

# LOW COST VOLTMETERS 



## PORTABLE INSTRUMENTS

NOTE: All prices subject to V.A.T.

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}$ " scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} . B$ types have $5^{\prime \prime}$ mirror scale meters and case sizes 7 " $\times 10^{\prime \prime} \times 6^{\prime \prime}$.


## A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES : $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz . $-100,-90 \ldots+50 \mathrm{~dB}$ scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$
RESPONSE : $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$
from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM 3 B can be set to a restricted B.W. of 10 Hz to 10 kHz of 100 kHz .
INPUTIMPEDANCE: Above $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$
On $50 \mu V$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$.
AMPLIFIER OUTPUT : 150 mV at $f . s . d$

## 

## D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} . .300 \mathrm{~V}$. Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale CURRENT RANGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA}, 300 \mathrm{~mA}$ Acc. $\pm 2 \%, \pm 2 \%$ f.s.d. $\pm 2 \mathrm{pA} . \mathrm{CZ}$ scale. LOGARITHMIC RANGE:
$\pm 5 \mu V$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d RECORDER OUTPUT: $\pm 1 \mathrm{~V}$ at $\mathrm{f} . \mathrm{s.d}$. into $>1 \mathrm{k} \Omega$

## £55

type TM10 (appearance similar to type TM9B)

## D.C. MULTIMETERS

VOLTAGE RANGES : $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA, 10pA, 30pA... 1 mA ( 1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 3 p A$. LZ E CZ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega 2$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges

## 

## BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d. Acc. $\pm 4 \% \pm 1 \%$ off.s.d. at $30 \mathrm{MHz}-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega$. $\pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
L.F.RANGES : As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$. AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.


Send for literature covering our full range of portable instruments.
LEVELLELECTRONICSITD Moxon Street, High Barnet, Herts. EN5 5SD


## THE FG1 FUNCTION GENERATOR

WAVEFORMS AVAILABLE
Sine, square, triangles and ramps. Continuous swept, triggered, gated bursts, frequency modulated, externally sync'd.

## AMPLITUDE

Max. 20 V pk-pk into open circuit ( 10 V into $50 \Omega$ ) on selected waveform at main output. Adjustable from 1 mV .
Four basic waveforms available simultaneously from $600 \Omega$ at fixed level of 2.5 V pk-pk.

## ATTENUATOR

4 positions, 60 dB in 20 dB steps. For best possible resolution and signal to noise ratio at low signal levels.

## FREQUENCY

0.02 Hz to 2 M Hz in seven decade ranges - sine, square and triangle. 1000:1 continuous coarse and fine adjustment on each range. 0.01 Hz to 1 kHz in five decade ranges - ramp. Dial accuracy $\pm 3 \%$ of range max. 0.02 Hz to 200 kHz .

## OFFSET

$\pm 5 \mathrm{~V}$ d.c. bias will offset waveform above or below zero. Push-pull adjustable control.
EXT. VCO
0 to +10 V gives 1000:1 frequency upshift from min. dial setting.
0 to - 10 V gives 1000:1 frequency down shift from max. dial setting, within any selected range. Voltage may be a.c. ord.c
Frequency modulation of the output about a centre frequency is possible.

## SWEEP

Range: 1000 to 1 . Mode: Lin or log. Times 1 mS to 1000 S
Width: 5 position switch gives stepped reductions as a percentage of max

## SYNC

Sync. pulse output may be used to trigger an oscilloscope, $X-Y$ plotter etc. Or the output frequency of the FG1 may be locked to a periodic reference signal for tests requiring coherent signals.

## Furnell

 - real value for money at $\mathbf{£ 1 9 5}$ U.K. (excluding V.A.T.)
## INSTRUMENTS DIVISION



## Gardners

Specialists in Electronic Transformers and Power Supplies

TRANSFORMERS LMITED
Gardners Transformers Limited Christchurch Hampshire BH23 3PN
Telephone 02-015 2284 TELEX 41276 GARDNERS XCH.

it takes over where
MTBFleaves off

While others talk of MTBF, we introduce a new concept-EHPL, Estimated Half-Power Life. Our 400W and 1 kW all-solid-state broadband HF linear amplifiers have over five years of it, counted in operational hours. Which, with a remarkably low Mean Time To Repair, means $99.9 \%$ up-time.
The multiple p.a. modules of these compact units, arranged in parallel for maximum reliability, ensure that even in the unlikely event of several component failures occurring together, the amplifiers go on working-long after others have stopped.

Moreover, thanks to Redifon's unique Transmit Level Control, they always deliver to any antenna-even to a badly damaged one-the maximum power that is safe, whatever the mismatch.

All of which means that the pair of transmitters in the picture represent the finest and most reliable in the world for civil and military applications, whether in fixed, mobile or containerised stations. And they are in production and service, right now.


Redifon Telecommunications Ltd ${ }_{r}$ Radio Communications Division, Broomhill Road, London, SW18 4JO.
Telephone: 01-874 7281 Telex: 264029 漟 A member of the Rediffusion organisation

## RedifonTelecommunications Limited



The best pick-up arm in the world

Whichever way you look at it


Electronic valves (a comprehensive range) semi-conductors (a wide variety) integrated circuits... and now a comprehensive
range of Hybrid Microcircuits. Prices on request.

Teonex offers more than 3,000 devices. They are competitively priced and they are superlative in performance because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries on Government or private contract. All popular types in the Teonex range are nearly always available for immediate delivery. Write now for technical specifications and prices: Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England. Cables : Tosuply London W11. Telex: 262256 $\square$

AVAILABLE ONLY FOR EXPORT

# C్రీక్ర <br> HEATHKIT Electronic kit Catalogue <br> SAVE ON OVER 130 KITS YOU CAN BUILD 

HOME APPLIANCES such as Pocket and Desk Top Electronic Calculator Kits, Electronic Digital Clock, Ultrasonic Burglar Alarm, Indoor/Outdoor Intercoms.

AUTOMOTIVE Testers, Engine Analysers, Tune-Up Meters, CD Ignition System, Timing Lights, Battery Charger.

PORTABLE Radios for Medium, Medium/ LW, FM reception.

INSTRUMENTS for Test and Service, Transistor/Diode Checkers, Chart Recorders, Scientific.

SHORTWAVE AND AMATEUR RADIO includes:- Complete Stations, Receivers, Transceivers, Transmitters, a wide range of ancilliary/auxilliary equipment.

STEREO Hi-Fi Systems, Compacts, Separates, Cassette, Loudspeakers, Transcriptors, Cartridges.

## METAL DETECTORS

## Visit your Heathkit Centres

[^0]All models offer Kit savings-outstanding performance. Enjoyable leisure activities. Payment is so easy-choose cash or low deposit terms (from $£ 2$ per month for $£ 40$ credit).

May we have your enquiries today!


# BIG NEWS FROM BARR \& STROUD Moduluar Filtering ONE MAIN FRAME-MANY OPTIONS 




High Pass


Low Pass


High Pass/Low Pass


Low Pass/Low Pass

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. $\cdot$ Today - the basic main frame and your choice of two modules to operate in fow-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ( $96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering by using the reply card.
BARR \& STROUD LIMITED
London Office: 1 Pall Mall East, London SW1Y 5AU
Telephone: 01-930 1541 Telex: 261877


# Collect Wireless World Circards. And build a valuable dossier on circuit design. <br> Circards is a new and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source. <br> Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs. 

The double-sided format enables the Circard to be filed in standard boxes for easy reference.
And the plastic wallet provided keeps the cards well-protected.

Each set of circards costs $£_{\mathrm{I}} \mathrm{I}$ (£, I. I 5 overseas). A subscription to Nos. 6-15 costs $£ 9$ ( $£ 10.50$ overseas) - sets published monthly.


Subjects already covered by Circard.
I. Basic Active Filters. 2. Switching circuits: Comparators and Schmitts.
3. Waveform Generators. 4. AC Measurements.
5. Audio Circuits: preamplifiers, mixers, filters and tone controls.

Subjects to be published during the year.
6. Power Amplifiers. 7. Constant Current circuits. 8. Opto-electronics. 9. Basic Logic Gate circuits.

Io. Astables. II. Micropower circuits.
12. Wideband Amplifiers. I3. Alarm circuits.
14. Pulse Modulators. I5. Digital counters.

To: J. Rider, Wireless World, IPC Business Press Limited, Sundry Sales Dept, 33 Bowling Green Lane, London, ECiR oNE.

Please send me set no(s)
@
$\oint I(£ I .15 \% / \mathrm{s})$ each $\square^{*}$
I wish to subscribe to set Nos. 6-15 @
$£ 9(£ 10.50 \mathrm{o} / \mathrm{s}) \square^{*}$
I enclose cheque/money order for $£$
*Tick as required
Name

Address

# ..and this is standard equipment! 

Nobody wants amplifiers: situations demand them. Amplifiers cost money, consume power and space, and can break down al crucial mome ils. Audix understand your problems and have designed a range of amplifiers which provide raliable service without worry and'problems. Our amplifier costs are kept to a minimum by quantity production of proven designs. Presel controls are eliminated and output circuitry is protected by electronic sensing ensuring long. reliable service. Our designers hive created a perfect balance between poiver rating, unit size and appearance and the many thousands of amolifiers serving industry, government and educationa authorities, hospitals, hroadcast and recording sludios, are proof of our success For heipful advice and Jull details of our prociuct range please contac: Ken Parry of our Sales Depariment.


# HERES WHY YOU SHOULD NOT BUY A STORAGE SCOPE 

Medelec Fibre Optic Oscilloscopes are top quality general purpose units for industry or research. They are based on the well proven techniques developed by Medelec in the exacting field of medical instrumentation.
 RECORDING
OSCILLOSCOPES
medelec

- HIGH QUALITY, LOW COST RECORDING
- SIMULTANEOUS RECORDING \& VIEWING
- SINGLE FRAME OR CONTINUOUS RECORDS FROM A BUILT-IN CAMERA
You will want to know more about the Medelec FOR-4 Fibre Optic Oscilloscopesplease contact us for detailed information or a personal demonstration.

Medelec Limited Woking Surrey Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

This is a high fidelity amplifier ( $0.3 \%$ intermodulation distortion) using the circuit of our $100 \%$ reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.


The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

## 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.

This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance ( 10 meg ) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T's for low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and other stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is $75 \%$ efficient and 100 V balanced line or $8 / 16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output . 3 V out on 600 ohms upwards.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.
THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over $25 \%$ and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.
CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than $0.2 \%$ distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

## F.E.T. MIXERS and PPMs.



Since we have been supplying professional mixers for 25 years we have delayed the introduction of solid state units until they were at least as good as their valve counterparts. (Which will continue where required.)

The various sections of the FET mixers and BBC type PPM's have been performing successfully for several years in other equipments with complete reliability. The PPM also uses an FET in its time constant circuit so that polyester capacitors can be used. The response from the $600 \Omega$ output ( $25 \Omega$ source impedance) is level 20 Hz to over 30 kHz with very low intermodulation distortion to zero level +12 dB . The input signal voltage range is over twice that of the valve unit and the noise at least halved.

## Join the Digital Revolution



# Teach yourself the latest techniques of digitalelectronics 

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?

This four volume course guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

## £2.95 Acomplete programmed learning course in 4 volumes

Designer
Manager
Enthusiast
Scientist
Engineer
Student
This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

To: Cambridge Learning, 8a Rose Crescent, Cambridge
Please send me . . . . . set(s) of Digital Computer Logic and Electronics at $£ 2.95$ for which I enclose cheque/PO/money order value . . . . . . . . . . . . . . .
$\qquad$

## The world's most universal audio bridges

## Wayne Kerr's B224 and B642



The B224 is a manually operated bridge, the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being necessary.


## Dixons Technical have something in black and white to make CCTV importers green with envy.



Dixons Technical have the largest range of CCTV equipment in the country. And now they've added Mirage: their very own CCTV system.

Mirage is the all-purpose CCTV system comprising the finest components available. It can be used by schools, by industry, as an audio-visual aid, or with Mirage automatic video, switchers and monitors, it's perfect for surveillance purposes.

The Mini 500 is a small, discreet camera specially designed for surveillance. It comes complete with an f 1.8 lens.

The HD800 gives a high definition picture. Incorporates a Mullard separate mesh tube. And accepts external drives.

The HD800 VF boasts the same high standard of specifications as the HD800, but
also has a $5^{\prime \prime}$ monitor screen. It's the perfect semi-professional studio camera.

With both HD800 models, Plumbicon (R, and Silicon tubes can be fitted without modification to the circuitry.

Every piece of equipment is backed by Dixons Technical superb after-sales service.

If you don't wish to spend cash, no problem. The entire Mirage range is available for hire, lease or rent.

To: Dixons Technical Ltd., 3 Soho Square, London, W. 1. Tel:01-4378811. ww/los
Please send me lots of information on the eritire Mirage range
Name
Address: Dixons Technicallitd
oi soHo solare
*Plumbicon is the registered trade mark of Mullard.


Today's Westinghouse
Electric colour tubes, in addition to offering recognised excellence of colour definition, have white field purity...vitally important to reception of black and white transmission.

Two 67 cm diagonal versions These improved Westinghouse tubes are made available in two configurations - the standard $90^{\circ}$ and the 10 cm shorter profile wide-neck $110^{\circ}$ version... permitting their compatibility to the needs of the larger portion of European TV set manufacturers.

## Expanded European facilities

 Pacing the growing demand in Europe for Westinghouse tubes, we have made a permanent commitment to fully support our customer. - With trained technical sales personnel in major European cities. - Withwarehousing and testing facilities in Kassel, W. Germany and Le Mans, France. - With a sustaining European oriented R\&D programme.

## Customer oriented

In these ways-compatible product availability-outstanding development facilities-local technical assistance. . Westinghouse Electric respond to dy-


The $110^{\circ}$ (e) A67-140 TV colour tube is 10 cm shorter in profile than the $90^{\circ}$ (®) A67-120X . . both offer superb colour definition as well as white field purity for black \& white.
namic customer requirements - here in Europe and throughout the world.

Westinghouse Electric S.A. 1 Curfew Yard, Thames Street Windsor Berks. Phone Windsor 63392. Telex 847069.

GENEVA FRANKFURTLONDON MILAN PARIS STOCKHOLM


Westinghouse Electric

# AnDERS MEANS METER5... 



Actual size illustration
Scale length 4.3"

## PROFILE 350 EDGEWISE METER

■ Long scale while retaining small overall size © Process control and electronic applications
Easily stackable

- Horizontal/vertical use
-60ر A upward, AC/DC
ESelf-shielding rugged movement

Anders provide what is probably the largest range of meters available from a single source in Europe: $\mathrm{MC} / \mathrm{MI}$, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.


Oxford Long Scale $240^{\circ}$. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.


Vulcan Moving Iron. 4 models, 1-5", 1•8", 2•7", $3.7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.


Regal Range $100^{\circ}$ flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.


Kestrel Clear Front. 7 models, $1: 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.


Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.


Solicontroller Moving Coil Relay. DC moving coil and $A C$ moving coil rectified. 1 or 2 adjustable alarm controls.


Lancaster Long Scale 240. 2 models, $4^{\prime \prime}$, 5•5" scales. DC moving coil and $A C$ moving coil rectified.

## Endystone Batio (4)

## RADIO FREOUENCY INTERFERENCE MEASUREMENT

Noise measuring set 31A


## RUGGED

PORTABLE Suitable for field use in all weather conditions

The Eddystone Model 31 A, a Ministry of Posts and Telecommunications design marketed under licence from the Post Office, is a solid-state equipment meeting the requirements of Post Office Specification W6912 for a Portable VHF Interference Tracing and Measuring Receiver
$31-250 \mathrm{MHz}$ in three ranges
110 dB measuring range with high accuracy
Collapsible antenna, housed in removeable cover
Operation from an internal rechargeable battery supply

Weight-19lb ( 8.6 kg )

Illustrated brochure obtainable from

## Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP
Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

## NEW BROADBAND VERSATILITY for AC/DC VOLTAGES

The latest Model of the URV series now developed by ROHDE \& SCHWARZ features:
an INCREASED SENSITIVITY most sensitive subrange 3 mV .
a HIGHER ACCURACY error limits 1\% for DC. 2\% for AC.
and NEW ACCESSORIES,
The new URV is battery powered with a life of 6000 hrs. making it completely portable and completely independent of earth loops and mains-borne interference


HF-DC Millivoltmeter model URV with RF probe and $20-$ or $40-\mathrm{dB}$ attenuator.

The model HF-DC Millivoltmeter URV measures DC and AC voltages from 0.5 mV ( $50 \mu \mathrm{~V}$ for DC ) to 1000 V and with a small RF probe, and proved coaxial insertion units (50, 60, 75 $\Omega$ ) the URV can be used for a wide variety of RF-Voltage measurements in the range from 1 kHz to 1.6 GHz .

For full details and specifications apply to

## AVELEY ELECTRIC LTD.

Roebuck Road,
Chessington, Surrey

Tel: 01-3978771
Telex: Avel London 928479

## Iere tis!

## Our two new ranges of 75 ohm TV distribution cables are now made on an extrusion line unique in Western Europe.

We're one of the most technologically advanced cable manufacturers, using new techniques to produce TV distribution cables at a consistently high standard to tolerances much closer than previously possible. At very competitive prices.

## The two ranges:

Aeraxial Semi Air Spaced Polyethylene dielectric copper taped braided and polythene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 1.27 mm to 3.05 mm .

Solid Polyethylene dielectric copper taped and polyethylene sheathed television distribution cables. Five cables in the range, with inner conductor sizes from 0.73 mm to 3.65 mm .


Aerialite will specially manufacture TV distribution cables for any special TV application-also, you can make use of the Aerialite free technical advisory service to help you in the selection and application of distribution cables.

For further information, send for Aerialite's new publication giving full technical specifications of the latest range of TV Distribution Cables.

To Aerialite Cables Limited:
Please send me your brochure

Aerialite
Aerialite Cables Limited, Castle Works,
Stalybridge, Cheshire SK15 2BS.


## 6 volume library '677:73 <br> is nowSpeedier, more efficient servicing means increased turnover ... <br> This library is a gold-mine of technical infor- <br> Makes of Colour TV include:

mation. Six hard-bound volumes giving vital data on more than 1500 models of Television (colour and mono), Radios, Car Radios, Stereograms, Record Players and Tape Recorders. More than 4000 pages clearly display thousands of circuits, printed panel diagrams, componentlayoutdiagrams, waveformgraphs, block diagrams, etc. Over 800 pages, devoted entirely to Colour TV, include installation instructions, new term explanations, purity adjustments, colour balance, static convergence and a wealth of invaluable information. Here, in fact, is all the data you need for efficient and speedy repair work.

## Your Guarantee

Sending for these valuable books, even though you also enclose your remittance, commits you to nothing. Unless you are absolutely satisfied you are perfectly free to return the set and if you do so within 10 days of delivery your money will be refunded in full and without question.

## How to get your 6-volume set

Detach the Order Form below and send it, with the appropriate remittance to :

Purnell Book Service Ltd.,
Box 20 Abingdon, Berks, OX14 4HE

Alba, Baird, Bang and Olufsen, B.R.C., Bush, Decca, Dynatron, Ecko, Ferguson, Ferranti, G.E.C., Invicta, H.M.V., Marconiphone, I.T.T./K.B., Masteradio, Murphy, Philips, Pye, Sobell, Stella, Ultra, Hitachi, Thorn Consumer Electronics, Korting, R.G.D., Sony, Telefunken.
All these makes of Mono TV, Radios, Car Radios, Stereograms, Record Players, Tape Recorders:
Aiwa, Alba, Baird, Bang and Olufsen, Beogram, Beolit, Blaupunkt, B.R.C., Bush, Cossor, Crown, Dansette, Decca, Defiant, Dulci, Dynatron,, Eddystone, Ecko, Elizabethan, Ferguson, Ferranti, Fidelity, G.E.C., Grundig Hacker, Halcyon, H.M.V., Hitachi, Invicta, I.T.T./K.B., JugoElektra, Klinger, Loewe Opta, Marconiphone, Masteradio, Monogram, Murphy, National, Nivico, Perido, Peto Scott, Philco, Philips, Portadyne, Pye, Radiomobife, Radionette, R.G.D., Roberts' Radio, Robux, Sanyo, Sharp, Sobell, Sony, Standard, S.T.C., Stella, Stereosound, Telefunken, Teletron, Thorn, Sanyo, Ultra, Van Der Molen, World Radio, Thorn Consumer Electronics, Elpico, Rigonda (USSR), Waltham.

## Plus.such developments as:

Mullard Integrated Units, Electronic Video Recording and Reproduction EVR system, Radio Receivers - Car radios, Stereo Multiplex reception, Capacitance Diode Tuning, Colour Television Test Equipment - Crosshatch Generator, Degaussing Coil, E.H.T. Meter, Colour Bar Generator, Cathode Ray Oscilloscope, Power Supply requirements, Alignment, Circuit design.


To: Purnell Book Services, P.O. Box 20, Abingdon, Berks OHX144HE
Please send me the 6 -volume set of RADIO \& TV SERVICING for which I enclose cheque/P.O. No. $\qquad$ crossed and made payable to Purnell Book Services Ltd.
for the full cash price of $£ 27.75$
for $£ 10$ deposit to be followed by 4 successivetick
monthly payments of $£ 4.75$ (total $£ 29$ ) $\square$ box appropriate

I understand that unless I am entirely satisfied I may return the volumes in good condition within 10 days and my money will be refunded in full.

BLOCK LETTERS PLEASE
Name.
Address

TRADE APPLICATION (To be accompanied by Trade Order)
Please supply 6 -volume set(s) of RADIO \& TV SERVICING at $£ 27.75$ per set. (Credit 30 days)

BLOCK LETTERS PLEASE
Name.
Company
Signature

IMPORTANT: Individual volumes are available on application.
Please return entire form. Available U.K. only.

## JAMES <br> SCOTT

## F.M. ELECTRONICS ALIGNMENT UNITS

This is a companion unit to the DR Alignment Unit and is used to align the record and reproduce electronics of F.M. recording channels of multi-channel instrumentation tape recorders conforming to the I.R.I.G. Intermediate and low band requirements.
The two main functions in an F.M. recording system which require periodical checking are:
(a) The accuracy and linearity of the Record Modulator.
(b) The accuracy and linearity of the Reproduce Demodulator.
The F.M. Alignment unit checks both these functions by the use of a standard voitage and a range of standard frequencies corresponding to range of standard frequentre frequencies and the tape speed carrier centre frequencies
the $+40 \%$ deviation frequencies for each the $\pm \pm 0 \%$ devia.
recording speed.


CUTALIGNMENT TIME\&COST

JAMES SCOTT(ELECTRONIC ENGINEERING)LTD. Carntyne Industrial Estate Glasgow E2 Tel. $041 \cdot 7784206$


## 4channel decoder modules



High definition SQ* quadraphonic decoder Fully built home constructor module featuring wide band matrix decoding circuit board with integrated power supply, switching, master gain and exclusive rear level control. Recommended retai price (excluding VAT) £21.95
Dimensions: $165 \times 140 \times 26 \mathrm{~mm}$
Operating Voltages : 110-240VAC at 3watts
Tate 4-channel equipment decodes all quadraphonic matrix records and broadcasts and adds dimensional realism to ordinary stereo programme sources. It also controls 4-channel tapes when played through your system and CD-4** records when used with a separate demodulator.

They are characterized by their ultra low distortion characteristics and six-pole wideband phase shift networks. These combine to produce an acoustic performance giving highly articulate sounds from the back as well as the front channels. The amplitude accuracy is better than $\pm 1 \mathrm{~dB}$ from 5 Hz to 100 KHz .

High definition SQ* quadraphonic decoder
Fully built home constructor module Fully built home constructor module
features: exclusive wide band phase shift network; distortion typically $0.04 \%$. Ideal for use with other kit projects and even with the world's finest amplifiers.
Recommended retail price (excluding VAT) $£ 12.95$
Dimensions: $85 \times 60 \times 25 \mathrm{~mm}$
Operating Voltages: $18-30 \mathrm{VDC}$ at 11ma

## Specifications

| Input Impedance | 40KOhms |
| :--- | :--- |
| Output Impedance | $<3000 \mathrm{hms}$ |
| PhaseShift Network $90^{\circ} \pm 10^{\circ}$ | $20 \mathrm{~Hz}-18 \mathrm{KHz}$ |
| Nominal Gain | Unity |
| Frequency Response $\pm 1 \mathrm{~dB}$ | $5 \mathrm{~Hz}-100 \mathrm{KHz}$ |
| Nominal Input Level | 250 mV rms |
| Nominal Distortion | $0.025 \%$ |
| Clipping Point | 2.5 V rms |
| Distortion before Clipping | $0.08 \% \mathrm{max}$. |
| Front Separation | $>60 \mathrm{~dB}$ |
| Rear Separation | $>20 \mathrm{~dB}$ |

Tate Audio Transmission Equipment Limited
5-7 Covent Garden Cambridge CB1 2HS England
Telephone 022367873 Telex 81640
Registered in London No. 1059684
*TM CBS Inc. **TM Victor Japan


## THE MINITEST IS PREFERRED

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean plastic cover with pressed steel case Controls are simple and easy to use. Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20.000 and 2.000 ohms per volt d.c. and a.c. respectively Third, high voltage probes. These extend the range to 25 or 30 kV d.c

Little wonder the Minitest is preferred SALFORD ELECTRICAL
INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles, Manchester M30 OHL.
Telephone: 061-789 5081. Telex: 667711 A. member company of GEC Electrical Components Ltd.
sec.

## Aecurate and direat measurement of spari without coupling to moving parts

 resonant reed TACHOMETERS
for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

## RIDERS ELETROIISS LIIITED

Anders means meters
WW-031 FOR FURTHER DETAILS


MODEL 41 R.F.SIGNAL GENERATOR Price $£ 35.00$.
FROM APRIL 1 st PLEASE ADD $10 \%$ on TO PRICE FOR V.A.T.

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.
* 8 clear scales - Total length 130 mm .
- Spin-Wheel Slow Motion Drive 11 - 1 ratio.
- Overall Accuracy - $2 \frac{1}{2} \%$.
- Modulation. Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
- Powered by 9V Battery

Trade and Export enquiries we/come.
Send for full technical leaflets.
Post and Packing 35p. extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON.
Tel: 03-952 3515

# Handful of relayknow-how! 



## We are one of the largest manufacturers of Miniature Plug-in Relays in Europe.

Varley miniature plug-in relays including the Miniaturised Bi-stable polarised relay fype VPR

If you have a relay requirement or problem contact Varley Technicians now, or send the and Post Office approved relay type 23 are used and approved by most leading electr.
 onic manufacturers throughout the world.
The reasons: PERFORMANCE, RELIABILITY, PRICE

Varley go to great lengths to ensure a consistently high standard of performance and reliability in the manufacture of their range of relays. Ultrasonic cleaning is used throughout manufacture. Each relay is checked under dynamic conditions for contact performance and timing.
$\qquad$
Company $\qquad$
Address $\qquad$

## Save millimetres AND money with this new Brimar Tube

If you're pianning an oscilloscope - or any instrument for waveform monitoring - Brimar has good news for you. The Brimar D10-230 mono-accelerator tube is a real winner where low cost and small size are important considerations.

Short in length, small around the neck, it can save you a whole lot of space . . . give you far greater freedom in your designing. The flat $4^{\prime \prime}$ diameter face offers minimum total scans of 80 mm and 64 mm , in $X$ and $Y$ directions respectively. And its voltage requirements are within the capability of normal, low-cost, transistorised circuits.

This tube with its Standard B14G Colour tube base also allows economies to be made in Socket costs and, being round, requires no twist coil.

* Maximum overall length: 260 mm
* Maximum neck diameter: 38 mm
$\star$ First anode voltage: Va1, 1500 V
* Second anode voltage for focus: Va2, 230 to 380 V
* Grid voltage for spot cut-off (approx.) :

$$
V g-30 \text { to }-65 V
$$

$\star$ X plate deflection coefficient: Dx, 21 to $26 \mathrm{~V} / \mathrm{cm}$
$\star$ Y plate deflection coefficient: Dy, 13 to $16 \mathrm{~V} / \mathrm{cm}$


## Thorn Radio Vaives and



When you've got components that call for encapsulation -bring them along to Whiteley. With efficient potting, your components will be totally insulated and environmentally protected - and Whiteley experience in developing this advanced plastics technique will ensure that it is applied to full advantage.
We can encapsulate in epoxy resin or polyurethanehot setting or cold setting as required. Where fillers offer advantages, we can apply them, expertly. We are ready to handle small quantities or volume production for you. It's one more way in which you can capitalise on our production resources. For electrical and electronic work-right through from design to final assemblyyou can safely follow the example of many famous names-and call in Whiteley.


ELECTRONIC \& ELECTRICAL DESIGN
PRODUCTION CAPAEILITY
CABINET MAKING
SHEET METAL FORMING/FINSHING
PLASTICS MOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074


Anew ingenious désign of moulded Toggle switch employing a QMB wiping contact action, for AC/ DC compatibility and heavy silver plated contacts/ tags for long life. Illustrated is S.910. S.P.C.O. rated 2 A at 250 V . AC., is S. 900 Make-Break contacting. rated 3 A at 250 V . is also available.

OTH of these new switches are economically priced but of a high standard of quality and reliability.


NTRODUCING a new design fuseholder F.396, which conforms to the safety standards of IEC 257, shown here fitted with our new 'rating indicator' P.No.11233/ Rating. This simple attachment avoids the possibility of errors in fuse replacements, thus preventing damage to expensive electronic equipment due to incorrect fuse being used. The amperage of the fuse is clearly visible, being printed in black on a silver-matt finished aluminium background
BOTH the fuseholder and indicators are proving very popular since they were first shown at the London Electronic Com ponents Exhibition.
THE indicator is available in six popular ratings (As illustrated left) at most competitive prices. It can be used in conjunction with the following fuseholders. F.296, F. 297. F.298. F.296/POT, F.297/POT, F:296/S. F. 297/S and F. 396 .

TECHNICAL LITERATURE AVAILABLE ON REQUEST. QUOTE: WW/4/73
A. F. BULGIN \& CO. LTD. ELECTRONIC COMPONENT MIANUFACTURERS BYE-PASS ROAO BARKING ESSEX IG11 OAZ TEL: 015945588 (12 lines) P.B.X. TELEX: 897255

## FIGTITERS WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.
CHOOSEA NEW FUTURENOW!
Tick or state subject of interest. Post to address below.
 Coaching

## SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY <br> DEPT. Bwwozaldermaston court, READING RG7 4PF <br>  <br> QL awwoy

```
NAME
alock capitals please
```

ADDRESS

## OTHER SUBJECTS

BIET
redited by the Councll for the Accreditation of Correspondence Colleges.


THE BIG NAME IN ELECTRONICKITS


487 CASTLE STREET, HASTINGS, SUSSEX TN34 3DY TEL: HASTINGS 2875


## Check in one direct

## move with Brandenburg's new HV meter

We thought it was about time somebody supplied direct reading meters for high voltage, so we've produced three-one for up to 5 kV . one for 15 kV and one for 30 kV to complement our range of HV power supplies
The meters are operated by two 9 V internal batteries ( 800 hours life) linked with a built-in checking facility. Positive or negative ground is available. selected by a front panel switch. And. as with all Brandenburg products, there is a 12 months unconditional guarantee.

- Accuracy of $1 \%$ fsd over voltage range of 0.30 kV d.c.
- Less than $1 \mu \mathrm{~A}$ drawn at 30 kV d.c.
4.5in ( 114 mm ) scale mirror-backed meter.
- Temperature range $5-35^{\circ} \mathrm{C}$.
- Dimensions only $7 \times 8 \times 5 \frac{1}{2}$ in high $(200 \times 145 \times 178 \mathrm{~mm})$.
- Recorder output.

Yet another Brandenburg piece in the high voltage game

## brandenburg <br> STABILISED HIGHVロLTAGE

Brandenburg Limited, 939 London Road, Thornton Heath, Surrey. CR4 6JE, England. Tel : 01-6890441 Telex: 946149
Agents or distributors in most principal countries.
P6437
WW-038 FOR FURTHER DETAILS

## THERMOCOUPLE POTENTIOMETER

## Type P8



Request full details from:

## CROYDON PRECISION INSTRUMENT CO.

HAMPTON ROAD, CROYDON, CR9 2RU

Telephone: 01-684 4025 and 4094

## WW-039 FOR FURTHER DETALLS



MODEL
U-50DX


USED THROUGHOUT THE WC FLD. SANWA'S EXPERIENCE OF 30 YEARS ENSLAES ACCURACY. EERFOLLITY. VERSATILITY. UNSUF JASSED TESTER PERFORMANCE COMES WITH EVERY SYANWA
6 Months Guarantee Excetent REpair Service $\begin{array}{llll}\text { MODEL P2B } & £ 6.67 & \text { MODEL AT45 } & \mathbf{£ 2 1 . 5 2} \\ \text { MODEL }\end{array}$ $\begin{array}{lrlr}\text { MODEL JP50 } & £ 8.00 & \text { MODEL } 380 C E & £ 21.85 \\ \text { MODEL } & \end{array}$ $\begin{array}{llll}\text { MODEL 360YTR } & £ 11.30 & \text { MODEL N101 } & £ 25.41 \\ \text { MODEL U50DX } & £ 11.43 & \text { MODEL } 4 \text { OOED } & £ 29.72\end{array}$ $\begin{array}{llll}\text { MODEL U5ODX } & £ 11.43 & \text { MODEL 4EOED } & £ 29.72 \\ \text { MODEL A3O3TRD } & £ 15.04 & \text { MODEL EM:800 } & £ 72.79\end{array}$ $\begin{array}{llll}\text { MODEL A303TRD } & £ 15.04 & \text { MODEL EMi800 } & £ 72.79 \\ \text { MODEL K30 THD } & £ 17.21 & \text { MODEL R1000CB } & £ 75.27\end{array}$ $\begin{array}{lllr}\text { MODEL K30 THD } & £ 17.21 & \text { MODEL R1000CB } & £ 75.27 \\ \text { MODEL F8OTRD } & £ 18.73 & \text { THESE PAICES ARE SUBJECT }\end{array}$ TO AN ADDITIONAL CHARGE OF $10 \%$ FOR V.A.T. Cases extra. available for most meters, bu: not sald separately. Please write for illustrated
SoLE MMPOTIERS IN UK gाtitury (IUALIT ELEGTRONICS LTI. 47-49 HIEH STREET, KINGSTON-UPON-THAMES, SURREY. KT1 11P WW- 040 FOR FURTHER DETAILS

## W.W.'DIGITAL MUTIMMEER

(D. E. O'N. Waddington, March 1973)

## LIST OF PARTS NOW AVAILABLE

Please send a stamp
We will also include our illustrated lists of other components

## CAVERN ELECTRONICS

 29 CLAREFIELD ROAD, LEICESTER LE3 6FB Tel. : Leicester (0533) 857223(Mail Order only)

WW-041 FOR FURTHER DETAILS


for the professional
contact Derek Owen at 01-874 9054 or Telex 923455

## LEEVERS-RICH

EQUIPMENT LIMITED
Agents in Scandinavia, Eastern and Western Europe, Middle East, Africa, Australasia and the Far East.


WW-- 044 FOR FURTHER DETAILS

| Quadraphonic decoder <br> MC1312P <br> MC1313P | Designed to decode an SQ encoded programme into four separate channels The device conforms to specifications for decoding quadraphonic records using the popular CBS system. (includes CBS royalty) £2.24 |
| :---: | :---: |
| FM <br> Stereo decoder MC 1310P | Requires only thirteen resistor/capacitors to build a complete unit that will convert an existing mono FM tuner to stereo operation. Has a built in mono/stereo switch capable of driving a 75 mA signal lamp. $\quad £ 2.93$ |
| Stereo preamplifier MC 1339 P | A low noise stereo pre-amp in one TO-116 package and sensitive enough to handle a magnetic cartridge input! Provision is made for a tone control network and the device has a built in power supply ripple filter. £1.07 |
| 2 watt mono amplifier with pre-amp MC 1316P | A useful low cost device for all phono applications, intercoms, baby alarms etc. Has a full 2W RMS output with no extra heat sink required. The pre-amp is electrically separate from the power amp giving the device usefut versatility. |
| Timing Circuit MC 1455P1 | A highly stable controller in which time delays (microseconds through hours) are accurately controlled by one external resistor and capacitor. Triggering and resetting terminals provided. Output can source or sink up to 200 mA |
| FM Radio or Colour TV Tuning Indicator ML 1335P | A must for spot on tuning. The device $\mathbf{s}$ witches on a lamp when the receiver is precisely aligned on the centre of the incoming signal. Off centre tuning results in a dim lamp, noise only (no signal) will extinguish the lamp. $£ 0.87$ |
| Specifications and Application information supplied with all devices | To Jermyn Home Electronics <br> 113Vestry Estate. Sevenoaks, Kent <br> Please supply the following devices return of post <br> Type No. <br> Quantity <br> enclose cheque/POrder for $£$ <br> Jermyn <br> Add 20 p packing and postage $+10 \%$ VAT on total order. |

## REPAIRS

 OF ELECTRICAL MEASURING INSTRUMENTS 7-14 DAYS SERVICEDesigned to decode an SQ encoded programme into four separate channels The device conforms to specifications for decoding quadraphonic records using Requires only thirteen resistor/capacitors to build a complete unit that will convert an existing mono FM tuner to stereo operation. Has a built in mono/stereo switch capable of driving a 75 mA signal lamp. $\quad £ 2.93$ A low noise stereo pre-amp in one TO-116 package and sensitive enough to handle a magnetic cartridge inpu revion is made or a conle filter A useful low cost device for all phono applications, intercoms, baby alarms etc. Has a full $2 W$ RMS output with no extra heat sink required. The pre-amp is device useful versatility.
$£ 1.44$
A highly stable controller in which time delays (micoseconds through hours) areaccuraely contolle byone externalresistor and capacitor. Triggering and reselling terminals provided Outputcan source or A must for spot on tuning. The device switches on a lamp when the receiver is precisely aligned on the centre of the incoming signal. Off centre tuning results in a dim To Jermyn Home Electronics
113Vestry Estate. Sevenoaks, Kent Type No Quantity enclose cheque/POrder for $£$ fermyn
w- 036 FOR FURTHER DETAILS
conjunction with $\mathrm{Hi}-\mathrm{Fi}$ and Audio systems for prosiding high quality television sound reproduction. No direct connec:ion to the T.V. is required, the coupling being effected by an inductive pick-up.

Telefi is complete in a handsome natural teak veneered case $7 \frac{1_{4}^{\prime \prime}}{} \times$ $5 \frac{1}{8}$ " $\times 2 \frac{77^{8}}{}$ approx

The Telefi is a very worth while device and will give greater overall enjoyment than the T.V. manufacturers normally prcvide." John Gilbert 'The Gramophone'.

Also send for details of the complete range of Celestion Loudspeakers
ROLA CELESTIONLTD.
DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP

## - BRITANI'S FASTEST SERVICE -

component specialists for the discerning amateur and professional

COMPREHENSIVE CATALOGUE

48 PAGES OF SEMICONDUCTORS AND ASSOCIATED DEVICES ESSENTIAL FOR PROJECT \& PROTOTYPE

## S50PEx 4D-25

The precision scope for
the demanding engineer
$3 \%$ accuracy - which just about summates this new 25 MHz dual-trace instrument from Scopex. A professional scope by any standards - yet at $£ 175$ in a


* DC-25MHz, full screen
* Measuring accuracy $3 \%$
* Signal delay on both channels
* Trig level and polarity from one simple control
* Wide timebase range, $200 \mathrm{~ns} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$
* Sensitivity $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
* High brightness PDA tube
* Lightweight portability

Write now, or telephone:
Scopex Instruments Limited,
Pixmore Industrial Estate,
Pixmore Avenue,
Letchworth, Herts.
Tel : Letchworth 72771
(STD 04626)


Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response


## JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

## SPECIAL FEATURES:

* very low distortion content-less than .05\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
$\mathbf{£ 4 0 . 0 0}$
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to $01 \%$ with comprehensive facilities including L.F. cut switch. etc. ALL PRICES PLUS V.A.T.
$£ 30.00$


## MULLARD BOOKS ON ELECTRONICS <br> FOR THE ENGINEER ENTHUSIAST AND STUDENT

APPLICATIONS OF INFRARED DETECTORS<br>152 pages, illustrated<br>COLOUR TELEVISION<br>46 pages, illustrated in colour $87 \frac{1}{2} p$

FIELD EFFECT TRANSISTORS
132 pages, illustrated... £1•80
MAGNADUR MAGNETS FOR D.C. MOTORS
52 pages, illustrated
MOS INTEGRATED CIRCUITS
AND THEIR APPLICATIONS
176 pages, illustrated

## MULLARD DATA BOOK

160 pages, illustrated
POWER ENGINEERING USING
THYRISTORS - VOL. 1 TECHNIQUES OF THYRISTOR POWER CONTROL 240 pages, illustrated
TRANSISTOR AUDIO AND
RADIO CIRCUITS - 2nd EDITION
288 pages, illustrated

## ALSO MULLARD MINI BOOKS

an educational series.
Integrated Circuits
Magnetic Core Memories $\quad \square \quad$ 40p
Principles of Electrostatics $\quad-\quad 20 \mathrm{p}$
Principles of X-Rays $\quad$ 20p
Semiconductor Devices...37 ${ }^{2} \mathrm{p}$

Thyristors

## AND SIMPLE MEASUREMENT SERIES

experiments for education and training.
Simple Transistor Measurements $\quad 25 \mathrm{p}$
Simple Oscilloscope Measurements...
Simple Valve Measurements.
The Diagnostic X-Ray Tube
A Programmed Book on Semiconductor Devices $\quad . \quad 62 \mathrm{t}$ p

## HOW TO GET YOUR COPY

From your local bookseller or cash with order plus postage and packing from:
Selray Book Company Limited,
60 Hayes Hill, Hayes, Bromley, Kent BR2 7HP Or send for full list of Mullard titles from: Dept. CIH Mullard Limited, New Road, Mitcham, Surrey CR4 4XY.

THE 5350 - A NEW CONCEPT IN NUCLEAR SPECTROMETERS


This is an entirely new range of purpose-built Nuclear Spectrometers with many outstanding new features which will have immediate appeal to those engaged at any level in the analysis of radioactivity.

* 4-mode pulse height analysis
* Wide-range ratemeter with zero suppression
* Simple controls
* Charge-sensitive input
$\star$ NIM-compatible signallevels
* Integrated circuits throughout
$\star$ Attractive yet robust housing
* Low cost

For full information


ESi NUCLEAR LIMITED, 2 CHURCH ROAD, REDHILL, SURREY RH1 60A
Tel: Redhill (91) 64993

An Associate Company of Edwards Scientific Intemational Mirfield, Yorkshire

WW- 051 FOR FURTHER DETALLS

## New - 15MHz Portable Dual Trace Oscilloscope

Type 201 - $\mathbf{£ 1 7 0}^{*}$ (UK, excluding VAT)

$5 \mathrm{mV} /$ Div.
$100 \mathrm{nS} /$ Div. PLUG-IN
Timebase and Amplifier Modules

* with 212 Amplifier and 211 Timebase

Utterly portable, accurate and easy to use.
Features exceptional triggerability and high definition CRT. Get in touch now for further details.


Meteronic Ltd.,
114/116 Shipbourne Road,
Tonbridge, Kent.
Tel: Tonbridge 61448.

MULLARD BOOKS ON ELECTRONICS
 CRCUITS AND THER APPLICATIONS

This book describes the construction, manufacture and characteristics of MOS integrated circuits, and the ways in which they can be used.
The MOS integrated circuit has considerable advantages over the bipolar type in applications where large arrays of devices are used. Some typical applications where this type of integrated circuit shows its advantages are discussed.

## Contents:

MOS fundamentals - manufacture of MOS integrated circuits - de or static characteristics - MOS static inverter - MOS switching characteristics - MOS gate circuits, static logic - dynamic logic circuits - four-phase dynamic logic circuits interface circuits - input and output protection - MOS logic applications. Size $8 \frac{1}{2}$ " x 6 " clothbound, 176 pages, illustrated.

Price $£ 2.00$
THE MULLARD DATA BOOK 1973/4

The colour-coded sections of the latest edition of Mullard Data Book are packed with information on valves, integrated circuits, semiconductors picture tubes and components. The book also lists equivalents and comparables. ORDER NOW!

## Price 30p

# Soldering was never so simple. 

Greenwood Electronics brings you four top-class electronics applications products.
Iso Tip cordless soldering iron.

For the first time ever in the UK you can have a safe. high-power soldering iron which can be used anywhere without a mains lead

This is the direct result of a breakthrough in the use of nickel cadmium cells as a rechargeable power source.
Tip performance is up to 50 watts, with over $360^{\circ} \mathrm{C}$ tip temperature.

The tip reaches operating temperature within 5 seconds. It cools equally rapidly.

It comes with a charging stand for either 240 V or 115 V A.C. operation. There is also a 12 -volt model that can be charged from a car battery. Each charge is capable of more than 60 soldering joints.

## £9.95-V.A.T

## Adjustable bench vice.

The new Oryx adjustable bench vice is designed to operate where accurate workpiece location is essential. So the user is able to carry out soldering and assembly on printed circuit boards and handle drilling and cutting operations on even the most delicate components.

Positioning of the vice is easily and quickly carried out, without removing the workpiece.

The vice has two adjustment facilities. Replaceable nylon jaw linings enable the workpiece to be firmly gripped without damage. £13.85-V.A.T.

Oryx 50:
an authentic temperature controlled solderingiron.

which is ideal for precision soldering, and totally independent of external controls. The iron is mains operated, light, compact and easy to handle. However. despite its small size it's equipped with a large 50W element loading. giving rapid heating and high performance with constant tip temperature Temperature control is within $2 \%$, with one long life iron-coated tip serving all temperatures.
A comprehensive range of replacement tips is available. As a safety feature, an indicator lamp is fitted. Choice of voltages: 12, 24, 50, 115 and 210/250.
£5. 20 V.A.T

## The Oryx SR3A

## desoldering tool.

The SR3A is a new, improved desoldering tool, especially designed for removal where components are tightly grouped or otherwise inaccessible.
It instantly removes all unwanted solder from printed circuits and all other solder joints.

Simple, reliable, speedy and accurate, it meets today's most stringent safety regulations.
$£ 4.50 \div$ V.A.T.
If you do any soldering at all. and certainly if you do a lot of soldering. you owe it to yourself to make it as easy as possible. Write today for full details of our range.


R.E.W. Audio Visual Co. now have two video and audio centres serving the needs of industry, commerce and education. At Colliers Wood there is a complex covering 7,000 square feet with its own spacious car park and housing Video Demonstration Studios. Video Recording Studios and a Hire Department. Vast stocks of leading equipment are available including Video Cassette Recorders and 525 line American Standard Equipment. There is a trade counter for immediate sales service on Video Tapes and Accessories and a Service Department, $2.000 \mathrm{sq} . \mathrm{ft}$. in area staffed by qualified engineers. A special Department is available for Video Tape Dubbing and Video Tape Copying of all formats. A large range of leading Audio Equipment is also on display. The opening of the new showrooms at Centrepoint means we can now extend our expert service to customers in the West End of London.

AKAI VTS 110 DX Portable battery/mains video system


Rec'd Price $£ 595$ + VAT VERY SPECIAL OFFER f535 + VAT

* Portability
- Batt/Mains
- Built-in monitor for
 instant replay
* $\frac{1}{4}$ tape - low cost soft ware
* Simple operation
* Convenient light weight -18.6 lbs .

THE LATEST SONY AV SERIES AT REW NOW! High picture resolution of more than 300 lines using high density $\frac{1}{2}$ inch tape.
AV-3420 'ROVER' Portable VTR \& camera

* Half-hour playing time on $1,200 \mathrm{ft} .5$ inch tape.
* Features playback through camera eye-piece or any attached monitor.


## £ 750 + VAT

HIRE SERVICE We have the full range of Sony. Akai. Shibaden. Philips, IVC. Ampex etc. for immediate hire from stock.
Also American Standard 525 line Sony Equipment and 525 line NTSC
 Sony U-Matic colour Video Cassette Recorders.

## Linstead Lalboratory Instruments



WIDE RANGE MILLIVOLTMETER High impedance millivoltmeter with 20 . scales total measurement range 60 micro-amp a.c. to 400 voits
d.c. 10 megohm frequency range of 500 kHz .


G5
WIDE BAND SIGNAL GENERATOR
Sine-square wave wide band high power signal generator $10 \mathrm{~Hz}-1 \mathrm{MHz}, \mathrm{O}-6$ volts r.m.s. 2 watts into 5 ohms £32.00

## limstead <br> means a good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road,
London N15 5JB. Telephone: 01-802 5144

## phannmins to all B．B．C． sparifictions



## and VU MEIERS

## TO THE BELL SPECIFICATION



OVERSEAS AGENCIES

| R．Schmidt Copenhagen Denmark |  |  |
| :--- | :--- | :--- |
| OyChester Helsinki | Finland |  |
| Theal N．Amsterdam | Holland |  |
| Vianello | Milan | Haly |
| Rieck | Bergen | Norway |
| Eltec | Lisbon | Portugal |
| Nordstrand | Stockholm | Sweden |

OyChester
Theal N：V
Vianello
Eltec
Nordstrand Stockholm

CHILTERM WORKs


シリビ色

WW－058 FOR FURTHER DETAILS


WW－060 FOR FURTHER DETAILS


WADSWORTH ROAD PERIVALE GREENFORD MIDDX. ENGLAND Telephone:01.998 1011 Telex:935524 DAVAILL amemean companr or bentima noustrits limiteo

WW-061 FOR FURTHER DETALS


## SIGNALMASTER MARK 6

Producer of FM front-ends with MOS-FET dual gate mixer - single or combined with I/C IF amplifier with ceramic filters.
Also the complete module series for assembling of Signalmaster Mark 6: Power supply, memomatic operation unit, I/C stereo-decoder, frontplate and cabinets. Please send for brochures with all details and tech. data.
Trade and educational enquiries welcome.



Electronics since 1924

## LARSEN \& HOEDHOLT RYESGADE 51-53 DK-2100 COPENHAGEN 0. DENMARK



## Another reason why Enthoven is No． 1 in solder



## Superspeed solder wire

Enthoven＇s Superspeed soldering wire features an activated－rosin flux core and is ideal for those applications where a wide variety of different jobs must be handled with a single solder．

But don＇t forget the rest of the Enthoven range．It gives you a wide choice of high－quality products developed for use with modern techniques．It includes Flux Cored Solder Wires， Solder Pre－forms，Solid Solders，Selective Fluxes，solder specialities，materials for printed circuitry and for soldering aluminium．

And behind every Enthoven product stands a comprehensive advisory service that can solve your knottiest soldering problems．

## Enthoven Solders Limited

Dominion Buildings，South Place London EC2M 2RE．
Tel：01－628 8030 Telex： 885737 Cables：ENTHOVENLONDONEC2M2RE


WW－064 FOR FURTHER DETAILS

## Come and listen at the yegr's most cxining cxatimion

Join thousands of Hi-Fi enthusiasts in an atmosphere that will set your ears tingling with excitement. The 1973 Audio Festival and Fair looks like being the best yet - and will run up to and include Sunday. The international giants of the Hi-Fi industry will be there showing the latest specialist equipment: unit audio, tape recorders (cassette, cartridge and reel-to-reel), loudspeakers, tuners,
receivers, amplifiers, radios, tapes and discs. There will be continuous demonstrations in specially constructed Audio Studios - and the Sunday Mirror is giving away $£ 500$ worth of equipment as prizes in exciting competitions. Don't miss this great event.

## THE 1973 <br> IITERMATIONAL aUDIO FESTIUAL AND FAIR

Sponsored by the Sunday Mirror

## OMMP/4 London

Tuesday 23 October to
Sunday 28 October
Weekdays 10 am to 9 pm
Sunday 11 am to 7 pm
Admission 45p


## BIAS ELECTRONICS

Excellent Performance High Reliability Mono or Stereo $\frac{1}{4}$ "
4 track $\frac{1}{2}^{\prime \prime}$ versions
in console, rack mounting or transportable form.


Phone or write to
BIAS ELECTRONICS LTD. 01-947 3121
UNIT 8 COOMBE TRADING ESTATE
112-120 COOMBE LANE, LONDON SW20 OBA.

WW- 066 FOR FURTHER DETAILS

## CONVERTERS



VOLTAGE to FREQUENCY CONVERTERS
15VF-1 Wide frequency range, floating output, in put neg. 15VF-2 pos. input accuracy $0.01 \%$ to $0.05 \%$.
15VF-5 Audio range $0.01 \%$, general purpose.
15VF-6 Low cost, general purpose.
15VF-8 High speed.
FREQUENCY to VOLTAGE CONVERTERS
15FV-3 Wide frequency range $0.02 \%$ to $0.05 \%$
15 FV-4 Audio range, general purpose.
15FV-4a $\quad 0.500 \mathrm{~Hz} .2 \%$ accuracy
15FV-7 . $1 \%$ to 10 Hz
TIME to VOLTAGE CONVERTER
15TV-7 Measures voltage free contact closure
PERIOD to VOLTAGE CONVERTER
15PV-7 Measures interpulse periods.

## AUXILIARY MODULES

TELEMETRY AMPLIFIERS Line transmission.
CLOCK MODULES Accurate pulses.


And there are many more.So why not write for the Taylor Panel Meter Catalogue.


The radically high performance of our Brookdeal 9452 opens up wide new areas of amplifier capability
Superb low-noise input even at low frequencies, enables the 9452 to span a wide spectrum of low-level signal applications.

Outstandingly Iow distortion to a typical non-linearity of $0.001 \%$ makes this the ideal preamplifier for many test systems. Fast overload recovery typically $<10 \mu s$ for recovery from 40dB overload makes 9452 the choice for systems where large overload signals can occur
Bandwidth covers 1 Hz to 1 MHz with selectable frequency response. Variable gain control, with $1 \%$ accuracy, 19 dB to 100 dB . But get the full data and you'll see just how versatile an amplifier can be!
Brookdeal Electronics Limited, Market Street, Bracknell, Berks An EGsG Company Telephone: 0344-23931 Telex: 847164

## ORTEC <br> Brookdeal

## CBS SQ* FOUR CHANNEL DECODER NOW USED IN THE *Regd. CBS inc.



A complete kit for the home constructor that can be built in under an hour with just a soldering iron and a pair of cutters. Just pop the components into the positions clearly marked on the fibre glass board, crop and solder.
You then have the identical decoder board used in the P.E. RONDO Quadraphonic Sound System Kit as described in PRACTICAL ELECTRONICS. $\mathbf{\$ 8 . 0 0}$ post'free, including ficence fee to $C B S+80 p$ V.A.T. complete with lucid instructions.

## ANNOUNCEMENT

## WE WILL BE PROVIDING COMPLETE KITS OF EACH PART OF THE P. E.

 RONDO AS THEY APPEAR EACH MONTH IN PRACTICAL ELECTRONICS.
## PHASE LOCKED LOOP STEREO DECODER

## (as in Wireless World, July 1972)

Another complete kit that takes about 30 minutes to build. No alignment problems and coils to adjust. Just four simple steps to obtain perfect stereo from your mono tuner.
(1) Connect decoder to your tuner, possibly distonnecting one or two de-emphasis components
(2) Provide 10 to 16 volts D.C. either from your tuner or a separate power supply.
(3) Tune to a stereo broadcast.
(4) Turn a "preset" resistor until the stereo beacon lights up. You then have stereo radio.

SPENCER HOUSE,
BRETTENHAM ROAD, EDMONTON, LONDON, N.I8.
Tel.: 01-807 5544 01-807 5999

## Neepthase CoxtactsCLEAN

 BY USINGA
## DIACROM SPATULA



No other cleaner has all these advantages:-

1. Only $100 \%$ pure natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains. obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residuies resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200.300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handie is calculated to permit proper usilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200 . thickness $55 / 100 \mathrm{~mm}$. hoth faces diamonded. For quick cleaning of industrial
- relays and switching equipment. etc.
phone relays, computer relays. etc.
- Grain size 400 . thickness $25 / 100 \mathrm{~mm}$.. one face diamonded. For sensitive relays and tiny contacts Two close contacts tacing each other can be individually cleaned, because onty one face of the spatula is abrasive.

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Aurthorities; also major industrial and electronic users throughout the United Kingdom

WW- 074 FOR FURTHER DETAILS


## PLANNED COMMUNICATION SYSTEMS

then place a tick in appropriate box, complete coupon and send to SNS Electronics Group, 851 Ringwood Road, Northbourne, Bournemouth BH11 8LN. We'll send you some interesting details by return. / am interested in $\square$ Executive Direct Speech $\quad \square$ Automatic Dial
$\square$ Heavy Duty and Industrial
Direct Speech SystemsStaff Location and Pocket Paging Schemes
Push Button telephones $\square$ Public Address Paging Systems
and pocket paging $\qquad$
Name
Address
Pleasecutitout
WW- 075 FOR FURTHER DETAILS

## From Goldring. Anew range of cartridges that aska record some searching questions.

In every record there is stored a specific amount of reproduction capability.

And the purpose of any good cartridge is to release this potential to the fullest possible extent.

Now from Goldring comes a new range of cartridges that subject a record to a more searching inquisition than ever before.

The new 820 series.
In this series a whole range of new advances are introduced in materials and design, whilst
820 Super E.Performance characteristics:
Sensitivity@ $5 \mathrm{~cm} / \mathrm{sec}-1 \mathrm{kHz}: 4 \mathrm{mV}$. Separation @ $1 \mathrm{kHz}: 25 \mathrm{~dB}$.
Recommended playing weight: $1 \cdot 25$ grammes.
Stylus point radius: $\cdot 0003^{\prime \prime} \times \cdot 0007^{\prime \prime}$. Frequency range: $10 \mathrm{~Hz}-25 \mathrm{kHz}$.
retaining the true transparency of sound and the true transduction techniques of earlier designs.

The small low-mass diamond point which is mounted on a new type of specially polished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie-wire' minimises fore and aft stylus movement, reducing non-linear distortion to a minimum.

There are three models in the range. The 820 with spherical stylus, and the 820 E and 820 Super E, both with bi-radial styli. Write for details.

The 820 series is capable of making the most of all that good records can offer now. And will keep pace with new developments as technical standards of recording continue to improve.

## The new 820 series

 The experis artididge by Goldring ©
## REALISW IN SOUND FOR THE HOME CONSTRLCTOR

During the past 10 years, loudspeaker technology has advanced to a degree that it is no longer possible for the amateur to design and build a loudspeaker which matches the performance of a high quality commercial product. At one time, building a loudspeaker was simply putting a full range drive unit in a box of suitable size and shape. By present-day standards, a full range loudspeaker drive unit can no longer be considered in the high fidelity class.

The high fidelity loudspeaker started with the introduction of two-way systems, comprising bass and high-frequency drivers, and a simple frequency-dividing network. The dividing network was generally a coil in series with the bass driver, and a capacitor in series with the high-frequency driver. Although little attempt was made to ensure crossover at the best point in the frequency range, or the integration in respect of sensitivity, this was a considerable improvement over most single drive unit loudspeakers. It became apparent later, however, that the weaknesses of the single drive unit loudspeaker were still inherent to a degree in the two-unit system in respect of adequate frequency coverage. The relatively large and heavy diaphragm required for satisfactory bass response produces a poor performance above 1 kHz , and a high-frequency unit designed to have a satisfactory response to $15 / 20 \mathrm{kHz}$ is unsatisfactory below 3 kHz . Most large bass drivers have a high-frequency resonance between 1 kHz and 2 kHz . The low-frequency resonance of high-frequency drivers is between 1 kHz and 3 kHz . These resonances produce transient colouration and an irregular response characteristic in the most important part of the total frequency spectrum. Optimum performance requirements thus necessitate the use of three or more drive units together with a sophisticated frequency dividing and integrating networks.

At the time of the introduction of multi-unit systems (between 1960 and 1965) drive unit design had not developed sufficiently to make it possible to produce a loudspeaker system covering the whole frequency range from 40 Hz to 20 kHz with a satisfactory angle of radiation using three drive units, and four-unit systems were common. Frequency crossover points were approximately $500 \mathrm{~Hz}, 4 \mathrm{kHz}$ and 10 kHz . With the introduction of the dome high-frequency driver and improvements in the mid-range driver, it is now possible to produce a three-unit system having a better performance than the four-unit system; using crossover frequencies of approximately 500 Hz and 5 kHz .

Drive unit design has now reached a very advanced state. The response characteristic obtainable is virtually flat over the desired range, in that the small variations, as measured, cannot be detected by any form of listening test. The greatest advance in recent years, however, has been the elimination of transient colouration due to standing waves on the diaphragm. Recent drivers have been designed on the concept of a transmission line to ensure perfect matching from the driving force at the coil to the terminating surround, thereby eliminating the source of termination reflections.

Recent further research by Arthur Radford has shown that the colouration which still exists in the finest forward facing ( $90^{\circ}$ angle radiation) loudspeakers is due to standing wave generation between the radiation boundaries. It can be demonstrated that transient colouration is a function of the radiation angle at mid- and high-frequencies, and the wider the radiation angle the greater is the realism.

Components and designs are available for constructing loudspeakers from a small forward radiating loudspeaker to a $360^{\circ}$ direct radiating ( 4 high-frequency drivers, 4 mid-range drivers, and 2-12" bass drivers coupled to an acoustic line) system.

You can now build a complete loudspeaker of your own styling which will outperform any commercial loudspeaker within its classification. Write for further details to:- Dept. W.W.

## RADFORD ACOUSTICS LTD Bristol BS3 2HZ

CRYSLON ELECTRONICS LIMITED. ROTHER STREET, STRATFORD-UPON-AVON. WARWICKS. TEL: STRATFORD-UPON-AVON 4797.

WW-078 FOR FURTHER DETAILS

## How much does Transit Damage

 cost you?In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because they are re-useable again and again and again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care.

## PROTETTOMDFF5 <br> trade mark

To JOHN EDGINGTON \& CO. LTD.
47 Old Woolwich Road, Greenwich, London SE10 9PU (01-858 7014-6)
Send me details of Protectomuffs
Name
Address

## Purpose-built servo and actuator systems using standard components

 Low Inertia DC motor
McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Control Amplifier
Typical precision gears

feed up to 3 Servos

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems.
Such a system could be complete in itself or form part of your own design.
Typical examples include
Camera positioning: Plotting Devices Self-steering Systems: Sig-nal-seeking Aerial Drives Professional Tape Drives Automated Production Lines.
Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals.

Gearhead with
integral feed-back Potentiometer


McLennan Engineering Ltd
Control Systems and Components Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.

## METER PROBLEMS?



A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$


Associates Ltd.
Cricketfield Lane,
Bishop's Stortford, Herts.
Telephona: 0279-56347 Telex: 81675 JAYLAMPS STORT


 Tel : Slough (STD.0753) 25574 WW- 085 FOR FURTHER DETAILS


# W.H.M. 

 WOW AND FLUTTER METER (R.M.S.) MODEL III MK. IISYDNEY HOUSE, 35 VILLIERS ROAD, WATFORD WDI 4AL. TEL: 38757

WW- 086 FOR FURTHER DETAILS


## CHECKMATE PROFESSIONAL CROSSHATCH GENERATOR

The unique test card edge enables the completely accurate alignment of colour and monochrome receivers without the need of a broadcast test pattern. The crystal derived patterns and waveforms make extensive use of digital i.c. logic. The stable and reliable 625 line high resolution patterns are crosshatch dot and white field. full $2: 1$ interlace with complete synchronising and blanking waveforms. Continuous tuning over all channels in each band B.N.C. video outputs into 75 ohms available for CCTV use on all models.

Model CCH-1 UHF Bands IV \& V
£69.00
Model CCH-V VHF Band $1 \quad £ 70.00$
Model CCH-V2 VHF Band $11 \quad £ 70.00$
Model CCH-V3 VHF Band $111 \quad £ 70.00$
U.K. Customers add VAT. Overseas Customers CIF at cost

Send for further information from the sole agents.
MANOR ENGINEERING,
The School House, Crookham Common, Newbury, RG15 8EJ, England.

Telephone: Headley 487.
Telegrams: MANORENG, NEWBURY.


Fascinating to build Fantastic improvement to your car's performance Complete Capacitive Discharge ignition system. fully proven, components fully guaranteed. Printed circuit design. All metalwork drilled ready. Fitted to car in 15 minutes when built.

- Sustained peak performance. - Up to $\mathbf{2 0 \%}$ fuel saving. - Instant all-weather starting. Faster acceleration, higher top speed. - Suitable for all engines up to 8 cyls. - Longer spark plug life. - Longer battery life. - Contact breaker burn eliminated. - Purer exhaust gas emission.
A new development from the manutacturers of Gunton Igntion Price: $\mathbf{c 9 . 3 5} \mathbf{i n c}$. V.A.T. and possagge. ( 12 volt only State Pos. or Neg. earth). Ready built unit also available $£ 11.55 \mathrm{inc}$. V.A.T. and postage. GUARANTEED 5 YEARS.
ORDER NOW--send P.O./Cheque direct to ELECTRONICS DESIGN ASSOCIATES, Dept. WW9 82 Bath St., Walsall WS 1 3DE.

Phone: 33652

WW-087 FOR FURTHER DETALLS

## EPI, EP2 (RED)

 EP51, EP52 (GREEN) EEP Seven Segment Numeric Displays EP1, EP2 for RED
EP1 Red EP2 Red Numeric Overflow one Display \& polarity
$\underbrace{\substack{\text { \& }}}_{\substack{\text { EP52 Green } \\ \text { Overflow oné } \\ \text { \& polarity }}}$ PRICES (EACH)

| Type | $\mathbf{1 - 2 4}$ | $\mathbf{2 5 - 9 9}$ | $\mathbf{1 0 0} \mathbf{u p}$ |
| :--- | :--- | :--- | :--- |
| EP1 | $£ 3.55$ | $£ 2.55$ | $£ 2.24$ |
| EP2 | $£ 3.45$ | $£ 2.50$ | $£ 2.24$ |
| EP51 | $£ 5.40$ | $£ 5.04$ | $£ 4.68$ |
| EP52 | $£ 5.40$ | $£ 5.04$ | $£ 4.68$ |

RESTRE ELECTRONICS LTD.

WW-089 FOR FURTHER DETAILS


# $\square$ Lightweight $\square 50 \mathrm{MHz}$ bandwidth at $5 \mathrm{mV} / \mathrm{div}$ $\square 1 \mathrm{mV} /$ div at $15 \mathrm{MHz} \square 3 \%$ accuracy $\square$ Mixed sweep $\square$ Calibrated sweep delay $\square$ Gated trigger $\square$ Bright $8 \times 10 \mathrm{~cm}$ display <br> <br> Anew Dual Trace, 50 MHz <br> <br> Anew Dual Trace, 50 MHz Portable Oscilloscope for $£ 420$ 

 Portable Oscilloscope for $£ 420$}

Yes indeed! A 50 MHz dual-trace instrument costing you only $£ 420$. And it's portable too - the lightweight, comfortable-to-carry. take-it-anywhere kind of portable. Developed by engineers for engineers this newcomer from Telequipment offers unprecedented
value when compared with similar 50 MHz instruments. The outstanding specification of the D75 includes a wide-range dual timebase incorporating sweep intensifying, delaying, mixed sweep and single-shot facilities, an $8 \times 10 \mathrm{~cm}$ CRT operating at

TELEQUIPMENT
< 番>

15 kV . and duall-trace operation in alternate and chopped modes with 5 mV /div all the way up to 50 MHz .
Write or telephone now for the specification and a demonstration. and prove for yourself that the D75 is the oscilloscope for you.
Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone: Harpenden 61251 Telex: 25559

# Wireless World 

Electronics, Television, Radio, Audio



This month's cover picture shows the inspection of colour phosphor dots on the faceplate of a Chromacolour television tube made by the Zenith Radio Corporation, U.S.A.

## In our next issue

(publication date September 17)
Digital voltmeter. A $3 \frac{1}{2}$ digit, dual-slope integrating voltmeter for alternating and direct voltage, with a sensitivity of 200 mV full-scale. Uses filament-type seven-segment displays.
Multi-channel remote control. Uses logic devices to achieve proportional control of up to nine remote ser'os by means of a time-division multiplex link.

September 1973
Volume 79 Number 1455

## Contents

415 Electronics on the Factory Floor
416 A Homodyne Receiver by J. W. Herbert
420 Total Communications by E. J. Gargini
425 Motional Feedback
426 Books Received
427 News of the Month
Ultrasonic holography in medical diagnosis
New interference regulations
P.C.M. developments

429 Electronic Sound Synthesizer - 2 by T. Orr and D. W. Thomas
434 Announcements
434 H.F. Predictions
435 Circards - 9: Optoelectronics - Devices and Applications by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

437 Industrial Electronics - 5 by Richard Graham
439 An Approach to Audio Amplifier Design - 2 by J. R. Stuart
447 Experiments with Op-amps - 13, 14, 15 by G. B. Clayton
448 Raising Transmitter Valve Dissipation
449 Letters to the Editor
Audio amplifier design
Printed circuits the easy way
Radiating coaxial cables
452 Literature Received
453 Single Sideband Suppressed Carrier Generation by A. J. Turner
455 New Electrochromic Display
456 World of Amateur Radio
457 Multi-channel Tone Control by J. R. Emmett
459 Conferences and Exhibitions
460 Letter from America
461 Simple Facsimile or Teleprinter Signal Converter by J. B. Tuke
463 Sixty Years Ago
464 New Products
A100 APPOINTMENTS VACANT
A 122 INDEX TO ADVERTISERS

Price 20p. (Back numbers 40p.)
Edirorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year $£ 5 ; 3$ years $£ 12.50$ (U.S.A. \& Canada 1 year $\$ 13$. 3 years $\$ 32.50$ ) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 year $\$ 6.50,3$ years $\$ 16.25$ ).

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH 16 3DH. Telephone 044453281 Subscribers are requested to notity a change of address four weeks in advance and to return envelope bearing previous address.


There are at least three reasons for this.

First, this is an EEV tube and EEV is one of the biggest tube makers in the world. When you replace with EEV, you know you are getting a tube that you can depend on.

Second, EEV tubes are very competitively priced.

Third, you'll find you get more than a good tube from EEV.Our service is quick, efficient, informed. We go to endless trouble to keep our customers out of trouble.

Ask any EEV customer, or try us for yourself. Write for details, or if you have a specific problem'phone us at Chelmsford and ask for extension 428.

| Ours | Theirs | Anode | Output | Anode | Frequency | Filament ratings |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | dissipation max. (kW) | power (kW) | voltage max. (kW) | ( MHz ) | (V) | (A) |
| 4C×1000A | $\{4 \mathrm{Cx} 1000 \mathrm{~A}$ | 1.0 | 3.2 | 3.0 | 110 | 6.0 | 9.0 |
| $4 \mathrm{CX1000K}$ | $\{4 \mathrm{CX1000K}$ | 1.0 | 3.2 | 3.0 | 110 | 6.0 | 9.0 |
| 4CX1500B | 4C×1500B | 1.5 | 2.7 | 3.0 | 30 | 6.0 | 9.0 |
| 4CX5000A | $\left\{\begin{array}{l}4 \mathrm{CX5000A} \\ \text { CV8295 }\end{array}\right.$ | 5.0 | 16 | 7.5 | 30/110 | 7.5 | 75 |
| 4CX10,000D | $\left\{\begin{array}{l} 4 \mathrm{CX10,000D} \\ \text { CV6184 } \end{array}\right.$ | 10 | 16 | 7.5 | 30/110 | 7.5 | 75 |
| 4C×15,000A | $4 \mathrm{C} \times 15,000 \mathrm{~A}$ | 15 | 36.5 | 10 | 110 | 6.3 | 160 |
| 4CX35,000C | $\left\{\begin{array}{l} 4 \mathrm{CX} 35,000 \mathrm{C} \\ \text { CV11107 } \end{array}\right.$ | 35 | 82 | 20 | 30 | 10 | 300 |
| BR1161 | $\left\{\begin{array}{l} \text { CV9343 } \\ \text { RS726 } \end{array}\right.$ | 35 | 100 | 14 | 10/30 | 11 | 155 |
| Ours | Theirs | Anode dissipation max. (kW) | Output power ( kW ) | Anode voltage max. (kW) | Frequency ( MHz ) | Filame (V) | it ratings <br> (A) |
| CY1172 | RS2002V | 150 | 220 | 15 | 30 | 21 | 350 |
| BW1 184 | YD. 1202 | 80 | 120 | 14.4 | 30 | 12.2 | 255 |
| BW1185 | YD. 1212 | 120 | 240 | 16.8 | 30 | 12.6 | 380 |
| BY1161 | RS826 | 60 | 120 | 14 | 10/30 | 11 | 155 |

## EEV AND M-OV KNOW HOW.

# Wireless World 

## Electronics on the factory floor

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B.Sc.

Assistant Editors:
BILL ANDERTON, B.Sc.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

## Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
G. J. STICHBURY

Phone 01-261 8037
KEITH NEWTON
Phone 01-261 8515
A. PETERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

The purpose of Richard Graham's series of articles "Industrial Electronics" is, as the author has stated, to exemplify the possibilities of electronics in industry. To quote from his first article in the March issue, ". . . modern, solid-state electronics has improved on processes in use a few years ago by virtue of its incredible speed, reliability, low power consumption, small size and, in most cases, improved accuracy". Readers interested in the techniques used to obtain particular improvements may not be aware that there is a strong commercial force behind most of this technology - the need for greater productivity. In most cases the cost of the electronic equipment must be justified by the reduction in manufacturing costs obtained by its use.

Productivity is a measure of production efficiency - of a country, an industry, a factory, a process or a machine. Because it is a measure of efficiency it is expressed as an output/input ratio. The best known example is labour productivity, where the input is measured in units of labour and the output in units of product value (that is, money). Here industrial electronics can help to increase the output/input ratio by a straightforward reduction of the labour input, either in number of workers or in the proportion of skilled, highly paid workers. Or electronics can help by reducing the requirement for middle management workers, by simplifying and making more predictable the processes involved - e.g. by data acquisition and processing.
Labour productivity seems to get most attention because in the highly developed countries labour is a relatively costly factor of production. Also it is an emotive term carrying suggestions of labour saving, redundancy, Luddism and disputes between managements and employees. Less well known is productivity of capital - measured as a ratio of product output to capital input - which shows the efficiency of utilization of capital investment. Here electronics helps by providing control and programming systems, automatic handling and feeding devices, or other techniques which reduce the idle time of machinery or allow industrial plant to operate at higher speeds. It can also help to reduce expenditure on stocks and factory floor area by providing automatic equipment to give faster and more continuous production and therefore reduce work in progress and requirements for large stocks. In addition factory space can be saved by reduction of the areas normally needed for operators.

There is a third type of productivity, which shows the efficiency of materials utilization and is measured as a ratio of product output to materials input. Electronic techniques can help to reduce materials requirements and wastage in processing by providing automatic programming, inspection and quality control techniques which result in more uniform product quality, fewer rejects or less scrap; hence there is a smaller materials input to obtain a required volume of output product within specification. Electronic inspection or measuring instruments that will determine quantities faster and more accurately than can human operators will reduce the product quantity that normally has to be given away to ensure that goods have guaranteed weight or volume.

With all these possibilities it is sad that electronics has been so much mistrusted on the factory floor. This attitude is gradually changing, but there are many prejudices and traditional policies in the organization of industry still to be overcome.

# A Homodyne Receiver 

by J. W. Herbert*

The purpose of this article is to bring to the attention of the home constructor an as yet rather uncommon reception technique for a.m. signals which has significant potential for enhancing the performance of most receivers be they for short wave or broadcast listening.

## The problems of a.m. reception

The most common a.m. receiver circuit is the superheterodyne wherein the incoming signal is converted to some intermediate frequency before detection. Detection is usually by means of a dioderectifier circuit which follows the i.f. stages. Other simpler receiver circuits are available to us however and these are shown in block form in Fig. 1 together with the superheterodyne.

The simplest of these receivers is the so called "crystal set". This name is a carry over from the early days of radio and as can be seen in Fig. 1 consists of an input tuned circuit feeding a diode

[^1] Institute of Technology, Petone, N. Z.
detector. The rectified a.m. signal is filtered to remove any radio frequency component and the output passed on to the audio amplifier. Such a receiver is not very sensitive or selective but these characteristics can be greatly improved through the use of tuned radio frequency (t.r.f.) stages ahead of the detector. Such a t.r.f. receiver, as it is known, is quite useful but reception is still limited by the selectivity characteristic and the additional amplification causes overload problems in the presence of strong stations on adjacent frequencies. In an attempt to overcome these problems (amongst others) the superhet receiver was employed. Through the use of a converter stage the desired signal is relocated in frequency to become what is known as the intermediate frequency. In the i.f. channel, through multiple stages, as much amplification and selectivity as desired can be provided and furthermore, this characteristic is applied to all signals tuned. In the days when this receiver was first developed, the process of frequency converting was sometimes termed "heterodyning" and in order to obtain great selectivity the i.f. was often


Fig. 1. Broadcast receiver detector and demodulator systems.
located at very low radio frequencies
The superhet is by far the most common receiver configuration, particularly for telecommunications but like most systems exhibits its own peculiar set of disadvantages. These are significant when optimum reception of broadcast musical programmes is required by the audiophile. Bearing in mind the orders of audio frequency response, distortion and noise factors required in present day audio systems, the prime disadvantages of the superhet tuner may be summarized as follows.

The superhet is the most complex receiver employing a number of separate stages (typically five), each with a separate role in the signal processing and incorporating multiple tuned circuits that must be aligned critically. Some of these are required to "track" each other as the receiver is tuned from station to station. This point alone makes the superhet the most expensive type of receiver.

For optimum reception of programme, the receiver bandpass should be "flat" for 10 kHz above and below the desired station carrier frequency as audio fre quencies up to 10 kHz are broadcast. If the receiver selectivity characteristic is such that the bandpass is less than 20 kHz the treble frequencies broadcast will be lost in the receiver and/or the audio re sponse will not be "flat". Bandpass restrictions usually occur in the selective i.f. and r.f. stages. Although this problem can be met with special block filtering in the i.f. and tracking bandpass couplers in the r.f. stages, the complexity, alignment and costs are very high. These techniques are therefore restricted to the most expensive tuners.

- The superhet generally employs a diode-rectifier type of detector stage (as does the crystal-set and t.r.f. receiver). There are two main reasons for this:
(i) it is simple and inexpensive,
(ii) the d.c. component in the output can be employed for automatic volume control purposes to stabilize receiver gain as station signal strengths vary. A prime disadvantage of this detector circuit is the high levels of harmonic distortion and intermodulation distortion it introduces to the recovered audio signal. For average levels of modulation percentage the diode introduces total harmonic distortion (t.h.d.) of typically $3 \%$ and at high modulation percentages $10 \%$ t.h.d. is not uncommon. These figures are based on valve receivers and are taken from reference 1. In order to reduce the diode detector t.h.d. the applied signal levels must have a large amplitude so that they operate mainly on the "linear" portion of the diode characteristic curve. Voltages up to 20 volts peak are not uncommon from the valve type i.f. but in the receivers of today valves are an exception. Transistorized stages, because of their much lower working voltages and circuit impedances, supply the detector diode with a signal that is restricted largely to the very non-linear diode
"turn-on" characteristic. This comparison is illustrated in Fig. 2 and results in generally higher levels of t.h.d. in the receiver.

It would appear then that the superhet has very real design problems when employed as a broadcast tuner. To the audiophile, probably the most noticeable deficiency is the restricted audio bandwidth followed by distortion and noise. A typical r.f. stage in a tuner with input and output tuned circuits will be sufficiently selective to cut the outer limits of the broadcast stations' sidebands significantly (i.e. the passband is much less than 20 kHz ). By the time the i.f. channel has passed the signal, further degradation can be expected. In a typical broadcast tuner the overall passband is about 8 to 10 kHz total giving audio output up to about 5 kHz before severe treble roll-off.

These facts may help explain why some component retail stores still offer crystal set and simple t.r.f. tuners as an accessory. Due to their broad tuning characteristic (i.e. poor selectivity) they offer a generally noticeable improvement in reception quality primarily due to their ability to recover most of the audio spectrum broadcast. Their effectiveness is limited however by the signal detection circuits they employ.

Envelope detection of a.m. signals Any amplitude modulated carrier wave has a "modulation envelope" which corresponds to the original modulating (i.e. audio) signal. Fig. 2 illustrates the action of a typical diode-rectifier type detector and it can be seen that the rectified output signal consists largely of the original envelope waveform - hence the general title of envelope detector for this system. It should be realized that the principle of envelope detection applies to a host of other detector circuits such as grid-leak, class B, infinite impedance, etc. Now since the envelope detector output is dependent upon the amplitude only of the incoming r.f. signal, there is no differentiation between the frequencies in the input signal be they desired or undesired (i.e. adjacent channel) frequencies. This can be illustrated with the example of a t.r.f. type receiver tuning into a 600 kHz station. Due to the (purposeful) poor selectivity the passband response is still good 30 kHz away where another station is broadcasting on 570 kHz . The two signals are therefore impressed on the rectifier circuit, their amplitude variations causing a change in diode output current, both modulations being passed on to the audio stages. It can be seen that the only way to reject the undesired and interfering 570 kHz signal is to tune it out with greater selectivity. Assuming both signals were of same strength in the receiving antenna, in order to suppress the 570 kHz signal by 40 dB , two tuned circuits would be required with a working $Q$ of about 100 each. The extent of the sideband cutting on the desired signal would be such that recovered audio frequencies at 3 kHz would be suppressed by at least 6 dB , rendering the receiver useless for musical programmes. Obviously then, receiver


Fig. 2. Diode detector characteristics and operation.
design using envelope detection must be compromised between achieving adequate selectivity and suppression of adjacent channel interference on one hand, and overall passband response for acceptable programme fidelity on the other.

Prodact detection of signals - the "synchrodyne" In search of a better "compromise" an engineer, D. G. Tucker produced a novel solution to the problem with his "synchrodyne" receiver in 1947. Tucker pointed out that if a broadcast signal is fed into a conventional superhet receiver in which the local oscillator feeding the converter stage is arranged to run at the same frequency as the incoming carrier, all of the side frequencies or sidebands associated with the signal carrier would appear as audio "beat-notes" in the converter output. This output then replaces the usual i.f. and in fact becomes the recovered audio signal. It is important to realize that in this case the incoming signal has not been detected as outlined previously, but rather has become displaced in the frequency spectrum to make it audible. Many readers will realize that this is the function of a so-called product demodulator in which the output signal
is a mathematical product of the incoming signal and local oscillator multiplied together through the action of the converter stage. Let us take the previous example of the two broadcast stations on 600 kHz and 570 kHz and see how they are processed by this type of receiver. Once again the 600 kHz signal is tuned in and because of poor selectivity, the 570 kHz signal is also presented to the product demodulator. The local oscillator mixes with the incoming signal and any differences in frequencies appear as "beatnotes" at the output. The normal sideband components contain modulating frequencies extending up to $\pm 10 \mathrm{kHz}$ either side of the station carrier which has been tuned to zero-beat. The $\pm$ signs represent the upper and lower sidebands both containing the modulation, but due to the operation of the product demodulator these two components appear as two audio signals in phase at the output. Thus they reinforce each other in the form of a single audio signal. Of interest however, is the presence of the 570 kHz interfering signal. Assuming its bandwidth is also $\pm 10 \mathrm{kHz}$ the lower frequency limit is 560 kHz , the upper 580 kHz . Since the receiver local oscillator is tuned to 600 kHz , the interfering signal components will beat out with a frequency displacement locating them in the audio spectrum 20 kHz to 40 kHz . The interfering carrier would appear midway as a 30 kHz whistle. The human ear cannot hear audio frequencies this high and furthermore it is easy to electronically filter the undesired frequencies, the interfering signal then, although present in the output, is inaudible.

