Digital voltmeter
 Multi-channel remote control

There's a whole catalogue of excellent reasons why you should choose the new Bradley 232 for your critical AC calibration source requirements.
To begin with it's exceptionally versatile, suitable for a wide range of applications. First-class short-term stability (typically 20 ppm over 5 minutes) make it ideal for calibrating digital and differential AC voltmeters or for checking frequency response of multimeters and amplifiers

It offers a first-class performance over a wide dynamic range. There are five voltage ranges from 0.1 to 1000 V and four current ranges from 0.1 to 1.0A. Frequency is continuously variable from 30 Hz to 100 kHz internally, or can be controlled from an external oscillator

You can take it to your production line to set up AC attenuators quickly and easily - or use it in your development lab to probe breakdown factors in components and systems Couple two in tandem and you can check power meters as well.

The Bradley 232 is a compact, highly-stable instrument that can replace a whole rack of conventional gear, yet it carries the eminently reasonable price of just $£ 540$ in the UK.

To find out more about the Bradley 232 AC Calibration Source, please telephone Ashley Stokes on 01-4507811, extension 113.
Or write to him at the address below.
Price quoted does not include VAT

Our own BCS Certificate
is available.

G \& E BRADLEY LIMITED,
Electral House, Neasden Lane,
London, NW101RR
Telephone: 01-4507811
Telex : 25583
A Lucas Company
electronics

LOW COST RC OSCILLATORS 1 Hz TO 1 MHz

 LEVELL

PORTABLE INSTRUMENTS

ANALOGUE

frequency
SINE OUTPUT
DISTORTION
SQUARE OUTPUT 7V peak down to <200 VV . Rise time $<150 n S$.
SYNC. OUTPUT >1V r.m.s. \sin e in phase with output. SYNC. INPUT $+1 \%$ freq. lock range per volt r.m.s. input.
METER SCALES $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ \& $-14 /+6 \mathrm{dBm}$. on TG200M \& DM only.
SIZE \& WEIGHT 7 "high $\times 10 \frac{1}{4}$ " $\times 5 \frac{1}{2}$ " deep. 10 lbs.

TG200	TG200D	TG200M	TG200DM
$E 42$	$E 45$	E52	[55
Sine 0/P	Sine \& Sq. O/P.	Sine O/P	Sine \& Sq.

NOTE: All prices subject to V.A.T.

DIGITAL
frequency
accuracy

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT
TG66B
£120
Batteries only.
0.2 Hz to 1.22 M Hz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz $\pm 0.3 \%$ from 6 Hz to 100 kHz $\pm 1 \%$ from 100 kHz to 300 kHz $\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 16 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz . 2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$ 7 "high $\times 10 \lambda^{\prime \prime}$ wide $\times 7$ " deep. 12 lbs

TG66A
£150
Mainsunit \& batteries incl.

Prices include batteries with 400 hour life. Mains power units $£ 10$ extra. Leather cases $£ 6$ extra.

Send for literature covering our full range of portable instruments.
LEVELL ELECTRONICS LTD, Moxon Street, High Barnet, Herts. EN5 5SD

A good-looking lineup-the Arrow miniature rocker brigade! They're reporting for 10 A 250 V ac duty, and just as soon as you call them up, they start saving you assembly time-and panel space. They parade shoulder, to shoulder with their unique snap-in facility securing them tightly in an instant. Eight single and eight double pole versions, 2 and 3 position switching with biased action, pilot lights, illuminated rockers-there's a really wide matching choice. Many to BS3955 and CEE24 standards, and ready to face 100,000 ops and still come out switching! Ask for the full data on Arrow 1100 series rockers.

16 AMP VERSIONS

The single pole on/off and some changeover versions are now available with a 16 amp rating. Send for further details.

EICUUIII ARROW-HART (EUROPE) LTD. THIE PLYMBRIDGE ROAD. ESTOVER, lalII PLYMOUTH PL6 7PN, ENGLAND.

 TEL: 0752701155 Telex: 45340 Cables: ARROWHART FLYMOUTH Scotlish Ottice: 13 Murray Prace, Stirling Tejephone: 07863823
Arrow switches right across the panel

 SUTTON COLDFIELD—021-3554511

COMBINED ELECTRONIC SERVICES LTD. CROYDON-01-6860505

Here itis

Our two new ranges of 75 ohm TV distribution cables are now made on an extrusion line unique in Western Europe.

We're one of the most technologically advanced cable manufacturers, usirg new techniques to produce TV distribution cables at a consistently high standard to tolerances much closer than previously possible. At very competitive prices.

The two ranges:
Aeraxial Semi Air Spaced Polyethylene dielectric copper taped braided and polythene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 1.27 mm to 3.05 mm .

Solid Polyethylene dielectric copper taped and polyethylene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 0.73 mm to 3.65 mm .

Aerialite will specially manufacture TV distribution cables for any special TV application-also, you can make use of the Aerialite free technical advisory service to help you in the selection and application of distribution cables.

For further information, send for Aerialite's new pıblication giving full technical specifications of the latest range of TV Distribution Cables.

Castle Works,
Stalybridge Cheshire SK15 2BS.

Telephone: 061-338 2223
Cables: Aercables, Stalybridge.
To Aerialite Cables Limited:
Please send me your brochure

Ientitled Aerialite Television Distribution Cables.
NAME
POSITION
COMPANY
ADDRESS

(A) SM 202 From £395.00 150 MHz Ultra High Performance Universal Counter Timer Perhaps the most sophisticated counter timer available under $£ 1000$ - and it costs much less than half thatl Full eight decade, 150 MHz , three channel spec. with almost every possible plus feature.
(B) SM 190 From $£ 195.00$

Variable Time Base (Computing) Counter Timer.
For the industrial user. Five or optionally six decade display, two channels. Total variable time base range $1 \mu s$ to 10 secs. Frequency, count (totalize) time interval \& ratio modes. Stored or non-stored display. Ultra low cost.SM 200 From $£ 175.00$ 25 MHz Counter Timer Six decade, frequency, count, Period, time and ratio meter having 25 MHz bandwidth and two-line stop start at very low cost.
(D) SM 201 From £265.00 100 MHz Universal Counter Timer
Best value general purpose unit of 6 decade 100 MHz , capability. Three channel input with seven operational modes. Standard or high stability versions.

BIG NEWS FROM BARR \& STROUD Modular Filtering ONE MAIN FRAME-MANY OPTIONS

High Pass

Low Pass

High Pass/Low Pass

Low Pass/Low Pass

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today-the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade)., and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering by using the reply card. BARR \& STROUD LIMITED
London Office: 1 Pall Mall East, London SW1Y 5AU Telephone: 01-930 1541 Telex : 261877

anloers means meters....

OXFORD LONG SCALE 250°

Now available, long scale meter to satisfy budgetary requirements for low cost equipment.

Models CS65 and CS85 with scale lengths of $6^{\prime \prime}$ and $7.75^{\prime \prime}$ OEM quantity prices extremely competitive $500 \mu \mathrm{~A}$ upwards, DC or AC rectified Shadow-free dial-easy to read scale

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, 1-5", 1•8", 2•7", $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, $1 \cdot 3^{n}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale.
DC moving coil and AC moving coil rectified. Horizontal or vertical mounting

Crescent Long Scale 180° 3 models, $4^{\prime \prime}, 5^{\prime \prime}, 6 \cdot 25^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified. Clear plastic.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Solicontroller Moving Coil Relay. DC moving coil and AC moving coil rectified. 1 or 2 adjustable alarm controls.

Lancaster Long Scalle 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

[^0]

Strictly for the enthusiast. Something to get really enthusiastic about. Garrard have some really good things to show you here.

And, as you might expect, something designed to help you get more lifelike sound reproduction- to make life richer for you.

It's time to take a fresh look at Garrard's hi-fi deck range. You'll discover these two superb units offering highly refined engineering, excellent value, plus important features including new belt drive.

Go to your hi-fi dealer and discover how you can get more out of life.

and Garrard know a great deal about it.

AP 86 SB Module

Automatic single player. Performance sets a new standard in medium-priced hi-fi, a heavy, machined diecast platter, screened 4 -pole synchronous motor, and new belt drive, together give highest standards in maintaining constant speed. Wow and flutter typically 0.12% peak, rumble typically -63 dB (DIN). Bias compensator adjustable to match stylus force separate scales for elliptical and conical styli. Fingerlight tab controls. Low resonance wood grain finish base with hinged/lift off cover.

Wayne KerrTM30: the high-speed circuittester that saves you high-cost time

The Testmatic TM 30 is, above all things, simple. It has been developed for efficient circuit-board testing, in the light of operational experience with the TM 60. It is designed to be worked by people who-whatever other talents they may have-need not be qualified electronics engineers. In saving time it thereby saves you money.

It will tell the operator where there is a defective circuit point, as well as indicating whether the value is high or low. And it can handle 30 tests-in seconds.

For more information phone Bognor Regis (02433) 25811 , or fill in the coupon.

sistor tester, plus many, many more Heathkit test instruments - all designed for easy assembly and kit-form savings. Send today for your FREE Heathkit catalogue, the world's largest selection of electronic kits - test, marine, amateur radio, b / w television, stereo hi-fi, automotive, home appliances, educational and more.

FREE
 Heathkit Catalogue

offers something for everyone. Send for your copy today.
visit the heathkit centres LONDON 233 Tottenham Court Road. gloucester (Factory \& Showroom) Bristol Road, Gloucester.

Please send me the FREE Heathkit catalogue
Name \qquad Address

Heath (Gloucester) Limited Department WW/10/73 Gloucester GL2 6EE

ACTUAL SIZE
The Dymar Lynx.
A mobile radiotelephone system so special we put our own name on it.

This Lynx has a pedigree. Since 1964 Dymar has designed and built VHF radiotelephones which have borne some of the most famous names in the industry.
Now we have something special. A complete VHF AM and FM mobile radiotelephone system. It cost $£ 100,000$ to develop. It's different. It's our own. The name is Dymar. The brand is Lynx.
Lynx mobiles come as local control units. The entire circuitry, space for options and a_{3} in elliptical speaker in a single $26.4 \mathrm{in}^{3}$ package. Or as extended control types, when the panel unit demands only $6.75 \times 3.5 \times 2.3$ in of dash space and the transmitter/receiver vanishes into the boot or under a seat.
Selective calling, if specified, is one of the options that gets built-in.
AM sets - 15/20W RF output standardare Low, Home Office, Air, Mid or High band. FM cover Low, Home Office or High at a standard $20 / 25 \mathrm{~W}$. One, six or 10 channel versions are available, with 12.5 kHz or 25 kHz channel spacing.

Before specifying a VHF mobile, check on the rest of the spec. The tough diecast aluminium construction; the clever use of ICs and FETs; the modular approach to sub-assemblies and the accessibility of components; the safety padding; the lot.

It's all in the leaflet Lynx Mobile Communication, and in a series of Data Sheets. Use the Reader Enquiry Service today, or write direct to Dymar.

DTMAT

the name in radiotelephones
DYMAR ELECTRONICS LIMITED,
Colonial Way, Radlett Road, Watford,
Herts. WD2 4LA. Tel: Watford 3732 I
Telex: 923035 . Cables: Dymar Watford.

First of a new range of all-British miniature encapsulated power supplies, the Minimod series
is designed and manufactured by Gardners to
provide reliable, regulated power supplies in a neat pack designed to plug into your P.C. board. Minimod simplifies development or production of equipment by providing power where you need it.

Minimod provides a choice of a standard 5 volt output (available up to 1 Amp) for digital circuits or 12-0-12 or 15-0-15 volts for linear circuits, using a 230 volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt units, over voltage crowbar is provided...

Ask Gardners to tell you more about Minimod.
Standard or special models can be supplied.

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED

HAME ETHMN insists on quality from stars and equipment

Audix know-how and wide renge of standerd equ pment, inelucing consoles, modules, amslifiers and loudspeaker systems =ombine tc create 3 highlycommer ded sound reinforsemen= system for Lencon's famols theatre-estaurant.

Why not cortact Audix before ardering vour new sou nd sistem.

MXT-800 mode es PAzocspwe arp; cardioid speakers 16'sound columas foldback nentors

Mullard r.f. power modules are the products of a real awareness of the designer's problems and a leading position as manufacturers of semiconductors and hybrid circuits. We have been working with the major manufacturers of mobile radio since its infancy.

Mullard components for communications

BROADGASTING•TELEGOMWUNIGATIONS•RADAR•NAVAIDS•WILITARY

AudioTest Set RTS 2

and Auxiliary Test Unit ATU1 for professional users

RTS2 Checks Amplifiers, mixers, tape-recorders
For Frequency Response Signal/noise ratio Distortion Cross-talk Wow \& flutter ' Drift
Erasure • Sensitivity Output power - Gain

ATU1 Extends output level and measurement sensitivity.
Provides balanced input/output facilities. Incorporates weighting filters, loading circuits. Has built-in speaker for monitoring purposes.

Send for leaflets RTS2 \& ATU1

TONE Operated SWITCHING in Monolithic Form

The FX-101L, FX-501 and FX-601 series of tone operated switches are designed for use as tone receivers in Remote Control, Alarm, Automation, Communications and Telemetry systems. Each device incorporates a semiconductor switch which operates when a specific input tone frequency is received. A choice of Direct Acting, Bistable or Monostable switching functions are available according to the device type. All frequency discrimination and timing
circuits are included on-chip and require only the addition of simple external RC networks. Tone operating frequencies are adjustable between 10 Hz and 20 kHz and the devices incorporate input signal amplifiers for operation with low-level sine/square wave input signals. Rated for operation over the temperature range $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the devices require only a single low current $8 \mathrm{~V} / 15 \mathrm{~V}$ d.c. supply.
All three devices available from stock.

> Frequency is our business

CONSUMER MICROCIRCUITS LTD.

Rickstones Road, Witham, Essex
Telephone Witham 3833 Telex 99382 (Reaction)
Send for fully detailed Data Sheets and information by circling the reader reply card number.

* K KEF ELECTRONICS LIMITED TOVIL MAIDSTONE ME15 6QP Tel 062257258
Reg in England No 702392

Research based on the premise that loudspeakers could be made to reproduce sound more accurately by the efficient utilisation of plastics and metal alloys has enabled KEF engineers to evolve the current range of chassis speakers.

Results of research on these materials plus spin-off from other technologies has enabled KEF to achieve precise quality control in production, reliability and accurate sound reproduction under wide extremes of operating conditions.

Many of the world's leading manufacturers recognise these salient points and insist on using KEF drive units in their equipment.

Full details of chassis speakers and dividing networks are available on request.

The best pick-up arm in the world

Whichever way you look at it

WW-022 FOR FURTHER DETALS

Linstead Laboratory Instruments

WIDERANGE MILLIVOLTMETER High impedance millivoltmeter with 20 scales total measurement range 60 micro-amp a.c. to 400 volts d.c. 10 megohm input with overload protection and
frequency range of 500 kHz . £35.00

WIDE BAND SIGNAL GENERATOR
Sine-square wave wide band high power signal generator. $10 \mathrm{~Hz}-1 \mathrm{MHz}, 0-6$ volts r.m.s. 2 watts into 5 ohms incorporating short circuit protection. 23200

LTजEIT
 means a good deal

 in electronics Linstead Electronics, Roslyn Works, Roslyn Road, London N15 5JB. Telephone: 01-802 5144

The Ullimate Draws a Little Closer

How can the qualities of the new

Gäle GS40tA be conveyed? Not in words, certainly. To atsess this new speaker. therg's nothing for it but to go along to a dealer. He will tell you first that the GS401A carries a seven vear guarantee. Then, when you've admired the handsome exterior created Dy Jon Bannenberg in matt black ānd chrome, we suggest you use some tent equipment. All you have to do-is take a good pair of ears. This deficate apparatus will tell you that. for a speaker only $231 / 4 \times 13 \times 104 / 4$ inches, the GS401A combines an unusually high power handling with breathtaking clarity.

You witi also need a favourite record. Preferably the one you use to impress your frends with the quality of your existing equipment. The one with prominent percussion and a wide dynamic range. We have only one serious anxiety. With the GS401A being the breakthrough it is. we worry that you simply won't believe the evidence of your ears. At the time of going to press, the Gale Gis401A can be seen at the following franchised dealers only.

Audio T 190 West End Lane London NW6
Design Audio 36 Marylebone High Street Landon W1 Grahams 86-88 Pentonville Road London Ni
Hampstead High Fidelity 91 Heath Street London NW3
Thomas Heinitz: 35 Moscow Road London W?
Henry's Radio 354-356 Edgware Road London W2 Q.E.W. Audio Visual Co 146 Charing Cross Fisad London WC2 R.E.W. Audio Visual Co 266-268 Upper Tooting Road SW17 Studio 9981 Feirfax Road London NW6
Audio T - Cambridge 172-174 Mill Road Cambridge
f the nearest of these is out of reach
write for literature to:
Gale Electronics \& Design Limited
39 Upper Brook Street London W1Y 1 PE

ve grew up with the TV industry. So we're pretty good it meeting its requirements.

Mullard Blackburn have been anticipating and meeting the demand for TV components for many years. Their capacity has grown with the industry. Valves, capacitors, delay lines; by the million. Each and every one to the stringent specifications laid down for Mullard quality components. Even today TV first equipment uses some 9 million valves a year and Mullard Blackburn produce 7 million of
them. Famous valves like the PL504 output pentode and the PCL84 triode-pentode.

And millions of capacitors. Like the flat metallised-film C280; still increasing in popularity because of its excellent CV/volume ratio. (The hundred-millionth metallised film capacitor came off the line last year.) And, at the rate of a million per week, Mullard's efficient small and miniature electrolytic ranges with their many applications.

Blackburn make thousands of delay lines every week (including
the latest and smallest DL50). Increasing automation means that this output is being stepped up considerably...

Blackburn's job is to carry on in top gear. Helping the British TV industry to produce the best sets in the world, and to increase the already imposing export performance of Mullard Limited.

Mullard

Two big advances in quality COMMERCIAL SOUND SYSTEMS

Welcome the new range of SNS PA Mixer-Amplifiers. New? They're all of that. A new flexibility, new features which incorporate 12 W . or 40 W . RMS output and the latest integrated circuits used throughout the pre-amplifier stage - in fact a new kind of finesse in medium power Commercial Sound Systems.

Link them to another big new range SNS column and cabinet speakers. That's a seven league step forward! Put each range together or use them apart. Quality marks them both. Performance singles them out. Where else could they come from but SNS?

Of course, you need a trial to feel as confident about them as we do. Call your SNS representative soon.

SNS Communications Ltd., 851 Ringwood Road, Bournemouth BHIl 8LN.Tel: Northbourne (02016) 5331

WW-027 FOR FURTHER DETAILS

Magnetic

 shieldingTELCON offers these simple answers

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance. For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.
'Telshield' wrap around foil
'Telshield' is an easy to use, ferromagnetic shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm . in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$. Other thicknesses and widths are available by arrangement.

Telcon Metals Ltd
Manor Royal, Crawley, Sussex
Crawley: 28800

Aesurate and diret measurement of spari without couphing to movilit parts

FRAHM resonant reed TACHOMEIERS
for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manulacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

maders electroniss lumited

Anders means meters
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092
WW-029 FOR FURTHER DETALLS

WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-costB.I.E.T, home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSEA NEW FUTURE NOW!

Tick or state subject of interest. Post to address below.
MECHANICAL Work Stu A.M.S.E. (Mech) \square
C \& Eng. Crafts. \square C\& GEng. Crafts.
C \& G Fabrication Diesel Eng. Inst. Eng. \& Tech. Inst. Motor Ind. Maintenance Eng. Mechanical Eng.
Sheet Metal Work Sheet Metal Work
Welding Welding ELECTRICAL \&
ELECTRONIC A.M.S.E. (Elec.) C \& G Elec. Eng. C \& GElec. Inst. Computer Elec. Electronic Eng.
Electrical Eng. Install. \& Wiring MANAGEMENT \& PRODUCTION
Computer Prog. Electronic Data Estimating Foremanst. Cost \& Man.
Ins. Accountants Inst. Marketing \square Management Motor Trade Man. Network Planning \square Personnel Man. Production Eng. Quality Control Salesmanship
Storekeeping Management \square DRAUGHTSMANSHIP A.M.I.E.D Draughtsmanship \square Graughtsmanship \square Draughtsmanship
Jig \& Tool Design Technical Drawing RADIO \& TELE COMMUNICATIONS C \& G Radio/TV/ Electronics \square
Telecomm. C \& G Telecomm.
Technicians \square Prac. Radio \& Elec. (with kit) \square GENERA
Radio Amateurs Radio Servicing \& Repairs
Transistor Course TVansistor Course AUTO \& AERO A.M.I.M.I. A.M.C.M.I. Auto Engine C \& G Auto Eng. Garage Management Storekeeping Motor Vehicle \quad Mechanics \square Coaching

SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

DEPT. BWwogALDERMASTON COURT, READING RG7 4PF 01 Bww

```
NAME
```

block caritals please
BLOCK CAFIT
ADDRESS

OTHER SUBJECTS
AGE
Accredited by the Councll for the Accreditation of Correspondence Colleges,

transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured to customers individual requirements.

Prompt Prototype
Service available

MICROPHONE
TRANSFORMER IN MUMETAL CAN

TRANSFORMER WITH TWO HOLE CLAMP AND SOLDER TAG CONNECTIONS

Telephone:
Billericay 51155

Kennel Lane,
Billericay, Essex.

WW-031 FOR FURIHER DETAILS

Everything you asked for in a VOM -

 for only$\mathbf{£ 2 6 . 0 0}$ with test leads, and spare fuse.

The new RCA WV 529A "Service Special" VOM features:

- Taut-band meter movement with mirror scale for accuracy. Diode protected against burnout
- High-impact plastic case with recessed panel for rugged handling.
- Measures up to 5.000 volts DC whithout add-on accessories to meet a broader range of servicing needs.
- Input polarity reversal switch for DC voltage and current measurements. Also reverses battery polarity in ohms function - aids in solid-state servicing
- Fuse-mounted on front panel for easy access - protects ohms circuits.
- 3-colour coded panel and meter face for faster indentification.
- Convenient 3-to-1-step ranges (VTVM-type).
- One year guarantee.

Try the new RCA WV-529A today and see for yourself why we believe it offers the best price/performance combination on the market. For more information on this and other electronic instruments in the range electronic
RCA Limited
Sunbury-on-Thames, Middlesex.
England.
Tel: Sunbury-on-Thames 85511

Electronic Components

Reach for the facts

The facts are never very far away when you've got the latest Hi-Fi Year Book. Because it tells you everything you need to know about the Hi-Fi equipmenton the market - what it does, what it costs, who makes it and where to buy it. It's packed with all the information you need to arrive at wise buying decisions - and it will save you money and time. The 1974 edition is completely updated, with extra pages and hundreds of new illustrations and specifications. And there is a host of absorbing articles on the latest Hi -Fi developments. Order your copy right away.

SPECIAL

PRE-PUBLICATION PRICE
(effective until November 1)
£1.50 inclusive

Hi-Fi Year B00k
 1974

ITIIIE vorown

THE MINITEST IS PREFERRED

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean plastic cover with pressed steel case Controls are simple and easy to use Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges 10 a sensitivity of 20.000 and 2.000 ohms per volt d.c. and a.c. respectively. Third, high voltage probes. These extend the range to 25 or 30 kV d.c

Little wonder the Minitest is preferred!
SALFORD ELECTRICAL
INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles,
Manchester M30 OHL
Telephone: 061-789 5081. Telex: 667711 A member company of GEC Electrical Components Ltd

You could design yourself a reputation around this M-OV tube. - It's the best beam tetrode you can buy.

- Offers lowest possible cost per watt. - Communications transmitters all over the world depend - and goon depending - on the famous M-OV TT21.

For more details, just ask us.

EEV AND M-OV KNOW HOW.

THE M-O VALVE CO LTD, Hammersmith, London, England W6 7PE. re Tel: 01-603 3431. Telex: 23435. Grams: Thermionic London. G.E.C.

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. $1 \quad$ Phone: 01/837/7937
WW-036 FOR FURTHER DETAILS

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules
in standard $19^{\prime \prime}$ crates small size-low weight -realistic prices.

16 Oakham Court Preston PR1 3XP
Telephone 077257560

DIECAST BOXES

WORLD-WIDE AVAILABILITY

Diecast in aluminium alloy, BS 1490 LM2

SIX SIZES

Cat. No, 7969P- $\quad 3 \frac{5}{8} \times 1 \frac{1}{2} \times 17 / 32$ in
(Illustrated) $\quad 92.1 \times 38.1 \times 31 \mathrm{~mm}$
Cat. No. 7134 P - $\quad 4 \frac{3}{8} \times 2 \frac{3}{8} \times 1 / 32$ in
$111.1 \times 60.3 \times 31 \mathrm{~mm}$
Cat. No.6908P - $4^{11 / 16} \times 3^{11} / 16 \times 2^{7 / 32}$ in $119.1 \times 93.6 \times 56.4 \mathrm{~mm}$

Cat. No. 6827P- $\quad 725 / 64 \times 4^{45} / 64 \times 2^{7} / 32$ in
$187.3 \times 119.1 \times 56.4 \mathrm{~mm}$
Cat. No.6357P - $\quad 7^{25} / 64 \times 4^{45} / 64 \times 3^{7} / 32$ in
$187.3 \times 119.1 \times 81.8 \mathrm{~mm}$
Cat. No. 7970 P- $\quad 7 \frac{3}{8} \times 7 \frac{3}{8} \times 221 / 32$ in
$187.3 \times 187.3 \times 67.5 \mathrm{~mm}$
(Nominal outside dimensions)

Rugged. Corrosion resistant.
Self adhesive plastic strip available for mounting PCB's internally.

Easily Machined. Good Surface Finish.

Illustrated brochure and information on your local Distributor from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP, England Telephone: 021-475 2231. Telex: 337081

When you use Jackson 'Discon' Trimmers you're using the slimmest trimmers on the market. With a maximum thickness of only 2.8 mm , capacitance ranges up to 40 pF , a Discon miniature ceramic dielectric trimmer capacitor is space saving, with a high capacitance per unit of volume.

With Jackson you know you're using tried and tested components that will give perfect reliability over a long life. And you can have components custom made to suit your individual requirements.

With skilled personnel and modern equipment backed by 45 years of technical know-how, we are your guarantee of a reliable product.

Write for fully illustrated catalogue:

JACKSON BROTHERS (LONDON) LIMITED

KINGSWAY, WADDON, CROYDON CR9 4DG.
TEL: 01-681 2754/7. TELEX: 946849.
U.S. OFFICE: M. SWEDGAL

258 GROADWAY, NEW YORK, N.Y. 10007.

1.) Celestion's new super tweeter. 2.) New cesign 'pressure" mid-range unit. 3.) Ultra Linear 12" Bass drive unit. 4.) A.B.R. ensures controlled bass down to 16 Hz .
5.) Precision crossover for perfect system integretion.

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality.
UNITS: HF 2000 (dome 'pressure' type) MF 500 (Mid-range Dome 'pressure' type) Ultra linear 12° bass driver and $12^{\prime \prime}$ $A B 2$. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts Maximum, 4-8 ohm. This monitor loudspeaker system has an exceptionally wide and flat frequency response. Very low order harronic and inter-modulation distortion. Precise response to transients. Beautihlly maintained polar response ensures absence of unwanted directional effects ard provides a highly satisfactory stereo image throughout the listening area. Matched pairs.
SIZE $40 \times 15 \times 11 \frac{1}{2}$ Natural Teak or Walnut Cabinet
Celestion \square
Loudspeakers for the Perfectionist ROLA CELESTION LTD. DIITON WORKS, FOXHALL ROAD. IPSWICH, SUFFOLK IP3 8JP

Send TODAY for FREE CATALOGUE with full details of this and other equipment
LIGHT SOLDERING DEVELOPMENTS LTD

for us, the award

To B \& W Electronics
the Queen's Award to Industry for outstanding export achievement

Rohde \& Schwarz offer

A fully transistorized SIGNAL GENERATOR

of high output power, with facilities for

swept-frequency and programmed operation

The newest signal generator from the Rohde \& Schwarz range, the SMLU uses the latest solid state techniques to give finest performance combined with ruggedness and ease of use. Frequency coverage $\mathbf{2 5} \mathbf{M H z}$ to $1000 \mathrm{MHz}^{\mathbf{M}}$, output powers up to 2 watts with ALC and calibrated attenuation. Sweepable or fully programmable using a single 15 bit DTL/TTL Compatible BCD word

This generator is especially suitable for measurements
on power stages, frequency multipliers and power transistors of antenna directional patterns and impedances without stray field effects
of receiver overload capacity
of electromagnetic compatibility (RFI, EMC)
of intermodulation and crossmodulation at high levels
on attenuators and filters with high stop-band attenuation
of the attenuation, reflection coefficient and transfer impedance of cables for feeding impedance meters
and for direct operation as well as in conjunction with Automatic Test Systems

Please request our Technical Publication R26753 for a description of intermodulation and crossmodulation measurements with this unit.

Impedance and Transmission Measurements on Active Four-terminal Networks

The following diagram shows the SMLU used as a high-power signal generator in a test setup for determining the impedance and transmission characteristic of power semiconductors such as transistors and varactors with a high driving level. A standing-wave detector in conjunction with Selective Microvoltmeter USU 1 is used for measuring the input impedance. Power matching of the output is carried out with two adjustable shorts. After removing the test item, the same setup can be employed for measuring the terminating impedance as a conjugate complex value of the transistor output impedance.

JAMES

SCDTT

F.M. ELECTRONICS ALIGNMENT UNITS

This is a companion unit to the DR Alignment Unit and is used to align the record and reproduce electronics of F.M recording channels of multi-channel instrumentation tape ecorders conforming to the IR.I.G. Intermediate and low band requirements
The two main functions in an F.M. recording system which require periodical checking are
(a) The accuracy and linearity of the Record Modulator.
(b) The accuracy and linearity of the Reproduce Demodulator
The F.M. Alignment unit checks both these functions by the use of a standard voltage and a range of standard frequencies corresponding to the tape speed carrier centre frequencies and the $\pm 40 \%$ deviation frequencies for each recording speed.

CUT ALIGNMENT TIME\&COST

JAMES SCOTT (ELECTRONIC ENGINEERING)LTD. Carntyne Industrial Estate Glasgow E2 Tel. 041.7784206

WW- 044 FOR FURTHER DETAILS

v

CONTRACTORS TO H.M. GOVT. P.O. APPROVED

REPAIRS ${ }^{\text {of eiectical }}$ MEASURING INSTRUMENTS

Industrial and Precision Grade

STOCKISTS
also Suppliers of gec RISSO AND OTHER MULTI-RANGE TEST SETS

76-78 DEPTFORD HIGH STREET, LDNDON, SE8. TEL: 01-692 2689

In direct response to last years highly successful Seminar, Texas Instruments take pleasure in announcing INTERFACE 73. And what an "Even-better-than-last-time" show it will be. This year we offer an even more sophisticated visual presentation and a totally new broader based programme, as presented earlier this year at London's Talk of the Town.

Texas Instruments are continually reviewing their Seminars. All material is updated month-by-month to keep pace with advances in the rapidly developing semiconductor technologies. Their acknowledged expertise in this field ensures a sophisticated presentation and the calibre of speakers guarantees the depth and authority of lectures.

Every Interface 73 Delegate will receive: Semiconductor Circuit Design Vol. 2 (value $£ 5$), The new TTL Data Book (value £2); a comprehensive Data Package containing information on the subjects discussed. PLUS OF COURSE A SUPERB 3 COURSE LUNCH.

Please return the order form below to
Mrs Gina Penman Texas Instruments Limited Seminar Centre MS21 Manton Lane Bedford MK41 7PA

Telephone: Bedford 67466

ORDER FORM

Please complete using block capitals only and one letter to each box

Indicate number of tickets required in appropriate box

TICKET PRICE $\mathrm{S} \mathbf{1 0}$
including 91p VAT
I enclose Cheque/M.O./P.O. to the value or Please invoice my Company - the order number \|s \qquad

FEATURES:

- Three oxeratig frequencies in any 2 MH - segment of the $\angle 2-172 \mathrm{MHz}$ ra rge may be selacté
- A monylith c HCM filter preduced by our own cr stal disision is us3c in the IF ampliter. Performanze and selectivity in ths si-gle superhewrodyne set are excellent.
- A light emiting Jiode is ussy to indicate the trar srit output level anc cond ticn of the tattery. This approach improves reliability and allows checke under poor lizhling cenditiors. - Use of a posstor eliminates the troublesame use and allev ates maintenance requiremients

THE HIGHEST PERFORMANCE DIGITAL FREQUENCY COUNTERS AT THE PRICE IN THE WORLD EVERYBODY BUYS THEM

4016 DIGIT, 32 MHz,
STABILITY 1 part in 10 SENSITIVITY 10 mV

5018 DIGIT. 32 MHz. STABILITY 3 parts in 10^{8} (crystal oven) SENSITIVITY 10 mV

7018 DIGIT, 50 MHz . STABILITY 3 parts in 10^{8} SENSITIVITY 10 mV £170

801A 8 DIGIT, 300 MHz STABILITY 3 parts in 10^{8} SENSITIVITY 10 mV

PRICES EXCLUSIVE OF VAT
ELECTRONIC START/STOP version PLUS £ 10
MEMORY version PLUS $£ 25$ DIRECTLY COUPLED INPUT AND SPECIALS TO ORDER Write for illustrated leaflet
Supplied to and acclaimed by professional engineers everywhere
who have purchased our electronic instruments for the past 10 vears. Norwegian Agent: ELECTRO-TRADE,TRONDHEIM, NORWAY. Australian Agent: ANELCO ELECTRONICS SOUTH AUSTRALIA 5049

RCS ELECTRONICS, NATIONAL WORKS BATH ROAD, HDUNSLOW, MIDDX. TW4 7EE

Telephone: 01-572 0933/4
WW-050 FOR FURTHER DETAIIS

CONVERTERS

British Made

VOLTAGE to FREQUENCY CONVERTERS
15VF-1 Wide frequency range, floating output, in put neg
15VF-2 pos. input accuracy 0.01% to 0.05%
15VF-5 Audio range 0.01%, general purpose
15VF-6 Low cost, general purpose
15VF-8 High speed.
FREQUENCY to VOLTAGE CONVERTERS
$15 F V-3$ Wide frequency range 0.02% to 0.05%.
15FV-4 Audio range, general purpose.
15FV-4a $0-500 \mathrm{~Hz} .2 \%$ accuracy
15FV-7. 1% to 10 Hz

TIME to VOLTAGE CONVERTER

15TV-7 Measures voltage free contact closure
PERIOD to VOLTAGE CONVERTER
15 PV-7 Measures interpulse periods

AUXILIARY MODULES

TELEMETRY AMPLIFIERS Line transmission
CLOCK MODULES Accurate pulses.

Even with a perfect pickup, the distortion from a gramophone record for sounds of equal level increases very rapidly at high frequencies, eventually doubling for eveny major third increase in pitch.

There comes a point when, to musical ears, the distorion is increasing faster than the musical quality. The QUAD filter system is designed to enable those with ears to hear to obtain more of the music and less of the distortion.

QUAD

for the closest approach to the original sound

Haval
 supremacy

Redifon's new Naval Radiotelephone equipment is now in Senior Service. Selected by the Royal Navy. the 643 transmitter is the product of private initiative. and development. With its companion CJP general-purpose receiver, this new radiotelephone has the vital responsibility of updating medium and long distance communications between British warships of all classes and shore bases Despite its big task, the 643 can be operated easily with minimum training. Operators can set rapidly to pre-determined frequencies, search
crowded bands or hunt for those elusive coast stations Throughout the 1970's the Redifon 643 will play a key naval role; not only for the Royal Navy but also for all the most modern navies throughout the world.

Redifon Telecommunications Ltd,

Marine Division,
Broomhill Road, London, SW18 4JQ Telephone : 01-874 7281 Telex: 264029

RedifonTelecommunications Limited

Dixons Technical have something in black and white to make CCTV importers green with envy.

Dixons Technical have the largest range of CCTV equipment in the country. And now they've added Mirage: their very own CCTV system

Mirage is the all-purpose CCTV system comprising the finest components available. It can be used by schools, by industry, as an audio-visual aid, or with Mirage automatic video, switchers and monitors, it's perfect for surveillarce purposes

The Mini 500 is a small, discreet camera specially designed for surveillance. It comes complete with an f1. 8 lens

The HD800 gives a high definition picture Incorporates a Mullard separate mesh tube And accepts external drives

The HD800 VF boasts the same high standard of specifications as the HD800, but
also has a 5" monitor screer. It's the perfect semi-professional studio camera.

With both HD800 models, Plumbicon (R, and Silicon tubes can be fitted without modification to the circuitry

Every piece of equipment is backed by
Dixons Technical superb after-sales service
If you don't wish to spend cash, no problem. The entire Mirage range is available for hire, lease or rent.

To: Dixons Technical Ltd., 3 Soho Square, London, W. 1 Tel: 01-4378811.
ww/1010
Please send me lats of information on the entire Mirage range

The sound of Martin Speakers can be as quiet and irresistible as the gentle meeting of sand and surf. Or vibrant and deepthroated as the roar of thunder in the summer sky. Martin Speakers, for people who are attuned to the irresistible sounds of the audible universe.

Acos for sound enjoyment.

COSMOCORD

Cosmocord Lid., Eleanor Cross Road, Waltham Cross, Hertfordshire.
Telephone: Waltham Cross 27331
Martin speakers are distributed exclusively in the U.K. by Cosmocord.

WW-114 FOR FURTHER DETAILS

FOUR INSTRUMENTS FOR THE PRICE OF ONE

The new 237 offers \star Nuclear autoscaling * Timing
\star Rate and frequency measurements For only £157

For full information:
ESI NUCLEAR LIMITED 2 CHURCH ROAD, REDHILL, SURREY RH1 6QA Tel: Redhill 64993

NEW STANDARD CASES from OLSON

NEW SERVICE FROM STOCK - DESPATCHED BY RETURN OF POST

TYPE	WIOTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEGEXTRA
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	6"×4"	f. 2.65	60p
22	$8 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	8"×5"	f3.00	60p
23	$10 \frac{1}{2}$ "	$6 \frac{1}{2}{ }^{\prime \prime}$	61 $\frac{1}{2}$ "	$10^{\prime \prime} \times 6^{\prime \prime}$	£3.60	65p
24	$12 \frac{1}{2}{ }^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	$12^{\prime \prime} \times 7^{\prime \prime}$	f 3.90	65p

Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg. aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

WE AREN'T YOU KNOW!

Actually, we were thinking that you might be thinking of Indicator Lights, Voltage Selectors, Connectors. or perhaps Metal Pressings or Plastic Components. And we were thinking that, even if you only wanted a few of any or each of these, it would be a pleasure to do business with you.

And you might find it a pleasure to do business with us. especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch, Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES
 The single source that simplifies.

Let us have your next inquiry - it will be dealt with immediately

P.C.BORED?

- not with the

IEGONDA1O 33 PC

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!

The Decon-Dalo 33 PC marker is now available in France, Germany. Italy. Switzerland. Austria and all Scandinavian countries. Send for details of local supplier.

BARGAIN COUNTER

A new high precision low cost 560 MHz frequency meter from Racal Instruments

Racal believes that high standards don't necessarily mean high prices. So they're introducing a new 560 MHz Frequency Meter that embodies Racal's high standards of workmanship and quality-at a very low price.

The 9839 is a high precision instrument with an unrivalled price performance ratio and offers these outstanding features-direct reading to 560 MHz10 mV sensitivityeight digit memory displayfast warm-up standard 1 part in 10^{\prime} in 4 minutesAgeing 5 parts in 10^{9} per day
\square up to 10 sec . count time
\square portable and compact

Use the coupon to bring you more details of how you can count on the 9839 to save you money without sacrificing quality.

QUALIFY TO EARN MORE MONEY Ina betteriob

Exciting new career opportunities! They're just waiting to be grasped - in the ever-growing industries of electronics, radio and television. And with ICS behind you, you can soon win the qualifications you need to assure your career success. Win them in your own time, in your own home, by starting an ICS learn-as-you-earn correspondence course now. You get personal, individual attention from really expert and experienced tutors. We teach you the theory, we teach you the practice. Books and components are provided. So is all the assistance, all the backing you need.
We also have a complete range of courses at the ready for people keen to score success in other fields. Whatever qualification you're after, we can help you get it, whether you're pushing ahead where you are or switching to something completely new.
Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

Take one of these courses

Society of Engineers Graduateship (Electrical Engineering)
C \& G Telecommunications Technicians Cerlificates C \& G Flectrical Installation Whrk
C \& G Cerrificate in Technical Communication Techniques C \& G Radio Amateurs
MPT General Certificate in Radio Telegraphy
Audio. Radio and TV Engineering \& Servicing
Electronic Engineering Maintenance. Engineering systems Instrumentation \& Control systems
Computer Engineering \& Technology
Electrical Engineering, Installations. Contracting. Appliances
Self-build radio courses
or take one of these if your future lies in other ields

GCEO and A Level
Basic foundation for success is a thousand
and one careers - recognised by everyludy All Boards - 64 subjects

Building
Tuition for recognised technical
qualifications in all ficlds.
Architecture
Bualders Quantities
Draughismanship

- Quantity Surveyor

Clerk of Works
Heating. Ventilating

Engineering
Theoretical and practical tuition geared either to professional and technical courses (on vocational (non-exam)
courses.
Motor. Diesel. Chemical
Refrigeratio
Draughismanship
Garage Manazement

Managemem. Marketing and Business Management. Marketing and Business Instruction in the latest proved princip specialised area.

* Personnel
* Administrative
* Works
- Transport

Business
Industrial
Sales
$\underset{*}{\text { Marketing }}$

* Advertising
* Public Relation

Sales
Business
Computers

* Book-keeping
* Work Sudy

Storekeeping
Small Business Owners
Fire Service

* Promotion and Institute of Fire Engineers Police
- Entrance and Promotion POST TODAY FOR FREE DETAIIS

