Digital mulfineter project

Think of what you'd pay for a Digital Frequency Counterand a Modulation Meter capable of testing mobile radio both in the field. Fsand on $\because \because \cdot$ the bench

now halve it!

Our new TF2424 Frequency Counter is light, compact and portable designed for field and workshop maintenance of mobile radio installations. Measures frequencies directly in the v.h.f. and u.h.f. bands with a 4 -decade solid state numeric display.
The provision of $x \mid$ and $\times 1000$ ranges allows measurements up to seven digits to 512 MHz . In addition a $\times 10$ facility increases the resolution to 10 Hz . Crystal stability is ± 1 $\times 10^{-7}$. Battery operated with a built-in charger. Weight: $6 \frac{1}{2} \mathrm{lb}$. Supplied with detachable mains lead
and various optional extras. Price £425 (inc. batt.).

The TF2303 narrow band Modulation Meter is also very compact and portable - designed for use on FM and AM mobile radios. Noise level is low: better than -40 dB relative to 5 kHz deviation. Measures narrow band f.m. deviation up to 15 kHz at carrier frequencies up to 520 MHz , a.m. depths up to 95% at carrier frequencies up to 225 MHz . Battery or mains operated - built-in charger. Weight 13 lb . Supplied with mains lead and various optional extras.

Price: $£ 305$ (plus $£ 25$ for optional re-chargeable battery).

Which means you could buy the pair for just over $£ 750$ - or about half the price of two equivalent competitive models. Full details by return.

MARCONI INSTRUMENTS LIMITED Longacres, St. Albans, Herts, England. Tel: St. Albans 59292 Telex: 23350 A GEC-Marconi Electronics Company

LOW COST VOLTMETERS

PORTABLE INSTRUMENTS

NOTE: All prices subject to V.A.T.

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have $3 \frac{1}{4}{ }^{\prime \prime}$ scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$.

$\mathbf{~} 75$ TM9A
£89 ${ }_{\text {т上, }}^{\text {тй }}$
$\mathbf{f 9}^{\text {wima }}$

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz}-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel to $1 \mathrm{~mW} / 50 \Omega \pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F.RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$. AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.

Send for literature covering our full range of portable instruments.
LEVELL ELEGTRONICS LTD. Tel:01-449 5028/440 8686

Anywhere.

Take it into the test bay - it's rack mountable. Take it into the field - it works as well from its rechargeable NiCd batteries as it does from AC mains.
The new Dymar 1581 is an RF power meter intended primarily for testing the transmitters of $\mathrm{HF}, \mathrm{VHF}$ and

UHF portable, mobile and base radiotelephones.
The technical specification includes a wide power measuring range from 30 mW to 100 W and a frequency range of from DC to 500 MHz . 'True' power is measured, regardless of harmonic or sideband content, by a UHF thermocouple Large linearscales in 1-3-10 sequence make for easy accurate reading, VSWR is $1: 1.3$ at 500 MHZ and accuracy is 5% of fsd to 200 MHz and 10% to 500 MHz .

With performance like that, the 1581. like many other Dymar instruments, will turn up, too, in a good many laboratories. Not to mention on the premises of some of our rival RT manufacturers.
Dymar instruments are like that. A lot of people take them to a lot of places. They're good, versatile and available.
Use the Reader Enquiry Service for more details, or contact Dymar direct.

Presenting the facts

Wherever there's a clear need for the swift and accurate presentation of data, you'll find a cathode ray tube from M-OV.

In the air, for example, where the sturdy 700 Series tubes are used to project vital information to the pilots of fast-moving jets via head-up displays. Or the compact 700 H Series projection units which enable large displays to be presented in situations unsuitable for conventional, large screen tubes.

Or on the ground, where M-OV's uniform density spot systems give better resolution and enhanced legibility than conventional tubes. You'll find them in many control installations, presenting both analogue and alpha-numeric information.

Or at sea in marine radar installations. Or in industry ... or in any situation where a superior tube, quality engineered to the highest specs (BS 9000, CV and MIL) is essential.

Our comprehensive catalogue gives full details of all our tubes, including those for instrumentation, radar, data display and TV studio applications.

So if you'd like the facts about M-OV tubes, please write, phone or telex.

A brief selection from the data display \& Avionic tube range

TYPE	$\begin{aligned} & \text { SCREEN SIZE } \\ & \text { aMD ShIPE } \end{aligned}$ cm	fimal anode voltage kV	DEFLECTIOM AMGLE degrees	$\underset{\mathrm{mm}}{\text { SPOT SIZE }}$	$\underset{\mathrm{mm}}{\substack{\text { LENGTH }}}$
700H	(7)	30	35	0.10	259
700J	(7.5)	15	45	0.15	195
A17-20	17	12	45	0.25	345.5
T9017	21	14	60	0.25	290
2800B*	28.5	8	50	0.30	506
A36-48	35	14	70	1.0	455
T994*	42.5	15	70	0.25	608

TheM-OValve Co.Ltd

The smaller weget the bigger we grow

From miniature to standard, simple to complex, prototype to production, Gardners have the expertise the electronics industry demands.

We grow bigger by making
smaller cumponents, it's true. But we also grow by our understanding of customer problems and the solutions our technical experience provides.

Most of our business involves
'specials'. But even so, we've still the largest stocks in the country of 'off the shelf' transformers for most applications.
Why not try us next time?

Specialists in Electronic Transformers

GARDNERS

TRANSFORMERS LIMITED

Custom Tailoring...

. . . but at off-the-peg prices.
That's the GEC range of miniature magnetrons. Seven versatile versions of one proven, lightweight design. All built to conform to the most rugged and demanding military and civil specifications. Custom tailored for all potential applications, from low-cost marine radars to ultra-sophisticated airborne and military systems.

Little bigger than a latch key, a GEC magnetron weighs about 250 gms , operates at 800 V anode voltage and 0.5 to 2 A anode current and gives up to 300 watts peak power. Options include fast warm up- 90% output power is available within two seconds of initial switch on of heater.

And you can choose models with nominated fixed frequencies over the range 9 to 17 GHz or with limited tuning capabilities. Interline noise and r.f. leakage are exceptionally low and sophisticated construction eliminates missing pulses.

To find out more about these versatile GEC magnetrons, please contact the address below.

DM4 A small monitor using three units including a new, bass/mid range unit to provide a top quality sound rarely achieved by speakers at twice the price.

D5 A small, twounit system offering the unique combination of B \& W precision. quality performance and a remarkably low recommended retail price of under £30.

DM2 Already wellknown, this threeunit system has achieved a truly world-wide reputation for excellence and been rated as one of the best top quality systems.

DM1 The original B \& W three-unit miniature-not much larger than an LP sleeve-enjoying increasing popularity.

DM70 Now released on the UK market for the first time in its continental styling. One of the world's finest loudspeakers-and included in the Design Council's Index.

Teonex are better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits.
Teonex offers more than 3,000 devices.
They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on Government or private contract.
All popular types in the Teonex range are nearly always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England.
Cables: Tosuply London W11. Telex: 262256

(A) SM 202 From $£ 395.00$

150 MHz Ultra High Performance
Universal Counter Timer
Perhaps the most sophisticated counter timer available under £1000 - and it costs much less than half that! Full eight decade, 150 MHz , three channel spec. with almost every possible plus feature.
(B) SM 190 From $£ 195.00$

Variable Time Base (Computing) Counter Timer.
For the industrial user. Five or optionally six decade display, two channels. Total variable time base range $1 \mu \mathrm{~s}$ to 10 secs. Frequency, count (totalize) time interval \& ratio modes. Stored or non-stored display. Ultra low cost.SM 200 From $£ 175.00$ 25 MHz Counter Timer Six decade, frequency, count, Period, time and ratio meter having 25 MHz bandwidth and two-line stop start at very low cost.
(D) SM 201 From $£ 265.00$ 100 MHz Universal Counter Timer
Best value general purpose unit of 6 decade 100 MHz , capability. Three channel input with seven operational modes. Standard or high stability versions.
(E) SM 209 From $£ 495.00$ 500 MHz DIRECT Frequency Meter.
Nine full decade display. TRUE DIRECT NON DIVIDING input circuit giving 1 Hz resolution right up to 500 MHz . Optional I.F. subtraction circiut. Ultra fast warm up very high stability oscillator. 10 mV sensitivity. All at a fraction of the price you would expect.
 Automatic Universal Counter Timer (70 MHz)
The Automatic one. Completely auto-ranging in all frequency \& time modes. 7 decade display with two channel input and 100 nano-second resolution. Remote programming and BCD output as standard. High stability reference.

HIRE For a small charge you can hire any of the instruments shown here, singly or OR as part of a system which we can design for you.
BUY If you decide later to purchase the equipment, we can refund part of the hire fee to you.
You save your capital and space. You beat obsolescence.
Why not ring our Hire Department for details?
Included in the range are Transducers, Recorders, Oscilloscopes,
Digital Voltmeters, Dynamic Analyses, Data Systems, Magnetic Recorders.

Laboratories (Engineering) Limited

North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890-1166 Telex: 23995 Northern Sales Office, Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 3255

EMD A member of the EMI Group of Companies
International leaders in Electronics, Records and Entertainment
WW- 011 FOR FURTHER DETALS

See you at Sonex '73

Excelsior Hotel,
London Heathrow
March 28 -April 1
Room No. 452
Demonstration Room L3
QUAD
for the closest approach to the original sound

TH: HEARHMT CATALOGUE perhaps the most valuable stereo Hifi/Electronics kit publication available foday

GET THE BEST IN HI-FI Enjoy worthwhile kit savings. SOMETHING FOR ALL THE FAMILY even a battery charger for dad.

LOW COST STEREO RECORD

 PLAYERamazing sound value.

NEW DIGITAL MULTIMETER KIT
With State-of-the-Art Digital Circuitry and Readout Rugged portability and versatility at a kit price.

NEW MULTI-SPEAKER KIT

Features Four KEF Hi-fi Drive Units. Offers monitor quality at lowest cost.
NEW AM/FM STEREO RECEIVER KIT Solid State FM IF Circuitry, two IC's two ceramic filters. Black magic lighting
NEW THREE-BAND QRP/CW TRANSCEIVER KIT
with VFO and prov. for Xtal transmit Operation
NEW 30 MHz FREQUENCY

COUNTER KIT

with full 5-digit read-out, 8-digit capability
NEW PORTABLE ENGINE ANALYSER KIT
Versatile automotive testing and trouble-shooting.
NEW INDUCTIVE PICK-UP
TIMING LIGHT
Solid-state circuitry - high intensity flash
LOW-PRICED TESTERS AND
INSTRUMENTS
for the hobbyist and technician.
COMPREHENSIVE STEREO HI-FI RANGE
Something for everyone
PLUS all the models you have read about in international publications.

NEW 1214 SERIES STEREO HI-FI Ideal for use for quadraphonic sound.
the HOW AND WHY OF KIT BUILDING Electronics is fun the HEATHKIT way

BUILD YOURSELF A PAIR OF SPEAKERS
in an evening-enjoy Stereo sound
NO DEPOSIT TERMS UP TO £30

EXTENDED BUDGET PLAN ALSO AVAILABLE

It's Free . . . it's the latest Hi-Fi/Electronics catalogue from Heath the world-famous electronic kit manufacturers... and it's yours on request. This latest catalogue will appeal to all the family. Stereo Hi-Fi, Transistor portables. Metal detectors, Electronic calculators etc, etc. You name it, Heath can supply All models offer unbeatable specifications for price. Excellent continuous credit and no deposit terms available this even includes instruments.
You cannot afford to miss reading this fine publication hurry, send off the coupon for your personal copy today

Heath (Gloucester) Limited, Department WW/3/73 Gloucester GL2 6EE. Telephone 045229451

Vortexion

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg .) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough.
A voltage stabilised supply is used for the pre-amplifiers
making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

(0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

100 WATT ALL SILICON AMPLIFIER

A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER

With specification as above is here combined with a 4 channel F.E.T. Mixer, 2-30/60S balanced microphone inputs, 1-HiZ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER

An all silcon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER

High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced onput and HiZ gram. Outputs available $8 / 15$ ohms OR 100 volt line.

200 WATT AMPLIFIER

Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}$ $20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPMs

Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. 4, 6, 8 and 10 Way Mixers. Twin 3, 4, and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

We'll tell you why We're now able to offer our complete range of Magnetic. Heads for tape decks at a price which could reduce the prime cost of your decks by something like 5-10\%.

As a result of our new production line. your loading bay is reached much cheaper and quicker.

We believe that cur quality remains unchallenged

WW-315 FOR FUKTHER DETALLS

Əப■니
 SOUND SYSTEMS AND ELECTRONICS

Loudspeakers

Illustrated here is part of the range of loudspeakers manufactured by Audix for use in the industrial, entertainment, marine and aviation fields.
Column loudspeakers for interior and exterior use, wall mounting cabinet units, diffuser speakers suitable for suspension in factory areas, hotel units and studio monitor loudspeakers are available and can be supplied with volume controls, programme selectors, priority override tacilities, etc. according to requirements.
Most of the loudspeakers designed for interior use are fabricated from solid afrormosia timber and include some which are designed specifically for speech reproduction and to overcome difficult acoustic leedback conditions.

 MANUFACTURERS OF
 SOUND SYSTEMS AND
 ELECTRONICS

AUDIX BB LIMITED
STANSTED • ESSEX
TELEPHONE: STANSTED $3132 / 3437$ (STD 027-971)

WW- 017 FOR FURTHER DETAIS

Put FieldTech on your panel

Panel mounting indicator lights.switches and knobs

Now from FieldTech. A whole range of panel components designed to cover every design situation. There is a wide selection of indicator lights including incandescent and neon types, as well as Minilamps - the brightest idea yet in low voltage indicator lamps. Switches by the hundred, including toggle, push button, see-saw and slide types. As well as

Minomushi clip and binding posts. All at really competitive prices. Precision engineered knobs of all kinds, ranging through dimmer controls and skirted knobs and dials to servo clamps and locking dials. Put FieldTech on your panel of experts, and you'll get components that are right for availability, right for quality and right for price. Complete the coupon and we'll
send you all the information you need to play the panel game successfully.

Metc coleineis Suppliedinkit form for power supply units voltage stabilizers and electronicapparatus

CODE NO: $\mathbf{3 0 0 9 0 0}$ Height 120 mm Length 284 mm Depth 138 mm 300910 Height 120 mm Length 224 mm Depth 138 mm 300920 Height 120 mm Length 284 mm Depth 188 mm
hernal dimensions

$$
\frac{\operatorname{GmIRDD}}{4-1}
$$

There are good reasons AMTRON

195 other forbuying electronic kits

Apart from the five items indicated on the left, there are another 195 kits to choose from in the vast AMTRON range of electronic kits.

A few examples of equipment you can construct from AMTRON kits are:

Power supplies, preamplifiers, amplifiers, L.F instruments, accessories for musical instruments, amateur and radio control transmitters and receivers, battery chargers, electronic car accessories, psychedelic lighting equipment, measuring instruments, tuners, receivers and I.C.digital equipment.

Only lst class fully guaranteed components are usedsolder being included with every kit.

Prices range from $£ 1.10$ to $£ 80$ and each kit is sold in a protective blister pack containing complete instructions.

A unique feature of AMTRON kits is their ease of construction which appeals to both dabbler and expert alike.

Please send for brochure. Should you experience any difficulty in obtaining AMTRON kits, please contact us direct. Trade \&' Educational enquiries welcome.

AMTRON U.K. 4 \& 7 Castle Street, Hastings, Sussex, England. TN34 3DY. Telephone: Hastings 2875.

SYNTHESIZED DRIVE UNIT (MA. 1720) $1.6-30 \mathrm{MHz}$ in 100 Hz steps SSB/ISB/MCW/CW/AM/FSK modes Local/Extended/Remote Control. Alternative crystal controlled and Transmitter/ Receiver exciters available.

METER PANEL Monitors voltage/current conditions of individual RF modules and RF input and output (forward and reverse) power.

POWER AMPLIFIER MODULES
Eight identical plug-in wideband 125 watt modules which may be removed for servicing without traffic 'break'

TWO INDEPENDENT BLOWER UNITS

the SOLID-STATE one

The RACAL TTA. 1860 series 1 kW solid-state low noise Transmitter provides unequalled reliability with maximum operational flexibility. Suitable for static, mobile and shipborne installations for military or civil applications. A wide range of alternative drive units and remote control systems are available together with suitable antenna matching units.and antenna systems. Where lower output is required the TTA. 1863300 watt version, using identical modu.es, is available.

Now in full quantity production, the TTA. 1860 series is ready to meet all your HF transmitter requirements.
APPROVED NATO N© . 5820-99-624-5393/4/5 5820-99-624-2248

Racal...the communications people

It's not like us to coverup.

Because we make the best

 equipment there is.And it shows.
Only this time we aren't showing it.

Because our new range of amplifiers, mixers, speakers, and sound systems are so special, they deserve to be launched in style

Which is exactly what will happen at Sound ' 73 .

It's not that we have anything to hide.

We just thought we'd go under cover.

Until March. MH|Hank
It's got to be good.

Sound ' 73 International is at the Bloomsbury Centre Hotel, London, on March 13th-15th.
See us on Stands $19,20,33$ and 34.
Millbank Electronics Group, Uckfield, Sussex, England. Tel: UCK (0825) 4166. From Europe: 892-96-4166
Manufacturers of specialist audio equipment forindustrial and entertainment applications.
Sound mixers, tuners, sound systems, loudspeakers, tuner amplifiers, audio modules and amplifiers.

AUDIO EQUIPMENT

AUDIO MODULES
 FULL

RANGE AVAILABLE

SOUND MIXERS from PORTABLE UNITS

TO
MULTI-CHANNEL CONSOLES

CRYSLON ELECTRONICS LIMITED.
ROTHER STREET, STRATFORD-UPON-AVON. WARWICKS. TEL: STRATFORD-UPON-AVON 4797.

The Wayne Kerr Testmatic TM 60 can scan up to 60 test points on a circuit in about six seconds. Fault-finding by other means costs skilled time - realistically about $£ 1$ per faulty circuit board.

But the TM 60 can be worked by assembly staff and this results in early fault location. By cutting the time between an error and subsequent rejection, productivity is increased and cash flow improved. The modest cost of the Testmatic can be fully recovered in the first few weeks of use.

WAYNE KERR
A member of the Wilmot Breeden group

For all the technical data, and further information on the TM 60, please fill in the coupon below. It could well be the first step in saving your company enormous sums of money.

Or quicker still, call us on Bognor Regis (02433) 4501.

When you've got components that call for encapsulation -bring them along to Whiteley. With efficient potting, your components will be totally insulated and environmentally protected-and Whiteley experience in developing this advanced plastics technique will ensure that it is applied to full advantage.
We can encapsulate in epoxy resin or polyurethanehot setting or cold setting as required. Where fillers offer advantages, we can apply them, expertly. We are ready to handle small quantities or volume production for you. It's one more way in which you can capitalise on our production resources. For electrical and electronic work-right through from design to final assemblyyou can safely follow the example of many famous names-and call in Whiteley.

PLASTICS MOULDNG

ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

Another reason why Enthoven is No. 1 in solder

Superspeed solder wire

Enthoven's Superspeed soldering wire features an activated-rosin flux core and is ideal for those applications where a wide variety of different jobs must be handled with a single solder

But don't forget the rest of the Enthoven range. It gives you a wide choice of high-quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, Selective Fluxes, solder specialities, materials for printed circuitry and for soldering aluminium.

And behind every Enthoven product stands a comprehensive advisory service that can solve your knottiest soldering problems.

Enthoven Solders Limited

Dominion Buildings, South Place London EC2M 2RE.
Tel: 01-628 8030 Telex: 885737 Cables: ENTHOVENLONDONEC2M2RE

What is improved?

This question is put to us frequently these days so a few words of explanation as to why and how we 'improved' our Model 3009 Series II precision pick-up arms may be helpful.
We assumed that if you choose one of our arms you will use the sort of cartridge it deserves. The field thus narrowed we were able to make them more compact and aboveallreduce theeffective mass of the standard model to a mere 5.5 grams. This benefits trackability and all round definition with improved bass transients and still lower sensitivity to external shock and feedback.
Cleaning the stylus is not really a problem with a non-detachable shell as the stylus assembly itseif can usually be withdrawn from the cartridge for this purpose.
Where the facility is demanded an altemative version, the Model 3009/S2 Improved is similar but has a detachable shell, its effective mass is consequently 4 grams higher.
Both models require a lot less space than their predecessor, widening their application and simplifying installation.
Following our established policy earlier arms can be updated by our Service Department from whom particulars are available.

TELCON offers these simple answers

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers
'Telshield' wrap around foil
'Telshield' is an easy to use, ferromagnetic shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do. not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm . in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$. Other thicknesses and widths are available by arrangement.

call be in the

RIGHT PLACE

at the

RIGHT TIME

with the Portable RF Power Meters 1034 and 1035

For
Communication Links Microwave Data Links Laboratory
Factory
with

- Self-Checking
- 1 MHz to 14 GHz
- 50 and 75 ohms
- Special 60 dB scale
- High burn-out protection
and the Digital Power Meters
1036 and 1037

For
Laboratory $1 \mathrm{MHz}-18 \mathrm{GHz}$ - 50 dB dynamic range
Factory

- Down to -40 Db
- High accuracy

Systems - 0.01 dB resolution - Excellent match
Full data and specifications for Models 1034 to 1037 will be sent upon enquiry to:

aveley electricıito

'Chorale'the greatest thing in ENTERTAINMENT SOUND SYSTEMS since music

Here comes the latest in Audio Consoles! Here comes commercial sound for the prolessional! Here comes Chorale, the ultimate in complete Entertainment Sound Systems. From SNS whoelse.

Chorale brings a whole range of new dimensions to your sound scene. Chorale is versatile with applications ranging from cabarets to conventions. And because it comes from SNS. its per for mance is superb, its reliability
total, its quality supreme, its features uncomparable 50 W or 125 W . RMS output. 6 Channels with facilities illustrated below.
Low impedance or 100 V line output. Know what we mean? Ask our representative when he arranges your trial.
See us at
SOUND"73’
STAND 18
Bloomsbury Centre Hotet

... and two big advances in quality COMMERCIAL SOUND SYSTEMS

Welcome the new range orSNS PA Mixer-Amplifiers. New? They're all of that A new llexibility. new feat ures which incorporate 12 W . or 10 W . RMS output and the latest integrated circuits used throughout the preamplifier stage - in fact a new kind of finesse in medium power Commercial Suund Systems.
Link them to another big new
range - SNS column and cabinet
speakers. That's a seven league step forward! Put Each range together or use them apart. Quality marks them both. Periormance singles them out. Where else could they come from but SNS?

Of course youneed a trial to leel as confident about them as we do. Call your S.NS representatuesom.

SNS Communications Ltd., 851 Fingwood Road, Bournemouth BHIL 8LN Tel : Northbount (02016) 5331.

The background music machine.

For people who want the right kind of music behind them, one name comes immediately to the fore. It is TOA - with their versatile PA-100 background music machine. This compact and easy-to-install machine plays standard 8 track cartridges, gives a programme lasting from 60.80 minutes, and can be played continuously if required. It also incorporates a solid state 15 W P.A. Amplifier with 100 V line output and provision for microphone and record player. It's ideal for use in hotels, bars, amusement and bingo halls and shops where it can also be used to sell as well as entertain. Get in touch with us. And we'll play over all the benefits to you.

Goldring Ltd.
10 Bayford Street, Hackney, London E8 3SE. WW- 031 FOR FURTHER DETAILS

used as standards in many industries

Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as
specified
Not sensitive to voltage or temperature
changes, within wide limits
Unaffected by waveform errors, load,
power factor or phase shift
Operational on A.C., pulsating or
interrupted D.C., and superimposed
circuits
Need only low input power
Compact and self-contained
Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges specification. Ranges
$10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

anders electronits limited

TheTT21. Cost perwhat?

Before you listen to us, listen to a few communication transmitters.

Because the chances are they'll have our TT21 already fitted.

Because it's the best beam tetrode you can buy. Best in its class. Best for the money.

So, if you require a communication transmitter tube at the lowest possible cost per what, sorry, watt, here's the address to find out more.

ELECTRONORGTECHNICA (USSR)

METAL FILM

RESISTORS

Reliable general purpose metal film resistors $\pm 5 \%$ $\frac{1}{8} \& \frac{1}{4} w £ 3.50, \frac{1}{2} w £ 3.60,1 w £ 3.80$ per 1000 (one value) $\frac{1}{8}, \frac{1}{4} \& \frac{1}{2} W$ carbon film resistors $\pm 5 \% £ 2.30$ per 1.000

AVAILABLE FROM

Z \& I AERO SERVICES LTD. 44A, WESTBOURNE GROVE,

Tel: 727/5641 LONDON, W2 58P Telex: 261306 Also Available: ELECTROLYTIC CAPACITORS CERAMIC CAPACITORS CARBON SKELETON PRE-SETS

WW-034 FOR FURTHER DETAILS

teaching logically made easy

These two new. compact and low-cost logic tutors are just what you need for courses on Computer Appreciation and Logic.
The Combinational Logic Tutor CLTOO3O has a selection of AND. OR. NAND and NOR logic gates and the Sequential Logic Tutor SLTOO40 has JK Flip-flops and NAND gates. Both units are supplied complete with instruction books, batteries and solderless patch leads. For further information, please telephone 061-928 8063 or write to

LIMROSE ELECTRONICS LIMITED, 8-10 KINGSWAY,
ALTRINCHAM, CHESHIRE,
ENGLAND, WA14 1PJ.

NO OTHER QUALITY INSTRUMENT GIVES ALL THIS

10 Hz to 1 MHz

 $\pm 2 \% \pm 1 \mathrm{~Hz}$ Sine and square waves 3 watts in 5 ohms

FULLY TRANSISTORISED)

यnजead means a good deal in electronics

Linstead Electronics, Roslyn Works, Roslyn Road, ${ }^{\text {a }}$ London N15 5JB Telephone: 01-802 5144

The 'Mastatic' whip-type vertical rod aerial is made to be fixed high above electrical interference.
When it's used with the 'Antistatic' system it returns superb performance in difficult reception areas.
The 'Antistatic' (AM) has a frequency range covering all popular broadcast and short wave bands. It consists of a weatherproofed aerial transformer connected by 60 ft . of screened downlead to a compact receiver transformer.

For full information please contact your local Aerialite Distribution Depot or write to.

Aerialite Aerials Ltd

Radnor Park Trading Estate, West Heath, Congleton,
Cheshire CW124PX. Telephone: Congleton 3892/8
Telegrams: Aerialheat, Congleton. Telex: 669640.

nombrex

WIDE RANGE AUDIO GENERATOR PRICE £24.75
$\star 4$ RANGES, $10 \mathrm{~Hz}-100 \mathrm{KHz}$.

* SINE AND SQUARE WAVE OUTPUT
\star DUAL CALIBRATED ATTENUATOR.
* STABILIZED OUTPUT LEVEL 1 V .

Trade and Export enquiries welcome
Send for full technical leaflets Post and Packing 35 p per unit
NOMBREX (1969) LTD., EXMOUTH, DEVON.
Tel: 03-952 3515

WW- 038 FOR FURTHER DETAILS

True invitation to the latest electronic
 developments in the would.

23rd International
 London Electronic Component Show Olympia London 22-25 May 191973
 moment is concerned primarily with equips

Because the London Electronic Compo rial occasion for all forward-lookialist buyers.
for the professional market, it is an essentiament and design staff and spec limits of electronic executives, engials and improved design technic.
he precision and quality of
New material it even greater to component design, the undergone major component technology the advances made in componipment have undergents on all fronts of

Following closely the advation and production examine new develophology, in printed related electronic insting the ideal opportunity thick and thin - LECS 73 is an invaluable improvements -in passive and active devicenificant techniques - LE c 1073 show offers a circuitry, in opto-elect

Completely international, occupational electronics industry. Manufacturers Federation. Organised
complete picture of the int Electronic Component
Sponsored by the Radio
by Industrial Exhibitions LTd.

For descriptive multi-lingual leaflets and

 season tickets for the showreturn the coupon below return the coupon
fully inclusive of all charges form to :
1 Complete London Electronic Component Show, Ind
1 London Electronic London. WC1A 1PB.
\rightarrow have been arranged by the show or parties have been In addition, a special official travel agent in ad ice is available. hotel reservation service is ava lab for Please tick the
further information
Travel
Hotel \square
package deal
Exhibitions Ltd. Commonwealth House.

Name

Company
Address

WW-040 FOR FURTHER DETAILS

Getting valves is getting tricky.

Ever spent hours trying to get a valve, only to find that putting it in circuit makes no difference? Everybody has.
With VCM 163 you can check exactly which valves are OK and which aren't. And spend time getting only the valves that really need replacing.

As valve testers go and let's face it, most of them have - Avo VCM 163 is a very sophisticated instrument. It even has a NATO stock number.

And what's more there's a new Avo Valve Data Manual (19th edition) free with each VCM 163. It

includes obsolete types and 84 pages of equivalents, and could save a fortune in wasted time. The manual is also available separately at just $£ 5.25$ (U.K. Trade).

So write or telephone for more details of VCM 163 now. Send us a cheque for $£ 5.25$, and we'll send you a 19th edition Valve Data Manual too. Trust Avo to look after you. Avo Ltd., Dover, Kent.
Telephone: Dover 2626.

So be sure you get the right valve.Withan AvoVCM 163 valve tester.

Digitize that Fluid Input

McLennan Engineering are pioneering in the field of digitized liquid delivery. The equipment illustrated is suitable for medical, veterinary, chemical and general laboratory applications.

DIGITAL SYRINGE TYPE DS110
Fluid pulse 1.0 or 10 micro litres
Number of pulses presettable from 1-50,000 Pulse rate $400 \mathrm{~Hz}-1 \mathrm{~Hz}$ or $\cdot 01 \mathrm{~Hz}$ in the case of frequency divider model
Digital 'fluid delivered' display monitors output at all times
External B.C.D. signals can programme the number of pulses
Remote multiple syringe facility High reliability. Drive designed around Impex stepper motor system.

OTHER ITEMS MANUFACTURED BY McLENNAN ENGINEERING INCLUDE:
Digital and analogue servo systems Peristatic pumps
Process and machine tool control equipment Custom-built gearheads and actuator mechanisms
Precision potentiometer drives.
If you have a problem in any of the above fields we shall be pleased to discuss your special requirements. Please get in touch - it costs nothing to talk.

WW-042 FOR FURTHER DETALLS

Choice of 50 Types

List No. P2 15

List No. P535 (Chrome) List No. P536 (Gold)

Also Miniature range of above available

We began making Jacks and Jack Plugs in 1929 and since that date have steadily enlarged our range which now includes a variety of designs covering all popular applications.

Many millions have been supplied to customers all over the world and have given every satisfaction.

The majority of models are made to BS. 666 specifi cation and every component part is checked for compliance to this standard before assembly. A range of miniature models are also listed.

Designs are varied; and include two pole models, which can be connected to twin or co-axial cable and three pole models. Finishes vary, covering black bakelite, frosted aluminium and both chrome or gilt plating.
$\mathrm{R}^{\text {atings for } \mathrm{BS} .666 \text { models }}$ are 50 V . max., 0.1 V min. 5A max., 50W. max., Max. test voltage 250 pole-to-pole or pole-to-earth.

CUSTOWERE GAN AIWAVS RELY ON

'THE House of buligin' for service, quick despatah

 aND Guaranieed supples for years to goweTECHNICAL LITERATURE AVAILABLE ON REQUEST, QUOTE WW/1/73

A. F. BULGIN \& CO LTD

ELECTRONIC COMPONENT MANUFACTURERS BYE-PASS ROAD - BARKING • ESSEX TEL.: 01-594 5588 (12 lines) TELEX 897255

MODEL EB37

The latest variant in a well-established family of compact, solid-state, high performance receivers, covering long, medium and shortwaves $(550 \mathrm{kHz}$ to 22 MHz and 150 kHz to 350 kHz).

Self contained battery pack for portable use. Accessory units for 12/24V DC and standard AC supplies.

Illustrated brochure obtainable from:

Eddystone Radio Limited

Alvechurch Road. Birmingham B31 3PP.
Telephone: 021-475 2231 Telex: 337081
A member of Marconi Communication Systems Limited

313 EDGWARE ROAD, LONDON W2 3BR. telephone: 017232231 Cable: Omrontrols London.
OMROM telephone:017232231 telex 28514

TIMERS SWITCHES TRANSFORMERS VOLTAGE CONTROLS FOR IMMEDIATE DELIVERY

VARIABLE TRANSFORMERS
 "SLIDTRANS" MODELS 1 amp $£ 7.00$ C. \& P. 37p $2.5 \mathrm{amp} £ 8.05$ 5 amp f 11.75 $10 \mathrm{amp} £ 22.50$
$12 \mathrm{amp} £ 23.60$ "OFF THE SHELF" delivery of all types. *Fully shrouded. *Bench Mounting. *Panel Mounting. *Low Price. *Input 240VAC. Output: 0-260VAC.
PANEL MOUNTING "'SYS'" SYNCHRONOUS TIMER

OMRON brand Synchronous Moter driven timer with single instantaneous and over contacts. MINIMUM guaranteed electrica 10,000.000 opera-
tions.

ELECTRONIC PLUG-IN SWITCH FOR LIOUID LEVEL \& ICE BANK CONTROLS "61FGP"
 Electronic switch senses change in resistance using Stainless Steel probe assembles or other conductive probes.
Proven use in sewage, wate beer. milk ice in vending effluent, boilers and other industries. $\mathbf{£ 5 . 8 5}$ for "one off" $£ 3.50$ in quantity. STAINLESS STEEL PROBE ASSEMBLY "PS31"

$\cdots \cdots$

Length 1 metre, for use on differential and alarm ontros of conductive liquids with "61FGP" (illus ated above).
1.60 "one off" $£ 1$ in quantity.

CTRONIC RECYCLING
TIMER FOR CONTINUOUS

Electronic twin timer for con tinous recycling operations.
On/Off time contral, $0-6$ secs On/Off time control, 0-6secs with 2% repeat accuracy setting 0 -6sec with transfer switch X 10 .
Dual voltage $110 / 240$ VAC $£ 28.60$ but down to $£ 18$ each in quantity. TO 200 SECS DELAY-"ATS'

Easily adiustable from delay on anergise to delay on de-energise.
The OMRON ATS works on an air damped ats works on adjusted between 0.200 secs with screwdriver adjustment. A precision snap action switch provides a 6A contact and minimum $1,000,000$ ops life. "One off" 88.10 . In quantity £5 for 110V/240VAC types.

LOW COST PANEL MOUNTING
MINIATURE TIMER-"STPYMH'

Plug-in timer for panel
mounting.
Synchronous Motor driven with autoreset facility. Instantaneous and time limit contacts rated at 5 A . This timer has fixed and moving pointers.
f8.40
quantity.
HIGH ACCURACY SOLID STATE PLUG-IN TIMER-"TDS'

Genuine 1% repeat accuracy with solid timing. Lite 50 million operations minimum. instantaneous f time limit contacts Full time scales $0-1 \mathrm{sec}$; $0-2 \mathrm{sec}, 0-5 \mathrm{sec}, 0-10 \mathrm{sec}$; $0-30 \sec ; 0-60$ sec ; 0-180sec.
Dual Voltage $110 / 240$ VAC $£ 18.50$ to $£ 13$ each.
EXCLUSIVE SOCKETS FOR OMRON TIMERS \& FLOATLESS SWITCHES

Scsew terminals, with clips to hold the timer or switch firmly in place where mounted. Type 8PF for STPNH. TDS, DTS Type 8PFI for 61FGP \& TDA.

WORLD'S SMALLEST SYNCHRONOUS MOTOR PLUG-IN TIMER STPNH
 AT LAST! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A MINIATURE PLUG-IN TIMER UP TO 28HRS.
 Only OMRON could provide a timer of such unrivalled superiority over all its competitors, anywhere in the world.
 The STPNH is a synchronous motor driven timer with automatic resat function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base.
 Time ranges start 0.6 secs and finish 0 - 28 hrs with operating voltage at 110 VAC or 240 VAC .

Up to $\mathbf{7 2}$ mins $\mathbf{£ 7 . 9 0}$ "one off" and $\mathbf{£ 4}$ in quantity. Long time ranges around $\mathbf{£ 8}$

Full range available with 15 amp switching capacity.
Approved by CSA Authorities \& guaranteed for twelve months.
Interchangeable with other British and Continental the coil spring type
voltage stabiliser

Famous I.M.O. Constant Voltage Stabiliser still only $£ 12.50$ each. FEATURES

* 200 watt rating *Input 240VAC $\pm 20 \%$ \pm Output 240VAC $\pm 1 \%$.

AT LAST OMRON FRONT CONNECTION SOCKETSNOW SUPPLIED FROM STOCK

These new miniature sockets with screw terminal connec tions are only available through I.M.O. or authorised stockists. Moulding is UL stockists. Moulding is UL TL-2-GPA (DC) $\mathbf{f 9 . 5 0}$ each
approved and OMRON " Fnow YL-2-GPA (AC) $\mathbf{£ 2 5 . 7 0}$ "on how" brings all the advanced reatures of a modern product. PFO83 (8 pin) 44p each 1000 lots. lots.

SOLID STATE VOLTAGE
CONTROLS 5AMP \& 10AMP MODELS

Full solid state control over AC voltages. nout of 230 VAC variable on output to 25-230VAC. Miniature and lightweight with finned aluminium housing these units can truly replace wirewound transformers.
VP05C (5AMP) $£ 9.90^{\text {"one }}$ off" $£ 6$ in quantity. VPIOC (10AMP) $£ 16.90$ "one off" $£ 10$ in quantity.

PHOTOELECTRIC SWITCHES

WORK DIRECT FROM $24 V A C$ FROM 24
SUPPLY.
PRIOOR (Reflective) $\mathbf{£ 7 . 5 0}$ "one off" $£ 4$ in quantity. PRIOOC (slot) $£ 7.50$ "one off" $£ 4$ in quantity.

OMRON PROXIMITY SWITCHES
SWITCHING OF 240VAC or 24VDC

- GPA (AC) $\mathbf{E} 25,70$ one off $\mathbf{E} 18$ in quantity.

TECHNICAL LITERATURE
Full literature is available on all the products on 01-723 2231.

Reflactive and "slot" type photoelectric switches. Will sense any material passing the light beam up to 3 mm and provide an output signal of 02AMPS at 240VAC. Roflective distance up to 25 mm on reflective surfaces, far longer with

PANEL MOUNTING "NS
SYNCHRONOUS TIMER

"New Square Dial"

 The OMRON timer type NSY The OMRON timer type NS type square fixed dial. This attractive package has two time limit changeover con tacts.
Stock range $110 / 240$ VAC up to 28 hrs $\mathbf{E 1 2 . 5 0}$ "one off" to E 8 in quantity

OMRON MICROSWITCHES

Interchangeable with all British \& Continental Manufacturers
Approvals from: CSA; MIL; UL; SEVC; SAA: DEMKO ETC

VIC WITH AMP TERMINALS Single Pole Changeover 15amp switch O.F. 400 gm R.F. 114 gm . 4 mm . 19 per per 100 ; $\mathbf{£} 700$ per 5000 VV-15-1A WITH SOLDER TERMS Single Pole Changeover 15 amp Switch O.F. 230 gm . R.F. 50 gm . M.D. 1 mm . f 19 per 100; f 150 per 1000; f650 per 5000.
SIA SUBMINIATURE SWITCH Cheaper than all its competitors. Single pole changeover 5 amp switch O.F. 200 gm . R.F. 40 gm . M.D. 0.1 mm . E23 per 100. E 850 per 5000.
SIAL WITH LEAF SPRING
Subminiature 5 amp microswitch of $56-180 \mathrm{gm}$ R.F. 14 gm M.F.
0.8 mm . $£ 27$ per $100 ; £ 220$ per $\begin{array}{ll}\text { Nisiti } & \text { of } 56-180 \mathrm{gm} \text { R.F. } 14 \mathrm{gm} \text { M.F. } \\ 0.8 \mathrm{~mm} . ~ £ 27 \text { per } 100 ; ~ £ 220 \text { per } \\ 1000 ; £ 1000 \text { per } 5000 .\end{array}$ 1000; £1000 per 5000. SIAL 2 WITH ROLLERACTUATOR Subminiature 5 amp microswitch. O.F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D. 0.8 mm . $£ 33$ per 100: $£ 270$ per 1000; f1250 рет 5000.
CCR-5 LOW TOROUE SWITCH Low cost microswitch for coin operated or air vane applications. O.T. 10 gm . R.T. 13 gm. M.D. 15°. f31 per 100; f190 per 1000: f 900 per 5000
VAO4 PUSHBUTTON MICROSWITCH. button actuator low operating force and buttons in various colours. E49 per 100; £360 per 1000: $\mathbf{E 1 7 5 0}$ per 5000.

ALL THE PRODUCTS ILLUSTRATED HERE ARE ALSO AVAILABLE FROM THE FOLLOWING I.M.O. FRANCHISED DISTRIBUTORS.

birming ham	Aston Electrical Ltd	tel: 0213274064
blackburn	Wilson Automation Ltd	tel : 025459921
BRISTOL	Techniservices Ltd	tel: 027230701
LEICESTER	B.P.X. Ltd	tel:0533 64281
LeEdS	Scattergood \& Johnson Ltd	tel: 053230203
LONDON (STH.)	D.T.Y. Group Ltd	tel: 016706166
NEWCASTLE	Gledson \& Co Ltd	tel: 0632860955
SHEFFIELD	John Riley it Son Ltd	tel: 074249851
SLOUGH	Blore Barton Ltd	tel : Burnham (Bucks) 5524

Wilson Automation Ltd
Techniservices Ltd
tel: 0213274064
tel: 025459921
tel: 027230701 B.P.X. Ltd
tel: 053230203
D.T.V. Group Lid tel: 016706166 Gledson \& Co Ltd John Riley \& Son Ltd
el: 074249851
tel: Burnham (Bucks) 5524號
I.M.O. TERMS OF TRADING

CASH WITH ORDER UNLESS A NETT MONTHLY ACCOUNT HAS BEEN ESTABLISHED. TELEPHONE: 01-723 2231.

ENCAPSULATED POWER SUPPLIES

DUAL POWER SUPPLIES

DPS-25 $\pm 15 \mathrm{~V}$ @ 25mA general purpose, low cost
DPS—100 $\pm 15 \mathrm{~V}$ @ 100mA general purpose
DPS—150 $\pm 15 \mathrm{~V}$ @ 150mA general purpose
APS-30 $\pm 15 \mathrm{~V} @ 30 \mathrm{~mA}$ precision p.s.u.
DC-DC CONVERTER
3W5-30 $\pm 15 \mathrm{~V}$ @ 100mA + 5volt supply
SINGLE POWER SUPPLY
SPS—1.5 1.5V @ 10mA dry cell elimination

The Ancom range of power supplies covers a wide range of requirements offering a choice of inputs, 115 volts ac, 240 V ac, $40-60 \mathrm{~V}$ ac, $25-40 \mathrm{~V} \mathrm{dc}$, \& plus 5 volts dc, with regulation between 0.01% and 1% depending upon the module selected.
Typical parameters are; inputs 240 V ac, outputs ± 15 volts dc at 25 mA to 150 mA 5 V dc regulation 0.01% $25-40 \mathrm{~V}$ dc stability $.003 \% 1^{\circ} \mathrm{C}$

d1C011 Devonshire Street, Cheltenham, Glos. GL50 3LT England.

WW-046 FOR FURTHER DETALLS

Cheap power supplies can be expensive - but there's always an exception to the rule. Here's ours.

These new miniature d.c. power supplies are well engineered and compact. They're suitable for either bench use or for incorporating into original equipment and they feature good regulation, low ripple and full protection.

Send for the leaflet (better still, try a unit) and we think you'll agree-they are excellent units and surprisingly inexpensive.

Instant miniature power from :-

Model	OUTPUT				,
	Adjust range (Vd.c.)	Current rating (mA) at T.. amb.			
	min. max.	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	
6/500P	4-6	500	500	250	£13
12/250P	6-12	250	250	125	¢12
24/125P	12-24	125	125	62.5	f12
15/15/100P	12-17012-17	100	100	50	£13.50

GROUP 2 UNITS: Dimensions (mm) $40 \mathrm{H} \times 64 \mathrm{~W} \times 131.5 \mathrm{D} \mathrm{Wt} .0 .51 \mathrm{~kg}$.

$6 / 1 P$	$4-6$	1000	750	250	£ 15
$12 / 500 P$	$6-12$	500	500	250	£. 14
$24 / 250 P$	$12-24$	250	250	125	£ 14
$15 / 15 / 200 P$	$12-17012-17$	200	200	100	£16

Furnell

POWER SUPPLIES DIVISION

CRTH STUDIO QUALITY MIXER FOR FIELD USE . .
 - as used for professional broadcasting and recording

TYPE TM61 MIXER *

\square All silicon six-way mixer.
$\square+12 \mathrm{dBm}$ output on mains or 12 V battery.
\square Adjustable for $30 \Omega \mathrm{mic}, 200 \Omega \mathrm{mic}$, or 600Ω lines.
\square Sensitivity -85 dBm to +20 dBm .
\square VU meter (PPM available).
\square Muting switch on each channel.
\square Bass and treble cut on each channel.
\square Master gain control.
\square XLR type input connectors.

This studio quality mixer is also available fitted with an internal 12 V battery and with a wooden carrying case, giving you an easily portable mixer of true studio quality for use in general field work.

CTH also manufacture a range of modular mixing units, consoles, distribution amplifiers, studio disc player units, speaker amplifiers, cable drums and many other items of studio equipment. Send for details and price list now.

dipl iterrowics

Industrial Estate, Somersham Road, St. Ives, Huntingdonshire, PE17 4LE Telephone: St. Ives 64388 (0480 64388)

WW- 049 FOR FURTHER DETAILS

The FX-107, FX-207, FX-307 are a powerful and flexible family of high performance monolithic signalling devices based on 3-Tone Sequential Code signalling techniques. Constructed using MOS/LS1 technology, the devices perform all frequency discrimination, tone generation and code timing functions on-chip, using simple external CR networks.
The family members are FX-107, a single code Transceiver with Transponder capability; FX-207, a multi-code Transmitter with logic controlled selection of any onefrom eight codes : and FX-307. a multi-code Receiver which decodes 8 different input codes and provides an appropriate binary coded output.

Each code consists of three tones each of different consecutive frequency and sent in a pre-determined sequence (Group Code)

Transmitter devices generate the programmed Group Code on receipt of a logic instruction: Receivers decode Group Codes applied to their signal input and operate integral output switches when the programmed code/s are received.

These excitirig new devices may be used separately, or in any required combination, to yield high performance/low cost solutions in application areas involving selective signalling between one or more points. using a common transmission line. Virtually any number of outstations may be connected to the common line and a variety of instructions signalled to each one selectively.
P.C.B. Evaluation Boards for FX-107.

FX-207 and FX-307 are available.

FX-107
3 - TONE CODE TRANSCEIVER (RX/TX)

FX-207
3-TONE
MULTI-CODE
TRANSMITTER (TX)

FX-307
3-TONE MULTI-CODE RECEIVER (RX)

MULTI-STATION SELECTIVE CALL WITH ANSWER BACK MASTER

This example shows how simply the 07 family solves a typical complex signalling problem. The Master transmits switching instructions over a common line to selected outstations, which transpond on receipt of their address code. Transponded replies are decoded at the Master for display or verification purposes. Outstations may also signal the Master independently. or transpond giving coded status data.

OVERSEAS AGENTS :	benelux
france	Heynen N.V..
O.I.M.E.S.	Steendalerstraat 56.
31 Rue George-Sand.	6940 Gennep. Netherlands.
91 -Palaiseau.	
Paris, France.	SWEDEN
International Semiconductor	Komponentbolaget Naxab.
Corporation.	Bjarnsonsgatan 243.
20 Rue Gambetia. 92 - Boulogne. Paris.	S. 16156 Bromma. Sweden.
France.	SWitzerland
germany	Egli Fischer \& Co. Led..
Gins bury Electranic GMBH.	Gotthardstr 6.
8012 Ottobrunn.	Claridenhof.
Ahornstr 10.	8022 Zurich,
Munich. Germany.	Switzerland.

AUSTRIA
Datentechnik
Wr. Neustadter Strabe 7 , A- 2490 Ebebfurth. Austria

ISRAEL
Bet K.D.M. Lid.
21. Tchernihousty St
21. Tcherniho
P. O.B. 4770 .

Tel-Aviv.
Israel.
Hamashbir Electronics.
76. Giborei.

Israel St.
Tel-Aviv.
Israel.

JAPAN

Cornes \& Co. Lid.
Marden House.
CPD Box 329.
Osaka. Japan.
AUSTRALIA
Ammon Piy. Lid.,
69. Peter Street.

Box Hill Narth.
Victoria 3129.
Australia.

mexico

Industrias Electronicas Ese.
S. de R.L.

Amado Nervo 156
Mexico 4. O.F.

Frequency is our business

CONSUMER

 MICROCIRCUITS LTD.Rickstones Road, Witham, Essex. Telephone: Witham 3833/5 Telex: 99382 (Reaction)

Now you can cut your production costs without compromising quality.

Ask Mackarl.

Before you put your name on a stereo system, radiogram or other audio equipment, you must know that both the quality and the price are right. Mackarl can help.

With three Far East factories in volume production, and a fourth rapidly nearing completion, Mackarl is already able to deliver 20 different tuners, printed-circuit assemblies, amplifiers, cartridge players and other chassis
to UK OEMs. Through Mackarl's new London office, you can discuss your requirements with European technical and marketing people with decades of high-level experience in British consumer electronics. Mackarl can provide you with bits and pieces, or complete ready-to-sell units with your own label, or almost anything in between.

Ask Miss Sharpe at Mackarl, today. MACKARL ELECTRONICS (LONDON) LTD 94.98 Petty France, London SW1H 9EA Telephone: 01-222 2527

NEW from Goodmans for constructors

Din 20 Kit

20 watt, high fidelity loudspeaker kit contains all parts necessary to complete the system, except timber and other material for the cabinet itself, with detailed, illustrated instructions. Specification: 20 Watts DIN, 4 ohms impedance, 8 ins bass unit, dome HF radiator, crossover frequency $4,000 \mathrm{~Hz}$.

Goodmans
R.F. COMPONENTS

Cambion offer the widest range Chokes-Open, moulded Coil Forms-over $1, j$ ded
*) Coindardiypes:- P.C./
standardielded, P.C./
Conventional for ${ }_{2 / 300} \mathrm{MHz}$.

Standard and submin.

- Microinductors thick - Fixed/variable forircuits. Fixed and hybrid circuil - Capacitors - Fixed
- Coils - Sustom wound.

Photographed on

centoh paper

Top-Quality
Components
Hents
world's most reliable
Cambion design and manponents.
professiona terminats INSULATED, ASSEMBLY

- SOLDENALS. TERMNAL PATCH CORDS. TOOLING
- CACE JACK CONG
- SOC. ACCETS ETC.

MINALS, SOCKETS,CARDS WIRE WRAP TERMINALOKES, COIL FORMS.

- R.F. COMPONENTS CHOKES, CAPACITORS
- R.FOLS, MICROINDUC DEVICES
- THERMOELECTRIC DBLIES

Q I.C. LOGIC ASSNARE

Write now for illustrated hierature
over 22,000 cams.
Catalogue items. Electronic Prod
Cambion Works, Castie
Nr. Sheffield, S30 (Hope 831)
Tet: 0433444
Telex: 54444

What is TELEFI?

Telefi brings you for the first time real Hi-Fi results from your existing 625 line television.
T.V. Studios transmit superb quality but skimping in the sound section of the recevier means low-fi sound.
Celestion Telefi changes all this - simply coupled to most T.V. receivers - the first T.V. music you hear through Telefi will convince you the dramatic improvement is what you have been waiting for.

Telefi a remarkable innovation exclusive to Celestion for use in
conjunction with $\mathrm{Hi}-\mathrm{Fi}$ and Audio systems for providing high quality television sound reproduction. No direct connection to the T.V. is required, the coupling being effected by an inductive pick-up.

Telefi is complete in a handsome natural teak veneered case $7 \frac{1}{4}{ }^{\prime \prime} x$ $5 \frac{1}{8}{ }^{\prime \prime} \times 2 \frac{7}{8}{ }^{\prime \prime}$ approx.
'The Telefi is a very worth while device and will give greater overall enjoyment than the T.V. manufacturers normally provide." John Gilbert 'The Gramophone'.

King George's Avenue Watford Hertfordshire England
Telephone: Watford 23301 Telex: 23412 Telegrams: Radiolink Watford,

Stereo radio from your existing funer.
 CAUTION MAX VOLTS: 16 vdc
 A complete set of parts

 put our module simply plugs in. your stereo amplifier. at $£ 6.90$ (includes 12 month guarantee). Beat that! 78 Vestry Estate $\quad I$ enclose cheque/postal order for $£$
I Kent
Block Capitals Please

Fitting. The module requires a $10-16$ volt power supply which can normally be tapped off the existing tuner. The signal input is taken off before the de-emphasis circuit which in practice means disconnecting one, or at the most, two capacitors. Any radio engineer will be able to spot these capacitors, but if you're really stuck send the circuit with a SAE to us and one of our engineers will indicate the output point. (This is the full extent of our involvement, no hardware please).

Of course, if you have a modern mono tuner with a multiplex out-
The outputs go via a screened twin cable to the tuner inputs of
And the cost? $£ 4.90$ for the Kit'with 100% tested integrated circuit. Alsotavailablelassembled and aligned, checked and ready for use

Name
Address from Jermyn to build a stereo decoder module that will convert your existing mono tuner for stereo reception whilst maintaining a high standard of reproduction.

The distortion is very low (typically 0.3% at 560 mV RMS composite input signal) with 40 dB channel separation.

The stereo switching is automatic and there is a light emitting diode which acts as a stereo beacon.

The kit requires no coil and there are no alignment problems. Address

KESTREL RANGE

- Modern styling, with clearfront plastic case.
- Seven models, scale lengths from $1.3^{\prime \prime}$ to $5.25^{\prime \prime}$.

Extensively used by many leading manufacturers of electronic and electrical equipment.

- Available in all ranges, moving coil and moving iron.
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

amcron
 (formerly Crown International)

 INTERMODULATION

 INTERMODULATION DISTORTION ANALYSER

 DISTORTION ANALYSER}

MODELI.M.A

ABRIDGED TECHNICAL DETAILS
I.M. Range - 0.1.0.3. 1, 3. $10.30 .100 \%$ full scale on separate I.M. meter.
Range of tracking - 45 dB in $5 \mathrm{~dB}(\pm 1 \%)$ increments
Input Impedance - 100 K max. and 45 K min depending on setting of
input level control
Necessary HF input - 17 mV min
Outputs - 10 K impedance for scope A and scope B showing HF
envelope and demodulated IM signal
Controls - include switching to allow meter input and output controls
to remain set when testing, using the master attenuato
Size $-19^{\prime \prime} \times 7^{\prime \prime}$ high $\times 7 \frac{1}{2}{ }^{\prime \prime}$ (standard rack mounting)

Amcron Model IMA Intermodulation Distortion Analyser is a ruggedly engineered dual-meter instrument providing facilities for measuring to exceptional degrees of precision covering both L.F. and H.F. audio ranges $(10-150 \mathrm{~Hz}$ and 2.5 KHz to 20 KHz$)$. Tests over a wide range of varying amplitudes can be made quickly and accurately. FET circuitry assures measurements approaching a typical residual of 0.005% and within 5% of full scale. Many original features are incorporated in this instrument whereby generator interaction is eliminated, as are microphonics through the use of FET controlled AGC. Provision is made for connecting external oscillators over both LF and HF (audio) ranges. The use of dual meters allows one minute calibration and $I M$ reading for highest efficiency in lab or on production line. Leatlet avallable on request.

MACINNES LABORATORIES LTD. STONHAM, STOWMARKET. IP 14 5LB
 Telephone Stonham (044 971) 486.

WW--061 FOR FURTHER DETALLS

When a panel meter has to stand out in a crowd-specify Taylor Edgewise.

Introducing the model 330 with a $2 \frac{1}{4} \mathrm{in}$. scale length and the slimmest body size in the Edgewise series to enable closer stacking. The latest in a range of three Edgewise panel meters that have been designed to combat the problem of increasingly crowded instrument panels. Housed in transparent acrylic mouldings, they provide shadowless readings and offer outstanding reliability. Find out more. Write for a data sheet now.

Taylor Electrical instruments Ltd., Archcliffe Road, Dover, Kent. Telephone: Dover 2634 Telex: 96283 Telephone: Dover 2634 Telex: 962

FAULT LOCATION

KONTAKT "Cold Spray 75" For rapid and effective fault location Non-toxic, non-inflamable. Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centigrade. It can also be used to prevent heat damage during soldering processes. for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products
Kontakt 60 and Kontakt 61 for relay contact cleaning,
Piastic Spray 70. transparent protective lacquer. Insulating Spray 72.
Kontakt WL. Spray Wash.
Antistatic Spray 100. Antistatic agent for plastics.
Politur 80. Polish and cleaner
Fluidi01. Dehydrating Fluid.
Details from UK distributors.
SPECIAL PRODUCTS DISTRIBUTORS LTD;
81 Piccadilfy, London, W. 1
Tel: 01-6299556

YOU DONTT HAVE TO LIVE NEAR DIXONS TECHNICAL TO BE NEAR DIXONS TECHNICAL.

Dixons Technical have the widest range of audio visual equipment in Britain.
 The troule is many people believe that London isn't Britain. And Cixons Technical is in

 ondon.While you, perhaps, are in Bath. or Newcastle, or Aberdeen. Hundreds of miles away Why should you travel all that way for audio visual equipment?
should you travel all that way for audio visual equipment ?
Dixons Technical say you don't have 10 travel al! that way. They l make the equipment ravel to you thetherion system. Dixons Technical will get it to you in Bath. or Newcastle, or Aberdeen Or anywhere.

Where necessary, they "ll get you the technical experts to install the equipment, and show
how best to use it
Dixons Technical may be in the big city, but their prices aren't Equipment is of the highest possible quality (all famous brand names), and is sold at the lowest possible pice. Hire purchase terms are more than fart. And should you prefer to rent, the longer you rent, the more economic it becomes

HART ELECTRONICS

In keeping with our policy of offering kits of parts for advanced audio projects to a standard which will please the constructor who is professionally engagedin the electronic industry and who is therefore used to the advanced standards of quality and designs used therein, we have pleasure in giving brief details of our latest projects.
The Bailey Pre-Amp., was published in 1966 and we have been supplying kits of parts for it since then. We have therefore an urparalleled length of experience on which to draw when adapting this unit to take advantage of new components which have become available to make our kit the best that has ever been offered. The new kit is easier to assemble, as there is little wiring, the controls, switches and input sockets are all mounted on the clearly marked fibreglass P.C.B.'s. The new kit is more versatile because it is split into two stereo units. The tone control unit with volume, Bass. Treble, Balance and Filter can be used on its own for 250 mV flat inputs and will give an output up to 2 V to drive most power amps. The front end unit has the input switch selecting Mag; PU, Cer: PU, Mic, Radio and Tape head inputs. Output 250 mV
The new kit performs better because the Tone control incorporates the Quilter Bootstrap circuit to give lower distortion at all control settings. The front end has the Burrows mod, for ceramic pickups and higher rumble cut-off with facilities to adjust the Tone balance and level to suit different makes of transducer. Switches have click suppression circuitry for ultimate refinement of operation.
Full details are in our lists
Our kits for the Stuart tape recorder have been built by Mr . Stuart and received his enthusiastic approval. This unit is an easy way to convert that ageing recorder with a good deck up to modern top flight standards. We stock heads for 2 or 4 track stereo and also for cassettes.

Reprints of the first and second articles are 15 p each, post free.
For free list, please send foolscap ($9 \times 4^{* \prime}$) s.a.e.
ALL U.K. ORDERS ARE POST FREE. OVERSEAS AT COST
PENYLAN MILL, MORDA, OSWESTRY, SALOP
Personal callers are always welcome, but please note we are closed all day Saturday

WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T, home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSE A NEW FUTURENOW!

How to make the

 digitronić solidstate digital clock using just 30 bits Full instructions in this month's issuefor versions with either four or six figures
And many other constructional features, including directions for making an electronic maze that will keep everyone amused for hours.

All in the March issue on sale Feb 2 - price 20p
PRAGYLCAL

$6^{\prime \prime} \times 5^{\prime \prime}$ transfer sheet of labels for audio equipment
Easy to apply and ideal for an impressively professional finish

TRANNIES
(Formerly C. R. Hadley Electronics). Telephone Harlow (02796) 3773

24 WOODHILL, HARLOW, ESSEX (No callers please)

	All	
${ }_{\text {ACl2 }}{ }^{\text {ACL2 }}$ (11p	${ }_{\text {ALLIO3 }}$	
	BCL108	${ }_{8 p}$
${ }_{\text {AFII }}{ }^{\text {a }}$	${ }^{8 C 1} 189$	${ }_{8 p}^{8 p}$
AFIIS ${ }^{\text {ap }}$	${ }_{\text {BCI }}$	${ }_{8 p}^{8 p_{p}}$
		${ }_{8 \mathrm{P}}^{8 \mathrm{p}}$
	${ }_{\text {BC2 }}$	${ }_{8 \text { 8p }}$

TRANSISTORS LOWEST PRICES Ring for bulk enquiries.

