Meterless transistor tester
Collour telephoto system

and we'll show you what our new clip-on can do!

Go digital with the new TF2170B synchroniser. Clips on to your present TF2002 Series HF Signal Generator-cuts warm up time taken to reach frequency stability from 2-3 hours to 2-3 minutes.
Flat!
And don't confuse it with a lock box. In function it couldn't be less like one. The required frequency is simply set up on the decade dials (within 10 Hz).
The signal generator then only needs to be tuned approximately to this frequency until the synchroniser indicates that it is 'locked-in'. And locked-in it stays. The frequency
stability is 1×10^{-6} which will hold from 10° to $35^{\circ} \mathrm{C}$. Indefinitely. And simply by switching the synchroniser decade dials, bandwidth measurement can be made within 1% of the working frequency.

Attached to your TF2002 Series, the TF2170B offers a stability performance comparable to a frequency synthesiser with no risk of generating spurious outputs at low levels. The TF2170B can be supplied separately or complete with the TF2002B which still retains its existing features including frequency coverage
from 10 kHz to 88 MHz a.m./f.m. Have you got 2 minutes?
Contact us at St. Albans for a working demonstration. At our place or yours. Just 2 minutes -3 at the outside. Promise.

MARCONI INSTRUMENTS LIMITED A GEC-Marconi Electronics Company. Longacres, St. Albans, Herts AL4 0JN, England
Tel: St. Albans 59292 Telex: 23350

In an ever changing world...

Teonex are better known abroad... because we don't sell

 in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety). integrated circuits.

Teonex offers more than 3,000 devices.
They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on Government or private contract.
All popular types in the Teonex range are nearly
always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England.
Cables: Tosuply London W11. Telex: 262256

LOW COST

PORTABLE INSTRUMENTS

VOLTAGE UP TO 150V. LEAKAGE DOWN TO 0.5nA.

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150V. Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at 1 mA , $10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for I_{C} / I_{B} ratios of 10,20 and 30 . The instrument is powered by a 9 V battery and a transistor D.C. to D.C. converter to produce 150 V .

TRANSISTOR RANGES (PNP OR NPN)

$l_{\text {CBO }}$ \& $\left.\right\|_{\text {EBO }}$	$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$. $20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}, 120 \mathrm{~V}$, and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$. Short circuit current limit 1 mA .
$B V_{\text {CBO }}$:	10 V or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$. Open circuit voltage limit 150 V .
${ }^{\prime} B$	$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} . .10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$. $V_{C E}=2 V$ approx.
$h_{\text {FE }}$:	3 inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings. Acc. is $\pm(2+200 \div \%$ of f.s.d. $) \%$ i.e. $\pm 4 \%$ at f.s.d.
$V_{\text {BE }}$:	1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{\text {CE(sat) }}$:	1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

DIODE \& ZENER DIODE RANGES
$I_{D R}$: As $I_{E B O}$ transistor ranges
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors
$V_{D F}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $9 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA acc. $\pm 1 \%$.

POWER SUPPLY
One type PP9 battery, or A.C. mains when a LEVELL Power Unit is fited.
SIZE \& WEIGHT
$7^{\prime \prime} \times 10 \frac{1}{4}{ }^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} .8 \mathrm{lbs}$

NOTE: All prices subject to V.A.T.

${ }_{\text {vormw }} £ 65$

Send for literature covering our full range of portable instruments.
LEVELL ELECTRONICS LTD.

Z \& I AERO SERVICES LTD.

Sole Distributors of
MASHPRIBOINTORG (USSR) - ELECTRONIC TEST EQUIPMENT and ELECTROTECHNIKA (USSR) - PASSIVE COMPONENTS
INVITE WIRELESS WORLD READERS TO VISIT THEIR STAND No 751 AT THE OLYMPIA INTERNATIONAL LONDON ELECTRONIC COMPONENT SHOW

VARIABLE AUTOTRANSFORMER LATR-2M*

Bench mountedfullyshrouded Input: 120, 220 and 250V. Output: 0-260V.
Max. load 2 Amps.

6 decades of 0.1-1-10-100. 1000-10,000 Ω steps. Decades and their respective wipers are brought out to separate terminals.
All-metal construction, fully screened.
Capacity: 0.3 A for 0.1 and 1Ω decades; 0.1 A for 10Ω decade, 0.03 A for $100 \$ 2$ decade: 0.01A for 1000Ω decade and 0.003 A for 10,00012 decade.

PEN RECORDERS

1. H320-1 High speed single channel

2. H320-3 High speed three channel

ALSO MULTIMETERS, OSCILLOSCOPES, SUB-STANDARD METERS, BRIDGES ETC

OSCILLOSCOPES

1. Single beam $\mathrm{C} 1-5,10 \mathrm{MHz}$ inexpensive instrument 2. Double beam $\mathrm{C} 1-165 \mathrm{MHz}$ 3. Single beam C1-19 1 MHz (D.C.) oscilloscope with long afterglow screen
2. Single beam C1-37 1 MHz (D. C.) storage oscilloscope
3. Wide band C1-54 (20 MHz) oscilloscope
4. Solid State C1-49 5MHz oscilloscope

5.

5.

6.

Nine sound reasons for choosing Amplivox headsets

We'd like to give you some sound advice. For headsets of any kind, look to the specialists...Amplivox. World technological leaders in communications headsets, Amplivox offer equipment that meets any environmental situation.

For high noise environments, headsets incorporating the brilliant innovatory noise-excluding Sonovalve and Ampligard are finding acceptance by the military and in many commercial organisations.

Through to Minilite, a new light-
weight that introduces a comfort revolution into conventional headset design. Amplivox design leadership not only makes Minilite super-efficient butsuper-economic,too.

Just two examples from a range that includes headsets for air-crew, air traffic or radio controllers and language laboratories:Telecommunications helmets for tank crews, ear defenders, intercommunication systems, miniature earphones and microphones.

Just some of the reasons for

RACLAL
The Electronics Group
talking to Amplivox. A headsetforyour particular application at an economic price. And that has to make sound sense.

To: Racal-Amplivox

Communications Limited,

Beresford Avenue, Wembley, Middlesex. HAO 1RU. England. Telephone: 01-902 8991

Name
Company
Address

My headset requirement is

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

 This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The Mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4-channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs. $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ $\pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

The simple truth about the Wayne KerrTM30

The Testmatic TM 30 has been developed for efficient circuit-board testing, in the light of operational experience with the TM 60 . It is designed to be worked by people who - whatever other talents they may have - need not be qualified electronics engineers. In saving time it thereby saves you money.

It will tell the operator where there is a fault, as well as indicating by how much the value is high or low. And it can handle 30 testsin seconds.

WAYNE KERR

A member of the Wilmot Breeden group

For more information phone Bognor Regis (02433) 4501 , or fill in the coupon.

will be available from May 1st 1973
$10 \mathrm{~mm}, 11 \mathrm{~mm}, 12.5 \mathrm{~mm}, 14 \mathrm{~mm}, 15 \mathrm{~mm}$,
$16.5 \mathrm{~mm}, 17.5 \mathrm{~mm} 19 \mathrm{~mm}, 20 \mathrm{~mm}$,
$21 \mathrm{~mm}, 22.5 \mathrm{~mm}, 25 \mathrm{~mm}, 27.5 \mathrm{~mm}$,
$29 \mathrm{~mm}, 30 \mathrm{~mm}, 31 \mathrm{~mm}, 32.5 \mathrm{~mm}$,
34mm, 35mm, 37.5mm, 40mm, 45mm,
$50 \mathrm{~mm}, 55 \mathrm{~mm}, 60 \mathrm{~mm}, 65 \mathrm{~mm}$, 70 mm .

- The "IMPERIAL" Range will be continued.

Full Lists from:

"O-MAX" (ELECTRONICS) LTD.,

44 PENTON STREET, LONDON, N1 9QA
Tel. : 01-278 2500

We ll tell you why. We're now able to offer our complete range of Magnetic. Heads for tape decks at a price which could reduce the prime cost of your decks by something like $5-10 \%$.

As a resuit of our new production line. your laading bay is reached much cheaper and quicker.

We believe that our quality remains unchallenged.

Delivery - we offer the most reliable delivery in the Business.

We'd like to hear from you. If the quantities you use are large enough, maybe we can upset your marketing plans even more!

Please write to Ronald Gorton and ask him to tell you how.

Cheap power supplies can be expensive - but there's always an exception to the rule. Here's ours.

These new miniature d.c. power supplies are well engineered and compact. They're suitable for either bench use or for incorporating into original equipment and they feature good regulation, low ripple and full protection.

Send for the leaflet (better still, try a unit) and we think you'll agree--they are excellent units and surprisingly inexpensive.

Instant miniature power from :-

Units available
GROUP 1 UNITS: Dimensions $(\mathrm{mm}) 35 \mathrm{H} \times 64 \mathrm{~W} \times 128 \mathrm{D}$. Wt. $0.51 \mathrm{~kg} \quad 0.9$ units

Model	-OUTPUT-_ ____-_				
	Adjust range (Vd.c.) Currentrating (mA) at T. amb.				
	min. max.	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	
6/500P	4-6	500	500	250	£13
12/250P	$6-12$	250	250	125	£12
24/125P	12-24	125	125	62.5	£12
15/15/100P	12-17 O 12-17	100	100	50	£13.50
GROUP 2 UNITS Dimensions (mm) $40 \mathrm{H} \times 64 \mathrm{~W} \times 131.50 \mathrm{Wt} .0 .51 \mathrm{~kg}$.					
6/1P	4-6	1000	750	250	£15
12/500P	6-12	500	500	250	f. 14
24/250P	12-24	250	250	125	£14
15/15/200P	12-170 12-17	200	200	100	f16
- (Excludes VAT)					
	5				
POWER SUPPLIES DIVISION					

WETHERBY YORKSHIRE LS22 4DH TELEPHONE 0937-3541 TELEX 557294
LONDON OFFICE : TELEPHONE 01-8025359

It's easy to spend a lot more than $£ 44$ on a turntable that isn't really made by the people who put their name to it.

At BSR, we believe in taking the trouble to make all the vital components ourselves.

And it pays.
Gradually, we've built a name for reliability
that is second to none. The 810 and 710 here, are the finest turntables we've ever made.

We designed them to give you a freedom unequalled by most other turntables.

Freedom from audible rumble. Freedom from wow and flutter.

Freedom from normal tracking error.

We'll explain all the finer details when we send you our free illustrated brochure. Or better still, vehen you join us on Stand 747 at the London Electronic Component Show, Olympia, 22-25 May.

We put more into our turntables.

LANCASTER RANGE 240°

Models CS60 and CS80 with scale lengths of $4^{\prime \prime}$ and 5.5".
S.A.E. styling in matt black moulded case.

Employed extensively for Tachometry, Simulator and Marine applications.
. Availability from sensitivities of 200 microamps
酉 Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: $\mathrm{MC} / \mathrm{MI}$, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1.3"-5.25" scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale.
DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. $D C$ moving coil and $A C$ moving coil rectified.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Solicontroller Moving Coil Relay. DC moving coil and $A C$ moving coil rectified. 1 or 2 adjustable alarm controls.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and $A C$ moving coil rectified.

Send for fully illustrated catalogue.

48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-387 9092.
Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers' requirements.

The latest colour TV tuner-

Mullard has a really advanced range of vhf, uhf and vhf/uhf electronic tuners. The latest of these is the ELC 1043/05 Varicap', designed to meet the exacting requirements of British transmission standards up until the late 1970's.

Technically, the Varicap' has many advantages;

now in quantity production at Mullard,Thornaby

a considerably reduced noise level; far greater reliability and it replaces outdated electromechanical tuning systems.

For the stylist there are new freedoms; the tuner can be sited practically anywhere on the set, it's a great deal smaller, and the buttons have a feather-like feel.

Varicaps' are coming off the production line at the Mullard Thornaby plant at the rate of many thousands a month. And increasing.

Thornaby-yet another important 'component' in Mullard's massive investment in colour television, helping to increase an already
imposing export performance. And helping you to produce the finest, most up-to-date, colour sets in the world.

In quantity and quality. For today and tomorrow from Mullard Limited.

Rogers Audio Test Equipment.

A comprehensive, versatile range of test equipment primarily designed for the measurement of high quality audio equipment, but with additional applications in the electronics industry in general. The equipment is of particular interest to the professional audio engineer, recording studios, broadcasting authorities, and educational establishments.

Type S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal source. The primary application, used in conjunction with the DM344A Distortion Factor Meter, is the measurement of distortion on high quality audio amplifiers, recording and transmission equipment. Frequency Range: 6 Hz to 60 kHz . in eight third-decade bands. Accuracy $\pm 3 \% 20 \mathrm{~Hz}$ to 20 kHz . Output Amplitude: Within $\pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Distortion: Less than $.05 \%$ 100 Hz to 10 kHz . Less than $.12 \% 20 \mathrm{~Hz}$ to 20 kHz . Available for battery operation or with regulated mains power unit. Supplied in chassis form for rack mounting or in free-standing bench case. Recommended Selling Price: Chassis - £56.50. c/w Case £62.50.

Type DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers, recording and transmission equipment. The instrument is direct reading and indicates the total harmonic content of a complex waveform in R.M.S. values expressed as a percentage of the total. Frequency Range: $20 \mathrm{~Hz}-20 \mathrm{kHz}$ for fundamental in six third-decade bands. Total Harmonic Distortion Range: 100\% F.S.D. to 0.1% F.S.D. in 7 s witched ranges. Voltmeter Range: $30 \mathrm{~V}-1 \mathrm{mV}$ F.S.D. in 10 ranges. Instrument Residual Distortion: Less than $0.01 \% 100 \mathrm{~Hz}$ to 10 kHz . Recommended Selling Price: Chassis - £132.50. c/w Case £140.00.
Model A Noise Generator. A portable battery operated unit designed for carrying out listening tests on loudspeakers. "Pink" or "White" noise can be selected and output can be continuous or burst. Output is continuously variable. Selling Price: $£ 32.50$.
FRogers Developments (Electronics) Limited.
4/14 Barmeston Road, London, SE6 3BN. Telephone: 01- 698 7424/4340.
Please send me colour literature describing your complete range of Audio Test Equipment

First in the field

Get the best TV translators with our UHF Triodes and Tetrodes

Our ten years experience in the field of high power UHF Triodes and Tetrodes allows us to garantee significant advantages:

- high gain, up to 20 dB for solid-state drivers - simple circuits thanks to ultra-linearity
- long life insuring an unbelievably low operating cost
From 10 W to 2 kW , up to 1000 MHz , see what we can offer and compare before your make a choice.

IHOMSON-CSF

THOMSON-CSF ELECTRONIC TUBES LTD /BILTON HOUSE, UXBRIDGE ROAD. EALING / LONDON W5 2 TT
TEL. (01) 579.1857/TELEX 25659

II coul Do

III

Several years ago, we decided that our next challenge would be to go beyond the best there was. Our computers told us we had taken the existing cartridge structure and stylus assembly of the V-15 Type II Improved as far as we could, and that hereafter, any improvement in one performance parameter would be at the expense of performance in some other parameter.

Therefore, over the past several years, a wholly new laminated cartridge structure has been developed, as was an entirely new stylus assembly with a 25% reduction in effective stylus mass! These developments have resulted in optimum trackability at light tracking forces ($3 / 4-11 / 4$ grams), a truly flat, unaccented frequency response, and more extended dynamic range than was possible even with the Type II Improved, without sacrificing output level!

Further, because these factors are held in perfect equilibrium, wherein each design parameter enhances every other parameter, the total audio effect is greater than the sum of its individual engineering achievements. Engineers call this effect a Synergistic Reaction; ergo, we call the Type III the Synergistic Cartridge.

If you like its sound today, you will like it even more as time goes on. In fact, to go back to any other cartridge after living with the Type III for a short while is simply unthinkable, so notable is its neutral, uncolored sound.

> INTRODUCING THE NEW

V-15 TYPE III
Super-Track "Plus" Phono Cartridge

and here are details of a single VTR that brings maximum flexbility to any application -

called the SV612 E (K) this new unit will mix and match recording and playback times - shortening one, lengthening another or vice versa.

You have a choice of five recording and playback periods from 1,6,12,24 and 48 hours which make it ideal for a very wide range of applications, such as flowers in bloom. traffic control, the study of nervous diseases, sporting events and security.

Write or telephone now for full technical information.

Hitachi

gROADCAST E CCTV EQUIPMENT MANUFACTURERS Lodge House Lodge Road Hendon NW4 40Q. Telephone: 01-203 4242/6

NEW STANDARD CASES from OLSON

new Service from stock - despatched by return of post

TYPE	WIDTH	HEIGHT	DEPTH	FRONT PAN DIM.	PRICE	LEG EXTRA
21	$6 \frac{1}{2}{ }^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	6" $\times 4$ "	¢2.65	60p
22	$8 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}^{\prime \prime}$	$5 \frac{1}{2}{ }^{\prime \prime}$	8"×5"	f3.00	60p
23	$10 \frac{1}{2}{ }^{\prime \prime}$	61 $\frac{1}{2}^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$10^{\prime \prime} \times 6$ "	£3.60	65p
24	$12 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$7 \frac{1}{2}^{\prime \prime}$	$12^{\prime \prime} \times 7$ "	f3.90	65p

A Garrard deckask the man who owns one

Make no mistake-your deck is the key unit in your Hi-Fi equipment. All the latest electronic refinements in amplifiers and speakers can be wasted if the deck is not precision-built and mechanically reliable. Ask the man who owns a Garrard. He may take it for granted-but that's the way it should be. You have no second thoughts, no regrets once you've bought Garrard. That's why the overwhelming majority of 'package deals'start with a Garrard. Hi-Fi dealers can't afford after sales problems, so they go for Garrard. Go along with your dealergo for Garrard.

AP76 module : this superb deck offers every modern feature you need for Hi-Fi performance. This is a genuine transcription quality deck at a moderate price
Fitted with 75/6/SM Shure cartridge.

AP96 module: the connoisseur's single playing transcription deck. It is beautifully styled with precision performance to match any $\mathrm{Hi}-\mathrm{Fi}$ system.
Fitted with 75/6/SM Shure cartridge

ZERO-100S module: the ultimate. Tangential pick-up arm virtually eliminates tracking error. The transcription turntable with the greatest combination of advanced features available today. Fitted with M93/E Shure cartridge.

Complete the coupon and post it now!
Please send me more details on the Garrard range of modules and decks.
Name
(Block letters)
Address

To : Garrard, Dept.W W, Newcastle Street, Swindon, Wiltshire.

PHASE LOCK LOOP RECEIVERS

Type 1100 Satellite Band. 135-140 MHz
1.5 dB. Noise Factor. High system gain. Automatic search and lock facility tunes receiver to satelite transmission in range without manual adjustment and enables several satelitites to contribute to picture print-out without operator involvement over an extended period. Single channel or manual operation may also be selected. The unit is designed and rated for continuous dury monitoring service. The output drives facsimile picture equipment directy. $£ 250$
Type 1200 Telematry. 95-105 MHz
AM. FM, multiplex FM. pulse. Automatic signal tracking and locking
Type $1201410 \cdot 420 \mathrm{MHz}$
Type 1300 Singte Muti Type $1301250-470 \mathrm{MHz}$
Type 1400 Radiometer. Type 1450 Interferometer
Broadband response with maximum usable sensitivity. B1.5 MHz \& 151.5 MHz
The DC output drives up to two pen recorders. 40 BMHz
Receiver size: $4 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{2}$ ". Aluminium diecast case.

FREQUENCY CONVERTERS

Type 1050 Input frequency as specified in the range 1 to 250 MHz Type 1060 Input frequency as specified in the range 200 MHz to 700 MHz Size: $4 \frac{1}{2}$ " $\times 2 \frac{1}{2}$ " $\times 1 \frac{1}{2}$ ". Aluminium diecast case

RF AMPLIFIERS

Type 1010 LOW NOISE FET RF PREAMPLIFIERS
Frequency: As specified in the range 1 to 250 MHz
Bandwidth: As specified from 1% to 10% of centre frequenc
Noise Factor 1.5 dB 150 MH
35 dB (8) 100 MHz Adjustable
LOW NOISE REIF AMPLIFIERS
Frequency: $\quad 30 \mathrm{MHz}$.. 60 MHz .. or as specified in the range 1 to 150 MHz
Bandwidth: As specified from 1% to 20% of centre frequency

Type 1040 WIDĖBAND AMPLIFIER to 100 MHz
Gain: $45 \mathrm{~dB} . \pm 1 \mathrm{~dB} .1 \mathrm{~Hz} .10100 \mathrm{MHz}$.
Gain Control: 120 dB Manual or AGC
Noise Factor: 5 dB .90 MHz.
Types 1010 to 1040 .

£60
£80

Illustrated brochure available on request.
RESEARCH COMMUNICATIONS
PEEL HOUSE, PORTERS LANE, OSPRINGE, FAVERSHAM, KENT. ME13 ODR ELECTRIC DE-SOLDERING INSTRUMENT
 Removes unwanted solder!

R500 is
PURPOSE DESIGNED NOT AN ADAPTION TO A SOLDERING IRON

NO AIR OR VACUUM LINES
ONE HAND OPERATION ROBUST CONSTRUCTION EASY TO USE

OVERALL DESIGN GIVES CLEAR VISION OF WORK PIECE

WELL BALANCED
trouble free
all voltages available

Removable plug for holder cleaning (when cold).

50Hz 300VA Square Wave Inverters

If it's produced by Gardners it must be something special, and it is! Now available, models 107A and B are precision built inverters providing 240 volts a.c. from 12 and 24 volt battery systems.
Both models offer unusually high output ratings enabling the user to operate many conventional loads such as lighting and small power tools in situations where main power supplies are not available.

Gardners inverters are designed to drive any mains operated equipment which is not unduly sensitive to the difference between sine and square waveforms. Incandescent lamps, TV sets, electric drills are typical of a wide field of possible applications

Both the 107A and B models are rated at 300VA (300W U.P.F.) and will accommodate reasonable short term overloads. Price $£ 61$ plus VAT. Brochure GT 26 gladly sent on request.

Specialists in Electronic Transformers

GARDNERS

TRANSFORMERS LIMITED

Gardners Transformers Limited Christchurch Hampshire BH23 3PN

Metal cobinets Suppliedinkit form for power supply units voitage stabilizers and electronic apparatus

CODE NO: 300900 Height 120 mm Length 284 mim Depth 138 mm 300910 Height 120 mm Length 224 mm Depth 138 mm 300920 Height 120 mm Length 284 mm Depth 188 mm hternal diniensions

TIIIRID

195 other for buying electronic kits

Apart from the five items indicated on the left, there are another 195 kits to choose from in the vast AMTRON range of clectronic kits.

A few examples of equipment you can construct from AMTRON kits are:

Power supplies, preamplifiers, amplifiers, L.F.instruments, accessories for musical instruments, amateur and radio control transmitters and receivers, battery chargers, electronic car accessories, psychedelic lighting equipment, measuring instruments, tuners, receivers and I.C.digital equipment.

Only 1 st class fully guaranteed components are usedsolder being included with every kit.

Prices range from $£ 1.10$ to $£ 80$ and each kit is sold in a protective blister pack containing complete instructions.

A unique feature of AMTRON kits is their ease of construction which appeals to both dabbler and expert alike.

Please send for brochure. Should you experience any difficulty in obtaining AMTRON kits, please contact us direct. Trade © Educational enquiries welcome.

AMTRON U.K. 4 \& 7 Castle Street, Hastings, Sussex, England. TN34 3DY. Telephone: Hastings 2875

Telefi brings you for the first time real Hi-Fi results from your existing 625 line television.
T.V. Studios transmit superb quality but skimping in the sound section of the recevier means low-fi sound.
Celestion Telefi changes all this - simply coupled to most T.V. receivers - the first T.V: music you hear through Telefi will convince you the dramatic improvement is what you have been waiting for.
Telefi a remarkable innovation exclusive to Celestion for use in
canjunction with $\mathrm{Hi}-\mathrm{Fi}$ and Audio systems for providing high quality television sound reproduction. No direct connection to the T.V. is required, the coupling being effected by an inductive pick-up.
Telefi is complete in a handsome natural teak veneered case $7 \frac{1^{\prime \prime}}{4} x$ 5 "." $\times 2 \frac{7}{8}$ " approx.
"The Telefi is a very worth while device and will give greater overall enjoyment than the T.V. manufacturers normally provide." John Gilbert 'The Gramophone'

nombrex

MODEL 42
R.F. SIGNAL GENERATOR

Price $\mathbf{£ 1 6 . 7 5}$
FROM APRIL 1st PLEASE ADD 10% ON TO PRICE FDR V.A.T.

- Wide Range $150 \mathrm{KHz}-300 \mathrm{MHz}$.
- Accuracy 2\%
- R.F. Output 50 millivolts minimum
- A.F. Output approximately 1 volt at 800 Hz
- Fully transistorised circuitry
- Powered by 9V battery
- Provision for external supply

Trade and Export enquiries welcome Send for full technical leaflets
Post and Packing 35p extra per unit
NOMBREX (1969) LTD., EXMOUTH, DEVON Tel: 03-952 3515

The 'Mastatic' whip-type vertical rod aerial is made to be fixed high above electrical interference.
When it's used with the 'Antistatic' system it returns superb performance in difficult reception areas.
The 'Antistatic' (AM) has a frequency range covering all popular broadcast and short wave bands. It consists of a weatherproofed aerial transformer connected by 60 ft . of screened downlead to a compact receiver transformer.

The'Mastatic (AM) comes in three configurations:
Product No. 79 3 sections. Total height 18 ft . Complete with chimney lashing kit.
Product No. 79a 3 sections. Total height 18 ft .
Complete with wall mounting brackets.
Product No. 79b 2 sections. Total height 12 ft . Complete with 2 in. mast attachment brackets.
 contact your local Aerialite Distribution Depot or write to:

Aerialite Aerials Litd

Radnor Park Trading Estate, West Heath, Congleton,
Cheshire CW124PX. Telephone: Congleton 3892/8
Telegrams: Aerialheat, Congleton. Telex: 669640.

The M2B based on our well tried M2A has been completely redesigned mechanically with a vertical construction that takes only $5^{\prime \prime} \times 5^{\prime \prime}$ of bench space. The carrying handle sits neatly on top of the instrument or may be used as a rest when operated in a sloping position. The A.C. frequency range is now 10 Hz to 1 MHz with amplifier output having a maximum gain of 600 times. A feedback circuit linearises the scales and readings start at 60 microvolts. Input impedance on A.C. and D.C. is 10 Megohms.

> 12A.C.RANGES 10 Hz to 1 MHz 1.2 mV FSD to 400 V -70 dBm to +54 dBm . 8D.C.RANGES 120 mV FSD to 400 V .
 (+ V.A.T. where applicabre).
Further details about the new Linstead voltmeter available upon request.

LInctiad means a good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, London N15 5JB 'Telephone: 01-802 5144

EC958 series of receivers 10 kHz to 30 MHz In world-wide use

Professional high-stability receiver series for a wide variety of applications. The standard version can be used as a self-contained F.S.K. terminal, or as a dual-diversity terminal with common oscillator control. Variants are available for Lincompex terminal use, for specialized network monitoring surveillance and for marine applications.

Simplicity Reliability Economy

Your distributor's address and illustrated brochure obtainable from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP
Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

used as standards in many industries

Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as

 specifiedNot sensitive to voltage or temperature changes, within wide limits

- Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power

Compact and self-contäined

- Rugged and dependable

FRAHM Resonant Reed
Frequency Meters are available
in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers vailable on request.
Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks n the U.K. for off-the-shelf delivery.

AMDERS ELECTRDMILS LIMITED

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092 WW- 034 FOR FURTHER DETALS

For example - suitable for electronic components and assemblies intricate glassware, camera parts. lenses and other optical items.

Cleans by means of high frequency sound waves - 50-55,000 cycles per second. Solid state circuitry. Completely self contained - NO EXTERNAL GENERATOR required. Portable - the smallest is a $5^{\prime \prime}$ cube. Largest capacity is 1 gallon (US). Virtually indestructible transducer Long life - low cost.

Catalogue of cleaners, accessories and prices from: Special Products Distributors Ltd., 81 Piccadilly. London W1V OHL Telephone: 01-629 9556.

Now you can cut your production costs without compromising quality.

Ask Mackarl.

Before you put your name on a stereo system, radiogram or other audio equipment, you must know that both the quality and the price are right. Mackarl can help.

With three Far East factories in volume production, and a fourth rapidly nearing completion, Mackarl is already able to deliver 20 different tuners, printed-circuit assemblies, amplifiers, cartridge players and other chassis
to UK OEMs. Through Mackarl's new London office, you can discuss your requirements with European technical and marketing people with decades of high-level experience in British consumer electronics. Mackarl can provide you with bits and pieces, or complete ready-to-sell units with your own label, or almost anything in between.

Ask Miss Sharpe at Mackarl, today MACKARL ELECTRONICS (LONDON) LTD 94.98 Petty France, London SW1H 9EA Telephone: 01-222 2527

WW- 037 FOR FTIRTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LINITED, 17 devensthise foad London SE23 3EN Tel: C1-699 8844 Tolex: 896761

WW-038 FOR FURTHER DETALLS

MODEL
U-50DX

SAMTM ITUIII

 USED THROUGHOUT THE WORLD SANWA'SEXPERIENCE OF 30 YEARS ENSURES ACCURACY, RELIABILITY. VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA
 $\begin{array}{llll}\text { Model P-2-8 } & £ 6.35 \text { Model AT-45 } & £ 20.50 \\ \text { Model JP-5D } & £ 7.62 \text { Model } 380-\mathrm{CE} & £ 20.81\end{array}$ $\begin{array}{lrll}\text { Model JP-5D } & £ 7.62 \text { Model } \\ \text { Model } 360-Y T R & £ 10.77 & \text { Model N-109 } & £ 20.8 \\ \text { Mo } & \text { £ } 24.20\end{array}$ $\begin{array}{llll}\text { Model } 360-Y T R & £ 10.77 & \text { Model N-101 } \\ \text { Model U-500X } £ 10.89 \text { Model 460-ED } £ 28.39\end{array}$ Model A-303TRD £14.33 Model EM-700 £55.62
 Model F-BOTRD £17.84 THESE PRICES ARE SUBJECT TO AN ADDITIONAL CHARGE OF 10% FOR V.A.T. Cases extra, available for most meters, but not sold separately.
Please write for fllusira

 THOLEA6 4585
WW-039 FOR FURTHER DETALLS

HERE'S WHY YOU SHOULD NOT BUY A U.V. RECORDER

RECORDING OSCILLOSCOPES
medelec

Medelec Fibre Optic Oscilloscopes are top quality general purpose units for industry or research. They are based on the well proven techniques developed by Medelec in the exacting field of medical instrumentation.

- HIGH QUALITY, LOW COST RECORDING
- SIMULTANEOUS RECORDING \& VIEWING
- SINGLE FRAME OR CONTINUOUS RECORDS FROM A BUILT-IN CAMERA
You will want to know more about the Medelec FOR-4 Fibre Optic Oscilloscopesplease contact us for detailed information or a personal demonstration.

Medelec Limited Woking Surrey Tel: Woking (048 62) 70331
Telegrams: Medelec Woking

S.800, re-designed miniature microswitch 5A. 250V, rating.

DF.827. illuminated panel fuseholder, $5 \times 20 \mathrm{~mm}$ fuses up to 6.3 A .

D. 973-976 P.O. approved signal lamps, LES or S.6/8 bulbs.

SM.910-920, economy SPMB and SPCO switches up to 3A, rating.

DSM.940-942. illuminated push switches, various button styles.
P.580-581-585, panel plug with various sockets to CEE. 22 spec.

F.396. extra-safe panel fuse-holder. $5 \times 20 \mathrm{~mm}$ fuses up to 6.3 A .

F.326-340, five base mounting fuseholders $1^{\prime \prime}$ or $1 \frac{1^{\prime \prime}}{}{ }^{\prime}$ fuses.

D. 926-7, matching signal lamp to our $5 \times 20 \mathrm{~mm}$ panel fuseholders.

K.580-581, two skirted knobs for concentric shaft uses

SM.801-2, 14 push switches. choice of styles \& action.

technical literature available on request. quote: $\mathrm{WW} / 2 / 73$.

A. F. BULGIN \& CO. LTD.

ELECTRONIC COMPONENT MANUFACTURERS BYE-PASS ROAD BARKING ESSEX IG11 OAZ TEL : 015945588 (12 lines) P.B.X. TELEX: 897255

Next time you need instrument cases, cabinets or consoles, made in wood talk it over with Whiteley. It could be a very profitable discussion for you. Our new woodworking plant is ready with the most up-to-date machinery, to ;sovide speed and quality in volume production. We can wurk from your drawings, or design to meet your needs. Tell us the problem. Our specialist experience spans acoustics, heat dispersal and many other problems met in instrument packaging-and it's all at your service.
We can produce cases and cabinets of all kinds, acoustic hoods, desk consoles, wall boards, loudspeaker enclosures etc., in veneers to any specification, polished or lacquered, and finishes in cellulose or melamine. We can assemble the electronics in the case if you so desire. In fact, we can provide as many facilities as you need, from instrument design to sheet metal work and plastics moulding. Many of the big names in industry cure their production headaches by calling in Whiteley. When can we meet you?

ELECTRONIC \& ELECTRICAL DESIGN
PRODUCTION CAPABILITY
CABINET MAKING
SHEET METAL FORMING/FINSHING

PLASTICS MOULDING

ENCAPSULATION

WHITELEY ELECTRICAL RADIO CO. LTD.

Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074 ww-043 FOR FURTHER DETAILS

313 EDGWARE ROAD, LONDON W2 3BR.
telephone: 017232231 Cable: Omrontrols London.
omrom
telephone: 017232231 telex 28514

TIMERS SWITCHES TRANSFORMERS VOLTAGE CONTROLS

VARIABLE TRANSFORMERS

FAMOUS "'SLIDUP" 'SLIDTRANS" MODELS 1 amp £7.00 C. \& P. 37p 2.5 amp $\mathbf{f} 8.05$ 2.5 amp f 8.05
$\mathbf{5} \mathrm{amp} \mathrm{f} 11.75$ 5 amp f 11.75
$10 \mathrm{amp} £ 22.50$ 12 amp f22.50 $12 \mathrm{amp} £ 23.60$
$20 \mathrm{amp} £ 49.00$ "OFF THE SHELF" delivery of all types *Fully shrouded. *Bench Mounting.
*Panel Mounting. *Low Price. *Input 240VAC. Output: 0-260VAC.

PANEL MOUNTING "SYS" SYNCHRONOUS TIMER

OMRON brand Synchronous Motor driven timer with single two timed change over contacts. MINIMUM guaran toed electrical and mechanica 0,000,000 opera tions.
Stocked in 110VAC 240VAC up to twenty eight hours time range: $\frac{1}{2} \%$ repeat accuracy. $£ 14.90$ "one off" $£ 10$ in quantity.

PNEUMATIC OMRON TIMER UP TO 200 SECS DELAY-"ATS'"

Easily adjustable from delay on energise to delay on de-energise The OMRON ATS works on an air damped principle and can be adjusted between 0.200 secs with screwdriver adjustment. A precision snap action switch provides a 6A contact and minimum $1,000,000$ ops life. "One off" 88.10 . In quantity f 5 for $110 \mathrm{~V} / 240 \mathrm{VAC}$ types.

LOW COST PANEL MOUNTING

 MINIATURE TIMER-'"STPYMH'

Plug-in timer for panel mounting. Synchronous Motor driven with autoreset facility. Instantaneous and time limit contacts rated at 5 A . This timer pointers. £8.40 "
high accuracy solid state PLUG-IN TIMER-'TDS'

Genuine 1\% repeat accuracy Life 50 million. minimum, instantaneous time limit contacts. Full time scales $0-1 \mathrm{sec}$ $0-2 \mathrm{sec}, 0-5 \mathrm{sec}, 0-10 \mathrm{sec}$; $0-30 \mathrm{sec}$
$0-180 \mathrm{sec}$. Dual Voltage $110 / 240$ VAC $£ 18.50$ to $£ 13$ each.

EXCLUSIVE SOCKETS FOR OMRON TIMERS \& FLOATLESS SWITCHES

Screw terminals, with clips to hold the timer or switch firmly in Type 8PF for STPNH, TDS. DTS Type 8PFI for 61FGP \& TDA
$75 p$ "one off" and 50 p each in quantity.

ELECTRONIC PLUG-IN SWITCH FOR LIOUID LEVEL \& ICE BANK CONTROLS "61FGP" Electronic switch senses change in resistance using
ctangess Steeil rone assem. Stainless Steel probe assem. bles or other conductive probes.
Proven use in sewage, water beer, milk ise in vending. effiuent, boilers and other industries. $\mathfrak{£ 5 . 8 5}$ for "one off' $£ \mathbf{£ 3} .50$ in quantity. STAINLESS STEEL PROBE ASSEMBLY "PS31"

Length 1 metre, for use on differential and alarm control of conductive liquids with "61f6G" (illusrated above).
. one off" $£ 1$ in quantity.
LECTRONIC RECYCLING
TIMER FOR CONTINUOUS
ON/OFF OPERATION "TDA"

Electronic twin timer for continous recpling operations. Onloff time control, 0-6sers with 2% repeat accuracy setting $0-6$ sec with transter
switch $\times 10$.
Dual voltage 110;240VAC $£ 28.60$ but down to $£ 18$ each in quantity. PANEL MOUNTING "NS
"New Square Dial" The OMROM timer type nsy features the modern "OIN" type square fixed dial. This
attractive rackage has two attractive package has two
time limit changeover contime limit changeover con tacts.
stock ranga $110 / 240$ VAC up to 28 hrs $£ 12.50$ "one off" to $£ 8$ in quantity
OMRON MICROSWITCHES
*Interchangeable with all British \& Continental Manufacturers *Approvals from: CSA; MIL; UL; SEVC; SAA: DEMKO ETC

VIC WITH AMP TERMINALS Single Pole Changeover 1 Samp switch 0.F. 400 gm R.F. 114 gm
M.O.O. $4 \mathrm{~mm} . ~ £ 19$ per $100 ; ~$
150 per 100: © 700 pel 5000 .
VV-15-1A With SOLDER TERMS. Single Pole Changeover 15 amp Switch O.F. 230 gm . F.F. 50 gm , M.D. 1 mm . f19 per 100 ; f 150 per 1000; f650 per 5000.
SIA SUBMINIATURE SWITCH Cheaper than all its competitors. Single pole changeover 5 amp switch $0 . F .200 \mathrm{gm}$. R.F. 40 gm . M.D. 0.1 mm . f850 per 5000 . SIAL WITH LEAF SPRIN Subminiature 5amp microswitch of $56-180 \mathrm{gm}$ R. 5.14 gm M.F 0.8 mm . £27 per 100; £220 per 1000: f10C0 per 5000. SIAL 2 WITH ROLLERACTUATOR Subminiature 5 amp microswitch O.F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D. 0.8 mm . £33 per 100; £270 per 1000: f1250 per 5900. CCR-5 LOW TOAQUE SWITCH Low cost microswitch for coin operated or air vane applications. $0 . T .10 \mathrm{gm}$. R.T. 13 gm M.D. 15°. £31 per 100: $\mathbf{f 1 9 0}$ per 1000 $\mathbf{5 0 0}$ per 5000 .
VAQ4 PUSHBUTTON MICROSWITCH.
15amp Microswitch with pushbutton actuater low peratin force and buttons in various colours. £49 per 100: £360 per 1000: £1750 per 5000 .

WORLD'S SMALLEST SYNCHRONOUS

 MOTOR PLUG-IN TIMER STPNH AT LAST! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A MINIATURE PLUG-IN TIMER UP TO 28HRSOnly OMRON could provide a timer of such unrivalled superiority over all its competitors, anywhere in the world.
The STPNH is a synchronous motor driven timer with automatic reset function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base. Time ranges start 0.6 secs and finish $0-28 \mathrm{hrs}$ with operating valtage at 110 VAC or 240 VAC .
Up to 72 mins $\mathbf{£ 7 . 9 0}$ "one off" and $£ \mathbf{£}$ in quantity. Long time ranges around $\mathbf{£ 8}$

Full range available with 15 amp switching capacity.
Approved by CSA Authorities \& guaranteed for Approved by
twelve months.
welve months.
anufacturers typical price is around $£ 3.50$ for coil spring type.

VOLTAGE STABILISER
Famous I.M.O. Constant Voltage Stabiliser st only f 12.50 each. EATURES:

* 200 watt rating *Input 240VAC $\pm 20 \%$ \pm Output 240 VAC $\pm 1 \%$.

At last omron front CONNECTION SOCKETSNOW SUPPLIED FROM STOCK

These new miniature sockets with screw terminal connections are only available through I.M.O. or authorised stockists. Moulding is UL approved and OMRON "know how" brings all the advanced features of a modern product PF083 (8 pin) 44p each 1000
lots.
PF113 (11 pin) 58p each 1000 PF113 (11 pin) 58p each 1000 fillustraterature is available on all the products lots.

SOLID STATE VOLTAGE
CONTROLS 5AMP \& 10AMP MODELS

VP05C (5AMP) $£ 9.90$ "one off" $£ 6$ in quantity. VPIOC (10AMP) £16.90 "one off" $£ 10$ in quantity

PHOTOELECTRIC SWITCHES

Reflective and "slot" type photoelectric switches. Will sense any material passing the light beam up to 3 mm and provide an output signal of O2AMPS at 240 VAC . Raflective distance up to 25 mm on reflective surfaces, far longer with external light.
FROM DIRECT FROM 24VAC SUPPLY.
PRIOOR (Reflective) $\mathbf{4} 7.50$ "one off' $£ 4$ in quantity. PRIOOC (slot) $£ 7.50$ "one off" $\mathbf{f 4}$ in quantity.

New range of open, enclosed and plug in relays
Approved by C.S.A., V.D.E. and S.E.V.

Very competitive prices and delivery from stock.

Erie and Toshibaan active components partnership

Take Erie

A leading supplier of passive components now even more active with thick film hybrids.
Custom-designed, pre-packaged assemblies containing complete circuit functions. Miniature special law Cermet potentiometer, high voltage potentiometers and high power resistor assemblies. Produced at speed to exact specifications at competitive prices.

Take Toshiba

A world leader in power transistors - now with an even more impressive line-up of active components.
Giant Transistors up to 300 watts and 600 volts, high voltage devices up to 2200 volts. New L.E.D.'s for panel circuit indicators advanced new devices featuring low drive power, high brightness visible red light emission, fast response time and a really compact package. Voltage regulators. Power thyristors and Trigger Diodes. And behind Toshiba. Erie service: the most comprehensive, and certainly the most readily available, applications experience in the business.

ERIE ELECTRONICS LTD.
South Denes, Great Yarmouth, Norfolk. Telephone: 0493 56122. Telex: 97421.

EMI Colorline CATV

The multi-channel VHF system with $40-270 \mathrm{MHz}$ bandwidth, lower distortion • Increased Cascadeability

[^0]
EMI Telecommunications

NEW PRODUCTS FROM COLE ELECTRONICS LTD

A. P. CIRCUIT NOTCH FILTER

A new range of active notch filter modules for printed circuit board mounting. The 7 -pin plug-in modules are available in a wide number of notch frequencies spanning the audio range distorting desirable firequences.

COLE ELECTRONICS LTD.
WW-109 FOR FURTHER DETAILS

HARTMANN CODE SWITCHES

These switches have separate pushbuttons for forward or backward setting and large easily legible numerals which remain fully visible during setting. The positive mechanism ensures that mid-positions and consequently falsely coded read-outs cannot occur. $\begin{array}{lll}\text { Available in } 3 & & \text { Figure } \\ \text { Sizes } & \text { Front View } & \text { Height }\end{array}$ MHE (as Photol $\quad 44 \times 12 \mathrm{~mm} \quad 7.3 \mathrm{~mm}$ MICO $\quad 32 \times 11 \mathrm{~mm} \quad 7.3 \mathrm{~mm}$ SMC $\quad 24 \times 7.6 \mathrm{~mm} \quad 5.0 \mathrm{~mm}$

COLE ELECTRONICS LTD.

ELMI EVENT RECORDER

The Event Recorder $2 T \mathrm{~K}$-1010. is a high-speed efectric pulse recording instrument for simultaneous monitoring of up to 30 channels of on/off, go/no-go and other two-state data against time. The recorder produces a chart record of sequence. duration and time
relationship of events occurring in the different channels.

COLE ELECTRONICS LTD.

RAF 1 CONTACTLESS SWITCHES

LATEST DESIGN USES HALL EFFECT INTEGRATED CIRCUIT. OPERATING ON 4.5 V - 30 V D. . MAKING IT SUITABLE FOR MATCHING ALL TYPES OF LOGIC CIRCUITRY haf. 1 ARE ABLE TO SUPPLY ALL TYPES OF COMPLETE KEYBOARDS WITH ANY Established code structure

COLE ELECTRONICS LTD.
CHURCH ROAD, CROYDON CRO 1SG
TEL: 01-686 7581 TELEX: 262346

FM TUNER

NELSON-JONES

Approved parts for this outstanding design (W.W. April 1971/2). Featuring $0.75 \quad \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strlp. Triple gang tuning. iV r.m.s. output level, suitable for phase locked decoder
as below. Deslgner's own P.C.B
FURTHER PRICE REDUCTIONS
Basic Tuner Parts with Screening Box
NOW LESS THAN $£ 11 \cdot 50$. Please send S.A.E. lists.
NEW ALIGNMENT SERVICE
Detalis on request.
SOLID STATE TUNING INDICATOR
(W.W. Aprli '72). Tuning is indicated by the balance of two light emitting diodes. The kit Includes, LED's, high gain transistors, P.C.B., resistors, mounting kit and instruction bookle Order T041. Price $£ 1.72$ plus P. \& P . 10 p with two LED's (or $£ 1.98$ with extra LED tor 'stereo

DIAL CHASSIS KIT
Now availabie-includes all dial drive components, dial plate, decoder mounting bracket tuning scales, decoder-tuner tagstrips, etc., 4-way $2 / 3$ pole rotary switch and instruction bookle Price $£ 2.15$ plus P \& P. 17p (Note: may be purchased without dial drive components.)

PHASE-LOCKED STEREO DECODER KIT
Now with free LED "stereo on" Ilght-complementing this superb decoder (W.W. Sept. '70) Suilable for wide variety of tuners including the NELSON-JONES TUNER Complete kit OnLY E7.68. P. \& P. 16p.

NEW IC Stabilised PSU. S/C, overload protected, low ripple. E3-55. P. AP, 19p.

LIGHT EMITTING DIODES (Red)

Improved efficiency type, mech. identical to HP LED, panel of PCB mounting with free mounting clip-clear or black-please state. Order LED1A. Please add postage.
Monsanto miniature PCB mounting with radial leads:
Order LED2. Please add postage.
NOW ONLY 35p each with connection dsta
TEXAN AMP.
Piease enquire about delivery
AERIALS-3 ELEMENT VHF/FM (Outdoor)
A good aerial is essential for optimum Slereo Radio reception. ONLY E2.60. P. \& P. 40p
Coax 5p/metre. (Masts and Fixing kits avaliabie).

ThOUSANDS NOW IN USE

NOT ALL THE BEST THINGS IN LIFE ARE FREE

And that most certainly applies to the comprehensive range of Rohde \& Schwarz electronic instrumentation. Over 250 instruments including Frequency Time Standard, Frequency Counters, Automatic Test Systems, Data Collection and Reduction for Integrated Circuits and R.F. Measurement. TV Transmitter Test Equipment, Component Measuring Equipment, Synthesizers, Standard and Programmable Systems and a range of general Laboratory Measuring Equipment, is available. Femember: It's never free, It's not always cheapest, But it is Rohde \& Schwarz. A reply to this advertisement will secure a current Rohde \& Schwarz instrument catalogue and specific data on the representalive items shown here. Telephone enquiries should be directed to our Instrument Marketing Manager Ext 3 ?

Automatic Logic Tester Type ICF with program input via punched cards and tapes.

Power Signal Generator Type SMLU for 25 to 1000
MHz .
MHz . Output level with ALC
from $565-\mathrm{MHz}$ range)
from $565-\mathrm{MHz}$ range) ${ }^{1 \mathrm{~W}}$.

Transistor and Diode Tester Semitest V from Rohde \& Schwarz for use in service, laboratory and test department.
 from 40 Hz to 10 MHz .

Programmable Attenuator DPVP from Rohde \& Schwarz. Attenuation range of 140 dB adjustable in increments of 0.1 dB for frequencies up to 1000 MHz .

Magnetic shielding

TELCON offers these simple answers
Standard shields
Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance. For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.
'Telshield' wrap around foil
'Telshield' is an easy to use, ferromagnetic shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm . in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$, Other thicknesses and widths are available by arrangement.

THERMOCOUPIE POTENTIOMETER

TYPE P4/E

FOR
TEMPERATURE MEASUREMENT RECORDER CALIBRATION

EX-STOCK

This is a robust portable instrument suitable for temperature measurement with all thermocouples and for calibrating the indicating instruments that are used with thermocouples.

Two ranges are provided: $0-105 \mathrm{mV}$ for use with base metal couples, and $0-21 \mathrm{mV}$ for precious metal couples.

An auxiliary potential divider included provides an adjustable potential which can be injected into external instruments for calibration purposes.

INTERFACE 73 is a Texas Instruments Technical Seminar

Would you spend anhour aday to earn more money in Electronics-Television-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics - in television (colour and black/white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments).

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

Put FieldTechon your panel

Panel mounting indicator lightsswitches and knobs

Now from FieldTech. A whole range of panel components designed to cover every design situation. There is a wide selection of indicator lights including incandescent and neon types, as well as Minilamps - the brightest idea yet in low voltage indicator lamps. Switches by the hundred including toggle, push button, see-saw and slide types. As well as

Minomushi clip and binding posts. All at really competitive prices. Precision engineered knobs of all kinds, ranging through dimmer controls and skirted knobs and dials to servo clamps and locking dials.

Put FieldTech on your panel of experts, and you'll get components that are right for availability, right for quality and right for price. Complete the coupon and we'll
send you all the information you need to play the panel game successfully.

WW- 051 FOR FURTHER DETALLS

With the new Arrow Adapt-a-Switch .. you win on versatility. From only a small number of components you can make up a remarkable choice of units. Illuminated push-button switches in three lens shapes, six colours, momentary or alternate action. Nonilluminated switches in colours or black. Or nonswitching indicators. Easy to order, stock, snap together You win on wiring, too. The switch action is added by contact blocks, up to four per switch. No fidgiting behind the panel. Connect thein into your wiring harness in comfort, then snap them on. Adapt-a-Switch is a new design concept for saving lime, and
space, on your control panels. Ask Arrow for the fullcolour folder.

Scottish Office
13 MURRAY PLACE, STIRLING FK8 1 DO Tetephone: 07863823
U. K. Distributors ITT ELECTRONIC SERVICES HARLOW - 027-96 26777 RENFREWSHIRE Johnstore 23457 LEIGH - Leigh 5211/2/3 SUTTON COLDFIELD-021-3554511 BRISTOL-0272 290125 C.E.S. ITD. CROYDON - 01 - 6860505 COMWAY ELECTRONICS BRACKNELL- 034424765

Overseas Agents in Arabian Gulf, Belgium, Ceylon, Denmark. East Africa, Eire, Finland, France, Greece, Holland, Hong Kong, India, Israel, Italy, Kuwait, Federation of Malaysia, Norway, Philippines, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Trinidad and Western Germany.

it takes over where MTBF leaves off

While others talk of MTBF, we introduce a new concept-EHPL, Estimated Half-Power Life. Our 400W and 1 kW all-solid-state broadband HF linear amplifiers have over five years of it, counted in operational hours. Which, with a remarkably low Mean Time To Repair, means 99.9\% up-time.

The multiple p.a. modules of these compact units, arranged in parallel for maximum reliability, ensure that even in the unlikely event of several component failures occurring together, the amplifiers go on working-long after others have stopped.
Moreover, thanks to Redifon's unique Transmit Level Control, they always deliver to any antenna-even to a badly damaged one-the maximum power that is safe, whatever the mismatch.

All of which means that the pair of transmitters in the picture represent the finest and most reliable in the world for civil and military applications, whether in fixed, mobile or containerised stations. And they are in production and service, right now.

Redifon Telecommunications Limited,
Radio Communications Division,
Broomhill Road, London SW18 4JO
Tel: 018747281

EXAR
INTEGRATED

SYSTEMS

If you're a systems designer stuck with the use of discrete or electro-mechanical timing devices, you should investigate Exar's new monolithic timing circuits.

The XR-220 and XR-320 generate precise pulses and delays variable from one microsecond to one hour, using a single external resistor-capacitor combination to determine the time, 2RC.

They are excellent for monostable or self-triggering timing pulse generation, linear sweep generation, and for pulse-width or pulse-position modulation timing. By combining two or more circuits, you can create an infinite variety of sequential and delayed timing cycles.

These Exar circuits are the only ones in hermetic DIP packages, and the only circuits which accept inverted or non-inverted inputs, and have outputs which are inverted or non-inverted, of high or low level.

The XR-2208 is a Monolithic Operational Multiplier. Our MOM has an independent four-quadrant multiplier, op amp and high frequency buffer on one chip that you can tie together with minimum fuss to perform a host of analog computations, signal processing and Phase-Lock Loop applications. By combining the multiplier and buffer functions, the small signal 3-db bandwidth can be extended to 8 MHz and the transconductance bandwidth to 100 MHz . Current and voltage levels are internally regulated with good power supply rejection and excellent temperature stability. MOM has $\mathrm{a} \pm 4.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$ supply range, and in her prime 0° to 70° she's only:

PART NO:	$\frac{100 U P}{7.85}$
$\mathrm{XR}-2208 \mathrm{M}$	5.50
$X R-2208$	2.90

Telford Oscilloscope cameras

Type A modular system with widest range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements.
Plus inexpensive Type P (prices from f 50) utilising coaterless Polaroid (®) film and Type C with economical 35 mm film for continuous feed.

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
London W1V 3LE
01-437 1892/3

JES AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to $.01 \% \quad \mathbf{~} \mathbf{3 0 . 0 0}$

1453
£40.00
Si451 £35.00
Comprehensive Millivoltmeter
350μ Volts 20 range
Low distortion Oscillator sine Square RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATON, YORKSHIRE.

WW 057 FOR FURTHER DETAILS

for the professional
contact Derek Owen at 01-874 9054 or Telex 923455

LEEVERS-RICH

EQUIPMENT LIMTED

Agents in Scandinavia, Eastern and Western Europe, Middle East, Africa, Australasia and the Far East.

LEEVERS-RICH EQUIPMENT LIMITED

319 TRINITY ROAD - LONDON SW18 3SL
Telephone 018749054 . Telex 923455
Cables LEEMAG LONDON

AT HOME SOLDERING?

you can be - very easily, with the LITESOLD "CONOUEROR". A superbly handling, lightweight iron, flash tested and earthed for safety - yours and your components. Five bit sizes $1 / 16^{\prime \prime}$ to $\frac{1}{4}{ }^{\prime \prime}$ slip over the element for high thermal efficiency and match different joint sizes fully slotted to ensure freedom from seizure.

The extra safe, easy location Spring Stand holds the iron, spare bits and wiping sponge ready for instant use. Fitted with non slip feet.
 Sponge and 4 Spare Bits $£ 5.08$ (inc P\&P\&VAT-U.K. only).

The Litesold Conqueror outfit provides all you need to build and maintain almost any electronic equipment at home - or at work.

LIGHT SOLDERING DEVELOPMENTS LTD. 28 SYDENHAM ROAD, CROYDON, CR9 2LL.

अODEL 8 мк. H1

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

When you need Motorola semiconductors anywhere in the UK or Ireland as fast as a phone call; contact any of five distributors.
A. M. Lock \& Co. Ltd., Oldham, Tel: 061-524 6832.

Celdis Ltd., Reading, Tel: 582211.
Jermyn Industries, Sevenoaks, Tel: 51147.
G D S (Sales) Ltd., Slough, Tel: 075330211 ; Dublin, Tel: 782232.
Semicomps Ltd., Wembley, Tel: 01-903 3161.

When you need Motorola semiconductors anywhere in Italy as fast as a phone call; contact any of three distributors.

When you need Motorola semiconductors anywhere in France as fast as a phone
call; contact any of seven
distributors.

When you need Motorola semiconductors anywhere in Germany as fast as a phone call; contact any of eight distributors.

MOTOROLA Semiconductors Ltd.
York House, Empire Way, Wembley, Middlesex.

accurate testing with Hatfield

Hatfield provide a range of Transmission Test equipment to cover most applications giving

With the $\mathbf{7 4 7}$ MILLIWATT TEST Set you get laboratory accuracy in portable form. Just one instrument to standardise signal levels on 75,140 and 600 ohm circuits.

With internally fitted 'telephone' and 'broadcast' weighted filters, the PSOPHOMETER 1000 can make measurements from as low as 10 V up to 300 V . A bandpass filter is also available
for cross-talk
measurements.

SELECTIVE

LEVELMETER 1001. You can measure cross-talk attenuation to -115 dBm with the selective measuring set comprising Level Meter 1001 and Level Oscillator 1003. Frequency range from 30 Hz to 30 KHz .

forward thinking in electronics

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW - 066 FOR FURTHER DETALLS

244 COUNTER-TIMER AND FREQUENCY METER

Price $\mathbf{£ 7 9 . 0 0}$

244 is suitable for a number of Laboratory and Industrial Timing Applications, offering the same facilities as instruments costing twice the price.

For full information contact:-
ESI Nuclear Ltd
2 Church Road
Redhill
Surrey RH1 6QA
Tel: Redhill (91) 64993
An associated company of Edwards Scientific Instruments. Mirfield. Yorkshire.

broad-band, wide range and easy on the eyes: the NEW THRULINE'RF WATTMETER

spans 25-500 MHz, measures
 a remote base station or in a car,

SEE US ON STAND No. 933 AT THE L.E.C.S.
Price ind. Line Section with N Conn $£ \mathbf{£ 6 0}$

ELECTRONIC LIMITED
18A HIGH STREET. NORTHWOOD
MIDDLESEX PHONE NORTHWOOD 27688

WW- 068 FOR FURTHER DETAILS

Random Access Memory Card 259xizilis $£ 60$

Down in price again!
Ready to use, fully decoded, on printed circuit card. Ideal as high-speed Random Access Store in your own computers, control systems, terminals etc. Requires only +5 v and $-9 v$ power supplies. All inputs and outputs are TL compatible and no clock is required. Outputs can be wired-OR for memory expansion.

For further information, please contact:
LIMROSE ELECTRONICS LTD., 8-10 KINGSWAY.
ALTRINCHAM, CHESHIRE,
WA14 1PJ, England. Tel. 061-9288063

HEA

an anti-reflection breakthrough by OCLI

Study the glass disc above. The central portion is coated with HEA (High-efficiency anti-reflection) and the remainder of the disc is left uncoated

Viewing the lettering through the disc, as for a typical instrument presentation, you can see the tremendous difference in reflected glare from the coated and uncoated parts of the disc. HEA offers improved image quality by giving, in fact, more than ten times less reflection than an uncoated surface

If you would like a disc to examine personally, the coupon below will bring a sample by return.

An Avo Electronic multimeter at half the price you expect.

The all-new Avo EM272.

The new Avo EM272 pocket multimeter gives you performance that would normally cost $£ 50$. For just £25 UK trade.

It gives $316 \mathrm{k} \Omega / \mathrm{V}$ input impedance at an accuracy you won't find elsewhere at the price- $\pm 2.5 \%$ f.s.d. on most voltage ranges.

It has 39 ranges: 20 on voltage, 14 on current and 5 on resistance.

Its circuitry achieves maximum reliability by combining printed circuit shunts with thick film modules.

And it has a robust centre-pole movement that takes knocks you'd hate to give it.

You need the best multimeter you can get at the price.

This is it.
 ww-071 FOR FURTHER DETALS

LONDON ELECTRONIC COMPONENT SHOW

ALLOTROPE LIMITED

will be showing on
STAND 539
Condenser and Dyramic Microphones manufactured by $A B$ Pearl Mikrofonlaboratorium, Sweden.
Audio Mixer Modules manufactured by SAIT Electronics, Belgium.
Muse Music Synthesiser manufactured by Triadex Inc., U.S.A.
Broadcasting TSV Difierential Telephone Repeater System manufactured by Hes Electronics, Belgium.
Future Film Develcpments Range including Audio Connectors, Broadcast Pattern Jackfields, Cords and Plugs. Audio Cables, Markers, Sleeves, Wiring Accessories and Hand Tools.

ALLOTROPE LIMITED

90 WARDOUR STREET, LONDON, W1V 3LE Telephone: 01-437 1892/3

Telex: 21642

Pocket Size LED Applied

LOGIC TESTER

- Powered from circuit under test
- LED used as indicator lamp
- High input impedance - Durable Easy to use - Economically priced

The tester is a rugged, compact and easy to use instrument capable of testing logic levels and operates from the $5 \mathrm{v} d c$ supply of the system under test.

Agents required in all areas For use with DTL TTL and other pulse circuits. Response frequency DC to 12 MHz
£4.95
quantity discount JH Associates (Dept WW)

Cricketfield Lane.

STEREO IC DECODER
 HIOH PERFORMANCE PHASE LOCKED LOOP
 (as Jn 'W.W.' July'72)

MOTOROLA MC1310P EX STOCK DELIVERY
Saparation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ SPECIFICATION
1/P level: 560 mV rms
O/P level : 485 mV ims pertion: 0.3%
Input impedance: $50 \mathrm{k} \Omega$

From Goldring. New support for the belief that what goes into a record ought to come out of it.

The Theory is perfectly simple.
A good cartridge should take from a record all the subtle shades of original sound that are stored there, and re-create them for your enjoyment.

The Practice is a little more difficult.
Now Goldring bring the ideal closer with the new 820 series.

A brand new family of cartridges that builds on the advances already achieved by the Goldring 800 series. Providing cartridges that are not only capable of making the most of all that good recording can offer now, but have the capacity to keep pace with new developments in the art of quality recordings.

The 820 series retains the true transparency of sound and the true transduction techniques of earlier designs.

It brings advances in every aspect of design.
The small low-mass diamond point which is mounted on a new type of specially polished lightweight aluminium tube, combined with the new visco-elastic material used for the pivot pad, makes for greater tracking ability.

A special 'tie wire' minimises fore and aft sty us movement, reducing non-linear distortion to a minimum.

The total effect is a cartridge that, other equipment being equal, can narrow almost to vanishing point the difference between the original recording and the sound that comes out of your speakers.

There are three models in the range. The 820 with spherical stylus. The 820 E and 820 Super E, both with bi-radial styli. Write for details and full specifications. And satisfy yourself that 'what goes in comes out'.

The 820-one of the models in the new range Performance characteristics Sensitivity a $5 \mathrm{~cm} / \mathrm{sec}-1 \mathrm{Khz}: 5 \mathrm{mv}$ Separation@ $1 \mathrm{Khz}: 20 \mathrm{~dB}$. Recommended playing wt. 2 grammes.

The new 820 series The experts cartridge by Goldring ©

ROOW DC SERVO SYSTEMS

> Bi-directional. Designed around stock items. Immediate Delivery. Systems tailored to individual requirements.

Accurate positioning and variable speed drive functions in the fractional horsepower range for industrial, medical and other professional applications can now be achieved by use of DC Servo Systems designed around stock items and available for immediate delivery.
The well-known McLennan modular construction concept almost completely eliminates design time from servo-system production and yet systems can be supplied to exactly the degree of sophistication required for specific applications.

BI-DIRECTIONAL CONTROL AMPLIFIER TYPE EM73 Differential input. Automatic current limiting Automatic dynamic braking Uses linear devices throughout.

POWER UNIT TYPE EM75
Will supply up to three servo units depending upon load factors. Operates from 115 V . 220 V or 240 V input.

SERVOMOTOR
Complete with reduction gearhead, positional feedback potentiometer and tachogenerator.
Several versions available.

TYPICAL APPLICATIONS

- Machine Tool Drives
- Positioning in Radiology
- Fast Panning of Heavy Cameras
- Jacking Systems
- Stable Variable Speed Drives for Research and Production

Other McLennan products include:
Digital Syringes, Precision Peristaltic Pumps, Digital and Analogue Servo Systems, Process and Machine Tool Control Equipment, Precision Potentiometer Drives, Custom-built Gearheads and Actuator Mechanisms.

McLennan Engineering Ltd.

CONTROL SYSTEMS AND COMPONENTS
Kings Road Crowthorne Berkshire Telephone: Crowthorne 5757/8

4csectan
 Oscilloscope

- Simple controls
$\square 10 \mathrm{mV}$ Sensitivity at 10 MHz
Automatic Triggering
Automatically selects for TV Frame or Line Displays
- Can be used in Single Beam, Dual Trace and X-Y Modes - Weighs under 15 lb

Developed for general purpose and TV service applications, the D61 is small, easy-to-carry and rugged - ideal for field work

It features two identical input channels, provision for switching one channel to the horizontal input for X-Y displays, and automatically selects for chopped or alternate modes. All this, plus a big, bright $8 \times 10 \mathrm{~cm}$ display. packs into a small space too in fact the vital statistics ($16 \frac{1}{2}$ in. deep $\times 11 \mathrm{in}$. high $\times 6^{\frac{1}{4}} \mathrm{in}$. wide) are as interesting as the $£ 110$ price-tag.

nor the likes of it at this price- $£ 110$

TELEQUIPMENT \ll >

Tektronix U.K. Ltd.,
Beaverton House,
P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 61251
Telex: 25559

Wireless World

Electronics, Television, Radio, Audio

This month's cover shows four colour separations of a news picture sent by the colour telephoto system described by J. H. Smith in this issue (page 214).

In our next issue (publication date May 21)

Varicap f.m. tuner. The variable capacitors in the Nelson-Jones tuner are replaced by varicap diodes to provide voltage controlled tuning. A lower gain modification is also described.
Microphone reflectors - a subject which has received little attention so far. This article examines the effects on frequency and polar response of reflector material, size, focal length and microphone size and position.

Contents

213 Harold Barnard Retires
214 Colour Telephoto System by J. H. Smith
220 Sonex Report
222 TV Information Service
223 News of the Month
P.C.M. for Post Office trunks
Defect inspection device
Telephone telemetry
226 Digital Multimeter - 3 by D. E. O'N. Waddington
230 Books Received
230 Corrections
231 Meterless Transistor Tester by J. Lewis
233 World-wide Mobile Communications and Surveillance via Satellites
234 Circards - 6:
Constant Current Circuits
by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams
236 London Electronic Components Show
238 Traffic Information Broadcasting
241 Experiments with Operational Amplifiers - 9 by G. B. Clayton
243 A Novel Approach to Power Supply Design by R. Aston
246 Letters to the Editor
249 Industrial Electronics - $\mathbf{3}$ by R. Graham
251 H.F. Predictions
251 Sixty Years Ago
252 Circuit Ideas
253 About People
254 World of Amateur Radio
255 New Products
258 Meetings
258 Announcements
259 Literature Received
260 Real \& Imaginary by "Vector"
A96 APPOINTMENTS VACANT
Al12 INDEX TO ADVERTISERS

[^1]
Colour Telephoto System

News pictures electronically processed and transmitted as colour separations over telephone lines

by J. H. Smith ${ }^{*}$, M.I.E.R.E.

By means of an extensive network rented from telephone authorities, news picture agencies can transmit pictures to subscribing newspapers. Picture facsimile is normally called "telephoto" and newspaper offices include a "telephoto room" in their communications department. Over the past three years IPC Technical and Information Services has been developing a system for sending colour pictures over the telephone networks and demonstrated the viability of the system by transmitting, in conjunction with the agency United Press International, colour pictures from the 1972 Olympic games in Munich.

Telephoto system. Fig. 1 shows how a photograph to be transmitted is loaded onto a rotating drum in a Muirhead picture transmitter. A synchronous motor supplied with a frequency of 1020 Hz , divided down from a crystal oscillator, drives the drum.
*IPC Services Ltd.

As the drum rotates the picture is scanned. A photocell and light source are mounted behind the drum, and the photocell collects reflected light from the picture as the drum rotates. Stepping the photocell across the picture by 0.01 inch at the end of each line scan provides a frame scan. As pictures are normally 10 inches wide and there are one thousand scanning lines, the resolution of the system is 100 lines per inch. Since the system usually scans at a speed of one line per second a complete picture takes 1000 seconds transmission time-about twenty minutes altogether
The video signal, which occupies a frequency band of 500 Hz , modulates a $1300-\mathrm{Hz}$ carrier, giving a double-sideband amplitudemodulated signal with a frequency range $800-1800 \mathrm{~Hz}$, well suited for transmission over telephone circuits. Since the system achieves synchronization before transmitting the picture, it is not necessary to transmit a synchronization signal along with the picture. In common with the

Fig. 1. Muirhead K270 picture transmitter, showing a photograph wrapped round the drum.
transmitter, the receiver has a motor supplied with a frequency of 1020 Hz driving the drum, but in this case a tuning fork generates the signal.

Immediately before transmitting a picture the operator sends his 1020 Hz oscillator signal down the telephone line. The receiver operator then adjusts his tuning fork so that its frequency exactly coincides with that of the signal being received. The crystal oscillator and fork circuits are designed to keep stable within a fraction of a cycle for several hours. Thus the transmitter and receiver drums will rotate at exactly the same speed, even though the 1020 Hz signal is removed from the line. The transmitter operator then transmits a phasing pulse which triggers a clutch mechanism linking the receiver drum to its drive motor. This pulse is obtained from a pair of contacts in the transmitter which close every time clips holding the picture on to the drum pass the photocell, thus synchronizing the start and finish of the transmitted picture to the receiver drum. After removing the phasing pulse the operator finally sends a white level reference signal, which enables the receiver operator to adjust his gain,'thereby compensating for any attenuation or gain in the telephone circuits. Provided the telephone circuits remain stable the facsimile receiver will reproduce a faithful version of the picture wrapped around the transmitter drum.

Printing by offset lithography. To gain a full understanding of the colour telephoto system we need a basic knowledge of the principles of colour printing. Since at present lithography is the technique the majority of newspapers use for printing in colour, I will concentrate on that process.

Irrespective of the printing process to be used, monoch rome (black and white) photographs have to be processed after being enlarged or reduced into a form suitable for printing. The picture is broken into dots of various sizes - very small ones for the light grey areas of the photograph and much larger for the dark grey areas. Thus, instead of reproducing the black and white through various shades of grey, the picture is constituted by a matrix of dots of varying size. The eye spatially integrates over small areas so that we see various tones of grey. (Examine a newspaper or magazine picture through a magnifying glass.) The process
of breaking the original photograph into a matrix of equally spaced dots is called "screening"
The screened negative is then made into a printing plate (usually aluminium) by etching a positive image of the picture onto the plate. "Image" areas of the plate accept the greasy ink and reject water, while nonprinting areas of the plate accept water and reject ink

In the offset lithographic process the printing plate is inked and the non-printing areas are kept free of ink by applying a watery solution. The printing machine then transfers the image from the plate to a rubber roller, called a blanket, and then from the blanket to the paper.
Colour pictures are reproduced by printing in turn images in four different colours. Thus a coloured newspaper picture usually comprises pictures printed in cyan, magenta, yellow and black. (Examine a coloured picture with a magnifying glass.) Here again spatial integration occurring within the eye, and the three colour receptors of trichromatic colour vision theory, produce sensations of tone and hue when one observes such pictures from a distance.
The colours used in colour printing are complementary to those used in colour television c.r.t. phosphors. This arises because television c.r.t. screen dotsare primary sources of light, while coloured prints rely on reflected (secondary) light. Thus a colour television set generates white by energizing all three colour sources (black is the absence of light). One obtains white in a colour print by an absence of ink, and black by combining all three inks together.
Since cyan ink reflects blue and green light but stops red, while magenta ink reflects red and blue, stopping green, and yellow ink reflects green and red, stopping blue, a combination of two inks reflects only light reflected by both inks, as shown in Table 1.

Table 1

	red light	green light	blue light
	stops	+	+
cyan ink	+	stops	+
mellow ink	+	+	stops

Thus cyan plus magenta reflects blue, magenta plus yellow reflects red, cyan plus yellow reflects green.
Cyan, magenta and yellow together give black - no reflected light.
A whole gamut of colours is reproduced by printing various proportions of the constituent colours. Black ink is normally needed in colour printing because the three inks together do not produce a very good black.