To: International Correspondence Schools, Dept. 234U, Intertext House, Stewarts Road, London, SW8 4UJ.

```
Name
Address
Age

\section*{nombrex}


MODEL 42
R.F. SIGNAL GENERATOR

Price \(\mathbf{£ 1 7 . 5 0}+\) V.A.T.
- Wide Range \(150 \mathrm{KHz}-300 \mathrm{MHz}\)
- Accuracy \(2 \%\)
- R.F. Output 50 millivolts minimum
- A.F. Output approximately 1 volt at 800 Hz
- Fully transistorised circuitry
- Powered by 9 V battery
- Provision for external supply

Trade and Export enquiries welcome
Send for full technical leaflets
Post and Packing 35p extra per unit
NOMBREX (1969) LTD., EXMOUTH, DEVON. Tel: 03-952 3515

WW-061 FOR FURTHER DETAILS


\section*{WHO. WHAT HOW and WHERE?}

The busy retailer needs quick answers. This is the book that's got them. In a moment you can put your finger on a manufacturer, wholesaler or service depot ; check a specification or a telephone number. The 1973 edition of the Electrical and Electronic Trader Year Book has been thoroughly updated to provide the most comprehensive reference to the trade available. At \(£ 2.25\) inclusive you can't afford to be without it.

Contents include:
Legal guide
Rates of pay
P.O., government and other licences
Station guide and contour maps
Directory of trade organizations Specifications (TV, radio,
tape recorders, etc.)
Battery equivalents
Valves and transistors
Technical literature
Wholesalers
Service depots
Proprietary names directory
Buyers' guide
Trade addresses

\title{
ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1973
}

\section*{MAIL THIS COUPON NOW}

IPC Electrical-Electronic Press Ltd., General Sales Dept., Room 11, Dorse1 House, Stamford Street, SE1 9LU Please send me
to the value of copies of the Electrical and Electronic Trader Year Book 1973. I enclose cheque/p.o. number ( \(£ 2.25\) per copy inclusive). Cheques made payable to IPC Business Press Ltd.

Name
Address

Company registered in England. Registered address: Dorset House, Stamford Street, SE1 9LU. Registered number : 522305



\title{
Now a very sophisticated Hi -Fi stereo tape recordingdeck and pre-amp unit from Philips.
}

\author{
3 heads. 3 DC motors.Tip-touch Solenoid operation. Remote controllable.Every facility.
}

This is the N4510 - the tape deck from the Philips range of advanced Hi-Fi stereo tape recorders.

It easily surpasses the DIN Hi-Fi standard, and in every detail of styling and construction will satisfy the most critical user. It is ruggedly built, gives you every facility and precision control of sound, and is of such sophisticated design that operation is simple. Here are the most important features:

4 tracks. 3 speeds \(-7 \frac{1}{2}, 3 \frac{3}{4}, 1 \frac{7}{8} \mathrm{ips}\).
Suitable for stereo and mono recording and playback, multiplay, echo during recording, A-B monitoring.

Three motors - two DC motors for reel drive, one DC capstan motor electronically governed to keep tape speed constant.

Tape tension comparators for constant winding torque.

Three magnetic heads - one each for recording, playback and erase.

Detachable lower head cover for easy editing and cleaning.

For control of transport functions and recording mode, illuminated tiptouch controls are linked to solenoids giving easier, quieter and more reliable operation.

Remote control unit (extra) with same tip-touch buttons as recorder.

Sliding switches for function selection-selected function illuminated.

Precise sliding faders for two microphones and another signal source.

Separate volume control for each headphone channel.

Recording stand-by (level adjustable with tape stationary).

Two illuminated calibrated VU type meters for recording/playback.

4-digit counter, zero reset, and on/off Autostop to halt tape at pre-determined position.

Reels lockable by means of metal hub locks.

Sockets for headphones and microphones easily accessible at front, concealed under sliding lid.

Removable transparent lid. Frequency response:
\(40-20,000 \mathrm{~Hz}\) at \(7 \frac{1}{2} \mathrm{ips}\)
\(40-15,000 \mathrm{~Hz}\) at \(3 \frac{3}{4} \mathrm{ips}\) DIN 45500
\(60-8,000 \mathrm{~Hz}\) at \(1 \frac{7}{8} \mathrm{ips}\)
Wow and Flutter less than \(0 \cdot 15 \%\) at \(7 \frac{1}{2} \mathrm{ips}\).

See your Philips dealer for a demonstration. And for a free book on all Philips Hi-Fi stereo tape recorders, write to Philips Electrical Limited, Dept SP, Century House, Shaftesbury Avenue, London WC2H 8AS.

\section*{PHILIPS \\ Simply years ahead.}


\section*{Surely the best value in variable filters! \\ }

Look, for instance, at these three features of the Barr \& Stroud solid state EF2.
\(\square\) Two independent lowpass/highpass filter channels
\(\square\) Attenuation slope 36 or 72 dB /octave
\(\square\) 6th order response through computer-aided design Then add all these other features and we think you will agree the EF2 is worth a closer look.
\(\square\) Frequence range from 0.1 Hz to 100 kHz in five decades
\(\square\) Frequency tolerance \(5 \%\) except at range limits
\(\square\) Maximum attenuation greater than 75 dB
\(\square\) Combined channels provide band pass, band stop or band separation modes
\(\square \quad\) Mode switching without use of external links
\(\square\) Digital selection of cut-off frequency giving accurate repeatability
\(\square\) Response switchable to 'normal', 'narrow', or 'damped' condition
\(\square \quad\) Up to 20 dB gain available in 'narrow' condition
\(\square\) Operation from internal power supply or external batteries
\(\square\) Output protected against short circuit
Price: £ 450 +VAT
Further details in pamphlet 1652 available on request. Barr and Stroud also design and buld special filters to individual customer requirements. Extensive use of computer facilitios ensures economical and accurate realisation of the desired characteristics.

\section*{BARR \& STROUD LIMITED}

Anniesland, Glasgow, G131HZ. Telephone : 041-954 9601 Telex: 778114
Kinnaird House, 1 Pall Mall East, London, SW1P 1RT. Tel: 01-930 1541 Telex: 261877 WW- 064 FOR FURTHER DETAILS

\section*{DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER}


BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tel: 01-699 8844 Telex: 896161

\section*{』 E S AUDIO INSTRUMENTATION}


Si451 £35.00
Comprehensive Millivoltmeter \(350 \mu\) Volts 20 ranges prices plus VA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE. WW- 066 FOR FURTHER DETAILS

for the professional
contact Derek Owen at 01-874 9054 or Telex 923455

\section*{LEEVERS-RICH}

\section*{EQUIPMENT LIMTTED}

Agents in Scandinavia, Eastern and Western Europe, Middle East,
Africa, Australasia and the Far East.
LEEVERS-RICH EQUIPMENT LIMITED
319 TRINITY ROAD LONDON SW18 3SL
Telephone 018749054 - Telex 923455
Cables LEEMAG LONDON

\title{
COMPREHENSIVE HOME CONSTRUCTOR KITE иspeafie wriv P. RONDO COMPLETE QUADRAPHONIC. HI-FI SYSTEM
}

\title{
CBS SO MATRIX DECODER \\ *REGD. CBS INC POST FREE INCLUDING C
COMPLETE KIT 9 LICENCE FEE+80p V.A.T.
}

\title{
PREAMPLIFIER BOARD

}

\title{
MASTER/VOLUME TONE CONTROLS/4 CHANNEL BALANCE CONTROL BOARD COMPLETE KIT EQ
}

\section*{POWER AMPLIFIER BOARDS AND HEATSINKS (EACH board contains a Stereo pair of amplifiers)} complete kit per board \(\mathbf{f 7} \mathbf{- 5 0}\) post free+75p v.a.t.

ALL OTHER KITS AND COMPONENTS USED IN THE P.E. RONDO WILL BE AVAILABLE AS THEY APPEAR IN. THE SERIES IN "PRACTICAL ELECTRONICS".
KITS ARE COMPLETE IN EVERY DETAIL (RIGHT DOWN TO THE SOLDER) AND USE ONLY TOP QUALITY COMPONENTS AND FIBREGLASS P.C.Bs.
trade enquiries welcome
SPENCER HOUSE, BRETTENHAM ROAD, EDMONTON

Please send me:

GBS SQ DECODER PREAMPLIFIER BOARD
MASTER VOL/TONE/4/CHÅNNEL BOARD \(\square\)
POWER AMPLIFIER BOARO(S)
Name
\(\qquad\)
\(\qquad\)


\title{
THERMOCOUPLE
POTENIOMEER TYPE P4/E \\ FOR \\ TEMPERATURE MEASUREMENT RECORDER CALIBRATION
}


\section*{EX-STOCK}

This is a robust portable instrument suitable for temperature measurement with all thermocouples and for calibrating the indicating instruments that are used with thermocouples.

Two ranges are provided: \(0-105 \mathrm{mV}\) for use with base metal couples, and \(0-21 \mathrm{mV}\) for precious metal couples.

An auxiliary potential divider included provides an adjustable potential which can be injected into external instruments for calibration purposes.

CROYDON PRECISION INSTRUMENT CO. ham Pton road, croydon CR9 2RU

Telephone: 01-684 4025 and 4094
 to reproduce quadraphonic sound! Starting in this month's PRACTICAL WIRELESS is a great new series which will show you how to build an exclusively designed decoder
\[
\begin{array}{ll}
\text { CD. } 4 & \text { Victor-RCA discrete system } \\
\text { RM } & \text { Regular,Matrix surround sound } \\
\text { QS } & \text { Sansui system } \\
\text { SQ } & \text { CBS system }
\end{array}
\]

Q4 is a first time exclusive to PRACTICAL WIRELESS that enables you to play any current stereo or quadraphonic recording through your hi-fi system.
OCTOBER ISSUE OUT NOW-20p.

\section*{STEREO IC DECODER \\ HIOH PERFORMANCE PHASE LOCKED LOOP (as In 'W.W.' July' 72 )}

MOTOROLA MC1310P EX STOCK DELIVERY Separation: \(40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}\). SPECIFICATION
I/P level: 660 mV rms
O/P fevel : 485 mV Distontion: \(0.3 \%\)
Input Impedence :50k O/P revel: 485 mV ims per channel. Will drive up to 75 mA stereo 'on' lamp or LED.
\begin{tabular}{|c|c|c|}
\hline KIT COMPRISES FIBREGLASS PCB (Roller tinned), Resistors, I.C., Capacitors, Preset Potm. G Comprehensive Instructions & \[
\begin{aligned}
& \text { ONLY } \\
& \text { £3.40 }
\end{aligned}
\] & WHY PAY MORE? post free. \\
\hline LIOHT EMITTING DIODE (Red) Suitable as stereo "on' Indicator. For above with panel mounting clip and instructions & \[
\begin{aligned}
& \text { ONLY } \\
& \text { 29p }
\end{aligned}
\] & plus D.p. \\
\hline MC1310P only \(\mathbf{E 2} 77\) & .6p & \\
\hline
\end{tabular}

\section*{NOTE}

As the suppller of the first MC1310P decoder kit, of which we have sold llterally thousands, our customers can benefit from our wide experience.

From Aprll 1at add V.A.T. A. The atandard rate to all prices
FI-COMP ELECTRONICS
BURTON ROAD, EGGINTON, DERBY, DEG GGY

\section*{HYBRID AUDIO CONTROL MODULE MODEL HM80}

* 24 Pin D.I.L Package.
* Built-in coupling and decoupling capacitors. * Zero to 40 db GAIN.
* Zero to 40 db ATTENUATION.
* 2 Hz to 200 KHz BANDWIDTH
* 50 K input and 600 ohms output impedance. * 4.5 to 24 Volts neg. ground supply.
* Excellent quality and reliability.
* Extensive application report.
- Free of charge design for your particular application.
THE IDEAL WAY FOR BUILDING SUBSONIC. AUDIO \& SUPERSONIC PROFESSIONAL EQUIPMENT INVOLVING THE LEAST POSSIBLE EXTERNAL COMPONENTS. SUPERIOR QUALITY, RELIABILITY, AND EASY MAINTENANCE.

\section*{APOLLO ELECTRONICS} 96 MILL LANE, LONDON N.W. 61 Na

Tel: 01-7948326
WW- 072 FOR FURTHER DETAILS


Please send me further information on your product range
Name
Company
Address

\section*{The New Loudspeaker Range... \\ The sound of music, from the lowest frequency to the highest is now brought to the connoisseur of quality} in sound reproduction with the new. Vitavox Power Loudspeaker Range
The Range blends four superb units into one matchiess composite, or each element as a separate unit available for use with other systems. The range gives exceptional quality of sound reproduction and handles up to 100 watts of musical power. The four units are: a High Power, High Frequency Pressure Unit and a High Powe Bass Loudspeaker, each designed to give increased power handling capacity without sacrificing either efficiency or frequency response: a High Frequency Dispersive Horn. designed for use with the Pressure Unit Dividing Network for use in both high and low power systems and which ensures correct allocation of the frequency spectrum between high and low frequency units.
Carsying the Vitavox stamp of quality, this is the Range which brings you.

\section*{The Great Sound of Vitavox}

Westmoreland Road, London NW9 9RJ Telephone: 01-204 4234


\section*{If you're thinking of looking for trouble do it with this Special Extra 4-page Pull-out Supplement}

Presented as a special extra to all its readers, TELEVISION has produced this basic colour TV faults guide - the first of its kind ever devised for a British magazine.

An outstanding feature of the supplement is the reproduction of full-colour photographs taken direct from the television screen, showing basic colour television fault conditions.

Faults are explained and guidance is given on where to look for the trouble in the receiver.

Other special features include " \(110^{\circ "}\) COLOUR TV CHASSIS - a look at the new techniques involved in receivers for \(110^{\circ}\) colour tubes . PLUS up-to-the-minute coverage of television technology in depth.

Special emphasis on colour and servicing techniques together with the latest advances and developments equipment, components, and instruments.

\section*{and plug-in cards low cost, high performance units}


Limrose's new family of low-cost universal mounting boards, plug-in cards and breadboarding systems is useful for development work, device testing and circuit evaluation.
Delivery is usually ex-stock. For prices and other information please contact
L LIMROSE ELECTRONICS LIMITED
8-10 Kingsway, Altrincham,
Cheshire WA 14 1PJ.
limrose
Tel. 0619288063

WW-074 FOR FURTHER DETAILS

TWO NEW SOLDER SIPPERS MAKE DESOLDERING QUICK \& EASY


Longs Ltd.
Hanworth Lane
Trading Estate
Chertsey Surrey KT16 9LZ



Distributors:
Semicomps Ltd. 01-903 3161. Semicomps (Northern) Ltd. Kelso 2366
SDS Components Ltd. Portsmouth 65311. Semiconductor Specialists W. Drayton 46415
Agents in France, Germany, Italy, Belgium, Holland, Denmark, Sweden, Norway, Finland, Spain, Austria, Israel.

\section*{Philips Variable Transformers and Stabilisers}


\section*{If You Use Variable Transformers Contact Us For Low Prices And Ex Stock Delivery.}

PHILIPS VARIABLE TRANSFORMERS
- A choice of 280 models with ratings from 0.5 to 132 amps ( 0.16 to 31.8 KVA\() 50-400 \mathrm{~Hz}\).
- Skeleton, incapsulated open and enclosed models.
- Single and three phase manual or motorised with traverse times from 6 secs to 5 days.
- Silver alloy plated track with long life floating brushes.
- Laboratory models with meters, fuses and carrying handles.

PHILIPS STABILISERS
- A choice of over 80 models with ratings from 0.29 to 81.0 KVA.
- Open or enclosed models.
- Adjustable output.
- Stability \(\pm 1\) volt.
- Single or three phase with single or three phase sensing.
- No wave form distortion.
- Unaffected by load variations.

RILTON ELECTRONICS LIMITED
13 Harecombe Rise, Crowborough, Sussex.


\section*{From Goldring. New support for the belief that what goes into a record ought to come out of it.}

The Theory is perfectly simple.
A good cartridge should take from a record all the subtle shades of original sound that are stored there, and re-create them for your enjoyment.

The Practice is a little more difficult.
Now Goldring bring the ideal closer with the new 820 series.

A brand new family of cartridges that builds on the advances already achieved by the Goldring 800 series. Providing cartridges that are not only capable of making the most of all that good recording can offer now, but have the capacity to keep pace with new developments in the art of quality recordings.

The 820 series retains the true transparency of sound and the true transduction techniques of earlier designs.

It brings advances in every aspect of design.
The small low-mass diamond point which is mounted on a new type of specially pol ished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie wire' minimises fore and aft sty us movement, reducing non-linear distortion to a minimum.

The total effect is a cartridge that, other equipment being equal, can narrow almost to vanishing point the difference between the original recording and the sound that comes out of your speakers.

There are three models in the range. The 820 with spherical stylus. The 820 E and 820 Super E, both with bi-radial styli. Write for details and full specifications.

And satisfy yourself that 'what goes in comes out'.


\title{
The new 820 series
} The experis cartridge by Goldring ©

WW-079 FOR FURTHER DETAILS


Telephons: 0279-56347 Telex: 81675 JAYLAMPS STOBI

\section*{VARI-STAT}

\section*{THERMOSTATIC}

\section*{SOLDERING IRON}

\section*{HIGH PRODUCTION MINIATURE}

\section*{MODEL D. 50 WATT}

Weight 2 oz .
Heating time 50 secs.
Bit Sizes \(\quad \frac{1}{16}, \frac{3}{17}{ }^{\prime \prime}, \frac{1}{8}{ }^{\prime \prime}, \frac{3 " \prime}{16^{\prime \prime}}, \frac{1}{4}{ }^{\prime \prime}\)
Nickel or Iron Plated Voltage 250 to 12 volts
Price \(\quad \mathbf{f 4}\)
HIGH PRODUCTION INSTRUMENT
MODEL H. 150 WATT
Weight 6 oz .
Heating time 1 min .45 secs.
Bit Sizes \(\quad \frac{3}{16}, \frac{1}{4}{ }^{\prime \prime}, \frac{3}{8}{ }^{\prime \prime}, \frac{7}{16}\)
Nickel or Iron Plated, Voltage 250 to 12 volts
Price \(\quad \mathbf{5} \mathbf{5} 75\)

\section*{OTHER VARI-STAT IRONS:-}

Miniature Model M 50 watt Push-in Bits \(\frac{1}{12}{ }^{\prime \prime}, \frac{1}{16} \cdot \frac{3}{12}{ }^{\prime \prime}\)
Instrument Model B 70 watt Bit Size \(\frac{11{ }^{\prime \prime}}{64}\)
Industrial Model I 500 watt Bit Size \(\frac{5}{8}{ }^{\prime \prime}\)
Model D and H now incorporate a modified bit which can be split open in the event of seizure and allows the bit to be removed without damage to the element block.
CARDROSS ENGINEERING CO., LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 62655

This is a high fidelity amplifier ( \(0.3 \%\) intermodulation distortion) using the circuit of our \(100 \%\) reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.


The mixer is arranged for \(2-30 / 60 \Omega\) balanced line microphones, 1-HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or \(5 / 15 \Omega\) and 100 volt line.

\section*{50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.} This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance ( 10 meg ) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T's for low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and other stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is \(75 \%\) efficient and 100 V balanced line or \(8 / 16 \Omega\) output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.
THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, \(2-30 / 60 \Omega\) balanced microphone inputs, \(1-\mathrm{HiZ}\) gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over \(25 \%\) and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.
CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for \(8 \mathrm{ohms}-15 \mathrm{ohms}\) and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of \(30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}\). Less than \(0.2 \%\) distortion at \(1 \mathrm{Kc} / \mathrm{s}\). Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output \(100-120 \mathrm{~V}\) or \(200-240 \mathrm{~V}\). Additional matching transformers for other impedances are available.

\section*{F.E.T. MIXERS and PPMs.}


Since we have been supplying professional mixers for 25 years we have delayed the introduction of solid state units until they were at least as good as their valve counterparts. (Which will continue where required.)
The various sections of the FET mixers and BBC type PPM's have been . performing successfully for several years in other equipments with complete reliability. The PPM also uses an FET in its time constant circuit so that polyester capacitors can be used. The response from the \(600 \Omega\) output ( \(25 \Omega\) source impedance) is level 20 Hz to over 30 kHz with very low intermodulation distortion to zero level +12 dB . The input signal voltage range is over twice that of the valve unit and the noise at least halved.

\section*{Radio and Line Transmission, Vol. 2-2nd Edition}

George L. Danielson MScTech, BSc, CEng, MIEE and Ronald S. Walker CEng, MIERE
The second in a series of three books written to meet the needs of the technician specialising in Radiocommunication in the City and Guilds Telecommunication Technicians' Course. The volume covers the revised syllabus of Radio and Line Transmission B, and is suitable for third-year students on a part-time course or for second-year full-time students. Though written primarily for students on technician courses, the work will provide a background for those engaged in more advanced studies.
304pp illustrated \(\quad 0592000672\)
1972 (2nd Impression 1972)
f1-60

\section*{Radio and Electronic Laboratory Handbook-8th Edition}

\section*{M. G. Scroggie BSc, CEng, FIEE}

This completely revised edition of a book which has been a standard work of reference within its field for over thirty years contains much useful new information. There are new or extended sections on microelectronics, integrated circuits and operational amplifiers and a fuller treatment of the use of transistors in instrumentation. Sl units are now used throughout the book.
\(\begin{array}{llllll}\text { and a fuller treatment of the } \\ 628 p p \text { illustrated } & 059205950 & 1971 \text { (2nd Impression 1972) } & \mathbf{E 5 - 2 5}\end{array}\)

\section*{Operational Amplifiers}

\section*{G. B. Clayton BSc, FlnstP}

This text is designed to provide an insight into the capabilities and applications of the modern operational amplifier. As it is simpler and potentially more reliable to work with operational amplifiers than using only the traditional discrete components, the nonspecialist should find it easier to design his own measurement systems if he makes use of them, either in modular or in integrated circuit form. Practising instrumentation engineers and research workers using electronic instrumentation techniques will all find the insights afforded by the text of great practical help in their respective programmes,
244pp illustrated
0408702028
1971
f3. 50

\section*{110 Integrated Circuit Projects for the Home Constructor \\ \section*{R. M. Marston}}
R. M. Marston
Integrated circuits are the most important new semiconductor devices to have been developed within the last decade. They are compact, easy to use and less expensive than their discrete transistor-resistor equivalents. This work gives an entirely practical introduction to these devices by describing one hundred and ten constructional projects in which they can be used. The book will be of great value to and a fruitful source of ideas for the professional engineer, the student and the amateur constructor. Like the author's other books, such as the successful 20 Solid State Projects for the Home and 20 Solid State Projects for the Car and Garage, this volume is written in a clear and straightforward manner which makes this important subject accessible even to those with little technical knowledge.
138pp illustrated
\(059200063 \times\) cased 1971
f1-80
0592000583 limp
f1-20

\section*{Available from leading booksellers or The Butterworth Group}

88 Kingsway, London WC2B 6AB. Showrooms and Trade Counter, 4-5 Bell Yard, LondonWC2

\section*{Purpose-built servo and actuator systems using standard components}


Low Inertia DC motor Typic
McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems.
Such a system could be complete in itself or form part of your own design.
Typical examples include :
Camera positioning: Plotting Devices:
Self-steering Systems: Sig-nal-seeking Aerial Drives: Professional Tape Drives: Automated Production Lines. Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals.
integral feed-back Potentiometer


McLennan Engineering Ltd
Control Systems and Components Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.

\section*{THE NEW NELSON-JONES FM TUNER}


\section*{PUSH-BUTTON VARICAP DIODE TUNING (6 Position)}

\section*{Exclusive Designer Approved Kits}

The Nelson-Jones Turner is now available as a complete kit with all Metalwork, Printed and anodised Front Panel and Teak veneered cabinet. A Six Position push-button unit is used with each pre-selector button fully tuneable wiih its own scale and pointer and incorporating AFC disable for fine tuning.
Provision is also made for a Stereo LED, (RED or GREEN). Stereo Decoder, Internal PSU and Fine Tuning indication (Meter or LED type). Push-button switches are also used for Stereo Mute and Mains On/Off. All sockets, board standoffs and panel mounting fuse are supplied. The tuner is available in two gain versions, and our alignment service is available to customers without access to a signal generator.
Prices for complete kits start at \(£ 23 \cdot 75\) (mono) plus p.p. 45 p., and of course all components are available separately.
Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available e.g. The Portus and Haywood Phase Locked Stereo Decoder Kit
PLEASE NOTE. Existing tuners are readily convertible and kits / parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at \(£ \mathbf{2 8 . 5 0}\) plus p.p. \(\mathbf{4 5}\) p including a Teak Sleeve.



You can order these goods by Telephone on Access Simply quote your Access Number
\begin{tabular}{|lllll|}
\hline & & \multicolumn{3}{c}{ OPTO-D } \\
Panel mounting LED's. \\
RED & \(1-9\) & \(29 p\) & \(10-24\) & \(23 p\) \\
GREEN & \(1-9\) & \(69 p\) & \(10-24\) & \(59 p\)
\end{tabular}
V.A.T. Please add V.A.T. at \(10 \%\) to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW

Phone Repton (028389) 3580

\section*{cavern electronics}

We have moved to:
94 STRATFORD ROAD, WOLVERTON, MILTON KEYNES, BUCKS. MK12 5LU

RETAIL COUNTER NOW OPEN
Mail Order Service for those who cannot visit us
Please send stamp for our Component Lists

WW-085 FOR FURTHER DETALS


\section*{Audio Connectors}

Broadcast pattern jackfields, jackcords plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street.
London W1V 3LE
01-437 1892/3


\section*{CHECKMATE PROFESSIONAL CROSSHATCH GENERATOR}

The unique test card edge enables the completely accurate alignment of colour and monochrome receivers without the need of a broadcast test pattern. The crystal derived patterns and waveforms make extensive use of digital i.c. logic. The stable and reliable 625 line high resoution patterns are crosshatch dot and white field, full \(2: 1\) interlace with complete synchronising and blanking waveforms. Continuous tuning over all channels in each band B.N.C. video outputs into 75 ohms available for CCTV use on all medels.
\begin{tabular}{ll} 
Model CCH-1 UHF Bands IV \& V & \(\mathbf{£ 6 9 . 0 0}\) \\
Model CCH-VVHF Band 1 & \(\mathbf{£ 7 0 . 0 0}\) \\
Model CCH-V2 VHF Band 11 & \(\mathbf{£ 7 0 . 0 0}\) \\
Model CCH-V3VHF Band 111 & \(\mathbf{£ 7 0 . 0 0}\)
\end{tabular}
U.K. Customers add VAT. Overseas Customers CIF at cost.

Send for further information from the sole agants:
MANOR ENGINEERING,
The School House, Crookham Common,
Newbury, RG15 8EJ, England.
Telephone: Heedley 487.
Telegrams: MANORENG, NEWBURY


\title{
\(\square\) Lightweight \(\square 50 \mathrm{MHz}\) bandwidth at \(5 \mathrm{mV} / \mathrm{div}\) \(\square 1 \mathrm{mV} /\) div at \(15 \mathrm{MHz} \square 3 \%\) accuracy \(\square\) Mixed sweep \(\square\) Calibrated sweep delay \(\square\) Gated trigger \(\square\) Bright \(8 \times 10 \mathrm{~cm}\) display
}

\section*{Anew Dual Trace, 50 MHz Portable Oscilloscope for£420}

Yes indeed! A 50 MHz dual-trace instrument costing you only \(£ 420\) And it's portable too - the light weight, comfortable-to-carry. take-it-anywhere kind of portable Developed by engineers for engineers this newcomer from Telequipment offers unprecedented
value when compared with similar 50 MHz instruments. The outstanding specification of the D75 includes a wide-range dual timebase incorporating sweep intensifying, delaying, mixed sweep and single-shot facilities, an \(8 \times 10 \mathrm{~cm}\) CRT operating at

\section*{Telequipment}
<需〉

15 kV , and dual-trace operation in alternate and chopped modes with \(5 \mathrm{mV} /\) div all the way up to 50 MHz
Write or telephone now for the specification and a demonstration. and prove for yourself that the D75 is the oscilloscope for you
Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone: Harpenden 61251 Telex : 25559

WW-100 FOR FURTHER DETAILS

\title{
Wireless World
}

\author{
Electronics, Television, Radio, Audio
}


This month's cover picture shows part of the internal structure of an image intensifier made by Cathodeon. (Photographer Paul Brierley)

\section*{In our next issue}
(publication date October 15)
Model railway control system, using different d.c. levels, provides control of speed, locomotive whistle and coach interior illumination. Multi-flash trigger unit initiates flashes a equal intervals from milliseconds to seconds for sequence photography.

October 1973
Volume 79 Number 1456

\section*{Contents}

469 The Educated Ear
470 Dual-polarity Digital Voltmeter by A. J. Ewins
476 H. F. Predictions
477 News of the Month
Miniature TV camera
New laser-induced effect
Berlin radio and TV shows
479 Multi-channel Proportional Remote Control by M. F. Bessant
482 Books Received
483 Independent Local Radio
485 Electronic Sound Synthesizer - 3 by T. Orr and D. W. Thomas
491 An Approach to Amplifier Design - 3 by J. R. Stuart
494 Sixty Years Ago
495 Circards - 10: Micropower circuits by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

497 Letters to the Editor Tuner front-end devices Record equalization Breakdown of c.m.o.s. devices

499 Communications 74
500 October Meetings
501 The Realm of Microwaves - 6 by M. W. Hosking
505 Literature Received
506 Total Communications - \(\mathbf{2}\) by E. J. Gargini
510 Presenting Maintenance Information by \(S\). W. Amos
514 Books Received
515 Circuit Ideas
516 World of Amateur Radio
517 New Products
522 Real and Imaginary by "Vector"
Al10 APPOINTMENTS VACANT
A138 INDEX TO ADVERTISERS

\section*{ibpa}

Intermalions Busness
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
C) I.P.C. Business Press Ltd, 1973

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

\footnotetext{
Price 20p. (Back numbers 40p.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscripticn rates: Home, \(£ 4.35\) a year. Overseas, 1 year £5; 3 years \(£ 12.50\) (U.S.A. \& Canada 1 year \(\$ 13\), 3 years \(\$ 32.50\) ) Student rates: Home 1 year \(£ 2.18,3\) years \(£ 5.55\). Overseas, 1 year \(£ 2.50 ; 3\) years \(£ 6.25\) (U.S.A. \& Canada 1 year \(\$ 6.50,3\) years \(\$ 16.25\) ).

Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing. previous address.
}


\section*{microphoner motter most.}


Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sourd system quality-regardless of the other components in the system. It is false economy at it worst to be a microphone miser. Install Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice infelligibility (and fewer service calls due to microphone problems).

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU

\section*{The Educated Ear}

\section*{Editor:}

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

\section*{Advertisements:}
G. BENTON ROWELL (Manager)

Phone 01-261 8339
KEITH NEWTON
Phone 01-261 8515
A. PETERS (Classified Actvertisements) Phone 01-261 8508 or 01-928 4597

In our July issue we published a letter bewailing the lack of a "figure of goodness" for f.m. tuners. In the August issue J. R. Stuart's article on amplifier design told of the attempt to find a co-relation between objection measurements and subjective tests of harmonic distortion. These passages, and no doubt the unexpressed thoughts of many audiophiles, indicate a yearning for that mysterious formula, an objective standard of quality in reproduced sound. In its absence we must make do with subjective assessments. Fortunately, for those in mental distress, there are plenty of people around who will give you a subjective assessment at the drop of a hat. There are those who can tell the difference between "transistor sound" and "valve sound", those who can distinguish between a high quality Class B amplifier and a high quality Class A one, and above all there are the reviewers of equipment in the audio magazines.

One presumes that these people (especially the reviewers, who publish their conclusions) have a highly discriminating sense of hearing. Perhaps they were born with it, but at any rate we are told that whatever the initial state of the faculty it can be developed by training - the ear can be educated. But what exactly is the nature of the training, what are the criteria for an educated ear, what levels of aural education are attainable, how do we know what level a particular assessor has reached. and to what extent can we rely on the judgments resulting from the training? In fact we know very little about these qualifications. It appears that the training is self-administered and consists largely of constant listening, straining to distinguish minute differences of sound quality, development of a good aural memory, and familiarization with the aural correlates of engineering measurements such as distortion. From advertisements in which items of audio equipment are endorsed by famous musicians we are led to believe that these powers of assessment are normal attributes of musically trained people - and, perhaps conversely, that equipment reviewers and other assessors have musical ability of the kind possessed by professional musicians. But this is dangerous territory - a quagmire of subjectivism.

For those who feel lost in such considerations it is comforting to know that there is, at least, an objective standard of audio equipment performance. This is the group of specifications, DIN 45500 , issued by the German standards institution Deutscher (Industrie) Normenausschuss, which lays down in quantitative engineering terms the minimum performance requirements for domestic equipment that will permit it to be described as "high fidelity". Regrettably the British Standards Institution does nothing equivalent (only recommended methods of measurement), so those British audio manufacturers that are interested are making use of DIN 45500 . For the customer who does not have an educated ear but does have a highly developed sense of value for money it must be some satisfaction to know that what he has bought is, in a sense, sound of guaranteed minimum quality. The conformity to DIN 45500 and the figures contained in the specifications do not tell him the nature of this sound quality he has bought but, whatever it is, he does know that he has got it.

\section*{1 - Circuit operation}
a \(3 \frac{1}{2}\)-digit instrument for alternating and direct voltages

\author{
by A. J. Ewins
}

This article describes the design and construction of the electronics of a \(3 \frac{1}{2}\)-digit, dual-polarity digital voltmeter for measuring alternating and direct voltages in the range 200 mV to 400 V full-scale. It is capable of an accuracy of \(\pm 0.05 \%\) of full-scale which in practice is limited by the precision of the input attenuator resistors and the accuracy of the a.c. rectifier circuit. A relatively inexpensive attenuator system is described which is capable of being adjusted to an accuracy of \(\pm 0.1 \%\) giving an overall accuracy to the d.c. ranges of \(\pm 0.1 \%\) of reading, \(\pm 0.05 \%\) of full-scale. For the a.c. ranges the accuracy is further limited by the rectifying circuit but nevertheless an accuracy of \(\pm 0.5 \%\) of reading, \(\pm 0.05 \%\) of full-scale is achieved over a frequency range of 30 Hz to 100 kHz . The fullscale reading of the d.v.m. is 1999 (with suitable positioning of the decimal point) and an overload indication is given for readings in excess of this value. In spite of the overload indication it is possible to interpret readings up to an indication equivalent to 2500 .
An additional feature of the d.v.m. is its ability to operate in either an automatic or a manual mode. In the auto. mode the d.v.m. continually samples the input voltage but can be made to "hold" and display the latest reading by depressing a sample/hold switch. In the manual mode the d.v.m. holds and displays the latest reading of the input voltage but can be made to further sample it by depressing the sample/hold switch, after which it again holds.
Details of the construction of the electronics on suitable circuit boards only is
given, it being left to the reader to devise a suitable cabinet construction.

\section*{Design principles}

The d.v.m. operates on the by now wellknown dual-slope integration method. Two previous designs presented in this journal \({ }^{1,2}\) operate on this principle and a detailed account of the theory was given in Waddington's article, "Digital Multimeter" \({ }^{1}\). However, for those readers who missed both previous articles and are unfamiliar with the technique a brief description of the principle will be given.

Single polarity. With reference to the block circuit diagram of Fig. 1, a capacitor \(C\), is charged (negatively) by connecting the positive input voltage, \(V_{i n}\), (via the electronic switch) to the resistor \(R\) for a known time. The resistor \(R\), capacitor \(C\) and the highgain operational amplifier form an integrating circuit with highly linear characteristics. At the end of this time the voltage on the capacitor will be \(V_{c}\), given by the expression:
\[
V_{c}=(1 / R C) \int_{0}^{t_{1}} V_{i n} \cdot \mathrm{~d} t=V_{i n} \cdot t_{1} / R C .
\]

The electronic switch now connects the resistor \(R\) to the accurately known negative reference voltage and the capacitor is discharged (positively) until \(V_{c}\) reaches the value it was before it was charged (usually , zero volts). Thus,
\[
\begin{aligned}
0=V_{c}-(1 / R C) \int_{0}^{t_{2}} & V_{r e f} \cdot \mathrm{~d} t \\
& =V_{c}-V_{r e f}, t_{2} / R C .
\end{aligned}
\]

Hence, \(V_{\text {in }} \cdot t_{1} / R C=V_{\text {ref }} \cdot t_{2} / R C\) and \(V_{\text {in }}=\) \(V_{\text {ref }} \cdot t_{2} / t_{1}\).

The value of \(t_{1}\) is determined by the frequency of the clock oscillator and the divide-by- 10 and 2000 counters. (The divide-byten counter has been introduced to ensure that the control logic operates at a speed at least ten times faster than the time represented by the least significant digit of the main, divide-by- 2000 counter.) At the beginning of the charging process these two counters are set to zero. The logic is so arranged that when the divide-by-2000 counter reaches a total count of 2000 (after 20,000 clock pulses, and hence after a time \(2 \times 10^{-5} \times 10^{4}=100 \mathrm{~ms}\) ) the charging process is stopped and the discharging process begun (by disconnecting \(R\) from \(V_{\text {in }}\) and connecting it to \(-V_{\text {ref }}\) ). The divide-by2000 counter now counts the number of clock pulses (divided by ten) received in the time it takes to discharge the capacitor to zero volts. The comparator, of Fig. 1, detects the zero voltage level and transmits a pulse to the control logic, commanding the transfer of the time indicated by the main counter to the display. Immediately after the transfer, the divide-by- 10 and 2000 counters are reset to zero and the resistor \(R\) reconnected to \(+V_{i n}\). A new measurement cycle then begins. (N.b., there is no need to reset the divide-by-10 and 2000 counters to zero at the end of the charging process because they automatically recycle at the end of this period.) Because the fullscale of the main counter is effectively a display of 2000 , the value of \(V_{\text {in }}\) may be read directly in terms of \(t_{2}\) if \(-V_{\text {ref }}\) is given a value of -2 volts, i.e. \(V_{i n}=t_{2} \cdot 2 \mathrm{~V} / 2000\) This is the case of the d.v.m. described in this article and the basic range is thus 2 volts.

The beauty of the dual-slope integration method lies in the fact that the long-term stability of the clock oscillator and the precise values of \(R\) and \(C\) are unimportant. Providing they are stable over the shortterm (not more than 200 ms for a full-scale reading) which may more than reasonably be expected, the accuracy of the system is theoretically only dependant upon the accuracy of the reference voltage.

As has already been mentioned, the divide-by-10 and 2000 counters are reset to zero immediately after the time \(t_{2}\) has been transferred to the display. This is unlike the
previous designs described in this magazine, which had a "dead period" at the end of the discharging process, whilst the main counter continued towards a total count of 2000 , before reconnecting the input to the integrator to \(V_{i n}\). The modification to this design allows readings in excess of full-scale (up to a limiting value discussed later) to be accurately interpreted and is one of the reasons why existing large-scale integrated circuits were not considered for the control and display logic. The main reason, at the time of construction, was one of cost and availability. The article, "Digital Panel Meter" \({ }^{2}\), published in this journal, amply illustrates the advantages to be obtained from using l.s.i.cs. However, while the use of individual logic circuits may be cheaper than the large-scale ones (if considerably more bulky) the author has taken advantage of the opportunity to "stamp" his own originality upon the design of d.v.m. circuits. Eventually, when the cost of 1.s.i.cs become really low, the designer will no longer be free to indulge his own whims and fancies upon the basic designs, but will have to be content to accept the designs of others.

The lack of a "dead period" in the operation of the d.v.m. measurement cycle does have one other advantage in the simplification of the switching circuitry when only one resistor is used in the integrator. If more than one resistor is used, say, one for \(+V_{\text {in }}\) and one for \(-V_{\text {ref }}\), a possible source of error is introduced due to the differing ageing characteristics between resistors.

Dual polarity. The principle of operation of a dual-slope integrating digital voltmeter so far described has only been for a single polarity type. For a dual-polarity type, some modification to the basic block diagram of Fig. 1 is necessary. Fig. 2 is a block diagram of the dual-polarity principle adopted by the author. The method of conversion of voltage into time is exactly as described before. However, the capacitor \(C\) will be charged negatively or positively as determined by the polarity of the input voltage. Thus two reference voltages, of equal magnitude but opposite sign, are needed to discharge the capacitor, positively or negatively as appropriate. Two comparators are also required to detect the direction of the
charge on the capacitor and hence select the appropriate reference voltage for discharging. Except for the addition of polarity detecting logic, the operation of the control and display logic remains unaltered.

Initially the capacitor \(C\) is discharged and the output from the integrator, \(V_{c}\), will satisfy the following condition; -2 mV \(<V_{c}<+2 \mathrm{mV}\). The output from comparator 1 will therefore be logical " 1 " and that of comparator 2, logical zero. Due to the inversion of the logical level at the output of comparator 2 by inverter 1, the input to the control logic and from the AND gate will be logical " 1 ", which is the same as for the single-polarity d.v.m. of Fig. 1. This is thus the beginning of the measurement cycle and the control logic connects the resistor, \(R\), via the electronic switch, to \(V_{i n}\). Providing that the magnitude of \(V_{\text {in }}\) is greater than zero, the capacitor \(C\) will be charged. If \(V_{\text {in }}\) is positive, \(C\) will be charged negatively and the output of comparator 1 will become logical zero. Comparator 2 remains unaltered at the logical zero level.

The output from the AND gate thus changes to logical zero. Similarly, if \(V_{\text {in }}\) is negative, \(C\) will be charged positively and the output of comparator 2 will become logical " 1 ", comparator 1 remaining at the logical " 1 " level. Once again, the output from the AND gate becomes logical zero. At the end of the timing period, the control logic commands the connection of one of the reference voltages to the input of the integrator. The reference voltage selected is dependant upon the logical states of the two comparators fed-back to the electronic switch. If the output from both comparators is logical zero, \(-V_{\text {ref }}\) will be selected and if they are both logical "1", \(+V_{\text {ref }}\) will be selected. The logic of the electronic switching circuit is so arranged that a logical zero at the output of either comparator inhibits the selection of \(+V_{\text {ref }}\) and a logical " 1 " at the output of either comparator inhibits the selection of \(-V_{r e f}\). Because of this it is impossible for both reference voltages to be selected simultaneously. Having connected the appropriate reference voltage to the integrator the capacitor is discharged until the voltage across it again satisfies the condition, \(-2 \mathrm{mV}<V_{c}<+2 \mathrm{mV}\). When this occurs, the output from the AND gate
again becomes logical " 1 ", commanding the control logic to transfer the time \(t_{2}\) from the main counter to the display, reset the divide-by- 10 and main counters to zero and reconnect the input of the integrator to \(V_{i n}\).

Polarity indication is achieved by detecting the logical states of the two comparators at the end of the initial timing period. If at the end of this time the outputs of both comparators are logical zeros (when \(V_{\text {in }}\) is positive) the \(J\) input to the \(J-K\) flip flop will be logical " 1 "' (due to the inverting action of inverter 2) and the \(K\) input will be logical zero. A pulse from the control logic, transmitted at the end of the timing period, transfers the logical " 1 " at the \(J\) input to the \(Q\) output, which in turn operates drivers in the display unit to indicate the positive sign. Similarly, if at the end of the timing period the outputs of both comparators are logical " 1 ", then the \(J\) and \(K\) inputs will be logical zero and " 1 ", respectively, and a logical " 1 " will be transferred to the \(\bar{Q}\) output. Thus the negative sign will be displayed. When the input voltage is zero, the outputs of both comparators remain unaltered, from their original conditions, at the end of the initial timing period. Both \(J\) and \(K\) inputs are thus logical zeros and the polarity sign indicated is that of the last input voltage greater than zero. In this manner, the sign indicated by the display remains illuminated until an input voltage of opposite polarity is applied. By shorting the \(V_{i n}\) input to earth, the polarity indication may be used to accurately set the zero reading of the d.v.m.

The -2 mV and +2 mV reference voltages applied to the negative inputs of comparators 1 and 2, respectively, are necessary in order to define clearly the discharged state of the integrating capacitor. It would not be possible to do this if both reference inputs were connected to earth. In practice it is sufficient to separate the reference levels of the comparators by such an amount as to guarantee the discharged state to be clearly defined, allowing for temperature drift of the differential offset voltages of the comparators. The fact that the two comparator reference levels are at different voltages in no way impairs the accuracy of the system. However, the closer the two reference levels, the easier it is to assess a true zero condition in the absence

Fig. 2. The system of Fig. I adapted to accept dual-polarity inputs.

of an input voltage, and 2 mV represents a resolution of less than the least significant digit displayed.

\section*{Basic d.v.m. circuit}

For convenience the basic circuitry of the d.v.m. has been split up into two. Fig. 3 is a detailed circuit diagram of all the analogue circuitry of the d.v.m. plus the electronic switching circuitry and the polarity logic. Fig. 4 is a detailed block circuit diagram of the control and display logic. It will be seen that the total circuitry uses only well known and easily obtainable, inexpensive, operational amplifiers, transistors and t.t.l. digital circuits.

Analogue circuit. Examining first of all the circuit of Fig. 3 it will be seen that \(Z_{2}\), which is fed with a constant current of about 5 mA by \(T r_{5}\) and its associated circuitry, provides a reference voltage of +5.6 volts. This large positive reference voltage is converted into a smaller positive one of 2 volts, with low output impedance, by \(I C_{1}\) and its associated circuitry. It is similarly converted into a -2 volt reference level, with low output impedance, by the inverting action of \(I C_{5}\) and its circuit. Variable resistors, \(R_{1}\) and \(R_{2}\), allow for a precise setting of these two reference levels. \(I C_{3}\) provides a buffer input for \(V_{i n}\), has unity gain and a low output impedance. The output from \(I C_{3}\) is voltage limited by zener diodes \(Z_{3}\) and \(Z_{4}\) for the protection of
the transistors used in the electronic switch. \(R_{3}\) allows the output from \(I C_{3}\) to be adjusted precisely to zero when the input voltage is zero. \(I C_{6}\) is the integrating operational amplifier and \(I C_{8}\) and \(I C_{9}\) are the comparators, 1 and 2 , respectively. \(T r_{1}\) is the transistor switch for \(+V_{r e f}, T r_{4}\) the switch for \(-V_{r e f}\) and transistors \(T r_{2}\) and \(T r_{3}\), in parallel, the switch for \(V_{i n}\). The operation of these transistor switches is controlled by \(I C_{2}\) and \(I C_{4}\) and the outputs from the two comparators via the diodes \(D_{1}\) to \(D_{8}\). The operation of these transistors as switches may be unfamiliar to some readers and will therefore be explained. Figs. \(5(\mathrm{a})\) and \(5(\mathrm{~b})\) illustrate, respectively, the conventional use of a transistor as a switch and the more unconventional mode as used in this d.v.m. In Fig. 5(a), when a sufficiently large current is applied to the base of the transistor, it saturates with a collector-emitter voltage of typically 200 mV , which varies little with varying supply volts, \(V_{s}\), providing the collector resistor is of a reasonably high value. This offset voltage is very high when compared with a resolution for the d.v.m. of 1 mV and makes the use of a transistor as a switch, in this mode, quite unsuitable. It is a curious fact, however, that when the same transistor is turned upside down, see Fig. 5(b), ( \(V_{\mathrm{s}}\) must not now exceed the \(V_{b e}\) breakdown voltage of the transistor) and a sufficiently large current is applied to the base of the transistor, it saturates, this time with an
emitter-collector voltage of only a few millivolts. Experiments with n-p-n and p-n-p transistors, types BCl 182 and BC 212 respectively, in the test circuits of Figs. 5(c) and \(5(\mathrm{~d})\) (which are effectively rearrangements of the circuit of Fig. 5(b), allowing for transistor types), yielded the results in Table 1.

Table 1
\begin{tabular}{ccc}
\hline \multirow{2}{*}{\begin{tabular}{c}
\(V_{i n}\) \\
(volts)
\end{tabular}} & \multicolumn{2}{c}{\(V_{c \theta}(\mathrm{mV})\)} \\
\cline { 2 - 3 } & BC182 & BC212 \\
\hline+2 & +3.3 & +2.1 \\
+1 & +1.5 & +1.3 \\
0 & -0.3 & +0.3 \\
-1 & -1.7 & -1.0 \\
-2 & -2.8 & -2.5 \\
\hline
\end{tabular}

The above two transistors were selected randomly and others of the same two types produced only slightly different results From the above results it was thought quite satisfactory to use a BC182, in this switching mode, for switching \(+V_{r e f}\) and a BC212 for switching \(-V_{r e f}\). The very small voltages dropped across the collector and emitter of the transistors are easily allowed for in the adjustment of the two reference levels.

Neither of the two transistors was thought ideal for switching the input voltage because, although the small voltages dropped across the transistors at \(V_{\text {in }}\) equals zero could be allowed for in the zero adjustment


Fig. 3. The analogue circuitry.
of the input op-amp, the relationship between \(V_{c e}\) and \(V_{i n}\) were not exactly linear. However, the author discovered that if both types of transistor were used (by connecting them back-to-back as in Fig. 5(e)) and were switched on simultaneously, a nearly ideal switch was produced. Using the same two transistors, as tested above, in the experimental circuit of Fig. 5(e) produced the results in Table 2.

Table 2
\begin{tabular}{cc}
\hline\(V_{i n}\) (volts) & \(V_{c \theta}(\mathrm{mV})\) \\
\hline+2 & +2.7 \\
+1 & +1.4 \\
0 & \(\sim 0\) \\
-1 & -1.3 \\
-2 & -2.7
\end{tabular}

The two transistors were thus acting together to produce a switch with very nearly zero offset voltage and an effective "on" resistance of \((2.7 \mathrm{mV} \times 20 \mathrm{k} \Omega) / 2 \mathrm{~V}=27 \Omega\). A parallel combination of a BCl 82 and a BC 212 is thus used as the switch for \(V_{i n}\). The above table of results is interesting in view of the fact that the two transistors used were not precisely matched, except for their values of \(V_{c e}\) at zero input voltage. The author, therefore, feels fairly confident that any pair of transistors, types BC182 and BC212, should function satisfactorily in this manner without the need for special matching.

(a)

(b)

(c)

(d)


Fig. 5. (a) Conventional and (b) inverted transistor switches. Test circuits, using n-p-n and \(p-n-p\) devices are shown in (c) and (d) and (e) in the final form using both types.


Fig. 6 illustrates the complete switching circuitry of the d.v.m. and, remembering that the outputs from the two comparators (IC \(C_{8}\) and \(I C_{9}\) ) and \(I C_{2}\) and \(I C_{4}\) are either + or -10 volts (approx.), operates as follows: At the onset of the measurement cycle (i.e. \(V_{\text {in }}\) connected to the input of the integrator) the voltage at the output of \(I C_{8}\) is +10 V ; that of \(I C_{9},-10 \mathrm{~V}\); that of \(I C_{2},-10 \mathrm{~V}\) and \(I C_{4},+10 \mathrm{~V}\). The voltage at the junction of the diodes, \(D_{1}, D_{2}\) and \(D_{3}\), is thus approx. -10 V and \(T r_{1}\) is OFF, the voltage at the junction of the diodes, \(D_{6}, D_{7}\) and \(D_{8}\), is approx. +10 V and \(T r_{4}\) is OFF; the voltage at the base of \(T r_{2}\) is negative of its collector and therefore it is ON , and the voltage at the base of \(\mathrm{Tr}_{3}\) is positive of its collector and therefore it is also ON . At the end of the timing period the voltages at the outputs of \(I C_{2}\) and \(I C_{4}\) reverse, to become +10 V and -10 V respectively, turning transistors \(T r_{2}\) and \(T r_{3}\) OFF. In the absence of any feedback from the outputs of the two comparators, transistors \(T r_{1}\) and \(T r_{4}\) would simultaneously be turned ON, shorting \(+V_{\text {ref }}\) and \(-V_{\text {ref }}\) together. However, with the connections as shown and assuming a positive input voltage, the output of comparator one \(\left(I C_{8}\right)\) will have become -10 V by the end of the timing period, the output of comparator two remaining -10 V . The junction of diodes \(D_{6}, D_{7}\) and \(D_{8}\) is thus free to swing in a negative direction at the command of \(I C_{4}\) and \(T r_{4}\) is turned ON connecting \(-V_{\text {ref }}\) to the input of the integrator. -10 V at the outputs of both comparators prevent \(T r_{1}\) from being turned ON . If the input voltage had been negative, the output of comparator two ( \(I C_{9}\) ) would have become +10 V by the end of the timing period, the output of comparator one remaining +10 V ; the junction of diodes \(D_{1}, D_{2}\) and \(D_{3}\) would then have been free to swing in a positive direction at the command of \(I C_{2}\) and \(T r_{1}\) would have been turned ON , connecting \(+V_{\text {ref }}\) to the input of the integrator. +10 V at the output of both comparators prevent \(T r_{4}\) from being turned ON . The diodes \(D_{1}, D_{4}, D_{5}\) and \(D_{8}\) prevent breakdown of the emitter-base junctions of the transistors \(T r_{1}\) to \(T r_{4}\), respectively, when they are held in their OFF states.

The switching currents feeding into the bases of the transistors \(T r_{1}\) to \(T r_{4}\) to turn them ON are of the order of \(300 \mu \mathrm{~A}\) to \(500 \mu \mathrm{~A}\), and it is because of this relatively heavy current that the output impedances of the sources of \(+V_{\text {ref }},-V_{\text {ref }}\) and \(V_{\text {in }}\) must be low. A higher output impedance would result in these voltage levels being altered in the presence of the switching currents, impairing the accuracy of the d.v.m.
Returning now to Fig. 3, it will be appreciated that the outputs from the two comparators (either + or -10 volts) are not compatible with t.t.1. digital circuit logic levels. (For the t.t.1. circuits, logical \(0 \equiv 0.2 \mathrm{~V}\) and logical \(1 \equiv 2.5\) to 5.0 V .)
Transistors \(T r_{6}\) to \(T r_{9}\) are included to achieve this conversion in voltage levels and to provide the inversion function of the inverters 1 and 2 of Fig. 2 and also to provide the function of the AND gate. Thus, when the output from \(/ C_{8}\) is +10 volts, the collector of \(T r_{9}\) is about 0.2 volts and hence the


Fig. 6. The complere analogue switching circuit.
\(J\) input of the \(J-K\) flip-flop is logical " 0 "; when it is -10 volts, the collector of \(T r_{9}\) and the \(J\) input are at about 5 volts, i.e. logical " 1 ". Similarly, when the output from \(I C_{9}\) is -10 volts, the collector of \(T r_{6}\) is about zero volts and hence the \(K\) input to the \(J\)-K flip-flop is logical " 0 "; when it is +10 volts, the collector of \(T r_{6}\) and the \(K\) input are at the logical "l" level. When the outputs from \(I C_{8}\) and \(I C_{9}\) are +10 volts and -10 volts respectively, the output to the control logic, \(V_{o}\) (the junction of the collector of \(\mathrm{Tr}_{7}\) and the emitter of \(\mathrm{Tr}_{8}\) ), is at the logical " 1 " level. If either \(I C_{8}\) is -10 volts or \(I C_{9}\) is +10 volts, the output, \(V_{o}\), becomes logical zero.
\(I C_{2}\) and \(I C_{4}\) are included for similar reasons to the transistors \(T r_{6}\) to \(T r_{9}\); they convert the t.t.l. logic level from \(\bar{C}\) to the necessary plus and minus 10 volt levels for the operation of the electronic switch circuitry. The positive input of \(I C_{2}\) and the negative input of \(l C_{4}\) are held at a voltage level of about +2 volts. A logical " 0 " at the \(\bar{C}\) output from the control logic thus produces voltage levels at the outputs of \(I C_{2}\) and \(I C_{4}\) of +10 V and -10 V , respectively. Logical " 1 " at the \(\bar{C}\) output produces voltage levels of -10 V and +10 V at the outputs of \(I C_{2}\) and \(I C_{4}\), respectively.

It has already been stated that the inclusion of zener diodes \(Z_{3}\) and \(Z_{4}\) is to limit the output from \(I C_{3}\) for the protection of the switching transistors. The necessity for this protection can best be understood by assuming that a voltage much greater in magnitude than 2 V , say +4 V , were applied to the input of \(I C_{3}\). Since it has unity gain, the voltage on the collectors of \(\mathrm{Tr}_{2}\) and \(\mathrm{Tr}_{3}\) would also be +4 V . Now, if the input of the integrator were connected to \(-V_{\text {ref }}\) then the voltage on the emitters of \(T r_{2}\) and \(T r_{3}\) would be -2 V and the emitter-base junc-
tion of \(T r_{2}\) would be in danger of breaking down, since \(V_{b e}\) for all four transistors is only rated at 5 volts. (N.b., a transistor with a reverse voltage connected across its emitter and collector can only withstand a voltage equivalent to its \(V_{b e}\) breakdown voltage plus the voltage across the forward biased collector-base diode.) Similar danger would be experienced if \(V_{i n}\) were -4 V and the input to the integrator connected to \(+V_{\text {ref }}(+2 \mathrm{~V})\); the emitter-collector junction of \(\mathrm{Tr}_{3}\) would then be threatened. The emitter-collector junctions of \(T r_{1}\) and \(T r_{4}\) could also be threatened if the input to the integrator were connected to \(V_{i,}\) when it was at a level of +4 V or -4 V , respectively. \(Z_{3}\) and \(Z_{4}\) limit the voltage on the collectors of \(T r_{2}\) and \(T r_{3}\) to approx. \(\pm 3.3\) volts so that the magnitude of the maximum possible voltage across the collector-emitter junctions of all four switching transistors is 5.3 volts.

The variable resistors \(R_{4}\) and \(R_{5}\), of Fig. 3, allow the short circuit and open circuit input offsets of the integrating op-amp \(I C_{6}\), to be set to zero.
The action of \(I C_{7}\), together with \(T r_{10}\) and its associated circuitry, allows the output of the integrator to be held at the zero volt level by shorting the integrating capacitor. This circuitry is used in conjunction with the auto/manual facility of the d.v.m.

Control logic. The inter-connections between the various t.t.l. digital circuits of the control and display logic are shown in the block diagram of Fig. 4. The second, third and fourth decade counters and the divide-by-two flip-flop form the basic divide-by2000 counter. \(A, B, C, D, E, F\) and \(G\) are all \(J-K\) flip-flops and are contained in four t.t.I. circuits, type SN7473. Not shown are the connections between the outputs of the divide-by-two flip-flop and the clock pulse, \(C_{p}\), input of flip-flop \(A\), and the output of the \(F\) flip-flop and the \(C_{p}\) input of flip-flop \(G\). The six inverters, which are buffer/ drivers with open collector outputs capable of sinking 40 mA , are all contained in the t.t.l. circuit, type SN7416. The four dualinput NAND gates are all contained in the t.t.l. circuit, type SN7400, and the four dualinput AND gates in the t.t.l. circuit, type SN7408. The clock circuit is made from a t.t.1. dual-Schmitt trigger circuit, type SN7413, together with a resistor and a capacitor. The circuit is shown in Fig. 7.

The binary outputs from the three decade counters of the main counter are transferred to suitable decoders via three quadruple latches, t.t.l. circuits type SN7475. In a similar manner, the outputs from the divide-by-two flip-flop and the \(A\) flip-flop are transferred to the inputs of two inverter buffer/drivers via a dual-latch, t.t.l. circuit type SN7474. Three other inverter buffer/ drivers accept the outputs of the polarity flip-flop (see Fig. 3) and drive the horizontal and vertical bars of the polarity display. The sixth inverter buffer/driver is used to provide increased power for driving some of the \(C_{p}\) inputs of the latches.
In order to understand the operation of the control logic, and hence the operation of the d.v.m., Table 3 has been drawn up. It shows the logical states of the outputs of
the relevant elements of the control logic for various steps in the operation of the d.v.m. For the moment the functions of flip-flops \(F\) and \(G\) have been ignored and the logical state of the output of NAND 1 is assumed to be a permanent logical " 1 ". For the initial conditions it will be assumed that all the logical elements are in such states as at the beginning of a measurement cycle. This is as in step 0 of the above table. No clock pulses have as yet been generated, the first decade counter and the main counter are all set to zero and the output \(\bar{C}\) is a logical " 1 ". The output \(V_{o}\) is also a logical one. The input of the integrator is thus connected to \(V_{i n}\), which is assumed to have a magnitude greater than zero but less than 2 volts. The clock is running and the first decade counter and the main counter start to count up to a total of 20,000 clock pulses (a period of 100 ms ). At some time during this period the output \(V_{o}\) will become logical " 0 " and the outputs of the various logic elements become as in step 1 of Table 3.
At the end of this period the state of the main counter is again \(0000(2000 \equiv 0000)\) but the output of \(A\) will be logical " 1 ", see step 2 . On receipt of another clock pulse, step 3, several things happen. Output \(B\) changes from " 0 " to " 1 "; \(D\) from " 1 " to " 0 ", resetting output \(A\) to " 0 "; and \(\bar{C}\) becomes 0 connecting the input of the integrator to the appropriate reference voltage. The resetting of \(A\) to " 0 " transmits a pulse to the polarity flip-flop of Fig. 3, transferring appropriate logic levels to the outputs \(P_{1}\) and \(P_{2}\). A further clock pulse, step 4, resets \(D\) to logical "l". The main counter now continues counting and nothing further happens to the logic until \(V_{o}\) again becomes logical " 1 ", indicating the end of the measurement cycle and the fact that the integrating capacitor has been discharged, see step 5 . Immediately \(V_{o}\) becomes logical " 1 ", the \(k\) input to flip-flop \(B\) becomes logical " 1 ". \(B_{k}\) is the latch pulse and a logical " \(l\) " is immediately transmitted to the latches via AND gate 4, NAND gate 3 and inverter 3. The logical states of the outputs of the main counter and flip-flop \(A\) are thus transferred to the three decoders and inverter buffer/drivers 1 and 2 , indicating the count reached by the main counter and whether there is an overload or not. Since the magnitude of \(V_{\text {in }}\) was assumed to be less than 2 volts the counter will not have reached 2000 and the output of \(A\) will be logical " 0 ", indicating no overload. On receipt of the first clock pulse after \(V_{o}\) has become logical 1 , step 6 , again a number of things happen. Output \(B\), and thus its input \(B_{k}\) (the latch pulse), changes from logical " 1 " to " 0 "; output \(E\) changes from " 1 " to " 0 ", setting output \(D\) and the output from the divide-by-two flip-flop to " 0 " and also, via NAND gate 2 , resetting all four decade counters to zero; and output \(\bar{C}\) changes from logical " 0 " to " 1 ", reconnecting the input of the integrator to \(V_{\text {in }}\). Since output \(D\) has become " 0 " output \(A\) will also be set to " 0 " if it were a logical " 1 " before. A second clock pulse, step 7, resets \(E\) from " 0 " to " 1 ", releasing the first decade counter and the main counter (allowing it to begin counting again) and flip-flop \(D\). A third clock pulse, step 8 , resets \(D\) from " 0 " to " 1 ",

Table 3. Sequence of logical states of control logic elements
\begin{tabular}{ccccccccccccccccc}
\hline Step & \(\boldsymbol{C P}\) & Count. & \(\boldsymbol{A}\) & \(\boldsymbol{V}_{o}\) & \(\boldsymbol{B}_{\boldsymbol{i}}\) & \(\boldsymbol{B}_{\boldsymbol{k}}\) & \(\boldsymbol{B}\) & \(\boldsymbol{C}_{\boldsymbol{j}}\) & \(\boldsymbol{C}_{\boldsymbol{k}}\) & \(\overline{\boldsymbol{C}}\) & \(\boldsymbol{D}_{\boldsymbol{j}}\) & \(\boldsymbol{D}_{\boldsymbol{k}}\) & \(\boldsymbol{D}\) & \(\boldsymbol{E}_{\boldsymbol{j}}\) & \(\boldsymbol{E}_{\boldsymbol{k}}\) & \(\boldsymbol{E}\) \\
\hline \hline 0 & 0 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & \(?\) & \(? ?\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
2 & 0 & 2000 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
3 & 1 & 0000 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
4 & 2 & 0000 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\(\mathbf{5}\) & 0 & \(? ?\) & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
6 & 1 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
7 & 2 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
8 & 3 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 9 & 0 & 2000 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
10 & 1 & 0000 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
11 & 2 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
12 & 3 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
13 & 4 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 14 & 0 & 2000 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
15 & 0 & \(2000+\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
16 & 1 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
17 & 2 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
18 & 3 & 0000 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

In terms of logical levels: \(B_{j}=A_{i} B_{k}=B \cdot V_{0} ; C_{j}=A . \bar{V}_{0} ; C_{k}=V_{0} ; \bar{D}_{j}=D ; D_{k}=A \cdot \bar{C} ; E_{j}=E ;\) \(E_{k}=B \cdot V_{0}\)
leaving the outputs of the various logical elements exactly as at the beginning of the measurement cycle. A new measurement cycle was, in fact, begun at step 7, the moment the main counter was released after being reset.

When the input voltage is zero or its magnitude is greater than 2 volts, the operation of the control logic is slightly modified. When \(V_{\text {in }}\) is zero volts, \(V_{o}\) does not become logical " 0 " so that when the main counter reaches 2000 the conditions of the various logic elements become as in step 9. After a further clock pulse the output of \(B\) becomes logical " 1 ", so that \(B_{k}\) also immediately becomes logical " 1 " and a zero count is transferred (remembering, \(2000 \equiv 0000\) ) to the decoders. Simultaneously, the output of \(D\) becomes " 0 " and \(A\) is reset to zero, preventing an overload indication being given. At the end of three more clock pulses, steps 11, 12 and 13, the initial conditions, at the beginning of a measurement cycle, are arrived at once more.

When the magnitude of \(V_{\text {in }}\) is greater than 2 volts, the counter will become 2000 for a second time before \(V_{o}\) has become logical " 1 ". The conditions of the outputs of the logic elements when this state is reached are as shown in step 14. Having passed 2000 the


Fig. 7. Clock pulse generator, using a dual 4-input Schmitt NAND.
counter effectively starts counting again from 0000 . Nothing further happens to the logic until eventually \(V_{o}\) does become logical 1, step 15. Immediately, \(B_{k}\) becomes logical " 1 " and the state of the main counter is transferred to the decoders, etc., together with the overload information on flip-flop \(A\). Three more clock pulses, steps 16,17 and 18, reset all the logic elements to their initial conditions. Since the overload indication represents a count of 2000 , it may be added to that shown by the display to indicate a reading in excess of 2000.

The upper limits for reliable readings in excess of 2000 are determined by the precise breakdown voltages of zener diodes \(Z_{3}\) and \(Z_{4}\), and the reverse breakdown voltage of the holding transistor \(\operatorname{Tr}_{10}\) across the integrating capacitor. When \(V_{i n}\) is negative, the integrating capacitor charges positively so that \(T r_{10}\) will breakdown if the voltage across the capacitor exceeds about 5.7 volts ( \(V_{b e}=5 \mathrm{~V}\) ). The integrating capacitor charges up to a voltage level, \(V_{c}\), equivalent to
\[
(1 / R C) \int_{0}^{100 \mathrm{~ms}} V_{i n} \cdot \mathrm{~d} t
\]
i.e. \(V_{c}=V_{\text {in }} .100 \mathrm{~ms} / R C\), and since \(R C=\) \(20 \mathrm{k} \Omega \times 2.2 \mu \mathrm{~F}=44 \mathrm{~ms}, V_{c}=2.27 V_{\text {in }}\). Theoretically then, the upper limit for reliable readings in excess of 2000, when \(V_{\text {in }}\) is negative, is, \(5.7 \mathrm{~V} / 2.27=2.500\). When \(V_{\text {in }}\) is positive, the upper limit for a reliable reading in excess of 2000 is the breakdown voltage of \(Z_{3}\) plus the forward diode voltage drop across \(Z_{4}\) which in total, is about 3.300.

Having discussed the operation of the control logic of the d.v.m. in its Auto mode (by neglecting the operation of flip-flops \(F\) and \(G\) ) it is now time to consider the function of the Auto/Manual and Sample/Hold switches and flip-flops \(F\) and \(G\) in conjunction with the hold circuitry, \(I C_{7}\) and etc., of Fig. 3. As shown in Fig. 4, with the Auto/ Manual switch in the Auto position and the Sample/Hold switch as indicated, the output of flip-flops \(F\) and \(G\) are held at logical zero and hence the output of NAND gate 1
is a logical " 1 ". The operation of the control logic and the d.v.m. is therefore as described above, providing a continuous sampling of the input voltage. If now the Auto/Manual switch is switched to the Manual position, flip-fiops \(F\) and \(G\) begin to count the main counter's resetting pulses transmitted by flip-flop \(E\). After three such pulses the outputs of both \(F\) and \(G\) become logical " 1 " and hence the output of NAND gate 1 becomes logical " 0 " and that of NAND gate 2 , logical " 1 ". The main counter is thus held permanently reset and no further pulses are transmitted by flip-flop \(E\). Simultaneously, the logical " 0 " level at the output of NAND gate 1 switches the output of \(I C_{7}\) to -10 V , switching \(T r_{10} \mathrm{ON}\) and holding the voltage across the integrating capacitor to zero volts. The d.v.m. remains in this state, holding the last reading of \(V_{i n}\) on the display, until either the Auto/Manual switch is switched back to Auto, or the Sample/Hold switch (which is a simple, returning, push-button changeover switch) is depressed. If the Sample/Hold switch is depressed and released, the outputs of \(F\) and \(G\) are cleared to zero and the d.v.m. operates for a further three cycles until \(F\) and \(G\) are once more logical ones, when it again holds, displaying the latest reading of \(V_{i n}\). If, when the Auto/Manual switch is in the Auto position, the Sample/Hold switch is depressed and held down, the d.v.m. will hold its reading, after three further cycles, until the Sample/Hold switch is released. In this manner the d.v.m. can be made to continuously sample \(V_{i n}\) and hold the information for as long as is desired by depressing the Sample/Hold switch, or sample \(V_{\text {in }}\) only on demand when the Sample/Hold switch is momentarily depressed.

Having described the operation of the d.v.m., there are now bat a few points to clear up concerning the analogue circuit of Fig. 3. As mentioned earlier, the two comparators, 1 and 2 , are \(I C_{8}\) and \(I C_{9}\) respectively. The two reference voltages, -2 mV and +2 mV , applied to the two comparators are provided by the two 100 -ohm preset potentiometers and their associated circuitry. Each 1.00 -ohm pot. provides an output voltage in the range of +12 mV to -12 mV , approximately. This allows for the offset tolerance of the 709 op -amps, used for the two comparators, of about \(\pm 8 \mathrm{mV}\). The output of the integrating opamp connects to the non-inverting (positive) input of each comparator via a 10 -ohm resistor. A very small amount of positive feedback is applied to each comparator by feeding their outputs back to their respective positive inputs via a \(220 \mathrm{k} \Omega\) resistor. In practice this results in about 2 mV of hysteresis in the switching action of the two comparators. The output of comparator 2 changes from +10 V to -10 V when the output from the integrator exceeds about +3 mV , and changes back again to +10 V when the integrator output falls to about +1 mV . Comparator \(1\left(I C_{9}\right)\) operates in a similar manner about levels of -1 mV and -3 mV . This small amount of positive feedback results in a more positive switching action of the comparators without impairing their resolution. The output from the integrator is about \(2.27 V_{i n}\), thus 2 mV
hysteresis represents a resolution of about 0.88 mV , which is less than the resolution of the display ( 1 mV ).

This concludes the description of the circuitry and operation of the basic d.v.m. The rest of the article deals with the description of the a.c. rectifier circuit, a suitable input attenuator and buffer stage, power supplies and, finally, circuit board layouts and a discussion on some of the components.

\section*{References}
1. Digital Multimeter, by D. E. O'N. Waddington. Wireless World, March 1973.
2. Digital Panel Meter, by P. Bartlam. Wireless World, April 1973.

\section*{Correction}

In the article "Frequency Shifter for 'Howl' Suppression" by M. Hartley Jones (July issue, pp. 317-322) the following corrections should be made.

\section*{Appendix (p. 321)}

In Fig. 8, the point where the \(\phi_{1}\) curve crosses the frequency axis should be labelled \(f_{01}\) instead of \(f_{02}\)

The line immediately after equation (2), should read
\[
\left|\frac{v_{0}}{v_{i}}\right|=\sqrt{\frac{\alpha^{2}+\beta^{2}}{\alpha^{2}+\beta^{2}}}
\]

\section*{Components list (p. 322)}

Unfortunately there was a duplication of resistor numbers in Fig. 4 and Fig. 6. The values given in the list refer only to Fig. 4. The following additions are necessary

Components in Fig. 4
\begin{tabular}{ll}
\(R_{45}\) & \(6.8 \mathrm{k} \Omega\) \\
\(I C_{5}, I C_{6}\) & Motorola MC1495L or \\
\multicolumn{2}{c}{ Silicon General SG1495D. } \\
Components in Fig. 6 \\
\(R_{44}, R_{45}\) & \(12 \mathrm{k} \Omega\) \\
\(R_{46}\) & \(560 \Omega\) \\
\(C_{22}\) & 470 nF
\end{tabular}

In the article "F.M. Tuner Design-Two Years Later" by L. Nelson-Jones (June issue, \(\mathrm{pp} .271-275\) ), the 68 pF capacitor shown connected to the tap of \(L_{3}\) in Fig. 2 should be connected to the emitter of \(\mathrm{Tr}_{3}-\) as in the original article.

\section*{H. F. Predictions for October}

Magnetic disturbances at 27 -day intervals (one solar rotation) have been clearly evident since January of this year. Comparison with the previous sunspot cycle minimum period (as was done for the solar index in last month's notes) shows that the current disturbances are several days longer lasting than in the corresponding year of 1962. The intensity of current disturbances has dropped over the past two months, a feature also found in 1962 when, after two or three quiet rotations, the disturbances appeared consistently with each rotation for the following two years. The next most likely period of magnetic disturbance is September 23rd to October 7th.





\title{
News of the Month
}

\section*{Fifth Intelsat IV satellite}

The latest Intelsat IV communications satellite to be launched has undergone two weeks of testing before being placed in commercial service. The fifth to be put in orbit, it is positioned over the Atlantic Ocean and has a capacity to provide an average of 5,000 two-way telephone calls or 12 simultaneous colour television programmes. By the end of this year 91 aerials at 73 earth stations in 55 countries are expected to be operating with the five Intelsats.

The first two Intelsat IVs were launched in January and December 1971 over the Atlantic to provide commercial services between the U.S.A. and Europe. The third was launched over the Pacific in January 1972. The fourth was launched last June over the Indian Ocean. Each satellite is designed to have a life of seven years.

\section*{New laser-induced electrical effect discovered}

An unusual and totally unexpected electrical effect has been discovered by Robert J. von Gutfeld and Eugene E. Tynan at I.B.M's Thomas J. Watson Research Centre at Yorktown, New York.

Von Gutfeld and Tynan have found that when the surface of a thin film of a metal such as molybdenum or tungsten is irradiated with brief pulses of laser light, voltage pulses of up to 50 mV are generated in the plane of the film, for 1 kW of incident power. Such pulses can readily be detected without special amplification, and the planar direction of the voltage makes for simple attachment of electrical connections on the film surface.

Exploitation of the new effect could result in inexpensive arrays of fast photodetectors responsive over a broad optical spectrum and operable over a wide temperature range. Moreover, detectors based on the new effect would be resistant to the heat-degradation characteristic of such now-common photodetectors as silicon-based devices. Some experimental detectors based on the effect in fact show an actual increase in sensitivity with rise in temperature.

The new phenomenon was discovered during studies of heat conductivity in which a pulsed laser was used to "inject"
bursts of thermal energy into small samples of various materials under controlled and monitored conditions. A temperature gradient through the depth of the irradiated films does appear to play a central role in giving rise to the voltage, at right angles to the gradient.

At least as surprising as the voltage direction is the fact that the voltage polarity remains the same, for fixed contacts, no matter how one rotates the film in its own plane around the axis of the laser beam. The only way to reverse polarity for a sample to which measurement contacts are fixed is to shine the laser beam on the other side of the film.

In a paper in the August 15 issue of Applied Physics Letters, Dr. von Gutfeld suggests that underlying the newly found effect is an asymmetry within the films themselves - microscopic distortion caused by such factors as stress arising while the film is being deposited and/or misplacement of atoms as they stack up while the film is being formed. This type of asymmetry would be independent of rotations around the laser-beam axis and could result in the "crosswise" voltage observed, as von Gutfeld shows by an analysis of the so-called Boltzmann transport equations, which relate symmetry structure to electrical and thermal parameters. The voltage would, in fact, be a photo-induced transient thermoelectric effect.

\section*{Alphanumerics on a TV picture}

A new modular Series 204 "Display controller" from Ann Arbor Terminals, Inc., Ann Arbor, Michigan has been developed specitically for superimposing alphanumeric data on an ordinary TV picture in cable TV, closed-circuit TV, video tape recording, and annunciator applications.

The 204 has an alphanumeric display repertoire of 64 alphanumeric characters. Up to 16 lines with 32 characters per line may be displayed, and all 512 characters are stored in an internal m.o.s. dynamic shift register memory. Character size is proportional to screen size, and is typically 0.22 in on an 1 lin screen. The controller accepts either picture video or composite sync from the video source. A choice of
three output signals is provided: alphanumerics added to the picture; alphanumerics added to the composite sync; or synchronized non-composite alphanumerics that can be mixed externally with other video signals.

A switch is provided which allows the full screen of alphanumeric data to be added to the video for data display and annunciator applications, or 1,2 , or 3 lines near the bottom of the picture for titling applications.

\section*{Congress on Acoustics 1974}

Environmental acoustics will be the theme of the Eighth International Congress on Acoustics, to be held at Imperial College, London, on 23-31 July 1974. The main address at the opening plenary session, to be held in the Royal Albert Hall, will be given by R. H. Bolt (U.S.A.). This address will be on the general subject of acoustics and the environment. Other invited speakers will be continuing this theme in a series of lectures designed to review particular aspects of the subject. Offers of papers for the sessions of contributed papers are now invited, and full details on the submission of these are contained in the Second Circular, which is available from The Administrative Secretary, 8 ICA 1974, 47 Belgrave Square, London SW 1X 8QX.

\section*{Spacelab - new agreement}

Six member states of the European Space Research Organization (ESRO) have recently signed the "Arrangement between certain member states of ESRO and ESRO" for the development of the Spacelab that forms the European contribution to the American space shuttle programme. The financial contributions of the six member states concerned represent \(76 \%\) of the overall sum that Europe will devote to the Spacelab programme.

\section*{Berlin highlights}

The Berlin radio and television exhibition is without doubt the largest and most influential entertainment electronics show in Europe. Its strength lies not only in its size - 600,000 visitors, 88,000 sq.m area and 253 exhibitors - but also in its multi-level scope. It attracts top management, marketing executives, broadcasters, designers, dealers, enthusiasts and the public from all over Europe; indeed many came from Japan and the U.S.A. But despite its huge size it is relatively easy to find ones way about because of the superb organisation; moreover most of the 1973 exhibitors occupied the same places as they did in 1971.

There was much talk about a new magnetic video disc. Thought up by a private inventor earlier this year, it is presently being developed by Bogen in Berlin. Basic idea is to produce a dise that will record and playback pictures on a conventional turntable. In this idea, scanning is achieved by a record/playback head
attached to an arm that is guided by the conventional stylus-in-groove technique. Roughly half the disc has a spiral groove to guide the arm, the remaining area being treated with chromium dioxide and scanned with \(0.1 \mu \mathrm{~m}\)-gap head attached to the arm.

So far, with a rotational speed of 156 \(\mathrm{rev} / \mathrm{min}\) (chosen so that \(78 \mathrm{rev} / \mathrm{min}\) stroboscopic markings could be used) a playing time of 5 min and a bandwidth of about 2.5 MHz has been achieved (this is about four months) and work is now directed at achieving a \(12-\mathrm{min}\) playing time with a speed of \(78 \mathrm{rev} / \mathrm{min}\) and a bandwidth of 3 MHz .

Not a challenge to the Teldec video disc yet because the TED system, as it is now called, is well advanced and will be sold in Germany this coming January, the greater challenge coming from the Philips long-playing disc (see page 474, 1972), about which more next issue.

RCA's SelectaVision MagTape system was given its European première. In this \(\frac{3}{4}\)-in system, tape is retained in the cassette (called a cartridge by RCA) which means that the elaborate and no doubt expensive tape extraction mechanism of other systems is avoided.

In surround-sound systems it seems any question of standardization is being left to the market place to decide; but unfortunately not all systems are built into the hardware available. One system is not yet launched, though it was given its first public demonstration in Berlin. This is the "New Discrete" or QMX system, devised by Duane Cooper and developed by Nippon Columbia. It has the feature that software for it can be played in two quadraphonic modes, one using an inexpensive decoder and relying on the two audio channels on discs to give a very satis factory performance. For better image definition a demodulator for two carrier channels can be added, the two additional audio channels having the feature that they are narrow bandwidth and as a consequence the highest frequency on this disc is around 36 kHz rather than the 45 kHz of the CD-4 system. Both mono and stereo compatibility sound excellent.

Meanwhile, more makers on the Continent are fitting the Motorola i.c. SQ decoder in their equipment.

Further details of these developments together with a brief look at some other areas of activity will be published in the next issue.

\section*{Toshiba subsidiary in U.K.}

It's not well known that Toshiba first produced surround-sound equipment in 1964 - called "dynamic stereo". Lack of public interest meant shelving the development, but Toshiba haven't been slow in introducing other innovations, like a photoelectric cartridge, an i.c. cartridge and an electret capacitor cartridge. When the Japan market was ready for surround sound, Toshiba introduced their own matrix known as


QM and, more recently, they have developed a new stylus shape that gives similar advantages to the JVC Shibata stylus.

Now, of course, QM has given way to RM and the current Toshiba equipment is fitted with \(R M\) and \(S Q\) decoding functions.

The range of equipment now available through 600 U.K. dealers ( 50 being "hi-fi" specialists) comprises 34 products. It includes two and four-channel amplifiers and tuner-amplifiers, a matrix decoder with rear amplifiers, a stereo tuner, two openreel tape decks (one four-channel), four cassette decks (one with Philips and two with Dolby noise limiters), headphones (one with a crosstalk switch), loudspeakers and "unit audio" systems. As well, there is an 18 -in solid-state colour television receiver (Toshiba have a PAL licence) at £295, three u.h.f. black and white receivers - one 14 -in model using a 110 -degree tube - in-car equipment, and a few other items. An unusual feature on the amplifiers is a choice of turnover frequencies for bass and treble controls of 400 Hz and 1 kHz .
There is only one sad point about Toshiba's entry to the U.K. market. Data sheets we have that were printed in Japan show performance curves of equipment, but the U.K. printed ones don't.

Toshiba (UK) Ltd are at Toshiba House, Great South West Road, Feltham, Middx, telephone 01-751 1281.

\section*{Miniature Solid-state TV Camera}

An all solid-state television camera using an array of 10,000 photosensors with charge coupling, assembled on a 24 -pin dual-in-line package, has been demonstrated in the United States. Developed by the Fairchild Camera and Instrument Corporation, it measures \(3 \frac{1}{2}\) in \(\times 1 \frac{1}{2}\) in \(\times 2 \frac{1}{4}\) in, weighs six ounces and has
a power consumption of about one watt. The camera will work in conditions ranging from bright sunshine to subdued room lighting. Accessories include an optical viewfinder, tripod, monitor, pistol grip, a range of lenses and a separate unit providing battery power and radio transmission up to 100 feet. The camera is a commercial product and Fairchild say the price and availability will be announced later this year.


Solid-state miniature television camera made by Fairchild.

\section*{Briefly}

Enter the consumer. "Consumerism is not a fad," says Nathan W. Aram, a Zenith Radio Corporation vice president. "Ignoring it will not make it go away. In fact we shouldn't want it to go away, rather let's accept consumerism. Serving today's consumer is an opportunity for all of us."

\title{
Multi-channel Proportional Remote Control
}

\title{
Use of t.t.l. in low cost system giving nine channels
}

\author{
by M. F. Bessant*
}

The introduction of inexpensive servo torque units and integrated-circuit pulsewidth servo amplifiers has opened up new possibilities in the field of low-cost proportional remote control for general laboratory or industrial use. Unfortunately the associated drive circuitry available commercially is intended for model radio control, and is often built on the same printed-circuit cards as a 27 MHz transmitter and receiver. The cost-effective application of torque units and amplifiers to a system not requiring a radio link therefore depends upon the user's ability to construct suitable drive circuitry. This article outlines a remote control system offering a maximum of nine fully proportional channels, using medium scale integration t.t.l. to obtain a low component count and level of wiring complexity, at a lower cost than currently available construction kits.

\section*{Coder}

The purpose of the coder is to scan sequentially nine parallel input commands (from potentiometers for fully proportional information and switched resistors for "go/ no-go" or multi-step information) and present them to the single-line data link as a series of nine varying width pulses followed by a fixed width synchronisation pulse.

To understand the operation of the coder shown in Fig. 1, it is advisable to start on familiar ground with the collector-coupled astable multivibrator formed by transistors \(T r_{1}, T r_{2}\), and \(T r_{3}\), then assume that on the initial application of power the decode counter holds a number between 0000 and 1001 (i.e. a b.c.d. number), say 0001 . This will result in charging current being "pulled down" through channel 1 command resistor \(R_{3}\) via pin 2 of the open-collector b.c.d.-to-decimal converter, thereby allowing astable action to commence. The coder's first output pulse (taken from the collector of \(T r_{3}\) ) will be in the \(1-2 \mathrm{~ms}\) range with an exact duration determined by the setting of \(R_{3}\). The positive transition produced at the collectors of \(T r_{1}\) and \(T r_{2}\) by the termination of this pulse clocks the counter into the next state (0010) and after a 0.25 ms delay fixed by the \(C R\) time constant at the base of \(T r_{3}\), the second coder output pulse is generated (the duration of which will this time depend upon the setting of \(R_{4}\) ). All the command resistors will be sampled
sequentially in this manner until a count of 0000 is reached, when a 0.5 ms sync pulse is generated, thus "labelling" the next output pulse as a command function corresponding to channel 1 (or 0001 again).

When displayed on an oscilloscope the repeating train of nine \(1-2 \mathrm{~ms}\) varying-width pulses, with equal 0.25 ms spacing, has a distinctive "concertina" appearance (see Fig. 2(a)), with each command function being sampled approximately every 20 ms . (This coding is compatible with commercial radio-control equipment should interfacing become necessary.) In the event of a nonb.c.d. number being held in the counter at
"switch on", resistor \(R_{1}\) will enable the astable to free run at a low clock rate until one of the b.c.d.-to-decimal converter outputs goes low, preventing the system from locking up.

Fig. 1 shows channels \(1-6\) as fully proportional and channels 7-9 as "go/no-go" functions. This is only to illustrate the idea; in practice any mix of commands can be used, depending on the application.

\section*{Decoder}

The decoder accepts the serial information from the coder (via some form of data link) and by detecting the sync. pulse, passes the

nine individual commands to their respective servo amplifiers. It can be seen from Figs. 2(b) and 3 that the operation of the coder and decoder is in many ways similar due to their both being effectively clocked by opposite collectors of the same astable. Both b.c.d.-to-decimal converter outputs will therefore be almost identical (the decoder output has a 0.25 ms "offset") providing the counters are locked in step by the sync. detector clearing them both simultaneously. A change in the value of \(V R_{3}\) for example will result in a corresponding change in the duration of the negative going pulse fed to channel 3 servo amplifier via pin 4 of the decoder's b.c.d.-to-decimal converter.
Detection of the synchronization pulse is achieved by comparing the length of inverted input pulses with the output of a 0.6 ms monostable reference. Fig. 4 shows that as the minimum length of all command pulses exceeds 0.6 ms only the 0.5 ms sync. pulse presents the counter's internal "clear" NAND gate with two high inputs simultaneously, thus clearing the counter to 0000 before the arrival of the next channe! 1 command pulse. A similar combination of reference monostable and gating could be used after the decoder to detect the "go/ no-go" information pulses.

\section*{Data Link}

If the data link between the output shortcircuit protection resistor \(R_{2}\) (Fig. 1) and the decoder's input consists of more than a simple cable link (optical coupling etc.) then care must be taken not to subject the decoder t.t.l. inputs to voltages outside the decoder's supply rail limits. Transistor \(\operatorname{Tr}_{\downarrow}\) (Fig. 3) has therefore to serve the dual purpose of logical inverter and voltage clamp.
Data link bandwidth limitations present no critical problems to decoder operation for the following reasons:
(a) command pulse width information is carried on positive transitions only;
(b) these transitions are reshaped before clocking the counter by the sync. detector's Schmitt/monostable. Deterioration of the incoming pulses will not, therefore, result in reduced counter noise immunity, although excessive "pulse rounding" will eventually lead to reduced servo resolution.

Compared with the widely used technique of cascading discrete-component monostables to produce "concertina" pulse trains which are then decoded by some form of shift register (s.c.r. etc.), the approach described in this article offers many advantages. One advantage not already stated is the ability to reduce the size or power consumption of the decoder simply by substituting the standard t.t.l. shown in Fig. 3 with low power or flat pack versions where appropriate.

\section*{Servo amplifier in t.t.l.}

The system for driving six servo torque units from the m.s.i. decoder is based on torque units originally designed to provide radio control models with a reliable method of converting electrical commands into proportional mechanical movement.
A typical unit costing five pounds would


Fig. 2. Timing diagrams for (a) coder output, top, and (b) decoder output, bottom.

Fig. 3. Nine-channel decoder


Fig. 4. Sunc detector operation.

contain within its matchbox-size case a low voltage d.c. motor driving a reduction gear train, the final shaft of which connects at one end to a positional feedback potentiometer and at the other to mechanical output coupling. Backlash on this shaft would be less than \(1^{\circ}\) and stall torque approximately \(150 \mathrm{z} / \mathrm{in}\). Unloaded full drive transit time for \(300^{\circ}\) travel would be in the order of a second. These basic characteristics are compatible with low-cost, light laboratory/ industrial servo applications.

The principle of pulse proportional servo control is now well established, with the most popular types of commercially available "amplifier" (for driving the motor in the required direction to cancel errors between command and feedback pulse length) falling into the following two categories:
(a) Discrete amplifiers using push-pull motor drive that require a centre-tapped supply. Apart from the high component count (typically ten semiconductor devices plus associated passive components) these amplifiers can, in the event of power supply voltage differences, have the added disadvantage of lopsided response.
(b) Integrated circuits, custom built for radio control servo manufacturers (i.e. not available directly from semiconductor manufacturers) have the obvious size and reliability advantage over discrete counterparts, plus in some cases a bridge motor drive. They are, however, rather specialized and not easily adapted to different motor voltage, gear ratio and potentiometer resistance combinations. Both fully assembled amplifiers cost between five and six pounds

The amplifier shown in Fig. 5 is based on a t.t.l. pulse width comparator feeding a discrete bridge motor drive circuit. This combination offers a reduced component count compared with totally discrete amplifiers and improved flexibility (with comparable complexity) compared with custom i.c. amplifiers. A considerable cost saving can also be achieved if the components for all six channels are mounted on the same card (see Fig. 6). Under these conditions each t.t.l. servo amplifier will cost approximately \(£ 1\).

\section*{Circuit operation}

The position of the torque units output shaft determines the value of \(R_{T}\) which together with \(C_{T}\) and a \(2 \mathrm{k} \Omega\) resistor, form the leedback monostable's timing elements. Decoded command pulses trigger the monostable via an inverter and are compared with the resultant \(Q\) and \(\bar{Q}\) outputs. If the position requested by the command pulse differs from the output shaft's present position an error signal proportional to the difference in pulse lengths will appear at the output of either \(G_{1}\) or \(G_{2}\) open collector NAND gate depending on whether the feedback is longer or shorter in duration than the command (see Fig. 7). Provided that this error exceeds the drive amplifier's "turn-on pedestal", one side of the bridge will be turned on and the motor driven in the required direction (assuming the "sense" of the feedback is correct) to reduce the error below the turn-on level. When this is accomplished neither side of the bridge


Fig. 5. Servo amplifier using t.t./.
conducts and negligible current is drawn from the motor supply.

\section*{Expansion and deadband considerations}

After being time-division multiplexed by the coder and decoder, an individual \(1.25 \mathrm{~ms}-2.25 \mathrm{~ms}\) command will only appear at the input of its allotted servo amplifier approximately once every 20 ms . In order to sustain motor current between commands it is therefore necessary to expand the pulse length of any error produced by the comparator. As the value of the expansion components \(R_{E}, C_{D}\) and \(R_{D}\) must be equal for symmetrical servo operation only one side of the bridge will be referred to below.

The pulse expansion ratio \(N\) depends on the charge and discharge time of \(C_{E}\), together with the turn-on pedestal and is
\[
N \approx \frac{R_{E} Z_{i n}}{Z_{i n}+R_{E}} \cdot \frac{1}{R_{D}}
\]
where \(Z_{i n}\) is the drive amplifier input impedance above the pedestal. In practice \(N\) must be a compromise between servo response time and "pile up" at the higher command repetition rates (i.e. all commands set to minimum width).

Resistor \(R_{D}\) defines the minimum error pulse capable of charging \(C_{E}\) to the drive amplifier's turn on pedestal and thus cause motor current to flow. An error below this level is usually referred to as being within the "deadband". In the circuit of Fig. 5 the
width of the deadband \(t_{d}\) is
\[
t_{d} \approx \frac{C_{E} R_{D}}{4}
\]

The minimum usable deadband width is limited by the motor and gear box inertia, which may be sufficient to cause "hunting" (oscillation about the requested position). The deadband is often expressed as a percentage of command pulse modulation. For the values given we have \(t_{d}\) approximately equal to \(50 \mu \mathrm{~s}\) with 1 ms modulation; the servo is therefore said to have a \(5 \%\) deadband.

Although the expansion and deadband component values shown are not critical and can be used with most commercial units in a multi-channel system, some trade off between response time and deadband may be necessary to optimize the servo for a particular application.

\section*{Complementary bridge}

By using the complementary bridge configuration shown in Fig. 5 a wide range of motors can be driven (in either direction) from a single supply, and as any variation in this supply can only result in symmetrical changes in servo response time, the two main disadvantages associated with pushpull centre-tapped amplifiers has been eliminated. With the values shown the bridge is capable of saturation with motor stall current of up to 300 mA (typical "motor run" current is approximately


Fig. 6. Layout of components for least cost.

\section*{Books Received}

Transistor - TV Servicing Guide by Robert G. Middleton. The first chapter covers the overall subject of transistor servicing, test procedures, test equipment and basic circuit functions. Succeeding chapters describe the various picture and/or sound symptoms that may be encountered. A list of various circuit defects that could produce a particular symptom is presented, with procedures for analysing and isolating each effect. Price £2.25. Pp. 128. W. Foulsham \& Co. Ltd, Yeovil Road, Slough, SLI 4JH.

Understanding Electronic Circuits by Ian R. Sinclair explains amplifying, oscillating, switching and logic circuits, and deals extensively with the subject of integrated circuits, their merits and limitations in different applications. The level has been set for those who have some circuit wiring experience but may be uncertain of how the circuits function. Although this book is designed as a self contained work on modern circuitry, it has been written partly as a companion volume to "Understanding Elec-
tronic Components" by the same author. The two books between them offer a compact treatment covering the field of electronic components and the circuits built around them, from a practical and a theoretical point of view. Price £3.50. Pp.205. Fountain Press, Model \& Allied Publications Ltd, Book Division, Station Road, Kings Langley, Hertfordshire.

Electrical Engineering Principles and testing methods by Rhys Lewis covers fundamentals of a.c. and d.c. circuits, including network theorems, three-phase a.c. systems, transformers, d.c. machines, amplifiers, instruments and principles of testing and testing methods, the latter including the basic essentials of quality control techniques. The book is for people undertaking courses leading to technician and technologist status in electrical and electronic engineering. The latter part of the book covers the common testing methods syllabus of the City and Guilds of London Institute. Much thought has also been given to the presentation


Fig. 7. Pulse-width comparator logic.

15 mA ). Small plastic-cased transistors are quite adequate even at higher stall currents due to the very efficient saturating nature of the bridge. In order to accommodate motor voltages in excess of the SN7410N 5 -volt limit, as SN7401AN must be used, which has an open-collector rating of 15 volts. If the torque unit is capable of operating from the t.t.1. supply, decoupling between the motor and logic must be included to avoid instability.
of transforner theory. Price \(£ 4.00\). Pp. 289. Applied Science Publishers Ltd, Ripple Road, Barking, Essex.

Lightning Protection by J. L. Marshall is an examination of the phenomenon which maintains a balance in the global electrical system. It is a collation and consolidation of available information on the nature, effects and principles of protection against lightning. Its nine chapters discuss: losses resulting from lightning; the nature of lightning; magnitude of the lightning discharge; the earth as a discharge terminal for the dissipation of energy; types of protective grounding systems and methods for measuring their effectiveness; specific measures for the protection of human life; grounding communication towers and systems; protection systems for buildings and finally protection of power-transmission systems. Bibliographies are provided at the end of each chapter. Price \(£ 7.50\). Pp. 190. John Wiley \& Sons Ltd, Baffins Lane, Chichester, Sussex.

\section*{Independent Local Radio}

\title{
Preparations for sound broadcasting service opening in October
}

Commercial "Independent Local Radio" services will open in London in October with a general programme provided by Capital Radio and a special news service by the London Broadcasting Company. These will be the first two of what may eventually be as many as 60 different I.L.R. programmes in the U.K., each transmitted on both v.h.f. (Band II) and m.f. By about next spring, the London services will be joined by those for Birmingham, Manchester and Glasgow, with two more - one for Swansea, the other for Tyneside and Wearside opening in the summer of next year. Then over the next two years stations are likely to be opened in Bradford, Edinburgh, Ipswich, Liverpool, Notting ham, Plymouth, Portsmouth, Reading, Sheffield, Teesside and Wolverhampton, though not in that order. Stations are also being planned for Belfast, Blackburn, Bournemouth, Brighton, Bristol, Cardiff, Coventry, Huddersfield and Leeds. These 27 stations should provide services for just over half of the population of the U.K.

For all these services the controlling body is the I.B.A., which will build and operate all the transmitters and, in conjunction with the Post Office, provide the distribution links. The studios and studio equipment will be the concern of the programme companies, although these are required to operate within the technical characteristics set out in a detailed I.B.A. code of practice.

The planning and engineering of an entirely new series of broadcasting services is not something that happens every day - and sound radio has a life style very different from television. The problems include:
1. The search for suitable frequency allocations with the need to achieve close co-operation with the existing users of the crowded frequency spec trum.
2. The search for suitable transmitter sites (with relatively large areas needed for m.f. aerial systems) close to major cities.
3. The provision of balanced coverage on both m.f. /a.m. and v.h.f./f.m.

All these problems need to be solved without making the whole operation so costly that it would be no longer viable.
Before the Sound Broadcasting Act 1972 (now consolidated into the Indepen-
dent Broadcasting Act 1973) reached the statute book in July 1972, preliminary planning was undertaken by the Ministry of Posts and Telecommunications, and two I.B.A. engineers - J. B. Sewter and F. Wise - were temporarily seconded to M.P.T. to help in this work

The problems of planning frequencies and coverage areas were formidable. For many years the medium-wave band in Europe has appeared to be grossly overcrowded - and this is certainly the case after dark. Yet in daytime listeners have not been well served in programme choice compared with what is theoretically feasible. So what chance was there of setting up a whole new network each carrying a different programme without finally breaking the camel's back?

Then again many of the views on what constitutes an adequate m.f. signal in urban centres dates back to the days before the widespread use of steel-framed buildings and car radios. And although superficially Band II might appear less crowded large sections were then occupied by police, ambulance and similar two-way mobile communications services. Further, there were some anomalies in the B.B.C network - for example the use of Wenvoe to carry both Welsh and West regional programmes - that proved to have serious repercussions on the planning of I.L.R. stations. Again, the widening use of stereo, with its added susceptibility to adjacent channel interference, tends to emphasize the complexity of the problem. Yet another restriction arises

I.B.A. transmitter for v.h.f. coverage in London.
from the need to avoid harmonics of the 10.7 MHz i.f. channel used in v.h.f. broadcast receivers.

For m.f. only one main "U.K.-assigned" channel ( \(261 \mathrm{~m}, 1151 \mathrm{kHz}\) ) is being made available exclusively for I.L.R. stations; 1546 kHz ( 194 m ) will be shared with B.B.C. stations; other frequencies will be those internationally agreed under Article 8 of the 1948 Copenhagen Convention and Article 9 of the Radio Regulations.

Despite these various limitations, the I.B.A. engineers felt that the setting up of a new system provided an unusual opportunity to look afresh at the technical side of sound broadcasting. Much of the standard work in this field dates back to the 'thirties before the "distraction" of television.

A small team from what was then still the I.T.A. visited North America to investigate recent experience in designing and operating local radio stations in the United States and Canada. What they found made a profound impression. For example advantage was being taken by many v.h.f. stations of mixed polarization - circular or slant polarized signals - to provide a better and more homogeneous coverage for car radios and portables using telescopic v.h.f. whip aerials; again, on m.f., there was growing use of complex directional transmitting aerials using quite large numbers of mast radiators and capable of producing deep nulls in the radiation pattern to limit interference with co-channel stations. It was also noted that American practice aimed at providing relatively strong signals in the centres of towns to overcome local screening. It is not unusual to find American planning based on providing m.f. field strengths of 50 or even \(100 \mathrm{mV} / \mathrm{m}\) in city centres. One result has been that after many discussions, the contour of \(3 \mathrm{mV} / \mathrm{m}\) has now been adopted for the planning of m.f. stations for the I.L.R. system: it is no secret that higher figures were proposed.

The combination of strong signals and multiple use of the same channel may seem mutually contradictory - and this would certainly be the case were the network to depend on omni-directional transmitting aerials. By opting for threeand four-mast radiators, the I.B.A. are planning to use 1151 kHz in London, Birmingham, Manchester and Glasgow.

This again imposes important restrictions on the choice of m.f. sites. In the London area no less than 200 different sites were investigated. The need to reduce radiation towards Birmingham points to a site to the north-west of London from which signals can be directed over the main London area while minimized in the Birmingham direction.

Such sites are difficult to find - an even greater difficulty is that of obtaining planning permission for their use. Local authorities and local opinion are acutely conscious of questions of "environment" and they approach any suggestion of a site requiring the erection of a number of moderately high aerials with more than a little misgiving. It soon became


Working on the London v.h.f. transmitter.
clear to the I.B.A. that permission to use any of the possible sites in north-west London would take time, and might delay the start of the service. For that reason the decision was taken to find a temporary site where an omni-directional aerial would prove reasonably effective. This has resulted in the m.f. station at the London Transport Executive's power station at Lots Road, Chelsea, where the tall chimneys provide supports for a simple wire \(T\) aerial. The aerial has a 212 ft twin-wire top loading section with a 275 ft vertical radiating section in conjunction with a very effective earthing system which benefits from the presence of the Thames. The same aerial is used simultaneously for transmissions on 557 kHz and 719 kHz to be used by Capital Radio and London Broadcast ing Company respectively. Despite the low power - less than 500 watts e.r.p. the coverage achieved by this station is extremely good.

Clearance for the use of 557 kHz was sought in the summer of 1972 when the interference levels in the London area were shown to be low; subsequently the unauthorized ship station "Radio Veronica" off the Dutch coast moved on to this channel. Veronica causes some interference in the eastern part of the London area and more especially in areas beyond the intended coverage. I.B.A. hope to transfer these services to the permanent site at Saffron Green, near Barnet, towards the end of 1974.

For v.h.f. coverage in London a suitable site exists at the I.B.A. 405 -line television station at Croydon. This introduces to the London area the problem of v.h.f. broadcasting from different sites (the B.B.C. station is at Wrotham, Kent) but it was felt that the more central site offered significant advantages. To overcome the problem of "swamping" local
listeners a special transmitting aerial with a narrow beam in the vertical plane has been adopted (see April 1973 issue, p.175). The aerial - the first broadcast aerial in the U.K. designed for circular polarization - is of six tiers, with the result that all homes less than about a mile away "see" less than 100 watts e.r.p. compared with the 2 kW in the main lobe.

Surveys made since the start of some preliminary tests in July-August 1973 suggest that generally there is less than 6 dB difference between horizontal and vertical components of the signal, with a tendency for the vertical component to be slightly stronger towards the north. American experience suggests that although polarization is relatively unimportant in cluttered surroundings, the use of circular polarization can in clear sites give an advantage of between 6 and 12 dB where reception is on portable or car receivers. The I.B.A. intend to use circular or slant polarization at all stations where new v.h.f. aerials are installed; generally circular polarization will be used.

The v.h.f. stations are designed for pilot-tone stereo and a stereo link is being provided between the local studios and the v.h.f. transmitters - because of the local nature of this operation the problems associated with nation-wide stereo distribution do not arise. It is expected that the programme companies (other than the special news station) will make considerable use of locally originated stereo. In addition, the studios will be linked by a monophonic "music" line to the local m.f. station. There will also be a monophonic distribution link between the London news station and all stations requiring a news feed.

The engineering of I.L.R. has meant the setting up of a new local radio planning group within the I.B.A. Engineering Division and a local radio section within the existing station design and construction department; most of the other work has been achieved within the structure established for television.

What is regarded as a most important engineering pre-requisite has been the drawing up and issue of a detailed Code of Practice for the technical performance of studios and the specification of audio distortion measurements. This has provided the various programme companies with a clear idea of the technical standards expected from them. It includes, for example, sections on studio acoustics, in terms of reverberation time and ambient noise levels. It is part of the determination that I.L.R. broadcasting will be based on up-to-date engineering techniques and equipment.

Clearly companies will need some time to gain experience of their facilities time scales are such that some equipment for the London operations is likely to arrive only hours away from the start of service. But once the settling down period is over it will be fascinating to see what new head of steam is given to sound broadcasting in the United Kingdom.

\title{
Electronic Sound Synthesizer: Part 3
}

\title{
Final circuit details, interconnection of functions by patch-panel, keyboard and joystick control
}

\author{
by T. Orr \(\dagger\) *B.Sc. and D. W. Thomas \(\dagger\) Ph.D., M.I.E.R.E.
}

The final part of this series describing the construction and operation of a sound synthesizer completes the circuit functions provided with sample and hold, noise sources and the waveform generator circuitry.

\section*{Sample and hold}

It is very useful to have an analogue memory function, for use in such cases as a long fadeout where a constant control signal may be required throughout. One method of implementing this requirement is to use a sample and hold device with the following characteristics. The output should have a very small offset voltage coupled with a low output impedance; also a long storage time, so that the output voltage will only drift by a few per cent per minute; and a high accuracy over the specified input range. The sampling period is relatively short, being initiated by a positive-going pulse. Also, there is no input buffer because the output impedance of all the units of the synthesizer is low. The input voltage range is approximately -0.5 V to +6.5 V , being deliberately limited by \(D_{1}\) (Fig. 28).

