WirelessWorld
 Magnetic tape survey Digital meter projects

The new Bradley 200 is aquality 100 MHz general
 purpose osciloscope it costs just G5\%

That's remarkable value for money. Considerably less than you could pay for the same performance, accuracy, sensitivity and versatility.
Not that we set out to undercut the competition. All we wanted to do was to produce the best 100 MHz general purpose oscilloscope on the market. But because we started from scratch, we were able to use the latest engineering techniques and advanced circuitry (including many i.c.'s). And this meant we could price the 200 very competitively.
The 200 incorporates all the features you would expect in a
first-class modular instrument, plus several new ideas.
To find out about these, please telephone Ashley Stokes on 01-450 7811, Extension 113. Or write to him at the address below.

* UK Price

ヨபா미
 SOUND SYSTEMS AND ELECTRONICS

The MXT-200 is the latest addition to the range of modular audio mixing units available from Audix for public address, theatre, broadcast and recording studio applications. Designed for either mono or stereo working the MXT-200 incorporates high and low frequency filtering per channel as well as overall treble and bass tone controls. A pre-fade listen miniature toggle switch is fitted to all plug-in channels; the maximum number of inputs being 16. The wide choice of modules including output routing, monitoring facilities, P.P.M. or V.U. metering units can be fitted within rack mounting or free standing cabinets.

LOW COST RC OSCILLATORS 1 Hz TO 1 MHz

LEVELL
VISIT US ON STAND 621 AT L.E.C.S. 73 OLYMPIA, LONDON, 22-25 MAY

PORTABLE INSTRUMENTS

ANALOGUE

FREQUENCY $\quad 1 \mathrm{~Hz}$ to 1 MHz in 12 ranges. Acc. $\pm 2 \%$ $\pm 0.03 \mathrm{~Hz}$.
SINE OUTPUT $\quad 7 V$ r.m.s. downto $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
DISTORTION $\quad<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz .
SQUARE OUTPUT 7 V peak down to $<200 \mu \mathrm{~V}$. Rise time $<150 n S$.
sync. OUTPUT SYNC. INPUT

METER SCALES $>1 \mathrm{~V}$ r.m.s. sine in phase with output. $\pm 1 \%$ freq. lock range per volt r.m.s. input. $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}$. on TG200M \& DM only.
SIZE \& WEIGHT $\quad 7^{\prime \prime}$ high $\times 10 \frac{1}{4}$ " $\times 5 \frac{1}{2}$ " deep. 10 lbs .
TG200 TG200D TG200M TG200DM
£42
$\operatorname{Sin} 0 / P$

Send for literature covering our full range of portable instruments.
LEVELL ELECTRONICS LTD, Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-4495028/440 8686

Gardmers
 line up

Transformers,Filters and Delay Lines for all applications

The majority of products sold by Gardners are custom built to specific customer requirements. But we can also offer a wide range of standard designs 'off the shelf'. Our stock items cover power transformers, audio transformers, inductors, chokes and invertors. The complete range is shown in full detail in our series of
brochures. If you'd like to post us the coupon, we'll send you brochures by return. The following publications list our standard range of nearly 1000 ratings for various applications usually available for immediate delivery in small quantities.

GT. 1 POWER CONTROLLING SATURABLE REACTORS

GT. 5 AUDIO TRANSFORMERS
GT.12. LILLIPUT SERIES OF MICROMINIATURE TRANSFORMERS
GT. 16 ALPHA SERIES OF ASSEMBLIES

GT. 17 LOW VOLTAGE
ISOLATING AND AUTO TRANSFORMERS
GT. 21 MANUAL OF INVERTER TRANSFORMERS AND MODULES.

GT. 23 INDUCTORS
GT. 24 POWER TRANSFORMERS
GT. 25 TRANSISTOR POWER SUPPLY TRANSFORMERS
GT. 100 GENERAL REFERENCE CATALOGUE

Please indicate your requirements by circling the G.T. number/s below.
$\begin{array}{lllllllll}1 & 5 & 12 & 16 & 17 & 21 & 23 & 24 & 25\end{array} 100$
NAME \qquad
ADDRESS \qquad

is this the price you

Probarly, if you're still using an ordínary soldering iron. Ordinary soldering irons can cause damage to transistors and integrated circuits - damage which wastes time and costs money. Now, with the unique ANTEX $\times 25$ and CCN low leakage soldering irons no harm can come to the most delicate equipment, even when soldered 'Live'.
(You could be making quite a saving).
ALL PRICES MENTIONED EXCLUSIVE OF V.A.T.

What is improved?

This question is put to us frequently these days so a few words of explanation as to why and how we 'improved' our Model 3009 Series Il precision pick-up arms may be helpful.

We assumed that if you chouse one of our arms you will use the sort of cartridge it deserves. The fieid thus narrowed we were able tomake themmorecompact and abovealireduce the effectivemass of the standard model to a mere 5.5 grams. This benefits trackability and ail round definition with improved bass transients and still iover sensitivity to extennal shock and feedback.

Cleaning the stylus is not reaily a problem with a non-detachabie sheil as the stylus assembly itseif can usually be withdrawn from the sartridge for this purpose.

Where the facility is demanded an alternative version, the Model $3009 / \$ 2$ improved is similar bui has a detachable shell, its effective mass is consequently 4 grams higier.

Büth inodels require a loi less space than their predecessor, widening their application and simplifying installation.

Following our established policy earlier arms can be updated by our Service Departmeni from whom particulars are available.

The best pick-up arm in the world

Whatever your monitor or data display requirement, the chances are you'll find exactly the tube you need in the Brimar range. Screen sizes from six to twenty-four inches. Deflection angles from 70° to 110°. Narrow neck for reduced deflection power or wide neck for improved resolution.

Several sizes offer the option of increased neck length for special deflection techniques. Each type comes in a selection of phosphors from the extensive Brimar range and graticules are added to order. An added bonus is the variety of implosion protection and mounting styles with which Brimar leads the field.

Thorn is the largest manufacturer of television tubes and receivers in Britain - knows more about tube design and application than anyone else in the business.
Just ring 01-804 1201 and mention our name: Brimar it could save you a lot of trouble.

KEY
\square Rectangular Face
 Mounting Frame
 Integral Mounting Lugs
Figures denote minimum screen width and minimum screen height in mm.
Thorn Radio Valves \& Tubes Ltd.,
Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS
Tel: 01-804 1201

Handful of relay know-how!

Largest range of Miniature Plug-in Relays in Europe

If you have a relay requirement or problem contact Varley Technicians now, or send the Miniaturised Bi-stable polarised relay type VPR and Post Office approved relay type 23 are used and approved by most leading electr-
 onic manufacturers throughout the world. The reasons : PERFORMANCE, RELIADiLity, PRICE.

Varley go to great lengths to ensure a consistently high standard of performance and reliability in the manufacture of their range of relays. Ultrasonic cleaning is used inroughout manufacture. Each relay is checked under dynamic conditions for contact performance and timing.

Oliver Pell Control Ltd.
Cambridge Row, Burrage Rd., Woolwich, London, SE18. Tel : 01-854 1422 Telex : 897071

[^0]\qquad
Company \qquad
Address \qquad

Cool lighing for hot parties.

Velvet dim to full brightness at a teuch of the finger. Off/on and infinitely variable.

Beta light glow makes switch easy to find in the dark and consumes no current.

Economical too!
As the light is progressively dimmed, so the current consumption drops - think of it as an electric tap 300 watt capacity, straight replacement for standard light switch

Hoł Ignition for cold momings

The Jermyn capacitor discharge ignition system.

Instant starting in all weathers. Even with a near flat battery, the unit will produce a full sized spark.

Just one of the many advantages of an electronic ignition system, the others are

High energy spark even at maximum revs.

Complete set of parts to build it ycurself for only $£ 7.75$, as described in Practical Wireless and fully approved by the author.

Save 55p

Buy both for $£ 10.00$

Smoother running.
Less strain on battery and starter. Lower petrol consumption.
Long plug life with infrequent adjustment (typically 20,000 miles, gapped at .050").

No contact breaker arcing giving long life and less adjustment (typically 20,000-25,000 miles)

Reprints of
the two part feature are available at 25p.

To Jermyn Industries, 84 Vestry Estate, Sevenoaks, Kent.
Please despatch return of post \quad Iight dimmer kit
light dimmer
£10 pair. Enclose cheque or postal order.

BLOCK CAPITALS
NAME
ADDRESS

Erie metallised dielectric capacitors-more'firsts' to their name than the rest rolled together

Erie's strength in metallised film lies in immerse capability - the result of unique experience in materials and production technology, objective marketing and a total commitment to satisfying customer requirements. This, plus...
an enterprising spirit . . . The group has held world patents on de-metallising and handling techniques since 1945.

A string of 'firsts' includes the use of metallised paper with high temperature impregnants to give fully type-approved capacitors (with still no competitor in sight)!

We were first to develop epoxy resins as a sealing medium. First in Europe with

Oppcsite vage: Setting-up plant for metallisation of
Top $\|$ eft: $\quad \begin{aligned} & \text { plastic film dielectric. } \\ & \text { Type } 51016 \text { capacitors awa iting } \\ & \text { oven cure. }\end{aligned}$
Top cente: Winding close tolerance professional metallised polycarbonate capacitors.
Battom left: Automatic soldering of wire terminations on metallised P.E.T.
Bottom centre: Typical examples of custom designed capacitors.
Far right: Test Station for metallised P.E.T capacitors.
metallised polyethylene terephthalate (P.E.T.) capacitors. First in the world with thin metallised polycarbonate film capacitors, by making our own film. First with castellated metallised paper and P.E.T. small-value types (still an exclusive process).

And in 1970, in a special custom-designed job, first with the volume production of a metallised polypropylene capacitor. near total in-house capability . . . Particularly in metallising equipment. It means new materials and techniques can be investigated in depth. As leaders, we are invariably approached at an early stage by the material developer. The result is often a combined development programme (and more "firsts'). It also means the speedy dispatch of customer specials independent of outside suppliers. unique flexibility . . . The real key to Erie's capacity to meet specific needs particularly in long-run multi-section and feed-through units - is flexibility.

Basically: design-stage discussion and a batching system specially geared to quick production line change-overs.
Full-scale Life test both on new products and on a batch sampling basis is carried out to monitor and maintain Erie's uncompromising standards. This Test House is Government approved.
To take any of the foregoing further, contact
the Advertisement Dept (DC/WW/1/73), Erie Electronics Ltd.,
South Denes, Great Yarmouth, Norfolk.
Tel. (0493) 56122 Telex 97421

Throughout the world B\&W Monitor Loudspeakers set the standard
 4

DM4 A small monitor using three units including a new, bass/mid range unit to provide a top quality sound rarely achieved by speakers at twice the price.

D5 A small, twounit system offering the unique combination of B \& W precision quality performance and a remarkably low recommended retail price of under $£ 30$.

DM2 Already wellknown, this threeunit system has achieved a truly world-wide reputation for excellencie and been rated as one of the best top quality systems.

DM1 The original B \& W three-unit miniature-not much larger than an LP sleeve-enjoying increasing popularity.

DM70 Now released on the UK market for the first time in its continental styling. One of the world's finest loudspeakers-and included in the Design Council's Index.

A Garrarideckask the man who owns one

Make no mistake-your deck is the key unit in your Hi-Fi equipment. All the latest electronic refinements in amplifiers and speakers can be wasted if the deck is not precision-built and mechanically reliable. Ask the man who owns a Garrard. He may take it for granted-but that's the way it should be. You have no second thoughts, no regrets once you've bought Garrard. That's why the overwhelming majority of 'package deals'start with a Garrard. Hi-Fi dealers can't afford after sales problems, so they go for Garrard. Go along with your dealergo for Garrard.

SP25 Mk III module : this automatic single play deck offers the refinements of enthusiast $\mathrm{Hi}-\mathrm{Fi}$ at a budget price. Fitted with $75 / 6 /$ SM Shure cartridge

> These Garrard units are supplied complete with elegantly styled bases and distinctive lift-off hinged covers, which can be closed during playing. Ready-wired for quick and easy connection to mains and amplifier.

AP76 module: this superb deck offers every modern feature you need for $\mathrm{Hi}-\mathrm{Fi}$ performance. This is a genuine transcription quality deck at a moderate price Fitted with 75/6/SM Shure cartridge

AP96 module: the connoisseur's single playing transcription deck. It is beautifully styled with precision performance to match any $\mathrm{Hi}-\mathrm{Fi}$ system.
Fitted with 75/6/SM Shure cartridge.

ZERO-100S module : the ultimate Tangential pick-up arm virtually eliminates tracking error. The transcription turntable with the greatest combination of advanced features available today Fitted with M93/E Shure cartridge.

Complete the coupon and post it now!
Please send me more details on the Garrard range of modules and decks.
Name \qquad
Address

To: Garrard, Dept.WW, Newcastle Street, Swindon, Wiltshire.

WITH JACKSON

When you use Jackson capacitors, you know you're using tried and tested components. Jackson capacitors are made:to the most exacting standards under rigorous supervision. As a result, they give perfect reliability over a very long life. What's more, you can have components custom made to suit your individual requirements.
'Our skilled personnel and bang up to date equipment are backed by 45 years of experience in the communications field. And that's your guarantee of a reliable product.

TYPE P22 AM/FM 2 GANG CAPACITOR CATALOGUE NO. 4300

Write for fully illustrated catalogue
JACKSON BROTHERS (LONDON) LIMITED
KINGSWAY, WADDON, CROYDON, CRG 4DG
TEL: 01-681 2754/7. U.S. OFFICE: M SWEDGAL 258 BROADWAY, NEW YORK, N.Y. 10007 NOW! ON TELEX No. 946849

OHOOE OF 50 TYPES

List No. P. 538 (Chrome) List No. P. 539 (Gold)

List No. P. 535 (Chrome) List No. P. 536 (Gold)

List No. J. 2

Also Miniature range of above available

We began making Jacks and Jack Plugs in 1929 and since that date have steadily enlarged our range which now includes a variety of designs covering all popular applications.
$M^{\text {any millions have been }}$ supplied to customers all over the world and have given every satisfaction.

The majority of models are made to BS. 666 specification and every component part is checked for compliance to this standard before assembly. A range of miniature models are also listed.

Designs are varied; and include two pole models. which can be connected to twin or co-axial cable and three pole models. Finishes vary, covering black bakelite, frosted aluminium and both chrome or gilt plating.

Ratings for BS. 666 models are 50 V . max., 0.1 V min ., 5A max., 50W. max., Max., test voltage 250 pole-to-pole or pole-to-earth.

GISTDNERS GAN MIWAYS REIY OM
 'The house of bulain' for sedivie, quick oespatah aNO guaraute s suplles fol years io gowe

TECHNICAL LITERATURE AVAILABLE ON REQUEST, QUOTE WW/1/73

A. F. BULGIN \& CO LTD

ELECTRONIC COMPONENT MANUFACTURERS BYE-PASS ROAD • BARKING • ESSEX TEL.: 01-594 5588 (12 lines) TELEX 897255 WW- 018 FOR FURTHER DETAILS

313 EDGWARE ROAD, LONDON W2 3BR.
telephone: 017232231 Cable: Omrontrols London.
CmROM telephone: 017232231 telex 28514

VARIABLE TRANSFORMERS

famous "slivep 'SLIDTRANS"' MODELS 1 amp f7.00 C. \& P. 37 $2.5 \mathrm{amp} £ 8.05$ $5 \mathrm{amp} £ 11.75$ 10 amp $£ 22.50$ $12 \mathrm{amp} £ 23.60$
$20 \mathrm{amp} £ 49.00$ "OFF THE SHELF" delivery of all types. *Fully shrouded. *Bench Mounting. *Panel Mounting. *Low Price *Input 240VAC. Output: 0-260VAC.

PANEL MOUNTING "'SYS'

 SYNCHRONOUS TIMEROMRON brand Synchronous Motardrive timer with single instantaneous and two timed chan over contacts. MINIMUM guaran oed electrica and mechanical
$10,000,000$ opera tions.
*Stockad in 110VAC 240VAC up to twenty eight hours time range: $\frac{1}{2} \%$ repeat accuracy. f14.90 "one off" $£ 10$ in quantity.

PNEUMATIC OMRON TIMER UP TO 200 SECS DELAY-"ATS'

Easily adjustable from delay on energise to delay on de-energise The OMRON ATS works on an air damped principle and can be adjusted between 0.200 secs
with screwdriver adjustment. A with screwdriver adjustment. A provides a 6A contact and minimum 1,000,000 ops life. "One off" $\mathbf{~ 8 8 . 1 0 . ~ I n ~ q u a n t i t y ~}$ £5 for $110 \mathrm{~V} / 240 \mathrm{VAC}$ types.

LOW COST PANEL MOUNTING

 MINIATURE TIMER-‘STPYMH’

Plug-in timer for pane mounting. Synchronous Motor driven with autoand time limit contacts rated at 5 A . This timer has fixed and moving pointers.
£ 8.40
quantity.
HIGH ACCURACY SOLID STATE PLUG-IN TIMER-'"TDS'

Genuine 1% repeat accuracy with solid timing. Life 50 million operations minimum, instantaneous \& time limit contacts.
Full time scales $0-1 \mathrm{sec}$: $0-2 \mathrm{sec}, 0-5 \mathrm{sec}, 0-10 \mathrm{sec}$: $0-30$ sec; $0-60$ sec ; 0-180sec.
Dual Voltage 110/240VAC $£ 18.50$ to $£ 13$ each.
EXCLUSIVE SOCKETS FOR OMRON TIMERS \& FLOATLESS SWITCHES

Screw terminals, with clips to hold the timer or switch firmly in place where mounted. Type 8PF for STPNH. TDS.
Type 8PFI for 61FGP \& TDA

75p "one off" and 50p each in quantity.

ELECTRONIC PLUG-IN SWITCH FOR LIQUID LEVEL \& ICE FOR LIQUID LEVEL \& ICE
BANK CONTROLS " 61 FGP"

ength 1 metre, for use on differential and alarm control of conductive liquids with "6ifGF" (illusrated above)
1.00 one off" $£ 1$ in quantity.

TIMCTRONIC RECYCLING
TIMER FOR CONTINUOUS

ON/OFF OPERATION "TDA"

Electronic twin timer for continous recycling operations. On/Off time control, 0-6secs with 2% repeat accuracy setting 0-6s

Dual voltage 110/240VAC £28.60 but down to f 18 each in quantity.
PANEL MOUNTING "NSY
SYNCHRONOUS TIMER

"New Square Dial" The OMRON timer type NSY features the modern "OIN" type square fixed dial. This attractive package has two time limit changeover contacts.
Stock range $110 / 240$ VAC up to 28 hrs $£ 12.50$ "one off" to $\mathbf{5} 8$ in quantity
OMRON MICROSWITCHES
*Interchangeable with all British \& Continental Manufacturers *Approvals from: CSA; MIL; UL; SEVC; SAA; DEMKO ETC

VIC WITH AMP TERMINALS Single Pole Changeover 15 amp | switch O.F. 400 gm |
| :--- | :--- | :--- |
| M.D.F. 114 gm | per 100 ; $£ 700$ per 5000 .

VV-15-1A WITH SOLDERTERMS Single Pole Changeover 15 mp Switch D.F. 230 gm . R.F. 50 gm . M.D. 1 mm . £19 per 100; £150 per 1000: 5650 рег 5000.
SIA SU8MINIATURE SWITCH Cheaper than all its competitors. Single poie changeover 5amp switch 0. F. 200 gm . R.F. 40 gm . M.D. 0.1 mm . f850 per 500010 £ 850 per 50010 . sial with Leaf spring Subminiature 5 amp microswitch of $56-180 \mathrm{gm}$ R.F. 14 gm M.F. 0.8 mm . £27 per 100: £220 pe 1000: 110 CO
SIAL 2 WITH ROLLERACTUATOA Subminiature 5amp microswitch 0. F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D 0.8 mm . £ 33 per 100: £270 pe 1000: £1250 per 5300 . CCR-5 LOW TORQUE SWITCH Low cost microswitch for coin operated or air vane applications O.T. 10 gm . R.T. 13 gm . M.D. 15°. £31 per 100: f190 per 1000 f900 per 5000.
VAOS PUSHBUTTON MICRO. SWITCH.
15amp Microswitch with pushbutton actuator low operating
force and futtons in force and buttons in various colours. $£ 49$ per 100: $£ 360$ pe
1000 : $£ 1750$ per 5000 . 1000: £1750 per 5000 .

TIMERS SWITCHES TRANSFORMERS VOLTAGE CONTROLS FOR IMMEDIATE DELIVERY

WORLD'S SMALLEST SYNCHRONOUS MOTOR PLUG-IN TIMER STPNH

 at Last! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A MINIATURE PLUG-IN TIMER UP TO 28HRS.Only OMRON could provide a timer of such unrivalled superiority over all its competitors, anywhere in the world.
The STPNH is a synchronous motor driven timer with automatic reset function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base.
Time ranges start 0.6 secs and finish $0-28 \mathrm{hrs}$ with operating voltage at 110 VAC or 240 VAC .
Up to 72 mins $£ 7.90$ "one off" and $£ 4$ in quantity. Long time ranges around $\mathbf{f 8}$.

Full range available with 15 amp switching capacity. Approved by CSA Authorities \& guaranteed for twelve months
Interchangeable with other British and Continenta manufacturers typical price is around $\mathbf{£ 3 . 5 0}$ for the coil spring type.

VOLTAGE STABILISER

Famous I.M.O. Constant Voltage Stabiliser only $£ 12.50$ each. FEATURES:

* 200 watt rating *Input 240VAC $\pm 20 \%$ \pm Output $240 \mathrm{VAC} \pm 1 \%$.

AT LAST OMRON FRONT
CONNECTION SOCKETSNOW SUPPLIED FROM STOCK

These new miniature sockets with screw terminal connec. tions are only available through I.M.O. or authorised stockists. Moulding is UL approved and OMRON "know how" brings all the advanced features of a modern product PFO83 (8 pin) 44p each 100 lots.
PF113 (11 pin) 58p each 1000 lots.

SOLID STATE VOLTAGE
CONTROLS 5AMP \& 10AMP MODELS

Full solid state control over AC voltages. Input of 230VAC variable on output to 25-230VAC. Miniature and lightweight with finned aluminium housing these units can truly replace wirewound transformers.
VP05C (5AMP) $£ 9.90$ "one off" $£ 6$ in quantity. VPIOC (10AMP) $£ 16.90$ "one off" f 10 in quantity.

PHOTOELECTRIC SWITCHES

Reflective and "slot" type photoelectric switches. Will sanse any material passing the light beam up to 3 mm and provide an output signal of 02AMPS at 240VAC. Reflective distance up to 25 mm on reflective surfaces, far longer with external light.
WORK DIRECT FROM 24VAC SUPPLY.
PRIOOR (Reflectiva) $\mathbf{£ 7 . 5 0}$ 'one off' $£ 4$ in quantity. PRIOOC (slot) $\mathbf{f 7 . 5 0}$ "one off" f 4 in quantity.

New range of open, enclosed and plug in relays
Approved by C.S.A., V.D.E. and S.E.V.

The 1620 frequency

 counter.Rely on the all solid-state Dymar 1620 portable frequency counter wherever you use it - in lab., service centre or in the field.
This compact lightweight features a wide frequency range of from 20 Hz to 200 MHz through a 50 ohm input
and a 10 prescaler, and also provides a high impedance direct input with a frequency range of 40 MHz
The high input sensitivity of 10 mV over most of the frequency range allows loose coupling to the source being measured
The frequency standard : a 10 MHz oven-controlled crystal oscillator.

The display: six digits with memory. The operating power: mains supply or internal NiCd batteries.
All in a $12 \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}-9 \frac{1}{2}$ (8 lbs) package - which also incorporates a battery charger and a battery-saving standby facility circuit.
Dymar instruments have a reputation for versatility, convenience and quality. The 1620 lives up to its Dymar name.
Use the Reader Enquiry Service for more detalls or contact Dymar direct.

vowar

the name in radiotelephones

M tannoy n
 ©

DUAL COMCENTRCS

Versions of the Tannoy Dual Concentric loudspeaker have formed the basis of many of the best studio monitors for more than 25 years. The unit is incorporated in a variety of enclosures made by leading manufacturers both in the U.K. and abroad, as well as being incorporated in "package studios" produced by foremost U.K. European, U.S. and Japanese manufacturers. The unit not only has the advantages of high power handling capacity and long term consistency, but the level frequency response. good polar distribution and exceptionally low intermodulation products make it ideal for the highest quality studio monitor systems. Apart from the current range of Monitor Gold units specified below the Monitor 'Red' 75 is still in production and can be supplied upon request in its original 75 s version.

SPECIFY TANNOY
 DUAL CONCENTRICS FOR YOUR STUDIO MONITOR

Frequency Response
Pulaı Distrbution
for 60° inc Angle
Power Hardling Capacity
Impedance Via Crossover
Network
Intermodulation Products
Bass Resonance
Crossover Frequency

WW-022 FOR FURTHER DETALLs

These active filters are designed to take over the functions of passive filter networks in audio telecommunications systems. They offer several advantages, in space-saving, economy and reliability.
As a size comparison, one active filter will take up the same space as two Post Office Type 3000 relays. By using the same fixing and terminal holes as the relays, it offers an extra convenience when baseboards are being prepared. By replacing inductive components with solid state devices, filter characteristics have been obtained at less cost, without insertion loss, and with increased flexibility and economy. These new active filters have B.P.O. approval, and have wide applications, in the audio area and in signalling and control systems.

Whiteley versatility...

ELECTRONIC \& ELECTRICAL DESICN

CABINET MAKING

PRODUCTIQN CAPABIUTY
SHEETMETAL FORMING/FNISHING
PLASTICSMOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074
See us on Stand 405 ILEC Olympia
WW-023 FOR FURTHER DETALLS

Now you can cut your production costs without compromising equality.

Ask Mackarl.

Before you put your name on a stereo system, radiogram or other audio equipment, you must know that both the quality and the price are right. Mackarl can help.

With three Far East factories in volume production, and a fourth rapidly nearing completion, Mackarl is already able to deliver 20 different tuners, printed-circuit assemblies, amplifiers, cartridge players and other chassis
to UK OEMs. Through Mackarl's new London office, you can discuss your requirements with European technical and marketing people with decades of high-level experience in British consumer electronics. Mackarl can provide you with bits and pieces, or complete ready-to-sell units with your own label, or almost anything in between.

Ask Miss Sharpe at Mackarl, today. MACKARL ELECTRONICS (LONDON) LTD 94-98 Petty France, London SW1H 9EA Telephone: 01-222 2527

EC958

 series of receivers 10 kHz to 30 MHz In world-wide use

Professional high-stability receiver series for a wide variety of applications. The standard version can be used as a self-contained F.S.K. terminal, or as a dual-diversity terminal with common oscillator control. Variants are available for Lincompex terminal use, for specialized network monitoring surveillance and for marine applications.

Simplicity Reliability Economy

Your distributor's address and illustrated brochure obtainable from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP
Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

Telford range of Osciilloscope Cameras

Modular system with range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements

AnDERS MEANS METERS...

Actual size illustration
Scale length $4 \cdot 3^{\prime \prime}$

PROFILE 350 EDGEWISE METER

Long scale while retaining small overall size Process control and electronic applications

Easily stackable	Horizontal/vertical use
ment 60μ upward, AC/DC	Self-shielding rugged movement

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Vulcan Moving Iron. 4 models, 1-5", 1.8", 2•7", $3.7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.
 1

Kestrel Clear Front. 7 models, $1 \cdot 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Solicontroller Moving Coil Relay. DC moving coil and AC moving coil rectified. 1 or 2 adjustable alarm controls.

Lancaster Long Scale 240 . 2 models, 4", 5•5" 240 . 2 models, $4,5 \cdot 5$
scales. DC moving coil and $A C$ moving coil rectified.

Models KE1 and KE2
Miniature Edgewise
Meters. Nominal scal
Available in sensitivities
from 50 microamps
Moving coil.

WW- 028 FOR FURTHER DETALLS

10-12 Watts - 25 kVA
 DRAKE TRANSFORMERS

Mains Transformers
Chokes
Audio Output Transformers
Audio Input Transformers
Saturable Reactors
Coils

Current Transformers

Transistor Transformers

Inverter Transformers
Screened Microphone Transformers
Wide Band R.F. Transformers
Resin Cast Transformers
DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX
Billericay 51155

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-030 FOR FURTHER DETAILS

Stereo radio from your existing tuner.
 A complete set of parts

 from Jermyn to build a stereo decoder module that will convert your existing mono tuner for stereo reception whilst maintaining a high standard of reproduction

The distortion is very low (typically 0.3% at 560 mV RMS composite input signal) with 40 dB channel separation.

The stereo switching is automatic and there is a light emitting diode which acts as a stereo beacon.

The kit requires no coil and there are no alignment problems.
Fitting. The module requires a 10-16 volt power supply which can normally be tapped off the existing tuner. The signal input is taken off before the de-emphasis circuit which in practice means disconnecting one, or at the most, two capacitors. Any radio engineer will be able to spot these capacitors, but if you re really stuck send the circuit with a SAE to us and one of our engineers will indicate the output point. (This is the full extent of our involvement, no hardware please)

Of course, if you have a modern mono tuner with a multiplex out-
put our module simply plugs in.
The outputs go via a screened twin cable to the tuner inputs of your stereo amplifier
And the cost? $£ 4.90$ for the Kit'with 100% tested integrated circuit
Alsolavailablelassembled andialigned, checked and ready for use at $£ 690$ (includes 12 month guarantee). Beat that!
To Jermyn Industries Please rush me \square Kit(s) \square made up Stereo decoders. 86 Vestry Estate \quad enclose cheque/postal order for $£$
sevenoaks
I Kent
Name
Block Capitals Please

Would you spend anhour aday to earn moremoney inalectronics Television-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics - in television (colour and black/white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments)

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

1 網霜 your key to the doo of opportunity

brandenburg

An even better photomultiplier power supplyat the same low price

How's that in a world of rising prices? Brandenburg 475R/476R are "2nd generation" models to the highly successful model 472R. They incorporate refinements in design and control - but there is no price increase. Real value for money at $£ 144.00$. The refinements include new fine output voltage control (down to 10 V on the 475R) by helical potentiometer, giving ten turns instead of one to cover the fine adjustment range. An ingenious interlocking system can be set to prevent accidental pressing of additional control buttons which could overvolt the load, and the quick and simple output polarity reversal is protected against accidental operation.

Abridged Specification

Output voltage	10 V to $2100 \mathrm{~V}(475 \mathrm{R})$ and
	410 V to $2500 \mathrm{~V}(476 \mathrm{R})$
Output current	$5 \mathrm{~mA} \max (475 \mathrm{R})$ and
	$4 \mathrm{~mA} \max (476 \mathrm{R})$
Output ripple	1 mV peak to peak
Stability	1 part in 10^{4} against
	$\pm 7 \frac{1}{2} \%$ mains change
Drift	5 parts in 10^{5} per hour ;
	1 part in 10^{4} per day

Ask for the 475R/476R data sheet.
Brandenburg also makes stabilised high voltage supplies for outputs up to 100 kV . Let us know your particular application.

brandenburg limited

939 London Road, Thornton Heath, Surrey. CR4 6JE. England. Tel : 01-6890441 Telex 946149.
Germany: Herr G. E. Wolfe (BRANDENBURG), Bei Edwards
Hochvakuum GmbH, 6 Frankfurt am Main-Niederrad, Hahnstr 46.
Tel: 67-50-57
Agents or distributors in most principal countries.

WW- 033 FOR FURTHER DETAILS
BRADEWICK Dry De-Soldering Wick
THE INSTANT, POCKETABLE DE-SOLDERING AID

Enables all types and sizes of joints to be completely de-soldered in seconds, using just a soldering iron. Special dry flux impregnation gives superior solder adsorption. Supplied in four sizes, in handy dispenser packs containing approx. 5 ft . (Use size 3 for general purposes) Price: 90 p (list) Leaflet $B / 5$ free on request.
LIGHT SOLDERING DEVELOPMENTS LTD
28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 \& 4559

Even with a perfect pickup, the distortion from a gramophone record for sounds of equal level increases very rapidly at high frequencies, eventually doubling for every major third increase in pitch.

There comes a point when, to musical ears, the distortion is increasing faster than the musical quality. The QUAD filter system is designed to enable those with ears to hear to obtain more of the music and less of the distortion.

QUAD

for the closest approach to the original sound

Metal cepingis
 Suppliedinkit form for power supply units voltage stabilizers and electronic apparatus

CODE NO: 300900 Height 120 mm Length 284 mm Depth 138 mm 300910 Height 120 mm Length 224 mm Depth 138 mm 300920 Height 120 mm Length 284 mm Depth 188 mm
hernal dinensions

SIMRRD

There are good reasons AMTRON

195 other for buying electronic kits

Apart from the five items indicated on the left, there are another 195 kits to choose from in the vast AMTRON range of electronic kits.

A few examples of equipment you can construct from AMTRON kits are:

Power supplies, preamplifiers, amplifiers, L.F instruments, accessories for musical instruments, amateur and radio control transmitters and receivers, battery chargers, electronic car accessories, psychedelic lighting equipment, measuring instruments, tuners, receivers and I.C.digital equipment.

Only 1st class fully guaranteed components are usedsolder being included with every kit.

Prices range from $£ 1.10$ to $£ 80$ and each kit is sold in a protective blister pack containing complete instructions.

A unique feature of AMTRON kits is their ease of construction which appeals to both dabbler and expert alike.

Please send for brochure. Should you experience any difficulty in obtaining AMTRON kits, please contact us direct. Trade © Educational enquiries welcome.

子IIIfID TUTE

AMTRON U.K. 4 \& 7 Castle Street, Hastings, Sussex, England. TN34 3DY, Telephone: Hastings 2875.

Purpose-built servo and actuator systems using standard components

McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Low

Power Unit to
feed up to 3 Servos
Gearhead with Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems.
Such a system could be complete in itself or form part of your own design.
Typical examples include :
Camera positioning: Plotting Devices Self-steering Systems: Sig-nal-seeking Aerial Drives Professional Tape Drives Automated Production Lines.
Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals.

Control Systems and Components

VARIABLE AUTOTRANSFORMER LATR-2M*

Bench mountedfullyshrouded.
Input: 120, 220 and 250 V .
Output: 0-260V.
Max. load 2 Amps.
$£ 6.55$
SIX-DECADE 0.01 CLASS RESISTANCE BOX TYPE P327*
6 decades of 0.1-1-10-100-1000-10.000 Ω steps. Decades and their respective wipers are brought out to separate terminals.
All-metal construction. fully screened.
Capacity: $0.3 A$ for 0.1 and 1Ω decades: 0.1 A for 10Ω decade. 0.03 A for 100 decade; 0.01A for 1000 decade and 0.003 A for 10,000 decade.
£65.00

SUB-STANDARD MULTI-RANGE ${ }^{*}$ AC/DC VOLTMETER

Mirror scale 175 mm long.
Knife edge pointer.
48 ranges from 75 mV to 750 V and from 300 HA to 7.5 A .
Accuracy 0.5% DC: 1% AC.
Transistorized relay protects movement and circuits.
Push button range selection.

SIX DECADE 0.02 CLASS ACCURACY* RESISTANCE BOX TYPE P327

6 decades 0.1-1-10-100 1000-10.000 S.
Four terminals enable the box to be used also as a potential divider.
Rated power 0.25 W per step with full accuracy or 1.00 W per step with reduced accuracy
£45.00

Six figures in six seconds

A precision bridge that balances itself the Wayne Kerr B331

This bridge was designed for use in Standards Laboratories, but ease of operation combined with an in-line readout giving up to 6 figure discrimınation has enabled many other applications to be covered

The B331 measures directly a wide range of capacitance and conductance values to 0.01% accuracy. The three terminal facility enables small values of capacitance and high values of resistance to be measured at the end of long cables

Automatic compensation for the series impedance of the measurement leads is given by an advanced design of Kelvin clip. and a low impedance range directly calibrated in resistance and inductance permits four terminal measurements to be made

Up to four significant figures can be set on each measurement term with push buttons

The bridge automatically balances itself, the meters indicating the remainder of the measurement value on linear scales. As each pair of decades is introduced with these buttons, the meter sensitivity is increased by a factor of 10 giving an indication of the next figures required in the digital setting sequence. Analog output of both terms permit recording of changing values.

Precision standards are incorporated in the B331. A nitrogen filled capacitor with a temperature coefficient of less than 5 p.p.m. forms the reactive standard and loose wire wound resistors with temperature coefficients of 5 p.p.m. are connected to each set of conductance decades

SPECIFICATION

For more information, either call Bognor
(02433) 4501 or write to the address below:

WAYNE KERR

Range (for 0.01% accuracy) $\quad 1 \mathrm{pF}$ to $10 \mu \mathrm{~F}$
derived reciprocal values
1 mH to 10 kH 10Ω to $100 \mathrm{M} \Omega$
$100 \mu \Omega 1010 \Omega$
10 nH to 1 mH
$10 \mu \mathrm{~F}$ to 1 F
Frequency (Internal) $1591.55 \mathrm{~Hz}: 0.5 \mathrm{~Hz}$ (100000 Hz to special order)
(external) 200 Hz to 20 kHz .

WE AREN'T YOU KNOW!

Actually, we were thinking that you might be thinking of Sub Miniatures or other Multi-way Connectors, or even Rocker Switches, Metal Pressings or Plastic Components. And we were thinking that even if you only wanted a few of any or each of these it would be a pleasure to do business with you.

And you might find it a pleasure to do business with $u s$, especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch, Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order.

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES
 The single source that simplifies.

We have a remarkably comprehensive catalogue and if you can make good use of it, we shall be glad to send you one, but please state possible requirements

Cines
 601
 -
 STOCKISTS

United-Carr Supplies Ltd Clifton Works. Frederick Road,

TheCCS2gives you acool250watts.

Our CCS2 beam tetrode is especially easy to design into co-axial circuits.

That's because we've designed a special beryllia ceramic flange which separates the heatsink from any active part of the envelope.

The alternative version, the CCSI, has an anode block, the face of which is bolted directly to the heatsink.

So, if you find air blowers an embarrassment to your design, get the facts on these conduction cooled beam tetrodes.
 The M-OValve Co.Ltd
Hammersmith, London W6 7PE Tel : $01-6033431$ Telex: 23435 Cables: Thermionic London A member of The GEC Electronic Tube Co. Led., a management company which unites the activities of The $\mathrm{M}-\mathrm{O}$ Valve Co. Ltd., and English Electric Valve Co. Lid. WW-041 FOR FURTHER DETAILS

Agelrate and dirent measurement of spaai without coup inim to moving parts

 - c -
 100 RPM
 Frahm resonant reed TACHOMETERS

for hand use or permanent mounting

Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Anders meansmeters

anders electranics limited

48/56 Bayham Place, Bayham Street. Londán NW1. Tel: 01-3879092

WW-042 FOR FURTHER DETAILS

HEATHKT

 ELECTRONIC

 ELECTRONIC INSTRUMENTATION

 INSTRUMENTATION}

WW- 043 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to $.01 \%$
$\mathbf{£ 3 0 . 0 0}$

1453
$£ 40.00$
Si451
$£ 35.00$

Comprehensive Millivoltmeter
350μ Volts
20 range
Low distortion Oscillator sine Square RIAA
J. E. SUGDEN \& CD., LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE.

$\left.\begin{array}{c}\text { Parker } \\ \text { sheet Metal FOLDING MACHINES }\end{array}\right]$ SHEET METAL

$36^{\prime \prime} \times 18$ gauge capaciry............... $£ 35.00$ $24^{\prime \prime} \times 16$ gauge capacity

Carriage Free
Also the well-known vice models of 36×18 gauge capacily
$24^{\prime \prime} \times 18$ gauge capacity.. $18^{\prime \prime} \times 16$ gauge capacity.

Carriage Free

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied. Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, UPPER GEORGE STREET,
HECKMONDWIKE, YORKS.

Telephone 3997

Zoom Television are offering Scotch magnetic tape at a discount and giving money vouchers, too - $\mathbf{f 1} \mathbf{f} \mathbf{5}$ and $\mathbf{f 1 0}$.

The more you buy the more you benefit from the discounts. And the more valuable are the vouchers. There's no limit either to the number you can claim.

The full range of Scotch tapes (helical scan video, audio and cassettes) is on offer. But only to April 30th. So act now and you can't be refused.
Contact: John Hall or Ian Robb, Zoom Television, Pinewood Studios, Iver Heath, Bucks.
Telephone: Slough 35888.

TERMS Retail mail order subject to $£ 1.00$ minimum order.
Cash with order only. Trade and educational establishments
M/AC on application (minimum 55.00).
Postage 10p inland, 25p, Europe.
GUARANTEE: All goods carry full manufacturer's warranty. Get in touch today for a complete
run-down of devices available from SCS (include SAE).

device of the month ZN414

The Ferranti ZN414 is a complete a.m. radio circuit which operates from 1.1 to 1.8 volts and requires only battery, earphones and antenna plus a tuning capacitor and two decoupling capacitors. The ZN414 features: medium and long waveband, good stability on assembly, no setting up of IF coils, plus

a complete a.m rodio circuit for just

 much more.
compatible device
 MFC4000

The Motorola 1-Watt Audio Amplifier is designed for the output stage of battery powered portable radios.

* 250 mW of Audio Output Power
* Low Standby Current- 3.5 mA typical
* Low Harmonic Distortion
* Reduces Component Count in Portable Radios by Two Transformers and Two Transistors
* Eliminates Costly Component Matching Requirements
motorola 1/4 watt audio amplifier MFC4000

WW-047 FOR FURTHER DETAILS

Series 7

 Modular Sound Systems
racw/x/i>0
WW-049 FOR FURTHER DETAILS

ALL SOLID-STATE

TIMING MODULES

DT. 08 Single-shot delay 24 V. D.C., $100 \mathrm{~mA} .0-150 \mathrm{sec}$. del. on and del. off standard (i-10).......................... 63.85 RT. 05 Recycling, 24 V. D.C. 100 mA . 0.25 s -100s off stand. 25ms-100s on stand (1-10) MS. 10 Mains- 20 V. D.C. supply amplified A.C. switch, 3A. for use with D.T., R.T., or separately as "relay" (I-IO) $\mathbf{£ 7 . 6 5}$ All modules totally encapsulated in plastics case $77 \mathrm{~mm} \times 40 \mathrm{~mm} \times$ 25 mm .
For further details and quantity prices, contact:-
SHENNANTON ELECTRONICS LTD.,
KIRKCOWAN, WIGTOWNSHIRE, SCOTLAND DG8 OHB Tel. Kirkcowan 353

WW-048 FOR FURTHER DETAILS

Electrolube Ltd. Slough, Bucks, England. tel: Slough (STD 0753) 25574 WW-050 FOR FURTHER DETAILS

Getting valves is getting tricky.

Ever spent hours trying to get a valve, only to find that putting it in circuit makes no difference? Everybody has.
With VCM 163 you can check exactly which valves are OK and which aren't. And spend time getting only the valves that really need replacing.

As valve testers go and let's face it, most of them have-Avo VCM 163 is a very sophisticated instrument. It even has a NATO stock number.

And what's more there's a new Avo Valve Data Manual (19th edition) free with each VCM 163. It

includes obsolete types and 84 pages of equivalents, and could save a fortune in wasted time. The manual is also available separately at just $£ 5.25$ (U.K. Trade).

So write or telephone for more details of VCM 163 now. Send us a cheque for $£ 5.25$, and we'll send you a 19th edition Valve Data Manual too.

Trust Avo to look after you. Avo Ltd., Dover, Kent.

Telephone: Dover 2626.

So be sure you get the right valve.With an AvoVCM 163 valvetester.

nombrex

MODEL 35 STABILISED POWER SUPPLY Price £21.50
From April 1 please add 10% onto price for VAT.
\star Voltage variable 1-30 Volts.
\star Current variable $0-1$ amp.
\star Output ripple and noise less than 10 mV .
\star Short Circuit Protection.
Other Models in our range :-
Model $29-X$ R.F. Generator: $150 \mathrm{KHz}-220 \mathrm{MHz}$.
Integral 1 MHz Crystal Calibrator.
Model 30 Audio Generator; $10 \mathrm{~Hz}-100 \mathrm{KHz}$
Model 31 R.F. Generator: $150 \mathrm{KHz}-350 \mathrm{MHz}$.
Model 32 Capacity/Resistance Bridge: $1 \Omega-10 \mathrm{M} \Omega$. $1 \mathrm{pF}-100 \mathrm{~F}$.
Model 33 Inductance Bridge: $1 \mu \mathrm{H}-100 \mathrm{H}, \mathrm{Q}$ from $0.1-1000$.
Trade and Export enquiries welcome. Send for full technical leaflets. Post and Packing 35p extra.
, NOMBREX (1969) LTD., EXMOUTH, DEVON
Tel: 03-952 3515

WW-055 FOR FURTHER DETAILS

50 Years
 Prourress 1821 1971
 STYLED TO GIVE AN ELEGANT APPEARANCE ON ALL PANELS
 AN ALL BRITISH PRODUCTION

electrical instruments lid

CHILTERN WORKS MIGH WYCOMBE

Phone 30931

KELVIN BRIDGE OHMETER

Type KB1

FOR LOW RESISTANCE MEASUREMENTS

6 RANGES

0.00005		0.0015 ohms	
0.0005	\ldots	0.015	,
0.005	"	0.15	.,
0.05	,	1.5	,
0.5	,	10.5	,
5		105	

QUICK READING ACCURACY at
full Scale $\pm 0.2 \%$.
Complete with test leads.
DELIVERY - EX-STOCK.
Request full details from:
CROYDON PRECISION INSTRUMENT CO.
HAMPTON ROAD, CROYDON CR9-2RU Tel: 01-684 4025 \& 4094

Soft magnetic alloys

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form Applications include: many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and magnetic shielding.

Radiometal alloys

These high permeability alloys, with their high saturation induction and low electrical losses, are used for transformers and chokes where operating flux density is higher than is possible with Mumetal and where a higher permeability than silicon iron is required. The six grades have applications including: relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys

Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has high incremental permeability at high inductions. It is used for stator laminations, telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are used in echo sounders and ultrasonic devices. Special grades, known at 'Rotelloys', which have superior mechanical properties have also been developed for high speed rotating equipment such as aircraft generators.

Telcon Metals Ltd Manor Royal, Crawley, Sussex Crawley: 28800

The B.I.E.T. guide to success should be read by every ambitious engineer Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSEANEW FUTURENOW!

Tick or state subject of interest. Post to address below.
MECHANICAL Work Study $\quad \square$ cONSTRUCTIONAL
A.M.S.E.(Mech) Works \quad Wanagement \square A.M.S.E. (Civil)
C\& G. Eng. Cratte \square Mure

C\&GFabrication.
Diesel Eng.
Inst
Inst. Eng. \& Tech SHIP
Inst. Motor Ind.
Maintenance Eng.
M
MechanicalEng.
Sheet Metal Work
Welding
ELECTRICAL \&
ELECTRONIC
A.M. S.E. (Elec.)
C\& Ele. Eng.

C\&GElec. Inst.
CogElec. Tech.
Electronic Eng.
ElectricalEng.
Install. \& Wiring
PRODUCTION
Computer Prog.
Computer Prog.
Electronic Data
Processing
Estimating
Inst. Acst \& Man.
Accountants
Inst. Marketing
Management
Motor Trade Man.
Metwork Planning
Network Planning
Personnel Man.
Production Eng.
Production Eng.
Salesmanship \square
Mechanics
Coaching for many mator exams, inciuding ONC. C \& G, etc
SEND FOR YOUR FREE BOOK NOW! BRITISH INSTITUTE OF ENGINEERING
TECHNOLOGY
DEPT. awwo3aldermaston COURT, READING RG7 4PF
QL Bwwo
NAME
HOCK CAPTALL PLEASE
ADDRESS

OTHER SUBJECTS
Accredited by

Voice power you plug in anywhere.

Toa solid state amplifiers for public address systems work on either 240 V AC or $12 / 24 \mathrm{~V}$ DC supplies. They're ideal for permanent installations in factories, schools, parks, railways. They're equally effective for sports meetings and all outdoor events, wherever mobility is essential. The units are compact and versatile with 100 V line output, 30 ohm inputs and from 30W to 100 W power output. To make sure your message reaches its destination wherever it's delivered, talk Toa.
For amplification write now.

Goldring ©

Goldring Limited, 10 Bayford Street, Hackney, London E8 3SE. Tel: 01-985 1152.

WW-057 FOR FURTHER DETAILS

i.c. breadboards low cost, high performance units

All our i.c. breadboarding units are now even better value for money.
Our second-generation CK2 0020 I.C. Patchboard unit, still selling for only $£ 50$, has been completely redesigned and now has many additional features. Light-emitting diodes are used as logic indicators and a manual pulse generator and busbars have been added to ease vour patching a little.
A cheaper "extension" unit, selling at only $£ 36$, will accommodate a further eighteen integrated circuits or can be used on its own for linear work.
For further information on these and ather breadboadding units from Limrose, please

TheTT21. Cost per what?

Before you listen to us, listen to a few communication transmitters.

Because the chances are they'll have our TT21 already fitted.

Because it's the best beam tetrode you can buy. Best in its class. Best for the money.

So, if you require a communication transmitter tube at the lowest possible cost per what, sorry, watt, here's the address to find out more.

WW- 060 FOR FURTHER DETAILS

MODEL 8 MK . III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

 76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8Tel.: 01-692 2689

NEXT TIME use a ROHBE \& SCHWARZ DC Microvoltmeter (UIG)

as a Calibrated

Amplifier for DC Voltages

(1) DC voltage measurement $0.2 \mu \mathrm{~V}$ to 320 V
(with probe up to 30 kV)

- Direct-current measurement 1 pA to 320 mA

DC output -50 to +100 dB

In presenting an input resistance of $50 \mathrm{M} \Omega$ in the range of 1 mV to 320 V . the UIG is particularly suitable for measuring DC voltage in electronic circuits. Its high sensitivity, off-earth operation and current ranges are also of advantage in special' measurements such as:

* Measurement of low resistance
* Insulation resistance measurement.
* Bridge measurements
* Measurement of rectified diode voltages
* Semiconducior measurements.
* Use as preamplifier

When using the UIG as a preamplifier for digital voltmeters with integrating techniques. a resolution of $1 \mu \mathrm{~V}$ in the voltage ranges and of 10 pA in the current ranges is possible. The $1-\mathrm{V}$ range must be selected on the digital volimeter whereupon the range selectors of the UIG directly indicate the correct voltage or current range.
In conjunction with a digital voltmeter with a display covering 1000 (digital multimeter UGWD), the voltage ranges $1 \mathrm{mV} / 10 \mathrm{mV} /$ 100 mV and the current ranges from 10 nA to 100 mA are available.

For data on the UIG. UGD. 51 and UGWD please apply to :

AVELEY ELECTRIC LTD.

Chessington, Surrey

Celestion

Also send for details of the complete 'mge of Celestion Loudspeakers
ROLA CELESTION LTD.
DITTON WORKS, FOXHALL ROAC, IPSWICH, SUFFOLK IP3 8.JP

WW- 063 FOR FURTHER DETAILS

Hatfield's continued resistance

to keep prices down has resulted in a New 4 decade resistance Box 2925 with $\pm 1 \%$ tolerance for as little as $£ 10.50$ ex works. Decade Box 2901 (below) has 0.1% tolerance.

Decade Capacitance Boxes with tolerances of \pm 5% and $\pm 1 \%$ also available in this new 2900 series.

Send for full details of Hatfield Resistor Decade Boxes

forward thinking in electronics
HATFIELD INSTRUMENTS LIMITED
Burrington Way, Plymouth PL5 3LZ, Devon.
Tel. Plymouth (0752) 72773/4 Grams: Sigien, Plymouth. Telex: 45592
South-East Asia: for prompt service and deliveries, contact
Hatfield Instruments (NZ) Lid., P.O. Box 561, Napier, New Zealand.

Vortexion

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg .) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough.
A voltage stabilised supply is used for the pre-amplifiers
making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

(0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overlcad, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

100 WATT ALL SILICON AMPLIFIER

A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output ever driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER

With specification as above is here combined with a 4 channel F.E.T. Mixer, 2-30/60S balanced microphone inputs, 1-HiZ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER

An all silcon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER

High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced onput and HiZ gram. Outputs available $8 / 15$ ohms OR 100 volt line.

200 WATT AMPLIFIER

Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}$ $20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPMs

Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. 4, 6, 8 and 10 Way Mixers. Twin 3, 4, and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

Whylash out £25* onthe all-new Avo EM272?

1. Because it is an ELECTRONIC multimeter with a performance which could cost you $£ 50$ from other manufacturers with less know-how, less experience.
2. Because it gives $316 \mathrm{k} \Omega / \mathrm{V}$ input impedance at an accuracy you won't find elsewhere at the price $- \pm 2.5 \%$ f.s.d. on most voltage ranges. 3. Because it has 39 ranges -20 voltage, 14 current and 5 resistance.
3. Because its circuitry achieves maximum reliability by combining printed circuit shunts with thick film modules, and the proven AVO printed switch.
4. Because it has a robust centre-pole movement that takes knocks you'd hate to give it.
5. Because you need the best, most accurate pocket multimeter you can get. Big Avo performance in a small Avo case.
Now youcanafford an electronic multimeter. *UK trade price.

Avo Limited, Dover, Kent. Tel: 0304202620 тнов

In the bad old days you could only find high capacitance electrolytic capacitors which would tolerate $85^{\circ} \mathrm{C}$.

Meet the good new days . . . and the great new Prosec 100 from Advance Filmcap.

It's designed for the discriminating with a life of 100,000 hours under average operating conditions.

The ripple current ratings go up to 28 amps. It operates in any position.

There's an overload protection vent; screw terminals embedded in glass-filled nylon to minimise E.S.R.; an etched and stabilised cathode foil; and it's non inductively wound.
As options: AMP terminals, non preferred values and intermediate voltages.

So, for line smoothing, storage and general filtering - where you seek high capacitance and reliability - you must ask for Prosec 100 data.

It reveals capacitance of 68-220,000 $\mu \mathrm{F}$; tolerances of $-10 \%+50 \%$ voltage from 6.3 to 500 , temperature ranging from -55° to

$+100^{\circ} \mathrm{C}$; and many other
innovative parameters.
Ask about Prosec 100. It's the start of something big.

ADVANCE FILMCAP LIMMITED
Rhosymedre, Wrexham, Denbighshire, Wales. Telephone: 097-881 2471 Telex: 61424
Advance: our job is making yours easier.

the dual trace 106 -one of the best

When Telequipment make an oscilloscope, you can guarantee its os Make it dual the best. you have morese at ${ }_{5} \mathrm{MHz}$ and whose perfore - the D67. An instrument exclusive to mance/price area is computer servicing Chosen for laboratory, throughout the woing and TV applications (UK list) must be seen the D67 at E295

> Write, telephone or be appreciated. for a delem for a delephone or telex now
demonstration.
Tektronix U.K. Limited
Beaverton House, P.O. Box 69, Harpenden, Herts.

Wireless World

Electronics, Television, Radio, Audio

This month's cover illustration is of a Ferranti thin-film hybrid microcircuit (Type FER 118) which contains six amplifiers to interface between t.t.l. and f.e.ts with fast switching times. (photographer Paul Brierley)

In our next issue (publication date April 16)

Colour telephoto system for sending colour pictures over the normal telephone networks, developed by IPC Technical \& Information Services, is described.

Meterless transistor tester. Design for a portable, compact, reliable instrument capable of resolving current gain and leakage.

April 1973
Volume 79 Number 1450

Contents

159 The Engineer in Industry
160 Electronics at the Open University by K. L. Smith
163 Digital Panel Meter by P. Bartlam
169 The Semiconductor Story - 4 by K. J. Dean \& G. White
173 H.F. Predictions
174 News of the Month
Cable highway into the home
Measuring air pollution
Holographic computer memory
176 Sixty Years Ago
176 Announcements
177 Digital Multimeter by D. E. O'N. Waddington
183 Circards Announcement
184 More about Sonex '73
185 Optimizing Op-amps by R. J. Isaucs
187 Radio Propagation Disturbances by R. A. Ham
189 Convention of the Audio Engineering Society
190 Conferences \& Exhibitions
191 Circuit Ideas
192 Letters to the Editor
195 Industrial Electronics - 2 by R. Groham
197 World of Amateur Radio
198 Letter from America
199 The Compatibility of Audio Magnetic Tape by B. Lane
204 Festival du Son
205 New Products
210 About People
211 Apri4 Meetings
211 Books Received
212 Literature Received
A90 APPOINTMENTS VACANT
We apologize for any indistinctness of printing in parts of this issue. This is due to lack of gas drying during the dispute in the gas indusiry

ibpa

I.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Then your interest is bound to be roused by the new Electrosil rectilinear range, Cermet Type T162P, Wirewound Types T62P and T72P, all low noise, humidity sealed. Low cost reliability is combined with advanced design concept. Parts are kept to a minimum, the three basic models are all produced on one line and many of the parts are common to all three. This gives flexible manufacturing capability to meet all service requirements for these $\frac{3 \text { " }}{}{ }^{\prime \prime}$ and 1 " trimming potentiometers. In addition to the new rectilinear range there is a wide range of single turn and multi-turn trimmers available for industrial and military applications.

Wherever your interests lie . . .
(1) Resistors (2) Pick-A-Backs (3) Switches
(4) Electro-Chemical Elapsed Time Meters
(5) Capacitors (6) Cordips (7) Potentiometers.

Use the Reader Reply Service in this publication for full details, indicating the product range(s)
in your field.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Assistant Editors:

G. B. SHORTER, B.Sc. W. E. ANDERTON, B.Sc. B. LANE

Drawing Office:
L. DARRAH.

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
G. J. STICHBURY

Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or $01-9284597$

The Engineer in Industry

The role of the engineer or technologist in business and the importance of engineers acquiring management techniques were stressed in recent correspondence in The Financial Times. Mr. B. B. Hundy, of the School of Automative Studies at the Cranfield Institute of Technology, declared that engineers and technologists play a much more important role in the direction of industrial companies in the United States, Germany and France than they do in the U.K. and that "this is reflected in the way in which they are regarded by society". Whether or not this is so may be cpen to discussion, but one thing is certain, as was pointed out by Sir Eric Eastwood (president) at the recent I.E.E. annual dinner, engineering and science graduates are finding it more difficult than in previous years to find employment and "there is a widespread feeling among such students of dismay and frustration that they have been let down by engineering and industry".

A consequence of this is apparently a reluctance on the part of students to enter courses devoted to science and technology. At one university in S.E. England 10% of the places in the science courses are currently unfilled whereas there is increasing pressure for places in the social studies. On this particular point Sir Eric commented: "Can the nation afford to indulge the new generation of students in a wholly liberal education in which job training has no part?" He also suggested that it ought to be possible now for Britain to improve its industrial productivity "by injecting more graduate manpower, not into research and development but into the production areas of our industries". We are tempted to ask, however, is the graduate really fitted for the shop floor? In too many or our universities original research is the order of the day for engineering and science students with less and less emphasis on tutorial lectures in which the hard facts of technology applied to industrial life can be presented. Incidentally, this deification of research, as opposed to tutorial learning, is epitomized in the attitude of some professors to papers written by members of their staffs for publication. They rule that those dealing with original research must be presented to learned societies if they are to be counted as "credits" in academic life, whereas those published in public journals for sordid gain, and especially those concerned with the practical application of some technique, are apparently beyond the pale.

To get back to the question of engineers in industry and particularly their role in management. All too often the elevation of an engineer to management means that the company loses a first class engineer and appoints a bad manager. Management is now a profession for which training is needed. The answer, surely, is that there should be greater opportunities for senior engineers to take management study courses which would equip them for managerial posts. In the U.S. engineering graduates have for many years gone back to their colleges for management study courses and it is gratifying to see that this is now being encouraged in some quarters in this country.

We are not advocating a technocracy, but in this increasingly technological world we need men at the head of industry who are basically technologists.

Electronics at the Open University

"Post experience" course in electromagnetics and electronics

by K. L. Smith*, Ph.D.

The Open University is a degree awarding body, so how does electronics fit into the picture? Virtually all the Open University courses lead to the B.A. degree (there are no "B.Sc." degrees) via the same hierarchical structure of two foundation courses (1 credit each), second level courses (some 1 credit, others $\frac{1}{2}$ credit), third level and so on. A student gaining 6 credits is awarded a degree. If he or she gains 8 credits, at least two at third or fourth level. the award becomes an honours degree. The study programme for each course is based on comprehensive written material backed up by television and radio broadcasts, together with regular tutorial meetings at local centres. As if to cap the course a full-time summer school is held. Students go into residence at one of the "ordinary" universities for a week, taken over for the purpose during the vacation period. By all accounts the intensity of study is remarkable.

Second level courses (and possibly others) are used for non-degree purposes

[^1]and are then known as "post experience" courses. They would function as refresher studies and /or enable specialists in one field to gain knowledge of the techniques and so forth current in another. The Electromagnetics and Electronics course, code number TS282, falls into this category. A preliminary glance through the study materials for the course shows it to be very suited to the role of post experience study. I would think this is the area in which it might be very useful, especially for teachers who obtained their science degrees before the days of electronics and for the keener technician who would like to go somewhat further into the bases of his subject. But having said that, I remember a point that was put to me at the O.U. about the supply of home experiment kits and summer school residential weeks - both being limited in practice. Thus it is unlikely that the course could become a mass post experience development at the moment because of practical limitations. However, of all the students taking the course so far some 10% have been admitted as post
experience members. The Electromagnetics and Electronics course is the first to have students of this status.

The course forms only one-twelfth of the work for a degree, but nevertheless it may be the first time even the mature students of the O.U. have seriously come into contact with the subject. The attitudes engendered are therefore important. As seen from the full title, more than just electronics is attempted. Traditional electromagnetism gets a say too. Perhaps this may be attempting too much in such a short course, but there is not sufficient background material in the foundation courses to allow the material to be dropped. Certainly it may also strengthen any weak props on this subject in the repertoire of an experienced technician. Inevitably it means some selection of the electronics content has to be made and one could debate the pros and cons for a long time.

Engineering bias

Looking through the first four correspondence "units" is reminiscent of A-level electromagnetism. The course jumps straight into Coulomb's inverse square law, proceeds through electrostatic potential and later into magnetism. The discussion of H and B fields and magnetic circuits is quite detailed but the corresponding D field is not discussed in the electrostatic case. An engineering bias is quickly discernible. There is considerable discussion of motors and generators, transformers and the Hall effect. The mathematical content certainly requires some knowledge of elementary calculus. although it was a little quaint to see Poisson's equation in total differentials instead of partials. The required techniques are summarized in a booklet "Mathematics for Electronics", but some practice would be required before enough familiarity is achieved with the subject. Second level students are equipped with mathematical "tools"; other students (post experience) without some mathematical background could find the study a little heavy. I have often found this difficulty with full-time students on the usual science courses at university.
A rapid shift into the elementary theory of semiconductors at correspondence unit 5 carries the O.U. student into electronics.

At the end of this unit, a person studying the course shculd know something about bipolar and various types of field effect transistors, zener and rectifier diodes and solar cells. The remainder of the course units (17 in all) cover suich topics as pulse circuits (transient response), sine wave response. large and small signal circuit analysis, measurements, and three design studies, one on a linear circuit (a power amplifier which includes an i.c. operational amplifier in the first stage), a switching circuit (an example of a time base generator), and studies of a servo system including an operational amplifier.
There is a very heavy emphasis on circuit techniques and design. Very little of the rest of electronics appears in the course. For example, thermionic emission is given a miss. This would need to be covered at some stage, considering the important applications of c.r.ts that occur and the ion generators and electron beam systems that are employed in mass spectroscopy and electron microscopy. (Both fields require electronic engineers and technicians to be very conversant with beams in high vacua and with electron "optics".) The student is supplied with an oscilloscope, so that by adding a coil for magnetic defiection, a home experiment on the measurement of e / m for an electron could have been included, as well as an investigation of electrostatic and electromagnetic deflection of charged particles. Another omission concerns radiation, aerials, transmission lines and so on. At this point. remembering what Dr. Smol of the O.U. had said to me about the selectivity required because of study time limitations, I feel it is important to say how thorough and attractively presented the selected material is. It is the policy of the Electromagnetics and Electronics course team to introduce further courses to cover topics left out of TS282. A more advanced course on electromagnetics and one concerned with electronic devices is envisaged, but they are not yet finalized. This means that a student would find it necessary to take up more than one course to cover a broader spectrum of the subject.

Compare with full-time course

Coming now to the actual course unique in the sense that many of the experiments arc conducted at home how does it compare with, say. a typical laboratory course at about the same level in a university or college running full-time studies? Typical first year experiments in electronics from a university course are the following sets. The first group is: the study of thermionic emission and the thermionic diode; a series of experiments on valve circuit design for amplification, feedback and oscillation: experiments on transient and sine wave response of linear (L, C, R, circuits; semiconductor diode characteristics and design of a simple stabilized power supply; transistor characteristics; transmission lines with transient and sinusoidal signals; delay lines. Experiments in the second term include: the generation and radiation of

Fig. 2. Layout of the front panel of the Generatorscope.
microwaves and investigation of diffraction, reflection and other wave properties: the construction and investigation of an alloy junction diode; experiments with a transducer; the design and investigation of the performance of $R C$ and transformer coupled transistor amplifiers.

Turning now to how the Open University copes with practical experience for its students, a similar range of work, different in detail of course, is found. The early work involves designing and building the d.c. ranges of a multineter. This is used to measure currents and voltages for investigating characteristics of semiconductor diodes and photo cells. Then follows work on transient response of $R C$ and $R C L$ circuits and d.c. restoration experiments, leading on to sine wave response of $R C$ circuits. An experiment on half-wave rectification is included in unit 9 of the course. An instrument called a Generatorscope is used to investigate the response and waveforms in these experiments (see later). Unit 9 also contains work on adding ranges to the meter. The practical work in unit 10 involves the design and construction of a series pass transistor stabilized power supply. The full design of the amplifier in units 12 and 13 and timebase circuits in
units 14 and 15 is realized by practical construction and testing. An operational amplifier and servo system are investigated in unit 16 .

Further experimental work is carried out at the summer school. Four experiments are undertaken, occupying about one and a half days each. The first is an accurate check and calibration of the multimeter and Generatorscope (which students take with them to the school) and measurement of harmonic distortion of the amplifier designed and built in units 12 and 13. An experiment involving properties of magnetic materials is conducted (to be changed slightly in 1974). Another piece of work involves logic design, 7 -segment readout and so forth. The final experiment consists of some team work on a colour organ. It involves active filter design for four bands of frequencies and unijunction oscillator s.c.r. drivers to the coloured lamps. Altogether the practical course is a challenging and interesting collection of work which is anything but boring. Thus the O.U. is able to run a series of practical projects well up to the standard of the "orthodox" course

The one piece of equipment which contains some novel ideas, especially as a teaching aid, is the Generatorscope

Fig.3. Block diagram of the Generatorscope, showing facilities available.
referred to above and illustrated in Fig. 1. It consists of a fairly basic oscilloscope combined with an audio sine/square wave signal generator, all in the same cabinet. Stabilized d.c. supplies are available from terminals on the panel and also unrectified low voltage a.c. is provided as an output for external rectifier/power supply experiments. Dr. Chapman of the O.U. conceived the idea of combining the instruments and the design and construction was undertaken by specialist firms in the industry to the O.U's specification. The controls, inputs and outputs are conveniently arranged on the front panel. as can be seen in Fig. 2. The circuit is a hybrid, in that double triodes are used as long tailed pairs to drive the c.r.t. deflector nlates. With anode loads of $100 \mathrm{k} \Omega$ this means the frequency response is limited, being 1 MHz in fact. A Mark II version of the instrument is being designed now and will have a much improved Y amplifier performance. In addition a Mark III version seems to be already on the stocks and will have all solid state circuitry. The block diagram Fig. 3 shows the design of the whole instrument. The signal generator has four ranges by switching the capacitors in a Wien bridge oscillator circuit. The sine wave output is taken from an emitter follower fed by the output of the oscillator to an SN7413 t.t.l. Schmitt trigger i.c.

The ± 9 volts d.c. from the power unit is stabilized by scries transistors referenced to zenor diodes and it has shortcircuit protection. It might increase the versatility of the power source to have a variable output facility, considering that both polarities are available. The availability of $11.5-0-11.5$ volts a.c. is very
useful for experiments on magnetic induction and on phase shifts in reactive circuits and, with the internal sine wave generator, for Lissajous figure studies. All round, the Generatorscope is a very compact, useful bench instrument likely to he of value to manv users outside the Open University course. Schools, colleges and even radio amateurs might find the instrument very convenient. especially if the Y -amplifier performance is improved. Mr. Bellis, Electronics Officer in the Faculty of Technology, informs me that the instrument should be available through the Open University marketing division this year.

Wider impact

It would appear that the Open University will have an impact on the general appreciation of electronics as well as boosting the standards of technical people already working at it. If the 1,251 students who enrolled for the course last year (over 60% eventually passed. 90 with distinction) is a typical enrolment, likely to expand in future sessions. then some tens of thousands of people will have a good grounding in electronics within a decade. The first television programme went out on 28th January for the 1973 session, so if you wish to "look in" to see the kind of presentation made, switch to BBC 2 at the appropriate times. The TS282 Electromagnetics and Electionics TV programmes are broadcast fortnightly on Sundays at 9.30 a.m. and Fridays at 6.40 p.m. The Open University most probably will establish more advanced courses in electronics science, as already mentioned, so that it will be a force
worth watching in the future.
Thanks are due to the Open University for the help siven to me during the work on this article. Acknowledgements are given for the illustrations used here, the copyright of which resides with the O.U. Opinions expressed in the text are strictly the author's of course.

Post-experience course details

Course material: 17 correspondence units: 17 television and 5 radio programmes; home experiment kit; one week residential summer school: a number of evening or Saturday tutorials; 8 computer-marked assignments and 4 tutor-marked assignments.
Course fee. including summer school: $£ 80$ (returnable deposit for home experiment kit $£ 10$).
Course begins: 2nd February 1974. Ends: 14th November 1974.
Application period: 7th May to 28th September 1973.