With such a technique, receiver tuned circuit selectivity can obviously be reduced to prevent sideband cutting without fear of adjacent station modulations appearing as interference in the recovered audio signal. A second major advantage of the product demodulator is that since it is used to displace frequencies only, it introduces little distortion to the broadcast signal. Typical values are about $1 \%$ t.h.d. which is far less than the previously discussed envelope detector characteristic.

Unfortunately this receiver has several


Fig. 3. Block diagram of MC1330P i.c. demodulator.
problems which have largely precluded its use on a domestic basis. The prime objection is that in order to recover the audio free of phase distortion it is important that the local oscillator be not only synchronized to the station carrier but must also be in phase with it. Tucker (and others), have developed circuits which give synchronization, but for reliable operation the circuits are more complex and critical than the rest of the receiver and in a way destroy the apparent simplicity of the system. Another problem is the inconvenience of tuning a receiver that gives a piercing audio whistle as it is moved from station to station, although complex muting circuits have been devised. We can see however, that the synchronous-heterodyne or "synchrodyne" is an obvious title for this receiver. Despite its limitations the synchrodyne is used primarily by broadcasting stations as a high quality "off-air" monitor receiver and anyone who has heard one operating will testify favourably to its capabilities in this application.
In more recent times electronic technology has grown very rapidly and many new circuits and applications have appeared within the framework of modern telecommunications systems. Two signal detection systems with common features that have appeared are the synchronous demodulator and the coincidence detector. In these, suitable circuitry provides for a product demodulator in which the local
oscillator source is derived by extracting the incoming signal carrier only. The complexity of this arrangement is largely overcome through the use of integrated circuitry. In applying this concept to the synchrodyne type receiver it can be seen that employing a local oscillator is rather pointless as there is a perfect oscillator source in the received carrier wave. The problem is that it is amplitude modulated and of insufficient strength to use directly. If, however, it can be amplified and the a.m. stripped off, we have the ideal local oscillator source for product demodulation with the following features; it is inherently synchronized and phased to any station tuned in; no whistle or heterodyne will be encountered when tuning from station to station: thus the major disadvantages of the synchrodyne are overcome. Such a system once again effects frequency translation with the converter output or i.f. being one and the same as the audio signal. The base for the "same" is homo and the name "Homodyne" is therefore given to this inherently synchronized heterodyne receiver.

## A homodyne receiver based on i.cs.

Because of the wide bandwidth and low distortion capabilities of the synchronous demodulator, one version has appeared in i.c. form primarily for application as a video detector in colour TV receivers. The type number is a Motorola MC $1330 \mathbf{P}^{2}$ and a block diagram presentation is given
in Fig. 3 to show the circuit functions. Tracing the a.m. signal from the input terminal (Pin 7), the signal is fed into an "i.f." amplifier which provides two output paths.
One of these leads to the signal port of a product demodulator, the other feeds into a buffer amplifier. This amplifies the signal and applies it to a pair of diodes in a shunt clipper circuit, where the a.m. variations are clipped off the carrier wave after which it appears as a train of square waves. The "square wave" carrier signal is then injected into an external tuned circuit (Pins 2 and 3) where the fundamental component is extracted to provide a sine wave signal for injection as a local oscillator source to the product demodulator. The product demodulator output consists of beat-notes due to the difference in frequency between the a.m. sidebands and reconstructed carrier, these being amplified and fed out on Pin 4. At this point a low pass filter can be employed to in effect set the pass band response of the overall demodulator. The electrical circuit for the MC1330P is shown in Fig. 4 and this can be tied to the block diagram by inspection.

At this point a most useful by-product of this form of demodulation can be brought out. As stated earlier the output of this stage is the mathematical product of the a.m. signal and reconstructed carrier. Since the signal carrier and the reconstructed carrier are inherently in


Fig. 4. Circuit diagram of MC1330P.
synchronism and phase we can call each, when no modulation is present, $\sin A$. The product detector output then is:

$$
\begin{aligned}
& =\sin A \times \sin A \\
& =\sin ^{2} A \\
& =\frac{\frac{1}{2}-\cos 2 A}{2}
\end{aligned}
$$

The output signal then, as far as the carrier is concerned, consists of two components: $\frac{1}{2}$ is a d.c. component whose amplitude varies in proportion to the signal strength. Since the following amplifier is d.c. coupled, the output d.c. level shifts in accordance with station signal strength giving an automatic gain control voltage which can be applied back to the previous r.f. stage. The term $\frac{\cos 2 A}{2}$ is a second harmonic of the carrier frequency. This is removed by filtering in the audio output circuit. This term can be significant however in connection with interference and this will be discussed later.

The circuit diagram, Fig.5, shows how all of these features have been combined in a practical homodyne receiver circuit that tunes the broadcast band. The antenna input is tuned by one section of a permeability tuning unit to select the desired frequency and feeds the signal into Pin 2 of the r.f. amplifier. This is an i.c. type CA3028A (R.C.A.) (Ref.3) operating in the cascode mode, the output load being an r.f. choke and the capacitively coupled input of the MC1330P.

Leaving the interstage coupling untuned ensures that no sideband cutting occurs at this point in the circuit. The detector tuned circuit is tuned by the second ganged section of the permeability tuner which must be aligned to track the input tuned circuit for optimum results. The demodulator output circuit (Pin 4) is filtered by a $0.01_{\mu} \mathrm{F}$ bypass capacitor which introduces attenuation to frequencies above about 12 kHz . The output circuit is also separately filtered and decoupled to pass the d.c. component back to Pin 7 of the r.f. stage CA3028A for a.g.c. purposes. With no signal input, Pin 4 is at about 5 V and when a signal causes this voltage to fall to about 3 V , the a.g.c. action is established.

Alignment is achieved with the following procedure.

1. Connect a voltmeter between Pin 4 of the MC1330P and earth. With no incoming signal and a 12 V power supply this should read about 5 volts.
2. The receiver tuning range is set by the antenna tuned circuit whose adjustable slug and trimmer capacitor should be adjusted to achieve a satisfactory tuning range at the low and high frequency ends of the band respectively.
3. Tune in a signal from a known station (or use a signal generator) at the low frequency end of the band and adjust the demodulator tuned circuit slug for minimum d.c. output on Pin 4. Then tune a signal at the high frequency end of the band and adjust the demodulator trimmer capacitor for minimum d.c. output on Pin 4. These adjustments interact somewhat and should be done alternately until tracking is well established.


Fig. 5. Circuit of the complete homodyne broadcast tuner.

## Conclusions

The prototype Homodyne tuner has been evaluated with suitable test equipment with the following results. Frequency response ( -3 dB points): at $600 \mathrm{kHz}, 20 \mathrm{~Hz}$ to 12 kHz ; at $1,400 \mathrm{kHz}, 20 \mathrm{~Hz}$ to 15 kHz ; total harmonic distortion at 1 kHz with $50 \%$ modulation, approximately $5 \%$; a.g.c. characteristic threshold $500 \mu \mathrm{~V}$. range about 40 dB and a.f. output level, 500 mV pk-pk.

Although the sensitivity for a.g.c. threshold may seem poor, in practice, local broadcast stations generally produce a quite high field strength and within a 20 mile radius of five broadcast stations tested, the a.g.c. was effective using only a six foot length of wire as an aerial.

Because of the wide bandwidth capability of the tuner it could be prone to 10 kHz whistles. These are usually caused by adjacent stations whose carrier is located only 10 kHz apart from the desired station. Since local stations have frequency allocations to avoid this situation it normally should not be a problem. In addition, the relatively poor sensitivity coupled with a.g.c. action reduces the strength of distant stations sufficiently to render them ineffective at producing whistles.

At some locations close to the author's home, a faint 10 kHz whistle could be heard on a station operating on 570 kHz . Since the nearest other station carrier is on 980 kHz there seemed to be no obvious explanation. It should be recalled however that the product demodulator multiplies the signals fed to its two input ports as outlined previously. The second harmonic of 570 kHz is $1,140 \mathrm{kHz}$ and is produced within the product detector (i.e. the $\frac{\cos 2 A_{1}}{2}$ (erm).
This coupled with poor receiver selectivity allowed another more local strong station operating on $1,130 \mathrm{kHz}$ to find its way to the detector. The frequency difference is of course 10 kHz and this appeared in the audio output. The level of the interference at the most unfavour-
able locations is not of annoying strength but it is worth noting that this effect can occur and is one of the limitations of this particular receiver.

Much further development is possible with the homodyne receiver and in particular the MC1330P i.c. could be applied to communications receiver circuitry. For example, the existing "homodyne" tuner could be made suitable for long distance reception by tuning the interstage coupling (i.e. replace the r.f.c. with a tuned circuit). This would greatly increase the sensitivity. Also as suggested, for a.m. reception, provide switched audio filtering to provide variable selectivity. By link coupling a b.f.o. to the associated tuned circuit the MC1330P functions as an excellent c.w.-s.s.b. demodulator. This has been proved by the author but with this simple arrangement, the a.g.c. feature is lost. More work could be done here to solve that problem. Further, it seems possible that by employ. ing the automatic fine tuning (a.f.t.) buffer-amplifier (Pin 1) and coupling it back to a tap on the tuned circuit, a self oscillating product demodulator would be obtained.
As it stands the MC1330P is quite an effective slope detector of f.m. signals but for best results should be preceded by limiting i.f. amplifier stages.

With these fields open to the amateur experimenter it is to be hoped that further developments and applications of both the homodyne principle and the MC1330P i.c. will appear in print before too long. Certainly those who construct the tuner described in this article will acquire an interesting and rewarding introduction to the homodyne receiver.

## References

1. Radiotron Designers Handbook, Fourth Edition, Langford Smith, R.C.A., Harrison, N.J. 2. Linear Integrated Circuits Data Book, First Edition, Motorola Inc., 1971.
2. R.C.A. Solid State Data Book SSD201, R.C.A.
3. "Q"' Inductance Specialists, Box 3018, Tauranga, N.Z.

# Total Communications 

# Development of "interactive" two-way television from cable distribution: combination with telephone systems 

by E. J. Gargini,* M.I.E. E., M.I.E.R.E.

Wired broadcasting using modern cable technology has made possible an interactive or two-way facility for television. By this is meant techniques for obtaining immediate responses from viewers via, for example, push-button generated signals, voice signals or, if necessary, television picture signals, all originated at the subscribers' premises.

There are two main methods of distribution in wired broadcasting: (1) the wideband v.h.f. and hybrid v.h.f./u.h.f. method with "stacked" carriers, in which the programme is selected by tuning the receiver in the home; and (2) the

[^2]h.f. multi-pair distribution method with a simpler, fixed-tuned receiver which is switched (in the home) to the required programme circuit. Interactive systems are being proposed and developed to suit both these branches of wired broadcasting technology.

Interactive systems using sequential signalling are being developed for combination with the wideband v.h.f. and u.h.f. coaxial distribution systems. These either use a portion of the spectrum at the lowfrequency end of the cable carrying television signals or use a separate coaxial cable placed alongside the television distribution cable. Similar systems may be developed for the h.f. multi-pair technology, and these could either bring into use spare circuits or use a portion of the available spectrum of a cable circuit carrying television and sound signals.

Fig. 1 Time-shared interactive computer controlled information television (TICCIT)


There are, however, limitations which apply to these systems, coaxial, double coaxial or h.f. multi-pair, inasmuch as there is a practical limit to the number of programmes which can be brought into every home and also because the bandwidth available for each subscriberoriginated signal is small. This introduces a delay in signalling a response. Because each returned signal must be "stacked" in frequency or time only a limited number of subscribers can originate wideband television transmissions at any moment. These limitations are inevitable because v.h.f. and h.f. wired networks follow a "spreading-tree" configuration. This, while being fundamentally two-way (in that downstream signals applied to the centre of a system travel out to all extremities and upstream return signals applied to all extremities travel to the centre), makes it necessary, in order to recognize particular signals sent from a particular extremity, to introduce frequency and /or time division multiplexing of all signals returned from subscribers' premises.

## American v.h.f. communication

 systemsThe Mitre Corporation, U.S.A., in their interim report entitled "Urban Cable Systems" (Nov. 1971) ${ }^{1}$ point to the opportunity of making "revolutionary improvements in telecommunications for public uses" by providing an entirely new family of television related services to every home. The report is a quantitative study of the state of the art in equipment, software and programming, and includes a survey of the market possibilities for the new services.
A system is proposed for the District of Columbia, known as the Washington Cable Television Services system, to embrace an urban community of 700,000 people, and the design of this has been based on an analysis of the demographic, social, municipal and commercial characteristics of the District and the economic and service implications of these characteristics. The technical design of the two-way system, and kinds of services provided, are based on an experimental system Mitre have built and demonstrated in Reston, Virginia. The Mitre demonstration is of a number of one-way and
two-way services using the Mitre Timeshared, Interactive Computer-Controlled Information Television (TICCIT) ${ }^{2}$ system on the Reston cable system: see Fig. 1. This diagram represents several interactive communication systems and summarizes the Mitre proposals for the Washington Cable Television System.

Fig. 2 is a block diagram of the subscriber's home terminal equipment for the Mitre TICCIT system. The tests at Reston at present do not include equipment to the detail shown in the diagram. The demonstration equipment is simpler and the telephone network is in fact used as part of the two-way system experiment. This diagram, however, indicates the requirement in home terminal complexity for the fully expanded Washington Cable Television double coaxial system design. The equipment includes: a set top converter, which must have the very high channel selectivity required for adjacent channel operation on a v.h.f. stacked carrier system when this deals with nearly thirty channels in the band $60-300 \mathrm{MHz}$; an $\mathrm{A} / \mathrm{B}$ switch to transfer the set-top converter from cable A to cable $B$ for receiving the second group of up to thirty channels; and a modem unit for dealing with the two-way facilities proposed for the Washington network. This modem unit is shown, associated with peripheral equipment which includes a "frame snatcher" (see below), an unscrambler and print-out devices.

Mitre have recently announced that a solid state "frame-snatcher" which can

Table 1. Potential subscribers to wideband cable services: results of Howard University survey

| Type of service | Type of <br> system <br> required | Percentage <br> interested <br> in specific <br> service | Average <br> fee they <br> would pay |
| :--- | :--- | :---: | :---: |
| 1 Improved off-the-air signals | 1-way | $\%$ | $\$ /$ month |
| 2 Special channels | 1-way | 68 | 2.84 |
| 3 New movies | 1-way | 63 | 2.18 |
| 4 Sport events | 1-way | 75 | 2.67 |
| 5 Educational services/CAI | 2-way | 66 | 2.80 |
| 6 Burglar alarm | 2-way | 71 | 2.22 |
| 7 Shopping aids | 2-way | 68 | 2.86 |
| 8 Subscriber polling | 2-way | 56 | 2.10 |

hold a page of alpha-numeric information will be available later at a price of about $\$ 500$. In operation the TICCIT computer will address sequential fields of alpha-numeric information to particular subscribers: a group of 3,000 subscribers could have this information up-dated every two minutes for every allocated television channel. The unscrambler unit is intended to provide security either for the subscriber when he calls for private data, i.e. bank statements, or for the programme originator when transmitting pay television signals. The print-out device can include facsimile or other forms of hard copy.

The services offered by the system include television programmes on child care, health care, educational courses of
all types, employment and housing, information on community meetings and locally originated television programmes. The system will cope with technical innovations such as computer-aided instruction, safety alarms, automatic meter readings and selective power control services. It also provides a basic network for automatic traffic control and public safety surveillance.

The Howard University in the U.S.A. conducted a market survey among householders to establish what services would interest potential subscribers and how much they would be prepared to pay for these services. Table 1 shows the results of this survey, based on 248 interviews with heads of households. Of all the families contacted, 85 per cent


Fig. 2 Subscriber's equipment for TICCIT svstem (see Fig. 1).
expressed an interest in cable television and a willingness to pay a monthly fee of at least one dollar per month for at least one service. The most popular service was new films at 75 per cent. The least popular was shopping aids at 56 per cent.

Although Mitre have shown the new film service as a one-way system, in any practical pay television system some means must be provided for subscribers to decide whether or not to accept a charge, and this implies that a two-way facility must be available.

Fig. 3, taken from the Mitre report, shows the total annual subscriber revenue per householder that would follow from the expected utilizations of different combinations of services. Quite obviously the system operator would be interested in obtaining maximum revenue from the system by charging higher subscriber fees, with a consequent reduction in utilization of the system to about 50 per cent. This, however, would make the meter reading capability of the system far less attractive to the gas, electricity and water undertakings, who would only take interest and subscribe to a system which almost entirely replaced the present manual system of meter reading.

American interest in "total communication" systems is not restricted to the Mitre proposals for Washington. The Theta Com organization, a Californian company, have produced a system known as the Subscriber Response System and are conducting tests in El Segundo. Fig. 4 outlines the main parameters of the system ${ }^{3}$. Sixteen television and f.m. broadcast sound channels are distributed from the source in the band $52-300 \mathrm{MHz}$ and passed to off-air receivers via a highly selective channel converter. Digital information on a carrier of 50 MHz is passed from the local processing centre to all subscribers, and responses from
(a) all 1-way plus all 2-way services
(b) all ${ }^{1 \text {-way services }}$
(c) single 1 -way pluis single 2 -way service
(d) single ${ }^{1 \text {-woy }}$ service


Fig. 3 Revenue as a function of penetration for various combinations of service.
subscribers and subscriber equipment are transmitted back to the processing centre in the band $6-30 \mathrm{MHz}$, together with up to three television signals originated by subscribers.

The frequency separation and message routing system is also shown in Fig. 4. The digital data rate for downstream and upstream data is $1 \mathrm{Mb} / \mathrm{s}$, and compensating delays are provided at subscribers' terminals to reduce the effect of propagation delays on the network. It is claimed that this, combined with special programming techniques, permits a total basic interrogation and response time of less than 2.5 seconds for 50,000 subscribers. Systems which do not eliminate the effect of propagation delay on the interrogation response sequence must allow a time delay at least equal to twice the propagation time between the computer and the most remote subscriber, to avoid interference between responses from two subscribers. The time required to poll 50,000 subscribers would
increase (with 10 mile cable runs and without compensating delay) to 8 sec on the Subcarrier Response System.

The most extensive system concept, discussed in a report ${ }^{4}$ by the Sloan Commission of the Alfred P. Sloan Foundation, is one under test and being demonstrated by Vicom Industries Inc. ${ }^{5}$ This is intended to be a complete interactive digital system and has provision for controlling television channel use, data transmission and on-line interaction with the viewing audience by push-button keyboard response or by radio response, all these functions being controlled by a computer located at the "head" end. The outgoing command and control channel operates at a $1 \mathrm{Mb} / \mathrm{s}$ data rate and transmits 20 -bit words at 40,000 words per second to the subscribers' terminals. These words are interpreted as either data for a terminal, commands to a terminal, or the "polling" of a terminal for a response. The terminal responds to every "poll" with its address and a single data character, and this returned information is sent at the $1 \mathrm{Mb} / \mathrm{s}$ rate used for the outgoing signal.

A key feature of the Vicom system is the control of who may view any channel. The converter is automatically disabled from the control centre whenever its channel selector is altered, and information about the new channel selector position is returned to the "head" end computer as a response to the next "poll". If the channel may be viewed by the subscriber a computer authorization signal is then transmitted which turns on the converter. The control of who views what is a requirement of pay television and of controlled group conferences.

The Vicom system also allows the chairman of a conference to control who says what by enabling or disabling the microphones of other subscribers on an individual basis. Anyone wishing to speak must indicate this by pushing a button.


Fig. 4 Subscriber response system.

Two channels are allocated in the Vicom system for the command and response functions. Downstream signals are sent in the $108-114 \mathrm{MHz}$ band and the upstream channel is in the band 6-10 MHz . All data transmission is on a time division multiplex basis and a word is 20 one-microsecond bits. Modems are addressed at a rate which depends upon the particular action requested by a subscriber and is under the control of the head-end computer. The rate is between one and five per second for routine "polling", and for full screen displays of alpha-numeric information up to 5000 words per second can be transmitted to a single subscriber. Extensions to 30,000 words per second are possible.

The computer capital cost per subscriber based on 4000 subscribers is quoted ${ }^{4}$ as $\$ 5-\$ 15$ depending on the type of data service rendered. The present cost of a home terminal is estimated at $\$ 265$ and in large scale production about $\$ 135$. This home terminal comprises a keyboard entry unit with 12 momentary-contact keys, a microphone and a 25 -channel converter that may be enabled and disabled under head-end control. Later models will include storage for up to 16 alpha-numeric characters which can be viewed on the television receiver. Provision is made for attaching a variety of peripheral devices such as television cameras, full screen alpha-numeric generators, hard copy printers and full keyboard typewriters.

Telecable Inc. ${ }^{6}$ have arranged for tests of the Vicom system in Overland Park, Kansas. The tests include home instruction for disabled children and home shopping demonstrations in co-operation with the Sears Roebuck company.

## Central switching systems

The switched telephone system for point-to-point communication follows a "hub and spoke" network configuration and each circuit from the "hub", or exchange, is terminated at a particular subscriber's premises. There is thus no requirement, in general, for circuits to handle information from more than one network extremity, and thus no requirement for time division multiplexing at subscribers' premises.

What are called television switching centre systems are "hub and spoke" arrangements like the switched telephone network. Examples of these are the Dial-aProgram system - a development of the h.f. system in which the subscriber's selector switch is placed at a programme exchange and operated by a dial in the home - and a similar American system called Discade ${ }^{7}$ which employs coaxial cables. An important feature of the television switching centre system is that the television programmes made available at programme exchanges can be increased in number without modification of equipment in the home. It is, of course, necessary to increase the number of cable circuits linking exchanges, typically 10 per cent of the total cable route distance, and to add extra programme lines at the exchanges. But both these operations
entail no disturbance to the subscriber network or equipment, which is analogous to the expansion of telephone services. To complete the analogy, the television switching centre system has the important limitation, in common with the telephone, that the number of subscriber cable circuits (i.e. output lines provided) is a direct function of the number of subscribers that can be served, and a sufficient number must be installed at the outset to cater for future development.

American opinion on the relative merits of the tree structured "stacked" carrier system and the "hub and spoke" central switching system is varied. In the report by the Sloan Commission on cable communication entitled "On the cable - the television of abundance", the main advantages of the central switching system such as Dial-a-Program and Discade are given as:

- Almost complete immunity to the interference effects associated with the multiplexed v.h.f. system.
- The ability to use simplified tunerless television receivers.
- The better security of the system to unauthorized use, i.e. switching systems require connection somewhere of a physical device, whereas in the v.h.f. "stacked" carrier system the subscriber does not need a special physical device but only modification of the legally connected device he already has.
- The ability to provide a separate, fullbandwidth upstream channel from every subscriber.
On the other hand the Sloan Commission finds the main advantages of v.h.f. multiplexed systems to be:
E There is no "real estate" problem because the distribution amplifiers can be mounted on the poles which carry power distribution cables, transformers and the telephone network (a feature of most American towns), whereas in the Dial-a-Program system the local exchanges must be installed at the outset because they also house trunk repeating equipment, and in settled communities site acquisition can be difficult.

For the moderate channel capacity considered necessary v.h.f. distribution systems are cheaper with respect to network and distribution equipment costs.

The Sloan Commission has also speculated on the future development of point-to-point video services and considers, this would represent a major cost escalation of subscriber equipment by at least $\$ 500$ for the modulator and camera in large quantity production. They go on to quote a study by Complan Associates, which estimated the added capital cost of a complete nationwide narrow band ( 1 MHz ) videophone service for 100 million subscribers to be $\$ 3000$ per subscriber - about five times the existing voice grade telephone service - and that a high quality 6 MHz service would cost about $\$ 12000$ per subscriber. In both estimates "out of plant and local exchange costs" account for between one-third and half of the total. Thus a high quality, two-way videophone service would cost an amount just within that of a typical
c.a.t.v. head end dealing with 10,000 subscribers - at least $\$ 4000$ per subscriber and about 20 times more than v.h.f. stacked carrier systems. No estimate is given for the cost of a central switching system such as Dial-a-Program in this context but it would be substantially less.

It would be fanciful to imagine that wide-band, or for that matter narrowband, videophone will have much application in the foreseeable future by the general public, because of cost. It is possible, however, for a wide-band videophone service to be developed for specialist applications such as "tele-medicine" and possibly at least within local communities.
Marlarkey Taylor and Associates of Washington, D.C., have produced a survey report distributed by the National Technical Information Services of the U.S. Department of Commerce entitled "Pilot projects for the broad band communication systems". ${ }^{8}$ The report considers the modification and addition to the treestructured v.h.f.-c.a.t.v. system to achieve two-way communication and points to the difficulties and complexities of the home terminal equipment required in what they describe as "these party line systems". They consider that the type of communication contemplated does not even approach conversation or narrative, but since the computer is able to interrogate all subscribers in a very short time it is possible to send alpha-numeric messages using TWX or other codes. Also, with suitable computer programming, messages could be transmitted for subscriber communication. Mention is made in this report of work in the television receiver industry on television tuner design to suit the adjacent channel etc. requirements of c.a.t.v. systems dealing with more than 12 programmes per cable.

The report includes a cost comparison between double coaxial tree and Discade and Dial-a-Program hub systems, dealing with 24 channels to 5000 subscribers. This indicates that switched systems at this channel capacity cost about twice as much as tree systems. Off-air receivers were assumed as being used in both types of system and the comparison included no two-way facilities. The report, however, drew attention to the advantage of the switched system in that cheaper simplified receivers giving high quality pictures, not necessarily restricted to N.T.S.C. standards, could be used and that the remote switching feature permits maximum security for pay television etc. without the necessity for scrambling.

In the cost comparison all cabling was assumed to be carried overhead on messenger wire strung between utility poles. These poles also support the active equipment used in the v.h.f. tree distribution system. There is, however, a growing tendency to place networks underground in new communities and this would reduce the cost differential between the tree and hub systems.

It seems appropriate at this point to present the case for a central switching system and to list the facilities which appear to be of most value to a developing socicty. I believe that a
wired central switching system can overcome the natural barrier of the restricted capacity of radiated over-the-air broadcasting and make it possible to look forward to a future where television can be a selective medium in addition to a mass medium that is as open and unrestricted as the printed word. This argument leads directly to the requirement for a two-way visual communication system and for an electronic library or libraries capable of storing vast quantities of information in alpha-numeric form and dealing with a very large number of stationary or moving television pictures. All this information would have two main purposes: (1) education and instrucion, ${ }^{9}$ and (2) entertainment and informa tion.

Fig. 5 depicts the situation in education envisaged for the future. The pupil is not entirely taught by television but the role of television is certain to be much greater in the future.

Fig. 6 depicts a personal view of the ordering of services dealing with entertainment and information for the
future. The central base, labelled entertainment/community affairs resource centre, is in principle the central switching system. The diagram includes, in addition to the home, other access points shown as kiosks which might be placed in shopping areas. These kiosks may also find application in future transportation schemes in which the routing of public transport vehicles is controlled directly by public request.

A central switching system with all the facilities outlined in Figs. 5 and 6 must be economically viable. The user must pay for it, either indirectly by taxes and in purchasing advertised goods or services, or by direct billing. From the pay-television aspect of direct billing, the system must also have commercial security in the sense that the originator of a televised programme must be sure that only those who are prepared to accept a charge and pay are able to view the programme. It must also be possible for the head of the household to be secure in the sense that he can authorise the expenditure incurred and


Fig. 5 Future educational service.
what is to be watched - by turning, for example, a pay television key.

Some information and instruction must be restricted at the source, i.e. information intended for specialist users who require high security, such as bankers, stock brokers, police and doctors. The system must therefore include a "programme denial" feature which cannot be bridged electronically by someone in the home.

A central switching system can meet these requirements.
(To be concluded)

## References

1. W. F. Mason. "Urban Cable Systems an interim report (M71-64)", Mitre Corporation, Washington, D.C., Nov. 1971. Also W. F. Mason and S. Polk, "Revolutionising home communications (new techniques for using computers with cable television) (M72-38)", Mitre Corporation, presented at the 1972 IEEE Intercon, 20th-23rd March 1972. 2. K. J. Stetten. "Ticcit: A delivery system designed for mass utilization (M71-56)", Mitre Corporation, Oct. 1971.
2. R. T. Callias. "Subscriber Response System (El Sugundo Interim Test Report)", Hughes Aircraft Company, California, NCTA Convention, Chicago, 17 th May 1972.
3. "On the cable - the television of abundance", Report of the Sloan Commission on cable communications.
4. "Classroom in the Home Via Cable" (Vicom system at Overland Park and the Mitre system at Reston), Broadcast Management Engineering, Oct. 1971.
5. IEEE Spectrum, Nov. 1971, p. 47.
6. J. E. Ward. "The Ameco Discade System", Appendix A, Report of the Sloan Commission on Cable Communications, McGraw Hill, 1971, p. 199.
7. "Pilot projects for the Broadband Communication Distribution System PB208 913 (Nov. 1971)", Marlarkey Taylor and Associates, Washington, D.C., distributed by National Technical Information Services, U.S. Dept. of Commerce.
8. Prof. G. Pask. "Computer Assisted Learning and Teaching" (System Research Ltd), Proccedings of a seminar on computer based learning systems, Leeds University, 8th-12th Sept. 1969, published by the National Council for Educational Tech., London.


Fig. 6 Future entertainment and information service.

## Motional Feedback Loudspeaker

## Low frequency reproduction from a small enclosure

The principle of deriving a corrective electrical feedback signal from a moving loudspeaker cone has been known for some time ${ }^{1}$. Several systems have been developed based on this principle and recently Philips have released information on a new "motional feedback" loudspeaker system (22RH532/00) which has been under development for several years. Comparative listening tests indicated that Philips have achieved a high degree of success with a controlled frequency response for the lower audio frequencies. The system, whose volume is a mere 15 litres ( $38 \times 28.5 \times 22 \mathrm{~cm}$ external dimensions), is designed with a $12 \mathrm{~dB} /$ octave low frequency cut-off at 35 Hz .

## Feedback principle

A loudspeaker cone does not always move in the pattern which its input signal intends. Distortion is generated - especially at low frequencies - by the resonant condition of the system and also by


Fig. 1. Block diagram of the method used for deriving a corrective signal from a speaker's movement.

Fig. 2. Circuitry in the Philips motional feedback system which is directly involved with the principle outlined in Fig. 1. Resistor * has a negative temperature coefficient.

the inability of the system to cope with the condition cone velocity $\infty$ frequency ${ }^{2}$ for a constant sound pressure level. If the motion of the cone can be sensed in some way to generate a current proportional to the speaker's acceleration, then this can be compared with the input signal and a corrective signal generated to force the cone to move in the manner originally dictated to it.

Fig. 1 outlines the motional feedback system. Movement of the loudspeaker cone is transduced into an electrical analogue signal which is fed to an adder with the original input signal. The resultant signal is then compared with the current which flows through the loudspeaker voice coil and a corrective current is generated if the loudspeaker cone acceleration (proportional to the feedback signal) does not follow the input signal.

Several methods of deriving a feedback voltage from the speaker cone movement have been tried. A voltage may be derived from the displacement of the coil or from its velocity. Velocity feedback by means of an equivalent series inductance, or displacement feedback by means of capacitive variations have the disadvantage that a stationary reference point is required. This and other difficulties can be avoided by a device which measures the acceleration of the speech coil. The Philips system uses a PXE ceramic acceleration transducer - of the type used in ceramic pickup cartridges which is clamped to the cone with the aid of two small rubber blocks. The element produces voltage which is proportional to the acceleration (inertial force) of the cone, and, provided the cone acts as a piston, the cone's acceleration is proportional to the acoustic oscillation. A drop of soldering tin is deposited on each side of the ceramic element to hold the attached wires in position. Connected to the output of the PXE transducer is an amplification and frequency correction stage. The resultant signal is fed back to the adding circuitry.

## Circuit description

All crossover, power amplifiers and feedback circuitry for the three drive units in the Philips system is contained within the loudspeaker cabinet. The circuitry associated with the motional feedback loop and the bass driver power amplifier is shown in Fig.2. The input signal is taken from an 18 dB /octave low pass filter and a $12 \mathrm{~dB} /$ octave high pass filter, so that the band of frequencies fed to the bass unit circuitry is approximately 35 to 500 Hz . This signal is fed to the adding circuitry $\left(T r_{1}\right)$, to which the feedback signal derived from the acceleration transducer is also applied. The latter arrives at the base of $T r_{1}$ via $R_{2}$ and $C_{2}$ and the input signal does so via $R_{1}$. The gain of the adding circuitry is approximately unity. A high-impedance ceramic crystal is matched to the feedback circuitry using a junction f.e.t., $T r_{10}$. If the gate impedance of $T r_{10}$ is to be kept high, the drainsource voltage must not exceed a certain
value and to ensure this condition, a zener diode is used in conjunction with $T r_{11}$. Before the feedback signal is fed to the adder stage, the amplitude response is corrected by the arrangement of $T r_{12}$ and $T r_{13}$. Down to approximately 80 Hz , the correction stage has a flat amplitude response, but below this the signal has a slope of 6 dB /octave, the reason being that feedback at the resonant condition (also at about 80 Hz ) may cause the amplifier to become unstable.

The input signal is fed from the adder to a 40 W amplifier ( $\mathrm{Tr}_{6}-\mathrm{Tr}_{9}$ ) which drives an 8in bass unit. The signal which flows through the speaker voice coil is used to provide an input to the base of $T r_{3}$, which forms part of a differential amplifier with $\operatorname{Tr}_{2}$. The input to the base of $T r_{2}$ is the sum of the input signal and the motional feedback signal. Thus the speaker's movement is compared with the driving signal and a corrective current is generated if necessary.

## References

1. Klaassen, J.A. and de Koning, S.H., "Motional feedback with loudspeakers", Philips Technical Review, Vol.29, pp.148-157.

## Books Received

Data Telecommunication by R. N. Renton gives an account of all techniques involved in interconnecting data systems and computers. It describes the various DATEL services recently introduced by the Post Office, special attention being devoted to error-detecting and error-correcting codes and to systems designed to combat errors due to transmission. The recently adopted CCITT/ISO/ASCII sevenunit code is presented. The essential line characteristics for satisfactory data transmission at various speeds are specified, full references being given to international (CCITT) standards. The important characteristics of national and international line circuits for data transmission are specified. Basic network plans for the U.K's STD system. and for worldwide telephone and telex exchange switching are illustrated with maintenance and fault testing procedures also fully covered. Although written for telecommunication engineers and students, this book will also be of interest to computer designers and users. Price £2.75. Pp.227. Sir Isaac Pitman and Sons Ltd, Pitman House, Parker Street, Kingsway, London WC 2B 5PB.

Colour Television - Questions and Answers by J. A. Reddihough gives a simple, practical account of colour TV transmission and reception for the enthusiast, technician and service engineer. While the emphasis is on the techniques used in PAL colour receivers, the book necessarily begins by covering the principles of colour and the way in which a compatible colour signal is transmitted. The next sections deal with the shadowmask tube and the circuits needed to modulate it, and how the receiver decoder processes the composite transmitted waveform to produce the signals required by the shadowmask tube.

The final section is devoted to convergence circuits and the various convergence adjustments that are involved. Price 75 p . Pp.108. Butterworth \& Co. Ltd, 88 Kingsway, London WC2B 6AB.

Electrical Transducers for Industrial Measurement by P. H. Mansfield describes the principles of operation of the main types of instrument transducer for measuring a wide range of physical variables such as pressure, temperature, speed, flow, displacement, viscosity and density. Details of the range, accuracy, and linearity are given in each case. Since new applications for transducers are constantly being discovered. a useful inclusion is a "Measurements Method Chart" which shows methods for converting into an intermediate output and thence to a final electrical output of physical quantities that cannot be directly measured. To enable the reader to select the most suitable instrument for a specific purpose, a directory is included of transducer manufacturers or suppliers in the U.K., which lists readily available devices with their mode of operation. The book is a guide for engineers involved in instrumentation and control and to students taking degree or HND subjects in these courses. Price £4.40. Pp. 281. Butterworth \& Co. Ltd, 88 Kingsway, London WC2B 6AB.

Solid-State Circuits by G. J. Pridham provides an introduction to modern semiconductor theory and practice. It is a sequel to "Semiconductor Circuits" written by the author in conjunction with J. R. Abrahams, but while embodying certain features of that book it also lays considerable emphasis on field effect transistors and integrated circuits. The text is divided into three sections. The first is concerned with the basic physics of semiconductors, diodes and transistors and the construction and characteristics of devices including integrated circuits. The next section deals with the fundamental use of semiconductor devices in rectifier, amplifier and oscillator circuits. One chapter specifically deals with the high frequency use of transistors and in all examples, designs from device characteristics are included. The final section develops the a.c. equivalent circuits of transistors. Price £2.50 (hardback), £1.80 (limp). Pp.184. Pergamon Press Lid, Headington Hill Hall, Oxford OX3 OBW.

Illustrations in Applied Network Theory by F. E. Rogers. Network theory has vital practical objectives: the analysis of given networks, or the synthesis of networks to fulfil given requirements. Though synthesis and analysis are converse in procedure, both are bound by the same circuit laws. This notion, together with duality, permeates the book in which a hundred numerical and algebraic illustrations exemplify practical circuit problems. Chapter headings include: general principles for passive and active network analysis; transient response and its correlation with frequency response; simplifying procedures, theorems and equivalances; power transfer and allied concepts; examples of non-linearity and the response of networks to non-sinusoidal waveforms and finally electronic amplifiers with feedback circuits. The book is primarily intended for the intermediate years of degree courses in electronic and communication engineering but it will also be of value to students following similar courses, such as HNC, HND and CEI. Price $£ 5.00$ (hardback), £2.50 (limp). Pp.228. Butterworth \& Co. Ltd., 88 Kingsway, London WC2B 6 AB .

## News of the Month

## Optional radio broadcasts

Hi-Low, standing for High Listener Option Radio, is a system of f.m. broadcasting proposed by David Williams of Matrix Enterprises for the transmission of two simultaneous sound broadcasts (see August "News" p. 392 for tests made by the B.B.C. of the SCA-type system). One of the programmes can be in stereo and is compatible with standard receivers. The second programme is a time-shared sequence of items - the idea being that these items would be for minority groups within a wide audience receiving the compatible programme. The time-shared programme is accompanied by an electronic control signal which is made to change according to the kind of programme item which is being broadcast.
According to the technical information supplied in a pamphlet about the system prepared by Matrix Enterprises, the aim is as follows. The transmitter operates in the v.h.f. band and is frequencymodulated with a signal which may be considered as consisting of three components.

Component A is a sound signal conventionally prepared for v.h.f./f.m. broadcasting, and which may be a stereophonic signal encoded according to the pilot-tone system. Component B is a low-level 19 kHz tone which is amplitude-modulated with one or more "key frequencies" of less than 1 kHz . If component A is a stereophonic signal, the carrier frequency of component B serves as the stereo pilot tone. Component C is derived from a 76 kHz frequency, phase locked to the fourth harmonic of the carrier of component B , and modulated by a single-sideband technique with a sound signal. The lower sideband is used, and the subcarrier suppressed, so that component C consists only of modulation sideband frequencies between 76 kHz and about 60 kHz . Different key frequencies, or combinations of frequencies, are transmitted in component B according to the programme content of the sound in component C .

In the receiver, the sound signal in component A is recovered conventionally. The 76 kHz subcarrier is regenerated by quadrupling the 19 kHz pilot tone, and a product detector used to recover the
sound signal in component C with high quality. Component B is monitored by a circuit which can be pre-set by the listener to respond to one or more key frequencies or frequency combinations. When such a frequency or combination is present, the audio circuitry of the receiver is switched to reproduce the sound from component C .

## Ultrasonic holography in medical diagnosis

Workers in the Medical Engineering Department of Surgery at the Children's Hospital of San Francisco have recently produced some extraordinarily fine ultrasonic halograms using an immersion scanning technique for visualizing some internal organs of the human body. The basic technique of using ultrasonic holography has been used for the past twelve years but most of the early results proved disappointing. Three dimensional images of internal structures made without subjecting the patient to painful or hazardous procedures are the dream of every diagnostician.

The technique of the new system, manufactured by Holosonics Inc. of Richland, Washington, U.S.A., differs from optical holography in that the interference wave pattern cannot be recorded on film. It is recorded instead by making the sound beams impinge on a fluid surface which is disturbed according to the sound intensity pattern. This surface pattern is detected by coherent light from a laser and the reflected beam used for optical image reconstruction.

The Holosonics instrument employs a five-inch quartz crystal with a fundamental frequency of 1 MHz as the ultrasound generator. Harmonics bringing the operating frequency up to 3.5 or 7 MHz are used. The limb or organ to be investigated is immersed in the fluid between the crystal and the acoustic lens system. A reference beam is provided by a similar transducer. The depth of focus obtained is about 1 cm . Images are recorded on film or on a videotape system.

Operated in the pulsed mode, the average sound intensity is about 20 mW $\mathrm{cm}-^{2}$. With pulses of 100 microsecond
duration at a repetition rate of 50 Hz the peak intensity could exceed $4 \mathrm{Wcm} \mathbf{c}^{2}$ which is questionably high if reproductive organs are allowed into the beam, as they would be for the examination of the uterus.
This system seems to have neared the ideals of acoustic holography and may well prove to be valuable not only to medicine but in other applications of non-destructive testing.

## Anti-skid control by micro-circuits

Two integrated circuits designed specifically for the automotive market have been announced by the Fairchild Camera and Instrument Corporation. Both are complex linear circuits developed over the past two years as "custom" circuits before being added to the standard product line. Typical applications include the control of anti-skid systems, fuel metering and the generation of either digital or analogue tachometer displays. Both are subsystems that will be used as components of larger automotive electronic systems.

The UA7350 includes a tachometer pulse generator, an operational amplifier and two comparators on a single chip, in a 16 -pin dual-in-line package. The tachometer section produces fixed-width pulses at the zero crossings of a groundreferenced alternating current input signal.

The UA7351 is a triple operational amplifier, a general purpose circuit also specifically designed for automotive operation, with single 4 - to 16 -volt or dual 2 - to 8 -volt power supplies. The circuit contains three identical op amps on a single circuit chip in a 16 -pin dual-in-line package.

## New interference regulations

New regulations controlling interference from the ignition systems of internal combustion engines* have recently been introduced to Parliament by Sir John Eden, Minister of Posts and Telecommunications. They extend the frequency range controlled by the present regulations in order to give greater protection to the whole range of frequencies now used by television. They have been made after consultation with the Minister's advisory committee on wireless interference from ignition systems and come into force on October 1.

The existing Wireless Telegraph (Control of Interference from Ignition Apparatus) Regulations made in 1952 require assemblers, importers and users of ignition systems forming part of combustion engines (other than in aircraft) to ensure that the field strengths of electro-magnetic energy radiated at frequencies between 40 MHz and 70 MHz do not exceed specified limits. These regulations will still apply to ignition apparatus assembled in engines before 1 October 1973.

The new regulations which extend the frequency range to 250 MHz conform
with the agreed international standards for radio interference suppression with which all vehicles manufactured on and after 1 October 1973, have to comply under the Motor Vehicles (Construction and Use) (Amendment) (No.4) Regulations 1972†.
-The Wireless Telegraphy (Control of Interference from Ignition Apparatus) Regulations 1973, SI No 1973/1217 published by HM Stationery Office. †SI No 1972 / 1734 published by HMSO on behalf of the Depariment of the Environment.

## U.S. "TV Time" system

Time-of-day information can be broadcast to one millionth of a second accuracy by a new system developed by the U.S. National Bureau of Standards at the Boulder, Colorado laboratories. Equipment at the broadcast station and complementary decoding equipment on the TV receivers allow information to be encoded and decoded to provide information in caption form on the screen. The aim is to provide accurate information to scientific and commercial institutions which need precise time and frequency data. The signals can be used to automatically reset electric clocks after a power failure and can help to analyse power failures on a continent-wide basis.

The primary standard of frequency and time is the N.B.S. atomic clock system which provides a time display accurate to a few thousandths of a second with
a possible accuracy to one millionth of a second using In optional high-accuracy decoder. A frequency reference at 1 MHz , accurate to one part in $10^{11}$, is also available at the receiver:

## P.C.M. for the North

The B.B.C. has now completed a further stage in its p.c.m. sound distribution system, which will make it possible to start a full p.c.m. stereophonic service from the stations at Holme Moss and Belmont. These stations serve most of Lancashire, Yorkshire and Lincolnshire, and parts of the adjacent counties.

Test transmissions in stereo have begun from both stations but it may be necessary to revert to monophonic transmission on occasion, for essential engineering work. The new system will be used for Radio 1 (when that programme is transmitted on v.h.f.). Radio 2, Radio 3, and Radio 4, Radio 3 has been transmitted in stereo for some years, but it will be using the new p.c.m. system for the first time (See "News", Sept. 1972, page 411 .)

## Minicomputer on a card

A minicomputer, the Naked Mini/LSI, contained on a $15 \times 17 \times$ in printed circuit board has been introduced by Computer Automation. Contained on the card are a $1.6-\mu \mathrm{s}$ central processing unit

Two geologists from the Polish Institute of Mining inspect three seismometers, with their attendant amplifier/modulators, which are part of a quantity of seismological recording equipment manufactured by Racal-Thermionic. The equipment has been adapted to accurately predict and locate potential "rock burst" activities - a mining phenomenon extremely dangerous to men and machinery underground.

(seven m.o.s. l.s.i. chips), memory storage and input/output logic interfaces, etc, making up a total weight of 4 lb . The minicomputer is also available complete with chassis, control console, hexadecimal data-input keyboard and power supply, in which configuration it is known as the Alpha/LSI. Compared with Computer Automation's previous 16 -bit minicomputers, their new machines cost half the price, occupy one-third the volume and offer functionally the same performance.

## Radio 4 in the South-West

The B.B.C. has recently been authorized by the Ministry of Posts and Telecommunications to install five low-power transmitters in the south-west of England. These will broadcast the medium-wave Radio 4 service, including the locally produced magazine programme, news and weather reports which are at present transmitted on v.h.f. only.

The locations of the first four stations, together with their proposed wavelengths and the service dates which it is hoped to achieve are as follows:
Torquay 351 meters, 854 kHz Autumn
Barnstaple 439 meters, 683 kHz Autumn 1973
Plymouth 206 meters, 1457 kHz Autumn 1973
Redruth 397 meters, 755 kHz Spring 1974
The Barnstaple service will replace the present one on 434 metres; the others will be additional to the existing Radio 4 medium-wave services.

## TV deliveries in the U.K.

Deliveries of colour TV receivers to U.K. distributors have reached a total of $1,322,000$ for the first half-year, a rise of $74 \%$ on the same period last year (761,000), according to the latest figures compiled by the British Radio Equipment Manufacturers' Association. Deliveries of monochrome sets for the first six months of this year were 765,000 , a fall of $19 \%$ over 1972 ( 943,000 for the same period).
These are totals of U.K.-made and imported deliveries to the home market, including those to specialist rental and relay companies.

## Briefly

The Sonex 1974 audio exhibition will move to the Post House Hotel, London Airport (Heathrow) and takes place from 29th to 31st March.
The U.S. Postal Service has issued a commemorative stamp for the 25 th anniversary of the transistor - part of a series on the progress of electronics.
A Wireless World Annual is to be published for the first time later this year. Details will be announced shortly.

# Electronic Sound Synthesizer : Part 2 Continuing the construction with descriptions of voltage control circuitry, reverberation and the exponential converter 

by T. Orr,* B.Sc., and D. W. Thomas, $\dagger$ Ph.D., M.I.E.R.E.

The first part of this series of constructional articles (August issue) described the philosophy behind the design of the synthesizer and its capabilities as a musical or educational instrument. The series continues with constructional detail of the circuitry. Each basic modular unit is described in full, but the number of units employed can be varied to suit the constructor's needs.

Sweep frequency oscillator
By driving $V \mathrm{CO}_{1}$ with a ramp, generated by $\mathrm{VCO}_{2}$ (both described last month), it is possible to produce a sweep frequency oscillator capable of covering the entire audio spectrum in one sweep (Fig. 14). If the swept sinewave output of $V \mathrm{CO}_{1}$ is then fed into a network, the amplitude-frequency response of that network can be rapidly determined. A three decade sweep is available and the peak to peak amplitude is virtually constant. However, the sinewave generated by $V \mathrm{CO}_{1}$ is by no means pure, having a harmonic content of between 3 and $4 \%$. This limits the resolution to a rather modest value, but even so, a reasonable representation of the network's frequency response can be obtained. (It is particularly useful for directly observing the effect of tone controls in audio amplifiers.) To display the amplitude-frequency response, the ramp drives both the oscillator $V C O_{1}$, and an oscilloscope (in the $x$-direction), whilst the network response is displayed in the $y$-direction. The drive need not be a ramp; in fact any continucus function could be used.

Voltage controlled oscillator, $\mathrm{VCO}_{3}$ This oscillator produces a sequence of steps, the amplitude of the steps being individually controllable. The number of steps in the sequence can be varied up to a maximum of six (Fig. 15) and a series of pulses is also available ( 1 to $1 \mathrm{mark} / \mathrm{space}$ ratio) each being coincident with the leading edge of each step. The oscillator is voltage controlled and has a pair of summing inputs. The frequency-voltage relationship is exponential and extends from subsonic frequencies to above 20 kHz , all in one range.

The oscillator, which consists of a voltage controlled astable ${ }^{1}$ driving a binary counter, is shown in block diagram form in Fig. 16.

Fig. 14. Using $V C O_{1}$ and $V C O_{2}$ as a sweep frequency oscillator.


Fig. 15. Functions provided by voltage controlled oscillator, $\mathrm{VCO}_{3}$.


The b.c.d. output is decoded into decimal form, attenuated by pots 1 to 6 and then summed. The length of the resulting sequential output can be modified by selectively resetting the binary counter. The circuit diagram of $\mathrm{VCO}_{3}$ is given in Fig. 17. Transistors $T r_{2}$ and $\mathrm{Tr}_{3}$ are voltage driven and provide a current drive to the astable. The result is an exponential current-voltage relationship and an exponential frequencyvoltage response.

The useful range of the control voltage applied to $T r_{2,3}$ is a few hundred millivolts, and must be generated relative to $+\mathrm{V}_{\mathrm{cc}}$. Preset $R_{7}$ is adjusted so that the clock frequency produced is approximately 20 kHz with the bias set at maximum. Also, when the bias is set to a minimum, preset $R_{10}$ is adjusted so that the clock frequency is approximately 0.2 Hz . Unfortunately, the effects of $R_{7}$ and $R_{10}$ are interdependent and hence they must be set up iteratively until convergence is achieved on the desired settings.

The logic section is self explanatory;
however, the logic power supply must be decoupled with a $0.1 \mu \mathrm{~F}$ capacitor. Note that this oscillator does not lend itself to construction on plug-in boards, as the edge connections required are exceptionally large.

## Voltage controlled amplifier, $V C A_{1,2}$

The heart of this unit which performs the function of amplitude modulation is a linear four quadrant multiplier, the device being an integrated circuit, SG1495D. This device operates from a +15 V supply, and when used in the circuit shown in Fig. 18 can accept inputs of $\pm 5 \mathrm{~V}$. The frequency response is greater than that required. The output is taken between two load resistors and a differential amplifier $\left(I C_{2}\right)$ is required to remove the common mode signal. Design of the multiplier and differential amplifier is very nearly the same as that given in the applications sheet for the SG1495D but some component values have been modified and lower tolerances are used. A scale factor of 0.1 is employed.

The multiplier accepts two inputs, $X$ and $Y$, and generates an output that is linearly proportional to the product XY. The X input is the audio signal $V A_{1}$, and the $Y$ input is the output of the control circuit. This circuit is a voltage summer with inputs of $V C_{1}, V C_{2}$ and a bias voltage. This arrangement is that of a "perfect" half wave rectifier, thus, when the sum of the control and bias signals goes negative, the output of $I C_{3}$ remains at 0 V . Only when the sum is positive will an output (a control voltage) be produced. In this way, the control section has a threshold characteristic, this threshold occurring at 0 V and being used as the reference level for zero output from the v.c.a. When long leads are used, parasitic oscillation may occur, but this can be suppressed by an $R C$ network ( $C_{1} R_{2}$ ).

## Aligning the v.c.as

Four presets (Fig. 18) have to be aligned; these are $R_{20}, R_{21}, R_{14}$ and $R_{8}$. The first two are Y and X "offset adjust", the third is "gain" and the last is "output offset".


Set $X$ and $Y$ to $0 V$ making sure that the bias ( $R_{25}$ ) is set at its most negative setting. Monitor the output of $I C_{2}$ and adjust the output offset $\left(R_{8}\right)$ until it is at zero potential.

Set X to +5 V , but keep Y at 0 V , and
adjust $R_{20}$, the Y "offset adjust" until the output is again at zero potential.
Set Y to +5 V , set X to 0 V , and adjust $R_{21}$, the $\mathbf{X}$ "offset adjust", until the output is once more at zero potential.


Fig. 18. Circuit diagram of voltage controlled amplifier $V C A_{1,2}$.


Now repeat the first step. The last preset to be adjusted is $R_{14}$, the gain control, which alters the scale factor of the generated output. The unit is now a functional v.c.a., and some amplitude modulation can be demonstrated. Also the audible and visible effect of varying the $\mathbf{X}$ and Y "offset adjust" can be observed.
Let $V A_{1}$ be a 1 kHz sine wave and $V C_{1}$ be a 100 Hz triangular wave. By varying the bias control, the product can be made to rise or fall above the reference level horizon (Fig. 19a).
If the sinewave and triangle are produced by $V C O_{1}$ and $V C O_{2}$, then the output will also be one-sided as both of these signals are one-sided (Fig. 19b). If however, the signal $V A_{1}$ is alternating, then a double sided output will be produced.

The effects of misalignment of the $X$ and Y "offset adjust" can now be observed. For the Y "offset adjust" the result is that the output is non-zero when the control voltage reaches the threshold level. The output may never reach zero or may even pass through zero and become inverted (Fig. 19c). The dynamic range of the v.c.a. is thus severely limited by errors in the setting of the $Y$ "offset adjust". Misalignment of the X "offset adjust", results in the unwanted components of $V C_{1}, V C_{2}$ and the bias appearing at the output, this being particularly disturbing when $V A_{1}$ is zero.

## Voltage controlled filter

The v.c.f. is a bandpass filter with presettable $Q$ factor and a variable (and voltage controllable) centre frequency. The circuit diagram of the v.c.f. is given in Fig. 20. The use of a multiplier makes the circuit appear rather complex; an alternative approach is to use f.e.t. modulators. The result would be a reduction in circuit complexity and cost, paid for at the expense of increased distortion and a loss of linearity of the centre frequency with respect to the control voltage.

The circuit operation is as follows. The sum of the bias and the input control voltage is squared and used to drive the multiplier. The transfer function of the square law generator is given in Fig. 21, transistor $\mathrm{Tr}_{2}$ being designed to saturate when its collector reaches a potential of -5 V . The multiplier is similar to $V C A_{1}$ and $V C A_{2}$, but in this case forms part of the main loop with the two integrators. Integrator gains of $3.3 \times 10^{4}$ are used and the first integrator is limited by zener diodes $D_{10}$ and $D_{11}$. If the output swing of this integrator were allowed its full range of movement, the maximum input of the multiplier would be exceeded, causing the loop to become unstable and then "hung-up". The $Q$ factor can be modified by adjusting $R_{22}$ and theoretically when the wiper of this pot is at 0 V there is no damping term, and the loop becomes unstable. This situation may or may not occur, it being dependent on component imperfections and the way in which the circuit is constructed.

It was decided that this filter should not become oscillatory at high $Q$ factor settings. Thus to eliminate this possible state, $R_{23}$ has been included, the value of which is chosen to make the loop non-oscillatory


Fig. 20. Circuit of the voltage controlled filter.
throughout its ranges. The v.c.f. can be modified externally so that it forms a low distortion oscillator, but this will be described later. Other synthesizers tend to prefer the use of low pass v.c.fs, and this is easily achieved by taking the output from $I C_{4}$, the low pass output. In fact there is no reason why the bandpass and the low-pass outputs should not be simultaneously available.

## Filter alignment

$\dot{\text { Careful adjustments of presets } R_{42}, R_{44} \text { and }}$ $R_{35}$ are required, because the multiplier is part of a loop that can easily become unstable, particularly at low values of gain.
Break link A, Fig. 20, and align the multiplier using the method described for $V C A_{1}$ and $V C A_{2}$. Note that there is no "gain preset" to adjust. Replace link A and
monitor the output of $I C_{5}$. This potential may need to be zeroed by adjusting $R_{35}$, this offset being particularly large when the bias control is set at minimum. If the multiplier has been carefully aligned to give a maximum dynamic range, then a range in centre frequency of about one octave can be expected. Note that the multiplier's gain should not quite reach zero or (even worse) pass through it and hence change sign, as both of these states are unstable
The v.c.f. is now functional and can be used to perform a variety of operations. The more common uses are to filter inputs such as white noise, producing various effects similar to wind, rain, jet engines etc.
The v.c.f. can be used as a low distortion oscillator (Fig. 22a). The $Q$ factor and the bias are set at maximum and the control pot $R_{18}$ (Fig. 20) is increased so that the filter


Fig. 21. Transfer function of the square law generator in Fig. 20.
just oscillates. The v.c.f. can now be swept throughout its range, producing a sinewave of virtually constant amplitude and of variable frequency (a 9.5 to 1 range was obtained). There is a 90 -degree phase difference between the low-pass and bandpass output, sine and cosine waveforms being simultaneously available.

The v.c.f. can also be used as a notch filter (Fig. 22b). To set up the mixer, use a sine wave input and set the v.c.f. to the same frequency, with the $Q$ factor at maximum. By varying pots $V A_{1}$ and $V A_{2}$, the input
and the bandpass output can be made to cancel out. The "notch" can then be swept throughout the v.c.f's range. This technique can be used to examine the harmonic content of any signal that lies within the frequency range of the v.c.f.

The v.c.f. is also useable as a spectrum analyser, measuring energy per hertz versus frequency (Fig. 22c). However, this is no more than a demonstration piece, due to the narrow range. Also, the sweep time must be rather long if a "high" resolution (i.e. high $Q$ factor) is required, and the constant
bandwidth makes interpretation of results difficult.

## Audio mixer and summer/inverter

The audio mixer is a three channel virtualearth mixer, each channel having its own attenuator and being a.c. coupled. A master volume control determines the overall signal level at the output (Fig. 23).

Also, two direct coupled virtual-earth mixers are provided (Fig. 24). These both have three inputs, two having a fixed gain of -1 and one of -10 , and are used for


Fig. 22. Using the voltage controlled filter as (a) a low distortion oscillator (b) a notch filter and (c) a spectrum analyzer.


Fig. 23. Three-channel virtual-earth a.c. coupled mixer circuit.

Fig. 24. Direct coupled virtual-earth mixer.



Fig. 26. Circuit of the exponential converter. Two converters are included in the synthesizer.
signal processing, such as inversion, summing or amplification.

## Reverberation unit

The reverberation unit consists basically of three sections; the driver, the springline reverberation unit and the equalised pickup amplifier (Fig. 25). The springline reverberation unit used was the "H242" obtainable from Henry's Radio. This unit is moderately inexpensive, but suffers from a loss of high frequency reverberation, dropping considerably at about 4 kHz . However, a useful response can be obtained-enough in fact for this unit to be used in one of the commercially available synthesizers.
By operating switch $S_{1}$, a choice of the input signal plus reverberation, or just reverberation is available. Thus the reverberation can be separately controlled, by using a v.c.a. and/or a v.c.f., as well as being manually controllable ( $R_{3}$ ). To reduce any microphonic effects, the HR42 unit should be mounted on a pair of rubber pillars.

## Exponential converter

This unit has an exponential transfer function of the form,

$$
V_{\text {out }}=\exp \left(V_{\text {in }}+\text { constant }\right)
$$

The base-emitter junction of transistor $T r_{3}$, Fig. 26, is voltage driven, the collector current being monitored. The relationship between $V_{B E}$ and $I_{C}$ is very nearly exponential, modified by the fact that the voltage drive is imperfect and the value of $V_{C E}$ $\left(\mathrm{Tr}_{3}\right)$ is changing. The suitable working range for the base emitter voltage of $\operatorname{Tr}_{3}$ is from 0.5 V to about 0.7 V , a width of only 200 mV . This requires that $\mathrm{Tr}_{3}$ is biased to a $V_{B E}$ of about 0.5 V and that the control voltage drive is suitably attenuated, the bias being preset by adjusting $R_{9}$. As two exponential converters are included in the synthesizer, both should be adjusted so that their responses are matched.
The need for an exponential transfer
function is twofold. One, the subjective response to volume can be loosely described as "logarithmic". And two, the subjective response to a change in frequency is governed by the ratio of the two frequencies. Thus, frequency generation should be an exponential function of the control signal, if the control, from say a set of keyboards, is to be considered musically useful.

The construction of the synthesizer will be completed with a description of the sample and hold function, noise sources, waveform generator and power supply. All the synthesizer functions will then be linked via the patch panel, keyboards and joystick control. Details of i.c. pin connections will be given and also examples of the synthesizer's use.

## Correction

In Fig. 13, a resistor $R_{10}$ of value $1 \mathrm{k} \Omega$ should be inserted between the +15 V supply and zener $D_{3}$.
(To be concluded)

## Reference

1. D. T. Smith, "Multivibrators with Sevendecade Range in Period", Wireless World, February 1972, pp. 85-86.

## Announcements

"Sound Studios and Recording" and "Broadcast Sound Reproduction" are two courses to be run during the Autumn and Spring terms 1973-74 at the Polytechnic of North London, Department of Electronic and Communications Engineering, Holloway Road, London N7 8DB.

The University of London, Department of Extra-Mural Studies is to hold a course of 22 meetings plus four visits on " $\mathrm{Hi}-\mathrm{Fi}$ and the Science of Sound" at Callowland Adult Education Centre, Watford on Thursdays, 7.15 p.m.- 9.15 p.m., beginning 1 th October.

Information on part-time courses in electronics - including an R.A.E. course - at Plymouth College of Further Education can be obtained from E.H. Farrar, Head of the Department of Electrical Engineering, College of Further Education, Keyham Annexe, Keyham Road, Devonport, Plymouth, Devon.

Surrey Electronics, 24 The High Street, Merstham, Redhill RH1 3EA are producing a glass fibre p.c. board for M. Hartley Jones' "Frequency Shifter for Howl Reduction" circuit published in the July issue. The board is $90 \times 140 \mathrm{~mm}$ with a gold plated edge connector to mate with a 12 -way 0.15 in socket.

A course of nine Tuesday evening lectures on the "Engineering of High Fidelity Sound Systems" will be given from 6.30 p.m. to 8.30 p.m. at Cambridge College of Arts and Technology, Department of Enginecring and Building, Collier Road, Cambridge CBI 2AJ commencing on 9th October. Information is also available on an R.A.E. course and morse practice evening also commencing in October.

## H.F. Predictions for September

Seasonal chañges will result in generally improved conditions in propagation. Long periods of subnormal days are unlikely. Ionospheric conditions are more favourable for the North Atlantic path and trans-equatorroutes should be consistently workable above 20 MHz .

The period of the last sunspot cycle corresponding to current conditions was 1962. The solar index from then on did not rise above the present value of 25 until the beginning of 1966; by the end of 1966 it had risen above 60 . The trough of sunspot minimum now upon us can therefore be expected to last until 1977.


# Optoelectronics: devices and applications 

# Twinkle twinkle little led, how I wonder if you're dead 

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams*

Three aspects of the link between light and electronic circuitry are considered in this article: detection and measurement of light, generation of light- from an electrically operated source, and use of light as an intermediary in some electronic process. Of the wide array of optoelectronic devices available a small number cover a wide range of requirements. More specialized components, such as semiconductor lasers, photomultipliers, must be left to a later series.

The electronics industry is seeing a production and pricing pattern in one family of optoelectronic devices reminiscent of the t.t.l. war at its fiercest. Light-emitting diodes have changed from an $\mathrm{r} \& \mathrm{~d}$ novelty to a consumer component with great rapidity and are already falling to a price level comparable with the transistors used to drive them. They will replace filament and neon lamps for a wide variety of applications and it is on their characteristics that this series concentrates as far as light generation is concerned.

Light-emitting diodes are p-n junctions governed by the same rules as silicon diodes. The choice of materials is devided by the spectrum of light required while the efficiency can depend critically on doping levels. The most common materials are gallium arsenide and gallium phosphide (and other compounds) (Figs $1 \& 2$ ) with a current requirement of 5 to 50 mA for normal brightness. The resulting p.d. is in the range 1 to 2 V (Fig. 3) making the diodes compatible with both linear and digital circuits. Relative intensity of the lamp is an almost linear function of current over a wide range of currents (Fig. 4) falling at higher temperatures.

Response of the human eye is greatest in the yellow/green region of the spectrum, and the gallium arsenide-phosphide devices (Fig. 1) - which emitters peak in the red - appear less bright than otherwise comparable-efficiency yellow diodes. Nonetheless, economies of scale dictate the use of the lower-cost red l.e.ds for most applications.

Emission in other parts of the electromagnetic spectrum is possible with suitable materials including the highly specialized
*All with Paisley College of Technology.


Figs. 1 \& 2. Materials used in light-emitting diodes are chosen to give the desired colour. Although GaAsP diodes are of compararable efficiency to GaP diodes, they appear brighter because eye response is greater in that region (Fig. 1, left).


Fig. 3. Light-emitting diodes have a p.d. of 1 to 2 V for normal brightness levels, making them compatible with both linear and digital circuits.
semiconductor lasers with a very narrow spectral response. Pulsed operation with low duty-cycle high-current pulses gives the highest efficiency with such devices, and they find application in optical communication systems.

Solid-state light-sensitive devices are based either on p-n junctions (photodiode, photovoltaic cell, phototransistors) or polycrystalline materials (CdS photoconductive cells). Light falling on a p-n junction if of short enough wavelength generates hole-electron pairs. Current flows if the $\mathrm{p}-\mathrm{n}$ junction is short-circuited (Fig. 5) or connected to a low-resistance load;


Fig. 4. Lamp intensity is a linear function of current, except at higher temperatures (broken line).
current is proportional to the intensity of light falling on the junction, and the terminal p.d. for a silicon diode may be up to about 0.5 V (Fig. 6).

A specialized form of photodiode, the photovoltaic cell, is used as a power source. Selenium, or more commonly now silicon, is the material used and the cells are arranged to have a high surface area to maximize their light catchment. Although having non-linear characteristics, the simple maximum-power-transfer theorem gives a first order answer for the optimum load (Fig. 7) i.e. that load which maximizes the output power is


Figs. 5 \& 6. In light-sensitive devices based on a p-n junction, current is a linear function of light intensity falling on the junction (Fig. 5, left). Open-circuit voltage can be as high as 0.5 V with silicon photodiodes (Fig. 6, right).


Fig. 7. For selenium or silicon photo voltaic diodes maximum power is delivered for a load given by open-circuit voltage divided by short-circuit current.


Fig. 8. Photoconductive cells using cadmium sulphide normally have a nonlinear light intensity solidus current characteristic although the voltage-current curve is linear.


Fig. 9. Because the spectral response of cadmium sulphide cells matches eye response they are widely used in photographic applications.
given by $R_{o p t}=V_{o c} / I_{s c}$. The theorem applies to linear systems but gives reasonable results for some non-linearity.

Further increase in load resistance or illumination makes for little extra p.d. as it becomes comparable with the p-n junction barrier potential. In a phototransistor the collector-base junction is illuminated and the transistor amplifies the resulting current. Currents of 10 mA and more are possible but the speed of response is slower than for the diode alone when reverse biased. This latter mode is the fastest with a separate d.c. supply providing a high field to sweep the carriers out of the junction. The limiting effect on speed of response is often the $R C$ time constant of the external circuit particularly as the currents are low, forcing the use of large resistors where large voltage swings are needed. Any voltage swing up to the supply voltage may be obtained provided that the supply voltage does not exceed the diode reverse-breakdown voltage.

Any other semiconductor device or circuit using a p-n junction may in principle be made into an optoelectronic device with suitable packaging. Thus photothyristors can be obtained which are fired by an optical pulse, though they are presently restricted to relatively low-current applications e.g. for firing a higher power thyristor. In this case the photothyristor needs to have high voltage breakdown characteristics but can be a low-power device supplying pulses of a few tens of mA to the power device.

Photo-Darlingtons and other transistor combinations are equally feasible where higher output currents are desired in linear circuits, but in many cases it is equally simple to combine a photodiode or phototransistor with other conventional transistors. M.o.s. devices are very useful in optoelectronic circuits, with the threshold voltage varied by the light intensity. By adapting the m.o.s. processes, complex circuits have been recently produced by i.c. manufacturers, to provide outputs capable of driving small relays and switching at preselected light intensity.

Cadmium sulphide photoconductive cells have a very high resistance in the absence of light, with the resistance
falling rapidly with increasing light intensity (Fig 8). At all light intensities the device has a linear $V / I$ characteristic, and for some devices the variation of conductance with light is itself almost linear. As the spectral response of CdS cells closely matches that of the human eye (Fig 9), they are used in photographic equipment. These cells have to be used with some external power supply, a.c. or d.c., as they do not generate any power. The advantage is that the power controlled in the load can be large enough to operate a wide range of lamps and relays.

A powerful tool for designers made possible by recent development is the photon coupler. This is typically an 8 -pin dual-in-line package containing a light-emitting-diode tightly coupled, optically, to a silicon phototransistor. There is no electrical connection and breakdown voltages between the two sections of several kilovolts have been achieved. Similarly the capacitance coupling is small, and these devices are ideal for transmitting signals between circuits where direct electrical connection is impossible or inadvisable. Examples of such situations include firing of thyristors from grounded source and coupling between digital systems where ground noise is a problem.

Optoelectronics has passed the healthy infant stage and is developing into a mature branch of engineering where the choice is wide enough to encourage all designers to extend their skills.

## How to get Circards

Order a subscription by sending $£ 9$ (U.K. price; $£ 10.50$ elsewhere) for a series of ten sets to:

Circards
J. Rider

IPC Business Press Ltd (Sundry Sales) 40 Bowling Green Lane
London ECIR ONE.
Specify which set your order should start with if not the current one. One set (normally 12 cards) costs £1 U.K. and $£ 1.15$ elsewhere, postage included.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D)
8 astable circuits
9 optoelectronics: devices and applications
Subsequent issues will cover micropower circuits, logic gate circuits, wideband amplifiers, alarm circuits, digital counters, pulse modulators. Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the Ist of the month, and the Circard concept was outlined in the October issue, pages 469/70.

# Industrial Electronics 

## 5. Weighing systems

by Richard Graham

Having discussed the reasons for the development of electronic weighing and looked at load cells in broad outline (July issue, p.353), one is now in a position to examine complete systems, with their benefits and advantages over mechanical weighing equipment.

First, though, there is one more type of weighing transducer which should be mentioned - the class of cell employing the linear variable differential transformer as its measuring element. This device, which is exemplified by the Hunting Engineering weigh cell shown in Fig. 1, is used chiefly for low weights (milligrammes to a few kilogrammes) and, especially when temperature-compensated, is extremely accurate and stable. Highspeed check-weighing is a typical application. The sketch shows a load-carrying platform, which moves vertically against a precision, temperature-compensated spring, being constrained to vertical movement by two flexural pivot arms of specially developed, temperature-stable, spring steel. Moving with the platform assembly is the l.v.d.t. armature, the coils remaining stationary. A dash-pot (not shown) prevents oscillation. The output of the cell is a.c., but precision rectifier units are obtainable to fit inside the cell and the input to the l.v.d.t. is provided by a highly stable high-frequency oscillator.

The output signal provided by most strain-gauge load cells is of the order of 2 mV per volt applied and, depending on the manner in which multiple cells are connected together, the output provided to the indicating and processing circuitry is usually around $5-15 \mathrm{mV}$, a.c. or d.c. Alternating signals have been the usual type, but many firms are now tending to use a direct-voltage input to the cells, preferring to deal with drifts in the electronics rather than with crosstalk and quadrature signals in a.c.-fed systems.

## Display

The type of instrumentation chosen depends to some extent on the display method preferred. Two schools of thought exist on this matter of readout: the protagonists of large dial displays with pointers, and the digital faction. Both methods of weight display have strong
points in their favour, and each has its own most appropriate sphere of activity, in common with the displays of other types of measuring equipment. Those in favour of digital readout point out its lack of ambiguity and ease of comprehension, but it must be admitted that this obtains only when the reading is static. On the other hand, the proponents of pointers on dials assert that the information can be assimilated more easily and, in some cases, even without the need to actually read the numbers - the position, or angle, of the pointer giving an adequate indication. If a hopper or vat is filling or emptying, the pointer
will follow and the instantaneous weight can be seen. In this situation a digital display would be uncomfortable, to say the least. It is perhaps true to say, however, that a digital display is more compatible with complete systems which must interface with peripheral equipment such as printers, batching controllers and computing devices. A typical arrangement would be as shown in Fig. 2.

Dial indicator. A typical dial indicator is shown diagrammatically in Fig. 3, where it shows the weight borne by four load cells. The outputs of the cells are combined and amplified to a workable level, and


Fig. 1. The Hunting l.v.d.t. weighing cell.


Fig. 2. A possible configuration of a complete weighing system with ancillary recording and batching equipment. The batching controller detects coincidence between the digital output of the display unit and a preset number, and controls the hopper output.
form one input to a comparator. The comparator output drives a motor which rotates the pointer over the dial. On the same shaft is a high-quality potentiometer which rotates with the pointer and which drives the other input of the comparator with the voltage on its wiper. As the amplified signal from the load cells at the comparator varies, the motor, pointer ${ }^{\text {. }}$ and potentiometer shaft rotate until the voltage at the other input to the comparator equals that from the load cells. The pointer now indicates the weight. In practice problems occur with hunting, as in any servo system, and much of the electronics is concerned with achieving adequate sensitivity while retaining stability.

Digital indication. In essence, the electronic design of a digital weight indicator is identical with that of a digital voltmeter and is simply concerned with analogue-to-digital conversion. Several different methods of doing this exist, and have been adequately described many times. Dual-ramp integrators, ladder networks and voltage-to-frequency converters are used, and the availability of integrated a-to-d converters must have a significant effect on this type of equipment. One of the advantages of this digital type of display is that the signal itself is now digitized and is available for transmission to other equipment.

## Applications

Containers. Perhaps the most common application of load-cell measurement is the weighing of the contents of large silos or vats. In place of levers and knifeedges (and imagine the problems as sociated with mounting a 500 -ton silo in such a manner) it is only necessary to sit the container on three or four load cells arranged round its perimeter, and the rest is electronics. It is, of course, necessary to ensure that the load applied to the cells is truly vertical and that side loads due to thermal expansion are eliminated by "floating" mountings, and for this reason it is sometimes found necessary to "hang" the container from tension cells rather than resting it on the compression type. Mechanical connections to the
container must be arranged to exert the minimum resistance to load.

Weighbridges. Anyone who has seen below the load platform of a large mechanical weighbridge will readily understand the attraction of load cells for this application. The elimination or reduction in depth of the pit and the replacement of immoderately dimensioned levers with insignificant load-cells is not the only attraction however; the signal from the cells is easily transmitted to remote displays without the use of further levers, and a digitized signal is already in a form for inpuit to other equipment for process control or data-collection.

Cranes. The mechanical way of weighing the load suspended from the hook of a crane is to suspend a complete weighing machine "in series" with the load, complete with its dial. Electronically, the method is to interpose a load cell somewhere between the gantry and the load (the exact position varies with manufacturer) and to lead the signal away to a fixed control and display console. The loads suspended from crane hooks are, in some cases, highly inimical to delicate mechanisms; molten metal, for instance, exudes fumes and quantities of heat: load cells are readily rendered relatively immune to this kind of treatment. It is also possible to arrange for the cell to provide an alarm signal which will indicate overload.

Belt-weighing. This is an application which has caused a certain amount of hairtearing and teeth-gnashing until quite recently, and the accuracies obtained are still not much better than a claimed $1 \%$. The essential information delivered by a belt weigher is the rate of flow of material over the belt (weight of a given amount $X$ speed) and the total amount conveyed.

In one example of belt weigher, designed by Philips, the belt produces a train of pulses, the frequency of which corresponds to the belt speed, by means of a slotted disc moving in the inductive feedback loop of an oscillator. The pulses are converted into a varying voltage
level in a frequency discriminator, the level becoming the input to the load cells, which bear the weight of a fixed length of belt. The cell output, therefore, is representative of the speed of flow multiplied by the weight (rate of flow). This signal is amplified to drive an indicator and is also applied to a fre-quency-to-voltage converter, the output of which (another train of pulses) is counted and totalized, thereby providing the "total" output.

A design was produced some time ago by Richard Sutcliffe Ltd, using l.v.d.ts as weight transducers, mounted on spring cantilevers which bear the load and which deflect linearly. A tachogenerator driven by the belt supplies the primary drive for the l.v.d.ts, the output of which is, again, speed times weight. This is indicated, as before, and gives rate of flow information. Integration to obtain "total" readout is performed by a watt-hour type of meter driven by the rate output, which has a perforated disc, with lamp and photocell mounted on its shaft. The pulses produced by the turning of the disc are counted to give the total.

These four applications probably account for the majority of load-cell weighing equipment in use, although many are in use in diverse other fields of activity. In medicine, for instance, it is used to measure minute variations in the weight of patients undergoing kidney dialysis. In this application, small variations are imposed on a static weight which is many times larger (the weight of the bed and patient), a constraint which requires considerable stability and resolution in the electronics as only a a small portion of the transducer output can be used.

In conclusion, it can be said that load-cell weighing offers convenience in the design, construction and maintenance of large systems, ease of interfacing with data-handling equipment and a ready means of obtaining remote or multiple displays. Cost saving becomes apparent in larger systems, but even in the smaller systems, cheapness is sometimes traded for the other attractions.

## Manufacturers of load cells and systems

W. \& T. Avery Ltd., Smethwick, Warley, Worcs. 021-558 1112/2161.
Bofors Electronics Ltd, Orchard House, Cherry Orchard Road, Croydon. 01-686 9487.
Davy-United Instruments Ltd, Darnall Works, Sheffield 9. Sheffield 49971.
Electromechanisms Ltd, 218 /221 Bedford Avenue, Slough, Bucks. Slough 27242.
G.E.C.-Elliott Automation Ltd., Elstree Way, Borehamwood, Herts. 01-953 2030.
Guest International Ltd, Redlands, Coulsdon, Surrey CR3 2HT. 01-668 7141.
Hunting Engineering Ltd, Electrocontrols Division, Dallas Road, Bedford. Bedford 60181. Mangood Ltd, Polo Fields Estàte, Panteg, Pontypool, Mon. NP4 5YJ. 04955/55112.
Pye Ether Ltd, (Philips), Caxton Way, Stevenage, Herts SG1 2DG. 04384422.
Transducers (CEL) Ltd, Trafford Road, Reading, RG1 8JH. 0734580166.

Fig. 3. A dial indicator in basic form. Batching can be carried out either by using the analogue signal or by causing the pointer to actuate photo-cell or inductive trips.


# An Approach to Audio Amplifier Design 

## 2. Measurement of characteristics, transient considerations, transient intermodulation index.

by J. R. Stuart,*B.Sc.(Eng), M.Sc., D.I.C., M.I.E.E.

In the first part of this series the discussion of an approach to the design of audio systems led to consideration of some of the characteristics that are currently measured for evaluation purposes, and to some that are not, but could be.

It is easiest of course to measure systems in terms of deviations from the specified ideal, and here I have concentrated on measurements made with standard equipment. Discussion of the design of audio amplifiers has so far isolated the following parameters for examination, and an attempt has been made to apply a level of significance to each.

Steady state:

1. Frequency/amplitude and phase responses.
2. Steady-state harmonic and intermodulation distortions.
3. Specific waveform distortions e.g. crossover, clipping.
Transient:
4. Rise-time.
5. Stability.
6. Transient intermodulation distortions (t.i.d.).
*Lecson Audio Ltd

Necessarily any discussion of these parameters is intimately involved with negative feedback design, and I return to this subject in this article.

Sensitivity of the ear to changes of slope around zero. The two distortion effects which, apart from serious overloading, seem to be the most objectionable to the ear are crossover and transient intermodulation distortion. Both effects can arise in any class $A B$ or class $B$ amplifier. The causes of toth types of distortion are totally different and the designer can handle them independently. In general the values of these distortions are also independent of each other, but in the case of ti.i.d. the presence of crossover distortion due to the gain deviation in the crossover region could aggravate the situation. It may be significant that both the distortions appear to have a similar subjective effect-possibly as both create a slope error (usually around the zero point) -although it may be an indirect consequence of these.

## Measurement of amplifier open loop characteristics

In conventionally designed negative feedback audio amplifiers, and particularly in
power amplifiers, the open loop frequency response is normally determined by lag compensation applied to the loop, although in some cases transistor characteristics may dominate, e.g. when output transistors are operated in the common-emitter mode.

The problem of measuring the open-loop transfer characteristic is that usually the a.c. feedback loop is associated with d.c. feedback, and thus d.c. feedback is essential to the correct operation of the amplifier; also the measurement technique should not substantially alter the compensations and working conditions from those of closedloop operation.

Figs. 11 (a) and (b) show two common circuit configurations with all the usual lead and lag combinations. The technique proposed for measuring the forward characteristic is to divide $R_{f}$ into three elements as shown in Fig. 11 (c), and to use two by-pass tantalum capacitors $C_{a}$ whose value is such that the attenuation between points A and B at the measuring frequency is at least 20 dB more than the measured gain. As power amplifiers normally have a closedloop gain of at least 20 dB , the error in this measurement is likely to be less than 2 dB . Note that this technique maintains fairly well the impedances at points $A$ and $B$ and

(a)

(b)

(c)

Fig. 11 (a), (b). Two typical amplifier configurations used to establish methods of measuring open and closed loop circuir performance.
(c) Substitution of feedback resistor $R_{t}$ by test jig circuit.
does not interfere with the conservative compensation of $C_{x}$ or the loading of $\mathrm{C}_{y}$ :
This connection, with careful attention paid to stray capacitances, will allow the measurement of open-loop gain and phase (compensated and uncompensated) and open-loop distortion.

## Some transient considerations

At the end of the first part in this series, a list of conclusions leading to the avoidance of t.i.d. were given in terms of negative feedback-loop design considerations. To obtain the best reproduction from an amplifier, careful attention has to be paid to other transient distortion mechanisms which include waveform distortions like ringing and overshoot and low-frequency rumble effects.
One very interesting property of negative feedback loops is that whereas usually their action is to reduce distortion appearing at the output, waveforms inside the loop may be subject to very large amounts of dis-tortion-much more than in the open-loop condition. I have quite often measured distortions within a loop $1000 \times$ the output distortion when only 30 dB of feedback is being used.
Low frequency transient effects can then arise if this distorted signal is able to change the d.c. working points of any stage in the amplifier, e.g. modify the average current in a decoupled stage as in Fig. 12. This is further aggravated, or may be induced, if the design allows the application of more d.c. than a.c. feedback. This is commonly done in an attempt to achieve an apparently high d.c. stability. In practice, small differences in the gain of the two halves of an amplifier can result in large very low frequency error signals being generated which can cause clipping or aggravate other distortions. The effect, which can be considered as a dynamic offset, is shown up by toneburst testing.

Translent response, distortion and stability. The synthesis of a successful system, and of single-loop forward characteristics, relies heavily on judgements made in balancing the above three characteristics.
Curve 1 in fig. 13 is an uncompensated amplifier response shown as a Bode plot. Were this amplifier connected for a closedloop gain of GdB it would be unstable. This is made more clear in the $j \omega$-plane Nyquist plot of Fig. 14.