The signal is stored on \(C_{3}\), a low leakage capacitor, which is connected to the input voltage by an f.e.t. \(\left(T r_{1}\right)\). This transistor is used as an analogue gate and is controlled by a monostable ( \(T_{5,6,7}\) ). During the monostable period, the gate is opened and the signal is sampled. The voltage stored on \(C_{3}\) is monitored by \(\operatorname{Tr}_{3}\), a current-driven source follower which can be preset to give a zero input/output offset voltage. Using a \(500 \Omega\) source resistor, the spread in \(V_{G S}\) may range from about -0.5 V to -5.0 V , for drain current drives from about 0.5 mA to 10 mA , respectively. The constant current source may be pre-set to lie anywhere in this range. Thus by keeping \(\operatorname{Tr}_{3}\) operating in its saturation region, and maintaining \(I_{\mathrm{D}}\) virtually constant, variations in \(V_{G S}\) can be kept very low for considerable changes in \(V_{D S}\).

Setting up procedure: set \(R_{4}\) to about \(500 \Omega\) (this is the "fine adjust" and it is preferable that \(R_{+}\)is a trimmer) and, with the input short-circuited, initiate the sampling with a positive pulse (this clears any charge on \(C_{3}\) ). Adjust \(R_{8}\) until the output voltage is as near to zero as possible and then use \(R_{\perp}\) to finely "zero" the output.

Storage time with input short-circuited is 30 minutes for \(5 \%\) droop and sampling time 14 ms .

\section*{Noise sources}

The noise sources fill two functions, firstly, a source of noise that can be filtered and modulated, and secondly, a low frequency source that can be used as a randomly fluctuating control voltage. This was achieved by constructing a white noise source and injecting the output into a spectrum shaping network and a low pass filter.

\section*{White noise source}

The major difficulty in producing a simple, reliable white noise source is the very nature of noise itself; it is non-deterministic. Several methods were available, but the simplest and cheapest seemed to be the use of the leakage current \(I_{C B O}\) of a faulty (high leakage) germanium transistor. However, this approach requires that the leaky transistor is specially selected, or even manufactured by gentle frying! A suitable device ( \(T r_{1}\) ) Fig. 29, should produce an average noise level of approximately 40 mV pk-pk, when used in the configuration shown. The white noise generator consists of three parts; the noise source \(T r_{1}\), an equalized high gain amplifier, and an output buffer. A high gain amplifier is used because the signal level from \(T r_{1}\) is relatively low, thus particular care must be taken to

Fig. 28. Circuit providing the sample and hold finctions. Resistors are \(5 \%, \frac{1}{4} W\),

isolate \(\operatorname{Tr}_{1}\) and the input of the amplifier from any power supply fluctuations. Preset \(R_{3}\) is adjusted to give a suitable output level of between 2 to 3 V pk-pk average.

\section*{Coloured noise source}

Coloured noise is produced by driving a spectrum shaping network with white noise, this network being a Baxandall tone control. Preset \(R_{17}\) is adjusted so that with both tone control pots at maximum the output shows no signs of clipping.

\section*{V.L.F. noise}

Very low frequency noise is extracted from the white noise source by two low pass filters, only one of which is available at one time, the selection being made by operating switch \(S_{1}\), Fig. 29. One of the drawbacks of this method of producing v.l.f. noise, is that very little signal remains after filtering, the amplitude rapidly diminishing with decreasing cut-off frequency.

Preset \(R_{42}\) is adjusted so that the two v.l.f. outputs have the same amplitude, of approximately \(3 \mathrm{~V} p \mathrm{pk}\)-pk average.

\section*{Waveform generator}

The waveform generator produces a control voltage that may be used to either frequency or amplitude modulate other units. The
start of the waveform is initiated by a pulse input, the output rises "exponentially" and, after a predetermined period, falls "exponentially" (Fig. 30). Three controls are provided, attack, duration and decay and the pulse may be introduced electronically or from a manual pulse source.

The circuit operation is as follows (see Fig. 31). The first section is a current driven monostable, the monostable period or duration being controlled by the current drive which is proportional to the wiper setting of \(R_{6}\). The monostable is triggered by either a positive going input pulse or from a manual pulse upon release. The square wave produced is then fed into the attack/ decay section where a capacitor is charged via the attack control \(R_{14}\) and diode \(D_{3}\). When the monostable period is over, the capacitor discharges via \(R_{12}\), the decay control, and \(D_{2}\). The potential across the
capacitor is monitored, and an attenuated and buffered output signal is produced. A choice of duration times is available ( \(C_{3}\) or \(C_{3}+C_{4}\) with \(S_{1}\) closed) and also a choice of time constants ( \(C_{6}\) or \(C_{6}+C_{7}\) with \(S_{2}\) closed).

\section*{Joystick control}

The joystick is a mechanically controlled voltage source having two degrees of freedom, and thus generating two independent control voltages, which are proportional to the stick's position. The device is essentially a position transducer (Fig. 32) with two sense pots ( \(R_{4}\) and \(R_{8}\), Fig. 33) mounted orthogonally. The range of the joystick is limited by the rectangular opening in the front panel giving approximately \(90^{\circ}\) of freedom in both the \(x\) and \(y\) directions. An extra pot can also be seen (Fig. 32) but this is used only as a spindle. The connecting

cable should be thin and flexible so as to present as little restriction as possible to the stick's movement. Also, this cable should be firmly held by two ' P ' clips, one on the joystick assembly and one on the front panel so as to stop continual wear on the soldered connections.
The circuit function is illustrated in Fig. 34. A constant potential is maintained across the control pots \(R_{4,8}\), in Fig. 33 and by the zener diodes \(D_{2,3}\). Also, the potential of these pots relative to 0 V may be shifted by presets \(R_{2.6}\). Wiper crackle is attenuated by capacitors \(C_{3,5}\) and the wiper is buffered to the output by \(T r_{2,3}\) and \(T r_{5,6}\). With the joystick in the bottom left hand corner of its range, the two outputs \(x\) and \(y\) are zeroed by adjusting \(R_{2,6}\); movement of the joystick in the \(x\) and \(y\) directions will then produce corresponding positive increases in the potential of the respective outputs.

\section*{Keyboard}

The keyboard generates a control voltage that is linearly proportional to the status of the key that is pressed. This voltage is produced for the duration of the key's depression, returning to 0 V when the key is released. If two or more keys are pressed, the highest frequency key is selected automatically. Also, when a key is pressed, a pulse is generated, this being intended to trigger the waveform generator or the sample and hold unit. However, if the



Fig. 30. Ontinus arailathe fiom the Wareform gencrator

Fig. 29. Noise source circuitry which protides white fillered or rif. monse. Resistors are \(5^{\prime \prime} \ldots \frac{1}{4} W\). capatiors \(C_{22} C_{26}\)

production of this trigger pulse is required, then care must be taken when playing the keyboard to ensure that each key is released before the next key is pressed. If this procedure is not observed, then, even though the control voltage does change correctly, no pulse will be generated. The result is the production of a signal somewhat different to that intended.

The keyboard control circuit is shown in Fig. 35. A constant potential is maintained across resistors \(R_{1}\) to \(R_{48}\), and as all these resistors are the same, they form a potential divider composed of equally spaced steps. The switches \(S_{1}\) to \(S_{49}\) are operated by the keyboard and form, with diodes \(D_{1}\) to \(D_{49}\) and resistor \(R_{51}\), a "Minof" analogue gate. Thus, whatever combination of switches are pressed, the most negative voltage is selected, this voltage appearing at the emitter of \(\mathrm{Tr}_{3}\). Note that when no switches are pressed, the emitter of \(\mathrm{Tr}_{3}\) rises to nearly \(+V_{c c}\). This voltage must be modified so that it is in a suitable form to act as a control


Fig. 32. Mechanical assembly of the joystick conirol.


Fig. 33. Circuitry assactated with the jormich contral. Resistors are \(5 \%, \frac{1}{4}\) W


Fig. 34. Ilhustration of the joystick control circuit function

Fig. 35. Keyhoard control circuit. Switches \(S_{1}\) to \(S_{49}\) are operated by the keyhoard and form with diodes \(D_{1}\) to \(D_{49}\) and resistor \(R_{51}\), a "Minof" analogue gate. Resistors are \(5 \%, \frac{1}{4} W\).
signal. It is attenuated ( \(R_{55}\) ), inverted and its d.c. level is shifted ( \(R_{59}\) ) so that the range of outputs is from 0 V to +3 V . Also, the feedback around \(I C_{1}\) is such that when no keys are pressed, and the emitter of \(T r_{3}\) rises to nearly \(+V_{c c}\), the output \(\left(V_{c}\right)\) is prevented from going negative, and stays at 0 V .

It is required that a pulse is generated at the moment when a key is pressed, but not when it is released. This would be a simple response to achieve (by detecting the transition direction of the "Minof" voltage) if it were not for the phenomenon of contact bounce. The spikes produced by the bounce can be largely suppressed \(\left(C_{3}\right)\) but there is still a possibility of generating a pulse by mistake. One method of overcoming this dilemma is to use a Schmitt trigger with a sizeable hysteresis loop, so that, as the "Minof" signal plus spikes rises or falls, it causes the Schmitt to change state only once. The direction of this change is determined by whether the input is rising or falling (i.e. whether the key is being released or pressed) and can thus be made to produce a pulse only on the falling transient.
Some applications of the keyboard are given in Fig. 36. Fig. 36(a) shows a patch

diagram of simulated piano sound. A sinusoidal signal is given a fast attack and a slow decay. Note that the control output ( \(V_{c}\) ) from the keyboard is modified by the exponential converter, so that an equally tempered scale is produced. However, if the key is prematurely released, the output promptly changes frequency. Fig. 36(b) overcomes this difficulty, by using the sample and hold circuit to store the control signal. Also, reverberation with a slow sinusoidal modulation has been added producing a pleasant effect similar to a xylophone. Fig. 36(c) shows a network for producing bell-like "clanging" noises.

\section*{Patch panel}

To provide a flexible means of programming the synthesizer, a patch panel similar to the type used in analogue computers has been included. As the input and output impedance of all the units is low, it was possible to use an unscreened system. In fact, ordinary 4 mm banana plugs and sockets were eventually chosen, this decision being greatly influenced by cost factors. This choice, however, presents a danger of damage due to misuse. If two outputs are connected together, then it is possible that some damage will eventually occur, although how long it takes is difficult to predict. Certainly, from previous experience of a similar synthesizer, no lasting damage was seen to occur when an error of this sort was made. To minimize this danger the sockets are coloured, all the inputs being yellow, the outputs being any other colour.

The synthesizers on the market appear to have overcome this difficulty, but at some cost. One method is to employ a series of horizontal and parallel conductors, one set being the inputs, the other set the outputs. Pins are then plugged in to make a connection between an input and an output, thus the danger of an "output to output" never arises. Other methods are to use switches or jack plugs instead of pins. These systems are all pre-wired and so another problem, that of the "birds' nest" of patch cords (an all too familiar sight to those who have ever used an analogue computer) has also been eliminated. However, this advantage has been gained at some expense.
The layout of the patch panel was determined on a logical basis; that is, all the oscillators on one section, the v.c.as and v.c.f. in another, the noise sources in one block etc. Also, to make connections with an external amplifier, a coax. socket was included as well as two sockets which were connected to "ground" potential, these being used as a 0 V reference point for external equipment such as voltmeters or oscilloscopes.

\section*{Power supply}

Many units of the synthesizer are sensitive to power supply fluctuations and so a stabilized supply is desirable. The circuit diagram of the supply used is given in Fig. 37. Without this suppression it is possible to trigger a response by switching on and off unconnected (except via the mains) equipment. Care should be taken in constructing the power supply to avoid introducing any high current paths that might adversely affect the circuit operation.

\section*{Appendix}

\section*{Voltage controlled filter}

Consider a bandpass filter consisting of a series \(L C R\) network. The behaviour of this system is characterized by a linear second order differential equation with constant coefficients. Using analogue techniques, it is possible to model this system, but more important it is possible to make the coefficients variable, in fact, voltage controlled.

The general equation of a linear second order system is
\[
F(t)=\ddot{x}+2 k \omega_{n} \dot{x}+\omega_{n}^{2} x
\]

Where \(\omega_{n}\) is the undamped natural frequency, \(k\) is the damping factor (note, the quality factor \(Q=1 / 2 k\) ), and \(F(t)\) is a generalized forcing function. The solution of this equation consists of two parts; the particular integral that depends on \(F(t)\), and the complementary function that depends on the solution of the right hand side only. Using the network shown in Fig. 38(a) it is possible to implement the complete solution. Different forms of \(F(t)\) can be inserted, and by varying pots 4 and 5 , the values of \(\omega_{n}{ }^{2}\) and \(2 k \omega_{n}\) can be modified. By monitoring the voltage at the output of integrator \(1(-\dot{x})\), the response of a bandpass filter, with the same coefficients, under the influence of the same forcing function \(F(t)\), is observed. (The coefficients for a series \(L C R\) circuit would be \(\omega_{n}=1 / L C\) and \(k=R / 2 C / L\) ). By monitoring \(x\), a low pass response would be seen, and \(\ddot{x}\) a high pass response. If pot 4 were an electronic


Fig. 36. Three examples of how the patch-board can be programmed for a particular sound synthesis. See text for explanation.



Pin connections for the transistors and integrated circuits used in the synthesizer's circuitry.

One method of curing both of these effects is to use two multipliers Fig. 38(b). It is easily shown that there is a linear relationship between the control voltage \(V_{c}\) and \(\omega_{n}\). Also the \(Q\) factor is invariant with resonant frequency changes (assuming multipliers 7 and 8 are matched), and the dynamic range of the filter is equal to that of one of the multipliers. It would also be possible to control the \(Q\) factor with yet another multiplier, but the use of multipliers is both expensive and introduces complications. It was for these reasons that the configuration shown in Fig. 38(c) was finally chosen. Hence, the relationship between \(V_{c}\) and \(\omega_{n}\) is "linear", the dynamic range is nearly 10 to 1 and the \(Q\) factor increases with frequency. The variation of the \(Q\) factor is not as disturbing an effect as it may appear to be, especially when it is considered qualatively.

\section*{Acknowledgements}

We wish to acknowledge the help received from Henry's Radio in the supply of certain parts, especially for the donation of the keyboard.

\section*{Capacitor ratings}

Voltage ratings of electrolytic capacitors shown in Figs. 28-38 are as follows:
Fig. \(28-C_{2} / 35 \mathrm{~V}\)
Fig. \(29-C_{1} / 25 \mathrm{~V}, C_{3} / 10 \mathrm{~V}, C_{4} / 10 \mathrm{~V}\), \(C_{7} / 10 \mathrm{~V}, C_{8} / 25 \mathrm{~V}, C_{9} / 25 \mathrm{~V}\), \(C_{10} / 16 \mathrm{~V}, C_{11} / 40 \mathrm{~V}, C_{14} / 40 \mathrm{~V}\), \(C_{17} / 16 \mathrm{~V}, C_{19} / 16 \mathrm{~V}, C_{20} / 16 \mathrm{~V}\), \(C_{27} / 10 \mathrm{~V}\).
Fig. \(31-C_{3} / 40 \mathrm{~V}, C_{4} / 16 \mathrm{~V}, C_{5} / 40 \mathrm{~V}\), \(C_{6} / 40 \mathrm{~V}, C_{7} / 25 \mathrm{~V}, C_{8} / 25 \mathrm{~V}\)
Fig. \(33-C_{1} / 25 \mathrm{~V}, C_{2} / 25 \mathrm{~V}, C_{3} / 10 \mathrm{~V}\), \(C_{4} / 25 \mathrm{~V}, C_{5} / 10 \mathrm{~V}\).
Fig. \(35-C_{1} / 25 \mathrm{~V}, C_{2} / 25 \mathrm{~V}, C_{6} / 16 \mathrm{~V}\).
Fig. \(37-C_{2} / 40 \mathrm{~V}, C_{3} / 16 \mathrm{~V}, C_{4} / 25 \mathrm{~V}\), \(C_{6} / 25 \mathrm{~V}, C_{7} / 16 \mathrm{~V}, C_{8} / 40 \mathrm{~V}\).

\title{
An approach to audio amplifier design
}

\section*{3 System design, applying the figure of merit.}

\author{
by J. R. Stuart, B.Sc. (Eng.), M.Sc., DIC, M.I.E.E.E.
}

In the second part of this series, the discussion of an approach to the design of an amplifier as part of a system led to a detailed analysis of the application of negative feedback loops. Highlighted in this analysis was the way in which the open loop characteristics of an amplifier need to be related to the closed loop operating conditions in order to achieve the correct compromise of phase, transient and steady-state distortions.

\section*{Steady-state distortions}

The transistor parameters which contribute to non-linearity have been listed in part 1 , as follows.
- The exponential form of the relationship between \(i_{b}\) and \(V_{b e}\) and of \(V_{b e}\) with temperature.
- Variations of \(h_{f e}\) and \(h_{F E}\) with collector current \(i_{c}\), with collector-emitter voltage \(V_{c e}\) (Early effect), and with temperature.

At high frequencies other effects are in variations of \(C_{b e}, C_{c b}\) and \(C_{c e}\) with chip temperature, \(V_{c e}\) and \(i_{c}\). Apart from controlling quiescent conditions, the major freedom available to the designer in defining the forward or open-loop characteristics of
*Lecson Audio Ltd
an amplifier is the choice of source and load impedance for each stage and of the amount of local feedback to be applied.

The two most useful techniques for reducing distortion introduced by device nonlinearities are local emitter feedback (in a common emitter amplifier) and the cascode configuration. Fig. 32 shows a simple common emitter amplifier with and without local feedback supplied by \(R_{e}\), and the small signal equivalent circuit for each.

We have for the case with local feedback, the trans-impedance
\[
R_{b}=\frac{V_{0}}{i_{S}}=\frac{h_{f e} R_{L} R_{S}}{h_{11}+R_{S}+R_{e}\left(h_{f e}+1\right)}
\]

Setting \(R_{e} \rightarrow 0\) gives the case of no feedback Fig. 32(a)
\[
R_{a}=\frac{V_{0}}{i_{S}}=\frac{h_{f e} R_{L} R_{S}}{R_{S}+h_{11}}
\]

By partial differentiation the sensitivity of \(R_{a}\) and \(R_{b}\) to device parameters can be shown, e.g. for change of \(h_{f e}\) for whatever reasons we have:

Case (a) no feedback
\[
\frac{\delta R_{a}}{\delta h_{f e}}=\frac{R_{L} R_{S}}{h_{11}+R_{S}}
\]


Fig. 32. Common emitter amplifier drawn (a) without feedback and (b) with feedback together with their small signal equivalents.

Case (b) with feedback
\[
\begin{aligned}
\frac{\delta R_{b}}{\delta h_{f e}}= & \frac{R_{L} R_{S}}{h_{11}+\left(h_{f e}+1\right) R_{e}+R_{S}} \\
& {\left[1-\frac{h_{f e} R_{e}}{h_{11}+\left(h_{f e}+1\right) R_{e}+R_{S}}\right] }
\end{aligned}
\]

This represents an improvement in gain stability of:
\[
\frac{\left[h_{11}+\left(h_{f e}+1\right) R_{e}+R_{S}\right]^{2}}{\left(h_{11}+R_{S}\right)\left(h_{11}+R_{e}+R_{S}\right)}
\]

Analysis will show the same improvement for many device parameters and a similar form of improvement in high frequency effects.

The cascode arrangement shown in Fig. 33 allows the common-emitter stage to be virtually freed from the Early effect and modulation of \(C_{c e}\), as the device is allowed to operate at constant \(V_{c e}\); this clearly also allows a higher bandwidth to be achieved by the stage for given source and load impedances as the Miller effect is considerably reduced.

\section*{Design of a system}

The preceding arguments in parts 1 and 2 indicate that an amplifier designed to sound very good cannot necessarily be synthesized from the basic specification:
1. Output power in excess of 40 W .
2. Power bandwidth \(20 \mathrm{~Hz}-30 \mathrm{kHz} \pm\) 1 dB .
3. Very low noise and hum, say -80 dB .
4. t.h.d. less than \(0.1 \%\) at all frequencies and power levels in the bandwidth.
5. i.m.d., however measured, less than \(0.1 \%\).
6. Low output impedance, say \(400 \mathrm{~m} \Omega\).

However it seems reasonable in the light of the preceding discussions to propose a starting point specification for very good quality as below.
1. Output power in excess of 40 W .
2. Power bandwidth \(10 \mathrm{~Hz}-30 \mathrm{kHz} \pm\) ldB.
3. Very low noise and hum, say -80 dB flat, -80 dB C.C.I.R. weighted.
4. Weighted total harmonic distortion less than \(0.1 \%\) at all frequencies and power levels; i.e. \(10 \mathrm{~Hz}-20 \mathrm{kHz}, 0-40\) watts.
5. i.m.d., however measured, less than \(0.1 \%\).
6. Low output resistance, say \(400 \mathrm{~m} \Omega\); \(10 \mathrm{~Hz}-20 \mathrm{kHz}\).
7. Open loop frequency response-any loop -3 dB at 20 kHz min.
8. Feedback factor -40 dB any loop.
9. Phase accuracy \(\pm 10^{\circ} 20 \mathrm{~Hz}-20 \mathrm{kHz}\).
10. Accurate overload characteristic inside the loops.
A typical audio amplifier system will be as shown in Fig. 34; here three major negative feedback loops are isolated. These are around the low noise input amplifier, in which equalization may be applied, the tone control stage and the power amplifier. In addition there is the volume control and a stage of filtering which need not be achieved by feedback loops.
It has been shown earlier that for any single stage to have a phase shift of \(2^{\circ}\) at 20 kHz then the minimum -3 dB closed loop bandwidth for that stage is 570 kHz ; three such stages cascaded would have a total lag of \(6^{\circ}\). It has also been demonstrated that it is not desirable to drive any audio feedback amplifier significantly above its open-loop bandwidth; therefore if the signal can be restrained to say 45 kHz in the filter stage, then the open-loop response of the two stages following the filter should be as similar as possible, thus giving a guide to the feedback factor that can be applied for a given overload margin.

The choice of 45 kHz for a passive roll-off is a compromise between the phase distortion introduced by such a filter and t.i.d. in the power amplifier. It is not in any way a magic number and may be different in every design.
At this stage the designer runs seriously short of information, in particular the extent to which phase shift can be traded off for incipient t.i.d., and this is discussed later. However, it seems reasonable to me that in view of the poor phase performance of parts of the audio chain outside direct control, e.g. the recording studio, and in view of the high apparent sensitivity of the ear to t.i.d., that it would always be preferable to err on the side of a lower passive roll-off and higher phase shift - but as a compromisenot a rule.

A recent design. A commercially available amplifying system* designed by myself is shown in block diagram form in Fig. 35.

A low-noise high overload input stage is followed by an active volume contol, filters and tone control; in each case the open-loop bandwidth and feedback factor, \(F \mathrm{~dB}\), is shown. Care has been taken to ensure that no transient distortion effects can arise with an audio signal, and the signal bandwidth of the system is constrained to 45 kHz with
a third-order Bessell roll-off which introduces a lag of \(12^{\circ}\) at 20 kHz .
It is clear from the arguments presented that, for an unconditionally stable characteristic in an amplifier which exhibits no transient distortion effects in the signal bandwidth, a low feedback factor is necessary. This is because any increase of feedback factor must be accompanied (in the general and practical situation \(\dagger\) ) by a reduction of open-loop bandwidth, \(\omega_{o L}\). The consequences of this are a rise of steadystate distortion starting below \(\omega_{O L}\) and an increased possibility of t.i.d. Therefore, in order that the amplifier should also have a weighted t.h.d. of less than \(0.1 \%\) at any frequency or power level, it was essential to achieve a low open loop distortion figure.
The final power amplifier design, which is shown in block diagram form in Fig. 36, uses a new configuration which is the subject of a British patent application.
Use of local stage feedback combined with a complementary form and output triples operating in class AB gives an openloop bandwidth of 17.5 kHz and distortion of \(0.2 \%\). The application of 32 dB of feedback reduces the weighted t.h.d. well below \(0.1 \%\) and gives an unweighted t.h.d. of \(0.005 \%\) between 100 Hz and 3 kHz .

\section*{A figure of merit}

Earlier I put forward the idea of a figure of merit which describes the quality of an audio chain or a link of that chain. This is a number derived from a weighted sum of undesirable characteristics, measured in terms of the critical parameters. This figure of merit (f.o.m.) may be time variant; that is, an amplifier may have for example a rating of 0.8 (197I) and 0.7 (1973).
It was further proposed that by using collective subjective results, any parameter could be assigned a measure of significance, and further that the starting points for each parameter would be the thresholds of perception and objection-the latter Mantel \({ }^{3}\) calls "the threshold of non-neglectability".
Successive experiments may then show improved accuracy in the choice of parameters, defining thresholds and curve fitting between the thresholds.

In this article I propose to outline a workable f.o.m. which is based on current knowledge as outtined, in the hope that its defects can be improved upon by large-scale experimental work.

The working of an f.o.m. Let us consider that the figure of merit for a chain or item in the chain be \(M\), where \(M\) is the probability that a person will not be able to detect a shortcoming in the sound. This could be restated as \(M=\) probability of non-detection of a shortcoming by a member of the population chosen at random. Therefore an ideal audio system would have an \(M=1\) and a poor system \(M=0\).
For each stage in the chain of \(n\) elements we propose \(m_{i}(i=1,2 \ldots n)\) such that the total figure of merit for the \(n\) cascaded stages is \(M_{T}=\prod_{i=1}^{n} M_{i} \alpha_{i}\), where \(x_{i}\) is a weighting factor.

Each partial f.o.m. \(M_{i}\) is composed of a weighted product of factors believed to influence the quality of the sound, such that \(M_{i}\) shows the joint probability that any one factor may be detected as a shortcoming. Therefore in a simple example, if \(M_{i}\) considers only the terms
- \(p(d)\) the probability of detection of \(d \%\) weighted t.h.d., and
- \(p(n)\) the probability of detection of \(n \mathrm{~dB}\) \(\mathrm{s} / \mathrm{n}\) ratio
then we may write
\[
M_{i}=q(d) \cdot q(n)
\]
where \(q(d)=1-p(d)\)
\(q(n)=1-p(n)\)


Fig. 33. The cascode circuit.


Fig. 34. Block diagram of a typical audio amplifier.

\footnotetext{
*The Lecson ACI + APl
tgiven output transistors
}
e.g.


Fig. 35. Black diagram of the Lecson system showing the bandwidh and feedhack factors for cach section.

Now this is clearly a simple example and does not take account of perception thresholds or interactions of parameters and masking effects. It will not be sufficient to write, for example, \(p(n)\) as the probability of detection of \(n \mathrm{~dB}\) signal to noise ratio, but possibly as a conditional probability of detection of weighted noise-say C.C.I.R. weighting--given a specific bandwidth.

So an f.o.m. which would be useful in the predictive design of audio components could be made up from tables of conditional probabilities and give a performance measure of universal use.

In this analysis I propose to use the thresholds of perception and non-neglectability \((p(x)=0\) or 1 ) for all the parameters discussed so far and to discuss interpolation between these points.

In Table 1 a list is given of these parameters, and of thresholds which seem to be reasonable in the light of current knowledge.

Frequency response is treated by considering the two roll-off points-items 1 and 2 -and determining a rough measure of \(q\left(\omega_{L}\right)\) and \(q\left(\omega_{H}\right)\) from Fig. 6 which are from results produced by Snow. Thus a response \(20 \mathrm{~Hz}-20 \mathrm{kHz}\) has a partial \(M\) of 1 while \(100 \mathrm{~Hz}-10 \mathrm{kHz}\) has a partial \(M\) of \(0.9 \times 0.95 \approx 0.86\). Phase and amplitude linearity have been considered as being logarithmically interpolated in the absence of any other information-the same method has also been used by Mantel \({ }^{3}\).

Steady state distortions are again interpolated logarithmically; this being chosen as a reasonable assumption in the absence of further knowledge. The whole basis of this experiment is to test the values and curves I have offered as a starting point.

I would suggest that at this starting point in the derivation of an f.o.m. the a priori measure of the likelihood of t.i.d.-the transient intermodulation index-be used, and the interpolation is as shown in the Table.

Signal to noise ratio is shown weighted according to the C.C.I.R. standard, and it is intended that this should include only hum and noise and not measures of crosstalk or other interfering signals.

Other parameters which have not been listed but are clearly essential when discussing elements of the chain other than amplifiers include a frequency modulation measurement to include wow, flutter and Doppler effects.

A review of the f.o.m. In the form proposed here it is possible to produce a single number which is intended to describe the subjective sound quality of a piece of equipment derived from objective measurements based on the following suppositions:
(i) it is possible to tabulate a conditional probability for the detection of any single shortcoming in terms of population.
(ii) that this probability will move in some way from 0 to 1 between the levels of perception and objection.
In order that a number may be derived, and that the behaviour of the f.o.m. may be investigated, I have used the thresholds discussed in this article, and tentatively pro-

Table 1
\begin{tabular}{|c|c|c|c|}
\hline Measurement & \[
\begin{aligned}
& p(x)= \\
& q(x)=
\end{aligned}
\] & \[
\begin{aligned}
& p(x)=1 \\
& q(x)=0
\end{aligned}
\] & Interpolation \\
\hline \multicolumn{4}{|l|}{1. Amplitude-frequency response \(20 \mathrm{~Hz} \quad 1 \mathrm{kHz}\)} \\
\hline lower -3 dB point \(\omega_{\llcorner }\) & \[
20 \mathrm{~Hz}
\] & \[
1 \mathrm{kHz}
\] & See Fig. 6 rating / 10 \\
\hline 2. Upper -3dB point \(\omega_{\mathrm{H}} \mathrm{dB}^{*}\) & \[
20 \mathrm{kHz}
\] & \[
\begin{aligned}
& 1 \mathrm{kHz} \\
& 30 \mathrm{dz}
\end{aligned}
\] & \(p(L)=0.48 \log _{10}(4 L)\) \\
\hline 3. Amplitude linearity \(\pm \angle \mathrm{dB}^{*}\) & 0.25 & 30 dB & \(p(L)=0.48 \log _{10}(4 L)\) \\
\hline 4. Phase linearity \(\pm \theta^{\circ}\). Maximum weighted th.d. or im.d.* \(d \%\) & \(5^{\circ}\)
\(0.1 \%\) & \(100^{\circ}\)
\(50 \%\) & \(p(\theta)=0.77 \log _{10}(0.20)\)
\(p(d)=0.37 \log _{10}(10 d)\) \\
\hline \begin{tabular}{l}
5. Maximum weighted t.h.d. or im.d. \(d \%\) \\
6. Transient intermodulation index
\end{tabular} & 0.1\% & 100 & \(p(d)=0.33 \log _{10}(10 t i)\) \\
\hline 7. Rise-time \(\tau\) /us & \(5 \mu \mathrm{~s}\) & 1 ms & \(\rho(\tau)=0.44 \log _{10}(0.2 \tau)\) \\
\hline 8. C.C.I.R. weighted \(s / n^{*} n\) & 70 dB & 30 dB & \(\rho(n)=(1-(n-30) / 40)\) \\
\hline 9. Cross-talk \(c\) & 60 dB & OdB & \(\rho(c)=(1-n / 60)\) \\
\hline
\end{tabular}
*In the band \(20 \mathrm{~Hz}-20 \mathrm{kHz}\) or \(\omega-\omega\) whichever is the smaller. Note \(0 \leqslant p(x) \leqslant 1\) only.

Fig. 36. Simple block diagram of the Lecson power amplifier.

posed others with an interpolation. Clearly if such an f.o.m. is shown to give accurate results then it would be of great use to designers and users of audio equipment. However, in order that a f.o.m. of this kind can evolve, very extensive listening tests should be carried out. These are probably best controlled by and published through a respected journal such as Wireless World. [We are considering this.-Ed.]

The figures tabulated in Table 1 indicate that an amplifier which equals or betters the perception threshold for every parameter would have an \(M_{i}=1\). This rating would reduce to 0.9 with a low frequency cut off of 100 Hz , or an amplitude deviation of 0.4 dB or a phase deviation of \(8^{\circ}\) etc.

\section*{Some experiments}

The author has recently carried out some listening experiments in an attempt to measure the significance of t.i.d. in high quality power amplifiers and, while the
tests are not completed, some preliminary results have been obtained which are of interest.
The approach has been to use the basic Lecson API power amplifier design and to vary only the open-loop bandwidth and feedback factor.
Three amplifiers were used:
1. The standard amplifier with an open loop bandwidth of 17.5 kHz and feedback factor of 32 dB as summarised earlier.
2. A modified version with an open-loop bandwidth of 4 kHz and feedback factor of 40 dB . This amplifier exhibited amplitude and phase responses identical to the first example, within the accuracy of the measurements \(\left(0.25 \mathrm{~dB}, 2^{\circ}\right)\), and showed t.h.d. results within \(10 \%\) weighted of the first example.
3. A modified version with an open-loop bandwidth of 17.5 kHz and a feedback factor of 6 dB . This amplifier exhibited t .h.d. of \(0.11 \% 50 \mathrm{~Hz}-3 \mathrm{kHz}\), rising to \(0.18 \%\) at

\section*{Appendix}

The three amplifiers used in these listening experiments were all of very high quality showing an f.o.m. based on the routine of Table 1 , of \(0.9,0.82\) and 0.83 , for the amplifiers \(\mathrm{A}, \mathrm{B}\) and C respectively.

Test 1. The test routine was performed using a panel of 8 listeners. Programme was derived from a very high quality disc player and monitor-standard loudspeakers employed (Spendor BC3)

Comparison A and B. On all programme material chosen, amplifier A was preferred by \(87 \%\) of the listeners. The reaction of all listeners subjectively defined a clear difference, A being preferred for greater clarity at high frequencies. On switching to \(B\) the impression was obtained of a veil being drawn over the sound, particularly with strings or percussive material.

Comparison A and C. All listeners observed audible differences; C was prefeired by \(62 \%\) on all programme material and by \(75 \%\) on folk music or percussive music. The overall impression was that C handled transient material very well but showed slight high frequency colouration, possible due to the weighted distortion

Comparison B and C. Of the total audience, \(75 \%\) preferred C on all material. Of particular interest in this test was that the two amplifiers showed subjectively different balance, C sounding to have less high frequency content than B. Also it was noted that B showed up background noise on the disc-hiss, clicks and pops-much more than C .

Test 2. A panel of 4 listeners using a high quality disc source and monitor-standard loudspeakers (Lecson HL1)

Comparison A and B. All preferred A for reasons of high frequency clarity

Comparison B and C. This test produced confusion, no direct results were applicable as preference depended upon the material used. The faults of amplifier \(B\) on transient sounds seemed to be contrasted with a slight lack of clarity on high notes with amplifier C.

Tests 3 and 4. Devised as a control test for the comparison B and C. Two panels took part, consisting of three and seven listeners respectively. Again a disc source was employed and small loudspeakers used (Spendor BCl ). In the first test C was unanimously preferred, to the second-as before, preference depended to an extent on the source material
A working hypothesis to explain reactions to amplifiers B and C could be, that subjectively the amount of t.i.d. produced by \(B\) was as significant as any high frequency t.h.d. or i.m.d. produced by C. However these listening tests are only the beginning of a serious programme of tests which will aim to establish significance over a much wider range, and so these results can only be considered to be provisional. For example no attempt has been made to establish an f.o.m. for the loudspeakers used in these tests or to calculate or measure any interactions in the reproducing systems.
\(20 \mathrm{kHz}, 35 \mathrm{~W}\) r.m.s. The distortion was such that the second harmonic was 40 dB above any other so the weighted t.h.d. was below \(0.2 \%\) at all times.

In each case the output impedance at the terminals of the amplifier was less than \(250 \mathrm{~m} \Omega 20 \mathrm{~Hz}-20 \mathrm{kHz}\), so any effect that a change of feedback factor may have had on this, was swamped by the 3 m long loudspeaker leads used.

Three experiments were conducted, two formal, one informal. In each case the amplifying equipment was arranged as Fig. 37; only two amplifiers are used in any one test and both are driven continually by the pre-amplifier. Instantaneous comparison on programme is made by switching the loudspeakers between the two power amplifiers.

In accordance with the testing procedures laid down by Percy Wilson the participants had no knowledge, until the end of the experiments, of the nature of the differences between the amplifiers (if any) nor of the kind of subjective difference (if any) to expect. At no time was it asked which of the amplifiers sounded most natural, but simply "which of two, X or Y , do you prefer?"

The results of the tests are summarized in the Appendix. It is clear that, between amplifiers which are otherwise extremely good,
despite relatively small changes to the t.i.i. performance, differences can definitely be detected by the ear as changes in the clarity and tonal balance of sound

In a future article the author intends to describe further listening and objective tests and procedures in an attempt to quantify t.i.d. in absolute terms within the f.o.m. and with respect to t.h.d.

\section*{Conclusions}

In these articles the author has attempted to study the relationships between objective tests made on amplifiers and the subjective results. Many aspects of amplifier performance have not been covered, the discussion concentrating more on distortions.

While it has been possible to outline in detail the rigorous compromises that face the designer of negative feedback amplifiers, the way in which each of the subjective effects trade-off is still not precisely known. A figure of merit calculation is given which makes an inquiring step in this direction, but it is clearly necessary that a programmed and controlled series of tests be carried out on a large scale.

\section*{Sixty Years Ago}

From time to time over the years, successive editors of Wireless World have taken issue with the Post Office on the subject of licensing, especially when it has been considered that the Postmaster-General has tried to overstep the bounds of reason by claiming a proprietorial interest in the forces of nature. A correspondent in 1913 obviously felt very much the same way. . . "We have heard lately of bedsteads and gas pipes being successfully used as substitutes for receiving aerials. Suppose I go a little further and discover that I get Paris, using only domestic appliances (such as a bedstead on an upper floor as an aerial, the wires of a piano suitably connected as a tuning coil, a nest of cake tins with buttered paper between them as a condenser, a piece of washing soda and a darning needle as a detector, and my tongue in place of the 'phones), must I obtain a licence from the Postmaster-General before I dare use such apparatus to get the time from E.L.? A few more discoveries(!) in "wireless" and we shall require to get a licence from the PostmasterGeneral before we furnish a house, and we shall have inspectors inspecting our pots and pans to see that they conform to the wireless regulations!"

\section*{Darts Game Calculator}

Apprentices at the Guided Weapons Division of the British Aircraft Corporation, Bristol, have built an experimental automatic darts game calculating system which registers and keeps scores. It comprises a special dartboard with sensing devices, and a computer-controlled display unit which acts as the scoreboard. This unit, using 120 integrated circuits, shows the running totals for the competing teams and adds up each individual score.

The dartboard is designed with each segment internally divided and connected to the display unit. Impact of a dart on each segment causes an electrical signal to be sent to the computer in the display unit. The conclusion of an individual three-dart score is signalled by the removal of the darts from the board. The system is then re-activated by the next player standing on the throwing mat, under which is concealed a proximity detector. This causes a bulb on the display unit to be lit, showing that the system is ready to accept the next score.

Any variation of the game can be fed into the display unit before the game starts, so that the starting total could be set at, say, 1001 or 301 depending on the type of game to be played. If a double is required to start the game, then a "double" light is switched on and the system ensures that electrical signals from the dartboard will not alter the setting until the first double is obtained.

The apprentices were given just 13 weeks to design, build and test the project and were allowed to spend no more than \(£ 100\) on materials.

\title{
Micropower circuits
}

\author{
by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams*
}

Think small! In tune with the broadening of the frequency spectrum, so has the range of powers grown at which electronic circuits may be coerced into functioning. Within modern integrated circuits it is common to find individual transistors operating at microampere currents, with device p.ds of a volt or so. Discrete transistors can retain useful gain at currents several orders of magnitude less at room temperatures (even with silicon transistors leakage current imposes constraints on the usable current/ temperature combinations). Since the leakage currents may be markedly reduced by controlling the doping levels and depth of penetration, by attention to surface impurities and by reduction of device area, it is difficult to define this lower limit. Collector currents of 1 nA at \(20^{\circ} \mathrm{C}\) and \(1 \mu \mathrm{~A}\) at \(100^{\circ} \mathrm{C}\) are possible, though it would be foolhardy in the extreme to suggest that these could not be improved on - undoubtedly before publication some brilliant new process will appear capable of improving on these figures by a factor of ten or more!

The position is quite different in respect of minimum operating voltages. Fig. 1 shows the variation of \(I_{c}\) and \(I_{b}\) against \(V_{b e}\) for a low-leakage planar silicon transistor operated at constant \(V_{c e}\). No matter how low the current is reduced the fundamental relationship \(I_{c} \propto \exp V_{b e}\) ensures that the value of \(V_{b e}\) changes at a much slower rate. For example, a ten-fold reduction in \(I_{c}\) corresponds to a reduction of approximately 60 mV in \(V_{b e}\) at room temperatures. Since the minimum value of \(I_{c}\) is likely to be fixed by load requirements etc. no amount of juggling can reduce the minimum supply voltage below that of the corresponding \(V_{b e}\), and in most circuits the supply voltage will have to be significantly higher. Excepting special cases such as certain complementary oscillators where only one of a complementary pair needs to conduct at a time, the minimum supply voltage will be greater than 1 V and may have tö be greater than 1.5 V for op-amp type circuits.

In the above discussion no mention has been made of constraints imposed by transistor \(V_{c e}\). At low currents the value of \(V_{c e}(s a t)\) is very much less than the \(V_{b e}\) values above, though it must be observed
that \(V_{c e}\) (sat) often rises with temperature while \(V_{b e}\) always falls (typically the temperature coefficient of \(V_{b e}\) is \(-2 \mathrm{mVK}^{-1}\) ). At high current densities the bulk resistance of the semiconductor comes to dominate the junction characteristics and the minimum p.ds may well exceed a volt for both base and collector-emitter paths. Selfheating will cause the value of \(V_{b e}\) to fall somewhat but the effect should be negligible for circuits coming under the micropower heading.
The use of germanium transistors to minimize voltage requirements is well known, but the leakage currents are such that high temperatures are inconsistent with micropower operation. When using diodes, an intermediate region is provided by Schottky-barrier devices. As shown in Fig. 2, these have a p.d. appreciably less than that for a silicon diode, and can be used as bias elements as well as for rectification.

The interpretation of this term "micropower" has been made a generous one in this series because the techniques used in micropower circuits can be usefully applied in many other fields. For a given specification of load resistance and the required voltage or current swing, the minimum theoretical voltage can be determined assuming a voltage supply (if the circuit is to be supplied from a constant current then it is the minimum value of current that is defined). If this voltage is significantly greater than the minimum operating p.ds of semiconductor devices as discussed above, then standard circuit configurations may well give satisfactory results. At lower load p.ds new circuits are necessary to allow operation from correspondingly low supply voltages. As a rough guide, it is now possible to produce a.c. amplifiers, oscillators both \(R C\) and \(L C\), voltage regulators, and astable and monostable circuits that will operate from supply voltages in the region of 1 V , though with obvious limitations on output voltage swing and with reduced stability against supply/ temperature variations. Other circuits such as power amplifiers and operational amplifiers may require somewhat higher voltages but nearly all functions can be provided while operating from a single dry cell. In designing these circuits a critical parameter is the minimization of wasted voltage, and this is equally applicable to conventional


Fig. 1. Variation of \(I_{c}\) and \(I_{b}\) against \(V_{\text {be }}\) for a low leakage planar silicon transistor operated at constant \(V_{c e}\).


Fig. 2. The Schottky-barrier diode has a p.d. appreciably lower than that of a silicon diode.


Fig. 3. Replacement of a complementary pair of emitter followers (a) by common emitter stages with emitters taken to opposite sides of the supply (b).
circuits where the load-swing is to approach the available supply voltage. A good example is the replacement of a complementary pair of emitter followers Fig. 3(a) by common emitter stages with emitters taken to opposite sides of the supply Fig. 3 (b). In the former case, since the bases can only be driven with difficulty to within hundreds of millivolts of the supply, then the output suffering an additional \(V_{b e}\) loss may be up to 1 V less than the supply at both extremes, i.e. the output has a peak-peak value up to 2 V less than the supply voltage even at relatively low currents. In the circuit of Fig. 3 (b), though the drive conditions may be more difficult to meet, only the transistor \(V_{c e}\) (sat) appears in series with the load, and outputs to within a couple of hundred millivolts of the supply are feasible. It is for the same reason that the series-pass transistor is in the commonemitter mode in voltage regulators where minimum input-output differential . is important.

Two other related parameters that may be important in micropower circuits are maximum efficiency and the minimum quiescent power. As discussed in the article Power Amplifiers (June issue), these two conditions are often associated, as, for example, in class B power amplifiers. For minimum distortion it may be necessary to increase the quiescent power. Where the amplifier normally operates close to maximum output then this contribution to the power consumption is negligible. Conversely if the amplifier operates at full output only for short periods, then the mean power is strongly dependent on the quiescent power. In summary, for continuous operation at maximum outputs, saturation voltages will be the limiting factor, while the quiescent power needs most design ingenuity for large peak/mean ratios in output.

A different problem arises when efficiency at maximum output is really critical. Then the need to saturate the output transistor(s) to minimize lost voltage would bring the corresponding disadvantage that the base current becomes a large fraction of the load current. The combination of high current gain together with low saturation voltage is not an easy one, though at least high breakdown voltages are not required of the device. Special transistors called "super- \(\beta\) " devices are now used as the input stages for high input impedance operational amplifiers. These have a very thin base region, achieve gains in excess of 1,000 but have very low breakdown voltages. They are the extreme examples of another source of the trend towards low-power operation - in this case for the higher input impedance that it brings rather than for the low power itself.

The definition and control of operating current becomes difficult at low currents because of the high-value resistors needed, which are not compatible with monolithic processing in its most economic form. Circuit techniques based on the currentmirror have mitigated this problem, so


Fig. 4. At high frequencies the gainbandwidth product of a transistor is an almost linear function of quiescentcurrent.
that all the currents in an amplifier are controlled by a single low-current source. Recent micropower op-amps leave this to the choice of the user, with a single external resistor programming the operating currents of all the transistors in the i.c. At low supply voltages the p.d. across any such resistor, whether internal or external, becomes temperature-dependent and the design problems multiply.

Temperature problems are even more severe in low-voltage/low-current voltage regulators since conventional voltage reference elements cannot be used - the lowest zener diode has a breakdown voltage of approximately 2.7 V . Combinations of dissimilar diodes (e.g. Si and Ge ) can be produced that have a.voltage difference which is almost temperature compensated, while i.c. designs have exploited the properties of forward-biased silicon p-n junctions to achieve the same effect.

The one area of operation where the inherent limitations of micropower operation have not been overcome is the highfrequency region. As the quiescent current in a transistor is reduced, so the rate at which it can charge its own internal and/or external stray capacitances falls. The gain-bandwidth product is an almost linear function of quiescent current (as shown in Fig. 4) with an upper limit to this parameter short of its maximum operating current for most devices. Thus a device normally thought of as a " 100 MHz transistor", when operated at collector currents below \(1 \mu \mathrm{~A}\) may have a cut-off frequency of less then 10 kHz . Clearly it becomes of critical importance to minimize the stray and load capacitances in such applications. For micropower operations at high frequencies, transistors with the very highest quoted gain-bandwidth products should be selected -- even 1 GHz devices are not out of place provided they can sustain current gain at these low currents. Low-voltage operation brings increased problems since, for example, the collector-base diode has increasing (non-linear) capacitance as the p.d. approaches zero and eventually becomes slightly forward biased.

A major area of concern is in the digital field, where ever larger numbers of gates and other functions are being concentrated into single monolithic i.cs. These l.s.i.
(large scale integration) circuits are limited in complexity by two mechanisms - the number of external connections, and the total dissipation. Complementary m.o.s. with its extremely low standby power is the ideal logic family from this latter standpoint and is likely to dominate the market. The dissipation is significant only where high-speed operation is demanded, since then the charge/discharge of internal capacitances dissipates power. Since the choice of circuits available in this family is growing so rapidly, the user is best advised to refer to the manufacturers' data sheets, while the properties of the basic gates will be discussed in the following article.

\section*{How to get Circards}

Order a subscription by sending £9
(U.K. price; \(£ 10.50\) elsewhere) for a series of ten sets to:
Circards
J.P.C. Electrical-Electronic Press Ltd General Sales Dept.
Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with if not the current one. One set (normally 12 cards) costs \(£ 1\) U.K. and \(£ 1.15\) elsewhere, postage included.

Cheques should be made payable to
I.P.C. Business Press Lid.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D) 8 astable circuits
9 optoelectronics: devices and applications
10 micropower circuits
Subsequent issues will cover logic gate circuits, wideband amplifiers, alarm circuits, digital counters, pulse modulators Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the Ist of the month, and the Circard concept was outline in the October issue, pages 469/70.

\section*{Letters to the Editor}

The Editor does not necessarily endorse opinions expressed by his correspondents

\section*{Breakdown of c.m.o.s. devices}

I was very interested to read the article "Complementary m.o.s. Integrated Circuits" in the August issue. However, on page 396 there was the statement "To avoid failures due to destructive breakdown of the gate insulation, possible with such high impedances . . . etc".
Motorola in a recent leaflet entitled McMOS state that stress voltages can be caused by improper testing and even more likely causes are random electrostatic charges. They suggest that all leads are shorted together, antistatic clothing should be worn, personnel handling c.m.o.s. should be electrically grounded, equipment which comes in contact with finished pieces of equipment should be properly grounded - and yet they fit input protection diodes.

RCA claim to have fitted protection devices to the inputs of their devices which will have a controlled breakdown of something of the order of \(30 \mathrm{~V}-100 \mathrm{~V}\) in the reverse direction, and have given figures for the maximum voltages which can appear between pins on the i.c.
SGS also fit input protection diodes but, so far as I can ascertain, make no claims one way or the other.
This problem of breakdown due to static build-up appears to be a serious drawback to the large-scale use of c.m.o.s., or maybe I am looking at the wrong manufacturers' data sheets!

Can any of your readers enlighten me as to whether I can safely wear my nylon coat when using c.m.o.s. or do I have to chain myself and all my test gear solidly to earth?

\section*{Peter Seddon,}

Rugby,
Warwickshire.

\section*{Tuner front-end devices}

I have recehtly read in Wireless World two articles which have raised some rather large doubts in my mind as to the best device available for the reduction of cross- and inter-modulation.
In June there was Mr Nelson-Jones employing dual gate m.o.s. f.e.ts in his v.h.f. tuner which, with a sensitivity of the order of 1 microvolt, one hopes
will pick out a weak v.h.f. signal in the presence of strong local nearby frequencies.

In August P. Antoniazzi and A. Mauceri were saying the dual gate m.o.s. f.e.t. is not the answer and the bipolar transistor has a better performance, achieving a 40 dB suppression of signals with a 4 MHz separation at 500 MHz . When used as the v.h.f. part of their tuner I deduce they will claim a similar performance.

I do not have available the data sheets for the BF479; however, those for the 40673 show that careful selection of bias and a.g.c. is needed to get the best out of the m.o.s. f.e.t.

The problem I wish to pose is essentially how does one receive a 1 microvolt signal, which obviously cannot produce much a.g.c., in the presence of strong nearby v.h.f. f.m. transmissions which can easily be of the order of hundreds of millivolts.
Could these respected authors clarify this point, which is becoming a real problem with the almost saturation of v.h.f. frequency spectrum? The published literature is full of wavetraps and heli coidal filters which unfortunately are to some extent attenuators for weak signals.

Even better still would be an article from some brave soul on the relative merits of bipolars and m.o.s. f.e.ts in weak signal conditions. I am sure such an article would fill a gap in a little discussed but very real problem.
F. F. Maher,

Madrid,
Spain.

\section*{Record equalization}

In response to Mr Ewer's letter on record equalization (August issue) I would like to point out some factors which he has overlooked or perhaps does not know about.

First of all I must hold up the record companies' flag by saying that discs are recorded to the BS 1928 equalization standard and that there is no equipment "penny-pinching" when Neumann or Scully cutting lathes are in use.

The reason behind the apparent lack of extreme bass on some records is not due to the use of a modified equalization
characteristic. Despite what J. L. Linsley Hood and others say, it is due to the fact that extreme bass signals, of even moderate amplitude, can (a) damage, very easily, delicate stereo cutter heads (especially if present as a difference signal) and (b) result in groove wall breakdown, i.e. "groove-jumping". To prevent cutter head damage, fast, accurate stereo limiters are employed, but to avoid the triggering of these too often a careful watch must be kept on peak levels and difference channel levels at all frequencies, with the result that occasionally a modicum of "cut" must be applied at selected places within the audio spectrum.

There are several ways to prevent (b): (i) a deeper cut -impractical because many cheaper arms and cartridges would fail to track it; (ii) wider minimum groove spacing (before use of variable groove spacing unit) - a possible solution but it conflicts heavily with the amount of time needed per disc side for a given piece of music (Varigroove is not always the answer!); and (iii) a "roll-off" of extreme bass to allow a more nornal groove spacing.

So, Mr Ewer, don't blame the cutting engineers or their equipment: blame the totally conflicting elements of time and fidelity required from a poor little piece of black plastic and just turn up the bass!
Robert L. Arthurton,
London, N. 16.

\section*{VAT and prices}

Like your correspondent W. B. Henniker in September's letters, I have fallen foul of the "VAT addition" thing in your advertisements, in one case with further complications since by the time the VAT had been received the goods had become exhausted. At least I think they were, because I have heard nothing since the fourth of July.

Your advertisers in general were very slow to respond to VAT, and in some cases were showing advertisements in the May issue which were not clear about the tax addition.

If Wireless World depends on advertisements for a living, or if the advertisers depend on advertisements for a living, then someone will have to brighten their ideas - and their conceptions of service.
J. R. Dykes.

Winsford,
Cheshire.

\section*{Inverter for fluorescent tubes}

I was very sorry to read in the September issue of the trouble that Mr Chappell has had with the heaters of his fluorescent tube in my circuit (August issue).

I can only plead that I tested the circuit with at least three different tubes and that none of them showed any sign of the discharging from which he has suffered.

This type of tube was, of course,
designed originally for operation from the a.c. mains, and the circuits in which they are normally used arrange for the feed to the heaters for starting up to be essentially the same defined current as is used in normal running. In such a circuit discharging across the heaters is no disadvantage as the power dissipated is reduced rather than increased. Furthermore there is no reason why the heater resistance, and hence its working voltage, should be tightly controlled for such service. The value may, in fact, vary appreciably from one manufacturer to another.

Mr Chappell's suggestion of the insertion of a ten ohm resistor in series with each heater looks like a very satisfactory solution to the problem.

I am sorry that I missed this point and I hope that no other readers have suffered similar trouble.

I must apologize also for the fact that Figs 3 and 4 of my article as published had the positive power supply point omitted. This should, of course, have been at the centre-tap of the transformer just as it was in Fig. 1 (b).
K. C. Johnson,

Cheadle,
Cheshire.

\section*{Printed circuits the easy way}

My own resists are invariably photographically produced, so I cannot speak to the drawing technique which is described by J. Ferguson on page 332 of the August issue. But it ought to go on record that the only reason commercial etching of copper is done with ferric chloride (the commercial grade of which usually contains a variable proportion of free hydrochloric acid) is that this chemical is relatively inexpensive. In amateur printed circuit work there may well be other solutions which have advantages over it.

I pass over nitric acid, since it emits brown choking fumes when attacking copper. But its action is very swift, and those whose resist can stand up to its onslaught might feel it worth trying, in \(10 \%\) concentration in the open air.

My own choice would be \(10 \%\) ammonium persulphate in water. This dissolves copper very well, though perhaps a little slowly, but the solution stays fairly clear and the submerged board can be seen pretty clearly. If about \(5 \%\) by volume of strong ammonia solution is added to the persulphate, action is accelerated considerably, but the solution turns deep blue very quickly as copper is dissolved, and the effect on submerged pieces cannot be so easily seen.

Though I have not personally tried it, there would seem to be something in the electrolytic method of etching. Assuming that the unwanted copper areas of the board can be commoned, they can become an anode of the electrolytic cell, while any odd piece of scrap brass of roughly the same area can be used
as cathode. All that is now needed is a source of 6 volts 4 amps d.c. which nearly everyone must have at hand these days.

Quite a number of possible electrolytes suggest themselves, but for first trials I would suggest \(10 \%\) common salt in water. If too little current passed a board \(4 \times 4\) inches would probably need some 4 amps of current to dissolve the copper reasonably fast - the addition of a little vinegar (i.e. dilute acetic acid) should increase the conductivity to some extent. But it will not have anything like the effect that a few ml of a strong acid, such as hydrochloric acid, will produce.
P. C. Smethurst,

Bolton,
Lancs.

\section*{Electronic music}

Having been interested in the use of electronics for musical experiments, I would like to hear from any readers who have had experience in this field. I am particularly referring to the music synthesizer using voltage controlled oscillators as well as other voltage controlled functions.

The purpose of this is to collect any ideas for the design of a small synthesizer capable of fairly advanced work while still retaining its low cost.
G. Wade,

Knowle Orchard,
Churchill,
Nr. Bristol.

\section*{Projection television}

I was most interested to find reference to my old company, in conjunction with the other old stalwarts of projection television, in G. W. Tillet's Letter from America in the September issue.

It may be interesting to mention that much of the original work, culminating in the formation of White-Ibbotson Ltd, took place while I was with E.M.I. and was based on 3in. c.r.ts designed by Drs Broadway and Cairns, and using all-glass Schmidt lenses designed and made by Optical Works Ltd of Ealing. When E.M.I. decided not to proceed with the venture, I left and formed W.I. Ltd - the directors of E.M.I. giving every assistance and helpful co-operation.

Thus, we were not altogether tied to the disadvantages that Mr Tillet states applied to the Philips unit. However, I must hasten to add that neither system suffered from the dust occlusion problem mentioned if the systems were put together with proper precautions to exclude dust. In fact, the most serious problem with either the E.M.I. or the Philips c.r.t. was, in my experience, that of X-ray staining of the face glass. This could cause a \(50 \%\) light loss in a few hundred hours running.

So far as viewing "under cinema conditions" is concerned, again I must cross
swords with Mr Tillet. It is a matter of history that we had a \(4 \mathrm{ft} \times 3 \mathrm{ft}\) back projection picture running under 2.5 kW of exhibition lighting at Earls Court with a very good viewability for the passing public - and this was with a standard Philips unit. Obviously we used our lenticular screen but this provided a good horizontal angle of view and, by limiting the vertical angle to about \(15^{\circ}\) (ample for normal viewing with this size of picture), we had a minimum of projection light waste and a maximum rejection of overhead lighting interference.

It may also be interesting to record that we found a French optical company who made ordinary convex lens systems for the Philips tube with similar efficiency to the Schmidt, and at very little extra cost, which clearly avoided many of the dust exclusion/cleaning problems inherent in a basic Schmidt.

At that particular time Mullard's proved a point of view that I had always held, namely that projection would come into its own with the advent of colour. They used three primary-coloured monochrome tubes and three Philips' Schmidts. Such tubes are much less expensive to produce than the traditional panchromatic black and white tubes. The results were startingly good but orientation of the Schmidts with dichroic mirrors etc. was far from practical. Had there been colour transmission at that time, we would have used the French lenses and I think a commercially viable result would have been obtainec.
It's a great pity that we have had to leave it to the Japanese, yet again, to appreciate the advantages and go-ahead. However, I think that Sony have gone to a great deal of trouble in the wrong direction - if, of course, ours and Mullard's experiments meant anything. H. Ibbotson,

Penryn,
Cornwall.

\section*{Reflex Circuits}

I was delighted to read John ScottTaggart's letter in your September issue. First, to discover that he had not departed, nor lost interest. Second, to acknowledge his very generous final paragraph. It was all the more generous in view of the fact that I have been known to indulge in a little thinly disguised leg-pulling about such things as the celebrated ST 100 (younger readers will have to ask their elders to explain). And still more generous after I had forgotten his pioneer work on the reflex circuit. For this I must plead age, not ignorance, as I will now make clear. And I hope it will also go some way towards atoning for my sins of commission and omission as I reveal for the first time that the very book from which he quoted (Thermionic Tubes in Radio Telegraphy and Telephony) provided the foundation for my knowledge of the subject, since the degree course in electrical engineering at Edinburgh in 1921 was all "heavy". During one par-
ticular course of lectures by a notoriously ineffective expositor, while most of the inflated intake of students after the War were amusing themselves at his expense I sat in the back row, where the signal / noise ratio was fractional so did not break through my concentration, and read S-T's book from cover to cover.

As it was one of the very few "historical" books that survived my drastic pruning on moving recently to smaller premises, I really have no excuse for not refreshing my memory from it.

So far as I was concerned the ScottTaggart ubiquity to which I referred in August was mainly in print. I can recall only two sightings: one was when he came to Edinburgh about 1923 to explain and demonstrate his "Negatron"; the other was 22 years later in the Air Ministry. I am glad to acknowledge my debt to his books in the days when reliable sources of information were scarce.
M. G. Scroggie,

Bexhill,
Sussex.

\section*{"Empty" cassettes wanted}

The remedial reading department at this school uses a number of devices to encourage pupils who find difficulty in learning to read.

Our most recent innovation is a tapeloop which runs for about 18 seconds and on which are recorded about half-adozen words containing the same sounds.

The tape-loop is housed in an ordinary cassette by fitting additional rollers. Our difficulty is obtaining cassette cases. We cannot afford to purchase cassettes at normal price and then to modify them. Would any reader having empty or broken cassettes please send them to me at the school? Postage would gladly be refunded.
C. S. Smith,

The Walmer Secondary School,
Salisbury Road,
Deal,
Kent.

\section*{New names for old devices}

The headline in Electronics Weekly of August 8th reads, "Amorphous Devices Seeking a Role". Forgetting the updated terminology, these devices seem to be little more than the original coherer used in the early days of wireless to "detect" a signal. The r.f. signal fused iron filings in a tube, causing the passage of d.c. to indicate that a signal had been detected.

Newly fledged engineers should perhaps be reminded that we might never have developed an electronics industry but for Amorphous Devices.

Some readers may be interested to know that they can construct an amorphous memory device with a piece of wood, two pins and a blob of aluminium paint. The pins should be hammered into the wood about \(\frac{1}{8}\) in apart. A thin layer of paint is applied between the pins and allowed
to dry. Apply about 20 volts via a few kilohms to limit the current and the aluminium particles in the paint will link together and close a "switch" capable of carrying perhaps \(\frac{1}{3}\) amp. Apply about 6 volts without a current limiting resistor and the switch opens. It is rather like blowing a fuse. There is one difference - it can be mended again by applying the 30 volts activation supply for a moment.

I once caused great mystification amongst colleagues at the Emley Moor transmitting station with a little device able to switch a torch bulb on or off without using a switch or other familiar device. Readers wishing to repeat the experiment should beware of vibration; it will disturb the coherer link. In the event of failure please consult the paint manufacturer rather than myself.
P. J. Unwin,

Rochdale,
Lancs.
equipment; components and ancillaries.
Data networks; message switching; modems; data terminals; telemetry systems.

Mobile radio equipment and systems for land, sea and air; selective calling; radio paging; frequency allocation and channel spacing; traffic control and vehicle location systems; radio navigation receivers and systems.

Radio communications equipment and systems for fixed applications; point-to-point links; remote control systems; digital encoding systems; tropospheric scatter.

Special techniques associated with military systems; electromagnetic compatibility; routing problems; equipment parameters for future requirements; underwater communications.

Microwave communication systems; microwave antennas, ground stations and receiving systems; waveguide communication systems.

Original papers are invited from industry, government departments, the armed services, universities, etc. In the first instance, authors should submit summaries of \(200-300\) words (in English), describing the subject and scope of the paper, to: The Editor, Electronics Weekly, Dorset House, Stamford Strect, London SE 1 9LU.

Deadline for the receipt of summaries is October 26, 1973. Speakers will be notified of acceptance by December 31, 1973. Final drafts will be due by March 11, 1974.

\section*{John Gilbert retires}

After being associated with the Northern Polytechnic (now The Polytechnic of North London) for 39 years, 22 of them as head of the Department of Electronic and Communications Engineering, J. C. G. Gilbert, F.I.E.R.E., F.R.S.A. has retired. Perhaps best known to the public for his part in the television programme "Inventor's Club", his major contributions have been in the world of audio.

He was educated at Westminster City School and went on to part-time courses while, at the same time, studying music at Trinity College of Music, London, giving broadcast piano recitals between 1924 and 1928. He became interested in radio while still at school and, in 1934 joined Partridge \& Mee of Leicester on the strength of two articles on disc recording published in Wireless World, and that summer was in control of the installation of the public address system at the Regent's Park Open Air Theatre. In September of that year, Mr. Gilbert joined the "Northern Poly" as parttime lecturer on radio servicing and in 1935 became the first full-time lecturer in radio and kindred subjects. He also took up the position of technical editor of Music Trades Review. During the war years he worked under Sir Robert Renwick in the Directorate of Communications Development at M.A.P. and, on return to the Polytechnic, became senior lecturer and, in 1951, head of department - a position he held until August this year. He has been chairman of several societies, among them the British section of the Audio Engineering Society, was chairman of several B.S.I. committees and is technical consultant to the journal The Gramophone, where he continues his work. He has written several articles for Wireless World. We wish him a long and happy retirement.

\section*{Synthesizer Keyboards}

The following company has informed us that they can supply keyboards for the Wireless World sound synthesizer (see pp.485-490 this issue): Elvins Electronic Musical Instruments, 12 Brett Road, London E.8. Tel. 0.19868455.

\section*{October Meetings}

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned

\section*{LONDON}

9th. AES - "The integrated circuit in audio systems" by Jonathan A. Dell at 19.15 at the IEE, Savoy PI., WC2.

10h. IERE - Colloquium on "Electromagnetic compatibility or confusion on land, in ships and in aircraft" at 14.30 at 9 Bedford Sq., WC1.

10th. IEE - "Computers and communication convergence or conflict?" by J. R. Pollard at 17.30 at Savoy PI., WC2.

17th. IERE - "The feedback classroom" by K. Holling at 18.00 at 9 Bedford \(\mathbf{S q}\)., WCl.

18th. IEE Grads. - "The computer-oriented research laboratory by G. M. Rhodes at 18.30 at Savoy PI., WC2.

22nd. IEE/I.Mech.E. - "Sequence control of analogue computers" by Dr. G. C. Barney and Dr. D. Miller at 17.30 at Savoy PI., WC2.

23rd. IEE - "TV supply by a combination of omnidirectional 12 GHz transmission and cable distribution networks" by Dr. J. Feldmann at 17.30 at Savoy PL., WC2.

23rd. IEE Grads. - "Frequency synthesizers" by Dr. P. N. Nield at 18.30 at the Polytechnic of the South Bank, Borough Rd., SE1.

25th. IERE - AGM at 18.00 followed by presidential address by Dr. I. Maddock at 18.45 at London School of Hygiene and Tropical Medicine, Keppel St.. WC1.
26th. IEE - Discussion on "Stripline and microstrip techniques for antennas" at 17.30 at Savoy Pl., WC2.

30th. IEE/I.Mech.E - Discussion on "Remote measurement and control using Post Office data transmission facilities" at 17.30 at Savoy PI., WC2.

30th. IEE - Discussion on "Making the most of airborne frequency allocation" at 17.30 at the Royal Aeronautical Society, 4 Hamilton Pl., WI.

31st. IERE - Colloquium on "Remote control system organization" at 10.15 at Middlesex Hospital Medical School, Mortimer St., WI.

\section*{ABINGDON}

10th. IEE - "Electricity in medicine" by Dr. D. W. Hill at 19.00 at Culham Laboratory.

\section*{AYLESBURY}

16th. IEE - "Recording and reproducing quadraphonic sound" by J. C. G. Gilbert at 19.30 at Aylesbury College, Oxford Rd.

\section*{BATH}

18th. IERE/IEE - "Optical fibre communications" by F. F. Roberts at 18.00 at Lecture Room 4E3, 10, the University.

\section*{BELFAST}

IOth. IERE - Northern Ircland section AGM followed by "T.Eng. and all that" by J. T. Attridge at 18.30 at the Board Room, Ashby Institute, Queens University.

\section*{BIRMINGHAM}

3rd. IEETE - "Technician engineers and tech nicians - in the EEC, and elsewhere in the
world" by E. A. Bromfield at 19.00 at Midlands Electricity Board, Summer Lane.
29th. IEE/I.Mech.E. -Discussion on "Applications of multivariable control theory" at 18.00 at the Midlands Electricity Board, Summer Lane.

\section*{BOURNEMOUTH}

17th. IEETE - "Stereo broadcasting" by J. H. Brooks at 19.30 at The Tralee Hotel, West Hill Road, West Cliff.

\section*{BRADFORD}

18th. IEETE - "The present state of colour television" by Prof. G. N. Patchett at 19.00 at the University.
20 hh . Sept. IERE - Modern developments in hi-fi reproduction" by Dr. A. R. Bailey at 19.00 at the University.

\section*{CAMBRIDGE}

17th. IEETE - "Technician engineers and technicians - in the EEC, and elsewhere in the world" by E. A. Bromfield at 19.00 at the University Centre, Mill Lane.
25th. IERE/IEE - "Situation display - a new and unique approach to radar presentation" by F. K. H. Birnbaum at 18.30 at the University Engineering Laboratories, Trumpington St .

\section*{CARDIFF}

1Oth. IERE - "New integrated circuits for television receivers" by G. Baskerville at 18.30 at Dept. of Applied Physics, UWIST.

\section*{CHATHAM}

3rd. IERE - "Recent advances in radio navigation" by J. E. Viles at 19.00 at Medway and Maidstone College of Technology.

\section*{CHELMSFORD}

25th. Sept. IERE/IEE - "An anti-collision radar employing storage of radar pictures on tape" by J. Watt at 18.30 at the Civic Centre.

\section*{CRANWELL}

24th. IERE - "Space instrumentation" by R. Young and B. R. Kendall at 19.30 at the RAF College.

\section*{DURHAM}

17th IEETE - "TV and stage lighting" by E. Birch at 19.30 at the Lecture Theatre, Science Site, Durham University, South Road.

\section*{EVESHAM}

20th Sept. IERE - "Colour television displays the next stage" by W. W. Wright at 19.30 at the BBC Evesham Club.

\section*{FARNBOROUGH, Hants}

24th. IERE - "Multiphonic organs" by J. H. Asbery at 19.00 at Queen's Hotel.

\section*{GLOUCESTER}

18th. IERE - "Provision of communications for remote clustered visual display units" by F. B Sanders at 19.30 at the College of Technology.

\section*{IPSWICH}

17th. IERE/IEE - "Radio astronomy" by Dr. R. S. Booth at 18.30 at The Civic College.

\section*{LEICESTER}

10th. IERE - "Delta modulation systems" by R. Steele at 19.30 at the Lecture Theatre ' \(A\) ', Physics Block, the University.

\section*{LIVERPOOL}

17th. IERE - "The semiconductor story" by Dr. K. J. Dean at 19.00 at the Dept. of Electrical Engineering and Electronics, the University.

\section*{MANCHESTER}

15th. IEETE - "An engineer behind the Iron Curtain" by Prif. M. G. Say at 19.30 at Reynold Būilding, UMIST.

\section*{NORWICH}

24th. IERE/IEE - "Sonar and underwater communications" by Dr. V. G. Welsby at 19.00 at Assembly House.

\section*{PORTSMOUTH}

24th. IEETE/IEE - "The engineer in Europe" at 14.00 at the Polytechnic, Anglesea Road.

31st. IERE - "Exploring the deep oceans" by K. Haigh at 18.30 at the Polytechnic.

\section*{READING}

10th. IERE - "Digital phase lock loops" by K. Thrower and P. Atkinson at 19.30 at J. J. Thomson, Physical Laboratory, University of Reading. Whiteknights Park.

\section*{REDHILL}

24th. IEE - "Solid state radars by K. L. Fuller at 19.30 at the Mullard Research Laboratories, Cross Oak Lane, Salfords.

\section*{SOUTHAMPTON}

17th. IERE - "Charge couple devices" by J. D. E. Benyon at 18.30 at the Lanchester Theatre, University of Southampton.

\section*{SWANSEA}

24th. IERE/IEE - "Recent developments in the design of transfer function analysers" by \(W\). A. Evans at 18.15 at University College.

\section*{WOLVERHAMPTON}

16th. IERE - "The electronic control and communication network employed on the Midland links motorways by W. A. Hambrey at 19.00 at RAF Cosford, Albrighton.


Surveillance equipmentmust be reliable. EEV vidicons give you tube reliability you can depend on.

Reliable operation-hour after hour, year after year - is essential for closed circuit cameras. You're more likely to get this kind of consistent reliability with tubes from the vidicon experts:EEV.

EEV vidicons cover all TV pick-up applications, in mono or colour, for most cameras - in electrostatically focused and magnetically focused types (separate or integral mesh)
with a range of photo-
surfaces. Special rugged types are available to withstand shock or vibration. The EEV vidicon range is wide.
And it grows. And every tube offers you the benefits of EEV experience: good picture geometry and resolution and a long life expectation. Write for type lists: or if you have a problem, call our camera tube engineers at Chelmsford.
-


\section*{In the power business, others follow our lead.}


When it comes to the power devices, Motorola has every application buttoned up.
Automotive. Motorola transistors for high voltage ignition and seat belt interlock systems lead the way to safety and pollution control, while transistorised voltage regulators help to improve reliability.
Computers. Motorola's low cost Darlingtons permit CMOS and MOS to interface with large current/voltage devices - from milliamps to Amps easily.
Consumer. Motorola leads again with plastic and metal transistors for T.V. convergence, deflection and power supply stages. Our NPN and PNP Darlingtons are suited to the fully complementary designs of today's audio amplifiers.
Industrial. Motorola high voltage power transistors make for smaller more efficient switching power supplies. And we are still very much committed to Germanium - the most economic solution for low voltage/high current applications.

Silicon or Germanium (6 types of device construction available in plastic or metal packages) and monolithic Darlingtons mean that there's a reliable Motorola power device for every application.

So you see in the power business we lead and others follow.

For full further details press the Motorola power button - write or phone your nearest Motorola distributor or get in touch direct.

\footnotetext{
A
MOTOROLA Semiconductors
Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middlesex. Telephone: 01-903 0944.
European manufacturing facilities at Toulouse and East Kilbride. Distributors: Celdis Ltd., Reading, East Kilbride; GDS (Sales) Ltd., Slough, Dublin; Jermyn, Sevenoaks; Lock Distribution, Oldham; Semicomps itd., Wembley.
}

\title{
Realm of Microwaves
}

\section*{6. Microwave antennae}

\author{
by M. W. Hosking,* M.Sc.
}

Microwave antennae, although no different in principle to other types, are much smaller in size for a given gain. This is because of the relatively small wavelengths involved, making it possible to use aerial dimensions tens or hundreds of times the wavelength. It thus becomes more convenient and realistic to talk about an aerial aperture for transmitting or receiving power rather than an effective height for coupling to the electric field. Before discussing individual aerials it will be as well to start off with some basic definitions.

An isotropic source is an origin of energy which radiates uniformly in all directions. Placed at the centre of a sphere, the power density anywhere on the surface of the sphere would be constant. Needless to say, such a radiator is not realisable in practice, but the concept is used as a point of reference for comparing the performance of an aerial.

\section*{Gain and directivity}

There are two measures of aerial gain related by the efficiency of the aerial. The power gain \(G\) is defined by
\(G=\frac{\text { radiated power density }}{\text { power density from isotropic source }}\)
This is the figure usually quoted as it includes all the losses and imperfections associated with the antenna. Usually, gain is expressed in dB and often quoted without reference to direction, when it is then taken as applying to the peak of the main beam.

The second type of gain is the directivity \(D\) and can either be calculated or measured from the polar diagram. It is defined as
\[
D=\frac{\text { maximum power density }}{\text { average power density }}
\]
and as this does not take into account the effect of any losses it represents the ideal case. From the polar diagram of Fig. 1, the maximum of the pattern is readily seen and the average value is obtained by integrating the power density over the full \(360^{\circ}\) to give the directivity in that particular plane.

Further, as the directivity is a ratio, it is not necessary to know any absolute values; when working out the directivity from a polar plot, one reads off the peak value as a
unit of length and divides it by the mean value obtained with the aid of a planimeter. Directivity and gain are related by \(G=\eta D\), where \(\eta\) is the efficiency of the antenna. Depending on type and quality of manufacture, the efficiency of most microwave antennae lies between 50 and \(75 \%\).

From the definition of directivity, it is possible to obtain a "rule of thumb" estimate of the gain of an antenna from its \(3-\mathrm{dB}\) beamwidth. It is necessary to assume an equivalent polar diagram in which the radiated power is confined to within the solid angle formed by the product of the beamwidths in two orthogonal planes. One plane is usually taken as that parallel to the radiated electric field vector-the E-planeand the other as parallel to the magnetic field vector-the H-plane. So if this pattern has an amplitude of unity, the maximum power density is \(1 / \theta_{E} \theta_{H}, \theta_{E}\) and \(\theta_{H}\) being the half-power beamwidth in radians. The


Fig. I. General polar diagram showing the directive type of main beam that can be obtaineil in the microwave region.
Parameters such as gain, beamwidth and side-lobe level are within the control of the designei.
average power density is simply \(1 / 4 \pi\) and so the directivity is \(4 \pi / \theta_{E} \theta_{H}\), or \(41,253 / \theta_{E} \theta_{H}\) with the beamwidths in degrees. To obtain the gain an estimate must be made of the efficiency.

\section*{Sidelobes}

The great majority of polar patterns consist of a single main beam and a series of minor beams which occur at certain angular positions and the amplitudes of which decrease as the angular distance from the main beam increases. The presence of radiated power in these sidelobes is wasteful and gives a reduction in efficiency, so effort is made to reduce them. In addition, many radar systems these days have to operate in environments where they may be electrically "jammed" and the presence of high sidelobes would make them that much more susceptible. For use in low-angle tracking, high sidelobes could give rise to spurious and misleading echoes from the ground.

\section*{Antenna aperture}

It is convenient to consider microwave antennae as having an effective area which collects the incident power. Such a concept is reasonable in the case of dish types, but not so obvious for, say, a dipole. Where there is a physical aperture to measure, the effective area is less than the geometrical one by a factor which takes into account the efficiency of the aperture as a radiator. The effective area \(A_{e}\) is related to antenna gain by \(G=4 \pi A_{e} / \lambda^{2}\). The isotropic radiator, having a gain of unity, has an effective area of \(\lambda^{2} / 4 \pi\).

Impedance is important from the point of view of maximum power transfer, either transmitting or receiving, and of therefore obtaining a good match. It happens that this parameter is exceedingly complex to determine and, apart from a few very simple antennae, it has not been possible or worthwhile to compute the impedance of all types. Instead, the quite-satisfactory process of empirical matching is carried out when needed.

Having thus established some of the main parameters used to describe the performance of an antenna, this article concentrates on a widely-used type in the microwave region which radiates from an area aperture. An interesting fact about the polar pattern produced from such a radiator is that besides the gain being governed by the

physical size, both the gain and the sidelobe level are functions of the electric and magnetic field amplitudes across the aperture. One can consider the whole area to be made up of a large number of small, individual radiators, each of which is supplied with its own electromagnetic fields. By varying the field strength by different amounts at different points, it is thus possible to taper the overall aperture field in any desired way. When all radiating points have the same amplitude, the aperture is called uniformly illuminated and has its maximum gain.


Fig. 2. Main types of waveguide horn formed by flaring the waveguide walls in a controlled fashion(a) E-plane sectoral horn, (b) H-plane sectoral horn, (c) pyramidal horn, (d) conical horn.
(b)
(c)
(d)

However, this distribution also gives the highest sidelobe level. By illuminating the aperture in various non-uniform ways and accepting a slight decrease in gain, together with widening of the main beam, the sidelobes may be reduced. A widely-used distribution, for instance, follows a cosine law, the electric field being zero at the edges of the aperture and rising to a maximum at the centre. In this case, a reduction in sidelobes of about 10 dB together with a decrease in gain of IdB would be obtained compared with a uniform illumination on a rectangular aperture.

Fig. 3. For a fixed length of horn, directivity increases as the aperture widens and passes through a maximum value. Composite plots are shown here of the directivities of (a) E-plane and (b) H-plane sectoral horns having various lengths. Dimensions for an optimum horn can easily be seen.

A practical form of antenna, often used as the feed for a larger reflector-type, is simply open-ended rectangular or circular waveguide. In this case, the aperture distribution is governed by the field pattern within the waveguide, which in turn depends on the particular mode it is supporting. Usually the dominant mode is the one of interest and the Table (p. 502) lists the main beam dimensions for rectangular and circular guide when just the dominant mode is present. Both gain and beamwidth of the waveguide radiator are proportional to the area of the aperture, so that to obtain a narrow beam or high gain, a large waveguide would be needed.

As shown in part 2 of this series (March) once a certain, fairly limited, range of waveguide dimensions had been exceeded, then higher-order modes can propagate. So that using oversized waveguide to obtain a larger effective area is not recommended; any higher modes appearing would serve only to waste power and to distort the radiated pattern. Instead, the technique used is to flare out the waveguide dimensions in a controlled way to form a waveguide horn. If only two sides of a rectangular guide are flared, this is called either an \(E\) or H -plane sectoral horn as in Fig. 2; while flaring in other directions as well produces pyramidal and conical horns.

Higher-order modes can be generated at a discontinuity in a transmission line, although in the case of a guide below cut-off, they are rapidly attenuated. The horn flare angle must be chosen so that any highermodes generated at the throat of the horn are suppressed by the time they reach horn dimensions wherein they can propagate. Within this constraint, the gain of a sectoral horn increases with increasing aperture area.

If the axial length \(L\) of the horn is kept constant, together with the height \(b\) (in the case of the E-plane horn), and the aperture then widened, the gain steadily increases, passes through a maximum and then decreases. Horns with dimensions corresponding to this maximum are called optimum horns and Fig. 3(a) shows the variation in directivity of the E-plane sectoral horn for various axial lengths. Similar results obtain for the H -plane horn with constant \(L\) and \(a\), and are shown in Fig. 3(b).

By combining the E and H-plane flares, the pyramidal horn is produced and, because the radiating mechanism is well-understood, enabling the gain to be accurately calculated, this type of horn is often used as a gain standard. Theoretically, the directivity of the pyramidal horn can be obtained from the sectoral horn directivities, \(D_{E}\) and \(D_{H}\) and is \(D_{E} D_{H} \pi \lambda^{2} / 32 a b\). Optimum dimensions for this type of horn are summarized in Fig. 4(a). For example, a horn with a \(25-\mathrm{dB}\) directivity and of optimum proportions would have a length of 20 wavelengths and an aperture of 8.3 by 6.7 wavelengths.

Finally, circular waveguide can be used to produce the conical horn, the optimum dimensions versus directivity of which are plotted in Fig. 4(b). The dimensions of pyramidal and conical horns are very similar for a particular gain so, in that respect, there is no advantage of one over the other. The conical shape is more suited to a circularly-polarized antenna, but the useful waveguide bandwidth is lower in circular than in rectangular guide.

\section*{Reflector antenna}

A widely-used class of antenna fully exploits the advantages of the small microwave wavelengths to produce a highly-directive narrow beam from a conveniently-sized aperture. This is the reflector antenna and consists of a small radiator called the primary source or feed, which is used to illuminate a large reflecting dish which reflects radiation into space in the form of a concentrated beam. The feed can be of any convenient design, but the pyramidal or conical horn is widely used. For the main dish a paraboloidal contour finds most application, the geometry of the system being shown in Fig. 5 together with some important relationships.

The parabola has two important properties which account for its wide usage. Firstly, with the feed placed at the focus of the parabola, reflected rays are concentrated within a beam parallel to the axis. Conversely, when used as a receiver, the incident radiation on the main dish will be focused to the one point on the axis. Secondly, the path lengths of rays from the focus to the reflector and out into the distance are the same. This means that, for a small feed and large dish, the feed appears as a point source with a spherical wavefront which is converted by a parabola into a plane wavefront having a uniform phase. Because the reflecting dish is usually several tens of wavelengths in diameter high gains can be achieved, 30 to 45 dB being typical, resulting in beamwidths of less than \(2^{\circ}\) and making the system eminently suitable for targettracking radar or as part of a low signalstrength receiver.

When designing a parabolic reflector, one of the first parameters to settle is the ratio of focal length to dish diameter \((F / D)\). This is determined by both mechanical and electrical considerations, a small ratio meaning a deep dish and a large ratio meaning a very shallow one, both have their problems when it comes to mounting both dish and feed. In addition, the small diameter, large focal length dish requires a larger feed to produce the narrower illu-


Fig. 4. In similar fashion to the sectoral horns, the pyramidal and conical versions also have optimum aperture dimensions for a fixed length. Directivities are plotted for (a) pyramidal horn and (b) conical horn.

Fig. 6. For a quick estimate of feed-horn performance, this graph presents the halfangle \(\psi\) as a function of \(F / D\) ratio.
minating beam, thereby introducing more aperture blocking, while the large dish makes feed design difficult in obtaining a uniform phase. Generally, parabolas have an \(F / D\) ratio of between 0.3 and 0.5 .

Another important factor in this type of antenna and one which affects the overall efficiency is the variation in field amplitude across the aperture of the reflector. For maximum gain, a uniformly illuminated aperture is required, and to obtain that with this system, a paraboloid with large \(F / D\) ratio and a very wide-beam feed would be needed. With such a feed, a lot of the radiated power would spill over the edge of the reflector and be lost, defeating the object. On the other hand, the dish diameter could be increased, giving a small \(F / D\) ratio and intercepting more of the feed radiation. Efficiency would then fall because of the departure from a non-uniform field distribution. There would thus seem to be a compromise situation between these two effects


Fig. 5. Paruboloid reflector can produce high directivity and a narrow, pencil beam and allows side-lobe level control by proper design of the feed. Because all path-lengths from the feed to the far field are equal, the paraboloid converts the initially spherical wavefront into a plane-wavefront, collimated beam.

and it is found in practice that optimum efficiency occurs for a reflector illumination such that the power level at the edge is 10 to 12 dB below that of the centre. In this case, the level of the first side-lobes below the main beam is about 23 dB .

Often, maximum gain is not all-important and a lower side-lobe level is desired, so for a sacrifice of 1 to 2 dB of gain, decreasing the edge illumination to 20 dB gives a side lobe level of about -26 dB . Clearly then, the radiation pattern of the feed is of utmost importance in controlling the efficiency of the system.

When assessing the design of a paraboloidal reflector, some useful relationships can be presented in graphical form. Equation 2 of Fig. 5, for instance, is plotted in Fig. 6 to give the subtended half-angle of the feed on the dish. Having chosen \(F / D\), the half-angle can be used to determine the radiation pattern of the feed required to produce a particular illumination taper.

First, a correction factor must be applied Referring to Fig. 5, the path length of a ray, \(r\), increases as its axial angle \(\theta\) increases. So as the power level of a spherical wavefront varies as the inverse square of path length, there is already some aperture taper across the paraboloid. The amount of attenuation is \(20 \log _{10}(r / F)\) which from equation I can be written as \(20 \log _{10} \sec ^{2}(\theta / 2)\) and is plotted in Fig. 7.

Suppose we had a paraboloid with an \(F / D\) of 0.35 and we require an edge taper level of -15 dB . Fig. 6 shows that the sub tended half-angle is about \(71^{\circ}\), resulting in an inverse-square attenuation of 3.6 dB This means that 3.6 dB of the required 15 dB is inherent in the system and, therefore, the feed has to have a radiation pattern which is only 11.4 dB down on its peak at an angle of \(71^{\circ}\)

By taking into account the E and H-plane radiation characteristics of the feed, together with the dish illumination required, it is possible to define an overall directivity for the reflector system. The useful expression emerging is \(D=D_{E}+D_{H}+10 \log _{10}\) \(A / \lambda^{2}(\mathrm{~dB})\) where \(A\) is the area of the reflector, and equals \(\pi D^{2} / 4\) for a circular parabola. Directivity factors \(D_{E}\) and \(D_{H}\) take into account the illumination taper and the type of feed. A popular feed is the pyramidal horn and for this case the directivity factors are plotted in Fig. 8. Thus, if the reflector of the previous example was required to have a directivity of 40 dB at a frequency of \(20,000 \mathrm{MHz}, D_{E}=4.8 \mathrm{~dB}\) and \(D_{H}=4.5\) dB. So, \(10 \log _{10} \pi D^{2} / 4 \lambda^{2}=30.7 \mathrm{~dB}\) and the reflector diameter would need to be 58 cm . In practice, there are more losses associated with the system and typical efficiencies lie between 55 and \(65 \%\)

Finally, from the relationship given earlier between beamwidth and directivity, a rough estimate of the \(3-\mathrm{dB}\) beamwidth is \(70 \lambda / D\) degrees. In the above example, the beamwidth will be just under \(2^{\circ}\). This serves to demonstrate the highly directive type of beam which can be produced by this type of moderately-sized antenna at microwave frequencies.

One problem that exists with this type of antenna arises from the physical presence of the feed in the aperture of the main reflector. Firstly, the feed and its support introduce aperture blocking or shadowing which has the effect of reducing the gain and degrading the sidelobe level. As the transverse feed dimensions do not change markedly with dish diameter, this effect obviously gets worse for smaller reflectors. Secondly, there is interaction between feed and dish, in that energy reflected from near the axis of the paraboloid enters the feed aperture and interacts with the primary radiation. The effect is similar to a condition of mismatch and impairs the radiation efficiency of the feed. To counteract this, various matching devices can be incorporated in the feed, or, as shown in Fig. 9(a) a plate can be placed at the apex of the paraboloid and its size and position adjusted until the reflected signal is equal in amplitude but opposite in phase to signals arriving from other parts around the apex. Under these conditions, cancellation of the mismatch occurs.

Fig. 9(b) illustrates another technique: that of offsetting the feed. The feed is still placed at the focus of the paraboloid, but is inclined to illuminate an off-centre section and the remainder of the reflector can be removed. There is no longer any aperture


Fig. 7. Natural \(1 / r^{2}\) variation in radiated energy contributes towards the aperture taper and must be taken into account when designing the feed.


Fig. 8. Directivity of the complete parabolic aerial can be estimated with relation to the feed parameters. Plotted here are \(E\) - and \(H\)-plane directivity factors for a pyramidal horn.


Fig. 9. Aperture blocking by the feed reduces the gain and degrades the side-lobe level of the paraboloid antenna and several methods exist for reducing the effect. Two are shown (a) raising the apex of the dish and (b) offsetting the feed.
blocking, nor any feed/reflector mismatch effects. The main advantage of the offset feed is that it gives several dB improvement in sidelobe level. The aperture field distribution is no longer symmetrical and at offset angles greater than about \(15^{\circ}\), trans-versely-polarized field components and an effective broadening of the radiation pattern start to significantly reduce the gain.

\section*{Cassegrain antenna}

A widely-used variation of the simple paraboloid reflector is the Cassegrain system, which operates on the same principles as the optical versions in telescopes. Fig. 10 shows the general layout, together with some important geometrical relationships. An extra element has been added in the form of a hyperboloid sub-reflector and the position of the primary feed has been changed. The hyperboloid has two focal points, one real and one virtual, which are made to coincide with the feed position in one case and the focus of the paraboloidal main reflector in the other. The effect of this arrangement can be seen from the raytracing of Fig. 10(a) where an image of the real feed is produced at the virtual focus. Thus, as far as the paraboloid is concerned, it is being illuminated from this point and we have the system already described. Because of the magnifying properties of an hyperbola the image feed has a smaller effective area than the real one, but a correspondingly broader beamwidth and this can be used to advantage in cases where the feed is bulky.
One of the raisons d'etre of the Cassegrain system is that it has an effective focal length which is larger than the focal length of the paraboloid by a factor equal to the magnification. A paraboloid with a particular \(F / D\) ratio can be made to have the same effect as one with a larger ratio by using the Cassegrain system. As regards tapering the aperture illumination of the main dish, this is done in similar fashion to that already described. The difference in the Cassegrain system is that the focal length of the paraboloid is now the effective focal length. For simplicity, only the true Cassegrain parabola/hyperbola system has been mentioned, but to obtain various combinations of beam shape and aperture-blocking, the subreflector can be varied from convex to flat to concave and can also be elliptical. Similarly with the main reflector
Aperture blocking itself is more serious with the Cassegrain type of antenna because the sub-reflector tends to be larger than a simple feed. Several methods exist for minimizing this, one of which depends on an optimum choice of dimensions for both feed and sub-reflector. Fig. 10(a) shows that the sub-reflector diameter may be reduced either by bringing it closer to the feed, or by making the feed itself more directive. After a certain point the stage is reached where the shadowing caused by the feed on the paraboloid is greater than the blocking due to the sub-reflector. There thus exists an optimum when the shadows projected by the sub-reflector and feed are equal in area.
A second technique, the principles of which will be covered in a later article, makes use of the fact that it is not necessary


Fig. 10. Cassegrain antenna uses an additional element in the form of an hyperbolic sub-reflector and has an effective focal length which is longer than the focal length of the parabola. An image of the feed is formed at the virtual focus and illuminating radiation appears as coming from this point.
to have a solid metal dish to reflect energy. A properly designed grating of wires will do the job just as well, reflecting radiation whose electric field vector is parallel to the wires. For an E-vector perpendicular to the wires, the grating appears transparent and the radiation can pass through undisturbed. Also, by using a wire grating, it is possible to construct a reflector which will rotate the polarization of the incident radiation. So the sub-reflector could be made of a grid of horizontal wires and the main parabolic dish could incorporate a polarizationtwisting arrangement. Horizontally-polarized radiation from the feed would be reflected from the sub-reflector onto the main dish and would emerge as a verticallypolarized field, to which the sub-reflector is transparent. Thus-no aperture blockage by the sub-reflector. It is evident that this system can only be used with singlypolarized antennae.

Besides the ability to tolerate a large feed, the Cassegrain antenna has several other advantages over the simple parabolic reflector. Having the feed tucked away at the rear of the dish eliminates the relatively long waveguide run and the associated losses. Although perhaps only a fraction of a dB , this is important to low-noise receivers such as might be used in radio-telescope and communication systems. Because of the positioning of the feed, there is also less noise introduced into the Cassegrain system by spill-over radiation being reflected from the ground.

\title{
Literature Received
}

\section*{For further information on any item include the \(W W\) number on the reader reply card}

\section*{ACTIVE DEVICES}
"Laser trimming techniques for thick film resistors" is a 6 -page publication describing the advantages and use of laser trimming techniques. DuPont de Nemours International S.A., Post Office Box CH-1211, Geneva 24, Switzerland ....... WW 401

\section*{Passive devices}
"Precision Self-latching Electrical Connectors" is a wall chart containing details of the sizes. make-up, and electrical characteristics of standard Lemo connectors from size 00 to 06 . Lemo (U.K.) Ltd, Worthing House, 6 South Street. Worthing, Sussex BN 11 3AE

\section*{EQUIPMENT}

We have received a data sheet describing the series RO200C Paraliel Display Controllers which provide alphanumeric data display from a computer data bus. Output is composite video, compatible with E.I.A. standard 525 -line video monitors. Ann Arbor Terminals Inc., 6107 Jackson Road, Ann Arbor, Michigan 48 103, U.S.A. ......... WW 403

A leaflet describing a series of on-line and offline electrostatic proofers designed for use with phototypesetting systems explains the "Matrix Electrostatic Writing Technique" and illustrates how Versatec Matrix Proofers fit into the proofing cycle of a phototypeset publication. Versatec Inc., 10100 Bubb Road, Cupertino, California 95014, U.S.A.

The HP-45 and HP-46 are pocket and desk top calculators respectively which are described in a leaflet sent to us by Hewlett-Packard Ltd. 224 Bath Road, Slough, Bucks. SLI 4DS.

Electrical and pneumatic input strip indicators are the subject of a brochure we have received. These instruments are designed in two ranges for use in control room and on-plant environments. Andrew Salanson, Penny \& Giles Lid. Mudeford, Christchurch, Hampshire BH23 4AT ..... WW 405

A six-page leaflet illustrating a comprehensive selection from their current range of electrical indicating instruments provides a selection guide for all standard ranges of Crompton instruments for applications ranging from educational and medical to industrial and military use. Crompton Parkinson Ltd, 50/52 Marefair, Northampton NN1 INY

Bahco Tools Ltd, 266B St. Ann's Road, Tottenham, London N.15, has published a leaflet containing illustrations, dimensions and cutting capacities of the range of sixteen types of pliers and nippers developed by Bahco of Sweden . .......... WW 407

We have received four brochures on new products which B Hepworth are to handle for the Hickok company of America. B. Hepworth \& Co., P.O. Box 10, Chemical Works, Kidderminster, Worcestershire.

Basic electronic systems technology .... WW 408
Fluid power teaching systems ......... WW 409
Numerical control.................WW 410
Electrenics equipment for vocational/technical programs ..............................WW 411

\section*{GENERAL INFORMATION}

The British Overseas Trade Board has published a 1973 edition of its Export Handbook for British firms trading abroad. The book is an up to date description of all the Government services available for exporters, together with mention of private agencies, addresses and a bibliography. British Overseas Trade Board, 1 Victoria Street, London S.W. 1

The Middlesex Polytechnic Prospectus for 1973-74 describes the available degree, postgraduate, diploma, certificate and short courses. Entry requirements are also listed. Middlesex Polytechnic, P.O. Box 40 , Enfield, Middlesex EN3 4SF
"Training for Company Secretaryship" is one of a series of booklets published by the Department of Employment dealing with commercial and administrative occupations prepared in accordance with the procedure laid down in the Central Training Council's Memorandum No. 7 for "training standards for occupations common to a number of industries" Her Majesty's Stationery Office, 49 High Holborn, London WCIV 6HB

Price 25 p.

\section*{Announcements}

The product range of Integrated Photomatrix Ltd, Dorchester, Dorset, is now handled in the United States by a subsidiary company, Integrated Photomatrix Inc. The new company is based at 1101 Bristol Road, Mountainside, New Jersey 07092.
"Stereo and Public Address Systems" and "Video Recording" are two courses to be presented (one lecture per week commencing in October) at Norwood Technical College, Main Building, Knight's Hill, London SE27 OTX. Applications to the Senior Administrative Officer.

Rendar Instruments Ltd have appointed Edmundson Electronic Components as their franchised distributors covering the South-East of England and the Midlands. This appointment completes a country-wide distribution network for Rendar. Customers in the South-East should place their *orders for Rendar products through Edmundson Electronic Components, 30/50 Ossory Road, London SE1 SAN. Customers in the Midlands should use the Birmingham office at \(40 / 45\) Lower Tower Street, Birmingham 19. Products include control knobs, jack plugs and sockets, switches and DIN plugs.

A five day course on "Image Processing" will be held from 12 th -16 th November at the Campus Inn, 1920 Northwestern Avenue, West Lafayette, Indiana. The course is intended to familiarize engineers and scientists with the state of the art of optical and digital image processing. For additional information contact Paul A. Wintz, Course Chairman, 605 Lingle Avenue, Lafayette, Indiana 47901 , U.S.A.

\section*{Total Communications}

\section*{Switching-centre applications: concluding part of an article on two-way information systems}

\author{
by E. J. Gargini, * M.I.E.E., M.I.E.R.E.
}

The first part of this article (September issue) concluded with a discussion of central switching systems for use in twoway information services. In this second part I shall briefly review the progress of the Rediffusion Dial-a-Program (DAP) central switching system, using it as an indication of possible future developments. \({ }^{10}\)

The basic DAP exchange frame comprises a 12096 cross-point system, using magnet-operated reed switches, for connecting any one of 36 input lines to any one (or more than one) of 336 output lines. After the introduction of a smallscale DAP installation at Thames Television, Teddington, a prototype exchange capable of operating on 36 channels, but with active equipment for 12 off-air channels and a few locally originated or two-way transmissions - was installed at Dennisport in Cape Cod, U.S.A., together with a network to reach 250 dwellings in an area of about one-third
* Rediffusion Engineering Ltd.

of a square mile. Extra lines were made available to feed extra points in half these homes. Some 160 homes are at present using this service, which became operational in August 1970. This prototype installation was undertaken as an engineering field test of the system. The results have been entirely satisfactory, both in quality of television transmission and in reliability. There has been no reported reed switch fault or failure of the distribution network, despite quite wide variation of temperature.

The Cape Cod installation includes two experimental additions which have to do with the communication concept: (1) Television cameras have been operated at two distribution points on the network, i.e. with two-way television signals passing in opposite directions on the same cable circuit; one provides local shoppers with current prices in a small supermarket, the second was used for demonstration purposes. (2) The control pair of the DAP system has been used for telephone purposes on a dedicated basis in conjunction with a two-wire version of DAP, i.e. a DAP system in which dialling and resetting signals are carried on the pair which carries the selected television signals.

Fig. 7 indicates the operation of the two-way television system in which the subscriber originated signal is sent to the exchange on a carrier frequency of twice that of output signals from the exchange. Fig. 8 shows the arrangement of the subscriber's dial unit for the two-wire DAP system.

Fig. 9 shows an application of DAP central switching now installed and working at the Case Western Reserve University at Cleveland, Ohio, U.S.A. In this system the control pair is used on a shared basis - for DAP signalling and for two-way telephonic communication between students and the video tape machine operator. The dial units can be adapted later to include a touch tone signalling system which will permit the student to control video tape machines directly.

The two-way television filtering and frequency changing equipment permits vision signal origination from a number of lecture halls which also serve as viewing centres. This equipment is of course portable and the two-way capability of the DAP system permits the use of cameras from any outlet point; thus separate feed lines for remote programme origination are not required.

Fig. 10 is an outline of a DAP installation at the Nova Park Hotel, Zurich, Switzerland, which has just become operational. This installation is a joint undertaking by Rediffusion International, Rediffusion AG, which is an independent company, and Philips. The system, when completed, will deal with a number of offair channels and 54 locally originated channels. Eighteen of the locally originated channels and initially six channels from off-air sources will be applied to the DAP exchanges for direct selection by dialling. The remaining 36 locally originated channels will be routed to indi-


Fig. 10 Dial-a-Program conference hotel system in Zurich.
vidual subscribers or groups of up to ten subscribers manually on the programme patching panel indicated. All subscribers have provision on the channel 10 position to receive a dedicated input from the patching panel, and to obtain this service the subscriber will dial a zero and use his telephone. The Nova Park Hotel is to be used as a conference centre and
conference television will be available only to delegates. A "denial" panel equipped with switches for each of 560 rooms will enable hotel staff to permit conference viewing only in rooms assigned to delegates. The switches are three-position types and control the viewing of two or three classes of programme. A programme "denial" panel is provided for placing any


Fig. 12 Total central-switching system.

one or more of the 36 DAP busbar channels into the three classes, i.e. two "denial" and one "non-denial".
A feature of the system is that any one or more channels can be pay-television channels, and a pricing panel is included for generating pay-TV pulses on selected channels at a rate determined by the value of the programme. Pay-TV meters, one per room, record the charge to be made to each guest.
Fig. 11 outlines a proposal for an alphanumeric system for airports and demonstrates the versatility of a central switching system. New alphanumeric information, i.e. flight arrival schedules, can be entered by keyboard into the central processor unit either directly or from any of the DAP outlet points using the two-way capability of the system to handle digital data.


\section*{Conclusions}