Note: The Electromagnetics and Electronics course may also be taken as part of an Open University B.A. degree course. but a prerequisite is that the student must first have taken one O.U. foundation course.
Further information: Post Experience Student Office. The Open University, P.O. Box 76. Bletchley. Bucks.

Design, operation and construction of an instrument with a solid-state display and based on an m.o.s. l.s.i. chip

by P. Bartlam*, B.Sc.

Digital panel meters provide high accuracy and reliability of measurement compared with conventional analogue instruments. This meter is based on the technologies of large scale integration and solid-state light-emitting diode displays which provide the benefits of digital operation and miniature instrument size. Resulting from co-operation between Wireless World and Integrated Photomatrix Ltd, who designed the d.p.m., the meter is available as a complete kit of components. The kit costs $£ 36.75$ with an extra power supply or d.c.-d.c. converter if required (see p.165). Instructions for the construction of the kit are given in the last section of this article.

Until recently it had been impossible to desigri a digital panel meter comparable in size with an equivalent analogue instrument, owing largely to the fact that it was necessary to use neon tubes for the display. This, together with the large number of t.t.l. packages necessary to implement the logic, imposed a limitation on the degree of miniaturization which could be achieved. Neon tubes consume considerable power and are prone to damage due to shock and vibration. As a result of rapid developments in the fields of large scale integration and solid-state displays, this d.p.m. has been designed to overcome the basic limitations of circuit complexity, large size and high power consumption. The small dimensions of the d.p.m. are achieved using a design centred around a single m.o.s. l.s.i. logic chip type MC902 produced by Integrated
*Integrated Photomatrix Ltd

Photomatrix. The d.p.m. is a single-range instrument. It occupies only $72 \times 36 \mathrm{~mm}$ of panel area, with a base area of approximately $72 \times 105 \mathrm{~mm}$. A full list of the instrument's specifications is shown overleaf.

Panel meter i.c.

The MC902 integrated circuit is the heart of the d.p.m. and is a single silicon chip measuring $3.5 \times 3 \mathrm{~mm}$ and containing over 1000 mo.s. transistors. The chip is encapsulated in a 28 -lead di.i. package.

A block diagram of the chip is shown in Fig.1. It incorporates all the logic required for a four-decade-plus-one, i.e. full scale count of 19999, dual-ramp analogue to digital conversion system. The logic includes five decade counters, four binary counter stages, 20 shift register stages acting as buffer storage, 13 further shift register stages, $12 \mathrm{set} / \mathrm{reset}$ bistables and about 70 other logic gates

Complete instrument mounted in its chassis. Four l.e.ds provide the numerical display, with a further l.e.d. (on the left) used as an over-range indicator.
of varying complexities. Apart from the counting logic and buffer storage the chip also incorporates automatic overrange and under-range indications, display multiplexing and all the logic for gating the analogue functions. In addition to the MC902 chip the circuitry consists essentially of an integrator, a comparator, a clock oscillator, input switches, voltage reference and the display.

Operation of the d.p.m.

A schematic diagram of the instrument is shown in Fig.2. The full scale digital reading is 1999 and thus does not use the full capability of the MC902 chip. Only the most demanding applications of extremely high accuracy would require a full scale reading of 19999 and would call for a degree of sophistication and stability in the analogue circuitry far greater than achieved by the design used here. Thus in this design the least significant decade information is not displayed.

The operation may be understood by reference to Fig. 3 which shows the waveforms for normal mode operation of the chip in a basic dual-ramp system. Normal mode in this case is for input voltages in the range 0 to +1.999 V . The meter input switching circuitry is controlled by four control signals from the MC902: (1) the input ramp control, (2) dead period control, (3) reference ramp control and (4) under-range ramp control. The input ramp period A (Fig.3) is initiated when the number contained in the main counter (one binary and four decade counters) equals zero. A logic 1 appears at the input ramp control output of the MC902 and closes the input switch for $V_{i n}$. After integration of $V_{\text {in }}$ for a period of 40,000 clock-timing signal pulses (i.e. a count of 20,000 in the main counter, as the main clock generator divides the clock-timing signal frequency by two), the main counter again reaches zero. The input ramp output goes to logic 0 and the reference ramp control from the MC902 becomes 1 thus disconnecting the input voltage and connecting $V_{\text {ref }}$ to the integrator. The main counter continues to count until the comparator output becomes a 1, i.e. when the integrator output is zero. The contents of the main counter are transferred to the buffer

Fig. 1. Basic logic diagram of the MC902 m. o.s. I.s.i. imegrated circuit which forms the heart of the design.

Fig. 2. Block diagram of the digital panel meter.
store. The contents of the buffer store are now directly proportional to the signal being measured, in this case $V_{i n}$. The reference ramp control goes to 0 and the dead period control of the MC902 goes to 1 thus connecting 0 V to the input of the integrator. The main counter continues counting until it reaches zero (at the end of the 40,000 clock pulses cycle) when the input ramp begins again.

The input switching is achieved using another Integrated Photomatrix m.o.s. integrated circuit the IMS501 which contains four series/shunt multiplexing switches with low leakage currents. The detailed circuitry of the input switches ano the integrator is shown in Fig.4. The LM308 operational amplifier used as the basis of the integrator has characteristics of low input current and temperature drift. The potentiometer is necessary for zero calibration of the instrument. The comparator uses another integrated circuit, type LM710C. A stable reference voltage is generated from a precision temperaturecompensated zener diode D_{1} and stable potentiometer chain as shown in Fig. 8. The potentiometer adjustment of the reference voltage is necessary for fullscale calibration of the instrument. The main printed circuit board and display panel assembly of the d.p.m. are shown in a photograph and the relatively low number of discrete components can be clearly seen. The l.e.d. displays together with an over-range indicator l.e.d. and the display decoder driver are on a printed circuit board which mates with the main board in a mother/daughter arrangement.

Light-emitting diode display

The solid-state display comprises four gallium arsenide phosphide (GaAsP) light-emitting diode (l.e.d.) seven-segment display digits giving a bright, legible reading with 7 mm high characters. The use of these l.e.d. digits has been a major contribution to the considerable reduction in size of this d.p.m. The configuration and electrical connections of the

Fig.3. Waveforms for normal mode operation, in this instance described for input voltages in the range 0 to +1.999 V .

Fig.4. Circuil of the input switches and integrator.

Fig.5. Configuration and connections of the l.e.ds in one digit.

Fig.6. Multiplexing of the displays, achieved by a switching transistor in the common cathode of an l.e.d.

Fig. 7. Waveforms for over-range and under-range operation.
segments of an l.e.d. digit are shown in Fig. 5. The introduction of l.e.ds resulted from the discovery that some semiconductor compounds had properties which enabled them to emit light from a biased p - n junction. Their construction is such that they are able to withstand severe environmental conditions and in addition are not subject to sudden failure, while they have extremely fast response and rise-times. The use of these solid-state digits for the display function has resulted in an extremely compact, rugged unit, which may be used in many applications as a replacement for analogue panel meters particularly where size, weight, accuracy,

How to obtain the kit

From Integrated Photomatrix Ltd., The
Grove Trading Estate, Dorchester, Dorset.
Price D.P.M. kit $-£ 33.00+£ 3.75$ v.a.t., r. \& p.

Optional power supply kit - $£ 7.50$
$+£ 1.25$ v.a.t., p. \& p.
Optional d.c.-d.c. converter (5 V input) $£ 10.00+£ 1.00$ v.a.t., p. \& p.
Value added tax calculated for 10%
Delivery time - 7 to 10 days
reliability and low power consumption are important.

The binary-coded decimal (b.c.d.) information from the MC902 chip is serially clocked out of the buffer store onto four output lines representing the four bits of b.c.d. data for each character, i.e. parallel b.c.d. data, serial by character. The data is clocked out at a 20 kHz rate, i.e. $50 \mu \mathrm{~s}$ per character, and it is necessary to multiplex the displays such that the correct l.e.d. digit is turned on synchronously with the corresponding b.c.d. data. The multiplexing is carried out so quickly that all the displays appear to be continuously illuminated. As only one

Specifications
Full scale range

Full scale range.	programmable decimal point
Accuracy	$\pm 0.1 \%$ reading ± 1 digit
Operating temperature range	0° to $60^{\circ} \mathrm{C}$
Storage tempera ture range	-25° to $+80^{\circ} \mathrm{C}$
Temperature co efficient (0° to $40^{\circ} \mathrm{C}$)	$\pm 0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Input impedance	$1 \mathrm{M} \Omega$
Input bias current <	10 nA
Reading rate	5 per sec.
Overload protecttion	$\pm 100 \mathrm{~V}$
Inhibit/hold facility	a facility is provided to hold a reading by earthing one input connection
Power supply	$+5 \mathrm{~V}, \pm 12 \mathrm{~V}$
Power dissipation	$3 W$
Supply and input connector	8 -way edge connector 0.15 in pitch
Display	7 -segment l.e.d.. 0.25 in character height. Overrange indicated by " 0000 " and flashing panel indicator. Reverse polarity is indicated by "0000" flashing repetitively at a low rate

l.e.d. digit is on at a particular time, only one b.c.d.-to-seven-segment decoder driver is necessary. However, as each digit is only illuminated for $1 / 5$ of a complete readout cycle it is necessary to drive the segments with a higher current when multiplexed than when operated statically, in order to achieve equivalent brightness; this imposes a stringent requirement on the output stages of the decoder driver and the Signetics type 8 T06NB device is used for its high current sink capability. The display multiplexing circuitry is shown in Fig.6. The 150Ω resistors define the l.e.d. current and the location of the decimal point is selected by programming links. The multiplexing of the digits is achieved by switching $n-p n$ transistors in the common cathode of the 1.e.d. Interface circuits consisting of r.t.l. integrated circuits are used to drive the decoder driver and the multiplexing transistors, as the MC902 integrated circuit cannot supply enough current to drive them directly.

The l.e.d. digits and a panel indicator l.e.d. which is used to indicate overrange (not as power supply indicator incidentally) are mounted on one side of the board such that when assembled in the case they locate through apertures in the front panel. Other components, including the decoder driver and eight resistors, are mounted on the opposite side of the board. A wire link may be soldered in any of four positions to select the desired decimal point.

Over-range and under-range operation

Normal operation of the d.p.m. has been described for input voltages within the range 0 to +1.999 V . The MC902 inte-

Component layout on the main printed circuit and the rear of the display panel p.c. board. The two boards are constructed separately and then slotted together by means of metal tacts.

Components list

Resistors	
1, 2, 3, 4-1M 1\%	21-10k
5-4.7k	22-3.3k
6-2.2k	23-8.2k
7-680	24-390
8-2.2k 1\%	25, 26-680
9-1k 1\%	27-100k
10-12k	28-680
11, 12-3.3k	29-33
13,14-5.6k 1\%	30, 31-150
15-2M 1\%	32, 33, 34, 35-680
16, 17-2.2k	36, 37, 38, 39-150
18-560	40,41,42-150
19-2.2k	43,44-500
20-3.3k	
Capacitors	
1-0.033 μ	4-68p
2-150p	5, 6-0.1 μ
3-680p	
Diodes	
1-1N823	8-BZY88C6V2
2 to 7-1N4148	9-BZY88C3V3
Transistors	
1,2-BC107	4 to 9-BC107
3-BCY70	
Integrated circuits	
1-IMS501	5-MC827G
2-LM308H	6-MC824P
3-LM710C	$7-\mathrm{N} 8 \mathrm{~T} 06 \mathrm{~B}$
4-MC902	
Light emitting diodes	
1 to 4-FND70	5-MV5023

grated circuit automatically gives an indication of under-range, i.e. negative voltages, and over-range, i.e. greater than 1.999 V . In both conditions a reading of " 0000 " is displayed; the reading is flashed on and off at a low rate to indicate under-range whereas over-range is indicated by a static display of " 0000 ". Ad ditionally, the over-range output signal from the MC902 goes to a logic 1 in the over-range condition and is used to illuminate a panel mounted indicator l.e.d.

The ramp waveforms for under-range and over-range operation are shown in Fig. 7. In the under-range condition, i.e. when the input voltage is negative, the ramp generated by integration of the input voltage is of opposite polarity to the normal ramp and when the counter reaches the full count of 19999 the comparator output is at a logic 1 ; the underrange ramp output becomes a 1 and closes the input switch for $V_{\text {ref }}$ (u.r.) which is a reference voltage of opposite polarity to the normal $V_{r e}$. The reference voltage is derived by a resistor chain from the positive voltage rail, the actual voltage being non-critical as the function is merely to ensure that the ramp integrates back to 0 V . At the start of the reference ramp period the number " 00000 " is transferred to the buffer store and the display control outputs are flashed by pulsing at about 10 Hz giving a bold visual flashing on the displays. When the comparator output becomes 0 the dead period begins as in the normal mode operation.

In the over-range condition of an input voltage greater than +1.999 volts the counter in the MC902 reaches a full scale count of " 19999 " during the refer-
ence ramp period before the ramp has returned to zero and thus before the comparator output becomes 1 . This condition causes " 00000 " to be transferred to the buffer store and the over-range control output to become a 1 . This output is used to flash an l.e.d. panel indicator which, combined with the " 0000 " reading on the display, will show that the input voltage is too great.

Inhibit/hold facility

An additional feature incorporated on the MC902 1.s.i. chip is an inhibit function. The operation of this is such that when a logic 1 is applied to the mete input then the d.p.m. operation is halted in the next dead period. The last reading of the counter is thus retained in the buffer store and the effect is to hold a reading for as long as the inhibit input is at a logic 1. Normal operation is resumed the next time the main counter reaches zero after the inhibit input returns to a 0 . On the instrument the inhibit/ hold facility is achieved by connecting a pin on the edge connector to 0 V .

Construction

Read this section completely before constructing the d.p.m. All that is necessary is to solder the components in place on the two p.c. boards. These boards - the main circuit board and the display panel - can then be slotted together and the complete circuitry mounted in its chassis by means of two screws.
Use an earthed soldering iron. For the narrowly spaced tracks and solder
points on the display panel, a bit diameter of 1 to 2 mm will be necessary. Other tools should include a pair of sharp wire strippers or clippers to trim the component leads to their correct length, a pair of narrow nose pliers and a straight edge, e.g. a metal ruler, to align the connection pins of the dual-in-line packages for easy insertion. Multicore solder is suitable and should preferably be 22 s.w.g.

The order in which components are soldered is not critical but the following is a guideline to avoid any possible problems. Referring to Fig. 10, solder the 11 Varicon connector contacts along the front edge of the board - soldering the staked side of the contacts to the underside of the board.

Solder the resistors and capacitors to the main p.c. board, except the two potentiometers R_{43} and R_{44}, and capacitors C_{5} and C_{6} which protrude and may hinder the insertion of $T r_{5}$ and $I C_{2}$. Component leads should be trimmed so that the ends are just through to the reverse side of the p.c. board. If they are the correct length they will be fixed by a touch of the iron. Solder the diodes in place. The nine transistors should be fitted using the mounting pads provided with the flat side of each pad flush with a transistor. Integrated circuits $I C_{2}, I C_{3}$ and $I C_{5}$ can be mounted - using a mounting pad again for $I C_{3}$. Capacitors C_{5}, C_{6} and resistors R_{43} and R_{44} should now be fitted. Finally, the dual-in-line packages $I C_{1}, I C_{6}$ and $I C_{4}$ (in that order) can be soldered in place using the straight edge to align the pins. These three i.cs could be soldered to the board first, to make fitting easier but damage may occur during
subsequent handling of the board. Two holis in the p.c. board are redundant when $I C_{+}$is positioned (there are 28 pins and 30 holes). The unused holes are positioned towards the rear end of the board. All the other "vacant" holes on the board are plated through to make connections between tracks on opposite sides of the printed circuit. To mount the transistors the correct way round, tag marks cor-
responding with those on the transistor cases have been marked on the board. Similarly for the integrated circuits, an identifying mark on the board corresponds with a pin mark on the i.c.

The next step is to solder components to the display panel. The 11 Varicon connector contacts should be soldered in place on the "staked" side of the contacts. Solder eight 150Ω resistors in
place on the back of the panel and also $I C_{7}$, referring to Fig. 11. The indicator l.e.d. and four display l.e.ds can be soldered to the front of the panel as shown in Fig. 12. Care should be taken to ensure that the display l.e.ds are assembled in line and square to the board. This can be achieved by soldering two diagonally opposite connections of each l.e.d. Make sure they are all correctly aligned and then

Fig. 8. Circuit diagram of the "processing" section of the d.p.m. This provides the b.c.d. and multiplexing signals for the display circuitry.

Fig. 9. Circuit of the display l.e.ds and their drivers. Also shown is the circuit for the over-range indicator (inset).

Fig. 10. Component layout on the main p.c. board.
solder the remaining pins when this is found to be so. Note that the orientation grooves must be towards the top of the p.c.b., i.e. away from the edge contacts.

The decimal point position can be programmed as required by tinned copperwire links soldered in any of four positions shown in Fig. 11.

Link position	Full scale
1	1.999
2	19.99
3	199.9
4	1999

Check all joints carefully, using a magnifying glass if possible, in case bridging shorts have occurred between adjacent tracks. The two boards can now be slotted together and the power supplies connected.

Identifying letters are marked on the connector for external power supplies and input. Pin connections are as follows: A- $V_{\text {in }}$
B-inhibit/hold
C- +5 V
D- -12 V
E-OV
F-keyway
H -no connection
$\mathrm{J}-+12 \mathrm{~V}$
If, after construction, it is necessary to desolder any components, a special desoldering instrument of the suction type should be used.

Two steps are required in setting up. Adjust R_{44}, so that the display reading is " 0000 " for zero input (input terminals shorted). The reference voltage is then adjusted by R_{43} for full scale calibration using a standard cell source to provide a known reference reading on the display.

Fig. 11. Component layout and connecting tracks on the rear of the display p.c. board.

Fig. 12. Component layout and connecting tracks on the front of the display p.c. board.

The Semiconductor Story

4: Large scale intentions. Conclusion of a series of articles commemorating the 25th anniversary of the transistor

by K. J. Dean*, M.Sc., Ph.D., and G. White \dagger, M.Phil., B.Sc.

Since 1945 the industrial society in which we live has been one where technological change has been the normal state of affairs. It is not easy to plan such changes; indeed there has been very little worthwhile market and technological forecasting. Our national research establishments have been involved in bringing changes about, but it does not seem to have been a part of their role or that of industry to formulate clear research and development goals based on market assessment. To a surprising extent the semiconductor industry has been a victim of circumstances rather than their master. Its fortunes were founded on the arms race and further encouraged by the U.S. space programme. Again we have seen that military confrontation seems necessary to bring about major scientific developments. (There must surely be some other way.) Defence contracts helped establish large production plants when yield efficiencies were small, so that increasing skill and consequent falling production costs brought overproduction and "dumping". Fierce competition resulted in casualties despite the larger market which became available. A situation was arising which, though so clearly visible in retrospect, no one appeared to notice then.

Larger chips

As the move to put more electronics on a single chip got under way even greater attention was paid to the problems of increasing yield. There are, perhaps, three golden rules if high yields are to be achieved but, like all such rules, they are easier to state than to implement.

First, the processing should be simple The main difficulty here is with gold doping which is a particularly critical process necessary because charge-storage takes place in the lowest concentration area of doping, which is usually in the collector region of the transistor. Gold doping decreases life-time and so reduces charge-storage. However, this effect can also be mitigated by a diode between collector and base, so that the overdrive current goes through this anti-bottoming diode rather than the collector region.

[^2]Unfortunately, if a silicon junction diode is used it has the same forward characteristies as the silicon junction transistor which it is trying to speed up. This difficulty was overcome by using the Shottky barrier diode formed by aluminium on the silicon, which has a knee voltage of 0.3 V instead of 0.5 V for a silicon junction diode. The use of Shottky diodes to clamp a transistor was originally developed by Texas in 1964. In some devices the storage is in the base region. In this case, a second emitter is provided for the transistor on the chip and connected to a Shottky diode to remove the charge. Devices where speed is obtained from Shottky diodes are compatible on the same chip with linear circuits whereas gold doped circuits are not. They are also compatible in the same system, but not the same chip, with similar designs for gates, but which use gold doping. An example of this is the Texas 74 series which has been
second-sourced by a number of other manufacturers.

Secondly, the number of stages in the process must be kept small. But as the circuits which industry require become more sophisticated, such as gates with good speed-power ratio and high fan-in and fan-out and capability for wired-OR connections, so the number of stages tends to rise. There are for example typically three masks needed for a single transistor, eight for a t.t.l. gate and ten for some linear amplifiers. Only five masks are needed for m.o.s. gates but here speed problems exist, particularly where m.o.s. gates are interfaced to external connection. The yield of a single diffusion is inversely proportional to the area of the chip. That of a transistor or integrated circuit with n diffusions is proportional to the yield for a single diffusion raised to the power of n Thus the yield for planar transistors with three diffusions must be extremely high

Dual 64-bit shift register first available commercially in the U.K. in 1967 and typical of the state-of-the-art at that time. (photo: Texas Instruments)
before worthwhile yields can be expected from five- or eight-mask integrated circuits often 100 or more times the surface area of single devices. If a large enough system can be put on a chip the interfacing problems are less but even then an m.o.s. system is usually slower than a comparable bipolar one, and in some circumstances this is important. Further, such a solution infringes Law 3.

The third law is to keep the chip area small; but this discussion is all about increasing chip size. Scoring heavily here is m.o.s., since the devices are self-isolating. In any case, one should take care to see that isolation diffusion, sometimes known as "lands", is minimized. One process which leads to smaller devices is ion implantation. Here dopant impurities are implanted by ion bombardment rather than by diffusion. The process is compatible with planar technology and gives good control of junction profile but it is more expensive than diffusion since it depends on vacuum technology and the use of high energy accelerators.

Thus we have seen that with these three "laws" there are ways by which they can at least be bent, if not broken. The extent to which they can be bent and there still be a profitable yield is a measure of a company's success with the technical problems. Thus typical chip sizes for m.s.i. (medium scale integration) is 2 mm square for bipolar t.t.l. with about 40 gates on a chip of this size. Somewhat larger m.s.i. chips can be made if m.o.s. gates are involved, perhaps $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ with atout 500 gates irregularly connected or, say, 1024 bits of random access memory. the latter being, of course, regularly connected.

New planar processes

Now it can be seen that m.o.s. circuits are simpler and hence cheaper to produce;
also they represent higher circuit packing densities than bipolar gates but in terms of performance m.o.s. is often at a disadvantage. Therefore, in 1970 manufacturers began to investigate bipolar processes which seemed to offer prospect of being competitive with m.o.s. For example there was the c.d.i. process (collector diffusion isolation) developed first at Bell Labs and then by Ferranti, the Isoplanar process of Fairchild, the Process IV which was suggested at Plessey's research centre at Caswell, and the Dutch Locos process developed by Philips. All of these were compatible with circuits which could operate in excess of 1.5 GHz and all of them had the advantage of using less surface area than earlier processes. The c.d.i. system, for example, started with a slice of 10 to $20 \Omega . \mathrm{cm}$ p-type silicon into which n^{+}-layers were diffused. These were later to be the collectors of transistors formed in a $1 \Omega . \mathrm{cm}$ p-type epitaxial layer put down on top of them. Then n^{*} diffusions were made through the epitaxial layer to make contact with the now buried n^{+}layers laid down at first. These not only acted as collector contacts but isolated the area within as in the photograph of the Ferranti c.d.i. chip. In this base area the n^{*} emitter diffusion is made, as well as any second emitter for a Shottky diode. After the oxide has been deposited and holes cut in it to gain access to the electrodes, silicon is grown in the holes to the same level as the oxide, thus giving a flat surface.

Other developments

If any semiconductor manufacturer is asked about possible developments he will immediately reply that computer memories, read only and random access types are obvious areas of development. To-day a r.o.m. (read only memory) of about 4 kilobits can be made and this will probably be extended to 32 kilobits in the

Complete serial arithmetic unit on one chip, for use with eight-bit numbers. The chip consists of 200 m.o.s. gates and was designed in the U.S.A. by Fairchild and marketed in the U.K. in 1968. (photo: S.G.S. (United Kingdom))
near future. Random access memories will also be of similar size. Complete processors are being made for the hand calculator market. These are m.o.s. chips since their slow speed is no disadvantage for manual operation. This is a growth area at the moment and prices of hand calculators are falling rapidly. This industry in which the Swiss once had a sizeable share is now dominated by Japan but often with U.S.-designed m.o.s. chips. It is whispered that the Swiss have made careful surveys before joining the competition and have decided that it is now too late to compete. Certainly they have had no indigenous computer industry to help develop their small semiconductor facilities.

What is needed now is to find markets other than in computing. Some possible ones are in communications and in various domestic industries - entertainment, cars and white goods. In telecommunications the first electronic telephone exchange to use integrated circuits was the London empress (01-603) exchange which has 10,000 i.cs. The telephone network will become increasingly digital. It is expected that by 1990 all additions to the network will be digital ones, but 17 years is a long time to wait when you are selling silicon chips. Not only will solid state crossovers be used in electronic exchanges but there is clearly a market potential, maybe for our ailing computer industry, in data processors for telephone exchanges. How often is the engaged tone heard when the number is not engaged; it is the route which is fully committed. Exchange processors are needed to effect re-routing depending on the traffic being carried at that time by a number of exchanges. Visual solid state elements are another area where a start has been made. Plessey had a much publicized chip in 1966 which carried a matrix of 10×10 photodiodes. Perhaps we shall see a larger and more closely packed matrix with their Process IV before long, and so bring us a step nearer to replacing vidicons, or at least for document reading.

Bell Labs have been working on picture 'phones for some time using m.s.i. chips which supply data to update a store only where picture content is changing, but this is no short-term research project. We are more likely to see low speed facsimile, perhaps augmenting or replacing the national telex network, before this.

British Rail have a large financial commitment in the development of high speed trains. As speeds become higher, say $200 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., one can no longer rely on the driver to make appropriate decisions in the much smaller time he has available to him, so that here again integrated circuits will find markets in a central processor and its associated control systems.

The white goods market offers prospects for circuits to control washing machines and similar equipment. The automobile market in which four million cars are made in Europe each year has a potential of perhaps $£ 30$ per car for electronics, to control ignition and petrol injection and to sample various
transducers so as to indicate a fault or warn of any dangerous condition, even of speeding. This represents an enormous market which is virlua!? y untapped to-day. When cars are injvertised as "solid state controlled" and the price of hand calculators makes slide rules obsolete the semiconductor industry will be freed from the tyranny of computing.

What of l.s.i?

In 1968 manufacturers like Texas were proposing to make 2 in slices, diffused to comprise the gates of a single system, that is, using a slice as a single integrated circuit. It was then suggested that these slices would be probe-tested and a discretionary wiring applied so as to avoid or short out faulty devices. But individual probe testing on this scale is expensive: in fact the size of chips may ultimately be limited, not by the technological skill with which they can be manufactured but by the time taken to carry out testing, to interpret the tests, and the cost of testing. This is especially true when the chip logic is of a non-repetitive nature.

There is however a problem which is more fundamental, even than this. What is there that is sufficiently complex or so large in terms of circuitry that it warrants the use of a single chip of this size and which at the same time is of such a general nature that it will sell in such quantity, perhaps to a variety of users, to make it an economic proposition? Unless this can be satisfactorily answered l.s.i. cannot be really viable. There are of course some "answers" which might be considered. Random access and associative memories for computers, use so many interconnections between cell locations, for addressing and so forth, that it is desirable to avoid the inter-chip connections which would occur using m.s.i. chips as sub-sections of the memory and joining the sections by printed circuit boards. Also, when processors need to be of small physical size and speed is not an important parameter, as with hand calculators, a single chip has advantages such as minimal wiring and servicing costs. Nevertheless there are but few cases where a convincing argument can be put up, to show that it is not good enough to use beam lead i.cs interconnected as a hybrid system on a thick film substrate. Genuine arguments are in short supply: it is not enough to have large scale intentions

Manpower

Now let us look at some of the significant trends regarding people, prices and prospects. In 1966 the Manpower Research Unit of the Department of Employment (then the Ministry of Labour) carried out a study of the electronics industry, published by H.M.S.O. in 1967, to forecast labour requirements in detail to 1970 and more generally beyond that. It claimed to pinpoint the major growth areas of employment. It forecast for the period 1965-1970 over 50% increase in the jobs available for wiremen and production workers, 41% increase for testers, 35\% for scientists and technologists and 32% for technicians. So

This chip carries a non-volatile m.n.o.s. 64-bit memory (left-centre) with p-channel m.o.s. decoding circuits which require a 40V signal to drive the memory cells. The storage time for which the memory can be retained in the event of power supply failure and which can be measured in days, months or even years, is a function of the thickness of the oxide and nitride layers. (photo: The Plessey Company)
far as longer term trends were concerned it called for more technicians and for them to have higher qualifications. It did however observe that semiconductor manu facture "would become still more capital intensive". The predictions were not believed, for negligible support was given by industry to our technical colleges to increase the number of trained technicians by the large figure of one third. There were even cases in 1971 of withdrawal of industrial support for some block release and sandwich students. As for the scientists, it was recently stated that in 1971 only the chemical industry had more unemployed Ph.Ds than electronics. The period 1969-1971 has seen a massive cutback in the computer manufacturing and electronics industries - takeovers, closures, redundancy - and very few in the semiconductor sector making a profit. Perhaps manpower prediction, like weather forecasting, is an area in which we still have much to learn.

Price erosion

One of the recurrent themes of this series of articles has been the constantly falling price of semiconductors in a society where practically every other commodity was continually costing more. In part this is the result of learning about the processes involved so that production yields have increased. But commercial pressures have
also had an important part in forcing prices down. It has been suggested that the combined effect of learning and competition on the price of a device is linearly related to the total quantity which has been manufactured. By examining, for example, the U.S. price of an integrated circuit first produced in 1963 for $\$ 30$, it can be seen that there has been a price fall of 30% each time the total quantity from the start of production is doubled. Neither does this apply solely to integrated cir cuits. Germanium diodes, for instance, which were amongst the earliest of semiconductor devices, were originally sold for $£ 1$ each. Today their quantity price is $2 p$ and still falling. Although these figures are typical there have been cases where the rate of fall is much greater thari this. In early 1969 t.t.l. gates cost 75 p, 28p at the end of 1969 and 8 p a year later. This was the result of dumping, giving price falls in excess of the learning process, so that prices were so low that U.K. manufactur ers could not make and sell devices at these prices either then or in the foresce able future. Even taking the whole i.c. and transistor scene into account it seems unlikely that more than one or two com panies can do much more than break even. Why then continue to compete?

Some have not continued, but the average growth of the electronics industry since World War II has been about 12%

Silicon slice with over 60 chips each about 5 mm square. The circuit was commercially available from Ferranti in late 1972 and contains the components of a 200-gate uncommitted logic array and is an example of the use of c.d.i.

Left shows one chip of the 60-chip 200-gate uncommitted logic array produced by the c.d.i. process. Right shows a detail of this chip. The funation which the chip performs. analogue or digital or both, is selected by the metalization pattern employed, so that only one mask is involved in changes of function. Supply-line connections within the chip are made, not by the aluminium pattern, but through the silicon.
so that it has doubled in size every six years, whereas the target for national growth has been only 3%. This is one incentive to continue. Whether one believes that there is a national need to retain an independent manufacturing capability depends on the way in which one views the British trading role abroad and at home. However it should be remembered that in 1964, 90% of the U.S. semiconductor industry's output was for military applications, in 1968 the figure was 53% and even in 1970 it was as high as 37%. If our relations with the U.S.A. should ever be strained this source of "raw circuit material" for sophisticated electronics equipment might run more thinly.

It has been said that since the U.K. computer industry is effectively a secondsourcing industry (IBM has over 80% of the world's computer market) the U.K. i.c. market can never be more than a secondsourcing industry. This may well be, but at least it provides an alternative for emergencies, which is what secondsourcing is all about. Further, the developments already described may go some way to loosening the ties between semiconductor and computer manufacture by providing other major outlets for the industry.

Market potential

The accompanying table gives some indication of the areas in which the active device side of the electronics industry has grown. The bare statement, sometimes heard, that the sales of thermionic valves still outstrip those of semiconductors can be seen to fall into that class of lies we call statistics when it is noticed that major valve sales today are of colour television tubes and professional valves such as transmitting valves. Thus the sales of i.cs and transistors are about four times those of receiving valves and are bound to continue to increase as the maintenance market for valve equipment decreases. The apparent setback revealed by the 1971 figures seems rather larger in the table than the true result because ITT, who have approximately 15% of the semiconductor market, have amongst others now withdrawn from V.A.S.C.A. In future, the figures from the Electronic Components Board will include imports from companies such as Motorola and R.C.A. who do not manufacture in the U.K. and General Instrument Microelectronics who are now manufacturing at Glenrothes. Thus the figures for 1972 and subsequent years will not be strictly representative of either British-owned companies or British-made semiconductors.

The annual statistical survey of the electronics industry, published by the U.K. Electronics Economic Development Committee (H.M.S.O., September 1972) dealt more generally with the whole electronics industry employing 446,600 people, a slight drop on 1970's figures. The report which is for the year 1971 said that over 50% of them were employed in S.E. England, the area, understandably, with the greatest unemployment figures for electronics. The survey claimed an 80% growth for the industry in 1971 compared
with 21% in 1970. Whilst these figures do not appear to take into account the erosion of the value of the pound, they point out that the reduced rate of growth was most apparent in the capital equipment sector, which includes computer production. The decline of the home demand for computers resulted in a fall of 8% in sales of this type of equipment, thus giving further support for seeking new outlets for microelectronics, such as the colour television market where the growth rate was 72%. That particular level of development obviously cannot continue for long, but it shows what can be achieved in some sectors of the market.

It may well be asked if these sales figures are of interest to readers. Surely whether we are manufacturers of devices or electronic instrumentation, or are industrial or domestic users, or educators, or just have the interest of the success of our country at heart - because our own interests are linked with it - the fortunes of the semiconductor industry matter to us. When we feel the full impact of going into Europe this will be even more vital. The exports from West Germany, for example, are some 70% greater than Britain's and their imports are one third of the total E.E.C. imports. What are our prospects then?

They are in fact very good, especially if recent surveys are any better than former ones. The survey carried out by Mackintosh Consultants for the Department of Trade and Industry in 1971 in the context
of the difficulties the industry has been facing, puts the U.K. integrated circuit market at $£ 100$ million by 1980 that is an increase of six times over the 1970 figure of $£ 16.5$ million quoted in the table, and the m.o.s. share of this at $£ 20$ million. Quantum Science Corporation of New York recently forecast a growth rate of 14% per annum for the U.S. market, but both sets of consultants comment that there is not likely to be any diminution of the competitive market forces in the foreseeable future, or to put it more crudely, no one is content to let anyone else have a slice when there is the remotest chance of grabbing it all for himself. And this at a time when it is so difficult to keep unemployment levels down. We must turn a capital-intensive industry, likely to become more so, into one which is certainly intensive of those recently lacking human values.
So there it is: more rough water ahead, more risks for both employer and employee, but high prizes for the farsighted. It happens, though, that to a great extent we are all in the same boat: let us hope we do not get sea-sick on the way.

Acknowledgement

The authors would like to thank their many friends in the semiconductor industry and in Government departments who have racked their files (and their memories) for past detail, and who have been prepared to speak freely about the present and the future.

Sales figures for the U.K. electronics industry.

The figures refer to U.K. based manufacturing plant. Hence T.I. and S.G.S. are included but not Fairchild. The figures were provided by the Electronic Components Board which includes B.V.A.. V.A.S.C.A. and R.E.C.M.F. All figures are in millions of pounds sterling and are not corrected for the changing value of the pound.

year	receiving valves	television tubes		professional valves and tubes	discrete semiconductors	integrated circuits
		monochrome	colour			
1955	10.2	10.8	-	-	-	-
1960	14.7	13.9	-	11.6	-	-
1965	13.1	12.8	-	20.1	28.1	-
1970	13.8	17.3	23.0	23.8	46.2	16.5
1971	11.9	16.2	31.7	25.2	34.0*	10.4*

*The figures for 1971 do not include I.T.T.

Relationship between the unit price in U.S. dollars and the cumulative number of devices manufactured between the years 1963 and 1972.

The mean sunspot number for March was around 38 and this should decrease by two during each month following.
With reducing solar activity propagation disturbances will become less frequent and less intense but tend to last for longer periods. Advance forecasting of these periods, based on a solar rotation, as seen from the earth, of 27 to 29 days, should now become more reliable. There was an unusually prolonged period of nine disturbed days at the end of February which indicates a recurrence over April 17 to 24 and possibly on the first and last few days of the month. The least likely disturbed period is from April 9 to 14.

News of the Month

Cable highway into the home

More than 6,000 new houses will be equipped by the Post Office during the next 12 months with twin-cable systems carrying telephone service and "piped" radio and TV programmes. The twin cables will also form a highway into the home for telecommunication sysiems of the future.

Five housing developments - at Washington, County Durham; Irvine, Ayrshire; Craigavon. Northern Ireland; Milton Keynes, Buckinghamshire; and Brackla, South Wales - are being equipped with underground cable systems which enable householders simply to plug in for television or radio programmes. Although the cable systems, which are installed while houses are being built, can be used immediately for telephone, television or radio services they will play a key role in bringing other services into the home. For example, viewphone conversations, access to computer data and possibly remote meter-reading could all travel easily on these new communication "highways".

Over the next 20 years the Post Office expects to extend the service to more than 200,000 new homes nationally. By far the biggest single development is Mitton Keynes, where nearly 3,000 homes will be connected to the system by March 1974. Eventually the Post Office will provide the service to 100,000 homes there. No longer handling just telephone calls, local telephone exchanges will operate as a local communications centre handing other
services, such as television and radio. Key exchanges at Milton Keynes, Craigavon, Irvine, Washington and Brackla will have masts to receive television and radio programmes and equipment for boosting incoming signals and distributing programmes by cable to houses throughout the areas they serve.

Laser-computer system measures air pollution

A rapid method of identifying pollutant gases in the air has been devised by a Bell Laboratories scientist. A laser and an electronic computer have been combined in a system for detecting and measuring concentrations of pollutant gases. Identification and analysis of pollutants is a first step toward their control.
Capable of identifying concentrations of gases as low as 1 part in 10^{12}. the laser-computer system has a far greater sensitivity than most of the present regulatory standards in the U.S.A. require.

An established laboratory technique gas spectroscopy is based on the phenomenon of different gases absorbing light at different wavelengths. Thus, specific gases leave their "fingerprints" on laser light at specific wavelengths. The amount of light absorbed shows the amount of pollutant in the air. The computer, which is about the size of a small home stereo receiver and uses the kind of electronic components common in

[^3]
hand-held calculators, controls the laser, tuning it through the absorbing wavelengths of various pollutant gases. Samples of air being analysed are held in a chamber called an opto-acouştic absorption cell.

The laser beam is directed into the absorption cell. Light energy absorbed by a gas increases the temperature and pressure of air in the cell in direct proportion to the quantity of gas. A sensitive microphone in the cell detects the increase in pressure and converts it to an electrical signal which is fed to the computer. The computer matches the signal with "fingerprint" data stored in its memory and identifies the pollutant.

For a feasibility demonstration in the laboratory, the system has been used to identify five different gases simultaneously. However, it can be programmed to handle up to about twenty.

Holographic computer memory

A holographic optical computer memory able to perform the data processing operations of write, store, read, and erase has been developed and demonstrated by RCA at its Princeton laboratories in the U.S.A. The experimental optical system employs a laser, liquid crystals, electro-acoustic deflectors, and holograms stored on thermoplastics. It could be the forerunner of a new generation of memories equal in capacity to, but 1,000 times faster than, present large disc systems. In addition to their capacity and speed, future holographic memories could be more reliable and perhaps less expensive per data bit than mechanical systems at present used to store and process large quantities of information.

The memory utilizes the ability of holograms to store large quantities of data in a small space, and upon the speed at which light from a laser can be deflected and modulated. The memory stores data in holograms formed by a laser beam on a thermoplastic storage medium. En route to the storage medium, the beam strikes liquid crystal cells, which can be controlled electronically to scatter light or to be transparent. The cells introduce digital information into the laser beam in the form of tiny areas that are dark (where the cells are scattering) and light (where they are transparent). This pattern of darkness and light, recorded in the hologram, corresponds to the "zeros" and "ones" of the binary code.

Once the data is stored in the hologram, it can be retrieved by passing the laser beam through the hologram. The beam projects the holographic information on to a light sensitive array which "reads" the optical data and converts it into electronic signals. The laser beam, in both writing and reading the data, is directed by electro-acoustic deflectors. In the experimental holographic memory, the array is connected to a panel of lights to determine if the data has been stored and
read out correctly. To erase the data in a holgram, heat is applied to the thermoplastic storage medium. A new hologram with new information can then be written in its place.

Electronic traffic control

A vehicle detection system has been designed in Morgantown, West Virginia, U,S.A. using proximity switches for sensing purposes. These proximity switches, from the British firm Elliott Relays, have sensing distances that can be adjusted up to 12 inches and can sense the presence of vehicles as they travel along a given track. The information obtained is then processed by a central computer to prevent collisions between the vehicles by retaining a specified distance between them. The scheme functions by installing proximity sensors along the route at strategic points, from where they can monitor vehicle presence on adjoining track sections or blocks, When a minimum predetermined spacing between vehicles is reached, the central computer initiates either car braking or system shutdown. Failure of a channel in the system will indicate a "vehicle present" condition to the computer for that channel, thus initiating system shutdown and fault location.
The system comprises three basic components: the sensor assemblies located at various intervals along the guideway, the electronic assembly that provides the information for the central computer, and a magnet assembly that is mounted on the

> Transmitting aerial system for one of Britain's first commercial radio stations is pictured here during its check-out programme at the EMI aerial test site at Hayes, Middlesex. Two v. h.f. aerials have been specified for London and Birmingham utilizing circular polarization techniques.

Pictured on the right is an early Cossor oscilloscope, believed to be only the second portable model made, which has been donated to the Science Museum by O.S Puckle. Designated the Cossor Portable Mains Oscillograph Type No. 3247, it was manufactured in 1933, selling price was $£ 20$. Alongside is one of the latest Cossor 'scopes.
moving vehicle. No adjustment is required after the initial installation unless replacement of an electronic assembly or sensor becomes necessary.
It is possible to avoid using the magnet assembly by using the vehicle structure for the target. But, in this particular application the magnet assembly is used because of the existence of high ambient magnetic interference that could actuate existing vehicle detection systems. The magnet assembly is attached to the vehicle and provides a magnetic field to actuate the sensor in the road bed. It is oriented on the vehicle with its longitudinal axis parallel to the direction of travel and is perpendicular to the fields generated by the power rails which can interfere with the detector operation. The sensors are located typically every 300 feet in the roadbed so that the longitudinal axis is also parallel to the direction of vehicle travel.

High-speed mobile message-switching

Said to be the first mobile, computerized message-switching system in Europe is to be produced by Marconi Space and Defence Systems Ltd for the Ministry of Defence. The contract follows successful British Army tactical field trials with an experimental system which was designed by the Signals Research and Development Establishment in collaboration with the Company.

Code-named TARIF (Telegraph Automatic Routeing In the Field), the computer-based system will speed-up distribution of telegraph messages and will permit substantial manpower savings in operation. It will be capable of handling 5,000 messages a day on up to 48 lines simultaneously, with a typical "cross-
office" handling time of one second per message. It is designed to replace the existing "torn tape" manual system which is slow, laborious and unreliable under heavy traffic conditions. TARIF is based on the GEC 920B military digital computer, backed with high-speed magnetic drum storage. Incoming messages are automatically forwarded in response to a coded message heading. or are stored for onward transmission when the recipient's line is clear.

Viewphone for surgical operations

An experimental viewphone being developed by Post Office scientists has been used to assist in the care of patients during surgery. Engineers from the Post Office's Research Department at Dollis Hill. helped by staff from London Telecommunications Region, provided a viewphone link between the operating theatre in St Peter's Hospital, Covent Garden, and the Research Department of Anaesthetics of the Royal College of Surgeons half a mile away at Lincoln's Inn Fields.

Patients undergoing operations at St Peter's are already linked over a telephone line to the R.C.S. where a computer has been used to monitor the patients' responses to anaesthetics and their general condition.

In a new experiment the viewphone was used on two full days of surgery to enable specialists at the R.C.S. to follow the progress of operations, to see the actual administration of anaesthetics, and to relate the patient's response to them with information such as heartbeat, brain waves and blood-flow, fed into the computer over the telephone data link.

Professor J. P. Payne, Head of the

Research Department of Anaesthetics, also carried out successful experiments with the examination of X-ray photographs by viewphone. He displayed a number of plates to a colleague who, over the viewphone, correctly diagnosed the conditions shown on the X-rays. Picture definition was good enough to pick out lesions in an X-ray. Viewphones are still at an early stage of development and unlikely to become available to the public for some time.

Industrial Security

Computer security, low-light television, the detection of eavesdropping devices and perimeter protection techniques were among the topics of a recent seminar programme in London arranged by Buckmaster and Page Ltd, Industrial Security Consultants, under the title "The total planning concept of industrial security". The two-day seminar was designed to provoke discussion and ideas from a team of people whose main preoccupation is with security and the senior members of their organizations who are exposed to security risk. The programme was essentially practical and used case studies to provide examples of situations where security protection was found to be necessary. A variety of electronic and other devices were demonstrated and explained including microwave and ultrasonic equipment.

Telecom awards

For the sixteenth successive year the Telecommunication Engineering \& Manufacturing Association has made awards to employees of member companies of the association who were successful in the annual competition for technologists and technicians. In the technologist class the first prize (£50) went to Kevin M. Kelly (S.T. Labs) for his paper "The Doppler microwave landing system" and the second ($£ 25$ each) to Derek N. Glanville (S.T. Labs) for "The spectrum of round-off noise in a digital filter" and Philip F. Robinson (Marconi) for "Development and manufacture of a mains transient recorder". In the technician class the first prize ($£ 50$) winner was Roger Faulks (S.T.C.) for "Model automatic location store". The second prize (£20) went to David J. Mackay (Marconi) for "Selective calling in mobile radio". The awards were presented at the annual T.E.M.A. dinner on March 7th.

Inspecting aerial systems

The National Federation of Aerial Contractors is currently making plans whereby members' installations will be regularly inspected at random. and any new company applying for membership will also have its work inspected. Faulty workmanship will be reported to a standards committee. In this way, the
federation hopes to assist in narrowing the field of viewer complaints.

Briefly

Record anniversary
This year marks the 75th anniversary of EMI's international recording activities which started in 1898 with the Gramophone Company, EMI's oldest subsidiary.

Sony colour TV

Sony is to stárt production of colour TV sets in the U.K. within the next year.

Japan Electronics Show

The Electronic Engineering Association is to sponsor the British participation at the Japan Electronics Show in Osaka from 1st to 7th October.

Finalé

From the Chiltern Carrier - a newsletter of the Chiltern amateur radio club: famous last words - "just feel this transformer"!

Sixty Years Ago

Our advertisement for April, 1913, as it appeared in the publication Work. The reproduction was sent to us by a reader, MrS.W.Saunders, of Exeter.

Announcements

A series of lectures on r.f. electrical measurement practice is to be delivered at a residential vacation school at the University of Surrey organized by the Science Education and Management Division of the Institution of Electrical Engineers, Savoy Place, London WC2R 0BL.
"Minicomputers in Instrumentation and Control $73^{\prime \prime}$ is the title of a short course and exhibition to be held from 30th May to 1 st June at the Polytechnic of Central London, 115 New Cavendish Street, London WIM 8JS. The course is aimed at scientists, engineers and managers.
The University of Essex has announced the receipt of $£ 51,655$ of research grants. $£ 33,000$ is from the Wolfson Foundation to support the electronics centre for introducing electronics to non-electronic industries, and $£ 913$ from Standard Telephones and Cables Ltd is an extension of the existing grant for theoretical work on a filter synthesis topic.

The Technical Help to Exporters service of British Standards Institution, Maylands Avenue, Hemel Hempstead, Herts, has produced a digest detailing the technical regulations applicable to the radio interference suppression of electrical equipment and installations imported into Denmark. The publication is entitled "TD. 1013 Denmark radio interference suppression".

A new plug-in unit, the 3121 single timebase, has been developed by Cossor Electronics Ltd., The Pinnacles, Elizabeth Way, Harlow, Essex, for use in the company's model 3100 plug-in oscilloscope system.

The United Africa Co. has changed its name to UAC International. As a result, the subsidiary company Unamec Lid, P.O. Box 1, United Africa House, Blackfriars Road, London SE1 9UG has become the Unamec Division of UAC International.

The Vero Electronics Group, Industrial Estate, Chandlers Ford, Hants SO5 3ZR, have expanded their activities by the opening of an Equipment Division formed to market a range of wire-wrap tools, bits and sleeves manufactured by the American O.K. Machine and Tool Corporation.

Banbury Electronics, Swansea and Fenwick Electronics Glasgow, are marketing the range of counter/ timers and other instruments from Radio Control Specialists Ltd, National Works, Bath Road, Hounslow, TW4 7EE.
Datac Ltd, The Polygon, Bowden, Altrincham, Cheshire, have been appointed agents for the Mullard Mosaic Printer.

Transworld Scientific Led have become the U.K. distributor for the power transistor range manufactured by Kertron Inc., Florida, U.S.A.

The Oxford Instrument Co. and the Superconducting Magnet Systems Activity of B.O.C. Ltd, have announced an agreement to merge their cryogenic and cryomagnetic systems operations. B.O.C. will purchase a minority share interest in Oxford Instruments and all activities will be consolidated at Oxford Instruments, Osney Mead, Oxford.

An order for seismographic recording equipment has been placed with Racal-Thermionic Ltd, Shore Road, Hythe, Southampton, Hants SO 46 ZH , by the Italian Government. The order, worth over $£ 30,000$, is for equipment which will form part of a chain of earth tremor detection stations sited along the length of the Italian peninsula.

Digital Multimeter

2. Circuit operation

by D. E. O'N. Waddington, M.I.E.R.E.

In Part 1 of this article I showed that the instrument falls naturally into seven blocks (see Fig. 1) with the power supply forming an eighth. In practice it is convenient to rearrange some of these blocks so that they fit onto six circuit boards as shown in Fig. 2. Boards 1, 2 and 3 form the basic digital display section while boards 4,5 and 6 provide the various functions.

Power supply

The power requirements for this instrument are fairly modest. Firstly the supply voltage for the counter, logic and display is 5 volts, accurate to within $\pm 5 \%$, which means that some form of voltage stabilization must be used, as the mains voltage is not sufficiently stable. The current requirement is of the order of 500 mA so that one of the integrated voltage regulators such as the National semiconductors type LM309K can be used. The advantage of using an integrated power regulator here is that it comes in a TO3 package with three connections only-input, output and common-and it requires no setting up. A large-value reservoir capacitor is necessary across the output of the bridge rectifier to ensure that the voltage drop across the regulator is sufficient to prevent the circuit from going out of regulation. This regulator also supplies the power necessary for Block 4 so that, if the only functions required are counter and timer, this is the only section of the power supply which need be built.
Blocks 5 and 6, voltmeter and resistance/ capacitance meter respectively, need higher voltages for adequate operation, and, as operational amplifiers are used, it was also necessary to provide a negative rail. Therefore, the supplies for these sections are plus and minus 12 volts, which must be stabilized as they provide current feeds for the various voltage reference diodes used in the voltage and component measurements. The current requirement here is fairly low, about 50 mA . It did not seem worth while to use integrated voltage regulators for these rails as, generally speaking, these devices have a common negative rail which would necessitate an extra winding on the mains transformer. An additional factor against their use was the fact that no suitable preset voltage regulators were available at a reasonable price at the time when I did the design.

The circuit which I used is very conventional, and is shown in Fig. 3. The centre tap

Fig. I. Block diagram.

Fig. 2. Block diagram rearranged to show the parts of the circuit which are grouped together for construction.
of the mains transformer secondary is used as the common or earth rail and two fullwave rectifiers using D_{1}, D_{2}, D_{3} and D_{4} provide the necessary unregulated positive and negative rails. The positive rail is stabilized using a conventional "emitterfollower" type stabilizer. The reference voltage is derived from the zener diode, D_{5}, which was chosen to have a temperature coefficient complementary to that of the emitter/base junction of the transistor Tr_{1}. While this does not necessarily give perfect cancellation of temperature effects, the temperature coefficient of this sort of combination can be very good ${ }^{1}$. Additional smoothing has been included in the feed to the collector of Tr_{1} to reduce ripple at the output. The negative rail stabilizer is also fairly conventional, and uses the stabilized positive rail as a reference and a long-tailed pair as the comparator to reduce temperature effects. No over-load protection circuits have been included as, except for accidents during testing and setting up, it is unlikely that either of these rails will be short-circuited.

Decoder/display

The design of this section depended largely upon the type of display device chosen. Traditionally, gas discharge numerical indi-
cator tubes have been used. These have the disadvantage that they require a power supply of the order of 150 volts, which is inconvenient with transistor circuits, and I therefore decided to use a low voltage indicator. Light emitting diode and liquid crystal displays are still too expensive for
general use so that I chose the seven-segment incandescent filament displays made by Fuji. These are very convenient to use as their leads are on the same 0.1 in matrix as the integrated circuits and, as they require only 8 mA per segment to give an adequately bright display, they are very suitable for use

with the t.t.1., b.c.d.-to-seven-segment decoder SN7447. The display consists of four of these indicators. Three of them are driven by the decoders but the fourth is driven by a transistor, as it only needs to indicate " 1 " or " 0 ". In practice it is most economical to keep the " 1 " permanently lit and to use a single transistor to feed the 4 segments needed to convert it to " 0 " as required. The input circuit to this transistor, Tr_{10}, is arranged so that it looks like a d.t.l. gate, making it compatible with the t.t.1. gate which drives it. Decimal points, albeit a little oddly positioned, are included in these display devices.

The diagram of this board is given in Fig. 4. I do not call it a circuit diagram as the true circuit diagrams of the integrated circuits are so vast that they would take up too much space. At the same time they would add little of value to the user so we must put up with diagrams which are a cross between block diagrams and circuit diagrams. The layout of this circuit is not critical and it can be mounted to display the numerals conveniently.

Counter store, control logic and time control

Counter store. In order to give the 1999 display capability needed for the instrument, the counter must divide by 2000 . However, a further divide by two is necessary to drive the voltmeter and capacitance meter so that the total division required is 4000 . Fig. 5(b) shows that this division is achieved by using three decade dividers type SN7490 followed by a dual JK flip-flop type \$N7473. The b.c.d. outputs from the decade dividers are fed to three four-bit latches type SN7475, which act as the memory for the three least significant digits of the counter. The memory

Fig. 3. Power supply and stabilizer circuit.

Fig. 4. Decoder/display diagram.
for the most significant digit is a one-bit latch made from a quad two-input gate SN7400. This latch consists of two switches $I C_{14 a}$ and $I C_{14 b}$ feeding $I C_{1+c}$ and $I C_{1+d}$ which are cross-coupled to form an RS (setreset) fip-flop. When the command input is high gates $I C_{14 a}$ and $I C_{14 b}$ are enabled so that the outputs from the RS flip-flops follow the inputs. When the command input goes low, the switches are disabled and the RS flip-flop retains the state which was present at the instant when the transition occurred. The command inputs to $I C_{11,12,13,14}$ are driven by the gates in $I C_{5}$, which in turn receive their inputs either from the voltmeter/capacitance meter or from the pulse generating chain $T r_{2}$ to $T r_{5}$.

Control logic. This section performs the switching functions illustrated in Figs. 1, 2

Fig. 5(a). Timing waveforms generated by the control circuit.
and 3 of Part 1 of the article. Logic gates have been used here as they allow the switching to be achieved simply by switching the control inputs to " 1 ", gate enabled, or " 0 ", gate disabled. In this way the switch ing can be done at d.c., so that there is no necessity to take signals back and forth between the front panel and the circuit board. The input to the count gate $I C_{4 a}$ comes from $I C_{1 a}$ (input from wave shaper for frequency counting) or $I C_{1 b}$ (input from master clock for time, period or voltage/resistance/capacitance measurements). Similarly the input to the count-gate controller $I C_{4,}$ comes from the divide-by-two $I C_{3}$, from either $I C_{1 c}$ or $I C_{1 d}$. The output from $I C_{4 b}$ also feeds the control-pulse generating chain $T r_{2}, T r_{3}, T r_{4}$ and $T r_{5}$ which works as follows.
The output from $I C_{4 b}$ in Fig. 5 is normally high so that the 22 pF capacitor C_{1} is fully charged. When this output goes low, the base of Tr_{2} is taken negative by the charge on $C_{1}, T r_{2}$ thereby being switched off. Tnis capacitor now discharges through the $10 \mathrm{k} \Omega$ resistor R_{8} and at a time approximately equal to $0.7 C R, T r_{2}$ will switch on again causing a similar switching action to take place at Tr_{3}. This, in turn, will be followed by $T r_{4}$ and finally $T r_{5}$. The reason for using four of these differentiators instead of the two which are obviously necessary is that there are delays in each gate. Separating the pulses by a controlled interval ensures that the circuit has "settled" before each instruction (i.e. "Store" or "Reset") is given.

Timer control. This circuit has been arranged so that, once the "run" and "stop" inputs, have been connected to earth, neither will operate again until the circuit has been reset. By doing this the effects of any multiple contacts, such as bounce in switches, can be eliminated. The circuit works as follows: When the "Prime" switch is momentarily closed, the RS flip-flops $I C_{2 a, b}$ and $I C_{2 c, d}$ are set so that the output of $I C_{2 a}$ is at 0 and $I C_{2 d}$ at 1 . The 0 causes the output of $I C_{4 c}$ to be at $1, I C_{{ }_{4 d}}$ at 0 and thus no puises from the master clock can get through the count gate $I C_{4 a}$. When the "run" input is earthed, the RS flip-flop $I C_{2 a, b}$ changes state so that the output at $I C_{2 a}$ goes to 1 , enables the count gate $/ C_{4 a}$ and the counter starts counting clock pulses. When the "stop" input is earthed, the output at $I C_{2}$ goes to 0 , disabling the count gate and thus stopping the counter. The output of $I C_{4 d}$ also goes to 0 , triggering the timing chain described above.

In order to permit the "wired-OR" function to be implemented, $I C_{1}$ and $I C_{4}$ use "free collector" gates type SN7403. However, d.t.I. gates such as the $\mu \mathrm{A} 946$ can be used here in which case the $1 \mathrm{k} \Omega$ pull-up resistor can be omitted. However, in order toallow C_{1} to charge up quickly, the pull-up resistor on the output of $I C_{4 d}$ should be retained.

Input wave shaper and master clock

Input wave shaper. The circuit of the input wave shaper is shown in Fig. 6. This has been designed to accept a wide range of

Fig. 5(b). Counter/store and control logic. This shows the general arrangement for these sections. The switch, S_{1}, shown dotted, indicates the switching necessary to achieve the various functions: $F-$ Frequency counter: T-Timer; $P-$ Periodmeter; A-Voltage, resistance and capacitance meter.
input voltages, 20 mV to 100 V , so that it was necessary to include some form of limiting as near to the input as possible. This obviates the necessity for gain control but it has the disadvantage that the input resistance varies with input level. The variation however, should not pose any real problems as, for inputs below 600 mV peaks, the resistance is of the order of a megohm and, above this level, it never falls below 100 kilohms. The high-frequency response of this arrangement could be improved, if required, by connecting a small capacitor in parallel with the $100 \mathrm{k} \Omega$ resistor but it is difficult to assess the exact value needed. The input amplifier consists of three transistors $T r_{1}, T r_{2}$ and $T r_{3}$. The a.c. gain is set at 100 by the emitter resistor R_{3} and the shunt feedback resistor R_{5}, and the d.c. conditions are set by the overall feedback via the $1 \mathrm{M} \Omega$ resistor R_{2}. The output from the collector of Tr_{3} is fed directly to the Schmitt trigger $T_{r_{4}}$ and $T_{r_{5}}$. In order to control the shape of the waveform to be counted, the output from the trigger is differentiated and amplified by Tr_{6}. The pulse width at the output will be approximately 170 ns so that the highest frequency which can be counted will be limited to about 5 MHz .

Master clock. In the circuit of the master clock, shown in Fig. 7, it will be noted that both the master clock and the input wave
shaper run off the +5 volt rail so that, if only the counter/timer functions are required, the plus and minus 12 volt sections of the power supply can be omitted.

As the master clock provides the standard for all the time and frequency measurements the accuracy of these is critically dependent upon this section. Accordingly a crystalcontrolled oscillator is used to provide the basic standard. Crystals cannot be accepted as absolute standards, however; their resonant frequencies can be "pulled" by external components, and frequencies are temperature dependent, a deficiency which can be overcome to a large extent by the use of temperature-controlled ovens. More insidiously, frequencies also drift with time. Extreme stability was not, however, considered essential for this application so that a fairly wide choice of crystals was available. I chose a $100 \mathrm{kHz}, 5^{\circ} \mathrm{X}$-cut crystal type QM120F, with a parabolic temperature characteristic, the zero temperature coefficient point of which is between 12° and $22^{\circ} \mathrm{C}$ and, as a result, the temperature coefficient is near its lowest point at room temperature. The ageing rate of this crystal is of the order of 5 parts in 10^{6} per annum.

The crystal is operated in the series resonant mode, coupling the output at the collector of $T r_{1}$ to the base of $T r_{2}$. The amplitude of the positive feedback to the base of Tr_{1} is held substantially constant by the limiting effect of the diode D_{1} and the

Fig. 6. Input wave shaper.
base/emitter diode of Tr_{3}. The frequency is adjustable over a range of $\pm 10 \mathrm{~Hz}$ by means of C_{1} so that, provided that suitable test gear is available, the frequency may be set precisely. However, if no setting-up equipment is available, selecting this value of the parallel combination of C_{1} and C_{2} to be 50 pF will give a frequency of 100 kHz $\pm 3 \mathrm{~Hz}$ or an accuracy of 3 parts in 10^{5}. The output, which is taken from the collector of Tr_{3}, has a rectangular waveform and is suitable for feeding direct to the logic gates and frequency divider chain. If the counter functions of the instrument are not needed, the frequency-divider chain can be omitted and this output is then fed directly to the input of the counter chain (base of Tr_{1}, Fig. 5). Normally, however, this output is fed to the frequency-divider chain which consists of five decade dividers connected in cascade thus providing out put frequencies of $100 \mathrm{kHz}, 10 \mathrm{kHz}, 1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 1 Hz . Each frequency output is fed to one input of a two-input gate, the outputs of the gates being connected together to give a "wired-OR" function. The other input to each gate is fed from an individual inverter. Grounding the input to an inverter causes its output to go high, thus enabling the gate to which it is connected and selecting the appropriate frequency to be fed to the output. As a result, the six frequencies can be selected by a single-pole six position switch which connects the appropriate inverter inputs to ground. It should not be necessary to hold the ungrounded inverter inputs high as there should not be enough electrical noise within the instrument to cause errors. For this frequency selection I used three quad two-input gates type $\mu \mathrm{A} 946$ as they can be used to give the "wired-OR" function without additional resistors. However, if pull-up resistors are added to the circuit, open collector t.t.l. gates type SN7403 can be used

Voltmeter

The principles of the dual ramp voltmeter have been discussed in Part 1 of this article. In practice, however, things are slightly more complicated as it is necessary to provide range switching, rectification and polarity indication, as well as analogue-todigital conversion.

Fig. 7. Master clock and divider chain.

(A)
(B)

NuW...

Fig. 8(a). Rectifier waveforms.

The input attenuation is divided into two sections; a $10: 1$ switch of amplifier gain by negative feedback, and a $100: 1$ attenuator at the input to the amplifier. The a.v./d.v. switch at the input (see Fig. 8) has been included to compensate for the fact that average-reading voltmeters are normally calibrated in r.m.s. so that a factor of $1.11: 1$ has to be allowed for. This also makes it possible to switch an isolating capacitor in series with the input when measuring alternating voltage. In order to achieve a high input resistance, a differential pair of f.e.ts is used to feed an operational amplifier type $\mu \mathrm{A} 741$, the gain being stabilized by negative feedback. In order to reduce lead lengths, I
found it convenient to build this section on the back of the voltage range selector switch.
The output from the input amplifier is fed to a circuit which is sometimes called an "absolute value rectifier" because it gives an output which is effectively equal to the modulus of the input signal. In more familiar terms, it is a full-wave rectifier that works down to d v. The action is as follows:

If a sine wave (A) is applied to the input as in Fig. 8(a), the signat at B will consist of a half-wave rectified waveform (B) having the same peak amplitude as A but inverted in phase. These two signals are added at the input of the amplifier $/ C_{3}$ in the ration: I so

Fig. $8(b)$. Inpul amplifier, rectifier and polarity indicator circuit.

Fig. 9(a). Analogue-to-digital converter.
that the output (C) is a full-wave rectified version of the input. Thus the output at C will be negative regardless of the input polarity. The 470Ω variable resistor R_{15} is used to ensure that A and B are added in the correct proportions. A Signetics type N 5556 V integrated circuit is used for $I C_{2}$ as it has a better slew rate than the $\mu \mathrm{A} 741 \mathrm{C}$ and thus gives a better frequency response. The output from pin 6 of $I C_{2}$ is used to drive a comparator $T r_{4} / T_{5}$ which switches the polarity indicators. With a direct voltage input, only one polarity indicator will light at a time but with a.v. both will light giving an indication that the input is alternating.

Fig. 9(b). Operation of the "out of range" indicator.

A capacitor is connected between the input and output of $I C_{3}$ so as to give a low pass filter effect. When the instrument is switched to a.v. the value of this capacitor is increased to $10 \mu \mathrm{~F}$ to provide smoothing. Of necessity, this increases the time necessary for the reading to settle.

The analogue-to-digital converter section is shown in Fig. 9(a), where the threeposition switch shown in Fig. 4 (Part 1) is replaced by two f.e.t. switches $T r_{8}$ and $T r_{9}$, the third position of the switch being provided by the $33 \mathrm{k} \Omega$ earth return resistor, R_{9}, when both f.e.ts are turned off. The reference voltage is provided by a low-temperature coefficient zener diode, D_{3}. The absolute voltage of this zener is unimportant as its effective value can be set by adjusting the $6.8 \mathrm{k} \Omega$ variable resistor R_{2}. In order to prevent oscillations occurring at the instant when the output from the integrator $I C_{4}$ reaches zero, the comparator $I C_{5}$ has been made to act as a Schmitt trigger by positive feedback from the gate $/ C_{6 a}$. The timing input to this gate had to be included to enable the zero of the instrument to be set and overrides the backlash which is essential to the operation of the Schmitt trigger, so ensuring that the comparator works as a zero-crossing detector. The "store" command is derived by differentiating the output of $I C_{6 b}$ and amplifying it using T_{12}.

The gates of $I C_{7}$ are used to give the out-of-range indication as follows:

The RS flip-flop in Fig. 9(a) is set by pulse F in Fig. 9(b) which is generated by differentiating the falling edge of the clock input. It is then reset by the "store" pulse E so that $I C_{7 d}$ is again disabled and when the clock goes positive once more there is no output at H. However, if E does not arrive
in time (i.e the input voltage is too high), both inputs to $I C_{7 d}$ go low so that its output, H , goes high. This turns on Tr_{16} and thus causes the overload lamp to light. The capacitor C_{1} acts as a pulse stretcher so as to keep the lamp alight even though the output at H does not remain high continuously during the overload period but switches on and off at the clock rate. "NOR" gates have been used in this section to reduce the package count. Had "NAND" gates been used, it would have been necessary to put inverters in series with the inputs to the RS flip-flop.

Resistance/capacitance

The resistance measuring circuit, shown in Fig. 10 , uses the main voltmeter circuit with the input attenuator disconnected and the gain of the input amplifier set to $\times 1$, together with a constant-current source which can be switched to give four different values of current, $1 \mu \mathrm{~A}(1 \mathrm{M} \Omega), 10 \mu \mathrm{~A}(100 \mathrm{k} \Omega)$, $100 \mu \mathrm{~A}(10 \mathrm{k} \Omega)$ and $1 \mathrm{~mA}(1 \mathrm{k} \Omega)$. The simplest possible circuit was used here: a transistor with its base tied to a reference voltage and switched resistors in series with its emitter. The reference voltage is provided by a 4.7 V zener diode, chosen because its temperature coefficient tracks that of the base/emitter voltage of a transistor fairly closely. The transistor chosen is a BC252, a p-n-p transistor with a very high beta even at low values of collector current. For resistance measurement, the input of the f.e.t. voltmeter and amplifier is connected directly to the collector of the current source transistor. The resistance to be measured is then connected between this junction and earth, and the voltmeter reads the voltage drop across the resistor. The voltage range and the

Fig. 10. Capacitance/resistance measuring circuit.

Fig. 11. Method of driving f.e.t. switches from 5 V lines.
current through the resistor have been chosen so that the instrument reads resistance directly. As the input resistance of the f.e.t. amplifier is greater than 100 megohms, it does not affect the accuracy to any great extent.

