ and $84-86 \mathrm{GHz}$, were also allocated to the satellite broadcasting service but no consideration has yet been given to their use.
It is also possible to distribute additional television signals not by over-air broadcasts but by means of a cable distribution network which can also be used for the distribution of existing television signals. On a small scale, perhaps for the transmission of locally generated signals to a compact urban area, this is feasible and experimental services of this latter type do exist. However, national distribution of television signals using cables would probably prove to be prohibitively expensive. It has been estimated ${ }^{1}$ that a national system to provide 96% of the U.K. population with six additional channels would cost $£ 500 \mathrm{M}$ and take 20 years to complete.
The way in which television services will be extended depends to a large extent upon the country involved. A broad dividing line may be drawn between the developed countries and those which are still developing.

Developing countries are interested in rapidly building up a television service in the hope that it will aid national development by improving educational standards and agricultural practices. When the complex network of transmitters and ancillary equipment needed to cover a country the size of Britain is considered then the problem of setting up a television broadcasting system in, for example, India or Brazil using terrestrial transmitters and links, is seen to be immense. Some form of satellite broadcasting system, which could give almost instantaneous national coverage seems to offer an attractive solution to this problem.
In general the developing countries are large and have no existing u.h.f. television service; satellite broadcasting, therefore, is possible in the $620-780 \mathrm{MHz}$ allocation. Transmission in this band means that fairly conventional receiver techniques may be used. Large receiving aerials are also pos-
sible without their being too critical to set up. In tropical and sub-tropical countries use of the u.h.f. or $2.5-2.69 \mathrm{GHz}$ band is preferable because of high propagation attenuation in the higher frequency bands due to heavy rainfall. India proposes to start experiments with satellite broadcasting at u.h.f. in 1975.
Many developed countries already have extensive terrestrial u.h.f. television services and the introduction of u.h.f. transmissions from a satellite would cause intolerable interference. For this reason the 800 MHz frequency allocation from $11.7-12.5 \mathrm{GHz}$ would almost certainly be chosen for Europe.
It is possible, of course, to transmit television programmes at s.h.f. using ground stations. West Germany has started a series of experiments in Berlin to look at the feasibility of such a system ${ }^{3}$ but transmitters will probably be required every five or ten miles as propagation loss again due to rain is fairly high. Moreover, a direct line of sight between the receiver and transmitter is essential and this may be difficult to achieve in urban areas. If this system came into being it would need a vast network of transmitters and links to serve a whole country. It is probably only feasible for urban areas which have a high population density where, because of the difficulty on many buildings of obtaining line of sight to the transmitter, it may be incorporated with a "wired-TV" system.
Compared to the vast network of transmitters and ancillary equipment needed to set up a 12 GHz terrestrial broadcasting network it should be possible to provide national coverage using a single orbiting satellite. The use of satellite broadcasting to provide additional programmes to the developed countries will now be discussed together with its possible use in the provision of a primary television service to the developing nations. In both cases if receiver complexity, satellite transmitter power, cochannel interference and bandspace requirements are considered it is probable that wide-band frequency modulation will be chosen.

Satellite broadcasting

The reception of television pictures relayed by a satellite has involved expensive ground stations with large aerials. If every home or small community is to be able to pick up
signals from a satellite then the receiver and aerial must be cheap, easy to set up and require little maintenance. To be able to use such a simple receiver the broadcasting satellite of the future would need a more powerful transmitter than those used in present day communications satellites. A highly directional transmitter aerial would beam the signal down to one country. As a steerable aerial on every home to keep track of satellite movements would be uneconomic the satellite must appear stationary in the sky. This means that it would have to be stabilised in a synchronous orbit approximately $36,000 \mathrm{~km}$ above the equator.

Consider, for example, the system which would be necessary to provide a television service to the United Kingdom. The transmitter beamwidth would be of the order of 1° (see Fig. 1) and the satellite would have to be stabilized in both position and orientation to approximately one-tenth of this. Stabilization is necessary as otherwise variation of the gravitational forces due to the Sun and Moon would cause the satellite to drift. With existing geostationary satellites, stabilization is achieved by small gas propulsion jets on the satellite which correct for the changes in these forces. The propellents for these propulsion units are stored on board and at the present time, assuming a life expectancy of 5-7 years, they account for some $20-25 \%$ of the rocket payload. It is hoped in time to be able to reduce this to some 10%.

Either direct reception of the satellite signals in the home, or community reception can be considered. In the case of community reception the signals would be picked up by a central receiver, processed and then passed on to individual TV receivers. As a community receiver could have a larger aerial and better performance than a domestic receiver a lower satellite power would be required. It is likely that community receivers will be used before domestic receivers as the cost per viewer will be lower but ultimately there will probably be a need for individual reception and the choice of system parameters must bear this in mind.

The satellite transmissions could use either conventional amplitude or frequency modulation or even some form of digital modulation. If a.m. were to be used then tens of kilowatts of transmitter power would be required for a 12 GHz system. If f.m. were chosen then the transmitter power could be reduced to several hundred watts for the same picture quality. As all the power used by the satellite has to be generated "on board", probably by means of large arrays of solar cells, this is an important consideration. As it is envisaged that a series of satellites would broadcast different programmes to adjacent countries, frequency re-use is essential in order to provide adequate programme coverage. The distance between areas which can be served by the same frequency (co-channel) is governed by the tolerance to interference of the system used, as well as the directivity of the transmitter and receiver aerials, and the relative positions of the co-channel satellites. Because of the greater immunity

of a frequency modulated signal to cochannel interference it is found that, for a given programme coverage of a number of adjacent countries, an f.m. system requires less bandspace than an a.m. system.

Some form of digital modulation could be used for satellite broadcasting if it offered a significant advantage over other modulation techniques. (In the case of a digital system the television (video) signal is sampled at a rate of at least twice that of the highest frequency component. The resultant samples are then quantized by comparing their amplitudes with a range of discrete values and representing the sample by the discrete amplitude to which it most nearly corresponds. The quantized amplitude is then represented by a sequence of binary pulses and these pulses are used to modulate the amplitude, frequency or phase of an r.f. carrier.) From a study by one of the authors ${ }^{4}$ it appears that digital systems offer only a marginal improvement in performance over a wideband f.m. system. As they need more complicated and therefore more expensive receivers it is probable that frequency modulation will be chosen for satellite broadcasting both at u.h.f. and s.h.f.

The bandwidth occupied by a frequency modulated signal is given, by Carson's rule, as twice the sum of the peak to peak deviation plus the highest modulating frequency.

Fig. 2. Map showing the proposed Indian Earth stations.

As the peak to peak deviation is increased the transmitter power needed for the same picture quality may be reduced, and the cochannel performance improves, but of course the bandwidth per channel increases. A compromise has to be reached and work done by various international committees indicates that a total peak to peak deviation (peak to peak luminance + chroma + sound) of $14-16 \mathrm{MHz}$ is likely to be adopted for satellite television broadcasting. Assuming a PAL system I video signal with 6 MHz sound subcarrier the occupied bandwidth would be some $26-28 \mathrm{MHz}$. A guard band would in practice be necessary and the total channel width would probably be of the order of 30 MHz .
To provide coverage to a large number of countries many satellites would be required. In the absence of any other constraints each satellite would ideally be placed in orbit as near as possible to the same longitude as the country which it was to serve. However, this may not be practicable. One problem is that within the periods of approximately 1st March to 11th April and 1st September to 11 th October a geostationary satellite experiences one eclipse each day by the Earth. Near the centre of these periods the eclipse lasts for 70 minutes about midnight at the satellite longitude, less at the beginning and end of such periods. Although the satellite could be powered by a small nuclear generator it is more likely that an array of solar panels will be used. In this case, unless the satellite carried substantial batteries, transmissions would cease during the eclipse periods. After the longer eclipse periods time must also be allowed for warm up of the transmitter before transmissions could resume. The satellite could in practice be moved to the West of its service area so that the break in transmission would occur in the early hours of the morning when it may not be important. This complicates the planning of the broadcasting satellite system, but it is probably preferable to providing the satellite with batteries capable of providing the full transmitter power. As well as increasing significantly the satellite weight, and hence the launch cost, such batteries would probably be a limiting factor in the satellite life expectancy.
Another problem which prevents all satellites being in the same longitude as the area which they serve is that of co-channel interference. This is discussed later.
The above remarks apply to satellite broadcasting systems in general and are independent of the transmission frequency.

We will now go on to discuss u.h.f. and s.h.f. systems in more detail with particular reference to the system likely to be adopted by India and the probable parameters of a system suitable for European countries.

U.H.F. satellite broadcasting

For countries which have no terrestrial broadcasting network satellite broadcasting at u.h.f. may well prove to be feasible. In order to investigate the possibility of setting up a national u.h.f. broadcasting service, India proposes to start a series of experiments in 1975 using the American ATS-F communications satellite. The American space organisation, NASA, is to lend the satellite to India for one year and the Indian Department of Atomic Energy is to be responsible for the ground segment. All the programme material which is to be transmitted during the experiment will be produced in India. Fig. 2 shows the positions of the four proposed earth stations. Of these Ahmedabad, Delhi and Bombay will be capable of transmitting, receiving and rebroadcasting, whereas Srinagar will only be able to receive and rebroadcast the signals ${ }^{5}$.

The satellite is to transmit 80 W of power at 850 MHz into a 10 metre dish (2.6° beamwidth) using frequency modulation with a bandwidth of 30 MHz . (This is not within the WARC u.h.f. allocation; a permanent service at a later date would have to lie between $620-780 \mathrm{MHz}$.) Two thousand television receivers are to be used in clusters of villages in different rural areas for direct reception of the signals. These receivers will consist either of a complete f.m. TV receiver or, perhaps more likely, an f.m. front end which demodulates the incoming signal and remodulates it in a suitable form for a conventional v.h.f. a.m. receiver (see Fig. 3). With a 2-3 metre "chicken wire" dish aerial (10° acceptance angle) the receivers will have an input signal of approximately $27 \mu \mathrm{~V}$ and they will require a noise figure of approximately 6 dB in order to provide an acceptable picture signal to noise ratio. Signals from the satellite will also be received by the four ground stations and rebroadcast in urban areas using amplitude modulation at v.h.f. for reception by 3,000 standard v.h.f. a.m. television receivers. It is proposed to broadcast programmes for four to six hours every day.

If the initial experiments are successful the Indian government hopes to start a full scale satellite broadcasting service which would be implemented sometime within the next decade. At least one community receiver would then be needed in each of 560,000 Indian villages. In order to obtain optimum coverage of India the satellite transmitting aerial would probably be reduced to 7 metres (3.5° beamwidth). Because of this and also in order to allow more simple aerials to be used (approximately 1 metre diameter) the transmitter power may be increased considerably.

The primary aims of the Indian scheme ${ }^{5}$ would be to contribute to family planning objectives, improve agricultural practices and help towards national integration. Secondary objectives would be to contribute towards general education and teacher training, and also to improve health

2-3 metre
parabolic
dish aeria
Fig. 3. Block diagram of an experimental receiver of the type which may be used in India.
and hygiene. In a technical respect the project would be useful in national development particularly in building up the nation's electronics industry, as the major portion of the required equipment would be produced in India.
When fully operational the Indian project would transmit between two and four video channels, and each channel would have associated with it up to 14 sound channels to cater for the nation's 14 major languages.

The choice of the u.h.f. band for the Indian experiments is ideal as the wide beam necessary to cover the whole country is easily obtained and the receiving aerials can be large without being critical in their alignment. A further advantage comes from the fact that conventional technology can be used for the receivers as no frequency higher than u.h.f. is involved. Although we have confined the discussion of u.h.f. satellite broadcasting to the proposed Indian project the problems and advantages associated with such a system can be applied to other developing countries. Many countries will be looking at the outcome of the Indian experiments with great interest.

S.H.F. satellite broadcasting

In the case of developed countries, which generally have an existing network of terrestrial u.h.f. transmitters, the s.h.f. band around 12 GHz will probably be used for satellite broadcasting. Europe would be served with a series of geostationary satellites each with aerial beamwidths of the order of 1° to restrict coverage to the nation for which the service is intended (see Fig. 4), This perhaps highlights a common misconception about satellite broadcasting in that it is often thought to be a means of picking up television transmissions from many countries.
The political implications of beaming signals to other countries are obvious and the control of such a system would be fraught with difficulties. Furthermore, a major technical objection is that many different television standards exist throughout the world and multi-standard receivers would be expensive. (This assumes that existing receivers would beemployed in conjunction with suitable converters.) Apart from this, as all satellites would not be in the same position a steerable receiver aerial

Fig. 4. Map showing the type of service areas which are envisaged for Europe.
would be needed. The limitation of satellite transmissions to individual nations means that narrow beam, high gain aerials may be used on the satellite thus allowing acceptable levels of transmitter power.

With a large number of adjacent areas to be served using a limited bandwidth $(800 \mathrm{MHz})$ frequency re-use is essential and co-channel protection becomes important. This protection is obtained by a combination of the transmitter and receiver aerial directivities, the separation of the cochannel satellite in orbit, and also by the separation of areas covered by the same frequency.

Studies undertaken by the CCIR show that, if 30 MHz f.m. signals are assumed, some 200 MHz of bandspace would be needed to provide each European country with a single channel. This indicates that with the authorized allocation it should be possible to provide each country with four.
If simple, individual receivers were used which had a receiving aerial of the order of 75 cm diameter and a front end noise figure of 9 dB then a satellite power of 500 W would be adequate to receive a good picture. In the case of a community receiver a somewhat larger aerial, say 1.5 metre diameter, together with a front end noise figure of 6 dB would be possible resulting in a satellite power requirement of 63 W . Table 1 indicates how these figures were derived (because of the discrepancies between various published figures, particularly of the acceptable carrier to noise level and the expected losses due to rainfall and aerial misalignment, these figures are given as an illustration only).
Although in the long term special television receivers can be envisaged, in the early stages a typical domestic system would consist of down conversion of the 12 GHz signal to a convenient i.f. After amplification and limiting this signal would be demodulated to a video plus sound subcarrier signal. Remodulation of this signal onto a u.h.f. carrier would then be necessary using amplitude modulation to provide a suitable input for a standard television receiver. Fig. 5 shows the outline of a possible s.h.f. receiver. With the increasing use of video tape and cassette recorders in the home, future receivers may well have a video input socket making remodulation of the signal unnecessary. Looking even further to the future, receivers may incorporate a dual i.f. f.m./a.m. detection system in which case the satellite signals would enter the receiver as a u.h.f. i.f.

TABLE 1
Estimated transmitter power requirement for an s.h.f. f.m. system

		individual	community
a)	Receiver bandwidth (B)	28 MHz	28 MHz
b)	Noise power at the receiver input (P) [1]	-129dBW [2]	-129dBW
c)	Noise factor of receiver	9dB	6 dB
d)	Available receiver noise power ($b+c$)	-120dBW	-123dBW
e)	Required carrier signal/noise (estimated)	18dB	18 dB
f)	Required carrier power ($\mathrm{d}+\mathrm{e}$)	-102dBW	-105dBW
g)	Aerial gain referred to $1 \mathrm{~m}^{2}$ effective [3]	$-5 \mathrm{~dB}$ (0.75 m diameter)	1 dB (1.5m diameter)
h)	Required flux	-97dBW/m ${ }^{2}$	$-106 \mathrm{dBW} / \mathrm{m}^{2}$
	Free space attenuation [4]	162 dB	162 dB
j)	Allowance for atmospheric attenuation (due to rainfall, snow etc.)	1 dB	1 dB
k)	Allowance for pointing errors	2 dB	2 dB
1)	Total propagation attenuation ($i+j+k$)	165 dB	165 dB
m)	Required transmitter e.i.r.p. $(\mathrm{h}+1)$ [5]	68 dBW	59 dBW
	Satellite aerial gain at beam edge [6]	42 dB	42 dB
o)	Loss in transmitter feeders, filters etc.	1 dB	1 dB
p)	Satellite transmitter power ($\mathrm{m}-\mathrm{n}+\mathrm{o}$)	$\begin{aligned} & 27 \mathrm{dBW} \\ & (500 \mathrm{~W}) \end{aligned}$	$\begin{gathered} 18 \mathrm{dBW} \\ (63 \mathrm{~W}) \end{gathered}$

Notes

[1] This is calculated from $P=K . T . B$. where K is Boltzmann's constant, T is the receiver input temperature in degrees absolute and B is the equivalent noise bandwidth.
[2] $\mathrm{dBW}=\mathrm{dB}$ relative to 1 W .
[3] This assumes an efficiency of 66%.
[4] This is defined here as the ratio of the power radiated from an isotropic source $36,000 \mathrm{~km}$ above the earth's surface to the power flux (power $/ \mathrm{m}^{2}$) at the receiving aerial.
[5] The e.i.r.p. is the effective isotropic radiated power.
[6] This is calculated for the beam edge (3dB down point) of a 1° beamwidth aerial.

Up to the present time use of the microwave region of the electromagnetic spectrum for communications has been limited to military and professional applications. In order to realize microwave consumer products such as 12 GHz satellite broadcast receivers, microwave components must be produced in a technology which is cheap and capable of providing reliable, massproducible devices. In fact the whole future viability of satellite broadcasting at s.h.f. hinges upon the availability of such components.

Conclusion

The broadcasting of television programmes from a satellite should be feasible in the near future both at u.h.f, and s.h.f. frequencies. It will probably come first of all to the developing countries for whom it is an attractive solution to the problem of rapid implementation of a broadcasting service to help to improve general educational and social conditions. In this case u.h.f. f.m. transmission is the most suitable system. The technology capable of providing suitable low cost receivers and the power requirements of the satellite transmitters are already available.
In the case of developed countries s.h.f.

Fig. 5. Block diagram of an experimental receiver of the type which may be used for the reception of s.h.f. broadcasts.
f.m. satellite broadcasting is one way of providing additional programme capacity. Apart from the political and national investment considerations, and assuming that further channels are desirable, the success of such a system depends upon the availability of cheap 12 GHz receiver components. In the second part of this article we will examine various possible 12 GHz receiver designs and discuss practical microwave technologies. Intermediate frequency processing circuits which could be applicable to either u.h.f. or s.h.f. receiver designs will also be discussed.
(To be continued)

References

1. Report of the Television Advisory Committee 1972, HMSO 1972.
2. Direct broadcasting from satellites, EBU Review, Part A, No. 128, August 1971, p. 142. 3. Gilbert, J. C. G., "Centimetric television broadcasting, experimental 12 GHz transmissions", Wireless World, Sept. 1971, p. 453.
3. Spencer, D. B., "A comparison of FM and digital modulation for direct television broad-casting from geostationary satellites", $E B U$ Review, Technical Part, No. 137, Feb. 1973, p. 23.
4. Rao, B. S. and Froom, R. P., "Broadcasting from satellites: a powerful potential aid to the new or developing countries", Telecommunication Journal, Vol. 38, No. 7, 1971, pp. 529-37. 6. Television Advisory Committee-1972. Papers of the Technical Sub-Committee, HMSO, 1973.

Systems and Weapons Division have a wide variety of projects currently under development in our Feltham Laboratories for both military and industrial applications.

While cost effective design is important, the excellence of the technical performance combined with high reliability under the most adverse environmental condition, are vital requirements. The designs involve the use of state of the art components and techniques and demand extensive and rigorous testing during development to meet the most stringent specifications.

Our laboratories are very well equipped with the most modern test equipment and facilities. The calibre of our highly qualified staff combined with the challenging nature of the work result in a professional and stimulating working environment.

Our range of equipment includes Miniature Airborne Radar Equipments, Low Light Television, Digital Processors, Telemetry Data Transmitters, Receiving and Recording Systems, Infra Red Thermal Imaging, Underwater Equipment and Computer Controlled Data Handling Systems. The frequencies involved range from D.C. through
ultrasonic to 10 GHz .
Circuit Design involving Micro techniques, Analogue and Digital Processing and Fast Pulse Techniques form a part of most of these equipments.

All this adds up to worthwhile opportunities for Engineers who have at least two years circuit design experience qualified to at least HND standard.

Salaries will be dependent upon experience and qualifications and every opportunity will be given for further advancement within the Company.

Why not telephone or write to us today. Our Recordacall system is available outside normal working hours and if you give your experience and qualifications and a telephone number, one of our senior engineers will ring you back to discuss informally the vacancies we currently need to fill.

Applications by writing or by telephone to:

Mr. P. W. E. Fox, Personnel Manager, EMI Electronics Ltd., Victoria Road, Feltham, Middlesex. Tel. or-890 3600 Extension 44 or after working hours or-890 392 I.

35A VHF/UHF FIELD STRENGTH METER

34-875 MHz CONTINUOUS FREQUENCY COVERAGE

Available as a complete system in executive briefcase with aerials, headphones et cetera. Options available: Built-in loudspeaker, re-chargeable batteries, narrow band I.F.

Applications include:
Checking for unauthorised transmitters
Site Surveys.
Aerial alignment.
VHF/UHF direction finder.
High sensitivity frequency selective voltmeter.

WALKER \& LEACH (Kingsten) LIMITED 39-49, Eowleaze Road, KINGSTON UPON THAMES, Smuriol KT2 6DY
$01-540171 / 2 / 3$

Contrast expansion processor

A practical circuit for improving the contrast of meteorological satellite scanning radiometer pictures

by R. J. H. Brush B.Sc., C.Eng., M.I.E.E. and P. E. Baylis, B.Sc.

The latest American meteorological satellite in the Improved Tiros Operational Satellite (ITOS) series was launched successfully on November 7th. Named ITOS-F on the ground, the spacecraft now in orbit is renamed NOAA 3 (National Oceanic and Atmospheric Administration). NOAA 3 is flying in a circular sun synchronous polar orbit at an altitude of 1505 km . The orbit period is 116.19 minutes and the satellite always crosses the equator at 0830 local solar time on the north to south part of the orbit. The primary sensors in the modified ITOS series consist of scanning radiometers with spectral sensitivities of 0.5 to $0.7 \mu \mathrm{~m}$, visible channel and 10.5 to $12.5 \mu \mathrm{~m}$, infra-red channel. The two channels are time multiplexed and relayed to ground in real time, with a signal format which is compatible with existing a.p.t. (automatic picture transmission) ground receiving stations. See Fig.1. The chief advantages of the i.r. channel are sensitivity to radiated infra-red, which gives coverage of the day and night sides of the earth and accurate equivalent black-body radiation temperature calibration. The analogue video signal from the radiometer amplitude modulates a 2400 Hz sub carrier which in turn frequency modulates the transmitted v.h.f. carrier. The ITOS carrier frequency is either 137.5 MHz or 137.62 MHz and the peak deviation is ± 9 to 10 kHz .

A disadvantage of the i.r. channel is that the difference between hot and cold scenes is rather small especially at high latitudes. This leads to poor contrast when pictures are reproduced on equipment primarily designed for use with the TV
vidicons. Typically, the modulation of the subcarrier may not fall below about 30% for scenes in the vicinity of the Mediterranean and North Africa. In the polar regions, $55-70 \%$ is likely to be the lower limit. The maximum is around 90% for cold high altitude cloud tops. Cold is transmitted as high percentage modulation and reproduced as white. The greyness of the reproduced clouds clearly indicates their relative heights.

The contrast may be enhanced by passing the subcarrier from the receiver f.m. demodulator through a processor with a characteristic as indicated in Fig.2. The straight line, characteristic no.1, indicates a linear input/output characteristic, i.e. no expansion. No. 2 has the effect of ignoring all values of modulation below 20% and expanding the range $20-100 \%$ to fill the complete dynamic range between black and white level. Similiarly for the other characteristics. The required one is selected by a multiway switch.

Biased silicon diodes are used to fix the turn-on percentage and the appropriate line slope is selected by means of an operational amplifier with proper choice of feedback resistor. The complete circuit is in Fig.3. The diodes D_{1} and D_{2} have their bias fixed by resistor networks. The percentage modulation at which the diodes turn on is set by adjustment of the peak 100% value of the subcarrier presented to them. The higher the peak value, the lower the percentage turn on. The peak value is set by the feedback resistor in the input operational amplifier. The contrast expander is designed to receive a 2 V peak to peak (at 100% modulation) input
at that level if the correct calibration is to be maintained.

The effect of the expander on the subcarrier waveform is shown in Fig. 4 (a). If the input subcarrier is at 100%. amplitude the conduction angle θ reduces for increased percentage setting of the expander, i.e. increased diode turn-on level. Since the peak/average ratio of such a waveform increases with reduced conduction angle, the peak to peak voltage at the output is made to increase with increased percentage setting, in order to maintain the average output voltage constant. Some trimming of the feedback resistors at the output operational amplifier may be found necessary. The actual values will depend on the properties of the a.m. demodulator and picture printer used. The values shown were selected for use with a full-wave demodulator followed by a low-pass filter,

Fig.2. The required transfer characteristics for a contrast expander.

Fig.1. A typical time multiplexed i.r. and visible channel waveform; parts of the scan period are used for calibration and telemetry. (Ref. 1.)

video amplifier and photofacsimile picture printer of the mirror galvanometer type.
Correct adjustment may be achieved as follows: Set the selector switch to 0% and connect the input to a 2 V pk-pk 2400 Hz tone source. Adjust the sensitivity of the picture printer until peak white level is reached. Set the selector switch to 20% and adjust the appropriate feedback resistor at the output operational amplifier until peak white level is again reached in the picture printer. Repeat for the remaining selector switch positions.

Not only does θ change for fixed 100% signal input with variation of diode turn-on level, as set by the selector switch, but also with a fixed diode turn-on level and variable peak input voltage. This may be seen from Fig.4(b). The effect is to cause a low level curvature of the transfer characteristics shown in Fig.2. One possible cure for this problem would be to use a square wave subcarrier input. However, a sampling circuit would be required to convert the sine wave subcarrier to square wave. Since the degree of low-level curvature is not
troublesome in practice, such a modification of the subcarrier is not necessary. An alternative method would be to re-design the circuit to act on the video waveform at the output of the subcarrier a.m. demodulator. The disadvantage would be that the circuit could not be added simply to existing a.p.t. equipment without modifying the video circuitry. The arrangement in Fig. 3 can be inserted between any a.p.t. receiver subcarrier output (output of the f.m. discriminator) and the input to the subcarrier a.m. demodulator, provided the signal level is adjusted to 2 V , pk-pk.

Fig. 5 shows a typical i.r. scan line waveform with and without expansion. One disadvantage of the expander is its effect on noisy signals. Whenever the subcarrier voltage falls below the diode turn-on voltage, the picture printer will reproduce black. Bursts of noise such as those caused by interference or signal fades are thus exaggerated.

The processor described has given satisfactory results at the Dundee University a.p.t. station for a number of
years and has been used to reproduce i.r. pictures from NIMBUS $3 \& 4$, TIROS M, NOAA 1 \& 2 and METEOR 10 \& 12.

References

1. Modified version of the improved TIROS operational satellite (ITOS D, G) by A. Schwalb, NOAA technical Memorandum NESS 35, US Department of Commerce.

Further reading

Kennedy, W. K. and Bargh, J. K., "An Automatic Picture Transmission Cloud Cover Receiving Station", The Radio and Electronic Engineer, Vol. 38, No. 3, September 1969.
Vermillion, C. H., "Weather Satellite Picture Receiving Stations". NASA Report No. SP 5080.

Portune, J. E. and Owen, C. M., "A Satellite Station for Everyone", Weather, Vol, 25. No. 3, March 1970.
Sollom, P W. W., "Just Look at the Weather". Radio Communication, R.S.G.B., November and December 1971.
Osborne, J. M., "Receiving Weather Pictures From Satellites", Wireless World, October and November 1971.
A.P.T. User's Guide. U.S. Department of Commerce.

Books Received

The Sinclair Book of Management Calculations by Christian de Lisle is a pocket book which shows how an electronic calculator can best be applied in the areas of finance and accounts, purchasing, stock control, production, marketing and sales. Easy to follow examples are given throughout the book. Price 50p. Pp.96. Wood-head-Faulkner Ltd, 7 Rose Crescent, Cam bridge, CB2 3LL.

Rapid Servicing of Transistor Equipment, Second Edition, by Gordon J. King is a systematic guide to the servicing of transistor radio, television tape and hi-fi equipment. Early chapters describe semiconductor principles, characteristics and circuitry, and how transistors are set up, biased and tested and a complete chapter is devoted to signal conditions and tests. Subsequent chapters concentrate on fault diagnosis in the various fundamental types of circuit, each section concluding with a fault diagnosis summary chart. A separate chapter is devoted to the ordinary transistor portable receiver, with stage-by-stage description and complete alignment and fault-finding details. The final chapter gives practical advice on making repairs to transistor equipment and deals also with printed circuit boards. This second edition has been expanded and updated to take account of capacitor diodes, f.e.ts and integrated circuits. Price $£ 1.90$. Pp.171. Butterworth \& Co. Ltd, 88 Kingsway, London, WC2B 6AB.

Intermediate Network Theory Book One by R. J. Maddock introduces the reader to the essentials of network theory as a subject in its own right and presents the basic techniques of network analysis in a form that is understandable to technical college students. The opening chapter is concerned with the chosen notation for measurement of electrical variables, revision of fundamental relationships and the application of these
relationships to transient solutions for simple circuit arrangements. This is followed by a chapter on a.c. theory which includes the phasor approach and the use of j notation. The next two chapters deal with series and parallel arrangements of impedances and admittances, mesh and nodal analysis and the use and limitations of network theorems. In the remaining chapters, resonant networks, three-phase circuits and two-port networks are described in detail. Techniques and principles are illustrated throughout by worked examples. Exercises with answers are provided at the end of each chapter. Price $£ 3.95$. Pp.184. Butterworth \& Co. Ltd, 88 Kingsway, London WC2B 6AB.

A Handbook of Conical Antennas and Scatterers by R. M. Bevensee presents computed theoretical characteristics of various conical aerials as well as measured data for various conical scatterers at frequencies in the resonance region. Curves of gain, far-field and input admittance are presented for various solid and hollow conical monopoles and coaxial horns above a perfectly conducting plane and for a cone protruding from a sphere. Graphical data on measured backscatter crosssection is presented for flat-base cones and cone-spheres. This information will aid in the understanding of radar characteristics in conical missiles and space vehicles. The reciprocity theorem for transmitting and receiving aerials is treated and formulae are presented for computation of the temporal response of an aerial or scatterer to pulse excitation, given the frequency response data. Price $£ 10.20$. Pp. 173. Gordon and Breach Science Publishers Ltd, $41 / 42$ William IV Street, London WC2.

Electrical Engineer's Reference Book 13th edition edited by M. G. Say contains 24 sections covering all aspects of electrical engineering from basic theory and standards
to environmental control and the application of electrical principles to medical science. SI units have been used throughout with some reference as necessary to the equivalent Imperial and non-SI metric units. In this edition, all sections have been extensively revised and information presented in a more compact form. Price $£ 12.00$. Pp. approx. 1600. Butterworth \& Co. Ltd. 88 Kingsway, London WC2B 6AB.

Dictionary of Electrical Engineering by K. G. Jackson is for electrical engineers and covers terms associated with this branch of engineering and its theory plus an extension into the related areas of electronics, lighting, constructional materials etc. Price $£ 2.25$. Pp.375. Butterworth \& Co. Ltd. 88 Kingsway, London WC2B 6AB.

The Pye Book of Audio contains a series of articles on all aspects of hi-fi from 13 experts in the field of audio. The book is intended to be informative from a technical and also from the practical point of view of purchasing, installation and operation of equipment. Articles also cover the subject of manufacture of audio products. Price 95 p. Pp.125. Daily Mirror Books, IPC Newspapers Ltd, 79 Camden Road, Camden, London, NW1 9NT.

Recording with Compact Cassettes is an AgfaGevaert production covering the subjects of choosing the right recorder, electrics and mechanics, the compact cassette, microphones, hi-fi and stereophony, Dolby noise reduction, hints on compact cassette recordings, advice on collecting cassettes, service and maintenance, translations and explanations of the technical terms used in connection with cassettes. Price $65 p+6 p$ post and packing. Pp.98. AgfaGevaert, Unity House, Great West Road, Brentford, Middlesex.

Letter from America

Well, the Great Quadraphonic War is still on, with CBS still winning in terms of discs with nearly 300 on the market. It is true that the RCA-JVC group have signed up more record companies and manufacturers recently, but only 30 Quadradiscs have been issued to date. One of the reasons for the lack of acceptance of so-called discrete systems are the difficulties involved in broadcasting - a serious disadvantage for an industry that lives on the "Top Twenty".
Some time ago, the Electronic Industries Association formed the National Quadraphonic Radio Committee to study the problems, The N.Q.R.C. is working closely with the F.C.C. and they are evaluating at least ten systems for quadraphonic broadcasting. CBS claim that the SQ system, with a "logic" decoder, can give as good a separation in practice as any discrete system, but they did have a proposal for the committee. Several hundred f.m. stations are broadcasting SQ records but listeners do not always know which records are SQ and which are not. So, the CBS idea is to amplitude modulate the 19 kHz pilot tone by 40 to 50% to activate an indicator light. The frequency suggested is 593.75 Hz - the 32nd sub-harmonic.
The majority of the other systems are variations of the Quadracast system developed by L. Dorren. The main channel extends up to 15 kHz and it contains the sum of all the audio signals - left and right front, plus left and right rear. A suppressed 38 kHz carrier is used (just as in f.m. stereo transmissions) but the sidebands are in quadrature relationship. In other words, one set of sidebands is in the same phase as the main channel but the other leads by 90 degrees. The 38 kHz carrier is supplied by the receiver and it is locked in phase to each of the pairs of sidebands. The first contains the modulation equal to the difference between the left and right information pairs $\left(L_{f}+L_{r}\right)-\left(R_{f}-R_{r}\right)$ and the second quadrature-related sidehands are modulated with $\left(L_{f}-L_{r}\right)+$ ($R_{f}-R_{r}$). Another sub-carrier is located at 76 kHz (four times the 19 kHz pilot signal) and it is also suppressed, so only the sidebands are transmitted. They carry
the diagonal difference signals $\left(L_{f}+R_{r}\right)$

- $\left(L_{r}+R_{f}\right)$ and thus a correctly designed receiver can reconstitute the original four channels. At 95 kHz there is provision for a sub-carrier used by many f.m. stations to transmit Muzak or other services to subscribers (SCA). At present the SCA band is centred on 67 kHz and the F.C.C. have stipulated that any scheme for quadraphonic transmissions must include provision for SCA.

The Quadracast system has been critized on the grounds that it contravenes F.C.C. regulations by exceeding the allocation but this is based on a misunderstanding. In fact, the regulations merely require that sidebands in the range of 120 kHz to 240 kHz from centre frequency be attenuated at least 25 dB . The Quadracast system has been used on an experimental basis by a San Francisco station, KIOI for some time and the engineers are satisfied that there is no infringement of the regulations.

Now for a look at some of the other systems. First, Zenith: their proposal leaves the SCA band at 67 kHz , but has a quadrature-related 38 kHz sub-carrier like the Quadracast. A 76 kHz sub-carrier is also used but it is limited to the upper sideband and it employs a small 76 kHz pilot signal. Another Zenith proposal is to move the 76 kHz carrier to 90.25 kHz using vestigial sideband modulation, again leaving the SCA band at 67 kHz . A GE proposal uses the same 38 kHz quadrature sub-carrier but the 76 kHz carrier has only a vestigial upper sideband so the SCA band can be transferred to 95 kHz which can be phase-locked to the 19 kHz signal. RCA have two systems, one almost identical to the Quadracast minus SCA (for use by stations not using that service) and a system using the quadrature method, but without a 76 kHz carrier.

Some months ago the prestigious Consumers Union published a report on loudspeakers which is still being discussed by audio engineers. Briefly, what CU did was to use a computer for evaluation: first, power responses were made, using a pink noise signal and taking measurements at 10 -degree intervals in two perpendicular planes. At each angle 30 readings were taken automatically and all these were fed to a computer which was also programmed to make readings of sound power each speaker radiated forward in a 60 -degree cone, as well as total power radiated 360 degrees around the speaker. The computer was used to convert these figures into sones which were then converted into an accuracy percentage. A low-frequency limit of 110 Hz was used because of room variations below that point.

I must admit that when I read thus far, I was appalled because this meant that a speaker with a 15 dB peak at say 7 kHz would get the same accuracy rating as one with several small irregularities. Moreover, the tests did not take into account other factors like transient response, colouration and distortions of various kinds. The speakers tested were small bookshelf types and top scores came out
at 89% accuracy. Interestingly enough, a listening panel agreed with the computer verdict but I am wondering whether a speaker rated at 100% accuracy would really be perfect? I am only asking!

Pay-TV never really got off the ground here but there is a revival of interest in the idea by cable TV companies. Among those involved are Time magazine subsidiaries, the Magnavox corporation, Warner Brothers and other Hollywood concerns. Special programmes such as new films and sporting events will be sent to subscribers who will pay extra for the privilege. How to collect the money? One company will operate on a monthly flat rate basis but others will use more complicated methods such as data cards to disable a set-top scrambling device or having the eager subscriber phone in to an office where his order is booked and a signal is sent back down the line to unscramble the black box. A more expensive arrangement is a two-way system that enables subscribers to send coded information back to the operator over the programme lines. Meanwhile a new society has been formed -- the CPPPWINGF which translated reads: Committee to Protect the Public from Paying for What It Now Gets Free. It is sponsored by the National Association of Broadcasters - who else?
G. W. TILLETT

Corrections

Model Railway Control System

We have been informed by Mr. Cowan, the author of this article, that it may be possible to order the Milliperm Special Super motor through Röwa model railway dealers in the U.K. The Danavox earpiece can be ordered by its type number $4501 /-01$ and has an impedance of 120Ω. One or two small errors occurred in the article: diodes D_{10} and D_{12} should be reversed (Fig. 5), a $0.1 \mu \mathrm{~F}$ capacitor should be connected between $T r_{18}$ base and emitter and a $0.047 \mu \mathrm{~F}$ capacitor across R_{73} (Fig. 6). In the list of ZTX 501 used, Tr_{14} should be included, and Tr_{16}, not Tr_{14}, is TIP 31 or TIP 29. In the last paragraph, the reference to $T r_{4}$ should be $T r_{16}$.

In Linear Voltage Controlled Oscillator in the November issue there are two errors in the connection diagram Fig. 8 (p.568). Pin 14 should be connected to pin 10 (not to pin 11 as shown); and pin 6 should be connected to pin 3. The circuit in Fig. 7 is correct.

World of Amateur Radio

New British
 microwave record

An hour-long 10 GHz contact between portable stations in Scotland and Wales operated by groups of amateurs from Surrey and Middlesex has established what is thought to be a new British distance record for this band. This $212.5-\mathrm{km}$ link was established on September 13 when all-solid state equipment was carried to the summits of Snowdon (3560ft) and the Cairnsmore of Fleet (2300ft) under far from ideal weather conditions with gale force winds, limited visibility and the stations well above cloud base. The wind made it impossible to use the planned dish aerial at the Snowdon station (GW8CKT/P) and a small horn aerial was used. An $81-\mathrm{cm}$ diameter dish antenna was used in Scotland (GM8AZU /P) with its beam heading set using only a simple low-cost plastics compass. Both transmitters were based on Mullard CXY19 Gunn diodes with outputs of about 100 and 120 milliwatts. The receivers used CS10B and balanced BAW 95 mixers with CL8370 local osc. and 70 MHz i.f.

As part of this carefully planned expedition a 3.7 MHz link was used between the two base camps and a 145MHZ link from summit to summit. Contact was maintained at R5 S6/7 for over an hour. The previous British 10 GHz record was 98 miles across the Bristol Channel. The amateur "world record" for the band has for many years stood at 265 miles by American amateurs.

During the period July 28 to August 3 a rare "duct" existed between Hawaii and California and this allowed a number of amateurs to make contacts of over 2500 miles on the 144 MHz band. The frequency, cut-off of the duct varied between about 148 to 220 MHz , occasionally dropping to about 50 MHz , and even longer distances would have been possible if there had been 144 MHz activity in the Pacific area beyond Hawaii.

VHF Pioneer 1933 -
 President 1974

The news that George Jessop, G6JP will be the R.S.G.B. president for 1974 (he will be officially installed at a gathering at the Bonnington Hotel, London WC1
on January 4) recalls some notable experiments in aircraft radio communications in which he played an important role in May and June 1933. The publicity that surrounded these experiments -believed to have been the first time that v.h.f. was successfully used in the, U.K. for radio contacts between two aircraft in flight and between aircraft and the ground - may well have been one of the prime reasons that the RAF entered World War II with v.h.f. radio in its fighter aircraft.

The leading roles in these experiments, in which a number of amateurs participated, were played by the late Douglas Walters, G5CV, then radio correspondent of The Daily Herald and George Jessop, G6JP in two specially chartered Dragon Moth aircraft. This followed an earlier flight by Douglas Walters in May when he made radio contact with G6JP at Hammersmith and several other stations using the old 56 MHz amateur band. For these flights the transmitter power was between 4 and 7 watts using batteries; reception was by means of three-valve super-regenerative receivers but because of the high level of ignition interference the aerials were disconnected from the receivers!

George Jessop was initially licensed as 2AYP in 1929, and then obtained the radiating permit G6JP in 1930. Until his retirement in 1971 he spent his working career in the valve industry, with the M-O Valve Company. His lifelong interest in v.h.f. is reflected in his book VHF /UHF Manual, one of several publications he has written and compiled on amateur radio subjects.

Another notable first is recalled, less happily, in the recent death of Don Mix, W1TS who in 1923-24 was operator of WNP ("Wireless North Pole") on board the schooner Bowdoin with the MacMillan Arctic Expedition -- the first of the major expeditions for which amateurs supplied radio communications. So successful was WNP that on his return Captain MacMillan predicted that "no polar expedition will attempt to go North again without radio equipment".

Box 88 Moscow

One of the most famous addresses in amateur operating is Box 88 Moscow, the headquarters of the Russian QSL Bureau and of the Radio Sports Federation
the national society for -amateurs in the U.S.S.R. Following a recent visit to Moscow, J. L. Carrell, ZL1HL has described in Break-in his impressions of the club headquarters about 9 miles from Red Square and where there is a full-time staff of eight. The club occupies nearly 1800 sq.m. of floor space on two or three levels and includes a library of 48,000 reference books plus 12,000 technical articles, a reading room, a lecture theatre, a small lecture room, a laboratory and a workshop. The QSL bureau handles some 2.5 million cards annually and is manned by four of the staff. A headquarters station (about 35 km away) has 1 kW transmitters on each of the
five h.f. bands and a 144.5 MHz beacon transmitter. The U.S.S.R. has about 46,000 licensed operators and some 4500 local radio clubs. Mr Carrell received the impression that the club, like sports groups in the U.S.S.R. and other East European countries, receives substantial financial support from the government.

In the air

The A.R.R.L. has asked the F.C.C. to extend until February the time for submitting comments on the proposed use of 224 to 225 MHz for a new Class E Citizens Radio Service, pointing out that the League is unalterably opposed to this proposal and that it is concerned with the ever-increasing invasion of the 28 MHz amateur band by unlawful operation in and adjacent to the 27 MHz Class D citizens band.

Amateurs wishing to set up temporary stations on any of the islands within the Bailiwick of Guernsey must now give at least 48 hours notice to: The Development Controller, Development Division, States Telecommunication Board, PO Box 3, St Peter Port, Guernsey, telephone Guernsey (0481) 24211.

The R.S.G.B. education committee has offered to assist instructors providing courses for the Radio Amateurs Examination on an individual basis. Instructors having queries or requiring advice or assistance should write to the chairman: D. M. Pratt, G3KEP, 30 Lyndale Road, Bingley, Yorkshire BD 16 3HE.

An Australian "intruder watch" has revealed over 100 non-amateur stations in the $7,14,21$ and 28 MHz bands. As in Europe, the most serious problem appears to be the broadcast stations and their associated jammers operating in the amateur section of the 7 MHz band.

In brief

The R.S.G.B. has awarded the 1973 Calcutta Cup for the encouragement of international friendship to F. W. Fletcher, G2FUX of Ringwood, Hampshire. The Rotab Cup goes to E. A. Trowell, G2HKU - this cup, presented originally by Gerald Marcuse, G2NM, is for the encouragement of long-distance operation and recalls the one-time Royal Order of Transatlantic Brasspounders . . . At least two American amateurs have now succeeded in working all American states (including Hawaii and Alaska) through the Oscar 6 satelite . . . East Germany and West Germany now count as separate countries for the DXCC award . . . In connection with the recent item on early communications receivers, C. B. Raithby, G8GI mentions that he still has a pre-war Hammarlund HQ120X in regular use. It has only ever had two faults and outperforms many modern receivers! . . . The 1974 mobile rally of the Amateur Radio Mobile Society at RAF Cosford in Shropshire will be held on Sunday, May 19 and those wishing to take part in the trade show should get in touch with W. S. Barwick, 34 Malvern Road, London N8 0LA.

PAT HAWKER, G3VA

New Audio Products

Equipment seen at the 1973 Audio Festival and Fair

Sansui demonstrate i.c. decoder

The Sansui Variomatrix decoder is now available in integrated-circuit form. The decoder chips are available on an o.e.m. basis and makers have the option of using either three or four chips on the basis of Variomatrix adjacent-speaker separation of 12 or 20 dB . The technique relies on a psychoacoustic phenomenon of directional masking. Crosstalk is decreased (to 12 or 20 dB from 3 dB) for prominent signals at the expense of crosstalk for the less prominent signals, it being claimed that directionality of the weaker sounds is masked by the presence of stronger sounds. The technique can also be applied to conventional stereo sources and to SQ records, as exemplified by the QRX series of receivers. The effect certainly seems to give better results than the basic 3 dB matrix used in earlier Sansui equipment.

Sansui disclose that three U.K. makers have so far taken out licences for the technique - Armstrong, Quadrasonics and Millbank. Two further record companies are using Sansui coding Vox (USA) and ERato (France).
As well as the QRX line of Variomatrix receivers Sansui have a new Variomatrix amplifier QA-7000 intended both for converting a two-channel system into a fourchannel one, or for starting from scratch.
Sansui, 39, Maple St., London W.1.
WW 361 for further details

New British integrated amplifier

Since its introduction in August, the Harrison S200 integrated amplifier has created much interest on the Continent and was given its first press demonstration in London during, though not at, the Audio Fair. Designer Mike Harrison has provided 200 watts total output (into four ohms) to cater for foreseeable loudspeaker requirements from an attractive free-standing unit measuring only about $430 \times 270 \times 85 \mathrm{~mm}$. In addition to bass, treble and low-pass filter slope controls, a middle-range control is included, claimed to be preferable to the adoption of graphic equalizer systems.

Other features include i.c. pre-amplifier stages, illuminated signal-source selection with touch switches and l.e.d. VU output meters. Full electronic protection of the output stages is included. Power bandwidth is 10 Hz to 40 kHz at less than 0.1% harmonic distortion continuously rated. Construction includes a toroidal mains transformer and most of the circuitry is on plug-in boards. Manufactured by Harrison-Chapman Ltd, the amplifier retails at $£ 169$ plus v.a.t. Next product will be a tuner of similar high-quality construction and specification.

Available only from selected dealers, the S200 is distributed in the U.K. by Gimar Ltd and exported by Expotus Ltd, both of 10 Museum St, London WC1.

WW 362 for further details

Trio CD-4 demodulator uses p.l.1.

Model KCD-2 demodulator for the CD-4 system is a plug-in module for the latest "two-four" Trio receivers, KR-6340, 7340, 8340 and 9340 . Unlike earlier CD-4 demodulators, this unit uses phase-locked loop i.cs for increased sensitivity to carrier level. It requires external equalization.

The i.cs are followed by a muting circuit, operated by a separate carrier detector, that automatically switches the two-/four-channel function, previously manual. Remainder of the circuit is mainly to compensate for the noise reduction technique applied during recording. UK distributors - B. H. Morris \& Co, Ltd, Trio House, The Hyde, London NW9 6JP.

WW 363 for further details.

Stylus Timer

Distributed through Highgate Acoustics, the Pickering stylus timer represents a fascinating spin-off from space technology. The device consists of a small mercury coulometer which is activated every time the tone arm is removed from the arm rest. An indicator dot, easily read, travels along a mercuty filled, hermetically sealed capillary tube at a rate proportional to the flow of electric current through the instrument. The power source is a small mercury battery.

The scale, divided into 100 hour increments will read up to 1000 hours and is easily re-zeroed at any time within the 1000 hour period. At the end of the full scale movement of the dot, movement can be reversed and the scale switched around for the second period and so on. The makers claim an indefinite life for the timer which is priced at £6.75 plus v.a.t. Highgate Acoustics, 38 Jamestown Rd., London NW1.
WW 354 for further details

Rotel RA-611 amplifier

Successor to the RA-610, this new model provides tape dubbing, tuner, two disc and two auxiliary inputs. Control layout is well engineered with a rotary control for selection of speakers (output for two sets), monitor, input selection and volume, slide control for left and right bass, left and right treble and balance. Pushbuttons provide power, low filter, high filter, tone defeat, mode, loudness and muting.
Brief specifications:
Power rating
30W r.m.s. into 8Ω . with 0.5% t.h.d. at 1 kHz
Power bandwidth 5 to $55,000 \mathrm{~Hz}, \mathrm{IHF}$ at 8Ω ?
Frequency response 5 to $100,000 \mathrm{~Hz}$, -3 dB at 8Ω
Signal to noise ratio phono 65 dB ăux 70dB tuner, tape in 70 dB
Damping facto 35 at 8Ω -10 dB at 10 kHz
-10 dB at 50 Hz
phono
$2.5 \mathrm{mV} / 47 \mathrm{k} \Omega$
tuner
$150 \mathrm{mV} / 40 \mathrm{k} \Omega$
aux $150 \mathrm{mV} / 40 \mathrm{k} \Omega$
tape monitor in
$230 \mathrm{mV} / 47 \mathrm{k} \Omega$
main amp in
$800 \mathrm{mV} / 33 \mathrm{k} \Omega$
Phono overload
over 100 mV
Price

Rank Audio Visual, P.O. Box 70, Great
West Road, Brentford, Middlesex.
WW 352 for further details.

Sinclair Project 80 modules

Project 80 is a replacement for the Project 60 series of modules and comprises a pre-amplifier and control unit, and active filter unit, two power amplifiers, three power supply units and the Project 80 f.m. tuner and stereo decoder. Details of each unit are as follows:
Pre-amplifier and control unit include separate tone and volume slide controls for each channel, radio and tape inputs and provision for magnetic and ceramic pick-ups. Price is $£ 11.95+$ v.a.t. The active filter unit provides an h.f. cut-off of $12 \mathrm{~dB} /$ oct at 22 kHz to 5.5 kHz , and 1.f. cut-off of 22 dB at 20 Hz . Price is $£ 6.95$ + v.a.t. The $\mathbf{Z 4 0}$ and $\mathbf{Z} 60$ power amplifiers retail at $£ 5.45$ and $£ 6.95$ inclusive of v.a.t. Unit Z40 provides an output of 15 W r.m.s. into 8Ω while the $Z 60$ will deliver 25 W .

A choice of three power supply units is available. Priced at $£ 4.98+$ v.a.t., the PZ. 5 provides 30 V unstabilized, PZ. 635 V stabilized and PZ. 845 V stabilized without mains transformer. Both the PZ. 6 and PZ. 8 retail at, $£ 7.98+$ v.a.t. The Project 80 f.m. tuner (£11.95+v.a.t.) and the stereo decoder (£7.45 + v.a.t.) modules are separate items. The tuner provides a tuning range of $87-108 \mathrm{MHz}$ and distortion is claimed at 0.3% at 1 kHz for 75 kHz deviation. Channel separation of 40 dB and an output of 150 mV are provided by the stereo decoder. Sinclair Radionics Ltd., London Road, St. Ives, Huntingdonshire PE17 4HJ.
WW 356 for further details

N.E.A.L. cassette recorder

A new British cassette recorder, by North East Audio was shown at Olympia for the first time this year. Called the Model 102 and illustrated in cut-away form, in the photograph, this machine uses the well known 3M Wollensak heavy duty mechanism and all-British electronics.

Capable of recording on both CrO_{2} and the normal ferric oxide cassettes, a frequency response of 35 Hz to 15 kHz , $+1 \mathrm{~dB}-3 \mathrm{~dB}$ is claimed, using the former cassette. Distortion is said to be less than 0.1% from any input to the head for an input of 80 mV on the high level line input.

Signal metering is achieved with twin programme meters reading both positive and negative peaks. They indicate the true pre-emphasized recording signal and the equalized playback signal and have a circuit rise time of 2 ms and a fall time of 200 ms . North East Audio Ltd., 5 Charlotte Square, Newcastle upon Tyne NE1 4XF.
WW 359 for further details

Cassette deck

Uher have developed a new mains powered cassette deck which uses the mechanism of the now well established CR124 portable machine. Providing record and playback facilities which meet the high fidelity standard DIN 45500, it will accept either CrO_{2} or ferric oxide tapes.

Dolby " B " noise reduction is a feature which brings a claimed signal-to-noise ratio (DIN weighted) of 56 dB with the noise reduction circuit switched in and using CrO_{2} tape.

An integral power amplifier will give 10 W per channel, continuous sine wave and when the mechanical system is switched off, the unit will function as a conventional hi-fi amplifier.

Three motors are fitted, two for winding and a Pabst synchronous hysteresis type for the capstan. Since the unit is solenoid controlled, a remote control facility is also offered which gives all the normal controls plus function indicator lights, headphone socket and a volume control. Price will be about $£ 384$ plus v.a.t. and the first

WW 352

WW 362

WW 359
production should reach the U.K. by Easter 1974. Bosch Ltd, P.O. Box 166, Rhodes Way, Watford WD2 4LB, Herts.

WW 355 for further details

Tripletone Hi-Fi 1818 Mk II

The new 1818 from Tripletone represents one of the best performance stereo amplifiers at the lower end of the price range. Dual concentric tone controls, bass mid and treble, now operate active circuits and additional circuitry includes output protection. Price is $£ 48.50+$ v.a.t. and brief specifications are:
Rated power 20 W r.m.s. at 1 kHz into 8Ω both channels driven T.h.d. $<0.08 \%$ at rated power
Signal to noise better than 70 dB all inputs
Tone controls bass $40 \mathrm{~Hz} \pm 17 \mathrm{~dB}$
mid $1 \mathrm{kHz} \pm 8 \mathrm{~dB}$
treble $14 \mathrm{kHz} \pm 13 \mathrm{~dB}$
Input sensitivity magnetic $47 \mathrm{k} \Omega / 2.5 \mathrm{mV}$ ceramic $47 \mathrm{k} \Omega / 30 \mathrm{mV}$ tuner, tape $47 \mathrm{k} \Omega / 100 \mathrm{mV}$
Input overlead 26 dB all inputs.
K. \& K. Electronics Ltd.. 60 St. Mark's Rise, London E8 2NR.
WW 357 for further details

Record Cleaner

The prototype of a fascinating record cleaner to be marketed under the brand name of Colton, was shown on the Musonic stand. Detailed photographs of the fairly complex device are below. A small rubber rimmed wheel bears on the record label and transmits drive from the disc to a plastic belt which travels across the record surface. Being electrostatically charged, dust is attracted to the belt which is then wiped clean by a felt pad held in a clip on the upper section of the belt.

Dust embedded in the record grooves is loosened by a velvet pad which tracks across the disc, from edge to centre. This, in turn, is finally picked up by the electrostatic belt. Musonic Ltd, 34-38 Verulam Rd., St. Albans, Herts AL3 4DF.
WW 360 for further details

Record brush

Decca Special Products have designed a record brush of rather novel appearance which is claimed to be an alternative solution to using nylon fibre pads. The record cleaner consists of an electrically conducting arm wired to earth carrying a brush made from a new, electrically conductive fibrous material.

It has a self adhesive pad which readily adheres to most surfaces or can be screwed onto the motor board. Adjustable for height it can be used with turntables which are flush or a little below the motor board and up to a height of 1 in. No arm rest is required since a magnet holds it in the parked position. Price $£ 4.50$ plus v.a.t. Decca Special Products, Ingate Place, Queenstown Rd., London SW8.
WW 353 for further details

Receivers with built-in CD-4 demodulators

Latest Pioneer four-channel line of receivers feature built-in CD-4 p.1.1. demodulators as well as SQ and QS /RM decoders. The QX-4000, however, omits the CD-4 demodulator and provides 10 watts per channel, all driven. The QX646 is similar, but includes the demodulator. The QX-747 and QX-949 are more powerful and elaborate receivers. Both claim an i.f. rejection of 100 dB , an image rejection of 85 dB and a 38 kHz rejection of 65 dB . The 747 has a power output of 20 watts per channel, all four driven, and the 949 40 watts (into eight ohms). Both claim an harmonic distortion of 0.05% at the one watt level. Other notable features include an output socket for connection of a decoder for three- or four-channel broadcasts, and a display for showing levels of the four amplifiers. In this, lengths of illuminated lines indicate power,

WW 360
governed by a moving-coil shutter fed with d.c. obtained by rectifying power amplifier output. U.K. distributors Shriro (UK) Ltd, 42 Russell Square, London WC1B 5DF.
WW 364 for further details

Latest Trio "two-four" receivers feature decoders for both SQ and QS/RM. Provision is made for adding an external CD-4 demodulator to the KR-5340, but for the KR-6340, 7340, 8340 and 9340 a new demodulator using phase-locked loop detectors can be plugged into the sets. All sets can be used in the twochannel mode with a little more than double power output per channel. Nominal output powers per channel for the series into an eight-ohm load and with all channel driven is $10,15,20,25$ and 40 watts respectively. Trio couldn't resist the temptation of quoting IHF dynamic output power in their spec. sheets e.g. 340 watts for the KR-9340 into four ohms! In stereo the power per channel is roughly double plus 25%. A feature claimed to be exclusive is a "double switching" stereo decoder, in which the 38 kHz transformer appears to have two secondaries, feeding two diode bridges. All the tuners claim an IHF sensitivity of about $2 \mu \mathrm{~V}$. UK distributors B. H. Morris \& Co. Ltd., Trio House, The Hyde, London NW9 6JP.