There are three important ways in which this amplifier may be stabilised. The first is to very conservatively compensate it to achieve unconditional stability by rolling off the gain at a very controlled -20 dB / decade. This makes it necessary to introduce a dominant pole, sufficiently low in frequency, say at $\omega_{c}$, to ensure that either the loop gain $A \beta$ has fallen to 0 dB by the second open-loop breakpoint $\omega_{\beta}$, or that it is possible to add some lead compensation to the original response-or the feedback network-to allow a little less drastic compensation. The results of these suggestions are illustrated as curves 2 and 3 in Figs. 13 and 14. One implication is that unless the designer can find more gain in the forward characteristic $A(s)$, or is prepared to add a

Fig. 12. Typical d.c. coupled amplifier.


Fig. 13. Bode plot of a typical uncompensated amplifier.


Fig. 14. Nyquist plot of amplifier example shown in Fig. 13.

Fig. 15. Loop gain
characteristic of a
marginally stable
Fig. 15. Loop gain
characteristic of a
marginally stable
Fig. 15. Loop gain
characteristic of a
marginally stable amplifier.

 -





Fig. 16. An approximation to the ideal Bode loop gain characteristic.

Fig. 17. Response of an amplifier with ideal Bode plot of Fig. 15, to a step function.

Fig. 18. An s-plane plot showing the effect of negative feedback on the natural fiequencies of the two pole system shown in
Fig. 17.

Fig. 19. The peaking of frequency response as a result of the application of more feedback which, in turn, reduces damping.
zero to the feedback network at $\omega_{\beta}$, then unconditional stability can only be achieved by accepting that the feedback will become inoperative at $\omega_{\beta}$.

An alternative method is to accept a marginal stability and hence permit a loop gain characteristic $A(j \omega), \beta(j \omega)$ like that shown in Fig. 15. A characteristic of marginal stability is that such an amplifier may have a transient response which exhibits an overshoot or an oscillatory mode, and a peaking in the frequency response.

The third technique, of course, is to approximate to Bode's ideal loop gain characteristic as shown in Fig. 16. The first two cases will now be considered:

Unconditional stability. An amplifier whose ideal forward characteristic (see Fig. 16)

$$
A(s)=A_{o} \cdot \frac{a_{o}}{s+a}
$$

is connected as a feedback amplifier where $\beta(s)=$ constant $\beta$. The closed loop gain $G(s)$ is given by

$$
\begin{equation*}
G(s)=\frac{a A_{o}}{s+a\left(1+A_{o} \beta\right)} \tag{1}
\end{equation*}
$$

showing that the low frequency gain is reduced by the factor $\left(1+A_{o} \beta\right)$, along with noise and steady distortions, while the bandwidth has been increased to a $\left(1+A_{o} \beta\right)$. Here $a A_{0}$ is the gain bandwidth product.

The response of this circuit to a step function, value $p$, is given by

$$
o(s)=\frac{p}{s} \cdot \frac{a A_{o}}{s+a\left(1+A_{o} \beta\right)}
$$

This gives by inverse Laplace transformation the output $o(t)$.

$$
o(t)=\frac{p A_{o}}{1+A_{o} \beta}\left[1-\exp -\left(a\left(1+A_{o} \beta\right) t\right)\right]
$$

These are sketched in Fig. 17 along with the impulse response $\dot{o}(t)$ where $\dot{o}(t)=g(t)$. It can be seen that no overshoot or ringing is possible in this circuit, and this kind of step response is one which many audio designers try to achieve.

Marginal stability. This is the condition where $A(j \omega), \beta(j \omega)$ is arranged so that when $|A(j \omega), \beta(j \omega)|=1$ there exists a phase margin, $\theta$, such that $\pi / 2>0>0$. (Note : for conditional stability the relationship could be $\pi / 2>\theta>-\pi / 2$.)
The phase margin $\theta$ is determined from $\theta=\pi-\angle A\left(j \omega_{1}\right), \beta\left(j \omega_{1}\right)$. The most general open-loop response that can be used successfully for closed-loop gains $\geqslant 1$ is the two-pole system shown in Fig. 15 and the open-loop response

$$
A(s)=\frac{A_{0} \cdot a \cdot b}{(s+a)(s+b)}
$$

When the loop is closed this gives the form:

$$
\begin{equation*}
G(s)=\frac{A_{o} \cdot a \cdot b}{s^{2}+s(a+b)+a b\left(1+A_{o} \beta\right)} \tag{2}
\end{equation*}
$$

The effect of negative feedback on the natural frequencies of this network is shown in the $s$-plane plot of Fig. 18. Notice that with sufficient feedback the two poles coincide at $s_{o}=\sqrt{\left(1+A_{o} \beta\right) a b}$.

The damping factor

$$
\delta=\frac{1}{2 Q}=\frac{a+b}{2 \sqrt{\left(1+A_{0} \beta\right) a b}} .
$$

Note that the damping is inversely proportional to $\sqrt{1+A_{o} \beta}$ so, as would be expected, the application of more and more feedback reduces the damping, increases the peak in the closed-loop response and introduces an oscillatory mode to the step response for $\delta<1$,* see Fig. 19 curves. This arises because the roots of the denominator of equation 2 become imaginary. Commonly used criteria to determine whether the transient response of such a circuit will be adequate are gain and phase margins, and the amount of peaking shown in the steady-state frequency response. To some extent, the values chosen depend upon gain and phase stability, and variability within the design, but rules of thumb suggest that $\delta \geqslant 1 / \sqrt{2} \geqslant Q$, and suggest gain and phase margins of 15 dB and $60^{\circ}$.

Reactive load conditions. One problem in the design of an audio power amplifier is that it may be expected to drive loads varying from pure inductance through resistance to pure capacitance, and may also be loaded with a tuned circuit.
So far as stability is concerned the inductive load does not concern us much $\dagger$ as it is assumed that the open-loop transfer characteristics referred to are measured or calculated under resistive loading.

Loading a practical amplifier with a pure capacitance, to simulate perhaps electrostatic loading, will result in the introduction of a new pole in the transfer function at $\omega_{n}$. It can be seen from Fig. 20(a) that the effect of this on an unconditionally stable amplifier is that for $\omega_{n}, \omega_{n 1} \angle \omega_{a}\left(1+A_{o} \beta\right)$ a ringing may appear in the closed loop step response, whereas little change will occur in the step response if $\omega_{n 1}>\omega_{a}\left(1+A_{o} \beta\right)$.
In an amplifier of 2 nd order response working into a resistive load, the effect of adding the pole $\omega_{n}<\omega_{x}$ can be to make the amplifier unstable; or for $\omega_{n}>\omega_{x}$ little change should be noted. See Fig. 20(b).

Capacitive load condition. One technique often used to ensure stability and/or freedom from overshoot into capacitive loads is to deliberately over compensate the openloop response so that at no time does $\omega_{n}$ fall below the closed-loop cut-off frequency. This technique is unnecessarily punitive and will obviously result in a lower open-loop break-point.
Another technique is to modify the output circuit so that although $\omega_{n}$ can be $<\omega_{x}$, the change to the open-loop response is small, ensuring that at $|A(j \omega)|=\beta^{-1}$ the slope of $A(j \omega)$ is the same as in the resistive termination. Such a modification involves a resistor and inductor in series with the output. This is shown in Fig. 20(c).
The last technique to take account of this type of loading involves adding a zero to the

## *Critical damping

+ Note: the inductive load is important when considering low frequency design.

Fig. 20. Effect on single pole (a) and two pole (b) amplifiers of driving into a purely capacitive load. (c) Output circuit modification to improve stability with a capacitive load.

Fig. 21. Loop gain and phase characteristics of single pole amplifier.

Fig. 22. The projected effect on distortion of the amplifier loop characteristic.

feedback network; hence $\beta(s)$ is of the form:

$$
\beta(s)=\frac{s+m}{m} \cdot \beta
$$

This of course has the effect of adding a zero to the closed-loop transmission, and if $m$ is chosen to be equal to $\omega_{n}$ for the largest value of capacitor load envisaged, say $2 \mu \mathrm{~F}$, then the transient response and stability will not suffer provided $\omega_{n}>50 \mathrm{kHz}$ (for an audio amplifier).

## Phase response

Neglecting for the moment the example of an amplifier with a second order open-loop response, let us consider the responses of the
single pole example shown in Fig. 21 having its pole at $\omega_{x}$. If we consider the closed-loop response of the system we can see that this also described the closed-loop responses where

$$
\omega_{o}(\text { closed loop })=\left(1+A_{o} \beta\right) \omega_{o}
$$

The specification for a high quality amplifier quoted in the first part of this series contained the suggestion that the amplifier as a whole should have phase tolerances of $\pm 10^{\circ}$. Given that a passive filter was shown to be desirable in the preamplifier, for transient distortion reasons, and that this will introduce a phase lag, it can be seen that the permissible phase shift in any one stage is small, and ideally $-2^{\circ}$



Fig. 24. Model of performance as a function of input slew rate.

Fig. 25. Test signal used to probe incremental gain.
at 20 kHz in a typical system. Note that this and the requirements for stability apply equally to the low frequency design. An amplifier with a response of the form

$$
G(s)=\frac{A_{o} \cdot a}{s+a\left(1+A_{o} \beta\right)}
$$

will have a phase shift of $-2^{\circ}$ at 20 kHz for $\omega_{x}=\sin \omega_{a}\left(1+A_{o} \beta\right)=570 \mathrm{kHz}$ and $-6^{\circ}$ for $\omega_{x}=200 \mathrm{kHz}$.

This result suggests that the phase requirement places fairly strict bounds on the gain-bandwidth product for any design; e.g., if we wish to have a phase lag of $-2^{\circ}$ at 20 kHz and to use 40 dB of feedback then the open-loop pole $\omega_{a}=5.7 \mathrm{kHz}$ min.

In the second order case the requirement for a given phase lag will be a greater openloop -3 dB bandwidth due to the more rapid open-loop phase shifts.

## Distortion reduction

A point was made in the first part of this series that a weighted steady-state distortion of $0.1 \%$ at any frequency in the audio band was a good and sufficient goal at which to aim. In addition, general discussion of the mechanism of negative feedback loops produced three points:

1. The steady-state distortions, amenable to reduction by feedback, are not reduced for a signal of frequency $\omega_{1}$ by the amount $\left(1+A\left(j \omega_{1}\right), \beta\left(j \omega_{1}\right)\right)$ but by an amount related to $\left(1+A\left(j n \omega_{1}\right), \beta\left(j n \omega_{1}\right)\right)$ for $n$, integer $\geqslant+2$. This accounts for any reduction of loop gain at harmonic frequencies and phase shifts at these frequencies.
2. The weighted steady distortions in an amplifier where $A(j \omega)=$ constant, $\omega=0$ to $\pm \infty$, will only reduce by the amount $(1+A \beta)$ if the distortions are already small, so that $A \beta(v)$ has small limits; otherwise not only will the t.h.d. not reduce, but the weighted t.h.d. can be expected to reduce less, due to a changed harmonic structure being introduced.
3. It is likely that negative feedback will reduce the maximum unclipped output: Fig. 22 illustrates the expected effect of the loop characteristic on the distortion of an amplifier. Obviousiy the only two points the designer must carefully consider are the extremes of the range-as would be expected. The arguments of course apply equally to intermodulation distortion.

It can be seen that for any particular specification, e.g. $\ngtr 0.1 \%$ weighted t.h.d. in the band $20 \mathrm{~Hz}-22 \mathrm{kHz}$, the open-loop gain and phase response will be an important consideration, a wider bandwidth giving a neater solution to the t.h.d. specification and making it necessary to obtain a given distortion characteristic, to use less low frequency gain and hence achieve better stability, and phase response.

## System transient analysis

In analysing the transient performance of a system, that is pre-amplifier plus power amplifier, the power amplifier has been considered as having a first order open-loop response-or at least a second order response where $\omega_{b} \gg \omega_{a}$ (Fig. 15). This has been done for simplicity; however, the conclusions are general. Three conditions have been envisaged:

1. Pre-amplifier response declines at $-6 \mathrm{~dB} /$ octave above $\omega_{1}$.
2. Pre-amplifier response declines at $-12 \mathrm{~dB} /$ octave above $\omega_{1}$.
3. Pre-amplifier response is boosted by $+6 \mathrm{~dB} /$ octave above $\omega_{2}$ and decays at $-6 \mathrm{~dB} /$ octave above $\omega_{1}$.
In each case the power amplifier has an open-loop pole at $\omega_{o}$ and has a response

$$
\frac{e_{o}}{e_{1}}=G(s)=\frac{A \cdot \omega_{o}}{s+\omega_{o}(1+A \beta)} .
$$

The error signal $\varepsilon$ is described by the relationship

$$
\frac{\varepsilon}{e_{1}}=K(s)=\frac{s+\omega_{o}}{s+\omega_{o}(1+A \beta)}
$$

Put $(1+A \beta)=\alpha$ in case 1 , then, the total input-output response is given by:

$$
H(s)=A \cdot \frac{\omega_{1}}{\left(s+\omega_{1}\right)} \cdot \frac{\omega_{0}}{\left(s+\alpha \omega_{0}\right)}
$$

and in response to step function value $p$, the output is given by:

$$
e_{0}(s)=\frac{p}{s} \cdot \frac{A \omega_{0} \omega_{1}}{\left(s+\omega_{1}\right)\left(s+\alpha \omega_{0}\right)}
$$

and the error signal:

$$
\varepsilon(s)=\frac{p}{s} \cdot \frac{\left(s+\omega_{0}\right)}{\left(s+\omega_{0} \alpha\right)} \cdot \frac{\omega_{1}}{s+\omega_{1}}
$$

Taking partial fractions we deduce that

$$
\frac{\varepsilon(s)}{p}=\frac{1}{\alpha s}+\frac{\frac{\omega_{1}(1-\alpha)}{\alpha\left(\omega_{o} \alpha-\omega_{1}\right)}}{\left[s+\omega_{o} \alpha\right]}+\frac{\omega_{1}-\omega_{o}}{\left(\omega_{a} \alpha-\omega_{1}\right)}\left[s+\omega_{1}\right] \quad
$$

Setting $\omega_{0} / \omega_{1}=\delta$ and $\omega_{1} t=\tau$ and using the reverse Laplace transform we get

$$
\begin{array}{r}
\varepsilon(\tau)=\frac{p}{\alpha}\left[1+\frac{(1-\alpha)}{(\alpha \delta-1)} \cdot \exp (-\delta \alpha) \tau\right. \\
\left.-\frac{\alpha(1-\delta)}{(1-\alpha \delta)} \exp -\tau\right] \tag{5}
\end{array}
$$

By differentiating $\varepsilon(\tau)$ and setting this signal to zero we get the stationary points. Other than at $\tau=0, \infty$ there is a value of $\tau$ for which $\varepsilon(\tau)$ is a maximum given by:

$$
\begin{equation*}
\tau=\frac{1}{(1-\alpha \delta)} \ln \frac{(-\delta)}{\delta(\alpha-1)} \tag{6}
\end{equation*}
$$

The value of $\varepsilon(\tau)$ for various values of $\alpha$ and $\delta$ are plotted in Fig. 23. A similar analysis shows for case 2,

$$
\begin{align*}
\varepsilon_{2}(\tau)= & \frac{p}{\alpha}\left[1+\frac{(1-\alpha)}{(1-\alpha \delta)} \exp (-\alpha \delta \tau)\right. \\
& +\left\{(\delta-1) \tau-\frac{1-\delta(2-\alpha \delta)}{(1-\alpha \delta)}\right\} \\
& \left.\frac{\alpha}{1-\alpha \delta} \cdot \exp -\tau\right] \tag{7}
\end{align*}
$$

and for case 3

$$
\begin{aligned}
\varepsilon_{3}(\tau)= & \frac{p}{\alpha}\left[1+\left\{\frac{(1-\alpha)}{(1-\alpha \delta)} \cdot \frac{(\alpha \delta-\phi)}{\phi(1-\alpha \delta)}\right\}\right. \\
& \exp (-\alpha \delta \tau)+\{(\delta-1)(\phi-1) \tau \\
& \left.-\phi(\delta \phi-1)+\frac{(\delta-1)(\phi-1)}{(1-\alpha \delta)}\right\} \\
& \left.\frac{\alpha}{\phi(1-\alpha \delta)} \exp -\tau\right]
\end{aligned}
$$

where $\phi=\omega_{2} / \omega_{1}$.
The values of $\varepsilon(\tau)$ are also shown for cases 2 and 3 in Fig. 23. It is clear that the form of $\varepsilon(\tau)$ allows quite large overshoots to occur in the feedback loop and these can have a peak value much larger than the steady state error signal for the highest frequency $\omega_{1}$. It is interesting to consider the reason for this, and once again the surprise can be traced back to the classical feedback model. In the open-loop amplifier, the time for the output to rise from $10 \%$ to $90 \%$ of the final value was given as $0.35 / 2 \pi \omega_{o}$ sec. Now when the loop is closed, to achieve the original output level, instead of this condition, the effective input signal is increased in an attempt to increase the output slew-rate.
The classical theory breaks down here, because in a practical amplifier the following conditions will be obtained:


Fig. 26. Basic amplifier design produced to test transient distortion analysis.

- The amplifier will exhibit a time delay.
- The output slew-rate will not increase indefinitely in response to increased input signal level.
- In practice there will be a maximum slewing rate for the amplifier ( $S_{\text {out }}$ volts $/ \mathrm{sec}$ ) which is determined by the internal time constants and overload margins. At this point the relationship $S_{\text {oul }}=A S$ totally breaks down.
This amounts to the feedback network being totally inoperative for a portion of the open-loop rise-time of the amplifier, which can in turn have three effects:
- The incremental gain of the amplifier is not controlled during this time.
- The resulting overshoot in $\varepsilon(\tau)$ can overload the early stages of the amplifier, resulting in a $100 \%$ intermodulation during the rise time.
- The overshoot may, depending on the amplifier recovery characteristics, cause the amplifier to latch-up, resulting in an intermodulation burst much longer than the rise-time. The burst is commonly several milliseconds in many commercial amplifiers, particularly if an amount of treble boost is applied as in case 3
The transient distortion need not produce $100 \%$ i.m.d. since amplifiers tend to overload progressively. Fig. 24 is a model of performance as a function of the input slew rate $S_{\text {in }}$. The incremental gain will, of course, indicate the amplifier's ability to handle any other signal present before, during and after the transient. A useful test signal to probe this is shown in Fig. 25.

It will be remembered that the sensitivity of the ear to changes of slope was discussed earlier. It seems that there will be an equal likelihood of response to gain deviation in the vicinity of a transient as to disappearance of the incremental gain.

## Transient intermodulation index

Transient distortion can be analysed statist i cally, the likelihood of such a distortion arising being dependent upon the probability that an overshoot will arise within the loop suffecient to cause a significant gain deviation. This can in turn be related to the product of two parameters, the transient intermodulation index (t.i.i.), which describes the maximum size of overshoot expected from the previous analysis, and the overload margins in the amplifier.
The transient intermodulation index has been proposed here to give a rough idea of the amplifier's susceptibility to this form of trouble, and has been normalised so that an amplifier considered to have a good quality, judged by listening experiments and having, say, 20 kHz open-loop bandwidth with 40 dB of feedback, is normalized to 0.1 .
From the analysis it can be seen that the size of an overshoot could be approximately proportioned to $F / \delta$ where $F$ is the feedback factor. The important thing to note here is that $\delta$ refers the signal bandwidth to the open-loop bandwidth and so this relationship can be applied to any stage in the amplifier.

An example: To test the analysis an amplifier was built as shown in Fig. 26. It is a very common circuit and there is nothing

Fig. 27. Graphical summary of steady state performance of amplifier design shown in Fig. 26.


Fig. 28. Transient response to the test amplifier to square wave lest signals for a resistive 8 load and a 1 F capacitive load.



Fig. 29. Effect of combining a sine or square wave to demonstrate t.i.d.
special about the way the forward compensation has been applied. The dominant open-loop pole is set by $C_{y}$ and, as can be seen from the steady-state summaries in Fig. 27, the performance is nothing special. However, it is typical of the configuration which, due to device limitations, can never achieve the ultimate quality of alternative circuits.
Two experiments were carried out and in each case the input signal was passed through a network with a single pole at 44 kHz . In the first a square wave was applied at 1 kHz p.r.f. and $2 \mu \mathrm{~s}$ rise and fall time and the error signal was measured for

20 V peak to peak output. This waveform is shown in Fig. 28. Note that the overshoot is $350 \times$ the steady-state error in the negative direction and that in the positive direction the error is clipped at $70 \times$ the stcady-state error.

Secondly, a 20 kHz sine wave of IV peak to peak was added to the input signal and, as Fig. 29 shows, a transient distortion occurred, which was considerably aggravated for both positive and negative excursions by the addition of a capacitive load

Now obviously this can be much improved by increasing the overload margins of the first stage. Even when the situation


Fig. 30. Test rig used to measure t.i.d.
can be arranged so that the gain does not disappear, experiments indicate that the oscilloscope is not sensitive enough to show up the sort of gain deviations to which the ear responds. It is quite difficult to see $5 \%$ t.h.d. as a sine wave.

One technique I have used to increase the sensitivity of the sine plus square test is shown in Fig. 30. Here, the square-wave is modified by a phase characteristic equal to that of the amplifier under test, e.g. a duplicate amplifier, and the resulting signal is subtracted from the output waveform. The resulting signal allows $5 \%$ gain deviation to be seen.

## The treatment of steady distortion

The transistor is basically non-linear in many respects, and the designer of any equipment must understand this completely to design predictively. It is convenient to consider the non-linearities of the transistor in three cases:

- Small signal conditions, high and low frequency.
- Large signal, low frequency.
- Large signal, high frequency.

The small signal condition is, however, best considered as a special case of the large signal, except that some useful analyses are available on the minimization of secondharmonic distortion in small signal stages. Owing to the general shape of the polynomial describing the basic relationship between collector current ( $i_{c}$ ) and base current ( $i_{b}$ ) the predominant distortion is normally second harmonic. At low frequencies the non-linearities are (Fig. 31):

- The exponential form of the relationship between $i_{b}$ and $V_{b e}$, and of $V_{b e}$ with temperature.
- Variations of $h_{f e}$ and $h_{F E}$ with collector current $i_{c}$ and with collector emitter voltage $V_{c e}$. The variation of $h_{f e}$ with high values of $V_{c e}^{c e}$, which is due to narrowing of the base area (Early effect). Also $h_{f e}$ is subject to variation with temperature.


Fig. 31. Sources of non-linearity in a transistor.

At high frequencies the following effects are to be added:

- Variations of $C_{\mathrm{be}}, C_{c t}$ and $C_{c e}$ with device temperature, $V_{c e}$ and $i_{c}$.
Particularly for large signals this amounts, or can amount to, large changes in gain (10 to $1000 \times$ ), of any stage during a signal cycle, and particularly so at high frequencies.

The fundamental freedoms available to the designer are:

- Choice of device to optimise the effects for any circuit.
- Choice of quiescent operating conditions ( $V_{c e}$ and $i_{c}$ ) and of large signal swings.
- Control of the source and load impedances. In particular, choice of the correct source impedance for a stage can be fundamental in reducing distortion.
- Choice of the amount of local feedback.

In part 3, further discussion of steady state distortions leads to a description of a recent design. The idea of a figure of merit is returned to and the results of experiments given together with some consequential proposals.


## Listen. Philips have changed hiss into hush.

Whether the source of music is open-reel tape or cassette, hiss can be annoying during quiet passages.

The Dynamic Noise Limiter has been specially developed by Philips to solve this problem for you. Its ingenious circuits operate only during silent or quiet passages and when it can't be detrimental to the music. The DNL suppresseshisswithoutreducing the natural brilliance of reproduction. In fact it has the effect of actually increasing signal-to-noise ratio.

You connect the DNL unit N6720 between signal source and amplifier. It has 5.pin DIN $180^{\circ}$ input and output sockets.

For a brochure on allPhilips audio and recording accessories, write to Philips Electrical Ltd., DepartmentSP, Century House, Shaftesbury Avenue, London WC2H 8 AS.


PHILIPS
Simply years ahead.


The big volume linear source

If you're in computers or consumer products, industrial or military, communications or automotive, one big linear source is really 'good news'.

With more than 40 new ICs in 1972 (and we don't include package or spec. variations), and many more to come this year, our commitment to linear is real - and complete:Voltage regulators. including the exciting new MC 1568 , one of 7 unique Motorola designs, and the MC 7800 CP3 terminal series.
Op Amps. like the MC 3401 and MC 1456.
Multipliers. Motorola's are monolithic.

Interface IC's. A big range of sense amps, line drivers and receivers.
Consumer IC's. We're market leaders in US ...
Comparators. such as MC 3302 quad.
Monolithic $D / A$ and $A / D$ converters. 6 and 8 bit, including the new 8 bit MC 1508.

You want quick delivery? Every device in this great and growing range is 'made in Europe' - and stocked by our distributors in Europe.

So telephone your Motorola distributor today. He's ready to deliver the big volume source to your doorstep.
(M) mOTOROLA Semiconductors European manufacturing facilities at Toulouse and East Kilbride. Distributors: Celdis Ltd., Reading. GDS(Sales) Ltd., Slough, Jermyn Industries, Sevenoaks, A. M. Lock \& Co. Ltd., Oldham, Semicomps Ltd., Alperton.

# Experiments with operational amplifiers 

## Conversions between time and other variables

by G. B. Clayton,* B.Sc., F.Inst. P.

In instrumentation systems it is sometimes necessary to change a signal from one form into another. Conversions which involve time, for example voltage to time conversion or time to voltage conversion, can be performed using an operational integrator as the basis of the conversion circuit. The experimental circuits presented here show some of the ways in which operational amplifiers can be used for time conversions.

## 13. Pulse height to time conversion

A circuit which can be used to produce a time interval proportional to the height of a positive input pulse is shown in Fig. 13.1.

The amplifier is connected as an integrator. In the absence of an input pulse the output voltage of the amplifier is held at ap-

[^3]

Fig. 13.1 Conversion of pulse heigh to time.


Fig. 13.2 Action of Fig. 13.1 circuit illustrated by input pulses of different heights. Pulse waveforms, $10 \mathrm{~V} / \mathrm{div}$; integrator outputs, IV/div.; horizontal scale Ims/div.
proximately zero by the negative feedback through diode $D_{3}$. A positive input pulse causes capacitors $C_{1}$ and $C_{2}$ to charge, the output of the amplifier steps down and diode $D_{3}$ is reverse biased. If $V_{n}$ is the height of the input pulse the output steps down by an amount $V_{p} \cdot \frac{C_{1}}{C_{2}}$. This output step is discharged at the integrator at a rate $\frac{E_{\text {ret }}}{C_{2} R}$ volts $/ \mathrm{sec}$. The time for the output to charge up back to zero is thus

$$
t=\frac{V_{p} \frac{C_{1}}{C_{2}}}{\frac{E_{r e f}}{C_{2} R}}=\frac{C_{1} R}{E_{r e f}} \cdot V_{p}
$$

This time period is directly proportional to the height of the input pulse. Scaling may be set by choice of $E_{r e f}$.

Circuit performance may be checked by applying input pulses of different amplitude and measuring charging times by observation of oscilloscope waveforms. The action of the circuit is illustrated by the typical waveforms in Fig. 13.2, which show the circuit response for input pulses of two different heights.

## 14. Time to voltage conversion

A modification to the circuit of Fig. 13.1 which allows it to be used for a time to voltage conversion is shown in Fig. 14.1. The time interval to be converted is the time period of a negative gating signal. In the absence of a gating signal a positive voltage at point A causes conduction through diode $D_{1}$ and the output of the amplifier is held at approximately zero because of negative feedback through diode $D_{2}$. A negative gate applied at point $A$ reverse biases both diodes and the output voltage of the amplifier rises linearly at a rate determined by $E_{r e f}$ and the integrator time constant $C R$. The amplitude of the output ramp which is generated is proportional to the time period of the gating signal,

$$
E_{o}=\frac{E_{r e f}}{C R} \cdot t
$$

where $E_{o}$ is the amplitude of the output ramp and $t$ is the time period of the gating signal


Fig. 14.1 Circuit for time to voltage conversion.


Fig. 14.2 Action of Fig. 14.1 circuit illustrated by negative-going rectangularpulse gating signals of different widths. Rectangular waves, 5 V/div.; ramp waveforms $2 \mathrm{~V} /$ div., horizontal scale $2 \mathrm{~ms} / \mathrm{div}$.

Typical waveforms which may be observed in order to investigate the action of the circuit are shown in Fig. 14.2. The effect of two different gating periods is illustrated.

## 15. D.C. voltage to time conversion

A second amplifier, acting as a comparator, added to the circuit of Fig. 13.1 gives a system which may be used to produce a gate waveform of time period proportional to the magnitude of a d.c. voltage. The arrangement is illustrated in Fig. 15.1.

Positive reset pulses set the integrator output to approximately zero, and cause the comparator output to switch to its posi-


Fig. 15.1 D.C. voltage to time conversion, achieved by adding a comparator to Fig. 13.1 circuit.


Fig. 15.2 Action of Fig. 15.1 circuit. Top trace shows positive reset pulses; middle trace, integrator output; bottom trace, comparator output. Vertical scale, $10 \mathrm{~V} / \mathrm{div}$.; horizontal scale, $2 \mathrm{~ms} / \mathrm{div}$.
tive level. At the end of a reset pulse the integrator output runs up linearly at a rate determined by $E_{\text {ref }}$ and the integrator time constant $C R$. The comparator senses when the integrator output reaches a voltage level which is equal to the input voltage applied to the non phase inverting input terminal of the comparator, and the comparator output then switches to its negative saturation level. The time period of the positive part of the comparator output waveform is proportional to the input voltage, and is determined by the relationship

$$
t=\frac{C R}{E_{r e f}} \cdot e_{i}
$$

Typical waveforms which may be observed in order to examine the action of the circuit are shown in Fig. 15.2 Accuracy and linearity of conversion can be checked by measuring the time periods for a range of values of $e_{i}$.

Note that the time period is proportional to the ratio $e_{i} / E_{\text {ref }}$ so that if the reference voltage is replaced by a second input voltage the circuit then gives a time conversion proportional to the ratio of two input voltages.

In Fig. 15.1 the voltage $e_{i}$ must be positive; it must also, of course, be less than the integrator positive output voltage swing. A circuit which provides conversion of either positive or negative input signals can be made if the integrator output is applied to two comparators. One comparator is used
to sense when the integrator output passes through zero, the other senses when it passes through a value equal to the input voltage. The time period between the transitions of the two comparators is then proportional to the magnitude of the input voltage. The sign of the input voltage is indicated by which comparator makes a transition first. Diode $D_{2}$ must be removed from the integrator to allow its output to be reset to a negative value. A system of this kind can be used as a basis for a simple ramp type d.v.m., the comparator transitions being used to generate start and stop pulses which are applied to a digital timer system.

## Raising transmitter valve dissipation

In transmitting valves the maximum dissipation power of smooth, thin-walled copper anodes is in the region of 120 $\mathrm{W} / \mathrm{cm}^{2}$ and this no longer meets presentday design requirements. The Swiss firm Brown Boveri has recently developed a valve with a light-weight anode which is capable of dissipating over $350 \mathrm{~W} / \mathrm{cm}^{2}$. This figure has been achieved by combining a number of different surface structures in the anode.

Normally the anodes of vapour-cooled valves are provided with structures such as fins and corrugations. The main task of the fins is to provide heat transfer into the water as the anode load increases, while a vapour film forms between them. The maximum dissipation power of a valve with this type of anode can be varied through a wide range by changing its
geometrical configuration (e.g. wall thickness, height of ribs, ratio of fin width to space between fins). The maximum dissipation power of light-weight structures with short fins and with a ratio of fin width to fin spacing of about $1: 1$ is in the region of $250 \mathrm{~W} / \mathrm{cm}^{2}$. Brown Boveri made an attempt to raise this to over $300 \mathrm{~W} / \mathrm{cm}^{2}$ by treatment of the anode surface in the gaps between the fins without having to use larger and bulkier fin configurations. Investigations were made into the effects of various small and micro-structures on the maximum dissipation power of a smooth, thin-walled copper anode. A transmitter triode with an output of up to 65 kW was used as the specimen.

A rough surface increases heat transfer into the water because of improved bubble formation and higher bubble frequency. The maximum dissipation power also rises with increased surface roughness, so the dissipation was increased by 8 to $20 \%$ by means of sandblasting (depending on the grain size of the sand used). Highly porous surfaces can be produced by electrolytic plating processes. The maximum dissipation power of an anode plated with a 1 mm thick layer of porous copper with an average pore diameter of several tenths of a millimetre was found to be $40 \%$ higher than that of a bare anode.

Investigations were also made of the long term behaviour of the maximum dissipation power of a valve, especially after a period of storage. A test was done on a tube with a sandblasted anode surface. Its maximum dissipation power was measured at intervals of several days during storage in normal atmosphere and was found to increase by about $20 \%$. The increase is thought to be due to improved wetting, resulting from advanced oxidation at the copper surface.

The provision of fine structures of the order of millimetres at the anode surface also increases the maximum dissipation power in a similar fashion to microstructures such as surface roughness or porosity. To investigate the effects of these fine structures, various cylindrical wiremesh screens of different mesh sizes and wire thicknesses were fixed to the anode surface. A mesh configuration with a mesh width of 2 mm enabled the maximum dissipation power to be raised by about $50 \%$ over anodes with smooth surfaces. The mesh was also fixed to the anode surface by a copper plating process to improve physical contact. With the anode surface thus prepared, and adding a porous copper layer, the maximum dissipation power was raised to $210 \mathrm{~W} / \mathrm{cm}^{2}$. This is about twice that achieved with a bare anode and corresponds to the order of magnitude of the maximum dissipation power of finned anodes. A combined structure was made by fitting strips of wire mesh between the fins of a sandblasted double-fin anode and holding them in place by copper electroplating. The maximum dissipation power of this anode with an untreated smooth surface was $250 \mathrm{~W} / \mathrm{cm}^{2}$ but, after the surface structure had been modified, this figure was found to have risen to $360 \mathrm{~W} / \mathrm{cm}^{2}$.

# Letters to the Editor 

The Editor does not necessarily endorse opinions expressed by his correspondents

## Frequency shift howl suppressor

I was interested in the description of the frequency shifter given by Dr Hartley Jones in the July issue of Wireless World, but there are a couple of points raised by the author with which I disagree.

Over the twelve years or so during which I have had occasion to use such a device I have not found any advantage in increasing the frequency shift by more than three hertz, two being often the optimum, and this has applied even in halls of moderate size. If more shift than this is employed the permissible degree of gain was not increased and the change in pitch in the reverberant sound was very obvious even on speech and quite unacceptable on music.

A further point is that the ear appears to accept a decreasing pitch fairly readily but regards an ascending one as definitely artificial and objectionable, even though the amount of shift is the same.
Finally, users should not always count on obtaining as great an improvement in gain as indicated, for with a well designed public address system I have found the possible gain increase when using a frequency shifter to be as low as 4 dB . The use of the device does, however, considerably reduce the degree of coloration near howl-round.

## H. D. Harwood,

B.B.C. Research Department,

Tadworth,
Surrey.

## Audio amplifier design

I have read the further letter from Mr Stuart of Lecson Audio in your August issue, and I am somewhat surprised that so much of conjecture or personal opinion should be stated by Mr Stuart as matters of established fact.

However, to take the main points on which Mr Stuart has thrown down the gauntlet:

## 1. Transient intermodulation distortion

It has been known by audio amplifier designers for very many years that unsatisfactory results were frequently obtained if the input bandwidth to the power amplifier was excessive, and more recently this has focused attention on
the manner in which the amplifier responds to a transient input. A part of this problem was formerly analysed by Mr Otala in his paper presented in 1970, and he coined the above term for this problem.

I will try to summarize Mr Otala's argument with reference to the accompanying diagram.

If we take a feedback amplifier which consists of a chain of separate op-amp elements (for convenience I have shown three) of which, say, amplifier 3 is arranged to have the slowest response, and we apply a step-function input of sufficiently rapid rise time and sufficient magnitude, amplifier 1 will overload and produce severe intermodulation distortion in the transmitted signal, even when the magnitude of the input signal is within the normal input range of the amplifier, because the propagation delay of the main feedback loop is too long for the feedback to be effective in diminishing the magnitude of the applied signal - as seen by the first amplifier stage - during the transient condition.

This is a matter of practical concern in the design of transistor audio amplifiers, since the output transistors, represented by stage 3 , will generally have a more sluggish response than the small signal voltage amplifier stages 1 and 2 . Moreover, designers sometimes exacerbate this problem by choosing to stabilize the feedback loop by connecting a capacitor between the collector and base of the second voltage amplifier transistor, represented in my diagram by op-amp 2 .

There are (at least) three solutions to this problem.
(a) To ensure that the propagation delay
through the whole system is very low, in comparison with the signal bandwidth. This is the approach favoured by Mr Otala, but is expensive.
(b) To apply the loop stabilizing capacitor across stages 1 and 2 , thereby ensuring that stage 1 does not run out of negative feedback under transient conditions. (This was what I referred to as a divided feedback loop.)
(c) To interpose an input bandwidth limiting circuit, which could well be in the pre-amplifier, to ensure that the rise time of the input signal does not exceed the handling capability of the amplifier.

I favour a combination of the last two methods and, in particular, I believe that the dissociation of the h.f. feedback capacitor from the amplifier output point helps to ensure that the amplifier is tolerant of unexpected reactive loads, even though one pays the price of a t.h.d. curve which worsens somewhat at the h.f. end. Since I also believe that it is better to put predictable tonal quality with unknown loudspeakers before refinement of paper spec. I remain content with this decision.
2. Noise output from "virtual earth" amplifiers.

Mr Stuart asks again how it should arise, if the "virtual earth" point appears to have a low noise impedance, that the noise output should rise when this is shunted by $47 \mathrm{k} \Omega$. Since Mr Stuart must know very well that the gain of a shunt feedback amplifier is determined by the ratio of the input and feedback limb impedances, and that, other things being equal the higher the gain the larger the noise output voltage, I had treated this as a rhetorical question.

Obviously, the "virtual earth" impedance is a notional thing which arises because of the feedback connection. Equally obviously, the gain of the system increases when the input limb is reduced from an impedance of infinity ( $\mathrm{o} / \mathrm{c}$ ) to any lower value one chooses.
3. Effective bandwidth of R.I.A.A.equalized stages.
Mr Stuart says "of course the noise is calculated in a 20 kHz bandwidth". May I suggest a simple experiment. If one takes a wideband feedback amplifier, of any input resistance value one likes, and measures the output noise with a 20 kHz bandwidth, one will get a value which is in reasonable experimental agreement with the value predicted from

this bandwidth, the known gain of the circuit, and the thermal noise of the input elements. If now one connects across the feedback circuit the components necessary to provide the falling h.f. gain characteristic of the R.I.A.A. curve, the output noise will drop, simply because one has restricted the effective noise bandwidth. If this were not the case, the series feedback connection using an inductive input would be worse than it is.
J. L. Linsley Hood,

Taunton, Somerset.

## Inverter for fluorescent tubes

I should like to point out a serious error in the article "An efficient inverter for fluorescent tubes" by K. C. Johnson in your August edition.

Mr Johnson recommends preheating the fluorescent tube by switching 12 volts across the heaters. However, as I have proved to my cost, 12 volts is more than sufficient to initiate a discharge across the ends of the heater. Since the current drawn by this discharge is limited solely by the winding resistance of the chokes $(1 \Omega)$, a current of several amps immediately flows, resulting in the sad demise of the tube heaters.

To overcome this problem it is necessary to limit the available current to the heaters, and two resistors of ten ohms interposed between the second terminal of the tube heaters and the double pole switch contacts will achieve this, without seriously limiting the warm up capability of the tube.
D. G. Chappell,

Twickenham,
Middlesex.

## V.A.T. and prices

Could I appeal to your advertisers to say either Including or Excluding V.A.T. ?

Those that do not make this clear cause unnecessary correspondence and create mistrust both by buyer and seller.
W. B. Henniker,

Henniker \& Kerr,
Edinburgh.

## Printed circuits the easy way

Mr J. Ferguson's tips on making printed circuits (July Letters) are very useful. If readers try fibre or nylon tipped pens other than the "Miracle Pen" Mr Ferguson recommends they should etch some test pieces first.

Platignum "Penline Nylon Tip" and fibre tip "Magic Marker", indian ink and vitrina outline black, all easy to draw with, do not resist the ferric chloride. Another first rate pen designed for this purpose is the "Decon Dals", easy to use but a bit expensive.

The 30 or 40 minutes etching time
can easily be filled in on other jobs, so that may not bother some people. It is important if using a flat dish to suspend the board copper side down in the etchant so that sediment falls away, and to slide the board in so as not to trap air bubbles. Small boards float without extra support.

I find this method good: the layout of components is planned using 0.1 in squared paper. This is then transferred to typewriting paper, by pricking through the holes. On one side of the typewriting paper the components are drawn again and on the other side the printed circuit with any fibre tip pen. This might be repeated to rectify any errors or poor layout.

The laminated board is cut to shape and the copper cleaned. The paper pattern is cellotaped to the copper and the holes pricked into the copper surface with a cheap drawing compass. The paper removed, the holes are lightly centre punched, but not yet drilled. The circuit is now drawn on the copper with a suitable pen, and may be etched straightaway.

After etching and cleaning, the holes are quickly drilled with a Heathcraft Mini Drill which gives holes about 0.8 mm , a suitable size for most component leads, though a few holes need a larger drill. Burrs can be removed by fine emery cloth to make soldering a trifle easier.

If any readers have not yet tried making these circuits I recommend them to try. With a little practice the finished result can give much more satisfaction than any other board construction method.

## V. Rowe,

Salford.

## Radiating coaxial cables

I read with interest the suggestion of Mr Guy Moore that an aerial design which enhanced the radial vector component and suppressed the transverse component of the radiating field might provide a solution to the problem of frequency congestion and interference in the medium wave band. Such a design would indeed enable local broadcasting coverage to be provided without the associated long distance interference outside the service area.

Interest in frequency conservation is increasing every year and several methods of confining radiated signals have been investigated to date. One of the most promising solutions is the application of

radiating coaxial cables, which not only confines the radiation to a defined area but has the added attraction of providing coverage in areas such as tunnels, mines and buildings which would be inaccessible by conventional methods.

Investigations into the operation of radiating cables in the absence of buildings or tunnel walls has yielded interesting results. Measurements were made on a length of radiating cable laid on the ground in an open area, and the results are shown in the graph. The cable was fed with a 1 watt source with the far end terminated in a matched load (50 ohms). The variation of field strength with perpendicular distance from the cable was then measured at the mid-point of the cable. At frequencies of 989 kHz and 1502 kHz the field variation was distinctly of an inverse $r^{4}$ nature. This was unaffected by either mounting the cable above the ground or burying it under the soil. The latter result is not surprising if in fact the radiation mechanism is a radial induction field and not a transverse electro-magnetic.one.

Caution must be advised if this is attempted with a cable not designed to be buried, or one which radiates by electric field perturbation and not surface current transfer, as the presence of the moist earth will impede operation.

Working systems have been installed in a Scottish university and coverage was as predicted with no interference beyond the perimeter of the campus.

## J. R. Avery,

Andrew Antenna Systems,
Lochgelly,
Fife.

## Magnetic units

Although "Cathode Ray" and I agree on most points, he raises some questions in the August issue ( $p .332$ ) that require an answer. First, the P.M.A. still issues literature in both SI and c.g.s. units. Internally a few people use SI but I suspect the majority prefer c.g.s. Personally, I use whichever is more convenient in the circumstances. We are still probably a little ahead of the world in the use of SI; only last week I was sent a book on rare-earth-cobalt magnets to review. It was written by two distinguished members of Bell Telephone Laboratories and was entirely in c.g.s. units, apart from a conversion table. I think it is much fairer to compare the speed of conversion from c.g.s. to SI units in magnetism with the speed of decimalization as a whole rather than with the decimalization of money, which is a rather special case.

Secondly, the magnetization or polarization is not just of importance to physicists interested in fundamentals. Certainly one can design a loudspeaker magnet without knowing anything but the $B$ versus $H$ demagnetization curve of the magnetic material, but the new rare-earth-cobalt magnets have been developed largely because they are needed for t.w.ts in communication and other satellites. Two of these magnets can have almost identical
curves between remanence and the normal B coercivity point, yet one may have double the intrinsic coercivity of the other. The intrinsic coercivity is the demagnetizing force that reduces the polarization $J$ (magnetization $M$ ) to zero. The magnet with the higher intrinsic coercivity would perform satisfactorily, the other one would be seriously demagnetized by the conditions under which it would have to operate. An engineer who allows some equipment to fail because he thinks the intrinsic demagnetization curve only concerns fundamental physicists is not very competent; and if the equipment happens to be in a satellite he is unlikely to keep his job. Other devices which may contain magnets for which the intrinsic curve is important are car wiper motors and domestic electricity meters.

May I take this opportunity of correcting a typographical error in my article? In some of the labels of the axes on the figures an unnecessary bracket has appeared in an inappropriate place, so that the symbols for mega ampere per metre have been printed as $\mathrm{M}\left(\mathrm{Am}-^{1}\right)$ instead of MAm ${ }^{1}$.

Incidentally, it is internationally agreed that symbols for physical quantities should be written in sloping (italic) type, but those for units in upright type. Thus magnetization in mega ampere per metre should be in symbols $M /$ MAm $^{1}$. This convention has been followed in the text of my article, but not on the figures.
M. McCaig,

Permanent Magnet Association, Sheffield.

## Reflex circuits

I have been roused out of hibernation by M. G. Scroggie's very interesting article on his 50 years of authorship (August issue). As he describes me as "ubiquitous", may I add a historical footnote to his statement that P. G. A. H. Voigt wrote "one of the first expositions of dual or reflex circuits in the first issue of Modern Wireless (which I founded on 9 January 1923 and edited).
In point of fact, this type of circuit in various forms had been "exposed" frequently during ten years before 1923. I had done much to publicize it myself long before its incorporation in popular set designs and before the paper I read before the British Association in 1923. For example, in my book "Thermionic Tubes in Radio Telegraphy and Telephony", issued by the publishers of Wireless World in 1921, I give three examples. In Fig. 117 appears the standard reflex circuit. In describing it, I state: "A single valve may be used not only to amplify the high-frequency oscillators but also to magnify at the same time the rectified pulses obtained from a crystal detector. Many variations of the Fig. 117 circuit may be devised." I referred to Telefunken's British Patent 8821 (15 April 1913) which contains a double-amplification (reflex) circuit. On p. 166 I describe a reflex circuit with reaction and state:
"A further development of the Fig. 128 circuit was to bring the detected current back into the grid circuit and so amplify it. This double-magnification circuit, which is exceedingly sensitive, is shown in Fig. 129." Later on I give in Fig. 205 a reffex circuit by Marius Latour. This is a reference to his British Patents 131092 (30 April 1917) and 132668 (17 Nov. 1917). The Marconi Company developed a ship's receiver using a reflex circuit with a single valve (the circuit appears in Fig. 124 of my book "Elementary Textbook on Wireless Vacuum Tubes" (published in 1922).

Over the formative years 1917 to 1920 Wireless World published thirteen of my articles on valve techniques. In Fig 14 of one entitled "The Valve as an Amplifier" appears a typical dualamplification circuit with a full explanation. This issue is dated March 1918. I myself patented various forms of reflex circuit soon afterwards.

In view of the above selection of anticipations going back to 1913, I do not think that Voigt himself would have claimed in 1923 to have written "one of the first expositions".

May I take this opportunity of expressing the debt owed to Mr Scroggie by professionals and amateurs alike for his own brilliant and crystalline expositions which have enriched the literature of the subject for fifty years.
John Scott-Taggart,
Beaconsfield,
Bucks.

## Audio amplifier design

After reading the J. R. Stuart "Approach to audio amplifier design" (August issue), I was left gasping for oxygen as I absorbed the philosophy of the new generation of amplifier designers. How can Stuart continue with the normal, every-day mundane matters of life (shopping for cheap beef, shouting at the missus etc.) while knowing at the same time that his brain-or even the inner-being that is known as "self"-is all the time functioning as $f(P, s, 1, \tau m, D)$. I must admit though that there is comfort in the fact that distortion $D \%$ reduces according to cost $£ Z$ in the manner $a \exp \left[Q \cdot(D)^{-1}\right]+b \cdot D^{-2}+c \cdot D^{-1} . \quad$ I've memorized that for my next trip to the audio discount warehouse.
but then I don't design amplifiers. A. Bloomer, Neasden.

## Quantities and qualities

I am gratified to note that W. B. Broughton (August issue, p.385) has troubled to search for an alternative to my suggested "forbiddivity" to replace the quantity name "reciprocal permittivity". In fact, his designation, "restrictivity", was amongst about a dozen possibilities that I considered - including such monstrosities as "constrainitivity" - but for some reason which now escapes me I was then under the impression that res-
trictivity was a term already used in some obscure branch of science. However, since restrictivity (or whatever) has the SI unit metre per farad, it could have been most appropriately named "elasticity" (being given dimensionally by elastance multiplied by distance) had not elastic been in practical use before capacitors. On closer examination of this naming problem, I now realize that my search for an antonym (not counterpart as suggested in August, since this is accepted as equivalent to synonym) was incorrect, the requirement being a reciprocal, which, until 1570, was taken to mean "inversely related". So, we are both off course, although I still regard forbid as an acceptable starting point, being synonymous with hinder and restrain; hardly indicators of absolute stoppage. Curiously, and as a precedent, the widely accepted reciprocal quantities impedance and admittance already exhibit an anomaly: does not "impede" suggest partial prevention whereas "admit" concedes total entry? At this juncture I may as well admit that all this discussion is merely a subtle manoeuvre to steer the SI authorities into giving the unit, metre per farad, the name baldock, symbol Ba !

In more serious vein and also referring to p. 385, I am delighted that B. J. Shelley has drawn attention to the genius of Alan Dower Blumlein, since I tried to promote more widespread recognition by creating the B.K.S.T.S. memorial meeting concerning Blumlein's work that took place on May 1st 1968. For years - perhaps I should say decades - Mr Scroggie has been insisting that the "Miller integrator" should rightfully be called the "Blumlein integrator", and, apart from Blumlein's diverse and fundamental contributions to stereo techniques and 405 line TV developments, few electronic engineers know that he invented the transformer ratio arm bridge (Sept. 1928), the cathode follower (Sept. 1934; the forerunner of the emitter follower for those not brought up on thermionic devices) and the longtailed pair (July 1936), to name just a few of the 128 patents in which his name appears, and the result of developments over only 15 years prior to his untimely accidental death in June 1942.

An insight into Blumlein's humility is revealed by his attitude to research and development. I know several pioneers who worked closely with him at E.M.I. on television in the mid 1930s and have heard many interesting anecdotes. For instance, when A.D.B. could not help the team directly under "panic" breakdown conditions he was not above making the tea!

The full story of Alan Blumlein's contribution to technical history will appear in the forthcoming biography by Mr F. P. Thompson, written in conjunction with Simon Blumlein, and anyone with information likely to be of value should write to Mr Thompson at 39, Church Road, Watford WD 1 3PY, Herts, England.
R. N. Baldock,

Harrow,
Middlesex.

# Literature Received 

## For further information on any item include the $W W$ number on the reader reply card

## ACTIVE DEVICES

Wall-charts (in striking variations on a theme of puce) have been produced setting out salient performance details of c.m.o.s. logic devices and germanium power transistors by Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx. WW401
A range of studio recording equipment, including a modular system, reverberation equipment, signal processing equipment and a phase meter, is briefly described in a leaflet produced by Allen and Heath Ltd, Pembroke House, Campsbourne Road, Hornsey, London W.8.

WW402
A wail chart giving salient performance figures of a selection of linear integrated circuits, including operational amplifiers, comparators and regulators has been sent to us by National Semiconductors (U.K.) Ltd, The Precinct, Broxbourne, Herts EN10 7HY...................................... WW403
The design of logic systems using the 74 series of integrated circuits is well covered in TI's new publication "System 74". It offers advice on the loading and compatibility of the different groups of devices in the 74 family. Applications of t.t.1. and the problems of interfacing with other equipment are discussed and there is a section on memories. Texas Instruments Ltd, Manton Lane, Bedford WW404
The Lock Distribution Electronic Components catalogue contains information on products from Motorola, Signetics, Thomson CSF, Dow Corning, Waycom and Electrosil and gives details of technical publications available and distribution centres of Lock Distribution, Neville Street, Middieton Road, Oldham OL9 6LF, Lancs. .
. WW405 The 1973 Erie catalogue of electronic components incorporates the export and distributor stock catalogues. Components listed range from resistors and capacitors to thick film devices and semiconductors. Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk.

WW406 We have recieved a leaflet on m.n.os. electrically reprogrammable memory elements, describing characteristics, mode of operation, typical circuits and future developments from General Electric Semiconductors Ltd, East Lane, Wembley, Middx. HA9 7PP.
A catalogue listing semiconductors, including ics, A catalogue listing semiconductors, including i.cs memories, m.o.s. devices, fe.ts and photo-electric
devices, made by Fairchild, Mullard, Plessey and Lucas, has been produced by Gothic Electronic Components, Beacon House, Hampton Street, Bir mingham 19.

WW408

## PASSIVE DEVICES

Resistors and capacitors and their more important performance characteristics are shown in tabular form on a large new wall-chart, sent to us by the Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD. ............ WW4 10 A catalogue covering a wide range of passive components including terminals, coils and formers, capacitors, connectors and other small hardware is available from Cambion Electronic Products Ltd, Castleton, Nr. Sheffield, S30 2WR. . WW411 We have received a short-form catalogue, describing collet knobs, relays, rotary and thumbwheel switches and many other passive components from Radiatron Components Ltd, 76 Crown Road, Twickenham, Middx.

A catalogue describing eleven types of Melesco thermocouples, which contains a guide to the use of these devices and recommendations on maximum temperatures is available from International Combustion Ltd, Ashburton Road East, Trafford Park Industrial Estate, Manchester M17 1LA... WW413 A leaflet covering several ranges of miniature, rotary stud switches has been received from Highland Electronics Ltd, 33-41 Dallington Street, London ECIV OBD. WW4 14
A catalogue detailing the Pohl range of cable clamps has been sent to us by C.T.L. Components Ltd, 223/243 Wimbledon Park Road, London S.W.18. .................................. WW415 A buyer's guide to the U.K. capacitor market, containing information on which types of capacitor are handled by over 100 firms, has been published by Eurolec, Little Waltham, Chelmsford CM3 3NU. Price 95 p by post.

## EQUIPMENT

Mobile microwave links TFH-TM210A ( 7 GHz ) and TM2 $13(13 \mathrm{GHz}$ ), are described in a leaflet supplied by Thomson-CSF, Division Radiodiffusion Television, 100 Rue du Fosse Blanc, BP49, 92230 Gennevilliers, France. Specifications of the video and audio channels, multiplex telephony and power supply are included. . . . . . . . . . . . . . . . . WW4 16 Crystal oscillators - miniature, oven controlled, high stability and temperature compensated crystal controlled clocks and a rubidium frequency standard are among products described in a leaflet from Oscilloquartz SA, CH-2002 Neuchatel 2 /Suisse

WW417
Radiatron Ltd, 76 Crown Road, Twickenham, Middlesex TWI 3ET, has issued a four-page leaflet describing the range of mechanical, analogue and digital tachometer equipment that they market in the U.K. on behalf of Jaquet AG, Switzerland

WW418
The latest Servoscribe flatbed recorder range, which are $200 \mu \mathrm{~V}$ to 250 V d.c. deflection instruments with a writing width of 200 mm , using rolls or single sheets, is described in a leaflet available from Smith Industries, Ltd, Industrial Equipment Division, Waterloo Road, Cricklewood, London NW2 7UR

WW419
Colour picture monitors made by NV Cobar Barco, of Kortrijk, Belgium are described in three brochures available from the U.K. agents Crow of Reading Ltd, 79 London Street, Reading, Berks RG4 QDX. Each of the three types (of modular construction for ease of servicing) display RGB signals and PAL, Secam or NTSC-coded composite signals using the appropriate plug-in chrominance demodulator. The last two digits in the type number indicate the screen size in cm .
CTVM2/38
R W420
CTVM2/51
WW421
CTVM2/66 ....................................WW422
A single page date sheet for the DN-70 liquid nitrogen cooling unit is available from Oxford Instruments, Osney Mead, Oxford, OX2 0DX

WW423
"Cossor SSR Systems" is a booklet describing different types of secondary surveillance radar systems and fundamental performance requirements. Cossor Electronics Ltd, The Pinnacles, Harlow, Essex. . . . . . . . . . . . . . . . . . . . . . . . . . . . WW424
A catalogue of electronic kits covers the subjects of audio, radio, laboratory and automotove equipment and also contains general product information
including calculators, metal locators, intercoms. Heath/ Schlumberger, Advertising/PR Services, Bristol Road, Gloucester GL2 6EE. . ..... WW425 A full range of high-fidelity sound reproduction equipment including tuner-amplifiers, amplifiers, turntables, speakers, mixers, etc., is described in a catalogue sent to us by Eagie International, Heather Park Drive, Wembley HAO 1SU.WW426 We have received a leaflet giving full technical information on the Response BM 10410 -channel studio mixer from Audio Applications Ltd, Kensington Barracks, Kensington Church Street, Londpn W8 4EP ................................... WW427 A new catalogue covering their range of electronic measuring instruments has been published by Keithley Instruments Ltd, 1 Boulton Road, Reading RG2 0NL.

WW428 A leaflet describing photon counting systems for use in signal recovery from quantum detectors. such as photomultipliets has been produced by Brookdeal Electronics Ltd, Market Ştreet, Bracknell, RG12 1JU.

WW429
A leaflet describing display and recording accessories for use with the Datalab 900 series of transient recorders is available from Data Laboratories Ltd, 28 Wates Way, Mitcham, Surrey CR4 4HR.

WW430

## GENERAL INFORMATION

A revised catalogue of Puratronic ultra-pure chemicals and metals used in the manufacture of electronic materials and devices has been sent to us by the Publicity Department, The Johnson Matthey Group, 78 Hatton Garden, London ECIP 1AE. WW431
We have received two publications from the British Standards Institute. 101 Pentonville Road, London N19ND.
"Electronic tube terminology" - group 06 of Part 1 of the glossary of terms common to electrotechnology. . ............... Price $£ 2.00$ Code of Practice for the reception of sound and television broadcasting - CP1020: 1973 A guide to the quaity and reliability testing of resistors and capacitors, including a brief description of BS9000 and its relation to the C.E.C.C. system, has been received from the Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.

WW432
We have recently received a catalogue describing servicing instruments, tools and materials intended for the installation and maintenance of domestic equipment from Rank Radio International, Drayton Road, Borehamwood, Herts. . . . . . . . . . . . WW433 Recently produced by Jermyn is a catalogue supplement describing a large variety of both active and passive components and assemblies, for which the firm is a distributor. Other services described include coil winding, component matching and sub-assembly work. The supplement can be obtained from Jermyn Distribution, Vestry Estate, Sevenoaks, Kent.

WW434
We have received a catalogue containing information on calculators, large-scale i.c. chips for clocks and a receiver circuit, display devices and other components from Bywood Electronics, 181 Ebberns Road, Hemel Hempstead, Herts. .......... WW435 We have received a leaflet listing books written for postgraduates studying electronics and published by Butterworth \& Co. Ltd., 88 Kingsway, London WC2B 6AB.


## Shure makes the microphones. too.



To make life easier for the sound system installer, Shure offers an entire range of ingenious, lowcost circuitry devices. There are available modular "add-on" mixers, including a professional mixer, stereo mixer and a reverberation mixer. An Audio Control Centre is offered to shape response to match room acoustics, and our Level-Loc to control audio levels. In all, eight superb units are available to aid your work. Post the coupon today for a copy of our Microphone Circuitry catalogue.

Please send me full information on Shure Microphone Circuitry.

Name

Address $\qquad$

Shure Electronics Limited
Eccleston Road, Maidstone ME156AU

## The Sinclair Cambridge... no other calculator is so powerful and so compact.

## Complete kit-£29.95!

## The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 14$ !

## Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}$ " $\times 2$ " $\times \frac{1+1}{6}$ ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U1 6 batteries which gives weeks of life before replacement.

## Easy to assemble

All parts are supplied - all you need provide is a-soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

## The cost ? Just $£ \mathbf{£ 2 9} \mathbf{9 5}$ !

The Sinclair Cambridge kit is supplied to you direct from the manufacturer - you can't get it anywhere else. Ready assembled, it costs £ 43.95 - so you're saving $£ 14$ ! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge * Uniquely handy package.
$4 \frac{1}{2}{ }^{\text {" }} \times 2^{\prime \prime} \times \frac{11}{16}$ ", weight $3 \frac{1}{2}$ Oz.

* Standard keyboard. All you need for complex calculations.
* Clear-last-entry feature.
* Fully-floating decimal point.
* Algebraic logic.
* Four operators ( $\mathbf{+},-\mathbf{x}, \underset{\div}{-}$ ), with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
* Calculates to 8 significant digits, with exponent range from $10^{-20}$ to $10^{79}$.
* Clear, bright 8-digit display.
* Operates for weeks on four U16 batteries.
(Replacement set costs about 15p.)


## A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch.
10. Soft wailet.

## Actual size!



## 41⁄2in long $x$ 2in wide $x 11 / 16$ in deep

## This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.


How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like :
Logs Tangents Currency conversion Sines Reciprocals Compound interest Cosines nth roots and many others...


Sinclair Radionics Ltd, London Road, St Ives, Hunts Reg.no: 699483 England VAT Reg.no: 213817088

## Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price
But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : $£ 27 \cdot 23+\mathbf{£ 2} 72$ VAT. (Total : $£ \mathbf{2 9} \cdot \mathbf{9 5}$ )
Price fully built: $£ \mathbf{£ 3} \cdot 95+\mathbf{£ 4 . 0 0}$ VAT. (Total: $\mathbf{£ 4 3 . 9 5 )}$

[^4]
## VideO from Bell\&Howell

Inthe United Kingdom Bell\& Howell Video means:-
Electrohome Monitors
Grass Valley signal processing equipment JVC Nivico Thomson CSF Tamron

½in. EIAJ1 Video tape recorders and cameras

Specialised cameras and systems
Prime and zoom lenses

## and of course (in England and Wales)-

## IVC

1 in . colour and monochrome video recorders and cameras


New Thomson-CSF colour camera type THV 14 for studio use

Bell \& Howell's team of video engineers can provide a video system to meet your needs. For further information write to:-
Video Systems Division, Bell \& Howell A-V Ltd.
Freepost, Wembley, Middlesex, HAO 1BR
Or telephone: 01-902 8812 ww 7/73


## BelleHowell

Bell \& Howell have a team of engineers and a world of equipment at their fingertips

# Single Sideband, Suppressed Carrier Generation 

# Modification of the "third method", made possible by the use of integrated circuits 

by A. J. Turner* M.Sc.,G3UFP

Two distinct methods of generating a single sideband signal have found widespread use. These are known as the filter method and the phasing method. A third method has been described' but this has not found ruch favour. The purpose of this article is to try to resurrect some interest in the third method and present a new alternative made available by integrated circuits.
The principle of the filter method is shown in Fig. 1. The baseband signal is converted to a double sideband signal at an intermediate frequency, usually in the range $1-10 \mathrm{MHz}$. A highly selective filter, usually auartz crystal or mechanical, is used to obtain a single sideband which is translated on to the transmission frequency by one or more stages of heterodyning using balanced nodulators.

A block diagram of the phasing method is shown in Fig.2. The baseband signal is applied to a wide-band phase shift network The output from this and the unshifted signal are applied to a pair of balanced modulators. The translating carrier is also split into two quadrature components. When the output of the two balanced modulators are added, one set of sidebands add whilst the others cancel, leaving an s.s.b. signal.

## Third method

A block diagram of this method is shown in Fig. 3 from which it can be seen that this method comprises both filtering and phasing techniques.
The third method offers the following advantages over the others: highly selective filters, which introduce a loss of quality, are not needed, nor are wideband phase shift networks which require careful design and very accurate component values if adequate sideband suppression is to be achieved. In addition, imperfections in filtering and phasing or in balanced modulators do not result in unwanted sidebands outside the bandwidth of the wanted sideband. This is important when channel conservation is an important reason for using a single sideband system. Before considering the suggested modification to the third method, a brief description of the principle of the original system is necessary.

Suppose the baseband input signal is speech which has frequency components between 300 Hz and 3300 Hz and the pilot frequency is 1800 Hz . Each output of the first pair of balanced modulators then consists of two sidebands of translated speech, the upper between 2100 Hz and 5100 Hz and the lower between 0 Hz and 1500 Hz . The low pass filters, whose
transition region is between 1500 Hz and 2100 Hz where there is no energy, remove the upper sideband. The outputs from the second pair of balanced modulators each consists of an upper and lower sideband displaced about the translating carrier frequency. The two upper sidebands are in anti-phase. ${ }^{1}$ The required single sideband may be obtained by adding or


Fig. 1. Filter method for the generation of an s.s.b. signal.


Fig. 2. Block diagram of the phasing method for s.s.b. signal generation.


Fig. 3. Block diagram of the third method of s.s.b. signal generation, which involves both filtering and phasing techniques.

[^5]subtracting the outputs of the second balanced modulators.

## Modified third method

The disadvantage with the third method is that both the pilot and translating frequency carriers must be accurately split into quadrature components. This is not too difficult to accomplish at the low frequency of the pilot carrier. However, in order to minimize the number of stages of frequency translation after the exciter, the translating input to the second balanced modulators must be at as high a frequency as possible. Ideally, it should be the desired transmission frequency. Generation of high frequency quadrature signals is usually accomplished by loosely coupled tuned circuits and at 1 MHz this requires critical adjustment and layout of the circuit. The problem is worse at 10 MHz and almost impossible at 100 MHz . This problem may be overcome with the aid of digital integrated circuit techniques. Suppose we take a sine-wave oscillator whose frequency is four times that of the desired frequency of the translating input of the second balanced modulators. A conventional squaring circuit and RC differentiator may then be used to convert this to a positive going pulse train at the same frequency, as shown in Fig.4. Provided that the amplitude of the spikes is greater than about 3.5 V this signal may be applied to the clock input of the circuit in Fig.5.

This is essentially a divide-by-four using two JK flip-flops. Its action may be understood from the following truth-table remembering that the flip-flops are "crosscoupled" so that $J \neq K$ and $J_{1}=X_{2}$ whereas $J_{2}=X_{1}$. The $X$ output follows $J$ on the next clock puise.

| Number of clock pulses | flip-flop 1. |  | flip-flop 2. | $\begin{aligned} & 2 \\ & X_{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 3 | 0 | 1 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 1 | 1 |
| 6 | 1 | 1 | 0 | 1 |
| 7 | 0 | 1 | 0 | 0 |
| 8 etc. | 0 | 0 | 1 | 0 |

It can be seen from the above table that the $X$ outputs are square-waves whose frequency is one quarter of the clock frequency. Moreover the output $X_{2}$ is delayed by one clock pulse compared with $X_{1}$, so that the outputs form quadrature square waves. It is not necessary to convert these square-waves to sine-waves before application to the balanced modulators, indeed this would be difficult to do without introducing phase errors.

The reason for this is that a square-wave has energy at the fundamental frequency and odd harmonics only. So in the case of the first balanced modulators, the use of quadrature square-waves for the pilot carrier produces an ouput having sidebands between 0 and 1500 Hz and between 2100 and 5100 Hz as before. High frequency sidebands about odd multiples of the pilot frequency will also be produced, but these will be eliminated by the low-pass filters.

master oscillator at four times desired frequency


Fig. 4. Stages in the production of quadrature square-waves.


Fig. 5. Use of a t.t.l. i.c. to obtain quadrature square-waves.


Fig. 6. Block diagram of the modified third method of s.s.b. signal generation.

Quadrature square-waves, this time at a high frequency, may also be used for injection to the second balanced modulators so that a complete exciter may be made as shown in Fig.6. In practice, the modulator outputs are added using a tuned circuit and the exciter output is subsequently filtered and amplified before radiation. This filtering will remove high frequency components generated by the use of square-wave translating carriers.

However, there is a hidden advantage in using square-waves. As shown in Fig. 7 the harmonic components of the quadrature
square-waves also form quadrature pairs. This means that the summing tank circuit may be tuned to a harmonic of the squarewave input and a true single sideband signal at that frequency will be obtained. This enables a higher transmission frequency to be reached without subsequent stages of translation.
The circuit of Fig. 5 has been found to accept a clock-input of at least 4 MHz and produce square-waves at 1 MHz . By tuning to 3 MHz or 5 MHz higher frequency output is obtained. The use of higher harmonics is limited by their reduced amplitude. How-


Fig. 7. Harmonic components of the quadrature square-waves, which also form quadrature pairs.
ever, the 7473 referred to in Fig. 5 is a slow device; even the 7472 edge-triggered flipflop can offer a $50 \%$ increase in clock frequency.
The author is currently developing an exciter based on these principles using very high speed Shottky logic capable of
accepting a 100 MHz clock input and producing s.s.b. on 25 MHz with no stages of translation after the exciter. It is hoped that by using the third harmonic, s.s.b. on frequencies as high as 500 MHz may be produced with only one stage of translation after the exciter. Since the
accurate tuning of circuits to obtain the quadrature signals is not required the output frequency may be varied by tuning the oscillator, no other tuning being necessary over a fairly large range of frequencies.

## Conclusion

The modified third method, using quadrature square-waves for the translating and pilot carrier, offers all the advantages of the conventional third method. In addition, since it requires no adjustment and no inductors, except those in the filter and oscillators, and since the quadrature components are inherently accurate, its performance should be superior in terms of sideband suppression and reliability.

The use of harmonics can extend the frequency range that can be covered and minimizes the number of translation stages.

Integrated circuits have their effect on the balanced modulators also. The device SN56/76514 is a balanced modulator offering conversion gain which should enable a complete exciter using only six integrated circuits and two transistors for the oscillators to be built.

## Reference

1. Weaver, D.K., "A third method for the generation and detection of single sideband signals," Proc. I.R.E. 1956 Vol. 44, Part 12, pp1703-1705.

## New electrochromic display

A new type of display device which produces a purple display on application of electric charge has been developed at Philips Research Laboratories at Eindhoven. Displays using the principle - for which patents have recently been granted to Philips - offer long-term memory, low switching voltage and good contrast that is independent of viewing angle. Previous electrochromic displays, like those based on electro-plating, colour changes in pH indicators or metal oxide colour centres, have suffered from high power consumption, irreversibility and /or low speed.

The Philips display is based on a redox (oxidation-reduction) reaction of diheptylviologendibromide in water. This colourless organic compound can be reduced at a cell cathode on application of a p.d. greater than the redox potential into a purple radical ion that reacts with the bromine anion to form a compound insoluble in water that precipitates onto the cathode. Exceeding the redox potential reduces the viologen dye ion further to form an unstable product which imme-
diately reacts with the original ions to form the purple ion. The cathode deposit remains until the cell is reversed.

This is done by short-circuiting the electrodes (which is very slow at around 0.5 s) or by applying the opposite polarity, giving an erasure time of 10 to 50 ms . This simple way has a snag in that build-up can occur on the anode, effectively slowing the cell down on subsequent cycles. A solution is to use a third, reference, electrode - formed in the case of seven-bar displays by the two islands in a figure eight. This is placed in a feedback circuit in such a way that cell current is controlled so that the p.d. between reference electrode and cathode becomes zero. With this potentiostatic technique, which needs only a simıle differential amplifier, current only hows when a coloured layer is on the cathode.

For a reflectance of $20 \%$, writing time is about 15 ms for a cell voltage of between $1 \pm 0.4 \mathrm{~V}$. This value of reflectance is obtained with a charge density of $2 \mathrm{mC} / \mathrm{cm}^{2}$, equivalent to about 100 mW in the display we saw. Contrast ratio was
$5: 1$, which could be increased by passing more charge, being quite independent of viewing angle. Typically, 1 mJ of energy is required for a seven-bar numeral of $5 \times 10 \mathrm{~mm}$, with no energy requirement during storage. The low switching power at low voltage makes such a display compatible with t.t.l., and i.g.f.e.t. (m.o.s.) technology.

Electrodes can be made of a metal or of the conducting, transparent oxides of tin or indium and deposited onto a glass plate. A second glass plate spaced 2 mm from the front plate forms the cell, which is filled with an aqueous solution of the organic compound together with potassium bromide to increase conductivity. The cell needs to be hermetically sealed, oxygen leakage limiting storage life. Cells have been run over $10^{5}$ cycles so far and the coloured ion shows no degradation after a year.

This organic cell shows a higher figure-of-merit (contrast/charge) than a similar, inorganic, electrochromic display using tungsten oxide, and being developed elsewhere, by a factor of 3 to 5 .

## World of Amateur Radio

## Citizens to gain amateur frequencies?

A recent announcement by the American F.C.C. proposes that the frequency band 224 to 225 MHz (which at present forms part of the 220 to 225 MHz amateur band in Region 2) should be re-allocated to a new Class E Citizens' Radio Service. The new band would be divided into 40 channels each 25 kHz wide. In its combined inquiry and rulemaking notice the F.C.C. invites comments on these proposals by September 20 and states that it will reply to these by October 22; unless there are unexpected delays American manufacturers are expecting that the new Citizens' Band will be in operation next year, although F.C.C. states that it will establish enforcement procedures before any use of the band is permitted.

This move follows a long campaign by American firms and some users of the 27 MHz Citizens' Band to obtain more frequencies. The original C.B. facilities, introduced in 1945, were limited to u.h.f. and attracted little attention. But with the introduction of the 27 MHz allocation in the United States in 1958 the numbers began to grow rapidly; from about 49,000 in 1959 to 868,013 in 1971, though in this expansion many abuses of the facilities became apparent in what had originally been intended as a short-distance radiocommunications service for fixed or mobile operation.

The new band, if implemented, is likely to further increase the antipathy of many amateurs towards Citizens' Band operation They can point to the I.T.U. Radio Regulations which allocate, in Region 2, the entire 220 to 225 MHz to amateur and radiolocation services on an equal basis; the F.C.C. proposal to assign part of this to a non-amateur radiocommunication service would thus appear to be in breach of the international regulations. European amateurs are not directly affected since this band is not available to amateurs in Region 1 but they will be concerned to note a further loss of frequencies by the amateur service.

## 25 years on "Two"

On September 1, 1948 part of the 144 to 146 MHz ("Two metre") band was released to amateurs in the U.K. for the fi: ${ }^{\text {a }}$ time as a result of the new frequency allocations made at the ITU Atlantic City conference in 1947. Within a few weeks, despite the temporary power restriction to

25 watts, contacts were being made by a small band of enthusiasts (most of whom had gained v.h.f. experience on the old 56 MHz band) with stations in Western Europe. For example Denis Heightman, G6DH at Clacton, made the first contacts with Holland, France and Belgium and one of the earliest long-distance contacts was between G5BY at Bolt Tail, South Devon and PAOPN in the west of Walcheran, Holland.

Since then this has become in the U.K. perhaps the most used of all amateur bands, with literally thousands of stations operating in almost all modes, including a.m., n.b.f.m., s.s.b., a.f.s.k. and slow-scan television. Contacts over distances of roughly 300 to 400 miles are accepted as being likely to occur during almost any period of concentrated activity, such as the many contests held on the band. The longest span ever covered on the band - 2540 miles between California and Hawaii - was almost certainly achieved by tropospheric ducting, and this propagation mode may have accounted for the contact between Australia and New Zealand in 1965. In Europe, a day still remembered was July 4, 1965 when one of the rare Sporadic E openings on this band resulted in many contacts with Yugoslavia, Hungary and even Rumania; The European record of 1387 miles was made on that day during a contact between Eire and Yugoslavia. The increase in Sporadic E openings on 70 MHz this year as we again approach a sunspot minimum suggests that further openings on 144 MHz may occur during the next few years.

## Courses for potential amateurs

In September and October many courses covering the syllabus of the Radio Amateurs' Examination will be starting at various technical colleges, adult education centres and the like with a view to preparing students for the examination next May. A partial list of centres (based on information from the organizers or from the R.S.G.B.) is given below, but in other places it may prove worth enquiring locally since the list is unlikely to be complete.

London and Home Counties: Beckenham, Kent (Adult Education Centre); Chertsey, Surrey (Institute of Further Education); Cove, Hampshire (N. \& W. Farnborough Further Education Centre) also Morse; High Wycombe, Bucks (College of Techno logy); Holloway, London (Shelburne

Youth Centre); Slough (College of Technology) also an "advanced" course for those who already have an amateur licence; Welwyn Garden City (Mid-Herts College of Further Education); Weybridge, Surrey (Brooklands Technical College).
Provinces: Bath, Somerset (City of Bath Technical College); Boston, Lincs (College of Further Education); Bridgnorth, Shropshire (College of Further Education) also Morse; Cannock, Staffs (Cannock Chase Technical College); Cheltenham, Glos. (North Gloucestershire College of Technology); Doncaster, Yorks (College of Technology); Knaresborough, Yorks (Adult Education Centre); Lichfield, Staffs Lichfield School of Art and Evening Institute); Liverpool (Riversdale College of Technology); Peterborough, Hunts (Technical College); Sheffield, Yorks (King Edward VI School); Stafford (College of Further Education) and Morse.

## National Field Day

Preliminary results - still subject to confirmation - of this year's National Field Day put the Surrey Radio Contact Club as overall winner, with Oxford \& District Amateur Radio Club runner-up; Glenrothes club was third and also winner of the Scottish N.F.D. In the single-entry stations the B.B.C. club "Ariel Radio Group" (Langham) was top scorer with East Barnet as runner-up.

## In brief

Ron Wilkinson, VK3AKC of Geelong, Victoria recently became the first Australian amateur to contact the United States through moonbounce on 1296 MHz. He used a 20 ft diameter parabolic dish aerial which he and his wife built and tested in six months . . . Hilary Mathews, grand-daughter of the late John Clarricoats, G6CL, has been licensed as G8HCG. Her father, Peter Mathews is G3BPM . . . . West German amateurs can now use 1815 to 1835 kHz (s.s.b. operation confined to top 3 kHz ) .... The M.P.T. has agreed to renew the experimental licence for the 144 MHz repeater station GB3PI for a further twelve months . ... A group of Australian amateurs recently recovered and tested an early Command (SCR283) airborne installation which had remained for over 30 years in tropical jungle in an Airacobra fighter plane that force-landed in 1942. The t.r.f. receiver was still in working order and the transmitter required only the replacement of block capacitors; the entire equipment has since been fully restored A south-east counties h.f. convention is to be held at the Airport Hotel, Crawley, on Sunday, November $18 \ldots$ A second Amateur Radio Retailers Association exhibition is to be held at Granby Halls, Leicester on October 25 to 27 . . . A mobile rally is being held at the Nettle swell Comprehensive School, Harlow on Sunday, September 23.

# Multi-channel Tone Control 

# A five-channel unit using active band-pass filters 

by J. R. Emmett*, B.Sc.

New ideas in tone controls have appeared in the last few years ${ }^{2,3}$ which improve or supplement bass and treble controls, which are usually of the Baxandall type. ${ }^{1}$ If the function of these controls is clearly understood, a fairly flexible amplitude frequency response curve can be built up. However, an easier and more versatile method of building a desired response is to use a number of overlapping, variable gain, frequency channels, spaced evenly throughout the audio spectrum. By using linear slider potentiometers, the control panel presentation can be made to resemble a response against frequency graph. In this form the system is sometimes called a "graphic equalizer". The unit which will be described for construction has five channels with centre frequencies of $50 \mathrm{~Hz}, 200 \mathrm{~Hz}, 800 \mathrm{~Hz}, 3.2 \mathrm{kHz}$ and 12.8 kHz . The linear slider potentiometers used give a control range of $\pm 12 \mathrm{~dB}$. The designed signal level for normal use is around 0 dBm (approximately 800 mV ), a level matching most modern amplifier and recording equipment inputs.

## Negative feedback system

The usual method of obtaining a multichannel response is by using an $L C$ bandpass filter and gain control for each channel. The range of inductance needed to cover the ten octaves or so of the audio band makes the filters expensive and unattractive. In addition, much trimming is normally needed to obtain a basically flat response, due to crossover interactions between channels.

Negative feedback methods offer many advantages, such as reduced noise and distortion and accurate gain setting using potentiometers of linear law. In the case of the multichannel system, the filter specification may be greatly relaxed, and trimming can normally be eliminated.

A block diagram of this type of system is given in Fig. 1. At the centre frequency of a channel, and assuming no interaction between channels

$$
\left|V_{v u i}\right| /\left|V_{i n}\right|=R_{a} / R_{b}
$$

If a simple tuned circuit bandpass filter is used, in order to cross over evenly between channels the $Q$ value should be $\sqrt{2^{x}} /\left(2^{x}-1\right)$, where $x$ is the channel spacing in octaves. In a negative feedback system this is not
critical and the value of $Q$ can be raised to reduce the interaction, the penalty being a rise in noise at the crossover points. Error in the centre frequency of a filter has a similar effect; as a guide, approximately 1.5 dB increase in noise is produced by $50 \%$ $Q$ error, or $15 x \%$ error in centre frequency.

At a first glance it would seem desirable to make the first and last filters low and high pass respectively, but in actual fact this response is produced in a negative feedback loop using only bandpass filters. The penalty is increased noise again, but this time well outside the audio range, assuming a reasonable choice of channel frequencies has been made. Using only bandpass filters simplifies the system since only one basic filter type is required. The design of this network will now be considered.

## Active bandpass filter

In some systems there could be thirty or more channels, and since there is one filter circuit per channel, this must be designed as

Performance of the five-channel tone control
-3 dB bandwidth at 1 V r.m.s. signal level, controls flat: $8 \mathrm{~Hz}-30 \mathrm{kHz}$ distortion at 1 V r.m.s. signal level, controls flat: $100 \mathrm{~Hz}-0.05 \%$
$1 \mathrm{kHz}-0.05 \%$
$10 \mathrm{kHz}-0.05 \%$
clipping level, controls flat: 2.9 V r.m.s.
economically as possible within the limits of the specification. Assuming no inductors are to be used for the reasons mentioned before, the number of active devices should be minimized, unless component tolerances can be relaxed by using more. Close tolerance capacitors can prove especially expensive.

A simple circuit that meets these requirements is the Wien bridge derivative ${ }^{4}$ shown


Fig. 1. Simple block diagram of the multi-channel negative feedback system.


Fig. 3. Band-pass filter using multiple feedback.

[^6]Fig. 2. Example of a band-pass active filter.



Fig. 4. Circuit of the five-channel tone control unit. Only one of the filters and linear potentiometer is shown.


Fig. 5. Suggested power supply circuit using an integrated regulator.


Fig. 6. Alternative discrete component power supply.


Five slider potentiometer controls on the front panel can be set to represent the required umplitude frequency response.
in Fig. 2. The response follows the tuned circuit law

$$
V_{o u t} / V_{i n}=-H \omega_{0}(j \omega) / \omega_{0}^{2}-\omega^{2}+a \omega_{0}(j \omega)
$$

where $a=1 / Q, \omega_{0}$ is the resonant frequency and the gain of the voltage amplifier is

$$
H=1 / 3(6.5-a)
$$

The component values are $C_{b}=C_{a} / 2$, $R_{c}=2 / \omega_{0} C_{a}, \quad R_{d}=R_{c} / 3$ and $R_{e}=2 R_{c}$. The most desirable feature of this circuit is that $R$ and $C$ values are independent of $Q$, and $\omega_{0}$ is independent of amplifier gain $H$. Unfortunately, the $Q$ value becomes extremely sensitive to the value of $H$ for $Q \geqslant 1$, and the margin of stability in such cases is narrow.