Colour telephoto

Since any colour telephoto system must produce a set of four different monochrome pictures for reproduction in colour newspapers, let us consider how this can be achieved with the telephoto equipment currently available. Transmission of photographic separations has been tried experimentally, but is seldom fast enough to meet newspaper deadlines.

Making a colour transparency of a news event, which itself takes about two hours to produce from the time the photographer opens the shutter to the time the process department delivers the finished transparency, is the first step in the colour reproduction process. The next step involves separating the transparency into its red, green and blue components. Onecan achieve this by making negatives from the original by exposing it through red, green and blue filters. One subsequently uses these three negatives to make enlarged positive bromide prints and transmit them one by one over the telephoto network
Unfortunately the colour pictures printed from the red, green and blue separations produced in this time-consuming process are unsatisfactory because of colour imperfections in the inks, transparency and separation filters. One can overcome these defects by introducing an intermediate process to correct the colour separations (and the black overprint). This intermediate stage of colour correction is called "masking", I will discuss it in more detail later when I describe its electronic analogue. Because of the extra stages involved in preparing the components of a colour picture for press (as compared with a conventional black and white photograph) one can easily miss the deadline required by newspapers. Furthermore, an editor who wants to be able to publish colour news pictures must be prepared to finance extensive facilities for colour processing near to all possible news centres. The IPC colour telephoto system is designed to eliminate as many of these process stages as possible.
The foregoing dictates the specification of a colour telephoto machine for newspaper use:

- The machine must be compatible with the existing telephoto network.
- The machine must transmit to existing telephoto receivers.
- The transparency must be scanned directly and automatically enlarged to the standiard $10 \mathrm{in} \times 11$ in telephoto size.
- Colour correction must be automatic, so that the received pictures are ready for processing.
- The machine must reproduce a black printing separation.
- The machine must be simple to operate for a person who will not see the results of his transmission.
- The system used must be capable of further development.
The IPC colour telephoto apparatus satisfies this specification in every respect

Basic system

Fig. 2 shows the principal components of the facsimile system. Scanning lines are generated on the face of a cathode-ray tube, similar to those generated for a television picture. These scanning lines form a square which in practice does not look like a television raster, because the scanning spot travels much more slowly in the telephoto system. A lens focuses the light output from the raster onto the transparency so that the scanning spot of light traverses it line by line until the spot has scanned the whole picture

A partly-silvered mirror collects a sample of the light from the c.r.t. and feeds it to a photocell, which drives a circuit designed to stabilize the brilliance of the light output. Without this circuit the light output will vary too much to obtain consistent results while scanning the picture.
The scanning spot is very small and is focused accurately on the transparency, so that the light output on the far side of the transparency varies in intensity in accordance with the picture content
A condenser lens collects the light and feeds it to an optical filtering system which separates the red, green and blue components. A dichroic mirror, which reflects red light only, passing green and blue unaffected, feeds the reflected red light through a correcting Wratten filter to a photomultiplier tube. Similarly another dichroic mirror feeds reflected blue light to a second photomultiplier. The green light, minus red and blue, passes to a third photomultiplier.
The signal, occupying a time of one thousand seconds, is an analogue of the complete picture. Having obtained a signal analogue of the colour transparency, one can effect any desired mathematical operation upon it. This follows because electrical signals can be handled more easily and precisely than optical signals. For instance, any number of photographic correction "masks" can be built into the circuits.
The three signals pass from the photomultipliers to variable gain amplifiers, which modify the density range of the original to levels suitable for printing. After compression the three signals are fed to a colour computer, which simulates the photographic colour "masking" system. The colour corrected outputs then pass one by one to a telephoto transmitter.
The signals are transmitted sequentially over a standard telephone line and reconstituted into pictures at the receiver. The received pictures are the cyan, magenta, yellow and black separations required for printing.
Fig. 2 shows that the facsimile transmitter triggers the timebases. The triggering action ensures that the scanning spot traverses the correct part of the picture and is in synchronisation with the distant receiver. The deflection drive, fed by the timebases, is an amplifier driving the deflection coils of the c.r.t.

Optical system

Fig. 2 also shows a simplified layout of the optical system. Designing this system posed a number of problems because of the necessity to separate colours. The colour spectra of interest are 400-500 nanometres (blue), $500-600 \mathrm{~nm}$ (green) and $600-700 \mathrm{~nm}$ (red).
As the screens of standard cathode-ray tubes are predominantly green, the system must incorporate one with a phosphor containing red and blue components. The phosphor must also give adequate brightness, together with a very small scanning spot. Eventually we chose the " A " type phosphor, because this gives useful light output over the full range of $400-700 \mathrm{~nm}$. One of the better flying spot scanner tubes is used to resolve 1600 lines on 35 mm film.
The main lens proved to be the most
critical component, because it has to resolve the very fine scanning spot equally well in the red, green and blue parts of the spectrum; and it has to give accurate focus over the entire colour range and pass as much light as possible. We had to design a special lens to meet this specification.

Fig. 2 also shows that dichroic filters separate the light output from the transparency. We could have used partly-silvered mirrors instead, but with the limited amount of light available from the c.r.t. phosphors, dichroics proved more suitable. Because dichroics are not selective enough on their own, we used Wratten filters for correcting the light collected by the photomultipliers.

The signal output levels from the photomultipliers differ, so we use variable gain amplifiers for adjusting the red, green and blue signals to the same level. Fig. 3 shows the spectral distribution of each of these three channels.

Timebases

The facsimile transmitter triggers the timebases to synchronize the scanner with the telephoto system. This triggering system is necessary to merge text, and other data on the telephoto transmitter drum, with the picture being transmitted. The operator loads a caption and general description of the picture onto the telephoto transmitter drum, together with reference densities,
registration marks and colour identification. As each colour is transmitted sequentially, the operator has to change the colour identification before sending the signals representing each separation.

Telephoto is a "thousand line" system with stability requirements well in excess of those acceptable for television. The line timebase must be accurate to within a fraction of one thousandth of an inch from line to line. If not, edges, such as the brim of a hat, become ragged. Similarly, the system must maintain stability from picture to picture, so that when the four separations are printed on top of each other they are accurately in register.

Level monitoring

Highlight and shadow monitoring comprise an important part of the system. The engineer has to balance the three input photomultipliers using a monochrome picture, so that the grey components of a picture are reproduced grey and not some other colour. Once they are balanced, the operator does not touch the input amplifiers.

When printed the highlight detail of the picture must be correct even though the original may be a normal, dark or light transparency. In consequence the operator must adjust the scanning light output to compensate for various transparency densities. Because picture highlights may be

$=$ photomultipliers
Fig. 2. Principal components of the colour telephoto system.

Fig. 3. Spectral distributions of the three channels.
coloured, the system maintains colour balance by adjusting tube brilliance until one channel gives a peak signal. If the highlight is white all three channels will peak at the same level; but if the highlight is coloured one or two of the channels will generate slightly lower strength signals to signify the need for a small quantity of ink in this highlight area. Similarly, the darkest shadow in a picture must be reproduced with solid ink, but because this shadow is not necessarily black, the operator adjusts the shadow control until one channel gives a minimum signal

The system adjusts for highlight and shadow density with the aid of a strobe consisting of a line scan, a potentiometer control to move it across the picture, and a meter to indicate the position of the strobe line on the transparency. The three monitoring meters, "highlight density", "strobe position", and "shadow density", are visible on the front panel shown in a photograph of the complete equipment on page 219.
The block diagram in Fig. 4 shows the principle used for metering circuits. The need for steady peak signal readings while using a one-second line scan complicated the circuits. Furthermore, the system must respond reasonably rapidly to highlight changes as the strobe line is moved across the transparency.
Fig. 4 shows how the trigger pulses are divided by two and gated to provide a pulse for every alternate line. These pulses discharge the capacitors of two peak detectors. The system employs two peak detectors, so that while one is charging to its peak the other is steady. By this means the peak detectors measure the peak on every alternate line. Outputs from the two peak detectors are combined, so that the meter displays a relatively steady reading.

In practice the system uses two peak detector pairs, one for the highlight and one for the shadow. Switching enables the meters to monitor various parts of the system for setting-up purposes. Field effect transistors employed in the peak detector circuits ensure the greatest possible accuracy of the readings obtained.

Photographic "masking"

Printing inks are not pure colours: each ink is effectively contaminated by the others. To simplify matters let us consider one error where magenta ink contains some

25 per cent of yellow. This means that wherever yellow and magenta inks are superimposed the resulting print contains an excess of yellow due to the presence of unwanted yellow in the magenta ink. As yellow and magenta reproduce red, the excess yellow will tend to make reds reproduce with an orange hue.

To correct this defect in conventional colour printing the operative makes a colour correcting "mask" by taking the magenta separation and making a lowcontrast negative, 25 per cent of the original in this example. He then places this negative in accurate register over the yellow separation, so that whenever yellow is reproduced in magenta areas the contrast is reduced by 25 per cent. This means that less yellow is printed in those areas where magenta is also printed and the colours are reproduced accurately. The term "mask" comes from the fact that a low contrast negative is fitted over the positive, just like fitting a mask over the picture.

In practice "masking" is more complicated than I have described, because every colour of ink is effectively contaminated by every other colour.

Video processing

Fig. 5 shows the video processing system. The red, green and blue signals pass from the photomultiplier amplifiers to 2 decade loggers. These loggers form the first compression stage in the system, because this circuit crushes densities greater than 2.0 . As indicated on the diagram, passing through the loggers transforms transmittance into density. Density is defined as:

$$
D=\log _{10} \frac{1}{T}
$$

Density is analogous to decibels in electrical terms. Since by definition clear film has a transmittance of one (100 per cent transmission), it consequently has zero density.

These density signals pass to the highlight monitoring circuit (to set the peak highlight level), the black signal extractor and the colour correction masking circuits.

The black signal extractor corrects the black components of the mask signal. It is also used for making the "black printer" separation after that signal has passed through a curve correction amplifier.

After colour correction the signals pass to the shadow density control. This variable gain amplifier adjusts the deepest shadow, so that at least one separation will print solid ink. The press correction curve compensates for gradation errors in the screening and printing process. Like the "black printer" gradation curve correction, an amplifier with a non-linear transfer function provides the press correction : the characteristics of subsequent printing processes determine the shape of this curve.

After leaving the gradation curve correction amplifier, the signals accurately represent corrected colour separations and are then referred to as the cyan, magenta, yellow and black printer signals. They pass sequentially to a range setting amplifier, which introduces further compression. Up to this point the signals have represented a density range of 0 to 2.0 . As the subsequent transmission and printing processes can handle only a density range of 1.7 (equivalent to 34 dB contrast ratio), the signal is
compressed (not crushed as previously) to 1.7 before passing to an anti-logger, which converts the signal back to its transmittance form. Finally, the transmitter signal passes to a matching amplifier which adjusts the signal levels to match the modulator in the facsimile transmitter.

Loggers and curve correction amplifiers

The circuits used for logging and curve correction employ concave and convex transfer functions or combinations of the two. Figs. 6 and 7 show the basic circuits. For simplicity, the circuits depicted use only two feedback diodes, whereas practical circuits employ more diodes to increase the accuracy of the approximation.

Fig. 6 shows that with small input signals the amplifier functions as a conventional operational amplifier, with gain $G_{1}=R_{f} / R_{0}$. However, as the signal level increases diode D_{1} starts to conduct, so that R_{1} is shunting the input resistor and increasing the gain to G_{2}. With even greater signals D_{2} conducts to shunt the input resistor with R_{2} as well and R_{1}, thereby increasing the gain further to G_{3}.

Fig. 7 shows the convex transfer functions. As in the concave circuit, the opera-

tional amplifier functions as a normal linear amplifier until the signal level rises above the break point. Notice that the break point in this case occurs when the output rises above a certain level as opposed to the input on the previous circuit. Above the break point D_{1} conducts, shunting R_{f} by R_{1} so that the gain decreases.

In practice logger circuit design requires considerable attention to detail. The circuits can operate between zero and positive levels or between zero and negative levels, depending upon the choice of suitable diodes and biasing. The need to use preferred value resistors causes further complications because this leads one to modify break points and slopes to get the best approximation to the curve consistent with practical resistor values.

Colour correction

The colour masking equations used to compensate for the deficiencies in the colour of inks are well known and are derived from density measurements taken through red, green and blue filters. Thus, if one measures a sample of magenta ink through the three filters, one obtains three density readings. Two of these readings will be low because magenta ink is supposed to reflect red and blue light, stopping green, while the green filter will give a high density reading. One takes a complete set of readings, so that each ink is measured through each filter (see Table 2).

Table 2: ink density readings

	cyan ink		magenta ink
	yellow ink		
red filter	C_{G}	M_{B}	Y_{F}
green fiter	C_{G}	M_{G}	Y_{G}
blue filter	C_{B}	M_{B}	Y_{B}

Dividing these readings by the principal density readings C_{R}, M_{G} and Y_{B} yields the coefficients of a matrix representing the colour correction equations.

$$
\begin{gathered}
\left(\begin{array}{c}
D_{r} \\
D_{g} \\
D_{b}
\end{array}\right)=\left(\begin{array}{c}
C_{R} / C_{R}+M_{R} / M_{G}+V_{R} / V_{B} \\
C_{G} / C_{R}+M_{G} / M_{G}+V_{G} / V_{B} \\
C_{b} / C_{R}+M_{b} / M_{G}+V_{B} / Y_{B}
\end{array}\right)\left(\begin{array}{c}
C \\
M \\
V
\end{array}\right) \\
\text { i.e. } \quad Y=A X
\end{gathered}
$$

The solution to this matrix is

$$
X=A^{-1} Y
$$

where A^{-1} is an inversion matrix. We chose to use the matrix form: in preference to a simultaneous equation because of the relative ease with which one can solve matrices using computer time sharing services: the computer has a sub-routine which inverts the matrix from the simple instruction

$$
M A T R=I N V(Q)
$$

With a little further programming the computer will dutifully print out that

$$
\begin{aligned}
& \text { cyan }=100 \% \text { red }-15 \% \text { green } \\
& \text { - } 1.5 \% \text { blue } \\
& \text { magenta }=110 \% \text { green }-39 \% \text { red } \\
& \text { yellow }=100 \% \text { blue }-10 \% \text { red } \\
&-60 \% \text { green }
\end{aligned}
$$

This particular solution applies to a specific

(a)

Fig. 6. (a) Circuit for producing a concave transfer function; (b) output/input characteristic of the circuit.

(a)

Fig. 7. (a) Circuit for producing a convex transfer function; (b) output/input characteristic of the circuit.

Fig. 8. Colour correction "masking" circuit.

set of density readings taken from a commonly used set of printing inks.

Thus if one inputs to the computer density readings for the printing inks used in the reproduction process, the computer will print out the required cyan, magenta and yellow mask percentages, which form the basis of the correction circuit design.

We could use the programme further to design the whole circuit, but unlike the nonlinear amplifiers, several of which we had to design, we designed the overall circuit once only. Here, the computer's strength lies in its ability to solve a difficult equation very quickly. The computer programme is also useful for comparing different inks: the
solutions to the equations shows quite clearly if the differences will have a significant effect on the masking amplifier design.

Fig. 8 depicts the circuit of the masking amplifier. The red, green and blue signals enter directly into the summing input of an operational amplifier, while correction signals pass to the non-inverting input of the operational amplifier to subtract from the main signal fed to the summing input.

If a monochrome signal enters a masking amplifier all three inputs will be identical. Adding or subtracting black signals from the black signal extraction amplifier makes the three outputs identical; thus in the cyan channel we have

$$
+100 \% R-15 \% G-15 \% B+30 \% C_{B}
$$

where C_{B} is a clipped black signal. For a monochrome picture this becomes

$$
+100 \% B-15 \% B-15 \% B
$$

$$
+30 \% B=100 \%
$$

Similarly the percentages for the two other channels add up to 100 per cent. The clipped black (C_{B}) signal ensures that when all three colours are present, together with black, the amount of coloured ink printed is reduced This technique of printing less coloured ink in very dark areas is called "under colour removal"

In practice, the cyan, magenta and yellow channels are not balanced to 100 per cent because an equal weight of ink does not give a very pure black. The actual weights required depend upon the type of ink used, but I 00 per cent cyan, 90 per cent magenta and 85 per cent yellow are typical percentage ink weights for acceptable grey scale reproduction.

The three output signals from the colour mask pass to the shadow density control (Fig. 5), whose function is to be able to adjust to accommodate a wide range of original transparencies. The control comprises a three-channel switched-gain amplifier, which sets the shadow reading on the shadow meter. The system ensures that solid ink is always printed somewhere
within a picture: this approach avoids producing flat desaturated prints even when the original transparencies have been poorly exposed.

The press correction curve is a non-linear amplifier, which compensates for the distortions which subsequent screening and printing processes introduce. The signals from this stage pass through a channel selector switch to the transmission circuits

Black printer channel

In this colour system black is defined as the colour generated by equal signals from the red, green and blue channels, the three photomultipliers being set to give equal signal outputs from a monochrome transparency. The black signal extractor gives an output whenever all three channels represent equal quantities of ink, that is, a signal equal to the lowest input. The black signal output can be either clipped or unclipped, and in either form the signals can be used to correct the grey scale response of the colour correction circuits.

Transmission circuits

Although the cyan, magenta, yellow and black signals are all available simultaneously, the IPC system transmits them sequentially. This mode of operation enables any newspaper office with a conventional telephoto receiver to receive the transmissions and reproduce colour. The four signals are switched one at a time to the range setting amplifier (Fig. 5), which linearly compresses the signals to allow for the limited range of subsequent processes. The screens the newspapers use determine the lower limit, while the modulation depth and detector circuits of the telephoto transmitter/receiver system fix the upper limit. In practice the lower limit is a density range in excess of 1.4 and an upper limit of 34 dB , which is equivalent to a density range of 1.7 . The range may be set anywhere between these two values, so we chose to use the optimum value of 1.55 .

The compressed signal finally passes to an

Complete prototype colour telephoto ransmitıer.
antilogging circuit, which converts density back to transmittance. The modulator matching amplifier ensures that the outgoing signal corresponds to -7 dB for the highlight and -36 dB for the shadow. (The transmitter can modulate down to -41 dB .)

Test results

After the production prototype of this machine (see photograph) had yielded very satisfactory results in the laboratory, we installed it in the United Press International office at the Olympic Games Press Centre at Munich in 1972. Countries as far apart as France, Sweden, South Africa and Japan received separations daily of colour photographs of sporting events of interest to the particular countries.

The front cover of this issue of Wireless World shows a set of separations transmitted during the Olympic Games, when Mark Spitz had won five of his seven gold medals. For the purposes of the cover illustration the separations are shown reduced in size and in the actual colour components, cyan, magenta, yellow and black, used for printing a colour picture. As received on a telephoto receiver the separations are $10 \mathrm{in} \times 11 \mathrm{in}$ and, of course, in monochrome (black and white).

Future developments

Following the technical success of the transmissions from Munich we are now considering a number of possible developments of this system. For instance, we could develop a high speed model capable of transmitting on 48 kHz lines. Also, if we used the 48 kHz network, we could transmit all four separations simultaneously to four separate receivers. As the present system uses a bandwidth of only 500 Hz there is sufficient capacity on the normal 3.5 kHz telephone circuits for simultaneous transmission of the three colours if we used single sideband transmissions.

As the present model is very large and must be stationary, its use is restricted to events such as the Olympic Games. We could develop a simple portable scanner, which could relay the signals through the large machine. To ensure that the portable unit was as simple as possible, we could arrange for the large machine to carry out all the colour corrections

However, very few newspapers are currently capable of printing news pictures in colour. Many papers incorporate preprinted colour advertising and colour studio pictures, but they do not have a full-colour printing capability and so cannot use separations received through colour telephoto. Therefore, future developments will depend upon the newspaper industry making wider use of colour.

Acknowledgements. The author thanks D Haley and \mathbf{P}. Busby, who designed the equipment used in Munich, J. V. Ashworth, for originally suggesting this work, and the head of IPC Technical and Information Services for permission to publish this article

Reference

Yule, John A. C. "Principles of Colour Reproduction". Wiley. p. 266

New Audio Products
 A selection of products introduced at Sonex time

Abstract

Audio exhibitions in hotels serve at least two fundamental needs - an opportunity to hear equipment in rooms that approximate domestic surroundings - in terms of size at least and an opportunity to communicate with people in the business. Sonex 73 was successful on these counts. But the fact that the venue is generally not in the public interest in terms of cost and convenience lends weight to the argument we heard from a number of exhibitors, that the trade viewing days should be extended, at the expense of public days. As such an exhibition seems an ideal place for professional engineers to exchange information, we'd like to see this further promoted ty a more formal presentation of recent research and development in audio and acoustics. This should take the form of a conference running parallel with the show and taking the place of the poorly attended panel discussions which were organized at this year's exhibition.

Amplifiers and tuners present relatively little difficulty in assessing what they can or can't do in terms of their performance. Even though ambiguities do exist in specifications - especially with the rated power output of an amplifier - an informed perusal of standardized specifications can yield an accurate guide to the capabilities of an amplifier or tuner circuit. This is not the case, however, with loudspeakers. Amplitude-frequency response and impedance curves give an indication of the performance when the speaker is fed with continuous signals (e.g. sine waves) but this is not representative of the performance under real or transient signal conditions. This suggests that additional information is necessary and indeed research being done by KEF Electronics indicates the importance of the phase-frequency response and the "decaying" frequency response obtained by a Fourier analysis of different time intervals of an input transient (unit impulse) signal. The significance of this information was tentatively realized by Harwood of the B.B.C. during the 1950s, but it is only recently that instrumentation providing digital analysis of transformed signals has become available and made speedy and accurate measurements possible.

In the light of this missing information and in coping with the poor acoustic environment in the hotel demonstration rooms for listening to reproduced music, it is impossible to select the "best" new speakers which appeared at the show. The following is however a cross-section of some of the more interesting designs which appeared.

The Jordan Watts Jupiter TLS is a transmission-line enclosure with two of the Jordan Watts full range modules used as drivers. Energy from the rear of the units is fed down and dissipated in a long folded tunnel which is lined with acoustically
absorbent material. In this case different types of energy absorbents are critically positioned so that the restriction to speaker movement is minimized. The aim of this is to improve the efficiency of the system, inherently low with the transmission line. The main specifications are stated to be frequency response 35 Hz to $22 \mathrm{kHz} \pm 4 \mathrm{~dB}$, distortion $<1 \%$ at 60 Hz and $<0.3 \%$ elsewhere, sensitivity is 10 W pink noise for 95 dB s.p.l. at 1 m , nominal impedance is 8Ω and the speaker is recommended for use with amplifiers having power outputs from 20 to 50 W continuous. Price of the Jupiter TLS is $£ 86$ each.

An extension to the transmission line principle is employed in the relatively new IMF ALS40 loudspeaker which is an "active line" system. The usual passive part of the transmission line is complemented by an active radiator driven via a suitable crossover network. The result is an extension in bass response and/or increased efficiency around the existing l.f. bandpass, while at other frequencies where a transition is occurring into non radiation from the "port" the system can be regarded as an acoustic dipole. A secondary advantage of the active line system is that below its operating range, the phase relationships are such that the low frequency drivers are acoustically coupled against diaphragm motion, thus acting as a high-pass filter to unwanted sub-sonic signals. The ALS40 measures approximately $13 \frac{1}{2} \times 13 \frac{1}{2} \times 26 \frac{1}{2}$ in, bass unit is an 8 in foam surround, subbass driver is an 8 in roll surround, midrange unit 5 in impregnated cone contained in a separate line, domed tweeter, efficiency measured via 40 W pink noise 1 m on axis produces 100 dB s.p.l., nominal impedance is 8Ω.

Other speakers of interest were the Spendor BCIII: 12 in l.f. unit, 8 in midrange both with plastic cones, crossover points at $700 \mathrm{~Hz}, 3$ and 13 kHz , nominal
impedance 8Ω, power rating 70 W peak programme - the Kmal Elf Major which is a damped reflex system incorporating an internal acoustic filter chamber. The drive units are 8 in rolled surround bass, 5 in mid range and 3 in tweeter, nominal impedance is 8Ω and power handling capacity is 22 W continuous. All the drivers in this system are standard units from Elac and EMI which have been specially "doctored" to meet the design requirements.

A new name at Sonex was Gale Electronics who introduced the GS401 infinite baffle system. The speaker is priced at $£ 81$ plus v.a.t. although production does not start until about the end of August. Nominal impedance is 4Ω. Two 20 cm bass drivers are employed and are complemented by a 10 cm mid-range unit and a 19 mm dome tweeter. Fundamental resonance of the system is 50 Hz .

Another new loudspeaker is the soft dome speaker, SX-3, from JVC, which features improved directivity at h.f. i.e. with half-power points at $\pm 60^{\circ}$, at least, at 4 kHz . This is due, JVC say, to the soft dome vibrating in a radial way as opposed to the piston-like action of a hard dome. As well, the speaker frames are mounted outside the front panel with punched metal covers giving the unit a distinctive "functional" appearance.

Amplifier and tuner design seems to have reached a pinnacle in performance capabilities - at least for the time being. Circuit innovations are now few with new models being additions to established ranges of equipment rather than being "innovatory". The use of integrated circuits is becoming more widespread although i.cs are still very limited in their application to high performance audio circuits limited that is in their power handling capabilities and noise performance for preamplifiers. The IMF Galactron IC 10 (£298 + v.a.t.) is however a high quality amplifier which has a pre-amp using i.cs. Power output into 8Ω with both channels driven and switched to mono mode is $75 \mathrm{~W} \pm 0.5 \mathrm{~dB}$. Under the same driving conditions, distortion is less than 0.2% from $70 \mathrm{~W}-0.1 \mathrm{~W}(20 \mathrm{~Hz}-20 \mathrm{kHz})$. Damping factor with an 8Ω load is greater than 80 and hum and noise of the power amplifier below 80 W into 8Ω is better than 90 dB . Incidentally, the leaflet describing the Galactron states that the circuits contain 24 transistors, 34 diodes and "four to eight integrated circuits". Pardon?

The Metrosound ST40 is a new amplifier whose power output circuitry has been redesigned. Although we have no details of the circuitry at the time of going to press, a typical distortion figure of 0.05% indicates that an improvement has been made. Power output is 20 W continuous per channel into 8Ω. Hum and noise are -65 dB on magnetic phono input. J. E. Sugden has a range of power amplifiers, control units, integrated amplifiers and tuners. Basic improvements have recently been made to the power amplifiers but this amounts to improvement in power ratings by an increase in voltage rail value - and corresponding output devices and bias

Voice-coil protection circuit in KEF speaker, model 5/1AC, uses voltage-controlled attenuator that is actuated when the mean power over 5 seconds reaches an unsafe level, as set by Vref.
arrangements. Noise performance has also been improved. The range includes the P51 power amplifier (45 W continuous into 8Ω per channel $£ 80.00$), C 51 control unit ($£ 50.00$) and the A48 integrated amplifier (40 W continuous per channel £95.00).

A new model introduced at Sonex to the Goldring range of turntables was the GL78. It is a further development of the GL75, utilizing the same drive mechanism with variable speed adjustment between 30 and 86 r.p.m. Changes which have been made are the introduction of a new lighter headshell - the arm has adjustable stylus pressure from 0.5 to 5 gm -- and a restyling of the lift/lower lever for easier operation. Price is now $£ 69.90+$ v.a.t. and this includes the plinth and cover.
The latest deck from Philips, the GA407, is sold with the Philips GP400 "magneto dynamic" cartridge. It is a two-speed deck using a low-speed, synchronous motor and belt drive with a free-floating sub-chassis for turntable and arm to minimize wow and rumble. Two features not previously seen on Philips decks are automatic arm return to rest position and a stylus force meter which gives a direct reading.
A new name in audio amplifiers is EMI who introduced a 15 -watt per channel amplifier together with a decoder for SQ records. The amplifier, type 1515 , gives an harmonic distortion of 0.2% at full output (1 kHz , single channel), but is not quoted at lower levels, and costs $£ 54$.

The EMI SQ 1500 decoder has six-pole phase difference circuits with a phase difference of $90 \pm 10^{\circ}$ over the band 20 Hz to 18 kHz . The decoder, fitted with a fixed blend option and an "ambience" matrix switch for four-speaker playback of ordinary stereo records, uses a p.c. board announced at about the same time by the relatively new company of Tate Audio Transmission Equipment. They make a range of decoders based on two circuits, the single i.c. circuit, presumably similar to the circuit on page 116, March issue, with its $90 \pm 10^{\circ}$ phase difference over 100 Hz to 10 kHz . The wider band six-pole circuit has a typical distortion of $0.04 \%(0.08 \%$ at clipping) as opposed to 0.1% (1% at clipping) for the i.c. version. The i.c. version is available in four forms;
ready-built on a p.c. board for $£ 8.95$, with power supply, switches and volume control for $£ 16.95$; with cabinet kit for $£ 24.95$ and fully built for $£ 28.95$. The "high-definition" type is also available in these four versions, priced from $£ 12.95$ to £34.

Other recently announced SQ licensees are Thorn Consumer Electronics and Rogers Developments (making a total of 60 brand names now using SQ circuitry). The last-mentioned having showed their SQDl model at Sonex, incorporating the single-chip circuit power supply and 10-40 blend resistors for $£ 15$.

Sansui took the opportunity of Sonex to announce a licensing arrangement for the QS regular matrix and their Variomatrix technique of enhancing channel separation. Up until now only Sansui has been making QS equipment. The Variomatrix circuit is used now in the latest consumer decoder for four-speaker playback of stereo records in place of the phase modulator circuit previously used. The complete p.c. board for the QS Variomatrix circuit costs around $£ 3$ to manufacturers. It was interesting to see that Sansui have incorporated a "phase matrix" position on their equipment, which it is claimed decodes SQ records using two phase shift circuits, after sum and difference matrixing, instead of four.

There are now 19 recording companies using Sansui equipment, offering over 400 QS records under 24 labels, the latest to go Sansui being a French affiliate of Decca. There were 170 CD-4 records and 240SQ records at the start of 1973, with no doubt many more CD-4 to come now that WEA (Warner-Electra-Atlantic) is adopting the discrete system.

The quadraphonic equipment of Marantz, shown for the first time in the U.K., uses a Vari-matrix technique for playback of coded and uncoded records through four speakers. No doubt this will be similar to the National "acoustic field dimension" with variable blending, but it's not clear what the phase difference is between the rear speakers. On all five models (amplifiers and receivers) provision is also made for adding SQ decoders (type SQA-1 with front-to-back "logic", type SQA-2 with full logic) or any other decoder that may become appropriate in
the eyes of Marantz.
As well as selling SQ decoders, EMI Sound \& Vision Equipment also sell speakers specially built for surroundsound playback of stereo materials from a two-channel amplifier. Called LE3SS, they have double-wound voice coils in the drive units in an impedance ratio of 11:5. The voice coils of four speakers are connected in such a way that the signals $11 L+5 R$ and $11 R+5 L$ are fed to the front pair and $11 L-5 R$ and $11 R-5 L$ to the rear pair. The two voice coils can of course be connected in series giving a 16 -ohm impedance.
A new top-quality pickup cartridge is introduced by Shure. Called the V15III, it supersedes the V15II "Improved" and has improved amplitude-frequency response to the extent that the 2 or 3 dB droop in response at around 10 kHz with the V15II is completely removed. Laminating the magnetic core material and moving the h.f. resonance out from 20 to 23 kHz has meant that the new cartridges have an average deviation of only $\pm \frac{1}{2} \mathrm{~dB}$ up to 20 kHz , though individual pickups can vary up to $\pm 3 \mathrm{~dB}$ at 20 kHz . Shure will not guarantee performance for CD-4 discs, but the new pickup is clearly much better suited than its predecessor, being 12 dB down at 30 kHz as opposed to 22 dB . The new pickup also features better trackability with lower consequent distortion.

Ortofon announce a new moving-coil cartridge with reduced equivalent stylus tip mass and light-weight cantilever to give a typical response that extends $\pm 3 \mathrm{~dB}$ up to 50 kHz . Data for this SL15Q is similar to that of the SL15 MkII, except for the stylus which is a Shibata type.

Extras

- The H10 and H20 dynamic headphones designed by Sonab of Sweden have respective frequency ranges of $20-14000 \mathrm{~Hz}(\pm 3 \mathrm{~dB})$ and $(\pm 2 \mathrm{~dB})$. Harmonic distortion at 120 dB s.p.l., and $1,000 \mathrm{~Hz}$ is less than 1% for the H10 and less than 0.3% for the $\mathbf{H} 20$. This sound pressure level is the approximate threshold of pain so normal listening levels would not approach this.
- Five sound selector units are now produced by Tape Recorder Spares Ltd. Four units select either headphones or up to three pairs of loudspeakers. A fifth unit, HZ793, provides the facility to connect any of three signal sources to any three amplifiers.

A completely new range of amplifiers, tuners and receivers is launched by Armstrong. The new Series 600 which is visually very attractive, comprises the stereo amplifier with 40 watts of continuous sine wave power per channel (both channels driven) combined with very low distortion $(0.08 \%$ at 1 kHz all power levels), with electronic switching in the preamplifier eliminating switch clicks ($£ 76$). An f.m. tuner has a sensitivity of 1 $V(30 \mathrm{~dB} \mathrm{~s} / \mathrm{n})$, distortion of less than 0.2%, a $38-\mathrm{kHz}$ rejection of 50 dB , and a capture ratio of 1.75 dB .

TV Information Service

Signal format for B.B.C. system

The B.B.C. has decided a signal format (see diagram) for Ceefax, its proposed television broadcasting information service announced last year, and field trials of the system will be started this summer. Ceefax will enable television receivers to display on demand information such as weather reports, mororing and other travel news. sports results, stock market prices, ctc., in fact anything which can be shown by the written word. The information - rows of alpha-numeric characters -- will be transmitted by a binary digital code within the normal television signal, and the received data will be processed by a separate unit connected to the television set. In this unit the data will be stored as different "pages" of information which can be up-dated as additional signals are received. A selector will enable the viewer to choose any of 32 stored "pages" for display on the receiver screen at any time he wishes.

Data signals corresponding to the 32 "pages" of information, will be inserted on lines in the television field-blanking period for transmission. The receiver unit will contain data-extracting and decoding circuits as well as data-storage and character-generation circuits which will enable the pages of information to be stored and displayed in alpha-numeric form on the receiver's picture tube. Storage will be necessary at the receiver because the rate of transmission of message data in the system is relatively low ($11.2 \mathrm{kbits} / \mathrm{sec}$), requiring about 15 seconds to transmit 32 "pages". The

Receiver displaving a "page" of information, with the page selector unit on the right.
television display, on the other hand. requires a new television ficld (or "page") every $1 / 50$ th of a second, and storage will be used to accumulate the received data so that it may be read out repeatedly to "refresh" the telcvision display. The data rate is. of course, more than adequate for the transmission of the intelligence itself.

The minimum required storage capacity in the receiver is thus one page of information: this demands a data storage capacity of 5376 bits.

A Ceefax page comprises 24 horizontal rows of characters. each row containing 32 characters and spaces. Twenty picture lines are
allowed for each row including the space between rows.

A new character row will be transmitted every television field. which means that the 32 "pages" will require 15.36 seconds for transmission. The rows of different pages will be transmitted in an interleaved sequence and. whenever a viewer selects a page. data will begin to be "written" into the store of his receiver and he will see the page begin to form, row-byrow, until it is completed after 15.36 seconds.

The signal transmission during each television field-blanking period will use the adjacent television lines numbered 13 and 14 on even fields and the adjacent lines 326 and 327 on odd fields. The signal consists of the characters in coded form, together with coded "addressing", protection and synchronizing data pulses.

Each character is transmitted as a 7 bit code word plus one parity bit for protection, making 8 bits per character. Non-return-to-zero coding is employed. using "raised-cosine" pulses with approximately 4.5 MHz bandwidth. Each television line has a capacity of 235 bits of data and it will be seen from the diagram that the two lines carry between them 32 characters, comprising the transmission of data for one complete character row every television field.

The "clock start" and "address" blocks are also shown, together with blocks for clocktime information to be inserted in slowly changing information "pages",

Signal format for Ceefax: Address words are shown top left. Data pulse at 70% level corresponds to " 1 "; at 0% level to " 0 ". Figures in brackets are mumbers of
block

News of the Month

P.C.M. for Post Office trunks

As a first step in developing a digital information trunk network, and preparing for new facilities, the Post Office has placed contracts with STC, GEC and Plessey to develop pulse code modulation digital transmission systems. At present the telecommunication "highways" between centres of population carry thousands of messages -- telephone conversations, TV and radio signals, and computer data - as signals in analogue form. They are kept separate by sending them at different frequencies - the technique known as frequency-division multiplexing (f.d.m.). With p.c.m., as is well known, the messages are converted to digital signals and messages transmitted over the same bearer circuit are kept separate by time-division multiplexing slotting the pulses from one source into the intervals between the pulses of others.

Digital systems can provide the same quality of performance as the present analogue systems and may in future do this at greatly reduced cost. They allow much simpler signalling systems to be used for routeing calls through the network, simplify the multiplexing of different signals and, for complicated signals for TV and viewphone for example, permit greater exploitation of the transmission medium. In addition they pave the way for the introduction of cheaper, quicker, switching systems using methods operating directly on the digital information under stored programme control.

The decision to develop a digital system for the U.K. trunk network stems from the results of feasibility studies carried out for the Post Office by GEC and Plessey in 1970-71. These studies confirmed that it is technically possible to introduce a digital system using the standard $1.2 / 4.4 \mathrm{~mm}$ coaxial cable pairs now in use for multichannel f.d.m. transmissions.

Under development contracts, STC, GEC and Plessey will design, develop, manufacture and install systems transmitting information at a rate of 120 M bit/s and compatible with the Post Office's existing 12 MHz analogue system for $1.2 / 4.4 \mathrm{~mm}$ cables, using the same repeater spacing, housing and power feed arrangements. For this purpose, the Post Office has set aside spare coaxial pairs in
its trunk cables between Guildford, Portsmouth and Southampton. Each system will be capable of transmitting up to 1,680 telephone conversations simultaneously by p.c.m./t.d.m. They should be ready for Post Office evaluation early in 1975. The European Committee for Post and Telegraphs has been discussing standards for p.c.m. for a number of years and recently decided that 30 -channel systems should be one of the recommended standards. The British Post Office is now adopting this recommendation.

Defect inspection device

The Central Research Laboratory of Hitachi. Japan, has developed a recognition device, the "HIVIP, Mk 5", that automatically detects, through optical pattern recognition, defects in complicated patterns such as i.c., l.s.i. and printed circuit boards. Development of this device makes possible an unmanned optical
inspection process and, as a result, a big improvement in the reliability of products. The device is made up of a TV camera, a defect recognition device, and a colour display unit, which indicates the result of the recognition (see photo). When the object to be inspected is placed within view of the TV camera lens, the camera picks up the image and sends it to the defect recognition device which checks the image signal and determines whether there is any defect or not, examines its size and automatically rejects the defective product.
The defect recognition device can also pick out only the defective part from the image and show it on the display unit. One method of automating this process was devised by comparison with a normal pattern (dictionary) that had already been memorized. However, this method requires massive information storage, and positioning problems of input pattern arise in setting it to the normal pattern. Therefore operational costs and difficulties increase. On the other hand, the Hitachi defect inspection device does not memorize the normal pattern but uses a reference-free method of defect recognition. A defect-free normal pattern is generated by real-time mode from the input pattern itself picked up by the TV camera, and defects are detected automatically from the difference between input and generated standard patterns. There is no need for a large memory unit or positioning process, and a special purpose processor that operates on real time ($1 / 60 \mathrm{sec}$. per image) has been produced as the defect recognition device. With this device, it is possible to automate the old visual inspection method and completely eliminate errors. Also, since there is no process for memorizing a normal pattern, the device starts operating immediately, even with a new pattern.

Automatic defect inspection system developed by Hitachi. The device automatically detects, by optical recognition, defects in complicated patterns. The defective part is displayed on a TV screen.

Receiving and transmitting aerials of telecommunications equipment designed by Page Communications Engineers which links the copper mining operations on the island of Bougainville with the mainland of New Guinea.

Telephone telemetry

A transmitter and receiver developed by Danica Elektronik of Denmark enable e.c.g. and other physiological and physical data to be transmitted along ordinary telephone lines or by radiotelephones, such as may be used in ambulances.

The two small instruments, mains or battery powered, make up an f.m. carrier system with a carrier frequency of 1700 Hz and a frequency deviation of $\pm 15 \%$. They are directly coupled to the telephone line to reduce noise. When connected, a switch on the front panel selects between normal telephone operation and carrier transmission.

The input e.c.g. amplifier in the transmitter is a balanced high input impedance amplifier with a high common-mode rejection ratio. The amplifier output modulates the frequency of an oscillator, which acts as a carrier fed to the telephone line via a line amplifier and an output transformer. In the receiver the signal from the balanced input amplifier is band-pass filtered, before it is fed to the f.m. discriminator, to reduce noise. The demodulated signal is fed to an oscilloscope, which has provision for direct read-out of the patient's pulse rate, and to the recorder output socket. The timebase is calibrated for pulse rate read-out at 25 mm per second.

Stereophony pilot tone

With the increasing number of stereophonic programmes, the B.B.C. has been considering its policy in relation to the transmission of the pilot tone which is
part of the stereo signal. Stereophonic receivers are usually designed so that when the pilot tone is present they switch automatically to the stereo mode and indicate that this has taken place.

Certain programmes, particularly those made up of recorded items, contain both stereophonic and monophonic contributions, and with these cases it is not practical to switch the pilot tone on or off between individual items. On the other hand, it is not desirable to transmit the pilot tone when purely monophonic programmes are being transmitted.

The B.B.C. has therefore decided on the following policy: During stereo programmes (or programmes containing stereo items) the pilot tone will be transmitted. Such programmes will normally be shown as "stereo" in the Radio Times. During wholly monophonic programmes of substantial duration the pilot tone will be switched off.

This practice will be applied to Radios 2,3 and 4, as well as to Radio 1 when that programme is transmitted on v.h.f. It will not be possible, however, to apply it immediately to the Radio 3 transmitters serving the Midlands and the North.

Aircraft tactical simulator

An advanced flight simulator is being "flown" by trainee and experienced Nimrod crews after hand-over of the equipment by the manufacturers, Marconi Space and Defence Systems. Built as the first of a number to be supplied to RAF Strike Command, the simulator will reproduce for twelve trainee crewmen all operational facets of the Nimrod, which is
an anti-submarine and maritime reconnaissance aircraft.

The system is used to simulate comprehensive anti-submarine exercises, with all ship, submarine and aircraft inputs, at a fraction of the cost of the real thing and in secrecy. All operational equipment, including the radar, sonar, electronic counter-measures, tactical navigation and weapon delivery systems, is fitted in a replica Nimrod, to reproduce actual missions, even down to engine noise and low-level buffeting. The same exercise can be repeated indefinitely to fix in the minds of the crew the procedures necessary for what is acknowledged to be a most difficult form of defence.

Aid in spinal therapy

A miniature version of a Swedishdeveloped force transducer normally used for heavy industrial measurements has been successfully applied to the treatment of lateral curvature of the spine. A tiny version of the ASEA "Pressductor" sensor was implanted in a stainless steel distraction rod used in the surgical treatment of 12 patients with idiopathic scoliosis - abnormal spine curvature at Gothenburg University Hospital, Sweden.

The patients, none of whom reacted unfavourably to the rod's presence, carried out isometric training during the post-operative period. The system allowed the axial load on the distraction rod to be measured during these exercises.

Police computer aid

Glasgow City Police have on order what is claimed to be the biggest and most advanced computerized information system in Europe. Based on an Argus 500 Computer, it is designed to aid the police in their work in the Glasgow area. As well as providing a control room, it will have a message routeing system and a patrol and traffic car location and status service. The system will be suitable for extension when the Glasgow City Police become part of the Strathclyde Regional Police in 1975. At this stage the Glasgow project is experimental. When it is proved it will be handed over by the Home Office as an operational system.

In the control room each operator will have two visual displays. One will show the resources available to deal with an emergency, and the other, using a display with optical rear projection, will show the location and status of available forces superimposed on a map of the area. This display will be kept up to date by reports from a small push-button control box in each patrol vehicle. An automatic teleprinter message routeing facility will replace the manual procedures of the old teleprinter network. The facility is capable of covering the whole of the Strathclyde police area.

The police computer will provide information to a local authority computer. This information can then be used for statistical surveys and management and resources planning. For immediate access to criminal records, the computer is capable of being interfaced to a police national computer at Hendon.

Drawing by computer

An experimental computer system controlled by a paper "keyboard" has been developed by IBM at Yorktown Heights, New York, to convert freehand sketches into fully proportioned drawings. Placed at random on an "electronic tablet", a sketch and the paper keyboard are simply touched with an electronic pen to enter graphic or alphanumeric data for processing by the computer.

The experimental system is designed to speed the creation, filing and updating of large volumes of graphic material such as maps and engineering drawings. A rough drawing, no matter how much out of scale, can be automatically turned into a finished product a few moments after the assignment of proper dimensions. The paper keyboard, through which the automated computer functions are controlled, can be shifted from one place on the "tablet" to another to suit the user's working needs.

European weather forecast centre

Within the framework of co-operation in scientific and technological research, eighteen European countries have agreed to set up in Britain a European

One stage in the manufacture of the new M9 memory units used in Honeywell's series 2000 computers. Dual-in-line i.cs are being assembled to a printed circuit board prior to flow soldering.

Meteorological Computing Centre. The objective of the centre will be to carry out research into forecasting for periods of four to ten days ahead and eventually to produce routine forecasts for these periods for issue to the national meteorological services in Europe and beyond.

The centre will require the use of a very powerful computer and, for this reason, it will be established initially at the Bracknell Met. office and will make use of an IBM $360 / 195$ computer recently acquired by this establishment and recognized to be one of the fastest in the world. The centre will later move to new accommodation to be built at Shinfield Park, Reading, and will be equipped with the most modern computing and communications facilities available. The centre will be manned by an international staff of about 120 scientists, systems analysts and data processing staff.

The Meteorological Office at Bracknell has been carrying out research into medium term weather forecasting for a number of years. To a great extent this effort will be merged into that of the new European centre.

IEA Exhibition - 1974

The tenth International Instruments, Electronics and Automation Exhibition will be held at Oympia, London, from 13th to 17th May 1974. The exhibition, which takes place biennially, was last held in 1972 when more than 700 companies from 22 countries were represented. The exhibition forms part of a regular cycle of international exhibitions presented in different years in Dusseldorf, Paris and Milan. Exhibits eligible for inclusion will be: all classes of professional and industrial electronics; laboratory, scientific and process control instrumentation; machine tool controls and automation equipment; computers and data handling equipment; electronic and other components, materials, services and ancillary equipment.

Gramophone golden jubilee

Congratulations to the music and audio monthly magazine Gramophone on reaching its 50th birthday! To commemorate the occasion, the April issue contains - as its front section - a replica of the first edition published in 1923.

Higher power Gunn diodes

The microwave output power obtainable from Gunn diode oscillators is usually in milliwatts - being limited by low conversion efficiencies of typically a few per cent and by problems of heat removal from the active region of the devices. Now Mullard, in their research laboratories at Salfords, Surrey, have produced experimental devices giving c.w. powers of 1 watt at 3% efficiency in the 7 GHz region. This performance has been achieved by attention to the quality of the cathode contact and of the heat sink the main factors limiting output power.

A. F. Bulgin are celebrating their golden jubilee, and marking the occasion is the above advertisement for their first product, a battery switch.

For improvement of contact the technique adopted has been to optimize each of the processing stages - GaAs surface preparation, evaporation conditions, metal composition, definition of contact areas and alloying of the contact - in terms of their effect on the saturation current, as determined from the short-pulse currentvoltage characteristic, and on the structure of the metal-GaAs interface. Improvement of heat-sinking has been obtained by alloying the devices to the pin of the package by means of an intermediate alloy layer. Devices made using the metal contacts and alloyed heat sinks are claimed to have manufacturing advantages, to be highly reproducible and to have microwave properties comparing favourably with those of epitaxially contacted devices.

Briefly

Coals to Newcastle. Bi-Pre-Pak have sold $1,000,000$ transistors to the inscrutable dealers of Hong Kong.
Uhimate in accuracy? The absolute accuracy spec. of the Hewlett-Pack ard 5061 A cesium beam primary frequency standard has been improved from ± 1 part in $100,000,000,000$ to ± 7 parts in 1,000,000,000,000!
Montreux TV symposivm. The eighth biennnial International Television Symposium and associated engineering exhibition to be held in Montreux opens on May 18th for a week. One hundred papers from 12 countries are listed for presentation.
An audio department store is to be officially opened by Lindair in Tottenham Court Road, London, at the beginning of May. An important inclusion is a 2000 sq.ft. studio in the basement for stereo and 4 -channel demonstrations.

A Digital Multimeter

3 - Construction

by D. E. O'N. Waddington, M.I.E.R.E.

In the previous parts of this article I have described the various units which go to make the multimeter. In this section I will describe how they are connected together and how to set them up.

The interconnexion of the blocks occasioned a lot of thought as I was torn between the "minimum knobs" philosophy and the desirability of making it possible to subdivide the instrument into its major functions. The latter consideration won so that, in its final form, the instrument has two function switches, one for the Frequency/Time/Period (FTP) section and the other for the Voltage/Resistance/Capacitance (VRC) section, each having a position which transfers control to the other. Similarly there are two range switches. Actually, this decision to split
the instrument into two sections simplified the switches and wiring considerably and, I feel sure, reduced many of the problems which otherwise might have arisen. Not the least of these is ensuring that the wiring is correct.

Table 1 shows how the function switches are arranged. If the FTP function only is required, all that is necessary is to delete the VRC position on S_{2}, reducing this to a three position switch, to delete S_{4} and to permanently wire the connexions required for S_{4} position 4. Ĩ practice this will only be $S_{4 \mathrm{a}}$; the other connexions will not be needed as the relevant sections will have been omitted anyway. A similar exercise could be carried out if only the VRC functions were required.

The wiring of S_{2} is not at all critical

TABLE 1 Function switches

FTP

Function	VRC Position 1	Frequency Position 2	Time Position 3	Period Position 4	Wafer
time base selector	100kHz(7.1)	Time Range Switch ($S_{1 \mathrm{a}}$)			$S_{2 a}$
control logic	5,2	5.3	5,2	5.2	$S_{z} \mathrm{~b}$.
control logic	5.11	5.11	5.11	-	$S_{2} \mathrm{C}$.
control logic	5,10	-	5.10	-	$S_{2} \mathrm{~d}$.
control logic	5.4	5,4	-	5.4	$S_{2} \mathrm{e}$.
decimal point (FTP)	-	$S_{\text {,b }}$ wiper	$S_{\text {, }}$ wiper	S_{10} wiper	$S_{2}{ }_{\text {f }}$
decimal point (VRC)	$S_{4}{ }^{\text {b }}$ wiper	-	-	-	$S_{2} \mathrm{~g}$.

Connexion notation - first number in brackets refers to Fig. No. in Part 2 of the article. second number to pin number on this diagram. E.g. $(5,2)$ refers to one input to gate $1 C_{\text {a }}$ is Fig. 5. Part 2.

VRC

Function	Voltmeter Position 1	R Position 2	C Position 3	FTP Position 4	Wafer
control logic/decimal point FTP	5.12	5.12	5.12	S_{29} wiper	$S_{\text {ta }}$
decimal point VRC	$S_{\text {sa }}$ wiper	-	$S_{s b}$ wiper	-	$S_{4} \mathrm{~b}$
polarity indicators/A.D store	to lamps	-	9.4	9.4	$S_{4 \mathrm{C}}$
capacitance meter (store)	10.9	10.9	-	10.9	$S_{4 d}$
voltmeter gain	S_{34} wiper	-	-	-	$S_{\text {se }}$
R/C current selector	-	$S_{5 \mathrm{c}}$ wiper	$S_{5 d}$ wiper	-	$S_{4 i}$
C/R input	-	$S_{4}{ }^{(2)}$	10.6	-	$S_{s 9}$
input amplifier (8,5)	S_{50} wiper	$S_{49}(2)$	E	E	$S_{4 h}$

as the leads to it only carry d.c. However, the wires to $S_{4 e, f, g, h}$ are more sensitive. Hum pick up on $S_{4 \mathrm{e}}$ or $S_{4 \mathrm{~h}}$ could be a problem, so it is advisable to keep these away from the power supply section. Stray shunt capacitance or resistance could prove troublesome on $S_{4 \mathrm{ffg}}$, and, to connect the capacitance-measuring circuits, short stiff wires should be used, positioned so that they are not close to any other wires or to the chassis. If possible, use a low-leakage switch wafer.

The functions of the two range switches are shown in Table 2. The wiring of the FTP range switch is non-critical. It will be seen that the first position of this switch, when used for frequency measurement, is called "Test" and is used to check the filaments of the indicators. With the switch in this position, the indicators should all show " 8 ". This position would imply that there is an effective full scale range of 199 MHz , which is well beyond the capabilities of the counter, so it is as well to inhibit its use in this way. Range indication is accomplished almost entirely by decimal point switching. I chose this method as it reduces the sign-writing on the front panel considerably!

The VRC range switch has a noncritical section, $S_{\text {sa,b,c,d, }}$ and a section sensitive to hum pick up and strays, S_{5} e.d. In order to reduce these effects to a minimum, I mounted the input amplifier ($T r_{1}$, $T r_{2}, I C_{1}$ and associated components (Fig. 8 in Part 2) on the back of S_{5} adjacent to $S_{5 e, d}$, next to the a.v./d.v. switch S_{6}, and the input socket. The earth returns for R_{3}, C_{3} and the wiper of $S_{4 \mathrm{e}}$ are taken to the input socket earth to reduce errors which might be caused by earth currents. The attenuator resistors $R_{1}, R_{2}, R_{3}, R_{8}$ and R_{9}, determine the range-switching accuracy of the voltmeter, and fortunately, it is the ratios rather than the absolute values which are important. If at all possible, these resistors should be of the metal-film variety to achieve the best stability. Wire-wound resistors could be used but even with "non-inductive" windings the residual inductance would probably limit the upper frequency cut-off to a few kilohertz.

The "Prime" switch is used only for time measurement and should preferably be biased in the "off" position.

In general the interconnexion of the boards within the instrument is not critical but it is as well to observe the following precautions:

1. Wire the supply lines to each board with separate leads from the power supply so that there are no common supply paths. 2. Wire the earths separately to a common point at the junction of the chassis, centre tap of mains transformer, and input smoothing capacitors. The 5 V earth should, of course go to its own stabilizer earth point.
2. Do not screen the FP input lead as this will impair the sensitivity at high frequencies. 4. Keep the lead from the capacitance

Fig 1. Interconnexion diagram.
measuring input terminal as short as pos sible to reduce strays. (My own prototype has a constant error of 24 pF due to strays.)

It is most convenient to build the circuits on matrix board such as "Lektrokit" or "Veroboard". Avoid the types which have copper strips as it is extremely difficult to work out suitable wiring runs! Most of the components used in the instrument are generally available. The polarity indicator, however, had to be home-made as I could not find a suitable incandescent indicator. The construction of this indicator is shown in Fig. 2.

Before finally wiring the power supply to the other parts of the instrument it is as well to check that it is functioning correctly. To do this, connect a $220 \Omega 1 \mathrm{~W}$ resistor from the +12 V rail to earth and another from the -12 V rail to earth. A $10 \Omega 5 \mathrm{~W}$ resistor should be connected from

TABLE 2 Range switches
FTP

Function	$\begin{gathered} \text { Position } \\ \hline \end{gathered}$	$\begin{gathered} \text { Position } \\ 2 \end{gathered}$	$\begin{gathered} \text { Position } \\ 3 \end{gathered}$	$\begin{gathered} \text { Position } \\ 4 \end{gathered}$	$\begin{gathered} \text { Position } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Position } \\ 6 \\ \hline \end{gathered}$	Wafer
frequency	test			kHz			
time		milliseconds			seconds		
period		milliseconds			seconds		
select time		10 kHz	1 kHz	100 Hz	10 Hz	1 Hz	Sia
base	100 kHz						
dec. point frq.	-	4.15	4.14	4.16	4.15	4,14	Sib
dec. point T/P	4.15	4.16	-	4.15	4.16	-	$S_{\text {Ic }}$

VRC

Function	Position 1	Position 2	Position 3	Position 4	Wafer
voltage	mV		V		
resistance					
capacitance					
dec. point volts	4.16	4.14	4.15	4.16	S5a
dec. point R/C		4.16	4.15	4.14	S5b
current source (R)	10.2(1 $\mu \mathrm{A})$	$10.3(10 \mu \mathrm{~A})$	10,4(100 $\mu \mathrm{A})$	$10.5(1 \mathrm{~mA})$	S5c
current source (C)	$10.5(1 \mathrm{~mA})$	$10.4(100 \mu \mathrm{~A})$	$10.3(10 \mu \mathrm{~A})$	$10.2(1 \mu \mathrm{~A})$	S5d
voltmeter input att.	8.3	8.3	8.4	8.4	S5e
voltmeter gain	8.6	-	8.6	-	S5f

the +5 V rail to earth. These resistors simulate the operational loads on the regulators. Monitor the +12 V rail and set it to be correct $\pm 1 \%$ using R_{8} in Fig. 3 of Part 2. The negative rail should now be $-12 \mathrm{~V} \pm 1 \%$ provided that R_{10} and R_{11} have been selected to be equal. The 100 Hz ripple on these rails should be less than 2 mV p-p. The voltage on the 5 V rail should be correct to within $\pm 5 \%$ and the ripple should be less than 50 mV p-p. Excessive ripple will indicate either that the input voltage to the regulator is too low or that C_{3} is not completely effective. When it is ascertained that the power supply is working correctly, wiring should be completed and the instrument is now ready for setting up.

Setting up

This is far less difficult than the complexity of the instrument would suggest. The test gear required falls into two categories, setting up and calibration.
The former consists of the following: an oscilloscope (preferably d.c. to 6 MHz), an Avo or equivalent meter, a signal source, $(1 \mathrm{kHz}, 10 \mathrm{kHz}, 50 \mathrm{kHz})$, and a d.v. source (1.5 V -nominal torch battery). Calibration equipment includes: a frequency standard, a known d.v. source, known $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$ resistors, and a known capacitor $100 \mu \mathrm{~F}$. The standards need not necessarily be accurate provided that their values are known accurately

It is most convenient to start by checking the FTP aspects of the instrument as this section should require the least adjustment. Pin numbers, for example 7,2, refer to the Fig. number in Part 2 of the article (7) followed by the pin on that diagram (2).

Master clock This circuit, shown in Part 2, Fig. 7, should be tested first as it provides the timing signals for the rest of the instrument. Set the switches as follows: VRC function switch S_{4} to "FTP".
FTP function switch S_{2} to "Frequency". FTP range switch S_{1} to position 1.

The clock output at 7,7 should be an approximate square wave with an amplitude of 5 V p-p and a frequency of 100 kHz . If standard frequency source is available, the crystal frequency may be set to precisely 100 kHz by adjusting C_{1}. The best way to do this is to apply the standard to the y input of the oscilloscope and the crystal oscillator output to the x input and to set the x and y gains to produce a Lissajous figure, adjusting C_{1}, to give a stationary picture. The standard need not necessarily be 100 kHz ; any integral multiple or sub-multiple, provided that it is not more than 10 times, can be used. Using this method it is possible to set the frequency to be correct to within less than 0.1 Hz (1 part in 10^{6}). If no frequency standard is available, the best approach is to replace C_{1} and C_{2} by a fixed 50 pF capacitor, when the crystal frequency will be correct to within about $\pm 3 \mathrm{~Hz}$.

Fig 2. Polarity indicator construction.

Fig 3. Counter waveforms.

Fig 4. Timer waveforms.

Fig 5. Period meter waveforms.

Set the FTP range switch successively to its other five positions and check that, at each step, the frequency of the output at 7,7 decreases by a factor of ten.

Input Wave Shaper. Monitor the output at 6,2 on the oscilloscope. Connect a signal of approximately 100 mV to the Counter/ Period input. If possible the signal should have a frequency of the order of 1 MHz but 1 kHz can be used, provided that the oscilloscope has a trigger level control. The output should consist of positivegoing pulses having an amplitude of 5 V and a width of approximately 170 ns . If a low test frequency is used, it will be virtually impossible to see these pulses on the oscilloscope screen because of the small duty cycle. However, by adjusting the trigger level control, it should be possible to detect that the output is present even if it cannot be measured by setting the trigger level so that, when the signal is present, the time-base just triggers. When the signal is disconnected, the time-base should no longer fire.

Decoder/display. There are really no tests which can easily be carried out on this section. The indicators can be checked to ensure that all of the segments are wired to the decoders (SN 7447N) and that they all light by setting the FTP range switch to position 1 and the FTP function switch to "Frequency". All segments should now light except for the most significant digit which may be 1 or 0 . This test, however, only shows that all wires are connected but not that they are necessarily correct. Crossed connexions only show up later when indecipherable digits appear!

Counter, store, control logic and timer control. This should be tested by checking each of the three functions, Frequency, Timer, Period.

Frequency. Set the FTP range switch S_{1} to position 6 and apply a signal of approximately 1 kHz at a level of about 1V to the Counter/Period input. The waveforms should be as shown in Fig. 3 and the display should show the frequency in the form 1.000 kHz . The waveforms at the collectors of $\operatorname{Tr}_{1}, \operatorname{Tr}_{3}$ and Tr_{5} will probably not be discernible on the oscilloscope but their presence may be verified by checking that they trigger the time-base as described above.

Timer. Set the FTP function switch to "Time", the FTP range switch to position 4 and depress the "Prime" switch S_{3}. The conditions shown at " 1 " in Fig. 4 should then exist. Connect the "Run" input to ground and check that the conditions are as shown at "2" in Fig. 4. Connect the "Stop" input to ground, when the display should show the time interval between earthing the two inputs.

Period. The method of checking this function is similar to that used for checking the frequency counter except that it is advisable to use a low input frequency such as

Fig 6. Setting frequency response using a square wave.

50 Hz and to set the range switch to position 2. The display should show 020.0 . The waveforms are shown in Fig. 5.

As shown above, there is virtually no setting up required for the FTP functions, only checking that it all works! However, if any function does not work, suspect the wiring first of all as this is the main cause of non-working digital circuits. I know that this should be obvious but the wiring here is slightly more complex than usual, mainly because of its quantity and the fact that it is interconnexion between similar "black boxes". If the wiring is correct, however, and things still refuse to work,
the only course is to check waveforms throughout the circuit working methodically from the inputs to the outputs.

The VRC functions of the instrument require a great deal more setting up as they rely on linear rather than digital circuits for their operation.

Voltmeter. Set the controls as follows: FTP function switch S_{2} to "VRC", VRC function switch S_{4} to "V", VRC range switch S_{5} to position 2, and d.v./a.v. selector S_{6} to "a.v.". Short the input connexions, and set R_{15} (Fig. 8, Part 2) to mid-travel.

Monitor the voltage at 8,10 and adjust R_{5} so that the voltage at this point is as near to zero as possible. Short point 8,10 to earth. Monitor point B, (Fig. 9 Part 2) with the oscilloscope and adjust R_{11} so that the amplitude of the triangle waveform seen at this point is as near to zero as possible but still present. (This compensates for the offset voltage of $I C_{4}$.) Remove the short circuit from 8,10 and re-adjust R_{s} so that the triangle amplitude is again as small as possible but still present. Set the a.v./d.v. switch to d.v. and apply a direct voltage of between 1 and 1.9 V to the input. Note the reading on the display (x). Reverse the polarity of the input and note the reading on the display ($-y$). Adjust R_{15} (Fig. 8) so that the display shows $(x+y) / 2$. Repeat these two steps until $x=-y$.

Apply a known voltage of between 1 and 1.9 V to the input and set R_{2} Fig. 9 so that the instrument indicates the correct voltage.

The waveforms to be expected in the circuit of Fig. 9 are shown in Fig. 9a.

Fig. 7. Interior of multimeter. The two 'opened-out"' boards are the resistance/ capacitance circuit (left) and the power supply stabilizers. The three boards in the chassis are, left to right, voltmeter, control logic and master clock/input shaper.

Semiconductors			
Power Supply			
$T_{\text {d }}$	BC109	$T_{r 7}$	2N2904
$T_{r 23,5}$	BCY72	D_{14}	1N4001
$T_{r 4}$	BC108	D_{5}	BZY886V8
$T_{r 6}$	2N2218	$I C_{1}$	LM309K
Display			
$T_{\text {rio }}$	BC108	$I C_{1}$	SN7447N
Indicator FUJI MINITRON 3015F (supplier			
Counter, store, control logic, timer control			
$T_{\text {r4-5 }}$	BSX20	$I C_{1,4}$	SN7403AN
$I C_{2,5,6,14}$	SN7400N	$I C_{3}$	SN7472N
$I C_{7,8,9}$	SN7490N	$I C_{10}$	SN7473N
$I C_{11-13}$	SN7475N		
Input wave shaper			
$T_{r_{1,2,3}}$	BC108	$T_{r 4,5,6}$	BSX20
Master clock and divider			
$T_{r 1,2}$	BC108	$T_{r 3}$	BSX20
$I C_{\text {t-5 }}$	SN7490N	gates	DTL946
Input amplifier, rectifier and polarity indicator			
$T_{r 1,2}$	TIS68	$I C_{1,3}$	$\mu \mathrm{A} 741$
$T_{r 3,4,5}$	BC108	$I C_{2}$	N5556
$T_{r 6}$	BCY72	$D_{1,2}$	1N4148
A.-to-d. converter			
$T_{r 8,9}$	BF244B	IC ${ }_{4}$	$\mu \mathrm{A} 741$
$T_{F T 10,11}$	BC107	$I C_{5}$	$\begin{aligned} & \text { SL702C9 } \\ & \text { (Plessey) } \end{aligned}$
$T_{r 12,15}$	BSX 20	IC ${ }_{6}$	SN7400N
$T_{r 13,14}$	2N2894	$I C 7_{7}$	NS7402
$T_{r 16}$	BC108	D_{3}	
$T_{r 17}$	BCY72	D_{4-11}	IN4148
Capacitance/resistance measuring circuit			
$T_{r 1}$	BC252C	$I C_{1}$	DTL930
$T_{r 2,3,4}$	BF244B	D_{1}	BZY88C4V7
$T_{r}{ }^{5}$	BC107	D_{2}	1N4148
$T_{r 6,9}$	2N2894	D_{3}	BZY88C8V2
$T_{r 7,8} \quad$ BSX 20			
Semiconductor equivalents			
BC 107 BC171, BC207, BC237, BC507			
BC 108 BC172, BC238, BC508, BC208			
BC109	$\begin{aligned} & \mathrm{BC} 173, \mathrm{BC} 239, \mathrm{BC} 209, \mathrm{BC} 509, \\ & 2 \mathrm{~N} 2484 \end{aligned}$		
BCY72	BC205, BC $308, \mathrm{BC} 405$		
BSX20	2N2369		
2N2218	2N2219, 2N4918		
2N2904	2N2905, 2N4921		
TIS68	FM3958 (National Semiconductors. Connect the substrate to OV)		
BZY88C4V7 ZW4.7, Z5B4.7, HS7047			
BZY88C6V8 ZW6.8, Z5B6.8, HS7068			
BZY88C8V2 ZW8.2, Z5B8.2, HS7082			
SN7400N FJH131, FLHI01			
SN7402N FJH221, FLH191			
SN7403AN FJH301A, DTL946			
SN7447N 9317 (Fairchild)			
SN7472N FJJ111, FLJ111			
SN7475N FJJ181, FLJ151			
SN749ON FJJ141, FLJ161			
DTL946 MC846, (SN7403N, FJH301A			
N5556	MC15		
2N2894	MPS 3		
1N4148	1 N 91		

When the d.v. aspects of the voltmeter have been set, the only aspect of a.v. measurement to be set is the frequency compensation of the input attenuator. This is probably most easily done using a square wave but a sine wave method can be used as an alternative.

Square wave method. Set the a.v./d.v. switch to a.v. Set the VRC range switch to position 3. Apply a 1 kHz square wave with a peak-to-peak amplitude of between 6 and 20 V to the voltmeter input. Look at the output at pin 6 of $I C_{1}$ with the oscilloscope. Adjust C_{2} to obtain the best possible square wave. See Fig. 6.

Sine wave method. This is only valid if the output level of the sine wave can be relied on to remain constant regardless of frequency.

Apply a 1 kHz signal of approximately 10 V r.m.s. to the input and note the reading on the display. Set the frequency to 50 kHz and adjust C_{2} to restore the reading. Some frustration with this method can be avoided if one takes the precaution of disconnecting C_{4} (Fig. 8) thus speeding the settling time of the instrument.

Resistance measurement. To set up the resistance ranges, some accurate resistors are essential. The preferred values for this test are $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, and the procedure is as follows: set the VRC function switch S_{4} to "R", set the VRC range switch to S_{s} to position 1, connect the $1 \mathrm{M} \Omega$ resistor between the R / C terminal and earth and adjust R_{1} so that the display shows 1000 .

Set the range switch to position 2 and with the $100 \mathrm{k} \Omega$ resistor connected between the input terminals set R_{3} so that the display shows 100.0 .

Carry out the same procedure for positions 3 and 4 using the $10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ resistors and setting R_{5} and R_{7} to obtain readings of 10.00 and 1.000 respectively.

Capacitance measurement. Once the resistance meter has been set up there is only one adjustment for setting up all the ranges. I set up the 199.9 nF range because I had access to a $150 \mathrm{nF} \pm$ 0.25% capacitor, but it should make little difference which range is used for calibration. However as there will be stray capacity across the input terminals, it is probably as well to do the setting up on a high rather than a low range. The procedure is as follows: set the VRC function switch S_{4} to "C", set the VRC range switch S_{5} to suit the standard capacitor being used, and adjust R_{17} (Fig. 10, Part 2) until the display shows the correct value. All of the capacitance ranges are now calibrated.

If this setting up procedure is followed and if the standards are stable, the instrument should now meet its specification.

Correction

(a) In Fig. 9 of Part 2 of the article, Tr_{8} and $T r$, were incorrectly shown as BC2 448. They should be, as shown in the component list above, BF244B. (b) Fig. 11
was, we thought, amusing but unhelpful. We apologize for the mirror-image and print it again the right way round.

Fig. 11. Method of driving f.e.t. switches from $5 V$ lines.

Correction

We regret the introduction of several errors in the article on a "Versatile Triangle Wave Generator" in the February issue. In the third column on p. 87 the numerator in the expression should be "I" not " 1 ". A draughting error in Fig. 4 made nonsense of the author's statement that "the frequency can be read straight from the Helipot dial as shown in Fig. 4". The redrawn figure is reproduced below. In the second paragraph of the constant current generator section (p.88) Tr_{2} should read $T r_{12}$, and, in the last line of this page, R_{2} should read R_{3}.

The components lists apply to Figs. 2 and 3 and Fig. 7.
The author points out that although he used a 2N4061 any silicon p-n-p transistor could be used.

Books Received

The following is a selection of books from a new series for those interested in electronics and allied subjects. The first list of books, which originate from America, contains twenty titles and the books are published by a new imprint Foulsham-Tab.
Transistor Circuit Guidebook by Byron Webs contains practical circuits from tuners and amplifiers to test equipment and counter circuits. Pp.219. Price £1.20.
Beginners Guide to TV' Repair by George Zwick provides instruction in the basics of television to help the beginner understand how a TV receiver works, what may go wrong with it and how it should be serviced. Pp.171. Price $£ 1.00$.
Advanced Radio Control by Edward L. Safford Jr, discusses the fundamentals of advanced radio control and describes the basic systems used. Pp.192. Price $£ 1.00$.
How to Read Electronic Circuit Diagrams by Robert M. Brown and Paul Lawrence contains a guide to translating circuit symbols, information on the components they represent and about the circuits in which they are used. Pp. 189. Price $£ 1.30$.

All these books are published by Foulsham-Tab Ltd, Yeovil Road, Slough, SLI 4JH.

Logic and Logic Design by B. Girling and H. G. Moring is an introduction to Boolean algebra and its application to the fields of switching circuits, the solution of logic equations, the logic design of digital circuits, sequential machines and synchronous logic. It covers the computer science requirements for a B.Sc. degree. Using modern mathematics, the authors concentrate on the logical concepts involved rather than their implementation so that no detailed electronic circuitry is included. The book will be of value to science and engineering students whose courses include applied Boolean algebra. Pp.328. Price $£ 5.80$. Intertext Publishing Ltd, 24 Market Square, Aylesbury, Bucks.