OC44	13p	TIP31A	58p
OC45	13 p	TIP32A	69p
OC71	12p	40636	55p
OC25	28p	2N2926G	10 p
OC28	30p	2N3053	20p
-C29	36p	2N3055	49p
OC35	28p	2N3702	Ifp
OC36	36p	2N3703	$11 p$

BARGAIN PACKS	
Plastic BCio9	$1{ }^{1 / 4001-2}$
(fully tested)	
5 seach	100 plus
Unmarked but	Minitron
fuliy tested.	7 segment indi-
${ }^{2 N} \mathbf{N} 2926 \mathrm{G}$	${ }_{\text {cator Type } 3015 \mathrm{~F}}$
5 p each	61.50 each
${ }_{\text {Unmarked }}^{\text {fully tested. }}$ but	Pack of 25
2N3055	IN4148
	-

TTL BARGAINS		
	${ }_{12 \mathrm{p}}^{12 \mathrm{p}}$	AND LOTS MO
	P	See our price
	${ }^{45}$	Also
7492	${ }^{60 p}$	Super New C

SLIDE SWITCHES

MINIATURE NEON LAMPS
109 mA . 230 v . or 110 v 5p each. 10 plus, 4p.

TheCCS2 gives you acool250watts.

Our CCS2 beam tetrode is especially easy to design into co-axial circuits. That's because we've designed a special beryllia ceramic flange which separates the heatsink from any active part of the envelope.

The alternative version, the CCSI, has an anode block, the face of which is bolted directly to the heatsink.

So, if you find air blowers an embarrassment to your design, get the facts on these conduction cooled beam tetrodes.

MODEL 8 MK. III

REPAIR SERVICE

 7-14 DAYSWe specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments.

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-069 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-070 FOR FURTHER DETALLS

Tel: 38757

take good care of

 your contacts with eiectroubeContact Lubricants Contact Cleaning Sirips Preclene
Also Silicone Grease, Freezer Printed Circuit Lacquer

CAFIEBMODULARSVKTEN

Comprising pre amplifier with 3 position switch to give:
(1) Flat response
(2) Roll off at 75 Hz
(3) Roll off at 150 Hz

The C451EB is for use with the CK9 gun attachment or the CK8 miniature gun attachment and various other cardioid and omni directional capsules;

Can al so be used with the special AK G cradle on Fisher \& Mole booms; and as a hand mike with a pop shield.

THE VERSATILE AND INEXPENSIVE C451 SYSTEM IS ONE OF THE MOST WIDELY USED IN OUR BROADCASTING AND TELEVISION INDUSTRY.

> AKE EEUIPMENT LTB. 1B2/4 Sampden Hill Road Kensington London VE 7 AS Telephone 01-2pe cest.

Citesulat
 TOTAL CAPABILITY IN SOLDERING

LITESOLD High
Quality Soldering Irons, 10 w to 60 w .

Pliers

De-Soldering Braid

Soldering Aids

Suction De-Soldering attachment.

Cutters

Tweezers

Send TODAY for CATALOGUE with full details of this and other equipment.

Low-cost, space-saving modules you can mix and interface for specific applications. Any single unit and its compact, single-hole mainframe offers good value. For only a few pounds more, the three-hole mainframe gives you extra room to grow, and extra flexibility. Here's an example of what you can do: Combine a ramp generator, function geneiator, and universal counter in in the 3 -hole mainframe. Using the intracompartment interface you can use the ramp generator to sweep the function generator, and monitor the output with the counter. Complete cost of this system is only £722-20 (Duty Paid).
The TM 500 has these plug-in functions available:
$550-\mathrm{MHz}$ digital counter
$100-\mathrm{MHz}$ digital counter
$100-\mathrm{MHz}$ universal counter
20-V single- or dual-tracking power supplies
1-MHz function generator
$10-\mu \mathrm{s}$ ramp generator
$50-\mathrm{MHz}$ pulse generator $1-\mathrm{MHz}$ RC Oscillator
Digital multimeter

Need a compact 3 -function system for your bench?
The TM 503 power module accepts any 3 plug-ins, i.e., digital multimeter, function generator, ramp generator, yet only occupies 6 by 8.7 by 15.3 inches on your bench.
Need a rack installation?
Mount one or two TM 503s in a rack, and get 3 or 6 functions in only $5 \frac{1}{4}$ inches of rack height. Compatible large-screen monitors available.

Need mobility?

The TM 501 accepts any single plug-in module for maximum carrying ease. The 203-3 Scope-Mobile ${ }^{\circledR}$ powers any 3 plug-ins, stores up to 4 more, and supports a scope or other instrument on its tilting platform.

NEED MORE INFORMATION?

SEND TODAY FOR FULL DETAILS -

TEKTRONIX®

Thick-film circuits (see p.121) are symbolized on the front cover which shows a microcircuit based on a DuPont composition.

In our next issue (publication date March 19)

Digital multimeter project. The series continues with an article describing in detail the circuit operation of the instrument. All circuit diagrams are included.
Magnetic tape survey demonstrates compatibility between different makes of tape, enabling recorder users to change brands without loss of quality and without having to try the tapes in their machines.

Contents

107 The Transistor and the Future
108 Digital Multimeter - 1 by D. E. O'N. Waddington
112 News of the Month
Electronic telephone exchange
Bipolar i.c. process IlI
Image processing robot
114 Surround-sound Circuits by G. B. Shorter
117 Conferences \& Exhibitions
118 Letters to the Editor
121 Hybrid Thick-film Circuits by G. Brooke \& W. E. B. Baldwin
125 Sixty Years Ago
126 Audio Magnetic Recorder Heads by B. Lane
129 Announcements
130 About People
131 The Realın of Microwaves - $\mathbf{2}$ by M. W. Hosking
134 H.F. Predictions
135 Industrial Electronics - 1 by R. Graham
136 Books Received
137 The Semiconductor Story - $\mathbf{3}$ by K. J. Dean \& G. White
141 Experiments with Operational Amplifiers - 8 by G. B. Clayton
142 Circuit Ideas
144 Evolution of the A.C. Mains Valve by J. H. Ludlow
149 Sonex '73
150 World of Amateur Radio
151 New Products
156 March Meetings
158 Literature Received
A90 APPOINTMENTS VACANT
Al08 INDEX TO ADVERTISERS
Circards see p. 129

We apologize for any indistinctness of printing in parts of this issue. This is due to lack of gas drying during the dispute in the gas industry.

ibpa

I.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
(C) I.P.C. Business Press Ltd, 1973

Brief extracts or commens are allowed provided acknowledgement to the journal is given.

[^0]
When Akai make them, they keep them

Some guarantees are worth little more than the paper they're printed on.
An Akai guarantee is as good as its word. Always.

Every Akai product carries a 1 year guarantee on all parts and labour. If a part fails we'll replace it free of charge. That's a promise.

Akai Glass and Crystal Ferrite Heads are guaranteed wear-free for life. If a GX head shows any signs of wear after normal use we'll replace it free of charge. We'll also be very surprised.

(we haven't made this one before.)
Akai now offer a 5 year guarantee on all motors in all their products. And if you have any idea what a motor costs, you'll know that's a guarantee worth having. All you have to do is pay for any labour costs involved - but if the motor fails in normal use during the first five years of its life, the new one's on us, absolutely free.

WW-077 FOR FURTHER DETAILS

Wireless World

The transistor and the future

During the week of February 12-16 the I.E.E. (in collaboration with the I.E.R.E.) has marked the 25th anniversary of the discovery of the transistor by a series of lectures. It included one by Dr. Walter Shockley who, with his two colleagues Drs. Bardeen and Brattain, jointly invented the device which has had such a profound effect on electronics technology and indeed on the everyday life of us all. The lecture was noteworthy for various reasons; never before has a lecturer in the hallowed walls of the Institution's lecture theatre entertained his hearers with one or two conjuring tricks during his talk and rarely has such documented detail of the day-to-day experiments which led up to the production of a particular device been presented. It was a memorable occasion but one felt that had it not been for the personal anecdotes it had all been said many times before.

Dr. Shockley, who is now professor of engineering science at Stanford University and executive consultant to Bell Telephone Laboratories, Murray Hill, where he carried out his early research work on the transistor, rightly dealt with the early history and left the present and the future to be covered by other speakers in the series of lectures. However, during a pre-lecture interview he was asked if he would speculate on the likelihood of a further major reduction in the size of transistors. To which he replied that he foresaw an increase in compactness by a factor of 10^{9}. He stated, in answer to a question, that the transistor's most significant contribution to his own life was his portable tape-recorder (Japanese, incidentally), which certainly appeared to be his vade-mecum.

The impact of the transistor on current technology is well known and it was, therefore, those papers among the commemoration series which looked into the future which were of particular interest.

As Professor W. E. J. Farvis, of Edinburgh University, said in his lecture "The influence of the transistor in our society and economy" the transistor has enabled us to effect circuit functions and operations in computing or control too complex to have been contemplated even a decade ago. It has also brought an increasing use of digital methods for achieving system functions and perhaps of even greater significance the building in of redundancy in equipment.

Germanium and silicon were the semiconductors from which the first and second generation of transistors came, but who can foretell what lies ahead with use of other materials as yet untried. Dr. Farvis pointed to the newer areas of opto-electronics and acousto-electronics adding "the scope of ingenuity in exploiting the electronic and physical properties of materials for the service of man seems boundless".

At the discussion meeting on "What next in semiconductors?" emphasis was laid upon materials and the various methods of processing them. R. A. Hilbourne (Mullard, Southampton) posed the question "where is l.s.i. leading us?". In the course of his contribution, having pointed out that the majority of l.s.i. circuits which have replaced non-electronics equipment have been designed by the i.c. maker, he asked "will the conventional electronic equipment makers wish to retain, in house, their circuit system design?". This brings us back to the question asked so many times before as to the role of the circuit designer of the future. Will he be, in fact, a systems engineer using l.s.i. circuit blocks?

1. Introduction and design criteria

by D. E. O'N. Waddington, mi.I.E.R.E.

The 3_{2}^{1}-digit electronic multimeter described in this and succeeding articles contains provisions for the measurement of voltage (alternating or direct, with polarity and a.c. indication), resistance, capacitance, frequency, period and time. The design has been kept as simple as possible and is so arranged that the constructor can build the complete instrument or include only the facilities he needs. Nevertheless, it must be pointed out that a large number of connections must be made and that the project is not suitable as a first exercise in construction.

A few years ago, a project such as building a digital multimeter would have been unthinkable for the home constructor, on the grounds of both cost and complexity. However, these objections have been reduced if not completely overcome by the availability of reasonably priced integrated circuits, which provide major building blocks and simplify the physical task of wiring the instrument.
The main problems to be resolved before this design could be started were what features to include and which of the many available techniques to use. In order to do this, it was necessary to examine desirable measuring capability, accuracy and display.

Desirable measuring capability

The difficulty here is not what to put in but what to leave out! The best plan is to list the measurements and then to delete those which are neither practical nor essential. Possible measurements are (a) voltagealternating and direct, (b) current-alternating and direct, (c) resistance, (d) capacitance, (e) inductance, (f) frequency, (g) period, and (h) time.
For most users, voltage measurement is of prime importance and justifies its place at the top of the list. Given a sensitive high impedance voltmeter, it is relatively simple 10 measure current by the use of suitable shunt resistors. However, current measurements frequently require that both the input terminals should be isolated from ground. For d.c. measurement this does not impose insuperable difficulties but, unless battery operation or sophisticated design techniques are employed, the isolation as far as alternating currents are concerned is likely to be very poor. For this reason, regretfully, current measurement was not provided. Passive components are not "naturals" for digital methods of measurement but, as a high input impedance voltmeter is available, it is easy to measure resistance with the aid of a constant-current source. Capacitance can also be measured relatively easily by
measuring the time required for the voltage across a capacitor, fed from a current source, to reach a predetermined value. Inductance is not so easy to measure and, as it is so seldom required, it was not considered essential.

Digital measuring instruments were originally developed for the measurement of frequency and time, so that it would be a pity to leave these out of a design of this sort, although their omission would/ not impair the performance of the voltmeter section. Having a particular interest in time measurement, 1 decided to include the counter/timer features in this instrument.

Accuracy, display

These are treated together as, for most people, "digital displays" is synonymous with "accurate displays". This is not necessarily true. Digital displays can give better resolution than their analogue counterparts but the accuracy of the measurement is limited by both the accuracy of the techniques used and the accuracy of the standards within the instrument. Furthermore, it is all too easy to specify an accuracy which is very much greater than is necessary simply because it can be obtained. A typical example of this is the operator who measures the gain of an audio amplifier at a frequency of $1000 \mathrm{~Hz} \pm 0.1 \mathrm{~Hz}$ simply because he has a frequency counter with a ten second gate!
Having these points in mind and adding to them the limitations of the home laboratory, I decided on a frequency, period and time measuring accuracy of the order of 1 part in 10^{5}, which can be obtained using a readily-available crystal, with no necessity for temperature control, as the frequency standard. Accurate voltage measurement is far more difficult so that it is likely that the accuracy achieved will lie between 5 parts in 10^{3} and 1 part in 10^{2}. With this sort of accuracy, the question of the display can be settled fairly easily. The use of a display with three significant digits will give a reso-
lution of 0.1% of full scale. While this is sufficient for most purposes, in practice it is uncomfortable because there will be no over lap between successive decade ranges. Thus I decided to include a fourth digit which is either one or zero, adding very little to the complexity. A display of this type is commonly known as a $3 \frac{1}{2}$ digit display, and does not prevent the full accuracy of the frequency counter from being realized as the count period can be switched to display whatever significant figures are required. For example, with an input frequency of $1,256,345 \mathrm{~Hz}$, a count period of one second will give a display of 0345 , while a count period of 1 millisecond will give a display of 1256. The ambiguity caused by the overlap i.e., the "zero" in 0345 and the "six" in the 1256 can be resolved by switching to an intermediate count period.

A further decision needed was on the type of presentation to use. Many digital counters use a display method which permits the figures to "roll" between successive readings. This is very tiring to use so 1 decided on a "non-blinking" display which uses a memory to store the answer between successive readings. This adds marginally to the cost but it gives a bonus in that it permits the use of the "dual ramp" technique for voltage measurement.
Having decided what features to include the next stage was to choose the configurations for the various measurements. In order to do this several building blocks are needed. These are:

1. Counter/display. This consists of the $3 \frac{1}{2}$ decade counter, memory, decoder and the display devices. It has three inputs: count, transfer and rese1. It also gives an output from the counter section to control the analogue measuring functions.
2. Control logic. This section includes the gating and pulse generating circuits necessary to route the inputs to the counter and to control the counter functions.
3. Master clock. This consists of a crystal oscillator and a frequency divider chain to provide the main timing for all the measurements.
4. Input wave shaper. This circuit is used, during frequency and period measurement, to convert the input signal into a form suitable for connecting to logic circuitry.
5. Timer control. This unit is used to start and stop the counter for time measurement.
6. Voltmeter. This unit consists of the high input impedance stage, the rectifier and the dual-ramp voltage-to-time converter used for voltage and resistance measurement.
7. Resistance and capacitance unit. This contains the current source used for resistance and capacitance measurement and the circuitry necessary to obtain a capacitance-to-time conversion.

This selection of sections is convenient as it is very easy to vary the function of the instrument by selecting the appropriate modules. For example, if only a frequency counter is wanted, Blocks 1, 2, 3 and 4 are the only ones which need be built. However, if a voltmeter only is required, it is a simple matter to choose the appropriate blocks.

Specification

The performance which can be achieved with this instrument will, of necessity, depend upon the accuracy of the components used rather than the techniques employed. The following specification should be regarded as a target for the performance.

Direct voltage :

Input resistance $11.1 \mathrm{M} \Omega$
Range $\quad 199.9 \mathrm{mV}$ to 199.9 V in 4 ranges.
Accuracy $\quad \pm 0.1 \%$ f.s.d. $\pm 0.2 \%$ of reading.
Automatic polarity indication.

Alternating voltage:

Input impedance $10 \mathrm{M} \Omega$ in parallel with 25 pF .
Ranges As d.v.
Measurement Average, calibrated r.m.s.

Accuracy $\quad \pm 0.1 \%$ f.s.d. $\pm 0.5 \%$ of reading.
Frequency range $50 \mathrm{~Hz}-10 \mathrm{kHz}$ $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 5 \%$
Automatic indication that the input is a.v.

Resistance:

Range $\quad 1.999 \mathrm{k} \Omega$ to $1.999 \mathrm{M} \Omega$ in 4 ranges.
Accuracy $\quad \pm 0.1 \%$ f.s.d. $\pm 0.5 \%$ of reading.
Capacitance:
Range
1999 pF to $1.999 \mu \mathrm{~F}$ in 4 ranges.
Accuracy $\quad \pm 0.1 \%$ f.s.d. $\pm 0.5 \%$ of reading.

Counter/Timer:

Frequency range 0 to 5 MHz
Period/Time
interval $\quad 20 \mu \mathrm{~s}$ minimum.
Accuracy \quad Frequency ± 1 part in $10^{5} \pm 1$ count.
Period $\pm 1 \% \pm 1$ count. Time interval ± 1 part in $10^{5} \pm 1$ count.
Input level Frequency/period 10 mV to 10 V .
Time interval d.t.l. input.
Impedance
frequency/period. $100 \mathrm{k} \Omega$ in parallel with 10 pF .
Gate times
$10 \mu \mathrm{~s}$ to 1 second.

Fig. 1. Frequency measuring system.

- M M WWWWYWOWV
(A)
(B)
(C)
(D)
(E)
(F)

Fig. 2. Period measuing system.

Frequency measurement

The signal whose frequency is to be measured is applied to the input of the wave shaping module in Fig. 1. This either amplifies and/or limits the input signal, depending on its amplitude, and then converts it into a rectangular wave form (A) having a peak-to-peak amplitude of 5 V .

The master clock frequency (B) has a period equal to the desired count duration. For example, if the count duration is to be 10 milliseconds, a frequency of 100 Hz will be selected. In order to open the count gate for the correct time, this clock frequency is divided by two (C) before it is applied to the count gate and also to the control pulse
circuit which generates the "store" (E) and "reset" (F) commands.
Assuming that the counter has been set to zero, the sequence of operation is as follows. The count gate is enabled for one clock period by the output of the divide-bytwo. This connects the shaped input waveform to the input of the counter so that it counts the number of cycles during one clock period. At the end of this period, the negative going edge of the timing signal (C) causes the pulse generator to generate two successive pulses. The first of these (E) commands the counter unit to "store" and display the state of the count section. The second (F) "resets" the count section to zero ready for the next cycle of operation. This process will then restart when the timing signal (C) goes positive once more. Thus the unit counts and updates the display on alternate clock periods and, with a constant input frequency, produces a steady reading.

Period measurement

The major difference between period and frequency measurement is that the roles of the clock generator and input wave-shaper are reversed as in Fig. 2. Instead of counting the number of input cycles during one clock period, the number of clock pulses during one input cycle is counted. As with frequency measurement, the input waveform is "squared up" (A) by the input wave shaper. It is then divided by two (B) and fed to the count gate and to the control pulse generator. The output from the clock generator is also fed to this gate so that, when it is enabled by the input, clock pulses (C) are fed to the counter. The "store", "display" and "reset" functions are the same as for frequency measurement. This period measurement facility has its main application at low frequencies where the normal counter would be very inaccurate. For example a frequency of 5 Hz measured using a one second count period could only be measured to an accuracy of ± 1 cycle or $\pm 20 \%$. By measuring period (200 ms), however, the accuracy could be very much improved. In practice the accuracy could be better than 0.1% provided that there was no noise present on the waveform to be measured. The main disadvantage of period measurement is that the result is the reciprocal of the required answer.

Time interval measurement

The only difference between the period and time measuring functions is that, whereas period is measured continuously on a cyclic basis, time is measured as the interval between two separately applied impulses, as shown by Fig. 3. To prevent the time information from being upset by contact bounce or other spurious inputs, the timer control circuit is arranged to work on a "one shot" basis so that it needs priming before each measurement.

Voltage measurement

The method of voltage measurement to be adopted occasioned considerable thought. Potentiometric methods were examined and rejected on several counts. They are not real:y compatible with frequency counters, for in addition to a reference voltage they

Fig. 3. Time interval measuring system.

Fig. 4. Dual-ramp voltmeter system.

require an accurate resistor chain together with accurate switches. In addition, unless a suitable low pass filter is included in series with the input, potentiometric methods tend to be noisy and to give erratic readings in the presence of 50 Hz interference. For these reasons, an integrating method was selected. Both voltage-to-frequency and voltage-totime conversion methods were examined and finally I decided to adopt the wellknown "dual ramp" voltmeter principle. ${ }^{1}$ This method has the advantage that the accuracy of the basic range theoretically depends only on the accuracy of the reference voltage. Actually this is not strictly true in practice as several other design points affect the accuracy. ${ }^{2}$ However, for a meter of this type, the reference accuracy is the major fàctor. Thē system works as follows:

At the beginning of the measurement cycle the capacitor C in Fig. 4 is fully discharged. The input to the integrator is connected to the unknown voltage so that the capacitor C begins to charge at a rate determined by this voltage and the resistor R. The charging is continued until the counter has counted 2000 (that is, for 20 milliseconds). At the end of this period, the voltage, V_{x}, across this capacitor will be

$$
\frac{1}{R C} \int_{0}^{t_{i}} V_{i n} d t \text { or } V_{x}=\frac{V_{\text {in }} T_{1}}{R C}
$$

The input to the integrator is then switched to the reference voltage $V_{\text {ref }}$ so that the capacitor discharges at a rate determined by the reference voltage and the resistor R. As this voltage is larger than the voltage to be measured, the charge on the capacitor de-
creases more rapidly than it built up and at a time T_{2} it will be zero

$$
\text { i.e. } \quad \begin{aligned}
0 & =V_{x}-\frac{1}{R C} \int_{i_{1}}^{t_{2}} V_{r e f} d t \\
& =V_{x}-\frac{V_{r e f} T_{2}}{R C}=\frac{V_{i n} T_{1}}{R C}-\frac{V_{r e f} T_{2}}{R C}
\end{aligned}
$$

thus

$$
\begin{aligned}
V_{\text {in }} T_{1} & =V_{\text {ref }} T_{2} \\
V_{\text {in }} & =\frac{T_{2}}{T_{1}} V_{\text {ref }} .
\end{aligned}
$$

The zero voltage condition is sensed by the comparator which causes the control logic to switch the input of the integrator to zero volts thus preventing any further change in the charge on the capacitor. At the same time, the control logic commands the counter to store the count. As has been shown above, the time displayed gives a direct measure of the input voltage in terms of the reference voltage. Thus, the reference voltage can be chosen to give a suitable basic range for the voltmeter. For example, with a reference voltage of 2 volts, the basic range will be 2 volts although it will only be possible to display 1.999 volts. The counter continues counting until it reaches the all zero state, when the measurement cycle is repeated. An incidental advantage of this method of measurement is that the choice of a measuring period of 20 milliseconds gives good rejection of 50 Hz interference (see Fig. 5).

Resistance measurement

The methods of measurement used in conventional moving coil multimeters are of no use here as the scale shape which results is non-linear and thus very inconvenient for digital display. Instead the method, shown in Fig. 6, is to pass a known current through the unknown resistor and to measure the voltage drop across it. In theory this method is ideal and I have no doubt that Georg Simon Ohm would approve. However, it does present some practical difficulties. Low resistances would need very high currents to develop sufficient voltage. It is difficult to establish the low currents necessary for high resistance measurement and high resistance measurements are necessarily made inaccurate by shunt resistance paths. Luckily, the majority of resistances to be measured in most electronics work lie in the range from 100 ohms to $100 \mathrm{k} \Omega$. This is the best range for this method of measurement and adequate accuracies can be obtained easily.

Capacitance measurement

Conventionally, capacitance is measured by bridge methods. While it is possible to arrange an auto-balance bridge system so that it can give an output suitable for applying to a digital readout, the circuits are likely to be complicated. An approach which, at first sight, appeared hopeful was the use of resonance techniques. Unfortunately they normally give an output frequency which is proportional to the reciprocal of the square root of the capacitance. This is a non-linear function and not easily applicable to a simple digital meter. In view of these diffi-
culties I decided to exploit the relationship:
or

$$
\begin{aligned}
Q=C V & =i t \\
C & =\frac{i t}{V} \\
C & =t(i \text { and } V \text { constant }) .
\end{aligned}
$$

This suggests that it is possible to measure capacitance in terms of the time required for the voltage drop across the capacitor, charged from a constant current source, to

Fig. 5. Integrator output when measuring a direct voltage with a superimposed 50 Hz signal. The area " A " cancels the area " B " so that the interfering signal is effectively rejected. This rejection also occurs at the other frequencies which have an integral number of cycles in 20 milliseconds.

Fig. 6. Resistance measuring system.
reach a predetermined level. The method of implementing this technique is illustrated in Fig. 7.

At the beginning of the measurement cycle, the capacitor under test is completely discharged. The shorting switch across the capacitor is then opened allowing the current from the constant current source to flow into the capacitor. This, in turn, causes the voltage across the capacitor to rise linearly with time. The comparator detects when the voltage across the capacitor equals the reference voltage and causes the control logic to send a "store" command to the counter thus displaying the time taken and, hence, the capacitance value. At the halfway point during the cycle, the switch is closed once more so that the capacitor is discharged ready for the next measurement cycle.
This method of measurement has two main shortcomings, both of which produce similar effects. Firstly, it cannot resolve the effects of leakage resistance. As leakage generally occurs in electrolytic capacitors, this method is not really suitable for measuring them. Accordingly the top range has been limited to $1.999 \mu \mathrm{~F}$. Secondly, very low currents, or very short periods are needed when measuring low values of capacitance. As a result, the lowest range was chosen to be 1999 picofarads giving a possibility of resolving one picofarad.
In the next section of this article, I will describe the circuits used to perform the measurements which I have discussed above.

REFERENCES

I. Schmid, H., "Digital meters for under $\$ 100$ " Electronics, November 28, 1966, p. 88.
2. Wheable, D., "Optimization of the Dual Ramp Voltmeter". The Radio and Electronic Engincer, Vol. 40. No. 2, August 1970, p. 59.

News of the Month

Electronic telephone exchanges for U.K.

The first equipment of Britain's initial 18 large electronic telephone exchanges is now being installed at the Rectory Exchange, Sutton Coldfield, Warwickshire. This follows the Post Office's decision that, in the modernization of the telephone network now proceeding, large electronic exchanges should be used alongside modern crossbar (electromechanical) equipment already being supplied to replace the old Strowger step-by-step equipment. The electronic exchange chosen is the TXE4 - an electronically controlled reed relay switching system - which has been developed by Standard Telephones and Cables for the Post Office as the design authority. By means of this, exchanges with initial capacities of 2000 lines can be extended in stages to a maximum of 40,000 lines. S.T.C. is now working on a $£ 15$ million contract to develop and supply 18 TXE4 exchanges, but later it is expected that other companies will also be brought in as manufacturers. Altogether the Post Office will spend about $£ 100$ million over a seven-year period on the introduction of this type of exchange.

The TXE4 is not fully electronic, in that the essential connections between the speech wire pairs of subscribers are made by reed relays arranged in a matrix switching system. The operation of these relays, however, is automatically controlled by electronic, solid-state, computer-like equipment working under programme control. Consider the analogy of a human switchboard operator using eyes, brain and hands in a manual exchange. The hands of the operator making connections are equivalent to the reed relay switching apparatus; the eyes of
the operator looking at indicators are equivalent to electronic scanning and storage equipment examining the state of the incoming lines to see whether calls are being made on them; while the brain of the operator is equivalent to electronic "control units" which identify calling subscribers, determine the connections required, select suitable routes through the network and finally operate the reed relays.

Programme control for the "brain" part - an ordered sequence of instructions which must be followed to set up each connection - is provided physically by a permanent wired programme. This consists of energizing wires running in various paths through an array of small ferrite cores carrying sensing windings. Each wire is energized in turn by having a current pulse passed through it, and this causes a particular combination of the cores to be magnetized - forming an instruction. Whichever pattern of cores is magnetized (the instruction) is read out by means of the sensing windings. In later electronic exchanges this wired programme wi!! be replaced by an alterable stored programme as used in digital computers.

Bipolar i.c. "Process III" in production

Plessey bipolar "Process III" for silicon integrated circuits is now in large scale production at the main Plessey Semiconductors plant at Cheney Manor, Swindon. The line of development taken has been thickness reduction of the epitaxial " layer and of the subsequent diffusions, to obtain the best possible performance and improved packing density, even though the complexity of the

One electronics unit of the TXE4 telephone exchange removed from its rack for inspection. In the case of failure a unit may be removed and replaced with no interruption of subscriber service.
process increases. Using Process III, the epitaxial layer is only four microns thick, while the emitter-base and base-collector junctions are, respectively, about $\frac{1}{4}$ and $\frac{1}{2}$ micron deep. This has resulted in transistors with f_{T} greater than 2 GHz , the sort of performance normally associated with discrete microwave transistors. In previous bipolar processes, the limits of both packing density and performance have been set by the depth of the diffusions. In the new Plessey process the limits are set by the process of photoengraving, i.e. by the wavelength of light used. Future improvements in packing density and performance will depend on developments such as the replacement of light in engraving by another agent. e.g. electrons, and by the replacement of diffusion for isolation by an improved technique. Reduction of the surface geometry will bring the necessity to reduce the junction depths and this may involve the application of ion implantation.

Initial application of the process has been for a range of counter and divider circuits which can operate at up to 1.2 GHz input. The divider range includes programmable dividers and b.c.d. output devices. Linear circuits have been produced including a $300 \mathrm{~V} / \mu \mathrm{s}$ slew rate operational amplifier and a squaring circuit which has a $0-200 \mathrm{MHz}$ operating bandwidth.

Microcircuit telephone coin mechanism

Long-distance calls from public telephone boxes could be made with much greater ease using an electronic coin operated mechanism developed by Associated Automation in collaboration with General Instrument Microelectronics. Key to the mechanism is a single m.o.s. microcircuit chip onto which has been packed all the logic, computing and signalling functions for the instrument. The logic unit, which has been designed and manufactured by General Instrument Microelectronics, calculates the charge as the call progresses and automatically debits this sum from a pre-charged coin store. On completion of the call unused coins are automatically refunded. By this method of operation, frantic meter feeding which can occur on long-distance or high-tariff calls is thus eliminated. Instead, a user can empty his pocket of any small change and insert the money into a single coin slot before dialling. The mechanism accepts coins of three specified denominations. These are mechanically sorted into storage chutes and unsuitable coins are automatically ejected.

Once the coins have entered the storage chutes the progress of the call is controlled entirely by the 24 -pin m.o.s. 1.s.i. microcircuit. This chip marshals over 16 input signals and controls the call through eight output pins. It has over 600 logic gates in three major logic blocks, a three register memory, an arithmetic unit, and a control logic circuit block which also incorporates a tone generator together with its associated timing circuitry.

Each chute is controlled by solenoid operated pins so that money held in store can be taken coin by coin. On entering the storage chute, coins roll over a microswitch, producing a signal which is routed to the equivalent storage register on the chip. An arithmetic unit then translates the numbers held in the three storage registers into a total credit amount. To accommodate different currencies the ratio between the three specified denominations can be altered and the tariff rate adjusted. In the U.K., for example, the Series 7000 could be set to accept $1 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins and the coin ratio of $1: 5: 10$ selected from the eight available.

Time control for recorded speech

"Varispeech" is a machine, marketed by F.W.O. Bauch Ltd, which can produce time compression or expansion of recorded speech without the frequency distortion which occurs if the recording and play-back speeds of normal tape recorders are altered. The operating principle is to convert the voice signal, which is recorded in analogue form on a cassette, to a digital equivalent. This signal is then converted to a second digital format with or without time compression or expansion. Re-conversion to analogue form restores the origin speech without loss of intelligibility or speaker identification. The recording medium is a standard audio tape cassette operating at $1 \frac{7}{8}$ i.p.s. and playback speed is variable from $\frac{1}{2}$ to $2 \frac{1}{2}$ times the original.

Visual image processing robot

A team of researchers at the University of Nottingham has developed a robot intended to carry out assembly functions in manufacturing industries. Following up the news item on a Hitachi image processing robot (December 1972), British development in this field is not lacking at all. Referring to the accompanying photograph, parts are presented on a back-illuminated platform (A) which is capable of being scanned by a vidicon system (B) through an aperture in the gripper turret (C). There are three linear axes X, Y and Z operated by stepping motors at speeds of up to 4000 steps per second. Two rotational axes are also operated by stepping motors, one of these being associated with the angular position of the image as presented to the TV camera. The actuator is mechanically coupled to three gripping mechanisms mounted on the turret which will assume the same angular mechanical displacement as the image, so that the device can sense the random orientation of any image placed on the viewing platform.

The image of the part to be handled is transmitted through the viewing station in the turret to the television camera tube. The video signal from the camera is then processed by a Honeywell DDP516

Visual image processing robot which has been developed at Nottingham University. Refer to the text for explanation of symbols and operation.
computer, which is programmed to the shape and angular disposition of the image in numerical form. The machine can be "taught" to recognize any basic shape by allowing it to view the part and then initiating a learning procedure. Thereafter, if a part is recognized, the machine is programmed to select the appropriate gripper and move towards the part which has been selected for manipulation to any pre-determined angular and linear position.

The Nottingham University development team will exhibit this machine at a conference on Industrial Robot Technology organized by the Universities of Nottingham and Birmingham and to be held at the University of Nottingham in the Department of Production Engineering and Production Management on 27th to 29th March.

Arabian telecommunications

A telecommunication complex, which will include a satellite earth station, is to be installed by Cable and Wireless Ltd in the United Arab Emirates in the Arabian Gulf. The earth station, which will be the tenth to be owned and operated by Cable and Wireless and its associates, will be built in Dubai, close to the border with Abu Dhabi. Cable and Wireless engineers will be responsible for the design, overall project control and acceptance testing of the installation. They will also operate and maintain it when it is in service. As well as the earth station, there will also be a modern international telephone switching centre and an automatic telex service is to be provided. The new earth station in

Dubai, which is due to be completed by the end of next year, will provide all forms of international telecommunication, including telephony, telegraph, telex, and facsimile transmission. High-speed data transmission facilities will also be available for the international interconnection of computer systems.

"Molniya" satellite launched

Another Molniya communication satellite has been launched in the Soviet Union. It is to be used in a long-range telegraphic radio communications system and for broadcasting Soviet Central Television programmes to points of the "Orbita" network in the Far North, Siberia, the Far East and Central Asia. The satellite was put into an elliptical orbit with a perigee of 470 km in the southern hemisphere and an apogee of $39,200 \mathrm{~km}$ in the northern hemisphere. Its period of revolution is 11 h 43 min , and the orbital inclination is 65 degrees. Apart from apparatus for transmitting television programmes and long-range multi-channel radio communications, the satellite is also carrying instruments of a control and measurement complex and systems of orientation and orbit correction.

Distance measuring equipment errors

A circular letter from the Civil Aviation Authority states that on infrequent occasions reports have been received from pilots that they have experienced faulty D.M.E. operation. These reports have
been received only from aircraft flying at low altitudes, generally below $1,000 \mathrm{ft}$, and at ranges of less than 20 miles from the D.M.E. beacon. The fault has taken the form of the indicated range being too high, or a failure to "lock-on" to the beacon. It seems possible that the reported errors may be caused by multi-path reflections due to surrounding terrain, but only in combination with certain aircraft attitudes and altitudes and, possibly, with some types of airborne equipment.

Physics Exhibition

The 57th annual Physics Exhibition will this year be held at Earls Court, which should make access easier for potential visitors who were discouraged by the trek out to Alexandra Palace in previous years. The exhibition will be open from 9-13th April, from 10.00 to 18.00 each day except on the 13 th when it will close at 17.00. Tickets of admission to the Physics Exhibition will also secure admission to Labex International, which is being held simultaneously on the ground floor of Earls Court. Further information about the Physics Exhibition is available from The Exhibitions Officer, The Institute of Physics, 47 Belgrave Square, London SW1 8QX.

Philip Berkeley Award

The British Kinematograph Sound and Television Society is proposing to make an annual award to mark the memory of a late vice-president, Philip R. Berkeley (see obituary notice, February issue, p.90). This award will be known as the "Philip Berkeley Award" and will be given for the most outstanding technical contribution in the field of television production in the United Kingdom. Final details will be announced in the BKS\&T Journal published in March.

Briefly

New 'speaker

Rumour has it that Quad are working on a new loudspeaker.

Last valves

The last of Eddystone Radio's valve receivers is being phased out of production in favour of a solid-state range of general purpose receivers.

Science fiction factory

This is an example of the state of the art in computer written science fiction epics, the author being a giant computer in Cleveland, Ohio. "The fury of the motors rocked the hill. The moon stared coldly down. Jackie Lukar spoke as the 'copter started. Matches; torches; all were needed. 'Switch on the disintegrator!' Vilma expostulated. Then screamed Oriath the immortal patriarch: 'Let there today be war within these planets" ". Brian Aldiss need not worry for a little while.

Surround-sound Circuits

Build your own matrix circuits using i.es

by Geoffrey Shorter

Whichever proposal is adopted for allround sound recording and reproduction, if indeed any one system is, it is a fact that in the U.K. the SQQ system is the one for which most records are presently available. And there are many people who are anxious to try them out, some of whom, with limited resources, may not wish to buy commercial SQ decoders for fear that the SQ system may not be standardized and with the consequence that a different decoder would be required.

Two circuits are given to enable constructors to build SQ decoders, one using all discrete components and the other including integrated circuits. If you wish to try out a simple matrix circuit for getting a surround-sound effect from stereo records a simple set-up is possible using a Toshiba integrated circuit. No doubt further i.cs will become available for other systems. One, made by Texas Instruments for Electro-Voice, is compatible with SQ and claimed to be compatible with discs encoded to other systems, but is still not made available outside the U.S.A.

The basis of the SQ system has been covered before in these pages but a resumé is not out of place. Sounds from a pairwise mixed four-channel master tape are coded into the left and right channels of a stereo disc according to

$$
\begin{aligned}
& L=L_{F}-0.707 j L_{B}+0.707 R_{B} \\
& R=R_{F}-0.707 L_{B}+0.707 i R_{B}
\end{aligned}
$$

where j indicates a phase difference of 90° between channels. These two signals are basically the inputs to the front speakers in playback and the two rear signals are derived from $j 0.707 L-0.707 R$ for the left back speaker and $0.707 L-j 0.707 R$ for the right back speaker.

These equations give rise to unique crosstalk properties (shown on page 56 February 1972 issue of $W . W$. for the four corners), with the feature of little or no crosstalk between the two front "channels" but with the particular penalty of infinite crosstalk for centre front and centre back positions with a "straight" SQ decoder. This makes localization of a centre front sound imprecise. (The simple diagrams of page 56 do not convey how accurately sounds are localized at the corners or other points around the compass.)

The essence of an $S Q$ decoder is shown in the block diagram of Fig. 1. As the j operator shown in the above equations indicates a relative phase difference of 90°, on playback the coded left and right

Fig.1. Basic decoder scheme for use with $S Q$ records.
channels are first passed through networks in which phase is an approximately linear function of frequency over most of the audio band. These same signals also pass through similar networks which give a linear phase-frequency response, but shifted in phase by 90°.

With such a decoder a sound intended to appear at centre front produces equal outputs from all four speakers. And although the rear sounds are in antiphase, they are going to interfere with centre front localization. To alleviate this situation, a certain amount of blending is arranged in some $S Q$ decoders between the two front outputs and the two rear outputs. This has the effect of cancelling some of the antiphase components of the signals, thus reducing the outputs from the rear speakers in the case of a centre front sound. The most common amounts of blend are 10% between front outputs and 40% between rear outputs. In such a decoder the gain of the back channels is reduced by ldB, giving a total front to back crosstalk of 7 dB . Front "channel" crosstalk is increased to 20 dB and back channel crosstalk increased to 8 dB .

A circuit of a $10-40$ blend decoder is shown in Fig. 2, which follows the scheme of Fig. 1. The 90° phase difference provided by these networks is accurate to within $\pm 10^{\circ}$ from 100 Hz to 10 kHz . The 68 and $47 \mathrm{k} \Omega$ resistors provide the relative gain of 0.7 between front and back, signal paths, and two transistors in the second stages of the phase difference networks provide inversion. (This circuit is used in many commercial SQ decoder units. Better phase difference networks are provided in some decoders, like the Lasky's Audiotronics decoder which gives a deviation of $\pm 10 \%$ over 20 Hz to 18 kHz .)

In constructing the circuit of Fig. 2,
resistor values should be $\frac{1}{4}$-watt, 5% tolerance types, and the eight capacitors in the phase-shift networks should be 10% tolerance. Recommended transistors are 2N3393, except for the output transistors which should be 2 N 3390 . (Both types are made by G-E and Siemens. Motorola have similar devices: MPS 3393 and MPS 6521 respectively.) Input impedance is $20 \mathrm{k} \Omega$, output impedance $1.8 \mathrm{k} \Omega$ and nominal input level 500 mV r.m.s., the circuit having unity gain. To convert to a high input impedance the upper and lower bias resistors can be changed to 3 and $1.8 \mathrm{M} \Omega$ respectively, using 2 N 5308 (G-E) input transistors.

Integrated circuits are now available from Motorola for this circuit at $£ 1.65$. Components need to be added, as indicated in Fig 3, and these should be within 5% tolerance to give a $\pm 8.5 \%$ deviation from the 90° norm between 100 Hz and 10 kHz . With a 20 V supply rail (maximum 30 V) consumption is 16 mA . For a nominal input of 500 mV distortion is 0.1%, clipping occurring at 2 V . Input impedance is $3 \mathrm{M} \Omega$. The blend resistors, shown in broken lines, should be $47 \mathrm{k} \Omega$ between the two front outputs and $7.5 \mathrm{k} \Omega$ between the two rear outputs for the 10-40 blend.

Another way of reducing unwanted
outputs from speakers is the gain control circuit given on page 597 of the December 1972 issue of W.W. Here a discrete component circuit was shown that provides automatic blend and consequent cancellation of antiphase components in the rear signals when a source appears at front centre. When $L+R>L-R$ some cancellation will occur and this also applies in the front "channels" when $L+R<L-R$. Whether this additional complexity is justified depends largely on the programme material. It is very effective for single sources, but multiple sources will defeat the circuit, suppress secondary sources, or cause odd time-varying effects.

Fig.2. Circuit of $S Q$ decoder used on some inexpensive decoders in which front outputs are blended by 10% and pack by 40%.

Fig.3. Integrated circuit for $S Q$ decoder. Add resistors of $47 \mathrm{k} \Omega$ for front pair and $7.5 \mathrm{k} \Omega$ for rear pair of outputs for '10-40' blend.

Fig.4. Circuit using i.cs to reduce crosstalk for simple sound sources.

If you wish to try it out chips will be shortly available from Motorola for this and a circuit is shown in Fig. 4, which feeds directly from Fig. 3 with the omission of the two blend resistors. The MC1314 includes the voltage-controlled amplifiers and the MC1315 provides the control voltages. As well as improving centre sounds at front the MC1315 includes circuitry to detect and attenuate unwanted outputs for corner signals.

Components in this circuit should be 5% tolerance in the phase shift networks (around pins 1, 4, 5, 9, 10, 13 on MC1312) and 10% otherwise, excepting electrolytic capacitors. The $5 \mathrm{k} \Omega$ volume control should have a semi-log law, and the balance controls, which give a 12 dB constant-power variation, should be linear. Front and rear balance controls can be "ganged" by connecting pins 1 and 15 on MC1314 and omitting one potentiometer.

If you want to omit volume and balance controls, connect pin 8 of MC1314 to a potential divider giving +6 V , and leave pins 1, 7 and 15 open-circuit.

The automatic action can be varied with the linear 10k Ω "dimension" control, which CBS recommend setting at 50%, giving a front-to-back crosstalk of 15 dB typically. Signal handling capability of the circuit is reduced at maximum setting unless $V_{C C}=30 \mathrm{~V}$ on the MC1314.

Surround-sound from stereo records

The other readily available i.c. is the Toshiba TA7117P. Phase difference circuits are not a part of this i.c., so the chip contains merely differential amplifiers, matrix circuit and output amplifiers. as indicated in Fig. 5. This chip is fine for getting surround-sound from ordinary stereo records. The two inputs are added and subtracted in varying proportions depending on choice of external resistors. The two added signals, $L+a R$ and $R+$ $b L$, feed two front amplifiers and speakers and the two subtracted signals, $L-C R$ and $R-d L$, feed the two rear amplifiers

Fig.5. Scheme of Toshiba matrix i.c.

Fig.6. Circuit for getting surround-sound from ordinary records and certain coded records.
and speakers. With such an arrangement the amount of front and rear crosstalk can be experimentally varied, keeping $a=b$ and $c=d$. With $a=b=0$ and $c=d=1$, this gives the equivalent of the simple speaker matrix (obtained with only two power amplifiers by connecting the two rear speakers in antiphase and across the "live" terminals of the two amplifiers, used frequently to enhance the ambience of stereo programmes).

This is not entirely satisfactory, one effect being an increase in apparent width of the stereophonic field. Considering a left-only signal, for instance, sound will emerge from the left front, the left back and right back (in antiphase) speakers, tending to pull the image round anticlockwise from left front. This is counteracted by blending the two front outputs (and in the interests of symmetry the back two). A good starting point is by choosing $a=b=c=d=0.414$, experimenting by varying $a=b$ and $c=d$. The circuit of Fig. 6 has resistor values chosen according to this value. The $18 \mathrm{k} \Omega$ resistors can be altered to a value of 7.3 divided by the crosstalk fraction required for the front speakers and 7.3 multiplied by the crosstalk fraction required for the rear speakers.

The circuit might give acceptable results for certain coded recordings like the early American Dynaco and Electro-Voice-encoded discs and some Japanese records. Coded QS/RM/Pye records should give acceptable results, but with all records there will be no precise back images and any sounds intended to come from the back speakers will be shifted round toward the nearest front speaker.

With the Toshiba i.c. current consumption is typically 16 mA at 15 V or 10 mA at 8 V . Input impedance is $3 \mathrm{M} \Omega$ With an input of 100 mV r.m.s. harmonic distortion is 0.1% (rising to 0.3% for 300 mV and 1% at IV). Price is $£ 1.67 *$ from Eric Electronics Ltd, South Denes, Great Yarmouth, Norfolk.

The Toshiba i.c. should give better results for the Pye QS/RM records than an SQ decoder. An SQ record played through the Toshiba i.c. would not reproduce intended sound directions from the rear speakers.
Quadraphonic two-channel records availatle in the U.K. total about 100 with around 70 SQ discs from CBS, 15 from EMI and $12 \mathrm{QS} / \mathrm{RM}$ discs from Pye. (Total for U.S.A. and Japan is at least 500.)
*Prior to any revaluation of the Yen.

Communications of the future

The core of a system which, when fully implemented, will transmit 300,000 telephone conversations or 200 colour television signals simultaneously through a 50 mm diameter waveguide "pipe", is now in operation at the Great Baddow Research Laboratories of GEC-Marconi Electronics.

The demand for U.K. communications capacity is rising at a rate of well over 10% each year, not only as a result of the increased use of telephone and telex services, but also because of the rapidly
increasing traffic in computer-derived data. The new circular waveguide offers the basis of a practical solution to the problem of high capacity communications for the future. It is capable of transmitting signals throughout the frequency band from about 32 to 110 GHz . For the field trials, transmitter and receiver equipment is being installed to provide several complete channels, each of $500 \mathrm{Mbit} / \mathrm{s}$ capacity and operating below 50 GHz , to carry either simulated or genuine pulse code modulation communication traffic.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Feb. 26-Mar. 2
Bloomsbury Centre

Seminex

(Evan Steadman and Partners, 4 Lyewood Common, Withyham, Hartfield, Sussex)

Mar. 13-15
Savoy Place
Satellite Systems for Mobile Communications and Surveillance
(I.E.E., Savoy Place, London WC2R 0BL)

Mar. 13-15
Bloomsbury Centre Hotel
Sound 73
(Assoc. of Public Address Engineers, 6 Conduit St, London WIR 9TG)

Mar. 22 \& 23
Royal Garden Hotel Man Made Memories
(Mrs. Rosemary Willson, Mercury House, Waterloo Road, London SE1)

Mar. 27-29
Imperial College
Ultrasonics International
(Ultrasonics, 32 High Street, Guildford, Surrey)
Mar. 28-Apr. I
Excelsior Hotel
Sonex Audio Exhibition
(Federation of British Audio, 31 Soho Sq., London wIV 5DG)

CARDIFF

Mar. 26-30 Sophia Gardens
Aimex 1973 (industrial measurement and control)
(Exhibitions Wales \& West Ltd, Holly House, Rhiwderin, Nr. Newport, Mon.)

OVERSEAS

Mar. 6-10 Basle
Medical Electronics and Bio-engineering
(Sekretariat MEDEX 73, CH-402 : Basel)
Mar. 6-10
Basle
INEL 73 - Industrial Electronics
(Sek.retariat INEL 73, CH-4021 Basel)
Mar. 19-23
San Francisco
Avionics Maintenance Conference
(Aeronautical Radio Inc., 2551 Riva Road. Annapolis. Maryland 21401 , U.S.A.)

Mar. 20-Apr. 5
Peking
British Industrial Technology Exhibition
(Tek Translation \& International Print, 11 Uxbridge Rd, London W 12 8LH)

Mar. 27-29
Chicago
International Coil-winding Convention and Exhibition (Electromation Exhibitions Ltd, Cleveland House, 344a Holdenhurst Road, Bournemouth. England.)

Apr. 2-7
Paris
Audiovisual and Communication Exhibition
Socrété pour la Diffusion des Sciences et des Arts, 14. rue de Presles, 75740 Paris)

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Quadraphonic controversy

So far, your excellent letters column appears to have avoided the great "discrete versus matrix quadraphonics" controversy. I would have thought that after the two highly informative articles by Geoffrey Shorter appearing last year on this subject (Jan. and Feb. 1972), everybody would appreciate the differences between the two systems, and nobody would be in any doubt as to which one produces genuine four-channel stereo. Furthermore, those who like myself were able to visit the London Audio Fair and compare demonstrations by all the fourchannel equipment manufacturers could make their own subjective evaluation of the two systems. As an electronics engineer, it seems to me that the discrete 4 -channel approach, as pioneered by JVC Nivico, is the truly elegant "engineering approach", whilst the matrix systems offered by other manufacturers are very second rate technical compromises. I am not alone in holding these opinions as well known quadra phonics experts, like Walter Carlos, have previously pointed out in depth the inadequacies of the matrix systems ("Moog Soundings", letter to Billboard, Aug. 1972).

Consequently, I was amazed to find, whilst reading the December 1972 "London Audio Fair Review", that under the section headed "Four-channel progress" not a mention was made of JVC's CD-4 equipment range. How can the reviewer justify a full seven paragraphs describing the products of no less than ten different inanufacturers of matrix equipment only, and claim to represent a fair assessment of progress in the four-channel field?

This would appear to be a somewhat biased view and could mislead those entering the world of quadraphonics into thinking that the matrix is the best solution when informed and unbiased opinion most definitely says otherwise.

H. B. Kendler,

London, W.I.

Our reporter writes:

The CD-4 four-channel disc system developed by the Victor Company of Japan was first reported by $W . W$. on page 487 of the October 1971 issue. The 1971 Audio Fair review referred readers back to the October report, no additional information being available. Developments were reported in the 1972 Sonex review and in "Letter from America" (both in May 1972) and in more detail in the September issue, page 424.

To reiterate our own words then, "the technical achievement is remarkable" and
the fact that we have devoted 1200 words to CD-4 and much more to matrix systems should not of course be taken to imply any comment as to the relative merits of the two! It is true that the 1972 Audio Fair report did not mention CD-4 but neither did it mention a host of other products that were not new. (The current CD-4 package was announced in the 1972 Sonex report.) The National demodulator in use was new, but there was no information available and to this day circuit diagrams have not been supplied (though we do now have half the circuit!)

Matrix systems for encoding pair-wise mixed four-channel master tapes onto two-channel discs have been dealt with in more detail for various reasons. Mixing four inputs into two and getting four outputs back leads to compromises in the commercial matrix systems, the particular compromises varying from system to system. And of course there is the great attraction of being able to use the existing stereo broadcasting system, record players and cheaper decoders. Hence more attention.

Then there is the question of whether four full-bandwidth audio channels are really needed for surround sound. Discs can be produced for three or four audio channels with the carrier channels having reduced bandwidth, with consequent improvement in noise and distortion and generally less stringent requirements in recording and playback. There is, for instance, a prototype carrier disc, called QMX, an augmentation of the two-channel BMX phasor matrix due to Duane Cooper and being developed by Nippon Columbia, that might make the future of CD-4 less certain.

Why praise horn loudspeakers?

Gilbert Telfer's letter in the February 1973 issue probably puzzles many readers readers who consider themselves to possess equipment of monitoring quality (having impeccable technical credentials), or possibly those who scorn allusions to extremely vibrant resounding "reedy quality" and a "glitter and gloss" effect as being laughably irrelevant to the field of modern loudspeaker technology.

However, over the last three years my experience has been such that I can only endorse Telfer's enthusiasm for horn loading. It can give a series of unique benefits throughout the audio frequency range. I suggest that what he calls "motor slip" may well be responsible for the unreal bass and mid-range that can still be heard even from systems employing specially
designed plastic cones; even though toneburst tests show delays and storage in the cone to be at a very low level. The correction afforded by even modest horn loading over a range in which the driver cone operates as a single piston is such that the transient response judged subjectively is markedly enhanced.

I also agree that "electronic crossovers" - by which I presume Telfer means standard electrical crossover networks are less than ideal. However they can be very carefully designed, and provided crossover regions do not lie in the mid-band region where the human ear is acutely sensitive to phase changes (so I believe) they may be a necessary expedient in producing a commercial system.

Finally I would like to say that I believe we may soon see the conventional steadystate interpretation of audio phenomena which gives a very imperfect definition of perfection - gradually give way to a less arrogant treatmen. Then perhaps our notions of musical realism will for the first time be properly ascounted for in engineering terms.
John Greenbank,
Lecson Audio Ltd,
St Ives,
Hunts.

Seeing in the dark

In reply to Mr Whitehead's letter in the January issue in which he asks for com ments, may I put forward some further considerations?

Mr Whitehead has correctly pointed out some of the changes in performance of the human eye and brain which occur at low light levels. As he says, the principal effects which occur without any conscious realization on our part are a reduction of acuity and a gradual change from normal colour vision to a monochrome or luminance-only appreciation of the scene. Both these effects occur subconsciously as the observer dark-adapts and he is therefore hardly aware that they are happening.

The situation in television is very different for two basic reasons. First, the average viewer watches television in a welllit room and therefore never dark-adapts; thus he retains normal acuity and colour vision regardless of the pictures presented by the television set. Secondly, the viewer is not usually interested in the fact that the scene the television camera is viewing may be poorly lit. A common case in point is a football match which may start in full daylight and end after dark in artificial lighting which may not be adequate to permit good pictures to be provided. The viewer expects to see good pictures in full detail and colour at all times and should not be expected to appreciate or allow for any deterioration in lighting. If he was actually at the football ground then it would be quite a different matter.

Under low-light conditions, the broadcaster may be forced to strike a compromise in which he partially sacrifices resolution, colour accuracy and contrast range in order
to maintain acceptable pictures with sufficient freedom from noise and cameratube lag effects. He avoids doing this, however, as much as possible, as the pictures so produced are easily recognized by the viewer as being below the normal standard.
J. R. Sanders,

B.B.C. Research Dept.,

Kingswood Warren,
Surrey.

Modular i.c. audio mixer

In their article in the December 1972 issue (p.564) J. H. Evans and P. Williams have pointed out that the main objections to using 741 operational amplifiers in low level audio circuits are the high noise level of the 741 compared to that of discrete transistors, and the cross-over distortion of the class-B output stage.

In the same issue (Letters p.575) D. R. S. Hedgeland describes an elegant solution to the noise problem by adding a discrete transistor input stage to the 741 .

The cross-over distortion can be eliminated by connecting a resistor, R, between the 741 output and one of the power supply rails. Then, for small signal voltages, the output current is always of the same sign, only half of the output stage is conducting, and so the 741 output stage behaves like a class- A emitter follower. The current through R should be considerably larger than the $60 \mu \mathrm{~A}$ quiescent current of the output transistors.

The diagram shows Mr Hedgeland's circuit with R added. The $15 \mathrm{k} \Omega$ resistor gives an offset current of $1 / \mu \mathrm{m} A$ which ensures class-A operation for outputs up to 2 V p-p into a load impedance (including the feedback network) of greater than 1 $\mathrm{k} \Omega$. For larger signals than this the percentage cross-over distortion is probably no longer significant. The low closed-loop output impedance of the operational amplifier prevents any power supply ripple voltage being transferred to the output by the added resistor.

The diagram also includes two further modifications to Mr Hedgeland's circuit.

First, a $1 \mathrm{k} \Omega$ resistor in series with the lnF frequency compensation capacitor
improves the stability by increasing the phase margin at frequencies above 160 kHz .

Secondly, the feedback components have been changed to give frequency break points of 51,480 and 2080 Hz which are closer to the recommended R.I.A.A. values of 50,500 and 2120 Hz than the 34,365 and 1870 Hz frequencies given by the original circuit.
M. L. G. Oldfield,

Department of Engineering Science, University of Oxford.

Loudspeaker parameters

I found the article "Loudspeaker Survey" by Mr Stanley Kelly in the November 1972 issue very useful. The chart relating reverberation time, room volume and acoustic power, at a sound pressure level of 104 dB , is particularly useful as a design aid. However, there are several points that I think merit clarification.

First, the graph in question refers to a sound pressure level of 104 dB in the reverberant field, i.e. beyond the critical distance, given by
$D_{c}=0.14 \sqrt{Q S \bar{a}}$
where D_{c} is the critical distance in feet, Q is the directivity factor of the speaker involved, and $S \vec{a}$ is the total absorption, in sabins, of the room surfaces. Between D_{c} and the speaker the sound level increases according to the inverse square law; +6 dB per halving of distance.

In a domestic living room D_{c} is typically a couple of feet, and so the point is somewhat academic. However, in an auditorium D_{c} is usually significant and must be allowed for in estimating the distribution of sound.

Second, the graph relating radiation angle and ratio of wavelength to piston diameter is only useful for cone loudspeakers if one knows how the effective diameter of the cone changes with frequency. It would be most helpful if one knew this, not only for estimating polar distribution but for the design of crossover networks.

Third, I am surprised that, with all the development work and consumer interest in high fidelity speaker systems, there has
been so little interest in the use of active crossover networks and separate power amplifiers for each speaker. (Altec Lansing in the United States - who refers to this as the Biamplifier approach - is the only manufacturer presently using this/system, to my knowledge.)

Several authors, writing in the Journal of the Audio Engineering Society, have pointed out that active crossover networks improve transient response. One would also expect - and the subjective results I obtained on my own system bear this out - that intermodulation distortion would also be reduced.

Finally, may I make a plea for more complete data from speaker manufacturers, particularly with respect to transducer efficiency? That the power handling capability of a speaker in an enclosure is 20 watts is of no use if one has no idea how much of that energy is converted into sound.

Peter D. Hiscocks,

Ryerson Polytechnical Institute,
Toronto.

The well-heeled amateur

Pat Hawker's tirade against those radio amateurs who like to buy the best radio equipment they can afford, many after spending years building their own, in January's "World of Amateur Radio" smacks of sour-grapes, as he writes that "some of us continue to find much interest in what are virtually 'junk box' stations". Let them so continue but don't try to condemn those who think differently. Surely this idea of his springs from recent letters in the Radio Society of Great Britain's monthly membership magazine Radio Communication when new and younger (?) members were told how they should enter and continue this absorbing hobby, as if they were old-time schoolshildren. Grandparents, let alone parents, know only too well how differently the younger generation view present-day prices and financial commitments generally with disdain - and go their own sweet way; that is what we amateurs who like to spend our money on our hobby will continue to do despite the preachers against it.

But what also troubles me is that this may now be the policy of the R.S.G.B., remembering that Pat Hawker is one of the three members of the Editorial Panel of Radio Communication and that one of our past presidents, Edward Ingram, GM6IZ, told "Peterborough" of the Daily Telegraph at our Diamond Jubilee Year Presidential Installation in London that "the most extravagant" of radio hams "have equipment costing as much as £6,000". Remember also that both Mr Hawker and Mr Ingram are or were professional radio engineers, and they must know only too well what their employers and their customers have to pay for commercial services and equipment, commencing prices that make the prices quoted against certain amateurs look like chicken feed.

I now await with dismay what to me will be the natural adverse reaction of the main advertisers in our magazine surely a goodly source of income - of the imported and, very little, U.K. manufactured equipment now so strongly decried.

Maybe my reaction is at fault, but I also await the reaction of the Editorial of the rival magazines.
R. F. G. Thurlow,

Wimblington,
Cambs.

Pat Hawker replies:

Come off it Richard, you are tilting at windmills! Wherever you may have read a tirade against buying the best equipment you can afford it was not in World of Amateur Radio or anything else I have ever written. The item "Hobby for the well-heeled?" reported the present position with some examples of prices, stated this was a matter that aroused strong feelings (evidently!) and contrasted it with the position some decades ago. It did not attack amateurs who buy equipment indeed this would be absurd since amateurs have been doing this to a greater or lesser extent since the hobby began.

So far as I am concerned if anyone wants to spend $£ 6000$ or $£ 60,000$ on a station - or hire a maintenance team to keep it in trim - that is his or her own affair. But it is my affair, in World of Amateur Radio, to report such trends.

I am puzzled (flattered?) to find myself somehow credited with representing or even forming "the policy of the R.S.G.B." My influence, if any, on the policy makers of Doughty Street hardly runs so high! As to advertisers, I feel they have more respect for the integrity of technical journals and journalists than Richard Thurlow suggests. Certainly over many years I have never consciously refrained from reporting matters of fact for fear of offending them - I hope I never will.