A circuit much more suited to this application ${ }^{5}$ consists of an inverting op-amp with multiple feedback loops (Fig. 3).

The response of this circuit is the same as before, but the component values are $C_{c}=C_{d}, \quad R_{f}=1 / H \omega_{0} C_{c}, \quad R_{h}=1 /(2 Q-$ $H) \omega_{0} C_{c}$ and $R_{g}=2 Q / \omega_{0} C_{c}$. If $H=2 Q$, $R_{h}$ can be left out and $V_{\text {out }} / V_{\text {in }}$ at resonance becomes

$$
V_{o u t} / V_{\text {in }}=-2 Q^{2}=R_{g} / 2 R_{f}
$$

The minus sign in this expression indicates a phase reversal, so the main amplifier in Fig. 1 will now need an in-phase gain to obtain an overall negative feedback relationship.

The above equations for this active filter circuit show that $Q$, passband gain and resonant frequency are determined solely by two identical capacitors and two resistors. The demands on the op-amp are not great, and a single bipolar transistor suffices for low $Q$ values. The transistors are used in the circuits to follow to provide a high stage gain in addition to filtering. This reduces the noise contribution of the main amplifier, and so long as the gain is greater than the number of channels used, the dominant noise contribution is that due to the first transistor stage of the active filter. This means a signal to noise ratio of about 70 dB ,

Table 1

| Channel frequency <br> $(\mathrm{Hz})$ | $C_{4,13}$ <br> $\left(\mu \mathrm{~F}_{ \pm} 10 \%\right)$ |
| :---: | :--- |
| 50 | 0.22 |
| 200 | 0.056 |
| 800 | 0.015 |
| 3.2 k | $3,900 \mathrm{p}$ |
| 12.8 k | $1,000 \mathrm{p}$ |

which is better than most preamplifier inputs.

## Practical circuit

The circuit is shown in Fig. 4. Only one filter is shown as the other four are identical, except for the values of $C_{x}$ which are given in Table 1. An emitter follower $T r_{1}$ provides a low impedance input source for the bank of control potentiometers, $R_{49-53}$. The fixed resistors $R_{5-14}$ restrict the range of boost and cut to $\pm 12 \mathrm{~dB}$. The active filter consists of a common emitter amplifier with a d.c. coupled emitter follower output. The $Q$ value employed is unity and the passband gain at resonance should be approximately 28 dB . The filter outputs are fed to the main amplifier through $R_{40-44}$ which also provide the d.c. bias for this stage. Overall h.f. stability is obtained from the $6 \mathrm{~dB} /$ octave roll-off provided by $C_{15}$ and $R_{45}$.

The unit complete with power supply fits into a $16 \times 11 \times 11 \mathrm{~cm}$ case without difficulty.


Fig. 7. Typical response curves of the five-channel unit.


Slider pots mounted on the front panel are shown at the top with the main p.c. board (centre), which carries the filter circuitry and input/output devices. The power supply is on a separate board (bottom).

Table 2
Modified filter component values for narrower channel spacing. For worst case component tolerance, channel spacing error is $30 \%$.

| Channel <br> spacing <br> (octaves) | $Q$ | $R_{15-19}$ <br> $(\mathrm{k} \Omega)$ | $R_{20-24}$ <br> $(\mathrm{k} \Omega)$ | $R_{30-34}$ <br> $(\mathrm{k} \Omega)$ | Tolerance <br> $C_{4-13}, R_{15-24}$ <br> $(\%)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1.7 | 3.9 | 47 | 6.8 | 10 |
| $\frac{1}{3}$ | 4.5 | 1.5 | 120 | 0.68 | 3 |

A suitable power supply circuit using a monolithic regulator is given in Fig. 5. An alternative discrete component version, with a "ring of two" constant current generator feeding a zener diode in parallel with the load is given in Fig. 6. Either unit offers a ripple level which is inaudible with the unit in operation.

A small point worth noting is that calibration of the potentiometers in linear dB steps does not strictly follow the mathematical law, although only $10 \%$ error is produced over a 12 dB range.

## More channels

The performance of the five channel unit is encouraging enough to consider expanding the controls in range and number. As for range of control, about $\pm 25 \mathrm{~dB}$ is the most that would normally be required, even for special effects. One can obtain this range by reducing the values of $R_{5-14}$ down to $2.7 \mathrm{k} \Omega$. To make sure that the overload margin is maintained under all conditions, it may be necessary to increase the standing current in $T r_{1}$ and $T_{13}$ to provide sufficient drive voltage for the potentiometer bank. Transistors $T r_{1}$ and $T r_{13}$ may then have to be types of a higher dissipation rating. The number and spacing of controls will depend chiefly on application, thirty controls of one third octave spacing being a reasonable limit. The filter circuits can remain the same as the five channel unit; modified resistor values for two higher values of $Q$ are given in Table 2. Using these modified circuits does not significantly alter the capacitor values for a given frequency, which are given by the equation

$$
C(\mu F)=1\left(\omega_{0} \sqrt{ } R_{f} \cdot R_{g}\right) \simeq 11.8 / f_{0}(\mathrm{~Hz})
$$

## Components

Values for the power supply components are shown in Fig. 5 or Fig. 6.

## Transistors

$T_{13}-\mathrm{BC} 212$
All others BC109

## Capacitors

$\left.\begin{array}{ll}C_{1} & -1 \mu / 10 \mathrm{~V} \\ C_{2} & -10 \mu / 15 \mathrm{~V} \\ C_{3} & -10 \mu / 15 \mathrm{~V} \\ C_{4-8} \\ C_{9-13}\end{array}\right\}-C_{x}$ (see table 1)

| Resistors |  |
| :---: | :---: |
| $R_{1}-47 \mathrm{k}$ | $R_{30-34}$ - 10k |
| $R_{2}-47 \mathrm{k}$ | $R_{35-39}$-680 |
| $R_{3} \quad-100 \mathrm{k}$ | $R_{40-44}$ - 22 k |
| $R_{4} \quad-1 \mathrm{k}$ | $R_{45}-100$ |
| $\left.R_{5-9}\right\}-33 \mathrm{k}$ | $R_{46} \quad-10 \mathrm{k}$ |
| $\left.R_{10-14}\right\}=3.3 \mathrm{k}$ | $R_{47}-4.7 \mathrm{k}$ |
| $R_{15-19}$ - 6.8 k | $R_{48}-1 \mathrm{k}$ |
| $R_{20.24}-27 \mathrm{k}$ | * $R_{49-53}-10 \mathrm{k}$ lin |
| $R_{25-29}$ - 100 k |  |
| *Slider pois are | 60 (mono) or LG60 |

## REFERENCES

1. Baxandall, P. J., "Negative Feedback Tone Control", Wireless World, Oct. 1952.
2. Ambler, R., "Tone-balance Control", Wireless World, March 1970.
3. Hutchinson, P. B., "Tone Control Circuit", Wireless World Nov. 1970.
4. Sallen and Key, Transactions I.R.E., CT-2 No. 1, March 1970.
5. Huelsman, L. P., "Theory and Design of Active RC Circuits"', McGraw-Hill, 1968

## Conferences and Exhibitions

1973 European Microwave Conference
Sept. 4-7 Brussels
(Dr. G. Hoffman, Secretary General, ST Pietersnieuwstraat 41, B-9000 Ghent, Belgium) LASER 73
Sept. 4-7
Munich
(Munchener Messe- und Ausstellungsgesellschaft, Theresienhohe 13, Munich, Germany)
Royal Television Society Convention
Sept. 6-9
Cambridge
(Royal Television Society, 166 Shaftesbury Avenue, London WC2H 8JH)
Solid State Devices Conference
Sept. 10-11
Nottingham
(The Institute of Physics, 47 Belgrave Square, London SW1X 8QX)
First National Quantum Electronies Conference
Sept. 10-13 Manchester
(The Institùte of Physics, 47 Belgrave Square, London SWIX 8QX)
Physics of Semimetals and Narrow-gap Semiconductors

Cardiff
Sept. 12-14 Cardif
(Dr. J. Aubrey, Dept. of Applied Physics, UWIST, King Edward VII Avenue, Cardiff CFI 3NU)
First Indian Electronics Trade Fair
Sept. 15-17
Bombay
(Taj Mahal Inter-Continental Hotel, Division of Trade Fairs and Exhibitions, Apollo Bunder, Bombay 1, India)
Switching and Signalling in Telecommunications Sept. 16-22

Birmingham
(I.E.E. Savoy Place, London WC2R OBL)

IEEE Electronics and Aerospace Systems Conference
Sept. 17-19
Washington
(I.E.E.E., 345 East 47th Street, New York, N.Y. 10017, U.S.A.)
Eleventh Modulator Symposium
Sept. 18-19
New York
(I.E.E.E., 345 East 47th Street, New York, N.Y. 10017, U.S.A.)
Electronic Prosthetics Conference
Sept. 19-21
Lexington
(College of Engineering, University of Kentucky, Lexington, Kentucky 40506)

## Letter from America

There were a number of firms making projection TV in England around the 1950s - Decca, Valradio, Ferranti and White-Ibbotson come to mind - and I am sure there were many others. However, the idea never really caught on and production ceased after a few years. Servicing posed some problems, but the big disadvantage was the fact that the picture could only be viewed under cinema conditions. After all there was only 6 watts to play with and even with cathode and grid tube-modulation, plus the use of efficient aluminium screens, the picture was not that bright. Now, with the advent of better projection tubes - colour of course - large screen projection TV might well be "an idea whose time has come". Sony certainly think so and they have given some very impressive demonstrations recently. Henry Kloss of Advent also thinks so and his company will be marketing a system later this year. The early systems I mentioned all used a Schmidt optical system made by Philips. The aluminized mirror tended to collect dust and it was most difficult to clean without damaging the delicate surface. Henry Kloss also uses a Schmidt system but he has dealt with the problem very simply: the whole thing is enclosed within the tube. It does mean that the system has a fixed focus but the advantages of having the optical components free from dust and fingerprints more than compensates for this. Three tubes are used and the phosphors are deposited
on $\frac{3}{16}$ in aluminium subtrates. As the full colour picture is formed by the superimposition of the three images coming from different places there will obviously be some distortion. The varied angles of projection cause a kind of "pincushion" effect and because two of the tubes are angled slightly for convergence, the height of two of the images varies from left to right; in other words, a "keystone" distortion. These deviations are corrected by applying a complex compensating waveform to the scanning circuits.

The screen measures just over $5 \frac{1}{2}$ feet by 4 feet and is spherical in shape with a 5 -inch depth in the centre. It is made of aluminium foil bonded to a supporting material and the surface is indented by a pattern formed during a rolling process. This pattern gives the effect of a multitude of tiny lenses which define the viewing angles as well as improving the efficiency. Compared to matt white paper, the overall gain of the screen is said to be about 10 . The loudspeaker is housed in the projection unit and the sound is reflected from the screen. Expected price is about $\$ 2500$.

The Consumer Electronics Show was again held in Chicago's vast McCormick Exhibition hall and, predictably, quadraphonic sound was the main interest. Just as predictable - the majority of receivers had provision for both SQ matrix and CD-4 "discrete" records. One receiver from Onkyo had automatic switching. No details were available but I imagine

the normal mode of operation is SQ and the presence of the CD-4 30 kHz carrier operates the switching. A few receivers had SQ and CD-4 decoders built-in but the majority offered SQ with provision for an external CD-4 unit. Harman-Kardon pioneered the method of 2-4 channel bridge switching whereby each pair of output stages are effectively connected in series for 2 channel operation but now many more receivers (Marantz, Rotel, Sony, Pioneer) are employing this technique. How much do these receivers cost? Well, a typical a.m./f.m. quadraphonic receiver giving some 40 watts per channel would cost between $\$ 450$ and $\$ 600$. Half that power would bring down the price to about $\$ 299$. The majority are fitted with some form of "joystick" balance control some with visual indication using l.e.ds. The most conservative guess would put quadraphonics with $20 \%$ of the market but it is growing rapidly. GlenburnMcDonald have just announced a new turntable featuring a wide-range phono cartridge and built-in CD-4 discriminator to sell under $\$ 59$. Very few CD-4 discs are available - only about 25 against 300 or more matrix types - but RCA promise a lot more by the end of the year.

JVC were showing their new quadraphonic cassette deck which has eight tracks on standard 0.15 -inch tape. Two drive systems are employed; one for the reel and one for the capstan. With such a minute separation between tracks, crosstalk can be quite a problem but JVC claim that special phase shift and feedback circuits reduce crosstalk to a minimum. Actual figures quoted were 25 dB (at 1 kHz ) - not as high as in conventional machines but acceptable enough for most purposes. Provision is made for $\mathrm{CrO}_{2}$ tape and the JVC noise reduction system - ANRS - is built-in.

Eight-track tape is still immensely popular, especially for car use, and CBS recently introduced a 100 -minute cartridge which can accommodate the double or triple "albums". Why a single record is called an "album" is inexplicable.

Sales of electronic calculators have been increasing by leaps and bounds and there were a number of new ones to be seen at the Show. One was the Commodore; a "super-mini" unit measuring only $4 \frac{1}{2}$ inches by $2 \frac{1}{2}$ by $\frac{3}{4}$ inches deep, priced at $\$ 39.95$. It is a six-digit model with add, subtract, multiply and divide functions. Tl had two new models, a 12 -digit desk-top unit at $\$ 179.95$ and a nother 12 -digit unit with memory at $\$ 179.95$. Casio were showing a new hand-held six-digit model costing $\$ 59.95$ with an eight-digit model priced at $\$ 99.95$. One sales manager said "before too long children are going to be carrying mini calculators to school like pencils".

According to Leibniz "It is unworthy of excellent men to lose hours like slaves in the labour of calculation" True enough, but I am still a little uneasy at the implications!
G. W. Tillett.

# Simple Facsimile or Teleprinter Signal Converter 

by J. B. Tuke


#### Abstract

The author describes here a simple and reliable signal converter unit suitable for driving both facsimile and teleprinter machines from the a.f. output of a communications receiver. Phase-lock-loop technique is used which has the ability to detect extremely weak frequencyshift keyed radio transmissions, under conditions of low signal/noise ratio, and eliminates the use of bulky and parameter restricting LC filter circuits which would be normally used.


To interface a communications receiver with either facsimile recording or teleprinter machines, a signal converter is required. Fundamentally the method of transmission for both systems are of the same type utilizing two level f.s.k. Different information rates and frequency shifts may be used depending on the transmission frequency and mode used.

Satellite transit predictions are broadcast via radio teleprinter and these being of immense value to stations equipped for the reception of weather satellite facsimile transmissions, the need for a converter or "terminal unit" which will deal with both forms of signals is evident.

## Reception of f.s.k. signals

The facsimile transmission of a weather picture takes the form of a frequency shift keyed signal in which the r.f. carrier is on one of two frequencies according to whether a black or white part of the picture is being transmitted at that instant. It should be noted that with this type of signal there are no intermediate shades of grey the signal is either black or white. Since almost all facsimile recording machines in use are amplitude operated devices, where no signal means black and maximum signal means white, the job of the converter will be to change the frequency variations of the transmitted signal into amplitude variations suitable for feeding into the picture recorder.

A teleprinter is, in almost all cases, operated by feeding reversing currents into the operating coil. The transmission is still f.s.k. - the two frequencies correspond to the "mark" and "space" characters of the Murray five unit code. In this case the converter or terminal unit must change the r.f. signal into output current "reversals". It does not require much imagination to see that if the facsimile converter can produce amplitude changes corresponding to frequency changes, it will require only a simple relay to further change these amplitude variations into reversing d.c.
The NE560B integrated circuit, provides
the basis for a simple terminal unit which can deal with both facsimile and radio teleprinter signals. This will permit both data systems to be decoded and driven from a conventional communications receiver. This Signetics i.c. is a "phase-locked-loop" device in which a local oscillator, in fact a voltage controlled oscillator or v.c.o., locks onto an incoming signal by means of an error voltage which is produced by a phase comparator. An example of operation using typical frequencies follows.

Suppose the v.c.o. is free-running at 1500 Hz . If an input signal above this frequency, say 1600 Hz , is applied to the equipment, the v.c.o. is locked to this frequency by the error voltage generated by the phase comparator. The v.c.o. therefore has the same frequency as the incoming signal but there will, of course, be a constant phase error between the two which is proportional to the v.c.o. control voltage. If the input frequency is now changed to some figure below the freerunning frequency, say 1400 Hz , the v.c.o. would shift to that figure generating, in the phase comparator, an error voltage of the reverse sign. In the i.c., the error voltage does not, in fact, reverse sign but changes the level around a mean d.c. or quiescent value. The relationship is illustrated diagramatically in Fig. 1.

If the error signal derived from the


Fig. 1. Response of phase-lock-loop over locking range.
comparator is fed (after suitable buffering) to a Schmitt trigger, it may be arranged so that one signal frequency produces a voltage which switches the trigger on, while the other switches it off. If an amplitude modulated signal is required to operate the facsimile recorder, the Schmitt trigger may be made to key a tone oscillator. For teleprinter use, the trigger may be used to operate a suitable high speed relay, via a transistor driver, which can provide the current reversals required.

## Practical considerations

In designing a practical unit using the scheme described above, the first item to consider is the frequency at which the i.c. is to function. It could be at the receiver i.f. but few equipments have accessible i.f. outputs. It is preferable therefore to operate in the a.f. range, making the unit compatible with any receiver having a b.f.o.

Any frequency shift transmission, when received with the b.f.o. switched on, results in two audio tones. The pitch of the tones produced will depend on the b.f.o. setting but if the signal is tuned sufficiently to one side of the i.f. centre frequency, the tones will always differ in frequency from each other by the degree of shift employed at the transmitter. On the h.f. bands, this is typically 800 Hz while on the l.f. bands - below 150 Hz - it is 300 Hz . The NE560B is capable of following frequency shifts up to $30 \%$ of the operating frequency. If the shift is 800 Hz , the lowest operating frequency is therefore around 2700 Hz . It is inadvisable to design to maximum limits so that if the i.c. capability is reduced to $25 \%$, the mean frequency will be 3200 Hz . A shift of $\pm 400 \mathrm{~Hz}$ then represents a total of $25 \%$ and is comfortably within the working limits of the i.c. The tones to be fed to the i.c. are therefore 3600 and 2800 Hz . These frequencies may be attenuated, to some extent, by top cut capacitors fitted in the receiver to reduce noise, so some component removal may be necessary in the receiver a.f. stages. It may also be necessary to adjust the b.f.o. coarse tuning control to ensure that a sufficiently high beat note is available.

The performance of the NE560B is governed very largely by the amplitude value of the input signal. The range over which the oscillator will lock, expressed as a percentage of the centre frequency, is
dependent, amongst other things, upon this parameter. It is very important consequently that the signal be properly conditioned before being fed to the i.c. This conditioning implies amplification and limiting and a convenient method of doing this here is to employ a CA3076 i.c. as a preamplifier. Although designed for r.f. use, there is no reason why this circuit cannot be used at lower frequencies provided the bypass capacitors are increased accordingly. The 3076 will limit adequately with an input exceeding some $50 \mu \mathrm{~V}$, and the amplitude of the output is determined by the value of the output resistor. A suitable figure is $51 \Omega$, which provides 20 mV of signal to drive the NE560B. The full circuit is shown in Fig.2.

The error voltage output from the phase-lock-loop, $\mathrm{IC}_{2}$, is available in amplified form at pin 9. The recommended load to ground is in the order of $15 \mathrm{k} \Omega$ and the use of a fransistor as part of that load, as suggested in an application note from Signetics, changes the load impedance with signal, thereby providing some small amplification. The available voltage change, for $\pm 10 \%$ change of frequency, is in the order of $\pm 1 \mathrm{~V}$ which is then used to operate the trigger circuit $T r_{2}$ and $T r_{3}$.
It is desirable that the trigger should operate with the minimum change of voltage, and the circuit shown will switch for a change of about 0.3 V which means that if the Signetics i.c. will deliver a voltage of $\pm 0.15 \mathrm{~V}$, the trigger will operate satisfactorily. Since about $\pm 1 \mathrm{~V}$ is expected, there is plenty of voltage change in hand and trigger operation will be absolutely clearcut.

The degree of filtering prior to the trigger is quite critical and if $C_{12}$ is too low a value, the trigger will operate from the break-
through of input signal superimposed on the changing d.c. at pin 9. and if too high, very brief signals, such as exist in facsimile transmission, may not operate the trigger at all. The value shown is a compromise but if the unit is to be operated solely for teleprinter work, this may safely be doubled or even trebled.

## Machine interfacing

For working into a facsimile machine, the trigger is used to operate a gate which keys a local oscillator. This is conveniently arranged as shown using an f.e.t., $\operatorname{Tr}_{5}$, as a keyed amplifier. The trigger output is either +4 or +14 V with the values shown and with the source of the f.e.t. held at +9 V by zener diode $D_{3}$, it is either on or off according to the state of the trigger.

The local oscillator may be any convenient design, say a small phase-shift oscillator and buffer, running at about 2500 Hz . The waveform must be reasonably pure as otherwise the facsimile amplifierrectifier may not operate correctly.

When radio teleprinter reception is required, the simple driver circuit shown will operate a "type 7 " receive teleprinter. The $+4 /+14 \mathrm{~V}$ available from the Schmitt trigger is passed via a 6 V zener diode $D_{2}$ and asuitable current limiting resistor $R^{20}$ at the base of driver transistor $\operatorname{Tr}_{4}$. At this point the signal appears as 0 V or +6 V and the transistor switches fully on or off. The resulting collector current operates a Siemens high speed relay, with the two $1000 \Omega$ coils connected in parallel instead of the more usual series arrangement. The relay contacts should be adjusted for a 0.002 in gap and the setting of the spring tension is discussed in setting up below.

There are only 3 controls on the converter; tuning, lock-range and trigger. These only need adjustment when changing to different shift values. The tuning control $R_{8}$ determines the centre frequency to be used and the performance of the unit is degraded when the potentiometer is more than $\frac{2}{3}$ of the way towards the h.f. end. Useful limits with the values shown are from 1000 to 4000 Hz which is an adequate range for normal use. If very narrow shift is to be used, $C_{10}$ should be increased to lower the mean operating frequency to the desired figure.
The lock-range control $R_{7}$ can only reduce the bandwidth over which the i.c. can follow to below the $30 \%$ maximum figures quoted. In most cases it is left fully "open", i.e. maximum lock-range, but under conditons of small shift and interference it may be reduced to advantage. unfortunately, this control also alters the centre frequency, to some extent, so adjustment under working conditions may become difficult.

The third control $R_{12}$ adjusts the off-set voltage of the trigger to match the steady voltage of the i.c. output.

## Setting up

It is strongly advised that the unit be set up to the desired standards before being put into service. The controls are all, to some extent, interdependent and adjusting under working conditions is likely to have as much success as fiddling with the i.f. cores of a TV while watching the picture!

Initial setting up requires only an a.f. signal generator and a pair of high impedance headphones. A basic oscilloscope is handy for correct adjustment of the

receiver b.f.o. and to indicate that the converter is "on the correct frequency".

Having determined the shift to be employed, proceed as follows: let us assume a shift of 800 Hz . The mean operating frequency will be, say, 3200 Hz . Connect the headphones between "test point" and earth and feed a 3200 Hz signal from the signal generator to the converter input. Adjust the tuning control until a pure tone is heard from the phones. Adjust the signal generator, decreasing the frequency, until a rasping, low frequency beat note is heard. This is the l.f. limit of the phase-lock-loop and the frequency should benoted (e.g. 2900 Hz ). Now, increase the generator frequency until the rasping note is again heard (e.g. 3600 Hz ). A quick calculation will show that the centre frequency of the loop is $3600+2900$ or 3250 Hz . Adjust the

## 2

tuning control to slightly lower the frequency and repeat the checks, as necessary, until the lock-range is symmetrical about the desired centre frequency.

If the lock-range is excessively wide for the shift to be used, the lock-range control should be advanced slightly and the tuning re-adjusted until the required range is achieved. Normally the lock-range should exceed the shift by about $5 \%$,otherwise the slightest frequency drift in the phase-lockloop or the receiver will cause faulty operation. Therefore, using the generator, set the required locking width. Set the signal generator back to the correct centre frequency and transfer the phones to the facsimile output terminal, Adjust the trigger offset control $R_{12}$ to a point midway between trigger on and off. The trigger may "jitter" at this setting as it tries to follow the breakthrough of the 3200 Hz . Now, increase the generator frequency to a point where the trigger is firmly on. Note this frequency. Similarly, reduce the signal frequency until the trigger is shut off. Again note this frequency. These frequencies will be typically $\pm 50 \mathrm{~Hz}$ around the centre frequency and adjustment should be made for symmetry about this point.

An oscilloscope may now be connected to the "test point" and some f.s.k. signals can now be fed into the input from a receiver. When the correct tuning point is obtained, a pattern similar to that shown in Fig.3. will result, together with correct trigger operation. Detuning the receiver will result in large "spikes" appearing on the picture (Fig.4) together with random operation of the trigger.

Once the signal is correctly tuned in, the trigger offset control may be shitted in either direction to "produce optimum results. If the two incoming tones are absolutely correct, the adjustments made during the setting up procedure will be satisfactory. However, this state of perfection may not always exist and if the signals are off frequency (but inside the lockrange) then a slight adjustment to the offset control will ensure proper trigger operation. This control is not all that critical and may be adjusted under working conditions without difficulty.

There only remains the adjustment of the


Fig.3. Correct tuning for f.s.k. signal.


Fig.4. Incorrect tuning where one frequency is outside the locking range.
high speed relay for use with a printer. If $I C_{2}$ is temporarily removed from its socket, a positive-going square wave may be applied to the trigger via the "test point". This may conveniently be obtained via a small diode and resistor (acting as a polarity sensitive switch) from the a.f. signal generator.
A frequency of 25 Hz should be used (corresponding to a maximum rate of 50 bauds) and the output from the high speed relay contact examined on an oscilloscope. If a double beam oscilloscope is used correctly in the chopped mode, the relay spring should be adjusted until the output waveform from the relay matches, as closely as possible, the input waveform from the signal generator. Once set, this should require no further adjustment.

The complete unit requires 15 V d.c. (negative earth) and draws about 30 mA . Supply stabilization is provided by zener diodes $D_{4}$ for $I C_{1}$ and $D_{5}$ for $I C_{2}$.

Components may be mounted in any convenient fashion, p.c.b., Veroboard or on a plain sheet of copper laminate, as wiring is relatively non-critical.

## Transmission information

Radio teleprinter and facsimile transmission data can be obtained from the World Met. Organization, Geneva or, for British transmissions, in publication 510 $\mathrm{a}, \mathrm{b} \& \mathrm{c}$, from H.M.S.O. One problem with h.f. facsimile is multipath transmission, giving rise to ghosting on pictures, so that choosing the optimum frequency becomes important. This effect is less noticeable on radio teleprinter signals due to the longer time constants and l.f. facsimile transmissions seldom suffer from this condition.

## Components list

| $R_{1}$ | $100 \Omega$ | $R_{13}$ | $22 \mathrm{k} \Omega$ |
| :--- | :--- | :--- | :--- |
| $R_{2}$ | $22 \mathrm{k} \Omega$ | $R_{14}$ | $3.3 \mathrm{k} \Omega$ |
| $R_{3}$ | $5.6 \mathrm{k} \Omega$ | $R_{15}$ | $3.3 \mathrm{k} \Omega$ |
| $R_{4}$ | $250 \Omega$ | $R_{16}$ | $6.8 \mathrm{k} \Omega$ |
| $R_{5}$ | $51 \Omega$ | $R_{17}$ | $15 \mathrm{k} \Omega$ |
| $R_{6}$ | $100 \Omega$ | $R_{18}$ | $5.6 \mathrm{k} \Omega$ |
| $R_{7}$ | $100 \mathrm{k} \Omega$ pot | $R_{19}$ | $100 \mathrm{k} \Omega$ |
| $R_{8}$ | $20 \mathrm{k} \Omega$ pot | $R_{20}$ | $22 \mathrm{k} \Omega$ |
| $R_{9}$ | $8.2 \mathrm{k} \Omega$ | $R_{21}$ | $47 \mathrm{k} \Omega$ |
| $R_{10}$ | $3.3 \mathrm{k} \Omega$ | $R_{22}$ | $33 \Omega$ |
| $R_{11}$ | $2.2 \mathrm{k} \Omega$ | $R_{23}$ | $33 \Omega$ |
| $R_{12}$ | $5 \mathrm{k} \Omega$ pot | $R_{24}$ | $5.6 \mathrm{k} \Omega$ |


| $C_{1}$ | $6.4 \mu \mathrm{~F}$ | $C_{9}$ | $0.005 \mu \mathrm{~F}$ |
| :--- | :--- | :--- | :--- |
| $C_{2}$ | $50 \mu \mathrm{~F}$ | $C_{10}$ | $0.08 \mu \mathrm{~F}$ |
| $C_{3}$ | $0.1 \mu \mathrm{~F}$ | $C_{11}$ | $6.4 \mu \mathrm{~F}$ |
| $C_{4}$ | $6.4 \mu \mathrm{~F}$ | $C_{12}$ | $0.004 \mu \mathrm{~F}$ |
| $C_{5}$ | $200 \mu \mathrm{~F}$ | $C_{13}$ | $0.04 \mu \mathrm{~F}$ |
| $C_{6}$ | $0.1 \mu \mathrm{~F}$ | $C_{14}$ | $0.1 \mu \mathrm{~F}$ |
| $C_{7}$ | $0.47 \mu \mathrm{~F}$ | $C_{15}$ | $0.01 \mu \mathrm{~F}$ |
| $C_{8}$ | $200 \mu \mathrm{~F}$ | $C_{16}$ | $0.01 \mu \mathrm{~F}$ |

$I C_{1} \quad$ RCA CA3076
$I C_{2} \quad$ Signetics NE560B
$\operatorname{Tr}_{1} \quad \mathrm{BC} 108$
$\mathrm{Tr}_{2} \quad \mathrm{BC} 108$
$\operatorname{Tr}_{3} \quad \mathrm{BC} 108$
$\mathrm{Tr}_{4} \quad$ 2N2538
$T_{\text {§ }}$ 2N3819
$D_{1} \quad$ 1N914
$D_{2}$ BZY88-C6V2 (6.2V zener)
$D_{3}$ BZY88-C9V1 (9.1V zener)
$D_{4} \quad \mathrm{BZY} 88$ - CyV1 (9.1V zener)
$D_{5} \quad$ BZY88-C12 (12V zener)
$D_{6}$ 0A91, AA215 or similar
$D_{7} \quad 2.7 \mathrm{~V}$ zener diode

## Sixty Years Ago

The "Questions and Answers" section of the 1913 Wireless World makes as fascinating reading today as it must have done sixty years ago. The attitude adopted by the resident oracle is somehow reminiscent of the nononsense approach of some of the more matriarchal women's magazines. This impression is enhanced by the omission of the readers' queries, causing one to speculate on the possibility that they were rather too intimate for public exhibition. For example. a reply to "W.P." of Lanark . . ."W.P. shows from his question that he had better study the instructional articles now appearing in THE WIRELESS WORLD before attempting experimental wireless". W.P. (Lanark) múst have felt like throwing the whole thing up and cultivating prize haggis instead.

The same advice was peremptorily handed to J.F.W., who was told: "Size of helix, etc., has little to do with distance of transmission; height of aerial (which you do not even mention) has a great deal. Evidently you need to read the series of instructional articles very carefully before commencing work". . . Ah, well, back to the drawing board.

The oracular dispensation to J.W.T. was, perhaps, the most intriguing in that month's answers: "(1) Your diagram, though neat enough, is the most mysterious of all those we have received. No indication is given as to where the three terminals shown are connected with the tuning inductance or its sliders; no parts of the apparatus are labelled, and some of it is quite beyond our powers of guessing. Study the diagrams appearing in many places in THE WIRELESS WORLD, and learn how to represent what you want to represent.

Fighting words - people evidently needed thick skins as well as ingenuity to listen to what the wild waves were saying.

## New Products

## 15 MHz dual trace oscilloscope

The Meteronic Type 201 dual trace 15 MHz oscilloscope offers a wide range of features in a portable instrument form. Plug-in time base and amplifier modules allow the user to select the configuration best suited to his needs and an internal voltage and time calibration signal is provided.

Sensitivity is $5 \mathrm{mV} / \mathrm{div}$ at full bandwidth and the fastest sweep speed is $100 \mathrm{~ms} /$ div. The t.t.l. trigger circuits operate to 20 MHz and triggering may be from either channel or external. The display mode may be either A, B, A and B chopped or A and B alternate. A battery option is soon to be available. The instrument weighs 3.5 kg and measures $111 \times 260 \times$ 222 mm . The U.K. list price is $£ 170$. Meteronic Ltd, 114 /116 Shipbourne Road, Tonbridge, Kent.
WW317 for further details

## Temperature balance heat sinks

The Redpoint type 92DC heat sink available from Celdis is designed to take two TO92 case plastic transistors and is thus ideal for applications such as complementary pair amplifiers, strain gauge amplifiers, or any other circuit where two devices are to work in a balanced condition, a situation which is assisted when the case temperatures of the two devices change in the same way. The size of 92DC dual heat sink is $\frac{3}{4} \times \frac{3}{16} \times \frac{5}{16} \mathrm{in}$, with a green anodized finish, and a thermal rating of $80^{\circ} \mathrm{C} / \mathrm{W}$. Price is 7.9 p each for quantities greater than 100 . Similar dual
heat sinks for temperature balancing are the type $5 \mathrm{DC} / \mathrm{HA}$, providing a thermal rating of $50^{\circ} \mathrm{C} / \mathrm{W}$ for use with TO5 transistors, and the 18DC/HA with the same thermal rating, but for use on TO18 transistors. Prices for these are 21.3 p and 20 p each respectively (for quantities again in excess of 100). Celdis Lid, 37/39 Loverock Road, Reading, Berks, RG3 IED.
WW31 1 for further details

## Plastic connector for audio

A new connector has been introduced by Sealectro Ltd for use in audio equipment. Designed initially to meet stringent European safety regulations, the new connector, part number 300A003, has an all plastic body, three pins and a slide engagement. It is suitable for operation at up to 125 volts, 4 amps , and the socket contacts are recessed for complete safety.


The chassis socket is flange mounted and the free plug has an unusual cable grip providing a firm anchorage. Cables from $5.8-6.5 \mathrm{~mm}$ diameter may be used. The mated length is 63 mm and diameter 18 mm . Sealectro Ltd, Walton Road, Farlington, Portsmouth, Hants PO6 1TB.
WW306 for further details

## Belt driven turntable

Two new automatic record turntables have recently been introduced by Garrard. The Zero 100 SB is similar to the earlier Zero 100 (which has a pivoted head for tangential tracking), but is now a belt driven unit providing drive to a heavy

zinc die-cast platter. Also included is a record counter for monitoring stylus wear.

The 86 SB is a belt driven development of the earlier AP76 and is similar to the Zero 100 in most features except that a conventional pick-up arm is used. Main specifications common to both models are: motor - screened four-pole synchronous; drive - belt from two-step motor pulley; wow and flutter - typically 0.12 peak; rumble - 63 dB ; bias compensator on both models is calibrated for both conical and elliptical styli: stylus force - 0 to 3 gm , minimum recommended $\frac{3}{4} \mathrm{gm}$. Garrard Engineering Ltd, Swindon, Wilts.
WW302 for further details
(Zero 100 SB. Price $£ 54.83+$ v.a.t.) WW304 for further details (86 SB. Price $£ 40.31+$ v.a.t.)

## Magnetic probe

Available from Interskill Ltd, this magnetic probe (The Magniprobe) replaces the conventional test magnet. It is no larger than a fountain pen and has a clip for carrying in the pocket. Originally developed for the easy identification of nickel aluminium conductors in miniature thermocouples, it incorporates a pivoting needle which is claimed to be many times more sensitive to low magnetic energy than is any hand held magnet.

The applications of this instrument are said to be innumerable and include the checking, at all stages, of conductor polarity in complex thermocouple installations; checking changes of magnetic state in some alloys due to heat treatment
conditioning; checking the quality of screws and other inserts assembled in positions inaccessible to the conventional magnet; establishing the polarity of small unmarked magnets used with reed relays and similar devices and for extracting fine magnetic swarf from small holes.

List price is from $£ 4-£ 5$ according to the quantity required and single Magniprobes for trial purposes are available at $£ 5.50$ including v.a.t. and carriage paid from Interskill Ltd, 121 Cambridge Road, Milton, Cambridge CB4 4AT.

## WW314 for further details

## Variable transformers

Designated the 20 and 30 series, the Mk II Regavolt units from Berco have several interesting features. A new design of rotor brush arm provides metal to metal clamping using noncorrosive resistant steels, the contact arm being manufactured in beryllium copper which is heat treated to ensure stabilized brush pressure throughout its working life. Very low torque is required for rotation $3.5 \mathrm{~N} \mathrm{~cm} \mathrm{(5oz.in)} \mathrm{and} \mathrm{these} \mathrm{units}$ can also be supplied in "ganged" form.


The 20 series Regavolt is primarily designed for the aircraft industry and provides a stepless control of power from $0-120 \mathrm{~W}$ on $120 \mathrm{~V}, 400 \mathrm{~Hz}$ supplies. The 30 series has many applications such as simple motor speed control for d.c. motors, heating and ventilation control systems and light dimming applications. Berco Controls Ltd, Baird Road, Enfield, Middx. EN1 1UA.
WW 307 for further details

## TV sound channel pick-up

Since few TV sets are fitted with an audio output to connect to hi-fi amplifiers, Multitech Corp. have designed a device which will pick up the radiated i.f. from the TV set and demodulate it to provide a suitable audio feed for an amplifier. The probe is designed to be placed (using an adhesive Velcro pad) on the back or side of the television set at a point producing optimum signal-to-noise and the unit, battery powered or with a small mains adaptor fitted, will stand on the set-top. Several adaptations are possible as the basic unit contains a synthetic stereo decoder which can be exchanged for a true stereo decoder (Zenith pilot

Video-level meter


A new video-signal level meter was shown for the first time by Philips at this year's International Television Exhibition in Montreux and is available from Pye Unicam Ltd. Designed to perform signallevel measurements on composite TV signals, the PM 5548 is claimed to be the first instrument of its type available anywhere in the world.

A feature of this instrument is that it can accurately measure an instantaneous signal level at any point in a composite video-test signal to the very high accuracy of $0.1 \% \pm 1$ digit. This measurement is displayed digitally on a fourdigit display, the measurement range covers -600 mV to +1400 mV relative to the blanking level. Additionally, a b.c.d. output of the measured value is optionally provided for driving a printer or other remote device, and a d.c. output for recording purposes.

Complete operation of the PM 5548 is based upon use of sampling techniques, a sample being taken from the video-test signal and used as a means of gauging the appropriate signal-component level. Via front-panel controls, the width of this pulse, the line on which it is employed, and its position on that line
can be controlled. It is also possible for this sampling pulse to be applied over a number of adjacent lines (up to 50 ) and for the pulse width to be varied from 0.3 to $10 \mu \mathrm{~s}$. Measurements can be made on any section of the TV signal (both monochrome and colour) including the blanking period and sync pulse.

A further feature of this instrument is that the sampling pulse can also be employed as a marker pulse. In this mode it shows, via a monitor or oscilloscope, exactly which area of the video-test signal is being sampled. This marker, which can be applied positively or negatively, is also available as a separate output for Z-modulation of, for example, an oscilloscope.

Apart from its use independently in TV studios, etc, the PM 5548 can also be employed in conjunction with Philips PM 5546 video calibration generator. This unit provides the high-accuracy signals needed to check and align monitors, encoders, decoders, mixers, and other video equipment. Pye Unicam Ltd, Cambridge CB1 2PX.
WW318 for further details.
tone) or an amplifier which will drive an inductive loop for hearing aids. Performance specification is as follows: a.m. rejection $50 \mathrm{~dB} ; 3 \mathrm{~dB}$ gain bandwidth 200 kHz ; distortion, $0.5 \%$ at 1 kHz for 25 kHz deviation; frequency response, 20 Hz to $20 \mathrm{kHz}+0.5 \mathrm{~dB}$, output 250 mV r.m.s. at $5 \mathrm{k} \Omega$ Multitech Corp, Nybovej 1 - 2500 Valby, Denmark.
WW 320 for further details

## Direct reading 30kV meter

Believed to be the only one of its kind available in the U.K., a 30 kV meter from Brandenburg Ltd, provides a
compact and portable instrument with high accuracy. Operated by 9 V internal batteries linked to a built-in checking facility, the meter is flashover and transient proof and measures only 178 $\times 114 \times 127 \mathrm{~mm}(7 \times 4.5 \times 5 \mathrm{in})$. Accuracy is $1.0 \%$ f.s.d. over the meter's range of $0-30 \mathrm{kV}$ d.c. and the high input impedance of $30,000 \mathrm{M} \Omega$ means that the current drawn under test of less than $1 \mu \mathrm{~A}$ is unimportant.

Positive or negative ground is selected by a switch mounted on the front panel which also houses the clear 4.5 in scale meter. Battery life is 800 hrs . Brandenburg Ltd, 939 , London Road, Thornton Heath, Surrey.
WW 308 for further details

## Digital tracking voltmeter

The VID Tracking Voltmeter from Gay of Milan and marketed by Lyons Instruments, is an instrument which, irf addition to operation as a normal d.c. digital voltmeter, has a peak reading memory voltmeter capability with the ability to read "maximum" or "minimum".

A new "continuous conversion" principle is used in which the tracking voltmeter continuously follows the input signal, providing a steady state indication when the input is constant, and continuous updating when the input changes. When the input changes only the variation is digitised to cause an increase or decrease in the displayed value (and b.c.d. output) and hence this "tracks" the input signal.

As a conventional d.v.m., the tracking voltmeter provides accuracy of $\pm 0.05 \%$ of reading, $\pm 0.02 \%$ of range with automatic polarity indication on four ranges of $\pm 0.9999 \mathrm{~V}, \pm 9.999 \mathrm{~V}, \pm 99.99 \mathrm{~V}$ and $\pm 999.9 \mathrm{~V}$. The floating input provides an impedance of $10,000 \mathrm{M} \Omega$ on the 1 V range and $1.1 \mathrm{M} \Omega$ on the other three.

The above specifications apply both for the normal mode and for the

"maximum" and "minimum" peak hơiding memory modes. In the "maximum" mode the polarity switch can select either positive or negative peaks, whilst in the "auto" polarity position the absolute peak value (greater of positive or negative) is displayed, the polarity indicator acting as a polarity memory.

The unique "minimum" mode features the capability to measure and store the minimum instantaneous value (see picture) of a varying d.c. voltage, for example a fast voltage drop.

## True r.m.s. analogue

 voltmeterDatron Electronics have announced a true r.m.s. a nalogue voltmeter designated Type 1115 which utilises what is claimed to be an entirely new type of true root mean square sensing circuit for the measurement of both sinusoidal and non-sinusoidal waveforms. The circuitry used in the 1115 is reported to overcome the shortcomings of thermal r.m.s. to d.c. converters by directly computing the true r.m.s. value of an input signal. The instrument comprises a precision wideband preamplifier with a selectable
low pass filter, an r.m.s. computation circuit and a 3 pole integration filter having two selectable time constants. The instrument has a bandwidth of d.c. or 1 Hz to $1 \mathrm{MHz} ; 12$ voltage ranges from 3 mV to 1 kV and an accuracy of $1 \%$ full scale below 100 kHz . Crest factor is $10: 1$ (full scale) and the instrument will withstand a 1 kV overload on all ranges.
Price £260. Datron Electronics Ltd, Hotblack Road, Norwich, Norfolk. WW313 for further details


The Gay Milano VID tracking voltmeter is only $180 \times 50 \mathrm{~mm}$ panel size by 220 mm deep. Weighing 1.8 kg , it requires only 15 VA mains power. Price is $£ 250$ duty free, £275 duty paid, including b.c.d. output and logic level remote control inputs. Lyons Instruments Ltd, Hoddesdon, Herts.
WW315 for further details

## Mini-power supplies

Recently introduced by ITT Components Group Europe is the Powercard "Size Two" - the first major extension of the range of p.c.b.-compatible power supplies launched last year. The new Powercard is larger ( $16 \times 10 \times 5.5 \mathrm{~cm}$ ) and provides 15 W against $7 \frac{1}{2}$ from the standard Powercards. This is sufficient to supply a full 19 in rack shelf of i.cs in most applications. Foldback overcurrent protection is standard and the input voltage ratings are 99 to 132 V or 198 to 264 V a.c. at 48 to 65 Hz . The six Powercard "Size Two" specification codes are:
PC500C 15/15: 0.5A at $\pm 12$ to $\pm 15 \mathrm{~V}$ tracking o/ps.
PC500D 15/15 : two isolated $0.5 \mathrm{~A} \% / \mathrm{ps}$ at 12 to 15 V .
PC500E 5/15: two isolated $0.5 \mathrm{~A} \circ / \mathrm{ps}$ at 5 to 6 V and 12 to 15 V .
PC1000A $15: 1 \mathrm{~A} \mathrm{o/p}$ at 12 to 15 V .
PC500F $\quad 30: 0.5 \mathrm{~A} o / \mathrm{p}$ at 24 to 30 V . $\mathrm{PC} 3000 \mathrm{~A} 5: 3 \mathrm{~A}$ at 5 V ranging to 2.5 A at 6 V .

ITT Components Group Europe, Rectifier Division, Edinburgh Way, Harlow, Essex.
WW301 for further details

## Large-screen video monitor

The Electrohome range of video monitors marketed by Bell \& Howell A-V now includes a new 23in model, the EVM-23 V5. Designed for applications where picture size is as important as quality, it is suitable for message displays at hospitals and airports, computer read-out terminals and educational television in classrooms and lecture theatres. A solidstate monochrome monitor, the EVM-23 V5 is built to professional standards and includes among its features, high video input impedance, external sync input and plug-in transistors for ease of service.

Provision is made for asynchronous operation and there is remote control for brightness and contrast adjustment.

Resolution is claimed to be greater than 1,000 lines in the central $80 \%$ of the display area, and picture brightness is $513.9 \mathrm{~cd} / \mathrm{m}^{2}$ under $80 \%$ white field conditions. All primary and most secondary controls are on the front of the monitor and are protected by a lockable panel. Price, £141. Bell \& Howell A-V Ltd, Alperton House, Bridgewater Road, Wembley, Middx HAO 1EG.

## WW 316 for further details

## High speed water fuse

Industrial Instruments Ltd, announce the introduction of a water filled fuse holder suitable for experimental situations. There are many applications in power electronics where expensive, pure silver fuses are blown deliberately during testing. Some of these may cost several pounds each. The Transifuse is a way of reducing these costs to that of a piece of copper wire.

The water filled fuse has a sufficiently fast rupture period, provided suitable diameter wire is used, to ensure the

protection of the most expensive power semiconductors. Current rating is from 25 to 100 A with up to 200 A permitted intermittently. Voltages up to 415 V a.c. or d.c., depending upon current capability are permissible. Price, one off $£ 3.35$ with reductions for larger quantities. Industrial Instruments Ltd, Stanley Road, Bromley, Kent, BR2 9JF.
WW 310 for further details

## Film capacitors

The new ITW-Paktron Micromatic polypropylene (PP) and polyester (PT) film capacitors, in which the capacitor leads serve as winding mandrels, are available from ITW Ltd, Electronic Division, of Slough. These are thought to be the first capacitors to be manufactured using this technique which eliminates outside wrapping and separate lead attachments. In consequence, the capacitors have no mandrel hole left as in conventionally
wound capacitors and it is claimed that air or moisture cannot penetrate and the leads cannot loosen.

The electrode foils and lead wires are separated by three layers of dielectric, and no dielectric is in direct contact with either wire in the electrical field. This manufacturing process insures against voltage breakdown in the area of lead wire penetration. The PT polyester series covers the capacitance range 1000 pF
to 150 nF with tolerances of $\pm 10 \%$ to $\pm 20 \%$ and voltage ratings of $200-400 \mathrm{~V}$ d.c.

Completely self encased, types PT and PP capacitors provide low inductance, high insulation resistance and a low dissipation factor; additionally, the type PP has a negative temperature coefficient. ITW Ltd, Electronic Division, 263 Farnham Road, Slough, SL2 1HA. WW 319 for further details

# Solid State Devices 

Each section under the title of Solid State, is devoted to the new semiconductor products offered by one manufacturer or distributor. The type number and device title is given in bold type, followed by a brief description of features or application. The section is terminated with the address of the company together with reader reply card numbers associated with the device numbers or types.
Announced from Celdis Ltd:
MC14530, dual 5 -inpurt majority logic gate. This is a Motorola m.o.s. i.c. which sometimes is referred to as having "voting logic" since it makes decisions based upon the levels presented at its inputs. Eighteen different logic possibilities are permitted and the alternative of a number of simple or fewer complex logic functions are facilitated without resort to a high gate count. It is constructed for p and n channel enhancement mode devices and features single positive or negative power supply operation with a typical noise immunity of $45 \%$ v.d.d. and a fan out of 750 .

MC10128, MC10129, dual bus driver/ quad bus receiver. These are designed to interface with t.t.l. or I.B.M. level buses, enabling high speed mainframes to feed the slower t.t.l. peripheral equipment. Price of both devices for 100 up quantity is $£ 0.712$.

MC 1408L-8, eight-bit digital to analogue converter. This device features a current mode output and will provide a linear product of an eight-bit digital word and an analogue input voltage. The relative accuracy is $\pm 19 \%$ error maximum, settling time is typically 300 ns , noninverting digital inputs are t.t.l. and c.m.o.s. compatible, output voltage swing is from +0.5 V to 5.0 V and the multiplying input slew rate is $4.0 \mathrm{~mA} / \mathrm{ms}$. Price is $£ 3.101$ each at 100 up rate.

MC12000 digital mixer/translator. Designed to produce an output frequency which is the difference between two input frequencies, this i.c. consists of a D flip-flop with t.t.l. to e.c.l. and e.c.l. to t.t.l. translators. Intended primarily for use as a prescaler in phase-locked loop applications where the v.c.o. frequency is greater than 10 MHz and the tuning range is narrow, it provides a means of generating frequencies up to 250 MHz without tuned circuits. The output frequency could be either a single fixed frequency or a series of programmable frequencies when used in conjunction with the MC4016 programmable Modulo-N decade counter. Price is $£ 2.38$ at 100 up rate.

MC1455P1 i.c. timing circuit. This circuit provides timing intervals from $1 \mu \mathrm{~s}$ to 1 hr simply by the selection of one external resistor and capacitor. In the astable mode, it will operate as an oscillator with the frequency and duty cycle determined by the selection of two external resistors and a capacitor. The output can drive t.t.l. logic and can either sink or source up to 200 mA . Price at 100 up rate, $£ 0.55$.

MC7800 series fixed voltage regulators. These are available in seven groups of $5,6,8,12,15,18$ and 24 volts, each able to supply over 1A with adequate heat sinking. Price ( 100 up ) is $£ 0.872$.

5082-4860 and 5082-4468 light emitting diodes. These are made by HewlettPackard and contain a built-in resistor which acts in a current limiting mode. This makes them suitable for direct driving from t.t.I. or other i.c. families. The $5082-4860$ is 0.2 in diameter and is panel mounted by black plastic clips (part 5082-4418) which are supplied free of charge if ordered with the l.e.ds. The $5082-4468$ has a diameter of 0.125 in
but has the same specification in other respects. Luminous intensity is 0.8 mcd (typical) at a $V_{F}$ of 5 V with a wave length of 655 nm . Response speed is 15 ns . Price ( 100 up ) is $£ 0.35$ each for both types.

KBS series rectifier bridges are made by G.I., and are epoxy encapsulated inside a hexagonal metal case which is studmounted. With a dimension of 0.55 in across flats, the devices will rectify up to 2 A with a case temperature of $50^{\circ} \mathrm{C}$. Voltage selections are $50.100,200,400$ and 600 V with typical 100 up prices for say the KBSO05 (50V) of $£ 0.312$ each to the KBSO6 (600V) at $£ 0.412$.

40967 and 40968 r.f. transistors from RCA are designed for use as u.h.f. class C amplifiers in low voltage mobile applications. They are rated for 2 W and 6 W power output respectively, at 470 MHz and a 12.5 V supply. Supplied in the RCA HF-44 package, the price at 100 up quantities is $£ 3.16$ and $£ 4.02$ each respectively. Celdis Ltd, 37/39 Loverock Road, Reading, Berks RG3 IED.

## WW 330 majority logic gate <br> WW 331 dual bus driver/quad bus receiver <br> WW 332 8-bit d/a converter <br> WW 333 digital mixer/translator <br> WW 334 i.c. timing circuit <br> WW 351 voltage regulators <br> WW 335 resistor - l.e.ds <br> WW 336 rectifier bridges <br> WW 337 r.f. transistors

S. 010 d.c.-d.c. converter by IPL provides dual positive and negative rails up to 15 V and operates from a single 5 V , t.t.l. supply rail. The dimensions are $2.48 \times 1.225 \times 0.575$ in and has a 0.1 in grid connection pins. No heat sinking is required for supply currents up to 40 mA at 12 V and 34 mA at 15 V . The transient response is $10 \mu$ s to $0.1 \%$ and a 15 mV pk-pk output ripple. Each individual output is preset by a single resistor and each output is isolated (up to $10^{10} \mathrm{M} \Omega$ ) from the input. Price $£ 10$ each.

S 1724 variable 256 -bit shift register. This i.c. is made by AMI and is electrically programmable from 2 to 257 bits. It features m.o.s.-t.t.l. compatible inputs and outputs without the need for external resistors and through the use of a push-pull output will sink 1.6 mA . Capable of being operated up to 1 MHz , the S1724 is supplied in a 14 lead di.i. package at a 100 up price of $£ 8.75$.

S1709 queueing buffer register by AMI contains thirteen parallel in-parallel out shift registers and the control logic necessary to achieve a first in-first out (SILO) memory configuration. External control signals allow the cascading of many register arrays and the $\$ 1709$ may operate with independent input and output data rates. The i.c. is a low voltage threshold m.o.s. device and packaged in a 24 lead di.i. package. Cost is $£ 8.69$ (100 up).

HD-0165 keyboard encoder from Harris is a 16 -line to four-bit parallel encoder intended for use with manual data entry devices such as calculators, typewriters, elc. In addition to the encoding function there is a strobe output and a key rollover output which energizes whenever two or more inputs are activated simultaneously. These are normally routed through the key switches to the +5 V supply. Price of the 24 lead d.i.l. package is $£ 3.22$ ( 100 up ).

AA2705 operational amplifier. This Harris i.c. is designed to dissipate 0.75 mW with dual 5.5 V rails and 2.25 mW with dual 15 V rails. Open loop gain is 2.000 .000 . input offsets are 2.5 nA and 1 mV and the slew rate is $20 \mathrm{~V} / \mu \mathrm{s}$. Common mode and power supply rejection ratio are both 80 dB minimum and the device will deliver up to 22 mA output current.

TS6AM6. Fetron. This Teledyne device is designed as a direct solid state valve replacement and will plug in to the 6AM6/EF9 1/Z77 pentode valve sockets, which it is intended to replace, without circuit modifications. Price ( 100 up) £4.70. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough.
WW338 d.c./d.c. converter
WW339 256-bit register
WW 340 buffer register
WW341 keyboard encoder WW342 operational amplifier WW343 Fetron

IR106 low power thyristor range. These devices offer a $V_{\text {RRM }} / V_{\text {DRM }}$ range of 15 to 400 V and are available in five different packages which allow for p.c.b. mounting.

IR 140 and IR 141 fast turn-off thyristor ranges. Conforming to the JEDEC 2N3649 and 2N3658 series respectively, these thyristors offer a maximum turn-off time of $15 \mu$ s for the IR 140 and $10 \mu \mathrm{~s}$ for the IR141. The re-applied $\mathrm{dv} / \mathrm{dt}$ is $200 \mathrm{~V} / \mu \mathrm{s}$ for both devices and they will operate at up to 4 kHz without peak current capability being reduced. International Rectifier, Hurst Green, Oxted, Surrey.

## WW344 low power thyristor range WW 345 fast turn-off thyristors

NSN-33 three-digit l.e.d. display is a pin for pin replacement for the Litronix DL33. Each digit in the NSN-33 is 0.125 in high and is made up of seven segments and a right hand decimal point. Segment and decimal point anodes of the three digits are internally connected in parallel. Current drive is 1 mA average per segment to a maximum of 8 mA . Packaged as a 12 pin di.i.l, the digits are spaced on 0.2 in centres for end-toend stacking of 6,9 or 12 or more digits. The NSN-133 is a modified version of the same display with a minus sign replacing the extreme left digit and
connected to pin 12 which is unused in the NSN-33. Displays are available in matched brightness sets.

NSL5027 high intensity l.e.d. This lamp has an intensity of 2.0 mcd minimum at 10 mA , a forward current $\left(\mathrm{I}_{\mathrm{F}}\right)$ of 70 mA d.c. and a reverse voltage of 3 V with a power dissipation of 140 mW . Price ( 100 up ) is 60 p .

LHOO62 f.e.t. operational amplifier i.c. The circuit contains a monolithic dual j.f.e.t. chip and a bipolar op-amp similar to the LM118. Typical offsets are 2 mV and 1 pA with an offset temperature coefficient of $5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Drifts are only $4 \mu \mathrm{~V}$ and 0.1 pA per week! No external components are required for operation and the i.c. offers a 15 MHz bandwidth, $70 \mathrm{~V} / \mu$ s slew rate and $1 \mu \mathrm{~s}$ settling time to $0.1 \%$. Feedforward compensation almost doubles the speed whilst an extra capacitor lowers the settling time. Gain is $100 \mathrm{~V} / \mathrm{mV}$ and noise currents are less than 0.1 pA r.m.s.

MM5316 digital alarm clock. This is a completely self contained alarm clock circuit capable of driving fluorescent tubes or liquid crystal displays. It is a monolithic m.o.s. integrated circuit that employs both low threshold p-channel enhancement mode and ion implanted depletion mode devices. The timekeeping function is triggered either by a 50 or 60 Hz input and the display format may be either 12 hrs with suppressed leading zeros and a.m. or p.m. indication or 24 hrs. Four possible display modes are offered, time in hours and minutes, minutes and seconds, alarm set time or sleep time, with outputs provided for display drives, alarm enable and sleep or timed radio turn-off. The device operates over an unregulated supply range of from 8 to 29 V and is available in a 40 pin epoxy B package.

DM7575/DM8575 and DM7576/DM8576 programmable logic array. These arrays have 14 data inputs and 8 outputs. Each output provides a sum of product terms where each product term can contain any combination of 14 variables or their complements. The p.la. is intended for use as control logic in digital systems and features a typical delay of 90 ns and dissipates about 550 mW . The DM 7575 /DM8575 has a conventional totem-pole output and the DM7576/ DM8576 has a passive pull-up output for use in systems requiring more than one p.l.a. The arrays are available in a 24 pin Epoxy B d.i.l. package for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (DM8575 and DM8576) or a 24 pin ceramic d.i.p. for operation over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range (DM7575 and DM7576). National Semiconductor (UK) Ltd, The Precinct, Broxbourne, Herts.
WW 346 I.e.d. display
WW 347 high intensity i.e.d.
WW348 f.e.t. operational amplifier
WW349 alarm clock i.c.
WW350 programmable logic array

## They pay by instalments.

When you're in the business of installing sound systems, you have one major problem.
If the equipment you install breaks Jown, you get the blame.
That's why the Mill bank range results from an intense research and development programme.


Just so this won't happen Acomprehensive collection of high quality audio equipment designed to take on any job. No matter how large, or how small. Great lookers.


With Havana front panels and anodised alloy handles. And above all great workers. In fact, Millbank equipment is as good as it sounds Which means guaranteed satisfaction every time. For your customers
For you. And for us.


Get in touch. We'll send you full details of all you need to know. Any way you look at it. its a sound investment

## Millbank <br> It's got to be good.



## Sinclair Project 60

## New performance standards

 ...new safety marginsSuch are the results of using a PZ8 Mk. 3 to drive two Z.50 Mk. 2 power amplifiers. Developed from the original Z.50, the Mk. 2 has improved thermal stability, better regulated D.C. limiting to ensure more symmetrical output voltage swing with still less distortion at lower outputs and automatic transient overload protection. The PZ. 8 Mk .3 is the most advanced power supply unit ever to be made at a reasonable price. It cannot be damaged by direct shorting, nor will it fail through overloading, because of an ingenious re-entrant current limiting principle used usually only in expensive laboratory equipment. Because output voltage is variable, the PZ8 Mk. 3 makes a worthwhile alternative where PZ.5 and PZ.6 are recommended for Project 60 applications, particularly since this most powerful of all Sinclair supply units can be operated from a smalier mains transformer. Together. the Z.50 Mk. 2 and PZ8 Mk. 3 provide new standards of performance and reliability and these modules are compatible with earlier types in the Project 60 range.

## Z.50 Mk. 2 SPECIFICATIONS

Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into $8 \Omega$ ) 400 mV
Signal to noise ratio, referred to full $0 / \mathrm{p}$ at 30 vHT 80 dB or better Distortion $0.02 \%$ up to 20 W at $8 \Omega$ See published curve Frequency response 10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage 45 V ( $4 \Omega$ to $8 \Omega$ speakers) ( $50 \mathrm{v} 15 \Omega$ speakers only)

Min. supply voltage 9 V
Load impedance - minimum: $4 \Omega$ at $45 v$ HT
Load impedance - maximum: safe on open circuit
£5.48 V.A.T
PZ. 8 Mk. 3 SPECIFICATIONS
Nominal working output 45 V
Adjustable between 20 \& 50V.
£7.98 + V.A.T
Mains Transformer $£ 5.98$ + V A.T. 59 p


## Other power supplies

In addition to the remarkable Sinclair PZ.8 Mk.III as described, there are two other power units available, which should be chosen according to their types in order to buy to best advantage. All are for operation from A. C. mains 240 V .
PZ. 530 volt, unstabilised
£4.98
PZ. 635 voit, stabilised (Not suitable for Super IC.12).
£7.98
+V.A. 79 p

## Guarantee

1f, wihin 3 months of purchasing any product direct from Sinclair Radionics LId,. you are dissatisfied with it, your money will be refunded at once. Many sinclair apporned Sinclair Radionics Lid.
Each Project 60 module is tested before leaving our factory and guaranteed to work perfectly. Should any defect arise in normal use, we will service it at once and without any charge to you A small charge may be made in those cases where damage arises through miss-use. No charge is made for postage by surface mail. Air Mail charged at cost.

## Typical Project 60 applications

| System | The Units to use | together with | Units cost |
| :---: | :---: | :---: | :---: |
| Simple battery record player | 2.50 | Crystal P.U., 12 V battery volume control, etc. | $\begin{aligned} & £ 5.48 \\ & +V . A T .54 D \end{aligned}$ |
| Mains powered record player | Z.50, PZ. 5 | Crystal or ceramic P.U. volume control, etc. | $\begin{aligned} & \mathrm{£10.46} \\ & +\quad \text { V.A.T. £1.04 } \end{aligned}$ |
| 12W. RMS continuous sine wave stereo amp. for average needs | $\begin{aligned} & 2 \times 2.50, \text { Stereo } \\ & 60 ; P Z .5 \end{aligned}$ | Crystal, ceramic or mag. P.U., F.M. Tuner. etc. | $\begin{aligned} & \mathbf{£ 2 5 . 9 2} \\ & \text { \& VAT. } \end{aligned}$ |
| 25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers | $\begin{aligned} & 2 \times Z .50, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$ | High quality ceramic or magnetic P.U.. F.M. Tuner, Tape Deck, etc. | $\begin{aligned} & \text { £28.92 } \\ & +V . A . T . \\ & £ 2.89 \end{aligned}$ |
| 80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms) | $2 \times 2.50$ Mk.2. <br> Stereo 60; PZ. 8 <br> Mk. 3 transformer | As above | $\begin{aligned} & \text { £34.90 } \\ & \text { +V.A. } \end{aligned}$ |
| Indoor P.A. | Z.50 Mk.2, PZ. 8 Mk. 3 transformer | Mic., guitar, speakers, etc., controls | $\begin{aligned} & \quad £ 19.44 \\ & + \text { V.A.T. £1. } 94 \\ & \hline \end{aligned}$ |

[^7]SINCLAIR RADIONICS LTD., LONDON RD., ST. IVES, HUNTINGDONSHIRE PE17 4HJ Telephone: St. Ives (0480) 64311 Telex: 32250 Reg No. 699483 England

## the world's most advanced high fidelity modules

## Q. 16 high fidelity loudspeaker

The 016 employs original and by now well proven acoustic principles in which a special driver assembly is meticulously matched to a uniquely designed cabinet. In performance it comfortably stands comparison with very much more expensive loudspeakers. A solid leak surround is used with a special all-over cellular black foam front chosen both for its appearance and ability to pass all audio frequencies without masking. Specifications
Construction: A sealed seamless sound or pressure chamber is used with internal baffle, and special high flux ditiver
Loading: Up to 44 watts RMS, into 8 ohms Frequency response: From 60 to $16,000 \mathrm{~Hz}$ Size and styling: 248 mm square $\times 120 \mathrm{~mm}$ deep ( $9 \frac{3}{4}{ }^{\prime \prime} \times 4 \frac{3^{\prime \prime}}{4}$ ) with neat pedestal base


E7.70 $\begin{array}{r}\text { +V.A.T. } \\ \text { 77p }\end{array}$
xain clabir sux


## Stereo 60 pre-amp/control unit

Designed specifically for Project 60 systems, the Stereo 60 is equally suitable with any high quality power amplifier. Silicon epitaxial planar transistors used throughout ensure high signal-to-noise ratio and excellent tracking between channels. Input selection is by press buttons, with accurate equalisation on all input channels. The unit is easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -12 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Built, tested and guaranteed.
$£ 9.98$
9.A.
99p

## AFU filter unit

For use between Stereo 60 and two 230 's or $Z 50$ 's in stereo formation. cut off frequencies are continuously variable, with $12 \mathrm{~dB} / 0 \mathrm{ctave}$ cut in the rejection band. Two stages of filtering - rumble (high pass) and scratch (low pass). Amplitude and phase distortion are negligible. Supply voltage needed - $15-35 \mathrm{~V}$. H.F. Cut-off ( -3 dB ) 28 KHz 105 KHz
£5.98
built resied and ouaranteed

+ V.A.T. 59p



## Super IC 12 mesercese atram high fidelity amplifier



Having introduced Integrated Circuits to hi-fi constructors with the 1 C .10 , which was the first time an IC had ever been made available for such purposes. we followed it with an even more efficient version, the Super IC.12. This needs very few external resistors and capacitors to make an exceedingly efficient high fidelity make an exceedingly êfier for pick-up, F.M. radio or small P.A. set up etc. The frée 40 page manual supplied set up etc. The free 40 page manual supplied detaits many other applications which this
remarkable IC make possible. The Super IC. 12 remarkable IC make possible. The Super IC. 12
is the equivalent of a 22 transistor circuit
contained within a 16 lead DIL package, and the finned heat sink is sufficient for all likely requirements. The Super IC. 12 is also compatible with those Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

## SPECIFICATIONS

Outpul power: 6 watts RMS continuous (12 watts peak) into 6-8 $\Omega$. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than $1 \%$. (Typical $0.1 \%$ ) at all Distorion: Less than 1\%. (Typical 0.1\%) at all output powers and frequencies in the audio band (28V). Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: $90 \mathrm{~dB}(1,000.000,000$ times) after feed back. Supply Voltage: 6 to 28 V . Quiescent current: 8 niA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Manual available separately 15p post free
With FREE printed circuit board and 40 page manual $\mathbf{E 2 . 9 8}$ Р. V.t. 29p

## Project 605



For the many audio enthusiasts anxious to build to high standards without too many involvements, there could be nothing better or simpler than Project 605. It offers the advantages of Project 60 and is absolutely complete down to the last piece of wire cut to length. Whilst not as powerful as assemblies using $Z .50$ power amplifiers, we know from experience that there are many for whom the specifications of Project 605 are ideal, particularly in relation to the environment in which it is required to be used. In Project 605 you have everything necessary to build a versatile Project 60 thirty watt high fidelity amplifier system suitable for all domestic requirements. The convenient pack includes two Z. 30 power amplifiers, a Stereo 60 pre-amp control unit and the special Masterlink unit to and from which all input and output connections are made. For power a PZ. 5 is provided. Building is particularly easy since all necessary leads are supplied colour coded, cut to length and terminated by contact clips which connect firmly to the modules. There is absolutely no soldering to be done. Complete with comprehensive, easy to follow instructions manual.

## £29.95

V.A.T. £2.99

Post free

## Send coupon for leaflet

Please send leaflet and name and address of my nearest Sinclair stockist
Name

Address

S:NCLAIR RADIONICS LTD., LONDON ROAD ST. IVES, HUNTINGDON PE174H」
wwi

## The largest selection

## BRAND NEW FULLY GUARANTEED DEVICES


AD162
AD161
AD162
ADT140
AF114
AF115
AF116
AF117
AF118
AF124
AF125
AF126
AF127
AF139
AF178
AF179
AF180
AF181
AF186
AF235
AL102
AL103
A8Y2
ASY2
ASY28
A8Y29
ASY50
A8Y51
ASY52
ASY54
ASY55
ASY56
ASY5





## 2TALTTY TESTED SEMicondoctors

 Pak No.$\begin{aligned} & \text { Q2 } \\ & \text { 16 White spot R.F trangistors PN P } \\ & 4 \text { OC } 77 \text { type transistors }\end{aligned}$
$\begin{array}{ll}\text { Q } & 6 \text { Matched transistor } \\ \text { Q5 } \\ 4 & 0 C \\ 75 & \text { transistors. }\end{array}$

## 4 OC 75 transistors

AC 128 transistors PNP lilgh gain
AC 126 transistors PNP
OC 81 trpe transistora

## OC 81 type transistors

3 AF 116 type transistors
3 AF 11 type trankistors ..
7 2N2926 SII. Fpoxy transistors m
KPN $2 \times$ ST. $141 \& 3 \times$ बT. 1
4 MADT'S $2 \times$ MAT $100 \& 2 \times$ MAT 120

$$
\text { Or } 44 \text { Germatnium trangistors AF }
$$

$$
4 \text { OC } 4+\text { Gernanjum transistors A.F. }
$$

20 NKT transistors A.F. R.F. coded

$$
\begin{aligned}
& 0 \text { OA } 202 \text { silleo } \\
& 8 \text { OA } 81 \text { diodes }
\end{aligned}
$$

 2 10A PIV Silicon rectifiers IS4420R
4 Silicon transistors $2 \times 2$ N696, $1 \times 2$ N697
$1 \times 2 \times 698$.
$\begin{array}{ll}\text { Q30 } & 7 \text { Siliton awitch transistors } 2 N 706 \text { NPN } \\ \text { Q31 } & 6 \text { Sitieon switch transistors } 2 N 708 \text { NPN }\end{array}$
Q31
Q32
3
TNP 1132
sill
Silicon NPN tranistors
(code P997)
$2 \mathrm{~N} 2369,500 \mathrm{MHz}$

$\begin{array}{lllll}\text { Q37 } & 3 & 2 \text { N3053 NPN Silficon trangistors } \ldots \ldots \ldots & 0.55 \\ \text { Q38 } & 7 \text { N1'N transietors } 4 \times 2 N 3703,3 \times 2 N 3702 \ldots & 0.55\end{array}$

## ELECTRONIC SLIDE-RULE

The MK Slide Rule, designei to simplify Flectronie cal
culations features the following scales:- Converslon
$\qquad$
Circles. Yolume of Cy
Weight of Conductors.
tions. Natural Logs an
of kW and
entllusiast.
instructions
$\begin{array}{ll}2 \mathrm{~N} 2217 & 0 \\ 2 \times 2218 & 0 \\ 2 \mathrm{~N} 2219 & 0 \\ 2 \mathrm{~N} 2220 & 0 \\ 2 \mathrm{~N} 2221 & 0\end{array}$

## 2N3053

 0.240.22
?



## POWER TRANS BONANZA!





5

## 

A Largerange of technical
AND DATA BOOKS ARE NOW
SEND FOR FREE LIST

RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT
COMPETITIVE PRICES-10 amp POTTED
BRIDGE RECTIFIER100PIV. 99p each
NEW LINEPlastic Encapsulated
2 Amp. BRIDGE RECTS.
UT48. Eqv,
Eqt. TISt3
30p each.
100 UP 22.CADMIUM CELLS
GENERAL PURPOOSE
NPN SILCON SWITCH-
circuits. ALSO AVAIL-
ABLE in PNP Sin. to
2N2006, BCY 70 . Whenordering please sta

preference NPN or PK| 20 |
| ---: |
| 50 |
| 100 |
| 500 |
| 1000 |
| sII |
| 300 |
| 30 P |
| 301 |
| Bull |
| Full |

300 mW
40PIV(Min
Suli-Min.
Full Teste


$\qquad$
2N2060 NPN STL. DUAL 2N2060 NPN SII. DUAL
TRANS. CODE D1699
TEXAS. Our price 28 p 120 VCR NIXIE DRIVER TRANSISTOR. BSX21 \& C407, 2 Sirim
FU1LV TESTED AND
CODED ND CODED ND 120,1 1-24
190 each. TO.5
25
up 17p 25 up 17 p each. Sil. trate. suitable for
P.E. Organ, Metal TO-18 Eqvi. ZT
Any पty.
NEW EDITION
1972
TRANSISTOR EQUIVA-
LENTS BOOK. A comLENTS BOOK. A com-
plete crose reference and
pquivalents buok equivalents book for
European, American and
Japaneas Transistors.
Exas. Japanese
Exclugive
90peach

## -the lowest prices!

74 Series T.T.L. I.C'S

BI-PAK 8TILL LOWEST IN PRICE FULL SPECIFICATION GUARANTEED. ALL FAMOUS MANUFACTURERS



NUMERICAL INDICATOR TUBES

| MODEL | CD66 | GR116 | 3015 F <br> Minitron |
| :--- | :---: | :---: | :---: |
| Anode voltage (Vdc) | 170 mln | 175 min | 5 |
| Cathode Current (mA) | 2.3 | 14 | 8 |
| Numerical Height (min) | 16 | 13 | 9 |
| Tube Height (mm) | 47 | 82 | 22 |
| Tube Diameter (mm) | 19 | 13 | 12 wide |
| I.C. Driver Rec. | BP41/14 <br> 141 | BP41 or <br> 141 | BP47 |
| PRICE EACH | $\mathbf{8 1 . 8 7}$ | $\mathbf{2 1 . 7 0}$ | $\mathbf{2 1 . 6 0}$ |

All indicators
$0 \cdot 9+$ Deeimal
point. All side
viewing. Fult
dats for all
types available
on request.
INTEGRATED CIRCUIT PAKS
Manutacturers "Fall Outs"' Which include Functional and Part-Functional Units. These are elassed as 'out-of-
spec' from the maker's very rigid specifteations. but are Ideal for learning about IC's and experimental work

| Pat No. Contents | Price | Par No. Contents | Price | Prir No. Contents | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UIC $00=12 \pm 7400$ | 0.55 | $\mathrm{CIIC} 46=5 \times 7446$ | 0.85 | UIC90 $=5 \times 7490$ | 0.55 |
| UIC01 $=12 \times 7401$ | 0.55 | UIC48 $=5 \times 7448$ | 0.55 | UJC91 $=5 \times 7491$ | 0.55 |
| UTC02 $=12 \times 7402$ | 0.55 | $\mathrm{UIC50}=12 \times 7450$ | 0.55 | UIC92 $=5 \times 7492$ | 0.55 |
| ULC03 $=12 \times 7403$ | 0.55 | $\mathrm{U1351}=12 \times 7451$ | 0.55 | UTC93 $=5 \times 7493$ | 0.55 |
| UTC04 $=12 \times 7404$ | 0.55 | U1C53 $=12 \times 7453$ | 0.55 | UIC94 $=5 \times 7494$ | 0.55 |
| UIC05 $=12 \times 7405$ | 0.55 | UIC54 $=12 \times 7454$ | 0.55 | UIC95 $=5 \times 7495$ | 0.55 |
| UIC06 $=8 \times 7406$ | 0.55 | U1C80 $=12 \times 7460$ | 0.55 | UIC96 $=5 \times 7496$ | 0.55 |
| UIC07 $=8 \times 7407$ | 0.55 | UIC70 $=8 \times 7470$ | 0.55 | U1C100 $=5 \times 74100$ | 0.55 |
| U1C10 $=12 \times 7410$ | 0.55 | U1C72 $=8 \times 7472$ | 0.65 | UIC121 $=5 \times 74121$ | 0.55 |
| UIC20 $=12 \times 7420$ | 0.55 | $\mathrm{U1C73}=8 \times 7473$ | 0.55 | UIC141 $=5 \times 74141$ | 0.55 |
| U1C30 $=12 \times 7430$ | 0.55 | $\mathrm{U1C74}=8 \times 7474$ | 0.55 | U1C151 $=5 \times 74151$ | 0.55 |
| UIC40 $=12 \times 7440$ | 0.55 | UIC76 $=8 \times 7476$ | 0.55 | UIC154 $=5 \times 74154$ | 0.55 |
| UIC41 $=5 \times 7441$ | 0.55 | $\mathrm{U1C80}=5 \times 7480$ | 0.55 | UIC193 $=5 \times 74193$ | 0.55 |
| UIC42 $=5 \times 7442$ | 0.55 | UIC81 $=5 \times 7481$ | 0.55 | UIC199 $=5 \times 74199$ | 0.55 |
| $\mathrm{UIC43}=5 \times 7443$ | 0.55 | U1C82 $=5 \times 7482$ | 0.55 |  |  |
| UIC44 $=5 \times 7444$ | 0.55 | U1C83 $=5 \times 7483$ | 0.55 | UICXI-25 A88огt |  |
| UIC45 $=8 \times 7445$ | 0.65 | UIC86 $=5 \times 7486$ | 0.58 | UKCXI-25 As8orte | 1.55 |

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS) $0.1 \%$ DISTORTION! HI-FI AUDIO AMPLIFIER

- Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$.
- Load-3, 4,8 or 16 ohme. Supply voltage $10-35$ Volte.
- Signal to noise ratio 80 dB .
- Overall alze $63 \mathrm{~mm} \times 10 \overline{\mathrm{~mm}} \times 13 \mathrm{~mm}$.

Tallor made to the moat stringent specifications using top ircuitry conceived to fill the need for all your A.F. amplifl catlon needsilit-TESTED-GUARANTEED.
BRITISH MADE. only $£ 3.58$ each


MODULE SPM80
Ap80 is especially designed to power 2 of the ALLo Amplifere, up to lateet components and circuit techniques incorporating complete the circuit protection. With the addition of the Maing Transformer MT80,
 $63 \mathrm{mml} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to builid. Audio
$8 y s t e m s ~ o f ~ t h e ~ h i g h e a s t ~ q u a l i t y ~ a t ~ a ~ h i t h e r t o ~ u n o b t a i n a b l e ~ p r i c e . ~ A l s o ~$ Systens of the highest quality at a hitherto unobtainable price. Aloo
bieal for many other applications including: Disco Systems, Public Mead for maty other applications including: Diseo Systems, Public
Address, Intercom Unitte etc. Handhook available, 10p.
TRANSFORMER BMT80 £2.15 p. \& p. 25p

## NEW COMPONENT PAK BARGAINS

## STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet atlll the greatest Falue on the market, Designed for use with the Also power amplifer syatem, this quallty made unit incorporates no less than elght silicon planar transistors, two of these are speclally Three switched stereo inputs, and rumble and scratch Three switched stereo inputs, and rumble and scratch filters are features of the
PAloo, whlch also has a STEUEO/MONO switch, volume, balance and continuously variable bass and treble controls. SPECIFICATION:

Frequency response
Harmonlc diatortion nputs: 1. Tape head
2. Radio, Tuner
$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ better than $0.1 \%$ $\frac{1}{35 \mathrm{mV}}$ into $50 \mathrm{~m} \Omega$ into $50 \mathrm{~K} \Omega$ 35 mV into $50 \mathrm{~K} \Omega$
1.5 mV into $50 \mathrm{~K} \Omega$ Ar input voltagee are for an output of 250 mv . Tape and P.U. Inputs equalised to RLAA curve
within $\pm 1$ id irom 20 Hz to 20 kHz .

Bass control
Treble control Treblers: Rumble (high pass) Signal Bcratch (low pase) Input overload Input overi
Supply
Dimenions


The STEREO 20
The 'Stereo 20 ' amplfier is mounted, ready wired and tested
on \& one-piece chassis measuring 20 cm $\times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$ This compact unit comes complete with onj/off switch, volume front panel and matching control knoba. The 'stereo 20 ' has been designed to fit into most turntabie plinths without arate cabinet.
$\begin{array}{ll}\text { Output power } 20 \mathrm{w} \text { peak } & \text { Input } 1 \text { (Cer.) } 300 \mathrm{nny} \text { into } 1 \mathrm{M} \\ \text { Freq. res. } 25 \mathrm{~Hz}-25 \mathrm{kHz} & \text { Input } 2 \text { (Aux) } 4 \mathrm{mV} \text { into } 30 \mathrm{~K}\end{array}$
 £13.47 free p. \& p.



$-\begin{gathered}\text { Price each } \\ 1-24^{25-98}\end{gathered}$
Buxy TO-5 case uL900
Buffer
uL914 Dual 21/p gate
uL923 $\mathrm{J} \cdot \mathrm{K}$ flip-flop

Resistors mixed values approx.
Description
Cayacitors mixed values approx. count by weight
Precision Resistors $1 \%$, mixed values
Pieces assorted Fertle Rods
Tuning Gangs, MW/LW/VHF
Pack Wire 50 metres assorted colours
Reed Switches
Micro Switches
Assiced Pots \& Pre-Sets
Papeckets $3 \times 3.5 \mathrm{~mm} 2 \times$ Standard Switch Types
20 Electrolytics Trans, types
Pack assorted Hardware-Nuts/Bolts, Grommets etc.
Mains Toggle Switches, 2 Amp D/P
20 Asported Tag Stripe \& Pan
10 Assorted Conlrol Knobs
3 Rotary Wave Change Swit
$20-4$ Sbeets Copper Laminate
C2, C19, C20 $p$ post and packing on all component paeks, plus a
RTL MICROLOGIC CIRCUITS

|  | $38 p$ | $36 p$ | 29 p |
| :--- | :--- | :--- | :--- |
| uL914 Dual |  |  |  |
| uL923 $3 \cdot \mathrm{~K}$ | flip-flop | 38 p | 38 p |
|  | 55 p | 51 p | 26 p |

DUAL-IN-LINE
PROFESSIONA
PROF. TYPE PROF. TYPE
TSO 14 pin type LOW COST No. BPS 14
BPS 16

|  |  |
| :---: | :---: |

SYSTEM 12 STEREO
Each KIt contains iwo Ampllfier Modules, 3 watts
RMS, two loudspeakers, 15 ohms. the pre-ampllfier, transformer, power supply module, front panel and other accessorles, as well as an illustrated stage-by-stage instruction booklet deslgned for the beginner. Further detalls avallable on request. FREE p. 8. p. Send now for the BI-PAK "Component Catalogue" 5p to cover postage etc.

ALL PRICES INCLUDE V.A.T.


Guaranteed Satisfaction or Money Bach

## (19) H.-P. (Electronics)Ltd

## 100 WATTS!



With the development of the HY200, ILP bring you the first COMPLETE Hybrid Power Amplifier.
COMPLETE: because the HY200 uses no external components!
COMPLETE: because the HY200 is its own heatsink!
By the use of integrated circuit technique, using 27 transistors, the HY200 achieves total component integration. The use of specially developed high thermally conductive alloy and encapsulant is responsible for its compact size and robust nature.
The module is protected by the generous design of the output circuit, incorporating 25 amp transistors. A fuse in the speaker line completes protection.