WW 365 for further details

Two Sanyo receivers include decoders for RM and SQ. The DCX3000 provides 10 watts per channel (at the 10% distortion level) and the DCX3300 provides 20 watts per channel. Neither incorporate the "2-4" synthesizer function of the earlier DCA1700. It is not possible to say whether the RM decoder uses phaseshift circuitry as the matrix circuits are omitted from the service manual, but we expect it does. Sanyo Marubeni (UK) Ltd, Sanyo House, Bushey Mill Lane, Watford WD2 4UQ.
WW 366 for further details

New Products

Screwholding screwdrivers

Thunder Screw Anchors Ltd announcean addition to their range of screwdrivers by the introduction of four screwholding screwdrivers. Two are suitable for slotted head screws and two for recessed head screws, their dimensions being $8 \frac{1}{2}$ in and $9 \frac{1}{4}$ in overall length, $\frac{3}{16} \mathrm{in}$ and $\frac{1}{4}$ in blade diameter respectively. The screw is firmly held at the tip of the screwdriver by sliding the spring loaded shank over the head of the screw, leaving one hand free to hold the article to be fixed. It is claimed that it is possible to fix screws in the most difficult of places, where to hold a screw in the hand might normally be impossible. Thunder Screw Anchors Ltd, Victoria Way, Burgess Hill, Sussex RH15 9NF.
WW 311 for further details

An 18mm vidicon

The Electron Tube Division of EMI Electronics Ltd, has introduced an 18 mm vidicon, type 9831. It is designed to operate in standard 18 mm scan and focus coil assemblies and is primarily intended as a direct replacement in existing compact television cameras.
The vidicon features a low wattage heater and separate mesh construction.

This offers better shading characteristics and improved sensitivity over previous models. Specialized formats will include non-browning faceplate versions for use in fields of nuclear radiation. A version with a fibre optic faceplate for direct coupling to an intensifier, eliminates the need for an intermediary coupling lens, providing a much higher light transmission. An ultra-violet sensitive target layer will be available for use in microscopy and for inspection of items which are surrounded by intense red heat. Because this has negligible dark current, it permits the signal current to be integrated over a period of time and enables the tube to be used for low light scientific purposes. Electron Tube Division, EMI Electronics Ltd, 243 Blyth Road, Hayes, Middlesex.

WW 309 for further details

Automotive pressure module

A self-contained solid state pressure module, developed for the automotive industry, is now available in engineering quantities from Fairchild Camera and Instrument Corporation.

When connected with a pressure source, such as the engine's intake manifold, the module provides an analogue voltage that is linearly proportional to the absolute pressure at the source. This voltage can serve as a control signal for electronic fuel injection, ignition control or other systems, or it may play a part in reducing exhaust pollution. The module is among the first of a series of self-contained sub-systems being developed for automotive use by Fairchild.

The module contains a single crystal diffused silicon strain gauge with a selfcontained zero-pressure reference chamber. There are two linear operational amplifiers for temperature compensation, offset adjustment and scale factor control, and a single-chip voltage regulator. The assembly uses thick-film techniques. It is packaged in a moulded unit with built-in mounting flanges and the only connections needed are for power, ground and output.

In addition, of course, a tube connection must be made to the pressure source. The finished unit measures approximately $2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{4}$ in and operates from power supplies ranging from 8 to 32 V over a temperature range of zero to $200^{\circ} \mathrm{F}$.

Although the transducer was developed primarily for monitoring manifold pressure of internal combustion engines it has a variety of other applications: altitude or fluid level sensing, environmental control, monitoring of air conditions, coolants or bottled gas reservoirs and pressuresensing in aircraft instrumentation or process control systems. Fairchild Camera and Instrument Corporation.

WW 310 for further details

Miniature drill

The "Mini-Drill" type D-1 now available from Guest Distribution Division has been designed for drilling prototype p.c. boards and could be handy for use in laboratory, home, or in the field by service personnel. Each D-1 Mini-Drill is supplied complete with battery pack accepting four HP7 type batteries, a combined chuck key/ centre punch and a 1.0 mm diam. drill. Size of D-1 drill is $41 \times 181 \mathrm{~mm}$, weight is 264 g (inc. batteries), and the chuck accepts drills from 0.8 to 1.4 mm diam. For constant use, an adaptor type AD660 (available as an extra) can be supplied giving 6 V at up to 600 mA output for $240 \mathrm{~V}, 50 \mathrm{~Hz}$ input. Additional applications for the drill include clearing of solderedthrough holes in p.c. boards, model making, plate making and correcting. Guest. International Ltd, Redlands, Coulsdon, Surrey CR3 2HT.
WW315 for further details

Radio Microphone

The "Olympian" hand held, wide-band radio microphone from SNS Communications Group has been developed to meet the G.P.O. specification No.W6490. The hand held combined microphone and transmitter unit weighs $7 \frac{1}{2} \mathrm{ozs}$, and needs

WW 315
no leads or connections whatsoever. The modular design incorporates a new AKG electret microphone head type CE5 with adjustable sensitivity, and has a rechargeable battery and a recessed on /off switch with miniature indicator lamp to eliminate inadvertent switching whilst in use. Complete wide-band operation is achieved with a deviation of $\pm 75 \mathrm{kHz}$ and frequency stability of 0.005%. The unit is readily converted, if required, to a pocket transmitter for use with a lavalier microphone.

The four-channel receiver is fully crystal controlled for precise drift free operation and absolute reliability. A transmitted carrier indicator is incorporated to confirm that the transmitter is operational. A choice of mains or battery operation is available and an integral charger has been incorporated for recharging the transmitter battery. Any one of four output impedances are selectable and both audio output level and battery level are indicated by a multi purpose meter. Output volume levels are controlled by a single rotary switch enabling levels from zero to maximum to be obtained, a jack socket is provided to enable audio monitoring facilities to be used. A shoulder slung carrying case is available for fully portable operation. SNS Communications Ltd, 851 Ringwood Road, Bournemouth, BH11 8 LN .
WW 305 for further details

25W marine radiotelephone

A marine radiotelephone specially designed to cater for the requirements of operation on board warships as well as for merchant marine installations is announced by Racal Communications Ltd. To be known as the TRA. 961 , it is a fully synthesized

WW 316

25 W equipment covering all international and private channels with facilities for limiting the number of private channels, if required. Capable of operating in simplex, duplex or two-frequency simplex modes, as automatically determined in the channel selection, the TRA. 961 provides operator selection on the private channels. Channel spacing is 25 kHz with transmitter and receiver both covering 156.00 to 158.825 MHz and the receiver also having a 160.625 to 163.425 MHz capability. A "dual watch" facility monitors any two selected channels and is automatically initiated when the handset is returned to its rest position. The basic installation consists of the transceiver unit, control unit-bulkhead or bench mounted - and two dipole antennas. Up to 5 control units can be used, giving full operational facilities at each position, with one position as "Master" taking priority over the others. Racal Communications Ltd, Western Road, Bracknell, Berks RG12 1RG.

WW3 16 for further details

TV aerial level meter

With the recent rapid increase in the development and sales of colour television sets it has become necessary to measure aerial parameters to a much higher specification than was previously required.

Siemens have developed the SAM 3901 series of level meters as a valuable aid to all concerned with installation, testing and development of televisions and allied equipment. These all solid state testers provide a complete analysis of the television picture signal, assisting the instalation engineer in the measurement of r.f. levels, noise and distortion, gain attenuation, echoes and reflections.

WW 314

WW 305

Using a selective detection system, the SAM 3901 allows for on-line measurement of amplifiers, split pads, filters etc, to determine the source of noise overloading or to perform general fault finding tasks. Working in the frequency bands 40 $100 \mathrm{MHz}, 40-270 \mathrm{MHz}$ and $470-890 \mathrm{MHz}$, these Siemens level meters provide for the measurement of all TV systems as per C.C.I.R. Rep 308-1. The power supply can be either from mains, dry cell or rechargeable nickel-cadmium batteries.

The instrument has been designed for portable use, enabling measurements to be taken in situations where a mains supply is inconvenient or impractical, such as at rooftop level. The carrying case is light but robust, specifically designed to provide ease of handling as well as adequate protection. Siemens Ltd, Great West House, Great West Road, Brentford, Middlesex.
WW307 for further details

Rotary switch

The Feme series 5922 , miniature panelmounted rotary switch is available in versions giving up to 6 -pole, 12 -way operation. The switch is made with gold contacts in the professional version, either hermetically sealed or with adjustable stop, and as an economic version with silver contacts, not sealed, with or without adjustable stop. The units are moulded in diallyl phthylate, rated at 0.3 A at 220 V a.c. or 1 A at 30 V d.c. Units are 19 mm diameter and maximum length for a 6 section unit is 46 mm behind the panel. FR Electronics Ltd., Switching Components Group, Wimborne, Dorset. WW3 14 for further details

WW 307

Write to SME Limited
Steyning • Sussex • England Telephone:
Steyning (0903) 814321

- BRITAN'S PASTEST SERVICE -

component specialists for the discerning amateur and professional

The background music machine.

For people who want the right kind of music behind them, one name comes immediately to the fore. It is TOA - with their versatile PA-100 background music machine. This compact and easy-to-install machine plays standard 8 track cartridges, gives a programme lasting from 60-80 minutes, and can be played continuously if required. It also incorporates a solid state 15 W P.A. Amplifier with 100 V line output and provision for microphone and record player. It's ideal for use in hotels, bars, amusement and bingo halls and shops where it can also be used to sell as well as entertain. Get in touch with us. And we'll play over all the benefits to you.

Goldring Ltd.
10 Bayford Street, Hackney, London E83SE.

WW-093 FOR FURTHER DETAILS

Si451 Millivoltmeter
$\star 20$ ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:
\star very low distortion content-less than . 05%
\star an output conforming to RIAA recording characteristic
\star battery operation for no ripple or hum loop

* square wave output of fast rise time
$\mathbf{£ 4 0 . 0 0}$
also available

Imaginary
 by "Vector"

Of Mice and Men

Apropos the Odd Ode in the October issue, my One Regular Reader has written a reproachful letter. Nobody, he says, would be so daft as to design an electronic mousetrap. Well, I'm sorry O.R.R. but I have news for you. I once did.

At that time I was on the payroll of a huge international corporation, hereinafter abbreviated to HIC. Now, one of the joys of working for HIC was that if you were stupid enough to get at crosspurposes with the hierarchy, they didn't sack you; instead they posted you to one of the farthest-flung outposts of their empire - and, believe me, HIC have a choice selection of ropey far-flung outposts.

The one I collected for my sins was a sort of special offer in postings. Having no wish to go to the Tower and be shot, I won't tell you where it is, so let's just say it was in Fridgeland. Here, in due course, a helicopter set me down on a plateau in the mountains in a temperature that was giving the aurora borealis chilblains.

For all that, I wouldn't have you think that I was condemned to the life of Nanook of the North. Not at all. Although woefully short on dancing girls, the station otherwise provided most of the creature comforts. The Fridgelander engineers who staffed it were a good bunch, with hospitality their guiding star; in short, my three-months' stint didn't seem too bad to contemplate.

Then I met Enoch. It was in the small hours of the night; I was alone in the office they'd given me, trying to unravel some HIC blueprints which, as always, bore little resemblance to the transmitters I was modifying, when Enoch materialized from nowhere in particular. He was about the same size as a British house-mouse but instead of being brown all over, some Mendelian misadventure in his ancestral past had given him a white head and chest.

I took to Enoch at once. I opened up a cheese sandwich and laid a meal for him in a far corner, apologizing for the Fridgelander cheese, which is pretty awful stuff. Enoch didn't mind; before I'd got back to my chair he was chomping away heartily. Before a fortnight had passed he was taking his elevenses on the top of the desk and we were having long discussions on
the iniquities of blueprint draughtsmen.
Sad, indeed, that idylls don't last. Enoch, I discovered, had a fault. He was a blabbermouth who must needs go and spread the word around in the stark world outside of the Hilton paradise he had found within. What pained me most was the nature of his mouse associates. Delinquents is the word that springs to mind. Common brown yobbos, uncouth and of insanitary habits. There were so many of them that frequently Enoch had to muscle his way through the rabble to get to the desk.
Enough was enough; there was, I knew, no station cat so I went to the stores and demanded mousetraps. The Fridgelander storeman's face registered stony noncomprehension. I consulted my dictionary but its compiler, foolish fellow, had evidently harboured the delusion that the country was mouseless. In despair I drew a sketch of a spring-back trap. Success! The storeman's honest face glowed with total awareness as he ferreted under the counter and triumphantly produced an ancient brass double-pole, double-throw, breaker switch. I never was any good at drawing.

I tried again, this time in pantomime. The storeman watched, fascinated, as, with the counter for a stage, my righthand fingers became the spring of a trap and the left ones gave a virtuoso performance as a mouse. Intoxicated with the wine of Thespis I gave an encore, while the storeman continued to stare hypnotized at my dancing fingers. Then reluctantly his glazed eyes met mine.
"Not bloody doings!" he said crisply, and slammed the hatch shut.

Back in the office the hoodlums were holding a rave-up. I sat down there and then and designed a trap. In concept it was a simple device; just a hollow wooden cube with 9 in. sides, with a hinged lid. A mousehole was cut in one of the sides, near the box floor; on the floor itself were two flat watch-spring spirals of bare wire, one inside the other and separated by about $\frac{3}{8} \mathrm{in}$. These spirals ended lin. from the middle of the box floor.
The theory was simple, too. The idea was that you put a lump of cheese in the open space in the middle and then connected one spiral to one side of the mains supply and the other to the other side. A mouse comes jiving past the hole, smells cheese, applies anchors and enters. Feet complete circuit - pffft! - exit mouse to them thar great cheese-pastures in the sky. As a design proposal it looked good; cost: negligible; cheese consumption: nil; power consumption: nil, except when in action.

Besotted with the killer instinct, I knocked up six Mk I traps, and not until then did I realize that I might well be victim number one unless I fitted a safety cutout switch to each lid. At the same time it occurred to me that the aroma of six frying mice might be a shade overpowering, so I added a 20 -second delay trip to the mains input. The modifications bumped up the price of the Mk II but, after all, that's a design norm.

At this point my exultation vanished as I saw myself for the Judas I was. For, not only was I going to annihilate the riff-raff but I was assuredly going to send my chum Enoch to the hot seat as well. So - back to the drawing board.

Clearly, an Enoch-discriminating circuit had to be introduced, otherwise it was no way, man. In the event, it wasn't difficult; Enoch had a white front and the hoi polloi didn't, so all I had to do was to equip each box with a light-beam, a photocell, a small amplifier, a relay and a shutter. A brown mouse wouldn't reflect enough light to affect the photocell, but Enoch would, and this would operate the shutter to seal off the entrance. (I figured that he'd have enough gumption not to. back into the hole.) The idea was simple, but expensive. Just normal R and D procedure, I told myself, and anyway it wasn't as bad as Concorde.

So I indented upon the station stores for photocells and - yes, you've guessed it - it was "not bloody doings". Not one in the place. I should have called off the Mk III there and then, but having gone so far it seemed a pity to stop. Anyway, I cabled the firm asking for nine photocells (three spares), adding VERY URGENT. Then I sat back and waited. And waited. And waited, whiling away the time by sending further impassioned cables at intervals. Somewhere, far away in England, the mighty HIC stores machine was at work. I could imagine my requisition curling up to sleep for a fortnight in Bloggs's In-tray because Bloggs had got the 'flu. I could see it going into selfoscillation between the desks of Figgs, Twiggs and Jiggs because of minor irregularities in the ordering procedure and then coming to an untimely grave in the entrails of a computer.

The weeks dragged by and soon I had to sidle into my office armed with a whip and a chair. Then, unaccountably, Enoch disappeared; perhaps he departed this life from an overdose of cheese; perhaps he got mugged by the skinhead element among his low associates. I was never to know, for the very next morning I got a cable from the firm saying, in effect, come home, my son, all is forgiven. (Later, I found that they'd dreamed up an even scalier posting for me on a snake-and-mosquito-infested island in the tropics.) However, I shook the snow of Fridgeland off my boots; when last seen, the mouse hoodlums had converted the office filing cabinets into high-rise flats and were constructing love-nests from chewed-up blueprints.

I never cancelled the photocell order - have you ever tried to get the stores machinery into reverse? This all happened a few years ago, so they've probably arrived by now. Anyway, if you ever have the misfortune to go to that station and happen to have need of a photocell, you can approach the storeman with every confidence. He'll have nine that he doesn't know what to do with.

A Happy Christmas to you when it comes!

General index

Volume 79, January—December 1973

General index is followed by classified and authors sections. The classified index is divided into the following sections: audio and acoustics; circuit ideas; circuitry and circuit design; communications; constructional designs; domestic equipment; editorials; education and instructional; exhibitions and conferences; letters to the editor; measurement and test; news of the month.

A.C. voltage regulators, R. Thompson, 339 July ABOUT PEOPLE 50 Jan., 90 Feb., 130 Mar., 210 Apr., 252 May, 356 July,
Active Filter crossover networks, D. C. Read, 574 Dec. Amplifier, audio power, P. L. Taylor, 301 June
Amplitude response, predicting, A. J. Key, 585 Dec.
Analogue modulation, unusual forms of, R. C. V. Macario, 281 June
ANNOUNCEMENTS 37 Jan., 89 Feb., 129 Mar,, 176 Apr., 258 May, 290 June, 354 July, 391 Aug., 434 Sept., 505 Oct., Dec.
Applications of the high-standard l.f. source, J. M. Osborne, 316 July
Approach to audio amplifier design, J. R. Stuart, 387 Aug., 439 Sept., 491 Oct., Letters, 451 Sept.
Audio Engineering Society, convention of the, 189 Apr.
Fair, International, 545 Nov.
magnetic recorder heads, at, 616 Dec . magnetic recorder heads, B. Lane, 126 Mar . Apr. tape, the compatibility of, B. Lane, 199 Apr.
prod amplifier, P. L. Taylor, 301 June
-- products, new, 220 May
Automatic noise-limiter, P. Hinch, 547 Nov.
"B.B.C. Engineering - 1922-1972", 37 Jan.
Berlin, entertainment electronics at, 541 Nov., pictures 577 Dec .
BOOKS RECEIVED, 38 Jan., 93 Feb., 136 Mar., 211 Apr., 230 May, 305 June, 344 July, 383 Aug., 426 Sept., 482,514 Oct., 569 Nov., Dec
British participation in ESRO-4, 43 Jan.
Broadcasting, traffic information, 238 May
CIRCARDS, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 4: A.C. measurements, 18 Jan., 5: Audio circuits, 85 Feb., 6: Constant-current circuits, 234 May, 7: Power amplifiers, 291 June, Letters 590 Dec, 8: Astable circuits. 345 July, 9: Optoelectronics: devices and applications, 435 Sept., 10: Micropower circuits, 495 Oct., 11: Basic logic gates. 557 Nov,
CIRCUIT IDEAS, 31 Jan., 84 Feb., 142 Mar., 191 Apr., 253 May, 284 June, 337 July, 373 Aug., 515 Oct., 560 Nov., 605 Dec.
Colour telephoto system, J. H. Smith, 214 May
"Communications of the future, 117 Mar . $74^{\prime \prime}-\mathrm{call}$ for papers, 499 Oct.
total, E. J. Gargini, 420 Sept., 506 Oct.
Complementary m.o.s. integrated circuits, P. A. Johnson, 395 Aug., Letters, 497 Oct., 533 Nov., 590 Dec.
Component Show, London Electronic, 236 May, Products seen, 362 July
Components Exhibition, Paris, 297 June
CONFERENCES AND EXHIBITIONS, 22 Jan., 93 Feb., 117 Mar., 190 Apr., 459 Sept.,
Contrast expansion processor, R. J. H. Brush \& P. E. Bayliss, 611 Dec.
Convention of the Audio Engineering Society, 189 Apr.
Counter prescaler, $200-\mathrm{MHz}$, D. J. Taylor, 27 Jan.
Crossover networks, active filter, D. C. Read, 574 Dec.
D.C. multimeter, simple transistor, J. D. Pahomoff, 39 Jan. Darts game calculator, 494 Oct.
Darts game calculator, 494 Oct.
Demodulator, solid state teleprinter, R. W. Addie. 77 Feb., Letters, 247 May, Correction, 186 Apr.
Design criteria for logic power supplies, K. B. D. Knight, 41 Jan .
Developments in surface acoustic wave technology, 40 Jan. Dice, electronic, G. J. Naaijer, 401 Aug.
Digital multimeter, D. E. O'N. Waddington, 108 Mar., 177 Apr., 26 May
panel meter, P. Bartlam, 163 Apr

- speed control servo, C. W. Ross, 325 July voltmeter, dual-polarity, A. J. Ewins, 470 Oct., 535 Nov.

Distortion reducer, D. Bollen, 54 Feb., Letters, 192 Apr., 295 June, 334 July
Dual-polarity digital voltmeter, A. J. Ewins, 470 Oct., 535 Nov.

EDITORIALS 1 Jan,, 53 Feb., 107 Mar., 159 Apr., 213 May, 261 June, 313 July, 365 Aug., 415 Sept., 469 Oct., 523 Nov., 573 Dec.
Educational film strips (Mullard), 136 Mar .
Efficient inverter for fluorescent tubes, K. C. Johnson, 405 Aug., Letters, 450 Sept., 497 Oct.
Electrochromic display, new, 455 Sept.
Electronic dice, G. J. Naaijer, 401 Aug

- sound synthesizer, T. Orr \& D. W. Thomas, 366 Aug., 429 Sept., 485 Oct., Keyboard note, 499 Oct.
Electronica inde, 16 Jan.
Electronica in retrospect, 9 Jan.
Electronics at the Open University. K. L. Smith. 160 Apr. Letters, 248 May
Entertainment electronics at Berlin, 541 Nov.
Evolution of the a.c. mains'radio valve, J. H. Ludlow, 144 Mar.
Experiments with operational amplifiers, G. B. Clayton, 33 Jan., 91 Feb., 141 Mar., 241 May, 275 June, 355 July, 372 Aug., 447 Sept., 582 Dec.
F.M. tuner design - two years later. L. Nelson-Jones. 271 June, Lehters, 497 Oct., 591 Dec. Correction. 271 June. Lemers. 497 Oct., 591 Dec. Correction.
Facsimile or teleprinter signal converter, simple, J. B. Tuke, 461 Sept.
Festival du Son, 204 Apr.
Fifty years an amateur, 383 Aug. 451 Sept., 498 M. G. Scroggie, 407 Aug., Letters, 451 Sept., 498 Oct.
Flat display tube in colour, 408 Aug.
Fluorescent tubes. efficient inverter for, K. C. Johnson, 405 Aug., Letters, 450 Sept., 497 Oct.
Frequency shifter for "howl" suppression. M. Hartley Jones. 317 July, Letters. 449 Scpt. 534 Nov., Correction, 476 Oct.
G. G. Gouriet - obituary, 329 July
H.F. PREDICTIONS 35 Jan., 69 Feb., 134 Mar., 173 Apr., 251 May, 283 June, 322 July, 400 Aug., 434 Sept., 476 Oct., 559 Nov., Dec.
Harrogate Audio Show, 546 Nov
High quality tone control, J. N. Ellis, 378 Aug. standard low-frequency source, J. M. Osborne, 20 Jan., Correction, 57 Feb .
Homodyne receiver, a, J. W. Herbert, 416 Sept.
"Howl" suppression, frequency shifter for, M. Hartley Jones, 317 July, Letters, 449 Sept.. 534 Nov., Jones, 317 July,
Correction, 476 Oct.
Hybrid thick film circuits. G. Brooke \& W. E. B. Baldwin. 121 Mar.
I.C. peak programme meter, correction to Nov. 1972 article. 5 Jan.
Independent local radio, 483 Oct.
Industrial electronics. R. Graham. 135 Mar., 195 Apr.. 249 May. 353 July. 437 Sept., Letters, 294 June
Industrial security. W. E. Anderton, 601 Dec .
Information broadeasting, traffic. 238 May presenting maintenance, S. W. Amos, 510 Oct
_ service. TV. 222 May
Integrated circuits, complementary m.o.s.. P. A. Johnson. 395 Aug.. Letters, 497 Oct.. 533 Nov, International Audio Fair. 545 Nov.
Inverter for fluorescent tubes, efficient, K. C. Johnson, 405 Aug.. Letters, 450 Sept. 497 Oct.
Jobs for the Grads. 265 June
John Gilbert retires. 499 Oct.
L.F. source, applications of the high-standard, I. M. Osborne 316 July
LETTER FROM AMERICA 198 Apr., 460 Sept., 614 Dec., Letters, 498 Oct., 534 Nov,
LETTERS TO THE EDITOR 11 Jan.. 74 Feb.. 118 Mar.. 192 Apr.. 246 May, 294 June, 330 July, 384 Aug., 449 Sept., 497 Oct.. 532 Nov.. 588 Dec.
Limiter, an automatic noise. P. Hinch, 547 Nov,
Linear voltage controlled oscillator, T. L. Linsley Hood. 567 Nov.
LITERATURE RECEIVED. 52 Jan.. 94 Feb. 158 Mar.. 212 Apr.. 259 May. 452 Sept. 505 Oct.
Local radio. independent. 483 Oct.
Logic power supplies. design criteria for. R. B. D. Knight. 41 Jan.
London Electronic Component Show. 236 May. Products seen. 362 July
Loudspeaker. motional feedback. 425 Sept.
Low-frequency source, high-standard. J. M. Osborne. 20 Jan.. Correction, 57 Feb.
M.O.S. integrated circuits. complementary. P. A. Johnson. 395 Aug.. Letters, 497 Oct. 533 Nov.
Magnetic recorder heads. audio. B. Lane. 126 Mar.
- tape. the compatibility of audio, B. Lane, 199 Apr.

Magnetism and magnetic-units. "Cathode Ray". 23 Jan.. Letters, 332 July
Magnetism and magnetic units. M. McCaig. 299 June. Letters, 332 July, 450 Sept. 591 Dec.
Magnets. permanent. "Cathode Ray". 71 Feb.
MEETINGS 51 Jan., 70 Feb., 156 Mar.. 211 Apr.. 258 May, 500 Oct., 540 Nov., 604 Dec.
Meter. digital panel, P. Bartlam, 163 Apr.
for blind students. R. S. Maddever. 36 Jan.
Meterless transistor tester. I. Lewis. 231 May
Metre waves now, I. Hum. 357 July
Microphone reflectors. G. N. Patchett. 262 June
Microwaves at the Physics Exhibition. 280 June
the realm of. M. W. Hosking. 61 Feb. . 131 Mar.. 286 June, 347 July, 379 Aug., 501 Oct., 577 Dec.
Mobile communications and surveillance via satellite. world wide. 233 May
-- / portable power unit for h.f. transceiver. Correction to Dec. 1972 article. 5 Jan.
Model railway control system, P. Cowan. 524 Nov.
Modulation, unusual forms of analogue. R. C. V. Macario. 281 June
Montreux Television Symposium, H. Barnard, 335 July
Motional feedback loudspeaker, 425 Sept.
Multi-channel proportional remote control. M. F. Bessant. 479 Oct.

- tone control. J. R. Emmett, 457 Sept flash trigger unit. R. Lewis. 529 Nov.
Multimeter. digital. D. E. O'N. Waddington, 108 Mar.. 177 Apr., 226 May
Multiphonic simple transistor d.c.. J. D. Pahomoff. 39 Jan.
Multiphonic organ. T. H. Asbery. 303 June
New audio products. 220 May electrochromic display. 455 Sept.
NEW PRODUCTS 45 Jan., 101 Feb., 151 Mar.. 205 Apr.. 255 May. 307 June. 359 July. 409 Aug., 464 Sept.. 517 Oct., 571 Nov.. 619 Dec.
-- seen at the Audio Fair, 616 Dec.
television tuner, P. Antoniazzi \& A. Mauceri, 375 Aug. Letters, 497 Oct.
NEWS OF THE MONTH 6 Jan., 58 Feb., 112 Mar., 174 Apr.. 223 May, 266 June. 323 July. 392 Aug., 427 Sept.. 477 Oct.. 528 Nov.. 583 Dec.
Noise-limiter, an automatic. P. Hinch, 547 Nov
Obituary - G. G. Gouriet. 329 July
Op-amps. optimizing. R. J. Isaacs. 185 Apr .
Open University, electronics al the, K. L. Smith, 160 Apr., Letters, 248 May
Operational amplifiers. experiments with. G. B. Clayton, 33 Jan., 91 Feb.. 141 Mar.. 241 Mav, 275 June. 355 July. 372 Aug. 447 Sept., 582 Dec.
Optimizing op-amps. R. J. Isaacs, 185 Apr.
Opto couplers, using, K. F. Knott, 595 Dec.
Oracle - broadcasting the written word, A. James, 314 July, Letters, 588 Dec.
Organ. multiphonic. J. H. Asbery, 303 June
Oscillator, linear voltage controlled. J. L. Linsley Hood. 567 Nov.
Oscilloscopes. portable. 95 Feb., 157 Mar.
P.C.M., sound recorder uses, 548 Nov.

Panel meter. digital, P. Bartlam, 163 Apr
Paris Components Exhibition, 297 June
Peak programme meter, i.c.. correction to Nov. 1972 article. 5 Jan.
Permanent magnets. "Cathode Ray", 71 Feb.
Physics Exhibition. microwaves at the. 280 June

- - seen at the. 268 June

Portable oscilloscopes, 95 Feb. 157 Mar
Power amplifier. audio. P. L. Taylor, 301 . Tune
supplies, design criteria for logic, R. B. D. Knight. 41 Jan.

- supply design, a novel approach to. R. Aston. 243 May, Letters, 333 July
unit for h.f. transceiver. mobile/portable. Correction to Dec. 1972 article, 5 Jan.
Predicting amplitude response. A. J. Key. 585 Dec.
Presenting maintenance information, S. W. Amos, 510 Oct.
Processor, contrast expansion. R. J. H. Brush \& P. E. Bayliss, 611 Dec.

Radio control tone decoder, C. Attenborough, 593 Dec. Radio propagation disturbances 1972, R. A. Ham, 187 Apr. Radio propagation disturbances 1972, R. A. Ham,
Railway control system, model, P. Cowān, 524 Nov. Railway control system, model, P. Cowān, 524 N
Raising transmitter valve dissipation, 448 Sept.
REAL \& IMAGINARY "Vector", 106 Feb.. 260 May 312 June, 414 Aug., 522 Oct., 621 Dec.
Realm of microwaves, the, M. W. Hosking, 61 Feb., 131 Mar., 286 June, 347 July, 379 Aug., 501 Oct., 595 577 Dec.
Receiver, a homodyne, J. W. Herbert, 416 Sept.
Recorder heads, audio magnetic, B. Lane, 126 Mar
Reflectors, microphone, G. N. Patchett, 262 June
Regulators, a.c. voitage, R. Thompson, 339 July
Remote control, multi-channel proportiona!, M. F. Bessant, 479 Oct.
Research notes 581 Dec .
Satelites. television broadeasting from, D. B. Spencer \& K. G. Freeman, 607 Dec.
Security, industrial, W. E. Anderton, 601 Dec.
Seen at the Physics Exhibition, 268 June
Semiconductor story, K. J. Dean \& G. White, 2 Jan., 65 Feb., 137 Mar., 169 Apr.
Servo, digital speed control, C. W. Ross, 325 July
Simple facsimile or teleprinter signal converter, J. B. Tuke, 461 Sept.
Single transistor d.c. multimeter, J. D. Pahomoff, 39 Jan. 453 Sept.. l etters 59.1 Dec.
SIXTY YEARS AGO 5 Jarı, 57. Feb., 125 Mar., 176 Apr., 251 May, 302 June, 324 July, 377 Aug., 463 Sept., 494 Oct., 566 Nov., Letters, 194 Apr., 246 May
Solid state teleprinter demodulator, R. W. Addie, 77 Feb. Letters,' 247 May, Correction, 186 Apr.
Some thoughts on transformers. T. Roddam, 598 Dec.
Sonex 73, 149 Mar., 184 Apr.
Sound recorder uses p.c.m., 548 Nov
synthesizer, electronic, T. Orr \& D. W. Thomas, 366 Aug., 429 Sept,, 485 Oct., Keyboard note, 499 Oct.
Source, applications of the high-standard 1.f., J. M. Osborne, 316 July
Speaker, twin-ribbon, A. E. Falkus, 29 Jan.
Speed control servo, digital, C. W. Ross, 325 July
Suppressed carrier generation. single sideband. A. J. Turner. 453 Sept., Letters 591 Dec.
Surface acoustic wave technology, developments in, 40 Jan.
Surround-sound circuits, G. Shorter, 114 Mar.
Synthesizer, electronic sound, T. Orr \& D. W. Thomas, 366 Aug., 429 Sept., 485 Oct. Keyboard note, 499 Oct.

TV information service, 222 May, Letters 588 Dec.
Tape, the compatibility of audio magnetic. B. Lane. 199 Apr,
Telephoto system, colour, J. H. Smith, 214 May
Teleprinter demodulator, solid state, R. W. Addie, 77 Feb., I.etters. 247 Mav. Correction, 86 Apr.
signal converter, simple facsimile or, J, B. Tuke, 461 Sept.
Television broadcasting from satellites, D. B. Spencer \& K. G. Freeman, 607 Dec.

Television Symposium, Montreux, H. Barnard, 335 July tuner, new, P. Antoniazzi \& A. Mauceri, 375 Aug., Letters, 497 Oct.
10-2 metre amateur tranșverter, D. R. Bowman, 561 Nov.
Tester, meterless transistor, J. Lewis, 231 May
These fifty years, M. G. Scroggie, 407 Aug., Letters, 451 Sept., 498 Oct.
Thick-film circuits, hybrid, G. Brooke \& W. E. B. Baldwin. 121 Mar.
Tone control, high quality, J. N. Ellis, 378 Aug. multi-channel, J. R. Emmett, 457 Sept.
Tone decoder, radio control, C. Attenborough, 593 Dec.
Total communications, E. J. Gargini, 420 Sept., 506 Oct.
Traffic information broadcasting, 238 May
Transformers, some thoughts on, T. Roddam, 598 Dec.
Transistor tester, meterless, J. Lewis, 231 May transmitter for 20 metres, 25 -watt, S. A. Money, 277 June
Transverter, 10-2 metre amateur, D. R. Bowman, 561 Nov,
Triangle wave generator, versatile, D. T. Smith, 87 Feb. Correction, 230 May
Trigger unit, multi-flash, R. Lewis, 529 Nov,
Twin-ribbon speaker, A. E. Falkus, 29 Jan.
$200-\mathrm{MHz}$ counter prescaler, D. J. Taylor, 27 Jan.
Tuner design, F.M. - two years later, L. Nelson-Jones, 271 June, Letiers, 497 Oct, 591 Dec. Correction, 476 Oct.
new television, P. Antoniazzi \& A. Mauceri. 375 Aug., Letters. 497 Oct.
Tuners and tuner-amplifiers, B. Lane, 551 Nov.
Tuners and tuner-ample, electronic, 16 Jan.
Units, magnetism and magnetic, "Cathode Ray", 23 Jan., Letters, 332 July

Unusual forms of analogue modulation, R.C. V. Macario, 281 June
Using opto couplers, K. F. Knott, 595 Dec.
Valve dissipation, raising transmitter, 448 Sept the evolution of the a.c. mains radio, J. H. Ludiow, 144 Mar.
"Vector" articles: The Post-Horn Syndrome. 106 Feb., Clunk, click - and boomps-a-daisy!, 260 May, Whatever happened to the likzly lads?, 312 June.
". . . Not a horse, not a bus, but a tram". 414 Aug., Odd Ode, 522 Oct., Of mice and men. 621 Aug.,
Dec.
Versatile triangle wave generator, D. T. Smith, 87 Feb., Correction, 230 May
Voltage controlled oscillator, linear, J. L. Linsley Hood, 567 Nov.
Voltmeter, dual-polarity digital, A. J. Ewins, 470 Oct., 535 Nov,

Wave generator, versatile triangle, D. T. Smith, 87 Feb. Correction. 230 May
Which way does current flow?, "Cathode Ray", 570 Nov., Letters 588 Dec.
WORLD OF AMATEUṘ RADIO 44 Jan., 105 Feb. 150 Mar.. 197 Apr., 254 May, 306 June, 352 July, 404 Aug., 456 Sept., 516 Oct., 550 Nov. 615 Dec., Letter's, 119 Mar., 534 Nov., 615 Dec.
World-wide mobile communications and surveillance via satellite, 233 May

CLASSIFIED INDEX

AUDIO \& ACOUSTICS
Active filter crossover networks. D. C. Read. 574 Dec
Amplifier, audio power. P. L. Faylor, 301 June
Approach to audio amplifter design. I. R. Stuart. 387 Aug.. 439 Sept.. 491 Oct.. Letters, 45 I Sept.
Audio Engineering Society. convention of the. 189 Apr . Fair. International. 545 Nov.
magnetic recorder heads. B. Lane. 126 Mar - tape. the compatibility of. B. Lane. 199 Apr. power amplifier, P. L. Taylor. 301 June products, new, 220 May
Automatic noise-limiter, P. Hinch. 547 Nov.
Convention of the Audio Engineering Society, 189 Apr Crossover networks. active filter. D. C. Read. 574 Dec.

Distortion reducer. D. Bollen. 54 Feb.. Letters, 192. Apr.. 295 June. 334 Julv

Electronic sound synthesizer. T. Orr \& D. W. Thomas. 366 Aug.. 429 Sept.. 485 Oct. Kevboard note. 499 Oct.
__ turntable. 16 Jan.
F.M. tuner design -... two years later. L. Nelson-Tones. 271 Iune, Letters, 497 Oct. Correction, 476 Oct.
Festival du Son. 204 Apr.
Frequency shifter for "howi" suppression. M. Hartley Iones. 317 July, Letters, 449 Sept. 534 Nov.. Correction, 476 Oct.

Harrogate Audio Show, 546 Nov.
High quality tone control. I. N. Ellis. 378 Aug.
"How!" suppression. frequency shifter for. M. Hartley Tones. 317 July. Letters, 449 Sept. 534 Nov.. Correction, 476 Oct.

International Audio Fair. 545 Nov
Limiter, an automatic noise. P. Hinch. 547 Nov
Magnetic recorder heads. audio. B. Lane. 126 Mar. tape. the compatibility of audio. B. Lane. 199 Apr
Microphone reflectors. G. N. Patchett, 262 June
Motional feedback loudspeaker, 425 Sept.
Multi-channel tone control. J. R. Emmett. 457 Sept.
Multiphonic organ. 1. H. Asbery. 303 June
New audio products. 220 May
Noise-limiter. an automatic. P. Hinch. 547 Nov.
P.C.M., sound recorder uses. 548 Nov.

Power amplifier. audio. P. L. Taylor. 301 June
Recorder heads. audio magnetic. B. Lane. 126 Mar.
Reflectors, microphone. G. N. Patchett. 262 June
Sonex 73. 149 Mar.. 184 Apr.
Sound recorder uses p.c.m.. 548 Nov
Speaker, twin-ribbon. A. E. Falkus. 29 Jan.
Surround-sound circuits. G. Shorter, 114 Mar.
Synthesizer. electronic sound. T. Orr \& D. W. Thomas. 366 Aug.. 429 Sept.. 485 Oct. Keyboard note 499 Oct.

Tape. the compatibility of audio magnetic. B. L.ane. 199 Apr. Tone control, high quality, J. N. Elis, 378 Aug.
————multi-channel. J. R. Emmett, 457 Sept.
Tuner design. f.m. - two years later, L. Nelson-Iones 271 June. Letters, 497 Oct., Correction, 476 Oct. Tuners and tuner-amplifiers. B. Lane. 551 Nov.
Turntable, electronic. 16 Jan.
Twin-ribbon speaker. A. E. Falkus. 29 Jan

CIRCUIT IDEAS

Amplifier, deflection. G. A. Johnson. 560 Nov,
Audio dynamic range compressor. P. Hanson. 143 Mar. Avoiding power supnlv hum. G. Hibbert. 515 Oct. B-c.d, parity switch. inexpensive. I. A. L. Fasham, 374 Aug, Bench power supply, J. A. Roberts, 253 May

Combined rumble and seratch filter, P. I Day, 606 Dec. Complementary pairs. d.c. matching of. G. W. Short. 284 .June

Compressor. audio dynamic range. P. Hanson, 143 Mar Counter display, digital, J. A. Stephenson. 84 Feb. Current controller. two-terminal. I. P. Holland. 560 Nov.
D.C. matching of complementary pairs. G. W. Short. 284 June
Decoder/coder matrix. R. P. Norris. 191 Apr.
Deflẹction amplifier. G. A. Johnson. 560 Nov.
Delayed switch off for transistor radios. S. Lamb. 373 Aug.
Demodulator. phase-locked loop. R. King. 337. Tuly
Differential input and output with op-amps. A. D. Monstall. 31, Jan.
Digital counter display, J. A. Stephenson. 84 Feb. .
Electrolytics. simulating high-capacitance. R. M. Brady. 560 Nov.

Faster slewing rate with 741 op-amp. L. Short. 31 Jan.
Filter, combined rumble and scratch, P. I. Day, 606 Dec.
Filter, combined rumble and scratch, P. I. Day, 606 Dec.
Frequency doubler with unbalanced input. simple. P. J. Baxandall. 142 Mar .
Function generator mod. for wide sweep range. P. D. Hiscocks, 374 Aug.

Gain. measuțing transistor, R. G. T. Bennett. 374 Aug, Good-tempered LC oscillator, G. W. Short. 84 Feb.

Hum. avoiding power supply. G. Hibbert. 515 Oct.

Inexpensive b-c.d. parity switch. J. A. L. Fasham. 374 Aug.
-_- phase-sensitive detector. R. A. Harrold. 32 Jan. Improving television sound. A. J. Smith. 373 Aug.

Light level indicator, D. C. Porter, 143 Mar,
Low battery voltage indicator, P. C. J. Parsonage, 31 Jan,
-_ voltage source, D. R. Schaller, 142 Mar.
Matrix, decoder/coder, R. P. Norris, 191 Apr.
Measuring transistor gain, R. G. T. Bennett, 374 Aug.
Meter, simple breakdown voltage, J. W, Brown, 337 July Miniature null indicator, B. P. Cowan, 284 June
Monostable circuit, noise-immune; A. Bishop, 84 Feb. - maintains pulse width, t.t.l., J. V. Yelland, 142 Mar.

Noise-immune monostable circuit, A. Bishop, 84 Feb.
$-\quad$ 1, E. I. White, 191 Apr.

- 2, P. Seligman, 191 Apr.

Notch filter, simple tunable, R. J. Harris, 253 May
Null indicator, miniature, B. P. Cowan, 284 June
Op-amps, differential input and output with, $\dot{\mathbf{A}}$: D. Monstall, 31 Jan.
Op-amps, faster slewing rate with 741, L. Short, 31 Jan.
Oscillațor, good-tempered LC, G. W. Short, 84 Feb.
Phase-locked loop demodulator, R. King, 337 July Beddoe, 605 Dec.

- sensitive detector, inexpensive, R. A. Harrold, 32 Jan.

Potentiometer, square law, F. N. H. Robinson, 606 Dec.
Power supply, bench, J. A. Roberts, 253 May

- - symmetrical, L. D. Thomas, 515 Oct.

Ramp generator, triggered, S. P. Jarman, 142 Mar .
Reducing distortion by 'error add-on', A. Sandman, 32 Jan.
Resistance-to-voltage converter has low output impedance, D. R. Schaller, 515 Oct

Response testing, transient, H. Macdonald, 338 July
Sanatron current timebase, G. Trice, 338 July
Sawtooth oscillator, voltage-controlled two-phase, F. B. Jones, 285 June
Self start for ring of twe, C. R. Masson, 606 Dec.
Simple breakdown voltage meter, J, W. Brown, 337 July current-limited stabiliser, A. E. T. Nye, 285 June
frequency doubler with unbalanced input, P. J. Baxandall, 142 Mar .
pulse shaper or relay driver, J. B. Dance, 605 Dec. pulse shaper or relay driver, J. B. Dance,
tunable notch filter. R. J. Harris. 253 May
Simulating high-capacitance electrolytics, R. M. Brady. 560 Nov .
Square law potentiometer, F. N. H. Robinson, 606 Dec.
Surround sound with 741 s and variable crosstalk, M. D. Bamforth. 284 June
Switch spark quench for inductive loads, E. Potter, 605 Dec. Symmetrical power supply, L. D. Thomas, 515 Oct.
T.T.L. monostable maintains pulse width, J. V. Yelland, 142 Mar.
Teleprinter terminal unit uses phase-locked loop, K. S. Beddoe. 605 Dec .
Television sound, improving, A. J, Smith, 373 Aug,
Timebase, Sanatron current, G. Trice, 338 July
Transient response testing, H. Macdonald, 338 July
Transient response testing, H. Macdonald, 338 July
Twoterminal current controller, J. P. Holland, 560 Nov.
Voltage indicator, low battery, P. C. J. Parsonage. 31 Jan. controlled two-phase sawtooth oscillator, F. Hi, Jones. 285 June
metẹr, simple breakdown, J. W. Brown, 337 July

CIRCUITRY AND CIRCUIT DESIGN

A.C. voltage regulators, R. Thompson, 339 July

Active filter crossover networks, D. C. Read, 574 Dec
Amplifier, audio power, P. L. Taylor, 301 June.
Amplitude response, predicting, A. J. Key, 585 Dec.

Analogue modulation, unusual forms of, R. C. V. Macario, 281 June
Audio power amplifier, P. L. Taylor, 301 June
Automatic noise-limiter, P. Hinch, 547 Nov .
Circards, J. Carruthers, J. H. Evans, J. Kinsler \& P Williaṃs, 4: A.C. measurements, 18 Jan., 5: Audio circuits, 85 Feb., 6: Constant-current circuits, 234 May, 7: Power amplifiers, 291 June, 8: Astable circuits, 345 July, 9: Optoelectronics: devices and applications, 435 Sept., 10: Micropower circuits, 495, Oct., 11 : Basic logic gates, 557 Nov.
Complementary m.o.s. integrated circuits, P. A. Johnson, 395 Aug., Letters, 497 Oct., 533 Nov.
Contrast expansion processor, R. J. H. Brush \& P. E. Bayliss, 611 Dec.
Counter prescaler, $200-\mathrm{MHz}$, D. J. Taylor, 27 Jan.
Crossover networks, active filter, D. C. Read, 574 Dec.
D.C. multimeter, a simple transistor, J. D. Pahomoff, 39 Jan.

Demodulator, solid state teleprinter, R. W. Addie, 77 Feb., Letters, 247 May, Correction, 186 Apr.
Design criteria for logic power supplies, R. B. D. Knight, 41 Jan.
Dice, electronic, G. J. Naaijer, 401 Aug.
Digital multimeter, D. E. O'N. Waddington, 108 Mar., 177 Apr., 226 May
panel meter, P. Bartlam, 163 Apr.
—— panel meter, P. Bartlam, 163 Apr.
voltmeter, dual-polarity, A. J. Ewins, 470 Oct., 535 Nov.
Distortion reducer, D. Bollen, 54 Feb., Letters, 192 Apr., 295 June, 334 July
Dual-polarity digital voltmeter, A. J. Ewins, 470 Oct., 535 Nov.
Efficient inverter for fluorescent tubes, K. C. Johnson, 405 Aug., Letters, 450 Sept., 497 Oct.
Electronic dice, G. J. Naaijer, 401 Aug.
-- sound sythesizer, T. Orr \& D. W. Thomas, 366 Aug., 429 Sept., 485 Oct., Keyboard note, 499 Oct.
Experiments with operational amplifiers, G. B. Clayton, 33 Jan., 91 Feb., 141 Mar., 241 May, 275 June, Jan., 91 Feb., 141 Mar., 241 May
355 July, 372 Aug., 447 Sept., 582 Dec.
F.M. tuner design - two years later, L. Nelson-Jones, 271 June, Letters, 497 Oct., Correotion, 476 Oct,
Facsimile or teleprinter signal converter, simple, J. B. Tuke, 461 Sept.
Fluorescent tubes, efficient inverter for, K. C. Johnson, 405 Aug., Letters, "450 Sept., 497 Oct.
Frequency shifter for "howl" suppression, M. Hartley Jones, 317 July, Letters, 449 Sept., 534 Nov., Correction, 476 Oct.

High quality tone control, J. N. Ellis, 378 Aug. standard low-frequency source, J. M. Osborne, 20 Jan., Correction, 57 Feb.
"Howl" suppression, frequency shifter for, M. Hartley Jones, 317 July, Letters, 449 Sept., 534 Nov., Correction, 476 Oct.

Industrial electronics, R. Graham, 135 Mar.. 195 Apr., 249 May, 353 July, 437 Sept., Letters, 294 June
Integrated circuits, complementary m.o.s.. P. A. Johnson, 395 Aug., Letters, 497 Oct., 533 Nov.
Inverter for fluorescent tubes, efficient. K. C. Johnson. 405 Aug.. Letters, 450 Sept., 497 Oct.
Limiter, an automatic noise. P. Hinch. 547 Nov.
Linear voltage controlled oscillator. J. L. Linsley Hood. 567 Nov.
Logic ' power supplies. design criteria for, R. B. D. Knight. 41 Jan.
Loudspeaker, motional feedback, 425 Sept.
Low-frequency source, high-standard. J. M. Osborne. 20 Jan.. Correction, 57 Feb.
M.O.S. integrated circuits. complementary. P. A. Johnson, 395 Aug., Letters, 497 Oct., 533 Nov.
Meter. digital panel: P. Bartlam, 163 Apr.
$\overline{\text { Meterless transistor tester, J. Lewis. } 231 \text { May }} \mathbf{}$ J. 36 Jan.
Microwaves. the realm of, M. W. Hosking, 61 Feb.. 131 Mar.. 286 June. 347 July. 379 Aug., 501 Oct.. 577 Dec .
Model railway control system, P. Cowan. 524 Nov.
Modulation. Unusual forms of analogue. R. C. V. Macario. 281 June
Motional feedback loudspeaker, 425 Sept.
Multi-channel proportional remote control. M. F. Bessant. 479 Oct.

- - tone control, J. R. Emmett, 457 Sept.
igger unit. R. Lewis. 529 Nov.
Multimeter, digital. D. E. O'N. Waddington. 108 Mar., 177 Apr., 226 May
Multiphonic organ Istor d.c., J, D. Pahomoff, 39 Jan.
New television tuner. P. Antoniazzi \& A. Mauceri, 375 Aug.. Letters, 497 Oct.
Noise-limiter, an automatic. P. Hinch. 547 Nov.
Operational amplifiers, experiments with, G. B. Clayton. 33 Jan.. 91 Feb.. 141 Mar., 241 May, 275 June. 355 July. 372 Aug.. 447 Sept., 582 Dec.
Optimizing op-amps. R. J. Isaacs, 185 Apr.
Organ: multiphonic. J. H. Asbery. 303 June
Osciliator, linear voltage controlled, J. L. Linsley Hood. 567 Nov.

Panel meter, digital. P. Bartlam. 163 Apr
Power amplifier. audio. P. L. Taylor. 301 Iune

- supplies. design criteria for logic, R. B. D. Knight. suppies.
41 Jan.
-_ supply design. a novel approach to. R. Aston. 243 May. Letters, 333 July
Predicting amplitude response. A. J. Key. 585 Dec.
Processor, contrast expansion. R. J. H. Brush \& P. E.' Bayliss. 611 Dec.

Radio control tone decoder. C. Attenborough. 593 Dec.
Railway control system. model. P. Cowan. 524 Nov.
Realm of microwaves. the. M. W. Hosking, 61 Feb.. 131 Mar.. 286 June. 347 July. 379 Aug.. 501 Oct., 577 Dec.
Regulators. a.c. voltage. R. Thompson. 339 July
Remote control. multi-channel proportional. M. F. Bessant. 479 Oct.
Servo. digital speed control, C. W. Ross. 325 Julv
Simple facsimile or teleprinter signal converter. J. B. Tuke. 461 Sept.
transistor d.c. multimeter, J. D. Pahomoff, 39 Jan.
Solid state teleprinter demodulator. R. W. Addie. 77 Feb. Letters, 247 May, Correction, 186 Apr.
Some thoughts on transformers. T. Roddam, 598 Dec .
Speed control servo. digital. C. W. Ross, 325 Julv
Surround-sound circuits. G. Shorter, 114 Mar.
Synthesizer, electronic sound. T. Orr \& D. W. Thomas. 366 Aug.. 429 Sept., 485 Oct.. Keyboard note. 499 Oct.

Teleprinter demodulator, solid state. R. W. Addie. 77 Feb.. Letters, 247 May, Correction, 186 Apr.
signal converter, simple facsimilie or, J. B. Tuke, 461 Sept.
Television tuner, new. P. Antoniazzi \& A. Maluceri. 375 Aug.. Letters. 497 Oct.
10-2 metre amateur transverter, D. R. Bowman, 561 Nov.
Tone control. high quality. J. N. Ellis, 378 Aug.
————multi-channel, J. R. Emmett. 457 Sept.

- decoder. radio control, C. Attenborough. 593 Dec.

Transformers. some thoughts on. T. Roddam, 598 Dec.
Transistor tester. meterless. J. Lewis. 231 May
Transmitter for 20 metres. 25 -watt transistor. S. A. Money 277 June
Transverter 10-2 metre amateur, D. R. Bowman, 561 Nov, Triangle wave generator, versatile. D. T. Smith. 87 Feb.. Correction, 230 May
Trigger unit. multi-flash. R. Lewis. 529 Nov.
Tuner design. f.m. - two years later. L. Nelson-Iones. 271 June, Letters, 497 Oct., Correction, 476 Oct.
——. new television, P. Antoniazzi \& A. Mauceri. 375 Aug.. Letters, 497 Oct.
25 -watt transistor transmitter for 20 metres. S. A. Money. 277 June
$200-\mathrm{MHz}$ counter prescaler. D. J. Taylor. 27 Jan.
Unusual forms of analogue modulation. R. C. V. Macario, 281 June

Versatile triangle wave generator, D. T. Smith, 87 Feb.. Correction, 230 May
Voltage controlled oscillator. linear. I. L. Linsley Hood. 567 Nov.
Voltmeter, dual-polarity digital. A. J. Ewins. 470 Oct. 535 Nav .
Wave generator, versatile triangle. D. T. Smith, 87 Feb. Correction, 230 May

COMMUNICATIONS

Analogue modulation, unusual forms of. R. C. V. Macario. 281 June

Berlin. entertainment electronics at. 541 Nov.
British participation in ESRO-4. 43 Jan .
Broadcasting. traffic information. 238 May
Colour telephoto system. J. H. Smith. 214 May
Communications of the future. 117 Mar .
_- total. E. J. Gargini. 420 Sept.. 506 Oct.
Developments in surface acoustic wave technology. 40 Jan. Entertainment electronics at Berlin. 541 Nov.

Facsimile or teleprinter signal converter, simple. 461 Sept. Flat display tube in colour. 408 Aug.

Homodyne receiver, a, J. W. Herbert. 416 Sept.
Independent local radio, 483 Oct.
Information broadcasting, traffic, 238 May
_—. presenting maintenance. S. W. Amos, 510 Oct. service, TV. 222 May
Local radio. independent, 483 Oct.
Metre waves now, J. Hum. 357 July
Mobile communications and surveillance via satellite. world-wide. 233 May
Modulation. unusual forms of analogue. R. C. V. Macario. 281 June
Montreux Television Symposium, H. Barnard, 335 July
Multi-channel proportional remote control. M. F. Bessant. 479 Oct.

New television tuner, P. Antoniazzi \& A. Mauceri. 375 Aug. Letters, 497 Oct.

Oracle - broadcasting the written word. A. James. 314 July

Presenting maintenance information, S. W. Amos. 510 Oct.
Radio control tone decoder. C. Attenborough, 593 Dec.
Radio propagation disturbances 1972, R. A. Ham, 187 Apr.
Raising transmitter valve dissipation, 448 Sept.
Receiver. a homodyne, J. W. Herbert, 416 Sept.
Remote control, multi-channel proportional. 479 Oct.
Satellites. television broadcasting from. D. B. Spencer \& K. G. Freeman, 607 Dec.

Simple facsimile or teleprinter signal converter. J. B. Tuke. 461 Sept.
Suppressed carrier generation. single sideband. A. J. Turner. 453 Sept.
Surface acoustic wave technology. developments in. 40 Jan.
TV information service. 222 May
Telephoto system, colour, J. H. Smith, 214 May
Teleprinter signal converter, simple facsimile or. J. B. Tuke. 461 Sept.
Television broadcasting from satellites. D. B. Spencer \& K. G. Freeman. 607 Dec.

Television Symposium. Montreux. H. Barnard. 335 July tuner. new, P. Antoniazzi \& A. Mauceri. 375 Aug..
Letters, 497 Oct. Letters, 497 Oct.
10-2 metre amateur transverter, D. R. Bowman, 561 Nov.
Tone decoder, radio control. C. Attenborough 593 Dec.
Total communications, E. J. Gargini, 420 Sept., 506 Oct.
Traffic information broadcasting. 238 May
Transmitter for 20 metres. 25 -watt transistor, S. A. Money. 277 June
Transverter, 10-2 metre amateur, D. R. Bowman. 561 Nov.
Tuner. new television, P. Antoniazzi \& A. Mauceri. 375 Aug. Letters, 497 Oct.
25 watt transistor transmitter for 20 metres. S. A. Money, 277 June.
Unusual forms of analogue modulation. R. C. V. Macario. 281 June
Valve dissipation, raising transmitter, 448 Sept.
World-wide mobile communications and surveillance via satellite, 233 May

CONSTRUCTIONAL DESIGNS

Active filter crossover networks, D. C. Read, 574 Dec.
Automatic noise-limiter, P. Hinch. 547 Nov.
Demodulator, solid state teleprinter, R. W. Addie, 77 Feb.. Letters, 247 May, Correction, 186 Apr.
Dice, electronic, G. J. Naaijer, 401 Aug.
Digital multimeter, D. E. O'N. Waddington. 108 Mar., 177 Apr., 226 May
-_ panel meter. P. Bartlam, 163 Apr.
Dual-polarity digital voltmeter. A. J. Ewins, 470 Oct.. 535 Nov.

Efficient inverter for fluorescent tubes, K. C. Johnson, 405 Aug... Letters, 450 Sept., 497 Oct.
Electronic dice, G. J. Naaijer, 401 Aug.
Electronic dice, G. J. Naaijer, 401 Aug. . W. Thomas. 366 Aug.. 429 Sept., 485 Oct.. Keyboard note 499 Oct.
F.M. tuner design - two years later, L. Nelson-Jones, 271 June. Letters, 497 Oct. Correction. 476 Oct.
Fluorescent tubes. efficient inverter for. K. C. Johnson. 405 Aug. Letters, 450 Sept., 497 Oct.
Frequency shifter for "howl" suppression, M. Hartley Jones. 317 July, Letters, 449 Sept. 534 Nov.. Correction, 476 Oct.