Personally I believe that an element of home-construction is an important part of the hobby and should be encouraged after all it is one of the best forms of "self-training" which is included in the international definition of Amateur Radio. Similarly I do not want youngsters put off from joining our ranks because of any feeling that only high-cost equipment produces worth-while results - do you Richard?

Audio pre-amplifiers

May I join in the discussion between Messrs Walker and Linsley Hood on the subject of distortion in low-noise amplifiers?

Mr Linsley Hood claims that series feedback can give more distortion than shunt feedback. He gives results from some experiments with a 741 operational amplifier which prove his point - where 741 s are concerned. The discussion is concerned with the behaviour of low-noise

Fig. 1

pre-amplifiers, and in particular the case where series feedback is applied to the emitter of the input transistor. A 741 has four transistors in the signal path between the two inputs, so the situation with this is not comparable. One doesn't use a 741 if one wants minimum noise, so experiments with a 741 are hardly relevant. The subject, in fact, seems to have become diverted somewhat. However, Mr Linsley Hood's results are certainly a warning to anyone using 741s in audio circuits.
Now Mr Linsley Hood has recently published a design (Hi-Fi News, November 1972) for a very low distortion amplifier and a pre-amplifier to go along with it (January 1973). The input stage of the pre-amplifier uses his "Liniac" circuit with shunt feedback. However, in the power amplifier (for which he gives the distortion as $<0.01 \%$) he uses series feedback. Surely this is good evidence that in the normal type of audio circuit with series feedback the effect he found with the 741 will be quite insignificant? My vote, I think, goes to Mr Walker's preamplifier circuit rather than Mr Linsley Hood's.
I would now like to change the subject to that of the pickup compensation which one should use. Mr Linsley Hood has observed (W.W., July 1969, p.310) that the pickup inductance will produce a top cut which has to be compensated somewhere. Compensation may possitly be provided to a greater or lesser degree by the manufacturer, but just what the
user should provide seems to be a bit hazy. However, the appropriate feedback network for compensating for the top cut is shown in Fig.1. I have a Shure V15-II, which is stated to have a resistance of 630Ω and an inductance of 720 mH . When loaded with the recommended $47 \mathrm{k} \Omega$ the inductance will produce a top cut with a break point of about 10 kHz . The network values to compensate for this are given for two cases: (A) assuming R.I.A.A. characteristic and (B) giving extended bass down to 25 Hz (as per Linsley Hood). I offer these as a suggestion: I haven't tried them. If there is any compensation already present, the result will be overcompensation. An advantage of this network will be reduction of high frequency loop gain, which will improve stability, and I observe that Mr Walker's circuit includes an extra resistor in the feedback network for just this purpose. The values I have given result in an impedance of $47 \mathrm{k} \Omega$ at 1 kHZ . They may be scaled to give any other impedance required and rounded off to convenient preferred values. Series and shunt arrangements using the network are shown in Fig.2. In the shunt arrangement, R_{3} is R_{4} plus the parallel combination of R_{5} and R_{6}. In the series arrangement it is R_{7} plus R_{g}. Stage gains are of course readily calculated.
J. E. A. Fison,

Harrogate,
Yorks.

	Component values	
	A (R.I.A.A.)	B (extended bass)
R_{1}	$24.0 \mathrm{k} \Omega$	$23.4 \mathrm{k} \Omega$
R_{2}	$352 \mathrm{k} \Omega$	$727 \mathrm{k} \Omega$
R_{3}	$7.73 \mathrm{k} \Omega$	$7.64 \mathrm{k} \Omega$
C_{1}	3.13 nF	3.21 nF
C_{2}	9.04 nF	8.75 nF

Fig. 2

Hybrid Thick-film Circuits
 Their design, application and manufacture

by G. Brooke,* Grad.I.E.R.E. and W. E. B. Baldwin,** M.I.E.E., M.I.E.R.E.

Thick-film circuits were first produced commercially about eight years ago, at a time when the range of monolithic integrated circuits was not so extensive as it is today and their power handling capabilities were smaller. Although today, monolithic circuits have been greatly extended in range and capabilities, there are many potential applications where the thick-film technique is more economic, quicker to produce and lechnically better if the circuits are designed to be compatible with the technology.

Some helpful notes on the criteria for choosing a circuit fabrication technique are given in Morton Topfer's book, ${ }^{1}$ but the actual technique adopted depends on the quantities involved. It can be said here that the thick-film technique incurs very low tooling costs relative to monolithic circuits and hence even sample quantities are not expensive; in quantity the price per unit is even lower and will generally level off at about the 2000 mark.
Other positive reasons for choosing thickfilm circuits are:
(a) they can cater for a wide range of C and R, and higher voltages.
(b) they are able to dissipate high powers without damaging the performance of the lower-power parts of the circuit.
(c) they are particularly suitable for analogue circuits where the range of monolithic integrated circuits does not match up to the demands of the great diversity of applications.
(d) they can be designed to fit exactly the customer's circuit without the necessity of trying to adapt standard circuits to produce the desired performance.
Conversely, as more designs are made, some standard circuits will become available in thick-film form, for example amplifiers and resistor networks.

All this is not to say that only one technique should be used for any given circuit to get the best all-round results. It is essential to keep an open mind and, if necessary, combine techniques; hence hybrid thickfilm microelectronics.

General construction

A hybrid thick-film module consists of a ceramic substrate on which is screen-printed conductor, resistor and dielectric inks

[^1]which, when fired at a very high temperature, form an almost indestructible electronic circuit. Various sizes of ceramics are used up to about 10 cm square, but the most common practical circuits are printed on standard sizes from 1 cm to 5 cm square. Resistors can easily be adjusted to give the required value and tolerance and hence the manufacturing yield can be very high. Even without trimming, a yield of better than 90% is achievable for a tolerance of less than $\pm 15 \%$; similar resistors will track within $\pm 2 \%$.
One of the big attractions of thick-film circuits is in their ease of handling: conformal coating or dipping, shown in Fig. 1, often gives sufficient protection for even a very stringent requirement, while the printed conductors accept soft solder very easily so that tinned leads or pins are attached without much difficulty. Figure 2 shows one such moulded assembly-one section of a radio paging device. In special cases more protection is necessary and then hermeti-cally-sealed cans are used as in Fig. 3.
Attached to the thick-film circuits will be the discrete components, such as transistors, silicon integrated circuits, high or special performance capacitors and miniature coils. These will either be in "chip" form or microminiature protected packages, and the range of these is continually increasing. The use of silicon transistors is essential because of the subsequent processing temperatures.

Hybrid module design

The manufacturing designer of a hybrid thick-film module will have a wide knowledge of the many different technologies that are used in their construction, covering electronics, mechanics and chemical processes, but the potential customer may be unaware of the many practical details that have to be clearly defined before even a preliminary design can be outlined. Therefore each of the component parts and technologies will be described.

The component that forms the basis of the module is the thick-film circuit. This consists of a flat slice of high-alumina ceramic, either 0.6 mm or 1 mm thick, on which is screen-printed the patterns forming the conductors, resistors and capacitors. The actual pattern that is applied to the fire-mesh stainless steel screen has first been drawn many times full size and then

Fig. 1. Typical examples of conformal (dipped) coating applied to single-line edge-pin packages.

Fig. 2. A moulded package, in three stages of construction.

Fig. 3. A thick-film circuit before encapsulation in a hermetically-sealed can.
reduced photographically. Each layer of ink will have its own screen but all have to be reproduced carefully so that the final printed patterns will match and register with one another.

For each screen, a special ink will be specified: for conductors a palladium silver ink together with an organic binder can be used and will give a typical fired resistance of about 0.03 ohm per square. For a lower conductor resistance an ink consisting of gold or gold alloy is available and this gives a conductor resistance of about $0.005 \mathrm{ohm} /$ square. There are many other metal combinations on the market and their use will depend on particular circuit requirements. Solder coating is often used to reduce conductor resistance.

After the conductor is printed and fired, the second screen may be a resistor pattern. Once again a specially-formulated ink is used that will produce a sheet resistance from about $10 \mathrm{ohms} / \mathrm{sq}$ to at least 10 megohms/sq, depending on the particular composition and firing temperature as in Table 1. It is from a knowledge of the precise sheet resistance for a given ink, printer and firing furnace that the length and width of the resistor elements can be determined.

Similarly, other inks can be used to produce dielectrics for capacitors, insulators for crossovers and protection glazes (Fig. 4). The range of inks available is now very extensive but each ink may have a special characteristic, such as temperature coefficient, noise factor, stability, etc., The potential user will be advised by the particular thick-film manufacturer that he approaches on the sort of characteristics that he can be offered. Generally speaking, each manufacturer adopts one or, at the most, two ranges of inks: this is because the cost of stocking say 200 g of ink is about $£ 300$ and there may be at least 12 inks required in each range. Of course, this would be sufficient to produce at least 20,000 one-inch square circuits. Figure 5 shows a typical resistor test pattern and a customer can often obtain such a sample from the manufacturer on which he can carry out evaluation tests.
After all the layers of inks have been printed and fired, the next process is usually the trimming of the resistors. Normally the resistors will be within $\pm 15 \%$ of their designed value despite the very many variables in the printing and firing processes. To bring each resistor to a closer tolerance, a trimming process is carried out which usually consists of cutting away the width of the resistor by an abrasive powder, thereby increasing its value. The process is now an automatic one and an adjustment to better than $\pm 1 \%$ can easily be made at little extra cost.

Attached components

To make a complete functional circuit, other components will be required and these will have to be attached to the thickfilm circuit. Transistors and, quite often, capacitors, particularly large values, are now produced specially for this type of module construction. Transistors may be in the micro-package form shown in Fig. 6, but more manufacturers are now attaching

Fig. 4. The layout of a resistor, conductors and capacitor.

TABLE 1
Characteristics of resistor inks.

Resistor element characteristics	
Parameter	Value
Standard range	0.5Ω to $50 \mathrm{M} \Omega$
Tolerance	Initially $\pm 5 \% / \pm 15 \%$
	dependent on size and
	$\pm 0.1 \%$ by individual
	adjustment
	Within the range -100 to
Temperature	+330 p.p.m. $/{ }^{\circ} \mathrm{C}$
coefficient	0.4% to 2% at $150^{\circ} \mathrm{C}$
Stability	2.000 hours test
	4 W per in in^{2} at $25^{\circ} \mathrm{C}$
Substrate dissipation	
	$\left(600 \mathrm{~mW}\right.$ per $\mathrm{cm} \mathrm{m}^{2}$ at $25^{\circ} \mathrm{C}$)
	in free air substrate
	temperature $165^{\circ} \mathrm{C}$
	$30 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per in
Derating factor	$\left(5 \mathrm{~mW} / /^{\circ} \mathrm{C}\right.$ per $\left.\mathrm{cm}^{2}\right)$
	$60 \mathrm{~W} / \mathrm{in}^{2}\left(9 \mathrm{~W} / \mathrm{cm}^{2}\right)$
Resistor dissipation	
(in free air)	

Fig. 5. Resistor test pattern.

All dimensions in mm
Fig. 6. Micro-package transistor.

TABLE 2
Typical microminiature devices for hybrid thick-film circuits, packaged as in Fig. 6.

Type no.	Construction Technique			Maximum Ratings				$h_{\text {FE }}$ at		I_{C}	\boldsymbol{f}_{T}
			$V_{\text {cbo }}$	$V_{\text {CEO }}$	$l_{\text {Clav) }}$	T_{j}	$P_{t o t}$	\min.	max		min.
			(V)	(V)	(mA)	$\left({ }^{\circ} \mathrm{C}\right)$	(mW)			(mA)	(MHz)
BCW31R								110	220		
BCW32R	Y1	PE	30	20	50	125	150	200	450	2.0	300
BCW33R								420	800		
BCW71R	Y1	PE	50	45	50	125	150	110	220	2.0	
BCW72R	Y	PE	50	45	50	125	150	200	450	2.0	300
BFS97R	Y1	PE	30	15	25	125	150	25	150	2.0	1200
BFS20R	Y1	PE	30	20	25	125	150	40	-	7.0	250
BSV52R	Y1	PE	20	12	50	125	150	40	120	10	400

the basic silicon chip directly to the circuit. The advantage of the former is that a completely tested transistor can be put on to the circuit whereas the full test cannot be carried out on a chip transistor until after it has been bonded and sealed to the circuit. The range of micro-package transistors is relatively limited at the moment (Table 2) but more or less any silicon chip transistor, diode or s.c.r. can be bonded directly to the circuit.

The attachment of silicon integrated devices to a thick-film circuit is possible but a similar problem to that of transistors exists when it comes to testing. The use of a chip i.c. means that the complete function of the i.c. cannot be fully checked prior to attachment and bonding of the wires, and the resultant yield of good thick-film circuits will be lower. For many applications it is usually better to use a standard dual-in-line package i.c. and mount it alongside the associated thick-film circuit that contains
the remainder of the components. For initial evaluation of a circuit, this is the most economic way and it would only be necessary to include the device within the thick-film substrate if space was a critical factor.

Chip capacitors can be obtained in either a general purpose characteristic from about 200 pF to $100,000 \mathrm{pF}$ or as an NP0 type from 1 pF to about 400 pF . A typical set of characteristics from one manufacturer is shown in Table 3. If printed capacitors are used, general purpose and NP0 types are available and the area required can be calculated from a typical $20,000 \mathrm{pF} / \mathrm{sq}$. inch and $2,000 \mathrm{pF} / \mathrm{sq}$. inch respectively. The breakdown voltage is usually more than 200 volts but unlike chip capacitors this cannot be determined until the whole circuit is fired and sealed.
Very large values of capacitance can only be obtained by using tantalum components, but these are, at the moment, rather expen-
sive compared with standard lypes, and it is advisable to mount these outside the module if possible.

For a quick production turn-round, a manufacturer would have to carry a very large stock of transistors and capacitors in order to accommodate all the different characteristics and tolerances that a customer may require. It is therefore very important that, where possible, standard types and values are specified with the widest possible tolerance. With closetolerance resistors easily achievable, it is often possible to widen the associated capacitance tolerance

Ceramic substrate

The actual material used for the ceramic substrate is 96% alumina and is suitable for most general applications. It may be necessary to use a special grade where applications in the u.h.f. and microwave regions are considered. There are many standard sizes of ceramics available and usually each thick-film circuit manufacturer has had special tooling made to give him a further standard size. It is once again important for economic reasons to design a circuit around one of the standards which in turn usually determines the method of the pin or leadframe attachment.

For specially-shaped substrates a tooling cost of $£ 300-£ 400$ is usual with a delay of 12 to 16 weeks. A special shape may require new assembly jigs which will add to the total cost. For very small sample quantities, it is possible to diamond cut standard substrates to the special size but this is not easy and should be avoided il possible.

The power dissipation depends primarily on the thermal conductivity of the ceramic and to a lesser extent on the overall package configuration. A typical figure for this is 3 watts/sq. inch, although the dissipation of the resistive elements may be as much as 60 watts/sq. inch. For most applications, if care is taken with the encapsulation and package design, 3 watts/sq. inch is adequate. The use of a higher thermal conductivity ceramic such as beryllia is possible but the advantages are small compared with the extra cost and the very severe health hazard that ensues if abrasive trimming of resistors is adopted

Package design

The packaging and encapsulation of hybrid circuits usually presents the most difficult problems of all which, unfortunately, are often only considered when the electronic circuit has been designed. The method of lead termination, the materials for the encapsulation and the general construction of the package requires a considerable development time. Each manufacturer will have carried out these tests and will be able to offer a fully proven package. Two basic forms have evolved: the multi-pin, dual-inline arrangement (Fig. 7) and the single-line edge pin arrangement (Fig. 1).

In either case, the pins may be round or rectangular in section, soldered to the conductor pads in the form of a lead frame (Fig. 8) or round pins inserted through holes in the ceramic and bonded to the pads (Fig. 9). Whichever method is adopted it is

TABLE 3 Characteristics of chip capacitors.
General capacitor specifications
Capacitance range: 1.0 to $470,000 \mathrm{pF}$
Tempersture range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature characteristics: A (NPO) 0 ± 30 p.p.m. $/{ }^{\circ} \mathrm{C}$ at 0 and rated valtage
X (Gen. Purpose) : $\pm 15 \%$ at OV d.c. and $+15 \%-25 \%$ at rated voltage
Voltage ratings: 50 V d.c. at $125^{\circ} \mathrm{C}$
100 V d.c at $85^{\circ} \mathrm{C}$
(other voltage ratings available on request)
Capacitance tolerances: $\mathrm{D}= \pm 0.5 \mathrm{pF}$ (1.0-9.1pF only) $K= \pm 10 \% M= \pm 20 \%$

Dissipation factor: at $25^{\circ} \mathrm{C}$ at $1 \mathrm{Vrm.s}$. at 1 kHz NPO: $0.1 \%($ Typical Q value $=2000)$ Gen. Purpose: 2.5\%
Insulation resistance at $25^{\circ} \mathrm{C}$ and rated voltage: $1000 \mathrm{M} \Omega \mu \mathrm{F}$ or $100,000 \mathrm{M} \Omega$, whichever is less
Note: Other capacitance values can be obtained.
important that the final encapsulation should provide a further mechanical support to the pin.

The cheaper form of encapsulation is where the completely assembled and tested circuit is dip coated in an epoxy resin, giving it a conformal coat, and is perfectly adequate for most commercial applications. For the most exacting environmental requirements, the welded metal can incorporating glass-to-metal seals may have to be used, but the cost of this can be many times the actual value of the complete hybrid thick-film circuit that will be inside.

Design guide

Most manufacturers now produce their own brief design guides giving the characteristics of the inks, transistors and capacitors that they can supply. But in order to get the best possible design and cost the potential user must be familiar with all the parameters that need to be given to the manufacturer and should have designed the circuit with these in mind. To translate many conventional circuits to thick-film on a 1 to 1 basis is not easy and often creates severe problems such as crossovers and the subsequent stray capacitances. One particular factor that is often overlooked is the thick-film conductor resistance which in conventional wiring or copper p.c.b. Wiring can be ignored. The length and width of the conductor becomes just as important as the actual resistors and exact information on the peak currents must be specified. The thick-film conductors are capable of carrying about 0.7 A per millimetre width ol track.

The manufacturer will require all the circuit parameters in exact values from which he can make necessary calculations and then add safety factors. Such parameters are: value, tolerance, temperature coefficient, noise factor, power (peak and mean), current (peak and mean), voltage, tracking tolerances, temperature range and, most important, the driving and load circuits. The mechanical parameters such as package size, pin arrangements and connections have to be specified before the design can start. Obviously the customer should give as much freedom in layout arrangement as possible so that the simplest construction can be achieved. Fig. 10 shows typical dimensions for the thick-film circuit that one must comply with to ensure satis-

Fig. 7. A typical dual-in-line nackage before encapsulation.

Fig. 8. Dual-in-line flat pins soldered to the thick-film conductors.

Fig. 9. Round-section pins inserted through holes in the substrate and conductor pattern.
factory registration, insulation and power dissipation.

An important factor that is unique to any particular circuit is the testing requirements. This information is broken down to give the specification for the intermediate stage testing, which means that the manufacturing designer musi know in delail how the

Fig. 11. A switch wafer with thick-film circuit.

Fig. 12. A typical industrial circuit. The small slots in the resistors are the result of trimming.

Fig. 13. Circuit incorporating cross-overs.
customer's circuit really works. This often means that a lot of confidential information has to be handed over by the customer.

A further factor that affects the manufacturing cost is the test gear that is required for the final as well as the stage by stage testing. Some sort of plug-in programmecard system is often adopted which means that the circuit layout will have to conform with certain standards. It is only when the more critical aspects of circuits are considered, such as high frequency and low signal level, that special test gear will have to be made and hence add to the cost of the final circuit.

It will be apparent that, because of the many details that have to be specified by the customer to the manufacturer, a very good working relationship must be established between them, for the latter can often give immediate solutions to some of the customer's problems and so make a great saving in cost. There are now more than a dozen hybrid thick-film module manufacturers in Britain who are well established and can offer a well-designed and reliable product. Generally they also tend to specialize in a particular type of application or quantity and hence have special tooling available. But by the very nature of the hybrid technology, most manufacturers can make and supply sample quantities or many thousands of a given circuit at a very competitive price.

There are currently three forms of hybrid circuit manufacturing technique available for incorporation in equipment, and their relative performance is summarized in Table 4.

Applications

In a short article, it is only possible to mention a few of the many applications that this technology is most suited to. They range from television line-scan circuits and high power audio stages to large computers such as the IBM 360. In the automobile industry this technique is most suited to applications such as alternator regulators, and there will in the future be a need for fuel and ignition systems, road warning sensors, collision avoidance, pollution control, speed and braking control.

Some designers become over-concerned with the need for smallness: the continuing need for controls which can be operated by human beings means that rotary switches are still common and it is sometimes possible to use the substrate as the wafer switch and print the other components around the edge, as in Fig. 11.

There are many diverse applications in industrial control and communications equipment and Fig. 12 shows an industrial circuit with a good resistor layout pcrmitting easy trimming. A more complicated circuit incorporating insulated cross-overs, is shown in Fig. 13. Note the good registration of the conductors printed adjacent to the lead-pin holes. The hard-wearing and low noise properties of some of the modern fired-resistor inks make them suitable for potentiometer tracks: Fig. 14 shows the variable element used as part of a resistive network in a focus control module for colour television. Because of the high dissipation properties of fired-resistor inks,

Fig. 14. The thick-film track of a potentiometer.

Fig. 15. Thick-film bi-metal heating elements.
use can be made of them to produce a heating element for bimetal switch control used in domestic cookers, street lighting control and "White" electricity meter timeswitches (Fig. 15). Fig. 16 shows a capacitor matrix code substrate.

Today it is quite practical to consider the use of this technology for high-frequency applications and some manufacturers will gladly accept designs for frequencies up to about 150 MHz , as illustrated by the v.h.f. amplifier in Fig. 17. U.h.f. and microwave applications are possible but these are, at the moment, still in the development stage and can be rather too expensive for all but military projects. This is not the area of application that the new customer for the thick-film technology should contemplate.

Conclusion

The brief description of the hybrid thickfilm technology that we have given is intended to give encouragement and help to the equipment builders who have yet to adopt this form of component and circuit construction. There have been many years of experience gained in its use, and the resultant reliability and exciting new applications of it that are only now being investigated mean that the future is assured for this technology. We are convinced that this will be still essential and popular well after the turn of the century.

The change-over by an equipment builder from the use of conventional circuit component construction to an integrated form such as the thick-film technique is a very serious and critical move and could mean ultimately considerable changes in space, staff and technical control, but the overall advantages will certainly give an economic. advantage over his more reluctant competitor.

Fig. 16. Matrix of capacitors, using the substrate as dielectric. Counter-electrodes are on the reverse side.

Fig. 17. A thick-film v.h.f. amplifier.

Thanks are gratefully given to the following manufacturer's for permission to publish information and photographs of their products:
Beckman Insiruments Ltd.
Du Pont Lid.
E.M.I. Electronics Lid.

Erie Electronics Ltd.
Hafo Ltd, Vällingby, Sweden.
M.C.P. Electronics Ltd.

Mullard Ltd.
Newmarket Ltd
Vitramon Lid

References

1. "Thick Film Microelectronics" by M. L. Topfer, Van Nostrand, 1971.
2. "Hybrid Thick-film Microelectronic Design and Manufacture": NEPCON 1970.

Sixty Years Ago

While discussing the intended use of wireless telegraphy on Captain Roald Amundsen's Polar Expedition in 1913, The Marconigraph mused in its March "Monthly Misceilany" column that such equipment would, perhaps, have saved the members of Captain Scott's ill-fated Antarctic Expedition. It went on to say: "In Polar exploration, of course, the minimum of weight is essential. One of the lightest types of wireless equipment made is of the "Knapsack" type for conveyance by hand. The total gross weight of the complete "station" is only 861 bs . It can be erected in six minutes by four men, and has an approximate maximum range of twelve miles. It will be highly interesting to note from Captain Amundsen's experience with his wireless equipped sledges what future radiotelegraphy has in Polar exploration."

Audio Magnetic Recorder Heads

Modern design and production technologies

by Basil Lane*

Abstract

Magnetic recording has now become an important part of broadcasting and the communications industry, as well as forming a component of increasing popularity in the home high-fidelity system. The electroacoustic performance of the tape recorder is governed by a complex relationship between the record/ playback heads on the one hand and the tape on the other. This article explores those design parameters in tape heads which govern this final performance, and gives some details of the interesting new production techniques employed, leaving the subject of tape to a survey to be published next month.

The essential features of magnetic heads for tape recorders have not changed from the early days of recording, and consist in elemental form of a circuit of high permeability "soft" magnetic material with one or two gaps and wound with one or more coils. Typical of the various commercial realizations of this basic form are the heads illustrated in Fig. 1, which could be either recording or replay heads. In general a magnetic head for audio applications requires an operational bandwidth on record from about 15 Hz to 300 kHz and on replay from the same low frequency point to at least 20 kHz . The design and construction of heads for the two functions are similar, any small differences being incorporated to improve the efficiency of either the record or

* Assistant Editor, Wireless World
playback functions. Naturally, where the head combines both record and replay functions, there is some conflict which requires a compromise solution and the nature of these will vary from manufacturer to manufacturer.

To appreciate some of the diversification in manufacturing technique a brief examination of the fundamental principles is necessary. The prime function in the recording process is to produce a remanent magnetization in the tape which is a linear representation of the signal current flowing in the coil. Since remanent flux is an inherently nonlinear representation of the magnetizing flux, h.f. bias is used to minimize the distortion and improve the sensitivity of the tape. Obviously the conversion of the signal currents into a magnetizing field must also be a linear process and in any
recording head design this factor needs to be taken into account.

Design fundamentals

Taking the basic structure of the record head (Fig.2), the magnetic circuit consists of a core and pole pieces sometimes made in one, the permeability of which needs to be high over the whole bandwidth mentioned. It also includes a front gap of high reluctance designed to produce not only the maximum magnetic field gradient, but also a flux distribution normal to the tape surface that ensures adequate penetration of the coating thick ness. Linearity within the head itself is ensured by two factors, first the selection of a core and pole piece material with a high saturation intensity of magnetization, and second by the introduction of a second, rear, gap in the magnetic circuit. Using such a feature is less desirable, since it obviously reduces the magnetizing field at the front gap and, in fact, the rear gap rarely appears as a feature of modern recording heads. The design of the front gap and pole pieces is of fundamental importance and Daniel ${ }^{1}$ outlines the laws governing these physical parameters. The length of the gap, l, has to be chosen as something of a compromise between the rule of thumb that requires it to be

(b)

Fig. 1. (a) Bogen metal laminated head. (b) Transverse laminations used in a head bv Woelke Magnetobandtechnik. (c) Ferrite head as made bv Sonv.

Fig. 2. Typical magnetic circuit for a tape head.
at least equal to the depth of oxide coating on the tape, and the need to keep the total reluctance of the magnetic circuit within reasonable bounds thus avoiding high magnetizing currents in the head coils. Figs. 3 and 4 show the differences in electroacoustic performance for two record gap lengths, first $10 \mu \mathrm{~m}$ and in Fig. 4, $20 \mu \mathrm{~m}$.

Since one of the objectives in the design of a record head is to ensure that the largest part of the reluctance of the magnetic circuit appears at the record gap, the gap depth, g, can also be of great importance. In general, the smaller the gap depth, the greater is the sensitivity of the head. However, too small a gap depth can give rise to a secondary difficulty, that of pole tip saturation.

During the record process, any one element of the tape is subjected to a finite number of cycles of magnetization and the final remanent flux is determined largely by the field strength distribution at a critical point beyond the trailing edge of the gap. The exact location of this point is determined as being where the intensity of the magnetizing field has fallen below the coercivity of the tape. Since, as has been pointed out by Westmijze ${ }^{2}$, the individual particles forming the tape coating have a distribution of coercivities, then the critical point where the final remanent field is established in the tape is spread over a finite length. Ideally, if the recording field can be made to drop to below the critical strength over a very short distance, then the demagnetizing effect of the decremental field would be reduced to zero. This means therefore that the shape of the recording field needs to be carefully determined, this largely being effected by gap edge definition. Part of the problem is the selection of bias current, since increasing the bias current extends the radius of the field distribution so that the tape takes longer to pass through the critical gradient (Fig. 5). Pole tip shape can influence the field distribution to a degree, this being one of the reasons for the frequent selection of an almost hyperbolic curve for the pole piece faces.

In some respects the design problems with replay heads are rather smaller than for record heads. To reproduce the small magnetic signals on the tape, the permeability of the core needs to be high,
the core reluctance low and the gap reluctance high. Since the core reluctance needs to be minimal the inclusion of a rear gap is highly undesirable and this does present some problem in the case of certain types of constructional method. The impedance of playback head coils is also often higher than for record, due to the increased number of coil turns used to maximize the output voltage. Finally the gap length of the head needs to be as small as possible to resolve the short recorded wavelengths found at high frequencies and low tape speeds.

Construction - materials

The selection of magnetic materials for use in the manufacture of tape heads is dictated by the following parameters. First the highest permeability is required, commensurate with low coercivity and ease of mechanical working. Second, the permeability must be optimal over the operating bandwidth of the head. Third, losses due to hysteresis or eddy currents must be kept low to optimize the sensitivity over the bandwidth and to keep noise levels low. Finally the hardness value should be as high as possible to reduce wear to a minimum. Several materials have emerged as being suitable for tape recorder heads, though none of them is ideal. Early heads were made from Mu-metal* ${ }^{*}$, an iron-nickel alloy with a maximum initial permeability of the order of 15×10^{3} at $0.4 \mathrm{~A} / \mathrm{m}$ for frequencies up to about 1 kHz . At higher frequencies the permeability drops fairly sharply as shown in Fig. 6. There are a number of other problems associated with Mu-metal, the most important of which is the need to laminate the material to reduce eddy current losses, thus also reducing the initial permeability and making some compromise necessary. The normal thickness selected for many heads is of the order of 100 microns. A secondary problem is that mechanical working of the material destroys its permeability and thus during the manufacture of heads using Mu-metal there is sometimes the need to anneal three times to restore either the malleability or in the final case to restore the magnetic properties. A modern technique which considerably reduces the need for annealing is to etch the laminations through a photo resist, the remaining resist acting as a bond and insulant when the lamination pack is pressed together. Considerable accuracy and improved magnetic performance can be attained by this production technique, this being a principal reason for the continuing popularity of this type of head. Hardness is about 118 on the Vickers HV 5 scale. Where higher values of hardness are required Permalloy or Vacudor \dagger may be selected. Vacudor is similar to Alfenol, both being an ironaluminium alloy with a very low initial permeability at about 50 Hz and $0.4 \mathrm{~A} / \mathrm{m}$ of 25 to 27×10^{3}. Permalloy is some-

[^2]

Fig. 3. Tape/head characteristics, 10 m gap (Rogen).

Fig. 4. Tape/head characteristics $20 \mu m$ gap (Bogen).

Fig. 5. Location of critical bias field with current.
(μ)

$\begin{array}{ll}\text { A mu-metál } t=0.1 \mathrm{~mm} & \text { B \& C Ferrite } \\ \text { D permalloy } t=0.1 \mathrm{~mm} & E \text { permalloy } t=0.2 \mathrm{~mm}\end{array}$
Fig. 6. Initial permeability of various magnetic materials.

Fig. 7. Poorly machined ferrite head.

Fig. 8. Dainaged gap edges on ferrite head.

Fig. 9. Gap definition of Sony F\&F head ($\times 1000$).
what better with an initial permeability of 50×10^{3} under similar conditions. Both these materials are metal alloys and the constructional techniques used for Mu-metal are equally applicable. Hardness values are 132 for Permalloy and 220-350 for Vacudor.

Finally there is a range of ferrites which in recent years has become popular for tape heads. The composition can vary, but recent types seem to be mostly based on a mixture of ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, manganese oxide (MnO), and zinc oxide (ZnO). This particular composition is specified by Sony, but a variant can be found in the Philips heads ${ }^{3}$ where niobium oxide (NiO) is also included in the mix and MnO has been left out. The permeability of ferrites at low frequencies is considerably poorer than the metal alloys; however, it is maintained over a far greater range of frequencies, the resulting high Q improving the high-frequency noise performance of the head. The real advantages of high dimensional accuracy have only recently been realized, since ferrites are brittle and gap edges tended to chip and crumble under the mechanical pressure applied when assembling. However, the use of a glass gapping material which can be melted into place not only bonds the head components together but improves the mechanical strength of the gap.

Ferrite components can be produced in a variety of ways, the most popular being hot pressing. Here the raw ferrite powders are mixed and sintered under pressure. The sintering reduces the powders to a semi-plastic state and ensures that due to pressure the porosity is kept low. A second method, popular for video heads, is to grow a single ferrite crystal using the Verneuil technique to be seen operated by the semiconductor industry. This is a difficult and expensive process often resulting in a ferrite with high thermal noise and coefficient of friction (an important factor in tape heads). Only one manufacturer, Akai, appears to make use of this type of head for audio machines, and they seem to have overcome these disadvantages with specialized techniques.

Gap edge definition can, as has been mentioned, vary with manufacturing method and Fig. 7 shows how porosity spoils the smooth finish and in Fig. 8 leads to gap edge chipping. Selection of glass with an identical coefficient of expansion eliminates any final difficulties (Fig. 9) and the lapping process used to contour the head considerably reduces the porosity partly as a result of plastic flow of the debris from the lapping. Duinker ${ }^{3}$ has shown that accuracy of forming the gap length (l in Fig. 2) is simplified using glass spacers since, with a knowledge of the original shim thickness and taking into account bonding pressure, shim area and viscosity at the bonding temperature, final dimension can be precisely predicted.

Recently, an all ferrite construction ${ }^{4}$ has become popular where screens and mounting block are also made of ferrite. The advantage to be gained is that a uniform wear characteristic is preserved

Fig. 10. Temperature characteristics of two ferrite heads: (1) Sony $F \& F$, (2) poor ferrite formulation.

Fig. 11. Temperature cycling of ferrite heads; key as above.

Fig. 12. Surface wear characteristics of several types of head.
over the area of tape contact. The importance of this is emphasized in a series of surface contours shown in Fig. 12. Temperature stability of permeability with ferries can be controlled (Figs. 10 and 11) this often being achieved with the addition of small amounts of cobalt ${ }^{3}$.
There are few U.K. head manufacturers but Marriott Magnetics Ltd have refined a technique, for producing metal cassette and cartridge recorder heads to the extent that they claim to beat the Japanese and Americans on their own ground for price
and quality. Their success is not so much in new design, but rather in the rapid adoption of automated manufacture which reduces production time to a minimum. A much smaller company, Phi Magnetronics has developed an elegantly simple method of constructing tape heads that enables small quantities of special designs in almost any track configuration to be produced at low cost. These heads are of the metal type and consist of etched laminations fitted into two slotted metal shells which are then clamped together after inserting a metal gap foil. Transverse laminations are used in heads made by several companies, but Woelke Magnetobandtechnik, of Germany, have evolved this technique to bond pole piece shanks into the body and slot the core around the shanks. The result is a more linear gap uninterrupted by laminar interfaces.

As for ferrite heads, the form used by Sony is shown in Fig. 1(c) and is typical of modern trends. The manufacturing advantages to be accrued are that the pole pieces can be made as a large block which can then be sliced to the appropriate track widths. Similar methods are used by most manufacturers.

Unfortunately this article can only skim the surface and there is still the complex aspect of the tape to head interrelationship to be studied and aspects of this will be presented in the audio tape survey to appear next month.

Acknowledgements

My thanks to Sony (U.K.) Ltd, Rank Audio Visual and Akai, Marriott Magnetics Ltd, Phi Magnetronics Ltd, Woelke Magnetobandtechnik, Bogen, and many individual engineers who have contributed information on modern design and production technology to make this article possible.

References

1. "The influence of some head and tape constants on the signal recorded on magnetic tape", E. D. Daniel. Proc. I.E.E. 1953, 100, Pt III, pp.168-175. "The reproduction of signals recorded on magnetic tape", E. D. Daniel and P. E. Axon. Proc. I.E.E. 1953, 100, Pt.III, pp. 157-167.
2. "The principle of the magnetic recording and reproduction of sound." W. K. Westmijze. Philips Technical Review, 1953, vol.15, p.84.
3. "Durable high resolution ferrite transducer heads employing bonding glass spacers." S. Duinker. Philips Research Reports 1960, vol.15, pp.342-367.
4. "Sony's ferrite head for tape recorders." H. Ishii, translation from Radio Technology (Japanese) May 1972

Bibliography

Book: "Magnetic Tape Recording" by H. G. M. Spratt 1958 (now out of print) Articles: "A survey of factors limiting the performance of magnetic recording systems." E. D. Daniel et al. Proc. I.E.E. March 1957. Paper 2296R.
"Recording gap fields by Lorentz shadowgraph and characteristics of single crystal MuZo ferrites." R. D. Fisher and J. D. Blades, I.E.E.E. Trans. Mag. vol. Mag-8, No. 2, June 1972, pp.232-238.

Announcements

Two new correspondence courses - "Modern control theory" and "Colour television" - have been added to the "Individual Study Service" of the Institution of Electrical Engineers, Savoy Place, London WC2R OBL. Information available from the Education Officer.

Minicomputers in Industrial Process Control is a three-day course at the Polytechnic of Central London, 115 New Cavendish Street, London WIM 8 JS from 21st to 23 rd March.

British Radio Corporation Ltd, a member of Thorn Group, Thorn House, Upper Saint Martin's Lane, London W.C.2, has announced that on 1st April it will change the name of the company to Thorn Consumer Electronics Lid. It will continue to manufacture and market TV and audio products under the Ferguson, Ultra, HMV and Marconiphone brand names.

Jermyn Distribution, Vestry Estate, Sevenoaks, Kent, have signed a franchise agreement with the Swedish company Aktiebolaget Rifa under which Jermyn are Rifa's exclusive U.K. distributors. Initial stocks purchased from Rifa are capacitors, transient voltage protectors, potted $R C$ networks and radio interference suppressors.

As an accessory to its lower priced oscilloscopes, S.E. Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middlesex, are marketing a dual-channel oscilloscope adaptor to convert single beam instruments to dual-channel operation. The unit, designated HZ36, can be attached by simple cable connections to any S.E. or other single beam oscilloscope.

Vero Electronics Ltd, Industrial Estate, Chandlers Ford, Hants, SO5 3ZR, has been appointed U.K. agent and distributor for the American E. F. Johnson Company range of components (hardware and devices).

A London base of Mackarl Electronics, who have three factories in Taiwan and one under construction in the Philippines, has been established at Albany House, Petty France, London SWIH 9EA. Mackarl

Electronics (London) offers a range of audio equipment in chassis form or completely assembled for manufacturers or under private label for retail organizations.

British Aircraft Corporation Electronic and Space Systems Group, Brooklands Road, Weybridge, Surrey, have been awarded a contract by the Ministry of Defence for the design and development of a low gain L-band aerial system, suitable for aircraft-to-satellite communication. The contract is part of an Aerosat experimentation programme on behalf of the Civil Aviation Authority.

A contract worth $£ \frac{1}{2} \mathrm{M}$, to improve the performance and reliability of the 50 cm radars which form the major part of the U.K. Airways en-route radar coverage, has been awarded by the Civil Aviation Authority to Marconi Radar Systems Lid, Marconi House, Chelmsford, Essex, CMI IPL.

GEC Telecommunications Ltd., P.O. Box No. 53, Coventry CV3 1 HJ , has received contracts from the Government of the Republic of Zambia for equipment to expand the telecommunications system which the company installed and commissioned six years ago in conjunction with the Zambian General Post Office. Carrier-multiplex equipment will expand the number of telephone circuits on a 400 km microwave-radio link.

APT Electronic Industries, Byfleet, Surrey, the radar division of Bonochord Ltd, has received from the Ministry of Defence a contract worth more than $£ 100,000$ involving three of the company's precision automatic tracking radars.

Martron Associates, 81 Station Road, Marlow, Bucks, has been appointed U.K. distributor for Dynapar Corporation, Gurnee, Illinois, U.S.A., manufacturers of digital industrial process control equipment.

Thomson-CSF United Kingdom Ltd have appointed Transonics Lid, 303 Edgware Road, London W.2, to handle their range of semiconductor and passive components.

Circards - future series

We regret the delay in the distribution of Circards series 4 and 5. This has been largely due to production difficulties. It is expected that orders for series 5 will be dispatched during the week March 5-9. In general readers should allow a delivery time of at least two weeks from the date of ordering.

After the trial period the hopes for Circards expressed in the editorial and introductory article in the October 1972 issue are fully justified. The scheme will be continued and extended. The authors and editors are concerned that user reaction should be taken into account as fully as possible. To allow time for this, and the resulting preparation of further series, the next set of cards (series 6) will not be announced until the next issue of Wireless World.

Also in the next issue we shall outline the plans for forthcoming sets of Circards. Readers' comments on series presented so far, and suggestions for future Circard topics, are welcomed.

About People

Peter Mothersole, F.I.E.E., F.I.E.R.E., has rejoined Mullard Ltd as chief commercial engineer. Mr Mothersole originally joined Mullard in 1953 and became section leader of the television group at Mullard's research laboratories. He later moved to the central application laboratory as head of the consumer application division and in 1969 became engineering manager and a member of the executive management team of Pye TVT (both Mullard \& Pye are members of the Philips group). He is a member of the I.E.E. Electronics Divisional Board and chairman of the Professional Group (E14) Television and Sound. Mr. Mothersole succeeds T. Aspin, who was recently appointed a member of Mullard's executive board.

David R. Hall, Solartron's U.K. sales manager since 1963, has been appointed to head a U.K. sales and service division of Schlumberger Instruments \& Systems. Mr Hall will further develop a field sales team backed by technically and commercially trained sales office staff, and after-sales service units for the marketing of Schlumberger instrumentation in the U.K.

John S. Halliday, B.Sc., Ph.D. F.Inst.P., has been appointed to the board of AEI Scientific Apparatus Ltd as technical director. Dr Halliday went to the University of Reading from Sir William Borlase's School, Marlow, in 1944 with a state bursary in radio. In 1946, at just over nineteen years of age, he had passed the B.Sc. General Honours with first class honours and a year later also graduated with a B.Sc. Special Honours in Physics. After research in the University"s physics department he obtained a Ph.D. in 1951. He was elected a Fellow of the Institute of Physics in 1961. He joined the staff of the Research Laboratory, AEI Aldermaston, on leaving university and from 1957 onwards was responsible for advanced research concerned with electron microscopes. After transferring to the mass spectrometry team at AEI Scientific Apparatus,

Barton Works, in 1963, Dr Halliday became responsible for all the engineering and development work on these products in 1964.

The Electrocomponents Associated Group has appointed Arthur Crouch as director and general manager of the newly acquired Radio Resistor Company. Recently Mr Crouch started Pact International, the marketing company formed to introduce specialized instrumentation from European manufacturers. Before that he was marketing director of Spectrol Reliance, part of the U.S.A.-based Carrier Corporation. Earlier management posts were held with A.B. Electronic Components and the E.M.I. Group. He has travelled extensively during his career, visiting all the major European countries, the U.S.A. and Middle East. Of special interest among several appointments are his past chairmanship of the R.E.C.M.F. "Resistor Group" and membership of the R.E.C.M.F. Council.

Welwyn Electric announce the promotion of their managing director, J. E. Herrin, M.I.E.E., to the board of the parent company Royal Worcester Ltd. John Herrin joined Welwyn last November from the Federal Pacific Electric Company, New Jersey, U.S.A., where he had been general manager of the switchgear division.

The award of the Faraday Medal to Sir Nevill Mott, F.R.S., emeritus professor of physics in the University of Cambridge, has been announced by the Institution of Electrical Engineers. This was the 51 st award of the medal and was made to Sir Nevill for his distinguished contributions to quantum mechanics and solid-state physics which have provided a theoretical foundation for the development of solid-state electronic devices.

Gerard White, B.Sc., Ph.D.. has been asked by the Post Office to head the newly created Advanced Technology Studies division of its research department. He is to "explore possibilities for the
creation and utilization of advanced technology and its application in new telecommunication systems". Dr White gained his degrees at the University of Wales, Bangor, where he obtained first-class honours in electronics, control engineering and materials technology, and a doctorate in electronics; later he undertook part-time post-graduate studies in communication theory at the Polytechnic Institute of Brooklyn, New York. He has held short-term appointments with the United Kingdom Atomic Energy Research Establishment. Harwell, and the Royal Aircraft Establishment. Farnborough and, on telecommunication assignments, with the National Telephone Company of Spain and the Ohio Bell Telephone Company.
T. A. L. Paton, C.M.G., F.R.S., has succeeded Sir Arnold Lindley, D.Sc., as chairman of the Council of Engineering Institutions. Mr Paton is a former president of the Institution of Civil Engineers. The new vice-chairman of the C.E.I. is Major-General Sir Leonard Atkinson, K.B.E., B.Sc., F.I.E.E., F.I.E.R.E., who was educated at Wellington College and University College, London. After first being commissioned into the R.A.O.C., he transferred to the R.E.M.E. in 1942, and saw service in Europe, India and the Far East. After a varied career in R.E.M.E., he became Colonel Commandant in 1967. On retirement, he was appointed a director of Harland Engineering, of Alloa, and of Simon Electronics, Bletchley, later becoming managing director of Harland Simon, and a director of Weir Engineering Industries, Glasgow. He is a past president of the I.E.R.E.

Tempatron Ltd have announced the appointment of \mathbf{W}. Gaiger as their production manager. Mr Gaiger joined Tempatron Ltd from Data Recording Ltd, where he has been production supervisor for $2 \frac{1}{2}$ years. Previously, he was with Ampex Electronics Lid.
A. Martin Shaw, Ph.D., has joined Irvin Great Britain Ltd as chief engineer of their Electronics Division at Letchworth, Hertfordshire. He will be responsible for all engincering activities in the division. Dr Shaw, aged 28 , took a first class honours ciegree in physics at Cambridge and did research for his Ph.D. at the Cavendish Laboratory. Cam bridge, and the Department of Metallurgy in Oxford. From 1969-72 he worked for Interna tional Computers Ltd as a project leader in the design of computer memories and peripherals.
W. D. Akister, Ph.D., F.I.E.E., has recently joined Cambridge Consultants Ltd, the technical consultancy operation based at Bar Hill,
near Cambridge. He has special responsibility for the production engincering and production control aspects of all electronics projects and will also be involved in the handling and management of large inter-disciplinary projects. Before joining the company, Dr Akister spent six years as engineering consultant to the chief executives of Redifon Flight Simulation Ltd, where he was responsible for the standardization and rationalization of equipment, systems and methods between separate units producing similar equipment. Dr Akister was previously chief electronics engineer and project manager of large flight simulator and trainer projects for Air Trainers Ltd.
Wing Commander J. A. F. Morgan (R.A.F. Ret'd) has joined Wayne Kerr as Services liaison representative. He will handle the company's growing range of automatic test equipment as well as their established series of laboratory instruments. John Morgan studied at Glasgow University and was commissioned as Signal Officer in 1942. For some years prior to his retirement he was responsible for air traffic control and aircraft radio/radar facilities at Mintech (now Ministry of Defence) research and development establishments.

The Society of Electronic and Radio Technicians has recently appointed as its first vice-president Sir Cyril English, B.Sc.(Eng.), director general of the City \& Guilds of London Institute. Sir Cyril is a member of many important national committees concerned with education and training, including the James Committee of Enquiry into the training of teachers, and for the last two years he has been chairman of the British Association for Commercial and Industrial Education (BACIE).

At a dinner given at the beginning of February in the House of Lords. the Society of Electronic and Radio Technicians presented certificates of honorary fellowship to three of the Society's leading figures. Lord Orr-Ewing, O.B.E., M.A., F.I.E.E., the first S.E.R.T. president, is chairman of Ultra Electronics and has had many years' experience with E.M.l., the B.B.C., the R.A.F. and Cossor. He was a Conservative M.P. and was appointed a life peer in 1970. E. A. W. Spreadbury, F.I.E.R.E., formerly editor of our associated publication Electrical and Electronic Trader was involved in the formation of the Radio Trades Examination Board, and during his chairmanship of this organization helped to found S.E.R.T. He has been described as the "Father of S.E.R.T." Kenneth Tempest is closely associated with the teaching of technicians. During his term as chairman of S.E.R.T., membership reached 5000 .

The Realm of Microwaves

2. Microwave transmission lines

by M. W. Hosking,* M.Sc.

Over the last five years in particular, the microwave industry has devoted time to reducing the size of its circuits. Although the basic concepts involved have been known for over 20 years, recent improvements to the theory and the technical advances made in the semiconductor, thick-film and thinfilm fields have enabled extremely compact circuits to be built. Attention has concentrated on the microstrip form of transmission line, with the inclusion of suitablypackaged semiconductor devices to form hybrid devices, and also on lumped-clement circuit design. This article gives a general practical review of the standard forms of microwave transmission line, leading up to a review in a following article of microwave i.c.s and lumped-element design.

Microwave transmission lines

Those readers for whom microwave engineering is not the source of their daily bread I must ask to temporarily forget the para-
*British Aircraft Corporation.
meters of voltage and current. These do not have practical significance and for example, in a hollow waveguide there is no unique value for either term. Instead, energy is carried by sinusoidally-varying electric and magnetic fields which propagate along the transmission line and have instantaneous values which are functions of both position and time. The practically-measured quantities are always power, variations in power and impedance, either absolute or normalized.

The waveguide

Although all transmission lines are waveguides, the term has come to apply specifically to the dielectric-filled conducting tube; the dielectric usually being air. When an electromagnetic field is confined in this way, its propagation characteristics are changed from their free-space value. The conducting boundaries force the enclosed field to conform to specific patterns for it to exist and the properties of the overall arrangement are directly related to the shape
and size of the waveguide. In addition, the presence of any discontinuity within the guide influences its properties as a transmission line. This is most important and enables reactive effects, either inductive or capacitive, to be realised; hence the design of microwave components.

A particular combination of electric and magnetic field patterns which can propagate within the guide is called a mode and there is an infinity of such modes. However, the waveguide behaves as a high-pass filter: attenuating energy at frequencies below a cut-off frequency. Also, it is standard practice to operate within a limited frequency range near cut-off where only one mode can exist. This is termed the dominant mode for the guide and is the one with the lowest cutoff fiequency. If operation at higher or lower frequencies is required, then a differ-ent-sized waveguide must be used. Rectangular, Fig. 1(a), and circular, Fig. 1(b), guides thus come in assorted sizes, roughly spanning the range 400 MHz to 400 GHz . With few exceptions, the rectangular aspect

Fig. 1. Common forms of microwave transmission line with field pattern of the dominant mode. Solid tines are electric field, broken lines are magnetic field.
ratio is fixed at $2: 1$; this being a compromise between power handling, loss and overmoding.

The longest wavelength which can propagate down the guide, i.e. that of the dominant mode, is equal to twice the width of the guide: $2 a$. In practice, the centre fiequency of rectangular guide is made about 1.5 times the cut-off frequency and operalion is restricted to within about $\pm 20 \%$ of this. For a circular guide the derivation of the cut-off wavelength is a little more complicated and is given by the ratio of circumference to one of the Bessel function roots. Which root it is depends on the particular mode in question but, for the dominant mode, the cut-off wavelength is equal to $3.42 r$.
The reason why waveguides are restricted to the higher frequencies is now obvious: that of size. For example, to cover the f.m. broadcast band from 88 MHz , the necessary size of rectangular guide could serve as a garage for two Minis side by side.

Enclosing an e.m. field within conducting boundaries alters the wavelength of propagation from that in free space; it is made longer and becomes a function of the guide dimensions. The general expression for any shape of guide is

$$
\frac{1}{\lambda_{g}{ }^{2}}=\frac{\delta_{r}}{\lambda_{o}^{2}}-\frac{1}{\lambda_{c}{ }^{2}}
$$

where the wavelengths are λ_{g} in the guide, λ_{o} in free space and λ_{c} at cut-off, and ε_{r} is the relative dielectric constant of the medium filling the guide, usually air for which $\varepsilon_{r} \approx 1$.

As with any other transmission line, the waveguide has an impedance, but unlike other types it is not possible to say exactly what this is. Due to the field patterns within the guide, there is no unique value of impedance because there is no single value of voltage or current. In practice, the situation is not too bad as one very rarely needs an absolute impedance and most design work can use relative values, i.e. the comparison with an effect at one point with a similar effect at another. The basic impedance does, though, depend on the waveguide mode and for a given mode is also a function of frequency.

An instance of when a value of impedance is needed is in the estimation of the power handling capacity of a guide. Metal waveguides can handle large amounts of power, the exact quantity depending on surface roughness, humidity, pressure, allowable temperature rise and frequency. The maximum power density can be defined as the ratio of maximum electric field squared to impedance. Under normal sea-level conditions the breakdown field for air is taken as $30 \mathrm{kV} / \mathrm{cm}$, and over the most commonly used portion of the microwave spectrum, say 4 to 40 GHz , waveguides at the lower end will handle 10 MW of power and at the higher end 100 kW . These are maximum peak powers and are usually reduced by a safety factor of four and still further if there are discontinuities within the guide.

Waveguides are mainly used for high power carrying and/or long transmission line runs and thus attenuation is important. This attenuation is caused by losses in the

Fig. 2. Some properties of air-filled coaxial line showing the dependence on the diameter ratio: (a) characteristic impedance,
(b) attenuation, (c) breakdown voltage, (d) power handling capacity.
metal conductor and is a function of frequency, conductor material, surface finish and the particular mode within the guide. For the range of waveguides previously quoted, typical losses with copper walls are $0.01 \mathrm{~dB} / \mathrm{ft}$ at 4 GHz to $0.24 \mathrm{~dB} / \mathrm{ft}$ at 40 GHz .

Coaxial line

Unlike waveguides, coaxial lines have no cut-off frequency and propagate energy at frequencies from d.c. to infinity. There is, however, still a dominant mode of propagation and higher order modes can be generated under certain conditions. The dominant mode is termed a transverse electromagnetic one (TEM) as both the electric and magnetic field components are always at right angles (transverse) to the direction of propagation. This mode requires at least two separate conductors and therefore cannot exist in waveguides. Higher-order modes, having different field patterns can exist and for these the coaxial line behaves as a high-pass filter.

Using the nomenclature of Fig. 1(c), the first of the higher modes appears when the frequency is high enough such that the mean circumference approaches one wavelength. The wavelength itself in coaxial line is simply that which would exist in a free-space medium of the same dielectric constant as that filling the line, i.e. $\lambda_{g}=\lambda_{o} / \sqrt{\varepsilon_{r}}$.

Unlike the waveguide, it is possible to define an exact impedance for the TEM mode in coaxial line. Basically, the characteristic impedance Z_{o} of a transmission line can be defined as:

$$
Z_{o}=\left(\frac{R+j \omega L}{G+j \omega C}\right)^{\frac{1}{2}}
$$

where R, G, L and C are the per unit length resistance, conductance, inductance and capacitance of the line, ω being the radial frequency. Neglecting losses, $Z_{o}=(L / C)^{\frac{1}{2}}$ from which it is relatively simple to calculate L and C for a coaxial line. On evaluation, Z_{o} is found to be a function of the ratio b / a and ε_{r}.

Sidetracking slightly, this definition also enables a free-space wave impedance to be calculated. The inductance per unit length of free space is the absolute permeability μ_{o} and the capacitance per unit length is the absolute permittivity ε_{0}. Thus with $L=$ $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and $C=\varepsilon_{0}=1 / 36 \pi \times$ $10^{-9} \mathrm{~F} / \mathrm{m}$, the free-space impedance results as 120π or 377Ω.

Coaxial lines of the same material have higher conductor losses than waveguides and usually have dielectric losses as well. The latter stem from the fact that, apart from short lengths of line for special applications or components, the centre conductor needs supporting concentrically. Again, apart from short lengths when carefully spaced beads can be inserted, this support is provided by completely filling the line with a solid dielectric. Attenuation due to conductor loss is proportional to the square root of frequency while that due to dielectric loss is directly proportional. This means that at frequencies within the microwave band, dielectric losses are the most significant and are prohibitively large for long lengths of line.

The maximum peak power handling of coaxial line is limited by the breakdown voltage of the dielectric ($30 \mathrm{kV} / \mathrm{cm}$ for air) and by the ratio of inner and outer diameters. In general, for commonly used coaxial cable sizes, the peak and mean power handling capacity is two to three orders of magnitude less than that for corresponding waveguide sizes

The above parameters are a function of the coaxial diameter ratio b / a and there is an optimum but different ratio for each parameter. It is interesting to compare this dependence on b / a, (Fig. 2). Attenuation is a minimum for b / a of 3.6 corresponding to the characteristic impedance $Z_{o}=77 \Omega$. Maximum breakdown voltage occurs when b / a is 2.718 , giving $Z_{o}=60 \Omega$ and maximum power handling when b / a has the value 1.65 , giving $Z_{o}=30 \Omega$. These figures apply to air-spaced line for which $\varepsilon_{r}=1$.

For a different dielectric, the ratio of b / a remains the same, but the corresponding impedance will be the above values divided by $\sqrt{\varepsilon_{r}}$. Freedom of design thus exists to optimize the dimensions for a particular application. Widely varying impedances are found within coaxial components. Commonly available cable comes with two standard impedances : 50 and 75Ω. The former is a reasonable compromise of the factors in Fig. 2, b / a being 2.3 for $\varepsilon_{r}=1$; while the latter, as well as being low loss, is close to the impedance of some aerials: the halfwave dipole, for example, has an impedance of 73.1Ω.

Stripline

This form of transmission line is shown in Fig. 1(d). It can be considered as rectangu-lar-section coaxial line with the side walls removed and, provided the open edges are not too close to the centre strip, its properties are similar to those of coaxial line. The dielectric can be air, but is more commonly a solid material and in this form is marketed in a large rarge of materials and sizes as copper-clad sheet. In this respect it is like printed-circuit board and the same pro-
cessing techniques can be used to produce circuits. Three of the most common dielectric materials available are irradiated polyolefin, cross-linked polystyrene and p.t.f.e-impregnated glass fibre. Between them, these probably cover the full range of materials properties and enable trade-offs to be made between such things as loss, temperature and chemical resistance, solderability and toughness.

Circuits are produced by etching the required conductor geemetry on one side of a double-clad sheet, the other copper layer being left as a ground plane. On top of this is then placed a second sheet, copper clad on only one side, to give the sandwich of Fig. 1(d). The two pieces are then clamped together. Although any required thickness can be used, there are standard sheet sizes ranging from $1 / 32$ to $1 / 4-\mathrm{in}$, the overall strip-line thickness being twice these values.

The principal advantage of the stripline form of circuit is that the normal range of components and sub-systems can be constructed without any change in thickness. All designs are realized by variations in the shape and size of the centre strip. Thus the circuit is essentially a two-dimensional one, unlike coaxial line and waveguide, which results in a considerable saving in volume especially at the lower end of the microwave spectrum. Transmission properties of stripline are very similar to coaxial line, the main difference being that not having a closed boundary nor an infinite ground plane an exact determination of the characteristic impedance has not been possible. However, the years have witnessed the emergence of increasingly more accurate formulae and it is now possible to relate theory and practice to within experimental error. The main cause of this uncertainty has been in establishing the value of the strip fringing fields.

It is interesting to make use of some very fundamental relationships to arrive at the characteristic impedance. Remembering from before that the impedance of a medium can be defined in terms of its inductance and capacitance per unit length, one can say $Z_{o}=(L / C)^{\frac{1}{2}}$: The velocity of propagation v can also be expressed in terms of L and C as: $x=(L C)^{-\frac{1}{2}}$. This velocity is equal to the speed of light c in the medium and the fundamental definition of the speed of light is $\left(\mu_{c} \mu_{r} \varepsilon_{0} \varepsilon_{r}\right)^{-\frac{1}{2}}$. For instance, in vacuo, μ_{r} and ε_{r} are unity and, with $\mu_{o}=$ $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and $\varepsilon_{o}=1 / 36 \pi \times 10^{-9} \mathrm{~F} / \mathrm{m}$ then $v_{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Making use of these relationships $Z_{o}=L / C=1 / v c=\mu_{r} \varepsilon_{r} / 3 \times$ $10^{8} c$ ohm.

Thus if the capacitance per unit length can be determined the characteristic impedance is known. For wide strips of negligible thickness, C is simply the parallelplate capacitance indicated in Fig. 1(d) and the impedance can be obtained quite accurately. However, as the strip thickness increases and the width decreases, then the fringing fields become important and the calculation of C becomes more difficult. This is especially true in the case of a variant of stripline, sometimes called slabline, where to obtain low losses, the dielectric is air and the centre conductor is made very thick ($\frac{1}{2}$ in or more). The dependence of Z_{o} on the variables $\varepsilon_{r}, \omega, t$ and h is shown

Fig. 3. Variation of stripline impedance with strip width, showing strong dependence on strip thickness. Commercially available laminate usually has $t=0.0014 \mathrm{in}$ and $t / h<0.02$.
graphically in Fig. 3. The centre strip thickness has a significant effect and the impedance increases as the strip width decreases.
Like coaxial line, the mode of propagation can be assumed to be TEM, though not exactly because of the open sides, and thus stripline will pass all frequencies. Again, if the frequency is high enough, higher order modes can also propagate. This situation is reached when the ground plane spacing h is approximately half the dielectric wavelength. For instance, if operation at 15 GHz was required using irradiated polyolefin with $\varepsilon_{r}=2.32$, the dielectric wavelength $\lambda_{o} / \sqrt{\varepsilon_{r}}=1.31 \mathrm{~cm}$ and so h must not be greater than 0.65 cm (0.256 in).
Quarter-inch stripline could thus be used, made from two $\frac{1}{8}$-in sheets. If this were coated with standard 1-oz copper, which is 0.0014 in thick, then $t / h=0.0056$ and consultation of Fig. 3 would reveal that for a 50 -ohm system a line width of about 0.2 -in is required. Attenuation and power handling is similar to that of coaxial line filled with the same material. But unlike coaxial line there is no well-defined optimum for these and other parameters. Continuing the example from before, the material has a low loss factor of 5×10^{-4} and the resulting attenuation due to dielectric loss is $0.01 \mathrm{~dB} / \mathrm{m}$ and to conductor loss is $0.64 \mathrm{~dB} / \mathrm{m}$.