Only 5 connections are provided, input, output, power lines and earth.
Output Power: 100 watts RMS; 200 watts peak music power
Input Impedance: $10 \mathrm{~K} \Omega$
Input Sensitivity: ODbm ( 0.775 volt RMS)
Load Impedance: 4-16 $\Omega$
Total Harmonic Distortion: less than $0.1 \%$ at 100 watts typically $0.05 \%$
Signal: Noise: Better than 75 Db relative to 100 watts
Frequency response: $10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{Db}$
Supply Voltage: $\pm 45$ volts
APPLICATIONS: P.A., Disco, Groups, Hi-Fi, Industrial.
PRICE: $£ 14.90$ inc. VAT \& P \& P
Trade applications welcomed

## (IT) <br> I.L.P. (Electronics)Ltd

## THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last vear. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (rypically $0.05 \%$ at 1 KHz into 8 ohms! and is electronically and mechanically compatible with the HY40.

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi-Fi but also for public address systems and industry

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.

OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 olims.
INPUT IMPEDANCE: 30 K ohms at 1 KHz
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than $0.15 \%$ (typical $0.05 \%$ )
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$
SUPPLY VOLTAGE: +22.5 volts D.C.
SUPPLY CURRENT: $\overline{0} .8 \mathrm{amps}$ maximum.
PRICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:-
MONO: $£ 5.39$
STEREO: $£ 10.78$ This is inclusive of V.A.T. pus P. \& P.

## UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid preamplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, when linked by a balance control to a second $H$ Y 5 , forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

## INPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$

Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up lequalized and compen-
satable) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

ACTIVE TONE CONTROLS (Bexendall) Treble + 12db
Bass + 12 db
INTER̄NAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-25 volts
PRICE: MONO: $£ 3.96$
STEREO. E7.92 This is nclusive of T. A. plusp \& P

## POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: $\pm 22.5$ Volts at 2 amps.
Overall Dimensions: L. $7^{\prime \prime}$; D. 3.8'"; H. 3.1'

Please note we reserve the right to substitute at our discretion updated versions of advertised designs where applicable



JOSTYKIT
WE ARE APPOINTED STOCKISTS AT ALL BRANCHES


RP. 214 REGULATED P.S.U. Solfd state. Variable output 0-24V 10C up



|  |  |
| :---: | :---: |
|  |  |





POWER RHEOSTATS
High quality ceranic construc
High quality ceramic construc
tion. Windings embedted in vitreous enamel. Heavy duty
brush wiper. Continuous rating. Wide range available ex-stock
Single hole fxing, tin. dia-
shafta, Bulk quantitieg available. ${ }^{2} 5$ WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000$ ohms. 95p 50 WATT. 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or
5000 ohms. $£ 1 \cdot 35$. P. \& P. 10 p .



[^8]
## EEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, etc.
Over 200 ranges in atock-other ranges to order. Quantity discounts available. Send for fully $H$ llustrated brochur

| TYPE SD. $460 \quad 48 \mathrm{~mm} \times 58.5 \mathrm{~mm}$ Fronts |  |  |  |
| :---: | :---: | :---: | :---: |
| ${ }_{50}^{504}{ }_{50-50}$ | 8280 |  |  |
| 100 ua | 22.75 | ${ }^{\text {comp }}$ |  |
| $100-0-100 \mu \mathrm{~A}$ | 22.75 |  | : 80 |
| ${ }^{20004}$ | 放2.70 | ${ }_{\text {cover }}$ | ${ }^{\text {B0 }}$ 80 |
| 1 mA | 88.80 | ${ }_{50}^{20 . D . C . C .}$ | ${ }^{60}$ |
| coma | ${ }_{\substack{22 \\ 820 \\ 820}}^{80}$ |  |  |
|  |  | 300V. A. A.C. VU Meter |  |


$317 / 32 \mathrm{in} . \times 115 / 32 \mathrm{in} . \times 2$ in. deep.


> * MOVING IRONall Others moving coil Please add postage



## "SEW" EDUCATIONAL METERS TYPE ED. 107



Size overall 100 mm
$80 \mathrm{mra} \times 108 \mathrm{~mm}$.
A new range of high
quality
instruments
moving
ideal coil
school experiments and
other bench applica-
tions. Bin. mirror scale
tions. Sin. mirror scale.
The meter movement ts. easily accessible to demonstrate internal working. Available in the following ranges:-





Send SAE for new
8 page list of
Semi Conductors and Valves


Solid state. 5 bands covering 200 120 KHz and 55 to 30 MHz . Illurin
ated sllde rule dial, Bandepread. Aeria ated slfde rule dial, Bandspread. Aerial
tuning. BFO, AVC, ANL, "B", meter.
AM/CW SE B. Integrated speaker and phone socket. $220 / 240$ V. A.C. or 12 y
$\mathrm{D} . \mathrm{C}$.
Size $325 \times 266 \times 150 \mathrm{~mm}$

## OUR

[32-51 Carr

4 bands covering $550 \mathrm{kc} / 8$ to $30 \mathrm{nc} / \mathrm{s}$
continuous and electrical bandspread
on 10,15 , 20 , 40 and 80 metres 8 yalve on $10,15,20,40$ and 80 metres. 8 valve
plus 7 diode circuit. $4 / 8$ ohm output plus 7 diode circuit. $4 / 8$ ohm output
and phone jack. S8B-CW. ANL.
Variable BFO. $\$$ meter. Sep. bandspread dial. IF frequency $4+5 \mathrm{kc} / \mathrm{s}$.
audio output 1.5 w . Variable RF and audio output 1.5 w. Variable RF and
AF gain controls
AF $5 / 250$ v.
Size: 7 Iin. $\times 13$ in. $\times 10$ in. with instrucUoinamual
OUR $\because 49-51$ Carr. PRICE $\mathbf{4 9} 41$ Paid
(ULL TRIO RANGE STOCEED
ALL PRICES ARE EXCLUSIVE OF 10\% VAT


Bands covering $550 \mathrm{kc} / \mathrm{s-}-30 \mathrm{me} / \mathrm{m}$.
FET, $\$$ Meter. Variable BFO for $88 B$. Buit,-in Speaker, Bandspread, Bensi-
tivity Control. $220 / 240$ v. A.C. or tivity Control. $220 / 240$ v. A.C. or
12 v . D.C. $12 \mathrm{in} . \times 4 \mathrm{in} . \times \quad 7 \mathrm{in}$.
$\underset{\text { PURICE }}{\text { OUS }}$ E-11

LAFAYETTE HA-600 RECEIVER


General coverage $150-400 \mathrm{kc} / \mathrm{s}$. $550 \mathrm{kc} / \mathrm{s}-$ 30 mofs. FET front end, 2 mech. alters, product detector, variable B.F.O.,
noise 1imiter, 8 Meter Bandgpread. noise limiter,
RF Gain. 151 n.
$\times 9$ gin. DUR Carr. ${ }_{\text {phice }}^{\text {pur }} \mathbf{£ 5 0 . 0 0}$ 50p



SPECIAL OFFER!


STEREO SPEAKERS bookshelf
kers.
Dpea-
luxe
teak
veneered falsh. Size 1 thin.
$\times 8$ gin. $\times 77 \mathrm{in}$.
8 ohms. 8 watti 8 ohms. ${ }^{8}$ watts
RMS. 16 watte
peak. Complete


HA-10 STEREO HEADPHONE AMPLIFIER
 thanistor am.
plifier operates
from magnetio
in
 sterco headphone outputa and separate
rolume controls for each channcl.

 MP7 MIXER PREAMPLIFIER

 $50 \mathrm{~K} ; 2 \times 3 \mathrm{mV}$ b00 ohm. Phono mag.
4 nivi 50 K . Phono ceramic 100 mV 1 meg. $\begin{array}{lrr}\text { OUR } \\ \text { PRICE } & \mathbf{I 8 . 9 7} & \text { P. \& P. } \\ 20 \mathrm{p}\end{array}$
1021 STEREO
LISTENING STATION
 For balancing
and gain selec
 switching. yain controls,
switch.
stereo
heaker phone forles



PRICE $\mathbf{f 1 8 7} \quad{ }_{30 \mathrm{p}}$
LIGER LHO2S STEREO
HEADPHONES
$\begin{array}{lll}\text { OUR } \\ \text { PRICE } & \mathbf{E} 25 & \text { P. \& P. }\end{array}$
SDH8V MONO/STEREO HEADPHONES

$\begin{array}{lrr}\text { OUR } \\ \text { PRICE } & \mathbf{E 4 . g 7} & \text { P. \& P. } \\ 30 \mathrm{p}\end{array}$ BHOO1 HEADSET AND
BOOM MICROPHONE


Ideal for lims.
guase teaching.
communicatine etc. Complete
with leads and
plugs.
 DH.08S Stereo Headphones



## 4-CHANNEL STEREO

 HEADPHONESTTC Goft vinyl
coveredtcad
 earphone
Each ean
Eliece inct
 $\frac{\text { unita. Fitted }}{2 / 4}$ channel
changeover
switch. Impedance $4-16$ ohm. Frequency response $20-20,000 \mathrm{~Hz}$. Complete with
15 ft . coiled lead fitted two stereo plugs. ${ }^{\text {OUR }} \mathbf{5 9 . 9 5}$ P. 8 P.




Audiotronic Products are manufactured exclusively for the Audiotronic Group
of Companies and as a member of the group we are pleased to offer you this fabulous range of high quality equipment. Made to our own specifications each item pro
money pricel


8-TRACK BLANK TAPES

ACR. 14 BATTERY/ MAINS CASSETTE


OUR
PRICE $10-50 ~ P . ~ \& ~ P 50 p ~$
SPORTSMAN AM/FM PORTABLE RADIO MODEL AR, 1000

 Large horliontal siide
dial with logting scale.
Slider
Slider vorume
squelch controls. 7 secc-
tion telescoppic aerial ior
FM and bullt-in terrt
AFC. 3in. speaker. Earyiece socket Green leatherette eovered cabinet with
metal side panels. 8 Bze $152 \times 7 \theta \times 8$

OUR
PRICE
I1150 P. \& P

MULTIBAND
RADIO
AMB 500
5 wavehands rover-
ing MW $335-1605 \mathrm{KHz}$
and FM 88.175 MHz .
and FM $88-175 \mathrm{MHz}$.
All transistor. Battery
or mnins operation.
section telescopic
aerial. Complete with
batierie
strap
${ }_{\text {OUR }}^{\text {OURE }} \mathbf{f 6} \mathbf{9 5}$
PORTABLE RADIO
AMR-9000 GLOBAL
AM/FM


beautliully styled 4-track stereo deck With an outstanding specification
offered at a remarkably low price.
Incorporates a liost of features includIng switchable nose filter, nnemal chrome tape selector, twin LU meter
slider record/playback level controls front panel headphone soeket, record ing inficator lamp, phono/Dln line
ingut socketa, 3.5 mm. mike input sockets etc., ete. Frequency respons -45 dB . Crosstalk -45 dB . Separation $-3 . \mathrm{dB}$. Noise $11 \mathrm{miter}-6 \mathrm{~dB}$ a
10 KHz . Complete with phono connect OUR
PRICE
E $\frac{\text { PRICE }}{\text { IN-CAR EQUIPMENT }}$


ACP. 8 B-TRACK Attractive black and sil
ver fanish. 12 y stider controla
Balance. Chan for Volume, Tone and Balance. Chan-
nel selector button with red pilot lamp OUR Grackets and linstructions. P. \& P ${ }_{\text {PRICE }} \mathbf{£} 12 \cdot 50 \quad$ 400


ACR 3500 CAR RADIO Manual tuning of Medium and Long
waves. 12v. pos. or neg. earth. Com-
plete with speaker, mounting brackets OUR

 CAR RADIO
Push button tunling of one LW and
Ave MW stations of your choice.
12v. pos. or neg earth - 12v. pos. or neg. earth. Complete.䛼
 Can be used with most hi-f ampifiers. Push button track selector and illus-
trated track indicators. Attractive cabinet with black and rilver trim. $\underset{\text { ounce }}{\text { ounct }} \mathrm{f} 1195$ P. \& P. 50 p

## AUDIOTRONIC LA. 1700 SYSTEM

$17+17$ watt ampllifer. Garrard AP76, of Whartdale Linton 2 speakers and al OUR $F 86 \cdot 95$ Carr. \& Ins.
PRICE Matching LT1700 AM/FM Stereo

## STEREO HEADPHONES



#  


$2 \times \mathrm{Z30}$ Btereo $60 / \mathrm{P} / \mathrm{Z5} \mathrm{E15} \cdot 85$.
$2 \times \mathrm{Z} 30 / \mathrm{Bt}$ ereo $60 / \mathrm{PZ} 6 \mathrm{E18} \cdot 00$.
 Transormer for Pris 83.85
Actlve Fiter Unit $24 \cdot 45$

 P. \& P. ${ }^{37 \mathrm{P} \text { P. }}$




## HIKKO TRM50 STEREO AMPLIFIER

## $17+17$ watts rms. Inputs for magnetic

 and crystal phono, tuner, tape etc.Dual sterco speaker outputs. Head-
phone socket. Full range of controls.

 | OUR |  |  |
| :--- | :--- | ---: |
| PRICE | $\mathbf{P} 9.95$ | P. \& P. |

## PHILIPS IC361 AM/FM MAINS/PORTABIE

 RADIO WITH Covera LW, MW,
FM, SW 1, SW2 and 48, metre band
Fine tuning of $9 W$ Fine tunlng of sW
and Pre set turing
and Oit three FM stations.
Base,
treble
and
and wave change. Tuning/battery indicato Tape/Gram input. Earplece socket
 $\begin{array}{ll}\text { OUR } \\ \text { PRICE } & \text { P9.95 } \\ \text { P. } 8 \text { P. } \\ 50 \mathrm{p} .\end{array}$


Record/Playhack faclities plus slide FM $88-108 \mathrm{MHz}$. Sllder volume controls. Built in condenser microphone plus
geparate hand/desk microphone. Telescopic aerial. Complete with earpiece,
batieries and instructions. (Tape not $\begin{array}{lll}\text { OUR } & \mathbf{I 2 2 : 7 5} & \text { P. \& P. } \\ \text { P0 }\end{array}$


Carriage \& Packing 50 B.S.R. MeDONALD C129 Mono
C137 $510 / \mathrm{TYDi}$ ${ }_{610}^{610} / 1 \mathrm{TPD} 1$ 710 .................
710
M10i0 Pilinth and Cover
MP8 MP60/G800 MP60/TPD1 MP670/TPD
HTV HT70/9800 CONNOISSEUR

## ${ }_{\text {BDI }}^{\text {BDI Chassis }}$ Piinth/Cover

 BD2/SAU2/ChassisBD2/GAU2/Plinth/Cover ${ }_{1025 T}$ ARRARD
${ }^{102525} \mathrm{~T} / \mathrm{C}$ Stereo.
 $\mathrm{SP} 25 \mathrm{ILI} / \mathrm{C800}$
$\mathrm{SPP25/M75-6}$

8L68B
SLI2B
SL95B
 $\underset{\text { G日g }}{\text { GOLDRING }}$
 GLE8/2
GLIT
GL7 $2 / P$ GLJ5
GLTFP
GL78P GL88PP/C THORENS
TD125/II TD125/II
TD125AB/Ii
TD10 TD11800
$T D 165$ $\qquad$


Carriage and Paoking 75p Complete units with Btereo cartridge Traady wired In plinth and cover.
GARRARD








B.S.R. MCDONALD

MP60/G800
M10,

MP60/M44-7,
HT 7 /TPD $1 / G 800$

GL76/G800
GL75/G800E
G00DMAN8
TD1000 G880 Teak
TD100/ 8800 Whlt
LEAK
$\mathrm{PHALPS}_{\mathrm{GAlO}}^{\mathrm{GP} 20}$
GA1 $60 / G P 200$
GA $308 / G P+00$.
${ }_{\text {GA }}$ A308 (liess cartridge)
PIONEER
${ }_{\text {PLI2D ( }}$
PL15C (Lees cartridige)
PLi11 (Leese cartride)
PL
PLo $00 ~(L e s s ~ c a r t r i d g e) . ~$
PLA35 (Less
THORENB
THOREN8
TD160C/Ortoion M15E Supe
TD125 AB/11 M1sF Surer
T165/Ortaton M16E Super
WHARFEDALE
Lla: on/M44.7 Teak
I/nton/M4-7
alte..

SPECIAL GARRARD OFFERS!

## STEREO

with stien epeed autochanger unit Bitted
 50p

## SP25III WITHAC GP104

SP2s MK III. 4. speed elngle record OURiridge.
ORICE E8.50 Carr \& Ins.

$8+8$ watt amplifier, 1 P25 or MP60,

plinth and cover, G800 eartridge, pair of Merd way Tll 38 , G800 cartridge, pai | OUR |  |
| :--- | ---: | ---: |
| PRICE | Carr |
| f 1.25 |  |


$16+16$ watt amplifer. EP25 or MP60
plinth and cover, G800 cartridge, pair plinth and cover, G800 cartridge, pair


SUPER AKAI CASSETTE BARGAINS!


AA6300 AM/FM STEREO RECEIVER
$20+20$ watts rms. with imputs for mag. netlc and ceramic cartridge and tape controls. Frequency range FM $88-108$



BSR 8 TRACK BARGAINS


Connects to most stereo amplifiers
output 125 mV ). Automatic/Manual Counects to most stereo amplifers
loutput 125 mV$)$. Automatic/Manual
porame $\begin{array}{ll}\text { OUR } \\ \text { PRICE } & =12.71 \quad \text { P. \& P. } \\ 50 \mathrm{p}\end{array}$ TD83V ( 750 mV ) 215.20 (P. \& P. 50p) ${ }_{\text {PRICE }} \quad \mathbf{f 3 1 \cdot 5 0}{ }_{50 \mathrm{p}}^{\text {OUR }}$
 (2) (2) i, $e$ e overall MERGUSON EXPORT
 Tuner Amplifier Covers FM $88-108 \mathrm{MHz}$. Five push button tundng scales. $8+8$ watter rms. Inputs for stereo ceramic cartridge and
tape, etc. Separate bass, treble, balance $\begin{array}{lrrl}\text { OUR } & \text { P\&G5 } & \text { PGP } & \text { OUR } \\ \text { PRICE } & \text { 50p } & \text { PRICE }\end{array}$

LONDON'S LARGEST STOCKS INCLUDING PRODUCTS BY-
 ARMSTRONG CAMBRIDGE KEF.LUX-NIKKO SANSUI-SANYO SONY-TEAC TRANSCRIPTORS TRIO.UHER YAMAHA

ALL EQUIPMENT IS FULLY GUARANTEED AND COVERED BY 12 MONTHS FREE SERVICE!

PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES




| Tel 01.4379369 | $\begin{array}{l}\text { 86, South Street, Romford. } \\ \text { Tel. } 01.4378204 \\ \text { SURREY }\end{array}$ |
| :---: | :---: |



1046. Whitglit Centre, Crovdo
27. Eden Street, Kingstor.

Tel:01-681 3027
 ALL BRANCHES OPEN 9 a.m.-6 p.m. MONDAY TO SATURDAY HEAD OFFICE and MAIL ORDER DEPARTMENT
UNIT 4, THE HYDE INDUSTRIAL ESTATE THE HYDE, LONDON NW9 6JJ

PRICES SUBJECT TO 10\% VAT Order with confidence by Post-but
Temember to add 10\% VAT to total. remember to add $10 \%$ VAT to total
Value of order including carriage and
packing end send cash with order.



TELEPHONED ORDERS ACCEETEO
FROM ACCESS and FROM ACCESS and
BARCLAYCARD barclay
HOLOERS
CREDTT TERMS CALLERS Ion sales
Of 50 .
Beyin with Acem
of $£ 50$ and over).
Allpless correct at 20.7 .73
Subjoct to change withcut notice


## CONCORDE INSTRUMENT COMPANY

## 42 CRICKLEWOOD BROADWAY LONDON NW2

who now have franchise agreements with Siemens and Thomson-CSF wish to sell the following capacitors manufactured by NTK, and resistors manufactured by Erie:

| Voltage | Quantity | Capacitance F | Dimensions <br> D $\times \mathbf{L}(\mathbf{m m})$ | Price | Voltage | Quantity | $\begin{aligned} & \text { Capacitance } \\ & \text { uF } \end{aligned}$ | Dimensions <br> D $\times \mathbf{L}(\mathbf{m m})$ | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 V | 10,000 | 2,200 | $18.0 \times 31.5$ | 9.0p | 25 V | 25,000 | 100 | $10.0 \times 25.0$ | 3.0 p |
|  | 11,700 | 3,300 | $18.0 \times 40.0$ | 11.0p |  | 12,500 | 220 | $12.5 \times 31.5$ | 5.0p |
|  | 7,720 | 4,700 | $22.4 \times 40.0$ | 13.0p |  | 50,000 | 330 | $12.5 \times 31.5$ | $5.6 p$ |
| 10 V | 20,000 | 33 | $6.3 \times 16.0$ | 2.5p |  | 35,200 | 470 | $18.0 \times 31.5$ | $6.0 p$ |
|  | 2,500 | 47 | $8.0 \times 16.0$ | $2.5 p$ |  | 23,650 | 1,000 | $18.0 \times 40.0$ | 10.0p |
|  | 8,000 | 330 | $10.0 \times 31.5$ | $2.6 p$ |  |  |  |  |  |
| 10 V | 1,500 | 470 | $12.5 \times 31.5$ | 4.5 p | 35 V | 37,500 | 100 | $12.5 \times 31.5$ | 3.3p |
|  | 41,000 | 1,000 | $12.5 \times 31.5$ | 5.5p |  | 15,000 | 220 | $12.5 \times 31.5$ | 6.0 p |
|  | 21,000 | 2,200 | $18.0 \times 40.0$ | 10.0p |  | 5,800 | 330 | $18.0 \times 31.5$ | 9.0p |
|  | 20,460 | 3,300 | $22.4 \times 40.0$ | 13.0p |  | 15,000 | 470 | $18.0 \times 40.0$ | 9.3p |
| 16 V | 18,000 | 220 | $10.0 \times 31.5$ | 3.3p |  | 15,000 | 1,000 | $22.4 \times 40.0$ | 12.0p |
|  | 27,500 | 330 | $12.5 \times 31.5$ | $5 \cdot 0 \mathrm{p}$ |  |  |  |  |  |
|  | 23,760 | 470 | $12.5 \times 31.5$ | 5.6p | 50 V | 2,000 | $3 \cdot 3$ | $6.3 \times 16.0$ | 3.0p |
|  | 1,500 | 2,200 | $22.4 \times 40.0$ | 14.0p |  | 6,200 | 220 | $18.0 \times 40.0$ | 8.8p |

Please note that the above prices are for quantities of 1,000 . If you require any more than that, please telephone us on 01-452 0161

## Erie Resistors

| $\frac{3}{4}$ WATT 10\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R $\Omega$ | Quantity | R $\Omega$ | Quantity | $\mathrm{R} \Omega$ | Quantity |
| 135 | 20,983 | 390 | 28,000 | 470 | 3,550 |
| 560 | 24,000 | 1 K 5 | 4,000 | 3K9 | , 2,600 |
| 18K | 20,000 | 1M | 22,550 | 2M2 | 2,000 |
| 2 M 7 | 35,700 | 3 M 9 | 2,600 | 5M6 | 2,000 |
| 10 M | 54,750 | 8AD |  | 5M6 | 3,000 |
| PRICE: 50p per 100. (Subject to remaining unsold.) |  |  |  |  |  |
| 2 WATT 10\% |  |  |  |  |  |
| $\mathbf{R} \Omega$ | Quantity | R $\Omega$ | Quantity | R $\Omega$ | Quantity |
| 1 K 2 | 1,700 | 1 K 5 | 108,600 | 2K2 | 20,650 |
| 3K3 | 3,000 | 3K9 | 6.250 | $4 \mathrm{K7}$ | 24,200 |
| 5K2 | 4,000 | 5 K 6 | 31.500 | 8 K 2 | 59,150 |
| 15K | 5,150 | 18K | 3,950 | 22 K | 6,000 |
| 47K | 24,200 | 100 K | 2,000 | 120K | 2,000 |
| 150K | 13,300 | 330 K | 2,850 | 470K | 23,400 |
| 2M2 | 48,300 | 3M3 | 550 | $5 \mathrm{M6}$ | 3,150 |
| 8M2 | 250 | 10M | 32,450 | 10 AD |  |
| PRICE: $\mathbf{8 1} \mathbf{0 0}$ per 100 |  |  |  |  |  |



PRICES SUBJECT TO QUANTITIES REQUIRED.
Concorde Instrument Company has the exclusive franchise for Scotland with Siemens covering their complete range of passive components, semiconductors and ferrites. The address of the Scottish office is:-

CONCORDE INSTRUMENT COMPANY
65 BATH STREET, GLASGOW, G2 2BX, SCOTLAND
Telephone : 041332 4133/4
Please telephone 014520161 for all enquiries regarding this offer


## TRANSFORMERS

Primary $200-250$ Volts Secondary 240 Votts Centre ALSO AVAILARLE (IIOV) and Earth Shielded


440V 300 VA iSOLATOR, Primary 440 V Secondary 240 V , Centre Tapped sereened and Shrouded, $£ 10 \cdot 37$. P \& P 67 p .

AUTO SERIES (NOT ISOLATED)

| VA | Weight | Size cm. | Auto Taps |  | P \& P |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Watts) |  |  |  |  | $\varepsilon$ | ¢ |
| 20 | 11 | $7.3 \times 4.3 \times 4.4$ | 0-115-2 | 240 | 0.93 | 22 |
| 75 | 114 | $7.0 \times 6.4 \times 6.0$ | $0-115$-2 | 240 | 1.82 | 30 |
| 150 | 30 | $8.9 \times 6.4 \times 7.6$ | 0.115 -2 | 220-240 | $2 \cdot 20$ | 36 |
| 300 | 6 | $10.2 \times 10.2 \times 9.5$ |  | , | $4 \cdot 28$ | 52 |
| 500 | 128 | $14.0 \times 10.2 \times 11.4$ | " | : | 6.35 | 67 |
| 1000 | 160 | $11.4 \times 14.0 \times 14.0$ | ", | \% | 11.54 | 82 |
| 1500 | 28.9 | $13.5 \times 14.9 \times 16.5$ | ", | ', | 16.72 | . |
| 2000 | 400 | $17.8 \times 16.5 \times 21.6$ |  |  | 21.82 |  |
| 3000 | 458 | $17.4 \times 18.1 \times 21.3$ |  | " | 29.70 |  |

TOTALLY ENCLOSED IISV AUTO "̈RANSFORMERS
IISV 500 Watt totally enclosed auto transformer, complete with mains lead and two 115 V outlet sockets. 88.63 . P \& P 67 p
Also available a 20 Watt version. ©1.84, P \& P 2 p .

PRIMARY LOW VOLTAGE SERIES (ISOLATED)


REF 238 PRI 0240 ECREENIPMENT SEC 3 TRANSFORMER 3 RMS at 200 mA SIZE CM $2.8 \times 2.6 \times 2.0$ EN SEC 3.0 3V RMS at 200 m
WEIGHT 202 E1.08 \& \& 10 p .
PRIMARY $200-250$ VOLT FOR CHARGGING6OR I2VOLT BATTERIES


All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

TRANSISTORS
TO MANUFACTURERS' FULL'SPECIFICATIONS
FOR EXAMPLE
BC107/108/109 10p each
2N 3055 68p each
AD 161/162 60p pair

## $\star$ Quantity prices on application <br> Also stocked: SEMICONDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS <br> PLEASE ADD 10\% FOR V.A.T <br> Carriage via B.R.s.

:ABille elactronics
3, THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST.

## HART <br> ELECTRON ICS

Audio Kits


This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best pre-amp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only $1 \frac{1}{2}{ }^{\prime \prime}$ deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real $\mathrm{Hi}-\mathrm{Fi}$ with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits.
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo repiay channel can be built for $\mathbf{f} 6$ for single speed use without external components or a switch may be added for multispeed operation.
Stuart reprints all three articles under one cover. Price 30p. No V.A.T.

## Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday

## ATTENTION!

## PLESSEY RADAR MARK V and MARK VII DISPLAY UNITS

The following brand new P.W. Boards are available at a fraction of their original cost.
OUR SPECIAL PRICE $£ 15.00$ each

| Part No. | Part No. | Part No. | Part No. |
| :---: | :---: | :---: | :---: |
| 12305/A | 12292/A | 687/1/00925/001 | 12048/A |
| 12346/A | 12458/A | 12065/A | 12047/A |
| 12439/A | 12344/A | 12327/A | 12551/NP/C EXT. Stalk |
| 12459/A | 12034/A | 17126/A | 12378/A |
| 12447/A | 12336/A | 12961/A | 12343/A |
| 12235/A | 12412/A | 12482/A | 12326/A |
| 419-1-00647 | 12345/A | 12970/A | 687/1/01291 |
| 12100/A | 12353/A | 12972/A | 12422/A |
| 12962/A | 12963/A | 12338/A | 12281/A |
| 12436/A | 12098/A | 12339/A | META for MK VII |
| 12184/A | 12341/A | 12487/A | 687/1/00678 |
| 12187/A | 12968/A | 12325/A | 687/1/00070 |

BROADFIELDS \& MAYCO DISPOSALS,
21, LODGE LANE, N. FINCHLEY, LONDON, N12, 8JG, ENGLAND Telephone: 01-445 2713 and 01-445 0749

# G. E.EGTiNNTBS 267 ACTON LANE, LONDON W4 

MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER

## TEST EQUIPMENT

Monufacturer
EMI 9524H
Teletronix 55
Teletronix $53 / 54 \mathrm{~B}$
Croydon Presis
Instruments KBi
Vibro-Meter Corp
Muirhead 21-A
Emouzy
Marconi Mod. 12
Cawkell S.O.I.
Teletronix 551
Teletronix D, G
Teletronix 536
Teletronix 661
Eddystone
Marconi TF 1100 Marconi TF428C Marconi TF887A
Marconi TF887A
Marconi TFI 374
Pye
Advance MG5-40
Marconi TF894 Cossor R109AD5
Teletronic 545
H.P. 614A

Cohn
Marconi TF1272 Solartron JM1067 Cossor R109 ABS Mk Marconi TFI44G Cambridge Teletronix B, Advance PM48 E.M.I. WMI6 Baird \& Tatlock Sullivan Cambridge L358113 Teletronix 107 Avo FPSK Marconi TFIO4I
Sony PV-I20VE

Marconi TF928
Solartron CDi22
Solartron OSI03
Ediswan R666 Marconi TFI165 Sanders L026 B.P.L. LC100-C Roband V50/5 A.P.T. 2445 Farnell TSV12 Airmec 252 Marconi TFI 30 Honeywell IK100 Jerrold 900A Advance DI/D E.M.I.

Wayne Keri Ml2
E.M.I.

Type
Photomultiplier
Oscilloscope and $B+G$ Plug-in Plug-in

Kelvin Bridge Ohmeter
Varley/Wheatstone/Murray Bridge
Electronic Multimeter
Micouac Electronic Testmeter
AM/FM Signal Generator $35 \mathrm{kHz}-18.3 \mathrm{MHz}$
Storage Oscilloscope
Oscilloscope and $2 \times G$ Plug-in
Plug-in units
X-Y Oscilloscope and $2 \times$ B Piug-in
Sampling scope and 5 TAI +4 SI Pl
Sampling scope and 5 TAI +4 SI Plug-in
Receiver $500-1000 \mathrm{MHz}$
Sensitive Valve Voltmeter
Valve Millivoltmerer
Valve Voltohmeter
H.F. Absorption
H.F. Absorption Wattmeter 52 ohm iw $/ 70$ ohm 25 W

Scalamp Galvo
$5 V 40 A$ Stabilized Power Pack
Audio Tester....
Oscilloscope and G Plug-in
UHF Sig. Generator $750-2100 \mathrm{MHz}$
D.C. Voltage Standard $10 \mu \mathrm{~V}-1000 \mathrm{~V}$ o decade

Transistor Test Set
Precision RMS Millivaltmeter 3 mV - 300 V
Acceiver
Receiver
Standard Sig. Gen. $85 \mathrm{kHz}-25 \mathrm{MHz}$
Spot Galvo 430 ohm $85 \mathrm{kz}-25 \mathrm{MHz}$
Ppot Galvo 430 ohm..................................
Prabilised Power Pack i5-30V
Oscilloscope and $7 / 6$ Diff. Amp.
$0.1 \%$ Wheatstone Bridge
Standard Mica Capacitor Imfd. 4 decade
Decade Bridge
Square Wave Generator
Oscilloscope Camera with Polaroid A.........................................
Valve Voltmeter..
Broadcast Standard Videotape Recorder, 2in. tape; 625
line CCIR, 2 Audi Channls
line CCIR, 2 Audio Channels
E
$\mathbf{E} 20$

FM Deviation Meter $20-100 \mathrm{MH}$
Oscilloscope and CXI 258 Diff. Plug-in
LF Decade Oscillator . 01 -I lkHz 0.009 -10V 4 phase and square wave outputs
L.F. Oscillator. $15 \mathrm{~Hz}-5 \mathrm{kHz}$

Electronic Counter 7 digit 1 MHz
Lab. Magnetic Amplifier
Coil Comparator $.1 \mu \mathrm{H}-100 \mathrm{mH}$
Stabilised Power Supply $0-500 \mathrm{~V} 500 \mathrm{~mA}$
Twin Stabilised Power Supply $0-100 \mathrm{~V} 250 \mathrm{~mA}$
Phasemeter and P.S.U.
ransistor P.S.U. O-12V 2A Metered
A.F. Signal Generator $30-300 \mathrm{kHz}$ bal. iunbal.
D. Reference Standard

UHF/VHF Sweep Freq. Generator
R.F. Signal Generator

4in. TV Monitor
AF Voltmeter

This is just a sample list of Test Equipment available. We have hundreds of other items available. Enquiries welcome. Please telephone 01-994-6275

## LOW-COST OSCILLOSCOPES

Cossor 1035, D.B
Cossor 1049 Mk. 3A. D.B
Cossor 1049 Mk. 4. D.B
Solartron AD557.
Solartron CDS13.2.
Solartron CD523 S. 2
Solartron CD643.
Solartron CD643.2.
Solartron CD7IIS.2.
All prices and details on application phone 01-994-6275. Inspection welcome-call at
warehouse.
All prices and details on application phone 01-994-6275. Inspection welcome-call at
warehouse.

## STABILISED D.C. POWER PACKS (Brand New)

```
FARNELL IR 24/10 24V. 10 Amp.
COUTANTTE 23430 V . \(\mathrm{A} .+10 \mathrm{~V}\). 2 A
STE 234 30V. IA. +10 V . 2A. ...........
ES 500/26 6-30V. 5A.
A.P.T. SCV 32 FI I50V. \(\frac{1}{2}\) A
A.P.T. SCV 32 FI I 150 V . \(\frac{1}{2} \mathrm{~A}\).
```

$\notin 40$
$£ 48$
$£ 45$
$\ell 45$
$£ 35$

```
E.M.I. WM2.
WM3B
WM7.
WN8.
WMIG.
WMIB.
WM26.
```

$\qquad$

## COMMUNICATIONS EQUIPMENT

POCKET V.H.F. F.M. RADIOTELEPHONE
Corror Type CC2/8 Mk. 2.
Fully transistorised transmitter/receiver available in two versions:Low band; Freq. range $71.5-104 \mathrm{MHz}$, R.F. Output 500 mW .
Complete with $\frac{1}{4}$ wave whip aerial, combined microphone/loudspeaker and 13.3 V . rechargeable nickel-cadmium DEAC battery.
U.H.F. 2 watt FIXED RADIO LINK. 24V. dc./240V. ac. F.M TRANSMITTER/Type CC RTX 4A Mk. I
R.F. Output 2 W at $450-470 \mathrm{MHz}$.

Price $\mathbf{8 0 0 0 0}$ per unit
Full Technical and operating data available. Prices and details on request. Power Pack for the above
I + I CARRIER EQUIPMENTS. Cossor Type CC M2A.
Solid state multiplex installations designed for U.H.F. radio systems enabling 2 speech channels each with out of band signalling, if required or the equivalent in telemetry information, to be transmitted simultaneously over a radio system. Prices and details on request. V.H.F. RADIOTELEPHONE BASE STATION. Cossor Type CC 603 Transmitter. Simplex or duplex operation, local or remote control with talk through facilities, using double sideband a.m. modula-

## tion.

Low-band $71.5-104 \mathrm{MHz}$. or High-band $156-174 \mathrm{MHz}$. versions available RF. Output power 25 W . into 50 Ohms.
24V.dc. operation. Prices and details on request OPTIONAL POWER SUPPLY Type CC 101 for type CC603 base station P.O.A.
SELECTIVE CALL SYSTEM. Coder Type CC 505/50 (50 way) or CC $505 / 100$ (100 way). The Cossor selective call system may be used with any communication system where a base station is required to call any one or all of a number of sub-stations. Both versions available, all new and in orig!nal packing

DECODERS $\mathrm{El5}$ ea.
DEAC RECHARGEABLE BATTERY CASSETTES 13.4V (nom.)
type B/SA $80351 / 108$. Heavy duty encapsulated DEAC supply.
Size $3 \frac{1}{2}+2 \frac{1}{2}+1 \frac{1}{2}$ in.
Size $3 \frac{1}{2}+2 \frac{1}{2}+1 \frac{1}{2} \mathrm{in}$. Price $65+$ v.a.t.
8-WAY BATTERY CHARGER Type CC 999. Charges up to 8
of the above battery cassettes. $\quad$ Price $\mathbf{£ 2 5}+$ v.a.t. 12-WAY BATTERY CHARGER Type CC 999. Charges up to 12 of 13.4 V . DEAC batteries. Metered battery condition check. MICROPHONES
S. G. Brown Stick Microphone and Stand. Push-to-talk button. $300 \Omega$. $\mathbf{6 5}$ S. G. Brown Hand-held with push-to-talk button. $\mathbf{£ 8}$ each.

## SPECIAL OFFERS

BRIDGE RECTIFIER. 6A. 100V. Motorola MDA952-2 65p
POWER SUPPLY. 12V. 6.5A. Stabilised Power Supply. Contains 18.5 V . 8.5A. sec Transformer, $4 \times 4000 \mu \mathrm{~F} 25 \mathrm{~V}$. Mullard capacitors $2 \times 2$ N3055 on 2 Redpoint heatsinks, 12A., 120V. Bridge rectifier asking price of $\leqslant 13$ each inc. carriage.

Send s.a.e. for free circuit diagram

## ELECTRONIC COMPONENTS

 bargain component packsPack
No.
1.500 Carbon resistors, $\frac{1}{4}, \frac{1}{2}, ~ I, 2$ watt.
2100 Electrolytic Condensers.
250 Ceramic, Polystyrene, Silver Mica, etc., Condensers
4250 Polyester, Polycarbonate, Paper, etc., Condensers.
525 Potentiometers, assorted,
525 Potentiometers, assorted,
750 High-stab. $1 \%, 2 \%, 5 \%$ resistors.
750 Assorted Tagstrips.
81 lb Assorted nuts, bolts, washers. spacers, etc.
925 Assorted switches, rotary, lever, micro, toggle, ets.
1050 Preset Potentiometers.
11 Trial mixed component pack $\in 1$.
12 Jumbo mixed pack $f 5$.
ALL COMPONENTS NEW AND UNUSED
$\epsilon 1+25$ p p.p. per pack, $£ 5$ for 5 packs p/free.

## NOW OPEN:

## AUDIO ACCESSORY SHOP

17 TURNHAM GREEN TERRACE, W.4.
HEADPHONES, MICROPHONES, SPEAKERS, etc., etc.
WAREHOUSE
20-24 BEAUMONT ROAD, W.4.
SURPLUS COMPONENTS, TEST EQUIPMENT, etc., etc.


DRILL CONTROLLER New 1 WW model.
Electronically changee speed from approxinuately 10 revs. speeds by firger-tip cont rol. Kit includes all parts, ease.
ererything and full instruce-
 MIGHTY MIDGET
Probably the finest possible radio, as deacrithed in Practical
Wireleng, January 73 . All electrovic parts $£ 2.20$ post pald. GOOD COMPANION I.C. VERSION


We can now olfer these again in I.C.
version using Ferranti $Z N+14$ and Musilard AF Module 1172. Cabinet
 ingtructiong, \&6.33 plus 2pap post
ins. Excellent tone wood cabinet.
I ĆHIP RADIO
supcrhet. Supplied couplete with trechnical notes and superhet. Supplied conplete with
circules $£ 1 \cdot 38$ each. 10 for $£ 11 \cdot 11$.
HI-Q TUNER COMPONENTS
For experimenthe with the ZNATH
Kit No. 1 Plesey Miniature Tuning Condenger with built

 guritch 94 p,
Air spaced
TC
with slow motion drive 8 in.
. Ruth wave change su itch $£ 1-10$.
Kit No. $4 \begin{aligned} & \text { Perniueatility suluer with tast and slow motion } \\ & \text { drive and LW loading coils and wave change. }\end{aligned}$ 12 VOLT $1 \frac{1}{2}$ AMP
 12 VOLT $1 \frac{1}{2}$ AMP
POWER
POCK

 Heavy Daty Mains Power Pack. Output voltage ailiustanhe from 6 amp at tov to 15 mana at 15 , This really is a high power heavy duty unit with dozens of work hop uges
Output voltage aijustment is very quick-simpl. inter change puahe on lealis. silicon rectin
$3,000 \mathrm{mF}$. Price $£ 6.33$ plus 6 p p poost.

## MICRO SWITCH

amp changeover contacts. $11 p$ eacl.
10 for 8 p . 15
amp.
.1


MAINS OPERATED SOLENOIDS


MAINS TRANSISTOR POWER PACK

 rises: maius transioruuer rectifler, , Binoothing and load resistor wha 2op postage


## TIME SWITCH

Smilth's mains driven elock with 15 amp switch, also notes showing how
you cuin wake up with nusic playing.
yotich you can wake up with nusic playing.
kettle boiling or come home to a warm
house, warn off burglars, keep pets kettle boiling or come home to a warm
house, wank orp burklars, keep pets
warut halve your heating biil, etc.
$£ 2.25$.
PRESSURE SWITCH
perated by a diaphragm which in turn is operated by air preseure through a small metal tube. The operating pressure is at-
 ustable but is set to operate in appliox. 10 in . of water. These simply by howing into the inlet tube. Original use was for asect machines to turn on water when other applications. £1-38.
EDUCATIONAL KITS-all with
pictorial instructions
THIS BALANCE Kit


FREE. Gaquctilionai kits. are excellent value for these
noney. We do not money. We do no
expect to be able $t$
repeat this offe: onc

is given helow and with
3 kits or more we five
FlREE an accurate 11 piece lalance kit. Price of lits $\mathbf{4 4}$ p each post
price for all 7 kits 2300 with irce balance kit.
cus, one convex lens, stage and zlit frame, etc. Watch light
 working. Three types of purap may be made: Lifit pump KA4 Bazzer Eit. Flevent parts. Transparent cover allow the operation of buzzer to he seen. .nllustrates and teaches KA7 Eiectro-maknet Eit. Fifteen parts. includes conıase Makes two electro-magncts. one with one layer of wire qnd
one with several layers of wire. Picks up tacks, nails and any mall parts showing how magnetism works.
KA8 Carrent and Resigtance Kit. Twenty-nine parts, in ducational projects of learn the application of "OHMA different types and lengths of wire.
KA9 Bell Kit. Wizht parts, including bell and push button witch. Build a complete electric bell and see how the hammer io triggered to make the bell ring.

| SOLENOID OPERATED TAPE DECK <br> Golenois operated (so could he remote controlled) tape deck-comprises: motor driven heavy but halancer flywheel which forms capstan. Tape drive is operated by no. I solenoid. Two more solenolds operate fast forward and tast reverse. Complete with tape spoors record/play back head and erase head. Real birgain at $\mathbf{8 6} \mathbf{6 0}$. |
| :---: |
|  |  |

## (cis) <br> THYRISTOR LIGHT DIMMER <br> For any lamp up to 250 watt. Mounted on switch plate to fit in place of standard antitch. Vircually no radlo interference. Price $\mathbf{~} 3.35$. Industrial standard awitch. model $5 \mathrm{~A} £ 3.30$

0 AMP DIMMER CONTROL
For the control of lighting on stage or in a studio or for control of portable e(uupment in
orksioply, etc. This has two 13 amp socket outlets each is controlled by \& 5 any solid stat egulator, The overall length is 17 in . wdith $3 t$ in. ind depth $1 \frac{1}{2} \mathrm{in}$. In the end is fitted a master n/Off

| Standard size 1 inn. wafer-silver-plated 5 amp. contact, staidard \}in. spindle zint long-with locking washer and nut. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| 1 pole | 44p | 44p | 44 p | 44p | 44p | 44 p | 44 p | 44 p | 44 p |
| 2 poles | 44p | 44p | 44 p | 44p | 44 p | 44 p | ${ }^{44} \mathrm{p}$ | 77 p | ${ }^{77} \mathrm{p}$ |
| 3 poles | 44 p | 44p | 44 p | 44 p | 77p | 77 p | 77 p | E1.04 | £1.04 |
| 4 poles | 44p | 44 p | 44p | 77 p | 770 | 77p | 77 D | 11.32 | ¢1.32 |
| 5 poles | 44p | 44p | 77 p | 77 p | ¢1.04 | ${ }_{\text {¢ } 1.04}$ | ¢1.04 | \&1-60 | £1.60 |
| 6 poles | 44p | 77p | 77 p | 77p | ¢1.04 | £1.04 | ¢1.04 | ${ }^{11} 187$ | $\underline{11.87}$ |
| 7 poles | 77 p | 77p | 77 p | 21.04 | ¢132 | ${ }^{11} 32$ | ¢1.32 | 22.15 | ¢. 15 |
| 8 poles | 77p | 770 | 77 | 21. 04 | ¢1.32 | 21.32 | ${ }^{11} 132$ | £2.42 | 82.42 |
| 9 poies | 77p | 77 p | $\underline{1.04}$ | ${ }^{2} 1.04$ | ¢1.60 | ${ }^{81} 1.60$ | ${ }^{\text {¢ } 1.80}$ | 82.70 | £2. 70 |
| 10 poles | 77 p | 77 | £1.04 | £1.32 | £1.60 | ${ }^{\text {¢ }} 1 \cdot 60$ | £1.60 | 83. 00 | ¢3.00 |
| 11 poles | 770 | $\underline{21.04}$ | 21.04 | ¢1 32 | ${ }^{11} 187$ | 21.87 | ${ }^{11.87}$ | 83.25 | 83.25 |
| 12 poles | 77p | 81.04 | £1.04 | £1.32 | 21.87 | ¢1.87 | £1.87 | 23.52 | £3.52 |

## DISTRIBUTION PANELS

and
pluge and onfoff siritch with neon warning light. Supplit
cable. Wired up ready to work, 82.48 plus 26 P . \& P .
CAPACITOR DISCHARGE CAR IGNITION
This system which has proved to he amszingly eflicient and
$\begin{aligned} & \text { rela he was first cescribed in the Wireless World about a sear ago } \\ & \text { We can supnly kit of parts for an layroved and even more } \\ & \text { efficient version ( } p \text { 'ractical Wireless, June). }\end{aligned}$
$\begin{aligned} & \text { efficient version ( } p \text { 'ractical Wireless, June). Price } £ 5.55 \text { plus } 30 \mathrm{p} \\ & \text { ens. }\end{aligned}$
$\begin{aligned} & \text { post. When ordering please state whether for positive or neg } \\ & \text { ready made ignition systems for } 6 \mathrm{v} \text {, vehicles. } \mathrm{E} 5 \% 8 \text { plus } 20 \mathrm{p} \text {. }\end{aligned}$

## CENTRIFUGAL BLOWER

Minlature mains driven blower centrifugal type blower unit by Woods, powerful but specially huilt for quict rumning-
driven by cushioned induction motor with specially huilt low noise bearings. Overall size of blower is approx. 4t" $\times x$
$44^{-} \times 4^{*}$. When mounted by its flange air is blown into the equipment but to suck air out mount it from the centre using equipment but to suck air out mount it from the centre using a cooker hood, film drying cabinet or for reninving flux smok


SPECIAL SUMMER OFFER MULLARD UNILEX at Pre V.A.T. price
Mon want a fond stereo system-well here's an offer you shonlit not mise! The four min mal maker's



## ELECTRIC TIME SWITCH

Mate by Suiths these are A.C. mains operated. Not OLOCKWORK. Ideal for mounting on rack or shelf or can tic built into box with 13A socket. 2 completely adjustable switch circuit on or off during these periods. 22.75 post and ins., $23_{p}$. Additional time contacts 55 p pair.

MULLARD AUDIO AMPLIFIERS
module form, each ready bunt complet
kinks and connection tage, data supplie
Yodel 115350 mW power output 72 p .
kinks ani conmection tage, oatas 72 D
Model 115.300 mW power output
Model 1172750 mW power output 94



WINDSCREEN WIPER CONTROL Vary speed of your wiper to
instructions to make. E248.

PAPST MOTORS
Est. 1/40th h.p. Made for $110 \cdot 120$ volt working. Lut two of these work deally together off our stannard $\begin{gathered}\text { beautiful motor, extremely quiet running and reverrible. A } \\ \text { \& } 1.65\end{gathered}$ HORSTMANN 24-HOUR TIME SWITCH
progrinume as iollows:-

$$
\begin{array}{lc}
\text { Hot Water } & \text { Central Heating } \\
\text { Of } & \text { Off } \\
\text { Twice Daily } & \text { Off } \\
\text { All Day } & \text { Off } \\
\text { Twice Daily } & \text { Twice Daily } \\
\text { All Day } & \text { All Day } \\
\text { Continuously } & \text { Continuouly } \\
\text { mme other than central heiting an }
\end{array}
$$ suitahle of course, to prugrumme other than central heating and hot

water, for instance, prugranme upstars and downstairs electice heating
 HORSTMANN 24-HOUR TIME SWITCH or heating and cooling or taped musir and radio. 1n fact there is no limit to the versatility of this Programmer. Mains operat
$3 \mathrm{Bin} . \times 2 \mathrm{in}$. deep. Priee $£ 3.85$ as illustrated but less case.


NEW ITEMS THIS MONTH
LABORATORY INSTRUMENTS
Uned but believed in good omer-one ornly of each-on
offer to highest hidder. EMI Paroramic wave analyser $2 \times$ Beckman Universal Eput. Timer Model 7360 c . Furst Electronice Wow Meter 115RA. Mansons Proportional
Oven and Xtal Osc RD 1.6 . Airmec Sillvolt Meter trpe
 quency Meter Tyye 726. Soarton Laboratory Amplife $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s}$ AwR 51 a . GEC Quartz Xtal Activity Test
Set $2-20 \mathrm{mc} / \mathrm{s}$. Mulfhead Phasemeter D7 29 BM . Muirhean Set $2-20 \mathrm{mc} / \mathrm{s}$. Multhead Phasemeter 11729 BM. Muirheald
Phasemeter D729 BS. Heath Kit R-C Britge C $34 .-$ RCA Flattertindicator. Metrix Standard Sig. Generato. 50 mels. $50 \mathrm{me} / \mathrm{s}$ to 50 me .

## METAL CHASSIS

deep. Cadnium 3 P.O. 3000 trpe relays. Thered in the centre to take over this scetion measuring tuin. long $x 3$ in. $\times 2+\mathrm{in}$. The chassis also has a few holes and could take a small
transiormer and/or valve holders also some alin. holes for controls, pots etc. This is an Ideni chasis for making up a
relay unit or similar. These are ex-equipment but in relay unit or similar. These are ex-equipment but in
excellent condition and may have a few resistors etc. ath: attached. Price 40p each.
CLOCKWORK TIME SWITCH For delayinut the bwitching on for up to 12 hours. Being usetul for remote operation or for hattery applance. The
front dial which is calibrated in hours is turned throngh the revnired revolution then after pre-set time double pole relmired revolution hen after pre-get time doubl

## MAINS TRANSFORMER

Our Ref. MPJ. Whop through chassis-open construc
tion. 240 v. Primary-9:. 1A. Secomary. Price 77p. each MAINS TRANSFORMER
Ouf Ref. MTf2. Parineko Neptune serics. This is a totally enclosed 'C' core conkiructiont, upright mounting and Wach
enamelled. For $2: 30 \cdot 240 \mathrm{v}$. Sec. $25.0-25 \mathrm{v}$. at 50 na. Idea ior mounting nu metal , hassis mention
3 POST OFFICE TYPE 3000 RELAYS
icx-erpinetient but guaranteed periect-any fot bo would
Rei. REI، II. Has if sets of uhange-over contacts and $\because 000$
Ref. REI. .I2. 2.5
2 Ref. REI, J2. 2 pairs that close when relay energized
and $2000+1000$ ohn coil. Price 44 p .
Rese and 6.4 K ohin coil. 44 p.
I REV. PER MINUTE MOTOR WITH BEAR-BOX
Made hy the yamons Chamberlain \& Hookham I.td. These
cauld be made to drivc clock or similar. Really robust could be mate to drive rlock or similar. Really rubust
reliable unit. I'rice 99 p eth.
IIO REV. PER MINUTE MOTOR WITH GEAR-BOX
Good American make. Operates from mains and will drive in. $\times$ 3in. $\times 2 \sharp$ in. with tin. diameter drive shait. Pric £2.20.
12V. CAR BLOWERS
Units made thy Deico. 6 hader 5 in . fla. fan inside heavy duty cylinder. These have really poweriul series wound heating a car, boat, caravan, etc. Price £2 20, plus top post and insurance. (Note these are intenda for $12 N$. D.C
but can be nin from A.C. up to 30 V . The higher the voltatg

13 AMP. SWITCHED SOCKETS
G.E.C. Sandard type for fused pluge. Browil bakelitt V.H.E. AMPLIFIERS

With built in mains power pach, these are valve ampliffers
 ith) another unit which needs a malus power pack. Pic 8275 .

## 3 CORE MAROON COTTON COVERED

 FLEX00 yd. coil $£ 2$ plus 00 p . I5 amp - $0 / 31 \times 50$ yil. coi
INDICATOR AUDIBLE WARNING
Add this audible warning device to car indicators or dash
panel warning lights and your attention will be instantly
drawn to the warning lamp kit. $\mathrm{El}^{2} \cdot 20$. warning lamp kit. $k 12$
NIGHT LIGHT SWITCH
GENERAL PURPOSE AMPLIFIER
An audio amplifier oi reasonahle quality ior use with radio Kit f 4 -90.
HOME INTERCOM

FLASHING LIGHT METRONOME
For use in the musical field and the laboratory-where an
audible not on click could get loot or become annoying. Kit
MINI ORGAN
conatructell on a printed circuit board. hit $£ 4 \cdot 75$.
RAIN ALARM II
on firat rain itrops fall.
CASSETTE AMPLIFIER
Boosts the output
radios. Kit $£ 4.50$.
AUDIO SIGNAL MIXER
Where your want to mix speech and music, and to fade them in 3.90 .
AUTO FAN
A thermostatic control for car engine ianl, wives quicke
SLAVE FLASH
Photos taken with a single fiash have a "flat" applearanceenables as second (or third flash to be automatically triggerent. Kit $£ 1 \cdot 85$.
ELECTRONIC DO ORBELL
Not ind tact a beld when the button is pressed. Kit e4.00.

Where postage is not stated then orders
over 65 are post free. Below $\angle 5$ add 20 p.
J. BULL (ELECTRICAL) LTD.
(Dept. W.W.) 7, Park Street, Croydon, CRO 1YD Callers to 102/3. Tamworth Road. Croydon

ALL U.K. ORDERS SUBJECT TO 10\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).


MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 micro volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV volt - $52 \cdot 5$ ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave $75 \%$ depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$ Consumption approx. 40 watts. Measurements $29 \times 124 \times 10 \mathrm{in}$. Secondhand
T. 1509 TRANSMLTTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, with temperature compensated MO circuit.CW, MCW and R/T. Frequency. 1.5 to 20 Mc/s. Modulation. 100 /put impedance: 50 ohms. Audio input: 600 ohms. Valves: Power Amplifier 58813 and Modulator $2 \times 813$. Power requirements $200-250$ volts a.c. 5 ft . H. Weight: 800 lbs . Excellent condition, price $£ 225.00$ each 5ft. H. Weight: 800 lbs . Excellent condition, price $£ 225.00$ each.
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc} .1750$ channels 100 Kc apart with 18 preset channels. Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max output 2 watts. Antenna: 50 ohm impedance. Power requirements 24 v d.c. Complete transmitter with operating cables, control box, headphones, microphone. Price $£ 250.00$ each secondhand, excellent condition.
POWER SUPPLY suitable for AN/ARC-27: 100 volts to 250 volts a.c. input. 24v d.c. output @ 41 amps fully smoothed. $£ 45.00$ each.

FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with origina calibration charts. Checked out, working order. $£ 18 \cdot 50+£ 1.00$ carr. BC-22 Unused as new condition complete with headset, spare valves, charts. $£ 35 \cdot 00+$ 62.00 carr
CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or
$250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument
designed to meet requirements of radar and communication engineers and
general electronic service. Measures $9 \mathrm{in} . \times 8 \mathrm{in} . \times 6 \frac{1}{\mathrm{in}} \mathrm{x}$. Time base $10 \mathrm{c} / \mathrm{s}-$
$40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube 2 inn. Frequency compensated
$\begin{aligned} & \text { amplifier up to } 38 \mathrm{~dB} \text { gain. Bandwidth up to } 1 \mathrm{Mc} / \mathrm{s} \text {. Single sweep facilities } \\ & \text { Complete with test leads, metal transit case. As new } \mathbf{£} 27 \cdot 50 \text { each. Carr. } £ 1 \text {. }\end{aligned}$

TUNING UNIT: 24 V geared motor driving double 25 pf double spaced variable capacitor. One m/c relay and 2 other relays. $\mathbf{£ 2 5 0}$ each 30 p post, good condition UHF ASSEMBLY: (suitable for $1,000 \mathrm{MHz}$ conversion) including UHF valves 2C42, 2C46, 1 B40 (complete with associated capacitors and screening), 3 manua counters $0-999$. Valves 6 AL 5 and $8 \times 6 \mathrm{AK} 5 . ~ £ 10.00$ plus 60 p post, good condition
MODULATOR UNIT: complete with transformer and $2 \times 807$ valves mounted in 19 in. chassis $\times 8$ in. high $\times 8$ in. deep. $£ 4.50$ secondhand cond., or $\mathbf{8 6} 50$ new cond. Carriage f 1 .
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 E 29$ valves Ideal for conversion to 4 metres. £5 secondhand cond., or $£ 7.50$ new cond Ideal for con
POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V@ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V. Filament ransermer 230 V a.c. input. 4 Rectifying aives type 53 on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition £6.50 each, carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. $£ 7$ each, Carr. $75 \mathrm{p} .230-115 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $£ 4 \cdot 00$ each, Carr. 75p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with $2 \times 811$ valves microphone and modulator transformers etc. $\mathbf{£ 7 . 5 0}$ each, 75 p carr
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 50 p APN-1 INDICATOR METER, $270^{\circ}$ Movement. Ideal for making rev. counter. \&1.25, post 30p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: $\mathbf{2 4 V}$, 200 Amps, $\mathbf{£ 2}$ each, $\mathbf{3 0}$ p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 0.9 ohms. Tolerance $\pm 1 \% ~ £ 3$ each, 25p post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \%$ £3-50 each, post 30 p.
TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 $\mathrm{Mc} / \mathrm{s}$ a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg. ohms. Powe requirements $200-250$ volts a.c. Secondhand, excellent con. $£ 35 \cdot 00$. Carr. $£ 1$. VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . £ 3 each 5p post
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21$ n. wide $\times 16$ in. deep, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$ n. wide $\times 19 \mathrm{in}$. deep, with rear door. $88 \cdot 50$, each, £2 Carr.

INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 5 \cdot 00+£ 1 \cdot 25$ carr.
$19^{\prime \prime} \mathrm{W} . \times 10^{\prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . \quad \mathrm{E} 2 \cdot 50+£ 1 \cdot 00^{\mathrm{c}} \mathrm{carr}$.
FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in. diameter case. Price $\mathbf{£ 2}$ each, 30 p post.
TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range $0-120 \mathrm{dbm}$. 125 each. Carr $£ 1.50$

TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27.50 each. Carr. £1.
APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Powe Supply 115V 50c/s. £100 each. Carr. £2.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ $0 /$ Vut Voltage $0 \cdot 1-100,000 \mathrm{microvolts}$ cont. variable. Impedance 50 . Price £ 85 each $+£ 1.50$ carr
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond 67.50 each. Post 60p

RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal ( $\mathbf{0 . 0 0 5 \%}$ ) Accuracy better than $0.02 \%$. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$ Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries "A new" complete with Manual and Spares. 114 each. Carr. 75p.
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. "As new" $£ 10$ each. Carr. 75p
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps 4,800 rpm. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s} .1$ Ph. P.F.9. $£ 17 \cdot 50$ each. Carr. $\mathrm{fl} 1 \cdot 50$ POWER SUPPLY: 230V a.c. input; 3000V @ 2.5mA; 4v @ 1 Amp, 300-0-300 200mA; 6V @ 7 Amp; 6V @ 3 Amp. With smoothing capacitors etc. $\mathbf{£ 1 0 \cdot 0 0}$ each £ 1.50 carr.

ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque
16 ins. oz; reversible; microswitches and potentiometer. $\mathbf{~} 3.50$ ea. +40 p post DALMOTORS: $\mathbf{2 4 - 2 8 V}$ d.c. at 45 Amps, 750 watts (approx. 1 hp ) 12,000rpm E5 each, 60p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price $£ 1.75 \mathrm{each}$ 30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., $£ 3.50 \mathrm{each}$, post 50 p .10 mfd 600 v .43 p each, 25 p post. $8 \mathrm{mfd} 2500 \mathrm{v} . £ 5 \mathrm{each}$, carr. 63 p .8 mfd 600 v .43 p each, post 15 p

 $8 \mathrm{mfd} .10 \mathrm{v} . £ 2$ each, post $25 \mathrm{p} .4 \mathrm{mfd} 600 \mathrm{v} ., 2$ for $£ 1.0 .01 \mathrm{mfd}$ MICA $2.5 \mathrm{Kv}, \mathrm{f} 1$ for 5 , post 10 p . Capacitor $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. 4.75 each, 50 p post. 2.25 mfd | 25 Kv . wkg. $£ 20 \mathrm{each}, ~$ |
| :--- |
| 3 carr .2 mfd 12.5 Kv wkg. TCC RL $7002-97 £ 8.50 \mathrm{each}$ | carr. $£ 1.10 \mathrm{mfd} 3 \mathrm{Kv}$ wkg. $55^{\circ} \mathrm{C}$. TCC oil filled $£ 7.50$ each, $£ 1$ carr. $5 \times 1 \mathrm{mfd} 3$

Kv wkg. $55^{\circ} \mathrm{C}$. $£ 6^{\circ} \cdot 50$ each, $£ 1$ carr. 12 mfd 1500 v d.c. wkg. $£ 3.50$ each, 50 p post CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $22 \cdot 50$ each, carr. 75p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; $500 \mathrm{ohms}, 0.55 \mathrm{amps}$. Price (either type) £2 each, 30 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times$ 3C24's; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $£ 4.50$ each, carr. 75 p . AR88 RECEIVER: List of spares, 5 p.
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5 p
REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi ised valves CV 286. Centre Zero Meter $10-0-10$. Size 8 in . $\times 8 \mathrm{in}$. $\times 8 \mathrm{in}$. New condition $£ 7.50$, Carr. 75p.
WESTON INDUSTRIAL THERMOMETER MODEL 221: $0-100^{\circ} \mathrm{C}$. 3in dia. scale. Accuracy $1 \%$. Precision made coil within-coil structure. Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointer is mounted. $£ 2.80$ each 30 p post. Unused condition.
TRANSMITTER UNITS: Complete with 12 V vibrator unit QQVO3-20A and 5 other valves with modulation transformer, etc. Two crystal controlled channels. Suitable for conversion to 2 metres. $£ 5+f 1$ carr.
THERMOCOUPLE METER: Scale 3.5 AE 2 in . square flush mounting. $2 \cdot 50+25 p$
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnets. Range 1200-9600 gausses. $\pm 2 \%$. S/hand ood cond. $£ 25+60 \mathrm{p}$ po

SYNCHRO DISTORTION AND MARGIN TEST SET: (Onwood Type 4A2) /hand excellent cond. $£ 85$ each. Carr. $£ 2$.
MASTER SYNCHRO TEST SET T. 101031 (U.S.A.): 115 volts $400 \mathrm{c} / \mathrm{s}$. S/hand cond. $£ 15$ each $+£ 1$ carr
MAGSLIP TESTER NO. 2 MK. I: S/hand cond. $£ 25$ each $+£ 1$ carr
SYNCHROS: and other special purpose motors available. Send for list. S.A.E. PANORAMIC ADAPTOR TYPE ALA2: Suitable for use with APR-1, APR-4, and other Receivers having an I.F. frequency of 30 MHz . Will display signals p to 5 MHz either side of the received frequency. Power Supply 115 V a.c. $400 \mathrm{c} / \mathrm{s}$ Tube 3PB1 with nu-metal screen. $£ 8.50$ each. $£ 1$ carr. $\mathrm{S} / \mathrm{hand}$ cond
MUIRHEAD PAMETRADA WAVE ANALYSER D-489-D: Primarily used for the analysis of complex vibration waveforms, but will measure audio and power frequency waveforms from $19 \mathrm{c} / \mathrm{s}$ to $21 \mathrm{kc} / \mathrm{s}$. Complete with power supply unit 230 volts $50 \mathrm{c} / \mathrm{s}$. S/hand good cond. $£ 82 \cdot 50+£ 2 \mathrm{carr}$.
D-652 L.F. MODULATOR: Suitable for use with the above Wave Analyser D-489-D enabling the analysis of low frequencies between 2 and $20 \mathrm{c} / \mathrm{s}$. $\mathrm{S} / \mathrm{hand}$ good cond. $£ 25$ each $+£ 1$. carr
AUTOMATIC VIBRATION EXCITER CONTROL UNIT TYPE 1016 Manufactured by Bruel \& Kjoer. $5-5000 \mathrm{c} / \mathrm{s}$. per second. S/hand carr
INSULATION TEST SETS: A.C. or D.C. $0-5 \mathrm{kV}$. $£ 22.50$. S/hand cond. AND $0-3 \mathrm{kV}$. Positive and negative outputs, fine and course control. $£ 17.50$. hand cond. Carr. both types $£ 2$
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. $\mathrm{S} / \mathrm{hand}$ good cond. $£ 30+£ 1 \mathrm{carr}$. BOONTON SIGNAL GENERATOR TYPE 202B A.M./F.M.: $54-216 \mathrm{MHz}$ in three bands. Deviation 24,80 and $240 \mathrm{kc} / \mathrm{s}$. Attenuator is adjustable 0.1 Uv to 0.2 V . As new condition. $6175+£, 2$ carr.
AVO FIXED ATTENUATORS: 75 ohms. $£ 2 \cdot 50+20$ p post. New cond
R.F. POWER METER: $0-30$ watts $s /$ hand good cond. $£ 27 \cdot 50+£ 1$ carr

AVO VALVE TESTER AND CHARACTERISTIC METER: $S /$ hand good ondion. $\ddagger 35$ each $+£, 2$ carr
AVO VALVE TESTER MK. III: $£ 30+£ 2$ carr.

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 $92: 3$ and Bedford 740605 (STD 0234).

| BENTLEY ACOUSTIC CORPORATION LTD |  |
| :---: | :---: |
|  |  |



##  <br> SUPPLIERS OF SEMICONDUCTORS TO THE WORLD



COMPLETE TELEPHONES
NORMAL HOUSEHOLDTYPE AS SUPPLIED TOTHE POSTOFFICE 2
ONLY £1.05p
P\& P 45 EAC
TELEPHONE DIALS
Standard Post Office type Guaranteed in working order ONLY $27 \frac{1}{2} p$



MAKE A REV COUNTER FOR YOUR CAR


## OVER 1,000,000 TRANSISTORS IN STOCK

We hold a very large range of fully marked tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

## SILICON PLANAR PLASTIC TRANSISTORS

## Unmarked, untested -- factory clearance

 Audio. PNP, similar to $2 T \times 500,2 N 3702 / 3$. BCY70 etc. Audio NPN, similar to $2 T \times 300$, 2N3708/9, BC107/8/9, BC168/9 etc. R.F. NPN and Switching NPN. Please state type of Transistor required when ordering. ALL AT 500 for $£ 3.30$. 1.000 for $£ 5.50$. 10,000 for $£ 44.00$.OUR VERY POPULAR 4p TRANSISTORS

> ULLY TESTED \& GUARANTEED

TYPE "A" PNP Silicon alloy, To- 5 can.
TYPE "B" PNP Silicon, plastic encapsulation
TYPE "E" PNP Germanium AF or RF.
TYPE '. $F$ " NPN Silicon plastic encapsu
TYPE "G" NPN Siticon. similar ZTX300 range
TYPE "H" PNP Silicon, similar ZTX500 range.

8
вeatrs of $£ 1.10$
Post \& Packing $27 \frac{1}{2}$ p

Our famous P1 Pak is still leading in value for money. Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high PNP \& NPN and marked Transistors Rectifiers mounted host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give
Transistors

Please ask for Pak P.1. Only 55p
11 p \& P on this Pak

## A CROSS HATCH

 GENERATOR FOR $£ \mathbf{£ 3 . 8 5}$
## YES, a complete kit of parts including Printe

 Circuit Board. A four position switch gives X -hatch Dots. Vertical or Horizontal lines. Integrated Circui design for easy construction and reliability. This was a project in the September 1972 edition of Practical Television.
## This complete kit of parts

costs $\mathbf{£ 3} \mathbf{3 5}$, post paid. A MUST for Colour T. V. Alignment ELECTRONIC TRANSISTOR IGNITION Now in kit form, we offer this "up to the minute electronic ignition system. Simple to make, full in electronic ignition system. Simple to make, full in
structions supplied with these outstanding features: structions supplied with these outstanding features:-
Transistor and conventional switchability, burglar Transistor and conventional switchability, burglar
proof lock up and automatic alarm. negative and proof lock up and automatic alarm. negative and positive compatability. This project is a "star" feature in the September edition of "Electronics Today International" magazine available from Aug. 10tn. Our kit is recommended by the ETI magazine.

Complete kit including $\mathbf{P} \& \mathbf{P} £ 7.92$.
Ready built and tested unit £3.02 EXTRA


## Plastic Power Transistors

## NOW IN TWO RANGES

These are 40W and guw silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the most shatteringly low prices of all time. We have been selling these successtully in quantity to all parts of the worid and we are $\begin{array}{lllll}\text { RANGE } 1 \text { VCE. Min. } 15 & 1-12 & 13-25 & 26.50\end{array}$ HFE. Min. 15
go Watt $22 \mathrm{p} \quad 20 \mathrm{p} \quad 1$
90 Watt
RANGE 2VCE. Min. 40 HFE Min. 40
40 Wast
HFE Min. 40
$\begin{array}{llll} & 33 p & 31 p & 29 p \\ 90 & 38 \frac{1}{2} p & 36 \frac{1}{2} p & 33 p\end{array}$ Complementary pairs natched for gain at 3 amps , 11 pex per pair. Please state NPN or PNP on order

INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices (from coupon below.
METRICATION CHARTS Now available This fantastically detailed conversion calculator carries tand U.S.A.) measurements of length, area. volume tiquid measure, weights etc.

$$
\text { Pocket Size } 15 \text { p. }
$$

Wall
$\left.\begin{array}{l}14 \text { pin type at } \mathbf{1 6} \frac{1}{2} \boldsymbol{p} \text { each } \\ 16 \text { pin type at } 18 \text { each }\end{array}\right\}$ Now new low profile type
BOOKS
stock a large selection of Reference and Technical Books
in stock.
B.P.1. Transistors Equivalents and Substitutes 40 p, this includes many thousands of British. U.S.A. European and The lliffe Radi
Edition 75p. Post Valve and Transistor Data Book, 9th Edition 75p. Post \& Packing $23 \frac{1}{2} \mathrm{p}$ extra.
Characteristics of 3,000 valves
Characteristics of 3.000 valves and tubes, 4,500 Transistors.
Diodes, Rectifiers and Integrated Circuits. Send for tists of these English publications. N.B. No V.A.T. to pay on books.

These parcels contain ber BundLes
These parceis contain all types of surplus electronic com-
ponents, printed panels. switches. potentiom eters. transistors and diodes. etc.

2 LBS IN WEIGHTFOR E1. 10
Post and packing $27 \frac{1}{2}$

 IELEPHONE: SOUTHEND (O702) 46344

# Lenrys 

 Your CompleteAudio-Electronic Stores
 * FREE TEAK CABINET $\begin{gathered}\text { with com- } \\ \text { plete kits }\end{gathered}$ FEATURES. New slim design with 6. IC's IC Sockets, 10 silicon
transistors, 4 rectifers, 2 zeners. Special Gardeners low field
 -DEVELOPED BY TEXAS ENGINEERS FOR PERFO
RELIABILITY AND EASE OF CONSTRUCTION.
FACILITIES. On Off switch indicator, separate treble, bass, volume and balance controls, scratch and rumble filters, monolstereo switch, Input selector; Mag.
P.U. Radio Tuner, Aux. Can be altered for Mic, Tape, Tapeetails (ref no 21 )

P. \& P. $45 \rho$.
COMPLETE TEAK CABINET
Designer aporoved
by Designer approved kit
by Henry's Radlo Lto.
$20+20$ WATT INTEGRATED

${ }^{\text {lafsst }}$ Colion CATALOGUE
AN ABSOLUTE MUST IN ELECTRONICS LATEST EDITION I Fully detailed and illus
trated covering every aspect of Electricstrated covering every
plus data, circuits and
information.
10,000 lines at Special Low Prices
and Fully Guaranteed. PRICE 550 Post $\begin{gathered}\text { Pald }\end{gathered}$ FOR CALLER
PLUS ! FIVE 10p VOUCHERS

## or use with purchases

 Send to this address-HENRY'S RADIO LTD(Dept $W W$ ) 3 ALBEMARLE WAY LONDON E.C.1.-for catalogue by post only.


## build a VHF/FM TUNER


no doubt about It-VHF mono and stereoception there is All parts sold separately, Free Leaflet No. 3 \& $\% 7$. TOTAL £6.97 p.p 20p. Mk黄 80.97 Tuning meter unit $£ 1.75$.
Mains unit (optlonal)
Mains unit for Tuner and Mains unit for Tuner and
Decoder
PS $6 / 12$
$£ 3.25$.

\section*{PAEDSCOELCHTINEH} | DJJ30L 3 Channel sound to light unit, 3 kw . | $£ 29.50$ | D J1000 100 watt |
| :--- | :--- | :--- |
| DJ40L 3 Channel Mic. (Built-in) to light, 3 kw . $£ 38.75$ | DJ 300150 wit |  |

SINCLAIR PROJECT 60 MODULES-SAVE fff's



Why buy alterna can the BRANDED FROM TEXAS I.T.T. FAIRCHILD

| Type | 111 | 2/2 | 25/99 |  | 1/11 | 12/2 | 25/9 |  |  | 12/24 | 25/99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8N7400 | 20. | 18p | 18D | 8N7451 | 20p | 18p | 16p |  |  |  |  |
| 8N7401 | 20. | 18p | 18p | SN7453 | 20D | 18p | 18p | SN74150 | 23.35 | 52.95 | 22.15 |
| SN7402 | 20 D | 18p | 18D | SN7454 | 20p | 18p | 108 | SN74151 | $21 \cdot 10$ | 95 p | 90 p |
| SN7403 | 20 p | 18p | 18D | 8N7460 | 20p | 18p | 169 | SN 74153 | 81-35 |  | 81.20 |
| 8N7404 | 20 D | 18p | 180 | SN7470 | 30 p | 27p | 25D | SN74154 | 22.00 | 21.75 | 11.55 |
| 8N7405 | 20 D | 18p | 16y | SN7472 | 30 p | 27D | 25p | SN74155 | 21.55 | 31.47 | 81.35 |
| 8N7406 | 30 D | 27p | 25. | SN 7473 | 40 D | 37p | 35 D | 8N 74156 | E1.65 | 21.47 | 21.35 |
| 8N7407 | 30 D | 27D | 25 D | Sx 7474 | 40p | 37D | 35p | SN74157 | 21-80 | \$1.70 | 21.50 |
| 8N7408 | 20p | 19 | 18p | SN7475 | 55p | 52p | 50 p | SN74160 | 22.60 | 22.40 | 22.25 |
| SN7409 | 45 D | 42p | 350 | SN7476 | 5 p | 42 p | 39p | 8N74161 | 12.80 | 22.40 | \$2.25 |
| 8N7410 | ${ }^{20} \mathrm{p}$ | 18D | 18 p | SN7480 | 80 p | 75p | ${ }^{67 \mathrm{p}}$ | SN74162 | 23.40 | 23.25 |  |
| 8N7411 | 23D | 22p | 20 p | SN7481 | 81.25 | 1-15 | 11.10 | SN74163 | 23.40 | 43.25 | 22.70 |
| SN7412 | 42p | 40 D | ${ }^{35 D}$ | 8N7482 | 87p | 80 p | 70 D | 8N74164 |  | 12.30 | 22.10 |
| SN7413 |  | 27D | 25 p | SN7483 | 21.00 | 90 p | 85 p | SN74165 | 24.00 |  | 83.00 |
| 8N7416 | 30 D | 27D | 25 D | SN7484 | 90] | 85 D | 80 D | SN74166 | 24.00 | 23.5 | 23.00 |
| SN7417 | 30 p | 27p | ${ }^{25} \mathrm{p}$ | 3N7486 | 45 p | 41p | 38 p | 8N74167 | 88.25 |  |  |
| 8N7420 | 20 p | 18D | 18D | 8N7490 | 75p | 70p | 65 D | SN74170 | 8.10 |  | 23.05 |
| 8N7422 | 48p | 44 | 40 D | SN7491 |  | 95p |  | BN74174 | 82-00 | 21.75 | $1 \cdot 30$ |
| 3N7423 | 48 p | 44D | 40 D | SN7492 | 75 p | 70 D | 65 D | SN74175 | 81.35 | 11.27 | ${ }^{12} 15$ |
| SN7425 | 48p | 40D | 35 p | gN7493 | 750 | 70 p | 65 p | 8N74176 | 81.80 | 11.35 | \$1-20 |
| 8N7427 | 42p | 39 D | 35 p | SN7494 | 80 p | 750 | 70 p | SN74177 |  |  | 21.20 |
| 8N7428 | 50p | 45D | 42D | 3N7495 | 80 p | 750 | 70p | SN74180 | 81.55 | 11.30 | E1.20 |
| SN7430 | ${ }^{20 \mathrm{p}}$ | ${ }^{180}$ | 180 | SN7496 | ${ }^{21} 8.00$ | ${ }^{975}$ | ${ }^{95 p}$ | SN74181 | 87.00 | 18.00 | 25.50 |
| SN7432 | 42p | 39p | 35 p | SN7497 | 28.25 | 45-50 | 25.00 | SN74182 |  | 11.80 | 1.60 |
| 8N7433 | 70 p | ${ }^{81}$ | $44 p$ | SN74100 | 22-50 | 22.30 | 22.00 | SN74184 | 22.40 | 12.00 | E1-80 |
| 8N7437 | 65 p | 60 p | 50 D | SN74104 | 21.45 | 11.35 | 11.20 | SN74185 |  | 22.00 | ${ }^{11} .80$ |
| 8N7438 | 65p | ${ }^{80}$ | 50 p | 8N74105 | 81.45 | 11.35 | 11.20 | SN74190 | 11.95 | 11.85 | 11.76 |
| 8N7440 | 20D | 18D | 16 D | SN74107 | ${ }^{50 p}$ | 45 | 40 p | SN74191 | 11.95 | 11.85 | 1.76 |
| SN: 441 AN | 75p | 729 | 70D | SN74110 | 80 p | 70p | 60 p | SN74192 | 1200 | 11.90 | 11-80 |
| 8N7442 | 750 | ${ }^{72 p}$ | 70 p | SN74118 | ${ }^{21} 100$ |  | 90 p | 8N74193 | 22.00 | 11.90 | 1.80 |
| 8N7443 | 21.00 | 95] | 0 p | SN74119 | 41.90 | 11.78 | 21.65 | SN74194 | 52.50 | e2.25 | 1.90 |
| 8N7445 | 22.00 | 81.75 | 11.60 | 8N74121 | 60 p | ${ }^{55}$ D | 50 p | 8×87195 | 21.85 | 11.70 | 1.60 |
| 8N7446 | 22.00 | 21.75 | 21. 60 | SN74122 | 21.35 | 11.25 | 11.10 | 8N74196 | E1.50 | 11.40 | 1130 |
| 8N7447 | 21.75 | 21.60 | 11.45 | SN74123 | £2.70 | 22.55 | 22.47 | SN74197 | 41.50 | 11.40 | 12.30 |
| 8N7448 | 41.78 | \$1.80 | 11.45 | SN74141 | ${ }^{51.00}$ | ${ }^{95}$ | 90 p | 8N74198 | 24.60 | 23.70 | 83-35 |
| 8N7460 | 20 p | 18p | 18 D | 8N74145 | 21.50 | 11.40 | 11.30 | SN74199 |  | 23.70 | 23-35 |
| PRICES OF 7400 SERIES ARE CALCULATED ON THE total number ordered regardless of mix. Larger quantity Prices Phone 01.402 4891 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

## TEST EOUIPMENT

$\substack{\text { Lusiad } \\ \text { Sile. } \\ \text { Hilen }}$

with data. 15p.
GNP-7, GNP-8
0.9
ande side GNP-7, GNP-8 0-9 side view
with decimal points and data, W5p. 7 imal points and data
$3015 \mathrm{Feg} . \mathbf{~} \mathbf{2}$ each, $\mathbf{~} 7$ per wlth data. 12 and 24 hour clock circults.
Ref. No. 3115 p. ULTRASONIC
TRANSOUCERS Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100
yds. Ideal remote switching and signalling. Complete wit data and new I.C. circults.
PRICE PER PAIR $£ 5 \%$. PO 10 p.
QUALITY SLIDER
CONTROLS 60 mm stroke singles and
ganged. Complete with knobs. $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega .{ }^{25 \mathrm{k} \Omega,} 100 \mathrm{k} \Omega$
$250 \mathrm{k} \Omega .50 \mathrm{k} \Omega .11 \mathrm{meg} . \log$ and Lin. 40 p each, $10 \mathrm{k} \Omega, 25 \mathrm{~m} \Omega$
$50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, Log and Lin ganged. 00 p each. MARRIOT TAPE HEADS 4TRACK MONO
or 2 TRACK STEREO
 " $33^{\prime \prime}$ " Med. Med.-Low Imp. ${ }^{\text {Erase Heads for above }}$ M, mpedance "43"

## ZENER DIODES

$\qquad$

## MINIATURE



 BECTIFIERS WIRE ENDED Type P.I.V. $1-1$
1 amp minlature 1 amp

| Type | Volts | Price | THREE A | MP | 048) | SEYEN A | MP | 048) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P.I.V. | 1-11 | CRS 3105 | 50 | 30p | CRS 71100 | 100 | ${ }^{60} \mathrm{p}$ |
| ONE AMP |  |  | CRS 3/10 | 100 | 30 p | CRS 71200 | 2200 | ${ }^{650}$ |
| CRS $1 / 05$ | 50 | 25p | CRS 3120 | 200 | 35p | CRS 71600 |  | 95p |
| CRS 1/10 | 100 | 30 p | CRS 3140 | 400 | ${ }^{45} \mathrm{p}$ | SIXTEEN | AMP |  |
| CRS 1/20 | 200 | 30p | CRS 3160 | 600 | 55p | SCR 16/100 |  | ${ }^{65 p}$ |
| CRS 1/40 | 400 | 35 p | FIVE AMP (TO66) |  |  | SCR 16/400 |  | top |
| CRS 1/60 | 600 | 45p | CRS 51400 | 400 | 60p | SCR 161600 | 600 | £1.00 |

SL4030D PLESSEY Complete with 8 page Data Booklet and Circuits ${ }^{£ 1.50,}$
(P.C. Board Stereo 60 p; Heat Sink 14p).
Also Sinclair IC12 $\quad$ £1.80.
TH 9013 P-20 watt Power Amp TH9013P-20 watt Power Amp
Module £4.57. TH9014P-IC Preamp $£ 1-50$. DatalClicuits for abov No. 4210 p . ZNA14 RADIO IC

FREE STOCKLIST


# FOR THE STOCKS, THE DISCOUNTS AND THE SERVICE YOU NEED <br> \title{ EIEGTROMLIUE Electronic Component Electronic Component Specialists 

 Specialists}


## TRANSISTORS BY SIEMENS AND NEWMARKET



DIN CONNECTORS by Hirgmann

## me. .a)

2 way loudspeaker Socker 10p 3 way audio Socket 10p 5 way audio $240^{\circ}$ Socket 12p Plug 15p 6 way audio Socket 13p Plug 15p Lockable types, phono connectors, etc. long spindles. Double SINGLE GANG P20 linear $100 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 12 \mathrm{p}$ 1920 Log, 4.7K $\Omega$, to $2 \cdot 2 \mathrm{M} \Omega$ 12p.
DUAL GANG linear $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log. $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ 42p; Log/antilog, 10K, 22K $47 \mathrm{~K}, \mathrm{IM} \Omega$ only 42p; Dua antilos, loK only. 42p. Any mains switch, 12 p extra Only decades of 10,22 \& 47 available in ranges quoted DUAL CONCENTRIC DP20 in any combination of P20 values, 60p; with switch, 72p.
SLIDER POTS. In values from $4 K 7 \Omega$ to IM $\Omega$ linear or log, 26p. Escutcheon, white, grey, black 10p. Knobs, flat, grip type, in 7 colours, 5 p each. SKELETON PRE-SETS. Small high quality, rype
PR linear only: $100 \Omega, 220 \Omega, 470 \Omega, 1 K, 2 K 2,4 \mathrm{~K} 7$, PR linear only: $100 \Omega, 220 \Omega, 470 \Omega$, $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7$ $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$ Vertical or horizontal mounting, 5 p each
NUTS, SCREWS, ETC. In lots of 100 .
Nuts 2BA-41p; $4 B A-28 p ; 6 B A-26 p$.
Nuts 2BA - $41 p$; 4BA-28p; 6BA-26p.
Screws $1 "-2 \mathrm{BA}-67 \mathrm{p}$; $4 \mathrm{BA}-35 \mathrm{p} ; 6 \mathrm{pA}-26 \mathrm{p}$. $0.5^{\prime \prime}-2 \mathrm{BA}-50 \mathrm{p}$; 4BA-23p; 6BA-19p.
Screws roundheaded, cheese headed or countersunk
Other sizes available. Also tags, wa shers, spacers, e



| $\mu \mathrm{F}$ | $3 V$ | 6.3 V | 10V | 16 V | 25 V | 40 V | 63 V | 100 V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.47 |  |  |  |  |  |  | 10 | 7 |
| 1.0 |  |  |  |  |  | 10 |  | 7 |
| 2.2 |  |  |  |  | 10 |  | 7 | 8 |
| 4.7 |  |  |  | 10 |  | 7 | 8 | 7 |
| 10 |  |  |  |  | 7 | 8 | 7 | 8 |
| 22 |  |  | 7 |  | 8 | 7 | 7 | 9 |
| 47 | 7 |  | 8 | 7 | 7 | 7 | 9 | 12 |
| 100 | 8 | 7 | 7 | 7 | 7 | 9 | 11 | 19 |
| 220 | 7 | 8 | 8 | 8 | 9 | 10 | 17 | 27 |
| 470 | 8 | 9 | 9 | 10 | 12 | 17 | 24 | 43 |
| 1000 | 10 | 12 | 12 | 17 | 20 | 24 | 40 |  |
| 2200 | 14 | 17 | 22 | 25 | 36 | 40 |  |  |
| 4700 | 25 | 28 | 37 | 41 | 54 |  |  |  |
| 10,000 | 40 | 43 |  |  |  |  |  |  |

Smallest size $3.7 \mathrm{~mm} \times 12 \mathrm{~mm}$.
types of capacitors stocked.
ROTARY SWITCHES Radiospares Miniature Makaswiteh (in assembly kit form). Shaft 48p.
Wafers, MBB-2P5W, IP IIW: BBMIPI2W, 2P6W, $3 P 4 W$. 4P3W, 6P2W, each 32p.

$$
\begin{aligned}
& \text { Wavechangeswitches } \\
& \hline \text { PJフW }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wavechange switches } \\
& \text { IP12W, } 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W} \text {. }
\end{aligned}
$$ each 24p. 3 New Babani Books BP. 13 Electronic Novelties for the Motorist; BP. 15 Constructor's Manual of Electronic Circuits for the Home; 200 Handbook of Electronic Musical Novelties: Ench top iov




## Minitron DIGITALINDICATOR

TYPE 3015F Seven segment indicator compatible with standard logit modules and power supplies. Figs. 09
from well illuminated filament segments to give from well illuminated filament segments to give
charater of 9 mm heighe plus decimal point. Power requirement 8 mA from $5 \mathrm{VD.C}$. . per segment. A limited number of alphaberical symbols also avail- 22000
able. In 16 lead DIL case ie. HCD Decoder

DIL Socket; 16 lead 30p. No. 3015 g showing
and fig. I and decimal point 62 . 00 nett

## ZENER DIODES

Full range E24 values 400 m W: 2.7 V to $36 \mathrm{~V}, 14 \mathrm{p}$ each; $1.5: 6.8 \mathrm{~W}$ to 4.7 V to 75 V 48 p each. Clip to 1.5 W rating to 3 watts (type) 266F) 4 p .
SIEMENS THYRISTORS $0.8 \mathrm{~A} 400 \mathrm{~V}, 56 \mathrm{p}$; 600 V 70 p . 3A $400 \mathrm{~V}, 60 \mathrm{p} ; 600 \mathrm{~V}$, ${ }^{88 \mathrm{p}}$.