Sound with Vision: Sound Techniques for Television and Film by E. G. M. Alkin is concerned with the art and craft of sound operations in association with television picture production. The book is intended primarily for the instruction of television sound operators and in describing technical subjects, a basic knowledge of electronics is assumed. The subjects covered are also of increasing interest to the film-making industry in the light of current trends and developments. The book discusses the problems encountered in the simultaneous production of sound and pictures, giving practical instruction in methods of solving them and examines the philosophy of equipment designed to meet the resulting requirements. This work is intended to be complementary to existing literatúre on sound and to avoid duplication. Where subjects are already fully documented, references are given. Although dealing mainly with sound in television, the subject matter also covers many aspects of film sound technique. The book is split into four parts (1) fundamental considerations (2) microphone technique for continuous take production (3) technical facilities and (4) sound operational practice. Pp.283. Price $\mathbf{E}^{6.00}$. Butterworth \& Co. Ltd. 88 Kingsway, London WC2B 6AB.

Meterless Transistor Tester

A portable instrument capable of resolving current gain and leakage

by J. Lewis, B.Sc.

A need arose in the workshop for a portable, compact and reliable transistor tester which could be used to check all types quickly and also give an accurate value of $h_{\text {FE }}$. In the interests of economy and durability it was thought that perhaps an instrument without a meter would be preferable. Of the many described in the usual literature only one was found which readily fitted the specifi-cation-that described by D. E. O'N. Waddington*. This tester used a meter, though not in the normal current measuring configuration, as it measured the voltage developed across the emitter resistor. Fig. 1(a) shows the usual type of circuit used in which a known base current is injected into the transistor under test and the resulting collector current is measured by a suitably calibrated meter. In Mr Waddington's design Fig. 1(b) the meter is used as a voltmeter the reading of which is proportional to the current flowing through the resistor R_{E}.

The theory of this circuit was fully developed in the original article; an alternative approach is used here to describe the operation of this particular instrument.

In the common collector configuration (Fig. 2)
also

$$
\begin{aligned}
& I_{E}=I_{B}\left(h_{F E}+1\right) \\
& I_{E}=\frac{V_{E}}{R_{E}} \\
& I_{B}=\frac{V_{A}-V_{B}}{R_{B}}
\end{aligned}
$$

and
Therefore, combining the above gives:

$$
\frac{V_{E}}{R_{E}}=\frac{V_{A}-V_{B}}{R_{B}}\left(h_{F E}+1\right)
$$

If we neglect $V_{B E}$ for the moment, $V_{B}=V_{E}$ and rearranging we get:

$$
\frac{R_{B}}{R_{E}}=\frac{V_{A}-V_{E}}{V_{E}}\left(h_{F E}+1\right)
$$

V_{A} and V_{E} can be conveniently chosen so that

$$
\frac{V_{A}-V_{E}}{V_{E}}=1
$$

(in the prototype, $V_{E}=2 \mathrm{~V}$ and $V_{A}=4 \mathrm{~V}$) Provided

$$
\begin{aligned}
& h_{F E}>20 \\
& h_{F E} \approx \frac{R_{B}}{R_{E}}
\end{aligned}
$$

Further development

If R_{B} is chosen to be a linear variable resistor of, say, $250 \mathrm{k} \Omega$ and R_{E} is $1 \mathrm{k} \Omega$ then the $h_{F E}$ can be measured directly on a scale calibrated from $0-250$ over which a pointer attached to R_{B} rotates. In operation a voltmeter monitors the voltage developed across R_{E} whilst R_{B} is gradually increased in value, the gain being the scale reading when the meter registers 2 V . The meter can be dispensed with and an op-amp used as a voltage comparator connected in its place which then compares the voltage across R_{E} with a suitable reference. The circuit for an op-amp being used as a voltage comparator is given in Fig. 3 and the threshold or triggering voltage E_{T} is determined by the

[^2]
(a)

(b)

Fig. 1. Alternative measuring techniques.
values of R_{1} and R_{2} such that

$$
E_{T}=-\left(E_{\text {ref }} \frac{R_{1}}{R_{2}}\right)
$$

The prototype used a mercury cell, e.m.f. 1.4 V , as the reference and since the threshold voltage had already been chosen as 2 V , suitable values for R_{1} and R_{2} were $3 \mathrm{k} \Omega$ and $2.1 \mathrm{k} \Omega$ respectively. Of course, the reference voltage has to be of opposite polarity to the threshold voltage and a suitable switching circuit has to be used for n-p-n or p-n-p devices.
A breadboard of the simple circuit described above was made and proved excellent and it was then decided to extend the usefulness of the instrument by incorporating various refinements-these are extras of course, and can be omitted. R_{B} was made a variable $50 \mathrm{k} \Omega$ resistor with a number of

Fig. 2. The common collector configuration.

Fig. 3. Voltage comparator.

Fig. 4. Circuit diagram of tester.
fixed resistors-all multiples of $50 \mathrm{k} \Omega$ which could be switched in series with the variable one, thus extending the range and giving better resolution. In some cases it is desirable to know $h_{F E}$ at different collector currents and in order to measure this, whilst also providing an indication of leakage, the emitter can be connected to a number of different resistors all providing a different function. Since these vary from the original $1 \mathrm{k} \Omega$ value, a factor has to be introduced for each one by which the gain reading is multiplied. The values of these extra resistors and their factors are given in Table 1.

The prototype fitted easily into a diecast box, $7 \frac{1}{2} \times 4 \frac{1}{2} \times 3 \mathrm{in}$. The layout does not appear critical. The resistors were mounted on tag strip whilst the op-amp was fitted, crudely, onto turret tags. The batteries are held in position by sponge. On the lid were mounted the controls together with two sets of sockets to cater for the different base, collector and emitter lead layouts in both TO-5 and TO-18 sizes. Spring terminal posts cater for the odd devices which won't fit into the sockets.

The calibration of the instrument initially is critical if consistent results are required. It is necessary to set V_{A} accurately and a variable resistor R_{y} is adjusted until the potential is correct. A compromise has to be made here to allow for the $V_{B E}$ of the devices. In the prototype Fig. 4, V_{A} was set at 4.4 V using R_{24} though there is no reason why a switch could not be provided to allow one to choose either the relevant value for germanium or silicon transistors. V_{s} is set at 8 V using R_{27}. The markings for switch position number are given in Table 1 for S_{4} and Table 2 for \bar{S}_{3}. The test position is calibrated using R_{26} until the voltage across R_{21} is 2 V .

The scale for $h_{F E}$ is marked out using a suitable ohmmeter across R_{26} which is disconnected from the circuit. At $5 \mathrm{k} \Omega$ mark 0.1 , at $10 \mathrm{k} \Omega$ mark 0.2 etc. With S_{4} at test, the indicator light should be off if S_{2} is in the p-n-p position. R_{27} is rotated until it comes on and then backed off until it just extinguishes. If one now switches to n-p-n the light should remain out though a slight turn either way should bring it on. If this does not work check that 8 V is available at the collector terminal C.

Operation

To use the tester one first has to set the voltage V_{s} by adjusting R_{27} as outlined above. The transistor is plugged in and S_{2} put to the correct position. R_{25} is then ad-

TABLE 2

\mathbf{S}_{3} position	Function
1	$h_{F E}=0-1$
2	$h_{F E}=1-2$
3	$h_{F E}=2-3$
4	$h_{F E}=3-4$
5	$h_{F E}=4-5$
6	$h_{F E}=5-6$
7	$h_{F E}=6-7$
8	$h_{F E}=7-8$
9	$h_{F E}=8-9$
10	$h_{F E}=9-10$
11	

justed in conjunction with S_{3} until, with n-p-n devices, the light comes on, or, in the case of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ ones, it goes out. The value of $h_{F E}$ can then be read off using the correct

TABLE 1

\mathbf{S}_{4} position	Function	$h_{f E}$ Multiplying factor	Resistor value
1	TEST		connected to R_{26} and R_{21}
2	$I_{c}=2 \mathrm{~mA}$	$\times 50$	$1 \mathrm{k} \Omega$
3	$I_{c}=4 \mathrm{~mA}$	$\times 100$	500Ω
4	$I_{c}=8 \mathrm{~mA}$	$\times 200$	250Ω
5	$I_{c}=20 \mathrm{~mA}$	$\times 500$	100Ω
6	$I_{c}=40 \mathrm{~mA}$	$\times 1000$	50Ω
7	$l_{\text {c¢ }}=1 \mu \mathrm{~A}$		$2 \mathrm{M} \Omega$
8	$I_{\text {reo }}=10 \mu \mathrm{~A}$		$200 \mathrm{k} \Omega$
9	$l_{\text {cEO }}=100 \mu \mathrm{~A}$		$20 \mathrm{k} \Omega$
10	$l_{\text {CEO }}=1 \mathrm{~mA}$		$2 \mathrm{k} \Omega$
11	$I_{\text {cEO }}=10 \mathrm{~mA}$		200Ω

A general view of the prototype tester. In the centre is the $h_{F E}$ dial. The range switch is bottom left and emitter current selector, bottom right.
multiplying factors. A faulty transistor is shown by the light either remaining on or off over the full range.
Leakage current can be gauged by switching to $I_{\text {CEO }}$ on S_{3}. The light will go off if the leakage is too great for n-p-n or conversely on for p -n-p. By switching to various values of S_{4} an indication of the leakage current can be obtained by noting when the state of the lamp changes. To distinguish between unmarked n-p-n or p-n-p types, S_{3} is turned so that the base is shorted to the emitter with R_{25} at 0 . Switch alternately to p-n-p and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ whilst slowly rotating R_{25}. The position of S_{2} which gives a change in
indicator state is the transistor type. Diodes may be checked by connecting them between the E and C terminals with S_{4} in the 2 mA position. When the cathode of the diode is connected to the C terminal the light should remain on when S_{2} is switched from n-p-n to p-n-p, and if the anode is at this terminal the light should remain off when switching.
Once one has gained some familiarity with this tester it is surprisingly easy and quick to use. Transistors can be tested almost as quickly as they are plugged in. Should a simpler tester be required then S_{3} and S_{4} could be omitted making $R_{25} 250 \mathrm{k} \Omega$ and leaving just R_{20} in the emitter circuit.

Components list

Resistors		
$50 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega \quad 15$	2M Ω
$2100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega \quad 16$	50Ω
$3150 \mathrm{k} \Omega$	150 k Q 17	100Ω
$4200 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega \quad 18$	250Ω
$5250 \mathrm{k} \Omega$	$250 \mathrm{k} \Omega \quad 19$	500Ω
$6300 \mathrm{k} \Omega$	$300 \mathrm{k} \Omega \quad 20$	$1.0 \mathrm{k} \Omega$
$7350 \mathrm{k} \Omega$	$350 \mathrm{k} \Omega \quad 21$	100Ω
$8400 \mathrm{k} \Omega$	$400 \mathrm{k} \Omega \quad 22$	$2.1 \mathrm{k} \Omega$
$450 \mathrm{k} \Omega$	$450 \mathrm{k} \Omega \quad 23$	$3.0 \mathrm{k} \Omega$
$101.0 \mathrm{k} \Omega$	$1.0 \mathrm{k} \Omega \quad 24$	220Ω miniature skeleton
11200Ω	200Ω	preset
$122.0 \mathrm{k} \Omega$	$2.0 \mathrm{k} \Omega \quad 25$	$50 \mathrm{k} \Omega$ w.w., standard size
$1320 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega \quad 26$	470Ω skeleton preset
$14200 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega \quad 27$	$1 \mathrm{k} \Omega$ miniature carbon
All resistors should be either 1% tolerance or selected values.		
Switches		
4 pole, 2 way rotary		
4 pole changeover, miniature lever key		
1 pole, 12 way rotary		
2 pole, 12 way rotary		
$0.1 \mu \mathrm{~F}$		
709 type op-amp, d.i.l. or TO5 package		
BFY 50		
$L P_{1} \quad$ an	any suitable panel light with bulb rated at $6 \mathrm{~V}, 60 \mathrm{~mA}$	
B_{1}, B_{2} suid	B_{2} suitably size	d 9 V battery
	1.4 V mercur	y cell (RM625H or similar)

World-wide Mobile Communications and Surveillance via Satellite

A conference dealing with long-haul aeronautical and maritime telecommunications and the use of such systems for surveillance, and the consequent traffic control ability, was held at the Institution of Electrical Engineers, London, on March 13th to 15th.

The conference got off to a sobering start with the opening address by Professor Sir Herman Bondi, Chief Scientific Advisor, Ministry of Defence, who suggested that the biggest gap now existing in communications generally is our "ignorance of ourselves", considering how little is known about how human beings actually influenced each other when communicating. He further considered redundant or peripheral information or, to use his words, "sweet nothings in conversation", as an entirely necessary function forming an adjuster of the "mood faculty", presumably controlling one's receptive ability during discussion. From this, Professor Bondi drew a necessary distinction between communicating on an impersonal, instructional basis and communicating on a more personal, conver-
sational basis. The conclusion was that thought must be given, in this light, to what type of telecommunications link was really required. He further felt that all the expense and interest shown in the sphere of aircraft and shipping surveillance could be justified, on an information/instruction basis anyway, where continuously monitored conditions, in respect of aircraft flight paths and shipping lanes, are not yet normal.

Because of the technological difficulties encountered with airborne and shipborne environments, Professor Bondi viewed mobile communications as a leader in the field of satellite communications. This work was directed towards the least inconvenient and most practical solutions which will eventually affect our social environment.

In all, 33 papers were presented at the conference, many of which provoked lengthy discussion. An attempt to view the world wide interest and activity in perspective, a paper entitled "The institutional bottlenecks affecting mobile sateliite communication", given by D. O.

Fraser of the British Aircraft Corporation, was entirely successful and many of the points brought out ran like tracers throughout the conference.

Theoretical studies of systems were plentiful, although many parameters, at this stage of evolution, are tending to become standardized. These include frequencies to be used, number of usable channels, channel widths and system access capability.

Although satellite frequency allocations have been confirmed at the World Administration Radio Conference for Space Telecommunications in Geneva (1971), studies were presented on the subject of analytical and applied methods of selecting and proposing the range of what may be called optimum frequencies for use in ship or aircraft to satellite communications links.

Results of experimental work carried out using existing geostationary satellite systems such as Intelsat IV and the U.K. Skynet were presented, and these should go a long way in helping system designers and engineers to specify, knowingly, nearer to the optimum range of parameters in Aerosat or Marisat systems.

Details of progress of some institutional programmes and studies were given, firstly by Dr. J. Vandenkerkhove, of the European Space Research Organization, Netherlands, who put forward the findings of the design study for their Aerosat proposal for a satellite covering the Atlantic region. Later G. H. Booth, of the Communications Research Centre, Canada, gave a paper entitled "The Canadian/U.S. high power Communications Technology Satellite" which described a programme devoted to the advancement of technology for future generations of high power satellite systems. The C.T.S. should be launched in 1975 by the National Aeronautics Space Administration, U.S.A., and one significant point in the system is the use of the 11 and 14 GHz band for earth station to satellite and satellite to earth station communication. This was of greater interest later when, further on in the conference, R. A. Bedford and S. R. Temple, both with the Directorate of Radio Technology, Ministry of Posts and Telecommunications, said it was likely that the Ministry would recommend the 11 and 14 GHz bands for earth station to satellite links.
E. J. Martin, of the Communications Satellite Corporation, U.S.A., announced a Cosmat contractural agreement to provide a working satellite service for the U.S. Navy, from late 1975, which may, at a later date, provide communications in the L-band region (approximately 1550 MHz) for the merchant services. Two satellites are involved in this system, giving multibeam coverage of the Pacific and Atlantic areas.

Throughout the entire conference questions relating to the whole philosophy of mobile communications were being asked. In an attempt to clarify the system requirement several papers were given, by prospective users of both Aerosat and Marisat systems, who pointed out that although the institutions represented at the conference had gone some way towards providing desirable specifications regarding a usable economic system, significant areas had been missed or glossed over. It was suggested that this was due, in part, to a lack of liaison between the working institution, who would presumably have heavy involvement with future operating agencies, and the aeronautical/maritime user.

The 197 -page I.E.E. Conference Publication, No. 95, is available from Publication Sales Department, Institute of Electrical Engineers, Station House, 70 Nightingale Road, Hitchin Herts. The Price is $£ 5.00$ for members and $£ 7.60$ for non-members.

Circards - 6

Constant-current Circuits

Introducing the constant-voltage dual

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams*

For every circuit using a constant-voltage element or sub-section there is a dual circuit based on constant-current properties. That such circuits are less common and often misunderstood is partly for historical reasons, stemming from the lack of sources of electrical energy having constant-current charac teristics. One cannot draw out of stores a " 5 A 250 mV -hour battery". A battery that will sustain a constant current into an arbitrary load is not physically realizable, since the electro-chemical processes involved define the e.m.f., the current then being inversely proportional to resistance.

Either capacitors or inductors may be used for temporary storage of energy, but the cost and size penalties of the latter are considerable. Capacitors store charge, having a p.d. proportional to the stored charge, and sustain that p.d. to a first order against varying current drain; until the drain results in a significant loss of charge. Even more important is that the generation, transmission and transformation of a.c. by the Electricity Boards are all constant-voltage processes. After rectification, the only form in which d.c. power can be produced efficiently and with freedom from ripple is as a constant voltage.

Thus all common sources of electrical energy approximate to constant-voltage characteristics and the majority of electronic circuits have been designed for this mode of operation. It is a fascinating thought that there should be as many current-operated circuits as voltageoperated ones, though they may be unfamiliar in shape. For example transistors would have to be operated in series, carrying comparable currents in each device but with progressively increasing p.ds moving from input to output in an amplifier, while the interstage coupling might be inductive. Conversely, where constant-voltage supply circuits use inductors to achieve particular effects, the corresponding circuits using capacitors would be attractive alternatives if constant-current supplies were available.

Each type of constant-current circuit seeks to achieve a constant current against variations in supply voltage, load resistance and ambient temperature as

Fig.1. In trying to achieve a current constant against variations in supply voltage, load resistance, ambient temperature, and component parameters an intermediate step is sometimes used where power is switched before reconversion to d.c.

Fig.2. A nother method of controlling load current.

Fig.3. Technique of Fig. 2 can be used with an a.c. signal replaced by a d.c. level.
well as against component parameter changes. This will apply whether the supply is in the form of a direct voltage or an alternating current. In the former case, an intermediate step may be used in which the power is converted into a switched waveform before re-conversion to d.c., the method having high efficiency even when the load voltage is much less than the supply voltage (Fig.1). Alternatively the d.c. may be used to power an amplifier which because of the design of its output stage or by virtue of the feedback employed, delivers a current to the load controlled primarily by some signal voltage or current (Fig. 2).

Purely d.c. systems may also fall into this category with the a.c. signal replaced by a direct voltage/current (Fig.3) which can be fixed or variable depending on the application. (Fixed if a constant current is to be forced in a zener diode to define its operating point, variable where used to plot the characteristics of a transistor.) In addition, current control can be achieved by devising a two-terminal circuit to be interposed between source and load (Fig.4). If the circuit has a high dynamic resistance the current is then stabilized against supply and load changes. To apply such a circuit to a.c. supplies involves a number of difficulties, not least that such constant-current action is achieved only

Fig.4. Current control can also be achieved by using Fig. 3 as a two-terminal circuit between source and load.
for that part of the cycle for which the input amplitude is in excess of some minimum value, typically 2 to 10 V . It becomes particularly important to distinguish the parameter of the output whose constancy is being maintained. The peak value will be held constant by a two-terminal device having infinite slope resistance for amplitudes of input above the minimum. In many cases it may be necessary to rectify the applied voltage so that the ciruit deals with a single polarity.

Two further parameters of interest are the r.m.s. and mean-rectified output currents. For both, the rise in current during the pre-limiting region as the input voltage increases causes a rise in the area under the current graphs, i.e. in the mean/r.m.s. current. If the two-terminal network is arranged to have a negative-resistance characteristic then the current can fall back during input peaks, offsetting the tendency for the mean/r.m.s. currents to rise (Fig.5). A different value of negative resistance is required for the mean and r.m.s. conditions and it is further dependent on the input waveform. The method has the advantage that it operates on the instantaneous value of input, though methods based on thermistors and thermocouples might be used to monitor r.m.s. current via thermal effects. The necessary feedback would be more easily applied via conventional regulator circuitry and would involve thermal time delays that would not cope with input/load transients.

In the majority of these circuits the reference determining the current will be a voltage such as that developed across a zener diode. Where lower stability is adequate the p.d. across a forward-biased silicon p-n junction has advantages.

Fig.5. Negative-resistance causes current to fall back during input peaks, offsetting tendency for mean/r.m.s. currents to rise in the pre-limiting period.

Fig.6. Circuits based on op-amps are generally limited to the case where loads do not require a ground connection.

The voltage, or some function of it, appears across a resistor defining the current in that resistor. If the load is placed in series with that reference resistor, or in some other circuit path carrying a related current, then load current is fixed. Operational amplifiers have one output terminal committed to ground potential. If the generator representing the output has to appear in series with the
reference resistor and load to define the current then a conflict appears (Fig.6). To achieve a current flow to ground the reference resistor (and with it the reference voltage and its associated circuitry) would have to float. As this is inconvenient, circuits based on conventional operational amplifiers may be limited to constant current operation only with those loads not requiring a ground connection.

Circuit configurations are possible in which negative and positive feedback can be combined to raise the output resistance to very high values. Penalties include relatively poor stability of this output resistance and difficulties in achieving high output currents. This last demand is frequently met by adapting existing voltage regulators with a reference resistor at the normal output voltage terminals and the true load in series with it as outlined above.

Finally, the problem of controlling alternating current may be tackled in a different way by means of thyristor switches. These can be fired at appropriate points on the input waveform such that the mean current in the load is controllable. As the thyristor behaves as an almost perfect switch, no control is exercised over the instantaneous value of current. A filter provides a feedback voltage proportional to the mean current and controls the phase angle of the firing circuit. This phase angle control is quite distinct from the frequency/pulse-width modulation methods that are inherent in the switching amplifiers described earlier, and filtering of the output waveform would not normally be applied. The method would be suitable for such applications as battery charging where the current waveform is uncritical.

Circards - future series

As already announced the trial period of Circards - the Wireless World information service on circuit design - has confirmed our hopes and the scheme is to be continued and extended.
We list below the subjects it is planned to cover in the next 10 sets of cards - although not necessarily in the order listed. The first (no. 6), which is discussed above, will be available on May 1st. The U.K. price per set is $£ 1$ and the overseas price $£ 1.15$ (airmail postage extra).

Many readers have asked if they may order sets of future Circards to be sent as published. We have therefore introduced a subscription rate for the next 10 sets (nos 6-15) which it is hoped to issue monthly. The subscription for the U.K. will be $£ 9$ and for overseas $£ 10.50$. Orders for individual sets or subscriptions should be addressed to J. Rider, IPC Business Press, Sundry Sales, 33-40 Bowling Green Lane, London EC1R ONE.

Circards are currently zero rated for the purpose of V.A.T.
Constant Current Circuits: Regulating currents at high and low powers for load and bias purposes.
Power Amplifiers: Power Amplifiers, d.c., audio switching and r.f.
Opto-electronics: Generation, detection and processing of optical signals.
Basic Logic Gate Circuits: Practical gate circuits using m.o.s., t.t.l. and other logic families.
Astables: Generation of repetitive waveforms from low to high frequencies using i.c. and discrete circuits.
Micropower Circuits: Operation of amplifiers, oscillators and measurement circuits at very low voltages and currents.
Wideband Amplifiers: Amplifiers of varying power levels over wide frequency bands.
Alarm Circuits: Detection of fault conditions and control of alarm devices.
Pulse Modulators: Modulation of pulse waveforms for communication and instrumentation systems.
Digital Counters: Binary counters using a variety of logic families.
New readers may also like to know the subjects already covered in Circards:

1. Basic Active Filters; 2. Switching Circuits: Comparators and Schmitts; 3. Waveform Generators; 4. A.C. measurements; and 5 . Audio Circuits: pre-amplifiers, mixers, filters and tone controls. These are still available from the above address at the same individual price quoted above (they are not available at the reduced subscription rate).

London Electronic Component Show

Exhibitors and exhibition details

The 23rd international component show to be held at Olympia, London from 22 nd to 25 th May will this year have 450 participant companies with one fifth of these participants coming from overseas. The show will be open daily from 09.30 to 17.30 and admission is 30 p but is free to overseas visitors. Sponsor of the show is the Radio and Electronic Component Manufacturers' Federation and it is organized by Industrial Exhibitions Ltd. The following is a list of the exhibitors at the show.

A.B. Electronic Components	Cannon
A.B. Engineering	Carr Fastener
AEG (G.B.)	Cathodeon Crystals
A.E.I Semiconductors	Celdis
AMP	Channel Electric Equipment
APT Electronics	Cherry
Acbars	Clare. C. P.
Accumulatorenfabrik Sonnenschein	Coil Winding Equipment
Adams \& Westlake	Colvern
Advance	Computing Techniques
Albol	Concordia
Alkaline Batteries	Connollys
Alma Components	Control Data Corp.
Alston Capacitors	Cornish Sign
Amphenol	Counting Instruments
Analog Devices	Coutant Electronics
Antiference	Crituley
Appliance Components	Crouzet
Ardente	Culton
Ariel	
Associated Automation	
Aston	
Audax	
Avel-Lindberg	D.A.T. Engineering
Aviquipo	Danbridge
	Darby Industries
	Data Precision
	Davall. S.
B.D.O.	Davu
BICC	Deac
B \& R Relays	Dial.
B.S.I.	Diamond H Controls
BSR	Doduco
Bailey Stamp	Dubilier
Bakelite XVlonite	
J. Beam	
Beckman	
Belling \& Lee	
Benedict \& Jager	
Berec	East Grinstead Electronic Components
BICC-Burndy	Edicron
Biccotest	Edison
Birch-Stolec	Efco-Composants
Bird Electronic	Egen Electric
Blessing Electronics	Elcometer
Bobifil Talleres Tarraso	Electrical Remote Control
Bonnella	Electrographic Peripherals
Bourns (Trimpoi)	Electroplan
Bradley	Electrothermal
Brandauer	Electroustic
Brandenburg	Elektromodul
Breeze	Elektronungtechnika
Britimpex	Elettronica
British Central Electrical	English Electric Valve
British Physical Laboratories	Enthoven
Bulgin	Equipment \& Services
Burgess	ERG
Burr-Brown	Erie
	Erma
	Euro
	Evans
C.C.L.	Ever Ready
C.G.S.	Evershed \& Vignoles
Cambion	Electronic Visuals

C.G.S.
Cambion

Cannon
Cathodeon Crystals
Celdis
Cherry
Coil Winding Equipment
Colvern
Computing Techniques
Connollys
Contro! Data Corp.
Cornish Sign
Counting Instrument
Critchley
Crouzet
Culton

Danbridge
Darby Industries
Data Precisio
Davu
Dial
Diamond H Controls
Doduco

East Grinstead Electronic Component

Efco-Composants
Egen Electric
Elcometer
Electrical Remote Control
Electrograp
Electrotherma
Elektromodul
Elektronungtechnika
Elettronica
Enthoven
ERG
Erma
Evans
Ever Ready
Electronic Visuals

F.W. Components
F.W.O. Bauch

Fairchild
Ferranti

GDS (Sales)
GEC Electronic Tube
G. E. Electronics Gardners Transformers General Instrument
Globe Union
Goldring
Goodacre \& Davenport
Gordos
Gore
Gould
Gresham Lion
Grimes
Guest
Guildline
H.C.D. Research
Hallam Sleigh \& C
Hamlin
Harwin
Hatfield
Hayden Lahorator
Haydon
Hellermann
Hesto
Heyco
Hi-G D'Italia
Highland Elecironi
Hinchley
Hirschmann
Hirst
Honeywell
Huber. J. J.
Hutson
Hysol Sterling

IDM Electronics
M.O. Precision Controls

Imhof-Bedco
Imperial Metal Industries
Insuloid
Integrated Photomatrix
Interelectric

Jackson
Jahre. Richard
Jermyn
Jones. W. (Engineering)

Kabel-und Metallwerke
Kay Metzeler
Keithley
Kenetic Technology
Kent Insulations
King. J. MacA
Klippon
Kolectric
Krupp. Fried

Lenco
Levell
Lipa \& Isosta
Littelfus
Littex
Livingston Hire
Lloyd, J. J.
Lock. A. M
Londex
London Telephones
Lorlin
Lucas
Lyons. Claude

M-O Valve Co.
McMurdo
Magnetfabrik
Magnetic Devices
Marconi Communication Systems
Marconi Instruments
Markovits
Mashpriborintorg
May Precision Components
M.C.B

Mecanorma
Membrain
Memory Devices
Metway
Micronel
Miles-Platts
Milton Ross
Monsanio
Morganite
Motorola
Mullard
Multicore
N.S.F.

Newport Instruments
Nombrex
Nulectrohms

Oest Electronic Connecteurs
Oliver Pell
Oltronix
Ostby \& Barton

PTA
Pandect
Parmeko
Parsonage
Pedoka
Penny \& Giles
Perdix
Perivale Controls
Permanoid
Piher
Pistor \& Krone
Plasmoulds
Plasmoulds
Plastronics
Plessey
Portescap
Precious Metal Depositors
Pressac
Pye
R.M.T.
R. S. Components

Radiatron
Radio Controle / Monopole
Rathdown
Raytheon
Reading Windings
Record
Redpoint
Research Instruments
Resistances
Reynolds
Riam
Rosenthal China
Ross Courtney
Ruf. Wilhelm
S.S. Semiconducteurs

Saft
Sakae Tsushin Kogvo
Salford
Satchwell-Sunvic
Scientific Packaging
Scopex
Sealectro
Sellotape
Sellotape
Semicomps
Sfernice
Siemens
Siemens (Relay Division)
Sifam
Silec
Smiths Industries
Soldersta
Souriau Lectropon
South London Electrical
Southern Transformer
Spear
Special Products Distributors
Spectrol Reliance
Spinner
Spragu
Standard Pneumatic Motor
Steatite
Straumann. Reinhard
Suhner
Surrey Steel Comps
Switcheraft
Symonds
Systron-Donner

TDK
Tape Recorder Spares
Techna
Techni
Tekdata
Telcon
Telford
Texcan
Thomson-CSF
Thorn
Thousand and One Lamps
3M
Toko
Tokvo Sokki Kenkvujo
Tracor
Transrak
Triden

Ultra
Union Carbide
V.T.M

Venne
itramon

Wallis
Watsons Anodising
Waycom
Wayne Kerr
Weller
Weller
Welwyn
West Hyde Developments
Weyrad
Weyrad
Whiteley
Vilson

Xincom

Digital counter model 7737A manufactured by AMF Venner. This is a seven-digit counter/timer suitable for frequency measurements up to 100 MHz .

New Servoscribe 2s flat-bed recorder to be shown by Smiths Industries. This is available in in, in/log, lin plus integrator and in/log plus integrator forms.

Tekdata p.v.c. flat ribbon cable which uses standard insulated wires specified by the customer. The wires are held in a woven polyester mesh.

Traffic Information Broadcasting

Proposals for a European system

One authority has claimed that the density of road vehicles in Britain is $\mathbf{6 2 . 2}$ vehicles per mile giving approximately $85 f t$ of road for each car. Clearly, it is becoming increasingly important for better sources of information to be made available to the driver to enable him to plan and make his journey efficiently with maximum satety. Electronics is playing an increasing part in providing this information and this article is an initial examination of systems of traffic information and hazards warning for road vehicles, based on broadcast announcements

Most of us have experienced the frustration of being the driver of a car stuck in a traffic jam and some of us, the horror of a serious road accident. Solutions to these problems seem a long way off and any improvements which alleviate the situation are clearly welcome. Developments are now in progress which could result in such an improvement in the very near future and since the implications are of importance to communications and electronics engineers we report on the "state of the art" at this moment.

Two concepts

At the moment, the road vehicle is controlled cars, clearly an improvement in decisions not only on his route but also on speed and a host of other considerations. The success of his efforts, measured in terms of safety and good journey time, depend on the quality of the information available to the driver. If we are to continue to accept the idea of driver controlled cars, clearly an improvement in either of the standards can only be brought about by providing better quality information either visually or aurally.

There is a second concept, that of the automatic road vehicle requiring no driver, and here again the system efficiency must be judged by safety factors and journey time. In the case of both. information is vital to success. Traffic engineers believe that information should be viewed at three separate levels, first long range area information which can provide details of slowly changing hazards like snow, ice, road closures and predictable traffic congestion and offer alternative routing information. The second level of information is more local and could provide data on hazards, etc. within say, one hour's drive, together with route diversions to be taken. Finally there is the extremely localized information on accidents, fog patches or other emergencies ahead requiring immediate reaction from the driver. This article looks at important
proposals which may help at the first two levels.

The role of the broadcasting station

For some years now, broadcasting stations have been used to provide information in the form of spoken announcements on traffic and weather conditions. In the U.K. this service, although regarded as very valuable, meets only with limited success, first because car radios are fitted to only a small percentage of vehicles and secondly because a nationwide radio service is used to broadcast the information. Local radio is useful, but here again another problem arises - that of the very limited number of v.h.f. car radios in use.

It is quite strongly felt at the B.B.C. that the role of a broadcasting station does not include an extensive traffic information service and, in particular, the cost of co-ordinating and programming such a service should not come from their funds. Needless to say, the capital costs of installation should also be placed elsewhere. However, radio is an established channel of communication at large and car radios are becoming more popular, so it seems logical that there should be some development to provide a better service of announcements to the motorist, preferably without seriously affecting the entertainment value of existing broadcast programmes. Naturally, with our entry into the Common Market, and our strong representation in the European Broadcasting Union, standardization of technique is of great importance, and the E.B.U., through its sub-group K4 of working party K is currently examining three main proposals. Within the E.E.C., working group 30 of the Co-operation Europeanne dans le domaine de la Recherche Scientifique et Technique (C.O.S.T.) and the C.E.P.T. (Committee Europeene, Posts and Telegraphie), sub-group R24 are evaluating the wider spectrum of traffic information systems. The three proposals to these committees originate
from the B.B.C., Radio Nederlands, and the German broadcasting authorities in conjunction with their equivalent of the Automobile Association and the electronics company, Blaupunkt.

It would seem that the time for deciding some form of European transmission standard is very close, since considerable activity can be seen in all three camps. Reports have reached this office that the E.B.U. committee is due to sit in a few weeks' time in Spain to discuss the proposals and also that C.O.S.T. Project 30 will be producing a preliminary study report in the summer. From this we can gather that there is no doubt about the future role of the broadcasting station in providing traffic information; it is simply a question now of method.

Radio Nederlands proposal

This proposal arose from an investigation of techniques for broadcasting surround sound and in fact bears interesting similarities with the Dorren quadrophony system described in the A.E.S. Convention report published last month. Essentially it is an extension of the stereophonic pilot tone system where additional low grade audio channels are modulated on to other suppressed single lower-sideband carriers. A maximum of eight channels is provided for, within a band from 64 kHz to 100 kHz , thus avoiding interference to the existing stereophonic signals which extend to 57 kHz .

The carriers are so arranged within 60 to 72 kHz and 80 to 100 kHz giving a space between 72 and 80 kHz to avoid the risk of the fourth harmonic of the 19 kHz pilot tone interfering with reception of the traffic information channels. An additional advantage to be gained from this idea is that the band with the 72 kHz carrier can be separated using relatively simple filters. The suggested suppressed carriers are at $64,68,72,84,88,92,96$ and 100 kHz with an additional pilot tone at 57 kHz phase locked to the stereo pilot tone and deviating the main carrier by at least 1 kHz . This is used to indicate the presence of traffic information on the secondary carriers and presumably would switch a receiver decoder in the car to one of the additional channels.

Experiments made by Radio Nederlands indicate that for an a.f. modulating bandwidth of 200 Hz to 3.4 kHz , signal tonoise ratios of 35 dB have been obtained, although crosstalk between the additional channels is only 20 dB . Perhaps an advantage of this system is that national transmitters can be used to provide regional information using each of the eight channels to give the appropriate data.

It would seem that the proposal by Radio Nederlands has had a somewhat chequered career since it is a revival of an earlier proposition which receded into the background for a period of time. As was pointed out by Professor Geluk of Radio Nederland, when commenting on the Dorren system at the A.E.S. Convention, this type of transmission brings serious protection ratio, and adjacent channel, problems, and it remains to be seen if he

achieved, the transmitters need to be arranged in the form of a lattice having a spacing of about 50 km and the B.B.C. Research Department has investigated two theoretical lattices for the U.K., one containing nine transmitters in a group and the other 16 in a group. Minimum interference distances are said to be 120 km and 170 km respectively. Since only one transmitter in the group is to operate at any one moment, the announcement duration allocated to each station in a group of nine is one ninth of a complete cycle or one minute in nine.

The B.B.C., in their E.B.U. proposals to be published shortly, suggest that the receiver could be a simple straight design, probably of greater simplicity than the conventional transistor type currently available. With no wavechange or tuning control necessary, the suggestion is made that total retail cost would approximately be $£ 5$ to $£ 7$ excluding the aerial. Adjustment of receiver muting is clearly critical since if it is too low interference from distant stations could occur in some instances and if too high some local information could be lost.

A further suggestion, interesting in its implications, for one of the German proposals is that if an exclusive m.f. channel could not be allocated for traffic information, interference from 'nontraffic" stations could reduce service at night and thus the inclusion of an audio switching signal at the start of each transmission could be used to operate a receiver audio switching device.

The B.B.C. proposal goes on to suggest
techniques for operating this system, but since the system design is so designed on a regional basis, but with potential national control, we leave the reader to draw his own conclusions on how best this could be done. Needless to say, the B.B.C. has offered several different methods to meet a variety of needs. It should be made clear that this is as yet only a theoretical study with no experimental work completed to establish its viability.

The German proposals

Of the three systems, the German is probably the most advanced, since practical experiments involving broadcasting stations and ordinary motorists have been under way since 1970. Two basic techniques have been evolved, first for the m.f. network based on "Deutschlandfunk" and secondly the later introduction of a more comprehensive system for v.h.f. based on the well developed network of local stations. It would seem that the motivation for the development of both systems came from the A.D.A.C., which is the German equivalent of our Automobile Association who wished to make more complete information available to the motorist.
The m.f. system, called A.-R.I. (Auto-Radio Information) starts with an hourly traffic announcement preceded by a readily recognized signature tune that starts and ends with a pilot tone. At motorway service stations, unattended information desks are provided which contain equipment tuned to Deutschland-
funk, and on receipt of the pilot tone this switches on a recorder which stores the broadcast message.

In a similar fashion, the recorder is turned off by a similar pilot tone included in the terminal melody broadcast by the transmitting station. The pilot tone consists of a start signal of 2.35 kHz frequency modulated by 123 Hz and with a period of one second, and the same tone is used with an 0.5 s duration to terminate the recording activity. Motorists can retrieve the message by pressing a button on a telephone receiver mounted on the desk and thus update on the latest situation.

The same pilot tone can be used to switch an automatic mute in a car radio, and to activate a car-borne cassette recorder if necessary. A third application is to be found in the home where a radio receiver and cassette recorder are switched by a time clock to record all announcements made for a predetermined period before the journey starts. Adapting the m.f. system to include regional station selection, a receiver has been designed to search the m.f. band every 10 seconds for the strongest signal and, on locating it, to re-tune the receiver to that station, thus avoiding the problem of the driver having to re-tune manually and lose driving concentration.

The development of this m.f. system into v.h.f. has been made possible by the well established network of v.h.f. regional stations, most of which already broadcast stereo. The traffic programme introduction is the same as for m.f. and thus muting switches can be used. However, the advent of electronic varicap tuning has made it possible to extend facilities still further. Each station broadcasting traffic information is identified by the presence of a 57 kHz pilot tone, which is obtained by tripling the 19 kHz stereo pilot and is therefore rigidly locked to it in frequency and phase. In this instance a v.h.f. set is fitted with an external decoder which plugs into the tape recorder jack of the radio. As the appropriate station is tuned in, a lamp lights on the decoder, indicating that a "traffic information station" has been selected. However, manual tuning and the need to look for the lamp reduces the attention of the driver and so a push button is included which mutes the audio output of all stations not transmitting 57 kHz . The moment audio appears the driver knows he is tuned to an information station. As signal strength declines the muting operates and re-tuning is thus obviously necessary. Using the A.-R.I. decoder as well, the radio volume control can be set to zero, and when the A.-R.I. pilot tone is received the audio stage of the receiver will be switched on to a preset level during the traffic announcement.

Automatic tuning does of course help to automate many of the manual operations described and using the v.h.f. pilot decoder one receiver in production will search for traffic information stations only, and then re-tune when signal strengths get too low. Alternatively in another radio set any station can be selected for its
entertainment value and a second integral "station finder" within the set meanwhile constantly searches for and tunes to strong traffic information stations. When the A.-R.I. pilot is transmitted the initial programme selection is muted and the announcement switched to the audio output. On receipt of the terminal tone, the receiver reverts to the original programme selection.

Blaupunkt, who have been largely responsible for the system development, say that the decoders cost around $£ 5$ to $£ 7$ each and can be fitted to any radio with a tape recorder jack corresponding to the D.I.N. specification referring to car radios.

An extension to the v.h.f. system is proposed where the 57 kHz pilot is itself modulated with an l.f. tone in the range 20 to 80 Hz . Each region has its own identifying tone, thus making it possible to programme the electronic tuning of car radios to be even more selective in tuning to strong traffic stations. The driver can preselect the region he wants to listen to, even though freak reception of a distant v.h.f. transmitter may have caused the decoder to "lock-on".

The circuitry of one of the A.-R.I. decoders is shown (Fig. 1). When the decoder is switched off the +12 V supply is connected to Tr_{13} only, and with this device conducting audio is fed from input " A " through Tr_{13} to point " B ". When the decoder is switched on, +12 V is fed via Tr_{14} to all stages of the decoder and the cassette recorder if fitted. Since Tr_{13}, in this condition is non-conducting, the audio is muted. On receipt of the 2.35 kHz frequency modulated 123 Hz tone indicating "start", Tr_{1} and $T r_{2}$ amplify the signal and D_{1}, D_{2} act as limiters. Components C_{1}, L_{1} are tuned to 2.35 k Hz ; C_{2}, L_{2} act as a slope detector for the 123 Hz . This signal is fed via Tr_{4} to an active filter based on the TAA960. From that point the signal feeds a threshold biased differential amplifier $\boldsymbol{T r}_{5}, \quad \boldsymbol{T r}_{6}$ followed by the voltage doubling combination and rectifier network D_{6}, D_{7}. Capacitor C_{3} charges via R_{1} and after about 0.7 s sufficient voltage has been developed to switch the Schmitt trigger $T r_{\mathrm{g}}$, $\operatorname{Tr}_{\mathrm{g}}$. After one second, the tone finishes and the state of the trigger reverts creating a negative going pulse which is applied to C_{5}, C_{6}. This pulse trips the bistable pair, $\operatorname{Tr}_{10}, T r_{11}$ to turn on $T r_{10}$ and through ${ }^{2} \operatorname{Tr}_{11}$ and Tr_{12}, to turn on Tr_{13} which now passes the audio signal to the output stage of the receiver.

Since Tr_{10} is now conducting, the base voltage of Tr_{7} will be zero and hence C_{3}, C_{4} will be series connected to reduce the time constant, thus programming the decoder for the 0.5 s duration "stop" pilot tone.

This system is in experimental operation nationally in Germany and the decoders and car radios are currently commercially available.

European standards

As mentioned earlier, European governments and the E.E.C. believe that for any system of broadcast traffic information to
work successfully some common standard must be agreed upon. To this end, the two committees of the E.B.U. and E.E.C. working parties have established some guidelines. For example, unconfirmed reports indicate that the C.O.S.T. working party has suggested the following principles to be used.
First, any proposal should be capable of being put into operation within five years. Secondly the capital investment should be no more than about $£ 1.2$ million to $£ 1.5$ million. The system to be adopted and called by the working party the "Mark I" will probably represent the first of a generation of more complex or comprehensive systems which will include highly localized information. Such systems are called "road based" and include inductive loops buried in the road (not found very practicable by the U.K. Road Research Laboratory), leaky coaxial lines or even very low power r.f. transmitters covering about 1 mile sections of a motorway.

In addition, there are other considerations; normal programmes ideally should suffer minimum interference and special receiving equipment should be of the lowest cost and available to all. A final regulation is that the patent licence for the system is freely available to all, thus avoiding the possibility of a monopolistic situation arising.

A superficial examination of these requirements together with the more technical limitations placed by restricted availability of frequency allocations within m.f. band, seem to weigh the scales in favour of the German system. Apart from the fact that it is the only working system and is well developed, it also is less likely to cause adjacent channel interference than the Dutch proposals. A final point is that the transmitter modifications are limited and inexpensive.

The alternative m.f. pilot "melody" offers compatibility with British requirements and could be adopted by all stations without problems. The only real difficulty lies in the wide coverage of normal broadcast stations and one can easily see difficulties in Holland and the U.K. where comparatively few transmitters serve the whole country. The B.B.C. proposal is obviously an answer to this but does leave open the question of the capital cost of the 93 transmitters required for coverage.

The Dutch proposal is definitely the most complex and can probably be regarded as an "also-ran" since the transmitter equipment is complex and still to be developed.

It is interesting however to see how each proposal has resulted from very national requirements, and it now remains to be seen how effective the various lobbying attempts are. Here in the U.K. the I.B.A. are known to favour the m.f. pilot "melody" system which, of course, suits their requirements.

This summer may see a rationalization of broadcasting systems for traffic information and the first step towards improving the "driver's lot" since traffic programmes were initiated.

Experiments with operational amplifiers

9. Multivibrators : free-running, monostable and bistable circuits

by G. B. Clayton,* B.Sc., F.Inst.P.

Operational amplifiers are normally used in negative feedback circuits but when appropriate positive feedback connections are made to them they can be used to generate both sinusoidal and non-sinusoidal waveforms of defined frequency. In this section we investigate the way in which positive feedback may be applied to an operational amplifier in order to give a multivibrator type of circuit.

A circuit suitable for investigating the behaviour of a simple free-running multivibrator is illustrated in Fig. 9.1. Positive feedback is applied to the amplifier by the connection between the output terminal and non-phase-inverting input terminal via the divider R_{2}, R_{1}. The divider gives a positive feedback fraction

$$
\beta=\frac{R_{1}}{R_{1}+R_{2}}
$$

The amplifier switches regeneratively and repetitively between saturated states, remaining in alternate states for time periods governed by capacitor charging. The amplifier remains in positive saturation for a time period.

$$
\begin{equation*}
t_{1}=C R \log _{e} \frac{V_{\text {osat }}^{+}-\beta V_{o \text { osat }}^{-}}{V_{\text {osat }}^{+}-\beta V_{\text {osat }}^{+}} \tag{9.1}
\end{equation*}
$$

and in negative saturation for a period

$$
\begin{equation*}
t_{2}=C R \log _{e} \frac{V_{o s a t}^{-}-\beta V_{o s a t}^{+}}{V_{\text {osat }}^{-}-\beta V_{o s a t}^{-}} \tag{9.2}
\end{equation*}
$$

If the positive and negative output saturation limits have the same magnitude the two timing periods are equal and the waveforms produced are symmetrical.

It is suggested that the action of the circuit and the validity of eqns. 9.1 and 9.2 be investigated by observing and recording the waveforms at terminals 6, 3, and 2. Quantitative measurements should be made with the positive and negative swings and time periods of all waveforms recorded.

Typical waveforms for the circuit are illustrated in Fig. 9.2. The upper trace shows the amplifier output voltage as it switches between positive and negative saturation limits. The middle trace shows the signal at the non-phase-inverting input terminal switching between the limits $\beta V_{o s a t}^{+}$ and $\beta V_{o \text { sat }}^{-}$, and the lower trace shows the exponential charging at the phase-inverting

[^3]

Fig. 9.1(a). Free-running multivibrator; (b) alternative timing resistors.

Fig. 9.2. Free-running multivibrator waveforms: upper trace, pin 6; middle trace, pin 3; lower trace, pin 2. Vertical scale, $10 \mathrm{~V} /$ div.; horizontal scale, $0.2 \mathrm{~ms} / \mathrm{div}$.

Fig. 9.4. Waveforms for free-running multivibrator (Fig. 9.3) with pulse width control. Traces show output voltage ($10 \mathrm{~V} / \mathrm{div}$.) and voltage at pin $2(0.2 \mathrm{~V} / \mathrm{div}$.) for $V_{\text {in }}$ of +5 V and -5 V respectively. Horizontal scale, $2 \mathrm{~ms} / \mathrm{div}$.

Fig. 9.5. Monostable multivibrator with timing period controlled by a reference voltage.

Fig. 9.6. Monostable waveforms for reference voltage -0.5 V . Upper trace, pin 6; lower trace, pin 3. Vertical scale, $10 \mathrm{~V} / \mathrm{div}$. ; horizontal scale, $\mathrm{lms} / \mathrm{div}$.

Fig. 9.7. Monostable waveforms for reference voltage $-5 V$. Upper trace, pin 6 ; lower trace, pin 3. Vertical scale $10 \mathrm{~V} / \mathrm{div}$.; horizontal scale, $1 \mathrm{~ms} / \mathrm{div}$.
input terminal. The exponential goes up and down between the limits $\beta V_{o \text { sat }}^{+}$and $\beta V_{o s a t}^{-}$.

Components values should be substituted in eqns. 9.1 and 9.2 in order to compare predicted timing periods with those obtained experimentally. Further understanding of circuit action may be gained by changing component values and by making separate changes in the values of the positive and negative power supplies. The effect on the waveforms of each change should be noted and recorded, and the reader should then attempt to explain for himself these effects in terms of the action of the circuit.
A markedly non-symmetrical waveform can be obtained by using alternative timing resistors (R_{3} and R_{4}) switched into the circuit by means of the diodes D_{1} and D_{2} as shown in Fig. 9.1(b). Resistor R in (a) should be replaced by this network and the observed waveforms recorded and explained. Note that the upper frequency limit for the action of the multivibrator circuit is set by amplifier slewing rate. This point should be verified.

Control of the pulse width produced by a free running multivibrator can be obtained by injecting an additional current into the phase inverting input terminal of the amplifier. The effect of this current is to increase one timing period and decrease the other. The action may be investigated using the circuit illustrated in Fig. 9.3.

The circuit includes a method for symmetrically clamping the output voltage limits of the amplifier by means of a diode bridge and zener diode. The clamp is not essential to the action of the circuit but is included to illustrate a method of output limiting. Output limiting may be applied to any of the switching circuits described in this section if the application requires it.
Waveforms obtained with the circuit of Fig. 9.3 are shown in Fig. 9.4. The traces show output voltage and voltage at pin 2 for $V_{\text {in }}$ of +5 V and -5 V respectively. Pulse width is not linearly related to the input voltage because capacitor C charges exponentially. Linearity can be improved by reducing the amplitude of the waveform at pin 2 (by reducing R_{1}).

The circuit for a monostable multivibrator with timing period controlled by the magnitude of a reference voltage is given in Fig. 9.5. The permanently stable state for this circuit is with the amplifier output at its positive saturation limit, this condition being maintained by the negative reference voltage applied to the phase inverting input terminal of the amplifier. A positive triggering voltage applied to the phase inverting input terminal, of sufficient magnitude to bring the amplifier out of saturation, causes the circuit to switch regeneratively to its temporarily stable state. The circuit returns to its permanently stable state when the voltage at the non-phase-inverting terminal, which switches below earth by an amount $\left(V_{o s a t}^{+}-V_{o s a}^{-}\right)$, exponentially rises to the reference voltage level. The timing period for the circuit is given by the equation

$$
\begin{equation*}
T=C R \log _{e} \frac{V_{\text {osal }}^{+a}-V_{\text {osat }}^{-}}{E_{\text {ref }}} \tag{9.3}
\end{equation*}
$$

The action of the circuit may be investigated by applying a square wave of level, say,

Fig. 9.8. Plot of $\log _{10}\left(1 / E_{\text {ref }}\right)$ against T.

Fig. 9.9. Bistable multivibrator. Triggering may be applied at C_{1} or C_{2}.

6 V and frequency approximately 200 Hz to the phase inverting input terminal via capacitor C_{1}. The square wave is differentiated by $C_{1} R_{1}$ and the positive pulses cause the monostable to make transitions. The waveforms appearing at pins 6 and 3 should be observed and recorded for different values of the reference voltage in the range -0.5 V to -5 V . Typical waveforms for reference voltages -0.5 V and -5 V are shown in Figs. 9.6 and 9.7 respectively.
The validity of eqn. 9.3 is most conveniently checked by presenting the results graphically as shown in Fig. 9.8. By expressing logarithms to the base 10 and rearranging eqn. 9.3 , the equation may be written

$$
\log _{10} \frac{1}{E_{\text {ref }}}=\frac{T}{2.3 C R}-\log \left(V_{o s a t}^{+}-V_{o \text { sat }}^{-}\right)
$$

The graph in Fig. 9.8 should thus have a slope of value $1 /(2.3 C R)$ and make an intercept on the vertical axis at a value equal to $-\log _{10}\left(V_{\text {osat }}^{+}-V_{\text {osat }}^{-}\right)$.
A circuit which uses an operational amplifier as a bistable multivibrator is shown in Fig. 9.9. Positive feedback applied via resistors R_{2}, R_{1} causes the amplifier output to remain at either its positive or negative saturation limit.
Triggering pulses may be applied to the circuit at either input terminal via the capacitors C_{1}, C_{2}. The pulse polarity required to produce a transition depends upon the state of the circuit; this point should be verified experimentally.

See how much function generator you get for £144!

Hewlett-Packard's new and astonishingly inexpensive Model 3311A generates sine, square and triangle waveforms over a 7 -decade range -0.1 Hz to 1 Mhz. A Vco-input controls frequency in a $10: 1$ range.

You also get 30 dB of voltage control and a separate pulse output suitable for synchronisation or driving TTL logic circuits. Features you'd hardly expect in an instrument at just $£ 144$, including import duty.

Advanced manufacturing techniques enable all the internal circuitry of this compact, rugged function generator to be tested automatically.

The time we save is the money you save. Finally, Model 3311 has all the style, quality and service back-up that have made Hewlett-Packard the world's largest manufacturer of advanced electronic instruments.

Telengtempatyou outororbii with a peally downto-eaplith show
 STEREO And for "pure sound" custoniers we'll be

This year we invite you to venture out into space. Our Space. There is so much to show you-so much that we're sure you'd like to see in operation - that we have decided to take the plunge and tempt you awav from the "bright lights" for a few hours during the Radio and T.V. Trade show time to come out about 15 miles from town to our production unit.

Exhibitions offer.an opportunity to mix business with pleasure ; after a day of looking to see what's new it's nice to socialise. We're not aiming to compete with the West End but we'll do our utmost to make your trip as pleasant as possible and give you the "works" in a relaxed atmosphere - and with the scintillating company of our sales and technical staff.
A full buffet will be provided and the proceedings helped along in the usual manner with liquid refreshments - served by attractive and attentive young ladies.
CATV Continuous live demonstrations of our latest CATV equipment - including two - way and "off-air" transmission, local generation of programmes, video phones, EVR ànd video recordings - and a tour of our production and research departments will, we feel sure, make your visit interesting and your journey well worth while.
showing our range of audio products, including some excit ng newcomers.

OUTWARD JOURNEY - ROAD The route from Loncon for visitors travelling in their own "capsule" is qu te straight forward. But for those who are unfamiliar with the area and need assistance a map will he supplied on receipt of the coupcn.
RAIL A travel warrant will be sent to everyone travelling by rail for the return journey from Fenchurch Street to Upminster Station - which is served by both Main and District Lines. For the final stage you will be driven from Upminster in the comfort of a Rolls for a "sof landing" at the show.

RETURN Our transport will be consta 7 tly on hand to transport you to Upminster Station whenever you wist to head back to town.

A Novel Approach to Power Supply Design

by Robin Aston*

Abstract

A power supply design technique is discussed which employs a switching regulator to achieve low weight, followed by a linear regulator to give laboratory standard performance. A feedback loop from the output of the linear regulator controls the mark-space ratio of the inverter signal in the switching regulator and so minimizes the power dissipated by the series control element of the linear regulator.

The problems encountered when trying to obtain a stabilized d.c. voltage from an a.c. mains supply have always been of interest to circuit designers. In the days of the valve the problems were not perhaps so acute as they are today, the d.c. current requirements usually being quite modest. Modern semiconductors are capable of controlling very large currents and it is now the norm to think in terms of power supplies of several amps rather than the few tens of milliamps of the early days.

Modern power supplies can be divided into three basic families: series linear, shunt linear and switching. These will be discussed in turn.
*APT Electronics Ltd.

Fig. 1. Series regulator block diagram.

Fig. 2. Shunt regulutor block diagram.
bor

Series linear regulators

Whenever the highest possible performance is required the series linear regulator is the usual choice. Even if a lower performance is needed the flexibility of the series linear regulator, and the huge quantity of design information available, make it the most widely used form of power supply. The basic block diagram is given in Fig. 1.

The output voltage is compared with a precision voltage reference. If the two differ, the comparator either increases or decreases the impedance of the series control element to correct the output voltage. To allow the series control element to do its job, the unregulated d.c. from the transformer and rectifier must always be of a higher voltage than the required output voltage.

For the purposes of comparison we shall imagine that all the power supplies discussed in this article have an output variable from 0 to 50 V at 10A. In Fig. 1 the unregulated d.c. supply must be greater than 50 V , let us say 55 V . At $1 \mathrm{~V}, 10 \mathrm{~A}$ output, 54 V would be dropped across the series control element and 540 W would therefore need to be dissipated by it. This problem is usually overcome by having a range switch. This would vary the output of the unregulated supply so that the power dissipated by the series control element could be limited to a reasonable value.

The basic regulator described would normally have all sorts of frills built in such as constant current, current limit or reentrant short-circuit protection, and overvoltage protection.

Shunt linear regulators

This form of regulator has never achieved the same wide use as the series regulator, probably because it is not well suited to applications where the output current will vary over a wide range. The basic idea can be seen in Fig. 2. The current path is sensitive to the voltage on the output terminals. If the output voltage tends to rise, the impedance of the current path is made to fall and more current flows in it, reducing the output voltage by increasing the voltage drop across R. A voltage reference and voltage comparator similar to that used in the series regulator might be employed to control the current path. The simplest form of shunt regulator is, of course, the zener diode.

Taking the case of the $50 \mathrm{~V}, 10 \mathrm{~A}$ supply; at $50 \mathrm{~V}, 1 \mathrm{~A}$ output, the current path would have to dissipate the additional 9A at 50 V (450 W) and a further 50 W would be dissipated by R. Essentially the circuit has a see-saw action. A constant 10 A flows through R which is shared by the current path and the load.

Switching regulators

The main disadvantages of the series and shunt approaches are, the need to dissipate large amounts of power by the control element (although our examples are at the extreme) and the sheer size and weight of the mains transformer with the associated bulky 50 Hz smoothing components.
The switching regulator overcomes these problems but, at the same time, introduces

TABLE 1

	Linear	Switching	Linear/switching
Regulation	excellent	good	good
Transient response	excellent	poor	fair
Ripple and noise	excellent	poor	gairly difficult

some new difficulties. A block diagram of a typical switching regulator is shown in Fig. 3. A high-frequency oscillator, usually operating just above the a.f. range, is powered from a mains supply and rectifier. The oscillator operates in a switching mode with two transistors switching hard-on and hard-off in turn, alternating the current flow in the primary winding of an h.f. transformer which is followed by a rectifier and filter. The regulator output voltage is measured by the oscillator control module and a correction signal is produced which varies the mark-space ratio of the oscillator. If the output of the power supply tends to fall, the duty cycle of the oscillator is increased, which raises the average value of the power in both primary and secondary windings and, consequently, the rectified output voltage remains constant.

The main advantage of the switching regulator is that the isolating transformer and filter components are operating at high frequency and can be of a very small size as compared with the 50 or 100 Hz counterparts. Unfortunately, the transient response is not very good and inevitably broad-band noise from the oscillator finds its way to the
output. However, in many applications these shortcomings are of no consequence and the switching regulator can offer many users the answer to their problems.

Switching and linear techniques combined

A number of the disadvantages of both switching and linear regulators can be overcome or minimized by a technique which combines both regulators in a single circuit (Fig. 4).

Operation of the system is best described by imagining that the unit is switched on and is supplying an output, say 40 V , to a load. Point A on the circuit must be at a potential of more than 40 V for the series control element to function. For reasons which will become clear later it will be stated that this point is at 45 V . If the voltage reference source output at point B is deliberately lowered to 30 V the comparator will provide an output which will increase the impedance of the series control element, causing the output voltage at point C to be reduced to 30 V . As this is taking place, the voltage drop across the series control element will rise. The oscillator control module senses this

increase between points A and C and lowers the duty cycle of the oscillator so that the input voltage at point A falls. Circuit values can be such that the voltage across the series element is maintained at 5 V and with 30 V now at the output, point A will be at 35 V .
The application of this technique to the 0 to $50 \mathrm{~V}, 10 \mathrm{~A}$ power supply we are discussing ensures that power dissipation by the series control element is limited to 50 W in the worst case condition of IV output at 10A. In fact, the control element dissipation is now directly proportional to the current drawn from the power supply.

The main advantages of this technique are, therefore, the elimination of the 500 W , 50 Hz transformer and bulky 100 Hz smoothing components, and a considerable reduction in internal power dissipation allowing smaller heat sinks to be used. Such a power supply does not perform as well as a good quality series linear regulator but is much better than a straight switching regulator. For the example of a $50 \mathrm{~V}, 10 \mathrm{~A}$ power supply, the relative advantages of the linear series, switching, and combined linearswitching regulators are summarized in Table 1.

Functional description

A simplified block diagram of a combined linear/switching power supply appears in Fig. 5. The incoming mains supply is filtered by F_{1} to prevent spurious signals from the high-frequency oscillator or inverter from finding their way into the mains wiring and possibly interfering with other equipment. The supply is then divided into two, feeding a small 50 Hz transformer T_{1} and a high voltage rectifier bridge R_{1}. The small mains transformer is intended to power the inverter control module for a very short period of time until the system becomes fully operational. The inverter control module provides pulses which switch the inverter output transistors on and off in turn, driving current through the primary of the highfrequency transformer ${ }^{\circ} T_{2}$. A secondary winding of T_{2} provides a d.c. input at $c-d$ on the inverter control module, supplying the module with power and back-biasing the bridge rectifier diodes R_{2}, effectively turning off the small mains transformer T_{1}. The output of the high-frequency transformer T_{2} is rectified by R_{3} and applied to the smoothing filter F_{2}. The design of this

Fig. 5. Block diagram of the combined switching and series regulator.
low-pass filter is such that during the quiescent periods of the inverter, the main energy requirement of the load is supplied from energy stored in the series choke and not the shunt capacitors. Because the capacitors are topped-up by the induced e.m.f. of the choke the average charge, and therefore the voltage across the capacitors, is independent of load current for a given output voltage.

The linear regulator section of the circuit, functions in the normal way except that the voltage drop across the series control transistor is sensed at $e-f$ by the inverter control module. This module then varies the duty cycle of the inverter to maintain the voltage drop across the series control element at 5 V .

Inverter control module

The inverter control module has to produce switching waveforms at g and h for the inverter output transistors at a frequency of about 20 kHz . The higher the energy demanded from the power supply, the higher the mark-space ratio of the switching waveform.
The circuitry of the inverter module is shown in block diagram form in Fig. 6. Power from the small mains transformer T_{1} and rectifier bridge R_{2} (Fig. 5) is fed to a small linear voltage regulator which supplies power to the 20 kHz generator. The output of this generator is fed to the bases of the inverter output transistors (Fig. 5) under the control of a gate circuit. Also the gener-

Fig. 6. Block diagram of the inverter control module.

TABLE 2

Mains voltage	220 V or $240 \mathrm{~V} \pm 10 \%$. The unit will operate through a continuous range from $198-264 \mathrm{~V}$.
Mains frequency	$48-450 \mathrm{~Hz}$.
Constant voltage characteristics	
Output voltage	$0-50 \mathrm{~V}$ (max.)
Setting accuracy	$\pm 10 \mathrm{mV}$
Output current	0-10A (max.)
Line regulation	$0.001 \%+1 \mathrm{mV}$ for $\pm 10 \%$ mains variation
Load regulation	0.05\% +10 mV for $10 \%-100 \%$ load variation
Ripple and noise	5 mV pk.
Output spike	40 mV pk. rep. rate 40 kHz (typically 20 mV).
Transient response	5 ms to recover to within 20 mV for a $10-100 \%$ load change
Temperature characteristics	
Coefficient	Less than 0.02\% per ${ }^{\circ} \mathrm{C}$
Range	$0-40^{\circ} \mathrm{C}$
Dimensions	
Width	203mm (8in)
Depth	216 mm ($8 \frac{1}{2} \mathrm{in}$)
Height	260 mm ($10 \frac{1}{4} \mathrm{in}$)
Weight	7.5 kg (16 $\left.\frac{1}{2} \mathrm{lb}\right)$

ator drives a triggered ramp generator producing a sawtooth, synchronized with the inverter which feeds one side of the level detector. The other side of the level detector is fed from a comparator which provides a voltage proportional to the difference between a 5 V reference and the voltage across the series stabilizer transistors (e-f, Fig. 5). Normally the level detector opens the gate when the output of the comparator is less than the ramp voltage. Whenever the voltage across the series stabilizer transistors falls below 5 V , the output of the comparator falls and the level detector opens the gate earlier in the generator's cycle.

To demonstrate the operation of the inverter control module, it is best to consider the complete combined switching/linear regulator, referring to Figs 5 and 6.

Imagine that the power supply is providing a constant output into a load and that the resistance of the load is suddenly reduced. As the output current rises, the output voltage would tend to fall. The linear section of the power supply compensates by reducing the impedance of the series control element and, as a secondary result, the voltage drop across this element also tends to fall. This trend results in a fall in output of comparator 2 in the inverter control module as the voltage across e and f tries to fall below the 5 V reference. The level detector now opens the gate at a lower ramp voltage and the duty cycle of the inverter output transistors is increased. A greater voltage is fed to the series control transistors, increasing the voltage across e and f, and the output voltage of the power supply is maintained with a constant 5 V developed across the series linear control element.
Additional components in the inverter control module inhibit the gate at switch-on until the inverter stabilizer and the inverter itself settle down, thus preventing possible damage to the inverter output transistors. If the mains input voltage rises above a predetermined level, a mains monitor circuit closes the gate earlier in each cycle to compensate.

The effectiveness of the combined switching/linear power supply can be judged by the performance achieved by a typical unit which is given in Table 2.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Marconi's 1907 c.w. transmitter

In his letter in the April issue your correspondent Mr W. L. E. Miller states that "The assertion that Marconi had produced a c.w. system using a spark discharge around 1907 cannot be substantiated although the myth has been perpetuated in Baker's recent 'A History of the Marconi Company' ".

May I refer Mr Miller to a lecture given by G. Marconi and entitled "Transatlantic Wireless Telegraphy" which he delivered at the Royal Institution on 13 March 1908? I enclose copies of two relevant pages of his address for your scrutiny.* From this it will be seen that Marconi, after mentioning the initial tests between his new station at Clifden and Glace Bay in 1907 (using the conventional spark system), goes on to say:
"Simultaneously with these tests others were carried out from Poldhu to Glace Bay with a new system of transmitting apparatus, by means of which continuous or semi-continuous oscillations could be produced.
"Proportionately to the energy employed, the signals from Poldhu were so much better than those from Clifden that I decided at once to adopt this new method of transmission at Glace Bay and Clifden. The apparatus which I have been using for producing continuous or closely adjacent trains of electric oscillations is as follows:-"

(Here follows a description)

From this wording it might be inferred that Marconi was not sure whether the waves were continuous or semicontinuous! Not so, however. In the text which follows he makes it clear that the original apparatus produced continuous waves and that he deliberately introduced a modification to provide "a regular succession of trains of undamped or slightly damped waves" in order to make the received signal audible on headphones. Oscillations to a maximum of 200 kHz were obtained. The device was patented on 9 September 1907 (pat. appl. No. 20,119).
The extremely high speed at which the discs had to rotate called for ultra-high

[^4]se tegts others were married out from Poldhu to Glace ans of which continuous or semi-continuous oscillations (
rgy employed the signals from Poldhu were so much l this new method of transmission at Clace Bay and Cli continuous or closely adjacent trains of electric oscillatic

precision in their manufacture. The "Timed Spark" system was a logical development of the 1907 device and in 1913 a British government Commission reported more favourably on this than on any other continuous wave system then in use (See Dowsett, H.M. "Wireless Telegraphy and Telephony", Wireless Press Ltd, 1920).
W. J. Baker, Chelmsford, Essex.

Audio amplifier design

There are several points that we would like to make in connection with recent contributions from Messrs Walker, Linsley Hood, Fison and others on the problem of low noise and low distortion audio amplifier design.
It can be shown ${ }^{1}$ that the noise a transistor may generate (Fig. 1) under set conditions of source resistance, collector current, etc. can be represented by a voltage generator $V_{N Q 1}$ looking into a perfect voltage amplifier of gain A_{10}. This voltage generator is in series with the noise voltage generated by the source resistance itself $V_{\text {NRS }}$. These can be considered as representative of the two dominant sources of noise in an amplifying stage. It is clear that at the collector of the first stage there will be a noise voltage derived from the input, of magnitude

$$
A_{10}\left(V_{N Q 1}^{2}+V_{N R S}{ }^{2}\right)^{\frac{1}{2}}
$$

If the next stage (second or subsequent stages being treated as one) is again considered in the same way as the first, there will be a noise voltage at the input of the stage of

$$
\begin{aligned}
V_{I N}=\left(A _ { 1 0 } { } ^ { 2 } \left(V_{N Q 1}{ }^{2}\right.\right. & \left.+V_{N R S}{ }^{2}\right) \\
& \left.+V_{N R C 1}{ }^{2}+V_{N Q 2}{ }^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $V_{N R C 1}$ is the noise generated by the collector resistor of the first stage and where $V_{N Q 2}$ is the noise generated by $T r_{2}$ referred to the input. Thus the total output noise will be

$$
V_{O}=A_{20} V_{I N}
$$

The above statement applies to the open loop case. If we now close the loop the output noise voltage is $V_{O_{N}}$ and so at the emitter of $T r_{1}$ we have

$$
V_{f}=\frac{V_{o} R_{e 1}}{R_{f}}
$$

where:

$$
\begin{aligned}
V_{O}=A_{20}[& A_{10}{ }^{2}\left(V_{N Q 1}{ }^{2}+V_{N R S}{ }^{2}\right) \\
& \left.+V_{N R C 1}{ }^{2}+V_{N Q 2}{ }^{2}\right]^{\frac{1}{2}}+A_{10} V_{f}
\end{aligned}
$$

rearranging:

$$
\begin{aligned}
V_{O}- & \frac{A_{10} A_{20} V_{O} R_{e 1}}{R_{f}} \\
& =A_{20}\left[A_{10}{ }^{2}\left(V_{N Q 1}{ }^{2}+V_{N R S}{ }^{2}\right)\right. \\
& \left.+V_{N R C 1}{ }^{2}+V_{N Q 2}{ }^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

therefore

$$
V_{O}=\frac{\begin{array}{c}
A_{20}\left[A_{10}{ }^{2}\left(V_{N Q 1}{ }^{2}+V_{N R S}{ }^{2}\right)\right. \\
\left.+V_{N R C 1}{ }^{2}+V_{N Q 2}{ }^{2}\right]^{\frac{1}{2}}
\end{array}}{\frac{1+A_{10} A_{20} R_{e}}{R_{f}}}
$$

From this one can see that if the noise contribution of the second stage is to be negligible compared to that of the first then $A_{10}\left(V_{N Q 1}{ }^{2}+V_{N R S}{ }^{2}\right)^{\frac{1}{2}}$ must be greater than $\left(V_{N R C 1}{ }^{2}+V_{N Q 2}{ }^{2}\right)^{\frac{1}{2}}$. To give an illustration, for a noise contribution of 0.1 dB by the second stage, A_{10} needs to be 20 dB greater than A_{20}. This is just another factor in design compromise, but in general, when designing a low noise amplifier, more gain should be obtained from the first stage and a split emitter resistor can be used to reduce the open loop voltage gain of the second stage. The increase in coupling factor will

Fig. 1. (Refer to text.)
in part make up for this loss in the overall open loop voltage gain of the amplifier.
To draw a conclusion, this is the reason why Mr Linsley Hood's Liniac based circuits have as low a noise figure as they do, and Mr Walker's series feedback circuits ($W . W$. May 1972, p. 234) could be yet quieter, the latter not having the noise contribution of the resistor in series with the input as well as that of the signal source.
Secondly, we have repeated Mr Linsley Hood's experiments with a 741 (W.W. Jan. 1973, p. 11) and when using a signal with a very low distortion we were unable to measure any difference between the shunt and series feedback configurations.