Capacitance meter. This uses the same current source as the resistance measuring circuit. With a $1 \mu \mathrm{~A}$ charging current, the voltage drop across a 2000 pF capacitor will reach 10 V in 20 ms . As the time required for the counter to reach full scale is 20 ms , the comparator is arranged so that it detects when the voitage across the capacitor reaches 10 volts. With only plus and minus

12 -volt lines this 10 volt requirement could have been awkward. However, by making the initial charge on the capacitor -8.2 V , a voltage developed across the zener diode D_{2}, the positive excursion of the voltage across the capacitor need only be 1.8 volts. This is suitable to feed to the input of $T r_{2}$ which is cross coupled with $T r_{3}$ to form a Schmitt trigger circuit. F.e.ts are used here as their high input impedance does not load the capacitor. The back-lash in the trigger circuit does not affect the accuracy of the measurement as the comparator only detects the transition as the voltage across the capacitor goes positive. The discharge of the capacitor is effected by switching Tr_{4} on. The output from the trigger circuit is amplified by $T r_{6}$ before it is differentiated and limited by Tr_{7}. The gates are used to switch the clock input and the output of this section on or off as required.
F.e.t. switches. In both the voitmeter and capacitance meter, use is made of f.e.t. switches. In order that these switches should work adequately, two conditions must be satisfied: when the switch is "on" the input signal must never reach sufficient amplitude to start to turn the switch off and conversely, when the switch is off the signal amplitude must not be sufficient to turn it on! Therefore, to ensure that the switch operates correctly, the input signal to the switch should be as small as practical and the switching signal to the gate of the f.e.t. should be as large as possible, in this case 24 volts peak-to-peak. In the voltmeter section the signal swing is minimized by placing the f.e.ts at the "virtual earth" point of the integrator. In the capacitance meter, the
f.e.t. is connected so that the voltage developed across it cannot affect the switching. In both cases, the switching control voltage at the gate is made to switch between the positive and negative rails. In order to do this it is necessary to translate the voltage from the logic circuits (0 and +5 V) to a suitable level. This is done as shown in Fig. 11. When the output from the gate $I C_{1}$ is low, D_{1} is turned on so that the base/emitter junction of $T r_{1}$ is reversebiased and Tr_{1} is turned off, turning $T r_{2}$ off so that its collector "goes" to the positive rail. This turns the f.e.t. $T r_{3}$ on. When the output from $I C_{1}$ goes high, D_{1} is reversebiased and a current determined by the value of R_{1} flows into the emitter of Tr_{1}. turning it on. This in turn bottoms Tr_{2} so that its collector voltage goes to the negative rail, turning the f.e.t. $T r_{3}$ off. The diode D_{3} is included in the circuit so that, when the f.e.t. is in the "on" condition no gate current which could introduce errors can be drawn. If this circuit is used with d.t.l. gates. provided that no other inputs are to be driven, R_{1}, D_{1} and D_{2} can be omitted.
The circuits which have been described above comprise the electronics necessary to make a digital multimeter. However, in order to make the instrument work as a whole it is necessary to interconnect them together with appropriate switching. How this can be done is described in the next section of this article.

REFERENCE

1. D. E. O'N. Waddington and M. R. Ainley, "Low-voltage Stabilizer UsingSemiconductors," Wireless World. Vol. 67. No. 9, 1961, pp. 479 482.

Circards - future series

As announced last month the trial period of Circards - the Wireless World information service on circuit design - has confirmed our hopes and the scheme is to be continued and extended.

We list below the subjects it is planned to cover in the next 10 sets of cards - although not necessarily in the order listed. The first (No. 6) will be available at the time the May issue is published. The U.K. price per set is $£ 1$ and the overseas price $£ 1.15$ (airmail postage extra).

Many readers have asked if they may order sets of future Circards to be sent as published. We have therefore introduced a subscription rate for the next ten sets (Nos 6-15) which it is hoped to issue monthly. The subscription for the U.K. will be $£ 9$ and for overseas $£ 10.50$. Orders for individual sets or subscriptions should be addressed to J. Rider, IPC Business Press, Sundry Sales, 33-40 Bowling Green Lane, London E.C.1.

Power Amplifiers: Power amplifiers, d.c., audio switching and r.f.
Constant Current Circuits: Regulating currents at high and low powers for load and bias purposes.
Opto-electronics: Generation, detection and processing of optical signals.
Basic Logic Gate Circuits: Practical gate circuits using m.o.s., t.t.I. and other logic families.
Astables: Generation of repetitive waveforms from low to high frequencies using i.c. and discrete circuits.
Micropower circuits: Operation of amplifiers, oscillators and measurement circuits at very low voltages and currents.
Wideband Amplifiers: Amplifiers of varying power levels over wide frequency bands.
Alarm circuits: Detection of fault conditions and control of alarm devices.
Pulse Modulators: Modulation of pulse waveforms for communication and instrumentation systems.
Digital Counters: Binary counters using a variety of logic families.
New readers may also like to know the subjects already covered in Circards:

1. Basic Active Filters; 2. Switching circuits: Comparators and Schmitts; 3. Waveform Generators; 4. A.C. Measure ments; and 5. Audio circuits: preamplifiers, mixers, filters and tone controls. These are still available from the above address at the same individual price quoted above (they are not available at the reduced subscription rate).

More about Sonex '73

Some interesting audio equipment to look out for at the show

In addition to the list of brand names and details of the situation and times of opening of this year's Sonex audio show which were published last month, the following is a selection of further "exhibition briefs" covering some of the more interesting equipment at the show. Sonex ' 73 will be held in the Excelsior Hotel, West Drayton (near London Airport), from 30th March to 1st April inclusive.

Exhibition briefs

The latest combined turntable and arm from Philips will be introduced at Sonex. The two-speed deck uses a low-speed synchronous motor and belt drive with a free floating sub-chassis for turntable and arm and will be sold with Philips GP400 cartridge. Two features not previously seen on Philips decks are automatic arm return and a stylus force meter which gives a direct reading during playing.

The HTA200 tuner-amplifier is a HiSound product marketed by the Electronic Manufacturing Company and will be on show for the first time. Output from the amplifier is 50 W r.m.s. Also available will be the HTA 200 C tuner-amplifier which incorporates a BSR810 deck.

Two new cassette recorders from BASF are the 9301 four-waveband radio cassette recorder (£75) and the 9201 (£55) both incorporating facilities for automatic switching to bias for chromium dioxide tape. This switching is a function provided by special cassettes which activate the switching device, an idea first thought of and patented by Philips. These CrO_{2}
cassettes will be on show with the BASF range of ferric oxide tape cassettes.

Alpha, Luxor, Pickering and HarmanKardon are all brand names marketed by Highgate Acoustics and a selection of their equipment will be demonstrated. From Alpha, the 0007 tuner will be available as well as the CD1000 stereo cassette deck which has a claimed signal to noise ratio of $>35 \mathrm{~dB}$. and wow and flutter $<0.3 \%$. Luxor have an additional combined deck and tuner amplifier, the 3821 together with the 6821 speakers. Pickering will display a new cartridge of the XV 15 series, number 1200 E . The full range of Harman-Kardon tuner-amplifiers will be displayed plus the new HK 1000 cassette deck and a new tuner Citation 15.

The BCIII is a new loudspeaker from Spendor with a 12 in base and 8 in mid-range driver which have cones developed by Spendor. These combine with two h.f. units which are the Celestion types HF 1300 and HF200. The base and mid-range drivers have vacuum formed Bextrene cones and short coil sections to increase

Saba Television make their first appearance at Sonex this year and will show the above Freiburg a.m./f.m. tuner, the Telecommander, which has facilities for ultrasonic remote control. Using the romote control, the listener has control over on/off switching, seven pre-set f.m. stations, volume and tone.
efficiency and the power-handling capacity. Nominal impedance is 8Ω.

The Rogers demonstration of equipment will include the recently introduced Ravensbourne speaker which has a peak power handling capacity of 35 W .

ADC are introducing three cartridges at Sonex the XLM, VLM and Q series. All incorporate the induced magnet principle with an electrical system of damping. Total weight of each cartridge has been reduced to just over 5g.

KEF are showing a monitor loudspeaker which uses three drive units and has an integral two-channel power amplifier incorporating an active filter dividing network. The speaker also has an electronic overload protection circuit to prevent thermal damage to the speaker drive units.

Acoustico Enterprises, distributor of the Japanese Teac equipment, will show four new items at the show - the A450 "Challenger" cassette deck ($£ 200$), the AN300 four-channel Dolby noise reduction unit ($£ 180$), the AX300 four-channel audio mixer (with six microphone and four line inputs ($£ 200$), and finally the TS130 automatic turntable ($£ 60$).

Supplementing the demonstrations and display of audio equipment, there will be a programme of lectures which will include the following:
30th March
12.00 - "Loudspeakers"
by J. Wright (IMF)
15.00 - "Listening room acoustics" by K. Shearer
31st March
12.00 - "Meet the magazines" A panel of editors of journals in the audio field will be formed for discussion and questions
15.30 - "Quadraphonics", a talk and demonstration by Wensley Ruggles (Connaught Equipment) and a representative from EMI
19.00 - "Meet the magazines", panel discussing quadraphony
1st April
12.00 - "Pickups and turntables" by B. J. Webb
15.30 - "Meet the magazines"

Optimizing Op-amps

by R. J. Isaacs,* F.I.T.E., M.Inst.M.C.

Abstract

Manufacturers of op-amps often fail to specify properly input offsets' temperature coefficients and common mode rejection ratios. Fuller information is needed if optimum circuit performance is to be obtained. What can be achieved is illustrated by a design which uses a low-cost op-amp under adverse circuit conditions but gives good temperature stability over a wide range of environmental temperature.

Over the past decade or so monolithic opamps have become a very abundant "component" in electronic equipment. During this period certain types have come down to a very low price, while more parameters are becoming recognized and defined in manufacturers' data sheets and application manuals. As is common with semiconductor devices, good performance in respect of one parameter can result in not so good a showing in another, so that selection of a device may be largely a matter of compromise by system designers.
Two parameters which are usually very vaguely specified are the temperature coefficients of input offset voltage and current. Both of these are necessary to assess the potential stability of a given device, yet some manufacturers give only typical values, some only maximum values, and others none at all! This applies particularly to the 741 , a very commonly used device, which is frequently described by data sheets as "highperformance" despite its very low slew-rate and despite the almost invariably missing temperature coefficients.

One serious omission which often occurs is lack of information on the dependence of the temperature coefficients upon the magnitude of the offsets to which they refer. In general, the greater the offset the higher is its temperature coefficient. Several manufacturers do in fact state that reduction to zero of the initial offset voltage brings about a large improvement in the temperature coefficient of the initial offset. What is rarely stated, and what has been found by the author, is that if the voltage drop across the input resistors due to the input bias currents is equalized by adjustment of one of the resistors, the temperature coefficient of input offset current is greatly reduced.

Some of the extent to which temperature coefficients are influenced by the factors described could be given on the data sheets. Instead of stating vaguely that the temperature coefficients are V microvolts/deg.C and

[^4]$I \mathrm{nA} / \operatorname{deg} \mathrm{C}$, the data sheets should give figures of the form V microvolts $/$ deg. C / mV offset and $I \mathrm{nA} / \mathrm{deg} . \mathrm{C} / \mathrm{nA}$ offset. These might suggest a linear relationship in each case when the relationship is not linear, but at least they would give some idea of the amount of adjustment required to improve the performance of an op-amp.

Thus it is apparent that the performance is to some extent under the control of the designer, and indeed there are occasions when the magnitude of a parameter must be controlled. For example, the common mode rejection ratio is always specified as though, come what may, it just happens. This, however, is not so. Fig. 1 shows the basic circuit of an op-amp in the inverting configuration. Because, as far as determination of gain is concerned, the input differential pair behaves like two separate amplifiers, inequality of gain on the two sides brought about by

Fig. 1. Op-amp inverting configuration.

Fig. 2. Temperature scaling circuit using an op-amp.
any cause gives rise to an output from the amplifier when a common-mode voltage is applied at the differential inputs. To obtain the required gain equality, and hence an optimum common-mode rejection, the gains must be equal, i.e. $R_{f 1} / R_{s 1}=R_{f 2} / R_{s 2}$.

These questions are not raised in any of the text-books the author has seen, and are of great importance when for economic reasons a low-cost amplifier has to operate with high values of input resistance. An example is shown in Fig. 2. A device we have developed incorporates a meter which indicates temperature over the range 29 to $42^{\circ} \mathrm{C}$. An inverting configuration of op-amp circuit is used to enable the non-inverting input to be utilized for suppressing the meter zero. The inverting input has to be operated from one side of a balanced thermistor bridge, so the input resistors, and hence the feedback resistors, have to be high, so that no unbalance occurs in the bridge. For the meter to show temperature correctly, the "cal" control is set for a gain of approximately 17.2 .

Normally, these circuit conditions may be obtained by using a low bias current operational amplifier, such as a 741 L , with a unit price of $£ 5$. In this particular case the manufacturer of the instrument had for various reasons to make his component costs as low as possible, so he used a version of the 741 marketed by R. S. Components Ltd as the 741 -OPA, at a price of 60 p each.

On request. R. S. Components gave temperature coefficients as follows, both figures being typical:
Offset voltage t.c. $5 \mu \mathrm{~V} / \mathrm{deg} . \mathrm{C} / \mathrm{mV}$ offset.
Offset current t.c. $\quad 50 \mathrm{pA} / \mathrm{deg} . \mathrm{C} / \mathrm{nA}$ offset
We also have the usually-published offsets (typical):

$$
\begin{array}{ll}
\text { Voltage } & 1 \mathrm{mV} \\
\text { Current } & 20 \mathrm{nA}
\end{array}
$$

Hence, for a typical amplifier:
$\begin{aligned} \text { t.c. of offset voltage } & =5 \times 1 \\ & =5 \mu \mathrm{~V} / \mathrm{deg} . \mathrm{C} \\ \text { t.c. } \text { of offset current } & =0.05 \times 20 \\ & =\ln \mathrm{A} / \text { deg.C }\end{aligned}$
With $1 \mathrm{M} \Omega$ input resistors, the latter figure causes an additional offset voltage temperature coefficient as:
$1 \times 0.001 \mathrm{~V} / \mathrm{deg} . \mathrm{C}=1 \mathrm{mV} / \mathrm{deg} . \mathrm{C}$

The initial offset voltage coefficient of 5 microvolts/deg.C is negligible compared with the additional $1 \mathrm{mV} / \mathrm{deg} . \mathrm{C}$ so can be neglected.
Over the required ambient temperature range of 0 to $40^{\circ} \mathrm{C}$ the offset change is 1×40 $=40 \mathrm{mV}=0.04 \mathrm{~V}$. This gives an output voltage change of $0.04 \times 17.2=0.688 \mathrm{~V}$, or more than half the f.s.d. of the meter, which is clearly unacceptable. In these calculations typical figures have been used. No designer would normally use these figures in practice, but it has been shown here that even if the typical parameters were used then over the ambient temperature range specified the 741 would be very unusable. If a designer were using the maximum parameter values:

Offset voltage t.c. $12 \mu \mathrm{~V} / \mathrm{deg} . \mathrm{C} / \mathrm{mV}$ offset

Offset current t.c.	$2.5 \mathrm{nA} / \mathrm{deg} . \mathrm{C} / \mathrm{nA}$ offset
Offset voltage	7.5 mV
Offset current	300 nA

then an ambient temperature change of $40^{\circ} \mathrm{C}$ would produce an output voltage change of 13 V , or over six times the f.s.d. of the meter! In other words, for the purpose described, a "typical" 741 would be useless and a "worst case" one meaningless, unless steps were taken to improve the temperature stability. The method of doing this is now described.
Fig. 3 shows the circuit connected for offset voltage nulling. Manufacturers recommend a low t.c. trimming potentiometer across pins 1 and 5 , with its slider connected to the $-V_{s}$ rail. For economy reasons it was decided to use a single resistor. Pins 1 and 5 in turn were shorted to the - V_{s} rail, and a resistance box connected between the $-V_{s}$ rail and the pin which gave a voltage swing in the right direction on the d.v.m. when shorted to $-V_{s}$. The resistance box was adjusted for zero output, and a low t.c. bridge-selected resistor connected in its place. If an output still appeared, then provided it was only a fraction of V_{s} :

1. It has already been shown that, even in the worst case, input offset voltage nulling in the circuit under consideration is not critical.
2. If the output voltage rests between the rails, the effect of the temperature coefficient is minimal.
Fig. 4 gives the connections for nulling the part of the offset voltage due to offset current. Pins 2 and 3 are disconnected and the resistance box $d R_{s}$ connected on the side giving an output swing in the right direction. The $d R_{s}$ is then carefully adjusted for as near zero output as possible. It was found that as $d R_{s}$ was adjusted only a slow change of output occurred. The slower the change, the nearer to zero the output settled. Resistance box $d R_{s}$ was therefore adjusted to give a very slow output change. The reason for the slow change was not investigated, but it might be safe to presume that it was due to a thermal effect on the $V_{b e}$ of each of the transistors in the differential input pair of the 741 . Fig. 5 shows how the common mode rejection was optimized. In order to maintain $R_{f 1} / R_{s 1}=R_{f 2} / R_{s 2}$, a resistor is connected in series with the R_{f} which cor-

Fig. 3. Connections for nulling input offset voltage.

Fig. 4. Nulling additional input offset voltage due to input offset current.

Fig. 5. Optimization of common mode rejection.
responds to the R_{s} which has been increased. The value of this resistor is the E24 value which brings the output closest to zero.
In the circuit under investigation the common mode change is very small, and is manifested by a proportional addition to the signal voltage. As this does not affect the linearity of the system, the effect can be adjusted out by means of the "cal" control. Unfortunately, unless the commonmode rejection ratio is made as high as possible, interaction takes place between the "cal" and "bal" controls, necessitating iteration of the adjustment of the two potentiometers. The procedure described brings the amount of iteration to a minimum.
A circuit which had been adjusted as described was placed in an environmental chamber and cycled, alternately 1 hour at $0^{\circ} \mathrm{C}$ and 1 hour at $40^{\circ} \mathrm{C}$. Over this ambient temperature range the reading of the meter, over its entire range, shifted by only 50 mV . This was an improvement of a factor of 13.8 over the "typical" uncorrected amplifier, and of 260 over the "worst case" one. Not bad for a low-performance "highperformance amplifier"! For a 2 V f.s.d. meter calibrated 29 to $42^{\circ} \mathrm{C}, 50 \mathrm{mV}$ represents $0.3 \mathrm{deg} . \mathrm{C}$. Hence, taking $20 \mathrm{deg} . \mathrm{C}$ as the median temperature, the corrected instrument circuit responds to changes in ambient temperature to the extent of ± 0.15 deg. over an ambient temperature change of $\pm 20 \mathrm{deg}$. C .

At normal ambient temperature a com-mon-mode input of 400 mV gave an output of 4 mV .
Common mode rejection ratio common mode input
output
$=\frac{400}{4} \times 17.2=1720$, or 65 dB , comparing with the minimum figure given, under ideal conditions, of 70 dB . As resistor values drift with time the figure obtained would deteriorate, but even if it were reduced by the unlikely amount of, say, 10 dB , there would be little effect on the performance.
The manufacturer of the device incorporating the circuit investigated adapted the stabilizing procedure described to suit his own production line and reported that it was economically justified, the "total cost" of an amplifier after stabilization being well below the selling price of a highgrade amplifier.
No doubt other aspects of the performance of low-cost amplifiers could be improved by low-cost methods if required. There is, however, obviously a limit which had not been reached in the case described, where improvement would not be possible, and a more expensive device would have to be used. One example would be if a very high closed-loop gain and also a very high stability were required. All the same, it must surely be agreed that manufacturers have not released all their secrets for general use, making amplifier circuits frequently more expensive than they need be.
In writing this article the author makes acknowledgements to Mr G. Cross, also of the CRC Bioengineering Division, for his expertise on amplifier design, to Mr H.S. Wolff, Head of the Division, for facilities in conducting the investigation and to Mr J. C. P. Dalton, and also to R.S. Components Ltd for information and technical data. All of these have assisted in showing that it is sometimes possible to make a silk purse out of a sow's ear!

Correction

We regret an error in the circuit diagram (Fig.1) of the "Solid State Teleprinter Demodulator" published in our February issue. The junction of Tr_{1} emitter, D_{10} anode, C_{65} and the "SPACE" indicator should be connected to an earth point otherwise the external "Printer magnet loop" will not operate.

Radio Propagation Disturbances 1972

by R. A. Ham*

Abstract

This article presents the author's observational records of disturbances to radio propagation for 1972. It is hoped that the information will complement the records of radio engineers who are concerned with the propagation of radio signals and help to explain to others some of the strange atmospheric conditions which were experienced during the year.

Like other years, 1972 had its share of solar, and atmospheric disturbances, and many readers may like to compare their observations with the diary of natural events were recorded by the author at his radio observatory in Sussex.
Radio blackouts on the h.f. bands, continental broadcast stations interfering with United Kingdom television pictures and f.m. radio, mobile and business radio receivers detecting broadcast stations, are all typical effects of atmospheric disturbances.
Every day, metre wave solar activity is recorded at the author's observatory, and is later correlated with the prevailing conditions on the v.h.f. bands. The aerial *Storrington, Sussex.
systems used for solar observations are illustrated in Fig. 1.

Solar

The Sun, like many other stars in the galaxy, is a nuclear furnace continuously radiating across the electromagnetic spectrum. Periodically, violent eruptions occur on the Sun and large quantities of nuclear waste are ejected into interplanetary space. Radio waves from these solar eruptions can be detected on the Earth 8.3 minutes after they occur on the Sun, but streams of complex particles which also leave the Sun during an outburst may take up to 40 hours to cross the 93 million-mile path between the Sun and the Earth.

During the past $4 \frac{1}{2}$ years of daily solar observation at metre wavelengths, two regular features have emerged. First, the individual burst which may last for several minutes, and secondly, the prolonged solar storm which can last for several days. Examples of these two solar events are shown in Fig. 2.

Considering the Earth as a moving target, it is unlikely that many particles from an individual solar burst would arrive in time to coincide with the Earth's orbit. Therefore, only the high density of particles which are ejected during a prolonged solar storm are expected to strike the Earth. The solar particles which reach the Earth's orbital path, may enter and upset the natural state of the gaseous atmosphere surrounding the Earth.

Solar particles can have a twofold effect upon the Earth's atmosphere. First, they can cause an Aurora to manifest which in turn has a strange effect on terrestrial v.h.f. radio signals and secondly, the particles can disturb the Appleton (F) region of the ionosphere and consequently disrupt the long-distance radio signals which are transmitted on the h.f. bands.

A typical example of a "radio blackout" occurred on November 1, following a prolonged solar storm (Fig. 3.). The effect of this blackout was observed on the ten-metre band during a period when this band had been very active (communications wise) for several days. The occurrence of prolonged solar storms during 1972 is indicated by the dark regions on the chart in Fig. 3 which has been compiled from the author's daily solar observations.

A spectacular Aurora Borealis manifested on August 5 at approximately 0030 following a prolonged solar storm

Fig. 1. The radio telescope aerials, which operate at 95 and 136 MHz . The four-foot parabola is for future solar observation at microwaves.

Fig. 2. (a) An individual solar burst. Observation time 6 mins on 136 MHz (May 9, 1972). (b) A prolonged solar storm. Observation time 8 mins on 136MHz (September 11, 1972).
(A in Fig. 3). This particular auroral event gave a colourful display in the clear night sky and was visible in the south of England for about two hours. Later the same day, around 1500, another aurora manifested, but owing to the daylight this event could not be seen. However, it was detected by many radio amateurs who achieved long-distance v.h.f. contacts via auroral reflection.

Sporadic E

Frequently, during the summer months, the Heavyside (E) region of the ionosphere re-forms into smaller and more densely ionized areas which can deflect v.h.f. radio signals hundreds of miles beyond their intended range. Routine observations have shown that the radio frequencies which are influenced by sporadic E lie between 30 and 90 MHz and that around 50 MHz is the most vulnerable.

From Spring to Autumn, regular monitoring of 49.75 MHz , watching for the sync pulses from a Russian television transmitter, nrovides the first warning that sporadic E is present. Consistent observation over several years has shown that the influence of sporadic E will develop around 50 MHz . and gradually spread its effect above or below this frequency until it reaches its climax and then ends abruptly. On some occasions the whole frequency range (30 to 90 MHz) is affected. The blocked squares on the chart in Fig. 4 indicate the days when the author observed the influence of sporadic E within this. frequency range.

The precise cause of sporadic E has not yet been isolated, although many possibilities have been suggested. At present, the author holds the view that some form of solar activity is responsible for sporadic E. Although observations to date offer no concrete proof to link sporadic E with the solar activity recorded at metre wavelengths, it is hoped that future observations of the Sun at microwaves may produce some correlation.

Tropesphere

Generally, tropospheric openings will extend the normal range of v.h.f. radio signals (transmitted above 100 MHz) by a few hundred miles. Such events cause considerable annoyance to the viewing public, and to the mobile radio users. Early warning of a tropospheric opening can be obtained by watching the barometer for a slow decrease following a period of steady high pressure, or monitoring the signal of a distant television transmitter or radio beacon.

The daily progress of an opening can be plotted by observing the signal strength from the R.S.G.B. v.h.f. beacons which have been strategically placed throughout the United Kingdom. The author's records of tropospheric openings (Fig. 5) have been compiled from regular observations of the R.S.G.B. beacons and the monitoring of the television picture from the I.B.A. transmitter (Ch.8) which is situated in the midlands.

Fig. 3. Daily record of solar activity at 136 MHz between 1230 and 1430 h . Hatched squares indicate individual bursts while dark squares show prolonged solar storm. Dots indicate the days where power failure prevented observation.

Fig. 4. Days when sporadic E was present somewhere between 30 and 90 MHz .
 JANUARY

Fig. 5. Observations of tropospheric propagation during 1972 from the author's location.

Meteors

Meteor particles which collide with, and burn up in, the Earth's atmosphere, leave behind them a rapidly decaying trail of ionized gas. Observations have proved that this ionized trail will deflect a minute part of a v.h.f. radio signal over several hundred miles. The author has installed a radio system at his observatory to count the number of times that the signal from the broadcast transmitter at Gdansk, Poland, is detected in the United Kingdom via meteor trail deflection. Fortunately, the radio frequency of the Gdansk station (70.31 MHz) is electrically quiet in the U.K. and therefore, it has been possible to undertake a regular daily observation for the past 16 months.

Briefly, the meteor equipment operates for 15 hours each day between 0800 and

2300 tuned to 70.31 MHz . In addition to counting meteor "pings", this radio system provides the observatory with a sporadic E and an auroral monitor for the fourmetre band.

From January 1 until December 31 1972, a total of $1,299,587$ "pings" was recorded from the Gdansk transmitter during 5,137 hours of observation. It should have been possible to record for 5,367 hours, but during the year 124 hours were lost because of the power dispute, and 106 hours were given up to atmospheric disturbances, such as sporadic E (56 hours) and static (41 hours). Throughout the year, the hourly reading of the meteor counter was seldom missed, so it has been possible to provide a detailed account of the Earth's journey through the meteor showers.

Shure makes the microphones too.

To make life easier for the sound system installer, Shure offers an entire range of ingenious, lowcost circuitry devices. There are available modular "add-on" mixers, including a professional mixer, stereo mixer and a reverberation mixer. An Audio Control Centre is offered to shape response to match room acoustics, and our Level-Loc to control audio levels. In all, eight superb units are available to aid your work. Post the coupon today for a copy of our Microphone Circuitry catalogue.

Please send me full information on Shure Microphone Circuitry.

Name

Address \qquad

Shure Electronics Limited
84 Blackfriars Road
London SE1, 8HA Telephone (01) 9283424

Convention of the Audio Engineering Society

A report of proceedings and the exhibition in Rotterdam

The third annual convention of the European section of the Audio Engineering Society was held from 20th February in Rotterdam. Since this is an American based society the numbering of the convention - the 44th - was arranged to be sequential with the conventions held in America.
The study and practice of audio has for long been regarded by many as peripheral to true engineering: however, it is evident that the A.E.S. is going a long way towards demonstrating that the subject is fast moving from the realms of a "black art" to an objective and scientific discipline which is producing information to make audio a more predictable tool.

The structure of the convention

The objectives of the convention fall rather neatly into three areas. First as a point in time and place where the results of new research can be presented in the form of papers by engineers to an audience of their peers, secondly to provide some exhibition facilities for professional audio equipment and finally, but by no means least important, to act as a focal point for personal contact with those of a similar discipline but, living and working in widely separated locations. Delegates from all the European countries and America and Japan were among those present. About fifty papers were presented covering a vast range of subjects from impróvements in optical soundtrack on 8 mm cine film to loudspeaker test techniques and recording.

Undoubtedly the most topical papers were the seven that dealt with quadraphony, and more information on these follows later in this report, but perhaps the most exciting were masked by quite ordinary titles that seemed to promise little new information. However, perhaps one of the most powerful comments was made in a non-technical speech by the guest speaker at the A.E.S. awards presentation banquet. Dr.-Ing H. W. Steinhausen elected to talk about the trends in practical electroacoustics and suggested in the early part of his speech that although the engineering research in audio had removed much of the mystery and conjecture, its existence, as in the commercial forms of hi-fi equipment and records, owed much to the essentially artistic function of the information being carried. He went on to say, though, that he hoped the scientific and commercial aspects would not pollute the original
artistry or produce equipment and software just for its own sake. To quote from his speech, "Quadraphony, a new subject much talked about in our branch [of science], is unfortunately no exception. I have not been able to personally discover nor find a teacher who will say that quadraphony is stimulated by anything other than a commercial calculation. Until today I cannot help thinking that the cart is being put before the horse, the horse has in fact four legs, but it does not seem to be clear how it is going to move them to advance into a desired or at least defined direction. . . . To awaken the dormant possibilities of quadraphony and to avoid the possibility of a costly disturbance of business one should agree on the following points:

1. What are we to understand by quadraphony? The very existence of four channels, the mutual relationship of which is not even defined yet, does not offer a sufficient criterion or the basis for a world-wide business with sound carriers [selected] at will.
2. Which are the artistic aspects to be considered the objective of the technological or commercial imagination? 3. What are the means by which we may best reach this objective technologically and economically?
The propagation - often carried out incorrectly - of systems with often dubious characteristics instead of clarifying the objectives is similar to the propagation of solutions for an unknown problem and should stop immediately because it is harmful to business."

Awards presented at the banquet were society Fellowships to Peter K. Burkowitz (chairman, European Section of the A.E.S.) "for continuous contribution to the art and quality of sound recording and recording instrumentation", Arthur C. Haddy, of Decca, "for four decades of fruitful service to the phonographic arts", and Edmund W. Mortimer, of Garrard Engineering, "for a career of contribution to the technology of automatic record players".

Papers presented

With over 45 papers being presented, it is difficult to provide a comprehensive summary of the convention and for this reason a selected few papers will be highlighted for either their interesting content or because they represented a significant contribution.

From Session C on "Listening and Perception", two papers which occasioned considerable interest were presented by co-workers Erik Rorbaek Madsen and Villy Hansen. In these they demonstrated that for the test signal used, the long held supposition (dating back to Helmholtz), that the phase (time delay) relationships of fundamental and harmonics in a signal could not be detected by the ear was wrong. They were able to show that for quite low listening levels, phase shifts as small as 5° between fundamental and second harmonic were readily detected and that the ear was clearly most sensitive to this effect in the range 500 Hz to 5 kHz . In a later private conversation, Erik Madsen pointed out that this coincided with the range of sensitivity to Doppler distortion as studied by. Harwood of the B.B.C. It was also pointed out that the relevance of these findings to the design of loudspeakers cross-over networks was significant since cross-over frequencies are often selected in this same band. The implications extend also to the total system however, since both workers showed that a combination of elements with such a non-linear time delay, (amplifier and poor loudspeaker), was worse than if only one of the elements had poor characteristics. This showed the effect was additive.

Additional tests in reverberant rooms also showed an increased sensitivity due probably to a reinforcement of the initial impression gained from the direct sound, from the reverberant field. Finally again in private conversation - Erik Madsen suggested that it was possible that the severe phase shifting occurring in rear image quadraphonic signals replayed in stereo could cause objectionable forms of coloration and distortion.

Occasioning some of the largest audiences of the convention were the series of papers presented by the various exponents of quadraphony systems. Arguments on methods are readily divided now into two principle camps; the purely matrix systems offered by the SQ, and QS techniques and the so-called discrete system of carrier channel discs with the interesting hybrid the matrix carrier channel disc. It was clearly evident that all systems as presented had evolved considerably in a short space of time as exemplified by both the SQ and QS proponents in the form of B.B. Bauer for CBS and J. Mosely for Sansui who each
described new techniques for the enhancement of channel separation. The CBS system, demonstrated in their exhibition, consisted of a "paramatrix" logic decoder - a development from the full logic decoder which "utilizes signals in one branch of the decoder to cancel selectively the transferred signals in other branches as a function of logic decoding demands". A simple illustration of this was offered by Ben Bauer in private conversation when he pointed out that if, for example, a phantom signal was to be located in the front right loudspeaker, extraneous signals in the left front and right rear loudspeakers could be cancelled by a simple resistive addition of the out-ofphase signals. As this is an instantaneous and continuously variable process its effect would be an enhancement of separation without audible side-effects.

The QS vario-matrix adopts completely different techniques however and "scans the phase relationships between left total and right total to detect in which direction the sound is relatively superior - and how superior it is - both in level and timing. . . . It then utilizes the information so obtained to alter its own matrix coefficient from moment to moment, so as to improve the separation without changing the output level itself". A refinement of the vario-matrix is the split-band vario-matrix which splits the frequency band into two, the resultant being then processed through separate vario-matrices for separate control of the matrix coefficient in each band.

In two papers given by W. R. Isom and T. Inoue et al, developments in the carrier channel discrete disc were reported and concentrated mainly on the improvements in cutting speed which has now been raised successfully to half speed, making it possible for conventional lathes to be used.

With the problem of the broadcasting of quadraphonic material now imminent, it was not surprising to see two papers entered on the subject. One, which aroused a spirited exchange between the author, Lou Dorren, and Professor Geluk of Radio Nederland, dealt with discrete four-channel transmission utilizing the conventional stereo suppressed subcarrier of 38 kHz plus an additional subcarrier of 76 kHz . In the Dorren system the main channel carrying the monophonic receiver information consists of

$$
\mathbf{L F}+\mathbf{L B}+\mathbf{R B}+\mathbf{R F}
$$

and occupies the frequency band from 30 Hz to 15 kHz . For stereo receivers the conventional 38 kHz suppressed subcarrier is modulated with

$$
(L F+L B)-(R B+R F)
$$

To ensure compatibility the phase of this signal is in the sine quadrant. Also in this subchannel is a second information signal

$$
(L F-L B-R B+R F)
$$

which is modulated on a second 38 kHz subcarrier transmitted in quadrature with the first to ensure an effective utilization of the bandwidth.

Finally, a further information channel

$$
(\mathrm{LF}-\mathrm{LB})+(\mathrm{RB}-\mathrm{RF})
$$

is modulated onto a 76 kHz suppressed
double sideband carrier. With such an arrangement there is the problem of the radiated bandwidth of the signal to consider and in this respect Lou Dorren was able to show that it was no greater than for a conventional stereo signal. It was interesting also to note that adjacent channel interference was no worse than for the stereo situation. Signal to noise ratio is, however, about 7 dB worse, which compared to the 23 dB degradation from mono to stereo, was considered by Dorren to be a small percentage. One fascinating suggestion made in the concluding remarks was that with a second quadrature 76 kHz carrier, five independent announcements could be made in different languages by separately modulating each information channel. Receiver decoders could contain a switching device which would be keyed by a tone to suppress the audio output from unwanted channels at the appropriate moment and thus select the appropriate language announcement. This suggestion was sharply criticized by Professor Geluk who maintained that an adequate separation could not be obtained; however, Lou Dorren appeared to be able to offer some solution to the problem and concluded that in his opinion the advantages offered of four discrete channels of information made the Dorren system superior to other systems in the field.

Convention exhibition

Concurrent with the convention was an exhibition of professional audio equipment where some novel new equipment was shown.
For Philips was a professional compact cassette recorder designed to run at a tape speed of $9.5 \mathrm{~cm} / \mathrm{sec}$. This unusual development in cassette machines had three heads, enabling an optimal selection to be made of gap lengths for the various functions. A further feature of this machine was a facility for continuous variable speed selection up to $36 \mathrm{~cm} / \mathrm{sec}$. Basically designed for CrO_{2} tape. the replay time constant is fixed at 50μ s with a flat low frequency characteristic.

In the same area, but not actually shown is the new BASF Unisette, a "king size" cassette containing 6.3 mm wide CrO_{2} tape. Suggested tape speed is 9.5 cm / sec giving playing times up to 30 minutes. Since no machines have been built yet (Ferrograph and Studer are said to be interested) it is difficult to see how the use of this cassette will eventually develop.

EMT, well known for their reverberation plates among other studio devices, were showing a new compressor in a standard mixing desk module. This device used the novel technique of gain control by a four quadrant multiplier giving up to 40 dB of control range.

With a wide display of novel product at the exhibition and a considerable volume of new information from the convention it is possible to only scratch the surface, though further product detail and information from the papers will appear in later issues where possible.

Conferences and Exhibitions

LONDON

Apr. 9-13
Earls Court
Physics Exhibition
(Inst. Physics, 47 Belgrave Sq., London SWIX 8QX)
Apr. 9-13 Earis Court Apr. 9-13

Earis Court
LABEX International
(U.T.P. Exhibitions, 36-37 Furnival St., London EC4A 1JH)
Apr. 10-13
Radio Wave Prop IEE Savoy Place
(Conference Dept. Institution of Electrical Engineers, Savoy PI., London WC2R 0BL)
Apr. 25-27
Chelsea College
B.A.S. Spring Meeting
(British Acoustical Society, 1 Birdcage Walk, London SW1H 9JJ)
BOURNEMOUTH
Apr. 11-14
The Pavilion

Marketing Communications Tomorrow

(Electromation Exhibitions Ltd., Cleveland House, 344A Holdenhurst Road, Bournemouth) Apr. 29-May 2

The Pavilion
RadTelDex ' 73 (Radio \& Television Dealers)
(Corinthian Exhibitions, 17 Pennant Mews, London W8 5JN)

BRIGHTON

Apr. 5 \& 6
University of Sussex
European Co-operation in Research and Technology
(Research and Development Society, 47 Belgrave Sq, London SWIX 8QX)
CAMBRIDGE
Apr. 2-4
The University
Computer Aided Control System Design
(I.E.E., Savoy Place, London WC2R 0BL)

COLCHESTER
Apr. 2-5
University of Essex
Software Engineering for Telecommunication
Switching Systems
(I.E.E., Savoy Place, London WC2R 0BL)

HULL
Apr. 11-13 The University
Teaching of Electronic Engineering in Degree Courses
(Dr. F. W. Stephenson, Department of Electronic Engineering, The University, Hull HU6 7RX)
LANCASTER
Apr. 9-11 The University
Thin Films
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX) LIVERPOOL
Apr. 15-18 The University
To be Continued - Education and Training
(I.E.E.T.E., 2 Savoy Hill, London WC2R 0BS)

NOTTINGHAM
Apr. 10-12
The University
Datafair 73
(British Computer Society, 29 Portland Place, London W1)
OVERSEAS
Apr. 2-7
Paris
Audiovisual and Communication Exhibition
(Société pour la Diffusion des Sciences et des Arts,
14, rue de Presles, 75740 Paris)
Apr. 2.7
Paris
Electronic Components Exhibition
(Société pour la Diffusion des Sciences et des Arts, 14 rue de Presles, Paris-15eme.)
Apr. 3-5
Dayton
Military Airborne Video Recording
(Society of Photo-optical Instrumentation Engineers, P.O. Box 288, Redondo Beach, Calif. 90277)

Apr. 9 \& 10
Paris
International Conference on Alpha Numerical Display Devices and Systems
(Colloque International sur les Memoires, c/o F.N.I.E., 16 rue de Presles, 75740 Paris)

Circuit Ideas

Decoder /coder matrix

This device converts a signal in Murray (teleprinter) code to Elliott (computer) code. Each code consists of 325 -bit binary words representing 32 alphanumeric characters. Conventionally, 32 5 -input AND-gates would be used feeding into 532 -input OR-gates. If buffers were not used, the circuit could be modified with the addition of a few extra components to become reversible, i.e. to perform the conversion in both directions.

For any combination of input signals, each of the lower ends of the $10 \mathrm{k} \Omega$ resistors is pulled down to logical " 0 " except for one, which represents the selected alphanumeric character. This in turn pulls the appropriate outputs, which are connected to a high impedance circuit,
up to logical " 1 ", and so the correctly coded signal appears on the output. If the extra diodes shown are connected, the diode matrix section of the circuit is symmetrical and so with appropriate switching the circuit performs the conversion in both directions. Electromechanical switching was used for this, as the time delay was not critical, but it should be possible to arrange the switching to be done electronically. One way should be to replace the $1 \mathrm{k} \Omega$ driver emitter resistors by transistors which would become a high impedance when the driver was not in use. Both these and the output interfaces could be permanently in circuit, and the switching performed by normal t.t.1. methods.
R. P. Norris,

Hatfield, Herts.

DIODE MATRIX

INPUT DRIVERS

output interface

Noise-immune monostable - 1
The solution for noise-triggered monostable circuits (Circuit Ideas, Feb. 1973) was sophisticated, but requires two power supplies, and the resulting circuit looks unfamiliar to those further down the production chain. Further, one cannot guarantee that interference will not exceed a given fraction of the supply voltage. If a diode is placed in series with $T r_{1}$ collector, for the price of a cheap component one has: a circuit which still looks like a monostable; no need for a bias supply; immunity from any reasonable noise spike; and no need to do any sums!

One caution; any connection directly to $T r_{1}$ collector will bypass the protection; connections should be made upstream of the diode.
E. I. White,

Melksham,
Wilts.

Noise-immune monostable - 2

An extremely simple solution to the problem is to include R_{S} which has a value $<\left(R_{3} / \beta \mathrm{min}-R_{1}\right)$. Current supplied through R_{1} and R_{5} always holds Tr_{2} in saturation while Tr_{1} is cut-off, regardless of $V_{c c}$ fluctuations, which merely reverse

bias the diode. During normal firing, $T r_{1}$ is saturated and R_{5} is simply a resistor from the base of Tr_{2} to ground. Its only effect is to slightly speed-up $T r_{2}$ by facilitating removal of base charge. The operation of the circuit is thus improved and supply-line noise immunity is increased to almost 100% of $V_{c c}$. As with silicon planar transistors the diode is frequently required anyway, this is achieved through the addition of one resistor only. The principle may easily be extended to astable circuits.
Peter Seligman,
Monash University,
Australia.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Distortion reducer

I was particularly interested to see the article "Distortion Reducer" by D. Bollen in the February issue because it took my mind back 40 years! In The Wireless Engineer \& Experimental Wireless for August 1933 there was (p. 413) an article by W. Baggally entitled "Distortion Cancellation in Audio Amplifiers" and a footnote to it stated that the MS was received by the Editor in October 1932.

The systems described in these two articles are substantially the same. The hardware is, of course, very different; Baggally was restricted to using filamenttype valves and did not have the greater freedom available with transistors.

Anyone interested in the method of distortion reduction would do well to refer to Baggally's article in spite of its age. It contains a mathematical analysis and gives the condition for stability.

Although I have never used it, the principle has interested me so much that I have never forgotten Baggally's article. I have several times contemplated employing the principle, but I always came to the conclusion that in a new amplifier the required performance could be obtained more economically by using conventional negative feedback. Perhaps I was wrong in this, but perhaps not, for no one else seems to have used it in 40 years. Or did everyone forget it?

Be that as it may, Bollen's application of it to the reduction of distortion in an existing amplifier is a different matter. The alternative procedure would be to increase the amount of negative feedback in the amplifier to reduce the distortion and to add a pre-amplifier to make up for the resulting loss of gain. At first sight this would give the same performance with fewer extra components. It might well be, however, that this course would raise greater stability problems than those occurring with the cancellation method.

A detailed comparison of the two ways of obtaining substantially the same performance would be of great interest, especially if it treated relative stability. It would, however, be a laborious undertaking. W. T. Cocking,

Ewell,
Surrey.

The golden rule of negative feedback is "Feedback reduces distortion in the same ratio as it reduces gain". Mr Bollen's very interesting circuits in the February issue (p. 54) look as if they are cunningly getting us around this, and giving us something for nothing, but may 1 suggest
an alternative way of looking at their operation?

As in the standard approach to an ordinary feedback system, we focus attention on the input. The main amplifier receives three inputs. In the basic circuit of Mr Bollen's Fig. 1 these are: $-S$ via op-amp $A ;+D_{f}$ via op-amps C and A; and $-S$ via op-amps B, C and A. Thus the net input of signal S has been doubled: the three op-amps function as a pre-amplifer with a gain of two. As the overall gain of the system is unchanged, the gain of the main amplifier must have been halved, and lo and behold so has the distortion.

If we then increase the gain in the distortion channel by a factor G_{2} the gain of the "pre-amplifier" becomes ($1+G_{2}$), the gain of the main amplifier is reduced by this factor, and so is the distortion.

The question then is whether we should get equivalent (or better) results by using a single op-amp as a pre-amplifier and increasing the ordinary negative feedback around the main amplifier. This question I leave for further discussion.

Richard G. Mellish,

Watford,

Herts.

The author replies:

Mr Mellish neglects to mention the missing fourth input term $+S$ which is derived from the output of the main amplifier. Using the same line of thinking, and dropping the term D_{f}, the inputs presented to the main amplifier are $-S$ from op-amp $A,-S$ from op-amps B, C and A, and $S+D$ from op-amps C and A. Thus we have $-S-S+S+D$ at the main amplifier input.

If, as Mr Mellish suggests, the three op-amps merely functioned as a pre-amplifier with a gain of two, and the gain of the main amplifier was halved. one would expect the signal at the main amplifier input to be twice its original value for the same level of output, but this is not the case, as one can easily determine with an oscilloscope. Even with distortion feedback loop gains of ten or more the signal present at the main amplifier input is of virtually the same amplitude as the original signal.

So where does this leave us? I think perhaps with an alternative definition of the golden rule, namely, "non-selective feedback reduces distortion in the same ratio as it reduces gain". Distortion and gain merely coexist, they are not quantities to be traded one with another, hence the distortion reducer circuit in no way attempts to give something for nothing, but instead avoids sacrificing something (gain) for nothing.

There are obviously several approaches to the problem of reducing distortion in existing amplifiers, and Mr Mellish's idea of increasing negative feedback in the main amplifier (stability permitting), while boosting gain with a low distortion pre-amp, is quite interesting. However, this might involve more than the adjustment of a single feedback resistor within the amplifier, and whether results would be equivalent or better remains to be seen. D. Bollen.

Seeing in the dark

May I please be allowed to thank Messrs Gwilym Dann, J. R. Sanders and Stephen Waring for responding to my letter which was published in the January issue, a plea which you headed "Seeing in the dark". In my original letter I suggested that for a colour television transmission taking place or purporting to take place in semi-darkness the bandwidth of the luminance channel and the relative gain to the chrominance channel should both be reduced.

First let me deal with Mr Waring's query, "why pick on ?" etc. If this view were held generally, then we would still be using the 30 -line disc and the Model-T Ford.

Mr Dann refers to "unnatural reproduction . . . television broadcasting is the portrayal of an illusion ... ". But reproduction is not reproduction if it is unnatural and television portrays real actors and scenes, not figments of the imagination as may be conjured up by hypnosis or drugs.

All of these gentlemen disagree with processing the signal to suit human physiology. But surely this is the basis of all engineering, so let us examine some of those situations which are already accepted and are closely allied to the points under discussion.

1. Visual acuity varies with brightness, so camera manufacturers reduce the degree of horizontal aperture correction with reduction of luminance. (The reason for so doing is irrelevant. It is for the improvement of signal/noise ratio. But it is only the aforementioned relationship which allows them so to do.)
2. The Fechner Fraction increases with reduction of luminance. In bright light, lumirfance changes of 1% to 2% are just detectable, e.g. creases in a suit, but these go undetected in dim light. A partial compensation (as mentioned by Mr Dann) is the subtraction of a d.c. component from the signal, thus crushing out all detail in the darker tones.
3. The chrominance signals are transmitted at unnaturally low levels and given extra receiver gain because the Bailey experiment has shown that the eye is less sensitive to noise in the chrominance channel than in the luminance channel, thus enabling the overall amplitude of the complete colour signal to be kept within the limits of the luminance signal.
4. The chrominance channel is given a
narrower bandwidth than the luminance channel because we cannot detect colours at very small angles of view.
5. The N.T.S.C. system reduces two-dimensional chromaticity to onedimensional chromaticity for intermediate angles of view (i.e. the Q-signal is omitted for modulation frequencies exceeding about 0.5 MHz).
6. In the cinema industry, many outdoor scenes purporting to show moonlight conditions appear to be shot in bright sunlight and the film processed deliberately to exclude colours and details in the shadows.

The artificial viewing conditions mentioned in my original letter and emphasized in that from Mr Sanders constitute a form of distortion, and so the use of the practices which I have suggested constitute equalizing techniques, to be compared with equalizing techniques for attenuation distortion etc. Sometimes it may be legitimate to exploit the technicalities as mentioned by the other correspondents for viewing say sports events in conditions of poor lighting, but we must be careful, particularly in such programmes as news bulletins, not to confuse or deceive. This is where the communications engineer must be distinguished from the entertainments engineer.

And finally we must also guard against conditioning the public to accept unnatural situations. We have an example of this in sound radio where the use of cheap receivers has conditioned many people to believe that the frequency range of a symphony orchestra extends from about 200 to 4000 Hz , its dynamic range being about 20 dB and its maximum volume only a few decibels above that of the announcer's voice.
Roy C. Whitehead,
The Polytechnic of North London,
London N7.

Feedback amplifiers

At the risk of overstaying my welcome on this topic, I would like to make a few comments on the interesting letter from Mr Linsley Hood in the January issue (p.11). I am in agreement with his measurements (see Fig.1) and also with his remarks on the common-mode problem in seriesfeedback amplifiers, which, in fairness, I did mention in my November 1972 letter (p .520) to which he refers. However, as in most engineering situations a compromise must be found between conflicting requirements and I feel that perhaps the distortion problem in low-noise series-feedback amplifiers is not as severe as Mr Linsley 'Hood's measurements might suggest, though I would agree that ultimately the shunt circuit could offer better linearity.

I made linearity measurements on several amplifiers including the National LM301, Fairchild $\mu \mathrm{A} 739$ and a seriesfeedback discrete component transistor triple (Fig. 3 of my mixer design ${ }^{1}$, also used as the example in my article on low-noise amplifiers ${ }^{2}$); the results are plotted in Fig.l. I made two-tone intermodulation measure-

Fig.1. Intermodulation in various amplifiers.
ments as these were more convenient with available equipment (i.e. low-distortion oscillators are not required), and furthermore the distortion products can be measured in the audio band rather than beyond the bandwidth of the amplifier as may happen with harmonic products.

The LM301 (a general-purpose amplifier similar to the 741) in a test circuit like Mr Linsley Hood's, shows a markedly poorer performance in the series mode with a predominantly second order product $\left(f_{2}-f_{1}\right)$ at high frequencies due presumably to the common-mode failure at the input. On this matter it is worth noting that the 741 specification shows the open-loop again and common-mode rejection to have fallen by 40 or 50 dB at 20 kHz .

In contrast, the $\mu \mathrm{A} 739$ has a c.m.r.r. of 90 dB up to 20 kHz and a higher gainbandwidth product of 20 MHz as well as lower distortion due to a class A output stage ard a low noise figure ($R_{n v}$ is about 600 ohms compared with 10 k ohms for the 301^{2}). Changing the amplifier in our test circuit to the 739 gave the expected improvement, and distortion levels for the two configurations were almost identical up to 20 kHz .

Turning to the series-feedback triple, I set the feedback loop for a flat gain of 11 , and under similar output levels $2 \times 1 \mathrm{~V}_{\text {r.m.s. }}$, the second and third order intermodulation levels were very low and rose above -90 dB only at 20 kHz . These results demonstrate that, provided suitable amplifiers are chosen, a series feedback configuration, also optimized for low noise, can offer a linearity more than adequate for the most stringent audio requirements.

The analyses of RIAA equalized pickup amplifiers given in my May 1972 article 2 were for the ideal case (neglecting transistor noise, the effect of the feedback loop and biasing resistors) when it was shown that the shunt feedback configuration gives a broadband noise level of -66 dB referred to 5 mV at 1 kHz , some 14 dB worse than the series circuit, and clearly demonstrates the degradation of noise figure caused by a series input resistor very much greater than the source impedance.

For the p-n-p Liniac described in his letter, Mr Linsley Hood quotes a noise level 6 dB below thermal noise ($B W=20 \mathrm{kHz}$), so either the measurement bandwidth was limited or the amplifier input was opencircuit (the low-noise condition for a current amplifier). In this particular circuit, above 2 kHz the feedback loop shunts the amplifier input with a 47 k ohm resistor (in parallel with 1.5 nF) thereby introducing a noise figure of 3 dB increasing to 5 dB at high frequencies due to the rising cartridge impedance (ref.2, eqn.7). Fortunately this is not too serious since the shunt circuit generates most noise below $1 \mathrm{kHz}^{2}$.

With the shunt feedback arrangement I have often found that amplifier noise is audible above tape noise and surface noise on discs, and, with the new generation of "noise-reduced" recordings and low-output heads, I do not consider this a satisfactory situation as I believe audible background noise to be a source of listening fatigue.

However, good linearity can be achieved by current-driving large signal stages, in a series-feedback amplifier, and without degrading the noise performance as the following measurements made on the
pickup amplifier described in my mixer article ${ }^{1}$ (Fig.3) indicate. Second order intermodulation products are -72 dB ($<0.03 \%$) at $10 \mathrm{kHz} \pm 130 \mathrm{~Hz}$ for two equal output signals at 10 kHz and 130 Hz having a composite level of 15 V pk-pk. (An intermodulation test is more realistic than t.h.d. measurements on equalizing amplifiers.) Noise, in a 20 kHz bandwidth, is -78 dB referred to 5 mV at 1 kHz , and cannot be significantly improved without using the active termination discussed in an earlier correspondence ${ }^{3}$. To sacrifice 14 dB of signal-to-noise ratio with the shunt circuit in order to obtain a distortion level of 0.01% (probably two orders of magnitude lower than the cartridge) is, in my opinion, to eliminate one form of interference only to replace it with another.
H.P. Walker,

South Queensferry.

References

1. Walker H.P., "Stereo Mixer", Wireless World May 1971, p. 221.
2. Waiker H.P., "Low-noise Audio Amplifiers", W.W. May 1972, p.233.
3. Buckner/Walker, Lerters, W.W. December 1972, P. 575.

Feedback amplifiers

Mr Linsley Hood's letter in Januarys issue ($p .11$) ratises several interesting points concerning the poor distortion performance of series feedback amplifiers compared with shunt feedback amplifiers. A point of particular interest is the source of the additional distortion in the series feedback configuration, and I am of the opinion that it is attributable entirely to the common mode performance of the amplifier.

The differential amplifier shown in Fig. 1 can be characterized by the equation

$$
V_{o}=A_{d}\left(V_{1}-V_{2}\right)+A_{c}\left(V_{1}+V_{2}\right)
$$

where A_{d} is the differential gain of the amplifier and A_{c} is a gain factor equal to half the common mode gain since the common mode input signal is defined by $\left(V_{1}+V_{2}\right) / 2$. If the amplifier is now incorporated in a series feeback configuration, Fig. 2.

$$
V_{o}=A_{d}\left(V_{i n}^{r}-\beta V_{o}\right)+A_{c}\left(V_{i n}+\beta V_{o}\right)
$$

closed loop gain

$$
\begin{align*}
A_{f} & =\frac{V_{o}}{V_{i n}} \\
& =\frac{A_{d}+A_{c}}{1+\beta\left(A_{d}-A_{c}\right)} \tag{1}
\end{align*}
$$

By differentiating equation 1 , the relation between the fractional change in closed loop gain $\frac{d A_{f}}{A_{f}}$ and the fractional change in dif-

Fig. 2
ferential gain $\frac{d A_{d}}{A_{d}}$ is found to be:

$$
\begin{align*}
\frac{d A_{f}}{A_{f}}=\frac{1-2 A_{c} \beta}{1+\beta\left(A_{d}+A_{c}\right)} \cdot & \frac{A_{d}}{A_{d}+A_{c}} \cdot \frac{d A_{d}}{A_{d}} \\
& \simeq \frac{1}{1+A_{d} \beta} \frac{d A_{d}}{A_{d}} \tag{2}
\end{align*}
$$

Similarly for a fractional change $\frac{d A_{c}}{A_{c}}$,

$$
\begin{align*}
\frac{d A_{f}}{A_{f}}=\frac{1+2 A_{d} \beta}{1+\beta\left(A_{d}-A_{c}\right)} \cdot & \frac{A_{c}}{A_{d}+A_{c}} \cdot \frac{d A_{c}}{A_{c}} \\
& \simeq \frac{2 A_{c}}{A_{d}+A_{c}} \frac{d A_{c}}{A_{c}} \tag{3}
\end{align*}
$$

The approximations in equations 2 and 3 make the assumptions $A_{d} \beta \gg 1, A_{d} \gg A_{c}$ and $2 A_{c} \beta \leqslant 1$.
Equation 2 gives the well known result that feedback reduces the effect of changes in differential gain by a factor $(1+A \beta)$. Equation 3, however, shows that feedback

can increase the effect of changes in common mode gain by a factor 2 compared to the open loop configuration. This in itself may not be important but by applying feedback the common mode signal becomes:

$$
\frac{V_{i n}}{2}\left[1+\frac{A_{d} \beta}{1+A_{d} \beta}\right] \simeq V_{i n}
$$

whereas the differential mode signal is reduced by the loop gain to

$$
V_{i n}\left[\frac{1}{1+A_{d} \beta}\right]
$$

Thus the ratio of the component of the output signal due to the common mode input signal, to the component of the output signal due to the differential mode input signal, is given by:

$$
\frac{V_{o c m}}{V_{o d m}}=\frac{A_{c} V_{i n}\left[1+\frac{A_{d} \beta}{1+A_{d} \beta}\right]}{\left.A_{d} V_{i n} / 1+A_{d} \beta\right)} \simeq \frac{A_{c}}{A_{d}}\left(1+2 A_{d} \beta\right)
$$

In the closed loop configuration, the effective common mode rejection ratio is therefore reduced by a factor approximately equal to twice the loop gain and the distortion components associated with the common mode gain becomes increasingly significant.

To summarize, the cause of distortion in an amplifier with series feedback can be attributed to the fact that as well as amplifying, as in shunt feedback, the amplifier is also required to perform the subtraction of two nearly equal quantities, and any nonlinearities in this operation lead to distortion. If a linear subtraction process is performed externally to the amplifier, this source of distortion is eliminated and the feedback arrangement shown in Fig. 3 should therefore offer the low noise advantages (for low source impedance) of series feedback with the low distortion of shunt feedback. It is of course essential for this circuit that the signal source be floating. E. F. Taylor,

Electrical Engineering Laboratories, University of Manchester.

Sixty years ago

As a reader of the $W . W$ for over fifty years I am naturally interested in the excerpts from your issues of sixty years ago, especially as they are now approaching the period of my memory.

I was particularly interested in the mention in your January 1973 issue of the anxiety felt by the Marconi Co. in 1913 regarding the competition from c.w. systems. There were a number of these developed in the first decade of this century but at that time they showed very little advantage over spark systems and it was not until the development of heterodyne receivers using triodes in about 1912 that the advantages of c.w. became apparent.

The assertion that Marconi had produced a c.w. system using a spark discharge around 1907 cannot be substantiated although the myth has been perpetuated in Baker's recent "A History of the Marconi Company". What the Marconi organization did do, about 1914, was to produce the timed spark system which used a number of disc dischargers keyed to a common shaft. These were carefully phased so that the primary discharges were additive in the common secondary, thus radiating a modulated c.w. from the aerial.

During the second decade most of the v.l.f. stations built were either of the arc type or used h.f. alternators.

The introduction of short waves in the third decade, particularly the MarconiFranklin beam system, revolutionized radio telegraph communication and the use of v.l.f. for point-to-point services quickly came to an end.
W. L. E. Miller,

Mill Hill,
London NW7.

Industrial Electronics

2. Displacement and position

by Richard Graham

One of the ròles of industrial electronics is, as was mentioned in the introductory article last month, the rendering of aid to humans to enable them to work at much higher efficiency. The subject for discussion in this article is an illustration of just such a field of activity and is concerned with measurement of movement, position and length.

Of what? Yes, well almost anything, but in the main the devices to be described are part of machine tools and the movement or position being measured is that of the work-piece or tool. They also make possible the attainment of more and more accurate inspection, can be used as mechanical-to-electrical transducers in weighing and are finding new applications constantly in many branches of engineering.

As a class, these paragons are termed displacement transducers, a name which covers several different techniques although each application has its own favourite method. Machine tools being perhaps the most widespread application, we can start with the type of transducer most commonly used by them the optical variety.

Optical transducers

Two distinct types of optical displacement transducer are now in widespread operation. In the first type to be described, position is determined by counting techniques, starting from an arbitrary zero, and the equipment is categorized as "incremental". The second kind is a development of this, based on experience of the use of incremental equipment in an industrial environment, and is known as the "absolute" type of transducer.

Incremental. The first class of equipment, upon which much early work was done by Ferranti ${ }^{1}$ and the National Physical Laboratory ${ }^{2}$ (and later the National Engineering Laboratory), relies on the moiré effect observed when slightly crossed gratings are placed next to each other. In principle, the system is simple in the extreme; in practice, the production of gratings and the processing of the signal is fairly complex.

Assume, for a moment, that the movement of interest is that of a slide on a mach-
ine tool, and that we wish to know the amount of movement to a resolution of 2.5 mm . (If this really were the required resolution, we might equally well use a piece of string, but it serves to illustrate the principie.) All that is required is a transparent sheet of glass - a grating with opaque stripes at 2.5 mm centres, a lamp, a photocell and a counter. As the slide moves with its attached grating, the photocell is alternately darkened and illuminated, the resulting pulses being displayed by the counter.

This process would work well down to a resolution where one complete cycle on the grating was small enough to compare with the size of the photocell, at which point pulses would no longer be produced and the system would be useless. At 2.5 mm cycle length this situation is almost upon us, and any improvement in resolution requires a new approach. Using two gratings and the moire effect, it is possible

Fig. 1. Crossed gratings demonstrating the production of moiré fringes.
to recognize grating movements to a resolution of 0.0025 mm or better, and by use of prismatic gratings and refined techniques to a much smaller resolution.

Fig. 1 shows the basic moire principle. As the gratings move relative to each other in a direction perpendicular to the lines, the interference patern of fringes moves in a direction parallel to the lines, and a grating movement of one line moves the fringe pattern one fringe. The size of the fringes is adjustable by altering the angle at which the lines on the two gratings cross.

It is clear that the use of the gratings has apparently magnified the relative movement, the magnification being often 1000 times or more. An additional benefit conferred by the principle is that eacis "mark", instead of consisting of one dark line whose positional accuracy influences the whole system, is a "fringe", caused by the crossings of perhaps 500 pairs of lines, and the averaging effect of this reduces the need for accuracy. It must be admitted though that the producers of gratings do not allow this to get in the way of truly staggering degrees of accuracy.

Having obtained the fringes, some care must be directed towards the derivation of an electrical signal which will provide information on both the amount and direction of the relative movement. Fig. 2 shows a frequently used scheme in outine.
The use of four photocells is concerned with need to recognize direction. The gratings, or rather the grating and an index made from a small section of the larger grating, are adjusted so that one complete cycle of the interference pattern occupies the width of the four cells, so that each cell is 90° out of phase with the adjacent ones. Fig. 3 shows the waveforms from each cell as the grating moves, and subsequent signal processing. The final result is seen to be a train of pulses on either the "forward" or "reverse" outputs, and four times the number of pulses appear as would be produced by the scanning of fringes by one photocell.

It only remains to feed the pulses to a reversible counter and display to obtain a position and displacement measuring device of high accuracy, of high resolution and with digital display. For the

Fig. 2. A typical arrangement for the detection of fringes.
conversion of rotary motion to electrical signals, circular gratings with radial lines are made to the same order of accuracy. Increased resolution can be obtained by the use of spectroscopic gratings in which the "lines" are formed by microscopic prismatic rulings in transparent plastic, but for anything other than the most precisely controlled working conditions (the reading head gap is very important) these gratings are difficult to apply. Line densities of up to 6350 lines per inch are available.

The method of measurement just described is virtually ideal in most respects. It is unfortunate that it is somewhat vulnerable in the precise area in which the industrial environment is most inimical - it is susceptible to noise.

One of the advantages of the incremental equipment is that it can be arbitrarily set to zero at any point, because no part of the grating is different to any other part. However, this apparent advantage is obtained at a price which, in the end, proves far too expensive. The lack of uniqueness in each grating section means that if, anywhere in the system, a pulse is miscounted or a mains transient gets loose in among the counters, then all the information gathered to that instant becomes valueless. The only way to rectify such a situation is to return to the zero position and throw again.

Absolute. Workers at the National Engineering Laboratory, East Kilbride, Glasgow, whose researches are chiefly directed towards machine-tool applications, evolved a hybrid analogue/digital method of using gratings in conjunction with coarse coded tracks ${ }^{3}$. In operation, the newer system is absolute in that, although its accuracy is entirely depen dent on the finest incremental track of a multi-track grating, it does not rely on counting techniques. Interruption of the supply or transient interference do not affect results and, if a machine-tool fitted with the system is switched off, it can be re-started without the necessity of running each axis back to zero or datum.
Fig. 4 shows the relevant waveforms; the method of interpolation, will be described later. A is the signal produced by the first (finest) track of a three-track grating. B is derived from A electronically, A being interpolated to provide a sub-division by 10 . Also derived from A are C and D which, in antiphase, have switching points at transitions $4 / 5$ and $9 / 0$ of B. An "up" condition is considered to be "on". The second grating track is divided into two signals, each providing counts of 0-9, shifted in phase to each other by 180°. Operation proceeds as follows.
Assume that the reading head is in the area between 0 and 4 of the first cycle of the finest track. The interrogation waveform I_{1} strobes the second-track first waveform S_{1} and detects the fact that a 0 is present. The reading will therefore be from 01 to 04 . At the $4 / 5$ switch-point on the first row, waveform I_{2} comes "on" and strobes S_{2}, which

(forward counter input)
$A D^{\prime}+B A^{\prime}+C B^{\prime}+D C^{\prime}$ ل $ل 111 ل$ ل (reverse counter input)

FORWARD MOVEMENT
REVERSE MOVEMENT
Fig. 3. The derivation of direction and count signals from four cells spaced at 90° intervals over one fringe "wavelength".
also shows 0 . The readings are therefore 05-09. At this point, I_{2} goes "off". I_{1} comes "on" and strobes S_{1}, which has meanwhile changed to 1 , giving readings of 10 to 14 , whereupon I_{1} goes "off". I_{2} comes "on", strobing S_{2} and finding 1 again. It will be seen that the switch points of the second track cause no error provided that they are within $\frac{1}{5}$ cycle of the first track (2.5 digits).

The process is repeated for the second and third tracks, coarser information being obtained by any suitable means, such as a coded digitizer on the leadscrew of a machine tool. The method affords many advantages over the incre mental variety of grating system. Fore most, of course, is the absolute nature of the measurement and the elimination of counting and storage elements. The accuracy of the whole system is that of the first track.

The method of sub-division of each cycle of the grating pattern is basic to the system and is responsible for the uniqueness of each digit. If it can be assumed that the waveforms from the reading head are triangular instead of sinusoidal. the diagram becomes fairly easy to draw, and Fig. 5(b) is the result.

From the resistor network shown in Fig. 5(a). fed with processed reading head waveforms as indicated. each tapping point will give a signal shifted in phase by 36° from the adjacent one (Fig. 5(b)). Passed through a zero-crossing detector there emerges a ten-line shift-register code which can fairly easily be combined by means of simple logic to provide a unique one-out-of ten code. Very fine gratings will produce sinusoidal waweforms rather than triangular ones. and the resistor network must be modified to suit.

The investigation of measurement by optical methods still continues but by the means described it is possible to measure movements up to 10 inches to a resolution of 0.0001 inches, and a rotary motion to within 3 seconds of arc.

Fig. 4. N.E.L. absolute system. The first track strobes the second track to establish a reference.

Fig. 5. (a) Resistor network to give family of phase-shifted waveforms. (b) Waveforms at tapping points of (a). Negative halves of curves are ignored. Arrows indicate zero crossings.

References

1. A. T. Shepherd. "Recent Developments in Moiré Fringe Measuring Systems for MachineTool Control". Int. J. Mach. Tool Res. Vol. 3 pp. 47-59. Pergamon 1963.
2. J. M. Burch. "The Metrological Application of Diffraction Gratings" Wolf. E. (Ed.) Progress in Optics, Vol. II. Wiley 1963.
3. A. Russell. "Technical Aspects of the N.E.L. Absolute Grating Measuring System" N.E.L. Report No.366. Min. of Tech. 1968.

World of Amateur Radio

Coast W6 district (OK3ATP-W7DOL/ W6). By the end of January, Stew Perry had already contacted 120 different DX stations in 37 countries. WA8IJI is reported to be using three Beverage receiving aerials each 1000 ft long. Paul Godley, who made amateur history in 1921 by receiving many transatlantic signals using a Beverage aerial at Ardrossan, Scotland, suggests using diversity reception with either two Beverage aerials or a Beverage and a vertical. Although he gave up his American call 2ZE in 1923, he can still copy c.w. and obviously takes an interest in the revival of 1.8 MHz for DX working in recent years.

GB2RS and Oscar 6

The need to have up-to-date orbital data for Oscar 6 is proving another inducement to listen to the weekly R.S.G.B. news bulletins "broadcast" under the call sign GB2RS irom a number of different amateur stations throughout the U.K. each Sunday morning. This amateur news service has grown steadily in coverage since it was launched in September 1955 by Frank Hicks-Arnold, G6MB. It includes a number of features that professional broadcasting would find unusual. For example, it is possibly the only "broadcast service" regularly using s.s.b. as well as a.m. and where the news reader, once his broadcast is completed, immedately contacts - using his own call-sign - a number of his listening audience who may add their own comments on the news. The call sign GB2RS is transferred from one station to the next throughout the morning and the transmissions go out in the 144 MHz band as well as on 3.6 MHz .

For many years the first broadcast has been at 0930 hours in the London region and is usually made by Arthur Milne, G2MI, of Bromley, Kent; one of the listeners who regularly joins the "after-the-news" net is his son Geoffrey Milne, G3UMI. G2MI's s.s.b. transmission is usually followed at 1000 hours by an a.m. transmission by Len Lewis, G8ML, in the Cheltenham area.

One of the conditions imposed by the M.P.T. on these broadcasts is that all scripts have to be vetted by then in advance. Apart from the Oscar 6 predictions the bulletins often include news of DX activity, reports on propagation conditions, contest results and announcements about club meetings and special events.

Amateur television news

A Midlands branch of the British Amateur Television Club has been formed "to promote activity on the v.h.f. bands, to exchange ideas and generally to help the up-and-coming younger members'". Details from the chairman, Arthur Bevington, G6AFVT/G5KS. 55 Knottsall Lane, Oldbury, Warley, Worcs. (Telephone 021-5fi2 1409).