## S-DEC

Unsurpassed for "bread board work" can be used indefinitely witllout deterioration. plug holes and connect auto. matically. Slot for control panel. 70 holes. $£ 1 \cdot 80$.
T-DEC
For more advanced work with 208 contacts in 38 rows. £3:30. (Carriers supplied

## BAXANDALL SPEAKER

As described originally in "Wireless World" and still one of the most brilliant
designs in high quality low priced designs in high quality low priced
speakers. You save by assemblins it speakers. You save by assembling it Complete kit $£ 14.90+60$ p part carr. Equaliser components $£ 2.00$.
5 peaker unit $£ 2.45$.
No. 6 CATALOGUE SUPPLEMENT of latest price adjustments and new items.

$$
\begin{aligned}
& \text { cype } \\
& \text { FLLI21T } \mathrm{Cl} \cdot 36 \\
& \text { 15G showing }+ \text { or }-
\end{aligned}
$$

TTL ICs


those shown with NETT PRICES. $10 \%$ on orders from and over.

OF BUSINESS Alems are offered for sale tandard terms of business, a copy of which is available on Iteration without notice. Enquiries from quantity users ACK
PACKING \& POSTAGE FREE in U.K. For mail orders保
V.A.T.

MAINS TRANSFORMERS MT3 30V/2A plus 4 taps $£ 2.85$ MT 103 50V/IA 4 taps $\mathbf{E 2 . 5 5}$ MT10450V/2A +4 taps $\varepsilon 3.50$ MTI $12760 \mathrm{~V} / 2 \mathrm{~A}+4$ taps $£ 3.80$ $13 T 05 \quad 13 \mathrm{~V} / \frac{1}{2} \mathrm{~A}, C T \quad E 1.25$ 28 T05 $12+12 ; 2-0-2 \mathrm{~V} / \frac{1}{2} \mathrm{~A} \mathrm{E1.60}$




WEEST HYDE (W)
WEST HYOE DEVELOPMENTS


PVC coated steel with PVC coated
aluminium fromt and rear panels.
The design of these cases permits the instrument to be
built up or senviced without the external panals. Price
includes all stioinless steel assembly screws. nubter fee
and one or two chassis according to sire, and also vat
and one of two chessis atcording to sire, and also VAT
and $P \& P$. Delivery ex stock. Special punching to take
WEST HYDE (W)





MARCONI TEST EQUIPMENT
 minor circuit changes
e.g. and 2 MHz
switched
e.g.
switched
P.O.

TF 801D/4/S SIGNAL GENERATOR. Range $10-485 \mathrm{MHz}$ in five ranges. R.F. outpul
0.1 uV -IV source e.m.f. Dial calibrated in volts, decibels and power relative to thermal nolse. Piston type attenuator, $50 \Omega$ outpu
Impedance. Internal modulation at 1 kHz Impedance. Internal modulation at 1 kHz
at up to $90 \%$ depth, also external sine and at up to $90 \%$ depth, also exiernal sine and
pulse modulation. Built-in 5 MHz crystal callbrator. Separate R.F. and mod, me TF $5628 / 3$ Osciliator and Detector UnIt TF 1228 B
TF 1225 A
TF 1258A VHF SPECTRUM ANALYSER lor analysls and measurement of Rada with crystal check points. Sweep wldth 0.5
to 5 MHz , output Dulise delay (a) $85-175 \mathrm{Sec}$ to SMHz , outhut pulse delay (a) $85-175 \mathrm{\mu Sec}$
(c) 0.7 .14 mSec with $\times 1$ and $\times 2$ multiplle


SIGNAL GENERATOR TYPE
AN/USM-16 (MODEL BJ75A)
A precision HF/VHF signal generato
embodying faciities seldom found or con embodying faciiities seldom found or con-
tained in one instrument. namely outputs tained in one instrument, namely outputs
of CW/AM/PM and sWeept carrier, in the frequency range 10 to 440 MAz . Some o MATIC FREQUENCY STABILISATION (locks output signal to selected frequency) output constant Idb) INTERPOLATION OSCILLATION (tor precise funing between
crystal check points) MARKERS (for crystal, check points) MARKERS (fo
S.F.M.)
Brief specifications, Frequency 1010440 MHz BF output 0.14 V to 0.224 V at 50 ohms. Modes of operation CW-HI, CW CW (calibrated and
stabilised), AM-400Hz and 1 kHz and external, Stabised, $4 M-400 \mathrm{~Hz}$ and 1 kHz and external,
$\mathrm{FM}-400 \mathrm{~Hz}$ and 1 kHz and external 0.75 kHzdev ,
S. F. S.F.M. $-x 1, \times 10, \times 100,0-75,750 \& 7500 \mathrm{kHz}$ dev.
resp., P.M. -50 to 5000 pps at 1.1030 sec . width int. or ext., 150 to 5000 Hz rep rate.
3 meters for; mod. and dev., frequency dlscrimination pulse ievel output. With manual. Complete

Open 9-12.30, 1.30-5.30 p.m.
except Thursday 9-1 p.m.

BEST PRICES PAID FOR TEST AND COMMUNICATION
EQUIPMENT. Sinale items or quantities. Private or Industrial.


SOLATRON DO 905 STABILISED AMPLITUDE SIGNAL GENERATOR. FREG. ange 350 kHz -SN Hz .
TF 1370 R-C OSCILLATOR, SQUARE AND SINE WAVE. Freq,: Sinewave 10 Hz
10MHz, squarewave $10 \mathrm{~Hz}-100 \mathrm{kHz}$. Direct 10 MHz , squarewave $10 \mathrm{~Hz}-100 \mathrm{kHz}$, Direct
output: sinewave: $0-31.6 \mathrm{~V}$ rms., $10 \mathrm{~Hz}-1 \mathrm{MHz}$. squarewave: $0-73.2 \mathrm{pp} 10 \mathrm{~Hz}-100 \mathrm{kHz}$. Attenc ator range:-50d8 to +10 dB . Impedance BC 624 RECEIVER (Part of SCR 522 TX/RX 00-156 mcs, no valves, requires separate PSU for 28 V . $£ 2.50$. Carriage 50 D
TR 143 TRANSMITTER RECEIVER
TEKTRONIX

| HEWLETT-PACKARD <br> 185A 800 MHIX SAMPLING OSCILLO. SCOPE WITH 188A DUAL TRACE PLUG-IN. Full spec. and P.O.A. | TEKTRONIX <br> OSCILLOSCOPES. <br> 541A-33MHz, plug-in $Y$ amps. <br> $531-57-60 \mathrm{MHz}$, separate P.S.U. <br> $561 \mathrm{~A}-\mathrm{t} 0 \mathrm{MHz}$, solld state, compact, |
| :---: | :---: |
| 5248 COUNTER FREQUENCY | takes the following plugs-ins: $X, Y$; |
|  | differential, sampling, spectrum ana- |
| Aloning of declmal point. Period mea- | lyser. |
| surement: $0-10 \mathrm{kHz}$, reads in seconds, | PLUG-IN UNITS trace somv-nov. |
| milliseconds or microseconds, declmal |  |
| point automatically positioned. Display |  |
| on 6 neon lamp decades and 2 meters. | D-HIgh galn diferental $1 \mathrm{MV}-50 \mathrm{~V}$. |
| Complete with manual and following | N 600 MHz sampling $10 \mathrm{mV}-\mathrm{em}$. |
| plug-ins: 525 A 10 to 100 MHz , ${ }^{\text {a }} 220 \mathrm{MHz}, 526 \mathrm{~A}$ video amplifier. Price | R Transistor measurement. |
| on application. | P type callibration. |
| 540B TRANSFER OSCILLATOR. | 3B3-Delayed sweep time bas |
| Extends range of 524 and 5245 series | 134-P6021 probe and current probe |
| counters to 18 gHz , or on its own, | amplifier, 1 mA -15A D. \& p., new and |
| measures frequencies below 4 gHz with $0.5 \%$ accuracy. | boxed, $£ 125$. |
| 430 C MICROWA VE POWER METER. | 162 wave form generator. |
| Complete with 476A bolo mount, 475B | 163 Pulse generator. |
| tunable bolo, BM16 waveguide, $£ 95$. |  | 205AG AUDIO OSCliteguide, $£ 95$ distortion, 20 Hz to 200 kHz , metered and attenuated inputs and outputs enabling a very wide range of mesture-

ments to be made on amptifiers, filters,


I6B SHF SIGNAL GENERATOR. Freq Pulse and Ext. A.M., output: $0,1 u \mathrm{~V}-200 \mathrm{mV}$ Price on application 894 ADIO TESTER. Combined A.F. Generator $(0-25 \mathrm{kHz})$, Output meter (up to
$2 W$. at 600,15 and $3 \Omega$, and valve voitmeter

TELEPHONE ENQUIPIES

590/250W MEDIUM WAVE BROADdetarls on application.
M.O. for ET ${ }^{4336}$ TX (see description
previous issues) EB . 50 . P. \& P. $£ 1.50$. ARss SPARES. We hold the largest stock in U.K. Write for list
PHASE AUTO TRANSFORMER, W 88kV. Made by Westlinghouse of USA Kransport hases UK transport.
ordered from us is completely over hauled mechanically and electrically

## FOR EXPORT ONLY

TRANSMITTERS:
BC 610 Haillcrafters.
RCA ET 4335 also modified version of increased output to 700 w .
COLLINS TYPE 2310
$4 / 5 \mathrm{kw}, 10$ channel. autotone and manual tunlng. All above
complete installation and spare parts. Complete installation and spare parts.
TRANSCEIVERS 19, 19HP, 38, 62 . C:13 TRANSMMTERS

## SEE OUR SALE <br> on page $x x$

## V.A.T. <br> please add 10\% TO ALL ORDERS

## REMSCOPE TYPE 741 STORAGE SCILLOSCOPE. On troliey, complete

 $Y$ amplifiers. E1to plus carriage HARNESS "A" a "B" control units, R.F. METER 0.8 amp. 24" (U.S.A.) $£ 1.80$ 29/41FT. AERIALS each consisting of ten $1 \mathrm{if}$. iin. dia. tubular screw-in sections. ofit the 71 n . rod, Insulsted base, stay plate and stay assemblles, Degs, reamer, hammer,etc. Absolutely brand new and complete eady to erect, in canvas bag. $£ 7.50$ new or METERS $\begin{aligned} & \text { Full List of our very large } \\ & \text { stock of meters on request. }\end{aligned}$ TELEPHONE TYPE "J" (Troplcalised) 10 IVE MAGNETO
SWITCHBOARD
50 IIne AUTOMATIC PRIVATE
TELEPHONE SWITCHEOARD
Price of each of the above on application. RADAR SCANNER ASSEMBLY TYPE
 Carrlage $£ 2.50$.

BRAND NEW SEMICONDUCTORS \＆COMPONENTS

## TRANSISTORS

$\quad$ TRA
2G301
2G302
$2 G 303$
2G306
2G309
2G345B
$2 G 371$

2G345B
2G371
2G374
2G3374
2N174
2N404
2N456
2N456A 2N456A
2N457A
2N491
2N491
2N696
2N696
2N697
2N697
2N698
2N698
2N699
2N706
2N706A
2N708
2N708
2N709
2N709
2N711
2N711
2N718
2N718A
2N720
2N721
2N721
2N914
2N914
2N916
2N918
2 N 918
2N929
2N929
2N930
2N1090
2N1091
2N1131
2N1132
2N1302
2N1303
2N1303
2N1304
2N1304
2N1305
2N1306
2N1307
2N1308
2N1308
2N1309
2N1483
2N1483
2N1507
2N1613
2N1631
2N1701
2N1702
2N1711
2N1893
2N2147
2N2148
2N2192
2N2192A
2N2193
2N219
2N2194A
2N2195

| 2N214 | 0.30 | 2N4061 |
| :--- | :--- | :--- |
| 2N2194A | 0.30 | 2N4 |
| 2N2195 | 0.37 | 2N4062 |
| 2N2195A | 0.18 | 2N4302 |
| 2N2218A | 0.30 | 2N4303 |

2N22

2N22222A
2N2368
2N2369
2N2369
2N2369A
2N2369A
2N2646
2N2647
2N2647
2N2711
2N2711
2N2712
2N2713
2N2714
2N2904
2N2905
2N2905
2N2906
2N2906
2N2907
2N2907A
2N2923
2N2924
2N292
Green
Yellow
Orange
2N3053
${ }^{2 N} \mathrm{~N}_{3} \mathrm{O}_{54}$
2N3055
2N3390
2N3391
2N3391A
2N3392
2N3393


\section*{| 0.15 | $2 N$ |
| :--- | :--- |}

2N3403
2N3404
2N3405 $2 N_{3414}$
$2 N_{3415}$
$2 N_{34}$ 2N3416
2N3417 2N3570 2N3571
2N3572 2N3572
2N3702
2N3703 2N3703
2N3704
2N3705 2N3705
2 N3706
$2 N 3707$ 2N3707
2N3708
2N3709 2N3709
2N3710
2N3711 $2 \mathrm{~N}_{3} 7_{11}$
$2 \mathrm{~N}_{3} 7_{12}$
$2 \mathrm{~N}_{3} \mathrm{~N}_{13}$ $2 \mathrm{~N}_{3}>13$
$2 \mathrm{~N}_{3}>14$
$2 \mathrm{~N}_{1}>15$
 2N3779
2N3790
2N3791 $2 \mathrm{~N}_{3} 79_{2}$
$2 \mathrm{~N}_{3} 39_{4}$
$2 \mathrm{~N}_{3}{ }_{19}$ $2 N_{3820}$
$2 N_{3823}$
$2 N 3824$ $N$
$z_{2}$
0
0
0
0
0





家：


$\stackrel{-}{5}$


2N4036
2N4037
2N458
2N4058
2N459
$2 \mathrm{~N}_{4} \mathrm{NOSO}_{5}$
$2 \mathrm{~N}_{4060}$

2N4303
2N4916
$2 \mathrm{~N}_{4} \mathrm{~N}_{18} 18$
$2 \mathrm{~N}_{4} \mathrm{~N}_{19}$

2N5174
2N5175
$\stackrel{\circ}{\circ}{ }_{5}^{\circ}$
$\sum_{i}^{\circ} \sum_{\infty}^{\frac{5}{n}} \sum_{N}^{\frac{5}{4}}$

$2 N_{5195}$
$2 N_{5245}$
$2 N 5457$
$2 N 5457$
$2 N 5458$
$2 N 458$
2N5459
3N128
3N128
3 N 138
3 N 139
3 N 140
$\mathrm{~N} / 40$

3N152
3N153
$3 \mathrm{~N}_{154}$
3 N 159
3 N 15 g
$3 N 159$
$3 N 187$
$3 N 200$
$3 N 201$
40050

| 0251 |
| :--- |
| 0309 |
| 0310 |

40309
40310

140316

\section*{| 0.19 |
| :--- |
| 0.24 |}

NEARL BC121
BC125
BC126
BC132

BC134 | .92 | BC 125 |
| :--- | :--- |
| .46 | BC 126 |
| .43 | BC 132 |
| .45 | BC 134 |
| .88 | BC 135 |

 | 0.23 | BDY18 | $\mathbf{1 . 7 5}$ | BSX61 | 0.42 |
| :--- | :--- | :--- | :--- | :--- |
| 0.15 | BDY19 | $\mathbf{1 . 9 7}$ | BSX76 | 0.15 |
| $\mathbf{0 . 2 0}$ | BDY20 | 0.05 | BSX77 | 0.20 |
| 0.50 | BDYY | 1.9 | BSX |  |

 $\begin{array}{ll}- & \\ \text { SN } 74176 & £ 1.50 \\ \text { SN } 74180 \\ \text { SN } 74181.55 \\ \text { SN } 74190 & £ 7.00 \\ \text { SN } 74191 & \mathrm{f1} .95 \\ \text { SN } 74192 \\ \text { SN } 74193 & \mathrm{f1} .90 \\ \text { SN } 74190 & \mathrm{f1} .90 \\ \text { SN } 74190 \\ \text { SN } 74199 & \mathrm{f4} .60 \\ & \mathbf{4 4 . 0 0}\end{array}$

NE555 TIMER I．C．90p

## ZENER DIODES

400MW－BZY88 and IN SERIES．15p
1 watt－IN，IZM and IS SERIES，22p． 1.5 watt－ZL SERIES，25p． 10 watt－ZS SERIES．40p． 20 watt－BZ 93 SERIES， $52 p$ ，

| BRIDGE RECTIFIERS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIV | 50 | 100 |  | 200 | 40 |  | 600 |
| 1A | 24p | 26p |  | $35 p$ | 35p |  | 40p |
| ？${ }^{\text {A }}$ | 32p | 37p |  | 41p | 46 |  | 2p |
| 4A | 60p | 70p |  | 75p |  |  | 950 |
| 6A | 62p | 75p |  | 80 p |  |  | f1．25 |
| DIODES \＆RECTIFIERS |  |  |  |  |  |  |  |
|  | 5 | pv） | 8 p | CL10 | （10 | ） |  |
| IN5172 | 5 amp | $00 \mathrm{pv})$ | 9 p | CL1003 | （10 amp | 200 | 40p |
| IN4517 | （1．5 amp | 200 pv ） | 10p | CL100 | （10 am | 400 p |  |
| IN5173 | （1－5 amp | $400 \mathrm{pv})$ | 11p | CL． 100 | （10 am | 600 p | 56 |
| IN5176 | 1.5 amp | $600 \mathrm{pv})$ | 12p |  |  |  |  |
| IN5177 | （1．5 amp | $800 \mathrm{pv})$ | $15 p$ | ANO | 8 CA | THODE | STUD |
| PL4007 | （1．5 am | $1000 \mathrm{pv})$ | ） $20 p$ | IN118 | （35 amp | 50 pv ） | 70p |
| IN5400 | （3 amp | pu） | 15p | IN1184 | （ 35 amp | 100 pv | $80 p$ |
| IN5401 | （3 amp | OOp） | 17p | IN11 | （35 a | 200 p | 90p |
| IN5402 | （ 3 amp | OOp） | 20p | IN1188 | （ 35 amp | 400 pv | f1．00 |
| IN5404 | （3 amp | （pv） | 22p | IN1190 | （35 am | 600 pv | f1．40 |
| C． 7005 | $(3 \mathrm{amp}$ | 00 pv ） | 25p |  | ODE | J |  |
| CL7006 | 3 amp | $00 \mathrm{pv})$ | 27p | IN376 | （35 am | 800 p | 1.50 |
| CL700 | 3 amp | $000 \mathrm{pv})$ | 30p | IN3 | 5 | 00 | 2 |
| $\mathrm{I}_{\mathrm{N} 34 \mathrm{~A}}$ | 10p | BA141 | 17p | BY237 | 12⿺辶 p | OA79 |  |
| IN914 | 7 p | BA14？ | 17p | BYZ10 | 35p | 0481 | P |
| IN916 | 7p | BA144 | 12p | BYZ11 | 32p | OA85 | 10p |
| AA119 | 7 p | BA145 | 17p | BYZ12 | 30 p | OA90 | 7 p |
| AA129 | 15p | BA154 | 12p | OA9 | 10p | OA91 | p |
| BA100 | 15p | BY100 | 15p | DA10 | 20p | OA95 |  |
| BA102 | 25p | BY126 | 15p | DA47 | 71 $p$ | OA200 | 7p |
| 10 | 25p | BY127 | 171p | 0A70 | $7 \frac{1}{2} p$ | 0A202 | 10 |
|  | 7p | BY140 | f1．00 | OA73 | 10p | OA210 | 27 |
| optoelectronic |  |  |  | POTENTIDMETERS |  |  |  |
| MINITRON 3015F 7－SEGMENT |  |  |  | Carbon： |  |  |  |
| INOICATOR（16 PIN OIL）£2 |  |  |  | Log．or Lin．．less switch，16p |  |  |  |
| DRIVER | SN 744 |  | f1－30 | Log．or Lin．，with switch，27p |  |  |  |
| SOCK |  |  | 20p | Wire－wound Pots（3W），38p <br> Twin Ganged Stereo Pots．Log． |  |  |  |
| TIL 209 LIGHT EMITTING DIOOE．（Red）．35p |  |  |  |  | $\begin{aligned} & \text { anged S } \\ & \text { ‥ } 43 \mathrm{p} \\ & \hline \end{aligned}$ |  |  |
| SCORPIO ignition kit $\mathrm{f10}+$ 50 p P．\＆P． |  |  |  | 0．1 Watt $6 p$ VERTICAL <br> 0.2 Watt $6 p$ OR <br> 0.3 Watt $7 \frac{1}{2} \mathrm{p}$ HORIZONTAL |  |  |  |
| WIRE－WOUND RESISTORS |  |  |  |  |  |  |  |
| ```2.5 watt 5% (up to 270 ohms only), 7p 5 watt 5+ (up to 8.2k\Omega only). 9p``` |  |  |  | slide POTENTIOMETERS 58 mm ．TRACK |  |  |  |
|  |  |  |  | SINGLE GANGED，LOG or LIN 1 k to 1 M ． 30 p each |  |  |  |
| 10 watt $5 \%$（up to $26 \mathrm{k} \Omega$ oniy）． 10p |  |  |  | TWIN GANGEO．LOG or LIN 1 k to 500 k ． 50 p each |  |  |  |

SUB－MIN，ELECTROLYTICS

#  

Telex 21492

## COMPONENTS FOR

 W.W. AMPLIFIER DESIGNSIO0W AMPLIFIER (FEB. 1972)
Designer approved kit.
Semiconductor set
Resistors. capacitors, pots
POWER SUPPLY (F
Semiconductors, Resis
formers, F/Glass PCB , capacitors, pots, trans-
30W BLOMLEY (N
Semiconductor set
Resistors, capacitors, pots
F/Glass PCB
30W BAILEY (Single power rail)
Transistor set
Resistors, capacitors, pots
F/Glass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer approved kit.
2N3055 pair, BC2 12L, 2N17।I
Resistors, capacitors, pot
Glass
LINSLEY-HOOD 20W CLASS AB
MJ48I/491, MJE52I, BC182L, BC212L, zene
Resistors, capacitors, pots
Resistors, capacitars,
Please state $8 \Omega$ or $15 \Omega$
REGULATED 60V POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective S/C protection. All Semi/C's, R's, C's, F/Glass PCB
Power supplies for other amplifiers also available
BAILEY/BURROWS PRE-AMP (Aug., 1971)
Component Set: Mono
Component set: Stereo
Each component set comprises of all specified resistors, capacitors. transistors pots, including special balance control for stereo sets. Stereo F/Glass PCB
STUART TAPE RECORDER
Set of sterea f/glass PCBs
Components sets on price ist.

## "TEAAN ${ }_{\&}^{\text {texas approved full kit }}$

## SEMICONDUCTORS

| 2N699 | 0.25 | BCI84L | 0.11 |
| :---: | :---: | :---: | :---: |
| $2 \mathrm{~N} / 613$ | 0.20 | BC212L | 0.12 |
| 2NI711 | 0.25 | BC214L | 0.14 |
| 2N2926G | 0.10 | BCY72 | 0.13 |
| 2N3053 | 0.15 | BF257. | 0.40 |
| 2N3055 | 0.45 | BF259 | 0.47 |
| 2N3442 | $1 \cdot 20$ | BFR 39 | 0.25 |
| 2 N3702 | 0.11 | BFR79 | 0.25 |
| 2N3703 | 0.10 | BFY50 | 0.20 |
| 2N3704 | 0.10 | BFY5I | 0.20 |
| 2N3705 | 0.10 | BFY52 | 0.20 |
| 2N3706 | 0.09 | MJ48! MJ49 | $\begin{array}{r}\text { I } \\ +1.30 \\ \hline\end{array}$ |
| 2N3707 | 0.10 | MJE521 | + 0.60 |
| 2N3708 | 0.07 | MPSA05 | 0.30 |
| 2N3709 | 0.09 | MPSA12 | 0.55 |
| 2N3710 | 0.09 | MPSA14 | 0.35 |
| 2N3711 | 0.09 | MPSA55 | 0.35 |
| 2N3819 | 0.23 | MPSA65 | 0.35 0.40 |
| 2N3904 | 0.17 | MPSU05 | 0.60 |
| 2N3906 | 0.20 | MPSU55 | 0.70 |
| 2N4058 | 0.12 | SN7274IP | 0.58 |
| 2N4062 | 0.11 | SN72748P | 0.58 |
| 2N4302 | 0.60 | THBII | 1.10 |
| 2N5087 | 0.42 | TIP29A | 0.50 0.60 |
| 2N5210 | 0.54 | TIP31A | 0.60 |
| 2N5457 | 0.30 | TIP32A | 0.70 |
| 2N5830 | 0.30 | TIP33A | 1.00 |
| 40361 | 0.40 | TIP34A | 1.50 |
| 40362 | 0.45 | TJP4IA | 0.74 |
| BCIO7 | 0.08 | TIP42A | 0.90 |
| BCI08 | 0.08 | 1B08T20 | 0.60 0.50 |
| BCI09 | 0.08 | 1840K20 | 1.40 |
| BC125 | 0.15 | IN914 | 0.07 |
| BCI26 | 0.15 | IN916 | 0.07 |
| BCI82K | 0.10 | IS44 | 0.05 |
| BC212K | 0.12 | 153062 | 0.10 0.25 |
| BCl82L | 0.10 | 5805 | 1. 20 |

# HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD <br> \author{ Published Nov. 1972 to Feb. 1973 <br> <br> Published Nov. 1972 to 

}

DESIGNER APPROVED KIT


SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$. This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

## FREE <br> TEAK CASE <br> Total cost of individually purchased packs: £63.95 <br> WITH 75 WATT PER CHANNEL COMPLETE AMPLIFIER KITS <br> Cost of complete kit: £56.60 <br> TRADE ENQUIRIES WELCOME

P.S. Full circuit description in handbook

30p
FOR FURTHER DETAILS PLEASE WRITE TO:

* 75 WATTS * BANDWIDTH (3dB) 3HZ-40KHZDISTORTION LESS THAN $0.01 \%$UNCONDITIONAL STABILITYCOMPONENT PACKS
Pack
I Fibre glass printed circuit board for power amp. ..... 10.75
2 Set of resistors, capacitors, pre-sets for power amp. ..... \& 1.50
3 Set of semi-conductors for power amp. (highest voltage version) ..... 45.50
4 Pair of 2 drilled, finned heat sinks ..... 60.80
5 Fibre glass printed circuit board for pre-amp. ..... £ 1.10
6 Set of low noise resistors, capacitors, pre-sets for pre-amp ..... $£ 2.70$
7 Set of low noise, high gain semi-conductors for pre-amp ..... $\leftarrow 2.10$
8 Set of potentiometers (including mains switch) ..... E1.55
9 Set of 4 push button switches, rotary mode switch ..... E3.10
10 Toroidal transformer complete with magnetic screen housing primary: 0-117-234 V . secondaries: 33-0-33 V . 24-0-24 V., electrostatic screen ..... £9.15
II Fibre glass printed circuit board for power supply ..... $£ 0.55$
12 Set of resistors, capacitors, secondary fuses, semi- conductors for power supply ..... $\$ 3.50$
13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, control knobs ..... £3.25
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc. ..... 66.30
15 Handbook, based on Hi-Fi News articles ..... 10.30
16 Teak cabinet ..... $€ 7.35$2 each of packs i-7 inclusive are required for completestereo system.

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE, ANDOVER : HANTS MAIL ORDER ONLY

POST FREE TO U.K.
U.K. Orders Subject to 10\% V.A.T. Surcharge

## Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply.

| Hew |
| :---: |
| Branches BOLTON COVENTRY |
| SUNDERLAND STOCKPORT |
| DONGASTER |
| opening Sept |



Re108 Hexco mail orders to:

 EXPORT ENQUIBIES WELCOMED brancges open all day saturday MAIL ORDERS NOT TO BE SENT TO SHOPS. MDDLESBRO 106 Newport Rd (Closed Wed.) MEWCASTLE-ON-- YNE 24 Newgate
Shopping Centre
(Closed
Wed.) NOTTINGHAM 19 Market St. (Closed Thurs.) SHEFFIELD is ExChange St. (Closed Thurs.) STOCKPORT 8 Little Underbank Tel. 480.20715 SUNDERLAND 5 Market Square (Closed Thurs.)

ALL PRICES INCLUDE VAT

## AND FULL LABOURI MATERIALGUARANTEES.

## HUGE DISCOUNTS ON LEADING BRAND <br> TAPE AND TURNTABLE UNITS

AKAI GXC 40D Tape Un't
AKAI 4000 DS Tape Unit
AKAl 1721L Tape Unit AKAI CR81D Tape Unit
£62.95 (Rec Price £89.74). £68.95 (Rec Price £93.50). £66.95 (Rec Price £93.87). £58.95 (Rec Price $£ 84 \cdot 10$ ).

Carr. $£ 1$. Carr. $£ 1$. Carr. $£ 1$. Carr. $£ 1$. | Carr. |
| :--- |
| Cars. | GOLDRING GL72 T/Table \& P.U. £27.7e (Rec Price £34.65). Carr. Also FREE with above GL72 Goldring G800 cartridge worth over $£ 10$

B.S.R. MACDONALD MP60 T/Table \& P.U. $£ 9.95$ (Recom. Price $£ 14.84$ ). B.S.R. MACDONALD MP60 T/Table \& P.U. £9.95 (Recom. Price £14.84).
CREDIT TERMS AVAILABLE. MIN. DEPOSIT $10 \%$ Carr. 40p. Above is only a selection of Discount Lines, also Leak, Wharfedale etc.
R.S.C. G86 MkII $6+6$ WATT STEREO AMPLIFIER High Quality Output. Hating I.H.F.M. Ind. Ganged Contro 1o Bans
Treble, Vol. and Baiance. Boid state conatr. employing io Trand pluan diodes. Range $20-20.000 \mathrm{~Hz}$. Bass control $\pm 12 \mathrm{~dB}$ Troble
 Black/Piliver metal tace plate and matching kiobo
 FATME ULTRA HIGH POWER LOUDSPEAKERS






FANE MODE ONE HI-FI SPEAKER KIT inc. $8038{ }^{\circ}$ calt, ${ }^{203}$ Pres.
sure Tweet er, Printed cir.


BSSC. MAINS TRANSFORMERS



 For Mullard 510 Ampliter. $0 . . . . . . \%$.

 TOP SHROUDED DEOP-THROUGH. TTPI




 FILAMENT or TRAABIITOTOR POWER PACK


 OUTPUT TEANSYOREERS
 Puab-Pull 10 wala ove ECL86 to 3, 5 ,
 Puibh-Pull $15-18$ watts, sectionally wound

 (1) anding performance with Hi-Fi 66.75
 FAME 807T MIGH FIDELITY SPEAKER 8 8 10 WATT
 Roll P.V.C. cone burround and lorg
throw roice coil toanher very lor
tundamental resonance of 30 Ior Treeter cone re extance or high nig.
Tote



 WW-111 FOR FURTHER DETAILS
 PHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office sid. On/Off switch. Volume control. Operates on one $9 v$ battery. Size 3in. $\times 4 i n$. Ready to operate. Complete with battery. $\mathbf{P} \& \mathbf{P} 25 \mathrm{p}$

This NEW, versatile De Luxe 4(1 Mastor and 3 subs) for deak or (1 Mastl mounting can solve your communication problems instantly. Effeotive range 300 ft . Call/talk/listen from Master to Subs and Subs to Mastor. With Selector switch. Ideally sultable for office, shop, home or surgery. Adaptable for Mains. Complete with three 66ft. connecting wires and accessories. On/Off switch voium
control. P. \&P. 44 p .

WEST LONDON DIRECT SUPPLIES
160 KENSINGTON HIGH STREET, LONDON WB BSN

MATSUNAGA VARIABLE VOLTAGE TRANSFORMERS INPUT 230 v. A.C. 50/60 OUTPUT YARIABLE 0/260 v. A.C. BRAND NEW. All types
50 0-260 v. at I amp. (Post 50p) 47.00 $\mathbf{0 - 2 6 0 ~ v . ~ a t ~} \mathbf{2 . 5}$ amps (Post 60p) $\mathbf{£ 8 . 0 5}$ $0-260$ v. at 5 amps (Post 75p) 611.75 $\mathbf{0 - 2 6 0}$ v. at 10 amps. . . . . . . $\mathbf{£ 2 2 . 5 0}$ $0-260$ v. at 15 amps. . . . . . . . $625 \cdot 00$ $0-260$ v. at 20 amps . . . . . . . . 649.00 $0-260$ v. at 37.5 amps . . . . . . 682.00 Special discount for quantity
OPEN TYPE (Panel Mounting)
1 amp E7.00. Post 50p. $2 \frac{1}{2} \mathrm{amp}$ 68.05. Post 60p.

## STBOBE! STRDBE! STRDBE!

$*$
$*$
+1
FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERING CIRCUITS, PROVISION FOR $+\dot{\text { P }}$
TERNAL TRIGGERING. $230-250 \mathrm{v}$. A.C. OPERATIONEXPERIMENTERS "ECONOMY" KIT Adjustable 1 to 30 Flash per sec. All electronic comPost 30p
mew industrial kit
Ideally suitable for schools, laboralorles etc. Roller tin printed circult. Adjustable $1-80$ f.p.s., approx. $\frac{1}{6}$ hy-light Strobe Deslgned for use in large rooms, hal's and utilizes a silica tube, printed circuit. Speed adjustable 1-20 f.p.s. strobes. Price $£ 12 \cdot 00$. Post 50 p .
'SUPER' HY-LIGHT KIT
Approx. ${ }^{4}$ times the llght output of our well proven Rariable speed from $1-13$ flash per sec. attractive, robust, fully ventilated * METAL CASE for the Super Hy-Lyght Kit including
reflector. $\& 7.00$, Post 60 p . FOR HY-LYGHT STROBE incl. reflector, £4.75. T-INCH POLISHED REFLECTOR. Ideally suited for above Strobe Kits. Price 55p. Post $15 p$.

RAINBOW STROBE FOUR LIGHT CONTROL
MODULE
MANT CONTROL
Strobes In elther $1,2,3,4$ sequence; $2+$ ior all tog-Lyght Thoroughly tested and reliable. Complete with fuli $k$ connection instructions. Prica: $£ 18.00$. Post 50 p . Send + COLOUR WHEEL PROJECTOR Complete with oil filled colour wheel. 100 watt lamp. 200/240V AC. Features ex tremely efficient optica
system. $£ 18 \cdot 50$. Post 50 p. GINCH COLOURWHEEL As used forDiscolighting e


## ELECTRONIC ORGAN KIT



Easy to build. solid state two fuli octaves (less
sharps and flats). Fitted hardwood case, powered
by two pentite $1 \pm \frac{1}{2} v$. batteries, Complete set ol

## 50 in 1 ELECRONCPROJECT KTT

 50 easy to build Projects. No soldering, no special tooisrequired. The Kit includes Speaker. meter, Relay, required. The Kit includes Speaker. meter, Relay,
Transformer, plus a host of other components and a $56-1$ Transformer, plus a host of other components and a Projects are: Sound level Meter, 2 Transistor Radio Amplifier etc. etc. Price $£ 8.80$
HONEYWELL PROGRAMME TIMERS
200V. A.C. 5 r.p.m. motor. Each cam
operating a c/o micro swith. Cams

inumerable
suited for
mation etc
entertainme
animated
 IMPLE CAM. PROGRA and 8 that may be profiled to
24 HOUR TIMER
Can be adjusted to give a switching delay
of between thr, to 24 hrs. Driven by $200 /$ 250 v . A.C. synchronous motor. 15 amp supplied with scale calibrated hours per division) Brand new. \& 1.75

## 'HONEYWELL' LEVER

 OPERATED MICROSWITCH 15 amps 250 volt A.C. clo contacts.NEW in maker's carton. Price 10 for


INSULATED TERMINALS Available in black, red, white, yollow, blue and green. Now
10p each. incl. P. \& P. Minimum 10p each.
order 6.
METER BARGAIN
BALANCE/LEVEL METERS



## ex

AMMETERS NEW! 2毒n. FLUSH ROUND available as D.C. Amps $1,5,15,20$ or A.C.
$1,5,10,15,20$. Both types $£ 185$. Post 15 p . $0-300 \mathrm{~V}$. A.C. $£ 2 \cdot 00$. Post 15 p .

## 르뇨 SIEMENS PLESSEY

 (1) Coll ohms; (2) Working d.c. voits; (3) Contacts; (4)
Price HD $=$ Heavy Duty. All Post Paid. ("including Base) $\overline{12}$ VOLT D.C. RELAY
Type 1: Three sets cio contact
(SImllar to lliustration below.
Type 2: 4-8 volt 3 (oll bew.)
SPECIAL OFFER.
700 ohm. ${ }^{4}$ c/o Ex. new equipment. $£ 50-00$ per 100 incl.
bases (minimum 100).
230 VOLT
Threed
Three sets c/o contacts rated at 5 amps
24 volt A.C. 3 c/o 55p. Post 5p
230 VOLT A.C. RELAYS
One set c/o contacts rated at 7.5 amps . Boxed. Price 50p
MINIATURE RELAYS

30,36 V. D.C. operation. 2 c/0 500 M.A. c
coll. Size only $i x+\frac{1}{2} \times \frac{12}{12}$ in. 40 p . Post 5 p .
MINIATURE LATCHING RELAY
Mig. by Clare-Ellott Lid. (Type F) 2 elo permanent latching
in elther direction. Coll $1150 \mathrm{ohm} .15-30 \mathrm{y}$. D.C. New 65 g .
INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged meta
struction, suitable for bench or work, constant speed clutch. Size iL fif 8 in.,
W. 4 in., H. 6 in ., weight 6 ib W. ${ }^{4}$ In. H. 68 in.. weight 6 lb.
500 VOLTS, 500 megohms $£ 28.00$. Post 1,000 VOLTS, 1,000 megohms $£ 34 \cdot 00$
Post 60 p .
 2


BLOWER UNIT $200-240$ VoIt A.C. BLOWER UNIT Precision
batanced,
quilet,
contin


230V FAN ASSEMBLY Continuously rated, specizl ssaled baring,
removable aluminium blades. Price 80p. Post 20p.


BODINE TYPE N.C.I.

## GEARED MOTOR

(Type J) 71 r.p.m. torque 10 lb . in.
Reveralble $1 / 70 \mathrm{th}$ h.p. cycle 38 Reverslble 1/70th h.p. cycle -38
amp. (Type 2) 2 E r.p.m. torque 20 Ib. In Reversible $1 / 80$ th h.p. 50 cycle 28 amp The above two precision made U.S.A. motors are 'as new' condition. Input valtage of motor 115 V A.C. Supplied complete with transformer for $230 / 240 \mathrm{~V}$ A.C. Input.
Price, either type EA 4.8 or less transformer $£ 2.75$. These motors are ldeal for rotating aerials, drawing curtains,
display stands, vending machines, etc, etc. PARVALUX TYPE SD2. $200 / 250$ VOLT A.C. D.C. HIGH SPEED MOTOR Speed 9,000 r.p.m. approx. or 3,200 r.p.m. If used
with built-in governor, or variable speed over a wide range ift used in conjunction wlth our
Dimmer Swlich, illustrated beiow. PRICE:
£ $\$ .75$. Post $35 p$.

600 WATT DIMMER SWITCH
Easily fitted. Fulty guaranteed by makers. Will
control up to 600 watts of all lights except fluorescent at mains voltage. Complete with simple instructions. $£ 2$.75. Post 25 p.


Regd. Office: 45a HIGH STREET, ORPINGTON, KENT. (Telex No. 965265)
Poat Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) Post Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679)
Or 67 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: 01-688 1512

PLESSEY GROUND BASED U.H.F. GROUND/AIR TX/RX
FOR EXPORT ONLY ORE SALE TO LICENSED USERS.
FOR EXPORT ONLY OR SALE TO LICENSED USERS
This equipment comprises: This equipment comprises:
Single Channel Transmitter 580-20-99-932-569.
Single Channel Amplifier 5820-9-9-932-5701.
Power Unit for Amplifier 5820
Cooler Unit 5820-93-932-3995.
These assemble into a tree standing rack unit providing U.H.F.
 giving 100 Watts R.F. output into 50 Ohms. We have sufficient of these units to form 12 complete installations with a number
of spare sub-units. All are guaranteed new and unused. Ful. of spare sub-units.
details on request.

## GAS CHROMATOGRAPHY RESEARCH OVEN

PV4051/4056
A large capacity oven of low thermai mass for use between 35 and $350^{\circ} \mathrm{C}$. Provides a forced air circulating system yielding
1000 changes of air per min. The oven has forced air cooled 1000 changes of air per min. The oven has torced air cooled
outer surfaces when the Internal temperature is high. $240-250 \mathrm{~V}$, outer surfaces when the Internal temperature is high
$50 \mathrm{~Hz} .2 \cdot 6 \mathrm{KW}, £ 28 \cdot 60$. (C.Pd. England and Wales).
GAS CHROMATOGRAPHY OVEN/ANALYSER UNIT P4050/4055
A somewhat smaller unit than the prevlous item for use between
35 and $500^{\circ} \mathrm{C} .600$ changes per min. with cooled outer surface nternal dimensions $20 \mathrm{~cm} \times 18 \mathrm{~cm}$ high $\times 20 \mathrm{~cm}$ deep. Max heating rate $50-400^{\circ} \mathrm{C}$ in 6 mins. Max. cooling rate $400^{\circ} \mathrm{C}$ to
$100^{\circ} \mathrm{C}$ in 4 mins . $210-250 \mathrm{~V}$, $50 \mathrm{~Hz}, 2.6 \mathrm{~kW}$, $£ 22.00$. (C.Pd. England and Wales).
Details of these three and other gas chromatography items are
available-price 25 p (C.W.O. only) retundable on making first
ONISATION AMPLIFIER PV4075
A modern high grade low noise solid state amplifier to feed a potentiometric recorder. 18 Input ranges from $10^{-1}$ it $5 \times 10^{-7} \mathrm{~A}$
with 5 outputs of 1 mV to 100 mV . Linearity $0-1 \%$ is. Noise less
 $28 \times 10 \times 43 \mathrm{~cm}$ deep. With operating information $£ 27.50$.
${ }^{28}$ (Cd.U.K.)

## DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1 \cdot I^{\prime \prime}$ ) Diameter 0.1.4" to switch up to 500 mA at up to $250 v$ D.C. Gold clad contacts, 69p per doz.; 64.12 per 100; $\mathbf{6 3 0 . 2 5}$ per 1,000; £275 per 10,000 . All carriage paid U.K. Heavy duty type (body length $2^{\prime \prime}$ ) diameter $0.22^{\prime \prime}$ to switch up to 1A. at up to 250 V A.C. Gold clad contacts, El .37 per doz.; $\mathbf{6 6 . 8 8}$ per 100 ; $£ 52.25$ per 1,000 ; $£ 495$ per 10,000. Changeover type $\mathbf{6 2} 75$ per doz. All carriage paid U.K.
Operating Magnets 61 p per doz. ; $64 \cdot 40$ per 100; $\mathbf{2 3 8} \cdot 50$ per 1000. All carriage paid.


PRECISION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{v}$. to 15 v : 60 db to 20 db . 9 ranges. Excellent condition. £22-50. P.P. £1-50.
HIGH CAPACITY ELECTROLYTICS
$2,200 \mu \mathrm{f} .100 \mathrm{v}$. ( $1 \frac{1}{\mathrm{t}} \times 4 \mathrm{in}$.) $60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v}$. ( $1 \frac{1}{4} \times 4 \mathrm{in}$.) $60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}$. ( $1 \frac{1}{4} \times 4 \frac{1}{2} \mathrm{in}$.) 60 p . $10,000 \mu \mathrm{f}$. 100 v . $\left(2 \frac{1}{\frac{1}{2}} \times 4 \frac{1}{2} \mathrm{in}.\right)$ £1. $12,000 \mu \mathrm{f} .40 \mathrm{v} .(2 \times 4 \mathrm{in}) 75 \mathrm{p} .16,.000 \mu \mathrm{f}$.
$16 \mathrm{v} .(2 \times 4 \mathrm{in}) 60 \mathrm{p} .21,000 \mu \mathrm{f} .40 \mathrm{v} .\left(2 \frac{1}{2} \times 4 \mathrm{in}.\right) £ 1$. Post and 16 v . $(2 \times 4 \mathrm{in}) 60 \mathrm{p} .21,000 \mu \mathrm{f}$. 40 v . ( $2 \frac{1}{2} \times 4 \mathrm{in}$.) £1. Post and
packing 5 p . packing 5 p.
MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank,
12 position, non-bridging wipers. $\mathbf{E 4 . 2 5}$ ea. Brand new. Complete with base.
CD. 1220 OSCILLOSCOPE, with dualtrace Plug-in. (CX1257) DC-24MHZ. £ 125 .
Wide band Plug-in (CX1256) DC-40MHZ, £25.
SOLARTRON OSCILLATOR (CO546) $25 \mathrm{~Hz}-500 \mathrm{KHz} \quad £ 50$. OVERLOAD CUT.OUTS. Panel mounting ( $1 \frac{2}{4} \times 1 \frac{1}{1} \times \frac{1}{2} \mathrm{in}$.) BULK COMPONENT OFFER Resis
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces £.2. (Trial ordet 100pcs. 50p.) We are confident
TWIN STABILISED POWER SUPPLIES (A.P.T.) +80 V . ©
U.K. ORDERS 10\% V.A.T. SURCHARGE


## TRANSFORMERS

L.T. TranSformer. Prim. 240v. Sec. 24v. 13 amp. el 250 WATT ISOLATION TRANSFORMER. 240 V , double wound. E. H. TRANSFORMER
 E.H.T. TRANSFORMER. Prim. 240v. Sec. 1800v. 50 mA L.T. TRANSFORMER. (Shrouded) Prim. 200/250V Sec. $20 / 40 / 60 \mathrm{v} .2 \mathrm{amp}$. E 2 ea. P.P. 40 p. L.T. TRANSFORMER (CONSTANT VOLTAGE). Prim. 200/240v. Sec. 1. 50 v . at 2 amp . Sec. 2. 50 v . a $100 \mathrm{~m} / \mathrm{a}$ f.3. P.P. 50 p.
 20v.@5 amp.:15v.a 1.5 amp : 7v. @ 2.5 amp £3. P.P. 50p.
L.T. TRANSFORMER. Prim. 220/240v. Sec. 13 v . L.T. TRANSFORME
1.5 amp. 65 p. P.P. $15 p$.
L.T. TRANSFORMER. Prim. $115 / 240 \mathrm{v}$. Sec. 10.5 v at 1 amp. c.t $28-0-28 \mathrm{~g}$. at 2 amp. shrouded type. $\mathbf{~} 2 \mathrm{v}$ at 1 amp
P.P. 40p
2500 watt. ISOLATION TRANSFORMER (CON STANT VOLTAGE). Prim. $190-260 \mathrm{v} .50 \mathrm{~Hz}$. Sec STANT VOLTAGE). Prim. 190-
230 v . at 10.9 amps f. 30 . Carr. £2.
H.D.STEP-DOWN TRANSFORMER. Prim. 200/240V Sec. 117 v at 19.8 amps. $(2,300$ watt). £ 22.50 . Carr. E2 H.T. TRANSFORMERS. Prim. 200/240v. Sec H.T. TRANSFORMERS. Prim. $200 / 240 \mathrm{v}$. Sec
$300-0.300 \mathrm{v} . ~$
$80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. c.t. 2 amp. £. 150 P.P. 40 p .
 STEP-DOWN TRANSFORMERS: Prim. 22/240v (with filters) £10. P.P. E1. 500w. (metal cased with socket output) and overload protection. £6.50. AUTO-WOUND. 75 W . £1. P.P. 25p. 300W. £1.50. P.P. 50p 750W. E6. P.P.£1.
L.T. TRANSFORMER. Prim. $110 / 240 v$. Sec. $0 / 24 / 40 \mathrm{v}$. 1.5A. (Shrouded type). £1-50. P.P. 25p.

HT/LT TRANSFORMER Prim. 240v. (tapped) Sec. 1
$500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a} . ~ S e c .2 .21 \mathrm{v} .5$ amp. $£ 2.75$ P.P. 50 p .

AUTOMATIC VOLTAGE STABILISER. (Claude Lyons) Input: $190-260 \mathrm{v}$. Output 240 v . $\pm 15 \%$. $12 \cdot 4$

PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1.18 .5 pf . to 1,220pf $£ 10$ each Type 2, 9.5 pf. to 11.5 pf . $\mathbf{\text { f }} 8$ each MULTICORE CABLE (P.V.C.).
6 core ( 6 colours) 3 screened, $14 / 0048.15 \mathrm{p}$. yd. 100 yds . £12.50.
24 core ( 24 colours) 20p. yd. 100 yds. £17.50. 30 core ( 15 colours) $22 \frac{1 \mathrm{p}}{} \mathbf{y}$ yd. 100 yds . .18 .50 34 core ( 17 colours) 25 p. yd. $100 \mathrm{yds} . £ 20$.
Minimum order 10 vas.
TELEPHONE DIALS (New) £1 ea. RElays (G.P.O. '3000'). All types. Brand new from $37 \frac{1}{2}$ p ea. 10 up quotations onty.
EXTENSION TELEPHONES (Type 706) EXTENSION TELEP
New/Boxed. £5. SOp.
RATCHET RELAYS. ( 310 ohm ) Various Types 85p. P.P $5 p$.
UNISELECTORS
UNISELECTORS (Brand new) 25-way
75 ohm. 8 bank $\frac{f}{2}$ wipe £.3-25. 10 bank
$\frac{t}{2}$ wipe $\mathbf{f 3} \mathbf{3} 75$. Other types from $\mathbf{£ 2 . 2 5}$.


BLOWER FANS (Snail type) TYpe 1 : Housing dia. $3 \frac{1}{2} \mathrm{in}$. Air outlet $1 \frac{1}{4} \times 1$ in. £2.25. P.P. 25p. Type 2 : Housing dia
6 in. Air outlet $2 \frac{1}{3} \times 2 \frac{\frac{1}{2}}{2}$ in. E4. P.P. 50p. Both types $115 /$ 6 in. Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2}$ in. £4. P.P. 50p. Both types $115 /$
240 v . A.C (brand new). PAPST TAPE" MOTORS.
PAPST TAPE' MOTORS. (LZ. 20.50) New Boxed. £2. P.P.
25p. 25p.

## RELAYS

SIEMENS/VARLEY PLUGIN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35 p ea : 6 make types in stock.
12 VOLT H.D. RELAYS $(3 \times 2 \times 1$ in.) with 10 amp. silve contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P.
24 VOLT H.D. RELAYS ( $2 \times 2 \times \frac{3}{4} \mathrm{in}$.) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5p
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp ontacts. 75 p (with base). P.P. 5p
SUB-MINIATURE REED RELAYS ( $1 \mathrm{in} . x \frac{1}{4} \mathrm{in}$ ) ' N . oz. Mak 3/12v. 40p. ea
SILICON BRIDGES. 100 P.I.V. 1 amp. ( $3 \times 1 \mathrm{in}$.) 30p.
VOIT A C RELAYS
3 Pole Change-over 60 p.

## PATTRICK \& KINNIE

I9I LONDON ROAD - ROMFORD - ESSEX ROMFORD 44473

RM7 9DD


INSTRUMENT 3 in Colvern 5 ohm 35p ea 50 k and 100k 50p ea.

BOURNS TRIMPOT POTENTIOMETERS 10; 20; 50: 100; 200; 500 ohms; 1; 2; 2.5; 5; 10.
25K at 35p ea. ALL BRAND NEW.

RELIANCE P.C.B. mounting: 270; 470
500 ohms; 10 K at 35 p ea. ALL BRAND NEW.
ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K}$; $998 \mathrm{~K} ; 1 \mathrm{meg}-0.1 \% 27 \mathrm{p}$ ea.: $3.25 \mathrm{k} .5 \cdot 6 \mathrm{k}, 13 \mathrm{k}$ -

## MULLARD

 ELECTROLYTICS2200MFD 100 V 10A ( $50^{\circ} \mathrm{C}$ ) BRAND NEW BOXED 70p each 10 off- 60 p each 100 off - 45p each

## RELAYS

S.T.C. Sealed 2 pole c/o 700 ohms (24V) 15p ea. 2,500 ohm (okay 24 V ) 13p ea. 6800 ohm
coil 15 p each.

POTTER \& BRUMFIELD $24 V$ 4 pole c/o min relays. Clear Plastic. Brand New. 50p ea.
P. \& P. 10p. Varley VP4 Plastic covers 4 pole clo $5 K-$ 30 p ea. $15 \mathrm{~K}-33 \mathrm{p}$ ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coit as new 37 p each. 14 ohm

TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard
240 V AC to $55-0.55 \mathrm{~V} 300 \mathrm{~W}$, £3 ea. P. \& P. 35p. Neptune Series. Multi $6 \cdot 3$ volts to give 48 V at 3.5 amps etc. $£ 3.50 \mathrm{incl}$. P. \&.P. Large quantly LT, HT, EHT transformers and chokes.

3 TUALITY ALL BRAND NEW HIGH
(1) $3 \vee 9$ amp, 6 V 9 amp, 12 V 9 amp . Size $3 \frac{1}{2} x$ $4 \times 5 \frac{1}{2} \mathrm{in}$. $£ 2$ each. Packing and postage
2) As above but 5.4 amp . Size $3 \frac{3}{4} \times 3 \frac{3}{2} \times 4 \frac{1}{2} \mathrm{in}$. £1 50 each. Packing and postage 37 p .

(3) | 3 V 1.8 amp |
| :--- |
| Size $3 \times 3 \mathrm{~V}$ |
| 1.8 amp, | and postage 37p.

All above 3 types also have $0-17 V \frac{1}{4}$ amp and
$17-0-17 \frac{4}{6}$ amp. All windings are separate.
COLVERN TEN TURN POTS, ex eq. 100 K at 60 p each. Complete with dial $£ 150$ each.
P. \& 15 p . CAPACITOR PACK 50 Brand new components only 50p. P. \& P. 17p

POTS 10 different values. Brand new. 50p.
COMPONENT PACK consisting of 5 pots various values, 250 resistors $\frac{1}{4}$ and $\frac{1}{w}$ watt
etc., many high stabs. All brand new. Fine etc, many high stabs. All brand
value at 50 p per pack. P. \& P. 17 p .

## DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards, etc. No Rubbish. FOR ONLY $£ 3.50$. N. Neland

 extra.LOOSE LEAF BUNDERS: Blue plastic cover, 4 sing. Standard s
35p. 25 for $\mathbf{£ 5}$. Carr. $\mathbf{~} 1$.
P.C.B. PACK S \& D. Quantity 2 sq. ft.-no
tiny pleces 50 p plus P. \& P 20 . tiny pleces. 50p plus P. \& P. 20p.
FIBRE GLASS as above \& 1 plus P. \& P. 20p 5 CRYSTALS 70 to 90 kHz . Our choice, 25 p
P. \& P. 15 p . MOTOR, min. synchronous, size $1 \frac{3}{2} \times 2 \times$ $6 \mathrm{in} ., 240 \mathrm{~V}$ Operation $3.6 \mathrm{rpm}, 25 \mathrm{p}$ each. P . \& $\mathrm{P}, ~$

TRIMMER PACK, 2 Twin 50/200 pt ceramic 2 Twin $10 / 60$ pf ceramic: 2 mir strips with
preset $5 / 20$ of on each; 3 air spaced prese preset $5 / 20$ pf on each; 3 air spaced preset
$30 / 100$ pf on ceramic base. ALL BRAND NEW 25 p the LOT. P. \& P. 10 p.

GRATICULES. 12 cm . by 14 cm . in High
Quality plastic. 15 p each. $\mathrm{P} . \& \mathrm{P} .5 \mathrm{p}$.
PANEL mounting lamp holders. Red or green PANEL mounting lamp holders. Red or green
$9 p$ ea. Miniature. PANEL mounting lamp with holders- 10 V 15 MA 5 p ea.

BECKMAN MODEL A. Ten turn po complete with dial. $100 \mathrm{k} 3 \%$ Tol $0.25 \%$ -
only $£ 2.13$ ea.

## FIBRE GLASS PRINTED CIRCUIT

 BOARD. Brand new. Single sided up to $2 \frac{1_{1}}{1}$ wide $\times 15^{\prime \prime} \frac{1}{2} p$ per sq. in, Larger pieces $1 p$persq. in. Deuble sided. Any size ip per sa. in. Postage 10 p per order.
INTEGRATED CIRCUIT test clip by AP inc INTEGRATED CIRCUIT test clip by AP inc.
Gold Plated clip-on. Brand New individually
boxed. $£ 1.00$ ea. P. \& P. 10p.

DECADE DIAL UP SWITCH-5 DIGIT Complete with escutheon. Black with white figures. Size 4 in. long $\times 1 \mathrm{in}$. high $\times{ }^{132 \mathrm{in}}$.
deep. Ex-Plessey. \&1.40 each. P , P . 15 .


FIVE moving coll meters £2 P. \& P. 37D
VISCONOL EHT CAPACITORS

| 0.05 mid | 2.5 kV | 50p ea. |
| :---: | :---: | :---: |
| 0.01 mfd | 5 kV | 40 pea . |
| 0.001 mifd | 10 kV | a. |
|  | $\times 6$ |  |
| 0.05 mfd | 8 kV | 50 p ea. |
|  | 1 $\times 5 \frac{1}{2}$ |  |
| 0.01 mfd | 10 kV |  |
| 0.002 mid | 15 kV | 65p ea. |
| 0.0005 mid | 20 kV | 60 pea . |
| 0.1 mld | 4 kV | 35p ea. |

DUBILIER $0.9 \mathrm{mfd} 5 \mathrm{KV}: 0.1 \mathrm{mfd} 7.5 \mathrm{KV}$ :
$0.25 \mathrm{mfd} 7.5 \mathrm{KV}: 0.5 \mathrm{mfd} 5 \mathrm{KV}$ all at 50 p ea. 0.25 mfd 7.5 KV ; 0.5 mfd 5 KV all at 50 p ea.
P \& $\&$. 15 p . PHOTOCELL equivalent OCP 71. 13p ea. Photo-1
for 50 p.
MULLARD OCP70 10p each

## 20 HZ to 200 KHZ SINE AND SQUARE WAVE GENERATOR

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £5•50. P. \& P. 25p
STILL AVAILABLE our 20 MHZ version at $£ \mathbf{£} \mathbf{9 2 5}$. P. \& P. 25p.

## TRANSISTOR INVERTER

12 V to 1.5 KV 2 MA . Size $1 \frac{1}{2} \times 2 \frac{1}{2} \times 4 \mathrm{in}$. Multi tapped secondary and output level control makes possible large range of voltage and current output combinations
 P. \& P. 25p.

## NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GMZ ) up to 15 MHZ sweep width Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 5} \mathbf{7 5}$. P. \& P. 25p. Suitable miniature transformer for 240 Volt operation $£ 1 \cdot 25$.

Unless stated-please add f 1.50 carriage to all units.
VALUE ADDED TAX not included in prices-please add 10\%
Official Orders Weicomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916


DAVEISET ISOLATION TRANSFORMERS Pri. $10-0-200-220-240 \mathrm{~V}$. See. 240 V . Centre tapped 1.2 kva .
Conservatively rated. Size $8 \frac{1}{2} \times 7 \times 8 \frac{1}{2} \mathrm{ins}$. Wgt. 59 lbs . Open frame type, terminal connections. Fraction of maker's price. frame type,
$£ 17.00$ cafr, $£ 100$.

STEP DOWN $240 / 110 \mathrm{v}$, AUTO TRANSFORMERS FOR
AMERICAN EQUIPMENT, Fitted with 2 or 3 pin American AMERICAN EQUIPMENT. Fitted with 2 or 3 pin American
sockets. All sizes from 80 to $2 \frac{1}{k} k v a$, available. Send s.a.e. for list. American sockets, plugs, adaptors also available.

## T.E.C. HEAVY DUTY ISOLATION TRANSFORMERS Pri. 240 v . Sec. 150 $£ 22.50$ carr. $£ 2.00$

RICH AND BUNDY. Pri. $220-230-240-250 \mathrm{v}$. Sec. $265-270-$
275 v . 1400 watts. Conservatively rated. Size $8 \times 8 \times 7$ ins.
Terminal block connections. f17.00 carr. £ 1.00 . Terminal block connections. $£ 17.00$ carr. $£ 100$.

H.T. SMOOTHING CHOKES

Parmeko potted types. 5 h . $500 \mathrm{~m} / \mathrm{a}$. £3.00 carr. $50 \mathrm{p} .10 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a}$.
$£ 2.00$ carr. 30 p . $10 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}$. $£ 1.50$ carr. 30 p . $15 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a} . ~ £ 2.00$ e2.00 carr. 30 p . 10 h . $180 \mathrm{~m} / \mathrm{a}$. $£ 1.50$ carr. 30 p . 15 h . $180 \mathrm{~m} / \mathrm{a}$. £2.00
 50p carr. 20p.

PARMEKO ISOLATION TRANSFORMERS
Pri, tapped, 100-110-203-220-230-240-250v. Sec. 115v. 13.5 amps. Conservatlvely rated, ins. $£ 32.50 \mathrm{carr}$. $£ 2.00$. Pri. tapped $200-210-220-230-240-250 \mathrm{v}$. Sec. tapped $90-100-110-120 \mathrm{v}$. 7.5 amps. Conservatively rated table top connections. Size

ADVANCED COMPONENTS CONSTANT VOLTAGE Input 190-260v. Output 230 v . 150 watts. Type $140 \mathrm{~A} £ 7.00$ cair. 75p. Output 28 v . 8 amps open wrame type $£ 4.50$ carr. 75 p . Output 4v. 3 watts 75p carr. 25p. Output 240 V . 30 watts en-
1.50 carr. 35 p.

SMITHS 12v. D.C. VEHICLE HEATER MOTORS £1 carr. 25 p . With $6 \frac{1}{2}$ In. fan $£ 1 \cdot 25$ carf. 25 p . As above with twin turbo fans $\AA 1 \cdot 50$ carr. 35 p.

CRESSALL TORVOLT VARIABLE
Input 115v. Qutput 0-135v, 1.25 amp. Complete with calibrated dial and control knob. Size $2 \frac{1}{2} \times 3 \frac{1}{2}$ ins. dia. $£ 3 \cdot 00$ caff. 25 p.

VAT PLEASE ADD 10\% TO ALL ORDERS.
C. CARR./PACKING.

## WE HAVE OVER 3,000 SURPLUS HT AND LT TRANSFORMERS IN STOCK. ALSO A LARGE TRANSFORMERS IN STOCK. ALSO A LARGE SELECTIONOF HT AND LT CHOKES. FRACTION OF MAKER'S PRICE. LET US KNOW YOUR SELECTION OF RT AND LT CHOKES. FRACTON REQUIREMENTS.

AMOS 'C' L.T. TRANSFORMERS

WODEN Primaries $220-240 \mathrm{v}$. Sec. 10v. 2a. fully shrouded $£ 1.25$ Tp. 25p. Sec. Tapped 6 -12v. 2a. fully shrouded $£ 1,50 \mathrm{pp}$. 25 p . 15v. 2 a TWICE OPEN FRAME TYPE. $£ 1,75 \mathrm{pp} .30 \mathrm{p}$.

## SPECIAL OFFER OF MULTI TAPPED L.T. NSFORMERS VERY CONSERVATIVELY RATED



 Pri. 200-220-240v. Sec. 20-21-22-23-24-25v. 6a-, 20-21-22-23-24-25v


## PARMEKO H.T. TRANSFORMERS NEPTUNE POTTED TYPE






## RELAYS

Omron 24 v . A.C. or 12 v . D.C. 27 A CO contacts. Size $1 \frac{1}{} \times 1 \frac{1}{} \times 1 \mathrm{in}$.
 in . S. hole fixing. 35 p . Postage 5 p .
Keyswitch 240 y . A.C. 17 A CO contact. Size $2 \times 1 \times 1$ ins. S . hole
 fixing. 60p. Postage 5p. 5 a co contacts. Slze $21 \times 1 \frac{14}{} \times 1$ ins. Robinsons. 240 v . A.C. 25 A CO contacts. SIze $21 \times 11 \times 1 \frac{1}{2}$ ins.
S . hole fixing. 50 p . Postage 5 p . Special terms for aty. of 25 .

# WEYRAD 

## COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS
P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-päss capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

## OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.
WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

Wholesale/Retail:

Special Offer! ! !-From Stock-New-Boxed-AND 60\% Discount! MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. \& Working Voltage Vdc. \& \[
\begin{gathered}
\text { Capacitance } \\
\mu F
\end{gathered}
\] \& Max. Ripple
Current at \(50^{\circ} \mathrm{C}\) \& Weight \& Price \\
\hline 07114472 \& 10 \& 4700 \& 2.5 amps \& 102 \& \(15 p\) \\
\hline 07114688 \& 10 \& 6830 \& 4 amps \& 102 \& 17 p \\
\hline 07115472 \& 16 \& 3300
4700 \& \({ }_{3.9}^{2.4} \mathrm{amps}\) \& 102 \& \({ }^{175}\) \\
\hline 07115682 \& 16 \& 6800 \& \({ }_{5} \cdot 8.8 \mathrm{amps}\) \& 10\% \& 12 p \\
\hline 07115103 \& 16 \& 10000 \& 7.9 amps \& \(2 \% 02\) \& \({ }_{27}{ }^{27}\) \\
\hline 07118222 \& 63 \& 2200 \& 5.8 amps \& 3 Oz \& 30 p \\
\hline 07214113 \& \({ }^{10}\) \& \(11000+11000\) \& 10.6 amps \& 302 \& 37p \\
\hline \(0^{072} 14173\) \& 10 \& \(16500+16500\) \& 13.4 amps \& 402 \& 49p \\
\hline 07215752 \& 16 \& \(7500+7500\) \& 10.5 amps \& 302 \& 37 p \\
\hline 07215113 \& \(\begin{array}{r}16 \\ \hline 25\end{array}\) \& \(11000+11000\) \& 13.8 amps \& \(4{ }^{\text {4ioz }}\) \& 49 p \\
\hline 07216502 \& 25 \& \(5000+5000\) \& \({ }_{9.6}^{2.6 \mathrm{amps}}\) \& \({ }^{\text {coin }}\) \& 37p \\
\hline 07216752 \& 25 \& \(7500+7500\) \& 12.6 amps \& \(4{ }^{\text {4ioz }}\) \& \({ }_{49}\) \\
\hline 07217342 \& 40 \& \(3400+3400\) \& 9.1 amps \& \(3^{3} \mathrm{oz}\) \& 37 p \\
\hline -072 175502 \& \({ }^{40}\) \& \(5000+5000\) \& 12.0 amps \& 4102 \& 49p \\
\hline -071 188881 \& \({ }_{63}^{63}\) \& \& \({ }^{2} .19 \mathrm{amps}\) \& \& \({ }^{15 p}\) \\
\hline 07218172 \& 63 \& \(1650+1650\) \& 7.8 amps . \& 302 \& 37 p \\
\hline \multicolumn{6}{|l|}{106 and 107 Series} \\
\hline 1061453 \& 10 \& 15000 \& 7 amps \& 402 \& 57p \\
\hline - 1061515238 \& \begin{tabular}{l}
16 \\
\hline 25 \\
25
\end{tabular} \& 10000

2000 \& 7 amps \& $22^{2} 02$ \& 65p <br>
\hline 10617703 \& ${ }_{40}^{25}$ \& ${ }^{20000}$ \& 17 amps \& 1002 \&  <br>
\hline 10618153 \& $6^{63}$ \& 15000 \& \& 1802 \& £1.79 <br>
\hline 10710222 \& 100 \& 2200 \& 10 amps \& 5 \& 74 p <br>
\hline Type No. \& Voltage \& Capacitance \& Weight \& \& Price <br>
\hline 10215163 \& 16 \& 16000 \& \& \& ${ }^{20}$ <br>
\hline 10490003 \& 20 \& 39000 \& 1602 \& \& 30 p <br>
\hline 10216802

10417562 \& 25
40 \& 8000
560 \& 702 \& \& ${ }^{25 p}$ <br>
\hline 10490001 \& 45 \& 20000 \& ${ }^{5602}$ \& \& ${ }^{250}$ <br>
\hline
\end{tabular}



SMALL ELECTROLYTICS

| Ret. No <br> H8/ | $\underset{\substack{\text { Capacity } \\ 1 \mu}}{\substack{\text { 2 } \\ \text {. }}}$ | Voltage $150{ }^{2}$ | $\underset{\substack{\text { Price }}}{\substack{\text { Pr }}}$ | Ref. No. H7/4A | Capacity 80ut | $\begin{gathered} \text { Voltage } \\ 355 \\ 166 \end{gathered}$ | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H8/2 | 2.24 f | 25 v | 4 p | H776 | 1004f | 25v | 5 |
| ${ }_{4}^{48 / 24}$ | ${ }_{\text {3 }}^{3.3 \mu \mathrm{f}}$ | 25v $50 v$ | ${ }_{40}^{4 p}$ | H776A | 1004 l <br> 1004 | ¢ | ${ }_{40}$ |
| H813A | 4ıf | 50v | ${ }_{40}$ | H778 | ${ }_{\text {125 }}$ | - | ${ }_{50}$ |
| H8/4 | 4.7uf | $25 v$ | 48 | H7/8A | 100ut | 35v | ${ }_{6 p}$ |
| H8/4A | 54if | 649 | ${ }^{4}$ | H779 | 10044 | 63 V | ${ }_{60}$ |
| ${ }_{\text {H }}^{4815}$ | ${ }_{\text {che }}^{\text {Suf }}$ | 100 150 v | \% | $\begin{array}{r}\text { H779a } \\ \hline\end{array}$ | $125 \mu \mathrm{f}$ 125if | 5 | ${ }_{60}^{49}$ |
| H816A | touf | 10v | ${ }_{p}$ | H7710A | ${ }^{1604 \%}$ | 2.5 v | ${ }_{30}$ |
| H87\% | 104 | 70 v | 40 | H7711 | 160ut | 25v | 6 p |
| H818 | ${ }^{1641}$ | ${ }^{35 v}$ | 48 | H77114 | 150ut | 16v | 5p |
| H89 | 104 | ${ }_{60}$ | P | H7713A | $2004{ }^{2}$ | 25v | ${ }_{8 p}$ |
| H889a | ${ }^{20 \mu}$ | ${ }^{69}$ | $2{ }^{\circ}$ | H7714 | 2204i | sov | ${ }^{10 p}$ |
| H8110 | ${ }^{22 \mu \mathrm{~F}}$ | 50 v | ${ }_{8}$ | ${ }_{\text {H }} 77115$ | ${ }_{2204}^{2204}$ | 25v | ${ }_{50}^{60}$ |
| H8,10A | 2241 | 1000 | ${ }^{48}$ | H7715A | 22041 | $35 v$ | 10p |
| H8/11A | ${ }_{244}^{2544}$ | 275 | 号 | H614 | 2504i | 4 v | ${ }^{3 p}$ |
| H8/12 | 324 | 15v | AD | H6/3a |  |  |  |
| н8,12A | 30uf | 10. | 48 | H6/4 | 320 uf | 10\% | ${ }_{4 p}$ |
| H813A | 32 LI | ${ }^{50 \mathrm{~V}}$ | ${ }^{4}$ | H6/4A | ${ }^{33} 3041$ | 16v | 5 p |
| H8114 | ${ }^{404}$ | 25v | 5 | ${ }^{\text {H6}} 6$ | 3304i | 25v | 10p |
|  | 404 4749 | 16V | ${ }^{4}$ | H65A | 3304 | 35v | ${ }^{58}$ |
| H88/15A | 400\% | 35v | ${ }_{40}$ | H67\% | 400 I | 15v | 5 p |
| H7711 | 50uf | 6 v | 3 p | H6,8A | 470 Hf | ${ }_{35 v}^{25 v}$ | ${ }_{20}$ |
| H771A | 50 Hf | 10v | p | H6/9 |  |  |  |
| H712 | 50ut | 50V | ${ }^{4}$ | H6/9A |  | Ov | 20p |
| - 773 A | 644 f | ${ }^{2.5 v}$ | 2 p | H6110 | 75011 f | 2v | 5p |
| H774 | 644 f | - | ${ }_{4}$ | ${ }_{\text {H }}$ | ${ }_{220047}$ | 16v | ${ }^{69}$ |

NEW! NEW! NEW! NEW!
An aerosol spray providing a convenient means of producing any number ot copies of a Method: Spray copper laminate board with Ilght sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-vioiet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spr
Developer and Etchant
51.00 plus

Copper-clad Fibre-glass Board- 50 op sq. it
NEWER THAN NEW!!!
Fibre Glass Board pre-treated with
light-sensitive lacquer enabling you to
produce prototype printed circuits within
produce prot.
five minutes.
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$
$150 \mathrm{~mm} \times 100 \mathrm{~mm}$
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$

| $150 \mathrm{~mm} \times 200 \mathrm{~mm}$ |
| :--- |
| $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ |

Epoxy-Resin
$\begin{array}{r}75 \mathrm{~mm} \times 100 \mathrm{~mm} \\ 100 \mathrm{~mm} \times 150 \mathrm{~mm} \\ \hline\end{array}$
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$

MULLARD POLYESTER CAPACITORS



## CLEARANCE CORNER


£1

MIXED COMPONENTS, ALL NEW, UNUSED. RESISTORS, CARBON/ LYTIC/PAPERICERAMICISILVER MICA. FANTASTIC
£1

RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for $£ 7 \cdot 50,1,000 £ 50$.

## UNREPEATABLE BARGAIN BD112

OU-NPN DIFFUSED SILICON PLANAR EPITAXIAL
VCBO COLLECTOR TO BASE-80 VOLTS.
VCEO COLLECTOR TO EMITTER-60 VOLTS.
VEBO EMITTERTO BASE-5 VOLTS.
20 WATTS -2 AMPS- 30 MHz. FEATURES
20 WATTS-2 AMPS - 30 MHz. FEATURES HIG
OVER WIDE RANGE OF COLLECTOR CURRENT

# P. F. RALFE 

 10 Chapel St London N.W.I
## TELEVISION SWEEP GENERATOR

by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$ ). Markers at 465 / $565 / 660 / 750 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine $0-10 \mathrm{db}$. Sweep width adjustable from $1-15 \mathrm{MHz}$. The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times 5$ ins. We.: 201bs.
Supplied in good working order, price $\mathbf{6 5 9 . 5 0}+50$ p carriage.

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v . frequency up to 250 MHz at 50 watts. Small size only, 2 in. $x \frac{z}{z}$ in. Offere brand new, boxed. Price $£ 1 \cdot 50$, inc. P.\&P.
'ALCAD' Sealed rechargeable Nickel-cadmium batteries.
Type W3.5, 1.2 V at 3.5 Ah . Size as - U2'. Offered new in packs supplying 12V, E 15 . Or separately at $£ 1.25$. Automatic Constant current Alectronic battery chargers specially designed for nickel cadmium cells. Metered and fused. Up to twelve cells can be charged up to 750 mA , variable 0.750 mA . Size $7 \times 6 \times 5 \mathrm{Sins}$. Brand new units. Price each $\in 17$.

Smiths Ltd Weight indicators, self powered, measures 0 to 20 cwts ndicutor 30 ivisions on a $4^{\prime \prime}$ cirscale meter duty load cell use with bell crank or actual reading is 5 cwt for F.S.D. brand new units special price $\mathbf{6 7} \cdot 50$ post 50 p.

Cossorelectronic Invertors type CRA 200. A high quality device for producing a $115 v 400 \mathrm{HZ}$ single phase output. Incorporating the following features: Input 23-28V D.C.

* Full overload protection.
* Sine wave output.
* Remote control facilities
* Complecely Solid State (Silicon transistors).
* Built to Aircraft specifications. * I80VA of output continuous. May be run in series operation for brand new boxed units. Price $\boldsymbol{£ 1 7 . 5 0}$ Carriage 50p.

AUDIO OSCILLATORS
AMERICAN TS-382/U
Covers $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ in four ranges. Covers Output voltage I micro volt to 10 v . in seven ranges. Built in calibrator. Sine wave O.P. is excellent over complete range. Supplied with transmit case, adaptors and circuits and transformer for 240 A.C. $£ 20$.

## MINIATUREAEIUNISELECTORS

 12 position $\times 3$ bank 250 ohm coils, bridging and 2 non-bridging wipers avail ble now-Type 2200A complete withBRAND NEW DIGITAL PANEL OMV-1.99VV 199 METERS
OMV-1.99VV. 199 Measuring points. Input impedance 100 Mohm. Automatic $72 \mathrm{~mm} \times 72 \mathrm{~mm}$. List price was $£ 52.00$. OUR PRICE $£ 24.50$.

DIGITAL MEASUREMENT TYpe 2003 Digital Volmmeter. $3 \frac{1}{2}$ Digit display. Measuring up to 1000 Volts. AS NEW $£ 65$

## Noise Generator Model CT-82

 Range 15 kHz to 160 MHz very useful noise for factor measurements of receivers/wide band I.F. amplifiers etc., the instrument is directly calibrated in noise factor and displayed on panel meter, also ourput meter calibrated in dbs, for $115-250 \mathrm{vac}$ operation offered in good used condition, small size low price only $£ 8$ Carr. 50 p .
## H. W. SULLIVAN STANDARD

AlR SPACEDe 0 to 100 pf fully creened with engraved vernier subdivided into 100 equal divisions complete with vernier index and original manufacturers seal offered brand new, at only $£ 25$ each.