Microstrip

There is a fair amount of inconvenience with stripline when it comes to incorporating solid-state devices into the circuit and it is impractical to use with semiconductors in chip form. Also, as indicated by Fig. 3, for a given impedance the higher the dielectric constant, the smaller the linewidth and suitable high-dielectric constant materials tend to be hard, brittle and unsuitable for sandwich-type construction. For these reasons, the microstrip circuit form of Fig. 1(e) is used for hybrid systems, usually as a high-dielectric constant substrate.

To take full advantage of this type of circuit, two conditions must exist: accurate enough design equations and a high definition technology for producing the conductor patterns. It is really only within the last five years that sufficient advance has
been made in these two areas to ensure that high-dielectric constant microstrip is a very attractive commercial competitor for most microwave sub-systems.

Of the many materials available for use as substrates, the three most popular are alumina, sapphire and ferrite, with alumina topping the bill. This material is a very hard and brittle ceramic of aluminium oxide usually supplied with a purity of between 96% and 99.9%. The latter has a loss tangent of 0.0002 and dielectric constant of 9.7 at 10 GHz . Conductor material is usually gold and is invariably produced by vacuum deposition, the desired pattern being either photo-etched from a completely coated substrate or directly deposited through a mask.
A popular thickness for the alumina is 0.025 in with about a $\pm 1 \%$ tolerance and a surface finish might typically be less than $10 \mu \mathrm{in}$. The latter is important with respect to line definition and conductor loss. For example, the loss (in $\mathrm{dB} /$ unit length) for a $2-\mu$ in finish has been shown to be about 35% less than that for a $24-\mu$ in finish and the smallest obtainable line width to vary from 0.001 to 0.006 in between the two finishes.

With regard to the main transmission parameters, an exact computation of the velocity of propagation, hence impedance, has not yet been made. The difficulty lies in defining the boundary conditions and the exact mode of transmission. However, within the range of impedances and frequencies generally used, the existing mathematics is sufficiently accurate in predicting the performance of microwave circuits.

Because not all of the electromagnetic field is confined within the dielectric, resulting in parts of the wave travelling through the air, there exists an effective dielectric constant, $\varepsilon_{e f f}$, instead of the substrate value of ε_{r}. This new constant is less than ε_{r} and is a function of both ε_{r} and w / h, as plotted in Fig. 4. $\varepsilon_{e f f}$ gradually approaches ε_{r} as the dielectric constant of the material approaches the free space value of unity and also as w becomes large thereby enclosing the material, or as h becomes small, causing most of the field to travel in air. Thus, using pure alumina with a typical w / h value of 1 , the effective dielectric con-

Fig. 4. Showing the effective dielectric constant for microstrip and how it caries with swip width. Differcnce berween $\varepsilon_{c f f}$ and ε_{r} is because the field is not completely. confined within the diclectric.
sfant is only 69% of the value of the material. Once $\varepsilon_{e f f}$ for a particular w / h value has been obtained, the characteristic impedance is well on the way to being determined While no exact design equations have yet been formulated, several versions exist with acceptable accuracy. The most widely accepted impedance equations are due to Wheeler* and are shown graphically in Fig. 5. Taking the previous example of the commonly used 99.5% pure alumina with $\varepsilon_{r}=9.7$ and 0.025 -in thick, then Fig. 5 indicates that a w / h ratio of 1 is required for a 50 -ohm impedance. That is, the line itsclf will be $0.025-$ in wide. Doubling this impedance to a not-unreasonable 100 ohms, decreases the linewidth to just under 0.004 in . Thus, it can be appreciated why a highdefinition technology is required if full advantage is to be taken of the microstrip form of transmission line. Even so, impedances much above 100 ohms are not really practical on alumina and in these cases it is best to go to a lower dielectric constant
*Whecler. H. A. "Transmissiontine properties of paral ICl wide strips separated by a dielectric sheet". I, E.E.E. Trans vol MTI-13, 1965, pp 172-85
material such as fused quartz for which $\varepsilon_{r}=3.78$. If this is still not sufficient, Fig. 5 indicating about a 50% impedance increase for the same width, then other microstrip structures can be used.

Increasing the substrate thickness could be another way of achieving attainable linewidths at high impedance levels, but this can be done to a certain extent before higher order modes start to propagate. The first of these modes exists as a surface wave: highly undesirable in a carefully tuned circuit and can propagate when the substrate is approximately $\lambda_{0} / 4 \varepsilon_{r}$ thick. Thus, a circuit operating at 10 GHz must not be more than 0.095 -in thick. Loss in microstrip is composed of diclectric and conductor loss and is a function of frequency and impedance. For 50-ohm at 10 GHz on alumina, both types of loss on a per unit length basis are about 10 times those given in the stripline example. However, comparison is really only fair on a loss per wavelength basis and in this case the difference is not so great. Conductor loss in microstrip is generally higher than in stripline because the conductor dimensions are usually smaller

Fig. 5. Impedance of microstrip with ε_{r} as a parameter; $\varepsilon_{r}=1$ for air, 3.78 for quart= and 9.7 for alumina

H.F. Predictions March

The monthly mean sunspot number has dropped to the low thirties for the first time since 1966. This month's charts were drawn for a sunspot value of 40 so the curves will probably prove to be around 1 MHz too high particularly at the end of the month.

The pattern of frequency usage established over sunspot maximum is just beginning to change. Daytime frequencies above 20 MHz continue in use but are fading out earlier in the afternoon. Some commercial circuits are finding a need for frequencies down to 3 MHz for the pre-dawn period. Apart from the unavoidable increase in absorption loss, highgain aerials are not common at these lower frequencies due to size and cost, so circuit reliability decreases and poor aerial directivity and reduced channel space give rise to serious interference problems.

1. The new industrial revolution

by Richard Graham

Abstract

In this series, the author examines in each article a particular electronic technique used in industry. Transducers and circuitry will be discussed, and applications of the equipment are described. The second part, in the April issue, will be devoted to the measurement of displacement and will be followed by articles on electronic weighing, object counting, flow, pressure and the like.

The art of electronics has almost completely taken over the mantle of alchemy, at least as far as the average, nonscientific person is concerned. The only difference is concerned with the somewhat differing aims of the two arts; in place of elemental transmutation, the avowed intention of applied electronics may appear to be the complete elimination of all human intervention in any tedious, unpleasant, difficult or otherwise undesirable activity.

While such an object is laudable indeed, it is, perhaps, a touch impracticable. The efforts of most engineers working in industrial electronics are directed into two main channels; to perform tasks which were previously entirely impossible and to assist people to work at an efficiency far higher than by their unaided efforts.

The elimination of the human element is hardly ever as complete as initially envisaged. We have all heard stories of how a computer was installed in an organization "to reduce staff", and before sufficient time has elapsed to allow the chief programmer to say "Cobol", the staff has increased two-fold. This apparently fundamental failure in planning is conc + with the phrase in quotes above. is very rare that a computer is used for that purpose alone, and the installation is justified by the fact that, with a two id staff increase, per haps eight times as much work is done. Whether the extra work is always worth doing is another matter.

Most work in industrial electronics is aimed at improving the results obtained by earlier mechanical equipment. Relatively infrequently, the electronic development is able to do something not possible with earlier devices. For example, it is possible to detect, measure and record the stresses inflicted on the blades of a gas turbine, while it is rotating at speed. Or to relay to the ground masses of information about rocket behaviour. Still more infrequently, it is found that electronic methods have trouble beating,
or even matching, the traditional mechanical ways of working. It is only fairly recently that electronic weighing equipment has been able to put up much of a fight against ordinary knife-edge weigh-bridges, and even now, the electronic variety has to rely largely on a headstart from its read-out and data processing advantages,

If it is possible to make a general statement in such a situation, it can be said that modern, solid-state electronics has improved on processes in use a few years ago by virtue of its incredible speed, reliability, low power consumption, small size and, in most cases, improved accuracy.

Reliability

On the subject of reliability, many early users of electronics in an industrial environment would quite probably emit a concerted, hollow laugh, the hollowness depending to some extent on the amount it cost them to be in the fashion. It must be admitted, with a brave smile and a stiff upper lip, that some of the early gear was a shade ethereal for the clobbering that your average shop-floor salt of the earth can mete out.

It is not the slightest bit of good building equiprnent which works in the lab., as long as the zero pot. can be tweaked before anyone wants to use it, or which, when the meter hammers the end stop, only needs a new BC108. But it was some time before engineers came to realize that the industrial scene is a bostile one, and that the "belt and braces" approach is essential, and by then. the early users had had their fingers burnt and weren't going to be the first next time. All that said, however, it has to be pointed out that electronic equipment has now become respectable and can often be a good deal tougher than the older devices it replaces.

The life expectancy of electronic equipment, disregarding replacement for reasons of improvement, is usually much
longer than its mechanical equivalent, simply because there is nothing to "wear out". In the case of equipment using thermionic devices, periodic replacement keeps the equipment up to scratch, and of course, solid-state instrumentation requires no maintenance whatever, Ambient atmosphere conditions is one area where badly designed electronics can, on occasion, let the side down.

Equipment which employs analogue circuitry is particularly prone to drifts caused by temperature variations unless great care is taken to overcome them. At extremes of temperature, both analogue and digital circuitry begins to flag, but at these extremes $\left(-50^{\circ} \mathrm{C}, \quad+70^{\circ} \mathrm{C}\right)$ even mechanical equipment can be difficult.

Humidity is probably a greater enemy to delicate mechanics than to electronics, although most electronic devices contain a degree of mechanical construction in the form of switches, plugs, and sockets and the like, which are also vulnerable to humidity.

Vibration is not the threat it once was; the use of electronics in missile and aviation applications taught engineers how to avoid its effects, and the relative vulnerabilities are now about even, depending on the application. In addition, the emergence of integrated circuitry has improved matters beyond recognition in this respect, as in all aspects of relability

Applications

An example of one of the categories of equipment, namely the performing of work not possible before the adoption of electronic techniques, is radio telemetry. The same could be said of most of the "action at a distance" systems employing radio, but the methods of transducing and modulation are especially worthy of note.

Telemetry was introduced largely to aid the designers of guided weaponry, and is capable of the transmission to a ground station of data on virtually any aspect of missile performance and structural behaviour. Mechanical-to-electrical transducers of many types modulate a f.m. subcarrier which amplitude modulates a v.h.f. carrier. Time-division multiplexing allows a large number of information channels to be used, the individual channel sampling rate being at least 120 Hz . This was one typical system in brief outline, and we will return to the subject in a later article.

In the area of improvement on traditional machinery, the numerically controlled machine tool, used properly, is an industrial engine of awesome capabilities. These machines come in all varieties irom the simplest drilling machine to a contour milling machine capable of machining an aircraft wing entirely without human intervention, apart from the little job of programming the machine to start with! If one considers the cost of a mistake by the equivalent human being towards the end of machining a wing from a lump of
titanium, one begins to see the point. Not all numerically controlled machines are on this scale, of course, but the sophistication of these processes is finding its way into lower and lower levels of industry and is returning very well worthwhile results in lowering costs and improving outputs.

Instances of electronics lending assistance to human operators are legion, and one can think of inspection equipment, non-destructive testing gear, process controllers, recorders, weighing equipment, and others. Even farms are well used to the occasional black box lurking in anonymous obscurity, and battery chicken-houses would be difficult indeed to run properly without their automatic electronic ventilation systems. Then again, the difficulty of assessing the amount of fat on a pig's back, without assaulting the luckless beast with a sharp instrument, is alleviated by a device which does this without even causing the pig to breathe heavily.

Most of the industrial applications need, at some stage, a mechanical-toelectrical transducer, or vice versa, or both. Indeed, in some equipment, it is the transducer which is the clever bit, the rest of the device consisting prosaically of amplifiers, displays, power units, and the like. For example, numerically controlled machine tools use an extremely precise mechanical-to-electrical transducer to determine the position of the tool or work piece. Some of them use diffraction gratings which produce interference fringes as the moving parts of the machine-tool move, these being detected photo-electrically and passed to the electronics. The manufacture of these gratings and the detection and processing of the fringes is a story in itself, while the electronic part of the machine is more-or-less standard digital computer practice.

Another example of the importance of the transducer is the electronic weighing machine. The transducer here is the strain-gauge load cell, which relies basically on the fact that the resistance of a piece of metal depends on its length and thickness (and on its resistivity, but that is relatively constant). If the piece of metal is fixed to a metal billet, which bears the weight of the object being weighed, it will deform when the billet deforms, so changing its resistance. The minute change is measured and processed and is displayed as weight by a selection of amplifiers. displays, comparators, etc., in themselves not particularly noteworthy.

In each article of this series, it is the intention to take each time a particular type of industrial electronic equipment, to discuss the transducers and circuitry peculiar to the device, and to illustrate the discussion with examples. It is not intended to go deeply into design, but to exemplify the possibilities of electronics. in industry to engineers or students who are forced to specialize in other types of work, and who may be surprised to learn that electronics is becoming respectable in industry.

Books Received

Engineering Electromagnetics by David T. Thomas has been prepared for undergraduate electrical engineering students. In contrast to the traditional presentation of physical laws in the chronological order of their discovery, Maxwell's equations are adopted in the beginning as the fundamental laws. The use of Maxwell's equation provides a basis of general applicability. Real life problems are presented and then reduced to an appropriate model or facsimile which is solved by the laws of electromagnetics. Emphasis is placed on understanding fundamental physical laws and boundary conditions. Topics of interest include: computer solutions in electromagnetics, transmission lines including wave transients, boundary value problems and properties of materials. Other areas covered are radiation and aerials, a brief history of electromagnetics and a reference chapter on vectors and co-ordinates. Pp.453. Price $£ 8.50$. Pergamon Press Ltd, Headington Hill Hall, Oxford OX3 0BW.
Broadcasting technology - past, present and future is a publication from the Institution of Electrical Engineers and is a record of the lectures delivered to the IEE commemorating the recent fiftieth anniversary of the commencement of broadcasting. The lecture topics range from the B.B.C. in the 1980s and the future of broadcasting from an engineer's point of view to a survey of the British domestic receiver starting in 1922. Other topics cover the development of the television camera tube, transmitter outputvalve developments above and below 30 MHz , television and sound signal orientation, studiotransmitter links and terrestrial, satellite and cable broadcasting systems. This valuable record is well illustrated with photographs and relevant diagrams and circuits. Pp.104. Price £5. The Institution of Electrical Engineers, P.O. Box 8, Southgate House, Stevenage, Herts. SG 1 IHQ.
Making and using Electronic Oscillators, by W. Oliver, provides typical examples of the most popular and useful oscillator circuits for a wide variety of applications. The theoretical working principles are discussed as briefly as possible so that maximum space can be devoted to the practical aspects of the subject. Readymade as well as home-built equipment is covered and sources of supply are suggested. Some valve circuits are included but the accent is on transistors and allied semiconductor devices. The circuit diagrams are intended mainly to illustrate the typical basic features of the various circuits discussed and are not necessarily meant to be used as designs for practical interpretation. Chapter headings include classification, crystal, variable and audio oscillators, oscillators in receivers, test equipment and electronic musical instruments, components for oscillators, troubleshooting and finally sources of supply and information. Pp.120. Price £2.00. W. Foulsham \& Co. Ltd., Yeovil Road, Slough, SL1 4JH.
Colour TV Servicing Manual Vol. 1, by Gordon J. King, provides a study of the circuits of nine basic colour television chassis and covers the normal operation of the sets with a view to enabling the engineer and the student to understand the working of the complex circuitry. while a certain amount of theory is present, the emphasis is on normal operation, so that it will be readily apparent when a circuit is not functioning correctly. Each chapter con-
cludes with detailed servicing notes, the accent being on the colour sections of receivers in terms of alignment, adjustments, fault symptoms and corrections. The book is illustrated with circuit diagrams, chassis layouts and normal oscilloscope traces. The sets covered include a selection of models marketed under the Bang \& Olufsen, Bush, Decca, Dynatron, Ekco, Ferguson, GEC, HMV, Invicta, ITT/KB, Marconiphone, Masteradio, Murphy, Pye, Sobell and Ultra brand names. Also studied is the decoder principle used in the Sony KV-1320UB. Pp.232. Price £4.90. Butterworth \& Co. Ltd, 88 Kingsway, London WC2B 6AB. Electrical Who's Who 1972/1973, compiled by Electrical Review, contains many new names in this revised edition. The directory contains an index to the personnel of companies, boards and associations compiled from lists supplied by the organizations themselves. Firms, electrical contractors and technical colleges are grouped under separate headings. Pp. 440 . Price $£ 3.75$ (by post £4). IPC ElectricalElectronic Year Books Ltd, Dorset House, Stamford Street, London SEI 9LU.
1973 RCA Solid State Data Books is a series of six volumes providing data on all RCA's solid-state comporents with application notes in many cases. Data on new devices introduced in 1972 has been added to this current series with many data sheets revised and updated. Eighteen new application notes have also been added. The subjects covered by the six volumes are: linear i.cs and m.o.s. devices (2 volumes), power transistors and power hybrid circuits, c.o.s./m.o.s. digital i.cs, r.f. power devices and finally thyristors, rectifiers and diacs. Price $£ 5.40$ (6 vols.). RCA Ltd. Lincoln Way, Windmill Road, Sunbury-onThames, Middlesex TW 16 7HW.

Educational film-strips

Mullard's latest additions to their educational 35 mm film-strips are six colour tutorials, all available in either single- or double-frame film-strip or double-frame slides. Briefly, they are: The transistor (ref: E144) which deals with the operational aspects of these devices and includes illustrations of alloy-junction, diffused and planar constructions. Magnetism, part (ref: E145) which discusses the physical effects of magnetic fields, including the Hall effect, and part 2 (ref: E146) describing interaction effects such as moving-coil instrumentation, B and H relationships, and consideration is given to differentiating between diamagnetism, paramagnetism and ferromagnetism. Semiconductor photocells (ref: E147) classifies optoelectronic devices and explains the action of light quanta on atomic structure. Photo sensitive diode and transistor theory and applications are considered and a brief mention of photo f.e.ts and thyristors is included. Conduction in solids (ref: E148) is the fifth topic which demonstrates the dependence of electrical conductivity on material lattice structures. Some of the factors governing electron mobility, work function and material contact potentials are also covered. Conduction in gases (ref: E149) in which the mechanism of gas conduction is explained, deals with molecular motion. ionization, work function, electron and ion collision and finally illustrates glow and arc discharges at high and low pressure.

Prices are between $£ 2.00$ and $£ 2.50$ for singleframe film-strip, $£ 2.25$ and $£ 2.75$ for double frame film-strip and $£ 2.75$ and $£ 3.25$ for doubleframe slides. The price includes a teacher's booklet. Further information can be obtained from The SLide Centre Ltd, Portman House. 17 Brodrick Road, London SW17 7DZ.

EEV POWER TUBES:TETRODES\&TRIODES

Why you should replace one of theirs by one of ours!

There are at least three reasons for this.

First, this is an EEV tube and EEV is one of the biggest tube makers in the world. When you replace with EEV, you know you are getting a tube that you can depend on.

Second, EEV tubes are very competitively priced.

Third, you'll find you get more than a good tube from EEV. Our service is quick, efficient, informed. We go to endless trouble to keep our customers out of trouble.

Ask any EEV customer, or try us for yourself. Write for details, or if you have a specific problem 'phone us at Cheimsford and ask for extension 428.

Ours	Theirs	Anode dissipation max. (kW)	Output	Anode voltage max. (kW)	Frequency(MHz)	Filament ratings	
			(kW)			(V)	(A)
4C×1000A	$\{4 \mathrm{C} \times 1000 \mathrm{~A}$						
4CX1000K	$\{4 \mathrm{CX1000K}$	1.0	3.2	3.0	110	6.0	9.0
4CX1500B	4CX1500B	1.5	2.7	3.0	30	6.0	9.0
4CX5000A	$\left\{\begin{array}{l}4 \mathrm{C} \times 5000 \mathrm{~A} \\ \text { CV8295 }\end{array}\right.$	5.0	16	7.5	30/110	7.5	75
4CX10,000D	$\left\{\begin{array}{l}\text { 4CX10,000D } \\ \text { CV6184 }\end{array}\right.$	10	16	7.5	30/110	7.5	75
4CX15,000A	4CX15,000A	15	36.5	10	110	6.3	160
$4 \mathrm{C} \times 35,000 \mathrm{C}$	$\left\{\begin{array}{l}4 \mathrm{CX} 35,000 \mathrm{C} \\ \mathrm{CV} 11107\end{array}\right.$	35	82	20	30	10	300
BR1161	$\left\{\begin{array}{l}\text { CV9343 } \\ \text { RS726 }\end{array}\right.$	35	100	14	10/30		155
Ours	Theirs	Anode dissipation max. (kW)	Output power (kW)	Anode woltage max. (kW)	Frequency (MHz)	Filame (V)	ntratings (A)
CY1172	RS2002V	150	220	15	30	21	350
BW1184	YD1202	80	120	14.4	30	12.2	255
BW1185	YD1 212	120	240	16.8	30	12.6	380
BY1161	RS826	60	120	14	10/30	11	155

EEV knowhow.

AP 44

ENGLISH ELECTRIC VALVE CO LTD. Chelmsford, Essex, England, CM1 2OU Tel: 024561777 Telex: 99103 Grams: Enelectico Chelmsford A member of THE GEC ELECTRONIC TUBE CO LTD, a management company which unites the activities of English Electric Valve Co Ltd and The M-O Valve Co Ltd

a new 50MHz oscilioscope

Telequipment's D83

 is not just another 50 MHz scope. It's a brilliant combination of performance and plug-in versatility
at the incomparabieq ≥ 450

Look what you get \times
A $6 \frac{1}{2}$ in CRT operating at 15 kV which provides brighter traces and 50% more viewing area than $8 \times 10 \mathrm{~cm}$ CRT's.

Dual trace operation in alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz .

Choice of a High Gain Differential Amplifier operating down to $50 \mu \mathrm{~V} /$ div sensitivity.
Easier and faster measurements of complex waveforms with the MIXED SWEEP feature \$uilt into the DELAYED SWEEP TIME BASE.
Think of the advantages of two selectable sweep speeds on a single trace.
Stability of a high order due to the adoption of the latest solid-state circuit technology. ensuring trouble-free operation over long periods.
These are only some of the advantages offered by the D83 - find out the rest by sending for full details now.

Telequipment \ll

TEKTRONIX UK LTD.,
Beaverton House, P.O. Box 69, Harpenden. Herts.
Telephone: 61251 Telex: 25559.

The Semiconductor Story

3: Solid circuits - a new concept

by K. J. Dean*, M.Sc., Ph.D. and G. White \dagger, M.Phil., B.Sc.

The development of the transistor, described last month in part 2 of this series, had been a strange mixture of chance and directed scientific research, of skill with difficult processes and of commercial brinksmanship in which some went too near the abyss and never recovered or withdrew from competing. However, there were occasions when someone intimately involved in the struggle was able to look beyond the immediate technical difficulties and point to an idea not then matched by technological skill, but for which the technology would one day be available. Remarkably enough there are two instances of this happening in the same year, 1952, only four years after the discovery of the transistor effect by Bardeen and Brattain. In both cases the prophesies, for that is what they were, came true in the years to come. W. Shockley, writing in the Proceedings of the American Institute of Radio Engineers (now the I.E.E.E.) laid down the theory of the field effect transistor, fourteen years before it was to become a commercial proposition. G. W. A. Dummer of the Royal Radar Establishment (now at Malvern) speaking at a transistor conference in Washington pointed out that semiconductors could be used to make resistors, capacitors. diodes and transistors so that the possibility of putting a number of all these elements on a single piece of semiconductor existed - in fact that it was possible to make an integrated circuit. It was however to be seven years or so before this idea reached any sort of fruition and about sixtcen years before these two, the integrated circuit and the field effect device, came together as a complex commercial product.

Of course the germanium technology of 1952 was quite inadequate to put Dummer's idea into practice and it was five years before the Plessey Company, who were by then more interested in precise photo-chemical processes, were given a contract in association with the R.R.E. to investigate the possibility of a solid circuit. In 1957 an international symposium on electronic components was held in Malvern at which, reported Wireless

[^3]World in November, the solid circuit was little more than an idea to be discussed in the same breath as ferrite blocks and resin-potted circuits. But there was one point which was significant - the solid circuits being proposed in 1957 were silicon, not germanium.

Technology available

By this time a number of other companies both in the U.S.A. and in Europe were interested in solid circuits, amongst them Texas Instruments (in Bedford as well as

Early Texas mesa integrated circuit showing the vitreous enamel package, from the underside of which the connecting leads protrude.

Multi-chip integrated circuit by S.T.C. mounted in a TO5 header on a printed circuit board on which the interconnection pattern has been etched. The circuit, sold in 1964, is that of a d.t.l. gate.
in the U.S.A.) and Fairchild. Not only were silicon transistors available but the mesa process had also been recently developed, largely by Texas Instruments. Now this process has the important advantage of requiring diffusion from only one face of the silicon slice. Hence it was thought possible to place various active and passive components side by side on a single slice and then inter-connect them. In 1958 this is what Texas were able to show they could do. As was the case with transistors where increasing skill with technology and governmental patronage produced a variety of transistor types, changes in solid state techniques had a vital impact on the development of integrated circuits. The key technology was the development by Fairchild of the planar process, so that even by 1960 it was clear that planar devices would most easily lend themselves to interconnection as solid circuits. In fact it can be argued that two of the major efforts since that time have been to minimize the profile contours of silicon chips and reduce the size of transistors within the chip. These have been brought about using modifications of the planar process.

The patronage which proved decisive and turned, alas once more, a British idea into a foreign product, came from the U.S. Government. The Minuteman project was at the end of the '50s the American contribution to the U.S./U.S.S.R. arms race and represented the ultimate then possible in electronic sophistication. It was funds from this project, principally to Fairchild but also to Texas which prowided the immediate incentive to devise high component-density circuits of great reliability for use in the limited space and very difficult environment of a missile. Thus the early integrated circuits were born. Although by this time a technology to make a form of integrated circuit was available on a laboratory basis, it had a number of limitations, both of cost and as a production method. Failure to produce a reliable isolation technique meant that multi-chip circuits were the best that many companies could do. One chip might carry a single transistor, another might have a resistive network and a third might consist of diodes. The chips were at first mounted on a suitable sub-divided printed
circuit board or a ceramic button which was in turn mounted on a TO5 header. Another area of difficulty lay in the interconnections. Contact pads were provided on the silicon chips by depositing an aluminium pattern. This metal had low resistance and was found to give good adhesion to the surface of both p-type and n-type silicon. The interconnection leads were gold wire. A reaction may take place between these two metals at the fairly high temperatures used in bonding. This results in high resistance purple or black coloured compounds known as purple plague and black death respectively. These are intermetallic compounds which arise in the presence of silicon. Whilst purple plague for example could and did exist with discrete devices, it was with early integrated circuits, particularly multi-chip circuits, that it became widely known. For instance some of the i.cs used in Minuteman missiles had a gold/aluminium interconnection system and so suffered from purple plague.

The development of integrated circuit technology was almost rocket-like with the U.S. Government support it attracted. The 1962 Minuteman II project might be regarded as the second stage of the rocket. In this project Texas had a contract to supply 300,000 i.cs thus setting the scene for later large scale production. At this time the U.K. Government was abandoning its independent nuclear deterrent; for example, the Black Knizht programme was cancelled. There was therefore relatively little incentive in Britain to develop British i.cs for the world-wide defence market which undoubtedly existed. The state of the art here can be seen in a report from S.T.C., "Report on commercial valve developments - solid state circuit techniques" which showed separate resistors, capacitors, transistors and diodes on a single chip wire bonded to give an r.c.t.l. gate and stated that the first circuits were made in March 1962. Similar gates had been available in limited quantities in the U.S.A. for at least 12 months before that and in 1962 the first commercial planar circuits were already being advertised in British journals by Fairchild. These were r.t.l. (resistor-transistor logic) gates and were capable of operation at 1 MHz . The chips were typically 1 mm square - one hundredth of the surface area of the $\frac{3}{8}$ in square chips proposed by Dummer ten years earlier.

Why logic gates as i.cs?

The first integrated circuits were almost exclusively logic circuits. This was because the electronic control of missiles was very largely of a digital nature and because it was much easier to design switching circuits which had only two states of operation than it was to produce linear amplifiers. Silicon technology made it possibie to design circuits in which the tolerance was relatively tight between components in a circuit but it was unable at that time to yield circuits in which the absolute tolerance of any one component could be kept small. This suited the design of switching circuits.

Multi-chip low noise cascode amplifier for use at frequencies up to 100 MHz produced by Marconi Microelectronics in 1965. The chips are mounted on a ceramic button fixed to the header, and are wire bonded; the button has been divided into four "lands".

One of the transistors from a low noise 100 MHz cascode amplifier. The transistor was made by an early form of planar process and the chip size is 0.46 mm square.

Perhaps stage 3 of the "i.c. rocket" was fired when it was realized that the limited market of defence requirements could be replaced by the much larger market of the growing computer industry which also used logic circuits and already had very definite views about their modular nature. Thus from the start the need for switching circuits rather than linear amplifiers was paramount. Integrated circuits were therefore gold doped and this method of obtaining a speed advantage was almost always followed until the advent of Shottky diodes in about 1970. By the end of 1963 work in the U.K. was catching up and a report on a C.V.D. project by C. P. Sandbank describes the manufacture of circuits which include isolation lands, just as are used in the epitaxial circuits we have to-day, with buried layers to eliminate parasitic p-n-p transistors, and of course with gold doping. These circuits were a form of transistor-capacitor logic with 35 ns propagation delay through each gate. This at least was an improvement.

Industrial pressures

The effect of all this was a scramble for a place in the market, and a highly competitive market it turned out to be. Fairchild linked up in Europe with the Italian company, S.G.S., later to separate again. Elliott set up a production line at Boreham Wood and Marconi at Witham near Chelmsford and at Glenrothes in Scotland. These companies later merged with G.E.C. who had been in semiconductors from the start, and with A.E.I. who had already withdrawn from making small junction transistors. Eventually the manufacturing plants at Glenrothes and Witham were closed although not until near the end of the sixties. Meanwhile Plessey's semiconductor plant was turned over almost exclusively to i.c. manufacture at the expense of transistors. What brought about these traumatic changes?

In 1960 integrated circuits cost $£ 20$ per package and were available for military purposes only. Ten years later they had fallen to one per cent of their original cost and were incorporated in a wide range of industrial equipment and were even making a substantial impression on the traditionally cost-conscious domestic market. To understand how this came about one must know something of the factors which influenced industrial growth and falling price. Circuit development costs are substantial when only a small number of devices is required. It was commonly stated in the middle sixties that the price of the design work for a set of masks to diffuse an integrated circuit was $£ 10,000$, but frequently all this cost had been covered by, defence contracts and it did not recur so long as the same device was manufactured for the industrial market. Labour costs are high when production lines have to be staffed with costly graduates, but as the technology becomes better understood less skilled labour is employed, so that eventually plants were set up in low labour cost areas such as Taiwan, Hong Kong, New Guinea and Portugal - often referred to as "off-shore" plants. Due to the small size of i.cs air transport charges are very small and slices could be diffused centrally under excellent supervision and góod environmental conditions and then flown to an off-shore plant for encapsulation and testing.

The cost of the material used in making an i.c. is directly related to the yield of good devices which can be obtained.
The resistivity of slice material affects the tolerance of components from one chip to another. It is now possible to hold this to less than 15% instead of 25% formerly from the centre to the edge of the slice. The number of dislocations in the material was typically 30,000 per sq. cm . It is now only 500 per sq. cm .
Circuit designers soon realized that active elements took up less space than the passive elements which they could replace. The space occupied by a $1 \mathrm{k} \Omega$ resistor was at least equal to that taken up by four transistors and in some cases more. If a large value resistor could be eliminated or its resistance drastically
reduced by using a few transistors this could well result in a smaller surface area for the circuit. Hence a new circuit design philosophy developed in which active elements were to be preferred to passive ones and resistors were restricted to values between about 30Ω and $1 \mathrm{k} \Omega$.

The first commercial integrated circuits which were monolithic, i.e. on a single chip, were produced using one inch silicon slices. To-day 2 in slices are typical. So not only did percentage yields rise, but device sizes became less and four times the number of devices were provided on each processed slice. The high percentage yields and the greater throughput per slice meant that the manufacturing plants which had been set up with U.S. Government money were in an extremely strong position to compete not only with the U.S. manufacturers but with manufacturers in Europe, in Japan and even in the U.S.S.R. In the Soviet Union the effect of the large American output was to concentrate effort on thick film and hybrid circuits, for silicon circuits could always be imported, for example, through Austria and Hungary. Thus, by 1970 there was only the barest token U.S.S.R. export market for integrated circuits and then only in specialized circuits with only a very small market potential.

High speed circuits

As the computer industry became more and more the main customer for integrated circuits, so "he who pays the piper" began to call the tune. Computer manufacturers wanted two things: reliable high speed circuits and the availability of the same package from a number of sources. The i.c. suppliers felt bound to comply and so with "second sourcing" available a new twist was given to competition and price cutting.

In late 1963 the American Motorola company started to make emitter-coupled logic gates. A typical dual two-input NOR gate in an eight-lead TO5 can consisted of a single 1 mm square chip. These Motorola e.c.l. gates had propagation times which were less than 5 ns , but they were potentially even faster and by 1971 types called MECL3 with less than 1 ns delays were amongst the fastest circuits on the market. One of the problems of the Motorola eic.l. which delayed acceptance of these gates was that the switching potentials were less than 1 V apart and neither of them was at the potential of either supply line. This necessitated the use of special reference voltage i.cs in addition to the gates of which a system might be composed.

In 1965 both S.T.C. and Marconi made agreements to second source Fairchild diode-transistor logic and Plessey started to make i.cs at Swindon on a production line basis - a year later they were producing 300,000 circuits per annum. Though Plessey had started in r.t.l. they were now second sourcing the Motorola MECL series. Well separated logic levels and under 20 ns propagation time were provided by d.t.l. gates. Their competition in 1965 was from r.t.l., the
natural successor of modular circuits such as Norbit and Minilog. They had been developed early and their design costs amortized, hence they were cheaper then than other i.cs. But r.t.l. gates were not fast enough for the computer manufacturers, so production quantities fell and prices no longer fell. Principally developed by Texas, t.t.l. soon took over with under 10 ns propagation time and in due course were second sourced also, by Mullard, Siemens, and (in 1968) by I.T.T. (formerly S.T.C.).

Dual-in-line packages

The first Texas mesa solid circuits were encapsulated in vitreous enamel and subsequent circuits used standard transistor packages, principally TO5, whilst military buyers insisted on more expensive flat-packs. However, these became less acceptable as more complex circuits were devised which required more connecting leads. Hence dual-in-line plastic and other hermetic packages were progressively introduced from 1966 until eventually this type of package became exclusively accepted for industrial and commercial applications and for many military purposes also. In fact, once adopted, it has been used for a number of other nonsemiconductor electronic components.

Linear circuits

As familiarity with the technology grew it was certain that at some stage linear circuits would be tackled by leading manufacturers. In the U.S.A. Fairchild introduced the 700 series of operational amplifiers and in the U.K. Plessey was working along similar lines. One of their SL500 series, for example, designed in 1967, had a current gain of 26 dB at 30 MHz with a response from 5 MHz to 100 MHz . The amplifier circuit elements consisted of three transistors, a diode, seven resistors and three capacitors on a
single chip 1.5 mm square. The advantages of excluding capacitors, which were wasteful of surface area, were quickly realized. Gain and frequency response were then controlled by external reactive shunts and by internal feedback. Thus one amplifier circuit could be used for a wide range of applications with consequent sales benefit to the manufacturer. For example, the Fairchild $\mu \mathrm{A} 730$ was a differential amplifier which consisted of seven resistors and five transistors whilst the μ A 709 high gain amplifier which used external feedback to control gain consisted of 15 resistors and 15 transistors. Neither of these circuits included areas specifically devoted to capacitance. Of course, capacitance is always present, limiting frequency response.

By 1968 a number of manufacturers were experimenting with special purpose i.cs hoping to break into new markets, such as radio, television, automobile electronics and the "white goods" trade (fridges, washing machines, etc.). One company produced a car radio chip basically a superhet with reflex i.f. and a.f. amplifiers though they found a market for it very difficult to obtain, and in 1969 Plessey had a single chip colour demodulator for Rank-Bush-Murphy colour television receivers.

A goal is reached

It was in 1968 when those two great ideas, mentioned earlier, of the solid circuit and the field effect transistor came together, and none too happy a union it was at first. Field effect transistors had been in production since about 1963, first with junction gates and later with metal oxide insulating gates. However their reputation for reliabilify was very poor.

Small silicon area, fewer diffusions than for bipolar transistors, high input resistance and a high fan-in when used as switches are all properties of m.o.s. devices. They depend however on surface effects and so are liable to surface con-

Motorola MC910. A 1 mm square chip containing four transistors and six resistors, Designed in late 1963, this is an r.t.l. dual twoinput NOR gate which has a 40ns turn-off time. The four input resistors are $1.5 \mathrm{k} \Omega$ each

tamination, and in some cases suffer from poor surface stability. Catastrophic failures were not at all uncommon due not only to contamination but to electrostatic pick-up. Also silicon dioxide decomposes in the presence of aluminium resulting in pin-holes in the insulation layer which are fatal to the device. Contamination is particularly likely when an m.o.s. circuit is encapsulated in plastic, such as the dual-in-line packages then becoming popular. The solution to this problem was found to be to use not only an oxide layer but also a nitride layer to give passivation of the surface since silicon nitride is not affected in the same way by aluminium as is silicon dioxide. These m.n.o.s. gates were introduced by a number of companies, among them Ferranti. A few months later Plessey set up a production line for m.o.s. circuits at Swindon and by 197230% of their output of 1.2 million chips per annum consisted of m.o.s. circuits.

Finding their feet

Soaring yields, even with integrated circuits, due to familiarity with processing technology, and the lure of even larger bipolar and m.o.s. circuits all enticed manufacturers to do better and build bigger, while growing competition and the dramatic failure of some and ever falling prices were never far from their thoughts. Of course chips have got bigger. A typical maximum chip size in production now is 4 mm square with the occasional 6 mm square "special" but m.o.s. has been something of a disappointment with the larger chip sizes. There has been steady progress towards m.s.i. (medium scale integration) and l.s.i. (large scale integration) except for agreement on exactly where a function on a chip becomes large enough to warrant the term m.s.i. or even I.s.i. (more about this in part 4). However, there have been some interesting ideas floated by engineers

p-type

Collector diffusion isolation (c.d.i.) process involves diffusion of an n^{+}layer into a p-type silicon slice. Subsequent growth of a p-type epitaxial over the now buried n^{+}layer is used to hold emitter diffusion and collector diffusions which link up with the buried laver. This results in the isolation of each transistor so formed.
about methods for making larger circuits without yields becoming vanishingly small and it may be that among them are those who have had a glimpse of what the future really holds.

As long ago as 1966 the theory was being proposed that circuit yield depended on the density of the interconnection pattern of the aluminium on the surface of the chip. It was claimed that devices on the chip could be made smaller and the separation between devices less so that the limiting factor in the technology was the resolution of the aluminium pattern. Hence ways were sought to reduce the number of conductors on the chip. Some diffused layers were conveniently available as underpasses, but generally an underpass takes up more space than the corresponding conductor on the surface. It was suggested that a number of interconnection layers would reduce the density of conductors in any one layer so much that yields would rise. But more layers mean more masks and yield is proportional to the power of the number of masks, so yields fell when this was attempted. Some, like Fairchild, had a special slant on this problem: the

British-designed linear amplifier chip which shows the area of surface taken up by capacitors, compared with the much smaller areas taken up bv transistors and resistors. The circuit is that of a capacitor-coupled r.f. amplifier.
chip consisted of say, 32 gates, and the first layer of metallization connected the circuit elements on the chip into gates. The customer was then asked to design the pattern which interconnected the gates to form the functions he wanted. The idea foundered, both due to the low yields which meant that prices were high, and because customers did not see why they should do part of the i.c. manufacturer's work for him. It is interesting that those manufacturers who either do not use two-layer metallization or who have tried and failed point to the contour of the silicon surface as the core of the problem. Although one might imagine the planar surface to be flat its profile is far from this with windows in the oxide layer making contact with the various diffusions and aluminium contacts as well.

Beam leads and flip chips

High on the list of advantages of solid state devices is reliability. It has long been recognized that the weakest link in transistor technology is the bonding of the chips to the posts on the header, or directly to a printed circuit board or other components. Two alternatives to wire bonding are available. Flip chips have thickened bonding pads so that the device can be bonded face to face by contact between these pads and another surface. Although some work has been done with flip chip i.cs, automatic assembly of chips is seldom used so that it is chiefly with discrete transistors that they have been used. The main exception is the I.B.M. solid logic modules where flip chips have been used in assembling random access memories.

Beam leads are produced by multiple deposition, usually of platinum and gold to extend the conductors beyond the edge of the chip, so that when the silicon is etched away from the edges of the chip, the beam leads protude. Beam leads have been found more appropriate for i.cs, the circuits being separated either by a lap and etch technique or by air abrasion. Beam lead technology is of some signifi cance in the U.S. but once again there have been no significant contracts in the U.K.

What next?

An early Texas project had been called "A computer on a chip". At the time it seemed this was just American "talk" but l.s.i. has now turned this into a potential reality. Part 4 of this series will look at the development of I.s.i. and make some sober guesses about the future. Some cynics might wonder whether there is a future, for the last five years have certainly brought over-production and shown the perils of being tied to a pace-making industry like computing. But the fainthearted don't work in semiconductors. If the cost of a small domestic car like the Vauxhall Viva had fallen as dramatically as that of integrated circuits over the last ten years, its cost today would be comparable to that of a secondhand bicycle.

Experiments with Operational Amplifiers

8. Comparators - simple types and regenerative comparators with hysteresis

by G. B. Clayton, B.Sc., F.Inst.P

When an operational amplifier is used without feedback a small input signal causes the amplifier output to switch between its saturation limits. There is a range of applications for this switching characteristic, one of which is the comparator.

A comparator is basically a device which compares two signals and indicates which of the two is the larger. There is a variety of ways in which a differential input operational amplifier can be used to perform the comparator function.
A simple experimental circuit for demonstrating comparator action is shown in Fig. 8.1. Input and reference signals can be interchanged in order to obtain an output transition of reverse polarity.

A second comparator circuit in which the output transition occurs when the sum of two voltages reaches a defined level is given in Fig. 8.2. The action of the circuits can be investigated by applying measured d.c. input signals, with a d.c. voltmeter connected to the amplifier output to indicate the state of the comparator. Alternatively, a low frequency sinusoid can be used as an input signal and the comparator transfer curve can be displayed by an oscilloscope.

Regenerative comparators

When the input signal to a simple comparator varies very slowly the comparator switching time becomes dependent upon the rate of change of the input signal. In such circumstances comparator switching time can be reduced to a limiting value set by amplifier slewing rate by applying positive feedback. Comparators which employ positive feedback are called regenerative comparators. A regenerative comparator has a transfer curve which exhibits hysteresis. An experimental circuit for investigating the action of such a comparator is shown in Fig. 8.3.

Typical transfer curves which illustrate the action of the circuit are shown by the oscillograms in Fig. 8.4. In the lower trace a value for R_{2} of $47 \mathrm{k} \Omega$ was used, resulting in a greater amount of hysteresis. The upper and lower transition level values for the input signal are determined by the relationships

$$
\begin{aligned}
\underset{\text { upper }}{e_{i}} & =\underset{\text { +velimit }}{V_{u}} \cdot \frac{R_{1}}{R_{1}+R_{2}} \\
\underset{\text { lower }}{e_{i}} & ={\underset{-v e l i m i t}{V_{u}}}_{V_{1}+\frac{R_{1}}{R_{1}+R_{2}}}
\end{aligned}
$$

The effect of applying a reference voltage (other than zero) to point B should be observed, also the effect of interchanging input and reference signals.

Note that the 1741 CG op-amp used in the experiments is quite suitable for demonstrating comparator action but an amplifier type with a faster slewing rate should be used for practical comparator applications which require a rapid transition.

Fig. 8.1. (a) Simple comparator; (b) comparator transfer curve.

Fig. 8.3. Regenerative comparator.

Fig. 8.4. Two transfer curves, showing hysteresis, obtained with the regenerative comparator in Fig. 8.3. Horizontal scale (2V/div.) is input voltage, and vertical scale ($10 \mathrm{~V} / \mathrm{div}$.$) is output voltage. For the$ lower trace a value of $47 k \Omega$ was used for R_{2}.

Output transition when

$$
\frac{e_{1}}{R_{1}}+\frac{e_{2}}{R_{2}}+\frac{E_{\text {ret }}}{R}=0
$$

Fig. 8.2. Circuit comparing the sum of two input voltages with a defined level.

Circuit Ideas

Triggered ramp generator

A simple triggered linear ramp generator can be made with a p-channel enhancement m.o.s.f.e.t. and a unijunction transistor. When the m.o.s.f.e.t. is turned off by a positive pulse to the gate the capacitor is unable to charge and is kept discharged by the unijunction leakage. A negative pulse to the f.e.t. gate turns it on and the capacitor charges linearly through the f.e.t. acting as a constant-current source. A triggered sweep for an

oscilloscope can be made easily with the addition of a bistable circuit which is switched into one state by the triggering signal and switched back again by a pulse from base 1 or 2 of the unijunction transistor. For a linear sweep the bistable switch must give a sharp pulse to switch on the f.e.t. quickly. I used a surplus unmarked m.o.s.f.e.t. but I imagine any type would be suitable.
S. P. Jarman,

University of Sussex.

Simple frequency doubler with unbalanced input

Known aperiodic frequency-doubler circuits require a push-pull balanced infut, or have internal push-pull circuit arrangements. The circuit shown in the next column is a simpler solution to the problem, and gives excellent doubling action, as shown in the photograph, provided $R_{1}=R_{2}$. Input voltage was 2.5 V

pk-pk. If the source of $V_{\text {in }}$ has appreciable internal resistance, R_{1} should be reduced accordingly.

The input impedance of the circuit is higher when $V_{\text {in }}$ goes positive than when it goes negative, and this leads to unsymmetrical operation if $V_{\text {in }}$ is supplied via a coupling capacitor. This trouble may be cured by adding a "transdiode" and resistor as shown in broken-line, the resistor value being the same as that of R_{1} and R_{2}. (An ordinary silicon diode may be used, but gives a less perfectly symmetrical input impedance.) With this modification, the internal resistance of the $V_{\text {in }}$ source is no longer critical.

Resistors R_{1} or R_{2} may, of course, be made adjustable, and set for total elimination of fundamental-frequency output, though this will not usually be necessary. The gains of the circuit to positive and negative inputs are well controlled by negative-feedback action.

If the collector load resistor is replaced by a tuned circuit of only moderate Q-value, say 10 , a clean double-frequency sinewave output may be obtained.
Peter J. Baxandall
Malvern
Worcs.

T.T.L. monostable maintains pulse width

Addition of a single diode allows a monostable circuit to be used with much shorter input pulses. Introduction of an $R C$ delay is a useful means of producing short pulses at the leading and trailing edges of an input pulse (e.g. H.A. Cole, $W W$ January 1972 pp. 31-2.) The delay introduced by $R C$ limits the minimum usable input pulse width; for an input pulse of duration around $R C$ the width of the output pulse is reduced. Addition of the diode restores the pulse width, as shown dashed.

The general principle of using an $R C$ delay in this way is acceptable only if adequate rise and fall times are maintained. For ordinary t.t.l. a rate of change of voltage at the logic threshold equivalent to a rise or fall time of more than about a microsecond may give rise to spurious oscillation.
J. V. Yelland,

Didcot,
Berks.

Low-voltage source

To provide a portable source of multiples of approximately 0.2 V , for example for tunnel diode circuits, without use of a power-wasting voltage divider, this circuit

is offered, using a Lechlanché cell and a mercury cell. The 1.35 V mercury cell should offer shelf life or better, as the circuit current demand value is a charging current for the mercury cell.
David R. Schaller,
Milwaukee,
Wisconsin.

Audio dynamic range compressor

This circuit was designed for use with tape recorders to reduce distortion occurring during transients and unforeseen crescendos, and to allow a higher average recording level, hence improving signal-to-noise ratios. It also gives interesting effects if fed excess signals, especially with pop music, as the recovery time of the a.g.c. mechanism appears as a modulation of the signal. It uses a readily available operational amplifier to provide a high input impedance and a well-defined gain. The low output impedance is used to drive the envelope detector D and its associated reservoir capacitor, C, thus giving fast reaction to spikes. The recovery time depends on C, (I have found $40-50 \mathrm{~ms}$ reasonable) and its minimum value must be comparable with the period of the lowest frequency encountered. The voltage at $T r_{2}$ collector should be between -2 V and -2.3 V , and is fairly critical as it defines the working point of the f.e.t. The sensitivity control R_{1} adjusts the point at which limiting commences. If a stereo version is attempted, it is wise to equalize the operation of the two channels by adjustment of the collector voltage via R_{2}, as R_{1} is a fine control.

Gain of the circuit is around unity at low levels, reducing as the input signal

approaches 350 mV . The output voltage remains a fairly constant 400 mV for input signals in the range 450 mV to 4 V . There may be some room for adjustment in the circuit values, but I have found that a higher value of gain in the op-amp stage slightly improves limiting, but reduces the
upper limit at which the limiting action ceases. Reducing the gain just causes the amplitude to "hunt" in response to large input signals. Consumption of a stereo version is around 6 mA .
P. Hanson,

University of Kent.

Light level indicator

When making optical experimehts, testing or calibrating photocells, it may be necessary to set a known light level each time before the experiment is performed. The following circuit provides a simple way of setting a light level to a particular value. A silicon planar photodiode, generates a photo-current proportional to the incident illumination, which is fed to the input of an op-amp connected as a current amplifier. The output is thus the equivalent photo-current developed across a 2-M resistor. Two comparators are used to compare the output voltage with a fixed reference set by a potential divider
chain. Comparator 2 is set at nominally 1 V and comparator 1 at 1.1 V . The amplifier output is fed via R_{3} to the non-inverting input of comparator 1 and the inverting input of comparator 2. When the output is below 1V, the output of comparator 2 is positive, which enables the current in R_{5} to turn on $T r_{2}$, lighting the "low" lamp. When the output of the amplifier is above 1.1 V the output of comparator 1 will be positive, enabling Tr_{2} to turn on and lighting the "high" lamp. If the amplifier output is between the two thresholds, both comparator outputs will be low and both lamps off, and the green "correct" lamp lights.

Changing the values of R_{1} and R_{2} alters the basic sensitivity of the system. Capacitors C_{1} and C_{2} provide decoupling of noise pick-up for remote detection or small content of a.c. lighting. Components R_{3}, C_{3} and C_{4} minimize instability in the comparators as they pass through their linear region.

Values in the diagram shown give an acceptance band of 10%. Reducing the value of R_{+}to 50Ω reduces the pass band to 5%. For closer bands, higher gain comparators may be used (e.g. μ A734).
David C. Porter,
Poole,
Dorset.

The Evolution of the A.C. Mains Radio Valve

by J. H. Ludlow, A.C.C.I, M.I.E.E.

The advent in the late 1920s of the first receiving valves which could be satisfactorily fed from an a.c. supply is rightly regarded as an important phase of thermionic history. Nevertheless in these days of compact and easily carried radio receivers of good performance for which a mains lead would be an unwelcome restriction, the advantages of such a facility may not be at all clear. Through this brief account of the mains valve's evolution and development, it may be possible to see which, if any, of the more important inventions may be said to have contributed the essential element which brought success to the design eventually adopted by all the main valve manufacturers, and which is still in use in the fast dwindling production of today.

Bright emitters

It is generally accepted that the radio valve first established itself as an important element in communications during the first world war: the extreme pressures of military urgency created an extensive technology which could never have grown up in the restrictive circle of pre-war "wireless". When peace came, not only were there many thousands of Allied ex-servicemen who had personal experience of what radio could do, but additionally there were tens of thousands of "war-surplus" valves, mainly of the Army "R" type, available for experimentation. Out of the resulting body of amateur radio enthusiasts there grew up the beginnings of broadcasting, first in America and then in Europe, and this was destined to become the next force to promote and direct valve development. However, whereas war had left a legacy of valves and equipment suited to its aims of reliable message-sending with portable apparatus in the field of battle, broadcasting required radiotelephony to be adapted to the social and commercial functions of providing a maximum of entertainment and edification for its public with a minimum of expense and inconvenience to them.

The plentiful supply of valves which had helped to launch broadcasting could not satisfy the demand for very long-the life expectancy of the " R " valve was 100 hours only-and it was replenished promptly enough by the wartime makers, who were happy to promote this new market. Even so, a typical receiver of the time was a modest
matter of one or two valves feeding a pair ol headphones, and requiring an outside aerial of considerable size. Each "R"-type filament needed a supply of 0.7 A from a 4 V accumulator, so that a pair took a continuous power of nearly six watts from this and the bulky high-tension battery, in order to give a signal of a few milliwatts. The fact that the valves were bright enough to illuminate a signal-pad was poor compensa-tion-even in an era of gas-light and candles-for the constant drudgery and expense of taking the battery to be charged, often at the local cycle-shop, and for the periodic replacement of the high-tension unit.

Dull emission

As long as "listening-in" involved wearing headphones, most of those within a few miles of a broadcasting transmitter understandably preferred the cheaper and simpler, though sometimes tantalizing, crystal receiver. The poor performance of the "bright" tungsten filament was highlighted by demands for multivalve sets to give greater range, and for power valves to drive the new loudspeakers which made family listening so much more comfortable. The first response to this pressure for improved efficiency was the thoriated-tungsten filament, which was developed from an effect which had been observed in certain " R " type valves some years before. These "dull-emitters" became generally available in 1922-23, and reduced the capacity of the necessary accumulator to about one quarter of that previously needed. A year or so later the oxide-coated filament, derived from Wehnelt's discovery of 1902, still further reduced demands on the low-tension battery, and domestic receivers using four or more valves and a loudspeaker became practicable.

Filaments on a.c.

In the meantime a disquieting fact had become apparent to manufacturers and users alike. Centrally generated electric supplies were bringing the convenience of lighting by incandescent filament lamps to more and more homes, and yet the occupants had to put up with wireless sets which had all the inconveniences of a battery-fed reading lamp. Clearly, means had to be devised whereby the power needed by the

receiver was derived from the supply mains. Designers found little difficulty in replacing the h.t. battery with a rectifier unit and smoothing filter, and it is perhaps significant that when they were marketed they were universally called "battery-eliminators", indicating the freedom from toil they would confer on the purchaser. But the elimination of the even more irksome l.t. accumulator was much less simple. Heating the filament of any of the available valves with raw a.c. from a suitable transformer resulted in an entirely unacceptable modulation of the output signal, mainly because a part of the heating voltage appeared at the input, and because the temperature and hence the emission of the fine wire varied at twice the supply frequency.

One of the earliest attempts to overcome this problem was made in 1922 by the French Mazda Company, who marketed a special form of " R " valve for this application. This was their Type "RS", RadioSecteur (mains-radio) valve, and its filament was designed to minimize the effects of the a.c. heating voltage by making it low, and those of temperature variation by using a thick wire. This consumed 2.0 A at 2.3 V , and with the aid of a rectifier with a similar filament made an early type of mains receiver practicable. It should be remembered that the output of such a set would have been fed into headphones with a poor low-frequency response, and that in those days the signal would be judged by its intelligibility rather than its realistic quality. The production of these valves presumably ceased with that of the " R " type on which they were based.

Using d.c. mains

The incentive to find a satisfactory solution increased with the growth of broadcasting and the contemporaneous spread of domestic electric lighting. But it was to be some
years before the first acceptable examples of mains-fed valves appeared, and in the meantime equipment was marketed which would heat the filaments of available types of battery valves from the electric supply. In some districts in England this was direct current, and battery-eliminators took the form of well-ventilated boxes of wire resistors which provided both high and low tension current for the new low-consumption $(0.060 \mathrm{~A})$ filament valves. This basically simple arrangement presented the designer with a number of difficulties resulting from the direct connection of the radio circuits to the supply, the characteristics of which varied from place to place. One trouble was the ingress of mains-borne "noise" which was very difficult to eliminate on some systems. Another was hazard from electric shock, which was increased by the general use of separate direct-connected loudspeakers. Again, in addition to the radio noise already mentioned, d.c. mains frequently carried pronounced ripples at frequencies in the mid-audio range: these were well reproduced by the moving-iron speakers of the period, and were difficult to remove from the filament supply as highvalue capacitors for low voltages were not yet on the market.

Need for a separate heater

Manufacturers were more interested in the a.c. mains, since they were scheduled to supplant the d.c. systems in due course. Many of the above difficulties could be avoided by the use of a transformer in an h.t. eliminator. Moreover, it was found that the heavier filament of an output valve could be heated with raw a.c. by using a centre-tapped transformer winding, but heating the filaments of the earlier-stage valves remained an intractable problem. One of the earliest a.c. receivers, marketed in 1926, fed battery-type filaments in series from the smoothed output of an h.t. unit; but the scheme did not survive the introduction of satisfactory a.c. valves, for reasons which will become apparent later.

It had been realized several years before that the short, thick filament of the type pioneered by the French Mazda Company could only lessen the effects of a.c. heating: it could never eliminate them altogether. The heating voltage could only be reduced usefully to the point at which the magnetic field due to the necessarily increased current contributed equally to the noise in the output from the valve. What was required was a cathode which carried none of the heating current, but which was maintained at temperature by an electrically independent heater.

Ceramic insulators for heaters

One of the first designs for an indirectlyheated receiving valve cathode to be developed commercially was patented in 1923 by Freeman and Wade of the Westinghouse Company of America. They describe how the anode current of a valve with a.c. heating its filament is subject to alternating variations due to the electric and magnetic fields so set up, and to the fluctuating filament temperature, and propose to avoid these effects by providing a tubular equi-

Detaits of the electrode assembly of a "Micromesh" a.c. valve: left to right, the cathode, the grid and its cooling fin, the complete assembly: the heater, cathode and magnesia insulator (above), and finally the construction of the grid. (Reproduced from Wireless World 5th Aug. 1932.)
potential cathode, within which is mounted a slim cylinder of refractory ceramic with two longitudinal perforations through which is threaded a hairpin-shaped heating filament. The magnetic field of this filament is prelerably made small by arranging the perforations close together. The inventors claimed that valves made with cathodes of this type are free from the taults mentioned, and they also found that they gave a better performance than previous valves.

One of the valuable features of this development was that it showed for the first time that the presence of ceramic insulation held at high temperature did not affect the thermionic performance of small receiving valves made in quantity. During the next few years several designs of cathode were evolved which used such ceramic parts in one way or another. including the function of supporting coiled heaters for

Fig. 1."The grid volts anode current characteristics show the K.L.I to be a good general purpose valve or with 100 volts on the plate it is suitable as a moderate power amplifier." (Wireless World 26thJJan. 1927.)
high voltages. Although the new technology led to the production of several types of a.c. valve in both the U.S.A. and Germany, a number of troubles prevented the realization of unqualified success. One of these was an undesirably long warm-up time of over a minute; more important was a high incidence of early failure, caused in some cases by the development of emission from the control-grid, by heater failure due to thermochemical action with the ceramic, or by the deterioration of insulation between other electrodes.

The slow heating may well have been accepted as a small price to pay for the convenience of mains operation, and indeed was quoted as evidence that the bugbear of temperature variation had been thoroughly eradicated. Short life, however, was unacceptable, and a great deal of effort was made to identify and eliminate the causes. Grid emission was caused by the evaporation of oxide from the unprecedentedly large cathode surface on to the surrounding control grid, the temperature of which was raised to emitting level by the considerable radiation from it. Means were sought to inhibit this unwanted activation, which rendered the valve useless in service, but a Western Electric method indicates some of the difficulties. They had demonstrated that a thin layer of oxidation on the nickel of the grid would prevent the development of this unwanted emission at any temperature. But their patent does not claim primarily the use of such a layer, but covers a triode in which the anode is made of decarbonised metal. They had found that if carbon was not removed from the anode metal, it combined during exhaust with water vapour and oxygen remaining in the bulb, to form carbon monoxide, and this later reduced the pre-oxidized grid surface to a clean condition which activated readily under a deposit of cathode coating, and so ended the useful life of the valve.

Problems connected with the ceramic tubes proved to be more intractable. The first ones to be used by American valvemakers were of porcelaineous material, and these proved to be insufficiently refractory to stand the temperature of the heater, which failed through chemical attack. A change was made to magnesia, a material also used in Germany, but this led to insulation troubles in other parts of the valve: the magnesia was reduced by the hot tungsten and the resulting magnesium metal vaporized and condensed on cooler parts of the assembly, producing conducting films between parts normally insulated from each other. There was evidence that alumina would provide the required stability, but fine tubes of that material could not be made commercially at that time.
By the middle of 1926 the position was sufficiently unresolved for two British firms to initiate their own proposais for indirectlyheated cathodes, and in both cases ceramic components were eliminated. On 25th June, C. W. Stopford of the M-O.V. Company patented a novel design which stemmed from H. J. Round's idea of 1914, in that it used no insulation between the heater and the cathode tube. The specification describes a helically coiled hairpin heater which is supported by its centre-point on an axial silica-insulated rod, within an enclosing thimble-shaped cathode tube. This assembly is mounted with suitable grid and anode on the usual "pinch" seal, but with the electrode axis at about 45°, so as to reduce the heat which would otherwise radiate on the supporting glass. A heater voltage as high as 100 V is mentioned.