Thirdly, with reference to Mr Fison's statement ($W . W$. March 1973, p. 120) concerning Mr Linsley Hood's Hi-Fi News power amplifier, we have found that although the design claims justifiably 0.01% t.h.d. at 1 kHz , the distortion rises with frequency, for example typically 0.06% at 3 kHz and 0.2% at 10 kHz . Whether or not this distortion is audible is another matter. However the rise in distortion is largely due to the early falling off of the loop gain with increase in frequency and consequent change in phase of the feedback relative to the input signal; this applies to many designs on the market.

Finally, as has been known for a long time but perhaps not fully appreciated, it doesn't matter how much feedback is applied to reduce distortion, unless it is negative and the phase is correct at all frequencies it will not improve the amplifier's overall performance. ${ }^{2}$ Obviously any design which takes this into consideration will herald a new generation of amplifiers in terms of low distortion and low noise. A. R. Mornington-West, J. Vereker, Salisbury.

[^5]An attempt was made during the development of a linear a.f. power amplifier ${ }^{1}$ in the early. part of 1971 to evolve a design in which the "square wave" response was free from overshoot on a reactive load. To this end, attention was paid to the design to make sure that the phase error of the amplifier was low up to the highest practicable frequency (in practice this is probably limited by the transition frequency of the output transistors chosen), and a single dominant lag was then interposed within the amplifier chain to generate a predictable gain and phase margin.

When this was done, it was found that the harmonic distortion was also lower than had been anticipated, and it was apparent, on consideration, that the reduction in the phase error of the amplifier chain within the frequency range of interest also reduced the ineffective quadrature components in the feedback loop and allowed more effective distortion
cancellation. One might say that negative feedback is indeed an effective way of reducing distortion but only so long as it is negative.

In the particular case of class B push-pull output stages, where the signal is routed alternately through the two halves, the phase characteristics of these may well be different unless externally corrected, and it seems probable in retrospect that the improvement which I found to be given by the addition of a capacitor across Mr Baxandall's series corrector diode in the quasicomplementary pair was due to the matching of the phase lags of the two halves.

It should be remembered when carrying out this exercise that the high frequency phase characteristics are influenced by both circuit stray capacitances and lead impedances, so that if the mechanical layout of the amplifier is changed the phase error may also be changed and the phase trimming may need adjustment.

Once adequate loop stability is assured, the required transient response will be given so long as the rate of change of gain with frequency does not exceed - 6 dB / octave. This is probably most easily achieved in practice by the inclusion on the input of the amplifier of a simple $C R$ integrating circuit. This also protects the amplifier from shock-excitation or transient overload.
J. L. Linsley Hood,

Taunton,
Somerset.

Reference

1. J. L. Linsley Hood. Hi-Fi News, Nov. 1972.

Series resonant circuits

The other day a student of mine asked why series resonant circuits were not more widely used in communications equipment because they could be tuned by the capacitor and would then give a constant bandwidth over the tuning range.
This is true of course for simple series circuits whatever the coil Q-factor may be, the bandwidth being

$\frac{R_{t}}{2 \pi L}$,

where R_{t} is the total series resistance in the circuit in which the signal appears.
The same is true if R_{t} and L are placed in parallel with the tuning capacitor, provided that the Q-factor is greater than 10 or so. It is only when, in practice, this parallel circuit is fed from a source, or loaded by another system (such as transistor tuned amplifiers), that we get a tuned circuit which can be represented by the duals of R_{t} and L, so that the three components, R_{t}^{\prime}, the dual of R_{t}, L^{\prime}, the dual of L, and C, are placed in parallel, with L^{\prime} assumed to have a high Q-factor, as above.
Then the bandwidth is given by

$$
\frac{1}{2 \pi C R_{t}^{\prime}}
$$

and varies with the setting of the tuning capacitor. This, in practice, means that the Q-factor will be as much determined by the circuit shunt resistance (R_{t}^{\prime}) as by the self resistance of the coil, so that the selectivity will not vary as much as one might think if the ratio of the highest and lowest tuned frequencies is close to unity.

Apart from quickly seeing why series circuits cannot be used in collector circuits, the student was essentially satisfied by the explanation given above. I trust it was sound and practically sensible?
Roger C. Driscoll,
Polytechnic of North London,
London N. 7.

Solid-state teleprinter demodulator

I was interested to read the article in the February Wireless World on a solid state teleprinter demodulator, since I am in the process of setting up an amateur two-metre RTTY station. Like Mr Addie, I felt that i.cs have much to offer over earlier techniques. In particular I have used a p.l.l. i.c. to discriminate between mark and space frequencies. This has proved exceptionally easy to set up for a.f.s.k. as used by amateurs on v.h.f. The tracking filter, as it is sometimes called, would appear to offer a simpler solution to frequency discrimination than the $L C$ bandpass filters used by Mr Addie. Tuning fixed inductors at low audio frequencies leads to a multitude of fixed capacitors, whereas fine tuning of the p.1.1. is accomplished by a variable resistor. The same device can also readily resolve different shift frequencies.

In the end, performance under operational conditions is the ultimate test, and I confess that I am a raw beginner in this field. I wonder if the p.l.1. can equal the performance of a well tuned filter. It is certainly easier to use.
J. M. Osborne,

Westminister School,
London, S.W.1.

Reference

"Terminal Unit in Solid State for RTTY". Short Wave Magazine, Nov. and Dec. 1972.

Dual-ramp d.v.ms

In view of the increasing interest in the dual ramp technique of digital voltage measurement, evidenced by various recent articles in your pages, I hope you will allow me space to comment on the patent position.

Basic patents covering this technique are held by Solartron/Schlumberger in several industrial countries. These include U.K. patents No. 869,262 and No. 1,090,047.
It has been Schlumberger's practice to grant non-exclusive licences under these patents to responsible applicants. We would be glad to consider an approach
from, for example, any firm which is not yet licensed and plans to supply kits or finished equipment using the patented technique.
R. H. Nicholson,

Managing Director,
The Solartron Electron Group Ltd,
Farnborough,
Hampshire.

Doppler distortion in loudspeakers

I had hoped that my letter in the January issue of Wireless World would end the correspondence on Doppler distortion but the plea by Mr M. G. Scroggie in the February issue, which has just come to my notice, prompts me to pen a brief answer.

The first point he raises is at least partially answered by Stott and Axon. I quote, "Vibrato of either pitch or intensity in a musical instrument tends to mask fluctuations caused by the recording system (e.g. Doppler*). From this point of view the piano with its complete absence of vibrato, is possibly the most pure tonal generator available; its frequent use in the investigations described was based on this consideration. The organ may speak vibrato from the tremulant stops. An example of pitch-fluctuation threshold variation for light theatre-organ music is shown in Fig. 12 which gives the mean results for nine subjects. As far as comparison with curve (b) of Fig. 10 is possible, the threshold is seen to be greater than that for piano programme material except at extreme flutter frequencies".

I doubt whether from the musical aspect a single flute stop organ note would be held very long over a single pedal note, and the moment a chord is introduced the position becomes radically different. This is illustrated by Mr Moir's letter in the same issue, in which he confirms that the very low values of Doppler distortion he quotes not only require continuous pure tones but also the sharp standing wave patterns in a live room to detect them to this degree. This is confirmed by the ubiquitous Stott and Axon article again in their Fig. 8 which shows a minimum audibility figure for pure tones, when using headphones, of as much as 0.15% peak frequency modulation. The large difference in values indicates the tremendous effect the standing wave system in a room has for steady pure tones on the audibility of Doppler effect. This would largely be negated by the use of chords instead of pure tones as the positions for the peaks and troughs would not coincide for the different frequencies, and again by the short time most chords are sounded in programme. (Stott and Axon used slow sustained piano programme to emphasize the effect.)

Perhaps the proof of the pudding is in the eating. In the article quoted in Jour. Audio Eng. Soc. for November I have

[^6]shown that on the basis of the Stott and Axon findings, Doppler distortion should be inaudible at the maximum rated power on all three of the latest types of B.B.C. monitoring loudspeaker by values ranging from 7 to 12 dB . In practice no complaint of such distortion has ever been made about these loudspeakers on any type of programme whatsoever, whereas if the figures for pure tones were applicable Doppler distortion should be plainly heard.

H. D. Harwood,

B.B.C. Research Dept.,

Kingswood Warren,
Surrey.

Open University course

I was particularly interested to read the article on the Open University Post Experience Course as I am one of this year's students - currently up to Unit 5, Semiconductor Devices. I would echo the author's opinions concerning the presentation of the work as anything less like my old text-books is hard to imagine plenty of space for margin notes, colour in the diagrams, photographs of equipment etc.

Prospective students should not be put off by a lack of BBC-2 as the programmes (although desirable, of course) are not essential viewing for continuity.

In conclusion, may I take the opportunity of thanking you for the "back-up" given by the journal - two articles on magnetic topics by Cathode Ray, and a series of four on the development of semiconductors.
P. J. Hunt,

St. Saviour's Hill,
Jersey, C.I.

Feedback amplifiers

If I might reply briefly to Mr Walker (Letters, April issue) on the particular point of the noise levels in shunt feedback circuits, leaving aside for the moment the case of a frequency dependent feedback loop, the situation can be clarified by reference to the accompanying drawing. If we postulate two zero-output, zeroimpedance, generators, E_{1} and E_{2}, connected to the inputs of a notional operational amplifier by means of two

resistors $\left(R_{S}\right)$ of the appropriate value to optimize the input noise characteristics, the output noise of the amplifier will be the same whichever of the two generators we assume to be providing the zero input.

If however, we increase the output from one or other of these, to some suitable (and identical) value, the signal-to-noise ratio will depend on the extent to which the signal is attenuated between source and amplifier. In the case of the series circuit this is normally very little; in the case of the shunt circuit this depends on the input shunt impedance of the amplifier device. With suitable operating parameters this will be in the range $4-6 \mathrm{~dB}$, and this is the intrinsic loss in this arrangement. Moreover, the noise impedance seen by the input in the shunt feedback case is not the input resistor circuit value, but the value of the "virtual earth" impedance, and noise measurements suggest a value of $600-1200$ ohms for this. This is in line with the observed noise values, which can be as low as $0.6 \mu \mathrm{~V}$, whereas the thermal noise of an input $47 \mathrm{k} \Omega$ would be some $3.9 \mu \mathrm{~V}\left(20 \mathrm{kHz}\right.$ bandwidth, $\left.300^{\circ} \mathrm{K}\right)$.

I agree with Mr Walker that the use of an R.I.A.A. equalized circuit changes this case by altering the special distribution of the noise but this also makes it difficult to specify what the noise figure is in respect of an input signal which also is assumed to increase with frequency.
J. L. Linsley Hood,

Taunton,
Somerset.

"Biamplifier" loudspeakers

We read with interest Mr Hiscocks' letter in the March issue, commenting on Mr Kelly's article on loudspeakers. We note particularly his comments concerning the use of active crossover networks and the use of separate power amplifiers for each loudspeaker. The Gabraphone 2001-6 Reproducer System employs a highly developed form of exactly this principle.

Following the pre-amplifier stages, the audio frequency range is separated into three bands by filters. A user control is provided for each band to permit individual adjustment of the lower, middle, and upper registers. The separate signals are then passed to individual power amplifiers, 6 in all, each of which drives an associated loudspeaker unit in the specially designed enclosure.

Our observations and measurements confirm the freedom from intermodulation distortion which you anticipate, as well as the elimination of transient distortion introduced by the conventional passive crossover network.

In our view, the additional cost of this system is well justified by the improved quality of results obtained, and evidently the discriminating customers who purchase this equipment agree with us. S. Gabr,

Modern Engineering \& Technology Ltd., Canterbury,
Kent.

Industrial Electronics

3. Inductive and capacitive displacement transducers

by Richard Graham

The absolute method of displacement and position measurement described in the last article is one of the most accurate and reliable known to man of positioning the workpiece in a machine tool. It must be admitted, though, that it comes expensive. Furthermore, other applications in which position measurement is carried out may not need the ultimate in accuracy, long-term stability, digital read-out and friction-free operation. The engineer must be a practical man, and it makes good sense to provide the required performance at a reasonable cost, and not to saddle whoever is paying the bill with more accuracy, etc. than he can use.

Inductive transducers

Considerably cheaper, but still accurate and extremely sensitive, is the linear variable differential transformer - a device which is substantially easier to use than to say. Fig. 1(a) is a sketch of the transducer in which are shown a primary and two secondary windings on a common, cylindrical former. The secondaries are wound in phase

(b)

Fig. 1(a) Sectional drawing of l.v.d.t. (b) Output signal from the l.v.d.t. In a phase-sensitive detector the left side would be negative.
opposition, and the three windings are penetrated by a core, which is movable axially. When the core is in the centre position, the magnetic flux linking the primary to the secondaries, via the core, is equally distributed, so that the output difference voltage is zero. As the core moves to favour one secondary, the voltage from that secondary increases at the expense of the other and a difference voltage appears. Moving the core in the opposite direction by the same amount produces a difference voltage of the same amplitude but of opposite phase. The core movement/output voltage characteristic, neglecting phase, is shown in Fig.1(b). Departures from linearity are of the order of 0.25% of end-to-end output, and at the origin, there is not a perfect null unless steps are taken to provide one by external electrical means.

Unless the core is required to pass the centre position, the output can be indicated directly by an ordinary pointer-type instrument of high impedance or by digital voltmeter. For full-range indication, a phase-sensitive meter is, of course, required. The transducers can be obtained in ranges from 0.05 in to 10 in , full-scale, the output being in the order of 0.02 mV to 2 mV per volt applied per 0.001 in displacement.

This transducer has much to recommend it. Mechanically, it is simplicity itself. There is no friction and the device is invulnerable to hard use and hostile industrial environments. The alignment of the moving core is not critical and there are no rubbing surfaces to wear. Electrically, while not as linear as the digital type of transducer, it is adequately accurate for the majority of applications. It has a continuous characteristic, providing an infinitely small resolution, and it is mechanically and electrically stable.

Applications of the l.v.d.t. are numerous and range from pressure measurement to the determination of acceleration; any parameter, in fact, in which the variable can be turned into a linear movement can be measured by an l.v.d.t. system. An interesting application is that shown in Fig.2, where the static l.v.d.t. is being used to determine the eccentricity of a lorry tyre. The system is by Sturge Automation ${ }^{3}$ and is capable of detecting eccentricities of

Fig. 2 Tyre eccentricity measurement by Sturge Automation. As the tyre turns, the output of the transducer is recorded.
0.002 inch on a 40 -inch tyre. Similar systems. using multiple transducers, are in use to detect variations in the thickness of continuous sheet material during manufacture. The output is presented digitally.
L.v.d.ts can be used to measure acceleration by the arrangement of Fig.3. In this type of instrument, the windings are stationary relative to the body whose acceleration is being measured, the mass of the core and associated spring flexures being free to move. The deflection of the core is proportional to the applied force due to acceleration.

The testing of metallurgical specimens is an application in which the l.v.d.t. excels by virtue of its linearity and stepless output. Fig. 4 shows such a measurement suggested by Schaevitz', in which a tensile test specimen is being extended, the

Fig. 3 The l.v.d.t. in an accelerometer application.

Fig. 4. When used in an extensometer, the core is completely free to move and is not damaged when the specimen breaks.

Fig. 5 The LD5000 inductive half-bridge transducer by Philips.

1. Adapter, stainless steel, 27 mm dia.
2. Special nut, brass
3. Insulating bushing, polystyrene
4. Inner electrode, stainless steel
5. Outer electrode, stainless steel, 20 mm dia.
6. Dielectric tube, polystyrene, 16 mm dia.
7. Threaded insert, $3-\mathrm{mm}$ metric thread
8. Coupling section, aluminum

Fig. 6 The DISA dielectric-change transducer type 51DO5.

Fig. 7 Rank Precision capacitive displacement transducer.
l.v.d.t. being used to measure the extension. The core and windings are, of course, completely separate, so that when the specimen ruptures, no precautions are necessary to prevent damage to the l.v.d.t.

Similar, in some respects, to the l.v.d.t. is the half-bridge inductive transducer. It consists of a tube of non-magnetic material, on which are wound two coils forming two arms of a bridge network. A ferromagnetic core moves in the tube, varying the inductance of the coils differentially and unbalancing the bridge, which is completed by resistive arms. These devices possess the advantages of the l.v.d.t. and are cheaper to make, measuring from ± 1 millimetre to ± 150 millimetres at a maximum non-linearity of less than 2% of stroke. Philips ${ }^{2}$, in common with other manufacturers, provide a range of signal generation and handling equipment. In conjunction with this equipment, it is possible to obtain full-scale deflection at the indicator for a deflection of one micron.

Capacitive transducers

As may be expected, the "other" property, capacitance, can also be exploited to obtain displacement measurement. The capacitance of two plates is proportional to $k A / D$, where A is the area of overlap, k is the dielectric constant and D is the distance between the plates. The variation of any one of these parameters will produce a capacitance change, and all three have been used in commercial equipment. To derive a useful output from the capacitance change, the variable capacitor is made a part of the tuning element in an oscillator's tuned circuit, the resulting frequency modulation being detected and used to operate the desired output device. In the case of the transducer working with plate separation as the variable, the distance/capacitance characteristic is hyperbolic and requires an electronic linearizer to give a true indication. Disa ${ }^{4}$ manufacture a range of capacitive displacement transducers, together with signal processing equipment, and Fig. 6 shows their Type 51DO5, which is of the dielectric-change variety. The change in capacitance as the dielectric tube moves axially is linear with displacement. This type is intended to measure large axial movements up to 7 cm and, as the coupling section is hinged, can be used to convert rotary movement into linear displacement. In this way, it is valuable as a piston stroke transducer in the investigation of i.c. engine operation.

The measurement of large displacements is also the function of a system made by Rank Precision ${ }^{5}$ (originally by Reilly Engineering) shown in Fig.7. In this case, a series of cylindrical electrodes are arranged end-to-end in the form of a rod. Sliding over the rod is a cursor cylinder exactly equal in length to one stator segment or a multiple thereof. Each segment is fed from a tap on a voltage-dividing transformer, the voltages increasing arithmetically in amplitude. The cursor is coupled purely capacitively to the stator segments and the voltage output

(b)

Fig. 8 Wayne Kerr capacitive probe system.
from the cursor increases continuously as it moves from the low-signal end to the other. To take account of any errors in length of the stators or inaccuracy in the transformer taps, additional variable voltage sources are connected in series with the taps, the voltages applied to the stators thereby being capable of slight variations. The output of the cursor is measured by nulling a bridge circuit, which gives a degree of immunity to supply voltage variations. Accuracy of measurement is extremely high, the error over a 20 -in transducer amounting to no more than 0.0001 in peak to peak.

Applications include the calibration of automatic machine tools, high-speed measurements on machines where a digital system may be subject to error, and materials testing where long-term stability is required as in the measurement of creep. Short-range transducers are also made, and consist of only two stator segments and a cursor, an arrangement which is effectively a differential capacitor.

The Wayne Kerr ${ }^{6}$ Dimeq TE200 range of equipment is another embodiment of the variable capacitance technique. Fig. 8 shows a sketch of the principle, in which one "plate" of the capacitance in question is the transducer. The other electrode is the metallic structure under examination, which is connected to the instrument ground. The capacitor formed by the probe and structure is made the negative feedback element in a high-gain amplifier, to which is applied a constant-amplitude 16 kHz signal. If it is assumed that the open-loop amplifier gain is very high, there is a virtual earth point at the junction of the fixed C stand and the probe capacitance C probe. The closed-loop gain of the amplifier is proportional to the reactance of the probe capacitance, which is proportional to d, the distance between the probe and the earthed structure. The output signal is therefore directly proportional to this distance. The application of the system lies in the measurement of vibration, thickness, bore diameters and eccentricities and is capable of indicating displacements in the range 0.5 mm to 2.5 mm .

The transducers and systems described in these two articles have been selected from a large number of devices currently in use, employing the properties of capacitance, inductance, resistance and ultrasonics to provide the detection and measurement of position, displacement and distance. Many more exist, and it is not intended to imply that the types that are not described are inferior - it is simply that the choice is limited by space.

In the next article, I shall deal with the use of electronics in the weighing industry.

References

1. Schaevitz Tech. Bulletin AA-1b, Electro Mechanisms Ltd., 218-221 Bedford Avenue, Slough, Bucks.
2. Pye Unicam Ltd., Philips Electronic Instrument Dept., York Street, Cambridge CB12PX.
3. Sturge Automation Ltd., Lifford Lane, Birmingham B30 3JP.
4. DISA, 116 College Road, Harrow, Middlesex HA1 1 HQ .
5. Rank Precision Industries Ltd., Leicester House, Lee Circle, Leicester LEI 9JB.
6. The Wayne Kerr Co. Ltd., Durban Road, Bognor Regis, Sussex, PO22 9RL.

Sixty Years Ago

This was the first issue after the launch of the journal under its new name. Although wireless telegraphy ceased to be our prime concern some time ago, the broad aims of Wireless World appear to have remained substantially the same.
"In presenting the first number of THE WIRELESS WORLD last month, we do not think we were unduly sanguine in thinking that it would occupy a place in periodical literature which has hitherto been left unfilled. Its reception has justified the opinion that the magazine would meet a distinct need, and the cordial welcome which it has received from all quarters and from the technical and general Press encourages us to look for the rapid achievement of our object to make it 'a magazine for everyman'. The first number had an issue of fifty thousand copies, but, large as this quantity may appear, it was by no means too large to cope with the demand. An encouraging feature was the numerous 'repeat' orders from newsagents and booksellers in all parts of the country. These facts are worth mentioning because they illustrate more strikingly than anything else can the great public interest in the subject of wireless telegraphy, and their eagerness to read about it when the subject is presented in such a manner that it will not be beyond their scope."
H.F. Predictions May

These notes are prepared during the first few days of the month prior to publication, which unfortunately precludes basing the ionospheric "weather" forecasts on observations made during the month immediately preceding the forecast month. However, over the few years of a sunspot minimum which is expected at the end of 1974, advance forecasts can meet with moderate success.

There was a prolonged magnetic disturbance at the end of March which will almost certainly recur from the 13th to 20th May with a possible extension to the 25 th. The first part of the month is expected to be quiet, the period 8th to 12th being the most favourable.

About People

Thames Television has appointed Brian G. Scott, M.I.E.E., to become head of engineering, and A. J. Rickards, M.I.E.R.E., as deputy head of engineering. Mr Scott joined ABC TV in 1961 in technical operations, following design and systems experience on closed circuit television. He was transferred to Engineering Projects in 1964, and made deputy head of engineering for Thames in 1968. He became head of engineering projects in 1970. Mr Rickards joined ABC TV in 1960 from E.M.I. He was head of engineering, planning and installation in 1968 for Thames, and subsequently became head of the development and maintenance department.

Among those recently elected Fellows of the Royal Society are the following:
Professor W. J. G. Beynon, C.B.E., Ph.D., D.Sc., A.M.I.E.E., professor of physics in the University College of Wales, Aberystwyth. He is distinguished for his work in ionospheric studies and for his rôle in the organization of the International Geophysical Year and the International Years of the Quiet Sun. J. G. Bolton, B.A. (Cantab), is director of the Australian National Radio Astronomy Observatory and is distinguished for his contributions to radio and optical astronomy, the development of instruments and the optical identification of radio sources. Professor H. H. Hopkins, Ph.D., D.Sc. (Hon), who is professor of applied optics at the University of Reading, is known particularly for his work in theoretical and applied optics, especially the wave theory of aberrations, fibre optics and the zoom lens.

Roy Blythen has been appointed to the Board of E.M.I. Sound \& Vision Equipment Ltd, at Hayes. Joining E.M.I's research laboratories in 1934, Mr Blythen became involved with the development work which led to the first high-definition television system in 1936. As part of the E.M.I. television research team, led by Sir Isaac Shoenberg, he was primarily engaged in the design of the transmitting equipment used for broadcasts from Alexandra Palace. During the second world war, he worked on the first form of air-
borne radar which E.M.I. developed and manufactured during this period. In 1945, he returned to research and development work on television transmitters and aerial systems until 1957 when he transferred to the Broadcast Equipment Division. When E.M.I. Sound \& Vision Equipment Ltd was formed in June 1972, he was appointed general manager of the Telecommunications Division.

Sinclair Radionics has appointed Mike Pye, M.A. (Cantab), as research and development controller. Mr Pye was previously consumer branch manager of Texas Instruments, Bedford, where his work included the design and development of linear integrated circuits. He joined T.I. four years ago from Plessey.
L. A. Smulian, B.Sc., previously general manager, Transmission and Electronic Exchanges division, Plessey Telecommunications, has been appointed managing director of the Plessey Microsystems division. Mr Smulian has been with Plessey since 1966 when he joined Plessey Radar as manager, Display and Data division.

Two major appointments within Plessey Memories are also announced. Bernard J. Hadley, F.I.E.E., who for the past five years has been managing director of International Rectifier Company (GB) Ltd, joins Plessey to head the Memories marketing activities. Appointed operations executive (world-wide) to control the Plessey Memories production programme is Alan W. Jones, M.A., who was works director, Keith Blackman Ltd.

The secretary of the Society of Electronic \& Radio Technicians, Anthony J. Kenward, B.Sc., A.M.I.E.R.E., has been appointed a member of the Technician Education Council by the Secretary of State for Education \& Science, Mrs Margaret Thatcher. Mr Kenward was educated at Haberdashers Aske's School and Sexey's School, Bruton. He studied physics at the Polytechnic, Regent Street, and obtained an external London degree in 1946. His experience includes 16 years on the staff of the Institution of Electronic \& Radio Engineers as education
officer responsible for all membership, education and examination activities. During this period he was a joint secretary of the Joint Committee for Higher National Certificates \& Diplomas in Electrical \& Electronic Engineering. He has been secretary of S.E.R.T. since its formation in 1965, and of the Radio Television \& Electronics Examination Board since the same date. He is currently chairman of the Technician Engineer section of the Engineer's Registration Board.

The board of British Insulated Callender's Cables has announced that Lord McFadzean has decided to relinquish the chairmanship and retire from the board in May, after almost 41 years' service. The board has accepted his decision with regret and, in recognition of his outstanding contribution to the B.I.C.C. group has elected him as Honorary President for life, in which capacity his wide experience will continue to be available to the company for certain special services and for consultation. William Fraser, C.B.E., at present deputy chairman and chief executive, will relinquish these positions and succeed Lord McFadzean.

Hewlett-Packard have announced the appointment of Robert Somerville as the television studio manager in their plant at South Queensferry, West Lothian. Mr Somerville's appointment is unique in Scotland as this is claimed to be the first television studio to be opened by an industrial organization. He will take up his appointment almost immediately and undergo intensive training in the company's German factory, where a studio has already been established, and later at Heriot Watt University

Richard Foxwell, C.B.E., a founder director of Wayne Kerr, and its chairman since 1958 when the company became a member of the Wilmot Breeden group, has retired from the board. Mr Foxwell was appointed C.B.E. in 1967 for services to export. He was president of the Scientific Instrument Manufacturers Association from 1969 to 1971.

Ian A. Denny, B.Sc (Eng), has been appointed chief executive of BEPI Electronics Ltd., Galashiels, specialist manufacturers of printed circuits, on the retirement of K. G. Mill. Mr Denny joins BEPI from the P. E. Consulting Group Ltd where he was senior consultant for eight years. He was previously with the Plessey Group. He was born in Glasgow and educated at Berwick County Grammar School and Edinburgh University.

UCC Computer Instrumentation Ltd have just announced the appointment of David Sanders as o.e.m. manager for their Digital Equipment division, with responsibility for engineering support
before and after delivery of equipment. Mr Sanders has considerable experience in the solution of o.e.m. problems in the field of computer and d.p. engineering, having completed three years as the senior sales engineer dealing with the division's Southern Region customers. Prior to joining C.I.L. he served in various commercial engineering capacities with Plessey Automation over a period of eight years, where he was involved technically with many forms of computer peripheral equipment.
H. Kenneth Jolly, M.A., has been appointed director of the British Radio Equipment Manufacturers Association and chairman of the executive council of the Association. He succeeds Sydney Allchurch, O.B.E., who, as we announced in the April issue, has retired. Mr Jolly has been secretary of the Association since Sep tember 1966. During that period he has been particularly associated with the promotion of colour television in Great Britain, with the television and radio industry's preparations for entry into Europe and with studies on imports of consumer electronic products.

John Lewis, B.Sc. (Eng), of the B. B.C's en gineering designs department is going to Beaverton, Oregon, U.S.A, for six months to undertake a design exercise in collaboration with Tektronix Inc. Mr Lewis, who is a graduate of London University, has for a considerable time been working on the design of specialized units to be used in connection with oscilloscopes for monitoring broadcast television signals. Mr Lewis will conduct the final stages of his investigations in the Tektronix laboratories.

Among the annual awards presented by the I.E.E.E. in February were the Edison Medal and the Founder's Medal. The former was awarded to Dr B. D. H. Tellegen "for a creative career of significant achievement in electrical circuit theory, including the gyrator". After receiving a degree in electrical engineering from the Technical University of Delft, Holland, he spent his career with Philips Research Laboratories in Eindhoven. retiring in 1962 after 38 years. The Founder's Medal was presented to W. R. Hewlett and D. Packard "for leadership in the development of electronic instruments, for creative manage ment and for public service". Messrs Hewlett and Packard started their company in 1939 and now employ over 18,000 people internationally. Mr Packard is chairman of the board, and has been U.S. deputy Secretary of Defence. He is a member of the National Academy of Engineering. Mr Hewlett is president and chief executive officer of HewlettPackard.

Circuit Ideas

Abstract

Concise descriptions of new circuits are invited for Circuit Ideas, for which $£ 5$ is paid on publication. Contributors should say how their circuit is an improvement over existing circuits, preferably in the first sentence.

Simple tunable notch filter

Most active $R C$ notch filters are difficult to tune because the rejection at the notch frequency depends on the accurate ganging of several potentiometers or variable capacitors (three in the case of the twinT filter). The circuit shown has a notch frequency which can be varied by one potentiometer only, the notch rejection being independent of the setting and the bandwidth between points of 3 dB attenuation on either side of the notch being independent of the frequency to which the filter is tuned. The circuit consists of a bandpass filter tuned by R_{1} followed by a virtual earth summing circuit that adds the output of this filter with the input signal. Notch rejection is set to maximum by adjustment of R_{2}. Using the values shown

the filter tunes from 170 Hz to 3 kHz , a bandwidth between 3 dB points of 230 Hz and a notch rejection of better than 40 dB over the complete range. A voltage-tuned notch filter may be realised by replacing
R_{1} with a f.e.t. operated as a voltagevariable resistor.
R. J. Harris,

Wells,
Somerset.

Bench power supply

The circuit shown provides 0 to 15 V and a current up to 175 mA . Current limiting is provided by the 5.6 -ohm resistance and the diode D_{1}. When the voltage across the 5.6 -ohm resistance exceeds about 1.2 V , the current source Tr_{1} produces less current and the output voltage is reduced.

The $15-\mathrm{k} \Omega$ resistor from the emitter of $T r$, provides feedback so as to reduce the current variations through the regulator diode. A 10% line voltage change there-
fore produces only a $2 \mathrm{mV} \pm 0.01 \%$ change in $V_{\text {out }}$. A full load current change produces a 15 mV output voltage change; and the output voltage recovers in 3μ s to within 10 mV of $V_{\text {out }}$ after a full load current change. The three-transistor combination $T r_{2}, T r_{3}$ and $T r_{4}$ therefore provides fairly high gain and wide bandwidth. Output impedance at 100 kHz is less than 0.3 ohm . Output voltage temperature coefficient depends on the regulator diode temperature coefficient, the base-emitter junction of
$T r_{4}$ and, at low voltage, the germanium diode. In this respect the circuit is inferior to conventional circuits and a coefficient of $12 \mathrm{mV} \pm 0.1 \% / \mathrm{deg} \mathrm{C}$ is achieved. Out put ripple voltage is greatly dependent on the Early effect in $T r_{4}$. Using the device shown a ripple of less than 1 mV is obtained. Charge storage spikes from the rectifier diodes are removed by the 100 nF capacitor across the transformer secondary.
J. A. Roberts,

Merthyr Tydfil.

World of Amateur Radio

New threat to $\mathbf{3 . 5 M H z}$?

For many years the world-wide "exclusive" amateur allocation of 7000 to 7100 kHz has been virtually "occupied" for many hours each day by high-power broadcasting stations - including Radio Peking, Radio Cairo and Radio Tirana (Albania) - working in defiance of the I.T.U's Radio Regulations. China has recently acceded to the International Telecommunications Convention of 1965 but in doing so has entered reservations concerning any adoption of the frequency assignments and utilization of the Radio Regulations, so there is now little reason to hope for any sudden departure of Radio Peking from $7-\mathrm{MHz}$ amateur frequencies.

Equally disturbing is that Arthur Cushen, the well-known New Zealand short-wave listener, writing in Electronics Australia, is reporting increasing intrusion by broadcasting stations into the 3.5 3.8 MHz band. Although this band is shared by various services and amateurs, nowhere is it designated for broadcasting. So it is in breach of the Radio Regulations that Radio Peking has been using 3.64 MHz , Radio Pyongyang (North Korea) 3.56 MHz , and a station at Dilh, Timor, after many years of operating within an assigned broadcasting allocation on 3.268 MHz , has recently moved to 3.665 MHz .

On the DX bands

The first quarter of the year has seen a notable series of re-occurring magnetic storms, spaced at roughly 27 -day intervals and caused by a persistent group of sun spots on successive passes. While they lasted, these storms produced disturbed h.f. conditions and a general absence of DX reception on 21 and 28 MHz . In the initial stages, however, they fortunately tend to produce higher m.u.fs and short spells of good conditions one of which, fortunately, coincided with the A.R.R.L. c.w. contest. Regular fade-outs of this type are generally associated with the declining phase of a sunspot cycle and have reminded many amateurs that we now face further decline in sunspot numbers.

A new $28-\mathrm{MHz}$ beacon, ZC4CY on Cyprus, is now active and has been well received in the U.K.

From September 1, the A.R.R.L. is to cease issuing DXCC awards endorsed for phone only operation - in future this well-known award will be issued without distinction between phone and c.w. operation.

The Russian Antarctic bases now have callsigns with the prefix 4 KI with the particular base indicated by the first letter following the figure 1 (A, Molodezhnaya; B, Mirny; C, Vostok; D, Novolazareskaya; F, Bellinghausen; G, Leningradskaya; and H, Russkaya).

A question of deviation

The rapid growth in the use of frequency modulation techniques by British amateurs in the $144-\mathrm{MHz}$ band has raised the thorny question of compatibility with a.m. operators who complain that f.m. transmissions occupy excessive bandwidth. The a.m. people feel that only true narrow-band f.m. (maximum deviation less than $\pm 5 \mathrm{kHz}$) should be used so that the emissions occupy only the same channel width as a.m. But there appears to be no such restriction written officially into the amateur licence, and many of the new and converted f.m. equipments now being used on 144 MHz are designed for significantly wider deviations and often cannot be operated efficiently on n.b.f.m. For example, it would seem that where a receiver i.f. of 10.7 MHz is used only discriminators based on quartz crystals are really suitable for n.b.f.m. reception and these are still few and far between.

Similar debates have arisen in other countries. Glen Zook, K9STH/5, writing in the American CQ magazine states that in the United States the growth rate of f.m. is levelling off, and the f.m. enthusiasts are beginning to look for better equipment. Some of the problems are due to the adoption or adaption of equipments originally designed for use in 25,30 or even 50 kHz channels. When these are used in crowded amateur bands severe adjacent channel interference may be experienced by the f.m. operator - apart from the annoyance to a.m. operators and the transmitters and receivers often drift excessively in frequency and suffer acutely from intermodulation problems.

Glen Zook believes that the time is
rapidly approaching when some of the "ready-to-go" f.m. equipments will have to undergo a major redirection in design. He also believes that better quality crystals need to be used for higher stability with a minimum tolerance of 0.001% and preferably 0.0005% or better, and that equipments suitable for strictly narrowband operation will appear on the market in the near future.

In many countries the growth of "repeater" operation has been a major factor in the adoption of f.m. In the U.K. the site of the first experimental f.m. repeater, GB3PI, which has been operating for several months at Cambridge, is expected to be changed soon to a much higher site at Barkway, Hertfordshire, about 12 miles farther south and potentially within range of London mobile stations. GB3PI accepts signals on 145.15 MHz and retransmits them on 145.75 MHz when triggered by a half-second 1700 Hz tone burst (see "W.o.A.R.," August 1972).

The first European linear repeater, capable of accepting all modes, is now being tested in Czechoslovakia with the call-sign OK0A, accepting signals on 145.1 MHz and retransmitting them on 145.7 MHz .

In brief

The annual convention of the Northern Radio Societies Association will be held at a new venue - the Forum Halls, Wythenshawe, Manchester - on Sunday, May 6. Member societies will again compete for the G3AYD trophy awarded to the stand giving the best presentation of some aspect of Amateur Radio. There will also be trade stands and talk-in stations and GB2NRS will operate on all h.f. bands (details Peter Taylor, G8BCG, 2 Columbia Avenue, Gorton, Manchester M18 7LG) . . . The South Leicestershire Mobile Rally will be at Westfield Activity Centre, Rosemary Way, Hinckley, Leics, on May 13. . . Islenzkir Radioamatorar, the National amateur radio society of Iceland, has joined the Region 1 division of the International Amateur Radio Union, bringing the division to 41 member-societies. . . . A change of venue for the R.S.G.B. Dinner Club has been announced from May 4 (Royal Westminster Hotel, Buckingham Palace Road, Victoria, London). . . Thomas Jenkins (74 Rhos Road, Rhos-on-Sea, Colwyn Bay, North Wales) is writing a book on the exploits of Radio Officers during World War II and would welcome information on personal experiences. His book is being dedicated to the 1500 Radio Officers who lost their lives during the war. . . Address of the Hon. Secretary of the British Amateur Radio Teleprinter Group has changed recently; it is now 2 Orchard Close, Toddington, Dunstable (Tel. Toddington 2470). . . . The world distance record on 144 MHz is an incredible 2540 miles - but it is worth remembering that it was set up as long ago as 1957!

Test and measurement needs flexibility;
 the TM 500 SERIISS has got itand lots to spare

The TM 500 Series Test and Measurement System is organised around two types of mainframe, the TM 501 and the TM 503.

Portable/Versatile

Portable/Flexible Reduced bench clutter

The TM 503 is a three-compartment mainframe accepting any combination of three of the 500 -Series plug-in modules. The plug-in module combination significantly saves bench space, and by using the intra-compartment interface featured in the TM 503. multi-furction applications are readily obtained. The TM 503 incorporates a carrying handle and a tilt stand for convenient bench-top use. Size? Only $6 \times 8.7 \times 15.3 \mathrm{in}$.

The TM 501 is a compact, easy-tocarry, singlecompartment mainframe accepting any one of the 500-Series plug-in modules.

Flexible/Compact/ Room to grow

Cabinet-to-rackmount conversion kits enable either one or two TM 503 mainframes to become a rack installation, increasing still further the flexibility of the TM 500 Series concept. The combination of three or six of the 500-Series plug-ins. plus the mix-andinterface facility, offers a variety of measurement capabilities

Plug-in modules

A choice of 14 (and more to be announced) plug-in modules is available, covering Digital Counters, Digital Multimeters. Power Supplies and Generators. Each urit, front panel colour-coded for ready identification. offers low cost per function.

[^7]
seeing is believing

Write or telephone for demonstration and full details now.

Tektronix U.K. Ltd., Beaverton House,
P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 61251 Telex: 25559

BURNDEPT HAVE PLANS TO SPEED UPA BUSINESS ON THE MOVE

Burndept commu-
nication systems will

give any business a move on. Firstly, Burndept have the planning skill.
With 50 years' experience in radio communications, they'll plan a system according to your needs.
Secondly, Burndept have the equipment.
Burndept's new Personal Radio-telephone is the most versatile unit yet designed, It's small and light, and has a wide range of accessories. So it can be used by anybody anywhere-airlines, construction firms, the oil industry-all find a use for it. The Burndept mobile unit is easily installed in lorries, cars, fork lift trucks. Burndept Radio-telephones are available in the VHF frequency bands (either FM or AM) and in the UHF band for greater penetration and clarity in urban areas. Burndept back up their systems planning with a most efficient after-sales service.

So you'll always get the best out of Burndeptand speed up your business on the move.

WITH US, SERVICE COMES FIRST. Burndept Electronics (E.R.) Ltd.
St. Fidelis Road, Erith, Kent. Tel. Erith 39121

New Products

Waveform monitor

Rohde \& Schwarz have designed the OKF waveform monitor for television measurements. Covering the 0 to 20 MHz range, the OKF has three switch-selected isolated Y inputs, i.e., a low-impedance input ($Z=75 \Omega$), a high-impedance input ($Z_{\text {in }}=1 \mathrm{M} \Omega / / 20 \mathrm{pF}$) and a bridgingfilter input ($Z=75 \Omega$).

The high accuracy claimed for this instrument arises from its vertical magnification and shift facilities: picture signals can be displayed up to an equivalent height of 150 mm , allowing measurement accuracy to within 0.5%. Other features include: d.c. restoration for composite colour video signals: noisevolt age measuring circuit for an equivalent display height of 500 mm , with a wide Y-positioning range (measurement possible down to -60 dB); linearity measuring circuit for 1 and 4.43 MHz ; individual display of the four PAL-interlaced fields of a composite colour video signal; and H delay for display of line or testline details and double triggering of the main sweep generator for excess-level signals. Aveley Electric Ltd, Roebuck Road, Chessington, Surrey KT9 1LP.
WW316 for further details

"Tallboy" oscilloscope

A new, low-cost oscilloscope which has been added to Telequipment's family of lightweight portables is called the D61,
and is a dual-trace 10 MHz instrument developed for general purpose applications including TV servicing. Its all solid-state components, generally rugged construction and upright proportions are claimed to make the instrument ideal for field work.

Triggering, selection for TV line and frame displays, and selection of chopped or alternate modes are all automatically selected on the timebase on the D61, which also switches one vertical channel to the horizontal input for $\mathrm{X}-\mathrm{Y}$ displays. Price £110. Tektronix U.K. Lid, Beaverton House, 36-38 Coldharbour Lane, P.O. Box 69, Harpenden Herts.

WW321 for further details

H.F. drilling machine

Adcola Products Ltd has introduced a compact, high frequency p.c.b. drilling machine. Known as the Quick Star, the machine has been designed to fill the gap between expensive automatic p.c.b. machines and slow manually operated machines which often lack the precision of the automatics in control. Basically the Quick Star is intended for rectification of p.c.b. production work, small batch production, design and development laboratories, or as an ancillary machine for watchmakers, jewellers and dental mechanics.

It consists of an electro-mechanical guided, high frequency spindle providing infinitely variable drilling speeds from 10,000 to 50,000 r.p.m. The drilling unit is fed from a separate converter, which means that it can be conveniently positioned in the most suitable location while the converter module can be sited some distance away. The converter controls the drill speed and infinitely variable feed. Operation of the feed can be either by removable hand lever or foot switch.

A special feature of the Quick Star lies in the visual drill positioning system, which includes a cross-wire projection onto a magnified circular viewing screen to provide a high degree of precision in control. This projection system incorporates two different types of light source one built into the optical device and the
other for use with an alternative enlarged magnifier lens. The selection of light source is controlled by a switch on the rear of drill section.

The drill spindle will accept a range of tungsten carbide drills from 0.2 to 2.00 mm and the stroke height is adjustable from 10 mm . The drilling area is 180 sq mm . The total cost of the drilling machine, converter module with accessories is less than $£ 600$. Optional extras include an electronic impulse counter, the enlarged magnifier lens and a larger base to increase the drill stand area to 320 mm $\times 400 \mathrm{~mm}$. Further details of the machine are available from Adcola Products Ltd, Adcola House, Gauden Road, London SW4 6LH.
WW 320 for further details

Video distribution amplifier

Electrocraft instruments announce a selfcontained video distribution amplifier, providing five or ten independent signal outputs at 75Ω from one input. The models TVT/4/VDA 5-10 are designed to handle monochrome or colour video signals for a wide range of industrial and

commercial c.c.t.v. applications. Housed in die-cast boxes, the video distribution amplifiers are of rugged construction and designed for continuous operation under arduous conditions.
Price: $\quad 5$ way $£ 38.00$
10 way $£ 58.00$
Dimensions: 5 way $4.75 \times 3.75 \times 2.75$ in
10 way $6.75 \times 4.75 \times 2.75$ in
Electrocraft Instruments Lid, Liss Mill, Mill Road, Liss, Hants.
WW3 10 for further details

D.I.P. resistor network

The Helipot Series 899-40 Resnet d.i.p. network available from Beckman Instruments has been designed to provide the optimum termination resistance and threshold level for interfacing two Intel l.s.i. chips, the 1103 and the 3208A.

In order to use Intel 1103 - the basic memory element - in a computer it is
necessary to interface the device with t.t.l. logic. This interface chip, the 3208 A , requires a network of eight resistors for every six bits. The Helipot Model 899-40 Resnet d.i.p. provides six resistors of 600Ω each $\left(R_{3}\right)$, and a voltage divider (R_{1} and R_{2}) to supply the 150 mV threshold level required for the 3208 A .

For the standard Intel 1103, operating with a minimum read cycle of 480 ns and a minimum write cycle of 580 ns , the R_{3} terminating resistors have the optimum 600Ω value.

The $R_{2}-R_{1}$ network provides the 150 mV threshold voltage to the 3208A: $R_{1}=$ 2780Ω and $R_{2}=87.4 \Omega$. Using these resistor values and the $\pm 5 \%$ variation in 5 V power supply regulation, the threshold voltage is $150 \mathrm{mV} \pm 13.0 \mathrm{mV}$.

Among the advantages claimed for the use of the network are: total compatibility with automatic insertion equipment; reduction of p.c. board area; and reduction of assembled board costs. Beckman Instruments L.d (Components International), Glenrothes, Fife.
WW3 14 for further details

Thick film precision

resistors

Technograph \& Telegraph are offering precision resistor networks, manufactured by thick film methods, giving a stability better than 0.15% after 5,000 hours at $125^{\circ} \mathrm{C}$. The temperature coefficients for mid-range resistor values are below 50 p.p.m. $/{ }^{\circ} \mathrm{C}$ and temperature coefficient of resistance tracking of 15 p.p.m. $/{ }^{\circ} \mathrm{C}$ can be achieved. These custom designed networks can be supplied with resistor tolerances of $\pm 0.5 \%$ absolute, or resistors matched to $\pm 0.25 \%$. Packages may be "on edge" or "dual-in-line" as required by the customer. Technograph \& Telegraph Ltd, Easthampstead Road. Bracknell. Berks. RGI2 INW.
WW317 for further details

High frequency filter

Kinetic Technology announces an extension of the frequency range of the FS30 high frequency filter. Utilization of multiloop negative feedback allows simultaneous highpass, lowpass and bandpass transfer functions. Independent tuning of gain, centre frequency, and Q is accomplished with the addition of external resistors. $Q s$ as high as 1000 can be obtained at frequencies below 100 kHz . The FS-30 is packaged in a 14 -pin d.i.p. configuration measuring 1.5 by 0.5 in . Operating temperature range is 0 to $70^{\circ} \mathrm{C}$ and power consumption is 156 to 225 mW at ± 15 to $\pm 20 \mathrm{~V}$. F.O.B. price $\$ 40.00$ each in quantities of 100 and delivery is from stock. Kinetic Technology, Inc., 3393 De La Cruz Boulevard, Santa Clara, California 95050, U.S.A.

1024-line real time spectrum analyser

A high resolution, real-time digital spectrum analyzer that provides 1024-line spectral analysis over a centre frequency range of d.c. to 40 kHz is available from Sanders Associates for use in radar and sonar signal processing, acoustic spectrum level measurement, and noise and vibration analysis.

Designated DSA-2004, it features all-digital circuitry for translation, filtering, Fourier analysis, post processing and storage. The unit, which has modular construction and built-in self-test
capability, provides resolutions selectable from 0.01 Hz to 40 Hz and an analysis bandwidth of 10 Hz to 40 Hz .

The DSA-2004, with an internal simuitaneous multi-channel processing capability, provides linear and logarithmic outputs for electrographic recorder, X-Y chart recorder, c.r.t. display and oscilloscope. Digital Communications, Sanders Associates, Inc., 95 Canal Street, Nashua, New Hampshire 03060, U.S.A. WW319 for further details

Programmable distortion analyser

A new distortion analyser/a.c. voltmeter, the Hewlett Packard model $334 \mathrm{~A}-\mathrm{H} 25$, has all the capabilities of the standard Model 334 A plus programmability of all functions, ranges and settings. Remote control is by parallel b.c.d. t.t.l. logic. A d.c. output and an interrogation circuit have been added so that an external controller can determine the status of the instrument during measurements. The Model $334 \mathrm{~A}-\mathrm{H} 25$ can be manually controlled with back-lighted front panel push-buttons.

As a distortion analyser, the instrument measures total harmonic distortion from 0.1% to 100% full scale in seven ranges. The fundamental frequency range for distortion measurements is from 10 Hz to 100 kHz ; harmonics are indicated up to 1 MHz . Frequency resolution is 3 digits over the full frequency range. As an r.m.s.
calibrated voltmeter, the Model 334A-H25 measures input levels from 0.3 mV r.m.s. to 300 V r.m.s. full scale in thirteen meter ranges. The frequency range for voltage measurements is from 10 Hz to 1 MHz . Local or remote operation can be selected. In the "local" mode, the Model $334 \mathrm{~A}-\mathrm{H} 25$ is operated as a bench instrument using front panel pushbutton switches. In "remote", it accepts parallel 8-4-2-1 b.c.d. coded instructions applied to the remote control lines. Internal storage is not provided. Remote control lines use standard t.t.l. logic levels. Provision is made for changing from high to low assertion states. A total of 34 lines is required for complete remote control. The Model $334 \mathrm{~A}-\mathrm{H} 25$ is priced at $£ 1,732$, excluding duty. Hewlett-Packard Ltd., 224 Bath Road, Slough, Bucks. SL1 4DS.
WW 307 for further details

WW3 11 for further details

Solid State Devices

Signetics announce three 8 -input digital t.t.l. multiplexers using Schottky technology. The 82S30 incorporates an "inhibit" input which, when low, allows the one-of-eight inputs selected by the address to appear on the " f " output and in complement on the " f " output. The 82 S 31 is a variant of the 82 S 30 that provides open collector output "त् input terms. The 82S32 is similar to the $82 S 30$ except for the effect of the "inhibit" input on the " F " output. With the "inhibit" low, the selected input appears at the " f " output and in complement on the " F " output. With the "inhibit" input high both the " f " and the " $\overline{\mathrm{f}}$ " outputs are unconditionally low.

Also from Signetics is an i.c. f.m. detector and limiter which uses linear gating techniques and is designated type ULN 2111. Only a single coil is required with this device which has a frequency range from 5 kHz to 50 MHz . Outputs of 0.6 V with a total distortion of less than 1% and a limiting threshold voltage of $400 \mu \mathrm{~V}$ r.m.s. are typical. Price is $£ 0.68$ for 100 -up quantities in the d.i.l. plastic package.

Finally there is a dual amplifier used as an interface between m.o.s. and t.t.l. devices. This amplifier, designated the 8 T 25 , is manufactured in an 8 -pin miniature d.i.l. package. Signetics International Corporation, Yeoman House, 63 Croydon Road, London S.E. 20.

WW326 digital multiplexer
 WW327 f.m. detector/limiter WW328 dual amplifier

Feldon Audio, known more for professional sound studio equipment. announce they are to distribute a monolithic operational amplifier, the MCI 2001. This device was made specially for use in the MCI range of mixing consoles and thus has unusual characteristics. The input has a balanced open loop input impedance of better than $250 \mathrm{k} \Omega$, making the device suitable for summing or bridging applications, and a low output impedance capable of driving several 600Ω loads. Open loop gain is 90 dB and the maximum 20 Hz to 20 kHz closed loop gain is 50 dB . Output capability is +24 dBm into 600Ω and distortion at a closed loop gain of 20 dB is 0.004% t.h.d. at 1 kHz and 0.05% t.h.d. at 20 kHz . These measurements were made at an output level of +23 dBm . Equivalent noise is -112 dB . Feldon Audio Lid, 126 Great Portland Street, London W IN 5PH.

WW329 for further details

Three devices are announced by Burr Brown International. The first is an i.c., f.e.t. device, type 3542 J , and features a
maximum voltage drift of $\pm 50 \mathrm{~V} / \mathrm{C}$ and a guaranteed input bias current of -25 pA . Hermetically sealed in a TO-99 package, the unit is pin compatible with 741 type operational amplifiers. Minimum d.c. voltage gain is 88 dB , full power frequency response is 8 kHz and the slew rate is $0.5 \mathrm{~V} / \mu \mathrm{s}$. Both output short circuit and input-to-supply voltage protection are provided. Output is $\pm 10 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$.

The second device is a pulse modulation analogue multiplier with an accuracy to $0.2 \%(20 \mathrm{mV})$. External trimming will improve the accuracy to $0.1 \%(10 \mathrm{mV})$. The absolute maximum input ratings are $\pm 30 \mathrm{~V}$ and the rated output is $\pm 10 \mathrm{~V}$ at 5 mA minimum. Output noise from d.c. to 10 kHz is 1 mV r.m.s. and the gain error versus temperature is $0.01 \% /{ }^{\circ} \mathrm{C}$. The device is designated model 4200 and can be used for flow rate and power calculations or, by change of pin connection, the 4200 can be used to divide and to take the square root.

Finally, this company introduces a high speed 8 -channel multiplexer with an internal channel address decoder, type MPM-8S. Capable of expansion to 256 channels in a multi-tiered matrix, the device accepts $\pm 10 \mathrm{~V}$ analogue signals and binary coded t.t.l. compatible channel address information. Throughout, speeds of up to 250 kHz are feasible with crosstalk of -115 dB with a 1 kHz full-scale sine wave applied to all the "off" channels. Burr Brown International Ltd, 25A King Street, Watford WD1 8BT, Herts.

WW330 f.e.t. op-amp

WW331 analogue multiplier WW332 8-channel analogue multiplexer

A high speed r.a.m. (randome access memory) and three monolithic arrays of silicon planar photodiodes are now available from Mullard. The r.a.m., type GYQ131, is a 1024 -bit device functionally equivalent to the GYQ101 r.a.m. as well as the 1103 type of device. It offers, however, greater operating speed and dynamic operation with a supply voltage of 19 V .

The diode arrays F758 and F759 have 12 and 16 photodiodes respectively arranged in a strip with a pitch of 1.25 mm . Each diode has an active area of $2.09 \mathrm{~mm}^{2}$, operates with a reverse voltage of 15 V and has a typical sensitivity of 14 nA / lux. The third array, type F568, contains 12 photodiodes on a pitch of 2.05 mm . Each diode operates with a reverse voltage of IV to give a typical sensitivity of 40nA/lux Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
WW333 high speed r.a.m.
WW334 photodiode arrays

Teledyne Philbrick have introduced the model 1427 f.e.t. operational amplifier and the model 4853 high speed sample-hold amplifier. The performance features of the 1427 include a 7 MHz bandwidth, 900 ns settling time to 0.01% and an initial offset voltage of $\pm 500 \mu \mathrm{~V}$. Offset voltage drift is $50 \mathrm{~V} / \mathrm{C}$ or a selected version, the 142701, is available with an offset drift of $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
The 4853 is a high speed 0.01% sample-hold amplifier with an extremely low aperture time of $\pm \mathrm{Ins}$ and a low feed-through of 1 mV maximum for a 20 V step. Acquisition time is less than 1μ s to 0.01%. Teledyne Philbrick, Allied Drive at Route 128, Dedham, Massachusetts 02026, U.A.S.

WW335 f.e.t. operational amplifier WW336 sample-hold amplifier

G.D.S. (Marketing) who supply products from Harris Semiconductor and Motorola, among others, announce the availability of new devices from both these companies. From Harris come two devices, a 1024 -bit p.r.o.m. (programmable read-only memory) and a four-channel operational amplifier.

The memory, which is high speed and fully decoded, is designated the HPROM 1024 A . Access time is typically 50 ns and a maximum of 70 ns . Address time is 20 ns . Supply is from a single 5 V source and the device is t.t.1./d.t.l. compatible. As supplied all bits store a logical " 1 " and can be selectively programmed for a logical " 0 ". The HPROM-1024A has an open collector output, but a second version, the HPROM-1024, has a third high impedance state output which allows the device to work in a "wired-OR" configuration. Both devices are supplied in 16 pin di.i. packages.

The four-channel operational amplifier, type HAO2405, combines the function of an analogue switch and a high performance amplifier. Four pre-amplifier sections, one of which is selected through d.t.1./t.t.1. compatible inputs to be connected to the output, are contained within the 16 pin d.i.l. package. The unusual configuration of this device, which Harris call the PRAM(!) - programmable analogue module - makes it suitable for use as a programmable attenuator, muitivibrator, active filters, four-channel comparator and signal selection/multiplexer.

Also from G.D.S. are the Motorola c.m.o.s. divide by " n " 4 -bit counters. These are the MC14522L and the MC 14526CL, both of which are programmable devices. The first is a b.c.d. counter and the second a binary counter, and both devices can be operated from supply rails from 3 to 16 V . The counters are supplied in 16 pin di.i. packages at a 100-up cost of $£ 3.096$. GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW337 1024-bit p.r.o.m.
WW338 4 channel p.r.a.m.
WW339 b.c.d. counter
WW340 binary counter

May Meetings

Tickets are required for some meetings: readers are advised

therefore to communicate with the society concerned

LONDON

1st. IEE - "Lord Kelvin and his measuring instruments" by J. T. Lloyd at 17.30 at Savoy PI., WC2.
2nd. IEE - "Seeing in the dark" by Dr. P. Schagen, Dr. A. J. Goss, E. D. Hendry and R. D. Nixon at 16.00 at Savoy PI., WC2.
2nd. IEE/IERE - Colloq inum on "Electro mechanical problems of computer systems" at 17.30 at Savoy Pl., WC2.
3rd. IEE - Discussion on "The interface problem: Radio centre to A.F.C.S." at 17.30 at Savoy PI., WC2.
3rd. IEE Grads - "Careers in control and automation" by M. G. Shortland at 18.30 at Savoy PI., WC2.
4th. IEE - Colloquium on "The automation of railway systems in the ' 70 s" at 17.30 at Savoy PI., WC2

7th. IEE - "Digital sound recording" by F. A. Bellis at 17.30 at Savoy Pl., WC2.
9th. IEE - "A matter of fact: The technical possibility of a broadcast information service" by P. Rainger at 17.30 at Savoy PI., WC2.
9 th. IERE - "Preparing engineers and managers for design specification" by Prof. D. Pilfold at 18.00 at 9 Bedford Sq., WCI

10th. IEE - Discussion on "Engineering graduates: Great expectations or hard times?" at 17.30 at Savoy Pl., WC2.

Ith. IEE/IERE - Colloquium on "Recent developments in self-organising and heuristic computers" at 14.30 at Savoy Pl., WC2.
llth. IEE - "Electronic aids in archaeology" by Dr. E. T. Hall at 17.30 at Savoy PI., WC2.
Ilth. BAS/1.Phys. - "Developments in high fidelity systems" at I.Mech.E., 1 Birdcage Walk SWI. 14th. IEE -- "Non-linear systems analysis by multi-dimensional transform methods" by Prof. H. A. Barker at 17.30 at Savoy Pl., WC2.

14th. IEE Grads. - "Understanding lasers" by M. Kear and "Transmission line impedance measurement at microwave frequencies" by J. W. Gould at 18.30 at Savoy PI., WC2.

15th. IEE/IERE - Colloquium on "Electrical connectors - applications and reliability" at 14.00 at 9 Bedford Sq., WC1.
15th. AES - "Physics and the perception of musical sounds", by Prof. C. A. Taylor at 19.15 at the IEE, Savoy PI., WC2.
16th. IEE - "A 6 GHz radio delay digital transmission system" by E. S. Doe and H. D. Hyamson at 17.30 at Savoy PI., WC2.

16th. IERE - "Meteorological tele communications systems engineering" by C. E. Goodison at 18.00 at 9 Bedford Sq., WC 1:
23rd. R.I. Navigation - "The commercial and political implications of a global satellite navigation system" by T. M. B. Wright at 17.00 at The Royal Institution of Naval Architects, 10 Upper Belgrave St., SW I.
23rd. IERE - "Adaptive equalization" by Dr. A. P. Clark at 18.00 at 9 Redford $\mathrm{Sq} ., \mathrm{WC} 1$

31st. RTS - "Television and satellites for European education - social, political and industrial implications" by Dr J. L. Jankovich at 19.00 at I.B.A., 70 Brompton Road, SW3.

MANCHESTER

Ist. IEE - "Investment approval in the Post Office" by F. Broadhurst at 18.15 at the Renold Building, U.M.I.S.T
3rd. IERE - "Facsimile - a review" by J Malster and M. J. Bowden at 18.45 at the Renold Building, U.M.I.S.T.

NEWCASTLE UPON TYNE

7th. IEE - "Marine electronics reliability" by M. G. Miller at 18.30 at the University, Room M42 1 .

SHEFFIELD

2nd. IEE - "New thoughts on sleep and dreams" by Dr. C. R. Evans at 18.30 at Telephone House, Charter Sq.

STAFFORD

7th. IEE - "Instrumentation \& electrical engineering in vehicle research and development" by T. R. Aston at 19.00 at N. Staffs Polytechnic, Beaconside.

9th. IEE Grads - "Quadraphonics" by Dr. K. Barker at 19.30 at North Staffordshire Polytechnic.

Announcements

A short course "Modern Instrumentation and Data Systems" is to be held at Lanchester Polytechnic, Priory Street, Coventry CV1 5FB on each Thursday of May. It is expected that those attending will be users of electronic instrumentation systems.

The subject of a residential vacation school to be held at the University of Birmingham from 16th to 21 st September 1974 is "Basic concepts in modern control theory". The school is being organized by the Control \& Automation Division of the Institution of Electrical Engineers and is intended to be of interest to control systems engineers and to teachers in this sector of higher education. Further details from the Secretary, I.E.E., Savoy Place. London WC2R OBL, quoting the reference LS(CA).

A one-week residential vacation school intended for practising engineers, scientists and teachers, who need have no previous knowledge of, but are interested in, the fundamentals of logic circuit design is being organized by the Electronics Division of the Institution of Electrical Engineers. The school "Logic design - for digital systems" will be held at the University of Kent in Canterbury from 23rd to 28th September 1973. Further details available from Senior Divisional Secretary (Electronics), IEE, Savoy Place, London WC2R 0BL.

The closing date for the receipt of applications for consideration for the award of seholarships in 1973 from the Council of the Institution of Electrical Engineers is Ist May. Awards include grants to deserving students to assist them in obtaining professional qualifications and grants to assist postgraduate students (IEE members only) with advanced study or research. Particulars from the Education and Training Officer. IEE, Savoy Place. London WC2R OBL.

New Industrial Products for Europe -- an E.E.C. trade-boosting product journal - is to be launched inSeptember. by IPC Industrial Press. To be published in each of the six peak European buying months (Sept.-Nov. and Mar.-May) the journal will be circulated to 28,000 senior executives of the
larger companies within the Common Market, excluding the U.K. and Eire. Further information can be obtained from the Publishing Director. IPC Industrial Press Ltd. 33/39 Bowling Green Lane, London EC|R ONE.

Following an agreement concluded with Honeywell Ltd, the company Wayne Kerr, Tolworth Close, Tolworth, Surbiton, Surrey KT6 7ER, is now world-wide distributor for "Swift" digital testers. These instruments are complementary to the Wayne Kerr "Testmatic" range of analogue testers.

The computer peripheral company Pertec International is now at 10 Portman Road, Battle Farm Industrial Estate, Reading.

Lyons Instruments Ltd, Hoddesdon, Herts. have announced their appointment as U.K. distributors for Kinetic Technology Inc., Santa Clara, California, manufacturers of a range of standard, universal, hybrid active filters.

Potter Data Products Ltd. Station House, Harrow Road, Wembley, Middx, is to market the U.S.A. company Scan-Optics' $20 / 20$ and $20 / 10$ ranges of optical character readers.

The contribution of Plessey Radar, Addlestone, Surrey, to the Eurocontrol Upper Airspace Centre at Karlsruhe, Germany, covers the supply of the complete operator input system and over 140 console operation positions for the centre. The contract is valued at $£ 1.25 \mathrm{M}$.

Studio Electronics, P.O. Box 18, Harlow, Essex CM18 6SH, design, build, claibrate and maintain specialist electronic and communications equipment, and will quote for this service, which includes alignment for the Nelson-Iones f.m. tuner and supply of other kits from W. W. articles.

Coutant Electronics Ltd, 3 Trafford Road. Reading. RG1 8JR, and APT Electronics are to undergo re-organization and integration of the two companies' production, marketing. financing and other services. Coutant will handle standard power supply products while APT will develop and produce custom units.
Blueline Electronic Component Services, Refuge House, River Front, Enfield. Middlesex, has signed five new franchises for AB Electronic Components, AEl Semiconductors, Airscrew Fans, ERG and Burgess, and has also opened a branch office in Manchester. Rotary and pushbutton switehes and circular connectors from AB Electronic Components, microswitches and pushbutton switches from Burgess and d.i.l. switches from ERG are now included in the Blueline product range.
A new company has been formed to combine the manufacturing facilities of Semra (Electronics) Ltd and Benney Electronics Lid. Trading under the name Semra-Benney (Electronics) Ltd, the company will operate from a factory situated at Chandler's Ford Hampshire SO5 3ZU. Products and services offered by the company include a range of nuclear physics instrumentation and hardware in both the NIM and CAMAC systems. stabilized modular power supplies and specialist design and pack aging facilities.
A new company known as International Aeradio Consultancy Services Ltd. based at Southall, Middlesex, has been formed to segregate International Aeradio's technical consultancy work in aviation and communications fom its operational and other activities. The new company, will undertake a wide range of consultancy work
The Society of Relay Engineers has changed its name to the Society of Cable Television Engineers, 10 Avenue Road, Dorridge, Solihull, Warwickshire. The Society's journal, The Relay Engineer, will now appear as Cable Television Engineering.
Sonax Electronics is now part of the new Chaterville group of companies which incorporates Quadrasonics who produce a range of four-channel audio systems. The group is a CBS SQ licensee. Quadrasonics are situated at Spencer House. Brettenham Road, Edmonton, London N. 18.
Pye TVT Ltd, Coldhams Lane, Cambridge, has received a contract valued at more than $£ 2,100,000$ from the Ministry of Culture and Information of the South Korean Government for a colour television service for the Korean Broadcasting System.

Literature Received

For further information on any item include the $W W$ number on the reader reply card

ACTIVE DEVICES

Two low-power helium-neon encapsulated plasma tube lasers, providing minimum unpolarized power outputs of 1.0 and 2.0 mW at a wavelength of 633 nm in a beam diameter of 0.725 mm , are described in a leaflet from Hughes Electron Dynamics Division, 3100 W. Lomita Blvd. Torrance, California 90509

WW401
"Solid State Converter type Vib $24 \mathrm{~V} / 9 \mathrm{~A}$ ". which is an assembly of the active elements of a d.c. to d.c. power supply unit designed to be a direct replacement for the conventional electromagnetic vibrator units, is the subject of a brochure from Industrial Instruments Ltd, Stanley Road, Bromley, Kent BR2 9JF .
.WW402

A catalogue with specifications of over 600 different types of field effect transistor covering n - and p-channel junction types, n - and p-channel enhancement mode types, dual n-channel junction and dual p-channel enhancement mode devices has been received from Tranchant Electronics (U.K.) Lid, Tranchant House, 100a High Street, Hampton, Middlesex TW 12 2ST
..WW403
A data sheet dealing with the 1034 and 103401 general purpose, medium power output, operational amplifiers providing voltage outputs of $\pm 20 \mathrm{~V}$ with peak current output of up to $\pm 22 \mathrm{~mA}$ and an open-loop gain and unity gain bandwidth of 100,000 and IMHz minimum respectively, has been received from Teledyne Philbrick. Allied Drive at Route 128, Dedham, Massachusetts 02026, U.S.A.WW404

A range of high current (785A r.m.s.) "Hockey Puk Power Thyristors" capable of single cycle surge currents of over 9.000 A peak at reverse voltages of between 50 and 600 V peak and avaitable in either ceramic case style (500PA series) or plastic encapsulation (501 PA series) are detailed in bulletin E2573 from International Rectifier, Hurst Green. Oxted, Surrey
...WW405
Data sheets on photo-sensitive integrated circuits available from Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset, include: PX102 - light level to frequency converter containing a planar light sensor with amplification and triggered pulse generator claiming a typical linearity of $\pm 2 \%$...WW406 PX117-9-channel tape reading array constructed of 0.100 in spaced photo detectors and threshold switches..WW407 PX129 - a family of photo diodes mounted with analogue amplification having a choice of detection bandwidths of up to 400 kHz allowing selection of oplimum response time or optical sensitivity for specific applications WW408

PASSIVE DEVICES

A colourful leaflet giving a complete technical description of "Series 11 " illuminated and "Series 21 " non-illuminated miniature push buttons, signal lights and accessories is available from Highland Electronics Ltd. 33-41 Dallington Street. London ECIV 0BD

Miniature compression load-cell type C2MI and an adaptor for converting into miniature tension load-cell type U2M1 with standard capacities of 100 , 200. $500,1000,2000$ and 50001 b over a compensated temperature range of $-9^{\circ} \mathrm{C}$ to
$+46^{\circ} \mathrm{C}$ is the subject of a brochure from Guest International Lid. Control and Instrumentation Division, Redlands, Marlpitt Lane, Coulsdon, Surrey CR3 24 H
..WW4 10
Data sheets describing multi-octave bandwidth transmission line directional couplers types BD 1040 (10 dB coupling. 40 dB directivity. $2-50 \mathrm{MHz}$). BD2025 (20 dB coupling. 25 dB directivity, $10-250 \mathrm{MHz}$). RD 3020 (30 dB coupling, 20 dB directivity, $5-500 \mathrm{MHz}$), NHP30B four port 180° hybrid (30 dB isolation, $2-32 \mathrm{MHz}$) and some similarly specified miniature components mounted in TO-5 packages are available from Tony Chapman Electronics Lid, 3 Cecil Court, London Road, Enfield, Middlesex

WW4II
A wide range of double-ridge waveguide components manufactured by Microwave Research Corporation of America covers waveguide to coaxial transformers in the range 1.0 to 38 GHz , waveguide terminations and double-ridge to rectangular waveguide transitions over the range 3.5 to 16 GHz : these are described in data sheets from Suvicon Ltd. Hagley House. Hagley Road, Edgbaston, Birmingham BI6 8QW

Copies of catalogue No. 1470 which deals with the "Surefire" range of compatible and co-firable resistor, conductor and dielectric paste materials for use in the manulacture of hybrid and thick film integrated circuits. are available from Johnson Matthey Metals Ltd, 81 Hatton Garden, London ECIP IAE.