I believe the future of telecommunication lies in a total communication system of the central switching type. Fig. 12 summarizes this concept as a marriage between the telephone system of a central exchange embracing a large area and a greater number of integrated television programme and telephone concentrators or local communication exchanges.

Some \(85-90 \%\) of the wired network route in a town would be a network dedicated to individual subscribers; the remaining \(10-15 \%\) would be network dedicated to bringing information into and out of communication exchanges. The subscriber network would deal with any amount of visual data and would not need replacement with development of the visual art.

Fig. \(13^{\circ}\) indicates the simplicity of equipment in the home for an integrated system which is capable of dealing with all the features discussed in this article. Fig. 14 outlines the main components of the integrated switching centre or communication exchange.

At an I. E. E. meeting early in 1972 it was suggested that telephone microprocessors could be used to organize and link up small exchanges or concentrators to large exchanges and that this possibility becomes more attractive as the cost of integrated circuits drops.

Perhaps an organization such as the Independent Communication Authority suggested by Professor H. M. Barlow \({ }^{11}\) will be formed to consider these matters and to develop a total communication concept for the future.
Acknowledgements. I wish to acknowledge the work done by Rediffusion Engineering Ltd. and its engineers, particularly J. F. Pacey who was responsible for the installation and commissioning of the pilot Dial-a-Program projects in the U.S.A. I thank the directors of Rediffusion Engineering Ltd for permission to publish this article, although I would emphasize that the views expressed are personal and not necessarily the views of the company.

\section*{References}
10. R. P. Gabriel. "Cable TV and the Wired City". Paper presented to I.E.E., 10th Nov. 1971 (Electronics \& Power, April 1972), also R. P. Gabriel. "Experience with the Dial-a-Program System". Paper presented to I.E.E.E. North East Regional Electronics Meeting (NEREM). Boston, Mass., 2nd-5th Nov. 1971.
11. Prof. H. M. Barlow. "Telecommunications services in the U.K. Future development and overall policy", National Electronics Review, Vol.7, No.2, March/April 1971.


Fig. 14 Local communication centre.

\title{
Presenting Maintenance Information \\ Techniques developed by B.B.C. use functional diagrams and minimum of text
}

\author{
by S.W. Amos*, B.Sc., M.I.E.E.
}

The introduction of the transistor and more particularly the integrated circuit have made possible the construction of extremely compact equipments. The extent of the miniaturization possible with modern solid-state devices is well illus trated by a typical integrated circuit which contains nearly one hundred tran sistors and as many resistors - all in a package measuring lin by \(\frac{1}{4}\) in by \(\frac{1}{8}\) in! An equipment with fifty such i.cs would contain nearly 5,000 transistors: to use such a wealth of active devices would have been unthink able in the days of valves. It is practical to employ active devices in such prodigal numbers and thus to construct equipments of very great complexity because solid-state devices are inherently reliable. Nevertheless modern equipments do develop faults which must be found and corrected and this article is concerned generally with the maintenance of modern solid-state equipment and in particular with the form in which maintenance information is presented in the B.B.C.

\section*{Factors influencing the form of maintenance literature}

The following three features of modern equipment have a direct influence on the form of maintenance literature:
1. The complexity of modern equipment can be such that only the designer under stands it thoroughly, and he is unlikely to be enthusiastic about calls on his time to maintain one of his earlier designs. It follows that the equipment must be maintained by staff who do not understand its method of working in detail: they must, of course, understand or be capable of learning its operation in principle, otherwise they would be incapable of locating a fault.
2. Integrated circuits and other packaged components such as thick- and thin-film circuits cannot be repaired if they fail: they are replaced if faulty. Thus maintenance staff do not need a detailed knowledge of the internal circuitry of such devices. They must, however, know sufficient about the function of the device, its input and output voltage levels, terminating resistances etc., to be able to test it. Again, therefore, the main-
tenance man needs a general rather than a detailed knowledge of the active device.
3. Because breakdowns are rare in modern equipment, maintenance staff have little experience of tracing faults in it. When a fault does occur the maintenance man has the problem of locating the fault in an unfamiliar equipment. Thus the maintenance information must be designed to assist the rapid location of faulty areas.
Such observations prompted the B.B.C Technical Publications Section to devote some time to experiments on the form in which maintenance information for modern equipment should be presented.

It had been known for some years that maintenance men tended to rely on circuit diagrams and did not normally read associated text unless the diagram failed to give the required information. It was decided therefore to concentrate on diagrammatic forms of presentation
and to reduce text to a minimum. In early experimental forms of literature care was taken to ensure that the diagram and associated text could always be seen at the same time and the normal arrangement was for text and diagram to be on facing pages. This was an improvement on earlier layouts but still required readers to switch their attention from one page to the other in following the operation of a complex circuit. Each time the reader returned to the text or to the diagram he had to find his place and this was felt to be an undesirable interruption to the continuity of the story.

\section*{Use of functional diagrams}

There is no need to give details of the circuitry of packaged components such as i.cs but the function of such components must be indicated, otherwise it is impossible to follow the diagram.


\footnotetext{
*B.B.C. Engineering Training Centre
}

Fig. 1 Block text diagram facing circuit diagram, bath divided into functional areas.

If the maintenance man is to be able to locate faults rapidly the diagram must show clearly the interrelationships between the stages which enable the equipment to achieve its purpose. Thus the diagram must show not only the function of i.cs but also those of other stages using for example discrete components. The functions of many basic circuits are obvious to experienced maintenance men because the circuits are (or should be) drawn with a standard layout which helps rapid recognition. Typical of such well-known circuits (which can be regarded as electronic building bricks) are common-emitter amplifiers, emitter followers, long-tailed pairs; a number of others are given in BS 3939. Although such circuits may be familiar they must be recognized before their function can be appreciated and this takes a finite time: recognition of an unfamiliar layout takes an even longer time. Thus it was decided that all stages should be labelled with their function.

Great care is taken in arranging the functional blocks on the diagram to obtain a clear signal flow and whenever possible this is from left to right and from top to bottom of the diagram: main signal paths can be printed in heavy lines to distinguish them from subsidiary signal paths.

To define the boundaries of the functional stages these are printed on blue backgrounds (shown as white boxes in Figs. 1 and 2) so that the blue areas with the associated signal paths form a block diagram in which each block represents a mathematical or logical operation upon a signal. A light blue was chosen for the background colour

The illustrations in this article are taken from original drawings intended for reproduction on A3 size paper (approximately \(16 \frac{1}{2} \mathrm{in}\) by \(11 \frac{17}{8} \mathrm{in}\) ) in BBC Technical Instructions. To obtain illustrations of a size suitable for publication in Wireless World only part of each diagram is reproduced - sufficient to show the type of presentation described in the article. The backgrounds of the functional areas in Figs. 1 and 2 are printed in blue in BBC Technical Instructions but are shown as white boxes in the article. The circuit diagram of Fig. 4 is intended for reproduction in black and the explanatory notes in red but in this article the circuit is shown in white and the notes in black.
because it does not impede reading of the circuit if this is printed on it in black. An important point about this kind of diagram is that each block represents a circuit function and not an item of hardware. It could happen, for a particular equipment, that functional and hardware boundaries coincide but in general they do not. Functional diagrams aid fault location because they illustrate the division of the equipment into functions and thus give directly the information required to test any individual stage: to permit this the diagram must include terminal numbers, pin and socket connections etc., so that the input and output connections of each stage can be found on the equipment itself.

It can be assumed that a number

of basic circuits such as common-emitter amplifiers and emitter followers are so familiar to the maintenance staff that no text is necessary to explain their behaviour. Other circuits require text and this was located, in earlier maintenance instructions, on the page facing the functional diagram. To minimize the difficulty of locating the text for a particular functional block the text was also printed on blue backgrounds of the same size as those of the functional diagram and arranged in the same layout. An example of such a pair of facing pages is given in Fig. 1. It is certainly easy to find a wanted text of a functional circuit stage but this form of presenta tion is still open to the objection that the maintenance man must consult two pages and must switch his attention from one to the other in following explanations of circuit behaviour. This form of presentation can also be criticized on the grounds of duplication: the breakdown of the equipment into functional areas is shown twice, one on each page. Both difficulties can be overcome by dispensing with the block text diagram and including the text within the blue areas of each functional circuit. An example of this form of presentation is given in Fig. 2: this gives the maintenance man on one side of a piece of paper most of the information he is likely to require on the particular part of the circuit featured.

\section*{Levels of treatment}

For ease in handling, diagrams are limited in size to A3 and these are folded to A4 format for inclusion in standard folders which can be accommodated in normal-sized filing cabinets. The information which can be contained on an A3 page is limited, particularly when it is combined with text, waveforms, tables and other items of information. Thus a number of diagrams, possibly as many as 20 , are required to describe a complete equipment such as one capable of generating all the standard waveforms required to line up a picture monitor.
To break-down the circuitry into 20 diagrams without destroying the continuity of the treatment requires some thought, and the technique adopted is to present the information at a number of levels. The first diagram in the service manual (level 1) is a diagram of the complete equipment divided into its major functions which are limited to about 20 which is the maximum which can be accommodated on an A3 page with ancillary text while maintaining adequate clarity of presentation. To limit the number of functions may require some of the functions in the level-1 diagram to be complex, and at this stage it may be sufficient to label a function for example as a waveform processor (without indicating how many stages it contains). Clearly a diagram as general as this cannot contain details such as i.cs, transistors, resistors, etc.

In subsequent (level-2) diagrams these complex functions are split into simpler


Fig. 2 Text combined with circuit diagram. Fig. 3 A waveform-text diagram.
functions, these being again chosen to keep the total number of blue blocks per page to below 20 . It may be that the functions in the level- 2 diagram are so simple that the circuitry can be included within the blocks without overcrowding the diagram: if not then the functions can be subdivided further to a third level at which circuit details can be included.

In all diagrams it is essential, of course, that the functional blocks should be laid out so as to emphasize the paths of signal flow.

\section*{Waveform diagrams}

For certain types of equipment the circuit behaviour is best explained with the aid of waveform diagrams. If the account is given in conventional text with reference to separate waveform diagrams the explanations can become tedious. The usual method is to allocate letters to the edges and other significant features of the waveforms and to use these letters in referring to these features in the text. Such a technique has the disadvan-
tages already mentioned that the reader has to switch his attention between text and drawing. The repeated need of the reader to find his place in text and drawing is frustrating and wastes time: it can be avoided by using the technique employed in the functional circuit diagram, i.e. by condensing the text to a minimum, breaking it into sections and by inserting these sections at appropriate points in the waveform diagram (Fig. 3). There is then no need to label the waveform features because they can be identified by arrows. To distinguish it from the waveform the text is printed in a different colour.

\section*{Relay circuits}

Few examples of technical writing can be so boring and repetitious as detailed descriptions of the operation of a circuit including a large number of relays. It is better to provide the information in the form of a table designed to illustrate the sequence of operations. If it is possible perhaps the best method of explaining the operation of the circuit is on the circuit

diagram itself. This might be possible, for example, by stringing the individual circuits between horizontal supply lines and arranging them in the order in which they operate. By adopting this method what litde explanatory text is still needed can often be accommodated on the circuit diagram itself near the circuit in question, thus avoiding any need for separate textual description. A sample of such diagram is given in Fig. 4.

\section*{Algorithms}

One way in which it is possible to help inexperienced staff to maintain equipment is by the provision of algorithms: these are charts which esable faulty
areas to be found quickly. The charts state, for example, what signals should be present at certain points in the equipment and, if they are missing or distorted, indicate what the next test should be and where it should be applied to obtain further information on the location of the fault. Thus the algorithms give information on the logical steps in fault-finding which a skilled maintenance man would take instinctively. A sample of an algorithmic chart is given in Fig. 5.

Algorithms can be useful but the staff using them still need some experience in tracing faults. For example, an algo rithm may suggest that if a certain waveform is missing at a particular test
point then the fault lies in a specified area of the equipment. But the waveform could be absent because of a poor soldered connection at the test point itself. It is impossible to include all such possibilities in an algorithm and they are therefore of limited application.

\section*{Physical location of components}

The maintenance aids described above should enable the maintenance man to locate a faulty area in an equipment. However, additional information is needed to enable him to find any particular circuit point physically in the equipment and this is necessary of course during fault location. Functional diagrams can


Fig. 4 - relay diagram laid ou to simplify explaresion of circuit operation.


Fig. 5 An algorithmic fault-tracing chart.
provide some locational information if the terminals of transistors and the pin numbers of i.cs and of plugs and sockets are numbered. However, further information is required to enable, for example, the junction of a particular resistor and capacitor to be found physically. To this end diagrams showing the layouts of components on the printed cards are also provided and particular care is taken to identify test points on the cards.

\section*{Wiring diagrams}

For equipment which consists of a number of inter-connected units it is essential, of course, to give complete information on the inter-unit wiring. This can be in the form of a diagram or a list of connections. Probably the diagram is better, particularly if it shows the units in their correct relative positions: this simplifies transfer of attention from the printed page to the equipment itself.

\section*{Parts lists}

If a component is faulty it may still be recognizable and the type number may still be legible: all the information is then available to enable a replacement component to be obtained. Often, however, the faulty component has been destroyed (e.g. a resistor has burned out) or any markings on it have become illegible. The component cannot now be replaced until sufficient information on it has been obtained. The circuit diagram can supply some details, e.g. the resistance of resistors and the capacitance of capacitors, but this is often insufficient to enable a suitable replacement component to be obtained. Complete information on all components should therefore be included in the maintenance information. Equivalent components are sometimes satisfactory as replacements but there are some components for which replacements must be precisely the same type as those used originally.

\section*{Conclusion}

The methods outlined in this article have been introduced into B.B.C. Technical Instructions over the last three years and are regarded by the maintenance staff as a considerable improvement over earlier methods of presenting maintenance
information. In particular the reduction in the volume of conventional text and the introduction of the functional diagrams have been welcomed. Experiments in presentation will continue but it is anticipated that changes will be confined to details in the immediate future.

\section*{Books Received}

Electronic Maintenance Management contains the contributions made to the 1973 Symposium of the Society of Electronic and Radio Technicians held at the University of Nottingham earlier this year. Subjects covered range through maintenance philosophies, technical documentation and design requirements to personnel organizations and careers. Speakers at the symposium represented all sectors of the industry from large to smal specialized companies. Titles of the 21 papers contained in the proceedings include Education and Training for Maintenance Management, The Economics of Servicing, Training in Fault Diagnostic Techniques, The Effect of Service on Design, The Use of Algorithmic Fault Finding Guides, The Maintenance Task on Commercial Computers - A Different Approach, and The Need for a Standard Format of Maintenance Data for Electronic Equipment. Price £5 (incl. p \& p.). Pp. 189 plus unpaginated papers (3). Society of Electronic and Radio Technicians, Faraday House, 8-10 Charing Cross Road, London WC2H 0HP.

Search the Solar System by James Strong discusses the future role of unmanned interplanetary probes. Emphasis has now been placed on the continued exploration of the Solar System by probes similar to the "Mariner" reconnaissance of Mars and Venus and the "Pioneer" probe now on its way to Jupiter. Because every planet presents a fresh set of problems, various types of space probe will be necessary. Some will be purely reconnaissance orbiters while others will soft-land sophisticated
capsules that will search for evidence of life on the surface by remote control. The author discusses ways of exploring hot planets, like Venus and Mercury, and how fast- or slowmoving comets can be intercepted. He also describes how to control a television-guided mobile probe, special balloon probes and radar satellites, how to explore the rings of Saturn, and describes a new way of maintaining continuous radio communication between Earth and a planetary surface anywhere in the Solar System. The book also describes the latest techniques for sending fast probes to the Outer Planets and a "kamikaze" probe to take close-up pictures of the Sun. Price \(£ 3.25\). Pp. 160. David \& Charles (Holdings) Ltd, South Devon House, Newton Abbot, Devon

Included in recent additions to the list of books in the Foulsham-Tab series and published by W. Foulsham \& Co. Ltd, Yeovil Road, Slough. SLI 4JH are:

Radio Control Manual - Systems Circuits and Construction by Edward L. Safford. Price £1.25. Pp. 190.
Audio Systems Handbook by Norman H. Crowhurst. Price £1.25. Pp. 189.

New IC FET Principles \& Projects by K.W. Sessions and D. Tuite. Price £1.10. Pp. 160.

Simple Transistor Projects for Hobbyists and Students by Larry Steckler. Price \(£ 1.25\). Pp. 192.

Video Tape Production \& Communication Techniques by Joel L. Efrein. Price £1.30. Pp. 252.

\section*{Circuit Ideas}

\section*{Avoiding power supply hum}

Units such as a radio tuner or tape recorder feeding into an amplifier normally require their own separate power supplies, though it is often more convenient if such feeders, with their relatively small requirements, could take their supplies from the amplifier itself. This cannot be achieved without the earth line between feeder and amplifier being shared by both the power supply and the signal. The result of this arrangement is considerable hum due to positive feedback.

This can be relatively easily overcome. The power supply used by the amplifier will almost certainly be of higher voltage than that needed by the feeder, and thus a "potentiometer" can be used to reduce the voltage. If this consists of a constant-current source in series with a constant-voltage sink, and is close up against the feeder, then feedback is eliminated as there will be no current fluctuations in the power supply line.

The first circuit (left) provides power for a small cassette recorder. It supplies up to 150 mA at 7.5 volts from supplies varying from 12 to 24 volts, and gives completely hum-free service.


In the more difficult case of a high-quality tuner (e.g. Nelson-Jones), together with stereo decoder, the second circuit has been used with similar success, even at the end of eight feet of cable.
With its exceedingly low output impedance, this circuit not only eliminates all likely sources of feedback, but also provides the high degree of smoothing required by this tuner.

\section*{Symmetrical power supply}

Shown is a simple power supply having symmetrical outputs and overload protection such that if a heavy load or short circuit is applied to either output both switch off rapialy. Each transistor derives its forward bias from the opposite supply rail and while the transistors are in saturation an increasing load will cause the output to fall under the regulation of the transformer. With a further increase in load the transistors come out of saturation and eventually remove each other's forward bias. If the trip circuit
is used with an active power supply having negligible output resistance then switch off occurs solely to the transistors coming out of saturation. The zener voltage must be between \(V_{o}\) and \(2 V_{o}\) and the value of \(R\)
\[
\leqslant \frac{h_{F E}\left(2 V_{o}-V_{Z}-0.7\right)}{I_{L}}
\]
where \(I_{L}\) is the maximum load current required.
L. D. Thomas,

Post Office Research Department.



With the values shown the constantcurrent supplied is about 100 mA of which 10 to 15 mA are "sunk" by the 741 . The circuit requires careful setting up as the current that can be sunk is severely limited. Coarse adjustment of the current source is achieved by altering \(R_{1}\), the BD136 emitter resistor, fine adjustment by \(R_{2}\) Giles Hibbert,
Blackfriars,
Oxford.

\section*{Resistance-to-voltage converter has low output impedance}

Driving a constant current through an unknown resistance \(R_{x}\) yields a voltage across it proportional to the unknown's value. This commonly used method provides a linear conversion function, but the

signal source has an output resistance equal to \(R_{x}\). Better drive capability is available by using an operational amplifier in the inverting configuration, resulting in closed loop gains of \(-R_{x} / R_{i}\) when the unknown value functions as the feedback resistor. Constant input \(V_{\text {ref }}\) then results in output voltage directly proportional to the resistance value and a power of ten scaling factor selected by proper choice of \(R_{i}\) and \(V_{\text {ref }}\). Output voltage from the amplifier has a very low source resistance, which approaches zero as \(R_{i}\) is set at higher values and loop gain decreases.
David R. Schaller,
Milwaukee,
Wisconsin.

\section*{World of Amateur Radio}

\section*{Should there be a U.K. novice licence?}

The U.K. is one of the very few countries with a large amateur population (total of Class A and B licences has just passed the 18,000 mark) that eschews "incentive licensing" and any form of novice or beginner's licence. Once anyone has qualified for a Class A or B licence no restrictions are placed on their activities or whether this includes any element of "self-training". As an individualist such freedom from official pressures seems wholly admirable - but as one concerned with the future development of the hobby this absence of incentives seems puzzling. A British "beginner's licence" was announced in March 1968 but did not appear to be part of any fully thought-out scheme and was never implemented.

One of the latest countries to introduce such a system is Norway where a new novice-type Class \(\mathbf{B}\) licence is now being issued. This is valid for two years only and is not renewable, is for c.w. operation with a maximum input of 15 watts and has the prefix LB to distinguish these stations from the Norwegian Class A stations which use the LA prefix. Such facilities encourage newcomers to become proficient in Morse operation by learning while using. Should the U.K. look again at this now well tried system of encouraging newcomers to become experienced in h.f. Morse operation? Or is it accepted that the day of the Morse key is now almost done?

\section*{Communications receivers now 40 years old}

Although it could be argued that "communications receivers" are as old as radio, the type of receiver which this term usually defines really emerged in the early thirties with the coming of lownoise single-signal-superhets. A major step forward came in 1931 when James Lamb of A.R.R.L. showed how the crystal i.f. filter - developed in the U.K. by Dr J. Robinson in 1929 for his broadcast "stenode" receiver - could be put to extremely good use for amateur operation. One of the first receivers using such a filter and intended for amateurs was the National FBXA of 1934 - and
this was a later version of the FB7 receiver of 1933, regarded by some amateur historians as perhaps the first true "communications receiver". During the next five years a whole string of such receivers appeared and pushed aside the "straight" regenerative receivers: the HRO Senior in 1936; the Hammarlund Comet Pro and Super Pro; the RME69; the Tobe Deutschmann kit; the wide range of Hallicrafters from the \(£ 7\) Sky Buddy to more advanced sets with crystal filters. At about the time when such receivers began appearing on the British market in 1936-37, the only home product was possibly the \(£ 20\) Evrizone single-signalsuperhet. A sign of the change was the use by the leading British station of the 1936 BERU contest of a Comet Pro - but the Australian winner still used a straight \(0-\mathrm{v}-2\) receiver. Because of their widespread wartime use, the HRO and the slightly later RCA AR88 (first marketed in 1940-41) remain as outstanding examples of the early days of communications receivers: in how many other branches of electronics can equipment built over 30 years ago still prove capable of performing well even in comparison with modern equipment?

\section*{Coming Soon}

The second Midland National Amateur Radio \& Electronics Exhibition at Granby Halls, Leicester on October 25-27 will feature a fully equipped amateur station, GB3ARE, plus a reproduction of the 1913 club station of the Derby and District society. A film theatre will show films of interest to amateurs and a Tombola stand is being run on behalf of the Radio Amateur's Invalid \& Bedfast Club. Trade stands look like being fully booked.

One of the very popular Racal Amateur Radio Club Junk Sales - at which an unusually wide range of ex-professional equipment usually changes hands - is being held at St Sebastian's Hall, Nine Mile Ride, Crowthorne, Berkshire on Saturday, October 27 at 2 p.m.

The South East Counties H.F. Convention on Sunday, November 18 from 11 a.m. until 7 p.m. at the Airport Hotel, Crawley, Sussex, will include trade stands, club stands, informal lectures and an operational station.

A dinner for direction-finding enthusiasts which it is hoped will be the first of an annual event is to be held at "The Chicken in the Basket", Benson, between Oxford and Wallingford on Friday, November 16.

\section*{More courses for would-be amateurs}

Additions to last month's list of places where evening courses are being run for would-be amateurs - based on information supplied by the R.S.G.B. include:
London and the Home Counties: Acton, Bedford, Borehamwood, Brentwood, Chingford, Croydon, Harlow, Harrow, Highgate, Ilford, Islington, Princes Risborough.
Provinces: Aldridge, Staffs, Bangor, Co. Down, Birkenhead, Bridgend, Glam. Brighton, Bury, Chesterfield, Glasgow, Grantham, Grimsby, Loughborough, Newport, Mon., Oldham, Perth, Plymouth, Portsmouth, Stoke-on-Trent, Wolverton and Wombourne (near Wolverhampton).

\section*{In Brief}

A recent BBC Radio 4 programme ("In Touch") for visually handicapped listeners included an explanation and taped demonstrations of amateur radio operation by Philip Storey, G3ZGG. He said there are now about 50 blind amateurs in the U.K. and advised those interested to gain experience by listening on a communications receiver; where necessary assistance may be obtained from the Radio Amateur Invalid \& Bedfast Club (Hon. Secretary Mrs Frances Woolley, G3LWY, Woodclose, Penselwood, Wincanton, Somerset) . . . What is thought to be the longest-distance contact ever made on "Top Band" ( 1.8 MHz ) was made last July between Tokuro Matsumoto, JA7AO and VP8KF on the Falkland Islands. The Japanese amateur has also contacted Fred Laun, LU5HFI (formerly HS5ABD) in Cordoba. Argentina . . . The Harlow and District Mobile Rally is to be held at Netteswell Comprehensive School, Harlow, onSunday, September 23 (talk-in stations on 144, 3.5 and 1.8 MHz ) . . . The prefix DT is being used by some DM stations until the end of the year to mark the 20th anniversary of amateur licensing in the German Democratic Republic . . . Walter Turner, GW3YPH, of Pontypridd was electrocuted while putting up an aerial in his back garden not far from an overhead electric cable . . . By the end of August, Oscar 6 has completed 4000 orbits. British and French amateurs have made contact through Oscar 6 with KL7MF at Anchorage, Alaska, at distances of over 7000 km . F9FT in Rheims has made more than 2500 contacts through the amateur satellite.

PAT HAWKER, G3VA


\title{
The Sinclair Cambridge.... no other calculator is so powerful and so compact.
}

\section*{Complete kit-£24-95! \\ (PLUS VAT)}

\section*{The Cambridge - new from \\ Sinclair}

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further \(£ 5.50\) !

\section*{Truly pocket-sized}

With all its calculating capability, the Cambridge still measures just \(4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}\) ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

\section*{Easy to assemble}

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.
The cost ? Just \(£ \mathbf{2 7} \mathbf{4 5}\) !
The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs \(£ 32 \cdot 95\) - so you're saving \(£ 5.50\) ! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge
* Uniquely handy package.
\(4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}\), weight \(3 \frac{1}{2} \mathrm{oz}\).
* Standard keyboard. All you need for complex calculations.
* Clear-last-entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators ( \(+,-x, \div\) ), with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than \(£ 30\).
* Calculates to 8 significant digits, with exponent range from \(10^{-20}\) to \(10^{79}\).
* Clear, bright 8-digit display.
* Operates for weeks on
four U16-type batteries.
(MN 2400 recommended).

\section*{Acomplete kit!}

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents :
1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

\title{
Actual size!
}


\section*{41/2in long \(\times 2\) in wide \(x^{11 / 16 i n}\) deep}

\section*{This valuable book - free!}

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.


How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :
\begin{tabular}{lll} 
Logs & Tangents & Currency conversion \\
Sines & Reciprocals & Compound interest \\
Cosines & nth roots & and many others...
\end{tabular} nth roots Compound interest


Sinclair Radionics Ltd, Londón Road, St Ives, Hunts. Reg.no: 699483 England VAT Regno:2138170 88

\section*{Why only Sinclair can make you this offer}

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

Price fully built: \(\mathbf{£ 2 9 . 9 5}+\mathbf{£ 3} \mathbf{3 0} \mathbf{0 0}\) VAT. (Total : \(\mathbf{£ 3 2 \cdot 9 5}\) )

To: Sinclair Radionics Ltd, London Road,
St Ives, Huntingdonshire, PE174HJ
Please send me
\(\square\) a Sinclair Cambridge calculator kit at
\(£ 24.95+£ 2.50\) VAT (Total : £27.45)
\(\square\) a Sinclair Cambridge calculator ready built at \(£ 29.95+£ 3.00\) VAT (Total : \(£ 32.95\) )
* enclose cheque for E \(\qquad\) , made
out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/Access
account. Account number
*Delete as required.
Name
Address

\title{
Co-axial Cable Problems? RG/U UNI RADIO WALMORE have the answer whino
}

Walmore Electronics Ltd.,
11-15, Betterton Street, Drury Lane, London WC2H 9BS Telephone 01-836 0201 Telex London 28752


WW- 093 FOR FURTHER DETAILS

\section*{We're sensitive to everyone's needs.}


Different people have very different requirements in \(\mathrm{Hi}-\mathrm{Fi}\), so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Limited,
10 Bayford Street, Hackney, London E8 3SE.
Tel 01-985 1152.
Goldring © Series 800
Stereo Magnetic Cartridges.

\section*{New Products}

\section*{Two-tone generator}

Racal Instruments have introduced a two-tone generator, Model 9063, which complements the r.f. synthesized signal generator system introduced earlier this year. Designed primarily as a modulation source, the 9063 provides an aid to s.s.b. servicing and alignment.

An entirely sclf-contained instrument covering the 10 Hz to 100 kHz frequency range, the 9063 provides a stable synthesized tone referenced to an internal crystal standard and a second tone derived from a tuneable oscillator. The two tones may be used independently or combined, the intermodulation distortion being less than -70 dB . Fully remotely programmable using t.t.l. logic, the instrument provides outputs from \(100 \mu \mathrm{~V}\) to 10 V with low hum and spurious content. The 9063 is 88 mm ( 3.5 in ) high, 483 mm ( 19 in ) wide and 406 mm ( 16 in ) deep and weighs 13.7 kg (30lbs). Racal Instruments Ltd, Duke Street. Windsor, Berks SL4 1SB.
WW 316 for further details

\section*{50 MHz portable oscilloscope}

The dual-trace oscilloscope, model D75 from Telequipment is a light-weight portable oscilloscope with a vertical sensitivity of \(5 \mathrm{mV} /\) div. on both channels over the full 50 MHz bandwidth. The sensitivity can be increased to \(1 \mathrm{mV} /\) div. at all frequencies up to 15 MHz by the operation of the \(\times 5\) gain switch. Both vertical channels can be used independently or in alternate, chopped, added or differentia! modes, and the vertical signal delay which
is incorporated allows the leading edges of signals to be observed.

The horizontal deflection system consists of a dual timebase which provides normal sweep, mixed sweep, sweep intensifying, sweep delaying and single shot facilities. The fastest normal sweep speed of \(100 \mathrm{~ns} /\) div. can be increased to \(10 \mathrm{~ns} /\) div. by switching on the \(\times 10\) sweep magnifier. Time measuring accuracy is \(\pm 3 \%\) with the magnifier off, \(\pm 6 \%\) with the magnifier on. A useful extra feature is the "trace locate" button which reduces vertical and horizontal deflection so as to present an on-screen display and free runs the main timebase.

A built-in calibrator provides square wave test outputs on the front panel of \(30 \mathrm{mV}, 300 \mathrm{mV}\) and 3 mA peak-to-peak with an accuracy of \(\pm 1 \%\) at a nominal frequency of 1 kHz . The c.r.t. is a singlegun mesh tube, operating at a potential of 15 kV . The U.K. list price of the D75 is \(£ 420\) excluding v.a.t. The weight is 25.5 lb and the dimensions are \(5 \frac{3}{8} \mathrm{in}\) high, 15 in wide, and \(18 \frac{3}{4}\) in deep. Tektronix U.K. Ltd, Beaverton House, P.O. Box 69, Harpenden, Herts.

WW 307 for further details

\section*{Metal detector}

The Contil-Voll metal detective, marketed by West Hyde Developments, is pocket size, hand held, very light (under \(\frac{1}{2} \mathrm{lb}\) ) and so easy to operate that a child can use it. It is held in either hand and a small knurled knob is turned by the thumb until a red indicator light

goes out. It is then ready for use: any nearby metal turns the light on again. The Contil-Voll metal detective reacts to all metals and finds them through any other substance. To quote West Hyde, "just think of the possibilities; this means the metal clip on your pen through your jacket; the money in your pocket; a gun in your belt! It will find a paper staple at \(\frac{3}{4}\) in and a paper clip buried under a pile of papers 2 in thick. But think of the practical possibilities in a factory or at home!" Made in tough impact-proof plastic and using a single 9 V battery as the power source, it is priced at \(£ 22.85\) plus v.a.t. West Hyde Developments Ltd., Ryefield Crescent, Northwood Hills, Northwood, Middx HA6 1NN.
WW 308 for further details

\section*{Electronic watches}

Solidev Ltd announce a range of solid quartz controlled electronic watches. They have no hands and no dials. Instead, a simple black face registers time and date by l.e.d. display. Control is by push button.

There are several models available in both men's and ladies' styles. All feature gold bracelets. All are accurate to within 1 digit over the course of a year, and cost \(£ 180\) r.r.p. Solidev Ltd, Edison Road, Elms Industrial Estate. Bedford MK410HG.
WW 319 for further details

\section*{Trip amplifiers}

Rotraco Systems Ltd have developed a range of trip amplifiers which are compatible with their Model 4 and 4R monitoring and alarm systems. The trip amplifiers are intended for operation from signal sources providing \(0-2.5 \mathrm{~V}, 4-20 \mathrm{~mA}\), or direct from thermocouples, resistance thermometers, thermistors, strain gauge pressure transducers, tachometers etc. They can be combined with alarms to provide alarm and trip systems for plant and process control applications. Facilities are also provided for an indication of temperature, pressure etc. either on a common indicator or individual indicators. The indicator unit can also be used to inject a signal to check the trip setting.

The basic trip amplifiers carry two trip channels with controls for set point and differential but other versions are available e.g. one channel with two trip settings, switch selection of trip high or low, fixed differential etc. A light emitting diode indicates whether or not a channel has tripped. The setting and differential potentiometers of temperature trip amplifiers are calibrated directly in degrees centigrade and for other parameters they

are calibrated in percentage. Rotraco Systems Ltd, Garden Street, Darlington, Co. Durham DL1 1QR.
WW 314 for further details

\section*{Liquid level control units}

The ELC2 electronic level control produced by Gearing \& Watson (Electronics), is used to control the level of liquids where the conductivity varies with level, such as water, milk, sewage etc. Two level probes may be used, so that the level is controlled between the two probes; for example a container may be filled to the upper level probe but the level may fall to the lower probe before the control operates to restore the level to the upper probe again. The ELC2 is designed for "fill" applications, the ELC24 is available with a reverse action.

The ELC2 uses modern semiconductor techrology, the level comparator being an integrated circuit, while the load switch is a triac; thus no contact maintenance is required. The probe circuit is insulated by a double wound mains transformer from the supply for complete safety. The unit is encapsulated for protection and can operate in high ambient temperatures. Electrical connections are by "Faston" connectors. Dimensions \(63.5 \times\) \(51 \times 108 \mathrm{~mm}\). Gearing \& Watson (Electronics) Ltd, Birch Close, Eastbourne, Sussex BN23 6PE.

\section*{WW 306 for further details}

\section*{Logic analyzer}

Logic circuit ánalysis by the "freezing" and display of the states of any 32 bits in a stream is the function of a new instrument by Hewlett-Packard, the Model 5000 A . A light-emitting diode array indicates the "up" or "down" states of the 32 selected bits, which are selectable by thumbwheel switches from a stream of information in relation to a trigger signal (before it as well as after). A fault con-
dition can be made to trigger the display. The instrument will cope with clock frequencies up to 10 MHz and is compatible with all logic families. L.e.ds display the state of the input signal, and if the probe is not making contact, the fact is again indicated by l.e.d. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks SL1 4DS. WW305 for further details


\section*{Glass miniature trimmers}

Voltronics are now manufacturing a range of glass dielectric trimmers up to 40 pF capacitance, but 40 per cent shorter in length than the standard MIL-C 14409 C capacitor. Two mounting styles, for vertical or horizontal mounting, are available. Both are sealed, providing protection against pressures up to 40 p.s.i. to keep out dust, moisture and encapsulents. The non-rotating piston construction permits more linear tuning, no capacitance reversals, high \(Q\), longer life, low constant inductance and a high selfresonant frequency. Suvicon Ltd, Hagley House, Hagley Road, Birmingham B16 8QW.
WW 304 for further details

\section*{Hall effect d.c. motors}

Communication Technology have announced a range of constant speed brushless d.c. motors for instrumentation and recorder applications. Incorporating Hall effect elements to control the coil current by sensing the rotor position, the PHM series can be programmed to operate at selected motor speeds or for reverse rotation. By the addition of an external switching circuit, multispeed operation and forward or reverse rotation can be arranged without the need to use a separate gear box for this purpose.

The rotator is external to the fixed coils and as there are no brushes or a commutator, as in a conventional d.c. motor, friction is greatly reduced and
no electrical noise is generated. The use of special copper sleeve bearings is said to ensure a minimum of motor noise and long life. Communication Technology Ltd, 279 Addiscombe Road, Croydon, CRO 7HY.
WW 303 for further details

\section*{Audio mixers}

Neltronic (UK) Ltd is to enter the audio market with a range of audio mixers, with full mixing input channels and frequency response 20 Hz to 20 kHz . In size and sophistication the range covers many requirements but units can be designed specially to fulfil customers' needs. The equipment is made in the UK, to a design which employs up-todate technology and components to bring the price of the standard unit, model \(6 / 2\), to under \(£ 900\). For the standard unit, the mixer features switching for one microphone and one line input, a sensitivity -80 to \(\pm 10 \mathrm{dBM}\) in 10 dB steps, filters covering low, mid and high frequencies and horizontal faders. Cueing to internal speaker from all channels and all outputs is available with independent reverberation, selectable mix, 2 reverberation units for stereo operation, switchable to main output, a fold-back output for mixed signals and a p.u. unit with R.I.A.A. equalization. Two v.u. meters switchable to every channel and all outputs; pan between 1 and 2 on every channel. Outputs 2 group, 2 foldback, 2 reverberation and one monitor. Neltronic (UK) Ltd, 442 Bath Road, Slough SL1 6BB, Bucks.
WW302 for further details

\section*{Noise generator cards}

Mariufactured by Elgenco, Inc., U.S.A., specialists in noise generators, the Series 3600 noise generator cards cover the range of 10 Hz to 5 MHz with an output level of 3 V r.m.s. open circuit. A dynamic range of \(3.5: 1\) peak to r.m.s. is provided. Output impedance is \(600 \Omega\) or \(200 \Omega\) depending on the upper frequency specification, with other output impedances optionally available. The amplitude probability distribution is Gaussian.

Cards are available with specified uniformities of \(\pm 0.5 \mathrm{~dB}, \pm 1 \mathrm{~dB}, \pm 2 \mathrm{~dB}\) and \(\pm 3 \mathrm{~dB}\) for many frequency ranges between lower frequencies of \(10 \mathrm{~Hz}, 20 \mathrm{~Hz}, 50 \mathrm{~Hz}\), 200 Hz and 5 kHz and upper frequencies of \(20 \mathrm{kHz}, 50 \mathrm{kHz}, 100 \mathrm{kHz}, 200 \mathrm{kHz}, 500 \mathrm{kHz}\), \(1 \mathrm{MHz}, 2 \mathrm{MHz}\) and 5 MHz . Size is \(4 \frac{1}{2} \times\) \(6 \frac{1}{2} \times \frac{71}{8} \mathrm{in}\) and weight approximately \(70 z\). Single unit prices range from \(£ 87\) to \(£ 285\) (excluding duty and v.a.t.), lower prices in quantity. Lyons Instruments Ltd, Hoddesdon, Herts.
WW313 for further details

\section*{Three-pen recorder}

The Model 303 "Dial-a-Span" three-pen recorder by Chessell Ltd is designed to provide good flexibility. The ranging facility is controlled by front panel thumbwheel selectors to give 450 spans per channel from 1 mV to 99 V plus 1999 datum shift settings permitting at least 10 times span suppression or elevation on all ranges, with a constant input impedance of \(10 \mathrm{M}:\)

The calibrated datum shift facility
allows 1 metre chart width resolution on a 100 mm chart. Other features include high speed pen servos and 10 speed electronic chart drive. The Model 303 recorder is available in two forms: a free-standing model with integral carrying handle/tilt stand and a 19 in rack mounting version. Chessell Ltd, Broadwater Trading Estate, Southdownview Road, Worthing, Sussex BN 14 8NL.
WW 311 for further details


\section*{Low-cost TV system}

Pye Business Communications has introduced a low-cost television system the Philips" "Mini-Studio". Designed for educational and industrial training purposes, the equipment, constituting a basic studio, costs \(£ 1,450\). The system includes two cameras with various lenses (zoom, standard microscopy), tripods, camera fixings, headsets, telecine,
mounting rack with three 10 cm monitors and control unit, microphone and audio mixer with all necessary cables, stands and connections. The TV equipment can be used with either a video tape recorder (from £150) or video cassette recorder with professional facilities (from £750). Pye Business Communications Ltd, Cromwell Road, Cambridge. WW 310 for further details


\section*{D.I.P. heat pipes}

Small flat pipes for cooling flat packs and d.i.p. devices are the latest designs from Jermyn Manufacturing. Each pipe is \(0 . l\) in thick and 0.25 in wide and will easily fit under d.i.p. packs. The flat surface of a d.i.p. heat pipe makes it easy to add or remove heat and due to the isothermal characteristics of heat pipes all devices will be maintained at the same temperature.

The di.i.p. heat pipes can be fabricated in matrix configurations with the heat
pipe tails terminating in a cold wall and on a \(4 \times 7\) in matrix up to 80 d.i.p. packs can be maintained within \(1^{\circ} \mathrm{C}\) of each other.

The normal temperature of operation is \(20^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) and a 6 in long d.i.p. heat pipe will handle 18 watts at \(100^{\circ} \mathrm{C}\) and with a weight of only 10 g these components are suitable for airborne applications. Jermyn Manufacturing, Sevenoaks, Kent. WW 312 for further details

\section*{Modular bench supply}

Gardners Transformers have introduced a power supply system for industrial and educational laboratory applications where either a.c. or d.c. may be required at power levels up to several hundred watts. The complete power supply system comprises a basic a.c. module, ACO , and four d.c. modules. The a.c. modules provide a continuously variable a.c. output, fully isolated, with coarse and fine controls, together with meter monitoring. There are three output ranges: up to 70 V at 12 A ; up to 140 V at 6 A ; and up to 280 V at 3 A .
The incorporated isolation transformer ensures that the user and valuable test equipment are protected against the risks associated with testing circuits connected
to mains earth. This feature, coupled with the usual flexibility of the system as a whole, should be valuable where students or inexperienced personnel are involved.

Three of the d.c. modules are rectifiercapacitor units matching the three output ranges of the a.c. module. The fourth d.c. module, which can be used in conjunction with any of the other d.c. modules, is a filter and protection unit offering very low output ripple levels in addition to full short-circuit and overvoltage protection. The complete system is housed in two instrument cases which may be used on the bench or mounted in standard 19in racks. Gardners Transformers Ltd, Christchurch, Hants. WW 309 for further details


\section*{Time delay modules}

The time delay modules TM and TD by Keyswitch can be supplied for a.c. or d.c. applications where timed delay periods of 2.5 to 300 s are required. The units are

"non-blip", and the delay period is set by potentiometer adjustment. This potentiometer can be included on the discrete unit, or wired from a remote situation. At the end of the set delay period (which is initiated by connection of the supply) the timer will deliver an output.

The TM timer incorporates a Keyswitch MS relay with changeover contacts rated at 2 A . The TD version is designed for use with an external relay, and at the end of the timed interval the TD timer output is supplied via an integral s.c.r. circuit. The solid state switch rating is \(300 \mathrm{~V}, 10-800 \mathrm{~mA}\).

Both timers have 120 ms reset time, and are supplied in polypropylene casings 1.3 in \((33 \mathrm{~mm})\) wide \(\times 1.2\) in \((33 \mathrm{~mm})\) deep, overall height above socket 2.025 in ( 51 mm ). Gothic Electronic Components, Beacon House, Hampton Street, Birmingham 19.

\section*{WW 315 for further details}

\section*{Ceramic filters}
10.7 MHz centre frequency ceramic filters, type CFS 107M, are offered by Toko (UK) Ltd. The five ranges available have centre frequencies between 10.64 and 10.76 MHz , each with an accuracy of \(\pm 300 \mathrm{kHz}\) at 3 dB and \(\pm 600 \mathrm{kHz}\) at 20 dB . Insertion loss is not more than 6 dB , and impedance \(330 \Omega \pm 15 \%\).


The performance parameters are closely specified, and include a centre frequency shift within \(\pm 150\) p.p.m. per \({ }^{\circ} \mathrm{C}\) in the temperature range -10 to \(+60^{\circ} \mathrm{C}\).

Delivery times are short and prices competitive for these type CFS 107 M ceramic filters claim the suppliers, Toko (UK) Ltd, Shirley Lodge, 470 London Road, Slough, Bucks SL3 8QY.
WW301 for further details

Each section under the title of Solid State, is devoted to the new semiconductor products offered by one manufacturer or distributor. The type number and device title is given in bold type, followed by a brief description of features or application. The section is terminated with the address of the company together with reader reply card numbers associated with the device numbers or types.

\section*{Announced from Guest International} Ltd:
SH730. Sample and hold amplifier manufactured by Hybrid Systems Corporation. This is characterized by a linearity of \(0.01 \%\) and the capability of acquiring a \(\pm 10 \mathrm{~V}\) to this accuracy in less than \(1 \mu \mathrm{~s}\). The mode control is t.t.1./d.t.t. compatible and the droop rate of \(5 \mathrm{mV} / \mathrm{ms}\) can be improved by the addition of an external capacitor which, however, lengthens the acquisition time.

4403 and 4440 Red-Lit high brightness l.e.ds are Gallium Arsenide devices having a luminous intensity of 1.2 mcd at 20 mA and a power dissipation of 200 mW . The 4440 is a lower cost version with a luminous intensity of 0.8 mcd at 20 mA . Both can be soldered directly to a p.c.b. or mounted in a panel with a snap-in mounting clip.

DAC 328-4-BCD 4 decade b.c.d. current output digital-to-analogue converter, packaged in a \(2 \times 2 \times 0.4\) in module. It is t.t.1./d.t.l. compatible and operates from a standard \(\pm 15 \mathrm{~V}\) power supply.

Industrial Electronic Components Division, Guest International Ltd, Redlands, Coulsdon, Surrey CR3 2HT.
WW 350 sample /hold amplifier
WW 351 high brightness l.e.ds
WW352 4 decade b.c.d.

\section*{Announced from Mullard:}

TAA320A voltage level detector is an i.c. for use in flame control systems, radiation detectors, timers, thermostats and liquid level detectors. It is a development of the audio amplifier TAA320. Operating with an input current of only 1 pA , it will produce an output of 60 mA at 20 V when a predetermined input threshold voltage is exceeded.

SAJI10 frequency divider i.c. is suitable for electronic organ applications and will produce seven different notes. Thus, twelve i.cs with oscillators to generate the fundamentals will provide all the notes required in an electronic organ. Combining outputs via resistor networks produces an increased range of harmonics and facilitates the synthesis of a wider number of tones.

TCA420 i.f. amplifier for use with f.m. receivers, contains a four-stage i.f. amplifier/limiter and a symmetrical quadrature detector providing a high degree of a.m. rejection. It will also supply an output for a tuning meter, and an automatic stereo inhibit switch when the signal drops below a predetermined value. The switch hysteresis can be adjusted to prevent its continual operation by small signal changes. Inter-station muting is provided and to assist tuning the TCA420A also has "side response" damping.

Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW353 voltage level detector
WW354 frequency divider
WW355 i.f. amplifier

Announced from Burr-Brown International Ltd:
SHC23 hybrid sample /hold amplifier has a guaranteed dynamic non-linearity of less than \(\pm 0.01 \%\). The addition of an external capacitor enables optimization of acquisition time and hold time. The device is packaged in a TO-8 can and is available with an operating temperature range of \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).

3506J and 3508J high-gain wideband operational amplifiers. The model 3506J has a small signal bandwidth of 12 MHz and a slew rate of \(7 \mathrm{~V} / \mu \mathrm{s}\) and is internally compensated for stability at all gains, including the unity gain voltage follower configuration. Model 3508J has a gainbandwidth product of 100 MHz , a slew rate of \(35 \mathrm{~V} / \mu \mathrm{s}\) and is internally compensated for all gains greater than five. Both units have an open loop gain of 103 dB into \(2 \mathrm{k} \Omega\), a common mode rejection of 100 dB , bias current of 25 nA and a differential input impedance of \(300 \mathrm{M} \Omega\).

3507J high-slew operational amplifier has a slew rate of \(120 \mathrm{~V} / \mu \mathrm{s}\), a settling time to \(0.1 \%\) of 200 ns and a gainbandwidth product of 20 MHz . For gains greater than 3 the roll-off is 6 dB /octave and by adding a single external 20 pF capacitor the 3507J can be stabilized at unity gain.

3505J fast settling operational amplifier will settle to \(0.1 \%\) in 300 ns , gives a slew rate \(30 \mathrm{~V} / \mu \mathrm{s}\) and a gain-bandwidth product of 12 MHz . The amplifier is stable at all gains down to unity. without the need for external compensation.

4310 true r.m.s.to-d.c. converter uses the thermal conversion technique. The heart of the device is a pair of monolithic chips, each containing a resistor-transistor element. The function of the converter is first input voltage to heat, followed by conversion of the heat into a current change and finally from the current change to a d.c. voltage equivalent to the true r.m.s. value of the input voltage. Two versions are available, the 4130 K characterized by midrange accuracies of \(0.05 \%\) and non-linearity of 0.4 mV , and the 4130 J providing an accuracy of \(0.1 \%\) and non-linearity of 1.0 mV . Minimum bandwidth of both units is 40 Hz to 100 kHz and a 10 MHz minimum upper frequency limit for \(2 \%\) accuracy. Crest factors from 5:1 up to 100:1 maximum and the ability to accept from 100 mV r.m.s. to 2 V r.m.s. with peaks up to \(\pm 10 \mathrm{~V}\) are also typical. Fully protected from over-voltage, the 4130 also features an input impedance of \(10 \mathrm{k} \Omega\), a settling time of 4 s or less, external adjustments for gain, offset voltage and l.f. cut-off.

UAF11/15 series and UAF21/25 series hybrid active filters. Both of these are produced in di.i. packages and can be externally tuned for gain, frequency and \(Q\) over their specified ranges by adding four resistors. The basic filter utilizes the state variable principle in which low-pass, bandpass and high-pass responses are simultaneously available as outputs from a single 2-pole filter element. Complex responses can be realized for almost any filter function by cascading units. Full power bandwidth for the UAF11/15 series low pass output is 10 kHz for \(\pm 10 \mathrm{~V}\) signal ranges and is useable at frequencies up to 100 kHz for \(\pm 1 \mathrm{~V}\) signal ranges. The UAF21/25 series have a full power bandwidth of 100 kHz at the low-pass output for \(\pm 10 \mathrm{~V}\) signal ranges and is useable up to 1 MHz for \(\pm 1 \mathrm{~V}\) signal ranges.

Burr-Brown International Ltd, 25A King Street, Watford WDI 8BT.

WW356 hybrid sample/hold amplifier WW357 wideband operational amplifiers WW358 high-slew operational amplifier WW359 fast settling operational amplifier WW360 true r.m.s.-to-d.c. converter WW361 hybrid active filters

\title{
Real and Imaginary
}
by "Vector"

\title{
Odd Ode \\ (with apologies to Cyril Fletcher et al)
}

This is the tale of Phil A Ment
Whose pa, a scientific gent, Subjected himself religiously
To r.f. in large quantity
"For", quoth he, "This dosage will
Prove as effective as the Pill."
- Alas for Family Planning, when His spouse conceived a sudden yen - Quite devoid of rhyme or reason

For strawberries right out of season
Which forced papa in chagrined terror To admit experimental error
With his "Letter to Nature" finishing in
A convenient waste-paper bin.
But the r.f. currents by some means
Had gingered the paternal genes
For baby Phil 'twas plain to see
Was born an infant prodigy
At six months old the little tot
Instead of lying in his cot
And practising his coo and drool
Was learning Fleming's Left-hand Rule
And by the tender age of three
Had mastered trigonometry,
Sine waves and alternating forces
And eddy currents and their losses
Capping this tour de force sans fuss
With differential calculus -
By five he'd found a grievous flaw In Einstein's monumental Law.
His school career through "prep" and "high"
And likewise university
Was lustrous with "distincts" and "hons"
(He frequently advised the dons.)
Thus at the age of twenty he
Acquired a king-sized Ph.D.
Young Phil, his banner thus unfurled
Emerged into the outside world
Turning his back on cloisters he Elected to join our industry
And soon the rash youth deftly nabs
A job at the Gargantuan Labs.
His team-mate here was Humphrey Naild
A redbrick Bachelor of Science (failed)
Who thought that Ohm was where the 'eart is
And only shone at office parties.
Phil, being an ambitious lad And anxious to acquire a wad Of doubloons, burnt the midnight tapers And churned out reams of Learned Papers

Which brought him references in flocks
But nothing else, for Learned Socs.
Adopt the parsimonious stance
That honour is adequate advance -
A commodity which honest toilers
Find incombustible in boilers
Or for settling bills or monies due
To H.M. Inland Revenue.
His colleague Humphrey, sad to say,
Did nothing to enhance his pay
Or prestige, filling in his tome
With noughts-and-crosses, ribald rhyme,
Electronic timing for his Mini
Or amplifiers for home cine, With evenings spent in loosening hip-joints
In Soho's less salubrious clip joints. But Phil, who scorned such carnal larks As making love to birds in parks, Reorientated his intention
And sought his fortune by invention.
He patented in quick succession Brain-children in a long procession Including a unique device
For electronically catching mice.
His grateful Company, while pocketing
Royalties which sent the shares a-rocketing,
Displayed their human circumspection By raising Phil to Chief of Section And - mark the carrot, gentle reader Hinted a future as Group Leader; A circumstance which came to pass Helped by a calculating lass
Named Alpha Kerve, a lab assistant With ash-blonde hair and aim persistent Towards a matrimonial life
As a Lab. Manager's gracious wife A laudable ambition quite
For which she laboured day and night.
But colleague Humphrey stayed immune From Cupid's dart and, like a loon, Withdrew his hem from toil and strife In his laboratory life -
Conduct which labelled him "also ran" With his employers, Gargantuan, Who showed their grievous discontent By freezing Humph's emolument. Thus, on the ladder's lowest rung Humphrey precariously hung While Phil continued still to thrive The busiest bee in all the hive (not a foot wrong and ne'er a cropper A perfect ant to Humph's grasshopper

In you'll forgive this rhymster for The mixing of a metaphor.) And so the youthful years flew by With Phil advancing annually While Humphrey, wallowing in sloth, Sowed oats sufficient for them both An object-lesson and reminder
To keep our hooters to the grinder If in life's rat-race we'd succeed And thus aspire the field to lead.

\section*{EPILOGUE}

A figure in moth-eaten rags
Squats miserably upon the flags Outside the tube at Baron's Court "WIFE AND TV TO SUPPORT" Proclaims the placard on his chest And, touched by this oblique request, The passer-by donates his mite Despite the cost of living's bite; Pfennig and centimes tinkle in The thoughtfully provided tin. But stay! A sleek Rolls-Royce approaches And o'er the double line encroaches While from the car steps a retainer Depositing tuppence in the container And then his Christian duty done, Lord Humphrey Naild is driven on While Phil the coinage quickly clutches And gratefully his forelock touches. . . .

Patience, reader, I'll explain
'Til truth's as clear as windowpane Our Phil's inventive wells ran dry And brought him to redundancy, While Humphrey, tired of bread and water Craftily wed the Chairman's daughter Becoming, through this master-plan, The whizz-kid of Gargantuan.

\section*{MORAL:}

There isn't one.

\title{
mavis
}

ELECTRONIC CROSS-OVER


The Mavis 3 way electronic cross-over is intended for use primarily with music and speech amplifying systems. It enables the bass range, mid-range and treble range to be separately controlled. The cross-over frequency for each range can be specified if required but will be, in the standard unit, as follows:
Bass roll-off 45 c.p.s.
Bass to mid-crossing point 800 c.p.s.
Mid to treble crossing point 5000 c.p.s.
The unit's output is balanced 600 ohm Line for each chanmel capable of driving six 600 ohm balance sources. The input to the cross-over is also 600 ohm balance.

GENERAL SPECIFICATION

Size
Weight
Input
Output
Power Requirements
Optional extra
PRICE - £500
\(19^{\prime \prime} \times 12^{\prime \prime}\) deep \(\times 7^{\prime \prime}\) high (standard \(19^{\prime \prime}\) racking)
35lb.
0 dbm 600 ohm balance
+10 dbm 600 ohm balance
\(110 / 230\) volts \(50 / 60\) c.p.s. at 80 watts
approx.
Sub plate

WW-111 FOR FURTHER DETAILS

\section*{INTRODUCING THE P.A.S. 30/30}

PORTABLE MIXER


This mixer has been designed for mobile use in conjunction with high quality audio systems. It has basically 15 fully equalized input channels, plus 2 high level auxiliary input channels. The mixer can be used in two configurations, either 4 track full range output or 2 track output split into 3 channels each track, each channel controlled by an electronic cross-over. The remaining 2 tracks can be used either as full range tracks or re-mixed into tracks \(1 \& 2\) as sub-mixers The mixer also has 2 fully equalized independent monitor outputs and drive facilities pendent monitor outputs and drive facilities
for an external echo system. There is also an for an external echo system. There is also an
output for use with headphones to listen through for cueing each channel.

GENERALSPECIFICATION
Weight
Power Consumption
Input Impedince
Input level 75 modul Input level 75 modules Output level
Cue output leve
Equalisation range

Overall noise
Channel separation
\(38^{\prime \prime} \times 27^{\prime \prime} \times 12^{\prime \prime}\)
1901 b approximately 80 watts approximately
000 hm
600 ohm balanced -60 dbm
-0 dbm
\(-0 \mathrm{dbm}\)
+10 dbm all channels
- 300 milliwatts
\(\pm 14 \mathrm{db}\) treble
\(\pm 20 \mathrm{db}\) mid
\(\pm 14 \mathrm{db}\) bass
\(\pm 20 \mathrm{db}\) bass peak
better than - 60 db below full output
better than - 80 dbm

PRICE - E6,000 including freight case

WW—112 FOR FURTHER DETALS


\section*{P.A.S. 30/30}

This 30 Channel Desk is a development of the Mavis Four Group 15 Channel Mixer to meet the growing demands of modern P.A. and Studio work:' It is designed such that every channel may be operated with total flexibility in a four channel quadraphonic setup. and for purposes of live recording it is unique in the fact that a multi-track tape machine of up to 30 tracks may be directly coupled to the channels and a 4 track Tape Machine to the mains groups. The Mixer can then at a later stage be used for mixing down to a stereo or
quadmaster using the main group outputs. quadmaster using the main group outputs.
As a compromise between a P.A. Mixer and a conventional Studio
Desk, it differs from the latter in the fact that apart from the usual Desk, it differs from the latter in the fact that apart from the usual four main groups are employed when the desk is used in total; the line drives for recording are derived directly from each channel, and are fully equipped for patching in auxiliary equipment, and may be switched before or after the channels' "EQ" section.
The desk is built in three sections. Two wings (which may be used independently in stereo for P.A.) are equipped with fifteen channels each and a complete output arrangement including four groups and a stereo cross-over. The third section - the routing for the two wings and awn into four or two track. This is dit with quad control and mix down into four or two track. This is dealt with in Section B of the In-
struction Manual. Using an extra stereo cross-over each wing can drive a quadraphonic P.A. system.

\section*{GENERALSPECIFICATION}

The \(30 / 30\) Mixer is divided into four parts. A Centre Dask containOscillator and Master Quad and Par Oscillator and Master Quad and Pan facilities with 4 Master Faders,
There also can be built-1n remote control facilities for Dolby's Machine Control and Auto Tape Lecators. The Cacilties for Dobys Machine puts. 4 machine inputs. two foldback outputs and 4 monitor outputs also group break "in and out" facilities. There are also sockets to connect this desk to the two wings and a plug for the power supply. Two input wings which are mirror images. and contain 15 input

\section*{11a SHARPLESHALL ST., LONDON, N.W. 1}

Tel. 01-7227161/2/3/4
Telex: London 27655
modules, which have input trim and equalisation, also facilities which enable the module to supply a line level drive for a tape machine with n\% without equalisation also 4 group outputs which may be combined by switches to be used as quadraphonic output or a pan output.
There are facilities for 2 monitor or effects outputs and one echo output. The module has a switch which controls the output to group. off or cue.
There is also a switch which enables a break socket on the rear panel for effects drive and inDuts to be switched in and out
The fourth unit is the power supply which powers the Centre Desk and two wings and provides a 48 volts Phantom Microphone supply to the thinty microphone inputs.

Weioht Wina \(\quad 120 \mathrm{Kg}\) approx.
Centre 100 Kg approx
Power Consumption
Inout Impedance
Output Impedance
Maximum Input Sensitivit
Maximum Input Sensi
Microphone Input
Machine Input
Nominal Output Cue Output
Monitor Output Foldback Output Echo Output

100 Kg approx
500 watts
500 watts.
600 or 1200 ohms. Balanced
600 ohms. Balanced
\(-60 \mathrm{dbm}\)
0 dbm
+10 dbm PA
O dbm Machine
300 milliwatts
\(+10 \mathrm{dbm}\)
+10 dbm
+10 dbm

\section*{Sinclair Project 60}

\section*{New performance standards} ...new safety margins

Such are the results of using a PZ8 Mk. 3 to drive two 2.50 Mk .2 power amplifiers. Developed from the original Z.50, the MK. 2 has improved thermal stability. better regulated D.C. limiting to ensure more symmetrical output voltage swing with still less distortion at lower outputs and automatic transient overload protection. The PZ. 8 Mk .3 is the most advanced power supply unit ever to be made at a reasonable price. It cannot be damaged by direct power supply unit ever through overloading. because of an ingenous re-entrant current limiting principle used usually only in expensive laboratory equipment. Because output voltage is variable, the PZ8 Mk. 3 makes a worthwhile alternative where PZ.5 and PZ. 6 are vorage is variable, project 60 applications, particulariy since this most powerful of all Sinclair supply units can be operated from a smaller mains transformer. Together, the Sinclair supply units can be m. 20 Mk PZ8 Mk. 3 provide new standards of performance and reliability and these modules are compatible with earlier types in the Project 60 range.
Z.50 Mk. 2 SPECIFICATIONS

Input impedance \(100 \mathrm{~K} \Omega\)
Input (for 30 w into \(8 \Omega\) ) 400 mV
Signal to noise ratio, referred to fult \(0 / \mathrm{p}\) at 30 vHT 80 dB or better Distortion \(0.02 \%\) up to 20 W at \(8 \Omega\) See published curve
Frequency response 10 Hz to more than \(200 \mathrm{KHz} \pm 1 \mathrm{~dB}\)
Max. supply voltage 45 V ( \(4 \Omega\) to \(8 \Omega\)
speakers) ( \(50 \mathrm{v} 15 \Omega\) speakers only)

Min. supply voltage \(9 v\) Load impedance - minimum: \(4 \Omega\) at \(45 v\) HT
Load impedance - maximum: safe on open circuit

\section*{\(\mathbf{6} 5.48+\) V.A.T}

PZ. 8 MK. 3 SPECIFICATIONS Nominal working output 45 V . Adjustable between \(20 \& 50 \mathrm{~V}\).
\(£ 7.98{ }_{79 \mathrm{p}}^{\mathrm{VAT}}\)
Mains Transformer \(£ 5.98+\) VA.T.59p


\section*{Other power supplies}

In addition to the remarkable Sinclair PZ.8 Mk.III as described. there are two other power units available, which should be chosen according to their types in order to buy to best advantage. All are for operation from A.C. mains 240 V .
PZ. 530 volt, unstabilised
PZ. 635 volt, stabilised (Not suitabie for Super
IC.12).
\(£ 7.98\)
+ V.A.T. \(79 p\)

\section*{Guarantee}

If, within 3 monthes of purchasing any product direct from Sinclair Radionics Ltd., vou are dissatisfied with it, your money will be refunded at once. Many Sinclair appointed Stockists also offer this same guarantee in co-operation with Sinclair Radionics Lid
Each Project 60 module is lested before leaving our factory and guaranteed to work perfectly. Should any defect arise in to you. A small charge may be made in those cases where damage arises through miss-use. No charge is made for postage by surface mail. Air Mall charged at cost.

\section*{Typical Project 60 applications}
\begin{tabular}{|c|c|c|c|}
\hline System & The Units to use & together with & Units cost \\
\hline Simple battery record player & 2.50 & Crystal P.U., 12 V battery volume control, etc. & \[
\begin{aligned}
& £ 5.48 \\
& + \text { V.A.T. } 54 \text { p }
\end{aligned}
\] \\
\hline Mains powered record player & Z.50, PZ. 5 & Crystal or ceramic P.U. volume control, etc. & \[
\begin{array}{r}
\text { £10.46 } \\
+\quad \text { V.A.T. £1.04 }
\end{array}
\] \\
\hline 12 W. RMS continuous sine wave stereo amp. for average needs & \[
\begin{aligned}
& 2 \times 2.50 . \text { Stereo } \\
& 60 ; \text { PZ.5 }
\end{aligned}
\] & Crystal, ceramic or mag. P.U., F.M. Tuner, etc. & \[
\begin{aligned}
& £ 25.92 \\
& +V . A T . \\
& £ 2.59
\end{aligned}
\] \\
\hline 25 W . RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers & \[
\begin{aligned}
& 2 \times \text { Z.50. Stereo } \\
& 60 ; \text { PZ. } 6
\end{aligned}
\] & High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc. & \[
\begin{aligned}
& \text { £28.92 } \\
& \text { £ VA. } .89
\end{aligned}
\] \\
\hline 80W. (3 0hms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms) & \begin{tabular}{l}
\(2 \times \mathrm{Z} .50 \mathrm{Mk} .2\). \\
Stereo 60 ; PZ. 8 \\
Mk. 3 transformer
\end{tabular} & As above & \[
\begin{aligned}
& \text { £34.90 } \\
& + \text { V.A.T. }
\end{aligned}
\] \\
\hline Indoor P.A. & Z.50 Mk.2. PZ. 8 Mk. 3 transformer & Mic., guitar, speakers, etc., controls & \[
\begin{aligned}
& £ 19.44 \\
& +\quad V \text { A.T.£1.94 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
A.F.U. (f.5.98 + V.A.T. 59 p) may be added as required.
}

\section*{the world's most advanced high fidelity modules}

\section*{Q. 16 high fidelity loudspeaker}

The 016 employs original and by now well proven acoustic principles in which a special driver assembly is meticulously matched to a uniquely designed cabinet. In performance it comfortably stands comparison with very much more expensive loudspeakers. A, solid teak surround is used with a special all-over cellular black foam front chosen boin for its appearance and ability to pass all audio frequencies without masking.
Specifications
Construction: A sealed seamless sound or pressure chamber is used with in ternal baffle, and special high fux driver
Loading: Up to 14 watts RMS, into 80 hms
Frequency response: From 60 to \(16,000 \mathrm{~Hz}\)
Size and styling: 248 mm square \(\times 120 \mathrm{~mm}\) deep
( \(9 \frac{3}{4}\) " \(\times 4 \frac{3}{4}\) ") with neat pedestal base



\section*{Project 605}

\author{
\section*{the} simple \\ way to build a Project 60 system without soldering
}

For the many audio enthusiasts anxious to build to high standards without too many involvements, there could be nothing better or simpler than Project 605 it offers the advantages of Project 60 and is absolutely complete down to the last plece of wire cut to length. Whilst not as powerful as assemblies using Z.50 power amplifiers, we know from experience that there are many for whom the specifications of Project 605 are ideal, particularly in relation to the environment in which it is required to be used. In Project 605 you have everything necessary 10 build a versatile Project 60 thirty watt high fidelity amplifier system suitable for all domestic requirements. The conventent pack includes two Z. 30 power amplifiers, a Stereo 60 pre-amp control unit and the special Masterlink unit to and from which all input and output connections are made. For power a PZ. 5 is provided. Building is parıcularly easy since all necessary leads are supplied colour coded, cut to length and terminated by contact clips which connect firmly to the modules. There is absoiltely no soldering to be done. Complete with comprehensive, easy to follow instructions manual

\section*{£29.95}
V.A.T. £2. 99

Send coupon for leaflet
Please send leaflet and name and address of my nearest Sinclair stockist

Name

Address

SINCLAIR RADIONICS LTD., LONDON ROAD. ST. IVES. HUNTINGDON PE17 4HJ


\section*{Lanys U.K's LaRGEST RANGE OF BRANDED AND GUARANTEED DEV/CES. (Quantity Discounts 10\% \(12+\), 15\% 25 + , 20\% \(100+\) ) (Any one type except where quantify discounts show) Min. Order \(£ 1.00\) please. Post 10 p.}


\title{
Lenrys U.K's LaRgest range of electronic components AND EQUIPMENT AT BARGAIN PRICES \\ Latest Catalogue price 55p post paid. Complete with Discount Vouchers
}


404-406 Electronic Components and Equipment 01-4028381* -354-356 High Fidelity and Tape Equipment 01-402 5854/4736 309 PA-Disco-Lighting High Power Sound 01-723 6963 303 Special offers and bargains store


\section*{SEMICONDUCTORS}
\begin{tabular}{|c|c|c|c|}
\hline 2N699 & 0.25 & BC184L & 0.11 \\
\hline 2N1613 & 0.20 & BC212L & 0.12 \\
\hline N1711 & 0.25 & BC214L & 0.14 \\
\hline N2926G & 0.10 & BCY72 & 0.13 \\
\hline 2N3053 & 0.15 & BF257 & 0. \\
\hline 2N3055 & 0.45 & BF259 & 0.47 \\
\hline 2N3442 & 1.20 & BFR39 & 0.25 \\
\hline 2N3702 & 0.11 & BFR79 & 0.25 \\
\hline N3703 & 0.10 & BFY50 & 0.2 \\
\hline 2N3704 & 0.10 & BFY51 & 0.20 \\
\hline 2N3705 & 0.10 & BFY52 & 0.20 \\
\hline 2N3706 & 0.09 & M3481 & 1.20
1.30 \\
\hline 2N3707 & 0.10 & MJE521 & 0.60 \\
\hline 2N3708 & 0.07 & MPSA05 & 0.3 \\
\hline 2N3709 & 0.09 & MPSAI 2 & 0.5 \\
\hline 2N3710 & 0.09 & MPSA14 & 0.35 \\
\hline 2N3711 & 0.09 & MPSA5 & 0.35 \\
\hline 2N3819 & 0.23 & MPSA65 & \\
\hline 2N3904 & 0.17 & MPSUOS & 0.60 \\
\hline 2N3906 & 0.20 & MPSU55 & 0.70 \\
\hline 2N4058 & 0.12 & SN72741P & \\
\hline 2N4062 & 0.11 & SN72748 & 0.58 \\
\hline 2N4302 & 0.60 & THBI & +10 \\
\hline 2N5087 & 0.42 & TIP30A & 0.60 \\
\hline 2N5210 & 0.54 & TIP31A & 0.60 \\
\hline 2N5457 & 0.30 & TIP32A & 0.70 \\
\hline 2N5830 & 0.30 & TIP33A & 1.00 \\
\hline 40361 & 0.40 & TIP34A & 1.50 \\
\hline 40362 & 0.45 & TTP4.a & 0.74
0.90 \\
\hline BC107 & 0.08 & TIP3055 & 0.60 \\
\hline BC108 & 0.08 & 1808720 & 0.50 \\
\hline BC109 & 0.08 & IB40K2 & - \\
\hline BC125 & 0.15 & IN914 & 0.07 \\
\hline BCl26 & 0.15 & \({ }_{1544}\) & 0.07 \\
\hline BC182K & 0.10 & 15920 & 0.10 \\
\hline BC212K & 0.12 & 153062 & 0.25 \\
\hline BC182L & 0.10 & 5805 & 1.20 \\
\hline
\end{tabular}

\title{
HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD
}

\author{
Published Nov. 1972 to Feb. 1973
}

DESIGNER APPROVED KIT


SLIMLINE STYLE CHASSIS DIMENSIONS: \(17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}\) This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

\section*{FREE TEAK CASE}

WITH 75 WATT PER CHANNEL COMPLETE AMPLIFIER KITS

Total cost of individually purchased packs:
£63.95
Cost of complete kit: £56.60
TRADE ENQUIRIES WELCOME
P.S. Full circuit description in handbook

30p

\section*{FOR FURTHER DETAILS PLEASE WRITE TO:}
75 WATTS PER CHANNEL
BANDWIDTH (3dB) \(3 \mathrm{HZ}-40 \mathrm{KHZ}\) DISTORTION LESS THAN 0.0I \%UNCONDITIONAL STABILITYCOMPONENT PACKS
Pack
I Fibre glass printed circuit board for power amp ..... \(£ 0.75\)
2 Set of resistors, capacitors, pre-sets for power amp. ..... \(£ 1.50\)
3 Set of semi-conductors for power amp. (highest voltage version) ..... \(£ 5.50\)
4 Pair of 2 drilled, finned heat sinks ..... 10.80
5 Fibre glass printed circuit board for pre-amp. ..... 61.10
6 Set of low noise resistors, capacitors, pre-sets for pre-amp ..... \(\varepsilon 2.70\)
7 Set of low noise, high gain semi-conductors for pre-amp ..... £2.10
8 Set of potentiometers (including mains switch) ..... € 1.55
9 Set of 4 push button switches, rotary mode switch ..... 63.10
10 Toroidal transformer complete with magnetic screen/housing primary: 0-117-234 V. secondaries: 33-0-33 V.24-0-24 V., electrostatic screen\(£ 9.15\)
II Fibre glass printed circuit board for power supply ..... 60.55
12 Set of resistors, capacitors, secondary fuses, semi conductors for power supply ..... \(€ 3.50\)
13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, contro knobs ..... £3.25
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc. ..... C6.30
15 Handbook, based on Hi-Fi News articles ..... 60.30
16 Teak cabinet ..... c7.352 each of packs I-7 inclusive are required for completestereo system. \\ PORTWAY INDUSTRIAL ESTATE, ANDOVER : HANTS \\ MAIL ORDER ONLY POST FREE TO U.K. OVERSEAS AT COST \\ U.K. Orders Subject to 10\% V.A.T. Surcharge \\ \title{
\section*{POWERTRAN ELECTRONICS}
} \\ \title{
\section*{POWERTRAN ELECTRONICS}
}

\section*{Basic Component Set}

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply. \(\pm 31.35\)

Handbook Included


MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 micro volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms \(100 \mathrm{mV}-1\) volt - 52.5 ohms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. Externa
Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\) Consumption approx. 40 watts. Measurements \(29 \times 121 \times 10 \mathrm{in}\). Secondhand condition. \(£ 27 \cdot 50\) each, Carr. \(£ 1 \cdot 50\).
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, w. Fircuit.CW, MCW and R/T. Frequency: 15 to \(20 \mathrm{Mc} / \mathrm{s}\). Modulation: \(100 \%\) \(0 /\) put impedance: 50 ohms. Audio input: 600 ohms . Valves : Power Amplifier \(2 \times 813\) and Modulator \(2 \times 813\). Power requirements \(200-250\) volts a.c. 50 cycles. Power out put 300 watts. Dimensions 2 ft . 6 in . W. \(\times 2 \mathrm{ft}\). D. \(\times\) 5 ft . H. Weight : 800 lbs . Excellent condition, price \(£ 225.00\) each.
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency \(225-400 \mathrm{mc}\). 1750 channels 100 Kc apart with 18 preset channels Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max. output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c chone. Price \(£ 250.00\) each secondhand, excellent condition phone. Price \(£ 250.00\) each secondhand, excellent condition.
nput. 24 v d.c. output @ 41 amps fully smoothed. \(£ 45.00\) each 250 volts a.c
FREQUENCY METER BC-221: \(125-20,000 \mathrm{Kc} / \mathrm{s}\), complete with original calibration charts. Checked out, working order. \(£ 18 \cdot 50+£ 1.00\) carr. BC-221 E2-00 carr.

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or \(250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}\); or \(180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}\). A small compact tropicalised Enstrument designed to meet requirements of radar and communication engineers and general electronic service. Measures \(9 \mathrm{in}, \times 8 \mathrm{in}\). \(\times 6 \frac{\mathrm{hin}}{} \mathrm{in}\). Time base \(10 \mathrm{c} / \mathrm{s}-\) amplifier up to 38 dB gain. Bandwidth up to \(1 \mathrm{Mc} / \mathrm{s}\). Single sweer facilities.


TUNING UNIT: 24V geared motor driving double 25pf double spaced variable Capacitor. One m/c relay and 2 other relays. \(£ 2 \cdot 50\) each 30 p post, gocid condition. C42, 2C46, 1B40 (complete with associated capacitors and screening) 3 alves counters \(0-999\). Valves 6 AL5 and \(8 \times 6 \mathrm{AK} 5\). \(£ 10.00\) plus 60 p post, good condition.
MODULATOR UNIT: complete with transformer and \(2 \times 807\) valves mounted in 19 in. chassis \(\times 8\) in. high \(\times 8\) in. deep. \(£ 4 \cdot 50\) secondhand cond., or \(£ 6.50\) new cond. Carriage \(£ 1\)
RF UNIT: suitable for use with the above unit. Complete with \(2 \times 3 \mathrm{E} 29\) valves Ideal for conversion to 4 metres. \(£ 5\) secondhand cond., or \(£ 7.50\) new cond.
POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V @ 20 mA output. With 2 smoothing chokes \(9 \mathrm{H}, 2\) Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valyes type 5 Z 3 \(\times 5 \mathrm{~V}\) windings @3 Amps each, and 5V@6 Amp and 4V @ 0.25 Amp . Mounted on steel base \(19^{\prime \prime} \mathrm{Wxl} 1^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}\). (All connections at the rear.) Excellent condition

AUTO TRANSFORMER: \(230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000\) watts, mounted in a strong steel case \(5^{\prime \prime} \times 6 \frac{1}{2 \prime}^{\prime \prime} \times 7^{\prime \prime}\). Bitumen impregnated. \(£ 7\) each, Carr. 75 p . \(230-115 \mathrm{~V}\) \(50-60 \mathrm{c} / \mathrm{s}, 500\) watts. \(7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}\). Mounted in steel ventilated case. \(£ 4.00\) each,
Carr. 75 p .
MODULATOR UNIT: 50 watt, part of BC-640, complete with \(2 \times 811\) valves, microphone and modulator transformers etc. \(£ 7 \mathbf{5 0}\) each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colou green, medium persistence complete with nu-metal screen, APN-1 INDICATOR METER, \(270^{\circ}\) Movement. Ideal for making rev. counter
\&1.25, post 30 p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: \(24 \mathrm{~V}, 200 \mathrm{Amps}\), \(\mathbf{£ 2}\) each, \(\mathbf{3 0} \mathrm{p}\) post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance \(\neq 1 \%\) £ 3 each, 25 p post. 90 ohms per step. 10 positions
total value 900 ohms. 3 Gang. Tolerance \(+1 \%\). 3.50 each TF-1041B
TF-1041B VALVE VOLTMETER: Measures 25 mV to \(300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}\) to 1500 \(\mathrm{Mc} / \mathrm{s}\) a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg . oims. Powe requirements \(200-250\) volts a.c. Secondhand, excellent con. \(£ 35 \cdot 00\). Carr. £. 1.
VARIAC TRANSFORMERS: Input 115 V , output \(0-135 \mathrm{~V}\) at 2 Amps. \&3 each
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high \(\times 21\) in. Wide \(\times 16\) in. deep, with rear door. \(£ 12\) each, \(£ 2.50\) Carr. OR 4 ft . high \(\times 23\) in. wide \(\times 19 \mathrm{in}\). deep, with rear door. \(\mathbf{£ 8} 50\), each, £2 Carr.
INSTRUMENT CABINETS: \(19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 500+£ 1.25 \mathrm{carr}\)
\(19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . £ 2.50+6\).
FUEL. INDICATOR Type 113R: 24V complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in 3in. diameter case. Price £2
each, 30 p post. each, 30p post.
TS-418/URM49 SIGNAL GENERATOR: Covers \(400-1000 \mathrm{MHz}\);ange. CW Pulse or AM emission. Power Range \(0-120 \mathrm{dbm} . £ 125\) each. Carr, £1.50.
ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX.

TN/130/APR. 9 UHF TUNING UNIT: Freq. \(4300-7350 \mathrm{MHz}\). IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible notor. \(227 \cdot 50\) each. Carr. £1.
APR-4 AM RADIO RECEIVER: \(90-1000 \mathrm{MHz}\). This receiver is suitable for monitoring and measuring trequencies as well as relative signal strength. Power Supply \(115 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}\). £ 100 each. Carr. £2.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. 2-400 Mc/s in bands. Internal Mod. 400 or \(1000 \mathrm{c} / \mathrm{s}\) per sec. External Mod. 50 to \(10,000 \mathrm{c} / \mathrm{s}\) o/put Voltage \(0 \cdot 1-100,000\) microvolts -30 for sine wave. Am or Pulse Carrier \(685 \mathrm{each}+£ 1.50 \mathrm{carr}\).
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne requency meter covering \(2-8 \mathrm{MHz}\). Power supply 6 V d.c. Good secondhand cond.
7.50 each. Post 60 p . \({ }_{6} 750\) each. Post 60p
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal ( \(0.005 \%\) ) ccuracy better than \(0.02 \%\). Dial directly calibrated every 1 KHz from 2.5 .5 MHz Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new" complete with Manual and Spares. £14 each. Carr. 75p.
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated \(100-125 \mathrm{~V}\) or 200-250V, 50c/s. "As new" \(£ 10\) each. Carr. 75p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amp 4,800 rpm. Output 115 V a.c. \(13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}\). 1 Ph . P.F.9. \(£ 17 \cdot 50\) each. Carr. \(£ 1 \cdot 50\). POWER SUPPLY: 230V a.c. input; 3000V @ \(2 \cdot 5 \mathrm{~mA}\); 4v@1 Amp, 300-0-300 00mA; 6V @ 7 Amp ; 6V @ 3 Amp . With smoothing capacitors etc. \(\mathbf{£ 1 0 \cdot 0 0}\) each £1-50 carr.

ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. \(£ 3.50\) ea. +40 p post. DALMOTORS: \(24-28 \mathrm{~V}\) d.c. at 45 Amps , 750 watts (approx. 1 hp ) 12,000rpm £5 each, 60p post
MOTOR: 240 V single phase, \(2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}\). approx. Price \(£ 1 \cdot 75\) each, 30p post.

CONDENSERS: 30 mfd 600 V wkg. d.c., \(£ 3.50\) each, post 50 p .10 mfd 1000 V Wkg. 80 p , post 30 p .8 mfd 2500 v £5, carr. 80 p .8 mfd 600 v 45 p , post 15 p .8 mfd \(1_{0}^{\circ} 300 \mathrm{v}\) d.c., \(£ 1 \cdot 25\), post 25 p .4 mfd 3000 v wkg . \(£ 3\), post \(50 \mathrm{p} .4 \mathrm{mfd} 2000 \mathrm{v} £ 2\), post \(40 \mathrm{p} .4 \mathrm{mfd} 600 \mathrm{v}, 2\) for \(£ 1.00\), post 30 p . Capacitor \(0.125 \mathrm{mfd} 27,000 \mathrm{v}\) w.kg \(£ 3.75\), post 50 p .225 mfd 25 Kv wkg. £20, carr. . 3.2 mfd 12.5 Kv wkg. TCC RL
\(7002-97, ~ £ 8 \cdot 50\), carr. \(£ 1.10 \mathrm{mfd} 3 \mathrm{Kv}\) wkg, \(55^{\circ} \mathrm{C}\). TCC oil filled, \(£ 7 \cdot 50\), carr. \(£ 1\). \(7002-97, £ 8 \cdot 50\), carr. \(£ 1.10 \mathrm{mfd} 3 \mathrm{Kv}\) wkg, \(55^{\circ} \mathrm{C}\). TCC oil filled, \(£ 7 \cdot 50\), carr. \(£ 1\).
5 ml 1 mfd 3 Kv wkg. \(55^{\circ} \mathrm{C}\). \(£ 6 \cdot 50\), carr. \(£ 1.12 \mathrm{mfd} 1500 \mathrm{v}\) d.c. wkg. \(£ 3 \cdot 50\), post 50 p. CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ \(2 \mathrm{amps}, ~ £ 2.50\) each, carr. 75 p . OHMITE VARIABLE RESISTOR: 5 ohms, \(5 \frac{1}{2} \mathrm{amps}\); or 40 ohms at 2.6 amps 500 ohms, 0.55 amps . Price (either type) \(£ 2\) each, 30 p post each.
TX DRIVER UNIT: Freq. 100-156 Mc/s. Valves \(3 \times 3\) C 24 's; complete with filament transformer 230 v. A.C. Mounted in 19 in . panel, \(£ 4.50\) each, carr. 75 p . AR88 RECEIVER: List of spares, 5 p.
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5 p.
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and powe supply \(200-250 \mathrm{~V}\) a.c. Polarised relay type 3 SEITR. \(80-0-80 \mathrm{~V} 25 \mathrm{~mA}\). Two stabicondition \(£ 7.50\), Carr. 75 p .
WESTON INDUSTRIAL THERMOMETER MODEL 221: \(0-100^{\circ} \mathrm{C}\). 3in dia. scale. Accuracy \(1 \%\). Precision made coil within-coil structure. Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointer is mounted. \(£ 2 \cdot 80\) each 30 p post. Unused condition
TRANSMITTER UNITS: Complete with 12 V vibrator unit QQVO3-20A and 5 other valves with modulation transformer, etc. Two crystal controlled channels. Suitable for conversion to 2 metres. \(£ 5+£ 1\) carr.
THERMOCOUPLE METER: Scale 3.5 AE 2 in . square flush mounting \({ }^{2} 2.50+25\) p post
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range \(1200-9600\) gausses. \(\pm 2 \% . \mathrm{S} / \mathrm{hand}\)
good cond. \(£ 25+60 \mathrm{p}\) post. good cond. \(\mathbf{t 2 5}+60 \mathrm{p}\) post.
SYNCHRO DISTORTION AND MARGIN TEST SET: (Onwood Type 4A2) S/hand excellent cond. \(£ 85\) each. Carr. \(£ 2\).
MASTER SYNCHRO TEST SET T. 101031 (U.S.A.): 115 volts \(400 \mathrm{c} / \mathrm{s}\). S/hand cond. \(£ 15\) each \(+£ 1\) carr
MAGSLIP TESTER NO. 2 MK. I: S/hand cond. \(£ 25\) each \(+£ 1\) carr
SYNCHROS: and other special purpose motors available. Send for list. S.A.E PANORAMIC ADAPTOR TYPE ALA2: Suitable for use with APR-1, APR-4 and other Receivers having an I.F. frequency of 30 MHz . Will display signal up to 5 MHz either side of the received frequency. Power Supply 115 V a.c. \(400 \mathrm{c} / \mathrm{s}\) Tube 3PB1 with nu-metal screen. \(£ 8 \cdot 50\) each. \(£ 1\) carr. S/hand cond.
MUIRHEAD PAMETRADA WAVE ANALYSER D-489-D: Primarily used for the analysis of complex vibration waveforms, but will measure audio and power frequency waveforms from \(19 \mathrm{c} / \mathrm{s}\) to \(21 \mathrm{kc} / \mathrm{s}\). Complete with power supply unit 230 volts \(50 \mathrm{c} / \mathrm{s}\). S/hand good cond. \(£ 82 \cdot 50+£ 2 \mathrm{carr}\).
D-652 L.F. MODULATOR: Suitable for use with the above Wave Analyser D-489-D enabling the analysis of low frequencies between 2 and \(20 \mathrm{c} / \mathrm{s}\). S/hand good cond. \(£ 25\) each \(+£ 1\). carr.
AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016 Manufactured by Bruel \& Kjoer. \(5-5000 \mathrm{c} / \mathrm{s}\). per second. S/hand very good cond. \(£ 90+£ 2\) carr.
INSULATION TEST SETS: A.C. or D.C. \(0-5 \mathrm{kV} . £ 22.50\). S/hand cond AND 0-3 kV. Positive and negative outputs, fine and course control. \(£ 17 \cdot 50\) S/hand cond. Carr. both types \(f 2\).
INSULATION TEST SET: \(0-10 \mathrm{kV}\) negative, earth with amplifier provision for checking ionisation. \(110 / 230 \mathrm{~V}\) a.c. input. \(\mathrm{S} /\) hand good cond. \(£ 30+f 1 \mathrm{carr}\) BOONTON SIGNAL GENERATOR TYPE 202B A.M./F.M.: \(54-216 \mathrm{MH}\) in three bands. Deviation 24, 80 and \(240 \mathrm{kc} / \mathrm{s}\). Att enuator is adjustable 0.1 Uv
AVO FIXED ATTENUATORS: 75 ohms. \(£ 2 \cdot 50+20 \mathrm{p}\) post. New cond.
R.F. POWER METER: \(0-30\) watts \(s /\) hand good cond. \(£ 27 \cdot 50+£ 1\) carr

AVO VALVE TESTER AND CHARACTERISTIC METER: S/hand good condition. \(£ 35\) each \(+£ 2\) carr.
AVO VALVE TESTER MK. III: \(£ 30+£ 2\) carr

\section*{Bes} MAIL ORDERS TO:
106 HENCOMAER LANE, LEEDS 18. Terms C.W.O. or C.O.D. Postage 22 pextra under \(£ 2.33 \mathrm{p}\) extra over \(\kappa 2\), or as stated
Trade supplied. 8 .A.E. with enquiries. EXPORT ENQUIRTES WELCOMED ERANCHES OPEN ALL DAY SATURDAYS MAL ORDERS NOT TO BE SENT TO BHOPS. MIDDLESBRO 106 Newport Rd (Closed Wed.) Shopping Centre (Closed Wed.) Tel. 2146 NOTTINGHAM 19 Market St. (Closed Thurs.) SHEFFIELD 13 Exchange St. (Closed Thurs.) STOCKPORT 8 Llttle Underbank Tel. \(480077 T\)
SUNDERLAND 5 Market Square (Closed Thurs.)

\section*{Eaw Bol BOLON COVENTRY} SUNDERLAND STOCKPORT opening Sept. at DONCASTER

BIRMINGHAM 30-31 Gt. Western Arcade BOLTON 23 Deansgate
BRADFORD 10 North Parade (Closed Wed Wed COVENTRY 17 Shelton Square , 25983 DARLINGTON 19 Northgate (Closed Wed.) Deraby The Spot, 26 Osmasion Rd. (Closed Wed.) Tel.: \(41361^{2}\) doncaster 3 (Closed Wed.) Tel.: 41361 EDIMRURGH 101 Lothlan Road (CIosed Centre EDINBURGH 101 Lothlan Road (Closed Wed.) HULL 7 Whitefrlargate (Closed Thurs.) LEEDS 5-7 County (Mecca) Arcade, Briggate LEICESTER 32 High St. (Closed Thurs.) LIVERPOOL 73 Dale Si. (Closed Wed.) LONDON 238 Edgware Rd.. (Closed Thurs.)

\section*{ALL PRICES INCLUDE VAT AMO Fiflilitioun ivi}

\section*{HUGE DISCOUNTS ON LEADING BRAND TAPE AND TURNTABLE UNITS}

\section*{AKAI GXC 40D Tape Un't}

AKAI 4000DS Tape Unit
AKA: 1721L Tape Unit AKA: CR81D Tape Unit GOLDRING GL72 T/Table £58.95 (Rec Price £84-10). Also FREE with above \(\mathrm{GLT72}\) Go oidring \(\mathrm{G800}\) cartridge worth over \(£ 10\) B.S.R. MACDONALD MP60 T/Table \& P.U. £9.95 (Recom. Price £14.95). CREDIT TERMS AVAILABLE. MINIMUM DEPOSIT 10\%. Carr. 40p. Above is only a selection of Discount Lines, also Leak, Wharfedale etc. Above discount prices correct at time of going to press
 R.S.C. G66 MkII \(6+6\) WATT STEREO AMPLIFIER High Quality Output. Rating I.B.F.M. Ivd. Ganged Controls Bass plus diodes. Range \(20-20,000 \mathrm{~Hz}\). Bass control \(\pm 12 \mathrm{~dB}\) Treble \(\pm 13 \mathrm{~dB}\). Selector switch P. U. or Tape/Radlo. Output for \(3-15\) ohm speakers. Standard \(200-250 \mathrm{v}\). 50 Hz madns. operation. Attractive
Black/Silver metal face plate and matcling knobs.

OR FACTORY BUILT IN
TEAK VENEERED CABINET \(\mathbf{f} \mathbf{6 . 5 0}\) PARTS PARTS INC FULIY WIRED PRINTED CIRCUIT \(\mathbf{1 1 2 . 6 5}\) Dep. \(£ 2.50\) \& 9 mthly pymts \(£ 1.83\) (Total £i8.97)
FANS ULTRA HIGH POWER LOUDSPEAKERS \(12^{\prime \prime}\) 'POP' 50 wind

Or Dep. 22.99 and 9 monthly Or Dep. £3.75 and 9 monthly Or Dep. £5.95 and 9 monthly



\section*{FANE MODE ONE HI-FI SPEAKER KIT} Inc. \(8038^{*}\) unit, 303 Pres-
Bure Tweeter, Printed cir* cult. nduetetive catapacitive panels, screwr, etc.
Regponae ONLY
\(\mathbf{9 . 9 6}\) 30-20.000 Hz IS.C.MAINS TRANSFORMERS MSLC MANETBANSTDRINER Tatod whore nocomary. Primarios 200-250\%, 50 Soreened MmGET C \(250 \mathrm{~F}, 60 \mathrm{~mA}, 6.3 \mathrm{~F}\).
\(250-0-250 \mathrm{v}, 1\)
60 mA PULLY 8HROUDED UPRIGHT MOUSTM \(250-0-250 \mathrm{v} .60 \mathrm{~mA} ., 6.3 \mathrm{v} .2 \mathrm{a} .0-5-5-6.3 \mathrm{v} .2 \mathrm{~s}\).
\(250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.5 \mathrm{v} .4 \mathrm{a} ., 0-\mathrm{s}-6.3 \mathrm{v} .3 \mathrm{a}\). \(3000-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-5.6 .3 \mathrm{v} .3 \mathrm{a}\).
 For Moliard 510 Ampiffer.

 \(450-0-450 \mathrm{v} .250 \mathrm{~mA} .6 .3 \mathrm{v} .4 \mathrm{a} ., \mathrm{c}\) e.t. 5 v .3 am TOP SEROODED DROP-THROUGH TYPE
 \(250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 6.9 \mathrm{v} .1 \mathrm{a}\).
\(350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .0-5-6.3 \mathrm{v} .2 \mathrm{a}\)
 \(300-0.300 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{z}, 4 \mathrm{a}, 0,0-6-6.3 \mathrm{v} .3 \mathrm{a}\).
\(300-0.300 \mathrm{v}, 180 \mathrm{~mA}, 6.3 \mathrm{z}\)
 \(350-6.350 \mathrm{v}\). 100 mA ., 6.3 v . \(4 \mathrm{a} . .00-5-6.3 \mathrm{v}\).





\({ }_{0}^{0.110 / 1200 .}\) UP/8tep DOWN) Transformers
 OUTPUT TRAKSFORMERS Push-Pull 8 watts EL84 to 3 O or 15 @... or 150 ............................... Push-Pull ELS4 to 3 or 150 10-12 watte.
Push-Pull UItra Lnear for Mullard 510 , etc. Push-Pull \(15-18\) watte, sectionally wound \({ }^{6 L 6}\) ET66, etc., for 3 or 150. \(\qquad\) BATTERY MAINS BATTERY/MAINS CONVERSION UNITS
R.S.C. BM1 battery elimina-
tor completely replaces 1.5v.
and 90 . Radio baiteries
and 901 Rad. Radio batterie
where normal 200-200v. AD
and
where normal \(200-230 \mathrm{y}\). AC
mains is avaliable. \(\{4 \cdot \mid 5\)

FANE SPEAKERS 'POP' 25/2



\section*{HI-FI SPEAKER ENCLOSURES}

\section*{Acoustically hined. All sizes approx.
iE8 \(16 \times \times 11 \times 9\) in. Pressur-
ised. Excellent results with 8 in . \(\mathrm{Hi} \cdot \mathrm{Fi}\) Speake \\ }
sE10 outstanding performance with HI-Fi \(£ 6.75\) 10 in . speaker. \(254 \times 16 \times 9 \mathrm{in}\). Ported.
SE12 for high grade result with



FANE BOTT HIGH FIDELITY SPEAKER \(8^{\prime \prime} 10\) WATT
 sound quality in suitable enclosure.
Roll P.V.C. cone burround and long throw volce coll to achleve very low
fundamental resonance of 30 Hz . fundamental resonance of 30 Hz,
Tweeter cone extends high note
 MODEL \(803 \mathrm{~T} 8^{\prime \prime} 15 \mathrm{w}\). with parasitic Tweeter Response 25 Hz to 15 KEz . Gauss
\(13,000 \mathrm{Imp} 3\) or 8.15 ohms. ONLY
\(\mathbf{4} .95\)

\section*{HIGH FIDELITY SPEAKERS} AUDIOTRINE RANGE
 55 p
95 p 81.55
21.50 2245 £2.20 £2. 20 3.65

Carr. \(£ 1\). Carr. \({ }^{1} 1\). Carr. \(£ 1\). Carr. \(£ 1\). Carr. 75p.

\section*{FBES \\ Send this coupon with 15 p for post and \\ nclusion on our regular mailing list}
\(\qquad\)
\(\qquad\)
ADDRESS
\(\qquad\)
AÜOIOTRONIC HOUSE, THE HYOE, LONDON, NW9 GJJ with non-silip feet. ox stock by return of post fiense consult catalogule or ask fo

WEST HYDE DEVELOPMENTS UMITED. BYEFILID CRESCENT, NORTMWOOD WILIS MORTHWOOD MIDOX MAG Telephons: Northwood 24941/26732. WW-104 FOR FURTHER DETAILS



Constructed Constructed
aluminium
 in tro heights and twe widths They
can be used as free standing instrument cases or by attaching the bolt on
 front and rear panels
ex stack fuly assemblad

> ex stack fully assemblad

WEST HYOE DEVELOPMENTS UMITEO RYEFIELD CRESCE 3 Telephbene: Northwood 24941/26732.

\title{
C. T. ELECTRONICS 267 ACTON LANE, LONDON W4 5DG 01-994 6275
}

MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER

\section*{ANNUAL WAREHOUSE CLEARANCE SALE}

\author{
SAT. OCT. 8 - NOV. 3 \\ TUES. - SAT. 10 a.m. - 5 p.m.
}

\section*{THOUSANDS OF BARGAINS}

Test Equipment \(\star\) Oscilloscopes \(\star\) Signal Generators \(\star\) Counters. \(\star\) Cabinets \(\star\) Bridges Meters \(\boldsymbol{*}\) Transmitrers \(\star\) Receivers \(\star\) Power Supplies \(\star\) Laboratory Equipment \(\star\) Galvanomerers 20 TONS OF ELECTRONIC COMPONENTS
Resistors \(\star\) Relays \(\star\) Capacitors \(\star\) Switches \(\star\) Transformers \(\star\) Meters \(\star\) Potentiometers Component Panels \(\star\) Semiconductors \(\star\) Cable \(\star\) Values \(\star\) Etc. \(\star\) Etc. \(\star\) Etc. Regret no lists available. Personal callers only. Cash and Carry only.

\section*{TEST EQUIPMENT}

Manufocturer
EMI 9524H
Teletronix 551
Teletronix 53/54B
Teletronix \(53 / 54 \mathrm{E}\)
Croydon Precíaion
Vinstruments KB Muirhead 2l-A Emouzy Emouzy
Marconi Mod. 12
Cawkell S.O.I.
Teletronix 551
Teletronix D, G
Teletronix 536
Teletronix 661
Teletronix 66
Eddystone
Marconi TF 1100
Marconi TF428C
Marconi TF899
Marconi TF887A
Marconi
Marconi TFI374
Advance MG5-40
Marconi TF894
Cossor R109AD5
Teletronic 545
H.P. 614A

Cohn
Marconi TFI 272
Solartron JM1067
Colartron R109 AB5
Marconi TFI44G Mk.
Cambridge
Teletronix \(B, G, D, H\)
Advance PM48
E.M.I. WMI6

Baird \& Tatlock
Sullivan
Cambridge L358:13
Teletronix 107
Marconi TFI04i
Marconi TF928
Solartron OSIO3
Ediswan R666
Marconi TFIl65
Sanders L026
B.P.L. LC100-C

Roband V50/5
A.P.T. 2445

Farnell TSV-729
arnell TSV12/2
Marconi TFI 300
E.M.I.

Wayne Kerr M12I
E.M.I.

Type Price.

Oscilloscope and \(B+G\) Plug-in
Plug-in
Plug-in
Kelvin Bridge Ohmeter
Bridge Supply and Indicator
Varley/Wheatstone/Murray Bridge
Eectronic Multimeter
M/FM Simal Generstorete
AM/FM Signal Generator \(35 \mathrm{kHz}-18.3 \mathrm{MHz}\)
Oscilloscope and \(2 \times G\) Plug-in
Plug-in units
Sampling scope and 5 TAI +4 SI Plug.in
Receiver \(500-1000 \mathrm{MHz}\)
Sensitive Valve Voltmeter
Valve Voltohmeter
Valve Millivoltmeter
alve Voltohmete
H.F. Absorption Wattmeter 52 ohm IW \(/ 70 \mathrm{ohm} 25 \mathrm{~W}\)

Sealamp Galvo
5V 40A Stabilized Power Pack
Audio Tester.
25W Transmitte
Oscilloscope and G Plug-in
UHF Sig. Generator \(750-2100 \mathrm{MHz}\)
D.C. Voltage Standard \(10 \mu \mathrm{~V}\) - 1000 V 6 decade

Transistor Test Set
Precision RMS Millivoltmeter \(3 \mathrm{mV}-300 \mathrm{~V}\)
AC Converter-Voltmeter
Receiver.
Standard Sig. Gen. \(85 \mathrm{kHz}-25 \mathrm{MHz}\)
Plug-ins.
Stabilised Power Pack is-30V 3A
Oscilloscope and 7/6 Diff. Amp
\(0.1 \%\) Wheatstone Bridge
Standard Mica Capacitor Imfd, 4 decade
Decade Bridge
Square Wave Generator
Valve Voltmeter
Broadcast Standard Videotape Recorder, \(2 i n\). tape; 625 FM Deviation Meter \(20-100 \mathrm{MH}\)
LF Decade Oscillator . \(01-11 \mathrm{kHz} \quad 0.009 \mathrm{iov} 4\) phase and square wave outputs
L.F. Oscillator. \(15 \mathrm{~Hz}-5 \mathrm{kHz}\)

Electronic Counter 7 digit 1 MHz
Lab. Magnetic Amplifier
Coil Comparator \(.1 \mu \mathrm{H}-100 \mathrm{mH}\)
Stabilised Power Supply 0-500V 500 mA
Twin Stabilised Power Supply 0.100 V 250 mA
Phasemeter and P.S.U.
Transistor P.S.U. O-12V 2A Metered
A.F. Signal Generator \(30-300 \mathrm{kHz}\) bal./unbal.

Vacuum Tube Voltmeter
AF Voltmeter
Magnetic Drum Delay Units (Studio Echo Units)
\(x\) V.A.T.)
68
\(£ 300\)
\(£ 300\)
\(\mathbf{E 2 0}\)
\begin{tabular}{l}
\(\mathbf{2} 20\) \\
\hline
\end{tabular}
\(E 60\)
\(\$ 120\)
\(\mathbf{f} 40\)
\(\pm 40\)
\(f 15\)
\(\mathbf{6 7 5}\)
\(\mathbf{E} 300\)
\(\begin{array}{r} \pm 300 \\ \mathbf{E 2 5} \\ \hline\end{array}\)
\(\notin 25\)
\(\mathbf{6} 300\)
£450
E450
\(E 275\)
\(£ 28\)
\(£ 18\)
 \(\notin 12\) \(\pm 12\) 620
670 \(£ 70\)
\(\mathbf{£ 5 0}\) \(\leftarrow 50\)
\(\qquad\)
 -

complete.
S. G. Brown Hand-held with push-to-talk button. \(£ 8\) each

\section*{SPECIAL OFFERS}

BRIDGE RECTIFIER. 6A. 100V. Motorola MDA952-2 65p.
POWER SUPPLY, 12V. 6.5A. Stabilised Power Supply. Contains 18.5 V . 8.5 A . sec Transformer, \(4 \times 4000 \mu \mathrm{~F} 25 \mathrm{~V}\). Mullard capacitors, \(2 \times 2\) N3055 on 2 Redpoint heatsinks, 12A., 120V. Bridge rectifier, stabilised p.e.b. + circuit diagram. The parts alone are worth the
asking price of \(£ 13\) each inc. carriage.
SHACKMAN ... AUTO CAMERA Mk. 3. Complete with long focus lens assembly. 4 Film Carriers. Boxed in as new condition. \(£ 75\) each. OC7I Transistors, unmarked. \(£ 15\) per 1,000 . HG 500880 mA 40 V p.i.v. equiv. OA47. \(£ 20\) per 1,000. \$2BN25 25A 200V Rectifier Diode. \(\mathbf{£ 2 . 5 0}\) per 4. 56 A20 20A 600V Rectifier Stack. \(£ 3\) each. Transistor Mounting Pads. \(\mathbf{£ 2 . 5 0}\) per 500. Diode \& Triac Mica Washer. \(£ 1\) per 100. T.O. 3 Transistor Socket. fl per 50.

Send s.a.e. for free circuit diagram.

\section*{ELECTRONIC COMPONENTS}

\section*{Pack
No.}

BARGAIN COMPONENT PACKS
No. 500 Carbon resistors, t. \(\frac{1}{2}, 1,2\) watt.
2100 Electrolytic Condensers.
3250 Ceramic, Polystyrene, Silver Mica, etc., Condensers.
4250 Polyester, Polycarbonate, Paper, etc., Condensers.
525 Potentiometers, assorted
6250 High -stab, \(1 \%, 2 \%, 5 \%\) resistors.
850 Assorted Tagstrips.
811 l Assorted nuts, bolts, washers, spacers, ete.
1050 Assorted switches, rotary, lever, micro, toggle, etc.
1050 Preset Potentiometers.
12 Jumbo mixed pack 65
ALL COMPONENTS NEW AND UNUSED
£l +25 p p.p. per pack, \(£ 5\) for 5 packs p/free.

\section*{NOW OPEN.}

\section*{AUDIO ACCESSORY SHOP}

17 TURNHAM GREEN TERRACE, W. 4.
HEADPHONES, MICROPHONES, SPEAKERS, etc., etc.

\section*{WAREHOUSE}

20-24 BEAUMONT ROAD, W.4.
SURPLUS COMPONENTS, TEST EQUIPMENT, etc., etc.



COMPLETE TELEPHONES
NORMAL HOUSEHOLDTYPE AS SUPPLLED TOTHE POSTOFFICE EX. G.P.O.
ONLY \(£ 1.05 p\)


\section*{TELEPHONE DIALS}

Standard Post Office type Guaranteed in working order ONLY \(27 \frac{1}{2} p\)

\author{
pistapach
}

make a rev counter for your car
The 'TACHO BLOCK'. This encapsulated block will turn any 0.1 mA meter into a linear and
accurate rev. counter for any car with normal coil ignition f1.10 each

\section*{OVER 1,000,000 TRANSISTORS IN STOCK}

We hold a very large range of fully marked. tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

\section*{Silicon Planar Plastic Transistors.}

Unmarked, untested -- factory clearance Audio PNP, similar to ZTX500, \(2 \mathrm{~N} 3702 / 3\). 2N3708/9, BC107/8/9, BC168/9 etc. R.F. NPN and Switching NPN.
Please state type of Iransistor required when ordering.

ALL AT 500 for \(£ 3.30\). 1,000 for \(£ 5.50\). 10.000 for f 44.00

OUR VERY POPULAR 4p TRANSISTORS
fully tested \& guaranteed
TYPE "A" PNP Silicon alloy. 10.5 can.
TYPE "B" PNP Silicon, plastic encapsulation.
TYPE "B" PNP Silicon, plastic ancaps.
TYPE "E" PNP Germanium AF or RF.

TYPE ". H" PNP PSilicon similar ZTX 600 rang


Our famous P1 Pak is still leading in value for money. Full of Short Lead Semiconductors \& Electronic Components. approx. 170 We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN and \(a\) host of Diodes \& Rectifiers mounted on Printed Circuit Rectifiers mounted on Printed Circuit
Panels. Identification Chart supplied Panels. Identification Chart supplied
to give some information on the to give sors.
Transistors.

Please ask for Pak P.1. only 55 p
11 p \& P on this Pak


A CROSS HATCH GENERATOR FOR \(£ 3.85\)
Circuit Board Dots, Voard. A four position switch gives \(X\)-hatch. design for easy Corizontal ines. Megiated This was a project in the September 1972 edition of Practical Television.

\section*{This complete kit of parts}
costs \(\mathbf{£ 3} .85\), post paid. A MUST for Colour T.V. Alignment ELECTRONIC TRANSISTOR IGNITION Now in kit form, we offer this "up to the minute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features:Transistor and conventional switchability. burglar proof lock up and automatic alarm, negative and positive compatability. This project is a "star" feature in the September edition of "Electronics Today International" magazine. Our kit is recommended by the E.T.I. magazine.

Complete kit including P \& P £7.92.
Ready built and tested unit E3.02 EXTRA

\section*{BEDFORD ELECTRONICS}

TEL.

\section*{7, PRIORY STREET, BEDFORD 51961}


\section*{CARD READER}

Data Products SPEEDEADER 300

\section*{POWER SUPPLIES}

MILES HIVOLT TH25 Regulated EHT
Supply 100 V . to 25 kV .@ 1 mA ., voltage supply 100 V . to 25 kV . 1 mA ., voltage
and current meter, overload protectlon. AS NEW E160.
MILES HIVOLT TH2O Simflar to above but 100V. to 20 kV @ 050 uA ., no
meter. BRAND NEW \(£ 150\). A.E.I. R2325 2.5 to \(30 \dot{0}\), @ 10 A .
Regulated, fully adjustable supply, voltage and current meters £1f. Callers A.E.i. R2240. As above but 2A, £7. Callers only.

OTHER TEST EQUIPMENT AVAILABLE THIS MONTH F. W. BELL 620 Gauss Meter.
B.P.L. FM405/C Frequency mete B.P.L. FM405/C Frequency
E.M.L.Type 6 Stroboscope. DAWE 1202 C Stroboflash and torc
DAWE 1200 Stroboscone neon DAWE 1200 Stroboscope neon. DAWE 412B Pulse generator. DAWE 1460 B sound level HEWLETT PACKARD HEWLETT PACKARD 428A Clíp on HEWLETT PACKARD 456A Current MARCONI TFT400 Double pulse gen, with
TM6600 Secondary pulse unit.

MARCONI TF1073 Attenuator MARCONI TF10418 Valve voltmeter NAGARD 5002 Pulse Generati VENNERTSA333 Timer counter. TELEQUIPMENT S42 Oscilloscop 7J.0076 P.T.F.E. Equipment wire to EL1930 ability before ordering. Please check avail Colvern TEN TURN POTS. 500R. \(5 \%\) Veeder Root Be digit counters. Type
LR1643. Mech. reset, 24 V . Recent manufacture. As new \(£ 3\) each.
Pressure transducers KDG, Type TD216. 0-1200 P.S.I. Complete with catibration chart. \(£ 5\) each.
CARPENTERS polarised ralay SPCO
\(2 \times 1000\), complete with base and retainer \(2 \times 1000\), complete with base and retainer POT CORES LA3. 40p each.
 each. BALL RACES Type RCL \({ }^{3 / 4}\). Flanged each. PANEL FUSE HOLDERS with indicator provided with these izin. fuse holdersis flanged lamoholder to allow a luse fallure neon to be fitted. bulb not included. 20p
MINIATURE THUMBWHEEL
SWITCHES, matt black, BCD and complement, as new. 70p each.
FLUID LOGIC teaching sets. These well
made teaching aids contein the following made teaching aids contein the following
components mounted on an engraved panel components mounted on an engraved panel
within a pollshed wooden box, 2 bistable, 1 and 3 or more logic elements, 2 press transmitters, 2 press receivers, 2 , pressure regs. and gauges, 2 actuating eylinders and
press. amplifiers,
4 press amplifiers, 4 position sensors.
Supplied complete with all accessories
\(€ 37.50\).

\section*{V.A.T.}

PLEASE ADD 10\% V.A.T. to ALL PRICES.

R.S.T. VALVE MAIL ORDER CO.
Blackwood Hall, 16 A Wellfield R Road,
London SWWI6 2 BS Tel: \(01-677\). 2424

FROM 1ST APRIL ALLORDERS SUBJOpen to callers 9 a.m. to 5 p.m. Closed Sat. 1 p.m. to 3 p.m. Express postage \(5 p\).for one valve; Ip each additional valve. Terms of Business: Mon. to Sat. Open to and lp for each additional. Over 10 post free. All orders over \(f 5\) post free. Valves tested and released to A.R.B. Express postage: \(3 p\) for
epecification if required.


FOR THE STOCKS, THE DISCOUNTS AND THE SERVICE YOU NEED

\title{
EleGriovilute Electronic Component Specialists
}

RESISTORS-10\%, 5\%, 2\%
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Code & Power & Tolerance & Range & Valu & \[
1109
\] & \[
1010
\] & & 100 u \\
\hline C & 1/20W & 5\% & 82S2-220KS & E12 & 9 & \({ }_{3}\) & & \\
\hline c & \(1 / 8 \mathrm{~W}\) & 5\% & \(4 \cdot 7 \Omega-470 \mathrm{~K} \Omega\) & E24 & 1 & 0.9 & & 975ntt \\
\hline C & \(1 / 4 \mathrm{~W}\) & 5\% & 4.78-10M \(\Omega\) & E12 & 1 & 0.9 & & 0.75 nett \\
\hline c & \(1 / 2 \mathrm{~W}\) & 5\% & \(478-10 \mathrm{M} \Omega 2\) & E24 & 12 & 1 & & 0.9 nett \\
\hline C & 1 W & 5\% & 4.7R-10M \(\Omega\) & E12 & 2.5 & 2 & & 16 nett \\
\hline MO & \(1 / 2 \mathrm{~W}\) & 2\% & 10S-1MS2 & E24 & 4 & 3 & & nett \\
\hline ww & 1W & 10\% \({ }^{\text {a }} 1 / 20\) 2 & 0.22S-3.9 & E12 & 7 & 7 & & \\
\hline WW & 3W & 5\% & 1 \(\mathrm{S}^{2-10 \mathrm{~K} \Omega}\) & E12 & 7 & 7 & \({ }^{6}\) & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Codes: \(\mathrm{C}=\) carbon film, high stability, low noise. \\
MO - motal oxide, Electrosil TR5, ultra low noise. Prices are in pence each for
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Values: value and power rating. NOT} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{E12 denotes series: \(10,12,15,18,22,27,33,39,47,56\), mixed values. 68, 82 and their decades. tions of one penn}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{E24 denotes series. as E12 plus 11, 13, 16, 20, 24, 30, 36, of resistor order.)} \\
\hline
\end{tabular}

\section*{TRANSISTORS BY SIEMENS AND NEWMARKET}

\author{
2N3055 npn silicon power \\ ACI 53 K pnp germanium low power ACI76K npn germanium low power ADI62 npn germanium medium power AF139 pnp germanium medium power AF19 pnp germanium BC107-13p; BC108-12p; BC109-13p BC167-11p; BC 168 -10p; BC 169 - 11 p BC257-12p; BC258-11p; BC179-22p Standard groupings available. \\ Very many other types listed, described and illustrated in catalogue
}

DIN CONNECTORS by Hirshmann
 \(\begin{array}{ll}2 \text { way loudspeaker Socket } 10 \mathrm{p} \\ 3 \text { way audio } & \text { Socket } \\ 10 \mathrm{p}\end{array}\) 3 way audio \(180^{\circ}\) Socket 10p 5 way audio \(180^{\circ}\) Socket 12 p \(\begin{array}{ll}5 \text { way audio } 240 & \text { Socket 12p } \\ 6 \text { way audio } & \text { Socket 13p }\end{array}\) POTENTIOMETERS carbon type long spindles. Double wipers for GANG P2O
SINGLE GANG linear \(100 \Omega\) to \(2.2 \mathrm{M} \Omega, 12 \mathrm{p}\). JP20 Log, \(4.7 \mathrm{~K} \Omega\), to \(2 \cdot 2 \mathrm{M} \Omega\) 12p. \({ }^{\text {DUL }}\) GANG linear \(4 \cdot 7 \mathrm{~K} \Omega\) to \(2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}\); Dual gang \(\log , 4 \cdot 7 \mathrm{~K} \Omega\) to \(2 \cdot 2 \mathrm{M} \Omega\),
42 p ; Log/antilog, \(10 \mathrm{~K}, 22 \mathrm{~K}\) 42p; Log/antilog, 10K, 22K,
\(47 \mathrm{~K}, ~ I M \Omega\) only 42 p ; Dual 47K, IM \(\Omega\) only 42p; Dual antilog, IOK only, 42p. Any of above types with 2A D.P.
mains switch, 12 p extra. mains switch, 12 p extra.
Only decades of \(10.22 \& 47\) Only decades of \(10,22 \& 47\) DUAL CONCENTRIC DP20 in any combination of P20 values, 60p; with switch, 72p.
SLIDER POTS. In values from \(4 K 7 \Omega\) to \(1 M \Omega\), 10 p . Knobs, flat, grip type, in 7 colours, 5 p each. SKELETON PRESETS. Small high quality, type PR linear only: \(100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{K7}\), Vertical or horizontal mounting, 5 p each.
NUTS, SCREWS, ETC. In lots of 100 Nuts 2BA-41p; 4BA-28p; 6BA-26p.
Screws 1"-2BA-67p; 4BA-35p; 6BA-26p. \(0.5^{\prime \prime}-2 \mathrm{BA}-50 \mathrm{p}\); 4BA-23p; 6BA-19p.
Screws roundheaded, cheese headed or countersunk.
Other sizes available. Also tags, washers, spacers, etc.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
COVERS \& HEATSINKS \\
T03 Transistor cover, \\
HEATSINK \({ }^{\text {clip }}\) Type 6 WI \\
Extruded \(1^{\circ} \mathrm{C} / \mathrm{W}\). undrilled 60p drilled 78p
\end{tabular} \\
\hline
\end{tabular}
TOGGLE SWITCHES
ELECTROLYTICS - Prices in pennies


\section*{ZENER DIODES}

Full range E24 values:
400 m W: 2.7 V to \(36 \mathrm{~V}, 14 \mathrm{p}\) each; \(1 \mathrm{~W}: 6.8 \mathrm{~V}\) to \(82 \mathrm{~V}, 21 \mathrm{p}\) each; 18 F : 4.7 V to 75 V 48p each. Clip to increase
1.5 W rating to 3 watts (type) 266F) 4p.
SIEMENS THYRISTORS 0.8 A 400 V . 56 p ; 600 V 70 p . \(3 \mathrm{~A} 400 \mathrm{~V}, 60 \mathrm{p} ; 600 \mathrm{~V}, 88 \mathrm{p}\). DE-SOLDER BRAID
F. 14 skirt dia. 20 mm .
pack of 2

\section*{S-DEC}

Unsurpassed for "breadboard finitely with be used inde Components just push into plug holes and connect auto matically. Slot for control panel. 70 holes. \(£ 1.80\).

\section*{T-DEC}
with 208 contacts in 38 rows. Will take one 16 lead carrier. £3.30. (Carriers supplied

\section*{BAXANDALL SPEAKER}

As described originally World" and stillone of the most brilliant designs in high quality low priced speakers. You save by assembling it yourself. 10 watts \(/ 15 \Omega\).
Complete kit \(£ 14.90+60\) p part carr. Equaliser components \(£ 2.00\).
Speaker unit \(£ 2.45\).

No. 6 CATALOGUE SUPPLEMENT flatest price adjustments and new items

Wavechangeswitches
IPI2W, \(2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}\) each 24p.
3 New Babanj Books
BP. 13 Electronic Novelties for the Motorist; BP 15 Construc
tor's Manual of Electronic Circuits for the Home; 200 Handbook of Electronic Musical Novelties: EACH 50 p (no V.A.T.).

Minitron DIGITALINDICATOR
TYPE 3015F Seven segment indicator compatible with standard logic modules and power supplies. Figs. 09 from well illuminazed filament segments to give character of 9 mm height plus decimal point. Power number of alphabetical symbois also avail- \(\mathbf{E 2 0 0 0}\)
able. In 16 lead DIL case Suitable BCD decoder driver type FLLI2IT \(\leq 1 \cdot 36\) DIL Socket; 16 lead 30p. No. 3015G showing + or -
and fig. I and decimas point E .00 . nett

MAINS TRANSFORMERS MT3 30V/2A plus 4 taps \(£ 2.85\) MTIO3 50V/IA +4 taps \(£ 2.55\)
MT104 50V/2A 4 taps \(£ 3.50\) MTI \(2760 \mathrm{~V} / 2 \mathrm{~A}+4\) taps \(£ 3.80\) 13 T05 \(13 \mathrm{~V} / \frac{1}{1} \mathrm{~A}, \mathrm{CT} \quad £ 1.25\) 28 T05 \(12+12 ; 2-0-2 V / \frac{1}{2} A\)

\section*{U.S.A. CUSTOMERS} are invited to contact Electrovalue America, P.O. Box 27, Swarthmore,

TTL ICs
7400
7401
7402
7403
7404
7405
7408
7409
7410
7413
7420
7430
7440
\(74141(16)\)
\(7442(16)\)
\(7443(16)\)
7444 (16)
7447
7450
7451
7453
7454
7466
7470
7472
7473
7474
\(7475(16)\)
7476 (16)
7480
7482
\(7483(16)\)
7485
7486
7490
\(7491 A N\)
7492
7493
7495
7496 (16)
\(74100(24)\)
74104
74107
74121
\(74190(16)\)
\(74191(16)\)
\(74192(16)\)
\(74193(16)\)

711

\section*{DISCOUNTS}

Available on all items except those shown with NETT 55 to fi5. \(15 \%\) on orders fl 5
and ove
TERMS OF BUSINESS All items are offered for sale in accordance with our a copy of which is available on request. Prices subject to alteration without notice. Enquiries
invited.

PACKING\& POSTAGE FREE in U.K. For mail orders or \(£ 2\) list value and under, here is an additional hand-

\section*{V.A.T.}

Please add \(10 \%\) to nett Palue of order to meet tax requirements.
Not applicable to overseas
```