Marconi K.L. 1

Seven months later, in January 1927, a valve of this type, the "K.L.1" (Fig. 1), was described in Wireless World as having been newly added to the Osram and Marconi ranges. Figures quoted from the journal's own tests show that the 3.5 V heater brought the cathode to emitting temperature in about 15 seconds, that the amplification factor was 7 , and that the average anode impedance was 5300Ω. The article refers to the American version of the indirectly-heated cathode as not having "attained a wide popularity", and concludes that: "In the hands of the amateur the utility of this valve will probably develop, and it is a great advance towards the production of receiving sets working entirely off the mains". Whilst the verdict was only cautiously favourable, it must be remembered that the valve was developed and brought to production at a time when several designs employing ceramic tube insulation were being tried out commercially. The new design might well have pointed the way to a successful solution, in spite of its high heater power (7W) and its somewhat unstable characteristics.

Slip-coated heaters

The second British design for an a.c. cathode was disclosed in a patent which was lodged on 7th July 1926, twelve days after the Stopford-M-O.V. application, by E. Y. Robinson of Metrovick. He based his invention for the improvement of cera-

These two phorographs show clearly the difference between the slip-coated filament (left) of a Mazda type AC/Pen and the ceramic insulated filament (right) of the DeForest Audion type 451. The valves are examples from the Fowler Collection recently acquired by the North-Western Museum of Science and Industry. (Photographs by courtesy of British Science Museum.)
mic insulated heaters, not on the use of insulation of better quality which could withstand the high temperature of the heater, but on a simplified construction which reduced it, and so avoided the snags which beset previous arrangements. The patent was an important one in the series with which he introduced his novel and efficient "Cosmos" short-path valves into a somewhat conservative market, beginning in 1925. He had already shown that closespaced electrodes could be made and held with precision, and that compact grids and anodes could be kept cool. These techniques opened the way to an a.c. valve with exceptionally good characteristics without resorting to a unipotential cathode of large area, and hence high wattage.
To suit his design of electrodes, a cathode ube of a millimetre or less in outside diameter and about 40 mm long was needed. Also, if means could be provided whereby a heater of suitable wattage could be insulated and inserted in such a tube, the temperature of the former would be beneficially lowered, since it depended on the ratio of the heater surface to that of the cathode: the higher the ratio, the cooler the heater.
The manufacture of such ceramic tubes of small cross-section was at that time commercially impracticable, and the essence of Robinson's invention was to omit such components altogether. Instead, the heater was first coated, by any convenient method, with a paint or sludge made up from an insulating substance mixed with a vehicle. This layer was then baked on the heater, and the process repeated until the insulation was sufficiently thick, after which the insulated assembly was inserted in the cathode tube. This process is for convenience referred to throughout as "slip-coating" and includes any process in which a heater is covered with a suitable paint or paste subsequently
baked in situ, as distinct from enclosure in preformed insulating components. With this process the diameter of the tube could be made very small, and the specification states that a tungsten heater of 0.1 mm diameter wire in the form of a hairpin could be so insulated and mounted in a tube 40 mm in length and 2.0 mm in periphery $(0.64 \mathrm{~mm}$ in diameter). The cathode structure so formed had been found to give a long life at an input of 1.0 A at 4.0 V . These values were adopted as the standard rating for Cosmos a.c. valves, and it is pertinent to record that one of these completed a life of over 200,000 hours between the years 1935 and 1961.

Cosmos a.c. valves

Metrovick introduced the first valves with cathodes of this pattern, as types AC / R and AC / G, in the autumn of 1927 , at about the same time as the M-O.V. Company added their high-frequency amplifier type K.H. 1 to the low-frequency type K.L. 1 already mentioned. Thus appeared the first two British designs for a.c. valves, each of which differed in concept from the other and from those being tried out abroad. Of the two, the initial advantage seemed to lie with the cosmos types. Their heater consumption was 4 W against the 7 W of the " K " type, and they gave an amplification of about twice that of the latter. The good performance of both valves, which was many times better than most current battery types, must have been welcome to British set designers, dedicated as they were to a maximum gain from every stage, to offset the effect of the Marconi royalty, which was calculated on the number of valves in a receiver. The Cosmos valves in particular were commended by several writers for their high efficiency.

Apart from the electrode differences between the Marconi-Osram and the Cosmos a.c. valves, the styles of their base
connections were dissimilar. The " K " type base was a standard 4 -pin, in which the heater connections were taken to the normal filament pins, and the extra lead required for the cathode was taken to a terminal on the side of the base. On the other hand the Cosmos valves were given a special base in which one of the standard filament pins served for the cathode, and the other was replaced by a pair of short pins for the heater supply. These, of course, required special sockets (which Cosmos marketed) in new sets. But there were in Britain a very large number of battery receivers, and plenty of enthusiasts, both amateur and professional, ready to convert to mains operation sets in houses enjoying electric light. With an eye on this market, Cosmos produced a cheap adaptor in the form of a thin disc, through which a valve could be plugged into an existing standard valveholder, and this connected the heater pins with a flex lead which emerged from its side. With this provision they could also interest the many British zealots whose pride, sometimes doubtless born of necessity, was in their ability to "get America on one valve", as distinct from their opposite numbers in the U.S. who were more likely to rate an amateur listener's prestige by the number of "tubes" his receiver used.

1928: Trials in Europe and the U.S.

Throughout the world of broadcasting, public demand for reliable mains-fed receivers had become acute, and manufacturers were forced to take urgent steps to provide suitable valves before a satisfactory design for an a.c. cathode had been proved. Not surprisingly, the methods they adopted showed very little unanimity
We have noted that German designers had been following the American technique of insulating heaters with ceramic tubes. But in 1928 they had decided to explore an alternative approach: this was a revival of the short, thick filament such as had been used in the French "Radiosecteur" valve of 1922, except, of course, that the new one had an oxide coating. A report on the Berlin Radio Show of 1928 finds ". . . well represented both the older indirectly-heated type and the new lowvoltage type in which the emitting surface is heated directly". Screen-grid valves, which in battery form had brought about a transformation in high-frequency amplification in receivers the previous year, were available with either sort of cathode.

Valve makers in England also appreciated the importance of developing an a.c. type screen-grid valve. It had been remarked in the auturnn of 1927 that whereas highfrequency amplification had previously been the prerogative of the few who could handle the neutralized triode, the screen-grid valve had made it available to all. Even highly efficient triodes like the K.H. 1 and the AC/G would be immediately supplanted by an a.c. version for this service.

Accordingly the M-O.V. Company, whilst continuing the " K " type valves for their 1928-29 season, also introduced a series of valves with thick, low-voltage filaments for direct a.c. heating, as had been done in Germany, and this included a

Fig. 2. "Curves connccing anode current and grid volts for "Micromesh" HLAI valve." (Wireless World 5th Aug. 1932.)
screen-grid type. They consumed 0.8 A at 0.8 V , and were accordingly called the "Point 8 " range. A tetrode version of the "K" type was probably too complex to be commercially successful, and did not appear. The K.L.1, however, had an important part to play: as in Germany, customers were warned against using a "Point 8 " triode as a detector, as it was almost impossible to avoid an unacceptable hum in its output in this position. An indirectly-heated type was recommended for this duty. As a result, receivers such as the G.E.C. "All-Electric Three" used a mixture of valve-types: a K.L. 1 as detector, an HL Point 8 as l.f. amplifier, and a P625A as a directly-heated super-power output valve. Later on, an effort to regularize matters was made by the introduction of a special "D Point 8 " for detection. This had an even heavier filament, taking I.6A at 0.8 V .

The marketing of these valves with thick, low-voltage filaments both here and in Germany indicates that the indirectlyheated types they superseded had not enjoyed unqualified commercial success. Indeed, some considered them to be preferable to the more complicated heater-cathode assemblies

Yet another method of heater insulation was adopted by the Ediswan Company, who marketed a pair of a.c. triodes, types MI41LF and M141RC in 1928. These were based on a design developed the year before by T. W. Price, who used fine silica tubing to cover the heater wire. To encourage their use in the conversion of battery sets, and as an alternative to the Cosmos adaptor disc, these valves were fitted with a standard 4 -pin base, and in addition, with a 2 -way connector on the top of the bulb for the heater supply. This made it simpler to keep the alternating current leads away from the existing set wiring, and so to minimize induced hum. A similar double-ended construction was adopted by the Cossor Company for their range of five type M. 41 valves. Neither company produced a screen-grid version at this time, and it is to be noted that they both followed
the Cosmos lead by using a heater rating of 1.0 A at 4.0 V

Philips All-mains 3-1 Receiver

In 1927 the N. V. Philips Company had acquired full control of the Mullard Company, and the latter offered no a.c. valives in their 1928 programme. But during the year the parent company marketed a 3 -valve mains receiver of particularly progressive design, and many were sold in England. Unlike contemporary but more traditional models, such as the Metrovick 5 -valve set, with its base-plate construction and separate eliminators, this new receiver was compactly enclosed in a functional metal case which also housed the power-unit, with its full-wave rectifier. The circuit employed a screen-grid h.f. amplifier, a triode detector and a pentode output valve, all of which were indirectly-heated, as was the rectifier. The cathodes of these valves were rather larger in diameter than the Cosmos design, and were connected to side terminals on the 4 -pin bases. They are of special interest because their appearance indicates that they had been insulated by a slip-coating technique, so that their makers were among the first to follow Cosmos practice.

Another novel feature of the ser was the output valve, which was the first indirectlyheated pentode to be marketed in England, and probably in Europe. This presumably followed from the fact that the output pentode, as such, had originated in the Philips Company shortly before. However, we have already noted that hum-free operation had been obtained from filamented output triodes for some time, and the new battery-type pentodes were being used in the same way. Indeed. the 1929 successor to this set, the Type 2514, used a Mullard PM24A directly-heated pentode as output valve. Nevertheless, the use of a cathode with a slip-coated heater ultimately resulted in the development of a pentode of great sensitivity, the Mazda AC/2Pen of 1934.

Ediswan-Cosmos-Mazda

This reference to the brand name of "Mazda" makes it desirable to explain briefly the effect of the formation of Associated Electrical Industries, which embraced the three valve-making firms of Metrovick. B.T.H. and Edison Swan, in 1928. In the following year the brand names Cosmos and Ediswan were dropped, and valvemaking was taken over by the Edison Swan Electric Company, who concentrated it at the Cosmos Works (Brimsdown), using and expanding the facility which had previously made the Cosmos valve for Metrovick, and marketing the product under the Mazda brand name. Thus, from the technological point of view, the $A C / 2$ Pen mentioned above was a lineal descendent of the Olympia award-winning Mazda AC/Pen of 1930, the similarly honoured Mazda AC/SG of 1929, and the Cosmos AC/S of 1928.

Slip-coating accepted by British valve-makers

An event which marked the year 1929 as a turning-point in our story was the official adoption by British valve manufacturers of the 5 -pin valve base, with its extra central
pin for the cathode. This signalled acceptance of the fact that the a.c. valve of the future would be an indirectly-heated type, and paved the way for its general manufacture. So plentiful were a.c. valves and receivers at the Radio Show in September, that 1929 was called "All-Mains Year", even though a contemporary survey counted only 39 a.c. sets out of a total of 300 different models. All the four main British valve-makers announced a.c. types, including screen-grid amplifiers, in their programmes, and in each case they were using indirectly-heated cathodes, with heaters rated at $4 \mathrm{~V}, \mid \mathrm{A}$, and the new 5 -pin base. The Ediswan silica-insulated heater had been discarded in favour of the original Cosmos (now Mazda) design, and the M-O.V. Company had dropped the " K " type triodes. On the other hand the valves of the "Point 8 " series were continued through 1930, although it was said of them, during the previous year, that ". . . there appears to be no directly-heated model which has not got an indirectly-heated counterpart with substantially bettercharacteristics, and there is no advantage in price". It was the slip-insulated cathode, which had given Cosmos a.c. valves their exceptionally high performance in 1927, that was being adopted universally in Britain two years later.

In making this point, a Wireless World article of October 1929 outlined the process of making such a cathode, and ascribed its development to the Metrovick Research Department, where a cure for grid-emission the bane of other types-had also been devised. This was true in so far that the Cosmos electrode design kept the grid cool enough to allow low-temperature inhibitors, such as copper or silver, to remain effective during life. Cosmos grids were given a thin flash of silver.

Progress abroad

During this period the position on the Continent was changing in a somewhat similar pattern. After their brief resort to heavy directly-heated filaments, German manufacturers returned to heater-type cathodes of the new style in 1929 for all except power valves which, as in England, were directly heated. For their new designs they had the advantage of the lead given by the Philips Company.
Circumstances in France, however, were exceptional: the radio industry there had been isolated from the effects of foreign competition by high tariffs, and receiver development had followed a notably different course from that in the outside world. Thus in 1928 the Paris Radio Show offered practically no "battery-eliminators", let alone any a.c. valves. The French choice was, and had been for some years, the battery-operated superheterodyne, ostensibly to provide reliable reception of foreign stations on a small aerial, the outdoor type being considered unsightly. With the benefit of hindsight we may read with some interest that a British reporter at this show regarded the French preference as almost pitifully obsolescent, as the superhet system had been tried out, and discarded, years before by radio men in England.

During the following year, however, the first indirectly-heated valves appeared. Amongst others, the Métal brand cathodes followed American practice, using short twin-bored ceramic tubes for the 2V, 1.75A heaters. The range included a screen-grid type, and development continued through 1930 with an h.f. pentode and various multiple valves.

This importing of American technology followed the successful culmination of the Freeman and Wade cathode development, which had given the U.S. commercially acceptable a.c. valves by 1928. These, with the corresponding screen-grid model, were of considerable help to the set designer in meeting his aims of mainsoperation, simple tuning, and maximum sensitivity with selectivity to cope with the congested broadcast waveband. A typical receiver at the New York Radio Show of 1929 exploited high-frequency amplification to the full: three screen-grid stages were used, with the variable capacitors for all the circuits "ganged" on a single shaft. This provided the required single-knob control, but inaccuracies in tuning, due to unavoidable tracking errors resulted in a poor stage-gain. As two correctly tuned stages would have given all the amplification that could be used, the losses due to the simplified tuning were made up by adding an extra amplifier. Such a solution would have been quite unacceptable to a royalty-conscious British designer.
In spite of the success of these a.c. valves, the difficulties which beset the ceramic-tube cathode seem to have persisted, for within a few years U.S. valvemakers had relinquished it in favour of the slip-coating technique which was proving so successful in Britain. One element in this transition was dated in this country when the American-owned firm of Standard Telephones \& Cables introduced their "Micromesh" range of a.c. valves in 1932. On the 5th August the construction and performance of some advance specimens were described in Wireless World as having heaters insulated with twin-bored magnesia tubes, and a heating-time of about 50 seconds. Six weeks later a letter from the company was published, pointing out that several improvements had been made in the interim, and these included a refractorycoated heater which reduced the warm-up time to 25 seconds. (Fig. 2.)
Finally, the technique which had originated in England in 1927 was passed in 1933 from the U.S. to France, where the first popular receiving valves had originated, and where the first attempt at a commercial a.c. valve had been made some eleven years before.
Thus by the early 1930 s most of the valvemakers in the broadcasting world had adopted the type a.c. cathode construction which, with sundry variations and improvements, is still used throughout the industry today, and the development may be said to have been complete by then. Over the previous decade, attempts had been made by many workers to devise a satisfactory solution to the problem, and the more important results have been described.
Much useful information has been de-
rived from patent specifications, which epitomize the efforts of the inventors so conveniently. But these give no indication of the importance of the inventions they record, nor of the benefit they brought to the public. Indeed, the ownership of patents has from time to time been used to inhibit technical progress.
The early days of the thermionic valve can provide an outstanding example of such obstruction to free development. The Marconi Company brought a patent suit, claiming that the "Audion" infringed their own Fleming diode, against De Forest, who immediately filed a countersuit. Eventually the U.S. Court decided that both patents were valid, and that each company had infringed the other's. As a result, neither company could legally manufacture the triode. It took a world war to break the deadlock, and to demonstrate the great potential of the invention the litigation had sought to stifle.

Bibliography

Briggs. A.."The birth of broadcasting". Vol. 1, pp. 28, 38.
Dejussieu-Pontcarral, P., "L'épopée du tube electronique", 1961.
Gossling. B. S., J.l.E.E.n Vol. 58 (1920), p. 682. "Hum proof d.c. eliminator". Wireless Word, 28th Oct. 1929
Scott-Taggart, J., "Thermionic tubes", Wireless Press. London 1921, p. 22.
"The Gambell Baby Grand". Wireless World. 21 st Apr. 1926, p. 593.
British patent nos. 6476 (of 1915), 209. 415; 243. 868: 277. 754; 278, 787.

Herrman. G and Wagener, S., "The oxidecoated cathode", London, 1951. p. 43.
"Filamentless valves lor a.c. supply", Wircess World, 26th Jan. 1927
"Guide to the show". Wireless World, 21 sl Sept. 1927, pp. 372, 375
Met-Vick A.C. Valve Catalogue. Nov. 1927, p. 2.
"Impressions of the Berlin Show", Wireless World, 12th Sept. 1928.
"The trend of progress", Wireless World, 3 rd Oct. 1928.
"Show number". Wireless World. 26th Sept. 1928, рр. 416, 422, 436
Oatley, C. W., "The use of a.c. for heating valve filaments", Experimemal Wireless. Vol 5 , No. 58, pp, 380-384.
Mazda Valve Manual. 1935, p. 48.
"A.c. screen-grid valves", Wireless World, 10th July 1929.
"The trend of design". Wireless, World. 2nd Oct. 1929.
"Receiving sets of today", Wireless World. 20 h Nov 1929.
"The Berlin Show", Wireless World, IIth Scpt. 1929.
"Review of the Paris Show", Wireless World. 7h Nov. 1928
"The Paris Show", Wircless World, 6th Nov 1929.

Maclaurin, "Invention and innovation in the radio industry", Macmillan, 1949. p. 174. "The New York Show". Wireless Work, 30th Oct. 1929.

Sonex 73

Exhibitors and a preview of their new equipment

The fourth Sonex audio show is to be held in the Excelsior Hotel, Bath Road, West Drayton, from Friday 30th March to Sunday 1st April. Times of opening are 11.00-21.00 (Friday and Saturday) and 11.00-18.00 (Sunday). Free tickets are available from Sonex 73, 20th Century House, 31 Soho Square, London WIV 5DG and from individual exhibitors.

Exhibition briefs

New from Acoustic Research will be the AR4xa, an improved version of the AR4x which uses the same woofer and cabinet but has a new tweeter and crossover network with the aim of improving high frequency response and dispersion.

Sennheiser will display two versions of their Elektret microphones - the MKE201 (omnidirectional) and MKE401 (supercardioid). Each microphone incorporates a miniature battery and i.c. in the microphone housing, providing components for amplification, equalization and impedance transformation of the sound signal.

Among the magnetic cartridges new to Sonex, the 820 series by Goldring will be demonstrated on the current range of Goldring/Lenco turntables.

Two new Sonab products will be on display. First, two headphones, the HS 10 and HS20. Second, a Mark II version of the R4000 tuner-amplifier which outwardly looks like the Mark I but incor porates some new circuit design.

One of two new loudspeaker systems from Jordan-Wutts, the Jupiter TLS, a transmission line speaker. Panel resonances are said to be minimized by lining the enclosure with sheet lead.

Successor to the Tandberg 3000X is the stereo tape deck $3300 X$ shown left. Features include easy to read peak-equalized recording meters, separate record and replay heads and the cross-field recording technique.

Brand names at the show

Acoustic Research
Acoustico
Agfa Gevaert
Amstrad
Antiference
Armstrong
B.A.S.F.
J. Beam

Bib
Britex
B \& W
Condor
Connoisseur
Cosmocord
Fisher Radio
Gabraphone
Gale Electronics
Goldring
Ha:man-Kardon
Hisound
IMF
Jordan-Watts
KEF
JVC Nivico
Klinger
J.B.L.

Lecson
Lowther
Lustraphone
Memorex
Metrosound
Keith Monks
Mordaunt-Short
Musitapes
Nagra
Onkyo
Philips
Precision Tapes
Quad
Richard Allan
Rogers
Rola Celestion
SABA
Sennheiser
Sinclair
Siemens
Sonab
Spendor
Tandberg
Tape Recorder Spares
Teac
Vemitron
Cecil E. Watts

World of Amateur Radio

Transistor transmitters

The "all solid-state" transmitter has been heard on the amateur bands almost since the first practical transistors capable of oscillating at h.f. appeared - providing contacts with a few milliwatts of power. For a long time now devices have been available capable of providing watts and even tens of watts output but, for the amateur, these have often proved terribly easy to destroy accidentally by parasitic oscillation, mismatches and the like. As a result, apart from the dedicated experimenters, most amateur solid-state stations have been confined to 1.8 MHz mobile or portable units where a few watts can prove very effective. Recently however, there has been growing interest in extending the use of transistors in low-power exciters and also in the final amplifiers - a trend encouraged by the appearance of h.f. transceivers in which the receiver section uses direct-conversion techniques. Very effective miniature "stations" have been developed by Ten Tec and more recently by Heathkit. The "Mini-Ring" HW7 transceiver provides about 3 W output on $7 \mathrm{MHz}, 2.5 \mathrm{~W}$ on 14 MHz and 2 W on 21 MHz . Edgar Janes, G2FWA, who has been using an HW7 for several weeks, says that "several of us in the Cheltenham Group have been fascinated by this little 9 by 8 by 4 inch box - average reports seem to be RST 569 whether from Europe or North America. The limiting factor is often interference at the distant end since $2-3 \mathrm{~W}$ doesn't punch much of a hole . . . but how nice it is to get back on the morse key with a purpose. \qquad this type of low-power operation is attracting quite a following... it's a pity the transceiver does not also cover 3.5 MHz since 21 and 14 MHz are not so good in the evenings at this time of the year . . . direct conversion "breakthrough" can be considerably reduced by an attenuator in the receiver input . . . a wonderful little unit".

Ten Tec with its range of similar low-power transceivers recently introduced a 50 W solid-state linear amplifier, while another well-known amateur supplier, Swan, is introducing an all solid-state transceiver capable of 200 W p.e.p. So at least it looks as though the all transistor approach (often combined with sufficient broad-band response to allow tuning of
the power amplifier to be eliminated) may at last spread fairly rapidly in many categories of amateur transmitters, even though as a power amplifier the valve retains many useful features.

Phasing out a.m. on 1.8

and 3.5 MHz ?

In what may well prove a controversial move, the R.S.G.B. Council has stated that it will "encourage its members to use s.s.b. rather than amplitude modulation (A3) on the 1.8 and 3.5 MHz (shared) bands" to conform with the International - Telecommunication Union requirements for maritime mobile stations in these bands from 1975. Short-wave Magazine states that it is "in entire agreement that sideband telephony is the only acceptable mode for the future". In the American journal CQ Paul Abbott, WA2RJV says "s.s.b. is the superior method just as jet engines outperform piston types . . . the need to conserve spectrum space is sufficient justification to phase out 'broadcasting' in the amateur bands". But by no means all amateurs agree that there is no place left for a.m. operation (particularly on 1.8 MHz where at present it is the dominant telephony mode) or that s.s.b. will prove the ultimate mode -double-sideband suppressed carrier transmission has many advantages especially where there is no fixed channelling arrangements, as J. P. Costas pointed out many years ago. In his classic article "Poisson, Shannon and the Radio Amateur" (Proc I.R.E., December 1959) he showed that in a congested band, broader bandwidths and the ability to move frequency can be expected to provide better communications reliability. But in the face of so many advocates of s.s.b. it may seem heresy to quote Costas!

From all quarters

A.R.R.L. have introduced a special Oscar 6 satellite DX Achievement Award " 1000 ". To claim the new award, amateurs must accumulate 1000 points on "via-satellite" contacts: each contact with a new station scores 10 points; each new country 50 points; each new continent 250 points. QSL cards must confirm Oscar 6 contacts
after December 15, 1972. A French amateur, F 8 VN , should have little difficulty in claiming the new award - he has already made more than 200 contacts with amateurs in 26 countries via Oscar 6. The limiting factor with Oscar 6 contacts is usually 29.5 MHz reception rather than gaining access on 145.95 MHz .

In 1973, the golden jubilee year of the City of Belfast Y.M.C.A. Radio Club (GI6YM), a number of special activities are being planned for this and also for the 75th anniversary of the tests carried out by Marconi and Kemp, between Ballycastle and Rathlin Island, which led to the establishment of public service maritime radio in 1898. The Belfast club is to issue a special award between July 1, 1973 and June 30, 1974, and activity from GI6YM will be at high level throughout the period. The Ballymena Amateur Radio Club will operate a special station on all h.f. bands during the first week in July.

An unusual "wanted" notice was published recently in the A.R.R.L's journal QST - the official photographs of one Benjamin Hoskins Paddock who the F.B.I. are seeking for band robbery and escape and who is listed as one of the ten most wanted American fugitives. Reason for publication? He was licensed as K7JIH in Tuscan, Arizona from 1959 to 1964.

Quote from Syd Griffith, VK 2ZYD, in "Tuned Lines": "I would say to those who would be a little intolerant to the modified commercial rig user the old adage 'to each his own' is just as applicable in this modern, solid-state integrated-circuit state-of-the-art age, as it ever was. The amateur who experiments with modifications to commercial gear is doing as much to further his knowledge as that amateur who has a complete laboratory set-up to perform more complicated and expensive experiments".

In Brief

The International Amateur Radio Club is conducting a special study of the unusual solar events of August 1972 and would welcome details of long-distance h.f. contacts between July 26 and August 14, 1972 (I.A.R.C., P.O. Box 6, 1211 Geneva 20, Switzerland) . . . Edward P. Tilton, W1 HDQ, recently retired after many years as v.h.f. Editor of QST - one of his many contributions was being the United States end of the first transatlantic v.h.f. $(50 \mathrm{MHz})$ contact on November 24, 1946 with Denis Heightman, G6DH . . . The death has occurred of Leslie Knight, G5LK, for many years a well-known blind amateur of Mitcham, Surrey, and more recently Waterlooville, Hants
B.O.A.C. is donating special prizes for the R.S.G.B. Diamond Jubilee h.f. contests including (for winners of the c.w. and phone sections) return tickets to a choice of Bermuda, Hong Kong, Seychelles, St Lucia, Antigua or Nassau . . . French stations F5MI, FIVL and F9ON are now equipped for 1296 MHz operation.

Pat Hawker, G3VA

Areyou a resistor man?

Then the area of greatest attraction for you will be our reputation for reliability of product, reliability of supply, reliability of expertise, and wide, wide range. Electrosil resistors are almost universally first choice where dependability is paramount under conditions of environmental stress. This is due to their unique fused glass-tin-oxide method of manufacture. The range includes the most comprehensive series yet approved to BS 9000, and also embraces the C 3 , smallest available in the UK, the FP range (flameproof), the TR range (triple rated) and the NC range for supreme precision. And we produce millions every week!

Electrosil IMITEC

have the experience

Wherever your interests lie...
(1) Resistors (2) Potentiometers
(3) Capacitors (4) Cordip (5) Switches
(6) Pick-a-back (7) ETM.

Use the Reader Reply Service in this publication for full details, indicating the product range(s) in your field.
Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham,

SR4 6SU.

This new digital multimeter from Sinclair costs only £49

Wide range	The new $3^{1 / 2}$ digit Sinclair DM1 Multimeter provides a total of 23 ranges to give you a really versatile instrument. An added bonus is the convenience of pushbutton range selection.	On all but the 1000 V range, automatic overranging to. 1900 is provided.
Lightweight and compact	With a weight of only 0.6 kg and dimensions of $190 \times 130 \times 58 \mathrm{~mm}$ the Sinc!air DM1 brings true portability to the world of digital multimeters.	
Good accuracy	Typical accuracies of the Sinclair DM1 are $\pm 0.5 \%$ of reading (± 2 digits) on the DC and resistance ranges, and $\pm 1.0 \%$ of reading (± 2 digits) on the AC ranges (measured at 50 Hz).	Better accuracies than this are are not available at anywhere near £49.
High Input resistance	$1000 \mathrm{M} \Omega$ is a very conservative specification for the input resistance of the Sinclair DM1 on its most sensitive range, thanks to the clever design of the input circuits, which draw only 50pA.	The loading problems which beset measurements with normal analog instruments are now a thing of the past.
Robust construction	The high strength polypropylene casing has been designed to take the knocks that will inevitably occur during use. The flush fitting push-button range selection switches are moulded integrally with the case to provide an even greater degree of robustness.	This push-button design, with a lifetime in excess of 1 million operations, is yet another first for the Sinclair DM1.
Complete freedom from the mains	A total current drain of between 10 mA and 12 mA provides over 80 hours of useful life from the throwaway dry battery, giving total freedom of movement over weeks of use. Only Sinclair expertise can give you this. Accuracy is	The Nixie tube display automatically extinguishes before accuracies deteriorate

Fill in the coupon below to order your new Sinclair DM1 multimeter. Your money will be refunded in full if you are not satisfied with the instrument's performance, and return it in its original packing

Send the coupon to Multimeter Sales,
Sinclair Radionics Ltd.
London Road, St Ives, Hunts
Tel (0480) 64311

Tick whichever is applicable

\square

I enclose a cheque for $£ 49$ for a Sinclair DM1 digital multimeter. lunderstand that unless I am completely satisfied with the performance of this instrument if I return it in its original packing within 14 days of receipt, I shall receive a full refund.

Please send me a descriptive leaflet on the Sinclair DM1
Name
Position
Company
Address
Tel no
tion (typically 0.02%) from 0.01 W to 150 W . Hum, and noise is 110 dB below 150W.
When converted for mono operation, which is now effected by means of a simple internal plug-in, the DC300A will deliver 650 W r.m.s. into 4Ω or 8Ω loads.

The number of output transistors has been doubled and the safety margin greatly increased. The input circuitry now employs i.cs, and the DC300A has undergone a complete chassis redesign with a new front panel to match the IC150/D150 models. Price £380. Macinnes Laboratories Ltd., Stonham, Stowmarket, IP14 5LB.
WW303 for further details

Digital multimeter

Solartron-Schlumberger have developed a new technique of analogue-to-digital conversion for their 7040 miniature digital multimeter, which is about the same size as a portable cassette recorder. As in the dual-slope technique, developed by the same company, mains-frequency interference is greatly reduced (less than -60 dB) without the use of filters. Tripleslope integration has the additional advantage of a much greater conversion rate, while retaining a six-digit resolution, although only four "full" digits are displayed.
During the second negative going ramp of the normal dual-slope process, the 7040 counts in units which are 100 times coarser than those displayed, while the ramp slope is made 100 times faster than normal. As it crosses the base-line it is allowed to continue for a short time, when a $\times 100$ attenuator is switched in and the count rate increased by a factor of 100 . The counter reverses and counts back until the base line is again reached, thereby interpolating the coarser counting units.
The instrument is notable in that no range switching is needed, the full six digits always being used; the relevant four displayed digits are automatically selected. Light-emitting diodes indicate the units of measurement and quantity being determined, which may be alternating or direct voltage up to 1000 V with a maximum resolution of $10 \mu \mathrm{~V}$ on the 100 mV range, direct current up to 1 mA or resistance up to $10 \mathrm{M} \Omega$.

The 7040 is claimed to be suitable for

very rough usage by unskilled operators and prototypes have undergone "tests" such as being dropped from several feet on to concrete floors without damage, apart from dents in the polycarbonate case. Weight is 1.14 kg ., price $£ 195$. Electroplan Ltd., P.O. Box 19, Orchard Road, Royston, Herts., SG8 5HH.
WW306 for further details

Low profile keyboard switch

Designed for low profile applications in calculator, data entry, communications and instrumentation equipment, this unit has an overall height of 0.415 in and is available in 0.625 in and 0.75 in sizes as single or double widths. An option of five standard colours with hot stamped characters is offered. Unit cost, depending on specification and quantity, is approximately 7p. Diamond H Controls Ltd, Vulcan Road North, Norwich, Norfolk NOR 85 N .
WW 313 for further details

Audio power amplifier

Crown International/Amcron have announced a new version of their DC300 power amplifier. The DC300A, as the new model is known, will now operate into 1Ω loads and, it is claimed, will drive any load including totally reactive loads without fuss, and without the previously incorporated "hysteresis/normal" switch. The d.c. protection fuses have also been eliminated as a new sophisticated protection circuit has been developed which, it is claimed, exhibits no flyback pulses, thumps, or shutdown.

The DC300A will now deliver 425 W r.m.s. into $2 \Omega, 500 \mathrm{~W}$ r.m.s. into 2.5Ω, 350 W r.m.s. into $4 \Omega, 200 \mathrm{~W}$ r.m.s. into 8Ω, and 110 W r.m.s. into 16Ω from each of its two channels. It will also provide 100 W r.m.s. into a 1Ω load, which will be welcomed by vibration engineers.
Harmonic distortion is now specified as being below 0.05% from d.c. to $20,000 \mathrm{~Hz}$, and below 0.05% i.m. distor-

Plug-in time delay units

The range of low cost, solid state, plug-in TM and TD time delay modules by Keyswitch Relays is designed for use in either a.c. or d.c. circuits and provides for accurately timed delay periods of between 2.5 seconds and 300 seconds.

The TM timer incorporates a Keyswitch MS relay with changeover contacts rated at 2 A . The delay period, between 2.5 seconds to 300 seconds, is set by adjustment of a potentiometer which may be mounted on the timer unit or wired to it from a remote control position. At the end of the timed interval, which is initiated by the supply connection, the timer will deliver an output.

The TD version is designed for use with an external relay and operates in a similar manner to the TM timer and also provides a time delay period of between 2.5 seconds to 300 seconds. At the end of the timed interval the TD timer output is supplied via an integral s.c.r. circuit. The solid state switch output is rated at $300 \mathrm{~V}, 10-800 \mathrm{~mA}$.

Both timers have a reset time of 120 ms and are housed in small moulded polypropylene casings, $1.3 \times 1.3 \times 2.025$ in (above

socket) and can be supplied with or without adjustment potentiometers. Keyswitch Relays Ltd, Bendon Valley, Garratt Lane, Wandsworth, London SW 18 4LZ.

WW301 for further details

Selective level and voltage meter

A selective level and voltage measuring set, capable of investigating acoustic phenomena below the normal audible range has been developed by Siemens. Normally the lowest frequency at which measurements are made in electrical instrumentation engineering is 16.67 Hz - the frequency of the fundamental component of a traction current. Now, with the Siemens D2040, a frequency range starting at 10 Hz is offered to provide adequate measurement capability at 16.67 Hz , and frequencies extending to 60 kHz , can also be analysed. The D2040 is tunable throughout this frequency range to 60 kHz without band switching, and all functions of the instrument can be remotely controlled. It is a superheterodyne receiver, the frequency resolution of which is 1 Hz throughout the measuring range, the frequency being read with this resolution and accuracy by a built-in digital frequency meter. The attenuation of signals which lie only 25 Hz above or below the centre frequency of the filter is 60 dB , so that, for instance, a 15.05 kHz signal can be distinguished from a 15 kHz signal of similar level. The high selectivity of this narrow-band filter permits the analyser to be used for Fourier analysis as well as for level and voltage measurement. The dB bandwidth of the receiver can then be switched from 8 to 80 Hz , which also applies to the analyser when it is used as an active, continuously tunable filter. Of special interest is the wide dynamic range offered, -120 dB to +20 dB or 1 V to -10 V , with a measuring error of less than 0.1 dB . The instrument is also designed for determining the spectral density of complex waveforms and for measuring distortion and modulation products. If the input frequency here has to be measured with greater accuracy than the filter width permits, the analyser can be switched to automatic frequency control. When this is done, the local oscillator is automatically synchronized to the incoming signal. All the switch functions, such as level, input impedance and filter bandwidth, can be remotely controlled, and it is also possible to control externally the frequency setting.
The range of application of the analyser D2040 can be extended by using a standard microphone, for space and sound analysis or a vibration pick-up, which converts mechanical vibrations into electrical value. As the measuring range extends down to 10 Hz it permits investigation of physical vibrations for stability test and similar applications. Siemens Ltd, Great West House, Great West Road, Brentford, Middx. WW312 for further details

Wideband coaxial attenuator

Bird Electronics have introduced a 50Ω coaxial attenuator - the Model 8343060 - which has a continuous rating of 100 watts in free air without the need for an additional heat sink.

Nominal attenuation of the standard model is 6 dB from d.c. to 1000 MHz and maximum deviation is $\pm \frac{1}{2} \mathrm{~dB}$ from d.c. to 500 MHz and $\pm 0.75 \mathrm{~dB}$ from 500 to 1000 MHz . Input v.s.w.r. for these ranges is 1.10 and 1.15 respectively and since the unit is symmetrical, output v.s.w.r. is similarly low. This is also obtained by the use of Bird QC quick-change connectors which permit mating with most standard male or female connectors without the need for performance degrading adaptors. In addition to the standard 6 dB attenuator

versions nominal attenuation values of 10 and 20 dB can also be supplied. Price of the Model $8343-060$ is $£ 90$ duty paid. Bird Electronics Ltd., 18a High Street. Northwood, Middlesex, HA6 IBN. WW338 for further details

Oscilloscopes with built-in multiplication

The first oscilloscopes in the world to provide a built-in, high-frequency multiplication facility is Philips claim for the latest additions to the company's oscilloscope range. This feature permits the product of the two input signals to be displayed simultaneously with one of the original signals.

Known as the PM 3252 and 3253, these new instruments not only offer a simple-to-operate multiplication facility but one that extends over a much broader bandwidth than is at present possible with conventional building-block type multiplier units.

While the PM 3252 is a standard 50 MHz portable or laboratory instrument, its sister instrument, the PM 3253, employs a storage c.r.t. Another feature of these oscilloscopes is the special output provided on the instruments' rear panels which can be switched so that either the instantaneous or average value of the displayed product can be shown on an indicating device or used for processing. For example, any d.c. voltmeter connected
to this output can be used as a wattmeter. The output, which is derived from the multiplier, is calibrated in terms of the oscilloscope screen display ($100 \mathrm{mV} / \mathrm{div}$), and for power measurements (product of i $X v$) the voltmeter will clearly indicate average power while the instantaneous power is displayed on the oscilloscope's screen.

It is possible, by adjustment of front panel controls, to change both oscilloscope-display and meter sensitivity from the low microwatt to the kilowatt range.

Apart from their multiplier applications, the PM 3252 and 3253 can also be employed as standard 50 MHz dual-trace oscilloscopes with delayed timebase facility. As such they have a 2 mV input sensitivity over their entire 50 MHz bandwidth, and 200 V over a reduced bandwidth of 5 MHz . They also feature a drift-compensation circuit on both Y amplifiers. Pye Unicam Ltd., York Street, Cambridge.
WW333 for further details

R.F. power meter

The Sanders Division of Marconi Instruments has announced a low cost power meter, the f.o.b. U.K. price of which is $£ 140$. The meter, designated Type 6555, is for use with "tft" (thin film thermoelectric) power heads such as the present Sanders range of Series 6420 power heads.

Power measurement by this method is claimed to be extremely stable and the 6555 meter provides repeatable r.f. power measurement over wide frequency and power ranges. Four power ranges cover $30 \mathrm{nW}(-15 \mathrm{dBm})$ to $3 \mathrm{~W}(+35 \mathrm{dBm})$ and the range of Sanders t.f.t. heads accommodates frequencies from 10 kHz to 40 GHz . Noise is less than 0.03% of full scale per deg. C on the least sensitive
range. Meter indication with power and dBm scales is provided, as well as a calibrated analogue output (0 to -1 V f.s.d.) so that an external recorder or digital voltmeter can be used. Meter accuracy is $\pm 2 \%$ f.s.d. or $\pm 1 \%$ f.s.d. analogue. The heads cost from $£ 111$ f.o.b. U.K. to $£ 284$ f.o.b. U.K. according to frequency and power specification.
Note: The abbreviation " ft " for thin film thermoelectric is a registered term, the property of General Microwave Corporation (USA) from whom the power heads are manufactured under licence. Marconi Instruments Ltd - Sanders Division, P.O. Box 10, Gunnels Wood Road, Stevenage, Herts SG1 2AU. WW305 for further details

Digital multimeter

Features of the Model 171 a.c./d.c. digital multimeter by Keithley Instruments include $4 \frac{1}{2}$ digit display, guaranteed 90 -day accuracies on all functions, and floating capability to 500 V off ground.

The Model 171 gives a broad selection of full scale ranges from $\pm 10 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ d.c., 100 mV to 1000 V a.c. r.m.s., $1 \mu \mathrm{~A}$ to 1 A a.c. ord.c. and $1 \mathrm{k} \Omega$ to $1000 \mathrm{M} \Omega$. In addition pushbutton function selection, automatic decimal position, automatic polarity, and a front-panel link for selection of either grounded or floating operation are provided.

A full 100% overranging to 19999 is provided on all ranges except the 1000 V range. When overloaded, the 171 shows only the polarity of the overload and the digit " 1 ". The remaining four digits are blanked so that no misleading information is displayed. An analogue recorder output located on the read panel furnishes a 1 V output for continuous monitoring on a real-time basis.
Range scales: $1 \mu \mathrm{~V}$ to 1000 V d.c., $10 \mu \mathrm{~V}$ to 1000 V a.c. r.m.s., $0 . \ln \mathrm{A}$ to 2 A a.c. or d.c., 0.1Ω to $2000 \mathrm{M} \Omega$. Keithley Instruments Ltd., 1 Boulton Road, Reading RG2 0NL.
WW310 for further details

Video tape

A new video tape now available from Memorex U.K., called Vidichrome is claimed to have a drop-out rate of less than ten per minute on Ampex VR 5000 and 7000 series machines, as well as a high signal-to-noise ratio of over 42 dB . The possibility of static charge build-up which attracts foreign particles and causes drop-out is reduced with a back coating.

The tape is aiso claimed to have an extremely high resistance to the detrimental effects of heat and humidity due to a new and unique binder formulation: this reduces head-wear and cinching, and extends tape life to more than 500 passes.

Capable of recording both colour and monochrome values, Vidichrome is available in lengths of either 1500 feet or 3000 feet giving $\frac{1}{2}$ hour and 1 hour running time respectively. It is packed in a functional plastics shelf box with carrying handle. Price of the new tape depends on quantity ordered and will be quoted on request. Memorex U.K. Ltd., Memorex House, St. Ives Road, Maidenhead, Berks. WW327 for further details

High grade capacitors

A new range of professional computer grade capacitors has been introduced by Advance Filmcap Ltd. The Prosec 85E devices offer extended ranges over the Prosec 85 without any reduction of essential safety margins on forming voltages for long life and high reliability. This is achieved through the selection of high gain etched foils.

Capacitance values range from $2,200 \mu \mathrm{~F}$ to $220,000 \mu \mathrm{~F}$ with e.s.r. values as low as 0.01Ω (at 100 Hz).

Prosec 85 E range offers greatly increased CV/volume over the standard range. In many cases, the $C V$ rating is at least 50% greater for the same can size compared to a "standard" component of equivalent electrical characteristics.

Units currently available cover the most popular voltage ranges from 10 V d.c. to 63 V d.c. Present development work is aimed at extending the Prosec 85 E capability to cover from 6.3 V d.c. to 500 V d.c. Advance Filmcap Ltd, Rhosymedre, Near Wrexham, Denbighshire.
WW331 for further details

Ten-turn potentiometer

Pyror Electric S.A. have introduced a basic 10 -turn wire-wound (3- or 5 -turn optional) potentiometer, the model PH10, having a power rating of 2 watts at $40^{\circ} \mathrm{C}$. The resistance range offered is $100 \Omega 10 \mathrm{k} \Omega$, with resolutions of $0.056 \%-0.010 \%$ respectively. Standard linearity tolerance is $\pm 5 \%$ and the overall temperature range for the devices is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Particular attention has been paid to the contacts to ensure reliability. All sur-

faces are of precious metal (with the exception of the wire element) and the case is thermoplastic material, which has been specially selected for both strength and compatibility with the wire element. The dimensions of the device are 20 mm diameter $\times 29 \mathrm{~mm}$ length, and it has a weight of only 20 grams. Price $£ 1.78$ each at the 100 -piece level. Electrautom Ltd., Etom House, Queens Road, Maidstone, Kent.
WW340 for further details

100 MHz oscilloscope

The model 200, wideband, low-cost oscilloscope is the latest equipment product from G. \& E. Bradley Ltd. It is claimed that the new design philosophy adopted, allowing every feature to be designed to a price without sacrificing electrical specification, has achieved a no-compromise performance at the cost of medium priced instruments. It comprises a mainframe and plug-in module technique allowing maximum flexibility and economy of instrumentation. The mainframe features an $8 \times 10 \mathrm{~cm}$ cathode-ray tube with provision for standard camera fittings, a trace finder, internal calibration with 0.5% amplitude accuracy, a mode selector providing Y1 and Y2 only, alternative, chopped and added displays, also switches to select internal trigger source from Y1 or Y2 separately or true alternative triggering when operating in dual display modes. Additional facilities such as variable trigger hold-off, Z modulation, ramp and gate signals, are available as standard. The first two plug-in modules available are: Model 211, twin timebase unit providing intensified and delayed modes of operation

additional to which \mathbf{A} and B mixed is available, allowing the B timebase to be run immediately after the A timebase delay period; Model 210, dual channel Y amplifier featuring a 3 dB bandwidth of d.c. to 100 MHz on all input sensitivities down to $5 \mathrm{mV} / \mathrm{cm}$, a pre-set d.c. balance (not affected by sensitivity settings) and a Y2 pre-amplifier output enabling Y1 and Y2 channels to be cascaded for an ultimate sensitivity of $500 \mu \mathrm{~V} / \mathrm{cm}$ (d.c. to 50 MHz bandwidth) or fully controlled $X Y$ plotting by linking the Y 2 output to the X deflection input. G. \& E. Bradley Ltd., Electral House, Neasden Lane, London N.W.10.

WW327 for further details

$1-300 \mathrm{MHz}$ spectrum analyser

Texscan announce the addition of a lowcost, sensitive spectrum analyser to their range. This analyser, the Model AL-40, covers the frequency range with dispersion continuously variable from 10 kHz to 300 MHz and i.f. resolution of 500 Hz or 200 kHz , selectable by a front panel switch. Amplitude measurements from -113 dBm

to +30 dBm can be made with a maximum dynamic range of 80 dB displayed on the 9 in screen. A feature of the instrument is the incorporation of crystal controlled harmonic frequency markers, enabling accurate frequency measurements to be made with signal levels down to -113 dBm . Texscan Instruments Ltd., I North Bridge Road, Berkhamsted, Herts.
WW309 for further details

Alpha-numeric displays

A range of incandescent alpha-numeric displays from Chicago Miniature Lamp Works is announced by Magnus Electronics Ltd. Incorporating the advantages of solid state digital readouts, they are compatible with standard i.cs, featuring wide viewing angle, shock and vibration resistance and carrying all numbers plus 9 distinct letters. These displays have a field proven life history (in excess of 100,000 hours) and have been incorporated in military programmes for which full test data is available. They exceed the requirements of MIL-STD 202C on shock and vibration and have the advantage of stable operation at thermal extremes of $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ and $27,800 \mathrm{~cd} / \mathrm{m}^{2}$ brightness. They withstand high transient

voltages and are readable in direct sunlight. Available in a wide range of colours. Magnus Electronics Ltd., 23-31 King Street, London W. 3 .
WW304 for further details

Electrolytic capacitors

A professional grade electrolytic capacitor, the LMT 018, has been introduced by ITT Components Group Europe. With rated voltages available from 6.3 to 500 V , the LMT 018 offers capacitances in the range $10,000 \mu \mathrm{~F}$ to $150,000 \mu \mathrm{~F}$ at 6.3 V to $68 \mu \mathrm{~F}$ to 1,000 $\mu \mathrm{F}$ at 500 V . Capacitance tolerance is $-10 \%+50 \%$. These devices are intended for use where applications demand large capacitance and long life. ITT Components Group Europe, Capacitor Product Division, Brixham Road, Paignton, Devon.
WW311 for further details

Vertical heatsink resistors

The Ashburton Resistance Company has recently introduced its HSV range of heatsink resistors designed for vertical mounting direct to chassis. These ARCOL HSV resistors are available in $10 \mathrm{~W}, 15 \mathrm{~W}$, 25 W and 50 W sizes within a resistance range of 0.01Ω to $86 \mathrm{k} \Omega$. Ashburton Resistance Co. Ltd., 40 Bavaria Road, London N19 4ET.
WW302 for further details

Stereo signal generator

The Rohde \& Schwarz Stereo Signal Generator Type SMSF is designed to check the performance of f.m. receivers and demodulators in the v.h.f. broadcast range 87 to 108 MHz and at their i.f. of 10.7 MHz . Type SMSF continuously covers the entire v.h.f. range and the frequency of the i.f. range can also be continuously varied within $\pm 500 \mathrm{kHz}$, facilitating either selectivity measurements or determination of discriminator characteristics as required. In conjunction with the Rohde \& Schwarz Stereocoder Type MSC, the generator affords all facilities for measurements on stereo receiving systems. With the aid of one or more tunable amplifiers, e.g.

R \& S Type ASV, the output signal of Type SMSF can be amplified or made available at several work benches without circuit loading. The use of Type ASV offers, moreover, the advantage of highprecision amplitude modulation of the output signal of Type SMSF. The Types MSC SMSF and ASV can be combined to form a central signal generator system in a plant.
Aveley Electric Ltd., Roebuck Road, Chessington, Surrey.
WW307 for further details

Solid State Devices

Bourns (Trimpot) act as U.K. representatives for Precision Monolithics, who announce a series of low input current operational amplifiers called SSS 108A. These amplifiers are directly interchangeable with the existing 108/108A types but offer an improved input noise voltage. Bourns also announce the availability of a series of d.c.-d.c. converters by Ohmic S.A. (a Bourns affiliate). Designated the HCC25/2 $\times 15$ the basic unit has an output voltage rating of $2 \times 15 \mathrm{~V}$ at 250 mA for a $25 \mathrm{~V} \pm 3 \mathrm{~V}$ input. Also from Ohmic is a pair of voltage regulators, models HAC 50 and HAC 51. These are complementary devices in as much as the HAC 50 provides a regulated voltage range from +10 to +30 V and the HAC 51 from -10 to -30 V .

Finally Semmech, also represented by Bourns, have produced a series of radiation resistant silicon rectifiers designated R1-4 featuring a p.i.v. of $100-400 \mathrm{~V}$ d.c. and a forward current of 1.0 A , together with a series of low current fast recovery rectifiers, series F1-5. Bourns (Trimpot) Ltd., Hodford House, 17/27 High Street, Hounslow. Middx.

WW 318 operational amplifiers

WW 319 d.c.-d.c. converters

WW 320 voltage regulators
WW 321 R1-4 rectifiers
WW 322 F 1-5 rectifiers

Diodes feature strongly in the list of new semiconductors from Mullard and include three new Gunn effect families. These are Types CXY16, CXY 17 and CXY 18 developed to cover bands from 4 to 18 GHz when mounted in suitable cavities.

A zener diode family with a dissipation of 15 W is available, designated type BZV 15. The diodes have been produced in a logarithmic series of preferred values from 10 to $75 \mathrm{~V} \pm 5 \%$ and are encapsulated in a new rectangular form with a metal plate on one side to aid dissipation.

A diode array for thick or thin film circuits consists of two series-connected devices with a third pin connection to a
common anode (BAW56), a common cathode (BAV70) or, in the BAV99, at the anode/cathode point of the series circuit.

Four Darlington transistors with a maximum current rating of 1 A are announced by Mullard. Types BSS50, BSS51 and BSS52 have high gains and short turn-off times. Minimum $h F E$ is 1500 at 500 mA . The fourth, type BCX21 has a minimum $h F E$ of 2000 at 150 mA . All these devices are encapsulated in a metal TO-39 (short lead TO-5) can. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW 323 Gunn effect diodes
WW 324 Zener diodes
WW 325 Film diode array
WW 326 Darlington transistors

Among the Teledyne Philbrick new products is a low cost, fast settling operational amplifier, Model 1324, with a bandwidth of 10 MHz and packaged in a TO-100 case. An expansion of the 1400 series of f.e.t. operational amplifiers is also announced, based on the existing 1421 general purpose device. Nineteen devices in all have been added.

Complementing the 1400 series are two f.e.t. instrumentation amplifiers, models 4253 and $4253 / 01$. The former has single resistor gain selection and an inbuilt output offset capability of $\pm 10 \mathrm{~V}$. Also from Teledyne is the 4702 F -to- V which is a modular frequency to voltage converter complementing the function of the 4701 V-to-F, a voltage to frequency converter. Teledyne Philbrick, Chandler House, Knaphill, Woking, Surrey GU21 2NP.

WW 3141324 op-amp

WW 3151400 f.e.t. op-amp series WW 316 instrumentation amplifiers WW 317 frequency/voltage converter

Among this month's crop of devices from Motorola Semiconductors are four additions to the high threshold logic family (MHTL). These are the MC686, a four-bit shift register; MC684, a decade counter;

MC685, a binary counter and the MC688, a dual J-K flip-flop. Also among the digital products are the MC10165 high speed 8 -input, priority encoder which is an addition to the MECL 10000 family.

A fast response PIN diode, the MRD500 has been made available. Sensitive throughout the visible and near infra-red spectral range it has a minimum radiation sensitivity of $1.2 \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}$.

Three high-current triac ranges with current capacity from 235 to 470 A and voltage ratings from 100 to 1500 V are now available. These are the MCR235 series with a current rating of 235A r.m.s. over the quoted voltage rating, the MCR380, accepting 380A, and the MR470 which will carry 470A over a voltage range from 200 to 1300 V . Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.

WW 328 shift register

WW329 decade counter
WW 330 dual J-K flip-flop
WW 332 priority encoder

WW 333 pin diode

WW 334 triacs

Burr-Brown have introduced three devices. The first is an i.c. multiplier/divider giving a guaranteed accuracy of 1% without external components being required. This device is designated the 4203 K and is one of a family offering slightly differing facilities. The second is a 16 -bit d.a.c., the DAC45. This converter is designed primarily for use in high resolution servo mechanism controllers, programmable instruments and automatic measurement equipment and has low drift characteristics. The final device is a low cost f.e.t. operational amplifier series designated 3522 packaged in a TO99 case. Principal features include internal frequency compensation, output short circuit protection and input protection up to the supply voltage. Burr-Brown International Ltd, 25A King Street, Watford WD1 8BY.
WW 335 multiplier/divider
WW336 d.a.c.
WW 337 f.e.t. operational amplifier

March Meetings

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned

LONDON

1st. RTS - "Philips LDK5 colour camera" by M. Cosgrove at 19.00 at I.B.A., 70 Brompton Rd., SW3.
5th. IEE - Colloquium on "Digital and distributed filters" at 10.30 at Savoy PI., WC2.
7th. IERE - Colloquium on "Optical communications" at 14.30 at 9 Bedford Sq ., WC 1 .

7th. BKSTS - "A survey of TV reproducing systems" by W. Kemp at 20.30 at the National Film Theatre, South Bank, Waterloo, SEI
8th IEE - "Electronic aids in archaeology". by Dr. E. T. Hall at 17.30 at Savoy PI., WC2.
8th. RTS - "More digits for television communications" by Peter Michael at 19.00 at I.B.A., 70 Brompton Rd.. SW3.

8th. IEE Grads - "Some novel semiconductor photo-detectors and their application to the measurement of temperature" by M. J. Hampshire at 18.00 at Thames Polytechnic, School of Electrical \& Electronic Engineering, Riverside House Annexe, Beresford St., SE18.

8th. IERE - "The feedback classroom" by K. Holling at 18.00 at 9 Bedford Sq_{q}. WC 1 .
9th. IEE - Colloquium on "Thin-film optical waveguides" at 10.30 at Savoy PI.. WC2

12th. IEETE - "Air navigation, radar and radio approach aids: aerodrome ground lighting and control systems" by R. G. Barnard and A. M. S. Hurrell at 18.00 at the IEE, Savoy PI., WC2.

13th. AES - "Microphones and sound control equipment in television" by John Tasker at 19.15 at the IEE. Savoy PI., WC2.

14th. IEE/IERE -- Colloquium on "Image techniques in medicine and biology" at 10.00 at 9 Bedford Sq.. WC 1 .

14th. SEE - Symposium on "Packaging test instrumentation and measurement" at 15.00 at Imperial College, SW7.

16th. IEE/I.Phys. - Colloquium on "Solid state microwave amplifiers" at 10.30 at Savoy Pl., WC2.

19th. IEE - "The 60 MHz FDM system" by L. J. Bolton, J. M. Weller and H. L. Bakker at 17.30 al Savoy PI., WC2.

21 st. R.I.Navigation - "Developments in aircraft equipment which affect accuracy, reliability and integrity" by S. S. D. Jones at 17.00 at Royal Inst. of Naval Architects, 10 Upper Belgrave St. SW 1.

21st. IEE - "Opto-electronics" by Prof. E. A. Ash at 17.30 at Savoy PI., WC2.
21st. IEE/I.Phys. - "Electron beam/semiconduc tor devices" at 17.30 at Imperial College.

22nd. IEE - "Uncertainties and confidence in measurement" by F. L. N. Samuels at 17.30 at Savoy P1., WC2.
22nd. SERT - "Magnetic recording" by Dr. B. Speedy at 19.00 at 9 Bedford Sq ., WC 1 .

23rd. IEE - "Microwave landing guidance system using the Doppler technique" by J. M. Jones and F. G. Overbury at 17.30 at Savoy P1., WC2.
26th. IEE - Discussion on "The stability of microwave oscillators" at Savoy PI., WC2.
27th. IEE/IERE - Colloquium on "Arrhythmia recognition and detection" at 14.30 at 9 Bedford Sq ., WCI.
28th. IERE - Colloquium on "Secondary radar in maritime applications" at 14.30 at 9 Bedford Sq.. WCI.

29th. IEE - "Up to, and onwards from, TXE1 (Leighton Buzzard): the evolution of a telephone system" by J. B. Warman at 17.30 at Savoy Pl.. WC2.

ABERDEEN

6th. IEE/IERE -. "Seismological measurements" by Dr. P. L. Willmore at 19.30 at Robert Gordon's Institute of Technology, St. Andrews St.

BATH

7th IEE / IERE - "Sound in syncs" by Dr. C. J. Dalton at 19.00 at the University, Room 2E.3.1.

14th IERE - "Modern dynamic measurement techniques" by Dr. J. D. Lamb and Dr. P. A. Payne at 19.00 at the University, Room 2E.3.1.

BEDFORD

21st. IEE - "Artificial organs - an introduction to bio-medical engineering" by J. A. S. Crawford at 19.45 at County Hotel.

BIRMINGHAM

26th. IEE/IERE - "Sonar and underwater acoustic communications" by V. G. Welsby at 18.00 at MEB Offices, Summer Lane.

BRIGHTON

6th. IEE - "Data collection systems" by V. Cornelius at 18.30 at the Polytechnic.
6th. IERE - - "Advances in MOS technology" by Dr. D. R. Lamb at 18.30 at the Technical College.

CAMBRIDGE

8th. IEE - "Photocathodes" by Prof. A. H. W. Beck at 18.30 at University Engineering Dept., Trumpington St

22nd. 1FE - "Millimetric waveguides for tomorrow's telecommunications" by R. H. White at 18.30 at the University Engineering Dept., Trumpington St.

CARDIFF

7th. SERT - "Television studio techniques" by R. Stinton at 19.15 at Llandaff College of Technology, Western Avenue.

19th. IEE/IERE - "Modern measurement techniques in control engineering" by Dr. J. D. Lamb and Dr. P. A. Payne at 18.00 at UWIST.

CHATHAM

Ist. IERE - "Opto-electronics" by D. A. Bonham at 19.00 at the Medway College of Technology.

CHELTENHAM

21st. IEE/RAeS - "Navigation systems" by C. Fowler at 19.30 at St. Mary's Lecture Hall, The Park.

CLEETHORPES

21st. IEE/G.Inst.SE - "Radio astronomy" by R S. Booth at 19.30 at the Floral Hall.

COLCHESTER

14th. IERE - "Acoustic surface waves - the prospects for device applications" by Prof. E. A. Ash at 18.30 at Dept. of Electrical Engineering, University of Essex, Wivenhoe Park.

28th. IEE - "A trip in telecommunications" by H. B. Law at 18.30 at the University of Essex, Wivenhoe Park.

EDINBURGH

7h. IEE/IERE - "Scismological measurements" by Dr. P. L. Willmore at 19.00 at Napier College of Science and Technology, Colinton Road.

EXETER

22nd. IEE - Faraday lecture on "Navigation - land, sea, air and space" by Dr. A. Stratton at 19.00 at the University.

FAREHAM

12th. IERE - "Modern dynamic measurement techniques" by Dr. J. D. Lamb and Dr. P. A. Payne at 18.30 at HMS Collingwood.

FARNBOROUGH, Hants.

29th. IERE - "Aspects of stereo broadcasting" by J. H. Brookes at 19.00 at the Technical College.

GLASGOW

8th. IEE/IERE - "Seismological measurements" by Dr. P. L. Willmore at 19.00 at the College of Technology, North Hanover Street.

21 st. IEE - " 50 years of broadcasting" by J Redmond at 19.00 at the Boyd Orr Buidding, the University.

28th. IEE - "The induction and development training of engineer graduates in the Post Office" by M. Mitchell at 18.00 at Rankine House, 183 Bath St.

HEMEL HEMPSTEAD

Ist. IEE - "Integrated circuits for leisure and pleasure" by I. J. A. Brown at 19.30 at Dacorum College.