WW4 13
Cyclic timer type TCP2 which comprises an a.c. or d.c motor driven shaft with between 2 and 24 independently adjustable cams. each operating a separate replaceable s.p.d.t. switch rated at 250 V a.c. at 5 A , is the subject of a leaflet from Tempatron Lid, 5 Loverock Road, Battlc Farm Estate, Reading, Berks

WW414
Catalogue $\mathrm{H} / 201$ giving technical details and performance figures of tangential and axial air blowers, induced ventilation units and a range of frilec fans and trays suitable for a variety of cooling applications, has been received from Imhof-Bedco Ltd. Ashley Works, Astiley Road, Uxbridge, Middlesex UB8 2SQ

A range of precision d.c. motors, suitable for servo systems and instrumentation, offering high power-to-volume ratios ($0.2 \mathrm{~W} / \mathrm{cm}^{3}$). high efficiencies ($57-82 \%$), fast response times (mechanical time constant from 19 ms) and low starting volages (100 mV typ.), is described in a brochure from Portescap U.K. Ltd. 204 Elgar Road. Reading. RG2 ODD

WW416
A new range of five base mounting open fuseholders accepting either lin $x \frac{1}{4}$ in or $1 \frac{1}{4}$ in $\times \frac{1}{4}$ in fuses and consisting of a twin-fuse model and two single-fuse models rated at $13 \mathrm{~A}, 250 \mathrm{~V}$, and two single-fuse models rated at $5 \mathrm{~A}, 250 \mathrm{~V}$ is the subject of a leaflet from A. F. Bulgin and Co. Ltd, Bye-pass Road, Barking. Essex

WW417
A catalogue describing the selection of general and speciäl purpose soldering irons, including sophisticated electronic temperature controlled irons, thermal wire strippers and numerous associated tools is available from Light Soldering Developments Led. 28 Sydenham Road, Croydon CR9 2LL........WW4 18

Lists of components and materials useful to the electronics or audio enthusiast for home construction, experiments and servicing are available from Chromasonic Electronics, 56 Fortis Green Road, London N10 3HN

A catalogue with technical information and data on the range of aerials and accessories for telecommunication applications such as point to-point radio links, television links, satellite tracking. communications channel interference elimination. ground-to-air communication, missile tracking and telemetry is available from J. Beam Enginecring Ltd. Rothersthorpe Crescent, NorthamptonWW420

EQUIPMENT

The "Venture multimeter range" are portable mov-ing-coil instruments. taut ligament suspended. "Multimeter 1 " is primarily designed for electrical engineering where high voltage and high current measurements are needed. "Multimeter 3" is a general purpose instrument with a.c. and d.c. ranges from 1 kV to 100 mV and 10 A to 30 A . "Multimeter $4^{\prime \prime}$. intended for electronic engineering. has sensitivitics of $100 \mathrm{k} \Omega / \mathrm{V}$ on d.c. and $20 \mathrm{k} \Omega / \mathrm{V}$ on a.c. Smith Indusiries Lid, Industrial Instrument Division. Waterloo Road, Cricklewood, London NW2 7UR
....WW42
A 72-page catalogue covering a wide range of electronic measuring and test equipment used in radar, $T V$ and radio transmission and data distribution has been received from Magnetic AB, Box 20036, S-161 20 Bromma 20, Sweden. WW422

Brochure HP7109 is available discussing resonant a.c. dielectric lesting using both series and parallel resonant techniques, together with explanation and comparison with d.c. and v.I.f. methods, using equipment manufactured by Hipotronics Inc., Brewster, N.Y. 10509 , U.S.A.

WW423
A booklet has been received, describing a "Modulator Automated System To Identify Friend from Foe" (MASTIFF). which is an access control system developed to overcome the problem of maintaining security in areas where there is a large volume or considerable movement of personnel, from Lewis Security Svistems Lid, 9 The Crescent, Leatherhead. Surrey.

WW424

APPLICATION NOTES

A six-page application note, AN-6054 "Triac Power Controls for Three Phase Systems" lists basic design rules, describes an integrated circuit zero voltage triac triggering switch and details methods of isolating the d.c. logic circuitry used in three phase power control systems, is available from RCA Ltd, Solid State Europe, Sunbury-on-Thames, Middesex. WW425
"F.e.ts as Analog Switches" is an application note dealing specifically with the basic factors affecting switch performance and some attention is given 10 switch-driver circuit design, overall switching characteristic and characterization of analogue switches at high frequencies. Siliconix Incorporated, 2201 Laurelwood Road. Santa Clara, California 95054 WW426

GENERAL INFORMATION

A pamphlet entitled "A simple Adding Machine", which is the latest in a series of educational projects in electronics produced by the Mullard Educational Service. describes a simple circuit using FJ serics integrated circuits for the counter-decoder and gas-filled numerical indicator tubes for the display. Mullard Educational Service, Mullard Lid. New Road. Mitcham. Surrey CR4 4XYWW427
"Aveley News" for January/March discusses TV relay-receiving systems in cassette construction. frequency response measurement using a differential method and a range of new electronic equipment from Rohde and Schwarz, Narda Microline, North Atlantic, Pacific Measurements, Eldorado and Lockheed Electronics. Aveley Electric Ltd, Roebuck Road, Chessington. Surrey KT9 ILP

WW428
The 1973 Instrument Society of America's 36-page catalogue. describing over 200 current instrumentation publications and educational aids covering a considerable area of industry, science and technology, is available from Instrument Society of America, 400 Stanwix Street, Pittsburgh, Pa. 15222, U.S.A.

Real and Imaginary

by "Vector"

Clunk, Click - and Boomps-a-Daisy!

In a way, it's rather nice to have the U.S.A. around on this planet because of the forthright way in which they jump in feet first and have a go. Like with colour TV for instance. Think of all the money and research effort poured into developing the N.T.S.C. system while we sat on the fence and waited until most of the bugs were out. Then - bingo! In with the PAL improvement and we were home and dry.

In fact, in that brash land of the free we have a ready-made Old Moore's Almanac telling us what's in store for us in five years' time. Naturally, it's not all cakes and ale; there are imports we could well do without.

All this was brought to mind by the news that the U.S. government is compelling all 1974 motor cars - sorry, autos - to be equipped with automatic seat-belt interlocks. This means, I gather, that when you clamber into the driving seat of your new Cadillac, the door has to be closed and your lap and shoulder belts have to be fastened or the starter motor won't operate. And that isn't all; any front-seat passengers (and there could be two in a Caddy) who weigh more than a modest 47 lb must likewise clunk-click before you can urge your horseless carriage forward.

Perhaps it's a sign of the times that the auto industry, which has always been electro-mechanically conscious, has turned to electronics (and integrated circuits in particular) to do this onerous chore. And it is onerous, make no mistake. Switches which will be concealed in (presumably) two doors, three sets of front seat-belts and pressure sensors in the seats all have to integrate to enable the starter switch to operate. Oh, yes -- and there's a further requirement; the drain on the battery must be low - typically about 5 mA - so as to give it a sporting chance during a cold start. The owner of a 1974 auto doing house-to-house calls all day in sub-zero temperatures is going to give his i.cs quite a going-over! I see that one big auto manufacturer is doing a belt-and-braces exercise by providing electro-mechanical back-up and I, for one, don't blame him.
I don't mean to imply by this that i.cs can't do the job. Of course they can. But neither the auto manufacturers nor the electronics people seem to have had much warning of Government intent; at any rate, no form of pilot scheme seems to have been possible, so it looks as if the inevitable bugs
are going to move straight out onto the turnpike. And remembering that the big three - General Motors, Ford and Chrysler - alone reckon to turn out about 10 million autos per annum, that could add up to quite a lot of bugs.

The situation is one which is calculated to make any manufacturer wake up screaming in the night. We all know the feeling of exasperation generated when the car radio goes phut, but at least that circumstance doesn't strand you slap in the middle of the Arizona desert with only flies for company. But are the American i.c. moguls deterred? Not on your life! They've fallen over each other to get the juicy contracts that have been bandied around. Now, we all know from bitter experience something of the cloud-cuckoo-land of i.c. manufacture; promises are one thing; deliveries can be quite another. The American auto industry is well aware of this fact of life but there isn't much it can do about it except stroke its rabbit's foot. For it would seem that the i.c. boys have got it made. They press ahead with their circuits, "optimized for low current drain, high noise immunity and high voltage excursions", and the best of luck. If bugs develop in service, it's the auto manufacturers who will get the kicks from the customers. If deliveries don't materialize on time it's the auto manufacturers who will have to plead with the U.S. government for an extension of the time limit. So hold your noses, lads, and jump in feet first; the water's lovely!
The account I've read doesn't say, but presumably the specification applies also to foreign cars imported into the U.S.A., otherwise it makes rather a nonsense of the whole thing. If that's the case, I wonder what British car manufacturers are doing about it between strikes; and who's supplying the i.cs? As far as the British car home market is concerned, I suppose the Government over here will continue to pin its faith in Jimmy ("Clunk-Click") Saville et. al., exhorting us to play the game and fasten oui seat belts like decent chaps. Then, when the motoring public is decimated, the Department of the Environment will act; if the American scheme works it will use it and thereafter we shall be locked in by relatively fool-proof i.cs. If it doesn't we shall probably have to form a typically British queue for a Traffic Warden to do it manually with another one at our destination to release us. One or the other
will happen in about five years' time.
But back to the i.c. locking system. I only know what I've read but I'm sure there must be more to it than that. For one thing, any system that can be by-passed by a length of wire is suspect; and for another, it's doubly suspect if, as stated, the sequence of interlocks merely permits the starter solenoid to be energized. For, once the engine has been kicked into life the starter motor goes back to sleep, its job done; it would seem, therefore, that once the engine was running the safety belts could be unclicked and the doors opened at will. If you argue that no one's going to be so daft as all that, don't be too sure. It would be a kind of one-up-man-ship against the machine. And in any case what is there to prevent the owner keeping the seatbelts locked but hung up? Or will some additional sensor be incorporated which will discriminate between "full" and "empty"!

My guess - and it's only a guess - is that the interlock will be direct on to the ignition system and that the various bypassing possibilities will have been taken care of by extra circuitry (even more potential bugs?). Otherwise it seems to be a system of considerable complexity, to very little purpose. Perhaps an American correspondent can enlighten us?
There are, of course, two ways of approaching the problem of road safety. One is to go all out to devise a system in which accidents can't happen or, in realistic terms, in which they are rarities. The other approach is to accept that they are going to happen anyway and to devote the main research effort to protecting the vehicle's occupants as far as possible. Seat belts are in category two and undoubtedly do a grand job in instances where the impact isn't too severe; but when two cars, each doing $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., collide head on, I for one wouldn't fancy my chances with the best seat belt ever made.

I respectfully submit that the road accident problem will never be nailed until we face, for the first time, one inescapable fact, namely that the human brain's decision-taking and control capabilities and the human body's relative immunity to physical damage has evolved in relation to the speed at which his legs would carry him. Travel faster than this and your chances of walking away from an involuntary, instantaneous, full-stop become progressively less as the speed increases.

As for the human brain, it's far too sensitive to extraneous stimuli and too sluggish in its reactions when confronted with the unexpected in congested traffic conditions. Humiliating perhaps, but there it is. Sooner or later we shall have to admit it and give up some of our "freedoms". Airlines and railways are both subject to rigid control techniques and amateur drivers are not permitted; that's why accidents are so rare as to be front-page news. In the foreseeable future both systems will be completely automated and safer still. And those are the directions that road safety research should take. It will cost a heap of money and some sacrifice of pride, but to fiddle with anything less is patchwork stuff.

Sinclair Project 60

Now-the Z.50 Mk. 2

with built-in automatic transient overload protection

Abstract

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of Z.50's are now giving excellent service day in, day out. But we have also learned that constructors do not always use their Z.50's ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatly reduced and performance further enhanced. The Z.5C Mk. 2 has improved thermal stability, more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. Z.50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial planar transistors are now used. two more than in the original 2.50 ; circuitry has been re-designed, making this versatile high performance amplifier better than ever.

The Z.30 provides excellent facilities for the constructor requiring a high fidelity audio system of less power than tha available from 2.50 's. Using a powe supply of 35 volts, $Z .30$ will deliver 15 watts RMS into 8 ohms, or 20 watts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% at 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 K ohms. Slze $80 \times 57 \times 13 \mathrm{~mm}\left(3 \frac{1}{6} \times 2 \frac{1}{4} \times \frac{1}{2}\right)$ Z.30. 2.50 and Z.50 MK. 2 modules are compatible and interchangeable

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Lid., you are dissatisfied with it, your money will be refunded at once. Many Sinclair appointed Sockists also offer th
Each Project 60 module is tested berore leaving our factory and is guaranteed to work perfectly. Should any defect arise in normal use, we will service it at once and without any charge to you, if it is returned within iwo vears from the date of purchase. Outside this period of guarantee a small charge postage by sufface mail. Air Mail is charged at cost

Brilliant new technical specifications

Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into 8 s) 400 mV
Signal to noise ratio, referred to full $0 / p$ at
$30 v$ HT 80 dB or better
Distortion 0.02% up to 20 W at 8Ω. See curve Frequency response 10 Hz to more than
$200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage $45 v$ (4Ω to 8Ω speakers) (50v 15』 speakers only)
Min. supply voltage 9 V
Load impedance - minimum : 4Ω at 45 v HT
Load impedance - maximum : safe on open circuit

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U. volume control. etc.	£9.45
12W. RMS continuous sine wave stereo amp for average needs	$\begin{aligned} & 2 \times \mathrm{Z.30s}, \text { Stereo } \\ & 60 ; \text { PZ. } \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
25 W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner, Tape Deck, etc.	£26.90
80 W . (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W RMS into 8 ohms)	2×2.50 s, Stereo 60 ; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc., controls	£19.43

F.M. Stereo Tuner ($\mathbf{£ 2 5}$) \& A.F.U. ($\mathbf{5} \mathbf{5 . 9 8}$) may be added as required.

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -12 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$,

Bilith, tested and guaranteed.
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other advanced features include varicap diode tuning. printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu \mathrm{~V}$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% madulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. maximum Operating voltage: $25-30 \mathrm{VDC}$. Indicators: Stereo on; tuning Size: $93 \times 40 \times 207 \mathrm{~mm}$

Built and tested. Post free.

Super IC. 12
 Integrated circuit
 high fidelity amplifier

Having introduced Integrated Circuits to hi-fi constructors with the IC 10 , the first time an IC had ever been made available for such purposes. we have followed it with an even more efficient version. the SuperIC.12. a most exciting advance version. the Superic. 12 , a most exciting advance over our original unit This needs very few ex ernal resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up. F.M. radio or small P.A. set up. etc The free 40 page manual supplied, detals many other applications which this remarkable IC make possible. It is the equivalent of a 22 tran-
sistor circuit contained within a 16 lead DIL package, and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used With Project 60 modules which would be used
with the $Z .50$ and $Z .30$ amplifiers. Complete with with the 2.50 and 2.30 amplifiers. Comple circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). 6-8 . Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28V). Load Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90 dB (1.000 .000 .000 times) after feedback. Supply Voltage: 6 to 28 V Quiescent curSupply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink
Manual avalable separately 15 p post free.
With FREE printed circuit board and 40 page manual.
£2.98 Post fiee

Power Supply Units
The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made available to constructors. Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which, as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment. Ripple and residual noise have been reduced to the point of almost total elimination. This is, of course. the perfect unit for Project 60 assemblies, particularly where the new Z.50 MK. 2 amplifiers are used. Nominal working voltage -45
PZ. 8 Mk. $3 — \mathbf{f} 7.98$
(Mains transformer. if required) £5 98
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) $£ 4.98$
PZ. 6 35v. stabilised
(not suitable for $1 C .12$) $£ 7.98$

Project 605

the easy way to buy and build Project 60

without

soldering
Project 605 in one pack contains : one PZ.5, two 2.30's, one Stereo 60 and one Masterlink, which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips 10 plug straigit on to the modules thus eliminating all soldering.
Complete with comprehensive
£29.95
manual, post free
All you need for a superb 30 watt
high fidelity stereo amplifier

Order form

Please send
Ienclose cash/cheque/money order
Name
Address
ww 5
SINCLAIR RADIONICS LTD.. LONDON ROAD. St. IVES. HUNTINGDONSHIRE, PE17 4HJ
Business Reg. No. (England) 699483 Registered Office as above

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

－the lowest prices．

74 Series T．T．L．I．C＇S
bi－pak still lowest in price full spect
guaranteed．all famous manupacturers

4 4

The AL50 HI－FI AUDIO AMPL 50W pk 25w（RMS） $\mathbf{0 . 1 \%}$ DISTORTION！HI－FI AUDIO AMPLIFIER

－Frequency Reaponse 15 Hz to 100,000 － 1 dB ． －Distortion－better than －Signal to nolae ratio 803 d ． －Overill size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$ Tailor made to the most stringent specifications using top， quality components and incorporating the lateat golid state Cation necds． BRITISH MADE．only $£ \mathbf{} \mathbf{3} \cdot \mathbf{5} 7 \frac{1}{2}$ each
 latest components and circuit techniques incorporating complete shor circuit protection．With the adidition of the Mains Tran conformer MT80 the unit will provide outputs of up to $1-5$ amps at 35 volte．Size Systenas of the highest quality at a hitherto unobtainalhe price．Also
Ideal for many other applications inclurilig：Disco Syatems，Public Addreas，Intercom Unita，etc．Hand inclutilng：Disco sya TRANSFORMER BMT80 £2．14⿺𠃊⿳亠丷厂彡2 p．\＆p． $27 \frac{1}{2}$ p

STEREO PRE－AMPLIFIER TYPE PA100

Built to a apeelfication and NOT a price，and yet stil the greatest value on the marke
the PA 100 gtereo preamplifier has heen conceived from the latest clrcuit techniquea Designesl for use with the AL50 power amplifer system，this cuality male unit incorporates no less than eight silicon pirnar transiators，
selected low nolse NPN leviecs for use in the linqut stages．
Three suitched stereo inputs，and rumble and acratch bilters are features of the
PA100，which alao has a STEREO／MONO switch，volume，balance and continuously variable bass and treble controls．

SPECIFICATION： Frequency response
liarmonic distortion Inputs：1．Tatortion $\begin{array}{cc} & \text { better than } 0.1 \% \\ \text { 2．Rape head } & 1.25 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\ \text { 2．Radio，Tuner } & 35 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\ \text { 3．Magnetic } \mathrm{P}, \mathrm{U} . & 1.5 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega\end{array}$ All input voltages are for on outplinto $50 \mathrm{~K} \Omega$ Tape and P．U．inputs equaliged to RIAA curve
${ }_{\text {Brase }}$ control
Trelle control
Filters：Rumble（high pass） Alters．Rumtle（high pass） Slgnal／noise ratio Input over
supply
Dimengion
SPECIAL COMPLETE KIT COMPRISING 2 AL50＇ I SPM80，I BMT80 \＆I PAI 00 ONLY 125.30 FREE 2 \＆
only f13．14
The STEREO 20
The＇Stereo 20 ＇amplifer is mounted，ready wired and tested on a one－plece chasesia measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$
This compact unit comes coninpete with onfoff switeh，volume control，balance，lase and trelle controls．Attractively printed
front panel and matching control knobs．The＇Stereo 20 has inen designed to fit into most antitave plinthe without arate cabinet．
Output power 20 w peak \quad Input 1 （Cer．） 300 mV into 1 M Freq．rea． 25 Hz －2okHz Bass control．$\pm 12 \mathrm{~dB}$ at 60 Hz £13．47 free p．\＆p．

NEW COMPONENT PAK BARGAINS

No．	Qty			
C	250	Realstors mixed value		
C 2		Capracitors m	1 values ap	com
C 3	50	Precision Reslstors 1\％，mixed valu		
C 4	75	th W Resstors mixed preferred value		
C5	5	Pieces assorted Ferrite Rods		
C 6	2	Tuaing Gange，	MW／LW／SHF	
C 7		Pack Wire 50 metree assorted colours		
C 8	10	Reed Bwithees		
C 9		Micro Switches		
C10	15	Assorted Pots de Pre－Bets		
C11		Jack Sockets $3 \times 3.5 \mathrm{~mm} 2 \times$ Standard		
C12	40	Paper Condensers preferred typer mixed		
C13	20	Eleetrolytics Trans．types		
C14		Pach assorted Hard ware－Nute／Bolt		
015		Muins Toggle Switches， 2 Amp，D／P		
016	$\underline{0}$	Assorted Tar Strips \＆Panels		
7	10	Assorted Control Knohs		
18		Rotary Wave Change Switchea		
C19		Relays 6－24V Operating		
		Sheets Copper Laminate approx． $10^{\circ} \times$		
Please add 10 p post and packling on all comperient C2，C19，C20．				
RTL Micrologic circuits				
Price each				
			＋25－99	100 up
Epoxy TO－5 case uL900				
L914	4 Dua	121／p gate	38p 38p	
，	$3 \mathrm{~J}-\mathrm{K}$	Hip－fiop	55p 31p	
and Circuits Booklet for 1C＇s				

CAPACITORS

Daly Electrolytic 9000 uf 40v. 50p; TCC Electrolytic 10,000 uf 70v. 50p; Dubilier Metallised Paper Type 426100 uf 150v. DC 50p; R.I.C. type 12971.8 uf 440 v . MOTORS

Crompton Parkinson 240 v . 1 ph 50 c 0.125 hp 1400 rpm
GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 2850 \mathrm{rpm}$. £5.00 carr. 67p . 53.50 carr. 67p E.E. $\frac{1}{2}$ hp 230 v .50 c 1 ph 50 c .1440 rpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{v}$.... . 1300 76813-393 Potter Instr. 110v. DC 4amp 0.2 hp . Cont: flange mounting precision tape transport motor (f80 value)
FANS, CENTRIFUGAL BLOWERS AND STARTERS

Alrmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller $\&$ casing (corresponds to current type $3965 \frac{1}{2}^{\prime}$) 230 v . 1 ph 50 c 2900rpm Class " A " insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. p.p.
$£ 21.00$. f21. 00.
Woods Aerofoil short casing type "S" 2700rpm 220/250v 1ph 50c 6" plastic Wellar inc.p.p. 1
$1.0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1}{2}$. $200 / 250 \mathrm{v}$. blades incl.p.p. $\mathbf{E 1 3} \mathbf{5 0}$.
Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic conveying, Cooling Electronic equipment, Air blas for Oil burners. Secomak Model 365 (corresponds to 575) Airblast Fan, 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 441 b price incl. carr. E41.00. Secomak model 350250 v 1ph $50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in Alr Contrals 34ibe VB, price incl. carr. E26.00. free air weight $7 \frac{1}{2}$ lbs price incl. p.p. f. 1450 .
Willam Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8 hg up to 29 in. mercury fom 4420 E.E. 3 phase induction, motor tho cont. $220 / 250 \mathrm{~V}$ $380 / 440 \mathrm{v} . £ 21.00 \mathrm{incl}$. carr.
Alan West Direct-On SCF Starters 240v. 1ph 50c
 Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash with order. Personal callers welcome. Open Mon-Wed. 9.30-5.30 Fri. Sat. 9.30-6.00. Free Car Park adjacent.

W. \& B. MACFARLANE
 126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

TRANNIES
 (Formerly C. R. Hadley Electronies).
 Telephone
 Harlow (02796) 37739
 24 WOODHILL, HARLOW, ESSEX
 (No callers please)

$A C 126$	$11 p$	$A L 102$	$59 p$
$A C 127$	$11 p$	$A L 103$	$49 p$
$A C 128$	$11 p$	$B C 107$	$8 p$
$A D 161$	$55 p$	$B C 108$	$8 p$
$A D 162\}$	perpr.	BC109	$8 p$
$A F 114$	$12 p$	$B C 182 L$	$8 p$
$A F 115$	$12 p$	$B C 183 L$	$8 p$
$A F 116$	$12 p$	$B C 184 L$	$8 p$
$A F 117$	$12 p$	$B C 212 L$	$8 p$
		$B C 214 L$	$8 p$

TRANSISTORS LOWEST PRICES

Ring for bulk enquiries.

OC44	13p	TIP31A	58p
OC45	13p	TIP32A	69p
OC71	12 p	40636	55p
OC25	28p	2N2926G	10p
OC28	30p	2N3053	20p
OC29	36p	2N3055	49p
OC35	28p	2N3702	$11 p$
OC36	36p	2N3703	11p

\star SUPER LOW priced linear k's

 741 c DIL 36p $\quad 748 \mathrm{c}$ TO99 38p

TTL BARGAINS		
7400 7401	${ }_{12 \mathrm{p}}^{12 \mathrm{p}}$	AND LO
7410 7475	${ }_{12 \mathrm{~L}}^{12 \mathrm{P}}$	See our price list.
${ }_{7490}^{7475}$	${ }_{6}^{45 \mathrm{p}}$	Also
7492	${ }^{\text {2 }}$	

SLIDE SWITCHES

MINIATURE

NEON

 LAMPS109 mA . 230 v . or 110 v 5p each.
10 plus, 4p.

BARGAIN PACKS	
Plastic BC109 (fully tested) 5 peach	$\begin{gathered} \text { IN400I-2-3 } \\ 1-9 \\ 10.99 \\ 10090 \\ 100 \end{gathered}$
Unmarked but fully tested. 2N2926G 5 p each	$\begin{aligned} & \text { Minitron } \\ & 7 \text { segment indi- } \\ & \text { cator Type } 3015 \mathrm{~F} \\ & \mathrm{fI} .50 \text { each } \end{aligned}$
$\xlongequal[\substack{\text { Unmarked } \\ \text { fully tested. } \\ \text { 2N3055 }}]{\text { but }}$ 2N3055	Pack of 25 IN4148
$\begin{aligned} & 1.9 \\ & 10 \text { plus } 25 \mathrm{p} \text { each } \\ & 12 \mathrm{p} \text { each } \end{aligned}$	50p

WW O 089 FOR FURTHER DETAILS

CBS SQ* FOUR CHANNEL DECODERS

*Regd. CBS inc.
A complete kit for the home constructor that can be built in under an hour with just a soldering iron and a pair of cutters. Just pop the components into the positions clearly marked on the fibre glass board, crop and solder.
You then have the identical decoder board we put in our latest QUADRASONICS Hi Fi equipment and the application approved by CBS as described in Wireless World, March 1973.
$\mathbf{£ 8 . 0 0}$ post free, including licence fee to CBS +80 p V.A.T.
If you doubt this, buy our complete and tested production board which is guaranteed for a year
$\mathbf{£} \| .00$ post free, including licence fee to CBS $+\mathbf{£ 1 \cdot 1 0}$ V.A.T.
DESPATCH GUARANTEED WITHIN 72 HOURS, complete with lucid instructions.

PHASE LOCKED LOOP STEREO DECODER

(as in Wireless World, July 1972)

Another complete kit that takes about 30 minutes to build. No alignment problems and coils to adjust. Just four simple steps to obtain perfect stereo from your mono tuner.
(1) Connect decorder to your tuner, possibly disconnecting one or two de-emphasis components.
(2) Provide 10 to 16 volts D.C. either from your tuner or a separate power supply.
(3) Tune to a stereo broadcast.
(4) Turn a "preset" resistor until the stereo beacon lights up. You then have stereo radio.

Comprehensive instructions provided, but if you are in doubt, just ask us!
$\mathbb{\$ 3 . 4 0}$ post free $+\mathbf{3 4 p}$ V.A.T. (Beacon $\mathbf{3 4 p}+\mathbf{4 p}$ V.A.T.)
Still Worried? Then buy one of our assembled and tested production boards complete with stereo beacon and guaranteed for a year.
$\mathbf{£ 4 . 4 0 \text { post free } + 4 4 \text { p V.A.T. Why pay more? }}$
Due to world-wide shortage of $\mathrm{PLL} / \mathrm{MCI} 310 \mathrm{P}$, orders executed in strict rotation and customers will be informed by return if undue delays are likelly to occur.
Why not call on us for a demonstration of quadraphonic and stereo hi-fi. The demonstration lounge in our new factory will be open on MAY ist.

SONAX ELECTRONICS
 SPENCER HOUSE, BRETTENHAM ROAD, EDMONTON, LONDON, N. 18.
 Tel.: 01-458 4755

Please send me:
Kits
$\square \quad$ Built and tested
$\square \quad$ CBS SQ * decoder
$\square \quad$ Phase locked loop decoder
I enclose cheque/postal order for \boldsymbol{E}.
Name
Address
(BLOCK CAPITALS PLEASE)
 Which not only contains all the digitallogic, polarity sensing logic, over range sensing logic, the comparator to sense threshold crossing, synchronization of the display strobing, storage register, but also replaces up to 16 standard 14 -pin TTL packages, giving good reliability and easy servicing. Some chip!

That's not all. I've also got an LED plug-in readout which makes me extremeiy long-lived though low on power consumption. I only use $2 \frac{1}{2}$ watts (mains operated). I'm very strong My larger upright components are compression mounted, so l can withstand great shock with no damage to my circuit board. You can have me in 3 standard full scale voltage values - and you can change the range on my main printed circuit board. When you order me from Electroplan, they'll send you a handbook with full instructions on how to change my range. If you want a special version of me, just ask for their Application Department and they'll fix you up. So this is the Daystrom 1295 Digital Panel Meter signing off now, and leaving you free to write or ring Electroplan Limited, PO Box 19. Orchard Road, Royston, Herts SG85HH. Telephone Royston 41171 . At only f77.00 I'm a snip.

Electroplan Lid. is an
Electrocomponents Associated Group Company

WH $2.5 \quad 1$ off $\mathbf{f 2 4 . 9 5}$ 10 of $\mathbf{f 2 3 . 9 5}$
The Contil DPM is a complete instrument built on a single board with the DEM
in mind. Believed to be the lowest cost $2 t$ digit DPM available it requires in mind. Believed to be the lowest cost $2 \frac{1}{2}$ digit DPM available, it requires only a 5 V supply to operate. 100 off $\mathbf{f 2 2 . 9 5}$ hanges avaliable are $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, \mathrm{AC}$ and B -polar models are AC or Bi-polar option: $+\mathbf{f 5 . 0 0}$ All models normally available ex stock.

WEST HYDE

RYYFILLD CRESCENT, NORTHWOOO HILSS, NORTHWOOD. MIDDX. HA6 1NN. NORTHWOOD 2494/126732. Telex: :232331.

G．F．MILWARD

ELECTRONIC COMPONENTS

Wholesale／Retail ：

Special Offer I！！

SMALL ELECTROLYTICS

 エエエエエエエエエエエエエエエエエエエエエエエエエエエエエエエエエア 	

MULLARD ELECTROLYTIC CAPACITATORS 071 and 072 Series

Type No．	Working Voltage Vdc	Capacitance $\mu \mathrm{F}$	Max．Ripple Current at $50^{\circ} \mathrm{C}$	Weight	Price
07115332	16	3300	2.4 amps	102	${ }^{15 p}$
07715472	16	4700	3.9 amps	102	17 p
07715582	${ }_{16}^{16}$	${ }^{6800}$	5.8 amps	1for	${ }^{22 \mathrm{D}}$
07715103	16	10000	${ }^{7.9} 9 \mathrm{amos}$	${ }^{2} 101$	${ }^{27 p}$
${ }^{071} 18222$		${ }^{7500}+{ }^{2200}{ }^{\text {P500 }}$	5.8 amps	302	${ }^{30 \mathrm{p}}$
07215752 072 075113	${ }^{16}$	7500 +7500	13．8 amps	302	31P
${ }_{0} 07116222$	${ }_{25}^{16}$	${ }_{11000}+2{ }_{220}+1000$	13.8 2.2 amps amps	4	${ }_{150}$
07116472	${ }_{25}^{25}$	4700	${ }_{5.4}^{2.4 \mathrm{amps}}$	1102	220
07216502	25	$5000+5000$	9.6 amps	$3^{\frac{1}{102}}$	370
07216752	25	$7500+7500$	12.6 amps	4 \％ 2	490
07217342	40	$3400+3400$	9.1 amps	$3 \frac{1}{\text { ¢ }}$	37 p
07217502	40	$5000+5000$	12.0 amps	$4{ }^{\text {\％}}$	49p
07718681	${ }^{63}$		${ }^{2} .19 \mathrm{amps}$		15p
07218172	63	$1650+1650$	7.8 amps	302	370
106 and 107 Series					
10645103	16	10000	7 mps	${ }^{21} 02$	65 p
10616223	25	${ }^{20000}$	17 amps	1002	${ }^{1} 1.12$
－106 178193		10000	${ }^{12}$ amps	7702	910
＋107102722	63 100	15000 2200	${ }^{28} \mathrm{ampsps}$	${ }_{5}^{1802}$	${ }_{719}$
Type No．	Voltage	Capacilance	Weight		Price
			802		
10490003	20	39000	1602		30 P
10216852	25	8000	708		25p
－104 17562	40	5600	S02		${ }_{\text {25P }}$
＋104 180001	${ }_{63}$	${ }_{3300}^{2000}$	${ }^{1602}$		${ }_{250}$
A further 10\％discount on lots of 100 of any one type．					

Please calculate the weight of your order and include appropriate postage．

Not over
10．b
141b

Not over
1816
Prdinary
$\underset{\substack{\text { 57P } \\ 67}}{\text { HP }}$

Not over
$\substack{\mathrm{N} 1 \mathrm{t} \\ 1 \\ 216}$
210

| $\begin{array}{c}\text { Ordinary } \\ \text { Parcels } \\ 15 \mathrm{p}\end{array}$ | $\begin{array}{l}\text { Not over } \\ \text { 41b }\end{array}$ |
| :---: | :---: | | 4616 |
| :--- |

RECORDING TAPE BARGAIN！The very best British Made low－noise high－quality Tape $151 n$ Standard 38p．Long－play 45 p． 5 itin Standard 45 p ．Long－play 60 p ． 7 in Standard 60 p ． suggest that you order now whilst we stili have agood stock at these low prices？
TRANSISTORISED FLUORESCENT LIGHTS， 12 volt．All with reversed polarity protection． 8 watt type with reflector suitable for tents，etc．$£ 3$ ．Postage／Packing 25 p ． 15 watt
 FULL PAYMENT．

£1

f1

REMEMBER！
ALL GOODS PLUS 10\％V．A．T．
G．F．MILWARD，Drayton Bassett，Tamworth，Staffs．Postage（minimum）per order 15p．

COMPONENTS FOR

 W.W. AMPLIFIER DESIGNS I00W AMPLIFIER (FEB. 1972) Designer approved kit.Semiconductor set
Resistors, capacitors, pots
F/Glass P'CB
POWER SUPPLY (For 100W Amp.)
Designer approved kit.
Semiconductors, Resistors, capacitors, pors, transformers, F/Glass PCB
30W BLOMLEY (New approach to class B)
Semiconductor set
Resistors, capacitors, pots
F/Glass PCB
30W BAILEY (Single power rail)
Transistor set
Resistors, capacitors, pors
F/Glass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer ap proved kit
2N3055 pair, BC212L, 2N171I
F/GIass PCB
LINSLEY-HOOD 20W CLASS AB
Designer ap proved kit.
MJ481/491, MJE521, BC। $82 \mathrm{~L}, \mathrm{BC} 212 \mathrm{~L}$, zener
Resistors, capacitors, pots
F/Glass PCB
Please state 8Ω or $15 \dot{\Omega}$
REGULATED GOV POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective S/C protection. All Semi/C's. R's, C's, F/Glass PCB Power supplies for other amplifiers also available
BAILEY/BURROWS PRE-AMP (Aug., 1971)
Component Set: Mono
Each component set comprises of all specified resistors capacitors, transistors, pots, including special balance control for stereo sets.
control for stereo set
Stereo F/Glass PCB
STUART TAPE RECORDER
Set of stereo $\mathrm{f} / \mathrm{glass}$ PCBs
Components sets on price list.

"FXAN'

SEMICONDUCTORS

2N699	0.25	BCIB4L	0.11
2N1613	0.20	BC212L	0.12
2N1711	0.25	BC214L	0.14
2N2926G	0.10	BCY72	0.13
2N3053	0.15	8 F 257	0.40
2N3055	0.45	BF259	0.47
2N3442	1.20	BFR39	0.25
2N3702	0.11	BFR79	0.25
2N3703	0.10	BFY50	0.20
2N3704	0.10	BFY51	0.20
2N3705	0.10	BFY52	0.20
2N3706	0.09	MJ481	1.20 1.30
2N3707	0.10	MJ ${ }^{\text {M }}$ S21	1.30 0.60
2N3708	0.07	MPSA05	0.30
2N3709	0.09	MPSA12	0.55
2N3710	0.09	MPSA14	0.35
2N3711	0.09	MPSA55	0.35 0.35
2N3819	0.23	MPSA65	0.35 0.40
2N3904	0.17	MPSU05	$0 \cdot 60$
2N3906	0.20	MPSU55	$0 \cdot 70$
2N4058	0.12	SN72741P	0.58
2N4062	0.11	SN72748P	0.58
2N4302	0.60	THBII	1.10 0.50
2N5087	0.42	TIP30A	1.10 0.60
2N5210	0.54	TIP3iA	0.60
2N54S7	0.30	TIP32A	0.70
2N5830	0.30	TIP33A	1.00
40361	0.40	TIP34A	1.50
40362	0.45	TIP41A	0.74 0.90
BC107	0.08	TIP3055	0.60
BCIO8	0.08	1808720	0.50
BCIO9	0.08	IB40K20	1.40
BC125	0.15	IN914	0.07
BC126	0.15	IN916	0.07
BC182K	0.10	1544 15920	0.05 0.10
BC2I2K	0.12	153062	0.25
BCI82L	0.10	5B05	1.20

HI-FI NEWS 75 WATT AMPLIFIER

 BY J. L. LINSLEY-HOODDESIGNER APPROVED KIT

SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$ This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

FREE
 TEAK CASE

Total cost of individually purchased packs:
£63.95

WITH 75 WATT PER CHANNEL COMPLETE AMPLIFIER KITS
 Cost of complete kit: £56.60
 TRADE ENQUIRIES WELCOME

P.S. Full circuit description in handbook

30p

FOR FURTHER DETAILS PLEASE WRITE TO:

Published Nov. 1972 to Feb. 1973
 $\star 75$ WATTS PER CHANNEL * BANDWIDTH (3dB) 3HZ-40KHZ * DISTORTION LESS THAN 0.01% \star UNCONDITIONAL STABILITY

Pack

I Fibre glass printed circuit board for power amp.
2 Set of resistors, capacitors, pre-sets for power amp.
60.75

3 Set of semi-conductors for power amp. (highest voltage version)
4 Pair of 2 drilled, finned heat sinks
5 Fibre glass printed circuit board for pre-amp.
65.50

6 Set of low noise resistors, capacitors, pre-sets for pre-amp $\mathbb{£ 2 . 7 0}$
7 Set of low noise, high gain semi-conductors for pre-amp $£ 2.10$
8 Set of potentiometers (including mains switch)
9 Set of 4 push button switches, rotary mode switch
C 1.55
10 Toroidal transformer complete with magnetic screen/ housing primary: 0-117-234 V . secondaries: 33-0-33 V . 24-0-24 V., electrostatic screen
69.15

II Fibre glass printed circuit board for power supply $\mathbf{\& 0 . 5 5}$
12 Set of resistors, capacitors, secondary fuses, semiconductors for power supply
63.50

13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, control knobs
$\{3.25$
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc. 4
15 Handbook, based on Hi-Fi News articles
\& 6.30

16 Teak cabinet
2 each of packs I-7 inclusive are required for complete stereo system.
 22 PANTILES : BEXLEYHEATH : KENT
 MAIL ORDER ONLY POST FREE TO U.K. OVERSEAS AT COST
 U.K. Orders Subject to $\mathbf{I 0} \%$ V.A.T. Surcharge
 \title{

POWERTRAN ELECTRONICS

}
 \title{

POWERTRAN ELECTRONICS

}

Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply. £31.35

FROM IST APRIL ALL ORDERS SUBJECT TO V.A.T. AT APPLICABLERATE. THIS MUST BE ADDED TOTOTALORDERPRICE INCLUDING POSTAGE. Terms of Business: Mon. to Sat. Open to callers 9 a.m. to 5 p.m. Closed Sat. Ip.m. to 3 p.m. Express postage $5 p$. for one valve; Ip. each adaitional valve

'W.W.'DIGIIAI MUTIMEEER

(D. E. O'N. Waddington, March 1973)

LIST OF PARTS NOW AVAILABLE
Please send a stamp
We will also include our illustrated lists of other components

CAVERN ELECTRONICS
29 CLAREFIELD ROAD, LEICESTER LE3 6FB
Tel. : Leicester (0533) 857223
(Mail Order only)

HART ELECTRONICS

Audio Kits

This is our Bailey/Burrows Stereo pre-amp front end. We think it is the best engineered kit of the best pre-amp circuit available, and there is a back end/tone control unit of similar advanced design to go with it which is only $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ deep so it fits almost anywhere, but of course it's at its best in a Hart universal amplifier metalwork with a couple of Hart Bailey 30 watt power amps to keep it company. That's a recipe for real Hi-Fi with electronics you'll be too proud to cover up.
Also a delight to the connoisseur are our printed circuits and components for the Stuart tape circuits.
This is a most useful high quality circuit with the record, replay and bias functions on separate boards thus giving considerable versatility of use. For instance a stereo replay channel can be built for $£ 6$ for single speed use without external components or a switch may be added for multispeed operation.

WE ARE SUPPLYING

Printed Circuit Boards, Components and Kits for the D. O'N. WADDINGTON DIGITAL MULTIMETER

This most interesting project fulfils the long -felt want for a Digital Multimeter with the added bonus of counter/timer functions, all at a price which makes it extremely attractive to the amateur, educational or commercial user.

Please send $9^{\prime \prime} \times 4^{\prime \prime}$ SAE for full details:

Penylan Mill, Oswestry, Salop.

Personal callers are always welcome, but please note we are closed all day Saturday

VITA VOX HIGH QUALITY

MICROPHONES
PRESSURE UNITS
LOUDSPEAKERS
H.F. HORNS

And a wide range of associated eqpt.
Further information from
VITA VOX LTD
Westmgreland Road, Londoin NW9 9 RJ Telephone: 01-204 4234
WW- 095 FOR FURTHER DETAILS

SULI TEXAN

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER

Your Complete Audio-Electronic Stores
$\underset{\text { Laiss }}{\text { Lillion }}$ CATALOGUE LATEST EDITION! Fully detailed and Illustrated covering every
plus data, circuits and
information, 10,000
lines
 For us Send to this address - HENRY'S RADIO LTD
(Dept W) 3 ALBEMARLE WAY LONDON '.C. 1 - - Aor catalogue by post only. All other mail to
' 30 'allers to ' 404 ' see below

 Why buy alternacan buy the genuine article from us at competitive prices from stock?

BULLD A VHF/FM TUNER

SINCLAIR PROJECT 60 MODULES-SAVE fff's

PZ6 \quad £6.37			
250 £4.37 PZ5	¢3.97	PZ8	64.77
Transtormer for PZ8			c.2.95
Active Filter Unit.			¢4.45
Stereo FM Tuner			¢16.95
IC12........... Posi etc	Q16's pr. per item.		¢15
PACKAGE DEALS			Post 250
2×230, Stereo 60,	P25		£15 95
2×230, Stereo 60	PZ6		£18.00
2×250, Stereo 60,	PZ8		£20.25
Transformer for PZ8			¢2.95
PROJECT 605 KIT			¢19.95

PATDECOLETITMG

 DJ4L 3 Channel Mic. (Buili-in)
OJ70 70 wati Disco. amplmixe
DISCOAMP 100 watl amp. $/$ mixer DISCOAMP 100 watt amp. / imixer
D J105S 30 watt Disco amp. $/ \mathrm{mixer}$ DJ700 70 wall Anti-Feedback. Quality Mic.
D $J 50050$ watt PA Amplifier \qquad
\qquad
 Fibre Optics Lighting. Mics. Effects. Projectors Spots. Dimmers - Stands. Mixers. Speakers Everything for PA-Dlsco-Lighting. List Ref. No. 18. - PORTABLE DISCOS-DETAILS ON REQUEST D J 300150 watt rms "Group"

0989

REGTVIERS

NEW BRIDGE RECTIFIERS
 HALP. A.V.

BEBTHFIES

 $\begin{array}{lrlllll}\text { ONE AMP } & & & \text { CRS } 3 / 20 & 200 & \text { 35p } \\ \text { CRS } 1 / 05 & 50 & \text { 25p } & \text { CRS } 3 / 40 & 400 & 45 p \\ \text { CRS } 1 / 10 & 100 & 30 p & \text { CRS } 3 / 60 & 600 & 55 p\end{array}$ $\begin{array}{lll}\text { CRS } 1 / 10 & 100 & 30 p \\ \text { CRS } 1 / 20 & 200 & 30 \mathrm{p} \\ \text { CRS } 1 / 40 & 400 & 35 \mathrm{p} \\ \text { CRS } 1 / 60 & 600 & 45 \mathrm{p}\end{array}$ SL4030D PLESSEY Complete with 8 page Data Booklet and Circuits $£ 1.50$.
(P.C. Board Stereo 60 ; ; Heat (P.C. Boan
Sink 14p).

Also Sinclair IC12
THPO $1: 80$. Module E4.57 TH9014P-IC Preamp $£ 1.50$. Data/Circuits
No. 4210 p .

FREE STOCKLIST

ZENERDODES
 \section*{Mum Min 25+90 $100+8$}

SEG \& NIXIE TUBES
(Posi 15p per 1 to 6)
 with data, 85p.
GNP-7. GNP-8
$0-9$
side view with decimal points and data, ${ }^{5015 F} 7$ seg. $£ 2$ each, $£ 7$ per 4 2 and 24 hour clock circuits. et. No. 31 15p.

ULTRASONIC
TRANSDUCERS Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100
yds. Ideal remote switching yds. Ideal remote switching data and new I.C. clrcults.
PRICE PER PAIR $£ 5.90$. Post

QUALITY SLIDER CONTROLS

 60 mm stroke singles and \begin{tabular}{l} ganged, Complete with knobs

$\mathrm{k} \Omega$,

$0 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$

\hline
\end{tabular} Lin. 40 p each, $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$ $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega .250 \mathrm{k} \Omega,{ }^{2}$ MARRIOT TAPE HEADS or 2 TRACK STEREO '17"' High Impedance

18.' Med. Impedance '18", Med. Impedance
" 36^{\prime} Med.-Low Imp. '36" Med. -Low Imp.
"rase Heads for above
$63^{\prime \prime} 2$ track mon ' $63^{\prime \prime} 2$ trac
Impedance 75 "
$\begin{array}{ll}\text { All voltages. } 6.8 \\ 100 \text { Volts. } 20 \text { Natt } 5 / \text { Plastic. } \\ 2 E Z & \text { Range, } 6.8-33\end{array}$ $25+$ 18p; $100+$ Volts. 25 p each. 16p; $50+$ 12p. $\quad 3$ Watt Plastic
Any one type.
TELEPRINTER EQUIPMENT LIMITED Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . . Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS

 EQUIPMENTOTHER
EQUIPMENT

SPECIAL

 EQUIPMENTTELEPRINTERS Models 7B, 54, 75, 444
PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS $15,19,20,28,32,33,35$
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-098 FOR FURTHER DETAILS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS—201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS - type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-099 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-785।
01-262-5125

> PLEASE NOTE 10% VAT MUST BE ADDED TO ALL. PRICES. NO VAT ON CARRIAGE CHARGES.

SOLENOIDS

MAGNET DEVICES. A.C. 245 V . Rating $50 \% 1 \mathrm{in}$. pult. Overa!l

HIGH CAPACITY ELECTROLYTICS

 50p. P.P. all capacitors 20 p .

STEP DOWN 240/10VV AUTO TRANSFORMERS FOR
AMERICAN EQUIPMENT. FItted with 2 or 3 pin American sockets. All sizes from 10 . Fitted with 2 ol 3 ple. Send s.a.e. sor list. American sockets. plugs, adaptors also available.

ADVANCE CONSTANT VOLTAGE Type MT.W140. Input 190-260v. 50 cycles, output 230 v .150

ISOLATION TRANSFORMERS PARMEKO. Pri. 100-110-200-220-230-240-250v. Sec. 115v. 13.5 amps. Conservatively rated. Fully shrouded table top connections. Size $13 \times 10 \times 8 \frac{1}{2}$ ins. $£ 32.50$. carr. $£ 2.00$. Pri. 200-210-220-230-240-250v. Sec. $90-100-110-120 \mathrm{v}$, 7.5 amps . Conservatively rated. Table top connections. Size $9 \times 8 \times$ 8 ins, $£ 2250$ carr. $£ 1.50$. WODEN. Unshrouded open frame type. Pri. 240v. Sec. 115v. CT. 750 watts. $£ 8 \cdot 50$. carr. $£ 1 \cdot 00$. DRAKE. Pri. 200-220-240v. Sec. 110v., 50 watts. $£ 1$ 150. P.P. 25p.

G.P.O. 20-W AY JACK STRIPS
Type 320 BN. Ex-equipment. Perfect
S.T.C. SELENIUM FW BRIDGE RECTIFIERS

Max. A.C. input 36 v . D.C. output 24 v ., 5 a . $\mathbf{\text { E } 1 . 5 0 \text { . P.P. } 2 5 \mathrm { p } \text { . }}$
DIAMOND H RELAYS
Type BR 195 BIT-9C 4 CO Contacts, 150 ohms. 26v., 250v. 15 a
Enclosed in metal case. Size $1 \frac{1}{2} \times 1$ in. dia. 75 p incl. post.
H.T.TRANSFORMERS BY PARMEKO AII Primaries $220-240$ PARMEKO. AN Primaries
Type 1. Sec. $630-0-620 \mathrm{v} .105 \mathrm{~m} / \mathrm{a} 5 \mathrm{~s} .4 \mathrm{~A} .4 \mathrm{v}$. $5 v .2 A$. Potted type $£ 300$. Carr. 50 p . Type 2 Sec. 1.875 v . $60 \mathrm{~m} / \mathrm{la}$. 4.2 kv . Wkg, and 500 v .
$31 \mathrm{~m} / \mathrm{a}$
Potted type $£ 3.50$. Carr 50 p .
 $200 \mathrm{v} .20 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{~A} .6 \cdot 3 \mathrm{v} .1 \mathrm{~A}$. Potted
 WODEN. All primaries 220-240v. Type 1. Sec. $890-710-0-710-890 \mathrm{v}$. $120 \mathrm{~m} / \mathrm{a}$, un shrouded table top connections, tropi

calised $\mathbf{E 2} 20$. P.P. 50 p. Type 2. Sec. 190 v | ans |
| :--- |
| $60 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .3 \mathrm{a} . \mathrm{P} .51 .25$. Type 25 p . Type 3 | Sec tapped $150-165 \mathrm{v}$, 4 amps unshrouded table top connections $£ 3.75$. P.P. 75 p

Type 4. Sec. 130 v . $450 \mathrm{~m} / \mathrm{a}$. three times. "C" core, table top connections $£ 3-50$. P.P. 50 p . Type 5.63 v . 1.6a. and 24v. 0.8 a . and 6.3 v . 1 a . Unshrouded
nections $£ 2.50$. Carr. 50 p .
GARDNERS. All primaries 220-240v

 3a. 6.3 v . 3a. 5 v . 3a.. Potted type $£ 2.50$. P.P. 50 p , Type $5.350 \mathrm{v}, 44 \mathrm{~m} / \mathrm{a} .20 \mathrm{v} .10 \mathrm{~m} / \mathrm{a}$. 6.3v. 3a. "C' CORE E1.50. P.P. 30p.
L.T. TRANSFORMERS

WODEN Pri. $220-230-240-250 \mathrm{v}$. Sec. 25 v .
 2a. Awice,
7a. Ail seate windings. Conservatively
rated. Open trame type table top connecrated. Open trame type table top connec-
tions. Size $6 \frac{3}{3} \times 6 \times 6 \mathrm{Fin} .85 .50$ carr. 50 p .
 Aec, $18-0-18 \mathrm{v}$, $5 \mathrm{Fa},$. and $180-018 \mathrm{v}$. 3a. Con-
Servatively rated table top connections. servatively rated
$E 3.50$ P. .50 p .
REDCLIFFE 'C' core types. Pri. 220-240v.
Sec 11v. $9 \mathrm{az} . \mathrm{E}^{2} 50$ P.P. 35 p . Pri. 220-240v.
 240 v . Sec. tapped $370-390-400 \mathrm{v} .6 \mathrm{~m} / \mathrm{a}$. 50 p
G.E.C. L.T. TRANSFORMERS Al primaries. 220-240v. Type 1. Tapped
$63-68$-74v, 3a, and 6 v . 4a., terminal block Connections, unshrouded $£ 2 \cdot 50$. P.P. ${ }^{50 \mathrm{p}}$. Type 2. Tapped $59-61-65-67-69 \mathrm{v}$. 10a. T.
block connections, unshrouded, tropiblock connections. 4 unshrouded, tropi-$56-58-60 \mathrm{v}$. 3a. T. block connections, unshrouded, tropicalised $£ 2.75$. P.P. 50 p.
Type 4. $100-0-100 \mathrm{v}$. $65 \mathrm{~m} / \mathrm{a}$. and $61-64-67 \mathrm{y}$. Type 4. $100-0-100 \mathrm{v}$. $65 \mathrm{~m} / \mathrm{a}$. and $61-64-67 \mathrm{v}$.
$150 \mathrm{~m} / \mathrm{a}$. and 6 v . 1 a . Type 5. Tapped $37-40-$ $43 \mathrm{va} .5 \mathrm{and} 105 \mathrm{v} .300 \mathrm{~m} / \mathrm{a}$. Twice "C "core

 Tapped $30-57-115 v .4 .5 \mathrm{v}$. 0.5a. "C' core
P.P. 35 . 22.00 . AMOS 'C' CORE TRANSFORMERS
 P.P. 35 p .
L.T. SMOOTHING CHDKES GRESHAM 'C' core swinging types. $7.5 \mathrm{~m} / \mathrm{h} .6 \mathrm{a}-75 \mathrm{~m} / \mathrm{n} 0.5 \mathrm{a} . ~ £ 2.50 \mathrm{carr}$. 50 p .
$10 \mathrm{~m} / \mathrm{h} .4 \mathrm{4a-100m/n} 0.5 \mathrm{a} . \mathrm{E} .00$ carr. 50 p. G.E.C. $150 \mathrm{~m} / \mathrm{h}$. 3 Ba . unshrouded fuliy tropicallsed $£ 2.75$ P.P. 35 p . REDCLIFFE. Oil-filled types $100 \mathrm{~m} / \mathrm{h} .2 \mathrm{a}$.
E .50 P.P. $45 \mathrm{p} .130 \mathrm{~m} / \mathrm{h} .1 .5 \mathrm{a} .51 .50 \mathrm{P} . \mathrm{P} .25 \mathrm{p}$ E2. 50 P.P. $45 \mathrm{p} .130 \mathrm{~m} / \mathrm{h} .1 \cdot 5 \mathrm{a}$, . $1 \cdot 50$ P.P. 25 p .

Mains filter chokes $10 \mathrm{~m} / \mathrm{h} .2 \mathrm{a}$. 50 P. P.P. 20p. All above chokes $\frac{1}{i}-1$ ohm res. | G.P.O. RELAYS 3000 TYPE 100Ω |
| :--- |
| 1.25 amp. Make contact. 60p. P.P. |

SPECIAL OFFER OF MULTI TAPPED L.T. TRANSFORMERS VERY CONSERVATIVELY RATED
Gresham Pri. 200-220-240v. Sec. 29.5 v 2. 6 a . twice. 20v. 5a. twice, 15v. 0.1a. four
times. 'C' Core. Table top connections ${ }^{\mathrm{E}} \mathbf{6 . 5 0 \text { . carr. } 7 5 \mathrm { p } \text { . }}$
PrI. $200-220-240 \mathrm{v}$. Sec. 16.3 v . 1a. twlce.
 $200 \mathrm{~m} / \mathrm{a}$
$£ 4.50$ ' carr. 50 p . Table top connections E4.50, carr. 50 p.
Pri. 200-220-240v. Sec. 20-21-22-23-24-25v.
 $22-23 \mathrm{v} .2 \mathrm{a} ., 11-12-13-14-15-16 \mathrm{v}, 0.5 \mathrm{a}$. Twice
$100-0-100 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}^{\prime} \mathrm{C}^{\prime}$ Core. T , top connections. $£ 6.50$ carr. 75 p . Pri. 200-220-240v. Sec. tapped 63-68-74v, 3a. and 6 v .4 a . Open frame terminal block connections £2-50 P.P. 50 p . Pri, 200-220-240v. Sec. 37-40-43v. 5a.
105 v . 300 .
 Pri. 200-220-240v. Sec. 39v. 8.6a., 38v 2-6a. Oil-filled potted type. $\mathbf{£ 8} \mathbf{8 0}$. carr. 75 p Pri. 200-220-240v. Sec. tapped 30-57-5
115 F $115 \mathrm{v} .0 .5 \mathrm{a} . \mathrm{C}^{2} \mathrm{C}$ core T . to tonnections

£2.00 P.P. 25p. | E2.00 P.P. 25p. |
| :--- |
| LTP | LTP Pri. 200-220-240v. Sec. 6.3v. 8 Ba

three times. 6.3 va . 3 A , twice, open frame
type T . top connetlons $£ 3.75$ carr. 75 p . tyree times. top connectlons $£ 3.75$ carr. 75 p
typeden Pri. $220-240 \mathrm{v}$. Sec. 10 v . 2 a . Fully Woden Pri. 220-240v. Sec. 10v. 2a. fully
shrouded Ei. 50 P.P. 25p. shrouded £1.50 P.P. 25p.
Pri. 220-240v. Sec. tapped 6-12v. 2a. fully
shrouded. $£ 1-75$ P.P. 25 p. $\frac{\text { shrouded. £1-75 P.P. 25p. }}{\text { Pri. 200-220-240y. Sec. tapped 3-10-13v. 7a }}$ Open frame. T. top connections $£ 2.00$
P P. 35 . Pri. $220-240 \mathrm{v}$. Sec. $24.5-0-24 \cdot 5 \mathrm{v} . \quad 0.75 \mathrm{a}$
C^{2} Core. T. top connections $£ 1.50$ PP 25 p . Pri. 200-220-240v. Sec. 11-0-11v. 176m/a 'C' core, T. top connections 75p. P.P. 25p PARMEKO HT TRANSFORMERS
NEPTUNE OHL-FILLED TYPE. Pri.
230 v Sec $350-0-0350 \mathrm{v}$. $200 \mathrm{~m} / \mathrm{a}$. 4 k . 6 a 2ve. Sa. Size $5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \mathrm{ins}$. E2.75. P.P.
50 p . RICH AND BUNDY TRANSFORMERS Pri. 220-380-415-440v. Sec. $250 \mathrm{v}, 50$ watts conservatively rated. Open frame type
Terminat block connections. $£ 2.50$ carr REDCLIFFE LT TRANSFORMERS C' Core. Pri. $220-240 \mathrm{v} . \mathrm{Sec}^{24 \mathrm{c}}$. 3a. Table
top connections. $£ 2.00$. P.P. 40, Pri top connections. $£ 2.00$. P.P. ${ }^{40 \mathrm{p} . \text { Pri. }}$
$220-240 \mathrm{~V}$ Sec. 11 V . 9 Ca , Core. Table top
con. ${ }_{220-240 \mathrm{v}}$. Sec. 14 v . Ea. 40 p . Drake. Pri. H.T. SMOOTHING CHOKES PARMEKO. Potted Type. $10 \mathrm{~h} .180 \mathrm{~m} / \mathrm{a}$
£ 1.50 P. P. $25 \mathrm{p} .15 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a}$. £ $250 \mathrm{P} . \mathrm{P} .50 \mathrm{p}$ £1.50 P.P. $25 \mathrm{p} .15 \mathrm{~h} .30 \mathrm{~m} / \mathrm{a} .12 .50$ P.P. 50 p
$10 \mathrm{~h} .120 \mathrm{~m} / \mathrm{a} .60 \mathrm{p}$. P. P. $20 \mathrm{p} .15 \mathrm{~h} .75 \mathrm{~m} / \mathrm{a}$.

WEYRAD

COILS AND I.F. TRANSFORMERS IN
 LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores 3 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.
These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

Bes 106 GENCOKALL ORDERS to:

 EXPORT EMQURIES WELCOMED EXPORT ENQURIES WELCOMED MAL ORDERS NOT TO BE SENT TO SHOPS NOTTINGHAM 19 Market St. (Closed Thurs.) SHEFFIELD 13 Exchange St. (Closed Thurs.) STOCKPORT 8 Little Underbank Tel. 480 O71 SUNDERLAND 5 Market Scuare (Closed Wed.) R.S.C. G66 MkII $6+6$ WATT STEREO AMPLIFIER

 $\pm 13 \mathrm{~dB}$. Selector switch P. W. or Tape Radio. Output for $3-15 \mathrm{ohm}$
speak ers. Statulart $200-250 \mathrm{v}$. 50 Hz mains operation. Attractiver Bpeakers. Stathdart $200-250 \mathrm{v}$. . 50 Hz ruains pperation. Attractive

COMPLETE KIT OF PARTS INC.
FULLY WIRED PRINTED CIRCUIT
$\mathbf{1} 2.65$ TEAK VACTORY BUILTIN
\mathbf{O}
16.50

FANE ULTRA HIGH POWER LOUDSPEAKERS

A.S.C. AlO 30 WATI HI-FI AMPLIFIER Including
ind
centrollee separate Bass and Treble Controls. Yalves Sensitivity 36 mV . For High Imp. mic. or pick-ups, Derighed to high tidelity standards
for CL, 1 , SCHOOLS, THEATRES, DANCE Electron Discotheques, etc. For use with Grann, Redio or Tape. For 3 or 15 ohm speakery
Twin-handled metal cover \&2.10 $\mathbf{I 2 1 . 7 5}$ months' BUILT Fith B.S.C.IANS TRAMSFORNGEBS

FULLY GUARANTEED, Intorleaved and Impreb

 FULLY SHROUDED UPRIGRT MOUNTING
 $300.10 \cdot 300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a} .$, c.t., 6.3 v 1 a .
For Muliard 510 Anplifier
 $425-0-125 \mathrm{v} .200 \mathrm{nLA}, 6.3 \mathrm{v} \cdot 4 \mathrm{4a}, 6.3 \mathrm{vv} .3 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{a}$ TOP SHROUDED DROP-THROUGH TYPE

 $350-0-350 \mathrm{v}, 80 \mathrm{mAA}, 6.3 \mathrm{vv} 2 \mathrm{2a},. 0.5 \cdot 6 \mathrm{v} .3 \mathrm{v} .2$

FILAMENT OR TRANSISTOR POWER PACK 2.85

 AUTO (Step UP/Btep DOWN) Transtormers
 OUTPUT TRANSFORMERS

 Push- P^{1} ull 15.18 watts, sectionally wound 95p

$\substack{81.55 \\ 41.50 \\ 42.45 \\ 4 \\ \hline \\ \hline}$

£2:20

 BATTERY/MAINS CONVERSION UNITS

P. F. RALFE
 10 CHAPEL ST. LONDON N.W.1. Phone 01-723 8753

TELEVISION SWEEP GENERATOR

by Sweep systems type 505. Frequency coverage $450-940 \mathrm{MHz}$. (Channels $15-80$). Markers at 465 / $565 / 660 / 750 / 830$ and 900 MHz . Attenuated output in eight, five db steps and fine $0-10 \mathrm{db}$. Sweep width adjustable from $1-15 \mathrm{MHz}$. The instrument is completely solid-state using variactor diodes and transistors throughout. Dims: $19 \times 12 \times 5$ ins. Wt.: 201 bs .
Supplied in good working order, price $\mathbf{6 5 9 . 5 0}+50$ p carriage.
GERALD 900B Sweep Generator with SD8A sweep driver unit. V.H.F. and U.H.F. $0-1200 \mathrm{MHz}$. centre frequency. 1,10 and 100 MHz markers. Built-in detector, attenuators etc. This instrument is probably the most comprehensive sweeper ever made. P.U.R.

TEKTRONIX OSCILLOSCOPES

Type 547 with $1 A 2$ plug-in. $D C-50 \mathrm{MHz}$. With display switching.
Type 545A with 'CA' plug-in. (Or 'L'). DC- 30 MHz . Type 56lA with 3 A I and 3 B 3 units. DC-10MHz.

Type 535 with CA plug-in unit. DC- 15 MHz .
Type 55I. Double-beam with L\&G units. DC -27 MHz .
Also available:
Dynamco D7i00 with 1 Y2 and 1×2 plug-ins. Portable, DC- 30 MHz . Hewlett-Packard 175A. 1781 and 1755 A plug-ins. DC- 30 MHz . Philips GM5602. DC-20MHz. Price $£ 65.00$.
Roband RO50A with 5 G plug-in. DC- 15 MHz . Price $£ 125.00$. Solartron CDI 400 . With two CXI 442 and a CX1443 units.

Extremely sensitive instrument. Twin differential inputs.

SIGNAL GENERATORS

Marconi type TF8DID. $10-485 \mathrm{MHz}$. Excellent. P.U.R.

Marconi type TF867. $15 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 150$.
 Airmec type $201.30 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 65$.
Hewlett-Packard 616A. $1780-4000 \mathrm{MHz} . £ 75$.
Advance C 2 H . Spot-frequency production-line test instrument. 12 freqs. in bands $500 \mathrm{KHz}-30 \mathrm{MHz}$. $£ 25$.
Rohde \& Schwarz U.H.F. 990 -1900MHz. P.U.R.
Rohde \& Schwarz SMAF. A.M. \& F.M. 4-300MHz. FM Dev. $0-100 \mathrm{KHz}$ in 2 ranges. Fundamental-frequency generator ideal for radiotelephone test equipment. P.U.R.

Marconi type 791D Deviation checker. 0 - 1024 MHz . Deviation to 125 KHz .
Marconi type TFII52A R.F. Power meter. 0-25W. 50 ohms. $£ 45.00$. Marconi type TFI020 and 1020A RF power meters. 0-100W. 50 and 75 ohms. P.U.R.
Airmec 210 Deviation meter. $3-300 \mathrm{MHz}$. AM Mod and FM Deviation to 125 KHz .
Rohde \& Schwarz type RDI-60 R.F. Load. IKW. Excellent. One only. $\mathbf{8 5 0 . 0 0}$.

POWER TUBE BASES for 4×250 T/X Valves etc. BASES ARE BRAND NEW AND BOXED COMPLETE WITH THE ceramic chimney. Only £3.25 each p.p. 10p.

CANNON XLR AUDIO SERIES

Plugs and Sockets
XL3-1) 3 -pole socket (free, line mounting). XL3-32 3pole plug (chassis mounting). $\mathbf{£ 1 . 2 5}$ per pair.
XL6-32 6-pole plug (chassis mounting). XL6-11 6 -pole socket (free, line mounting). $£ 1.50$ per pair.
XL3-32 3-pole plug. 75p each

BARGAIN OFFER-LOW VOLTAGE STABILISED POWER SUPPLIES

*Voltage Range 16-24V.
*Current Range to 6 Amps. *Full over-voltage and Current protection.
*AC Ripple content better than 5 mV . These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core transformer etc. Offered in perfect condition, carefully checked before despatch. List price over $£ 125$. Our price only $\mathbf{6 2 6 5 0}$. Carriage $£ 1$.

SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

COMPLETE TELEPHONES
NORMALHOUSEHOLDTYPE AS SUPPLIED TO THE POSTOFFICE Ex. G.po
ONLY 95p

P\&P35PEACH

TELEPHONE DIALS
Standard Post Office type Guaranteed in working order ONLY 25p

make a rev counter
FOR YOUR CAR
The 'TACHO BLOCK' This en capsulated block will zurn any 0.1 mA meter into a linear and
accurate rev. counter for any system.

OVER $1,000,000$ TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Trensistors. Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

600 Silicon Planar Plastic Transistors 600,000 unmarked, untested - factory clearance Audio PNP similar to ZTX 500 , $2 N E 702 / 3$, BCY70 etc. Audio NPN. similar to ZTX300. 2N3708/9. BC10\%8/9, BC168/9 etc. R.F. NPN and Switching NPN
Please state type of Transistor required when ordering.
ALL AT 500 for $£ 3.00$. 1,000 for $£ 5.00$. 10.000 for $£ 40.00$

OUR VERY POPULAR 3p TRANSISTORS
FULLY TESTED \& GUARANTEED
TYPE 'A" PNP Silicon alloy, To-5 can.
TYPE - B " PNP Silicon. plastic encaps
TYPE -E" PNP Germanium AF or RF.
TYPE -F"NPN Silicon plastic encapsulation.
TYPE "G" NPN Sificon, similar Z Z $\times 300$ range

Value
Added
Toyou
On orders of
£4 or over
See below:
Please read very caretully:
We will give a discount to customers who sendin an arder for E 4 or over This discount will be equal to the V AT. rate current at this time. It your order doess amount to f4 or over
all you need it send is the total cost of goods and postage as stated is his advertisement. No addition for VA.T is needed.
V.A.T. for orders under f4:-

If the total cost of goods plus postage and packing is less than EA . kirdly add $10 \% 110 \mathrm{p}$ in the f

A CROSS HATCH GENERATOR FOR $£ 3.50$
YES. a complete kit of parts including Printed Circuit Board. A four position switch gives X-hatch.
Dots, Vertical or Horizontal lines. Integrated Circuit Dots. Vertical or Horizontal lines. Integrated Circuit design for easy construction and refiability. This is proect
Television

This complete kit of parts costs $£ \mathbf{\$} .50$, post paid.
A VUST for Colour T.V. Alignment
Our famous P1 Pak is still leading in value for money. Components, approx 170 . We guarantee at lectronic 30 reatly high qux. 170. We guarantee at least PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some intormation on the Transistors

Flease ask for Pak \mathbf{P}.1. Only $\mathbf{5 0 p}$
$10 \mathrm{p} P \& P$ on this Pak

FREE
catacuse for TRANSISTORS, RECTIFIERS, DIODES, INTEGRATED CIRCUITS AND FULL PRE-PAK LISTS

100,000

Plastic Power Transistors in stock, more on way!
NOW IN TWO RANGES
These are 40 W and 90W Silicon Plastic Power Tansistors the very latest design. avaitable in NRP or PNP at the most
shatteringly fow prices of all time We have been selling these successfully in quantity to all parts of the world and we are roud to offer them under our Tested and Guaranteed terms $\begin{array}{lllll}\text { RANGE } \begin{array}{l}\text { VCEE. Min } \\ \text { HFE } \\ \text { Min } 15\end{array} & 1.12 & 13-25 & 26.50\end{array}$
40 Watt
$\begin{array}{llll}90 \text { Watt } & 20 p & 18 p & 16 p \\ 24 p & 22 p & 20 p\end{array}$
RANGE 2 VCE. Min. 40
40 Watt
90 Watt
$\begin{array}{llll}30 \mathrm{Watt} & 30 \mathrm{p} & 28 \mathrm{p} & 26 \mathrm{p} \\ 90 \mathrm{p} & 33 \mathrm{p} & 30 \mathrm{p}\end{array}$ Complementary pars matched for gain at 3 amps. 10p extra
per pair. Please state NPN or PNP on order per pair. Please stale NPN or PNP on order
INTEGRATEDCIRCUITS
We stock a large range of I.Cs at very compecitive prices (from
10 p each). These are all listed in upon bet These are all listed in our FREE Catalogue. see

METRICATION CHARTS now available.
This fantastically detaited conversion calculator carries housands of classified references between metric and British
land U.S.A.) measurements of tength, area, volume, Heasure. weights etc
Pocker Size 15p.
all Chart 18p.
LOW COST DUAL IN LINE I.C. SOCKETS $\left.\begin{array}{l}14 \text { pin type at 15p each } \\ 16 \text { pin type at } \mathbf{1 6 p} \text { each }\end{array}\right\}$ Now new low profile type.

```
                                    gooks
```

e have a large selection of Reference and Technical Books
stock.
re just two of our popular lines
B.P.1. Transistors Equivalents and Substitutes 40p, this includes many thousands of British. U.S.A.. European and
C.V. equivalents. The tliffe Radio Valve and Transi
Characteristics of 3.000 vaives and tubes, 4.500 Transistors.
Diodes, Rectifiers and Integrated Circuits.
Send for tists of these English publications.
N.B. No V.A. T. to pay on books.

These parcels Bumer BundLes
These parcels contain all types of surplus electronic com
ponents, printed paneis, switches, potentiomelers, ponents, printed
and diodes, etc.

2 LBS IN WEIGHT FOR E'
Post and packing 25 p

£1 each

DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

OVER 300,000 IN STOCK!