High quality tone control, J. N. Ellis, 378 Aug. standard low-frequency source. J. M. Osborne, 20 Jan., Correction, 57 Feb.
"Howl", suppression. frequency shifter for, M. Hartley Jones, 317 July, Letters, 449 Sept.. 534 Nov.. Correction, 476 Oct.
Inverter for fluorescent tubes, efficient. K. C. Johnson, 405 Aug., Letters, 450 Sept., 497 Oct.
Limiter, an automatic noise. P. Hinch, 547 Nov.
Low-frequency source. high-standard. J. M. Osborne, 20 Jan.. Correction, 57 Feb.

Meter. digital panel, P. Bartlam, 163 Apr.
Meterless transistor tester, J. Lewis. 231 May
Model railway control system, P. Cowan, 524 Nov.
Multi-channel tone control, J. R. Emmett, 457 Sept.
Multimeter. digital, D. E. O'N. Waddington. 108 Mar.. 177 Apr.. 226 May
Multiphonic organ, J. H. A sbery, 303 June
Noise-limiter, an automatic. P. Hinch, 547 Nov.
Panel meter, digital. P. Bartlam, 163 Apr.
Railway control system, model, P. Cowan. 524 Nov.
Solid state teleprinter demodulator, R.'W. Addie, 77 Feb. Letters, 247 May, Correction, 186 Apr.
Surround-sound circuits, G. Shorter, 114 Mar.
Synthesizer. electronic sound, T. Orr \& D. W. Thomas. 366 Aug.. 429 Sept., 485 Oct., Keyboard note. 499 Oct.

Teleprinter demodulator, solid state. R. W. Addie. 77 Feb.. Letters, 247 May. Correction, 186 Apr
10.2 metre amateur transverter, D. R. Bowman, 561 Nov. Tester. meterless transistor. J. Lewis. 231 May Tone control. high quality, J. N. Ellis. 378 Aug.
-——multi-channel. I. R. Emmett, 457 Sept .
Transistor tester. meterless. J. Lewis. 231 May
Transmitter for 20 metres, 25 -watt transistor. S. A. Money. 277 June
Transverter. 10-2 metre amateur. D. R. Bowman. 561 Nov. Triangle wave generator. versatile, D. T. Smith. 87 Feb.. Correction, 230 May
Tuner design. f.m. - two years later, L. Nelson-Iones. 271 June. Letters, 497 Oct., Correction, 476 Oct.
25 -watt transistor transmitter for 20 metres. S. A. Money. 277 June

Versatile triangle wave generator. D. T. Smith, 87 Feb. Correction, 230 May
Voltmeter. dual-polarity digital. A. I. Ewins. 470 Oct. 535 Nov.

Wave generator. versatile triangle, D. T. Smith. 87 Feb.. Correction, 230 May

DOMESTIC EQUIPMENT
Electronic turntable. 16 Jan.
Inverter for fluorescent tubes, efficient. K. C. Johnson. 405 Aug., Letters, 450 Sept.. 497 Oct.

Turntable, electronic. 16 Jan.
EDITORIALS
Broadcast and cable television. 53 Feb.
Choice of systems and standards. 313 Julv
Cost-effective instruments. 365 Aug
Electronics industry in the E.E.C. 1 Jan
Electronics on the factory floor. 415 Sept.
Harold Barnard retires. 213 May
Integrated circuits in the U.K., 523 Nov,
Should integrated circuits be taught?. 261 June
The costs of engineering, 573 Dec .
The educated ear, 469 Oct. Letters, 532 Nov,
The engineer in industry. 159 Apr .
The transistor and the future, 107 Mar
EDUCATION AND INSTRUCTIONAL
Approach to audio amplifier design. J. R. Stuart. 387 Aug.. 439 Sept.. 491 Oct.. Letters, 451 Sept.
Audio magnetic recorder heads. B. Lane. 126 Mar.
_— - tape. the compatibility of. B. Lane, 199 Apr.
Communications, total. E. I. Gargini, 420 Sept. 506 Oct. Complementary m.o.s. integrated circuits. P. A. Johnson. 395 Aug.. Letters, 497 Oct.. 533 Nov

Darts game calculator, 494 Oct.
Educational film strips (Mullard), 136 Mar.
Electrochromic display, new, 455 Sept.
Electronics at the Open University. K. L. Smith. 160 Apr., Letters, 248 May
Experiments with operational amplifiers. G. B. Clayton. 33 .Tan.. 91 Feb.. 141 Mar. 241 Mav. 275 June. 355 Tuly. 372 Aug. . 447 Sept.. 582 Dec.
Evolution of the a.c. mains radio valve. J. H. Ludlow. 144 Mar.

Fifty years. these. M. G. Scroggie. 407 Aug., Letters, 451 Sept. 498 Oct.
Flat display tube in colour. 408 Aug.
Homodyne receiver, a. J. W. Herbert, 416 Sept.
Hybrid thick-film circuits. G. Brooke \& W. E. B. Baldwin. 121 Mar .

Independent local radio. 483 Oct.
Industrial electronics. R. Graham. 135 Mar.. 195 Apr. 249 May. 353 July. 437 Sept.. Letters, 294 June
Industrial security, W. E. Anderton, 601 Dec.
Information. presenting maintenance. S. W. Amos, 510 Oct.
Integrated circuits. complementary m.o.s.. P. A. Johnson 395 Aug. Letters, 497 Oct.. 533 Nov.

Jobs for the Grads. 265 June
Local radio independent. 483 Oct.
Loudspeaker. motional feedback. 425 Sept.
M.O.S. integrated circuits. complementary. P. A. Johnson. 395 Aug. Letters, 497 Oct., 533 Nov.
Magnetic recorder heads, audio. B. Lane. 126 Mar

- tape. the compatibility of audio. B. Lane. 199 Apr.

Magnetism and magnetic units. M. McCaig. 299 June. Letters, 332 July, 450 Sept Letters, 332 July "Cathode Ray", 23 Jan..
Magnets, permanent. "Cathode Ray", 71 Feb.
Metre waves now. J. Hum. 357 July
Microwaves. the realm of. M. W. Hosking. 61 Feb. 131 Mar.. 286 June. 347 July. 379 Aug.. 501 Oct.. 57.7 Dec.

Motional feedback loudspeaker, 425 Sept.

New electrochromic display, 455 Sept.
Op amps, optimizing, R. J. Isaacs, 185 Apr.
Open University, electronics at the K. L. Smith, 160 Apr., Letters, 248 May
Operational amplifiers, experiments with, G. B. Clayton, 33 Jan., 91 Feb., 141 Mar., 241 May, 275 June, 355 July, 372 Aug., 447 Sept., 582 Dec.
Optimizing op-amps, R. J. Isaacs, 185 Apr.
Opto couplers, using K. F. Knott, 595 Dec.
Oracle - broadcasting the written word, A. James, 314 July
P.C.M., sound recorder uses, 548 Nov

Permanent magnets, "Cathode Ray", 71 Feb.
Presenting maintenance information, S. W. Amos. 510 Oct.
Radio propagation disturbances 1972 , R. A. Ham, 187 Apr.
Realm of microwaves, the, M. W. Hosking, 61 Feb., 131 Mar.. 286 June, 347 July, 379 Aug., 501 Oct., 577 Dec.
Receiver, a homodyne, J. W. Herbert, 416 Sept.
Recorder heads, audio magnetic, B. Lane, 126 Mar.
Satellics, television broadcasting from, D. B. Spencer \& K. G. Freeman, 607 Dec .

Security, industrial, W. E. Anderton, 601 Dec
Semiconductor story, K. J. Dean \& G. White, 2 Jan., 65 Feb., 137 Mar., 169 Apr.
Single sideband, suppressed carrier generation, A. J. Turner, 453 Sept.
Some thoughts on transformers. T. Roddam, 598 Dec.
Sound recorder uses p.c.m., 548 Nov.
Suppressed carrier generation, single sideband, A. J. Turner, 453 Sept.
Tape, the compatibility of audio magnetic, B. Lane, 199 Apr.
Television broadcasting from satellites, D. B. Spencer \& K. G. Freeman, 607 Dec.

These fifty years, M. G. Scroggie, 407 Aug., Letters, 451 Sept., 498 Oct.
The compatibility of audio magnetic tape, B. Lane, 199 Apr. Thick-film circuits, hybrid, G. Brooke \& W. E. B. Baldwin, 121 Mar.
Total communications, E. J. Gargini, 420 Sept., 506 Oct Transformers, some thoughts on, T. Roddam, 598 Dec.
Tuners and tuner-amplifiers, B. Lane, 551 Nov.
Units, magnetism and magnetic, "Cathode Ray", 23 Jan., Letters, 332 July

Letters, 332 July, 450 Sept. McCaig, 299 June.
Using opto couplers. K. F. Knott, 595 Dec.
Valve, the evolution of the a.c. mains radio, J. H. Ludlow, 144 Mar.

Which way does current flow?, "Cathode Ray", 570 Nov,

EXHIBITIONS AND CONFERENCES
Audio Engineering Society, convention of the, 189 Apr.
-_ Fair, International, 545 Nov,
——— Fair, International, 545 Nov, 616 Dec.
-_ products, new, 220 May
Berlin, entertainment electronics at, 541 Nov,
"Communications 74" - call for papers, 499 Oct
Component Show, London Electronic, 236 May, Products seen, 362 July

- Exhibition, Paris, 297 June

Convention of the Audio Engineering Society, 189 Apr.
Electronica in retrospect, 9 Jan .
Entertainment electronics at Berlin, 541 Nov.
Festival du Son, 204 Apr.
Harrogate Audio Show, 546 Nov.
International Audio Fair, 545 Nov.
London Electronic Component Show, 236 May, Products seen, 362 July
Microwaves at the Physics Exhibition, 280 June
Montreux Television Symposium, H. Barnard, 335 July
New audio products, 220 May products seen at the Audio Fair, 616 Dec.

Paris Component Exhibition, 297 June
Physics Exhibition, microwaves at the, 280 June

- seen at the, 268 June

Sonex 73, 149 Mar., 184 Apr.
Television Symposium, Montreux, H. Barnard, 335 July

LETTERS TO THE EDITOR

Amateur computer club, M. Lord, 333 July
Audio amplifier design, A. R. Mornington-West, J. Vereker, J. L. Linsley Hood, 246 May, J. L. Linsley Hood, 296 June, H. P. Walker, J. L. Linsley Hood, 333 July, J. R. Stuart, 384 Aug., J. L. Linsley Hood, 450 Sept., A. Bloomer, 451 Sept

- pre-amplifiers, J. E. A. Fison, 120 Mar.
"Biamplifier" loudspeakers, S. Gabr, 248 May, H. D. Garland, 294 June, J. Moir. 385 Aug.
A. D. Blumlein, F. P. Thompson 590 Dec.

Blumlein 4 channel matrix. B. J. Sheiley, 385 Aug. well-heeled amateur, R. F. G. Thurlow, II 9 Mar.
Breakdown of c.m.o.s. devices, P. Seddon, 497 Oct., D. S. Williams, 533 Nov.

Car seat belts, Lyn Heigl, 332 July
Current flow symbology, C. H. Banthorpe, 294 June, D. V. Ellis, R. C. Whitehead, A. Parnham, T. Roddam, 386 Aug.

Displaying phasor diagrams, T. Palmer, 12 Jan.
Distortion reducer, W. T. Cocking, R. G. Mellish. 192 Apr., J. Ross Macdonald, 295 June, R. G. Mellish, 334 July
Doppler effect in loudspeakers, H. D. Harwood, 11 Jan., J. Moir, M. G. Scroggie, 74 Feb., H. D. Harwood, 248 May
Dual-ramp d.v.ms, R, H. Nicholson, 247 May
Electronic music, G. Wade, 498 Oct.
Electronics in psycho-kinesis, H. E. Stockman, 296 June, B. Herbert, 386 Aug.
"Empty" cassettes wanted, C. S. Smith, 499 Oct
Feedback amplifiers, J. L. Linsley Hood, 11 Jan., H. P. Walker, E. F. Taylor, 193 Apr., J. L. Linsley Hood, 248 May, J. R. Stuart, P. G. Craven, 330 July
Frequency shift howl suppressor, H. D. Harwood, 449 Sept., A. G. Falla, 534 Nov.
Fast printed circuit etching, J. Langrad, 588 Dec.
Hi-fi equipment standards, T. Hammond, J. M. Woodgate, 532 Nov.

Inverter for fluorescent tubes. D. G. Chappell, 450 Sept. K. C. Johnson, 498 Oct.

Loudspeaker enclosure survey (Nov. 72), G. Telfer, 75 Feb., J. Greenbank, 118 Mar. loading, P. Borud, 295 June
parameters, P. D. Hiscocks, 119 Mar., S. Gabr, 248 May

Magnetic pickup loading. R. Williamson. 295 June. G. J. King, 592 Dec.
units, "Cathode Ray", 332 July, M. McCaig, 450 Sept. K. Reichel 591 Dec.
Marconi's 1907 c.w. transmitter, W. J. Baker, 246 May
Measuring displacement, J. Dinsdale, 294 June
Mechanical television, D. B. Pitt, 295 June
Microphone measurements, R. V. Hartopp, 386 Aug. R. Schürmann, 591 Dec.
Modular i.c. audio mixer, M. L. G. Oidfield, 119 Mar.
Nelson-Jones f.m. tuner, N. J. Phillips, 76 Feb. D. J. Robinson, 591 Dec .
New names for old devices, P. J. Unwin, 499 Oct
Noise, R. N. Baldock, 15 Jan.
Novice licence, R. Williams, 534 Nov.
Old headphones needed, J. R. Gibson, 295 June
Open University course, P. J. Hunt, 248 May
Peak programme meter, R. Oliver, 12 Jan.
Power amplifiers. J. Vanderkooy 590 Dec.
Power supply design, J.F. Hiley, 333 July C. A. Hill I a plea, R. C. Whitehead, 15 Jan. C. A. Hill, L. Write, 76 Feb

Printed circuits the easy way, J. Ferguson, 332 July, V. Rowe, 450 Sept., P. C. Smethurst, 498 Oct.
J. Langrad 588 Dec, R. Markham 592 Dec.

Projection television, H. Ibbotson, 498 Oct., V. Valchera, 534 Nov.
Quadraphonic controversy, H. B. Kendler, 118 Mar.
Quantities and qualities, R. N. Baldock, 451 Sept.
Quantity names, R. N. Baldock, 334 July, W. B. Broughton, 385 Aug., R. N. Baldock, 451 Sept.
Radiating coaxial cables, J. R. Avery, 450 Sept., M. Goddard, J. R. Avery, 533 Nov. D. J. R. Martin 590 Dec.

Record equalization, P. S. Ewer, 384 Aug., R. L. Arthurton,
Record equalization, P. S. Ewer, 384 Aug., R. L. Arthurton,
497 Oct.
Reflex circuits, J. Scott-Taggart, 451 Sept., M. G. Scroggie, 498 Oct.
Sale of "walkie-talkies", J. D. Harris, 534 Nov.
Seeing in the dark, R. C. Whitehead, 15 Jan., G. Dann, in the dark, R. C. Whitehead, 15 Jan., G. Dann,
S. Waring, 74 Feb., J. R. Sanders, 118 Mar., R.C. Whitehead, 192 Apr.

Series resonant circuits, R. C. Driscoll, 247 May
Sixty years ago, W. L. E. Miller, 194 Apr., W. J. Baker, 246 May
Solid-state teleprinter demodulator, J. M. Osborne, 247 May
Special-purpose amplifier, S. Cahill, 13 Jan,
Third method for $556 .$. B. Pricstley 591 Dec.
Transmitting aerial design, G. S. M. Moore, 294 June
Tree effects in TV reception, B. Dudley Sully, 75 Feb.
Tuner front-end devices, F. F. Maher, 497 Oct.
IV information systems, J. K. Carter 588 Dec.
TV picture interference, D. C. Cooper, 588 Dec .
Unified dimensional display, D. L. Clay, 14 Jan.
Using c.m.o.s. devices, D. S. Williams, 533 Nov. F. Uebe 590 Dec.
V.A.T. and prices, W. B. Henniker, 450 Sept., J. R. Dykes, 497 Oct., W. B. Henniker, 534 Nov. J. Tyler 590 Dec.
V.H.F. receiver performance, R. G. Young, 333 July, G. J. King. 384 Aug. J. Zakar, 588 Dec.
"Walkie-talkies", sale of, D. Ferguson, 588 Dec.

MEASUREMENT AND TEST

Applications of the high-standard I.f. source, J. M. Osborne, 316 July
Approach to audio amplifier design, J. R. Stuart, 387 Aug., 439 Sept., 491 Oct., Letters, 451 Sept.

Counter prescaler, 200 MHz , D. J. Taylor, 27 Jan.
D.C. multimeter, simple transistor, J. D. Pahomoff, 39 Jan.

Design criteria for logic power supplies, R. B. D. Knight, 41 Jan.
Digital multimeter, D. E. O'N. Waddington, 108 Mar., 177 Apr., 226 May.
puanel meter, P. Bartlam, 163 Apr.
Dual-polarity digital voltmeter, A. J. Ewins, 470 Oct., 535 Nov.

High-standard low-frequency source, J. M. Osbome, 20 Jan., Correction, 57 Feb .
L.F. source, applications of the high-standard, J. M. Osborne, 316 July
Logic power supplies, design criteria for, R. B. D. Knight, 41 Jan.

Meter, digital panel, P. Bartlam, 163 Apr. for blind students, R. S. Maddever, 36 Jan .
Meterless transistor tester, J. Lewis, 231 May
Multimeter, digitai. D.E. O'N. Waddington. 108 Mar., 177 Apr., 226 May
simple transistor d.c., J. D. Pahomoff, 39 Jan .
Oscilloscopes, portable, 95 Feb., 157 Mar.
Panel meter, digital, P. Bartlam, 163 Apr.
Portable oscilloscopes, $95 \mathrm{Feb} ., 157 \mathrm{Mar}$:
Power supplies, design criteria for logic, R. B. D. Knight, 41 Jan.

Simple transistor d.c. multimeter, J.D. Pahomoff, 39 Jan.
Source, applications of the high-standard I.f., J. M. Osborne, 316 July
Transistor tester, meterless, J. Lewis, 231 May
200 MHz counter prescaler. D. J. Taylor. 27 Jan.
Versatile triangle wave gencrator, D. T. Smith, 87 Feb., Correction, 230 May
Voltmeter, dual-polarity digital, A. J. Ewins, 470 Oct., 535 Nov.

NEWS OF THE MONTH

A.P.A.E. annual exhibition, 8 Jan.

Aid in spinal therapy, 224 May
Aircraft tactical simulator, 224 May
Alphanumerics on a TV picture, 477 Oct.
Anti-collision braking system. 58 Feb. skid control by micro-circuits, 427 Sept.
Arabian telecommunications, 113 Mar
Award for TV standards converter, 324 Júly
B.B.C. exhibition, 8 Jan.

- local radio transmitting stations, 8 Jan.

BSI asks for industry's view, 266 June
Background music experiments, 392 Aug.
Berlin highlights, 477 Oct.
Bipolar i.c. "Process III" in production, 112 Mar
Brain drain, 60 Feb.
Cable highway into the home, 174 Apr. Ceefax tests, 393 Aug.
Ceramics for control and switching, 393 Aug.
Collision prevention for cars, 266 June
Component service from U.S.A., 3.24 July

- tester for relay systems, 528 Nov .

Components Board reorganized, 6 Jan.
Components Board reorganized, 6 .
Comperence of the Electronics Industry 1973, 59 Feb .
Conerence of the Electronics 1ndustry 19 Oct.
Congress on Acoustics - 1974, 477
Defect inspection device, 223 May
Distance measuring equipment errors, 113 Mar .
"Donald Duck" eliminators for U.S. Navy, 528 Nov.
Drawing by computer, 225 May

Electronic telephone exchanges for U.K., 112 Mar safety helmet, 583 Dec. traffic control, 175 Apr warship, 60 Feb.
Etching solution controls i.c. windows, 6 Jan.
European weather forecast centre, 225 May
Europe's first geostationary satellite, 8 Jan.
Fast data link, 266 June
Fifth Intelsat IV satellite, 477 Oct.
First quarter TV and radio deliveries, 324 July
Future of TV, 393 Aug.
Giant mobile transmitting and receiving mast, 8 Jan. Gramophone golden jubilee, 225 May

High power Gunn diodes, 225 May

- density data packing for tape, 583 Dec. speed mobile message-switching, 175 Apr.
Holographic computer memory, 174 Apr .

IBC '74, 267 June
IEA Exhibition 1974. 225 May
Industrial security, 176 Apr.
Inspecting aerial systems, 176 Apr.
Intelsat V satellite, 394 Aug.
International Apprentice Competition, 8 Jan. Ion implantation of charge-coupled devices, 59 Feb.

Largest solid-state image sensor, 528 Nov.
Laser communications closer, 392 Aug.

- computer system measures air pollution, 174 Apr.

Licence evasion, 58 Feb .
Local radio frequency changes, 323 July
London Component Show, 7 Jan.
Microcircuit telephone coin mechanis.n, 112 Mar.
Miniature solid-state TV camera, 478 Oct.
Minicomputer on a card, 428 Sept.
"Molniya" satellite launched, 113 Mar.
More noise reduction, 324 July
Mullard policy on valve guarantees, 584 Dec .
Multi-colour 3D video
New commumications satellite, 267 June i.c. concept, 6 Jan.
interference regulations, 427 Sept. laser-induced electrical effect discovered, 477 Oct video telephone, 392 Aug.

Optional radio broadcasts, 427 Sept.
PAL tolerances, 323 July
P.C.M. for Post Office trunks, 223 May for the North, 428 Sept.
Philip Berkeley A ward, 114 Mar
Physics Exhibition, 114 Mar.
Police comp obituary, 528 Nov
puter aid, 224 May
Pure metal audio tapes, 394 Aug.
Queen's Award to Industry, 267 June
Radar plus laser for landing system, 394 Aug.
Radio 4 in the South-west, 428 Sept.
_- paging by telephone. 58 Feb .
Recording by ear, 583 Dec.
Satellite navigator for world shipping, 583 Dec.
Sonar intruder detector, 323 July
Spacelab - new agreement, 477 Oct
Stereophony pilot tone, 224 May
Super beat conductors for i.c.s, 7 J an
Surround sound circuits, 584 Dec.
TV data service, 266 June
-_deliveries in the U.K., 428 Sept.
Tape news, 267 June
Telecom awards, 176 Apr.
Telephone telemetry, 224 May
Thin film laser switch, 7 Jan.
Time control for recorded speech, 113 Mar
Toshiba subsidiary in U.K., 478 Oct.
Touch terminal communication, 323 July
Transmitters for independent radio stations, 8 Jan
Travelling scholarship, 528 Nov
"Two-eyed" television tube, 59 Feb
U.K. amateur radio frequencies, 60 Feb
U.S. "TV Time" system, 428 Sept.

Ultrasonic holography in medical diagnosis, 427 Sept.
Venture for speech recognition, 528 Nov
Video disc launch at Berlin, 393 Aug.
Viewphone for surgical operations, 175 Apr.
Visual image processing robot, 113 Mar .

AUTHORS

Addie, R. W., 77 Feb.
Amos, S. W., 510 Oct.
Anderton, W.E., 601 Dec
Antoniazzi, P.\& Mauceri, A., 375 Aug.
Asbery, J. H., 303 Jure
Astor, R., 243 May
Attenborough, C., 593 Dec

Baldwin, W. E. B. \& Brooke, G., 121 Mar
Barnard, H., 335 July
Bartlam, P., 163 Apr.
Bessant, M. F., 479 Oct.
Bollen, D., 54 Feb., Letters, 192 Apr.
Bowman, D. R., 561 Nov.
Brooke G. \& Baldwin, W. E. B., 121 Mar.
Brush, R. J. H. \& Bayliss, P. E., 611 Dec.
Carruthers, J., Evans, J. H. Kinsler, J. \& Williams, P., 18 Jan., 85 Feb., 234 May, 291 June, 345 July, 435 Sept., 495 Oct., 557 Nov
"Cathode Ray", 23 Jan., 71 Feb., 570 Nov., Letters, 332 July
Clayton, G. B., 31 Jan., 91 Feb., 141 Mar., 241 May, 275 June, 355 July, 372 Aug., 447 Sept., 582 Dec
Cowan, P., 524 Nov.
Dean, K. J. \& White, G., 2 Jan., 65 Feb., 137 Mar. 169 Apr.

Ellis, J. N., 378 Aug.
Emmett, J. R.,. 457 Sept.
Evans, J. H., Kinsler, J., Williams, P. \& Carruthers, J., 18 Jan., 85 Feb., 234 May, 291 June, 345 July, 435 Sept., 495 Oct., 557 Nov
Ewins, 'A. J., 470 Oct., 535 Nov.
Falkus, A. E., 29 Jan.
Freeman, K. G. \& Spencer, D. B., 607 Dec.
Gargini, E. J., 420 Sept., 506 Oct
Graham, R., 135 Mar., 195 Apr., 249 May, 353 July, 437 Sept.

Ham, R. A., 187 Apr.
Hartiey Jones, M., 317 July
Herbert, J. W., 416 Sept.
Hinch, P., 547 Nov.
Hosking, M. W., 61 Feb., 131 Mar., 286 June, 347 July, 379 Aug., 501 Oct., 577 Dec.
Hum, J., 357 July
Isaacs, R. J., 185 Apr.
James, A., 314 July
Johnson, K. C., 405 Aug., Letters, 497 Oct.
Johnson, P. A., 395 Aug.
Key, A. J., 585 Dec.
Kinsler, J., Williams, P., Carruthers., J. \& Evans, J. H. 18 Jan., 85 Feb., 234 May, 291 June, 345 July 435 Sept., 495 Oct., 557 Nov.
Knight, R. B. D., 41 Jan
Knott, K. F., 595 Dec.
Lane, B., 126 Mar., 199 Apr., 551 Nov.
Lewis, J., 231 May
Lewis, R., 529 Nov
Linsley Hood, J. L., 567 Nov., Letters, 247, 248 May, 296 June, 331, 334 July, 450 Sept.
Ludlow, J. H., 144 Mar.
McCaig, M., 299 June, Letters, 450 Sept.
Marcario, R. C. V., 281 June
Maddever, R. S., 36 Jan.
Mauceri, A. \& Antoniazzi, P., 375 Aug.
Money, S. A., 277 June
Naaijer, G. J., 401 Aug.
Nelson Jones L., 271 June, Letters 591 Dec.
Orr, T. \& Thomas, D. Wं., 366 Aug., 429 Sept., 485 Oct. Osborne, J. M., 20 Jan., 316 July, Letters, 247 May

Pahomoff, J. D., 39 Jan.
Patchett, G. N., 262 June

Read, D. C., 574 Dec.
Roddam, T., 598 Dec.
Ross, C. W., 325 July
Scroggie, M. G., 407 Aug., Letters, 498 Oct.
horter, G., 114 Màr
Smith, D. T. 87 Feb
Smith, J. H., 214 May
Smith, K. L., 160 Apr
Spencer, D. B. \& Freeman, K. G., 607 Dec.
Stuart, J. R., 387 Aug., 439 Sept., 491 Oct., Letters, 330 July, 384 Aug.

Taylor, D. J., 27 Jan.
Taylor, P. L., 301 June
Thomas, D. W. \& Orr, T., 366 Aug., 429 Sept., 485 Oct.
Thompson, R., 339 July
Tuke, J. B., 461 Sept.
Turner, A. J., 453 Sept.
"Vector"; 106 Feb., 260 May, 312 June, 414 Aug., 522 Oct., 621 Dec.

Waddington, D. E. O'N., 108 Mar., 177 Apr., 226 May
White, G. \& Dean. K. J., 2 Jan., 65 Feb., 137 Mar. 169 Apr.
Williams, P., Carruthers, J., Evans, J. H. \& Kinsler, J., 18 Jan., 85 Feb., 234 May, 291 June, 345 July, 435 Sept., 495 Oct., 557 Nov

Project 80 tuner
Stereo decoder
the slimmest,most elegant hi-fi modules ever made

Project 80 new modules

Stereo 80 pre-amplifier and control unit

As with other Project 80 units, the Stereo 80 is mounted by means of two bolts fixed at the rear which pass through holes drilled in the wood or plastic on which modules are to be mounted All the electronics are contained within the $\frac{3^{\prime \prime}}{4}$ deep front panel! Connecting leads are taken away similarly out of sight. Each channel in the Stereo 80 has its own independent tone and volume controls operated by sliders. This enables exceptionally good environmental matching to be obtained. Provision is made for magnetic and ceramic pick-ups, radio and tape in and out. A virtual earth input stage forms part of the up-dated circuitry of the Stereo 80 to ensure the finest possible quality from all signal sources. Generous overload margins are allowed on all inputs. Clear instructions with template are supplied.

TECHNICAL SPECIFICATIONS

Size $-260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{ins}$)
Finish - Black, with white markings
Inputs - Mag. P.U. 3 mV RIAA corrected; Ceramic P.U. 300 mV
Radio 300 mV : Tape 30 mV
S/N ratio - 60 db
Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power requirements -20 to 35 volts
Outputs $-100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape
Controls - Press button for tape, radio and P.U. selection Volume,
Bass +12 dB to -14 dB at 100 Hz ; Treble +11 dB to -12 dB at 10 KHz

Project 80 FM tuner smaller, more efficient

A truly remarkable tuner in every way - its unbelievably compact size its original circuitry - its dependable performance - all this in a boldly designed modern case measuring $85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times \frac{3}{4}$ ins). Greater adaptability (and possibly financial convenience) results from the tuner and stereo decoder section being made available separately.
TECHNICAL SPECIFICATIONS
Size $-85 \times 50 \times 20 \mathrm{~mm}$ (approx. $3 \frac{1}{2} \times 2 \times \frac{3}{4} \mathrm{ins}$)
Tuning range -87 to 108 MHz
Detector-I.C. balanced coincidence, for good A.M. rejection
AFC - Switchable, with thermistor control to prevent from drift
One 26 transistor I.C.
Twin dual varicap tuning
Distortion -0.3% at 1 KHz for 75 KHz deviation
Ceramic filter in I.F. section
Aerial impedance -75Ω or $240-300 \Omega$
Sensitivity - 4 microvolts for 30 dB quieting
Power requirements - 12 to 45 volts

Project 80 stereo decoder

Making the Project 80 decoder separate from the F.M. tuner gives the constructor a wider choice of systems as well as saving money in cases where stereo reception may not be required. This unit gives a 40 dB channel separation with an output of 150 mV per channel. The gallium arsenide light emitting beacon automatically lights up to show when a stereo transmission is tuned in. Designed essentially as an integral part of Project 80 systems, this multiplex stereo demodulator may be used in many cases with existing single channel frequency modulated tuners to provide stereo reception.
Size $-47 \times 50 \times 20 \mathrm{~mm}$ ($1 \frac{7}{6} \times 2 \times \frac{3}{4}$ ins)
One 19 transistor I.C.

NEW

Solid-state stereo indicating beacon
Readily adaptable for use with other tuners
R.R.P. f7. $\mathbf{4} \boldsymbol{5}+\begin{gathered}0.74 \mathrm{p} \\ \text { V.A.T. }\end{gathered}$

new constructional techniques

. . .and again Sinclair leads the world

1962 Micro-miniature power amp small enough to stand on a 10 p . piece. Slimline pocket receiver smaller than a 20 cigarette pack
1963 Micro-6 receiver, smaller than a matchbox
1964 Pocket F.M. receiver; PWM amp.
1965 Z. 12 power amplifier module; PZ. 3 power supply
1966 Stereo 25 pre-amp/control unit
1967 Micromatic: Q. 14 loudspeaker; the first Neoteric
1968 IC.10, the first ever integrated circuit for constructors' use

Project 80 active filter unit

This efficiently designed unit makes a highly desirable part of any worthwhile system where inputs may be from record, radio or tape. As with Stereo 80, separate controls are applied to each channel thereby making it easier to obtain ideal stereo balance in any kind of indoor environment

TECHNICAL SPECIFICATIONS
Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{ins}\right)$
Voltage gain -minus 0.2 dB
Frequency response -36 Hz to 22 KHz , controls minimum
Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply
HF cut off (scratch) -22 KHz to $5 \cdot 5 \mathrm{KHz}, 12 \mathrm{~dB} /$ oct. slope
L.F. cut off (rumble) - 28 dB at $20 \mathrm{~Hz}, 9 \mathrm{~dB} /$ oct. slope

Z. 40 \& Z. 60 power amplifiers totally short-circuit proof

Either of these entirely new power amplifiers is intended for use in Project 80 installations although, of course, they are readily adaptable to an even wider range of applications. Both Z. 40 and Z. 60 incorporate builtin protection against shortcircuiting and risk of damage arising from mis-use is greatly reduced. Comprehensive instructions are supplied with each of the modules.

Z.40 Technical Specifications

Size-55×80×20mm
($2 \frac{1}{8} \times 3 \frac{1}{3} \times \frac{3}{3}$ ins) 9 transistors
Input sensitivity -100 mV
Output-15 watts RMS continuous into $8 \Omega(35 \mathrm{~V}) .30$ watts music power into $4 \Omega(30 \mathrm{~V})$
Frequency response -10 Hz
$100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal to noise ratio - 64 dB
Distortion - at 10 watts into 8Ω
less than 0.1%
Power requirements $-12-35$ volts

Z 60 Technical Specifications
Size $-55 \times 98 \times 20 \mathrm{~mm}$
($2 \frac{1}{8} \times 3 \frac{3}{4} \times \frac{3}{3}$ ins) 12 transistors Input sensitivity $-100-250 \mathrm{mV}$ Output - 25 watts RMS into $8 \Omega(45 \mathrm{~V}) .50$ watts music power nto $4 \Omega(50 \mathrm{~V})$
Distortion - typically 0.03\% Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Signal to noise ratio-better than 70dB
Built-in protection against transient overload and short circuit
Load impedance -4Ω min; max. safe on open circuit

Sinclair power supply units

the worlds most
advanced unit in its class
Stabilised power supply unit. Re entrant current limiting makes damage from overload or even direct shorting impossible, a principle never before inorporated in a com evialiy available constructor mod mercially available constructor mod le. Normal working voltage (adjustable) 45 V .
R.R.P. $£ 7.98+0.79$ p V.A.T

Without mains transformer PZ. 5 30V unstabilised R.R.P. $£ 4.98+0.49$ p V.A.T. PZ. 6 35V. stabilised R.R.P. $\mathbf{£ 7 . 9 8 + 0 . 7 9 p}$ V.A.T

LONDON RD., ST. IVES, HUNTINGDONSHIRE PE17 4HJ Reg. No. 699483 England

1969 Q. 16 - improved version of Q. 14 : Systems 2000 and 3000 Project 60 launched

Project 60 stereo FM tuner: Z.50: PZ. 8
Improvements to Project 60 with Z.50 MK. 2 and PZ. 8 Mk. 3 The Executive Calculator: Digital multi-meter: Q. 30 speaker:

1973 Cambridge Calculator:
PROJECT 80 LAUNCHED

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & \mathbf{£ 5 . 4 5} \\ & +54 \mathrm{p} V . \mathrm{A} . \mathrm{T} . \end{aligned}$
Mains powered record player	Z.40, PZ. 5	$\begin{aligned} & \mathrm{f} 10.43 \\ & +£ 1.04 \mathrm{~V} . \mathrm{A} . \mathrm{T} . \end{aligned}$
30W. RMS continuous sine wave stereo amp.	$\begin{aligned} & 2 \times Z .40 \text { s, Stereo } \\ & 80 ; \text { PZ. } 6 \end{aligned}$	$\begin{aligned} & \mathbf{f 3 0 . 8 3} \\ & +£ 3.08 \text { V.A.T. } \end{aligned}$
50W (8 $\mathbf{\Omega}$) RMS continuous sine wave de luxe stereo amp	$\begin{aligned} & \mathbf{2 \times Z . 6 0 s} \text {, Stereo } \\ & 80 ; \text { PZ.8 } \end{aligned}$	$\begin{aligned} & \text { £33.83 } \\ & +£ 3.38 \text { V.A.T. } \end{aligned}$
Indoor P.A.	Z.60, PZ.8	$\begin{aligned} & \mathrm{f} 14.93 \\ & +£ 1.49 \text { V.A.T. } \end{aligned}$
Car Radio	F.M. tuner, 2.40	$\begin{aligned} & £ 16.40 \\ & +£ 1.64 \text { V.A.T. } \end{aligned}$

F.M. Tuner, Decoder and A.F.U. may be added as required

From Sinclair the worlds most advanced hi-fi modules

Sinclair Project 80 tre ultra-modern non-obtrusive hi-fi

 be built into a book-shelf end
 a shelf could be sufficient to contain a complete system

Two Sinclair Q. 16 loudspeakers suitably positioned together with Project 80 could be mounted on to a false wall.

When you have seen for yourself how fantastically slim and cleverly designed these modules are, further ways will suggest themselves in which they can become a pleasing part of your particular domestic environment.
\square

Guarantee

If, within 3 months of purchasing any product direct from us, you are dissatisfied with it. your money will be refunded on production of receipt of payment.
Many Sinclair appointed Stockists also offer this guarantee.

Should any defect arise in normal use we will service it without charge. For ddmage arising from mis-use a small charge (typically f1.00) will be made.

D.C. STORAGE OSCILLOSCOPE TYPE C8-1
Made in US.S.R.

Differential Vertical.
Single ahot, trize Amplitier. running time base.
A.C. or D.C. coupling.
Bandwidth: D.C. to TMHz Bandwidth: D.C. to MMHz.
Enhance or Normal Opera. tion.
Max. writing speed $4 \mathrm{kmo} / \mathrm{sec}$. Storage time: up to 1 week. Price $\mathbf{£ 2 4 0 . 0 0}$
Full details are contained in our Catalogue--see below.

ALL Prices are exclusive of value ADDED TAX. WHEN ORDERING BY POST PLEASE ADD f0. $12 \frac{1}{2}$ IN f FOR HANDLING AND POSTAGE (SUBJECT TO A MINIMUM CHARGE $\mathrm{I}^{0.15}$) AND 10% OF THE TOTAL VALUE FOR VAT.

WIDE BAND OSCILLOSCOPE TYPE C1-54
Mexe in U.S.S. R .

Bandwidth: D.C. to 20 MHz . Max. sensitivity: $1 \mathrm{~mm} / \mathrm{mV}$. tor. Crystal Controlled Time Marker Beam Locator. Push-button controlled single shot operation.
Frequencies up to 30 MHz can be displayed using direct-totube connections.
Price $\mathbf{£ 1 4 0 . 0 0}$
NEW MULTIMETER TYPE U4323
Made in U.S.S.R

Price $\mathbf{£ 7 . 0 0}$

TRANSISTORIZED AUPIO SLIE-WAVE OSCILLATOR TYPE G3-36

Transistorized Audio R-C Oscillator covering a range of 20 Hz
 Four separate output sockets giving, attenuation yatios of 1 . 10,
100 and 1000 . Microamameter output indtcator. Output voltage
$\mathbf{5 V}$ into 600Ω.

HIGH VOLTAGE NPN POWER TRANSISTORS TYPE BU105

Fór T.V. Line Deflection Clrcuit.
Vcso 750 V D.c. or 1500 V peak
I AMP MINIATURE WIRE ENDED SILICON RECTIFIERS

IN 40071000 p.i.v. $\rightarrow 0.140$

C.A.A. Approved for inspection and klystrons, ece.

HICKOK
 THE VALUE INNOVATOR

MODEL 34205 Figure Read Out 20 MHz Frequency Counter and AC-DC Resistance Multimeter Only one of the Hickok range From U.K. Agent Sales backed up by service
HEPWORTH ELECTRONICS

Bank Buildings, Kidderminster Tel: 0562 2212/3. Mr. C. A. Hill

WW-098 FOR FURTHER DETAILS

Intermediate Network Theory Book 1

R. J. Maddock, MSc, CEng, MIERE

This textbook is designed for students preparing for HNC and HND examinations in electrical and electronic engineering and for the first year of a degree course in these subjects. The purpose is to introduce the student to network theory by using fundamentals which can be obtained from a knowledge of basic electrotechnology. Particular attention has been paid throughout the text to illustrating these principles by means of graded examples, together with carefully chosen exercises.
192 pp., illustrated 0408705124 cased $£ 3.95$
$0408705132 \mathrm{limp} £ 1.95$

Questions and Answers on Integrated Circuits

Robert G. Hibberd, BSc, CEng, FIEE
Covers all the main types of integrated circuits-thick and thin film, monolithic and hybrid, digital and linear -and also deals with Boolean algebra and binary notation. Resistor, diode and transistor logic circuits are described and compared and typical applications are discussed.

197396 pp., illustrated 0408001151 75p
Obtainable through any bookseller or from:
The Butterworth Group 88 Kingsway, London WC2B 6AB Showroom: 4-5 Bell Yard, WC2

Recording Heads

Rapid expansion and a continuous development programme in the field of recording techniques have made a small selection of our good stock redundant.

We are now offering these recording heads at half the normal price.
$\frac{1}{2}$ track mono R.P. $\frac{1}{2}$ track mono erase
8 track stereo R.P. twin stereo erase
single track cine heads R.P. and erase
$\frac{1}{2}$ track mono cassette erase heads
8 track 2 channel stereo heads
\qquad
TO: MARRIOTT MAGNETICS LTD
PENRYN, CORNWALL TELEPHONE 032-67 2267
Please send me a price list for the special offer of F
recording heads.

Company-
 \qquad

Test Case

The Sullivan Capacitance Bridge C3071 is just that - a direct reading instrument with a wide span of measurement covered by 4 ranges - making it ideal for component checking by manufacturers, electronic service engineers, development laboratories etc. Even universitiestand colleges have found the C3071 invaluable.
It's really quick to balance, too. Just select a range (between the 0.5 pF and $50 \mu \mathrm{~F}$) and turn one dial from end to end. If no balance is achieved, merely select another range and repeat the process.
For full details of the C3071, please contact the address below. We've got a convincing case to make.

Sullivan

H. W. Sullivan Limited, Dover, Kent. Tel: Dover (STD 0304) 202620 Telex: 96283

I Thorn Measurement Control тйв and Automation Division.
WW-102 FOR FURTHER DETAILS

Purpose-built servo and actuator systems using standard components

McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Yypical precision gears

Control Amplifier

Gearhead with integral feed-back Potentiometer custom-built systems. form part of your own design
Typical examples include : Lines. signals

Power Unit to feed up to 3 Servos

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to

Such a system could be complete in itself or

Camera positioning: Plotting Devices: Self-steering Systems: Sig-nal-seeking Aerial Drives: Professional Tape Drives: Automated Production

Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic

WW-104 FOR FURTHER DETAILS
MII
new improved circuitry
The 1973 answer to power cuts.
The Jermyn invertor.
When plugged into any 13 amp socket these units charge $12 / 24 \mathrm{v}$ car batteries (up to 10 amps). In the event of a power failure they automatically start inverting, providing a 240 v 50 Hz emergency supply at $150 / 300$ watts. Enough for a couple of standard lamps and the TV or the central heating pump and the hi-fi. All this and full protection against overload and wrong battery lead connection.
A complete kit of parts costs $£ 29$ for the 150 watt unit or $£ 39$ for the 300 watt version (made up and tested) $£ 39$ and $£ 49$ respectively. All prices $+10 \%$ VAT

To Jermyn Industries Please rush me $\bar{\square} \overline{\mathrm{Kit}} \overline{\mathrm{s}}$), II9Vestry Estate Sevenoaks Kent \qquad I enclose cheque/postal order for $£$

Address

WW—105 FOR FURTHER DETALLS

NEW HY5 PRE-AMPLIFIER

```
Unchallenged for two years, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components \(\&\) has been redesigned to run off a split power line with improvements in signal/noise, overload capability \& reduced distortion. The output has been increased to match the power module (Odb), and'to share the same power supply.
Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device.
When combined with the HY50 \& power supply only potentiometers are required to complete a simple mono amplifier with input \& output facilities expected to be found on Hi-Fi amplifiers.
The combination of two HY5's two HY50's sharing a common power supply (PSU50) are linked by a balance control to form a complete stereo system.
INPUTS
SPEC.
Magnetic Pick-up 3mV (within 1db RIAA curve)
Ceramic Pick-up up to 3 mV ,
Microphone 10 mV .
Tuner 250 mV .
Auxiliary \(3-100 \mathrm{mV}\).
Input impedance \(47 \mathrm{k} \Omega \mathbf{1 k H z}\)
OUT'PUTS
Tape 100 mV
Main output. Odb ( 0.775 volts).
ACTIVE TONE CONTROLS
Treble \(\pm 12 \mathrm{db}\) at 10 kHz
Bess +12 db at 100 Hz
OVERLOAD CAPABILITY (equalization stage) 40 db on most sensitive input.
OUTP UT NOISE LEVEL (below 10 mV magnetic input) 68 db .
DISTORTION \(0.05 \%\) at 1 kHz .
SUPPLY VOLTAGE \(\pm 16-25\) volts.
SUPPLY CURRENT 15 mA .
Price \(\mathbf{E 4 . 5 1}\) mono \(\mathbf{f 9 . 0 2}\) atereo
Price inclusive of VAT \& P \& P.
```


POWER SUPPLY PSU50

The new PSU50 has a low profile look being only $2 \frac{1}{4}$ inches high and can be used for either mono or stereo systems. SPEC.
OUTPUTVOLTAGE $\pm 25 \mathrm{vol}$ ts.
INPUT VOLTAGE $210-240$ volts.
SIZEL. 70 D. 90 H. 60 mm .
Price E5.23.
Price inclusive of VAT \& P \& P.

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT

CANTERBURY 63218

Our products are:
11 m AM Walkie-Talkies, $0-2-1-2$ and 5 Watt, up to 24 channels, 11 m AM Cartransceivers, 6 and 24 channels, $2-5$ and 10 Watt, 2 m FM 10 Watt, 12-22 channels Amateur, Industrial and Marine Transceivers, 11 m SSB 24ch. 300W, 220V/12V-Transceivers, 8-track Stereo-Recorder with built-in AM and FM Stereo-Radio.

Wanted:

Qualified dealers and wholesalers of the technical line for the sale of the above highly sought-after products.
Delivery is effected immediately from stock in Switzerland or ex factory Japan.

SOKA SRL,

CH 6903 Lugano, Box 176
Tel: 004191 688543, Telex: 79314

AEL GATWICK HOUSE, HORLEY, SURREY, ENGLAND Tel; Horley (02934) 5353 . Telex: 87116 (Aerocon Horley): Cables: Aerocon Telex Horley

MODULATION MEASUREMENT BROUGHT UPTO DATE!

The Sayrosa 251 Automatic Modulation Meter dispenses with all those tuning dials and level sets found on conventional modulation meters. To make a measurement of amplitude or frequency modulation all you need do is connect your signal, select mode and range, and you have an instant reading. The 251 does all the tuning and level setting for you in around 100 milliseconds. Designed and manufactured in U.K. the 251 is available now so call us and arrange a demonstration in your own laboratory.

* Automatic tuning and level setting
* AM measurement to 95% in two ranges
* 20 MHz to 1000 MHz continuous coverage
* Mode and range selection programmable
* FM measurement to 100 KHz in four ranges
* Small size, low weight

U.K. price exclusive of VAT

Sayrosa Engineers Ltd. Wey River House, High Street, Alton, Hants.

Telephone: Alton 84500
WW- 110 FOR FURTHER DETAILS

PARKER SHEETMETAL FULDNE MANHNES

bench model

36"' $\times 18$ gauge capacitye35.00 carr. 75p $24^{\prime \prime} \times 16$ gauge capacity E32.00 carr. 75p Alse the well-known vice model of $36^{\prime \prime} \times 18$ gauge capactry.... . 817.00 carr. 50p $24^{\prime \prime} \times 18$ gauge capacity....${ }^{\text {. }} \mathbf{~} 12.00$ carr. 38 p $18^{\prime \prime} \times 16$ gauge capacity $\ldots .$. . 12.00 carr. 38p

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee.
Money back if not satisfied.
Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, HECKMONDWIKE, YORKS.
Telephone 403997

Thermistors

F. J. Hyde, DSc., Msc, BSc.

"Provides a very comprehensive account of the properties and applications of both negative and positive temperature coefficient types of thermistors. An extremely useful reference work on this essential circuit component - thoroughly recommended as essential reading for all control engineers."
Instrument and Control Engineering.
0592028070208 pages illustrated $1971 \mathbf{£ 3 . 2 0}$
Available from leading booksellers or:
The Butterworth Group 88 Kingsway London WC2B 6AB Showrooms and Trade Counter 4-5 Bell Yard London WC2

GAS DETECTOR AND ALARM
Fiverace every 12 mins，a fre occurs in somebody＇s at night when the family is asieep． G．D． 1 which＂smells＂emoke and gas and souns an measuring epprox． $5^{\prime \prime} \times 3 \frac{1}{n}^{\prime \prime} \times 2 z^{\prime \prime}$ ．SAGA has parts Including the case $\$ 5.99$ or made up tested and working 86.89 plus 30 p poat an

EDUCATIONAL KITS instructions

3 given henworn with
piece halanne bit．Priee of litits 44 FRee an azearate post paid．Special KAR Lena Eit．Fileven parts，includina oandle ens，one convex lens，stage and silit frame，etc．Wateh light ravs bend as they pass thrmugh dilferent lemses，
KAs Water Pump Kit．Thirteen parts．Ton
KAs Watar Pump Kit．Thitteen parts．Top of pump is transparent so that operating varts may he observed．
Smand part are hrightly ocloured the beene ensilily while
worldna．Three trpes of pumap may be made：Lift pump working．Three types of pump may be made．Lift pump KA4 Buzzer Kit．Eleven parts．Trannparent covers allow

 Mne with several layers of wire．Picks up tacks，nails and any small parts showing how magnetism Works．
KA8 Curreat and Resistanee Eitt．Twenty Mine parts，in
 different typee smd lenerthe of wire． KA9 Bell Rit．Eight parfte，including bell qnd yuat button hammer is triggered to make the bell ring．
EA10 Morse Rey buzzer and bell kit． 25 part，kit，easy to

5

SLIDE SWITCHES

乍解 Ditto as above but for printed eircult 7 y each
Sub Miniature sulde Switch．DPDT 18man（in
approx．）between fixing centres．14p each or 10 for 21.26 ．
DOUBLE LEAF CONTACT
 Poat etc．50p each．
I REV，PER MIN YOA
WITH GEAR－BOX
Made by the famous Chamberlain \＆Hookham Ltd．These

MINIATURE SEALED RELAY
American made．Our Ref．No．REL AM．

I2Y CAR BLOWERS

Units made by Delco． 6 bladed $5^{\prime \prime}$ dia．fan inside heavy
duty cylinder．These have really powerful series wound notors giving a terrific air flow suitable for ventilating or heating a oar，boat，caravan，ete．Price 22.20 plus 40 p
post and insurance．（Note these are intended for 12 V D．C．
but can be run from but can be run from A．C．up to 30 V．The higher the voltage

DRILL CONTROLLER Electronically changes speed Electronically changes speed
from approximately 10 revs． from approximately 10 reve，
to maximum．Full power at ali Kit includes all palts，case，
everything and full instruc－
available，$£ 2.95$ plus $13 \mathrm{p} p$ ．also
size approx． $6 f^{*} \times 3 y^{\prime \prime} \times 2^{n}$ deep with
brass inserts in four comers and bakelite brass inserts in four coraers and bakeilte
panel．This is a very strong case sultable

15A ELECTRICA

lectrical frogrammer． 15 amp ．on／off awitch．Switch on time can be set anywhere to stay on up to 6 hours．
Independent 60 minute memory jogger．A beautiful unit． Independent 60
Prico $82.15+$
+

WATERPROOE GEATING ELEEMENT
Fards length 35 W ．Self－regulating yards length 35 W ．Self－regulating tem－
perature control． 55 p post free．

TREASURE TRACER
Complete Kit（except wooden batteng）to
makke the metal detector as the circuit in
Practical Wireless August isoue， Practical Wireless August issue．$£ \mathbf{3} \mathbf{8 5}$
plus 20 p post and ingurance．
packing．

RADIO STETHOSCOPE
Eauieat way to lault find－traces signal from aerial to speaker－when anything－complete kit comprises two special transistors and all parts Including probe tube and crystalae earpiece，\＆2＇20－twin stethoset instead
of earpiece 83 p extra－post and ins． 20 p．

PORTABLE ELECTRIC DRILL

Very superior quallty made by a famous Dutch
toolmaker．Model No．ASM 830 （ $300 \mathrm{w}-2$ speed
 with concrete，etc．An equimalent Briltty ior made drill
would cost $£ 15 \cdot 00$ ． 810.90 － sil milar model Would cost $£ 15 \cdot 00$ ．$\$ 10 \cdot 90$－similar model but
without the hammer attachment $\$ 7 \cdot 95$ ．Have elther model on approval for 7 days．

BATTERY CONDITION TESTER

Made by Mallory but suitable for all batteries made by Ever mercury manganese－nicad－silver oxide and alkailine batterles may be tested，The tester puts a dummy load on the battery and the met section the pointer restas．The section reads＂replace＂，＂which．

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated circuits made by the famous Plessey Company．A once－in－a－1fetim all new and perfect，first－grade device，defnitely not sub standard or seconds． 4 of the ICs
are are single silicon chip GP amplifiess．The sth is a monolithic APN matched pair．Regular price of parcel well over w．Full circuit details of the ICs are included and in addition you and technical data of each．Complete parcel only 21 post paid． DON＇T MISS THIS TERRIFIC BAR RGAIN．

Tangential Heater Unit，2KW Tangential Heater Unit， 3 KW

300 watt Coatrol Awitch for ahove 44p each．
1000 watt Heat and Light Tube（Mullard）With special holder and terry clips．Price $82 \cdot 20$ plus 30 p post．
2000 watt Moulable Metal Clad Element． 8 ft ．long－s1． 10 ．
Radiant Cooker Rlings． 2000 watt． 88 p each， 1000 watt Fire Spirals， 22 p each．
750 watt Flat Elements． 33 p each．Black Feat Element Metal Clad 900 watt Oven Element Metal Clad． 2000 watt．＂W＇Shaped． 14 It＂long $\times 8^{\prime \prime}$ wide．93p each

CENTRIFUGAL BLOWER

My Miature mains driven blower centrifugal type blower unlt
by Woods，powerful but specially bultit for que quie rwoning－
driven by cushioned induction motor with spectally buit driven by cushioned induction motor with speclally built
 a clamp，ideal for cooling electricai equipment，or fitting using when soldering etc．，etc．A real bargain at $82 \cdot 25$ ．

ELECTRIC TIME SWITCH

 Made by smiths these are A．C．mains operated．NOT CLOCKWORK．Ideal for mounting on rack or shelf or can be built into box with 13A socket， 2 completely adjustable switch circuit on or off during these periods． $\mathbf{E 2} \cdot 75$ post and ins．，23p．Additional time contacts 55 p pair
THYRISTOR LIGHT DIMMER

For any lamp up to 250 watt．Mounted on switoh plate to ft in place of
etandard awitch．Virtually no rado interference，Price $82 \cdot 85$ ．Industrial model 5 A（not on switchplate） 83,30 ．
IO AMP DIMMER CONTROL
For the control of lighting on stage or in a studio or for control of portable equipment in regulator．，The overall length is 17 in．，width 3 zin．and d
On／Ofi switch indicator，lamp and fuec．Price 88 ． 25 ．
HONEYWELL PROGRAMMER
This is a drum type tining device，the drum being calibrated in equal div isions for switch setting purposes
wips which are infinitely adjustable for position They trips also arranged to allow 2 operations per switch per rotation．There are 15 changeover milcro switches each of 10 amp type perated by the trips thus 15 circuits
may be changed per revolutlon．Drive motor is maing operated 5 revs per min．Some of the many uses of this operated 5 revs per min．Some of the many uses of this
tlmer are Machinery control，Boiler fring，Dlspensing
 and Vending machines，Digplay lighting animated and

HORSTMANN＂TIME 基 SET＂SWITCH

（A 30 Amp Switch＇）Just the thing 4 you want to come home to ${ }^{g}$
warm house without it coating you a fortune．You can delay the warm house without it conting you a fortune．You can delay the
switch on time of your electric fires，etc．，up to 14 hours from getting time or you can une the switch to glve a boost on period of up to

 SPIT MOTOR
$200-250 \mathrm{v}$ ．Induction Motor，driving a carter gear box with 1 IIn．o output drive shaft running at 5 revs．per minute．Intended for
roasting chickens，also suitable for driving models，windmills，coloured roasting chickens，also suitable for driving models，windmills，colou
diac lighting effect，etc．，etc．$£ 2.05$ plus 20 p post and insurance．

DISTRIBUTION PANELS
Just what you need for work bench or lab． $4 \times 13 \mathrm{amp}$
sockets m metal box to take standard 13 amp fused
pluge and on／ott switch with neoo warning light．supplied complete with 6 feet of heav
All MULLARD AUDIO AMPLIFIERS
all in module form，ready buill
AMPLIFIER
sinks and connection tags，data supplied
Unilex stereo 4 w per channel $\mathrm{E11} 30$ ．
Model 1163500 mW power outpat 82 p ．
Model 1172750 mW power output 94 p ．
Model EP9000 4 watt power output $\& 1.60$ ．

Where postage is not stated then orders over 65 are post free．Below 55 add 30 p．
S．A．E．with enquiries please．
－HEATERS AND ELEMENTS
\square

GOOD COMPANION I．C．VERSION

We can now ofier these agaln in \mathbf{I}, \mathbf{O} ．
yersion uaing Ferranti ZNA14 ard
Mullard AF Module Yersion using Ferranti 2N414 and
Mullard AF Module 1172 ．Cabinet
size approx．IIn．Wide \times 8in．high $\times 3 \mathrm{in}$ ．deep．Complete assembly
instructions， $\mathrm{t5} \cdot 85$ plus 25 p post and
ins．Excellent tone wood cablinet． MIGHTY MIDGET
Probably the finest smallest radio；as described in Practical
Wireless，January 73 ．All electronic parts 22.20 post paid．

12 VOLT I $1 \frac{1}{2}$ AMP
Thig comprisen double wound $230 /$
240 V mains transormer with，full
wave rectifier and 2000 m／fid
maoothing．Price $£ 2 \cdot 20$, piua 20 p
post \＆packing．
Heavy Duty Kains Power Pack，Output voltage adjustable
from 15.40 V in steps－－maximum load 250 W－that is from 6 amp at 40 V to 15 amp at 15 V ．Thls really in a hlgh power heavy duty unit with dozens of workghop uses．
 $3,000 \mathrm{~m}$ ．Price $\mathbf{\$ 6} \mathbf{8 3}$ plus 65 p post

SWITCH TRIGGER MATS
So thin ls undetectable under carpet but will gwittoh on with slightest preasure．
For burglar alarms，shop doors，etc． For burglar alart
$28^{\prime \prime} \times 18^{\prime \prime} \times 1 \cdot 69$
$\times 10^{\prime \prime}+21-21$

TRANSFORMER FOR GAS DETECTOR
The electronic sensor G．D． 1 used in our SAcA is avallable separately at ata，This needs a apecial transformer and we
can supply this also．specifcatlon；normal mains voltage primary with thermal overl oad trip to cut aupply．
Secondary $20 \mathrm{y}, 1 \mathrm{amp}$ tapped at Iv．It amp．Price 81.50 ． UNISELECTORS
As used \ln automatic switch boards，etc． 24 v ．operated．
New－all 25 way full wiper type．We have the following in

QUICK CUPPA

Mini Immersion Heater． $350 \mathrm{~W} .200 / 240 \mathrm{~V}$ ． Boils full cup in about two minutes．Vise any tea，baby＇s food，etc．Eave at bedside for
in
inge，post and ingurance ${ }^{20 \mathrm{p} .} 12 \vee$ car model alao arailable．
Garne price．Jug model also avalisble $£ 1.50$
plus P ．\＆P ． 20 p．

EXTRACTOR FAN

Cleans the air at the rate of 10,000 oubic
ft．per hour．Suitabie for kitchens；bath． roms，factories，changing rooms，etc．
 blades．Kit compirises motor，fan
blades，sheet steel casing，pull switch， mains connector，and fang puil switch，
fa． 75 plas 30 P P．$\&$ P．
PHOTO ELECTRIC KIT
Contains photo cell，relay，tranaistor and all parts to make
itght operated switch． 51 ． 75 plus 20 p post and tns．

PC BOARD MARKER

Valve action fibre tipped marking pen filled with black etch resise－it＇s easy with this to make a perfect PO board，just
draw straight on to the copper－allow 15 mins．to dry，then immerse in ferric chloride or other etchant，on removal the
PHOTO TRANSISTOR BARGAIN
First class maker but slightly reject，covered，however，by
our normal six month guarantee，these respond to light or infra red．Will work a burglar alarm system，make detector counter，ete．Price 22 p complete with three circuits．
20 WATT CAMPING LIGHT
Also makes good car emergency light，This uses a standard
Also makes good car emergency ight，This uses a standard
2 foot 20 watt tube and operates from a $12 v$, car battery
drawing approx．la．This gives illumination per amp／hour drawing approx． 1 A ．This gives illuminatlon per amp／hour
of battery life far in excess to flament lamps and in fact of battery infe far in excess to nlament lamps and nifact，
to the miniature 8.13 watt camplng lights often offered．
Complete unit ready to operate，in strong white enamelled metal frame．These would normally sell at $£ 6$, are unused
but slightly soiled and we offer these at 8450 plus 40 p but slightly zoil

WALL THERMOSTATS

This Month＇s Snip．Made by the famous Smiths mounting and in a handsome plastic case （Cream and belge）．Adjustable＇by slide （lockable）and may he set to control tempera－
tures from around freezing through to $50^{\circ} \mathrm{C}$ ． tures irom around ireezing through to side panel is engraved and indicates
Threst）（warm）（very warm），etc．The thermostat （frost）（warm）（very warm），etc．The thermostat
will control heaters，ete．，up to 15 amp at room，bedroom and greenhouse，etc．Price 81．65．Don＇t miss this．
REMPLOY IMMERSION HEATERS

 Note：All these immersion heaters are the standard domestic
type which screw fnto the flange now fitted to all standard type which screw into the flan
hot water cylinders and tanks．
E．H．T．TRANSFORMER
Norrial mains input primary tapped at 10 v ．intervals．
2 secondalies， 15000 v ，at 550 mA and the other 9 v ．at 1 A ． This ais a big transformer and weighs approx．50 lbs．Price
$\mathbf{2 4 9}$ ． 50 ．

J．BULL（ELECTRICAL）LTD．

（Dept．W．W．）7，Park Street，Groydon，CRO 1YD Callers to 10213 ，Tamworth Road，Croydon

KITS
We have been appointed stockists of Amtron high quality Construct
Other Kits include:
UK65 Transistor tester.'. .
UK110 Stereo Amplifier $5+\mathbf{~}$ UK120 Hi.mi Ampliffer 12w. UK235 Acolistic Alarm for Absent minded drivers.......................'.
UK 300 Four channel radio control transmitter
UK310 Radio contrö Receiver.................
UK325 'GCX2' channel splitting unit
UK325 'GCX2' channel splitting unit
1000 and $2000 \mathrm{~Hz}$.
UK330 'GCX2' channel splitting unit

 UK705 WIndscreen Wiper timer. UK715 Photoelectric cell switch.........
UK760 Acoustic switch...............'
UK875 Capactlve DIscharge Electronic Ignition for Internal combustion
TRA10024 Hour Ėlectronic Digitai Colock £14.51
Many other kits available. Send for the Amtron
Catalogue. KIT Prices include v.a.t.
太THESE

Veroboard

General Purpose Miniature
Electrolytic Capacitors
(mulLard \& ERIE)
4 VOLT
6.3 VOLT

47Mf	6 p	10 VOLT
$100 \mu \mathrm{f}$	${ }^{6 p}$	
$\begin{aligned} & 220 \mathrm{uf} \\ & 330 \mathrm{f} \end{aligned}$	${ }_{6 p}^{6 p}$	16 VOLT
$1000 \mu \mathrm{f}$	12p	
4700ut	27p	
33иf	6 p	
$68 \mu \mathrm{f}$	6 p	
150 ${ }^{\text {ff }}$	6 p	
470uf	10 p	
$680 \mu \mathrm{f}$	${ }^{12 p}$	
1000 nf	${ }^{169}$	
1500uf	${ }^{18 p}$	
22000 ff	${ }^{20 p}$	
$3300 \mu \mathrm{ff}$	${ }^{255}$	25 VOLT
6800uf	36p	
$22 \mu \mathrm{f}$	6 p	
	6 p	
100af	6 p	
220uf	7 p	
330uf	9 p	
470uf	9 p	
1000uf	${ }_{48}{ }^{2 p}$	
$1500 \mu \mathrm{f}$	18p	
2200ut	23p	
Quantity	discou	t $15 \%-25$

4700μ
$10,000 \mu$
15μ
33μ
68μ
150μ
202
680μ
1000
1500μ
2200μ
3300μ
6800μ
10
22
47
100
150
220
470
680
1000
2200

0

MINITRON DIGITAL INDICATOR TYPE 3015F

Read 0-9 and decimals. ONLY $£ 1.50$.
400 mW Zener Diodes
BZY88 Series 3.3 volt to 33 volt. 100 plus

TRANSISTORS
DIODES
(Quantity discount 25 plus $15 \%, 100$ plus 20%)

AC126	44p	BC147	13p	OC36	85 p
AC127	14 p	BC148	13p	$0 \mathrm{C44}$	10 p
AC128	11 p	BC149	13p	0 O 45	10p
AC176	12p	BC154	17p	OC70	12p
AC187	14p	BC157	17p	0 C 71	12 p
AC188	14p	BC158	14p	OC72	14p
AD140	60p	BC159	14p	2 N 706	12p
AD149	60p	BC169	14p	2N2926	10p
AD161	32p	BC182	12p	2N3055	49p
AD162	32p	BC183	12p	2N3702	13p
AF114	14p	BC184	12p	2N3704	13p
AF115	14p	BC212	12p	2N3819	30 p
AF116	14p	BC213	12p	40361	31 p
AF117	14p	BC214	14p	40362	3 p
AF139	32p	8D131	69p	40636	76p
AF239	$40 p$	BD132	69p	OA90	5 p
BC107	$11 p$	OC25	40 p	OA91	5 p
BC108	$11 p$	OC28	52p	OA202	7p
BC109	$11 p$	0c35	52p	IN4148	5p
	(Many other types stocked)				

MULLARD POLYESTER CAPACITORS C280 SERIES
 42p;
24p.