A two-way vision contact has been made between Peter Worplesdon, VK3ZPA, Victoria. Australia, and Winston Nickois. VK7EM, in Tasmania over a distance of about 230 miles.

After trying to interest amateurs in long-distance transmission of lowdefinition mechanical television (reported here on page 193, April 1972). Chris Long of Victoria, Australia, is now concentrating on exchanging $\frac{1}{4}$ inch tapes to 30 - or 32-line standard - one of his tapes is held by I.B.A's Television Gallery. Although he also works on high-definition (up to 1500 lines) he is anxious to encourage more interest in modern low-definition systems.

An amateur TV convention is being organized in West Germany; details from Manfred May, DC6EU, Caesarstrasse 13, Bayenthal 51, D5000, Cologne.
B.A.T.C. reports that it is hoping the 70 cm beacon transmissions will be moved to about 432 MHz to minimize interference to amateur TV.

Around the bands

The decline in sunspot numbers has been making itself evident in recent months by the fewer and shorter openings of the 21 and 28 MHz bands and early fade-outs on 14 MHz in the evenings. Nevertheless there is some evidence that 21 and 28 MHz are open more often than many amateurs believe. It may well prove for example that some of the 29.5 MHz stations, reported as heard through Oscar 6, may turn out to be real transmissions made on the band. The various ten-metre amateur beacons are a useful check and these now include: GB3SX Crowborough, DL01GI Salzburg. VE3TEN Ottawa and 3B8MS Mauritius all between about 28,175 and $28,200 \mathrm{kHz}$. Of these VE3TEN, over the difficult North Atlantic path, is the most clusive but has been heard in the UK.

On 3.5 MHz , Norman O'Brien, G3LP, continues his regular dawn schedules with ZL4IE in New Zealand and on February 11 completed his 500th contact with misses on only about 4 days apart from holidays.

That indefatigable 1.8 MHz enthusiast, Stew Perry, WIBB, reports the first contacts between Japan and the W8 district of America (JA7A0 - WA8IJI) and between Czechoslovakia and the West

In brief

At the end of 1972 there were 14,464 Class A licences; 3714 Class B; 2854 Class 4 /mobile; 826 Class B/mobile and 227 arnateur TV licences in the U.K. Class B call signs in the G8HAA sequence are now being issued. . . . Major Jack Drudge-Coates, G2DC - one of the originators of what became the B.E.R.U. contests - has died. His life-long interest in DX operating began in the early days of international working when he operated in India. . . . The U.K. now has reciprocal licensing agreements with Austria, Belgium, Brazil, Denmark, Dominican Republic, Finland. France. Federal Republic of Germany, Israel, Luxembourg, Monaco, Netherlands, Norway, Poland, Portugal, South Africa, El Salvador, Sweden, Switzerland and the U.S.A. . . . The Radio Amateur Invalid and Bedfast Club has 421 members including 165 licensed amateurs of whom 76 are blind and 84 permanent invalids. ... A Mini-Convention is being held at the Royal Hotel, College Green, Bristol, on Saturday, May 26 (details G. Mather, G3GKA, 8 Hills Close, Keynsham) . . . The 19th V.H.F. Convention is to be held at the Winning Post Hotel, Whitton, on Saturday, April 8 -- plus probably a Sunday morning session. . . . One of the stations regularly sending slow Morse transmissions is the R.A.F. club station at Locking, Somerset, with daily sessions, Mondays to Fridays, on 1910 kHz , 3590 kHz and 144.050 MHz (the 3590 k Hz transmissions are receivable over a large area). . . . Otley Radio Society is organizing a Northern Mobile Rally at Moorgrange School, West Park, Ring Road, Leeds, on May 27. ... Also on May 27 the Maidstone Y.M.C.A. amateur radio third mobile rally at the "Y" sports centre Maidstone (details A. S. Walter, G3WXL, 4 Oak Farm Gardens, Headcorn, Ashford, Kent). . . . South Leics Mobile Rally is on May 13 at Westfield Activity Centre, Rosemary Way, Hinckley, Leics. The Northern Radio Societies Association Convention is being held on May 6 at Belle Vue, Manchester. . . . GB2BWS will be a special station at the Bath and West Show, Shepton Mallet, Somerset, between May 30 and June 2.

Pat Hawker, G3VA

The Federal Communications Commission has ruled that all 70 -detent tuners must have a maximum deviation from accuracy of $\pm 3 \mathrm{MHz}$ for one half channel and numerical readout for all 70 channels. By July 1974, all 70-detent tuners must be fitted with a.f.c. and have an accuracy better than the a.f.c. range. There are no insurmountable difficulties with the 3 MHz requirements but that 70 -channel readout is another story! It is not easy to read all those numbers on a tiny dial and some manufacturers are experimenting with a two-dial digital system and at least one, Sony, will use a film strip on a spool. The F.C.C. probably has a greater jurisdiction over standards than the British equivalent and another regulation says that if the u.h.f. and v.h.f. channels are displayed together, every other channel must be numbered. Variable-capacitance diodes would help designers to meet some F.C.C. requirements but, at the moment, devices suitable for combined u.h.f.-v.h.f. coverage are too expensive for general use. However, firms like Motorola, Oak and Kollsman are putting their faith in these diodes and are working hard to bring down price.
Modules of one kind or another are being used extensively in current designs. For instance, the i.f. assembly in an Electrohome model (made in Canada) can be changed in the field without realignment and the i.cs and colour output transistors are all mounted on plug-in sockets. Another aid to servicing on this model is a fault indicator board which is mounted vertically on the main chassis. Five important power supply voltages are monitored and excess current causes one of these voltages to drop and the appropriate neon to light.

Figures released by the Electronic Industries Association for what they call "consumer electronics" shows a substantial rise. (I cannot get used to the idea of being a consumer, a statistic, an EDP card number!) Colour television sales for 1972 went up more than 20% to a staggering $8,843,547$, just beating the black-and-white figure of $8,233,290$ which was up nearly 8% from the previous year. Radio receiver sales were $55,310,910$, phonographs (record players and radiograms) 7 million and tape recorders
and players of all kinds - more than 19 million! Many of these products were imported from Japan, Hong-Kong, Taiwan or Korea, the proportion varying from 40% for television to something like 95% for tape recorders. . . It was reported that a strike closed down a GE factory in Singapore because many of the female workers saw "evil spirits and ghosts". A Buddhist monk, a priest and a witch doctor were called in to exorcise the apparitions (how did they put that on the expense accounts?) and apparently now all is well. Pessimists would say that ghosts will soon be haunting U.S. factories but I believe imports have reached their highest point. For one thing, the standard of living is increasing in the Far East and labour costs are bound to go up. The devaluation of the dollar will have its effect too. Many Japanese companies like Sony, Pioneer and Panasonic already have production facilities in the U.S. and others will certainly follow suit. As a matter of interest, Sony claim that their U.S. plant in San Diego will be able to produce more than half of their U.S. requirements by the autumn. This plant is already assembling 6000 Trinitron colour sets a month and the output is expected to increase to some 20,000 a month by the end of the year.

Turning now to the audio scene, the quadraphonics battle still rages on with communiques from CBS, Sansui and RCA claiming converts every week. Most of the 1973 receivers have provision for four-channel adaptors and the quadraphonic receivers have switch positions for SQ, regular matrix (RM) and four-channel tape. Some, like Fisher, Sony, Toshiba and Harman-Kardon use a channel-strapping technique which allows full power to be delivered to two channels for ordinary stereo and a touch of a switch divides the output into four. In other words there are no idle channels and the customer just needs two more loudspeakers, if and when he converts. Strapping is accomplished by a phase-changing network in conjunction with a kind of bridge output arrangement, which virtually puts one output stage in series with the other.

Two novel loudspeakers have appeared on the scene recently: one is the Fisher Sound Panel which uses a flat polystyrene diaphragm and is disguised as a picture. The diaphragm does not move in the
conventional manner as it is fixed at the edges. So it vibrates like a drum and, naturally, sensitivity is high. To equalize amplitude response, the voice coil is coupled to the diaphragm by a plastic compliance in the form of a disc. Two dynamic drivers are employed, the bass unit being mounted off-centre for obvious reasons (anyone remember the Midgeley-Harmer?) and a treble unit mounted at one corner. The rear is partially enclosed and the system resonance is about 50 Hz . Although the overall sound quality does not compare with a conventional system in the same price category ($\$ 276$ a pair) it is very pleasing and certainly far superior to similar loudspeakers which have appeared in the past. Moreover, there is a wide choice of fabrics with pictures in the contemporary style, abstract or traditional.
The other system was demonstrated recently by ESS (Electrostatic Sound Systems) and it uses a novel h.f. unit invented* by Oskar Heil. This uses a kind of convoluted ribbon with multiple interfacing cavities in a plastic material. The volume of these cavities changes in response to the movements of the ribbon (which is in a magnetic field) and it is claimed that the whole device functions as an air transformer with a gain of five. The first models demonstrated at recent shows operated from 400 Hz and so were used with a conventional bass unit. Results were quite impressive,

Banks this side of the Atlantic are rather different to the staid Barclays and Lloyds I used to know. Prospective customers are wooed with all kinds of gifts - toasters, can openers, sets of cooking utensils if only they will open an account. Recently a large Philadelphia bank announced a "Good Life" programme which I thought worth investigating. It turned out that they were offering customers television sets and appliances at cost price. Good Life or not, this kind of thing must be bad news for local dealers who are already fighting discount houses and rising costs!
G. W. Tillett

[^5]

First we looked at the works. Then we worked on the looks.

It's amazing the number of good-looking amplifiers there are about these days

But that's the easy bit.
It's what's underneath that counts.
So we decided to make sure of the works before we did anything else

And we came up with our ' C ' series.
A new range of three monitor or entertainment power amplifiers.

With the following features.
600 ohm bridging, floating, input.
8 ohm output.
Unique fully protective circuitry.
Distortion better than 0.2\%.
Available in $19^{\prime \prime}$ rack or free standing form.
Peak reading meter is switchable between output and input.

Signal and mains inputs by XLR sockets.
MEX 301C: 30 watts, MEX 501C: 50 watts, and MEX 1001C: 100 watts.

Quite some amplifiers.
And we finished them in stylish Havana with anodised alloy handles.

After all that, they deserve to look good.
And they do.
Millbank
It's got to be good.

The Sound
Scotch Hi-Fi Tape
If you're looking for really topquality sound reproduction, new high-performance Scotch Hi-Fi tape will sound good to you. Better than most of its competitors in fact. Because in terms of sensitivity, frequency response, low noise and high output Scotch Hi-Fi tape has the edge over all other quality tapes.

The Package

1. The Spool

New Scotch Hi-Fi tape comes to you on a rew-look white plastic spool that's designed to look good and give your tape better protection from dust and dirt.
2. The Box

Like the spool, the boxes are both functional and attractive. The tape is held securely in position but slips smoothly in and out when required. The boxes clip neatly together, whatever their size, and both the spool and the box have special spaces where you can code or number them.

The Sound Package

So for the first time there's a simple, practical way to build your own sound library. You start the moment you clip your first two boxes together. And you add to it each time you buy a new tape (you can even transfer existing tapes onto additional spools and boxes which we will sell you separately.) Whenyou havefirst-class equipment it doesn't make sense to sort through a jumble of boxes every time you want to play a tape.

With 3M's new Sound Package, tape storage problems simply disappear. All you're left with is a superb tape system that looks as good as it sounds.

Wireless World readers, special Start your sound library with thls Scotch Audlo Index Book, yours for only 75p when you buy any Scotch HI-fi tape. (Rec. retail price $\mathbf{\Sigma 1} 1.50$) Simply cut out the red 'Hi-Fl' flash from the tape wraoper and send it with a cheque/P.O. for 75 p payable to 3 M U.K. Ltd. and we will rush back this handy flp-over index book in lis matching llbrary box.
PS. We've extended this super offer to 30th June 1973 specially for Wireless Word readers.

Offer applies In U.K. \& Republic of Ireland only.

To: David Pacy, Magnetic Products,
3M United Kingdom Limited,
3M House, Wigmore Street, London, WIA 1ET.
\square Please send me further iniormation about the 3M Sound Package.
\square Please send me the 3M Atdio Index Book and library box. I enclose a cheque/P.O. for 75 p plus a red Hi -Fi flash from a tape wrapper.

Name

Address

Scotch ${ }^{\text {H/-RTAPE }}$
 $3 \mathrm{M}, \mathrm{Scotch}$ and Dynarange are trade marks.

Reglstered in England at 3M House, Wiamore Street, London, W1A IET.
Rea No

Philips tape recorders have undergone tremendous improvement in the past few years. But however good a tape recorder, it cannot give its best performance unless the magnetic tape is of the same high quality.

And so, Philips High-Fidelity/Low Noise Tape. A vastly improved magnetic tape that practically eliminates background noise and produces recordings of brilliant clarity.

Packed in durable plastic boxes to keep out dust and prevent damage, Philips High Fidelity/Low Noise tapes are always in mint condition.

Now at your Philips stockist. Get some and hear the difference.

We want you to have the best.
PHILIPS

NO OTHER QUALITY INSTRUMENT GIVES ALL THIS 10 Hz to 1 MHz $\pm 2 \% \pm 1 \mathrm{~Hz}$ Sine and square waves 3 watts in 50 hms FOR

FUILLY TRANSISTORISED)

यmatead means a good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, London N155JB Telephone: 01-802 5144

The Compatibility of Audio Magnetic Tape

by Basil Lane*

Abstract

The relationship between magnetic tape and machine is an extremely complex one. The overall performance has been found to vary considerably with change of tape type or brand and this has prompted an attempt to produce some evidence of equivalence among popular brands. The results of a considerable number of tests are shown in a useful tabular form in this article.

Four basic parameters can be said to control the overall performance of a tape machine, three of these being peculiar to the machine, the remaining one being the collective properties of the tape. Let us commence by examining the parameters governed by the machine, the most important of which is considered to be bias.

The process of magnetic recording involves impressing upon the magnetic coating of the tape a remanent magnetization which represents in linear space an instantaneous record of the magnetizing field originating at the pole pieces of a recording head. This magnetizing field (H) is created by currents flowing in the coil of the record head and these consist of a signal current (i_{S} and a bias current (i_{B}). Unfortunately, the magnetizing process is not a linear one, since hysteresis intervenes to introduce distortions in the remanent magnetization of the tape coating. High-frequency bias is a technique which reduces the nonlinearities inherent in the recording process, though it is interesting that the mechanism by which it achieves this is not well understood.

To explain some of the phenomena associated with bias, several models have been suggested ${ }^{1-7}$, none of which, unfortunately, copes completely with all of the effects encountered. Part of the problem lies in the fact that the tape coating consists of a distribution of magnetic particle sizes each having slightly differing magnetic properties. The final properties of the coating can be said to be the average of all the individual characteristics of each particle. This distribution makes it difficult to predict particle interaction effects which tend to modify the short wavelength performance in particular.

To illustrate the effects of bias and demonstrate the effects it has upon the recorded signal, a model for the recording process developed by Bauer and Mee ${ }^{7}$

Fig. I. Radial magnetizing field produced from the pole pieces of a record head.

We can now start to develop an expression which will give us the radius of the field pattern for the value of H_{c}. This radius is shown in Fig. 1 as R_{c}, and represents, of course, the boundary of the component of magnetization parallel to the tape motion. For convenience, this radius is shown also as being the diameter of a small circle inscribed within the semicircle and having a radius, r_{c}. If r_{c} is now obtained from the expression

$$
r_{c}=\frac{2 n i}{H_{c}}
$$

then the radius of the circle is given, in terms of the co-ordinates x, y, by

$$
r_{c}^{2}=x^{2}+\left(y-r_{c}\right)^{2}
$$

where the field within the circle is larger than H_{c} and the field outside is smaller than the same critical value. This expression can now be developed to give us the radius of the critical field semicircle,

$$
\begin{equation*}
R_{C}(x=0)=\frac{4 n i}{H_{c}}\left(i_{B}+i_{S}\right) \tag{1}
\end{equation*}
$$

This very simple expression defines what Bauer calls the radius of the magnetizing "bubble" which is proportional to the instantaneous value of the bias and signal currents. There are one or two points which should be borne in mind, though, not the least of which is that separation between tape and head, which always exists to a small degree, dictates a finite bubble radius before the field enters the coating surface. In addition, the surface layers of the tape will inevitably be subjected to a largely perpendicular field, which means that this model is largely applicable to long wavelength recording.

Now we are in a position to examine the use of this model and as a first step, just to keep things in simple sinall steps, let us take the case of the recording process without bias.

Fig. 2 shows at the top, a longitudinal section of tape moving past the record head. A sinusoidal signal current is being applied to the coils which can have one of three values, first, small enough that the value of R_{c} is small compared to the coating thickness, second, equal to coating thickness and, finally, larger than the coating thickness. From the drawing, the depth of magnetization can be seen to be proportional to the instantaneous
value of R_{c} and thus for values of R_{c} up to the coating thickness, the playback head voltage follows a roughly sinusoidal form, although distortions are evident at the zero crossing due to the hysteresis effect in the record process.

Extending the principle to a.c. bias recording, if we imagine that only bias is being recorded and that the value of R_{c} is equal to the coating thickness, then the effect can be illustrated as in Fig. 3 (a), as a series of overlapping semicircular shells of remanent magnetization of opposing polarity. The net effect is zero magnetization. If a signal current is now applied with the bias current, the penetration depth of the a.c. bias shells is varied as the instantaneous resultant of ($i_{B}+i_{S}$) and thus, provided the bubble diameter resulting is no larger than the coating thickness, the remanent magnetization will be proportional to the recording field.

This model is also suitable for an examination of the effect of changes in bias level, since from Fig. 3 (b) it should be noted that areas of the tape are uniformly magnetized in the same direction of the recording field and that there is an increase in this area from the distant side of the coating with increasing signal level. It is also interesting to see that the surface layer of the tape has virtually a net zero magnetization which for long wavelengths is not of particular significance, but at short wavelength can be the cause of replay losses due to the separation of the recorded layer of coating from the head. Reduction in the value of bias will clearly assist in correcting this problem but will limit the maximum signal level achieved at long wavelengths.

There is another problem which can be studied with this model, and that is the effect of bias frequency upon signal recorded. This produces an overlap of the bias bubbles which, as bias frequency increases, causes a reduction in the overall magnetization. However, this is not really significant to the main function of this article and can be left aside.

In summary, changes in bias level will proportionately produce changes in the long wavelength magnetization and thus output voltage. This effect follows through until $R_{c}=$ coating thickness (c) where the magnetization will begin to decrease. At high frequencies, short wavelengths recorded below the tape surface result in a spacing loss which is proportional to the depth of the magnetized layer and inversely proportional to wavelength. Reduction in bias will bring the magnetized layer closer to the surface and therefore increase short wavelength output.

Head gap and tape speed

The record gap length can affect the recorded signal as was explained in last month's article on tape heads. ${ }^{9}$ Reference to Figs. 3 and 4 in that article shows that a change of gap length has little effect upon frequency response or distortion, provided that the tape is optimally biased. However, with the longer gap lengths bias is more critical for frequency response and remanent magnetization, while for short gap lengths low bias will produce rather larger amounts of distortion.

Changes in tape speed mean that the wavelength of any recorded signal also

Fig. 2. Depth variable magnetization at long wavelengths and without bias.
changes. Hence a 20 kHz single cycle will occupy half the length of tape if the recording is made at half speed. This does mean that the recorded bias shells overlap a little more at lower tape speeds and in very critical cases may mean a change of bias to reach optimum condition. But most important of all is the effect of speed upon playback response, particularly at high frequencies, short wavelengths. Here the well known gap effect comes into play, where the recorded wavelength approaches the playback gap length and a null occurs in playback voltage. The expression

$$
\begin{equation*}
e \propto \sin \frac{l}{\lambda} \tag{2}
\end{equation*}
$$

can be used to calculate this effect; however, it should be used with caution since actual heads can depart from theory because of imprecise gap edges. A more valid approximation can be made for metal heads if the first null is taken to occur when $l=0.85 \lambda$. In the case of ferrite playback heads the expression (2) can be taken to be quite accurate. Daniel describes the problems of playback losses in some detail. ${ }^{8}$

Tape properties

Magnetic tape can be divided into several groups and sub-groups dependent upon the function for which it was designed. For example, in the professional field where machines usually operate at high speeds and also have no pressure pads, the tape used often has a matt backing to improve the winding properties. In addition, since a recorded track can occupy the full width of the tape or, for stereo, half the width of the tape, the degree of tape-to-head contact is rather less important than durability under conditions of considerable splicing or other stresses. In such a case a heavy gauge plastic base is often used. This is very unsuitable for low speed or domestic machines where a $2 / 4$ track combination is used and head-to-tape contact becomes much more important.

As was mentioned in the information on bias, coating thickness can be a very important parameter since it can to a large degree control the maximum output levels (m.o.l.) from the tape. More and more tapes are being classified as low noise or low noise, high output and generally speaking these refer to ferric oxide tapes where the magnetic particles have a considerably better dispersion and smaller range of particle sizes than was previously the case. Very little can be done these days to alter the composition of the basic oxide, most of the improvements being achieved in the two parameters mentioned above. This article is not really the place to go into detail about tape technology, but it should be emphasized that particle size in a coating formulation is extremely critical since for ferric oxide, at the small end of the scale $(0.01 \mu \mathrm{~m})$ there is a tendency to
instability due to superparamagnetic effects and at the upper end of the scale $(0.2 \mu \mathrm{~m})$ multidomain effects will prevail. The tighter the tolerance in particle size and the more closely the smaller dimension can be reached, the better is the low noise performance. The additional advantage of the smaller particle size is the increased packing density possible which will increase long wavelength output.

Objectives of the investigation

For many years it has been very difficult to compare the properties of different manufacturers' tape using the data they themselves supply. The principle reason for this is the differences in test techniques adopted. In many instances it could be said that they too have entered the commercially popular "numbers game" since careful selection of parameters will produce results which show up a particular tape in a good light. Some of these problems were alleviated by the creation of the DIN standard which specifies test technique, but even so, the situation was still left a little complicated by different methods used for professional and domestic tapes and the selection of basic reference standards which were slow to move with the progress of machine and tape technology. Arguments that the DIN standard provided a basic technique for the adjustment of bias in a wide range of tape recorders do not really hold water, since it would appear that in many instances bias is used as a cure-all for defects in performance. This has been particularly noticeable in the case of cassette machines where the last hertz has been squeezed from the frequency response characteristic at the expense of distortion, long wavelength output and dropouts at high frequencies. The same to a lesser extent could be said of reel-to-reel machines and this does tend to make life very difficult for the enthusiast who is interested in overall quality rather than an extension of performance in just one direction of rather doubtful importance.
Some attempt at resolving the situation as far as tape specifications is being made by the British Standards Institution which issued in 1971 a draft specification for the testing of tape. What is just as important is that the specification also gives details of the way that the information should be presented and thus, if it is eventually adopted, we should be able to compare one manufacturer's tape with another. However, since very accurate machines are used for this function in order to measure the tape rather than tape and machine, the value of these figures to the user of a domestic machine is rather in doubt. The reason for this is that the machines themselves tend to limit the performance of the tape and thus variation in any one of the machine parameters will produce a change in the relative qualities of the B.S. tape specification.

Fig. 3 (a). Recorded magnetization of bias field without signal.

Fig. 3 (b). Magnetization of tape with bias and long wavelength signal combined.

It seems, therefore, rather foolish to try to express tape parameters in absolute terms, but rather to express them in some comparative way that allows for differences in machine characteristics. These differences may be due just to minor tolerances in setting up of individual machines on a production line, or larger performance differences due to major design differences such as record or replay head gap length or even pre-emphasis and playback equalization and tape speed. A system that copes with all these variables would
seem almost impossible to create, let alone to operate, but in fact the solution may be more easily produced than at first seems possible. Such a final solution will be proposed at the end of this article, but for the moment let us concentrate upon the immediate problem in view.

In many instances new tape recorders are supplied with a sample reel of tape which represents the brand and type recommended for the particular adjustments made to the machine. Sometimes that particular tape may not be available

TABLE 1

1	0	A	X	X	X	X	A	A	A	X	A	A	A	A	A	B	A	A	A	A	A	A	A	A	A	A	A	X	A	A	A	A	B	B
2	A	0	X	A	X	X	X	X	B	B	B	A	A	A	A	A	B	A	B	B	A	\times	B	A	A	A	A	X	B	A	A	A	A	A
3	B	B	+ 5	X	X	X	A	B	B	A	B	A	A	A	A	A	B	B	B	A	B	A	A	A	A	A	A	A	A	X	X	A	A	A
4	A	A	X	+1	X	A	A	A	A	X	A	A	A	A	A	A	A	A	A	A	A	B	B	A	A	A	X	A	A	B	B	A	B	A
5	X	X	X	X	+1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
6	A	B	x	X	X	0	A	A	A	X	A	A	A	A	A	A	A	X	A	A	A	A	A	A	A	A	X	A	A	A	A	B	A	x
7	A	A	X	X	X	A	0	A	A	A	A	A	A	A	A	A	A	A	A	A	B	B	A	B	X	A	A	B	B	B	X	X	3	A
8	X	A	X	A	X	A	A	+	A	B	A	A	A	A	A	A	A	A	A	A	A	B	B	A	A	X	X	A	A	B	B	B	8	X
9	A	A	X	A	X	A	A	A	+1	A	A	A	A	A	A	A	A	A	\times	A	A	A	A	A	A	A	X	A	A	A	B	A	A	A
10	X	X	A	X	A	X	X	A	A	0	X	A	A	A	X	\times	A	X	X	A	\times	B	B	A	A	A	X	A	A	B	B	B	B	A
11	A	A	X	A	X	A	A	A	A	X	+1	A	A	A	A	A	B	A	X	A	A	A	A	A	A	A	X	A	A	A	B	A	A	A
12	A	A	B	A	X	A	A	A	A	A	A	0	A	A	A	A	A	A	A	A	B	B	B	3	A	B	X	A	B	3	8	B	8	A
13	A	A	B	A	X	A	A	A	A	A	A	A	+	A	A	A	A	X	X	A	X	B	B	A	A	A	X	A	A	B	B	B	B	A
14	B	B	A	A	X	A	A	A	A	X	A	A	A		A	A	A	X	X	A	X	B	B	A	A	A	X	A	A	B	B	A	B	A
15	A	A	X	A	X	A	A	X	A	X	A	A	A	A	0	A	A	A	A	A	A	A	A	A	A	A	x	A	A	8	8	B	B	A
16	A	A	X	X	X	A	X	X	A	X	A	A	A	A	A	+2	A	A	A	A	B	B	B	A	A	A	X	B	A	A	A	A	A	A
17	A	A	X	A	X	A	A	A	A	X	A	A	A	A	A	A	+1	A	A	A	A	A	A	B	B	X	x	A	A	B	B	X	X	A
18	B	B	X	A	X	A	A	A	A	X	A	A	A	A	A	A	A	+1	A	A	A	B	B	A	A	X	X	A	A	A	A	3	A	A
19	B	B	X	A	X	A	A	A	A	X	A	A	A	A	A	A	A	A	+1	A	A	B	B	A	A	X	x	A	A	A	A	3	A	A
20	X	X	B	X	X	A	A	A	B	X	B	A	A	A	A	A	A	A	A	0	A	B	A	A	A	A	x	A	A	A	A	B	A	A
21	A	A	X	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	X	A	A	B	B	B	B	A
22	B	B	X	A	\times	A	A	A	B	B	B	A	B	A	A	A	A	A	B	A	A	-1	A	B	A	B	X	A	B	B	B	B	B	A
23	B	X	X	A	B	A	B	A	B	B	8	A	B	A	A	A	A	A	B	A	A	A	0	B	B	B	B	A	B	B	B	B	B	A
24	A	A	X	A	\times	B	\times	B	B	\times	A	X	X	X	B	B	X	X	X	B	X	\times	B	+1	A	A	X	B	B	A	A	A	A	B
25	A	A	X	A	X	A	B	B	A	X	A	A	A	B	A	A	B	A	A	A	A	B	B	A	0	A	X	A	A	A	A	A	A	A
26	A	A	X	A	\times	A	\times	B	A	X	A	X	X	X	A	A	A	A	A	A	B	B	B	A	A	0	X	B	A	A	B	A	A	A
27	X	A	A	A	A	A	A	A	A	A	A	A	A	A	X	A	B	A	A	A	A	B	B	A	A	X		A	\times	X	\times	\times	\times	A
28	B	B	B	B	X	A	A	A	A	X	B	A	A	A	A	A	A	A	A	A	A	A	A	B	B	X	X		A	A	B	B	B	A
29	B	A	A	A	X	A	A	A	A	X	A	A	A	B	A	A	A	A	A	A	A	A	A	A	A	A	X	A	0	B	B	B	A	A
30	A	A	X	X	X	X	X	X	A	X	A	X	B	X	\times	B	X	X	X	B	X	B	B	A	A	A	X	X	B	+	A	A	A	B
31	A	A	X	A	X	B	X	X	B	X	A	X	X	X	B	B	B	B	B	B	B	X	X	A	A	B	X	B	B	A	0	A	A	B
32	A	A	X	A	X	X	X	x	A	\times	A	X	x	x	B	B	X	X	\times	B	x	X	X	A	A	A	X	X	B	A	A	+1	A	B
33	A	A	X	A	X	X	\times	X	A	X	A	X	X	X	A	A	X	X	X	A	X	X	X	A	A	A	X	X	A	A	A			A
34	A	A	A	A	A	X	A	A	A	\times	A	A	A	A	A	A	A	A	A	A	A	B	B	A	A	A	\times	A	A	A	B	B	B	0
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34

and so the owner seeks an alternative that produces a performance equivalent to the recommended type. If he has suitable test instruments and a knowledge of the test techniques, it is either a process of selection by trial and error testing or using the test gear to readjust the bias and, in the more sophisticated machines, pre-emphasis. Such a facility is, I feel, rare and more often than not the machine owner goes through an expensive and frustrating period of recording and listening before making the final choice.

The objective of this article is to provide a short cut in this process and give a table of equivalent tape types, enabling the user to select a new tape which will produce little change in the performance of his machine. Great emphasis should be laid on the use of the words "no change in performance", since the tables are not intended to offer alternatives which may bring about an improvement in performance - which more often than not can only be achieved by a change of tape and machine adjustment. Use of the tables will be described later but suffice it to say that they should provide reasonably accurate answers
for tape speeds of $9.5 \mathrm{~cm} / \mathrm{sec}$ and $19 \mathrm{~cm} / \mathrm{sec}$ and most types of tape head. There will be a small variance in some instances where a very narrow-gap record/replay head is fitted.

Finally, it has proved a difficult decision to decide which parameters are of importance in determining equivalence, the final choice narrowing down to those properties which are more often noticed by the user having no instrumentation. The following comparisons were made: m.o.l. at 1 kHz , this being defined as the playback signal level obtained from a tape which has produced 5\% third harmonic distortion: sensitivity at -20 dB below the reference flux level $(32 \mathrm{nWb} / \mathrm{m})$ obtained from a correctly biased recording made on the DIN calibration tape; frequency response relative to that of the DIN tape at a range of 10 different bias settings, each separated by 1 dB voltage change in a reference resistor in the head circuit, the bias setting being centred on the reference bias for the DIN tape; and the ratio of the reference level to the noise obtained after recording with bias only using a meter weighted to the I.E.C. curve.

Equivalence is considered to be obtained when a change of tape type or brand
produces a change in any of the mentioned characteristics of no more than $\pm 2 \mathrm{~dB}$.

Use of the Tables

Each of the tapes tested is listed in Table 2, which also gives the type of tape, e.g. single play (SP), long play (LP) etc., whether it is backed with any matt surface and the coating thickness. New types of tapes should be selected with regard to the comments made earlier in the article.

Start by looking in Table 2 for the tape you currently find satisfactory, or is recommended by the machine manufacturer - you will need the code number for use in table one.

Table one is the equivalents table where the left vertical column of numerals gives the code numbers of tapes selected from Table 2. The horizontal line of numerals gives the code numbers for equivalents selected from the table. The diagonal centre column indicates the variations in bias from that used with the DIN reference tape and is the correct relative bias for the tapes listed in the left column according to the DIN method of bias setting.

By searching along the horizontal line associated with the tape selected from

Table 2, one sees that equivalents are marked in the vertical columns by the letter A . The letter X indicates there is no equivalence at the bias setting indicated in the diagonal column, though if the table is traced backwards, other alternatives may be offered if you are prepared to readjust the bias. For example, tracing forwards, tape 1 has the following equivalents at the bias setting for 1 ; tapes 2, 7, 8, 9, 11, 12 etc. However, if reverse traced from the horizontal column, tapes 4 and 6 are additional equivalents when the bias is adjusted correctly for them. The letter B indicates that if you are prepared to go to the extent of changing pre-emphasis - only to be undertaken by experts with instruments, additional alternatives could be used which may even bring an improvement in performance.
Remember, the tables are no indication of superiority, or performance of any tape; they only provide for compatible tapes which, if selected, will cause little change in overall performance. The tables will not give accurate solutions if bias settings are wildly out of adjustment and this should be borne in mind when using them.

Conclusions

Many interesting problems came to light when preparing this article which suggested an extension of this system that could be adopted by manufacturers of tape and machines alike. The original idea was first mooted in a basic form by Shirley in the Nov. 1972 edition of the A.E.S. Journal. Essentially it is to create a tape rating system similar to that used for photographic film. The tape could be marked with a number which describes in code form the essential data required to optimize the machine performance. The machine could be marked with a similar number (in the case of low cost products) or provided with a control covering a range of code number settings and which would optimize bias and pre-emphasis for that particular combination of tape and machine. This would leave the public free to choose brand or type in the knowledge that, if selected within the ratings suitable for the machine, optimal performance can be obtained in every case. The author is studying this idea at present.

Acknowledgments

I would like to thank Bruel and Kjaer for the loan of test equipment, and also the research, development and quality control engineers with the tape companies concern ed for their valuable advice and assistance.

Appendix

The draft British Standard proposal mentioned in the text of this article is significantly different in several respects to the DIN standard currently used by European manufacturers and the NAB Standard used in America. Perhaps the most critical factor in the whole of the proposal is that which relates to the Standard Reference Tape to which all comparative measurements refer. There is
tABLE 2

Manufacturer	Tape type	Matt back	Thickness	$\begin{gathered} \text { Coating } \\ (\mathrm{cm}) \end{gathered}$	Code No.	Manufacturer	Tape type	Matt back	Thick ness	$\begin{aligned} & \text { Coating } \\ & (\mathrm{km}) \end{aligned}$	Code No.
AGFA	PE36		LP	12	1	PHILIPS	SP13		SP	10	18
	PE46		DP	10	2		LP15		LP	10	19
	PE66		TP	6	3		DP18		DP	10.5	20
AMPEX	341		LP	12.7	4	SCOTCH	175		SP	12.7	21
	434	\checkmark	SP	12.7	5		215		LP	10	21
BASF	PES40		SP	10	6		220		DP	11	23
	DP26		DP	10	7		222		SP	12.7	24
	LP35		LP	10	8		223		LP	12.7	25
	LPR35LH	\checkmark	LP	10	9		224		DP	12.7	26
	TP18		TP	5.5	10		225		TP	6.3	27
	LP35LH		LP	10	11	TDK	150-7		LP	-	28
EM 1	99		LP	11	12		200		DP	-	29
	88		SP	11	13		1800 SD		LP	--	30
	100		DP	11	14	MEMOREX	600		SP	10	31
ZONAL	63-03		SP	15	15		900		LPDP	1032	
	Z325P	\checkmark	SP	15	16		1200			1010	33
	z305P		SP	15	17	DIN REF TAPE		\checkmark	$\begin{aligned} & \text { DP } \\ & S P \end{aligned}$		34

$S P=$ Single play, $\mathrm{DP}=$ Double play, $\mathrm{LP}=$ Long play, $\mathrm{TP}=$ Triple play
a general tendency for people to think that whoever makes this tape must therefore make the best quality tapes. This is something of a fallacy, although it is true to say that the tolerances placed on the various recording properties of the tape are very difficult to meet from batch to batch.

As demonstrated in the foregoing article, it is precisely the same non-compatibility problem, arising from the very individual and secret methods used by each manufacturer, which prevents manufacturers making identical tapes which can be used as a reference. For this reason it mav be some time before final agreement on the proposal can be reached.

For domestic tapes, the following parameters are suggested by the B.S.

Committee as being suitable for incorporation in any published data sheet. The first item is reference bias which is defined in a new way. To quote, it is
'That bias current which results in an output 10dB lower at a specified frequency (10kHz) than at 315 Hz as shown on the maximum output level curves taken at those frequencies; expressed as a ratio relative to the reference bias current of the reference tape'. The maximum output level at 315 Hz is the 5% third harmonic distortion point, and the maximum output level at 10 kHz is the point at which 20% intermodulation distortion or 1.5% of compression occurs. This technique of biasing is claimed to produce more repeatable and accurate results than the DIN method.

Also specified for the data sheet are the

Fig. 4. As yet chromium dioxide has not been produced in a reel-to reel form; however its magnetic characteristics are different to ferric oxide and represent a considerable step away from compatibility. Many of the changes in the properties are attributable to the differences in physical
structure shown here on the left in comparison with ferric oxide (right). Note the cleaner, more needle-like appearance of CrO_{2} and the more regular distribution of particle size.
maximum output levels, the relative tape sensitivity at $315 \mathrm{~Hz}, 1 \mathrm{kHz}, 6.3 \mathrm{kHz}$ and 10 kHz , together with another new and interesting item called reverse tape sensitivity.

It sometimes happens that due to problems in the alignment of magnetic particles at the manufacturing stage, the tape sensitivity may be slightly different in one direction of travel to the other. This is clearly undesirable and so data on this characteristic could be valuable to the recordist. However, the only people likely to be producing tape specifications of the type envisaged in the draft proposal are manufacturers and they would be naturally keen to cure the fault. We can thus expect a uniformly high standard in this easily achieved parameter. Uniformity, that is dropouts and changes of sensitivity within the reel and from batch to batch, also have to be specified together with signal-to-noise ratio, signal-to-d.c.-noise ratio, print through at $20^{\circ} \mathrm{C}$ and erasability. Of particular interest are the signal-to-noise measurements and the erasability test, since test techniques have been somewhat variable and arbitrary in the past.

Signal-to-noise ratio is defined as "the ratio expressed in $d B$ of the maximum
output level at a specified frequency with reference bias to the weighted bias noise level." The weighting characteristic to be used is specified in the draft proposal and corresponds to the C.C.I.R. characteristic. The d.c. noise level referred to in the second of the noise measurements corresponds to "the noise level resulting from the application to the head of c.c., a direct-current equivalent to the r.m.s. value of the current required for the maximum output level at a specified frequency with reference bias'. Finally the erasability presumably refers to the ease with which the tape is erased, no more definite indication can be given since the draft notes that this item is still under consideration.

Several other items of importance are called for, dealing with such pieces of information as the base and coating thickness and of course, the manufacturer's name and the type number of the tape.

This B.S. draft proposal is currently under consideration at the I.E.C. and it is to be hoped that it will be adopted in the near future. However, I do have grave misgivings about the tape machine manufacturers' use or rather misuse of the bias setting information. If current practice is anything to go by, they will
devise bias settings which will show their machines up in the best light regardless of the consequences for overall quality performance of tape and machine. It is certainly true that a new look is needed at the methods used for specifying and presenting data on the performance of a tape machine.

References

1. M. Camras. U.S. Patent 2351004, 13 June, 1944.
2. H. Toomin and D. Wildeuer, Proc. I.R.E., N.Y. Vol.32, pp.664-668, 1944.
3. W. K. Westmijze, "Studies on Magnetic Recording, Part III" Philips Res. Rept. Vol.8, pp.246-269, 1953.
4. E. D. Daniel. Proc.I.E.E.E. 1953, 100, Pt.3, pp.168-175.
5. E. D. Daniel and I. Levine, J.Acous. Soc.Am. Vol.32, No. 1, 1960, pp.1-15 and No. 2, pp.258267.
6. J. G. Woodward and E. Della Torre, J.Appl. Phys., Vol.32, No. 1, pp.126-127, 1961.
7. B. B. Bauer and C. D. Mee, "A new model for magnetic recording", Proc.I.R.E. Vol.52, 1963.
8. E. D. Daniel. Proc.I.E.E.E. 1953, 100, Pt.3, pp.157-167.
9. B. Lane. Wireless World March 1973, pp.126-129.

Festival du Son

As it is the first major exhibition of audio products in the European audio show calendar, the Paris Festival du Son normally offers some pointers as to what is likely to happen during the year. This year's show was rather more lively than in the past as interest among engineers is high both as to the fate of the various and so-called four-channel systems and to the progress of domestic tape package equipment (i.e. the cartridge and the cassette).

Last year O.R.T.F., the French equivalent of the B.B.C. conducted a number of not very rigorous but very interesting psycho-acoustic experiments on the results obtained from four loudspeakers at the exhibition (W.W. May 1971 p. 244). These were apparently inconclusive, and the effects are certainly negative in as much as few French companies displayed any interest in the subject. However, they have at least caused commercial interests there to adopt the word Tetraphonie in preference to Quadraphonic - spelled in goodness knows how many versions which will please a number of particular people.

New four-channel receivers and other equipment were shown by a number of companies including Sanyo, so far not in the receiver market although they have shown matrix equipment before. National (Matsushita) provided the most comprehensive range, however, since they
are determined to cater for their CD-4 system and matrix systems. Model SA 6800 X is a top-of-the-line unit, certainly in terms of price, with four amplifiers, and matrix synthesizer together with a selector to vary the phase angle of the rear outputs from zero to 90° or 180°.

Like most French loudspeakers, the Japanese products used to demonstrate these no doubt excellent electronic units produced the most excruciating and unmusical noises imaginable. Needless to say, all the four-channel systems are being advocated as suitable for a wide listening area, without the slightest justification, and never any reference to the type of loudspeaker employed.

Tape cassettes are making great strides, mainly with help of Ray Dolby's invention and Japanese production technology, and Sanyo and Matsushita both stole the cassette hardware limelight with new products. Sanyo's machine employs a d.c.-servo direct-drive capstan, offers all the (by now) usual facilities such as CrO_{2} equilization (not $50 u$ s) as well as the gimmicks that are so easy to attach to logic-controlled mechanical functions such as "memory rewind", automatic stop which doesn't tear the tape from the reel, and touch rather than push-button control.

British contributions were mainly in the field of la Tetraphonie, with new equipment from Garrard and Tate (part of Connaught Equipment the Cambridge
based o.e.m. firm which is part of the C. E. Hammond empire). Tate were demonstrating an $S Q$ decoder and amplifier unit as well as some of the boards they manufacture.

Two of their players are now available on plinths, the Zero- 100 offering SQ and discrete playback facilities, selected with a push-button neatly placed by the unit's controls, while the SP25 employs an SQ decoder only. These prototypes were fitted with discrete-component decoders, but it is intended to employ the Motorola logic and matrix i.cs for the $S Q$ circuitry (see pages 114-7, March issue). R.F.J.

US-made Magnaplanar loudspeaker employs plastics diaphragms with printed coils - like Wharfedale's Isodynamic headset. But they're the size of a door and the price of house - $£ 1200$ a pair. Sound superb though.

Theyre not muchuse without us.

There's nothing quite so frustrating in this world as a tape recorder without tape.

So BASF make a tape for every tape recorder manufactured anywhere in the world.

Everything from $\frac{1}{8}$ " LH cassettes right through to $2^{\prime \prime}$ tapes for all major studios. More than 128 different types in all.

Which is not really surprising when

you think that BASF were the first company in the world to make tape.

So if you've got a tape problem we've got a tape answer - call us and see for yourself.

BASF United Kingdom Limited, Knightsbridge House, 197 Knightsbridge, London SW7 1SA Telephone: 01-5845080

EAR-OPENER

Power Handling: 100 Watts Dimensions: $22 \frac{1}{2} \times 12 \frac{3}{4} \times 10 \frac{1}{4}$ inches, 1.7 cubic feet $57 \times 32 \times 26$ centimetres, 47.4 litres Guarantee: unconditional, for 7 years Origin: designed and made in Great Britain Launch: Sonex 73, rooms 4029-4031
Enquiries about the Gale GS401 Loudspeaker: ID Gale, Gale Electronics \& Design Limited 39 Upper Brook Street London W1Y 1PE
in sizes from $\frac{1}{8}$ in diameter to $\frac{9}{16}$ in diameter, and are interchangeable. The racks incorporate heatsink devices which prevent excessive temperature rise, and hold bit temperatures to approximately the same as when soldering. The design is such that two different temperatures can be maintained on the same iron merely by exchanging heatsinks. Prices range from $£ 2.90$ for a 20 W iron to $£ 6.50$ for a 130 W unit. Tele-Production Tools, 28B Hamlet Court Road, Westcliff-on-Sea, Essex.
WW319 for further details

Multi-channel pen recorder

Chessell Ltd announce the introduction of the model 320 continuous dine multi-channel pen recorder. The new recorder, which is designed to D.I.N. standards, will produce up to six con tinuous traces on a calibrated chart width of 250 mm . Claimed to be physically the smallest of its kind on the U.K. market, the instrument is designed for panel mounting. Plug-in amplifier modules accepting over two hundred different ranges and types of signal and servo drive pen mechanisms together with optional features, such as ten-speed electronic chart drive, high and low alarm iimits, event markers and re-trans mission signal facilities are offered. Chessell Ltd. Broadwater Trading Estate, Southdownview Road. Worthing, Sussex BN 14 8NL.
WW308 for further details

Termination wattmeter

The 2601 portable, true r.m.s. reading wattmeter designed and manufactured by Green E.C.E. Ltd enables power measure ments from 50 mW to 300 W to be made over the frequency range d.c. to 500 MHz .

Switch-selected power ranges are provided covering 300 mW to 300 W f.s.d. Accuracy is $\pm 5 \%$ of f.s.d. from d.c. to 200 MHz and $\pm 10 \%$ from 200 MHz to 500 MHz . The instrument has been designed to withstand overloads of up to 60 W on the $300 \mathrm{~mW}, 1 \mathrm{~W}$ and 3 W ranges and 500 W on the $10 \mathrm{~W}, 30 \mathrm{~W}, 100 \mathrm{~W}$ and 300 W ranges. True r.m.s. power measurements are indicated on a linear scale. The detection element is a thermocouple which is insensitive to modulation peaks, short term instability and spurious signals. A switch-selected peak detector (diode) facility with a sensitivity control is included. This provides instantaneous indication of any change in input power a facility which is useful, for example, when tuning a transmitter for peak power output. A demodulated output is provided for modulation analysis purposes.

The internal nickel-cadmium battery provides eight hours of operation and is charged automatically when the instru-
ment is operated from a mains supply of $115-240 \mathrm{~V}, 60 \mathrm{~Hz}-50 \mathrm{~Hz}$. Accessories available include an impedance matching transformer to enable the wattmeter to be used with 75Ω equipment. The continuous rating of the load unit can be increased to 150 W by the addition of a forced-air cooling blower-motor unit. Two versions are available, one for attachment to the underside of the instrument and another for attachment to the side when a standard rack mounting configuration is required. Dimensions: $20 \times 9 \times 25 \mathrm{~cm}$. Price: $£ 295.00$ ex works. Green Electronic \& Communication Equipment Ltd, 5-15 Thorold Road, London N22 4YE.

WW309 for further details

Long-life soldering irons

Stiron soldering irons, now marketed by Tele-Production Tools, feature stainless steel element bobbins to minimize the oxidation of bit chamber and element cylinder, avoiding bit seizure, a common cause of iron mis-function. The irons are light and well-balanced, and feature nylon handles which remain cool to the touch even after many hours at soldering temperatures. This low heat transference is achieved by incorporating a heat buffer between handle and bit chamber, while the heating element is itself insulated by temperature-resistant mica and glass yarn. Irons are available in ratings from 20 W to 130 W , and feature fast heating-up times and steady free-air bit temperature. Iron plated bits with a variety of screwdriver, chisel and profile tips can be supplied

Transistor tester

Avo have introduced a transistor tester, TT169, designed specifically for simple go/no-go in situ testing of p-n-p and n-p-n signal or power transistors, diodes and thyristors. It is a lightweight instrument, small enough to be held in the hand and simple to use.
The tester is battery-powered and front panel indicators illuminate to identify satisfactory or faulty devices. The low operating voltage ensures that all types of device can be tested without risk of damage, even if the tester is misused. Battery replacement is easily carried out when required and a simple self-check procedure immediately indicates serviceability of the tester.

The TT169 is supplied with all the necessary leads and connectors in a plastic case, at a U.K. trade price of $£ 15$, plus v.a.t., from radio wholesalers and distributors. Avo Ltd, Avocet House, Archcliffe Road, Dover, Kent.
WW317 for further details

General purpose receiver

After 49 years of production of valve receivers, Eddystone Radio announces that the last of its valve equipments, the world famous 830 general purpose receiver, is to be phased out of production. It will be replaced by a solid-state range of receivers, the 1830 series. Basically similar to its predecessor, it provides gapless coverage on c.w., a.m. and s.s.b. from 120 kHz to 30 MHz and is suitable for mains or floating battery operation. Size and weight have been reduced and versions are available providing up to 50 crystalcontrolled channels. All models can be sythesizer-driven.

All variants of the 1830 employ the same basic circuit configuration, using solid-state techniques throughout and following current modular practice. Input protection is provided by an f.e.t./m.o.s. f.e.t. front end, designed to withstand 30 V r.m.s. Eddystone clam that a highly advanced circuit design is employed, using single-conversion on the low frequency ranges and double-conversion at frequencies above 1.5 MHz . The first i.i. is tunable when using double-conversion and
provides an incremental tuning facility with a coverage of 50 kHz above and below any frequency selected on the main tuning scale. A crystal calibrator is fitted, allowing frequencies to be read to within 1 kHz after standardizing the main scale at the nearest 100 kHz check point.

Two independent first oscillators are provided, one for manual tuning and the other for crystal-controlled working in the band 1.5 to 30 MHz . Crystals are housed in a plug-in crystal box which is fitted through an aperture in the front panel. Ten switched crystal holders are provided and interchangeable boxes are readily available if more than ten channels are needed to satisfy operational requirements. An alternative version is available, the $1830 / 2$, equipped with five integral switch-selected crystal units, providing a total of fifty channels.

The incremental first i.f. tuning facility can be retained when the first oscillator is crystal-controlled, so relaxing the usual requirements for precise choice of crystal in this mode of operation. Alternatively, the second oscillator can also be fitted with a crystal to permit fully unattended high-stability operation. Both first oscillators can be disabled to allow use of an external synthesizer for frequency control.

Selectivity is adjustable to suit signal mode and a crystal filter is available for
narrow-band c.w. reception. A separate detector is included for c.w./s.s.b. working. At s.s.b., the carrier insertion frequency is selected automatically, fine adjustment being possible by use of the b.f.o. control which operates with reduced coverage in this mode. A noise limiter is fitted, and the 100 kHz i.f. output is available for connection to ancillaries such as the Eddystone solid-state panoramic display unit, 961A.

Separate a.g.c. systems are employed for the r.f. and i.f. stages, the i.f. a.g.c. being used also to operate an integral carrier-level meter, i.f. a.g.c. is brought out for inter-connection when using receivers in dual-diversity installations. Separate manual i.f. and a.f. gain controls are provided.

Audio outputs are available for loudspeaker, headset and lines, the line output being fed from an independent low-level amplifier with adjustable pre-set gain control. A small monitor speaker is fitted and all external connections, with the exception of the headset socket, are located at the rear.

The receivers can be powered directly from any 12 volt source and have internal power units for operation from all standard a.c. supplies. Eddystone Radio Ltd, Marconi House, Chelmsford CM1 1 PL.
WW301 for further details

Integrated instrumentation

The BWD model 602 being marketed by Racal Instruments combines eleven separate instruments with three a.c. sources in one low cost unit. The range of outputs available provides for demonstrations or experiments such as the study of modulated waveforms, provides up to 8 W to drive a lamp, loudspeaker or relay, or modulate a light source to demonstrate photoelectric effects. For convenience in setting up repetitive experiments, as in teaching applications, most of the outputs are available at a rear panel octal socket, enabling a single plug and cable to connect up complex equipment with a minimum loss of time.

Simultaneously available facilities
include 0.5 Hz to 500 kHz sine and square waves, a $\times 5$ to $\times 100$-gain amplifier with a bandwidth from 1 Hz to 50 kHz , $+300 \mathrm{~V} / 35 \mathrm{~mA}$ and minus $0.50 \mathrm{~V} / 1 \mathrm{~mA}$ stabilized power supplies together with $55 \mathrm{~V}, 15 \mathrm{~V}$ and 6.3 V all at 1 A a.c.

Available simultaneously with the above by switch selection are 1 to $12 \mathrm{~V} / 2$ amp or 12 to $24 \mathrm{~V} / 1 \mathrm{amp}$ d.c. stabilized power supplies together with an 8 W d.c. to 20 kHz amplifier. Link connections make it possible to provide a 0.5 Hz to 20 kHz oscillator, an $8 \mathbf{W}$ square wave generator, a 500 Hz to 500 kHz amplitude modulated oscillator and a high-sensitivity 20 kHz amplifier. The model 602 is priced at £150. Racal Instruments Ltd, Duke Street, Windsor. Berks SL4 ISB..
WW311 for further details

Hand-held decibel meter

The Hatfield hand-held decibel meter, type 1008, is a comprehensive test instrument for transmission and general level measurements. Using a taut-band meter, the 1008 provides a wide measurement range $(+21$ to $-60 \mathrm{dBm})$ and versatile input arrangements $(75,140,600,900$ and

1200Ω bridging and terminated, balanced and unbalanced) over a frequency range of 20 Hz to 150 kHz . Power comes from two internal layer type batteries providing a life in excess of 50 hours if used intermittently. Hatfield Instruments Ltd, Burrington Way, Plymouth PL5 3LZ.
WW310 for further details

Solid s'ate relay

F.R. Electronics have increased their range of solid state/hybrid relays by the addition of a plug-in relay. Fully encapsulated with a standard eight-pin octal base, the relays have a switching capability of 6 A up to 240 V a.c. The relay design permits easy chassis layout and also gives compatibility with electromechanical relays.
F.R. Electronics suggest that the plug-in relay should be used in place of electromechanical relays where inductive or capacitive loads are switched and life expectancy considerably in excess of electromechanical relays is required. Control is by a 5,12 or 24 V d.c. supply with a current drain of approximately 10 mA . Switching Components Group, F. R. Electronics, Wimborne, Dorset BH21 2BJ.
WW 302 for further details

Wirewound potentiometers

The Model 534, wirewound potentiometer (0.75 in long), now available from Spectrol Reliance is claimed to meet almost every application in the 10Ω to $200 \mathrm{k} \Omega$ resistance range. This "universal" potentiometer has been developed and designed to give maximum flexibility and versatility from a single model. It is available in three basic versions: 3 turns, 5 turns and 10 turns.

Basic standard design features include: rugged construction; no glued joints: $750 z-$ inch stop strength: thermoset plastic housing; stainless steel front lid and steel shaft; parallel gap welded terminations; only 5 basic assemblies; bushing or servo mount and availability of one and two-section units.

This potentiometer also offers the component engineer a wide range of special features: many variations in mountings and shaft configurations; reduced bushing and shaft diameter combinations; dual concentric shafts; variations in shaft diameters resulting in steps and flats; rear extensions and optional front extensions, as well as non-metallic shafts and split lock bushings. Other special features include lead wire terminals, multiple ganging and non-linear functions. Spectrol Reliance Ltd, Drakes Way, Swindon, Wilts.
WW303 for further details

R.F. chokes

Alma announce a range of miniature r.f. chokes wound on non-magnetic, iron dust or ferrite core material. All windings are single layer protected by a black fluidized bed resin coating. Four types are offered covering the inductance range

of $0.2 \mu \mathrm{H}$ to 2 mH with d.c. resistance from 0.01Ω to 270Ω. User requirements can be wide and thus special chokes can be designed to meet particular customers, specifications. Alma Components Ltd, Park Road, Diss, Norfolk, IP22 3AY.
WW 315 for further details

Heatsinks

New from Redpoint Associates is a novel design of heatsink. Conventional high performance heatsinks are large and heavy. Flat plate heat pipes are one solution, but generally an expensive one. Where size and weight are of importance, the Redline series is claimed to offer an efficient, economical alternative. The heatsink comprises an assembly of twisted vane surfaces mounted on a tubular heat pipe, thereby combining the advantages of both. The result is a small, lightweight heatsink capable of high performance in any attitude. Attachments

are available for a range of devices including d.i.I. i.cs. The example shown in the photograph designated the $\mathbf{L} 2220$ is $200 \times 60 \mathrm{~mm}$, weighs 60 g ., accepts two TO-3 devices and has a thermal performance equal to that of a conventional heatsink three times its weight (e.g. the Redpoint 4 M). Forced convection performance is $0.3^{\circ} \mathrm{C} / \mathrm{W}$. Price $£ 12.00$.
Redpoint Associates Ltd, Cheney Manor, Swindon, Wilts.
WW 316 for further details

Arbitrary function generator

The arbitrary function generator type 8022 can be set up to develop any positive-slope arbitrary function. It may thus be used to linearize signals and to introduce non-linearities or empirical relationships into analogue computers, simulators, control and instrumentation systems. Eleven straight line segments are used to provide a close approximation to the required function, the slope of each segment being adjustable by a potentiometer. Transistor switches, programmed to operate at 1 V intervals along the X axis, determine the breakpoints. Values of
feedback resistors may be changed to modify the gap between breakpoints, permitting greater slope or more accurate following of rapid slope changes. Parallax and offset inputs are available for full four-quadrant operation.

The 8022 is fully compatible with System 8000 and with other modern analogue /hybrid computing equipment. It incorporates full system monitoring facilities, permitting the unit to be checked in the rack. Price $£ 110$. Computing Techniques Ltd, Brookers Road. Billingshurst, Sussex RH14 9RZ.
WW307 for further details

Push-button switches

Highland Electronics announce the introduction of a range of miniature illuminated, series 11 , and non-illuminated, series 21 , push-button switches. They are designed to meet the demand for pushbutton switches for electronic devices, instruments and controls which can be operated directly from mains voltage or low logic levels. All switches and annunciators have round fixing holes and can be

mounted from the rear directly on front panels or on rear sub-assemblies. They are claimed by the makers to be capable of 200,000 load switching operations. Up to 3 -pole changeovers are available per switch, with gold-plated terminals and a maximum switching capability of 5 A , 240 V a.c. non-inductive loads.

These switches have impulse and step actions, the step action switches giving mechanical indication of state. Two designs of decorative mounting rings can be supplied and also six colours of screens or caps for each serics. Highland Electronics Ltd, 33-41 Dallington Street, London EClV OBD.
WW $\mathbf{3 0 5}$ for further details

Switching-regulated power supplies

A series of transistor-switching regulated power supplies have been added to the Hewlett-Packard range of modular units. Nine voltage outputs most often used in system and computer applications are available in this 62600 series. Output ratings range from $4 \mathrm{~V}, 160 \mathrm{~W}$ to 28 V , 300 W . All units deliver full rated output to $50^{\circ} \mathrm{C}$, with linear derating by only 50% at $71^{\circ} \mathrm{C}$.

A 20 kHz transistor switching circuit is cmployed in these new supplies. The design takes advantage of the foremost virtue of the switching regulator, namely efficiency. At the same time, it holds down
ripple and noise to levels compatible with most low-voltage applications including computer mainframes, digital systems, and systems for industrial process automation. With operating efficiencies up to 80%, only a small percentage of power is converted to heat. Thus the units can be packaged in half-rack width cases $(5 \times 8$ $\times 11 \frac{1}{2} \mathrm{in}$). Thermal effects on other system components are also reduced.

All nine models are specified to 0.1% line or load regulation, 20 mV r.m.s., 60 mV p-p ripple and noise, and 3 ms transient response following a load change from 100% to 50% and 50% to 100%. Overvoltage, overcurrent and overtemperature protection are standard features on all models.

For systems applications, the overvoltage protection circuit can be tripped by an external trigger pulse, and can initiate a pulse when the circuit is triggered from within. Also for systems applications, the supply can be programmed with a contact closure. This allows turn-off and turn-on sequencing of several power supplies. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks, SL1 4DS.
WW304 for further details

High track-density digital heads

The magnetic tape recording division of SE Laboratories (Engineering) Lid at Wells, Somerset, now offers high track-density digital magnetic heads for use with its own and other magnetic-tape recording systems. The standard formats are 16 tracks on 0.5 in tape and 8 tracks on 0.25 in tape. The track spacing is 0.030 in , the write track is 0.015 in wide and the read track 0.010 in wide. The heads are claimed to have high dimensional track consistency and the gap scatter is better than 100μ in. They are suitable for operation in temperatures up to $70^{\circ} \mathrm{C}$. "Read" and "write" heads can be supplied with inductances and gap lengths suitable for numerous types and densities of digital recording. SE Laboratories (Engineering) Ltd, Wells, Somerset BA5 1 AE.
WW314 for further details

Battery powered, i.c. op-amp test oscillator

A new pocket-size, 1 kHz fixed frequency test tone oscillator using i.c., operational amplifier circuitry is available from Fairchild Sound Equipment Corporation, a subsidiary of Robins Industries Corp., of Commack, L.I., N.Y.11725. The oscillator, model TG-10, is designed for professional and semi-professional use in service testing of the most sophisticated audio systems. Applications include
setting system levels, testing circuit continuity, measuring distortion and serving as a cue tone generator and frequency reference.

The TG-10 is also a balanced source for mixer patch bays providing a line level or microphone level signal.

Output is 4 dBm into 600Ω or 0 dBm into 150Ω, continuously variable. Distortion is less than 0.1%.

Screw terminals for connecting wires and a jack for a 0.25 in , three-wire ring tip and sleeve patch cord are provided. The case is aluminium and contains a 9 V battery. Dimensions 3 in $\times 4 \mathrm{in} \times 1.75 \mathrm{in}$. The TG-10 is priced at $\$ 69$. Fairchild Sound Equipment Corporation, 75 Austin Boulevard, Commack, L.I., N.Y.11725, U.S.A.

WW312 for further details

High power voltage regulator

From RS Components an uniusually designed, high power (35 W) voltage regulator with integral heatsink. It operates over the voltage range of $1-30 \mathrm{~V}$ up to 2A. There is a built-in fold-back overcurrent and short circuit protection, and little need for external components. All components for this supply are available from RS and there is also a transformer

specially designed for the device. Typical parameters at $25^{\circ} \mathrm{C}$ are: 0.3% load regulation (0 to 1 A), 0.2% line regulation (5 V change), ripple and noise $500 \mu \mathrm{~V}$ \max at 1 A and temperature co-efficient $\pm 0.03 \% /{ }^{\circ} \mathrm{C}$. The regulator is priced $£ 7.80$ and the transformer, $£ 3.50$. RS Components Ltd, P.O. Box 427. 13-17 Epworth Street, London EC2P 2HA. WW306 for further details

Card frames

Imhof-Bedco have developed a new range of low-cost sub-racks for high density packaging of p.c.bs. These include models to accept $100 \times 160 \mathrm{~mm}$ cards in either single or double banks and models to suit all sizes of Imcard. Also, provided reasonable quantities are involved, they can be supplied with the deck plates repositioned to suit virtually any other card size. All deck plates have guides and connector mounting facilities on 82 stations of $5.08 \mathrm{~mm}(0.200 \mathrm{in})$ pitch, thus allowing any arrangement that is a multiple of this dimension to be used. On most models connections may be simply fitted direct to the deck plates and tapped strips are optionally available to facilitate fixing. On the Eurocard models additional mounting rails are incorporated - the type varying to the connector selected. The frames, which are supplied in easy-to-assemble kit form, are of steel construction and are finished with the side panels in textured paint, all other parts being zinc plated and clear passivated. Imhof-Bedco Ltd, Ashley Works, Ashley Road, Uxbridge, Middx UB8 2SQ.

WW338 for further details

Delay timer modules

Deltic Automation have announced the introduction of an improved range of general purpose timer modules constructed on the printed circuit board principle. These timer modules provide a time delay output and are available for operation direct from both a.c. mains and d.c. supply voltages. Design features provide a long term stable timing performance; the modules are claimed to be virtually unaffected by fluctuations of supply voltage, changes of a.c. mains frequency or variation of temperature. Output switching is provided by single pole changeover silver cadmium oxide relay contacts. Gold flashed silver contacts are also available. Five basic time ranges are offered, covering 0.1 s to 330 s , with five standard a.c. and d.c. timer supply voltage ranges covering 10 V d.c. to 260 V a.c. $50 / 60 \mathrm{~Hz} .100$-off price $£ 2.45$ each. Deltic Automation Ltd, Tillys Lane, Staines, Middx.

WW337 for further details

Low-cost multimeters

Cosmocord have introduced two multimeters to the U.K. market, and will shortly commence manufacture in this country. The US-110, which possesses a $10 \mu \mathrm{~A}$ meter movement, provides direct voltage ranges of 100 mV to 250 V full-scale, alternating voltage from 2.5 V to 1000 V full-scale, direct current up to 100 mA , resistance measurement and a decibel scale $(0 \mathrm{~dB}=1 \mathrm{~mW}$ into $600 \Omega)$. A lower-cost instrument, the TH-12, is fitted with a slide switch (with an excellent detent mechanism) for function and range selection. The meter
movement is $50 \mu \mathrm{~A}$, ranges being proportionately limited with respect to the US-110. Meter protection is by means of a fuse. Both instruments are encased in ABS plastic mouldings, the TH-12 costing $£ 6.50$ and the US-110 £16. Cosmocord Ltd, Acos Works, Eleanor Cross Road, Waltham Cross, Herts.
WW 318 for further details

100 MHz digital counter/timer

AMF Venner have increased the specified maximum counting rate of their Model 7737A digital counter from 80 MHz to 100 MHz with no increase in selling price.

Model 7737A is the most comprehen-
sive of the " 77 " series, AMF Venner's range of counters utilizing purposedesigned m.o.s. l.s.i. modules for counting and dividing functions. It measures frequency up to 100 MHz with input levels of 50 mV or more, and below 80 MHz it has an input sensitivity better than 10 mV . The instrument also measures waveform period or multi-period at frequencies up to 1 MHz and time interval with single-line or two-line start/stop input to 100 ns resolution. Additional facilities include frequency-ratio measurement and event counting, either continuously or over a gated time interval.

The readout is a seven-digit in-line display with automatic positioning of the decimal point, and the instrument features a switchable display-storage memory.

A feature of this counter is its
adjustable trigger level, enabling the user to set the input voltage at which the counter trips, so that noise and spurious transients do not affect the measurement.

Unusually, the counter presents an economic flexibility in the availability of a choice of built-in frequency references. The standard instrument is fitted with an internal 10 MHz crystal reference oscillator with a maximum drift of ± 5 parts per million over the temperature range - 10° to $+55^{\circ} \mathrm{C}$. The counter can, however, be supplied with either of two optional reference oscillators having stabilities of ± 1 part per million and ± 0.3 parts per million respectively. Venner, a division of AMF International Ltd, Kingston By-Pass, New Malden, Surrey.
WW 313 for further details

Solid State Devices

G. E. Electronics (London) are distributors for Crystalonics and announce the CV5000 series of High-Q Varactron voltage-variable capacitance diodes. Typical minimum Q as high as 450 at $50 \mathrm{MHz}, 30 \mathrm{~V}$ d.c. ratings and low leakage current are features offered. Price is 34 p each for 100 to 499 off.

Crystalonics have also introduced the CD125 series of monolithic 6-channel f.e.t.-switch drivers which are designed to perform the function of amplification and d.c. level shifting required between low level logic and m.o.s. or junction f.e.t. switches. G. E. Electronics (London) Ltd, Eardley House, 182/184 Campden Hill Road, Kensington, London W8 7AS.
WW320 High-Q Varactron
WW321 Switch drivers
A 4096-bit static m.o.s. read-only memory is available from Signetics in a 512×8 organization for microprogramming and code-conversion applications. The device is known as the model 2530 and has t.t.l.compatible inputs and outputs and requires a +5 V and -12 V power supply.

Two high-speed logic interface devices, the 10124 quad differential line driver and the 10125 quad receiver are also available in quantity. Prices for both devices are $£ 1.80$ for 100 off in plastic encapsulation, $£ 2.00$ for 100 off in ceramic. Signetics International Corporation, Yeoman House, 63 Croydon Road, London S.E. 20 .
WW322 4096 bit r.o.m.
WW323 quad receiver and driver
New from Westinghouse is an addition to their range of Hyreg thick film modules. This is the AR2 single-phase a.c. regulator with a load capability up to 3.75 kW from the mains supply and a surge-current rating of 175 A .

A range of silicon diodes is also announced, all with a reverse recovery time of 40 ns max. Types are available with reverse voltage ratings of $50-$ $200 V_{\text {RRM }}$ in 50 volt steps and mean forward current ratings of $10 \mathrm{~A}, 6 \mathrm{~A}, 2.2 \mathrm{~A}$
and 1A. Westinghouse Brake and Signal Company Ltd, Chippenham, Wilts, SN 15 IJD.
WW324 a.c. regulator
WW325 silicon diodes
Transistor AG, of Zürich, announce a range of five s.c.rs having an operating current capability of 800 mA . The type numbers are BRX44 to BRX48 the variation being in the voltages which are $30 \mathrm{~V}, 60 \mathrm{~V}, 100 \mathrm{~V}, 200 \mathrm{~V}$ and 300 V .

In the range for 1.6 A r.m.s. two types in TO-39 metal casing are available. These are designated TAF520 and TAG521 and are available in voltage groups of $50 \mathrm{~V}, 100 \mathrm{~V}, 200 \mathrm{~V}, 300 \mathrm{~V}$ and 400 V .

A plastic package rectifier in the TAB range is introduced, with a repetitive p.i.v. up to 1250 V and an average forward current of 10 A with T_{C} (case temperature) of $100^{\circ} \mathrm{C}$. Also offered is a fast recovery 10 A diode with a pi.v. up to 1000 V . Guaranteed recovery time at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ is 300 ns max.