HULL

2 Ist. SERT - "Rediffusion colour television" by M. C. Mahony at 19.30 at E. H. Bullock Lecture Theatre, College of Technology, Queens Gardens.

IPSWICH

2lst. IEE/IERE - "The transistor: its history and consequences" by E. Wadham at 18.30 at Lecture Theatre 2, The Civic College.

l.EEDS

6th. IEE - "Electronics in crime detection" by A.
T. Torlesse at 18.30 at the University.

13th. IEE Grads - "Hi-fi today" by G. T. Hathaway at 19.00 at the University.
29th. IERE - "Radio communication within the North Eastern Gas Board" by R. Grant at 19.30 at N.E. Gas Board, New York Road.

LEE-ON-SOLENT

19th. IEE - "Training avionics technicians" at 18.30 at HMS Daedalus.

LEICESTER

20th. IERE - "Application of digital logic" by I. D. Brown and S. L. Norman at 18.45 at Lecture Theatre A, Physics Block, the University.

LINCOLN

15th. SERT - "Stereophonic sound" by P. Harvey at 19.30 at Forge Restaurant, I West Parade.

LIVERPOOL

7th. IERE - "Systems control in the electricity supply industry" by Dr. J. T. Boardman at 19.00 at Dept. of Electrical Engineering and Electronics, the University.

19th. IEE - "New concepts in computer process control" by A. L. Stott at 18.30 at Electrical Engineering Dept., the University, Brownlow Hill.
LOWESTOFT
27th. BAS/SUT - "Sonar in fisheries" at Fisheries Research Lab.

MALVERN

13th. IERE - "Telecommunications in the year 2001" by A. G. Hare at 19,30 at Abhey Hotel.
15th. 1.Phys. - "Photon correlation methods" at 13.45 at the Royal Radar Establishment, St Andrews Rd.

MANCHESTER

13th. IEE - "Nickel cadmium alkaline battery" by D. Fraser at 18.15 at Lancs County Cricket Club, Talbot Rd., Old Trafford.

28th. IEE/IERE - "Satellite communication systems" by Lt. Cdr. B. E. Collins, at 18.15 at Lecture Theatre RG7, Renold Building, UMIST.
29th. SERT - "Integrated circuits for motor vehicles" by B. Shepherd at 19.30 at Room D7, Renold Building, UMIST.

MIDDLESBROUGH

27th. SERT - "Electronic ignition" by W. Norrie at 19.30 at the Cleveland Scientific Institution. Corporation Rd.

NEWCASTLE UPON TYNE

5th. IEE - "Conversations with computers" by C. R. Evans at 18.30 at the University of Newcastle-upon-Tyne, Room M421.

14th. IERE - "A communication and control system for motorways" by E. H. Walker at 18.00 at Main Lecture Theatre, Ellison Building, the Polytechnic.

19th. IEE Grads. - "Making electronic music" by G. Rodgers at 18.30 at the University of Newcastle-upon-Tyne.

NORWICH

7th. IEE/IERE - "Video recording" by D. M. Bowd at 19.30 at The Audio Visual Centre. University of East Anglia.

NOTTINGHAM

13th. IEE Grads. - "How to see in the dark" by R. Hodgson at 19.30 at Tower Block Lecture Theatre, the University.

PLYMOUTH

13th. IEETE - "Satellite communications" by V. C. Meller at 19.30 at the Post Office.

READING

13th. IERE - "Modern dynamic measurement techniques" by Dr. J. D. Lamb and Dr. P. A. Payne at 19.30 at The J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

ROTHERHAM

6th. SERT - "Thyristors and their application in adjustable speed drives and power controllers" by \mathbf{P}. A. Bennett at 19.15 at the College of Technology, Howard St .

RUGBY

20th. IEE Grads. - "Artificial organs" (biomedical) by R. N. Mornsey at 18.15 at Lanchester Polytechnic.

281h. IEE - "Instrumentation in vehicle research and development" by T. R. Aston at 18.15 at Lanchester Polytechnic.

SHEFFIELD

27th. IEE - Faraday lecture on "Navigation land, sea. air and space" by A. Stratton at 19.00 at the City Hall.

SOUTHAMPTON

14th. IEE/IERE - "Communication UHF modules" by P. Tunbridge at 18.30 at Lanchester Theatre the University.

21st. IEE/IERE/IEETE - "Application of control to artificial limbs" by Prof. J. M. Nightingale at 18.30 at Lanchester Theatre, the University.

WEYMOUTH

22nd. IEE - "Numerical control of machine tools" hy T. E. Zombory-Moldovan at S. Dorset Technical College.

Portable Oscilloscopes

Additions to last month's review

The following information became available too late for inclusion in the main review, published in our February issue. We have selected five instruments from the large Telequipment range, referring, where possible, to the missing types. " Y extension", which was referred to in the February article, is a measure of the horizontal distance over which the y amplifier rise-time is extended at maximum sweep speed.

TELEQUIPMENT

Serviscope Minor (single-trace): bandwidth $0-30 \mathrm{kHz}$; sensitivity $100 \mathrm{mV} /$ div; timebase $10 \mathrm{~ms} / \mathrm{div}-100 \mu \mathrm{~s} / \mathrm{div} ; \quad y$ ext. 0.5 mm ; trigger automatic; e.h.t. 600 V ; display 10×10 divs (each 4.2 mm); power a.c.; dimensions $14.5 \mathrm{~cm} . \mathrm{W}$, $16.2 \mathrm{~cm} . \mathrm{H}, 24.8 \mathrm{~cm} . \mathrm{D}$; weight 2.25 kg ; price $£ 30$.

A very small, light instrument primarily intended for teaching. It has simplified controls, triggering being completely automatic. The display is fairly small and the timebase is slow. It is capable, however, of displaying most phenomena encountered in the initial teaching of electrical theory. It is the cheapest instrument we have found.

S54U (single-trace): bandwidth 10 MHz ; sensitivity $10 \mathrm{mV} / \mathrm{cm}$; timebase $5 \mathrm{~s} / \mathrm{cm}$ $200 \mathrm{~ns} / \mathrm{cm}$; mag $\times 5 ; y$ ext. 8.75 mm ; trigger source, slope, level, auto, t.v.; e.h.t. 4 kV ; display $10 \times 6 \mathrm{~cm}$; power a.c. or d.c. ($11.5-30 \mathrm{~V}$) or int. batteries (3 hours); dimensions $17 \mathrm{~cm} . \mathrm{W}, 24 \mathrm{~cm} . \mathrm{H}, 45 \mathrm{~cm} . \mathrm{D}$; weight 11.3 kg ; price $£ 190$ with batteries.

An instrument for general use. possessing a fast, expanded, sweep. F.e.t. input circuitry is used for rapid availability from cold. Mains-powered and rack-mounted versions are available at $£ 125$ and $£ 140$, and the D54 is a dual-trace version at $£ 160$.

DM64 (dual-trace storage): bandwidth 10 MHz ; sensitivity $10 \mathrm{mV} / \mathrm{cm}$; mag. $\times 10$; modes single, alt. chopped, summed, ch. 2 inverted, $x-y ;$ timebase $5 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm} ;$ mag $\times 5 ; \boldsymbol{y}$ ext. 1.75 cm ; trigger source, slope, coupling, level. single-shot, t.v.; e.h.t. 3.5 kV ; display $10 \times 8 \mathrm{~cm}$; bistable storage tube; power a.c.; dimensions $21 \mathrm{~cm} . \mathrm{W}, 24 \mathrm{~cm} . \mathrm{H}, 37 \mathrm{~cm} . \mathrm{D}$; weight 12.5 kg ; price $£ 320$.

One of the two storage oscilloscopes in the survey, with a choice of storage modes. A very fast expanded sweep is provided, and
the $x-y$ facility, selected by the timebase switch, operates with less than 1° phase error at 100 kHz .

D66 (dual-trace): bandwidth 25 MHz ; sensitivity $10 \mathrm{mV} / \mathrm{cm} \quad(1 \mathrm{mV} / \mathrm{cm}$ at 15 MHz ; sig.delay 200 ns ; modes single, alt. chopped, summed, ch. 2 inverted, $x-y$; timebase $5 \mathrm{~s} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm} ;$ mag $\times 5 ; \boldsymbol{y}$ ext. 7 mm ; trigger source, coupling, slope, level, single-shot, t.v.; e.h.t. 10 kV ; display $10 \times 8 \mathrm{~cm}$; power a.c.; dimensions $21 \mathrm{~cm} . W, 24 \mathrm{~cm} . \mathrm{H}, 37 \mathrm{~cm} . \mathrm{D}$; weight 11.5 kg . price $£ 225$.

A high-performance oscilloscope for wide general use on most types of equipment. The signal delay makes possible the investigation of fast pulses. A similar instrument is the D65, which has a bandwidth of 15 MHz at $10 \mathrm{mV} / \mathrm{cm}$ and a c.r.t. accelerating voltage of 4 kV . The price is $£ 195$.

D67 (dual-trace): bandwidth 25 MHz ; sensitivity $10 \mathrm{mV} / \mathrm{cm}$; sig.delay 200 ns ; modes single, alt, chopped, summed, ch. 2 inverted; timebase \mathbf{A} (main delaying) $5 \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$; trigger auto, single-shot plus usual facilities; timebase B (delayed) $5 \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$.; mag (both) $\times 5$; trigger B trig.by A, B trig.gated by A; modes A, A intensified by B, B del. by A; \boldsymbol{y} ext 3.5 mm ; e.h.t. 10 kV mesh; display $10 \times 8 \mathrm{~cm}$; power a.c.; dimensions $21 \mathrm{~cm} . \mathrm{W}, 24 \mathrm{~cm} . \mathrm{H}, 44 \mathrm{~cm} . \mathrm{D}$; weight 11.5 kg ; price $£ 295$.

A similar instrument to the D66, but with the added facility of a delaying sweep. The timebase is slower, but still adequate, and the instrument is suitable for work on all types of digital and analogue circuitry. The use of push-buttons for timebase and y amplifier mode selection in this and other instruments has reduced the front-panel clutter considerably.

Errata. One or two small errors crept into the review, for which we apologize.
The Tektronix 485 has a bandwidth of 350 MHz , not 300 MHz .
The Hewlett-Packard 1206 should be included with the single-trace models, and the range of prices of the 1200 series is £392-565.

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

The 534-page "Integrated Circuits Manual 1973 containing details and specifications of the range of t.t.l., e.c.l. and m.o.s. digital i.cs, also commercial and industrial analogue i.cs currently available from Siemens (U.K.) Lid. Great West House. Great West Road, Brentford, Middlesex \qquad ..WW401

Two data sheets describing a range of "Unitunnel" tunnel diodes with characteristics claimed 'o be ideal for low-power industrial and military application such as computer logic, modulators, detectors, tunnel diode amplifiers and oscillators. clamping and limiting circuits are:
700-4, device type $1 \mathrm{~N} 3539-3543$ inc (TO-18) WW402
700-6, device type U1001-1010 inc (DU-17) WW402
Joseph Lucas (Electrical) Ltd, Electronics Product Group, Mere Green, Sutton Coldfield, Warwickshire.

A short-form catalogue listing the range and prices of transistors, diodes, power supply modules, a.f. amplifier modules and digital i.c. test equipment received from Semiconductor Supplies (Croydon) Ltd, 55 Whitehorse Road, Croydon, Surrey CR0 2JG

WW404
A condensed catalogue of silicon rectifiers manufactured by Semtech giving brief details of the range of "Metoxilite" rectifiers and voltage regulators, high voltage, high current and power diodes. bridges and multipliers is available from Bourns (Trimpot) Ltd. Hodford House. 17-27 High Street, Hounslow, Middlesex .WW405

Details of semiconductor products manufactured by Solid State Scientific Inc. of America are available in three data brochures:
"Quick reference r.f. power-frequency chart" describing transistor power amplifier perfor mance for devices designed to operate over the range 100 MHz to 1000 MHz with output power from IW to 50 W . Device physical characteristics are also shownWW406
"Data book of c.m.o.s. integrated circuits" gives electrical characteristics for digital i.cs in the SCL4000A, SCL4400A and SCL5000 series of elements ..WW407
"C.M.O.S.", a quick reference brochure to the above m terms of the most commontypes, shows basic logic functions generated by devices of different type number

WW408
mpectron Ltd, Impectron House, 23-3I King Street, London W. 3.

A comprehensive short-form catalogue details the range of products available from both English Electric Valve Co. and the M-O Valve Co. covering, in one publication, the range of transmitting. receiving, microwave and cathode ray tuhes, power control and electro-optical devices, microwave components and other special products. The G.E.C. Electronic Tube Co. Lid, Waterhouse Lane, Chelmsford, Essex CM1 2QU

WW409

PASSIVE DEVICES

Radio frequency filters covering tubular and lumped element low pass ($5 \mathrm{MHz}-5 \mathrm{GHz}$), tubular, lumped element. cavity and waveguide bandpass ($5 \mathrm{MHz}-18 \mathrm{GHz}$), mechanically and electrically tunable bandpass ($50 \mathrm{MHz}-4 \mathrm{GHz}$) filter character istics, is the subject of a brochure from Texscan Instruments Ltd, 1 Northbridge Road, Berkham sted, Hertfordshire
..WW4 10
A 20 -page catalogue describing the complete range of electromagnetic delay lines includes dual-in-line, continuously variable, low profile and standard p.c. mounting, subminiature nanosecond, tapped.
lumped constant and extended delay/rise time types and a discussion on custom-designed delay lines G.E. Electronics (London) Ltd, Eardlcy House 182-184 Campden Hill Road. Kensington London W8 7AS
..WW411
Subminiature and miniature coaxial connectors is the subject of a catalogue giving mechanical dimensions and some r.f. characteristics o Microclic. Subvis, Subclic, SMA, BNC. TNC, u.h.f., N, C. HN and LC types of connector. Some detail of coaxial cables is also included. Radiall, 101 rue Philibert Hoffman, Zone Ind, 93-Rosny s/bois, France
..WW4 12
The "Venture" range of high speed electromagnetic impulse counters covers resettable and non-resettable types with three, four, five or six figures, counting rates of up to 3000 per minuie, a.c. or d.c. working, multigroup assemblies and plug-in module types. Smiths Industrics Ltd, Industrial Instruments Division, Waterloo Road, Cricklewood, London NW2 7UR

WW413
"Connections and Connection Systems" is the title of the 1973 catalogue giving mechanical and electrical specification of the range of multiway edge, wire wrapping, low force and a claimed "unique" flat cable connecting system utilizing a standard one-inch wide flat cable. Ferranti Ltd Dunsinane Avenue, Dundee, ScotlandWW414
"Hybrex" silicon dioxide chip capacitors for microcircuit use. providing low temperature coefficient and dissipation factor, single or five electrode geometries and configurations which are compatible with silicon diodes. transistors and integrated circuits are the subject of a brochure from Burr-Brown International, 25A King Street, Watford, Herts WDI 8BYWW415

Bulletin 1058 gives technical details for the use of "Radiax TM" slotted coaxial cable in communications systems employing the controlled leakage of r.f. from concealed transmission line. Consideration is given to the system design problem and specifications are given for six different types of cable covering a wide range of possible installations. Andrew Antenna Systems, Lochgelly, Fife Scotland WW416

The Maury MT7119A, liquid nitrogen cooled, cryogenic termination which may be used for carrying out noise temperature measurements in a variety of applications including radio receiver and aerial system calibration, maser and parametric amplifier noise evaluation over the frequency range d.c. to 8.5 GHz , is the subject of a data sheet from Tony Chapman Electronics Ltd, 3 Cecil Court. London Road, Enfield, Middlesex \qquad ..WW417

EQUIPMENT

A data sheet is concerned with broadband isotropic radiation detection equipment for the monitoring of near and far field power densities over the frequency range of 300 MHz to 18 GHz with a maximum full scale deflection of $20 \mathrm{~W} / \mathrm{cm}^{2}$ and a dynamic range of 23 dB . Aveley Electronic Ltd. Roebuck Road, Chessington, Surrey KT9 1LP

Two short-form catalogues dealing with data processing equipment and instrumentation are from:
Ithaco, manufacturers of hydrophones, lock-in amplifiers, instrumentation amplifiers and preamplifiers, filters and automatic data acquisition systemsWW4 19
M.F.E. Corporation, who deal with display and data translating equipment such as strip chart recorders, digital printers, X / Y recorders, torque motors. angular transducers, galvano-
meters, Teletype projectors, graphic translator
and linear actuatorsWW420 Techmation Ltd, 58 Edgware Way, Edgware, Middx.

A brochure describing plug-in disc, fixed head mass memory systems having an average access time of 16.7 milliseconds and a capacity range of 32.000 to $1,000,000$ words, was received from Data Disc Inc, 686 West Maude Avenue, Sunnyvale, California 94086
..WW42
A descriptive leaflet about a special series of five sound selector units which select or direct connections for a number of stereo headphones, aspeakers or amplifiers in suitable combinations, is available from Tape Recorder Spares Ltd, 206-210 Ilderton Road, London SEIS INS
.WW422
A 28 -page catalogue describing the manufactured range of power supplies, covering hybrid thick film regulators, preset, variable, programmable and high current units. also carriers for multiple assemblies in standard 19 -inch rack mounting Lambda Electronics, Marshlands Road, Farlington, Portsmouth PO6 IST
..WW423
The TK28 telecine camera in which three tubes are used (vidicon or lead-oxide) and containing automatic colour balance, one of several camera devices for improving the quality of reproduced cine film, is the subject of a brochure from R.C.A., Communications System Division, Camden, New Jersey, 08102 , U.S.A.

WW424
A leaflet has been received describing the PMI phasemeter, an instrument with a meter readout registering differential phase of between 0 and 180° (lead or lag shown on front panet lamps) for input voltages of between 20 mV and 250 V r.m.s. over a frequency range of 10 Hz to 100 kHz . Farnell Instruments, Sandbeck Way, Wetherby, Yorkshire LS22 4DH

APPLICATION NOTES

An application note showing that if the significant differences between photometric and radiometric terms. as related to light sources and photodetectors, are understood, meaningful measurement of major optical parameters can be obtained by a relatively simple approach using a calibrated transfer standard and other readily available electronic test equipment. Joseph Lucas (Electrical) Ltd, Electronics Product Group, Mere Green Road, Sutton Coldfield, WarwickshireWW426

A model control application of integrated circuit type ZN403E providing a high performance proportional control servo amplifier which is adaptable to almost any digital decoding system is described in brochure ESA440172 from Ferranti Ltd, Gem Hill, Chadderton. OldhamWW427

GENERAL INFORMATION

A leaflet detailing a printed circuit manufacturing service covering printed circuit artwork, the latest technique for producing stencils in screen printing, profile cutting, drilling, inspection and assembly was received from K. J. Bentley and Partners Ltd, 18 Greenacres Road, Oldham. Lancs.WW428

The 1973 catalogue of electronic components including additions such as high power voltage regulators. light emitting diodes, contact fluid pens, audible warning devices. dual-in-line switches and crossover networks can be obtained from R. S. Components Ltd. P.O. Box 427, 13-17 Epworth Street. London EC2P 2HA \qquad
Single copies of the "Bulletin of Special Courses 1973" Part 2 contain information about full and part time courses held in the spring and summer educational terms at colleges and other institutions in the London and Home Counties region, and can be obtained for 60 p (post free U.K. only) from The Secretary, Regional Advisory Council, Tavistock House South, London WC I 9LR.

A wide range of gas torches for soldering, brazing, welding and cutting manufactured by Allanter Instruments Ltd, is illustrated in a brochure showing the five basic torch units and numerous other attachments from Microflame (U.K.) Lid, Abbots Hall, Ricking Hall, Diss, NorfolkWW430

Straight talk about a stylus

Listen carefully and you will hear someone call a stylus . . "the needle." We would like to go on record, so to speak, as observing that the Shure stylus of today bears no more resemblance to a needle than it does to a six-inch nail. In fact, it is probably the most vitally important, skillfully assembled, and critically tested component in any high fidelity system. It must maintain flawless contact with the undulating walls of the record groove-at the whisperlight tracking forces required to preserve the fidelity of your recordings with repeated playings. Our new High Fidelity Products catalogue abounds with helpful stylus information, and of course, describes the superb line of Shure pickups for your consideration. For your copy, posi the coupon. Write:

Shure Electronics Limited, 84 Blackfriars Road, Dept. E/3 London SE1 8HA Telephone (01) 9283424

Please send me a copy of the free Shure. High Fidelity Products catalogue.

NAME

ADDRESS

Sinclair Project 60

Now-the Z.50 Mk. 2

 with built-in automatictransient overload protection

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of $Z .50$'s are now giving excellent service day in, day out. But we have also learned that constructors do not always use their 2.50 's ideally. That is why we have introduced modifications whereby risk of damage through mis-use is greatiy reduced and performance further enhanced. The Z.50 Mk. 2 has improved thermal stability. more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. Z.50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial planar transistors are now used, two more than in the original 2.50 . circuitry has been re-designed, making this versatile high performance amplifier better than ever.

The Z.30 provides excellent facilities for the constructor requiring a high fidelity audio system of less power than that available from Z.50's. Using a power supply of 35 volts, $Z .30$ wil! deliver 15

Brilliant new
 technical specifications

Input impedance 100 Ks
Input (for 30 w into 8Ω) 400 mV
Signal to noise ratio, referred to full $0 / \mathrm{p}$ at 30 v HT 80dB or better
Distortion 0.02% up to 20 W at 8Ω. See curve Frequency response 10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage $45 v$ (4Ω to 8Ω speakers)
($50 \vee 15 \Omega$ speakers only)
Min. supply voltage 9 v
Load impedance - minimum : 4Ω at 45 v HT Load impedance - maximum: safe on open circuit

Typical Project 60 applications

 watts RMS into 8 ohms, or 20 watts RMS into 3 ohms using 30 volts. Total harmonic distortion is a fantastically low 0.02% at 15 watts into 8 ohms with signal to noise ratio better than 70 dB unweighted. Input sensitivity 250 mV into 100 K ohms. Slize $80 \times 57 \times 13 \mathrm{~mm}\left(3 \frac{1}{8} \times 2 \frac{1}{4} \times \frac{1}{2}\right) Z .30,2.50$ and Z.50 MK. 2 modules are compatible and interchangeable
Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd., you are dissatisfied with it, you money will be refunded at once. Many Sinclair appointed Sinclair Radionics Lta.
Each project 60 module is tested before leaving our factory and is guapanteed to work perfectly. Should any defect arise in normal use, we will service it at once and without any charge to you, if it is returned within two vears from the date of purchase. Ousside this period of guarantee a small charge (typically $£ 1.00$) will be made. No charge is made fo postage by surface mail. Air Mail is charged at cost

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12V battery volume control etc.	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P U. volume control, etc.	$£ 9.45$
12W. RMS continuous sine wave stereo amp for average needs	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 5 \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times \mathrm{Z} .30 \mathrm{~s}, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner, Tape Deck. etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	2×2.50 s, Stereo 60; PZ.8, mains transformer	As above	¢34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic.. guitar, speakers. etc., controls	£19.43

F.M. Stereo Tuner (£25) \& A.F.U. (£5.98) may be added as required

the world's most advanced high fidelity modules

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between chennels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS -12 to -12 dB at 100 Hz . Front panal : brushed aluminium with black k nobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Built, tested and guaranteed
£9.98

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. iuner with fantastically good results. Other advanced features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 inI I. C. Tuning range: 87.5 to 108 MHz . Sensitivity: $7 \mu \mathrm{~V}$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($I \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Crass talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. maximum Operating voltage: : $25-30 \mathrm{VDC}$. Indicators: Stereo on: tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Super IC. 12

Integrated circuit
high fidelity amplifier

Having introduced Integrated Circuits to hi-fi Having introduced integrated Circuits io hi-fic constructors with the IC. 10 . the first time an IC
had ever been made available for such purposes. had ever been made available for such purposes.
we have followed it with an even more efficient we have followed it with an even more efficient
version, the Super IC. 12 , a most exciting advance version, the Super IC. 12 , a most exciting advance
over our original unit. This needs very few external resistors and capacitors to make an asionishingly good high fidelity amplifier for use with pick-up. F.M. radio or smail P.A. set up. etc The free 40 page manual supplied, details many other applications which this remarkable IC. make possible. It is the equivalent of a 22 tran
sistor circuit contained within a 16 lead DIL package, and the finned heat sink is sufficient for a!l requirements. The Super IC. 12 is compatible a.l requirements. The Super ic. 12 is compatible with Project 60 modules which \mathbf{w}, Complete with with the $Z .50$ and $Z .30$ amplifiers. Com
free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at alf output powers and frequencies in the audio band (28 V) Load Impedance: 3 to 15 ohms . Input Impedance: 250 Kohms nominal Power Gain: pedance: 250 Kohms nominal Power Gain: 90 dB (1,000.000.000 times) after feedback Supply Voltage: 6 to 28 V . Quiescent cur rent: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in cluding pins and heat sink.
Manual avalable separately 150 post free.
With FREE printed circuit
board and 40 page manual.
£2.98

Power Supply Units

The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made available to constructors. Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which. as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment. Ripple and residual noise have been reduced to the point of almost total elimination. This is, of course, the perfect unit for Project 60 assemblies, particularly where the new Z.50 MK. 2 amplifiers are used. Nominal working voltage-45
PZ.8 Mk.3-£7.98
(Mains transformer, if required) £598
PZ. 5 30v. unstabilised
(not suitable for Project 60 runer) $£ 4.98$ PZ. 6 35v, stabilised
(not suitable for IC. 12) £7.98

Project 605

the easy way to buy and build

Project 60

without

soldering

Project 605 in one pack contains: one PZ.5. two Z.30's one Stereo 60 and one Masterlink. which has input sockets and output. components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on to the modules thus eliminating all soldering.
Complete with comprehensive.
£29.95
manual, post free
All you need for a superb 30 watt
high fidelity stereo amplifier

Order form

Please send
enclose cash/cheque/money order
Name

Address

SINCLAIR RADIONICS LTO.. LONDON ROAD
ST. IVES. HUNTINGDONSHIRE, PE17 4 H

For use in schools in Nuffield ' O ' and ' A ' Level experiments

Scaler-Timer \& Ratemeter 245

OFFERS

- Large, clear seven-segment display of all five digits
- Built-in ratemeter and loudspeaker with volume control.
- Built-in gating circuits for timing experiments using phototransistors or contacts.
* Automatic reset on start initiation.
- Separate key for stop.
- Built-in timing pulse generator
- Integrated circuits used throughout.
- Complete range of accessories available.

PRICE $£ 79.00$

For full details and specifications contact. ESI Nuclear 2 Church Road Redhill
Surrey
Tel: Redhill 64993 (STD Code 0737)
An associate comnany of
Edwards Scientific International Led.
Mirfield, Yorkshire

WW-088 FOR FURTHER DETAILS

PORTABLE VHF TRANSCEIVER
MODEL: TTR-21
Easy-handling, superb performance!!

FEATURES:

- Three operating frequencies in any 2 MHz segment of the $142-172 \mathrm{MHz}$ range may be selected.
- A monolithic HCM filter produced by our own crystal division is used in the IF amplifier. Performance and selectivity in this single superheterodyne set are excellent.
- A light emitting diode is used to indicate the transmit output level and condition of the battery. This approach improves reliability and allows checks under poor lighting conditions.
- Use of a posistor eliminates the troublesome fuse and alleviates maintenance requirements.

[^4]

Would you spend anhour aday to earn moremoney in Electronics-Television-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics - in television (colour and black/white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments).

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

L your key to the door of opportunity

Tick or state subject of interest and post to:
International Correspondence Schools, Dept. 234 D, Intertext House, Stewarts Road, London SW8 $4 \mathbf{U J J}$.

Subject of interestSociety of Engineers Graduateship (Electrical Engineering) C \& G Telecommunications Technicians Certificates C \& G Electrical Installation Work C\& G Certificate in Technical Communication Techniques MPT General Certificate in Radio Telegraphy Audio, Radio \& TV Engineering \& Servicing Electronic Engineering, Maintenance, Engineering systems, Instrumentation \& Control systems
Computer Engineering and Technology Electrical Engineering, Installations, Contracting, Appliances Self-build radio courses

Name

Address

Accliumed as then Wordd Ieaciing Tele ecopic tiltioner toher in ther fetch at varlou communiantion Nicidels fiom 25 to 120°

Look for the nime

GIEUNAECH

Strimech Fingmeamin Co Liti Coppice Side. Biownhills. WalSall. Staffs

OVERSEAS AGENCIES

Italy \quad I.E.G. International Eng. Group. Viale XX1 Aprile 21, Rome
W. Germany Kurt Fritzel K. G., 6702, Bad Durkheim. Hammelstralstrasse 72.

Switzerland Megex Electronic AG, Badenerstrasse 582. 8048 Zurich.

Sweden Pergus AB,
Box 755 .
S-18107
Lidingo 7.
Denmark Hans Holtman. Ordrup Jagtvej 183,
2920 Charlottenlund.

South Arrica Vanrow Eng. (PTY) Ltd.,
P.O. Box 25601,
Denver TVL,
Bessemer \& Wriggle Road, Johannesburg.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI-PAK UNTESTED
Satiefacti
Pak No.
Every Pak,
Description

QUALITY TESTED SEMICONDUCTORS Pak No.	
Q1	Re.l spot t
	White spot R.F. trangistors
	OC 77 type transis
Q4 6	6 Mntched transistora OC44/45/81/81D
Q5	OC 75 transistors
	OC 72 trankist
Q7	AC 128 transistors PNP
	AC 126 transiet
	OC 81 type transis
10	OC 71 type tranisistors
	2 AC 1277128 Complement
	AF 116 type transistors
	AF 117 type transietors
	3 OC 171 H.F. type transisto
	2 getr80 low noise Germantum
	5 NPN $2 \times$ ST. $141 \& 3 \times$ ST. 140
	MADT'S $2 \times$ MAT $100 \& 2 \times$ MAT 120
	MADT's $2 \times$ MAT 101 \& $1 \times$ MAT 12
	- OC 44 Germanilum transiators A
	AC 127 NPN Germanium trankist
Q22 20	NKT transistors A.F. R.F. coded
	OA 202 silicon dlode
	OA 81 diodes
15	1N914 8illcon diodes 75 PIV 7
	8 OA95 Gernamiutu diodes sul-min. 1 N 6
	10A PIV Silicon rectifers IS 425 R
	Silicon power rectifiers BYZ 13
	silicon trangistors 2×2 N696, 1×2 N697, $1 \times 2 \mathrm{Nb}!8$.
	Silicon switch tringistors 2 NT 06 N
	6 Sillicon switch transistors 2 N 708
	${ }_{2 N}^{P N P} 1132$ gilicon transistora $2 \times 2 \times 1131,1$
	3 gilicon NPN transistors 2N1711
	sillicon NPN translators 2 N2369, (code P397)
	3 8ilicon TNP TO-5, $2 \times 2 \mathrm{~N} 2904$ \& 1
	$2 \mathrm{~N} 3646 \mathrm{TO}-18$ plastic 300 MHz
	3 2N3053 NPN Sillicon tranalet
	$3 \times 2 \mathrm{~N}$

electronic slide-rdle

The MK Slide Rule, designe, to sloplity
Electronic cal
culations teatures the following scales:-
Conversion

[^5]

-00000000000000000000000

DIODES AND RECTIFIERS

 000000000000000000000 ㅇ0000000000000000000

NEW LOW PRICE TESTED S.C.R.'s

POWER TRANS BONANZA!
\qquad

NEW EDITION 1971
\qquad

-the lowest prices!

74 Series T.T.L. I.C'S
br-pak still lowest in price full specification guaranteed. all famous manufacturers

integrated circuit paks
Manufacturers "Fall Outs" which inclucte Functional and Part-Functional Units. These are classe, as ant Pak No. Contents Price UIC00 $-12 \pm 7400 \quad 050$ $U 1 \mathrm{CO}=12 \times 7401$
U1C02 $=12 \times 7402$ $\mathrm{UIC} 0 \mathrm{~S}=12 \times 7403$
UIC $04=12 \times 7404$ UIC $05=12 \times 7405$
UIC $06=8 \times 7406$
UIC $0-8 \times 740$ $\mathrm{UIC10}=12 \times 74 \mathrm{~T}^{-10}$ $\mathrm{VIC12}=8 \times 7413$
$\mathrm{U}=12 \times 720$ UIC40 $=12 \times 7440$ $\mathrm{UIC} 43=5 \times 74+2$
$\mathrm{UIC} 44=5 \times 7444$
$\mathrm{UIC} 5=5 \times 74$

Pak No. Contents	Price	Pak No. Contents	Price
U1C46 $=5 \times 7+46$	0.50	U1C86 $=5 \times 748 \mathrm{t}$	0.50
$\mathbf{U 1 C 4} 7=5 \times 7447$	0.50	U1C $40=5 \times 7490$	0.50
UIC48 $=5 \times 74.8$	0.50	U1C91-5 \times : 7491	0.50
UIC50 $=12 \times 7450$	0.50	UIC92 $=5 \times 7492$	0.50
$\mathrm{U1} 351=12 \times 7451$	0.50	U1C93 $=5 \times 7493$	$0 \cdot 50$
U1053 $=12 \times 7453$	0.50	UIC94 $=5 \times 744$	0.50
UIC54 $=12 \times 7454$	050	UIC95 $=5 \times 7495$	0.50
UIC60 $=12 \times 74{ }^{\text {a }}$	0.50	U1C96 $=5 \times 7496$	050
UIC $70=8 \times 7470$	050	UIC100 $=5 \times 7+100$	0. 50
$\mathrm{UIC} 72=8 \times 7472$	0.50	U1C121 $=5 \times 74121$	0. 50
UIC73 $=8 \times 7473$	0.50	U1C141 $=5 \times 3141$	0.50
UIC74 $=8 \times 7474$	0.50	U1C151 $=5 \times 74151$	0.50
$\mathrm{U1C75}=8 \times 7475$	0.50	U1C154 $=5 \times 74154$	0.50
UIC76 $=8 \times 7+76$	$0 \cdot 50$	U1C193 $=5 \times 7419$ \%	0.50
UIC80 $=5 \times 7480$	0.50	U1C199 $=5 \times 7+18.4$	0.50
UIC81 $=5 \times 7481$	0.50		
UIC82 $=5 \times 7482$	0.50	UICXI $=25$ Assorte	's 1.50
U1C88 $=5 \times 7483$	0.50		
i fieces (our mix) is available ms PAK UIC XI.			

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)
0.1% distortion ! hi-fi audio amplifier

- Frequency Response 15 Hz to 100,000
- Dietortion-hetter than. $0 \cdot 1 \%$ at 1 kU
- Signal to noise ratio 80d B

Tailor wade to the most stringent, qpecifications using top CUUM needs
BRITISH MADE. only $£ \mathbf{~} 3 \cdot 25$ each

STABILISED POWER
MODULE SPM80

£2.95
AP80 is especially designed to power 2 of the Alsy Amplificrs. up th latest components and circuit technifues incorporating numplete phat
circuit protection. With the addition of the Mains 'Traisionmer M T80
 ystems of the highest guality at a hitherto urohtainahle price. Also diress, Intercon

TRANSFORMER BMT80 £1.95 p. \& p. 25p

SPECIFICATION:

 cits. 1. Tape head
3. Radio, Tuner All input roltages

20 Hz -20k1Hz $\pm 1 \mathrm{HE}$ hetter than 01%
$1.20 \mathrm{~m} V$ into $50 \mathrm{~K} \Omega$
9.20 F 35 mV into $50 \mathrm{KK} \Omega$ 35 mV into $50 \mathrm{~K} \Omega$
1.5 mV into $50 \mathrm{~K} \Omega$
output of 250 mv . Tape and P.U. inputs equalised to
-
SPECIAL COMPLETE KIT COMPRISING 2 AL50's,
I SPM80, I BMT80 \& I PAI00 ONLY $£ 23.00$ FREEp.\&p

Bass control
Treble control
Filters: Rumble (high pass)
Seratch (low pass)
Signal/noise ratio
Input overload
Supply
Dimenaions

LINEAR I.C.'s-FULL $\underset{\text { Price }}{\text { SPEC. }}$			
Type No.	1-24	25-99	100 up
H1 ${ }^{\text {P } 201 \mathrm{C}-\text { - } 1.201 \mathrm{C}}$	63p	53p	45p
B1 $601 \mathrm{C}-\mathrm{BL} 701 \mathrm{C}$	63p	50p	45p
13P 702C-8L702C	${ }^{63 p}$	50p	45 p
BP 702 - 2702	53p	45p	40p
BP 709-72709	${ }^{38 p}$	348	30 p
BP ${ }^{\text {co9P-uA709C }}$	36p	34D	30 p
BP 710-72710	44p	42p	40 p
	45p	43p	40 p
BP $741-72 \overline{4} 1$	75	${ }^{60 \mathrm{p}}$	50 p
нat03C- 4 A 703 C	28 D	26p	${ }^{245}$
TAA 26:3-	70 p	${ }_{70 \mathrm{p}}$	${ }^{55}$
TAA 2930	${ }^{90 \mathrm{p}}$	${ }^{75 p}$	70 p
TAA 350	170p	158p	150p
8.G.B. EA1000 22-63			
ROCK BOTTOM PRICES LOGIC DTL 930 Series I.C's			
Type	Price		
No.	1-24	25-90	100 up
BP:930	12p	11 p	10 p
BP932	13p	12p	11p
$\mathrm{BP}^{9} 938$	13p	12p	11p
BP935	13p	12p	$11 p$
BP934i	13p	12 p	11 p
$\mathrm{BP9}_{4+}$	13D	12p	11p
${ }^{\text {BP945 }}$	25p	24 p	22 p
	12p	11 p	10p
BP9+8	25p	24 p	22 p
B P951	85.	60 p	55p
B ${ }^{\text {9 }} 962$	12 p	11p	10p
BP909:3	40 p	88 p	35p
BP9094.	40 p	${ }^{388}$	35 p
B1P9097	40 p	${ }^{38 p}$	${ }_{35} 35$
13150099	${ }_{\text {40p }}^{40 \mathrm{p}}$	${ }_{\text {to }}{ }^{38 \mathrm{p}}$	
Devices may be mixert to tualify for duantity price. Larger quantity prices			
On application (1)T	L 930	Series	

Each Kit contains two
Amplifier Modules, 3 Amplifier
watts RMS, two loud-

\qquad
\qquad module, front panel and other accessories, as well as an illustrated stage-by-stageinstruction booklet designed

The STEREO 20

NEW COMPONENT PAK BARGAINS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS EDUCATIONAL AUTHORITIES, ETC

OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

* MOVING IRON-
* MOVING IRON-
ALL OTHERS MOVING COIL Please add postage

Type $5 \mathrm{D} .460 \quad 46 \mathrm{~mm} \times 59.5 \mathrm{~mm}$ Froats

80	22.40	500 mA	£2.15
$50-41504 \mathrm{~A}$	£2.35	1 amp.	82.15
$100 \mu \mathrm{~A}$	22.35	5 amp .	22.15
$1(10-0-100 \mu \mathrm{~A}$	£2.35	10 armp .	22 15
$200 \mu \mathrm{~A}$	22.35	${ }_{10 \mathrm{~V}} \mathrm{D}$ D. C .	${ }^{2} 2.15$
$500 \mu \mathrm{~A}$	22.20	20v. D.C	22. 15
$1 \mathrm{~m} A$	22.15	50 V . 1 Cc	£2.15
5 ma	£2 15	300 V . D.C	82.15
10 maz	22.15	155. A.C	22.30
50 ma	22.15	3300 V A.C	\$2.30
100 mA	$22 \cdot 15$	VU Meter	£2. 55

METERS

EDGWISE METERS

Type P.E.70. 3 17/32in, $\times 1$ 15/32in. $\times 23$ in. deep.

240° WIDE ANGLE I mA METERS $\begin{array}{llll}\text { MW1.6 } & 60 \mathrm{~mm} \text {. } & \text { square } & 23.97 \\ \text { MW1. } & 80 \mathrm{~mm} . & \text { square } & 24.97\end{array}$

RP214 REGULATED POWER SUPPLY Solid state. Variable outrut 0-24V DC UP

"SEW" BAKELITE PANEL METERS

Type Mr.85. 3tin. square tronts.

500 mA
$50 \mu \mathrm{~A} \quad$ Type 5.80
50
50
$50-0-501 \mathrm{~A}$
$100 \mu \mathrm{~A}$
$100-0-100 \mathrm{~A}$
500 uA
1 mA
$20 \mathrm{~V} . \mathrm{J.C}$
$50 \mathrm{~V} . \mathrm{D} . \mathrm{C}$
$300 \mathrm{~V} . \mathrm{D} . \mathrm{C}$
300 V, D.C.
1 amp. D.C.

SEW EDUCATIONAL

OWER RHEOSTATS
High qualty coramice construction. Windings embedded in vitreoue enamel.
Heavy duty bruen wiper. Contlinuous rating. Wlde range available ex-stock. Single hole fring, tiln. dia. enstis. Bulk quantiles araliable.
25 WATr. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2000$ or 5000 ohms. 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms. 90 p.P. APP. 10 p 100 WATT. 1/E/10/25/50/100/250/500/1000 or 2500 ohms. \&1.15. P. \& P. P. 101
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality - Low price - Immediate delivery

AUTO TRANSFORMERS

(115/2301) ater wite down. Fully shrouded.

80 W	22.10	P. \& P. 18 p
150 W	$£ 2.70$	P. \& P. 18 p
300 W	$£ 3.80$	P. \& P. 23 p
500 W	25.25	P. \&P. 33 p
1000 W	$£ 7.50$	P. \&P. 38 p
1500 H	$£ 10.20$	P. \& P. 43 p
2250 W	$£ 17.25$	P. \& P. 50 p

230 VOLT A.C. 50 CYCLES

RELAYS Brand new. 3 sets
contacts at 5 amp rating. 50 peach engeover Post 10 p (1) (1) lote $£ 40$). Quantities

MODEL $\$ 2660$ B Padel Mounting | ${ }_{2}^{1}$ | ${ }^{1}$ |
| :--- | :--- |
| Amp | |
| Amp | |

Please add postag
ALL MODELS
INPUT 230 VOLTs.
OUTPUT VARIABLE: CYCLES
Apecial discounts for quatitity

Induatrial quality in robust metal cases. Battery
operation. Volume and auuelch controls, Cal operation. Volunie and aquelch enntrols, Cal
button and preas to talk button. Telescopic aerial Complete with carrying care

HOMER INTERCOMS Ideal for home, etc. Supplied complete
with bstteries, cable and iree instructions.

A Station E6:62. Poot 1TT

G.W. SMITH

Also see next three pages

MULTIMETERS for EVERY purposed

TS60 POCKET MULTIMETE D.C. Current 150 mA A. Resig

 $0300 \mathrm{~A} / 300 \mathrm{Ma}$.

HIOKI MODEL 720X
 tion $5 / 25 / 100500 / 1000 \mathrm{VDC}$
$10 / 50 / 250 / 1000$ YAC. $50 \mathrm{AA} / 250$

MODEL 500 30,000 O.P.V

ROUND SCALE TYPE PENCIL

 TESTER MODEL TS. 68

Completely portable, simple to use pocket sized
 2.000 op. F .
$\mathrm{P}_{\text {oft }} 13 \mathrm{p}$.

LT601
LTR01
MTLTMETER
New style 20.000 o.p. style pocket ${ }_{5}^{3} / 25 / 50$

$10 / 50 / 100 / 500 / 1000 \mathrm{~V}$.
$50 \mathrm{us} / 250 \mathrm{~mA} .6 \mathrm{~K} / 6 \mathrm{meg}$ ohms. -20 to +22 db . £3.75. Post 20 p .

MODEL TE-300 30,000 O.P.V. Mirrorseale, overO.P. Mirror seaje, over- load protection $0 / 6 / 3 / 3 / 5 /$ $601300 / 1,200$ V.D.C. 10a1 Proverection V.D.C. $0 / 6 / 30 / 120 / 600 / 1.200$ $0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} / 8$ mes. -20 to +63 db . $\mathbf{8 5 . 9 7}$. Post 15 l

MODEL PL436. 20k Ω / Volt D.C. $8 \mathrm{k} \cap /$ Volt A.C
Mirror geale. $6 / 3 / 12 / 30$ $120 / 600 \mathrm{~V}$ D.C. $\$ 3 / 30 / 120$

600 V A.C. $50 / 6 / 01 / 2 / 60$ | 600V A.C. $50 / 600 \mu \mathrm{~A} / 60$ |
| :--- |
| 600 mA. |
| 10 meg |
| $10 / 100 \mathrm{~K} / 1 \mathrm{Meg} /$ |
| 20 |

Selected TEST EQUIPMENT

 TRANSISTOR TESTERFull capabilutien for
measuriug A, Band $1 C 0$.
VPN or PNP. Equally SPN or PYP. Equally
adaptable ior checking
diodes. Supplied complete with instructions. battery and leads.
E7. 50 . Post 20 p .

Model S-100TR MULTIMETER/TRANSISTOR
TESTER 100,1000 OPV.
MIRROR SCALE/OVER-
LOAD PROTECTION MOAD PROTECTION
$0 / 12$-6/3/12/80/120/600
V DC $0 / 6 / 30 / 120 / 600$ V. AC.
$0 / 12 / 600 \mathrm{u} / 12 / 300$ Armp. DC.
$=20$ to $+50 \mathrm{db} . \quad 0.01-2 \mathrm{mfi}$
Trangistor tester measures Alpha, beta and Ico. £13 50 . Pest 25 p.
 RF-300 AF/RF SIGNAL
GENERATOR

AF square wave 18 Hz
to 100 kHz .
Output sine square 10 v
P.P. RF 100 KH
200 MHz . Output maximum. Operation $220 / 210 \mathrm{v}$. A.C. Cornplete with instruc.
tions and leads. $\mathbf{\text { Eat }} \mathbf{0 5}$
Post Post 50 p .
 s.000usec.; free running $20-200,000 \mathrm{~Hz}$ in nine
 TO-3 PORTABLE OSCILLOSCOPE. 3* TUBE
 Y amp. Bensitivity. IV
$\mathrm{p}-\mathrm{p} / \mathrm{CM}$. Bandwidth 1.5 eps p- p / CM. Bandwidth I.5 cp
1.5 MHZ Input imp. $\begin{array}{ll}-1.5 & \text { MHZ. } \\ 2 \mathrm{meg} \\ \Omega . & \text { In PF } \\ \text { PF } \\ \text { imp. } \\ \text { smp }\end{array}$
 bandwidth 1.5 eps-800
KHZ. Input imp. 2 meg \quad
20
20 20 PF. Tinte base. 5 ranges
10 cps 300 KHZ. \quad Byn-
chronization.
Internal/erchronization. Internal/erternal. Illumlnated sale.
Weight $15 \$$ bs. $220 / 240 \mathrm{~V}$. A.C. Supplied brand new with handbook 840 -00. Carr. 50p.
RUSSIAN CI-16 DOUBLE

 +00kHz- 30 mHz . An
inexpenalve inatrument
for
 tions and
Post 25p.

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR

Square wave 10 v . P. to Pre size 1811×90 $\times 90 \mathrm{~mm}$. Operat

MODEL AT201 ATTENUATOR Frequency range:
$0-200 \mathrm{KH}$. Attenuator: 0.111 db .
0.1 d . step.
impedance inn
Lmyedance bino ohins. Size $180 \times 10 \times 55 \mathrm{~mm} . £ 1250$. Post 37 F .

TE-65 VALVE VOLTMETER

 High quality instrument Fith 28 ranges.D.C.
volts
i.
C.
volts
i. A.C. volts $1.5-1.500$
Resistatace up to
1,000 Resistaice
megohms.
220.240: 220/2 0 . Complete with probe and
instructions. $£ 1 \% 50$. Post instructions. $217 \cdot 50$. Port
Additiona. Probes avail. :able: ${ }^{\text {R }} \times 2.50$.

HODEL U4311 SUB-STANDARD
MOLTIIRANGE
VOLT AMETER
Sensitivity 330 ohms
Volt A.C. and I.C Accuracy S. 5 D.
10 A.C. Scale length
$16512 m$.

UNR 30 RECEIVER
 tin Breaker 220.240v AC. Brand new with instruc-
tions. \&15 75. Carr. 37p.

dreceia soutd state communication

SKYWOOD CX203 COMMUNICATION RECEIYER

Solid state. Coverage on 5 bands, $200-420 \mathrm{KHzanal}$
.55 to 30 Mitz. Illumiuatel slide rule dial. Barisgread. ARerial tuning. BFO. AVC AML. phone socket. Operation $240 / 240 \mathrm{~V} A \mathrm{~A}$ or 12 VivC
 thons and circuit. £32 50. Carr. 50p.

Lafayette ha-600 solid state

Gieneral
corverage
$150-400$ kc / k,

$550 \mathrm{c} / \mathrm{s}$. $\underset{\text { FET Iront }}{\substack{30 \text { mols. } \\ \hline}}$ | $\substack{\text { endi, } 2 \\ \text { mech. }}$ |
| :--- | filtera,

profluct
variable B.F.O., noike lliniter, \& Meter, Band

Can be panel or bench mounted. Basic meter measures 1 volt $D C$, but can be used to measure a
wide range of $A C$ and DC volt, current and ohms with optional plug in cards. Specitication: Accuracs: $\pm 0 \cdot 2$, ± 1 digit. Resolution: 1 iuV. Number of digits: 3 pins fourth overrange digit.
Overrauge: 100% (up 201 l.999). Iuput impedane verrauge: 100% (up to 1 -999). Input impedance:
1000 Meg ohm. Measuring cycle: 1 per second. Adjust ment: Automatic zeroing, full scale adfustment against an internal reference voltage. Overloant: to 100y. D.C. Input: Fulty Hoating
 AVALLABLE 13 RAND NEW A
GUARANTEE.
635.50 Carr. 50 p.

SIIGLIAR IC-12

List price 22.98 OUR PRICE \& 1.80 Post 10p.

SINCLAIR EQUIPMENT
Project 60. Package Offers

Emi loudspeakers Model 350. $13^{-} \times 8^{\prime \prime}$ with mingle

 8 or 15 phati R Ms. Avallable ${ }_{2} 3.62$ each. Post $2 \overline{1}$,

SPECIAL OFFER! stereo speakers

ONLY $£ 7.50$ Patitop.

Cimplete with speakers. Altractive black and Ior Woluriee tone and bailance. Chamluel selector
tuat on with red pilor lamp. Complete with
ONLY £15.95
Post 50 .

 ${ }^{1 \text { rragranume selector. }{ }^{4} \text { pole }{ }^{8} \text {. }}$ BSR TD83V £19 Carr. Post 50 p.
£16.25

AKAIEARGAINE

SUPER MONEYSAVING OFFERS-BUY NOW WHILE STOCKS LAST! ALL BRAND NEW AND FULLY GUARANTEED

$9 \times x \times 3$. Inputs ties. Battery operated $2 \times 3 \mathrm{my} 600$ ohm. Phono meg. 4 my 50 K . Phono ceramic 100 mV V 1 meg. Output 250 mV 100 K.

$$
8.97 . \text { Yost } 20 \mathrm{p} \text {. }
$$

SPECIAL OFFER: STEREO BEADPEONES
 26.75. Pout 25p.

NEW GARRARD MODULES

Popular range of Garrari decks with Shure SP25 III Module/Mi万-6 £23.50 A1'76 Moduie Mrs.6 Zero 1008 Module/ M 33 E

TRANSISTORISED FM TUNER

 6 TRANBISTOR
HUGH QUALITY
TUNER
 Yoam rubber ear cups. 8 ohmi impedatice. 25 stereo jack plug. ONLY £1.97. Post 12 p .

HA. 10 STEREO HA-NDPHENE
HEADLIFIER AMPLIFIER istor anplifier oper
ates from magnetic ceramic or tuner inputs with tiwfin stereo head each clannel. Operates from 9 v . battery. Inputs HOSIDEN DH-08S DE-LUXE STEREO HEAD
 HIGH QUALITY
TUNER SIZE
ONLY 6 in. $\times 4$ in. ONLY 6 in. $\times 4$ in. \times
$2 \ddagger$ In. 3 I.. . stagea.
Double tuned dia. Double tuned dis.
criminator. Ample criminator. Ample
output to feed moat on 9 volt battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for use. Fantastic value for money
£6.3\%. Post. 12 p . STEREO MULTIPLEX ADAPTORS, £4.97

G. F. MILWARD

ELECTRONIC COMPONENTS
Wholesale/Retail :

Special Offer !!! MULLARD ELECTROLYTIC CAPACITORS

071 and 072 Series

	Working Voltage Vdc.	Capacitance uF	Max. Ripple Current at $50^{\circ} \mathrm{c}$	Weight	Price
Type No.	40	$3400+3400$	$9 \cdot 1$ amps	$3 \frac{1}{2} \mathbf{0 2}$	$\mathbf{3 7 p}$
07217342	40	$5000+5000$	$12 \cdot 0$ amps	$4 \frac{1}{2} 02$	$\mathbf{4 9 p}$
07217502	63	680	$2 \cdot 1$ amps	102	$\mathbf{1 5 p}$
07118681	63	$1650+1650$	7.8 amps	30z	37p

106 and 107 Series

[^6]
REMEMBER THE VAT-MAN COMETH! ALLPRICES INCREASE APRIL1st!

 SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

P\&P35PEACH
TELEPHONE DIALS
Standard Post Office type Guaranteed in working order ONLY 25p

MAKE A REV COUNTER FOR YOUR CAR The racho BLock. This en capsulated block will turn any 0.1 mA meter into a linear and car with normal coll ignition

£1 each

OVER 1,000,000 TRANSISTORS IN STOCK

We hold a very large range of fully marked. tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.
600,000 Silicon Planar Plastic Transistors. clearance Audio PNP untested - \quad actory 2N3702/3, BCY70 etc Audio NPN. similar to ZTX300, 2N3708/9, BC $10^{\prime \prime} 8 / 9, B C 168 / 9$ etc. R. F. NPN and Switching NPN.
Please state type of Transistor required when ordering.
ALL AT 500 for $£ 3.00$. 1.000 for $£ 5.00$ 10.000 for $£ 40.00$

OUR VERY POPULAR 3p TRANSISTORS
YPE A PNP Sicon alloy. TO-5 ca
TYPE "B" PNP SUlicon, plastic encapsulation
TYPE " ${ }^{\circ}$ F NPN Silicon plasic encapsulation.
TYPE 'G" NPN Silicon. similar ZTX300 range
TYPE 'H. PNP Slicon, similar ZXX500 range
$8 \underset{\text { RELAYS \& Packing 25p }}{\substack{\text { Varous Types }}}$
100,000
NOW IN TWO RANGES
These are 40W and 90W Silicgn Plastic Power Transistors shatteringly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Yested and Guaranteed terms. Range 1. VCE.

90 Watt
Range 2 VCE .
40 Watt
$\operatorname{Min} 15$.
$1-12$
200
CATALOGUE for transistors. RECTIFIERS. DIDDES, integrated cIRCuITS and FULL PRE-PAK LISTS
\qquad per pair. Please state NPN or PNP on order

INTEGRATEDCIRCUITS

Ve stock a large range of I.Cs at very competitive prices (from 10p each). These are all listed in our FREE Catalogue, se
Value on orders of
Added £4orover
Toyou see below
Please readvery carefuily
We will gise a discount to customers who sendinan order for $£ 4$ or wer This discount will be equal to the V A.T. rate carrent at this time. If vour order does amount io f 4 or over. all you neid to send is the totel cosst of goods and postage ${ }^{85}$ statad in this advertisement. No addition for VAT. is needed.
V. A. T. for erders underef $\mathrm{E}^{\text {4 }}$

If the totel cost of goods plus postage end packing is less than f4. kindly add 10% (10 p in the f)
temittance incorrect amounts will delay

A CROSS HATCH

 GENERATOR FOR £3.50YES. a complete kit of parts including Printed Circuit Board. A four position switch gives X -hatc Dots. Vertical or Horizontal lines, Integrated Circuit design for easy construction and reliability. This is a. project in the September edition of Practical

This complete kit of parts costs $£ 3.50$, post paid. A MUST for Colour T.V. Alignment.

Our famous P1 Pak is still leading in value fur money Full of Short Lead Seiniconductors \& Electronic Components approx. 170. We guarantee at least 30 really high quality factory marked Transistors PN? \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only $\mathbf{5 0 p}$

METRICATION CHARTS now available.

This fantastically detailed conversion calculator carries thousands of classified references between metric and British (and U.S.A.) measurements of length. area. volume. liquid
measure weights etc. Pockel Size 15 p

OW COST DUAL IN UINE IC
LOW COST DUAL IN LINEI.C. SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } \mathbf{1 5 p} \text { each } \\ 16 \text { pin type at } \mathbf{1 6 p} \text { each }\end{array}\right\}$ Now new low profite typ
We have a large selection BOOKS
These are just two of our popular lines
B.P.1. Transistors Equivalents and Substitutes 40p, this C.V. equivalents.

The lliffe Redio
The lliffe Radio Valve end Transistor Data Book, 9th Edition 75p. Post \& Packing 21 p extra.
Characteristics of 3.000 valves and tubes, 4.500 Transistors. Send tor lists of these English publications.
N.B. No V.A.T to pay on books.

These parcels contain all types of surplus electronic com-
ponents. printed panels. switches. potentiom eters. transistors
and diodes. etc
2 LBS IN WEIGHT FOR f1
Post and packing 25

BENTLEY ACOUSTIC CORPORATION LTD．

7A GLOUCESTER ROAD，LITTLEHAMPTON，SUSSEX．TEI． 6743
THE VALVE SPECIALISTS．

FM TUNER

Approved parts for this outstanding design（W．W．April 1971／2） Featuring $0.75 \quad u V$ sensitivity．Mosfet front end．

THOUSANDS
Ceramic I．F．strip．Triple gang tuning，$\frac{1}{3} \mathrm{~V}$ r．m．s．
output level，suitable for phase locked decoder，
as below．Designer＇s own P．C．B．
FL＇RTHER PRICE REDUCTIONS
Basic Tuner Parts with Screening Box
NOW LESS THAN £11－50．Please send S．A．E．lists
NEW ALIGNMENT SERVICE
SOLID State tuning indicatore
W．W．April 72）．Tuning is indicated by the balance of two light emitting diodes．The kit Order TO41．Price \＆1 72 plus P．\＆P．10p．with two LED＇s（or fi． 98 with extra LED for＂stereo＂； lamp－see decoder）．

DIAL CHASSIS KIT

Now available－includes alf dial drive components，dial plate，decoder mounting bracket， tuning scales，decoder－tuner tagstrips，etc．， 4 －way $2 / 3$ pole rotary switch and instruction booke

PHASE－LOCKED STEREO DECODER KIT
Now wlth free LED＂＇stereo on＇＂light－complementing this superb decoder（W．W．Sept．＇70）
Suitable for wide variety of tuners Including the NELSON－JONES TUNER． Complete kit ONLY £768．P．\＆P．16p．
NEW iC Stabilised PSU．S／C，overload protected，low ripple．£3．55．P．\＆P．19p．
LIGHT EMITTING DIODES（Red）
Improved efficiency type，mech．identical to HP LED，panel or PCB mounting wit
free mounting clip－clear or black－please state．Order LED1A．Please add postage． Monsanto miniature PCB mounting with radial leads．
Order LED2．Please add postage．
Order LED2．Please add postage．
NOW ONLY 35 p each with connection dsta
7 SEGMENT LED Displays．Lowest cost．
ONLY £2．46 each
AERIALS－3 ELEMENT VHF／FM（Outdoor）
A good aerial is essential for optimum Stereo Radio reception
ONLY £2．80．P．\＆P． 40 p．
Coax 5p／metre．（Masts and Fixing kits available）．

 0.38
0.33
0.45
38
0.75
0.35
0.75
1.73
0.39
0.62
0.53
0.30
1.50
0.83
1.75
0.78
0.62
0.53
0.35
0.24
0.20
0.24
0.56
0.23
0.31
0.62
0.40
0.40
0.50
0.40
0.62
0.23
0.33
0.38
0.76
0
0.58
0

0.28	$O C 2$
0.28	
0.20	$O C 28$

0.38
0.80
0.63 0.63
0.32

[^7] Mए12

05	6
39	6
50	

 （1） $\begin{aligned} & 0.9 \\ & 0 \\ & 0 \\ & 0 \\ & 0.3 \\ & 0.3\end{aligned}$迬成
为
以刃

 FANJ ULTRA HIGH POWER LOUDSPEAKERS

R.S.C. AlO 30 WATT HI-FI AMPIIFIER

controlle
inputs

HALLS, DIBCOTHEQUES, etc. For use with Electronic Organ, Bass or Lead Guitar. For
Aram, Radio or Tape. For 3 or 15 olm speakera
 months' guarantee. Or Dep. fl^{4} and 9 monthly
payments $£ 2 \cdot 10$ (Total $\pm 22 \cdot 00$ \&.A.E. for leaflet RSCCMAINSTHANSFOMMER FULLY GJARAMTEKD. Interienved and Improz MIDGET CLAMPED TYPE $2 \hbar \times 2 \mathrm{i} \times 2$ FULIY BEROUDED UPRIGHT MOUNTING
$250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}$.

$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6$ | $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$, , $0-5.6 .3 \mathrm{~V} .3 \mathrm{a}$ |
| :--- |
| $3000-300 \mathrm{v}$ | For Mulard 510 A mpplifer.