Multiway and R.F. Connectors by twenty different companies!
Send us your detailed requirements quoting Nato numbers if known. TANTALUM CAPACITORS We hold large stocks by
S.T.C.T.C.C. Dubilier, Kemet, Plessey, G.E., etc., send for
stock stock list with lowest prices for immediate delivery.
ETHER ELECTROMETHODS LOW INERTIA ETHER ELECTROMETHO
ANTEGRATING MOTO
Avaiable ex-slock al extremely low prices. For 1.5, 6, 12 and VACTRIC SIZE 23 PULSE GENERATORS (Shaft Digltizers) Full detalls and price on apolication
STAINLESS STEEL VACUUM CONTAINERS FOR LIQUIDS. Capacity 2 U.S. galis. fitted with delivery taps. 400 HZ IN VERTERS. 27.5 v 150 A indut, 115 v 400 Hz 2500 VA output. Not new but in excellent condition: fitted with contro box containing switchgear and voltage and frequency adjust ment circuits. These are extremely small for their capacit
only 16 in long and 13 in high overall including the controi bo only 16 in long and 13 in hioh overall including the contoi bo
which also carries the circuit dlagram. $£ 29$ (C.P. U.K. Mainld.) MULTICORE PVC COVERED TELEPHONE CABLE 24
 $100 \mathrm{yds}, 4$ core $£$
HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE to DEF 120 Type 3 in following colours: volet, yellow, white, grey
green, orange, pink, sed and brown $7010076^{\prime \prime}$ conductors $\mathbf{E 3 . 2 5}$ per 100 yds (P'Pd.) also with $40 / 0076^{\prime \prime}$ conductors in grey, vioiet white, pink and red at $\mathrm{E2} 50$ per 100 yds (P.Pd.).
GRELCO - WAY CONNECTOR BLOCKS. 10 for E1.25 GRELCO 6-WAY CONNECTOR BLOCKS. 10 for E1.25
(P.Pd.)
AMP PATCHBOARDS. TyDes $695448-3$ and $695365-2 . £ 20$ (PMP PATCHBOARDS. Types 695448-3 and 695365-2. £2 TIME SWITCH, Smiths Type TT10/KD, 0.10 mins., 2-pole
contacts, $250 \mathrm{v}, 50 \mathrm{~Hz}, \ldots 2.25$ (P.Pd.) Contacts, $250 \mathrm{~V} .50 \mathrm{~Hz} . ~ £ 2.25$ (P.PA.) All inputs $190-260 \mathrm{v}$. 50 Hz . Output 230 v .75 w, , £5 (P.Pd.). 240 v .50 w $£ 5.25$ (P.Pd.
$£ .3$ (P.Pd.).

AERIAL DIRECTION INDICATING KIT
This set comprises a pair of Magslips to provide remote indicaThe transmilter is directly comprised to thansmitter and receiver recelver can be mounted at the control point, to provide imme
rection the diate and continuous indication of aerial position. Supply voltage required is 50 y 50 Hz and the price $\mathrm{E5} .75$. (P.Pd.) including a pointer for the receiver. The suggested use of these
items would include a mains operated, geared motor to drive the aerial, controlled from the position to which is ted back position information by the magslip link. Transformers to

FLOODLAMPS

For use with back reflectors by internationally famous company For use with back reflectors by internationally famous company
$200 \mathrm{w}, 250 \mathrm{v}$ E.S. $\mathbf{£ 1 . 5 0}$ per $4, \mathbf{5 7 . 5 0}$ per pack of 25 (post paid) Aiso 300w, 240v G.E.S. - $\mathrm{E} 1 \cdot 50$ per 3 . E $\mathrm{E} \cdot 50$ per pack of 12 (pos paid). These lamps are fitted with front silvered bulbs to enthance reflection from the fitting.
RADIO INTERFERENCE MEASURING SETS Type CT535,
m'fd. by ADVANCE. Full details and price on applicatlon. GRELCO 8-WAY CONNECTOR BLOCKS 10 for $£ 1 \cdot 25$ (P.Pd. MARCONI-ELLIOTT DUAL IN LIME INTEGRATED CIRcUits. DTL logic, a few Linear. List of types available on equest.
in TAPE REEL CONTAINERS would keep your tapes in perfect condition. Strongly made for mechanical and electrical protection of spools and tapes. 5 for $£ 1.50$ (P.Pd.)
Tin PROFESSIONAL TAPE SPOOLS in dural. 5 for $\mathbf{E 2 . 5 0}$ SELECTED HIGH QUALITY INSTRUMENTS IN STOCK SELECTED HIGH QUALITY INSTRUMENTS IN STE
Racal Universal Counter Timers CT488 (SA540 \& SA545) Marconi Counters TF1345/2
Airmec High Speed Counters Type 298
Marconi Attenuators TF2162 and $1073 \mathrm{~A} / 2 \mathrm{~S}$
and Vibration Measuring Instrument

E.1.L. Direct Reading Generating Type 2/302D
E.I.L. Twenty Milllon Meoohm Meter Model 29A

Twenty Milllon Megohm Meter Model 29A
Chronotron Model 25E
All Prices on Application
INDUCTIVE POTENTIOMETERS O.C. resistance 60 ohms, A.C. Impedance at 50 Hz . 120,000 ohms. Intended
50 V 50 Hz . Linearity $0.1 \% \mathbf{~} 15 \cdot 50$ (C.Pd. U.K. Mnld.)
B.T.H. MOTOR AMPLIDYNE 400 v 3 Kh 50 Hz input, F.L. output 220v 2.4A $£ 75$. (C.Pd. U.K. Mnld.)
BENDIX AMPLIDYNE UNITS 5AM31NJ18. 28 V in output 8.8A at 60v, fully compensated E12.50 (C.Pd. U.K. Mnid.)

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& PLUGS \& SOCKETS

$\delta_{\text {ervo and }}$ Electronic $\delta_{\text {ales }} \mathcal{L}_{1+d}$

Regd. Office: 45a HIGH STREET, ORPINGTON. KENT.
Poat Orders and Technical enquiries to: "BAYS". HIGH ST., LYDD. KENT. Lydd 20252 (STD 0679)
Or 47 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: 01-688 1512

MIL SYNCHROS AVAILABLE EX-STOCK

Synchro Conirol Transformers
Synchro Control Differential Transmitters Synchro Resolyers
D.C. VOLTAGE CALIBRATORS D.C. 3

A D.C. potentiometer with integral standard cell to measure
imv to 1000 V to 0.2% or 1 mV with external galvo, or 0.5% with mV to 1000 V to 0.2% or 1 mV with external galvo, or 0.5% with
galvo incorporated. With handbork E 12.50 . (C.Pd. England and Galvo inces.)
IONISATION AMPLIFIER PV4075
A modern hioh grade iow nolse solid state amolifier to feed a potentiometric recorder. i8 input ranges from $10^{-1}+$ to $5 \times 10^{-7} A$ with 5 outputs of 1 mV to 100 mv . Linearity $0.1 \% \mathrm{f}$.s. Noise less
than $0.5 \% \mathrm{f} . \mathrm{s}$ at max. sensitivity. Back of facility. Dimenslons than $0.5 \% \mathrm{f} . \mathrm{s}$. at max. sensitivity. Back off facility. Dimenslons
$28 \times 10 \times 43 \mathrm{~cm}$ deep. With operating information $£ 25.00$. $28 \times 10 \times$
(C.Pd. U.K.)

GAS CHRO PV $4051 / 4056$

A large capacity oven of low thermal mass for use between 35 and $350^{\circ} \mathrm{C}$. Provides a forced air circulating system yielding
1000 changes of air per min. The oven has forced air cooled 1000 changes of air per min. The oven has torced air cooled
outer surfaces when the internal temperature is high. $210-250 \mathrm{~V}$ outer surfaces when the internal temperature is hit
$50 \mathrm{~Hz}, 2.6 \mathrm{KW}, £ 26.00$. (C. Pd. England and Wales)
GAS CHRO
A somewhat smalier unit than the previous item for use between Internal dimensions $20 \mathrm{~cm} \times 18 \mathrm{~cm}$ high $\times 20 \mathrm{~cm}$ deep. Max nternal dimensions $20 \mathrm{~cm} \times 18 \mathrm{~cm}$ high $\times 20 \mathrm{~cm}$ deep. Max
heating rate $50-400^{\circ} \mathrm{C}$ in 6 mins. Max. cooling rate $400^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in 4 mins. $210-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2.6 \mathrm{KW}, \mathrm{E} 20.00$. (C.Pd England and Wales). Details of these three and other gas chromatography items are
available-price 25 p (C.W.O. oniy) refundabie on making flrst available-

ADD 10\% VAT TO

DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length 1.1 ") Diameter $0 \cdot 14^{\prime \prime}$ to switch up to 500 mA at up to 250 v D.C. Gold clad contacts. 63p per doz. $£ 3 \cdot 75$ per 100 ; $£ 27 \cdot 50$ per 1,000 ; $£ 250$ per 10,000. All carriage paid.
Heavy duty type (body length $\mathbf{2}^{\prime \prime}$) diameter 0.22 to switch up to 1 A. at up to 250 . A. 2 Gold ciad contacts, E1.25 per doz., 10,000 per 100; $\mathbf{C h a n g e o v e r ~ t y p e ~} \mathbf{E 2} \cdot 50$ per doz. All carriage paid.

MARCONI EQUTPMENT
DERIVATIVE TEST SET OA-1259: This unit has been designed primarily for testing the linearity of modulator/dermodulator equipment used in UHF radio Tube Unit (TF-1261) and associated stabilised pover supplies. Further details on request. Secondhand, excellent cond. $£ 225$ each. Carr. $£^{2}$
TF-1234 UHF RECEIVER: Suitable for testing the RF stages of radio link equipment. A superheterodyne receiver tunable from $1700-2300 \mathrm{MHz}$. Complete with power supply. Secondhand, excellent cond. $£ 175.00$ each. Carr. $£ 2$.
TF-1041B VALVE VOLTMETER: Measures 25 mV to $300 \mathrm{~V}, 20 \mathrm{c} / \mathrm{s}$ to 1500 Mc / s a.c. Also 10 mV to 1000 V d.c. Resistance 0.02 ohms to 500 Meg . ohms. Power requirements $200-250$ volts a c. Secondhand, excellent con. $\mathbf{6 3 5 . 0 0}$. Carr. £
TM-8098 GRATICULE PROJECTOR: Suitable for TF-1300 and TF-2200 series oscilloscopes and can be adapted for other makes. $£ 2.50$ each. Post 30 p .
Type 388B Variable Attenuator. 512.50 each. Cart. 60p.
$\begin{array}{ll}\text { Type 388C } & \text { Variable Artenuator. } £ 15 \text { each. Carr. } \\ \text { TF-874A } & \text { Moisture Meter. } £ 28.50 \text { each. Carr. } £ 1 \text {. }\end{array}$
TF-899 Millivoltmeter. $£ 25-00$ each. Carr. 75 p .
TF-899 Meviation Test Set, $2.5-100 \mathrm{MHz}$ (can be extended up to Deviation Test Set,
500 MHz on Harmonics). Dev. Range 0.75 KHz in modulation

TF-1026/5
TF-1026/6
TF-1026/7
TF-1091
TF-1093/1
TF-1262
TF-1263
TF-1263
TF-1264
TF-1264
TF-1274
TF-1275
TF-1275
TF-1300
TF-1300
TF-1303
TF-1350/1
TF-1371
TF-1377
TF-1434 2
TM-5683
TM-6017
TM-6156
TM-6183
TM-6184
TM-5691
TM-5600
TM-6600
TM-6899/1
6076A
range $50 \mathrm{~Hz}-15 \mathrm{KHz}$. $100 / 250 \mathrm{~V}$ a.c. $£ 45$ each. $£ 1.50 \mathrm{carr}$.
Frequency Meter. $1800-2200 \mathrm{MHz}$. $£ 30.00$ each. Carr. £. 1.
Frequency Meter. $3800-4200 \mathrm{MHz}$. $£ 32.50$ each. Carr. £1. Frequency Meter. $1700-2100 \mathrm{MHz}$. $\mathbf{E 3 0} \cdot 00$ each. Carr. £. Ph. Meter. $\mathbf{~} 4500$ each. Carr. £1.
UHF Millivoltmeter. $£ 55 \cdot 00 \mathrm{each}$. Carr. $£ 1$
Short Element Counter. 50-200 Bauds. £85:00 each. Carr. £1. Slotted Line Attenuator, $£ 45 \cdot 00$ each. Post $\mathbf{~} \mathbf{~ H e t e r o d y n e ~ F r e q u e n c y ~ M e t e r . ~} £ 85 \cdot 00$ each. Carr. £1.
VHF Bridge Oscillator. $\mathbf{3 0 - 3 0 0} \mathrm{MHz}$. $\mathbf{x} 65 \cdot 00 \mathrm{each}$. Carr. £1.
VHF Bridge Detector. $£ 75.00$ each. Carr. $£ 1$
Valvevoltmeter. $\mathbf{8 4 0} 00$ each. Post 75p.
Transistorised Power Unit. £25-00 each. Post 75p. Power Unit. $£ 20.00$ each. Carr. $£ 1$. Wideband Millivoltmeter. £45.00 each. Carr. £1. Suppressed Zero Voltmeter. 0-500V. $£ 35 \cdot 00$ each. Carr. £1 Counter Range Extension Unit. $\mathbf{\$ 5 5 \cdot 0 0}$ each. Carr. £1 43DB Artenuator Unit. $\$ 20 \cdot 00$ each. Post 60p. Stand. $£ 3.00$ each. Post 60p. Attenuator 40DB. $\mathbf{£ 2 0} 00$ each. Post 60 p . Decoding Unit. $\mathbf{1 3 0} 00$ each. Carr. $£ 1$. Numerical Display Unit. $\mathbf{£ 1 5} \mathbf{0 0}$ each. Post 60p. Preamplifier. $\mathbf{3 H z}-100 \mathrm{KHz}$. $£ 15 \cdot 00$ each. Post 60 p . Secondary Pulse Generator. £15-00 each. Post 60p. Signal Compressor. $\mathbf{x 2 5} \mathbf{0 0}$ each. Carr. £1. Assembly Unit. $\mathbf{8 6} .00$ each. Post 60 p. Deviation Test Set. $65-75 \mathrm{MHz}$. $75 \cdot 00$ each. Carr. $£ 1$.
T. 1509 TRANSMITTERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, with temperature compensated MO O/put impedance: 50 ohms. Audio input: 600 ohms. Valves : Power Amplifiet 2×813 and Modulator 2×813. Power requirements $200-250$ volts a.c. 50 cycles. Power out put 300 watts. Dimensions 2 ft . 6 in . W. $\times 2 \mathrm{ft}$. D. 5 ft . H. Weight: 800 lbs . Excellent condition, price $£ 225.00$ each.
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPOR AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400 \mathrm{mc}$. 1750 channels 100 Kc apart with 18 preset channels Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max output 2 watts. Antenna: 50 ohm impedance. Power requirements 24v d.c Complete transmitter with operating cables, control box, headphones, micro-
phone. Price $£ \mathbf{2 5 0 . 0 0}$ each secondhand, excellent condition. POW. PR SUPDIY
input. $24 v \mathrm{~d} . \mathrm{c}$. output @ 41 amps fully smoothed. $£ 45.00 \mathrm{each}$.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv rms/inch. Triggered sweep, built-in trigger pulses and markers. Mains input
 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ 6 per sec. External PM. Percent Mod. $0-30$ for sine wave. Am or Pulse Carrier per sec. External PM. Percent Mod. 0 molts cont. variable. Impedance 50Ω Price: $£ 85$ each $+£ 1.50$ carr.
PREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy 05%. Sensitivity 20 mV . Internal Mod at $1000 \mathrm{c} / \mathrm{s}$. Power Supply - batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) £75 each. Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$ CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. Or D.C. in 6 Ranges, 10 to
probe, excelient conditiong. Ei2.50, cIrr. 75 p .
GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ CT, response curve indicator with 6in. CRT tube and separate power supply Fully stabilised. Price on request.

POLARAD MSG-3 MICROWAVE SIGNAL GENERATOR: $4.5-8 \mathrm{GHz}$
 5225.00 each, carr 150
(225.00 each, carff 50-60 c/s. 555.00 each, carr. ${ }^{2}$. TS-45[APM and frequency meter): $8 \cdot 7-9 \cdot 5 \mathrm{GHz}$. Accuracy $\pm 2 \mathrm{MHz}$. 115 V a.c pew. 25 each, carr. $f 1$.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 micro volt to 1 volt. Output Impedance : 1 microvolt to 100 millivolts, $10 \mathrm{ohms} 100 \mathrm{mV}-1$ volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. Externa Consumption approx. 40 watts. Measurements $29 \times 12 \frac{1}{4} \times 10$ in. Secondhand condition. $£ 27.50$ each, Carr. $£ 1.50$.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose broadband, microwave signal generator designed for testing and maintenance of gulated by a variable attenuator calibrated in dbm . The frequercy output level is rein Mc/s. Provision is made for external modulation. Power Supply - is calibrated A.C., $50 \mathrm{c} / \mathrm{s}$. Freq- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal Transmission-CW, Pulse, FM . External Transmission-Square Wave, Pulse. Power O/put-0 2 milliwatts. O/pu: Attenuator: -7 to -127 dbm . Load-50 . Price: $£ 135$ each $+£ 2$ carr.
TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put -7 to -85 dbm . Transmission- FM , PM, CW. Sweep Rate-0-6 Mc/s per microsec. Deviation- $-40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate- to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-500 watts peak. $0.2-6$ microsec. duration, $10-50 \mathrm{~V}$ peak. $0.5-20 \mathrm{microsec}$ duration at $10 \% \mathrm{max}$. amplitude, less than 0.5 microsec rise time between 90% and 10% max amplitude points. Frequen than 0.5 Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy- $+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. a $9310 \mathrm{Mc} / \mathrm{s}$ per sec.calibration point. Accuracy measured at $25^{\circ} \mathbb{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: $\mathfrak{f 5}$ each +61 carr.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated n direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.- $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing Undelayed or delayed from 3-300 microsecs from external or internal pulse. /put-1 miliwatt max., 0 to -127 db variable. O/put Impedance-50 5 . Price 120 used, excellent condition. Unused as new condition $£ 150+$ carr. $£ 2$
TS-382/U AUDIO OSCILLATOR: 20 to $200,000 \mathrm{c} / \mathrm{s}$. in four ranges. Freq. meter check $60 \mathrm{c} / \mathrm{s}$. and $400 \mathrm{c} / \mathrm{s}$. Emission CW. O/put voltage: 1 uv to $10 \mathrm{~V} \pm 3 \%$
in seven ranges. Power req. 115 V AC single phase. Price 420 each, used good in seven ranges. Power req. 115 V AC single phase. Price $£ 20$ each, used good
condition. Unused condition $£ 30$ carr. 1.50 . condition. Unused condition $£ 30+$ carr. $£ 1.50$
CT150 Portable valve-tester suitable for testing a wide range of valves. Manufactured by Avo. $£ 55$ each $+£^{2}$ carr
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order. $£ 18 \cdot 50+\AA 1.00$ carr. $\mathrm{BC}-221$ nused as new condition complete with headset, spare valves, charts. $£ 35 \cdot 00$ C2.00 carr.
TS-452 F.M. SWEEP GENERATOR: Power supply 115V, $50 \mathrm{c} / \mathrm{s}, 5-100 \mathrm{MHz}$ in 6 bands (rf o/put); $5-102 \mathrm{MHz}$ in 4 bands (freq. meter). Emission: F.M.R.F Displays band pass characteristics on 3in. C.R.T S/hand good condice 00 ohms. $\not{ }^{2} 2.00$ carr.
TS-419/URM 64 SIGNAL GENERATOR: Freq. $900-2100 \mathrm{MHz}$. CW or pulse emission. Power o/put Zero dbm-120dbm continuously adjustable to $\cdot 2 \mathrm{uv}$ condition $£ 150.00+f 2.00 \mathrm{carr}$ with VSWR of $2: 1$. 115 V a.c. $50 \mathrm{c} / \mathrm{s}$. As new
TS-622/URM 44 SIGNAL GENERATOR: Freq. range - 7 to 11 GHz Power o/put - 10 to 127 dbm ; Emission CW, FM, Pulse. Direct reading dials for both frequency and power. Operates on 115 volts, $50-1000 \mathrm{~Hz}$. As new condition $£ 175 \cdot 00$
$+f 2 \cdot 00$ carr.

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115 V or $250 \mathrm{~V} 5-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument designed to meet requirements of radar and communication engineers and $40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube $2 \$ \mathrm{in}$. Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Complete with test leads, metal transit case. As new $£ 27 \cdot 50$ each. Carr. $£ 1$.

TRANSFORMER HV: 228 V input $19,500-0-19,5004.5 \mathrm{KVA}$, Wt. 220 lbs.
f30 each. Carr. $f 4$.
MODUL.ATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in. chassis $\times 8 \mathrm{in}$. high $\times 8$ in. deep. $£ 4.50$ secondhand cond., or $£ 6.50$
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves. Ideal for conversion to 4 metres. $\& 5$ secondhand cond., or $£ 7.50$ new cond Carriage s 1.
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19^{\prime \prime}$ Wx11"Hx14*D. (All connections at the rear.) Excellent condition

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{n}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. E 7 each, Carr. 75p. $230-115 \mathrm{~V}$
$50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $\mathbf{~} 4 \cdot 00$ each Car. 75 p .
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves microphone and modulator transformers etc. $£ 7.50$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG! (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{8 3} .50$ each, post 50 p APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter ainc part
 DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ £3 each, 25 p post. 90 ohms per step, 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% \mathbf{f 3} 50$ each, post 30 p.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. $\mathbf{£ 1 2 5 0}$ each, $£ 1$ carr.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . £ 3 each 75 p post. Input 115 V , output 135 V at 5 Amps. £ 5 each, 75 p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ in. wide $\times 16$ in. deep, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$ INSTRUMENI
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 5 \cdot 00+£ 1.25 \mathrm{carr}$
$19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . \quad £ 2.50+£ 1^{\circ} \cdot 00^{\mathrm{carr}}$. $19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . \quad \mathrm{E}^{2 \cdot 50}+£ 1 \cdot 00 \mathrm{carr}$.
FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in . diameter case. Price £2 each, 30p post.
TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range $0-120 \mathrm{dbm}$. $£ 125$ each. Carr. $£ 1.50$.
TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible

APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suir monitoring and measuring frequencies as well as relative signal strength. Power Supply 115V 50c/s. £100 each. Carr. £2.
R-361 RECEIVER: $225-400 \mathrm{MHz}$. 1 preset chaninel crystal controlled. Super heterodyne, voice and CW. $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ input. $\mathbf{£ 3 5}$ each. Carr. $£ 1.50$.
TS-130 TEST SET: Complete with RF Probe type 1019 Freq. $0.9-12.5 \mathrm{KHz}$, and RF Probe type 1020 Freq. $0 \cdot 3-1 \mathrm{KHz}$. Also slotted line attenuator $1 \mathrm{M}-34 / \mathrm{U}$. Freq RF Probe type 1020 Freq. $0.3-1 \mathrm{KHz}$. Also slot
$0.3-4 \mathrm{KHz}$; and connectors. $£ 45$ each. $£ 1$ carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power stupply 6 V d.c. Good second hand cond. $£ 7.50$ each Post
RCA TE- 149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%) Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$ Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new complete with Manual and Spares. 214 each. Carr. 75p
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated 100-125V or $200-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. "As new" $£ 10$ each. Carr. 75p.
FILTER VARIABLE BAND PASS NO. 1: Dual channel unit, each channel has Variable slot frequency of $500-900 \mathrm{~Hz}, 1200-1600 \mathrm{~Hz}$ and band pass facility. 600Ω input/output, monitor input and high impedance output jacks. Standard rack mounting 3 lin. deep panel. Mains operation $200-250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. "As new" $£ 6.50$ each. Carr. 75p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 17 \cdot 50$ each. Carr. $£ 1 \cdot 50$ POWER SUPPLY: 230V a.c. input; 3000V @ 2.5 mA ; 4v @ 1 Amp, 300-0-300 $200 \mathrm{~mA} ; 6 \mathrm{~V} @ 7 \mathrm{Amp} ; 6 \mathrm{~V}$ @ 3 Amp . With smoothing capacitors etc. $£ 10 \cdot 00$ each. \{1.50 carr

GEARED MOTOR: $24 V$ D.C., current 150 mA , output $1 \mathrm{rpm}, \boldsymbol{£ 1 . 5 0}$ each 30p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm, $£ 2$ each 30 p post. SYNCHROS: and other special
purpose motors available. List $3 p$. purpose motors available. List 3 p .
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. $\mathbf{£ 3} 50$ ea. +40 p post. DALMOTORS: 24-28V d.c. at 45 Amps, 750 watts (approx. 1 hp) $12,000 \mathrm{rpm}$. 5 each, 60p post
MOTOR: 240 V single phase, $2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price $\mathbf{£ 1} 75$ each,
30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., $\mathbf{5 3} \mathbf{5 0} \mathbf{~ e a c h}$, post 50 p .15 mfd 330 v a.c., wkg., 75 p each, post 25 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . £5
each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p} .8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £i.25, each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p} .8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £1 $\cdot \mathbf{2 5}$,
post $25 \mathrm{p}, 4 \mathrm{mfd} 3000 \mathrm{v}$. wkg. £3 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p . post $25 \mathrm{p}, 4 \mathrm{mfd} 3000 \mathrm{v}$. wkg. £3 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p .
$4 \mathrm{mfd} 600 \mathrm{v}, 2$ for $£ 1.0 .01 \mathrm{mfd}$ MICA 2.5 Kv , 11 for 5 , post 10 p Capacitor 0.125
 CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2 \cdot 50$ each, carr. 75p.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps . Price (either type) 22 each, 30 p post each
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with flament transformer 230 v. A.C. Mounted in 19 in. panel, $\mathbf{£ 4 . 5 0}$ each, carr. 75 p. AR88 RECEIVER: List of spares, 5p.
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5 p.
T.M.S. OSCILLATOR UNIT C.F. NO. 1 MK. 2: 1 to 5000 cycles. 0 to 12 variable attenuator and switched $0-1 \mathrm{G}-20-30-40 \mathrm{db}$ with P.U. -12 V d.c. $100-$ 250 V a.c. Price $\mathbf{8 8 . 5 0 ,}$ Carr. $£ 1$.
REDIFON TELEPRINTER RELAY UNIT NO. 12: 2A-41196 and power supply 200-250V a.c. Polarised relay type 3SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabicondition 67.50 , Carr. 75 p . condition £7.50, Carr. 75p

All otal price (including postage or carriage)

attractive DISCOUNTS
 ON VERY MANY ITEMS WHEN YOU BUY FROM US

EIEGTROVALIE Electronic Component Specialists

RESISTORS-10\%, 5\%, 2\%

Code	Power	Tolerance	Range		Values avallab
C	1/20W	5\%	$82 \Omega-220 \mathrm{~K} \Omega$		E12
C	1/8W	5\%	$4.7 \Omega-470 \mathrm{~K} \Omega$		E24
C	1/4W	10\%	$4.75-10 \mathrm{M} \Omega$		E12
C	1/2W	5\%	4.7S-10M Ω		E24
C	1 W	10\%			E12
MO	1/2W	2\%	10s-1M Ω		E24
ww	1w	10\% ${ }^{\text {a }} 1 / 20 \Omega$	0.229-3.952		E12
ww	3W				E12
WW	7W	5\%			E12
Codes: $\mathrm{C}=$ carbon film, high stability, low noise. MO = metal oxide, Electrosil TR5, ultra low nolse WW = wire wound, Plessey.					
Values: E12 denotes seiles: $10,12,15,18,22,27,33,39,47,56$, 68,82 and their decades. E24 denotes series. as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75, 91 and their decades.					
DIN CONAECTORS by Hirshmann 4A rating					
2 way	oudspeake	Socket 10p	Plug 12p		
3 way	udio	Socket 10p			
5 way	udio 180°	Socket 12p		15p	
5 way	udio 240°	Socket 12p	Plug	15p	
6 way	adio	Socket 13p	Plug 15p		
Lockab	types,	o connect	, etc.		

POTENTIOMETER carbon type

 long spindles. Double SINGLE GANG R20 inear 100Ω to $2.2 \mathrm{M} \Omega, 12 \mathrm{p}$ JP20 Log $4.7 \mathrm{~K} \Omega$, to $2.2 \mathrm{M} \Omega$ 12 p .DUAL GANG linear 4.7K Ω to $2.2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log, $4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 42p; Log/antilog, 10K, 22K, $47 \mathrm{~K}, \mathrm{IM} \Omega$ only 42p; Dual antilog, 10 K only, 42 p . Any type with 2A D.P. mains Switch, 12p extra
Only decades of $10,22 \& 47$ available in ranges quoted. DP20 in any combination of P20 values, 60p; with switch, 72p.

SLIDER POTS. In values from $4 K 7 \Omega$ to $1 M \Omega$ linear or log. 26p each. Escurcheon, light grey, 10p.
Knobs, flat, grip type, in 7 colour, 5 p each. SKELETON type, in 7 colour, 5 p each.
PR linear only: $100 \Omega, 220 \Omega, 470 \Omega$, $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7$, $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each,
NUTS, SCREWS, ETC. In pence per 100. Nuts 2BA-51p; 4BA-35p; 6BA-32p.
Screws $1 "-2 B A-85 p ; ~ 4 B A-43 p ; ~ 6 B A-32 p . ~$
$0.5^{\prime \prime}-2 B A-62 p ; 4 B A-29 p ; 6 B A-24 p$. Screws roundheaded cheese $6 \mathrm{hA}-24 \mathrm{p}$.
Ocrews roundheaded, cheese headed or countersunk.

ELECTROLYTICS

$\mu \mathrm{F}$	3V	6.3 V	10 V	16 V	25 V	40 V	63 V	100 V
0.47							7	7
1.0						7		7
2.2					7		7	7
4.7				7		7	7	7
10			7		7	7	7	7
22			7		7	7	7	7
47	7		7	7	7	7	8	12
100	7	7	7	7	7	8	12	18
220	7	7	7	8	9	10	17	26
470	7	8	9	9	12	17	24	41
1000	9	12	12	17	20	23	40	
2200	14	16	22	25	36	40		
4700	23	26	37	40				
10.000	37	40						

Smal est size $3.7 \mathrm{~mm} \times 12 \mathrm{~mm}$. Largest size $25.5 \mathrm{~mm} \times 41 \mathrm{~mm}$. Full ranges of many other types of capacitors stocked

ROTARY SWITCHES

Radiospares Miniature Makz switch (in assembly kit form). Wafers, MBB-2P5W, IP IIW. BBMIPI2W, 2P6W, 3P4W 4P3W, 6P2W, each 32p.

Wavechangeswitches each 32p.

Minitron DIGITALINDICATOR
TYPE 3015F Seven segment indicator compatible with
standard logic modules and power supplies. Figs. 09 from well illuminated filament segments to give requirement 8 mA from 5 V D.C. per segment. A limited number of alphabetical symbols also avail-
able. in 16 lead DIL case $\begin{gathered}\text { Suitable BCD decoder driver type } \\ \text { FLLIVIT nett }\end{gathered} \leq \mid .36$ DIL Socket; 16 lead 30p. No. 3015G showing
and fig. 1 and decimal poin $E 2.00$. nett

IT SAVES YOU 25p TO START WITH

That's the price of the 96 page Electro-

 value Catalogue (No. 6) and with it we on orders which come to $\notin 5$ or more. The Catalogue is packed with bargains in brand new guaranceed to makers spec. items plus I.C. circuit and schematic diagrams, transistor diagrams and specs, YAT when operative) for Catalogue by VAT when operative) for Catalogue byTTL ICs

FLHIOI	(7400)	Nett Prise 20p
FLH2OI	(7401)	20p
FLHI91	(7402)	20
FLH29]	(7403)	20
FLH21. 1	(7404)	25p
FLH27I	(7405)	25P
FLH381	(7408)	25p
FLH391	(7409)	25p
FLHIII	(7410)	20p
FLH351	(7413)	35p
FLHI2I	(7420)	20p
FLHI31	(7430)	20p
FLHI41	(7440)	240
FLLIOI	(74141)	(16) $¢ 1 \cdot 22$
FLH28I	(7442)	(16) $¢ 1 \cdot 16$
FLH361	(7443)	(16) $£ 1.45$
FLH371	(7444)	(16) \&1.45
FLHISI	(7450)	20p
FLHI6I	(7451)	20p
FLHI7I	(7453)	20p
FLHI81	(7454)	20p
FLYIOI	(7466)	20p
FLJIOI	(7470)	45p
FLJII	(7472)	32p
FLJ121	(7473)	45p
FLJ14	(7474)	
FLJ 151	(7475)	(16) 45 p
FLJ31	(7476)	(16) 45 p
FLH221	(7480)	
FLH23।	(7482)	87p
FLH241	(7483)	(16) $¢ 1.32$
FLH341	(7486)	33p
FLJ16!	(7490)	${ }^{80 p}$
FLJ221	(7491AN)) \&1.28
FLJI7	(7492)	85
FLJ81	(7493)	80p
FLJ231	(7494)	(16) $¢ 1 \cdot 13$
FLJ191	(7495)	$87 p$
FLI261	(7496)	(16) 41.48
FLJ301	(74100)	(24) $£ 1.64$
FLJ281	(74104)	43p
FL271	(74107)	52p
FLK101	(74121)	48p
FLJ201	(74190)	(16) If. 80
FL211	(74191)	(16) $¢ 1.80$
FLJ241	(74192)	(16) $¢ 1.74$
FLJ251	(74193)	(16) $¢ 1.74$

DISCOUNTS Available on all items except
those shown with NETT PRICES. 10% on orders from 65 to $£ 15.15 \%$ on orders $£ 15$

TERMS OF BUSINESS All items are offered for sale in accordance with our standard terms of business, a copy of which is available on request. Prices subject to Enquiries from quantity users ited.
PACKING \& POSTAGE FREE in U.K. For mail orders there is an additional handling charge of 10 p .
V.A.T

Prices shown here V.A.T.

Orders from U.K. customers must be accompanied by an additional
for V.A.T. Overseas orders are exempt.

BENTLEY ACOUSTIC CORPORATION LTD．
 A CLOUCESTER ROAD LITTLEHAMPTON，SUSSEX．Tel． 6743

$\left\lvert\, \begin{aligned} & \text { EL84 } \\ & \text { EL85 } \\ & \text { EL86 }\end{aligned}\right.$

 tirtet clane nail Any parcel
of sale availatie on request． \qquad

ELECTROHIC ORGAN DIVIDER BOARDS built to high industrial／computer spec． 5 octave set $£ 15$ ．
Complete with connection data and oscillator details．

COPPER LAMINATE P．C．BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in． $12 \frac{1}{2} p$ Sheet， 5 for 50 p
$11 \times 6 \frac{1}{2} \times 1 / 16$ in． 15 pp sheet， 4 for 50p
$11 \times 8 \times 1 / 16$ in 20 p sheat， 3 for 50 p
Offcut pack（smallost 4×2 in．） 50 p 300 sq ．

SPEAKERS AND CABINETS

E．M．I． 13×8 in．（10 watt）with two tweeters and cross over $3 / 8 / 15$ ohm models．£3．75．P．P．25p．
E．M．I． 13×8 in．base units（ 10 watt） $3 / 8 / 15$ ohm
E．M．I． $6 \frac{1}{2}$ in．Ind． 10 watt Woofers． 8 ohm． $13,000 \mathrm{gss}$
£2．25．P．P． 15 p．
E．M．I． 20 watt（ $13 \times 8 \mathrm{in}$ ．）with single tweeter and ＂X－over＂ 20 Hz to $20,000 \mathrm{~Hz}$ ．Ceramic magnet
$11,000 \mathrm{gss}$ ．£8．P．P． 40 p ． 20 watt base unit only．£6．
P．P．40p．
CABINETS for $13 \times 8 \mathrm{in}$ ．speakers manufactured in z in．teak－finished
EE ea．P．P． 40 p．
20W．CABINET． $18 \times 11 \times 10 \mathrm{in}$ ．E6．P．P．50p

FRECISION A．C．MILLIVOLTMETER（Solartron） $1.5 \mathrm{~m} . \mathrm{V}$ ． to $15 \mathrm{v}: 60 \mathrm{db}$ to
$\mathbf{£ 2 2} \mathbf{5 0}$ ．P．P．$£ 1$－ 50.
V．H．F．POWER TRANSISTORS TYPE PT4176D （ 2 N 4128 ）． 24 watt 175 MHz ． $\mathbf{£ 1} \cdot \mathbf{5 0}$ ea．S．A．E．for spec MINIATURE UNISELECTORS（A．E．I．2203A．）， 3 bank， 12 position，non－brid
CD． 1220 OSCILLOSCOPE，with dualtrace Plug－in．（CX1257）

SOLARTRON OSCILLATOR（CO546） $25 \mathrm{~Hz}-500 \mathrm{KHz} \mathbf{E 5 0}$ ．
PAINTON WINKLERSWITCHES． 1 pole 15 way 2 bank （G．P．contacts and wipers）．£1－25 ea．

BULK COMPONENT OFFER．Resistors／Capacitors．All types and values．Alt new modern components．Over 500 you will se－order

BERCO WIRE－WOUND POTS．Now individually boxed． 200 ohm 25 watt 50p： 725 ohm 50 watt 75p： 300 ohm

high capacity electrolytics $2,200 \mu \mathrm{f}$ ． 100 v ．$\left(1 \frac{1}{4} \times 4 \mathrm{in}\right.$ ．） $60 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{4} \times 4 \mathrm{in}.\right)$

 packing 5 p ．

LIGHT DIMMERS（ 2000 watt）Triac Controlled． $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$
in．$£ 5.75$ ea．P．P． 25 p．
L．T．TRANSFORMANSFORMERS PMER（Shrouded）Prim．200／250v．
Sec．20／40／60v． 2 amp．E2 ea．P．P． 40 ．
 $100 \mathrm{~m} / \mathrm{a}$ E3．P．P． 50 p ．
L．T．TRANSFORMER．Prim． $110 / 240 \mathrm{v}$ ．Sec． $2 \times 32 \mathrm{zv}$＠ 4 amp．
 1.5 amp． 65 p. P．P． 15 p ．

L．T．TRANSFORMER．Prim． $115 / 240 \mathrm{v}$ ．Sec． 10.5 v ． at 1 amp
P．P． 40 p
P．P． 400 D Watt，ISOLATION TRANSFORMER（CON－ STANT VOLTAGE）．Prim． $190-260 \mathrm{~V}, 50 \mathrm{~Hz}$ ． Sec ． 230V．at 10.9 amps．E30．CaIr．£2．
H．D STEP．DOWN TRANSFORMER．Prim．200／240V Sec． 117 v at 19.8 amps．（ 2,300 watt）．$£ 22.50$ ．Carr．$£ 2$ ． H．T．TRANSFORMERS．Prim．200／240V．Sec．

 Sec． 115 v ．Double wound 500 w ．£5．P．P．£1． 700 w ．
（with filters）£10．P．P．£1． 500 w ．（metal cased with （with filters）
socket output）and overload protection． $\mathbf{£ 6 . 5 0}$ ． socket output）and ove f1．P．P．25p．300W．£1－50．
AUTO－WOUND． $75 W$. P．P．50D 750W £6．P．P．E1．
L．T．TRANSFORMER．Prim． $110 / 240 \mathrm{v} . \mathrm{Sec} .0 / 24 / 40 \mathrm{v}$ ． 1．5A．（Shrouded type）E1 50 ．P．P． 25 p ．

 HEAVY DUTY E．H．T．TRANSFORMER．Prim． $0 / 110 / 240 \mathrm{~V}$. Sec． 180
model $£ 33$ ．Carr $£ 2$.

PRECISION CAPACITANCE JGS．Beautifully made with Moore \＆f Wright Micrometer Gauge．Type 1．18．5pf．to $1,220 \mathrm{pf} \mathrm{E} 40$ each Type 2， 9 ．5pf．to 11.5 pf ．E6 each MULTICORE CABLE（ PVC ．）．
$10048.15 \mathrm{p}, \mathrm{yd} .100 \mathrm{yds}$ ¢12．50．
12 core（ 12 colours）15p．yd． 100 yds ． $\mathbf{£ 1 2 . 5 0}$.
 34 core（ $\mathbf{1 7}$ colours）25p．yd． 100 yds ．E20．

TELEPHONE DIALS（New）£1 ea． RELAYS（G．P．O．＇3000＇）．All types．Brand
 EXTENSION TEW／BOXed．E5． 50 P．
RATCHET RELAYS．（ 310 ohm ）Various Types 85p．P．P 5 D
UNISELECTORS（Brand now）25－way

bLOWER FANS（Snail type）Type 1 ：Housing dia． $3 \frac{1}{2} \mathrm{in}$ ． Air outlet $1 \frac{1}{2} \times 1$ in．$£ 2 \cdot 25$ ．P．P．P5p．Yope
6 in．Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2}$ in． $\mathbf{E 4}$ ．P．P． 50 ．Both types 115 ／ 240 V ．A．C．（brand new）．
POT CORES LA1／LA2／LA3 50p each

relays

SIEMENS／VARLEY PLUG－IN．Complete with transparent dust covers and bases． 2 pole c／o contacts 35p ea； 6 make contacts 40 p e
12 VOLT H．D．RELAYS（ $3 \times 2 \times 1 \mathrm{in}$ ．）with 10 amp．silve
 24 VOLT H．D．RELAYS（ $2 \times$
240v．A．C．RELAYS．（Plug－in type）． 3 change－over 10 amp （with base）．P．P． 5 p ．
sub－miniature reed relays（ $1 \mathrm{in} . \times \frac{\mathrm{i}}{\mathrm{i}}$ ．）Wt． ¢ OZ 9 make $3 / 12 \mathrm{v}$ ．40p．ea
SILICON BRIDGES． 100 P．IVV． 1 amp．$\left(\frac{5}{5} \times \mathbf{t} \times \mathrm{in}\right.$ ．）30p 200 P．l．V． 2 a
CIRCUIT BREAKERS（ 3 pole） 15 amp ．Dorman \＆Long

PATTRICK \＆KINNIE

191 LONDON ROAD－ROMFORD • ESSEX
ROMFORD 44473
RM7 9DD

MULLARD AMP

 Oensational 'Once in a Life-time are cleared. The ance stifier isnade hy Mullard. Carries Maker's Gurantee. In neat case.
May be used for Mono or
Stereo. Music or sueech. Works off dry hattery, car batt. or all who purchase" we send copy of Mullard booklet DII
atereo. £145 INTEGRATED CIRCUIT BARGAIN A parcel of integrated circuits mate hy the famouse Plessey
Company. A once.in-a-lifitime offer of Micro-electronic $\overline{\text { devices well below cost of manufacture. The parcel contains }}$ sub-standard or seconds. 4 of the ICs are single siliton chip
GP amplifiers. the 5 th is a monolithic NPN matche pair, Regular price of parcel well over \&5. Full circuit details of the ICs are included and in addition you will receive a
liet of many different ICs available at bargain prices 25 p parcel only $£ 1$ yost paid.

DRILL CONTROLLER Electronically changes speed from approximately 10 revs.
to maximum. Full power at ail to maximum. Full power at al everything and farts, case,
tintruce
tions $£ 1 \cdot 50$ plus 13p post and
insurance. Made up model also
available $£ 2.25$ pluy MIGHTY MIDGET
Probably the finest possile radio, as arts $\mathbf{e 2}$ in Practical GOOD COMPANION I.C. VERSION

We can now oller these again in I.C.
version using Ferranti $Z N 41+$ and
Muliari AF Module 11% Cathinet

I CHIP RADIO

Ferranti s latest device ZN+14-gives results better than superhet. Supplied complete
eircuits $\mathbf{\& 1} \mathbf{1} 25$ each. 10 for $£ 11$
HI-Q TUNER COMPONENTS
For experimenting with the ZN41t
Kit No. 1 Plessey Miniature Tuning Condenser with huilt in Lw gwitch and 3in. Ferrit slah and litz wound MW coil 65p
Kit No. 2 Air spaced tuning contenser bin. ferrit roll litz

Kit No. $4 \quad \begin{aligned} & \text { ierrit roid with litz wound } \\ & \text { Perneibility } \\ & \text { Lund }\end{aligned}$

12 VOLT I $1 \frac{1}{2}$ AMP
POWER PACK
240Y mains traneformer with fult
wave rectifier and 2000 m/t/d
gmoothing. Price $£ 2.00$, plus 20 p smoothing. Price $\mathbf{£ 2} \mathbf{0 0}$, puas 20 p
post alacking. Heavy Duty alanus Power Pack. Output voltare adjugtable
 power heavy duty init with dozens of workinop uses. change push on leads. Silicon rectifie
BALANCED ARMATURE UNITS
These Capsules are lin. in diameter and tin,
thick, They will operate as a nicrophone or loud
speaker so can be ueed in intercon ind similar speaker go can be need
circuits. 33p. Ten for 23 .
MUSIC ON TAPE
A turther buy enahles us to olfer these at an even lower
price-namely 65 . each or 5 for $£ 250$. Sent for lige of titles. We can t repeat wh
MICRO SWITCH
5 atmp changeover contacts, 10 p each
10 tor 90 p .15 amp . 8 P Model 12 p

FLEX CABLE SNIP
8. waterproot thex, ideal for

20 WATT INVERTER
Smart and Brown- For ran lighting or camping, ete. Will light a 2 ift. 20 watt standard fluorescent tube from a
122 V car battery. current apirox. 2 A. Very well made init
using

MAINS RELAY BARGAIN

QUICK CUPPA

Mini Immersion Heater. 350W. 200/240V. Boils full cup in ubout two ninutes. Use any
tocket or lamp holder. Have at bedside for ocket or lamp holder. Have at bedside for
ten, baby food, etc. f1 25, post and ter, baby fore
inurance $20 \mathrm{p}, 12 \mathrm{~V}$ car model also available. plus \mathbf{P}. \& $\mathbf{P} .20 \mathrm{p}$.

DIGITAL DISPLAY

fanel mountling unit measuring approx. 3 in. \times in. $\times 1$ in.
deep. Size of the display aperture is approx. 1 inin. \times Jin. Light up
to 0.9 . Ex equipment tut unuaed
and in perfect order. Price $£ 1$

0THYRISTOR LIGHT DIMMER Por any lamp up to 250 watt. Monnted on switch plate to it in place of
standard switch. Virtually no rado interference. Price $£ 2 \cdot 85$. Industrial sundard
model $\overline{\mathrm{A}} \mathrm{A}$
E

10 AMP DIMMER CONTROL

For the control of lighting on stage or in a studio or ior control of portable equipment in egulaters, ene. This has wo is amp socket outhets each is controlfoll y a amp solid stat regulator. The overall length is $17 \mathrm{in} .$, width $3 \frac{1}{2 i n}$, and
On/Off switch indicator, lamp and fuse. Price $£ \% 50$.

DISTRIBUTION PANELS

Hast what you need for work l,ench or lab. 4×13 amp gocketa in metal box to take standard 13 amp fused

plugs and on/off switch with neon warning light. Sup

CAPACITOR DISCHARGE CAR IGNITION

This aystem which has proved
relialle was first degeribe in the relialle was first described in the Wirelesg World about a year ago
we can supply kit of p att ior an impl "e can supply kit of parth ior an improved and even more
efricient version (Practical Wireless, June). Price $£ 4.95$,lus 30p

CENTRIFUGAL BLOWER

Miniature mains Ariven blower centriugal type blower unit by Woods, poueriul but specially huilt ior quiet running
 equipment but to suck air out mount it from the centre using cooker hood, fllm drying calinet or for removing flux smoke

ZPM MODULATION MOTOR

 Could algo he used to open ventilators. doors, valve, dumper, etc.particularly suitatle for remote control. Matie by Satchwell. Eseentially a reversible geared notor fitted with internal limit suitches to stop it apmox. 10 lb . This is extremely porerful and would lift a heavy door or onen a long line of ventilitars. To onerate this motor you put the
50 cycle supply through a changeover Awitch. For ingtance a thermogta with changeover contactis could autonatically regulate the temperature in a growing house, close. Also internally fitted is a variable resistor, wires from this to a solt meter would give remote infication of the open or close position. A very expenalv.

CENTRIFUGAL FAN

Mains operated, iurbo blower type. Presed stee housing contain motor and impeller. Motor is $1 / 10 \mathrm{~h} \mathrm{~h}$.p. giving considerable air flow
bat rirtually no noise. Approx. dimensions 10 in. wide $\times 12 \mathrm{in}$. dia bat virtually no noise. Approx. dimensions 10 in . Wide $\times 12 \mathrm{in}$. die
ontlet into trunking $\left.10 \frac{1}{2} \times 4\right\}$ in. $£ 5.95$ plus $£ 1$ post and insurance

PROCESS TIME CONTROLLER
Hade by smiths. Motorised and mains driven in metal case with During this 18 hours the controlled device can be mande to switch on for a period of 15 minutes to 3 hours. Probable cost from
Smiths over 2 th. special srip price $£ 160$ plus 20 post and

HIS MONTH'S SNIP
PORTABLE ELECTRIC DRILL Sery superior quality made by a famous Dutch
Toolmaker. Model No. AsM830. 300 w., 2 speed, 2,200 3.000 With sin. chuck and chuck key. 2 speed, 2,200
side hande and anate side handle and hammer faclity for dealing with
concretc etc. An equivalent British made drill would
coat $\$ 15$. $£ 9.95$. Bimilar model but without the hammer attachment £7. 95. Have either on apiroval for 7 flays.

ELECTRIC TIME SWITCH

Made by Amiths these are A.C. mains operated. NOT CLOCKWORK. Ideal for mounting on rack or aheli or can be built into box with 13 A socket. 2 completely adjustable witch circuit on or off during these periods. $\mathbf{E 2} \mathbf{5 0}$, switch circuit on or off during these periods. $£ 2$
and ins., 23 . Additional time contacts 50 p pair.

MULLARD AUDIO AMPLIFIERS
All in module form, each ready built complete
Model $115350 . \mathrm{mWW}$ power output 65 p .
Model 1172750 mW . power output 85 p .

I HOUR MINUTE TIMER

made br famous smiths company, thene have a large clear Made by famous Smiths company, thene have a large clear dial, size $41 \mathrm{in} . \times 3$ in., which can be set in minutes up to hour. After preset period the lell rings. Ideal for processing, a memory jogger or
micro-switch. \&1 15.

DIGITAL COUNTER TIMER
Very stable and reliable erystal controlled circuit. Capable to work in excess of 15 MHiz . Construction
simplified by luee of 15 Integrated circuits. Complete
kit of parts e38.50 or construction data and kit of parts $£ 38.50$ or construction data and pric
list 30 p .

PP3 BATTERY CHARGER

almost 3 times the lite can be obtained from PPB battery if you re-charge it
only 50 p .

DOUBLE-ENDED MAINS MOTOR

 This is a very quiet running induction motor, with two special ieatures-one is that it hasfeet for easy nxing and the other is it has a good length of pininde coming from each end
in it enold drive two things it once or with simple silide attachment could reverse directicn. So it conld drive two thing
50 p each or 10 for $£ 4: 50$.

PROTECT VALUABLE DEVICES
FROM THERMAL RUNAWAY OR OVERHEATING
Thyristors, rectifiers, transistors, etc., which use heatsinks can easily Motors and equipment generalls, cart also be adequately protected by

having thermostats in atrategic spots on the casing. Our contact or with the han a calibrated dial for setting between 90 deg . to 190 deg. F, | or wit |
| :--- |
| 75 p. |

TIME SWITCH
Smith's mains driven clock with 15 mp switch, also notes showing how you can wake up with mukic playing
kettle boiling or come home to a warm
house, wirrit of hurklars, kep pets house, warn oft lurklars, keep pets
warm, halve your heating bill. etc. warm, hal
$\mathbf{E 1 . 9 5}$.

PRESSURE SWITCH
Containing a 15 amp. change over suitch
operated by a diaphragm which in tur is operated by air firessure through a manal metal tulhe. The operating pressure is ad-
justable but is set to operate in approx. 10 in . of water. These are quite low pressure devices anh1 can in fact be operated simply by blowing into the inlet tuhe. Original use was for correct level but no doubt has many other applications correct level but no doubt has many other applications.
£1.25.
HONEYWELL PROGRAMMER
This is a drum tybe
timing device, the drume

over micro switches each
of 10 amp type operated by the trips thus 15 circuits mas be changed per revolution. Drive motor ls mains operated 5 reve per minn. Some of the many uses oi this timer are
Machinery control. Boiler firing, Dixpensing and Vending machines. Display. likhtisk anthated and signs, slgnalling, etc. Price from makers protably over £10 each. Special
anip price $25 \% 5$ plus 25 p post and ingurance. Don't uisa anip price $25 \% 75$ plue 25p post and insurance. Don't míse
this territic bargain.

EXTRACTOR FAN

IMMERSION

BY REMPLOY
Standard ftting for tomestic
water tanks, made by the
Hater tanks, Mave by the
famous Remploy Company.
Conplete with sealing washers
 THERMOSTAT

Contimuously variable $30^{\circ}-90^{\circ}$ C. Has sensur
bulb connected by 33 in. of flexible tubing bulb connected by 33 in. of Hexible tubing.
On operation a 15 arap. 250 v awiteh is opened
 and in addition a plunger moves
through approx. in. This could be used to open valve on ventt-
lator etc. $\mathbf{2 1} 50$ plus 23 p and ins.

MAINS OPERATED SOLENOIDS

Model
lin p pull
ind -anall but power
and

MAINS TRANSISTOR POWER PACK Designed to one rate transistor rets and amplifers. Adjust-
able output $0 \mathrm{yy} .9 \mathrm{y} ., 12$ volts for up to 500 mA (class B worable outtut fiv., 1, , 12 volts for up to 500 mA (class B wor
 priges: mains tribsforner rectifier. Anoothing and ood resisthr condensers and
£1 plus 20 p postage.
RECORD/PLAYBACK HEADS (TRUVOX) Individual prices are: 2 track recori/playback heals 45p
each. 4 track record

16 TRACK STEREO HEAD

For 3 in . or lin. tape. This is a brask encased tape heact and Foessures approx. Sin. x in. x in. Resiftance is aphrox. have no technical data, al8o
Price $£ 5$ cach or 10 for $£ 45$.

CONNECTING WIRE

7.0076 Copper conductors. 500 metre drums availalhe in the following colours; Red/Brown, Yellow, Grent/Grey, Blue/rreen. Red/Orage, Green/ Browh/White, Red/Grey,
Blue/Orange, Brown/Red, Brest
 State alternative colours. Ditto liut witl 200 metres. Price
$£ 1.25$ per drum plus 20p. Ditto but with 100 metres.

GOODMANS P.M. SPEAKERS

$8 \mathrm{in} . \times 5 \mathrm{in}$. hi flux 15 ohm coil very suitable for use with Mullard Unilex stereo annplifier
own $£ 1.50$ plus 20 p nost each.
Tin. \times tin.. Bleo 15 ohm and suitable ior use with EP9000
not quite buch good quality of course. I'rice 95 each. SOIL HEATING KIT
Suitahle for garien frame or propogating sheli, etc. Comstrip and ingulated wire kith connection disgram. 2150

PLEASE ADD 10% V.A.T TO ALL PRICES

Where postage is not stated then orders
over $t 5$ are post free. Below 65 add 20 p.
S.A.E. With enquiries please.
J. BULL (ELECTRICAL) LTD.
(Dept. W.W.) 7, Park Street, Croydon, CR0 1YD Callers to 102/3. Tamworth Road. Croydon

Completely portable, simple to use pocket sized
teater. Ranges: $0 / 3 / 30 / 300 \mathrm{v}$ A.C. and D.C. at 2,000 o.p.y. Resistance $0-20 \mathrm{~K}$ ohms. Only $\mathbf{\Sigma 1} \cdot \mathbf{\theta} 7$ Post 13p
 $1,000 \mathrm{~V} .{ }^{(10,000 \mathrm{opv}) .} \begin{aligned} & \Delta . \mathrm{C} \text {. } \\ & 15 \mathrm{~V}, \\ & 150 \mathrm{~V} ., \\ & 100 \mathrm{~V} . \\ & (1,000\end{aligned}$
 tance
15p.

LT601 MULTIMETER
New style 20.000
O.p.V. pocket
multimeter.
$5 / 25 / 50 / 250 /$
$2500 \mathrm{v}^{\mathrm{D}} \mathrm{C}^{2}$

10/50/100/500/1000V. A.C.
$50 \mu \mathrm{~A} / 250 \mathrm{~mA} .6 \mathrm{~K} / 6 \mathrm{meg}$ ohms. -20 to +22 db £3.75. Post 20 p .

MODEL TH-12 20,000 o.p.v. Overload pro-
tection. Sild eswith selector.
$0 / .25 / 2.5 / 10 / 50 / 250 / 1000 \mathrm{~V}$. tection. Slide 8 witch selector.
$0 / \cdot 25 / 2 \cdot 5 / 10 / 50 / 250 / 1000 \mathrm{~V}$. D.10/50/250/1000V. A.C. 3K/30K $300 \mathrm{~K} / 3$ De. to +50 db .
84 . Post 15 p .

RUSSIAN 22 RANGEMULTIMETER Model U457 10.000 o.p.p.
Atrat class veratile Instrument manufactured in U.8.8. B. to the highest standsrd. Ranges: $2.5 /$
$10 / 50 / 250 / 500 / 1020$ $10 / 50 / 250 / 500 / 1000 \mathrm{v}$
$\mathrm{D} . \mathrm{C} . \quad 2 \cdot 5 / 10 / 50 / 250 / 500 /$ 1000v A.C D.C. Current $100 \mathrm{FA} / 1 / 10 / 100 \mathrm{~mA} / 1 \mathrm{~A}$ Resistance 300 ohms
$3 / 30 / 300 \mathrm{~K} / 3 \mathrm{MO}$ $3 / 30 / 300 \mathrm{~K} / 3 \mathrm{Ma} \mathrm{Ma}$ Com
plete plete with batteries, test
leads, instructions and aturdy steel carrying

Our Price 25 87. Post 25p

HIOKI MODEL 730X
30,000 O.P.V. Overload pro VDC. $\quad 12 / 60 / 120 / 600 / 1200$ VAC. $60 ~ \mu \mathrm{~A} / 30 \mathrm{~mA} / 300 \mathrm{~mA}$ $2 \mathrm{~K} / 200 \mathrm{~K} / 2$ megohm. 10 to

TMK MODEL TW-50K

HTIOOB4 MULTIMETER Weatures A.C. current ranges.
100,000 o.p.v. Mirror Overioad protection.
$0 / .5 / 25 / 10 / 50 / 250 / 500 / 1000 \mathrm{~V}$ DC. $0 / 2 \cdot 5 / 10 / 50 / 250 / 1000$ V AC.
$0 / 10 / 250 \mathrm{M} \mu \mathrm{A} / 2 \cdot 5 / 25 / 250 \mathrm{MA} / 10$ O/ $10 / 250 \mathrm{M} \mu \mathrm{A}$.
10 Amp A
$0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MEG} / 20 \mathrm{MEG} .-20+62 \mathrm{db}$
21250 . Post 25p.

MODEL C-7080 EN Giant 6in. mirror Bcale.
20,000 o.p.v.
$0 / 25 / 1 / 2 \cdot 5 / 10 / 50 / 250 / 1000 /$
 $0 / 2 \cdot 5 / 10 / 50 / 250 / 1000 /$
5000 V . A.C.
$0 / 50$ A $/ 10 / 100 / 500 \mathrm{~mA}$ $0 / 50 \mu$ A. A. $1 / 10 / 100 / 500 \mathrm{~mA} /$
10 amp. D.C. 10 amp. D.C. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 20$ meg. -20 to +50 db .
13.95. Post 35 p .

MODEL S-100TR MULTIMETER/

 TRANSISTOR TESTER $0 / 6 / 30 / 120 / 600$ V. AC.
$0 / 2 / 600 \mathrm{u} / 12 / 300 \mathrm{MA} / 12$ 0/10K/1 MEG/100 MEG $-20 \mathrm{to}+50 \mathrm{db} .0 .01-2 \mathrm{rnfd}$ Transibtor tester measures Alpha, beta and Ico.
Complete with batteries, instructions and lead Complete with batteries, instructions and lead
813.50 . Poat 25 . ,

213.95. Post 35p

 OUR F15.75 Carr UR-1A RECEIVER
0
 Biniti-in Speaker, Bandgpread, Sensi-
 OUR F2F:DD Carr

SKYWOOD CX203 RECEIVER

 product detector, endriabie B.F.O.

 $220 / 240 \mathrm{v}$. A.C. or $122 \times$ v.c. Brand | OUR |
| :--- | :--- | :--- |
| PRICE |
| OUR |

TRIO 9R59DS RECEIVER

4 bands eovering $550 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ continuous and eiectrical mandgpread
on 10, $15,20.40$ and 80 metres. 8 valve Plus 7 diode circuit $4 / 8$ ohn output
avid phone
iscli.
SSB-CW. ANt
 spread dial. IF frequeney $445 \mathrm{kc} / \mathrm{g}$.
 Size: $7 \mathrm{in} . \times 13 \mathrm{in} . \times 10 \mathrm{~m}$. with instracOUR $\quad 49-51$ Carr. PRICE trio range stocked.

EMI LOUDSPEAKERS	
	Model 350. 131 ln .
	over. 20 -
	${ }_{8}^{15}$ watt Rms. Av
	${ }_{\text {Moutel }}^{\text {with }}$ 450.
	8 watts RMs. Avaliab

HOMER INTERCOMS

2station $82 \cdot 97$. free instructions.
st P. 15 p .
Station
E.
8tation 26.6 . P. \& P. 15 p .
FM TUNER CHASSIS

${ }^{8}$ TRANSISTOR HIGE CUALITY
 discriminator. Ample output to feed most amplifers. Operates on on
battery. Coverage 88 volt
880 built ready for use. Fantastic value ior
maney.
$0 \cup R$
PRICE $\mathbf{2 5} 95$ P. \& 20

Carriage and Packing 75p
Complete units with Stereo cartridge

GARRARD

2025 TC/9TARCD
P25 $111 /$ G800..
PP25 111/M44-7

AP76/G800
AP76/G800E
$\mathrm{AP76/G800E}$
$\mathrm{AP} 76 / \mathrm{M} 45 \mathrm{E}$
AP
AP76/M76ED
AP76/M75EJ
AP76 Module M75-
AP96 Module Mi5-6
AP96 Module M75-6
ZEto 1008 Module/M93E
B.S.R. MeDONALD
${ }^{210} 8 \mathrm{BC7M}$.
MP60 TPD1/8800
HT70/TPD1/G800
GOLDRING
GL75/G800E
GOODMANS
TD100/G800 Teak
TD100/G800 White
LEAK ${ }_{\text {Delta/M }}$ 75-6
PEILIPS
GA105/GP200
GA160/GP200
GA212/GP 400
PIONEER
PL12D (Less cartridge)
PL15C (Less cartridge)
PL410 (Less cartridge)
PL50 (Less cartridge)
PLA135
THORENS
TD160C/Ortofon M15E Super
TD125 AB/11/Ortofon M15
WHARFEDALE
WHARFEDAL

2×230 Stereo $60 / \mathrm{P} / \mathrm{Z5} 5215.95$ $2 \times$ Z30/8tereo 60/PZ6 $218 \cdot 00$ $2 \times \mathrm{Z50}$ /Btereo 60/PZ8 $\mathbf{\text { £ } 2 0 . 2 5 .}$

Transformer for PZ8 22.97 extra. Active Filter Unit 24.45 extra. Pair of Q16 Speakers 810.70 extra Sinclair Project $605 £ 20 \cdot 97$

Reeord/Playback facilities plus slide

 Fule tuning of AM $53 x .1620 \mathrm{KHz}$ and Built in condenser microphone plus separate hand/desk microphone. Telescopic aerial. Complete with earpiece,batteries and instructions. (Tape not batteries, and instructions.
supplifed.) (Rec. List price $\&$ OUR $E 22.75 \quad$ P. \& P

REGORD DECXS	
Carriage \& Paeking 50p	
b.S.R. Medonald	
C114 Mini	23.95
${ }_{\text {C12 }}{ }^{\text {C13 }} 13 \mathrm{mono}$	25.50 87
$510 / \mathrm{TPDI}$	13.95
	29.90
610 /TPD1	114.85
	219.20
710/810 Plinth and Cover	.28.35
MP60	${ }^{87} 1.65$
${ }_{\text {MP60/G800 }}$	¢10.25
MP60/TPD1	812.60
$\mathrm{MP60}^{\text {HTP }}$	俍11.25
HT70/G800	¢13 60
HT70/TPD1	115 95
connotsseur	
BDl Kit.	${ }^{28} 85$
BD1 Chasis	110.75 826.15
812/8AU2/Chasals	${ }_{22115}$
BD2/AAU2/Plinth/Cover	226.75
garrard	
2025 T/C Stereo	88.40
${ }^{\text {SP25 }}$ III	88.30
8P25 III/Acos GP104 Ceramic	
${ }_{\text {AP76 }}$	处3.90
8L65B	211.15
${ }^{\text {8L728 }}$	[17.75
8L95B	+225.25
ZERO 100A	
ZERO 1008	827.95
goldring	
G99	818.85
G101P/C	${ }^{1618.85}$
6L69/2	${ }^{115.75}$
$\mathrm{alza}^{\text {alid }}$	17.85
GLiztr	
${ }^{\text {Pilinth }}$ 68/72	${ }_{62}^{25}$
GLī5.	223.75
GLisp	429.30
Plinth 76	25.55
GL55P/C	- 4.4 .97
micro-stiki	
MR111	224.90
MR111 Plinth and Cover	.8.25
thorens	
TD125/H	252.15
TD125AB/11	
TX25	. 25.60
TTR150A/i	$2{ }^{29}$
TD160C...	443.95
PLINTHS AND COVERS	
Carriage and Packing 50p	
	82.95
Budget AP76/Zero 1008	- 83.95
Buagee B.s. R .	
${ }_{\text {Garrard }}{ }_{\text {Garari }}$	${ }_{20}{ }_{20}{ }^{20}$
Carrard $\mathrm{SPC4}$	- 22.58 .40

ROIE WhidITS!

SEND LARGE S.A.E. FOR FULL HI-FI DISCOUNT LIST

FABC

ALL MAIL ORDERS TO
11-12, PADDINGTON GREEN, LONDON W2 1LG. Tel: 01-262 6562
PERSONAL CALLERS WELCOME AT ANY OF OUR RETAIL BRANCHES
10. Tottenham G1. Rd. WIP 9EP. Tel 01.6372232 152/3, Freet Street, EC4A 200. \quad Tel: $01-3532833$
27. Tottenhani CI. Rd, WIP 9RA.
87. Tottentiam Ct. Rd. WIP SHO.

257, Tottenham Ct. Rd, WIP 9AD.
3. Lisle Street. WC2H 786.

Tel: 01-723 9789
Tel: $01-6363715$ 118, Edgware Road, W2 202. Tel: 01-580 3739 193, Edgware Road, W2 IET.
Tel: 01-580 0670 311, Edgware Road, W2 1BM.
Tel: 01-437 8204 382. Edgware Road W2 IEB.
Tel: 01-723 6211
Tel 01-262 0387
Tel: 01-723 4194
34. Lisle Street, wC2H 780. Tel: 01-437 9155 378, Hamow Road, w9 2fll Tel; 01-286 9530

ALL BRANCHES OPEN 9 a.m.-6 p.m. MONDAY TO SATURDAY

- CREDIT TERMS FOR CALLERS (On purchases of $\mathbf{f 1 0 0}$ and over)
- ALL EQUIPMENT IS BRAND NEW, FULLY GUARANTEED AND OFFERED WITH FULL AFTER SALES SERVICE.

All items and prices are correct at 9.4.73
but subject to change without notice. E. \& O. E.

SERVICE TRADING CO

ALL PRICES INCLUDE P.A.T. POSTAGE AND please ask for quotation.
MATSUNAGA VARIABLE VOLTAGE TRANSFORMERS INPUT 230 v. A.C. $50 / 60$ OUTPUT VARIABLE 0/260 v. A.C. Carriage Paid
BRAND NEW. All types.
50 0.260 v. at 1 amp.
$0-260$ v. at 2.5 amps
0.260 v. at 5 amps
0.260 v. at 10 amps $0-260$ v. at 10 amps $0-260$ v. at 20 amps 0.260 v . at 20 amp $0-260$ v. at 25 amps $0-260$ v. at 37.5 amps
$0-260$ v. at 50 amps 67.70

AMP EN TYPE (Panel Mounting)
 All primaries $220-240$ volts. TRANSFRMERS Alf primaries $220-240$ volts.
Type No.
$130,32,34,36 \mathrm{Sec}$. Taps 5 amps
$230,40,50$,
$30,32,34,36 \mathrm{v}$. at 5 amp
$30,40,50 \mathrm{v}$. at $5 \mathrm{amps}.$.
$10,17,18 \mathrm{v}$ at 10 amps.
10 . $17,18 \mathrm{v}$. at 10 amps
$5,12 \mathrm{v} . \mathrm{at} 20 \mathrm{amps}$.....
$17,18,20 \mathrm{v}$. at 20 amps.

5	$17,18,20 \mathrm{v}$. at 20 amps.
6	$6,12,20 \mathrm{v}$ at 20 amps.
7	24 v.

8
$9,6,24,32 \mathrm{v}$ at 12 amps
9
6

36 volt 30 amp.A.C.orD.C Variable L.T. Supply Unit Input 220/240
tinuously vari
Fully isolated.
Fully isolated. Fitted
case with Voltmeter, Ammeter, Panel
Indicator and chrome handles. Input and Ouiput fully fused Indicator and chrome handles.
Ideally sulted for Lab. or Industrial use. $£ 77$ incl. p. \& c.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 10 AMP
Now available EX STOCK supplied complete with full data and applications sheet.
Suitable Diac 30p (RCA40583).

DOUBLE ENDED MOTOR UNIT

Powerful, continuously rated, 2 speed. Elther 6 or 12 voit D.C. operation.
Price $£ 2.20$ incl. $\mathbf{P} . \&$.

power

eniostars
(NEN) Ceramic construction, windEnamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FROM
STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm $-7 a, 500 \mathrm{ohm}=45 \mathrm{a}$., ik ohm 280 mA ., 1.5 k ohm 230 mA ., 2.5k ohm $-2 \mathrm{a} ., 3.5 \mathrm{k}$ ohml 140 mA ., Diameter 31in. Shaft lengsh 3 in . dia. $\frac{15}{4} \mathrm{in}$., $£ 1 \cdot 90$, incl. P. \& P.
50 WATT $1.12 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$ 50 WATT $1.12 / 10 / 25 / 50 / 100 / 250 / 5$
5 K ohm. All at $£ 1.35$, incl. P. \& P

Black Silver Skirted knob calibrated in Nos, I-9. Iz
in. dia brass bush. Ideal for above Rheostats, 20pea.
UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER
operation €6.74 inc. P. \&P.
GBANK 25 WAY FULL WIPER 25 of
coil, 24 v. D.C. $£ 7 \cdot 43$. inc. P. \& P
coil, 24 V. D.C. $\mathbf{E 7} \cdot 43$. inc. P. \&
8 BANK 25 WAY FULL WIPER

24 v. D.C. Operation 68.67 ine. P. \& P
'HONEYWELL' PUSH BITCH
ASSEMBLY
Each bank comprises of a change-over
rated at 10 amps 240 volt A.C. Black
knob 1 in . dia. Fixlng hole fin. Prices:

1-bank 3i, ${ }^{2}$ 2-bank 44p, 3-bank 61 p .
(illustrated)
Inc. P. \& P. Special quotes for quantities.
230 VOLT AC SOLENOID EXTREMELY POWERFUL
SOLENOID with approximately 14ib. pull, 1 inch travel. Fltted with mount-
ing feet. Slze 4 inches long, 2 i inches

230-250 VOLT A.C. SOLENOID

SImilar in appearance to above lllustration.) Approx. $1 \frac{1}{4} \mathrm{~b}$.
pull. SIze of feet $14 \times$ 1青. Price 94 p Incl. P. \&P. Manufacoull. Slize of feet $1 t \times$
ured by Westool Lid.