## BARGAIN OFFER-LOW VOLTAGE STABILISED POWER SUPPLIES

*Voltage Range 16-24V.
*Current Range to 6 Amps.
*Full over-voltage and Current protection.
*AC Ripple content better than 5 mV . These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core transformer etc. Offered in perfect condition, carefully checked before despatch. List price over 6125. Our price only $\mathbf{6 2 6 . 5 0}$. Carriage $f 1$.

POWER TUBE BASES for 4X250 T/X Valves etc. BASES ARE BRAND NEW AND BOXED COMPLETE WITH THE CERAMIC CHIMNEY. Only 63.25 each p.p. 10 p.

> SCHOMANDL PRECISION FREQUENCY METER TYPE FDI IWITH FDMI ADAPTOR GPO approved equipment for Radio Telephone Marine servicing etc., offered in as new condition with calibration certificate.
G.E.C. Uniselectors, 8-banks, 25 position full wipe. 75 ohm coil. Not new but excellent working condition. Each $£ 2$.

Brand new GEC 3 banks of 25 position uniselectors with fitted suppressor. £2.50 each.

SIX Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonplug in type $2216 A$ coil 25 ohms. non-
bridging wipers with index. 12 position 6 bank. Absolutely brand new in makers cartons sold complete with base. $£ 6.50$

CAMBRIDGE PORTABLE POTENTIOMETER type 44228. The ideal tool for checking thermocouples and auxment. Accuracy $\pm 0.1 \%$. BRAND NEW. 675 .

TINSLEY type 4363D Vernier ponte tiometer. Good condition Price $£ 75$.

FRIGIDAIRE, AIR-CONDITIONING UNIT. Table-top model. 4 inch diameter pipe outlet. Complete and ready for use. Price $£ 125$.

WAYNE KERR type B52I Componen bridge. Accurate measurement o LC \& R, f55. Excellent orde throughout.

## TEKTRONIX OSCILLOSCOPES

Type 545A with 'CA' plug-in. (Or 'L'). DC- 30 MHz . Type 56IA with 3 Al and 3 B 3 units. DC-10MHz. Type 535 with CA plug-in unit. DC- 15 MHz . Type 551. Double-beam with L\&G units. DC -27 MHz .


## Also available:

Dynamco D7100 with IY2 and IX2 plug-ins. Portable, DC- 30 MHz . Hewlett-Packard 175A. 1781 and $1755 \AA$ plug-ins. DC- 30 MHz . Marconi TFI 300. s/b. DC-I5MHz. $\mathbf{E 7 5}$.
Roband RO50A with 5G plug-in. DC- 15 MHz . Price $\mathbf{6} 125$. Solartron CD1400. With two CXI44I and a CXI443 units.

Extremely sensitive instrument. Twin differential inputs.

## SIGNAL GENERATORS

Marconi type TF80ID. $10-485 \mathrm{MHz}$. Excellent. P.U.R.

Marconi type TF867. $15 \mathrm{KHz}-30 \mathrm{MHz} . \mathbf{£ 1 5 0 .}$


Hewlett-Packard 616A. 1780-4000MHz. $£ 75$.
Advance C 2 H . Spot-frequency production-line test instrument 12 freqs. in bands $500 \mathrm{KHz}-30 \mathrm{MHz} . £ 25$.
Rohde \& Schwarz U.H.F. $990-1900 \mathrm{MHz}$. P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. $4-300 \mathrm{MHz}$. FM Dev. $0-100 \mathrm{KHz}$ in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

MARCONI TEST EQUIPMENT. Allitems have been calibrated, reconditioned and guaranteed.

Wave Analyser TF455E. Frequency range 20 Hz . $£ 105$.
TF893 Audio Wattmeter. Range $20 \mathrm{~Hz}-35 \mathrm{KHz}$. Power range 20 uW -10W. Impedance $2.5 \Omega$ to $20 \mathrm{~K} \Omega$ in 48 steps. Direct calibration in Watts and dbm. Price $£ 45$.
TF2600 Sensitive Valve Voltmeter 1 mV f.s.d. to 300 V f.s.d. Accuracy $\pm 1 \%$. Offered as new, price $\mathbf{6 5 5}$.
TFI370A Wide-range oscillator 10 Hz to 10 Mz . Squarewave up to 100 KHz . High output-up to 1 MHz 31 Volts. 75,100 or $600 \Omega$ output. List price pre VAT- $£ 308$. Offered as new at $£ 125$.
TF2162 MF attenuator. DC-IMHz. O-11Idb attenuation in 1 db steps. Impedance 600 ohms unbalanced. Price $\mathbf{£ 5 0}$.
TF2163 U.H.F. Attenuator. DC-I GHz. 0-142db in 1 db steps. Z, 50 ohms. Max. power input 0.5 W . As new Price $\mathbf{£ 7 5}$.
TF801D/I A.M. Signal Generator up to 470 MHz .
TFII06 Noise Generator $1-200 \mathrm{MHz}$. $£ 75$.
TFI04IB Voltmeter. $300 \mathrm{mV}-300 \mathrm{~V} .20 \mathrm{~Hz}$-I 500 MHz . $\mathbb{C 4 5}$.
TFI30I Noise Gen. $\mathbf{2 0 0}-1700 \mathrm{MHz}$. 50 ohms. $\mathbf{4 5 5}$.
TFI 099 20MHz Sweep Generator as new $£ 75$.
OAl094AHF Spectrum Analyser $100 \mathrm{KHz}-30 \mathrm{MHz}$. As new.
TFI 1417 Counter, Frequency Meter 7 digits. Plus range extension unit TFI434/2 to 220 MHz . As new.

JERROLD 900B Sweep Generator with SD8A sweep driver unit. V.H.F. and U.H.F. $0-1200 \mathrm{MHz}$, centre frequency. 1,10 and 100 MHz markers. Built-in detector, attenuators etc. This instrument is probably the most comprehensive sweeper ever made. P.U.R.

ADVANCE AUDIO SIGNAL GENERATOR TYPE HI. $15 \mathrm{~Hz}-50 \mathrm{KHz}$ in three ranges. Sine/square wave output. Supplied in first-class working condition. fl5. Carriage $f \mid$ each.

R216 V.H.F. AM/FM Communications receivers. Coverage $19-157 \mathrm{MHz}$. Film scale dial 2 frequency crystal calibrator. Plus all other facilities. Complete with A.C. power supply connecting lead. Supplied in full working order in excellent secondhand condition.

PLEASE ADD $10 \%$ V.A.T. TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH. THANK YOU.

## $\square$ <br> "SLO-SYN" 3-HEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easily reversed, starting and stopping in less than $5^{\circ}$ without electrical or
mechanicai braking. Simple relay circuit can be applied to give DC., to winding for a maximum holding torque of
 60 Hz ., 72 ram . STEPPING. Holding torque at 60 steps per second- $100 \mathrm{oz} / \mathrm{in}$. Can be wired to g .
 FAN BLOWER
Precision-built in Germany
Dynamically balanced mains Dynamically balanced mains
unit (200/240) continuous rated. reversible 60 MA on run. Size: $5 \frac{1}{\frac{1}{2}^{\prime \prime}}$ dia. $\times 2 \frac{1}{4}$ deep. Back plate is tapped
for 4 fixing screws price at $£ 3$. P. \& $P$. 20 p Similar unlt to above but $73^{\prime \prime}$ dia. $\times 3^{\prime \prime}$ deep. $£ 4 \cdot 50$
P. $\mathbb{R}^{25} .25 \mathrm{p}$.


SMITHS RINGER-TIMER Reliable 15 minute times, spring wound (cincurrent with time setting)
divisions, approximately
$\frac{1}{2}$,
bivetween divisions. approximately ${ }^{\frac{1}{2},{ }^{\prime \prime}}$ between
divisions. Panel mounting with chrome GEARED MOTORS Parvalux" Reversible 100
pm geared motor. Type SD 14 : $230 / 250 \mathrm{v}$. AC. $22 \mathrm{lbj/h.I}^{\prime \prime}$ spindle. 1 st class condition
$\mathbf{7 . 5 0}$ each. 50 p P. \& $P$. Also limited number only as
above, BRAND NEW. $£ 12-50$ above, BRAND NEW. $£ 12.50$
each. 50 p P. \& P. REVERSIBLE Parvalux type SD19. 24CV. AC ${ }^{30} \mathrm{rpm} .{ }^{40}$ ibs/in. Variable angle drive shaft. ABSO-
LUTELY AS NEW. $£ 6.30$. P. \& P. 50 p .
 OPEN FRAME
shaded pole GEARED MOTORS
(Dural gear case)
240 AC. 28 rpm . NEW HIGH TORQUE, approx.

 110rpm with pressed steel gear case (similar to above
but slightly smaller). $£ 2.70$. P. \& P. 30 p . but slightly smaller). £2.70. P. \& P. 30 p .


SPIT MOTOR



BRAND NEW "GRYPHON" BROOK REVERSIBLE MOTORS Type TE
$3301250 \mathrm{y}, 50 \mathrm{~Hz}$. 1 ph . $083 \mathrm{hp}, 1,380$ opm 0.96 mmps at full standard foot-mounted unit with the extra facility of reversal by remote switching. Weight 161 l . 1002 .
Offered in original maker's packing at approx. hal ofrered in original ma
rice! $£ 4.50$. Carr. 50 .
 AMPEX 7.5 v . DC MOTOR
This is an ultra precision tape motor deslgned for use in the
AMPEX model AG2O portable recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$. 60 ma on run. $600 \mathrm{ram} \pm$ speed adjustment. internal AF/RF
 PRICEE E3. P. \& P. ${ }^{25 p}$. Large quantities available 75 p each. $\mathrm{FREF}^{2}$ \& P . Mu-metal enclosure availabla

## KLG SEALED TERMINALS

Yype TLS1 AA. Overall length $11 / 16^{\prime \prime}$, box of $100 £ 1.50$.
KNOWLE (U.S.A.) MINIATURE MICROPHONE CAPSU̇LES
As used in deaf aids, bughing devices, etc. Size As used in
60 DB ) $7 / 32^{\prime \prime}$
$\mathbf{N}^{\prime}$
"CROUZET" MOTORS Type 965
$115 / 240 \mathrm{v} .50 \mathrm{~Hz} .48 \mathrm{w}$. Stoutly con-
structed, $211 / 96^{4}$ dia. $\times 3 \mathrm{~m}^{\circ}$ long plus spindle $1^{\prime \prime} \times \frac{i^{\prime \prime}}{}$ dia. Anti-
clock. $£ 3$ each. P. \& P. $^{25 p}$.

## ELECTRO-TECH

Self selection components.
Huge stecks much too numarous to mention
OPEN: MON to SAT, 3.30-6pm

SYnCHRONOUS AUTO-RESET PROCESS TIMER by LONDEX LTD.


Type IMP Mk. 2. BRAND NEW and boxed. These well known timers are already in world wide use and are
perfect for Industrial Electronic Timing. Research and for all machine control timing problems. Repetative accuracy better than $0.5 \%$ of full scale setting. Two
or more can be interconnected to give control of a series of processes. $230 / 250 \mathrm{~V}$. 50 Hz , also avallable 60 Hz . 15 m mins. full scale 15 secs . Per division. Driven by self-starting sync. motor. Contact rating 5 amp at also lever actuated micro-switches. Normal price probably in excess of $£ 16$. Complete with multi-pin connector as illustrated. $£ 6.50$. P. \& P. 25p.

## MAINS

 SOLENOID verticitlif unit give vertical iifl of $\varepsilon$ pproximateiy mateiy ${ }^{1 "}$ nthrough
hinged
"elbow"
 Bracket incorporates 2 fixing screws. Length of arm ${ }^{21^{\prime \prime}} \mathbf{2 4 0 V}$ AC. Pull at coil is approximately 11 b . $£ 1$
FREE P, SOLENOIDS by WESTOOL



 erch. P. \& P. 10p. Quantily
disçunis; $10-5010 \%$. 50 up-
waids $25 \%$
"DECCO" MAINS

## SOLENOID

Compact and very powerful. 1616
pult st travel which can be increase to $1^{\prime \prime}$ by removing cantlve-end-plate. Overall size:
£2. P. \& 20 p.

"DAVENSET" MAINS SOLENOID


MAINS SOLENOID by MAGNETIC DEVICES LTD.
A beautitully constructed solenoid at half norma
price. A 2 -sided bracket is incorporated for vertical price. A 2 -sided bracket is incorporated for vertical
or horizontai mounting. Stze: $2^{\prime \prime} \times 1^{\frac{t_{2}^{\prime \prime}}{2} \times 1 \sum^{\prime \prime}}$. Pull is
or approximately 2bbs., plunger travel $1 \mathrm{y}^{\prime \prime}$. Fixing eye original maker's boxes. £1. P. \&P. 200. Large number available, special price for quantity.

7 DIGIT COUNTER by "Counting Instruments Ltd."


## 3 BANK MAINS COUNTER

 by "E.N.M. NOM REE-SET BRAND NEW. supply.

MAINS to 12 Volt D.C. POWER SUPPLY UNIT Type J24
This is a compac: and neat unit in a moulded plastlc ncorporated. Screw terminals on output cut-out is

"RE CIRK IT" Mains 10amp cut-out
Ey "Neimman Electrle" Germany


## UNLESS OTHERWISE STATED

 all items are NEW and UNUSED. Postal or carriage charges are for Gt. Britain only. We welconte orders from established companies, educational depts., etc. All orders under $£ 2.50$. C.W.O., please. Company orders under $£ 2.50$. surcharge 60p. unless C.W.O.
## PLUG-IN RELAYS

## by SCHRACK

OCTAL (2c/o) 6 amp contacts at following voltages 48 D.C., 60 D.C., 60 A.C., 110 D.C., 380 A.C PRICE EACH 90p.
1 pin ( $3 \mathrm{c} / \mathrm{o}$ ) 6 amp contacts
12 A.C., 48 D.C., 48 A.C., 60 A.C., 60 D.C., 110 D.C. 115 A.C., 240 A.C. PRICE EACH £1.
RA and RN Series ( $4 \mathrm{c} / \mathrm{o}$ ) 3 amp Gold Plated Contacts. Handsome modern construction $\dagger^{\prime \prime} \times \mathbf{l}^{\prime \prime} \times 1 \frac{1}{2 \prime}^{\prime \prime}$ high. Following voltages: 6 A.C., 12 A.C., 24 A.C. 48 A.C., 48 D.C., 60 A.C., 110 D.C., 115 A.C., 120 A.C. PRICE EACH BOp.
Base sockets for all above types 10 p .
Please add 10p towards P\&P on all orders.

From JAPAN. TAKAMISAWA Perspez enclosed relays.
Type MO 308.24 V . DC. 600 ohms (4clo). Complete with base Type MQ 308. 24V. DC.
socket. 80 p. P. \& P. 10p.

## 600

析
FINDEK Perspex enclosed OCTAL (2c\%) RELAY 220v. AC. 90p.


## TANGENTIAL HEATER

Silently driven by shaded pole Mycalex motor, powerful and smooth running with aluminium impeller
(outlet $5 \frac{1}{*}^{*} \times 1 \frac{1}{\frac{1}{*}^{\prime \prime}}$ ). Mains
 heater unit with spiral element. May be swltched
for 500 or $1,000 \mathrm{w}$. $£ 1$ : 80 . for 500 or $1.000 w . ~ £ 1$. 80.
P. P. 30 p.

## DOUGLAS TRANSFORMERS

## SILVANIA MAGNETIC SWITCH

Now complete with reference magnetl A magnetically activated switch. vacuum sealed in a glass
 Ideal for burgiar aiarms, security systems etc, and where-
ever non-mechanical switching is required io for $£ 1-80$;
P\&P15p. 50 for $£ 8 ; 100$ for $£ 15$. FREE $P$. \& $P$, over 10 .

## NORPLEX

The famous American fibre-glass copper-clad laminate. FInest quality with woven glass base of Epoxy-resin. E, cellent Mech. and Elec.
conductive properties. Heat resistant, ideal Ior P.C. 's enc. THIS IS A conductive properties. Heat resistant. ideal for P.C.'s etc. THIS IS A
SPECIL PURCHASE AND ONLY AVAILABLE WHILE STOCKS

 25p. P. \& P. Full
additional sheet.


MINIATURE '"LATCHMASTER' RELAYS 6, 12, or 24 v . DC operation. One makes one current is contacts rated at 5 amps at 30 v . Once untll input polarity is reversed. Manufac tured for high accederation requirements by
SPERRY GYROSCOPE CO. Size: : ${ }^{*}$ length S/16" dia. (including mount). Please state
(ind and voltage. $£ 1$ each. $P$. P. 10 p .

"GOYEN"' PRESSURE SWITCH Incorporating differential adjustment between $2^{\prime \prime}$ and $12^{\prime \prime}$ water gauge (a max. ot approx. $\frac{7}{\frac{1}{2}} \mathbf{p}$ p.s.i.). A single
pole change-over switch rated 15 amps. 250v. is actuated. Air inlet tube to dia. Prolection 궇.


## PYE MICROSWITCH

OTEHALL Type.
 fractional travel actuates. 6
15 p . Large stocks available.

PHILIPS SLOW-MOTION DRIVE Comprising dual knob assembly, i.e., $1 \frac{13^{*}}{}$ dia. futed knob surmounting
a similar one $1 \frac{1}{* *}^{*}$ dia. (Black). Depth from panei overall approx. $11^{\prime \prime}$.


## PANTON BOURNE TRIMPOTS

 $1 \mathrm{k}, 2 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}, 500 \mathrm{k}$. Other trimmer pots in stock. RiL 10 kMORGANITE 1 k MEC 200 hmms (tubular) 500 mms . Any 3 for $£ 1 \cdot 10$

## PLEASE ADD 10\% FOR V.A.T. ON ALL PRICES SHOWN INCLUDING P \& P

Trannies
I Dockyard，Station Road， Old Harlow，Essex．
Telephone： 37739
（Saturday callers welcome）

PRICES DO NOT INCLUDE VAT ADD
10\％TO THE TOTAL

Our NEW 1973
Catalogue is now available BIGGEST YET 10p

74 Series TTL
（National Semiconductors and I．T．T．） LOW PRICES，HIGH QUALITY


Linear Integrated Circuits


General Purpose Miniature
Electrolytic Capacitors
（mullard \＆ERIE）
4 VOLT

| 4 VOLT | 47 $\mu$ ¢ | 6p | 10 VOLT | 4700 ${ }^{\text {f }}$ | 36 p | 40 VOLT | 6.84 | 6 p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $100 \mu \mathrm{f}$ | 6 p | － | 10，000 $\dagger$ | 60 p |  | 15 ¢ | 6 p |
|  | 220 $\mu \mathrm{f}$ | 6 p |  |  |  |  | 33ui | 60 |
|  | 330 ${ }^{\text {F }}$ | 6p | 16 VOLT | 154 ${ }^{\text {f }}$ | 6p |  | 47 $\mu$ | 6 p |
|  | 1000 ut | 12p |  | 33 $\mu \mathrm{f}$ | 6 p |  | 100uf | 6p |
|  | 4700uf | 27p |  | 68uf | 6 p |  | 15041 | 9 p |
|  |  |  |  | 150 $\mu$ f | 7 p |  | 220ui | 10p |
| 6.3 VOLT | 33 4 f | 6p |  | 220，${ }^{\text {f }}$ | 8 p |  | $470 \mu \mathrm{f}$ | 18 p |
|  | 68uf | 6p |  | 680 $\mu$ t | 16p |  | 680 ui | 24D |
|  | 150 $\mu$ f | 6p |  | 1000 ${ }^{\text {f }}$ | 17p |  | 1000 ${ }^{\text {¢ }}$ | 24p |
|  | 470ヶf | 10p |  | 1500 $\mathrm{\mu}$ f | 26p |  | 2200 uf | ${ }_{50 \mathrm{p}}$ |
|  | 680山f | 12p |  | $2200 \mu \mathrm{f}$ | 33p |  | 3300 $\boldsymbol{\mu}$ | 58p |
|  | 1000uf | 16p |  | 3300 f | 34p |  |  |  |
|  | 1500 ff | 18p |  | 6800uf | 57p |  | $1 \mu \mathrm{f}$ | 6 p |
|  | 2200ut | 20p |  |  |  |  | $2 \cdot 2 \mu \dagger$ | 6 p |
|  | 3303 $\dagger$ ¢ | 25p | 25 Volt | 10， f | 6p |  | 4．7 $\mu \mathrm{f}$ | 6 p |
|  | 6800uf | 36p |  | $22 \mu \mathrm{f}$ | 6 p |  | 6．8uf | 6 p |
|  |  |  |  | 47 ff | 6 p |  | 1041 | 6 p |
| 10 VOLT | 22川 ${ }^{\text {f }}$ | 6 p |  | 100 f f | 7 p |  | $22 \mu \mathrm{f}$ | 6 p |
|  | $47 \mu \dagger$ | 6p |  | 150ر ${ }^{\text {¢ }}$ | 7 p |  | 68 uf | 9 p |
|  | 100 ${ }^{\text {f }}$ | 6 p |  | 220 \％ | 9 p |  | 100ut |  |
|  | 220رf | 7 p |  | 470山 ${ }^{\text {f }}$ | 12p |  | 150uf | 13p |
|  | 330 $\mu$ f | 9 p |  | 680uf | 18p |  | 220uf | 18p |
|  | 470山 f | 9 p |  | $1000 \mu \mathrm{f}$ | ${ }^{20} \mathrm{p}^{\text {a }}$ |  | 330 H | 20p |
|  | 1000 uf | 12p |  | 220014 | ${ }^{36 p}$ |  | 470uf | 25p |
|  | 1500uf | 18p |  | 3300～f | 44 p |  | 1000ut | 40p |
|  | $2200 \mu \mathrm{f}$ | 23p |  | 4700uf | 62p |  | 1500uf | 58p |
|  | Quantity discount $15 \%-25$ plus． $20 \%-100$ plus． $25 \%$－250 plus． |  |  |  |  |  |  |  |

MULLARD POLYESTER CAPACITORS C280

## SERIES

${ }^{250 v .}$ p．c．mounting $0.01 u f, 0.015,0.022,3 p ; 0.033,0.047,0.068,3 \frac{1}{2} p ; 0.1$ ， ${ }^{4} \mathbf{4} \mathbf{4}, 0$

| PRin |
| :--- |
| Spo |
| Sac |

Volume Controls
（AB45 Series）
We are now able to offer a full
range of carbon potentiometers from stock．

| Single gang less switch | 1－49 | 50 plus |
| :---: | :---: | :---: |
| Log or Linear 1 K to 2 meg ． | 12p | 10p |
| Single gang with D．P．switch |  |  |
| Log or Linear 5K to 2 meg． | 24p | 20p |
| Dual Gang less switch |  |  |
| Log or Linear 5K or 2 meg． | 40p | 32p |

（Devices may be mixed to qualify for price breaks）

| Veroboard |  |
| :---: | :---: |
|  |  |

Silicon Rectifiers
lamp miniature

| Type | PIV | 1－99 | 100 plus |
| :---: | :---: | :---: | :---: |
| IN4001 | 50 | 5p | 312p |
| IN4002 | 100 | 51p | ${ }^{4 p}$ |
| iN4003 | 200 | 6 p | 5 p |
| IN4004 | 400 | $6 \frac{1}{1} \mathrm{p}$ | $5 \frac{1}{1}$ |
| IN4005 | 600 | 7 ${ }^{\text {2 }} \mathrm{P}$ | 6 |
| IN4006 | 800 | 9p | $7 \pm$ |
| IN4007 | 1000 | 10p | 8 |

$\underline{\longrightarrow}$

400 mW
Zener Diodes


TRANSISTORS

## DIODES

（Quantity discount 25 p ：us
$15 \%, 100$ plus $20 \%$ ）

| AC126 | 14p | BC147 | 13p | OC36 | $65 p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC127 | 14p | BC148 | 13p | OC44 | 10p |
| AC128 | 11p | BC149 | 13p | 0 C 45 | 10p |
| AC176 | 12p | BC154 | 17p | OC70 | 12p |
| AC187 | 14p | BC157 | 17p | OC71 | 12p |
| AC188 | 14p | BC158 | 14p | OC72 | ${ }^{14} \mathrm{p}$ |
| AD140 | 60p | BC159 | 14P | 2N706 | 12p |
| AD149 | 60p | BC169 | 14p | 2N2926 | 10p |
| AD161 | 32p | BC182 | 12p | 2N3055 | 49p |
| AD162 | 32p | BC183 | 12p | 2N3702 | 13p |
| AF114 | 14p | BC184 | 12D | 2N3704 | 13D |
| AF115 | 14 p | BC212 | 12p | 2N3819 | 30p |
| AF116 | 14p | BC213 | 12p | 40361 | 31 p |
| AF117 | 14 p | BC214 | 14p | 40362 | 36p |
| AF139 | 32p | BD131 | 69p | 40636 | 76p |
| AF239 | 40p | 8D132 | 69p | OA90 | 5p |
| BC107 | 10p | OC25 | 40 p | OA91 | 5p |
| BC108 | 10p | OC28 | 52p | OA202 | $7 p$ |
| BC109 | 10p | OC35 | 52p | IN4148 | p |

EXPORT ORDERS A SPECIALITY！

MULLARD POLYESTER CAPACITORS C296 SERIES ${ }_{4000}=0.001,0.0015,0.0022,0.0033,0.0047,21 p ; 0.0068,0.01,0.015,0.022,0.033,3 p ; 0.047, U .688$ ，


# TELEPRINTER EQUIPMENT LIMITED <br> Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . . 

Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

## CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

## SIEMENS

 EQUIPMENTOTHER
EQUIPMENT

# COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED <br> G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY 

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS--various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H,49H, 149H,3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A./B 4028, H15B, H40 and individual $1 / \frac{2}{2}$ COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-105 FOR FURTHER DETAILS

## MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

> KEYBOARD PERFORATORS for offline tape preparation AUTOMATIC TAPE TRANSMITTERS with speeds up to $250 \mathrm{w} . \mathrm{p} . \mathrm{m}$.
> MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
> UNDULATORS for automatic record and W/T signals up to $300 \mathrm{w} . \mathrm{p} . \mathrm{m}$.
> CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa MORSE REPERFORATORS operating up to $200 \mathrm{w.p.m}$. TONE GENERATORS and all Students' requirements
> CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

# THE NEW NELSON-JONES FM TUNER 



## PUSH-BUTTON VARICAP DIODE TUNING <br> (6 Position)

Exclusive Designer Approved Kits
For the first time the Nelson-Jones Tuner is available as a complete kit with all Metalwork, Printed and anodised Front Panel and Teak veneered cabinet. A Six Position push-button unit is used with each pre-selector button fully tuneable with its own scale and pointer and incorporating AFC disable for fine tuning.
Provision is also made for a Stereo LED, Stereo Decoder, Internal PSU and Fine Tuning indication (Meter or LED type). Push-button switches are also used for Stereo Mute and Mains On/Off. All sockets, board standoffs and panel mounting fuse are supplied.
Our attention to detail is such that even our cabinets are veneered inside and out for minimum warp and attractive appearance.

The tuner is available in two gain versions, and our alignment service is available to customers without access to a signal generator.
Prices for complete kits start at $\mathbf{£ 2 3 - 7 5}$ (mono) plus p.p. 45 p., and of course all components are available separately
Please send large SAE for our latest price lists which detail all of the many options and special low prices for complete kits. All our other products remain available e.g. The Portus and Haywood Phase Locked Stereo Decoder Kit.
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph).
Complete designer approved Texan kits are available at $£ \mathbf{2 8 . 5 0}$ plus p.p. 45p including a Teak Sleeve.
V.A.T. Please add V.A.T. at $10 \%$ to all prices for U.K. orders.


## BEDFORD ELECTRONICS <br> 2, GROVE PLACE BEDFORD

```
OSCILLOSCOPES
TEKTRONIX 545. From }£250
TELEQUIPMENT S54U.Complet
with internal battery. Unused
&150.
TELEQUIPMENT D43 with ampli-
fiers B & C. Excellent condition
680.
```


## ADVANCE power supply Type PM16

 coniinuously variable output voltage and current limit, SCR overvoltage protection. Regulation better than $0.02 \%$ no load to full load. Complete with manual. $0-7$ voits 1 amp. As NEW 99.50 EACH.Colvern 9 Digit SHAFT ENCODERS Type 31 CW9, $3^{\prime \prime}$ magslip case. 512 divisions/360 degrees. Test sheet included, $\mathbf{f 6}$ each.

Salford Electrical MULTI TAPPED POTS. Elect. angle 340 Deg. Mech. angle 360 Deg. Resistance 150K $5 \%$ lin. $0.5 \%$ tapped every 10 Deg. £ 2.50 each.
Colvern TEN TURN POTS. 500R. $5 \%$ Lin. 0.1\%. $£ 1.25$ each.

Veeder Root 6 digit counters. Type LR1643. Mech. reset, 24V. Recent manufacture. As new $£ 3$ each.
Pressure transducers KDG, Type TD216. 0.1200 P.S.I. Complete with calibration chart. 45 each.

FLUID LOGIC teaching sets. These well made teaching aids contain the following components mounted on an engraved panel within a polished wooden box, 2 bistable, 1 and, 3 or nor logic elements, 2 press transmitters, 2 press receivers, 2 pressure
regs. and gauges, 2 actuating
cylinders and press. amplifiers, 4 position sensors. Supplied complete with all accessories. $£ 37.50$.
7/.0076 P.T.F.E. Equipment wir to ELI930 $£ 2$ per 100 yds . Please check availability before ordering. BELLING LEE Pattern 102 unitors
 $\begin{array}{llllllll}\mathrm{L} 656 / \mathrm{P} & 35 \mathrm{p}, & \text { IS } & \text { 55p, } & \text { /C3 } & 2 \mathrm{p}, & \text { /R3 } & 20 \mathrm{p} \text {; } \\ \text { L657/P } & 47 \mathrm{p}, & \text { is } & 72 \mathrm{p}, & \text { /C3 } & 23 \mathrm{p}, & \text { /R3 } & 23 \mathrm{p} .\end{array}$
THERMISTORS Type F51, bead at tip of I"glass tube, approx. look (10) 25 C. $25 p$ each.

CARPENTERS polarised relay SPCO $2 \times 1000$ R, complete with base and retainer, as new. 45p each.
POT CORES LAI or LA3. 40p each. METERS, $3 \frac{1}{2}$ " diameter, sealed, 50-0-50 UA/1300R, ¢2.25 each. 1 mA/l30R, 11.75 each.
BALL RACES Type RCL $\frac{1}{3}$ F. Flanged $\frac{1}{1 \prime \prime}$ bore $5 / 16^{\prime \prime}$ dia. Sealed packs, 25p each.
PANEL FUSE HOLDERS with indicator lamp. The cap of these $1 \frac{1}{4} \frac{1}{\prime \prime}^{\prime \prime}$ fuse holders is provided with an amber lens and min. flanged lampholder to allow a fuse failure neon to be fitted, bulb not included. 20p each.
MINIATURE THUMBWELL SWITCHES, matt black, $B C D$ and complement, as new, 70p each.

## V.A.T.

PLEASE ADD $10 \%$ V.A.T. TO ALL PRICES.

## COLOMOR ELECTRONICS SALE

To clear our stores of surplus stock we are holding a sale of equipment and Components at give-away a sale of equipment and to list all the goods, the selection below is but a brief indication of items and prices. There is something for everyone to come and see, but hurry, many items are "one off" only.
HEWLET PACKARD 5408 COUNTER £25MARCONI OA1094 SPECTRUM ANALYSER £35-TF 144G £3-SIGNAL GENERATOR No. $1 £ 20$-SIGNAL GENERATOR No. $2 £ 12-$
 £10-AR88 £20-B 42 £15-P.C.R. £3•50CR $100 \mathbf{£ 1 - C T} 160$ VALVE TESTERS £15TF 899 VmVM $£ 1 \cdot 50$-SQUARE PULSE GENTF 899 VmVM $£ 1.50-$ SQUARE PULSE GEN-
ERATORS $£ 7-$ B.F.'s £5-REG. H.T. POWER SUPPLIES £10-DM 2004 DVM £17-BERSUPPLIES £10-DM 2004 DVM £17-BER-
KELEY COUNTER $£ 15-\mathrm{K} / \mathrm{H}$ PEN RECORDERS £7.50-THOUSANDS OF BRAND NEW METERS £7.50-THOUSANDS OF BRAND NEW METERS
FROM 30p. LARGE METERS FROM 40p-COMPONENTS, SWITCHES, CONTROL BOXES, TESTERS, etc., etc., etc.
SALE COMMENCES 15 th SEPTEMBER and will last a few weeks only. HOW TO GET THERE:In the premises of Unigate Dairy Depot, entrance off Cromwell Road Extension (Cedars Rd.) towards London, first left (Sutton Lane North, W.4.) first entrance on left. Or write to:-
COLOMOR (ELECTRONICS) LTD. 170, Goldhawk Road, London W. 12 01-743 0899

RING BEDFORD 51961 FOR AN APPOINTMENT TO VIEW
TEST EQUIPMENT


## AC/DC TAUT SUSPENSIONS



MULTIMETERS
(Made in U.S.S.R.)
Large selection of multinneters with prices ranging from $£ 4.95$ to $£ 10 \cdot 50$.

Please write for full Catalogue

all prices are exclusive of VALUE ADDED TAX. WHEN ORDERING BY POST PLEASE ADD .€0.12 $\frac{1}{2}$ IN $£$ FOR HANDLING AND POSTAGE (SUBJECT TO A MINIMUM CHARGE (SO.15) AND $10 \%$ OF THE TOTAL VALUE FOR VAT.

FULL WAVE SILICON BRIDGE
100 p.i.v. 10 AMPS EPOXY ENCAPSULATED
CHARGING RECTIFIERS. AT A SPECLAL PRICE OF 83.50 .

PHOTO EMISSIVE DEVICES


SOLID STATE LIGHT EMITTING
018 outline Brightnese 500 FT.L
TO18 outline. Brightness 500 FT-L at 50 mA . Forward
voltaze. 1.65 to 2 V . Diode gives bright red pinpoint of voltage. 1.55 to 2 V . Diode gives bright red pinpoint or
light when supplled from a 2 V source. Leng diameter 0.170 in . PRICE 20.85.

The company will close for annual holiday on 11th August and re-open on 28th August. To avoid delay do not send any leiters or orders during that period. Our retail branch will remain open.

| SLLICON POWER RECTIFIERS |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Wire Ended |  |  |  |  |  |



Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2.Tel: 5808403
C.A.A. Approved for inspection and release of electronic valves, tubes,
klystrons, etc.

## WE WANT TO BUY:

special purpose valves. please offer us YOUR SURPLUS STOCK. MUST BE UNUSED.

GENERATORS
MARCONI TF867 STANDARD SIGNAL GENERATOR


Carrier Frequenc．
 Calibration
acy：$\pm 1 \%$ ．Accur－ acy：$\pm 1 \%$ ．
Stabitity After warm up the dritt In a $10-$
minute
is．
period
 $0.005 \%$ for carrier
frequencies
3.2 Mc ．／s and less than $3.01 \%$ from $3.2-2$ ．
0.015 and Output．Voltage： $0.4 \mu V-4 V$ ．
impedance： Impedance： 75 ohms nominal for outputs
from $2-4$
$\forall$ ． 75 ohms $\begin{array}{ll}\text { from } 2-4 \mathrm{~V} .75 & \text { ohms } \\ \text { for outputs } \\ \text { from } \\ 4 \mu \mathrm{~V}-2 \mathrm{~V} \text { ．} 13 & \text { ohms }\end{array}$ lor outputs ohms
$0.4 \mu \mathrm{~V}-0.4 \mathrm{~V}$ ．
Accuracy：below $3 \mathrm{Mc} / \mathrm{s}, \pm 0.25 \mathrm{~dB}$ of $\pm 0.1 \mathrm{VV}$ ． $3-10 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{~dB}$ or Power Supply： $100-125 \mathrm{~V}, 200-25 \mathrm{UV} 40-100 \mathrm{c} / \mathrm{s}$ ．Dimiensions： 18 in ．high $\times$ DOUBLE PULSE GENERATOR TYPE TF 1400／S $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$ ．Complete with TM 6600 ．Pulse adjustable between $1-5 \mu \mathrm{sec}$ ．before and up to $3,000 \mu \mathrm{sec}$ ．

PRICE $145 \cdot 00$
MARCONI A．M．SIGNAL GENERATOR TYPE

## TF801D

$10-485 \mathrm{Mc} / \mathrm{s}$ in five ranges．Output $0.1 \mu \mathrm{~V}-1$ Volt E．M．F External Sine A．D．Frequency $30 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$ ．PRICE $£ 195$ PHILIPS SQUARE WAVE GENERATOR MODEL G M2314
Range $15 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ ．Duration of square wave pulses between $0.75 \mu \mathrm{sec}$ and $40 \mathrm{~m} / \mathrm{sec}$ ．Square wave voltage 10 V

PRICE $£ 75.00$
AMPLITUDE MODULATOR TF1102
$100 \mathrm{Kc} / \mathrm{s}-300 \mathrm{Mc} / \mathrm{s}$ Sine－wave from $20 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$ and $20 \mathrm{x} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$
$£ 35.00$ MARCONI Type TF987／1 NOISE GENERATOR $1-200 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{DB} \mathbf{£ 2 0 . 0 0}$
MARCONI TF2092 NOISE GENERATOR £295．00 MARCONI VHF SIGNAL GENERATOR TF 1145 $450-1900 \mathrm{Mc} / \mathrm{s} £ 295-00$
PHILIPS VIDEO GENERATOR GM2887 £95．00 WA YNE－KERR VIDEO NOISE GENERATOR $£ 75 \cdot 00$ MARCONI H．F．CIRCUIT MAGNIFICATION METER TF886A
A direct reading $Q$ Meter $15-170 \mathrm{Mc} / \mathrm{s}$ Magnification 60－7200 Q $£ 45 \cdot 00$
MARCONI DISTORTION FACTOR METER TF142F $100 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc} / \mathrm{s} 0.05 \%-50 \%$ Measures all spurious com－ ponents up to $30 \mathrm{Kc} / \mathrm{s} £ 35 \cdot 00$
MARCONI PULSE GENERATOR TF675E
Repetition Frequency $50 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s} 0.15-40 \mu \mathrm{Sec} £ 35.00$ MARCONI WIDE RANGE R．C．OSCILLATOR TF130
Sine－waves $10 \mathrm{c} / \mathrm{s}-\mathrm{Mc} / \mathrm{s}$ ，square waves $10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$ Directo outputs up to 31.6 V ．Attenuator with three impedances．£120．00
HETERODYNE UNIT TF1221
$2 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} £ 45 \cdot 00$
WAYNE－KERR NOISE GENERATOR CT410
A portable instrument for measuring the noise factor of radio receiving equipment，metric radar receivers， and radar wide－band i．f．amplifiers in the band $15 \mathrm{KHz}-160 \mathrm{MHz}$ ．
£75．00 MARCONI TYPE TF801A SIGNAL GENERATOR Frequency range： 10 MHz to 310 MHz ．O／P voltage： Frequency range： 10 MHz to 310 MHz ．O／P voltage：
$0-100 \mathrm{db}$ relative to 200 mV into 750 hm IV CW $\mathrm{O} / \mathrm{P}$ 0 －100 db relative to 200 mV into 750 hm iv $\mathrm{CW} 0 / \mathrm{P}$ to $80 \%$ sine or square．
£45．00 ADVANCE TYPE DI／D SIGNAL GENERATOR Frequency range： $10 \mathrm{MHz}-300 \mathrm{MHz}$ ． $\mathrm{O} / \mathrm{P}$ voltage： 1 V －10mV．$£ 25.00$ KENT CHROMALOG 1 DIGITAL INTEGRATOR For use with gas chromatography appa－ ratus or anything with an output ex－ pressed as a varying direct voltage． Automatic print out and $0-10 \mathrm{~mA} O / \mathrm{P}$ to drive recorder．Offered in excellent con－ dition． 3 months warranty and copy of handbook．Price $£ 150$ ．Carriage extra．

## FANTASTIC VALUE IN OSCILLOSCOPES

TEKTRONIX 515
515
$535 A$ DC－30 Meg £205 Main Frame 545
545 A
HEWLETT PACKARD＇185B Sampling Oscilloscope DC－1000 Meg complete with 187C Dual Trace AMP has 350 microsec．Rise time（ 1000 MC ）£395 COSSOR CDU 110 Dual Channel Transistorised DC－25 MHz at $5 \mathrm{mV} / \mathrm{cm}$ ． 0.2 microsec．$-0.5+3 \%$ 5X Magnification extends sweep speed to 40 nanosec．／ $5 X$ Magnification extends sweep speed to 40 nanosec．／
cm ．Sweep delay 180 nanosec．
£249．50 cm．Sweep delay 180 nanosec．
COSSOR CDU 120 Dual Channel fully transistorised $50 \mathrm{mV} / \mathrm{cm}$ to 10 V DC－ 60 MHz ．Rise time 6 nanosec． $1 \mathrm{mV} / \mathrm{cm}$ at 25 MHz .0 .1 microsec．
$\mathbf{£ 3 4 9} 50$ COSSOR CDU 150 Rugged Transistorised fully portable Dual Channel DC－ 35 MHz at $5 \mathrm{mV} / \mathrm{cm}$ ．As used by numerous government departments（c／f CT531）
COSSOR The very latest Cossor 4000 Dual beam 55 MHz at $50 \mathrm{mV} / \mathrm{cm}$ Trigger．SCOOP－ONE ONLY £425


TEKTRONIX 545．With delay

## DYNAMCO DC－607100

1Y2 7100 1X2 Oscilloscope，Dual channel with sweep delay，suitable or computer maintenance and mos laboratory applications $30 \mathrm{MHz}, 1 \mathrm{mV}$ Oys to 5 s delay
BRAND NEW £295
HEWLETT
PACKARD
$185 B$
Sampling Oscilloscope DC－IGC． Complete with 187C Dual Trace Amplifier．Has a 350 p．sec．rise
time（ 1000 MC ）


## MINITRON

K．G．M．Type 3015F 7 Segment display showing figures $0-9$ plus decimal point．Character of 9 mm height．In 16 DIL case．

NEW LOW PRICE $£ 1.40$ SN7447N BCD Decoder Driver $£ 1 \cdot 00$

## SINE COSINE POTENTIOMETER 47K

 Precislon component by Pye．Model 2002. Manufactured to rigid MInistry specification． The assembly consists of three unitsmounted in one trame．Each unit contains two sine and two coside potentiometer
sections，the silders belng ganged together． sections，the silders being ganged logether．
Electrical connections， 2 end taps，slider and centre tap．Mechanical I／P： 30 r．p．m．
 men．
extra．


## INFRA－RED

SPECTROPHOTO－ METER
A singte beam instrument de－ signed primarily to analyse the
effluent from a gas chromato－
 offuent from a gas chromato

Beckman Type IR－102 and fast scan capabilities make it suitable for fast reaction studies involving conventional gas，liquid，or solid samples．The wave length
range is 2.5 to 14.5 microns．In excellent condition．

TRANSISTROL TEMPERATURE
CONTROLLER TYPE 990
Completely transistorlsed self－contained direct deflecting unlts for Sultable where a signal can be converted Into d．c．Sensitivity 10 ohms per MV．Minimum F．S．D． 8 MV．Cold junction compensation．Calibrated scale length $6-5^{\prime \prime} ; ~$
$\times 81^{0-800^{\circ}} \mathrm{C}$ ．Accuracy $+1-1 \%$ ．Front panel slze $10^{*}$
weight 11 ibs．Mains supply $100-260 \mathrm{~V}$ ．Control switching and hermo－couple connections all at back of case．Price £18．50 plus $£ 2 \cdot 00$ packing and carriage．

## ASCOP DIGITAL ENCODERS

Type $5044-8-001$ Price $\varepsilon 20$ ．Type EDD8G Price $E 20$
SYNCHROVERTER SWITCH TYPE G1280 BY ELLIOTT

## POWER SUPPLIES

POWER SUPPLIES，IBM EX－COMPUTER HIGHLY STABILISED，TRANSISTORISED LOW VOLTAGE POWER SUPPLIES．
Tli，sese modular units incorporate overload protection on both idple and fast response time．Input voltage $120-13050 \mathrm{~Hz}$ ． Avaliabie in the tollowing types：
$\begin{array}{llll}6 \\ 6 \\ \text { volt } \\ \text { Volt } \\ 12 & \text { Amp } & \text { Amp } \\ \varepsilon 217: 00\end{array}$

$\begin{array}{ll}12 \text { Volt } 12 \text { Amp } £ 22.00 \\ 12 & \text { Volt } 20 \text { Amp } \\ £ 24.00\end{array}$


IN NEW POWER SUPPLIES． AT LESS THAN HALF MANUFACTURERS PRICES．
O／P Voitage $7.5 \vee-9 V$ ．Max．load current 10 Amps．Max－ ipple on full load approx． 60 mV ．P．p．Threshold current
10.5 A ．Overvolt protection．
OUR PRICE $£ 12.50$

EX COMPUTER HIGH GRADE FULLY STABILISED POWER SUPPLIES input 200／250V．
ADVANCE TYPE DC 207 Volts 9 Amps．
10 Volts 5 Ampe． 10 Volts 3 Amps．
20 Voits 2 Amps． 20 Volts 13 Ampt． 10 Volls 5 Amps．
20 Volts 2.5 Amps. 35 Volts 9 Amp 35 Volts 9 Amps．

24 Volts 4 Amps． 24 Volts 4 Amps． |  |  |
| :--- | :--- |
| ADVANCE TYPE DC 197 | 6 Volts 7.5 Amps． |
| Volt |  | 6 Volts 11 Amps．

28 Volts 9 Amps． 14 Volts 0.75 Amps 20 Volts 4 Amps． 25 Volts 2.5 Ampss.
30 Volts 0.75 Amps. ${ }_{6}^{6}$ Volts 25 Amps． ${ }^{6} \mathbf{V}$ Volts 11 Amps．
£1\＆ЕАСН．P．\＆P．£2．

## EVERSHED SAFETY OHMMETER

for testing the continuity and resistance of circuits，consists
of a hand－driven generator and a direct readlng ohmmeter， of a hand－driven generator and a direct reading ohmmeter，
Range in ohms $0-4,0-5,0-10,0-100,0-300$ ．

## IGNITION TESTER

Ideal for garages，this brand new instrument is used to display allonition faults．Supplied complete with instruction manual showing photographs of displays，making use very simple．
Sold complete with isolating transfer for use on 240 V 50 Hz supply．Display cards also avallable for garages and other places wishing to advertise this equipment is In use．Made by British Physical L
Canadian market．
ket．

## AVOMETERS



NBl di difference being Admiralty versions of Model 40，the ohms，which are available on the Model 40 with the use of an external power supply are not avallable on the 47A and 48A．
CASES AND LEADS EXTRA

PHILIPS VALVE VOLTMETER
MODEL GM6014
Max． 300 mV ， $1000 \mathrm{~Hz}-30 \mathrm{MHz}$ ．
PRICE 530.00

# to purchase some of the World's Finest calibration instruments at savings of 

## PEN RECORDERS

BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK
of America. This Recorder indicates the magnitude
of applied currents or voltages by a continuous distorOf applied currents or voltages by a continuous distor-
tion-free line on pressure sensitive paper. Moving coil
movement, scale calibrated 0.1 milliamp dic. Internal movement, scale calibrated $0-1$ mllliamp d.c. Internal
resistance 100 ohms. Chart drive motor $240 \quad \vee 50 \mathrm{~Hz}$. Chart speed $1^{\prime \prime}$ per hour. Complete with handbook. Price $\mathbf{E 3 5} .00$ plus 55.00 packing and carriage.


## SINGLE PEN

RECORDER
by Record Electrical. $3^{\prime \prime}$ chart, sensitivity 1 millaimp, chart speed $1^{\prime \prime}$ and $6^{\prime \prime}$ per hour.
Size $8^{\prime \prime} \times 11^{\prime \prime} \times 6^{\prime \prime}$. Offered complete with pen assembly and spare chart. Listed al
over $£ 100-\mathrm{h}$ his month's special price due to bulk purchase.

LEEDS \& NORTHRUP STRIP CHART RECORDER This weli-known instrument is fitted with a Series 60 control unit servo Primary element: P1. P1. $12 \%$ RH. $5 M C$. Response time: 5 secs. for f.s. d. Chart wldth: 7 in , Chat' speed: 1 in . Der hour, Power supply: 120 V 50 Hz
(auto-transiormer available). Dimensions: Hi, $18^{\prime \prime}$, width $11^{\prime \prime}$, denth


## POTENTIOMETERS



| Res Ohms | Per cent | Manufacturer |
| :---: | :---: | :---: |
| 100/100/100 |  |  |
| 100. | $0-5$ | Beckman |
| 200 | 0.5 | Beckman |
| 500. | $0 \cdot 1$ | Beckman |
| 500. |  | Colvern |
| 500. |  | Foxes |
| 500. |  | Colvern |
| 500. |  | Colvern |
| 500. | 1.0 | Relcon |
| 1 K |  | Relcon |
| 2K | 0-5 | Beckman |
| 2 K | $0 \cdot 25$ | Beckman |
| 2 K |  | Reliance |
| 2K |  | General Cont |
| 5K |  | Relcon |
| 5 K |  | Colvern |
| 10K | 0.5 | Beckman |
| 10K | 0.1 | Beckman X |
| -10k | $0 \cdot 1$ | Colvern |
| 15 K |  | Colvern |
| 18 K |  | Beckman |
| 25 K | 0.5 | Helipot |
| 29K | 0.05 | Beckman |
| 30 K |  | Colvern |
| 30 K |  | Beckman |
| 30 K |  | Beckman |
| 30 K | 0.5 | B.ckman. |
| 30 K | 0.25 | Beckman |
| 30 K |  | Colvern |
| 50 K |  | Reliance |
| 50 K |  |  |
| 50 K |  | Colvern |
| 50 K |  | Foxes |
| 50 K |  | Beckman |
| 50 K |  | Beckman |
| 100k/100K |  | Ford |
| 100 K | 0.1 | Beckman |
| 100K |  | Beckman |
| 100 K |  | Colvern |
| 100k |  | Colvern |
| 298K | 0.1 | Beckman |
|  |  |  |

## THREE TURN 780 ROTATION

1001100 ........ 0.5 ........... Beckman 1000110
300

## 

FIFTEEN TURN $5400^{\circ}$ ROTATION
$25 \mathrm{~K} / 25 \mathrm{~K}$.
TWENTY TURN $7200^{\circ}$ ROTATION
1 Meg. ............................. General Controls
General Controls ... PXM130
156 TURN 56/60 ${ }^{\circ}$ ROTATION
Kelvin Hughes ..... KTP0701
FIVE TURN $1800^{\circ}$ ROTATION
200............................... Relcon
$51 \cdot 5 \mathrm{~K}$......................ern
FIVE-AND-A-HALF TURN
OUR STOCKS ARE CONSTANTLY CHANGING
-PLEASE LET US KNOW YOUR EXACT -PLEASE LET
REQUIREMENTS


DE LUXE MODEL ncorporating tabu E79:50 mechanism £79.50
age.


ELECTRIC HAND VERIFIER
£89.50 plus carri

All machines supplied with numeric keytops and dust-cover Ontional extras alpha keytops and chip tray.

Special Computer Offer!
SAVE 75\% OF LIST PRICE ON
THIS DEC PDP SYSTEM
$\begin{array}{ll}\text { PDP-12C } & \text { 4K CPU and Console } \\ \text { DF32 } & 32 \mathrm{~K} \text { Disk and Control }\end{array}$
OWO8A 10 Bus Level Converter High Speed Reader/Punch Peripheral Expander
Dual Channel Interface
$\begin{array}{ll}\text { PTO8C } & \text { Dual Channel Interface } \\ \text { KP12 } & \text { Power Fall/Restart } \\ \text { AFO1A } & \text { A/D ConverterjMultiplexer }\end{array}$
Fuliy mainiarned by DEC since new

- Avallable in our showroom now
- Only three years old
$£ 5000$


## TELETYPE PUNCH

BRPE High-speed punch. Self-contained, consists of punch
unit, base, molor unit. For use in many data communicatior
systems. Operating speeds up to 100 charaterers per second. (1100 words per
minute). Avallabie for punching 5,6 , 7 ,


WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER
Modets S180 and R82C, 17 char, per sec. Rebuilt, available
from stock. $£ 45$.
from stock. £45.
ICT KEYBOARDS
In original packing-Numerical from $\mathbf{E 4 . 5 0}$
ICT KEYBOARDS
In original packing-Alpha-numeric Prices from $£ 12.50$
Magnetic Tape Transporters AMPEX TM4, TM2, TM7, FR300,
1BM 7330, POTTER, ICL Magnetic Drums. From £75.
IBM PUNCH CARD EQUIPMENT FULLY GUARANTEED

Prices from
024 Automátic alphanumerical keypunch......... $£ 340.00$
$£ 820.60$
$£ 38000$


FREQUENCY CONVERTER MODEL B. 40 50 KVA to 60 Hz power frequency converter. Fully overhauled Srime Mover:
Input:
Electric Motor
2201380 V 50 Hz 3 p
Output:
at 50 KVA with PF of 0.8 . PRICE $22050-\mathrm{D0}$
HEWLETT PACKARD DIGITAL RECORDER MODEL 565A
Data Entry, parallel to 11 columns, Print speed 5 lines per second
HEWLETT PACKARD SAMPLING OSCILLO-
SCOPE MODEL $185 B$ PRICE £ $395 \cdot 00$
PYE HIGH RESISTANCE OHMMETER MODEL 10B Range from $0.3-20,000 \mathrm{Megohms}$
in 4 ranges at 500 V . Used for the measurement of components or circults having high parallel
 0
0

ULLARD PRICE £20.00 COLVERN DIGITAL CODERS (Shaft Digitisers) Digital Coders are electromechanical devices, which give a unique parallel digital code output representing the angular position of the
shaft. The current handling capacity is sufficient to operate relay decodes and indicators direct without intermediate stage of a mplica Ilon. 3 size magslip, 256 divisions, max. torque for reflected binary code
4.5 oz ins. WIDE RANGE OSCILLATOR TYPE 400C bY DAWE $1 \mathrm{c} / \mathrm{s}-1,000 \mathrm{c} / \mathrm{s}$. PRICE £35-00 FANS BY PLANNAIR
115V-3 Phase $400 \mathrm{c} / \mathrm{s}-11,000 \mathrm{rpm}$. Type 1PL41-234 PRICE e4.00 R.C. OSCILLATOR TYPE G432 by FURZEHILL Square and sinewave. $250 \mathrm{kc} / \mathrm{s}$. PRICE £25.00 SPEC/AL OFFER SPECTRUM ANALYSER HEWLETT PACKARD 8551B
$10 \mathrm{MHz}-12 \mathrm{GHz}$ and 851 B Extension to 40 GHz . With W/G Mixers and very little used Ex Calibration Lab. £3,950.00.

VENNER 3334
Digital Frequency Meter $0-1 \mathrm{MHz} £ 45 \cdot 00$

## VENNER 3336

Digital Counter Six Digit $0-1 \mathrm{MHz} £ 55 \cdot 00$
With 15 Meg Counter extehsion for above $£ 85 \cdot \mathbf{0 0}$.


## DYNAMCO 2001

Digital Voltmeter $50 \mu \mathrm{~V}$ 2KV $0.05 \%$ § $175 \cdot 00$

DYNAMCO type 2022S
Long scale D.V.M. and Ratiometer. The 2022 is a high accuracy long scale instrument operating on the potentiometric principle. It features a very high input impedance with exceptionally low current errors, an external scaling facility, seven operating modes and digital output.
Scale
Range.
.39999
$10 \mu \mathrm{~V}$ to 2 kV
Resolution
1 part in 40,000
Accuracy.
Long term $\pm 0.0025 \%$ of F.S.D. $0.01 \%$ of reading $\pm 0.0025 \%$ F.S.D. $\pm 0.0025 \%$ of reading

## Input impedance

C.M.R. 160 dB at $D C$ 120 dB at $\left.50 \mathrm{H}_{2}\right\}$ Typical £275.00
MEGGLER CIRCUIT TESTING OHMMETER For Measuring conductor resistance. By Evershed and Vignale. $£ 22 \cdot 50$.
BELL \& HOWELL
12 and 18 Channel U.V. Recorder £395.00. 5-127 12 Channel £350.00.

## APPOINTMENTS VACANT

[^9]```
Advertisements accepted up to 12 p.m. Thursday, September 6th for the October issue subject to space being available.
```


## Test Engineers meet the demands of advanced satellite technology

The exacting standards of satellite work and the diversity of our military communications and underwater weapons projects provides a stimulating environment for Test Engineers at the Applied Electronics Laboratories at Portsmouth.

You will be involved in a variety of interesting work including design investigation and calibration of complex electronic circuits covering digital, analogue, VHF and microwave equipment. The work is mainly concerned with one-off
prototypes, both detail and complete systems - it is closely allied to design.

We are looking for men with at least three years relevant experience. An HNC whilst desirable is not essential. Attracigy salaries are offered dependent upon Experience and qualifications. Relocation
expenses will be met where appropriate.
Write with full details of career to date to Alan Barrett, Personnel Manager, Marconi Space and Defence Systems Limited, The Airport, Brown's Lane, Portsmouth $\mathrm{PO}_{3}{ }_{5} \mathrm{PH}$, quoting ref. LP/ıio/E

# Marconi Space \& Defence Systems 

## SOUND ENGINEER

ITN have a vacancy for a Sound Engineer to maintain a wide variety of sound equipment, including sound mixing desks, film and tape recording machines, film projectors and associated equipment.
Applicants should be experienced in this field, and be prepared to work either a five day week or on a shift pattern.
Contributory Staff Pension Scheme. Free Life Insurance. Four weeks holiday. Subsidised staff restaurant.

Telephone: Personnel 01-637 3144

## ELECTRONIC ENGINEER

Recording Studio of major Record Company is looking for an Electronic Engineer with excellent knowledge of advanced transistor techniques and a degree of experience in the audio field. High qualifications essential.

```
POLYDOR RECORDS STUDIO
```

    LONDON 01-499 8686 ext 51
    
## There is scope, variety and responsibility as a

## Radio Technician

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.<br>\section*{ENTRANCE QUALIFICATIONS}<br>You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.

Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.
Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: $£ 1383$ (at 19) to $£ 1836$ (at 25 or over) ; scale maximum $£ 2158$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.


## FLIGHT SIMULATOR ENGINEER

## £2612-£2666 + Shift Allowance

BEA British Airways require experienced Flight Simulator Engineers for shift duties at their Training Centre, Heston.
Qualifications required are a recognised engineering apprenticeship, or equivalent standard of training, and theoretical knowledge to HNC standard in electronic engineering.
Applicants with 3-5 years practical experience in analogue computing, digital computing and closed loop television. together with a knowledge of aircraft systems and principles of flight, are requested to write or phone for an application form to:-

Personnel Officer (Flight Operations), BEA - British Airways, Room 1119 Queens Building, London Heathrow Airport, Hounslow, Middlesex
01-759 3131 ext. 2769
2987


British Airways

## UNIVERSITY OF DURHAM INSTITUTE OF EDUCATION Colleges of Education

## TECHNICIAN

Closed Circuit Television Recording Unit

A Technican is needed to assist the Senior Engineer in the maintenance and operation of a well-equipped Mobile Closed Circuit Television Recording Unit serving a number of College of Education in the area, and based at Neville's Cross College, Durham. Recordings are made throughout the County. Applicants should have a basic general knowledge of television techniques and equipment. Ability to drive is essential.

Salary: Local Authority Scale T5: $£ 1,803$ to $£ 2,100$ (due for early revision), with initial placing according to age and qualifications. Conditions of service will be those applicable in a College of Education. The appointment is tenable from lst October 1973 or as soon as possible thereafter.

Applications, including the names of two referees should be sent to the Secretary, University of Durham, Institute of Education, 48 Old Elvet, Durham, not later than Friday, 14th September, 1973.
[2975

## SPANISH COMMUNICATIONS EQUPPMENT MANUFACTURER

> Has an immediate opening for An experienced Design and Development Engineer for Audio Equipment, including Highly Professional Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63 Madrid 15
SPAIN

## ENGINEERS

Thames Television have vacancies for Engineers at their Teddington Studios in Middlesex.
The successful applicants will assist with specific duties in our engineering complex, involving the maintenance and operation of video-tape, telecine, master control and central apparatus room equipment.
Applicants, aged between 20 and 30 , shouid have general engineering experience, a basic knowledge of electronics and be educated to O.N.C. level or equivalent. Initiative and a keen interest in television engineering are essential personal characteristics.
The salary for this position will be in the range of $£ 2,100$ per annum to $£ 3,000$ per annum, depending upon experience. Other benefits include an excellent pension scheme, good restaurant facilities and an active sports and social club.

Written applications should be addressed to:
The Staff Relations Officer, Thames Television Limited
Teddington Lock Teddington Middlesex 2902

Electronics Appointments Register

## Wecanget you

 abetterjob thanyou can get yourself.The best jobs don't necessarily appear in the sits. vac. columns.

They are often to be found in the Electronics Appointments Register.

Our individual approach gives you a wider choice - we have lots of jobs on our specialised registers and we may well have one tailor-made for you.

The service is absolutely free to you and completely connidential.

In effect we offer you the chance to find your ideal job, all for the cost of a phone-call.

So capitalise now on your specialised knowledge.
Call 01-734 6536, or fill in the coupon and we will send you an enrolment form by return of post.

Please send me details of how toenrol on one of your Appointments Reyisters:

Name
Address

Post to G.A.R 76 Dean Street London W1 01-734 6536.
WW2
GTraduate Alppointments Registers

CHARING CROSS HOSPITAL (FULHAM)
Fulham Palace Road, Hammersmith, London, W6 8RF.

## ELECTRONICS TECHNICIAN -PATIENT MONITORING

Applications are invited for a post on the technical staff of this newly built and equipped hospital. The work involves the installation and maintenance of patient monitoring equipment on a new unit.
Applicants should have HNC or higher qualification with a minimum of three years experience, two of which should have been completed on similar work in the Health Service.
Salary on Physics Technicians grades scale £1209-£2076 plus London Weighting. 38hour week, superannuable post. Excellent social/sport facilities including swimming pool, squash courts, bar, etc.
Applications to Mr. C. Hill, Personnel Department, telephone 01-748 2050 ext. 2992. Completed forms giving names of two referees should be returned by 3rd September, 1973.


## EXPERIENCED REPAIR AND

 CALIBRATION ENGINEERS EARN UP TO £2,700 P.A. ATCSLOur premium rates for nonstandard working hours make these earnings possible without excessive overtime.
We are one of the leading Repair and Calibration Companies with a consistently good growth record and in the process of still further expansion.
We offer stimulating and rewarding work to Engineers with a sound knowledge of circuitry and with some experience of one or more types of equipment in the range d.c. to microwaves, analogue or digital.
To find out more about job opportunities in our Company contact
The Technical Manager,
CALIBRATION SYSTEMS LTD.
Blackwater Station Estate, Camberley, Surrey
Tel. Camberley 28121

# Electronics Engineers 

## lecture on computer servicing.

International Computers Limited, Europe's leading computer company, is looking for Electronics Engineers to teach the practicalities of computer servicing. At the largest training centre of its kind in Europe, ICL will first of all ground you in computer technology and education training, and then ask you to train customer engineers to such a standard that they will be able to maintain computers at optimum operational specification.

We are looking for a thorough electronics competence and the ability to put across your own first-rate knowledge. Ideally, you will have an HNC or Forces' training in electronic engineering and at least three years'
experience, preferably in digital electronics or computers.

You will be based at the training centres in either Letchworth, Herts or Feltham, Middlesex. Salaries will be good. ICL depends on talent and rewards it accordingly. You will be encouraged and expected to progress; your development could be throughout the ICL group.

For an application form, write to A . E. Turner, quoting reference WW463C at International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW15 2TE.

International Computers
think computers-think ICL

## UNIVERSITY OF BATH School of Engineering

Applications are invited from suitably qualified persons for a post in charge of the instrumentation service (research and teaching) in the School.
Research covers a wide range of activities in the fields of Applied Mechanics. Aerodynamics, IC Engines and Turbomachinery, Structures, Production and Fluid Power Systems, supported by up to date electronic equipment currently valued at approximately $£ 150,000$ including an on-line computing facility.
The undergraduate course involves a final year project which generally requires electronic support.
Experience in the fields of computer interfacing, data acquisition systems and general electronic instrumentation would be most relevant.
The salary offered for this appointment will be at a point in a range not exceeding $£ 3,200$.
Applications giving full particulars of age, experience, qualifications and prosent salary together with the names of three referees shouid be sent to Registrar ( 5 ), The University, Bath, BAZ 7AY, quoting reference 73/112.
[2979

## BERRY'S RADIO

has vacancies for
(a) SENIOR SALESMEN
(b) SENIOR ENGINEERS TOP RATES OF PAY
5-DAY WEEK - PERMANENCY
Apply: Mr. K. (405-6231)
319 High Holborn, London WC1

UNIVERSITY COLLEGE LONDON


The Audio Visual Unit provides audiovisual equipment, facilities and expertise to all departments of the College, and operates a television studio equipped with Link cameras.

## Senior Audio Visual

## Technician (Grade 5)

He will have overall responsibility for the running of the Unit, carry out firstline servicing of all equipment, participate in the design and presentation of television programmes and be responsible for the technical aspects of this work Salary: in the range $£ 2,056-£ 2.416$ including London Weighting.

## Audio Visual Technician <br> (Grade 2B)

Duties will include operation of V.T.R's. T.V. cameras, sound mixers, audio tape recorders. film and slide proiectors; routine maintenance. Salary: range $£ 1,591-£ 1,846$ including London Weighting.
ing. from: Personnel Officer (Technical Staff), (WW), University College London. Gower Street, WC1E 6BT.
[2963

## University of Surrey Television Service <br> SENIOR ENGINEER

(Technician Grade 5 £1,881-f2,241)
The Television Service is an integral part of the Audio Visual Aids Unit which provides services for teaching and research illustration throughout the University. The television equipment includes a most versatile mobile control room handling three Plumbicon studio cameras and five ot rers. The Senior Engineer will be responsible to the Chief Engineer/Operations Manager and will assist with the operation and maintenance of all CCTV equipment including IVC video-tape recorders and Philips Plumbicon cameras.
The minimum qualification is HNC in electronics or electrical engineering or an appropriate training in the BBC or a programme company. Experience in educational television is desirable.
Applications are invited immediately on forms which may be obtained from the Assistant Secretary (Personnel), University of Surrey, Guildford, Surrey. Previous applicants need not apply. Tel: Guildford 71281 Ext. 452.
Closing date: 3 September 1973. 12955

## ELECTRONICS ENGINEER

Qualified Engineer required for interesting work on a wide range of devices and systems used by and for blind people.

A sound basic knowledge of analogue and digital techniques, together with several years experience in a field of design. development and maintenance is necessary. Some experience of light electro-mechanical devices would be an advantage
Apply: Personnel Officer. The Royal National Institute for the Blind. 224 Gt . Portland Street, London WIN 6AA
[ 2953

## Senior and Junior Electronic Engineers

Vacancies exist in our new Design Laboratories at Leicester for the following:
Engineers for Tape (cassette and cart ridge) equipment, mainly 'in car' entertainment.

Engineers for Audio and radio equipment for the domestic market.
Electro-mechanical Design Draughtsmen.
Applicants will have several years experience of circuit design, preferably in the fields of audio equipment or electronic instrumentation and possess a degree or H.N.C. qualification or equivalent.

Salaries for the above posts are negotiable and will reflect the importance attached to the positions. Applicants are invited to write or telephone for an application form to:

The Personnel Officer,
Decca Radio \& Television
Golf Course Lane,
Hinckley Road,
Leicester.
Tel: 0533872101.
DERCR

## SERVICE ENGINEER

 (ELECTRONICS)Required for a Company situated in a modern new factory in Welwyn Garden City, Hertfordshire. The position involving a variety of interesting duties associated with the servicing of electronic medical equipment.
Applicants should have some previous experience in electronic servicing and full product training will be given.
A company car will be provided which may be used for private use.
Write or telephone the following:-
Personnel Manager,
Devices Instruments Ltd.,
Hyde Way,
Welwyn Garden City,
Herts.
Tel: 28511 Ext. 18.

## APPOINTMENTS

# RIDIO OFHERE wauld you came rehare for 2 , 3010 a year? 

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41 -hour week of shift duties - with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. Yọu have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. L51

## SPANISH COMMUNICATIONS EQUIPMENT MANUFACTURER

Applications are invited from qualified design engineers specialized on
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

## EAST AFRICAN POST \& TELECOMMUNICATIONS ASSISTANT ENGINEERS

Required to undertake appropriate duties in the following fields based in Kenya or Tanzania:-
(1) Radio Construction and Surveys
(2) Radio Maintenance UHF/VHF Systems
(3) Radio Construction Microwave Systems (Clerks and Works)

Candidates, over 25 years, must possess the City \& Guilds Intermediate Certificate in Telecommunications and have at least 7 years' relevant experience.
Salary will be in the range of $£ 2310$ to $\mathbf{£ 3 1 1 0 \text { . A generous }}$ gratuity is also payable. Because of lower rates of Income Tax in Kenya, for example, the gross emoluments are roughly equivalent to a UK salary of 3450 to 4250 for a single man and $£ 3600$ to $£ 4650$ for a married man with 2 children.

Other benefits include: Subsidised Accommodation; Education Allowances; Free Family Passages; Holiday Visit Passages; Appointment Grant $£ 100-£ 200$ Normally Payable; 24 Month Tour.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.

For further particulars you should apply giving brief details of experience to:

## crown agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/730669/WF.


THEATRE PROJECTS SOUND LIMITED a member company of the Theatre Projects Group which operates a recording studio, large sound equipment hire and consultancy business requires

## AUDIO ENGINEER

The successful applicañt will take responsibility for the maintenance and development of equipment in the studio and dubbing complex and in appropriate subject is essential.
Salary will be in the range of $\in 1,900$ depending on experience in this field.

Apply in writing to:
THEATRE PROIECTS SOUND LIMITED
10 LONG ACRE, LONDON, W.C. 2 or telephone $01.836 \quad 1168$

## UNIVERSITY OF BATH

Educational Services Unit

## TECHNICIAN

## Closed Circuit Television

The successful applicant for this position will service the television and film equipment in the service the television and film equipment in the in productions. Predious experience in television servicing and qualifications to O.N.C. or equivalent is desirable.

The starting salary wilf be within the range f1,416-61,794 according to qualifications and experience.

Application forms and further particulars are available from The Registrar (S), University bath, Claverton Down, Bath BAZ should be returned as soon as possible quotin reference 73/99.

## The best young Engineers have computers in mind. Are you aged 21 to 25?

Do you want a flying start to a career in computers? Here is your chance. Train as a Field Engineer with ICL, Europe's leading computer manufacturer

## Training

You will be given thorough training on ICL electronic equipment leading to computers.

## Qualifications

You should be aged between 21 and 25 and be on your final year or have attained City \& Guilds electronic certificates or an HNC in electronics. You should have completed an electrical engineering apprenticeship or have at least two years' industrial experience on electronics.
Job satisfaction
As an ICIL Field Engineer you have a high degree of responsibility for a customer's installation. You need technical expertise, tact and personality. So you are important as a representative of ICL.

There are opportunities of starting with us in several areas in the UK. Get the full details now by completing and returning this coupon today.

To: Mr A E Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW15 2TQ.
Please send me an application form for job openings in Field Engineering.

Name
Address

International Computers

## Microwave Engineers

Here is a unique opportunity to join one of the leading British Microwave Laboratories in the U.K. Due to increasing work load we require qualified engineers with up to three years relevant experience to work in the following areas:
$\square$ Aerial and Feeder System Design. Filters and Multiplexers.
$\square$ Semi-conductor applications.
$\square$ Microwave integrated circuits and sub systems.
We have a well equipped laboratory, which uses network analyser techniques, swept-frequency test benches and computeraided design. In addition we have a fully equipped aerial site capable of dealing with a wide range of aerial problems from V.H.F. to Microwave.

Some vacancies also exist for new graduates.

Write or telephone, giving brief details of experience to: Mr. J. Morrison, Personnel Officer, EMI Electronics Ltd., Victoria Road, FELTHAM, Middx.
Tel. or-890 3600 Extension 44.

## MILLBANK ELECTRONICS GROUP

BELLBROOK ESTATE, UCKFIELD, SUSSEX TN22 1PS
Tel: Uckfield (0825) 4166

## DEVELOPMENT ENGINEER

Preferably with two to three years experience in the development of audio equipment. Must be capable of working on own initiative.

## TEST ENGINEER

Experienced in the testing and servicing of audio power amplifiers, mixers and associated equipment.

## INVENTORY CO-ORDINATOR

This position would be suitable for a person interested in component buying, stock control and stores handling. Previous experience in the latter desirable.
$\star$ Salaries for the above Staff positions are negotiable depending on qualifications and experience.

ALL STAFF POSITIONS WITHIN THE GROUP CARRY FULL BENEFITS INCLUDING MEMBERSHIP OF PRIVATE MEDICAL SCHEME.

If you are interested please apply in writing enclosing curriculum vitae to Mr. Keith Goodsell-Production Manager.

## The European Organisation for the Safety of Air Navigation EUROCONTROL <br> SEEKS <br> Computer and Display Systems Maintenance Engineers

for the new Air Traffic Control Centre at Karisruhe (Germany)
Qualifications and Experience: H.N.C. or equivalent with experience in the field of digital electronics.
Language ability: Candidates must have a good command of English and a basic knowledge of German. Some French and/or Dutch would be an advantage.
Age: 25 to 40 years.
The posts will involve shift work.
Salary, allowances and social security arrangements correspond to those of the European Communities.
Further particulars and application forms may be obtained from:

```
EUROCONTROL
Rue de la Loi, 72, 1040 Brussels, BELGIUM
```


## Radio and Electronic Interference



Internationally recognised for its work on electromagnetic interference problems, the ERA Industrial Applications Depart ment undertakes an extensive programme of contract research. providing clients with, among other services, a wide variety of interference research and measurement facilities. The current research programme covers investigations on a wide range of electromagnetic interference topics but is primarily concerned with the interference characteristics of electrical and electronic equipment and systems from avionics to computers, and techniques of measurement.

We are now seeking to strengthen the existing team by the appointment of at least two additional engineers or physicists

The successful applicants will possess a relevant degree or HNC with emphasis on electronic engineering or telecommuni cations. They must have a practical approach to problems and have an interest in, and preferably experience of, r.f. techniques. However those recently qualified with an interest in radio, electronics or communication will be considered. We will be looking for evidence of ability to write clear, concise technical reports.

Commencing salary will be assessed primarily on experience. All salaries are reviewed annually to match performance and ERA offers full scope for career development in a rapidly expanding field.
Company benefits include a contributory pension scheme, and re-location assistance where applicable
Please write to, or telephone for application form:
Personnel Manager, Electrical Research Association, Cleeve
Road, Leatherhead, Surrey. Leatherhead 74151
2967

## cadar

The company specialise in the design and production of sound control equipment for the recording industries.

With the continued expansion of the company, vacancies arise for the following:

## SENIOR TEST ENGINEER TEST ENGINEERS

Applicants should have a theoretical knowledge of electronics and/or experience in studio engineering techniques and practices.

It would be preferable that the Senior Test Engineer has had studio experience.

Salaries by negotiation and to be commensurate with that of the position.

Apply to:

## Cadac (London) Ltd., <br> Lea Industrial Estate, Batford, harpenden Herts.

Tel: Harpenden (STD 05827) 64698

## APPOINTMENTS

## T.V.

## Studio Engineer

The Road Transport Industry Training Board has in operation at its Wembley Headquarters, a three camera broadcast-auality colour television studio with full telecine and video recording facilities. which includes RCA TR 50 and $1^{\prime \prime}$ Helical Scan systems. We now wish to appoint an experienced studio engineer to join a small team working on the production of training and educational television programmes.

The applicant should not be less than 24 years of age and have a good working knowledge of the above equipment. Salary will be negotiable depending on qualifications and experience. Three weeks holiday, contributory pension and life assurance scheme.

Please send all relevant personal history stating how the above requirements are met, and quoting reference ZH.319, to:

Mrs. H. M. Brown, Personnel Manager,
Road Transport Industry Training Board,
Capitol House, Empire Way,
Wembley, Middlesex, HA9 ONG.


## Installation Technician

## Capital Drojects Department London c. 22000

The BBC Studio Capital Projects Department has a vacancy for an Installation Technician. The successful candidate will be employed on the provision of Television or Sound originating or recording equipment for both Studio and outside use.
He will assist Engineers in the preparation and requisitioning of schedules of equipment, preparation of installation information and the on site supervision, testing and commissioning of installations. An important part of his duties will consist of liaison with clerks-of-works, contractors, foremen, etc.
Applicants should have some years' experience of electronic test equipment, workshop and drawing office practice. An academic training to O.N.C. Ievel or equivalent qualification is desirable as is relevant experience of the manufacture, operation and maintenance of video, audio, recording or communications equipment:

The post is based in London but some travelling is required Salary, according to experience, will be initially between $£ 1908$ and $£ 2118$, rising by annual increments to a maximum of $£ 2805$. These salaries are under review.
Requests for application forms to The Engineering Recruitment Officer, B BC, Broadcasting House, London W1A1AA, quoting reference no. 73.E.4164/WW and enclosing addressed foolscap envelope. Closing date for completed application forms 14 days after publication.

# OPPORTUNITIES IN DESIGN 

Electronic Design Engineers

Cambridge Scientific Instruments require an engineer to join their electronics development group. His job will be the design and development of circuitry to be used in conjunction with electron optical instruments for which the Company is world famous. Due to the complex nature of these instruments. the scope of the work is varied. offering opportunities to work with many types of circuitry
A knowledge of the application of digital and analogue integrated circuits is required and experience is desirable.
A competitive salary is offered dependent upon age and experience.
Applications should be addressed to:
D. E. Pickett. Personnel Manager

Cambridge Scientific Instruments Limited,
Chesterton Road, Cambridge CB4 3AW.
Tel: 61199

## SPANISH FIRM NEAR MADRID

is looking for design and development engineers with a minimum of three years of experience in the field of P.C.M. equipment to be used by the telephone industry.
Areas of interest are encoders and decoders. P.C.M. multiplexers and R.F. equipment to transmit P.C.M. data.
Salary open.

Send résumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

## Are you interested in <br> Communal Aerial Television Systems Work? Then read on further......

Due to continued expansion, EMI Service, part of EMI's Electronics and Industrial Operations group of Companies, has the following vacancies for engineers at Hayes, Middlesex.

## SERVICE ENGINEERS

required for bench and field work on Communal Television Aerial equipment Must be capable of diagnosiñg faults and repairing wide range of aerial amplifying and distribution equipment.

## SYSTEMS PLANNING

ENGINEERS
for the planning of Communal Television Aerial installations. Previous experience required to be capable of producing practical plans from building details and subsequently setting to work after installation.

Attractive starting salaries. Contributory Pension Scheme. Assistance with removal expenses in appropriate cases.

## WANT TO TAKE THINGS

 FURTHER then write or telephone for an application form to:R. N. L. Black, Personnel Depart-
ment, EMILimited, 135 Blyth Road, Hayes, Middlesex. or-573 3888, Ext 2887.

## Airline Radio Technicians

We require fully-trained and high-skilled Radio Technicians to work on the repair and overhaul of radio/radar equipment at Heathrow Airport (London). A high standard of theoretical knowledge is essential and at least 5 years' experience in radio maintenance. An approved apprenticeship is desirable.
Starting pay is $£ 36.74$ per week, plus shift allowance.
Additional benefits include a contributory pension scheme, sports and social facilities and opportunities for concessional holiday air travel worldwide.
Applications giving details of age and experience, quoting reference $68 / \mathrm{WW} / \mathrm{BW}$ to:
Manager Selection Services
BOAC
PO Box 10
Heathrow Airport (London)
Hounslow TW6 2JA

## University College Hospital Medical School.

Department of Clinical Pharmacology, Neuropsychology \& Metabolism Research Unit,
Friern Hospital, London, N.11.

## ELECTRONIC TECHNICIAN

to assist in the setting-up and subsequent running of a new research laboratory. Some experience with recorders, E.C.G., E.E.G. and data processing equip. ment desirable.
Applicants should have a minimum of O.N.C. in electrical or electronic engineering or a similar equivalent qualification.
The salary is on the Whitley Council scale according to age and experience, commencing at $£ 1335+$ London Weighting.
Applications before 31 st August.
$[2906$

FIELD SERVICE ENGINEERS
You've experience of things electro-mechanical, you're properly trained, you work in London, and they still won't pay you more than £2,000 p.a
Our clients will!
Ring David Hilton 01-637 0781
ATA SELECTION
209b Gt. Portland Street
London W.I.
[2928

ST. BARTHOLOMEW'S HOSPITAL LONDON, E.C. 1

Applications are invited from PHYSICISTS or
ELECTRONIC ENGINEERS
to work as a
RESEARCH ASSISTANT
in the
DEPARTMENT of NEUROLOGY
The successful applicant will be expected to develop and assist in the evaluation of further instrumentation required for research into voluntary control of muscle action. There will be close liaison with the Department of Medical Electronics and the research work undertaken may be considered for a higher degree.
The appointment will be on the scale (1,335-E1,761 plus $£ 126$ London Weighting. Applications with the names of two referees to Personnel Department, quoting reference R/3679/WW

## THE STOCK EXCHANGE

 require an additional
## TELEVISION SERVICE ENGINEER

to maintain information display systems.
Applicants must possess appropriate television and radio servicing certificates and must be able to prove their ability as competent Service Engineers by a suitable trade test.
An attractive starting salary is offered. In addition, there is a non-contributory pension scheme, 3 weeks holiday in a full year and Luncheon Voucehers.
Applications giving brief details of qualifications and experience should be sent to:

## Personnel Officer,

Council of The Stock Exchange, The Stock Exchange, London EC2N 1HP

## UNIVERSITY OF LIVERPOOL SCHOOL OF EDUCATION <br> TECHNICIAN

## (AVA and CCTV)

Applications are invited for the above post to have overall responsibility for the AA and CCTV provision in the School.
Applicants should be qualified and experienced in the fields of electronics and Audio Visual Aids and be capable of working on their own initiative and supervising other technicians.
This is a new post with interesting possibilities of developing new forms of work in the field of Educational Technology.
Salary within a range up to $\mathbf{\$ 2 , 2 4 1}$ per annum according to qualifications and experience. Further particulars and application forms may be obtained from the Registrar. The University, P.O Box 147, Liverpool L69 3BX. Quote ref RV/WW/80410.

## HAMILTON COLLEGE OF

 EDUCATION
## require a <br> TELEVISION ENGINEER (COLOUR UNIT)

to join a team engaged in the operation, maintenance and development of the College service. At present the service consists of a two channel colour mobile control room with distribution facilities within the College.
Experience in video tape recorders and/ or colour cameras and monitors an advantage.
Normal colour vision and driving licence essential. Annual leave will be 4 weeks.
Salary will be in the range $£ 1530-£ 2100$ (N.J.C. Grade IV, V and VI) depending on qualifications and experience. (Salary scales are at present under review)
Further information and application forms may be obtained from the College Secretary with whom completed applications must be lodged not later than Friday, September 7th, 1973.
College of Education,
Bothwell Road, Hamilton, Lanarkshire, ML3 OBD.

# Electronics Test Engineers 

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency Armed service experience of such work would be perfectly acceptable. Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.

These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to :

Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW.
Telephone: Cambridge 51351
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk.
Telephone: Haverhill 4422

## WORK AS A RADIO TECHNICIAN

## ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently.
We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: £1415 to £1715 according to age from 21 to 25 , to a maximum $£ 2025$ p.a. (plus a London Weighting Allowance of $£ 175$ or £90 p.a.).

Promotion to Telecommunication Technical Officer will bring you more.

For details of this worthwhile and unusual job write to: Metropolitan Police, Room 733 (RT/WW), New Scotland Yard, Broadway, London, SW1H OBG, or telephone 01-230 3122 (24-hour service).

## Applications Engineer

## Telecommunications

An unusually interesting new appointment is available with this growing international company for a young graduate engineer, familiar with telecommunications practice generally and in particular with cables and accessories used in telephone and telegraph systems. Design experience with a cable manufacturer and/or the Post Office would be ideal.
He will be based in the Company's newly formed Communications Products laboratory at Harlow, Essex There will be considerable European involvement, including some travel, and knowledge of a second European language would be an asset.
His prime function will be to reconcile the Company's innovations in the telecommunications field with individual national specifications in Europe, in order to provide acceptable systems to users (primarily telephone authorities). Having interpreted customer needs he will devise and apply appropriate tests and where necessary adapt or modify products to meet them.
Working largely without supervision, he will need to think clearly and to express himself fluently -a practical man who can prepare engineering drawings and fit readily into a well experienced and professional European team
There will be a good starting salary and a full range of employee benefits. Opportunities for career development are first class in this highly diversified organisation. Write, in confidence, with concise details to: D. J. Stuckey (Ref: GE)

3M United Kingdom Limited,
3M House,
Wigmore Street,
London W1A 1ET.


## RADIO OFFICERS

## DO YOU HAVE PMG I PMG II MPT 2 YEARS OPERATING EXPERIENCE

POSSESSION OF ONE OF THESE QUALIFIES YOU FOR CONSIDERATION FOR A RADIO OFFICER POST WITH COMPOSITE SIGNALS ORGANISATION.

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on a scale rising to $£ 2,527$ pa; commencing salary according to age - 25 years and over $£ 1807$ pa. During training salary also by age, 25 and over $£ 1350$ pa with free accommodation.
The future holds good opportunities for established status, service overseas and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

## Full details from

Recruitment Officer, Government Communications Headquarters, Room A/1105 Priors Road, Oakley, Cheltenham, Glos GL52 5AJ, Telephone: Cheltenham 21491 Ext 2270

## Victoria Hospital,

 Blackpool
## Medical Physics Technician Grade III

Required to work on his own initiative but as a member of the Regional Physics Department and in collaboration with the Enginear's Department and Clinical Departments at Victoria Hospital, Blackpool.

This is a new post and is backed by an experienced team of Technicians together with experienced team of Technicians together with Physics Laboratory at Christie Hospital, Manchester.

Duties will include the maintenance and servicing of patient orientated electronic and electrômedical equinment to ensure correct functioning and patient safety and will initially focus on equipment in the Departments of Cardio-Thoracic Surgery and Cardiology. There is soope for the expansion of duties and depending on the interests and capavelopment work. There is a possibility of eventful promotion to a higher grade.

Applicants should hold O.N.C.. H.N.C. on a higher quadification together with a minimum of either three years experience as a Medical Physies Technician IV or $V$ or
six years televant technical experience

Normally the starting salary will be $£ 1.602$ rising by seven annual increments to $£ 2.076$ (Phase II inerease pending).

Application form and job description from:HOSPITAL SECRETARY,
VICTORIA HOSPITAL.
WHINNEY HEYS ROAD.
BLACKPOOL, FY3 8NR,
Closing date 24th August, 1973.


Opportunities in the ELECTRONICS FIELD
Men with analogue or digital qualifications/ experience seeking higher paid posts in TEST - SERVICE - DESIGN - SALES

Phone: Roger Pearce 01-629 7306 Ref. WW
NEWMAN APPOINTMENTS 360 Oxford Street, W. 1.

## UNIVERSITY COLLEGE CARDIFF

Technician required for

## ELECTRON MUSIC STUDIO

in the Department of Physics. Salary £1,728-£2,028 p.a.
Applications to the Registrar, University College, P.O. Box 78, Cardiff, CF1 1XL, no later than 30 September 1973. Please quote 0882.

## CHARING CROSS HOSPITAL (FULHAM)

Fulham Palace Rd., Hammersmith W6

## SENIOR PHYSIOLOGICAL TECHNICIAN

(Salary on scale $£ 1,500-£ 1,953$ p.a. inclusive of London Weighting)

## PHYSIOLOGICAL TECHNICIAN

(Salary on scale $\mathbf{~} 1,236-1,689$ p.a. inclusive of London Weighting)
required for Department of Patient Monitoring currently being established. The posts will be primarily concerned with intensive care patient monitoring, but the successful applicants will also be expected to work in the Department of Cardiology, E.E.G. and Respirology. At least 4 'O' levels required together with relevant experience, or an O.N.C. in Physiological Measurement or Equipment.
Applications with full details of age, experience, and the names and addresses of two referees, to Miss Matthews, Personnel Department, quoting ref. 810.
[2936

## London Borough of Hounslow

 Education Department
## TECHNICIAN

full-time, required at Heston School for the Deaf, Vicarage Farm Road, Heston, to maintain teaching aids for the deaf in nine deaf units in other schools in the Borough and one at Hillingdon. The successful candidate must hold a current driving licence. Salary on grade T. 4 £1,635-£1,908. Application forms from Director of Education, 88 Lampton Road, Hounslow, Middlesex. Closing date: 14th September, 1973. Tel.: $01-5707728$, Ext. 535.
[2909

## BERKSHIRE COLLEGE OF EDUCATION <br> AUDIO TECHNCIAN

(Man or Woman)
to work in new Resources Centre. The person appointed should have an interest in sound recording and operation of tape recorders and should be able to carry out first line service. A general knowledge of language laboratories would be an advantage but instruction will be given. Salary Technical Grade III viz. £1311-£1530 p.a. Application forms together with further particulars obtainable from the Senior Administration Officer, Berkshire College of Education, Bulmershe Court, Woodlands Avenue, Earley, Reading, RG6 1HY. To be returned as soon as possible.

MARCONI INSTRUMENTS LIMITED
ELECTRONIC TECHNICIANS
are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades but into other technical and supervisory posts within the Company at Luton and St. Albans,

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW178, for application form to

Mr. M. Leavens, Works Manager Telephone: Luton 33866, or Mr P Elsip. Personnel Officer Marconi Instruments Ltd
Longacres, St. Albans. Herts
Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

## SERVICE REPRESENTATIVE

## FOR NUCLEONIC INSTRUMENTATION

As a result of continued growth and internal movement of personnel, Tracerlab, manufacturer of Automatic Liquid and Gamma Scintillation Spectrometers etc,, need further service representatives.

We require self-motivated men who can work independently and with initiative.
Experience with digital electronics is essential, age is unlikely to exceed 35 and a background in physics and chemistry might be an advantage.

The Company offers negotiable salary, superannuation scheme, an excellent incentive bonus that encourages close co-operation in sales and a company car.

## MAKE THE CHANGE NOW

contact:
SALES MANAGER,
ICN TRACERLAB,
2, RIVERDENE INDUSTRIAL ESTATE,
MOLESEY ROAD, HERSHAM, SURREY.
Tel: Walton on Thames 44441

## BOTSWANA ASSISTANT ENGINEERS

The following vacancies exist in the Posts \& Telerommunications Department:-

## GRADE I or II

Officers are required to instal open-wire carrier and VFT systems, VHF/UHF and micro-wave systems up to 300 channel capacity at 2 GHz .
Candidates for GRADE I posts must possess the City and Guilds Telecommunications Final Certificate and for GRADE II, the Intermediate Certificate, or equivalent qualifications. For either grade, candidates must be aged 25-45 years and have had five years' experience, excluding training, of the above mentioned equipment. Experience of single channel HF and VHF systems is also required.
(Reference M2K/720470/WF)

## GRADE II

An officer is required to establish a new radio workshop, repairing a wide range of $\mathrm{HF} / \mathrm{VHF}$ radio communications equipment.
Candidates, $30-45$ years, must possess the City and Guilds Telecommunications intermediate Certificate, have had five years' relevant experience, excluding training, and be capable of undertaking minor radio equipment modification, installation and aerial work. Experience with Plessey stores, Racal and Pye equipment and some knowledge of radio stores procedures would be an advantage.
(M2K/730429/WF)

Salary for the GRADE 1 post will be in the range of $£ 2230$ to $E 3190$ according to experience. A substantiai Gratuity is payable on completion of engagement. Because of lower rates of Income Tax in Botswana the gross emoluments are roughly equivalent to a UK salary of $£ 3300$ to $£ 4400$ for a single man and $£ 3450$ to $£ 4750$ for a married man with 2 children.
Similarly salary for the GRADE \| posts will be in the range of $£ 1860$ to $£ 2810$ according to experience roughly equivalent to a UK salary of $£ 2750$ to $£ 3900$ for a single man and $£ 2800$ to $£ 4100$ for a married man with 2 children.
Other benefits include:- Subsidised Accommodation; Free Family Passages; Education Allowances; Holiday Visit Passages; Appointment Grant E100-200 Normally Payable; 24-36 Month Tour.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Devlcpment Administration of the Foreign and Commonwealth Office.

For further particulars you should apply, giving brief details of experience to:
froun agents

M Division, 4 Millbank, London SWIP 3JD, quoting appropriate reference number

## ELECTRONICS ENGINEER

Eequired for interesting development work on prototype circuit layouts, wiring, testing, and fault finding. Experience of modern integrated circuits, especially digital, is essential.
The work is varied and working condicions are excellent in a modern laboratory. A good salary is offered and there is a pension scheme with life assurance cover.

Apply in writing to
Managing Director/TM.,
L. OERTLING LTD.,

CRAY VALLEY WORKS, St, MARY CRAY, ORPINGTON, KENT. BR5 2Ha

## X-RAY FIELD ENGINEERS

Our current expansion programme now calls for experienced electro-mechanical engineers to support our existing field staff. They will become involved in a variety of interesting activities covering the installation, service and maintenance of diagnostic medical x-ray equipment in hospitals.
Progressive opportunities exist in a number of our branches including London, Cardiff, Birmingham, Ipswich, High Wycombe, Boreham wood, South East England and also overseas.
Applicants should be qualified to ONC or City \& Guilds equivalent and previous experience in any of the following-X-ray engineering, close circuit television, electronics or logic circuitry-would be a distinct advantage.
Good salaries and fringe benefits will be offered to the successful applicants and a company car will be provided as soon as an acceptable stage of proficiency in our product is reached.
For further details write or telephone, giving details of the area(s) in which you are interested, to :

> P. B. Blackmore,

GEC MEDICAL EQUIPMENT LTD.,
East Lane, Wembley, Middx. Tel: 01-904 1288.

## London Borough of Brent Amenities and Works Department

## QUALIFIED TRADESMEN

 for
## AURAL and VISUAL AIDS SECTION

## of

Engineering Services Division at Alperton, Wembley
Experience essential in the installation, maintenance and repair of radios, projectors, tape recorders, etc. in Educational Establishments. Wages $£ 30.80$ per 5 -day/40-hour week.
Apply to:
Engineering Services Manager, Alperton Lane, Wembley, Middlesex, HA,O IDZ Telephone 01-998 3456

## THE TAPE DUPLICATING CO. (GREAT BRITAIN) LIMITED a subsidiary of METROSOUND

Manufacturers of pre-recorded musicassettes and eight-track cartridges, requires at its Waltham Abbey, Essex, plant, an Engineer with experience in electronics and mechanical equipment to control the maintenance of a wide range of machinery involved in the high speed duplication and assembly of pre-recorded tapes.
Salary will be negotiable, commensurate with age and experience, plus fringe benefits.
Please write, giving personal details and previous experience, to:-

## Personnel Officer,

Metrosound Audio Products Limited,
Audio Works, Cartersfield Road,
Waltham Abbey, Essex, EN9 IIF.
[2907

## QUEEN ELIZABETH COLLEGE

 (University of London)
## ELECTRONICS ENGINEER

required for the design, development and maintenance of electronic equipment.
Applicants will be expected to have H.N.C. or equivalent qualification and several years experience in both linear and digital electronic circuits and systems.
Salary scale (Grade 5 Technician), £2,056- $£ 2,416$ including London Weighting.
Application forms obtainable from Mr. R. E. Webb, Electronics Unit, Queen Elizabeth College, Campden Hill Road, London W8 7AH.

## SERVICE ENGINEER

## LKB INSTRUMENTS LTD.

requires an additional engineer to be resident in the South London, S.E. England area for field servicing of their Scientific and Technical instruments installed in Academic, Medical and Industrial Laboratories.
The successful applicant will possess a sound basic knowledge of modern electronics and will preferably have some field experience, although this is not essential.
The Company is internationally renowned for the quality of its products and offers excellent working conditions including company car, pension scheme, superannuation and profit sharing bonus scheme,

Write for application form to:
The Service Manager,
LKB Instruments Limited,
232 Addington Road,
South Croydon, Surrey, CR2 8YD

## Electronic/Technician Engineer

A responsible position is available within the Company for a person to take charge and supervise a small but expanding group of technicians engaged in the servicing and maintenance of a wide range of modern electronic equipment including portable radio, T.V., Cassette recorders, digital calculators, etc.

A working knowledge of the principles of transistor and integrated circuits pertinent to the above apparatus is required and qualifications to HNC, HND, T.Eng, Final C \& G or equivalent is desirable. However, academic qualifications are not essential and proven practical ability is regarded as more important for this position where an active participation in the work is necessary.

A salary in the region of $£ 2,500$ is envisaged for this position coupled with excellent conditions and benefits of the Company situated at Audenshaw, near Manchester.
Write or telephone for applicatioin form from the Personnel Department.

JONES SEWING MACHINE CO. LTD.
Shepley Street, Audenshaw, Nr. Manchester

## Components Sales Engineer

## Car provided

Our outstanding success in the development and production of advanced test and measurement instrumentation, has enabled us to effect a degree of parallel diversification and to broach the rapid-growth area of the high-quality component market.
Consequently, we need a Sales Engineer of sufficient calibre to sell our range of RF microwave and Opto electronic components to OEM users.
He'll be covering just about one quarter of the UK, making regular personal visits to major customers and promoting both company and products through lectures, seminars, and exhibitions. He will assist the Distributor Sales force by training and joint visits, and will himself attend training programmes in Europe and the USA.
Aged between 25 and 35 with at least an HNC/HND in Electronic Engineering, he should have RF, microwave, component or semi-conductor sales/marketing experience. Previous involvement in technical sales to the TV and Radio industry would also be ideal. His experience and ability should make him a self starter capable of managing his area with minimum supervision.
We offer an excellent starting salary, a car, annual cash bonuses and other worthwhile benefits. We will also assist with removal expenses where it is necessary to re-locate.
Please ring Maureen Rowley, Personnel Administrator on
Slough 3562I for an application form.
HEWLETT PACKARD
224 Bath Road, Slough, Bucks.

## SERVICE ENGINEER EXTRAORDINARY

We are seeking an unusual mixture to offer an exciting challenge, good prospects and pay. The service engineer sought should have both digital and analogue experience, mechanical aptitude and if possible knowiedge of nuclear physics. He is to be based in the South East, responsible for after-sales service of liquid scintillation equipment.
Please reply in confidence to:
MANAGING DIRECTOR
INTERTECHNIQUE LIMITED
COTTRELL HOUSE
53-63 WEMBLEY HILL ROAD, WEMBLEY HA9 8BE

## ANTARCTIC EXPEDITION <br> WIRELESS OPERATOR MECHANICS

## required for British stations in Antarctica.

Applicants, preferably single and aged 22-30, should have experience of maintaining and operating SSB transmitters, receivers. Teleprinter experience desirable. Salary from $£ 1442$ per annum, all found overseas. Low income tax. Bonus for satisfactory service.
Applications to:
British Antarctic Survey, 30 Gillingham Street, LONDON, SW1V 1HY.
(01) 8343687.

## NEWCASTLE REGIONAL HOSPITAL BOARD

Regional Engineer's Electronics Section
Applications are invited for the following newly created posts in this increasingly important section of the Regional Engineer's Department.

## Main Grade Electronic Engineer

This post embraces electronic design/development work connected with the hospital building programme, Technical evaluation of electro-medical equipment, and calibration/maintenance of electronic installations, and services in hospitals throughout the five Northern Counties of England. The successful applicant will be expected to exercise initiative, whilst working as a member of a team of Electronic Engineers.
A wide experience in the field of applied electronics is essential, preferably including medical or clinical laboratory equipment, together with administrative ability.
QUALIFICATIONS: Chartered Electronic Engineer, or Degree in Electronic Engineering/Physical Electronics.
SALARY
According to age, qualifications and experience, will be in the scale: $£ 1866-£ 3760$

## II Electronic Technical Assistants

Two posts, which will be based at Newcastle upon Tyne, will involve electronic design and development work connected with the
hospital buildings programme, and participation in electronic maintenance/ calibration in hospitals.
Applicants must have wide experience in the practical applications of electronics.

QUALIFICATIONS: Grade I. E.R.E, or HND/HNC in Electronic/Engineering or Physical Electronics
SALARY:
According to age, qualifications and experience, will be in the scale:

Technical Assistant Grade 1-£2379-£2892.
Applications, naming three referees, including details of age, present salary, education, experience etc., and indicating which post applied for should be addressed to the Secretary, Newcastle Regional Hospita! Board, Benfield Road, Newcastle upon Tyne, NE6 4PY by 31st August.

ELECTROSONIC LTD., GREENWICH

## PROJECT ENGINEER

SALARY $£ 1,800-£ 2,200$
A vacancy exists for a project engineer to work on lighting control projects. Some experience of systems engineering and installation work together with an understanding of power distribution and switching essential.
Electrosonic is a medium sized company specialising in world wide commercial lighting, audio and audio-
visual systems. visual systems.
Candidates should preferably hold H.N.C. and be within the $\mathbf{2 5 - 3 5}$ age group.
Apply: ELECTROSONIC LTD.,
TELEPHONE: O1 OAD, CHARLTON, LONDON SET alt.
TELEPHONE: 01-855 1101

300KS

## PRACTICAL BOOKS

## Worid Radio and TV Handbook 1973. Intergrated Circuit Pocketbook, 282

Electranic Englneers Ref. Book, 1532 pp.
Electronics Pocketbook, 314 pp . Illus. pp . Illus. Foundations of Wireless and Electronics, 552 pp
110 Intergrated Circ. Proj. for the Home 110 Semiconductorc. Proj. for the Home Cons. Intergrated Circui4 Engineering, Ho6 pp. Illus. Intergatad Circuit SYstems, 236 pp . Illus. Aerials (P3) TV and FM Receiving Aerials, 112 pp . Illus Radio Valves, 134 pp . Illus Stereo Handbook, 150 pp . liius
Transistors in Logicai Circuits, 132 pp . Iilus...
Practical Oscilloscope Handbook Principles of Feedback Design, 2118 pp . Vilus Principles of Transistor Circuits, 318 pp . Illus. Ques. \& Ans. on Electronics, 112 pp Illus
Ques. \& Ans. On Transistors, 96 pp . Illus. Radio \& Electronic Laboratory Handbook, 628 pp Semiconductors: Baslc theory \& devices, 272 pD . 111 Simplified Modern Filter Design, 193 pp . Ilius.. Telecommunications Pocketbook, 152 pp . Illus
Transistor Circuit Design Tables, $128 \mathrm{pp} .$. Transistor Pocketbook, 312 pp. Illus. Transistors for Technical Colleges, 210 pp . Hilus 20 Solid state Projects for the home, 114 pp . Illus. Dictionary of Radio \& TV, 380 pp . lllus Everyman's Wireless Book, 368 pp. Illus FM Radio Servicing Handbook 206 po. Hilus. The Hi-ft and Taperecorder Handrook, 304 pp . ilius Introduction to Radar and Radar Technlques, 136 pp .
Marine Radio Manual, 622 pp . Illus.................... Marine Radio Manual, 622 pp. Illus............
The Practical Aerial Handbook, 232 pp. lilus Practical Intergrated Circults, 144 pp. illus.. Practical TV Circuits, 376 pp. Illus........ Practical Wireless Circults, 192 pp. 11 lus.
Practical Wireless Service Manual, 288 p Principles of Aerial Desion $182 \mathrm{pal}, 288 \mathrm{pp}$. Illus. Principles of PAL Colour $T V, 162$ pp. Illus Principies of Engineering, 188 pp . Illus. Ques. \& Ans. on Audio, 104 Pp. Illus....... Radio and Audio Serv. Handbook, 284 pp . Hilius. Radio and Electronic Handbook, 156 pp . Illus. Radio Valve and Transistor Data, $240 \mathrm{pp}$. . Illus. Television Servicing Handbook, 358 pp. illus.. Wireless Servicing Manual, 302 pp. Illus.
How to make Walkie Talkies for How to make Waikie Talkies for licensed operation Handbook of Tested Transistor Circuits. 64 pp . Sound and Loudspeaker Manual, 96 pp..
Practical Transistor Novelty Clrcuits, 64 Practical Transistor Novelty Clrcuits, $64 \mathrm{pp} . . . . . . . . . .$.
HI-fi, P.A., Guitar, Discotheque Ampl. Design Hand book
Electronic Novelties for the Car Owner 2nd Book of Trans. Equivalents \& Substitutes Radio Servicing for A mateurs
Radio, T.V. and Electronics Data Book
Transistor Circuits for Radio Controlled Models Modern Transistor Circuits for Beginners

Practical Car Radio Handbook
Transistor TVing Stereo Amplifiers, 240 pp. illus
Transistor TV Servicing Guide, 128 pp . Illus..
101 Ques. \& Ans. about AM, FM. \& SBB. 99 Ways to improve your S.W. listening, 144 pp 99 Electronic Projects, Illus...
Radio Handbook, 960 pp. Illus.
Making and Using Electronic Oscillatols
Making and Repairing Transistor Radios, 128 pp .
$A B C$ 's of Hi -fi and Stereo.
Car Radio Servicing Made Eas
Electric Guitar Amplifier Mandbook
FM Multiplexing for Stereo.
Hi -f Stereo Handbook......
Hi-fी Stereo Servicing Guide
How to repair small Appliances
MakIng and Repairing Transistor Radios, 128 pp. Radio Spectrum Handbook, Hllus..
Servicing Digital Devices. tape Recording Servicing Transistor Radio Servicing Made Easy, 144 pp..

WHEEL PUBLICATIONS (WWA) 41a Adelaide Grove, Lond on W12 OJH.

## Foreign and Commonwealth Office <br> has vacancies for <br> HAND MORSE COMMUNICATORS

Candidates should produce evidence of sound knowledge of radio and electronic theory eg MPT (PMG) Grade I or C \& G certificates.
Further particulars may be obtained from:-

RECRUITMENT SECTION
COMMUNICATIONS DIVISION
FOREIGN \& COMMONWEALTH OFFICE
HANSLOPE PARK, HANSLOPE,
MILTON KEYNES, MK19 7BH

BOOKS

## E) <br> ESSENTIAL BOOKS!

## THE THEORY OF GUIDEDELECTROMAGNETIC WAVES

 R. Waidron. Marconi series. The most comprehensive book on this subject ever written. Conveys sufficient understanding of principles and mathematical methods enabling the reader to Theory. The Mathematics of Waveguide Theory. Transmission Lines. Elementary Theory of Waveguides. Cavity Resonators. Inhomogeneous and Anisotropic Waveguides. Over 500 pages Published at $£ 11.50$. Special offer to W.W. readers. $£ 7.75$ post free.PRINCIPLES OF ELECTRICITY AND MAGNETISM. complete course on Electricity and Magnetism for the student alectronics engineer and technician who wishes to improve his knowledge of the subject. As recommended to technical colleges, universities and polytechnics. 532 pages. Hardback Fully illustrated. 4 massive reprints. Published at $£ 4.50$. Specia
offer while stocks last $£ 2.75$. p.p. 25 p. offer while
PROLLEMS IN WITH SOLUTIONS. A must for the student. technician and electronics engineer Includes all aspects of electronics, amplifiers. power supplies computers, aerials, waveguides. transmission lines. 307 pages Oniy 90p. p.p. 10p.
COSMIC RADIO WAVES. Start a new hobby - RADIO ASTRONOMY. This big book of 444 pages is an ideat handbook for the beginner and established enthusiast. Numerou photographs and illustrations. Published by the Oxford University Press. Price $£ 2.50$ p.p. 25p.
OPERATION. ORlY 40 UALKIE-TALKIE FOR LICENSED OPERATION. Only 40p. p.p. 10 p .
HAE GOVERN MENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits data and illustrations, plus valuable information for British/USA receivers. transmitters trans/receivers. With mnnifications to sets and test equipment DIRECTORY OF GOV including postage. EQUIPMENT DEALERS equipment stores and dealers including addresses and equipment that they are likely to have available. A valuable book only 40p. p.p. 10 p.

NEW BOOKS. Publication date for these three titles is Nov. 15th. Order now to avoid disappointment as the first impression of each is expected to be a sell-out
MOBILE RAOIOTELEPHONE EQUIPMENT HANOBOOK. Gives circuits data, and illustrations plus some valuable modifications for commercial radiotelephone equipment including PVE and other nopular
makes. $£ 4$ including postage.

HOW TO MAKE 2 \& 4 METRE CONVERTERS FOR AMATEUR USE. 50p. p.p. 10p. AOVANCEO BOOK OF CRYSTAL SET OESIGNS 350 P $5 p$

HANDBOOK OF TRANSISTOR EQUIVALENTS ANO SUBSTITUTES. 40p. post free. TRADE ENQUIRIES NVITED FOR THE ABOVE BOOKS FROM RADIO \& ELECTRONIC SHOPS AND BOOKSELLERS.
OESIG PA., GUITAR \& OISCOTHEQUE AMPLIFIER OESIGN HANOBOOK. 75p post free
HANOBOOK OF SATELLITES ANO SPACE VEHICLES. on communication in space. Published at $£ 8.20$. available at f.6.50. post free.

GERALD MYERS (w.w.) 18 SHAFTESBURY STREET, LEEDS LS12 3BT.

## Bookseller \& Publisher

mew showrdom \& trade counter open at OFF TOWN STREET,
ARMLEY, LEEOS 12. (near White Horse Inn) CALIERS WELCOME

## TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS, (Dept 734 T) Intertext House, London SW8.
[3000
$\mathbf{R}^{\text {ADIO AMATEURS COURSE-Tuesdays } 7 \text { to } 9}$ $\mathbf{R}^{25 \mathrm{th} \text {. Tutor Mr. C. Duckling. two terms, begins }}$ 25th September, 1973. Fee $£ 3$ for City and Guilds Radio Amateurs' Examination. Class to be held at St. Paul's Centre. School Lane, Addlestone, Surrey. Details of syllabus from Area Principal. Chertsey \& Eyham I.F.E., Oid Council Offices, Guildford Street.

# Electrical Engineering 

(Barking Precinct)
B Sc Electrical Engineering (CNAA)
with Honours options. 4-years sandwich
HND Electrical \& Electronic Engineering
with possibility of transfer to B Sc course.
3 -years sandwich.
CEI Part 2 1-year full time or 3-years part time
Other part time courses include:-
HNC Electrical \& Electronic Engineering Electrical Technicians Parts 2 and 3 Telecommunication Technicians Part 3 Colour T.V. Servicing (evenings)
All the above courses are held at the Barking
Precinct, Longbridge Rd., Dagenham.
Further details may be obtained from The Registrar Ref: JS102
North East London Polytechnic, Forest Rd., London, E17 4JB Tel: 01-527 0933

## Microelectronics Centre

Short Practical Courses 1973/74
These courses, which have become well-known and popular in previous years, are being offered again.
Integrated Circuit Technology
Thick Films
Hybrid Micro-electronics
Bipolar and MOS Circuits
Write now for full details and application form to Mrs. D. P. Linnell, Ref WW/9, Middlesex Polytechnic, Oueensway, Enfield, Middlesex EN3 4SF or phone 01-804 8131. 2977

## APPTS CONT.

## ENGINEER

to service ELECTRONIC ORGANS B \& O AUDIO and C.T.V.
The work is interesting and varied, a Company vehicle is provided and there are vacancies in Birmingham and Manchester.
Telephone or write to
W. Swan, Jnr. or Mr. D. C. Kay,

84-86 Oldham Street, Manchester M4 ILF
Tel: 061-236 6774
[2959


ARTICLES FOR SALE

## TEST EQUIPMENT

 TF144G Sig. gen. $85 \mathrm{kHz}-25 \mathrm{MHz}$ in 8 ranges.From $£ 12$ in average condition to $£ 22$ in excellent
condition ( $£ 2$ ) $5 \mathrm{M} \mathrm{Hz}^{2}$ Crystal calibrator $\mathrm{E6(E1):}$ condition (£2); 5 MHz crystal calibrator £6(E1):
Fleld telephones complete in carrying case
$£ \geqslant 50(50 \mathrm{p}$ ). pair for £4.50( 75 p); Sig. gen. type
 36 lang dial inbult crystal calibrator at 100 kHz
\& 2 MHz , 8 diff modulation frequencies. $£ 55(\mathrm{E} 25$;
Tape amplifiers. $2 \times E C C 83$





 dreds of R's. C's. xtals. pots. switches, panel:, etc.
$1.80(40$ p): 56 Ib dito $£ 12(\underline{1}$ ). GREENWEID ELECTRONICS (W4), 24 Goodhart


Electrolytic capacitors MFD/V 2,000/50, 2,500/50, $5.000 / 50,10,000 / 50$. 12,500/50, 50 f each post paid. $5.000 / 704^{1} 2^{\prime \prime} \times 2^{1} 2 \quad 600$
Subminiature plug in Crystals for Radio Control
26.985 MHz and 27.025 MHz 70p each. ELEKONE ENTERPRISES.
224 a St. Paul's Road. Highbury Corner, London, N.1. Tel. ot-359 4224.


## INTRODUCING OUR NEW AUDIO COMPRESSOR

High quality kit or assembled and tested ready to use. SEND FOR DETAILS DARTRIDGE ELECTRONICS
23-25, Hart Road, Benfleet, Essey SS7 3PB. PHONE (STD 03745) 3256 ALSO

Pre-Amps
Auto-Fades
Audio-Monitors
Slider Faders
Drivers

* V.E. Mixers
* V.V. Monitors
* Power Packs
* Control Panels
* Cabinets
'CUSTOM BUILT SYSTEMS'


You may purchase by telephone with Barclay or Access cards

2969

## Trompes aleatronin

 Money Back Guaranteed. DIGITAL INOICATORS 7 seg. OP 5v Filament type \& socket 11.45 . LED TVPE $\frac{1}{3}$ " $0-3$ DP 14 pin DIL $\mathrm{f} 2.49 .4+\mathrm{f} 2.29$ ea $6+£ 2.19$ es 10 LIGHT EMITTING DIODES \&
 isolator E 2 . TGS 308 Gas smake detactior $\mathbf{f 1 . 6 9}$. ULTRASDNIC TRANSOUCERS $£ 2$

## integrateo circuits with data if I <br> ic digital cloch

MOS $\lfloor$ SI chip. 28 pin. 4 or 6 digit. 12 or 24 ht at flick of switch. Chip with OLt

 booklet 39p. 741 OIL 8 pin 28p. 709 18p. đil 29p. 710 33p. 74829 p. REGULATORS $1 \frac{1}{5}$ A 5 to $20 v$ f1,49. 723 57p. 555 TIMER B9p. ZN4 14 RECEIVER Ferranii f1.19. Dual Pre amp $£ 1.67$. 3.5 W AF AMP $£ 1.24$. STERE DECDOER IC FDR FM TUNERS MC131OP £2.69. KIT £3.45.

## 74

TTL BRAND NEW $100+$ LESS $10 \%$
Thi/7.0 1/2/4/5/10/20/30/40/50 e16 14p ea. 7413 27p. 7441
 749267 p. 748069 p. 7483 f1.10. 748637 p. 74937 3p. 749483 p. 7495 в3p.
 OIL SOCKE IS low/high profile 8/14/16 pin $13 \mathrm{p} \quad 100+10 \mathrm{p}$ DUCTORS 25 - less $10 \%$ ZENERS RZY88 $400 \mathrm{~mW} 7_{p}$ IN 4001 en SEMICON 50 v 1 A Brisqe 23 p . 2N 305540 p . BC107 8p. BC 1088 8p. BC109 Bp. BC147/89
 13p. B0131/2 55p. BFY50/51/52 13p. T/S43 UJT 24p. 2N706 11p. 2N2369 12p. 2N2926 og 8p. 2N3053 17p. 2N3055 40p. 2N3614 55p. 2 N3702/3.4 $516 / 7 / 89 / 10 / 11$ All 9 p. FETS 2N3819 27p. 2N 3823 29p. 2N3866 UHF $59 p$ p. SCR's 400 V 1423 p . 4 A 55p. TRANSFORMERS $\frac{1}{2} A 6 \& 12 \mathrm{v}$ EI. CAPACITORS $25 \mathrm{v} 10.50,100$ ul 5 p ea. $50+4 p$ ea. 22 pf to 0. Iuf 3 p . RESISTORS WW $5 \%$ $2 \frac{1}{5} \mathrm{p}$ ea. PRESETS 5 p . CARBON POTS 12 p ea. Oual 46 p . Swith +12 p
pen $59 p$. Copper 1

 8 WAIT with difluser, onfoff switch. Fully bull $13^{\prime \prime}$ lang. TRIO and COOAR
comamunications and Hi Fi retailers. ELECTRONIC ORGANS imported. Iuil facilitites trom $\mathbf{\text { 6 }}$. ELECTRONIC CAR IGNITION KIT PW capacitor type $£ 6.67$. VAT enistomers MUST ADO 10X brat to above prices
fref catalist Sa.e. Oata shetis bp ea. Sa.E. P\&P 8p CWO t

EDDYSTONE V.H.F. \& U.H.F. COMMUNICA TIONS RECEIVER TYPE 77OR. $19 \mathrm{me} / \mathrm{s}$ to $165 \mathrm{mc} / \mathrm{s}$ C.W. A.M. N.F.M. F.M. Mains, in as new condition, \&95. carr. \&3. 770U 150 $\mathrm{mc} / \mathrm{s}$ to $500 \mathrm{mc} / \mathrm{s}$ F.M. or A.M., Mains, in as new condition, 695. carr. $£ 3$. RACAL UNIVERSAL COUNTER/TIMER SA550 (CT488). 8 digit inline readout, 885 . carr. £3. AVO MODEL 3 VALVE TESTER in wooden Transit Case, \&17:50. carr. \&2.50p. INDIVIDUAL POCKET DOSIMETERS. Latest Government Release Type 2A and 3, 11,000 available individually wrapped in boxes of 50 . Also 300 Charging Units No 1 for above Dosimeters, individually boxed, both are absolutely Brand New, supplied one box of 50 Dosimeters with one Charger f14, p/p. \&1. 25 and one Charger 69, p/p C1. Singly 50p, p/p 10p. Chargers $£ 2.50$, p/p 25p. Probable cost of one Dosimeter ElO . Larger quantities by quatation.
MARCONI SIGNAL GENERATOR TYPE TF867 $15 \mathrm{KHz}-30 \mathrm{MHz}$. 675 . carr. 63.

JOHNS RADIO
424 BRADFORD ROAD, BATLEY, YORKS.
Tei : Batiey 7732

## NEW FROM ELBON

L.E.D.'s (Red Emitting) ideally suited for panel indicators Pice only: 33p each or $\mathbf{8 2} \mathbf{5 0}$ lor 10

## Light SENSITIVE SWITCHES

Two types avallable giving wide operating voltages.
LITE-HC2 i iv-20V working- $\mathbf{\Sigma 1}$ each - $\mathbf{\Sigma 8 \cdot 5 0}$ tor 10 LITE-IC3 20V-30V working $\mathbf{\Sigma 1}$ each $-\mathbf{\Sigma 8} \cdot 50$ for 10
Applications include: Relay, Triac or Logic Drive.
automatic light switching and door control, beam/break detection - burglar alarm. batch counting and code reading. BARGAIN PACK!

2 LITE-IC2, 2 LITE-IC3 and 5 LED's ail for $\mathbf{£ 5} \mathbf{5 0 0}$ all prices include vat. packing and carriage Please send C.W.O. to:
LITE-IC, ELBON
LITE-IC, ELBON
summerfield, the crescent, west wittering, sussex
ELE

## SITUATIONS VACANT

D ${ }^{\text {EVELOPMENT }}$ ENA successful retail company require Development Engineer. He will be responsible for the echnical standards of a group of products, bough from both home and abroad, ncluding will entail technical negotiations with manufacturers concerning quality and types of components used and, or, should be developed. Electronic technical problem solving ability and practical knowledge is essential, Appli cants should have appropriate quathications a ma a facturer in the electronics/components industry Location: Head Office in North London. Salary to be negotiated around $£ 3,000$ p.a. though this could be exceeded for a particularly qualified man: other conditions of work including holidays and pension scheme are excellent. Bricf replies stating qualifica tions,
WW 2937
GRADE 3 AUDIO TECHNICIAN with knowledge of modern electronics and mechanical systems associated with audio equipment requircd for
Language Centre, UNIVERSITY OF KENT. The Language Centre, salary scale is $11,539-£ 1,794$ p.a. Further particulars
and application forms from Director, Language Centre. Cornwallis Building, The University, Cant ibury, Kent, quoting reference T73/9. Closing date R OYAL POSTGRADUATE MEDICAL SCHOOL [294] R Young Engineer with wide range of practical ancere fequired to work on projects applying elccQualifications $C \& G$ or $O N C$. Starting salary in range $£ 1,473$ - $£ 1.896$ per annum according to qualifications and experience. 5-day week. Applications to
the Secretary, Royal Postgraduate Medical School. the Secretary, Royal Postgraduate Medical School,
Hammersmith Hospital, DuCane Road, London 12 OHS, quoting reterence 12935 SERVICE ENGINEER. An expanding International install and main district. Applicants should have lectrical/mechanicistricl. Aperience with the ability electrical/mechanical experience with the abinty to join our highly skilled force of field engineers with own area. Excellent promotion prospects, good salary, expenses, car allowance and fringe benefits. Tè.: Mr. Howkins on 01-828 4300. Nashua Copycat Limited,
Greycoat Place, London, SWIP 1 SF.
[2931 Greycoat Place, London, Audio Visual Aids equipment, particularly 16 mm projectors. Burgess Lane \& Co. Ltd., Thornton Works. Thornton
Avenuc. Chiswick, London, W.4. 994 5752.
$[2850$

$\mathrm{H}^{1}$-Fl AUDIO ENGINEERS. We require experi-
enced Junior and Seniors and will pay top rates them. Tell us about your abilities. $01-4374607$. UNIVERSITY HOSPITAL OF SOUTH MANCHESTER. CHRISIE HOSSITAL AND HOLT
RADIUM INSTITUTE. MANCHESTER M20 9BX RADIUM INSTITUTEE MANCHESTER M2O ELBX TRONICS TECHNICIAN. There is a vacancy in the Physics Department based at the above hospital, for scate $£ 1,602$ with 7 increments to $£ 2,076$. Phase II increase being negotiated. Minimum qualification
ONC or equivalent with 3 years subsequent experience ONC or equivalent with 3 years subsequent experience
essential. The department is responsible for a wide range of equipment in this and other hospitals in the Region. and the applicant wi.1 form part of a team involved in maintenance and repair of existing ment. Application forms from the Hospital Secretary

## SITUATIONS WANTED

A DAPTABLE installation and maintenance from navigational aid work requires post as Field or Bench Service Engineer, preferably in South
West Experienced in audio, RF, and pulse work

## ARTICLESTEOR SALE

A ARVAK ELECTRONICS. 3-channel sound-light A converters, from $£ 18$. Strobes, $£ 25$. Rainbow Strobes, 1332 - 12 A Bruce Grove, N17 6RA. | 01-808 |
| :--- |
| 9096 |
| 123 | A DVANCE 1 MHz Timer Counter Type TC 2 A ; Solartron LM 903 A.C. Volmeter; $£ 12$. I.C.L. Power Solartron LM 903 A.C. Voltmeter; £12. I.C.L. Power Supply adjustable between twin meters; $£ 16$. Sharp pocket calculator Type 811 A with memory \& 16 digit capacity, c/w charger; $\& 68$. Griffin \& George Optical Spectrometsr; $£ 45$. Hewlett




BROADCAST CAMERA CHANNEL-Marconi Mk 625 III working order Also, CCTV Monitor 21 in . Pye VDA $£ 3$; window generator, waveform monitor ontrol pane 215, Mk. IV camera cable. Phone EM

## ECONO MISE ON SEMICONDUCTORS



CONSTRUCTION AIDS-Screws, nuts, spacers etc in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels etched boards-masters, negatives and board, one-off or smail numbers. Send $6 \mathfrak{p}$ for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, COLOUR, UHF and TV SPARES. Colour and UHF lists available on request. New Philips G6
single standard convergence panels complete, incl. single standard convergence panels complete, incl.
16 conirols, coils, P.B. switches. leads, etc. and 16 controls, coils, P.B. switches. 1 eads, ecc. Ne Colour Scan Coils, Mullard or Plessey plus conMullard AT1025/05 Convergence Yoke, $\dot{\text { £ } 2.50, ~ P / P ~}$ 25p. Muflard or Plessey Blue Laterals, f1.25, P/P $25 \mathrm{p} . \mathrm{BRC} 3000$ type Scan Coils, $£ 4.00, \mathrm{P} / \mathrm{P} 40 \mathrm{p}$.
10 p .
Delay Lin $\mathrm{DL} 20, ~$
3 50 DL1E, DL1. $£ 1.50, \mathrm{P} / \mathrm{P}$ 25p. Lum. Delay Lines 50p, P/P 15p. EHI Colour Quadrupler for Bush Murphy CTV 25 111/174 series, suitable most sets, $£ 2.00, \mathbf{P} / \mathbf{P} \quad 25 \mathrm{p}$. KB CVCl Dual Stand. convergence pancls complete incl 22 controls,
$£ 3.75, \mathbf{P} / \mathrm{P}$ 35p. CRI Base Panel, $£ 1.75, \mathrm{P} / \mathrm{P}{ }_{15 \mathrm{D}}$. Makers Colour surplus/saivaged Philips $\mathrm{G8}$ panels
part complete:
Decoder incl. $I / \mathrm{C}, ~ \& 2.50,1 \mathrm{~F}$ incl.

 25p. Pye Cr70 Colour LOPT assembly incl. EHT utput and Focus Control, £3.50, P/P 35p. B9D ELC 1043 NEW, 64.50 . Philips VHF for Band $I$ and 3, $£ 2.85$ incl. data. Salvaged VHF and UHF Varicap tuners, £1.50, P/P 25 p. UHF TUNERS NEW, Tran4 position and 6 pos. push-button transistd., 44.95 $\mathrm{UHF} / \mathrm{VHF}$ basic integrated tuners, $£ 3.25$, Cyldon
UHF valve tuners. $£ 50$ All tuners $/ \mathrm{P} 30 \mathrm{p}$ UHF valve tuners,
Transistd UHF
IF
IF 25p. MURPHY $600 / 700$ series complete UHF Con version Kits incl. tuner, drive assy., 6251 F amplifier 7 valves, accessories housed in cabinet plinth assembly switchable IF amplifier and output chassis incl. cct. f1.50 P/P 35p. THORN 850 Dual standard time
base panel, 1100 P/P 35 PHILIPS 25 IF amplifier panel incl. cet., $£ 1.00 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19 TG170, GEC 2010, etc., £2.50. PYE miniature in-
cremental for 110 to 830 Pam and Invicta. $£ 1.95$. cremental for 110 to 830 , Pam and Invicta, £1.95,
A.B minature with UHF inicction suitable K.B. A.B minature with UHF iniection suitable K.B
 selection LOP1's. Scan Coils. FOPTs available for

 LANE. LONDON. N.W. 6 (No. 28, 59, 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAIL
ORDFR: 64 GOLDERS MANOR DRIVE, LONDON
$\mathrm{D}_{\text {IGITAL }}^{\text {IGIT }}$ voltmeter chassis $0-1 \quad \mathrm{~V}$. $1 / \mathrm{p}$. with etc., $£ 19.50$. Sperry Gyroscope Compass Type CLIA and CL2 (Marine) complete with detectors in work ing condition with circuits and details. 100Ua meters 3 inch circular ex-ministry 4 for $\begin{aligned} & \text { f1.00. 0-8 Amp } \\ & \text { AC/DC meters } 6 \text { inch circular } 75 \mathrm{p} \text { each. Barometric }\end{aligned}$ AC/DC meters 6 inch circular 19 peters MK 19 B Kelvin Hughes $£ 15.00$ each. Rate of Climb and dercent indicators Kelvin Hughes 3 ph . MK3C $\mathrm{E}_{5} .00$. Smith's Resol ers type ACP 200 $36 \mathrm{~V} / 11.8 \mathrm{~V}$ ex-equipment but long leaded in good
condition with mounting plate $£ 2.50$ Redifon fight condition with mounting plate $£ 2$. 50 . Redifon flight
simulation cher $/ 2$ compass pilot indicator type $A$ simulation $\mathrm{c} / 2$ compass pilot indicator type $A$
269/1113
$£ 15.00$. Redifon Artificial Horizon type A $35 / 1713$ £ $£ 10.00$. Dh Link Tring Equipment: CL1A Compass simulator $£ 10.00$, parts also avail able. CL2 Master indicator $£ 2.50-$ " M " type differ "Link" Altimeters type KB $578 / 01$ £8.00. Altitude Servo unit £5.00. Airspeed Indicator 60-600 KTS
 ure Servo Unit f300 indicator $£ 1.50$. Tempera ure Servo unit $\mathrm{S}^{3} .00$. For further information Tel: Trumpington 3454.
FOR SALE. Telequipment Laboratory Oscilloscope variabil sween delay, $500 \mathrm{mV} / \mathrm{sm} \mathrm{BW} 509 \mathrm{MHz}$. 50 vap 1 Tye G-Diffrential, DC-10M ( 500 K at 2 mV /
cm ): Y amp 2 Type j-Single $1 \mathrm{P}, \mathrm{DC}-25 \mathrm{M}(5 \mathrm{~Hz}-100 \mathrm{~K}$ it $1 \mathrm{mV} / \mathrm{cm}$ ). Unused since recent manufacturer's sarvice and recalibration. $£ 150$ recent Allotorope Limited

MULLARD FERRITE bAR MAGNETS MUL FO E1.25 D.D 16p
LA3 100 to 500 kHz 50 p
LA4 10 to $30 \mathrm{kHz}, 50$ LA2 1003 to $200 \mathrm{kHz}, 50 \mathrm{p}$
Please include $10 \%$ V.A.T. MAIL ORDER ONL

GEC METAL-CONE SPKR with/without cabinet,
[2938
presence unit. $01-8830748$. HWLETT PACKARD 50, MHZ Counter Mode
5326 C, current in 1973 catalogue, used twice
Len min
 ceivers, meters, various P.S.U.'s; over 1,000
items for immediate disposal. S.A.E., plus 25 , reitems for immediate disposal. S.A.E., plus 25 , re
funded on purchase over $£ 2.00$. F.J.C., Conemill Alvington, Glos. 10 in closed-22ft. 6 in 1288 LADDERS 8it. 10 in . closed- 22 ft . 6in. extended Haldane (North), Halesfie.d (1), Telford, Shropshire OLIVETII P203 PROGRAMMA-OFFICE COM maintaned by manufacturers, now surp ous to requirement. Excellemt condition. Reasonable offers to OSULLLUSCOrE 1 ELEQUIrMENT ype D52, dual Road, London N17 6UG. Tel. O1-808 3655. PLUMBICON IV camera tubes type 55875 brand KY366CDU, KY 366 BU , Pye Westminster radio telephone type W25FM low band $£ 100$. Philips colour monitor type EL3560, suitabie for spares, any offers Colour monitor decoder units by leading British maker. Designed to BBC standards, units consist of chrominance module, P.A.L. filter and delay module luminance modu.e and encoded video input module. All units brand new and complete inc:uding edge PAL/NISC switchable decoder by same maker built in ain. lsep rack with power unit and sync EL6818/SOF PAL $£ 20 ;$ NTSC $£ 15$. Advance stabilised new $£ 35$. Savape 60 us, $0-15$ volt at 10 amp. Brand KT88's, no details. Offers, B. Bamber, 20 Wellington PRINTED CIRCUIT BOARD large supplies of
 per sq. ft . (over 1 ft ). $1 / 16$ in double sided one ounce copper 1 p per sq. inch (under 1 ft. Et per
sq. ft . (over 1 ft ). Please add 10 p per sq. foot postage and packing. We can cut to your size at 1 p per cut Solid State Lighting, (Dept. WW), 47 Hercules Rd. Norwich NOR 66M
Arics NOR 6 de-Continued
PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in. in. single-sided fibreglass, 2 p per 3 sq. in. Double-
sided 1 p per sq. in. $P$ \& ${ }^{3}$ per order. SAE quotations for other sizes and quantity discounts$\mathbf{R F}_{3}$ Heaters for sale. One EMI 3 KW RF outpu 3 phase supply. One Radyne 1 KW complete Offe:s to Mariner Radar Ltd., "Bridleway", Camps Heath, Lowestoft, Suffolk.
$\mathbf{S C O P E S}$ Telequipment, special offer. All serviced by beam 15 Mc . bandwidth. $£ 70$. D43 double beam Mc. bandwidth, f90. Phone 01-886 9666. [2943 1 ECC82, EY86/7, DY86/7, ECL80, EF80, EF85, EF 183, EF184, PCC84, PCC89, PCC189, PC97, PY800/801. ELECTRONIC MAILORDER LTD. Ramsbottom, Bury, Lancs.
TELEPRINTER Terminal Unit Type CV-89A/URA-URA-8A Comparator f15 Also matching MT-719/ URA-8A Rack, $\mathrm{EB}^{3}$, T.D.M.S. Unit Type 5AB. As new ${ }^{\text {£. }}$. Creed $7 \mathrm{~B} / \mathrm{N} 4$ Teleprinter in excellent condi-
tion. Mains motor $£ 25$. Morris, 3 Astley Road, TRANSISTORS AND VALVES. All new and ested: 2 N 37117.5 p each, $£ 6$ per 100 (National 12BH7; 30p. 6SN7GT, 12BE6, CV6, UR3C; 35p. R173; 45 p . E180F. 225DV: 75p. EL37; £1.10. 11 E 3 , new but store-soiled, tested: EF36, EF39, UR3C, 12BH7, 6BE6, R17, 35Z4, OZ4, 6K7G, EF50; 20p.
KLL32, KT33C, TDD13C, 6BW6, 6K7GT, 12AH8; 30p. Many more. Enquiries welcomed. Lists S.A.E.
please. R.F., "Down Barton", Woodham Road, please. R.F., "Down Barton", Woodham Road,
WOKING, Surrey (Mail order only). Postage 15p.
VaCUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories,
coaters, etc.
Silicone rubber or varnish outgassing
 Mayo Road, Croydon. 01-684 9917. 124 $V_{\text {Transistorised }} \mathrm{HF}$ mHZ receiver, tune
ransistorised, remarkable performance. $£ 4$ or Gate. Worcester. WR1 2DT
5-N Channel J FETs type 3819 E for £1. Full building voltmeter, timer, ohm-meter, etc. Send 10 p for full list of fets and other top quality ransistors available at bargain prices. REDHAWK
SALES LTD., 45 STATION ROAD, GERRARDS CROSS, BUCKS. MAIL ORDER ONLY
60 KHz MSF Rugby and 75 KHz Neuchatel Radio Tho 135 and oolex, Bristol Road, Sherborne (3211), Dors

## STUDIOEEEGTRONICS <br> PD. BOX No. 18 HARLOW ESSEX CM18 6SH Tölenhone:Harlow 25457 <br> SPECTAISED KIIS

## HIGH STANDARD

 LOW FREQUENCY SOURCE(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop designer approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in 1011 ! Probably the most economic high precision signal source available ...... Kit $£ \mathbf{2 4 . 6 7}$ Assembled and tested version. .... $£ 32.15$ NE561B onty
each $£ 4.88$

## CBS-SQ QUADRAPHONIC IC DECODER

To Motorola application for MC1312
as described by Geoffsey Shorter (WW March 73) Our complete kit of professional quality components includes a glass-fibre edge connected printed circuit board and is absolutely complete, with full assembly and application notes.
As we also design and manufacture complete stereo and Quadraphonic systems, our wide applications experience is available to you to guarantee professional results.
results.
Complete kit as described above
$£ 8.80$ Assembled and tested production board....... $£ 12.10$
A full logic board also using MC1314/MC1315 will shortly A full logic board also using MC1314/MC1315 will shortly
be available, as will all CBS-SQ records. Send for details.

## PHASE-LOCKED-LOOP

## STEREO DECODER

To Motorola application for MC1310
as described in Wireless Worid, July 1972 1310 complete kit of professional quality including a glass-fibre edge connected printed circuit board and all compotients.

Complete kit which can be built in $\frac{1}{2}$ hr. $\ldots \ldots . .$| $\mathbf{3 . 7 4}$ |
| :---: | Assembled and tested production board. ........ $£ 4.84$ MA2404 Professional LED $\mathbf{6 1 p}$ extra if required. Economy LED (physically small) 37p extra if required. A current limiting resistor is supplied free upon request with all LEDS. Self powered and special versions are available to order.

## NEW PRODUCTS

1. Two tone test oscillator $1 \& 2 \mathrm{kHz}$, ideal for SSB setting up. Battery powered professional quality kit $\mathbf{£ 6 . 7 5}$ 2. Squelch board for FM tuners. Simple add-on advanced circuitry for effective muting. Tuner powered kit $£ 5.34$.

## SPECIALIST SERVICES

Suppliers of products by Radiospares. Eagle. TTC. Sonax. Teleradio and RSG8 publications. We welcome enquiries, irrespective of size or nature. A full technical and after-sales-service is provided, with licensed radio amateurs on the technical staff.
Communications acknowledged normally by return. MAIN DISTRIBUTORS FOR QUADRASONICS. THE PREMIER BRITISH QUADRAPHONIC SYSTEM.

## NO HIDDEN EXTRAS ALL PRICES INCLUDE VAT, CARRIAGE and INSURANCE

"W.W." HI-FI KITS

* LINSLEY HOOD 15 -20W AMPLIFIER

July 1970 latest and ultimate design. Our kit personally tested and approved by the designer. O/P Tr's matched for spec'd performance. Metalwork now available ensures simple construction of amps. and power supply.

* BAILEY PRE-AMP (AUG. 1971)

Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{2} \times$ $2 \frac{3}{8} \mathrm{in}$. or $8 \times 1 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$. Basic metalwork ex-stock. Especially recommended to drive $15-20 \mathrm{~W} A B$ amp.
AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW" article Inc'sp.p. at 30p $\}$ (Stamps Inc'g above and other designs.
accepted)
*REFUND GUARANTEED ON ALL PARTS

## SPECIAL OFFER

2N3055 33p each 4 for £1-10 2N3054 22p each 3 for 55p
Unmarked, Tested and Guaranteed. Post and packing 10 p per order. Send S.A.E. for list of other
devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-ATOUR
RETAIL SHOP NOW OPEN

## A. 1 FACTORS

245, North Sherwood St., Nottingham NG1 4EO
Telephone: Nottingham (0602) 46051 Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)


## A DEXTER ann iswirn

## ALLOWS COMPLETE

## LIGHTING CONTROL

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $£ 3.52$ Kit form $\mathbf{£ 2 . 9 7}$ 300 watt $\mathbf{£ 2 . 9 7}$ Kit form $\mathbf{£ 2 . 4 2}$
All plus 12 p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel: 0244-25883 to m.m. govermment DEPARTMEWTS, HDSPTIALS. local authorities, ETC.

BRAND NEW FULL SPEC. DEVICES U.K. CUSTOMERS ADD $10 \%$ VAT TO TOTAL MICROCIRCUITS: 709 24p; 710 36p; 723 51p; TRANSISTORS: 2N2926 (Brown) 6p; 2N3053 15p; 2N3055 35p; 2N3702 10p; 2N3704 10p; 2N3819 26p; 2N4058 12p; BC107A 8p; BC108B 8p; BC109B 8p; BCIO9C 8p; BCY70 15p; BFY50/51/52 15p; OC44/ 45/71/72 12p; AF114/5/6/7 14p; AC|26/7/8 12p. ZENERS: BYZ88 Series 8p. I AMP. RECTIFIERS: $50 \mathrm{~V}{ }^{3 \frac{1}{2} \mathrm{p} ;} 100 \mathrm{~V} 4 \mathrm{p}$; 200 V 4 $\frac{1}{2} \mathrm{p}$; 400V 5 p ; 800V 6p;
1000 V 7 p . 14 pin IC SOCKETS 12 p . SOLDER. CONS $\frac{1}{2}$ p per pin. DALO PC PEN 68 p . 1 W $5 \%$ Carbon Film Resistors, E12 values only: 10 of one value per 7p. Sub Min. Vertical Preset Pots ( 50 mW ) 100 ohms to 220 K 4 p each. LED with bush and data 26p.
ANTEX S. IRONS: 15 W f1.70; 25 W £I. 75. Prices at 2nd July. Check our list.
Discounts start at $10 \%$ for $10+$ Semiconductors o one type.
JEF ELECTRONICS (W.W.) 9
York House, 12 York Drive, Grappenhall, Warrington,
Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or at cost if more. List free. Satisfaction or mour money back.

## DETMOS ito

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT 0227-68597

## WILMSLOW AUDIO <br> The firm <br> for speakers!



FREE with speaker orders over 67-"Hi Loudspeaker Enclosures" book.
All units guaranteed new and perfect. Prompt despatch
Carriage and insurance 25 p per speaker
(Tweeters and Crossovers I5p each)
(All prices quoted inclusive of V.A.T.)

## WILMSLOW AUDIO,

 Dept WW,Swan Works, Bank Square, Wilmslow, Cheshire SK9 IHF.

## EX-COMPUTER STABILISED POWER SUPPIIES <br> FECONDITIONED, TESTED AND

 GUARANTEEDRipple <10mV. Over-voltage protection on all except 24 v . 7 A . unit. $120-130 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to suit about £3.
$5-6 \mathrm{v} .8 \mathrm{~A}$. Post \& Packing £1 50
$\begin{array}{llll}5-6 \mathrm{v} .12 \mathrm{~A} . & £ 14 & 24 \mathrm{v} .7 \mathrm{~V} .7 \mathrm{~A} \text {. } & \text { £14 }\end{array}$
$5-6 \mathrm{v} .16 \mathrm{~A}$. £16
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. £3.50 (28p)
PAPST FANS 6in, dia. $\times 2 \frac{3}{16} \mathrm{in}$. deep Type 7576 £5.00 (30р).
WOODS FANS 6 in . Plastic rotor $\mathbf{£ 6 . 0 0}$ (36p).
ELECTROLYTICS
$25,000 \mu 25 \mathrm{v} ., 20,000 \mu 30 \mathrm{v} ., 5,000 \mu 90 \mathrm{v}, \mathrm{e} 35,000 \mu$ $15 \mathrm{v} ., 3,000 \mu 150 \mathrm{v} ., 8,000 \mu 55 \mathrm{v}$, $4 \frac{1}{2} \times 3 \mathrm{in}$. dia. 50p (15p).
$68,000 \mu 16 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. $50 \mathrm{p}(12 \mathrm{p})$.
$15,000 \mu 15 \mathrm{v} ., 10,000 \mu 35 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 30 p (10p)
2,000 $\mu 25 \mathrm{v}, 15 \mathrm{p}$.
EX-COMPUTER PC PANELS $2 \times 4 \mathrm{in}$. min. 35 transistors with data 50p (9p). 25 boards for £1 (25p).
PANELS WITH 4 POWER TRANSIS. TORS SIM OC28 50p (9p).
QH Bulbs, 12v. 55w.
250 Mixed Resistors
250 Mixed Capacitors 200 SI Planar Diodes
Micraswitches ..
50p (5p) 60p (8p)

Min. Glass Neons 8 for 50p (8p)
12 for $50 \mathrm{p}(5 \mathrm{p})$
-way Terminal Blocks .... 10 for 55p (5p) ostage and package shown in brackets Please add 10\% VAT to prices

## KEYTRONICS

44 earls court road, LONDON, w. 8 01-478 8499


CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12. Telephone: 01-445 2713 01-445 0749 Evenings: 01-958 7624

EXCLUSIVE OFFERS
INSTRUMENTATION TAPE RECORDERREPRODUCERS and COMPUTER PERIPHALS AMPEX FR-100B
1" 14 tracks 6 speeds FR-600 raclind $\frac{1}{2} 14$ and 7 istorised

729
I.B.M.
${ }^{729} \frac{1}{2}^{\prime \prime} 7$ tracks 6 speed
MINCOM
CMP-100
t $^{\prime \prime} \frac{1^{\prime \prime}}{} 1^{\prime \prime} 7$ tracks 6 speeds
E.M.I.

TD-1
t" $^{\text {" }} 4$ tracks 7 speeds Several other snaller Full details on request. Prices of above are from $\mathbb{E} 150$ to $\mathbb{C 7 0 0}$


## COMPUTER HARDWARE

80 col. CARD READFR 600 c.p.m. High speed line PRINTER 1000 I.p.m.
High speed TAPE READER 5 to 8 track TALLY 5 TO 8 TRACK TAPE READERS ADDO 5 TO 8 TRACK TAPE IUNCHES Prices on Application

| 40-page list of overI,000 diferent items in atoc <br> availabio--keep one by you. |
| :---: |

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

| CAbinets |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Our | Heigh | Width | Depth | Rack Panel |  |
|  | in inches | in inches | in inches | Space in in | s. |
| CB | 76 | 22 | 20 | 70 | £16.00 |
| CD | 69 | 21 | 13 | 68 | £10.00 |
| CE | 89 | 22 | 24 | 77 | £14.00 |
| CF | 87 | 23 | 26 | 80 | ¢12.50 |
| CH | 83 | 24 | 30 | 75 | £14.00 |
| cJ | 83 | 24 | 24 | 75 | £13.00 |
| CK | 83 | 24 | 12 | 75 | £10.00 |
| CL, | 30 | 60 | 36 | 42 | ¢12.50 |
| CN | 19 | 22 | 18 | 17 | E5.00 |
| CP | 69 | 24 | 26 | 81 | £13.00 |
| CR | 69 | 30 | 20 |  | £24.00 |
| CT | 70 | 69 | 27 | 60 | $\mathbf{5 4 5} 00$ |
| CU | 87 | 26 | 17 |  | 220.00 |
| CY | 58 | 24 | 24 | 52 | \$20.00 |
| CZ | 64 | 22 | 26 | 58 | £14.00 |
| DA | 85 | 22 | 26 | 80 | E15.00 |
| D3 | 53 | 22 | 22 | 47 | 815.00 |
| DC | 64 | 22 | 27 | 57 | 217.00 |
| DE | 52 | 40 | 24 | 91 | £30.00 |
| DF | 75 | 22 | 26 | 68 | £18.00 |
| DH | 70 | 23 | 24 | 122 | £20.00 |
| DK | 85 | 22 | 26 | 79 | 220.00 |
| DL | 54 | 24 | 19 | 69 | £18.00 |
| DP | 74 | 24 | 24 | 60 | 218.00 |
| DR | 14 | 21 | 12 | 10 | £\% 00 |
| D8 | 69 | 30 | 20 | 63 | £26.00 |
| DT | 8. | 24 | 22 | 80 | £24.00 |
|  | Alao Cons | oles. twin | and multi-w | way Cabinet |  |
| OPER RACKS |  |  |  |  |  |
| Our | Height in | Chantel | Rach Parel |  |  |
| ${ }_{\text {Ref }}$ Ref. | inches | Depth | space | Base | Price |
| RB | 108 | 5 | 104 | Bolts | 29.00 |
| RD | 80 | 8 | 77 | 24 inches | 88.00 |
| RC | 66 | 5 | 63 | Bolts | 26.00 |
| RE | 78 | 7 | 70 | Boits | $2{ }^{2} .00$ |
| Full details of all above on request. |  |  |  |  |  |


| We have a large quantity of "bits and pieces" we cannot list-please send us your requirement we can probsbly help-all enquiries antwered. |  |  |
| :---: | :---: | :---: |
|  | Ferrograph 3/CFN Tape Recor | £35 |
|  | Ferrograph G. 200 Tape Recorders | 227.00 |
|  | Racal RA-74L Receisers | £225.00 |
|  | CV-157 Hoffrman ISB,ASB Converter | £160-00 |
|  | National One Sixty Receivers 230 v | 4.00 |
|  | 10 foot Triangular Lattice Mast Sections 6 jnch sides |  |
|  | Casella Assmann Electric Hygrometers |  |
|  | Racal RA-17 Cabinets | 214.00 |
| $\star$ | Racal MA-150 Synthesisers |  |
|  | Racal MA-250 Decade Generators | 125.0 C |
|  | Avo Geiger Counters, new |  |
|  | Servomex 2 KVA Voltage Regulators | 234.00 |
|  | Solartron CD.1016 d/b Oscilloscopes | £34.00 |
|  | Double Co-axial Bloners $6 \times 6220$ v. A. | £8.00 |
|  | Ampex S.E. 10 Auto Legaussers | £45.00 |
|  | Unlscleetors 10 bank 25 way full wip |  |
|  | R.C.A. 5 element $420 \mathrm{~m} / \mathrm{cs}$ Yagi Beams |  |
|  | Haynes 500 watt 230 v ./115v. Isolation |  |
|  | Transformer |  |
|  | Bult 60 col uma Card Hand Pun | 247.00 |
|  | Mulrhead D. 888 Analysera |  |
|  | Laiboratory Radio Interference Filte | \&2. 00 |
|  | Pye Scalamp Galvos | £14.00 |
|  |  | £ 70.00 |
| Cenith 3KV Insulation Test Sets |  |  |
| Adweil large Draiting Tables withparallel motions |  |  |
|  | 5 tim . dia. Meteorological Balloons |  |
|  | ann Microwave Attenuators 4/12 EMC | 4400 |
| PLEASE ADD V.A.T. TO ABOV |  |  |
| $\cdots$ - A B S |  |  |
| -RGANFORD-DORSE |  |  |
| BH16 6ER |  |  |
| BOURNEMOUTE-6505 |  |  |



## FULTON TUNING

129/131 Park Road, London NW8 tel. 01-262 6669 Callers welcome

WW-117 FOR FURTHER DETAILS

## Lodge Trading Company

For Amplifiers, Speakers with and without cabinets, Changer Units, Plinths and Covers, Tape Recorders, four and eight track for car or home, Car Radios, Colour TVs, Aerials, Flex, and Cables, Large stocks of components

## ALL AT WHOLESALE PRICES

A VISIT WILL SAVE YOU MONEY
5 Dr." Week 9-6. Easy Car Parking. Sorry no lists.
21 LODGE LANE, N. FINCHLEY, LONDON, N. 12 01 -445 2713, 01-445 0749

## THERMOCOUPLES

Acramet and Acraspeed thermocouples, from IC are:-

Extremely accurate for fluid, gas or metal temperature measurement.

Individually calibrated and carry a certificate plus a one year guarantee.

Available with immersion or contact. non-earthed, multiples, boss or plug.

Details available on request.
International Combustion Limited,
Superheater Works, Ashburton Road,
Trafford Park, Manchester.
Telephone: 0618722581

## SOWTER TRANSFORMERS

FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authorities and were established in 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote.
E. A. SOWTER LTD.
Transformer Manufacturers and Designers 7 Dedham Place, Fore Street, Ipswich IP4 IJP

# A day trip to Berlin Radio Show 

The International Radio and TV Exhibition 1973 Berlin' will be the most important presentation of entertainments electronics in Europe this year
There are more than 250 exhibitors offering the latest products developed by 371 firms from 24 countries - A visit to the exhibition must receive high priority from firms who wish to keep abreast of developments and ahead of their competitors!
Because of the great interest being shown, we are sponsoring a one-day jet flight to Berlin at the very reduced price of $£ 29$ only. The flight is on Tuesday, September 4 and the departure will be at 08.00 from Luton Airport by BAC $1 / 11$. The return flight will depart Berlin at 20.30. Flight time each way is approximately 1 hr .45 min . The cost includes in-flight catering; transport from the airport to the show and back; and entrance to the exhibition.
Readers requiring further informãtion should complete the form below
 TO: WW BERLIN RADIO SHOW
Page and Moy Ltd, 221-223 Belgrave Gate, Leicester LE1 3HW
Please send me complete details of the day flight to Berlin Radio Show on
September 4
Name
Address

Telephone No
Registered number 74249 ?

TRANSFORNER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

## J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

## WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH <br> CHILTMEAD LTTD.

7. 9, II Arthur Road. Reading.

Berks.
Tel: 582605

## TELERADIO SPECIAL PRODUCTS

LINSEY HOOD Low Distortion Amplifiers. ( 75 watt article re-print 40p) from $£ 25$.
TEXAN. Renowned $20+20$ Stereo Kit ( $£ 28.50$ basic). TEXAN. Renowned 20 RESTEROUT OLOCKS (from £33). NIXIE READ ONTROL SYSTEMS (from £12).
RADIO CONTROL SYSTEMS (from zi2). Send S.A.E. ( $10 \times 8$ ), or stamp, for full data and pric.
325-7 Fore St., London, N9 OPE. 01-807 3719


Stereo
fecords
Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.
QUARTZ CRYSTAL UNITS from

- 1.0-60.0 MHZ
- fast delivery
- high Stability
- TO DEF 5271-A

| $4$ | WRITE FOR LEAFLET AT-1 |
| :---: | :---: |
|  | McKNIGHT |
|  | CRYSTAL Co. |
| $\checkmark$ | hardley inoustrial ESTATE. HYTHE. |
| EL. HYTHE 8961 <br> TD CODE 04214 | SOUTHAMPTON S04 6ZY. |

## WE PURCHASE

COMPUTERS. TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS. RESISTORS. CAPACITORS. POTENTIOMETERS, RELAYS TRANSFORMERS ETC
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781
CLASSIIIEU Continued from p. 117

## - ABTICLB8,NANTED

CASH AVAILABLE for surplus semiconductors
CASH PAID for surplus transistors and all types CASH PALD ictronic components. Electronic Mailorder Ltd., Ramsbottom, Bury, Lanes. Tel. (STD 070 682) [2945 FRIDEN FLEXOWRITERS, all models urgently F wanted for cash, also Friden Auxiliary Readers and Punches. Box No. WW 3005.
SURPLUS components \& computer boards purchased $\$$ for cash. 01-777 2001. [3008 TRGENTLY required for Export order, branded Surplus semiconductors, etc. BCi07, BC108. BC109, SN $7400 \mathrm{~N}, \mathrm{LM} 741 \mathrm{CN}$ or equivalents also large quantities of Mullard CR 25 Resistors. Please send details of any surplus components for disposal FLEKON ENTERPRISES, 224A St. Paul's Road Highbury Corner, London, N.1. Tel. 01-359 4224.
VORTEXION RECORDERS wanted. Models 632 C.B.L. 5 on C.B.L. 6 Stereo. Also Ferrograph 632 mode's required. Best prices for spot cash. Ring West Mersea (020638) 3372. 12923

> WE BUY SURPLUS ELECTRONIC
> COMPONENTS AND TEST EQUIPMENT,
> IN QUANTITY.
> LINWAY ELECTRONICS
> 42 Spencer Avenue, Hayes, Middlesex UB4 0QY.
> CONTACT US - YOU'LL NOT REGRET IT
> Tel. No. 01-573 $3677 \quad[2981$

## Guide to Broadcasting Stations 17th Edition

A new edition of a title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical alphabetical order. The book also contains useful information on radio receivers, aerials and earths, propagation, signal identification and reception reports.
1973206 pp., illustrated
05920008 । 8 75p

## Illustrations in Applied Network Theory

F. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated

$$
040870425 \times \text { cased } £ 5.00
$$ 0408704268 limp $£ 2.50$

Obtainable through any bookseller or rom

## The Butterworth Group

88 Kingsway, London WC2B 6AB
Showroom: 4-5 Bell Yard, WC2.

## A.R.R.L. <br> RADIO AMATEUR HANDBOOK 1973

## price $\mathbf{E R}^{2.95}$

ELECTRONICS IN MUSIC by F. C. Judd. Price $\notin 3.30$
TRANSMISSION SYSTEMS VOL. I by M. T. Hills. Price $£ 4.95$

MOS INTEGRATED CIRCUITS by American Micro Systems, Inc. Price 59 DESIGN OF MAN COMPUTER DIALOGUES by James Martin. Price © 8.40
LASER THEORY by F. S. Barnes. Price $£ 4$
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $£ 1.95$
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. Price $\mathbf{E 3 . 9 5}$
ELECTRONIC PUZZLES AND GAMES by M. Mandl. Price $\mathbf{f l} \cdot \mathbf{3 0}$
WORLD RADIO AND TV HAND. BOOK 73. Price $£ 3.12$
SCR MANUAL 5th EDITION by General Electric. Price $\boldsymbol{\in I} .65$
$\star A L L$ PRICES INCLUDE POSTAGE $\star$

## THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP Phone 7234185 Closed Sat. 1 p.m

| STEREO IC DECODER <br> HIGH PERFORMANCE PHASE LOCKED LOOP | * |
| :---: | :---: |
| MOTOROLA MC1310P EX STOCK DELIVERY SPECIFICATION | FOR |
|  | CLASSIED |
| KIT COMPRISES FIBREGLASS PCB ONLY WHY PAY <br> (Roller tinned), Resistors, I.C., Capacitors, <br> Preset Poim. \& Comprehensive Instructions $\mathbf{£ 3 - 4 0}$MORE? <br> post free. | ADVERTISNG |
| LIGHT EMITTING DIODE (Red) ONLY <br> Suitable as stereo'on indicator. For above 29p plus p.p. <br> with panel mounting citip and instructions  | RING |
| MC1310P only £2.77 pius p.p. 6p | IINO |
| NOTE <br> As the supplier of the first MC1310P decoder kit, of which we have sold Riterally thousands, our customers can benefit from our wide experience. | 01-261 8508 |
| From April ist add V.A.T. at the standard rate to all prices |  |
| FI-COMP ELECTRONICS <br> BURTON ROAD, EGGINTON, DERBY, DE6 GGY |  |

CLASSIFIED Continued from p. 120
articles wanted-Continued
WANTED, all types of communications receivers Electronics test equipment.-Details to R. T. \& I. Electronics, Ltd. Ashville Old Hall, Ashville Rd.

## WE PURCHASE

All types of Electronic Components and Test TRANNIES
I Dockyard, Station Road, Old Harrow, Essex.

$$
\text { Tel No. (027-96) } 37739
$$

## CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or A small production runs. Also PC Boards Assemplies. Suppliers to P.O. M.O.D., etc. Export enquiries welcomed. 3 3a walerand Road, London, SE 13 7PE. Tel. 01-852 1706
$B_{\text {sample }}^{\text {ATCH }}$ Production Wiring and Assembly to B sample or drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W.5. Tel:
$01-992$
8976 . 01-992 8976
 production of electronic equipment. Specialist in production of printed circuit assemblies. YOUNG 01-267 0201.

CAPACITY available to the Electronic Industry. Crecision turned parts, engraving, milling and grinding both in metals and plastics. Limited capafor lists of full plant capacity to CB. Industrial En hists of full plasin Engineering Ltd.

## BATCH PRODUCTION

Repair and Test of Electronic Equipment. PC. Board Assemblies.

LYNTON ELECTRONICS, Lynton House, The Green, Downham Market, Norfolk.
Phone 036633719 .

## [2927

C PRINTED CIRCUITS and e:ectronic assemblies sub-contracted Reasonable rates and fast turn Avenue North Berwick, East Lothian Tel (0620) 3395 . (2908 $\mathbf{S}^{\text {MALL }}$ sampe or Production, wiring, assembly, to $S$ sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsficld, Harlow. Essex. Harlow 33018.
SUB-CONTRACTORS. We have extra capacity available for any quantities on short notice assembly, cable forming. Design and manufacture of electronic equipments under customer's specification is also undertaken. Instrumentation Services, 23 Hallam Road, Clevedon,, Somerset. Tel. 2322.

## COURSES

R ÁDIO and Radar M.P.T. and C.G.L.I. Courses FY7 8.JZ. Principal, Nautical College, Fleetwood,

## EDUCATION

CIE, AMSE, City \& Guilds, etc. Thousands of Cexam successes. Postal courses in all branches of Enyineering. Prospectus FREE. State subject of Courl, Reading RG7 4PF Accredited by CACC
NEW ERAM AND SOUND
EQU,IPMENT
CLASGOW,-Recorders bought, sold, exchanged;
versa.-Victor Morris, 343 Argyle St., Glasgow, C.2.

[^10]
## SERVICE \& REPAIRS

BRISTOL AND DISTRICT. Service to $\mathrm{Hi}_{\mathrm{i}} \mathrm{Fi}$ and B electronic equipment. Public address installations Stereo Centre, 309 Gloucester Road, Bristol. Tel:
0272 421395. 0272421395
FXPERIENCED ENGINEER offers field service Efacilities London area covering Electronic and Electro-Mechanical equipment-Box No. WW 2676 SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage 75 p Somercote, Louth Lics, or , phone 0507-85 300 CIGNAL zenerators, oscilloscopes, output meters, $\mathrm{S}_{\text {wave }}$ voltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& $\mathbf{i}$. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E. 11 Ley. 4986.16

## TENDERS

MANCHESTER EDUCATION COMMITTEEhand Tenders are invited for the purchase of second and audio-visual aids equipment. Further detail Departmen of tender from Supplies Officer, Stores Department,
returnable by 21 st September, 1973

## VALVES WANTED

WE buy new valves, transistors and clean new components, large or small quantities, all details Wolverhampton

MANUALS AVAILABLE

| MARCONI | SOLARTRON | COSSOR | TEKTRDNIX | TELEQUIPMENT |  |  | AdVANCE | PYE | FURZEHILL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TF3296 | AS516 | 339 | 422 | S31 | IF 1041 | CT436 | TCIA | Cambridg | 0160 |
| TF801B | AS517 | 1035 | 511 AD | S32A | IF 1100 | CD523S. 2 | T2 | BANTAM | 1684 |
| TF8018/3/S | ASW51A | 1049 | 515 A | D43 | TF1101 | AD557 | TC2A | REPORTER | hewlett packard |
| TF8010 | SRS 1518151A | E.M. | '524AD | WAYNE KERR | TF1 104/1 | CD711s | D1 | radivet | 200CD |
| TF867A | SRS1528152A | WM2 | 531 | B221 | TF1300 | CD814 | D2 | 211 | 130A |
| TF868A | VF252 | WM8 | 541 | 8121 | TF $1345 / 2$ | 00910 | J | RaCal | BC221 |
| TF885 | C0546 | WM16 | 541 A - ${ }^{\text {c }}$ | B521 |  | CD1014 | AIRMEC | SA28 | hartley 13A |
| TF886A | D300 |  | 555 |  |  | CD1016 | 701 | SA33 | AVO CT38 |

This is only a small example of the manuals we have in stock. S.A.E. with your enquiries - we may be able to help.
CHILTMEAD $L T D$
7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

## INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 98-117


At $£ 240$ in the U.K. the new Bradley 233 Pulse Generator represents real value for money. One of the new generation of precision instruments from Bradley Electronics, it's a true dual-channel instrument which provides full mixing facilities, both output and time, on both of its independent channels.

High performance features include eight PRF ranges, covering 0.5 Hz to 50 MHz , with pulse delays of 20 ns to 1 s and widths from 10 ns to 1 s .
Two independent outputs and two time channels provide exceptional flexibility and versatility. For example, each output can supply A and/or B pulse width ; square wave at internal PRF; external width or d.c. level. In addition, the outputs can be summed by push-button and a baseline offset will provide any pulse amplitude from $\pm 0.5 \mathrm{~V}$ to 10 V , from a $50 \Omega$ source. And, as a bonus, the $B$ period oscillator can run independently of the $A$ channel, so that the 233 is, in effect, two pulse generators in one case.
The 233 can be used to drive resistive or reactive loads of any magnitude Seven operating modes include true dual-channel; series or parallel delay;
internal burst without an external signal ; output B gated by $A$ width ; square wave ; external gating ; and, of course, single shot.

It's easy to operate, too. Both channels and major functions are selected by push-button while the square wave facility eliminates the need to adjust the delay and width controls during operation. There are also lights to indicate correct triggering.

To find out more about the new-generation Bradley 233 Pulse Generator, please telephone Ashley Stokes on extension 113 at 01-450 7811. Or write to him at the address below.

Our own BCS Certificate is available.

G \& E BRADLEY LIMITED,
Electral House, Neasden Lane, London, NW10 1 RR
Telephone: 01-4507811
Telex: 25583
A Lucas Company
BRADLEY


# Multicorethe complete answer for printed circuit soldering. 

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

## Extrusol and Multipure.

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the sinoothest and brightest solder bars you will ever see.


## hight - PUPE

## Ersin Multicore Savbit.

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.


For full information on these or any other Multicore products, please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue. Hemel Hempstead. Hertfordshire HP2 7EP.
Tel: Hemel Henipstead 3636. Telex: 82363.


[^0]:    LONDON showroom
    233 Tottenham Court Road
    Tel 6387349
    GLOUCEST'ER showroom \& factory Bristol Road, Gloucester Tel 045229451

[^1]:    Department of Electronic Engineering, Central

[^2]:    Rediffusion Engineering Ltd. This article is a shortened version of a paper by Mr Gargini, "The Total Communication Concept for the Future", published in The Roval Television Society Journal. March / A pril 1973.

[^3]:    *Department of Physics. Liverpool Polytechnic

[^4]:    To : Sinclair Radionics Ltd, London Road
    St lves, Huntingdonshire, PE174HJ
    Please send me Name
    $\square$ a Sinclair Cambridge calculator kit at $£ 27.23+£ 2.72$ VAT (Total : $£ 29.95$ )

    Address
    U a Sinclair Cambridge calculator ready built at $£ 39.95+£ 4.00$ VAT (Total : $£ 43.95$ )
    *! enclase cheque for $£$, made out to Sinclair Radionics Ltd, and crossed.
    *Please debit my *Barclaycard/Access
    account. Account number

    * Delete as required.

[^5]:    * Hatfield Polytechnic

[^6]:    *University of Durham

[^7]:    A.F.U. ( $£ 5.98$ + V.A.T. 59 p) may be added as required.

[^8]:    

     $\underset{\substack{3 \\ 1 \\ 1 \\ \text { wathet. }}}{\substack{\text { chanel }}} \boldsymbol{£ 1 1 . 2 5} \underset{\text { Post } 50 \text { p. }}{\text { Pair. }}$ | Batuery operation. Yolume and duuelch |
    | :--- |
    | controls. Call button and press to tall | tutton. Telese ovic nerial. Complete entit Note: Itcence required in U.K.

    Note: Itcence required in U.K.

[^9]:    DISPLAYED APPOINTMENTS VACANT : $£ 9.90$ per single col. inch.
    LINE advertisements (run-on) : 55 p per line (approx. 7 words), minimum two lines.
    BOX NUMBERS : 25p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.)
    PHONE: Allan Petters on 01-261 8508 or 01-928 4597.
    Classified Advertisement Rates are zero currently rated for this purpose of V.A.T.

[^10]:    RECEVVERS AND AMPLIFIERS
    SURPLUS AND SECONDHANO
    HRO Rx5s, etc., AR88, CR100, BRT400, G209, H- S640, etc., etc., in stock.-R. T. \& l. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E. 11.