E1BARGAIN PACKS
 f1 ${ }^{10}$ High Power Silicon transistors, like 2N3055, Metal T03 Case tested/ unmarked.
 £1 ${ }^{30}$ º plastic. luntested TO220 case. (sample test showed good yield)
 20 TO5 transistors NPN/ PNP (state which) 2.5 amps untested/un=
 P1 20 T018 transistors PNP (like BC177 etc.) un" tested/unmarked. Plastic FET's (like $\begin{array}{rll}\text { f1. } 30 \begin{aligned} \text { Plastic } & \text { FET's (like } \\ \text { 2N3819) } & \text { unmarked/un- }\end{aligned} \\ & \end{array}$ 2N3819) unmarked/un= tested again a random test showed a good yield. yield. flr $10 \begin{aligned} & \text { General Purpose Fully } \\ & \text { tested FET's like } 2 N 3819 .\end{aligned}$
 -ANY 5 PACKS £4*
 | |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
 Resistors

 Red and Green-LED.
 Applied for logle level indicator. Red indlcates a loglc hlah (tar. Green a logic low ('" $0^{\prime \prime}$).
 While an open circult nelther of the LED's wif light. other features
 \star Powered from circuit under test, \star Reverse Pole Protected.
 \star Minimum pulse width 50 nano seconds. \star Max. response frequency: $12 \mathbf{M H z}$. Ideal for check-up of logic state, pulse circult operatlons of multi-vibrator, flip-flop etc.
 Many other types avallable.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times 12 \frac{1}{4} \times 10 \mathrm{in}$. Secondhand condition. $£ 27.50$ each, Carr. $£ 1 \cdot 50$.
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, with temperature compensated MO circuit.CW, MCW and R/T. Frequency: 1.5 to $20 \mathrm{Mc} / \mathrm{s}$. Modulation: 100% O/put impedance: 50 ohms. Audio input: 600 ohms. Valves : Power Amplifier 2×813 and Modulator $2 . \times 813$. Power requirements $200-250$ volts a.c.,
50 cycles. Power out put 300 watts. Dimensions $2 \mathrm{ft} .6 \mathrm{in} . \mathrm{W} . \times 2 \mathrm{ft}$. D. \times 5 ft . H. Weight: 800 lbs . Excellent condition, price $£ 225.00$ each AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc}$. 1750 channels 100 Kc apart with 18 preset channels. Modulation; am. Power output 9 watts. Receiver is superheterodyne. Max. output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c. phone. Price fels $^{250.00}$ each secondhand, excellent condition.
POWER SUPPLY suitable for AN/ARC-27: 100 volts to 250 volts a.c. input. 24v d.c. output @ 41 amps fully smoothed. $£ 45.00$ each.

FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with origina calibration charts. Checked out, working order. $£ 18 \cdot 50+£ 1 \cdot 00$ carr. $\mathbf{B C}=221$ Unused as new condition complete with headset, spare valves, charts. $£ 35 \cdot 00+$ $£ 2.00 \mathrm{carr}$.

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115V or CT. 52 V MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or designed to meet requirements of radar and communication engineers and general electronic service. Measures 9 in . $\times 8$ in. $\times 6$ in. Time base 10cis-
 amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities.
Complete with test leads, metal transit case. As new $\mathbf{~} 27.50$ each. Carr. x 1 .
complete winh test leads, metal transit case. As new $227 \cdot 50$ each. Carr. $x 1$.
TUNING UNIT: 24V geared motor driving double 25pf double spaced variable capacitor. One m/c relay and 2 other relays. $£ 2 \cdot 50$ each 30 p post, good condition. $2 \mathbf{C 4 2}, 2 \mathrm{C} 46,1 \mathrm{B40}$ (complete with associated capacitors and screening), 3 manual counters $0-999$. Valves 6 AL 5 and $8 \times 6 \mathrm{AK} 5 . £ 10.00$ plus 60 p post, good condition.
MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in . chassis $\times 8 \mathrm{in}$. high $\times 8 \mathrm{in}$. deep. $\mathbf{~} 4.50$ secondhand cond., or $\mathbf{~} \mathbf{6} \cdot 5 \mathrm{f}$ in 19 in. chassis $\times 8 \mathrm{in}$. high $\times 8 \mathrm{in}$. deep. $\mathbf{£ 4 . 5 0}$ secondhand cond., or $\mathbf{~} \mathbf{6} 6.56$
new . Carriage El . RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves Ideal for conversion to 4 metres. £5 secondhand cond., or $£ 7 \cdot 50$ new cond Carriage $£ 1$
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type 5 Z 3. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19 " W \times 11 " \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition
$\mathbf{E 6} .50$ each, carr. $£ 1$. $\mathbf{x 6} 50$ each, carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. $£ 7$ each, Carr. 75 . $230-115 \mathrm{y}$,
 Carr. 75p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{8 7 . 5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 50 p . APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. $\mathbf{8 1} \cdot 25$, post 30 p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: 24V, 200 Amps, $\mathbf{£ 2}$ each, $\mathbf{3 0}$ p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 0.9 ohms. Tolerance $\frac{1}{ \pm}$ £3 each, 25 p post. 90 ohms per step. 10 positions
total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3.50$ each, post 30 p.

TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 Mc / s a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg . ohms. Power requirements $200-250$ volts a.c. Secondhand, excellent con. $£ 35 \cdot 00$. Carr. $£ 1$.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at $2 \mathrm{Amps} . \mathbf{£ 3}$ each 75p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft. high $\times 21$ in. wide $\times 16 \mathrm{in}$. decp, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$

TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range $0-120 \mathrm{dbm}$. $£ 125$ each. Carr. $£ 1.50$.
TN/130/APR. 9 UHF TUNING UNIT: Freq: $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27.50 each. Carr. £1.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. 2-400 Mc/s in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec . External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. $0-30$ for sine wave. Am or Pulse Carrier. O/put Voltage $0 \cdot 1-100,000$ microvolts cont. variable. Impedance 50Ω. Price: 685 each +61.50 carr.
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond. 67.50 each. Post 60p.

RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%). Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$ sew" harmonics up to 20 MHz . Provision for fitting internal dry batteries."A .
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated 100-125V or $200-250 \mathrm{~V}$, 50c/s. "As new" $\mathbf{1 1 0}$ each. Carr. 75p.

ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. $\mathbf{8 3 . 5 0}$ ea. +40 p post. DALMOTORS: $24-28 \mathrm{~V}$ d.c. at 45 Amps, 750 watts (approx. 1 hp) $12,000 \mathrm{rpm}$. 5 each, 60 p post
 30p post
LIST OF MOTORS AVAILABLE FOR 6p.
CONDENSERS: 30 mfd 600 V wkg. d.c., 53.50 each, post 50 p. 10 mfd 1000 v kg. 80 p , post $30 \mathrm{p} .8 \mathrm{mfd} 2500 \mathrm{v} £ 5$, carr. 80 p .8 mfd 600 v 45 p , post 15 p .8 mfd $1 \% 300 \mathrm{v}$ d.c., $51 \cdot 25$, post 25 p .4 mfd 3000 v wkg. $£ 3$, post $50 \mathrm{p} .4 \mathrm{mfd} 2000 \mathrm{v} £ 2$, post $40 \mathrm{p} .4 \mathrm{mfd} 600 \mathrm{v}, 2$ for $£ 1 \cdot 00$, post 30 p . Capacitor $0 \cdot 125 \mathrm{mfd} 27,000 \mathrm{v}$ wkg.
 $5 \times 1 \mathrm{mfd} 3 \mathrm{Kv}$ wkg. $55^{\circ} \mathbf{C}$. $\mathrm{E}^{6} \cdot 50$, carr. $£ 1$. 12 mfd 1500 v d.c. wkg. $£ 3 \cdot 50$, post 50 p . CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , $\mathbf{~} 2.50$ each, carr. 75p. OHMITE VARIABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps . Price (either type) $£ 2$ each, 30 p post each
AR88 RECEIVER: List of spares, 5p.
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 V$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi-
lised valves CV 286 . Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times$ 8in. New ised valves CV 286. Centre Zero Meter $10-0-10$. Size 8 in. $\times 8 \mathrm{Bin} . \times 8 \mathrm{in}$. New condition $£ 7.50$, Carr. 75p.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 ${ }^{\circ} \mathrm{C}$. 3 in . dia. scale. Accuracy 1\%. Precision made coil within-coil structure. Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointer is mounted. $£ 2.80$ each 30 p post. Unused condition.
TRANSMITTER UNITS: Complete with 12V vibrator unit QQVO3-20A and 5 other valves with modulation transformer, etc. Two crystal controlled channels. Suitable for conversion to 2 metres. $£ 5+£ 1$ carr.
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range $1200-9600$ gausses. $\pm 2 \%$. S/hand good cond.
SYNCHRO DISTORTION AND MARGIN TEST SET: (Onwood Type 4A2) S/hand excellent cond. $£ 85$ each. Carr. $£^{2}$.
MASTER SYNCHRO TEST SET T. 101031 (U.S.A.): 115 volts $400 \mathrm{c} / \mathrm{s}$. /hand cond. $£ 15$ each $+£ .1$ carr.
MAGSLIP TESTER NO. 2 MK. I: S/hand cond. $£ 25$ each $+£ 1$ carr
SYNCHROS: and other special purpose motors available. Send for list. S.A.E. PANORAMIC ADAPTOR TYPE ALA2: Suitable for use with APR-1, APR-4, and other Receivers having an I.F. frequency of 30 MHz . Will display signals up to 5 MHz either side of the received frequency, Power Supply 115 V
Tube 3 PBl with nu-metal screen. $£ 8.50$ each. $£ 1$ carr. S/hand cond.
TELEPRINTER EQUIPMENT: MUIRHEAD D-514-A TRANSMISSIONMEASURING SET: Consists of an oscillator covering audio and carrier frequencies, with suitable transmission measuring equipment. Power pack is contained accumulator. Power Supply 12 V d.c. or $100 / 250 \mathrm{~V}$ a.c. Freq Range cortinuous $100-40,000 \mathrm{~Hz}$. Direct reading from decade dials. Accuracy $+0.4 \%+3 \mathrm{~Hz}$ over whole range. Oscillator o/put 5 mW (+7 db) or more inot 600Ω at any freq. Measurement up to 50 db and down to at least 45 db . Price $£ 10$ each Carr. $£ 1$.
TELEPRINTER TYPE 7B; Pageprinter 24V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ each; or second hand cond.

AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016 Manufactured by Bruel \& Kjoer. $5-5000 \mathrm{c} / \mathrm{s}$. per second. S/hand ery good cond.
INSULATION TEST SETS: A.C. or D.C. $0-5 \mathrm{kV}$. $£^{22 \cdot 50}$. S/hand cond AND $0-3 \mathrm{kV}$. Positive and negative outputs, fine and course control. $£ 17 \cdot 50$.
$\mathrm{S} / \mathrm{hand}$ cond. Carr. both types $£ 2$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $S /$ hand good cond. $£ 30+£ 1$ carr. AVO FIXED ATTENUATORS: 75 ohms. $£ 2 \cdot 50+20$ p post. New cond R.F. POWER METER: $0-30$ watts s/hand good cond. $£ 27 \cdot 50+£ 1$ carr. AVO VALVE TESTER AND CHARACTERISTIC METER: S/hand good condition. $£ 35$ each $+£ 2$ carr.
AVO VALVE TESTER MK. III: $\mathbf{£ 3 0}+£ 2$ carr.
ANTENNA MAST 30 ft . consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ($\frac{7}{8} \mathrm{in}$. dia.), with base, guy ropes and stays, etc. $£ 5$ each $+£ 1.25$ carr.
ANTENNA MAST 12 ft . 3 sections with suitable base to mount on the above Mast, to extend to $42 \mathrm{ft} .61 \cdot 50$ each +50 p carr
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete with 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. 64 cach +75 p carr
DUMMY LOAD: approx. 100 watts. Wavemeter tunable from $60-215 \mathrm{MHz}$ in 3 bands. Output indicated on 50 microamp meter. $£ 8 \cdot 50+£ 1$ carr.
Miscellaneous Vacuum and Pressure Gauges available. Please send for list 6 p.
Miscellaneous American Test Equipment available. Please send for List 6 p.

ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

If wishing to call at
stores, please telephone
for appointment
W. MILLS
3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213 and Bedford 740605 (STD 0234).

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurhished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP.

 EQUIPMENTSIEMENS EQUIPMENT
OTHER
EQUIPMENT
SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS $15,19,20,28,32,33,35$
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS 14, 20, 28 LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL; ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-115 FOR FURTHER DETALLS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS—type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$ COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.
wW-116 FOR FURTHER DETALS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \text { w.p.m. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and W/T signals up to } 300 \text { w.p.m. } \\
& \text { CODE CONVERTERS converting from } 5 \text {-unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \text { w.p.m. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. }
\end{aligned}
$$

 370 WTR MULTIMETER

$\underset{\text { Top value } 1000 \text { o.p.v. pocket }}{\text { AUDI }}$ ATM.I
 $\frac{\text { 22.95. Post 1.5p. }}{\text { RUSSIAN } 22 \text { RANGE MULTIMETER }}$
 Anstrument manuratetured
in U.B.E.R. to the highest in U.B.B.R. to the highest
standars. Ranges: 2.5 I
$10 / 50 / 250 / 500 / 1000 \mathrm{v}$ D.C. 2.5/10/50/250/500/ Resistance 300 ohms,
 plete with batere s , test
lead, instructions and
sturdy steel cai: ving sturdy
cage.
Our \mathbf{P}

Our Price \&4.95. Post. 2 or

U4312 MULTIMETER
 sturdy metal carrying case,
leads and instructions. $£ 9 \cdot \%$. , post 25

TMK 100K

LAB TESTER

Buazer Short Circuit Check Sensitivity: 100,000 OPV D.C. $5 \mathrm{~K} /$ Volt A.C. D.C.
Volts: $\mathbf{5}, 2.5,10,50,200$
$1,000 \mathrm{~V} . \mathrm{A} . \mathrm{V}$ Volts: 3,10
50,

$100,500 \mathrm{~mA}, 2,5,10$ amp. Resistance: $1 \mathrm{~K}, 1.0 \mathrm{~K}$, 100K, 10MEG, $100 \mathrm{MEG} . \mathrm{Resistance:} 1 \mathrm{~K}, 10 \mathrm{~K}$,

MODEL S-I00TR MULTIMETER/ 100,00 o.p.v. MIRROR SCALE

0/12-6/3/12/30/120/600

0/12/600aA/12/800MA/12 Amp.
DC. $0 / 10 \mathrm{~K} / 1 \mathrm{MEG/100} \mathrm{MEG}$
-20 to $+50 \mathrm{db}, 0.01-2 \mathrm{mfl}$
Transistor tester measures Alpha, beta and $[$ co.
Complete with batteries, inetructions and ieads. £14.95. Post 25p.

ALL PRICES ARE

SUBJECT TO 10\% V.A.T.

Features A.C. current ranges. 20,000 o.p.v. $0 / 5 / 2 \cdot 5 / 10 / 50 / 250 / 500 / 1000 \mathrm{~V}$ DC. $0 / 2 \cdot 5 / 10 / 50 / 250 / 500 / 1000 \mathrm{~V}$ AC. 0/50/La/1/10/100MA/1/10 Amp $0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / \mathrm{SMEG} / 50 \mathrm{MEG}$. $-20+62 \mathrm{db}$. £1750. Post 20ny.		
LB4 TRANSISTOR TESTER Tests PNP of NPN transistors. Audio indication. Operates on two 1.5 v batteries. Complete with all instructions etc. $\mathbf{5 4} 50$. Post 20p.		
LB3 TRANSISTOR TESTER Tests 100 and B. PNP/ NPN. Operates from 9v. battery. Complete with all instructions etc. 83-95. Post 20p.		
KAMODEN HM. 350 TRANSISTOR TESTER High quality inatrument to test Reverse Leak current and DU current Amplification factor of NPN, PNP, transistors, diodes, SCR's etc. 4in. $\times 4$ anin. clear scale meter Operates from intemal bat. teries. Complete with instructions leads and carrying handle. 212.50 Post 30p.		
TRANSISTOR TESTER Checks true A.C. beta in'out. Checks Iebo. Chechs diodes intout. Checks SCR etc. Beta HI 10500. 102-50, 1ubo $0.5000 \mu \mathrm{~A} .220 / 240 \mathrm{~V}$ A.C. ooemtion. E1750. Post 25 .		

MODEL U43II SUB.STANDARD MODEL U43II SUB-STANDARD
MULTI-RANGE YOLT AMMETER

$0 / 750 \mathrm{mV} / 1 \cdot 5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 650 \mathrm{~V}$. A.C. Automatic cut out. Supplied complete. with test
leads, manual and test certificates. $\mathbf{\$ 4 9}$. Post 50 p .
TMK MODEL 117
ELECTRONIC
VOLTMETER Battery operated, 11 mes input. 26 ranges. Large
4inin. mirror scaie. size

 Reastauce up to 2000 M ohno. Decibels - 20 to
$+\overline{\text { db }}$ domplete with leads/instructions.
$£ 17.50$. Pn \& P. 20 p .

HTIO0134 MULTIMETER $\begin{array}{lll}\text { Features } & \text { A.C. } & \text { current } \\ 100,000 & \text { O.p.v. } & \text { Minges. } \\ \text { Scale. }\end{array}$ Overload protection.
$0 /-5 / 2-5 / 10 / 50 / 250 / 5001000$ v DC. $0 / 2 \cdot 5 / 10 / 50 / 250 / 1000 \mathrm{~V} \mathrm{AC}$.
$1 / 10 / 250 \mathrm{MuA} / 2.0 / 25 / 250 \mathrm{MA} / 10$ ${ }^{\mathrm{Amp}} \mathrm{DC}$.
$0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MEG}$
E 15.00 . Post 25 p.

ARF-300 AFIRF SIGNAL
GENERATOR GENERATOR
All transistorised, comAF gine wave 18 Hz . to
220 KHz . 20 KHz .
AF square wave 18 Hz .
to 100 KHz .
Output sine/gquare 100.
P-P. RF 100 KHz . to 200. MHz. Output. 1 . maximum, Operation
$220 / 240 \mathrm{v}$, Complete with instruc-
tlons and leads. $\mathbf{£ 2 9 . 9 5 .}$

 $0 / 60 \mathrm{~K} / 6$ megs. -20 to + MODEL scale, overlood protecn
tion $0 / 6 / 3 / 15 / 60 / 3001,200$ Y D.C. $0 / 6 / 30 / 120 / 600 / 1,200 / \mathrm{V}$.
A.C.
$0 / 30 \mu \mathrm{~A} / 6 \mathrm{~mA} / 60 \mathrm{~mA} / \mathrm{Boj}$ ${ }^{\mathrm{mA} / 600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} /}$ ${ }_{87}^{8} \cdot 50$. Post 15 p .

230 VOLT A.C.
3 sets of changeover contacts at
5 amp rating 40 p each. Post 10 p (100 lots 830) Quantities avail able.

MODEL TE-IS
 GRID DIP METER

 Transistorised. Operates as Grid Dip, Oschlator, Absorption WaveMeter and Oscillating Detector Frequency range $440 \mathrm{Ke} / \mathrm{s}-$
$280 \mathrm{Mo} / \mathrm{s}$ in 6 coils. $500 \mu \mathrm{~A}$ Meter. 9V. battery $\begin{aligned} & \text { operatio } \\ & 180 \times 80 \times 40 \mathrm{~mm} .\end{aligned}$. 115.00. Post 20 p .

"YAMABISHI" VARIABLE
VOLTAGE TRANSFORMERS Excellent quality at low cost. All models-Inpu 230v. $50 / 60$ c/s. Variable
MODEL
S-260
 MCA. 220 AUTO.
MATIC VOLTAGE STABHISER
Input $88-125$ VAC or 176.
250 VAC . Output 120 VAC or $240 \mathrm{VAO}, \mathrm{O}_{2} 200 \mathrm{Va}$ rating.

PS. 200 REGULATED

 P.S.U.Solid state. Variable output Soll state. Variable output
5-20 volt D.C. up to 2 amp.
Independent. meters Independent meters to monitor output $220 / 240$
rent.
F.

240° WIDE ANGLE MWI MA METERS

BVD. 5 YERNIER TUNING DIAL Approx. $7-1$ ratio plan-

 OUM PRICE $\mathbf{E l} \cdot 62 \quad 15$
RUH. 6 REFLEX HORN
SPEAKER
Built in driver unit.
Powerrating 10 watt.
Response $380-7000 \mathrm{~Hz}$. Approx.' size 6
$\times 6^{7}$. Weatherproof and shock OUR $P 4.97$ P. \& P PRICE TAT 30p
 Model $350.13 i n, ~$
with single twineter/cros.
 8 watt RMS. Available
8 or 15 ohmas. 87.25
 crossover, $55-13$ tweeters 8 watto RM8 Arailabl each. P. \& P. 25 p.

HAND
HELD
2 WAY WALKIE TALKIES

Battery operation.
Volume and Squelch conButton. Telescopic Aerial. Complete ying cas

SKYFON 100 mW Pair E24-85 Post 50p Pair 852.50 Post 50 p
 MP7 MXER
PREAMPLIFIER

ing complete mixing facilities, Rattery operated,
$\mathbf{z}^{*} \times 5^{*} \times 3^{*}$, Inputs Mics: $3 \times 3 \mathrm{mV}$ $0 \mathrm{~K} ; 2 \times 3 \mathrm{mV} 600$ ohm. Phono mag.
mV 50 K . Phono ceramic 100 mV 1 meg. f8.97 P.\&p. 1021 STEREO LISTENING STATION
 $\underset{\substack{\text { For } \\ \text { and gatancongy } \\ \text { gain selece }}}{ }$ and gain selec-
tlon of loudspeakers with
additional facility for stereo switching.
2 gain controls, speaker on-off slide OUR FO.2F P.\&P. EA41 REVERBERATION AMPLIFIER
Self contained, tranaistorised, battery gitar; ete., and output into your amplier. Volume control, depth of rever beration control.
Beautiful walnut

${ }_{\text {PRICE }}^{\text {OUR }}$

ALL PRICES ARE SUBJECT TO 10\% V.A.T.

SH628 STERED HEADPHONES Ontatanding
value. Soft eare pads, adjustable $0 \mathrm{hmm}, \mathrm{m}_{2}^{2} 0-$ $20,000 \mathrm{~Hz}$. Complete with lead
and stereo plug. $187 \begin{array}{r}\text { P. } 8 \mathrm{P} \text {. } \\ \hline\end{array}$ ETICE $\mathbf{f 1} 87$ 30p

LIGER LHO2S STER HEAOPHDNES

TE1018 DE-LUXE MONO HIGH IMPEOANCE HEADSET Sensitive magnetic earpadk. Impedance
2.600 ohms (d.c. 600 $\begin{array}{ll} \\ \text { repponse } & \text { Frequency } \\ 200-4000\end{array}$ OUR f2.25 P. \& P. $\frac{\text { PRICE }-240 \text { 30 }}{\text { SDHEVMDNO/STERED }}$ HEADPHONES

OUR $\quad 8.4 .97 \quad$ P.\&P. PRICE E4 30p
bH001 HEADSET AND BOOM MICROPHONE
 Moving coil.
Headphone imp.
16 ohms. Mike 16 ohms. Mike
imp. 200 ohms.
Ideal for langrual teaching, etc. Oomplete
with leads and $\begin{array}{lr}\text { OUR } \\ \text { PRICE } & \text { plags. } \\ \text { P. \& P. }\end{array}$ DH.OBS Stereo Headphones
 De luxe model
with unique 2 with
wayique 2
units
mechanical
and ume controls. 8
 plete with coil
lead and aterea
jack plug OUR $57 . \square^{7}$ P. \& P $\frac{\text { PRICE }}{\text { DH-02S STEREO }}$ HEADPHONES

Wonderinl
value and
excellent excellent peombined.
Adjustable Adjustable
head band
8 ohm im head band
ohm im
pedamce. 20 12,000 cps.
Complete With lead
ONIY 22.25. and stere
Post
30p

DOLBY 'B' NOISE REDUCTION UNITS
Reduce tape hiss by 3 dB at 600 Hz ,
6 dB at 1200 Hz and 10 dB for all freGdB at 1200 Hz and 10 dB for all fre-
quencies above 3000 Hz . Size $16 \mathrm{q}^{\prime \prime} \times 8^{*}$

PROCESS TWO

For use with cassette and tape recorders. req. res. 30 Hz- $20 \mathrm{KHz} \pm 2 \mathrm{ZB}$. Off tape monitoring. switchable multiplex filter. better than 70 dB . Sapplied with teat CUR | OUR | |
| :--- | :--- |
| PRICE | P4, | PROCESS FOUR

For use with semi profesional tape 2dB, S/N better than 70 dB . Full source tape monitoring. Record/Replat metering. Switchabable multiplex filter. Supplied with test tape.
OUR
PRICE

DIGITAL CLOCK

RADIO ADCI

Covers AM 540.1600 KHz . FM 88:10 MHz with AFC. 24 hour leaf type digital clock with one minute division time setting. Wake up to the sound of music or loud buzzer. Unique sleep switch will automatically turn off radio when
you have gone to sleep. Slider volume you have gone to sleep. Slider volume
control. Internal epeaker plus socket for earpiece or pillow speaker. AC 240%.
Size $254 \times 92 \times 178 \mathrm{~mm}$. Complete with OUR PTO.ER P. \& P. OUR
PRICE

 810 1810 Plinth and Cover.
${ }_{\text {MP60 }}$ MP60/ G800 MP60/TPD1 HTT70/8800
HT70/TPD1 CONNOISSEUE
BD1 Chassis.
BD1 Chassis........
BD2/SAU2/Chassis
BD2/SAU2/Plinth/C BD2/SAU2/Piint
GARRARDD
1025 T Stereo.
2025 TCOKSió
 $\mathrm{SP25/M7}$
AP76
865 B
SL65B
SL72B

${ }_{401}^{\text {SL95B }}$

ZERO $100 .$.
ZERO 100 S
ZERO
GOLDRING
G99
G101P/C
GL69/2
GL69/2
GL72/P
GL75
$\underset{\text { GL75 }}{\text { GL7 }}$
$\stackrel{\text { GL78 }}{\text { GLP } / \mathrm{C}}$
GL85P/C
THORENS
TD125/HI
TD125AB/III.
TDD 60 C. TD160C
TD165

SPECIAL OFFERI
FRUSTRATED EXPORT ORDER

2 track BSR deck with push button con-
trols for easy operation. Tape counter and volume contror. Complete with hand microphone, direct recordinglead, 1200 it .
reel of tape and spare spool. 200/2500. A.C. operation. Fully guaranteed.
OUR
PRICE

${ }_{4}$ track, 2 speeds (3 ? and $1 \frac{17}{}$ i.p.s.s.). Piano key type controls, tape couter,
reording level metier, volume and
tone controls etc. Complete with hand microphone, direct recording lead,
1800it. of tape with spare spool. 200 , 1800 ft . of tape with spare spool. 200 j
250 v . A.C. operstion. Fully guaranteed. ${ }_{\text {pRice }}^{\text {Oun }} \mathbf{£ 2 7 5 0} \underset{75 \mathrm{p}}{ }$
[aEcord deck packages
 Complete units with stereo cartridge
ready wired in plinth and cover. ready wired in plinth and cov GARRARD

SP25 $11 / \mathrm{M}$
$\mathrm{AP} 7 / \mathrm{G} 00$
$\mathrm{AP} 76 / \mathrm{G} 800 \mathrm{~F}$

AP76/G800 AP6/M4

AP76/M75ED
AP76/M75EJ
AP76 Module M75. 6.
865 Module M75.6M
AP96 Module M
AP96 Module M75-6........
ZERO 100S Module/M93E.
ZERO 100SB Module/M75-6SM
B.S.R. MCDONALD

210/SC7M
MP60/ADC K
Kis
MP6/TPD1/ADC K8
MP6/M44-7...........
HT70/TPDD
GOLDRING
GL7 $2 / \mathrm{G} 800$
GL75/G800
GL7JG800E
GOODMANS
TD100/G800E Teak.
TD100/G800E White
$\underset{\text { DEAK }}{\text { Lelta/M75-6 }}$
Deltal/M75
Trusped.
PHLIIPS
FA105/GP200
GA160/GP200 T
GA212/GP400
GA212/GP40
PIONEER
PIONEER
PL12D (Less cartridge)
PL15O (Less cartridge)
PL41D (Less cartridge)
PLItridge)
PL50 (Less cartridge).
PLA1 Less cartinge)
THORENS
TD160C/Ortofon M15E Super
TD125 AB/11 M1FE Super

WHARFGDALE
Linton/M44-7 $\begin{aligned} & \text { Teak } \\ & \text { Linton/M44-7 } \\ & \text { White }\end{aligned} l$

FERGUSON EXPORT MODELS
 Tuner Amplifier Covers FM $88-108 \mathrm{MHz}$, Five push puts for stereo ceramic cartridge and tape, etc. Separate bass, treble, balance

 Tape Deck | 4 track. $7 \frac{1}{2}, 3 \frac{3}{3}, 1 \frac{2}{6}$ i.p.s. Stereo/mono |
| :--- |
| record $/ \mathrm{play}$. |
| ree | PM,

OUR
mRIRE radio, g rm. Complete with cover.
Carr.

NEW FROM SINCLAIR!
PROJECT 80 HI FI MODULES Stere
Z 40
Z60
Activ
FM
Stere
PZ5
PZB
PZ8
PZ8

ALL OTEER SINCLAIR PRODUCTS IN SLOCK INCLUDING
2000 Amplifier (improved)
4000 Amplifier
2000 FM Tuner
4000 FM Tuner
Q16 Speaker
Q30 Speaker.

$$
\begin{gathered}
\text { PHILIPS IC361 AM/FM } \\
\text { MAINS/PORTABLE }
\end{gathered}
$$ RADIO WITH AFC

Covers LW, MW,
FM, SW1, SW2 and
49,
FM, SW1, SW 2 and
49 metre band.
Fine tuning of SW
ind Pre set tuning
of three FM stations
Bass
vol
Bass, treble and
volume/on/off con
trols. Press
trols. Press button
ng/battery indicator

Size 14in. \times gin. \times 3vin. approx.
With mains lead and istructions.
${ }_{\text {PRICE }}^{\text {OUR }} \mathbf{£ 3 9 . 9 5}$
P. \& P.
50 p.

CS35 STEREO CASSETTE RECORDER
High quality cassette recorder with hysteresis
synchronous outer-motor motor. Has pause synchronous outer-rotor motor. Has pause
control with lock and selector for conven
tional tional or Chromitum Dioxide tape. 4 track
record/playback. Volume and tone controls
 wow and flutter better than 0.2% p.MA.

${ }_{\text {PRICE }}^{\text {OUR }} \mathbf{f 5 6 - 5 0}{ }^{\text {P.\&p. }}$
CS30D STEREO DECK
ADM MICROPHONES
t track deck with piano key controls.
Two VV meters. Chrome/low noise tape selector. Mic. and line inputs. Headphone socket Inder counter.
$40-15,000 \mathrm{~Hz}$ (CR02) Automatic stop.

Pair. P. \& P. 25p

NEW!

SINCLAIR
CAMBRIDGE
CALCULATOR
To build yourself.
Complete kit of parts with step by step instructions to build a, full
specification pocke side specification
calculator. $\begin{array}{ll}\text { OUR } & \text { PRICE } \\ \text { P4 } & \text { P. \& }\end{array}$ Also available ready built (Rec. Price
E29:95) $\begin{array}{lll}\text { OUR } \\ \text { PRICE } & \text { P2712 } & \text { P. \& P. } \\ 25 p\end{array}$

MINUTEMAN MM3
POCKET CALCULATOR

error indica.

Adds, subtracts, multiplies and divides. Chain and mixed calculations. Constant
factortor series multiplication or division. factor ior series multiplication or division.
Complete with batteries, instructions and case

MINUTEMAN MM3M
as above with addition of memory key, decimal. Complete with rechargeable batOUR F2R.5 P P. \&P.
PRICE $\mathbf{£ 2 8 . 5 0}$
25p
SPECIAL BARGAIN!
PHONIC 10 2-WAY
SPEAKER SYSTEM

ohms impedance. 10 watts power
handing. Size 348 x 228 x 110 mm .
G.W.S.
SPECIAL
PRICE
29.85
per
pair. P. \& P. 50p plus Y.A.T.

LONDON'S LARGEST STOCKS JNCLUDING PROOUCTS BY-
 ARMSTRONG CAMBRIDGE KEF-LUXXIKKO SANSUU-SANYO SONY-TEAC
TRANSCRIPTORS TRIO-UHER
YAMAHA

Prices on request or
ALL EQUIPMENT IS FULLY
gUARANTEED AND COVERED
BY 12 MONTHS FREE SERVICE!

PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES

 ALL BRANCHES OPEN 9 a.m.-6 p.m. MONDAY TO SATURDAY HEAD OFFICE and MAIL. ORDER DEPARTMENT UNIT 4, THE HYDE INDUSTRIAL ESTATE, THE HYDE, LONDON NW9 GJJ

YATES ELECTRONICS
 (FLITWICK)LTD. DEPT. WW ELSTOW STORAGEDEPOT KEMPSTON HARDWICK BEDFORD

C.W.O PLEASE. POST AND PACKING

Catalogue which contains data sheets for most of the components listed will be sent free on request. IOp stamp appreciated.

CALLERS WELCOME
MON.-SAT. 9 a.m.-5 p.
PLEASE ADD 10\% V.A.T.

RESISTORS

$\frac{1}{2}$ W Iskra high stability carbon film-very low noise-capless construction. $\frac{1}{2}$ W Mullard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm} . \frac{1}{2} \mathrm{~W} 2 \%$ ELECTROSIL TR5

Power watts $\frac{1}{2}$	Tolerance	Range 4.7 $\mathbf{2}-2.2 \mathrm{M} \Omega$	Values available	1-99	Price $100+$
$\frac{1}{2}$	5\%	$4.7 \Omega-2.2 \mathrm{M} \Omega$	E24	Ip	0.8p
$\frac{1}{2}$	10\%	$3 \cdot 3 \mathrm{M} \Omega-10 \mathrm{M} \Omega$	E12	Ip	0.8 p
$\frac{1}{2}$	2\%	$10 \Omega-1 M \Omega$	E24	3.5p	3p
$\frac{1}{4}$	10\%	$1 \Omega-3.9 \Omega$	E12	Ip	0.8p
$\frac{1}{6}$	5\%	$4.7 \Omega-1 \mathrm{M} \Omega$	El2	Ip	0.8p
4	10\%	$1 \Omega-10 \Omega$	El2	6p	5.5

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to $\mathrm{IM} \Omega$.

El2 pack 325 resistors $\mathbf{E 2} \cdot \mathbf{4 0}$. E24 pack 650 resistors $\mathbf{~ 4 . 7 0 .}$

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear ($\log \frac{\mathrm{L}}{\mathrm{W}} \mathrm{W}$, lin $\frac{1}{2} \mathrm{~W}$).

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
5ub-miniature $0.1 \mathrm{~W}, 5$ p each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each.

TRANSISTORS										
AC107	15p	AF126	20p	BFII5	25p	OC42	12p	2N3707	12p	
ACl26	12p	AFl39	32p	BFI73	20p	OC44	12p	2N3708	10p	
ACI27	15p	AF178	32p	BFI77	28p	OC45	12p	2N3709	$11 p$	
ACI28	15p	AFI80	40p	BFI78	32p	OC70	12 p	2N3710	11p	
ACl3]	12p	AF181	40p	BFI79	32p	OC71	12p	2N3711	$11 p$	
AC132	12 p	BC107	12p	BFI80	32p	OC72	12p	2N3819	32p	
ACl 76	$15 p$	BC108	12p	BFI81	32p	OC81	12p	2N4062	12p	
AC187	22p	BC109	12p	BFI94	14p	OC82D	12 p	2N4286	20p	
ACI88	22p	BC147	12p	BF195	14p	2N2646	60p	2N4289	20p	
ADI40	50p	BCl48	12 p	BF197	15p	2N2904	20p	40360	35p	
ADI49	45p	BC\|49	12p	BF200	32p	2N2926	10p	40361	35p	
ADI61	33p	BC157	14p	BF750	20p	2N3054	58p	40362	40p	
AD162	36p	BC\|58	14p	BF751	20p	2N3055	60p	40408	40p	
AFl14	20p	BC159	14p	BF752	20p	2N3702	13p	ZTX108	15p	
AFII 5	20p	BC187	22p	BU7105	225p	2N3703	12 p	ZTX300	$15 p$	
AFII6	20p	BD\|31	75p	OC26	45p	2N3704	13 p	ZT×302	20p	
AFll7	20p	BD\|32	75 p .	OC28	50p	2N3705	12 p	ZTX500	15p	
AFII8	38p	BDI33	75p	OC35	50p	2N3706	$11 p$	ZTX503	20p	
$400 \mathrm{~mW} \mathrm{5} \mathrm{\%} \mathrm{3.3V} \mathrm{to} 30 \mathrm{~V}$, 12p.					WIRE WOUND POTS					
DIODES										
RECTIF								SIG		
$B Y 127$		1250 V		IA				OA85		7p
IN4001		50 V		\|A				OA90		5 p
IN4002		100 V		IA				OA91		5 p
IN4004		400 V		IA				OA20		7p
IN4006		800V		IA				IN414		5p
IN4007		1000 V		IA				BA114		8p
BRUSHED ALUMINIUM PANELS							THERMISTORS			
								1055S		$15 p$
SLIDER POTENTIOMETERS								1077		$15 p$ $15 p$
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of träck 59 mm . SINGLE 10K, 25K, I00K log. or lin. 40 p .							R53			¢1. 35
DUAL GANG, 10K + IOK etc. log. or lin. 60p. KNOB FOR ABOVE, 12p.							HY	RISTOP		
FRONT PANEL, $65 \mathrm{p}_{\text {a }}$18 Gaug panel $12 \mathrm{in} \times$ in with slots cut								506050 V		30p
								5064200 V	0.8A	47p
slider pots. Grey or matt black finish complete								F 50 V 4		40p
								D 400V		65 p

MULLARD POLYESTER CAPACITORS C296 SERIES $400 V: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu F, 0.033 \mu F, 3$ p. $0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{2}$ p. $0.33 \mu \mathrm{~F}, \mathrm{IIp}$. $0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$4 \frac{1}{2}$ p. $0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3$ 3p. $0.1 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F}$, $4 \frac{1}{2}$ p. $0.22 \mu \mathrm{~F}, 5$ p. $0.33 \mu \mathrm{~F}, 6$ p. $0.47 \mu \mathrm{~F}, 7 \frac{1}{2}$ p. $0.68 \mu \mathrm{~F}$, 1 Ip . $1.0 \mu \mathrm{~F}$, 13 p.
MULLARD POLYESTER CAPACITORS C280 SERIES
$250 V$ P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 31 \mathrm{p}$,
 $1 \cdot 5 \mu F, 20$ p. $2 \cdot 2 \mu F, 24$ p.
MYLAR FILM CAPACITORS 100 V $0.00 \mid \mu F, 0.002 \mu F, 0.005 \mu F, 0.01 \mu F, 0.02 \mu F$,
$2 \frac{1}{2} p .0 .04 \mu F, 0.05 \mu F, 0.068 \mu F, 0.1 \mu F, 3 \frac{1}{2} p$.

CERAMIC DISC CAPACITOR
100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.

ELECTROLYTIC CAPACITORS—MULLARD O15/6/7
($\mu \mathrm{F} / \mathrm{v}$) $1 / 63,1.5 / 63,2.2 / 63,3 \cdot 3 / 63,4.7 / 63,6.8 / 40,6.8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$, $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4$ $120 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p} .47 / 63,100 / 40,150 / 25$ $220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10 \mathrm{p} .470 / 10,680 / 6 \cdot 3$
IIp. $100 / 63,150 / 63,220 / 63,1000 / 10,12 \mathrm{p} .470 / 25,680 / 16,1500 / 6 \cdot 3,13 \mathrm{p} .470 / 40680 / 25$ $1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3$ 4700/4, 21 p.

LARGE (CAN) ELECTROLYTICS
 $\begin{array}{lllllllll}1600 \mu \mathrm{~F} & 64 \mathrm{~V} & 74 \mathrm{p} & 2500 \mu \mathrm{~F} & 64 \mathrm{~V} & \mathbf{8 0 p} & 4500 \mu \mathrm{~F} & 16 \mathrm{~V} & \mathbf{5 0 p} \\ 2500 \mu \mathrm{p} & 40 \mathrm{~V} & 74 \mathrm{p} & 2800 \mu \mathrm{~F} & 100 \mathrm{~V} & \mathrm{E2.60} & 4500 \mu \mathrm{~F} & 25 \mathrm{~V} & \mathrm{El} .68\end{array}$ $2500 \mu \mathrm{~F} 50 \mathrm{~V} 58 \mathrm{p} \quad 3200 \mu \mathrm{~F}$ 16V 50p $\quad 5000 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ \&i.10

 HIGHVOLTAGE TUBULAR CAPACITORS-I,000 VOLT $\begin{array}{llllll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} & 0.047 \mu \mathrm{~F} & \text { 13p } & 0.22 \mu \mathrm{~F} & 20 \mathrm{p} \\ 0.022 \mu \mathrm{~F} & \text { 12p } & 0.1 \mu \mathrm{~F} & \text { 13p } & & 0.47 \mu \mathrm{~F} \\ \text { 22p }\end{array}$ POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \frac{1}{2} \%$ 10pF to 1,000 pF El2 Series Values, 4p each.SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke, This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector.
Detector GDI, ©2. Kit of parts for detectors including GDI and P.C. board but excluding case. Mains operated detector $£ 5 \cdot 20$. 12 or 24 V battery operated audible alarm $£ 7 \cdot 30$.
As above for PP9 battery, $£ 6 \cdot 40$.
PRINTED BOARD MARKER
97p
Draw the planned circuit on to a copper laminate board with the P.C. Pen, allow to dry

COMPLETE TELEPHONES
NORMALHOUSEHOLD TYPE AS SUPPLIED TOTHEPOSTOFFICE Ex. G.P. 0
ONLY $£ 1.05$ p
TELEPHONE DIALS
Standard Post ooffice type Guaranteed in working order ONLY $27 \frac{1}{2} p$ P \& P $16 \frac{1}{2} \mathrm{P}$ EACH
TESTED AND GUARANTEED PAKS

879	4	IN4007 Sil. Rec. diodes, 1.000 PIV lamp plastic
881	10	Reed Switches 1 " long $\frac{1 . " \text { dia. }}{}$ High speed P.O. type
B99	200	Mixed Capacitors Approx. quantity, counted by weight. $P \& P 15 p$.
H4	250	Mixed Resistors. Approx quantity. counted by weight. $P \& P 15 p$.
H7	40	Wirewound Resistors. Mixed types and values
ня	2	OCP71 Light Sensitive Photo Transistor
H28	20	OC200/1/2/3 PNP Silicon uncoded TO 5 can
нзо	20	1 Watt Zener Diodes. Mixed Voltages 6.8-43V.
H35	100	Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked.
H38	30	Short lead Transistors, NPN Silicon Planar types
нз9	6	Integrated circuits, 4 Gates BMC 962, 2 Flip Flops BMC 945
H40	20	BFY5O/2, 2N696, 2N1613 NPN Silicon uncoded TO-5
H41	2	Power Transistors Comp. Pair BD 131/132

UNMARKED UNTESTED PAKS

81	50	Germanium Transistors PNP. AF and RF.
866	150	Germanium Diodes Min. giass type
B83	200	Trans manufacturers' rejects all types NPN. PNP. Sil. and Ge
B84	100	Silicon Diodes DO-7 glass equiv. to OA200, OA202
B86	100	Sil. Diodes sub. min. IN914 and IN9 16 types
н6	40	250 mW Zener Diodes DO-7 Min. Glass Type
H15	30	Top Hat Silicon Rectifiers, 750 mA Mixed volts
H16	15	Experimenters Pak of Integrated Circuits, Data supplied
H17	2	3 Amp. Silicon Stud Rectifiers. Mixed volts
H2	40	NPN Silicon Trans, 2N3707-11 range, tow noise amp.
H34	15	Power Transistors. PNP. Germ. NPN Silicon TO-3 Can. P \& P 5p extra.

MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK'. This en capsulated block will turn any 0.1 mA meter into a linear and car with normal coil ignition system.

OVER 1,000,000 TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

Silicon Planar Plastic Transistors.

Unmarked, untested - factory clearance Audio PNP, similar to ZTX $500,2 N 3702 / 3$, 2N3708/9, BC107/8/9, BC168/9 etc. R.F. NPN and Switching NPN.
Please state type of 1 ransistor required when ordering.

ALL AT 500 for $£ 3.30,1,000$ for $£ 5.50$.
10,000 for $£ 44.00$,
OUR VERY POPULAR 4p TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE "A" PNP Sillicon ailloy. TO- 5 can.
-TYPE "B" PNP Silicon, plastic encapsulation.
TYPE "E"FNP Germanium AF or RF.
TYPE "G"NPN Silicon, similar ZTX300 range
TYPE "H" PNP Silicon, similar ZTX500 range.
8 кelats for $£ 1.10$

Our famous P1 Pak is still leading in value for money. Full of Short Lead Semiconductors \& Electronic Components. approx. 170 We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Rectifiers mounted on Printed Circuit
Panels. Identification Chart supplied Panels. Identification Chart supplied
to give some information on the to give
Transistors

Please ask for Pak P. 1. Only 55p
11 p \& P on this Pak.

A CROSS HATCH

GENERATOR FOR $£ \mathbf{£ 3} .85$

YES. a complete kit of parts including Printed Circuit Board. A four position switch gives X -hatch, Dots, Vertical or Horizontal lines. Integrated Circuit design for éasy construction and reliability. This was a project in the September 1972 edition of Practical Television.

This complete kit of parts costs $£ 3.85$, post paid. A MUST for Colour T.V. Alignment

ELECTRONIC TRANSISTOR IGNITION

Now in kit form, we offer this "up to the minute" electronic ignition system. Simple to make, full inelectronic ignition system. Simple to make, full in-
structions supplied with these outstanding features:Transistor and conventional switchability, burglar Transistor and conventional switchability, burglar
proof lock up and automatic alarm, negative and proof lock up and automatic alarm, negative and positive compatability. This project was a "star" feature in the September edition of "Electronics Today International" magazine. Our kit is recommended by the E.T.I. magazine.

Complete kit including P \& P $\mathbf{£ 7 . 9 2 .}$
Ready built and tested unit $\mathbf{£ 3 . 0 2}$ EXTRA.

Plastic Power Transistors

NOW IN TWO RANGES
These are 40W and 90W Silicon Plastic Power Transistors of the very latest design. available in NPN or PNP at the most shatteringly low prices of all time. We have been selling these proud to offer them under aur Tested the world and we are
$\begin{array}{rllll}\text { RANGE } 1 \begin{array}{l}\text { VCE. Min. } 15 \\ \text { HFE. Min. } 15\end{array} & 1.12 & 13.25 & 26.50\end{array}$
40 Watt
90 Watt
RANGE 2VCE. Min. 40
HFE. Min. 40
90 Watt
,
$\begin{array}{llll} & 33 \mathrm{p} & 31 \mathrm{p} & 29 \mathrm{p} \\ 90 \text { Watt } & 38 \frac{1}{2} \mathrm{p} & 36 \frac{1}{2} \mathrm{p} & 33 \mathrm{p}\end{array}$ per pair. Please state NPN or por gain at 3 amps . 11 pextra

INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices (from 11p each). These are all listed in our FREE Catalogue, see coupon below.
METRICATION CHARTS now avaitable.
This fantastically detailed converslon calculator carries thousands of classified references between metric and British (and U.S.A.) measurements of length. area, volume, liquid measure, weights etc.
Pocket Size 15p. Wall Chart 18p

> LOW COST DUAL IN LINE I.C. SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } 16 \frac{1}{2} p \text { eac } \\ 16 \text { pin type at } 18 p \text { eac }\end{array}\right\}$

в00кs

We have a large selection of Reference and Teohnical Books

in stock.

These are just two of our popular lines
B.P.1. Transistors Equivalents and Substitutes 40p, this includes many thousands of British. U.S.A., European and
C.V. equivalents
The Hiffe Radio
Edition 75p Pado Valve and Transistor Data Book, 9th
Edition 75p. Post \& Packing $23 \frac{1}{2}$ p extra.
Diodes. Rectifiers and Integrated Circuits. 4,500 Transistors.
Send for lists of these Englísh publications.
N.B. No V.A.T. to pay on books.

These parcels contain all types of surplus electronic components, printed panels, switches, potentioneterers, transistor and diodes, etc.

2 LBS IN WEIGHT FOR f1. 10
Post and packing $27 \frac{1}{2}$ p.

HART ELECTRONICS

Audio Kits

This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best pre-amp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only $1 \frac{1}{2}$ " deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real $\mathrm{Hi}-\mathrm{Fi}$ with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits.
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo replay channel can be built for $£ 6$ for single speed use without external components or a, switch may be added for multispeed operation.
Stuart reprints all three articles under one cover. Price 30p. No V.A.T.

WE ARE SUPPLYING

Printed Circuit Boards, Components and Kits for the

D. O'N. WADDINGTON digital multimeter

This most interesting project fulfils the long-felt want for a Digital Multimeter with the added bonus of counter/timer functions, all at a price which makes it extremely attractive to the amateur, educational or commercial user. Please send 9 " $\times 4^{\prime \prime}$ SAE for full details:

Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING

(6 Position)
Exclusive Designer Approved Kits
What are the important features to look for in an FM tuner kit ? Naturally it must have an attractive appearance when built, but it must also embody the latest and best in circuit design such as:-
MOSFET Front end for excellent cross modulation performance and low noise.
3 GANG Tuning for high selectivity
VARICAP tuning diodes in back to back configuration for fow distortion. CERAMIC IF filters for defined IF response.
INTEGRATED circuit IF amplifiers for reliability and excellent limiting/AM rejection.

PHASE LOCKED Stereo decoder with Stereo mute, see below.
LED fine tuning indicators.
PUSH BUTTON tuning (with AFC disable) over the whole FM band.
IC STABILISED and S/C protected power supply.
CABINET veneered inside and out.