240 V A.C. SOLENOID OPERATED FLUID VALVE Wili handle llaulds or gases up to 7 p.s.1. Forged
brass body, stainless steel core and spring in brass body, stainless steel core and spring. $\frac{1}{2}$
b.s.p. Inletioutlet. Precision made. British m b.s.p. Inietioutiet. Precision made. British m
PRiCE: £2.15 Inci. P. \& P. Special quotation

HONEYWELL PROGRAMME TIMERS

240V. A.C. 5 i.p.m. motor. Each cam
operating a clo micro switch. Cams
 numerable combinations. Ideally
sulted for machinery control, auto-
mation etc. Also in the field of mation etc. Also in the field of
entertalnment,
for chaser lights. animated displays. 15 cam model $£ 6.60 \mathrm{incl}$. P. \& P
10 cam model $£ 5.50 \mathrm{incl}$ P. \& P
10 cam model $£ 5.50 \mathrm{incl}$. P. \& P_{L}
2 cam model with $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. motor
SIMPLE 12 CAM PROGRAMMER with 4 adJustable cams and 8 that may be profiled to indivldual requirements. Avall
able with 15 or 13 r.p.m. motor $£ 4.13$ incl. P. \&P.

24 HOUR TIMER

Can be adjusted to glve a switching delay
of between i hr. to 24 hrs . Drlven by 200 l of between i hr. to 24 hrs. Drlven by $200 /$
$250 \mathrm{H} . \mathrm{A}$. synchronous motor. 15 amp. clo contacts. Mig. Crater Controls Ltd.
Supplied with scale callibrated
$0-10$

VENNER ELECTRIC TIME SWITCH 2001250 volt. Ex-GPO. Tested, perfect con-
dition. Two ON, two OFF, every 24 hrs . at any manually preset time. Price: 15 amp,
\&3. 80.20 amp, $\mathrm{E} 4-35$. Inci. P . \& P. Also avall£.3.80. 20 amp , e4-35. Incl. P. \& P. Also avail-
able with Solar Dlal ON at dusk, OFF at dawn. as above.

Electronic BrokersLtd-The

10 Channel event recorder Designed for recording sequences of up to ten different operations, e.g. sequence of machine tool operation. switching sequences, etc. Record is presented in the form of square "pulses" When energised. pen moves by approximately 4 mm , to the right of zero line Response time 100 milliseconds Chart width 110 mm Chart length 50 H Inv. capacity 72 hours. Chart speeds 20-60-180-600-1800-5400 mm/hour. Size $160 \times 160 \times 255 \mathrm{~mm}$ Weight 9 bs Price complete with accessories	PORTABLE AC/DC PEN RECORDING VOLTAMMETER Fitted with separate zero-marking pen Accuracy 1.5\% DC. 2.5\% AC. Measure ments ranges - AC and DC: 5-15-150. 250.500 m A 15.5 Amps 5 15.50.150 250-. 500V DC only 150 mV . Frequency range 45 to $1000 \mathrm{c} / \mathrm{s}$. Chart width 100 mm . Charl speeds 20-60-180-600 1800-5400 mm/hour Weight 22 tbs Price complete with accessories £78.00	miniature pen recorder Provides permaneni record of $D C$ currents up to 1 mA Eminently suitable for use where space is limited. Separate time marker pen provided. Chart width 80 mm Chart length 40 ft . Chart speeds Slow 2060180 mm hour Fas: 600 800-5400 mm/hour. Dimensions 120 x $120 \times 285 \mathrm{~mm}$. Weight 77 lbs. 135 Kgl Price complete with accessories	SINGIE Channel HIGH SPEED RECORDER Chart length 175 ft . Footage indicator Width of recording channel 80 mm Chart speeds iselected by push buttons) 1.2-6-12.30-60-120-300-600-3000 mm per minute Full defiection current 8 mA Internal impedance 210 ohms. Externat impedance 800 ohms. Dimensions $320 \times 340 \times 175 \mathrm{~mm}$. Weight 35 lbs Price complete with accessories	THREE CHANNEL HIGH SPEED RECORDER Strip Chart Recorder Chart length 175 ft Footage indicator. Width of recording channel 80 mm . Chart speeds iselecred by pushbuttons) 1.2-12-30-60-120 $300-600-3000 \mathrm{~mm}$. per minute Ful deflection current 8 mA Internal imoedance 210 ohms. External impedançe 800 ohms. Dimensions $510 \times 345 \times \geqslant 75$ mm Weight 44 lbs Price complete with accessories
AC/DC MULTIMETER With taut band suspension movement. Sensitivity 20.000 ohms per volt on DC and 4.000 ohms per volt on AC Technical Data $0.06 \cdot 0.6 \cdot 6 \cdot 60-600 \mathrm{~mA} 3$ Amps DC 0.3-3-30.300mA 3 Amps AC 0.6.1 2. 3-12-30-60-120-600 DC, 1200 Volts. 3-6-15-60-150-1300-600-900 Volts AC. 45 to 20.000 Hz . $500 \Omega, 5 \cdot 50-500 \mathrm{k} \Omega$ resistance. Decibel range -10 to +12 dB . Accuracy $\%$ of F.S.D. :- $-D C$ and resistance measurements +2.5 . Price with test leads, and storage case	AC CLAM P VOLTAM METER Clamp-on Voltammeter is used for measurements of AC voltages and currents without breaking circuits Specification Measurement ranges:-Current 10-25-100-250-500 Amps. Volrage 300. 600 V . Accuracy 4%. Scale length 60 mm . Overall dimensions $283 \times 94 \times 36 \mathrm{~mm}$. Weight 1.5 lbs . Price $£ 10.50$	TV SWEEP MARKER GENERATOR Type VU 167 Suitable for alignment of tuned circuits in television sets. Incorporates a sweep generator, a market generator and a crystal-controlled oscillator operating at 55 MHz Sweep frenmenrv rance 1.30 MHz , 170-260 MHz Fund. 470-780 MHz Harmonic. Marker frequency range $2-266 \mathrm{MHz}, 480 \cdot 800 \mathrm{MHz}$ £195.00	AM-FM GENERATOR Type AF 1065 Permits fast and accurate calibration of modern radio receivers. Suitable for calibration and testing in the laboratory AM frequency range: from 140 KHz to 46 MHz in 6 ranges expanded range $430-530 \mathrm{KHz}$. FM frequency range 9.5-12 MHz; 85-110 MHz Frequency accuracy better than ${ }^{0}$ RF output voltage adjusiable from $0.1 \mu N$ to 0.1 V . Output impedance 75 Ohm constant. Modulation: AM: FM: AM + FM Amplitude modulation 400 Hz from 0 50% adjust Frequency modulation 1000 Hz adjust. Deviation from 0 50 KHz External modulation AM FM ; from 30 Hz to 15 KHz . Price $\mathbf{£ 2 2 5 . 0 0}$	RCL BRIDGE Type P 966 For measurement of RCL and capaciror dissipation factor and inductors figure of merit 0 . Consisis of a system of switch able bridges, a 1 KHz generator anc a sensitive iuned detector Particularly suitable for testing of small production batches and selection of component parameters Measurement ranges Resistance: from 0.1 Ohm to 11 MOhm Capacitance: from 1 pF to $1100 p \mathrm{FF}$ Inductance: from $10 \mu^{H}$ to 1100 H Accuracy: $+/-1 \%$. Dissipation factor D. from 0.02 to 1000 . Internal oscillatur: 1 KHz Price $£ 1 \mathbf{7 0 . 0 0}$

Supertester 680R. Buy it for what it is. Or buy it for what it can be.

ACCESSORIES TO CONVERT THE SUPERTESTER G80R TO THEFOLLOWING:		
Temperature		
		Indicator
Probe		To indicate
Converting the	For measuring magnetic field strengths $\mathbf{f 1 1 . 9 5}$	the phase
$\begin{aligned} & \text { range }+30 \text { to } \\ & +200^{\circ} \mathrm{C} £ 11.95 \end{aligned}$		equence 3 phase

Signal Injector
Producing
1 KHz and
500 KHz
signals tor
circuit testing $£ 5.95$

Electronic
Voltmeter
Input esistance
of 11 Mohms
tor d.c. and
1.6 Mohms
sinunted by 10 pF

680R o.C ramges from or 2000 V 12 ranges from $50 \mu \mathrm{~A}$ $\begin{array}{lll}\text { to } & 5 A & 20.000 \\ \text { Accuracy } & 18 & \mathrm{~A}\end{array}$ Accuracy 1\%. 11 A.C. ramenes Hrom 2 to 2500 V . 10 rames Accuracy 2%. Accuracy 2\%. 0.5Ω to $100 \mathrm{~m} \Omega$. 月eactance I range of 0.10 M . Frequercy: 2 ranges of 0.50 and 0.500 CHz . Output Vots: 9 ranges trom 10 to 2000V. Oecibess: 10 $\begin{array}{ll}\text { ranges } \\ -70 \mathrm{~dB} . & \text { Crom }-24 \\ \text { Capacitance: }\end{array}$ -70 dB Capacitance: 6
ranges. 4 ranges from 20 to 1anges. 4 ranges from 20 to
20.000 mfd from internal
thatuery 20.000 mid trom internal
batiery and 2 ranges fren $\begin{array}{lll}50,000 & \text { to } 500.000 \mathrm{pF} \\ \text { using }\end{array}$ mains. E18. 50 complete with case and probes

Test Equipment Specialists

3" SINGLE BEAM PULSE OSCILLOSCOPE For display of pulsed and periodic wave forms in electronic circuits. Vertical amplifier: Bandwidth 10 MHz Sensitivity at $100 \mathrm{KHz} V$ RMS/mm. $1-25$. KH? Sensurivity ai 100 KHz VRMS mm .3.25 Prese: trigqered sweep 13000 u sec Frme nine ranges. Calibiator pips Dimensions $220 \times 360 \times 430 \mathrm{~mm}$. Weight 40 lbs $115-230 \mathrm{~V}$ AC operation. Price $\mathbf{£ 3 9 . 0 0}$	DOUBLE BEAM OSCILLOSCOPE Designed for investigation and measure ment of pulsed and periodic waveforms The use of two independent vertical deflection amplifiers permits the display and analysis of iwo different waveforms simultaneousiy. Display area $35 \times 90 \mathrm{~mm}$ Repetition rates of investigated wave forms 50 Hz to 1 MHz . Range of pulse length $035 \mu s$ to 1 sec Range of ampli tudes 0.04 to 400 V . Maximum amplitude without external attenuator 100 V Characteristics of vertical amplifiers Amplifier passband at $1 \mathrm{db} D \mathrm{C}$ to 1 mHz Amplifier passband at 3 db DC 105 mHz Sensitivity at medium freauencies at broad passband $500 \mathrm{~mm} / \mathrm{V}$. Size of undistorted puse display 40 mm . Input impedance $0.5 \div 015$ Megohms shunted by 45 pF . Input Impedance with external attenuator 5 Megohms shunted by 13 pF Voltage attenuation ratios of the bult-in attenuator $1: 1,10 ; 1: 100$. sweep durations:--microseconds per $\mathrm{cm} 0.2: 0.5: 1: 2: 5,10 \quad 20: 50: 100$ 10:20:50:100. Free-running time base frequency range 50 Hz to 1 mHz Sweep sync. voltage and trigger voltage 0.5 V . Maximum zrigger pulse repetition ate 10 kHz Built-in amplitude cals duration of $035 \mu \mathrm{sec}$ or longer $0.04-100 \mathrm{~V}$ Fundamental error of the calibiator 110%. Frequency of quartz crystal top for puises with rise time not below 0 i usec 10%. Instrument warm-up time 30 min . Power inputs $220 / 250+50 \mathrm{~Hz}$ Overall dimensions $260 \times 550 \times 376 \mathrm{~mm}$. Price $\mathbf{£ 8 7 . 0 0}$	WHEATSTONE BRIDGE AND CABLE FAULT LOCATOR Measurement of resistance in the.range of 0.005 to 9 megohm . Location of cable faults using Varley loop method. Location of cable faults using Murrav toop method Measutement of asymmetry of wires Use of four-decade section as a resistance box. The bridge consisis of four decade switches giving a range from 1 to 9999 ohms in 1 -ohm steps. Accuracy. from 1 to 99.990 ohms 0.5% from 0.1 megohm 5.0%. from 0.005 to 00999 ohms 5.0%, Dimensions: $300 \times 230 x$ $\$ 50 \mathrm{~mm}$ Weight: Approx. 12 lbs Price complete with connecting leads £41.00	PORTABLE WHEATSTONE BRIDGE Designed for measurements of DC resistances in the range of 10^{-5} to 10^{6} Megohms. Basic accuracy 0.01 ohms to 10^{5} ohms is 02%. Dimensions $300 \times 230 \times$ 150 mm . Weight approx 13 lbs . Price $£ 49.00$	MULTIM ETER 0.1-1-10-100-1000mA 2.5-10-20 250-500-1000V AC/DC Sensitivity AC and $D C$ all ranges except 10 V 10.000 Ohm/V. Dimensions $212 \times 118 \times 75 \mathrm{~mm}$ Weight 2.9 lbs. Price complete with steel carrying case and test leads £4.95
Lf SIGNAL GENERATOR Type G 1165 B Transistorised generator providing wide range of squarewave and sinewave signals. Suitable for measuring distortion. gain or attenuation when testing the freauency pesponse of low-freauency eanipment Sinusoidal output - Frequency range (in 4 ranges): from 10 Hz to 100 KHz . Output voltage: from 1 mV 1010 V . Output impedance: 600 Ohm consiant. Frequency accuracy: better than 2%, Harmonic distortion: less than $03 \%(50 \mathrm{~Hz} \quad 30 \mathrm{KHz})$ Sauarewave output: Frequency range (in 4 ranges): from 10 Hz_{2} to 100 KHz Output voltage from 100 mV to 10 Vp . Output impedance: 75 Ohm constant. Risetime: less than 10 nS Price $£ 165.00$	DISTORTION METER Type D 566 B Fulty transistorised for measurement of overall distortion of signals with frequencies berween 10 Hz and 1 MHz Buit-in electronic voltmeter can also be used separately for measuring $A C$ voltage. basic nose, gain or attenuation over a wide freauency range. Distortion meter Freouency lange (in 5 ranges): from 10 Hz to 1 MHz . Distortion factor (in 7 ranges): from 0.03\% to 100 . Minimum testing voltage: 300 mV approx. Input impedance: $100 \mathrm{KOhm}: 40 \mathrm{pF}$ approx Milivoltmeter Vottage range (in 12 ranges) from 1 mV to 300 V f.s.d Level range (rel to 0.776 V): from - 52 dB to -75 dB Freouency range: from 10 Hz to 2 MHz . Bandwidth (within 3 dB) up to 8 MHz . Accuracy; better than 5%, Input impedance 2 MOhm: 50 pF approx Price $£ \mathbf{2 4 9 . 0 0}$	WOW AND FLUTTER METER Type WF 971 Solid state, high stability unit. Can be preset for either the European slandard at 3150 Hz or the American standard at 3000 Hz . Provided with built-in oscillater. Specifications: DIN and CCIR. Input Signal: 20 mV ims to 20 V ims approx Frequencies (switchable): 3150 Hz and 3000 Hz . Ranges (fluter): $+/-0.1 \%$ tion: $+12 \%$ max. Input impedance iOmOhm max. Built-in oscillator: 3000 Hz or 3150 Hz switchable. Stability better than 0.1%, Shifts for calibration $+/-01 \%$ dynamic. 50 Hz 2% s.atic Price $£ \mathbf{2 2 5 . 0 0}$	MODEL 300 LOGIC PROBE A compact easv-to-operate logic probe As a light-emitting diode is used the unit actuales with low power. It does not affect the circuit under test because of high inpur impedance Un to as hiah a frequency as 12 MHz . Price $£ 5.50$ plus 75 p packing and carrage.	4-Range general purpose TEMPERATURE RECORDER Type 01 Specially designed compact self contained instrument for recording temperatures up to $500^{\circ} \mathrm{C}$. The main use, robust instrument suitable for use in the laboratory and in the field. The four ranges are $10^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. These are selected by push buttons allowing full use of the $3^{\prime \prime}$ wide chart. Two chart speeds $7^{\prime \prime}$ and $6^{\prime \prime}$ per hour are provided by the 240 V 50 Hz synchronous chart drive The 3\% basic accuracy of the instrument. which is adequate for most applications. has been achieved without introducing stability problems in the d.c. amplifier, making the recorder ideal for use in schools. colleges and universities and by unskilled personnel. The recorder is complete with NiCh/NiA1 thermocouple and mains lead. This product is brand new and manufactured in our own laboratories with three month guarantee. Price $£ 95.00$ plus E5.O0 packing and carriage.

ALL EQUIPMENT GUARANTEED FOR 6 MONTHS. ADD 10% VAT TO ALL PRICES. PROMPT DESPATCH MAIL ORDER \star CALLERS WELCOME MON-FRI 9 A.M. to

ExTRAl in \quad 8PaGE Finithes SUPPLEMENT with 8 step-by-step constructional articles on these simple projects!

Easy to follow instructions from the top designer of these items for the modern home makes each project simple and satisfying to construct. Take your pick. This fully illustrated supplement is printed on eye-catching green paper for easy identification.

RADIO ALARM CLOCK
Uses tape tuner with an amplifier.
Uses tape toner with an ampifier.

And another reason for getting this rewarding and extra large issue is to find out about next month's competition with 4 special prizes of digital multimeters each worth almost £50.
Show your metal and make some of these!

Reduces the lighting level at the turn of a knot

2-way communication for kitchen. garage, workshop or sickroom.

BABY ALARM
Transmits sound of baby crying or door or telephone bells.

TWO-TONE DOORBELL
Has pleasant-toned peal effect.

TAPE TUNER
Portable medium wave tuner to feed a tape recinder or amplifier.

WATER LEVEL
DETECTQR
Warns when water in bath or tank
reaches a predetermined level.

Many more constructional articles plus our regular features all in the May issue on sale April 6.
prive 20p

ULTRASONIC TRANSDUCERS

40 KHz and 25 KHz

UT40 and UT25
These miniature, high sensitivity transducers have a wide range of applications, and are supplied in matched pairs. Full technical data is available on request.

UT40	1 's	$£ 3.95$ a pair
	10 's	$£ 3.65$ a pair
UT25	1 's	$£ 4.45$ a pair
	10 's	$£ 4.10$ a pair

MACDONALD CLARENDON ROAD ASHFORD MIDDX

Thermistors

F. J. Hyde, DSc. MSc, BSc.

The aim of this book is to give for the first time a comprehensive account of the properties and applications of both, positive and negative temperature coefficient (NTC and PTC) types of thermistors in order that their potential usefulness in a wide range of instrumentation and measurement may be made evident. It will prove to be an indispensable reference book for all those interested in the application of this extremely useful circuit component.
O 59202807 O 208 pages illustrated $1971 £ 3.20$ Inclusive of Postage Available from leading booksellers or:
The Butterworth Group 88 Kingsway London WC2B 6AB Showrooms and Trade Counter 4-5 Bell Yard London WC2

BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK of America. This Recorder indicates the magnitude of applied currents or lages by a continuous distortion-lree line on pressure sensitive paper resistance 100 ohms Chart drive motor 240 V 50 Hz Chart speed $1^{\prime \prime}$ per our. Complete with handbook. Price $£ 35.00$ plus $\mathbf{£ 5 . 0 0}$ packing

SINGLE PEN RECORDER by Record Electrical. $3^{\prime \prime}$ chart. sensitivity 1 milliamp. chart speed $1^{\prime \prime}$ and $6^{\prime \prime}$ per hour. Size
$8^{\prime \prime} \times 1^{\prime \prime} \times 6^{\prime \prime}$. Offered complete with pen assembly and spare chart. Listed at over $£ 100$ - this month's special price due to bulk purchase $\mathbf{£ 3 9 . 5 0}$ plus $\mathbf{£ 5 . 0 0}$ packing and carriage.

TRANSITROL TEMPERATURE CONTROLLER TVPE 990. Completely transistorised selfcontained direct deflecting units for indicating and controlling temperature accurately over a
wide range. Suitable where a signal can be converted into d. Sensitivity 10 ohms per MV wide range. Suitable where a signal can be converted into d.c. Sensitivity 10 onms per MV. Minimum F.S. Brate Cold junction co beng $6.0-800^{\circ}$ Control switching and thermocouple connections all at back of case. Price : $\mathbf{£ 1 8 . 5 0}$ plus £2.00 packing and carriage.
POWER SUPPLIES IBM EX-COMPUTER HIGHLY STABILISED TRANSISTORISED LOW INPUT and OUTPUT. Load requiation of 1% or better. Low ripple and fast rection on both Input voltage 120-130 50 Hz . Avaitable in the following types:

VIBRON ELECTROMETER MODEL 33B An oxcept ionally stable laboratory instrument for the measurement of very small d.c. voltages and currents has input ranges of 10 MV 30 MV 100 MV 300 MV and 1 V and the output is 1 mA . Full scale on all ranges. The drift does not exceed 100 microvolts in 12 hours and the input resistance is 10 to the power of 13 ohms. Pric $£ 45.00$ plus $£ 5.00$ packing and carriage.
MUTUAL INDUCTANCE BOX TYPE R7005 Specification range 0 $(-10.3 \times 0.002 \mathrm{mH}$
$\times 0.012) \%$ where M -value of mutual inductance in mH set on the box. Frequency range $0-2.5 \mathrm{~K} / \mathrm{cs}$ for all decades except $\mathrm{X} 1=0.15 \mathrm{~K} / \mathrm{cs}$. Maximum current: 0.5 A for decades 1 A for variometer (both primary and secondary wingings). Case polished teak. Price $\mathbf{£ 1 0 . 5 0}$ plus $\mathbf{£ 5 . 0 0}$ packing and carriage.

FULLY STABILISED BRAND NEW 8.7 Volt
SOLARTRON AUTOMATIC NOISE SPECTRUM ANALVSER. Complete Spectrum Print-out in 1 secs. Low Power Consumption 150VA. Extreme Simplicity of Operation. Print-out rate: 30 cards per minute maximum. Single cards on
command. Frequency Range $1 \mathrm{~Hz}-10 \mathrm{kHz}$. Dynamic Range of 40 dB in 2 dB Increments. Print-out Histogram on standard $7 \frac{7}{8} \times 3 \frac{1}{4} \times$ card. CRT gives continuous Monitoring of the short term Spectral Oensity.
Appications: Waveform analysis, accoustical studies, speech analysis, vibration seismology etc. As is condition. Price $£ 100$ plus carriage at cost.
ROHDE \& SCHWARZ ATTENTUATOR BN $18042 / 50.50$ otms. $0-100 \mathrm{db}, 0-300 \mathrm{MHz}$ Price $£ 65.00$ plus $£ 7.00$ packing and carriage.
ROHDE \& SCHWARZ SIGNAL GENERATOR BN $41043.4400-8300 \mathrm{MHz}$. Price $£ 325.00$ plus $\mathbf{£ 1} 0.00$ packing and carriage.
EX-EQUIPMENT B-HOLE PAPER $£ 15.00$, 16K £25.00. Packing and carriage $£ 3.00$ EX-EQUIPMENT 8-HOLE PAPER TAPE PUNCH HEADS AND READER HEADS. 45 cps HELIPOTS: WIDE RANGE FROM $\mathbf{£ 1 . 0 0}$
WELMEC 8-hole electro-mechanical paper tape punches and readers operating at 17 cps . Punch $\mathbf{£ 2 9 . 0 0}$. Reader $\mathbf{£ 2 5 . 0 0}$ plus $\mathbf{£ 2 . 0 0}$ packing and carriage. 80 COLUMN HAND PUNCHES. The well proven and familiar 80 column table-mounted hand punch for the serial punching of alphanumeric data on to standard cards. Features include Space Key for skipping single unused columns: Skip Key for skipping area defined by the position of format tabs on the skip bar; Release Key for Skıpping over areas remaining when punching ceases before column 40 . These punches have been remanufactured to new specification and carry a three months warranty. Price $\mathbf{£ 7 9 . 7 5}$ plus $\mathbf{£ 5 . 0 0}$ packing and carriage.
PDP-12C 4 K CPU and Console. DF32 32 K Disk and Control. DWO8A 1/0 Bus Level Converter. PC12 \& PCO5 Punch. BA12 Peripheral Expander. ASR33
Teletype. PTO8C Dual Channel Interface. KP12 Power Fail/Restart. AFO 1 A AD Converter/
Multiplexer. * Fully maintained by DEC since new * DEC maintenance available on resale
\star Available in our showroom now $*$ Onty inree years old.

ADVANCE $1 \mathrm{NC} / \mathrm{s}$ TC 1 A Timer-Counter
MARCONI Helerodyne Frequency Meter 106771
SAUNDERS OSCILLATOR CIC 7-12.
MUIRHEAD D888A Analyser Oscillato
SOLARTRON LM903 AC Conve
EH132S PULSE GENERATOR
EH132S PULSE GENERATOR
AVO ELECTRONIC MULTIMETER CT38
TEKTRONIX TYPE 80 PLUG-IN
B.P.I., ENGINE TESTER

SOLARTRON CX1442 PLUG-IN
POLARAD SPECTRUM ANALYSER
POLARAD SPECTRUM ANALYSER
SOLARTRON Stabilised Amplitude Signal Generator Type DU903
SOLARTRON Stabilised Amplitude Signal
MARCONI $8010 / 1 / \mathrm{S}$ AM Signal Generator
£45.00
$\mathbf{£ 4 5 . 0 0}$

MARCONI 801D/1/S AM Signal Generator
MARCONI TF1400/S DOUBLE PULSE GENERATOR

C. T. ELECTRONICS
 267 ACTON LANE, LONOON, W. 4 5DG
 0.1-994 6275

COMMUNICATIONS EQUIPMENT
POCKET V.H.F. F.M. RADIOTELEPHONE Fully transitorised transmitter/receiver avaiłable in two versions:-
Low band; Freq. range $71.5-104 \mathrm{MHz}$.
High band; Freq. range R.F. Output $140-174 \mathrm{MHz} 50 \mathrm{~mW}$. High band; Freq. range $140-174 \mathrm{MHz}$.
Size; $15.2 \times 12.1 \times 3.5 \mathrm{~cm}$.
Complete with $\frac{1}{4}$ wave whip aerial, combined microphone/loudspeaker and 13.3 V . rechargeable nickel-cadmium DEAC battery Price $£ 75$ + v.a.t.
U.H.F. 2 watt FIXED RADIO LINK. 24 V . de. $/ 240 \mathrm{~V}$. ac. F.M. TRANSMITTER/Type CCRTX 4 A Mk. 1

D.C. POWER PACKS

ADVANCE

PM 31 4-30V I Amp Stabilized
PM 46 30-50V I Amp Stabilized
DC 23 48V 4 Amp Constant Voltage DC 2312 V 4 Amp Constant Voltage

COUTANT

ED 200/12/125-30V 2 Amp Dual Stabilized. ... $£ 45$ ES 500/266-30V 5 Amp Stabilized .135 ENGLISH ELECTRIC CO.
EE T 2053 12V 20 Amp Stabilized. EE T 2053 I2V 20 Amp Stabilized............... $£ 40$
EE Z-O-B Mk. 2 Triple Stabilised Supply....p.o.a. EEK78008.
FARNELL
IR 24/10 24V 10 Amp Stabilised............... ± 40 STE 234 30V I Amp + IOV 2 Amp Dual
Stabilised 38

ROBAND

P 1695A 10-12V 10 Amp Stabilised. $\mathbf{E 2 5}$
All above units are NEW and UNUSED. ALL PRICES EXCLUSIVE OF V.A.T.

Please add 10% after April Ist.
Price
each
$\underset{£ 20}{\in 12}$ $£ 20$
$£ 14$
$f 10$ $£ 10$
$£ 10$
. 5 ,
\qquad ,
 25

```
            Please add 10% after April Ist.
```

ADVANCE. Constant Voltage Transformers. Type $\mathrm{CV} 25 / 108$. Input $102-138 \mathrm{~V}$. Type CV50F. Input $190-260 \mathrm{~V}$. Output EA^{4} Type CV50/112. Input 200-265V. Output
9.5 V . rms. 50 W. POWER SUPPLY.
Type PP42 Thumbwheel control gives 0-60V, 3A. fully variable output in TRANSMOTOR. Rotary Convertor Type FO-15. Pri. IIV. Sec. II 5 V . $/ \mathrm{sec}$.
APELCO. A.C. Voltage Regulator. Type 7227 A . Input $100-140 \mathrm{~V}, 50-70 \mathrm{~Hz}$.
SANDERS. Laboratory Magnetic Amplifier. Type L 026. Three circuits in one unit, tion, auto self excited. Max. output tion, auto self excited. Max. output
20W. 655
BRITISH PHYSICAL LABORATORIE'S. Coil Comparator.
Type LC $100-\mathrm{C}$ Range $0.1 \mu \mathrm{H} .-100 \mathrm{mH} \ldots 650$ PYE ETHER. Transducer Indicator Type JLT. Load Cell Type BCL io-5 Tons.............. 20 ADVANCE. Volstat Mains Adjustable $\mathcal{E l o}$ Temperature Controller Type TCN2 .. £8
 Generator Type 1090.
CAMBRIDGE. A.C. Test Set (Dynamometer) Type L 356558 . Measures Volts 50 , $100,250,500 \mathrm{~V}$. fsd. Amps $0 \cdot 5,1,2 \cdot 5$,
$5,10,25 \mathrm{~A}$ fs. Watts $0-250 \mathrm{~W}$. fsd. .. $£ 55$ Decade Bridge Type L 358113 660
CROYDON PRECISION INSTRUMENTS. Kelvin Bridge Ohmeter Type
KB I...$~$
ADVANCE. D.C. Power Supply Type
DCI 21. Input $115-250 \mathrm{~V}$. ac. Output $18-0-18 \mathrm{~V}$. dc.
COSSOR. V.H.F. A.M. Receiver Series R109. . $£ 50$
$\begin{aligned} & \text { V.H.F. A.M. Transmitter Series } \\ & \text { Ri09 }\end{aligned}$
$\begin{aligned} & \text { V.H.F. A.M. Radiotelephone Type } \\ & \text { CC } 301 \text { (incomplete) }\end{aligned}$

RANK DATA SYSTEMS. E.H.T. SUPPLY 24KV. 6 mA . Stabilized Oil filled cooling. Tharefore buyer must collect
F. Output 2 W at $450-470 \mathrm{MHz}$

RECEIVER/Type CC RR4A Mk.
Price $\mathbf{6 0 . 0 0}$ per unit Full Technical and operating data available. Prices and details on request. Mains Power Pack for the
$\mathbf{E 1 2 . 0 0}$ each. above
I + ICARRIER EQUIPMENTS. Cossor Type CCM2A.
Solid state multiplex installations designed for U.H.F. radio systems enabling 2 speech channels each with out of band signalling, if required or the equivalent in telemetry information, to be transmitted simultaneously over a radio system Prices and details on request V.H.F. RADIOTELEPHONE BASE STATION. Cossor Type CC 603 Transmitter. Simplex or duplex operation, local or remote control with talk through facilities, using double sideband a.m. modulation.
Low-band $71.5-104 \mathrm{MHz}$, or High-band $156-174 \mathrm{MHz}$. versions available.
RF. Output power 25 W . into 50 Ohms.
24V. dc. Operation. Prices and details on request OPTIONAL POWER SUPPLY Type CC 101 for type CC603 base station P.O.A.

CONTROL DATA CORPORATION

 Magnetic Tape Transport 91207 Track 75 ips. Recording density 800 556 or 200 frames/in. Compatible with CDC 603, 604, 606, 607, 163, 164, 1607, and IBM 729 I-VI, 727,7330 units.
Character rate; density.
ull set of operating and maintenance manuals available. Only 1200 hrs . use.
Fully operational and ready for use I $£ 350$ Tape Transport Exerciser 699.

Used to check out the above tape transport without tying up the computer system. Complete with manual......... $£ 75$

MOVING IRON AMMETERS

$2 \frac{1}{2}$ in. SQUARE

Available in the following values:-
$0-1-4$ Amp
0-1.5-6 Amp
$0-1.5-9 \mathrm{Amp}$
$0-5-15 \mathrm{Amp}$ $0-5-15 \mathrm{Amp}$ $0-8-48 \mathrm{Amp}$ 0-15-45 Amp $0-30$-180 Amp $0-40-240 \mathrm{Amp}$ $0-50-200 \mathrm{Amp}$ $0-50-300 \mathrm{Amp}$

SINGLE CHANNEL

SOUND-TO-LIGHT CONVERTER

WITH LIGHT DIMMER
Max. load 2kW. at 250v. A.C.
When connected to the output of an audio amplifier the unit modulates the brightness of any filament light bulb proportionally with the loudness of the sound source.
Price includes ready built and tested module, edge connector/mounting bracket, dimmer potentiometer, audio sensitivity potentiometer ull connecting data
EXTRA FACILITIES. Push-button for Manual Pulsing 25p extra. Photocell for turning on the lights as the ambient light decreases, 75 p extra.

3 CHANNEL FILTER UNIT

When used with three single channel modules this unit filters the sound into bass, middle and top frequencies enabling three coloured light displays to be shown. Independent sensitivity controls on each channel. Ready built and tested.
OIL WHEEL PROJECTOR

Build your own using our MULTIWHEEL AND MOTOR Suitable for mounting on virtually all Slide Projectors. Kit contains

* $6^{\prime \prime}$ dia. or $4^{\prime \prime}$ dia. OIL WHEEL (please state size required when ordering).
* Suitable Miniature mains motor
* Full instructions.

For Professional Discotheque use or home enjoyment. Price $\mathbf{E 6} 65$ inc. P.P.

SURPLUS ELECTRONICS WAREHOUSE
20-24 Beaumont Rd, London, W. 4 (1st floor) NOW OPEN EVERY DAY 10 a.m. 5 p.m. PUBLIC and TRADE WELCOME Thousands of bargains at-ridiculous prices: Oscilloscopes: Test - Meters, Resistors, Capacitors, Components, etc. . etc.

WANTED

SURPLUS TEST GEAR, COMPONENTS, SEMICONDUCTORS ETC.

RECTIFIER STACKS

GEX 541 NBPPGEX 54, D2PGEX 541 NBIPI.	

POWER DIODES

S2BN25 25A 200V.
S2FN 300300 A 200 V
S2AN70 70A 200 V
OA2105A 400V
OA2II 4A 800 V

PRINTED CIRCUIT

COMPONENT BOARDS

 Thousands of panels containing INTEGRATEDCIRCUITS, POWER TRANSISTORS, small modern transistors, diodes, hi-stab resistors, etc., etc. PRICES FROM 20p-f1-50.
Personal callers welcome to select ti, eir own.
Our choice 6 Boards for $£ 1.50+$ p.p. 25 .
Guaranteed-no rubbish

ELECTROLYTIC CAPACITORS

Full range in stock from $1 \mu \mathrm{~F}-10,000 \mu \mathrm{~F}$.
SPECIAL OFFER. (Limited period only.)
MULLARD ELECTROLYTIC CAPACITORS

Axial Lead Types $437 / 426$			
2.5 V		4 V	
40 $\mu \mathrm{F}$	4p	$64 \mu \mathrm{~F}$	4 p
$160 \mu \mathrm{~F}$	4p	$125 \mu \mathrm{~F}$	4 p
$320 \mu \mathrm{~F}$	4p	$250 \mu \mathrm{~F}$	4p
$550 \mu \mathrm{~F}$	4p	400 $\mu \mathrm{F}$	4p
$1000 \mu \mathrm{~F}$	5p	$800 \mu \mathrm{~F}$	5p
$1600 \mu \mathrm{~F}$	7p	$1250 \mu \mathrm{~F}$	7p
2500 $\mu \mathrm{F}$	8p	$2000 \mu \mathrm{~F}$	8 p
4000 $\mu \mathrm{F}$	9p	$3200 \mu \mathrm{~F}$	9 p
6.4 V		16 V	
$25 \mu \mathrm{~F}$	4p	250 $\mu \mathrm{F}$	8 p
$100 \mu \mathrm{~F}$	4p	$640 \mu \mathrm{~F}$	8p
$320 \mu \mathrm{~F}$	4p		
$640 \mu \mathrm{~F}$	5p	$250 \mu \mathrm{~F}$	8 p
$1600 \mu \mathrm{~F}$	8 p	400 $\mu \mathrm{F}$	9p
$2500 \mu \mathrm{~F}$	9 p	$\begin{aligned} & 64 \mathrm{~V} \\ & 160 \mu \mathrm{~F} \end{aligned}$	$\mathbf{8 p}^{\text {p }}$

	SOLDER TAG TYPE 431				
$320 \mu \mathrm{~F}$	64 V	17p	2000 F	16 V	19p
$500 \mu \mathrm{~F}$	40 V	17p	$3200 \mu \mathrm{~F}$	10V	19p
$500 \mu \mathrm{~F}$	64 V	19p	$3200 \mu \mathrm{~F}$	16 V	25p
$800 \mu \mathrm{~F}$	25V	17p	$4000 \mu \mathrm{~F}$	25V	35p
$800 \mu \mathrm{~F}$	64V	24p	$5000 \mu \mathrm{~F}$	10 V	25p
$1250 \mu \mathrm{~F}$	16 V	17p	$6400 \mu \mathrm{~F}$	16 V	37p
$1250 \mu \mathrm{~F}$	25 V	19p	$6400 \mu \mathrm{~F}$	25 V	45p
$1250 \mu \mathrm{~F}$	40V	24p	$10000 \mu \mathrm{~F}$	10 V	38p
$1600 \mu \mathrm{~F}$	64 V	35p	$10000 \mu \mathrm{~F}$	16 V	46p
2000 $\mu \mathrm{F}$	10 V	$17 p$	$16000 \mu \mathrm{~F}$	IOV	46p

OSCILLOSCOPES

CAWKELL
Revscope S.O.I Storage Scopes. from $£ 100$ COSSOR
CDU. 110 . Double beam DC- 20 MHz . Brand new ${ }^{\mathbf{n}} \mathbf{3 0 0}$ CDU.120. Double beam DC-60MHz. Brand new CDU 50 . Doum DC- 35 MHz Brand new
CDU.150. Double beam DC-35MHz. Brand new
with manual .. $£ 400$ SOLARTRON
CDI220. With Wide-Band Plug-in. DC-40MHz .. $£ 190$ CD1220. With Differential High-gain Plug-in.... $£ 220$ TEKTRONIX
536 X-Y Oscilloscope. DC-IIMHz $£ 300$

$545 \mathrm{ADC}-30 \mathrm{MHz}$

- $£ 385$

551 Dual Beam. 27 MHz $£ 300$
661 Sampling Scope. $1 \mathrm{GHZ} 2 \mathrm{~m} V / \mathrm{cm}$. Dual beam. $£ 475$
661 Sampling Scope. $3.9 \mathrm{GHz}, 2 \mathrm{~m} V / \mathrm{cm}$. Dual beam $£ 700$

ALL PRICES EXCLUSIVE OF V.A.T.-PLEASE ADD
10\% TO ALL PRICES
Carriage Orders under $\mathbb{C 5}+20 \mathrm{p}$
Generous discounts on quantity orders

C. T. ELECTRONICS
 267 ACTON LANE, LONDON W4 5DG 01-994 6275

Pack

ELECTRONIC COMPONENTS

No. BARGAIN COMPONENT PACKS
$1500 \mathrm{C}_{\text {arbon }}$ resistors, $\frac{1}{4}, \frac{1}{2}, 1,2$ watt.
2100 Electrolytic Condensers.
250 Ceramic, Polystyrene, Silver Mica., etc., Condensers.
4250 Polyester, Polycarbonate, Paper, etc., Condensers.
525 Potentiometers, assorted.
250 High-stab,
1t Assorted nuts bs
925 Assorted switches, rotary,
1050 Preser Potentiome, rotary, lever, micro, toggle, etc
ALL COMPONENTS NEW AND UNUSED.
fl $1+25$ p p.p.per pack. $\mathbf{E 5}$ for 5 packs p/iree.


```
MECHANICAL FILTERS
    Kokusai Type MF 455-30W
    455kHz 士 3kHz b.w
        &5 inc. p.p.
GRYSTAL,FILTER
    |
10.7 MHc Cathodeon type BP25
S.T.C. type 455/LQU/90IB CRYSTAL 
5MHZ Marconitype QM263B Glass envelope
HC6U 454.875 kHz Crystal
GERAMIC RESONATOR
&1 10p
*
35p \(5 p\)
```


LOUDSPEAKERS

CROSSOVER NETWORKS
2 Way L/C Networks available in either 3,8 or 16 ohm version. Crossover freq. 3000 Hz
Crossover freas
2 Way L/C Network with variable Tweeter load contro
$80 \mathrm{hm}, 3000 \mathrm{~Hz}$
All prices are exclusive of V.A.T. Please add 10%

SEMICONDUCTORS

SPECIAL OFFERS-LIMITED PERIOD ONLY
PLESSEY SL403D integrated circuit 3 W . Audio Amplifier $£ 1 \cdot 30$.
HG5008, Germanium Gold Bonded Diode, 40 V . p.i.v. 100 mA . Equiv. OA47, 0C71 Transistor (guaranteed but unmarked) 5p ea: f4 per 100; 630 per 1,000

Orders under $£ 5$ add 10 p p.p. Over $£ 5$ free.
\star Full Range of Semiconductors in Stock. \star.
New Price/Stock Lists now available, send S.A.E


```
                    PRESET POTENTIOMETERS
Horizontal and Vertical }100\mathrm{ ohms-5 Mohm.
Sub-miniature 7p each; Miniature 12p each
Moulded track, enclosed type 100 ohms-1 Mohm 17p each.
Rectilinear, Multiturn 10 ohms-25 Kohms 60p each.
                                    CK POTENTIOMETERS
linear Law: IK, 2K5,5K-2 Mohm. Single 19p each. Double gang 46p each.
La
gang 54p each.
Linear only: 10, 25,50,100.100K, I Watt type 25p; 3 Watt type 38p each.
```

SILVER MICA CAPACITORS
2.2-220pF 7p ea.; $240-1000 \mathrm{pF}$ 8p ea.; $1200-2200 \mathrm{pF}$ 10p ea. $2400-5000 \mathrm{pF}$ 18p ea;
5000-10000pF 24p ea. POLYSTYRENE CAPACITORS
5-1000pF 4p ea.; 1000-2000pF 6p ea.; 2200-56C0 8p ea.; 6200-22000pF. 10p ea.
Higher values p.o.a.

POLYESTER/POLYCARBONATE CAPACITORS

TRANSMITTING VALVE. Type YH 1020
Plus Travelling Wave Tube MYH 1020

MODERN TELEPHONES type 706. Two tone grey, $£ 3.75$ ea. The same but black, $\mathbf{£ 2 . 7 5}$ ea P. \& P. 25p ea.

Also TOPAZE YELLOW E4.50 ea. P. \&P. 25p. STANDARD GPO DIAL TELEPHONE (black) with inernal 7 , $4 \mathrm{pea.P}. \mathrm{\& P.50p}$ Two for $£ 150$. P. \& P. 75p.
, telephones complete with bell and dial. SINE TO SQUARE WAVE CONVERTOR 15 volt-output 0 to 7 volts. Completely assembled with amplitude control and mark space preset. $£ 2-25 \mathrm{ea}$. P. \& P. 15 p .
G.E.C. Sealed Relays High Speed 24 V. $2 \mathrm{~m} 2 \mathrm{~b}-$ S.T.C. Sealed 2 pole c/o 700 ohms (24 V) 15p ea.
12v 35p ea. 2,500 ohm (okay 24 v)-13p ea. S.T.C. Brand New 2 pole c/o 6800 ohm coll15p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new, complete with base
Single pole c/o 14 ohm coil 33p ea.; Single pole c/o 45 ohm coll 33 p ea. Varley VP4 Plastic
30p ea. $15 \mathrm{~K}-33 \mathrm{p}$ ea.
POLARISED Relay 2 pole c/o 250 ohm and 250 ohm coils.-25p ea.
POTTER \& BRUMFIELD 24V 4 poie c/o min relays. Clear Plastic. Brand New. 50p ea

POTENTIOMETERS

 MORGANITE Special Brand new, 2.5; 10
$100 ; 250 ; 500 \mathrm{~K} ; 2.5 \mathrm{meg} 1 \mathrm{In}$ sealed, 17 p ea. EERCO 21 Watt. Brand new, 5; 10; 50; 250日ERCO 21 Watt. Brand new, $5 ; 10 ; 50 ; 250$
500 ohms; $1 ; 2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{~K}$ at 15 p ea. STANDARD 2 meg. log pots. Current type 15pea.
INSTRUMENT 3 in . Colvern 5 ohm 35p ea. 50k and 100K 50p ea
BOURNS TRIMPOT POTENTIOMETERS 10; 20; 50: 100; 200; 500 ohms; $1 ; 2 ; 2.5 ; 5 ; 10$
25k at 35p ea. ALL BRAND NEW. RELIANCE P.C.B. mounting: 270; 470; 500 ohms; 10K at 35p ea. ALL BRAND NEW ALMA
$998 \mathrm{~K} ;{ }_{1} \mathrm{precision}^{\text {meg }-0.1 \%} 27 \mathrm{p}$ ea.; $3.25 \mathrm{k}, 5.6 \mathrm{k}, 13 \mathrm{k}$ $998 \mathrm{~K} ; 1$ meg-0.1\% 27p ea.; $3.25 \mathrm{k} .5 \cdot 6 \mathrm{k}, 13 \mathrm{k}$ -
$0.1 \% 20$ р ea.

MULLARD ELECTROLYTICS

 $2200 \mathrm{MFD} 100 \mathrm{~V} \quad 10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ BRAND NEW BOXED 70p each 10 off - 60 p each 100 off - 45p eachTRANSFORMERS. All standard Inputs. STEP DOWN ISOLATING trans. Standard
240 V AC to $55-0-55 \mathrm{~V} 300 \mathrm{~W}$, $£ 3$ ea. P. \& P. 35p. Neptune serles $460-435-0$ etc. 230 MA and 600-570-540-0 etc. $250 \mathrm{MA} . £ 3.50$ incl. pos Neptune Series. Multi 6.3 volts to give 48 V at
3.5 amps etc. $£ 3.50$ incl. P. \& P.
 $2 \times 6.3 v$. z 3 ea.
Transformer 250-8
$\mathbf{\& 1 . 5 0}$. P. \& P. 25p.

CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$, up to 120 mA , 42p ea Up to 250 mA 63p. P. \& P. 35p.
Large quantity LT, HT, EHT transformers Standard 240 V MOTORS by CITENCO reductjon gearbox to $19 \mathrm{r} . \mathrm{p} . \mathrm{m}$. reversible, $£ 5$ ea Aíso $57 \mathrm{r} . \mathrm{m} . \mathrm{m}$. and $114 \mathrm{r} . \mathrm{p} . \mathrm{m}$

Solartron CD 711 S . 2 Double Beam Osci loscope DC-9 me/s; 3 mvicm; trigger

 delay; crystal callbrator; 4^{*} flat faced tubeIn good working condition. Carr. $£ 1.50$ CT 316 General Purpose Oscilloscope. $3^{\prime \prime}$ tube 5 Mhz Band wid 5 Coupled. Standard 240 V 50 HZ input $\mathbf{f 2 2 . 5 0}$ Carr. $£ 1.50$
COSSOR 1035 Mk. 3. Double Beam. Bandno internal resemblance to Mk. 1/2. Very good value at $£ 40$ ea. Carr, $£ 1 \cdot 50$.

HARTLEYSCILLOSCOPES
 HARTLEY 13A, Double Beam $5.5 \mathrm{mc} / \mathrm{s}$ with circuft diagram $\&$ mains Complete with accessories $£ 25$. CT436 DB- $5 \mathrm{mc} / \mathrm{s} . ⿷ 65$. SOLARTRON $643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s}$. SOLARTRON GCC-10 mc/s. CD513-£4 CD513.2-£42.50. CD523S-£50.
 E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete with piug in preamp, from $\mathbf{£ 4 5}$.

 Oscilloscopes marked * suitabie for Coiour Television serviclng. Many other availableAlt carefuily checked and tested. Carriage
£1.50 extra. Noise Gen. TFYMRCONI Vase Vacuum tube Voltmeter TF1041A. $\mathbf{£ 2 7 - 5 0}$

Wide Range Oscillator TF 1370. $£ 100$ Deviation Meter TF934/2, $£ 50$ ea. Carriage
Devlation type 791, £30 ea. Carr. 75p. TF to26 Frequency Meter £12.50. Carr. 75 p TF 329 Magnification Meter. As new condition $£ 60$.
TF 899 Millivolt Meter up to $100 \mathrm{mc} / \mathrm{s} . \mathbf{£ 1 5}$ ea. Carr. £1.
TF ${ }^{893}$ Output Power Meter, $£ 30$ ea TF 894A Audio Tester. £50. Carr. £1-50 AF Nol (CT44) Absorption Wattmeter AF Na. Carr. \& 1550 .
TF 801 A Signal generator $£ 45 \mathrm{ea}$. Carr
$\mathbf{£ 1} .50$. $£ 1.50$.
TF 886 TF 886 Magnification Meter $£ 45$. Carr. $£ 1$ TF 936 N. 5 Impedance Bridge from $£ 50$ ea TF 144 G Signal Generator. Serviceable Clean $\mathbf{E 1 5}$. Carr. $£ 1.50$. TF 885 Video Oscillator Sine/Square $£ 30$ TF 885/1 £45. Carr. $£ 1 \cdot 50$.
Stabilised P.U.SRS t51. £15. Carr. $£ 1 \cdot 50$ Stabilised P,U. SRS 152. £10. Carr. $£ 1.50$ Precision Millivoltmeter VP252. £25. Carr. £1.
Osciliator type OS 101. £30. Carr. $£ 1 \cdot 50$
Electronic Testmeter CT $38, \ldots 17$. Carr. £1. AIRMEC Generator type 210 , $£ 85$. Carr AIRM.
$\mathbf{\Sigma 1}+50$.
Test Gear listed is only a very smail selection of our stock-please enquir regarding other tems.

AVO TRANSISTOR AND DIODE TESTER TYPE CT 537, In superb condition, in orlgina crates with full instructions, clrcuit diagram,
etc. New price $£ 250$ Plus. OUR PRICE $£ 40$ ea. etc. New pric
Carr. $£ 1.25$.
MARCONI AUDIO OSCILLATOR TF 195M. $10 \mathrm{c} / \mathrm{s}$ to 40 Khz . Fully adjustable metered o/p.
2 watt olp up to 15 Khz . $£ 12.50$ ea. Carr. $£ 1 \cdot 50$. SPECIAL OFFER
SELECTED B.C. 221 Recalibrated to Ministry SELECTED B.C. 221 Recalibrated to Ministry Specification in brand new condition, complete
with clrcuit, only $£ 25$. Carr. $£ 1.50$. E.H.T.
MRANS)
MVANORMERS
KV 600 MA. $£ 20$ ea. Carr. $£ 1.50$. CAPACITORS
0-1MFD 50 KV working. $£ 10$ ea. Carr. $£ 1.50$.
$0-1$ MFD 100 KV working. $£ 16$ ea. Carr. $£ 1.50$.
INTEGRATED CIRCUIT test clip by AP inc Gold Plated cllp-on. Brand New Indivldually
boxed, $£ 100$ ea. P. \& P. 10p.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \frac{1}{4} \times \frac{3}{2} \times 4 \frac{\mathrm{in}}{} \mathrm{in}$. As new. by Sodeco of Geneva. $\mathbf{~} 2.50$ ea. As above but 350 ohm. $£ 3.50$ ea

DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutheon, Black with white

LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p ea.

SANGO 50 micro amp meter. $22^{* \prime}$ diameter. Ex brand new radiation equip. $£ 1$ ea. P. \& P. 17p VISCONOL EHT CAPACITORS

0.05 mfd	2.5 kV	50p ea.
0.01 mfd	5 kV	40 pea
0.001 mfd	10 kV	50 p ea.
	$2 \frac{1}{2} \times 6 \frac{1}{2}$	
0.05 mid	8 kV	50p ea.
	$\times 5 \frac{1}{4}$	
0.01 mfd	10 kV	50p ea
0.002 mld	15kV	65p ea.
0.0005 mfd	20 kV	60p ea
0.1 mfd	4 kV	35 p ea.

$\begin{array}{ll}\text { DUBILIER } & 0.1 \mathrm{mid} \\ 0.25 \mathrm{mfd} \\ 7.5 \mathrm{KV} ; & 0.1 \mathrm{mfd} \\ \mathrm{KV} ; & 0.5 \mathrm{mfd} 5 \mathrm{KV} \text {; } \\ \mathrm{KV} \text { all at } \\ 50 \mathrm{p} & \mathrm{ea} \text {; }\end{array}$
P. \& P. 15p

PHOTOCELL equivalent OCP 71, 13p ea.
Photo-reslst type Clare 703. (TO5 Case). Two
Photo-reslst type Clare 703. (TOS' Case). Two
BURGESS Mlcro Switches V3 5930. Brand new 13p ea.

AMERICAN EQUIPMENT

FM SWEEP GENERATOR TS 452 . with buift in display. For allgnment of IF/RF coils/filter strips 5 to 100 Mhz . Marker adjustable through
entire range. $3^{\prime \prime} \mathrm{CRT}$. Supplied for 240 V 50 Hz operation. £70 ea. Carr. £1:50.
RF GENERATOR TS $497.2-400 \mathrm{Mhz}$. Internal RF GENERATOR
AM Mod, External AM \& PM. Variable attenua-
tor 50 ohms. OiP 1 mp . $£ 55$ ea. Carr. $£ \dagger 50$. tor 50 ohms. O/P Imp. $£ 55$ ea. Carr. $£ \ddagger 50$.
OSCILLOSCOPE type USM24. A 10 meg OSCILLOSCOPE type USM24. A 10 meg scope-all min valves complete with circuit
dlagram and stepdown transformer $£ 22.50$ ea. dlagram and
Carr. $£ 1.50$.
POWER SUPPLY. Completely self contained 27 volt 40 a
Carr. $£ 1$. 50.
FILTER UNIT with linking cable for above
£ 15 ea. Carr. $£ 1 \cdot 50$.

SEEING IS BELIEVINGI
COLVERN TEN TURN POTS ex eq. 50 K at 60 p ea. Complete with dal F 1.50 ea. C.R.T.'s $5^{\prime \prime}$ type CV1385/ACRI3, Brand now with spec. sheet. 63p ea. P. \& P. 35p BASES for above 20 p ea. P. \& P. 15p VEEDER-ROOT 6 diglt 48 V resettable Genuine MULLARD T Genuine MULLARD Transistors/Dlodes. 1ested and guaranteed.
83 ; OA5, 10. All at 3 p ea. OC23-10p ea. CAPACITOR PACK-50 Brand new components only 50 p. P. \& P. 17 p .
POTS-10 different values. Brand new.-
COMPONENT PACK conslsting of 2-2 pole 2 amp push onjoff switches; 4 pots
various, brand new; 250 resistors i and watt. many high stabs, etc. Fine value a
50 p per pack. P. \& P. 17 p .
COMPLETE Printed Clircult TRANSISTOR I.F. strip $470 \mathrm{kc} / \mathrm{s}$, audio out.
Size $1 \frac{1}{2} \times 41 \times \mathrm{in}$. ONLY 75 P . P. \& P. 10 p . 3000 Serles relays- 15 mixed values (new and as new, no rubblsh) £1. P. \& P. 37p. DELIVERED TO YOUR DOOR 1 cwt . of Electronic Scrap chassis, boards. etc. No
Rubbish. FOR ONLY $£ 3 \cdot 50$. N. Ireland $£ 2$ Rubbl
extra.
LOOSE LEAF BINDERS. Blue piastic cover. ${ }^{4}$ ring. Standard size.
P. \& P. 35 p. 25 for $£ 5$. Carr. $£ 1$.
P.C.B. PACK S \& D. Quantity 2 sq. ft. FIBRE GLASS as above $£ 1$ plus P. \& P. 20p.
5 CRYSTALS 70 to 90 kHz . Our choice. Matched pairs, 50p per pair. P. \& P. 15p. MOTOR-min. synchronous, size $1 \frac{3}{4} \times 2 \times$
$2^{\prime \prime}, 240 \mathrm{~V}$ Operation $3.6 \mathrm{rpm}, 25 \mathrm{p}$ ea. $\mathrm{P} . \&$
 TRIMMER PACK-2 Twin 50/200 pf ceramic; 2 Twin $10 / 60$ pf ceramic; 2 min
strips with 4 preset $5 / 20$ pf on each; 3 air spaced preset 30100 pf on ceramic base. 10p.
Panel switches DPDT ex eq. i0p ea.
DPST Brand new, 17 p ea.; DPST iwice brand new 25 pea.
HEAVY DUTY 6 amp. 2 pole c/o- $\mathbf{2 0 p}$ ea. GRATICULES. 12 cm . by 14 cm . In High
Quality plastic. 30 p ea. P. \& P . 5 . PANEL mounting lamp holders. Red or green. 9p ea. Miniature. PANEL mountgreen. 9p ea. Miniature. PANEL mount-
ing lamp with holders-10V 5 MA
5 p ea. BECKMAN MODEL A. Ten turn pot complete with
only $£ 2 \cdot 13$ ea.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. SIngle slded up to 10 per sa. In. Double sided. Any slze ip per sq. in. Postage 10p per order.
Single pole 3 3-way $250 \vee$ AC 15 amp
swltch, of ea. P. \& P. 5 p. Large discount switch,

20 HZ to 200 KHZ SINE WAVE GENERATOR

In four ranges. Wien bridge oscillator, thermistor stabilised, amplitude control. 3 V peak to peak. Completely assembled P.C. board, ready to use. 9 to 15 V supply required. $£ 4.85$ each P \& $P 25 p$. SINE AND SQUARE WAVE version of above $£ 6.85$ each. P \& $P 25 p$.

TRANSISTOR INVERTOR

12 V to $1.5 \mathrm{KV} 2 \mathrm{MA} A C$. Size $1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime}$. £2.95 each P \& P 25p.

WOBBULATOR

For displaying response of 10.7 MHZ (FM receiver I.F.'s) and $30-40 \mathrm{MHZ}$ (TV I.F. alignment) Requires 6.3 VAC and any general purpose oscilloscope. Instructions supplied. Completely assembled P.C. Board. $£ 9.00$ each P \& P 25p

VALUE ADDED TAX not included in prices-please add 10\% Official Orders Weicomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 7.30 pm any day.

A. aero servies lid

AC/DC TAUT SUSPENSIONS
 multimeters
(Made in ס.s.s.R.)

Large selection of multimeters uith prices ranging from 44.95 to 210.50.

PHOTO EMISSIVE DEVICES Photo-Transistors			
$0 \mathrm{CP71}$	20.90	BPX25	¢100
	Photo-	dactive C	
ORP12.	20.50	ORP90	\$1.10
ORP60.	£0-50	ORP93	¢1.00
ORP61.	£0.32		
Photocelis			
90 AG	¢2.40	90 AV	22.50
90 CG	£2.40	90 CV	22. 40

solid state hart emitting TO18 outline. Brightness 500 FT -L at
voltage, 1.63 to 2 V . Diode gives bright red pingoint of light when supplied from a 2 V source. Lens diameter 0.170 in . PRICE 20.85.

hard-to-get types

valves					
DLas	.	21.50	EM81		$80 \cdot 60$
ECF804	\cdots	21.65	GZ33		20.75
EF37A	.	21.00	XC12T		20.60
EF804	.	21.25	12AD6.		$20 \cdot 60$
ECLL800		23.20	6146B		22.50

high current thyristors BTX $47-1000 \mathrm{R} ; 1000 \mathrm{~V} 11 . \mathrm{BA}$.
BTX $47.1200 \mathrm{R}: 1200 \mathrm{~V} 11.5 \mathrm{~A}$.
ВT $\times 48 \cdot 1000 \mathrm{R} ; 1000 \mathrm{~V}^{\prime} 16 \mathrm{~A}$.
SILICON POWER RECTIFIERS BY101 450 p.i.x. 1.1A. BY127 600 p.f.v. Al.
ZENER DIODES
1 watt 5%, Rerles BZX61: 7.5 to 68 y .
2 watts 5%, series BZX70: 10 to 27 V
5 watts 10\%, series D816: 22 to 47 V .
watts 10%, series D817: 36 to 100v

WHEN ORDERING BY POST PLEASE ADD $£ 0 \cdot 1$ Iat
IN \& FOR HANDLING AS WELL AS 10\% OF THE amount (INCLUBIVE OF PACKING AND POBT AGE) TO COVER VALUE ADDED TAX
NO CO.D ORDERS ACCEPTED.
minimum handling CHarge zo-15

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTEN HAM COURT RD.,
LONDONW.2. Tel: 5808403
A.R.B. Approved for inspection and release of electronic valves, tubes, klystrons, etc.

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

EXport price list available for large scale foneign buyers

APPOINTMENTS VACANT

Electro-Medical Service Department requires

ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged

20-30, and should be of O.N.C. standard.

Apply in first instance in writing to:SIEREX LTD.,
Electro-Medical Department,
Heron House, Wembley Hill Road,
Wembley, Middlesex, HA9 8BZ

RECORDING STUDIO OF MAJOR RECORD COMPANY is looking for a
JUNOR BaLaNCE ENGiNEER
with basic knowledge of recording techniques and a degree of experience in the audio field.

POLYDOR RECORDS,
STUDIO LONDON
Tel: 4998686 Ext. 51

Private leading pop studio in the HEART OF PARIS, FRANCE, is looking for a

BALANCE ENGINEER/AUDIO ELECTRONICS ENGINEER

with thorough knowledge of recording techniques and several years of experience in the audio field.

Please write to:-

Loulou Gasté Studios 5 Rue Due Bois De Bologne, PARIS 16.

EDITORIAL VACANCY

Electronics/radio engineer or physicist with ability to write good English is required by WIRELESS WORLD as Technical Journalist. Experience in circuit design an advantage. Preferred age about 25. Applications in writing please to:

THE EDITOR, WIRELESS WORLD, DORSET HSE., STAMFORD ST., LONDON, SEI 9LU

Electronics Technician

〔1,602-62,076A new post maintaining electronic engineering equipment in York Hospitals, with excellent career prospects.
The successful candidate will possess O.N.C. and preferably
H.N.C. (Electronics).

For job description and application form write to:- Group Secretary (Personnel), Bootham Park Hospital, York, Y03 7BY. Closing date: April 25. YORK 'A' HOSPITAL MANAGEMENT COMMITTEE [2582

wauld yau rame nshore for:2,3:301 1 yemir?

As a Radio Operator with the Post Office Maritime Service you can continue your career ashore in an interesting and expandingservice. And earn over $£ 2,000$ a year, including compulsory pension contributions, at 25 years of age working only a 41 -hour week of shift duties - with overtime this could rise to £2,300 and possibly more.

Post Office Radio Operators benefit from a shorter pay scale than sea-going officers. You have good opportunities for promotion to positions earning basic salaries of up to $£ 3,290$, and prospects of further advancement into Post Office Senior

Management.
To apply you need to be 21 or over and to hold a 1st class or General Certificate issued by the MPT or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

If you would like to know more, please write to the Inspector of Wireless Telegraphy, Post Office, IMTR/WTS1.1.3, Union House, St. Martin's-le-Grand, London EC1A 1AR. 147

TEST GEAR ENGINEER

Telefusion Vision Limited is a brand new company in the Colour Television manufacturing industry and we now find that due to expansion we need an engineer to take charge of our testing equipment in conjunction with our Development Laboratory.

The successful applicant will have some experience in the television or a similar industry and be prepared to accept the responsibility for the development and maintenance of the equipment used in the production testing of colour television receivers.

Qualifications will probably be City and Guilds Radio \& Television Servicing, with Colour Certificate, or O.N.C. Electronics.

Please write stating qualifications, age, experience and present salary to:

Miss V. M. Hammond, Personnel Manager, Telefusion Vision Limited,
Cobden Mill,
Gower Street,
Farnworth,
Lancashire.
2556

BRITISH RELAY TV

As a result of massive nation-wide contracts with H.M. Government and Local Authorities, we have a steadily expanding work programme

OVER THE NEXT 21 YEARS
We need to recruit

CATV ENGINEERS

THROUGHOUT THE COUNTRY
We offer:-

- Good rates of pay
- Permanent position with excellent prospects
- Private use of company vehicle

Applicants should have:-
Up-to-date knowledge, initiative and ability in the field of
COMMUNAL AERIAL or
TELEVISION RELAY WORK
whether in planning installation, commissioning or maintenance

All enquiries will be treated in strict confidence.
Write to:
The General Manager, Special Services Division,
BRITISH RELAY TV
41, Streatham High Road, London, S.W. 16 or Telephone 01-6779681

Design Engineers

Grow with Britain's fastest expanding name in Medical Engineering

GEC Medical Equipment Limited is Britain's leading manufacturers of medical and industrial X-ray equipment. Our products carry names that have been famous since X-rays were a new discovery - names that are trusted for quality and reliability throughout the world.
We have now embarked on an unprecedented expansion programme which is increasing our representation of UK markets and making important new inroads overseas. Consequently we now need more design engineers - with electrical or mechanical backgrounds - to play a major part in developing the products that will ensure our continued expension in the future.
They will work on one of more of the following key areas of our operation:
ELECTRICAL DESIGN
Small and medium power transformer design Electronics circuitry
Digital circuits with read-out displays
Automatic test equipment
MECHANICAL DESIGN
Mechanisms with finely controlled movements Electro-mechanical design Patient handling equipment
Applicants should be qualified in electrical or mechanical engineering at least to ONC standard - ideally to HNC or degree standard - and must have several years practical experience.
All the posts carry attractive salaries which are negotiable according to experience. Other benefits include pension and sickness schemes, and up to 4 weeks holiday in a full year.

Please write or telephone for an application form to: P.B. Black more, GEC Medical

Equipment Limited, East Lane, North Wembley, Middlesex.
Tel: 01-904 1288.
Evening or weekend interviews will be arranged if required.

HM PRISON AND BORSTAL SERVICE
 VOCATIONAL TRAINING INSTRUCTORS

(Civilian Instructional Officer, Grade III)

All applicants should have served a full apprenticeship or have had equivalent recognised training followed by at least five years industrial experience in the Radio and Television and/or Electronics servicing industry. City and Guilds Certificate (or equivalent) is desirable. Teaching or instructing experience are added advantages.
RADIO AND TELEVISION SERVICING posts at
HM PRISON, LEWES, Sussex.
HM PRISON, The Verne, PORTLAND, Dorset.
DUTIES: The successful candidates will train inmates in Radio and Television servicing and prepare them for City and Guilds examinations.
SALARY: The commencing salary at age 28 or over is $£ 1956$ (slightly less if younger) rising to a maximum of $£ 2371$. The posts are pensionable with prospects of establishment, i.e. permanent appointment.
HOURS: A 40 -hour, 5 -day week is worked with 4 weeks and 2 days annual leave in addition to the usual 9 public and privilege holidays.

WRITE FOR APPLICATION FORM TO: The Establishment Officer, Home Office, Personnel and Administration Department, Portland House, R.10/10 (2T). Stag Place, London, SWIE 5BX, stating for which post you apply.
Clasing date for the receipt of completed application forms: 3 May, 1973.

UNIVERSITY OF WALES
THE WELSH NATIONAL SCHOOL OF MEDICINE

ULTRASONICS IN CLINICAL DIAGNOSIS

Applications are invited from physicists or electronic engineers who would be or electronic engineers who would be
interested in an opportunity to develop interested in an opportunity to develop
a swept focusing system for ultrasonic a swept focyusing system for ultrasonic
pulse-echo diagnosis. This project will pulse-echo diagnosis. This project will be financed by a grant from the Medical Research Council, and the appointment would be for a period of two years in the first instance. The salary would be equivalent to that of a senior physicist in the NHS (first year: £2,613; second year: $£ 2,733$), but previous experience in ultrasonics is not necessary, and the appointment could be made at a less senior level.

Further particulars of this appointment may be obtained from Professor P. N. T . Wells. Department of Medical Physics, University Hospital of Wales, Cardiff, CF4 4XW (telephone 0222 : 755944 extn. 2005). Applications, giving the names of two referees, should be sent to the Registrar, Welsh National School of Medicine, Heaih Park. Cardiff, CF4 4XN.
[2551

SENIOR ELECTRONICS TECHNICIAN

in Department of Biological Sciences

required immediately
To be responsible for the construction, maintenance and operation of electronic and other instruments, especially those used in Neurophysiology. The successful candidate must possess
the relevant qualifications at HND/HNC or CGe relevant qualifications at
Salary $£ 1,518-£ 1,878$, plus $£ 174$ London Weighting Salary $\& 1,518$
Apply in writing, giving fulldetails of qualifications, experience, etc. and including the names and addresses of two referees, to the Head of Department of Biological Sciences, City of London Polytechnic, Sir John Cass School of Science and Technology, 31 Jewry Street, London, EC 3N 2EY.
[2532

ELECTRONIC SERVICE ENGINEERS

Swan's of Manchester are looking for two experienced Electronic Service Engi neers, one for the Manchester area and the other for the Birmingham area.
These positions involve bench and outside work on electronic organs, quality hi-fi systems and colour television.
We are looking for men who are capable of working without supervision and who have a knowledge of circuitary from valves to L.S.I. technology. The success ful applicants should hold clean driving licences as they will be provided with Company vehicles.
Excellent starting salaries will be offered to the successful candidates.
Apply in writing, giving full details of experience, to:
W. Swan, Jnr., Esq.,

SWAN'S OF MANCHESTER LTD.
84-86 Oldham Street,
Manchester.
M4 ILF.
[2537

MARCONI INSTRUMENTS LIMITED

TRANSFORMER DESIGN ENGINEER

This responsible and permanent position will appeal to men with a sound background in transformer design work and practical interest in electronics. We are particularly interested in men who feel that their presentemployment lacks scope and prospects of further advancement.

The minimum academic quatifications acceptable is ONC (Electrical) or equivalent. The working conditions are excellent i.e. $37 \frac{1}{2}$ hours, 5 -day week etc., commencing salary dependent on experience and qualifications will be by negotiation.

Please apply in writing, stating experience, age and qualifications to the

Hinchley Engineering Company Limited, Southgate House, Pans Lane,
Devires, Wilts, SN 10 5DL

BRUNEL UNIVERSITY
 Department of
 Electrical Engineering and Electronics

RESEARCH IN ELECTRONIC SYSTEMS DESIGN

Applications are invited from recent graduates. preferably with some industrial experience, who hold good honours degrees in Mathematics. Electrical Engineering or Physics to undertake research leading to a higher degree in the forlowing areas: Computer Aided Design of Logical Systems; Information Processing Systems; Power Electronics Systems: Control Systems Design; Communication Systems; Computer Aided Design of Electronic Circuits.
Research studentships will be available for successful candidates.
Please write to Professor Douglas Lewin, Dept. of Electrical Engineering and Electronics. Brune! University, Uxbridge, Middx.
[2576

FOREMOST
 IN THE
 UNITED
 KINGDOM

in constant touch with
EVERY EMPLOYER OF
EXPERIENCED ELECTRONICS engineers
Our professional placement service is specialised, confidential and completely free

Phone us at any time or write quoting WW105
require service/test/engineering personnel in our Technical Service Department. Common sense with initiative is our principal requirement, combined with some background experience in practical electronics and an ability to understand customers and the problems they bring. Sinclair Radionics is pleasantly situated beside the River Ouse and easily reached. We offer very attractive conditions and a very rewarding job in one of Europe's fastest growing electronic equipment companies.

Please contact
Richard Torrens,
Sinclair Radionics Ltd.,
London Road, St. Ives,
Huntingdonshire PR17 4HJ
Telephone: St. Ives (0480) 64311 Ext. 26.

ASSISTANT TELEVISION ENGINEER

required to join a small but enthusiastic team operating a

Television Unit for Horseracing

If you have an HNC, City \& Guilds, or equivalent qualification and have some experience in operating and maintaining outside broadcast television equipment and VTRs together with a willingness to travel and to work in a demanding field

THEN

THIS COMPANY OFFERS YOU

1 the opportunity to join an organisation that is forward looking and is planning to develop and expand in the field of television and electronics
2 a job that is located in varied surroundings on British racecourses

3 a basic salary of between $£ 1,950-£ 2,075$ plus expenses when on location.

If you are interested please write or telephone for a Company form to Mr. F. T. Dixon, Racecourse Technical Services Limited, 88 Bushey Road, London SW20: Tel. : 01-947 3333.

SIEMENS

The Company: We are Siemens Limited, the U.K. subsidiary of the world's most diversified electrical and electronics company. We are deeply involved in an advanced range of scientific instruments and require a very special
The Job:
SERVICE ENGINEER
to install, repair and service analytical x-ray and electron microscope equipment in London and South East England.
The Man:
will have at least an H.N.C. in electronics or physics and two or three years' experience in this specialised type of work.
Training will be given in the U.K. but a knowledge of German would be an advantage as development-product training may be given in Germany at a later date.
Salary and fringe benefits are both generous as you would expect from a company like Siemens.