Triacs from Transistor AG include current groups from 1.6A to 12 A and are of "glassivated" type. This process involves producing multiple "glass"-filled grooves around the p-n junctions to give protection and stable blocking characteristics. Transistor AG, Hohlstrasse 610, 8048 Zürich Switzerland.
WW326 800mA s.c.rs
WW327 1.6A s.c.rs
WW328 TAB rectifier
WW329 fast recovery diode
WW330 glassivated triacs
Five solid state isolators are announced by Mullard. Designated types CNY22, CNY23, CNY42, CNY43 and CNY44 they can also be used as relays and switches that can operate at 100 kHz .

A silicon photodiode array coupled with scanning circuits, multiplex switches and a dynamic shift register is the basis of the type 216BPY i.c. The devices are made with arrays of either 16 or 128 photodiodes and feature scanning rates
between 10 kHz and 5 MHz . Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
WW333 solid state isolators
WW334 photodiode array
A wide range of red-light-emitting diodes for use in punched tape read-out equipment measurement and control systems and domestic switching applications is now offered by Siemens. These l.e.d. devices have been especially designed for use with thick and thin film circuits and units equipped with discrete or integrated semiconductor components.

A complete range of l.e.ds consisting of GaAsP material is now available including the LD24, LD25, the new LD260269 types and four new ranges of different casings, the LD40, LD50, LD30 and LD46 diodes. All feature low current consumption, little self-heating and high vibration resistance. They can alt be driven by t.t.l. logic components.

The already existing infra-red emission l.e.ds types LD24E and LD25E are now being re-introduced in an improved form as CQY17 and CQY18.

The l.e.ds types LD260-269 match the photo-transistor arrays BPX80 and BPX89. The identical layout of both permits up to ten systems per linear array. The components of the LD260 series (LD260-269) are orange-coloured and available as single diodes (LD261), doublediodes (LD262) and in up to nine-diode arrays. The LD261 is selected into groups according to the radiated power.

Green and yellow coloured diodes of the types mostly in demand will be available shortly. The production of three further types is also planned; diodes with a 2 mm diameter, diodes with mush-room-shaped heads and a type with a 90° angle of radiation. Siemens Ltd, Great West House, Great West Road, Brentford, Middlesex.
WW330 GaAsP diodes
WW331 infra-red emitters
WW332 LD260 series I.e.d.

About People

Four new Fellowships have been awarded by the Royal Television Society. The new Fellows are Walter Anderson. O.B.E. F.I.E.E., Ivor James, B.Sc., F.I.E.E., F.I.E.R.E., Charles Marshall, B.Sc., M.I.E.E. and Peter Rainger, B.Sc., F.I.E.E.

Mr Anderson is head of the experimental and development department of the Independent Broadcasting Authority. He joined E.M.I. in 1940, where he worked on microwave radar and television equipment development. In 1948 he went to the B.B.C. designs department, moving in 1950 to planning and installation. He joined the newly formed I.T.A. in 1955, representing the Authority at international C.C.I.R. meetings on u.h.f. planning in the period leading to the Stockholm conference in 1961. In 1962 he became head of the I.T.A. telecommunications and experimental department and was appointed to his present post in 1967.

Mr James graduated at the University of Bristol in 1933. Joining the patent department of E.M.I. in 1937, he subsequently transferred to the research laboratories to work on military projects, high-definition television and research leading to the development of the E.M.I. 2001 colour camera. He was seconded in 1967 to the television equipment division with responsibility for development and production. Currently, he is scientific adviser on television in the E.M.I. central research laboratories.

Mr Marshall has been honorary secretary of the Royal Television Society for the last 12 years. He graduated in electrical engincering at Manchester University, and his early career was spent with Philips at Mitcham and Mullard at Salfords, engaged on television research and development. In 1954 he became Technical Editor of British Communications \& Electronics, later joining Systems and Communications and then heE.E. News as Editor. He returned to Mullard in 1966 as head of public relations.

Mr Rainger joined the B.B.C. as a graduate engineer in 1951, and worked on film recording and film
scanners. Later, he moved to magnetic recording and the design of signal-processing equipment, much of this time being spent on electronic standards conversion. For this work, he and his team were awarded the Royal Television Society's first Geoffrey Parr Award and Mr Rainger was awarded the 1972 David Sarnoff Gold Medal by the Society of Motion Picture and Television Engineers. In 1969 he became head of the B.B.C. designs department and head of research in 197^{\prime}.

Marconi Communication Systems have appointed two sales engineers to its Specialized Components Division. Brian Henderson quali fied in electrical engineering at Dundee Technical College, and has had extensive experience in valse, microwave and microwave ferrite work. He joined Marconi's to work as a development engineer in Specialized Components' laboratories in 1967, and soon after took a course in Business Studies in which he qualified at the Mid-Essex Technical College in Chelmsford. He will be responsible for sales in the southern half of the country. Peter Theobald was born in Hertfordshire in 1939, was educated at Hemel Hempstead Grammar School and joined Marconi Instruments as a student apprentice in 1959. He studied at Mid-Essex Technical College for a year before going on to Hatfeld Polytechnic for further study. Hc has had varied experience in development work, and as a sales engineer, first for Marconi Instruments and later with Marcon-Elliott Microelectronics. He went to Specialized Components Division last year, and will now take on the sales responsibility for the north.

Geoff. Galliver, M.I.E.R.E., has been engaged by Data Technology Corporation, the Californian electronic instruments manufacturing company, to set up a U.K. and European sales, marketing and service network. Mr Galliver was previously with Dana Electronics which he joined in 1967 after four years with the Solartron Group.

Professor K. Hoselitz, Ph.D.. F.Inst.P.. F.I.M., has been awarded the Glazebrook Medal and Prize by the Institute of Physics for his work on solid-state physics and on the technology of magnetic materials. Prof. Hoselitz is director of the Mullard research laboratories.

Donald W. Fry, M.Sc.. M.I.E.E., is retiring as director of the Atomic Energy Establishment, Winfrith. From 1936 to 1940, Mr Fry was a member of the team at R.A.E. Farnborough which designed the v.h.f. equipment used by R.A.F. Fighter Command. Moving to the Telecommunications Research Establishment, Malvern, he later took part in research and development work on centimetric radar. He went to Harwell in 1946 and was appointed head of the general physics division in 1950 , being awarded the Duddell Medal of the Physical Society in that year. In 1954, he became chicf physicist to the U.K.A.E.A. and was appointed deputy director of the A.E.R.E. in 1958. He took up his present post in 1959. Mr Fry is succeeded as director by Harry Cartwright, M.B.E. M.A., A.M.I.E.E. who, after early experience with Decca Navigator and English Electric, joined the Atomic Energy Authority in 1954. He was appointed director of Tast reactor svstems in 1970.
E. P. Hyatt has been appointed technical director of Brandenburg Ltd. Mr Hyatt joined the company in 1954 soon after it was founded, as senior design engineer. Later he became head of research and development, and has been responsible for many of Brandenburg's designs and innovations. Among these have been a 200 kV supply for the Harwell Nimrod project in 1961 and a self-regulating transformer which has recently been granted patents both in the U.K. and the U.S.A.

Peter Ashburner has joined Integrated Photomatrix Lid as European sales executive. Previously with Teknis Lid.. his new duties are concerned with the sale and promotion of IPL's range of optoelectronic devices in mainland Europe.

Sir Robert Cockburn, K.B.E., C.B., has accepted an invitation to become chairman of the BBC's Engineering Advisory Committee in succession to Dr. R. L. Smith-Rose, C.B.E., who is retiring. Sir Robert has had a distinguished career in Government scientific research, having been scientific adviser to the Air Ministry, controller of guided weapons and electronics. Ministry of Supply, and chief scientist, Ministry of Aviation. From 1964 to 1969 he was director of the Royal Aircraft Establishment, Farnborough, and is now a Fellow of Churchill College. He is chairman of the National

Computing Centre and also of the Television Advisory Committee which recently reported on technical factors likely to affect broadcasting in the next decade.

Howard Walford has become general manager of International Rectifier's Northern European operations. In his new position, Mr Walford will be responsible for manufacturing facilities at Oxted and Newry in Northern Ireland, as well as marketing and distribution in Europe. He was initially employed in 1961 as an internal sales engineer and from this position progressed to area sales manager for S.E. England and eventually general sales manager.

Geoff. Spaul has been appointed managing director of Cosmocord after joining the company as general manager for marketing in January of 1972. Mr Spaul was formerly managing director of Sirco, the Canadian pressure and temperature switch manufacturers. for whom he founded a U.K. operation. Before this he worked in Canada as a sales engineer with Westinghouse, in the U.K. as production engineer at Ekco, export sales manager with the Taylor Instrument Company and as the divisional general manager at Evershed and Vignoles. Prior to joining Cosmocord he was acting as a consultant in marketing.

Sydney Allchurch, O.B.E., director of the British Radio Equipment Manufacturers' Association and chairman of the executive council of the Association, retired on 28th February on attaining the age of 65. During the war, Mr Allchurch served in the Ministry of Aircraft Production, dealing with the supply and installation of special radio and radar equipment for the Royal Air Force. For his work during this period he was awarded the O.B.E. In 1946 he was appointed secretary of the newly formed B.R.E.M.A., becoming director in 1960 and in 1962 chairman of the executive council. He has been director and secretary of the Radio Industry Council since January 1967, treasurer of the Radio. Television and Electronics Examination Board, and a member of the boards of the I.C.E.T.T. and B.E.A.B. He was elected a Companion of the Institution of Electronic and Radio Engineers in 1964.

Derek Crook and Andrew Black were appointed joint managing directors for Radiatron Com ponents Ltd, on January lst 1973. Mr Crook, who was formerly optoelectronics group manager with Texas Instruments, has particular responsibilities for sales and marketing, while Mr Black is responsible for general administration.

April Meetings

Tichets are required for some meetings: readers are advised therefore to communicate with the society concerned

LONDON

2nd. IEE - Discussion on "Microwave holography" at 17.30 at Savoy Pl., WC2.
3rd. IEE - "Sequence control of analogue computers" by Dr. G. C. Barney and Dr. D. Miller at 17.30 at Savoy Pl.. WC2.
4th. IEE - Discussion on "The place of power electronics in the undergraduate curriculum" at 17.30 at Savoy Pl., WC2.
4th. IERE -"Facsimile: A review" by M. Bowden and J. Malster at 18.00 at 9 Bedford Sq. WC1.

5th. IEE - "Experiments in the automatic monitoring of television transmissions" by G. A. McKenzie at 17.30 at Savoy PI.. WC2.
6th. IEE -- Discussion on "Repeaters and terminal equipment for optical communication" at 17.30 at Savoy Pl.. WC2.

10th. IERE - Colloquium on "Recent developments in systems performance measurement" at 10.00 at Botany Lecture Theatre. University College.

10th. AES - Symposium on "Multichannel recording and reproduction techniques" at 19.15 at the IEE. Savoy PI., WC2.
11th. IEE - Colloquium on "The use of fast Fourier machines" at 10.30 at Savoy P1., WC2.
1 Ith. SERT - "Test equipment" by B. Ellison at 19.00 at I.B.A.. 70 Bromplon Rd., SW3.

12th. IEE - Discussion on "The guarding of measuring instruments: an carthy discussion" at 17.30 at Savoy PI., WC2.

12th. RTS - Fleming Memorial Lecture on "TV: the mysteries of the organism" by Denis Forman at 19.00 at the Royal Institution, Albemarle St.. W 1.

16th. IEE - Colloquium on "Millimetre-wave hybrid and monolithic integrated circuils" at 14.30 at Savoy Pl., WC2.

18th. R.I.Navigation - "Offshore geophysical surveys" by T. F. Gaskell and K. V. Blaiklock at 17.00 at Royal Institution of Naval Architects, 10 Upper Belgrave St., SWI.

18th. IEE - "Tomorrow's world in radio communication" by T. R. Rowbotham al 18.30 at Savoy Pl., WC2.
25th. IEE - "Optical character recognition: promise or reality?" by J. A. Weaver at 17.30 at Savoy PI., WC2.
25th. IERE - "Electronic aids to position lixing" by D. J. Phipps at 18.00 at 9 Bedford Sq.. WC 1 .
26th. RTS - "Colour picture conversion without impairment? The world's first digital ficld rate converter" by J. Baldwin and associates at 19.00 at I.B.A.. 70 Brompton Rd., SW3.

30th. IEE/I.Phys. - Colloquium on "Acoustic surface wave devices and applications" at 10.30 at Savoy PI.. WC2.

AYLESBURY

3rd. IEI: - "Bio-engineering: research or service?" by Heinz S. Wolff at 19.30 at Ayleshury College, Oxford Road.

BALLYMENA

10th. IERE - "Outside broadcasting" by B, J. Slamin at 19.30 at the Technical College.

BATH
Hth. IEE - "Advances in marine navigational aids'" by F. M. Foley at 18.00 at the University.

BIRMINGHAM

11th. RTS - "Television service in a new university" by Malcolm Freegard at 19.00 at B.B.C. Broadcasting Centre, Pebble Mill Road.
30th. IEE - "Digitalization and automation (broadcasting)" by F. H. Steel at 18.00 at ATV Centre.

BRIGHTON

19th. IEETE - "Cryogenics and super conductivity" by Dr. Andrew R. Long at Royal Albion Hotel, (Preston Room), Old Steine.

BRISTOL

9th. IEE -- "Tomorrow's world in telecommunications" by W. J. Bray at 18.00 at Queen's Bldg, the University.

19th. IEE Grads. -- "Connecting a computer to a hospital laboratory" by J. Curnow at 19.30 at Bristol Radiography Centre. Horfield Rd.

CAMBRIDGE

10th. IEETE - "Technician engineers and technicians: their qualifications and status in relation to their counterparts in other EEC countries" by E. A. Bromfield and D. E. Wheatles at 19.30 at University Centre.

CARMARTHEN

11th. IEETE - "Logic systems for industrial control" by K. H. Dumbleton at 19.30 at Carmarthen Technical \& Agricultural College.

CHELMSFORD

11th. IEE - "Pulsars, quasars and supernovae" by R. E. Spencer at 18.30 at King Edward VI Grammar School, Broomfield Road.

CHELTENHAM

IOth. IEETE - "Radio communications" by K. W. Pearson at 19.30 at Carlton Hotel, Parabola Road.

17th. IERE -.. "New radio receiver development" by Prof. W. Gosling at 19.00 at G.C.H.Q.. Oakley.

DARLINGTON

I Ith. IEE -- "Electronics in crime detection" by A. T. Torlesse at 18.30 at the College of Technology.

EDINBURGH

5th. IEE - Faraday lecture on "Navigation land. sea, air and space" by A. Stratton at 19.00 at the Usher Hall.

IPSWICH

4th. IEE - "The Open University" by J. J. Sparkes at 18.30 at Civic College, Rope Walk.

LIVERPOOL

IIth. IEE - Colloquium on "Measurement and control of the environment" at 9.45 at Lecture Thearre Block, the University, Brownlow Hill.

NEWCASTLE-UPON-TYNE

10th. IEE - Faraday lecture on "Navigation land, sea, air and space" by A. Stration at 19.15 at the City Hall.

1lth. IERE - "A country-wide data transmission network" by W. A. Ellis at 18.00 at Main Lecture Theatre, Ellison Building, The Polytechnic.

NOTTINGHAM
19th. IEE - "Controis limitations" by Prof. J. C. West at 19.00 at Tl Bldg. the University.

MIDDLESBROUGH

24th. SERT - "The CVC 5 colour receiver" by A. E. Thomas at 19.30 a Cleveland Scientific Institution. Corporation Rd

PORTSMOUTH

10th. IEE - "Liquid crystals and their applications" by N. G. Meadows at 19.30 at the Polytechnic.

READING

5th. IERE - "Fault tolerant computing systems" by L. A. Crapnell at 19.30 at the J. J. Thomson Laboratory, The University, Whiteknights Park.

ROTHERHAM

4th. SERT - "Electronics in the electricity supply industry" by L. R. Girling at 19.15 at the College of Technology. Howard St.

STOKE-ON-TRENT

9th. IEE - "ATV Centre - technical facilities" by G. Kaye at 19.00 at N. Staffs Polytechnic

SWANSEA

2nd. IEE - "Space communications" by J. L. Crowder at 18.00 at University College.

12th. IEE/IERE -- "Some recent researches on electrical contacts" by Dr. A. Fairweather at 18.15 at University College.

TORQUAY

3rd. IEE - "High fidelity sound reproduction" by R. L. West at 14.30 at Electric Hall.

WOLVERHAMPTON

llth. IERE - "Thyristor gadgets for home entertainment" by R. G. Dancy at 19.45 at The Polytechnic.

Books Received

Digital Filters by Martin H. Ackroyd is from the Computers in Medicine Series which aims to present an account of both the clinical applications and the computer science aspects of computing in medicine. Digital filter tech niques are of considerable importance in the processing of physiological data by digital computers. While digital filters have a special place in off-line signal processing on large machines, they are also being increasingly used in smaller computers for on-line applications. The contents cover introductory concepts. recursive and non-recursive filter design and applications. Also included are comprehensive references, an appendix with a set of tested Fortran IV'subroutines for the design and evaluation of filters and finally a bibliography. Pp.82. Price £1.95. Butterworth \& Co. Ltd., 88 Kingsway, London WC2B 6AB.
An Introduction to Metric (System International) and Applications of Metric are two text books in the Mentor series edited by A. Hossack. These books are prepared so that readers can work through the whole text or through selected sections of the course with provision for revision and making references. Testing is also continuous throughout the book. An elementary grasp of decimal arithmetic is the only prestudy requirement of the introductory book, while the applications of metric measurement has been compiled for a technical readership at "A" level mathematics standard. Pp. 38 (introduction), 52 (applications). Price 35 p (introduction), 45p (applications). Lutterworth Press, Luke House, Farnham Road, Guildford, Surrey.

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

A catalogue of "R.F. and Microwave Devices" (sheet RFT-700J) giving basic details of power transistors rated up to 75 W , small signal and switching transistors, hybrid amplifier modules and microwave transistors for application at frequencies up to 3 GHz , also providing comparison and selection charts of devices, is available from R.C.A. Solid State Europe, Sunbury on Thames, Middlesex TW 16 7HW

WW401
Data sheets describing helium neon lasers providing $3,5,10$ and 25 mW c.w. power outputs, ruby lasers providing energy outputs of $3,20,50$ and 100 millijoules - the smallest being battery operated, c.w. power meters with f.s.ds covering the range 1 to 1000 W and a range of infra-red night viewing equipment. Plasma Electronics Ltd, 172a Bradford Road, Trading Estate, Slough, BucksWW402

The second edition of "Collector Diffusion Isolation" shows the progress made since 197I in terms of the greater range of applications and increased versatility in the production of specific circuit functions. Ferranti Ltd., Gem Mill, Chadderion, Oldham, Lancs OL9 8NP
..WW403
Two data sheets describing semiconducting microwave diodes are:

Bulletin L/0110, specifying type ML4904, X-band gallium arsenide Gunn device which provides, under suitable conditions, 10 mW of c.w. power output at frequencies over the range $8.0-12.0 \mathrm{GHz}$ directly from a d.c. bias of between 7 and 9 V \qquad WW404 Bulletin L/0111, specifying type ML4703S, double-chip silicon impatt diode yielding c.w. power output of 1.0 W minimum over the frequency range $5-8 \mathrm{GHz}$ with operating voltage of 125 V typical
, Dunstable, Bedfordshire Microwave Associates Ltd, Dunstable, Bedfordshire LU5 4SX.
"Liquid Crystal Displays" is the title of a leaflet presenting information and drawings on the currently available four-digit seven-segment transmissive display unit providing 13 mm high characters and two units, to be available in the future, of six digits and $3 \frac{1}{2}$ digits plus symbols. Siemens Ltd, Great West House, Great West Road, Brentford, Middlesex TW8 9DG
.WW406
Selecting the best semiconductor type for particular applications is the subject of the "Master Selection Guide" dealing with silicon rectifier and reference diode assemblies, a large range of discrete diodes and transistors, hybrid r.f. amplifiers, integrated and microcircuit components, microwave semiconductors, thyristors and triggering devices, transient suppressors and a number of opto-electronic devices from Motorola Semiconductors Ltd., York House, Empire Way, Wembley, MiddlesexWW407

The "Topliner" components catalogue, listing over 700 of the most popular items covering resistors, potentiometers, capacitors, connectors, relays, motors, diodes and transistors, linear and digital integrated circuits, opto electronic devices and, the latest addition, a pocket-sized calculator, was received from T.1. Supply, 165 Bath Road, Slough, Bucks

A folding leaflet providing easy and quick reference to type numbers of power diodes, controlled ava lanche diodes, fast switching diodes, thyristors, triacs, high-power bridge rectifiers, and high-voltage rectifiers is available from Semikron Rectifier Elements and Electronics Ltd, Brewhouse Lane, Hertford

The "International Transistor Data Manual" is the first volume in a series designed to provide comprehensive ready-at-hand information about some 18,000 discrete semiconductor devices in terms of technical data and listings of alternative manufacturers with agents' names and addresses. Semicon Indexes Ltd, 29 Denmark Street, Wokingham, Berkshire RG11 2AY. Price $£ 5.25$ plus 35 p postage and packing U.K. only.

PASSIVE DEVICES

A mail order electronics component catalogue containing details and prices of a wide range of discrete electronic and electrical components available from stock normally by return post. Arrow Electronics Ltd, 7 Coptfold Road, Brentwood, Essex
.WW410
"Spectra Strip 3C Cable" is the subject of a bulletin describing multiconductor flat insulated cable composed of between 14 and 60 multistrand or solid copper conductors insulated and then covered by a film of grey or colour coded p.v.c. Levermore and Co Ltd, 40-44 Broadway, Wimbledon, London S.W.19.
.WW411
A wide range of compact stop-band filters designed in standard waveguide sizes covering the pass-band frequency range of 5.9 to 14.2 GHz and stop-band frequency range of 9.5 to 25.5 GHz offering rejection ratios of between 25 and 40 dB and insertion losses of between 0.15 and 0.40 dB , are detailed in a specification sheet from the Professional Components Department, Ferranti Ltd, Dunsinane Avenue, Dundee DD2 3PN

WW412
A leaflet illustrating the range of components which have special significance in the field of radio and television servicing, such as e.h.t. trays, dropper resistors, potentiometers, electrolytic, polyester and ceramic capacitors, transistors and diodes, was received from CB Electronic Components Lid, 108 Stoke Newington High Street, London N16 7NY

WW4 13
A catalogue covering the range of fixed and variable resistors manufactured by Amphenol, Electrosil and Plessey (Painton) also the wide range of capacitors made by Erie, is available from Intel Electronics Ltd, Henlow Trading Estate, Henlow, Bedfordshire

WW4 14

EQUIPMENT

An 8-page brochure describing "Video Disc Recorders" which record and play back at up to 600 consecutive TV picture frames or 32 picture frames of simultaneous events in applications such as computer aided instruction, time-lapse and slow-motion image recording, area surveillance and command/control display is available from Data Disc 1nc., 686 West Maude Avenue, Sunnyvale, California 94086

WW420
Equipment using the thermal stress technique which will measure the power handling capabilities and performance of power transistors under working conditions, standard parameters such as thermal resistance, $h_{F E}, V_{b e}$ and second breakdown characteristics, is detailed in a leafer from Challenge Innovations Led, Northern House, Station Approach, Hitchin, Herts

WW421
Technical details and new prices of pulse generators types PG-71 ($5 \mathrm{MHz}, 10 \mathrm{~ns}$), PG-73 ($20 \mathrm{MHz}, 5 \mathrm{~ns}$), PG-2E ($10 \mathrm{MHz}, 12 \mathrm{~ns}$), PG-22 $(50 \mathrm{MHz}, 2 \mathrm{~ns})$, and PG-23 ($10 \mathrm{MHz}, 5 \mathrm{~ns}$) are available in a "pulse
generator special issue newsletter" from Lyons Instruments Ltd, Hoddesdon, HertsWW422

The latest electronic kit catalogue, which includes many new items such as an integrated circuit f.m. and a.m. stereo receiver. a 60 W multi-speaker system. a 5 -digit 30 MHz frequency counter. a $2 \frac{1}{2}$ digit multimeter, portable car engine analyzer and a metal locator, is available from Heath (Gloucester) Ltd, Gloucester GL2 6EE

WW423
Control equipment type $\mathrm{Ks} 72 \times 144$ which is a pneumatic regulating unit combining regulator, control device and indicating instrument having a large 140 mm dial and large contrasting pointer for ease of legibility on distant or multi-indicator panels, is the subject of a brochure from Siemens Ltd, Great West House, Great West Road, Brentford, Middx. TW8 9DG

A selection of low-frequency $(0.001 \mathrm{~Hz}$ to 100 kHz$)$ signal processing instruments which includes active and passive filters, variable and commutating filters, banks of filters in $1 / 6$ th, $\frac{1}{3} \frac{1}{2}$ octave and constant bandwidths, spectrum shapers and signal conditioning instrumentation is shown in a folder from Kemo Lid, 42 Chancery Lane, Beckenham, Kent, BR3 2NR

WW425

APPLICATION NOTES

Three booklets dealing with various aspects of a.c. rectification, power control and signal amplification are:
"Power Electronics Technical Note No.5" providing a rectifier circuit table which gives a full list of the values necessary for the design and use of the most common single-phase and three-phase rectifier circuits. Ref. TP 1310WW426 "D.C. Motor Speed-Control Systems using Thyristors" showing two speed-control systems for d.c. shunt motors operating from a.c. mains supplies through half controlled thyristor bridges. Ref. TP 1348

WW427
The above are available from the Instrumentation and Control Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
"Transistors for Single-sideband Linear Amplifiers" discusses the conditions necessary for practical device operation and gives some tested circuits for amplifiers with power outputs ranging from 6 to 300 W p.e.p. over the band 1.6 to 30MHz. Ref. TP 1337WW428 Communications Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.

Application notes were received dealing with the use of type 4701 operational amplifier, which is specifically designed for the function of voltage or current-to frequency conversion. Teledyne Philbrick, Allied Drive at Route 128, Dedham, Massachusetts 02026
.WW429

GENERAL INFORMATION

A wall chart has been received which briefly describes, in simple terms, how hybrid thick film circuits are made, a custom design and manufacturing service and includes a calendar covering the years 1972 to 1974. Coutant Electronics Ltd, 3 Trafford Road, Reading RG1 8JRWW430

A leaflet describing "Heat Pipes" shows a range of devices designed to remove heat from where it is impossible or ill-advised to dissipate it to a more convenient point is available from Redpoint Associates Ltd, Cheney Manor, Swindon, Wilts
.WW431
"Defining and measuring the characteristics of disc record playing equipment" is the title of BS4852 which discusses the most important parameters affecting the quality of performance of record playing equipment, the way in which the data should be presented and recommended test result recording procedures. Price $£ 1.20$ from B.S.1. Sales Branch, 101, Pentonville Road, London. N1 9ND.

The 240 page components catalogue and price list referred to in our January issue costs 55 p (not 50 p) plus 20p postage from Home Radio (Components) Ltd., 234-240 London Road, Mitcham, Surrey, CR4 3HD.

Sinclair Project 60

Now-the Z.50 Mk. 2

with built-in automatic transient overload protection

Abstract

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of Z.50's are now giving excellent service day in, day out. But we have also learned that constructors do not always use their Z.50's ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatly reduced and performance further enhanced. The Z.50 Mk. 2 has improved thermal stability, more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. Z. 50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial planar transistors are now used, two more than in the original $Z .50$: circuitry has been re-designed, making this versatile high performance amplifier better than ever.

The Z.30 provides excellent facilities for the constructor requiring a high fidelity audio system of less power than that available from Z.50's. Using a power supply of 35 volts, $Z .30$ will deliver 15 watts RMS into 8 ohms, or 20 watts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% at 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted. Input sensitivity 250 mV into 100 K ohms. Size $80 \times 57 \times 13 \mathrm{~mm}\left(3 \frac{1}{6} \times 2 \frac{1}{4} \times \frac{1}{2}\right)$ Z $30, Z .50$ and Z.50 MK. 2 modules are compatible and interchangeable

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Lid., You are dissatisfied with it, your Stockists also offer this same guarantee in co-operation with Sinclair Radionics Ltd.
Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectiv. Should any defect arise in normal use, we will service it at once and withour any of purchase Outside this period of guarantee a small charge (typically f 100) will be made No charge is made for postage by surface mail. Air Mail is charged at cost

Brilliant new
technical specifications
Input impedance $100 \mathrm{~K} \Omega$
Input (for 30 w into $8 \Omega 2$) 400 mV
Signal to noise ratio, referred to full o/p at
$30 \vee$ HT 80 dB or better
Distortion 0.02% up to 20 W at 8Ω. See curve Frequency response 10 Hz to more than
$200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage 45 v ($4 \Omega 2$ to 8Ω speakers)
(50v 15Ω speakers only)
Min. supply voltage $9 v$
Load impedance - minimum : 4Ω at $45 v$ HT
Load impedance - maximum : safe on open
circuit

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U.. 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30. PZ.5	Crystal or ceramic PU. volume control, etc.	£9.45
12 W . RM S continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } \\ & 60 ; \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag PU.. F.M. Tuner, etc	£23.90
25W. RMS continuous sine wave stereo amp using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner, Tape Deck, etc	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	2×2.50 s, Stereo 60 : PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar. speakers. etc., controls	£19.43

F.M. Stereo Tuner ($\mathbf{£ 2 5)}$ \& A.F.U. ($\mathbf{£ 5 . 9 8}$) may be added as required.

WW-080 FOR FURTHER DETAILS

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u -up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -12 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Built. tested and guaranteed
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantasticaliy good results. Other advanced features include varicap diode tuning. printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz Sensitivity: $7 \mu \vee$ for lock-in over full devation. Squelch level: Typically $20 \mu \vee$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R. M. S maximum Operating voltage: 25-30VDC. Indicators: Stereo on, tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Super IC 12 mesated drume
 high fidelity amplifiek

Having introduced Integrated Circuits to hi-f constructors with the IC.10. the first time an IC had ever been made available for such purposes we have followed it with an even more efficient version, the Super IC.12, a most exciting advance over our original unit. This needs very few ex ternal resistors and capacitors to make an astonishingly good high fidelıty amplifier for use with pick-up. F.M. radio or small P. A. set up, etc The tree 40 page manual supplied details man The free 40 page manual supplied, detais many make possible it is the equivalent of a 22 tran
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). 6-8 $\mathbf{\Omega}$. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all outpu powers and frequencies in the audio band (28V) Load Impedance: 3 to 15 ohms. Input Im pedance: 250 Kohms nominal. Power Gain 90 dB (1.000 .000 .000 times) after feedback Supply Voltage: 6 to 28 V . Quiescent cur rent: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in cluding pins and heat sink.
Manual available separately 150 post free.
With FREE printed circuit board and 40 page manual
$\mathbf{£ 2 . 9 8}$ Post tree

Power Supply Units

The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made available to constructors. Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which. as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment. Ripple and residual noise have been reduced to the point of almost tota elimination. This is, of course, the perfect unit for Project 60 assemblies, particularly where the new Z. 50 MK. 2 amplifiers are used. Nominal working voltage-45
PZ.8 Mk.3-f7.98
(Mains transformer, if required) $£ 5.98$
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) $£ 4.98$ PZ. 6 35v. stabilised (not suitable for IC. 12) £7.98

Project 605

the easy way to buy and build Project 60
without
 soldering
Project 605 in one pack contains one PZ.5. two Z. 30 s, one Stereo 60 and one Masterlink. which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on the modules thus eliminating all soldering
Complete with comprehensive
£29.95 manual, post free
All you need for a superb 30 watt
high fidelity stereo amplifier

Order form

Please send
lenclose cash/cheque/money order
Name

Address

WW4
SINCLAIA RADIONICS LTD.. LONDON ROAD ST, IVES, HUNTINGDONSHIRE, PE17 4HJ
Business Reg. No. (England) 699483 Registered Office as above

With the new Arrow Adapt-a-Switch... you win on versatility. From only a small number of components you can make up a remarkable choice of units. Illuminated push-button switches in three lens shapes, six colours, momentary or alternate action. Nonilluminated switches in colours or black. Or nonswitching indicators. Easy to order, stock, snap together You win on wiring, too. The switch action is added by contact blocks, up to four per switch. No fidgiting behind the panel. Connect them into your wiring harness in comfort, then snap them on. Adapt-a-Switch is a new design concept for saving time, and
space, on your control panels. Ask Arrow for the fullcolour folder.

SWITCH DISTRIBUTORS	Conway Electronics Ltd., Downshire Way, Bracknell. Berks. RG 12 1ND. Phone: Bracknell 24765	ITT Components Group Europe, Standard Telephones \& Cables Lid Electronic Services, Edinburgh Way, Harlow, Essex. Phone: 0279-6 26811

Overseas Agents in Arabian Gulf, Belgium, Ceylon, Denmark, East Africa, Eire, Fintand, France, Greece, Holland, Hong Kong, India, Israel, Italy, Kuwait, Federation of Malaysia, Norway, Philippines, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Trinidad and Western Germany:

Today's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art. Standards that were acceptable a few years ago cannot meet the requirements of design engineers today. Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-Q use X-ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are checked to determine the frequency change over the temperature range and the crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-Q crystals are custom manufactured to meet all these exacting requirements. It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications Industry.
Australla's lergest crystal manufacturers. Write for details.
P.0. BOX 256, Frankston, victória, 3199.

Telophane: 7839611 ,
Telaphane: 7839611
Cables: Hyque Molbourne. Telex 31630 . Hy-a ELECTRONICS INTERNATIONAL (PTE) LTD. P.O. BOX 29, PASIR PANJANG P.O. SINGAPORE, 5.

ELECTRONIC ORGAN DIVIDER BOARDS built to high industrial/computer spec. 5 octave set f15. Complete with connection data and oscillator details.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in. $12 \frac{1}{2}$ d sheet, 5 for 50 p
$11 \times 6 \frac{1}{2} \times 1 / 16$ in. 15p sheet, 4 for 50 p
$11 \times 8 \times 1 / 16$ in 20 p sheet, 3 for 50 p
Offcut pack (smallest 4×2 in.) 500 p 300 sq . in
P\& P single sheet 4 p . Bargain packs 10 p .
$\mathrm{P} \& \mathrm{P}$ single sheet $\mathbf{4 p}$. Bargain packs $\mathbf{1 0}_{\mathrm{p}}$
SPEAKERS AND CABINETS
E.M.I. 13×8 in. (10 watt) with two tweeters and crossE.M.1. 13×8 in. (10 wate) with
over $3 / 8 / 15$ ohm models. $£ 3.75$. P.P. 25 p.
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15 \mathrm{ohm}$ models $\mathbf{£ 2} 2 \mathbf{2 5}$. P.P. 25p
E.M.I. $6 \frac{1}{2}$ in. rnd. 10 watt Woofers. 8 ohm. 13,000 gss f2.25. P.P. 15 p.
E.M.I. 20 watt (13×8 in.) with single tweeter and " X -over"" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magnet
11,000 gss. f8. . P.P. 40 p. 20 watt base unit only. E6. P.P. 40p.

CABINETS for $13 \times 8 \mathrm{in}$. speakers manufactured in $\frac{3}{3}$ in. teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9$ in. £5 ea. P.P. 40p.
20W. CABINET. $18 \times 11 \times 10 \mathrm{in}$. f6. P.P. 50p.

PRECISIONA.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{V}$ to 15v: 60 db to 20 db . 9 ranges. Excellent condition. £22.50. P.P. £1-50.
V.h.f. POWER TRANSISTORS TYPE PTA176D (2N4128). 24 watt 175 MHz . $\mathbf{£ 1} \mathbf{- 5 0}$ ea. S.A.E. for spec MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank. 12 position, non-bridging wipers. $\mathbf{£ 4 . 2 5}$ ea. Brand new
TEN TURN POTENTIOMETERS (Colvern) 5000 ohm E1-50 complete with 10 T dial.
VACUUM PUMPS (Metrovac GS 24). Complete with $\frac{1}{3}$ h.p. 240 V . A.C. motor. New condition. £35. (S.A.E Lierature.)
PAINTON WINKLER SWITCHES. 1 pole 15 way 2 bank. (G.P. contacts and wipers) $£ 1.25$ өа.

BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500
pieces $£ 2$. (Trial order 100pcs. 50 .)
We are confident pieces $£ 2$. (Tial order 100 pcs . 50 .).) We are confident you will re-order
berco wire-wound pots. New individually boxed. 200 ohm 25 wat
100 watt $£ 1$ ea.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 or 48 v . (state which) $4 \times 1 \times 1$ in. 35p. P.P. 5p. 5 digit (non reset) 6 v. d.c. ($2 \frac{1}{2} \times$ $1 \frac{1}{2} \times 1 \frac{1}{2}$ in.). 75p. P.P. 5 p. 3 digit (Reset) $48 \mathrm{v} .4 \times 1 \times 1 \mathrm{in}$. £1.75. P.P. 5p. 5 digit (Reset) 6 digit (Resef) 12 v. d.c. ($2 \frac{3}{9} \times 2 \times 1$ in.) $£ 3.50$. P.P. 50

PRECISION CAPACITANCE JIGS. Beau. «ully made with Moon \& Wright Micrometer Gauge. Type 1. 18.5pf. to 1,220pf $£ 10$ each Type 2, 9. 5pf. to 11.5 pf . Ef each. MULTICORE GABLE (P \quad C.).
 $\mathrm{f} 12 \cdot 50$.
12 core (12 colours) 15 p . yd. $100 \mathrm{vds} \mathbf{~} \mathbf{E 1 2 . 5 0}$. 24 core (24 colours) 20p. yd. 100 yds. $£ 17.50$. 30 core (15 colours) $22 \frac{1}{2} \mathrm{p}$. yd. 100 yds. $\mathbf{f 1 8} \mathbf{5 0}$ 34 core (17 colours) 25p. yd. 100 vds. f20.
Minimum order 10 yds .

TELEPHONE DIALS (New) £1 ea.

RELAYS (G.P.O. '3000'). All types. Brand EXTENSION TELEPHONES (Type 706) New/Boxed. f5. 50p.
RATCHET RELAYS. (310 ohm) Various Types 85p. PP $5 p$.
UNISELECTORS
UNISELECTORS (Brand neiv) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe $£ 3.25 .10$ bank
$\frac{1}{2}$ wipe $£ 3.75$. Other types from $£ 2 \cdot 25$.

BLOWER FANS (Snail type) Type 1 : Housing dia. $3 \frac{1}{2}$ in Air outlet $1 \frac{1}{*} \times 1$ in. £2.25. P.P. 25p. Type 2: Housing dia 6 in . Air outlet $2 \frac{1}{\frac{1}{3}} \times 2 \frac{1}{2} \mathrm{in}$. £4. P.P. 50 p. Both types 115
POT CORES LA1/LA2/LA3 50p each
RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with teansparen dust covers and bases. 2 pole c/o contacts 35p ea $: 6$ make contacts $\mathbf{4 0 p}$ ea. ; 4 pole c/o contacts 50 p ea. 6-12-24-48v types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1$ in.) with 10 amp. silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. PP. 5 p 24 VOLT H.D. RELAYS $\left(2 \times 2 \times \frac{3}{4}\right.$ in.) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5 p
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp. contacts. 75p (with base). P.P. 5p.
sub-miniature reed relays ($1 \mathrm{in} . \times \frac{1}{5}$ in.) Wt $\frac{1}{2} \mathrm{oz} .1$ make $3 / 12 \mathrm{v}$. 40p. ea.
SILICON BRIDGES. 100 P.I.V. 1 amp . ($\left(\frac{3}{5} \times \frac{5}{9} \times \frac{3}{3}\right.$ in.) 30p. 200 P.I.V. 2 amp. 60p.
CIRCUIT BREAKERS (3 pole) 15 amp . Dorman \& Long

PATTRICK \& KINNIE

191 LONDON ROAD : ROMFORD • ESSEX
ROMFORD 44473
RM7 9DD

OVER 300,000 IN STOCK!

Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known.
 A.C. MAINS to 2 VV D.C. POWER SUPPLY UNITS.
These interesting $27 V$ o. 5 A units (will happily provide 700 mA
indefinitely) are built into an attractive grey-finished instruindefinitely) are built into an attractive grey-finished instru-
ment case, provision being made tor base or side mounting. Cable entry grommets are mounted in the base of the unit.
The chove capacity smoothed output is solid state stabilised against variation in input voltage and output current, znd
input and output fuses with spares are fitted. The output input and output fuses with spares are fitted. The output
operates a builtin S.P.C.O. relay to switch tor instance an aiarm circuit. Input voltage is $200-250 \mathrm{~V}$ A. C . in 10 V steps,
while the transformer secondary carries two taps. All termations to a Grelco block. There is adequate room for other equipment
within the ventilated case, which is $12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$ deep. Our price. within the ventilated case, which is $12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$ deep. Our price,
brand new in carton with circuit, only $\mathbf{E 3 . 8 5}$.

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& PLUGS \& SOCKETS $S_{\text {erroo and }}$ Electronic Sales $\mathcal{L}_{t d}$

Post Orders and Technical enquiries to: "BAYS". HIGH ST., LYDD. KENT. Lydd 20252 (STD 0679) Or 67 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: 01-688 1512

MIL SYNCHROS AVAILABLE EX-STOCK

sizes $0811,15,16$, 18 and 23 for 50,60 and 400 Hz operalion.

Synchro Control Transformers
Synchro Control Transmitters
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receivers
Synchro Resolvers
TANTALUM CAPACITORS We hold large stocks by S.T.C.T.C.C. Dubilier, Kemet, Plessey, G.E., etc., send for stock lis win
ETHER ELECTROMETHODS LOW INERTIA
INTEGRATING MOTORS
INTEGRATING MOTORS
Available ex-stock at extremely low prices. For $1.5,6,12$ and
$24 \vee$ oderation in stock.
VACTRIC SIZE 23 PULSE GENERATORS (Shafl Digitizers). Full detalls and price on application.
STAINLESS STEEL VACUUM CONTAINERS FOR LIQUIDS. Capacity 2 U.S. galls. fitted with delivery taps.
Brand new in cartons-E 22.50 (C.Pd. U.K.).
400HZ INVERTERS. 27.5 V 150A input, 115 v 400 Hz 2500 VA output. Not new but in excellent condition: fitted with control box containing switchgear and voltage and frequency adjustment circuits. These are extremely small for their capacity only 16 in long and 13 in high overall including the control box
which also carries the circuit diagram. $£ 29$ (C.Pd. U.K. Mainld.) MULTICORE PVC COVERED TELEPHONE CABLE 24 MOL $£ 22$ per 100 yds, 12 core $£ 18$ per 100 yds, 8 core $£ 12$ per
core
100 yds, 4 core $£ 10$ per 200 yds, 2 core $£ 3$ per 100 yds. (All C. Pd. 100 yds, 4 core ${ }^{\text {U }}$ U.K. Malnland).
HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE to DEF 12D Type 3 in following colours: violet, yellow, white, grey,
green, orange, pink, red and brown $7010076^{7 \prime}$ conductors $£ .3-25$ green, orange, pink, red and brown
per 100 yds (P.Pd.) also with $40 / 0076^{\prime \prime}$ conductors in grey, violet, per 100 yds (P.Pd.) also $£ 2 \cdot 50$ per 100 yds (P.Pd.).
TRANSFORMER/RECTIFIER UNIT Comprising a $380-$ 440 V 3 phase, 50 Hz input transtormer and stud mounted shico
rectifiers. Output is 220 V D.C. 15 amps. Ideal tor operation of rectifiers. D . motors etc. $£ 27.50$ (including carriage U.K. Mainland).

DRY REED INSERTS

Overall length $1.85^{\prime \prime}$ (Body length $1 \cdot 1^{\prime \prime}$) Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up to 250 v D.C. Gold clad contacts. 63 p per doz. $£ 3.75$ per $100 ; £ 27.50$ per 1,000 ; $£ 250$ per 10,000. All carriage paid.
Heavy duty type (body length 2") diameter $0.22^{\prime \prime}$ to switch up to 1 A. at up to 250 V . A.C. Gold clad contacts, $£ 1.25$ per doz., $£ 6.25$ per 100; $£ 47.50$ per 1000 ; $£ 450$ per 10,000 .
Changeover type $£ 2.50$ per doz. All carriage paid.
Operating Magnets 55p per doz. £4 per 100 ; £ 35 per 1000. All carriage paid.

LARGEST STOCK

LOW PRICES AND RETURN OF POST SERVICE

TRANNIES
Relephone
Harlow (02796) 3773

24 WOODHILL, HARLOW, ESSEX (No callers please)
TRANSISTORS LOWEST PRICES

for bulk enquiries.			
OC44	13p	TIP31A	58p
OC45	13p	TIP32A	69p
OC71	12p	40636	55p
OC25	28p	2N2926G	10p
OC28	30p	2N3053	20p
OC29	$36 p$	2N3055	49p
OC35	28p	2N3702	11 p
OC36	36p	2N3703	11 p

TTL BARGAINS		
7400	${ }_{12}^{12}$	AND LOTS MORE.
7401 7410	12 p 12 p	See our price list.
7475	450	Also
7490 7492	${ }_{62 \mathrm{p}}^{60 \mathrm{p}}$	Sup

SLIDE SWITCHES

MINIATURE
NEON
LAMPS
109 mA . 230 v . or 110 v .
$5 p$ each.
10 plus, 4p.

WW-085 FOR FURTHER DETAILS

YOU DON'T HAVE TO LIVE NEAR DIXONS TECHNICAL TO BE NEAR DIXONS TECHNICAL.

Dixons Technical have the widest range of audio visual equipment in Britain.
The trouble is. many people believe thal London isn't Britan. And Dixons Technical is in -ondon
While vou, perhaps. are in Bath. or Newcastle, or Aberdeen. Hundreds of miles away y should you ravel all that way tor audio visual equipment? Thev'll make the equipmen
Dixons Technicat say you don't have to travel all that way rave to you

Whether it is a simple single unit or a sophisticated comprehensive $f 50,000$ closed Gircuit te evisio
Where necessary. they il get you the technical experts to install the equipment. and show ou how best to use
Dixons Technical may be in the big city, but their prices aren't. Equipment is of the highes possible quality (all famous brand names): and is sold at the lowest possible price. Hire conomic it becomes

WW- 086 FOR FURTHER DETAILS
DIGITAL DISPLAY MODULES NEW RANGE

A versatile range of display, counting and storage modules, supplied singly or in multi-digit assemblies complete with colour fitters.
Four versions presently availableare:-
$800-200$ DISPLAY
(Illustrated approx. full size)
800-210 COUNTER/DISPLAY $800-220$ 4-BII STORE/DISPLAY $800-230$ COUNTER/STORE/DISPLAY
All modules have goid-plated edge connectors.

Send for full detalls
CAVERN ELECTRONICS (Dept. 201) 29 CLAREFIELD ROAD, LEICESTER LE3 6FB

Audio Connectors

Broadcast pattern jackfields, jackcords plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street
London W1V 3LE
01-437 1892/3

FM TUNER

NELSON-JONES
Approved parts for this outstanding design (W.W. April 1971/2). Featuring $0.75 \quad \mu V$ sensltivity. Mosfet front end. Ceramic I.F, strip. Triple gang tuning, $\frac{1}{2} V$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.

FURTHER PRICE REDUCTIONS
Basic Tuner Parts with Screening Box.
NOW LESS THAN $£ 11 \mathbf{5 0}$. Please send S.A.E. lists.
NEW ALIGNMENT SERVICE
$\overline{\text { Details on request. }}$
SOLID STATE TUNING INDICATOR
(W.W. Aprii ' ${ }^{72}$). Tuning is indicated by the balance of two light emitting diodes. The kit Order T041. Price $£ 1.72$ plus P. \& P. 10 p. with two LED's (or $\mathbf{£ 1 . 9 8}$ with extra LED for "stereo lamp-see decoder).
DIAL CHASSIS KIT
Now available-includes all dial drive components, dial plate, decoder mounting bracket, Price $\mathbf{£ 2 . 1 5} \mathrm{p}$ lus P. \& P. 17 p ((Note: may be purchased without dial drive components.)
PHASE-LOCKED STEREO DECODER KIT
Now with free LEO 'stereo on" light-complementing this superb decoder (W.W. Sept. '70) Sultable for wide variety of tuners including the NELSON-JONES TUNER.

Complete kit ONLY $£ 768$. P, \& P. 16p
NEW IC Stabilised PSU. S/C, overload protected, low ripple. £3.55. P. \& P. 19p.
LIGHT EMITTING DIODES (Red)
Improved efficiency type, mect. identical to HP LED, panel or PCB mounting with Improved efficiency type, mect. identical to HP LED, panel or PCB mounting with
free mounting clip-clear or black-please state. Order LEDiA. Please add postage. Monsanto miniature PCB mounting with radial leads.
Order LED2. Please add postage.
NOW ONLY 35p each with connection dsta.
7 SEGMENT LED Displays. Lowest cost.
$0.325^{\prime \prime}$ characters with RH dec. point. ONLY £2 46 each
AERIALS-3 ELEMENT VHF/FM (Outdoor)
A good aerial is essential for optimum Stereo Radio reception ONLY £2.60. P. \& P. 40p.
Coax 5p/metre. (Masts and Fixing kits available).

V.A.T.

FROM APRIL 1st ADD V.A.T. AT THE STANDARD RATE TO ALL PRICES

SPECIAL OFFER

4 function 8 digit display calculator with CONSTANT KEY, fixed or FLOATING DECIMAL, clear last entry key.
Complete with BUILT IN RECHARGEABLE CELLS, mains charging unit, AND carrying case. Full 12 months guarantee.

ONLY $\mathbb{E} 4500$ p. \& p. 50p.

Pocket Size LED Applied

LOGIC TESTER

- Powered from circuit under test
- LED used as indicator lamp
* High input impedance
- Durable - Easy to use
- Economically priced

The tester is a rugged, compact and easy to use instrument capable of testing logic levels and operates from the $5 \mathrm{v} d \mathrm{c}$ supply of the system under test.

- Agents required in all areas

For use with DTL TTL and other pulse circuits. Response frequency DC to 12 MHz £4.95
quantity discount
JH Associates (Dept WW)
Crickettield Lane,
Bishop's SIortford. Herts
WW-090 FOR FURTHER DETAILS

STEREO ID DECODER

HIGH PERFORMANCE PHASE LOCKED LOOP
(as In 'W.W.' July '72)
MOTOROLA MC1310P EX STOCK DELIVERY
Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$ SPECIFICATION
Separation: 40 dB 50 - \qquad Input impedance: $50 \mathrm{k} \Omega$
(Printed and tinned), Resistors, I.C., Capacitors, Preset Potm. \& Instructions.
LIGHT EMITTING DIODE (Red)
Suitable as stereo 'on indicator. For above with panel mounting clip and instructions E3-50 post free. MC1310P only £2.77 plus p.p.

Do you count with us?-These people do ...

G.P.O., DECCA, SHELL, GOVERNMENT DEPARTMENTS, CRYSTAL MANUFACTURERS, UNIVERSITIES, TECHNICAL COLLEGES, DISCERNING CLIENTS AND MANY OTHERS THROUGHOUT THE WORLD

- to within 1 cycle in 5 million

TYPE 401	TYPE 501	TYPE 701	TYPE 801A
$\mathbf{3 2 M H z}$	32MHz 50MHz 300MHz 8 Digits, Crystal Oven. 10 mV Sensitivity. Stability 3 parts 10^{B}		
6 Digits. 10 mV Sensitivity. Stability			

$\mathbf{£ 1 1 0} \quad$ £160 £170 $\mathbf{£ 2 6 0}$
vat extra MEMORY version PLUS $£ 25$
DIRECTLY COUPLED INPUT AND SPECIALS TO ORDER Write for illustrated leaflet
Supplied to and acclaimed by professional engineers everywhere who have purchased our electronic instruments for the past 10 years. Norwegian Agent: ELECTRO-TRADE, TRONDHEIM, NORWAY.

WW-092 FOR FURTHER DETALLS

The revolutionary new Supertester 680R.
 Buy it for what it is. Or buy it for what it can be.
 The Supertester 680R is a completely new concept in measuring instruments In itself a high quality test meter with eighty ranges on a 128 mm mirror backed scate, it is also the basis of a complete measurement system. With the addition light. temperature gauss and phase sequence And there are other accessories to greatly extend the 680R's range. The 680R System offers many advantages over conventional test meters including tremendous versatility and economy

 Gauss Meter For measuring magnetic field strengths
 strengths f11.95 Phase Sequence Indicator
 $\rightarrow \quad \begin{aligned} & \text { a } 3 \text { phence of } \\ & \text { supply }\end{aligned}$ OTHFR ACCESSORIES AVAILABLE SHUNTS D c 2518.00

 $1=-$ E ELECTRONIC BROKERS LTD.
 Electronic Voltmeter of 11 Mohm for d C and 1. Mohms 1.6 Mohms shunlea dy 10 p 101 ac 1000 .25. 50 and

 NW-0.093 FOR FURTHER DETAILS

The new 1973 VAT edition of Lasky's famous Audio-Tronics catalogue will be available in early Aprit - FREE on request. The 48 tabloid size pages - many in full colour - have been reprinted with VAT price changes for your convenience logether with many new items. Over half the pages are devoted exclusively to every aspect of Hi-Fi lincluding Lasky's budget Stereo Systems and Package Dealsl, Tape recording and Audio accessories. Send for your copy now and see for yourself that VAT can mean a saving on many of the 1000's of items we offer

FBES
 Send this coupon with 15 p for post and inclusion on our regular mailing list.

NAME
ADDRESS \qquad

LASKY'S RADIO LIMITED, 3-15 CAVELL STREET, LONDON E.1. I

SOLID STATE HIGH SPEED CUT-OUT
 this unit can pay foritself
 in 50 Nandoseconds
 Hich onty wiont
 It can prevent hours of fault finding

Price $\mathbf{£ 2 . 5 0}$ plus 10 p for post and packing inserted in series with low voltage power supplies this cut out will protect vour expensive power transistors. Acts as a high speed switch which opens when current reaches the cu
out rating. closes again whert current is reduced or the supply switched off Advantageous wher experimenting with H.F. power transistors as an ordinary fuse is far too stow to save these transistors should they burst into oscillation or in the case of accidental momentary short circuits \qquad
when orderin,

PHYSICAL \& ELECTRONIC LABORATORIES LTD. 28 Athenaeum Road, Whetstone, London, N. 20. Tel: 01-455 7683

WW-094 FOR FURTHER DETAILS

[^6]| |
| :---: |

WESTHYDE
west hyde develdpments limited, ryefield crescent, northwood hils, northwdod, midox hag inh Telephone: Northwood 24941/26732.

WW- 095 FOR FURTHER DETAILS

TRANSFORMERS

Primary $200-250 \mathrm{~V}$ olts Secondary 240 Volts Centre ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SECONDARY WINDING
 \qquad

size cm.

$P \& P$
p
30

totally enclosed ilsv auto transformers
$115 V 500$ Watt zotally enclosed auto transformer, complete with mains lead
and two $115 V$ outleas sockets, $87 \cdot 85 . P$ \& 67 p and two $115 V$ outlec sockets, 67 - $85 . \mathrm{P}$ \& P 67p
Also available a 20 Watt version. El .67 . P P 22 p .

Ref.	Amp	Weight	cm.	Seconjary Windings		P
Noi	${ }_{0} 0.50$		$7.6 \times 5.7 \times 4.4$	$0-12 \%$ at $0.25 \mathrm{~A} \times 2$	${ }^{\text {O. }}$. 85	2
213	$\begin{array}{lll}1.0 & 0.5\end{array}$		$8.3 \times 5.1 \times 5.1$	$0.12,1$ at $0.5 \mathrm{~A} \times 2$	1.01 1.33	22
18	2		$8.3 \times 7.0 \times 7.0$	0.12 l	1.36	36
70	6	312	$10.2 \times 7.6 \times 8.6$	$0-12 \mathrm{at} 3 \mathrm{~A} \times 2$	2.24	42
	8		$10.0 \times 8.3 \times 8.2$	$0-12 v a t a x 2$	(22
72	10 16	78	$7.9 \times 10.8 \times 10.2$ $12.1 \times 9.5 \times 10.2$	-	- ${ }^{2.94}$	
115	$20 \quad 10$	1113	$12.1 \times 1.4 \times 10.2$	$0-12 \mathrm{rat} 10 \mathrm{~A} \times 2$	5.78	
	30		. $3 \times 12.1 \times 12.1$ $\times 14.5 \times 12.5$	$0.12 \vee$ at 15A		82
226	60		$0 \times 14.5 \times 12.5$	$0-12 \mathrm{~V}$ at 30A $\times 2$		
Ref.	Amps.	Weighe	size cm.	30 VOLT RANGE Secondary Taps		
	${ }_{0}^{0.5}$		$8.3 \times 3.7 \times 4.9$	0-12-15-20-24-30V	1.01	22 36
3	2.0		$8.9 \times 7.0 \times 7.6$.	2.01	36
20	3.0		$10.2 \times 8.9 \times 8.6$	". ."	2.48	42
21 51 1	4.0	${ }_{6}^{6} 8$	$10.2 \times 10.0 \times 8.6$ $12.1 \times 10.0 \times 8.6$ 1.6	".	2.94 3.66 3	$\begin{array}{r}52 \\ 52 \\ \hline\end{array}$
	6.0		$12.1 \times 10.0 \times 10.2$." .,	4.36	52
	8.0		$14.0 \times 11.7 \times 10.0$	",	5.64	67
89	10.0		$4.0 \times 10.2 \times 11$			
	Amps	Weight	size cm.	50 Volt range Secondary Taps		
	0.5	16020	$7.0 \times 7.0 \times 5.7$	0-19-25-33-40-50V	1.33	30
3	1.0	210	$8.3 \times 7.3 \times 7.0$	" ${ }^{\text {" }}$	1.94 2.96 2	+ 36
104 105	2.0		$10.2 \times 8.9 \times 8.6$ $10.2 \times 10.2 \times 8.3$ 8.	" "	2.69 3.65	5
106	4.0		$12.1 \times 11.4 \times 10.2$	",	4.83	
107	6.0	124	$12.1 \times 11.1 \times 13.3$	" .	7.14	97
118 119	8.0	18 1912	13.3×13.3 $\times 12$		${ }_{1}^{9.32}$	97
Ref.	Amps.	Weight	size cm	60 volt range		
$\stackrel{1}{124}$	0.5	${ }_{2}{ }_{2}{ }^{\text {ar }}$		-2d-30-40-48-6		${ }^{\text {P }}$
127	1.0	30	$8.9 \times 7.6 \times 7.6$		88	
127	2.0	5	$10.2 \times 8.9 \times 8.6$	" \quad "	2.94	${ }^{4}$
123	3.0		\times		5.78	52 67
析	6.0	1612	5		8.37	82
	10.0	23.	$16.5 \times 12.7 \times 16.5$	". ${ }^{\text {\% }}$	3.85	

PRIMARY 200-250VOLT FOR BATTERYCHARGER TYPES Ref. Amps. Weight Size cm.
$\begin{array}{rrr}\text { No. } & 1.5 & 16 \\ 45 & 1.5 & 1 \\ 56 & 4.0 & 3 \\ 86 \\ 146 & 6.0 & 5 \\ 50 & 12.5 & 6 \\ & 6\end{array}$
$7.0 \times 6.0 \times 6.0$
$10.2 \times 8.0 \times 8.3$
$10.2 \times 8.9 \times 8.3$
$8.9 \times 10.2 \times 10.2$
$13.3 \times 10.8 \times 12.1$
Please note, these units do not in
clude rectifier.

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

TRANSISTORS
TO MANUFACTURERS' FULL SPECIFICATIONS
BCI $107 / 108 / 1099.0 \mathrm{p}$ each $\mathrm{TN}^{2 \mathrm{~N}} 3055$ 68p each

$100+6.5 \mathrm{p}$
$500+{ }^{6.0 \mathrm{p}}$
Minimum
with mica and bushes
$25+55 p$
ADth mica and bushes
wis 55 p
$100+50 \mathrm{p}$

t Quantity prices on application

Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

BARPII clectronics
 11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
 nearest tuee stations: bavswater, quensway

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

 diodes and rectifiers

AND RECTI					
AA19,	0.08	$\mathrm{Br}_{1} 133$	0.21	OA	0.35
AAt20	0.08 0.08	${ }_{13 \text { P X } 38 / 8}$		OAfo	${ }_{0}^{0.07}$
A AY30	0.09		0.42	OAT9	07
	0.10	BYZ10	0.35	81	. 07
		BYZ11	$0 \cdot 30$		09
B.116	0.21	BYZ12	0.30	OA90	. 06
		BYZ13	0.25	0491	${ }^{06}$
BA148	0.14	BYE16	0.40		. 07
BA154	0.12	BY217	0.35	${ }^{\text {OA200 }}$	
	0.14	BYY18	${ }^{0.35}$	Oat202	0.07
BA136 BY100	0.13 0.15	${ }_{\text {C } 662}$		SD19	-0.05
HY 101	0.12	(Eg) OA		IN34	07
byios	0.17		0.5	IS34A	07
	2			1 19914	0.08
B ${ }^{\text {Bri26 }}$	0.14	(8)		1N9	08
BY12T	15	OA79	0.06	NA+14	. 06
BYY28	5	OA5	0.35	18021	0.10
BY130	0.16	0 ass ,	0.21	18951	0. 06

NEW LOW PRICE TESTED S.C.R.'s

				-		0,		
100	0.25	0.33	0.47	0.47	0.50	0	${ }_{0} 0.63$	${ }_{1}^{1.40}$
200	0.35	0.37	0.49	0.49	0.57	0.61	0.75	1 180
${ }^{400}$	- 0.43	0.47	0.56	0.56	${ }^{0.87}$	0.75	${ }^{0.933}$	
${ }_{800}$	${ }_{0.63}^{0.53}$	0.70	${ }_{0} 80$	${ }_{0}{ }^{\circ} 80$	0.90	1.20	1.50	4.00
SIL. SECTS. TESTED								
PIV		ma	50 mA		1.5A			
50		04	0.05	0.05	0.07	$0 \cdot 14$	0.21	0.60
100		. 04	0.08	0.05	0.13	0.16	0.23	0.75
		05	0.09	0.06	0.14	0.20	0.24	1.00
400		. 08	0.13	0.07	0.20	0.27	0.37	25
600		. 07	0.16	0.10	$0 \cdot 23$	0.34	0.45	1.86
		10	0.17	0.11	0.25	0.37	0.55	2.00
1000		-11	0.25	0.14	${ }^{0.30}$	$0 \cdot 48$		2.50
1200			0.33		0.38	0.57	0.75	

POWER TRANS BDNANZA!

KING OF THE PAKS Unequalled Value and Quality SIDER PAKS NEW BI-PAK UNTESTED SEMICONDUCTORS

Pak No.

Description

U 3	75 Germainn	0.50

 U12 12 silim Rectifere Epuxy 500 ma up to 800 PI

024 20 Germaninn 1 Amp Rectitere (iam Herien up to 300 PIV 0.50

Q3ib	$72 \times 36+6$ TO-18 plastic 300 MHz
Q37	3 2N3053 N PN Silicon transistore
Q38	7 NPN transistors $4 \times 2 \mathrm{~N} 3 \mathbf{0} 03,8 \times 2 \times 3702$

electronic slide-rule

 Circles. Volume of Cylinderf, Resistance of ConductorVeight of Cond

BI-PAKS NEW COMPONENT SHOP NOW OPEN WCCESSORIES AT
COMPETITIVE PRICES-

18 baldock street (Al0), WARE, herts.

TEL. (STD 0920) 61593.

-the lowest prices!

74 Series T.T.L. I.C'S Guran edd. All famoud manuracrurers

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS) D.1\% DISTORTION! HI-FI AUDIO AMPLIFIER

- Frequency Regponse 151 zz to $100,000-1 \mathrm{~dB}$.
- Load-3, 4, 8 or 16 ohms. - Supply voltage 10.35 Volt - signal to noise ratio yodB.
- Overall size $63 \mathrm{~mm} \times 10 \overline{\mathrm{~mm}} \times 13 \mathrm{~mm}$.

Tailor made to the most stringent quecifeations using top,
quality componente and incorporating the latest sold state ircuitry conceived to fill the need for all your A.F. ampliti cation ueede. BRITISH MADE. only $£ \mathbf{~} \mathbf{3} \cdot \mathbf{2 5}$ each

STABILISED POWER
mODULE SPM80

Ap80 is especiaily designed to power 2 of the Al, 50 Amplifers, up to
15 watt (r.m.s.) per channel simultaneourly. This rootule enthodies the lateat components and circuit techniques incorporating complete short ircuit protection. With the addition of the Mains Transiormer MT80,
the unit will provide outputs of up to 1.5 amps at 35 volts. Size:
 Syatems of the highest quality at a hitherto nifoltainable pirice. Also
ideal for many other applications including Diaco Systems, Public
Address, Intercom Units, etc. Handbook available 10 TRANSFORMER BMT80 £1.95 p. \& p. 25p

宫

NUMERICAL INDICATOR TUBES

mone

MODEL	CD66	GR116	3015 F Minitron
Anode voltage (VdC)	170 min	175 min	5
Cathode Current (mA)	2.3	14	8
Numerical Height (mm)	10	13	9
Tube Height (mm)	47	32	22
Tube Dlameter (mm)	19	13	$\mathbf{1 2}$ wide
I.C. Driver Rec.	$\mathrm{BP} 41 / 14$ $1+1$	BP 41 or $1 \neq 1$	BP47
PRICE EACH	$\mathbf{8 1 . 7 0}$	$\mathbf{8 1 . 5 5}$	$\mathbf{8 1 . 9 0}$

INTEGRATED CLRCUIT PAKS

Manufacturers "Fall Outs" which include Functional and Part-Functional Units, These are classed as "out-ofPak No. Contents Price specifications. but are ideal tor learning about IC's and expering

Pak No. Contents	Price	Pak No. Contents	Price	Pak No. Contents	Price
UIC $00=12 \pm 7400$	0.50	UIC46-5 $\times 7446$	0.50	UIC86 $=5 \times 7486$	0.50
UIC01 $=12 \times 7401$	0.50	UIC $+7=5 \times 7447$	0.50	UIC90 $=5 \times 7490$	0.50
UIC02-12 $\times 7402$	0.50	UIC48 $=5 \times 7448$	0.50	UIC91-5 $\times 7491$	0.50
UIC03 $=12 \times 7403$	0.50	$\mathrm{UIC50}=12 \times 7450$	0.50	$\mathrm{U1C92}=5 \times 7492$	0.50
UIC04 $=12 \times 7404$	0.50	U1351 $=12 \times 7451$	0.50	UIC93 $=5 \times 7493$	0.50
UIC05 $=12 \times 7405$	0.50	U1C53 $=12 \times 7453$	050	UIC94 $=5 \pm 74.44$	0.50
UIC0 $6=8 \times 7406$	0.50	U1C54 $=12 \times 7454$	0.50	UIC95 $=5 \times 7495$	0.50
U1C0 $7=8 \times 7407$	0.50	UIC60 $=12 \times 7460$	0.50	UIC96=5 $\times 7.96$	0.50
UIC10 $=12 \times 7410$	0.50	UIC70 $=8 \times 7470$	0.50	UIC100 $=8 \times 14100$	0.50
[IC13 $=8 \times 7413$	0.50		0.50	U1C121 $=5 \times 74121$	0.50
UIC $20=12 \times 7420$	0.50	UIC $73=8 \times 74{ }^{\text {a }}$	0.50	UIC141 $=5 \times 74141$	0.50
UJC30 $=12 \times 7430$	0.50	U1C74 $=8 \times 7474$	050	U1C $151=5 \times 74151$	0.50
U1C40-12 $\times 7440$	0.50	$\mathrm{UIC} 75=8 \times 7475$	0.50	UIC154 $=8 \times 74154$	0.50
UTC $41=5 \times 7441$	050	UIC76 $=8 \times 7476$	0.50	UIC193=5 $\times 74193$	0.50
UIC42 $=5 \times 7442$	0.50	UIC80 $=5 \times 7480$	0.50	UIC199 $=5 \times 74199$	0.50
$\mathrm{UIC} 43=5 \times 7443$	0.50	U1C81 $=5 \times 7481$	0.50		
UIC4. $=6 \times 7444$	050	U1C82 $=5 \times 7482$	0.50	UICXI $=25$ Asgorte	8 1.50
VIC45 $=5 \times 7445$	0.50	UIC83 $=5 \times 7483$	0.50		

STEREO PRE-AMPLIFIER TYPE PA100

Built to a apeciflcation and NOT a price, and yet still the greatest value on the warket,
the PAl00 stereo pre-rmplifier has been conceived from the latest circuit techuiques Designed for use with the AL50 power amplifler system, this quality made unit
lucorporates no less than eight silicon planar transistors, two of these are specially lncorporates no tess than eight silicon planar tranaistors,
selected low noise NPN devices for use in the input stages.
Three switched stereo inputs, and rumhie and scratch filters are features of the
PA100, which also has a STEKEO/MONO switch, volume, batance and continuously SPECIFICATION

Frequency repponse
Harmonic distortion Harmonic distortion
Inputs: 1 . Tape Inputs: l. Tape head $\quad 20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ $\begin{array}{ll}\text { Radio, Tuner } & 1.25 \mathrm{mV} \text { into } 00 \mathrm{~K} \Omega \\ \text { Magnetic P.U. } & 35 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega\end{array}$ 2. Rasio, Tuner 1.5 mV into $50 \mathrm{~K} \Omega$
All input voltagetic P. U . for an output of 250 mV . Tape afd \mathcal{P}.U. imputs equalised to
SPECIAL COMPLETE KIT COMPRISINO
I SPM 80, I BMTBO \& I PAIOO ONLY 23.00 FREE p. \&p
only f11.95
The STEREO 20
The 'Stereo 20 ' amplfier is mounted, ready wired and tested
on a one-plece chassis measuring $20 \mathrm{cml} \times 11 \mathrm{~cm} \times 55 \mathrm{~cm}$ on a one plece chassis measuring $20 \mathrm{cml} \times 14 \mathrm{~cm} \times$, \times cm
This compact untt comes complete with on/ofi with control, balance, bass anl treble controls. Attractively printed
front panel and matching control knobs. The 'Stereo 20 has been cesigned to fit into most tuntable plinths without
interiering with the mechanism or, alternatively, into a sep arate cabinet.
Cutput yower 20 w peak \quad Input 1 (Cer.) 300 mV in to 1 M
($\begin{array}{ll}\text { Freq. res. } 28 \mathrm{~Hz} 2 \cdot 25 \mathrm{kHz} & \text { Input } 2 \text { (Aux.) } 4 \mathrm{mV} \text { into } 30 \mathrm{~K} \\ \text { Harmonic distortion } & \text { Bass control } \pm 12 \mathrm{~dB} \text { at } 60 \mathrm{~Hz}\end{array}$ £12.25 free p. \& p.