The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.
Basic tuner module prices start as low as $£ 10.79$, with complete kits starting at $£ 23.95$ (mono) + PP 50p. and of course all components are avallable separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)। Supplied complete with Red LED.
Price $£ 5.50$ when bought with a complete $N-J$ tuner kit or $£ 7.68$ if bought separately (P.P. 19p.)

PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $£ 28.50$ plus p.p 50 p including Teak Sleeve.

You can order these goods by Telephone on Access. Simply quote your Access Number.

OPTO-DEVICES

Panel mounting LED's.		7 Seg LED's			
RED	$1-9$	$29 p$	$10-24$	$23 p$	$0 \cdot 325^{\prime \prime}$ RH Dec Point. Common Anode $1-4 £ 2 \cdot 00 ; 5-24 £ 1 \cdot 80$. Common Cathode 1-4 £2.00; 5-24 f1-80.
GREEN	$1-9$	$59 p$	$10-24$	$49 p$	7447 Dec Driver £1-30(C.A.)

INTEGRATED CIRCUITS
VERY IMPORTANT. ONLY branded I.C's are to the FULL manufacturers speciffcations. ALL others are not. Henry's sell only branded integrated Circuits....From
TEXAS ... I.T.T.... FAIRCHILD.. . SIGNETICS. So why buy alternatives or under spec. devices
need we say more!

EASITID BUID XIIS PY MMTON Model No

310	Radio control recelver
300	4-channel R/C transmit
345	Superhet R/C receiver
450	TV sweep generator
65	Simple transistor tester
115	8 watt Amplifier
120	12 watt amplifier
125	Stereo control unit
130	Mono control unit
605	Power supply for 115
610	Power supply for 120
615	Power supply for 2×120
230	AM/FM aerial amplifier
240	Auto packing light
275	Mic. preamplifier
570	LF generator $10 \mathrm{Hz-1} \mathrm{mHz}$
575	Sq , wave generator $20 \mathrm{~Hz}-20 \mathrm{Khz}$
590	SWR meter
620	Ni-CAD Charger 1-2-12v
630	STAB Power supply 6-12v 0.25-0-1A
690	DC motor speed Gov.
700	Electronic Chaffinch
705	Windscreen wiper timer
760	Acoustic switch
780	Metal Detector (electronics only)
790	Capacitive Burglar alarm
835	Guitar preamp.
840	Delay car alarm
875	CAP. Discharge ignition for car e (-Ve Earth)
	Scope Calibrator
255	Level indicator
525	$120-160 \mathrm{mHz}$ VHF tımer
715	Photo cell switch
795	Electronic continuity tester
860	Photo timer
371	Slide projector auto, feed control
235	Acoustic Alarm for driver
465	Quartz XTAL checker

$0{ }_{4}$ Radio control recolver Superhet R/C receiver TV sweep generator
Simple transistor teste 8 watt Amplifier
12 watt amplifier
130 Mereo control unit
605 Power supply for 115
610 Power supply for 120
615 Power supply for 2×120
230 AM/FM aerial amplifier
Auto packing light
Mic. preamplifier
SF generator $10 \mathrm{~Hz}-1 \mathrm{mH}$
Sq. wave generator $20 \mathrm{~Hz}-20 \mathrm{Khz}$
Ni-CAD Charger $1 \cdot 2-12 \mathrm{v}$
STAB Power supply $6-12$
CC motor speed Gov.
Acoustice switch
Metal Detector (electronics only)
Capacitive Burglar alarm
Guitar preamp.
Delay car alarm
80 Scope Calibrator
${ }^{525} 5120-160 \mathrm{mHz}$ VHF tım
860 Photo timer
371 Slide proiector auto, feed control
235 Acoustic Alarm for driver
465 Quartz XTAL checker

TRANSISTORS

AAZ13 10pAC10735p	
AC128	20p
AC187	20p
ACY17	35p
ACY39	65p
AD149	50p
AD161	39p
AD162	39p
AF117	20p
AF118	50p
AF139	33p
AF186	40p
AF239	44p
ASY27	30p
BA115	10p
BAX13	5p
BC107	12p
BC108	12p
BC109C 14 p	
BC13	15
BC14	12p
BC1	

ASELECTIONFOR FU BOOKLET 36 TODAY.

TRIACS $\begin{gathered}\text { Stnd. mounting } \\ \text { with ace }\end{gathered}$ 3 AMP RANGE

6 AMP RANGE SC40A 100 V 90p Additional Types $\begin{array}{lll}\text { SC40B } 200 \mathrm{~V} & 95 \mathrm{p} & 40430 \text { TRIAC } \\ \text { SC40D }\end{array}$ $\begin{array}{lll}\text { SC40D } & 400 \mathrm{~V} £ 1 \cdot 20 \\ \text { SC40E } & 500 \mathrm{~V} & \mathrm{f} \cdot 50\end{array}$ | 10 AMP RANGE | 40486 TRIAC | (Plastic) |
| :--- | :--- | :--- |
| SC45A | | |
| SOAV E1:05 | | |

SILICON CONTROLLED RECTIFIERS	
TYpe	
	30p
CRS 120AF	
${ }^{\text {CRS }}$ CRS $1 / 600 \mathrm{AF}$	
THREEAMP (To48)	
CsS. 31304 A	
S ${ }^{\text {S }}$	
	${ }^{\text {asp }}$
CRS 51440	
SEVENAMP (TTAS)	
CRS $71200{ }^{\text {a }}$	
CRS:71000 6000	
SIXTEENAMP (T043)	
CRS	
CRS 16/600 600	

EXCLUSIVE-SPECIAL OFFERS!

Earth) with speakers, in pods and fixings $£ 12.50$ HANIMAX HC1000
Battery cassette recorder. $£ 10.50$ carrjpackg 25p
HANIMAX HC2000
Battery/Mains cassette recorder. $\mathbf{£ 1 3 - 5 0}$ carr/packg $30 p$
Stereo cassette recorder $£ 59.95$ carr/packg 50 p .
Pair Akai ADM microphones E6.95 carrlpackg 20p
5 WAVEBAND PORTABLE TWIN SPEAKER
RADIO
FM/MWW AIRCRAFT-Public Services.
£10
PORTABLE CASSETTE TAPE
HANIMAX POCKET CALCULATOR WITH KEY
(33.50.
£33-50.

BRIDGE RECTIFIERS approximate.

All prices correct
at time of press
10\% VAT to be
added to all
orders (UK onfy)
Export \& UK
Manufacturers/
Colleges supplied.
E.\&D.E.

FREE BOOKLET
All types of
Transistors Rectifiers-Bridges SCR's - Triacs Integrated Circuits
 F.E.T. - Light Devices OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION More Devices $\star \quad$ New Prices \star New Ranges
This is a must for all Semi-conductor Users. (Ask for booklet No. 36.) SEND FOR YOUR FREE COPY TODAY
 $8 / 46$ OHM 5 watt output.
With circuits and data E1.50.

ZN414 IC
Integrated circuit radio as ines (PW Jan. 73 Reprin Toshiba Power and Pre
TH9 lifier modules
TH9013P 20 watt Powe ampliffer $22-0-22$ or singl TG9014P Stereo on tw channel preamplifier.
£1.50 (circuit book No. 42 price 10p).

Ultrasonic Transducers yds. Ideal remote switching and signailing. Com
plete with data transmitte circuits. Per pair \&5.90.

3015F 7 SEG.
d.C. size complete with f7 (digital clock circults BUILD YOURSELF A PDCKET CALCILATOR

A complete kit, packaged in à poly-	- int mind
yrene container and taking about	
hours to assemble-that's the Sinclair	
Cambridge pocket calculator from	
Henry's. Some of the many features	
include interface chip, thick-film	\%
resistor pack, printed circuit board,	mex
electronic components pack. Size	tana
$4 \frac{1}{2 \prime \prime}$ long $\times 2$ " wide \times 侍" deep. Free of charge with the kit for the more	¢6as
dvanced technologist is a 32 -page	
ooklet explaining how to calculate	¢am

Price $\mathbf{1 2 4 - 9 5}$ - VAT Also available
LIVING SOUND LOW NOISE TOP QUALITY CASSETTES MADE BY EMI TAPES LTD TO FOR HENRY'S. ALL POST PAID LESS THAN

REC. PRICES. COMPLETE WITH LIBRARY $\mathrm{C} 60 \quad$| 3 for | 6 for | to for | $\mathbf{2 5}$ for |
| :--- | :--- | :--- | :--- |
| $\mathrm{£1.00}$ | $\mathbf{£ 1 . 8 0}$ | $£ 2.80$ | $\mathbf{£ 6 . 7 5}$ |

 Quantity and trade enquiries invited.
LEARN A LANGUAGE-complete with phrase book.
German-French-Spanish-Italian
$£ 1.36$

A SELECTION OF

 INTERESTING ITEMS| C3025 Compact transistor tester | 5.50 p \& p 15p |
| :---: | :---: |
| E1300 Mono mag. cart. preamp. | 1.95 p \& p 15p |
| E1310 Stereo mag. cart. preamp. | 4.95 p\&p $25 p$ |
| Easiphone telephone amplifier | 6.15 p \& ${ }^{\text {c } 25 p}$ |
| D1203 Teleamp, with PU coil | 3.60 p \& ${ }^{\text {c }}$ 20p |
| LLi Door Intercomm. and chime | 11.95 p \& p 25 p |
| Chattalite (lights as you talk) | 13.90 p \& p 20p |
| Kw Dimmer/controlie | 3.00 p \& p 10p |
| Twin spring unit For | 2.75 p\&p 15p |
| " Twin spring unit Reverbs | 6.50 p \& p 25 p |
| Car Tachometer Electronic | $7.50 \mathrm{p} \& \mathrm{p} 15 \mathrm{p}$ |
| VHF 105 A.ircraft Band Corrector | |
| | |
| B2004 2 ch . Stereo mixer | |

$\square 1$ RADIO LIMITED

SILICON RECTIFIERS
1 amp series IN4001 to $\mathbf{~} \mathrm{N} 4007$. From 6 p ea
1.5 amp PL4001 to PL4007 from 8p ea

3 amp PL7001/IN5400 From 14p ea
Send for full list 36.

ZENER DIODES
$400 \mathrm{~m} / \mathrm{w}$ BZYse/E
33 volts 10_{D} vach
1.3 watts 5% Miniature Tubulars IN4700

10 watts. Stnd. Mounting. Zs series
6.8 volts- 100 volts $5 \% 40$ e each.

EARN YOURSELF EASY MONEY, WITH PORTABLE DISCO EQUIPMENT
DISCO MINI A compiete portable disco
fitted mixer/preamp, 2 decks an facilities fitted mixer/preamp 2 decks ant facilities
As above but with slider Controls 100 watt amplifier for above
SL100 100 watt mixerlamplifi Controls
R50 50 watt mixer/amplifier
R100 100 wate mixerlamplifier R100 100 wate mixerlamplifier
DISCO AMP 100 watt chassis unit DISCO MIXER/PREMPLIFIERS
(OP for up to 6-100 watt amplifiers)
SDLI (rotary controls)
SDLil (slider controls)
SDLII (slider controls)
DISCO VOX (sfider controls) the complete
disco preamp
DJ100 100 watt power amplifier for above
DJ30L 3 channel 3 kw sound to DJ30L 3 channel 3 kw sound to light
DJJ0L as 30 L plus built in microphone DIMAMATIC 1 kW adjustable speed auto dimmer
Carlsbro SCENE STROBE E19.00, ROAD STROBE MINIATURE AMPLIFIERS
 \% VAT to be added to all orders AND EQUIPMENT AT BARGAIN PRICES
Latest Catalogue price 55p post paid. Complete with Discount Vouchers
 Now builf and used by thousands
of satisfied customers. Features slim design overall size in cabinet 15t"k2t"x6t 6-IC's, 10 transistors,
stabilisers Gardners low field transformer. Fibre
Panel, Glass PC PC Panel, complete chassis work,
Now avallable built and tested as Now availabe buif form. HIGH QUALITY
WND STABILITY ARE PREAND STABILITY ARE PRE
DOMINATE FEATURES DE
VELOPED BY TEXAS EN VELOPED BY TEXAS EN
GINEERS FOR PERFORMANCE
RELIABILITY AND EASE O RELIABILITY AND EASE O
CONSUCTION. FACILITIES. On/off switch indicator, headphones socke, separate rebl filters, mono/stereo switch, input selector; Mag. P.U. Radio Tuner, Aux. Can be altered for Mic ${ }^{\text {c }}$, Tape, Tape-head,
etc. Constructional details Ret. No. 2130 p. Distributed by Henry's throughout LuK
FREE - Teak cablnet with complete kit.
Kit Price $\mathbf{£ 2 8 . 5 0}$
(+YAT +50 p carr/packing)
or built and tested $£ 35 \cdot 00$ or buile a
ustrated

$20+20$ WATT IC STEREO AMPLIFIER

Disco anti-feedback microphone 150 watt Ql liquid wheel prolector 150 watt QI cassette wheel projector Spare Effects and Liquid cassettes large rang of patterns
Gin. Liquid Mini spot bank fitted 3 lamps Auto Trilite (mini with flashers)
Bubblemaster with \dagger gall. Liquid Bubblemaster with 1 gall. Liquid UK's la FREE stock list ref. No. 18 on request AKG/RESLO/DJ/CARLSBRO/EAGLEMics, Stands, Mixers, Cabinets, Chassis and complete Speaker
Systems, Megaphones, Turntables, Public Address Systems, Megaphones, Turntables, Public Address
Components.

POWER SUPPLIES FOR EVERY

PURPOSE

470C $6 / 75 / 9$ volt 300 MA (includes Multi-Adaptor for
E1.95 post 20 p Car Lighter
$6 \mathrm{v}, 7 \mathrm{v}, 9 \mathrm{v}$) C202 $3 / 61719$ volt $400 \mathrm{~mA} \quad 53.25$ carr 30 p HC244R Stabilised version $\quad \mathbf{\& 4 \cdot 2 5}$ carr. 30 p P500 9 volt 500 mA P11 24 volt 500 mA (chassis) P15 26/28 volt 1 amp (chassis) P1080 12v 1 amp (chassis) P1081 45v 0.9 amp (chassis) P12 4i-12 volt 0.4-1 amp E101A 3/6/9/12 volt 1 amp (Stab.) RP164 6/7눈/12 1 amp (Stab.)
GARRARD BATTERY TAPE DECK
GARRARD 2 speed ${ }^{9}{ }^{\mathbf{~ G ~}}$
volt tape decks. Fitted volt tape decks. Fitted
record/play and oscilla tor/Erase heads. Wind and rewind $4^{\prime \prime}$ controls. Brand new complete with head circuit
$\$ 9.50$ carr. 30 p .

TOP QUALITY

 SLIOER CONTROLS60 mm stroke high quality
controls controls complete with
knobs (post, etc., 15p any quantity).
 $250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{Meg}, 45 \mathrm{p}$ ${ }_{10 \mathrm{~K}}^{\text {Ganged }} \mathrm{Log}_{50 \mathrm{~K}}$ and $\mathrm{Lin}^{20 \mathrm{~K}}$ $10 \mathrm{~K},{ }_{2} 2 \mathrm{~K},{ }^{50 \mathrm{~K}}{ }^{2}{ }^{2}{ }^{2} 100 \mathrm{~K}$,
25 K, discounts available.
Complete with knobs.

MARRIOT TAPE HEADS

4 TRACK MONO or 2 High Impedance $£ 2.00$. '18' Medium Impedance £2.00. R730/E73 2 track
mono Record/Erase, low mono Record/Erase, low
imp, 75p pair. Erase
 Imp, E1 755^{\prime}. 43^{\prime} Erase
Head for 63 ' 75 . (Post Head for '63' 75p. (Post
etc., 15p any quantity.)

Mentrys ${ }^{\text {mano }}$

 309 PA-Disco-Lighting High Power Sound 01-723 6963 All pecial otfers and bargains store All mail to 303 Edgware Road, London W2 1BWHi-Fi and Tape Equipment 8IG DISCOUNTS. DEMONSTRATIONS Phone 01-402 5854 For quotes or stock list. You can order by phone with Barclay or Access Card.
EASY TERMS FOR CALLERS.

$\left.\begin{array}{l}\text { NAME... } \\ \text { Ind } \\ \text { inclusion on our regular mailing list. }\end{array}\right\}$

Train for television

Course commences 2nd January, 1974
This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers - including the latest colour sets.

Minimum entrance requirements are Senior
Cambridge or 'O' Level, or equivalent in Mathematics and English.

Please send free prospectus to:
Name
Address
THE PEMBRIDGE COLLEGE OFELECTRONICS

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP (as in W.W.' July ${ }^{72}$

MOTOROLA MC1310P EX STOCK DELIVERY

Separation : $\mathbf{4 0 d B} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ SPECIFICATION
Separation: 40 dB 50 H
I/P level: 560 mV ms Input impedance: 50 kO

Will drive up to 75 mA stereo
O/P level. 485 mV Distortion: 0.3\% KIT COMPRISES FIBREGLASS PCE 'on' lamp os LED. (Roller tinned), Resistors, I.C., Capacitors, Pim \& Comprehensive Instructions

$$
\begin{aligned}
& \text { ONLY WHYPAY } \\
& 3.98 \text { MORE? } \\
& 3 \text { post free, }
\end{aligned}
$$

$$
\text { E3-98 } \begin{aligned}
& \text { MORE? } \\
& \text { post free. }
\end{aligned}
$$

LIGHT EMITTING DIODE
Suitable as stereo "on' indicator for above
RED 29p

$$
\begin{aligned}
\text { RED } & 29 p \\
\text { GREEN } & 59 p
\end{aligned}
$$

MC1310P only $\mathbf{E 2} 90$ plus p.p. 6p
'NOTE

As the supplier of the first MC1310P decoder kit, of
our customers can benefit from our wide experience.
Please add V.A.T. at
FI-COMP ELECTR BURTON ROAD, EGGINTON, DERBY, DEG GGY

[^9]\square Cortina Multitester
Universal Model
20K. ohms/volt. 59 ranges DC/AC up to 5 amps.
DC/AC up to 1500 volts
db. -20 to +66
Ohms. 1 ohms to 100 meg.
MFD. 50,000 up to 1F
Hz. 50 up to 5000 Hz
Audio output 1.5 volts up to 1500 volts
Mains input for Ohms range, 30 KV probe available

TraNSFORMERS

$115 \vee 500 \mathrm{VA}$ cased transformer, with mains lead and two 115 V
LOW VOLTAGE TRANSFORMERS

$$
\begin{aligned}
& \text { PRIMARY 200-250 VOLTS } 12 \text { AND/OR } 24 \text { VOLT RANGI } \\
& \text { Ref. Amps. } \begin{array}{l}
\text { Weight } \\
\text { No. } 12 \mathrm{Vize} \mathrm{~cm} . \\
\mathrm{lb} \text { oz }
\end{array} \text { Secondary Windings }
\end{aligned}
$$

BMRRIE electronics
 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS ALDGATE \& LIVERPOOL ST

The largest selection

-the lowest prices!

74 Series T.T.L. I.C'S
BL-PAK STLLL LOWEST IN PRICE FULL SPECIFICATION GUARANTEED. ALL FAMOUS MANUFACTURERS

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)
D.1\% DISTORTIONI HI-FI AUDIO AMPLIFIER

- Frequiency Reaponse 15 Hzz to $100,000-1 \mathrm{~dB}$.

Doad- $-4,8$ or 16 ohmas. © Supply vo

- Signal to noise ratio 80 dB .
- Overali size $68 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

Tailor made to the most stringent specifcutions uaing top
quality components and Incorporating the latest solld atate quality components and incorporating the lateet solld atate
circuitry concelved to fill the need for all your A.F, amplif. cation needs.
BRITISH MADE. only $£ 3 \cdot 58$ each
STABILISED POWER
MODULE SPM80
£3.25
15 watt semecially dealgnad to power 2 or the AL50 Amplliters, up to

 the unit will provide outputs of of to ti. 1.5 mapps at 38 soolta size

 Address, Intercom Units, etc. Hand book avallable, 10p.
TRANSFORMER BMT80 £2.15 p. \& p. 25p

INTEGRATED CIRCUIT PAKS
Manufacturers "Fall Outs" which Include Functional and Part-Functional Units. These are classed as "out-os
spec' from the maker's very rigid specifications, but are $2 d$ deal for learning about I.C's and experimental work
Pak No. Contents UIC 0
UIC01 $=12 \pm 7400$
$\times 7401$ UIC $02=12 \times 7402$
UIC0
$=12 \times 7403$ UIC04 $=12 \times 7404$

 IC20 $=12 \times 7420$ $\mathrm{IO} 30=12 \times 7430$
$\mathrm{UIO} 40=12 \times 7440$ $1 \mathrm{C41}=5 \times 7441$ $045=5 \times 7445$

[^10]PA 12. PRE-AMPLIFIER SPECIFICATION

The PA 12 pre-amplifier has been destgned to matoh inte most budget stereo systems. It is compatible with th AL 10, AL 20 and AL 30 audio power amplifiers and it There are two sterea inputs, one has been dewer supplles There are two stereo inputa, one has been designed for us
with *Cramic cartridge while the auxillary suit most \dagger Magnetic cartridges, Full detalls are siven in

 3ize $152 \mathrm{~mm} \times 84 \mathrm{~mm} \times$ 36mm. PRICE $24 \cdot 86$.
> ass control- $)^{-3 d B}$ rreble control. ${ }^{2 \mathrm{~dB}}$ at moH Input $1 . \frac{14 \mathrm{~dB}}{1}$ at 14 KH

FRONT PANELS FP12 with knobs $£ 1.20$

EHRTM
P.O. BOX 5, WARE • HERTS

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743 ALL PRICES, SHOWN INCLUDE' V.A.T.

Abstract

 All goods are unused and subject to the manufacturers' guarantee. We do not handle manu-
 nd unreliable life. Business hours Mon.-Fri. 9-5.30 p.m. Closed $1-2$ p.m.
 post free. All orders cleared same day. Any parcel insured against damage in transit
extra per order. Conditions of sale avaluble on request. s.A.E. with all enquiries, please.
 $\left\lvert\, \begin{array}{ll}\text { PY80 } \\ \text { PY81 }\end{array}\right.$

PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1. 18.5pf. to $1.220 \mathrm{pf} £ 10$ each Type 2, 9.5pf, to 11.5 pf . £6 each

MULTICORE CABLE (P.V.C.).
6 core (6 colours) 3 screened, 14/0048. 15p. yd. 100 yds E12.50.
24 core ($\mathbf{2 4}$ colours) 20p. yd. 100 yds. $\mathbf{f 1 7 . 5 0}$.
34 core (17 colours) $\mathbf{2 5 p}$. yd. 100 yds. $£ 20$.
Minimum order 10 yds.

RIBBON CABLE (8 colours) £1.25
£10
10 m.
8 cores. $7 / \cdot \mathrm{mm}$. bonded side by side in ribbon form.
BLOWER FANS (Snail type) Type 1 : Housing dia. $3 \frac{1}{2}$ in. Air outlet $1 \frac{1}{4} \times 1$ in. £2.25. P.P. 25p. Type 2 : Housing dia 6 in . Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. £4. P.P. 50p. Both types 115 / 240v. A.C. (brand new).
SMALL MOTOR (1/50 H.P.) 900 R.P.M. 230/250v. A.C f1-50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparen dust covers and bases. 2 pole c/o contacts 35p ea ; 6 make types in stock.

12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp. Silve contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. 5 p 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5p

240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp contacts. 75p (with base). P.P. 5p.
sub-miniature reed relays ($1 \mathrm{in} . \times \frac{1}{} \times \mathrm{in}$.) Wt. $\frac{1}{1} \mathrm{oz} .1$ make $3 / 12 \mathrm{v} .40 \mathrm{p}$. ea.
SILICON BRIDGES. 100 P.I.V. 1 amp. ($4 \times \frac{1}{2} \mathrm{in}$.) 30p 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60p.
2 Pole Change-over 45p.

PRECISION A.C. MILLIVOLTMETER (SolartIon) i-5m.v to 15 V : 60 db to 20db. 9 ranges. Excellent condition £22.50. P.P. E1-50.

HIGH CAPACITY ELECTROLYTICS

$2,200 \mu \mathrm{f} .100 \mathrm{v}$. ($1 \frac{1}{4} \times 4 \mathrm{in}$.) $60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{4} \times 4 \mathrm{in}.\right)$ $60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}$. ($\left.1 \frac{1}{4} \times 4 \frac{1}{2} \mathrm{in}.\right) 60 \mathrm{p} .10,000 \mu \mathrm{f} .100 \mathrm{v}$. $\left(2 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}.\right) \mathrm{f1} .12,000 \mu \mathrm{f} .40 \mathrm{v}$. ($2 \times 4 \mathrm{in}$.) 75p. $16,000 \mu \mathrm{f}$.
$16 \mathrm{v} .\left(2 \times 4 \mathrm{in}\right.$) $60 \mathrm{p} .21,000 \mu \mathrm{f}$. 40 v . ($2 \frac{1}{2} \times 4 \mathrm{in}$.) £1. Post and packing 5 p .
$2,800 \mu \mathrm{f}$. 100 v . ($4 \frac{1}{4} \times 2 \mathrm{in}$.). 80 p . $15,000 \mu \mathrm{f}$. 63 v . ROTARY VACUUM PUMPS (GS10) with Motor on HIGH VACUUM DIFFUSION PUMPS (Metrovac HIGH VACUUM DIFFUSION PUMPS (Metrovac
093C). New condition. £40. P.P. £2. A.E.I. P10. ION 093C). New condition. £40.
Pump Control Units. $£ 17 \cdot 50$.
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{3}{2} \times 1 \frac{1}{3} \times \frac{1}{2} \mathrm{in}$.) BULK COMPONENT OFFER. Resi
types and values. All new modern components, Over 500 pleces £2. (Trial order 100 pcs. 50p.) We are confident you will re-order

U.K. ORDERS 10\% V.A.T. SURCHARGE
HIGH-SPEED MAGNETIC
COUNTERS. 4 digit (nOn reset) 24 v .
Or 48v. (state which) $4 \times 1 \times 1 \mathrm{in}$.
40p. P.P. 5 p .
5 digit (non-reset) $6-12-24-48 \mathrm{v}$.
(state which) 75 p . P.P. 5 p .
3 digit 12 v . (Rotary Reset) $2 \frac{1}{4} \times 13 \times 1 \frac{1}{4} \mathrm{in}$. £1 each.
5 digit (Reset) 12 v . E3. P.P. 5 p .

TRANSFORMERS

L.T. TRANSFORMER. Prim. 240v. Sec. 24v, $1 \frac{4}{3}$ amp. £1.
P.P. P.P. WATT ISOLATION TRANSFORMER. 240 v . double
wound. $£ 3.25$. P.P. 50 p . E.H.T. TRANSFORMER
 E.H.T0. 'P.P. 35 p .
L.T. TRANSFORMER, (Shrouded) Prim. 200/250v. Sec. $20 / 40 / 60 \mathrm{v} .2 \mathrm{amp}$. £2 ea. P.P. 40 p
L.T. TRANSFORMER (CONSTANT VOLTAGE). Pim. $200 / 240 \mathrm{v}$. Sec. 1. 50 v . at 2 amp . Sec. 2. 50 v . at
$100 \mathrm{~m} / \mathrm{a}$ £3. P. 5 . 50 p . $100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 500.
L.T. TRANSFORMER. Prim. 200/240v. Sec. 18v $27 \mathrm{amp} . ; 40 \mathrm{v} .9 .8 \mathrm{amp} . ; 40 \mathrm{v} .3 .6 \mathrm{amp} . ; 52 \mathrm{v} .1 \mathrm{amp} . ;$
25 v .3 .7 amp £ 15 . P.P. 22. l.T. TRANSFORMER. Prim 220/240v. Sec. 13 v . 1.5 amp .65 p. P.P. 15p
L.T. TRANSFORMER. Pim. $115 / 240 \mathrm{v}$. Sec. 10.5 v . at 1 amp . c.t $\mathbf{2 8 - 0 - 2 8 v}$. at 2 amp . shrouded type. $\mathbf{E 2}$.
P.P. 40 p 2500 watt. ISOLATION TRANSFORMER (CONSTANT VOLTAGE). Prim. 190-260v. 50Hz. Sec
230v. at 10.9 amps . £30. Carr. £2. H.D. STEP-DOWN TRANSFORMER. Prim. 200/240v
Sec. 117 v at 19.8 amps. (2,300 watt). $\mathbf{£} 22.50$. Carr. $£ 2$.
 $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. c.t. 2 amp . £1.50 P.P. 4
$350-0-350 \mathrm{v} .60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$, c.t. 2 amp £1. P.P. 25 p. STEP-DOWN TRANSFORMERS: Prim. 22/240v. Sec. 115 v . Double wound 500w. £5. P.P. f1. 700 w . (with filters) £10. P.P. £1. 500 w . (metal cas
socket output) and overload protection. $£ 6$ - 50 .
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. $0 / 24 / 40 \mathrm{v}$. 15A. (Shrouded type). P1-50. PP. 25p.
HT/LT TRANSFORMER Prim. 240v. (tapped) Sec. 1.
$500-0-500 \mathrm{v} 150 \mathrm{~m} / \mathrm{a}$. Sec. 2.31 v .5 amp. $£ 2.75$. $500-0-500 \mathrm{v} 150 \mathrm{~m} / \mathrm{a}$. Sec. 2. 31 v . 5 amp. $£ 2.75$ P.P. 50p.

AUTOMATIC VOLTAGE STABILISER. (Claude Lyons) Input: $190-260 \mathrm{v}$. Output 240 v . $\pm \cdot 15 \% .12 \cdot 4$
K.V.A. f60.

PATTRICK \& KINNIE 19| LONDON ROAD - ROMFORD - ESSEX ROMFORD 44473

RM7 9DD

TELEVISION SWEEP GENERATOR

by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$). Markers at 465 / $565 / 660 / 7.50 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine $0-10 \mathrm{db}$. Sweep width adjustable from $1-15 \mathrm{MHz}$. The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times 5 \mathrm{ins}$. Wt.: 201 bs . Supplied in good working order, price $\mathbf{£ 5 9 . 5 0}+50$ p carriage.

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v ., frequency up to 250 MHzat 50 watts. Small size only, 2 in. $\times \frac{7}{8}$ in. Offered
brand new, boxed. Price $\notin 1 \cdot 50$, inc. P.\&P.
'ALCAD' Sealed rechargeable Nickel-cadmium batteries. 'U2'. Offered new in packs supplying 12 V , E 15 . Or separately at E 1.25 . Automatic Constant current electronic battery chargers specially designed for nickel cad-
mium cells. Metered and fused. Up to miumcells. Metered and fused. Up to
twelve cells can be charged up to 750 mA , variable $0-750 \mathrm{~mA}$. Size $7 \times 6 \times 5 i n s$. Brand new units. Price each E 17 .

Smiths Ltd Weight indicators self powered, measures 0 to 20 cwts in I ewt divisions on a $4^{\prime \prime}$ cirscale meter indicator, 30 feet of cable and heavy duty load cell use with bell crank or attual reading is new units special price f7.50.D. brand

CossorElectronic Invertors type
CossorElectronic Invertors type
CRA 200. A high quality device for producing a llisv 400 HZ single phase produeing a
output. Incorporating the following features: Input $23-28 V$ D.C.

* Full overload protection.
* Sine wave output.
* Remote control facilities.
* Completely Solid State (Silicon transistors).
* Built to Aircraft specifications. * I80VA of output continuous. May be run in series operation for
3 phase requirements. Offered 3 phase requirements. Offered
brand new boxed units. Price $£ 17.50$ Carriage 50p.

> AUDIO OSCILLATORS Covers $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ in four ranges. Output voltage I micro volt to 10 v , in seven ranges. Built in calibrator. Sine wave O.P. is excellent over complete range. Supplied with transmit case, adaptors and circuits and transformer
for 240 A.C. $£ 20$. for 240 A.C. $\mathbf{E 2 0}$.

MINIATUREAEI UNISELECTORS 12 position $\times 3$ bank 250 ohm coils, I able now-Ty 2 non-bridging wipers avail able now-Type
bases. Price $\mathbf{f 4}$.

BRAND NEW DIGITAL PANEL 10MV-1.99VV. 199 Measuring points. input impedance 100 Mohm . Automatic zeroing. Measurements: $155 \mathrm{~mm} \times$ $72 \mathrm{~mm} \times 72 \mathrm{~mm}$. List price was $£ 52.00$. OUR PRICE E24.50.
DIGITAL MEASUREMENT Type 2003 Digital Voltmeter. 31 Digit display. Measuring up to 1000 Volts.
AS NEW E65. AS NEW $£ 65$.

SHNEIDER ELECTRONICS CF350 Frequency counter. Measures frequency, periods, ratios. ABC chrono inputs. Memorised display. High sen-
sitivity and impedance. Crystal timesitivity and impedance. Crystal time base. $\mathrm{DC}-12 \mathrm{MHz}$. Rise time better than 50 ms . Small compact unit. Completely solid state. Send for further technical specification. Offered brand new. Price $£ 250$.
500 MHz FREQUENCY DIVIDER TCD 500 . Sensitivity 10 mV ($1-300 \mathrm{MHz}$), $50 \mathrm{mV}(300-500 \mathrm{MHz})$. The TCD 500 is designed to extend the range of existing frequency counter by 10 or 100 times to a maximum of 500 MHz . Completely self contained, no external standards required. The TCD500 is suitable for any
type frequency counter over 1 MHz . type frequency counter over MHz .
Solid-state, small size. Brand new. Price only $\in 100$.

High torque geared motors 20RPM. 6-9V. operation. Built-in gearbox. Overall size $2 i n s$. long by lin. diameter. Current drain at 6 V only 8 mA . These are precision, Swiss made geared motors. Original price was over $t .6$ each. Our price each is only fl .50 (plus 10 p each post and packing).

DIGITAL FREQUENCY METER type 'FT300'-reads as frequency meter up to 99.99 KHz in three ranges or as tachometer, 99,990 RPM. Solid-state instrument. Clear read-out. Size only 8in. by 5 in . by $2 \frac{3}{i} \mathrm{in}$. Weight $4 \frac{1}{2} \mathrm{lbs}$. BCD outputs. Operating voltage l/0/240 V. AC. Made by famous manufacturer. These units are brand new in original makers cartons. Our price: $\mathbf{E 5 5}$.

Rohde \& Schwarz Electronic multi meter type UR1. AC Voltage 100 mV to 3 kV (to 200 MHz). Current 100 uA to 1 A . DC Voltage $20 \mathrm{mV}-30 \mathrm{kV}$. Current 2 nA-1A. Resistance 5 ohms to 1000 M ohms. Supplied as new with all leads etc. for just $£ 65$.

Rohde \& Schwarz HUZ. Field strength measuring receiver. Range 47 to 225 MHz . AM and FM. Sensitivity $5 \mathrm{VV}-100 \mathrm{mV}$. Built-in dipole. A portable instrument. Battery or mains powered. El 105 .
RF WATTMETER. Airmec type 319A. Frequency 1.1400 MHz . Measures side-bands, CW, Mod, depth. Meter range $0-100 \mathrm{~mW}$ and 0.300 mW . Input impedance- 50 ohms. Supplied in first class operating condition. $£ 45$

SCHOMANDL PRECISION

 FREQUENCY METER TYPE FD IWITH FDMI ADAPTOR GPO approved equipment for Radio elephone Marine servicing etc.,offered in as new condition with calibration certificate.
G.E.C. Uniselectors, 8-banks, 25 position full wipe. 75 ohm coil. Not new but excellent working condition. Each $£ 2$.
Brand new GEC 3 banks of 25 position uniselectors with fitted suppressor. E2.50 each.

SIX Level A.E.I, Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with index. 12 position
6 bank. Absolutely brand new in 6 bank. Absolutely brand new in makers 66.50
base.

CAMBRIDGE PORTABLE POTENTIOMETER type 44228. The ideal tool for checking thermocouples and auxiliary temperature measuring equip-
ment. Accuracy $\pm 0.1 \%$. BRAND ment. Accu
NEW. 175 .
TINSLEY type 4363D Vernier potentiometer. Good condition. Price $£ 75$.
FRIGIDAIRE, AIR-CONDITIONING UNIT. Table-top model. 4 inch diameter pipe outlet. Complete and ready for use. Price $\mathrm{E} / 25$.

WAYNE KERR type B52I Component bridge. Accurate measurement of
LC \& throughout.

TEKTRONIX OSCILLOSCOPES

Type 545A with 'CA' plug-in. (Or ' L '). DC- 30 MHz . Type 561A with 3 Al and $3 \mathrm{B3}$ units. DC- 10 MHz . Type 535 with CA plug-in unit. DC-15MHz.
Type 55I. Double-beam with L\&G units. DC -27 MHz . Also available:
Dynamco D7i00 with IY2 and IX2 plug-ins. Portable, DC -30 MHz . Hewlett-Packard 175A. I781 and 1755A plug-ins. DC-30MHz.
TEKTRONIX type 545A OSCILLOSCOPE. Complete with 'CA' plug-in unit. As new. Perfect condition, calibrated to manufacturers standards. Bandwidth to 30 MHz . This offer is too good to

Solartron digital voltmeter CT469 with AC plug-in. DC, 1000 V . AC, 500 V . Many facilities are incorporated in this instrument, c/w handbook. Sold as new condition. Price $\mathbf{E 2 7 5}$.
Rohde \& Schwarz URV. IKHz-1600MHz, UHF milli-voltmeter. Range ImV-20V with probe insertion unit. $£ 75$.

SIGNAL GENERATORS

Marconi type TF801D. $10-485 \mathrm{MHz}$. Excellent. P.U.R.

Marconi type TF867. 15 KHz -30MHz, $£ 150$.
Rohde \& Schwarz UHF Signal Generator. $1000 \mathrm{MHz}-1900 \mathrm{MHz}$. In four ranges. Output $0.7-7 V$ into 52 ohms. Piston type attenuator. Price f 125 .
Rohde \& Schwarz SMCK SHF Signal Generator. $1.7-5 \mathrm{GHz}$. Price 275.
Hewlett-Packard 202A LF Function Generator. Range . .008 Hz to 1.2 KHz . Sine, square and triangular O.P. waveforms. As new condition. Price $E 45$.
MARCONI TEST EQUIPMENT. All items have been calibrated, reconditioned and guaranteed.
Wave Analyser TF455E. Frequency range 20Hz. $\mathbf{£ 1 0 5 .}$
TF893 Audio Wattmeter. Range $20 \mathrm{~Hz}-35 \mathrm{KHz}$. Power range 20 uW -10W. Impedance $2 \cdot 5 \Omega$ to $20 \mathrm{~K} \Omega$ in 48 steps. Direct calibration in Watts and dbm. Price $\$ 30$.
MARCONI TF340 AF power meters. As above but limited to 6 Watts. 125 each.
MARCONI Sensitive Voltmeter type TF2600. As new. im V300 Volt. Full-scale deflection. I2 ranges, with dbm markings. A modern instrument. Only $£ 50$.
TF2162 MF attenuator. $\mathrm{DC}-1 \mathrm{MHz}, \mathrm{O}-111 \mathrm{db}$ attenuation in $\cdot 1 \mathrm{db}$ steps. Impedance 600 ohms unbalanced. Price $\mathbf{4 5 0}$.
TF2163 U.H.F. Attenuator. DC-1 GHz. $0-142 \mathrm{db}$ in 1 db steps. Z, 50 ohms. Max. power input 0.5 W . As new Price $\mathrm{f75}$.
TF80ID/I A.M. Signal Generator up to 470 MHz .
TFI04IB Voltmeter. $300 \mathrm{mV}-300 \mathrm{~V}$. 20 Hz -I500MHz. $\mathbf{4 5}$.
MARCONI DOUBLE PULSE GENERATOR TFI400/S. With secondary P.G. Type 6600/I. As new condition. fl05.
OA1094AHF Spectrum Analyser $100 \mathrm{KHz}-30 \mathrm{MHz}$. As new.
TFI417 Counter, Frequency Meter 7 digits. Plus range extension unit TFI $434 / 2$ to 220 MHz . As new.
Latest Advance DMV4 Digital readout multi-meter, AD/DC Volts; resistance, etc. Brand new. $\mathbb{6 5 5}$.
PO type, 316, Jack Plugs. Complete with leads. Good condition. Price 62 for ten.
ADVANCE CROSS HATCH \& DOT GENERATOR. Suitable for 625,405 and video. Switchable sound carrier generator. Offered brand new in original makers cartons. Price $\mathbf{6 2 8}$ each. Postage incl.
ADVANCE type TCIA Timer-counter. Solid-state. 6 digit readout. Manual or auto. (electronic) stop/start. As frequency meter $-I H z-I M H z$, or timer with all facilities. Brand new with handbook, leads, etc. $\mathbf{K 1 2 5}$.

R216 V.H.F. AM/FM Communications receivers. Coverage $19-157 \mathrm{MHz}$. Film scale dial 2 frequency crystal calibrator. Plus all other facilities. Complete with A.C. power supply connecting lead. Supplied in full working order in excellent secondhand condition.
PLEASE ADD 10% V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

R.S.T. VALVE MAIL ORDER CO. Blackwood Hall, I6A Wellfield Road,

[^11]

[^12]PRICES:

Single
10s inc. VAT \&

[^13]
Eawn BOLTON COVENTRY SUNDERLAND STOCKPORT and at DONCASTER

BIRMINGHAM 30-31 Gt. Western Areade RRADFORD 10 North Parade (Cod) Tel: 33512 COVENTRY 17 Shoition Square The Precinct DARLINGTON 19 Nosed Thurs.) Tel : 25983 DONCASTER ${ }^{2}$ (Closed Wed.) Tel.: 41361 EDINBURGH 101 Lothian Road (Closed Wed.) GLASGOW 326 Argyle St. (Closed LEEDS 5-7 County (Meca) Arcade, Briggate LEICESTER 32 High St. (Closed Thurs.) MANCHESTER 60a OIdham St (Closed W

 export eneotries welcomed bRAEGEES OFES ALI DAF SATEDDAYs MAII ARDRERS OTT TO BE BENT TO SHOPS. MIDDLESERO ${ }^{106}$ Newport Rd (Closed Wed.) Shooping Centre (Closed Weed. ${ }^{2}$ Tel. 21469

 STOCKPORT \boldsymbol{L} Litile Underbank Tel. | Tel. 28020716 |
| :---: |
| 80 | SUNDERLAND 5 Market Square (Closesed Whed.)

ALL PRICES INCLUDE VAT AND FLll
ALL YTEMS SUBJECT TO AVAILABILITY, PRICES CORRECT AT 31-10-73 E. \& O.E.

HUGE DISCOUNTS ON LEADING BRAND TAPE AND TURNTABLE UNITS

 Dep. $\mathbf{2 2} 50 \& 9 \mathrm{mthly}$ pymts 5183 (T otal $618 \cdot 97$)

FANE ULTRA HIGH POWER LOUDSPEAKERS

TWO NEW MODELS

10" 'POP' 40

B.S.C.MAINS TRANSFORMERS

TOLLY GUARANTEED. Interleaved and Impreg
 FULLY SHROUDED UPRIGHT MOUNTING
 $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .0-5-6.3 \mathrm{v} .3 \mathrm{a} .$.
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.6 \mathrm{v} .3 \mathrm{ai}$.
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$, , c.t., 6.3 v 1 a For Mulard 510 Araplifier

 450-0-450v. 250mA. 6.3v. 4a.. c.t., 5v. 3a.
TOP SHRODDED DROP-THROUGH TYPE $250-0.260 \mathrm{v} 70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v} .2 \mathrm{a} .$. $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{a}$.

 $300-0.300 \mathrm{ov}$. 130 mA , 6.3 v . 4 a . c.t. 6.8 v . uitable for Mullard 510 Ampliger

 OP/Step DOWN) Transformers

Standard Pentode 5,000』 to $7,000 \Omega$ to 30
 or 150
push-Pull ExL84 to 3 or $15 \ldots \ldots \ldots \ldots .$. ush-Pull Ultra Linear for Mullard 510 , ete
 nah-Pull 20 watt high quality sectionaily
Found EL $34,6 L 6$. KT 66 , 81.16
81.55

ALL FANE L'SPEAKERS GUARANTEED
2YEARS-LABOUR \& MATERIAL
FANE SPEAKERS 'POP' 25/2
 HI-FI SPEAKER ENCLOSURES
 Sinealk any 8 in. in . Sill ${ }_{\text {sFin }} 10$ tor high grade results with

DIGITAL MAGNETIC HEADS P.O.A.

TRANSISTORS \& DIOD

RECTIFIER STACKS \quad SWITCHES

Edwards High Vacuum "Speedivac" model VSK1B range 25.760 torr contact ratings ressure $15 \mathrm{lb} / \mathrm{sq}$. in. gauge max. working . .f6. 20 Stackpole min. rocker 125v, 10a, 250v. $\mathbf{£ 1} 1$ 5 a.
Securex 5000 press button 250 v . ac. . . . $\mathbf{£ 1} \cdot 20$ DIGITAL COUNTERS

Veeder Root Mech. Reset 4 dig. 50p
Hengstler Reset 6 dig. 210Ω 24v.53.50 Hengstler Reset 6 dig. 110v. Type 400 with
suppressor STABILIZED POWER SUPPLIES RELAYS

Varley Min. $700 \Omega 12 \mathrm{v}$
Siemens Min. 12/15v......................50p
Magnetic Dev. Type 596E.............20 EYBOARDS $2.40 \mathrm{v} .$.

ICT Numerical. $\mathbf{5 3 \cdot 5 0}$
ICL Alpha Verifier (PN7035130)£27.50
ELECTROACOUSTIC UNIT
nputs for Radio, Tape Recorder, freq response $80-12,500 \mathrm{~Hz}$, bass and treble controls, 2 speakers. Dimensions 265 education seminars etc, $£ 12.00 \mathrm{Kg}$. Ideal for
TC 3/40 400v 3a 50p
NNECTORS
McMurdo Red Range. Plug RP24
Eng. Elect. Edge. 36 way 0.2 inc
Sylvania Edge. 48 way 0.2 inch

NEON POWER INDICATOR
CAPACITORS
Daly Electrolytic 9000 uf 40v. 50p; Wego paper $4 \mu \mathrm{f} 400 \mathrm{v}$ 60p; Dubilie Metalised Paper Type 426100 uf 150v. DC 50p; R.I.C. type 12971.8 uf 440 v
(Vi3 Conol 3,1fम 1500VDC 50p

GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 2850 \mathrm{rpm}$

76813-393 Potter Instr. 110v. DC 4 amp 0.2 hp . Cont. flange mounting precision tape transport motor ($£ 80$ value)

Service Electric Hi-Velocity Fans, suitable for Gas comveying, Cooling Electronic equipment, Air blast for Oil burners. Secomak Model 365 (corresponds o 575) Airblast Fan, 440v 3ph 50 c 0.75 hp 2850 rpm continuous 160 cfm 12 in w.g. nett weight 441 b ph incl. carr. E41.00. Secomak model 350 250v w.g. net weight 34 lbs , price incl. carr, $£ 26.00$ Air Controls type VBL4 200/250v 1 ph 50 c .110 cfm free air weight $7 \frac{1}{2}$ lbs price incl. p.p. £14.50.
Willam Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8 hg up to 29 in. mercury rom 1420 E.E. 3 phase induction, motor $\frac{1}{3} \mathrm{hp}$ cont. $220 / 250 \mathrm{v}$ 380/440v. £21 od incl. carr.
Gast MFG. Vacuum pump 0522-P702-R26X Or as compressor 10 psi int. or 15 psi cont. £25.00

Where p.p. not advised add 10p per $£$ handling and post (in UK) Cash with order. Personal callers welcome. Open Mon-Wed 9.30-5.00 Fri.-Sat. 9.30-5.00. Free Car Park adjacent.

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

9 \& 10 CHAPEL ST., LONDON, N.W.I $01-7237851$

01-262 5125

TEGC HEAVY DUTY Y Lit TRANSFORMERS
Pri, $220-240 \mathrm{v}$. Sec. 12.6v. C.T.E. 55 amps and 280 v 2 Open frame type table top connections $£ 25$ carr. 22.
\square

 trame type, terminal connections. Fraction of maker's price.
$E 17.00$ carr. $E 150$. G. E . potted Sealed Type:
 carr. $\mathrm{E1}$ 150.

STEP DOWN 240/110v AUTO TRANSFORMERS
3000 watts. Built into steel case with two American 2 pin
grounded socket outlets. Carry hande. 6 t. mains lead.
$=20 \cdot 50$. carr. $£ 2$. Without case and fittings $£ 22.00$ carr. $£ 1.50$.

Abstract

ISOLATION T.TANSFORMERS

TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS

 carr, 50p.

VAT PLEASE. CARR.|PACKING. ALL ORDERS.

AMOS 'C' L.T. TRANSFORMERS

\qquad Primaries $220-2$.
$E 3-50$ carr, 40 p
WODEN Primaries $220-240 \mathrm{v}$. Sec. 10 y . 2a. fully shrouded $£ 1.25$
 pp. 25p. Sec. Taped 6-12v. 2a. fulty shrou.
2a. Twice open frame type. $£ 175 \mathrm{p} . \mathrm{p} .30 \mathrm{p}$.
UNIMAX SEQUENTIAL MICRO
SWITCHES
2pole CO 15A contacts. 2nd pole actuates
atter 1st pole. Leaf roller action 60 p .
Postage 5p.

ROBINSON AC RELAYS
Two 5amp change over contacts. Single
hole fixing. Size $2 \frac{1}{2} \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ ins. 60 p. D.p.
$10 p$.

A.C. 220-240v. SHADED POLE MOTORS
1500 r.p.m. Double spindle. Length $\frac{2}{2}$ in. and ${ }^{2}$ in. Overall size
$3 \times 3 \frac{1}{2} \times 2$ ins. Similar to turbo fan heater motors. 50 p. P.P. 15 p .

MINIATURE 24v. D.C. GEARED MOTORS 500 r.p.m. Size
75 p. P.P. 15 p .
NEWMARK SYNCHRONOUS MOTORS
220-240v. 50 cycles, 3 watts, 8 r.p.m. Overall size $2 \times 2 \times 2$ ins
50p. P.P.
6 revs. per hour. Size $2 \frac{1}{3} \times 2 \times 2$ ins. 50 p. P.P. 10 p.
$\begin{array}{r}\text { GENTS } \\ 6 \text { in. dia. gong. Overall size } 4 i \frac{1}{2} \times 6 \times 6 \text { ins. ALARM BELLS } \\ \hline\end{array}$
G.P.O. RELAYS
3000 type. $100 \Omega 125$ amp. make contact 60 p. $2000+130 \Omega 1$ normal
CO 40 p. 75Ω 3M. 18,1 Co normal contacts 40 p. P. P. on all relays

10 p . type. 600Ω 12v. D.C. 2 CO contacts 30 p. Postage 5p.

OMRON MINIATURE REL.AYS TYPE 4051
12v. D.C. SP CO MICro switch contact. SIze $1 \times 1 \times$ in. Ex new
equipment. 40 e each, P.P. 5 p. $10-2035$.

STC RELAYS
TYPE 250XCE

TYPE $250 X C E, 2500$ ohm 2 H.D. CO contacts
set to pull in at 22 v , with base and cover. 60 p . set to pul
p.p. 5 p.

Omron Relays Mk. 2. 24v, A.C. 12v. D.C. 2 7a. CO contacts. S. hole
fixing. New and boxed, 60p. P.P. 5p.

JUST ARRIVED

PARMEKO ISOLATION TRANSFORMERS Potted type. Pri. 200-210-220-230v. Sec, $100-1102125 \mathrm{v}$; 5 amps
twice. Size $10 \times 8 \times 7$ ins. twice, Size $10 \times 8 \times 7$ ins. weight 80 lbs. £22. 50 . Carr. E2.
PARMEKO HIGH VOLTAGE TRANSFORMERS. Pri. $220-250 \mathrm{v}$. in 10v. steps. Sec. $1320-0-1320 \mathrm{v}$, $250 \mathrm{~m} / \mathrm{a}, 1.9 \mathrm{k}$ $220-200 \mathrm{v}$. in 10v. steps. Sec. $1320-0-1320 \mathrm{~V}$. $250 \mathrm{~m} / \mathrm{a} .19 \mathrm{kV}$.
pk wkg. open frame tyee table top terminal. Block connections
EB 50 . Carr. E1. ENGLISH ELECTRRic L.T. TRANS. FORMERS. Pri. $200-220-240 \mathrm{v}$. Sec. 7 v . 35 amps . CT. 7 v . 6 a .
6.5 v 3 a . open frame typetable top Above transformers brand new in maker's cartons.

Amos ' C ' Core L.T. SMOOTHING CHOKES

 1.5a. E1. 50 carr. 25 p . Mains fiter chokes $0.3 \mathrm{M} / \mathrm{H}$ 6a. 3 times sealed
unit 75 p carr. $25 \mathrm{p} 10 \mathrm{M} / \mathrm{H}$. 2a. 50p carr. 20p. All choke $\frac{1}{2}-1 \mathrm{ohm}$ res. unit 75p carr. 25p 10 M/H. 2a. 50p carr. 20p. Al H.T. SMOOTHING CHOKES

 carr. 20 p .

WE ARE ANXIOUS TO BUY Synchro Test Equipment manufactured by Mulrhead, Singer-Gertsch etc. Test Dials,
Dividing Heads, Bridges, Standards etc. to expand our testing aclities.
EVERSHED AND VIGNOLES special purpose and servo motors in stock also Velodyne Motor Generators and Spilt
Fleld Motors by other Manufacturers for Immediate dellvery. Fleld Motors by other Manufacturers for Immediate dellvery. RADAR CABLEFORM INSULATION TESTER for checking insulation between individual conductors and each other
and ground at preselected voltages up to 10Kv. Full details on and ground
application.
PLESSEY GROUNDBASED U.H.F. GROUND/AIR TX/RX FOR EXPOR This equipment comprises:
Single Channe! Receiver 5820-99-932-5694.
Single Channel Transmitter 5820-99-932-5698,
Single Channel Amplifier 5820-99-932-5701.
Power Unit for Amplifier 5820
Cooler Unit $5820-99-932-3995$.
These assemble into a free standing rack unit providing U.H.F. communications over 2250 to 399 gMMHz, the TX A Amplifier unlt
giving 100 Watts R.F. output int 50 Ohms. We heve suffient giving 100 Watts R.F. output into 50 Ohms. We have sufficien of spare sub-units. All are guaranteed new and unused. Full details on request.
GAS CHROMATOGRAPHY RESEARCH OVEN
PV4051/4056
A large capacity oven of low thermal mass for use between 35 and $35^{\circ} \mathrm{C}$. Provides a foreed air circulating systemylelding
1000 changes of air per min. The oven has forced air cooled tooter surfaces when the internal temperature is high. 210-250V, $50 \mathrm{~Hz}, 2 \cdot 6 \mathrm{KW}$, E28.60. (C.Pd. England and Wales).

GAS CHRO

PV4050/4055
A somewhat smaller unit than the previous item for use between
35 and $500^{\circ} \mathrm{C}, 600$ changes per min. with cooled outer surface. 35 and $500^{\circ} \mathrm{C}$. 600 changes per min . with cooled outer surface.
Internal dimensions $20 \mathrm{~cm} \times 18 \mathrm{~cm}$ high $\times 20 \mathrm{~cm}$ deep. Max. Internal dimensions $20 \mathrm{~cm} \times 18 \mathrm{~cm}$ high $\times 20 \mathrm{~cm}$ dee. Max.
heating rate $50-400^{\circ} \mathrm{C}$ in 6 mins. Max. cooling rate $400^{\circ} \mathrm{C}$ to
$100^{\circ} \mathrm{C}$ in 4 mins. $210-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2.6 \mathrm{KW}, \$ 22.00$. (C. Pd.
England and Wales). England and Wales).
details of these three and other gas chromatography items are
ander available-

IONISATION AMPLIFIER PV4075

A modern high grade low noise solid state amplifier to teed A modern high grade low noise solid state amplifier to feed a with 5 outputs of 1 mV to 100 mV . Linearity 0.1% f.s. Nolse less than 0.5% f.s. at max. sensitivity, Back of facility, Dimensions
$28 \times 10 \times 43 \mathrm{~cm}$ deep. With operating information $£ 27.50$.

DRY REED INSERTS

Overall length 1.85 in . (Body length 1.1 in .) Diameter 0.14 in . to switch up to 500 mA at up to 250 v . D.C. Gold clad contacts
69p per doz.; $£ 4.42$ per 100; $£ 30-25$ per 1,$000 ; £ 275$ per 10,000 . Heavy duty type (body length 2 in .) diameter 0.22 in . to switch up
 £6.88 per 100; £52.25 per 1,000; Changeover type $£ 2.75$ per doz.
A11 carriage paid Li.K.
Operating Magnets 61 per doz.i $£ 4 \cdot 40$ per 100; $£ 38 \cdot 50$ per 1000. All carriage paid.

Abstract

TEKTRONIX 536 Oscilloscope with $T \& C A$ plug-ins $\begin{gathered}\text { £295. }\end{gathered}$

ROHDE A SCHWARZ SYNTHESIZER Model

ROHDE \& SCHWARZ VIDEOSCOPE ROHDE \& SCHWARZ Analyser BN 48302

AMERICAN SWEEP GENERATOR Type 452. Covers from 5 to 100 MHZ . Has built in display and 101 DB Push Button RF Attenuator in one DB steps, plus Calibrated Marke Generator covering 5 to 100 MHZ continuous. American Government Contract, so quality American Government Contract, so quality is high. Supplied for 240 V 50 HZ operation with plugs and leads. Size $13 \frac{1}{2} \times 9 \frac{1}{2} \times 19 i n$. Price ${ }_{£ 70}$ each. Carriage $£ 1.50$.

AMERICAN SWEEP GENERATOR type TRM 315 to 400 MHZ . 5300 . TRM 315 to 400 MHZ . 3500 .

AMERICAN POWER UNITS STANDARD $240 V 50 \mathrm{HZ}$ Input $28 V 40$ AMP OUTPUT. Size $22 \times 16 \times 9 i$. Supplied in original transit 22×16 case $\mathbf{£ 2 5}$.