Please write in the first instance to:
Roger Kingsley, Personnel Manager, Siemens Limited, Great West House, Great West Road, Brentford, Middlesex, or telephone 01-568 9133.
[2538

Telefusion Vision Limited is a new company in the field of colour television manufacture and offers excellent career opportunities. We are looking for the following men to join our present Development Staff.

PROJECT LEADER

He will build up a team of Development Engineers to work under his supervision in the design and development of colour television receivers up to the production stage. He will have 3-5 years experience in this field and will hold I.E.R.E., I.E.E. or equivalent qualifications.

DEVELOPMENT ENGINEER

He will work as one of a project team involved in the design and development of colour television receivers. Experience in the field of circuit design and layout of printed circuit boards is essential.

Please write stating qualifications, age, experience and present salary to:

Miss V. M. Hammond, Personnel Manager, Telefusion Vision Limited, Cobden Mill,
Gower Street, Farnworth, Lancashire. 2557

SPANISH COMMUNICATIONS EQUIPMENI MANUFACTURER

Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

Telecommunications Technicians for 1000-VDU network up to $£ 2665$

The Home Office is currently nearing completion of the first phase of a project, planned to go into operation shortly, that wilt provide a fast, round-the-clock information service for police throughout the UK. Backed by a configuration, based on twinned Burroughs B6700 processors and situated at Hendon., that will be one of the most powerful real-time computer systems in Europe, the information service wild require an extensive data communications network, with up to 1000 VDUs and Dataprinters located throughout the UK.

You will be responsible for ensuring the efficient and continuous operation of this vital network.

The level of appointment depends on age and experience but most of the successful candidates will be appointed at the higher level. Salary scales $\mathbf{~} 2365-62665$ and £1605-£2365. Maximum starting salary $£ 2365$. You should be at least 23, and must hold ONC Engineering with a pass in Electrical Engineering "A", or a recognised etquivalent. In addition you should normally have at least 5 years' experience of skilled work on telegraph and data transmission equipment. Prospects of promotion to higher posts. Non-contributory pension scheme.

For full details and an application form (to be returned by 10 May, 1973) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Bassingstoke 29222 ext. 500 or London 01-839 1992 (24 -hour answering service). Please quote reference $T / 8238 / 1$.

Home Office

RADIO ENGINEER

NEW HEBRIDES $\mathbf{£ 5 1 7 5}$ + Gratuity

Required by the Condominium Radio Department to be responsible to the British and French Resident Commissioners for all radio telecommunications. A good oral and written knowledge of the French language is essential.
Candidates, preferably 35-45 years, must be MIEE or equivalent and have had considerable recent experience in the planning, installation and maintenance of modern high frequency radio-telecommunication systems including medium power transmitters, receivers, aerials and all ancillary equipment required for telephony and machine telegraphy operation.

- NO INCOME TAX in the New Hebrides at present
- Accommodation at low rental
- Appointment Grant $£ 100-£ 200$ normally payable
- Free family passages
25% Gratuity (excluding 15%
Territorial Allowance)
3 year tour
Education and outfit allowances
Holiday visit passages

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.

Apply to:

CROWN AGENTS,

M. Division, 4, Millbank, London, SWIP 3JD for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/721013/WF.

ST. JOHN'S COLLEGE, YORK
 Closed Circuit Television CHIEF TECHNICIAN

Applicants are invited for the post of Chief Technician to take charge of an exceptionally well equipped Educational Television Unit at St. John's College of Education consisting of a studio complex, a mobile recording vehicle and related equipment. Two additional technical assistants are employed.
The successful candidate will be responsible for the general management of the technical area. In addition he will assist the Director of the Television Service with the making of programmes using a one inch helical Scan editing machine.
Suitable applicants should have experience in general technical and studio duties with an educational television unit and be able to offer the minimum qualification of City and Guilds Radio and Television Finals.
Salary will be on the Local Government A.P.T.C. Technicians and Technical Staffs Grade 6/7 ($£ 2.100$ f2,661) according to experience and qualifications.
Further particulars may be obtained from The Bursar, St. John's College, Lord Mayor's Walk, York, YO3 7EX.
[2575

TECHNICIAN (GRADE 3)

£1539-£1794

in
AUDIO-VISUAL/AUDIO-LINGUAL LABORATORY

A full-time vacancy exists in this rapidly expanding Department. The successful candidate would take a prominent part in the day-to-day running of the Department slanguage laboratories. Technical expert-
ence with tape-recording apparatus and associated equipment, and experience of film, slide or film-strip projestion are essential skills.
Applications forms may be obtained from the Staff Officer, University of Surrey, Guildford, Surrey. Tel.: Guildford 71281, Ext. 452, and to whom they should be returned to by: 7 May 1973.
[2526

Stockwell College of Education, The Old Palace, Rochester Avenue, Bromley BRI 3DH.

SENIOR AUDIO VISUAL AIDS TECHNICIAN

required by mass media department. Ability to operate and service all types of audio Visual Aids, including rape recorders, 8 mm and 16 mm film projectors, Language Laboratories, teaching machines, etc. A knowledge and to give instructions to students groups in the use of Audio Visual equipment is imperative.
Applications forms and particulars available from the Senior Administrative Officer, at the above address.
[2528

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG
\section*{Educational Technology Unit (Television Services)}

TECHNICAL POSTS

The Educational Technology Unit has vacancies for three Television Engineers who would work predominantly in the University's television studio. Successful applicants would be responsible to the Director of the Unit
through the Manager, Television Engineering.
The Duties attached to the posts would inThe Duties attached to the posts would in-
clude-maintenance and operation of the unit's television studio and distribution system, assistance in the building and installation of equipment in the projected new studio, and, in the case of one post, general service and maintenance on electronic and audiovisual teaching equipment within the University.

The Unit's present studio is equipped with 3 Plumbicon cameras, flying-spot telecine, 15 channell vision mixer, and one inch recording equipment. A Rediffusion "Dial-a-programme", distribution system is being installed on the campus. A further two-studio Educational Technolagy Unit Centre is under construction. to be equipped with colour facilities
signed to be operational in $1975 / 76$.

The salary will be negotiable and will be determined on the basis of the age. qualifications and experience of the persons appointed.

Fringe benefits include pension and medical aid facilities, a housing subsidy, and an annual vacation savings bonus.

Applications, giving full personal particulars and details, of qualifications and experience, should be lodged with the London Representative, Witwatersrand University Office. Chichester House. 278 High Holborn, London W.C.1., before 11 May 1973.
[2566

Electronic Organ Service Engineer
required for expanding organ business in Sussex. required for expanding Company Car. Good and prospects.
Apply in writing to
SOUTHERN ORGANS (Horsham) LTD. HONEYWOOD HOUSE,
ROWHOOK, HORSHAM, SUSSEX.
2525

Gestetner Limited, the world's leading authority in the field of business office machinery and office equipment, have the following vacancies due to expansion in their ElectroMechanical Development Laboratory at their Head Office based in Tottenham.

DEVELOPMENT ENGINEERS

Aged 25-35. H.N.C. or equivalent. Experienced in developments of electronic and electro-mechanical equipment.

TECHNICIANS

Aged 25-35. O.N.C. or equivalent. Experienced in the construction and maintenance of valve and solid state electronic equipment.

Please write with details of experience, qualifications and present salary to:

Mr L. J. Simmonds, Personnel Officer, GESTETNER LIMITED, P.O. Box 466. London N17 9LT.

Gestetner

ELECTRONICS TECHNICIAN REQUIRED FOR FILM PROCESSING DIVISION PERMANENT POSITION

Servicing electronic equipment and carrying out design work for Production departments.
Applicants should be O.N.C. level, should have experience of transistor and integrated circuits.
Salary $£ 2.000$ per annum.
Telephone for interview : 01-542 6262
The Personnel Officer,
AGFA-GEVAERT LIMITED,
Deer Park Road,
Wimbledon, SW19 3UG

DESIGN ENGINEER

20-30 year old General Electronic Design Engineer with some experience in Antenna design required for small expanding Company.
Must be capable of working by himself.
He should be willing to assist on test supervision and occasional visits to customers.
Please apply to:
Mr. D. A. R. Wallace - Managing Director, Antenna Specialists UK Limited,
Thame Industrial Estate, Bandet Way.
Thame, Oxfordshire. Tel: Thame 3621/2

BENCH SERVICE ENGINEERS Feltham - Ascot Road Bedfont

We require Bench Service Engineers with previous experience of TV (Monochrome and Colour). Radio. Hi-fi and Tape Recorders for our Central Service Division. Preference will be given to holders of City \& Guilds qualifications. though sound practical experience may outweigh formal qualifications.
Earnings will be in the range $£ 1.600-£ 2.200$ depending on qualifications and experience. In addition there are L.Vs. a Staff Purchase Scheme and a Contributory Pension Plan. Hours are 9 a.m. - 5.30 p.m. Monday to Friday.
We would be interested to hear from experienced Engineers, who wish to work with products that are renowned for quality and reliability.
Write with details of past experience and current salary to:
Personnel Manager.
SONY (UK) LIMITED, Pyrene House, Sunbury-on-Thames, Middlesex.

One of our clients, a rapidly growing and diversifying company, in the field of television and sound broadcasting, and recording, are interested in speaking to you if you have experience in the following areas.

Managing Installation and
 Planning Engineer

Wide experience in television and sound broadcasting and recording systems essential, including experience in technical liaison and interpretation of Customer requirements, preparation of block systems diagrams, etc.
£ $\mathbf{3 , 5 0 0} \mathbf{-} 4,500$ plus Company car and usual fringe benefits. Based West London and Home Counties.

Senior R.F. Transmitter/Systems Engineer

Experienced in 1-80 KW U.H.F. trasmitters and television studio systems practice, preferably with working knowledge of installations and systems planning, Customer liaison, etc. $£ 2,500-£ \mathbf{3 , 5 0 0}$ plus usual fringe benefits. Based West London and Home Counties.

Senior Station EngineersOverseas Contracts

Experienced in television and sound broadcasting studio practice, able to train and lead local staff and take responsibility for smooth station on-air performance.
Up to $\mathbf{£ 6 , 0 0 0}$ p.a. and expenses according to Contract.
Write, or ring, in complete confidence, for brief application form.

STUART J. TAIT,

Lansdowne Recruitment Limited,
Design House,
The Mall, London, W5 5LS
01-579 6585

SPANISH

COMHUNCCAIONS
EOUPMEITI manvicicurier

Has an immediate opening for An experienced Design and Development Engineer for Audio Equipment, including Highly Professionai Mixing Desks, Compressors, Limiters, Audio Monitoring Amplifiers, etc. Systems Experience is desirable.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN

CHIEF TECHNICIAN

£1908-£2205
GIPSY HILL COLLEGE, KINGSTON

To head a team in the Educational Aids Department which serves the needs of the whole College.
Good knowledge of electronic equipment, including c.c.t.v. servicing, and relevant qualifications, will be expected.

There is considerable responsibility attached to this key appointment. Salary within scale according to qualifications.
Details from Senior Administrative Officer, Gipsy Hill College, Kenry House, Kingston Hill, Kingston upon Thames. Tel. 01-549 1141.

Ipswich and District Hospital Management Committee

X-RAY ENGINEER

(Salary range $£ 1,9 \mid I$ to $£ 2,508$ p.a.)
ELECTRONICS TECHNICIAN
(Salary range $£ 1,602$ to $£ 2,076$ p.a.)
Candidates for both posts should possess H.N.C. or equivalent qualifications, but consideration will be given to suitably qualified and experienced candidates in these fields. Successful candidates will be members of a new and expanding department, servicing a wide range of electronic/bio-medical and diagnostic X-ray equipment.

Application forms and job description can be obtained by either telephoning Ipswich 56481, Ext. 33, or writing to the Group Engineer, Ipswich and District H.M.C., 26 Broughton Road, Ipswich, IPI 3QS. Reference GE/E/2.

THE OPEN UNIVERSITY

Faculty of Technology

> Electronic Technician/ Engineer
> (Grade V)

A vacancy exists in the electronic laboratory for a Technician/Engineer. The electronics laboratory provides electronic support for:-
(a) design and development of special pieces of equipment for home experimental kits.
(b) assistance with demonstration equipment for television and summer schools.
(c) electronic support for research work.

Appointments will be made within the Technicians' scale Grade V-£1881$\mathbf{~} 2241$ per annum according to qualifications and experience.
Application forms and further particulars are available from The Open University (TT3) P.O. Box 75, Walton Hall, Milton Keynes, MK7 6AL Closing date : Wednesday, 25th April. 1973.

APPOINTMENTS

SCOTTISH HOME AND HEALTH DEPARTMENT WIRELESS TECHNICIAN

Applications are invited from men, aged 17 or over, for five posts of Wireless Technician in the Scottish Home and Health Department. The posts are located at Montrose. East Kilbride, Edinburgh. Cambusbarron (Stirlingshire) and at a location still to be decided. The candidate appointed to the Cambusbarron post will be recquired to serve at Darvel. The candidate appointed to the
Ayrshire for an initial period.

QUALIFICATIONS : (1) 4 posts-Sound theoretical and practical knowledge of Wireless engincering and wireless communications equipment, including VHF and UHF equipment. Possession of an HN or $C \& G$ certificate an advantage but provision may be made for those who wish to continue their studies for one of these qualifications. The work involves installation and maintenance of equipment located a considerable distance from headquarters. Candidates must be able to drive private and commercial vehicles and have a clean driving licence.
(2) 1 post-Wireless Technician with Radiac duties. Post based at Cambusbarron, Stirlingshire, applicants require a sound theoretical and practical knowledge of electronic engineering as applied to radiac instrument technicues. Oversight of testing, renair and calibration of radiac instruments comprising personal dosimeters, charging units, fixed survey meters, contamination meters. training simulators, and portable survey meters. Again some travelling will be involved and a candidate must be able to drive private and commercial vehicles and have a clean driving licence.
SALARY : £1155 (age 17) to $£ 1715$ (age 25 or over) : scale maximum $£ 2025$.
These are unestablished appointments with prospects of establishment after one year's continuous satisfactory service

Application forms and further information may be obtained by writing to the Scottish Office Establishment Division, Room 172, St. Andrew's House, Edinburgh EHI 3BX quoting reference PM4/3/73. Closing date for receipt of completed application forms is 15 May 1973.

RADIO OFFICERS

DOU
MOU
MAVE \(\left\{\begin{array}{l}PMG 1

PMG 11

MPT

2 YEARS OPERATING EXPERIENCE\end{array}\right\}\)| POSSESSION OF ONE OF THESE |
| :--- |
| QUALIFIES YOU FOR CONSIDERATION |
| FOR A RADIO OFFICER POST WITH THE |
| COMPOSITE SIGNALS ORGANISATION |

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on scale rising to $£ 2,365$ p.a. ; commencing salary according to age - 25 years and over $£ 1.664$ p.a During training salary also by age, 25 and over $£ 1,238$ p.a. with free accommodation.

The future holds good opportunities for established status, service overseas and promotion
Traıning courses commence at intervals throughout the year. Earliest possible application advised
Application only from British-born UK residents up to 35 years of age (40 years if exceptionally
well qualified) will be considered.
Full details from:

Recruitment Officer (TRO.2.)
Government Communications Headquarters
Room A/1105
Oakley Priors Road
CHELTENHAM GIos GL52 5AJ
Telephone: Cheltenham 21491 Ext 2270

Add 10% for Postage and Packing
WHEEL (W)
41a Adelaide Grove, London, W12

Digital Computer Logic and Electronics. Four P(x). Money ber Cambridge Learning (WW), 8A Rose Cres., Cambridge. 12584 SHORT WAVE MAGAZINE, now in its 36th year and published monthly, covers the whole field of Radio Amateur transmission and reception including regular news features (DX, VHF, Clubs and SWL) and the design. construction and operation of AMATEUR Radio equipnent of every type. Cover price 25 p at newsagents. Specimen copy 30p pos free, first class. Annual subscription $£ 3.00$ (or $£ 2.75$ second class posting year of 12 issues.-Circulation
Dept. (W) Short Wave Magazine Ltd.. 55 Victoria Street, London SWIH 0HF. (Tel: 01-222 5341/2).

ENGINEERS FOR FIELD COMMISSIONING

Molins Limited are a major British Group engaged in precision engineering and are the world leaders in the design and manufacture of the products in its field.
The Company has vacancies for experienced Electronics Engineers who must have a thorough knowledge of semi-conductors and whilst H.N.C. or equivalent qualifications are desirable candidates with suitable experience and sound theoretical knowledge of complex electronic control equipment will be considered.
Applicants should be capable of working independently in customers' factories anywhere within the world carrying out installation. commissioning. and servicing duties for a period of several months.
The successful candidate would currently be earning in excess of $£ 2.000$ p.a. and can expect a salary in the region of $£ 2.400$ p.a. increasing to circa $£ 2.600$ p.a.
Generous assistance given for any necessary relocation expenses.
Apply, providing full personal and career details, to:
The Personnel Manager, Molins Limited, Evelyn Street, London, S.E.8. 5DH. or telephone (reverse charges) 01-237-4581 Ext. 201

Limited

Due to Warehouse Clearance we have a few low powered F.M. VhF Wireles5 Statlon Type A. A.F.V. No. 88 . Contained in
two unlis. (1) Trans mitter Receiver. (2) 12 volt Power Unit and L.F. Amplifier. T . Case, using a total of 14 valves. operates on four switched
channels which are Crystal controiled. All 4 Crystals are supplied, and are the same in each set.
Therefore all sets will transmit and receive to each other, provided each are switiod
tourr
The stations are supplied with Mounting Carriers, 2 Vertical Whip Aerials, plus Aerial Base, Spare Valves, Buibs, Mounting Screws. Connectors etc. cuits of the Wireless sel.
All above items are individually boxed and wrapped, placed in ABSOLUTELY BRAND NEW. Made by Echo for the Government no expense spared, few only available at £9,50, carriage
RADIO TELETYPE TERMINAL SET
sought after units, housed in metal case aporox. size sin. x 19 in . $\times 16 \mathrm{in}$. deep. Using a total of 11 valves, supply voltage
115 voits $50 \mathrm{c} / \mathrm{s}$.
Containing Meter switched for checking. send and recelve
Blas. Send and Recelve Level, Loop and Plate current, in fair cias, ex-Government condition. Few only available at in fasir
carr. £1.50. $0-300 \mathrm{~V} 75 \mathrm{~m} / \mathrm{a}, 2$ Square Type Meters used output, an additional output of 200 V ; plus 2 L . T. outputs of $6.3 V$ at 4 amps C.T. enclosed in Metal case made for Rack REGULATED POWER SUPPLY MODEL REGULATED POWER SUPPLY MODEL 506. Made by $30 \mathrm{~m} / \mathrm{a}$, and $6,3 \vee$ at 90 amps , plus unregulated output, On square Meter indicating Output current and Voltage, Housed in Metal Case, made for Rack
13 in . Price £15, carr. £2.
isin. Price E15, carr. £2
S. POWER UNITS. (1) Output 28 V or 34 V D C. 10 amps Current overload Tor Voitage for and current, semi Stabllised, $10 \pm \mathrm{In} . \times 16 \mathrm{in}$. $£ 14$, carp. $£ 2$. (2) 28 V at 10 amps , adjustable with Meters, Voltage and Amps, ADVANCED CHASSIS MOUNTING POWER UNITS Output 24/28V
424 Bradford Road, Batley, Yorks. Phone: Batley 7732

CASED AMPLIFIERS

$2 \times \mathrm{ECC83}$. EL84, EZ80. $20 \mu \mathrm{~V}$ 1/P sensitivity 2 W O/P into
$7 \times 4^{\prime \prime} 30 \mathrm{HM}$ speaker. All contained in polished cablnet with non-standard single motor deck. Tested with circuit $£ 3$ ($£ 1$) Casseltes for these machines $£ 1$ (25p). Spare heads 40 p.

COMPONENT PARCELS £3

Contain at least 1000 resistors and capacitors. all new. $1, \frac{1}{2}$ $1 \& 2 \mathrm{~W}, 1 \% 2 \% \& 5 \%$ resistors. Electrolytic, Mica, Ceramic Paper capacitors. Amazing varlety and value $£ 3$ (30 p) Components: BC107-9 9p each, 12 for £1; 2N3055 40p; 741C 30p. Ferric chloride: $116 \mathbf{4 5 p}$ (15 p); 101b. £4-00 (50 p). Large
selection of computer panels for callers to shop. Sample 12 selecton of computer panels for callers to shop. Sample 12
boards $£ 2$ (30p). All prices include V.A.T. S.A.E. Iist,

GREENWELD (W2)

24 Goodhart Way, West Wickham, Ken
Shop at 21 Deptford Broadway, S.E.8. (Next to Old Cinema). Tel, 01-692 2009

PPM

STUDIO SOUND JAN. 73 TO B.S. 4297 Flbregiass P.C. \quad For 1 lmA L.H. zero meters $\begin{array}{llll}\mathbf{\Sigma 8 . 0 0} & \quad £ 7.60 & £ 7.20 & £ 6.80\end{array}$ $\begin{array}{llll}\text { Built and aligned } & £ 12.00 \quad £ 11.40 \quad £ 10.80 & £ 10.2\end{array}$ Ernest Turner PPM meters, scaled -22 to +4 OR 1 to 7 Special baliistics: $71 \times 56 \mathrm{~mm}$. $£ 9 \cdot 00 ; 102 \times 79 \mathrm{~mm}$. $£ 10 \cdot 70$ Surrey Electronics, 24 Hlgh St., Merstham, Surrey [2488

CALCULATOR CHIP
os integrated circuit
$\mathbf{£ 1 2 . 5 0}$ incl. P. \& P.

- Add, subtract, multiply, divide.
- Chain calculations.
- Fixed decimal polnt at $0,2,3$ or 4
- Automatic lockout of "unsure" repeat operation
- Automatic overflow indication.
- Leadlng zero suppression
ta sheer (r) O'DRISCOLL,
68 Hammer Hill, Haslemere, Surrey, GUz7 39Z Tel: 0428-2058

Trampos elasitenin

 And 10\% VAT to pricMoney Back Guarantead.

ULTRASONIC TRANSDUCERS

ic digital cloch

MOS/LSI chip. 28 pin. 4 or 6 digit, 12 or 24 hr at flick of switch Chip with 01 socke! £13. PCB f1.69 KIIS. 4 digit £21.49. 6 digit f25. IC LITE SWITC $11-20 \mathrm{v} 40$ ma reay/TTL drive. Photo amp/tiggatidiver 87 p ea $10+7 / \mathrm{pes}$
Photo amp only 39p. IC OIGITAL VOLTMETER f 12 . OVM I/P MPX f6. Data booklet 39p. 741 Dil 8 pin 28p. 70919 p. dil 29 p . 11033 p . 74829 p REGULATORS $1 \frac{1}{2} A 5$ to 20 (11.49. 723 57p. 555 TMMER 89p. ZN414 RECEIVER Ferranti f1.19. Oual Pre bmp f1.61. 3.5W AF AMP £1.24. STEREO OECOOER IC FOR FM TUNERS MC 1310 P $\mathbf{~} 2.69$. KIT $£ 3.45$.

79Π TTL BRAND NEW

WH7TH

 7492 67p. 748069 p. 7483 £1.10. 748637 p. 749373 p. 749483 pp. 7495 B3p 1496 89p. 74121 45p. 74141 99p $74190 / 9 / 92 / 93$ £2.39. $74196 \quad \mathbf{1} 1.59$ C MOS logic in new lists. OIL PLUGS $/ 12$ case 1 Dmm high 16 pin 35 p . OIL SOCKETS low/high profite $8 / 14 / 16$ pin $13 \mathrm{p} 100+10$ p ea. SEMICON
OUCTORS $25+$ less 10% ZENERS, BZYB8 A00 mW 7 p. IN4001 3 tp. INS14 OUCTORS 25 + less 10\% ZENERS, BZYB8 $400 \mathrm{~mW} 7_{\mathrm{p} \text {. IN4001 } 3 \text { lp. INS14 3p }}$

 12p. 2 N 2926 og 8 p . 2 N 3053 17p. 2N3055 40p. 2 N 3614 55p, 2N3702/3/4 5/6i7189/10/11 AH 9p. FETS 2N3819 27p. 2N3823 29p. 2N3866 UHF 59p SCR's 400 v 1A 23p. 4 A 55 p . TRANSFORMERS $\frac{1}{\frac{1}{2}} 6$ \& 12 v E1. CAPACITORS
 $1 \frac{1}{2 p}$ ea PRESETS $5 p$. CARBON POTS $12 p$ ea. Dual 40 p . Switch +12 p . All DiN plans 13 p. sockets 9 g . Vero at normal price. DALO PCB resist mathing

Frivici

 communications and Hi Fi retailers EiECTRONIC ORGANS imported, fol facilities from f67. ELECTRONIC CAR IGNITION KIT PW capacitor type E6.67 VAT customers MUST AOO $10 \%\left(\frac{1}{12}\right)$ to ahove prices

FREE CATALIST S.A.E.OATA SHEIS \&ita
Warehouse Must be Cleared

RACAL type MA 668 Transistorised Diversity switch.

 Allows reception of MCW, SSB, RT, CW, receives on stgnal and receiver levels, BFO tuning, phone outpur, signal and receiver uned in maker's packlng $£ 50$ only Printed circult kits £1-25, £1 LB Ferric Caloride 25p. AVO Electronic Multimeters CT 38 £ 1 AVO Electronic Multimeters CT $38 £ 1$.Cossor 1035 Oscilloscopes $£ 20$. Triodiac (Variac) ofl cooled $0-270 \mathrm{v} 35 \mathrm{amp}$ £28 500 watt conslant voltage transformers $£ 18$
Ditto 125 watt $£ 8.240 / 110$ volt $3 \mathrm{KVA} £ 15$ Untested bargains all clean units.
F390G $/ 3$ Signal Generator $1.6-60$ megs. $£ 10$.
TF144/G £15. CT53 £10. TF4288/4 £6-
CT54 £10. 8C221 £12. TF886 Q Meter £30
Test Set 253 new and unused $20-88$ megs. 240 volts. A.C. all carriage extra. Loads of surplus to clear large S.A.E. Portable Gieger Counters (Contamination meter No 1)
powered by 4 HP7 batteries, very sensitive new, tested Stso

CASEY BROS.

233-237 Boundary Road, St. Helens, Lancs.

Digital readouts

$3 \frac{1}{\frac{1}{2}}$ DIGIT MINITRON PCB drilled fibreglass: bd
1.00

Fuif 3015 minition suitable WW multimeter
f1.75
mos lsi digital alarm clock chip
Drives low voltage displays directly
$f 12.00$
LOG|C power unit $5 v$ cased s / c and overload protected $\quad £ 3.50$ PCBs and comps. for many designs
FREOUENCY METER. TACHOMETER UP DOWN CNTR. XTAL 12vCLOCK
75 eg Tubes
Blue fluorescent
Neon
MULTIPLEX PCBs for all types display no Vat. Please add 10 p
postage
LM309 5 v regulator
UNPRATED 1-5a MC 7805
CATALOGUE 30p (Refundable)
NORTHERN
ELECTRONIGS
9 MONTHEAL ST
LDHAM, LANCS DHAM, LANC
OL8 SLW

PRECISION

 POLYCARBONATE CAPACITORS Fresh stock Fully tested

NEW! TRANSISTORS. BC 107, BC 108, BC 109. All at $9 p$ each; 6 for 50 p; 14 for $£ 1.00$. All brand new and marked:
May be mixed to qualify for lower ptice. AF178 at 40 p each; 3 for $£ 1.00$.
POPULAR DIODES. IN914 at 7p each; 8 for 50p: 18 for £1.00. IN 1916 at 9 p each 6 for 50 ; 14 for $£ 1 \cdot 0.1 \mathrm{~S} 44$ at 5 SPECIAL OFFER-400 MW ZENERS. Values avallable $\pm 5 \%$ at 5 mA . All new and marked. Price 10 p each; 6 for RESISTORS-Carbon film $5 \% \frac{1}{2}$ watt at $40^{\circ} \mathrm{C}$. Range from
2.2Ω to $2.2 \mathrm{M} \Omega$ in E12 series, i.e. $10,12,15,18,22,27,33,39$ 47, $55,68,82$ and thelr decades. High stability, low nolse -All at $1 p$ each: 8_{p} for 10 of any one value, 70 p for 100
of any one value. Special development pack- 10 off each value 2.2Ω to $2 \cdot 2 M \Omega$ (730 resistors) $£ 5 \cdot 00$.
TANT ALUM SEAD CAPACITORS-Values available
$0.1,0.22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V}, 15 \mathrm{FF} 20 \mathrm{~V}$

 75p each
SILico
Wire-ended DOTIC RECTIFIERS 1.5 AMP-Brand new at 9 p each or 4 for 34 pi 8000PIV at 14 p each or 4 for 50 p .
P.E. SCORPIO- $1 \mu \mathrm{~F} 440 \mathrm{~V}$ a.c. capacitor listed abo as recommended by the Author for use in place of $2 x$
$0.47 \mu \mathrm{~F} ~$
1000 V d.c. discharge
 may be suppiied at 35p each. These capacitors are also sultable for systems recently published In P.W. and 5
MARCO TRADING (Formerly V. Attwood) DEPT. DS, THE MALTINGS, STATION ROAD, WEM
Please add 10% V.A.T. to your order effective A pril 1 st

BBC2 IVs $£ 7.50$

Malidides

Thorn 850 Chassis with UHF Tuner. Ex-rental sets sold
complete but unserviced, with repolished cablnets. Rush complete but unservi
$£ 7.50$ Cash with Order

U.H.F. TUNERS

For Ferguson 850, 900 Chassis, but adaptable for most D/STD Chassis. £2.50 each, C.W.O., postage included
Send S.A.E. for list of TVs. Tubes, Valves, etc Send S,A.E. for list of TVs, Tubes, Valves, etc. Allow 10-14

TRADE DISPOSALS

Midlands \& North: 1043 Leeds Road, Bradford
Scotland: Unit 5, Peacock Cross Industrial Estate,
Cornwall: Pencoys, Four Lanes, Redruth

74N SERIES TTL. FULL SPEC DEVICES

00	14p	20....... 14p	88
01	14p	$40 \ldots$ 14p	90
04	15p	$73 \ldots \ldots .38{ }^{\text {d }}$	91
05	15p	$74 . \ldots \ldots .332 \mathrm{D}$	92
10	14p	$75442 \mathrm{p}$	121
13	25p	76...... 38p	141

ELEKTRON SUPPLIES BEDFORDINGTON BEDS
Mail Order Only. C.W.O. P. \& P. 7p. $\mathbf{1 0} \%$ Discount on $25+$

TV Line out-put transformers

Replacement types ex-stock.
'By-return" service, conta
London: $01-9483702$
236 Tidman Mail Order Ltd., Dept. W.W-W ${ }^{\text {Tindy }}$
Valves, Tubes, Condensers, Resistors; Rectifiers and
Frame out-put Transformers also stocked. CALLERS WELCOME

Offers are invited for the following, which are expected to become surplus to requirements a Bank. in May 1973.150 ft . Unit Radio Mast by British Insulated Cailenders. Construction Co., 100 ft. Free Standing Microwave Tower by
Applications to the Deputy Chief Engineer

PYE VANGUARD AM25B Low Band
Complete System comprising: AM25B + Cont Unit + Cables + Mic + Speaker. $£ 22$. All the above Sets are in good condition, and AIR VANGUARD CONTROL UNITS Carriage on all the above items. $£ 3$. SECURICOR) HARTLEY 13A Scope. £20.
Solartron CT3i6 Scope. $£ 25$
SFC ELECTRONJCS CO.
26, Longden Coleham, Shrewsbury SY

Electronic clocks, calculators, digital meters and indicators all need some sort of display device to present their information. Whole new technologies have grown up in this field and the identichart gives a summary of data on some of the latest products available.

PUSHBUTTON STEREO TUNER

Add another dimension to your radio listening by building this low cost high quality tuner. Built in only a few hours, it is the perfect unit to complete your hi-fi stereo system!

LOGIC TUTOR. To many the fundamental principles involved in computing are a foreign language. With the aid of the Tutor and an accompanying series of practical exercises, logic theory can be self taught.

PRACTICAL

MAY ISSUE OUT NOW 20p

"W.W." HI-FI KITS

* LINSLEY HOOD 15-20W AMPLIFIER July 1970 latest and ultimate design. Our kit personally tested and approved by the designer O/P Tr's matched for spec'd performance. Metalwork now available ensures simple construction of amps. and power supply
* BAILEY PRE-AMP (AUG. 197I)

Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{2} \times$ $2 \frac{3}{i n}$. or $8 \times 1 \frac{1}{2} \times 5 \frac{1}{2}$ in. Basic metalwork ex-stock.
Especially recommended to drive $15-20 \mathrm{~W} \mathrm{AB}$ amp.
AFTER-SALES SERVICE at reasonabie cost.
REPRINTS of any "WW" article Inc'g p.p at 30p

Inc'g p.p.
(Stamps
DETAILED PRICE LISTS at 5p \quad accepted) Inc'g above and other designs.
*REFUND GUARANTEED ON ALL PARTS

SPECIAL OFFER

2N3055 30p each 4 for $£ 1$ 2N3054 20p each 3 for 50p Unmarked, Tested and Guaranteed. Post and packing 10p per order. Send S.A.E. for list of other PERSONAL CALLERS WELCOME-AT OUR RETAIL SHOP NOW OPEN

A. 1 FACTORS

245, North Sherwood St., Nottingham NG1 4EO
Telephone: Nottingham (0602) 4605 ! Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)

PRITIED CIRGUITS

\& ELECTRONIC EQUIPMENT

- larce s small quantities

DFULLDESIGN\& P.T.H. PROTOTYPE SERVICE
C. ASSEMBLIES AT REASONABLE PRICES

W司 8X.J.BENTLEY $\&$ PARTMERS 18 GREENACRES ROAD. OLDHAM Tel 0616240939

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R. also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855, 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

DEIMOS ${ }_{\text {Lid }}$

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT

0227-68597

PULSES

WHO NEEDS CALIBRATION?

If you use an oscilloscope are you paying for an accuracy you don't need?

VERSATILE SOUARE \& PULSE GENERATOR
 PRICE £17.50 P \& P 35p

$\star<1 \mathrm{~Hz}$ to 10 MHz Range. coarse and fine frequency controls
T.T.i. Compatible

Attenuator and pulse width control
Single shot facility

- AC/DG Output on square waves
* Internally powered by PP9 battery (not supplied)
\star L.E.D. Pulse Indicator
Specially designed for ease of operation Compact. I. blue stove enamel case ($6 \frac{3}{4}$ $\times 3 \frac{1}{4} \times 4 \frac{1}{8}$ deep). Coaxial lead and clips provided. Ideal for general purpose use in laboratories, maintenance workshops and technical colleges.

for people in control Child Instruments Ltd 1A Duke Street. London W1M 6HO

OVERNIGHT

Prototype Printed Circuits Fastest in London Area
Electronic \& Mechanical Sub-Assembly Electra Highfield House, West Kingedown Co. Ltd. Highfield House, West Kingsdown Nr. Sevenoaks Kent
Tel: West Kingsdown 2344
EIMSAC. P.C. MASTER KITS
Something new! Prepare your printed circuit masters to
protessional standards, Our Master Kits contain al
$\begin{aligned} & \text { materials necessary to design complete taped masters. } \\ & \text { We include four sizes of special adhesive tape (con- }\end{aligned}$
ductors), five sizes of circles (pads), transistors and i/c
clusters. Also metric and imperial grids, a cutting knite
and backing material. Complete with full instructions
$\begin{aligned} & \text { and catalogues for re-ordering. } \\ & \text { Price } E 8.64 \text { plus } 10 \% \text { V.A.T }\end{aligned}$
Electronic and Mechanical Sub-Assembly Co. Ltd.
Highfleld House, West Kingsdown, Nr. Sevenoaks, Kent

WE PURCHASE ALL FORMS

 OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading. Berks.

Tel: 582605

CASH IMMEDLATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0749
Evenings: 01-958 7624

[^8]Fane Pop 100 watt $18^{\prime \prime} 8 / 150 \mathrm{hm}$ Fane Pop 60 watt $15^{\prime \prime} 8 / 15$ ohm Fane Pop 50 watt $12^{\prime \prime} 8 / 15$ ohm Fane Pop $25 / 225$ watt $8 / 15$ ohm Fane Pop $1512^{\prime \prime}$ 15 watt $8 / 15$ ohm Fane 122/10a or 122/12. Fane Crescendo $15^{\prime \prime} 8$ or 15 ohm Fane Crescendo $12^{\prime \prime} 8$ or 15 ohm $£ 21.45$
$£ 12.26$ $\mathbf{E 1 2 . 2 6}$

$\mathbf{E} 10.17$ E5.94 | 65.94 |
| :--- |
| 4.40 | E27.20 Fane $8^{\prime \prime}$ d/cone 808 T 8 or 15 ohm $\ldots .$. £24.50 Fane $8^{\prime \prime}$ d/cone, roll surr. 807 T 8 or 15 ohm € 6.64 Baker Group 25 3, 8 or $15 \mathrm{ohm} . . . \mathrm{c}^{2} . .$. . $£ 6.00$ Baker Group 35, 3 , 8 or 15 omm Baker De Luxe 12" d/cone 66.00

Baker Major69.62

EMI $13 \times 8,3,8$ or 15 ohm
EMI 13×8 type $150 \mathrm{~d} /$ cone, 3,8 or 15 ohm EMI 13×8 type $450 \mathrm{t} / \mathrm{w}, 3,8$ or 15 ohm EMI $6 \frac{1}{2}$ " 938504 or 8 ohm Elac 9×5 59RMLO9 15 ohm Elac 9×5 59RMLL4 8 ohm
Elac $6 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} /$ cone 6RM220 8 ohm Elac $6 \frac{1}{2}{ }^{*}$ d/cone, roll surr. 6RMI7I 8 ohm. Elac 4" tweeter TW4 8 or 15 ohm Celestion PS8 for Unilex. Celestion MFLIOOO 25 watt horn 8 or 15 ohm $£ 2.25$ Elac $5^{\prime \prime} 3$ ohm Elac $7 \times 4^{\prime \prime} 3$ or 8 ohm
Elac $8 \times 5^{\prime \prime}, 3,8$ or 15 ohm Wharfedale Bronze 8 RS/DD Wharfedale Super 8 RS/DD Wharfedale Super IORS/DD Goodmans 8P 8 or 15 ohm Goodmans I2P 8 or 15 ohm Goodmans 15P 8 or 15 ohm Goodmans I8P 8 or 15 ohm Goodmans Twinaxiom 8. Goodmans Twinaxiom 10 Goodmans Axent 100 Eagle DT33 dome tweeter 8 ohm Eagle HTIS tweeter 8 ohm Eagle CTS tweeter 8 ohm
Eagle MHTIO tweeter
Eagle CTIO tweeter.
Eagle Xovers CN23, 28, 216
Kef T27
Kef B110
Kef B200
Kef 139.
Kef !39
Kichard Allan i2" d/c......................... Richard Allan $8^{\prime \prime} 3,8$ or 15 ohm $10 \times 6^{\prime \prime} 3,8$ or 15 ohm
$8 \times 5^{\prime \prime} 3$ or 8 ohm
$7 \times 4^{\prime \prime} 3$ or 8 ohm
$3^{\prime \prime} 8$ ohm or 80 ohm
$2 \frac{1}{2} 64$ ohm.
Speaker matching transformer 3/8/15 ohm Adastra Hiten $10^{\prime \prime} 10$ watt 8 or 15 ohm. Adastra Top $2012^{\prime \prime} 25$ watt 8 or 15 ohm.. $£ 6.32$

STEPHENSPEAKER KITS AND CABINETS
Send for illustrated brochure and list of recommended speakers.

CAR STEREO SPEAKERS - ask for leaflet
PA/DISCO AMPLIFIERS: (carr. and ins. fl 1.00). Baker 100 watt.
Linear 30/40.
Linear 40/60
Linear 40/60
Linear $80 / 100$
$£ 46.00$
$£ 25.00$
£ 30.00
£50.00
FREE with speaker orders over $£ 7$-"Hi-Fi
Loudspeaker Enclosures" book.
All units guaranteed new and perfect.
Prompt despatch
Carriage and insurance 25p per speaker
(Tweeters and Crossovers 15p each)
(All prices quoted inclusive of V.A.T.)

WILMSLOW AUDIO,

 Dept WW,Swan Works, Bank Square, Wilmslow, Cheshire SK9 IHF.

QUARTZ CRYSTAL
UNITS from

- $1.0 \cdot 60.0 \mathrm{MHZ}$

- fast delivery - high stability - TO DEF 5271-A

J. LINSLEY HOOD LOW DISTORTION AMPLIFIERS IN KIT FORM

1. 10 Watt Class A
2. 20 Watt Class B
3. 20-75 Watt Direct coupled

Send SAE for detailed information on these and other quality amplifiers to

TELERADIO HI FI
325 Fore St., London N9 OPE
0.1-807 3719 (Closed Thursdays) AGENTS FOR THE SONAX F.M. PHASE LOCKED LOOP STEREO DECODERS AT $£ 5.50$

SOWTER TRANSFORMERS

SOUMD RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies studios and broadcasting authorities and were estab Large or small quantities. Let us quore.

> quantities. Let us quote. E. A. SOWTER LTD.

Transformer Manufacturers and Designers Dedham Place, Fore Street, Ipswich IP4 IJP Telephone 047352794

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-tamous reputable British tape firm, our tapes are boxed in polythene gooc as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.p. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} & 10 \mathrm{p} & 5 \mathrm{in} . & 600 \mathrm{ft} & 30 \mathrm{p} \\ 53 \mathrm{in} & 900 \mathrm{ft} & 40 \mathrm{p} & 7 \mathrm{in}, & 200 \mathrm{ft} & 45 \mathrm{p}\end{array}\right.$ L.P. $\left\{\begin{array}{lrrrr}3 \mathrm{in} . & 225 \mathrm{ft} . & 12 \frac{1}{2} \mathrm{p} & 5 \mathrm{in} . & 500 \mathrm{ft} . \\ 5 \mathrm{in} . & 42 \frac{1}{2} \mathrm{p} \\ 3, & 1,200 \mathrm{ft} . & 50 \mathrm{p} & 7 \mathrm{in} . & 1,800 \mathrm{ft} .\end{array}\right.$
 Postage on all orders $7 \frac{1}{2}$ p
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 and 120 minutes playing time, in original plastic library boxes.
MC 6045 p each. MC90 6212 p each. MC 12092 p each

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD. MIDDX. Ashford 52136

WW-107 FOR FURTHER DETAILS

THE ONLY
COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O 15p for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

EXCLUSIVE OFFERS

INSTRUMENTATION TAPE RECORDERREPRODUCERS

Prices of above are
from $\mathrm{\ell} 150$ to $\mathbf{£ 7 0 0}$.
-FREE
40-page list of over 1,000 different items in stock available-keep one by you.

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

Full details of all above on request.
We have a large quantity of "bita and piecan We cannot list-please send as your requirementa
we can probably help-all enquiries anawered.

P. HARRIS
 ORGANFORD - DORSET
 BHI6 6ER
 BOURNEMOUTH-65051

WW-106 FOR FURTHER DETAILS

SPECIALISED KITS

CBS-SO QUADRAPHONIC IC DECODER

To Motorola application for MC1312 as described by Geoffsey Shorter (WW March 73) WE supply the complete kit of parts including glass-fibre edge-connected P.C. board, and all components down to the very last "bit", with lucid instructions and manufacturer's application notes. ADDITIONALLY, you may draw upon our wealth of experience relating to all ancillary circuitry, and guarantee yourself the results hat only the professionals achieve! Complate Built and tested £11.00.

This kit has the CBS licence fer paid!

PHASE-LOCKED-LOOP STEREO DECODER

To Motorola application for MC1310
as described in. Wireless World, July 1972
MC1310 complete kit to the last detail, including edgeconnected glass fibre board, and all components of professional quality. Without question, unbeatable anywhere! Kit Price $\mathbf{£ 3 \cdot 4 0}$. Built and tested $\mathbf{£ 5} \cdot \mathbf{5 0}$ MA2502 Professional LED 55p Extra. (The usual cheap LEDs at 34 p if you insist.) Self-powered or zenered versions to order.

Some delivery delay possible due to exceptional demand.
Use the professionai setmakers to obtain your kits at privilege prices/

HIGH STANDARD LOW FREQUENCY SOURCE

(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop dosigner approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in $10^{1!}!$ Probably the most economi high precision signa! source available. Kit $£ 22 \cdot 65$. Extra for built and tested only $\mathbf{E 6} .55$.

R1475 COMMUNICATIONS RECEIVERS

Serviced \& Tested $£ 19$. Complete \& Untested $£ 11$ Rough Sets for spares $\mathbf{E 6}$. As new power units to match. 240 v , a.c. and 12 v . d.c. inputs. $£ 5 \mathbf{5 0}$ with receiver, otherwise $£ 7.00$.

SPECIAL RELEASE-HRO RECEIVERS!

HRO Tested and Working, one coil, $\mathbf{C 1 8}$. HRO-5T Tested and Working, one coil, f 25 . Power units for same £4 \& f 5 each. LF coils f 1.50 each, 4 for $\mathbf{£ 5}$. HF coils f2.00 each, $\mathbf{5}$ for $\mathbf{5 9}$. Set of 9 coils for $£ 13$ if with receiver. Complate sats $£ 32$ \& $£ 38 \cdot 50$. Please add $75 p$ part carriage on all receiver orders.
specialist services
(a) Distributors of all Sonax \& Teleradio Kits.
(b) Kits supplied for any published design, send for details.
(c) If it's electronic, we will try to supply it. Try us first. because we try harderl No enquiry too small!
(d) Sand large SAE for full lists.

All communications acknowledged by return
Post and Packing free except where stated. 10% Value Added Tax must be added to all orders recai:ed after 1.4.1973

STUDIO ELECTRONICS

P.O. BOX No. 18 HARLOW ESSEX CM18 6SH Telephone Harlow 25457. Callers welcome by appointment Clip coupon for lists

Name	
Address.	
	WW 5

WW-108 FOR FURTHER DETAILS

SITUATIONS VACANT
ENGINEER with sound knowledge of digital
tike to work on interesting new projects on a part-
time basis. Generous payment based on results. Box time basis. Generous payment based on results. Box

M ALE Storekeeper for electronic valves and comnot essential. Tel. $7275641 . Z_{\text {I }}$ \& 1. Aero Services
Lid., 44 A Westbourne Grove, W.2.
[2546
SERVICE ENGINEERS. Radio Paging. Vacancies exist for two experienced service engineers, on home-based in South West and one mobile country wide. Please write full particulars to Radio Intercom
Ltd., Ottery St. Mary, Devon.
$[2534$
UNIVERSITY OF LEEDS ELECTRONICS CECHNICIAN required for Workshop of Schoo repair as required of AEI mass spectrometer MS (instruction and training will be given). 2. Development and construction of circuitry for needs of teaching and research laboratories. Applicants must have ONC or equivalent qualification and at least seven years experisnce. Salary range $£ 1881$ rising to $£ 2241$ Applications in writing to Mr. S. Walker, Supervisor of Electronics, Workshop School of Chemistry. The
University, Leeds, LS2 9]T.

WANTED in the South West. A qualified radiotelephone engineer aged early twenties to late thirties. 2/3-bedroomed accommodation, company vehicle, and a good salary for right man. Must be famiiar with VHF Radio receivers on the commercial frequencies. An ex-Pye man would be most
acceptable. Interested? Contact Box No. 2568 WW.

ARTMCLESAFOR SALE

A ARVAK ELECTRONICS. 3-channel sound-light
 9096
A TTRACTIVE CASES. Steel, L. Bluce stovealumanium panel, battery locators, $61^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$ deep alumanium panel, battery locators, $6 \frac{1}{2 \prime \prime}^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$ deep.
Price $£ 1.75^{P}$ P. \&P. 2Jn. Square wave generator. Wide range, TTL compatibie, many innovative features. Price f14.50 (indicative). Send S.A.E. for details. Chid Instruments Lid., IA Duke Street, London, W. 1
B_{2} UILD IT in a DEWBOX quality plastic cabinet 12 in. $x 2 \frac{1}{2}$ in. x any length. D.E.W. Ltd. (W.), Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet. Writ
COLOUR, UHF and TV SERVICE SPARES Colour and UHF lists available on request Varicap/Varactor UHF Tuners ELC1043 £4.50, VHF Varicap Tuners for Band 1 and Band $3 £ 2.85$,
Salvaged
Varicap
Tuners
1.50,
incl. Connection Salvaged Varicap Tuners $£ 1.50$, incl. Connection
Data, P/P 25p. Delay Lines DL20 £3.50, DL1 £1.50 Data, P/P 25p. Delay Lines DL20 £3.50, DL1 £1.50,
P/P 25p. Luminance Delay Line 50 p . P/P 15 p . PHILIPS G6 Convergence Control Panel, Single Standard, 16 Controls Switches, etc. £5.00, P/P 25p. £6.50, P/P 30n. G8 Decoder Panels, almost com-
 surplus Time Base Units, Frame, Line \& EHT, £3.95, P/P 80p. GEC 2040 surplus Panels suitable for parts, Decoder $£ 3.50$, Time Base $£ 1.00$, RGB $£ 1.00, \mathrm{P} / \mathbf{P}$ 25 p. Mullard type colour Scan Coils plus latest convergence cois for electronic control of static conver-
gence $£ 5.25, \mathbf{P} / \mathbf{P} 35 \mathrm{p}$. PYE CT 70 Colour LOPT gence $£ 5.25, \mathbf{P} / \mathrm{P} 35 \mathrm{p}$. PYE CT70 Colour LOPT assy.
incl. EHT output and focus control $£ 3.50$ P/P 35 . incl. EHT output and focus control $£ 3.50, \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. ntegrated transist d. decoder unit incl. circuits $£ 1.25$,
P / P 10p. Colour Crt. Base $25 \mathrm{p}, \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. B9D valve P/P 10p. Colour Crt. Base 25p, P/P 25p. B9D valve
wases for colour valves and PL500 series $10 \mathrm{p}, \mathrm{P} / \mathrm{P} 5 \mathrm{p}$. bases for colour valves and PL 500 series 10 p , P/P Sp.
UHF tuners transistd, $£ 2.85$, incl. slow motion drive, indirator $£ 3.95$. 6 Pos tion transistd. push button $£ 4.95$. valve tuners $£ 1.50$; all tuners $\mathbf{P} / \mathbf{P} 25$ p. Transistd UHF/VHF IF pane:s $£ 4.75$ (or salyaged $£ 2.50$) P/P 25p. MURPHY 600/700 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly witchable IF amplifier GEC $405 / 625$ Dua standard. £1.50 P/P 30p. THORN 850 Dual standard time base panel $£ 1.00$ P/P 30p. PHILIPS 625 IF amplifier panel incl. cct. £1.00 P/P 25 p . VHF turret tuners AT7650 incl. valves for KB featherlight, Phil.ps 19 TG170, 110 to 830 , Pam and Invicta $£ 1.95$, A.B miniature 110 to 830 , Pam and Invicta $£ 1.95$, A.B. miniature
with UHF injection suitable KB, Baird, F. with UHF injection suitable KB, Baird, Ferguson, 75 p, tion $£ 1.00$, all tuners $\mathrm{P} / \mathrm{P} 25 \mathrm{p}$. New fireball tuners Ferguson, HMV, Marconi f1.90 P/P 25p. Large selection LOPTs, 'Scan coils, FOPTs availab:e for most popular makes. PYE/LABGEAR transistd. Masthead etback battery operated UHF booster $£ 4.25 \mathrm{P} / \mathrm{P}$, or MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 No. 28, 59, 159 Buses or W. Hampstead Bakerloo and Brit Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W. 11.

COMPUTER patching leads, made by Univac. Gold plated terminations. Used, good condition, holes $£ 1$. Glass Fibre P.C. Board, $1 / 16^{\prime \prime}, 1 \mathrm{oz}$ copper, approx. 8 sq. feet, síngle sided, $£ 3$; double sided, $£ 3.50$. Anhydrous Ferric chloridge, 1 ib. 40 p $3 \mathrm{lbs} \mathrm{E1}$. Ready coated P.C. Board. Positive resist Produce printed circuits easily at home. No special equipment needed. Instructions provided. $6^{\prime \prime} \times 8^{\prime \prime}$.

CONTRACT WANTED with outlet for high quality components. Large quantities of bankrupt stock, tuners, audio from w. German sources, resistors, reciprocal arrangement. Write SIMAC, Thames House, Thames Street, Sumbury on Thames, Middx.
ELECTRIC WIRE: 3 core rubber covered cable, 28/0076, $£ 4.03$ per roll, plus p.\&p. 75p; 3 core p0p black cab:e, 14/0076, £3.50 per roll, plus p.\&p. plus p.\&p. 20p; 3 core black pve flat, $28 / 0076$, $£ 3.50$ per roll, plus p.\&p. 50p; single core pve black, 14/36, 60p per roll, plus p.\&p. 20p. Flat Instrument Case Braid $5 / 16 \mathrm{in}$. wide, 50 p per roll, plus p. \&p.
20 p . (All the above in 100 yds. rolls.) Plastic 20p. (All the above in 100 yds. rolls.) Plastic (Rigid) Sheet, ABS brown 38 in . x 40 in . x .10 thick,
25 p each, plus $\mathrm{p} \& \mathrm{\&}$. $10 \mathrm{p} ; 1 / 20 \mathrm{hp}$ Fracmo motor, 25p each, plus p.\&p. 10p; $1 / 20 \mathrm{hp}$ Fracmo motor, $£ 4.50$ each, plus p.\&p. 50p. PIastic sheet (grey), 54 in . wide $x 100$ yds. rolls, $£ 12.50$ per roll, plus p.\&p. wide $x 100$ yds. rolls, $£ 12.50$ per roll, plus p.\&p.
$£ 2$ or $£ 1.00$ per 3 yds., plus p.\&p. 30 p. Broxbourne Eng. Co., Salisbury Road, Hoddesdon, Herts. [2554 FOR SALE. Wireless, Zenith Royal 7000 TransMains Mains and battery. In case and in excellent condition AND H.M.V. Radiogram, stereo, in oak cabine Good condition-offers. ALSO Tape Recorder-Fliza-bethan-with new tapes and 4 track. Good conditionoffers. Please ring after 6 p.m. or write-Hadley, 21 Naseby Road, Solihull, Warwicks.; 021-705 5479 .

FRIDEN FLEXOWRITER. 2-case Electric Typepunch and read units. Overhauled. excellent condiion. may be seen. demonstrated. £90. Otford 3256 (Kent).

ERY'S 10 in . Wave Flowsolder Machine complete 5 with Stand and Motorised conveyor $230 / 250 \mathrm{~V}$, 50 cycle, filled with solder. Good working condition.
 GLASS FIBRE P.C. BOARD large supplies availOble. $1 / 16$ in single sided one ounce copper 2 p per 3 sq. inches (under 1 it). 75 p per sq. ft . (over 1 ft). $1 / 16$ in double sided one ounce copper ${ }_{1}^{1 p}$ per sq. inch (under 1 ft). £1 per sq. ft. (over 1 ft). Please add State Lighting, The Firs Smallworth Lane, Gar boldisham, Diss, Norfolk. [16 IARGE Quantity test equipment. Receivers, trans-- ceivers, meters, variacs PSV s. Or 25 , for immediate disposal. S.A.E. plus 25p, refunded Alvineton. Gloucs
LABGEAR LSM 100p mobile transmitter receiver Leircuit, diagrams and workshop manual, will PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in., I 3 in.. $3 \frac{1}{2}$ in. 4 in. and 5 in . x any length; $1 / 16$ in. single-sided fibreglass, $2 p$ per 3 sq. in. Double-
sided $1 p$ per sq. in. P P 5 per order. SAE sided $1 p$ per sq. in. P \& P 5p per order. SAE
quotations for other sizes and quantity discounts. J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254
QUAD II Mono FM tuner and amplifier. Atkinson, [2541 SPERRY Gyrosyn Compass Type CL2, marine version of the Aircraft Type CL2 or MK4B with 115 V 400 Hz PSU and all interconnecting cables, power requirements 24 V , brand new condition, circuits and notes available. DVM chassis 4 -tube Nixie readout, TTL throughout, 0-1V I/P, circuit and instruction manual included. £20. TF899 VVM, £3.50. Eicho VVM (110V), £3.00. Air compressor, 110 V 50 Hz . motor, $£ 15$. Synchros, components, many more items to clear. S.A.E., 109 Bishops Court, Trumpington, Cambridge, or tel. 022021 3454, after 7 p.m., for further information. [2547 Wo Beckman 15 turn pots dials also miscellaneous 1 small pots and meters. Hartison, 74 Liverpool Old Road, Much Hoole, Preston.
VaCUUM is our speciality. Ncw and second-hand $\sqrt{\text { rotary pumps, diffusion outfits. accessories }}$ coaters. etc. Silicone rubber or varnish outgassing cquipment from $£ 40$. V. N. Barrett (Sales) Lid. 1 Mayo Road. Croydon. 01-684 9917
VHF KIT $80-180 \mathrm{mHZ}$ receiver, tuner, convertor Transistorised, remarkable performance. $£ 4$ o s.a.e. for literature Johnssons (Radio). St. Martins
Gate, Worcester, WR1 2DT.

Vary the strength of your lighting with a DIMKASMITCH

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression.
Price: $600 \mathrm{w}-\mathbf{£ 3 . 5 2 ~ K i t ~ f o r m ~ - ~} \mathbf{£ 2 . 9 7}$ $300 w-\mathbf{£ 2 . 9 7}$ Kit form - $\mathbf{£ 2 . 4 2}$ All plus 10 p post and packing. Prices INCLUDE V.A.T.

Please send C.W.O. to:-

DEXTER AND COMPANY
 4, ULVER HOUSE, 19 KING STREET,
 CHESTER CH1 2AH TEL: 0244-25883
 As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.
 WW-109 FOR FURTHER DETAILS

VHF RADIO TELEPHONE EQUIPMENT. Vanguard. 12% kc's. Working condition. High and low band $£ 35$ to $£ 45$. Export inquiries .welcome. Spa-Radio, 337 High Street, Cheltenham, Glos. Phone 54303 . VOLT 12 amp S.C.R. 2 N 3669 T.O. 3 [2376
30 p . 200 Crystal Filter $10,7 \mathrm{MHZ} 25 \mathrm{KHZ}$ bandwidth £2.50. Send S.A.E. for free lists. 'Q'' Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. [2545 500,000 COMPONENTS to clear, $1,000 \mathrm{mixed}$ capacitors, $£ 1.00 ;$ single pole slide switches mixed capacitors, $£ 1.00$; single pole slide switches, $£ 7.00$ BC153, BC171, BA102, BA129, £7.00 per 100; mixed, BCise
$£ 8.00$ per 100 ; sample, all items, $£ 1.00$. Postage 10 p. $£ 8.00$ per 100 ; sample, all items, $£ 1.00$. Postage $10 p$
Exports welcome. ELECTRONIC MAILORDER Exports welcome. ELEC BURY, LANCS. MAILOR [2569 GO Receivers. Signal and Audio outputs. Small compact units. Two avaiable versions $£ 35$ and $£ 60$ Toolex, Bristol Road, Sherborne (3211), Dorset. 12 S-N Channe: J FETs type 3819 E for f1. Full for building. devices complete with circuit details for building voltmeter, timer, ohm-meter, etc. Send 10 p for full list of fets and other top quality SALES ITD 45 STATION ROAD REDHANK CROSS, BUCKS. MAIL ORDER ONLY GERRARDS
WANTED urgently Bleeper system preferably with aeria transmitter for minimum one mile radius
operation, to handle up to 12 bleepers. Any make operation, to handle up to 12 bleepers. Any make considered Offers with full details to Ogden, Otley, Workshire LS21 tHX. Tel. 094344531
Electronics test equipment.-Details to R. T. \& I Electronics, Ltd., Ashville Old Hall. Ashville Rd WE PURCHASE

Electronic and Telephone Equipment and Components
\section*{TOP PRICES PAID}
for your redundant and surplus stock T.W.C. LTD.
147 The Broadway, London, NW9 TEA Telephone: 01-203 2814

CAPACITY AVAHLABLE

[^9]
THE SEMICON INDEX VOLUME I 1973 GDTION

PRICE $£ 5.35$

MOS INTEGRATED CIRCUIT DESIGN by E. Wolfendale $£ 4.05$

ELEMENTS OF LINEAR MICRO. CIRCUITS by T. D. Towers $\mathbf{E 2} 85$
SCR MANUAL 5th Ed. by General Electric $£ 1.65$
SOLID STATE PROJECTS FOR THE EXPERIMENTER by W. Green $£ 1$ - 30
WORLD RADIO \& TV HANDBOOK $1973 \in 3 \cdot 10$
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal $£ 3.95$ MOS/LSI DESIGN \& APPLICATION by W. N. Carr $\mathbf{6 9 - 2 5}$
DIGITAL SIGNAL PROCESSING by L. R. Rabiner $£ 3.75$

ELECTRONIC CIRCUITS MANUAL by J. Markus $\mathbf{E 9 . 7 5}$

INTEGRATED ELECTRONICS by Millman £7.50
*ALL PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. I p.m.

TRANSFORMERS
dodglas guaranteed

C ${ }^{\text {ABLE FORMING, wiring and assembly } \text { to draw- }}$ eliable service. B.S.F. Industries, 63 Basingstoke Road, Reading, Berks. Phone: Bracknell 28243. [2549

CAPACITY available to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E. 9 6AB. Tel. $01-985$ 7057.
ELECTRONIC Assemblies. Short runs or protoharges welcomed. Own workshop. Moderate charges. Delivery facilities. Manfield Electronics.

FOR ELECTRONIC assembly, wiring and complete inspection and testing facilities: Please contact
Multiform Electronics Ltd., Teddington, Middx. MW11 9 NN . Tel 01-977 9389 , Teddington, Midx. ${ }_{[2403}$
PRECISION injection moulding electronic industry Short run specialists. Contact Jack Balzano Senior, C.B. Industrial Plastics Limited, 1 Mackintosh Lane; E9 6AB. Ring 01-985 7057

SCAN ELECTRONICS for design and development service. 125 London Road, North End, Ports-
$\mathbf{S}^{\text {MALL Batch Production, wiring, assembly, to }}$ 5 sampe or drawings. Specialist in printed circuit $\underset{\substack{\text { assemblies. D. D. } \\ \text { Harlow. Essex }}}{\text { D. Electronics, } 42 \text { Bishopsfield. }}$

COURSES

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Com puters. Also self-build kit courses-valve and transistor
Write for FREE prospectus and find out how ICS can help you in your career ICS, (Dept 734 MI) Intertext House, London SW8.
[2296

EDUCATION

CIE, AMSE, City \& Guilds, etc. Thousands of exam successes. Postal courses in all branches of Enginesring. Prospectus FREE State subject of Court, Reading RG7 4PF. Accredited by CACC

NEM GFAM ANO SOUNP EQUIPMENT
 CLASGOW.-Recorders bought, sold, exchanged Vier Morris, 343 Aruyle Storders or vice

RECGVERS AND AMPLIFTGBSE
 SURILUS ANDSECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT4̄00, G209. Lid., Ashville Old Hall, Ashville Rd., London, E. 11. Ltd., Ashv
Ley. 4986.

RUM SERMICE \& REPAIRS

INSTRUMENT SERVICING-Multimeters (Avo, tive guarantecd repairs. V. W. \& E. Smith, 34 Hurst Mi: 1 Lane, GLAZEBURY, Warrington. Phone Leigh 6674. $C R A T C H E D$ TUBES. Our experienced polishing \checkmark service can make your colour or monochrom tubes as new again for only $£ 2.75$, plus carriage 50 p With absolute confidence sent to Retube Lid., North Somercote, Louth, Lincs, or 'phone 0507-85 300. [30 $\mathrm{S}_{\text {wave }}$ voltmeters, frequency meters, multi-range wave voltmeters, frequency meters, multi-range Lid., Ashville Old Hall, Ashville Rd, London, E. 11 . Ley. 4986. WORK. Have you mot more work 164 TRADE WORK. Have you got more work than work to an experienced engineer, Televisions. Tape
recorders. radiograms, etc. $363 \quad 7369$.

[^10]
VALVES WANTED

We buy new valves, transistors and clean new com quotation by return - Walton's, 55 Worcester St Wolverhampion

MANUALS AVAILABLE

MARCON	SOLARTRON	COSSOR	TEKTRONIX	TELEQUIPMENT			ADVANCE	VENNER	FURZEHILL
TF329G	AS516	339	422	S31	TF1041	CT436	TC1A	TSA3436	0160
TFB01B	AS517	1035	511 AD	S32A	TF1100	CD523S. 2	T2	TSA3334/3	1684
TFBOIB/3/S	ASW51A	1049	515 A	043	TF1101	AD557	TC2A	DIVE	HEWLETT PACKARD
TFB01D	SRS151\&151A	E.M.	524 AD	WAYNE KERR	TF1104/1	CD711s	D1	211	200 CD
TF867A	SRS 1528152 A	WM2	531	B221	TF1300	CDB 14	D2	RACAL	130A
TF868A	VF252	WM8	541	B121	TF1345/2	00910	J	SA28	BC22 1
TF885	C0546	WM16	$54.14-B$	B521		CD1014	AIRMEC	SA33	HARTLEY 13A
TF886A	D300		555			CD1016	701		AVO CT38

This is only a small example of the manuals we have in stock. S.A.E. with your enquiries - we may be able to help.

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INDEX TD ADVEIRTISERS

Appointments Vacant Advertisements appear on pages 96-106

[^11]

the best in midget relays today-from stock

 NEW SMALL SIZE FOR LESS PANEL AREA HIGH CURRENT CARRYING CAPACITYFULLY INTERCHANGEABLE WITH OTHER MAKES
\square MADE IN EUROPE, 100\% TESTED IN LONDON
relays
FULL RANGE OF TYPES AVAILABLE
\square IMMEDIATE DELIVERY FROM U.K. STOCKMOULDINGS high stability melamine 3,000 VAC insulation LONG LIFE exceeds twenty million operationsFLAMEPROOF coil cover and transparent cases in makralon \square LOW TEMPERATURE rise on maintained operation (Max $40^{\circ} \mathrm{C}$)COIL VOLTAGES 6V-200VDC or GV-230VACPURE SILVER contacts rated 6A or 10A @ 250VACLAMINATED CORE for AC operationCOMPETITIVE PRICES

OMRON SOCKETS FROM U.K. STOCK			
$\underset{\text { PFo83 }}{\substack{\text { PYPE }}}$	${ }_{\text {PFLI }}^{\text {TYPE }}$		
8-PIN	11 PIN	BACK CONNECTOR TYPES	SOCKETS

313 EDGWARE ROAD LONDON W2 1 BN Telephone: 01-723 2231 Telex: 28514 Telegrams \& Cables: Omrontrols London W2.

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.
Ersin Multicore solder

- Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, B.S. 441, DTD 599A, Din 1707, U.S. Spec. QQ-S-571d.

Savbit, an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref : DTD 900/4535.

Solder Tape, Rings Preforms and Washers, Cored or Solid, are available in a wide range of specifications.
STANDARD ALLOYS INCLUDE

TIN/LEAD	B.S. GRADE	LIQUIDUS MELTING TEMP.	
		${ }^{\circ} \mathrm{C}$	F
$60 / 40$	K	188	370
Savbit No. 1	-	215	419
$50 ; 50$	F	212	414
$45 / 55$	B	224	435
$40 / 60$	G	234	453
$30 / 70$	J	255	491
$20 ; 80$	V	276	529

Over 400 specifications used in more than 80 countries

SOLDERING HANDBOOK

 The most comprehensive book on soldering for industrial use, containing 120 pages with 100 illustrations and invaluable reference charts. Features practical methods of soldering in electronics and allied industries, and is divided into three headings; Published by lliffe Books and available from Technical Bookshops.

The first oxide free high purity extruded solder. Available in 1 lb . and 2 lb . bars, also Extrusol pellets for use in printed circuit soldering
 machines, baths and pots, polythene protected.
 7 LB. REELS Available in standard wire gauge from 10-22 swg., on strong plastic reels.
1LB. REELS Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From $24-34$ swg. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel).

GALLON CONTAINERS

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring' containers, with carrying handle.

SOLDER TAPE, RINGS, PREFORMS, WASHERS, DISCS \& PELLETS Made in a wide range solid or cored alloys. Tape, rings and pellets are the most economical to use.

HIGH \& LOW MELTING POINT ALLOYS

ALLOY	DESCRIPTION	MELTING TEMP.	
T.L.C.	Tin/Lead/Cadmium with very low melting point Contains 2\% Silver for soldering sitver coated surfaces	179	293
L.M.P.	Made from Pure Tin for use when	232	450
P.T.	Mader a lead free solder is essential	$296-$	$565-$
H.M.P.	High meiting point solder to B.S. Grade 5S	301	574

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to : MULTICORE SOLDERS LTD. Hemel Hempstead,Herts.HP2 7EP Tel:H.Hempstead 3636 Telex 82363

[^0]: EMI Colorline Mark II Push-Pull CATV equipment offers full channel capacity, ower distortion and greater system reach
 The push-pull amplifiers and their associated passive units have a band-width of $40-270 \mathrm{MHz}$ and are designed for systems distributing up to twenty channels. where single octave operation is not acceptable
 VHF bands, 1,11 , and 111 and areas of the VHF spectrum outside the normal broadcast bands can be used
 Mark II Colorline permits the planning and installation of networks having extremely low cross-modulation, intermodulation and harmonic distortion. All amplifiers have full AC line power facilities.
 Amplifier/power units are readily interchangeable without disturbing cable connections and are also mechanically compatible with EM| Mark I amplifiers. If you're planning a CATV system, you should know more about Colorline Contact EMI today

[^1]: Price 20p. (Back numbers 40p.)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SEI 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year £5; 3 years $£ 12.50$ (U.S.A. \& Canada 1 year $\$ 13$, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, I year $£ 2.50 ; 3$ years $£ 6.25$ (U.S.A. \& Canada 1 year $\$ 6.50,3$ years $\$ 16.25$).

 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
 Subscripticns: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^2]: *"Transistor Tester", Wirelesś World, June 1970.

[^3]: *Department of Physics, Liverpool Polytechnic.

[^4]: *Held in editorial office. A piece of the document is reproduced with Mr Baker's letter. - ED.

[^5]: 1. Faulkner. "The Design of Low-noise Audiofrequency Amplifiers", The Radio and Electronics Engineer, Vol. 36, No. 1, July 1968.
 2. Linsley Hood, J. L. Private communication. Murphy, R. "Power Semiconductors", Electron, 8 March 1973.
[^6]: * My addition

[^7]: WW-083 FOR FURTHER DETAILS

[^8]: What WE PURCHASE R
 COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS RESISTORS, CAPACITONS. POTENTIO ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

[^9]: A IRTRONICS LTD., for Coil Winding-large or plies. small production runs. Aiso PC Boards Assemenquiries welcomed 3 a Walerand Road, London SFI3 7PE. Tel. 01-852 1706.
 RATCH Production Wiring and Asembly BATCH Production Wiring and Assembly to Station Parade, Ealing Common, London Ws. 19 B 01-992 8976.

[^10]: IF quality, durability matter, consult Britain's oidest tapes. (Excellent tax-free fund raisers for schools.) Modern studio facilities with Steinway Grand.-Soun News. 18 Blenheim Road. London, W.4. 01-995 1661. YOUR TAPES TO DISC-Mono/Stereo $\stackrel{\text { F } 2561}{\text { From }}$ - 1.50 .4 Day Service-Vinyl Pressings. S.A.E leaflet. Deroy Studios, High Bank, Hawk Street.

[^11]: Printed in Great Britain by Southwark Offet, 25 Lavington Street, Loncion, S.E.1, and Published by the Proprietors, I.P.C. Electrical-Electronic Prgss Jidd, Dorset House, Stamford 8t., London, SE1 9LU telephone

 sulply. This periodical is sold subjest to the following conditions namely that it ahall not without the written consent of the publishers firs given be lent re-sold, hired out or otherwise digposed of by way of Trade
 at a price in excess of the recommended maximump price shown on the cover, and that it shall not be lent, re-sold, hired out or otherwise digposed of in a mutilated condition or in any unauthorised cover by way of Trade at a price in excess of the recommended maximum price shown on the cover, and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trarle or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