 $25-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 v, 4 \mathrm{a}$, c.t TOP SHROUDED DROP-THROUGH TYPE $250-0-250 \mathrm{v} 70 \mathrm{~mA}, 6.3 \mathrm{~b}$ $250-0.250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{a}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$ $50.0-350 \mathrm{v} 80 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v}$. . $300-0-300 \mathrm{v}, 10 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .0$ 0-5-6.3vuitalle for Mullard 510 amp.
 FILAMENT or TRANSISTOR POWER PACK
 CHARGER TRANSFORMERS
 $0.110 / 120 \mathrm{v} ., \quad 200-230-250 \mathrm{v}, \quad 50-80$ sformers 150w., $190 \mathrm{p} ; 250 \mathrm{~F}, 275 \mathrm{~F} ; 500 \mathrm{wa}, 575 \mathrm{p}$. OUTPUT TRANSFORMERS
Pandard Pentode $5,000 \Omega$ to $7,000 \Omega$ to 3Ω Puhh-Pull 10 watte 6 VO ECL8c to $3,5,8$
or 15Ω Push. Prall EL84 to 3 or $15 \Omega 10-12$ watts... Push-Pull Uitra Linear for Mullard 510, etc, 6 L 6 KT 66 , etc., for 3 or 15Ω......... 50 p
83 p

 MODEL $803 \mathrm{~T} 8^{\prime \prime} 15 w$, with parasitic Twecter.
Response 25 Hz to 15 KF . Gavss $\mathbf{~ (4 . 9 5}$
$\frac{13,0001 \mathrm{mp} 3 \text { or } 8.15 \text { ohms. ONLY }}{\text { FANE MODE ONE }}$ HI-FI SPEAKER KIT
\qquad

HIGH FIDELITY SPEAKERS

HI-FI SPEAKER SYSTEMS

TRANSFORMERS

Primary $200-250$ Volts Secondary 240 Volts Centre ALSO AVAILABLE (WITH) and Earth Shielded WINDING

PRIMARY 200-250VOLT FORCHARGINGGOR I2VOLTBATTERIES

All ratings are continuous. Standard construction : open with solder tags and wax impregnation. Enclosed styles to order.

TRANSISTORS
TO MANUFACTURERS' FULL SPECIFICATIONS

wich mica a
$15+55 \mathrm{p}$
$100+45 \mathrm{p}$
$500+40 \mathrm{p}$
\star Quantity prices on application
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

ELECTRONIC ORGAN DIVIDER BOARDS built 10 high industrial／computer spec． 5 octave set f15． Complete with connection data and oscillator details．

COPPER LAMINATE P．C．BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in． $12 \frac{1}{2} p$ sheet， 5 for 50p
$11 \times 6 \frac{1}{2} \times 1 / 16$ in． $15 p$ sheet， 4 for 50 p
$11 \times 8 \times 1 / 16$ in．20p sheet， 3 for 50 p
Offcut pack（smalliest 4×2 in．） 50 p 300 sq

SPEAKERS AND CABINETS

E．M．I． 13×8 in．（10 watt）with two tweeters and cross－ ovei $3 / 8 / 15$ ohm modols．$£ 3.75$ ．P．P． 25 p．
E．M．I． 13×8 in．base units（ 10 watt） $3 / 8 / 15$ ohm models £2．25．P．P．25p
E．M．I． $6 \frac{1}{2}$ in．ind． 10 watt Woofers． 8 ohm． 13.000 gss £2－25．P．P．15p．
E．M．I． 20 watt（ 13×8 in．）with single tweeter and ＂X－over＂ 20 Hz to $20,000 \mathrm{~Hz}$ ．Ceramic magnet $11,000 \mathrm{gss} . ~ £ 8$. P．P．40p． 20 watt base unit only．$£ 6$ ． P．P．40p．
CABINETS for $13 \times 8 \mathrm{in}$ ．speakers manufactured in $\frac{3}{4}$ in．teak－finished blockboard．Size $14 \times 10 \frac{1}{4} \times 9$ in E5 ea．P．P．40p．
20W．CABINET． $18 \times 11 \times 10 \mathrm{in}$ ．f6．P．P．50p

PRECISION A．C．MILLIVOLTMETER（Solation） $1.5 \mathrm{~m} . \mathrm{v}$ to $15 \mathrm{v}: 60 \mathrm{db}$ to 20 db ． 9 ranges．Excelient condition． f22．50．P．P．£ $1-50$
V．H．F．POWER TRANSISTORS TYPE PT4176D （2N4128）． 24 watt 175 MHz ．E1 50 ea．S．A．E．for spec Miniature uniselectors（A．e．i．2203A．）， 3 bank， 12 position，non－bridging wipers． $\mathbf{£ 4 . 2 5}$ ea．Brand new Complete with base．
TEN TURN POTENTIOMETERS（Colvern） 5000 ohm £ 1.50 complete with 10 T dial．
VACUUM PUMPS（Metrovac GS 24）．Complete with $\frac{1}{3}$ h．p．240V．A．C．motor．New condition．£35．（S．A．E ${ }^{\mathbf{L}}$ Literature．）
PAINTON WINKLER SWITCHES． 1 pole 15 wav 2 bank （G．P．contacts and wipers），£1－25 ea
BULK COMPONENT OFFER．Resistors／Capacitors．All types and values．All new modern components．Over 500 pieces £2．（Trial order 100pcs．50p．）We are confident

BERCO WIRE－WOUND POTS．New individually boxed． 200 ohm 25 watt 50p： 725 ohm 50 watt 75p： 300 ohm

HIGH CAPACITY ELECTROLYTICS
$2,200 \mu \mathrm{f} .100 \mathrm{v}$ ．（ $1 \frac{1}{2} \times 4 \mathrm{in}$ ．）60p． $3,150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{4} \times 4 \mathrm{in}\right.$ ．）
 $\left(2 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}.\right) \mathrm{E} 1,12,000 \mu \mathrm{f} .40 \mathrm{v} .(2 \times 4 \mathrm{in}) 75 \mathrm{p} .16,.000 \mu \mathrm{f}$ ．
$16 \mathrm{v} .(2 \times 4 \mathrm{in}) 60 \mathrm{p} .21,.000 \mu \mathrm{f} .40 \mathrm{v} .\left(2 \frac{1}{2} \times 4 \mathrm{in}.\right) \mathrm{f} 1$ ．Post and 16 v ．（ $2 \times 4 \mathrm{in}$ ．

LIGHT DIMMERS（ 2000 watt）Triac Controlled． $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$ in．$£ 5.75$ aa．P．P． 25 p．

TRANSFORMERS

L．T．TRANSFORMER．（Shrouded）
 Sec．20／40／60v． 2 amp．£2 ea．P．P． 40 prim．200／250v．

 L．T．TRANSFORMER（CONSTANT VOLTAGE）． Prim．200／240v．Sec．1． 50 v ．at 2 amp ．Sec．2． 50 v ．at $100 \mathrm{~m} / \mathrm{a}$ E3．P．P．50p．L．T．TRANSFORMER．Prim．240v．Sec． $0 / 25 / 50 \mathrm{v}$ ． 2 amp．£1．75．P．P．25p．
L．T．TRANSFORMER．Prim $220 / 240 \mathrm{v}$ ．Sec． 13 v ． 1.5 amp．65p．P．P． $15 p$ ．
 at 1 amp．c．t $28-0-28 \mathrm{v}$ at 2 amp ．shrouded type．$£ 2$ ． 2500 w
STANT VOLTAGE）．Prim． $190-260 \mathrm{v}$ MER（CON－ 230v．at 10.9 amps．£30．Cair， $190-260 \mathrm{v} .50 \mathrm{~Hz}$ ．Sec． H．D．STEP－DOWN TRANSFORMER．Prim．200／240V S．D． 117 v at 19.8 amps．（ 2,300 watt）． $\mathbf{£ 2 2} 50$. Cart．£2．
H．TRANSFORMERS．Prim． $200 / 240 \mathrm{~V}$ ．Sec． M．T．TRANSFORMERS．Prim．200／240v．Sec． $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ ．c．t． 2 amp ．$£ 1.50$ P．P． 40 p． $350-0-350 \mathrm{v} .60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ ．c．t． 2 amp．£1．P．P． 25 p ． STEP－DOWN TRANSFORMERS：Prim．22／240v． Sec 115 v ．Double wound 500 w ．£5．P．P．£1． 700 w ． （with filters）£10．P．P．£1． 500 W ．（metal cased
socket output）and overload protection．$£ 6.50$ ． AUTO－WOUND．75W．£1．P．P．25p．300W．£1．50． A．P．50p 750 W ．€6．P．P．£1．
P．P．TRANSFORMER．Prim
L．T．TRANSFORMER．Prim． $110 / 240 \mathrm{v}$ ．Sec． $\mathrm{O} / 24 / 40 \mathrm{~V}$ ．
1.5 A．（Shrouded type）．£ 1.50. P．P． 25 p HT／LT TRANSFORMER Prim．240v．（tapped）Sec． 1 $500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$ ．Sec． 2 3 1 v ． 5 amp．$£ 2.75$ P．P．50p．
HEAVY DUTY E．H．T．TRANSFORMER．Prim $0 / 110 / 240 \mathrm{v}$ ．Sec． 1800 v ． 3.1 K．V．A．$£ 28$ ．Cant．$£ 24$ K．V．A．
model $£ 33$ ．Carr $£ 2$ ．

PRECISION CAPACITANCE JIGS．Beastifuliy made with Moore ty Wright Micrometer Gauge．Type 1．18．5pf．to 1，220pf 510 each po 29.6 pl ．to 11.5 pf ． $\mathbf{£} 6$ each． MULTICORE CABLE（P V C．）．
6 core（ 6 colours） 3 screened， $14 / 004 \overline{8} .15 \mathrm{p}$. yd． 100 yds. 12 core（ 12 colours）15p．yd． 100 yds ． $\mathbf{f 1 2 \cdot 5 0}$ 24 core（ 24 colours） $\mathbf{2 0 p}$ ．yd． 100 yds．$£ 17.50$ ． 30 core（ 15 colours） $22 \frac{1}{3}$ p．yd． 100 yds ． $\mathbf{f 1 8} \mathbf{5 0}$ ． 34 core（ 17 colours）25p．yd． $100 \mathrm{yds} . \mathbf{£ 2 0}$ ．

TELEPHONE DIALS（New） f 1 ea．

RELAYS（G．P．O．＇3000＇）．All types．Brand new from 37⿳亠口冋口 ea． 10 up quotations only
EXTENSION TELEPHONES（Type 706） New／Boxed．£5．50p．

RATCHET RELAYS

 Types 85p．P．P．5pUNISELECTORS（Brand new）25－way 75 ohm． 8 bank $\frac{1}{3}$ wipe $\mathrm{f3} 2 \mathbf{2 5}$ ． 10 benk

BLOWER FANS（Snail type）Type 1：Housing dia． $3 \frac{1}{2}$ in． Air outtet $1 \frac{1}{2} \times 1$ in．£2．25．P．P．25p．Type 2：Housing dia 6 in．Air outlet $2 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{2} \mathrm{in}$ ．f4．P．P．50p．Both types 115 ） 240V．A．C．（brand new）．
POT CORES LA1／LA2／LA3 50p each

RELAYS

SIEMENS／VARLEY PLUG－IN．Complete with transparent dust covers and bases． 2 pole c／o contacts 35p ea ： 6 make contacts 40p ea．； 4 pole c／o contacts 50p ea．6－12－24－48 types in stock．
12 VOLT H．D．RELAYS（ $3 \times 2 \times 1 \mathrm{in}$ ．）with 10 amp．silver contacts 2 pole c／o 40p ea．； 2 pole 3 way 40p．P．P． 5 p． 24 VOLT H．D．RELAYS（ $2 \times 2 \times \frac{3}{4} \mathrm{in}$ ．） 10 amp．contacts． 4 pole c／o．40p ea．P．P．5p．
240v．A．C．RELAYS．（Plug－in type）． 3 change－over 10 amp contacts． 75 p（with base）．P．P．5p
SUB－MINIATURE REED RELAYS（ $1 \mathrm{in} . \times \frac{1}{4}$ in．）Wt SILICON BRIDGES． 100 P．I．V． 1 amp．（ $\frac{1}{4} \times 1 \times \frac{1}{2}$ ．）30p 200 P．I．V． 2 amp．60p．
CIRCUIT BREAKERS（ 3 pole） 15 amp ．Dorman \＆Long ＇Loadmasters＇£1－50．P．P．25p．

PATTRICK \＆KINNIE
 19I LONDON ROAD－ROMFORD－ESSEX
 ROMFORD 44473
 RM7 9DD

OVER 300，000 IN STOCK！

Multiway and R．F．Connectors by twenty different companies！
Send us your detailed require－ ments quoting Nato numbers if known．

A．C．MAINS to These interesting $27 V$ 0．D．C．PO（will happily PLY UNITS． indefinitely）are built into an attractive grey－finished instru－
ment case，provision being made for base or side mounting Cable entry grommets are mounted in the base of the unit． The choke capacity smoothed output is solld state stabilised against varlation in input vot agee and output．The output operates a bullit－in S．P．C．O．relay to switch for instance an
alarm circult．Input voltage is $200-250 \mathrm{~V}$ A．C．in 10 V steps， alarm circuit．Input voltage is $200-250 \mathrm{~V}$ A．C．in 10 V steps，
while the transfermer secondary carries two taps．All termations to a Grelco block．There is adequate room for other equipment within the ventlated case，which is $12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$ deep．Our price．
brand new in carton with circuit，only $£ 3.85$ ．

SPECIALIST STOCKISTS OF SERYOMOTORS，SYNCHROS，MAGSLIPS \＆PLUGS \＆SOCKETS

Serve and Electronic Jales Ltd

Post Orders and Technical enquiries to：＂BAYS＂．HIGH ST．，LYDD．KENT．Lydd 20252 （STD 0679） Or 67 LONDON ROAD，CROYDON，SURREY（Retail and Instrument Repairs）．Phone：01－688 1512

MIL SYNCHROS AVAILABLE EX－STOCK In sizes $08,11,15,16,18$ and 23 for 50,60 and 400 Hz operation． Synchro Control Transmitters

Synchro Control Differential Transmitters Synchro Torque Transmitters and Receivers
Synchro Resolvers TANTALUM CAPACITORS We hold large stocks by
S．T．C．，．C．C．Dubilier，Kemet，Plessey，G．E．，etc．，send for stock list with lowest prices for immediate delivery．，send for ETHER ELECTROMETHODS LOW INERTIA
INTEGRATING MOTORS
Available ex－stock at extremely low prices．For 1．5，6， 12 and 24 V operation in stoc
VACTRIC SIZE 23 PULSE GENERATORS（Shatt Digltizers）． ull details and price on application

STAINLESS STEEL VACUUM CONTAINERS FOR LIQUIDS．Capacity 2 U．S．${ }^{\text {galls．fitted with delivery taps．}}$ Brand new in cartons－ 22.50 （C．Pd．U．K） | Brand new in cartons－ $\mathbf{2 0} 22.50$（C．Pd．U．K．）． |
| :--- |
| 400 HZ INVERTERS． 27.5 V 150 A input， 115 v 400 Hz 2500 VA | output．Not new but in excellent condition；fitted with control box containing switchgear and voltage and frequency adjust－ only $16 i \mathrm{in}$ long and 13 n he high overall including the control box

which also carries the circuit diagram． $\mathbf{£ 2 9}$（C．Pd．U．K．Mainid．） MULTICORE PVC COVERED TELEPHONE CABLE 24 core $£ 22$ per 100 yds， 12 core $£ 18$ per 100 yds． 8 core $£ 12$ per
100 yds． 4 core $£ 10$ per 200 yds， 2 core $£ 3$ per 100 yds．（All C．Pd． ．K．Mainland
HEAVY DUTY PVC INSLTD．FLEXIBLE CABLE to DEF 12 D Type 3 in following colours：wiolet，yellow，white，grey，
green，orange，pink，red and brown $70 / 0076^{\circ}$ conductors $£ 3.25$ green，orange，pink，red and brown
per 100 yds（P．Pd．）also with $40 / 0076^{\prime \prime}$ conductors in grey，violet， per $100 \mathrm{yds}\left(P . P d\right.$ ．）also whith $40 / 0076^{\circ}$ conductors
white，pink and red at $£ 2 \cdot 50$ per 100 yds （ P ．Pd．）．
TRANSFORMER／RECTIFIER UNIT Comprising a $380-$ $440 \vee 3$ phase． 50 Hz input translormer and stud mounted sillcon
 DRY REED INSERTS

Overall length $1.85^{\prime \prime}$（Body length $1.1^{\prime \prime}$ ） Diameter 0．14＂to switch up to 500 mA at up to 250 v D．C．Gold clad contacts．63p per doz．$£ 3.75$ per 100；$£ 27 \cdot 50$ per 1，000；$£ 250$ per 10，000．All carriage paid．
Heavy duty type（body length 2＂）diameter $0.22^{\prime \prime}$ to switch up to IA．at up to 250 V ．A．C． Gold clad contacts， $\mathbf{f 1} \cdot 25$ per doz．， 10.6 .25 per 100；$£ 47.50$ per 1000； 6450 per 10，000． Changeover type $\mathbf{6} 2.50$ per doz．All carriage paid．
Operating Magnets 55p per doz．£4 per 100 ； £35 per 1000 ．All carriage paid．

WEYRAD

COILS AND I.F. TRANSFORMRRS IN

LARGE-SCALE PRODUCTION

 FOR RECEIVER MANUPACTURERSP. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

Y.i. VITAVOX HIGH QUALITY
 MICROPHONES PRESSURE UNITS
 And a wide range of associated eqpt.
 Further information from

VITA VOX LTD
Westmoreland Road, London NW9 9R, Telephone: 01-204 4234
 PHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side on heff telephone. A useful office aid. On/Off switch. Volume control. Operates on one 9 v battery. Size 3 in . $\times 4 \mathrm{in}$. Ready to operate.
$\mathrm{P} \& \mathrm{P} 22 \mathrm{p}$.

This NEW, versatile De Luxe 4(1 Master and 3 Subs) for desk or wall Mounting can solve your conmunication problems instantly. Effective range 300ft. Call/talk/listen from Master to Subs and Subs to Master for selector switch. Ideally suitable Adaptable, shop, home or surgery. Adaptable for Mains. Complete with accessories. on/Off switch wires and control. P. \& P. 40 p .

Zntec in white ar PVC coated dummium
Casses supplied with non sipip feet, ex
slock by retum of post Please consult
cala onue or ask to
WEST hYoe develdpments limiteo, ryefielo crescent, northwdod hills, northwado, middx., hag inn. Telephione: Northwood $24941 / 26732$

WEST HYDE WA

\qquad

aluminium front and rear nanale
The design of these cases permits the instrumens toble
buill un or senviced wathout the external panels. Pirce includes atl staintess steel assenbly screws, rubber feet and one of two chas sis atcording to sizize. Delivery ex stock wood grain finish. types D. G.E. H

WEST HYDE (W)

 WW 094 FOR FURTHER DETAILS

DIGITAL DISPLAY MODULES

NEW RANGE

A versatile range of display, counting and storage modules, supplied singly or in multi-digit assemblies complete with colour filters. Four versions presently available are:-
800-200 DISPLAY
(Illustrated approx. full size)
800-210 CDUNTER/DISPLAY
800-220 4-BIT STDRE/DISPLAY
800-230 COUNTER/STORE/DISPLAY
All modules have gold-plated edge connectors.

Send for full details.
CAVERN ELECTRONICS (Dept. 201) 29 CLAREFIELD ROAD, LEICESTER LE3 6FB

WW- 089 FOR FURTHER DETALS

Audio CONnectors
Broadcast pattern jackfields. jackcords. plugs and jacks auick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut Hirschmann Banana plugs and test probes xLR compatible in-line attenuators and reversers Low cost slider faders by Ruf Future Film Developments Ltd. go Wardour Street. London W1V 3LE $01-437$ 1892/3

'MAGNETIC HEADS P.O.A.			
259019 RCA	7 TRACK	1215872 TYPE 1301 7 TRACK	
257124 RCA	8 TRACK	5007821 POTTER 8 TRACK	
282812 RCA	8 TRACK	19467 EPSYLON ... 8 TRACK	
303489 RCA	7 TRACK	76815/948 BURROUGHES 9 TRACK	
73927 RCA.	7 TRACK	652623DRI 12/101 12 TRACK	
303464 RCA	7 TRACK	L651922	I FR3000... 16 TRACK
TRANSISTORS \& DIODES			
2N457...........75p	AF116	25p	2N356/OC139 ..25p
2N154550p	AF1:7	25p	Get110 . . 20p
2N1552 50p	BC107	8 p	2G106/2N711B .43p
2N155750p	BC108	.8p	OAS . . 20p
2N3055 45p	BC109	.8p	OA1025p
2N3322 $\mathbf{E 1} 00$	OC35	.40p	RAS508AF
2N3553 $£ 1.00$	OC42	40p	800PIV50p
2N532250p	OC71	.12p	RAS310AF 1000v Av
AC126 20p	CV7006/0C72	. 20p	1.5a 2 for 50p
AC127 25p	OC75	. 25p	STC Wire ended 400piv
AC128 20p	OC77	.45p	1a 4 for 50p
AF11525p	$0 \mathrm{C83}$	25p	

Checked and tested. C31005850 BRIDGE RECTIFIERS
RECTIFIER STACKS
\qquad GEX541B1P2E688
GEX541B1P1E3.50 GEX541D2P1E3550 GEX541NB1P1F... 66.00 GEX541HP3F....E600 SX751N181P1F ...E600

TRIACS \& DIACS 40842450 V .6 a $\mathbf{£ 1 . 0 5}$ Trigger circuit for above
Diac 40583 BTW16-100 10a............... $\mathbf{0 0}$

INTEGRATED CIRCUITS MC353G | MC358AG $\quad . . . \quad \pm 200$ |
| :--- |
| 1020 | MC365G

C43020
 CD4035AE
f1 24
£1 91
THYRISTORS
GE2N1774 200v. 5a.£1-20 CR1-021C20v. 1
10 a .
10a.
CR10-021 10a........ 100 CR10-021 10a...... £1 60
CR10-40B 10a.... $\mathbf{E 1} 00$ CR10-051 10a..... $£ 1.00$ CR10-01710a..... £1.00 BTX-82-300R 300v STC $3 / 40400 \mathrm{v}$. 3 a .

PERIPHERALS

Data Recording Magnetic Tape Handler Type VI 7 Track $\frac{1}{2}$ "complete with Read/ Write Heads suitable as replacement and spares for most ICL Computer Systems ICL Svstem 4-Line Printer 4555. RCA Tape Handlers 4/50 \& 70/445-2, RCA Type 150780 column Card Reader Plessey RAB $/ 3 \mathrm{M}$ (003) 32 K word 25 Bit 2 Microsecond Memory System. Teletype Corp. Hi Speed tape punch (BRPE), ICL
80 column Card Punch mechanism Type 582 p 80 column Card Punch mechanism Type 582 . P.O.A.
CAPACITORS
Daly Electrolytic 9000 uf 40 v .50 p . Daly Electrolytic 10,000 uf $70 \mathrm{~V}, 50 \mathrm{p}$; Dubilier Metallised Paper Type 426100 uf 150 v . DC 50p; R.I.C. type 1297 1.8uf 440 v . $\mathrm{AC} \mathbf{3 5 p}$ MOTORS
MOTORS
Crompton Parkinson 240v. 1ph 50c 0.125 hp 1400rpm
£500 carr. 67p
GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{cc} 1425 \mathrm{rpm}$
$\mathbf{£ 3 . 5 0 \text { carr. } 6 7 \mathrm { p }}$
76813-393 Potter Instr. 110 V . DC 4 amp 0.2 ho Cont flange mount carr. E1.00

FANS, CENTRIFUGAL BLONERS AND
STARTERS
Airmax Type M1/Y3954 (3 blades) Cas Aluminium allov impeller \& casing (corres1 ph 50 c 2900 mpm Class " A " ${ }^{2}$ insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. op f21. 00.
Woods Aerofoil short casing type "S" $2700 \mathrm{rDm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}$ plastic impelter incl. p.p. £11 50.
Woods Aerofoil Code 7.5 280K $200 / 250 \mathrm{~V}$
$1.001 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{pm} 7 \frac{1}{2}{ }^{\circ}$ impeller 14 blades inci.p.p. £13 50.

combustion Systems. Steam exhausting. Pneumatic convering, Coaling Electronic equipment. Air blast tor 575) Airblast Fan. 440 v 3 ph 50 c 0.75 ho 2850 rom. continuous 160 ctm 12 in $w g$ nett weight 44 ib price incl carr $£ 41.00$. Secomak model 350250 v $1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in . w.g. net weight 34 lbs , price incl. carr. £26.00. Air Controls type VBL $4200 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} .110 \mathrm{ctm}$ free air weight $7 \frac{1}{2}$ lbs price incl. p.p. $£ 14 \cdot 50$.
William Allday Alcosa Two Stage Vacuum Pump Model HSPOB 8hg up to 29 in mercurv ipm 1420. E.E. 3 phase induction, motor $\frac{1}{3} \mathrm{hp}$ cont. 220/250v $380 / 440 \mathrm{v} . £ 21.00 \mathrm{incl}$. Carr.
Alan West Diect-On SCF Statters 240 v .1 ph 50 c
Where p.p. not advised add 10 p per $£$ handling and post (in UK).
Cash with order. Personal callers welcome. Open Mon-Wed. 9.30-5.30 Fri.-Sat. 9.30-6.00. Free Car Park adjacent.

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

MODERN TELEPHONES type 706. Two tone grey, $\mathrm{E}^{3} 75 \mathrm{ea}$
The same but black, $£ 2.75$ ea. P. \& P. 25 p ea.
AS NEW type 706 BLUE, $£ 5$ ea. P. \&P. 25p.
STANDARD GPO DIAL TELEPHONE (black) with interna Sell, 87 pm ea. P. \& P. S0p. Two for $£ 1.50$. P. \& P. 75p.
All telephones complete with bell and dial.
SINE TO SQUARE WAVE CONVERTOR. 5 Hz to 250 KHz volt operation. Sine Input 1 to 15 volt-output 0 to 7 volts preset. £2 25 ea. P. \& P. 15p.

RELAYS
G.E.C. Sealed Relays High Speed 24V. 2m 2b-17p ea.
S.T.C. Sealed 2 pole c/o 700 ohms (24V), 15p e

12v 35p ea. 2,500 ohm (okay 24 v)-13p ea.
s.T.C. Brand New 2 pole c/o 6800 ohm coil-15p ea.

CARPENTERS polarised Single pole $\mathrm{c} / 020$ and 65 ohm coll as new, complete with base 37 p ea.
Single pole c/o 14 ohm coil 33 p ea.; Single pole c/o 45 ohm coil
33p ea. VP4 Plastic covers 4 pole c/o $5 K-30$ p ea. $15 K-33$ p ea. POLARISED Relay 2 pole c/o 250 ohm and 250 ohm colls.25p ea.
POTTER a BRUMFIELD 24 V . ${ }^{4}$ pole c/o min relays. Clear
Plastic. Brand New. 50 eat. P. \& P. 10p. Plastic. Brand New. 50p ea. P. \& P. 10م.

POTENTIOMETERS
COLVERN 3 watt. Brand new, $5 ; 10 ; 25 ; 500$ ohms; $1 ; 2.5 ; 5 ;$ 10; 25; 50k all at 13p ea.
MORGANITE Speclal Brand new, 2.5; 10; 100; 250; 500K; 2.5 meg. 1 In . sealed, 17 p ea.

BERCO 21 Watt. Brand new, $5 ; 10 ; 50 ; 250 ; 500$ ohms; 1; 2.5; 5; 10; 25; 50K at 15p ea.
STANDARD 2 meg. log pots. Current type 15 p ea.
NSTRUMENT 3 in . Colvern 5 ohm 35p ea.; 50 k and 100 K 50p ea
BOURNS TRIMPOT POTENTIOMETERS. 10; 20; 50; 100; 200; 500 ohms; $1 ; 2 ; 2 \cdot 5 ; 5 ; 10 ; 25 \mathrm{~K}$ at 35p ea. ALL BRAND NEW. RELIANCE P.C.B. mounting: $270 ; 470 ; 500$ ohms; 10 K at 35 p ea. ALL BRAND NEW.
ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K} ; 998 \mathrm{~K} ; 1$ meg$0.1 \% 27 \mathrm{p}$ ea. $i 3 \cdot 25 \mathrm{k}, 5.6 \mathrm{k} .13 \mathrm{k}-0.1 \%$ 20p ea.

> VISCONOL EHT CAPACITORS

MULLARD ELECTROLYTICS
2200MFD 100 V
$10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$
70p each
BRAND NEW BOXED
10 off - 60 p each
100 off - 45p each
47000 MFD 25V 28A
60p each
P \& P 10p
LARGER REDUCTION FOR QUANTITY

PHOTOCELL equivatent OCP 71, 13p ea.
Photo-resist type Clare 703. (TO5 Case). Two for 50p.
BURGESS Micro Switches V3 5930. Brand new 13p ea
TRANSFORMERS. All standard inputs
STEP DOWN ISOLATING trans. Standard 240 V AC to $55-0-55 \mathrm{~V} 300 \mathrm{~W}, £ 3$ ea. P. \& P. 35p.
Transformer Size $2 \frac{1}{4} \times{ }^{15} \times 2^{\prime \prime}$. Output 18 volt 1 amp with screen. Brand new. 2120 eavP. \& P. 25 .
Neptune series $460-435-0$ etc. 230 MA and $600-570-540-0$ etc. incl. post
Neptune Series. Muiti 6.3 volts to give 48 V at 3.5 amps etc.
$\mathbf{5 3} 50$ incl. P. \& P. Gard/Parm/Part. 450-400-0-400-450. 180 MA. $2 \times 6.3 \mathrm{v} . £ 3$ ea Transformer $250-80 \mathrm{MA} ; 13 \mathrm{~V}-1-2 \mathrm{~A}$ and $6.3 \mathrm{~V}-5 \mathrm{~A} . £ 1$.50. P. \& P. 25p. Neptune series $350-0-350 \mathrm{~V}$ at 55 MA , separate winding $500-0$ 500 V at $250 \mathrm{MA} . £ 200$ ea. Carr. $£ 1$ extra.
CHOKES. $5 \mathrm{H}: 10 \mathrm{H}$; 15 H , up to 120 mA , 42p ea. P. \& P. 17 p Large quantity LT, HT, EHT transformers

FIRST TIME EVER at $£ 42.50$

Solartron CD 711S. 2 Double Beam Oscilloscope DC-9 mc/s; $3 \mathrm{mv} / \mathrm{cm}$; trigger delay; crystal calibrator; $4^{\prime \prime}$ flat faced tube. In good working condition. Carr £ $1 \cdot 50$.

HARTLEY TYPE 13A

ONLY £18.00

double beam oscilloscope

TB 2 c/s- $750 \mathrm{ke} / \mathrm{s}$. Band width $5.5 \mathrm{Mc} / \mathrm{s}$. Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Callbration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. A completely reliable general purpose oscllloscope. Supplled with CIRCUIT DIAGRAM and Malns lead. Carr. $£ 1.50$

As above. Complete with all accessories. $\mathbf{£ 2 5} \mathbf{0 0}$. Carr £. 1.50 .

OSCILLOSCOPES

CT $436 \mathrm{DB}-6 \mathrm{mc} / \mathrm{s} . £ 65$.
SOLARTRON $643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s}$
Good conditlon $£ 40$
SOLARTRON DC- $10 \mathrm{mc} / \mathrm{s}$. CD513- $£ 40$. CD513.2-£42.50. CD523S-£50. SOLARTRON CT316 (D300 range) DC-6 megs. £20. COSSOR 1035 Qk. 3-f40.
All carefully checked and tested. Carrlage $\$ 1.50$ extra.

MARCONI

Noise Gen. TF1106. £40. Carr. $£ 1.50$.
Vacuum tube Voltmeter TF1041A. $£ 27.50$; 1041B, $\mathbf{5 3 5}$
WIde Range
Wide Range Oscillator TF 1370, $£ 100$.
Deviation Meter TF934/2, $£ 50$ ea. Carr. $£ 1.50$.
Deviatilon type 719. £30 ea. Carr. 75p.
TF 102 F Frequency Met
.
TF 102 F Frequency, Meter E12.50. Carr. 75p.
TF 329 Magnification Meter. As new condition eso
TF 195 Audio Generator $£ 10$. Carr. $£ 1 \cdot 50$.
TF 801 A Signal generator $£ 45$ ea. Carr. $£ 1 \cdot 50$.
TF 801 A Signal generator $£ 45$ ea. Carr. $£ 1 \cdot 50$
TF 886 Magniffcation Meter $£ 45$. Carr. $£ 1$.
TF 936 N .5 Impedance Bridge from $£ 50$ ea. Carf. $£ 1 \cdot 50$.
TF 144 G Signal Generator. Serviceable. Clean £15. Carr,
£1.50. Video Oscillator Sine/Square, £30. Carr. $£ 1.50$.
TF $885: 1 £ 45$. Carr. $£ 1.50$.

SOLARTRON

Stabillised P.U. SRS 151. £15. Carr. £1.50.
Stabilised P.U. SRS 152. £10. Carr. 1.50 .
Precision Millivoltmeter VP252. £25. Carr. £1.
Oscillator type OS 101. £30. Carr. $£ 1.50$
AVo
Etectronic Testmeter CT 38, \&17. Carr. £1 AIRMEC
AIRMEC Generator type 210, £85. Carr. $£ 1.50$.
Test Gear tisted is only a very small selection ot our stock-
please enquire regarding other items.

E.M.I. Oscilloscope type WM16. Main frame £100. Choice of plug in $7 / 2 \mathrm{DC}-24 \mathrm{me} / \mathrm{s} \times 2 £ 35: 7 / 1 \mathrm{DC}-40 \mathrm{mC} / \mathrm{s} £ 20$: of plug in $7 / 2 \mathrm{DC}-24 \mathrm{me} / \mathrm{s} \times 2 £ 35 ; 7 / 1 \mathrm{DC}-40 \mathrm{mC} / \mathrm{s} £ 20$; E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Comp
 amp. from $£ 45$.

BECKMAN MODEL A. Ten turn pot complete with dial. $100 \mathrm{k} 3 \%$ Tol 0.25%-only $\begin{aligned} & \text { e } 2.13 \\ & \text { ea. }\end{aligned}$

E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 13p ea.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single sided up to $2 \frac{1^{\prime \prime}}{}$ wide $\times 15^{\prime \prime}$ ip per sq. in. Larger pieces 1p per sq. In. Double sided. Any slize 1p per sq. in. Postage 10p per order.
PANEL mounting iamp holders. Red or green. 9p ea. Minlature PANEL mounting lamp with holders-10V 15 MA 5 p ea.

Standard 240 V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reversible, 65 ea.
GYROS Large clear piastic topped. Type A \&\& ea. P. \& P. 75p.
Single pole 3 -way 250 V AC 15 amp switch. 8p ea. P. \& P. 5p. Large discount for quantity.

CLAUDE LYONS Maln Stabilizer. Type TS-11.-5 50 . Input $119-135$ volts $47 / 65$ cs. Output $127+1-0.25 \%$ 16 amps. © 30.
Carr. £2.

MAGNETRONS TYPE CV370. Brand new. Boxed.
E\& ea.

KELVIN \& HUGHES 4-channel multi-speed recorders compiete with amplifiers. \&45.
EVERSHED \& VIGNOLES Recording paper. Brand new

ELECTRONICS TIMER UNITS-wall or bench mount-Ing-2 Hybrid timer boards may be removed leaving Information supplied Price ONLY ©2.50 Pa

SPECIAL OFFER

SELECTED B.C. 221 Recalibrated to Ministry Specification in brand new condition, complete with clrculf, only $\mathbf{5 2 5}$ Car. 2 ,
TV MONITORS 14 Inch by Epsylori. All valves and cómponents readly avallable. Tested, guaranteed working. $£ 20$ ea. Carr.
£1.50.

TEKTRONIX SCOPE TUBES. Brand New Boxed. Type T5330. Part No. 154-0180-00. 5 inch round flat face. Spiral PDA with side connectors for X \& Y. Bases can be supplied at 50 p .
E.H.T. POWER UNITS type 532/1617, 0-3kV. $£ 15$ ea. E.H.T. PO
Carr. $£ 1$ 1.50.
E.H.T. TRANSFORMERS (Standard Melns) 3 KV 600 MA
£20:60 ea. Carr. $£ 1 \cdot 50$.
CAPACITORS
0.1 MFD 50 KV working. $£ 10$ ea. Carr. $£ 1.50$
0.1 MFD 100 KV working. $£ 16$ ea. Carr. $£ 1.50$.

INTERGRATED CIRCUIT test cilp by AP Inc. Gold Plated
clip-on. Brand New individuatly boxed. 1.00 ea. P. \& P. 10 p 4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil As above but 350 ohm. $£ 3.50$ ea

DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutheon. Black with white figures. Si
deep. Ex-Plessey. $£ 2.50$ ea. P. \&P. 15p.

LIGHT EMITTING DIODES
 (RED)
 from Hewlett-Packard Brand new 38p each
 Holder-Ip ea. Information-5p

SANGO 50 micro amp meter. 21^{*}
radlatlon equip. $£ 1$ ea. P. \& P. 170 .
COLVERN TENEING IS BELIEVINGI
Completen TEN TURN POTS-ex eq. 50 K at 60 p ea
朝 dial E1-50 ea. P. \& P. 15p.
C.R.T.'s $5^{\prime \prime}$ type CV1385/ACR13. Brand new with spec a. P. \& P. 35p.

ASES for above 20p ea. P. \& P. 15p.
VEEDER-ROOT 6 digit 48 V resettable counters. 55 p ea
Genuine MULLARD Transistors/Diodes. Tested and guaranteed. OC
OC23
O
CAPACITOR PACK-50 Brand new somponents only 50p. P. \& P. 17p.
POTS-10 different values. Brand new.-50p. P. \& P. 17 p. COMPONENT PACK consisting of $2-2$ pole 2 amp reststors 1 and wath many, high stabs, atc. Fine value resistors $\frac{1}{2}$ and $\frac{1}{2}$ wat, 50 p per pack. P. \& P. 170 COMPLETE Pinted
COMPLETE Printed Circuit TRANSISTOR I.F. strip $470 \mathrm{kc} / \mathrm{s}$, audio out. Size $1 / \times 4 \mathrm{~T} \times \mathrm{in}$. ONLY 15 p . P . \& P .
300 p . rubbish) $£ 1.00$. P. \& P. 37p.
DELIVERED TO YOUR DOOR 1 ewt. of Electronic
Scrap chassis bards, Scrap chassis, boards, etc. No Rubbish. FOR ONLY £3.50. N . Ireland $£ 2$ extra.
LOOSE LEAF BINDERS. Blue plastic cover. 4 fing Standard size. 4 for £1. P. \& P. 35p. 25 for $£ 5$. Carr. £1.
TRIMMER PACK-2 Twin 501200 pf ceramic: 2 Twin $10 / 60$ of ceramic; 2 min strips with 4 preset $5 / 20 \mathrm{pt}$ on each. 3 air soaced preset 30/100 po on
NEW 25p the LOT. P. \& P. 10p

Panel switches DPDT ex ea. 10 p ea.; DPST Brand new, 17p ea.; PPST twice, brand new 25p ea
HEAVY DUTY 6 amp. 2 pole c/o-20p ea
GRATICULES. 12 cm . by 14 cm . in High Quailty piastlc. 30p ea. P. \& P. 5p.
LISTS AVA

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.
CHILTIMEAD LTD

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable $1 \mathrm{micro}-$ volt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 750% depth. External
Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times 12 \frac{1}{4} \times 10$ in. Secondhand condition. $£ 27.50$ each, Carr. $£ 1.50$.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dom. The requency dial is calision is made for external modulation. Power Supply- $115 \mathrm{~V}, \pm 10 \%$ A.C., $50 \mathrm{c} / \mathrm{s}$. Freq - $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal Transmission-CW, Pulse, FM . External Transmission-Square Wave, Pulse. Power O/put- 0.2 milliwatts. O/put Attenuator: -7 to -127 dbm . Load-50 2 . Price: $£ 135$ each $+\Varangle 2$ carr.
TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measure-
ment of same. Signal Generator: O/put -7 to -85 dbm . Transmission-FM, ment of same. Signal Generator: O/put -7 to -85 dbm . Transmission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation- $40-40 \mathrm{Mc} / \mathrm{s}$ per sec . KF Trigger for Sawtooth Sweep-5-500 watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy- $+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. a $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity.
Power Meter: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: $£ 75$ each + $\& 1$ carr
SIGNAL GENERATOR TS-403B/U) or URM-61A): (Hewlett Packard), A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq. $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing O/put-1 milliwatt max., 0 to -127 db variable. O/put Impedance-50』. Price $£ 120$ used, excellent condition. Unused as new condition $£ 150+$ carr. $£ 2$.
TS-382/U AUDIO OSCILLATOR: 20 to $200,000 \mathrm{c} / \mathrm{s}$. in four ranges. Freq. meter check $60 \mathrm{c} / \mathrm{s}$. and $400 \mathrm{c} / \mathrm{s}$. Emission CW. O/put voltage: 1 uv to $10 \mathrm{~V}+3 \%$ in seven ranges. Power req. 115 V AC single phase. Price $£ 20$ each, used good ondition
CT150 Portable valve-tester suitable for testing a wide range of valves. Manufactured by Avo. 655 each $+£ 2$ carr
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order. $£ 18 \cdot 50+£ 1 \cdot 00$ carr. $\mathrm{BC} \mathrm{C}-221$ Unused as new condition complete with headset, spare valves, charts. $£ 3500+$ f2. 00 carr
TS-452 F.M. SWEEP GENERATOR: Power supply $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}, 5-100 \mathrm{MHz}$ in 6 bands (rf o/put); $5-102 \mathrm{MHz}$ in 4 bands (freq. meter). Emission: F.M. R.F. Voltage o/put 25 V . Input impedance 470 ohms. O/pyt impedance 73 ohms. Displays band pass characteristics on 3 in. C.R.T.S/hand good condition $\mathbf{6 9 5 \cdot 0 0}+$ $\not £_{2} \cdot 00 \mathrm{carr}$.
TS-419/URM 64 SIGNAL GENERATOR: Freq. $900-2100 \mathrm{MHz}$. CW or pulse emission. Power o/put Zero dbm-120dbm continuously adjustable to 2 uv into 50 . O/put impedance 50 ohms with VSWR of $2: 1.115 \mathrm{~V}$ a.c. $50 \mathrm{c} / \mathrm{s}$. As new condition $\mathbf{f} 150 \cdot 00+$ F2100 carr.
TS-622URM 44 SIGNAL GENERATOR: Freq. range -7 to 11 GHz Power o/put -10 to 127 dbm ; Lmission CW, FM, Pulse. Direct reading dials for both requency and power. Operates on 115 volts, $50-1000 \mathrm{~Hz}$. As new condition $£ 175.00$ carr

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115V or $250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A smal compact tropicalised instrument general electronic service. Measures 9 in. $\times 8 \mathrm{in} . \times 6 \mathrm{tin}$. Time base $10 \mathrm{c} / \mathrm{s}-$ general electronic service. Measures $9 \mathrm{in} . \times 8 \mathrm{in}$. $\times 6$ inn. Time base $10 \mathrm{c} / \mathrm{s}-$
$40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube 2 in . Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Complete with test leads, metal transit case. As new $\mathbf{~} 27-50$ each. Carr. $£ 1$.

TRANSFORMER HV: 228 V input $19,500-0-19,5004.5 \mathrm{KVA}$, Wt. 220 lbs . $£ 30$ each. Carr. £ 4
MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in. chassis $\times 8$ in. high $\times 8 \mathrm{in}$. deep. $\mathbf{£ 4} \cdot \mathbf{5 0}$ secondhand cond., or $\mathbf{£ 6} \cdot \mathbf{5 0}$ new cond. Carriage $£ 1$
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves. Ideal for conversion to 4 metres. 55 secondhand cond., or $\mathbf{8 7} \mathbf{5 0}$ new cond. Carriage $£ 1$.
POWER SUPPLY UNIT PN-12A: 230V a.c.input 50-60 c/s.513V and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6$ Amp and $4 \mathrm{~V} @ 0.25$ Amp. Mounted on steel bse $19^{\prime \prime} \mathrm{Wx} 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition
$\mathbf{£ 6}$ earr. 1 .

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$, 1000 watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. £7 each, Carr. 75p. 230-115V, $50-60 \mathrm{c} / \mathrm{s}, 5$
Carr. 75 p .
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7} \mathbf{5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 50 p . TS 622/URM 44 SIGNAL GENERATOR: Freq, range -7 to 11 GHz . O/put -10 to $-127 \mathrm{dbm} ; \mathrm{CW}, F M$, Pulse. Direct reading. $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s} . \quad £ 185.00$ each
plus $£ 2.00$ carriage. plus $£ 2.00$ carriage.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1.25, post 30p.
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, \mathbf{£ 2}$ each, 30 p post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions, total value 900 ohms. $\frac{ \pm}{3}$ Gang. Tolerance $\pm 1 \% £ 3.50$ each, post 30 p.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. £12.50 each, £1 carr.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . $\mathbf{£ 3}$ each 75 p post. Input 115 V , output 135 V at 5 Amps. $\mathbf{5} 5 \mathrm{each}, 75 \mathrm{p}$ post.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21$ in. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$ in. wide $\times 16$ in. deep, with rear door. $£ 12$ each, $£ 2.50$ Ca
in. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8 \cdot 50$ each, $£ 2$ Carr.
INSTRUMENT CABINETS: $19^{\prime \prime} \mathrm{W} . \times 16^{\prime \prime} \mathrm{H} . \times 16^{\prime \prime} \mathrm{D} . \quad £ 5.90+£ 1.25$ carr $19^{\prime \prime} \mathrm{W} . \times 10^{\prime \prime} \mathrm{D} . \times 5^{\prime \prime} \mathrm{H} . \quad £ 2 \cdot 50+£ 1 \cdot 00$ carr.
FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $\underset{0}{\mathbf{F}-9999}$, with locking and reset controls mounted in 3 in. diameter case. Price $£ 2$ each, 30p post.
TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW l'ulse or AM emission. Power Range $0-120 \mathrm{dbm}$. £125 each. Carr. £1.50.
TN/130/APR. 9 UHF TUNING UNIT: Freq, $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible 160 MHz with bandwidth of 20 m
motor. $£ 27 \cdot 50$ each. Carr. $£ 1$.
APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Power Supply $115 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. $£ 100$ each. Carr. £2.
R-361 RECEIVER: $225-400 \mathrm{MHz}$. 1 preset channel crystal controlled. Superheterodyne, voice and
TS-130 TEST SET: Complete with RF Probe type 1019 Freq. $0.9-12.5 \mathrm{KHz}$, and RF Probe type 1020 Freq. $0 \cdot 3-1 \mathrm{KHz}$. Also slotted line attenuator $1 \mathrm{M}-34 / \mathrm{U}$. Freq. $0 \cdot 3-4 \mathrm{KHz}$; and connectors. £45 each. £1 carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply $6 \mathrm{~V} \mathrm{d.c.Good} \mathrm{secondhand} \mathrm{cond} £ .7 \cdot 50$ each. Post 60p.
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%) Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2 \cdot 5-5 \mathrm{MHz}$ Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new" complete with Manual and Spares. £14 each. Carr. 75p.
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated 100-125V or 200-250V, $50 \mathrm{c} / \mathrm{s}$. "As new"' $\mathbf{~} 10$ each. Carr. 75p.
FILTER VARIABLE BAND PASS NO. 1: Dual channel unit, each channel has variable slot frequency of $500-900 \mathrm{~Hz}, 1200-1600 \mathrm{~Hz}$ and band pass facility. $600 \mathrm{\Omega}$ mounting 3 in in. deep panel. Mains operation $200-250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. "As new" $£ 6.50$ each. Carr. 75p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s} .1 \mathrm{Ph}$. P.F.9. $\mathbf{£ 1 7 \cdot 5 0 \text { each. Carr. } £ 1 \cdot 5 0 . , ~}$
POWER SUPPLY: 230V a.c. input; 3000V @ 2.5 mA ; 4 v @ 1 Amp, 300-0-300 200mA; 6V@7Amp;6V@3 Amp. With smoothing capacitors etc. $£ 10 \cdot 00$ each. E 1.50 carr .

GEARED MOTOR: 24 V D.C., current 150 mA , output $1 \mathrm{rpm}, \boldsymbol{f 1 5 0} \mathrm{each}$, 30 p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, $3 \mathrm{rpm}, ~ £ 2$ each
purpose motors available, List 3 p .
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque
16 ins. oz; reversible; microswitches and potentiometer. $\mathbf{8 3} \mathbf{5 0}$ ea. +40 p post. 16 ins. oz; reversible; microswitches and potentiometer. $\mathbf{x} 3.50$ ea. 40 p $12,000 \mathrm{rpm}$. ©5 each, 60p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). ©4 each, 60p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price $\mathbf{£ 1} \mathbf{7 5}$ each, 30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., $\mathrm{E3} .50$ each, post 50 p .15 mfd 330 v a.c.,
 each, carr. 63 p . 8 mfd 600 v. 43 p each, post $15 \mathrm{p} .8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £1 $\mathbf{~} \mathbf{2 5}$, post $25 \mathrm{p}, 4 \mathrm{mfd} 3000 \mathrm{v}$. wkg, $\mathrm{£3}$ each, post 37 p .4 mfd 2000 v . £2 each, post 25 p .
$4 \mathrm{mfd} 600 \mathrm{v}, 2$ for $£ 1.0 .01 \mathrm{mfd}$ MICA $25 \mathrm{Kv}, £ 1$ for 5 , post 10 p . Capacitor 0.125 $4 \mathrm{mfd} 600 \mathrm{v} ., 2$ for $£ 1.0 \cdot 01 \mathrm{mfd}$ MICA $2.5 \mathrm{Kv}, £ 1$ for 5 , post 10 p . Capacitor 0.125
$\mathrm{mfd}, 27,000 \mathrm{v}$. wkg. $£ 3.75 \mathrm{each}, 50 \mathrm{p}$ post. 2.25 mfd 25 Kv . wkg. $£ 20$ each, $£ 3 \mathrm{carr}$. CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , $2 \cdot 50$ each, carr. 75 p . OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 40 ohms at 2.6 amps ; $500 \mathrm{ohms}, 0.55 \mathrm{amps}$. Price (either type) $\mathbf{£ 2}$ each, 30 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathbf{£ 4} \cdot 50$ each, carr. 75 p . AR88 RECEIVER: List of spares, $5 p$.
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5 p .

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . . Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS

 EQUIPMENT OTHER EQUIPMENT
SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS $6 \mathrm{~S} 4,6 \mathrm{~S} 5,6 \mathrm{~S} 6,6 \mathrm{~S} 6 \mathrm{M}, 92,35,71,72,74$ HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS $15,19,20,28,32,33,35$
all configurations
PERFORATORS $14,19,28$ LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations
PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN. CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-096 FOR FURTHER DETAILS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H,3/16, 3/216, 3/48A, 3/43A, 48J, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-097 FOR FURTHER DETALLS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

KEYBOARD PERFORATORS for offline tape preparation
AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANSMITTERS, PRINTERS, MARCONI UG6 UNDÚLATORS, BUZZERS, ALDIS LAMPS, e1c.

AVO TRANSISTOR AND DIODE TESTER TYPE CT537

The tester is a compact, simple to operate, direct reading instrument. Provision is made for the rapid and accurate measurement of transistor h_{fe} up to 1500 at a frequency of $1 \mathrm{kc} / \mathrm{s}$ and the measurement of leakage current between $1 \mu \mathrm{~A}$ and 400 mA for both p.n.p. and n.p.n. low and medium power germanium or silicon transistors.

In Superb Condition, in original crates with full instructions, circuit diagram etc. New Price $£ 250$ Plus OUR PRICE $£ 40.00$ each Carriage $£ 1.25$

2 HZ to 20 MHZ SOLID STATE BEAM SWITCH

Completely assembled P.C. Board, ready to use on any standard commercial oscilloscope. Size $4 \frac{3}{4}^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime}$. $£ 9.25$ each. P \& P 25p. Completely encased with attenuators and BNC connectors $£ 25.00$ each.

20 HZ to 200KHZ SINE WAVE GENERATOR

In four ranges. Wien bridge oscillator, thermistor stabilised. amplitude control. 3 V peak to peak. Completely assembled P.C. board, ready to use. 9 to 15 V supply required. $£ 4.85$ each P \& P 25p. SINE AND SQUARE WAVE version of above $£ 6.85$ each. P \& P 25p:

TRANSISTOR INVERTOR

12 V to $1.5 \mathrm{KV} 2 \mathrm{MA} A C$. Size $1 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \mathrm{x}$ $4^{\prime \prime}$. £ 2.95 each P \& P 25 p.

WOBBULATOR

For displaying response of 10.7 MHZ (FM receiver I.F.'s) and $30-40 \mathrm{MHZ}$ (TV I.F. alignment). Requires $6.3 \vee \mathrm{AC}$ and any general purpose oscilloscope. Instructions supplied. Completely assembled P.C. Board. £9.00 each P \& P 25p

THE LOWER PRICED 'SCOPES SUITABLE FOR COLOUR TV SERVICING

SOLARTRON CD 711 S . 2 DB ($4^{\prime \prime}$ tube) 3 db at 7 MHZ . TB to 0.3 micro sec per $\mathrm{cm} X$ Gain times 10 . Y amp 3 MV per CM both channels. $£ 42.50$ Carr. $£ 1.50$.

SOLARTRON CD 523S. 2 SB ($4^{\prime \prime}$ tube) 3 db at 10 MHZ . TB to 0.1 micro sec per cm plus times 5 expansion. Y amp 1 MV per $\mathrm{cm} . £ 50$. Carr. $£ 1.50$.

CT 436 DB ($3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ tube). 3 db at 6 MHZ . TB to 1 micro sec per cm . X gain times 10. Y amp 10 MV per cm both channels. £65. Carr. £1.50.
E.M.I. WM 8 SB with amp. ($5^{\prime \prime}$ tube). 3 db at 15 MHZ . TB to 0.15 micro sec per cm . X gain times 3. Y amp 50 MV per $\mathrm{cm} . £ 45$. Carr. $£ 1.50$.

REFURBISHED CAIIBRATION QUaLITY INSTRUMENTS
 Most of the instruments listed below are less than three years old and have been serviced regularly. All the instruments

 are available either ex-stock or on short delivery and at well below the manufacturer's list price and covered by a three months' warranty.price of any of the equipment listed below will be given on written reauest

ELECTRONIC BROKERS LIMITED

49-53 PANCRAS ROAD, LONDON NW1 2QB.

IenrysYour Complete Audio-Electronic Stores

HMLDTEXAN

20 + 20 WATT INTEGRATED I.C. STEREO AMPLIFIER
\star FREE TEAK CABINET $\begin{gathered}\text { with com } \\ \text { plete kits }\end{gathered}$

 HIGH OS Panel. Complete čhassis work.
 reliabilty ano ease of construction. FACILITIES. On/of
 Radlo Tuner, Aux. Can be altered for Mic, Tape, Tape-head, etc. COMPLETE WITH FREE TEAK CABINET
(Parts Ilst Ref. 20 on request). Constructional details (ret no 2i) 30 p . Designer aporoved hits distributed by Henty's Radlo

CATALOGUE
 THIS ELECTRONICS
 TEST EDITION
 Fully detalled and illusaspect of Electronicsplus data, circuits and information. lo,000 stock lines at Spectal Low Prices and Fully Guaranteed. price $55 p$ post patid (40p FOR CALLERS) PLUS! FIVE 10p VOUCHERS
 Send to thls address- ENRY'S RADIO LTD. (Dept WW 3 ALBEMARLE WAY LONODO, E.C.1. for catalogue by 3 ALBEMARLE WAY LONDON E.C.1. - for catalogue by postonly. All other mail to '303' and callers to '404'
 CATALOGUE
 THIS IS A MUST

INTEGRATED CIRCUITS

Why buy alternatives when you can buy the genuin article from us at competitive prices from stock?

Tuning meter unit 1 I. 7 .
Mains unlt (optional) Model PS 900 £2.47. Post 20p.
Mains unit for Tuner and Decoder PS6/12 $£ 3.25$. Post

PA-Disco-Lighting

$$
466^{6} 666
$$

$$
\begin{aligned}
& \text { PA-DISCO-LIGHTING } \\
& \text { UK's Largest Range-Write } \\
& \text { phone or call in. Detalls and } \\
& \text { demonstrations on request. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { demonstrations on request. } \\
& \text { DJ30L } 3 \text { Channel sound to I } \\
& \text { DJ40L } 3 \text { Channel Mic. (Bull }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nest. } \\
& \text { doligh } \\
& \text { (Bullt-in) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DJ30L } 3 \text { Channel sound to light unit, } 3 \mathrm{kw} \text {. } \\
& \text { D J40L } 3 \text { Channel MIc. (Bulli-in) to light, } 3 \mathrm{kw} \text {. } \\
& \text { DJ70S } 70 \text { watt Disco amolmixr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DJ105S } 30 \text { watt Disco amp. } / \text { mixer, } \\
& \text { Anti-Feedback Quality Mic. } 50 \mathrm{~K} \text { ohm } \\
& \text { D } J 50050 \text { watt PA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Anti-Feedback } \\
& \text { D } 50050 \text { watt } \\
& \text { DJ } 70070 \text { watt }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GROUP } 300150 \\
& \text { DJ1000 } 100 \mathrm{watt} \\
& \text { FIPRE OPICS } \\
& \text { SPOTS. DIMME }
\end{aligned}
$$

TRIACS
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { SPBRE OPTMMSERSRING. MICS. EFF } \\
& \text { Everything for PA-DANDS. MIXER } \\
& \text { FREE Stock List Ref. No. Lighting }
\end{aligned}
$$

\qquadROJEC

$$
\begin{aligned}
& \text { FREE Stock List Ref. No. } 18, \\
& \text { - PORTABLE DISCOS -DETAILS ON REQUEST. } \\
& \text { - CREDIT TERMSFOR CALLERS. }
\end{aligned}
$$

$$
\text { SINCLAIR PROJECT } 60 \text { MODULES }
$$

-SAVE POUNDS!

$$
\begin{array}{llll}
\hline \text { SAVE POUNDS! } \\
\text { Z30 £3.57; } & \text { Z50 £4.37 } \\
\text { STEREO } 60 & \text { PZ5 £3.97 } \\
\text { £7.97; } & \text { PZ8 £4.77 }
\end{array}
$$

$$
\begin{aligned}
& £ 7.97 ; \\
& £ 6.37:
\end{aligned} \quad P Z 8 \quad £ 4.77
$$

$$
\begin{aligned}
& \text { Transformer for PZ8 } £ 2.95 \\
& \text { Active Filter Unlt } £ 4.45 \\
& \text { Stereo FM Tuner } £ 16.95
\end{aligned}
$$

SILICON
RECTIFIERS
WIRE ENPED
PLASTIC

P/P15.	400 MiW 5\% Miniature All voltages $3.3-33$ Volt
SL4030D PLESSEY	
Booklet and Circults $60 \mathrm{E1}, 50$. (P.C. Boar. Sink 14p).	
Sink 14p). Also Sinclair CC12 ef1:80,	
TH9014P-IC Preamp $£ 1$ DatalCircuits for above No, 42 10p.	(100+
	Watt Plastic 3EZ Range. All voltages $6.8-100$ Volts30 p each.
TRANSISTORS: IC's. BRIDGES SCR'SRIACSERS.LDRS	AVOMETER MOVEMENTS Model $8 / 9$ meter movements wlih Scale. ldeal base for test gear. Fully (post 15p).
This advert, contains Just a small selection of the thou-sands of devices kept in stock Send for Stock List TodayQuantity prices Phone	

COMPONENTS FOR

 W.W. AMPLIFIER DESIGNS 100W AMPLIFIER (FEB. 1972)Designer ap proved kit.
Semiconductor set
Resistors, capacitors, pots
F/Glass PCB
POWER SUPPLY (For 100W Amp.)
Designer approved kit.
Semiconductors, Resistors, capacitors, pots, transformers, F/Glass
30W BLOMLEY (New approach to class B)
Semiconductor set
Resistors, capacitors, pots
Glass PCB
OW BAILEY (Single power rail)
Resistors, capacitors, $\ddot{p o t s}$
F/Glass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer approved kit.
2N3055 pair, BC2 I2L, 2NI7!।
Resistors, capacitors, pot
F/Glass PCB
LINSLEY-HOOD 20W CLASS AB
Designer approved kit.
MJ481/491, MJE521, BC182L, BC212L, zener
Resistors, capacitors, pots
Please state 8Ω or $15 \ddot{\Omega}$
REGULATED 60V POWER SUPPLY
REGULATED 60V POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective P/C protection. All suplies for other amplifiers also available BAILEY/BURROWS PRE-AMP (Aug., 1971)
Component Set: Mono
Component Set: Mono
Each component set comprises of all specified resistors, capacitors, transistors, pots, including special balance control for stereo sets.
Stereo F/Glass PCB
STUART TAPE RECORDER
Set of stereo f/glass PCBs
Components sets on price !ist.