AMERICAN AM GENERATOR type 497, 4 to 400 MHZ . Supplied with leads, etc., for 240 V 50 HZ operation ≈ 35. 19" TV MONITORS Market Standard 2001240 AC input. Circuit supplied. $£ 15 \cdot 00$ each. Carriage $£ 1.50$. GERTCH Frequency Meters FM3 20 MHZ -1000 MHZ . $£ 80 \cdot 00$ each. Carriage $\mathrm{f} 1 \cdot 50$. ${ }^{12 \times}$ LONG PERSISTANCE TUBES. Connections, voltages, etc. Brand New Boxed. $£ 7.50$ _each including carriage and V.A.T.

MARCONI TF 1026 Frequency Meters 125-250 MHZ. $£ 25 \cdot 00$ each. Postage 75 p

SPECIAL 40 MHZ SCOPE SOLARTRON CD1212 ONLY \&50. Has to be a snag. There is-no plug-in Y amps available.
$T B-100$ nanosecs per cm . to 5 secs. per cm . in 24 calibrated ranges. 20 nanosecs per cm.
with times 5 expansion. $5^{\prime \prime}$ flat faced tube. with times 5 expansion. 5^{*} flat faced tube.
Trace locator. $0-2$ microsec. signal dela7.
Built in calibrator, KHZ sauare wave, 200 micro volts to 100 volts in 18 calibrated ranges. Tube sensitivity 3 V/CM MAIN FRAM Y AMP boosts this to better than 200 mV per cm. at
40 MHZ . $240 \mathrm{~V}, 50 \mathrm{HZ}$ input. Complete with 40 MHZ . 240 V . 50 HZ input. Complete with
full manual including plug-in circults. Come and see one working or Carrlage $£ 1 \cdot 50$.

Solartron CD 711 S . 2 at $\mathbf{\text { Duble }}$

loscope DC-9 me/s; 3 mv/cm; Oscil-
loscope $\mathrm{DC}-9 \mathrm{mc} / \mathrm{s}^{2} ; 3$ mv/cm; trigger
delay; crystal calibrator; $4^{\prime \prime}$ flat taced tube. In good working condition, Carr. $£ 1.50$.

SOLARTRON CD 523 Single Beam Oscillo scope 3 db at $10 \mathrm{MHZ}_{i} 1 \mathrm{mV}$ max sensitivity. DC coupled down to 1 vol. 4in. flat faced PDA tube. TB from 1 secs. per cm . to 0.1
microsecs. per cm . plus times 5 expansion
$\mathbf{£ 5 0 .}$

MARCONI TF $195 \mathrm{M}-0,40$ KHZ Sine Wave Generator $0 / 40$ Volts output Metered. These
must go $£ 7.25$. MARCONI TF 801 A AM GENERATOR 10 to 310 MHZ £45.
MARCONI TF 8018 . AM SIGNAL GENERATOR. 12
condition $£ 90$.
MARCONI TF 93B (CT44). Absorption Wattmeter 10 mW to 6 Watts. Input impedance
2.5 ohms to 20 K ohms. Freq. 2.5 ohms to
at 20 KHZ . Calibrated in in volts and dbs. 5in. at 20 KHZ . Calibrated in volts and dbs.
mirror backed meter $£ 7.50$ ea. P. \& P. 75 p .
MARCONI VVM TF 1041 £22.50.
MARCONI VVM TF 1041B £ $\mathbf{3 0}$.
MARCONITF 428C. Measures AC 100MV to 150 V . 20 HZ to 15 MHZ . Measures DC 40 MV to 300 V . Complete with probe. Standard 240 V
operation $£ 12.50$ each.

MARCONI TF899. Measures 20MV to 2V AC.
50 HZ to 100 MHZ . $£ 10$ each. 50 HZ to 100 MHZ . £ 10 each.
MARCON VVM TF 1300. Measures AC to 300 V . Ohms 50 to 5 Meg Ohm . In fine con-
dition dition $£ 18$ each.
AVOTRANSISTOR AND DIODE TESTER TYPE CT 537. In superb condition, in original crates with full instructions, circuit diagram,
etc. New price £250 Plus. OUR PRICE £ 40 ea. etc. New price
Carr. $11-25$.
RACAL RA17 RECEIVER from $\mathbf{£ 2 3 0}$.
SSB ADAPTOR for Racal RA 17 and RA117 ¢60 each
TELONIC 100 to 250 MHZ Sweep Generator. Up to 4 watts output E120.

SLOPED CASES size 9×7 in. with $8 i n$. slope, 15 in . Iong, in Hammer Grey, Brand New
boxed £1. Packing and postage 37p. boxed £1. Packing and postage 37p.
E.H.T. TRANSFORMERS. e.g. 9.5kV-0
9.5kV 3kVA Single phase. £45 each Car
$\begin{aligned} & \text { riage at cost. Others avalable Single and } \\ & 3 \text { Phase and High Voltage Power Units. }\end{aligned}$
BRAND NEW AMERICAN HIGH
$\begin{aligned} & \text { VOLTAGE CAPACITORS. } 0.15 \mathrm{mfd} \\ & 120 \mathrm{kV} \text { working. } 220 \text { each. Carriage at cost }\end{aligned}$

MODERN TELEPHONES type 706. Two tone grey $£ 3 \cdot 75$ ea. Two-tone green $£ 3.75$ ea. Black
$£ 2.75$ ea. P. \&P. 25 p ea.

Also TOPAZE YELLOW \&4.50 ea. P. \& P. 25p.
Ideal EXTENSION Telephones with standard GPO type dial, bell and lead coding. $\varepsilon 1-75$ ea.
P. \&P. 25 p . All telephones complete with bell and dial. POTENTIOMETERS
COLVERN ${ }^{3}$ watt. Brand new, 5; 10; 25;
500 ohms; $1 ; 2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13p ea.
MORGANITE Special Brand new, 2.5; 10; 100; 250; 500K; 1 in . sealed, 17p ea.
BERCO $2 \frac{1}{2}$ Watt. Brand new, $5 ; 10 ; 50 ; 250$;
500 ohms $12 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{~K}$ at 15 p . 500 ohmil 2 ; STAN
15p ea.

INSTRUMENT 3 in. Colvern 5 ohm 35p ea. 50 k and 100 K 50 p ea.
BOURNS TRIMPOT POTENTIOMETERS. 10; 20; 50; 100; 200; 500 ohms; 1; 2; 2-5; 5; 10; RELIANCE P.C.B. mounting: $270 ;$ 470; ALMA precision resistors 200 K ; $400 \mathrm{~K} ; 497 \mathrm{~K}$; Al K; 1 meg -0.1% 27p ea.; $3.25 \mathrm{k}, 5 \cdot 6 \mathrm{k}, 13 \mathrm{k}$ $0.1 \% 20 \mathrm{p}$ ea.

MULLARD ELECTROLYTICS
 2200MFD 100 V
 $10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ BRAND NEW BOXED 70p each
 10 off - 60p each
 100 off - 45p each

RELAYS

Varley VP4 Plastic covers 4 pole c/o $5 K-$ 30p ea. 15K-33p ea.
CARPENTERS polarised Single pole c/o
20 and 65 ohm coil as new 37 p each. 14 ohm 20 and 65 ohm coil as new 37 p each. 14 ohm
coil 33 p each. 45 ohm coil 33 p each.

TRANSFORMERS. All standard inputs. STEP DOWN ISOLATING trans. Standard
240 v AC to $55-0-55 \mathrm{~V} 300 \mathrm{~W}$, £3 ea. P. \& P. 35 p .
 $2 \times 6.3 \mathrm{v} . \pm 3 \mathrm{ea}$.
Neptune Series. Multi 6.3 volts to give 48 V at 3.5 amps etc. $£ 3.50 \mathrm{incl}$. P. \& P.

Large qu
chokes.
3 TYPES ALL BRAND NEW HIGH
(1) $3 \mathrm{Vg} 9 \mathrm{amp}, 6 \mathrm{~V} 9 \mathrm{amp}, 12 \mathrm{~V} 9 \mathrm{amp}$. Size $3 \frac{1}{2} \times$ $4 \times 5{ }^{1} \frac{1}{2} \mathrm{in}$. $£ 2$ each. Packing and postage
(2) As above but 5.4 amp. Size $3 \frac{1}{4} \times 3 \frac{3}{3} \times 4 \frac{1}{2} \mathrm{in}$.
E1.50 each. Packing and postage
37 p .
 and postage 37 p .
All above 3 types also have $0-17 \mathrm{~V} \frac{1}{4}$ amp and 17-0-17 $\frac{1}{4} \mathrm{amp}$. All windings are separate.
S.T.C. PUSH BUTTON ATTENUATORS. 0-9; or $0-90$ in 1 db steps. State choi
P. \& P. 37 p or $£ 5$ a pair P. \& P. 57 p .
MUIRHEAD Attenuator D2398. 85 dbs in
1 db steps. \& 3 each. $\mathrm{P} . \& \mathrm{P} .37 \mathrm{p}$. db steps.
COLVERN TEN TURN POTS, ex eq. 100 K
 CAPACITOR PACK 50 Brand new components only 50p. P. \& P. 17p.
POTS 10 different values. Brand new. 50p.
COMPONENT PACK consisting of 5 pots various values, 250 resistors $\frac{1}{4}$ and $\frac{1}{2}$ watt
etc., many high stabs. All brand new. Fine etc., many high stabs. Al brand
value at 50 p per pack. P. \& P. 17p.

DELIVERED TO YOUR DOOR 1 cwt. of Electronic Scrap chassls, boards, etc. No
Rubbish. FOR ONLY e33-50. N. Ireland f 2 Rubbis
extra.
P.C.B. PACK S \& D. Quantity 2 sq. tt.-no P.C.B. PACK S \& D. Quantity 2
tiny pieces. 50 plus P. \& P. 20p.

FIBRE GLASS as above \&1 plus P. \& P. 20p.
5 CRYSTALS 70 to 90 kHz . Our choice, $\mathbf{2 5}^{5} \mathrm{p}$.
TRIMMER PACK 2 Twin 50/200 pt ceramic 2 Twin $10 / 60 \mathrm{pf}$ ceramic; 2 min strips with 4 preset $5 / 20$ of on each; 3 air spaced preset
301100 pf on ceramic base. ALL BRAND NEW 25p the LOT. P. \& P. 10 p . FLAT FACED $\mathbf{4}^{\prime \prime}$ Twin Beam Tube. Type
CV2193. Green Trace. Brand New. $\mathbf{E} \mathbf{4}$ each. P. \& P. ${ }^{37 p}$.
C.R.T.'s $5^{i 4}$ type CV1385/ACR13. Brand new with spec. sheet. 63p ea. P. \& P. 35p.
TUBE type VCR138 $£ 2$ ea. P. \& P. 37p. Numetal
shields 60 p ea. shields 60p ea
BASES for CVi385 or VCR138 20p ea. P. \& P.
15p.
GRATICULES. 12 cm . by 14 cm . in High
Quality plastic. 15 p each. P . $\& \mathrm{P}$. 5 . PABEL mounting lamp holders. Red or green. 9p ea. Miniature. PANEL mounting lamp with
holders-10V $15 M A 5 p$ ea.

BECKMAN MODEL A. Ten turn po complete with dial. $100 \mathrm{k} 3 \%$ Tol 0.25%
only $£ 2 \cdot 13$ ea.

ELECTROSTATIC VOLTMETERS from $0-500$ Volts to $0-10 \mathrm{KV}$. S.A.E. with your requirements.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single sided up to $21^{\prime \prime \prime}$ wide $\times 15^{\prime \prime} \frac{10}{1 p}$ per sq. in, Larger pieces ip Postage 10p per order.
INTEGRATED CIRCUIT test clip by AP inc. Gold Plated clip-on. Brand New individually boxed. $51 \cdot 60$ ea. P. \& P, 10p.
DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutheon. Black with white

LIGHT EMITTING DIODES (Red) from Hewlett-Packard.
information 5 p . SANGO 50 micro amp meter. $21^{\prime \prime}$ diameter.
Ex-brand new radiation equip. £1. 25 ea. P. \& P.
17p.
FIVE moving coil meters £2 P. \& P. 37p
VISCONOL EHT CAPACITORS

0.05 mfd		
0.01 mfd	5 kV	
0.001 mfd	10 kV	ea
	Size $2 \frac{1}{2} \times 6 \frac{1}{4}$	
. 5 mfd	8 kV	50p ea.
	Size 13 \times ¢ $5 \frac{1}{2}$ ins.	
0.01 mfd	15	65 p
0.1 mfd	4 kV	

OUBILIER 0.1 mfd 5 KV : 0.1 mfd 7.5 KV .
$0.25 \mathrm{mfd} 7.5 \mathrm{KV} ; 0.5 \mathrm{mfd} 5 \mathrm{KV}$ all at 50 p ea. P. \& P. 15 p .

PHOTOCELL equivalent OCP 71, 13p ea.
Photo resistof type clare 703 (TO5 case). Two Photo resistor type clare 703 (TO5 case). Two for 50p.
MULLARD OCP70 10p each.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY $£ 5 \cdot 50$. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $\mathbf{£ 9 - 2 5}$. P. \& P. 25p.

TRANSISTOR INVERTER

12 V to 1.5 KV 2 MA . Size $1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}$. Multi tapped secondary and output level control makes possible large range of voltage and current output combinations without modification. Very flexible unit at $\mathbf{£ 2} \mathbf{9 5}$ each. P. \& P. 25p.

20 HZ to 200 KHZ SINE AND SQUARE WAVE GENERATOR

n four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $£ 7.85$ each. P \& P 25p. Sine Wave only £5.85 each. P \& P 25 p.

NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 5 . 7 5}$. P. \& P. 25p. Suitable miniature transformer for 240 Volt operation $£ 1.25$.

Unless stated-please add $£ 1$ - 50 carriage to all units.
VALUE ADDED TAX not included in prices-please add 10\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Gash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

SERVICE TRADING CO

MATSUNAGA YARIABLE YOLTAGE TRANSFORMERS

INPUT 230 V. A.C. 50/60 OUTPUT YARIABLE 0/260 v. A.C. Carriage extra if not shown. BRAND NEW. All types.
50 0-260 v. at I amp. (Post 50p) $£ 8.75$ $0-260$ v. at 2.5 amps (Post 60p) $£ 10 \cdot 10$ $0-260$ v. at 5 amps (Post 75p) $£ 14 \cdot 60$ $0-260$ v. at 10 amps. $\mathcal{E} 28 \cdot 15$ 0 m 260 v , at 15 amps. $£ 31 \cdot 25$ $0-260 \mathrm{v}$ at 20 amps. $\mathbf{E 6 1 \cdot 2 5}$ $0-260 \mathrm{v}$, at $37.5 \mathrm{amps} . .$. . . . $\leqslant 102 \cdot 50$ $0-260$ v. at 50 amps. $£ 122 \cdot 50$

AMP

OPEN TYPE (Panel Mounting) 1 amp 88.75. Post 50p. $\quad 2 \frac{1}{2} \mathrm{amp} £ 10 \cdot 10$. Post 60 p . RING TRANSFORMERS Functional Versatlie Educstional These mult-purpose Auto Transformers, witt
large centre aperture, can be used as a Doubl wound current Trensformer, Auto Transiormer
H.T, or L.T, Transformer, by simply hand wind, ng the reaulred number of turns through the centre opening
E. 9 . Using the RT. 100 V .A. Model the output could

VOLTAGE CHANGING TRANSFORMER

M.t. to highest W.D. spec. Auto wound, and tapped 0-130, 15V, out or U. S. A. equipment, or reverse to obtain 240V. from 11sV. The Ideal Itranstormer for making up solld state constant volitace unit by ${ }^{\text {Lse }}$ of taps the following Voltages may be
obtalned: $30-40-50-70-90$ Volis at 10 amps. Welght 40 Ibs.

240 V A.C. SOLENOID OPERATED
FLUID VALVE
Rated 1 p.s. i. will handle up to 7 p.s.l. Foroed
braes body, stalnleas steel core and soring. in.

FOOT SWITCH
Suitable for Motors, Drilts, etc, etc.
5 amp. 250 Volt . Price 75 p . Post 15 p .

VENNER TIME SWITCH

TYPE MSQP

$200 / 250$ Volt 2 -ON/2-OFF every 24 hours at any manualy pre-set time. 20 amp contacts. Fitted
diecast case. Tested and in good condition
e4.75 Post 25p.
4 BANK 3 c/o PUSH BUTTON
ASSEMBLY
Complete with black rectangula (5 units min.).
UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER 25 ohm coit, 24 . D.
operation 66.90. Post 30p.
BANK 25 WAY FULL. WIPER 25 ohm
coil, 24 v. D.C. 67.90. Post 30p.
8 BANK 25 WAY FULI WIPER
GENERAL ELECTRIC POWERGLAS TRIACS
10 amp. Glass passivated plastic Triac, Latest device from
U.S.A. Long term rellablity. Type SC 146 D 10 amp . 400 PIV 1.00. Post 5p. Type SC 146E 10 amp . 500 PIV. £1.30. Post 5 p Inclusive of data and application sheet) suitable Diac 18 HONEYWELL PUSH BUTT MOUNTINGMICRO
Each bank comprises of a change-over
rated at 10 amps 240 volt A.C. Black

 lor quantities.

VERY SPECIAL OFFER

MICRO SWITCH
5 amp c/e contacts, M.f.g. bg ,
NEW, T wenty fro $\mathrm{E1} 50$. Post 10 p .
(M) n. order 20):
'HONEYWELL' LEVER
OPERATED MICRO SWITCH
10 amps 250 volt A.C. clo contacts. NEW In maker

INSULATION TESTERS (NEW) Test to 1 . E. E. Spec. Rugged metal conwork, constant speed clutch. Size or $\mathrm{L}_{2} 8$ in, W. ${ }^{4}$ in. 'H. 6 in, weight 6 lb.
500 VOLTS, 500 megohms $£ 28 \cdot 00$. Post ${ }^{\text {600 }} 1,000$ VOLTS, 1,000 megohms $£ 34 \cdot 00$

STROBE STROBE STROBE

* Four easy to build kits using xenon white $*$ FOUR EASY TO BUILD KITS USING XENON WHITE
$*$ LIEHT FLASH TUBES SOUIITATE TIMING
$*$ TRGGERING CIRCUITS. PROVISION FOR EX. $*$ TRIGGRING CIRCUITS, PROVISION FOR
$*$ TERNL TRGGERING. * EXPERIMENTERS "ECONOMY"' KIT
 $\not \approx$ post 30p.
$\underset{*}{*}$ industrial kit
* ideally sultable tor schools, laboratories etc. Rolle lin printed circuit. Adjustable $1-80$ f.p.s., approx. $\frac{1}{4}$ \star HY-LIGHT STROBE \neq DVelined for use In large rooms, halls and utilizes silica tube, printed circuit. Speed adjustable $1-20$ t.p.s. Light output greater than many
strobes. Price $\varepsilon 1200$, Post 50 .
'SUPER' hy-light kit
Approx ${ }^{4}$ times the light output of our well proven $\underset{*}{*} \begin{array}{r}* \\ \star \\ *\end{array}$ Variable speedf from $1-13$ flash per sec. Reactor control circuit produ ATTRACTIVE, ROBUST, FULLY YENTILATED reflector. 87.00 . Post 60 p .
FOR HY-LYGHT STROBE incl, reflector, £4.75.
Post 25p.
7-INCH POLISHED REFLECTOR. Ideally sulted
for above Strobe Kits. Price 55 p . Post 15 p .
 RAINBOW STROBEFOUR LIGHT CONTROL Will operate four of our Hy-Lyght or Super Hy-Lyght
Strobes in either $1,2,3,4$ sequence; $2+$; or all together - Thoroughly tested and reliable. Complete with tult connection instruction

COLOUR WHEEL PROJECTOR Complete with oil filled colour wheel. 100 watt lamp. $200 / 240 \mathrm{~V}$ AC. Features ex-
 ${ }^{\text {IN }}$ INCH COLOURWHEEL
As As used for Disco lighting effect
etc. Price $£ 5.00$. Post 30 p .
I R.P.M. MOTOR
200/240 Volt A.C. 1 r.p.m. synchronous motor 2 watt Alclock. Spindle 10 mm . Long. 3 mm . dla. Motor only Sultable tor above colour wheel.
 Post 40p.

ELECTRONIC ORGAN KIT

Easy to build, solid state Two full octaves (less
sharps and flats). Fitted sharps and flats). Fitted
hardwood case, powered by two penlite $1 \frac{1 \mathrm{t}}{}$. bat
teries. Complete
set of parts including speaker, etc., together with full instructions and
10 tunes. $£ 3 \cdot 25$. Post 355 .

50 in 1 ELECTRONIC PROJECT KIT

 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, Transformer, plus a host of other components and a 56 -page instruction leaflet. Some examples of the 50 possible page instruction leaflet. Some examples of the 5 possible
Proiects are:. Sound level Meter, 2 Transistor Radio, Amplifier etc. etc. Price $£ 7.75$ post 25 p.

INSULATED TERMINALS Available in black, red, white: yollow, blue and, grean, whow
1op ocah. incl. P. \& P. Minimum
order 6 .
baLANCE/LEVEL METERS

METERS NEW: $2 \frac{1}{1} \mathrm{in}$, FLUSH ROUND 15, 10, 15, 20. Both types £2. 00 . Post 15 p .
VOLTMETER $0-300$ V. A.C. $£ 2.00$. Post 15p.

RELAYS SIEMENS PLESSEY MINIATURE RELAYS

DRY REED RELAYS

M.f.g. by ERG 12 volt D.C. encapsulated.

 Mingibe 65 p . Post Pald.Swo clo 85 p . Post Paid.
STC 280 ohm coil $6 / 42$ V D.c. 3 make metal shrouded 60p. Post Paid.
Large range of other types, avallable.

BLOWER UNIT

$200-240$ Volt A.C. BLOWER UNIT Precision German built. Dynamicaily baianced, quiet, contlinuously rated,
reversible motor, Consumption 60 mA, Size 120 mm , dia, $x 60 \mathrm{~mm}$, deep,$~$
Price $£ 3.00$,

POWER RHEOSTATS

New
enamel enamel embedded winding, heavy duty
brush assembly, continuously rated,
25 WATT $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{~K}$ ohm $£ 1 \cdot 15$ Post 10 p .
50 WATT
$1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / \mathrm{hm}$ $\boldsymbol{\Sigma 1 . 6 0}$. Post ${ }^{10 p_{1}}{ }_{100}$ WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} / 3 \cdot 5 \mathrm{k} / 5 \mathrm{k}$ ohm E2.35. Post 15p. in. dia brass bush. Ideal for above Rheostats, 22p ea.

BODINE TYPE N.C.l. GEARED MOTOR
(Type J) 71 r.p.m. torque 10 ib . in. Reversible 1/70th h.p. cycle 138 amp. (Type 2) 28 r,p,m. torque 20 lb. in Reversible $1 / 80$ th h.p. 50 cycle $\cdot 28$ amp. The above two precision made U.S.A. motors are offered in
'as new' condition. Input oltage of motor 115 k complete with transformer for $230 / 240 \mathrm{v}$ A.C, input.C. Supplied Price, either type $£ 4.84$ Post 50p, or less transformer $£ 2.75$ Post 40 p . These motors are
display stands, vending machines, etc, etc.

600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers. Will escent at mains voltage. Complete with simple

2000 WATT POWER CONTROL
For Power tools, Heating, Llohting etc. Incorporating 13 amp .

B. T.ELEGTRONIGS 267 ACTON LANE, LONDON W4
 MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER

semiconductors

BRIDGE RECTIFIERS BY122 1.5A. 40V. 40p BY164 1.4A. 200V. 57p CIC2-100 2A. 100V. 39p	Low cost OSCILLOSCOPES
	Cossor Solartron 1035. D.B. CD643.1. 1049 Mk. 3A. D.B. CD711S.2. 1049 Mk. 4. D.B. EMI WM2. Solartron WM3B.
	AD557. WM7. CD513.2. WM8. CD523 S.2. WM16. CD643. WM18.
	WM26. All prices and details on application, phone 01-994 6275. Inspection welcome-call at warehouse.
V.A.T. Unless otherwlse stated all prices are EXCLUSIVE of V.A.T. Please add 10% to all orders. Carrlage: orders under $£ 5+20$. Over $£ 5$ post free.	

WAREHOUSE
20-24 BEAUMONT ROAD, W.4.
SURPLUS COMPONENTS, TEST EQUIPMENT, ete., ete.
THOUSANDS OF BARGAINS
Test Equipment \star Oscilloscopes \star Signal Generators \star Counters Cabinets \star Bridges \star Meters \star Transmitters \star Receivers \star Power
Supplies \star Laboratory Equipment $\underset{\text { Equipment }}{ } \star$ Laboratory Equipment ${ }^{\star}$ Galvanometers \star Audio

Motors \star Etc. \star Etc.
20 TONS OF ELECTRONIC EQUIPMENT Resistors \star Relays \star Capacitors \star Switches \star Transformers Meters \star Potentiometers \star Component Panels \star Semiconductors Regret no lists available. Personal callers only, Cash
AUDIO ACCESSORY SHOP
17 TURNHAM GREENTERRACE,
CHISWICK, W.4
VALVE AMPLIFIERS
${ }^{12} 4$ in. 50 W . GOODMANS
$18 \mathrm{in} . \times 18 \ln . \times 8 \sin$, approx. $\quad 69 \cdot 90$

TEAK VENEERED SPEAKER CABINETS
For 8×5 in. speaker.
For 8 in. $+T$ weeter.
For 8 in. + Tweeter.....
For 13
For 12 in. + Tweeter.

ALSO: Audio Connecting Leads, Tape, Cassettes, Stereo
Plynths, Covers, etc., etc.

	ELECTRONIC COMPONENTS BARGAIN COMPONENT PACKS
SGS	Pack No.
EA1000	1500 Carbon resistors, $\frac{1}{1} \frac{1}{2}$, 1, 2 watt.
3W	${ }_{3} 2100$ Electrolytic Condensers.
3W	Condensers.
AMPLIFIER	4250 Polyester, Polycarbonate, Paper, ete, Condensers.
MODULE	525 Condensers.
£2.45	5 25 Potentiometers, assorted.
	750 Assorted Tagstrips.
ANDBOOK	8 IIb Assorted nuts, bolts, washers, spacers, etc. 925 Assorted switches, rotary, lever, micro,
10p	toggle, etc.
	1050 Preset Potentiometers. ALL COMPONENTS NEW AND UNUSED fi + 25p p.p. per pack, 65 for 5 packs p/free.

TEST EQUIPMENT

[^14]

Transistors

${ }_{2}^{2 G G 301}$
 \％
 告
 菖
 デN
 花

 胞名告
 4
 ${ }_{\mathbf{N}}^{-} \sum_{N}^{\infty}$
 之
 N

 운둘
 으우우우우N

 N N N
 NNN
 ©
 2
 NNK
 N等笑
 なam

 No

 준
 NKN
 这
 FiN 드N
 2N2713 2N2714 2N2904

 4
 NNN
 く管管等管
 $2 \mathrm{~N}^{3900}$ $2 \mathrm{~N}^{39}{ }^{39}$ $2 \mathrm{~N}^{39}$
 K2N 2 N 3416 2 N 3417 2 N 3570 NO2

Ope

9．30am－5．30pm
MontoSat
＇Return of post＇ service

LitronixLEDS
Sescocem
Semi－conductors．
Fullrange of
C－MosCapacitors
Siemens
Ducati Nitsuko

Components supplied for most projects inthis magazine

All br gu

brand－new\＆ guaranteed

Prices subject to alteration
without notice－ prices exclusive of VAT
品

Integrated Circuits

We stock the full range of the low number SN 7400 series－some examples：

SN7400	0.28	SN7427	0.4	SN7447	$1 \cdot 30$	SN7483	1.00
SN7401	0.38	SN7430	0.28	SN7450	$0 \cdot 20$	SN7484	0.95
SN7402	0.28	SN7432	0.48	SN7451	0.20	SN7485	1.90
SN7407	0.56	SN7437	0.52	SN7454	0.28	SN7490	1.00
SN7410	0.28	SN740	0.20	SN7472	0.49		
SN7411	0.22	SN7441	0.75	SN7473	0.57	SN7491	1.60
SN7413	0.48	SN7442	0.79	SN7474	0.48	SN7493	0
SN7420	0.20	SN7443	1.04	SN7475	0.96	SN7494	5
SN7423	0.52	SN7445	1.85	SN7476	0.64	SN74	
SN742	0.48	SN7446	2.00	SN74	1.25	SN7496	1.00
We also stock the unusual numbers as follows：－							
74100	2.50	SN 7	1	SN 74161	2.60	SN 74181	
SN 74107	0.43	SN 74150	3.35	SN 74164	2.26	SN 74190	$1 \cdot 95$
SN 74118	1.00	SN 74151	1.10	SN 74165	4.00	SN 74191	
SN 74119	1.92	SN 74153	1.53	SN 74167	6.25	SN 74192	
SN 74121	0.60	SN 74154	2.00 1.55	SN 74174	2.00 1.35	SN 74196	
SN 74122	－1．35	SN 74155	1.55 1.80	SN 74176	1.50	SN 74198	
SN 74141	$0 \cdot 90$	SN 74160	2．60	SN74180	1.55	SN 74199	

NE555 Timer I．C．90p 8 Pin D．I．L．Holder 26p

Zener Diodes

400MW－BZY88 and IN SERIES，11p
1 watt－IN，IZM and IS SERIES，17p． 1.5 watt－ZL SERIES，25p． 10 watt－ZS SERIES，40p． 20 watt－BZ 93 SERIES，52p．

Bridge Rectifiers

PIV	50	100	200	400	600
1A	0.24	0.26	0.35	0.35	0.40
$2 A$	0.32	0.37	0.41	0.46	0.52
$4 A$	0.60	0.70	0.75	0.85	0.95
6A	0.62	0.75	0.80	1.10	1.25

Diodes \＆Rectifiers

PIV	50	100	200	400	600	800	1000
1.5	0.08	0.09	0.10	$0 \cdot 11$	0.12	0.15	0.2
3	0.15	0.17	0.20	0.22	0.25	0.27	0.20
10		0.35	0.40	0.47	0.56	3	
35	0.84	0.92	$1 \cdot 18$	$2 \cdot 15$	2.52	3.65	4.20
CATHODE STUD ONLY IN3766（35 amp 800 pv）£3．65 IN3768（35 amp 1000 pv）£4．20							
IN34A	0.10	BA141	0.17	BY237	0.124	OA79	0.07
IN914	0.07	BA142	0.17	BYZ10	0.35	OA81	
－ N 916	0.07	BA144	$0 \cdot 12$	BYZ19	0.32	OA85	0.10
AA119	0.07	BA145	0.17	BYZ12	0.30	OA90	$0 \cdot 07$
AA129	0.15	BA154	0.12	OA9	0.10	OA91	$0 \cdot 07$
BA100	0.15	BY100	0.15	OA10	0.20	OA95	0.07
BA102	0.25	BY126	0.15	OA47	0.071	OA200	0.07
BA110	0.25	BY127	0.171	OA70	0.077	OA202	${ }_{0}^{0.10}$
BA115	0.67	BY140	1.00	OA73	0.10	OA210	0．271

Optoelectronics	Potentiometers
Minitron 3015F 7－segment	Carbon：
Indicator（16 pin DIL） 52	Log．or Lin．，less switch，
Driver SN 7447 £1－30	171 ${ }^{\text {P }}$ p
Sockets 20p	Log．or Lin．，with switch，27p Wire－wound Pots（3W），38p
\cdots	Twin Ganged Stereo Pots，
Til 209 Light Emitting Diode． （red），35p	Log．or Lin．，47p
	Presets（Carbon）
	0.1 Watt 6p VERTICAL
50p P．\＆P．	0．2 Watt 6p OR
	0．3 Watt 71 ${ }^{2}$ p HORIZON
Wire－wound resistors	
2.5 watt 5%（up to 270 ohms	Slide potentiometers
only），7p	58 mm ．Track
5 watt $5+$（up to 8．2k Ω only），	Single Ganged，Log．
9p	1 k to 1M．30p each
10 watt 5%（up to 26 k ？ only）， 10 p	Twin Ganged．Log．or 1 k to 500 k .50 p each

FOR THE STOCKS, THE DISCOUNTS AND THE SERVICE YOU NEED

EIEGTROVILIVE Eectronic Component Speciolists

			ANSISTORS BY SIEMENS AND NEWMARKET		
		CTROLYTICS			
Solver brain net 55_{p}					

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£24•95!
 (PLUS VAT)

The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$!

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

The cost? Just $£ \mathbf{2 7} \cdot \mathbf{4 5}$!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5 \cdot 50$! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge * Uniquely handy package.
$4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$, weight $3 \frac{1}{2}$ Oz.

* Standard keyboard. All you need for complex calculations.
* Clear-last-entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators $(+,-\mathbf{x}, \div)$, with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
* Calculates to 8 significant digits, with exponent range from 10^{-20} to 10^{79}.
* Clear, bright 8-digit display.
* Operates for weeks on four U16-type batteries.
(MN 2400 recommended).

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.
G. F. MILWARD

ELECTRONIC COMPONENTS
Wholesale/Retail :

SMALL ELECTROLYTICS

Ref. No: H8/2	$\begin{aligned} & \text { Capacity } \\ & 2.2 \mu \mathrm{f} \end{aligned}$	Voltage 25v	Price	Ref. No. H7/3A	Capacity 64मf	Voltage $25 v$	Price $4 p$
H8/2A	3.34f	25 V	4 p	H7/4	64uf	15v	4p
H8/3	3 uf	50 v	4p	H7/4A	64μ fi	35 v	5p
H8/3A	$4{ }^{\text {dif }}$	50 v	4 p	H7/5	80uf	16v	4 p
H8/4	4.7uf	25 v	4p	H717	100uf	25 v	4 p
H8/4A	54 f	64v	4p	H718	125uf	16 v	5p
H8/5	54	10v	4 p	H718A	100ut	35 v	${ }^{\text {6 }}$ p
H8/5A	5 ¢f	150v	4 p	H719	100 uf	63 v	${ }_{8 \mathrm{p}}{ }^{\text {p }}$
H8/6A	10uf	10v	4 p	H7710	$125 \mu \mathrm{f}$	25 v	${ }_{6} \mathbf{8}$
H8/7	10,	70\%	4p	H7/10A	$160 \mu \mathrm{f}$	$2 \cdot 5 \mathrm{v}$	3 p
H8/8	164if	35v	4p	H7111	160ut	25 v	${ }_{6} \mathbf{p}$
H8/8A	16uf	16v	4 p	H7/11A	150uf	185	5 p
H8/9	20ヶf	6 v	2 p	H713A	200uf	50v	${ }_{10}$
H8/9A	20μ	70 v	4p	H7115	$2204 f$	25v	${ }_{5 p}$
H8/10	22uf	50 V	4p	H715A	220 2 f	35 v	10p
H8/10A	2241	100v	4 p	H611A	2504f	4V	3 p
H8/11	$25 \mu \mathrm{f}$	12 V	${ }^{4} \mathbf{p}$	H6/3A	320رf	2.5 v	3 p
H812	32uf	15 v	4 p	H614	32047	10 v	${ }^{4 p}$
H8/12A	$30 \mu \mathrm{f}$	10v	$4 p$	H614A	$330 \mu \mathrm{f}$	16v	5 p
H8/13A	32 $\mu 9$	50 V	4 p	H6/5	3302 f	25v	10 p
H8/14	40,uf	250	5p	H615A	330ıf	35 v	$15 p$
H8/14A	$40 \mu \mathrm{f}$	160	4p	H618	4704f	25 r	10 p
H8/15	47的	50 V	4p	H618A	470uf	35 v	20 p
H8/15A	40ıf	35 v	4p	H619A	400 ${ }^{\text {4 }}$	40 V	20 p
H7/1a	$50 \mu \mathrm{f}$	6V	${ }^{3 p}$	${ }^{H 8170}$	$750 \mu \mathrm{f}$ $1000 \mu \mathrm{f}$	229	5pp
H7/2A	64μ	$2 \cdot 5 \mathrm{v}$	2 p	H5/2A	22004 f	16v	15p

RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for $£ 7 \cdot 50,1,000 £ 50$.

UNREPEATABLE BARGAIN BD112

TO3-NPN DIFFUSED SILICON PLANAR EPITAXIAL.
VCEO COLECTOR TO EMITTER- 60 VOLTS.
20 WAITS-2 AMPS 30 MHZ MEATURES HIG

NEW! NEW! NEW! NEW!
An aerosol spray providing a convenlent means of producing any number of copies of a printed circuit both simply and quickly. with light sensitive spray. Cover with transparent film Method: Spray copper laminate board with light sensitive spray. Cover with transparent film
upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with ypon which circuit has been drawn. Expose
developer, rinse and etch in normal manner. light sensitive aerosol spray

$\frac{\text { Copper-clad Fibre-glass Board-m0psq. } \mathrm{ft} .\left(\text { max. } 3^{\prime} \times 4^{\prime}\right)}{\text { NEWER THAN NEWII! }}$

$\rightarrow 19$
 "'SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily reversed, starting and stopping in less than 5° without electrical or
mechanical braking. Simple relay circuit can be apolied to give DC., to winding for a maximum holding torque of $300 \mathrm{oz} /$ in with 35 v at 0.35 amps through winding. For AC . (synchronous) operation at 120 v ., 50 Hz . Speed 60 pm at 60 Hz ., 72 rpm . STEPPING. Holding torque at 60 steps per second-100 oz/th. Can be wired to give 100 or 200 steps
 OPEN FRAME shaded pole GEARED MOTORS
(Dural gear case)
240 AC.,
28 r 2m. NEW

 110 rpm with pressed steel gear case (similar to above
but slightly smaller). £3. P. \& P. 30 p .
ut slightly prale. \&3. P. \& P. 30p

SMITHS RINGER-TIMER

Reliable 15 minute times, spring wound
(concurrent with time setting) 15×1 min divisions, approximately $\frac{1}{2}^{\prime \prime}$ between
divisions, panel mounting with chrome divisions, Panel mounting with chrome
bezel $3 \frac{12}{\prime \prime}$ dia. $£ 1 \cdot 40$. 15 p. P. \& P.
MAINS SOLENOID by MAGNETIC DEVICES LTD.
A beautifully constructed solenoid at half normal price. A 2 -sided bracket is incorporated for vertical
or horizontal mounting. Size: $2^{\prime \prime} \times 1^{1 / 2} \times 11^{\prime \prime}$. Pull is

 original maker's boxes $£ f .20$. P, \&P. 20
avallable, special price for quantity.

MAINS

SOLENOID This little unit gives
vertical lift of approximately ${ }^{1 "}$ "through
hinged
telbow"

Bracket incorporates 2 fixing screws. Length of arm,

TANGENTIAL HEATER
Silently driven by shaded ole Mycalex motor, pow with aluminium impeller outtet $5 \frac{\pi}{n}^{\prime \prime} \times 1{\frac{1}{1^{\prime \prime}}}^{\prime \prime}$. Mains voltage PLUS matching heater unit with spiral
element. May be switched
for 500 or $1,000 \mathrm{w} . £ 2.20$. for 500 or 1,1,
P. ${ }^{5}$ P. 30 p .

SILVANIA

 MAGNETIC SWITCHNow complete with reference magnet! A magnetically activated switch, vacuum sealed in a glass envelope. Sifver contacts, normally closed. Rated 3amp ideal for burglar atarms, security systems etc. and where-
itever non-mechanical switching is required. io for ever non-mechanical switching is required. io tor $£ 2 ; P$
$\& P 15 \mathrm{p}, 50$ for $£ 8.80 ; 100$ for $£ 16.50$. FREE P. \&P. over 10.

NORPLEX

The famous American fibre-glass copper-clad laminate. Finest quality with woven glass base of Epoxy-resin. Excellent Mech, and Elec
conductive properties. Heat resistant, ideat for P. conductive properties. Heat resistant, ideat for P.C.'s etc. THIS IS A
SPECIAL PURCHASE AND
LAST! Sizes: $12^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 24^{\prime \prime} \times$ FULE WHILE STOCKS
SHET
 25p. P, \&P. Full Sheet'£ 8 each. Carr. £1 for 1 st sheet plus 25 p each ${ }_{\text {additional }}$ sheet.

KNOWLE (U.S.A.) MINIATURE

MICROPHONE CAPSULES
Impedance approx. 200 , output 60 or 80 DB at 1 Kc . As used in deaf

ALL PRICES NOW INCLUDE V.A.T.
UNLESS OTHERWISE STATED
All items are NEW and UNUSED. Postal or carriage charges are for Gt. Britain only.
We welcome orders from established companies, educational depts. etc. All orders under £2.50. C.WO., please. Company orders unde

RELAYS PAND POPO

BUILT TO YOUR SPECIFICATION. HIGHEST QUALITY AT COMPETI:HIGHEST QUALITY AT COMPETILIVERYSERVICE. QUOTATIONSBY RETURN HOME AND OVERSEAS.
NEW P.O. TYPE UNISELECTORS 8 Level all non bridging 300 ohms $£ 12.50$ ea. 11 Level i bridging 10 non bridging 65 ohms
f15. 50 ea. 4 pole 50 way all non bridging 75 ohms $£ 15.50$ ea. 4 pole 50 way all non bridging 75 ohms
$£ 10$ ea. LARGE STOCKS HELD OF G.E.C. SON CYLINDRICAL TYPE RELAYS, SEND FOR COMPLETE LIST.
EQUIPMENT WIRE 14/.0076 DEF 12 C Type 11 , £8 per 1,000 yards.
BATTERY CHARGERS Input 2001250 volts AC, output 6 volts, 15 amps with Ammeter, fuses, regulated by a ${ }^{4}$ position switch £10 each. SINGLE FUSE HOLDERS Belling Lee L356 one hole
fixing $£ 1$ per 10 of. ONE HOLE FIXING SWITCHES Double Pole On-Off 3 amp 250 volt $£ 1$-50 for box of 25, send for list of many different types.
JACK PLUGS 2 point, with screw on cover 10 p each for 100 and over. IMMERSION THERMOSTAT Adjustable between 70 and 190 degrees F, 10 amps $0-140$ volts AC, 11 inch stem, complete With one hole fixing sheath over 300 available, special price $£ 1$ each.
ROOM THERMOSTAT Adjustabie between 45 and 75 degrees F, 250 volts AC 10 amps , ideal for greenhouses etc, special price e2 each.
PORTABLE VOLTMETERS 160 volts AC/DC PORTABLE VOLTMETERS 160 volts AC/DC Moving Iron, 8 inch Mirror scale in polished
wood case with hinged flap, very special price $£ 5$ each Resistance supplied to extend range Wood case with hinged flap, very special price £5 each Resistance supplied to extend range
to 320 volts AC 75p extra, send for our Meter list, Potentiometer list, Resistor list, Wire Wound Carbon \& High Stability types by the thousand, all prices do include postage and VAT. LONGLEY RD., WILKINSON (CROYDON) LTD. LONGLEY HOUSE,

Lncrease eluciency of Office, Shop and Workshop with this DELUXE TELE PHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office aid. On/Off switch. Volume control. Operates on one 9 v battery. Size 3in. $x 4 \mathrm{in}$. Ready to operate. Complete with battery. P \& P 27p.

WEST LONDON DIRECT SUPPLIES 169 KENSINGTON HIGH STREET, LONDON W8 6SN

BEDFORD ELECTRONICS
 7, PRIORY STREET,
 BEDFORD

TELEPHONE 023451961

BRAND NEW

17mсн TELEVISION MONITORS

- all solid state - PRECISION TUBE PROFESSIONAL QUALITY FULL SPECIFICATIONS AND PRICE ON APPLICATION A LIMITED QUANTITY OF 19 INCH HYBRID MONITORS ARE ALSO AVAILABLE

CARD READER
 Data Products SPEEDREADER. ${ }^{300}$ Mechanism and Electronics P.O.A.

POWER SUPPLIES

A.E.I. R22402.5V to 30V@2A Regulated, Aidy adjustable supply voltage and
fuly
current meters $£$. Callers only. current meters $£ 7$. Callers only.
Many other L.T. \& H.T. power Many other L.T. \& H.T. power supplies
available, please inform us of your requirements.

FULLY RECONDITIONED AND E.M.l. WM6 High power strobe.
DAWE 1200 E Strobe neon...... VENNER $3336 / 1 \mathrm{MHz}$ time/counter and frequency standard.........̈.
SOLARTRON oscillator CO546
 on DC ammeter 3 MA to 1 A .

P.T.F.E

7/0075 equipment wire to EL1930 Type A and reel size availability before ordering

Colvern TEN TURN POTS. 500R. 5\%
Lin. 0.1%, E1.25 each. MULTICORE CABLE, miniature 25 cores of PVC 7/0076 screened overall and PVC
sheathed, $£ 2.50$ for 10 yds. PVC equipment wires from $7 / 0076 @ 50$ p/100
yds. to $70 / 0076$ @ $£ 1.50 / 100$ yds. available. Colour range restricted. Pressure transducerss KDG, Type TD216,
$0-1200$ P.S.I. Complete with calibration chart. $£ 5$ each. Complete with calibration CARPENTERS polarised relay SPCO 2×1000, complete with base and retainer as new. 45p each
POT CORES LA3. 40p each,

each. RACES Type RCL iF Flanged bin. bore $5 / 16 \mathrm{in}$. dia. Sealed ${ }^{\frac{5}{F} \text { packs, }} \mathbf{2 5 p}$ each.

CLEARANCE SALES of surplus the first Saturday of every month. 4 pm .
V.A.T.

PLEASE ADD 10\% V.A.T. TO ALL PRICES.

PHASE LOCK LOOP RECEIVERS

Type 1101 Satellite Band. $136-138 \mathrm{MHz}$
1.5 dB . Noise factor. High system gain. Automatie search and lock facility tunes receiver to satelite transmission in range without manual adjustment and enables several satelites to contribute to picture print-out without operator involvement over an exterided period. Single channel or manuat operation may also be selected. The unit is designed and rated for continuous duty monitoring service. The output drives facs:mile picture equipment directly £28
Type 1202 Telemetry. 102 MHz .
AM, FM, multiplex FM, pulse. Automatic signal tracking and tocking £280
type 1203 Telometry. 412 MHz .
Type 1302 Communications. Single or multi-channol. AM, FM. multiplex
Type $1303 \quad 250-470 \mathrm{MHz}$
Type 1401 Radiometer. Type 1451 interferometer, 81.5 MHz 151.5 MHZ
Type 1402 Radiometer. Type 1452 Interferometer. 408 MHz .

FREQUENCY CONVERTERS

Type 1051 Input frequency as specified in the range 1 to 250 MHz . Type 1061 Input frequency as specified in the range 200 to 700 MHz . Size: $4 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$. Aluminium diecast case,

RF AMPLIFIERS

Type 1014 LOW NOISE FET RF PREAMPLIFIERS
Frequency: As specified in the range 1 to 250 MHz .
Bandwidth: As specified from 1% to 20% of centre frequency.

Type 1015 LOW NOISE RF/IF AMPLIFIERS
Type 1015: LOW NOISE RF/IF AMPLIFIERS
Frequency: As specified in the range 1 to 150 MHz.
Frequency: As spacified if the range 1 to 150 MHz .
Bandwidth: As specified from 1% to 40% of centre frequency
$\begin{array}{ll}\text { Bonder Factor: } & 7.5 \mathrm{~dB} \text {. §, MHz. } \\ & 60 \mathrm{~dB} \text {. } 2 \mathrm{MHz} \text {. Adjustable }-60 \mathrm{~dB} .\end{array}$
60 dB . a MHz . Adjustable -60 dB .
TUNEABLE STRIPLINE PREAMPLIFIERS
Type 1021. TUNEABLE STRIPLINE PREAMPLIFIERS
Frequency:
Bandwidth: Adjustable.
Noise Factor: 1.1 dB . () 350 MHz .2 dB . a 1 GHz .3 dB . ac 2 GHz

5 dB . @ 500 MHz .10 dB . @ 1 GHz .
15 . 1021.
$\begin{array}{ll}\text { Size: } & 3 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime} \text {. Aluminium } \\ \text { Connectors: } & \text { BNC, }{ }^{2}, \text { UHH, or as specified. }\end{array}$
Weight: $\quad 4 \mathrm{oz}$.

VA.T. applicable at the current rate excepting export orders.
For further information telephone Mr. P. H. Strudwick, Faversham 2064
Illustrated brochure available on request.

Endless Loop Cartridge Units

- Designed, Developed, Manufactured.

Asused inindustrial monitoring alarm and public address systems etc., by manual or remote control. All enquiries welcomed.

FITCH TAPE MECHANISMS

Write or phone:
7a Balham Grove, London, SW12. 01-673 1362.
WW- 129 FOR FURTHER DETAILS

cavern elecironics

We have moved to:

94 STRATFORD ROAD, WOLVERTON, MILTON KEYNES, BUCKS. MK12 5LU

RETAIL COUNTER NOW OPEN

Mail Order Service for those who cannot visit us
Please send stamp for our Component Lists

TRANSFORMER LAMINATIONS enor mous range in Radiometal, Mumetal and H.C.R., also "C' \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

WE PURCHASE

OSCILLOSCOPES, SIGNAL GENERATORS PEN RECORDERS, COMPUTERS, RECEIVERS. PLEASE SEND US YOUR LISTS. best prices paid.
ELECTRONIC BROKERS LTD 49 Pancras Road, London, N.W.1. 01-837 7781

THE ONLY
COMPREHENSIVE
RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!
Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care.
cecil e. watts limited
Darby House
Sunbury-on-Thames, Middx

Grampian

'SERIES 7' - Studió Monitor Version One of the world's finest Amplifiers.

grampian heprioducers limited
Hanworth Trading Estate. Feltham. Middlesex
Telephone: 01-8949141.

Lodge Trading Company

For Amplifiers, Speakers with and without cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials, Flex, and Cables, Large stocks of components

ALL AT WHOLESALE PRICES
A VISIT WILL SAVE YOU MONEY
5 Day Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE, N. FINCHLEY, LONDON, N. 12
01 -445 2713, 01-445 0749

EXCOMPUTER STABIILSED POWER SUPPIIIES

RECONDITIONED, TESTED AND GUARANTEED
Ripple $<10 \mathrm{mV}$. Over-voltage protection on all except 24v. 7A. unit. $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to suit about ± 3.

```
Post & Packing
5-6v. 8A.
& Packing £1 50
56v.12A £12. 24v. 7A.
5-6v. 8A. 
5-6v. 16A. £16
PAPST FANS 4\frac{1}{2}\times4\frac{1}{2}\times2\textrm{in}.100\textrm{cfm}
&3.50 (30p).
PAPST FANS 6in. dia. x 2% 3in. deep
Type 7576 &5.00 (30p)
WOODS FANS 6in. Plastic rotor £6.00
(36p).
ELECTROLYTICS
6,000\mu 75v., 4\frac{1}{2}}\times2\mathrm{ 2in. dia. 55p (14p)
8,000\mu 55v., 4\frac{1}{2}}\times3\mathrm{ 3in. dia. 50p (24p)
10,000\mu 35v., 5,000\mu 35v., 40p (12p).
2,000\mu 30v. wire ends, 15p (6p).
EX-COMPUTER PC PANELS 2 x 4in.
min. }35\mathrm{ transistors with data 50p (12p). 25
boards for £1 (30p)
PANELS WITH 4 POWER TRANSIS
TORS SIM OC28 50p (10p)
QH Bulbs, 12v. 55w
                                60p (91p
250 Mixed Resistors ............. 60p (91p)
250 Mixed Capacitors ............. 60p (91 p)
200 SI Planar Diodes ................ 50p (7p)
Min Glass Neons ................or 50p (9p)
10-way Terminal Blocks .... 10 for 55p (15p)
Postage and package shown in brackets
Please add 10% VAT to prices
KEYTRONICS
```

Mail Order only
44 EARLS COURT ROAD, LONDON, W. 8
01-478 8499

BONDON CENTRAS ReADIO STDLSES

TELEPPHONE CABLE. Plastic covered grey 4-score coloured RECORD STORAGE UNITS. Brand new, Anti-warp. 'Compact 200^{\prime} stores 200 records. $£ 13.09$. P.P. $£ 1$.54. 'Compact 100 ELENES 100 recordicIT SLOT ELECTRICITY SLOT MEiTERS (5p in slot) ior A.C. Mains. Fixe $15 \mathrm{~A} . £ \% 42.20 \mathrm{~A} . £ 8 \cdot 25$. P.P. 75 p . other amperages available. Recondini DESK PHoNNES. red, green, blue or topaz, 2 tone grey
 lite case with junction box handset. Thoroughly overhauled, guaranteed. Price $85 \cdot 25$. Wiring diagram on reqtest, gend s.a.e. lite case with junction box handset. Thoroughly overhauled. Guaranteed. $\mathbf{E 6} \% 5$ per wnit. Wiring diagram on request, send 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thorourhly overbauled. Guaranteed. $\mathrm{E}_{\mathrm{T}} 7.75$ per unit. Wiring diagram on request, send s.a.e measures 3 zin. $x 5$ tin. $x 9$ in. It is a 4 frequency $41.44 \mathrm{mc} / \mathrm{s}$. Crystal Controlied and operates from a dry battery H.T./L.T. 94/1.: v. I.E. Ruben Mallory Type No. 1 and employs the 14 ving 14 valves. 3A4, 1 on, off: $1 \mathrm{~A} 3,2$ off. $25-50$ plua 75 p
23 IISE SI. (${ }_{2357}^{437}$) LONDON W.C. 2 Open all day Saturday

TELERADIO SPECIAL PRODUCTS

LINSLEY HOOD AMPLIFIERS
TEXAN \& TEXAS AMPLIFIERS BAILEY AMPLIFIERS SONAX STEREO DECODERS SONAX QUADRAPHONIC SYSTEM DIGITAL. CLOCK KITS
POWER SUPPIY UNITS

Send 10×8 S.A.E. for further details.
325-7 Fore St., London, N9 OPE 01-807 3719

PECIAL NOTICE
TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and ALLIED TRADES
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc.

BROADFIELD \& MAYCO
DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
London, N12 8JG.
Telephone:
01-445 $0749 \quad 01-445 \quad 2713 \quad 01-9587624$

for sale
40 KW Transmitters
Collins (USA) FRT-22
$4-26,5 \mathrm{MHz}, \mathrm{CW}$ (A1) and teletype (F1), suitable for SSB (A3J) with external exiter. Built, in crystal oscillator and frequency synthesizer, 10 autotune channels. Power require ments $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} .(3 \mathrm{ph})$, automatic voltage regulation.

Volume ca. $480 \mathrm{cu}, \mathrm{ft}$, , weight ca. 12.600 lb. There are two identical sets available ransmitters are used and need oversaul eplaced minor parts missing.

Peplaced, minor parts missing.
Price DM 12.000 per set, ex stock Munich in seaworthy packing with complete technica documentation.