Basa control

Bass control	$\pm 15 \mathrm{AB}$ at 20 Hz
Tretple control	
Filters: Rumble (high pass)	$\pm 15 \mathrm{~dB}$ at 20 kHz

8 k Hz better than +65 dB +26 dB
+35 volts at 20 mA
$292 \times 82 \times 35 \mathrm{~mm}$

NEW COMPONENT PAK BARGAINS

${ }_{\substack{\text { Page } \\ \text { Nob } \\ \text { alv }}}$

ONLY £16.95 FREE p. \& p.
Please note that as from APR/L. 1st 10%
must be added to all the above prices.

 Ther P.O. BOX 6, WARE HERTS

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished ... Installation . . .
Maintenance . . Overhauls . . Spare Parts . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS
EQUIPMENT
OTHER
EQUIPMENT PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6 S5, 6S6, 6 S6M, $92,35,71,72,74$ HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS 15, 19, 20, 28, 32, 33, 35 all configurations PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS 14, 20, 28 LBXD \& LXD TRANSMIT GROUPS, etc

TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.

KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN CONTINENTAL, ARABIC and other layouts, 5-8 track.

SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.
wW-097 FOR FURTHER DETALLS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 \mathrm{~B}$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES—made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-098 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

[^7]
77 AKEMAN STREET, TRING, HERTS., U.K. Telephone: Tring 3476/8, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

COMPLETE TELEPHONES
NORMAL HOUSEHOLDTYPE
AS SUPPLIEDTOTHEPOSTOFFICE Ex g.po ONLY 95p

P\&P35PEACH
TELEPHONE DIALS
Standard Post Office type Guaranteed in working order
ONLY 25p

${ }^{819}$	4	IN4007 Sil Reć diodes 1.000 PIV lamp piastic	50p
${ }^{\text {881 }}$	10	Reed switches Rieed Relay Inserts 1;" long	50p
${ }^{899}$	200	Mixed Capacitors. Approx. quantity, counted by weigh	50p
H4	250	Mixed Resistors. Approx quantity, counted by weight	50p
H7	40	Wirewound Rasistors Mixed types and values	50p
H40	20	BFY50/2. 2N696, 2N1613 NPN Silicon uncoded TO. 5	50p
ня	2	OCP7 1 Light Sensitive Photo Transistor	50p
H39	10	Integrated circuits. 6 Gates BMC 962. 4 Flip Flops BMC 945	50p
134	20	1 Watt Kener Droges Mixed Voltages $6.8-43 \mathrm{~V}$	50p
${ }^{435}$	100	Mixed Diodes. Germ Gold bonded etc. Marked and Unmarked.	50p
${ }_{428}$	20	OC200/1/2/3 PNP SHicon uncoded TO 5 can	50p
${ }^{\text {H38 }}$	30	Short lead Transistors. NPN Silicon Planar types	50p
H41	2	Power Transistors Comp. Pair BD $131 / 132$	50p
unmarked untested paks			
866	150	Germanium Diodes Min glass type	50p
${ }^{863}$	200	Trans. manufacturers' rejects all types NPN. PNP. Sih and Germ	
${ }^{884}$	100	Silican Diodes DO-7 glass equiv 10 OA200. 0A202	50p
${ }^{886}$	100	sil Diodes sub min IN914 and IN916 types	50p
888	50	Sil. Trans. NPN. PNP equiv. to OC200/1. 2N706A. BSY95A, etc	50p
${ }^{81}$	50	Germaniun Transistors PNP. AF and RF	50p
нб	40	250mW Zener Diodes DO-7 Min. Glass Type	50p
H34	15	Power Transistors. PNP. Germ. NPN Silicon T0-3 Can. P \& P 5 p exira	
\%17	20	3 Amp Sificon Stud Rectifiers. Mixed volts	50p
H15	30	Top Hat Silicon Rectifiers 750 mA Mixed volts	50p
${ }^{\text {H16 }}$	15	Experimenters' Pak of Enegrated Circuits, Data supplied	50p
	40	NPN Silicon Trans. 2N3707-11 range, Iow olise amp	

The TACHO BLOCK This en
capsulated block will turn any ana meter into a linear and car with nomal coil lan any

$£ 1$ each

OVER $1,000,000$ TRANSISTORS IN STOCK

We hold a very large range of fully marked. tested and guaranteed Transistors. Power Tra nsistors, Diodes and Rectifiers at very competitive prices. Please send for Freə Catalogue.
600.000 Silicon Planar Plastic Transistors. marked untested - factory Audio PNP. similar to $\mathrm{ZT} \times 500$ NPN, simila etc. R.F. NPN and Switching NPN

Plése state type of Transistor required when ordering.
ALL AT 500 for $£ 3.00 .1 .000$ for $£ 5.00$ 10.200 for $£ 40.00$

OUR VERY POPULAR 3p TRANSISTORS
TYPE "A" PNP Siticon alloy. TO-5 can.
TYPE "A" PNP Siticon alloy. TO-5 can.
TYPE ${ }^{2}$ " PNP Silicon plasuc encansulatian
TYPE 'B PNP Silicon, plastic encab
TYPE 'E PNP Germanium AF ior RF
TYPE "EF" NPN Silicon plastic encapsulation
TYPE "G" NPN Silicon similar ZTX300 range
TYPE "H" PNP Silicon, smular ZTX500 range
8 nulastron $£ 1$

Value
Adoed
Toyou
On orders of OYOU See below.
We will gve a discount to customers who send in an order We will gwe a discount to customers who send in an order
for $£ 4$ or jvar. Shis discoum will be equal to the VA T. rate for $£ 4$ or avar. This discoum will be equalioth V A T. rate
current at this time. If your order does amount to $£ 4$ or over. current at this time. If your order does amount to 4 A or over.
all you nead to send is the total cost of goods and pastage as statedi in thes advertisement. No addition for V.A.T. is needed.
V.A.T. forerders under $£ 4$:

If the total cost of goods plus postage and packing is iess than $£ 4$ kindly add 10% (10 p in the f$)$ to your emitance incorrect amounts will delay your order

A CROSS HATCH

 GENERATOR FOR $\mathbf{£ 3 . 5 0}$YES, a complete kit of parts including Printed Citcuit Board. A four position switch gives X-hatch,
Dots, Vertical or Horizontal lines. Integrated Circuit Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is a project

This complete kit of parts costs $£ 3.50$, post paid.

A MUST for Colour T.V. Alignment

Our famous P1 Pak is still leading in value for money. Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors FNP \& NPN , and a host of Dodes \& Rectifiers mounted on Printed Circuit Panels Identification Chart supplied to give some information on the Transistors

Please ask for pak P.1. Only 50p

100,000 Plastic Power Transistors in stack, more on way!
 NOW IN TWO RANGES

CATALOGUE for tRANSIStors. RECTIFIERS, DIODES, INTEGRATED CIRCUITS AND FULL PRE-PAK LISTS
of the very lates desicn avalable in NRP Power Transistor shatteringly low prices of all time. We have been seliing thes successfully in quantity to all parts of the wortd and we ar RANGE I VCE Min. I

40 Wats

RANGE 2 VCE Min 40
$\begin{array}{llll}\text { 40 Watt } & 30 \mathrm{p} & 28 \mathrm{p} & 26 \mathrm{p} \\ 90 \text { Watt } & 35 \mathrm{p} & 33 \mathrm{p} & 30 \mathrm{p}\end{array}$ Complementary pairs matched for gain at 3 amps. 10 p extr

INTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices lfrom
10 p each). These are all listed in our FREE Catalogue see 1Op each). Trese are all histed in our free Caralogue see

METRICATION CHARTS now available
This fantastically detailed conversion calculator carries (and U.S.A) measurements of length, area. volume. liquid measure weights etc Wall Chart 18p
LOW COST DUAL IN LINE IC. SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } \mathbf{1 5 p} \text { eact } \\ 16 \text { pin type at } \mathbf{1 6 p} \text { each }\end{array}\right\}$ Now new low proftid type
Books
We have a large selection of Reference and Technical Books
in stock
These are just two of our popular lines.
B.P.1. Transistors Equivatents and Substitutes 40p, this
B.P.1. Transistors Equivatents and Substitutes 40p, this

The lliffe Radio Valve and Transistor Data Book, 9th
Edition 75p. Post \& Packing 21 p extra
Characteristics of 3.000 valves and tubes. 4.500 Transistors.
Diodes, Rectifiers and Integrated Circuits.
Send for lists of these English pubsications
NB No V.A.T. to pay on books.
BUMPER BUNDLES
These parcels contain all types of surplus electronic com-
ponents. printed parels. switches. potentiometers. ransistors and diodes,

2 Lbs in weight for $\mathbf{f 1}$
Post and packing 25

Erfaterastry

C. T. ELECTRONIGS 267 ACTON LANE, LONDON, W. 4 5DG 01-994 6275

COMPONENTS AND TEST EQUIPMENT

ADVANCE

TF. 145
TF. 1165
TF. 1220 TF. 1221

UHF Signal Generator $450-1900 \mathrm{MHz}$ P.O.A Electronic Timer 1 MHz TF. 1165) Heterodyne Unit $2 k H z-100 \mathrm{MHz}$, Complete | when used with TF. 1165 and | System | |
| :--- | :--- | :--- |
| TF. 1220 gives accuracy of | $\pm .1$ | I 350 |
| count and crystal stability ol 2 | | | parts in 10 per week.

Tansistor Test Set Oscuum Tube Voltmeter
Oscope DC -15 MHz
Timing Uni
Noise Receiver
Valve Voltmeter

Microwave Receiver with R.F. Tuning
Units
RR-T $400-1000 \mathrm{MHz}(2 \mathrm{off})$ RR-T $400-1000 \mathrm{MHz}$ (2 off)
RS-T $1900-4340 \mathrm{Mtiz}$
 Tuning Units
RHODE AND SCHWARZ P.
MF Monitoring Feceiver $30-180 \mathrm{MHz}$ VHF Monitoring Feceiver $30-180 \mathrm{MHz}{ }_{\text {AM/FM }}$

ESM-180

20D-
BN3562 $\ldots .$.
USVF515285/50.
BN15
NAK
BN. 26012
Power Signal Generator $30-300 \mathrm{Mhz}$.
Z-G Diagraph $300-2400 \mathrm{Mhz}$............. $\mathbf{E 6 5 0}$
Selective UHF Voltmeter for TV Bands
IV and V.A.
Measuring Head of VHF Wattmeter
and Natching Indicator. 20w. 80 230 MHz .
NAK
BN $26033 / 60$
RBD ${ }_{\text {BN }} 33662 / 60$. UHF Alten $80-230 \mathrm{MHz} \ldots \ldots \ldots$
P. 2024 Tower Supply 700 VBAND , 552

Power Supply 50 V .0 .5 Amp . d.c........... £52
E10
ariable Power Supply $0-500 \mathrm{~V}$. 500 m A.
d.c. 65
Spectrum Analyser
Sweep: $1-7 \mathrm{kHz}$ 1-100kHz, Auto/Manual.
Sweep: $1-7 \mathrm{kHz} ; 1-100 \mathrm{kHz}$, Auto $/ \mathrm{Manual}$
Bandwith: $70 \mathrm{~Hz} / 1 \mathrm{kHz}$. $\mathbf{E 2 5 0}$
Precision SANGAMO WESTON

0-300mA: 0 -600mA \quad SOLARTRON
Oscilloscope with Wide Band Plug-in
CX $1256 . \mathrm{DC}-40 \mathrm{MHz}$ Oscilloscope with Differential High-
gain Plug-in CX. 1258

 Broadcast
Recorder Standard Video Tape Rin. Tape. 625 Lines. CCIR. 2 Audio
Channels. sullivan
 ment for the measurement of iron-cored inductances fromi $1 \mathrm{mH} .-150 \mathrm{H}$. with
super-imposed direct current up to 2 Amps SWEEP SYSTEMS INC.... 880 Sweep Generator $400-850 \mathrm{MHz}$. Suitable
for colour TV work

```
Oscilloscope TEKTRONIX
```



```
    Dual trace..
```

```
        \star FORR CASH AND CARRY *
            \star SALES *\star
```

 MULLARD ELECTROLYTIC CAPACITORS
 \begin{tabular}{l}
 2.5 V

401 F

$160 \mu \mathrm{~F}$

$320 \mu \mathrm{~F}$

$550 \mu \mathrm{~F}$

$1000 \mu \mathrm{~F}$

1600 F

$2500 \mu \mathrm{~F}$

4000 F

\hline 6.4 V

25 F

100 F

$320 \mu \mathrm{~F}$

$640 \mu \mathrm{~F}$

$1600 \mu \mathrm{~F}$

$2500 \mu \mathrm{~F}$
\end{tabular}

 ELECTROLYTIC CAPA
 | | |
| :---: | :---: |
| 4 p | $\stackrel{4 \mathrm{~V}}{64 \mathrm{uF}}$ |
| ${ }^{\text {p }}$ | $125 \mu \mathrm{~F}$ |
| 4 p | $250 \mu \mathrm{~F}$ |
| 4 p | $400 \mu \mathrm{~F}$ |
| 5 p | $800 \mu \mathrm{~F}$ |
| 7 p | 1250 ${ }^{\text {F }}$ |
| 8 p | 2000 F |
| 9 p | . 3200 uF |
| | 16 V |
| ${ }^{4} \mathrm{p}$ | $250 \mu \mathrm{~F}$ |
| 4 p | $640 \mu \mathrm{~F}$ |
| ${ }^{4} \mathrm{p}$ | 40 V |
| 5 p | 250山F |
| 8 p | ${ }_{400 \mu \mathrm{~F}}$ |
| 9 p | |

SURPLUS ELECTRONICS WAREHOUSE
20-24 Beaumont Rd, London, W. 4 (1st floor) NOW OPEN EVERY OAY 10 a.m. -5 p.m PUBLIC and TRADE WELCOME
Thousands of bargains at ridiculous prices: Oscilloscöpes: Test Meters, Resistors. Capacitors, Components, etc., etc.

WANTED

SURPLUS TEST GEAR, COMPONENTS SEMICONDUCTORS ETC.

 MAINS ON-OFF ROTARY SWITCH. 2 pole, on-of. 2 A Resistance $20 \mathrm{KS} . \pm 3 \%$. LIN $\pm 0.2 \%$ £1 ea. +10 p p.o. Glass envelope, f1 ea. $+10 p$ p.p. 70MHZ OUARTZ CRYSTAL. HC 6 Type. £1 ea. +10 p p.p.
10.7 MH O CRYSTAL FILTERS. Cathodeon Type BP 25 or M.E.S. PANEL BULBS. 45 V . 0.3 A : $: 5 \mathrm{~V}$. $0-15 \mathrm{~A}$.: 8 V .1 .2 W . 2V. 3.6 W . Any 24 for E1 +10 p.p.
O.3 POWER TRANSISTOR SOCKET. 12 for $50 \mathrm{p}+$ T. O.S TRANSIPAD. 500 for $\mathbf{E 2} 50$ inc. post.
360 deg. PRECISION SERVO POTENTIOMETER.
 $20 \mathrm{D}+10 \mathrm{p}$. P. LEDEX SWITCHES. N.S.F. Type 7016 . £1.25 inc. posi HIGH OUALITY TRIMMER CAPACITOR (beehive). 2 PIN UNIVERSAL PLUG AND SOCKET (may be stacked o form multipole connector). E.M.L. Type D2, size approx.
 $50 \mathrm{p}+10 \mathrm{p}$ p.p. RELAYS
Clare Ellio 12 V .200 ohm: 24 V . 675 ohm: 110 V .9100 ohm
 1250 ohm; 24 V . $15000 \mathrm{ohm}, 28 \mathrm{~V}$. 5800 ohm . $4 \mathrm{p} . \mathrm{c} / \mathrm{o}$. Size

STC Miniature Sealed Relay 24V. 700 ohm. 2p.c/o. Size

 agnetic Dpvices 12 V . 2 p. make ${ }^{2}$. 500 Carbon resistors, $\frac{1}{4}, \frac{1}{2}, 1,2$ watt.
100
100
Electrolytic Condensers.
250 Ceramic, Polystyrene, Silver Mica, etc. Condensers
25 Potentiometers assorted.
6250 High-stab. $1 \%, 2 \%, 5 \%$ resis.tors.
1 lb . Wt Assorted Nuts, bolts, washers, spaceis, etc
${ }_{9}$ 25. Assorted swiches, $\begin{aligned} & \text { sotary, washers, spaceis, etc. } \\ & 50\end{aligned}$ ALL COMPONENTS NEW AND UNUSED

	SPECIAL OFFERS (Limited period only)
BC 107	Transistors 7 p
BC 108 BC 109	Quotations for quantities
SL 403D	¢130 ea.

320 F	64 V	17 p	2000HF 16 V	19p
500 LF	40 V	17p	3200 HF	
500 uF	64 V	19p	3200 LFF 16 V	25 p
$800 \mu \mathrm{~F}$	25 V	17p	4000 HF 25 V	35 p
$800 \mu \mathrm{~F}$	64 V	24p	5000uF 10 V	$25 p$
1250MF	16 V	17p	6400uF 16 V	37 p
$1250 \mu \mathrm{~F}$	25 V	19p	6400uF 25 V	45 p
$1250 \mu \mathrm{~F}$	40 V	24p	100004 F 10 V	38 p
1600 H	64 V	35 p	10000 HF 16 V	46 p
2000 HF	10 V	17p	$16000 \mu \mathrm{~F} 10 \mathrm{~V}$	46 p
Carriage Orders under $£ 5+20$ p Over $£ 5$ post free nerous discounts on quantity orders				
FULL RANGE OF ELECTRONIC COMPONENTS AT OUR RETAIL SHOP. OPEN 9.30-6 MON..SAT. 267 ACTON LANE, LONDON. W. 4				

"FXAM"

£28.50 whluoss tank case

20 Watt per channel stereo amplifier designed by Richard Mann of Texas Instruments and published in Practical Wireless MayJuly 1972.
This low distortion (0.09% at 20 W into 8 ohm), wide bandwidth ($-3 \mathrm{~dB} 5 \mathrm{~Hz}-35 \mathrm{KHz}$) design is offered as a Texas Instruments approved full kit (including all metalwork and Teak case for a toral of $\mathbf{£ 2 8 . 5 0}$ post paid. Full details in price list.

METALWORK SYSTEM

Designed to house Bailey, Blomley or Linsley Hood Class AB amplifiers with simple or regulated power supplies and Bailey Burrows pre-amp. Options of standard or hum reducing toroidal mains transformer.

TOROIDAL TRANSFORMER 60 volt 2 amp . Max. height 2 in. Suitable for our regulated power supply $\mathbf{£ 7 . 4 0}$ Simple clamp

SEMICONDUCTORS

2N699	0.25	BCIB4L	0.11
2N1613	0.20	BC212L	0.12
2N1711	0.25	BC214L	0.14
2N2926G	0.10	BCY72	0.13
2N3053	0.15	BF257	0.40
2N3055	0.45	BF259	0.47
2N3442	1.20	BFR 39	0.25
2N3702	0.11	BFR79	0.25
2N3703	0.10	BFY50	0.20
2N3704	0.10	BFY51	0.20
2N3705	0.10	BFY52	0.20
2N3706	0.09	MJ48	20
2N3707	0.10	MJE521	0.60
2N3708	0.07	MPSA05	0.30
2N3709	0.09	MPSAI2	0.55
2N3710	0.09	MPSA14	0.35
2N3711	0.09	MPSA55	0.35
2N3819	0.23	MPSA	0.35 0.40
2N3904	0.17	MPSU05	0.60
2N3906	0.20	MPSU55	0.70
2N4058	0.12	SN72741P	0.58
2N4062	0.11	SN72748P	0.58
2N4302	0.60	THBII	1.10 0.50
2N5087	0.42	TIP30A	0.60
2N5210	0.54	TIP3IA	0.60
2N5457	0.30	TIP32A	0.70
2N5830	0.30	TIP33A	1.00
40361	0.40	TIP34A	1.50 0.74
40362	0.45	TIP41	0.74 0.90
BC 107	0.08	TIP3055	0.60
BCIO8	0.08	IB08T20	0.50
BCl09	0.08	1840K20	1.40
BCI25	0.15	IN914	0.07
BCI26	0.15	IN916	0.07 0.05
BC182K	0.10	15920	0.10
BC212K	0.12	153062	0.25
BCI82L	0.10	5B05	1.20

HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD

DESIGNER APPROVED KIT

SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$. This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

FREE

TEAK CASE

WITH 75 WATT PER
 CHANNEL COMPLETE
 AMPLIFIER KITS

P.S. Full circuit description in handbook

30p
FOR FURTHER DETAILS PLEASE WRITE TO:
75 WATTS PER CHANNEL
\star BANDWIDTH (3dB) 3HZ-40KHZDISTORTION LESS THAN 0.01\%UNCONDITIONAL STABILITYCOMPONENT PACKS
Pack
I Fibre glass printed circuit board for power amp. 60.75
2 Set of resistors, capacitors, pre-sets for power amp. f1. 50
3 Set of semi-conductors for power amp. (highest voltage version) 65.50
4 Pair of 2 drilled, finned heat sinks 60.80
5 Fibre glass printed circuit board for pre-amp. f. 1.10
6 Set of low noise resistors, capacitors, pre-sets for pre-amp 62.70
7 Set of low noise, high gain semi-conductors for pre-amp 62.10
8 Set of potentiometers (including mains switch) 61.55
9 Set of 4 push button switches, rotary mode switch 63.10
10 Toroidal transformer complete with magnetic screen/ housing primary: 0-117-234 V . secondaries: $33-0-33 \mathrm{~V}$. 24-0-24 V ., electrostatic screen 69.15
$\|$ Fibre glass printed circuit board for power supply 60.55
12 Set of resistors, capacitors, secondary fuses, semi- conductors for power supply $£ 3.50$
13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, control knobs £ 3.25
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc. f 6.30
15 Handbook, based on $\mathrm{Hi}-\mathrm{Fi}$ News articles 60.30
16 Teak cabinet t7.35
2 each of packs 1-7 inclusive are required for complete
stereo syst
 22 PANTILES : BEXLEYHEATH : KENT
 MAIL ORDER ONLY POST FREE TO U.K. OVERSEAS AT COST
 U.K. Orders Subject to $\mathbf{1 0 \%}$ V.A.T. Surcharge
 \title{

POWERTRAN ELECTRONICS

}
 \title{

POWERTRAN ELECTRONICS

}

Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply.

€ 31.35

R.S.T. VALVE MAIL ORDER CO. Blackwood Hall, I6A Wellfield Road, London, SWI6 2BS Tel: 01-677 2424

P. \& E. Electronic Instruction Modules

POWER UNIT Half wave. fult wave.
bridge rectifer ver hridge rectifier, etc
may he investigated may he investigated.
May be wred as a
doubler. treblet.
det ac. Choke and capand other smoothned Unit gives

[^8]number of sockets on the panet, and the connecting leads which are provided, allow great flexibility of the circuitry. Each madute covers a whin
Other units available

PHYSICAL \& ELECTRONIC LABORATORIES LTD.

NEW BRANCHES COVENTRY SUNDERLAND STOCKPORT

BIRMINGHAL

(Agent) O \& C Electronics, 227 Church St.
BRADFORD 10 North Parade (Closed Wed.)
DARLINGTON 19 Northgate (Closed Wed.) DEREY 26 Osmaston Rd. (Closed Wed.)
EDINBURGH 101 Lothian Road (Closed Wed.)
GLASGOW 326 Argyle St. (Closed Tues.) GLASGOW 326 Argyle St. (Closed LEEDS 5-7 County (Mecca) Arcade, Briggate
(Closed Wed.) Tel. 28252 LEICESTER 32 High St. (Closed Thurs.)
LIVERPOOL 73 Dale St. (Closed Wed.) LONDON 238 Edgware Rd., (Closed Thurs.)
MANCHESTER 60a Oldham St. (Closed Wed.) MIDDLESBRO 106 Newport Rd (Closed Wed.)

NEWCASTLE 24 Newgate Shoping Centre

CrO

 under e2. 30, extra. over to, or as stated BRANCHES OPEN ALL DAT SATURDAY AND OPERATE A 5-DAY WEEK NOTTINGHAM 19 Market SHEFFIELD 13 Exchanget St. (Closed Thurs.) STOCKPORT 8 Littie Underbank Tel. 4800777

R.S.C. G66 Mkill $6+6$ WATT STEREO AMPLIFIFIER High Quality Outpurt. Rating I.H.F.M. Ind. Gatuged Controls Basw plus diodes. Range $20 \cdot 20,000 \mathrm{~Hz}$, Bass contitrol \pm
± 13, IB. Selector switch P.U. or Tape/Radio. Qut speakers. Standarid $200-250$. 50 Hz mains opzrat
Black/Silver metal face wate and matcling knobs.
 R.S.C. SUPER 30 MkIII HIGH FIDELITY STEREO AMPLIFIER
 DOUBLE THE KIT PFICE INCLUDING CABINET

FANS ULTRA HIGH POWER LOUDSPEAKERS

R.S.C. AIO 30 WATT HI-FI AMPLIFIER Inctuding
ind. controlled

FANE SPEAKERS 'POP' $25 / 2$
$\mathbf{~ 6 . 7 5}$ or mee. $: 1-2$, Lin separate Bass and Treble Controls. Valves EF86. EF86, ECC83, (E 234 , EL34, EL34. pick-ups. Designed to high tidelity standarde
for CLUBS, SCHOOLS, THEATRES, DANCE HALLS, DIGCOTHEQUES, etc. For use with ram. Radio or Tape. For 3 or 10 nin speakers.

RS.C. MAINS TBANSFORME
FULLY GUARANTEED. Interleaved and Impres $\frac{\operatorname{Ming}}{250}$, FU00-2505, 60 mA , 6.3 JV 2a
 $250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, ., 0-5-6.3 \mathrm{v} .2 \mathrm{a}$.
$300-0.30 \mathrm{v}$ $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$
$300-0.300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} 4 \mathrm{ti}$, c.t., 6.3 v 1 a For Mullard 510 Amplifer

 TOP SHROUDED DROP-TEROUGH TYPE $250-0-250 \mathrm{v} 70 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v}$.

 $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$. c.t. f . 3 v .
Suitable for Munlard 510 Amplit
 FLLAMENT or TRANSISTOR POWER PACK Types

 OUTPUT TRANSFOREER
Push-Pull 8 watts EL84to 3Ω or $15 \Omega \ldots .$.
Push-Pull ELsa to 3 or 15 an $10-12$ watts
 6 L 6 kT K6, etc, for 3 no 15Ω,
fush-Pull 20 watt high quality sectionally
 BATTERY/MAINS CONVERSION UNITS

HI-FI SPEAKER ENCLOSURES

Teak vencer finish. Pleasing design. Acoustically lined. All sizes approx. JE8 $16 \times 11 \times 9$ in. Pressur: ised. Excellent results \qquad with 8 in. Hi-Fi Speaker. SE8 for optinum results with any 8 in. $\mathrm{Hi}-\mathrm{Fi} f 6.47$

SE10 ov tstanding periormance with Hi-Fi 10 -in. $\mathbf{E 6 . 7 4}$ SEI2 for high grade reanlte with

HIGH FIDELITY SPEAKERS

MAGNETIC HEADS P.O.A

RECTIFIER STACK

GEX541 191P2	¢6.88
GEX54181P1	£3.50
GEX54102P1	¢3. 50
GEX541NB1P1	E600
GEX541HP3F	E6.00
SX751N9B1P1F	. $£ 6.00$

TRIACS \& DIACS
40842450 v . $6 \mathrm{a} . . . \mathrm{E}$. 105
Trigger circuit for above
Diac 40583 30p
BTW16-100 100v.
10a..................
INTEGRATED CIRCUITS MC3544.
MC358AG
MC365G
CA3020
CA3021
CA3055
HYRISTORS
GE2N1774 200v. 5a.E1 20 CR10-101B
10a..................
CR10-021 10a.
CR10-021 10a.
CR10-40B 10a.
$£ 1.00$
$£ 100$
CR10.051 10a...... £1 00
CR10-017 10a.
BTX-82-300R 300
$\begin{array}{rr}26 a . \\ \text { STC } 3 / 40400 \mathrm{v} .3 a . & 50 \mathrm{p}\end{array}$
PERIPHERALS
Data Recording Magnetic Tape Handler Type VI 7 Track $\frac{1}{2}$ "complete with Read/ Write Heads suitable as replacement and spares for most ICL Computer Systems ICL System 4-Line Printer 4555. RCA Tape Handiers 4/5) 70/445-2, RCA Microsecond Memory System. ICL 80 column Card Punch 32 K word 25 Bit Microsecond Mem
CAPACITORS
Daly Electrolytic 9000 uf $40 \mathrm{v}, \mathbf{5 0 p}$; TCC Electrolytic 10,000 uf 70 v .50 p ; Dubilier Metallised Paper Type 426100 uf 150 v . DC 50p: R.I.C. type 12971.8 uf 440 V MOTORS

Crompton Parkinson 240v. 1ph 50c 0.125 hp 1400 rpm
GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 1425 \mathrm{rpm}$

76813-393 Potter Instr 110v, DC 4 amp 0.2 ho . Cont flange carr. $£ 9.00$ tape transport motor ($\mathbf{8 0}$ value). $\mathbf{0 0}$ incl. carr
FANS, CENTRIFUGAL BLOWERS AND STARTERS

Airmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller $\&$ casing (corres-
ponds to current iype $39657 \frac{1}{2}$.) 230 v . -2. 1 ph 50 c 2900 rpm Class " A " insulation 425 cfm free air weight $9 \frac{1}{2} 1 \mathrm{bs}$. incl. p.p £21 00.
Woods Aerofoil short casing type " S " $2700 \mathrm{pm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}$ plastic impeller incl. p.p. $\mathbf{£ 1 1 5 0} \mathbf{5 0}$
Woods Aerofoil Code 7.5 280K 200/250v.
$1 \cdot 0 \mathrm{a} 1 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 71^{\prime \prime}$ impelier 14 1.0a 1 ph 50c 2700 pm

blades incl.p.p. $273 \cdot 50$.

Service Electrlc Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic for Oit burners. Secomak Model 365 (corresponds to 575) Aitblast Fan. 440 v 3 ph 50 c 0.75 hp 2850 rpm continuous 160 cfm 12 in $\mathbf{w . g}$. nett weight 44 lb price incl. carr. E41.00. Secomak model 350250 v $1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in w.g. net weight 34 lbs , price incl. carr. $£ 26 \cdot 00$. Alr Controls type VBL4 200/250v 1ph 50c. 110 cfm free air weight $7 \frac{1}{2}$ 'bs price incl. p.p. $\mathbf{£ 1 4 - 5 0}$ Whllam Allday Alcosa Two Stage Vacuum pump Model HSPOB 8 hg up to 29 in. mercury pm 1420 $380 / 440 \mathrm{v}$. £21.00 incl. Carr.

hp. 0.5 \& 0.25 , new, unused $\mathbf{£ 5} 75$ p.p.29p
Where p.p. not advised add 10 p per $£$ handling and post (in UK). Cash with order. Personal callers welcome. Open Mon-Wed. 9.30-5.30 Fri.-Sat. 9.30-6.00. Free Car Park adjacent

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

Special Offer！！！

SMALL ELECTROLYTICS

Ref．No．	Capacity	Voltage	Price	Ref．No．	Capacity	Voltage	Price
H8／1	$1 \mu \mathrm{f}$	950 V	4p	H7／4A	64uf	35 v	5p
H8／1A	249	150v	2p	H7／5	80uf	16v	4p
H8／2	$2 \cdot 2 \mathrm{f}$	$25 v$	4 p	H776	100uf	25 v	5 p
H812A	3．34f	25v	4p	H7／6A	100uf	15v	4 p
H8／3	3нi	50 v	4p	H717	100uf	25 V	40
H8／3A	44f	50 v	4 p	H718	${ }^{125 \mu} \mathrm{f}$	16 v	5 p
H814	4．7uf	25 v	4 p	H7］ 18 A	100uf	35 v	${ }^{6 p}$
H8／4A	54．	$64 v$	4 p	H7／9	100hf	$63 v$	6 p
H8／5	5 ut	10 v	4 p	H7／9A	125 f	4 v	4 p
H8／5A	5 f	150v	4 4	H7／10	$125 \mu \mathrm{f}$	25 v	6 p
HB／6A	10uf	10 v	4 p	H7／10A	160uf	$2.5 v$	3 p
H8／7	10 uf	70 v	40	H7／11	1604 f	25 v	6 p
H8／8	164f	35 v	4 p	H7／11A	150uf	16v	5p
H818A	16 h f	16 v	4p	H7／13A	200ut	25 v	8 p
H8／9	20 f	6 V	2 p	H7114	220uf	50 v	10p
H8／9A	20山f	70 v	4 p	H7／14A	22041	16 v	6 p
H8／10	22ui	50 V	${ }^{4} \mathrm{p}$	H7／15	220ui	25 v	$5 p$
H8／10A	22 $\mu \mathrm{f}$	100v	4p	H7／15A	$2204 \uparrow$	35v	10p
H8／11	254f	12 V	4 p	H6／1A	250ui	4 V	3p
H8／11A	24и¢	$275 v$	4 p	H6／2	250 ff	$25 v$	3 p
H8／12	32uf	15 v	4 p	H6／3A	320，${ }^{\text {¢ }}$	$2.5 v$	3p
H8／12A	$30 \mu \mathrm{f}$	10 v	4 p	H6／4	320uf	10 v	4p
H813A	32 $\mu \mathrm{f}$	50 v	4 p	H6／4A	330 \quad f	16 v	5p
H8／14	40uf	25v	5 p	H6／5	330uf	25v	10 p
H8／14A	40」f	16 v	4 p	H6／5A	330 f	35 v	15p
H8／15	47 ${ }^{\text {f }}$	50 v	4 p	H617	400 ut	15v	5p
H8／15A	40山f	35 v	4 p	H618	470山i	25v	10p
H711	50 f	6 v	3p	H618A	470uf	35 v	20p
H7／1A	50山f	10 V	4p	H6／9	500 hf	15v	4p
H7／2	50uf	50 v	4p	H6／9A	400 \dagger f	40 V	20 p
H7／2A	$64 \mu \mathrm{f}$	2.5 v	2 p	H6／10	750uf	12v	5 p
H7／3A	64น1	25 v	40	H6／13A	10004 ${ }^{\text {f }}$	25 v	16 p
H7／4	64， 9	15 v	4p	H5／2A	$2200 \mu \mathrm{f}$	$16 \times$	150

MULLARD ELECTROLYTIC CAPACITATORS 071 and 072 Series

Type No．	Working Voltage Vdc	Capacitance $\mu \mathrm{F}$	Max．Ripple Current at $50^{\circ} \mathrm{C}$	Weight	Price
07115332	16	3300	2.4 amps	102	15p
07115472	16	4700	3.9 amps	102	17p
07115682	16	6800	5.8 amps	11202	220
07115103	16	10000	7.9 amps	2102	27p
07118222	63	2200	5.8 amps	302	30 p
07215752	16	$7500+7500$	10.5 amps	307	37 p
07215113	16	$11000+11000$	13.8 amps	41302	49 p
07116222	25	2200	2.2 amps	102	15p
07116472	25	4700	5.4 amps	11102	22p
07216502	25	$5000+5000$	9.6 amps	$3 \frac{1}{19} 02$	37 p
07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} 02$	49 p
07217342	40	$3400+3400$	9.1 amps	3192	37 p
07217502	40	$5000+5000$	12.0 amps	$4 \frac{1}{2} 10 \mathrm{Oz}$	49 p
07118681	63	680	2.1 amps	10 z	15p
07218172	63	$1650+1650$	7.8 amps	302	37p
106 and 107 Series					
10615103	16	10000	7 mmps	2102	$65 p$
10616223	25	22000	17 amps	1007	¢1．12
10617103	40	10000	12 amps	7120	$94 p$
10618153	63	15000	28 amps	1802	£1．79
10710222	100	2200	10 amps	5120	74p
Type No．	Voltage	Capacitance	Weight		Price
10215163	16	16000	802		20 p
10490003	20	39000	1602		30 p
10216802	25	8000	702		${ }^{25 p}$
10417562	40	5600	$50 z$		${ }^{25 p}$
10490001	45	20000	1602		50 p
10418332	63	3300	502		25p
A further 10\％discount on lots of 100 of any one type． Please calculate the weight of your order and include appropriate postage．					
t		Ordinary	Not over		Ordinary
Not over		Parcels ${ }^{\text {N }}$			Parcels
$2{ }^{\text {2 }}$		16 p	1016		47 p
41 b		25p	${ }_{4}^{1416}$		57p
6 lb		29p 2	${ }_{2216}^{1816}$		67 p

SERVICE TRADING CO

MATSUNAGA VARIABLE VOLTAGE TRANSFORMERS

INPUT 230 v. A.C. 50/60

OUTPUT YARIABLE $0 / 260$ v. A.C.
Carriage Paid
BRAND NEW. All types
50 0-260 v. at I amp E7.00
$0-260 \mathrm{v}$. at 2.5 amps \quad.
$0-260$ v. at 5 amps .. $0-260 \mathrm{v}$. at 10 arnps \quad. $\quad \mathbf{E 2 2 . 5 0}$ $\begin{array}{lll}0-260 \mathrm{v} \text {. at } 15 \text { amps } & \text {. } & \mathbf{E 2 5} .00 \\ 0.260 \mathrm{v} \text {. at } 20 \text { amps } & \text {. } & \pm 49.00\end{array}$ $0-260$ v. at 25 amps $0-260 \mathrm{~V}$. at 37.5 amps $\quad \mathbf{~} 82.00$ Spevial 50 amps
Special discount for quantity OPEN TYPE (Panel Mounting)
 A.T. TRAA
$\begin{gathered}\text { All primaries } 220-240 \\ \text { Type Nolts. }\end{gathered}$

rice

All primaries $220-240$ volts.
Type No. Taps
$130,32,34,36 \mathrm{v} . \sec 5 \mathrm{ampp}$

\section*{| $\qquad 5.03$ |
| :---: |
| 67.23 |
| 5.30 |}

2	$30,40,50$
3	$10,17,18 \mathrm{v}$. at 5 amps

6. 12 v . at 20 amps . ..
amp.
$17,18,20 \mathrm{v}$ at 20 amp
$6.12,20 \mathrm{v}$ at 20 mps
$24 \mathrm{v} . \mathrm{at} 10 \mathrm{amps}$. $\ldots \ldots .$.
$4.6,24,32 \mathrm{v}$. at 12 amps.
6 and 12 v . at to amps.

RMERS

36 volt 30 amp. A.C. or D.C Variable L.T. Supply Unit Input 220/240
 tinuously variable 0-36 V. A.C./D.C.
Fully isolated. Fitted in robust metal Indicator and chrome handles. Input and Output fully fused
Ideally suited for Lab. or Industrial use. $£ 70$ incl. p. \& c.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 10 AMP
Now available EX STOCK supplied complete with full data and applications sheet.
Suitable Diac 30p (RCA40583).

DOUBLE ENDED MOTOR UNIT

 Powerful, continuously rated, 2 speed.Either 6 or 12 volt D. . Operation.

POWER

 RHEOSTATS(HEW)

Enamel, heavy. duty brush assembly designed

 STOCK continu THE FOLLOWING II VALUES: 100 WATT I ohm $10 \mathrm{a}, 5 \mathrm{ohm} 4.7 \mathrm{a}$., 10 ohm 3 a . $25 \mathrm{ohm} 2 \mathrm{a} ., 50 \mathrm{ohm} 1.4 \mathrm{a} ., 100 \mathrm{ohm}$ la., 250 ohm -7 a ., 500 ohm . 45 a. ., 1 k ohm 280 mA ., 1.5 k ohm 230 mA ., 2.5 k ohm -2 az ., 5 k ohm 140 mA ., Diameter 50 WATT I. $12 / 10 / 25 / 50 / 100 /$ \& P.
5 K ohm. All at $£ 1 \cdot 23$ incl. P. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} / 3 \cdot 5 \mathrm{~K}$ Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$ in. dia brass bush. Ideal for above Rheostats, 18p ea.

UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D 6 BANK 25 WAY FULI WIPER
coil, 24 v. D.C. E6.75,inc. P. \& P
8 BANK 25 WAY FULL WIPER
4 v. D.C. operation. $\mathbf{E 7}$-88, inc. P.
'HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH Each bank comprises of
rated at 10 amps 240 volt A.C. Bever
knob it in. dack. Fixing hole a in. Prices:
 1-bank 30p, 2-bank ${ }^{40 \text { p. }}$, ${ }^{3-\text { bank }} 55 \mathrm{p}$.
(Ilustrated inc. P. \& P. Special quotes

230 VOLT AC SOLENOID

EXTREMELY POWERFUL
SOLENOID with approximately 141b. SOLEMOID with approximately 141 l .
pull. 1 inch travel. Fitted with mount-
ing feet. Size 4 inches long, 2 z inches ing feet. Size 4 inches long. $2 \mathcal{Z}$ inches
wide and 3 inches high. Price $E 2 \cdot 00$ including post $\&$ pkg.

$230-250$ VOLT A.C. SOLENOID

(simila
Similar in appearance to above illustration.) Approx. $1 \frac{1}{1 / b}$. tured by Westool Lid.
18.24 VOLT D.C. SOLENOID

STBOBEI STBOEE STROBE

FOUR EASY TO BUILD KITS USING XENON White TRIGGERING CIRCUITS, PROVISION FOR EXTERNAL TRIGGERING. 230-250v. A.C. OPERATION EXPERIMENTERS "ECONOMY" KIT
Adjustable 1 to 30 Flash per sec. All electronic com
ponents including Veroboard. S.C.R. Unijunction ponents including veroboard. S.C.R.ectronic Unijunction- k Xenon Tube + instructions
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories etc. Roller Adjustable 1 1-80 1.p.s., approx. $\frac{1}{2}$ output of Hy-Lyght. HY-LIGHT STROBE
Designed for use in large rooms, hatls and the photo and a special trigger coil, , speed adjustable 1-20 circu Light output greater than many (so called 4 Joule) 'SUPER' HY-LIGHT KIT Approx. 4 times the light output of our well proven Hy-Lyght strobe.
Incorpcrating. Heavy duty power supply.
Vactor speed from 1-13 flash per sec.
Night.

ATTRACTIVE, ROBUST, FULLY VENTILA
Hy-Lyght Kit including reflector, $\mathbf{E T} .45$ incl. P. \& P.
FOR IHY-LYGHT STROBE incl. reflector, $£ 4.45$
incl. P \&
T-INCH POLISHED REFLECTOR. Ideally suited

$\star \star \star$
RAIMBOW STROBE FOUR LIGHT CONTROL
RAIMBOW STROBE FOUR LIGHT CONTROL Will overate four of our Hy-Lyght or Super Hy-Lyght
Strobes in either $4,2,3,4$ sequence; $2+$; or all together. horoughiy tested and reliable. Complete with fuli Send S.A.E. for details.
 COLOUR WHEEL PROJECTOR Complete with oil filled $200 / 290 \mathrm{~V}$ A. 100 wate lamp. tremely efficient optical
system. $£ 18.85$, incl. P \& P. 6 INCH COLOURWHEEL
\qquad

BIG BLACK LIGHT

400 Watt. Mercury vapour
lamp. Outer bulb designed
 BLACK LIGHT FLUORESCENT U.V. TUBES

\qquad

IMPORTANT

FROM APRIL 1st. V.A.T
MUST BE ADDED TO ALL PRICES
HONEYWELL PROGRAMME TIMERS
 2 cam model with $15 \mathrm{r} . \mathrm{D} . \mathrm{m}$. motor $£ 2.00 \mathrm{incl}$. P. \& P
SIMPLE |2 CAM PROGRAMMER with adiustable cams and 8 that may be profiled to individual requirements. Avall-
able with $\mathbf{1 5}$ or $13 \mathrm{r} .0 . \mathrm{m}$. motor $£ 3.75$ incl. P . P . 24 HOUR TIMER
Can be adjusted to give a switching delay
of between $\frac{1}{2} \mathrm{hr}$. to 24 hrs . Driven by 200 l
of between it hr. to 24 hrs . Driven by 200 d
250 A . A. Synchronous motor. 15 amp.
c/o contacts. Mig. Crater Cole
Supplied with scale calibrated $0-10(2)$
hours per divislon) Brand new. $£ 2.00$

VENNER ELECTRIC TIME SWITCH 2001250 valt. Ex-GPO. Tested, perfect con-
ditlon. Two ON, two OFF, every 24 hrs, at any manually pre-set tlme. Price: 15 amp,
$£ 3.45 .20$ हmp, $£ 3.95$. Incl. P. \& P. Also avail\&3.45. 20 smp, $£ 3.95$. Incl. P. \& P. Also avail-
able with 80 olar Dial ON at dusk, OFF at dawn.
Prices as

$\frac{\text { METER BARGAIN }}{\text { BAT }}$

balance/level meters

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con- struction, suitable for bench or field work, constant speed clutch. Size L 8 in .,W. 4 in . H .6 in . weight $6 \mathrm{ib} .$, 500 VOLTS, 500 megohms $£ 28$

BODINE TYPEN.C. GEARED MOTOR

(Type J) 71 r.p.m. torque 10 lb . in.
Reversible
$1 / 70$ th
h.p. cycle .38
Reversible 1/70th h.p. cycle 38
amp. (Type 2) 28 r.p.m. torque 20
 b. in Reversflele $1 / 80$ th h.p. 50 cycle 28 amp. 'as new' condition. Input vadte U.S. A. motors are motor offered in
'al A.C. Supplitd complete with transformer for $230 / 240 \vee$ A. C. Inpul.
Price, either type $£ 3.85$ plus 52 PP . P . or less transformer $\AA 2.52$ incl. P. \&P?
display stands, vending machines, etc, etc.

PARVALUX TYPE SD2. 200/250 VOLT A.C. D.C. HIGH SPEED MOTOR A. used with r.p.mitr-in approx. or 3.200 rip.m
if pernor, or variable
sped over a wide range if used in conjunction

600 WATT DIMMER SWITCH
(2) Easily fitted. Fully guarante

Will control up to 600 wats of all hakers
except fluorescent at mains voitage. Complete

GEM PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS - EDUCATIONAL AUTHORITIES, ETC.

QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER

CLEAR PLASTIC PANEL METERS

* MOVING IRON-

ALL OTHERS MOVING COIL
Please add postage

'SEW'' BAKELITE PANEL METERS

SEW EDUCATIONAL

 METERS Type ED. 107 Size overall 100 mm $90 \mathrm{~mm} \times 108 \mathrm{~mm}$ A newquality
range
moving nstruments ideal chool experiments and tions. Bin. mirror scale.
The meter movernent in
nstrate internal working Availathe in the followirg ranges:-

Indust rial guality in robust metal cases. Batter operation. Volume and aquelch contols. Cail Comylete with carrying cases.

G. W. SMITH \& Co. (Radio) Ltd.

Also see next three pages

MULTIMETERS for EVEQY PUppose\%

Selected TEST EOUIPMENT

TSBOPOCKET MULTIMETEF Rangese D.C. $15 \mathrm{~V} . . \mathrm{cow} 150 \mathrm{~V}$. 1.000 V (10.000 opr). A.C
$15 \mathrm{~V} .150 \mathrm{~V} ., 100 \mathrm{~V}$.
$(1,000$
 15 p . $100 \mathrm{k} /$ ohms. 2185 . Post

HIOKI MODEL 720X
20,000 O.P.Y. Overload prute 20,000 O.P. 10 . Overload Prutec
tion $5 / 25 / 100 / 500 / 1000$ VDC. $10 / 50 / 250 / 1000$ VAC. $50 \mu \mathrm{~A} / 250$ mA. $20 \mathrm{~K} / 2$ mes ohm.
$62 \mathrm{db} . £ 4.9$. Fost 15 p .

MODEL 500 30,000 O.P.V.
with
vierioad
protection

 $0 / 2.5 / 10 / 2511000 / 250 / 50011,000$ it. A.C. $0 / 50 \mu \mathrm{~A}, 5 / 50 / 500 \mathrm{~mA}$. 10 mek Ω. £8.87. Y'oat ymil

ROUND SCALE TYPE PENCIL TESTER MODEL. TS. 68

Completely portable, simple to use pocket sized
tester. Ranges: $0 / 3 / 30 / 200$ A.C. and D.C. at

2500V. D.C.
$10 / 50 / 100 / 500 / 1000 \mathrm{~V}$. A.C.
$501 \mathrm{~A} / 250 \mathrm{~mA} .6 \mathrm{~K} / 6$ meg ohms. -20 to +22 db $£ 375$. Post 20

10DEL 1092 Testmeter $5 / 3 / 15 / 150 / 300 / 1200$ V. D.C
$0 / 6 / 30 / 301 / 600$ V $0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ $0 / 300 \mu .4 / 300 \mathrm{M}$
$0 / 10 \mathrm{~K} / \mathrm{I}$ meg Ω U/10K/1 meg Ω
Decibels -10 to +16 dt
£ 275 each. Post 15 p.

RUSSIAN 22 RANGEMULTIMETER

Our irrice 25.97. Post 25 p .

EAMODEN HM. 350 TRANSISTOR TESTOR

 Hegh quality ingtrument to test heverse Leak cursentand
DC curent and DC current Amplinea.
tion inctor of NPN, PNP,
transistors, diodes, SCR's etc. tin. $X \nmid$ fin. clear scale meter. Operates from internyl bat-
teries. Complete with instructions leads and carrying
handle. $£ 12.50$ Poat 30 p .

FTC-401 TRANSIST TESTER
Full capabilities for
measuring A, B and 1 co. meaguring A, B and 1 co.
NPN or PNP. Equally
adaptable for checking dioder. Supplied coml-
plete with intructions plete with instruct
battery and leads.

87.50 . | battery and lealle. |
| :--- |
| 27 |

MOdELS-100TR MULTIMETER/TRANSISTOR
TESTER 100,000 OP.
MIRROR SCALE/OVER. MIRROR SCALE/
LOAD PROTECTION LOAD P
$0 / 12-12$
vC.

$0 / 6 / 30 / 1$ $0 / 12 / 60$

$1600 \mathrm{uA} / 12 / 300 \mathrm{MA} / 1$
$0 / 10 \mathrm{~K} / 1 \mathrm{MEG} / 100 \mathrm{MEG}$.
-20 to +50 db .0 .01
-20 to $+50 \mathrm{db} .0 .01-2 \mathrm{mtd}$. Complete with batteries, instructions and lead 213.50 . Post ${ }^{25} \mathrm{p}$

MODEL L-55 FET V.O.M. 1nput impedance 10 meg

 TE-16A $\left.\begin{array}{c}\text { Tranyistorised } \\ \text { Si-nalGenerator. } 5 \text { rangea }\end{array}\right)$ | Sipnal Generator. 5 ratiges |
| :--- |
| 400 kHz - 30 mHz . An | inexperisive instrumen,

for the handyman Operates on gy battery
Winie easy to read scale ${ }^{4} 00 \mathrm{kB}$ 2 modulation $5 h_{6} \times 57^{2} \times 3$ in
Conplete winh ingtruc
tions and leads. $\mathbf{E 7} 97$ P'ost 25 p .

TRANSISTORISED L.C.R. A.C MEASURING BRIDGE A new portable
bridge offering ex-
cellent range and bridge offering ex
cellent range an

accuracy at low coat | Hanges: R. | 1Ω |
| :--- | :--- |
| 11.1 | MEG |

 \pm 2\%. TURNS RATIO 110 MFD (6 Range 6 Ranges $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{CP}$ Attractive ? tone metal case. size $7^{\prime \prime} \times 5^{\circ} \times 2^{*}$ £20. Post 25 p .

 \times Binm. Operation $220 / 240$

MODEL ATE
DECADE ATTENUATOR Frequency
$0-200 \mathrm{KHz}$. Attemuator: $0-111 \mathrm{dm}$,
0.1db. atep.
imperiane Mmpedance fiou ohnas.
Max. input struc-

 Max. inpmt
30.10.
812.50 . Post 37 p

 A.C. $/ 3 / 15 / 30 / 75 / 150 / 300 / 150 \mathrm{~A} / 1 / 3 / 75 / 150 / 300 /$
$0 / 75 / 150 / \mathrm{S} 00 / 750 \mathrm{~m} \mathrm{~V} / 15 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 30$ $750 \mathrm{~V} . \mathrm{B}, \mathrm{C}$.
$0 / 750 \mathrm{~m}$ V $1-5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 650 \mathrm{~V}$. A.C. Automatic eut out. Supplied complete with test
Ieads, manual and test certificates. $£ 49$. Wost 50 p .
G. W. SMITH
\& Co. (Radio) Ltd.

Can be panel or bench mountes. Basic meter measures 1 volt DC, but can be used to measure a
wide range of $A C$ and $D C$ volt, eurrent und with optioual plug in cards. Specification: Accuracy: ± 0.2, ± 1 digit. Resolution: 1 mV . Number of digits: 3 pius fourth overrange digit. 1000 Meg ohnu. Meisuring cycle: per second Adjustment: Automatic zeroing. iull scale adjnst.ment against an internal reference roltage. Overload: Lo 100v. D.C. mput: Fully floating Overall size: $\overline{\text { bifin. }} \times 2$ 2 $13 / 16 \mathrm{in} . \times 831 / 6 \mathrm{in}$.

£35.50 Carr. 50p.

UNR 30 RECEIVER 4 Bands covering $550 \mathrm{kc} / \mathrm{B}=30 \mathrm{mc} / 8$. B.F.O. Built in \$peaker 220/840y AC. Brand new with instruc.
tions. $£ 15$. 75 . Carr. 3 .

UR-1A SOLID STATE COMMUNICATION RECEIVER
i Bands covering $550 \mathrm{kc} / 8-30 \mathrm{me} / \mathrm{s}$. FET, S Meter. spreat, Sensitivity Control. 220/240w: A.C. Or 12 v . D.C. $143^{\circ} \times 43^{\circ} \times 7^{7}$. Brand new with in
Btructions. £25. Carr. 37 p .

- SKYWOOD CX203 COMMUNICATION RECEIVER

Solid utate. Coverage on 5 bands, $200-420 \mathrm{KHz}$ and 55 to 30 MHz Illuminated slide rule dial.
Bandspread. Aerial tuning. BFO. AVC. ANL "s" meter, AM/CW/BS B. Integrated speaker and
phone socket. Operation $220 / 240 \mathrm{v}$ AC or 12 v DC. Shone socket. Operation. Complete with instruc. tions and circuit. £32.50. Carr. 50 p .

LAFAYETTE EA-600 SOLID STATE
 General (${ }_{150 \cdot 400}^{\text {boverat }}$ $50 \mathrm{kc} / \mathrm{s}$
$50 \mathrm{ke} / \mathrm{s} / \mathrm{s} / \mathrm{s}$
50 mc $30 \mathrm{mc} / \mathrm{s}$
FET front FeT irou
end, 2
mech. Alter.
product detector, ariable B.F.O., noise limiter, \& Meter Band pread. RF GainA.C. or 12,
fi50. Carr. 50 D .

TRIO 9R59DS
COMMONICATION
band covering continuous and elecon $10,15,20,40$ and 80 metres. 8 valve plus 7 diode circuit. $4 / 8$
ohra output and phone jack. S8B.CW. ANL. Variable BFO. 8 meter. Sep. bandspread dia
$1 F$ frequency $445 \mathrm{Kc} / \mathrm{s}$. audio output 1.5 W FF frequency 445 Kc/s. audio output 1.5 s A.C. size: $7 \mathrm{in}, \times 13 \mathrm{in}$. $\times 10 \mathrm{in}$. with instruction

Sincenlr 1C-12

 List price $£ 2.98$ OUR PRICE \& $1 \cdot 80$ Post 10p.
2×230 Stereo 60 PZ5 £15.95. P. \& P. 37 p
 Transformer for l'78 £2.97 extra Active Filter Unit $£ 4.45$ extra. J'air of 016 Speakers $£ 13.00$ extra. Sinclair Project 605 £20.97. P. \& P.
All other sinclair Products in gtock. 2000 Steren Asplifiter £21 95 . Carr, 50 p 3000 Stereo Amplifer $£ 28.50$ Cirr 50 $2000 / 3000$ Stereo Tuner $£ 29 \cdot 95$. Carr. 50 p

EMI LOUDSPEAKERS | Model $350.13^{\circ} \times 8^{7}$ with single |
| :--- |
| tweeter/crossover. |
| $20-20,000$ | Hz. 15 watt RMS. Available 8 or 15 ohms.

87.25 each. £7. 25 each. Rost 37 p .
Model $450.18^{\prime \prime} \times 8^{\prime \prime}$ with twin tweeters/crossover. $55-13,000$
H 2.8 watt RMS. Available 8 or 15 ohmis.
玉3 62 each. Post 25 p.

SPECIAL OFFER STEREO SPEAKERS Matched yair of steree
lookshelif speakers. De
luwe lookshelf speakers. De
 RMs. It watt peak £12 95 pr. Cart. 50 p .

1021 STEREO LISTENING STATION

For balancing and gain selection of loud-
speakers with additional
facility facility for stereo head phone switching. 2 gain
controls. speaker on-off slide switch, stereo head
$21^{\prime} . \sum_{2} 25$. Post 15p.

MP7 MIXER PREAMPLIFIER \rightarrow microphone inputs 5 microphone inputs
each with individual gain cont rols enabling
contplete mixing facilicontpletemixing iacil.
ties. Battery operated. $98 \times 2 \mathrm{mV} 600 \mathrm{ohm}$. Phono meg. 4 mV 50 K . Phond
ceramie 100 mV meg. Output 250 mV 100 K . ceramie $100 \mathrm{mV} \stackrel{\text { l mex. }}{ } \mathrm{m}$. Output

NEW GARRARD MODULES

Popular range of Garrard decks with shure capmar fange fitted in de luxe plinth with hinged lid. SP25 III Module/M75 £23. 50 AP76 Module/M75.6 £33. 80 AP96 Module/Miv-6

AKAI EARGAINB

SUPER MONEYSAVING OFFERSALL BRAND NEW AND FULLY GUARANTEED

CASSETTE (P. CS35D Deck CS35 Recor

 CS35D DeckCS35 Recorder
CS 35 CSS8 Speal CSH5 CSS8 Spak
GXC401 Deck GXC40 Recorder GMC40T Deck/Receiver GXC45 Deek
GXC4D Dolby veck GXC46 Recorder GXC60D Deck
GXCEED D Dolby Deck CARTRIDGE (P. \& P. 501) CR1R1 Deck with amps.
CR81D Deck
C181T Reconter/ieceive CR80SS 4 channel Recorder CR80DSS 4 thannel Recorde TAPE (1'. \& P. 75p)
4000 DS iveck 4000 DS Dust Cover 400018 Dust Cov
1721L Recorder

DOLBY SYSTEM NOISE REDUCTION UNIT

1mproves the performance of cassette and semi professional recorders. Reduces tape hiss by irequencies sbove 300 H\%. Controls for input levels and noise reduction on record and replay. 2 meters for Dolly level. Off tape monitoring.
Frequency response: 20 Hz to $1 \mathrm{kHz} \pm 1 \mathrm{~dB}$
$19 \mathrm{kHz}-36 \mathrm{~dB}$. Size $15 \mathrm{H}^{\prime \prime} \times 9^{\prime \prime} \times 33^{\prime \prime}$. AC. $200 /$ ${ }^{230}$ Vovr f 3250
$\underset{\text { PRICE }}{\text { OUR }} \mathbf{£ 3 2 . 5 0}$ саr. 50 .
B.S.R. TD8S 8-TRACK STEREO
TAPE PLAYER
DECK

Integrated , reamps (output 125 mV) to feed into any atereo amplifier. Automatic and manual 210/240 V. A.C. OUR PRICE
Carr. 50 p .
$\mathbf{f} \mathbf{6 . 2 5}$ BSE TD83V $£ 19 \cdot 95$. Post 50 p

TRANSISTORISED FM TUNER

G. W. SMITH

Complete with speakers. Attractive black and
silver finish, 12 volt neg. earth. Slider controls for Volume. tone and balance. Channel selector
mounting brackets and instructious.
ONLY £15.95

KOSS SP. $3 \times$ GEADPHONES Response $10-15.000 \mathrm{~Hz}$.
Impedance ${ }_{4}{ }^{-6}$ ohrns Impedanes $4-6$ ohrns. fully guaranteed. (List
f9- 0)
OUR PRICF £6.50. Post 25 p .

HOSIDEN DH-08s DE-LUXE STEREO HEAD-

SPECIAL OFFER: ROTEL RH700
STEREO HEADPHONES
 £6 75. Post 25 p .

TE 1018 DE-LUXE MONO HEADSET
Sensitive. goft earpads, Sensitive, soft earpads.
aujustable headand. Mag.
netic, impedance 2,600 ohms.
oh1 97 . Post $15 p$

 COMMR the valve with

VALVES AND TRANSISTORS transistors etc, retail $743 \mathbf{4 9 4 6}$ trade and export 7430899.

TF 1084 B/2 F.M. SIGNAL GENERATOR.
 Output: piston attenuator $0.1 \mu \mathrm{VV}-100 \mathrm{mV}$ at 50 ohms. Int. mod, freq. it 10 kHz , ext.
mod. freq. 100 Hz to 100 kHz . Freq. dev, up to 300 kHz . £225. Carriage $£ 1.50$.
TF 1258 A VHF SPECTRUM ANALYSER tor anatysls and measurement of Rada with crystal check points. Sweep width 0.5 to 5 MHz , output pulse delay (a) $85-175 \mu \mathrm{Sec}$,
(b) $0.7-1.4 \mathrm{mS}$,
 at cost
MUIRHEAD PHASEMETER. Type D7291 manual, leads, as new $\boldsymbol{2} 200$.
TF 1400 S DOUBLE PULSE GENERATOR
WITH TM $600 / S$ SECONDARY PULSE UNIT. For testing radar, nucieonles, scopes counters, filters etc. SPEC. TF 1400 S . Rep.
frequ. 10 Hz to 100 kHz , puise width 0.1 to frequ. 10 Hz to 100 kHz , pulse width 0.9 to
1004 sec delay $-1.5 \mathrm{to}+3000 \mathrm{sec}$. Ise
time $<30 \mathrm{Nsec}$. SPEC. TM $6600 / \mathrm{S}$. As tor time $<$ 30N sec. SPEC. TM $6600 / \mathbf{S}$. A's tor
TF1400S except pulse width 0.5 to $25 \mu \mathrm{sec}$, TF1400S except pulse width
delay 0 to $+300 \mu$ sec. $£ 230$.

SIGNAL GENERATOR TYPE AN/USM-16 (MODEL BJTSA)

A precision HF/VHF signal generator talned in one instrument, namely outputs of CW/AM/PM and swept carrier, in
the frequency range 10 to 440 MHz . Some of the irequency range 10 to 410 MHz . Some of
the features of the instrument are: AUTO.
MATIC FREQUENCY STABLISATION (locks output signai to selected frequency),
AUTOMATIC LEVEL CONTROL (holds OUtput constant \pm 1db) INTERPOLATION crystal check points) MARKERS (for
S.F.M.) Brief specifications, Frequency 10 to 440 MHz , RF output 0.1 UV to 0.224 V at 50 ohms. Modes
of operation $\mathrm{CW}-\mathrm{HI} \mathrm{CW}$. CW (calibrated and stabilised), AM-400 Hz and 1 kHz and external, FM. 400 Hz and 1 kHz and external 0.75 kHzdev .
S.F.M. $-\times 1, \times 10, \times 100,0-75,750 \& 750 \mathrm{kHz}$ dev. resp., P.M. -50 to 5000 pps at 1 to 30 usec . width int. or ext.4 150 to 5000 Hz rep rate.
3 meters for; mod. and dev, freauency dis. 3 meters for; mod. and dev., frequency dis-
crimination pulse level output. With manial. Complete specification and price on application

Open 9-12.30, 1.30-5.30 p.m.
except Thursday 9-1 p.m.

ATTRACTIVE DISCOUNTS

ON VERY MANY ITEMS WHEN YOU BUY FROM US

EIEGTROVILDE Electronic Component Speciolists

 switch, 72p.
SLIDER POTS. In values from $4 K 7 \Omega$ to $1 M \Omega$, linear or log, 26p each. Escutcheon, light grey, IOp.
Knobs, flat, grip type, in 7 colour, 5p each. SKELETON PRE-SETS Smail p each.
SRELETON PRE-SETS. Small high quality, type
PR linear only: $100 \Omega, 220 \Omega, 470 \Omega$ I $K, 2 \mathrm{~K} 2,4 \mathrm{K7}$ $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$ Vertical or horizontal mounting, 5 p each. NUTS, SCREWS, ETC. In pence per 100. Screws $1 "-2 B A-85 p ; 4 B A-43 p ; 6 B A-32 p$.
$0 \cdot 5^{\prime \prime}-2 B A-62 p ; 4 B A-29 p ; 6 B A-24 p$. Screws roundheaded, cheese headed or countersunk. Other sizes available. Alsotags, washers, spacers, etc.

KNOBS

F. 14 skirt dia. 20 mm . pack of 2 32p		
F. 13 skirt dia. 26 mm . pack of 2	38p	
F. 12 skirt dia. 33 mm . pack of 2	40p	
F. 19 engraved		KB. 4
20 mm -two	32p	Ribbed
F. 18 engraved.		Skirt dia.
7 26mm.-two	38p	20 mm .
engraved. 33 mm -two	40p	4 in pack. 40 p

ZENER DIODES

Full range E24 values
$400 \mathrm{~m} W: 2.7 \mathrm{~V}$ to $36 \mathrm{~V}, 14 \mathrm{p}$ each; $\mathrm{W}: 6.8 \mathrm{~V}$ to 82 V 21P each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V 48 p each. Clip to increase 1.5 W rating to 3 watts (type)

SIEMENS THYRISTORS 0.8 A 400 V , 48p; 600 V 66 p. A $400 \mathrm{~V}, 52 \mathrm{p} ; 600 \mathrm{~V}$, , 76p DE-SOLDER BRAID

S-DEC
 Unsurpassed for "breadboard work" can be used indefinitely without deterioration. Components just push into plug holes and connect automatically. Slot for control T-DEC
 For more advanced work with 208 contacts in 38 rows. Wili take one 16 lead carrier £2.88. (Carriers supplied

MAINS

TRANSFORMERS
MT3 $30 \mathrm{~V} / 2 \mathrm{~A}$ plus 4 taps $£ 2.85$ MTI 03 50V/1A plus 4 taps MT10450V/2A plus 4 taps $\underset{\text { ta }}{\mathbf{E 2} .55}$ MTI $2760 \mathrm{~V} / 2 \mathrm{~A}$ plus 4 taps $\mathrm{EJ.80}$ $\begin{array}{lll}13 T 05 & 13 V / \frac{1}{3} A, C T & E 1 \cdot 80 \\ 28 T O S \\ 12+12 ; 2-0-2 V / t A .25\end{array}$

Vavechangeswitches each 32p.

TTL ICs
Nett Prise
20p
20p

1	(7400)	20p
FLH201	(7401)	20p
FLHI91	(7402)	20p
FLH291	(7403)	20p
FLH21I	(7404)	25p
FLH271	(7405)	25p
FLH381	(7408)	25p
H391	(7409)	25p
FLHIII	(7410)	20p
FLH351	(7413)	35p
FLHI2I	(7420)	20p
FLHI31	(7430)	20p
FLHI4I	(7440)	24p
FLLI01	(74141)	(16) $£ 1.22$
FLH281	(7442)	(16) $£ 1 \cdot 16$
FLH361	(7443)	(16) $£ 1.45$
FLH371	(7444)	(16) $£ 1.45$
FLHI51	(7450)	20p
FLH161	(7451)	20p
FLHI71	(7453)	20p
FLHI81	(7454)	20p
FLYIOI	(7466)	20p
FLJIOI	(7470)	45p
FLJII	(7472)	32p
1121	(7473)	45p
J141	(7474)	45p
J151	(7475)	(16) $45 p$
131	(7476)	(16) $45 p$
H221	(7480)	68p
H231	(7482)	87 p
H241	(7483)	(16) 41.32
H341	(7486)	33p
FLJ161	(7490)	80p
J221	(7491AN)) 61.28
FLI71	(7492)	85 P
FLJ181	(7493)	80 P
FLJ231	(7494)	(16) 61.13
FLJI91	(7495)	87p
FLJ261	(7496)	(16) $£ 1.48$
FLJ301	(74100)	(24) $£ 1.64$
FLJ281	(74104)	43p
FLJ271	(74107)	52p
FLK101	(74121)	48p
FLJ201	(74190)	(16) 16.80
FLJ211	(74191)	(16) $£ 1.80$
FLJ241	(74192)	(16) $£ 1.74$
FLJ251	(74193)	(16) $51.1 \cdot 74$

DISCOUNTS

Available on all items except those shown with NET $£ 5$ to $£ 15.15 \%$ on orders $£ 15$ and over.
TERMS OF BUSINESS All items are offered for sale in accordance with our standard terms of business, a copy of which is available on request. Prices subject to
alteration without notice. Enquiries from quantity users Enquiri
PACKING \& POSTAGE FREE in U.K. For mail orders for $£ 2$ list value and under, ling charge of lop. V.A.T

Prices shown here DO NOT INCLUDE V.A.T. which will be charged in accordance with regulations.
Orders received AFTER MARCH 31. must be accompanied by the addition of the panied by the addition
appropriate V.A.T rate,

SaMFSSON'S

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-5125

DIGITAL COUNTERS

SOLENOIDS

MAGNET DEVICES. A.C. 240 v , Rating $50 \% 1 \mathrm{in}$. pulf. Overall size $2 \frac{1}{4} \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in. 85 p . P.P. 15 p . Plessey A.C. 240 v , rating 50%. size
$1 \frac{1}{4}$ pull. Overall size $3 \times 2 \times 2$ in. $85 p$. P.P. 15 p . Bordon Miniature
年 type $\frac{1}{2}$ pull, 12v. D.C. Size 1 in . dia. Ien. $1 \frac{1}{2}$ in. 45 p. P.P. 5
 $25,000 \mathrm{mfd}, 25 \mathrm{v}$. D.C. $\mathbf{w k g}$., $20,000 \mathrm{mfd} 30 \mathrm{v}$. D.C. $\mathbf{w k g . .} 10,000 \mathrm{mfg}$. 50p. P.P. all capacitors 20 p .