ELECTRONIC ORGAN DIVIDER BOARDS built to
high industrial/computer spec. 5 octave set E15.
Complote with connection data and ascillator details.
COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in. $12 \frac{1}{2} p$ sheet, 5 for 50p
$14 \times 6 \frac{1}{4} \times 1 / 16$ in. $15 p$ sheet, 4 for 50 p
$11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in} .15 \mathrm{p}$ sheet, 4 for 50 p
$11 \times 8 \times 1 / 16 \mathrm{in} .20 \mathrm{p}$ sheet, 3 for 50 p
$16 \frac{1}{2} \times 4 \times 1 / 16$ in. (Fibreglass), 30p shee
Offcut pack (smallest $4 \times 2 \mathrm{in}$.) 50 p 300 sq . in
$\mathrm{P}_{\mathrm{K}} \mathrm{P}$ single sheot 4 p . Bargain packs $\mathbf{1 0 p}$
SPEAKERS AND CABINETS
E.M.I. $13 \times 8 \mathrm{in}$. (10 watt) with two tweeters and crossover $3 / 8 / 15$ ohm models. £3.75. P.P. 25 p
E.M.I. 20 watt (13×8 in.) with single tweeter and 11,000 gss $£ 8$. P.P. 40 p . 20 watt base unit only. $\mathbf{£ 6}$. 11,000 gss. £8. P.P. 40 p. 20 watt base unit only. $\mathbf{£ 6}$ P.P. 40p
CABINETS for $13 \times 8 \mathrm{in}$. speakers manufactured in $\frac{3}{4}$ in. teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9$ in
E6 ea. P.P. $40 p$
20W. CABINET. $18 \times 11 \times 10 \mathrm{in}$. E6. P.P. 50p.

```

PRECISION A.C. MILLIVOLTMETER (Solation) \(1.5 \mathrm{~m} . \mathrm{v}\) to 15 v : 60 db to 20db. 9 ranges. Excellent condition

HIGH CAPACITY ELECTROLYTICS
2,200 \(\mu \mathrm{f} .100 \mathrm{v}\). ( \(1 \mathrm{t} \times 4 \mathrm{in}\).) 60p. \(3,150 \mu \mathrm{ff} .40 \mathrm{v}\). ( \(1 \frac{1}{4} \times 4 \mathrm{in}\).) \(60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}\). ( \(1 \frac{1}{\mathrm{t}} \times 4 \frac{1}{\mathrm{t}} \mathrm{in}\).) 60p. \(10,000 \mu \mathrm{f}\). 100 v
 packing 5 p .
MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank 12 position, non-bridging wipers. \(\mathbf{£ 4 - 2 5}\) ea. Brand new
CD. 1220 OSCILLOSCOPE, with dualtrace Plug-in, (CX1257) \(\mathrm{DC}-24 \mathrm{MHZ}\). \(\mathrm{f125}\). \((\mathrm{CX1256}) \mathrm{DC}-40 \mathrm{MHZ}, \mathrm{E} 25\).
Wide band Plug-in. SOLARTRON OSCILLATOR (CO546) \(25 \mathrm{~Hz}-500 \mathrm{KHz} £ 50\). OVERLOAO CUT.OUTS. Panel mounting \(\left(1 \frac{3}{4} \times 1 \frac{1}{6} \times \frac{1}{2} \mathrm{in}\right.\).)
BOO M/A/t. \(8 \mathrm{amp} / 10\) amp. 35 p ea. P.P. 5 p . BULK COMPONENT OFFER. Resistors/Capacitors. All
types and values. All new modern components. Over 500 types and values. All new modern components. Over 500
pieces \(£ 2\). (Trial order 100 pcs . 50 p .) We are confident you will re-order
TWIN STABILISED POWER SUPPLIES (A.P.T.) +80 V . @
\(500 \mathrm{M} / \mathrm{A} .-80 \mathrm{~V} @ 500 \mathrm{M} / \mathrm{A}\left(9 \times 6 \times 5 \frac{1}{2} \mathrm{in}\right.\).) New. \(£ 8.50\) with
U.K. ORDERS 10\% V.A.T. SURCHARGE


\section*{TRANSFORMERS}

Ler. Tim
250 WATT ISOLATION TRANSFORMER. 240 v . double wound E3.25. P.P. 50 p .
E.H.T. TRANSFORMER. Prim. 240 v . Sec. \(2 \cdot 5-0-2.5 \mathrm{kV}\). 12 mA .; 7.5 v .1 amp. 2.5 v .2 amp. \(£ 2.50\). P.P. 25 p
E.H.T. TRANSFORMER. Prim. 240v, Sec \(1800 \mathrm{v}, 50 \mathrm{~mA}\).
L.T. TRANSFORMER. (Shrouded) Prim. 200/250v.

Sec. 20/40/60v. 2 amp. \(£ 2\) ea. P.P. 40 p.
Sec. \(20 / 40 / 60 \mathrm{v}\). 2 amp. \(£ 2\) ea. P.P. 40 p .
L.T. TRANSFORMER (CONSTANT VOLTAGE). Prim. 200/240v. Sec. \({ }^{1}\)
\(100 \mathrm{~m} / \mathrm{a}\) E3. P.P. 50 p
\(100 \mathrm{~m} / \mathrm{a}\) £3. P.P. 50p.
L.T. TRANSFORMER. Prim. \(110 / 240 \mathrm{v}\). Sec. \(2 \times 32 \mathrm{v}\). (a 4 amp .
20v. (a 5 amp.: 15 v . (a \(1.5 \mathrm{amp} .: 7 \mathrm{~V}\). (a). 2.5 amp . E . P.P. 50 p .

20v. (a 5 amp .: 15 v . 1.5 amp .: 7v. (a) 2.5 amp . £3. P.P. 50 p .
L.T. TRANSFORMER. Prim. \(220 / 240 \mathrm{v}\). Sec. 13 v .
1.5 amp 65p. P.P. 15 p .
L.T. TRANSFORMER. Prim. \(115 / 240 \mathrm{v}\). Sec. 10.5 v .
at 1 amp. c.t \(28-0-28 \mathrm{v}\). at 2 amp . shrouded type. \(\mathbf{E 2}\).
P.P. 40 p

2500 watt. ISOLATION TRANSFORMER (CON-
STANT VOLTAGE). Prim. \(190-260 \mathrm{~V}\). 50 Hz . Sec. \(\mathbf{2 3 0 v}\). at 10.9 amps. \(\mathbf{£ 3 0}\). Carr. \(£ 2\)
H.D. STEP-DOWN TRANSFORMER. Prim. 200/240V
 \begin{tabular}{l} 
H.T. TRANSFORMERS. Prim. \(200 / 240 \mathrm{v}\). Sec. \\
\(300-0-300 \mathrm{v} . ~\) \\
\hline \(0 \mathrm{~m} . \mathrm{a} . ~\) \\
6.3 v . c.t. 2 amp £ .50 P.P. 40 p.
\end{tabular} \(300-0-300 \mathrm{v} .80 \mathrm{~m} . a .6 .3 \mathrm{v}\). c.t. \(2 \mathrm{amp} \mathrm{£1} 50\) P.P. 40
\(350-0-350 \mathrm{v} .60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}\) c.t. 2 amp £1. P.P. 25 p. \(350-0-350 \mathrm{v}\). 60 m.a. 6.3 v . c.t. 2 amp . ER. P.P. \(22 / 240 \mathrm{v}\).
STEP-DOWN TRANSFORMERS: Prim. STEP-DOWN TRANSFORMERS: Prim. 22/240V.
Sec. 115 v . Double wound 500 w . f5. P.P. £1. 700 w . Sec. 115 v . Double wound 500 w . 5 . (metal cased with
(with filters) \(£ 10\). P P. \(£ 9\). 500 w . (mer (with filters) AUTO-WOUND. 75W. E1. P.P. 25p. 300W. £1-50. AUTO-WOUND. 65 . E 1
P.P. 50p 750W. £6. P.P.£1.
L.T. TRANSFORMER. Prim. \(110 / 240 \mathrm{v}\).
1 SA. (Shrouded type). \(£ 1.50\). P.P. 25p. HT/LT TRANSFORMER Prim. 240v. (tapped) Sec. 1.
\(500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a} . ~ \mathrm{Sec} .2231 \mathrm{v}\). 5 amp. \(£ 2.75\) 500-0-500v. \(150 \mathrm{~m} / \mathrm{a}\). Sec. 2. 31v. 5 amp. \(\mathbf{~} 2.75\) P.P. 50p. Lyons) Input: \(190-260 \mathrm{v}\). Output \(240 \mathrm{v} . \pm 15 \% .124\)
K.V.A. \(\mathbf{f 6 0}\).

PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1. 18.5pt. to \(1,220 \mathrm{pf} £ 10\) each Tvpe 2, \(9 \cdot 5\) pf. to 11.5 pf . \(£ 6\) each.
MULTICORE CABLE (P.V.C.)
6 core ( 6 colours) 3 screened, \(14 / 0048\). 16 p . yd. 100 yds E12.50.
24 core ( 24 colours) 20p. yd. 100 yds. \(\mathbf{~} 17.50\).
34 core ( 17 colours) \(\mathbf{2 5 p}\). yd. \(100 \mathrm{yds} . £ 20\).
Minimum order 10 yds.
TELEPHONE DIALS (New) £1 ea.
RELAYS (G.P.O. '3000'). All types. Brand new from 37⿺辶
EXTENSION TELEPHONES (Type 706) EXTENSION TELEPHONES (TYDE 7O6) New/Boxed. E5. 50p.
RATCHET RELAYS. ( 310 ohm ) Various
Types 85p. P.P 5 p .
UNISELECTORS
UNISELECTORS (Brand new) 25-way
75 ohm. 8 bank \(\frac{1}{2}\) wipe £3-25. 10 bank
BLOWER FANS (S ail type) Type 1: Housing dia \(3 \frac{1}{}\) BLOWER FANS (Snail type) Type 1: Housing dia. \(3 \frac{1}{2} \mathrm{in}\).
Air outlet \(1 \frac{1}{4} \times 1 \mathrm{in}\) £2.25. P.P. 25p. Type 2 : Housing dia. 6 in . Air outlet \(2 \frac{1}{2} \times 2 \frac{\div}{2}\) in. £4. P.P. 50 p . Both types 115 / 240V. A.C. (brand new).
"PAPST TAPE" MOTORS. (LZ. 20.50) New Boxed. £2. P.P
25p. RELAYS
SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea; 6 make contacts 40 p ea.; 4 pole c/o contacts 50p ea. 6-12-24-48v types in stock.
12 VOLT H.D. RELAYS ( \(3 \times 2 \times 1 \mathrm{in}\).) with 10 amp . silve contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. 5p 24 VOLT H.D. RELAYS \(\left(2 \times 2 \times \frac{2}{x} \mathrm{in}\right.\).) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5p.
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp
contacts. 75 (with base). P.P. 5 p. contacts. 75p (with base). P.P. 5p.
SUB-MINIATURE REED RELAYS ( \(1 \mathrm{in} . \times \frac{\mathrm{in} \text {.) Wt }}{}\) \(\frac{1}{4}\) oz. 1 make \(3 / 12 \mathrm{v} .40 \mathrm{p}\). ea.
SILICON BRIDGES. 100 P.I.V. 1 amp . ( \(\mathbf{t} \times \mathbf{t} \times \frac{\mathrm{i}}{\mathrm{i}} \mathrm{in}\) ) 30p
200 P.I.V. 2 amp 60 p . 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60p
2 Pole Change-over 45 p .

\section*{PATTRICK \& KINNIE}

191 LONDON ROAD•ROMFORD•ESSEX
ROMFORD 44473 RM7 9DD

\section*{200-250V AC MAINS \\ TO}

27V 500mA D.C. STABILISED P.S.U.
With ciicuit. These interesting 2700.5A units (will happity provide 700 mA indefnitely) are built into an attractive grey-
finished instrument case, provision being made for base or tinished instrument case, provision betng made tor base or
side mounting. Cabe entry grommets are mounted in the
base of the unit. The choke capacity smoothed output is solid base of the unit. The chote capacity smoothed output is solid
state stablilsid against variation imput vootage and output
current, and input and output tuses with spares are fitted. The
 an alarm clrutit. There is adeauate room for othe equipment
within the ventilated case, which is \(12^{\prime \prime} \times 10^{\prime \prime} \times 6\) deep.

OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies!
Send us your detailed requirements quoting Nato numbers if known. We are now on TELEX.

ADVANCE RADIO INTERFERENCE MEASURING SETS CT35. These enable the frequency and level of equipment
generated interference to be measured. The instrument is generated interference to be measured. The instrument is
modern and portable and is offered at about \(20 \%\) of the cost of
similar equipment at present available. \(£ 49.50\) (plus carrlage at Cost). Cover 50 kHz to 30 MHz z .
VACTRIC SIZE 23 PULSE GENERATORS (Shaft Digitizers). wo outputs each of 250 square wave pulses per \(360^{\circ}\) displaced by \({ }^{1}\) pitch. New with test chart. P.O.A. CONTAINERS FOR
STAINLESS STEEL VACUUM
SIQUIDS. Capacity 2 U.S. galls. fited with delivery taps. LIQUIDS. Capacity 2 U.S. galls. fited with delivery taps.
Brand new in cartons- 522.50 (C. Pd. U.K.) +10\% V.A.T.
MULTICORE PVC COVERED TELEPHONE CABLE MULTICORE PVC COVERED TELEPHONE CABLE 24
core \(£ 24.20\) per 100 yds, 12 core \(£ 19 \cdot 80\) per 100 yds, 8 core \(£ 13 \cdot 20\)
per 100 yds, 4 core \(£ 11\) per 200 yds. 2 core \(£ 3.30\) per 100 yds. cer 100 yds, 4 core \(£ 11\) per 200 yds, 2 core \(£ 3\). 30 per 100 yds.
(All C.Pd. K . Mainland)
HEAVY OUTY PVC INSLTD. FLEXIBLE CABLE to DEF HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE to DEF
12D Tyoe 3 in following colours: violet, yellow, white, grey,
green, orange, pink, red and brown \(70 / 0076^{\circ \prime}\) conductors E 3.25 per 100 yds (P.Pd.) aiso with \(40 / 0076^{\prime \prime}\) conductors in grey, vlolet

ALL PRICES INCLUDE \(10 \%\) V.A.T.

ELECTROSIL METAL OXIDE RESISTORS. Most values in stock, 20 or \(5 \%\) tolerance as available. Type TR4/MR4 \(£ 5\) per 100 .
Type TR5MR5 \(£ 150\) per 100 both Inc. P. \& P. U. Minimum order 100 of any value: for orders of
above prices less \(10 \% \%\).
AMP PATCHBOARDS Type \(695448-3\) and \(695365-2 ~\)
\(£ 27.50\) eact P.P. TRANSFORMER by Foster. Pri. 250 v (tapped) S PRESSURE TRANSDUCERS. We now have a wide range in stock. List on application, or send us your requirements. PTFE INSULATED EQUIPMENT WIRES *O DEF Specs. Various types avaliable from \(\mathbf{£ 2}\) oer 100 yds. We also have stee
cored equipment wires deslgned for weapon applicatlons. FIELD STRENGTH METER Type CT10 covering \(20-650 \mathrm{MHz}\) with dipoles, tripod, mixer unlts and CRT Display. RECORDERS of many types available; single and multi channel-event recorders-temperature recorders-pressure recorders. Please let us quote for your needs!
MARK iV MULTIWAY PLUGS AND SOCKETS \(\begin{array}{lll}\text { Size 1 } & \text { Size 2 } & \text { Size } 3 \\ 2 \text { way 19A } & 4 \text { way } 19 A & 18 \text { way } 5 \mathrm{~A} \\ 3 \text { way } 5 \mathrm{~A} & 6 \text { way } 5 \mathrm{~A} 2 \mathrm{kV} & 25 \text { way } 5 \mathrm{~A}\end{array}\) 4 way 5 A
All poles rated at 250
12 way 5A
 per pair. Cable type and diameter should be quoted when
ordering. Alternatively please auote Mfrers' or Ministry Numbers. These connectors are also in stock in Brass shells. All types may be orientated in any one of six positions to prevent
mismatch. condition £35 each. (C.Pd. Eng. and Wales).
AERIAL DIRECTION INDICATING KIT
Thls comprises a pair of Mags.los to provide remote indica
tion of aerial azimuth and comprises a transmitter and recelver The transmitter is directly comprised to the remote aerial and the receiver can be mounted at the control point, to provide imme diate and continuous indlcation of aerla position. Supply
voltage required is 50 v . 50 Hz and the price \(\mathbf{6 6 . 3 3 \text { . (P.Pd.) }}\). Including a pointer for the receiver. The suggested use of these
Items would include a malns operated, geared motor to drive ltems would include a malns operated, geared motor to drack
the aerial, controlled from the position to which is fed back position information by the magslip link. Transtormers to
provide 50 v 50 Hz from 240 v A.C. \(£ 2.15\) each. (P.Pd.).
MIL SYNCHROS AVALLABLE EX-STOCK In sizes \(08,11,15,16,18\) and 23 for 50,60 and 400 Hz operation In sizes
Synchro Controi Transformers
Synchro Con
Synchro Control Transmitters
Synchro Control Differential Transmitters
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receivers
Synchro Resoivers

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& CONNECTORS Serve and Electronic Sales Ltd
Post Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) Or 67 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: 01-688 151 V.A.T. Reg. No. 201-1296-23

WE ARE ANXIOUS TO BUY Synchro Test Equipment manufactured by Muirhead, Singer-Gertsch etc. Test Dials,
Dividing Heads. Bridges, Standards etc. to expand our testing Dividing
facilitles
EVERSHED AND VIGNOLES special purpose and servo motors in stock also Velodyne Motor Generators and Split Field Motors by other Manuiacturers for Immediate dellvery, RADAR CABLEFORM INSULATION TESTER for checkIng insulation between indivldual conductors and each other
and ground at preselected voltages. Full details on application. DRI D150 Computer tade evaluation equipment, one installation in stock in excellent condition.
LEMANIA AIRCREW CHRONOGRAPHS. Stalnless Steel case with screw back; luminous hands and markings. One
fifth sec. sweep hand controlled independently of main movement by press to start, stop and return to zero button, 15 jewel movement. Many of these watches are as new but all have been cieaned and checked. Fitted strap. White face \(£ 18.55\), Black GS WATCHES
Screw back and biack waces. Manufactured by CYMA, VERTEX
TIMOR GRAN screw back and biack taces. Manufactured by CYM A, GERTEX
TIMOR, GRANA, IWC, RECORD, SMITHS etc. to a common specification. We will try to meet your requirements for speciffc manutacturer and quanity orders will be of one manufac-
turer's production. All cleaned and checked. Fitted Strap. We also have limited quantities of these watches by OMEGA,
LONGINES, BUREN, JAEGER LE COULTRE at \(x 15.50\) inc

LEMANIA STOPWATCHES fitted with one red and one black sweep hands independently controlled enabling elapsed periods forming part of the main perlod to be measured
separately without stopping the measurement of the main time separately without stopping the measurement of the main time
period. Absolutely mint condition but cleaned and checked

WE HAVE ONE OF THE LARGEST STOCKS IN THE COUNTRY OF INSTRUMENTS AND COMPONENTS MANUFA
CHECK.

\section*{DRY REED INSERTS}

Overall length \(1.85^{\prime \prime}\) (Body length \(1.1^{\prime \prime}\) ) Diameter \(0.14^{\prime \prime}\) to switch up to 500 mA at up to 250 v D.C. Gold clad contacts, 69 P per doz.; \(£ 4.12\) per 100; \(\mathbf{£ 3 0} \mathbf{2 5}\) per 1,000 ; \(\pm 275\) per 10,000 . All carriage paid U.K. Heavy duty type (body length \(2^{\prime \prime}\) ) diameter \(0.22^{\prime \prime}\) to switch up to 1 A. at up to 250 V A.C. Gold clad contacts, \(£ 1.37\) per doz.; 66.88 per 100; \(\mathbf{6 5 2 . 2 5}\) per 1,000; \(£ 495\) per 10,000 . Changeover type \(\mathbf{£ 2 . 7 5}\) per doz. All carriage paid U.K.
Operating Magnets 61 P per doz.; \(\mathbf{4 4} 40\) per 100; \(£ 38.50\) per 1000 . All carriage paid.


\section*{BENTLEY ACOUSTIC CORPORATION LTD \\ TA GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI. 6743 ALL PRICES SHOWN INCLUDE' V.A.T.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 & \(0 \cdot\) & qucs & & BL7(M) & 0 & & & & AL60 & 0.78 & L21 & 0.60 \\
\hline OR2 & 0.33 & 6BE6 & 0. & ¢L12 & 0.34 & 12AT7 & 0.20 & 0.95 & ARP3 & 0.35 & EC53 & 0.49 \\
\hline OZ4 & 0.44 & \(\therefore\) BG6G & 1.35 & \({ }_{6} \mathrm{~L} 18\) & 0-49 & 12AU6 & \(0 \cdot 38\) & 30 P 120.69 & ATP4 & 0.40 & EC54 & 0 \\
\hline 1 A 3 & 0.49 & \({ }^{3} \mathrm{~B}\) F & & Gila & \(2 \cdot 00\) & 12AL: & 0.21 & \(\begin{array}{lll}30 \mathrm{Pl} 16 & 0.31\end{array}\) & AZ1 & \(0 \cdot 40\) & EC86 & 0.59 \\
\hline \(145 g\) T & 0.48 & \({ }^{6} \mathrm{BJ} 56\) & 0.38 & 6LDI2 & 0.30 & & & 30P19/ & AZ31 & 0-48 & EC & 0.59 \\
\hline 1A7ti & 0.33 & ? \(\mathrm{BRK}^{\text {a }}\) & \(0 \cdot 60\) & 6LD20 & 0.55 & 12AV6 & 0.28
0.22 & \({ }_{30 \mathrm{P}}^{3} 10.65\) & \({ }^{\text {AZ }}\) +1 & 0.53 & EC92 & 0.34 \\
\hline \(1 \mathrm{B3GT}\) & 049 & \({ }^{\text {QRQ }}\) & 0.23 & 6N7(GT & 0.60 & 12AY7 & 0.80 & 30 PLL 10.57 & B:319 & 0.28 & ECC32 & 1.50 \\
\hline 1 C 2 & 0.50 & QRQT & 0.50 & 61P1 & 1.75 & 12 BAB & 0.30 & \(30 \mathrm{PLL1} 20.29\) & Blita & 0.50 & ECC33 & 1.50 \\
\hline \(1 \mathrm{L6}\) & 0.75 &  & 0.90 & 9P15 & 0.23 & \({ }_{1218 \mathrm{E} 6}\) & 0.30 & 30PLI3 0.75 & CL33 & 0.90 & ECC35 & 0.95 \\
\hline \(1 \mathrm{H5O}\) & 0.55 & \({ }^{\text {abra }}\) & 0.75 & 18P2x & 0.70 & \(12 \mathrm{BH}^{-}\) & & \(30 \mathrm{PLL1} 40.75\) & \(\mathrm{CVB}^{\text {c }}\) & 0.58 & ECC & 0.88 \\
\hline 1 L 4 & 0.14 & \({ }_{681887}\) & 1.40 & \({ }_{\text {fPLI2 }}\) & 0-28 & 12 SJGT & & \(30 \mathrm{PLL5} 587\) & CV63 & 0.53 & \(1 . \mathrm{CCR1}\) & 0.20 \\
\hline 1LD5 & 0.68 & \({ }^{\text {¢BW6 }}\) & 0.72 & 6479 & 0.44 & & & \(\begin{array}{ll}35 \mathrm{~A} 3 & 0.48\end{array}\) & CY988 & 0-10 & ccss & 0.21 \\
\hline ILNS & 0.86 & \({ }^{68 W}{ }^{\text {b }}\) & 0.50 & 687GT & 0.47 & 12K下\% & \[
\begin{array}{r}
0.35 \\
0.53
\end{array}
\] & \(\begin{array}{ll}3545 & 0.75\end{array}\) & CY1C & 0.55 & ECC83 & 0. 22 \\
\hline 1N5GT & 0.60 & \({ }_{68 \mathrm{BX}}^{1}\) & & & 0.55 & 12 K 7 GT & & 35050 & CY31 & 0.29 & ECC8: & 0.30 \\
\hline 1 RS & 0.28 & \({ }^{6 B 17}\) & 0.28 & \(\mathrm{b}_{6} \mathrm{~F} 7 \mathrm{~F}\) & \(0 \cdot 60\) & 1207 GTO & - 45 & 35 LGOT 42 & & 0.25 & ECCA & 0.34 \\
\hline 184
185 & 033 &  & 0.49
0.28 & \({ }^{1 s R} \mathbf{R}\) (M) & 0.75 & 12NATGT & T. 55 & \(\begin{array}{ll}35 \mathrm{~W} 4 & 0.23 \\ 3573 & 0.50\end{array}\) & DAC32 & 0.55 & ECC8t & 0.40
0.35 \\
\hline 185 & 0.22 & \({ }_{604}^{60} 4\) & 0.28 & esa & 0.35 & 12sc \({ }^{-}\) & & \({ }_{35 \mathrm{Z} 4 \mathrm{GT}}^{3584}\) & DAF & 0.36 & ECC88 & \(\begin{array}{r}0.35 \\ .48 \\ \hline\end{array}\) \\
\hline 104 & 0.44
0.80 & \[
\begin{aligned}
& 603 \\
& 1609
\end{aligned}
\] & 1.00 & \(6 \mathrm{6C7}\) & & 12897 & 0.38 & \({ }^{3524 G T}{ }^{3} \mathbf{2 4}\) & DC90 & & & 48 \\
\hline \[
\begin{aligned}
& \text { 1U5 } \\
& 2 \mathrm{D} 21
\end{aligned}
\] & 0.80
0.44 & \({ }_{6 C B 6}^{6 C 9}\) & 1.00 & dixa7( & 44 & 12815 & & \(3525 G T\)
50 BF
0.35 & & 18 & EC & \\
\hline 2 CKJ & 0.55 & 6 Cl 2 & 0.28 & \({ }_{68 \text { 6S7 }}^{68}\) & & \({ }_{12 \mathrm{NS}}^{12 \mathrm{~N}} \mathbf{}\) & 0.44
0.55 & \(\begin{array}{ll}50 \mathrm{C} 5 & 0.32\end{array}\) & DF96 & & ECF8 & 0.27 \\
\hline 3 A 4 & 0.36 & \({ }^{12}{ }^{\text {C17 }}\) & 1.00 & 6®K70T & & \({ }^{2 \times 80}\) & & \(50 \mathrm{CD6G}\) & \({ }_{1} 1863\) & & ECF8 & 25 \\
\hline 3B & 1.00 & - & 0.80 & BSQIGT & - 38 & 12ng: & & 2 & \({ }_{1} \mathrm{DHF}_{\text {His }}\) & 0.45 & ECF8 & 84 \\
\hline \(3 \mathrm{B6}\) & 0.19 & \({ }_{6}^{6 C}\) & 0.75 & 6U4GT & 0.70 & 1414 & 0.55 & \(0 \cdot\) & D117\% & 0.30 & & \\
\hline \(3 \mathrm{S4}\) & 0.49 & & 0.55 & 6U7G & - & 1487 & 0.75 & 50 & DH81 & 0.75 & & \\
\hline 3 396 & \(0 \cdot 55\) & \begin{tabular}{l}
6CLb \\
6CLsA
\end{tabular} & 0.46 & 6 V 4 & 0.19 & \[
\left\lvert\, \begin{aligned}
& 1+8 \\
& 18
\end{aligned}\right.
\] & 1.00 & & 0к32 & 0.33 & & 0.63 \\
\hline 354 & 0.28 & \({ }_{6 C M}\) & \({ }_{0} 0.75\) & & 0.17 & 19A05 & 0.42 & & L)K & 0.55 & & \\
\hline 5CG8 & 0.55 & \({ }_{\text {ficus }}\) & 0.75 & \({ }_{6}^{6 \times 69}\) & 0.27 & 19BGUG & &  & & & EC & \\
\hline 5 R 4 G & 0.70 & 6 CW 4 & 0.70 & 6 Y & & & 1.40 & boag 3. & & & ECH8: & 0.38 \\
\hline 5 T 4 & 0.30 & \({ }^{\text {fi }}\) & 0.60 & \({ }^{6 \times 6} 6\) & 0.65 & \({ }_{20 \mathrm{D}}^{19.9}\) & 2.00 & \(90 \mathrm{AV} \quad 3.38\) & DI & 0.38 & ECH84 & 34 \\
\hline 5 C 4 G & 0.30 & 60 CD 7 & 0.75 & 6y7c & 1.00 & 20 D 4 & & 1.78 & & \(0 \cdot 30\) & ECL80 & 0.28 \\
\hline 5 S 4 C & 0 & 6DT6 & 0.75 & TA \({ }^{\text {\% }}\) & 1.00 & \({ }_{20} \mathrm{H}^{2}\) & & 1 0 & DMT1 & 0.50 & ECL82 & \\
\hline 5 Y 3 G & 0.30 & & 0.75 & - 136 & 0.75 & 20L1 & 0.80 & \(90 \mathrm{Cl} \quad 0.59\) & DW \(+/ 350\) & & ECL. 83 & 0.52 \\
\hline 5Z: & - & 6EV & 0.75 & \(7 \mathrm{B7}\) & & \({ }_{20 \mathrm{P}}^{20 \mathrm{~L}}\) & 0.80
0.35 & & & 0.38 & ECL8 4 & 0.54 \\
\hline 5240 & 0.34 & 6 Fl & 0. & -58 & \(1 \cdot 00\) & \({ }_{20 \mathrm{P}}^{20}\) & 0.35 0 & \(150 \mathrm{C} 2 \quad 0.33\) & DY87/6 & & ECL85 & 0.54 \\
\hline 58497 & \(0 \cdot 38\) & \({ }_{6}^{\text {of6 }}\) & 0.35 & 7H7 & 0.55 & 20 & 0.80 & \(\begin{array}{ll}2158 G & 0.33\end{array}\) & DY802 & 0.30 & ECL86 & \\
\hline 6ABG & 0.55 &  & & iRT & 1.50 & & \({ }_{0}^{0.85}\) & \(\begin{array}{ll}301 & 1.00 \\ 302 & 0.83\end{array}\) & Esocc & 1.65 & & \\
\hline \({ }_{\text {cisar }}\) & 0.44
0.15 & \({ }_{6 F 14}^{6 F 12}\) & 0.40 & \({ }^{7} 9\) & 1.00 & \({ }_{25}{ }^{\text {afig }}\) & 0.38 & \(\begin{array}{ll}30.2 & 0.83 \\ 30.3 & 0.75 \\ \\ \end{array}\) & E80F & 1.20 & EF40 & \\
\hline 6AGS & 027 & \({ }^{6 F 15}\) & 0.65 & 724 & 0.80 & \({ }^{25 L 6 G}\) & \(0 \cdot 20\) & 3050.83 & E883 & 1-20 & EF42 & 0.33 \\
\hline batis & 0.50 & \({ }_{6 F 18}^{6818}\) & 0.55 & 9130 & 0.65 & 25 y & 0.38 & \(807 \quad 0.59\) & E92CC & & & \\
\hline 6A, \({ }_{\text {GAJ }}\) & 0.75
0.28 & 6F23
\(6 \mathrm{~F}_{24}\) & 0.6 & \(9 \mathrm{D7}\) & 0.40 & & & & El 180 F & & EFRO & \\
\hline 6AJS & 0.28
0.27 & \({ }_{6}^{6 \mathrm{~F} 24} 8\) & 0.51 & 10 C 2 & 0.65 & \({ }_{25 \% 5}^{252+4}\) & 0.33
0.60 & \(\begin{array}{ll}1821 & 0.5 \\ \text { อิ702 } & 0 .\end{array}\) & E182CC & 1.00 & EFr83 & 0 \\
\hline GAK6 & 0.60 & 8 F 26 & 0.28 & 10 Cl & 0.28 & 2826: & 0.70 & \({ }^{5763} \quad 0.50\) & E1148 & 53 & EF86 & 27 \\
\hline 6 AK 3 & \(0 \cdot 30\) & 6F28 & 0.60 & 1011 E & 0.55 & 2807 & 1.00 & 6060 0.30 & EAJí & & EF89 & 0.23 \\
\hline bALB & 0.12 & \({ }_{6 \mathrm{G} 6 \mathrm{~S}} 6\) & 0.30 & 10F1 & 0.50 & 30AJ & 0.65 & 71930.53 & & & EF91 & \(0 \cdot 17\) \\
\hline 6AM & 0.55 & 6G69 & \(0 \cdot\) & 10Fy & \(0 \cdot 65\) & 30 Cl & 0.28 & 74750 & Eabc8 & & EF92 & \(0 \cdot 30\) \\
\hline HANA & 0.48 & \({ }^{\text {baH8 }}\) & 0.75 & 10 Fl 18 & 0.55 & 300C15 & 0.58 & A1834 1.00 & EAC91 & & EF & 0.28 \\
\hline 6AQs & 0.22
0.94 & & & 10 LL 14 & 0.33 & 30 Cl 7 & 0.76 & A2134 & RaF42 & 0.48 & & \\
\hline GARS & 0.55 & 6H6GT & 18 & 10 LD & & \(30 \mathrm{Cl}{ }^{3}\) & 0.55 & \({ }^{\text {AC2PEN }}\) & EAF801 & & EFIB:3 & 0.25 \\
\hline 6 AR6 & 1.00 & 6JJGT & 0.29 & 10PL12 & & 30 Fs & 0.81 & 0.98 & FB3-1 & & EF184 & 0.27 \\
\hline 6 6as7 & 1.00 & \({ }_{6}^{6} 56\) & 0.20 & 10 Pl 3 & 0.54 & 30 FLL & 0.58
0.60 & AC2PENDD & FBC41 & & EFP94 & 1.20
0 \\
\hline gath
6 aUs & 0.30 & \({ }^{6 . J} 7(\mathrm{M})\) & \({ }_{0} 2.38\) & 10P14 & 2.00 & 30 FL 12 & 0.68 & & EBC81 & 0.29 & EH90 & 60 \\
\hline bavb & 0.33 & 6, JUa & 0.75 & P18 & 0.28 & \(30 \mathrm{FL13}\) & 0.50 & 0.38 & EBC90 & 0.30 & EK90 & 0.20 \\
\hline 6AW8 & 0.65 & 6K74 & 0.12 & 12A6 & 1.00 & 30 FL 14 & 0.66 & AC/PEN(7) & EBC91 & 0.28 & EL32 & 0.18 \\
\hline 6 AX 4 & 0.55 & 6 K 8 & \(0 \cdot 33\) & 12AC6 & 0.55 & :30L3 & 0.89 & 0.88 & EBF80 & 0.30 & ELI34 & 0.48 \\
\hline ab8G & 0.25 & \({ }^{6} \mathrm{Ll}\) & 2.00 & 12ADE & 0.80 & \(30 \mathrm{L15}\) & 0.55 & AC/THl 30 & EBF8 & \(0 \cdot 38\) & EL & \\
\hline 6 B & 0.18 & L5GT & 0.5 & 2 & \(0 \cdot 80\) & 301.17 & 0.65 & AC/TP 0.98 & EBF89 & & EL4 & \\
\hline
\end{tabular}


\section*{mer IIOMI PE.AUDIOLC IUANTICHARI}

\section*{FREE-Audio IC Identichart}

Whether you are thinking of building an amplifier or you want some ideas on using i.c.s. in audio circuits, the Audio I.C. Identichart is exactly what you need. It gives comprehensive data on over 80 i.c.s. ranging fromlow level preamplifiers to hybrids rated at 50W. As well as data, the chart contains suggestions for using i.c.s. in mixers, tape recorders, record players, etc.

\section*{Special design feature! Semiconductor Tester}

Select - match - compare and measure your discrete semi conductors. A general purpose discrete semiconductor tester capable of measuring the main parameters of transistors, rectifier and signal diodes, Zener diodes, thyristors and unijunctions, as well as providing both voltmeter and

\section*{ammeeter tuction sas sa a added bonus}

\section*{Rondo Quadraphonic System}

Part two of this exciting design series covers the audio amplifier sections including four solid-state 20 w power amplifiers.

\section*{tancun \\ ELECTRONICS}
-keeps you abreast of Technology OCTOBER ISSUE OUTNOW 20p


MAGNETIC HEADS P.O.A
210028 RCA............ 9 TRACK
259019 RRACA........... 8 TRACK
257124 RCA........... 8 TRACK
28282 RCA........... 7 TRACK
303489 RCA........... 7 TRACK
73927 RCA.......... 7 TRACK
303464 RCA

TRANSISTORS \& DIODES


RCA PHOTOMULTIPLIER C31005B Checked and tested


RIDGE RECTIFIERS B4OKO5 50v4a

RECTIFIER STACKS
\begin{tabular}{|c|}
\hline GEX541B1P2 ......f6 \\
\hline GEX541 D2P1 \\
\hline \multirow[t]{3}{*}{GEX541NB1P1F... E6.00 GEX541HP3F . . . . . 600} \\
\hline \\
\hline \\
\hline
\end{tabular}

INTEGRATED CIRCUITS
MC3544 …...........
MC358AG .......... \(£ 5.00\)

SWITCHE
Edwards High Vacuum "Speedivac" model VSK1B range \(25 \cdot 760\) torr contact ratings 250 v .5 a . volume \(4.2 \mathrm{cu} . \mathrm{cm}\). max. working f6.20 Belling Delay hand reset L415 \(\quad £ 1 \cdot 10\) Stackpole min. rocker 125v.10a.250v. 5 5a
Tippalite Rocker 12v............................60p
60p Securex 5000 press button 250 v . ac. . \(\mathbf{\text { E }} \mathbf{1} 20\) DIGITAL COUNTERS

Veeder Root Zero Reset 6 dig. 110 V . dc \(£ 4.75\) Veeder Root Mech. Reset 4 dig. ......50p Hengstler Reset 6 dig. \(210 s 224 \mathrm{v} \ldots \ldots \mathbf{5} . \mathbf{H}^{2}\) Hengstler Reset 6 dig. 110 v . Type 400 with

RELAYS
Varley Min. \(700 \Omega 12 \mathrm{v}\). 50 p
Siemens Min 1212 v
50p
Magnetic Dev. Type 596E .............. \(\mathbf{\Sigma 2 0 0}\)
KEYBOARDS 240 v
.£3-50
THYRISTORS
GE2N1774 200v. 5a.£1-20
CR1-021C 20v. 1a. .. 25p
100-101B 100 v .

CL Alpha Verifier (PN7035130) ....£27.50
ELECTROACOUSTIC UNIT
6 watt (peak) Amplifier 240 v . AC, with inputs for Radio, Tape Recorder, freq fesponse \(80-12,500 \mathrm{~Hz}\), bass and treble controls, 2 speakers. Dimensions \(265 \times\) \(235 \times 580 \mathrm{~mm}\). Net weight 10 Kg . Idea for education seminars etc. \(\mathbf{£ 0 0} \mathbf{0 0}\) incl
.... 5.00
CA3021 .....................15p
CA3028A ...........97p
CA33038A
CA3055
...................1.24
CA3085

CR10-021 10a..... \(\mathbf{1} .00\)
CR10-40B 10a..... £1.00
CR10-05110a.
BTX-82-300R 300... £1.00
26a................. 00
CONNECTORS
McMurdo Red. Range. Plug RP24
McMurdo Red Range. SKT RS32
Sylvania Edge. 48 way 0.1 mm
Ulta Gold plated Contacts. O.
C

CAPACITORS


Daly Electrolytic 9000 uf 40 v .50 p ; Wego paper \(4 \mu \mathrm{f} 400 \mathrm{v} 60 \mathrm{p}\); Dubilie AC 35 p . TCCV13 Type 426100 uf 15 Jv . DC 50p; R.I.C. type 12971.8 uf 440 v MOTOR'S

GEC fractional \(1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 2850 \mathrm{rpm} . . . . . . . . . . \mathbf{E S}^{2} 50\) carr. 67 p E.E. \(\frac{1}{2}\) hp 230v. 50 c 1 ph 50c. 1440 rpm compl ete with cap \(80 / 100 \mathrm{uf} 275 \mathrm{v}\).... \(\mathbf{5 1 3 - 0 0}\) 76813-393 Potter Instr. 110v. DC 4amp 0.2 hp . Cont. flange mounting precision tape transport motor (£80 value). \(\mathbf{£ 2 5} \mathbf{0 0}\) incl. car.
FANS, CENTRIFUGAL BLOWERS
Alrmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller \& casing (corresponds to current type \(3965{ }^{1 \mathrm{ph}^{\prime}}{ }^{\text {"' }} 50 \mathrm{c} 230 \mathrm{v}\). 425 cfm free air weight \(9 \frac{1}{\mathrm{l}} \mathrm{bs}\) inct £21.00.
Woods Aerofoil short casing type "S' 2700rpm 220/250v 1ph 50 c . \(6^{\prime \prime}\) plastic mpeller incl. p.p. £11-50.
Woods Aerofoil Code 7.5 280K \(200 / 250 \mathrm{~V}\) \(1.0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1}{2}{ }^{\text {" }}\) impeller 14
blades incl. p.p. \(\mathbf{~} 13 \cdot 50\).
Service Electrlc Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Preumatic conveying. Cooling Electronic equipment, Air blast to 575 ) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 441 b price incl. carr. £41.00. Secomak model 350250 v \(1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{gpm}\) continuous 50 cfm 2 in w.g. net weight 34lbs, price incl. carr. £26.00. Alr Controls type VBL4 200/250v 1ph 50c. 110 cfm ree air weight \(7 \frac{1}{2}\) los price incl. p.p. \(£ 14-50\).
WIlliam Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8 hg up to 29 in . mercury rpm 1420 E. 3 phase induction, motor thp cont. 220/250v. \(380 / 440 \mathrm{v}\). \(£ 21 \cdot 00 \mathrm{incl}\). carr.
Gast MFG. Vacuum pump 0522-P702-R26X Motor \(110 / 120 \mathrm{v}\). A.C. 1 ph . 60 c 1725 rpm. Class E
Or as compressor 10 psi int. or 15 psi cont. \(£ 25 \cdot 00\)
 incl carr.
Where p.p. not advised add 10 p per \(£\) handling and post (in UK). Cash with order. Personal callers welcome. Open Mon-Wed 9.30-5.00 Fri.-Sat. 9.30-5.00. Free Car Park adjacent.

\section*{W. \& B. MACFARLANE \\ 126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL}


The latest B.S.R. 8 Track cartridge Replay Deck. Ready to install in your Hi-Fi Stereo System.
This unit comes complete with Hi Gain Stereo Pre-Amplifier, 4-Programme Indicator Lamps. Track Selector Switch, al leads and plugs, etc. for 230 volt A.C. mains operation

\section*{5W \& 10W AMPS} 5Wonv£1.98 10W oniv \(£ 2.49\)
```