DR. HANS BÜRKLIN
8 München 2, Schillerstr. 40 (FRG)

GENERATORS

MARCONI TF867 STANDARD SIGNAL
GENERATOR

Carrier Frequency Range： $15 \mathrm{Kc} / \mathrm{s}-$

 30Mc／s in 11 bands．Calibration Stability： 1% ． Stability：After warm
up the drift in a $10-$ up the drift in a 10
minute period is， tynute period is，
0.005% fess than typically．fors carrier
0.005%
frequencies frequencies up to
$3-2 \mathrm{Mc} / \mathrm{s}$ and less than $3-01 \% / \mathrm{san}$ from $3-2-2$. $0-0 \mathrm{Mc} / \mathrm{s}$ ．
30m
O Output Voltage： Impedance： 75 ohms nominal for outputs from $2-4 \mathrm{v}, 75$ ohms
for outputs
from $\begin{array}{cc}\text { for outputs } & \text { from } \\ 4 \mu \mathrm{~V}-2 \mathrm{~V} \text { ．} 13 & \text { ohms } \\ \text { for } & \text { outputs } \\ \text { from }\end{array}$ for
$0.4 ; 1 \mathrm{~V}-0.4 \mathrm{~V}$ ．
Accuracy：below $3 \mathrm{Mc} / \mathrm{s} \pm 0.25 \mathrm{~dB}$ ot $\pm 0.1 \mu \mathrm{~V}, \quad 3-10 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{~dB}$ or
 DOUBLE PULSE GENERATOR TYPE TF 1400／S $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$ ．Complete with TM 6600．Pulse adjustable between $1.5 \mu \mathrm{sec}$ ．before and up to $3,000 \mu \mathrm{sec}$

PRICE \＆145．00
MARCONI A．M．SIGNAL GENERATOR TYPE TF801D
$10-485 \mathrm{Mc} / \mathrm{s}$ in five ranges．Output $0.1 \mu \mathrm{~V}-1$ Volt E．M．F． External Sine A．D．Frequency 30c／s－50Kc／s．PRICE £195 PHILIPS SQUARE WAVE GENERATOR MODEL GM2314 Range $15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ ．Duration of square wave puises between $0.75 \mu \mathrm{sec}$ and $40 \mathrm{~m} / \mathrm{sec}$ ．Square wave voltage 10 V

PRICE $£ 75.00$
AMPLTTUDE MODULATOR TF1102
$100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$ Sine－wave from $20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$ and $20 \times / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$
$\mathbf{5 3 5} \cdot \mathbf{0 0}$ MARCONI Type TF987／1 NOISE GENERATOR
$1-200 \mathrm{Mc} / \mathrm{s}=0.5 \mathrm{DB} £ 20.00$
MARCONI TF2092 NOISE GENERATOR £295．00 MARCONI VHF SIGNAL GENERATOR TF 1145 450－1900 Mc／s $£ 295.00$
PHILIPS VIDEO GENERATOR GM2887 £9500
HEWLETTPACKARD SIGNALGENERATOR608B $10-400 \mathrm{mc}$ in five bands．Output voltage $0.1 \mathrm{mV}-0.8$ Volt 50 ohm．£165．
MARCONI H．F．CIRCUIT MAGNIFICATION
METER TF886A
A direct reading Q Meter $15-170 \mathrm{Mc} / \mathrm{s}$ Magnification 60－7200 Q E45．00
MARCONI DISTORTION FACTOR METER TFI42F $100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} 0.05 \%-50 \%$ Measures all spurious com－ ponents up to $30 \mathrm{Kc} / \mathrm{s} £ 35.00$
MARCONI PULSE GENERATOR TF675E
Repetition Frequency $50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} \quad 0 \cdot 15-40 \mu \mathrm{Sec} 235 \cdot 00$ MARCONI WIDE RANGE R．C．OSCILLATOR TF1370
Sine－waves $10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}$ ，square waves $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$ Directo outputs up to $31-6 \mathrm{~V}$ ．Attenuator with three impedances．£120．00
HETERODYNE UNTT TF1221
$2 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} £ 45 \cdot 00$
WAYNE－KERR NOISE GENERATOR CT410
A portable instrument for measuring the nolse factor of radio receiving equipment，metric radar receivers， and radar wide－band i．f．amplifiers in the band $15 \mathrm{KHz}-160 \mathrm{MHz}$ ． $\AA 75 \cdot 00$
MARCONI Type TFI44H STANDARD SIGNAL

GENERATOR
Frequency range： $10 \mathrm{kHz}-72 \mathrm{MHz}$ ． Crystal Check 400 kHz and 2 MHz crystals．
Stability： 0.002% in 10 minute interval． FULL SPECIFIC－ ATION AVAIL． ABLE ON
REQUEST

MARCONI TYPE TF801A SIGNAL GENERATOR Frequency range： 10 MHz to 310 MHz ． O / P voltage Frequency range： 10 MHz to 310 MHz ．O／P voltage：
$0-100 \mathrm{db}$ relative to 200 mV into 750 hm iv CW O／P $0-100 \mathrm{db}$ relative to 200 mV into 750 hm IV CW O / P
available．Internal modulation： $400 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 5 kHz to 80% sine or square．
£45－00
ADVANCE TYPE D1／D SIGNAL GENERATOR Frequency range： $10 \mathrm{MHz}-300 \mathrm{MHz}$ ． $0 / \mathrm{P}$ voltage 1V－10mV．$£ 25 \cdot 00$
ROHDE \＆SCHWARZ SIGNAL GENERATOR
BN4105 30－300 Mc $\pm 1 \%$ Output 3 Volt．$£ 350 \cdot 00$ ．
HEWLETT PACKARD 8690 SWEEP GENERATOR plus 8693 B Plug－in． $3 \cdot 7-8 \cdot 3 \mathrm{GHz}$ ．£1，695．00． WARCONI TF995A／2M
AM／FM Generator． $\mathbf{£ 3 2 5} \mathbf{0 0}$ ．

FANTASTIC VALUE IN OSCILLOSCOPES

TEKTRONIX

524AD
535A DC－30 Meg
545
545A
＂With CA tim
HEWLETTT PACKARD 185 E E Sampling Oscilloscope DC－ 1000 Meg complete with 187 C Dual Trace AMP has 350 microsec．Rise time（1000 MC）．
£395
COSSOR CDU 110
Dual Channel Transistorised DC－25 MHz at $5 \mathrm{mV} / \mathrm{cm}$ ． 0.2 microsec．$-0.5 \pm 3 \% 5 \mathrm{X}$ Magnification extends sweep speed to 40 nanosec．$/ \mathrm{cm}$ ．Sweep delay 180 nanosec．
£249－50

COSSOR CDU 120
Dual Channel fully transis－ torised $50 \mathrm{mV} / \mathrm{cm}$ to 10 V $\mathrm{DC}-60 \mathrm{MHz}$ ．Rise time 6 nanosec． $1 \mathrm{mV} / \mathrm{cm}$ at 25 MHz ． 0.1 microsec．$\quad £ 349.50$

COSSOR CDU 150
Rugged Transistorised fully portable Dual Channel DC－35 MHz at $5 \mathrm{mV} / \mathrm{cm}$ ．As used by numerous government departments（c／f CT531）£375 COSSOR．The very latest Cossor 4000 Dual beam． 55 MHz at $50 \mathrm{mV} / \mathrm{cm}$ Trigger．SCOOP－－－ONE ONLY £425 DYNAMCO 7100 1Y2 7100 1x2 Oscilloscope．Dual channel with sweep delay，suitable for computer main－ tenance and most laboratory applications $30 \mathrm{MHz}, 1 \mathrm{mV}$ 10ys to 5s delay．BRAND NEW £295．
TEKTRONIX 526 COLOUR TV VECTORSCOPE M00158M PAL $£ 495$.
FAIRCHILD 766H／F Dual Trace \＆Delay Sweep P．O．A． MARCONI BATTERY／MAINS TF 2203 TRANS ISTORISED，FULLY PORTABLE FAST RISE－TIME DE－20MEG RISE－TIME 23 n ．sec． $50 \mathrm{mV} / \mathrm{cm}$ ．£135．
TEKTRONIX STORAGE OSCILLOSCOPE TYPE 564 including 3A6 and 3B1 plug－ins． 8475
SOLARTRON CD1400 5＂
PORTABLE OSCILLOSCOPE Wide－band（ $\mathrm{DC}-15 \mathrm{Mc} / \mathrm{s}$ ）or DC Differential $(1 \mathrm{mVVIcm})$ plug－tn amplifiers．
$X \& Y$ Systems plug directly to C．R．T plates．
Dual Range calibrator．

Portable e
$£ 149.50$

\squareMINITRON
Type 3015： 7 Segment display showing figures $0-9$ plus decimal point．Character of 9 mm height． in 16 DIL case

NEW LOW PRICE $£ 1 \cdot 40$
SN7447N BCD Decoder Driver \＆1．00 SYNCHROVERTER SWITCH TYPE G1280 BY ELLIOTT

DC AMPLIFIER BY ASTRODATA 885－235 E49．
SAUNDERS OSCILLATOR CLC $7-12 \mathrm{~K} / \mathrm{mc} / \mathrm{s}$ £25．
MUIRHEAD D880A 2 Phase Decade Oscillator £75．
TRANSISTROL TEMPERATURE
CONTROLLER TYPE 990
Completely transistorised self－contained direct deflecting
units for indicating and controlling temperature accurately units for indicating and controlling temperature accurately over a wide range．Suitable where a signal can be converted
into d，c．Sensitivity 10 ohms per MV．Minimum F．S．D． 8 MV Cold lunction compensation．Calibrated scale length $6 \cdot 5^{\prime \prime}$ ， $0-800^{\circ} \mathrm{C}$ ．Accuracy $+1-1 \%$ ．Front panel size $10^{\prime \prime} \times 8 \frac{1}{2 \prime}$ ．weight 11 ibs．Mains supply $100-260 \mathrm{~V}$ ．Control switching and thermo－
couple connections all at back of case．Price $£ 18.50$ plus $£ 2 \cdot \mathrm{co}$ couple connections al
packing and carriage．

POWER SUPPLIES

POWER SUPPLIES，IBM EX－COMPUTER HIGHLY STABILISED，TRANSISTORISED LOW VOLTAGE POWER SUPPLIES．
These modular units incorporate overload profection on both INPUT and OUTPUT．Load regulation of 1% or better；Low
rippie and fast response time． rippte and tast response time．
Available in the following types：

THAN HALF MANUFACTURERS PRICES．
O／P Voltage $7 \cdot 5 \mathrm{~V}-9 \mathrm{~V}$ ．Max．load current 10 Amps．Max． ripple on full load approx． 60 mV ．p．p．Threshold current
OUR PRICE $£ 12.50$
10．5A．Overvolt protection．
EX COMPUTER HIGH GRADE FULLY STABILISED POWER SUPPLIES Input $200 / 250 \mathrm{~V}$ ．
ADVANCE TYPE DC 207
20 Volts 9 Amps． 10 Volts 5 Amps． 10 Volts 3 Amps．
20 Volts 2 Amps．
ADVANCE TYPE DC 200 20 Voits 13 Amps． 10 Volts 5 Amps． 20 Volts 2.5 Amps．
ADVANCE TYPE DC 202 35 Volts 9 Amps．
24
Volts 4 Amps． 10 Voits 8 Amps． ${ }_{6}^{6}$ Volts 7．5 Amps． 6 Volts 11 Amps．
28 Volts 9 Amps．
ADVANCE TYPE DC 197 28 Volts 9 Amps． £18 EACH．P．\＆P．£3．50

LAMBDA REGULATED POWER SUPPLIES

 New Range just arrived！Phone for details． EVERSHED SAFETY OHMMETER for testing the continuity and resistance of circuits，consists of a hand－driven generator and a direct reading ohmmeterRange in ohms $0-4,0-5,0-10,0-100,0-300$ ．

SODECO IMPULSE PRINTING COUNTER 4 Digit Decimal Counter 10c／second Electrical Reset \＆Print－out 24 Volt Type PN117． Brand New．
PRICE £42

PHIEIPS VALVE VOLTMETER
MODEL．GM6014 Max． 300 mV ． 1000 Hz －30MHz．$£ 30.00$

to purchase some of the World's finest calihration instruments at savings of
 PEN RECORDERS
 THIS MONTH'S SPECIAL OFFER BRAND NEW MINIATURISED STRIP CHART RECORDER BY \% , Nio WDific
 FREQUENCY CONVERTER MODEL B. 40

 RUSTRAKof America. Thls Recorder indicates the magnitude
of applied currents or voltages by a continuous distorof applied currents or voltages by a continuous distor-
tion-tree line on pressure senslitive paper. Moving coil movement, scale calibrated $0-1$ milliamp d.c. internal
resistance 100 ohms. Chart drive motor 240 V 50 Hz . Chart speed $1^{\prime \prime}$ per hour. Complete with handbook.

SINGLE PEN
 RECORDER

by Record Electrlcal. $3^{\prime \prime}$ "chart, sensitivity 1 milliamp, chart speed $1^{1 " \text { and } 6^{\prime \prime}}{ }^{\prime \prime}$ per hour. size 8×1 " $^{2} 6^{\prime \prime}$, Offered complete with
pen assembly and spare chart. Listed at over $£ 100-$ this month's special price due packing and carriage.
$500 \mu A$ AVALLABLE
LEEDS \& NORTHRUP STRIP CHART RECORDER This well-known Instrument is fitted with a Series 60 control unlt servo Primary element: P1. P1. 13% RH' JMC. Response time: 5 secs. for 320 .

\qquad ELLIOTT SINGLE PEN RECORDER

A most versatile pen recorder producChart. Two synchronous speeds: 1 in and 6 in. per hour
Fitted with high and low alarm contacts operated by the moving resistance 400 ohms. Fitted with
rectifer to allow operation on $A C$ ectifier to allow operation on $A C$
effective coil impedance at 50 Hz 1800 ohms.
Power supply required
230 V 50 Hz .
Applications: Ideal for recording relatively slow changing pehenomena Temperature: Gas or llquid Flow Rates, Sound Levels, Speed variations. Power Demand. Rainfa
Clockwork version also available $\mathbf{8 2 9 \cdot 5 0}$

POTENTIOMETERS

 50 KVA to 60 Hz power frequency converter. Fully overhauled $\begin{array}{lll}\begin{array}{ll}\text { Specification: Prime Mover: } \\ \text { Input: } & 220 / 380 \mathrm{~V} 50 \mathrm{~Hz} 3 \mathrm{ph}\end{array} & \text { Electric Motor } \\ \text { Output: } & 220 \mathrm{~V} 60 \mathrm{~Hz} 3 \mathrm{ph}\end{array}$ Input: $220 / 380 \mathrm{~V} 50 \mathrm{~Hz} 3 \mathrm{ph}$
at 50 KVA with PF of $0 . \%$ PRICE $£ 450.00$ HEWLETT PACKARD DIGITAL RECORDER MODEL 565A Data Entry, parallel to 11 columns, Print sdeed 5 lines per second. PRICE eb5-00. HEWLETT PACKARD 200 CD Sine wave Oscillator $5 \mathrm{~Hz}-600 \mathrm{KHz} 10$ Volts. £59.00. PYE HIGH RESISTANCE OHMMETER MODEL 108 Range from $0 \cdot 3-20,000$ Megohms
in 4 ranges at 500 V . Used for the measurement of components or circuits having high parallel
capacitance. PRICE $£ 20 \cdot 00$

DE LUXE MODEL
incorporating tabulating mechanism.
$£ 79 \cdot 50$ plus carriage.

ELECTRIC HAND VERIFIER E89.
age.

All machines supplied with numeric keytops and dust-cover
and covered by our three month guarantee. Delivery ex-stock Optional extras alpha keytops and chip tray.
THIS MONTH'S SPECIAL MINI COMPUTER OFFER
SAVE 75% OF LIST PRICE ON THIS DEC PDP SYSTEM
DEC PDP8 $4 K 1.5$ microsecond $£ 1250$.
ASR33 Printer available $£ 200$. PDP-12C 4 K K CPU and Console
 ATTENTION: PDP 11 USERS, MEMORY UPGRADES 4K, BK, 12K, 16K SAVE MONEY NOW.
WIDE RANGE OF SPARES FOR THE FOLLOWING WIDE RANGE OF SPARES FOR THE FOLLOWING AMPEX, etc. byard \& Display 402 stand alone capability for alphanumeric
data entry. Avalable from $£ 500$. Please phone for details. TELETYPE PUNCH
BRPE High-speed punch. Self-contained, consists of punch
unit, base, motor unit. For use in many data communication systems. Operating speeds up to 100
characters per second. (1100 words per haracters per second. (1100 words pe
minute) Available for ponching 5,67
7 chronous, parallel-wire input. 1
WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER Models S110 and R82C, 17 char. per sec. Rebuilt, available ICT KEYBOARDS In original packing-Numerical from $\mathbf{\Sigma 4 . 5 0}$ ICT KEYBOARDS
In original packing-Alpha-numeric Prices from $£ 6500$ Magnetic Tape Transporters AMPEX TM4. TM2, TM7. FR300,
IBM 7330 POTTER ICL IBM PUNCH CARD EQUIPMENT FULLY GUARANTEED
024 Automatic alphanumerical keypunch..........
Automatic alphanumeric printing keypunch....
Verifier features and operation same as 024,026 . Verifier features and operation same a

 PEN RECORDERSJUST OUT - NEW CATALOGUE ON FULI RANGE OF PEN RECORDERS SEND READER'S CARD FOR FREE COPY. (WW 130)

miniature pen recorder

10 CHANNEL EVENT RECORDEK
Designed for recording seauences of up ta ten different operations. e.g.
sequence of machine tool operation. switching sequences, etc. Record is presented in the form of square "pulses".
When energised, pen moves by approxiWhen energised, pen moves by approxi-
matoly 4 mm . to the right of zeio tine. mataly 4 mm . to the right of zer.
Response time.
time 100 miliseconds. Chart width 111 mm . Chart length 5 aft.
Inv. capacity 72 hours. Chart speeds. Inv. capacity
$20-60-180-600-1800-5400 \mathrm{~mm} / \mathrm{hour}$. Size $160 \times 160 \times 255 \mathrm{~mm}$. Weight 9 lbs. Price complete with accessories
f52.00

$\mathbf{£ 3 9 . 0 0}$

PORTABLE AC/DC RECORDING VOLTAMMETER Fitted with separate zero-marking pen
Accuracy 1.5% DC, 2.5% AC . ments ranges - AC and DC: $5-15-150$
 250.500 V . DC only 150 mV . Frequency range 45 to 1000 c/s. Chart width 100 mm . Chart speeds $20-60-180-600$ -$1800-5400 \mathrm{~mm} / \mathrm{hour}$ Weight 22 lbs .
$\mathbf{£ 7 8 . 0 0}$

THREE CHANNEL high speed recorder Strip Chart Recorder. Chart length 175 ft .
Footage indicator. Width of recording Footage indicator. Width of recording
channel 80 mm . Chart speeds !selected by pushbuttons) $1.2-12-30-60-120$
$300-60-3000$ -$300-600-3000 \mathrm{~mm}$. per minute. Full
defiection current 8 mA . Internal impedefiection current 8 mA . Internal impe-
dance 210 ohms. External impedance dance 210 ohms. Externat impedance
800 ohms. Dimensions $510 \times 345 \times 175$ 800 ohms. Dimensions $510 \times 345 \times 175$
mm . Weight 44 lbs. Price complete mm . Weight
with accessories
$\mathbf{£ 9 0 . 0 0}$

SINGLE CHANNEL
HIGH SPEED RECORDER
Chart vength 175 ft . Footage indicator
Width of recording channel 80 mm . Chart speeds (selected by push buttons) per minute. Cull deflection current 8 mA tnternal impedance 210 ohms. Externa internal impedance 210 ohms. External
impedance
800
ohms. $320 \times 340 \times 175 \mathrm{~mm}$. Weight. 35 lts.
Price complete with a ccessoris
£55.00

specially designed compact self-
contained instrument for recording temperatures instrument for recording
$500^{\circ} \mathrm{C}$. The main design objectives were for an easy-touse, robust ir sirument suitable for use
in the laboratcry and in the field The in the laboratcry and in the field. The
four ranges are $10^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ and four tanges are $10^{\circ} \mathrm{C} .50^{\circ} \mathrm{C} .100^{\circ} \mathrm{C}$ and
$500^{\circ} \mathrm{C}$. These are selected by push buttons allowing full use of the $3^{\prime \prime}$ butions allowing full use of the $3^{\prime \prime}$
wide chart. Two chart speeds $1^{\prime \prime}$ and $6^{\prime \prime}$ per hour are provided by the 240 V
50 Hz synchronous chart drive 50H2 s sychtronous chart dive
$\mathbf{£ 9 5 . 0 0}$

Fabulous TES Equipment Electronic Brokers Ltd.

	ILLATOR Mod OF 272 With modern con- requirements for the restingon production Uency resolution and keep the irradiation d stability of the af the characteristics 110 MHz .IFfrequency 3 dB (apen circuit). 0 hm constant. FM $\pm 5 \%<F$ adjus- Sweep frequency. about $\pm 500 \mathrm{KHz}$ \qquad				Type P 966 AM-FM GENERATOR Type AF 1065 OUTPUT POWER METER Type MU 964 f129 TV SWEEP MARKER GENERATOR £259.60 WOW AND FLUTTER METER type WF 971 E295 OISTORTION METER - Type 0566 B LF SIGNAL GENERATOR Type 61165 B £229 GUAL TRACE Type 0371 $\mathbf{£ 3 6 9}$
movilatel оSCILLATORTypa OM 866 permit the output signal to be attenuated also at high frequencies, which is the condion for avoiding saturation of the input stage in transistorized radio receivers. This osciliater is provided with a buffer-modulator stage to prevent possibie spurious range for calibration of intermediate-frequency stages, are further features which complete the rational design of this instrument. Frequency range: from 150 KHz to 46 MHz in 6 ranges. $F \mathrm{M}$ expanded range: $430-530$ KHz . Frequency accuracy: hetter than 1%; IF. range 0.1%. Internal modulation: 400 Hz : fixed 30%, External modulation: from 20 Hz to 15 KHz Max. RF output: $0.2 \mathrm{~V} \pm 3$ dB. Attenuator: contintoous, linear and in steps. Output impedance: 750 hm constant. VF output voltage: 2 V approx. £85.00		SWEEP MARKER GENERATOR Mod IF 1271 Developed exclusively for production use intermediate TV frequency stages with the possili anserting, singly or simultaneousty, a local of makes it extremely reliable, a fundamental requir aduction lines. dB. Sweep frequency: $50 \mathrm{H}_{2}$ (meius), Output signal: ustaule continuobusly from $0 \div 80$ dB. Regulation £585.00			help in the prasuctian and definitive calibration of the emitter for ith a $1: 10,000$ stability possiblity of frequency se $4-12 \mathrm{MHz}$ range. It is s on request). Frequency 250 Hz (with passibility uency: 400 Hz Output nuously adjustable from

OfPIETED TEST EUMPMETITAllitems are bramdaneweand cyarranteed

(165) Sole agents for AREI NEW CATALOGUE NOW AVALLABLE send reader's card (Ww i32)

THE REVOLUTIONARY SUPERTESTER 680R

 four international patents - sensitivity 20,000 Ohms per Volt20,000 Ohms per Vot
10 FIELDS OF MEASUREMENT and go ranges accuracy is in D.C. 2% in A.C. OUTSTANDING FEATURES: 20.000 Ohm per Volt sensitivity - Fully
screened against external magnetic fields Scale width and small case dimensions $(128 \times$
$95 \times 32 \mathrm{~mm})$ Accuracy and stability $(1 \%$ in $95 \times 32 \mathrm{~mm}$) Accuracy and stability (1\% in
D.C., 2% in A.C.) of indicated reading Simplicity and ease of use and readability © Full ranges of accessories 1000 times overload - Printed circuit
board is removable without de-soldering More ranges than any other meter. VOLTS A.C. $=11$ ranges: $2-10-50-250-1000-2500$. Volts
and $4-20-100-500$ ma 2000 Vohts. VOLTS D.C. $=13$ ranges: $100 \mathrm{mV}-2 \mathrm{~V}-10-50-200-$

$50,1-500, A-5 \mathrm{~mA}-50 \mathrm{~mA}-500 \mathrm{~mA}-50 \mathrm{Amp}$ and $100 \mathrm{~A}-1 \mathrm{~mA}-10 \mathrm{~mA}-100 \mathrm{~mA}-1$ Amp and 10 Amp. AMP. A.C. $=10$ ranges: $250 \mu A-5 \mathrm{~mA}-25 \mathrm{~mA}-250 \mathrm{~mA}-2.5 \mathrm{Amp}$ and $501 / \mathrm{A}-5 \mathrm{~mA}-51 \mathrm{~mA}-500 \mathrm{~mA}-5 \mathrm{Amp}$
OHMS REACTANCE $=6$ ranges: $\times 1-\times 10 \times 100-x 1000-\times 0.000$ and LOw 0 hms . DETECTOR $=1$ range:from 0 to 10 Megaohms. FREQUENCY $=2$ ranges. from 0 to 500 and from 0 to 5000 Hz V. OUTPUT VOLTAGE $=9$ ranges: 10-50-250-1000-2500 V and 20-100-500-2000 Volts. DECBELS $=10$ ranges: from -24 to +70 dh. CAPACITY $=6$ ranges: from 0 to 50,000 and from 0 to 500,000 pf using the mains and from 0 to 20. from 0 to 200, from 0 to 2.000
Bold figuress ixdicate depress hutton.

£18.50
ALLic.e. EQUIPMENT POST FREE
 Gauss Meter For $\begin{aligned} & \text { measuring } \\ & \text { mat }\end{aligned}$ measuring
magnetic field strengths.
$\mathbf{£ 1 1 . 9 5}$ OTHER ACCESSORIES AVAILABLE SHUNTS D.C. 25. 50 and 100 amps . $\mathbf{£ 4 . 5 0}$ CURRENT TRANSFORMERS A.C. 25 and 100 amps. $\mathbf{4 7 . 0 0}$ each. E.H.T. PROBE
$25.000 \mathrm{~V} . \mathrm{f5.95}$.

Transistor

Temperature Probe Covering the range -50 to
$+200^{\circ} \mathrm{C} £ 11.95$

Electronic Voltmeter
 Input resistance of 11 Mohms
for d.c. and for d.c. and
1.6Mohms shunted by 10 p for a.c. $£ 18.00$

METERS, PROBES, ETC.

AC/DC MULTIMETER With taut band suspension movement Sensitivity 20.00 o hms per
and 4.000 ohms per volt on AC . Technical Data:
$0.06-0.6-6-60-600 \mathrm{~mA}-3$ Amps $D C$. $0.3 \cdot 3 \cdot 30-300 \mathrm{~mA}$ - 3 Amps AC. 0.6-1.2. 3-12-30-60-120-600 DC. 1200 Volts. AC. 45 to 20.000 Hz $500 \Omega \quad 5-50-500 \mathrm{~K}$, range -10 to +12 dB . Accuracy 1% of F.S.D.: $=-$ DC and resistance measure ments +2.5 . Price with test leads, and storage case $\mathbf{£ 8 . 0 0}$ post free

AMPERTEST 690 NEW CLAMP TYPE AMMETER With unique self-ocking meter system retains reating umil released, enabling engineer to obtain accurate results. after testing inaccessible places etc. Designed for use in one hand, the of the familiar clamp or 'pincer' system to measure without breaking the circuit the current flowing in a conductor it has six current ranges from 3 A to 600A f.s.d.. with the first division at 100 mA . The ranges can be extended by
means of a 10 -to- 1 current transformer that is supplied with the instrument providing ranges from 300 mA to 60 A f.s.d. with the first division at 10 mA . Two a.c. voltage ranges of 250 V and nections for are provided. The conare made by means of two leads and probes that plug into the base of the instrumen.
139.50 postifree

AC CLAMP VOLTAM METER

Clamp-on Voitammeter
is used for measurements of AC voltages and currents without breaking circuits. Specification Measurement ranges: - Current 10-25-100-250-500 Amps. Volt
age $300,600 \mathrm{~V}$ Accuracy 4% age 300.600 V . Accuracy 4%.
Scale length 60 mm . Overall dimensions $283 \times 94 \times 36 \mathrm{~mm}$ Weight 1.5 ibs.

```
£10.50 post frem
```

```
£10.50 post frem
```

MULTIMETER 0.1-1-10-100-1000mA. $10-20-250-500-1000 \mathrm{~V}$
AC . Sensitivity AC and DC all ranges except $10 \mathrm{~V}-10,000$ $\times 75 \mathrm{~mm}$. Weight 2.9 lbs . Price complete with steel carrying est leads.
f4.95 POSt freE

\cdots

ado iti vat fu all prices ¢ prompl despatch mall orderi callers welcome mon frig a.m to b.30 p.	Add $£ 2$ towards the cost of packing and carriage on all : items for U.K delivery: (except . where packing ant carriage are already indicateol

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT : $£ 9.90$ per single col. inch.

LINE advertisements (run-on) : 55p per line (approx. 7 words), minimum two lines.
BOX NUMBERS : 25p extra. (Replies should be addressed to the Box number in the advertisement,
c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.)
PHONE : Allan Petters on 01-261 8508 or 01-928 4597.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Advertisement accepted up to 12 noom Thursday, December 7th for the January issue subject to space being available.

Electronic Engineers \& Scientists

Electronic Devices

The English Electric Valve Co. Ltd., Chelmsford, and its associate, the M.O. Valve Co. of Hammersmith, London, are leading organisations engaged in the design and manufacture of a wide range of vacuum and gas filled electronic devices primarily for broadcasting, telecommunications and industrial uses. These include high power transmitter valves, travelling wave tubes, magnetrons, high power microwave tubes and a range of light conver'sion devices, which include C.R.T.s and storage tubes, image intensifiers, and advanced T.V. camera tubes.
Expansion of the development and production programmes has created openings for electronic engineers and applied physicists at all levels. Ideally, we seek those who have had experience in the field of vacuum tube technology but we are equally interested in hearing from others who have familiarity with the design
or production of equipment utilising vacuum electronic devices, for we are prepared to give suitable training where necessary.
Salaries and prospects for advancement are good. Employee benefits include early membership of a modern pension and life assurance scheme and assistance with relocation expenses where appropriate. All approaches will be treated in confidence and should be made by writing or telephoning (reverse charge):

J. L. Scott,
English Electric Valve Co. Ltd.,
Waterhouse Lane,
Chelmsford, Essex.
Tel: Chelmsford (0245) 61777.

DISC-CUTTING ENGINEER

CBS Records is looking for an experienced disc-cutting engineer to work at our new Studios in Central London.

Starting salary is negotiable, but will attract those already earning a basic salary of $£ 2000-£ 2500$. In addition to a competitive salary, the company pays an annual bonus and provides excellent terms and conditions of service.

Please write to, or ring (01-636 3434), the Studio Manager, CBS Recording Studios, 31-37 Whitfield Street, London, W. 1

Eletronics Engineers
 up to $£ 5,000$

Many jobs which would suit you down to the ground - either in the U.K. or overseas are never advertised. Yet it will cost you nothing whatever to give yourself the opportunity to be considered for them
Join the Lansdowne Appointments Register used by hundreds of employers to select - used by hundreds of employers to selec electronics engineers. You have nothing to lose, everything to gain - and its all conducted in strict confidence. So post the coupon - find out exactly how you can make use of a service which is all the more valuable for being free!
To: Stuart Tait, Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel : 01-579 6585 (anytime - 24 hour answering service). Please send me further details.
Name.
Age (20-45 only)
Address

South Goast [hants/Sussex Borders]

MAJOR LONG TERM PROJECTS-involving multi-million pound contracts including: CIVIL \& MILITARY COMMUNICATIONS SYSTEMS AND SOPHISTICATED AIRBORNE ELECTRONICS SYSTEMS—create exciting openings for ambitious engineers to join PLESSEY, HAVANT.
THE LABORATORIES are situated in the grounds of country houses, three miles from Chichester Harbour, and close to the South Downs and several seaside resorts. The area is well placed for housing, shopping, schools, sailing, golf, flying and other recreational and cultural facilities.
THE COMPANY is British, employing 77,000 people worldwide and enjoying an international reputation for excellence in the fields of systems, telecommunications, electronics, automation and avionics. The technical achievement and potential are enormous. A policy of controlled expansion ensures real opportunities for individual career promotion and high levels of job satisfaction.
WE OFFER excellent salaries, conditions of employment, fringe benefits, generous relocation expenses and a stimulating environment to:

Research \& Development Engineers \& Electronic Physicists for Radio Communications \& Airborne Electronic Systems Antenna Engineers P.e.r.t Engineers
 Reliahility \& Quality Assurance Engineers
 Laboratory Technicians

QUALIFICATIONS preferred for professional posts are a degree, HND or membership of a professional institute. Candidates should preferably have at least one year's experience in their chosen field. Specialist training will be given where necessary.
Fill in the coupon
or ring Havant (07012) 6391 Ext. 200

To: Mr. L. Wise, Manpower Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. PO9 5DH.
Please send me, in confidence, an application form and details of engineering opportunities with Plessey, Havant.
Name......

There is scope, variety and responsibility as a

Radio Technician

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.

ENTRANCE QUALIFICATIONS

 You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.
Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: $£ 1383$ (at 19) to $£ 1836$ (at 25 or over) ; scale maximum $£ 2158$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.

Electronics Technician

A dynamic young company in the Medical Electronics field requires a technician to assist a qualified engineer.

The person we are looking for should have a good knowledge of electronics - able to help with the construction, testing and drawing of small prototype units.

Medical Electronics is an interesting and expanding field. If you are keen to get in on the ground floor, please write to us giving full details of your present responsibilities and experience.

37 HYDEWAY
WELWYN GARDEN CITY
HERTFORDSHIRE ENGLAND
telephone WELWYN GARDEN 28347

SPANISH FIRM NEAR MADRID

is looking for design and development engineers with a minimum of three years of experience in the field of P.C.M. equipment to be used by the telephone industry.
Areas of interest are encoders and decoders, P.C.M. multiplexers and R.F. equipment to transmit P.C.M. data.
Salary open.

Send résumé to:

NORTRON

Fernando el Católico, 63
Madrid 15
SPAIN
2584

APPOINTMENTS

Advanced Communications...

Radio

Equipment Design and Development

Experienced Rudio Engineers

Continued expansion of radio communications business in Plessey Avionics \& Communications calls for engineers with some experience in the design of equipment for mobile and static applications to lead small and large teams at Plessey, Havant.
The laboratories are situated in the grounds of a country house, three miles from Chichester Harbour and close to the South Downs and several seaside resorts. The area is well placed for housing, shopping, schools, sailing, goif, flying and other recreational and cultural facilities.
A policy of controlled expansion ensures real opportunities for individual career promotion and high levels of job satisfaction.
We offer excellent salaries, conditions of employment, fringe benefits, generous relocation expenses and a stimulating environment.
If you have two or more years' experience in any of the following techniques:-

HF, VHF or UHF Medium Power Transmitter Design HF, VHF or UHF Receiver Design MODEMS Design - Digital and Analogue Digital Synthesisers RF Signal Switching Techniques Mobile Environment Equipment Design Radio Communications System Design

-and if you have academic qualifications equivalent to a university degree or membership of a professional institution,
Fill in the coupon or ring Havant (0701 2) 6391 Extension 200, and we will be happy to consider you for a range of appointments carrying salaries of up to $£ 4,000$ p.a. There are also opportunities for engineers with lesser experience or qualifications to take up other appointments.

To: L. Wise, Manpower Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants.
Please send me, in confidence, an application form and details of Radio Opportunities.

APPOINTMENTS

RHDO OFiters undid vou cime afonre for deand a 2 y yar?

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41-hour week of shift duties -with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. Yọu have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L54.

SPANISH
 COMMUNICAIIONS
 EQUIPMENI MANUFACTURER

Has an immediate opening for
An experienced Design and Development Engineer for Audio Equipment, including Highly Professional Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

RADIONICS LTD

ELECTRONIC TECHNICIAN/ENGINEER

To assist on production faultfinding and analysis of various calculator models. The work involves liaison with subcontractors and troubleshooting at the beginning of production runs. Applicants should have at least O.N.C. but preferably H.N.C. in electronic Engineering or a similar equivalent qualification. Previous experience in the electronic calculator field is not essential. Salary for this position is negotiable.

JUNIOR ELECTRONIC TECHNICIANS

For training on production faultfinding and servicing of electronic calculators. An opportunity has also arisen for a Junior Technician to be employed in our Jig-making Department. The work involves building and wiring of one-off test jigs which are to be used to test electronic components or calculator and $\mathrm{Hi}-\mathrm{Fi}$ P.C.B. Assemblies A basic knowledge of electronics is required but previous experience in the Electronic Calculator Field is not essential. Salary for this position is negotiable.

Test and Calibration Engineers take it from here

When it comes to flight simulation, Link-Miles are leaders in the field. So when it comes to Test and Calibration Engineers, we're looking for leaders in their field.

You'll be involved in testing and calibrating analogue and digital systems on simulator hardware and software. A minimum of two years experience of debugging complex systems, backed by an education standard of HNC, will have provided the ideal groundwork for this demanding position that will utilise your engineering ability to the full. You'll
need a flexible attitude to hours of work and to readily adapt to a variety of tasks.

Link-Miles offer good salaries in line with qualifications and previous experience, supported by generous holiday and good pension, sickness and other company benefits.

Take it from Link-Miles - Engineers can go a long way. Contact: Brian Townson, Personnel Manager, The Singer Company (U.K.) Limited, LinkMiles Division, Churchill Industrial Estate, Lancing, Sussex BN15 8UE. Tel: Lancing $588 \uparrow$

Electronics Appointments Register
We can get you abetteriobthan you can get yourself.
The best jobs don't necessarily appear in the sits. vac. columns.

They are often to be found in the Electronics Appointments Register.

Our individual approach gives you a wider choice-we have lots of jobson our specialised registers and we may well have one tailor-made for you.

The service is absolutely free to you and completely confidential.

In effect we offer you the chance to find your ideal job, all for the cost of a phone-call.

So capitalise now on your specialised knowledge.
Call 01-734 6536, or fill in the coupon and we will send you an enrolment form by return of post.

Graduate Appointments Register
Please send me details of how to enrole on one of your Appointment Registers:
Name

Slough College of Technology

Department of Engineering

Applications are invited for the post of

Lecturer I in Radio and T.V. Servicing ($\mathbf{E} / \mathbf{1 / 1 1 \text {) }) ~}$

Required to teach radio, television and electronic servicing in Radio. T.V. and Electronics Mechanics and Technician Courses.
Applicants should hold CGLI Radio \& T.V. Servicing Certificate and have had good industrial experience. Teaching experience desirable but not essential.
Salary on Burnham Technical Scale, viz. £1,660$£ 2,685$ plus additions for qualifications and training. Removal expenses up to $£ 115$ may be paid in approved cases.
Further particulars and application forms obtainable from the Vice Principal, Slough College of Technology, Wellington Street, Slough SL1 1 YG, Bucks. to whom they should be returned within two weeks of the date of this advertisement.

APPOINTMENTS

Radio Technician Ground Equipment

A Radio Technician is required at Heathrow Airport for the installation and maintenance of VHF and UHF equipment used for ground installation and vehicles, and the maintenance of personal calling systems.
Applicants must have a sound knowledge of VHF/UHF communication equipment. Experience of Pye and Storno equipment would be an advantage.

A current driving licence is essential.
The salary starts at $£ 36.74$ per week plus $£ 4.50$ per week shift allowance.
Additional benefits include a contributory pension scheme, sports and social facilities and concessional holiday travel worldwide.

Applications, quoting reference $107 / \mathrm{WW} / B W$ should be addressed to:
Manager Selection Services
BOAC
PO BOX 10
Heathrow Airport (London)
Hounslow
TW6 2JA

British airways $\rightarrow-\infty$

NEWCASTLE UNIVERSITY HOSPITALS

REGIONAL MEDICAL PHYSICS DEPARTMENT

 NEWCASTLE GENERAL HOSPITAL
UIRRASOMC IMAGIIIG of the Heari

Applications invited from electronic engineers and physicists with practical experience in electronics for the position of Research Assistant in the Department of Medical Physics. The successful candidate will work within the Ultrasonics Section, developing new ultrasonic methods for visualising the heart.
The appointment will be for two years in the first instance with possibility of extension by a further year. Initial salary $£ 1,566$ to $£ 2,079$ according to age, experience and qualifications.
Whitley Council conditions.
Further particulars may be obtained from Professor F. T. Farmer, Newcastle General Hospital, Newcastle upon Tyne, NE4 6BE. Applications giving names and addresses of two professional referees to Secretary, Western Sub-Group, Newcastle General Hospital, Newcastle upon Tyne, NE4 6BE.

Devices

ELECTRONIC PROJECT TECHNICIAN

An exceptional opportunity for a talented technician who has sound experience in electronic design and sufficient mechanical aptitude to ensure his effective participation in practical development work. The vacancy calls for a keen and active person who will enjoy working as a member of a small team of specialists engaged in the design and manufacture of photo-electric sorting machinery. The Company has a first class record in this field and qualified scientific advice is available within the organisation in support.

Write or telephone the following:Personnel Manager,
Devices Instruments Limited, Hyde Way,
Welwyn Garden City, Herts.
Tel: 28511 Ext. 18
[3259]

ELECTRONICS TECHNICIAN/ENGINEER

in an Advanced Electronics Development Group. Experience in the design, development, construction and maintenance of digital and analogue instrumentation and control systems is required. A high standard of practical ability is essential. Minimum qualification is an H.N.C. or equivalent, and the salary range R. Ubbelohde, C.B.E., F.R.S. The Department of Chemical Engineering and Chemical Technology, Imperial College, London SW7 2AZ.
[3280

Motoring Which ? ELECTRONICS engineer

This post at our Car Test Unit in North Essex will involve the design, production and maintenance of varying types of electronic apparatus and instrumentation concerned with the testing of vehicles. The successful applicant will have had wide experience in both the electronic and mechanical aspects of engineering, with education to O.N.C. (and preferably to H.N.C. standard).

Salary not less than $£ 1950$ a year; lunch allowance; five weeks' annual holiday and Pension and Life Assurance Schemes. Please obtain an aplication form from the Personnel Officer, Consumers' Association, 14, Buckingham Street, London, WC2N 6DS. Tel: 018391222.

APPOINTMENTS

SENIOR TEST

ENGINEER

An experienced test engineer with potential leadership ability is required for electronic testing of data preparation equipment. Considerable experience of digital logic is important. Starting salary in the region of $£ 2,000$ p.a.
Phone or write for application form to:

> MR. PIYASENA,
> DATEK SYSTEMS LTD.
> 849 HARRO ROAD,
> WEMBLEY, MIDDEESEX. Tel: 01-904 0061.

Applications are invited for the post of EXPERIMENTAL OFFICER in Electronics. A degree or HNC is required. tronic equinties include PDP12 and PDP8 computers, elechospital catheter laboratories, and thaboratories and three hospital catheter laboratories, and the supervision of four
electro nics technicians. Salary scale $£ 1563$ - $£ 2187$. Preliminary enquiries may be made to the Director of the Cardiovascular Unit, Department of Physiology. The University, Leeds LS29.jT. Forms of application and further particulars from the Registrar,
The University, Leeds LS2 9 JT (please quote $43 / 12 / \mathrm{CI}$). Closing date 10 December 1973.

AGRICULTURAL RESEARCH COUNCIL
 Food Research Institute Electronics Division AN
 ELECTRONICS ENGINEER

is required to assist in the design, development and maintenance of a wide range o electronic equipment associated with the instididate will programme. The successful can whilst working as a member of a team.
Applicants should have a minimum qualification of HNC or equivalent, and a sound basic knowledge of analogue and digital techniques. Experience of data acquisition systems and general electronic instrumentation would be relevant.
The appointment will be in the Scientific Officer ($£ 1,318-£ 2,177$ p.a.) or Higher Scientific Officer ($£ 2,076-£ 2,667$ p.a.) grade,
depending upon qualifications and experience; a minimum of five years' post qualifying ex perience is required for appointment to the perience is
higher grade.
Optional superannuation scheme; membership of which carries a salary supplement of $5 \frac{1}{2} \%$ to offset contributions.
Application form and further particulars from the Secretary, Food Research Institute, Colney Lane, Norwich, NOR 7OF, quating reference 73/22.

SYSTEMS COMMISSIONING ENGINEERS

Redifon Electronic Systems Ltd. is a leading manufacturer of computer based and digital systems. Due to our expanding order book we require more Systems Commissioning Engineers who are anxious to extend their capabilities in this fast moving field. They will be required to test and commission units and systems comprising or containing:

Telemetry Systems
 Data Acquisition and Control Systems
 Computer Controlled Systems
 Marine Radar Simulation Systems
 Air Traffic Control Simulation Systems
 Simulated Communication Systems
 Display and Control Consoles
 Computer Interfaces

Video Processing Systems including CCTV and VTR
Suitable candidates are likely to be under 26, with C G G; or ONC (Electrical). Alternatively they may have received Services training in a related field.
If you feel you measure up to the above requirements or have direct working experience in these fields we should like to hear from you.
We offer above average salaries, scope for overseas travel if desired, and the benefits and security that come from working with a member of a large International Group of Companies. Prospects for rapid promotion are enormous for those able to demonstrate their ability to carry individual responsibility.
Write with brief career details to:
A. D. Cox, Personnel Manager,

Redifon Electronic Systems Ltd.,
P.O. Box 2, Manor Royal, Crawley, Sussex.

A Member Company of the Rediffusion Organisation

PORTSMOUTH
Highbury Technical College
Educational Television Unit

Senior CCTV Technician

Technician required for maintenance, operation and development of CCTV complex. Applicants should be qualified in electronics or telecommunications and have relevant practical experience. Knowledge of video tape recorders would be an advantage.

$$
\text { Salary on Grade } T 3 / T 4-£ 1416 \text { to } £ 1926 \text { p.a. }
$$

Allowance payable for appropriate qualifications.
Forms and details from:
College Secretary, Cosham, Portsmouth, PO6 2SA. (Cosham 83131, Extn. 247)

We have vacancies for:

SERVICE TECHNICIANS

for our Service Department based in Camberley. Applicants should be familiar with transmitter/ receiver practice or have practical knowledge of television or domestic radio.

SALARIES UP TO £2000 per annum plus overtime.

ELECTRONIC TEST TECHNICIANS

based in Camberley to work in preparation, development, test and fault finding of special FM/VHF/ UHF communications and control systems, preferably with previous experience in radio communications technology and control systems.

SALARIES UP TO £2000 per annum plus overtime.
The Company has much to offer those who are interested in the sophisticated modern world of radiotelecommunications and who can demonstrate their ability in this field.

Please contact The Personnel Officer, Storno Ltd., Frimley Road, Camberley.
Telephone: 027629131

ELECTRONIC TECHNICIANS

The Marine division of Staveley Electrotechnic Services Ltd. is expanding its servicing facilities, with particular reference to Radar, Communications, Electronic Navigational Aids, Automation Control Systems, Data extraction, etc.
Vacancies exist at depots throughout Great Britain and Ireland for versatile Electronic Technicians, to be engaged on trouble shooting, maintenance, installation and commissioning work involving occasional travel within the U.K. and overseas.

Suitable applicants, probably over 25 , will have practical experience in two or more of the above subjects, possibly gained in the Royal Navy, Merchant Navy or similar environment. A technical qualification, whilst useful, is not necessary as practical experience and ability will be deciding factors.
A good basic salary, plus overtime, brings the expected earnings to between $£ 2250$ and $£ 2500$. Expenses are additionally allowed and a $37 \frac{1}{2}$-hour working week is in operation. A Company vehicle is provided, three weeks annual holidays, a contributory pension scheme and free life insurance.

Applications giving full particulars of experience to date to:
The Marine Divisional Manager,
Staveley Electrotechnic Services Ltd.
68 Grosvenor Street,
Manchester, M1 7EW,
England.

Installation Field Staff Telecommunications Equipment STC require Fitters, Testers and Technicians

The company have vacancies on installation projects in London and throughout the UK. Applicants should, preterably, have had experience of telecommunications or electronics. Testing staff should hold a current driving licence.

The successful candidates will work on Multiplex, Co-axial and Submerged Repeater Systems and a working background of these systems would be a distinct advantage.

Attractive starting salaries are offered and benefits include living allowances when working away from home, and good sickness and pension schemes.

Write or telephone D. Hotchkiss
Basildon 3040 Ext. 670.
Personnel Department, STC, Chester Hail Lane, Basildon, Essex.

require

RANK VIDEO LABORATORIES

to operate and maintain a wide range of sophisticated electronic broadcast equipment, including AVR-1 machines, flying spot telecine, HSIOO Computer Controlled Editing equipment and Cassette Duplicating machinery. A broadcast background is desirable.

A SUPERVISORY MAINTENANCE ENGINEER

to take charge of a small specialist staff maintaining a wide range of sophisticated electronic broadcast equiment, including AVR-1 machines, flying spot telecine, HS100 Computer Controlled Editing equipment and Cassette Duplicating machinery. A broadcast background is desirable.

Applications should be made, in writing, giving brief details of experience to:The Manager, Rank Video Laboratory, 142 Wardour Street, London, WIV 4BU
or telephone 01-734 2511 for application form

SPANISH COMMUNICATIONS EQUIPMENT MANUFACTURER

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resume to:

NORTRON

Fernando el Católico, 63
Madrid 15
SPAIN

OPPORTUNITIES IN VIDEO

The Distributive Industry Training Board, which is charged with encouraging training in Britain's second largest industry, is establishing a Video Unit within its Infermation Division to produce training and information programmes on tape and cassette. The Unit, though small. will expected to produce programmes of high quality and has vacancies for the following staf
PRODUCER/SCRIPTWRITER ($\mathbf{£ 3}, \mathbf{3 3 0 -} \mathbf{f 4} \mathbf{4} \mathbf{5 3 0}$)
who will have responsibility for researching, writing and directing programmes, giving assistance and advice on video development to organisations within the distributive trades and marketing the Unit's products. The successful candidate will almost certainly have a background in journalism, radio television or educational video. The basic requirements are proven writing talent, a flair for visual presentation and organising ability,

SENIOR TECHNICIAN ($\mathbf{(2 , 0 3 1 - £ 2 , 8 4 7)}$
to assist Technical Manager in mäaintenance and day-to-day operation of colour cameras, monitors and associated equipment. The successful applicant will have had several years' experience in television servicing. and desirably a knowledge of studio equipment.

TECHNICAL ASSISTANT ($\mathbf{£ 1} \mathbf{1 , 5 3 9 - \mathbf { £ 2 } , \mathbf { 3 0 7 })}$
This is a post which would appeal to a young person with a lively interest in. and some knowledge of, basic electronics and the desire to expand his experience in the field of television. A technical qualification in physics or electronics would be desirable but not essential.

Please write for application form. quoting reference $\mathrm{VU} / 63$ to the Controller, Personnel \& Services,
The Distributive Industry Training Board,
Mactaren House, Talbot Road, Stretford,
Manchester M32 OFP
within the next seven days.

HF/VHF Radio Manager Sales and Service Nigeria

Abstract

ITT Nigeria Limited requires an able HF/VHF professional to manage its Radio Division, based in Lagos. He will be responsible to the Managing Director for the sale, installation, commissioning and subsequent maintenance of a range of sophisticated radio communications equipment and systems. Apart from equipment and systems design expertise, the job requires the ability to adopt a marketing strategy appropriate to the technical character of the products concerned, as well as skilful management of both

 the sales and technical teams.Candidates should be qualified in electronics or a similar subject to degree or equivalent level, in their mid30's, with at least 5 years' radio
engineering experience. They should have a record of achievement in radio sales and a proven talent for penetrating technical analysis of customer requirements and accurate specification of systems to meet them. The sales and technical functions will be accorded equal importance.

An attractive salary and allowances will be paid as well-as free housing and other benefits. There are good prospects of further career progression within ITT

Please write, in confidence, with brief details of experience, qualifications, age and present salary, to the Personnel Manager, ITT Africa and the Middle East, 190 Strand, London WC2R 1 DU.

City of Glasgow Police

WIRELESS TECHNICIANS SALARY £1,809-£2,040

The City of Glasgow Police, Wireless Branch, require experienced Wireless Technicians to install and maintain a wide range of interesting equipment.
A City and Guilds Certificate in telecommunications would be an advantage. but emphasis will be on applicants' ability and experience.

These are secure, superannuated positions and successful applicants are offered scope, variety and responsibility with the prospect of a steadily developing career in a demanding and ever expanding field.

Applicants must be in possession of a current driving licence
Conditions of service include a 37 hour week, 18 days annual holiday, plus 8 public holidays and sickness scheme.

Written applications should be submitted to the Chief Constable, City of Glasgow Police, 21 St. Andrews Street, Glasgow G15PA.

Peterborough and Stamford Hospital Management Committee

Appointment of

X-RAY ENGINEER

to be based at Peterborough District Hospital, and become a member of a small team engaged upon the commissioning, maintenance and repair of a wide range of diagnostic X-ray apparatus.
Candidates should possess H.N.C. (Electronics) or equivalent, but consideration will be given to suitable candidates with O.N.C. who are proceeding to a higher qualification. Salary scale offered is $£ 1,911$ to $£ 2,508$.

Possession of a car is essential, travelling expenses being payable in accordance with agreed scales for Health Services staffs.
Application forms and job description obtainable from the Group Engineer, Peterborough District Hospital, Thorpe Road, Peterborough, to be returned completed within 14 days of the appearance of this advertisement.
[3295

BERRY'S RADIO has vacancies for
 (a) SENIOR SALESMEN (b) SENIOR ENGINEERS TOP RATES OF PAY 5-DAY WEEK - PERMANENCY
 Apply: Mr. K. (405-6231)
 319 High Holborn, London WC1

Technical Writer
 The Company

Granada TV Rental, a member of the Granada group of companies, are looking for a technical writer to join theirtraining team at Bedford.

The Post

Involves the writing and preparation of technical information on a wide range of domestic television receivers and associated equipment for publication in the company's technical magazine and in the form of short monographs.
The person appointed will be responsible to the Technical Training Manager and work in close liaison with the technical training team occasionally assisting with the technical training courses.

The Man

we are looking for will probably already be working in the technical publications department of a manufacturer in an associated industry but looking for a more ctiallenging post in the technical writing field.

Salary

The post carries a salary of $£ 2200$ per annum with generous group benefits.
The successful applicant will be expected to move to the Bedford area on appointment - the company will assist with re-location expenses.
Applications in the first instance to:
John Wales, Personnel Manager, Granada TV Rental, P.O. Box 31, Ampthill Road, Bedford.

GRANADA

Application forms and details from the Education Officer (Ref EO/Estab 2A/2), The County Hall, London, S.E.I. Tel: 01-633 7456 or 01-633 7546. Closing date for completed application forms - 10th December 1973.

Central School of Art and Design

Cine-Animation Technician

To control the operating of a small but productive cine-animation section, with some lively and interesting films to its credit; the unit is largely concerned with post-graduate level work. Ability to handle sound production, recording and dubbing is essential, together with experience of 16 mm rostrum camera operation. Grade: 5

Salary: £1,881 = £2,241 (plus £174 London allowance)
Further particulars and application form available from the Senior Administrative Officer at this School, returnable within two weeks of this advertisement appearing.

For anyone with an electronics background, colour TV is where to be these days. Because colour TV is an industry that's growing and changing at a breathtaking pace.

And ITT is the colour TV company to be with. Sales of our wide range of sets are growing here and throughout Europe. So we need more good electronics people for important jobs in our fault diagnosis and test departments at our main factory in Hastings and at our assembly plant at St. Albans, Herts.

You'll gain valuable practical experience in the latest developments in colour TV technology. You'll develop skills and be making a start in a career that could well take you into key areas such as research and development.

Fault Diagnosis

Within our production activity we need experienced technicians to trace and diagnose faults on colour units. It's highly responsible work, so we're looking for sound colour TV experience and, ideally, an HNC or equivalent in appropriate subjects.

TV Test

Here's the perfect opportunity for home electronics enthusiasts to put their practical knowledge to work. With training, you'll soon get to grips with all the complexities of colour TV equipment, and learn the important principles of test engineering.

If you ${ }^{+}$re an experienced TV service engineer, or have a good electronics training, you could take your place right away in our team of experienced test technicians.

If you want to give yourself a head start in the growing field of consumer electronics, write to Mr. P. R. M. Bebb, ITT Consumer Products (UK) Ltd., Theaklen Drive, Hastings, Sussex, giving sufficient information about yourself and whether you prefer to work in Hastings or St. Albans.

Television, radio and stereo
IIT
 and Entertainments,

Digital Processing Equipment

A number of advanced electronic products currently under development in Systems \& Weapons Division laboratories at Feltham require an engineer to contribute to the design, construction and testing of digital processing equipment using state of the art techniques.

If you are a qualified engineer with some digital circuit experience and an interest in digital engineering then telephone or write: Personnel Officer, EMI Electronics Limited, Victoria Road, Feltham, Middlesex TWi3 7DZ phone or 8903600 ext 44 or outside normal working hours oI-890 3921 .

Electro-Medical Service Department requires
 ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged $20-30$, and should be of O.N.C. standard.

Apply in first instance in writing to:

SIEREX LIMITED
Electro-Medical Department, Heron House, Wembley Hill Road, Wembley, Middlesex, HA9 8BZ

SERVICE ENGINEER

Due to continued expansion of domestic and overseas markets, we require an additional Service Engineer. Duties will include servicing and maintenance of all types of Audio Visual equipment. Write giving details of experience and qualifications to Works Director, British Films Limited, 260 Balham High Road, London SW17 7AN.

Department of Atmospheric Physics Universlty of Oxford
Applications are invited for a

TECHNICIAN (PROTOTYPE WIREMAN)

to work on electronic equipment for a satellite project. Experience in wiring solid state circuits would be an advantage. University salary scale rising to $£ 1794$ p.a. according to age and experience. Apply in writing, giving full details of education, training, qualifications and experience to Dr. C. D. Walshaw Clarendon Laboratory, Oxford OX1 3PU.

13226

CHELSEA COLLEGE UNIVERSITY OF LONDON ELECTRONICS TECHNICIAN GRADE 5

required in Applied Acoustics Laboratories for the design, development and maintenance of electronic systems for postgraduate teaching and research.
Salary scale £2182-£2557 per annum (including London Allowance).
Alternatively, a lower gnade post in this field with revised duties and less responsibility would be avalilable for a less experienced candidate. Further details and application forms from the Departmental Superintendent (5AA), (WW) Chersea College, Pulton Place, London, SW6 5PR.
[3221

EXPERIENCED AGENTS

required to service Radio, Intercom, Fire Alarm and electromechanical equipment.
Applicants should have own transport and telephone. Part-timers will be considered.
Rates of Pay- $£ 2.00$ per hour and $5 p$ per mile travelling.
Please submit full details of experience and availability to

$$
\text { Box No. WW } 3251
$$

PRESTON COUNTY BOROUGH

 PRESTON POLYTECHNIC
Senior Laboratory Technician (Computer Technician)
 DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Duties will be mainly concerned with assisting academic staff in operation of a PDP8/E computer installation. A good basic knowledge of electronics is required with experience in logic and/or analogue circuitry.
Salary scale Technician 4 ($f 1,644$ to $£ 7,926$ per annum) plus $£ 42$ or $£ 72$ per annum for Per annum plus $£ 42$ or ± 72 per annum for qualification. 37-hour week. Post superannuable.

Details and application forms from the Registrar, Preston Polytechnic, Corporation Street. Preston. Closing date for applications: 30th November, 1973.
In view of Local Government Reorganisation, preference will be given to applications received from Local Authority employees within the new Lancashire Area 10 .
[3296

Electronic Component Sales in
 Eastern Europe

Empexion Limited are expanding their activities in Eastern Europe, and are looking for additional personnel:
(1) In their overseas sales team. Applicants should have a serious interest in electronics, and a knowledge of German or other useful languages. Full training will be given both in office and field.
(2) A buyer to assist the Sales Office Manager. Applicants should have a good knowledge of the UK electronics industry.
For both positions apply in writing to: Mr. B, Abbott,
EMPEXION LIMITED. 233/243 Wimbledon Park Road, S.W. 18
$01-8744362$.

MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at Luton and St. Albans.

Salaries are attractive and conditions excetlent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW 18: for application form to:

Mr. M. Leavens, Works Manager
Telephone: Luton 33866. or
Mr P Elsip. Personnel Officer Marconi Instruments Ltd Longacres, St. Albans, Herts
Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

Southall College of Technology

Beaconsfield Road,Southall, Middlesex

Senior Laboratory Technician

required in the Department of Electrical and Electronic Engineering to oversee and co-ordinate the day-to-day work of technicians in the Electronics, Television, Electrical Power and Installations laboratories in the department and, from time to time, be responsible for general college liaison duties associated with equipment and facilities used in the tuition of students.

Qualifications at Part II City and Guilds of London Institute certificate or HNC standard in electrical engineering an advantage; relevant industrial and/or laboratory technician experience is essential.
Salary on scale $£ 2031$ to $£ 2340$ p.a. inclusive of London Weighting. Additional allowance payable for suitable qualification
Application forms obtainable from the Registrar, Southall College of Technology, Beaconsfield Road, Southall. Middlesex (01-574 3448) to be returned within 14 davs of appearance of the advertisement.

BOTSWANA
 ASSISTANT ENGINEER GRADE I

Required by the Posts Telecommunications Dept to be responsible for an area including rural automatic exchanges, open wire carrier systems, VF telegraphs, some plant and 2 GHz microwave equipment.

Candidates, preferably $30-45$ years. must hold the City and Guilds Final Certificate in Telecommunications or an equivalent qualification and have a minimum of five years' experience, excluding training, in the transmission/radio field. Candidates with some knowledge of automatic exchanges and subscriber apparatus will be preferred.
Commencing salary including Supplement will be in the range of $£ 2300$ to $£ 3280$. A substantial gratuity is also payable.
Because of lower rates of Income Tax in Botswana, the gross emoluments are roughly equivalent to UK salaries of
£ 3450 to $£ 4550$ for a single man © 4250 to $\mathbf{E 4 9 0 0}$ for a married man with two children

Ref. M2K/730428/WF.