EQUIPMENT WIRE
.I.C. $14 / 0076500$ yard drums, Colour Yellow. £2.50. P.P. 50 p

- TUBULAR MOTOR START CAPACITORS

20 mid 275y A.C 75 p . P.P. 25 p . 15 mfd 250 v . A.C. 50 p
 A.C. 35 p .2 .5 mfd 300v. A.C. 40 p . P.P
P.P. 15 p 8 mfd 400 v . A.C. 50 p. P.P. 20 p .

G.P.O. 20.WAY JACK STRIPS

Type 320 BN. EX-equipment. Perfect
condition. 75 p. P.P. 10 p .

S.T.C. SELENIUM FW BRIDGE RECTIFIERS

Max. A.C. input 36 v. D.C. output 24 v., 5a. $£ 1$ 150. P.P. 25 p
DIAMOND H RELAYS
Type BR 115 BIT-9C 4 CO Contacts, 150 ohms. 26v., 250v. 15a
H.T. TRANSFORMERS BY PARAIEKOS AAN primaries $220-240$ Type 1. Sec. $6300-6.620 \mathrm{v}$. $105 \mathrm{~m} / \mathrm{a} / 5 \mathrm{~V}, 4 \mathrm{~A}$.
5 v .2 A . Potted type $£ 3.00$. Carr. 50 p . Type 2

Ty

 shrouded table top connections, trappl-
calised E2.50. P. P. 50 p. Type 2. Sec. 190 y .

 table top connections es.
Type 4. Sec. $130 v, 450 \mathrm{~m} / \mathrm{a}$. three times.
"C" core, table top connetlons $£ 3-50$. P.P. 50 p . Type 5.63 v .1 .6 a and 24 an .0 .8 a .
and 6.3 v . 1 a . unshrouded table top conand 6.3 v . 1 a. unshrouded table top con-
nections $£ 2 \cdot 50$. Carr. 50 p . GARDNERS. Al primaries 220-240v.

L.T. TRANSFORMERS
WODEN Pri, 20-230-240-M50v. Sec, 25 v . 2a. Twice, 16 v .4 a . twice, 26v. 4a., 31 v .
7 a . All separate windings. Conservatively rated. Open trame type table top connec-
tions. Slze $62 \times 6 \times 6 i n$. $\mathbf{8 8} 50$, carf. 50 . tions. Slze $62 \times 6 \times 6 \mathrm{in}$. £8.50, carf. 50 p .
AMOS C core type. Pri. $200-220-240 \mathrm{v}$.
Sec. 18-0-18v. 5 a ., and $18-0-18 \mathrm{v}$. 3a. ConSec. 18-0-18v. 5 a. . and $18-0-18 \mathrm{v}$. 3a. Con-
servatively fated table top connections. E3 50 P. P. 50 p .
REDCLIFFE

 240. Sec.
P.P. 20 D.
G.E.C. L.T. TRANSFORMERS All primaries. 220-240v. Type 1. Tapned
$63-68-74 \mathrm{v}$. 3a. and 6 v . 4 a ., terminal block 63-68-74v. 3a. and 6v. 4a., termina! block
connections, unshrouded £2.50. P.P. 00 D . Type 2. Tapped 59-61-65-67-69v. 10a. T
block connections. unshrouded. ti pi-
 $56-58-60 \mathrm{v}$. 3a. T. block connections, un-
shrouded. tropicalised $£ 2.75$. P.P. 50 p . Type 4. $100-0-100 \mathrm{v}$. $65 \mathrm{~m} / \mathrm{a}$. and $61-64-67 \mathrm{v}$.
$150 \mathrm{~m} / \mathrm{a}$ and 6 v . 1a. Type 5apped $37-40-$

 AMOS 'C' CORE TRANSFORMERS

GRESHAM SMOOTHING CHROKES

 troplcalised $£ 2.75$ P.P. 35p.
REDCLIFFE. Ollfilied types $100 \mathrm{~m} / \mathrm{h}$. 2 a . REDCLIFFE. Ollfilied types $100 \mathrm{~m} / \mathrm{h} .2 \mathrm{a}$.
£2.50P.P. $45 \mathrm{p} .130 . \mathrm{n} / \mathrm{h} .1 .5 \mathrm{a} . £ 1.50 \mathrm{P} . \mathrm{P} .25 \mathrm{p}$.
Mains filter chokes $10 \mathrm{~m} / \mathrm{h} .2 \mathrm{a} .50 \mathrm{p}$. P.P. 20p. All above chokes $\frac{\mathrm{i}}{\mathrm{z}}-1 \mathrm{~h}$ ohm res. 2 m .
 $15 \mathrm{~m} / \mathrm{h}$ 3.8a $\mathrm{f1} .50$ P. P 25p

H.T. TRANSFORMERS PARMEKO. Pri. 240v. Sec. 250-0250v. 50 m/a. $6 \cdot 3 \mathrm{v}$. 1 a . $£ 1 \cdot 25$. P.P. 35p. size $4 \times 3 \times 2 \frac{2}{2}$ ins. GARDNERS. ' C ' core Pri. 240 v . Sec. $300-0-300 \mathrm{v} .66 \mathrm{~m} / \mathrm{a} .63 \mathrm{v} .4 \mathrm{a}$. £1.50. P.P. 35p.. size A.C.I. Pri. $240 \mathrm{v}, \mathrm{Sec} .250 \mathrm{v} .60 \mathrm{~m} / \mathrm{a}$. 15v. 1-2a. 6 -3v. 4 5a £1-25. P.P. 35 p. open type table top connections. Size $4 \times 3 \frac{1}{4} \times 3$ ins.

ADVANCE L.V.CIV TRANSFORMERS
 trame type £2.00 P.P. 40 p . Astralux input
$190-260 \mathrm{v}$. enclosed type, output 240 v . $190-260 \mathrm{v}$. enclosed type, output 240 v
30 watts. £ 200 carr . 50 p .

SPECIAL OFFER OF MULTI TAPPED L.T. TRANSFORMERS VERY
CONSERVATIVELY CONSERVATIVELY RATED

Gresham Pri. 200-220-240v. Sec. $29.5 v$ 2. 6a. twice. 20v. 5 a . twice. $15 \mathrm{ve}$.0.1 a . four
times. ' C ' Core. Table Top connections

Pri. 200-220-240v. Sec. 16.3v, 1a. Twice
10v. 1a. Wwice. $22.5-25-28.8 \mathrm{v}$.
5 a
 £4.50, carr. 50 p .
Pri. $200-220-240 \mathrm{v}$. Sec. $20-21-22-23-24-25 \mathrm{v}$
6a. $20-21-22-23-24-25 \mathrm{v}$.
$3 \cdot 5 \mathrm{a}-18-19-20-1$
 $22-23 \mathrm{v} .2 \mathrm{a} . \mathrm{A}^{1-12-13-14-15-16 \mathrm{v}}$. 0 -5a. twice
$100-0-100 \mathrm{v}$. $150 \mathrm{~m} / \mathrm{a}$ ' C' Core. T. Top connections. $\mathbf{6 6 . 5 0 \text { cars. } 7 5 \mathrm { p } \text { . }}$ Pri. 200-220-240v. Sec. tapped 63-68-74v
3 a . and 6 v .4 a . Open frame terminal block 3a. and 6 v .4 a . Open frame terminal block

connections $£ 2.50$ P. P. 50 p . $\frac{\text { Pri. 200-220-240v. Sec. } 37-40-43 \mathrm{v} .}{} 5 \mathrm{a}$ $105 \mathrm{v} .300 \mathrm{~m} / \mathrm{a}$. twice. Oil filled potted type Pri. 200-220-240v. Sec. 39v. 86 a.. 38 v | Pri. |
| :--- |
| 2.6 a . Oilfilled potted type. $£ 8.50$. carr. 75 p | pit. 200-220-240v. Sec. tapped 30-57.5 115 y . 0.5a. ' C ' Core T. Top Connections LTP Pri. $200-220-240 \mathrm{v}$, Sec. ${ }^{6.3 \mathrm{v} .8 \mathrm{a}}$. type T. top connections $£ 3.75 \mathrm{carr}$. 75 p . Woden Pri. 220-240v. Sec. 10v. 2a. fully shrouded £1.50 P.P. 25 p.

Pri. 220-240v. Sec. tapped 6-12v, 2a. fully
shrouded. $£ 1.75$ P. P. 250 . Phi. 200-220-240v. Sec. tapped 3-10-13v. 7 a . Pri. 200-220-240v. Sec. tapped 3-10-13v. 7 a.
Open frame. T. top connections $£ 2.00$ Pri, ${ }^{220-240 \mathrm{v}} \mathrm{Sec} \mathrm{Se}^{24 \cdot 5-0-24 \cdot 5 \mathrm{v}} \quad 0.75 \mathrm{a}$. 'C' Core. T. top connections £1 50 PP 25p. 'C' core. T. top connections 75p. P.P. 25p.
PARMEKO HT TRANSFORMERS NEPTUNE OIL FILLED TYPE. Pri $5 v .3 a$.
50 p . Pri. 220-240v. Sec. 24v. 3a. 'C' core T. Top Pri. 220-220-240v. Sec. ${ }^{11 \mathrm{v} .} 9 \mathrm{a}$ ' C^{\prime} core T. top connections £2.50 P.P. 50 p . \quad.
 Pri. 240 v . Sec. $14 \mathrm{v}, 6 \mathrm{a}$. open frame. T. top Pri. ${ }^{110-240-440 \mathrm{v} . \text { Sec. tapped } 24-26 \mathrm{v} .} 8 \mathrm{Ba}$. G.E.C. Pri. 200-240-240v. Sec. tapped 59-G1-63-64-67-69y, 10a. Fully trooicallsed.
Open frame terminal block connections. Open rame
$\times 5.50$ carr. 50 p
ri. 200-220-240v. Sec. tapped $56-58-60 \mathrm{v}$. 3a open frame. Te
$£ 2.75$ P.P. 50 p.

HART ELECTRONICS

In keeping with our policy of offering kits of parts for advanced audio projects to a standard which will please the constructor who is professionally engagedin the electronic industry and who is therefore used to the advanced standards of quality and designs used therein, we have pleasure in giving brief details of our latest projects.
The Bailey Pre-Amp., was published in 1966 and we have been supplying kits of parts for it since then. We have therefore an unparalleled length of experience on which to draw when adapting this unit to take advantage of new components which have become available to make our kit the best that has ever been offered. The new kit is easier to assemble, as there is little wiring, the controls, switches and input sockets are all mounted on the clearly marked fibreglass P.C.B.'s. The new kit is more versatile because it is split into two stereo units. The tone control unit with volume, Bass, Treble, Balance and Filter can be used on its own for 250 mV flat inputs and will give an output up to 2 V to drive most power amps. The front end unit has the input switch selecting Mag; PU, Cer: PU, Mic. Radio and Tape head inputs. Output 250 mV .
The new kit performs better because the Tone control incorporates the Quilter Bootstrap circuit to give lower distortion at all control settings. The front end has the Burrows mod, for ceramic pickups and higher rumble cut-off with facilities to adjust the Tone balance and level to suit different makes of transducer. Switches have click suppression circuitry for ultimate refinement of operation.

Full details are in our lists.

Our kits for the Stuart tape recorder have been built by Mr. Stuart and received his enthusiastic approval. This unit is an easy way to convert that ageing recorder with a good deck up to modern top flight standards. We stock heads for 2 or 4 track stereo and also for cassettes.
Reprints of the first and second articles are $15 p$ each, post free.
For free list, please send foolscap ($9 \times 4^{\prime \prime}$) s.a.e.
ALL U.K. ORDERS ARE POST FREE, OVERSEAS AT COST.
PENYLAN MILL, MORDA, OSWESTRY, SALOP
Personal callers are always welcome, but please note we are closed all day Saturday

RELAYS ${ }^{\text {P.O.T.TYPE }} 3000$ BULT TO YOUR SPECIFICATION

Contacts up to 8 changeover
\star QUSTCK DELIVERY
KEEN PRICES
K QUOTATIONS BY R
HOME \& OVEREAS SWITCHES Double Pole On/Off 3 amp 250 Yolt, one hole fixing. E1.50 ner ten. Post paid
IMHOF BLLOWER UNTS rack mounting assembly with Glass Fibre Air
Filter and directional Duct. Capacitor 5 fan Motor $1,501 \mathrm{~m}$ hip. $2001 / 2500$ volts.
BURGESS DOUBLE BREAK two circuit Micraswilches 25 amp 250 volt $A C$ e $\varepsilon 2$ per box of ten, E15 per 100 . Post paid, SERIES $1,1,000$ volts, range $0 / 100 \mathrm{M}$ ohms-infinity, with resistance
BRIDGE MEGGERS,

 reading 0 to 9 with decimal points. quick disconnect at rear of unit for easy lamp replacement:
This minlaturized digital di splay operates on a rear-projection princlope when one of the twelve lamps at the rear of the unitis lighted, the lamp projects the corresponding digit on the condens. ing lens hrough a ppole

WW-103 FOR FURTHER DETAILS
 PHONE AMPLIFIER which enables you to take down long telephone messages or converse without hoding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office aid. On/Off switch. Volume control. Operates on one 9 v battery. Size $3 \mathrm{in} . \times 4 \mathrm{in}$. Ready to operate. Add 14p extra for battery. P \& P 22p.

This NEW, versatile De Luxe 4-
Station Transistorised Intercom Station
(1 Master and 3 Subs) for desk op (1 Master and 3 Subs) tor desk op
wall mounting can solve your communication problems instantly. Effective range 300 ft . Call/talk/listen from Master to Subs and Subs to Master. With selector switch. Ideally suitable for office, shop, home or surgery. Adaptable for Mains. Complete with accessories. On/Off switch volume control. P. \& P. 40p.

WEST LONDON DIRECT SUPPLIES 169 KENSINGTON HIGH STREET, LONDON WB GSN

THE GABRAPHONE "ALOUETTE" DISC-ROTOR UNIT

The entirely new "Alouette" disc rotor unit now added to the Gabraphone range has been designed using anti-acoustic feedback principles to ensure complete freedom from microphony effects, even at the lowest frequencies. Motor rumble is eliminated by the mechanical drive system employed, while electronic motor control results in exceptional wow performance.

Motor speed is controlled by a two-position switch, and a fine adjustment.
Modular construction is employed both for the mechanical assemblies and the electronic units, and the "Alouette" is produced in an elegantly styled perspex cabinet finished in black and white, with a hinged, semi-transparent lid.

The "Alouette" mechanism is also to be incorporated into the Gabraphone 2001-6 reproducer systems, where it will be ideally suited to the unique method of multi-channel signal processing employed.

ENQUIRIES

UNITED KINGDOM AND COMMON MARKET COUNTRIES MODERN ENG \& TECHNOLOGY 4, STATION ROAD WEST CANTERBURY, KENT

CANADA, U.S.A. AND JAPAN GABR INCORPORATED MONTREAL CANADA

 MINIATURE WAFER SWITCHES 2 pole, 2 way- 4 pole, 2 way- 2 pole 3 way- 4 pope, 3 way-2 pole, 4way- 3 pote, 4 way 2 pole, 6 way, 1 pole, 12 way. All at 20 p
 TOGGLE SWITCHES

ROCKER SWITCH

Size approximately into. \times fin., 8 p each

SLIDE SWITCHES

Slide 6witch. 2 pule change over panel mounting by two 6 BA screws. Size apn
200 v lamp. 7 p each, 10 for 63

10 for 54 as
Sub Miniature Slide Switch. DPDT 19 mm (${ }^{\text {(4. }}$
approx.) between fixing contres. 12 p each or 10 for $£ 1.08$.

DOUBLE LEAF CONTACT

REED SWITCHES
diass encased, switches operated by external magnet-gold
welded contacts. We catin now offer 3 types:
 Standard. $2^{\prime \prime}$ loug $x \frac{7^{*}}{4^{*}}$. diameter. This pill break currente Flat. Flat type. 2^{*} long, just over $1 \frac{1}{1}{ }^{*}$ " thick, flattelied out, so may be packed into a square solenoid. Rating la 200 i small ceramic nagnets to operate these reed switches 9 p Dry Reed Relays. Solenoids on moulded bobbins within

DRILL CONTROLLER Electronicall chade from approximately 10 reis. to maxinumin, Futh power at ail kit inceludes anger-tip parts, case case,
everything and full instruc

BAKELITE INSTRUMENT

 panel. This is a four corners and hakelite to house inst ruments and special rigs, etc.

5A ELECTRICAL PROGRAMMER

1

HIGH ACCURACY

Uses differential comparator 1.C. with thernist nt to within 1 , jigh or a degree. Coraplete kit with TREASURE TRACER Complete Kit (except woolen battens)
make the raetal detector as the circuit it Practical Wireless August issue. $£ 2 \cdot 95$
plus 20 p post and insurance.

NUMICATOR TUBES

 10 for 21350 .

CENTRIFUGAL BLOWER

 cooker hooh, film drying chinet or or remoring tux mion

綡

MULLARD I.F. MODULE

anplification and detection oi fodiate irequency module fo a.m. signalsat and detection oi f.m. signals ai 10.7 MAz and

MULLARD UNILEX
This D.I.Y. Stereo Amplifier is still available complete at $\boldsymbol{£} \boldsymbol{\gamma}$ for the four Mullard Modules. Matt amplifier notule (2 required) Mullaril Ref. No. E.1'9000-£1.45 each Prower modutie-Mullard Ref. No. E.P. $9002-\mathbf{£ 1} 80$ each.
In addition and made to Mulard Specification we offer
Standard Controt Unit wilh escutcheon + Kiona $£ 3$.00

ELECTRIC TIME SWITCH

Hate hy smiths these are A.C. mains operated. Nov Lockino kk. iteal for mounting on rack or shelf or ca time periods per $2+$ hoars, $\overline{5}$ amp changeover contacts will witch circuit on or off during these periods. $\mathbf{£ 2} \cdot 50$ post and ins., 23 p. Additional time contacts 50 p p

COMPUTER TAPE

 good results with Video and sound. 1in., Jin. or tin. wide, $£ 1.00$ plus 0 p. post. spare spools and cassettes 50 p"Scotch tape. Brand new. Suits noest video recorders. \&3.00 tor 2,400it.

THIS MONTH'S SNIP

GOOD COMPANION I,C. MODEL

We can now otier this fine receiver but in I.C. version using Fertanti $2 \mathbf{N}+14$ and Mullarl AF Modnle 1172 Calinet size approx. 11 in. wide $\times 8$ in. high $\times 3 i n$ deep. Conplete with excellent 2 tone cabinet with
assembly instructions $£ 5 \% 75$.

ERGOTROL UNITS
These units made the the Mullard Group are ior Thytistons are used and these supply a variable
i.c. resulting in notor speed control and operating ficiency iar mujerior to most other rnethods. The units are contained in wall mounting fuse -push buttous for on/onn and the variable hriyst or flring control ate available-all are hrand new in $\begin{aligned} \text { Model } 2410 \text { ior up to } 5 \text { amps } & £ 1 \% \cdot 50 \\ \text { Model } 2+11 \text { tor up to } 10 \text { amps } & \mathbf{£ 2 \%} 50\end{aligned}$

THERMOSTAT WITH THERMOMETER Wade by Honeywell for normal air temperatures $40^{\circ} \cdot 80^{\circ} \mathrm{F}$
$\left(5-25^{\circ} \mathrm{C}\right.$). This is a precision instrument with a differential which can he ailiustel to better than 15° F. A mercury switch breaks on temp. rise the switch is operated hy coiled bi-metal element and Elegantly styled and encased in an ivory plastic case uith clear plastic windows, thermometer above and switch setting scale
below. Size approx. $3 \cdot 8^{\prime \prime} \times 3 \cdot 2^{*} \times 1 \cdot 4^{\prime \prime}$ deep. Can be mounted on condnit box or directly on wall. Price $£ 1 \cdot 25$ each or 10 io

HORSTMANN "TIME \& SET" SWITCH

 warm house without it costing you a fortune. You can delay the switch on time of your elect ric fires, etc.. पf, to 14 hours from settling
time or you can use the switch to glve a hoost on periot of up to a hours. Equally suitable to control phocessing. Regular price
protably around 55 . Specinul snip price $\mathbf{£ 1} 50$. Post and ins. 23 p .

Easiest way to fault find-traces signal from aerial to speaker-when signal stops you've found the fault. Use it on Radio, TV, amplitier. tucluding probe tube and crystal earripece,

- VATPLEASE ADD 10% ON
ALL ITEMS ORDERED

ANELS

DISTRIBUTION PANELS

sockets in metal box to take standard 13 amp fused
 MULLARD AUDIO AMPLIFIERS sinke and connection tags, lata supplied Model 1153500 mW power output 85 p .
Model 1172750 mW power out 8 . 85 .

CAR PANEL SWITCH. Our Ret. No Sol. Arco made. Has long that cnde
toggle hlack and chrome thinsh. Rated
2 A . at $2 \overline{0} 0 \mathrm{y}$ and $\sqrt{5}$ CAR PANEL AOTO. SWITCE. Rei. No. SO3. Again a flat ended toggle, Made by Arrow. A 3 position double pole
change oover gyith centre off for auto aerials, reveralng motors ete. 30p each.
3 PIN PLUG AND SOCEET. Our Rei. No. PBOI. Flat
 non standard power outlet is required. Also suitable for speaker leads. etc., etc. Price 25 p per pair.
3 PIN REVEREE PLUG AND SOCKET. Our Rei. PSO2. For bringing live ieails 10 equipment. All hrown hakelite construction, rated 10 A .250 v . Price 35p per pair.
1 R.P.H. MoTOR. Smiths. 240 v . 50 evcle mains working.
I dea! motor to drive clock mechaniems. Price $£ 1$ each or 10 Aor $£ 9$. 13 AMPTION BOXES. Made to take 7029 cables PORCELAIN FUSE AND CARRIER. 20 A
200 CE MEM Rei. No. 15LBB/LLLRIHW,
Meke your owt fuse board. Price 20p
per pair.

AUTO TRANSFORMER. Primary
2 240 v . Secondary
110.120 v
Wel $\begin{array}{cc}\text { 2tov. Secondary } \\ \text { huilt and varnigh } & 110 \cdot 120 \text { v. } \\ \text { Impregnated. } & \text { Wel } \\ 200\end{array}$ watt intermittant rating. 150 w . con3in. £1 plus 20p post and insurance.

30KV EHT UNIT
 ppront is self contained and on wheels. It stands is a Variac, Voltmeter, a 60 gige. On the iront panel the normal overloader, a 60 second Timer as well ats etc. The transformer itself is oll filled and cut outs 7 kVa 30 kV . The Variac is in the primary so all vol. tages up to 33 k ' are available. We believe the normal tester. 1 ouly-not new thut in good order. Price

 INSTANT START UNITS. For 2it. tubes. Philip's or Smar Price $£ 1.50$ ench or 10 for $£ 13.50$. SPIT MOTOR. 200.250 v . Induction dise lighting effect, etc., etc. $£ 185$ WIRE ENDED FUSES. Ubeful where yon want a quick soller-rim fube. Rated
24 . 2510 v . These are ahout the size of \qquad
TVIT PANEL NEON Indicator. Our Kef. So. Piul. PANEL NEON INDICATOR. Our Ref. So. Plu1.
Oblong type, seli. ixing in oblong hole, suitable
ior $200 / 250 \mathrm{v}$, Price 13 p each.
 oin. probe by approx. 40in. of capillary tubing. 1 hole fixing vormal control spindle, 85p each. No. TH02. As
THERMOSTAT WITH PRREBE. Our Ref. No.
TH01 hut approx. 4 jin. long. Price 95p each.
FLUORESCENT TUBES. Standard typer- B_{i} pin end,
 40 watt. All frist grade tubes offered at one price - $\mathbf{\Sigma 3} 50$ piease add 50 p per box per 200 miles.
DIGITAL DISPLAY

\qquad
digital switches. smali type s.t.
 Thumb wheel opieration. Thicse are designed so that way may be wiacked in rows. Price 75 p each.
6 DIGIT COUNTER. Operated by 240 v . A.C. maing through reslator or direct from Il5e. A.C or irom 80v. D.C. Made ny Veder. Root of America. Metal encased for surface
niountinu. Size approx. $3 \ddagger \times 12 \times 2 \ddagger i n$. Price $£ 1$ each.
10 10 for Eq .
COLOURED
COLOURED 13 AMP SOCKETS. Standard Flush mounting available in the tollowing colours:- Yellow. green, grey made by Ward and Goldstocke. Useful on control panels.
Price 20p each, 10 ior f1. 90 Price 20p each, 10 ior $\mathbf{£ 1} 90$.
REED SWITCH COILS. These are solenoids wound on take standard reed sisitches. They have grinted circuit board mounting. Six types available:-
RC1 takes 1 reed-Operates $10-15 v .600$ ohms. 30 p .
RCX takes 22 reeds-Operates $10-1 \overline{0} y .180$ ohma. 25p.

Standard reed switches a available 10 p each or 10 for 90 p
 Co. Very reliaple, Price $8 p$ each.
PHOTO TRANSASTOR. OCP 70 ideal for burylar alarmb
and similar applicatimis. Price 50 p each, 10 ior $£ 4.50$. and sirnilar zpplicatims. Price 50 p ead h, 10 for $£ 4.50$.
EXIT SIGNS One of our customers has pointed ous EXIT SIGNS $\begin{aligned} & \text { One of our customers has pointed out } \\ & \text { how easily our lox sighs can be conver- }\end{aligned}$

EXIT $\begin{aligned} & \text { having a a } 2 \mathrm{~W} \text { fuoregcent lamp with } \\ & \text { associated cont rol gear. The front if } \\ & \text { very thick elear plastic. Directly onto }\end{aligned}$

 thils you can stick doun the letteravaitable at most stationers. There is room inside the hos for a battery athd low volt lamp in the case of power iailure,
Size of sign is 2 it . high $\times 1$ tin. wide \times sin. decp. Solidy Price £3 50 plus 50 p carriage per 200 miles.
MUTUAL INDUCTANCE COLL. Latoratory type. M0.001 H . Inductanee of coils 0.0022 H and 0.0021 H . Coi

Where postage is not stated then orders over $£ 5$ are post free. Below $£ 5$ add 20 p. .A.E. with enquiries please
(Dept. W.W.) 7, Park Street, Croydon, CRO 1YD Callers to 102/3. Tamworth Road. Croydon

MODEL
U-50DX

USED THROUGHOUT THE WORLD SANWAS EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY VERSATILITY, UNSURPASSED SESNR
PERFORMANCE COMES WITH EVERY SANWA
GMOnths Guarantee Model P-2-B E6.35 Model AT-45 E20.50 Model JP-5D £7.62 Model 380.CE £20.81 $\begin{array}{llll}\text { Model } 360-Y T R & £ 10.77 & \text { Model } N-101 & £ 24.20 \\ \text { Model U-50DX } & £ 10.89 & \text { Model 460-ED } & £ 28.31\end{array}$ $\begin{array}{llll}\text { Model U-5ODX } & £ 10.89 & \text { Model 460-ED } & £ 28.31 \\ \text { Model A-303TRD } & £ 14.33 \text { Model EM-700 } & £ 55.62\end{array}$ $\begin{array}{llll}\text { Model A-303TRD } & £ 14.33 & \text { Model EM-700 } & £ 55.62 \\ \text { Model K-30THD } & £ 16.39 \text { Model R } 1000 \mathrm{CB} & £ 71.69\end{array}$ $\begin{array}{lll}\text { Model K-30THD } \\ \text { Model F-8OTRD } & £ 17.84 & 16.39 \\ \text { V.A.T. EXTRA. }\end{array}$ Cases extra, available for most meters but not sold separately

cathinilin
 ELEGTHONIBS LTD.
 47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. KT1 1LP

WW-105 FOR FURTHER DETAILS

	NTON ELECTRONI IGNITION KIT	£9.35 ava. candace
Continual Peak Performance Up to 20% reduced fuel consumption Up to 20% reduced fuel cone Eseler All-wenther Starting Increased Acceleration and Top Speed Longer Spark Plug Life Increasad Battery Life Elimination of Contact Braaker Burn Purar Exhause Gae Emisalon Patente Pending 12 volt only - state pos, or neg. earth. Supplied with lilustrated assembly and fiting Instructions. with deralls for fitting all types of tachometers. Can be bulit in an evening and fitted in 15 minutes, Spare snap-on connectors for coil, etce Call In for a demonstration. S.A.E. all enquiries please. Or Phone Wzisail 33652 for detalls. (Many letters from satistied customers.)		
DEFT. WW4	W4 ELECTRONICS DESI 82 BATH STREET, W	N ASSOCIATES LSALL WS1 3DE
URTHER DETA		

Youedit the tape. We edit the prices. VIDEOTAPEAT DIXONSTECHNMCAL

	RECOMMENDED PRICE	DIXONS PRICE
SCOTCH $\frac{1}{2}^{\prime \prime} 2400 \mathrm{ft}$	£10.80	£8.50
SCOTCH $\frac{1}{2}{ }^{\prime \prime} 3000 \mathrm{ft}$.	$£ 16.82$	£13.50
BASF $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}$	£10.75	£8.50
SHIBADEN $\frac{1}{2}$ " 2400 ft .	£10.80	$£ 9.10$
RACAIZONAI 2400 ft .	$£ 10.25$	$£ 8.00$
SCOTCH ${ }^{\frac{1}{4}} 12000 \mathrm{ft}$.	£376	£3.00
BASF $\frac{1}{4}{ }^{\prime \prime} 1200 \mathrm{ft}$	£3.75	£3.00
ZONAI $\frac{1}{4}$ " 1200 ft .	£3.80	£3.00
AKAI $\frac{1}{4} .1200 \mathrm{ft}$.	£4.00	£3.50
DIXTEC CCTV $\frac{1}{2}{ }^{\prime \prime} 2400 \mathrm{ft}$.	$£ 5.50$	£5.50

idnilivnrindudis

Type 01 general purpose 4-fange TEMPERATURE RECORDER. Specially designed compact self-contained instrument for recording temperatures up to $500^{\circ} \mathrm{C}$. The main design objectives were for an easy to use, robust instrument suitable fo use in the laboratory and in the field. The four ranges are $10^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ and Two chant speeds $1^{\prime \prime}$ and $6^{\prime \prime}$ per hour and provided by the 240 V 50 Hz svnchronous chart drive.
The 3% basic accuracy of the instrument, which is adequate for most applications, has been achieved without introducing stability problems in the d,c. amplifier, making the recorder ideal for use in schools, colleges and universities and by unskilled personnel. The recorder is complete with NiCh/NiA1 thermocouple and mains lead. This product is brand
laboratories with three month guarantee.
Price: $\mathbf{£ 9 5} \mathbf{9 0}$ plus $\mathbf{£ 5} \mathbf{5 0}$ packing and carriage.
SINGLE PEN RECORDER by Record Electrical. $3^{\prime \prime}$ chart, sensitivity 1 milliamp, chart speed $1^{\prime \prime}$ and $6^{\prime \prime}$ per hour. Size $8^{\prime \prime} \times 11^{\prime \prime} \times 6^{\prime \prime}$. Offered complete with pen assembly and spare chait. Listed at overing and carriage.
BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK BRAND NEW MINIATURISE America This Recorder indlcates the magnitude of applled currents or voltages america. This Recardion-free line on pressure sensitive paper. Moving coil movement, scale callbrated 0-1 milliamp d.c. internal resistance 100 ohms. Chart drive motor 240 V 50 Hz . Chart speed $1^{\prime \prime}$ per hour. Complete with handbook. Price $£ 35 \cdot \mathbf{0 0}$ plus $\mathbf{£ 5 \cdot 0 0}$ packing and carrlage.
POWER SUPPLY $7 \cdot 5$-OV 10 Amp, fully stabilised. Price $\mathbf{£ 1 2 \cdot 5 0}$ plus $\mathbf{£ 5} \cdot \mathbf{0 0}$ packing and carriage.
MUTUAL INDUCTANCE BOX TYPE R7005. Specification range 0-11. 100 mH in 0.002 mH divisions. Accuracy $+1-(0.3 \times 0.012) \%$, where $M=$ vallue of mutual nductance in mH set on the box. Frequency range $0-2.5 \mathrm{~K} / \mathrm{cs}$ for all decades except $\mathrm{X1}=0-15 \mathrm{~K} / \mathrm{cs}$. Maximum current: 0.5 A for decades a for vaioner (both primary and secondary wingings). Case pollshed teak. Price $\mathbf{£ 1 0 - 8 0}$ plus Es. OD packing and carriage.
TRANSITROL TEMPERATURE CONTROLLER TYPE 990. Completely transIstorised self-contained direct deflectlng units forindlcating and controlling temperature accurately ovar a wide range. Sultable where a signal can be converted Into d.c Senslivity 10 ohms per MV. MInimum F.S.D. 8 MV . Cold junction compensation Callbrated scsle length $6.5^{\prime \prime}, 0-800^{\circ} \mathrm{C}$. Accuracy $+1-1 \%$. Front panef siz
 couple cont
WELMEC 8-HOLE ELECTRO-MECHANICAL PAPER TAPE PUNCHES AND READERS Operating ai 17 cps . Punch $\mathbf{£ 4 8 \cdot 0 0}$, Reader $£ 29 \cdot 80$ plus $£ 6 \cdot \mathbf{0 0}$ packing and carriage.
80 COLUMN HAND PUNCHES. The well proven and familiar 80 column table mounted hand punch for the serlal punching of alphanumerlc data on to standard cards. Features Include Space Key for sklpping single unused columns; Sklo Key for skipping area defined by the position of tormat tabs on the skip bar; Release Kay for skipping over sreas remalning when punching ceases before column 40 . These punches have been remanufactured to new specification and caliv a thre months warranty. Price $\mathbf{\Sigma 7 8 \cdot 7 8}$ plus EE. 00 packing and cartiage.
EX-EQUIPMENT 8-HOLE PAPER TAPE PUNCH HEADS AND READER HEADS $\mathbf{2 5}$ c.p.s. Limited quantity. $\mathbf{£ 1 2 \cdot 8 0}$ plus $\mathbf{£ 3} \cdot \mathbf{0 0}$ packing and carilage.
PLESSEY MEMORY STORES. 8K £18.00, 10K £2E.00. Packing and carilage £3.00.
ROHDE \& SCHWARZ ATTENUATOR BN $18042 / 50$. EO ohms, $0-100 \mathrm{db}$, $0-300 \mathrm{MHz}$. Price $£ 65 \cdot 00$ plus $£ 7 \cdot 00$ packing and cartlage.
ROHDE \& SCHWARZ SIGNAL GENERATOR BN $41043,4400-8300 \mathrm{MHz}$ Price $£ 325 \cdot 00$ plus $£ 10-00$ packing and carrlage.
MODEL 300 LOGIC PROBE. A compact easy to operate loalc probe. As a llghtemleting dlode is used the unlt actuates with low power. It does not affect the circuit under test because of high Input impedance. Up to as high a frequency as 12 MHz . Price $£ \mathrm{EE} \cdot 60$ plus 78 p pscking and carrlage.
VIBRON ELECTROMETER MODEL 33B. An exceptionally stable laboratory Instrument for the measurement of very small d.c. voltages and currents derived
froma hlgh Impedance. The Vibron Electrometerhas Input ranges of $10 \mathrm{MV}, 30 \mathrm{MV}$, from a high impedance. The Vibron electrometer $100 \mathrm{MV}, 300 \mathrm{MV}$ and $i \mathrm{~V}$ and the output is 1 mA . Full scale on all ranges. The drift $100 \mathrm{MV}, 300 \mathrm{MV}$ and does and 10 to the power of 13 ohms. Price $£ 48 \cdot 00$ plus $£ 5 \cdot 00$ packing and carriage.
SOLARTRON AUTOMATIC NOISE SPECTRUM ANALYSER. Complete Spectrum Print-out in 1 secs. Low Power Consumption 150VA. Extreme Simplicity of Operation. Print-out Rate: 30 cards per minute maximum. Single cards on command. Frequency Range $1 \mathrm{~Hz}-10 \mathrm{kHz}$. Dynamic Range of 40 dB in 2 dB Increments. Print-out Histogram on standard $7 \frac{1}{6} \times 3 \frac{1^{\prime \prime}}{}$ card. 17" CRT gives continuous Monitoring of the short term Spectral Density.
Applications: Waveform analysis, accoustical studies, speech analysis, vibration studies, seismology etc. As is condition. Price $£ 100$ plus carriage at cost.
XY PLOTTER MODEL 1100 E BY ELECTRONIC ASSOCIATES. $15^{\prime \prime} \times 10^{\prime \prime}$ table, slow speed of 20^{*} per sec. Sensitivity in 9 ranges from 0.05 to 20 volts \&.s.d. Basic sensitivity: Arm-10mV per in., Pen-1.0V per in. In first-class condition. Price $\mathbf{£} \mathbf{1 5 5}$ plus $£ 10$ packing and carriage.
PDP12 MINI COMPUTER. 4096 12-bit CPU; DF32 Disk and Control, DW08A I/O bus level converter; PC12 \& PCO5 High Speed Reader/Punch; BA12 Peripheral expander; ASR33 Teletype; PTO8C Dual Channel Interface; KP12 Power fail/restart; AF01A A/D Converter and Multiplexer. Three vears old-fully maintained by Dec since A/D. Conve CB,
SULLIVAN PRECISION CAPACITANCE BRIDGE. $\begin{array}{r}\mathbf{£ 7 5 . 0 0} \\ \mathbf{£ 4 5 . 0 0}\end{array}$

MARCON L Heterodyne Frequency Meter 1067/1
SAUNDERS OSCILLATOR CIC 7-12
MUIRHEAD D888A Analyser Oscillator
SOLARTRON LM903 AC Converter.
EH132S PULSE GENERATOR............
AVO ELECTRONIC MULTIMETER CT38
TEKTRONIX TYPE 80 PLUG-IN.
B.P.L. ENGINE TESTER.

TELEOUIPMENT AMPLIFIER TYPE A
SOLARTRON CX1442 PLUG-IN
POLARAD SPECTRUM ANALYSER.
SOLARTRON Stabilised Amplitude Signal Generator Type DU903 MARCONI 801D/1/S AM Signal Generator
$£ 45.00$
$£ 3.00$
$£ 3.00$
$\mathbf{£ 7 . 0 0}$
$£ 75.00$
$\boxed{8} 5.00$
£45.00
£95.00
$\mathbf{£ 2 5 . 0 0}$
$\mathbf{£ 2 . 0 0}$
$\mathbf{£ 4 5 . 0 0}$
$\mathbf{£ 4 5} .00$
$\mathbf{£ 1 2 - 0 0}$
£12.00
£15.00
$\mathbf{E} 50.00$
£950.00
$\mathbf{£ 6 5 . 0 0}$
£65.00
$\mathbf{£} 95.00$

ELECTRONIC BROKERS LIMITED

49/53 PANCRAS ROAD• LONDON NW1 20B. Tel: 01-837 7781

Lenrys

 Your Complete

 Your Complete Audio-Electronic Stores

 Audio-Electronic Stores}

VAT All prices are subject to V.A.T. inctuding postage and
bUILD a VHF/FM TUNER
${ }^{\text {Lafiss }}$ Comitin $C A T A L O G U E$ LATEST EDITION! Fully detalied and illus trated intormation. circuits and
price $55 p$ post
(40p FOR CALLERS)
PLUS!
FIVE 10p
VOUCHERS

with purchases Send to this address-HENRY'S RADIO LTD
(Dept WW) 3 ALBEMARLE WAY, LONDON EC. 1, - for catalogue by po'st only. All 'other mail to

BANDWIDTH, PRINTED
CIRCUIT HIG REPRODUCTION, FIDELITY MONO
AND STEREO AND STEREO no doubt about it-VHF mono and stereo. There is

Tuning meter unlt $\mathbf{\& 1} 1.75$. Mains unter (optional)
Model PS 900 (2. 20p.
Mains unit for Tuner and
Decoder PS $6 / 12 \quad £ 3.25$.
Post 20p.

PADDSGO-MGHWTGH

phone or call In. Detalls and demonstrations on request

 DISCOAMP 100 watt amp/ $/$ mixer D $J 70070$ watt Disco amp./mixer
A nti-Feed back. Quality Mic
O 550050 watt PA Amplifler \qquad

80.088

SINCLAIR PROJECT 60
MODULES-SAVE fff's

\section*{| Z30 |
| :--- |
| STE |
| PZ |
| Z50 |
| Trans |
| ACtive |
| Stere |
| IC12. |
| |
| PAC |
| 2xZ30 |
| 2xZ30 |
| 2xZ50 |
| Trans |
| PRO |}

Vhy buv alterna

WIEGBATED CTRCUITS!

 ives when you

All stores within 200 yards-call in and see for yourself
 404-406 Electronic Components and Equipment 01-4028381
 354-356 High Fidelity and Tape Equipment 01-402 5854

309 PA-Disco-Lighting High Power Sound 01-723.6963

We're sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Limited,
10 Bayford Street, Hackney, London E83SE.
Tel:01-985 1152 .
Goldring@Series 800
Stereo Magnetic Cartridges.
WW-110 FOR FURTHER DETALS

Solartron

High Resolution Video Map Type SY 2048 used by numerous countries as an accepted standard piece of equipment for operational user with air traffic control and defence radar installations. Extremely accurate unit providing early identification of radar returns and the precise position of aircraft. Video map systems are being used increasingly to assist pilots on the flight deck and controllers at airports.

Video map is a means of obtaining topographical and other statistical information in relation to radar pictures. Its operational usefulness depends on the extent to which detail can be displayed (resolution) and the ability to maintain a precise relationship between radar and video map pictures. Resolution increased to 1 V in 1500 at centre of map.

A limited number of these units are available, offered brand new in their original crates at less than $\mathbf{6 0 \%}$ of their original cost due to a frustrated export order. Price $£ 2,900$ each.

Tel. O1-445 2713 \& 01-445 0749

AC/DC TAUT SUSPENSIONS

multimeters

(Made in U.S.S.R.)
Lurge selection of multimeters with prices ranging irom $\mathbf{2 4 . 0 5}$ to $\$ 10.50$.

Pease write ior full Cataloque.

VALUE ADDED TAX

 All salos made after 1st April will be subject to Value Added Tax. Prices quoted on this page are exclusive of tax. When ordering by post 10\% OF THE VALUE OF THE ORDER MUST BE INCLUDED IN THE REMITTANCE TO COVER VAT. For iteme whose prices contain element of purchase tax suitable reduction of purchase tax suitable reductionwill be made and any over payment refunded immediately

P \quad ото EMISSIVE DEVICES			
OCP71		ratisistor BPX25	21.00
	Phato	ductive C	
ORP12	80.50	$0 \mathrm{RP90}$	${ }_{51} 1.10$
ORP60	¢0. 50	ORP93	21.00
ORP61	¢0.32		
Photocells			
90 AG	£2 40	90A	12. 50
90 Ca	22.40	900 V	22.90

SOLID STATE LIGET EMITTING
DIODES MV10B
To18 outline. Brightness 500 F'T L at 50 mA . Forward voltage. 1.65 to 2V. Diode gives bright red pinpoint of 0.170 in. PRICE 20.65

HARD-TO-GET TYPES
20.60
20.75
20.60

DL73	,	21.60	EM81	.	20.60
ECF804	.	21. 85	GZ33		40.75
EF37A	.	21. 00	XCl2T		40.60
EF804	\cdots	21.25	12ADG..		40.60
EMS4	.	81.00	6146 B		22.50
		TRAN	TORS		

BTX47-1000R; 1000V 11.5A BTX $48.1000 \mathrm{R} ; 1000 \mathrm{~V}$ 16A.
SILICON POWER RECTIFIERS
BY101 450 p.i.v. 1.1A
BY127 600 p.I.v. A1.
ZENER DIODES
1 watt 5%, series BZX61: 7.5 to 68V
2 watts 5%, series BZX70: 10 to 27 V .
5 watts 10%, series D816: 22 to 47 V .
watts 10%, series D817: 56 to 100 V

WHEN ORDERING BY POST PLEAGE ADD $50 \cdot 12$ N $\&$ FOR HANDLING AS WELL AS 10% OF THE AMOVNT GNCLUSIVE OF PACKING AND POST

AGE) TO COVER VALUE ADDED TAX
Minimum handling Charge 20.15

[^9]LeAse note that valves listed above are not necessarily of u.k. origin
Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2
A.R.B. Approved for inspection and release of electronic valves, tubes relystrons ete.

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

Tel.: 727 5641/2/3

Retail branch (personal callers only) 85 TOTTENHAM COURT RD. LONDON W.2.Tel: 5808403

Znenx

FIRST QUALITY VALVES

 \begin{tabular}{ll|ll|ll}
PCF86 \& 0.60 \& PY500 \& 1.00 \& UBF80 \& 0.40

PCF87 \& 1.10 \& PY800 \& 0.47 \& UBF88 \& 0.40

PCF \&

PCF2000 \& 0.75 \& PY801 \& 0550 \& UBL \& 0.70

PCF201 \& 0.78 \& PZ330 0.38 \& UBL1 \& 0.70

PCF8001.00 \& QQV02- \& UBL21 0.70

PCF91
\end{tabular}

,
${ }_{0}^{8} 40$

FULLY
 GUARANTEED

为

EB91	$\frac{2}{0} 22$

\qquad $\begin{array}{ll} & 2 \\ \text { EB91 } & 0 \\ \text { EBC33 } & 0 \\ \text { EBC41 } & 0 \\ \text { E }\end{array}$ | EC |
| :---: |
| EC |
| EC |
| EC |
| E | ECL81

ECL. 82
ECL83
ECI, 84
ECL80
ECL8
ECI
${ }_{0}^{8.50}-8$

821	
822	
0	80
1.40	

$$
\begin{array}{cl}
1 & 2 \\
c 91 \\
c 9 & 0.45
\end{array}
$$

$$
\begin{array}{r|r}
& \text { PCF } \\
.45 & \text { PCF } \\
\hline 45 &
\end{array}
$$

PCF 8080.90
PCH2000

\section*{| | | | |
| :--- | :--- | :--- | :--- |
| 50 | | | |
| 50 | PC | | |
| 0 | PC | | |}

 PCL800
PCLE1
PCL801

PEN36C PEN45
PEN45

GE01
ME1 140
MH4
M16E
MSFE
PEN 46
PEN38
$70{ }^{2} \mathrm{QB8}$

PEN35
 N78
NGP1
KAP2 PF86
PF818
PFL200
PL
\qquad
\qquad

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 9.00$ per single col. inch.
LINE advertisements (run-on): 50 p per line (approx. 7 words), minimum two lines.
BOX NUMBERS : 25p extra. (Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.)
PHONE : Allan Petters on 01-261 8508 or 01-928 4597

ELECTROSONIC LIMITED have vacancies for:AUDIO TEST ENGINEERS

As part of their expansion in Theatre Sound,
Communication and Specialist Audio Systems.
ELECTROSONIC LTD., are responsible for the design and manufacture of complex electronic units and systems in the sound, lighting, projection and control fields.
We offer an opportunity to work in a young expanding and rewarding environment.
Whilst qualifications are desirable, preferably H.N.C., careful consideration will be given to practical experience and the capability of logical circuit analysis.

Please write stating qualifications, age, experience and salary expected to:
The Personnel Officer,
ELECTROSONIC LIMITED,
815 Woolwich Road,
London, SE7 8LT.

Electronics Test Engineers

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery: applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable. are not as important as practical proficiencs: Armed service experience of such work would be perfectly acceptable. Pye Teleconmunications is the ivorld's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs A E Darkin at
Cambridge Works, Elizabeth Way. Cambridge CB4 1DW.
Telephone: Cambridge 51351.
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk.
Telephone: Haverhill 4422.

TECHNICAL AUTHOR

A vacancy exists for an additional electronics writer to prepare operating and maintenance handbooks on a variety of audio-frequency and whf equipments. He will be expected to work on his own initiative and must have a clear understanding of modern circuit techniques. Applications in writing to:

The Chief Engineer, The Wayne Kerr Company Limited, Tolworth C lose, Tolworth, Surbiton, Surrey. KT6 7ER.
WAYNE KERR

Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary. direct -from-America. course, you train as a Computer Operator in only 4 weaks!

Pay prospects? $£ 2500+$ p.a.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY without obligation

London Computer Operators Training Centre P16, Oxford House. 9-15. Oxford Street. W. 1
Telephone: 01-7342874
127. The Piazza. Dept. P16. Piccadilly Plaza, Manchester 1. Telephone: 06†-236 2935

Radiomobile

Radiomobile are engaged in a wide range of projects for the in car and home entertainment market. A substantial programme of expansion creates the following opportunities. Career prospects are excellent if you can demonstrate genuine ability and potential.

ELECTRONIC DESIGN ENGINEERS
 HEMEL HEMPSTEAD - HERTS

Small design teams, each wholly responsible for its own range of projects are being formed to develop high quality $A M / F M$ radio and tape playing equipment.
It is in this particularly exciting and rapidly expanding environment that we can offer you scope for creative design work.
We are interested primarily in Experienced Engineers who should have a degree or equivalent in Electronics, but graduates with less experience will also be considered.

DESIGN DRAUGHTSMAN (styling)
 HEMEL HEMPSTEAD - HERTS

We have a requirement for a well qualified design draughtsman to work in close co-operation with our consultant stylist.
Applicants should have a relevant engineering qualification with at least five years experience in the application of plastic materials for styling comporrents.
They should be used to working within the cost constraints of consumer equipment and should be fully conversant with decorative finishing processes
DESIGNDRAUGHTSMAN (radio fitting kits)

CRICKLEWOOD - LONDON

Young design draughtsman required to join small team engaged in design of radio fitting kits.
O.N.C. minimum standard required with at least three years experience in design of small sheet metal components.
Suitable candidates could be considered for eventual promotion to the position of external customer liaison engineer.

These are monthly staff appointments and carry uscial fringe benefits associated with a major Company.
All appointments carry attractive starting salaries, which are reviewed annually.
Please write in confidence telling us how you meet these requirements, or if you prefer, write or telephone for an application form.

COMPONENTS ENGINEER
 (electronics)
 CRICKLEWOOD - LONDON

To have responsibility and to undertake evaluation of all bought out electronic components. Work will entail internal liaison with manufacturing and design facilities also external liaison with component suppliers.
Candidates, who should have a minimum of three years practica! experience gained in consuner electronic components evaluation or component production and test, will be expected to adopt a systematical approach, which will include the preparation and maintenance of component standard lists.

Applications should be made to :-
Mrs. B. J. Buckingham.
RADIOMOBILE LIMITED,
Design Centre.
Maylands Avenue.
Hemel Hempstead
Herts.
Tel: Hemel Hempstead 61661 EX. 62
Alternatively, for further information, ring between $6 \mathrm{p} . \mathrm{m}$. - $10 \mathrm{p} . \mathrm{m}$ (reverse charges) Peter Wilding. Technical Manager on Woburn Sands 3009.

APPOINTMENTS

\title{

CAN YOU SELL HI-FI?
 or... are you a Hi-Fi enthusiast willing to learn new sales techniques?
 Lindair - the Hi-Fi specialists in Tottenham Court Road are shortly to open a new $\mathrm{Hi}-\mathrm{Fi}$
department store in the West End hence wonderful

HI-FI SALES STAFF

HI-FI SALES STAFF

You may already be a shop salesman, not necessarily in the Hi-Fi business at the moment - or you may be a Hi - Fi enthusiast with perhaps some technical knowledge who is willing to be trained in the art of salesmanship. Whichever category you may fall into you will be ambitious. Ambitious enough to want to join a team of individuals with this fast expanding company which is rapidly developing as a leader in this field, and is offering great prospects for the future. Experienced men can earn up to $£ 38$ per week plus commission.

The Hi-Fi business is as interesting as it is lucrativel

Write now for an application form to :-
Mike Lurie,
Lindair Ltd., Kirkman House,
54 Tottenham Court Road,
London W1 H ONX.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,350$ $-£ 1,710$, depending on age, with annual rises up to $£ 2,310$ (compulsory pension contributions are included in these amounts). In addition you would receive payments that can be as much as £300 or more a year for attendances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's
General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to
The Inspector of Wireless Telegraphy, IMTR, Wireless Telegraph Section, Union House, St. Martins-le-Grand, London, EC1A 1 AR.

Doss

 Telecommunications

Satellite and microwave communications, international H.F. radio links, telephone systems - if you have qualifications and experience in one of these areas then you could soon find a rewarding post in this beautiful country. Some of our current requirements are listed below. These posts carry attractive salaries plus substantial gratuities on completion of contracts (normally 3 years). If you're British you may also receive an inducement allowance from your Government. Other benefits include free flights for you and your family, generous luggage allowances, good leave, education grants and help with housing.

Telecommunications Engineer

You will be closely involved in planning and commissioning the Satellite Earth Station to be installed in Zambia. You should have had at least ten year's experience in advanced telecommunications including V.H.F. and microwave radio relay systems. If you've worked on Satellite Earth Stations - so much the better. You will hold formal qualifications and must be prepared to train local Technicians in the maintenance of the Station.

Telecommunications Engineer -

 H.F. Radio

 H.F. Radio}You will be responsible for the operation, maintenance and development of International Transmitting and Receiving Stations. You will have at least ten years' experience in telecommunications - most of which will have been in international-standard H.F. radio. There is also an opening for an Assistant Engineer in this field and for both appointments suitable qualifications are necessary.

Assistant Telecommunications Engineers (1) Power and Accommodation
 You will be concerned with (a) the design of telecommunications

 buildings incorporating suitable air-conditioning plantand (b) providing mains and emergency power for telecommunications. You should have at least seven years' experience in telecommunications and hold relevant qualifications.
(2) (a) Switching (b) U.H.F. \& H.F. Radio (c) Transmission
 These appointments will be based at the Headquarters of the Zambian

 Post Office. You will consider existing and new methods in telecommunications engineering and recommend and implement improvements where necessary. You should have Intermediate C \& G certificate in Telecommunications plus considerable experience in one of the above fields.
(3) Mechanical

Ou will be responsible for the day-to-day operations of G.P.O Headquarters Workshop in Ndola. The Workshop mainly deals with mechanical engineering projects with additional interests in carpentry light electrical work and painting. You will need O.N.C. or equivalent in Mechanical Engineering plus five years' suitable experience - some of which in a supervisory role.

Line Technicians

There are several posts, some at supervisory levels, and you should have relevant qualifications plus extensive experience of one or more of the following:
(I) The routing, construction and maintenance of heavy overhead cables.
(2) Installation and maintenance of subscribers' apparatus including PABX's.
(3) Jointing and laying of lead and P.V.C. covered cables
(4) Construction and maintenance of open wire routes.

Equipment Technicians
 You will carry out maintenance and installation work of various types

 in all parts of Zambia. You should have final C \& G certificate in Telecommunications plus at least 4 years' experience with emphasis in one of the following areas:(1) Storage type exchanges.
(2) Crossbar type exchanges
(3) Automatic exchanges and multiplex equipment and subscribers apparatus at 'mixed load' small stations.
(4) Microwave radio relay systems.
(5) H.F. radio equipment up to international standards
(6) Multiplex and V.F. telegraph systems.
(7) Creed and Siemens Teleprinters.

Rigger

You will construct, erect and maintain H.F., V.H.F., and U.H.F. aerials and aerial arrays and train Zambian staff in this work. You should have C \& G certificate in Line Plant Practice and Radio or equivalent plus about 5 years' relevant experience.

Write now giving brief details of your qualifications and experience to date. In return you will receive full descriptions of relevant appointments and details of salaries and general employment conditions.
Recruitment Officer (K),
Zambia High Commission, 7 /|| Cavendish Place, London WI.

Design Engineer

Video Equipment

MATTHEY PRINTED PRODUCTS LIMITED need an experienced engineer to lead the design and development of ancillary video equipment for use in TV broadcasting systems.
This is a new and challenging appointment. The successful candidate will be responsible for projects from inception to production. The work will include circuit design at video frequencies employing integrated circuits and discrete devices. The job will entail frequent contact with TV broadcast system manufacturers and broadcasting authorities.
Matthey Printed Products Limited, Stoke-on-Trent - part of the Johnson Matthey Group - are established manufacturers of professional grade electronic components which include "Silver Star" silvered mica capacitors video delay lines, filters, and ancillary video units for a worldwide market.
The job is located at a modern expanding factory site within easy reach of pleasant countryside and reasonably priced housing.
Conditions of service are in keeping with large practice and include a contributory pension fund and free lunches. Applications giving details of age, qualifications, experrence and present salary should be addressed to The Company Secretary,
Matthey Printed Products Limited,
William Clowes Street, Burslem, Stoke-on Trent ST6 3AT

11 mas
 II

\square

Videodisc Recording Engineers

The Decca Record Company are extending their activities in the Videodisc Recording field at their laboratories in a pleasant part of North London. To do this, we must recruit additional qualified and experienced engineers. The work covers source and monitoring facilities with professional colour TV; technology associated with electron scanning microscopy and the development of disc recording techniques using electro-mechanical devices. Although primarily concerned with development, it will include some operation. The appointments will have attractive salaries and conditions of service. We would like to talk to engineers whose education and experience background are specifically relevant to at least one of the engineering aspects described. If this interests you please write to:
Group Personnel Officer,
Decca Limited
Decca House,
9 Albert Embankment,
London, SE1 7SW

SYSTEMS PROJECT ENGINEER (CCTV)

We are an expanding company in the field of business communications equipment and we have a requirement for a skilled engineer to assist in our Systems Engineering Department.

The essential requirement for this attractive post is a good working knowledge of digital logic control design for application to CCTV systems, particularly in traffic and industrial surveillance.

Applicants must be versatile and able to undertake design work in other spheres of CCTV systems which will involve different forms of control, including educational studios and process control.

The successful candidate will probably hold an HNC or equivalent but applications from others with suitable experience will also be considered.

Please write giving brief details
of your background and experience to.
John Bell, Personnel Manager, Pye Business Communications Limited,
Cromwell Road,
Cambridge CB1 3HE.
Tel: Cambridge 45191 (Ext. 293/4).
11 Pye rely on people!

AUDIO PRODUCTS ENGINEERS RADIO - UNIT AUDIO - HI-FI

Due to the continuing rapid expansion of its 'Audio Products' activity, both in European and worldwide markets, B.R.C. require additional Engineering staff in many of its Laboratories.

The vacancies cover most grades and offer excellent opportunities to all from school leavers, through to professionally qualified men.

Lack of recent experience will not prevent an otherwise suitable applicant from succeeding in any but the most senior appointments. Salaries. which will be discussed at the time of interview. will reflect the importance of the position applied for.

Applicants wishing to investigate the possibility of a future with one of Europe's most creative Engineering teams in this field should write in the first instance giving relevant career details to:

PERSONNEL MANAGER,
BRITISH RADIO CORPORATION (CHIGWELL) LTD., 62/70 FOWLER ROAD,
HAINAULT,
ILFORD,
ESSEX.
THOFTN
Tele: 01-500 1080

GUILDFORD COUNTY TECHNICAL COLLEGE

Senior Technicician

required in the Educational Television Unit.

The Unit operates a well-equipped closed. circuit television studio and mobile system producing and distributing educational material for use within the College and elsewhere in the County. The successful applicant will be responsible to the Chief Technician for the daily operation and maintenance of black and white and colour television equipment, including cameras, monitors, vision and sound mixers, video tape recorders, etc.
Candidates should preferably have had practical experience with vidicon cameras and helical-scan recorders. An interest in photography is desirable, but not essential.
Minimum qualifications: Candidates should have reached the Final Year of the course in Radio, Television and Electronics Servicing (City and Guilds 172) or have completed Part 1 of the Radio. Television and Electronics Technician's Course (City and Guilds 272).
Salary will be on the scale $\{1311-£ 1530$ or £1530-£1803. The starting point will depend on qualifications and experience (qualification allowance will be paid in appropriate cases).
Send for application form and further particulars (enclosing S.A.E.) from the Principal, Guildford County Technical College, Stoke Park, Guildford, Surrey.

INDIVIDUAL

To take an active part in expanding my small London based outfit. This is an excellent opportunity for a person who has a thorough to contribute in of an exciting and challenging business manufacturing professional quality high power sound systems.
Substantial remuneration offered to the right person.
Write giving full background to:
MARTIN AUDIO LTD
JUBILEE STUDIOS
COVENT GARDEN LONDON WC2 E8BE

Visual and Aural Aids Technician

Suitably qualified and experienced person required to assist in the installation, repair and maintenance of radios, tape recorders, record players, projectors, televisions etc. in schools and other educational establishments. Wages $£ 30.80$ p plus bonus for a 5 day 40 hour week.

CROYDON

Applications to or further particulars may be obtained from:
The Stores Assistant, London Borough of Croydon, Services Centre, Princess Road, Croydon, CR0 2QZ. Telephone: 01-684 4918.

Test Engineers enjoy more variety at Redifion

\ldots and one of the best-equipped electronics test departments in Britain.

You'll be working on a vast variety of solid-state devices, including - high-power transmitters, communications receivers, military pack-sets, MF beacons, mobile HF, marine VHF and teleprinter terminal equipment.

The job involves a wide area of testing operations-from GO/NO GO sub-assembly testing through to fault-diagnosis on complex systems.
Interesting work with one of the U.K. leaders in electronics expertise-located in London.

To qualify, you'll need to be thoroughly experienced in the field-with considerable knowledge of semi-conductor or logic circuitry.

We pay well-from $£ 1,450$ to over $£ 2,200$ p.a. (depending on experience) for a $37 \frac{1}{4}$ hour week with ample opportunities for overtime. Additional benefits include an excellent company pension scheme and generous sickness allowances.
Please write, including full details of your past experience, to:

Chief of Test
Redifon Telecommunications Ltd.,
Broomhill Road, Wandsworth, SW18 4JO.

A Member Company of the Rediffusion Organisation
1970
W. \& C. FRENCH (CONSTRUCTION) LTD.
require a

Service Electronic Engineer

The position is based at Harlow Workshops and the successful applicant will service all radio telephones and electronic equipment. He will also carry out any necessary site servicing and must therefore be prepared to travel anywhere in the U.K.

Permanent position, attractive salary, generous holidays, Annual Bonus, excellent contributory Pension and Assurance Scheme.

All enquiries treated in strict confidence.

Apply for Application form to:

Administrative Manager, Personnel, W. \& C. French (Construction) Ltd., 50 Epping New Road, Buckhurst Hill, Essex. 1G9 5TH.
Tel. 01-504 4444.

APPOINTMENTS

Technician School of Photography

up to £1908

Technician/Engineer in Television and Sound is required for a new post in the Film and Television Department. Duties will include the technical operation and routine maintenance of a CCTV Studio requiring electronic and mechanical skills and knowledge in the television field. Relevant City and Guilds or HNC qualifications are desirable and further in-service training will be considered.

Additional $\notin 72$ qualification Allowance payable where applicable,

UNIVERSITY OF SURREY
Department of Electronic and Electrical Engineering

ELECTRONIC ENGINEER

A trained engineer, experienced in modern electronics, is required to carry out advanced design and development in advanced design and development in support of research work and industrial
contracts. Broad based experience in both contracts. Broad based experience in both modern analogue and logic circuitry is desirable and the ability to take projects from design concept to prototype construction.
The appointment, in the Experimental Officer grade, will be made within the salary ranges below, according to age and salary rang
Assistant Experimental Officer $£ 1$ 764-£2079 Experimental Officer
£2238-£3033 Membership of FSSU optional.
Applicants must be academically qualified in the appropriate field and must have had at least $2 / 3$ years experience in a research and/or development environment.
Application forms may be obtained from the Staff Officer, University of Surrey, Guildford, Surrey. Tel: Guildford 71281, Ext. 452, and to whom they should be returned by: 2 April 1973.

POLYTECHNIC OF NORTH LONDON

Electronic and

Communications
Engineering

HEAD OF

 DEPARTMENTApplications are invited for this post, vacant due to the retirement of the present Head, Mr. J. C. G. Gilbert, on 31 August, 1973.

The Department, which at present runs a PNL diploma course in Electronic and Communications Engineering, is developing specialist components in a joint BSC (CNAA) in the Faculty of Science and Technology, and plans to convert the diploma course to a $B S C$ (CNAA) in the near future.

There is a full programme of short and part-time courses at graduate and postgraduate level, and technician courses leading to City and Guilds Full Technoloading ${ }^{\text {to }}$ Certify
Salary scale (Grade V Headship) $£ 4,152 \times x$. f107 (4) \times E4,580 plus $E 118$ London Allowance.
Further particulars and application form may be obtained from The Secretary:

The Polytechnic of North London,
Holloway Road, London N7 8DB.
Completed applications should be received not later than Friday, 30th March, 1973.

NATURAL ENVIRONMENT

RESEARCH COUNCIL

Development of Fish Counting Equipment

THE NATURAL ENVIRONMENT RESEARCH COUNCIL is jointly sponsoring with the WATER
RESOURCES BOARD a proiect for the developRESOURCES BOARD a project for the development of electric fish counting to be undertaken by
the NORTH SCOTLAND HYDRO.ELECTRIC BOARD.
Two Electronic Engineers are required on two year contracts to construct, service and maintain the necessary equipment for this project, which will be controlled and supervised by the North of Scotland Hydro-Electric Board Research Laboratory, Pitlochry, Perthshire, Scotland.
There will be some laboratory experimental work, but most of the effort will go into field measurements and their analysis and will require a considerable a mount of travel to sites throughout the United Kingdom, although the persons appointed would be based at Pitlochry.
Qualifications and Experience
At least ONC (Electrical Engineering) or an equivalent standard of education, or higher qualificatlons, and extensive appropriate experience
Starting salary according to qualifications, experience and age, within the range of $£ 1,575$ (at age 23) to $\mathrm{f} 1,850$ (at age 28) on a scale progressing
to $£ 2,090$ per annum.
Application forms may be obtained from the Establishments Division, Natural Environment Research Council, Alhambra House, $27 / 33$ Charing
Cross Road, London WC2H OAX. Please quote the reference E2/48/10. Closing date 9th April, 1973.
[2463

MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement, provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at Luton and St. Albans.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW 175 for application form to:

Mr. M. Leavens, Works Manager
Telephone: Luton 33866, or Mr P Elsip. Personnel Officer Marconi Instruments Lid
Longacres. St. Albans. Herts
Telephone: St. Albans 59292
Member of GEC-Marconi Electronics

TEST ENGINEERS

The leading U.K. manufacturer of high grade TV monitors require Test Engineers for their expanding Test Department.
Situated in the Berkshire town of Maidenhead, the Company offers pleasant working coniditions, good salaries and friendly environment.
Duties will cover the testing and trouble-shooting of monochrome and colour TV monitors together with other ancillary sophisticated TV broadcast equipment manufactured by the company. Previous experience of TV equipment would be an advantage. Please apply to:

PROWEST ELECTRONICS

Boyn Valley Road, Maidenhead, Berks.
Maidenhead 29612

ELECTRO-MECHANICAL SERVICE ENGINEERS

We are a well established company involved in the field of medical X-ray apparatus. The ever ncreasing demand for our equipment has created further opportunitles for experienced electronic engineers. Qualified to O.N.C. (Electrical) and with several years experience in an electronic or electro-mechanical environment.
The job would involve the installation and servicing of a wlde variety of X-Ray equipment in hospitals. Vacancies exist in several of our Granch offices Including London, Newcastle, Glasgow, Edinburgh, Birmingham, Liverpool, Leeds, Sheffield, High Wycombe, Winchester and South East England.
Excellent salaries will be paid to the successful applicants and fringe benefits include the use of a company car.

Piease apply for an application form to

P. B. Blackmore,

G.E.C. MEDICAL EQUIPMENT LTD.

East Lane, Wembley. Tel: 01-904 1288

RADIO OFFICERS

DO
 YOU
 HAVE

PMG 1

PMG 11
2 years operating experience
possession df one df these QUALIFIES YOU FOR CONSIOERATION for a radio officer post with the COMPOSITE SIGNALS DRGANISATION

On satisfactory completion of a 7 -month specialist training course. successful applicants are paid on scale rising to $£ 2,365$ p.a. ; commencing salary according to age -25 years and over $£ 1.664$ p.a. During training salary also by age. 25 and over $£ 1,238$ p.a. with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Application only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered

Full details from
Recruitment Officer (TRO.2.)
Government Communications Headquarters Room A/1105
Oakley Priors Road
CHELTENHAM Glos GL52 5AJ
Telephone: Cheltenham 21491 Ext 2270

TWO OPPORTUNITIES IN

Senior Research \& Development Engineer

Must have some previous experience of antenna design. VHF to Micro
wave. Qualifications: Membership of recognised Institute or Bsc.

Design \& Development Engineer

Some Antenna theory desirable. Previous experience in the Telecommunication industry essential
Salaries: Negotiable according to experience and qualifications
Occasional visits to Government sites for technical liaison will be required. All applicants must have a current driving licence
Applications, in writing, to: The Managing Director, J. BEAM ENGINEERING LIMITED, Rothersthorpe Crescent, Northampton. Tel. 63531 (10 lines)

ULSTER: THE NEW UNIVERSITY
MAGEE UNIVERSITY COLLEGE, LONDONDERRY
Institute of Continuing Education
Applications are invited for the following technical posts:-

Ref: 73/129/148/30
TECHNICIAN: Duties: Language Laboratories, recording studio and ancillary audio services.

Ref: 73/130/149/31
TECHNICIAN: Duties: Operation and maintenance of CCTV services and preparation of programme material.