Spacification:-
Nonimal Valts
Into 30hms
Into80hms
Typical Distortion
Freq. response at 3dB
Sensitivity \Typicaly\
Full power consumption (30 0hms
\$0\textrm{Hz}\mathrm{ to 30KHz 10Hz to 30KHz}
20mV

```

The 5W matchbox sized amplifier will run satisfactorily from a 12 V car battery. Can also be used for portable voice reinforcement such as public functions where mains supply is not accessible. A small mains unit kit is avaiłable
Two amplifiers are ideal for Stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit.
Discounts are available for quantity orders.
Cheapest in the U.K. Built and tested

\section*{STEREO DECODER \\  \\ incl \(P\) \& \(P\) and \(V A T\)}

A ready built unit, ready for connection to the I.F. stages of your existing FM Radio or Tuner. A tell tale light can be connected to show the presence of a Stereo transmission and correct operation.
The Unit is in the form of a small printed circuit, and no further alignment is necessary, as all preset adjustments have already been carried out at the factory.
It is recommended that a L.E.D. is used as the indicating light and a suitable device is available from us at \(36 \frac{1}{2} p\).
Supplied with all necessary instructions.

1 enclose f
5 W Amps
for
5 W Amps/ 10 W Amps
8 Tracks/
Please insert quantities and delete those not applicable.
Name
Address


Dept. B, 222/224, West Road Westcliff-on-Sea,
Essex 5SO 9DF
Tel: Southend (0702) 46344

\section*{G. F. MILWARD}

\section*{ELECTRONIC COMPONENTS \\ Wholesale/Retail:}

\section*{Special Offer ! ! !-From Stock-New-Boxed-AND 60\% Discount! IMULLARD ELECTROLYTIC CAPACITORS}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Working Voltage Vdc & Capacifance & Max. RIpple Current at \(50^{\circ} \mathrm{C}\) & Weight & Price \\
\hline 07114472 & 10 & 4700 & 2.5 mps & 102 & 15 \\
\hline 07114682 & 10 & \({ }_{6300}^{680}\) & \({ }^{4} \mathrm{amps}\) & 102 & 17 p \\
\hline \({ }^{071} 071154723\) & 16 & \begin{tabular}{l}
3360 \\
\hline 400
\end{tabular} & \({ }_{3}^{2.4} \mathbf{4} \mathrm{mps}\) & 102 & 178 \\
\hline 07115682 & 16 & 68800 & \({ }_{5.8}^{3.8 \mathrm{amps}}\) & \(\underset{\substack{102 \\ 102}}{102}\) & \({ }_{220}^{17 p}\) \\
\hline 07115103 & 16 & 10000 & 7.9 amps & 2toz & \({ }_{27 \mathrm{p}}\) \\
\hline ( 071182828 & 63
10 & \(11000{ }^{2200}+11000\) & 5.8 amps & 302 & \({ }^{30}\) \\
\hline 07214173 & 10 & 160500 +16500 & \({ }^{10.6} \mathbf{1 3}\) amps & 302 & 37p \\
\hline 07215752 & 16 & \(7500+7500\) & 10.5 amps & \({ }_{302}\) & \({ }_{370}\) \\
\hline 07215113 & 16 & \(11000+11000\) & 13.8 amps & \(4{ }^{\text {+ }} 1\) & \({ }_{49}\) \\
\hline 007216502 & 25 & 500022005000 & \({ }^{2.2} 2 \mathrm{mmps}\) & 102 & \({ }^{15}\) \\
\hline 07216752 & 25 & 7500 +5000 & \({ }^{9.6}\) amps & 3102 & 370 \\
\hline 07217342 & 40 & \(3400+3400\) &  & 402 & P \\
\hline 07217502 & 40 & \(5000+5000\) & 12.0 amps & \({ }_{4}\) & 379 \\
\hline 0718681 & 63 & 680 & 2.4 amps & & \\
\hline 07218172 & 63 & \(1650+165\) & 7.8 amps & 302 & 37p \\
\hline \multicolumn{6}{|l|}{106 and 107 Series} \\
\hline 10614153 & & 15000 & 7 amps & 402 & \\
\hline 10615103 & \({ }^{16}\) & 10000 & 7 amps & +ox & 650 \\
\hline \({ }_{106} 171703\) & 25 & \({ }^{220000}\) & 17 amps & & E4.12 \\
\hline +10618193 & \({ }_{63}^{40}\) & 10000
15000 & \({ }^{12}\) amps & 7102 & +194p \\
\hline 10710222 & 100 & \({ }_{2200}\) & 10 amps & ¢ & 74p \\
\hline Type No. & Voltage & Capacilance & Weight & & Price \\
\hline 10215163 & 16 & \({ }^{16000}\) & \({ }^{800}\) & & 20p \\
\hline 10490003
102
16802 & 20 & \({ }^{39000}\) & \({ }^{1602}\) & & 30 p \\
\hline 10417562 & \({ }_{40}\) & 8000
5600 & 702 & & 25p \\
\hline 10490001 & 45 & 20000 & 1608 & & \({ }_{50 \mathrm{p}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Please calculate the weight of your order and include appropriate postage.} \\
\hline Not over & Ordinary
Parcels \\
\hline \(1 \mathrm{l} \mathrm{l}^{1} \mathrm{~b}\). & \({ }^{168}\) \\
\hline \({ }_{4}^{216}\) & \({ }_{25}^{215}\) \\
\hline \({ }_{6} 61 b^{16}\) & 29p \\
\hline \({ }_{14}^{1016}\) & \({ }^{37}\) \\
\hline  & \({ }^{47}\) \\
\hline \multirow[t]{2}{*}{\({ }_{2216}^{181 \mathrm{~b}}\)..} & ..... \({ }^{\text {57P }}\) \\
\hline & .... 67p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2 C [뮤}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(\cdots\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ne,}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{poy 0} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

SMALL ELECTROLYTICS


NEW! NEW! NEW! NEW!
An aerosol spray providing a convenient means of produeing any number of copies of a Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch In normal manner. .. .. .. .. .. \(£ 1.00\) plus
Light sensitive a abrosol spray ..
 1.00
50 p

NEWER THAN NEW!!! Fibre Glass Board pre-treated with ont-senslitive lacquer enabing you to
roduce prototype printed circuits within five minutes. \(75 \mathrm{~mm} \times 100 \mathrm{~mm}\) \(50 \mathrm{~mm} \times 100 \mathrm{~mm}\) \(50 \mathrm{~mm} \times 200 \mathrm{~mm}\) poxy-Resin \(75 \mathrm{~mm} \times 100 \mathrm{~mm}\) \(50 \mathrm{~mm} \times 200 \mathrm{~mm}\)

MULLARD POLYESTER CAPACITORS \(001 \mu \mathrm{~F} \begin{array}{r}500.000 \text { in STOCKI!I } \\ 0018 \mu \mathrm{~F} \\ .0056 \mu \mathrm{l}\end{array}\) \(.0012 \mu\) f \(\qquad\)




RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for \(£ 7 \cdot 50,1,000 £ 50\).

\section*{unrepeatable bargain BD112}

TO3-NPN DIFFUSED SILICON PLANAR EPITAXIAL
VCBO COLLECTOR TO BASE- 80 VOLTS,
VCEO COLLECTOR TO EMITTER-60 VOLTS,
20 WATTS- 2 AMPS - 30 MHZ, FEATURES HIG
OVER WIDE RANGE OF COLLECTOR CURRENT


\section*{"SLO-SYN" 3-HEAD SYNCHRONOUS STEPPING MOTOR}

Type SS15. These fine motors are easily reversed, starting and siopping in ess ar and holding torque of mechanical braking. Simple relay circult can be applied to give DC., to winding for a maximum holding torque o 60 Hz . 72 rDm . STEPPING. Holding torque at 60 steps per second- \(100 \mathrm{oz} / \mathrm{ln}\). Can be wired to glve 100 or 200 steps
 t" dis. Weight 6it ibs. BRAN FAN/ BLOWER Precision-built in Germany
Dynamically balanced main Dynamicatly balanced mains
unit (200/240) continuous unit ( \(200 / 240\) ) continuou
rated, reversible 60 MA rated, reversible 60MA o
run. Size: \(5 \hbar^{n}\)
dia. \(x\)
\(2 i\) deep. Back plate is tapped
for 4 fixing screws (supplled). Well under maker's price at \(£ 3\). \(P\). \& \(P\). 200 .
Similar unit to above but \(77^{\prime \prime}\) dia. \(\times 3^{\prime \prime}\) deep. \(\& 4 \cdot 50\). \(\frac{\text { P. \&P. 25D }}{8(P)}\) SMITHS RINGER-TIMER Reliable 15 minute times. spring wound (concurrent with time setting) \(15 \times 1 \mathrm{~min}\) divisions, approximately
divislons. Panel mounting with chrome divislons. Panel mounting with ehrom
bezel 3\(\}^{\prime \prime}\) dia. \(£ 130.150\). P . \(P\).


GEARED MOTORS
"PEARED MOTORS \({ }^{\text {Gervalux" }}\) rpm geared motor. Type SD14,
\(230 / 250 \mathrm{v}\). \(A C\)., 22 ib/in. spindle. 1 st ciass condition
\(£ 7.50\) each. 50 p P. \& P. \(£ 7.50\) each. 50 p P. \(\&\) only as
Also limited number
above, BRAND NEW, \(£ 12.50\) Above, BRAND NEW, \(£ 12.50\) open rame shaded pole GEARED (Dural gear case)
240 AC., 28 rpm . NEW HIGH TORQUE, approx.
verall sIze: \(3{ }^{12} \times 3 t^{\prime \prime} \times\)

 110rpm with pressed steel gear case (similar to above
but slightly smaller). \(£ 2.70\). P. \& P. 30 .


SPIT MOTOR
\(5 \frac{1}{2} \mathrm{ram} .2 \mathrm{~m}^{2} \times 1 \mathrm{~m}^{2} \times 6 \mathbf{1}^{\prime \prime}\) high. \(240 \mathrm{v} . \mathrm{AC}\)



AMPEX 7.5v. DC MOTOR This is an uitra precision tape Motor designed for use in the recorder. Torque \(450 \mathrm{GM} / \mathrm{CM}\) retail load at 500 ma . Draws 50 ma on run. 600 mm . \(\pm\) speed
adjustment. internal AF/RF adjustment. Internal AF/R
suppression.
\(t^{*}\) dla spindie, motor \(3^{\prime \prime}\) dia. \(\times 11^{\prime \prime}\)
Original cost \(£ 16.50\). OUR P. 25 . Large §̧uantifies availab speclal quotations). Mu
75 p 日ach. FREEP. \& P.
"CROUZET" MOTORS Type 965
\(115 / 240 \mathrm{v} .50 \mathrm{~Hz} .48 \mathrm{w}\). Sloutly con-
structed, \(211 / 16^{\prime \prime}\) dia. \(\times 3 \mathrm{z}^{\prime \prime}\) long



Type IMP Mk. 2. BRAND NEW and boxed. These well known timers are already in worid wide use and are
perfect for Industriai Electronic Timing. Research and for all machine control timing problems. Repetative accuracy better than \(0.5 \%\) of full scale setting. Two or more can be interconnected
seribe of processes. 2301250 V . 50 Hz , also avallable
als. 60 Hz . 15 mins , full scale 15 secs . per division. Driven by self-starting sync, motor, Contact rating 5 amp a also Ac. actuated micro-switches. Normal pric probably in excess of 16 . Complete with multi-p connector as illustrated. \(\mathbf{6} 6.50\). P. \& P. 25p

\section*{MAINS
SOLENOID This little unit gives vertical lift of approximately \(1^{\prime \prime}\) through
hinged}
 FREE P. \& P. Special quotes for quantities.
SOLENOIDS SOLENOIDS
by WESTOOL
\(240 A C\) type MM6.
316. pull \(23^{\prime \prime} \times 1^{\prime \prime} \times\)
.


 "DECCO" MAINS SOLENOID Compact and very powerful. 161b
pull. \({ }^{\text {F }}\) travel which can be increased to \(1^{\prime \prime}\) by removing captive encre-plate Overall size:
\&2. P. \& P. 20 p

7 DIGIT COUNTER by "Counting Instruments Ltd.'
Non re-set, robust construction
115 V AC. \(£ 1 \cdot 20\). P. \& P. 10 p .

3 BANK MAINS COUNTER by "E.N.M. LTD."'SERAND NEW.
by digits per unit. Robust and neat.
 supply

"'RE CIRK IT'" Mains 10amp cut-out by "Neimman Electric" Germany 90 p each. P. \&P. 10 p . 10 or more 70 p

PLUG-IN RELAYS by SCHRACK
(PERSPEX ENCLOSED)
OCTAL (2 c/0) 6 amp contacts at following voltages PRICE EACH 110 D.
2 A.C., 48 D.C., 48 A.C., 60 A.C. 60 Dmp contacts
PRICE EACH E1.
RA and RN Serlee (4 c/o) 3 amp Gold Plated Contacts. Handsome
 48D.C. 60 A.C., 11
Base sockets for all sbove types 10 p .
Please add 10p towards P\&P on all ordurs.

From JAPAN. TAKAMISAWA Perspex enclosed rolays:
Type MO 308, 24V. DC. 600 ohms (4c/0), Complete with base Type MQ 308, 24V. DC.
socket. BOp, P, \&P, 10 p


TANGENTIAL HEATER Slently drlven by shaded
pole Mycalex motor, powerfil and smooth running with aluminium impeller
(outlet \(\left.5 t^{\prime \prime} \times 1_{i}\right)^{\prime}\). Mains voltage PLUS matching heater unit with spiral
element. May be switiched
for 500 or \(1,000 \mathrm{w} . \mathbf{£ 1 . 8 0}\)
P. \&P. 30 p .
DOUGLAS TRANSFORMERS Full range in stock, SAE or phone for list please.


\section*{NORPLEX}
 conductive properties. Heat res Istant, ideal for P.C. 's etc. THIS IS A
SPECIAL PURCHASE AND ONLY AVALABLE WHILE STOCKS LASTi SIzes: \(12^{2-} \times 12^{\prime \prime} ; 24^{4} \times 12^{\prime \prime} ; 24^{\circ} \times 24^{*} ;\) FULL SHEET \(43^{*} \times 37^{\prime \prime}\)
 additional sheet.

'GOYEN' PRESSURE SWITCH Incorporating differential adjusiment between \(2^{\prime \prime}\) and
\(12^{\prime \prime}\) water gauge (a max. of approx. ip.s.1.). A single pole change-over swltch rated 15 amps. 250v. is
 £1.45. P. \& P. 20 p.

\section*{PYE MICROSWITCH}

OTEHALL Type
This swltch has a \(11^{\prime \prime} \times 15 / 3\)
fractlona! travel actuates. 6
PLEASE ADD 10\% FOR V.A.T. ON ALL
PRICES SHOWN INCLUDING P \& P
ostal or carriage charges are for G.8. Only. Orders welcomed from established companies, educational deots., etc. All orders under \(£ 2.50\) C.W.O., please. Company orders under \(£ 2.50\), surcharge 50 p unless
 WHONE AMPIIFIER XICh you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one slde of the telephone. A useful office ald. On/Off switch. Volume control. Operates on nne 9 v battery. Size \(3 \ln . \times 4 \ln\). Ready to operate. Complete with battery. \(P\) \& \(P\) Rn

This NEW, versatile Do Luxe 4Etation Transistorlsed Interoom (1 Mastor and 3 Bubs) for desk or wall mounting can solve your communication problems instantly. EffecMiseter to 8ube and 8ubs to Master. Mister to 8ubs and 8ubs to Mator. With Selector switch. Ideally sultable for offlce, shop home or surgery. three \(\theta 8 \mathrm{ft}\). connecting wlres and accessorles. On/Off switch volume control. P. \& P. 44 p .

WEST LONDON DIRECT SUPPLIES
169 KENSINGTON HIGH STREET, LONDON W8 6SN

GARBLED DATA? IS YOUR DATA LINK IMPOSSIBLE?

A CINORTCELE LOW COST, HIGH PERFORMANCE "BIT SYNCH" WILL GIVE CLEAN DATA FROM UNREADABLE SIGNALS. WORKS in signal to noise of odb. bit rates 25-2M. BITS P.C. MOUNTING.

\section*{CINORTCELE LTD., \\ Oaklands House, Solartron Road, Farnborough, Hants. Farnboro' 40554/5}

\section*{SERVICE TRADING CO}

MATSUNAGA

\section*{AMP}

OPEN TYPE (Panel Mounting)
1 amp 47.00. Post 50 p.
\(2 \frac{1}{2} \mathrm{amp} \pm 8 \cdot 05\). Post 60p.

> L.T. TRANSFORMERS


RING TRANSFORMERS Thase multi-purpose Auto Transformers. With
large centre aperture Targe centre aperture. can be used as a b Double
wound current Transiormer. Auto Transtormer H.T. or L.T. Transtormer, by simply hand wind-
Ing the reauired E.g. Using the RT.Amber of turns through the centre opening



\section*{VOLTAGE CHANGING}

\section*{TRANSFORMER}
M.f. to highest W. D. spec. Auto wound. And tapped \(0-130\),
\(160-200-250\) at least \(2 K \mathrm{KA}\). Can also be used as \(230-240 \mathrm{~V}\), input.



240 Y A.C. SOLENOID OPERATED
FLUID VALVE
WIII handle llitulds or gases up to 7 p.s.I., Forged
rass body, stainless steel core and spring
 PRICE: E1.75. Post 25p. Special
quantity. NEW in original packing.

\section*{FOOT SWITCH}

Sultable for Motors, Drills, etc., etc.
5 amp . 250 Volt. Price 75 p. Post 15 p .
\begin{tabular}{l} 
PARVALUX \\
TYPE:SDI.S/89400/OM \\
\hline
\end{tabular}
2301250 v . A.c. . 55 r r.p.m. \(22 \mathrm{~b} / \mathrm{mms}\) Continuously rated, Incl. bas
Post 30p. New and unused. \(\mathrm{l} / \mathrm{Ins}\)
\(\varepsilon .0 .00\). คot

\section*{GENERAL ELECTRIC POWER-} GLAS TRIACS
10 amp. Glass passlvated plastlic trlac. Latest device from
U. S . A. Long term reliablity. Type SC 1460 10 amp. 400 PIV


HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH MOUNT ASSEMBLY
Each bank ASmprises of a change-over
rated at 10 amps 240 volt A.C. Black




VERY SPECIAL OFFER
MICRO SWITCH
Mamp clo contacts. M.f.g. bg. Honeywell.
NEW. Twenty for E 1 :50. Post 10 p
(mIn. 20).
'HONEYWELL' LEVER OPERATED MICROSWITCH 15 mpa 250 volt A.C. clo contacts.
NEW In maker's carton. Price 10 for
\(\mathbf{\varepsilon 1 . 9 0}\). Post 150 .

INSULATION TESTERS (NEW)
 500 VOL'TS, 500 , megohms \(£ 28 \cdot 00\). Post



\section*{SIRTEE! STROBE! STRODEI}
+ FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERNG CIICUITS, PROVISION FOR FEX EXPERIMENTERS "ECONOMY" KIT Adjustatle 1 10 30 Flash per sec. All electronic com post 30p.
new industrial kit
NEW ideally sultable lor schools, laboralories etc. Roller le printed ciercuit. Adjustabtie 1-80 fop.s., approx. atput or Hy-Lygh. Ance
HY-LIGHT STROBE
 siltht output greater than many ( so called 4 Joule)
Ltrobes. Price \(£ 12 \cdot 00\), Post 500 . strobes. Price \(£ 12.00\). Post 50 p .
SUPER HY-LIGHT KIT
Hy-Lyghl strobe the output of our well prove Variable spend from 1-13 flash per sec.
light. OMLY \(£ 20.00\). Post 75 p.
attractive, robust, fully ventilated
METAL CASEE for the Super hyl-Lyoht kit including
For hy-lyght strobe incl. reflector, es.75. Port 25p
7-INCH POLISHED REFLECTOR. Ideally sulted
******t
RAINBOW STROBE FOUUR LIGHT CONTROL
Will operate four of our Hy-Lyght or Super Hy-Lyon
Strobes in elther \(1,2,3,4\) sequence; \(2+;\) or al together Thoroughly lested and reliable, Complete with ful connection Instructions. Price: \&is.00. Post 50p. Send \(\neq\) COLOUR WHEEL PROJECTOR Complere with oil filled compur wheel. 100 watt lamp.
\(200 / 240 \mathrm{~V}\) AC. Features ex. tremely efficient optical system. \(£ 18.50\). Post 50p.
6 INCH COLOURWHEEL As usediorDiscolighting effects, tc. Price £500. Post 30p.
R.P.M. MOTOR

200020 Yolt A. C. 1 r.p.m. synchronous motor 2 watt Alclock. Spindie. 10 mm . Long. 3 mm. dia. Motor only
20 mm deep. Fixing centres 44 mm . Price \(\approx 1\). 10 . Post 5 p .

\section*{BIG BLACK LIGHT}
 BLACK LIGHT FLUORESCENT U.V. TUBES



\section*{ELECTRONIC ORGAN KIT}


Easy to build, solld state Two fuli octayes (less
sharps and flats). Fitted hardwood case, powered
by two pentile tiv. bat
terles. Complete set oit

50 in 1 ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay,
Transformer, plus a host of other components and a 55 Transformer, plus a host of other components and a 56 .
page instruction leaflet. Some examples of the 50 possible Projects are: Sound level Meter, 2 Transistor Radio Amplifier etc., etc. Price \(\mathbf{E 8 . 8 0}\).

\section*{V/IT All prices \(10 \%\) VAT. (lop in the li) \\ To all orders add \(10^{\circ}\). VA to total
value of goods including carriage; \\ value of yoods including carriage;}

INSULATED TERMINALS Available in black, red, white, yellow, blue and green. New
10 p each. Inct, P. \& P. Minimum 10 p each.
order 6.

\section*{METER BARGAIN}

BALANCE/LEVEL METERS
100-0-100 Micro Amp. Slze \(1 \frac{1}{2} / \mathrm{ln} . x\) 11in. \(x \frac{1}{8} \mathrm{in}\)


METERS NEWI \(2 \frac{1}{\mathrm{in}} \mathrm{m}\). FLUSH ROUND


\section*{RELAYS}
\[
\begin{aligned}
& \text { SIEMENS PLESSEY, } \\
& \text { MINIATURE RELAYS }
\end{aligned}
\]
 Heavy Duty. All Post Pald. ('including Base)
9 VOLT D.C. RELAY
cho amp contacts. 70 hm colt. 75p. Post \(5 p\). 12 VOLT D.C. RELAY

230 VOLT A.C. 'DIAMOND H' RELAYS
(Unused)
Three sets c/o contacts rated at 5 amps.
Prlce 55p Inc. P. \& P. 1400 lots \(£ 40.00)\) 24 volt A.C. 3 c/o 55 p. Posi 5 p.

One set c/o contacts rated
MINIATURE RELAYS
9-12 voli D.C. Operation. 2 c/o \(500 \mathrm{M} . \mathrm{A}\). contacts. Size only
 Coil. Size Only \(1 \times \frac{1}{1} \times\) in In . 40p. Post 5 p
MINIATURE LATCHING RELA
In either direction. Coil 1150 ohm. \(15-30 \mathrm{ve}\). D.C. New \(\mathbf{5 5}\).
Post 5 p .


\section*{BLOWER UNIT}
\(200-240\) Volt A.C. BLOWER UNIT Precision German built. Dynamically balanced, quiet, continuously rated,
reversible motor. Consumation Sile 120 mm . dia. Consumption 60 mmA
Price \(£ 300\). Post 30 mm . deep.

230V FAN ASSEMBLY Conilnuously rated, special sealed bearing,
removable aluminium blades. Price 80 p . 4JBANK 3 c/O PUSH BUTTON Complete wSEMBLY black r Complete with black rectangular
buttons. 5 units 85 p. Post \(15 p\).


\section*{}

UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D. operation 6690. Post 30p.
BANK 25 WAY FULL WIPER 25
coil, 24 v. D.C. E7.90. Post 30p
8 BANK 25 WAY FULL WIPER
24 v . D.C. operation \(\$ 9.50\). Post 40 p.
BODINE TYPE N.C.I.
GEARED MOTOR
Type J) 71 r.p.m. torque 10 lb . In.
Reverslble \(1 / 70\) th
h.p. cycle 38
Revarsible 1/70th h.p. cycle 38
amp. (Type 2) 28 r.p.m. toraue 20
Ib. In Reveralbie \(1 / 80\) th h.p. 50 cycle 28 amp .
The above two preclsion made U.S. A. motors are offered in
The 'as new' condition. Price, elther type \(£ 4.54\) or less transformer \(\mathbf{£ 2 \cdot 7 5}\).
These motors are Ideal for rotating aerlais, drawing curtains These motors, are ideal for rotating aerials,
dispiay stands, vending machines, etc, etc.

\section*{600 WATT DIMMER SWITCH}

Easily fitted. Fully quaranteed by makers. Wil escent at mains wattiage. Complete with simple

ALL MMAIL ORDERS, ALSO CALLERS AT
57 BRIDGMAN ROAD, CHISWICK,
LONDON, W4 5BB. Phone: 01-995 1560

\section*{The largest selection}

\section*{BRAND NEW FULLY GUARANTEED DEVICES}


KING OF THE PAKS SIDFR DAVS NEW BI-PAK UNTESTED SEMICONDUCTORS

Patiofa
U 1120 Glass Sut-Min. General Purpose Germantum Diodes ....... 0 Price



\(\begin{array}{ll}2 \times 3053 & 0.18 \\ 20505 & 0.51\end{array}\)


DIODES AND RECTIFIERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline AA119 & 0.09 & BY133 & 0.23 & OAl0 & 0.39 \\
\hline AA120 & 0.09 & B 1164 & 0.55 & OA47 & 0.08 \\
\hline AA129 & 0.09 & BYX 38 & 0 & 0 Ca 9 & 0.08 \\
\hline AAY30 & 0.10 & & 0.46 & 0.479 & 0.08 \\
\hline AAZ13 & 0-11 & HYZ10 & 0.38 & 0 A 81 & 0.08 \\
\hline BA100 & 0.11 & BYZ11 & 0.33 & 0 A 85 & \(0 \cdot 10\) \\
\hline BA116 & 0.23 & BYZ12 & 0.33 & OA90 & 0.07 \\
\hline BA12f & \(0 \cdot 24\) & BYZ13 & 0.28 & 0 O91 & 0.07 \\
\hline BA148 & 0.18 & BYZ16 & 0.44 & OA930 & 0.08 \\
\hline BA154 & 0.13 & BYZ17 & 0.38 & OA200 & 0.07 \\
\hline BA155 & 0.18 & BYZ18 & 0.38 & OA202 & 0.08 \\
\hline BAl56 & 0.15 & BYZ19 & 0.31 & SD10 & 0.08 \\
\hline BY100 & 0.17 & CG62 & & SD19 & 0.08 \\
\hline BY101 & 0.13 & (0A91 E & & 1534 & 0.8 \\
\hline Bry \(10 \overline{0}\) & 0.19 & & 0006 & \(1 \times 34 \mathrm{~A}\) & 0.08 \\
\hline BY114 & 0.13 & C(6651 & & \(1 \times 914\) & 0.07 \\
\hline BY126 & 0.18 & (OATO.0 & 179 & 1 N916 & 0.07 \\
\hline BY127 & 0.17 & Eq.) & 0.07 & \(1 \times 41+3\) & 0.07 \\
\hline BY128 & 0.17 & OAS & 0.39 & 18021 & 0.11 \\
\hline BY130 & 0.18 & OAESL & 0.23 & 18951 & 0.07 \\
\hline
\end{tabular}

NEW LOW PRICE TESTED S.C.R.'s


\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
SILICON 50 WATTS MATCHED NPN/PNP \\
BIP 18 NPN TO-3 Plastic. BIP 20 PNP. Brand new. YCBO \(100 /\) VCEO \(50 / C\) IC 10 A . HFE type \(100 / \mathrm{ft} 3 \mathrm{mHZ}\). OLR PRICE PER PAIR:
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


\begin{tabular}{l} 
vво \\
\(\begin{array}{l}100 \\
200 \\
200\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \multicolumn{3}{c}{ DIACS } \\
FOR WITH \\
TRIACS USE & \\
BR100 & (D32) & 41p \\
\hline
\end{tabular}
FREE
One 50p Pak of your
own choice tree with
orders yalued 84 or over. orders valued 24 or over.
BRAND NEW TEXAS
GERM. TRANSISTORE GERM. TRANSiston
Coded and gasante

120 VCR NIX
 CODED ND 120, AND
1.24
19 p cach. TO.5 SPN


限 Sil. trans. sultable for
P.E. Orgar. Metal 10.18
Eqviv. ZTX 300 6p each. P.E. Organ, Metal TO. 18
Equvt. ZTX 300 6p each.
Any Qty. NEW EDITION 1972 TRANSISTOR EQUIVA-
LENTS BOOK. A comLENTS BOOR. A complete cross reference ard equivalents book ior
Europeant, American sand
Japanese Tranisitors.
a large range of technical
BI-PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT

COMPETITIVE PRICES-

\section*{-the lowest prices!}

74 Series T.T.L. I.C'S
bi-paz still lowest in price foll specification guaranteed. all famots mantfacturers
1.1

\section*{INTEGRATED CIRCUIT PAKS}

Manufacturers "Fall Outs" which include Functional and Part-Functional Units. These are claseed as 'out-oj-
spec' from the maker's very rigif specitications. but are ideal for learning about I.C's and experimental work.


\title{
P. F. RALFE \\ 10 Chapel St London N.W.I \\ Phone 01-723 8753
}

\section*{TELEVISION SWEEP GENERATOR}
ty Sweep systems type 505. Frequency coverage \(450-940 \mathrm{MHz}\). (Channels 15-80). Markers at 465/ \(565 / 660 / 750 / 830\) and 900 MHz . Attenuated output in eight, five db steps and fine \(0-10 \mathrm{db}\). Sweep width adjustable from \(1-15 \mathrm{MHz}\). The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: \(19 \times 12 \times 5\) ins. Wt.: 201 bs . Supplied in good working order, price \(\mathbf{E 5 9 . 5 0}+50\) p carriage.

AERIAL CHANGE/OVER RELAYS
of current manufacture designed espec ially for mobile equipments, coil voltage 12 v ., frequency up to 250 MHzat 50 warts Small size only, 2 in. \(x z\) in. Offered brand new, boxed. Price \(£ 1 \cdot 50\), inc. P.\&P
\begin{tabular}{l} 
'ALCAD' Sealed rechargeable \\
Nickel-cadmium batteries. \\
Type W \(3.5,1.2 V\) at 3.5 Ah. Size as \\
'U2'. Offerednew in packs supplying \\
\(12 V, \dot{L} 5\). Orseparatelyat \(£ 1.25\). \\
\hline Automatic Constant current \\
electronic battery chargers \\
specially designed for nickel cad- \\
mium cells. Metered and fused. Up to \\
twelve cells can be charged up to \\
750 mA , variable 0-750mA. Size \\
\(7 \times 6 \times 5 i n s\). Brand new units. Price \\
each \(£ 17\).
\end{tabular}

Smiths Led Weight indicators, self powered, measures 0 to 20 cwts in cwt divisions on a \(4^{\prime \prime}\) cirscale meter indicator, 30 feet of cable and heavy dury load cell use with bell crank or new units special price \(£ 7.50\) post 50 p.

Cossor Electronic Invertors type CRA 200. A high quality device for output. Incorporating the following
features: Input 23-28V D.C
* Full overload protection
- Sine wave output
- Remore control facilities
* Completely Solid State (Silicon transistors).
* Built to Aircraft specifications. * 180 VA of output continuous. May be run in series operation for phase boxed units. Price \(\mathbf{f 1 7 . 5 0}\) Carriage 50p.

\section*{AUDIO OSCILLATORS}

AMERICAN TS-382/U
Covers \(20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}\) in four ranges. Output voltage 1 micro volt to 10 v . in seven ranges. Built in calibrator. Sine
wave O.P. is excellent over complete range. Supplied with transmit case, adaptors and circuits and transiormer for 240 A.C. \(£ 20\).

MINIATUREAEIUNISELECTORS 12 position \(\times 3\) bank 250 ohm coils, I bridging and 2 non-bridging wipers available now-Type 2200A complete with bases. Price \(\mathrm{C4}\).

BRAND NEW DIGITAL PANEL IOMV VOLTMETERS
\(10 \mathrm{MV}-1.99 \mathrm{VV}\). 199 Measuring points. nput impedance 100 Mohm. Automatic zeroing. Measurements: \(155 \mathrm{~mm} \times\) OUR PRICE \(£ 24.50\).

DIGITAL MEASUREMENT Type 2003 Digital Voltmeter. \(3 \frac{1}{2}\) Digit
display. Measuring up to 1000 Volts. display. Measuring up to 1000 Volts AS NEW 665 .

\section*{Noise Generator Model CT-82} Range 15 kHz to 160 MHz very useful noise for factor measurements of receivers/wide band I.F. amplifiers etc. the instrument is directiy calibrated in noise factor and displayed on pane meter, also output meter calibrated in dbs, for \(115-250 \mathrm{vac}\) operation offered in good used condition, small size low
price only \(£ 8\) Carr. 50 p.
H. W. SULLIVAN STANDARD

AIR SPACED CONDENSERS Capacitance range 0 to 100 pi fully screened with engraved vernier subdivided into 100 equal divisions complete with vernier index and original manufacturers seal offered brand new at only \(\mathbf{E} 25\) each.

\section*{BARGAIN OFFER-LOW} VOLTAGE STABILISED POWER SUPPLIES
*Voltage Range \(16-24 \mathrm{~V}\).
*Current Range to 6 Amps. *Full over-voltage and Current protection.
*AC Ripple content better than 5 mV . These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core transformer etc. Of fered in perfect condition, carefully checked before despatch. List price over \(£ 125\). Our price only \(\mathbf{6 2 6 . 5 0}\). Carriage \(£\) I.

\section*{Cossor Radio Telephones} Type CC303
All Solid State except for O-P Valves 25 Watt A.M. offered brand new for high bond applications boot control console. Complete manual supply. Prices \(£ 75\) each + V.A.T.

\section*{SCHOMANDL PRECISION FREQUENCY METER TYPE FDI} WITH FDMI ADAPTOR GPO approved equipment for Radio Telephone Marine servicing etc. offered in as new condition with calibration certificate.
G.E.C. Uniselectors, 8-banks, 25 position full wipe. 75 ohm coil. Not new but excellent working condition

Brand new GEC 3 banks of 25 position uniselectors with fitted suppressor. ©2.50 each.
six Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with index. 12 position 6 bank. Absolutely brand new in makers cartons sold complete with
base. \(£ 6.50\)

CAMBRIDGE PORTABLE POTENTIOMETER type 44228. The ideal tool or checking thermocouples and auxment Accuracy measuring equip NEW. 475.

TINSLEY type 4363D Vernier ponte ciometer. Good condition Price 175.

FIGIDAIRE, AIR-CONDITIONING UNIT. Table-top model. 4 inch diamete pipe outlet. Complete and ready for use. Price \(£ 125\).

WAYNE KERR type B52I Component bridge. Accurate measurement of C \& R. 655. Excellent order hroughout.

\section*{TEKTRONIX OSCILLOSCOPES}

Type 545A with 'CA' plug-in. (Or 'L'). DC-30MHz.
Type S61A with \(3 A 1\) and \(3 B 3\) units. DC-10MHz.
Type 535 with CA plug-in unit. DC-15MHz.
Type 55I. Double-beam with L\&G units. DC-27MHz.
 Also available
Dynamco D7100 with IY2 and IX2 plug-ins. Portable, DC- 30 MHz . Hewlett-Packard 175A. 1781 and 1755 A plug-ins. DC -30 MHz . Marconi TF1300. s/b. DC-15MHz. 675.
Roband RO50A with 5G plug-in. DC-15MHz. Price fl 25.
Solartron CDI400. With two CXI44I and a CXI443 units.
Extremely sensitive instrument. Twin differential inputs.

\section*{SIGNAL GENERATORS}

Marconi type TF80ID. \(10-485 \mathrm{MHz}\). Excellent. P.U.R.

Marconi type TF867. \(15 \mathrm{KHz}-30 \mathrm{MHz}\). \(\mathbf{£ 1 5 0}\).
 Hewlett-Packard 616A. 1780-4000MHz. \(\mathbf{6 7 5}\).
Advance C 2 H . Spot-frequency production-line test instrument 12 freqs. in bands \(500 \mathrm{KHz}-30 \mathrm{MHz}\). \(£ 25\).
Rohde \& Schwarz U.H.F. \(990-1900 \mathrm{MHz}\). P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. \(4-300 \mathrm{MHz}\). FM Dev. \(0-100 \mathrm{KHz}\) in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

MARCONI TEST EQUIPMENT. All items have been calibrated, reconditioned and guaranteed.

\section*{Wave Analyser TF455E. Frequency range 20 Hz . \(£ 105\).}

TF893 Audio Wattmeter. Range \(20 \mathrm{~Hz}-35 \mathrm{KHz}\). Power range 20uW-10W. Impedance \(2.5 \dot{\Omega}\) to \(20 \mathrm{~K} \Omega\) in 48 steps. Direct calibration in Watts and dbm. Price \(£ 45\).
TF2600 Sensitive Valve Voltmeter ImV f.s.d. to 300 V f.s.d. Accuracy \(\pm 1 \%\). Offered as new, price 655 .
TFI370A Wide-range oscillator 10 Hz to 10 Mz . Squarewave up to 100 KHz . High output-up to 1 MHz 31 Volts. 75,100 or \(600 \Omega\) output. List price pre VAT- \(£ 308\). Offered as new at \(£ \mathbf{I} 25\).
TF2162 MF attenuator. DC-1 MHz. O-llldb attenuation in \(\cdot 1 \mathrm{db}\) steps. Impedance 600 ohms unbalanced. Price 650 .
TF2163 U.H.F. Attenuator. DC-1 GHz. \(0-142 \mathrm{db}\) in 1 db steps. Z, 50 ohms. Max. power input 0.5 W . As new Price \(\mathbf{8 7 5}\).
TF80ID/I A.M. Signal Generator up to 470 MHz .
TFII 06 Noise Generator \(1-200 \mathrm{MHz}\). \(£ 75\).
TFI04IB Voltmeter. 300 mV - 300 V . 20 Hz -I 500 MHz . \(£ 45\).
TFI30I Noise Gen. 200 -1700MHz. 50 ohms. 655.
TFI 099 20MHz Sweep Generator as new \(£ 75\).
OAI094AHF Spectrum Analyser \(100 \mathrm{KHz}-30 \mathrm{MHz}\). As new.
TFI4I7 Counter, Frequency Meter 7 digits. Plus range extension unit TF/434/2 to 220 MHz . As new.

JERROLD 900B Sweep Generator with SD8A sweep driver unit. V.H.F. and U.H.F. \(0-1200 \mathrm{MHz}\). centre frequency. 1,10 and 100 MHz markers. Built-in detector, attenuators etc. This instrument is probably the most comprehensive sweeper ever made. P.U.R.

ADVANCE AUDIO SIGNAL GENERATOR TYPE HI. \(15 \mathrm{~Hz}-50 \mathrm{KHz}\) in three ranges. Sine/square wave output. Supplied in first-class working condition. \&IS. Carriage fl each.

R216 V.H.F. AM/FM Communications receivers. Coverage 19-157Mhz. Film scale dial 2 frequency crystal calibrator. Plus all other facilities. Complete with A.C. power supply connecting lead. Supplied in full working order in excellent secondhand condition.

PLEASE ADD \(10 \%\) V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

VALVES AND TRANSISTORS
Telephone enquiries for valves,
transistors, etc., retail 743 4946 trade and export 7430899.
VALVES
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
 \\
 \\
\(0000000000000000000000000 \mathrm{mOOH00000000000mm}\) -
\end{tabular} \\
\hline  &  \\
\hline \[
\begin{aligned}
& \omega \omega_{n} \\
& \text { ovo }
\end{aligned}
\] & \begin{tabular}{l}
OHNNOOOOO000000000000000000000000000000000004 \\

\end{tabular} \\
\hline  &  \\
\hline
\end{tabular}



\section*{MARCONI TEST EQUIPMENT}
 e.g. 1 and 2 MHz
switched

swltched
P.O.A.
TF 8010/1/S SIGNAL GENERATOR.
Range 10-485 MHz in five ranges. R.F. output
\(0.1 \mu \mathrm{~V}-\mathrm{IV}\) source e.m.i. Dial calibrated in \(0.1 \mathrm{HV}-\mathrm{IV}\) source e.m.i. Dial calibrated in
voits, decibels and power relative to thermal voits, decibels and power relaive to
noise. Piston ype attenuator. \(50 \Omega 2\) output
TF 1400 S DOUBLE PULSE GENERATOR WITH TM 6600/S SECONDARY PULSE UNTT. For testing radar, nucleonlcs, 'scopes,
counters, filters etc. SpEC. TF \(140 \mathbf{S}\). Rep.
frequ. 10 Hz to 100 kHz , pulse width 0.1 to
 delay 0 to \(+300 \mu \mathrm{sec}\). \(\mathbf{£ 2 3 0 \text { . }}\)
RACAL UNIVERSAL COUNTER/
TiMER SAS50 (CT488)
8 digit in-
line read-
out.
Facilities
liclude:
direct
frequency
measure-
ment up to
100MHz;
pulse,
period, ratio, time interval and totalising
measurements. Three Independent in-
puts, self-check etc. Fuil spec. and price
on request.

SIGNAL GENERATOR TYPE
AN/USM-18 (MODEL BJ75A)
A precision \(\mathrm{HF} / \mathrm{VHF}\) signal generato
embodylng facilities seldom found or talned in one instrument, namely outputs of CW/AM/PM and sWept carrier, In
the frequency range 10 to 440 MH . Some of
the the frequency range 10 to \(440 \mathrm{MH2}\). Some of
MATIC FREQUENC Instrument Are. AUTO.
STABILISATION (locks output slanal to selected frequency) output constant \(\pm 10 \mathrm{~b}\) ) INTERPOLATION crystal check points) MARKERS (for
S.F.M.)
 ot operatlon \(\mathrm{CW}-\mathrm{HI}\). \(\mathrm{CW}, \mathrm{CW}\) (callbrated and stabllised), AM-400Hz and 1 kHz and external,
\(F M-400 \mathrm{~Hz}\) and 1 kHz and external \(0,75 \mathrm{kHzdev}\), FM-400Hz and 1 kHz and external 0.75 kHzdev ,
S.F.M. \(-x 1, \times 10 . \times 100,0-75.750 \& 7500 \mathrm{kHz} \mathrm{dev}\) resp., P.M. -50 to 5000 pps at 1 to 30 usec
wIdth wldth int. or ext., 150 to 5000 Hz rep rate.
3 meters for; mad. and dev., frequency dlsComplete specification and price on

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.
noise. Pistance, Internal modulation at 1 kHz
impedance.
at up to \(90 \%\) depth, also external sine and at up to \(90 \%\) depth, also external sine and
pulse modulation. Built-In 5 MHz crystal
calibrator Separate R.F. and mod, meters.
P. \(\mathrm{F} 562 \mathrm{~A} / 3\) Oscliator and Detector Unit.

TM 577A for analysls and measurement of Radar Equipment. Frequency range 190 to 230 MHz
with crystai check polnts. Sweep width 0.5 to 5 MHz output pulae delay (a) \(85-175 \mathrm{HSec}\),
(b) \(0.7-1.4\) mSec with \(\times 1\) and \(\times 2\) multiplier and -2 , \(\times 1, \times 2\) multopller. Output
20 m
with \(\times 10\) multipller. \(£ 200\).

 range 1,75GHz-4,2GHz. Mod. F.M. Price on applicatlon
TF 894 AUDIO \(T E S T E R\). Comblned A.F. Generator \((0-25 \mathrm{kHz})\), Output meter (up to
2 W . at 600,15 and \(3 \Omega\), and valve voltmeter (o-800V, with stepped and varlable attenua-
tors.
TELEPHONE ENQUIRIES Felatinin to TEST ERUIPENT hould To view TEST EQUIPMENT please phone for appointment range \(350 \mathrm{kHz}-50 \mathrm{MHz} £ 70\).
TF 1370 R-C OSCILLATOR, SQUARE AND SINE WAVE. Freq.: Sinewave 10Hzoutput: sinewave: 0 - 31.6 V rms., \(10 \mathrm{~Hz}-1 \mathrm{MHz}\), squarewave: \(0-73.2 \mathrm{pp} 10 \mathrm{~Hz}-100 \mathrm{kHz}\). Attenuator range: -50 d 8 to +10 dB . Imp
\(75,100,600 \Omega\). Price upon application.
BC 624 RECEIVER (Part of SCR 522 TX/RX) 100-156 mCs \(n 0\) valves, requires separate \(100-156\) mes. no vales,
PSU for \(28 V\). £2.50. Carriage 50p.
TR 143 TRANSMITTER RECEIVER TR 143 TRANSMITTER RECEIVER \(100 / 1261 \mathrm{mcs}\), requires separate
Price \(£ 12.00\). Carriage \(£ 1.50\).

\section*{TEKTRONIX
OSCILLOSCOPES}

S4A -33 MHz , plug-in Y amps.
\(531-57-60 \mathrm{MHz}\), separate P.S.
\(561 A-10 \mathrm{MHz}\), solld state. compact,
takes the foltowing plugs-ins: \(X, Y\),
differential, sampilng, spectrum ana-
pieligunurs
 G-20 MHz dast rise time \(5 \mathrm{MV}-20 \mathrm{~V}\).
\(\mathrm{M}-30 \mathrm{MHz}\).
N -H00MHz sampling tomv ccm .
R Translstor measurement.
P type calll bration.
3A - Dual trace fom -10 V .
3B3-Delayed sweep tlme base.
134-P602t probe and current probe amplifier, \(1 \mathrm{~mA}-15 \mathrm{~A}\) p. \& p.i new and boxed \({ }^{\text {E12 }}\).
EQUIPMENT
162 wave form generator.
163 Pules generator.

M.O. for ET \({ }^{4336}\) TX (see description in AR88 SPARES. We hold the largent stock in U.K. Write for list. PHASE AUTO TRANSFORMER, wye
nput 400 v, wye output \(241.5 / 230 / 218.5 \mathrm{y}\)
50 C Input 400 V , wye output \(241.5 / 230 / 218.5 \mathrm{~V} 50 \mathrm{C}\)
18 kVA . Made by Westinghouse of USA. Brand new In
UK transport.


SOLATRON DO 905 STABILISED AM-

C3EAR SCANNER ABSEMBLY TYPE With motor for 26 V 600W, elc. \(£ 22.50\).

COLOMOR (ELEETRONICS) 170 Goldhawk Rd., London, W. 12 Tel. 01 - 7430899


\section*{EGW CLEAR PLASTIC PANEL METERS}
USED EXTENSIVELY BY INDUSTRY，GOVT．DEPTS．，EDUCATIONAL AUTHORITIES，etc．
Over 200 ranges in atock－other ranges to onter，Quantity discounts available．Sead for fully illuutrated hrochure

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TYPE MR．85P 4ilin．\(\times\) 4i in．fronts．} \\
\hline & \(\begin{array}{ll}10 \mathrm{~mA} & \cdots . . . \\ 50 \mathrm{~mA} & \cdots\end{array}\) \\
\hline & 100 mA …．．．\({ }^{33} 3.90\) \\
\hline & zooma
1 ampl \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline  &  \\
\hline \({ }^{\text {S0，}}\) & 300 V A．C． C ． 83.90 \\
\hline \(10000-1004 \mathrm{~A}\) A 84.05 & 8 M eterimA 83.90 \\
\hline \({ }^{2004 \mathrm{~A}}\) … 5.54 .05 & VUMeter \\
\hline  &  \\
\hline  &  \\
\hline  & 20 mmp A．C．\({ }^{\text {a }}\) \\
\hline 5uA ……． 2399 &  \\
\hline \multicolumn{2}{|l|}{TYPE MR．52P \({ }^{\text {2fin．square fronts．}}\)} \\
\hline  & 10\％\％D．C．．．．． 52.50 \\
\hline  & 20v． \(\mathrm{B} . \mathrm{C}, \ldots\). ．\(£ 2.50\) \\
\hline \(100 \mu \mathrm{~A}\) ．．．．．．\(£ 3.00\) & 50V．D．C．．．．\(£ 2.50\) \\
\hline \(1001-0-1000 \mathrm{~A}\)（ 22.95 & 300V．D．C．．．£2．50 \\
\hline 万004A ．．．．．．\(£ 2.65\) & 15V．A．C．．．．．\(£ 2.60\) \\
\hline 1 mAA ．．．．．．．\(£ 2.50\) & 300V．A．C．．\(£ 2.60\) \\
\hline ธu1A ．．．．．．．．\(£ 2.50\) & \＄Meter 1ma ．\(£ 2.60\) \\
\hline 10 mA …．．\(£ 2.50\) & vo Meter ．．．\(£ 3.60\) \\
\hline  & 1 unp．A．c．＊\(£ 2.50\) \\
\hline 100 mA ．．．．．\(£ 2.50\) &  \\
\hline \({ }^{3} 00 \mathrm{maA}\) ． & 10 amp．A．C．＊\(£ 2.50\) \\
\hline 1 amp ．．．．．．．\(£ 2.50\) & 20 апр．A．C．＊ 22.50 \\
\hline 5 аиир．．．．．．．\(£ 2.50\) & 30 нrup．A．C．\(£ 2.50\) \\
\hline \multicolumn{2}{|l|}{TYPE MR．65P 3 3in．\(\times 3\) 3idin．frouts} \\
\hline 万̆uA ．．．．．． 83.70 & \\
\hline  & 20v．D．C．．．．．． 22.60 \\
\hline 100－1）－1004 A－ &  \\
\hline  & 300V：D．C．．．．\({ }^{\text {ex } 2.60}\) \\
\hline － &  \\
\hline  & 150V．A．C．．． 8280 \\
\hline  & Y000：A．C． 2.8880 \\
\hline  & 8 meter 1 mA 比 285 \\
\hline  & VU Meter ．．．\({ }^{23} 3.70\) \\
\hline  &  \\
\hline  & （1） \\
\hline \({ }_{15} 5\) amp．．．．．．\({ }^{2} 260\) &  \\
\hline  &  \\
\hline & \\
\hline 5v．11．c．\({ }^{\text {a }}\) ．．．． 82.60 & 30 ampl．A．C．\({ }^{\text {a }}\) \\
\hline \multicolumn{2}{|l|}{＂SEW＂EDUCATIONAL MET} \\
\hline & TYPE ED． 107 \\
\hline & Size overall \(100 \mathrm{~mm} \times\) \(90 \mathrm{~mm} \times 108 \mathrm{~mm}\) ． \\
\hline & A
quality
new
range of
moving \(\underset{\substack{\text { hight } \\ \text { coil }}}{\substack{\text { che }}}\) \\
\hline & ents idenl for \\
\hline & \[
\begin{aligned}
& \text { lica- } \\
& \text { alale. }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{easily accessible to demonstrate internal working．} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TYPE MR．45P} \\
\hline & \％2 65 & 10v．D．C．．．． & \\
\hline & & 20\％ & \\
\hline inma & 22．50 & 30．\({ }^{\text {a }}\)－ & \\
\hline & & & \\
\hline 30 JLA & \＆2．45 & 159．D．C． & \\
\hline 500－0－ & ¢2．40 & & \\
\hline & & ＊Meter 1 mad & \\
\hline & & U Meter & c2 \\
\hline 10 n & & 1 mmp ．A．C． & \\
\hline & 2． 2.40 & \({ }^{5}\) amp．A．C．： & \\
\hline 100 m A & & 10 amp ．A．C． & \\
\hline & & & \\
\hline & £2 & mp．A．C．\({ }^{\text {a }}\) & \\
\hline
\end{tabular}
＂SEW＂BAXELITE PANEL METERS
\begin{tabular}{|c|c|}
\hline &  \\
\hline & \(15 \mathrm{amp}, \ldots\).
30
30 \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline & 50V．D．C．
150V．D．C． \\
\hline & \({ }^{1500 V}\) \\
\hline & 30v．A．C．＂． 22.65 \\
\hline  &  \\
\hline  &  \\
\hline \(1004 \wedge\) …．． 23.00 &  \\
\hline \(\begin{array}{ll}1000-100 \mu \mathrm{~A} & 83.00 \\ 82.70\end{array}\) & \\
\hline &  \\
\hline 500－10－8094 & 10 amp．A．C． 88.80 \\
\hline  &  \\
\hline 5 mA ．．．．．．．．\({ }^{\text {ce } 2 \cdot 60}\) & 30 amp．A．C． 22.60 \\
\hline 10 mA …．． 22.80 & 50 amp．A．C．＊ 22.80 \\
\hline  & VU Meter \(\ldots . .83 .65\) \\
\hline 100mA \(\ldots \ldots . .88 .80\) &  \\
\hline
\end{tabular}



4 bands covering \(550 \mathrm{kc} / \mathrm{s}\) to \(30 \mathrm{mc} / \mathrm{s}\)
continuous and electrical bandspread on \(10,15,20,40\) and 80 metres． 8 valve
plus 7 diode clrcuit． \(4 / 8\) ohm output and phone jack．S8B－CW．ANL
Variable BFO． 8 meter．Sep．band spread dial，IF frequency \(445 \mathrm{kc} / \mathrm{s}\)
 OUR
PRICE
FULL TRIO RANGE STOCEED．
\(\qquad\)


Bands covering \(550 \mathrm{kc} / \mathrm{s}-90 \mathrm{mc} / \mathrm{s}\).
B．F．O．Built－In Speaker \(220 / 240 \mathrm{v}\).


Bands covertng \(550 \mathrm{kc} / \mathrm{g}-30 \mathrm{mc} / \mathrm{s}\) ． Buitt－in Spenker，Bandspread，Sensi－
tivity Control． \(220 / 240\) ．A．C．or OUR F？F．！

LAFAYETTE HA－600 RECEIVER




TEKTRONIX STORAGE SCOPE type 564
with Time base and Yamplifier plug-ins \(£ \mathbf{8 0 0}\).
TEKTRONIX 545A Oscilloscope with plug-in £250; with CA plug-in £280.
TEKTRONIX 536 oscilloscope with T \& CA plug-ins £325.
TEKTRONIX RM17 OSCILLOSCOPE £ 130 . TEKTRONIX TIME MARKERS type 181 £35.
ROHDE \& SCHWARZ SYNTHESIZER Model BN 444462. 30 HZ to 30 MHZ . Size \(30 \times\)

ROHDE \& SCHVARZ VIDEOSCOPE

ROHDE \& SCHWARZ Analyser BN 48302 175
AMERICAN SWEEP GENERATOR type 452. Covers from 5 to 100 MHZ . Has built in
display and 101 DB Push Button RF Attenuator in one DB steps, plus Calibrated Marker Generator covering 5 to 100 MHZ continuous. American Government Contract, so quality
is high. Supplled for 240 V 50 HZ operation with plugs and leads. Size \(13 \frac{1}{2} \times 9 \frac{1}{2} \times 19 \mathrm{in}\). Price \(£ 70\) each. Carriage £ 1.50 .
AMERICAN SWEEP GE
TRM 315 to \(400 \mathrm{MHZ} £ 300\). AMERICAN POWER UNITS STANDARD
240 V 50 HZ Input \(28 V 40\) AMP OUTPUT. Size 240 V 50 HZ input 28 V 40 AMP OUTPUT. Size
\(22 \times 16 \times 9 \mathrm{in}\). Supplied in original transit

AMERICAN AM GENERATOR type 497. 4 to 400 MHZ . Supplied with leads, etc., for 240 V 50 HZ operation \(£ 35\).
AMERICAN RADIO INTERFERENCE AND
FIELD INTENSITY METERIRECEIVER FIELD INTENSITY METER/RECEIVER (ype NM22A ( 0.15 KHZ to 30 MHZ ) and NM30A
(20 MHZ to 400 MHZ ) f 120 each or \(£ 180\) line \({ }^{(20 \mathrm{M}} \mathrm{M}\)
POLARAD GENERATORS MODEL POLARAD GENERATORS MODEL
MSG 2, \(2150-460 \mathrm{MHZ}\) and Model MSG 34,
4200-11,000 MHZ. The pair \(£ 130\) or \(£ 75\) each. SPECIAL 40 MHZ SCOPE SOLARTRON CD1212 ONLY £50, Has to be a snag. There is-no plug-in \(Y\) amps available.
TB-103 nanosecs per cm . to 5 secs.
TB-103 nanosecs per cm . to 5 secs . per cm , in calibrated ranges. 20 nanosecs per cm .
with times 5 expansion. \(5^{\prime \prime}\) flat faced tube. with times 5 expansion. 5 fat faced tube.
Trace tocator. \(0-2\) microsec. signal dela7.
Built in califrator. KHZ square wave. 200 Built in calibrator. 1 KHZ square wave. 200
micro volts to 100 voits in 18 calitrated ranges.
Tube sensitivity 3 V/CM MAIN FRAM Y AMP Micro volis to 100 volts in 18 calibrated ranges.
Tube sensitivity 3 VVCM MAIN FRAM Y AMP
boosts this to better than 200 mV per cm . a \(\dagger\) boosts this to better than \(200 \mathrm{~m} V\) per cm . at
40 MHZ . 240 V . 50 HZ input. Complete with full manual including plug-in circuits. Come
and see one working or Carrlage \(£ 1.50\).

Solartron CD \(\begin{gathered}\text { STILL } \\ 7115.2 \\ \text { at } £ 42.50 \\ \text { Double }\end{gathered}\)
 loscope \(\mathrm{DC}-9 \mathrm{mc} / \mathrm{s} ; 3 \mathrm{mv/cm}\); trigger
delay: crystal calibrator; \(\mathrm{s}^{\mathrm{m}}\) flat faced tube In good working condition. Carr. £1.50. SOLARTRON CD 523 Single Beam Oscilloscope 3db at 10 MHZ : 1 mV max sensitivity, PDA tube. TB from 1 secs. per cm . to 0.1 microsecs. per cm. plus times 5 expansion ¢ 50 .
 to 150 V 20 HZ to 15 MHZ . Measures OC 40 MV
to 300 V . Complete with probe. Standard 240 V operation £12.50 each.
MARCONI TF899, Measures 20MV to 2 V AC. 50 HZ to 100 MHZ . £ 10 each
MARCONI TF 144H GENERATOR. In Very Good Conditlon \(£ 120\).

MARCONI TF 195M-0140 KHZ Sine Wave Generator \(0 / 40\)
must go \(£ 7.25\).
MARCONI TF 801 A AM GENERATOR 10 to \(310 \mathrm{MHZ} £ 45\).
MARCONI TF 801B. AM SIGNAL GEN. ERATOR. 12 to 470 MHZ . In good working
MARCONI TF 938 (CT44). Absorption Wattmeter 10 mW to 6 Watts. Inpul impedanc ohms to 20 K ohms. Freq. response fla
t 20 KHZ . Calibrated in volts and dhs. 5 in mirror backed meter \(£ 9 \cdot 50\). P. \& P. 75 p .
MARCONI VVM TF \(1041 £ 22.50\).
MARCONI VVM TF 1041 B £ 30
MARCONI TF 1060/2. AM Generator 450\(1200 \mathrm{MHZ} £ 140\).
MARCONI VVM TF 1300 . Measures AC m 300 V . \(100 \mathrm{~V}, 20 \mathrm{HZ}\) to 300 MHZ , DC 100 MV dition \(£ 18\) each.
AVOTRANSISTOR AND DIODE TESTER TYPE CT 537. In superb condition, in origina crates with full instructions, circuit diagram
etc. New price \(£ 250\) Plus. OUR PRICE \(£ 40\) ea etc. New pric
Carr. \(£ 125\).
EDDISTONE 770 U. UHF RECEIVER \(£ 80\) RACAL RA 117 RECE!VERS. Brand new
RACAL RA17 RECEIVER \(£ 230\).
SSB ADAPTOR for Racal RA 17 and RA117 c60 each.
TELEQUIPMENT S31 Rack mount Oscillo cope DC-6 MHZ £40 each

TELONIC 100 to 250 MHZ Sweep Generator Up to 4 watts output \(\mathbf{E 1 2 0}\).
SURFACE PROFILE MONITOR by G. V PLANER type SPM 10 with recorder unit MINT £ \(\$ 40\).
SLOPED CASES size \(9 \times 7 \mathrm{in}\). with 8 in slope, 15 in . long, in Hammer Grey, B
boxed \(£ 1\). Packing and poslage 37 p .

\footnotetext{
BRAND NEW AMERICAN HIGH VOLTAGE CAPACITORS. 0.15 mfd 120 kV working. £20 each. Carriage at cost.
}

TAODERN TELEPHONES type 706. Two tone grey. \(£ 3 \cdot 75\) ea. The same but black, \(£ 2 \cdot 75\) ea
P. \(\& P \cdot 25\) ea.
AISO TOPAZE YELLOW £4.50 ea. P. \& P. 25p. Ideal EXTENSION Telephones with standard GPO type dlal, bell and lead coding. £1.75 ea
P. \& P. 25p.

STANDARD GPO DIAL TELEPHONE (blach) with internal be!l, 8
Two for \(\& 150 . P . \& P .75 p\).
All telephones complete with bell and dial. POTENTIOMETERS
COLVERN 3 watt. Brand new, 5; 10: 25;
500 ohms: \(1 ; 2 ; 5 ; 10 ; 25 ; 50 \mathrm{k}\) all at 13p ea.
MORGANITE Special Brand new, 2.5; 10;
BERCO 21 Watt. Brand new, 5; 10; 50; 250; STANDARD 2 meg. log pots. Current type 15p өa.

INSTRUMENT 3 in. Coivern 5 ohm 35 p ea 50 K and 100 K 50 p ea
BOURNS TRIMPOT POTENTIOMETERS.


RELIANCE P.C.B. mounting: 270 ; 470 ;
500 ohms; \(10 K\) at 35 p ea. ALL BRAND NEW.
ALMA precision resistors 200 K ; \(400 \mathrm{~K} ; 497 \mathrm{~K}\) 998 K ; 1 meg- \(0.1 \%\) 27p ea.i 3.25 k . 5.6 k , 13 k \(0 \cdot 1 \%\) 20pez.

\section*{MULLARD ELECTROLYTICS \\ 2200MFD 100 V 10A ( \(50^{\circ} \mathrm{C}\) ) BRAND NEW BOXED 70p each 10 off - 60p each 130 off - 45p each}

\section*{RELAYS}
S.T.C. Sealed 2 pole c/o 700 ohms ( 24 V ), 15 p ea. 2,560 on
coil 15 p each.
Varley VP4 Plastic covers 4 pole c/o \(5 K-1\)
30 -
CARPENTERS polarised Single pole c/o 20 and 65 chm coil as new 37p each. 14 oh TRANSFORMERS. All standard inputs. STEP DOWN ISOLATING trans. Standard
240 V AC to \(55-0-55 \mathrm{~V} 300 \mathrm{~W}, \mathrm{£3}\) ea. P. \& P. 35 p Nepiune Series. Multi 6.3 volts to give 48 V at
3.5 amps etc. \(£ 3.50\) incl. P \& P . Large quartity LT, HT, EHT transtormers and Larg
chok

SUAYPĖS ALL BRAND NEW HIGH (1) \(3 \vee 9\) anp, \(6 \vee 9\) amp, \(12 \vee 9\) amp. Size \(3 \frac{1}{2} \times\)
\(4 \times 5 \frac{1}{2} \times 2\) each. Packing and postage \(47 \mathrm{p}, \mathrm{c}_{2} 2\) each. Packing and postage (2) As above but 5.4 amp. Slze \(3 \frac{1}{2} \times 3 \frac{3}{3} \times 4 \frac{1}{3} \mathrm{in}\)
 and postage 37 p .
All above 3 types also have \(0-17 \mathrm{~V} \frac{1}{2}\) amp and are separate
S.T.C. PUSH BUTTON ATTENUATORS 0-9: or \(0-90\) in 1 db steps. State choice \(£ 3\) ea
P. \& P. 37 p or \(£ 5\) a parr P. \& P. 57 p . MUIRHEAD Attenuator D239B
COLVERN TEN TURN POTS.
COLVERN TEN TURN POTS. ex ea. 100 K at \({ }^{60 p}\) pacin.
P. \(\&\) P. \({ }^{15 \mathrm{~F}}\).
CAPACITOR PACK 50 Brand new compoents only 50 p. P. \& P. 17 p .

POTS 10 different values. Brand new. 50p
P. \& P. 17 F .
COMPONENT PACK consisting of 5 pots various values, 250 resistors \(\frac{3}{4}\) and \(\frac{3}{2}\) wath
etc., many high stabs. Ali brand new. Fine etc., many high stabs. Ali brand
value at 50 per pack. P. \& P. 17 p .

DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY \(\mathbf{£ 3} 50\). N. |reland
extra.
LOOSE LEAF BINDERS. Blue plastic cover, 4 ring. Standard size. 4 for £1, P \& P P.C.B. PACK S\& D. Quantify 2 sq. ft.-no ny pieces. 50 p plus P. \& P 20 p .
FIBRE CLASS as above \(£ 1\) plus P. \& P. 20 p \({ }_{5}^{5}\) CRYSTALS 70 to 90 kHz . Our choice, 25p. P. \&P.lSp.

MOTOR, min. synchronous, size \(12 \times 2 \times\)
6 in., 240 V Operation \(3.6 \mathrm{rpm}, 25 \mathrm{p}\) each. P \& \(\times \mathrm{P}\).
TRIMMER PACK, 2 Twin 50/200 pf ceramic: 2 Twin \(10 / 60 \mathrm{pl}\) ceramic; 2 min strips with 4 preset \(5 / 20\) pf on each;' 3 air spaced preset
\(30 / 100\) pi on ceramic base. ALL BRAND 30100 pi on ceramic base. ALL BRAND
NEW 25p the LOT. P. \& 10 p .
NEW 25p the LOT. P. \& P. 10p
FLAT FACED \(4^{\prime \prime}\) Twin Beam Tube. Type
CV2193. Green Trace. Brand New. £4 each. CV2193. Green Trace. Brand New. £4 each
P. \& 9 . 37 p .

GRATICULES. 12 cm . by 14 cm . in High
Quality plastic. 15 p each. P . \& \(\mathrm{P} .5 \mathrm{5p}\). PANEL mounting lamp holders. Red or green. 9p ea. Miniature. P ANEL
holders-10V 15 MA 5 p ea.

BECKMAN MODEL A. Ten turn po
complete with dial. \(100 \mathrm{k} 3 \%\) Tol \(0.25 \%-\) only \(£ 2.43 \mathrm{ea}\).

ELECTROSTATIC VOLTMETERS from
\(0-500\) Volts to \(0-10 \mathrm{KV}\). S . A .E. with your require-\(0-500\) Volts to \(0-10 \mathrm{KV}\). S. A.E. with your require FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single sided up to \(2 \frac{t^{\prime}}{}\) wide \(\times 15^{\prime \prime} \frac{9}{2} p\) per sa. in. Larger pieces
per sq. in. Double sided. Any size \(1 p\) persq. in Postage 10 p per order.
INTEGRATED CIRCUIT test clip by AP inc. Gold Plated clip-on. Brand New individuall

DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutheon. Black with whit figures. Size 4 in . long \(\times 1 \mathrm{in}\). high \(\times{ }^{\times}{ }^{12} \mathrm{in}\)
deep. Ex-Plessey. \&1.40 each. P. \& P, 15 p .

LIGHT EMITTING DIODES (Red) from
Hewlett-Packard. Brand New 38 p ea.
Holder 1p ea. Information 5p.
FIVE moving cail maters £2 P. \& P. 37p.
VISCONOL EHT CAPACITORS

DUBILIER
0.25 mfd
7.5 mfd
KV
0.5 mfd
5 KV all at 50 p ea 0.25 mfd 7.5
P. \& P. 15 p . PHOTOCELL equivalent OCP 71, 13p ea. Photo resistor type Clare 703 (TO5 case). Two MULLARD OCP70 10p each

\section*{20 HZ to 200 KHZ SINE AND SOUARE WAVE GENERATOR}

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £5•50. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at \(£ 9 \cdot 25\). P. \& P. 25p.

\section*{TRANSISTOR INVERTER}

12 V to 1.5 KV 2 MA . Size \(1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}\). Multi tapped secondary and output level control makes possible large range of voltage and current output combinations without modification. Very flexible unit at \(£ 2.95\) each. P. \& P. 25p.

\section*{NEW WIDE RANGE WOBBULATOR}

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for \(10 \cdot 7\) or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only \(£ 5 \mathbf{7 5}\). P. \& P. 25p. Suitable miniature transformer for 240 Volt operation \(£ 1 \cdot 25\).

Unless stated-please add \(£ 1 \cdot 50\) carriage to all units.

\section*{VALUE ADDED TAX not included in prices-please add 10\%} Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Gash with Order

Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

\section*{Fantastic value in Test Equipment}


10 Channel EVENT RECORDER

Designed tor recording seauences of
up to ten difterent operations. e.g sequence of machine tool operation. switching sequences, etc. Record is
prespmted in the form of square "pulses When energised. pen moves by approxi-
mately 4 mm to the right of zero line mately 4 mm to the right of zero Che width 110 mm . Chart length 50 ft
nv. capaity 72 hours. Chart speeds
\(20.60-180-600-1800-5400 \mathrm{~mm} /\) hour Size \(160 \times 160 \times 255 \mathrm{~mm}\). Weight
Price complete with accessories

\section*{\(\mathbf{£ 5 2 . 0 0}\) \\ Supertester 680R.}

Buy it for what
Accessoriest
Amperclamp

\section*{from 250
500 mp
511}

three channel HIGH SPEED RECORDER


Temperature Signal Producing
Pr
KHz and 500 KHz \(-200^{\circ} \mathrm{C}\) E11.95 sifnatist or terng. E5.95 Electronic Voltmeter

portable ac/dC RECORDING VOLTAMMETER Accuracy \(1.5 \%\) DC. \(25 \%\) AC. Measure ments ranges -AC and DC: 5-15-150 250.500 mA 250.500 V . DC only 150 mV . Frequenc 00 mm . Chart speeds \(20.60 \cdot 180.60\) 1800.5400 mm/hour Weigh:
£78.00

miniature pen recorder
Single channel high speed recorder Chart length 175 ft . Footage indicator Chart speeds iselected by push buttons der minute. Full deflection current 8 mA mpedance 800 ohms. Dimensions \(320 \times 340 \times 176 \mathrm{~mm}\) Ohms. Dimensions \(£ 55.00\)

AC CLAMPVDLTAMMETER Clamp-on Voltammeter is used for
measurements of \(A C\) voltages and Specification
Measurement
10.25-100.250.500 \(\begin{gathered}\text { ranges:--Curen } \\ \text { Amps. }\end{gathered}\) Voltage 300.600 V Accuracy
lenger
60 mm
Overall
dimensions \(283 \times 94 \times 36 \mathrm{~mm}\). Weight 1.5 lb
\begin{tabular}{|c|c|}
\hline \(0^{2}\) a & \begin{tabular}{l}
wide fange \\
TRANSISTOR AUDIO \\
generator
\end{tabular} \\
\hline
\end{tabular} High stability low frequency generator. Basto
 means of a Schmitt trigel circuit. FREQUENCY
RANGES: 4 from 10 Hz to 100 kHz OUTPUT RANGES: 4 from 10 Hz to 100 kHz OUTPUT
VOLTAGE: 11 millivolt \(p-\mathrm{p}\) to 1 volt \(p-\mathrm{p} \pm 3 \%\) for voltace and square wave IMPEDANCE 1 K ohm DISTORTION FACTOR: \(0.2 \%\) for the sine wave
output for the lower frequency range \(<1.0 \%\) for outpur for frequency range. RISE TIME: \(<0.1\) the upper frequency range. RISE TIME <o. 0.
micraseconds tor the square wave and 0.3
microssconds in the upper frequency range microsegionds
WORKING miclosscands in the upper frequency range
WDRKRNG VOLTAGE. 9 voll. \(240 \mathrm{~mm} \times 140 \mathrm{mmH} \times x\)
 of the appoopriate accessones in can and phase seaumce. And there


ventional test meter

\section*{UNQLE OPPDRTDNTITES}

\section*{GENERATORS}

MARCONI TF867 STANDARD SIGNAL

GENERATOR
 \(10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}\). Complete with TM 6600 . Pulse adjustable between \(1.5 \mu \mathrm{sec}\). before and up to \(3,000 \mu \mathrm{sec}\)
MARCONI A.M. SIGNAL GENERATOR £145.00 TF801D
\(10-485 \mathrm{MC} / \mathrm{s}\) in five ranges. Output \(0.1 \mu \mathrm{~V}-\uparrow\) Voit E.M.F. External Sine A.D. Frequency \(30 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}\). PRICE \(£ 195\) PHILIPS SOUARE WAVE GENERATOR MODEL G M2314
Range \(15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}\). Duration of square wave pulses between \(0.75 \mu \mathrm{sec}\) and \(40 \mathrm{~m} / \mathrm{sec}\). Square wave voltage AOV \(\overline{\text { AMPLITUDE MODULATOR TF } 102}\) PRICE £75.00
AMPLITUDE MODULATOR TFI102
\(100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{MC} / \mathrm{s}\) Sine-wave from \(20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}\) and \(20 \mathrm{x} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}\)
£35.00
MARCONI Type TF987/1 NOISE GENERATOR \(1-200 \mathrm{Mc} / \mathrm{s} \quad 0.5 \mathrm{DB} \mathbf{£ 2 0 . 0 0}\)
MARCONI TF2092 NOISE GENERATOR £295.00 MARCONI VHF SIGNAL GENERATOR TF 1145 450-1900 Mc/s \(£ 29500\)
PHILIPS VIDEO GENERATOR GM2887 \(£ 95 \cdot 00\)
WAYNE-KERR VIDEO NOISE GENERATOR \(\bar{£} 7500\) MARCONI H.F. CIRCUIT MAGNIFICATION METER TF886A
A direct reading
MARCONIDISTORTION FACTOR METER TF142F
\(100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} 0.05 \%-50 \%\) Measures all spurious com ponents up to \(30 \mathrm{Kc} / \mathrm{s} £ 3500\)
MARCONI PULSE GENERATOR TF675E
Repetition Frequency \(50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} 0.15-40 \mu \mathrm{Sec} £ 35.00\) MARCONI WIDE RANGE R.C. OSCILLATOR TF1130
Sine-waves \(10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}\), square waves \(10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}\) Directo outputs up to 31.6 V . Attenuator with three impedances. \(£ 120.00\)
HETERODYNE UNIT TFI221
\(2 \mathrm{Kc} / \mathrm{s}\) - \(100 \mathrm{Mc} / \mathrm{s} £ 45 \cdot 00\)
WAYNE-KERR NOISE GENERATOR CT410 A portable instrument for measuring the noise factor of radio receiving equipment, metric radar receivers and radar wide-band i.f. amplifiers in the band \(15 \mathrm{KHz}-160 \mathrm{MHz}\).
MARCONI TYPE TF801A SIGNAL GENERATOR Frequency range: 10 MHz to 310 MHz . O/P voltage \(0-100 \mathrm{db}\) relative to 200 mV into 750 hm IV CW O/P available. Internal modulation: \(400 \mathrm{~Hz}, 1 \mathrm{kHz}\) and 5 kHz to \(80 \%\) sine of square.
£45.00
ADVANCE TYPE D1/D SIGNAL GENERATOR Frequency range: \(10 \mathrm{MHz}-300 \mathrm{MHz} . \quad \mathrm{O} / \mathrm{P}\) voltage \(1 \mathrm{~V}-10 \mathrm{mV}\). £25.00
ROHDE \& SCHWARZ SIGNAL GENERATOR
BN4105 30-300 Mc 1\% Output 3 Volt . \(£ 350\) 00.
HEWLETT PACKARD 8690 SWEEP GENERATOR plus 8693 B Plug-in. \(3 \cdot 7-8 \cdot 3 \mathrm{GHz}\). £1,695.00.
MARCONI TF995A/2M

\section*{FANTASTIC VALUE IN OSCILLOSCOPES}


COSSOR CDU 110
Dual Channel Transistorised DC-25 MHz at \(5 \mathrm{mV} / \mathrm{cm}\) 0.2 microsec. \(05 \quad 3 \% 5 \mathrm{X}\) Magnification extends sweep speed to 40 nanosec./cm. Sweep delay 180 nanosec.
£249.50


\section*{COSSOR CDU 120}

Dual Channel fully transis. torised \(50 \mathrm{mV} / \mathrm{cm}\) to 10 V DC-60 MHz. Rise time 6 nanosec. \(1 \mathrm{mV} / \mathrm{cm}\) at 25 MHz . 0.1 microsec \(\quad £ 349.50\)

\section*{COSSOR CDU 150}

Rugged Transistorised fully portable Dual Channel DC-35 MHz at \(5 \mathrm{mV} / \mathrm{cm}\). As used by numerous government departments (c) COSSOR. The very latest Cossor 4000 Dual beam 55 MHz at \(50 \mathrm{mV} / \mathrm{cm}\) Trigger. SCOOP-ONE ONLY £425 DYNAMCO 7100 1Y2 \(71001 \times 2\) Oscilloscope. Dua channel with sweep delay, suitable for computer main-
tenance and most laboratory applications 30 MHz 1 mV tenance and most laboratory applications \(30 \mathrm{MHz}, 1 \mathrm{mV}\)
toys to 5 s delay. BRAND NEW \(£ 295\).


\section*{MINITRON}
K.G.M. Type 3015F 7 Segment display showing figures \(0-9\) plus decimal point. Character of 9 mm height. In 16 DIL case.

NEW LOW PRICE \(£ 1.40\) SN7447N BCD Decoder Driver \(£ 100\)

SINE COSINE POTENTIOMETER 47K Precision component by Pye. Model 2002 The assembly consists of three units mounted in one frane. Each unit conlains
two sine and two coside Dotentiometer sections. the sliders being ganqed together. Electrical connections. 2 end tans. Slider. Max, tortue: \(3 \frac{1}{2}\) Mechanical \(1 / \mathrm{P}\) : 30 r. P . DImensions: W in in. H. 5 in . D. \(7 \frac{1}{\text { in }}\). Wt. \(7 \frac{1}{1 / 2 \mathrm{lss} \text {. Ex equip- }}\) ment. Good condition. Price \(£ 5\). Carriage


INFRA-RED
SPECTROPHOTO.
METER
A single beani instrument de efluent from a gas chromato graph, however the fast response
and fast scan capabilities make
 nvolving conventional gas, liquid

Beckman Type IR-102


\section*{TRANSISTROL TEMPERATURE}

CONTROLLER TYPE 990
Completely transistorised self-contained direct deflecting units for Suitable where a signal can be converted into d.c. Sensitivity 10 ohms per MV. Minimum F.S.D. 8 MV Cold function compensation. Calibrated
scale length \(6.5^{\circ}\), \(0-800^{\circ} \mathrm{C}\). Accuracy \(+1-1 \%\). Front panel size \(10^{\prime \prime}\) scale length \(6.5^{\circ}\). \(0-800^{\circ} \mathrm{C}\). Accuracy \(+1 \%\). Front panel size 10
\(\times 8 \frac{1}{2}\). weight 11 ibs. Mains suply \(100-260 \mathrm{~V}\). Control switching and thermo-couple connecti
packing and carriage.

\section*{ASCOP DIGITAL ENCODERS \\ ype 504 A-8-001 Price £20. Type EDD8G Price \(£ 20\)}

SYNCHROVERTER SWITCH TYPE G1280 BY ELLIOTT

\section*{POWER SUPPLIES}

POWER SUPPLIES, IBM EX-COMPUTER HIGHLYSTABILISED, TRANSISTORISED LOW VOLTAGE POWER SUPPLIES.
\(\qquad\) NPUT and OUTPUT. Load regulation of \(1 \%\) or better. Low Avartable in the following iypes:


A BARGAIN ATLESS THAN HALF MANUFACTURERS PRICES.
Pr Voltage 7.5V-gV Max. load current 10 Anips Max ripgle on full toad approx. 60 mV . p. OUR Threshold cursent
105 . Overvolt protection.

EX COMPUTER HIGH GRADE FULLY STABILISED POWER SUPPLIES

\section*{Input 200/250V}

ADVANCE TYPE DC 207
10 Volts 5 Amps
10 Volts 3 Amps
20 Votts 2 Amps
ADVANCE TYPE DC 200

ADVANCE TYPE DC 202
20 Volts 2.5 Amps.

ADVANCE TYPE DC 197
6 Volts 11 Amps
Volts 9 Amps
ESTINGHOUSE Fully Fused Input 200/220/240/10

WESTINGHOUSE
20 Volts 4 Amps.
25 Volts 2.5 Amps
30 Volts 075 Amp
6 Volts 75 Amps
6 Volts 11
11
18 EACH. P. AP, \(£ 2\)

\section*{EVERSHED SAFETY OHMMETER}
or a hand-driven generator and a direct reading ohmmeter

\section*{IGNITION TESTER}

Ideal for garages, this brand new instrument is used to display all ignition faults. Supplied complete with insiruction manuaa
showing photographs of displays, making use very simple. Sold complete with isolatisplays, making use very use on 240 V 50 H supply. Display cards also availabie for garages and othe
places. wishing to advertise this equipment is in use. Made t British Physical Laboratories Lid.. originally tor use on the
Canadian mankt.

\section*{LOW OHMMETER MODEL RM155-BMvIII}

Ideal tor the measurement of low resistance. Low Current.
\(200 \mathrm{M} / \mathrm{A}\) at short circuit. Range \(1 \mathrm{~m} \Omega\) to 152 in 2 Ranges \(\pm 05\) milliohms or \(\pm 5 \%\) whichever is the greater. \(£ 20.00\).

SODECO IMPULSE PRINTING COUNTER 4Digl Decimal Counter 10c/second Electrical Reset \& Prin
out 24 Volls Type PN 117 Brand New. \(\mathbf{E} 49.50\).

PHILIPS VALVE VOLTMETER
MODEL GM6014
Max. \(300 \mathrm{mV}, 1000 \mathrm{~Hz}-30 \mathrm{MHz}\)

\section*{to purchase some of the World's finest calibration instruments at savings of \\ PEN RECORDERS \\ BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK \\ of applied currents or voltages by a conlunuous distor
ion-tree \\ FREQUENCY CONVERTER MODEL B. 40}

Mon-tree line on pressure sensitive paper. Movlng coi
movement. scale callibrated 0 ol miltamp A.c. interna



\section*{SINGLE PEN \\ RECORDER}
by Record Electical. 3" chart, sensitivity
1 milliamp, chart speed 1 " \({ }^{\text {and }}\) 6" per hour

 packing and carriage.

LEEDS \& NORTHRUP STRIP CHART RECORDER
 Chart widh; 7 In . Chart speed 1 in. per hoirr. power supply: 120 50 So Hz

\section*{POTENTIOMETERS}

TEN TURN 3600 ROTATION


50 KVA to 60 HZ power frequency converter. Fully overhauled Prime Mover: Electric Motor


HEWLETT PACKARD DIGITAL RECORDER MODEL 565A
Data Entry, paral
PRICE E85.00.
HEWLETT PACKARD 200 CD Sine wave Oscillator \(5 \mathrm{~Hz}-600 \mathrm{KHz} 10\) Volts. \(£ 59.00\).
PYE HIGH RESISTANCE OHMMETER MODEL 10B Range. from o 3 .20.000 Megohms
In 4 ranges at 500 V Used Ior the measurement of components or
 MODEL
ncorporating tabu.
ating mechanis m .
E79.50 plus carfi

age.


ELECTRIC HAND VERIFIER
 02. ins. WIDERANGE OSCILLATOR TYPE 400C by DAWE FANS BY PLANNAIR
85V-3 Phase \(400 \mathrm{c} / \mathrm{s}-11.000\) rom. Type 1 PL41-234 PRICE 54.00 R.C. OSCILLATOR TYPE G432 by FURZEHILL SPECIAL OFFER SPECTRUM ANALYSER HEWLETT PACKARD \(8551 B\)
\(10 \mathrm{MHz}-12 \mathrm{GHz}\) and 851 B Extension to 40 GHz . With W/G Mixers and very little used Ex Calibration Lab. \(£ 3,950.00\).
VENNER 3334
Digital Frequency Meter \(0-1 \mathrm{MHz} £ 45 \cdot 00\).

VENNER 3336
Digital Counter Six Digit \(0-1 \mathrm{MHz} £ 55.00\).
With 15 Meg Counter extension for above \(£ 85.00\)
\begin{tabular}{|c|c|}
\hline D
Dig
2 KV & \begin{tabular}{l}
DYNAMCO 2001 \\
Digital Voltmeter \(50 \mu \mathrm{~V}\) 2KV 0.05\% £175.00.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{DYNAMCO type 202} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Long scale D.V.M. and Ratiometer. The 2022 is a high}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{potentiometric principle. It features a very high input}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{external scaling facility, seven operating modes and digital output.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39999} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Range
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 1 part in 40,000}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Accuracy . . . . . . . . . Long term \(\begin{aligned} & 0.0025 \% \text { of F.S.D. } \\ & 0.01 \%\end{aligned}\)}} \\
\hline & \\
\hline & Optimum 0.0025\% F.S.D. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Input Impedance \(\ldots . . . . . .0 .0025 \%\) of reading}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{MEGGER CIRCUIT TESTING OHMMETER} \\
\hline \multicolumn{2}{|l|}{For Measuring conductor resistance. By Evershed and} \\
\hline \multicolumn{2}{|l|}{Vignale. £22 50.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
BELL \& HOWELL \\
5-12 and 18 Channel U.V. Recorder \(£ 395.00\) 5-127 12 Channel \(£ 350\) 00.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\title{
Sarresonn's
}

9 \& 10 CHAPEL ST., LONDON, N.W.I 01.7237851 01-2625125

\section*{STEP DOWN 240110v. AUTO TRANSFORMERS FOR} AMERICAN EQU,

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
DAVENSET ISOLATION TRANSFORMERS \\
Pri. 10-0-200-220-240v. Sec. 240v. Centre tapped 1.2 kva , Conservatively rated. Size \(8 \frac{1}{4} \times 7 \times 8 \frac{1}{4}\) ins. Wot. 59 lbs . Open frame type, terminal connections. Fraction of maker's price. E17.00 carr. \(£ 1.00\).
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

T.E.C. HEAVY DUTY ISOLATION TRANSFORMERS


RICH AND BUNDY. Pri. 220-230-240-250v. Sec. 265-270\(275 \mathrm{r}, 1400\) watts. Conservatively rated. Size \(8 \times 8 \times 7\) Ins
Terminal block connections. £17.00 carr. £ 1.00 .

ADVANCED COMPONENTS CONSTANT VOLTAGE Input \(190-260 \mathrm{v}\). Output \(230 \mathrm{v}, 150\) watis. Ty
 75 l .
Output 4 vu . 3 watis 75 pm carr. 25 p . Output 240 v . 30 watis en
closed type \(£ 1.50\) carr. 35 p .
H.T. TRANSFORMERS BY FAMOUS

PARMEKO. Potted type. Prf. \(110-230-440 \mathrm{v}\). Sec. \(630-0-630 \mathrm{v}\) 105 mA . 5 v . \(4 \mathrm{a} ., 5 \mathrm{v}, 2 \mathrm{a} .53 .50\), carr. 50 p . Pri, \(110-220-240 \mathrm{v}\).
 WODEN. Pri. 230v, rame type table top connections, troplcallsed, \(\mathbf{£ 3 . 0 0}\) carr 50 p . Pri. \(220-240 \mathrm{v}\). Sec. 350 v .150 mA . 6.3 v .8 a .6 .3 v .3 a . ' C
 \(150-165 \mathrm{~V}\). 4 a . open frame type, table top connections £3.95 carr. 50 p . Pri. \(220-240 \mathrm{v}\). Sec. 63 v . 1.6 a . and 24 v . 0.8 a a. and
6.3 v . 1a. open frame type table top connections 83.00 carr. 50 p .

GARDNERS. Pri, 220-240v, Sec. 350-290-0-290-350v \(250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a} ., 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v}, 3.5 \mathrm{a}\)., enclosed type table top
connections EA .00 carr . 75 p . Pri, \(220-240 \mathrm{v}\). Sec. \(350-0.350 \mathrm{y}\).


GRESHAM. Pri. \(220-240 \mathrm{v}\), Sec. \(710-0-710 \mathrm{v} .120 \mathrm{~mA}\). open rame type table top connections \(£ 2.75\) carr. 50 p . Prif. 110 50 p .
G.E.C. L.T. TRANSFORMERS
All Primaries \(220-240 \mathrm{v}\), Type 1 tapped. 63 - 68 -74v, 3 a . and
6.3v. 4a. terminal block connectlons. Unshrouded \(\mathrm{E} 3 \cdot 00\) S.3v. 4a. terminal block connections. Unshrouded \(£ 3.00\)
P.P. 50 p . Type 2 tapped. \(59-61-65-67-6 \mathrm{gv}\). 10 a . T blocks con nections. Unshruded \(\mathbf{E 6 0 0}\) carr. 75p. Type 3 tapped. 56

 iwice. Unshrouded, T block connections. £4.50 carr. 75 p Type \(610 \mathrm{v}, 2 \mathrm{a}\). and 50 v . 0.6a. T block connections. Un.
shrouded. \(\mathrm{E} \mid-50\) carr. 25 p . Type 715 v . 4 a . and 13 v . 6a. T
 2a. Twlee, unshrouded. £1.75. P.P. 30p.
PrI. 220-240y. S. \({ }^{2}\) ' CORE TRANSFORMERS Pri. 220-24.V. Sec.
6a. £2:25. P.P. 35 p


SPECIAL OFFER OF MULTI TAPPED L.T.
CSFORMERS VERY CONSERVATIVELY RATED
TRANSFORMERS VERY CONSERVATIVELY RATED
 casr. 75 p . four 1mes. Core. Table top connections




\section*{}

GRESHAM 'C.T. SMOOTHING CHOKES
GRESHAM 'C' core swinging types. \(7.5 \mathrm{~m} / \mathrm{h} .6 \mathrm{a}-75 \mathrm{~m} / \mathrm{n} 0.5 \mathrm{~s}\)
 G.E.C. \(15 \mathrm{~m} / \mathrm{ha}\). unshrouded fully troplcallsed \(£ 2.75 \mathrm{P} . \mathrm{P} .35 \mathrm{p}\) REDCLIFFE. Oll-filled types \(100 \mathrm{~m} / \mathrm{h}\). 2 at . \(£ 2.50 \mathrm{P} . \mathrm{P}\). \(45 \mathrm{p}, 130 \mathrm{~m} / \mathrm{h}\).
1.5 s . £1.50 P.P. 25 p . Mains filter chokes \(10 \mathrm{~m} / \mathrm{h} .2 \mathrm{a} .50 \mathrm{p} \mathrm{P} . \mathrm{P} .20 \mathrm{p}\) All above chokes 1 ohm res.
G.P.O. RELAYS 3000 TYPE \(100 \Omega 9\) 1.25 amp, Make contact.
G0D. P.P. \(10 \mathrm{D} .75 \Omega 3 \mathrm{M}, 1\) B. 1 CO Normal contacts. 40 D . B0p. P.P. \(10 \mathrm{D} .75 \Omega 3 \mathrm{M} .1 \mathrm{~B}, 1 \mathrm{CO}\). Normal contacts. 40 D
P.P. 10 p.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{H.T. TRANSFORMERS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{PARMEKO. PrI. 240v. Sec. \(250-0-250 \mathrm{v}\). \(50 \mathrm{~m} / \mathrm{a} .6-3 \mathrm{v} .1 \mathrm{a}\), E1-25. P.P. 35p. Size \(4 \times 3 \times 2 \ddagger\) Ins. GARDNERS. 'C' core. PrI. 240v. Sec. \(300-0-300 \mathrm{v} .66 \mathrm{~m} / \mathrm{a}\). 6.3 v . 4a. E1-50. P.P. 35p. Size}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
T.C.C.-DUBILIER OIL-FILLED BLOCK CAPACITORS





TUBULAR MOTOR START CAPACITORS



 AMERICAN OIL-FILLED BLOCK CAPACITORS


 \(\frac{\text { wkg. 35p. P.P. 15p. }}{\text { H. }}\)
\[
\begin{aligned}
& \text { H.T. SMOOTHING CHOKES } \\
& \text { types. } 5 \mathrm{~h} .500 \mathrm{~m} / \mathrm{a} \text {. } £ 3 \cdot 00 \mathrm{carr} .50
\end{aligned}
\]

Parmeko potted H.T. SMOOTHING CHOKES
\(£ 2.00\), 5 h. \(500 \mathrm{~m} / \mathrm{a}\). \(£ 3.00\) carr, \(50 \mathrm{p}, 10 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a}\) \(£ 2.00\) carr. 30 p. \(10 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}\). \(£ 1.50\) earr. 3 ( \(\mathrm{p} .15 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}\). \(£ 2.00\)
 earr. 20p.
A.C. GEARED MOTORS BY FAMOUS MAKERS 230/250v. 50 cyeles Inductlon type. \(4 / 2\) r.p.m. Cont. rating 5 lb ins.
Rlght angle worm drive. Overall size 7 ins. Dia. 3 ins. Spindle ength 3 ins. Dla. \(\frac{1}{4}\) in. \(\mathbf{E 4} \cdot 75\) carr, 45 p . Gear motors 50 V . D.C.
Shunt wound. Cont. rating. \(34 \mathrm{r} . \mathrm{p}, \mathrm{m}, 2 \mathrm{ib}\). Ins. Right angle worm


\section*{BODINE ELECTRIC GEARED MOTORS}

HP. 1/35 A.C. 115v, 50 Cycles. RPM 137. Torque 9 In ibs.
Ratio 10-1. Puiley Drive. Complete with Control Box contal Ratlo 10-1, Puiley Drlve. Complete with Control Box contain
ing Capacltor. Onlof Swhith. Mlero switch reversing con ne=tions. Ideal for electric door systems. \(£ 10.00\) carr. \(£ 1\).

\section*{HART ELECTRONICS}

\section*{Audio Kits}


This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best pre-amp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only \(1 \frac{1}{2}\) " deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real \(\mathrm{Hi}-\mathrm{Fi}\) with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits.
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo replay channel can be built for \(£ 6\) for single speed use without external components or a switch may be added for multispeed operation.
Stuart reprints all three articles under one cover.
Price 30p. No V.A.T.

\section*{Penylan Mill, Oswestry, Salop.}

Personal callers are always welcome, but please note we are closed all day Saturday

\title{
TELEPRINTER EQUIPMENT LIMITED
}

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

\section*{CREED EQUIPMENT}

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT OTHER EQUIPMENT

\section*{SPECIAL} EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74 HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS \(15,19,20,28,32,33,35\)
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS \(14,20,28\) LBXD \& LXD TRANSMIT GROUPS, etc.

TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.

KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.

SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS. ww-101 FOR FURTHER DETAILS

\title{
COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED \\ G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY
}

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10-way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH \(71(15 \times 4 B)\)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual \(1 / \frac{2}{2}\)
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

\section*{MORSE EQUIPMENT LIMITED}

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m. MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS UNDULATORS for automatic record and W/T signals up to 300 w.p.m. CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa MORSE REPERFORATORS operating up to 200 w.p.m. TONE GENERATORS and all Students' requirements CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

\section*{77 AKEMAN STREET, TRING, HERTS., U.K.} Telephone: Tring 3476/8, STD: 0442-82 Telex 82362, Answerback: Bateicom Tring

\section*{MAINS TRANSFORMERS}

SAFETY ISOLATING TRANSFORMERS Pilmary \(120 / 240\) Volts. Secondary \(120 / 240\) Volts. Centre tapped with

Interwinding Screen.
(WATTS) WEIGHT.
\begin{tabular}{|c|c|}
\hline (WATTS) & LB. \\
\hline \({ }^{60}\) & 产 \\
\hline 100
200 & \({ }_{8}{ }^{\text {\% }}\) \\
\hline 250 & 13! \\
\hline 350 & 15 \\
\hline \(\begin{array}{r}500 \\ \\ \hline 000\end{array}\) & \({ }_{38}^{198}\) \\
\hline 2000 & 60 \\
\hline 3000 & \({ }^{85}\) \\
\hline 000 & 173 \\
\hline
\end{tabular}

SIZE CM
\(\qquad\)

TYPE
NO.
149
150
151
152
153
154
156
158
159
160
10
The above are aliso
On application.

MINIATURE \& EQUIPMENT TRANSFORMERS Pri. 240 Volts with interwinding Screen.
VOLTS MA WT. SIZECM.
\begin{tabular}{|c|c|c|c|c|}
\hline VOLTS & mA & & SIZE CM, & TYP \\
\hline 3-0-3 & 200 & Lb. & \(2.8 \times 2.6 \times 2.0\) & 238 \\
\hline 0-8, 0-6 & 500, 500 & & \(4.8 \times 2.9 \times 3.5\) & 234 \\
\hline 0-6, 0-6 & 1000, 1000 & 12 & \(6.1 \times 5.8 \times 4.8\) & 212 \\
\hline 9-0-9 & 100 & & \(3.9 \times 2.6 \times 2.9\) & 13 \\
\hline 0-9, 0-9 & 330,330 & I & \(4.8 \times 2.9 \times 3.5\) & 235 \\
\hline 0-8-9, 0-8-9 & 500, 500 & 1 & \(6.1 \times 5.4 \times 4.8\) & 207 \\
\hline 0-8-9, 0-8-9 & 1000, 1000 & 13 & \(7.0 \times 6.4 \times 8.1\) & 208 \\
\hline 15-0-15 & 40 & 1 & \(2.8 \times 2.6 \times 2.0\) & 240 \\
\hline 0-15, 0-15 & 200, 200 & \(\frac{1}{4}\) & \(4.8 \times 2.9 \times 3.5\) & 236 \\
\hline 20-0-20 & 30 & + & \(2.8 \times 2.6 \times 2.0\) & 241 \\
\hline 0-20, 0-20 & 150, 150 & 1 & \(4.8 \times 2.9 \times 3.5\) & 237 \\
\hline 0-15-20, 0-15-20 & 500, 500 & 2 & \(7.0 \times 6.7 \times 6.1\) & 205 \\
\hline 0-20, 0-20 & 300, 300 & 1\% & \(5.1 \times 5.8 \times 4.8\) & 214 \\
\hline 20-12-0-12-20 & 700 (DC) & 1 & \(7.0 \times 6.1 \times 5.1\) & 221 \\
\hline 0-15-20, 0-15-20 & 1000, 1000 & 2 & \(8.3 \times 7.7 \times 7.0\) & 206 \\
\hline 0-15-27, 0-15-27 & 500, 500 & 2 & \(8.3 \times 7.0 \times 7.0\) & 203 \\
\hline 0-15-27, 0-15-27 & 1000, 1000 & \(3 \frac{1}{7}\) & \(8.9 \times 7.7 \times 7.7\) & 204 \\
\hline & AUT & & NSF & \\
\hline
\end{tabular}

AUTO TRANSFORMERS



20/240 VOLTS TO 115 VOLTS WITH LEAD AND 115 VOLT SOCKET VA WOIGHT VOLTS WITH LEAD AND 115 VOLT SOCKET


LOW VOLTAGE TRANSFORMERS PRIMARY 200/250 Volts. SECONDARY 12 and 12 Volts.
AMPS
WEIGHT
SIZE CM.


30 VOLT TRANSFORMERS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{30 VOLT TRANSFORMERS
PRIMARY 200/240, SECONDARY 12, \(15,20,24,30\)}} \\
\hline & & & & \\
\hline AMPS & WEIGHT & SIZE CM. & TYPE & PRICE \\
\hline & & & & \\
\hline \(\frac{1}{1}\) & \({ }^{1 \frac{1}{4}}\) & \(6.1 \times 5.8 \times 4.8\) & 112 & 1.20 \\
\hline 1 & 2* & \(7.0 \times 6.7 \times 8.1\) & 79 & 1.64 \\
\hline 1 & \(3 \pm\) & \(8.9 \times 7.7 \times 7.7\) & 3 & \(2 \cdot 45\) \\
\hline 3 & 4 & \(9.9 \times 8.3 \times 8.6\) & 20 & 3.00 \\
\hline 4 & 8 & \(9.9 \times 9.6 \times 8.6\) & 21 & 3/55 \\
\hline 5 & \(6 \frac{1}{2}\) & \(12.1 \times 8.6 \times 10.2\) & 51 & 4.40 \\
\hline 8 & & \(12.9 \times 9.3 \times 10.2\) & 117 & 5.28 \\
\hline 8 & 12 & \(12.9 \times 11.8 \times 10.2\) & 88 & 8.80 \\
\hline 10 & 13: & \(14.0 \times 10.2 \times 11.8\) & 88 & 8.36 \\
\hline
\end{tabular}


50 VOLT TRANSFORMERS
PRIMARY 200/240, SECONDARY 19, 25, 33, 40, 50
AMPS WEIGHT
\begin{tabular}{cc} 
SO & \\
TYPE & PRICE \\
No. & \(\neq\) \\
100 & 1.60 \\
103 & 1.35 \\
104 & 3.25 \\
105 & 4.40 \\
108 & 5.48 \\
107 & 8.65 \\
118 & 11.27 \\
119 & 14.15
\end{tabular}

BRIDGE RECTIFIERS
 25 p
25 p
28 p
30 p AMPS WEIGHT SIZE CM. \({ }^{2}\) TYPE PRICE POST 600
\(\qquad\) FOUR AMP
\begin{tabular}{|c|c|c|}
\hline & Volts & \\
\hline 200 & ', & \\
\hline 400 & " & \\
\hline 600 & , & \\
\hline 800 & & \\
\hline
\end{tabular} SIX AMP 65 p
78 p
80 p
99 p
c 1.00
A.S.P.LTD. BYRE HOUSE, No. 2 UNIT, WINCHEAP, CANTERBURY, KENT

\section*{COLOMOR ELECTRONICS SALE}

To clear our stores of surplus stock we are holding a sale of equipment and Components at give-away prices. It is impossible to list all the goods, the selection below is but a brief indication of items and prices. There is something for everyone to come and see, but hurry, many items are "one off" only.
HEWLET PACKARD 5408 COUNTER £25MARCONI OA1094 SPECTRUM ANALYSER £35-TF \(144 \mathrm{G} \quad £ 3-\) SIGNAL GENERATOR No. 1 £20-SIGNAL GENERATOR No. 2 £12TF958VUM £12.50-TF 957 WATTMETER £10—AR88 £20-B 42 £15—P.C.R. \(£ \mathbf{~} \mathbf{3} \mathbf{5 0}\) CR 100 £1-CT 160 VALVE TESTERS £15TF 899 VmVM \(£ 1.50\)-SQUARE PULSE GENERATORS \(£ 7-B . F . ' s £ 5-R E G\). H.T. POWER SUPPLIES £10-DM 2004 DVM £17-BERKELEY COUNTER \(£ 15-K / H\) PEN RECORDERS £7.50-THOUSANDS OF BRAND NEW METERS FROM 30p. LARGE METERS FROM 40p-COMPONENTS, SWITCHES, CONTROL BOXES, TESTERS, etc., etc., etc.
SALE COMMENCES 15th SEPTEMBER and will last a few weeks only. HOW TO GET THERE:In the premises of Unigate Dairy Depot, entrance off Cromwell Road Extension (Cedars Rd.) towards London, first left (Sutton Lane North, W.4.) first entrance on left. Or write to:-
COLOMOR (ELECTRONICS) LTD. 170, Goldhawk Road, London W. 12

\section*{Newnes Radio Engineer's Pocket Book 14th Edition}

A ready reference source for formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate selection of material.
1972188 pp illustrated \(0408000740 £ 1.20\)
Sound with Vision
Sound Techniques for Television and Film
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
1974294 pp illustrated 0408702362 £ 6.00

\section*{Video Recording}

Record and Replay Systems
GordonWhite
This book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, advantages and disadvantages of the various systems.
1972216 pp illustrated \(0408000856 £ 3.25\)
Obtainable through any bookseller or from
The Butterworth Group
88 Kingsway, London WC2B 6AB.
Trade counter: 4-5 Bell Yard, WC2.

AERO SERVIGES LTD

D.C. STORAGE OSCILLOSCOPE TYPE C8-1


Isifersmian Vetical
Bingle shot, triguered or fine running time base.
A.C. or D.C. coupling. Ennhance or Normal Oper tion.
Max. uriting apeed \(4 \mathrm{~km} / \mathrm{sec}\).
Price \(£ \mathbf{2 4 0} 00\)
Full details are contalned in
bur Catalurue mee helow

ALL PRICES ARE EXCLUSIVE OF VALUE ADDED TAX. WHEN ORDERING BY POST PLEASE ADD £O.12 \(\frac{1}{2}\) IN £ FOR HANDLING AND POSTAGE (SUBJECT TO A MINIMUM CHARGE \(£ 0.15\) ) AND \(10 \%\) OF THE TOTAL VALUE FOR VAT

WIDE BAND OSCILLOSCOPE TYPE C1-54


Bandwidth: 1).C. to 20 MHz Max. aenaltivity: \(1 \mathrm{~mm} / \mathrm{ml}\). Internal Amplitude Calibra. Crystal Controlled Tirn Marker Beam Locator. Push-button controlled aingle whot ineratlou. ree imencies \(\rho\) to 30 M Hz can tule cormections. Price \(£ 140.00\)

NEW MULTIMETER TYPE U4323


Senaitivity \(20000 \Omega / \mathrm{V}\)
ing: voltage: \(0.5-1000 \mathrm{y}\) A.C. voltage: \(2.5-1000 \mathrm{~V}\) D.C. current: \(0.05-500 \mathrm{~m}\) Resistance: up to \(1 \mathrm{M} \Omega\) Mator providing Audio Output
oi 1 kHz and \(\mathrm{I} . \mathrm{F}\). Output of of 1 kHz and I.F. Output of
465 kHz .
Price \(\mathbf{£ 7} \mathbf{0 0}\)

TRANSISTORIZED
AUDIO SINE-WAVE OSCILLATOR TYPE G3-36


Transistorizeti Audio R.C Oscillator covering a range of \(20 \mathrm{H} /\) Four separate output sockets giving attennation ratios of 1 . Io. 100 and 1000 . Micrommeter outpat indishtor. Output voltake
219.75
\(0 V^{\prime}\) into 600 S .

\section*{HIGH VOLTAGE NPN POWER TRANSISTORS TYPE BU105}

For T. T. Line Defection Cirenit
Yebo Timiv. D.C. or 1500 peak
\&1. 80
MINIATURE WIRE ENDED SILICON
RECTIFIERS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 N 4002 & 100 p.i.v. & 1.4 & -. & . & . & & 07 \\
\hline 1 N 4004 & 400 p.i.v. & \({ }_{1}\) & . & \(\cdots\) & & & 08 \\
\hline \(1 \times 4006\) & 800 pi.is. & 1A & . & & \(\cdots\) & & 0.12 \\
\hline
\end{tabular}



This is what you will have at your fingertips by purchasing the Kompass community package.
All Kompass registers have the same format with extensive indexing and classification of up to 40,000 products and services with multilingual indices-every KOMPASS has an ENGLISH index.
To purchase the 16 volumes relating to the community would cost you \(£ 110.50\) but as an E.E.C. package we are offering all volumes, if ordered at the same time, at a prepublication discount of \(18 \% \ldots . . £ 90.00\) post free.


KOMPASS PUBLISHERS LIMITED
RAC House, Lansdowne Road, Croydon CR9 2HE
Registered Address Registered in England No 329824



MINIATURE WAFER SWITCHES 2 pole， 2 way－ 4 pole， 2 way－ 2 pole， 9 way－
4 pole， 3 way－2 pole， 4 way－\({ }^{2}\) pole， 4 way－ 4 pole， 3 way－ 2 pole， 4 way－ 3 pole， 4 way－

\section*{TOGGLE SWITCHES}
 ST 22 p DP
swe tipe． 13 amp self－fixing into an oblong hole．
size approximately \(1 \mathrm{ln} . \times\) tin．， 9 p each SLIDE SWITCHES

B．Ditto as above but for printed circuit 7 y each． sub Ministure 8Hide 8witoh．DPDT 19 mm （4＊
approx．）between fixing centres． 14 p each or 10 tor \(21 \cdot 26\).
DOUBLE LEAF CONTACT
 Very ellght pressure closes both
contacts．8p each， 10 for 72 p
Plastle push－rod suitable for operating．
6p esch． 54 p for 10 TELEPHONES Complete as illustrated．Save your
legs，time and temper．simply by lera，time and temper．simply by
putting in some telephones．Ex．
G．P．O．not new－but guaranteed in cood condition and serviceable． Supplied with diagram and instruc－
tions showting how to connect．
3 types ayailable as illuatrated leas internal bellel each．Ditto with bell Post etc． 50 peach ．
I REV．PER MINUTE MOTOR WITH GEAR－BOX
Made by the famous Chamberlain \＆Hookham led．These


MINIAT URE SEALED RELAY
 high and it＇s a double change over，we this at \(3 / 5\) amps．The coll resistance is 600 ohms and 9.12 volt will close it．Ideal for modele and miniaturised equipment． with base．Price 28 p including base． METAL CHASSIS

former and／or valve holdera also some in \(^{n}\) holes for controls，
pots etc．This is an ideal chassis for making up a relay unit pots etc．This is an ideal chassis for making up a relay unit 40 D each
12 CAR BLOWERS
Units made by Delco． 6 bladed \(5^{\prime \prime}\) dia．fan inside heavy
duty cylindcr．These have really powerful series wound duty cylinder．These have really powerful series wound
 but can be run from A．C．up to 30v．The higher the voltage


DRILL CONTROLLER New 1 kW model．
tronically changes Electronlcally changes speed
from approximately 10 reve from approximately 10 revs．
to maximum．Full power at ali
speeds by finger－tip control speeds by finger－tip control．
Kit includes all parts，case，
everything and
 BAKELITE INSTRUMENT
size approx． \(6 \dot{t}^{* *} \times 3 \xi^{* *} \times 2^{n}\) deep With
brass inserta in four comers and bakelite brass inserts in lour cormers and bakelite
panel．This Is a very atrong case suitable
to house fastruments and special riga etc． to house instrumentr and special rigs，etc ISA ELECTRICAL PROGRAMMER


Clock by famous maker with 15 amp．on／off switch．Switch Independent 60 minute memory jogger．A beautiful unit Price \(82 \cdot 15+\)
bezel \(83 p\) extra．


実

\section*{HIGH ACCURACY}
as probe．Deaigner claims tempersture contro to within \(1 / 7 \mathrm{th}\) of a alims tempersture ocontrol
power pack \(46 \cdot 15\) ． TREASURE TRACER
Complete Kit（except wooden battens）to
makee the metal detector as the circuit in make the metal detector as the circuit in
Practical Wireless August issue． \(\mathbf{8 3 . 8 5}\)
pluas 20 p post and
AUTO TRANSFORMER Primary \(220-240 \mathrm{v}\) ．Secondary \(110-\)
120 v ．Well built and varnish impreg． ated． 250 watt intermittant rating． Size approx． \(34 \times 3 \times 3\) in．\(\times 3\) ．
plus 20 p post and insurance．


\section*{CENTRIFUGAL BLOWER}
 ELECTRIC TIME SWITCH
 Made by smilthe these are A．C．mains operated．NOT e built into box with 13A socket． 2 completely adjurtable ime periods per 24 hours， 5 amp changeover contacts whl switch circuit on or off during these periods． 82.75 post and ins．，23p．Additional time contacta 55 p palr．



\section*{THYRISTOR LIGHT DIMMER}

\section*{10 AMP DIMMER CONTROL}

For the control of lighting on stage or in a studio or for control of portable equipment in workshops，etc．This has two 13 amp socket outlets each ls controlled by a 5 amp solld state regulator．The overall length is 17 in ．，width 3 tin．and
On／Off switch indicator，lamp and fuse．Price \(\mathbf{\& 8} \cdot \mathbf{2 5}\) ．

\section*{HONEYWELL PROGRAMMER}

This is a drum type timing device，the drum being
callbrated in equal divisions for wwitch setting purposes caith trips whlch are inflitely adjustable for purposes
woition． They are also arranged to allow－ 2 operations per switch
per rotation．There are 15 changeover micro switches each of 10 amp type operated by the trips thus 15 circuits may be changed per revolution．Drive motor is mains operated 5 revi per min．Bome of the many uses of this
timer are Machinery control，Boller furing，Dispensing

 TANGENTIAL HEATER UNIT Thls heater unit is the very lateat type，most efficient．and quet running．Is as fited in more．We have a few only Comprises motor，
impeller； 2 kW ，ajement anvil kW ．element allowing impeller； 2 kW ，ajement gnvilikW．element allowing
switchlng 1,2 and 3 kW ．and with thermal safety


Don＇t mlse this．Control switch 44D．plus VAT P．\＆P． \(40 \%\)

\section*{30KV EHT UNIT}

This unit ig self contaimed and on wheels．It stands approx． 6 ft high and 3 ft aquare．
On the front panel is a Variac，Voltmeter，a 60 second Timer as well as the normai On the front panel is a Variac，Voltmeter，a 60 second Timer as well as the norinal
overlood trip on off switch and cut outs etc．The transormer itself if oll flled and overload trip on／off switch and cut outs，etc．Fimary so all voltages up to 35 KV are
rated at 7 KVA 30 KV ．The varlac is in the primarity avallable．We beiieve the normal use for such a unit would
flash tester． 1 only－not new but in good order．Price sige．


HORSTMANN＂TIME \＆SET＂SWITCH （A 30 Amp Fwitch．）Jnst the thing if you want to come home to a
warm house without it costing you a fortune．You can delay the awitch on time of your electric fres，etc．，up to 14 hours from etetting
time or you can use the switch to glve a boost on period of up to time or you can use the switch to glve a boost on period of up to
3 hours．Equally auitable to control procesing．Regular price
prokably around 55 ．Special snip price \(81-65\) ．Post and ins．23p．
 SPIT MOTOR
\(200-250 \mathrm{v}\) ．Induction Motor，driving a carter gear box with 1 tin．o output drive shaft running at 5 revs．per minute．Intended for
roasting chickens，also suitable for driving models，windmills，coloured roasting chickens，also suitable for driving models，windmils，
disc lighting effect，etc．，etc． 82.05 plus 20 p post and ineurance

\section*{DISTRIBUTION PANELS}


Just hat you need for work bench or lab． \(4 \times 13 \mathrm{amp}\)
soekets in metal box to take gtandard 13 amp fused
pluge and on／off switch with neon warning light Bup hred up ready to work，\(£ 2 \cdot 48\) plue 26 p \(\mathbf{P}\) ．\＆ module form，each ready built complete
sinks and connection tags，data supplied
Model 1153500 mW power output 72 p ． Model 1172750 mW power output 94 p Model EP9000 4 watt power output \(\mathrm{E1} \cdot 80\) ．
 \(10 \%\) discount if 10 or more ordered

CAR PANEL SWITCH Our Ref．No．SO1．Arco made．
Has long fat ended toggle black
and chrome fnle and chrome finish．Rated 2 A．at 250 v ．and is double pole on／an．
Listed at 45 p．Our price \(2 R \mathrm{p}\)

\section*{CAR PANEL AUTO SWITCH}

Ref．No．SO3．Again a fiat ended toggic．Made oy Arrow． auto arerials．reversing motors etc． 30 p each．

\section*{GV D．C．POWER MOTOR MADE BY} REDMUND
For driving a bilge pump and similar applicatlons．This motor we understand develops on \(t\) H．P．It is extremely
powerfil and although rated at 6 v ，this operates up to powerful and although rated at 6 v ，this operates up
12 ve for short periods with very much increased power， （probably at least \(\$\) H．P．）We understand that from the
makers they cost over 5. At 82.20 each phus 25 p post on makers they cost over 25 ．At \(22 \cdot 20\) each plus \(25 p\) post on

\section*{8 AMP VARIACS}

These are variable voltage tranaformers．Britloh made by
the famous Zenith Co．Fully enclosed for bench use and No 100 LM．220－240v．A．C．output 0.240 v ． Thls model is listed at over 220 ．We have a limited quantity only，absolutely brand new，still in maker＂s cartons，offered
to you at \(£ 1375\) each plus \(\& 1\) carrlage and ningrance up MOTOR GENERATOR
Made for Admiralty． 24 volt D．C．input， 240 v ． 50 cps． output．Admiralty rating 80 watta but we have tested this
to \(50 \%\) overload voltage regulated so suitable to operate TV or instriment．In case with metal cover controls on to make．Our price only \(£ 25\) each plus carriage \(£ 2\) up to MULLARD THYRISTOR
TRIGGER MODULE MY 5004
This produces pulaes for phase
control triggering，it has two isolated outputs，so one thyris－
tor or two thyristors in tor or two thyristors（in
separate arms of bridge）may be controlled by one module．
The timing circult is aynchro－
 nised to the malus frequency and control is by an external Proviaion is made for feedback where automatic control is required．Price 84.95 each or for \(10 \$ 45.00\) ．
9V GRAMOPHONE UNIT
Battery operated on unit plate 2 speed auto－ato
BUY TIME SLOT METER
Made by Sangamo Weston．3 types，one for each coln
2 pt ， 5 p or 10 p ．Price 81.75 each plus 25 p port and ins． 4 STATION TRANSISTORISED

\section*{INTERCOM}

Solld state three transistor printed cct．mater and tree sub station push button／press talk system． 200 mW output， power pack approx \(3 \times 14 \times 4\) in Price 88.50 plus 20 p ． PHOTO ELECTRIC KIT
Contains photo cell，relay，transistor and all parts to make AC／DC MILLIAMMETERS 3 RANGE Moving Iron mirror scale laboratory instalate．Ranges
 GALVOMETER 7－0—7 UA F．S．D．
Moving coil precision laboratory Inatrument of extremely \(6 t \times 24 \times 2\) in．Price 87.50 ．

\section*{ACOS．＇\(G\)＇METERS}

For use with tranaducers and accelerometers．These are precision instruments they measure＂ g ＂in three ateps
\(0-10,0-100\) and \(0-1000\) directly on a large clear meter scale 0－1．Two models available：－Standard model（IDOOL inbuilt clrcuit with relay to trip the external circuit（trip level is adjustable by a control which is virtually linear
with the meter scale）．The trip load may be up to 2 a．
Once the circult has been tripped it can be restored by a YOLTAGE CHATton．Price of this model is \＆18 YOLTAGE CHANGING TRANSFORMERS
MADE BY PARMEKO
Upright mounting，fully shrouded and with terminal blocks
for input and output．For changing mains voltage，ideal for input and output．For changing mains voitage，meal
for working low voltage equpment from \(230 / 240\) malna
and for increasing voltage due to losese fal long leads．Voltage and for increasing voltage due to loses in long leads．Voltage
up or down between \(190-250 \mathrm{v}\) ． 250 watts．Prlce \(\mathbf{~} 1.65\)

\section*{DOOR OPENING OR PLATFORM}

\section*{ROTATING MOTORS}

Very powerful motors eatimated rating at if H．P．Reversible with gearbox and＂V＂belt drive wheel of \(7^{\prime \prime}\) diameter．
These are by a French maker using trade name LUXOR and name plated Moteur Asynchrome．Capacitor start but
with 6 connections．At the time of writing this we haven＇t connection diagram the if any reader has mist thls motor before and can tell us how to connect and anything about it we would he obliged．Price of motor which welghs approx．
15 lbs i \(\& 10\) ． SPRING RETURN WAFER SWITCH
As used in intercom and other similar equipment a two wafer 6 pole 3 way awtch，opring return from centre position
when turned clockwise and permanent off or on when turned anti－clockwise．Prite 55p each．
A．C．B UZZERS
2v．Fix theae into a box which will resonate and they will
ive a loud piercing note．Suitable for alarms or aignal． PUSH ON TAG CONNECTORS
These are being increacingly used on cara and domestic betag．We offer these at attractive prices． 10 for 10 p ．
50 for \(40 \mathrm{p} \ldots 100\) for 70 p and 1,000 for \(\$ 5\) ．
WALL THERMOSTATS

This Month＇s Snip．Made by the famous Smiths
Instrument Co．called Colourstat．Wall mounting
Adjuatable by slider（lockable）and may be set to control temperatures from around ireezing through （frost）（warm）（very warm）etc．The thermostat． mains voltage and is ideal for liviny room，bed－
room and greenhouse etc．Price \(\boldsymbol{£ 1} \cdot \mathbf{6 5}\) ．Don＇t misa

Where postage is not stated then orders
over \(£ 5\) are post free．Below \(£ 5\) add 30 p． S．A．E．with enquiries please．

J．BULL（ELECTRICAL）LTD．
（Dept．W．W．）7，Park Street，Croydon，CRO 1YD Callors to 10213，Tamworth Road．Croydon

\section*{(P) 1.L_P. (Electronics) Ltd}

\section*{100 WATTS!}

\(\star\) NO EXTERNAL COMPONENTS
\(\star\) MECHANICALLY \& ELECTRICALLY ROBUST \(\star\) INTEGRAL HEATSINK
\(\star\) HERMETICALLY SEALED UNIT
\(\star\) ATTRACTIVE APPEARANCE
\(\star\) LOWCOST
\(\star\) BRITISH BUILT
\(\star 100 \times 105 \times 25 \mathrm{~mm}\)

With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulant is responsible for its compact size and robust nature.

The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.

Only 5 connections are provided, input, output, power lines and earth.
Output Power: 100 watts RMS; 200 watts peak music power into \(8 \Omega\)
Input Impedance: \(10 \mathrm{~K} \Omega\)
Input Sensitivity: ODb ( 0.775 volt RMS)
Load Impedance : 4-16 \(\Omega\)
Total Harmonic Distortion: less than \(0.1 \%\) at 100 watts typically \(0.05 \%\).
Signal: Noise: Better than 75 Db relative to 100 watts
Frequency response: \(10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}\)
Supply Voltage: \(\pm 45\) volts
APPLICATIONS: P.A., Disco, Groups, Hi-Fi, Industrial.
PRICE: \(\mathbf{£ 1 4 . 9 0}\) inc. VAT \& P \& \(\mathbf{P}\)
Trade applications welcomed

\section*{DP A-P.(Electronics) Ltd}

\section*{SECOND GENERATION 25 WATT HYBRID}


\section*{NEW HY5 PRE-AMPLIFIER}

Unchallenged for two years, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components \& has been redesigned to run off a split power line with improvements in signal/noise, overload capability \& reduced distortion. The output has been increased to match the power module (Odb). and to share the same power supply.
Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the eariler device.
When combined with the HY50 \& power supply only potentiometers are required to complete a simple mono amplifier with input \& output facilities expected to be found on Hi-Fi amplifiers.
The combination of two HY5's two HY5O's sharing a common power supply (PSU50) are linked by a balance control to form a complete stereo system.
INPUTS
Magnetic Pick-up 3 mV (within Idb RtAA curve)
Ceramic Pick-up up to 3 mV .
Microphone 10 mV .
Tuner 250 mV .
Auxiliary 3.100 mV .
Input impedance \(47 \mathrm{k} \Omega 1 \mathrm{kHz}\)
OUTPUTS
Tape 100 mV .
Main output. Odb \((0.775\) volts \()\)
ACTIVE TONE CONTROLS
Treble \(\pm 12 d \mathrm{~b}\) at 10 kHz
Bass \(\pm 12 \mathrm{db}\) at 100 Hz
OVERLOAD CAPABILITY (equalization stage) 40db on most sensitive inpu
OUTPUT NOISE LEVEL (below 10 mV magnetic input) 68 db .
DISTORTION \(0.05 \%\) at 1 kHz .
SUPPLY VOLTAGE \(\pm 16-25\) volts
SUPPLY CURRENT 15 mA .
Price \(£ 4.51\) mono \(£ 9.02\) stereo
Price inclusive of VAT \& P \& P.

\section*{POWER SUPPLY PSU50}

The new PSU50 has a low profile look being only \(2 \frac{1}{4}\) inches high and can be used for either mono or stereo systems. SPEC.
OUTPUTVOLTAGE \(\pm 25\) volts.
INPUTVOLTAGE 210-240volts.
SIZEL. 70 D. 90 H .60 mm .
Price £5.23.
Price inclusive of VAT \& P \& P.

\section*{APPOINTMENTS VACANT}

DISPLAYED APPOINTMENTS VACANT : \(£ 9.90\) per single col. inch
LINE advertisements (run-on) : 55p per line (approx. 7 words), minimum two lines.
BOX NUMBERS : 25 p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.)
PHONE: Allan Petters on 01-261 8508 or 01-928 4597.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\footnotetext{
Advertisement accepted up to 12 noon Tharsday. October 4th for the November issue subject to space being available.
}

\title{
Test Engineers
}

\section*{Up to \(£ \mathbf{2 , 6 0 0}\)}

\section*{Are you seeking a challenge?}

\section*{The Post}

To meet major growth requirements \(I A L\) seek experienced Test Engineers to be engaged in testing and trouble shooting on the most advanced solid state electronic assemblies and a wide variety of sophisticated systems.

\section*{The Company}

International Aeradio Limited, a division of the British Airways Group is rapidly spreading it's interests in world markets with particular penetrations in the communications, electronics and data communications fields.

\section*{The Engineers}

Will work within the company's fast expanding electronics engineering division which is concerned with the production of solid state transmitters and receivers and digital systems equipment aimed at the Computer market.

\section*{The Requirements}

The scope and responsibilities offered within the post call for very competent engineers with proven practical experience. A technical qualification will of course be advantageous but will not be an essential requirement for the right man. Applications stating age and career to date should be addressed to: Mr. R. Radcliffe, Personnel Officer UK, International Aeradio Limited. Hayes Road, Southall. Middlesex.


\title{
SPANISH COMMUNICATIONS EQUIPMENT MANUFACTURER
}

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:

\section*{NORTRON}

Fernando el Católico, 63
Madrid 15
SPAIN

There is scope, variety and responsibility as a

\section*{Radio Technician}

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.

\section*{ENTRANCE QUALIFICATIONS}

You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.
Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.

Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: \(£ 1383\) (at 19) to \(£ 1836\) (at 25 or over) ; scale maximum \(£ 2158\) (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.


\section*{SWANSEA SOUND LIMITED}

\begin{abstract}
If you believe you have suitable qualifications and/or the right practical experience, and you want to face the unusual challenge of heading up the engineering facility of the new commercial radio station in Swansea, we would like to hear from you.
Swansea Sound's new chief engineer will equip the station within the budgets and standards laid down, recruit and train the technical staff and bring the station to a fully operational state for an air-date in early summer 1974.
He will have full responsibility for his department.
The successful candidate could be a young man with a creative flair for audio electronics, or he could possess a broader experience of radio engineering but with a fresh and flexible approach to the job demanded by the particular workings of commercial radio.
In either case he will be expected to make his own contribution to the success of the station motivating and leading a compact team of technicians.
Salary will match the qualifications and abilities of the successful man.
\end{abstract}

Write in confidence to:
Keith Lunniss, Director
Radio Advertising Bureau Ltd., 35 Curzon Street

\section*{SPANISH COMMUNICAIIONS EQUIPMENT MANUFACTURER}

Has an immediate opening for An experienced Design and Development Engineer for Audio Equipment, including Highly Professional Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

\section*{C.C.T.V. STUDIO TECHNICIAN}

Hambro Life Assurance Limited are installing a high quality, three-camera colour television studio at their offices in Old Park Lane, W.1.

Facilities will include video recording, editing and telecine. Additionally, two black and white camera and U-matic recording chains have been acquired.

We now wish to add to the small, professional team working on this project an enthusiastic, hard working individual who will be responsible for the technical quality of the studio output, keeping equipment lined up and trouble shooting where necessary. Other aspects of the job are wide and varied, including establishment of studio sets, assisting during recordings (e.g. sound or vision mixing), liaison with suppliers, etc.

Enthusiasm and experience will be regarded as more important than technical qualifications for this position. We believe that a related engineering background with an inclination to turn a hand to all parts of the production of a video-recording are the most appropriate characteristics. Filming experience, either as an amateur or professional, would be an added advantage. Salary will be negotiable around \(£ 2,500\). Working conditions are excellent and there are non-contributory pension, life assurance and B.U.P.A. schemes.
Telephone Harry Catton, 01-499 0031, for any further information and an appointment for interview.

\section*{APPOINTMENTS}

\title{
BITO OFHIERE would vau rome nshare for \(\% 2,3010\) y yar?
}

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over \(£ 2,000\) a year, including compulsory pension contributions, at 25 years of age working only a 41-hour week of shift duties -with overtime this could rise to \(£ 2,300\) and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. You have good opportunities for promotion to positions earning basic salaries of up to \(£ 3,290\), and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L52

\section*{0000000}

Foreign and Commonweath Office

\section*{Telecommunications Technicians}

\footnotetext{
at Hanslope Park, Milton Keynes, for work on various receivers and associated test equipment, recorders, telephone and teleprinter equipment, electronic ancillary equipment (some using analogue and digital tech:riques), voice frequency telegraph and other specialised equipment.

Candidates, normally aged at least 23 , must have ONC or equivalent in electrical/electronic subjects and have served an apprenticeship or had equivalent training.

Starting salary \(£ 1,628\) (at 21 ) - \(£ 1,810\) (at 23) \(£ 2.210\) (at 28 or over on entry): scale maximum \(£ 2,418\). Prospects of promotion up to \(£ 3,515\). Non-contributory pension scheme.

For full details and an application form (to be returned by 12 October 1973), write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone BASINGSTOKE 29222 ext. 500 or LONDON 01-839 1992 (24 hour answering service). Please quote \(\mathrm{T} / 8370\)
}

The company specialise in the design and production of sound control equipment for the recording industries.

With the continued expansion of the company, vacancies arise for the following:

\section*{SENIOR TEST ENGINEER TEST ENGINEERS}

Applicants should have a theoretical knowledge of electronics and/or experience in studio engineering techniques and practices.

It would be preferable that the Senior Test Engineer has had studio experience.

Salaries by negotiation and to be commensurate with that of the position.

Apply to:

> Cadac (London) Ltd.,
> Lea Industrial Estate,
> Batford,
> HARPENDEN Herts.

Tel: Harpenden (STD 05827) 64698

\section*{The best young Engineers have computers in mind. Are you aged 21 to 25?}

Do you want a flying start to a career in computers? Here is your chance. Train as a Field Engineer with IC.L, Europe's leading computer manufacturer.
Training
You will be given thorough training on ICL electronic equipment leading to computers. Qualifications

You should be aged between 21 and 25 and be on your final year or have attained City \& Guilds electronic certificates or an HNC in electronics. You should have completed an electrical engineering apprenticeship or have at least two years' industrial experience on electronics.
Job satisfaction
As an ICL Field Engineer you have a high degree of responsibility for a customer's installation. You need technical expertise, tact and personality. So you are important as a representative of ICL.

There are opportunities of starting with us in several areas in the UK. Get the full details now by completing and returning this coupon today.

To: Mr A E Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW15 2TQ.
Please send me an application form for job openings in Field Engineering.

Name
Address

ICL Computers

\section*{THE OPEN UNIVERSITY SOUND RECORDING ENGINEER}

A vacancy exists in The Open University for a sound recording engineer; five years minimum experience in the recording and editing of master tapes for radio, film, cassettes and discs. The successful candidate will be based in the sound studio (APRS member). The Open University is located in the new town of Milton Keynes and a housing scheme in conjunction with the Milton Keynes Development Corporation is operated.
Salary up to \(£ 2,241\) per annum.
Applications should be made in writing stating full details of age, experience and qualifications and names and addresses of three referees to The Acting Personnel Manager, The Open University (RE2), P.O. Box 75, Walton Hall, Militon Keynes, MK7 6AL, as soon as possible.

\author{
\([3023\)
}

\section*{BERRY'S RADIO}
has vacancies for
(a) SENIOR SALESMEN
(b) SENIOR ENGINEERS TOP RATES OF PAY

\title{
Electronics Test Engineers
}

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery: applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable. Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next fiveyears. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW.
Telephone: Cambridge 51351.
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk.
Telephone: Haverhill 4422.

\section*{Brighton Education Committee \\ Brighton Technical College}

\section*{Senior}
C.C.T.V.

\section*{Technician} Technician required as soon as possible to
head a team responsible for the maintenance head a team responsible for the maintenance other audio visual aids.
Applicants should possess a City \& Guilds finals Appiticants should possess a City \& Guilds finals
certificate in radio and television servicing and certificate in radio and television servicin
have had relevant practical experience.
SALARY ON GRADE T4 £1.530-£1.830. (CURRENTLY UNDER REVIEW)
An additiona! allowance is payable for appropriate qualifications.

Application form and details available from:
Chief Administrative Officer,
Brighton Technical College,
Pelham Street,
Brighton, BN1 4FA.
Telephone: Brighton 685971.

\section*{ENGINEER \\ to service \\ ELECTRONIC ORGANS \\ B \& O AUDIO and C.T.V.}

The work is interesting and varied, a Company vehicle is provided and there are vacancies in Birmingham and Manchester.
Telephone or write to:
W. Swan, Jnr. or Mr. D. C. Kay,

SWAN'S
m Street, Manchester M4 ILF Tel : 061-228 3821

\section*{SERVICE ENGINEER}

LKB INSTRUMENTS LTD.
requires an additional engineer to be resident in the South London, S.E. England area for field servicing of their Scientific and Technical instruments installed in Academic, Medical and Industrial Laboratories.

The successful applicant will possess a sound basic knowledge of modern electronics and will preferably have some field experience, although this is not essential.

The Company is internationally renowned for the quality of its products and offers excellent working conditions including company car, pension scheme, superannuation and profit sharing bonus scheme.

Write for application form to
The Service Manager,
LKB Instruments Limited,
232 Addington Road,
South Croydon, Surrey, CR2 8YD [3079

\section*{Telecommunications Technicians Looking for Variety?}

The Ministry of Posts and Telecommunications needs skilled, suitably qualified Technicians to work in London on a broad range of projects. These posts offer challenge, involvement in advanced new development, and the opportunity to develop your experience across a whole spectrum of sophisticated technology
The Ministry is responsible for the planning of television and sound broadcasting, space communications, maritime and land mobile services; the technical monitoring of radio transmissions and radio regulatory control, together with the design of equipment for detecting. measuring and suppressing radio interference. There are opportunities to participate in the work of national and international conferences and there are good promotion prospects.

You should be at least 23, and must hold ONC Engineering with a pass in Electrical Engineering ' \(A\) ', or ONC in Applied Physics, or a recognised equivalent such as C\&G Telecommunications Technicians (No.49). In addition you should have at least 5 years' experience of skilled work on radio, radar or electronics. Salary: Grade II £2,593 rising to £2,902; Grade III \(£ 1,985\) at 23 £2,385 at 28 or over on entry; scale maximum £2,593. Level of appointment will depend on age and experience. Non-contributory pension scheme.
For full details and an application form (to be returned by 10 October 1973), write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke 29222 ext 500 or London 01-839 1992 (24 hour answering service). Please quote \(\mathrm{T} / 8349\).


In order to keep pace with the ever increasing demand for large audio installations we require further staff.
Specifically System planners, Supervisors, Wiremen and Test Technicians.
If you consider your ability and experience suits you for one of these positions please phone or write to us.
You will enjoy long term security and involvement in extensive contracts for the manufacture of technically advanced systems for use throughout the worid.

\section*{GRAMPIAN REPRODUCERS LIMTED Hanworth Tradirg Estate,Feltham, Middlesex.}

\section*{MM PRISON AND BORSTAL SERVICE}

\section*{TRAINING INSTRUCTOR £1,853-£2,514}

LEWES, Sussex and possibly elsewhere
Inmates of prisons and borstals are given vocational training so that they may earn their living when they leave, In addition, the training is used directly in industrial work contracted for by Prison Industries.
Most of the training is to ITB specification and prepares people for City and Guilds or equivalent examinations. The service now needs the following additional instructor at HM Prison, Lewes, Sussex.

\section*{RADIO AND TELEVISION SERVICING}

To train inmates in Radio and Television Servicing and to prepare them for City and Guilds examinations.
QUALIFICATIONS Applicants should have served a full apprenticeship or have had equivalent recognised training followed by at least five years industrial experience in the radio and television and/or electronic servicing industry, City and Guilds certificate (or equivalent) is desirable. Teaching or instructing experience are added advantages.
STARTING SALARY (Civilian instructional Officer, Grade III) \(£ 1,853\) at age \(26 ; £ 2,082\) at age 28 and above, rising to \(£ 2,514\). Non-contributory pension scheme and prospects of promotion.
HOURS 40 hour week, excluding meal breaks. 4 weeks 2 days annual holidays plus \(8 \frac{1}{2}\) days public and privilege leave.
FOR AN APPLICATION FORM Please phoneor write to The Establishment Offlcer, Home Office, Port land House, Room 10/10 (17A) Stag Place, London, SW1E 5BX (telephone 01-828 9848 Ext. 666). Closing date 28 September 1973.

HOME OFFICE

\section*{Senior Quality Assurance Project Engineer}

This new appointment in the Feltham Laboratories of our Systems and Weapons Division requires a qualified engineer who is able to supervise a wide range of Quality Assurance activities concerned with
Instrumentation and Data Systems.
The duties will consist of liaison with development engineers from the project definition stage to production on Ministry Contracts.

Experience in Data Systems together with a sound knowledge of modern test equipment for functional test purposes, is essential.

Knowledge of Defence Standard 05-21/29 would be an advantage Applications should be made quoting reference number QA/ri to: Mr. J. Morrison, Personnel Officer, EMI Electronics Ltd, Victoria Road, Feltham, Middlesex
Tel. No. ox-890 3600 Extension 44

International leaders in Electionics.Records and Entertainment.

\section*{Redland Tiles Development Department at Redhill VERSATILE ELECTRONICS TECHNICIAN}

Required to construct and install a wide range of electronic and electrical control equipment using both contactor and inte. grated circuit techniques.
\(\AA\) good practical man is required capable of working on his own initiative from circuits and sketches when necessary. Good mechanica! aptitude would be an advantage.
The applicant should be qualified to drive and be prepared to travel occasionally at short notice.
May suit EXPERIENCED PROTOTYPE WIREMAN following course of instruction leading
D. F. Matthews

REDLAND TILES LIMITED
Philanthropic Road, Redhill, Surrey Telephone Redhill 64671 [3046

\section*{SOUND ENGINEER SOUTH AFRICA}

Major South African Record Company are expanding their studio operations. They require an experienced Sound Recording Engineer to head up a team that will operate a new multitrack complex with the latest equipment. Salary negotiable.
Write giving full details of professional background and experience to box WW 3067.
```