EAST AFRICAN

POSTS AND

TELECOMMUNICATIONS

ASSISTANT ENGINEERS

Required to undertake appropriate duties in the following fields, based in Kenya or Tanzania:-
(1) Radio Construction and Surveys
(2) Radio Maintenance UHF/VHF Systems
(3) Radio Construction Microwave Systems (Clerk of Works) Candidates, over 25 years, must possess the City and Guilds Intermediate Certificate in Telecommunications and have at least 7 years relevant experience.
Salary will be in the range of $£ 2350$ to 83170 . A generous gratuity is also payable.
Because of lower rates of Income Tax in Kenya, for example, the gross emoluments are roughly equivalent to a UK salary of $£ 3500$ to $£ 4350$ for a single man and $£ 3700$ to $\mathbf{£ 4 7 5 0}$ for a married man with 2 children.

Ref. M2K/730669/WF.
Other benefits for both these posts include:-Subsidised Accommodation; Holiday Visit Passages; Education Allowances; Free Family Passages; Appointment Grant $£ 100$ / £200 Normally Payable; 24-36 Month Tour

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Adminis tration of the Foreign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience to:

eroun agents

M Division, 4 Millbank, London SW1P 3JD, quoting appropriate reference number

Electronics Materials Scientists

Our substantial expansion programme in the precious metal refining industry at our Royston, Nth. Herts. Works has created the need for a man or woman with a degree in chemistry or materials physics, preferably with some research experience, to lead development and production in the preparation: of materials for the electronics industry.
A good knowledge of preparative inorganic chemistry is required together with some experience in one of the above topics.

Applications should be made in writing, giving a brief description of age, qualifications and experience together with an indication of current salary to:The Company Secretary (Quoting Ref. MC), Johnson, Matthey Chemicals Limited, Stockingswater Lane, Brimsdown, Enfield, MIDDLESEX, EN3 7PW

CHIE

 RADIO ENGINEER
(Aviation)

A leading Light Aviation Company in the South of England carries out full aircraft radio equipment overhauls and repairs; the layout design for, and installation of, radio equipment and systems; radio maintenance and fault rectification.
The company is now looking for a fully Licensed (or otherwise qualified) Aircraft Radio Engineer of sound technical ability backed by 10 years practical experience including several years in a supervisory capacity for appointment as Chief Engineer (Radio).
In addition to sound technical ability the applicant chosen will be a capable administrator and have the commercial and business knowledge necessary. He will be required to control workshop through-put, to design radio installation lay-outs, to estimate costs and check costings.
As he will often be in close contact with customers a good approach and appearance is necessary.
Salary offered is in the region of $£ 3,250$ p.a. Write, in strict confidence, giving brief details of career and qualifications to:

> Mr. J. Anderson, c/o Travers', Smith, Braithwaite \& Co.,
> 3 Throgmorton Avenue, London, EC2N 2DA

Leading Munich Multitrack Pop Studio

requires

DYNAMIC SENIOR RECORDING ENGINEER

to creatively lead a telam
of British recording engineers Write to:
UNION STUDIOS ALLESCHER STR. 16 MUENCHEN-SOLLC WEST GERMANY

£1,980 to $£ 2,200+$ RF/MICROWAVE ENGINEERS

with experience in the repair and calibration of RF and Microwave Test Equipment should come and talk to us about their prospects in our expanding company. Contact: Technical Manager
CALIBRATION SYSTEMS LTD.
"BLACKWATER STATION ESTATE" CAMBERLEY, SURREY Tel. CAMBERLEY 28121

ELECTRONIC VACANCIES

Engineers
Draughtsmen - Designers
Service and Test Engineers

Technicians - Technical Authors
Sales Engineers

£1,600-f5,000
 Permanent or Contract

而
Phone MICHAEL NORTH 01-388 0918 MALLA TECHNICAL STAFF LIMITED

334 Euston Rd., London NW1 3BG

LONDON BOROUGH OF BRENT

Willesden College of Technology Denzil Road, London NW10 2XD
Department of Electrical Engineering
Require LECTURER 1 to teach City and Guilds Radio and Electronics Technician and Mechanics students commencing Ist January, 1974. Applicants should be well qualified with appropriate industrial experience.
Salary: $£ 1,660-62,847+$ London Allowance $£ 118$. Starting salary will be above the minimum according to qualifications and experience.
Applications to be returned to the Registrar within 10 days.

REPAIR/CALIBRATION

 ENGINEER $\mathbf{£ 1 , 9 8 0}$ to $\mathbf{£ 2 , 2 0 0 +}$If you are an enthusiastic Electronics Test or Service Engineer in a rut, come and talk to us about the wide range of Test Equipment you could help us repair and calibrate. Contact: Technical Manager
CALIBRATION SYSTEMS LTD.
"BLACKWATER STATION ESTATE" CAMBERLEY, SURREY Tel. CAMBERLEY 28121
[3306

MAJOR RECORD COMPANY require imaginative

AUDIO
 ELECTRONIC ENGINEER

to develop and maintain professional recording equipment
POLYDOR RECORDS STUDIO LONDON
Tel. 499 8686, Ext. 51
[43298

INTERNAL SALES ENGINEER

GEC Semiconductors is a leading manufacturer of specialised integrated circuits in the U.K.
We are seeking an experienced Internal Sales Engineer to provide an officebased technical and commercial link with our customers. He should be familiar with sales office procedures, have an ability to communicate effectively both verbally and in writing, and preferably have some experience in the electronics industry.
A salary of up to $£ 2,500$ p.a. will be paid to the right applicant.

Written application should be made to: The Personnel Manager (Ref. L/557/WW), GEC Semiconductors Ltd., East Lane, Wembley, Middx. HA9 7PP.

COMPUTER ENGINEERS

your line to success as a computer service engineer
 Vacancies exist in the London, Manchester and Liverpool areas for engineers with computer or

 electronic or electro-mechanical experience. In addition a number of senior vacancies exist for engineers (particularly with teleprocessing experience) who wish to develop their existing management skills. The Company pays attractive salaries together with generous fringe benefits including bonus, car allowance and non-contributory Pension Scheme.For further details write or telephone.
COMPUTER FIELD MAINTENANCE LTD. a member of the Computer Wortd Trade Group of Companies. 99 Bancroft, Hitchin, Hertfordshire Telephone: Hitchin (0462) 51511

COMPUTER ENGINEERING

We require additional Electronic and Electro-Mechanical Engineers, to be involved in the maintenance of medium to large scale digital computing systems.

Training programmes will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City \& Guilds or Radio/Radar experience in the Forces. After training, and in appropriate circumstances, shift allowances will enhance the competitive basic salary, as will our twice yearly bonus. A contributory pension plan includes generous life insurance.

Opportunities also exist for more junior trainees, aged 18 and over, who should have a good standard of education, an aptitude for, and an interest in, mechanics, electronics and computers.

Please write for an application form, Quoting Ref. WW to:- E. J. Young, NCR 1000 North Circular Road, London NW2 7TL.
 Service Planning Section of its Research Department at Kingswood Warren, Surrey.
Candidates should have a good knowledge of propagation theory and be familiar with basic electronic circuitry. Education to O.N.C. or equivalent level would be an advantage. They will be expected to show initiative and following a brief period of training, they will be expected to work with the minimum of supervision. Although based at Research Department, they must be prepared to travel and work for periods anywhere in the United Kingdom; this will include working some weekends. The normalarrangements for such duty ensure regular visits to base.
The starting salary will normally be $£ 2040$ p.a. and will rise to $£ 2565$ p.a. by annual increments of $£ 105$. Inexperienced candidates may initially be appointed at a lower grade and salary. Requests for application forms to
The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA. quoting reference no. 73 E 2267 and enclosing an addressed foolscap envelope. Closing date for completed application form's 14 days after publication.

ELECTRONIC SERVICE ENGINEER

Required to assist in the Servicing, Maintenance and Development of electronic and electro-magnetic equipment in a progressive printing company.
Formal technical qualifications are not essential, but applicants should have wide experience of press register and drive controls, complex relay logic, computer peripheral equipment etc. A certain amount of light mechanical work is involved.
The engineer will be engaged on shift working, and enjoy 4 weeks annual holiday, Company pension and sickness scheme.
An attractive salary will be paid commensurate with experience.
Apply to:
Personnel Officer,
Hazells Offiset Limited,
Leigh Road, Slough, Bucks.
Tel. Slough 31431.
A member of the
British Printing Corporation Limited

Devices
 ELECTRONICS TECHNICIAN ENGINEER

To assist with a rapidly expanding development programme, a vacancy exists in our laboratory involving the building of photo-type assemblies, making detailed measurements and a wide variety of otherinteresting undertakings. This position may well suit a younger engineer keen to get ahead in his career, although older applicants are also invited to apply.
The Company is conveniently situated in a modern factory in Welwyn Garden City.
Write or telephone the following:-
Personnel Manager,
Devices Instruments Ltd.,
Hyde Way, Welwyn Garden
City, Herts. Tel: 28511 Ext. 18

EXPERIENCED AUDIO TESTER

REQUIRED BY
LEADING MUSICAL COMPANY
FOR TRANSISTOR AND VALVE MIXERS, AMPLIFIERS AND ECHO UNITS. 66 0ffley road

We require
 TWO TV BROADCASTING ENGINEERS

(a) One for our Studio Centre in Birmingham.

The successful applicant will be part of a small engineering team responsible for the installation, commissioning and maintenance of a wide range of technical equipment used in television broadcasting. A knowledge of transistor theory and applications is required.
Applicants must have had several years experience in television broadcasting or of similar work in a technical laboratory. HNC or equivalent standard is essential.
Salary within the range $£ 2,055-£ 3,007$ according to ability and experience, plus fringe benefits.
Application forms may be obtained by writing to:-
Head of Staff Relations,
ATV Network Limited,
ATV Centre,
Birmingham B1 2JP
Please quote vacancy number 76 (WW).

(b) One for our Elstree (London) Studio Centre.

Duties will involve installing, commissioning, and maintaining audio equipment; a broad general knowledge of electronics is required, to HNC standard.
Experience of audio design or maintenance in TV or Sound radio would be an asset.
Salary in the range $£ 2,055-£ 3,007$ according to experience and ability, plus $£ 120$ London Allowance.
Applications to:

Recruitment Officer,
 ATV Network Limited,
 Eldon Avenue,
 Boreham Wood,
 Herts, WD6 1JF.

Please quote vacancy number 81 (WW).

Service Engineer

To Control the North of England

Nuclear Chicago, a Company in the fast expanding Searle Group, require a service engineer to take responsibility for the North of England, preferably residing in the Leeds/ Manchester area. He will commission new systems, maintain customer liaison and be responsible for after sales service.
A working knowledge of Digital and Analogue circuitry is essential; formal qualifications,
while desirable, are not as important as practical proficiency, and system training will be given at the Company headquarters in High Wycombe. The post carries a good starting salary with regular reviews, three weeks holiday, a company car and excellent conditions of service.
Please apply to: Mrs E M Parr, Personnel Manager, G D Searle \& Co. Ltd., Lane End Road, High Wycombe, Bucks.

Radio and Electronic Interference

Internationally recognised for its work on electromagnetic interference problems, the ERA Industrial Applications Department undertakes an extensive programme of contract research, providing clients with, among other services, a wide variety of interference research and measurement facilities.

The current research programme covers investigations on a wide range of electromagnetic interference topics, but is primarily concerned with the interference characteristics of electrical and electronic equipment and systems from avionics to computers, and techniques of measurement.

We are now seeking to strengthen the existing team by the appointment of at least two additional engineers or physicists.

The successful applicants will most likely possess an H.N.C. with emphasis on Electrical Engineering or Telecommunications. However, as the range of responsibilities is unusually wide, we are willing to consider applications from graduates and indeed from people with no particular qualification, but who have the necessary relevant experience.

All candidates must have a practical approach to problems and have an interest in, and preferably experience of, r.f. techniques. However those recently qualified with an interest in radio, electronics or communication will be considered. We will be looking for evidence of ability to write clear, concise technical reports.

Commencing salary will be assessed primarily on experience. All salaries are reviewed annually to match performance and ERA offers full scope for career development in a rapidly expanding field.

Company benefits include a contributory' pension scheme, and re-location assistance where applicable.
Please write to, or telephone for application form:
Personnel Manager, Electrical Research Association, Cleeve Road, Leatherhead, Surrey.
Tel: Leatherhead 74151

RADIO OFFICERS

DO YOU HAVE PMG I PMG II MPT 2 YEARS OPERATING EXPERIENCE

POSSESSION OF ONE OF THESE QUALIFIES YOU FOR CONSIDERATION FOR A RADIO OFFICER POST WITH COMPOSITE SIGNALS ORGANISATION.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 2,527$ pa; commencing salary according to age - 25 years and over $£ 1,807$ pa. During training salary also by age, 25 and over $£ 1,350$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from

Recruitment Officer, Government Communications Headquarters, Room A/1105 Priors Road, Oakley, Cheltenham, Glos GL52 5AJ, Telephone: Cheltenham 21491 Ext 2270

Rank Radio International
 GRADUATE ENGINEERS

We are manufacturers of the specialist range of Leak and Wharfedale hi-fi products, and the demand for these quality products, which are designed, developed and manufactured to precise published specifications, is continually increasing.

The Company's policies therefore include controlled expansion, continuous improvement to current products and the extension of our product range.

Opportunities are available for graduates in electronic engineering or physics to join the acoustic engineering development section which is responsible for the design and development of. Wharfedale loudspeakers and liaison with the production engineering function. These vacancies are suitable for graduates with not more than one year's work experience.

This is an expanding company and ample opportunities exist for future career development in this specialised field.

Please write for an application form to:

Mr. J. R. Murgatroyd

Personnel Officer

Rank Radio International
Bradford Road, Idle
BRADFORD. BD 10 RSF
TEL. NO. BRADFORD 612552 TEL. NO. BRADFORD 612552
RANK RADID INTERNATIONAL

the united liverpool hospitals MEDICAL
 ELECTRONICS TECHNICIAN

A technician is required by the Electronics Department to assist with repair, maintenance and calibration work on medical electronic equipment, particularly laboratory equipment.

Candidates' should be at least 23 yeasr of age, and have preliminary qualifications and experience in electronics: or medical laboratory work.

Salary to be on the Medical Physics Technical Grade. III scale- $\mathrm{El}, 602$ rising by annual increments to $£ 2,076$ per annum.

Application form obtainable from the Secretary, The United Liverpool Hospitals, 80 Rodney Street, Liverpool LI 9AP, to be returned by 14th December, 1973.
[3317

HERIOT-WATT UNIVERSITY

Department of Civil Engineering
Applications are invited for the post of

TECHNICIAN

in the Department of Civil Engineering. This post is Grade \vee for a well qualified Electronics Technician.
Salary scale $£ 2,007 \times$ ¢75—_ $£ 2,382$.
Further particulars and application forms can be obtained from The Secretary, Heriot-Watt University, Chambers Street, Edinburgh.
[3308

APPOINTMENTS CONT. ON P. 137

[^15]

Research and

Development Manager

A manager is required who is technically competent in audio, radio frequency and general communication systems and techniques. He should have been responsible for senior grades of engineers in his past experience and have an awareness of accounting systems and a degree of numeracy.
This is a key position and should provide advancement and personal growth for the man appointed, who will be directly responsible to the Joint Managing Director for all technical matters of the Electronics Group.
He must also have the ability to motivate and control a team of existing Design Engineers.
This is a high calibre appointment and salary will be commensurate with experience and ability.
For further details, please contact

Mr. R. C. Jones,

Joint Managing Director,
SNS Electronics Group,
851 Ringwood Road, Bournemouth.
Tel. Northbourne (02016) 5331/4.
Telex. 3232

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL P.O.BOX 156, JERSEY, CHANNEL ISLANDS

NAME
ADDRESS
BLOCK CAPS please
(EW BREAKTHROUGH CAREER PROGRAMMES

IN ELECTRONIC ENGINEERING/ TELEVISION SERVICING

Now ICS can help you break into a new better-paid field,
get job security, go to the top, be your own boss.
Now the future holds far more for you than it did before . . . a new future - in either of these exciting careers. They're well-paid, secure and need ambitious people.
ICS have made a breakthrough in the home-study field - by designing home study courses that will not only coach you for your initial qualification into one of these careers . . . and go much further and give you the practical grounding on how to get ahead in that job.
to get ahead in that job.
Your first move: Select your future career below. Complete the coupon and post it today for full information. It will probably be the best investment you'll ever make.

electronic engineering

Electronics is truly the industry of the future. Many are attracted by its exciting potential but fearfui of its complexity. This ICS Career Programme overcomes this and provides comprehensive training covering electro technology, electronic theory, electronic engineering and applied electronics. It will open (for vou) a vast and rewarding range of career opportunities.
television servicing Numbers of television sets in this country run into millions, presenting boundless opportunities to you as an expert technician. This ICS Career Programme can make you a trainee professional capable of servicing the comprehensive and thorough training you can look towards setting up your own servicing business in this fast growing industry

Articles for Sale-Cont. from p. 131
A NTENNA (AERIAL) BOOSTERS can produce A remarkable improvement in fringe or difficult areas. Bl1-for the VHF F.M. stereo radio band, B12-for the VHF Band 1 and Band 3 television, B45-for the UHF television band. Price (trade) $£ 2.50$, plus V.A.T. S.A.E. for leafiets. Electronic Mailorder Ltd, Ramsbottom, Bury, Lancs. $[3227$ BARGAIN TRANSFORMERS . 250 v mains in $B_{55-0-55(110)}$ out. 5 amps approx. weight 121 lbs . (ex-equipt.) $£ 2.45$ post paid. Similar $55-0-032-55$ yol
$£ 2.65 \mathrm{pp}$. D. SMITH 12 , Channel Heights, Blea$£ 2.65 \mathrm{pp}$. D. G. SMITH
don, Weston-super-Mare.
DUILD IT in DEWBOX quality pastic cabine B_{2} in in. x it a DEWBOX quality plastic cabine D_{2} in. $\times 2 \frac{1}{2}$ in. x any length. D.E.W. Ltd. ${ }_{\text {Fernwood, Det }}$ Ringwood Rd.i Fernwo.
CONSTRUCTION AIDS--Screws, nuts, spacers etc. Cons in small quantities. Aluminium panels punched to in small quantities. Alumin. Fascia panels etched spec. or piain sheet supplied. Fairements. Printed circuit aluminium to individual requiremens-masters, negatives and board, one-off or boards-masters, numbers. Send $6 p$ for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, Warwks.

COUNIER, Electro-mechanical, 6 Digit, \& Manual CReset, 24 volts 40 Impulses/Sec, $£ 2.70+$ V.A.T. each. Ring M.I.M.C.O. Ltd., 01-969 9388. extended LADDERS 8 ft . 10 in closed- 22 ft . 1 in . extended L $£ 15.64$ delivered, Home Sales Ladder Centre. | Haldane (North), Halesneid (1), Telford, Shropsint |
| :--- |
| [22 |
| 286644 . | OSCILLOSCOPE, Solartion CD711S, Trolley, 3 Handbook $£ 40$ o.n.o. 10 Ivy Close, St. Leonards, Nr. Ringwood, Hants. $[3237$ R ADIO TELEPHONE EQUIPMENT. Expand your R radio telephone system. $12 \frac{1}{2} \mathrm{kc}$. G.P.O. approved units. PYE, COSSOR. G.E.C., ULTRA-BURNDEPT. units. PYE, COSSOR, G.E.C.,'wband AM and FM. etc., High Band, Marine, Lowbast. Spa-Radio, 335 / 337. High Road, Cheltenham, Glos. ${ }^{3} 229$ CONY CVR5600P Colour VTR. Mint condition. S Little use from new. £575. Tel: York 27407. TELEVISION VALVES. Any 10 valves 85p, $50 / \mathrm{f3}$. TELC82, EY86/7, DY86/7, EF80/85/183/184, PCC84/89/189, PC97, PC86/88, PCF80/86/801/805, PCL 82/84/85, PL36/504, PY81/82/800/801. Electronic Mailorder, Ramsbottom, Bury, Lancs.

Articles for Sale-Cont. on p. 134

\star ARTICLES FOR SALE

All goods subject to settlement discount of $5 \% 7$ days and 2% monthly.

New Price List from 28th April 1973
Combined Precision Components (Preston) Ltd.
194-200 North Road, Preston PRI IYP
Telephone 55034 Telex No. 67129
PRICES SUBJECT TO 10% VAT

"ATENE" BRAND PRODUCTIONS SPECIALIST

\star Transistor Radio Antenna
\star Indoor Television Antenna
\star Car Radio Antenna

ATENE ELECTRONIC INDUSTRY 6 Lane Street, Lin-Shen North Road, TAIPEH, Taiwan REPUBLIC OF CHINA (FORMOSA)

Or for an illustrated catalogue send to:
EETWW, 113 Raeburn Street, SIDCUP, Kent.

LIMITED OFFERS

Beautiful, Louther PM 6 Acousters All acoustically perfect
but with slight cabinet defects Each $£ 40.00$ Satisfaction
money
guaranteed
refunded Tel. BATLEY 473646

ECONOMISE ON SEMICONDUCTORS All prices include VAT

 P\& P $\mathbf{~ 6 p}$ (UK) By Return service. All goods new Mullard
SILICON SEMICONDUCTOR SERVICES
41 Dunstable Road, Caddington, Luton, LU1 4AL

[3301

NEW FROM ELBON

L.E.D.'S (Red Emitting) Ideally suited for panel indicators Price only: 33p each or $£ 2-50$ for 10

Light SENSITIVE SWITCHES

Two types available giving wide operating voltages:
LITE-HC2 $11 \mathrm{~V}-20 \mathrm{~V}$. working- $\mathbf{\Sigma 1}$ each- $\mathbf{E 8} \cdot 50$ for 10 LITE-IC3 20 V -30V working- $\mathbf{\Sigma 1}$ each- $\mathbf{\Sigma 8 \cdot 5 0}$ for 10
Applications include: Relay, Triac or Logic Drive,
automatic light switching and door control, beam/break

BARGAIN PACK!

2 LITE-IC2, 2 LITE-IC3 and 5 LED's all for $£ 5 \cdot 00$ aLL PRICES INCLUDE VAT, PACKiNg AND CARRIAGE Please send C.W.O. to
LITE-IC, ELBON,
SLMMERFIELD, THE CRESCENT, WEST WITTERING, SUSSEX

EAST CORNWALL COMPONENTS
 SPECIAL SEMICONDUCTOR OFFERS

BZY96C8V2
1.5 Watt 8.2v Zener Diode DOI Package ("Top Hat")

1.24	\ldots	0.180
25	\ldots	0.120
100	\ldots	0.100
500	\cdots	0.000
1,000	\ldots	0.060
1,0		

BA115
(150 PIV IOMA)
$\begin{array}{cccc}\text { SILICON } & \text { DIODE } & \\ 1-24 & \cdots & 0.090 & \text { each } \\ 25 & \cdots & 0.055 & \cdots \\ 100 & \cdots & 0.045 & \cdots \\ 500 & \cdots & 0.040 & \cdots \\ 1,000 & \cdots & 0.030 & \because\end{array}$
TRANSISTORS
2 N 428 B
2 N 4290
2 N 4292
SILICON TRANSISTORS IN U-29
PACKAGE
$1-24$
25 $\begin{array}{r}0.15 \\ 100 \\ 100 \\ 50.10 \\ 500 \\ 1,000 \\ \hline . .0 \\ 0.08 \\ \hline 0.07\end{array}$

DIACS

FOR TRIAC TRIGGERING

Minimum order value $£ 0.50$ All prices subject to V.A.T.
P. \& P. inclusive
P.O. BOX 4

SALTASH, CORNWALL
[3304

DISPOSAL OF RADIO EQUIPMENTS (EX-AMBULANCE SERVICE)

Offers are invited for the purchase of approximately 42 radio mobiles consisting of Pye (Cambridge, Vanguard and Westminster) units, plus assemblies and other miscellaneous mobile cradles. speakers aid aerials.
Further details and schedule of equipment available from County Medical Officer of Health, Metropolitan House, Northgate, Chichester, Sussex.
Offers must reach the above named not later than 12 noon on Tuesday, 11 th December, 1973. [3313

DIGITAL CLOCK COMPONENTS
4/6 Digit Clock Chip 69.00; 6 Minitron Displays $£ 6.00$; Discrete Driver Kit $£ 3.50$; Minitron Sockets 25p each; 2N 7447 Drivers $£ 1.20$ each.

LOW COST LED LAMPS

Red 3 mm dia. 25p each; Red 4.45 mm dia 35p each; Green 3 mm dia. 68p each; Green 4.45 mm dia. 68p each.
CALCULATOR DISPLAY
0.12 inches Character Height Flatpack $£ 2.00$ each.
SLIDER SWITCHES
1 pole 2 position-Miniature 14p each; 2 pole 2 position 14p each; 2 pole 3 position 21p each; 1 pole 4 position 23p each. U.K. Postage and packing 10p. Overseas 25p.

ADD 10% VAT TO ALL ORDERS
PERDIX COMPONENTS LTD.

Dept. WW73

31 Green Lane, Chislehurst, Kent

PEAK PROGRAM METERS TO BS4297
also 200 KHz version for high speed copying.
Drive circuit, $35 \times 80 \mathrm{~mm}$. for 1 mA L.H. zero meters to ED 1477 . Gold 8-way Edge con supplied.
 $\begin{array}{lrrrrr}\mathbf{B} & \mathbf{8 8 . 0 0} & \mathbf{£ 7 . 6 0} & \mathbf{£ 7 . 2 0} & \mathbf{£ 6 . 8 0} \\ \text { Buitt and aligned } & \mathbf{£ 1 2 . 0 0} & \mathbf{£ 1 1 . 4 0} & \mathbf{£ 1 0 . 8 0} & \mathbf{£ 1 0 . 2 0}\end{array}$ ERNEST TURNER PPM meters. Below scalings stocked £11.77

\star Public address. \star Loudspeaker talikback. \star Telephone broadcast programmes when caller leaves receiver on. Unity gain mains powered box $190 \times 190 \times 55 \mathrm{~mm}$ with bypass
switch and overload light, shifts input 5 Hz up in frequency and switch and overload light, shifts input 5 Hz up in frequency and ailows 6-8dB more gain before howl-round.
\star Other shift versions for weird music effects.
\star SPECTRUM INVERTORS for speech security.
\star UPECTRUM INVERTORS for speech security.
a Unbalanced 2-pole jack in and out Zout $=2$ Kohm
b Unbalanced 2-pole jack in and out Zout $=20$ or
f58
600 ohm or XLR
Balanced 3 -pole jack in and out Zout $=20$ or
600 ohm
Post $£ 1.70$ - Boards $£ 0.90$ - Europe air and foreign Shifter circuit boards for WW July ' 73 article:
Complete kit and board $£ 18$ inctuding p.s.u. and DESIGNER Board built and aligned £24 mains transformer APPROVED

SURREY ELECTRONICS
CASH WITH ORDER less 5% U.K. add VAT
Account 0197822 Lloyds Bank. Great Bookham, Surrey

Articles for Sale-Cont. from p. 132

COLOUR, UHF and TV SPARES. Colour and UHF lists available on request. New Philips G6 single standard convergence panels complete, incl. 16 controls. coils, P.B. switches. leads, etc. and circuit data $£ 3.75$, or with yoke $£ 5.00, P / P 30 \mathrm{p}$. New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral, $£ 10.00, \mathrm{P} / \mathrm{P} 40$. Mullard AT1025/05 Convergence Yoke, £2.50, P/P 25p. Mullard or Plessey Blue Laterals, £1.25, P/P Delay Lines DL20 $£ 3.50$, DL1E. DL1. $£ 1.50$ P/P Delay Lines DL20. £3.50, DL1E. DL1. £1.50, P/P Quadrupler for Bush Murphy CTV 25 111/174 series. Quadrupler for Bush Murphy Cripler ITT TH25/1TH suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P}$ 25p. KB CVC1 Dual Stand. convergence panels complete incl. 22 controls, 3.75, P/P 35p. CR1 Base Panel, £1.75, P/P 15p. Makers Colour surplus/salvaged Philips G8 panels part complete: Decoder incl. I/C, $£ 2.50$ IF incl. 5 modules, $£ 2.50$. T. Base, $£ 1.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. CRT base, 75 p, P/P 15p. GEC 2040 panels, Decoder,
£3.50, T. Base, £1.00, RGB and Sound, $£ 1.00$, P/P 3.50, T. Base, $£ 1.00$, RGB and Sound, $£ 1.00$, P/P $25 p$. Pye CT70 Colour LOPT assembly incl. EHT
output and Focus Control, $£ 3.50 \mathrm{P} / \mathrm{P}$ 35p
B9D valve bases 10p, P/P $6 p$. VARICAP TUNERS. UHF ELC 1043 NEW, $£ 4.50$, Philips VHF for Band 1 and $3, £ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. UHF TUNERS NEW, Tranistorised, $£ 2.85$ or incl. slow motion drive, $£ 3.85$. 4 position and 6 pos. push-button transistd., $£ 4.95$. UHF/VHF basic integrated tuners, $£ 3.25$, Cyldon UHF valve tuners, $£ 1.50$. All tuners $\mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Transistd. UHF/VHF IF panels salvaged, $£ 2.50 \mathrm{P} / \mathrm{P}$ 25p. MURPHY $600 / 700$ series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, $7750 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$ SOBELI/GEC $405 / 625$ Dual standard t7.50 P/P 50p. SOBELL/GEC 405,625 Dual standard switchable IF amplifier and output chassis incl. cct., base panel, $£ 1.00$ P/P 35 p . PHILLIPS 625 IF amplifier base panel, 1.00 P/P $35 p$. PH2L. SH2 AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830 , Pam and Invicta, $£ 1.95$. A.B miniature with UHF injection suitable K.B, Baird, Ferguson, 75 p. New fireball tuners Ferguson, HMV, Marconi, £1.90 P/P all tuners 30p. Large selection LOPTs, Scan Coils, FOPTs available for most popular makes. PYE/LABGEAR transistd. Masthead UHF Booster, £5.75, Power Unit, e4.65. P/P 30p or Setback battery operated UHF Booster, P/P 30p. MANOR SUPPLIES. 172 LONDON. N.W. 6 (No. 28, 59,159 Buses or LANE, LONDON. N.W. 6 (No. 28, 59,159 Buses or ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751.

ARTICLES WANTED

COIL WINDING MACHINES wanted. Also Capacitors, paper \& polyester, 1 uF upwards, job lots bought. FALCON COMPONENTS, 33, Station Road, Bexhill-on-Sea. Sussex.
CASH AVAILABLE for surplus semiconductors and I.C. Phone 01-452 2583 . [3195 PRINTED CIRCUIT BOARD large supplies of glass ftre available. $1 / 16$ in single sided one ounce copper $2 p$ per 3 sq. inches (under 1 ft). ${ }^{75 p}$ per sq. ft. (over 1 ft). $1 / 16$ in double st. in per sq. ft. (over 1 ft). Please add 10 p per sq . foot postage and packing. We can cut to your size at ip per cut. Solid State Lighting, (Dept. WW), 47 Hercules Rd., Norwich NOR 66 M .

CLASSIFIED

Articles Wanted-Cont. from p. 134

PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in., in. single-sided fibreglass, 2 p per 3 any length; $1 / 16$ in. single-sided fibreglass, $2 p$ per ${ }^{3}$ sq. in. Double. quotations for other sizes and quantity discounts.-J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254.
VACUUM is our speciality. New and second-hand \checkmark rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing equipment from $£ 40$. V. N. Barrett (Sales) Ltd., 1 Mayo Road, Croydon. 01-684 9917.
$\mathrm{VHF}^{\mathrm{HF}}$ KIT $80-180 \mathrm{mHZ}$ receiver, tuner, convertor. Transistorised, remarkable performance. $£ 4$ or s.a.e. for literature Johnssons (Radio), St. Martins Gate Worcester. WR1 2DT.
W anted, all types of communications recelvers Electronics, Ltd.., Ashville Oid Hall, Ashvilie Rd., London. E.11. Ley. 4986
WANTED. Dual Trace Oscilloscope. S State 60 KHz MSF Rugby and 75 KHz . 10 M 25956 . ${ }^{2} 3288$ 60 Receivers. Signal and Audio Neuchatel Radio compact units. Two available versions $£ 35$ and $\mathbf{£ 6 0}$. Toolex, Bristol Road, Sherborne (3211), Dorset.

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice

EFCTR TECH
ELECTRO-TECH
COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580
[37

BOOKS, INSTRUCTIONS, ETC.

WORLD RADIO TV HANDBOOK 1974 (published Denmark if ordered before publication! David McGarva, PO 114W, Edinburgh EH1 1HP. Ask about quantities, two and up
-CAPACITY AVAILABLE
A IRTRONICS LTD., for Coil Winding-large or small production runs. Also PC Boards Assemplies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed. ${ }^{\text {SE }} 13$ 7PE. Tel. 01-852 ${ }^{1706}$. BATCH Production Wring and Assembly to Sample or drawings. Deane Electricals, 19 B 01-992 8976. $[20$ $\mathrm{D}^{\text {ESIGN, development, repair, test and small pro- }}$ roduction of printed circuit assemblies. ELECTRONICS, 54 Lawford Road, London, N.W.S. $01-2670201$
DESIGN and Development of electronic circuits Dand systems. Experienced and qualified engineors available for analogue or digital projects. Box No.
WW 3300 . WW 3300 .
CAPACITY available to the Electronic Industry. Crinecision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write or lists of fuil plant capacity to B.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB. 114 $\mathbf{S}^{\text {MALL }}$ Batch Production, wiring, assembly, to SMatc Batch Production, wiring, assembly, or assemblies. D. D. \& D. Electronics, 42 Bishopsficld,
Harlow. Essex. Harlow 33018 .

IMMEDIATE CAPACITY

Available for electronic assembly, Batch or
protoype work, cableforming, wiring and PC assembly.

BSF INDUSTRIES
26 Goodways Drive, Bracknell, Berks. Phone: Bracknell 28243

COURSES

R ADIO and Radar M.P.T. and C.G.L.I. Courses. FY7 8 WIZ. Principal, Nautical College, Fleetwood,

RECEIVERS AND AMPIFIERS

 SURPLUS AND SECONDHAND$H_{\text {S640 }}^{\text {RO }}$ etc., etc., AR88, CR100, BRT400, G209, Ltd., Ashvilte old Hall, Ashville Rd., London, E. 11 . Ltd., Ashvil 4986.

[^16]
E/解: ESSENTAL BOOKS!

NEW BOOKS. Publication date for these three titles
is Nov. 15th. Order now to avoid disappointment as
the first impression of each is expected to be a sellout.
MOBILE RADIOTELEPHONE EQUIPMENT
HANDBOOK. Gives circuits data. and illustrations plus
some valuable modifications for commerciai radio-
tolephone equipment including PYE and other popular
makes. E4 including postage.
HOW TO MAKE 2 \& 4 METRE CONVERTERS
FOR AMATEUR USE. 5Op. P.p. IOp. ADVANCED
BOOK OF CRYSTAL SET DESIGNS. 35p. p.p. 5p.

HANDBOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES. Includes many thousands of British. USA and Japanese transistors. 78 pages. 40p. p.p. 5p
HANDBOOK of Radio. TV and Industrial Tuhe R Valun
PRINCIPLES OF ELECTRICITY \& MAGNETISM. Page \& Adams. A course in Electricity \& Magnetism for student. technician and Electronics Engineer. As recommended to technical colleges, universities and polytechnics. Fully. illustrated. 532 pages. Published at E 4.50 . Special offer of £2.25 per copy. p.p. 30p.
CONSTRUCTORS MANUAL OF ELECTRONIC CIR CUITS FOR THE HOME, Just published. Contains many interesting and useful gadgets for the home. Ful circuits, data and instructions. 50p. post free. HOW TO MAKE WALKIE-TALKIES FOR LICENSED OPERATION. 40p. p.p. 10 p.
ELECTRONIC NOVELTIES FOR THE MOTORIST
handoook of practical electronic musical NOVELTIES. 50p. post free.
PRACTICAL TRANSISTOR NOVELTY CIRCUITS. 40p. p.p. 5p.

THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits data and illustrations, plus valuable information for British/USA receivers. transmitters, tast impression f3 25 including postage.

DIRECTORY OF GOVERNMENT SURPLUS WIRELESS EOUIPMENT DEALERS. Gives details of surplus wireless equipment stores and dealers including addresses and equipment that they are likely to have available. A valuable
book only 40 p. p.p. 10 p.

A COMAPREHENSIVE WORKING HANDBOOK OF SATELLITES AND SPACE VEHICLES. A handbook that provides important data both tabular and graphical enabling space scientists, technicians and telecommunication space vehicle design. launching. orbiting, etc. Includes a de-
tailed coverage of Communications in Space. An imposing book of 457 pages. Published at $£ 8.20$. Available at $£ 6.50$. post free HI-FI, PA., GUITAR \& DISCOTHEQUE AMPLIFIER DESIGN HANDBOOK. Includes circuits up to 1100 watts
output. Tremolo. Vibrato. and Fuzz-box, etc. 75 p. post free.
ANY BOOK IN PRINT OBTAINED. Please state, Title, Author
Publisher. Send large S.A.E. for free lists of Radio, Electronic

GERALD MYERS (w.w.)
 18 SHAFTESBURY STREET LEEDS LS12 3BT YORKSHIRE
 Bookseller \& Publisher NEW SHOWROOM \& TRADE COUNTER OPEN AT 8 HARTLEYS YARO OFF TOWN STREET
 ARMLEY, Leebs 12 (

EXPERIENCED ENGINEER offers field service Electro-Mechanical equipment-Box No. WW 2676 FREELANCE technical author/electronics engineer - invites enquiries for technical writing commissions SCRATCHED TÜBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage 75 p. With absolute confidence sent to Retube Ltd. North
Somercote, Louth, Lincs, or 'phone $0507-85$ 300. [27 SIGNAL generators, oscilloscopes, output meters wave voltmeters, frequency meters, multi-range meters, etc. etc. in stock.-R. T. \& I. Electronics,
Ltd., Ashille Old Hall, Ashville Rd., London, E.11. Ltd., Ashville Old Hall, Ashville Rd., London, E.11.
Ley. 4986 .
\star Electronic design to customer's requirements.
\star Prototype manufacturing.
\star Personal service by qualified engineers.

MAPLE MACHINERY LIMITED 17 GREENFIELD CRESCENT, EDGBASTON,
 BIRMINGHAM, B15 3AU

Classified-Cont. on p. 137

EXCLUSIVE OFFERS

NEVER BEFORE OFFERED

			ORE O WIDE RA n Air Con T-6 500 W eadout syn ${ }^{\text {ntrol }} 115 \mathrm{~V}$ or 230 o-point Tingle and application		
HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS					
		Width in inches int	$\begin{aligned} & \text { Depth } \\ & \text { in inchet } \end{aligned}$	Rack Pa	
			13		
${ }_{\text {CE }}^{\text {ce }}$	87	${ }_{23}^{22}$	${ }_{26}^{24}$	77	
	${ }_{83}$	$\stackrel{24}{23}$	${ }_{30}^{26}$	75	
	${ }^{93}$	24	24	75	
	${ }^{83}$	24	12	75	
	30 19	${ }_{20}^{60}$	${ }^{36}$	${ }_{17}$	
	69	24	${ }_{26}$	61	
	${ }_{70}^{69}$				
	87	${ }_{26}$	17	0	
	52	40	24	91	
	85	${ }_{22}$	${ }_{26}^{24}$	${ }_{7}$	
	${ }_{54}$	24			
	${ }_{74}^{4}$		24		
		${ }_{30}$	12		
Also Consoles.					

Our	Height in	Channel	Rack Pa		Prics
Ref.	inchis	Depth	Space	Base	
RB	108	5	104	Bolts	00
RD	80	8	77	24 inche	28.00
RC	66	5	63	Boits	20.00
RE	78	7	70	Bolts	27.00
	Full	ails of	abov	n reque	

\section*{We have a large quantity of "bits and pieces", we cannot list-pleage send us your requiremonta
 | Ferrograph 3/CFN Tape Recor Auto Electric Carrilion Chimea | |
| :---: | :---: |
| | |
| 10 foot Triangular Lattice Mast Sections 6 inch sides | |
| Casella Assmann Electric Hygromete | |
| Racal MA 150 Synthesieers | |
| al MA-250 Decade | |
| al RA-17L | |
| cal RA-98 8.B.B./D.S.B. Adaptar | |
| | |
| -omex 2 KL VA Voltage Reg | |
| artron CD-1016 d/b | |
| Co-axial Blowers $6 \times$ | |
| Ampex S.E. 10 Auto Dega | |
| Uniselectors 10 na | |
| nes 500 watt 230 v . 1115 v . Isolat | |
| sfiormers | |
| D. 888 | |
| ory | |
| catam | |
| wkell Type 1471 Variable Filters | |
| Admenl large Dratting Tables with | |
| dia. Met | |
| Flann Microwav | |

40-page list ol over 1.000 diferent items in stock available-keep one by you.

INSTRUMENTATION TAPE RECORDER-REPRODUCERS AMPEX FR-100B 14 tracks 6 speeds $1^{\prime \prime} 14$
FR- 600 $\mathrm{FR}^{1 "}$-600
and
tracks 4 speeds ${ }^{\prime \prime}$ and ${ }^{\frac{1}{2}} 14$ istorised

COMPUTER HARDWARE
CARD RDADER 80 col. 600 c.p.m.
PRINTER, High speed 1000 lines p.m. Prices on c.p.m.
TV $5 / 8$ to on Application
DO 58 rack TAPE READERS $£ 48$
BULL 80 col HAND CARD PUNCHES $£ 40$
PLEASE ADD V.A.T. TO ABOVE

P. HARRIS

ORGANFORD - DORSET
BH16 6ER

WILMSLOW AUDIO

The firm

 for speakers!

All units guaranteed new and perfect. Prompt despatch
Carriage and insurance 35 p per speaker
(Tweeters and Crossovers 20p each)
(All priees quoted inclusive of V.A.T.)

WILMSLOW AUDIO,

Dept WW,

Swan Works, Bank Square, Wilmslow, Cheshire SK9 IHF.

BRAND NEW FULL SPEC. DEVICES
U.K. CUSTOMERS ADD 10% VAT TO TOTAL

MICROCIRCUITS: 709 31p; 710 35p; $72361 p$ 741 (14 pin) 40p; 748 51p. TRANSISTORS: 2N2926 (Brown) 8p; 2N3053 19p; 2N3055 48p; 2N3704 14p 2N3819 30p; 2N4058 16p; BC107A 10p; BCIO8B 10p;
 20p; OC44/45/71/72 14p; AFI 14/5/6/7 18p; ACl $26 / 7 / 8$ 18p.
ZENERS: BZYB8 Series IIp. I AMP. RECTIFIERS: 50V $4 \frac{1}{2}$ p; $100 \mathrm{~V} 5 p ; 200 \mathrm{~V} 5 \frac{1}{2} p ; 400 \mathrm{~V} 6 p ; 800 \mathrm{~V} 6 \frac{1}{2} p ;$ 1000V 7p. 14 pin IC SOCKETS 12p. SOLDER CONS $\frac{1}{2}$ p per pin. DALO PC PEN 68p. $\frac{1}{2}$ W 5% Carbon Film Resistors, E12 values only: 10 of one value per 7p. Sub Min. Vertical Preset Pots $(50 \mathrm{~mW}) 100$ ohms to 220 K 4 p each.
LED with bush and data 24p.
ANTEX S. IRONS: I5W £1.70; 25W £1.75.
Prices at 18th September. Check our list.
Discounts start at 10% for $10+$ Semiconductors of one type.
JEF ELECTRONICS (W.W. 12)
York House, 12 York Drive, Grappenhali, Warrington, Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or at cost if more, List free Satisfaction or your money back.

WW-136 FOR FURTHER DETAILS

SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, lished in 1941. Early deliveries. Competirive prices. Large or small quantities. Let us quote.

Transformer Manufacturers and Designers 7 Dedham Place, Fore Street, Ipswich IP4 IJP Telephone 047352794

Tel: West Kingsdown 2344

CLASSIFIED

A DEXTER DIMWMWUIBH

ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $£ 2.97$ Kit form $\mathbf{£ 2 . 4 2}$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel: 0244-25883

NEW 13th EDITION ELECTRICAL ENGINEER'S REFERENCE BOOK
 Edited by M. G. Say
 ± 12.00
 POST FREE

NEWNES COLOUR T.V. SERVICING MANUAL VOL. I by G. J. King. Price Ł5. 10
VIDEO RECORDING RECORD \& REPLAY SYSTEMS by G. White. Price E 3.40
AUDIO TECHNICIAN'S BENCH MANUAL by J. Earl. Price $£ 3.15$
UNDERSTANDING SOLID STATE ELECTRONICS by Learning Center. Price $\mathbf{t 1} 40$
TRANSISTOR THYRISTOR \& DIODE MANUAL by RCA. Price EI. 50
RADIO COMMUNICATION by J. H.
Reyner. Price 64.00
HOW TO BUILD SOLID STATE AUDIO CIRCUITS by M. Horowitz. Price El .90
TRANSISTOR SWITCHING \& SEQUENTIAL CIRCUITS by J. J. Sparkes. Price fl .60
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. Price 64.00

ELECTRONIC CIRCUITS MANUAL by J. Markus. Price $\mathbf{E 9} .50$
*ALL PRICES INCLUDE POSTAGE \star
THE MODERN BOOK CO.
SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 INP

Phone 7234185
Closed Sat. 1 p.m.

IS YOURS A CRYSTAL

PROBLEM ?

Probably you are fed-up with:
... Poor delivery!
... 4 months delivery!
... (or no delivery at all!)
. . . rising prices, then

WESTERN ELECTRONICS

LTD.
have the answer.
Send us a sample crystal of the type you require and we will send you our quotation (and sample crystal on large quantities).
We regret we can only handle bulk orders for manufacturers and traders.

OSBORNE RD., TOTTON, SOUTHAMPTON
Tel.: Totton $\mathbf{4 9 3 0}$ or 2785

Classified-Cont. from p. 135
EDUCATIONAL
" $\mathbf{A}^{\text {N INTRODUCTION TO FIBRE OPTICS". }}$ A informative, tells you all about it. Send 9in.


```
.. NEW GRAM ANO SOUND
            EQUIPMENT
GLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for fecorders or vice-
versa.-Victor Morris, 343 Argyle St., Glasgow, \(\mathbf{C} .2\).
```


TEST EQUIPMENT

NEW and unused Test equipment. Nordmende Nine square wave generator SRG 3893 HZ to 3 MHZ list price. $£ 171, £ 85$. Normende distortion
meter KM 394 , list $£ 170, £ 85$. Normende asymmetrical attenuator Box ELU 381. 0 to 900 MHZ . $£ 55$ list E172. Nordmende regulating isolation Xformer 397/1 $\mathfrak{£ 4 5}$ list $£ 102$. Danbridge equipment. Ferrite cored decade inductor Box D14 1 mH to $10 \mathrm{H} f 40$. Decade air cored inductor box D1/3A $£ 50$ list $£ 140$. Decade attenuator Box DA3H/D unbadanced 0.1 DB to 111 DB £25. Ditto balanced $£ 25$. Decade resistance boxes CDR4 10HM to 11.11 K £23. DR4 100 OHM to 1.11
 PRECISION DECADE PDR4 1 OHM to 11.11 K
 or 15 KV . £165 list $£ 420$. Secondhand equipment in or new condition. Telequipment double-bearm oscilioscope model D53A. £190. Ditto D56 £285. Dawe sound devel meter type 1400 G inc. carrying case £40. Dawe one third octave band filter type 1463B. £35 Heathkit AV3U valve millivoltmeter £18. Green TG 2600 absorption wattmeter $£ 40$. Advance L.F. SMG generator H81A 15 HZ to $200 \mathrm{KHZ} £ 35$. Miracle Radio, Station Approach, Grays, Essex. Grays Thurrock 72066.
[3292
TAPE RECORDING ETC.
TF quality, durability matter, consult Britain's oldest IF quanty, drafabe Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools) Modern studio facilities with Steinway Grand,-Sound News, 18 Blenheim Road, London, W.4. 01-995 1661.
[3041
VALVES WANTED
We buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.-Walton's, 55 Worcester $5 t$. Wolverhampton.

Findyourplace in BritishGas

ASSISTANT RADIO MAINTENANCE ENGINEER

Southern Gas up to $£ 2,739 \mathrm{pa}$

We require an Assistant Engineer (Radio Maintenance) to join our Communications \& Instrumentation team based at Southampton.
He will provide technical assistance on all radio systems and projects and prepare routine preventive breakdown maintenance schedules.
Qualifications for the job are HNC or City and Guilds Full Technical Certificate or equivalent. Approximately five years' experience in relevant work essential. Post Office PW land line circuits experience desirable.
Salary in the range $£ 2,334-£ 2,739$ pa.
Please phone Southampton 775544 ext 368, for an application form, or write to the Senior Personnel Officer, 164 Above Bar, Southampton, quoting reference P779, within 10 days of this advertisement.

3318

WANTED FOR $£ £ £$ NOTES ELECTRONIC TEST GEAR, COMPONENTS SCOPES

THINKING OF RE-EQUIPPING, EXCHANGING OR JUST RAISING CASH - THINK OF US. WE WANT ANY TELEQUIPMENT, ADVANCE, MOST TEKTRONIX, SOLARTRONS FROM MODEL 1014. HEWLETT PACKARD CONSIDERED AND OTHERS. PHONE US OR BRING ANY TIME.

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 112-135

	Page
Racal Instruments Ltd.	
Radford Audio Ltd.	
Raife, P. F. ...	
Research Communications 106	
Rogers Developments (Electronics) Lid.	
Rola Celestion Ltd.	
Salford Electrical Insts. Ltd.	
Samson (Electronics) Ltd.	
Sayrosa Engineers Ltd. .. 24.72	
Shennanton Electronics Ltd, 136	
Sinciair Radionics Ltd. 63, 64, 65, 66, 102, 103	
Smith, G. W. (Radio) Ltd.7.7, 79, 80, 81	
Sowter, E. A., Ltd.	
Sugden, J. E:, Ltd. ...	

Teleprinter Equipment Ltd 77
54
Teleradio. The (Edmonton) Ltd. Telcon Metals Ltd

Telford Products Ltd

Thomson-CSF Electrical Tubes Ltd.

Toyo Communication Equipment Co. Ltd.

Trampos Electronics

Trannies Ltd.
United-Carr Supplies Ltd. 28
Valradio Ltd. 36
70
Vitavox Ltd. 14
Walker \& Leach Ltd. $\begin{array}{r}60 \\ 107 \\ \hline\end{array}$
Watts, Cecil E., Ltd.
Wayne Kerr, The, Co. Ltd. $\begin{array}{r}3 \\ 94 \\ \hline 137\end{array}$
Western Electronics (U.K.) Ltd 137
27
105
Westinghouse Electric S.A.
105
105
136
Wilkinson, L. (Croydon) Ltd. 136
Yates Electronics 82

In fact, she's a darling!
We refer to our new fm/am Modulation Meter, TF2300B, which supersedes the long-established ' A ' model.
How much quieter? Inherent noise and hum, reference to 50 kHz deviation, is substantially improved over the whole range. For example, in the free-running condition, with a 15 kHz bandwidth, the ' B ' model shows an improvement of 12.5 dB at 100 MHz and 11.5 dB at 500 MHz or, -79.5 dB and -67 dB , respectively, in absolute terms.
How much moresensitive? Twice as much at the lawer end and 70% better at the upper or, typically, 5 mV . from 4 to 426 MHz and 15 mV . from $426 \cdots 1000$ MHz . Incidentally, we've given her a bonus in the
shape of an extra 200 MHz frequency coverage which is now $4-1200 \mathrm{MHz}$.
All the other goodies are still there; fme deviation measurement from 1.5 kHz full scale to 500 kHz at carrier frequencies up to $1200 \mathrm{MHz} ;$ a, m. depth measurement up to 95% at carrier frequencies up to $350 \mathrm{MHz} \ldots$ and much more.
We'd love to show you this new favourite of oursdetails and demonstration are yours for the asking.

MARCONI INSTRUMENTS LTD., Longacres, St. Albans,
Herts. AL4 OJN, England.
Telephone: St. Albans 59292 . Telex: 23350.
A GEC-Marconi Electronies Company

Multicorethe complete answer for printed circuit soldering.

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

Extrusol and Multipure.

EXTRUSOL Extruded Bars and MUITI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

Ersin Multicore Savbit,

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Milticore products, please write on your company's letterhead direct to: Multicore Solders Limited, Maylands Avenue, Hemel Hempstead. Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636. Telex: 82363.

[^0]: The Wayne Kerr Testmatic TM30 tests circuit boards, cableforms, and sub-assemblies. Capable of 30 separate DC measurements, which it does in seconds. For complete information, post this coupon-or call Bognor Regis (02433) 25811.

 ## Your name

 Company Name
 Address
 'Wayne Kerr
 Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO22 9RL Telex 86120 Cables: Waynkerr Bognor.
 A member of the Wilmot Breeden Group. ___ _ W.W.DEC.

[^1]: CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.

 Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

[^2]: Power Bandwidth
 Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
 Hum \& Noise ($20-20 \mathrm{kHz}$)
 DC-20kHz@150watts + 1db, -Odb. 500 watts rms into 2.5 ohms +0 , $-15^{\circ} \mathrm{DC}$ to $20 \mathrm{kHz}, 1$ watt 8Ω Below 0.05% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts Other models in the range: D60-60 watts per channel

[^3]: Celestion

 Loudspeakers for the Perfectionist ROLA CELESTION LTD. DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 BJP

[^4]: Please send me further details on the 33PC:

[^5]: *Frequency range: $10-520 \mathrm{MHz}$.
 *Full-length individual scale for each band with a calibration accuracy of $\pm 1.5 \%$.
 ${ }^{*}$ Accurate $1 \mu V$ output over the entire frequency range with an attenuator readable to $0.25 d B$.
 *Extra-fine tuning control provides adequate discrimination and setability for tuning into a receiver with a 6 kHz bandwidth even at u.h.f.
 *Leakage radiation low enough to permit measurements at $0.1 \mu \mathrm{~V}$. level. *Voltage-tuned oscillators with long-term stability of 2 parts in 10^{5} over 5-minute period.
 *Automatic r.f. carrier level set. *With clip-on synchroniser, stability becomes 2 parts in 10^{7}; frequency set in 100 Hz steps with wide capture range and no degrading of performance. Directly calibrated a.m. and f.m. modulation facilities.

[^6]: Name
 Address

[^7]: *Department of Physics, Liverpool Polytechnic.

[^8]: "Bugs"
 The manufacture of electronic bugging equipment has become big bùsiness for over 50 large companies mainly, but not exclusively, in America.

 The most commonly used telephone bug is a small transistor oscillator,

[^9]: Complete with leads and carrying case
 Guaranteed for one year
 Price $£ 15.90$
 LITERATURE FROM:
 \lesssim CH-IINAELAA (U.K.) LTD.
 19 MULBERRY WALK, LoNDON, S.W.3. . TEL: 01-352, 1897

[^10]:

[^11]: Terms of Business: Mon. to Sat. Open to callers 9 a.m. to 5 p.m. Closed Sat. 1 p.m. to 3 p.m. Express postage $5 p$. for one valve; Ip each additional valve.
 Express postage; 3p for one transistor and lp for each additional. Over 10 post free. Ail orders over $\mathbf{f} 5$ post free. Valves tested and released to A.R.B.
 Express postage: $3 p$ for one transistor, and ip for each additional.
 specification if required. (Full valve availability. List on request, S.A.E.)

[^12]: bat supported on 'Pr clips
 from internas
 Exieflemt willars.
 ws
 onacap-
 sciation baxes.

[^13]: west hyoe developments umited. hyefield crescent, northwooo hills, northwooo, midox. hag ink Tetaphona: Northwood 24941/26732

[^14]: TEKTRONIX Type 109 Pulse Generator
 HP Transter Osclllator, 5408, $100-200 \mathrm{MHz}$

 KLYSTON POWER SUPPLIES

 MARCONITF 1400 Double Pulse Generator........
 CINTEL 1873 Square Wave and Pulse Generator

[^15]: SITUATIONS VACANT
 ELECTRONICS TECHNICIAN Grade 3 required b_{3} Innperial College for the servicing of digital machines on-line to computers, and the construction advantage. 5 -day week, 9 to 5.30 , four weeks holiday advantage. 5-day week, 9 to 5.30 , four weeks holiday plus generous leave at Easter and Christmas. Starting
 salary on scale f 1539 to f 1794 (scale under revision) plus f175 London Weighting according to experience and suitability. This is a contract appointment subject to annual renewal. Please apply to Mr. T. W. Dickson, Physics Department, Imperial College, London, son,
 SW7.
 i3215 Hilfi audio. engineers. We require experi- $^{\text {I-FI }}$ 1 enced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. $01-4374607$.
 JAPANESE radio importers require engincers for servicing transistor radios, etc., part or full time to work in our London office near Moorgate underground station. Tel.: $01-628$ 6157. $[3303$
 and audio tape Recorder-Starting salary up to and raudio tape Recorder-starting salary up to Day release towards O. N. C. can be arranged. Duties include operation and maintenance of equipment and tape duplicating. Further details from J. Coper Dept. of Audio Visual Communication, British Medical Association, Tavistock Squarc, London WCI H9YP. Tel: 01-387 4499.
 VHT CABLE television engineer required, or television engineer, as Assistant Engineer in Private Company. For general inquiries in business hours ring Barnstaple 4283, but written applications preferred to- Barnstaple Relay Service Ltd. Church Lane, Barnstaple, North Devon.
 [3257
 YOUNG man required for small Coil Winding Craining to supervise operators: Apply Airtronics training to supervise operators. Apply Airtronics 852 1706. Walerand Road, London, S.z.13. [3238

 ARTICLES FOR SALE
 Strobes, £132.-12A Bruce Grove, N17 6RA. 01-808 9096.

 Articles for Sale-Cont. on p. ${ }^{[232}$

[^16]: SERVICE \& REPAIRS

 $\mathbf{B}^{\text {RISTOL AND DISTRICT. Service to } \mathrm{Hi} \text { Fi and }}$ B. electronic equipment. Public address installations. | Stereo |
 | :---: |
 | 0272 Centre, 421395 . 309 Gloucester Road, Bristol. Tel: |
 | $[26$ |