Qualifications: HNC, or equivalent. plus at least seven years previous experience.
Salary scale: $\{1,881$ - $\{2,241$ per annum
Application forms and further particulars shouid be obtained from The Registrari The New University of Ulster, Coleraine, Co. Londonderry, Northern Ireland (quoting appropriate reference number) to whom completed applications, 'including the names and addresses of three referees, should be returned
not later than 31 st May, 1973 .

Junior Television Engineer

To assist in the operation and maintenance of Colour Telecine and allied equipment in Major Advtg. Agy. Applicant must have a basic knowledge of electronic equipment and experience in its use, although experience of colour television is not essential as we are prepared to train the right applicant. Salary approx. $£ 1,000$ according to experience etc. Day release considered. Write or phone Colin Forster, Leo Burnett Ltd., 48 St. Martin's Lane, London, W.C.2. Tel.: 01-836 2424.

Quality Control Engineer

Required by manufacturers of com ponents for the electronic equipment industry. Applicants should be aged about 30 and have served a craft apprenticeship or recognised period of training, with practical experience. They should possess O.N.C or equivalent qualification. Some knowledge of D.O.A.B. Procedures and B.S. Specifications would be an advan tage as the successful applicant will be working closely with the company's Chief Inspector

Apply: Technical Manager.
JACKSON BROTHERS (LONDON) LTD.
Kingsway, Waddon, Croydon CR9 4DG.
Tel: 01-681 2754
2466

UNIVERSITY OF SUSSEX

School of Applied Sciences

ELECTRONICS

 TECHNICIANThere is a vacancy for a Grade V Technician, to work on a Contract for a period of up to three years.
Candidates should have considerable practical experience of electronic circuits employing solid state devices, and be not less than twenty-five years of age.
Technical qualifications to HNC or Advanced C \& G Certificate are normally required.
Salary according to age and qualification in the scale $£ 1881-£ 2241$ per annum.
Applications, giving full details of age, qualifications and experience should be sent to the Laboratory Superintendent, School of Applied Sciences, University of Sussex, Brighton, BN1 9QT.
[2461

TECHNICIAN

DEPARTMENT OF PHYSICS

Technician required for construction and maintenance of specialised electronic equipment for the Department of Physics Design Group/Electronics Workshop. At least three years working experience with City \& Guilds Technician's Certificate or equivalent, required.

Salary: up to $£ 1,794$ p.a.
Reference: 113/B/598.
Apply: Assistant Secretary (Personnel), University of Birmingham, P.O. Box 363,

Birmingham, BI5 2TT.

TECHNICALTRAINING OFFICER

(COMMUNICATIONS)

The Company
We are an expanding company within the Pye of Cambridge Group and offer a wide range of products including public and private address systems, telephone equipment, time control fire alarm and CCTV. Our field service engineers and technical salesmen are provided with an extensive support service which includes product training in a market of rapidly changing technology.
The Job
This is a new position to assist the Personnel and Training Department in the analysis of product training needs, and the development of means of meeting those needs including off the job instruction. The Training Officer will specialise in intercom and telephone systems

The Man

Preferably with previous experience as a training officer or instructor
Will have an extensive knowledge of electronics
Preferably will have experience in the communications industry
Willing to spend time away from home
Age 28+
He will report to the Personnel Manager
Please write giving brief details of your career and background to John Bell, Personnel Manager,
Pye Business Communications Limited
Cromwell Road, Cambridge CB1 3HE.
Tel: Cambridge 45191 (Ext. 293/4)

CASED AMPLIFIERS £3

Chassis 12×5 $\times 3$ with $2 \times$
ECC83. EL84 EZ80 in wooden cabinet 14×13 speaker and single motor solenoid operated non-standard cassetto tape deck. Low impedance $20 \mu \mathrm{~V}$ 1/P for 2W O/P. Standard mains operation. tested with circuit $£ 3$ (£1) Cassettes now available in limited quantity each. Spare tape heads 40 p each

1000 Rs \& Cs FOR $£ 3.00$.
Amazing variety of resistors, inc carbon, carbon film, metal oxide histabs, 1,2 \& $5 \%, \frac{1}{4}, \frac{1}{2}, 1 \& 2 W$ types rom a few ohms to a few megohms Capacitors included in this parcel Mica, Ceramic, foil. paper, electrolytic mylar, polystyrene, etc. etc. from a few pF to $1000 \mu \mathrm{~F}$. All told about 1000 components for $£ 3.00$ (30 p). Sample 150 60p (15p).

REED UNITS

Contain $31250 \mathrm{~V} 1 \frac{1}{2} \mathrm{~A}$ Reed switches (normally open) mounted round a drum with a magnet inside Strong chassis $9 \frac{1}{7} \times 6 \frac{1}{7} \times 7$ also contams resistor sockels. tag boards etc $£ 1(25 p)$ or 2 for E 1.65 (35p)

FERRIC CHLORIDE

Anhvdrous technical qualitv to mil-spec in double sealed 1b packs. 40 p (15p) 1 Olb f 3.50 (50 p).

GREENWELD (W1)

24 Goodhart Way. West Wickham. Kent. Tel 01-7772001
Shop at 21 Deptford Broadway, SE\&. Tel. 01-692 2009.

TEST EQUIPMENT

Solartron oscilloscopes type CD6435 DC. 15 MHz Bandwidth. Re-calibrated in new condition f 45

Other 'Scopes at shop for callers TF144G Sig. Gen. $85 \mathrm{KHz}-25 \mathrm{MHz}$ 1 IV $\vee 1 \mathrm{~V}$ O/P in excellent condition $£ 20$. Others from $£ 12$. Audio Oscillator. Bfo type. Covers $50 \mathrm{~Hz}-20 \mathrm{KHz}$ in 2 bands 10Ω or 600Ω metered O/P. $£ 10$. Elliott synchronous amplifier $£ 20$. Portable scope with circular timebase. Contains 17 B9A valves $3^{\prime \prime}$ C.R.T. Only £6. working. Marconi FM deviation test set no. 3 in new condition. 2 ranges $20-100 \mathrm{mhz}$ Deviation range 100.200 or $400 \mathrm{Kl} \cdot \mathrm{z} \mathrm{£45}$
EHT unit type 532 D by Isotope Developments. Brand new. List price £185. Only $£ 50$.

COMPUTER BOARDS

Rs Cs transistors (inc. power types) diodes etc. Vanous sizes \& types some broken but good value at 3 lb £1 (25p) 7lb £2 (40p). Finned aluminium heatsinks $5 \times 6 \times 2 \frac{1}{2}{ }^{\prime \prime}$-wt 31b with $2 \times$ OC29 f 125 (25p) Or with $2 x$ 2N1146A f 1.50 (25 p) Ex-computer Electrolytics. $10000 \mu \mathrm{~F}$ 50 V or $5000 \mu \mathrm{~F} 100 \mathrm{~V} 40 \mathrm{p}$ (15p).

£1 BARGAIN PACKS

Each pack f 1 post free		
3 2N3055	£ 1	8 BFY51
4741 C	£ 1	102 N 1613
14 BC107	£1	4 BD163
14 BC109	£ 1	$71000 \mu \mathrm{~F} 25 \mathrm{~V}$

Surplus capacitors, $u F \cdot V: 1000+500 /$ $1812 \mathrm{p}: 80+80+20 / 350 \cdot 80+40+$ $20 / 350 \cdot 32+100 / 300 \cdot 32+32 / 300$ 10 p-2/150, $25 / 150,02 / 350$. 01 350. $005 / 350 \quad 2 p \quad 4 / 25 \quad 4 / 200$ 8/12, 8/150. 25/25, 7564p

Iechiclan

DEPARTMENT OF PHYSICS

Technician required for construction and maintenance of electronic equipment for the Applied Nuclear Science research group: ability to use light machine tools required desirable. At least three years working experience with City \& Guilds Technician's Certificate or equivalent.

Salary: up to $£ 1,794$ p.a.
Reference: L13/B/597.
Apply: Assistant Secretary (Personnel), University of Birmingham, P.O. Box 363,

Birmingham, BI5 2TT.

COURSES

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS, (Dept 734 HI) Intertext House, London SW8.
[2296

B1G2T18 $4.50{ }^{\text {including }}$ Delivery

Thorn 850 Chassis with UHF Tuner. Ex-rental sets sold complete but unserviced, with repolished cabinets. Rush
£ 750 Cash with Order.

U.H.F. TUNERS

For Ferguson 850,900 Chassis, but adaptable for most D/STD 2. 50 each, C.W.O., postage included Send S.A.E. f.
days delivery.

TRADE DISPOSALS
Midlands \& North: 1043 Leeds Road, Bradford 3
Scotland: Unit 5 , Peacock Cross Industrial Estate
Burnbank Road, Hamilton
Cornwall: Pencoys, Four Lanes, Redruth

TV Line out-put transformers
Replacement types ex-stock.
For "By-return" service, conta
Tidman Mitil Order Lidd., Dept. W.W 236 Sandycombe ka., Richmond, Surrey TW9 $2 E Q$ Valves, Tubes, Condensers, Resistors, Rectifers and Frame out-put Transformers al so stocked. callers welcome $(90$
 RESISTOR KITS 10Ω-1M E12 SERIES

 BH COMPONENT FACTORS LTTD Dept. WW. 61 Cheddington Road. PITSTO.
Leighton Buzzard. Beds., LU7 $9 A Q$.

ONE CALCULATOR CHIP
os integrated circuit $\mathbf{£} 12.50$ incl. P. \& P.
: Add subtract, multiply, divide. - Chain calculations

- Fixed decimal point at $0,2,3$ or 3
- True credit balance sign-display
- Automatic overflow indication.
- Leading zero suppression.

O'DRISCOLL,
68 Hammer Hill, Haslemere, Surrey, GU27 39Z. Tel: 0428-205B

2481

[^10][^11]CUT THE COST OF SERVICING WITH LONG LIFE TOSHIBA VALVES
look at these prices and make yourself pounds more profit

Type	Goods	P．Tax	Total	Type	Goods	P．Tax	Total
DY． 87	22.0	6.5	28.5	PCF． 802	33.0	9.5	42.5
DY． 802	22.0	6.5	28.5	PCL． 82	30.0	8.5	38.5
EB． 91	14.5	4.0	18.5	PCL． 84	26.5	7.5	34.0
ECC． 82	24.0	7.0	31.0	PCL． 85	30.5	8.5	39.0
EF． 90	25.0	7.0	32.0	PCL． 86	30.0	8.5	38.5
EF． 183	29.5	8.5	38.0	PFL． 200	41.5	12.0	53，5
EF． 184	29.5	8.5	38.0	PL． 36	45.5	13.0	58.5
EH． 90	27.0	7.5	34.5	PL． 84	22.0	6.5	28.5
PC． 900	22.5	6.5	29.0	PL． 504	45.0	13.0	58.0
PCC． 89	31.5	9.0	40.5	PL． 508	50.0	14.5	64.5
PCC． 189	33.5	9.5	43.0	PL． 509	80.0	23.0	103.0
PCF． 80	27.0	7.5	34.5	PY． 88	25.5	7.5	33.0
PCF． 86	33.0	9.5	42.5	PY．500A	50.0	14.5	64.5
PCF． 801	34.5	10.0	44.5	PY． 800	23.0	6.5	29.5

SEMI－CONDUCTORS

Type	Price E	Type	Price ϵ	Type	Price ε
AC． 127	0.15	BC． 109	0.11	BF． 173	0.20
AC． 128	0.12	BC． 113	0.22	BF． 178	0.35
AC． 141 K	0.30	BC． 116	0.22	BF． 179	0.40
AC． 142 K	0.30	BC． 117	0.20	BF． 180	0.30
AC． 151	0.20	BC．125B	0.18	BF． 181	0.30
AC． 154	0.18	BC． 132	0.25	BF． 184	0.21
AC． 155	0.16	BC． 135	0.20	＊BF． 194	0.08
AC． 156	0.19	BC． 137	0.25	BF． 195	0.15
AC． 176	0.19	BC． 138	0.40	BF． 197	0.17
AC． 187	0.17	BC． 142	0.26	BF． 200	0.25
AC．187K	0.20	BC． 143	0.30	BF． 218	0.35
AC．188K	0.20	＊BC． 147 A	0.08	BF． 224	0.35
AD． 142	0.45	－BC． 1478	0.08	BF． 258	0.40
AD． 149	0.37	＊BC． 148	0.08	BF． 337	0.28
AD． 161	0.34	BC． 149	0.12	BFY． 50	0.22
AD． 162	0.34	BC． 153	0.20	BFY． 52	0.20
AF． 114	0.22	BC． 154	0.20	BSY． 52	0.25
AF． 115	0.20	＊BC． 157	0.10	BY． 126	0.20
AF． 116	0.20	＊BC． 158	0.08	BY． 127	0.12
AF． 117	0.22	BC． 159	0.12	E． 1222	0.30
AF． 118	0.42	BC． 173	0.18	＊IN． 60	0.04
AF． 439	0.37	BC． 1788	0.20	＊OA． 91	0.045
AF． 178	0.43	BC． 182 L	0.12	＊OA． 95	0.05
AF． 180	0.40	BC． 183 L	0.12	＊OA． 202	0.075
AF． 181	0.40	BC． 2141	0.15	OC． 71	0.15
AF． 239	0.45	BD． 124	0.70	OC． 72	0.15
BA． 145	0.14	BD． 131	0.45	BU．105／02	1.70
＊BC． 107	0.10	BF． 160	0.20	2SC． 11728	2.00
＊BC． 108 B	0.09	BF． 167	0.19	－Minimum	Order of 5

Valves packed individually
Subject to settlement discount 5\％of＂Goods＂content 7 days and 2% monthly．

New Price List from 11th Oct．， 1972.

General Price List，January， 1973
CPC，
3 Moor Park Avenue，
Preston PR1 6AS， Lancashire

Telephone：
Preston（0772） 56347.
Telex： 67129

Due toWarehouse Clearance we have a few low powered F．M． VHF WIreless Station Tyee A．A．F．V．No，88．Contained in
iwo unls．（1）Transmitter／Receiver．（2） 12 volt Power Unit and two units．（1）Transmitter／Receiver．（2）
L．F2．Ampiffer．
The TX are contained In a water proof diecast Alloy Case，using a total of 14 valves，operates on tour switched channels which are Crystal controlled．All 4 Crystals are supplied，and are the same in each set．
Therefore all eets will transmit and receive lo each other Therefore all ets wiltransmitand recelve lo each other，
provided each are switched to the same channel out of the four．
The stations are supplled with Mounting Carriers， 2 Vertical Whip Aerlais，plus Aerial Base，Spare Valves，Bulbs，Mount Ing Screws，Connectors eic．
Including the Operating Manual giving all detalis，pius cults of the Wirelerating
All above items are individually boxed and wrapped，placed in original Transit case．
ABSOLUTELY BRAND NEW．Made by Echo for the Govern－ ment no expense spared few only avaliable at $\varepsilon 9,50$ ，carrlage RADIO TELETYPE TERMINAL SET
A．Type，AN／SGGIA latest Government release of these sought after units．housed in metal case approx．sile vini
19 In ．$\times 15 \mathrm{ln}$ ．deep．Using a total of 11 valves，supply voltage 115 volts $50 \mathrm{c} / \mathrm{s}$ ．
Containing Mister swltched tor checking，send and receive Blas，Send and Recelve Level，Loop and Plate current，in falr
used ex－Government condition．Few only avallable at $£ 7.50$ ， carr $\mathcal{E} 1.50$ ．
EDISWAN STABILISED POWER UNIT TYPE R1280， 2 Independent adjustable outputs，（1） $0-300 \mathrm{~V} 150 \mathrm{~m} / \mathrm{a}_{1}$（ 2 ）
$0-300 \mathrm{~V} 75 \mathrm{~m} / \mathrm{a}, 2$ Square Type Meters used，one for each $0-300 \mathrm{~V} 75 \mathrm{~m} / \mathrm{a}, 2$ Square Type Meters used，one for each
output．an additional output of 200 V ，plus 2 L ． T ．outputs of B．3V at 4 amps C．T．enclosed in Metal case made for Rack Mounting size $19 \mathrm{Mn} . \times 8 \mathrm{in} . x 17 \mathrm{n} . \mathrm{E15}$ ，carr．$£ 2$
REGULATED POWER SUPPLY MODEL 506．Made by All Power Transio mers Ltd．，output adjustable 350 m／a and $6,3 \mathrm{~V}$ at 10 mmps ，plus unregulated output．On $350 \mathrm{~m} / \mathrm{a}$ ，and, ，indicating Output current and Voltage．Housed In Metal Case，made for Rack Mounting．Size 19in．x 10 Int I 13in．Prlce £15，carr．£2
L．T．POWER UNITS．（1）Output 28 V or 34 V D．C． 10 amps 2 Square Meters for Voitage and current，semi Stablilised． 10 fin ．$x 16 \mathrm{in}$ ． E 14, cart．$£ 2$ ．（2） 28 V at 10 amps，adjustable with Curent Trip．fully Transistorised Outut indlcated on 2
Meters．Voltage and Amps， 9 in ．Rack Mounting by 102 in ． 16 in ．£14，carr．£2．
ADVANCED CHASSIS MOUNTING POWER UNITS． Output $24 / 28 \mathrm{~V} 10$ amps，$£ 10$ ，carr．$£ 2$ ．
424 Bradford Road，Batley，Yorks．Phone：Batley 7732

Complete Klt
STUDIO SOUND JAN． 73 TO B．S． 4297
 $\begin{array}{lllll}\text { Buit and aligned } & £ 12.00 \quad £ 10.80 & £ 9.60 & \mathbf{E 8 . 4 0}\end{array}$ Enest Turner PPM meters，scaled -22 to +4 OR 1 to 7. Surrey Electronics， 24 High Street，Merstham，Surrey

Trampis alagitanin

Money Back Guaranteed．
DIGITAL INDICATOAS 7 seg．DP 5v Filament rype \＆socket fl．45．LED TYPE $\frac{1}{3}$ O－9 OP 14 gin DIL f 2.49 ．4－ f 2.29 日日 $6+\mathrm{f} 2.19$ UGHT EMITTING OIODES \＆
 type \＆panel tilp RED 33p．GAEEN 73p．TIL209
fis DIA ted 25p．INFRA RED f1．10．Opto solator f2．TGS308 Gas／smoke detector f 1.69 ． ULTRASONIG TRANSDUCEAS $£ 2$.

ic digital cloch

MDS LSS chip． 28 pin． 4 or 6 digit． 12 or 24 hr at flick of switch．Chip with D socket f13．PCB f 1.69 KITS． 4 digit £ 21.49 .6 digit f 25 ．IC LITE SWITCH Phato amp only 39 p ．IC DIGITAL VOLTMETER f 12 ．DVM VP MPX $\mathrm{E6}$ ．Data booklet 39p． 741 DIL 8 pin 28p． 709 19p．बil 29p． 710 33p． 74829 p REGULATORS $1 \frac{1}{3} \mathrm{~A} 5$ to 20 v f1．49． 723 57p． 555 TIMER 日9p．2Na 14 RECEIVER Fbrianti f1．19．Dyal Pre amp $\mathbf{1 1 . 6 7}$ ．3．5W AF AMP fI．24．STEREO DECODER IC FOR FM TUNERS MC131OP $\mathbf{f 2} .69$ ．KIT $\mathbf{f 3 . 4 5}$

$79 \cap T T L$

Gates $7400 / 1 / 2 / 3 / 4 / 5 / 10 / 20 / 30 / 40: 50$ etc 14 p ea． 7413 27p． 744173 p 407 99p． 7470.7472 28p． 74737474 36p． 7475 60p． 7476 32p． 749059_{p}
 C MOS Iggic in new lists．DIL．PLUGS／C case 10 mm high 16 pin 35 p ．
OIL SOCKETS low high protile 8／14116 pin $13 \mathrm{p} 100+10 \mathrm{p}$ ．ea．SEMICDN OUCTORS 25 ＋less 10% ．ZENERS．BZY88 400 mW 7 p ． 1 N $40013 \frac{3}{3} \mathrm{p}$ ． $\operatorname{N9} 143$ p． 50 w 1A Bridge 23p．2N 305540 p ．BC 107 8p．BC 108 8p．BC109 8p．BC147 $8 / 9$
 12p． 2 N 2926 og 8 p ． 2 N 3053 17p． 2 N 3055 40p． 2 N 3614 55p．2N3702．3．4 $56 \cdot 78 / 910 / 11$ All 9_{p} ．FETS 2N3819 27p．2N3823 29p．2N3866 UHF $59 p$ p
 $1 \frac{1}{1} \mathrm{p}$ Ea．PRESETS 5p．CARBON POTS 12 p ea．Ouzl 40 p ．Switch -12 p ．
1 T Pea．PRESETS 5 p．CARBON
All DIN plugs 13 p．sockets $9 p$ ．Vero at narmal price．OALO PCB resist markin

8 WATT with diffuser．on／olt switch．Fully built 13° long tRIO and CODAR communications and hil retailers．ELECTRONIC ORGANS imported．A
 VAT clistomers MUST AOO Rore t，in to ahove prices

Catic．P\＆P 8p CWD to

PRECISION POLYCARBONATE CAPACITORS Fresh stock－Fully tested
Close tolerance capacitors by well－known manutacturer．

 NEWI TRANSISTORS．BC 107，BC 108，BC 109．All at Op each； 6 for 50 ； 14 for $£ 1.00$ ．All brand new and marked．
May be mixed to quallyy for lower price．AF178 at 40 p each； POPULAR DIODES．IN914 at 7p each； 8 for 50p： 18 for E1．00．IN916 at 9p each； 6 for 50 p ； 14 for $£ 1.00 .1$ S44 at 5 ． SPECIAL OFFER－400 MW ZENERS．Values avallable $4.7,5.6,6.8,7.5,8.2,9.1,10,11,12.13 .5,15 \mathrm{~V}$ ．Tolerance 55% at 5 ma ．A 1.00 ． RESISTORS－Carbon flm $5 \% \frac{1}{3}$ watt at $40^{\circ} \mathrm{C}$ ．Range from 47， $55,68,82$ and thelr decades．High stablilty，low noise A any one value．Spectal development pack－ 10 off each value 2.2Ω to $2 \cdot 2 \mathrm{M} \Omega$（ 730 resistors）$\sum_{5} .00$
TANTALUM BEAD CAPACITORS－Values available $22 \mu \mathrm{~F} 15 \mathrm{~V}, 33 \mu \mathrm{~F}$ i $\mathrm{V}, 47 \mathrm{LF} 6 \mathrm{~V}, 100 \mathrm{FF}$ ． 3 V －all at 9 p each 6 for $50 \mathrm{p} ; 14$ for $£ 100$ ．Spectal pack－ 6 off each value（ 78

 $75 p$ each．
SILICON PLASTIC RECTIFIERS $1-5$ AMP－Brand new
Wirre－ended DO27． 100 PIV at 8 p each or 4 for 30 p ： 400 PIV I 9 p each or 4 for 34 p ：800PIV at 14 p each or 4 for 50 p ． P．E．SCORPIO－ $1 \mu \mathrm{~F} 440 \mathrm{~V}$ a．c．capacitor listed above as recommended by the Author for use
$0.47 \mu \mathrm{~F} 1000 \mathrm{~V}$ dic．discharge capacitors C 6 and C 7 ． may be supplled at 35 p ernatively， $2 \times$ suitable for systems recently published In P．W．and W．W

MARCO TRADING（Formerly V．Attwood）
DEPT．E4，THE MALTINGS，STATION ROAD，WEM，

ENAMELLED	COPPER	WIRE
S．W．G．	$1 / \mathrm{b}$ Reel	$\frac{1}{2} / \mathrm{b}$ Reel
10－14	¢1． 15	${ }^{655}$
$15-19$ $20-24$	${ }_{\text {¢ }} 1.18$	68p
25－29	E1．25	75 p
30－34	£1．30	80 p
35－40	${ }_{\text {¢ }} 1 \cdot 40$	85p
The above prlces cov INDUSTR	$\begin{aligned} & \text { P. \& P. in U.K. } \\ & \text { SUPP } \end{aligned}$	
1 1t2 Parrswood Roa	Withington， 061－224－3553	$\text { ester } \begin{aligned} & 20 \\ & 85 \end{aligned}$

SITUATIONS VACANT

Abstract

DIXONS CCTV LIMITED are interested in C.C.T.V. Engineers, fuliy conversant with the DC.C.T.V. Engincers, fuliy conversant with the Trainee Engineers, Salesmen, Hire Department Operators, in fact all sorts of people. Although we are not in a position to make you an "offer you cannot refuse we can provide permanent pensionable employment With unlimited scope for advance- ment. Write M. Biddle. Dixons CCTV Limited. ment. Write M. Biddle Dixons CCTV Limited, 3 Soho Square, London, W.I, with fullest details of Soho Square, London, W.1, with fullest details of previous career and salary required. If you are really good phone 01-734 5668 . SELF-EMPLOYED Technical Authors, Engineers, Commission basis. $£ 50-£ 80$ p.w. Box No. WW 2473 (all answered). TELEVISION COLOUR SERVICE ENGINEER. Perience advantage. Flat available. suit young couple no children. Full particulars: Coles, 14 Wolborough Street. Newton Abbot.

Marconi TF144H/S/1 new 10 KHZ to 72 MHZ AVO CT537 as new transistor/diode tester
AVO No. 3 valve tester
AVO CT160 valve tester
TF144G 35 KHZ to 25 MHZ
TF801A 10 to 300 MHZ
Mullard EL 7555/2 VVM. 5v to 15KV peack AC/DC
CT373 L.F. OSC and analyser.
Solartrom OS 101 oscila lof 25 HZ to 250 KHZ
Advance transistorised PSU new. 15 to 30 volts at 5A.
NO8 8FC 10 20KHz
Zenlth variac 3 gang 20 amp output 0 to 270 volts
ooster 3 P.H. Transformer $1 / \mathrm{P} 44$ voit $0 / \mathrm{P} 11 \mathrm{~K}$

J.M.G. ELECTRONICS
 I6A HIGH STREET, CRAWLEY, SUSS
 Tel: Crawley 37722; Smallfield 2403

SITUATIONS WANTED

MATURE STUDENT sceks temporary employment summer; interests and experience in medical and digital electronics. Suitable short term project

BBC SOUND ENGINEER requires job in East De Lancs./West Riding area. Box No. WW

ARTICLESTFORSALE

A ARVAK ELECTRONICS. 3-channel sound-light £132.-12A Bruce Grove, N17 6RA. 01-808 BUILD IT in a DEWBOX quality plastic cabine in. $\times 2 \frac{1}{2}$ in. x any length. D.E.W. Ltd. (W.) Ringwood Rd. Fernwood, Dorset. S.A.E. for leaflet. CLEARANCE of Surplus Units. Offers invited for ANALYSER. Type lot. FURZEHILL SPECTRUM A 300 . MARCONpe 14526 to 30 Mhz . Brand new to 30 Mhz . Good condition with LF Adaptor 2.5 M . MARCON1 TFI Frequency Counter, new condition, with handbook, Frequency 100 RHODE \& SCHWARZ RF load $0-500 \mathrm{Mhz}$ 1000 W , second-hand, £40. RACAL MA 168 Transistorised diversity units, 10 only, brand new, $£ 25$ cach. 6-GR410 Tx/Rx. $2-18 \mathrm{Mhz}$. with 24 -volt trar wach. 2- KENT TEMPERATURE RECORDERS, $£ 24$ sistor inverters and handbook, less cables, fair con dition, $£ 300$ lot. CINTEL Demonstration scope. type 1623, £40. Phone 061-224 4911 Tues.-Fri. 10 am- 6 pm. COSSOR OSCILLOSCOPE Model 1049 Mk. II, Mr. Fawe Wide Range Oscillator 20/20KHZ, 3 ranges Mr. F. Dawson, 32 Perry Strect, Darwin, Lancs.
[2499 CSSOR 1035 Oscilloscope (double beam), good
working order. $£ 28$ o.n.o., postage extra J. P Tanburn, Morley Rectory, Wymondham, Norfoik.
DISC CERAMICS, £3/1.000; 65p/100. Most values, Double Push Button $\mathrm{C} / \mathrm{O}^{2}$ Switic Counters $48 \mathrm{~V}, 20 \mathrm{p}$. 20p. All plus VAT. Derwent Radio. Scarborough.
GLASS FIBRE P.C. BOARD large supplies avail able. $1 / 16$ in single sided one ounce copper 2 p per 3 sq. inches (under 1 it). 75 p per sq. ft . lp per sq. inch (under 1 ft). £1 per sq. ft. (over $1 \mathrm{ft})$. Please add 10 p per sq . foot postage and packing. We can cut to your size at Ip per cut. Solid State Lighting, The Firs, Smallworth Lane, Gar-
boldisham, Diss, Norfolk.

HARTLEY OSCILLISCOPE CT436
560.00

AVO CT 537 Transistor analyser 840.00

AVO CT 160 Valve tester £45.00
CT 216 MKA Reflectometer VSWR $2 / 30 \mathrm{MHZ} 230 \mathrm{~V} \mathbf{~} \mathbf{4 0 . 0 0}$ CT 348 watt mater 0/2.5 rw: 200 MHZ 230 v 558.00 SANOERS CT 480 X -band Signal Generator $£ 85.00$
G.E.C. ERT $402 /$ Communications RX

WORLD MASTER Portable Communications Receiver MW/LW/SW/MB/FM/VHF (100-174 MHZ)
$£ 35.00$
OECCA TM 909 Radar $\mathbf{£ 1 0 0 . 0 0}$
All Test Gear includes Securicor delivery U.K. Other Items - Carriage - $\mathbf{£ 5} .00$
Please send S.A.E. for lists of many interesting items. Allitems include delivery U.K
ELECTRONIC DEVICES
33 new road. brixham, S. devon
Telephone 04085-3107 or Robophone 51202
2521

Warehouse Must be Cleared

RACAL type MA168 Transistorised Diversity switch,
Allows receptlon of MCW. SSB, RT, CW, receives on 1 or 2 receivers separately or together, twin meters for
signal and receiver levels, BFO tuning, phone out ional and receiver levels, BFO tuning, p
unused in maker's packing

AVO Electronic Multimeters CT38 $£ 1$
Trlodiac (Variac) oil Oscilloscopes $£ 30$.
dac (Varlac) oil cooled $0-270 \mathrm{v} 35 \mathrm{amp}$ £20.
500 watt constant voitage franstormers $£ 18$.
Ditto 125 watt $\mathbf{£ 8}$. $240 / 110$ volt $3 k \mathrm{k}$. $£ 18$.
Ulto 125 watt £. $8.240 / 110$ volt 3 KVA $\mathbf{c} 45$
Untested bargains aill ciean unlts.

TF390G/3 Signal Generator $1.6-60$ megs. $£ 10$. CTF144/G £15. CT53 £10. TF428B/1 £6. Test Set 253 new and unused $20-88$ megs. 240 volts. A.C. all carrlage extra. Loads of surplus to clear large S.A.E. Portable Gieger Counters (Contamination meter No 1) $\begin{aligned} & \text { powered by } 4 \text { HP7 batierles, very sensitive new, tested } \\ &$$$
5.50 \mathrm{p} \text {. \& D } 50 \mathrm{p} \text {. }
$$$\end{aligned}$

CASEY BROS.

233-237 Boundary Road,
St. Helens, Lancs. meters for ut,

TF144/G £.15. CT53 £10. TF428B/i $\mathbf{\varepsilon 6 .}$
$\mathbf{M}_{\text {as new, }}^{\text {ARCONI Teleprinter Terminal Unit Type HUII }}$ Botion 52384 . complete with handbook, 225 . T2l.
[2506 PRINTED Circuit Board in 6 widths: 2 in., $2 \frac{1}{2}$ in., $3 \mathrm{in}, 3 \frac{\mathrm{in}}{} \mathrm{in}, 4 \mathrm{in}$. and 5 in . x any length: $1 / 16$ in. single-sided fibreglass, 2 p per 3 sq. in. Doublequotations for sq in. \mathbf{P} \& P 年 5 p per order. SAE 1. Knopp. 11 Connaught Gardens, Brainiree, Essex, CM7 6LY. Tel. Braintree 25254.
 ith data, Condensers, ${ }^{25 p}$. S.A.E. for list, etc. IF Transformers 9 Pine Grove, Maidstone, Kent. R. A. Television, SIGNAL GENERATOR TF801A $10-300 \mathrm{MCS}$ and MK. III. Luton 24768 Evenings. TELEPRINTER DEMODULATOR P.C. BOARDS. Fibreglass boards. roller tinncd with Wold flashed Fibreglass boards. roller tinncd with gold flashed
$0156 "$ spacing cdgc connectors. Complete with layout drawin s.s. $£ 7.00$ connectors. Complete with layHouse' Hings. High Wycombe. Bucks. Het HPII 2JU. Tel
Hed House 21612 .
(0494)
ACUUM is
VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, coaters. etc. Silicone rubber or varnish outgassing equipment from $£ 40$. V. N. Barrett (Sales) Lidd Mayo Road, Croydon. 01-684 9917.
VHF KIT $80-180 \mathrm{mHZ}$ receiver, tuner, convertor
Transistorised, remarkable performance. $£ 4$ or
for literature Johnssons (Radio), St. Martins Gate. Worcester, WR1 2DT.
VISIT auto traction, thousands of bargains in surplus radio equip., meters. motors, relays, TR/TX telephone equip., aircraft equip. S.A.E.
VHF RADIO TELEPHONE EQUIPMENT
G.P.O., approved. Pye Cambridge Pye Vanguard. 12% kc's. Working condition. High and
low band
£35 to
\& 45 . Export inquiries welcome. Spa-Radio, 337 High Street. Cheltenham, Glos. Phone ${ }_{5} 4303$
$\mathbf{6 0}_{\text {Receivers. }}^{\mathrm{KHz} \text { MSF }}$ Rugby and 75 KHz Neuchatel Radio
$6 \mathrm{Receivers}^{\text {Signal and Audio outputs. Smatl, }}$ compact units. Two available versions $£ 35$ and $£ 60^{\circ}$ Toolex, Bristol Road, Sherborne (3211). Dorset. F2]
 for building voltmeter, timer, ohm-meter, etc. Send 10 p for full list of fets and other top quality transistors available at bargain prices. REDHAWK
SALES LTD 45 STATION ROAD GERRARDS CROSS BUCKS MAIL ORDER ONI Y GERARDS $\mathbf{2 0 , 0 0 0}$ TERMINAL STRIPS. Doub'e ended on metal channel $\frac{1}{2}$ inch wide, aluminium and
 "H" ROTARY SWITCHES 10 amp 250 volt AC D.P.C.O. porcelain base with bakelite cover, $£ 300$ the lot. 5,000 PUSH BUTTON SWITCHES, bakelite barrel construction with $1 \frac{3}{3}$ inch square 4 -hole fixing top with actual push below the level of a 1 inch bakelite circle 10 prevent it being used accidentally.
$£ 500$ the $10 t .000$ LAMPS. 6 volt 36 watt SBC. double contact $1 \frac{1}{2}$ inch diameter, $f 100$ the lot. double contact It inch diameter, $£ 100$ the lot. 11.500 MORSE KEYS. precision ${ }^{\frac{3}{2}}$ inch, $£ 335$ the tot 500 RECTIFIERS. selenium full wave bridge, 24 volts 8 amp , $£ 375$ the lot. 350 WATERTIGHT FITTINGS. cast aluminium, 9 inch diamcter, flat tripod type with pushbar lampholder switch. $£ 350$ the lot. Samples on request, buyer collects. L. Wilkinson (Croydon) Ltd. Longley House, Longley Road, Croydon 016840236.

ARTICLES WANTED

$\mathrm{D}_{\text {condition. Telephone Hingham }}^{\text {OUBLEA }}$ 371 evenings only, televisions, tape recorders, radiograms, High Sew valves, transistors, etc.-Stan Willetts, Bromwich, Staffs. Tel. Wes. 0186

CLASSIFIED

$\mathbf{R}^{\text {ODENE }}$ stepper with reset required. Any voltage. K.B. Automatics, 85 Kingsdate Gardens, Drighlington, Nr. Bradford, Yorkshire. Drig 2155. 2452 $W_{\text {anted }}^{\text {ANrgently }}$ Bleeper system prefurably with ,perution, to handle up to 12 bleepers. Any make uperution, to handle up to 12 bleepers. Any make
considered. Offers with full details to Ogden, Otley, considered. Offers with full details to Og
Yorkshire LS2]
1 HX . Tel. $094 \quad 344531$.
$W_{\text {and }}^{\text {ANTED, }}$ test equipment.-Details to R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rd. Electronics, Letd. Ashville
LonJon, E.11. L.ev. 4986.

Electronic and Telephone Equipment and Components. TOP PRICES PAID for your redundant and surplus stock T.W.C. LTD. 147 The Broadway, London, NW9 7EA Telephone: 01:203 2814

WANTED, EMI CCTV equipment, any condition 78901 . Penn Close, Wells. Scrrersel. Tel. Wells Wanted: Telequipment plug-ins A. J. D, TD42. $_{\text {Universal bridge, Marconi TF2700. Wayne Kerr }}$ B221A or similar. Marconi TF2700. Wayne Kerr adaptor. Box No. WW 2472.
$\mathbf{W}_{\text {Kendall, }}^{\text {anted }} \begin{gathered}\text { about } \\ \text { Crouch }\end{gathered} \quad \begin{gathered}\text { fect } \\ \text { Cottage, }\end{gathered} \quad \begin{gathered}\text { c.m. } \\ \text { Che:mondiston, }\end{gathered}$ Ipswich.

300KS

SHORT WAVE MAGAZINE, now in its 36th year and published monthly. covers the whole fielu of
Radio Amateur transmission and reception including Radio Amateur transmission and reception including
regular news features (DX. VHF, Clubs and SWL) regular news features (DX. VHF, Clubs and SWL)
and the design, construction and operation of and the design, construction and operation of AMATEUR Radio equipncint oimen copy 30 p post
price 25 at newsagents. Specer
free, first class. Annual subscription $£ 3.00$ (or $£ 2.75$ irce, first class. Annual subscription $£ 3.00$ (or 12.75
second class posting) year of 12 issues. Corcuation
Dept (W) Short Wave Magazine Lid. 55 Victoria

WORLD RADIO TV HANDBOOK 1973, published Decembern $£ 2.80$. Post (first class) iop. Order
 from 1 Havid
EH 1 HP .

CAPACITY AVAILABLE

A IRTRONICS LTD., tor Coil Winding-large or plies. Suppliers to P.O. M.O.D., eit. Export enquiries welcomed. 3ai Walerand Road, London. SE 13 7PE. Tel. $01-852$ 1706. 161 B $_{\text {sample }}^{\text {ATCH }}$ Production Wiring and Assembly trawings. Deane Electricals, 1913 B sample or drawings. Deane Electricals, 191
Station Parade, Ealing Common, London, W.5. Tel: Station Parade, Ealing Common, London, W.5. Tel:
01.4928976. $\mathrm{CAPACITX}^{01-4928}$: available to the Electronic Industry. Crecision turned parts, engraving, milling and grind.ng both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write tor lists of full plant capacity to C.B. E. 9 GAB. Tel. $01-985$ 7057. $D^{\text {ESIGNN, development, repair, test and smalt pro- }}$ duction of electronic equipment. Specialist in production of printed circuit assemblics. YOUNG ELECTRONICS, 54 Lawford Road, London, N.w. 5 01-267 0201
$\mathrm{F}_{\text {OR ELECtion and }}$ and testing facilitios: Please complete F inspection and testing facilities: Please contact
 PRECISION injection moulding electronic industry short run specialists. Contact Jack Balzano Senior, C.B. Industrial Plastics Limited, 1 Mackintosh Lane,
E9 $6 A B$. Ring $01-985$
7057 . E9 6AB. Ring IRCUITS, quick service, competitive PRINTED CIRCES, roller tinning, drilling ete. Short runs welcomed. Jamieson's, 1 -5 westgate, Bridington, E. SCAN ELECTRONICS for design and development $\mathrm{S}_{\text {service. }}^{125}$ London Road. North End, Portsmouth. Hants. Tcl. 61414. [2512 EDUCATION
$C^{I E}$, AMSE, City \& Guilds, ctc. Thousands of exam successes. Postal courses in all branches of Engineering. Prospectus FREE. State subject of interest: BIET (Dept. ZL BWW 15), Aldermas:on
Court, Reading RG7 4PF. Accredited by CACC.

NEW GRAM, AND SOUNP GQUIPMENT

G LASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2

Thanksto a bulk purchase we can offer brand New P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-tamous reputable Manufactured
British tape firm, our tapes are boxed in polythene
and have fitted leaders, etc. Their quality is as and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are
the tapes faulty and are not to be confused with the tapes faulty and are not to be conifused with
imported, used or sub-standard tapes. 24-hour imported, used or sub-standard tapes. 24 -hour
despatch service. Should goods nor meet with full appro
S.P. $\left\{\begin{array}{lll}3 \mathrm{in} . & 160 \mathrm{ft} & 10 \mathrm{p} 5 \mathrm{in} .\end{array}\right.$

COMPACT TAPE CASSETTES AT TAPE CASE
HALF PRICE
60,90 , and 120 minutes playing time, in original Plastic library boxes.
MC 6045 each. M6. $9062 \frac{1}{2}$ p each. MC 12092 p each

STARMAN TAPES
28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

Ashford 52136
WW-112 FOR FURTHER DETAILS
SYNTHESISER?
Build your own, using Dewtron* PROFESSIONAL MODULES

VOLTAGE CONTROL amplifiers, oscillators, filtei's, and P-H-A-S-E.
MAN-S, ZED PATCHBOARD, no cables
CASH SAVINGS by buying sets of modules, components, and keyboard.
ALL MODULES available separately.
D.E.W.Ltd., 254 Ring wood Rd., Ferndown, Dorset

PRINCIPLES OF PAL colour television

H. V. SIMS, C.Eng., M.I.E.E., FII.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting).
1969 (Second Impression 1970) 154 pp. 59 illustrations

0592059448 cased $\mathbf{£ 2} \mathbf{0 0}$
0592059707 limp $\mathbf{£ 1} \mathbf{2 0}$
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
88 KINGSWAY LONDON WC2 01-405 6900 14

\mathbb{L}^{F} quality, durability matter, consult Britain's oldest Itransfer scrvice. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools.)
Modern studio faciifies with Steinway Griand.-Sound News, 18 Blenheim Road, London, W.4. 01-995 1661. YOUR TAPES TO DISC-Mono/Stereo. From eaflet Deroy day Service- Vinyl Pressings. S.A.E eafet. Deroy Studios, High Bank, Hawk Street,
Carnforth, Lancs. 2273.

R ADIO and Radar M.P.T. and C.G.L.I. Courses R Write: Principal, Nautical College, Fleetwood Y7 8JZ.

VALVES WANTED

$\mathbf{W}_{\text {ponents, large or small quand clean new com- }}^{\text {E buantities, all details, }}$ quotation by return - Walton's. 55 Worcester ${ }_{[62}$ Wolverhampion.

PATENT NOTICES

Digital indicator inventions for sale. Type 1 . An electromechanical indicates $0-9$ operates from
volts 10 ma \quad BCD
signals
direct. without decade device manufacture cost 45 p . Or may be designed for large displays. Type 2 . Operates from 5 volts 10 ma (or possibly lower) from a seven segment decode. No moving parts. The indication is their disadvantages. Reply to Box No. WW 2508.

TELEPHONE CABLE. Plattic covered grey 4 -score coloured

P.P. $37 \dagger$ P.
5 -WAY PRESS.BUTTON INTER-COM TELEPHONES f
Bake
 lite care with j jnection box handset. Thoroughly overhauied.
(tuaranteed. $£ 6 \%$ per unit. Wiriug diagraum on request, send ${ }_{20}^{\text {s.ai.e. }} 20$ - A PRESS-bUTTON INTER-COM TELEPRONES in Bake-

 23 LSLE ST. (${ }_{2969}^{437}$) LONDON W.E. 2 Open all day Saturdav
$\left.\begin{array}{|ll}\hline & \begin{array}{l}\text { THE ONLY } \\ \text { COMPREHENSIVE } \\ \text { NaNT }\end{array} \\ \text { RANGE OF RECORD } \\ \text { MAINTENANCE }\end{array}\right\}$

LOUDSPEAKER BARGAINS

Fane Pop 100	
Fane Pop 60 watt $15^{\prime \prime} 8 / 15$ ohm	t12.
Fane Pop 50 watt $12^{\prime \prime} 8 / 15 \mathrm{hmm}$	£10.i7
Fane Pop 25/225 watt 8/15 ohm	
Fane Pop 1512 " 15 watt 8/15 oh	4.40
Fane 122/10a or 122/12	± 9.90
Fane Crescendo $15^{\prime \prime} 8$ or 15	¢27.20
Fane Crescendo 12"8 or 15	¢24.50
Fane $8^{\prime \prime} \mathrm{d} /$ cone 808t 8 or 15 oh	¢2.64
Fane $8^{\prime \prime} \mathrm{d} /$ cone, roll surr. 807 T 8 or 15 ohm	± 3.16
Baker Group 25 3,8 or 15	6.00
Baker Group 35, 3, 8 or 15	50
Baker De Luxe $12^{\prime \prime} \mathrm{d} /$ cone	69.62
Baker Major	7.50
EMI $13 \times 8,3,8$ or 15 ohm	¢2.25
EMI 13×8 type $150 \mathrm{~d} /$ cone, 3,8 or 15 ohm	¢2.58
EMI 13×8 type $450 \mathrm{t} / \mathrm{w}, 3,8$ or 15 ohm....	3.85
EMI 13×8 type 3508 ohm	25
EMI $6 \frac{1}{2} 9338504$ or 8 ohm	62.80
Elac 9×5 59RML09 15 ohm	53
Elac 9×5 59RMLL4 8 ohm	62.53
Elac 61/" d/cone 6RM220 8 ohm	62.59
Elac $6 \frac{1}{2}{ }^{\prime \prime}$ d/cone, roll surr. 6RM	63.22
Elac 4" tweeter TW4 8 or 15	E1.21
Celestion PS8 for Un	£2.16
Celestion MFL000 25 watt horn 8 or 15 ohm	± 10.45
Elac 5" 3 ohm	75
Elac $7 \times 4^{\prime \prime} 3$ or 8 ohm	52
Elac 8×5 ",3,8 or 15 ohm	. 93
Wharfedale Bronze 8 RS/DD.	3.1
Wharfedale Super 8 RS/DD	5.50
Wharfedale Super 10 RS/DD	9.80
Goodmans 8P 8 or 15 o	3.80
Goodmans IOP 8 or 15 ohm	¢4.49
Goodmans 12P 8 or 15	11.55
Goodmans 15P8or 15 ohm	£17.05
Goodmans I8P 8 or 15	¢29.70
Goodmans Twinaxiom 8	6.79
Goodmans Twinaxiom 10	61
Goodmans Axent 100	66.60
Eagle DT33 dome tweeter 8	4.95
Eagle HTI 5 tweeter 8 ohm	¢3.46
Eagle CT5 tweeter 8 ohm	1.21
Eagle MHT/0 tweeter	3.30
Eagle CTIO tweeter	1.92
Eagle Xovers CN23, 28, 216	1.10
Kef T27	4.67
Kef TI5	5.50
Kef BIIO	6.16
Kef B200	67.42
Kef BL39	¢ 10.72
Kefkit 2	£24.75
Richard Allan 12"d/cone	2.20
Richard Allan 8" 3,8 or 15 ohm	2.27
$10 \times 6{ }^{\prime \prime} 3,8$ or 15 ohm	1.92
$8 \times 5^{\prime \prime} 3$ or 8 ohm	(1.38
$7 \times 4^{\prime \prime} 3$ or 8 ohm	¢1.38
$3^{\prime \prime} 8$ ohm or 80 ohm	0.65
$2 \frac{1}{2}$ " 64 ohm	$\underline{6.65}$
Speaker matching transformer 3/8/15 ohm	£1.10
Adastra Hiren 10"10 wate 8 or 15 o	£2.80
astra Top $2012{ }^{\prime \prime} 25$ wat	¢6.32

STEPHENSPEAKER KITS AND CABINETS Send for illustrated brochure and list of recommended speakers.

CAR STEREO SPEAKERS - ask for leaflet

PA/DISCO AMPLIFIERS: (carr. and ins. $£ 1.00$). Baker 100 wat $£ 46.00$ Linear 30/40 E25.00 Linear 40/60 £ 30.00
Linear $\mathbf{8 0 / 1 0 0}$. $\mathbf{£ 5 0 . 0 0}$
FREE with speaker orders over $\mathbf{f 7}$-"Hi-Fi
Loudspeaker Enclosures" book.
All units guaranteed new and perfect. Prompe despatch
Carriage and insurance 25 p per speaker
(Tweeters and Crossovers 15p each)
(All prices quoted inclusive of V.A.T.)

WILMSLOW AUDIO,

Dept RC,
Swan Works; Bank Square, Wilmslow, Cheshire SK9 IHF.
I.B.M. GOLFBALL TYPWRITERS

(Computer Input/Output)

Finished with grey case and blue keyboard
Standard EBCDIC seven bit coding
Suitable as input/output for computer or data processing use, or as ordinary golfball typewriter.
Will accept normal or sprocketed paper
Standard 230 V mains input
Supplied in working order with all relevant data sheets, circuit diagrams and application notes
Each machine serviced and tested before despatch

EXCEPTIONAL BARGAIN
£80 each
KEYTRONICS
44 EARLS COURT RD., LONDON, W8

Telephone: 01-478 8499
Callers by appointment only please!

QUARTZ CRYSTAL
UNITS from

- $1.0-60.0 \mathrm{MHZ}$
- fast delivery
- HIGH STABILITY
- TO DEF 5271-A

WRITE FOR
LEAFLET AT
McKNIGHT
CRyStal Co.
hardey industrial
ESTATE. HYTHE.
SOUTHAMPTON SO4 6ZY
STD CODE 04214
THE TEXAN

HI QUALITY AMPLIFIER BY TEXAS
Booklet \& Parts List 35 p Post Inct
FULL KIT OF PARTS
£28.50
or READY MADE
£38.50
PACK 1. RESISTORS
PACK 2. SMALLCAPS
PACK 3. LARGE CAPS
PACK 4. SUNDRIES
PACK 5. SWITCHES
PACK 7 SEMI CIS
PACK 8 TRANSFORMER
PACK 9 PC BOARD
PACK 10. CHASSIS. ETC
PACK 11 CABLES \& LEADS
PACK 12. TEAK CABINET
POSTEXTRA
800^{8}
E 1.50
F
80 p
E 1.50
$£ 1.40$

$£ 1.40$
f 1.90
10

$\begin{array}{r}90 \mathrm{p} \\ \mathrm{f} 1.45 \\ \hline\end{array}$

$f 1.45$
$£ 8.25$

now on demonstration at
TELERADIO HI FI
325/7, FORE ST., EDMONTON, LONDON, N.9. OPE.

EXCLUSIVE OFFERS

INSTRUMENTATION TAPE RECORDERREPRODUCERS

AMPEX

FR-100A
FR-10013 1 tracks 6 speeds FR-10013
FR- $1+00$ tracks 6 specds FRR-600
$1^{\prime \prime}$ It tracks t speeds I.B.M.

729 tracks 6 speeds MINCOM
CMP-100
$\dot{1}^{*} \frac{1}{2} \mathbf{2}^{\prime \prime} 1^{\prime \prime} 7$ tracks 6 speeds
E.M.I.

TD-1 tracks 7 speeds
THERMIONIC

SERIES IV ${ }^{\frac{1}{2}}$ Several other smaller decks. Fuil details on request.
Prices of above are from El 50 to $\mathrm{E700}$.

FREE

40-page list of over 1,000 different items in atock avallabla-keep one by pou.

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS CABINETS

Full details of all above on request.

We have a large quantity of "bits and pieces" we cannot list-please send us your requirements we can probably help-all enquiries answered.	
\star Solartron C.D. $1016 \mathrm{~d} / \mathrm{b}$ Oscilloscojes	£40.00
* I.B.M. Coliball trpewriters	£35.00
* Racal Ra- 17 Spares	10000
* Racal Ra-ià Cabinets	£14.00
* Muirhead D. 888 Analysers	£75.00
\star Cussor 1446 LCR Brilyes	£33.00
\star Marconi JP-202C Bricges	¢17 00
\star Avo Characteristic Valve Testers	£40 00
* Advance Lal Rignal Generators	£14.00
* Marroni TPr-1330 Ogenlloscoree	£32.00
\star Racal wa. 107 B S.lection Units	£12.50
* Servonex 2hl6 Voltage Regulators	£32.00
* A vo Cleejer Counters, new	£7.50
fo ioot Triangular Lattice Mast Sections, fi" sides	£9.00
eture 10 bauk 25	£3.00

P. HARRIS ORGANFORD - DORSET

BH 6 6ER

bodrnemout 65051

SPECIALISED KITS

SQ QUADRAPHONIC IC DECODER
To Motorola application for MC1312
as described by Geoffeey Shorter (WW March 73)
Utilise the experience gained by us in the application of this decoder in the design of the latest commercially produced quadraphonic equipment, licensed by CBS. the So system patentees. due for public release in May this үеаг.
WE supply the complete kit of parts including glass-fibre edge-connected P.C. board. and all components down to the very last "bit", with lucid instructions and manufacturer's application notes. ADDITIONALLY, you may draw upon our wealth of experience relating to all ancillary circuitry, and guarantee yourself the results that only the protessionals achieve! Complete kit as described, including postage and packing $\mathbf{5 8} \mathbf{0 0}$. Built and tested f 11.00

PHASE-LOCKED-LOOP STEREO DECODER
To Motorola application for MC1310
as described in Wiraless World, July 1972
Once again we have produced a complete kit based upen our application of the Motorola decoder as used in our latest sophisticated stereo and quadraphonic equipment described above. We do not only supply kits, but design and make complete stereo and quadraphonic systems using them. Use our exparience to ensure first class results on sterso reception, and BBC transmissions of SO material which will decoda into quadraphonic radio when used with the MC1312 kit above.

MC1310 complete kit to the last datail. including edgeconnacted glass fibre board, and all compenents of professional quality. Withnut question. unbeatable anywherel Kit Price $\mathbf{5 3 . 4 0}$. Built and tested $\mathbf{5 5 . 5 0}$. MA2502 Professional LED 55p. (The usual cheap LEDS at 34 p if you insist.) Solf-powered or zenered versions to order.
Use the professional satmakers to obtain your kits at privilaga pricas/

HIGH STANDARD LOW FREQUENCY SOURCE

(to article by J. M. Osborne, W.W. Jen. 73)
A Phase-Locked Loop dosigner approved kit to profassional standards with Glass.Fibre P.C. Board, and all components including Hardware, case, atc. Full constructional details from the designar are included. Raference accurate to 2 parts in 10 " 1 Probably the most economic high precision signal source availabla. Kit $\mathbf{£ 2 2 . 6 5}$. Extra for built and tested only $£ \mathbb{E} \cdot 55$.

COMMUNICATIONS RECEIVERS

 R1475 $2-20 \mathrm{MHz}$ only $\mathbf{f 1 1 - 0 0}$ each Brand-naw Power Units to match. 240 v a.c. and 12 v d.c. inputs, $\mathbf{f 5} 50$ with Receivar, otherwise $\mathbf{f 7} \mathbf{0 0}$. Sets for sparas $\mathbf{E 6}$-00.
SPECIAL RELEASE-HRO RECEIVERS!

HRO Tested and Working, one coil, E18. HRO-5T Tested and Working, one coil, $£ 25$. Power units for same £4 \& $\mathbf{£ 5}$ each. LF coils $£ 1.50$ each. 4 for $\mathrm{f5}$. HF coils $\mathfrak{f} 2.00$ aach. 5 for $\mathbf{f} 9$. Set of 9 coils for $\mathbf{£ 1 3}$ if with receiver. Completa sets $£ \mathbf{£ 2}$ \&f $£ 38 \cdot 50$. Please add 75 p part carriage on all receiver orders.
specialist services
(a) Distributors of all Sonax \& Teleradio Kits.
(b) Kits suppliad for any published design, send for details.
(c) If it's electronic. wa will try to supply it. Try us first. because we try harder! No enquiry too small!
(d) Send large SAE for full lists.

All communications acknowledged by return!
Post and Packing frea excapt where stated. 10% Value Added Tax must bo added to all orders recsived after 1.4.1973.
STUDIO ELECTRONICS P.O. BOX No. 18
HARLOW ESSEX CM18 $6 S H$ Telephone Harlow 25457. callebs welcome by appointment

SOWTER TRANSFORMERS SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authorities and were established in 1941. Early deliveries. Comperitive prices Large or small quantities. Let us quore.

Transformer Manufacturers and Designers
7 Dedham Place, Fore Street, Ipswich IP4 IJP
Telephone 047352794

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R. also " C " \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes: Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260°

WORLD RADIO AND T.V. HANDBOOK 1973

A Complete Directory of International Radio and T.V.

£3•12

ELEMENTS OF LINEAR MICROCIRCUITS by T. D. Towers $\mathbf{£ 2 . 9 0}$ ELECTRONIC MUSIC PRODUCTION by Alan Douglas $£ 2.85$
ADVANCED RADIO CONTROL by E. L. Safford Jr. $\mathbf{E l} \cdot 10$

TRANSISTOR CIRCUIT GUIDEBOOK by B. Wels $£ I \cdot 30$
TEN MINUTE TEST TECHNIQUES FOR ELECTRONICS SERVICING by E. C. Carlson $£ 1 \cdot 10$

MULLARD TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard $\mathbf{f 1 . 9 2}$
IIO THYRISTOR PROJECTS USING SCRS \& TRIACS by R. M. Marston $£ 1.48$
MICROWAVE TRANSMISSION by J. A. Staniforth $£ 2.47$

OPERATIONAL AMPLIFIERS by G. B. Clayton $£ 3.62$
SEMICONDUCTOR MEMORIES by D. A. Hodges $£ 2 \cdot 90$
ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 1NP
Phone 7234185
Closed Sat. 1 p.m.

CASH IMMEDIATELY AVAILABLE

for redundant and surplus stocks of radio. television, telephone and electronic equipment, or in component form such as meters. plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO

 DISPOSALS21 Lodge Lane, London, N12. Telephone: 01-445 2713 01-445 0749

Evenings: 01-958 7624

WE PURCHASE

COMPUTERS. TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS. TRANSISTORS. RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC.
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

"W.W." HI-FI KITS

\star LINSLEY HOOD 15-20W AMPLIFIER

July 1970 latest and ultimate design. Our kit personally tested and approved by the designer. O/P Tr's matched for speced performance. Metal. work now available ensures simple construction of amps. and power supply.
\star BAILEY PRE-AMP (AUG. 1971)
Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{1} \times$
$2 \neq \mathrm{in}$. or $8 \times 1 \frac{1}{2} \times 5 \frac{1}{2}$. Basic metalwork ex-stock Especially recommended to drive $15-20 \mathrm{~W}$ AB amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW" article ? Inc'g p.p.
at 30p (Stamps
DETAILED PRICE LISTS at $5 p$ accepted)
inc'g above and other designs.
*REFUND GUARANTEED ON ALL PARTS
SPECIAL OFFER
2N3055 30p each 4 for $£ 1$
2N3054 20p each 3 for 50p
Unmarked, Tested and Guaranteed. Post and packing 10p per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-AT OUR
RETAIL SHOP NOW OPEN
A. 1 FACTORS

245, North Sherwood St., Nottingham NG1 4EO
Telephone: Nottingham (0602) 46051
Sole proprietor: Douglas de Havilland (10 a.m. -12 Midnight 7 days/week)

Vary the strength of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression.
Price: $600 \mathrm{~W}-\mathbf{£ 3 . 2 0 . *}$ Kit form- $\mathbf{£ 2 . 7 0 . *}$
$300 \mathrm{w}-\mathbf{£ 2 . 7 0 . *} \mathrm{Kit}$ form- $\mathbf{£ 2 . 2 0}$.*
All plus 10 p post and packing. "From 1st April please add appropriate percentage V.A.T. increase.
Please send C.W.O. to:

DEXTER AND COMPANY

4, ULVER HOUSE, 19 KING STREET, CHESTER CH ${ }^{12 A H}$ TEL: 0244-25883 WW-115 FOR FURTHER DETAILS

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 50p (10/-) PER LINE. Average seven words per line. Minimum two lines.

- Name and address to be included in charge if used in advertisement.

NAME.

ADDRESS
(2) Box No. Allow two words plus 25p (5/0).

- Cheques etc., payable to "Wireless World" and crossed " \& Co."
(8) Press Day April 6, 1973 for May, 1973 issue.

Need a counter-fast?

 Oh yes, and oscilloscopes, voltmeters, signal generators, meters, test sets, recorders, power units You name it, we rent it out . . . fast . . . on very reasonable terms. Try us, or start by sending for the Labhire brochure.
SOUTH Cores End Road, NORTH Shearer House,
Bourne End, Bucks.
Dunham Rd, Altrincham. Cheshire.
06-285 23106
061-928 0800

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 90-102
A. 1 Factors

Acoustical Mg. Co. Ltd
105
Advance Film Cap Ltd
Asrialite Aerials Ltd.
Amtron U.K
Anders Electronics Ltd
A.N.T.E.X. Ltd.

Arrow-Hart (Europe) Led.
Audix B B. Ltd
Aveley Electric Ltd
Avo Ltd.
Comp Electronis
Future Film Developments
Fylde Electronic Laboratories Ltd
Gale Electronics \& Design Ltd
Gardners Transformers Led
$\underset{\text { Grampian }}{\text { Goldring }}$ Reproducers Ltd.
Harris Electronics (London) Ltd
Harris, P Plectronics
Hatfield Instruments Litd
Heath (Gloucester) Lid
Henry's Radio Lid
Henson, R., Ltd.
H.H. Electronic

Hy-Q Electronics Pty. Ltd.
C.S. Ltd.
I.M.O. Precision Controls Ltd

Integrex Ltd
Ivoryet
Ivoryet
Jackson Bros. (London) Lid
J.E.F. Electronics

Jermyn Industries
J.H. Associates

Keytronics
103

Labhire Ltd
Lasky's Radio Ltd.
Ledon Instruments Ltd
Levell Eectronics Lev.
Limrosé Electronics Ltd.
Linstead Electronic
London Central Radio Stores
63
62
40
Oliver Pell Ltd. 10
Parker, A. B.
Patrick \& Kinnie

Physical \& Electronic Labs. Ltd Plessey (Garrard) Ltd

64,

Quaty Electronis Lid.
Quality Electronics Ltd. 8 .

RCS Electronics
Rola Celestion Lid.
R.S.C. Hi-Fi Centres Lid.
R.S.C.
R.S.T.Fi Centres Lid
Valves Ltd.

Samsons (Electronics) Ltd.
SCS Components
Service Trading Co.
Servo \& Eectronic Sales Ltd
Shennanton Electronic
Shennanton Electronics Ltd.
Shibaden (U.K.) Led.
Shure Electronics Lid.
56.
S.M.E. Ltd. (Radio), Ltd.76, 77, 78,

Sowter Ltd.
Starman Tapes
Strumech Eng. Lid.
Studio Electronics
Sugden J. E., Ltd

Tannoy

Teleprinter Equipment
Telequipment Products (Tektronix UK.) Ltd
Teleradio. The (Edmonton) Ltd.
Telcon Metals Ltd
Telford Products Radio Valves \& Tubes Ltd................ 8.9
Trannies
Turner, E., Electrical Insts. Lid
United-Carr Supplies Ltd. 32
3M United
Macfarlanc,
\mathbf{W}. \&
Macfarlanc; W. \&
Mackarl Electronics (London) Lid. 2
Marconi Instruments Cover iij
Marshall, A., \& Sons (London) Ltd.
McKnight Crystal Co
McLennan Eng. Ltd.
M.C Products Lics

Millbank Electronics
Modern Book C.
Modern Eneineering \& Technology Ltd.
Motorola Semiconductors
M O. Valve Co. Ltd.

Nombrex Ltd.

BASF (United Kingdom) Ltd
Bauch, F. W. O

Beam, J., Eng.

Bi-Pak Semiconductors

Bradey, G. \& E. Lid
Brandenburg Lts
Broadfields
o. Ltd

Cavern Electronics

Consumer Microcircuits Lid
Crichton. John
Crovdon Precision Inst. Co.

Dewtron
102

Dixons Technical (CCTV) Ltd.
Douglas Electronic Industries Ltd.
Drake Transformers Ltd
Dymar Electronics Ltd
Eddystone Radio Ltd
64. 85, 104

Electronics Design Associates
Electronic Hobbies
Electrolube
Electroplan Ltd
Electrosil Ltu
Electrovalue
Erie Electronics Ltd.

 at a price in excess or the recommended maximum price ghiter or pictorial matter whatsoever.

The TF2006 Signal Generator goes onebetter...

With a new built-in synchronizer for precise bandwidth measurements at high speed!

TheM.I.TF 2006/1

The M.I. TF2006/I - a brand-new variant of the established TF2006 - is fitted with a synchronizer in place of one of the oscillator units. Result: the incorporation of outstanding new facilities for working with narrow band equipment . . . at speed!
The synchronizer is crystal controlled to an accuracy of 2 parts in 107 . Generator frequency can be locked in 100 Hz steps over the whole range of the instrument ($10-500 \mathrm{MHz}$). Seven switches pre-set the frequency. A system of two flashing lights indicates whether the generator is tuned too high, too low - or within locking range.

For bandwidth measurements on narrow band equipment there is no need to reset the generator tuning controls at each measurement point. For variations close to the frequency to which the generator is tuned the required new frequency is
simply set with the synchronizer digital controls. Working is considerably speeded up.

An external counter with its risk of spurious radiations is completely unnecessary.

More good news . . it costs no more than the TF2006 which will continue to be available for those who require the full 4 to 1000 MHz coverage

MARCONI INSTRUMENTS LIMITED
Longacres, St. Albans, Herts. England
A GEC-Marconi Electronics Company
Telephone: St. Albans 59292 Telex: 23350

we made a lot of contacts on the flight deck.

Ersin Multicore 5 -core solder was used for thousands of electrical connections on the British assembled Concorde. High-class connections! And Ersin Multicore quality will ensure that they stay connected. Before selection, Ersin Multicore Solders were subjected to rigorous testing against an extremely demanding international specification. They passed with (dare we say it?) flying colours. Ersin Multicore is always coming out best by test. The World's leading manufacturers of electronic equipment use Ersin Multicore Solder to ensure the utmost in reliability, efficiency and economy of soldered joints, whether they are making equipment for use in the sea, on land, in the air or in outer space. Write, on your Company's headed note paper, for technical information about Ersin Multicore Solder, Solder Chemicals and high purity EXTRUSOL for soldering machines and baths to :

Multicore Solders

Limited, Maylands Avenue.
Hemel Hempstead. Herts.
Tel: Hemel. Hempstead 3636 .
Telex : 82363.

[^0]: Name

[^1]: * University of Kent

[^2]: - South East London Technical College.
 \dagger Twickenham College of Technology.

[^3]: Redifon Omega Navigator, installed on board M.V. Orbita of the Pacific Steam Navigation Co., will provide position fixes accurate to within approximately one mile throughout ocean passages and coastal waters.

[^4]: *Medical Research Council's Clinical Research Centre, Bioengineering Division.

[^5]: - U.S. Patent no. 3636278 is entitled "Acoustic transducer with a diaphragm forming a plurality of adjacent narrow air spaces open only at one side with the open sides of adjacent air spaces alternatingly facing in opposite directions"!

[^6]: STEREORADIO DECODER
 Convert your MONO tuner to STEREO with our
 PHASE LOCK LOOP I.C. DECODER MODULE Using MOTOROLA RC 1310 P (see W. W. July 1972)
 Channel Separation Typical 40 db
 Distortion Typical 0.3\% THD for 560 mV RMS Composite Input Signal
 Supply Range $\quad 10-16 \mathrm{v}$ D.C. (Internal S
 \quad Excellent SCA Rejection
 Automatic Stereo Switching e Indicator Lamp Supplied ASSEMBLED AND FULLY TESTED
 $\mathbf{£ 4 . 5 0}$ (+ VAT after 1st April)
 p.p. 10p C.W.O.
 M.C.PRODUCTS

 10A LANCASTER ROAD, NEW BARNET, HERTS

[^7]: KEYBOARD PERFORATORS for offline tape preparation AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m. MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
 UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
 CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
 MORSE REPERFORATORS operating up to 200 w.p.m.
 TONE GENERATORS and all Students' requirements
 CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS LAMPS, etc.

[^8]: A range of low priced teathing modules enclosed in oy

[^9]: OUR NEW 1972/1973 CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENYELOPE FOR YOUR FREE COPY

[^10]: ESSENTIAL BOOKS
 GOVERNMENT SURPLUS WRELESS EQUIPMENT
 HANDBOOK. Contains circuits. data, HANDBOOK. Contains circuits, data, Illustrations for
 BritishiUSA receivers, transmitters, trans/ /eceivers. With modifications to sets and lest equipment. Latest impression PROBLEMS IN ELECTRONICS WITH SOLUTIONS must for the student, technician, engineer. 349 problems and mow the answers are arrived at. Includes every type of problem
 etc. 307 pages. Only 900. postage 100 .
 COSMIC RADIO WAVES. Start a new hobby-Radio Astronomy. This big book ot 444 pages is an ideal handbook for the beginner and establlished enthusiast. Numerous
 photographs. illustrations and circuits. Published by Oxiord photographs. illustrations and circult.
 University Press. $E 2.50$. P. \& P. 25 .
 HANDBOOKOFSATELLITESANDSPACEVEHICLES. A comprehensive working handbook that provides access to liminary design. Extensive graphical and tabular data enables space sclentists. Techniclans and engineers to acquire greater working
 66.50 , post free.

 GERALD MYERS (WW)
 18 Shaftesbury Street, Leeds LS12 3BT Extra postage for abroad.
 [86

[^11]: Bradley CT 471 attenuator boards 23.00 each. SMITHS
 CRYSTAL Controlled calibrator boards $(7$ transistors) for CRYSTAL Controlled calibrator boards (7 transistors). for
 $20,50,100$ MHz. Will drive standard divide by 101 C . s . theoretical cirruit supplied limiled quantity only e6.00 Pach.
 Sub-minaiature plug-in crystals for Radio-Control 26.985 MHz .

 ELEKON ENTERPRISES
 224 A St. Paut's Road, Hiohbury Corner, London, N.1.