KEY SELECTION
Require for Clients
ELECTRONIC, DEV, TEST \& SALES ENGS. \& TECHNICIANS
(All grades-all areas of U.K.)
Why not give your career that much needed boost by contacting Maurice Wayne on
01.487 W411, Key Selection $01-487$ 3411, Key Selection, 126, Wigmore
Street, London, W.I.
13029

```

\section*{MARINE ELECTRONICS}

Positions available for experienced, or trainee marine electronics engineers and operator technicians. Our work involves Oceanographic Surveys and will require personel to work for periods overseas. This company is based at Yarmouth and for further information please write giving details of education and experience to:


OCEANEERING INTERNATIONAL SERVICES LTD.
Riverside Road, GORLESTON Norfolk

\section*{ilea}

\section*{Education}

Television Service
Tennyson Street, London SW8

\title{
Mobile Section Engineer
}
£2907-£3138
responsible for the technical operation and maintenance of one of the mobile control rooms, working with the Education Director and rooms, working with the Education iper with 3 a crew of two. The MCRs are equipped with 3
monochrome Plumbicon cameras, an eightmonochrome Plumbicon cameras, an eightchannel sound desk and 2 inch or 1 inch video-
tape recorders as necessary. All members of the tape recorders as necessary. All members of the
crew share rigging duties and the driving of crew share rigging duties and the driving of
vehicles. A current driving licence should be vehicles. A current driving licence should be
held and training will be given for the taking of an HGV driving test.
Applicants should possess a thorough knowledge of broadcast television engineering practices have appropriate qualifications and experience, have appropriate
Salary according to qualifications and experience.
Hours of work will be in accordance with the requirements of the service but the basic week is 35 hours. Hours are of necessity rather irregular, often involving overtime, but time off in lieu will be granted or, where that does not prove possible, overtime payment will be made. prove possible, overtime porking is very seldom necessary. The annual leave entitlement, after qualifying service, is 5 weeks and 1 day.

Application forms and details from the Education Offlcer (Ref EC/Estab 2A/2). The County
Hall, London SEe. Telh OI-633 7546 or OI633 7456. Closing date for completed applica633 7456. Closing date
tion forms October 1.


\section*{Lancashire County Council Health Department}

The Health Education Service has a vacancy for a

\section*{TECHNICIAN (TV/PHOTOGRAPHY) \\ Grade Tech. 4}

Salary \(£ 1,530-£ 1,803\)
Television is becoming an integral part of audio visual aids in the provision of health education. T.V. studio facilities are being developed and the
Health Education Service requires a technician Health Education Service requires a technician
whose duties will include the technical operation of \(T . V\). equipment.
The person appointed will, of course, be knowledgeable in the use of normal projection equip. ment. It will be an advantage for applicants to have some expertise in camera work and photography.
The post is full time, permanent, superannable and subject to medical clearance.
Application forms obtalnable from the County Medical Officer of Health, Serial No. 9693, East Cliff County Offices, Preston, to be returned by the 20th September, 1973.
[3097

\section*{MARCONI INSTRUMENTS LIMITED}

\title{
ELECTRONIC TECHNICIANS
}
are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme. geared to our recognised export achievement, provides employment combined with prospects of advancement. not only within these grades. but into other technical and supervisory posts within the Company at Luton and St . Albans.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW178 for application form to:

Mr. M. Leavens, Works Manager Telephone: Luton 33866. or Mr P Elsip. Personnel Officer Marconi Instruments Ltd Longacres. St. Albans. Herts
Telephone: St. Albans 59292
Member of GEC Marconi Electronics

\title{
Maintenance Engineers
}

\section*{Saudi Arabia}

Opportunities exist in Saudi Arabia for Engineers experienced in the installation, commissioning and maintenance of'complex radar systems, on-line real time computer systems and their associated peripherals, other sophisticated digital hardware, tropospheric scatter systems and telecommunication systems. These posts involve 1-2 years unaccompanied tours for which inclusive salaries between \(£ 4000\) - \(£ 6500\) will be paid. Free air-conditioned individual accommodation, and local


\section*{£4-£6500 (tax free)}
transportation is provided. U.K. leave entitlement is 16 days after each 24 weeks. Candidates, aged 23-50 years, should have extensive relevant practical experience (particularly experience of 3-D Radar), together with a formal qualification or services background. Excellent opportunities exist for career development and those selected will become permanent staff with all the benefits that this implies. Regional interviews will be conducted. Write or telephone for application form to

Chris Jamieson, Lansdowne Recruitment Limited, Design House, The Mall, London W5 5LS. Tel 01-5796585 (anytime-24 hour answering service)

\section*{TECHNICAL REPRESENTATIVES TO SELL \\ TELEQUIPMENT EDUCATIONAL PRODUCTS}

In order to satisfy the special needs of EDUCATION, three posts have been created. Successful applicants will be required to call on EDUCATION AUTHORITIES and COLLEGES in (1) England NORTH of the Wash and North Wales
(2) EASTERN counties Wash to Thames
(3) SOUTH England and South Wales

They will need sufficient knowledge of electronics to justify the product training provided by the company. Experience with oscilloscopes or knowledge of physics would be an advantage.

Basic salary \(£ 2,000\) TOTAL EARNINGS with commission and company profit share will be in the region of \(£ 2,600-£ 2,900\). Company car - Pension Scheme.
Contact Keith Retallic - SALES MANAGER
We also need TECHNICIANS at HARPENDEN, MANCHESTER and LIVINGSTONE (SCOTLAND) service centres. CONTACT MR. R. M. GARRATT

\section*{SERVICE ENGINEER EXTRAORDINARY}

We are seeking an unusual mixture to offer an exciting challenge, good prospects and pay. The service engineer sought should have both digital and analogue experience, mechanical aptitude and if possible knowledge of nuclear physics. He will cover the North of England, London and the South East, responsible for after-sales service of liquid scintillation equipment.
Please reply in confidence to:

> MANAGING DIRECTOR
> INTERTECHNIQUE LIMITED
> COTTRELL HOUSE
> 53 -63 WEMBLEY HILL ROAD,

WEMBLEY HA9 8BE requirements, we need engineers to design, supervise production, test and commission a wide range of mobile radio telephone equipment.

If you are an engineer, an ambitious service engineer or tester who is looking for a career opportunity, and you have experience on one or more of the following :-

I V.H.F. or U.H.F. radio equipment
2 Systems design
3 Circuit design of A.F., R.F., or D.C. switching circuits
4 Testing or servicing of Mobile Radio telephone equipment
5 If you can work with the minimum of supervision

Contact Mrs. L. Dyne, Personnel Dept. ERITH 3912I Burndept Electronics (E.R.) Ltd., St. Fidelis Road, ERITH, Kent DA8 IAU.

WIGGINS TEAPE RESEARCH AND DEVELOPMENT LTD.
Butlers Court, Beaconsfield, Bucks.

\section*{SENIOR} ELECTRONICS TECHNICIAN

Applications are invited for this post to lead a small team engaged in applying electronics to papermaking research and allied processes at the Central R. and D. Unit of an international papermaking group. Based at Beaconsfield the duties will include design, development, manufacture and maintenance of a wide variety of electronic, electro-mechanical and opto-electronic instrumentation.
Applicants should be of H.N.C. standard and have several years development experience with linear and digital circuits.
The salary is negotiable in the range \(\ell 2,000\) to \(£ 3,000\). The unit provides excellent working conditions, a pension scheme and luncheon vouchers.
Application forms from Mr. A. W. Massey, Personnel Department. Tel: 04945652.

\section*{CHIEF INSPECTOR}

Thorn Consumer Electronics (Chigwell) Limited is the Audio division of the Thorn Group of Companies and in order to satisfy the continuing increase in demand for our products, both at home and abroad, it has become necessary to undertake an expansion programme. A new audio factory has been established at Harold Hill in Essex, which will ultimately be the largest manufacturing unit of its kind in Europe using sophisticated production techniques.

An exceptional opportunity occurs for a suitably qualified man to join the new organisation, which will be involved in quantity volume production of high wattage unit audio equipment. as Chief Inspector.

The job will be concerned with all aspects of the inspection, test and troubleshoot functions associated with the flowline production of the units. In addition, close liaison, with the Training Department in forward pianning and training requirements will be necessary.

The successful candidate will hold suitable electronics qualifications, have experience of high volume production methods. be a capable staff motivator and will possess the drive and enthusiasm which the job will demand.

Written applications, setting out brief career details to date and current salary to:

\section*{THE PERSONNEL MANAGER, THOFIN CONSUMER ELECTRONICS, 62/70 FOWLER ROAD, HAINAULT, ILFORD, ESSEX}

\section*{LEEDS POLYTECHNIC \\ Educational Technology Unit \\ Senior \\ WorkshopTechnicianT5}
£1,803-£2,100 (under review) Ref. 13/14 This is a newly created post and the successfui candidate will be required to service and maintain electronics equipment held by teaching departments
of the Polytechnic. of the Polytechnic.
Application forms (quoting reference number)
together with further particulars, from the together with further particulars, from the
Administration Officer, Leeds Polytechnic, Calverley Administration 1513 , Leed to be returned as soon Street,
as possible.
[ 3092

\section*{CLOSED CIRCUIT TELEVISION TECHNICIAN}

\section*{\(\mathbf{f 1 , 7 1 3 - £ 2 , 7 9 0}\)}
reouired in the London Collene of Printinn .SE1, for the operation and first line maintenance of an extensive C.C.T.V. distribution system linking all the teaching areas of the college to a central control room

Duties will include the central recordina and routing of proarammes as well as the settina up of a mobile proaramme oriaination "package", consisting of cameras and associated vision and sound equipment.

Applicants should have a basic knowledde of electronics and experience with the operation or installation of broadcast or closed circuit television eauipment.

Starting salary according to oualifications and experience.
Application form returnable by October 2.
from the Establishment Officer (E/635/) Room 163 N . County Hall. London. SE 1 7PB.

Electrical Service
Engineering Group


\title{
Electronic Calibration Engineers
}

G \& E Bradley, part of the international Lucas organisation, develop and manufacture a unique range of electronic instruments and medical equipment. We can also boast the most comprehensive maintenance, calibration and repair service in the U.K.
So, to maintain our reputation and our current expansion programme, we're
looking for more experienced Electronic Calibration Engineers with a maintenance background in telecommunications, radar, microwave, ECM systems, and all types of electronic test equipment.
Professionally competent Engineers, with or without relevant qualifications, will enjoy attractive salaries
plus the benefits normally associated
with a major organisation.
And, for the ambitious, the promotional prospects to supervisory starus are exceptional.
Please apply in writing or by telephone to:
The Personnel Manager, G \& E Bradley Ltd...
Electral House, Neasden Lane, London N.W. 10.
Tel: 01-4507811

\section*{BRADLEY electronics}

A LUCAS COMPANY

\title{
Computer Engineers
}

We're going to select a number of able, decisive, productive and logical minds to become expert on our very large computer systems.

We will train you for twelve to eighteen months in basic and advanced hardware and software; after this you will be responsible for ensuring that large computer systems of a particular type are kept in first-class order. This could lead to your being in charge of a team of high-calibre engineers.

Each assignment is unique and may be in Britain, Europe or elsewhere and would appeal to the young qualified engineer who wants a high degree of responsibility, has the personality, tact and resourcefulness required of a representative of ICL and who wishes to travel whilst broadening his knowledge of large computer systems.

Applications are welcomed from experienced Computer Engineers or graduates with highly logical minds and a degree in maths, physics or engineering science.

You will initially, and during training, be based in one of the following locations:

Letchworth/Stevenage
West Gorton, Manchester
Kidsgrove, Staffordshire
Write for an application form, quoting reference WW 496 C , to A E Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London \(\mathrm{SW}_{15} 2 \mathrm{TQ}\).

We have vacancies for:

\section*{SERVICE TECHNICIANS}
based at Camberley, to work in a specialised Department dealing with miniaturised transmitter/receivers on fault diagnosis and correction. Technical experience of communications systems is an advantage.

\section*{FIELD SERVICE ENGINEERS}
in the Greater London Area. Applicants should have experience in fault finding and testing of UHF/VHF radio equipment. Current driving licence essential, company vehicle provided.
The Company has much to offer those who are interested in the sophisticated, modern world of radiotelecommunications and who can demonstrate their ability in this field.
Please contact:

\section*{The Personnel Officer, STORNO LTD.,}

Frimley Road, Camberley, Surrey.

\section*{ELECTRONIC ENGINEERS}
required for equipment maintenance and associated engineering projects. Knowledge of professional tape recording equipment, studio operations, or high speed tape duplicating systems is desirable. Salary will be according to age and experience. Please write giving details of age, qualifications, experience and present salary to Chief Engineer, Rediffusion Reditune Ltd., Cray Avenue, Orpington, Kent.


REDIFFUSION

\section*{SUPERVISOR}
(EVENING SHIFT)
A music cassette/cartridge plant requires a man aged 28 or over to supervise their duplicating department. Applicants must have some practical experience in the audio field, and an understanding of tape recording principles is essential.
We can offer good working conditions and a salary in the region of \(\mathbb{I} 750\) p.a. dependant on ability and experience.

Apply to: Mr. R. A. Goodwin
Trident Tape Services,
4/10, North Road
Tel: No. 6090087.
[3058

UNIVERSITY OF KENT at Canterbury A
TECHNICIAN (Grade 3)
is required for the Audio Visual Aids Service He must be experienced in present-day television servicing and, desirably, should also have a keen interest in cine-projection and other visual aid to teaching. The salary scale is E1539-E1794. Further particulars and application forms may be obtained from R. Robson, Assistant Registrar quoting reference T73/10. The closing date for completed applications is 29 th September, 1973

\section*{Ulster-The New University INSTITUTE OF \\ CONTINUING EDUCATION \\ MAGEE UNIVERSITY COLLEGE LONDONDERRY \\ C.C.T.V. TECHNICIAN}

Applications are invited for the above post. Duties will include the operation and maintenance of CCTV services and preparation of programme material.
Qualifications: HNC, or equivalent, plus at least seven years previous experience.
Salary scale: \(£ 1,881-£ 2,241\) per annum.
Application forms and further particulars should be obtained from The Registrar, The New University of Ulster, Coleraine, Co. Londonderry Northern Ireland (quoting Ref. No. 73/130/149/ \(31 / 98\) ) to whom completed applications, including the names and addresses of three referees, should
be returned not later than 31 St October, 1973.

\section*{UNIVERSITY OF SHEFFIELD AUDIO VISUAL TECHNICIAN}
(Grade 3) responsible for maintenance and operation of audio visual equipment (film, slide and overhead projectors, tape recorders. P.A. systems, photo-copying, etc.).

Familiarity with photographic techniques an advantage. Salary scale \(£ 1,539 \times 651\) (5)E1,794 p.a.

Write giving details of experience and qualifications. to the Deputy Director of Services (Ref. B.333/BW), The University. Sheffield, S10 2 TN .

\section*{KING'S COLLEGE HOSPITAL} MEDICAL SCHOOL
(Unlversity of London)
Denmark Hill, London SE5 8RK

\section*{ELECTRONICS \\ EXPERIMENTAL OFFICER}

A vacancy exists in the Department of Biomedical Engineering for an Experimental Officer to work as part of a multi-disciplinary team on the development and construction of prototype electronic instruments for use in medical research. Salary will be in the range of exte the ind according to age and experience and the appointment will be for two years in the first instance. Candidates should have had adequate experience
either in industry or in hospital and will be exeither in industry or HNC in electronics or light pected to hold an HNC in electronics or
current electronic engine Applications to the Director, Department of Biomedical Enginnering.

\section*{ELECTRONIC ENGINEER}

Recording Studio of major Record Company require young Audio Electronic Engineer with a fresh approach to the problems of modern recording electronics.

POLYDOR RECORDS
STUDIO LONDON
01-499 8686 ext 51

\section*{IPSWICH AND DISTRICT}

HOSPITAL MANAGEMENT COMMITTEE

\section*{ELECTRONICS TECHNICIAN}

Applications are invited for the above post. Candidates should possess H.N.C. or equivalent qualifications qualified and experienced candidates to suitably
in this field.

SALARY SCALE: \(\mathbf{6 1 , 6 0 2}\) to \(\mathbf{6 2 , 0 7 6}\) p.a. According to qualifications and experience.
Please note: that although the salary scale for this post rises from \(£ 1,602\) to 62,076 . new entrants to the Health Service are normally required to start on the lowest point of the scale. The successful candidate will be a member of a new and expanding department. servicing a

For further details of this post, please telephone lpswich 5648 I . Ext. 33 or write to:- The Group Engineer, Ipswich and Distriet Hospital Management Committee. 26 Broughton Road, IPSWICH, IPI 3QS.

\section*{Draughtsmen!}

EMI, one of the world's leading Companies in the fields of military and commercial Electronics, are forming teams to undertake several new and important projects in their divisions at Hayes, Middlesex challenging work on the design of highly advanced electronic equipment. This opens up first class opportunities for

\section*{Senior} Intermediate and Junior Draughtsmen. with a mechanical,electrical orelectronics background.

To work in the following fields
* Radar and associated projects
* Television and Aerial Systems
* Microelectronics - thick and thin film work
* Microwaves tubes and components

Starting salarics up to \(£ 2600\) p.a. If you are looking for a good career in the forefront of Electronics technology, please write giving carcer details, or phone for an application form: Richard Black, Personnel Department, EMI Electronics Ltd., 135 Blyth Road, Hayes, Middlesex.
Tel: OI-573 3888 Ext. 2887.

\section*{METROPOLITAN WATER BOARD}

\section*{Assistant Communications Officer \\ (£2,733-£3,105)}

Applications are invited for the above-mentioned post which will be based at the Bcard's Head Offices.
Duties are to assist in project investigation, planning and development of mobile radio, telecommunications (telephone and telegraph) and data transmission networks.
The successful candidate should possess a suitable qualification, e.g. Degree, H.N.C., etc., and be experienced in Post Office procedures and have had practical experience at supervisory level in one of the following fields for at least five years.
(1) V.H.F./U.H.F. mobile radio communications.
(2) Telecommunications-privately switched networks, large P.A.B.X. installations (cross-bar type), transit switching techniques, Post Office telephone equipment, and data transmission.
A.n application form returnable by 5 th October, 1973, may be obtained from the Establishment Officer, Metropolitan Water Board, New River Head, Rosebery Avenue, ECIR 4TP, or telephone 01-837 3300 Ext. 19.

\title{
Telecommunications Engineer
}

\author{
With the expansion of the company's off-shore oil and gas production activities in UK and overseas areas, a further telecommunications engineer is required to work in our London Office \\ Duties will include the design, development and implementation of remote control and supervisory systems with microwave/tropospheric scatter or cable links and telecommunications systems for normal correspondence and data. Some overseas travel will be involved for site surveys and equipment installation/commissioning \\ Candidates, aged \(30-40\), must be qualified C. Eng. or B.Sc. in Electronic Engineering. Experience to include at least four years in a senior capacity on installation, testing or site maintenance of electronic telecommunications equipment and four years design and development in systems planning. At least one year's service in the oil or allied industries in this specialised field is desirable. \\ A realistic salary will be paid, with excellent terms and conditions \\ \(\square\) Please write in the first instance, giving details of your experience, quoting reference AAG.604, to: The Manager, Central Recruitment. The British Petroleum Company Limited. Britannic House, Moor Lane, London, EC2Y \(98 U\).
}

\section*{DYNAMIC SERVICE ENGINEERS DIGITAL ELECTRONICS}

OHIO-NUCLEAR is the world's leading supplier of radio-isotope imaging equipment for use in diagnostic nuclear medicine. Due to continued rapid expansion we wish to recruit experienced field service personnel to undergo specialised technical training on our advanced systems to become PRODUCT SPECIALISTS (SER VICE).

The work involves travel to install and service our range of digitally-oriented medical equipment throughout the U.K. (occasionally abroad).

DESIRABLE REQUIREMENTS for these positions are as follows:
- H.N.C. or equivalent
- wide, general electronics background
- thorough knowledge of 74 Series logic
- working knowledge of core and tape memory systems
- ability to work on own initiative with minimum supervision.
These are KEY POSITIONS offering real scope for advancement in a very exciting and rewarding field. The posts command an attractive salary, company car and extensive fringe benefits.
Detailed résumé, including age, education and experience, to:

The Service Manager, Ohio-Nuclear (U.K.)
Radix House, Central Trading Estate,
Staines, Middlesex.

\section*{SPANISH \\ FIRM \\ NEAR MADRID}
is looking for design and development engineers with a minimum of three years of experience in the field of P.C.M. equipment to be used by the telephone industry.
Areas of interest are encoders and decoders. P.C.M. multiplexers and R.F. equipment to transmit P.C.M. data.
Salary open.

Send résumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN
2584

\section*{HARTLEPOOL HOSPITAL MANAGEMENT COMMITTEE}

\section*{Electronics Technician}

Applications are invited for this new post to undertake the maintenance of electronic equipment in hospitals in and around Hantlepool.

The appointment is to the Staff of the Group Engineer, to whom the successful applicant will be accountable for the repair and planned preventive maintenance of a wide range of electronic equipment, including electro-medical and laboratory apparatus, H.F. pocket-paging receivers and itransmitters, engineering controls, and audio/radio frequency distribution systems.

Applicants should preferably hold H.N.C. (Electronics or light current Electrical engineering) or City and Guilds Full Telecommunications Certificate.

National Health Service Conditions.
Starting Salary within the scale of \(£ 1,602-£ 2,076\) p.a., depending on age, experience and qualifications.

Application forms are available from:-
GROUP PERSONNEL OFFICER,
hartlepool hospital management committee, CENTRAL ADMINISTRATION,
GENERAL HOSPITAL,
hartlepool.

\section*{THE HOSPITAL FOR SICK CHILDREN} GREAT ORMOND STREET, LONDON, WCIM 3JH

\section*{ELECTRONICS TECHNICIAN}
required by the Medical Electronics Workshop to set and maintain high standards of serviceability and safety of a wide range of electronic apparatus used in the workshop and the Hospital.
Applicants must have sufficient constructional ability to enable them to assist with the modification and improvement of both existing and new apparatus. Experience of medical equipment would be an advantage but is not essential.

Salary on a fixed scale of \(£ 1,728\) to \(£ 2,202\).
Qualifications should be a minimum of O.N.C. or equivalent.

Day release for further study is available.
Application forms may be obtained from the Deputy Hospital Secretary.

\section*{AUDIO SERVICE ENGINEERS}

Lindair, London's leading Hi-Fi Retailers, require 2 Audio Service Engineers for their Service Dept. in the West End.

The Service Department deals with leading top-quality brands of \(\mathrm{Hi}-\mathrm{Fi}\) equipment, such as Amps., Receivers, Tape-Recorders, and Loudspeakers.

Applicants must be fully competent to work under the minimum of supervision. Ideally they should have appropriate City and Guild and/or " O" levels in Maths and Physics, but qualifications are not as important as the ability to complete a job once started.

Minimum age 22.
High Salaries will be paid, other attractive conditions of service include 3 weeks' paid holidays.

To arrange an interview write or phone:-
Mr. George Welsh, Lindair, Kirkham House,
54a Tottenham Court Road. London. W1
Telephone: 01-6371601
LINDAIR

\section*{RADIO OFFICERS}

\section*{DO YOU HAVE PMG I PMG II MPT 2 YEARS OPERATING EXPERIENCE}

POSSESSION OF ONE OF THESE QUALIFIES
YOU FOR CONSIDERATION FOR A RADIO
OFFICER POST WITH COMPOSITE SIGNALS
ORGANISATION.
On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to \(£ 2.527\) pa: commencing salary according to age - 25 years and over \(£ 1,807\) pa. During training salary also by age, 25 and over \(£ 1.350\) pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

\section*{Full details from}

Recruitment Officer, Government Communications
Headquarters, Room A/1105 Priors Road, Oakley, Cheltenham, Glos GL52 5AJ, Telephone: Cheltenham 21491 Ext 2270

\section*{ARPOINTMENTS}

\section*{CENTRALELECTRICITY GENERATING BOARD SOUTH WESTERN REGION}

\section*{SCIENTIFIC SERVICES DEPARTMENT CONTROL \& INSTRUMENTATION BRANCH}

\section*{LABORATORY TECHNICIAN}

A vacancy exists in the Instruments Section of the Scientific Services Department at Portishead. Somerset.
The work will be largely based at the laboratories at Portishead but site work at the Region's Power Stations will be necessary.
The successful candidate will join a new group. in a supporting role, to Research Officer involved in using mini computers and other logic devices to control, collect and analyse data from experiments. The group also provides a service in design and constructing electronic signal conditioning units.
The candidate's duties will be to construct electronic equipment and to generally assist in the production of both hardware and software associated with computer control and data collection. He will be expected to undertake some electronics development work.
Applicants should have an Ordinary National Certificate in Electrical/Electronic Engineering or Physics, and some practical experience in electronics and circuit construction. A working knowledge of digital and printed circuit techniques and workshop practices is desirable.
The terms and conditions of service will be in the National Joint Board Agreement for the Electricity Supply Industry. The salary will be within the range \(£ 1.446\) to \(£ 2.376\) per annum depending upon age. experience etc. In addition, allowances of \(£ 60\) and £ 174 per annum are payable.
Applications on Form SF/1, obtainable from the Personnel Manager, 15-23 Oakfield Grove, Clifton, Bristol BS8 2AS, should be returned to him (quoting Vacancy No. 292/73) by not later than 1 October 1973.

\section*{Are you interested in}

\section*{Communal Aerial Television Systems Work?} Then read on further......

Due to continued expansion, EMI Service, part of EMI's Electronics and Industrial Operations group of Companies, has the following vacancies for engineers at Hayes, Middlesex.

\section*{SERVICE ENGINEERS}
required for bench and field work on Communal Television Aerial equipment. Must be capable of diagnosing faults and repairing wide range of aerial amplifying and distribution equipment.

\section*{SYSTEMS PLANNING}

ENGINEERS
for the planning of Communal Television Aerial installations. Previous experience required to be capable of producing practical plans from building details and subsequently setting to work after installation.

Attractive starting salaries. Contributory Pension Scheme. Assistance with removal expenses in appropriate cases.

\section*{WANT TO TAKE THINGS}

FURTHER
then write or telephone for an application form to:
R. N. L. Black, Personnel Department, EMI Limited, 135 Blyth Road, Hayes, Middlesex. or-573 3888, Ext 2887.

The Department is engaged upon providing diagnostic services, using radioactive isotopes including scanning, ultrasonic, electromyography, patient monitoring, etc. Apossess an ONC, two qualified Radiographers or science subject or " \(A\) " levels in an appropriate educational qualifications will be braing for higher appropriate cases.
Salary \(\subset 1.209\) rising by annual increments to a maximum of \(\{1.563\) per annum.
Applications giving full details of education, qualifications and experience together with the names of two referees to the Hospital Secretary. St. George's Hospital, Lincoln.
[3028

\begin{abstract}
DO you require Indian representation? B.Sc. bay. Willing to act as local fep for U.K. companies Ref available. Write Box WW 3035. ELECTRONICS TECHNICIANS. (1) Grade II E \(£ 2,037-£ 2,634\). To be accountable to the Group Engineer for the Department. (2) Grade III \(£ 1,725\) £2,202. Salaries under review for payment of Government Phase II increase. The successful applicants will service and calibrate a wide range of equipment used in medical. surgical and engineering services, working closely with medical and other may be available. Further particulars and application forms returnable by October 8th from Mrs. J. Moore, Staffing Officer, Ext. 2202. Northwick Park Hospital and Clinical Research Centre, Watford Road, Harrow Middlesex, HA1 3UJ. Telephone 01-864 5311. [3020 FULLY experienced Audio Engineer required by T leading importer of high fidelity equipment. The applicant should have working experience with most types of unit and be fully up-to-date with current techniques. 5 day week. Salary by negotiation Applications to the Managing Director, HowlandWest Ltd.. 3-5 Eden Grove. London N7 8EQ. 13062 HI-FI AUDIO ENGINEERS. We require experito get them. Tell us about your abilities. \(01-4374607\).
\end{abstract}

MPERIAL College of Science and Technology Tech1 nical Vacancy ELECTRONICS DEVELOPMENT ENGINEER required, for a research project requiring development of electrical controls for high pressure hydraulic and mechanical systems. Qualifications: Degree or equivalent, mechanical background. Salary £2,229 to \(£ 2,715\) plus \(£ 175\) per annum London weighting, according to experience. Contract for a limited period. Application forms from Departmental Superintendent, Department of Geology, Imperial College, London SW7 2BP. [3044 LEEDS (ST. JAMES'S) UNIVERSITY HOSPITAL LHYSICS TECHNICIAN COMMITTEE - MEDICAL PHYSICS TECHNICIAN (GRADE IID) (NEW POST). An electronics technician is required for the maintenance of x-ray image intensifiers and closed circuit in Leeds. There are now 14 sets of equipment in use. The person appointed will work with the x-ray maintenance staff in the Medical Physics Unit. Candidates should have an O.N.C. or H.N.C. in electronic engineering or a science degree, followed by at least three years of relevant experience. Salary scale \(£ 1,602-\) £2,076. Application forms available from the Group Personnel Manager, St. James's Hospital, Leeds LS9 7TF. Closing date September 28th, 1973. [3045 'TEST Engineers and Installation Engincers-starting for bath \(£ 1,400-\mathrm{t} 2,000\). Electrosonic have vacancres visual and lighting control equipment Permanent and pensionable positions offering an excellent opportunity for applicants with initiative, experience and a sound knowledge of electronics. Starting salary according to experience. Electrosonic is an expanding international company and posts offer opportunities for travel. Apply Electrosonic Ltd., 815 Woolwich Road, Charlton, SE7 8LT. Telephone 01-855 1101 between hrirs \({ }^{\text {CECHNT }}\) am. 3087 TECHNICIAN. GRADE 5 required for Electronics 1 Section of Science Workshop. Applicants should be suitably qualified and be conversant with the maintenance and adaptation of electronic instruments and equipment and the design and construction of 5 simple electronic apparatus for research and teaching. Commencing salary on scale \(£ 1.881 \times 72\) Scheme plus \(£ 175\) London Allowance, according to qualifications and experience. Application forms may be obtained from The Assistant Secretary (Personnel), (WW) Bedford College, Regent's Park, London. NW1 4 NS. (Tel.: 01-486 4400 Ext. 313). [3060 CLASSIFIEDS-Continued on p. 125

\section*{APPOINTMENTS}

\section*{SALES MANAGER}
to market commercial sound products including the newly acquired 'Altec' Agency.
Salary negotiable: \(£ 3,000\) plus.
Apply in writing to:
theatre projects sound limited,
10 Long Acre, London, W.C. 2
[3112

\section*{Electronics Engineer}

We are a London-based Studio and we are looking for a young Engineer who is capable and eager to learn. He will be working with Broadcast Colour cameras, VTR and Telecine.
Write or phone: Jon Hocking, Technical Director,
zOOM TELEVISION LIMITED 15-19 New Fetter Lane, London E.C. 4
Tel. 01-353 3641

London Borough of Haringey Education Service

\section*{Laboraiory Technician}

Salary \(£ 1,416-£ 1,635\) per annum plus recent pay award. Commencing salary according to qualifications. Laboratory Technician required at Full-time Laboratory Technician required at
Stationers' Company's 5chool, Mayfield Road, N.8, to work 36 hours per week \(\times 52\) weeks per
annum.
Minimum qualifications: Ordinary National Certificate or Ordinary National Diploma; City and Guilds Laboratory Technicians Certificate; 4 G.C.E. passes with 2 at ' \(A\) ' Level in appropriate subjects; Membership of Institute of Science Technology OR an equivalent suitable qualification OR 5 years suitable experience. Qualifications in Electronics would be an advanta.ge.
Candidates will be responsible for the maintenance
of the Language Laboratory and will be required of the Language Laboratory and will be required throughout the School and help monitor a computer link-line.
The post is ideal for a candidate who wishes to gain experience in the maintenance of a fairly wide range of equipment.
Application forms obrainable from Chief Education Officer, Somerset Road, N.17, returnable by 29 October, 1973.

\section*{CLASSIFIEDS-Continued from p. 124}

\section*{MARINE RADIO OFFICER: (Aged 27), eight 1 years sea service seeks employment ashore within the electronics field in either field service, sales engineering or communications. PMG Certificate (2), DTI Radar Certificate. Willing to learn new fields and travel either at home or abroad. Permanent position, preferably in Scotland. Box WW 3099. \\ SURPLUS components and computer boards pur- \\ ARTICLESTFOR SALE}

A MPEX FR 1400 Instrumentation Tape Recorder A Reproducer, £375.00. EMI TR 52 two-channel audio Tape Recorder, £120.00. EMI magnetic drum Echo System (ex Abbey Road), £185.00. Hewlett Kearfott Gyro T2502, £7.50. ERA solid-state 400 Hz Inverter, \(100 \mathrm{VA}, £ 15.00\). Tinsley 50 Hz Tuning Fork int polished wood case, \(£ 12.00\). IBM Standard Electric Typewriter mounted on table, \(£ 55.00\). IBM Selectric Typewriter on table, £95.00. Solartron CD 1400 d.b. Oscilloscope, \(£ 140,00\). Solartron LM 903 a.c. Converter/Voltmeter, \(£ 12.00\). ICT adjustable 6 V Suppiy with twin meters, f16.00. Deltron \(12 \mathrm{~V} / 20 \mathrm{~A}\) digit ttl Counter-Timer, £25.00. Ekco M 5024 six-
 Raymond ffoulkes, Frensham Heights, Rowledge, Farnham, Surrey. Or phone Godstone 3106. [3074 CLASSIFIEDS-Continued on p. 126

\section*{00000000}

\section*{Senior Wireless Engineer (£3237-£4098)}
. . . . to be responsible for the technical direction and control of staff engaged in the examination of problems associated with the planning, design, progressing installation and maintenance of a wide variety of telecommunications systems. These include mobile radio systems, message switching, networks to interface with large data processing computer systems, closed circuit television, radar and allied techniques, and control room design for fixed locations.
Candidates should have satisfied the academic and training requirements for corporate membership of an appropriate professional institution. They should have a broad knowledge of modern telecommunications, both radio and line, and have specialised in system planning and/or system research or have had experience in the control and management of a large-scale maintenance organisation.
Starting salary within the quoted scale. Promotion prospects. Noncontributory pension scheme.
For full details and an application form (to be returned by 10 October 1973) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone BASINGSTOKE 29222 ext. 500 or LONDON 0) 1-839 1992 (24 hour answering service), quoting T/8376.

HOME OFFICE Directorate of Telecommunications

\section*{\(0000 \circ \circ \circ \circ\)}

Marine Radio Design
IMRC is a leading company involved in the desian and supply of radio communications equipment to the merchant shipping industries of the world.

We have the following vacancies in our development team working on new transmitter and receiver desian projects.

\section*{Senior Electronics Development Engineer}

Experience: A minimum of three vears in circuit design for radio communications equipment. ideally with some time havina been spent on projects in the MF and HF bands. A sound understanding of both linear and loaic techniaues associated with this field would be advantageous. Qualifications: Dearee or HNC standard - but ability and experience are our major concern.

\section*{Senior Design Draughtsman}

Experience: At least five vears in the layout. detailing and documentation of electro-mechanical desions including the layout and preparation of artwork for printed circuit boards.

Please write or phone with brief details of your experience or aualifications to :

\section*{Miss S. J. Lemmon \\ International Marine Radio Co. Ltd., \\ Peall Road, Croydon CR9 3AX}

Tel: 01-684 9771

\section*{APPOINTMENTS}


European Organization for Nuclear Research
Organisation Européenne pour la Recherche Nucléaire

CERN is a modern research laboratory, situated near Geneva, which offers first-class social and financial conditions of employment, and the opportunity to work in an international atmosphere.

A vacancy exists for a young

\section*{Electronics Technician (VHF)}
to follow the progress of the construction, by external manufacturers, of the 200 MHz electronics equipment associated with beam position detectors of the 300 GeV proton synchrotron, now under construction. The successful candidate will also design and build circuits for reception tests, will perform these tests, will install the equipment and participate in its commissioning and maintenance.
Applicants should have a technical college diploma and some years of practical experience in the design and construction of HF and VHF circuits. Good knowledge of English or French desirable.
Please write for an application form to the address given below, quoting the reference: 8-051-CO-BM-361, to
Head of Personnel
CERN,
1211 Geneva 23, Switzerland.

\section*{Marine Radio Engineers}

The International Marine Radio Company, a leading company in the marine electronics field, have an immediate vacancy for one additional engineer to work from their Tilbury Depot on service and installation of marine radio and associated equipment.

Candidates must be ex-Merchant Navy Radio Officers with a minimum of three years' sea-service and preferably have had previous experience of installation and maintenance of equipment.

Please write, giving sufficient details of qualifications and experience to:

\section*{Miss S. J. Lemmon}

INTERNATIONAL MARINE RADIO COMPANY LIMITED, 1 Peall Road, Croydon, Surrey, CR9 3AX

\section*{ESSENTIAL BOOKS!}

HANDBOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES. Includes many thousands of British. USA and
 Equivalents. 40 p. p.p. 5 p
PRINCIPLES OF ELECTRICITY \& MAGNETISM. Page \& Adaris. A course in Electricity \& Magnetism for student technician and Electronics Engineer. As recommended to technical colleges, universities and polytechnics. Fully illustrated. 532 pages. Published at \(£ 4.50\). Special offer of \(\$ 2.25\) per copy. p.p. 30p.
CONSTRUCTORS MANUAL OF ELECTRONIC CIRCUITS FOR THE HOME. Just published. Contains many interesting and useful gadgets for the home. Full
circuits. data and instructions. 50 p. post free. HOW TO MAKE WALKIE.TALKIES FOR LICENSED OPERATION. 40p. p.p. 10 p .
ELECTRONIC NOVELTIES FOR THE MOTORIST 50p. post free.
HANDBOOK OF PRACTICAL ELECTRONIC MUSICAL NOVELTIES. 50p. post free.
PAACTICAL TRANSISTOR NOVELTY CIRCUITS. 40p THE \({ }^{\text {p.p. }}\)
WAVESHEORY OF GUIDED ELECTROMAGNETIC WaVES. R. Waldron. The most comprehensive book ever wrten about Waveguides. Transmission Lines. Cavity Resona£6. 25 p.p. 35 p
AHE SCATTERING \& DIFFRACTION OF WAVES scientist. Published by Oxford Univ. Press. f1 60 pp 15 p THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits data and illustrations, plus valuable information for 8 ritish/USA receivers. transmitters. trans/receivers. With mndifications to sers and test equipment Latest impression \(£ 3.25\) including postage
DIRECTORY OF GOVERNMENT SURPLUS WIRELESS EQUIPMENT DEALERS. Gives details of surplus wireless equipment stores and dealers incluting addresses and equipment that they are likely to have available. A valuable book only 40 p. p.p. 10 p.
NEW BOOKS. Publication date for these three titles
is Nov. 15th. Order now to avoid disappointment as the first impression of each is expected to be a sell-out. MOBILE RADIOTELEPHONE EQUIPMENT HANDBOOK. Gives circuirs data. and illustrations plus some valuable mudil.... 'o. rommercial radio telephone equipment including PYE and other populer makes. \(£ 4\) including postage.
HOW TO MAKE 2 \& 4 METRE CONVERTERS FOR AMATEUR USE. 50p. P.P TOP ADVANCE BOOK OF GRYSTAL SET DESIGNS. 35p. p.p. 5 p

A COMPREHENSIVE WORKING HANDBOOK OF SATELLITES AND SPACE VEHICLES. A handbook that provides important data both tabular and graphical enabling space scientists. technicians and telecommunication space vehicle design. launching, orbiting etc. Includes a deof 457 pages. Published at \(C 820\) Avaitble At \(C 650\) post free - PI P B HI-FI, PA., GUITAR \& DISCOTHEQUE AMPLIFIER DESIGN HANDBOOK. Includes circuits up to 1100 watts output. Tremolo, Vibrato, and Fuzz-Box Etc. 75p. post free. ANH ublisher. SED PAEIC PECHNICAL. SCIENTIFIC, ELECTRONICS. \& GENERAL BOOKS.
LEASE STATE YOUR INTERESTS.

> GERALD MYERS (w.w.) 18 ShAFTESBURY STREET, LEEDS LS12 3BT.
> Bookseller \& Publisher NEW SHOWROOM \& TRADE COUNTER DPEN AT 8 HARTLEYS YARD, OFF TOWN STREET,

armley, LeEDS 12. (near White Horse Inn) CALLERS WElCOME.

CLASSIFIEDS_Continued from p. 125
ARTICLES FOR SALE-Continued

A ARVAK ELECTRONICS. 3-channel sound-light A converters, from \(£ 18\). Strobes, \(£ 25\). Rainbow Strobes, \(£ 132\).-I2A Bruce Grove, N17 6RA. 01-808
[20 9096. BUILD IT in a DEWBOX quality plastic cabinet
 Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet. Write now-Right now. 176 COMPUTER CONSTRUCTORS. I.B.M. 6420 Prowith dossor complete, working when removed from site, Mullard AW 3767 10K \(\times 4\) bit Core Store (modern) £40. Electric Typewriter suitable for output printer
 \(\begin{array}{lll}\text { £20. Fi-Cord miniature tape recorder (Swiss) } & \text { £30. } \\ \text { S-Band amplifier and power supply (Deneo) } & \text { £20. }\end{array}\)
 CONSTRUCTION AIDS-Screws, nuts, spacers etc., C in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send \(6 p\) for Iist. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon,
Warwks.

\section*{APPOINTMENTS}

\title{
CCTV, Audio and Projection Engineers
}

World Radio and TV Handbook 1973.
Intergrated Circuit Pocketbook, 282 pp
Electronic Engineers Ref. Book, 1532 pp. Ilius.
Electronics Pocketbook, 314 pp. 111 s .
Foundations of Wireless and Electronics, 552 pp
110 Intergrated Circ. Proj. For the Home Cons.
110 Semiconductor Prol. for the Home Cons. 110 Semiconductor Prol. For the Home Cons. 13 Intergrated Circult Engineering, 406 pp. 1llu
Intergrated Circuit Systems, 236 pp. Hlus.. Aerlals (P3) YV and FM Receiving Aerials, 112 pp. ilius. Loudspeakers and Loudspeaker Cabinets, 120 pD... Radio Valves, 134 pp. Mlus iil...
Stereo Handbook, 150 po. Ilius.
Translstors in Logical Circuits, 132 pp. Ilus..
Practical Oscilloscope Handbook 118 pp. IIlus Practical Oscilloscope Handbook, 1188 pp. Illus.
Principles of Feedtack Design, 246 . Principles of Feedback Design, 246 pp. Ilus.
Principles of Transistor Circuits. 318 pp . Ilus. Ques. \& Ans. on Electronics, 112 pp . illus . Oues. \& Ans. on Transistors, 96 pp. Illus.
Radio \& Electronic Laboratory Handbook Radio \& Electronic Laboratory Handbook, 628 pp . Semiconductors: Basic theory \& devices, 272 pp .
Simplified Modern Filter Design, 193 pp. Illus.. Telecommunications Pocketbook, 152 pp . Illus. Transistor Circult Design Tables, 128 pp . Tranststors for Technical Colleges, 210 pp . illus 20 Solid state Projects for the home, 114 pp . Illus Beginners Guide to Radio, 204 pp . \|lus..
Dictionary of Radio \& \(T V\), 380 pp . \(\| \mathrm{us}\).. Everyman's Wireless Book, 368 pp . H 1 ll FM Radio Servicing Handbook 206 pp . Illus.
 Introduction to Radar and Redar Techniques, 136 pp. Marine Radio Manual, 622 pp. Illus.............
The Practical Aerial Handbook, 232 pp. Ilfus. Practical Intergrated Circuits, 144 pD. \(11 l u s\) Practical Wireless Circuits, 192 pp. Practical Wireless Service Manual Mas... Principles of Aerial Desian. \(182 \mathrm{pD}, 11 \mathrm{pp} .11\) Principles of PAL Colour TV 162 pp. Illus Princlples of TV Engineering, 188 pp
Ques. \& Ans. on Audio, 104 pp. Illus. Ques. \& Ans. on Colour TV, 108 pp. Illus. ilius.
Radio and Audio Radio and Audio Serv. Handbook, 284 pp . lilius Radio and Electronch handbook, 156 pp . Mus.
Radio Vaive and Transistor Data, 240 pp . Illus. Television Engineers Pocketbook, 304 pp. Illus Television Servicing Handbook, 358 pp. lllus. How to make Walkie Talkies for licensed operation Handbook of Trans. Equivalents \& substitutes. Handbook of Tested Transistor Circuits, 64 pp . Sound and Loudspeaker Manual, 96 pp ..
Practicai Transistor Novelty Circuits, 64 Hi-fi, P.A., Guitar, Discotheque Ampl. Design Handbook
Electronic Novelties for the Car Owner
High Fidelity Loudspeaker Enclosures.
Radio Servicing for Amateurs...................
Radio, T.V. and Electronics Data Book.
Modern Transistor Circuits for Beginners
Manual of Transistor Audio Ampliflers.
Practical Car Radio Handbook.......................
\(1-2-3-4\) Servicing Stereo Ampliflers, 240 pp. ilius T-2-3-4 Servicing Stereo Amplisers,
Transistor TV Servicing Guide, 128 pp. Illus.
101 Oues. 99 Ways to improve your.S.W. listening, 144 pp 99 Electronlc Projects, Illus...
Transistorised Radio Control for Models Making and Using Electronic Oscillators, 128 pD Making and Repairing Transistor Radios \({ }_{r} 128 \mathrm{pp}\) ABC's of Electrical Soldering
Car Radło Servicing Made Easy, illus
Electric Guitar Amplifier Handbook.
HI-fi Stereo Handbook.......
Hi-fi Stereo Servlcing Guide.
How to repair small Appliances.
Making and Repairing Transistor
Radio Spectrum Handbook, lllus Radios, 128 pp. Servicing Digital Devices. Tape Recording Servicing Guide.
Transistor Radio Serviclng Made

\section*{WHEEL PUBLICATIONS (WWA)}

41a Adelaide Grove, London W12 OJH.

\section*{CLASSIFIEDS-Continued from p. 126}

ARTICLES FOR SALE-Continued
"KINGDOM ELECTRONICS" offers mono power ampliffer, cca. 10 Watts, with gain control, meter and Test Oscillator, \(0-100 \mathrm{KHz}\), \(£ 20\) and £ 3 Oxford. Mail orders to 4 Harberton Mead, Headington, Oxford.
[3059
LARGE quantity test equipment receivers trans, meters, various P.S.U.'s; over 1,000 items for immediate disposal. S.A.E., plus 25p, re-
funded on purchase over \(£ 2.00\). F.J.C., Colnemill Alvington, Glos. [2881 LADDERS 8ft. 10 in . closed- 22 ft . 6 in . extended L£15.64 delivered. Home Sales Ladder Centre Haldane (North), Halesfield (1), Telford, Shropshire
OLVETTI P203 PROGRAMMA-OFFICE COMPUUTER/TYPEWRITER, four years old. Regularly maintained by manufacturers, now surplus to require-
 CLASSIFIEDS-Continued on p. 128

The opening of our York Theatre in September will see the opening of Europe's most sophisticated conference complex. Technically it offers the most comprehensive range of audio-visual equipment including broadcast quality cameras, helical Scan V.T.R.'s and simultaneous translation systems. Link this with back-up facilities that include social co-ordinators, secretarial services, bars, restaurants, solarium and sauna and you will see the degree of sophistication our conference delegates may expect.

W/e have found our Chief Engineer and we are now seeking the above people to assist him. They will be concerned with the operation and maintenance of the equipment and the provision of specialised knowledge to the team.

Applicants should also be sufficiently interested in the full range of audivisual activities to become effective in production activities.

In return, we offer a salary on a scale between \(£ 3000\) to \(£ 4000\) p. a. depending on age, qualifications and experience, and excellent fringe benefits. These include non-contributory pension and sickness schemes, three weeks' holiday, and free meals whilst on duty.

Please phone or write to Mike Woolfe, Personnel Manager, Heathrow Hotel, Bath Rd., Hounslow, Middx.
Tel: 01-897 2419

\section*{Dunemprathmonn Cares for the people who count. You.}

\section*{nu \\ Medical \& Biological Instrumentation Ltd., Brunswick Road, Cobbs Wood Estate, Ashford, Kent. \\ Project Engineer \\ Required by a leading company in the new and expanding field of air ionization. Qualifications to BSc. or equivalent standard together with several years design experience in electronics. A knowledge of electrostatics, E.H.T. techniques, product and value engineering would be advantageous. The successful applicant will develop instrumentation from concept to production and be expected to be:come acquainted with relevant engineering and physical topics.}

\section*{Development Engineer \\ Al:so required to assist project engineers in the design of a range of interesting products in the fields} of faradic muscle stimulation, metal detection and ionization. Qualifications BSc. or HNC and practical electronics experience.
The above staff positions are with a rapidly expanding international company recently moved to larger premises in Ashford, London (Sales), and Ireland. The company operates a superannuation scheme. and a staff canteen.
Write giving relevant details to Mrs. H. Kennedy:

\section*{Southall College of Technology}

\title{
CEI PARTII \\ Options by PART-TIME STUDY
}

Telephone:
01-5743448

Electronics - Telecommunications etc., The Engineer in Society Apply: Head of Dept. of Electrical \& Electronic Eng.

\section*{TRAIN FOR SUCGESS WITH ICS}

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS. (Dept 734 U) Intertext House, London SW8.
[ 3000

\section*{Middlesex Polytechnic}

\section*{Technical Assistant T5}

To work as a member of a research group in the field of telecommunication Specialised knowledge and experience in audio systems, and electro-acoustics and familiarity with current electronic development practices is essential.
You will be expected to assume some responsibility for circuit design in collaboration with consultants, and a capacity to integrate with an existing research fellow and his team is necessary.
Salary £1,908-£2,205 (under review)
Write for an application form to the Senior Administrative Officer, Ref: WW/10, Middlesex Polytechnic, Crouch End Hill, London N8.

\section*{ARTICLES WANTED}

\section*{WANTED}

PLUGS AND SOCKETS
Plessey/Painton Mk. IV. Mk. VI, Mk. VII UK-AN Multicon H.D. Multicon 159 Series

Send lists to:

\section*{J. SALLIS,}

Oatlands Farm, Brighton Road, Shermanbury, Horsham, Sussex. Tel: 710-515.
[2972

\section*{WE PURCHASE}

All types of Electronic Components and Test TRANNIES
I Dockyard, Station Road, Old Harrow, Essex.
Tel No. (027-96) 37739
[ 3080

\section*{CLASSIFIEDS-Continued from p. 127 \\ ARTICLES FOR SALE-Continued}

COLOUR. UHF and TV SPARES. Colour and C UHF lists available on request. New Philips G6 single standard convergence panels complete, incl. 16 controls. coils, P.B. switches. leads. etc. and circuit data \(£ 3.75\). or With yoke \(£ 5.00\). P/P 30 p . New vergence yoke ind blue lateral, \(£ 10.00,{ }^{2} / \mathbf{P} / \mathbf{P} 40\).


 25p. Lum. Delay Lines. 50n, P/P 15p. EHT Colour Quadrupler for Bush Murphy CTV \(25111 / 174\) series £825, P/P 25p. EHT Colour Tripler ITT TH2s/1TH suitable most scts. \(£ 2.00\), P/P 250 . KB CVCI Dual Stand. convergence panels complete incl. 22 controls,
\(£ 3.75, \mathrm{P} / \mathrm{P} 35 \mathrm{p}\). CRT Base Pancl. \(£ 1.75, \mathrm{P} / \mathrm{P}\) 15p. Makers Colour surplus/salvaged philips G8 panels Marers complete: Decoder incl.
part
L/C,
D 5 mart complete: Decoder incl. base. \(75 \mathrm{p}, \mathrm{P} / \mathrm{P}\) 15p. GEC 2040 panels, Decoder.
\(£ 3.50\), T. Base, \(£ 1.00\). RGB and Sound. \(£ 1.00, \mathrm{P} / \mathrm{P}\) 25p. Pye CT70 Colour LOPT assembly incl. EHT
output and Focus Control output and Focus Control, \({ }^{£ 3.50,} \mathrm{P} / \mathrm{P}\) 35p. B9D
valve bases \(10 \mathrm{p}, \mathrm{P} / \mathrm{P}\) 6n. VARICAP TUNERS. UHF ELC 1043 NEW, 44.50 . Philips VHF for Band 1 and 3 , \(£ 2.85\) incl. data. Salvaged VHF and UHF Varicap

\section*{ELECTRO-TECH COMPONENTS LTD.}

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!

\section*{ELECTRO-TECH COMPONENTS LTD.}

315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580

\author{
「7
}

WE BUY SURPLUS ELECTRONIC COMPONENTS AND TEST EQUIPMENT, IN QUANTITY.
LINWAY ELECTRONICS
42 Spencer Avenue, Hayes, Middlesex UB4 0QY.
CONTACT US - YOU'LL NOT REGRET IT! Tel. No. 01-573 3677
tuners, \(11.50, \mathrm{P} / \mathrm{P} 25 \mathrm{p}\). UHF TUNERS NEW, Transistorised, \(£ 2.85\) or incl. slow motion drive, \(£ 3.85\). 4 position and 6 pos. push-button transistd., \(£ 4.95\). \(\mathrm{UHF} / \mathrm{VHF}\) basic integrated tuners, £3.25, Cyldon UHF valve tuners, f1.50. All tuncrs \(\mathrm{P} / \mathrm{P} \quad 30 \mathrm{p}\). Transistd. UHF/VHF IF panels salvaged, \(£ 2.50 \mathrm{P} / \mathrm{P}\) 25p. MURPHY 600700 series complete 1 F amplifier, version Kits incl. tuner, drive assy, 625 IF amplifier,
7 valves, accessories housed in cabinet plinth assembly, £7.50 P/P P 50 p . SOBELL/GEC 405625 Dual standard switchable IF amplifier and output chassis incl. cet. \({ }_{£ 1.50}^{\text {switchable }} \mathbf{P} / \mathrm{P} \quad 35 \mathrm{p}\). THORN 850 Dual standard time base panel, \(\mathbf{£ 1 . 0 0} \mathbf{P} / \mathrm{P}\) 35p. PHILIPS 625 IF amplifier panel incl. cct., \(£ 1.00 \mathbf{P} / \mathbf{P} 30 \mathrm{p}\). VHF turret tuners AT 7650 incl. valves for K. B. Featherlight, Philips 19TG170, GEC 2010, ecc., £2.50. PYE miniature incremental for 110 to 830,2 Pam and Invicta. £1.95. A.B miniature with UHF iniection suitabie K.B, Baird, Ferguson, \({ }^{75 \mathrm{p}}\). New fireball tuners Ferguson,
HMV Marconi,
1. 90
\(\mathrm{P} / \mathrm{P}\) all tuners 30 p
Large HMv, Marconi,
selection LOP1's. Scan Coils. FOPTs available for solection LOP1's, Scan Coils, FOPTs avaiable for
most nopular makes. PYE/LABGEAR transistd. Masthead UHF Booster, \(£ 5.75\), Power Unit, \(£ 4.65 \mathrm{P} / \mathrm{P}\) 30 p or Setback battery operated UHF Booster, \(£ 4.65\) P/P 30p. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28, 59 , 159 Buses or ORDER: 64 GOLDERS MANOR DRIVE, LONDON.
N.W.11. Tel. \(01-7948751\). N.W.11. Tel. 01-794 8751

\section*{TENDERS}

\section*{SLOUGH CORPORATION SALE OF MOBILE RADIO EOUIPMENT}

\section*{Offers are invited for the following} equipment:FM. 10 mobile radio sets and one portable FM. 10 mat.
hand set
These sets are KHZ channel spacing and are not re-licensable for normal commercial use without modification. The equipment has been regularly and is in good working order. The equipment can be inspected by arrangement with the Storekeeper, Highways Depot,
Windmill Road, Slough-Phone Slough 23881, Windmill
Ext. 315
Offers to be made in a plain, sealed envelope endorsed "Mobile Radio Equipment" and addressed to the Borough Engineer. Town Hall, Slough, to be received not later than noon on 16th October. 1973.

PRINTED CIRCUIT BOARD large supplies of ounce copper 2 p per 3 sq . inches (under 1 ft ). 75p per sq. ft . (over 1 ft ). \(1 / 16\) in double sided one ounce copper 1 p per sq. inch (under 1 ft ). \(£ 1\) per sq. ft . (over 1 ft ). Please add 10 p per sq. foot postage and packing. We can cut to your size at 1 p per cut.
Solid State Lighting, (Dept. WW), \(47 \mathrm{Hercules} \mathrm{Rd}\),
(16 Norwich NOR 66 M .
PRINTED Circuit Board in 6 widths: 2 in., \(2 \frac{1}{2}\) in., 3 in., 3 in in, 4 in . and 5 in . \(x\) any length; \(1 / 16\) in. single-sided fibreglass,
sided \(1 p\) per \({ }^{2 p}\) per. in. \({ }^{3}\) sq. in. Double-
\({ }^{3}\) sided ip per sq. in. P
quotations for other sizes and quantity or discounts.juotations for other sizes and quantity discounts.CM7 6L. Y. Tel. Braintree 25254.

R ADIO LABORATORY EQUIPMENT. Marconi
\(\mathbf{R}_{\text {Standard }}\) Signal Generator Type TF 867a. 15 KH to 30 MH in first class condition with Terminating unit, this instrument is in laboratory accuracy. Price \(£ 130\). Cintel Square wave and Puise Generator 5 H to 250 KH .05 to 3 Micro secs, variable impedance output, Sync. Input and CRO Sync. output. In first class condition. £30. Cossor 1039 Mk. \({ }^{2}\) Oscilloscope. Price fio. All the above units have Manuals and are included in the prices. Alass condition ana accurate. f10 Kelvin Wheatstone Bridge 0.0001 ohm X by \(10-1000\). Incorporates light spot Mirror Reflecting Galvanometer. \(£ 45\). Mechanical and neon BCD Scaling counter, incorporates 1 Volt Square wave 3CPS, also mains frequency reference indicator. £12. Stop Watch. 210. Pye Decaide resistance box incorporates 4 decade switches 10 to 100 K . Mullard RC Bridge. \(£ 10\). Mombrex RC Bridge. £8. Phone for appointment. George Hill, Electrical Engineers, 19 Station Road, Tadcaster. Phone 2253.
SMALL electronic Manufacturing Company (mixers) with excellent record for sale. Ideal opportunity for technically experienced entrepreneurs.
Approx. \(£ 2,500\). Box WW 3114 .
'TELEVISION: Valves, tubes, UHF transistors,

 PL97/ 504, PY81/82/800/801, 30 L 15 ', \(30 \mathrm{C} 15,19 \mathrm{ins}\). ( 47 cm ) tubes type A47-14W and equivalent \(£ 2.50\) each. UHF transistor tuner \(£ 2.00\) each. Postage 10 p , carriage £1. Eiectronic Mailorder, Ramsbottom,
Lancs. just look at theseprices!

\author{
\(\frac{\text { Big Savings on }}{\text { Valves }}\)
}
Type Type
DY 87
DY 802
EB 91
EB 91
ECC 82
EF 80
EF 183
EF 183
EF 184
EH 90
PCC 89
PCC 189
PCF 80
PCF 86
PCF 801
\(P C\)
\(P C\)
PCF 801
PCF 802
PCE 82
PCL 84
PCL 85
PCL 86
PCL 85
PCL 86
PFL 200

\author{
PL 36
PL 84
PL 504
PL 508
}
PL


\section*{H}

\section*{Goo
Pri}
\begin{tabular}{lr} 
Type & Price \\
PY 88 & \(25.5 p\) \\
PY 500 A & \(54 p\) \\
PY 800 & \(24.5 p\) \\
PC 900 & \(22.5 p\) \\
Semi-Conductors \\
\hline AC 127 & \(15 p\) \\
AC 128 & \(12 p\) \\
AC \(141 K\) & \(30 p\) \\
AC \(142 K\) & \(30 p\) \\
AC 151 & \(20 p\) \\
AC 154 & \(18 p\) \\
AC 155 & \(16 p\) \\
AC 156 & \(19 p\) \\
AC 176 & \(17 p\) \\
AC 187 & \(17 p\) \\
AC \(187 K\) & \(20 p\) \\
AC \(188 K\) & \(20 p\) \\
AD 142 & \(45 p\) \\
AD 149 & \(37 p\) \\
AD 161 & \(34 p\) \\
AD 162 & \(34 p\) \\
AF 114 & \(22 p\) \\
AF 115 & \(20 p\) \\
AF 116 & \(20 p\) \\
AF 117 & \(22 p\)
\end{tabular}
 \(\cdots\)
\begin{tabular}{lr|l} 
Type & \begin{tabular}{rl} 
Goods \\
Price
\end{tabular} & Type \\
BF 258 & \(\frac{40 p}{1 N 60}\) \\
BF 337 & \(28 p\) & OA 202 \\
BFY 50 & \(22 p\) & OC 71 \\
BFY 52 & \(20 p\) & OC 72 \\
BSY 52 & \(25 p\) & BU \(105 / 02\) \\
BY 126 & \(11 p\) & \(2 S C 11728\) \\
BY 127 & \(12 p\) & R2008B \\
E 1222 & \(30 p\) & R2010B
\end{tabular} \begin{tabular}{r} 
Goods \\
Price \\
\hline \(4 p\) \\
\(7 \frac{1}{2} p\) \\
\(15 p\) \\
\(15 p\) \\
61.70 \\
62.00 \\
61.70 \\
61.70
\end{tabular}

EHT RECTIFIER TRAY ASSEMBLIES


2 MONTHS GUARANTEE
\begin{tabular}{c} 
COLOUR TUBES \\
Type \\
\(\frac{\text { Goods Price }}{19} \mathbf{A 4 9 / 1 9 1 \times ~ C . C . R . T . ~}\) \\
\(20^{\circ} 5100 J B 22\) C.C.R.T. \\
FULLY GUARANTEED \\
\hline
\end{tabular}
\(\frac{\text { Type }}{19^{4} A}\)
19"A \(49 / 191 \times\) C.C.R.T
\(20^{\prime \prime} 51001\) B.
638.70
639.80

FULLYGUARANTEED
Valves packed individually subject to settlement Discount \(5 \%\) of "Goods" content 7 days and \(2 \%\) monthly. New Price List from 28th April 1973 Combined Precision Components (Preston) Ltd 194.200 North Road. Preston PRI |YP Telephone 55034 Telex No. 67129

PRICES SUBJECT TO \(10 \%\) VAT

\section*{DIGITAL CLOCK COMPONENTS}

4/6 Digit Clock Chip 99.00 ; 6 Minitron Displays \(£ 6.00\); 1 Digit Driver \(£ 1.50\) 1 Segment Driver \(\mathbf{1 1 . 5 0 ;}\) Minitron Sockets 25p each; 2N 7447 Drivers \(£ 1.20\) each

\section*{LOW COST LED LAMPS}

Red 3 mm dia. 25p each; Red 4.45 mm dia 35p each; Green 3 mm dia. 68p each Green 4.45 mm dia. 68p each.
CALCULATOR DISPLAY
0.12 inches Character Height Flatpack \(£ 2.00\) each.

\section*{SLIDER SWITCHES}

1 pole 2 position-Miniature 14p each; \(L\) pole 2 position 14p each; 2 pole 3 position 21p each; 1 pole 4 position 23p each. U.K. Postage and packing 10p. Overseas 25p.

\section*{VAT \(10 \%\)}

PERDIX COMPONENTS LTD. Dept. WW73
31 Green Lane, Chislehurst, Kent


\section*{Trompus aleatidin}

Maney Back Guaranteed.
DIGITAL INDICATORS 7 seg. DP \(5 v\) Filament rype \& socket f1.45. LED TYPE DIL £2.49. \(4+\) €2.29 日а 67 E2 15 ea 4 DIGIT LED DIU/magnifier \(f\)
LIGHT EMITING LIGHT EMITING DIODES \& data in DIA
 isolator \(\mathbf{f 2}\). TGS308 Gas/sm:oke defector \(\mathbf{f 1} 1.6\) isolator \(\mathrm{f2}\). GGS308 Gas/smok
ULTRABONIC TRANSOUCERS \(£ 2\)

\section*{ic digital cloch}
 socket f 13 . PCB \(\mathrm{f1} .69 \mathrm{KITS}\). 4 digit \(£ 21.49\). 6 digit E 25 . 1 C LITF SWITCH
 booklet 39p. 741 DIL 8 pin 28p. 70919 p . dil 29p. 710 33p. 74829 p . REGUATORS \(1 \frac{1}{7}\) A 5 lo \(20 V\) E1.49. 723 57p. 555 TIMER 89 II. ZNA14


Gates \(7400 / 1 / 2 / 3 / 4 / 5 \cdot 10 / 20 / 30 / 40 / 50\) etc 14 p ea 741327 p . \(441 \quad 73 \mathrm{p}\). 7447 99p. 7470.747228 n .7473747436 p .747560 p .747632 p .749059 p .







 SCR's 400 v 1 A 23 p . 4 A 55p. TRANSFORMERS ;A E \& \(12 \mathrm{v} \mathrm{E1}\). CAPACITOR

Alf did plugs 13 p . sockets \(9_{p}\) Vero at normal prite ball PCB resis



8 WMATT with diffusel, on/off swich. Fully builh \(13^{\prime \prime}\) long. TR10 and COOAR comaunications and Hi Fi relalers ELECTRONIC ORGANS imporiad. full
lacilicies from \(\mathrm{EE7}\). ELECTRONIC CAR IGNITION KIT PW capacitan Iype E6.67. lacilicies from fe7. ELECTRONIC CAR IGNITION KIT
VAT ius!omers MUST ADO IO\&

Feree catalist s.a.e oata sheets gpea. S.a.E. Psp op cwo to

> EDDYSTONE V.H.F. \& U.H.F. COMMUNICA. TIONS RECEIVER TYPE 77OR. \(19 \mathrm{mc} / \mathrm{s}\) to \(165 \mathrm{mc} / \mathrm{s}\) C.W. A.M. N.F.M. F.M. Mains, in as new condition, 695. carr. 63. 710U 150 \(\mathrm{mc} / \mathrm{s}\) to \(500 \mathrm{mc} / \mathrm{s}\) F.M. or A.M., Mains, in as new condition, \(£ 95\). carr. \&3. RACAL UNI VERSAL COUNTER/TIMER SA550 (CT488) 8 digit inline readout, E85. carr. E3. AVO MODEL 3 VALVE TESTER in wooden Transit Case, \(£ 17.50\). carr. \(£ 2.50\) p. INDIVIDUAL POCKET DOSIMETERS. Latest Government Release Type 2A and 3, 11,000 available individually wrapped in boxes of 50 . Also 300 Charging Units No 1 for above Dosimeters. individually boxed, both are absolutely Brand New, supplied one box of 50 Dosimeters with one Charger \&14, p/p. \&1. 25 and one Char ger \(£ 9, \mathrm{p} / \mathrm{p}\) \&1. Singly \(50 \mathrm{p}, \mathrm{p} / \mathrm{p} 10 \mathrm{p}\). Chargers \(\mathbf{6 2 . 5 0}, \mathrm{p} / \mathrm{p} 25 \mathrm{p}\). Probable cost of one Dosimeter \(\mathbf{6 1 0}\). Larger quantities by quotaMARCONI SIGNAL GENERATOR TYPE TF867 \(15 \mathrm{KHz}-30 \mathrm{MHz}\). 675 . саrr. 63 .
> JOHNS RADIO
> 424 BRADFORD ROAD, BATLEY, YORKS
> Tei : Batiey 7732

\section*{COMPUTER EQUIPMENT}
 Also peripherals, Tape Decks \(£ 16.50\) ( 1.50 )
Tsst equipment TF 144 g Sig. gen. \(85 \mathrm{kHz-25MHz}\) in
8 ranges. From \(£ 12\) in average condition to \(£ 22\) 8 ranges. From \(£ 12\) in average condition to \(£ 22\)
in excellent condition
\((£ 2)\) : 5 MHz Crystal calibrator
 \(£ 2.50(500)\); pair for \(54.50(75 p)\); Sig. gen. type
\(12 / 255 \mathrm{kHz}-18.3 \mathrm{MHz}\) in 8 bands. AM-FM-CW
\(36.10 n 9\) dial. inbuilt crystal calibrotor at 100 kHz \& \(2 \mathrm{MHz}, 8\) diff modulation frequencies. ES5(E2),
Tape amplifiers. \(2 \times E C C 83\). EL84, EZ80. 20uV i/o for 3 watts into \(30 h m\) o/p E1.80 (40p); or in case
 stable 0-3kV @ 5 mA . brand new \(£ 44(£ 2)\). As
sorted resistors in butk: 500 £ 10 (15p) 20.000 panels: 71 b £2.20(40p): 561bs £13.20(£1); High quality panels. 12 for \(£ 2.00\) ( 30 ), 100 tor \(£ 16.50\) tain hundreds of R's. C's. xals. pots switches.
panels, etc., \(51.80(40 p)\); 561 l ditto \(£ 12(\mathrm{E} 1\) ).
GREENWELD ELECTRONICS (W4), 24 Goodhar
WaY, W. Wickham, Kent: 38 Lower Addisconbe Ray, Croydon. Shop a* 21 Deptford Broadway Ra., Croydon. Shop a丸.

\section*{CLASSIFIED}

\section*{SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS}


Comprising. Teletypewriter (page printer) type \(\Pi-271 \mathrm{~B} / \mathrm{FG}\) (known as Kleinschmidt 160) Reperforator-Transmitter (tape printer) type \(\Pi-272 \mathrm{~A} / \mathrm{FG}\) with table \(F N-65 /\) FG. Both units whole equipment operates on 115 or 230 V 50 cyctes in very choice condition E55. (carr E4).
VARIACS \(25 \mathrm{amp} 0-270 \mathrm{v}\) as new less handle \& cover E 22. f2) TRANSFORMERS \(240 / 110\) 3KVA New \(£ 15\). (f. 1.50 ) Constant Voltage 500 watt \(£ 18\). ( \(£ 1\) ) ditto 125 watt f 8 . (75p). FRACMO MOTORS 240 V AC \(\frac{1}{4}\) h.p. 6000 rpm \(£ 4.50\) (37p) AVO CT38 Electronic Meters ¢18. (£) BC22; £12.
(E1) AMPEX VIDEO TAPE 2 in x 1670 new £9. (50p) (E1) AMPEX VIDEO TAPE 2in x 1670 new £9 (50p)
SINTERED NICKEL CADMIUM ACCUMULATORS 1.2 v 7a.h. size \(90 \times 30 \times 60 \mathrm{~mm}\) with electrolyte and instructions 80 p BERRIC CHIORIDE \(25 p\) IV KENT CHART RECORDERS \(115 v A C\) E 20 ( \(£ 1.50\) ) MULTIPOINT £30. TF866 (Q Meter) Magnification Meter from \(£ 15\). for 3 RADEN FLEXOWRITERS \(£ 80\) (E4) tape to sum f only VEEDER ROO DUAL DIVERSITY Swith new 115 1.25 (8p) ELECTRONIC TIMER KIT. O.8secs to 100 sec comprises A.E.I. Transistorised Module. Relay. \& all electrical
components for 115 or 240 c A.C. operation \(\mathrm{f} 175(16 \mathrm{p})\). Loads of surplus to clear Large SAE for list All PLUS V.AT

CASEY BROS.
233-237, Boundary Road, St. Helens, Lancs. 86
 RESISTOR KITS 10S \(2-1 \mathrm{M}\) E12 SERIES \(10 \mathrm{E12KIT}\). 10 of each value (Total of 610 ) \(£ 3.10\)
25 E 12 KIT . 25 of each value (Total of 1525 ) \(£ 7.20\) FREE CATALOGUE ON REQUEST
Metal FIIm \(1 W 5 \% .1 \frac{1}{2} \mathrm{p}, ~ £ 1.10 / 100 ; £ 8.25 / 1000\)
 C.W.O. P. \& P. 10 p on orders under \(£ 5\). Overseas extra. BH COMPONENT FACTORS LTD. Dept. WW. 61 Cheddington Road, PITSTON

\section*{PRINTED CIRCUITS}

High Speed Prototype Service 1-10 Boards - 48 hours Door to Door WHELDON LIMITED
GREENFORD, WINDMILL HILL Hillfort STD 073287222 Crayford 24530 [3042

\section*{PRECISION}

POLYCARBONATE CAPACITORS Fresh stock Fully tested
 Close tolerance capacitors
Good stability and very low


 9 p each; 6 for \(50 \mathrm{p} ; 14\) for \(£ 1 \cdot 00\). All brand new and marked,
May be mlxed to qualify for lower price. AF178 at 35 p each: 3 for 95 p
POPULAR DIODES. IN914 at 7p each; 8 for \(50 \mathrm{p} ; 18\) for
£1.00. IN916 af 9 p each; 6 for \(50 \mathrm{p}: 14\) for \(£ 1 \cdot 00\). 1 S 44 at 5 p \(£ 1 \cdot 00\). IN916 at \(9 p\) each; 6 for 50 p ; 14 for \(£ 1 \cdot 00\). 1 S 44 at \(\mathbf{5 p}\)
each: 11 for \(50 \mathrm{p} ; 24\) for \(£ 1.00\). All brand new and marked. SPECIAL OFFER-400 NW ZENERS. Values available \(4.7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1,10,11,12,13 \cdot 5,15 \mathrm{~V}\). Tolerance
\(\pm 5 \%\) at 5 mA . Al new and marked. Price 9 p each; 6 for 50 p (66 ZENERS) £4.25.
RESISTORS-Carbon fim \(5 \% \frac{1}{2}\) watt at \(40^{\circ} \mathrm{C}\). Range from
\(2.2 \Omega\) to \(2.2 \mathrm{M} \Omega\) in E12 series, i.e. \(10,12,15,18,22,27,33,39\) \(2.2 \Omega\) to \(2.2 \mathrm{M} \Omega\) in E12 series, i.e. \(10,12,15,18,22,27,33,39\)
\(47,55.68,12\) and thelr decades. High stablitity, iow noise -All at 1p each; 8 p for 10 of any one value, 70 p for 100 value \(2.2 \Omega 2\) to \(2.2 M \Omega\) ( 730 resistors) \(£ 5.00\).
TANTALUM BEAD CAPACITORS \(0.1,0.22,0.47,1.0,2 \cdot 2,4.7 .6 .8 \mu \mathrm{~F}\) at \(35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V}\) avaliable 15 F 20 V \(22 \mu \mathrm{~F} 15 \mathrm{~V}, 33 \mu \mathrm{~F} 10 \mathrm{~V}, 47 \mu \mathrm{~F} 6 \mathrm{~V}, 100 \mu \mathrm{~F}\), \(3 \mathrm{~V}-\mathrm{all}\) at 9 p each; 6 for 50 p ; 14 for \(£ 1 \cdot 00\). Special pack 6 off each value ( 78

 T5P each. PLASTIC RECTIFIERS 1.5 AMP-Brand new wire-ended DO27. 100 PIV at 8 p each or 4 for 30 p : 403 PIV Wi 9 p each or 4 for \(34 \mathrm{p} ; 800 \mathrm{PIV}\) at 14 p each or 4 for 50 p .
P.E. SCORPIO- 141 F 440 V a.c. capacitor isted above P.E. SCORPIO \(-1 \mu \mathrm{~F}\)
as recommended by the Author for capacitor in isted above
ase
 may be supplled at 35 p each. These capacitors are aiso ab for systems recently published in P.W. and W
\(5 p\) post and packIng on all orders below \(£ 5\). MARCO TRADING
Dept. D9, THE MALTINGS, STATION ROAD, WEM Please add \(10 \%\) V.A.T. to yrur order effective April 1st

\section*{Electronic Test Equipment}

ANALYSERS Wave Analyser. \(5-300 \mathrm{MHz}\)
Armec 248 Wa
Davian D 100 IC Analyser. NEW. Complete AMPLIFIERS

resham Lion GFT. 15 BRAND NEW. 6
Timer. Measuring Freq. Pulse width.
counts. Scaling. Mark Space ratio Regular
ising Phase angles etc. 3 Variable inputs. Nomplete with handbook and Input leads Venner TSA334 \({ }^{2}\). Ask for full details gIGital VOLTMETERS
Solartron LM 1620 NEW. 4 Digit. O-1000V \({ }_{2 \mathrm{kV}}{ }^{0} 0.025 \%\) f.s.d. Digit. 19995. 50 uV METERS
B.P.L. RM175LZ Megohmeter
\(\mathbf{H} / \mathbf{P}^{2} 0 \mathrm{~B}\)
Multi

AC. 1-1000V DC H/P 400DR Vacuum Tube Voltme \(\ldots\) er
Marconi TF1300 Vacuum Tube Voltmeter Marconi TF142F
Phistortion Factior Meter
Phillips GM6012 True RMS Milivoltmeter tion range \(0.3 \%-100 \%\). Frea. 18 Hz SCILLOSCOPES
Marconi TF \(1300 \quad 0-15 \mathrm{MHz}\). Single Beam Solatron CD1220-15MHz. Dual Beam PEN RECORDERS
 H/P 17108 Plug on Recorder T \(T\) me Base. H/P AM ranges \(0.1: 0.22\)
H/P \(7701.0: 2: 20 \mathrm{mV} / \mathrm{cm}\) POTENTIOMETER
Tinsley 4025 potentiometer c/w MR4 Galvo POWER SUPPLIES
Farnell TSV70 Variable P.S.U. \(0-35 \mathrm{~V}, 10 \mathrm{~A}\)
\(0-70 \mathrm{~V} .5 \mathrm{~A}\) K.S.M. HVV5025 Stabilised P.S.U Variable SIGNAL SOURCES

\section*{Osilator. Freq. 2 GHz}

W/P Automatic and Manual sweep \(0-200 \mathrm{MHz}\) \& 350
 OTHER equipment available. Send for up-to-date Good quality instrumentation always needed.

\section*{MARTIN ASSOCIATES}

GREENSWARD LANE, ARBORFIELD, NR. READING, BERKS.
TELEPHONE: Arborfield Cross (073 526) 610
\[
\text { or West Forest }(0734) 7 \$ 4641 \text {. }
\]

\section*{NEW FROM EIBON}
L.E.D.'s (Red Emitting, deary suted for panel indicators位
ight SENSITIVE SWITCHES

LITE-CC 20 V -30V working- \(£ 1\) each - \(£ 8.50\) for 10 Applications include: Relay, Triac or Logic Deve automatic light switching and door control. beam /oreak detection - burglar.alarm, batch counting anc code reading BARGAIN PACK!

LITE-IC2. 2 HTE-IC3 and 5 LED 's all for \(\mathbf{£ 5} .00\) all prices include vat, packing and carriage lease send C.WO to
LITE-IC. ELBON.
summerfield, the crescent, west wittering, sussex



ANTEX ITD, MAYFLIOWER ST. PLYMOUTH, DEVON.

\section*{SILICON DIODES}

IN4148

\section*{factory tested}


EAST CORNWALL COMPONENTS
P.O. Box 4, Saltash, Cornwall
[303

PEAK PROGRAM METERS TO BS4297


* Public address. * Loudspeaker talkback. * Telephone Unity programmes when caller leaves receiver on. *witch, shifts input 5 Hz up in frequency and allows \(6-8 \mathrm{~dB}\) more gain before 5 Hz
* Other shift versions for weird music effects.
* SPECTRUM INVERTORS for speech security
a Unbalanced 2 -pole jack in and out Zout \(=2 \mathrm{Kohm}\)
600 ohm
and 3 -pole jack in and \(=20\) or
00 ohm
Post: Commonwealth 90 p. Europe air and foreign f 1.50
Shifter circuit boards for WW July 73 a ticle:
Complete kit and board \(\mathbf{£ 1 8}\) including p.s.u. and DESIGNER Board built and aligned \(£ 24\) mains transformer APPROVED SURREY ELECTRONICS

CASH WITH ORDER less \(5 \%\)
Account O O 97822 Loyds Bank. Great Bookham. Surrey

CLASSIFIEDS-Continued from p. 128
PLUMBICON IV cainera ind whe 55875 brand new. K1, strons type VA 222 A . K366A, KY 366AU, KY 366 CDU , K Y 366 BU , Pye Westminster radiotelephone type W25FM low band f100. Philips colour monitor type EL 3560 , suitable for spares, any offers. Colour monitor decoder units by leading British maker. Designed to BBC . . fiter and delay module. chrominance module, funinance module and encoded video input module. All units brand new and complete including edge connectors and service manual. \(£ 30\). Also complete PAL/NTSC switchable decoder by same maker built in a 19in. Isep rack with power unit and sync separator, \(\mathfrak{£ 7 5}\). Philips monitor decoder panels Type EL6818/50F PAL, £20; NTSC, £15. Advance stabilised power units type PM53,0-15 volt at 10 amp . Brand new, £35. Savage 600 watt audio amp. contains \(12 \times\) K'T88's, no details. Offers, B. Bamber, 20 Wellington Street, Littleport, Cambs. Tel. 0353 860363. [3083


VaCUUM is our speciality. New and second-hand cotary pumps, diftusion outfits, accessories,
 1 Mayo Road, Croydon. 01-684 9917. \(\mathbf{V H F}^{\mathrm{HIT}} 80-180 \mathrm{mHZ}\) receiver, tuner, convertor Transistorised, remarkable performance. \(£ 4\) or s.a.e. for literature Johnssons (Radio), St. Martins Gate. Worcester WR1 2DT.
\(60{ }^{\mathrm{KHz} \mathrm{MSF}}\) Rugby and 75 KHz Neuchatel Radio 60 Receivers. Signal and Audio outputs. Small, compact units. Two available versions \(£ 35\) and \(£ 60\). Toolex, Bristol Road, Sherborne (3211), Dorset.

\section*{HEWLETT PACKARD 9830A}

\section*{Are you waiting delivery? New machine} vailable at \(\{3.500\) Also Counter HP5300/5303B with high stability time base (aging rate <1.2 parts in 106/year) \(£ 700\).

Ring Mr. Savage 01-340 7217
[3037

\section*{ARTICLES WANTED}
\(\mathrm{C}^{\text {ASH paid }}\) for surplus transistors and all types of - electronic components. Electronic Mailorder Ramsbctom, Bury, Lanes. Tel. (STD 070 682) \({ }_{[3064}^{3036}\).
CASH AVAILABLE for surplus semiconductors and I.C. Phone: 01-452 2583. [3095 FRIDEN FLEXOWRITERS, all models urgently F wanted for cash, also Friden Auxiliary Readers and Punches Box No. WW 3005
GEC METAL-CONE SPKR with/without cabinet presence unit. 01-883 0748
\([2938\)
VORTEXION RECORDERS wanted. Models 632 C.B.L. 5 or C.B.L. 6 Stereo. Also Ferrograph 332 models required. Best prices for spot cash. Ring West Mersea (020638) 3372
\(W^{A N T E D, ~ a l l ~ t y p e s ~ o f ~ c o m m u n i c a t i o n s ~ r e c e r v e r s ~}\) Electronics, Ltd. Ashville Old Hall, Ashville Rd., Electronics, Ltd. Ashville Old Hall, Ashville Rd.
London. E.11. Ley. 4936 .

\section*{- CAPACITY AVAILAELE}

A IRTRONICS LTD., for Coil Winding-large or A small production runs. Also PC Boards Assemplies. Suppliers to P.O., M.O.D., etc. Export enquiries weicomed. \(3 \approx\) Walerand Road, London, SE13 7PE. Tel. 01-852 1706
BATCH Production Wiring and Assembly to B sample or drawings. Deane Electricals, 19B Station Parade, Ealing Common, London, W.5. Tel: 11-992 8976.
D SiGN, development, repair, lest and small production of clectronic equipment. Specialist in production of printed circuit assemblies. YOUNG LECTRONICS, 54 Lawford Road, London, N.W.5. 01-267 0201
[29
CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and city available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB. Tel. 01-985 7057
SMALL Batch Production, wiring, assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield, Harlow. Essex. Harlow 33018

\section*{COURSES}

R ADIO and Radar MP.T. and C.G.L.I. Courses. RWrite: Principal, Nautical College, Fleetwood

\section*{CLASSIFIED}

\section*{NEW GRAM AND SOUND} EOUIPMENT
GLASGOW.-Recorders bought, sold, exchanged cameras, etc., exchanged for recorders or vice versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2.

\section*{RECCEIVERS AND AMPLIFIERS- \\ SURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400, G209 Ltd a, ete., etc. in stock.-R. T. \& I. Electronics Ley., 4986.

\section*{SERYICE \& REPAIRS}

BRISTOL AND DISTRICT. Service to Hi Fi and Sterce elronic equipment. Public address installations 0272421395 Gloucester Road, Bristol. Te

CXPERIENCED ENGINEER offers field service E facilities London area covering Electronic and Electro-Mechanical cquipment-Box No. WW 2676

SCRATCHED TUBES. Our experienced polishing S service can make your colour or monochrome Wubes as new again for oniy 22.75 , plus carriage 75 p With absolute confidence sent to Retube Ltd., North Somercote, Louth, Lincs, or 'phone 0507-85 300. [27
SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range
meters, etc., etc. in stock.-R. T. \& I. Electronics, meters, etc., etc., m stock. R. R . Electonics Ley. 4986 (64

\section*{VALVESWANTEO}

We buy new valves, transistors and clean new comV ponents, large or small quantities, all details


\section*{TAPE RECORDINA ETC}

IF quality, durability matter, consult Britain's oldest 1 transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools)
Modern studio facilities with Steinway Grand. Sound News, 18 Blenheim Road, London, W.4. 01-995 1661 News, 18 Blenheim Road, London, W.4. 01-995 1661

APPOINTMENTS-Continued from p. 126

\title{
Airline Radio Technicians
}

We require fully-trained and high-skilled Radio Tecinnicians to work on the repair and overhaul of radio/radar equipment at Heathrow Ailport (London). A high standard of theoretical knowledge is essential and at least 5 years experience in radio maintenance An approved apprenticeship is desirable

Starting pay is \(\mathbb{£} \mathbf{3 6 . 7 4}\) per week, plus shift allowance
Additional benefits include a contributory pension scheme, sports and social facilities and opportunities for concessional holiday air travel uvorldwide.

Applications giving details of age and experience, quoting reference \(68 / \mathrm{WW} / \mathrm{BW}\) to:

\section*{Manager Selection Services}

BOAC
PO Box 10
Heathrow Airport (London)
Hounslow TW6 2JA

\section*{Assistant Electronics Engineer}

A vacancy exists for an assistant Electronics Engineer within the Instrumentation Services Unit. The work of this unit is varied and interesting and will nvolve the person anoointed in the construction of novel scientific equipment together with the repar and maintenance of existing instruments and appara tus. The successful candidate will probably be in the 21-25 age group with City and Guilds final qualifica tions or an ONC in electronic or electrical engineering Some experience in similar work is necessary although specialised training will be given. (Ref. BP 176).

We offer a good progressive salary for this position together with excellent conditions of service. Benefits include a subsidised canteen, active sports and socia club UK Staff Bonus Scheme and a non-contributor pension scheme.

Please reply quoting Ref. BP 176 to:Personnel Officer.
Beecham Research Laboratories, Brockham Park, Betchworth, Surrey Tel: Betchworth 3202.

\section*{B00кs ON ELECTRONICS}

\section*{Basic Engineering Craft StudiesGeneral (01)}

Edited by
P. H. M. Bourbousson, CIMarE, and
R. Ashworth, CEng, MIMechE, MIProdE

Written for students studying for the City and Guilds of London Institute 500 Courses on Basic Engineering Craft Studies (Part 1), this book together with a companion volume covers all the topics required for each of the courses. The General 01 volume contains basic material and should be used in conjunction with the appropriate complementary volume covering the syllabus relating to the required craft or trade bias. 0408000619182 pages illustrated 1971
f1.50

\section*{F.M. Radio Servicing Handbook /2nd Edition}

Gordon J. King, RTech Eng, MIPRE, FSRE, MRTS, FISTC
This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of FM radio receivers in a form helpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straightforward and, as far as possible, non-mathematical.
0408000236206 pages illustrated 1970

\section*{Semiconductors: Basic Theory and Devices}

\author{
Ian Kampel, C Eng, MIERE
}

Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradually progresses through diodes, transistors and the more sophisticated devices that are available today.
0408000406272 pages illustrated 1971 £2.50

\section*{Electroacoustics: Microphones, Earphones and Loudspeakers}

\section*{(An STC Monograph)}

\author{
M. L. Gayford, BSc., CEng, MIEE, ACGI, DIC
}

This book gives a unique insight into the audio and electroacoustics field dealing in particular with the theory, design and practical realisation of the various types of microphones, earphones and loudspeakers used in sound reproduction, telephony, broadcasting and acoustic measurements. It will be of special value to students, engineers and research workers engaged in telecommunications, broadcasting and sound reproduction.
\(0408000260 \quad 300\) pages illustrated 1970
£4:50

\section*{Colour Television Servicing}

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC
This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
£4.40

\section*{Solid-State Devices and Applications}

\author{
Rhys Lewis, BScTech, CEng, MIEE
}

Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.
0408000503 cased 264 pages illustrated \(1971 \mathbf{£ 3 . 0 0}\) 0408000511 limp

\section*{A Simplified Approach to Solid State Physics}

\author{
M. M. Rudden, BSc, PhD, AlnstP, and J. Wilson, BSc, PhD, AlnstP \\ This book provides a broad survey of some of the more important concepts of solid state physics and will be suitable for first year university or technical college students. The approach throughout is essentially qualitative and the aim of the authors is to establish the fundamentals of the subject in as easy a manner as possible. To this end, frequent reference is made to experimental evidence in support of the theoretical concepts. \\ 0408700033 cased 196 pages illustrated \(1971 \mathbf{£ 2 . 9 0}\) \(0408700203 \mathrm{limp} \mathbf{£ 1 \cdot 7 0}\)
}

Available from leading booksellers or:

\title{
The Butterworth Group
}

88 Kingsway London WC2B 6AB
Showrooms and Trade Counter
4-5 Bell Yard, London WC2

\section*{Foundations of Wireless and Electronics}

\section*{8th Edition}

\section*{M. G. Scroggie}

\section*{BSc CEng FIEE}

1970 Reprinting 1973

552 pages, illustrated

\author{
Cased 0592059618 £.3.00 \\ Limp 0592000419 \\ f1. 80
}
"To the uninitiated all we have to say is that if you are seeking a thorough grounding in radio theory with a minimum use of mathematics in a style which is easy to assimilate, ther this is a sound investment. It should be at the elbow of every aspiring technician."

Electrical and Electronic Trader

\section*{The Butterworh Group}

88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard, London WC2


Luton Road, Dunstable, Bedfordshire, LU5 4LJ, England. Telephone: \(0582 \cdot 62241\) (7 lines)
\(\qquad\)
Company

\title{
YATES ELECTRONICS \\ (FLITWICK) LTD. DEPT. WW ELSTOW STORAGEDEPOT KEMPSTON HARDWICK BEDFORD
}
C.W.O PLEASE. POST AND PACKING

Catalogue which contains data sheets for most of the omponents listed will be sent free on request. Op stamp appreciated

OPEN ALL DAY SATURDAYS
PLEASE ADD \(10 \%\) V.A.T.

\section*{RESISTORS}
\(\frac{1}{2}\) W Iskra high stability carbon film-very low noise-capless censtruction. \(\frac{1}{2}\) W Mulard CR25 carbon film-very small body size \(7.5 \times 2.5 \mathrm{~mm}\). \(\frac{1}{2} \mathrm{~W} 2 \%\) ELECTROSIL TR5
\begin{tabular}{|c|c|c|c|c|c|}
\hline Power & & & Values & & Price \\
\hline watts & Tolerance & Range & available & 1-99 & \(100+\) \\
\hline \(\frac{1}{2}\) & 5\% & \(4.7 \Omega-2.2 \mathrm{M} \Omega\) & E24 & 1 p & 0.8 p \\
\hline \(\frac{1}{2}\) & 10\% & 3.3M \(2-10 \mathrm{M} \Omega\) & E12 & Ip & 0.8 p \\
\hline \(\frac{1}{2}\) & 2\% & \(10 \Omega-1 M \Omega\) & E24 & 3.5p & 3p \\
\hline \(\frac{1}{1}\) & 10\% & \(1 \Omega-3.9 \Omega\) & E12 & Ip & 0.8 p \\
\hline & 5\% & 4.7 \(2-1 \mathrm{M} \Omega\) & E12 & Ip & 0.8 p \\
\hline 4 & 10\% & \(1 \Omega-10 \Omega\) & E12 & 6p & 5.5p \\
\hline
\end{tabular}

\section*{DEVELCPMENT PACK}
0.5 watt \(5 \%\) iskra resistors 5 off each value \(4.7 \Omega\) to \(1 \mathrm{M} \Omega\).

\section*{POTENTIOMETERS}

Carbon track \(5 \mathrm{k} \Omega\) to \(2 \mathrm{M} \Omega\), log or linear (log \(\frac{1}{2} W\), lin \(\frac{1}{W} W\) ).
Single, 12 p . Dual gang (stereo), 40 p . Single D.

SKELETOA PRESET POTENTIOMETERS
Linear: \(100,250,500 \Omega\) and decades to \(5 M \Omega\). Horizontal or vertical P.C. mounting ( 0.1 matrix).
sub-miniature \(0.1 \mathrm{~W}, 5 \mathrm{p}\) each. Miniature \(0.25 \mathrm{~W}, 7 \mathrm{p}\) each.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TRANSISTORS} \\
\hline AC107 & 15p & AFl26 & 20p & BFIIS & 25p & OC42 & 12p & 2N3707 & 12p & \\
\hline AC126 & 12p & AFI39 & 32p & BFI73 & 20p & OC44 & 12p & 2N3708 & 10p & \\
\hline ACI27 & 15p & AF178 & 32p & BFI77 & 28p & OC45 & 12p & 2N3709 & \(11 p\) & \\
\hline ACl28 & & AFI80 & 40p & BFI78 & 32p & OC70 & 12p & 2N3710 & \(11 p\) & \\
\hline ACl31 & & AFI81 & 40p & BF179 & 32 p & OC71 & 12p & 2N3711 & \(11 p\) & \\
\hline ACl32 & & BC107 & 12p & BFI80 & 32 p & OC72 & 12p & 2N3819 & 32 p & \\
\hline ACI76 & 15p & BC108 & 12p & BF181 & 32p & OC81 & 12p & 2N4062 & 12p & \\
\hline AC187 & & BC109 & 12p & BF194 & 14p & OC82D & 12p & 2N4286 & 20p & \\
\hline ACI88 & & BC147 & 12p & BFI95 & 14p & 2N2646 & 60p & 2N4289 & 20p & \\
\hline ADI 40 & 50p & BC148 & 12p & BF197 & 15p & 2N2904 & 20p & 40360 & 35p & \\
\hline AD149 & 45p & BC149 & 12p & BF200 & 32p & 2N2926 & 10 p & 40361 & 35p & \\
\hline AD161 & 33p & BC157 & 14p & BF750 & 20p & 2N3054 & 58p & 40362 & 40p & \\
\hline AD162 & 36p & BC158 & 14p & BF751 & 20p & 2N3055 & 60p & 40408 & 40p & \\
\hline AFII4 & 20p & BC159 & 14 p & BF752 & 20p & 2N3702 & 13 p & ZTX108 & 15 p & \\
\hline AFII5 & 20p & BC187 & 22p & BU7105 & 225p & 2N3703 & 12p & ZTX300 & 15p & \\
\hline AFII6 & 20p & BD131 & 75p & OC26 & 45p & 2N3704 & 13p & ZTX302 & 20p & \\
\hline AFII7 & 20p & BD132 & 75p & OC28 & 50p & 2N3705 & 12 p & Z \(\mathrm{T} \times 500\) & 15p & \\
\hline AFII8 & 38p & BD133 & 75p & OC35 & 50p & 2N3706 & \(11 p\) & ZTX503 & 20p & \\
\hline ZENER
400 mW & \multicolumn{3}{|l|}{ZENER DIODES} & & \multicolumn{6}{|l|}{\begin{tabular}{l}
WIRE WOUND POTS \\
\(3 \mathrm{~W}, 10,25,50 \Omega\) and decades to \(100 \mathrm{k} \Omega, 35\) p.
\end{tabular}} \\
\hline \multicolumn{11}{|l|}{DIODES} \\
\hline \multicolumn{11}{|l|}{RECTIFIER SIGNAL} \\
\hline BY127 & & 1250 V & & IA & & & & OAB & & 7p \\
\hline BZYIO & & 800 V & & 6A & & & & OA90 & & 5p \\
\hline BZYI3 & & 200 V & & 6A & & & & OA91 & & 5p \\
\hline IN4001 & & 50 V & & IA & & p & & OA20 & & 7p \\
\hline IN4004 & & 400 V & & IA & & p & & IN41 & & 5p \\
\hline IN4007 & & 1000 V & & IA & & & & BAlI & & 8p \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{BRUSHED ALUMINIUM PANELS
\(12 \mathrm{in} \times 6 \mathrm{in}, 25 \mathrm{p} ; 12 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}\), 10 p ; \(9 \mathrm{in} \times 2 \mathrm{in}, 7 \mathrm{p}\)}} & \multicolumn{4}{|l|}{THERMISTORS} \\
\hline & & & & & & & & \(1055 S\) & & 15p \\
\hline \multicolumn{7}{|l|}{SLIDER POTENTIOMETERS} & & 1077 & & 15 p \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l|ll}
\(86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}\), length of track 59 mm. & R53 \\
SINGLE \(10 \mathrm{~K}, 25 \mathrm{~K}, 100 \mathrm{~K}\) log. or lin, 40 p. & \(\mathbf{\ell 1 . 3 5}\) \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{7}{|l|}{DUAL GANG, \(10 K+10 K\) etc. log. or lin. 60p. KNOB FOR ABOVE, 12 p .} & THY & RISTOR & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{FRONT PANEL, 65 p .
18 Gauge panel \(12 \mathrm{in} \times 4 \mathrm{in}\) with}} & & 506050 V & .8A & 30p \\
\hline & & & & & & & & 5064200 V & 0.8A & 47p \\
\hline \multicolumn{7}{|l|}{} & & 550 V 4 A & & 40p \\
\hline \multicolumn{7}{|l|}{slider pots. Grey or matt black finish complete
with fixings for 4 pots.} & 106 & D 400 V & & 55p \\
\hline
\end{tabular}

MULLARD POLYESTER CAPACITORS C296 SERIES
400V: \(0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}\) \(400 V=0.00 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}\)
\(0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \mathrm{t}\) p. \(0.33 \mu \mathrm{~F}, 11 \mathrm{p}\)
 \(160 V: 0.01 \mu \mathrm{~F}, \quad 0.015 \mu \mathrm{~F}, \quad 0.022 \mu \mathrm{~F}, \quad 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, \quad 0.068 \mu \mathrm{~F}\),
\(4 \frac{1}{2} \mathrm{p} .0 .22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 73 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}\)

\section*{MULLARD POLYESTER CAPACITORS C280 SERIES}

250 V P.C. mounting: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{1}{2} p\) \(.1 \mu \mathrm{~F}, 4 \mathrm{p}\). \(0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}\). \(0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 83 \mathrm{p}\). \(0.68 \mu \mathrm{~F}\), 11 p . \(1.0 \mu \mathrm{~F}\), 13 p SY, 20p. \(2-2 \mu\),
MYLAR FILM CAPACITORS IOOV 1p. \(0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0 \mathrm{~F}, 0.02 \mu\)

CERAMIC DISC CAPACITORS
100pF to 10,000 pF, 2p each.

\section*{ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7}
\((\mu F / v) 1 / 63,1.5 / 63,2.2 / 63,3.3 / 63,4.7 / 63,6.8 / 40,6.8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63\) \(22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4\) \(100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 p .47 / 63,100 / 40,150 / 25\) 220/25, 330/10, 470/6.3, 7p. \(68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10 p .470 / 10,680 / 6 \cdot 3\) \(1000 / 16\) / \(500 / 10\), 2200/6.3, 18p. \(130 / 63.470 / 25,680 / 16,1500 / 6 \cdot 3,13\) p. 470/40, 680/25 \(1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 p\). \(330 / 63,680 / 40,1000 / 25,1500 / 16,2200 / 10,3300 / 6 \cdot 3\) 4700/4, 21 p.


LARGE (CAN) ELECTROLYTICS
\(\begin{array}{llllllll}1600 \mu \mathrm{~F} & 64 \mathrm{~V} & 74 \mathrm{p} & 2500 \mu \mathrm{~F} & 64 \mathrm{~V} & 80 \mathrm{p} & 4500 \mu \mathrm{~F} & 16 \mathrm{~V} \\ \mathbf{5 0} & 50 \mathrm{p} \\ 2500 \mu \mathrm{~F} & 40 \mathrm{~V} & 74 \mathrm{p} & 2800 \mu \mathrm{~F} & 100 \mathrm{~V} & \mathrm{E2} .60 & 4500 \mu \mathrm{~F} & 25 \mathrm{~V} \\ \mathrm{El} .68\end{array}\)
 HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT \(\begin{array}{llll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} & 0.047 \mu \mathrm{~F} & 13 \mathrm{p} \\ 0.022 \mu \mathrm{~F} & 12 \mathrm{p} & 0.1 \mu \mathrm{~F} & 0.22 \mu \mathrm{~F} \\ \text { 20p }\end{array}\) POLYSTYRENE CAPACITORS 160 V 22\%
10pF to 1,000 pF EI2 Series Values, 4p each
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector
Detector GDI, \(\mathbf{£ 2}\). Kit of parts for detectors including GDI and P.C. board but excluding case. Mains operated detector \(\mathbf{6 5 \cdot 2 0}\). 12 or 24 V battery operated audible alarm \(\mathbf{~} 7 \cdot 30\) As above for PP9 battery, \(\mathbf{E 6} 40\)
PRINTED BOARD MARKER
97p
Draw the planned circuit on to a copper laminate board with the P.C. Pen, allow to dry and immerse the board in the etchant. On removal the circuit remains in high relief

LARGERANGEITT/TEXAS IC'S NOW IN STOCK


\section*{Lodge Trading Company}

For Amplifiers, Speakers with and without cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials, Flex, and Cables, Large stocks of components.

ALL AT WHOLESALE PRICES
A VISIT WILL SAVE YOU MONEY
5 Day Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE, N. FINCHLEY, LONDON, N. 12 01-445 2713, 01-445 0749

\section*{QUARTZ CRYSTAL \\ UNITS from \\ - 1.0-60.0 MHZ \\ - fast delivery \\ - high Stability \\ - TO DEF 5271-A \\ \begin{tabular}{|c|c|}
\hline  & WRITE FOR LEAFLET AT- 1 \\
\hline  & \begin{tabular}{l}
McKNIGHT \\
CRyStal Co.
\end{tabular} \\
\hline \[
l
\] & hardley industrial ESTATE, HYTHE, \\
\hline TEL. HyThe 8961 & SOUTHAMPTON S04 62 \\
\hline
\end{tabular}

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{J. Black}

OFFICE: 44 GREEN LANE; HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260
\begin{tabular}{|c|c|}
\hline Lave & THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE \\
\hline A gride better c
\(\qquad\) & \begin{tabular}{l}
EQUIPMENT \\
IN THE WORLD!
\end{tabular} \\
\hline Stergo
Records & Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care. \\
\hline \(\bigcirc\) & \begin{tabular}{l}
CECIL E. WATS LIMITED \\
Darby House \\
Sunbury-on-Thames. Middx
\end{tabular} \\
\hline
\end{tabular}

\section*{WE PURCHASE}

OSCILLOSCOPES, SIGNAL GENERATORS
PEN RECORDERS, COMPUTERS, RECEIVERS.
PLEASE SEND US YOUR LISTS
best prices paid
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

\title{
TELERADIO SPECIAL PRODUCTS
}

LINSE:Y HOOD Low Distortion Amplifiers, ( 75 wa:t article re-print 40p) from \(\mathbf{E 2 5}\). TEXAN. Renowned \(20+20\) Stereo Kit ( \(\mathbf{2 2 8 . 5 0}\) basic) DIGITAL NIXIE READ OUT CLOCKS
(from liz3),
Send S.A.E. ( \(10 \times 8\) ), or stamp, for full data and prices to:
325-7 Fore St., London, N9 OPE.
O1-807 3719


Our products are
11 ml AM Walkie-Talkies, 0-2-1-2 and 5 Watt. up to 24 channels. 11 m AM Cartransceivers, 6 and 24 channels, 2-5 and 10 Watt, 2 mFM 10 Watt, 12-22 channels Amateur. Industrial and Marine Transceivers. 11 m SSB 24 ch . \(300 \mathrm{~W}, 220 \mathrm{~V} / 12 \mathrm{~V}\)-Trans ceivers. 8 -track Stereo-Recorder with built-in AM and FM Stereo-Radio.

Wanted:
Qualified dealers and wholesalers of the technica line for the sale of the above highly sought-afte products.
Dellivery is effected immediately from stock in Switzerland or ex factory Japan

\section*{SOKA SRL,}

CH 6903 Lugano, Box 176
Tel: 004191 688543, Telex: 79314

\section*{BFIAND NEW FULL SPEC. DEVICES} U.K. CUSTOMERS ADD \(10 \%\) VAT TO TOTAL MICROCIRCUITS: 709 24p; 710 36p; 723 51p 741 (14 pin) 27 P ; 748 37p. FET OP. AMP. \(£ 1.62\) TRANSISTORS: 2N2926 (Brown) 6p; 2N3053 15p; 2N3055 35p; 2 N 3702 10p; 2N3704 10p; 2 N 3819 26p; 2N4058 12p; BC107A 8p; BC108B 8p; BCl09B 45/71/72 12p; AFI 14/5/6/7 14p; AC126/7/8 12p.
ZENERS: BZY88 Series 10p. I AMP. RECTIFIERS: \(50 \mathrm{~V} 3 \frac{1}{2} \mathrm{P}\); 100 V 4 p ; \(200 \mathrm{~V} 4 \frac{1}{2} \mathrm{p} ; 400 \mathrm{~V} 5 \mathrm{p} ; 800 \mathrm{~V}\) 6 1000V 7p. 14 pin IC SOCKETS 12p. SOLDER CONS \(\frac{1}{2}\) p per pin. DALO PC PEN 68 P . \({ }^{1}\) W \(5 \%\) Carbon Film Resistors, El2 values only: 10 of on value per \({ }^{7 p}\). Sub Min. Vertic
\((50 \mathrm{~m} W\) ) 100 ohms to 220 K 4 p each.
LED with bush and data 24p.
ANTEX S. IRONS: 15W \(£ 1.70 ; 25 \mathrm{~W}\) £1.75.
Prices at 25th July. Check our list
Discecunts start at \(10 \%\) for \(10+\) Semiconductors of one type.

JEF ELECTRONICS (W.W. 10) York House, 12 York Drive, Gra Mail Order Only, C.W.O. P. \& P. 10p per order minimum, or at cost if more. List free. Satisfaction or your money back

\section*{SOWTER TRANSFORMERS}

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authorities and were established in 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote

Transformer Manufacturers and Designers
7 Dedham Place, Fore Street, Ipswich IP4 IJP 7 Dedham Place, Fore Street Telephone 047352794

\section*{ERRATA}

The correct address of
BARRIE Electronics (page a79)
is 3, The Minories, London EC3N 1BJ. Telephone: 01-488 3316/8

\section*{EXCEUSIVE OFFERS}

NEVER BEFORE OFFERED
WORLD-WIDE RANGE
PHILCO BC-150 POINT-TO-POINT STRIP RECEIVERS \(2 / 30 \mathrm{~m} / \mathrm{cs}\), Ten fully tuncable channels to 0.5 kcs with
synthestisers, Bingle and diveraity reception on \(18 B\) ynthesigers, single and diveraity recention
DSB, sSB with 4 sub-banda to each chunnel. Full details and pice m anplutio


\section*{COMPUTER HARDWARE}

CARD READER 80 col. 600 c.p.m. PRINTER, High speed 1000 lines
p.m.
TAPE READER
High TAPE READER, High speed \(5 / 8\) track TALLY \(5 / 8\) track TAPE READERS ADDO 58 track TAPE PUNCHES BULL 80 col. HAND CARED PUNCHES Prices on Application

\section*{FREE}

40-page liat of over 1,000 different items in atook svailable-keep one bs gou.

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS cabinets
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { Our } \\
& \text { Ref. }
\end{aligned}
\] & in inct & in inches & in inches & Space in & \\
\hline CD & 69 & 21 & 13 & \({ }_{7}^{68}\) & 810.00 \\
\hline CE & 83 & \({ }_{23}^{22}\) & \({ }_{26}^{24}\) & 77 & 514.50 \\
\hline & 87 & 23 & 26 & & 814.00 \\
\hline Ch & \({ }^{83}\) & \({ }_{24}^{4}\) & 24 & 75 & \\
\hline \(\mathrm{CK}^{\text {c }}\) & \({ }_{83}^{83}\) & \({ }_{24}\) & 12 & 75 & \(210 \cdot 00\) \\
\hline & \({ }_{30}\) & 60 & 36 & 42 & \\
\hline cm & 19 & 22 & 18 & 17 & \\
\hline & 69 & 24 & 26 & 61 & \\
\hline OR & 69 & 30 & 20 & & \\
\hline & 70 & 69 & 27 & 60 & \\
\hline CU & 87 & 26 & 17 & & 20.00 \\
\hline DE & \({ }^{52}\) & 40 & \({ }_{26}^{24}\) & \({ }_{68} 91\) & \\
\hline & & & & & \(\pm 20.00\) \\
\hline DK & 85 & & \({ }_{26}\) & 79 & \\
\hline DL & & & 19 & & ¢1800 \\
\hline \({ }_{\text {DP }}\) & 74 & \({ }_{24}\) & 24 & 66 & \\
\hline DR & 14 & 21 & 12 & 10 & 27.00 \\
\hline D8 & 69 & 30 & 20 & 析 & 2260 \\
\hline \multirow[t]{2}{*}{DT} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{so Consolee. twin and multi-way Cabinets.}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Our. Height in
Ref.
inches}} & \multicolumn{4}{|l|}{Channel Rack \(P^{\text {Paral }}\)} \\
\hline & & Channel & & & \\
\hline \multirow[t]{2}{*}{(Ref} & 108 & 5 & 104 & & 29.00 \\
\hline & \({ }^{80}\) & 8 & \({ }_{63}^{77}\) & \(\underset{\text { Bolts }}{24}\) &  \\
\hline \({ }_{\text {Re }}^{\text {Re }}\) & \({ }_{78}\) & \({ }_{7}\) & 70 & Bolts & ¢ 7.00 \\
\hline & Full de & tails of & 11 abov & on reque & \\
\hline
\end{tabular}

We have a large quatity of " bits and piecess,
we cannot list-please bend us your requirements
```

Ferrograph 3/CFN Tape Recorder
Fertograph G.200 Tape Recordera
Racal RA-17L Receivers
CV-157 Holfman ISB/ISgB Converters
6 6 inch sides
Casella Assmann Elec
Racal MA-150 Synthesisers
Racal MA-250 Decade Generatora
Avo Geiger Counters, new Regulators
Solartron CD-1010 Blowers 6 6 6220 v. A.C
Doubex G.E. }10\mathrm{ Auto Degausgers
Uniselectors }10\mathrm{ bank 25 way full wipe
R.C.A.5 element 420 m/ce Yagi Beamo
Transformers
Muirhead D.888 Analysers
Laboratory Radio Inverarnce Filtera
Mye Scalamp Galvos
Adwell large Drafting Tables wit\
54in. dia. Meteorological Ballooms
PLEASE ADD V.A.T. TO ABOVE

```

\section*{P. HARRIS}

ORGANFORD - DORSET

STUDIO EECTRONICS
 c - mawnersis

\section*{SPECAAISEDKIS}

\section*{HIGH STANDARD}

LOW FREQUENCY SOURCE
(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop dosigner approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in \(10^{11}\) I Probably the most economic high precision signal source available ....... Kit \(\mathbf{£ 2 4 . 6 7}\) Assembled and tested version.. \(\begin{array}{rr}\text { each } & £ 4.88 \\ \text { e }\end{array}\)


\section*{CBS-SQ QUADRAPHONIC} IC DECODER
To Motorola application for MC1312 as described by Geoffrey Shorter (WW March 73) Our complate kit of professional quality components includes a glass-fibre edge connected printed circuit board and is absolutely complete, with full assembly and application notes.
As we also design and manufacture complate stereo and Quadraphonic systems, our wide applications experience is available to you to guarantee professional

> results.

Cosults.
Complete kit as described above ................. \(\quad \mathbf{£ 8 . 8 0}\) Assembled and tested production board......... \(£ 12.10\) 'AS USED IN.P.E- RONDO"

\section*{PHASE-LOCKED-LOOP STEREO DECODER \\ To Motorola apolication for MC1310}
as described in Wireless World, July 1972
1310 complete kit of professional quality including a glass-fibre edge connected printed circuit hoard and all comporients.
Complete kit which can be built in \(\frac{1}{2} \mathrm{hr} . . . . .\). . \(\mathbf{£ 3 . 7 4}\) Assembled and tested production board......... \(\mathbf{£ 4 . 8 4}\) MA2404 Professional LED 61p extra if required. Economy LED (physically small) 37p extra if required. A current LED (physically small) 37p extra if required. A current
limiting resistor is supplied free upon request with all limiting resistor is supplied free upon request with ail
LEDS. Self powered and special versions are available to order.

\section*{NEW PRODUCTS}
1. Two tone test oscillator \(1 \& 2 \mathrm{kHz}\), ideal for SSB setting up. Battery powered professional quality kit \(\mathbf{£ 6 . 7 5}\) 2. Squelch board for FM tuners. Simple add-on advanced circuitry for effective muting. Tuner powered kit f5.34.

\section*{SPECIALIST SERVICES}

Suppliers of products by Radiospares. Eagle, TTC, Sonax, Teleradio and RSGB publications. We welcome enquiries, irrespective of size or nature. A full technical and after-sales-service is provided, with licensed radio amateurs on the technical staft.
Communications acknowledged normally by return. MAIN DISTRIBUTORS FOR QUADRASONICS, THE PREMIER BRITISH QUADRAPHONIC SYSTEM.

> NO HIDDEN EXTRAS
> ALL PRICES INCLUDE VAT, CARRIAGE and INSURANCE


\section*{SEMICONDUCTOR CIRCUIT DESIGN}

\section*{Volume II}

A Texas Instruments Publication July 1973 £5. 25
THE TTL DATA BOOK FOR DESIGN ENGINEERS by Texas Instruments. Price £2.25
ELECTRONICS: CIRCUITS AND DEVICES by R. J. Smith. Price \(\mathbf{£ 6 . 7 5}\) MOS INTEGRATED CIRCUIT DESIGN by E.Wolfendale. Price \(£ 4 \cdot 10\)
INSTALLING AND SERVICING ELECTRONIC PROTECTIVE SYSTEMS by H. Swearer. Price \(£ 1.45\)
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by J. W. Streater. Price \(£ 1.60\)
RADIO AND ELECTRONIC LABO. RATORY HANDBOOK by M. G. Scroggie. Price \(\mathbf{E 5} 50\)
THE RADIO AMATEUR'S HANDBOOK 1973 A.R.R.L. Price \(\mathbf{6 2 . 9 5}\) COLOUR T.V. THEORY by Hudson. Price \(£ 4\) - 10
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price \(£ 1.90\)
UNDERSTANDING SOLID-STATE ELECTRONICS by Texas instruments. Price \(\mathbf{f l}\)-40
\(\star A L L\) PRICES INCLUDE POSTAGE \(\star\)

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.


Private enquiries, send \(5 \rho\) in stamps for brochure
THE QUARTZ CRYSTAL CO.LTD. Q.C.C. WORKS. WELLINGTON CRESCENT,

CASH IMMEDLATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0749 Evenings: 01-958 7624


\section*{里 mom}

TELEPRONE CABLE. Plastic covered grey 4-score coloured coded. 7tp per yd.
RECORD STORAGE ONITS. Brand new, Anti-warp. 'Compact \({ }_{200}\) stores 200 records. £12. 58 . P.P. A1.40. 'Compact \(100^{\prime}\) storeg 100 records. \(£ 5 \cdot 97\). P.P. 70 p . Leaflets a available. S.A.E.
ELECTRICITY SLOT METERS (5p in elot) for A.C. maing. Fixed ELECTRICITY SLOT METERS ( 5 p in slot) for A.C. maing. Fixed
tariff to your requirements. Sultable for hotels, etc. \(200 / 250 v_{0}\).
 Reconditioned as new 2 years, guarantee.
MODERN DESK PHONES, red, green, blue or topaz, 2 tone grey
or black, with internal bell and handset with \(0-1\) dial 55.00 P.P. 50p. ite case with junction bos handset. Thoroughly overhauled 10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled. s.a.e. 20 WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed. £7 75 per unlt. Wiring diagram on request, send s.a.e.
The " 88 ' Set. This trangceiver, weighs approx. 5 .
 \(41-44\) mec/s., Crystal Controlled and operates from a dry battery H.T./L.T. 94/1. v. 1.E. Ruben Mallory Type No. 1 and employs off; \(1 \mathrm{AB}, 2 \mathrm{off}\). 25.50 plus 75p \(\mathbf{P}\). \& \(\mathbf{P}\).
23 IISIE ST. (2386) LONDON W.C. 2
Open all day Saturdav

\section*{WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH \\ CHILTMEAE LTTE.}

7, 9, Hi Arthur Road, Reading, Berks.

Tel: 582605

\section*{"W.W." HI-FI KITS}
\(\star\) LINSLEY HOOD 15-20W AMPLIFIER
July 1970 latest and ultimate design. Our kit
personally tested and approved by the designer. O/P Tr's matched for spec'd performance. Metalwork now available ensures simple construction of amps. and power supply.

\section*{* BAILEY PRE-AMP (AUG. 1971)}

Superbly engineered kit of this established low oise pre-amp. Uses RH \& LH fibreglass PCBs noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be builtink \(8 \times 2 \frac{1}{2} \times\)
\(2 \frac{3}{4}\) in. or \(8 \times 1 \frac{1}{2} \times 5 \frac{1}{2}\). Basic metalwork ex-stock. Especially recommended to drive \(15-20 \mathrm{~W}\) AB amp

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW" article "Inc'g p.p.
at 30p \(\}\) (Stamps
DETAILED PRICE LISTS at 5p accepted)
Inc'g above and other designs.
\(\star\) REFUND GUARANTEED ON ALL PARTS

\section*{SPECIAL OFFER}

2N3055 33p each 4 for \(£ 1-10\)
2N3054 22p each 3 for 55p
Unmarked, Tested and Guaranteed. Post and packing 10p per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-AT OUR
Retall SHOP NOW OPEN

\section*{A. 1 FACTORS}

245, North Sherwood St., Nottingham NG1 4EO
Telephone: Nottingham (0602) 46051 Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)

\section*{EX.COMPUITR \\ Stablilse Power supplifs}

RECONDITIONED, TESTED AND GUARANTEED
Ripple \(<10 \mathrm{mV}\). Over-voltage protection on all except 24 v . 7A. unit. \(120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\) inpu*. Stepdown transformer to sult about £3.
 Type \(7576 £ 5 \cdot 00\) (30p).
WOODS FANS 6in. Plastic rotor \(£ 6.00\) (36p).
ELECTROLYTICS
\(25,060 \mu 25 \mathrm{v}, 20,000 \mu 30 \mathrm{v} ., 5,000 \mu \mathrm{Mov} ., 35,000 \mu\) \(15 \mathrm{v} ., 3,000 \mu 150 \mathrm{v} ., 8,000 \mu 55 \mathrm{v}\). , \(4 \frac{1}{2} \times 3 i n\). dia 50p (15p).
\(68,000 \mu 16 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}\). dia. 50 p (12p).
\(15,010 \mu 15 \mathrm{v} ., 10,000 \mu 35 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}\). dia. 30 p (10p).
2,000 \(25 \mathrm{v} ., 15 \mathrm{p}\)
EX-COMPUTER PC PANELS \(2 \times 4 \mathrm{in}\). min. 35 transistors with data 50p (9p). 25 boards for £1 (25p)
PANELS WITH 4 POWER TRANSISTORS SIM OC28 50p (9p).
QH Bulbs, 12v.55w. ............... 50p (5p)
250 Mixed Resistors ...................... 60p (8p)
250 Mixed Capacitors .............. 60p (8p)
200 SI Planar Diodes .............. 50p (5p)
Mlcroswitches ................. 8 for 50p (8p)
Min Glass Neons 12 for 50p (5p) 10-wiay Terminal Blocks .... 10 for 55p (5p) postage and package shown in brackets Please add \(\mathbf{1 0 \%}\) VAT to prices
KEYTRONICS
Mall Order only.
44 earls court road, LONDON, w. 8 01-478 8499

\section*{A DEXTER \\  \\ ALLOWS COMPLETE \\  \\ LIGHTING CONTROL}

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains \(200-250 \mathrm{~V}, 50 \mathrm{~Hz}\). All DEXTER DIMMASWITCH models have built-in radio interference suppression. \(\quad 600\) watt \(£ 3.52\) Kit form \(£ 2.97\) 300 watt \(£ 2.97\) Kit form \(£ 2.42\)
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
19 KING STREET
AS SUPPLIED
CHESTER CH1 2AH
Tel: 0244-25883

TO M.M. GOVERMMEMT DEPMRTMEWTS, HOSPITALS, local auimorities, ETC.

\section*{CLASSIFIED ADVERTISEMENTS} Use this Form for your Sales and Wants

\author{
To "Wireless World" Classified Afvertisement Dept., Dorset House, Stamford Street, London, S.E.I
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}

Rate: 50p (IO/-) PER LiNE. Average seven words per line. Minimum two lines.
Name and address to be included in charge if used in advertisement.
(3) Box No. Allow two words plus 25 p (5/-).
- Cheques etc., payable to "Wireless World" and crossed " \& Co."
- Press D October 4, 1973 for November, 1973 issue.

NAME

ADDRESS

\title{
WANTED FOR \(£ £ £\) NOTES ELECTRONIC TEST GEAR, COMPONENTS | SCOPES
}

THINKING OF RE-EQUIPPING, EXCHANGING OR JUST RAISING CASH - THINK OF US. WE WANT ANY TELEQUIPMENT, ADVANCE, MOST TEKTRONIX, SOLARTRONS FROM MODEL 1014, HEWLETT PACKARD CONSIDERED AND OTHERS. PHONE US OR BRING ANY TIME.

CHILTMEADLTロ
7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

\section*{ Appointments Vacant Advertisements appear on pages \(110-131\)}
\begin{tabular}{|c|c|c|}
\hline Page & Page & Pagi \\
\hline Adcola Products Ltd. ......................... 21 & Gale Electronics Ltd. ...................... 23 & Racal Instruments Ltd. \\
\hline Aeriplite Cables Ltd. . . . . . . . . . . . . . . . . . . . \({ }^{3}\) & Gardners Transformers Ltd. ............... 13 & Ralfe, P. F. \\
\hline Aero Electronics Lid. ....................... 80 & General Instruments Ltd. (Microelectronics) .... 55 & RCA Electronics Ltd. ........................ 28 \\
\hline A. 1 Factors . .............................. 137 & Goldring Mfg. Co. Ltd. . ................. 56,68 & RCS Electronics \\
\hline Ancom Lid. . . . . . . . . . . . . . ............. 38 & Grampian Reproducers Ltd. ................... 30 & Redifon Teiccommunications \\
\hline Acoustical Mig. Ltd. . . . . . . . . . . . . . . . . . . . . \({ }_{7} 39\) & & Rilton Electronies \\
\hline Anders Electronics Ltd. ...................... 7, 27 & Harris Electronics (London) Ltd. ............ 31 & Rola Celestion Ltd. \\
\hline Amtron U.K.ancs......................... \({ }_{53}\) & Harris, P. \({ }^{\text {P }}\) & R.S.C. \({ }^{\text {Hi-Fi Centres Ltd. }}\) \\
\hline  & Hart Electronics ....................... 102 & R.S.I. Valves Ltd \\
\hline  & Heath (Gloucester) Lid. ..................... 11 & \\
\hline A.S.P. Ltd. . . . . . . . . . . . . . . . . . . . . . . 104 & Henry's Radio Ltd. .............................. 7 135, 73 & \\
\hline Aveley Electric Ltd. ........................... 35 & Hi-Fi Year Book \(\qquad\) & Salford Electrical Insts. Ltd. ................. 30 \\
\hline &  & Samson (Electronics) Ltd. ................... 102 \\
\hline & & Scott. James, Ltd. . . . . . . . . . . . . . . . . . . . . . 36 \\
\hline & I.C.S. Ltd. . . . . . . . . . . . . . . . . . . . . . . 46 & S.E. Laboratories Ltd. . ....................... 4, 4, 5 \\
\hline Barr \& Stroud Lid. . . . . . . . . . . . . . . . . . . 6, 6, 56 & 1.L.P. Electronics Ltd. .................... 108, 109 &  \\
\hline Barrie Electronics ......................... 79 & integrex Lid. ............................. 59 & Stur e Electronic Sales Ltd. .................. \({ }^{82}\) \\
\hline B. \& W, Electronics ....................... \({ }_{78}\) & & Shure Electronics Lid. \\
\hline Bedford Electronics ........................... 78 & Jackson Bros. (London) Ltd. ................... 32 & SME Led. \\
\hline  & 3.E.F. Electronics .............................. 135 & Smith. G. W. (Rado) Lid. \\
\hline Bias Electronics Litd. &  & SNS Communications Ltd. ........... 94, 95, 96, \({ }^{26}\) \\
\hline  & & Soka SRL . \\
\hline Bi-Pie-Pack Lid. . . . . . . . . . . . . . . . . . . . . 78, 86 & K E.F. Electronics Ltd, ...................... 18 &  \\
\hline Black, J. . . . . . . . . . . . . . . . . . . . . . . . . . . 135 & Keytronics Ltd. .............................. 137 & Sowter, E. A., Ltd. \({ }_{\text {Strumech Eng. Ltd. }}\) \\
\hline Blore-Barton Lid. .......................... 52 & & Studio Electronics ......................... \({ }_{136}^{46}\) \\
\hline Britec \({ }_{\text {cel }}\) & &  \\
\hline Bull. J. (Electrical), Ltd. ...................... 107 & Luskys Radio Ltd.
Ledon Instruments Ltd. ..............................................
76 & Sugden. J. E.. Lld. .......................... 50 \\
\hline & Leevers-Rich Equipment Ltd. & \\
\hline & Levell Electronics Ltd. ......................... \({ }^{1}\) & \\
\hline Cardross Eng. Co. Lid. ...................... 56 & Light Soldering Develonments Ltd. ............ 33 &  \\
\hline Catern Electronics ...................... 59 & Limosé Electronics Ltd. . . . . . . . . . . . . . . . . . . 54 & Teleradio. The (Edmonton) Ltd. ........... 135 \\
\hline Chilimead Ltd. .................... 98. 136, 138 & London Central Radio Stores .................. 136 & Television Magazine ......................... 54 \\
\hline Cinortcelle Ltd. . . . . . . . . . . . . . . . . . . . . 93.104 & Longs Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 & Telcon Metals Ltd . ........................ 26 \\
\hline Colomor Electronics .................... 93, 104 & Longs Lid. .................................. 54 & Telford Products Ltd ....................... 21 \\
\hline Consumer Microcircuits . ........17, Readers Card & & Texas Instruments Lid. ........................ 37 \\
\hline Cosmocord Ltd. ........................... \({ }_{79}\) & Macharlane, W. \& B . ....................... \({ }^{86}\) & Thorn Radio Valves and Tubes Led. \(\ldots . . . . . . .665\) \\
\hline Crichton, J. \({ }^{79}\) & Manor Engincering . . . . . . . . . . . . . . . . . . . . . . 59 & Toyo Communication Equipment Co. Ltd. ..... 38 \\
\hline Croydon Precision Inst. Co. .................. 52 & Marconi Instruments ................ Cover ii & Trader Year Book .......................... 47 \\
\hline C.T. Electronics .............................. 77 & Marshall, A., \& Sons (London) Ltd. . . . . . . \({ }^{83}\) & Trannies ................................... 85 \\
\hline & & \\
\hline & McKnight Crystal Co. & \\
\hline & Mills, W. Eng. Co. Lid. . . . . . . . . . . . . . . . . . . . . . 78 & United-Carr Supplics Ltd. \\
\hline  & Milward, G. F. \({ }^{\text {a }}\). & Unied-Catr Supplics Lid. \\
\hline Dexter \& Co. \({ }_{\text {Dixons }}^{\text {Technical }}\) (CCTV) Lid. \({ }^{\text {a }}\) & Modern Book Co . \({ }^{\text {co...................... } 136}\) & \\
\hline Douglas Electronic Industrics Lid. ............. 136 & Motorola Semiconductors Ltd ................ 64 & \\
\hline Drake Transformers Ltd. ..................... 28 & M.O. Valve Co. Lid. ...................is is 24.35 &  \\
\hline Demar Electronics ............................. 12 &  & Vortexion Lid. .................................. 57 \\
\hline & Nombrex Lid. ................................ 46 & \\
\hline Eddystone Radio Lid. ...................... 31 & & Walmore Electronics ........................ 68 \\
\hline Electronic Brokers .........9 99. 100. 101, 135 & Olson Electronics Ltd. ........................ 43 &  \\
\hline Electro-Tech Co........................ 88 & Olson Electronics Lto. ....................... 43 & Wayne Kerr. The. Co. Ltd.
\[
\begin{aligned}
& 10 \\
& 76
\end{aligned}
\] \\
\hline Electrovalue \(\ldots\)......................... 81 & &  \\
\hline English Electric Valve Co. Ltd. ................ \({ }_{13} 63\) & Parker. A. B. & \\
\hline ERG Industrial Corp. Ltd. ....................... 133 & Paturick \& Kinnie ................................. \(48{ }_{49}^{82}\) & West London Direct Supplies .................. \({ }^{\text {W }}\) ( \({ }^{88}\) \\
\hline ESI Nuclear ................................ 43 &  & Wikinson. L. (Croydon) Ltd. ................... 80 \\
\hline & Powertran Eleetronics ......................... 74 & \\
\hline & Pracical Wireless. ........................... 53 & \\
\hline Furrograph Co. Ltd. . . . . . . . . . . . . . . . ....... 16 & Practical Electronics .......................... 84 & Yates Electronics ............................... 13 \\
\hline Fi-Comp Electronics ......................... . 53 & & \\
\hline Future Film Developments ................... 59 & Quality Electronics Lid. . . . . . . . . . . . . . . . . . . . \({ }^{36}\) & \\
\hline Fylde Electronic Laboratories Ltd. . . . . . . . . . . 31 & Quartz Crystal Co.. Lid. ...................... 136 & Z. \& I. Aero Services Ltd. ................... . 105 \\
\hline
\end{tabular}
"Well, if I hadn't tested it myself, I'd never have believed it."
"That small, that reasonable,


\title{
Ersin Multicorethe international solder
}

\section*{Ersin Multicore 5-Core Solder}

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to

\section*{Alloy}
\begin{tabular}{l} 
Composition \\
(nominal major elements)
\end{tabular}
\(50 / 33 / 17 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}\)
\(62 / 36 / 2 \quad \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\)
\(62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}\)
\(63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(60 / 40 \mathrm{Sn} / \mathrm{Pb}\)
\(60 / 39.7 / 0.3\)
\(50 / 50 \mathrm{Sn} / \mathrm{Pb}\)
\(50 / 49.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(50 / 48.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}\)
\(45 / 55 \mathrm{Sn} / \mathrm{Pb}\)
\(40 / 60 \mathrm{Sn} / \mathrm{Pb}\)
\(40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\)
\(30 / 70 \mathrm{Sn} / \mathrm{Pb}\)
\(20 / 80 \mathrm{Sn} / \mathrm{Pb}\)
\(15 / 85 \mathrm{Sn} / \mathrm{Pb}\)
Pure Tin
\(95 / 5 \mathrm{Sn} / \mathrm{Sb}\)
\(5 / 93.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\)

\section*{(nominal major elements)}

50/33/17 Sn/Pb/Cd
\(62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}\)
63/36.7/0.3 Sn/Pb/Sb
\(60 / 40 \mathrm{Sn} / \mathrm{Pb}\)
39.7
\(50 / 50 \mathrm{Sn} / \mathrm{Pb}\)
-
\(\mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}\)

40/59.7/0.3 Sn/Pb/Sb
\(30 / 70 \mathrm{Sn} / \mathrm{Pb}\)
\(20 / 80 \mathrm{Sn} / \mathrm{Pb}\)
P/85 Sn/P

5/93.5/1.5 Sn/Pb/Ag
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

\section*{Needle fine gauges}


In addition to our standard range of wire diameters (10-22 swg: \(3.2-0.7 \mathrm{~mm}\) ) supplied on \(2 \frac{1}{2} \mathrm{~kg}\) and \(\frac{1}{2} \mathrm{~kg}\) reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Grade} & \multicolumn{3}{|l|}{Melting Temperature} \\
\hline & & & Specification \\
\hline TI.C & 145 & 145 & DIN 1707 \\
\hline LMP & 179 & 179 & DIN 1707 \\
\hline Sn62 & 179 & 179 & QQ-S-571E \\
\hline Sn63 & 183 & 183 & QQ-S-57 1E \\
\hline K & 183 & 188 & H.S. 219 \\
\hline Sn60 & 183 & 188 & QQ-S-57 1E \\
\hline F & 183 & 212 & B.S. 219 \\
\hline Sn50 & 183 & 212 & QQ-S-571E \\
\hline Savbit 1 & 183 & 215 & \begin{tabular}{l}
DTD 900/4535 \\
DIN 1707
\end{tabular} \\
\hline R & 183 & 224 & B.S. 219 \\
\hline G & 183 & 234 & B.S. 219 \\
\hline Sn40 & 183 & 234 & QQ-S-571F. \\
\hline J & 183 & 255 & B.S. 219 \\
\hline V & 183 & 275 & B.S. 219 \\
\hline - & 225 & 290 & - \\
\hline P T & 232 & 232 & B.S. 3252 \\
\hline 95A & 236 & 243 & B.S. 219 \\
\hline H.M.P. & 296 & 301 & B.S. 219 \\
\hline
\end{tabular}

\section*{Savbit Solder}

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5-Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.

sectioned iron-plated bit, after 40,000 simulated operations using no/ 40 Solder.


Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.


For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex: 82363```


[^0]:    Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers' requirements.