SEMICONDUCTORS

2N699	0.25	BCI84L	0.11
2N1613	0.20	BC212L	0.12
2N1711	0.25	BC214L	0.14
2N2926G	0.10	BCY72	0.13
2N3053	0.15	BF257	0.40
2N3055	0.45	BF259	0.47
2N3442	1.20	BFR39	0.25
2N3702	0.11	BFR79	0.25
2N3703	0.10	BFY50	0.20
2N3704	0.10	BFY51	0.20
2N3705	0.10	BFY52	0.20 1.20
2N3706	0.09	MJ4891	1.20 1.30
2N3707	0.10	MJE521	0.60
2N3708	0.07	MPSA05	0.30
2N3709	0.09	MPSA12	0.55
2N3710	0.09	MPSA14	0.35
2N3711	0.09	MPSA55	0.35 0.35
2N3819	0.23	MPSA66	0.40
2N3904	0.17	MPSU05	0.60
2N3906	0.20	MPSU55	0.70
2N4058	0.12	SN7274IP	0.58
2N4062	0.11	SN72748P	58
2N4302	0.60	THP189	1.10 0.50
2N5087	0.42	TIP30A	0.60
2N5210	0.54	TIP31A	0.60
2N5457	0.30	TIP32A	0.70
2N5830	0.30	TIP33A	1.00
40361	0.40	TIP34A	1.50
40362	0.45	TIP42A	0.90
BC107	0.08	TIP3055	0.60
BCl08	0.08	1808T20	0.50
BC109	0.08	IB40K20	1.40
BCI25	0.15	IN914	0.07
BC126	0.15	INS44	0.07
BCI82K	0.10	15920	0.10
BC212K	0.12	IS3062	0.25
BC182L	0.10	$5 \mathrm{B05}$	$1 \cdot 20$

HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD

SLIMLINE STYLE CHASSIS DIMENSIONS: $17.0 \mathrm{in} . \times 2.0 \mathrm{in} . \times 12.0 \mathrm{in}$ This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards which have been fully tested and approved by Mr. Linsley-Hood.

FREE

TEAK CASE
WITH ALL ORDERS FOR COMPLETE AMPLIFIER KITS

Total cost of individually purchased packs:
£63.95

Cost of complete kit:
£56.60
TRADE ENQUIRIES WELCOME

FOR FURTHER DETAILS PLEASE WRITE TO:
post free to u.k.
overseas at cost

COMPONENT PACKS

Pack

1 Fibre glass printed circuit board for power amp.
$£ 0.75$
2 Set of resistors, capacitors, pre-sets for power amp. . . $£ 1.50$
3 Set of semi-conductors for power amp. (highest voltage version)
65.50

4 Pair of 2 drilled, finned heat sinks 60.80

5 Fibre glass printed circuit board for pre-amp............. $£ 1.10$
6 Set of low noise resistors, capacitors, pre-sets for pre-amp $\quad \mathbf{£ 2 . 7 0}$
7 Set of low noise, high gain semi-conductors for pre-amp $\mathbb{£ 2 . 1 0}$
8 Set of potentiometers (including mains switch) $£ 1.55$
9 Set of 4 push button switches, rotary mode switch $£ 3.10$
10 Tonoidal transformer complete with magnetic screen/ housing primary: 0-117-234 V. secondaries: 33-0-33 V. 24-0-24 V., electrostatic screen
£9.15
II Fibre glass printed circuit board for power supply $\mathbf{£ 0 . 5 5}$
12 Set of resistors, capacitors, secondary fuses, semiconductors for power supply
$£ 3.50$
13 Set of miscellaneous parts including DIN skts., mains input skt. fuse holder, interconnecting cable, control knobs
£3.25
14 Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts, etc.
15 Handbook, based on Hi-Fi News articles $£ \mathbf{£ 0 . 3 0}$
16 Teak cabinet $\mathbf{£ 7 . 3 5}$
2 each of packs 1-7 inclusive are required for complete stereo system.

Basic Component Set

Set of semi-conductors, resistors, capacitors, printed circuit boards for stereo power amp, pre-amp. and power supply.
£ 31.35
Handbook Included

SERVICE TRADING CO

MATSUNAGA VARIABLE VOLTAGE TRANSFORMERS INPUT 230 V. A.C. 50/60 OUTPUT YARIABLE 0/260 v. A.C. Carriage Paid
BRAND NEW. All types.
$50 \begin{aligned} & 0-260 \mathrm{r} \text {. at } 1 \mathrm{amp} \text {.. } \\ & 0.260 \mathrm{y} \text {. at } 2.5 \mathrm{amps}\end{aligned}$
0.260 v. at 2.5 amps
$0-260 \vee$, at 5 amps
$0-260$ v. at 15 amps
$0-260 \mathrm{v}$. at 20 amps
$0-260$ v. at 25 amps
$0-260 \mathrm{v}$. at 37.5 amp
$0-260 \mathrm{v}$. at 50 amps
Special discount for
Special discount for q
TYPE (Panel Mounting)
OPEN TYPE (Panel Mounr quantity
L.T. TRANSFORMERS

All primaries $220-240$ volts.
Type No.
Sec. Taps

mps. .

36 volt 30 amp A.C.orD.C Variable L.T. Supply Unit

(6)

 Fully isolated. Fitted in robust, metalcase with Voitmeter, Ammerer, Panel
Indicator and chrome handles. input and Output fully fuse Indicator and chrome handles. Input and Output fully fused
Ideally suited for Lab. or Industrlal use. £ 70 incl. p. \& c.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 10 AMP
Now available EX STOCK supplied complete with full
data and applications sheet. Price $£ 1 \cdot 12$ incl. P. \& P. Suitable Diac 30p (RCA40583)

DOUBLE ENDED Powerful, continuously rated, 2 speed Either 6 or 12 volt D. C. operation
Price $£ 2-00$ inct. P. P.

rowna entosints
 (HEW)

 , heavy duty brush assembly designed STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 5 ohm 4.7 a ., 10 ohm 3a., 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm -7 a ., 500 ohm 45 a ., 1 k ohm 280 mA ., 1.5 k ohm 230 mA ., $2 \cdot 5 \mathrm{k}$ ohm $\cdot 2 \mathrm{a} ., 5 \mathrm{k}$ ohm 140 mA ., Diameter 5 K ohm. All at $£ 1-23$, incl. P. \& P.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} / 3 \cdot 5 \mathrm{~K}$ ohm. \quad All at 98 p , incl. P . \& P .
Black Silver Skirted knob calibrated in Nos. I-9. I
in. dia brass bush. Ideal for above Rheostats, I8p ea.
UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 V. D.C operation. $66 \cdot 75$, inc. P. \& P.
8 BANK 25 WAY FULL WIPER

${ }^{4} 6$

 'HONEYWELL' PUSH BUTT MOUNTING MICRO Each bank comprises of a change-over
rated at 10 amps 240 volt A.C. Black
knod 1 in. knob 1 in. dia. Fixing hole it in. Prices: 1-bank ${ }^{30}{ }^{2}{ }^{2}{ }^{2}$-bank ${ }^{40 p_{1}}{ }^{3}$-bank 55 p.
(llustrated)

VERY SPECIAL OFFER

MICRO SWITCH
5 amp. clo contacs. Fitted with remov-
able meral plate Ex. P . 20 for $£ 1 \cdot 00$ inc.
post (min. order 20).
'HONEYWELL' LEVER OPERATED MICRO SWITCH ${ }^{15}$ amps 250 voit ACC clo contacts

STRDEE STRDEE STROBE

FOUR EASY TO BUILD KITS USING XENON WHITE TRIGGERANG CIRCUITS, PROVISION FOR FR $+{ }^{\prime}-$
TERNAL TRIGGERING. $230-250 \mathrm{v}$. A.C. OPERATION. TERNAL TRIGGERING. 230-250v. A.C. OPERATION.
EXPERIMENTERS "ECONOMY", KIT
Adjustable 1 to 30 Flash per sec. All electronlc com
Adjustable 1 to 30 Flash per sec. All electronlc com-
Xenon Tube + instructions $£ 6.55$ incl. P. \& P.
NEW INDUSTRRIAL KIT
Ideally suitable for schools, laboratories elc. Roller
Ideally suitable for schools, laboratories elc. Roller
tin printed circuit. New frigger coil, plasilc thyristor. Adjustable $1-80$ f.p.s. ${ }^{2}$ approx. : output of Hy-Lyght.
HY-LIGHT STROBE
Desioned for use in large rooms, halls and the photographic field and utilizes a sillca tube, printed clrcuit
and a special trigger coll. Speed adjustable $1-20$ f...s.
Light output greater than many (so cailed 4 strobes. Price E12.50. inct.
SUPER' HY-LIGHT HIT
'SUPER' HY-LIGHT KIT
Hy-Lyght strobe.
Variable speed from $1-13$ fash per sec.
Reactor conlrol circuit producing an
Never before a Strobe Kit with so HIGH an out-
put at so LOW a price. ONLY $£ 20.75$, incl. P. $\&$.
 TED METAL CASE speclally deslgned for the Super incl. P. \& P.
7-INCH POLISHEO REFLECTOR. Ideally suited above Srobe Kits. Price 66pincl. P. \& P RAINBOW STROBE FOUR LIGNT CONTROK MOOULE
Will operate four of our Hy-Lyght or Super Hy-Lyght Trobes in either $1,2,3,4$ sequence: $2+$;or all together.
Thoroughly tested and reliable. Complete with fuli connection Instructions
 COLOUR WHEEL PROJECTOR Complete with oil filled colour wheel. 100 wate lamp. $200 / 240 \mathrm{~V}$ AC. Features ex tremely efficient optical
system. $£ 18.85$, incl. P. \& P. 6 INCH COLOURWHEEL

BIG BLACK LIGHT

400 Wath. Mercury vapour ultra

Extremely compact and poweriul soys
of u.v. Inumerable ind ustrial applications
P.F. ballast is essential with these bulbs

Price of matched ballast \& bulb E46.50.
BLACK LIGHT FLUORESCENT U.V. TUBES

IMPORTANT

FROM APRIL 1 st. V.A.T MUST BE ADDED TO ALL PRICES
HONEYWELL PROGRAMME TIMERS
240V. A.C. 5 Fi.p.m. motor. Each cam
operating a cio micro switch. Cans

2 cam model with $15 \mathrm{r} . \mathrm{D} . \mathrm{m}$. motor $£ 2.00$ incl. P. \& P
SIMPLE 12 CAM PROGRAMMER with 4 adjustable cams and 8 that may be profiled to individual requirements. Avail-
able with 15 or $13 \mathrm{r} . \mathrm{p} . \mathrm{m}$. motor $\mathbf{£ 3 . 7 5 \text { Incl. } P \text { . \& } \mathrm { P } \text { . }}$.

VENNER ELECTRIC TIME SWITCH $200 / 250$ volt. Ex-GPO. Tested, perfect con-
dition. Two ON, two OFF, every 24 hrs . at any manually pre-set time. Price: I 5 amp,
$£ 3.45 .20$ amp, $£ 3.95$. Inci. P. \& P. Also avat|able with Solar Dial ON at dusk, OFF at dawn.
Prices as above.

INSULATED TERMINALS Available in blacks red, white,
yollow, blue and green. Now lop each, incl. P. \& P. Minimum

METER BARGAIN

BALANCE/LEVEL METERS 100-0-100 Micro Amp. Size $1 \frac{1}{2 i n} . \times 1 \frac{1}{2} \mathrm{in} . \times \frac{2}{8} \mathrm{in}$,
Price only 75 p including P \& P .

AMMETERS NEW! 2 in. FLUSH ROUND
avaliable as D.C. Amps $1,5,15,20$ or A.C. Amps
1 1. $5,10,15,20$. Both types $£ 975 \mathrm{incl}$ P. \& P. $0-300 \mathrm{~V}$
A.C. $£ 1.90$ incl. P. \&P.

				SIEMENS PLESSEY, etc. miniature relays			
52	3 -6						
52	4-6	6 M	${ }_{63 \text { p }}$	700	12-24	2 clo	$63 \mathrm{p}^{\text {. }}$
52	4-6	$4 \mathrm{c} / \mathrm{O}$	78 p	700	15-35	$2 \mathrm{c} / 0 \mathrm{HD}$	73 p
150	6-12	$4 \mathrm{c} / 0$	78 p	700			
	$8-12$	6 M	${ }^{63}$ p	700	-		${ }^{635} p^{\text {P }}$
280	9-12	2 co	73 p *	1250	24-36	${ }^{6} \mathrm{c} / \mathrm{l}^{\circ}$	*
	10-18	4 clo	73 p	2500	36-45	${ }_{6} \mathrm{M}^{\text {c/ }}$	63p 63
	9-18	$2 \mathrm{c} / \mathrm{o}$		2400		$4 \mathrm{c} / \mathrm{o}$	
	16-24	4 M 2 B		9000	40.70	2	
12 VOLT D.C. RELAY -							
(Simitar to lllustration below) Type 2: One set c/o contacts 60_{p} incl. P. \& P Type 3: $4-8$ volt $3 \mathrm{c} / 0$ HD, 67 ohm coil. 78 p . incl. P \& P							
'DIAMOND H' 230 VOLT A.C. RELAYS (Unused) Three sets c/o contacts rated at 5 amps. Price 60p. incl. P. \& P. (100 lots $£ 40.00$ incl. P. \& P.)							

$$
\begin{aligned}
& 230 \text { VOLT A.C. RELAYS M.t.g. 'Keyswiteh' } \\
& \text { One set c/o contacts rated at } 7.5 \text { anips. Boxed. Price 45p. } \\
& \text { incl. P. \& P. (100 lots } \mathbf{8 3 2} \mathbf{4 0} \text {. }
\end{aligned}
$$ ine set c/o contacts rated at 7.5 amips. Boxed. Price 45 p .

incl. P. (100 lots $£ 32.00$ inci. P. \&P.) MINIATURE RELAYS
$9-12$ volt D.C. operation. 2 c/0 $500 \mathrm{M} . \mathrm{A}$, contacts. Size only
1 in. $X \geq 1 \times \frac{1}{2}$ in. Price 58 p incl. P. \& P.
 Coil. Size only $1 \times \frac{.}{1+} \times \frac{12}{15}$ in. 43 p incl.
MINIATURE LATCHING RELAY Mig. by Clare-Ellott Ltd. (Type F) 2 clo permanent latching
In either direction. Coil 1150 ohm. $15-30$

 $\mathrm{cw}=$ Clockwise. $\mathrm{A} / \mathrm{cw}=$ Anti-clockwise $\quad \begin{gathered}\text { All at 75p } \\ \text { incl. } \mathrm{P} . \& \mathrm{P}\end{gathered}$ REVERSIBLE SPLIT PHASE MOTOR 250 r.p.m. $100-115 / 210-240 \mathrm{~V}$ AC. 2 in. $\times 1$ in. Ideal for size 75p. incl. P. \& P. (including small capacitor.)

PARVALUX

Type: SDI.S/86896/0J

$230 / 250 \mathrm{v}$, A.C. 50 r.p.m. 7 Iblins.
Continuously rated. Less base $\mathbf{f 6 . 3 0}$ TYPE: SDI.S/89400/OM
 230/250v. A.C. 50 F.p.m. $22 \mathrm{Ib} / \mathrm{ins}$.
Continuously rated. Incl., base $£ 7.30 \mathrm{inct}$
The above motors are new and unused.
PARVALUX TYPES SDI9 $230 / 250$ VOLT AC REVERSIBLE
GEARED MOTORS GEARED MOTORS 30 r.p.m. 40 lb . ins. Position of
drive spindle adjustable to 3 different angles. Mounted on substantial cast aluminium base. Ex-equipment. Tested and really powerful motor offered at a raction of maker's price. $£ 6.80$,

600 WATT DIMMER SWITCH
(1) Easily fitted. Fully guaranteed by makers except fluorescent at mains voltage. Complete

SAMESON's

9 \& 10 CHAPEL ST., LONDON, N.W. 01-723-7851

OI-262-5125 ISOLATION TRANSFORMERS
GARDNERS. Pr. $110-200-220-240$. Sec. 240 v . 3 amps,
CORServatively rated. Fully tropicalised. Enclosed in steel Conservatively rated. Fully tropicalised. Enclosed in steel
case. Size $9 \times 6{ }^{2} \times 6$ ins. Brand new. Fraction of maker's Price E8.75. carr, 75 p . $00-110-200-220-230-240-250 \mathrm{v}$. Sec. 115 v .
PARMEKO. Prl.
13.5 amps. Conservatively rated. Fully shrouded table top 13.5 amps. Conservatively rated. Fully shrouded table top
connections. Size $13 \times 10 \times 8 \mathbf{i}$ ins. $£ 32.50$. carr. $£ 2.00$. Pri. connections. Size
$200-210-220-230-240-250 \mathrm{v}$ Sec. ${ }^{20-100-110-120 \mathrm{v}}$. 7.5 amps. Conservatively rated Table top connections. Size $9 \times 8 \times$ 8 ins. $\mathbf{E 2 2}^{250 .}$ cart. $£ 1.50$. WT. 750 Watts. $£ 8.50$. carr. $£ 1.00$.
DRAKE. Pri. $200-220-240 \mathrm{~V}$. Sec.
25p.

NEWMARK SYNCHRONOUS MOTORS

G.P.O. 20-WAY JACK STRIPS Type 320 BN. Ex-equipment. Perfect
condition. 75 p. P.P. 10 p .
S.T.C. SELENIUM FW BRIDGE RECTIFIERS
A. C. input 36 v . D.C. output 24 v ., $5 \mathrm{a} . \mathrm{\Sigma} \mathbf{1} 50$. P.P. 25 p

DIAMOND H RELAYS
Type ER 115 BIT-9C 4 CO COntacts, 150 ohms. 26v., 250v. 15a,$~$
Enclosed in metal case. Size $1 \frac{1}{2} \times 1$ In. dia. 75 p incl. post.
H.T. TRANSFORMERS BY

FAMOUS MANUFACTURERS PARMEKD. All primarles $220-240 \mathrm{v}$.
Type 1. Scc. $630-0-620 \mathrm{v}$. $105 \mathrm{~m} / \mathrm{a} 5 \mathrm{v} .4 \mathrm{~A}$ Type 1. Stec. $630-0-6200$. $105 \mathrm{~m} / \mathrm{a} 5 \mathrm{v}$. 4 AA,
5 v .2 A . Potted lype $£ 3.00$. Carr. 50 D . Type 2.

 200v. $20 \mathrm{~m} / \mathrm{a},{ }^{6.3 \mathrm{v} .1 \mathrm{~A} .6 .3 \mathrm{v}, 1 \mathrm{~A} \text {. Pottled }}$

WODEN, All primaries $220-240 \mathrm{v}$. Type 1 . Sec. $890-710-0-710-890 \mathrm{v}$. $120 \mathrm{~m} / \mathrm{a}$.
 calised £2.50. P.P. 50 p . Type 2. Sec. 150 V
$60 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .3 \mathrm{a}, \mathrm{Es} .25 . \mathrm{P} . \mathrm{P} 25 \mathrm{p}$. Type 3
 table top connectlons $£ 3.75$. P.P. T'55,
Type 4 . Sec. $130.450 \mathrm{~m} / \mathrm{a}$. three timeet,
 and $6 \cdot 3 \mathrm{Jv}$ 1a. unshrouded table top cion
nections $£ 2 \cdot 50$. Carr. 50 p .

GARDNERS. Ail primaries $220-240 \mathrm{~V}$

 6. 3 V . 3a. " C " core $£ 1.50$. P.P. 30 p .

G.E.C. L.T. TRANSFORMERS All prlmaries. $220-240 \mathrm{v}$. Type 1. Tap pe
$63-68-7 \mathrm{vv}$. 3a. and 6 v . 4 a. . terminal block connections, unshrouded £2.50. P.P. 50p connections, unshrouded £2.50. P.P. Tapped $59-61-65-67-69 \mathrm{~g}$. 10 a .
Type 2. To
block connections. unstrouded block connections, unstrouded, it pi-
calised $£ 5.50$. Carr. 75p. Type 3. Tap ped
 shrouded, tropicalised £2.75. P.P. 450 p .
Type 4. $100-0-100 \mathrm{v}$. $65 \mathrm{~m} / \mathrm{a}$ and $61-64.67 \mathrm{v}$. Type 4. $100-0-100 \mathrm{v}$. $65 \mathrm{~m} / \mathrm{a}$. and $61-64.67 \mathrm{v}$.
$150 \mathrm{~m} / \mathrm{a}$. and 6 v .1 a . Type 5 . Tapped $3 \mathrm{il}-40-$

RES.T. SMOOTHING CHOKES GRESHAM 'C' core swinging type

$10 \mathrm{~m} / \mathrm{h} .4 \mathrm{a}-100 \mathrm{~m} / \mathrm{n} 0.5 \mathrm{a}$. $£ 3.00$ carr. 50 p
G.E.C. $150 \mathrm{~m} / \mathrm{h}$.
.

Mains filter chokes $10 \mathrm{~m} / \mathrm{h} .2 \mathrm{a}$. $50 \mathrm{p} . \mathrm{P} . \mathrm{P}$ Mains filter chokes $10 \mathrm{~m} / \mathrm{h}$. 2a. Sop.
20p. All above chokes $\frac{t}{2}-1$ ohm res.

 $\frac{15 \mathrm{~m} / \mathrm{h} .3 \cdot 8 \mathrm{a} \cdot \text { E1 } \cdot 50 \text { P.P. } 25 \mathrm{p} \text {. }}{\text { H.T. SMOOTHING CHOKES }}$ H.T. SK. Potted Type. 10 h . $180 \mathrm{~m} / \mathrm{a}$
PARMEK
£ 1.50 P. P. $25 \mathrm{p} .15 \mathrm{~h} .300 \mathrm{~m} / \mathrm{a} . \mathrm{E} 2.50 \mathrm{P} . \mathrm{P} .50 \mathrm{p}$ $10 \mathrm{~h} .120 \mathrm{~m} / \mathrm{a} .60 \mathrm{p} . \mathrm{P} . \mathrm{P} .20 \mathrm{p} .15 \mathrm{~h} .75 \mathrm{~m} / \mathrm{a}$.
$10 \mathrm{~h} .75 \mathrm{~m} / \mathrm{a}, 50 \mathrm{~h} .25 \mathrm{~m} / \mathrm{a}$. $50 \mathrm{p} . \mathrm{P} . \mathrm{P} .20 \mathrm{p}$ Swinging Type. $34 \mathrm{~h} .50 \mathrm{~m} / \mathrm{a} . / 70 \mathrm{~h} . \mathrm{P} .35 \mathrm{~m} / \mathrm{a}$
2.8 KV D.C. wkg. 35 p . P.P 35 p .
H.T. TRANSFORMERS PARMEKO. Pri. 240v, Sec. $250-0$ -
$250 \mathrm{v} .50 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$. E1.25. P.P. 35 p .1 Size $4 \times 3 \times 27$
GARDNERS GARDNERS. 'C' C ' core. PrI. 240 v .
Sec. $300-0.30 \mathrm{v}$. $66 \mathrm{~m} / \mathrm{e}$. 6.3 v . 4 a .
$\mathrm{E} 1.50 \mathrm{P}-\mathrm{P}$
 15v. 1.2a. 6.3 v .4 .5 a . E1.25. P.P. 35p. open type table top
Size $4 \times 3 i \times 3$ ins.

ADVANCE L.V. CIV TRANSFORMERS Sec. 28 v . 8 a , open frame type. $£ 4.75 \mathrm{carr}$.
 75 natts £2. 25 P.P. ${ }^{40 \mathrm{p} .6 \mathrm{v} .25 \text { watts open }}$ $190-260 \mathrm{v}$. enclosed type. output 240 v .

$$
\begin{aligned}
& \text { G.P.O. RELAYS } \\
& 3000 \text { Type. } 100 \Omega 125 \text { amp make } \\
& \text { contact } 60 \mathrm{p} .2000+10 \Omega 1 \text { normal } \\
& \text { CO } 40 \mathrm{p} .75 \Omega \text {. } 3 \mathrm{M} \text {. } 1 \mathrm{~B}, \mathrm{CO} \text { normal } \\
& \text { contacts } 40 \mathrm{p} \text {. P.P. on all relays } 10 \mathrm{p} \text {. }
\end{aligned}
$$

$200 \Omega 10$ BERCO INST POTS $\frac{200 \Omega 10 \text { watts } 3 \frac{1}{2} \text { ins. dia. SOp. P.P. } 10 \text {. }}{\text { TCC. BLOCK CAPACITORS }}$ 4 mfd. 4.5 Kv DC wkg . Size $13 \times 11 \times$
5 m ins. $£ 3.00$. Cark. 75 p . 0.5 mfd . 10 Kv

 P.P. 15p.
 SCOTCH MAGNETIC COMPUTER Type 3M459 $\frac{1}{3}$ in. 3,600 feet. Supplied new Type 3 M 459 in. 3,600 teet. Supplied new
in maker's cartons. At a fraction of
maker's price, $£ 3$.75. P.P. 25p.

SPECIAL OFFER OF MULTI TAPPED
C.T. TRANSFORMERS VERY

CONSERVATIVELY RATED

 times. 'C' Core.
$\mathbf{E 6 . 5 0 .}$ carr. 75 p .

Pri. 200-220-240v. Sec. 20-21-22-23-24-25v.
 $100-0-100 \mathrm{v}$. $150 \mathrm{~m} / \mathrm{a}$ ' C ' Core. T. Top conPri. 200-220-240v. Sec. tapped 63-68-74v 3a. and 6 v . 4 a . Open frame lerminal bloc $\frac{\text { connections } £ 2.50 \text { P.P. } 50 \mathrm{p} \text {. }}{\text { PrI. } 200-220-240 \mathrm{v} \text {. Sec. } 37-40-43 \mathrm{v} . \quad 5 \mathrm{a} .}$ PrI. $200-220-240 \mathrm{v}$. Sec.

105 v . $300 \mathrm{~m} / \mathrm{a}$. twice. Oll fl - potted type Pri. 200-220-240v. Sec. 39v. ${ }^{8.6 \mathrm{a} .,} 38 \mathrm{v}$ 2.6a. Oilfiled potted type. $£ 8 \cdot 50$. carr. 75 p | Pri. | 200-220-240v. Sec. tapped $30-57.5$ |
| :--- | :--- |
| 115 v | 0.5 C | 115 v

$\mathbf{\varepsilon 2 . 0 0}$ P. 5 a . 'C' 25 p . LTP Pri. $200-220-240 \mathrm{v}$. Sec. ${ }^{6.3 \mathrm{v} .} 8 \mathrm{a}$ three times.
type T. top connections $£ 3.75$ carr. 75 p Woden Pri $220-240 \mathrm{v} . \mathrm{Sec} .10 \mathrm{v}$. 2a. fully shrouded £1.50 P.P. 25D.
Prl. 220-240v. Sec. tapped 6-12v. 2a. Tully
shrouded. £1.75 P.P. 25p. shrouded. £1 75 P.P. 25D.
Pri. 200-220-240v. Sec. tapped 3-10-13v. 7a
Open frame. T. top connections $£ 2.00$
P. P. 35 . Pri- $220-240 \mathrm{v}$. Sec, $24 \cdot 5-0-24 \cdot 5 \mathrm{v}$. 0.75 a ${ }^{\prime} \mathrm{C}$ ' Core. T. top connections £1-50 PP 25p ${ }^{\text {' }}{ }^{\prime}$ ' core, T. top connections 75p. P.P. 25p PARMEKO HT TRANSFORMERS
NEPTUNE OLL FILLED TYPE PR

$\frac{50 \mathrm{p} .}{\text { Pri. } 220-240 \mathrm{v} . \text { Sec. } 24 \mathrm{v.} 3 \mathrm{a}} \mathrm{C}^{\mathrm{C}}$ ' core T. top connections 22.00 P.P. 35D. ${ }^{\prime}$ ' C cor
 Pri. 200-220.240v. Sec. $25-0-25 \mathrm{v} .154 \mathrm{~m} / \mathrm{s}$ 7 V .1 .35 a . ${ }^{\text {E }} \mathrm{C}$ ' core T . top connections
E1.25 P.P. 25p. Prl. 240v. Sec. 14v. 6a. open frame. T. top Pri. 110-240-440v. Sec. tapped $24-26 \mathrm{v}$. 8 a Pri. 1 a . open frame type $£ 3.50$ carr. 50 p .
6 G. 6v. 1a. open frame G.E.C. PrI. 200-240-240v. Sec. tapped $59-$ 61-63-64-67-69v. 10 a . Fully tropicallsed Open frame terminal block connections.
6550 carr. 50 p. $\frac{25 i .}{\text { Pri. 200-220-240v. Sec. tapped } 56-58-60 \mathrm{v} .3 \mathrm{z}}$ open frame. ${ }^{\text {Te }}$
£2.75 P.P. 50 p.

* DUST COVERS
* QUICK DELIVERY
* KEEN PRICES
\& QUOTATIONS BY RETURN
HOME \& OVERSEAS HOME \& OVERSEAS
SWITCHES. Double Pole On/Off 3 amp 250 volt hone ole fixing £1. 50 per ten. rack mounting assembly with Glass Fibre Air Filter and directional Duct. Capacitor Fan Motor
$1 / 501 \mathrm{~h} h \mathrm{~h} .200 / 250$ volts or 100,125 volts 2,800
MEGGERS. 5 no volts, range $0-1,000$ Meg. ohms-minfinity, metal case, in good working order
E15 each. Post 40p. \quad BRIDGE MEGGERS, SERIES $1,1,000$ volts, range $0 / 100 \mathrm{M}$ ohms-infinity, with resistance Box $0 / 9999$ ohms. Brand new. 565.00 each. Carriage 75 p .
FREQUENCY METERS, $45 / 55 \mathrm{c} . \mathrm{p} . \mathrm{s}$. . 230 V . A C. 6 in . dia. flush round es. Post 70 .
GALVANOMETERS. Uniplvot type $50-0-50$ Micramp. scaled $35-0-35$, Knife pointer, Mirror GALVANOMETERS. Unlplvot type $50-0-50 \mathrm{M} / \mathrm{croamp}$, scaled $35-0-35$, Knife pointer, Mirror
Scale, 4 in. dia. in leather carrying case 10 each. Post 10 p .
GEA post 20p, can be operated from 230 V . wh our $k 120$.
MICROSWITCHES ROLLER TYPE. Honeywell S.P.C.O. $15 \mathrm{amp} .125-250$ and 460 volts A.C
40peach, post pald. Quantlty discounts.
MICROSWITCHES special offer at 30 p ea. Burgess K5 Series 2 circuit double break type, with
provith

LONGLEYRD. CROYDON, CRO 3LH. Phone 01-684 0236 Grams

WOELIE MAGNEIBANDTECHNIK

(formerly "Miniflux")

Tapeheads, for studio \& other better-sound applications, available through sole U.K distributors.

LENNARD DEVELOPMENTS LTD.
206 CHASE SIDE, ENFIELD EN2 OQX
Tel. 01-363 8238

Still some bargains sum to clear-
 large range of Morse

Equipment such as Creed Mould 75 Page Printers at only $£ 25$

(List $\mathbf{£ 7 5}$) and large range of Communication Receivers including AR88 at $\mathbf{£ 2 5}$ (List $\mathbf{£ 8 0}$).

Thousands of others at large discounts

Open 6 days a week. Morı. to Sat. inclusive. 9 am to 5 pm

WW-102 FOR FURTHER DETAILS

ATTRACTIVE

 DISCOUNTS
ON VERY MANY ITEMS WHEN YOU BUY FROM
 US

Electrovilive Eectronic Component Speciclists

RESISTORS- $10 \%, 5 \%, 2 \%$

Code	Power	Tolerance	Range	Values available	$1 \text { to } 9$	$\begin{array}{r} 10 \mathrm{t} \\ \text { (see note } \end{array}$	$\begin{aligned} & 100 \text { up } \\ & v) . \end{aligned}$
c	1/20W	5%	$82 \Omega-220 \mathrm{~K} \Omega$	E12	9	8	0.7
C	1/8W	5\%	$4.7 \Omega-470 \mathrm{M} \Omega$	E12		0.8	0.7
C	l/1W	10%	$4.78 \Omega-10 \mathrm{M} \Omega$	E24		2	0.9
C	is	10%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	2.5	5	1.9
MO	1/2W	2\%	$10 \Omega-1 \mathrm{M} \Omega$	E24	4	3	2 nett
WW	iw	10\%土1/20	$0.22 \Omega^{-3.9} \Omega$	E12	7	7	6
WW	$3 W$			E12	9	9	8
Codes: $\mathrm{C}=$ carbon film, high stability, low noise. MO = metal oxide, Electrosil TR5, ultra low noise. WW = wire wound, Plessey.							
Values: $E \mid 2$ denotes series: $10,12,15,18,22,27,33,39,47,56$, mixed values. (Ignore frac68,82 and their decades. tions on total value of resistor as at $\mathrm{E} \mid 2$ plus $11,13,16,20,24,30,36$, order.)							

TEIANSISTORS BY SIEMENS AND NEWMARKET

DIN CONNECTURS by birsmman	COVERS \&	TOGGLE SWITCHES
	HEATSINKS	1011 Cspst corze
	${ }_{\text {a }}^{\text {a }}$	cose

POTENTIOMETER carbon type long spindles. Double wipers for low noise. R20
SINGLE GANG linear 100Ω to $2 \cdot 2 \mathrm{M} \Omega, 12 \mathrm{p}$. JP20 Log, $4.7 \mathrm{~K} \Omega$, to $2.2 \mathrm{M} \Omega$ ${ }^{12 P}{ }^{2}$ DUAL GANG linear $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log, $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$, 42p; Log/antilog, $10 \mathrm{~K}, 22 \mathrm{~K}$
47 K i $\mathrm{M} \Omega$ only 42 p ; Dual antilog, 10 K only, 42p. Any antiog, $\begin{aligned} & \text { type with 2A D. P. mains }\end{aligned}$ type with $2 A$
switch 12 pexra switch, , 2 e extra.
Only decades of $10,22 \& 47$ available in ranges quoted. DUAL CONCENTRIC P20 values, 60p; with SWitch, 72 P . Small high quality, type PR linear only: 400 K2, 70 , 10 K . $470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K}, 10 \mathrm{~K}$ $2 \mathrm{M2} 2,5 \mathrm{M}$, $10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5 p
SLIDER POTS. In values
from $4 \mathrm{~K} 7 \Omega$ to $1 \mathrm{M} \Omega$, linear
or log, 26p each. Escut
cheon, light grey, 10 p .
Knobs, flat, grip type, in

ELECTROLYTICS

${ }^{4} \mathrm{~F}$	3 V	6.3 V	10 V	16.	25 V	40V	63 V	100V
0.47							7	7
1.0						7		7
2.2					7		7	7
4.7				7		7	7	7
10			7		7	7	7	7
22			7		7	7	7	7
47	7		7	7	7	7	8	12
100	7	7	7	7	7	8	12	18
220	7	7	7	$\overline{8}$	9	10	17	26
470	7	8	9	9	12	17	24	41
1000	9	12	12	17	20	23	40	
2200	14	16	22	25.	36	40		
4700	23	26	37	40				
10,000	37	40						
Smal'est size $3.7 \mathrm{~mm} \times 12 \mathrm{~mm}$. Largest size $25.5 \mathrm{~mm} \times 41 \mathrm{~mm}$. Full ranges of many othe types of capacitors stocked.								
ROTARY SWITCHES								
Radiospares switch (in a Shaft 48p. Wafers, MB BBMIPI2W $4 P 3 W, 6 P 2$	iatu y ki 5W 6W ch 6p	Maka m). IIW P4W	Wavechangeswitches IPI2W, 2P6W, 3P4W, 4P3W, each 24p.					

TTL ICs

	TTL	Nett Prize
FLHIOI	(7400)	20p
FLH2OI	(7401)	20p
FLHI91	(7402)	20p
FLH291	(7403)	20p
FLH211	(7404)	25p
FLH271	(7405)	25p
FLH38I	(7408)	25 p
FLH391	(7409)	25p
FLHIII	(7410)	20p
FLH351	(7413)	35p
FLHI2I	(7420)	20p
FLH\|31	(7430)	20p
FLHI4I	(7440)	24P
FLLIOI	(74141)	(16) $£ 1.22$
FLH28।	(7442)	(16) $£ 1 \cdot 16$
FLH361	(7443)	(16) $¢ 1.45$
FLH371	(7444)	(16) $¢ 1.45$
FLH15I	(7450)	20p
FLHI61	(7451)	20p
FLHI7I	(7453)	20p
FLHIBI	(7454)	20p
FLYIOI	(7466)	20p
FLJIOI	(7470)	45p
FLJIII	(7472)	32p
FLJ21	(7473)	45p
FLJ141	(7474)	45 p
FLJI5!	(7475)	(16) $45 p$
FLJ31	(7476)	(16) 45 p
FLH221	(7480)	68p
FLH231	(7482)	87p
FLH241	(7483)	(16) $81 \cdot 32$
FLH341	(7486)	33p
FLJ161	(7490)	${ }^{80} \mathrm{P}$
FLJ221	$\begin{aligned} & (7491 \\ & \text { AN }) \end{aligned}$	¢1.28
FLJ171	(7492)	$85 p$
FLJ181	(7493)	80p
FLJ231	(7494)	(16) $\mathrm{El} 1 \cdot 13$
FLJ191	(7495)	87p
FLJ26!	(7496)	(16) $£ 1.48$
FLJ301	(74100)	(24) $£ 1.64$
FLJ281	(74104)	43p
FLJ271	(74107)	52p
FLKIOI	(74121)	48p
FLJ201	(74190)	(16) If 80
FLJ211	(74191)	(16) $¢ 1.80$
FLJ241	(74192)	(16) $£ 1.74$
FLJ251	(74193)	(16) $£ 1.74$

DISCOUNTS
Available on all items excep those shown with NETT
PRICES. 10% on orders from $\notin 5$ to $£ 15.15 \%$ on orders $£ 1$ TERMS OF BUSINESS All items are offered for sale All items aecordance with our in accordance of business, a copy of which is available on request. Prices subject to alteration without notice Enquiries from quantity user
invited. PACKING \& POSTAGE FREE in U.K. For mail order for $£ 2$ list value there charge of 10 p .
VAT
Prices shown here DO NOT Prices shown here which will
INCLUDE V.A.T. Which be charged in accordance with regulations.
USA CUSTOMERS
USA CUSTOMERS are invited to contact Electro-
value America, Box 27, $\begin{array}{ll}\text { value America, Box } \\ \text { Swarthmore PA } & 1908!\end{array}$

IT SAVES YOU 25p TO START WITH That's the price of the 96 page Electrovalue cistalogue (No. 25 p refund exchange voucher on orders which come to $\mathbf{6 5}$ or more. The Catialogue is packed with bargains. in brand new guaranteed on schematic diagrams, transistor diagrams and specs, diagrams, transistore. Send $25 p$ (plus $2 \neq p$ UAT wh en operative) for Catalogue by

MAINS TRANSFORMERS
MT3 30V/2A plus 4 taps $\mathbf{6 2 . 8 5}$ MT103 50V/lA plus 4 taps $\mathbf{£ 2 . 5 5}$ MT10450V/2A plus 4 taps $\leqslant \mathbf{\xi 3} .50$ MTI $2760 \mathrm{~V} / 2 \mathrm{~A}$ plus 4 taps $£ 3.80$ 13 TO5 $13 \mathrm{~V} / \frac{1}{3} \mathrm{~A}_{\dot{\prime}}, \mathrm{CT} \quad \in 1 \cdot \mathbf{2 5}$

Minitron DIGITALINDICATOR

TYPE 3015F Seven segment indicator compatible with standard logic miodules and power supplies. Figs. from well illum inated filament segments character of 9 mn ? height plus decimal point. Power character ont 8 mA from 5 V D.C. per segment. A limited
reamber of alphal zetical symbols also avail- $\mathbf{Q 2} 00$ $\begin{aligned} & \text { able. } \\ & \text { Suitable BCD detioder driver type } \\ & \text { FLLI2IT nett }\end{aligned} \leq 1.36$ DIL Socket; 16 le:ad 30p. No. 3015 G sho

THYRISTORS $0.8 \mathrm{~A} 400 \mathrm{~V}, 48 \mathrm{p} ; 600 \mathrm{~V}$ 66p.
$3 \mathrm{~A} 400 \mathrm{~V}, 52 \mathrm{p} ; 600 \mathrm{~V}, 76 \mathrm{p}$
 K.30/3 aluminium ZENER DIODES Full range E24 values:
$400 \mathrm{~m} \mathrm{~W}: 2.7 \mathrm{~V}$ to $36 \mathrm{~V}, 14 \mathrm{p}$ 400 m
each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to to $82 \mathrm{~V}, 14 \mathrm{p}, 27 \mathrm{p}$ each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 48 p each. Clip to increase 1.5 W rating to 3 watts (type) 266F) 4p. SIEMENS

S-DEC

Unsurpassed for "breadboard work can be used inde Components just push into plug holes and connect automatically. Slot for control T-DEC
For more advanced work with 208 contacts in 38 rows
Will take one 16 lead carrier £2.88. (Carriers supplied

MULLARD AMP Sensational 'Once in a Lite-time
Offer' Inrepeatable once are clenred. The amplifler is
made by Mullard. Carries maker e Gurantee. In neat cas
May loe used for Mono
Stereo. Music or off dry battery. car batt. o all who purchase we send copy of Mullard booklet DI

INTEGRATED CIRCUIT BARGAIN A parcel of integrated circuits made by the fannouse Plessey
Company. A once-in-a-liftetime offer of Microelectronic
devices well ICs all new and perfect, first-grade device, defnitely not AP amplifiers. the 5 th is a of thenolithic NP single silicon chip Regular price of parcel well over $\& 5$. Full circuit details of the 1 Cs are included and in addition you will receive at
ist of many different ICs a vailable at bargain prlces 25 p parcel only $£ 1$ post paid.

GOOD COMPANION
 We can now offer these again: in modular version using Mullard A.F
and I.F. Modules and Radiomobile
Permeability Tuner Should Permeability Tuner. Should not take
nore than an evening to make.
Carinet size approx. 1 in. wide $\times 8$ in. high \times 3iu. deep. Complete
assembly instructions- $\mathbf{~} 4.75$ plu MIGHTY MIDGET
Probably the finest possible radio, as described in Practical
Vireless, January 73. All electronic parts £2 post pald

DRILL CONTROLLER New 1 kW model.
Electronically changes speed from approximately 10 revs. speeds by finger-tip control.
Kit includes all parts, case everything and fall ingtruc-
tions £1-50, plus 13 p post and
ingurance. Made up ander also

1 CHIP RADIO Ferranti's
superhet.
Supplied dee
complete with circuits $£ 1 \cdot 25$ each. 10 ior $£ 11$.
HI-Q TUNER COMPONENTS
For experimenting with the 2NAld MW coll 65p. Air apaced tunlng condenser
$\begin{array}{ll}\text { Kit No. } 3 & \begin{array}{l}\text { Hound MY and LW coils 85p. }\end{array} \\ \text { Aprrit roce with witz wound wow motion drive 8in. }\end{array}$ Permeability turier with fakt and
drive and LFY loading coils. 45 .
 12 VOLT 15 AMP
POWER PACK
POWER PACK
This comprises double-wound $230 /$
240 V mains tranaformer with full 240V mains trangormer with full
wave rectifler amd 2000 m/f/d
Amoothing. Price $£ 150$, plug 20 p moothing. Pri
post $\&$ packing.
Heavy Duty Maina Power Pack. Output voltage adjustable irom $15-40 \mathrm{~V}$ in steps-maximum load 250 W -that is
from 6 amp at 40 V to 15 mpp at 15$)^{\text {. This }}$, Theally is a high power heavy duty unlt with dozens of workshop uses. change push on leads. Silicon rectiflers and smoothing b. BALANCED ARMATURE UNITS These Capsules are lin. In diameter and lin. speaker so can be used in
circuits. 33 g . Ten for E 3 .
MUSIC ON TAPE
A further buy enables us to offer these at an even lower
price-namely 85, each or $\overline{0}$ for 22.50 . Send for list of
titleas. We can't repeat when pold out MICRO SWITCH
5 amp changeover contactis. 10 p each.
10 for 90 . 15 amp. Model $12 p$ each or

FLEX CABLE SNIP
 20 WATT INVERTER
Smart and Brown- For wan lighting or camplng, etc.
Will IIght a 2 ft. 20 watt standard fluoreacent tube from a

MAINS RELAY BARGAIN

QUICK CUPPA

Mlat Immersion Heater. 350W. 200/240V. Bolls full cup in about two minutes. Use any tocke bar bamp food, etc. $£ 1 \cdot 25$, post and manance 20 . Jug model also avallable £1,50

DOOR INTERCOM hem without leaving bed or chair call push button, connector with
 pectial anip price $23 \cdot 50$ plua 20 p DIGITAL DISPLAY
 DIGITAL DISPLA

0

DISTRIBUTION PANELS
Just what you need for work bench or kb . $4 \times 13 \mathrm{amp}$
sockets in metal box to take stem. dard 13 amp fused
plugs and onfoff switch with nerond warning light. Supplied complete with 7 feet of heav cable. Wired up ready to work, $£ 22.25$ less plug; plus 25 p F. \& P .

CAPACITOR DISCHAFIGE CAR IGNITION

 CENTRIFUGAL BLOW'ER Miniature mains iriven blower centrifugal type blower unit
by Woods, powerful but specially built for quiet runningdriven by cuabloned induction motor with specially buitt 4. $\times 4^{*}$. When mounted by its, flange air is appown into the equipment but to suck air out roount it from the centre using a clamp. Ideal for cooling electidical equipment, or fitting into
a cooker hood, film drying cabi net or for remoring flux omioke when soldering etc., ctc. A rea । bargain at £1 85 .

FIRE ALARM BELI
Mains operated. Really loud ring 6 in . gong. Size approx. $12 \mathrm{in} . \times 6 \mathrm{in} . \times 41 \mathrm{in}$.
 10 AMP DIMMER CO NTROL
For the control of lighting on rtage or in a studio or for control of portalle equipment in
 Zn/Oft switch MOD MOULATION MOTOR

Could alfin be used to open ventilators,

particula rly suitable for remote control. Made by satchwell. Fssentially a reversi bte geared motor fitted with internal bimit switches to stop it
 or open a long line of ventilatoru. To operate this motor you put the
$\overline{0} 0$ cycle anply rith changeover contacts con ild antomatically regulatc the temperature in a growing house, chicken hatchery, etc. An furlicator on the motor graduated $0-10$ shows the grate of open or close. Also internally fitted is a variahle resistor, wires from this to a volt meter would give Satchuell, our price conmplet e with step down Transformer is $£ 15$. motor if hoth direct from

Mainis coperated, turro
moto r and impeller. Motor is type. Pressed steel housing contains but vir tually no noise. Approx. dimenslons 10 in in. wide \times ande fir fow

PROCESS TIME CCINTROLLER
Made by Smiths. Motorise, 1 and mains driven in metal case with Ilast front and chrome st rround. Covers a period of 18 hours on for a period of 15 min nutes to 3 hours. Probable cost irom
Sniths over $£ 0$. Speclal snip price $£ 160$ plus 20 p post and
nsurance.

'S SNIP

Psychdelic Lighting can ibe yours with our niains motor driven cam switch. 6 canis
drive 8 suitches slots in camm make and break 10 amp. of combinations posiitle to give all sorts of effects. 8witches can handle more than insurance.

ELECTRIC TIME SWITCH

 Made by Smiths these are A.C. mains operated. NOT LOCKWORK. Ideai for mountling on rack or shelf or can be built into box with 13A socket. 2 completely adjustabl witch circuit on or off during these periods. $£ 2.50$ posi and ins., 23p. Additional time contacts 50 p pairMULLARD AUDIO AMPLIFIERS
ainks and con nection tags, data supplied.
Model 215351 筑W power output 85 p .
 EP9001 twin channel or stereo pre amp. $21 \cdot 60$

I HOUR MINUTE TIMER

Made by famous Smiths company, these have a large clear dial, size $4 \frac{\mathrm{ln}}{} \mathrm{ln} . \times 3 \mathrm{in}$., which can be set in minutes up to 1 hour. After preset period the bell rings. Ideal for processing, a memory logger or, by adding simple lever, would operate
micro-switch. $\mathbf{2 1 - 1 5}$.

DIGITAL COUNTER TIMER
Very stable and rellable crystal controiled clrcult.
Capable to work in excess of 18 MHz . Constrection simplified by uae of 15 integrited circuits. Complete ist 30p.

PP3 BATTERY CHARGER

almost 3 times the $11 f e$ can be obtalned from PP3 battery if you re-charge
only 50 p.
SUB-MINIATIJIRE MOVING COIL MICROPHONE
 as used in behi nad the ear deaf aids Acts also as earpho ne size only in. $x \sin$. \times in. Regular price probably $£ 3$ or more. Our
price $£ 1$. Note the se are ex-equlpment but if not in perfect. working order they will be price anged.

PROTECT VALUABLE DEVICES
FROM THERIAAL RUNAWAY OR OVERHEATING me protected. Simpl y make the contact thermostat part oi the heateink. Motors and equipm ent generally, can also be adequately protected by having thermostat a in strategic spots on the casing. Our contact or with the dial rem oved range setting is between 80 to 800 deg. F. Price
50 p .

J. BULL (ELECTRICAL) LTD.
 (Dept. W.W.) 7, Park Street, Croydon, CRO 1 YD

 Callers to $102 / 3$, Tamworth Road, Croydon

C. T. ELECTRONICS
 267 ACTON LANE, LONDON, W. 4 5DG 01-994 6275

EDDYSTONE
770 Communication receiver . . . $\mathbf{~} 240$

PV-120UE SONY
V-120UE Broadcast Standard Video Taper Recorder P.o.A.
2 in. Tape. 625 Lines 2 Audio Ćhannels.
 RS-T $1900-4340 \mathrm{MHz}$
Tuning Units Analyser and 2 Plug-in FP AVo FP 5K Oscilloscope Camera with Polaroid attachment - suits all Toktronix
Scopes
$\mathbf{£ 1 6 0}$
 Valve Characteriatlc Teater TELONIC 268 HD. 3 Sweep Generator 0 -200 MHz $£ 120$ WAYNE-KERR
B. 701 VHF Admittance Bridge .. P.o.A. M. 131 Video Noise Level Meter P.o.A RATIO METER UNIT
Suitable for testing and calibrating attenuators mounted in Standard Signa! Generators.
Frequency Range 0. $1-3000 \mathrm{MHz}$.
Brand new, complete with all accessories and full operating and m aintenance manuals Original cost over $£ 2,00$. Only $£ 550$.

AHODE AND SCHWARZ SMLM-8N4105 Power Signal Generator
 ZOD-BN3562 2-G Diagraph 300-2400MHz USVF $8 N 15285 / 50$ Selective UHF Voltmete
for TV Bands IV andin

SURPLUS ELECTRONICS

 WAREHQUSE 20-24 Beaumont Rd, London, W. 4 (1st floor) NOW OPEN EVERY DAY 10 a.m. 5 p.m. PUBLIC and TRADE WELCOME Thousands of bargains at ridiculous prices: Oscilloscopes: Test Meters, Resistors. Capacitors, Components, etc., etc. WURPLUS TEST GEAR, COMPONENTS, SEMICONDUCTORS ETC. CG. 200 Millimicrosecond Pulse GenCDU 110 Double Beam Oscilloscope DC-20MHz. Brand new, complete with $\mathrm{CDU}^{\text {manual }} 120$ Double Beam Oscilloscope DC-60MHz. Brand new. complete with manual 150 Daso CDU 150 Double Beam Oscilloscope
DC. 35 MHz . Brand $\mathrm{DC} \cdot 35 \mathrm{MHz}$. Brand new complete with
manual

灰
 - 0
 TEKTRONIX 545A

O. 0 :

A aero servies lio

AC/DC TAUT SUSPENSIONS

multimeters
(Made in U.S.8.R.)
Large selection of multimeters with
prices ranging from 24.85 to 210.50 .
Please write for full Catclogue.

SINGLE BEAM D.C.OSCILLOSCOPE TYPE C1-19

5 fin, tube gliving display atze of $80 \times 50 \mathrm{~mm}$.
Passband DC to 1 mHz .
Sensitivity 2 my per cm .
Sweep range $100 \mu \mathrm{sec}$ to 10 sec per stroke.
. Internal time-base and
Long aiterglow bcreen.
Input attenuat or 1-10-100-1000 times. PRICE £98

> SOLID STATE HGET EMITTING
> TO18 outline. Brightness 500 FT-L at 50 mA . Forward voltage. 1.65 to 2 V . Diode gives bright red plnpoint of light when supplied from a 2 V source. Lent diameter 0.170 in . PRICE 50.85 .

HARD-TO-GET TYPES

Falves	
\$1.50	EM81
$81 \cdot 65$	GZ33
21.00	$\mathrm{XCl2T}$
21.25	12AD6..
21.00	6146B ..
TRANSISTORS	
21.00	AUY10

HIGH CURRENT THYRISTORS BTX47-1000R; 1000V 11.5A. BTX47-1200R; 1200 V 11.5 A

SILICON POWER RECTIFIERS BY101 450 p.l.v. 1.1A.
BY105 800 p.i.v. 1.1A
BY127 600 p.i.v. A1.

ZENER DIODES
1 watt 5%, aerles BZX61: 7.5 to 68 V .
2 watts 5%, serles BZX70: 10 to 27V.
5 watts 10%, series D816: 22 to 47 V .
5 watts 10%, series D817: 56 to 100V.
-_-
IN \& FOR HANDLING AND PORTAGE.
NO C.O.D. ORDERS ACCEPTED.
MINIMUM HANDLING CHARGE 80.15

FULLY GUARANTEED

 ${ }^{5}{ }^{45}$ 12ave 2 -

 \begin{abstract} ${ }_{725 \mathrm{~A}}$ \end{abstract}

 FIRST QUALITY VALVES

please note that valves listed above are not necessarily of u.k. Origin
Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
A.R.B. Approved for inspection and

WE WANT TO BUY:
special purpose valves. please OFFer us YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS YACANT : $£ 9.00$ per single col. inch.
LINE advertisements (run-on): 50p per line (approx. 7 words), minimum two lines.
BOX NUMBERS: 25p extra. (Replies shohid be addressed to the Box number in the advertisement, c/o
Wireless World, Dorset House, Stamford Strect, London, S.E.1.)
PHONE : Allan Petters on 01-261 8508 or 01-928 4597

```
Advertisements accepted up
12 p.m., THURSDAY, MARCH
8th, for the APRIL issue
subject to space being available
```


MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecom munications measuring instruments. The work is varied and will enable technicians with experience of r.t. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement provides employment combined with prospects of advancement, not only within these grades but into other technical and supervisory posts within the Company at Luton and St. Albans

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone, quoting reference WW 174 for application form to

Mr. M. Leavens, Works Manager
Telephone: Luton 33866 , or
Mr P Elsip. Personnel Officer
Marconi Instruments Ltd Longacres, St. Albans, Herts
Telephone: St. Albans 59292

Member of GEC-Marconi Electronics

PRODUCT ENGINEER (TELEVISION)

A vacancy is open at the Amersham (Bucks.) Distribution Centre of Thorn Television Rentals for an Inspector with a good knowledge of receiver and component test procedures and the servicing of colour and monochrome television sets.
The position offers an interesting variety of technical work directly concerned with the sampling and testing of television receivers and associated equipment for the purpose of maintaining a high standard of Quality Assurance.
Good salary according to age and experience. A compretiensiye Company Pension and Insurance Scheme is available.

Apply in writing giving qualifications and experience co:-

BOX No. R/ST,
 THORN TELEVISION RENTALS,

14 BERESFORD AVENUE, WEMBLEY, MIDDLESEX, HAO IRJ

ATV NETWORK LIMITED

has a vacancy in BIR MINGHAM for an

ENGINEER

APPLICANTS should possess a good knowledge of television engineering, practical experience of broadcast equipment being an advantage. A knowledge of film projection equipment is desirable but not essential.

Salary will be in the range $£ 1.938$ to $£ 2,318$ per annum.

Application forms may be obtained by writing to:-

HEAD OF STAFF RELATIONS ATV NETWORK LIMITED ATV CENTRE,
 BIRMINGHAM B1 2JP.

Please quote vacancy number 16 .

UNIVERSITY OF SOUTHAMPTON DEPARTMENT OF CHEMISTRY

Electronics

 TechnicianApplications are invited for the post of Technician (non-established) to operate a nuclear quadrupole resonance (NQR) spectrometer. Applicants should possess ONC or an equivalent qualification in electronics and have relevant general experience (specialised experience in NQR is not expected). If desired there will be opportunities for further study to obtain HNC. The salary will be on the Grade 3 scale $£ 1,539$ to $£ £ 1.794$ per annum. Applications, in writing, stating age, qualifica tions and experience and giving the names of two referees, preferably previous employers, should be sent to the Deputy Secretary's Section (Ext. 2400), The University, Southampton, SO 95 NH , as soon as possible. Please quote reference WW/229/73/T.
[242]

Shore jobs for Radio Officers.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on £1,350 $-£ 1,710$, depending on age, with annual rises up to $£ 2,310$ (compulsory pension contributions are included in these amounts). In addition you would receive payments that can be as much as $£ 300$ or more a year for atten dances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's
General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to The Inspector of Wireless Telegraphy, IMTR, Wireless Telegraph Section, Union House, St. Martins-le-Grand, London, EC1A1AR

TEST GEAR ENGINEERS

Due to the continued growth in the demand for high quality audio products, it becomes necessary to enlarge our Test Gear Engineering Department.
Successful candidates will be responsible for the development and maintenance of test equipment used in the production testing of radio, radiogram and unit audio equipment.
Applicants should preferably have experience in this or similar field in the electronics industry and may well hold C. \& G. Radio and T.V. Servicing or O.N.C. Electronics.

Salary will be negotiated at the time of interview and applications, setting out career details to date, are required initially.
Please apply to:

```
PERSONNEL MANAGER, BRITISH RADIO CORPORATION, 43/49 FOWLER ROAD. HAINAULT, ILFORD. ESSEX.


DYNATRON RADIO LIMITED

\section*{DEVELOPMENT ENGINEER}
required to join our Team of Engineers working on audio equipment and receiver design projects.

Suitable applicants should be qualified to H.N.C. Level or to an equivalent technical standard and have sound practical experience in the radio industry.

Please, write, stating qualifications, age, experience and salary expected to:

\section*{THE PERSONNEL OFFICER, DYNATRON RADIO LIMITED}

St. Peter's Road, Maidenhead, Berks. SL6 7QY.


The activities of G \& E Bradiey Ltd. include the development and manufacture of a unique range of electronic instruments and medical equipment. We also provide the most comprehensive maintenance, repair and calibration service in the U.K.
The continuing expansion of this service has created vacancies for Electronic Calibration Engineers who are capable of maintaining a wide range of tele-
communications, radar, microwave, ECM systems and all types of electronic test equipment.
Practical experience in this work is of greater importance than academic qualifications, and competent engineers will be offered interesting, rewarding and well paid employment with good promotional prospects.
Salaries, related to experience will be in the range of \(£ 1,900\) to \(£ 2,100\) per annum.

A LUCAS COMPANY

For more details please telephone our Personnel Manager on 01-450 7811. G \& E Bradley Ltd., Neasden Lane, London N.W. 10.

\section*{RADIO OFFICERS}
DO
YOU
HAVE \(\quad\left\{\begin{array}{l}\text { PMG } 1 \\
\text { PMG } 11 \\
\text { MPT } \\
2 \text { YEARS OPERATING EXPERIENCE }\end{array}\right\}\)\begin{tabular}{l} 
POSSESSION OF ONE OF THESE \\
OUALIIIS YOU FOR CONSIIERAION \\
FOR A RADIO OFFICER POST WWITH THE \\
COMPOSITE SIGNALS ORGANISATION
\end{tabular}

On satisfactory completion of a 7 -month specialist training course. successful applicants are paid on scale rising to \(£ 2.365\) p.a.; commencing salary according to age - 25 years and over \(£ 1,664\) p.a. During training salary also by age. 25 and over \(£ 1,238\) p.a. with free accommodation.

The future holds good opportunities for established status, service overseas and promotion
Training courses commence at intervals throughout the year. Earliest possible application advised.
Application only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

Full details from

\author{
Recruitment Officer (TRO.2.) \\ Government Communications Headquarters Room A/1105 Oakley Priors Road \\ CHELTENHAM Glos GL52 5AJ \\ Telephone: Cheltenham 21491 Ext 2270
}

\title{
Test and Quality Engineers
}

Expansion in EMI's Electronics and Industrial Operations at Hayes, Middlesex, has created a wide range of opportunities for both junior and experienced test and quality engineers in projects involving the most up to date techniques and facilities.

Vacancies exist in the following project areas:-
\(\square\) Airborne and Ground Radar.
\(\square\) T.V. Cameras and Studio
Equipment.
\(\square\) Defence Electronics Svstems.
\(\square\) Computerised X-Ray Equipment.
\(\square\) Microelectronics.
We offer competitive salaries, a good
contributory pensions scheme, plus real prospects for career development. If you are aged at least 21 , technically qualified, with previous electronics quality assurance experience, why not write or ring for an application form:R. N. L. Black, Personnel Department, EMI Limited,
135 Blyth Road, Hayes, Middlesex. Tel.: 01-573 3888, Ext. 2887

\section*{AGRICULTURAL RESEARCH COUNCIL INSTITUTE FOR RESEARCH ON ANIMAL DISEASES}

\section*{COMPTON, NEWBURY, BERKSHIRE}

\section*{ELECTRONICS TECHNICIAN}
required to work on maintenance of scientific apparatus and design and manufacture of small prototype units as used in the microbiclogy and biochemistry fields. Experience in nucleonic counting equipment an advantage. Per:manent position for a good practical man capable of working on his own. Hostel capable of working on his own. Hostel
accommodation availabie. Salary ONC/ accommodation avaliable. Salary ONC/
HNC level \(£ 1,405\) p.a. at age 20 to \(£ 1,850\) p.a. at age 28 , to a ceiling of \(£ 2.090\) p.a. plus superannuation allowance of \(5 \frac{1}{2} \%\). Applications with curriculum vitae and names and addresses of two referees should be submitted to the Institute Secretary at the above address, quoting vacancy No. 143.
[2423

\section*{MEDICAL PHYSICS TECHNICIAN III}
required to join a small group concerned with servicing, development and research in medical electronics. Minimum qualification is ONC in electrical or electronic engineering plus appropriate electronics experience, preferably in a hospital.
Salary scale \(£ 1728\) rising to \(£ 2205\)
Please apply in writing, naming two referees, to:
THE HOUSE GOVERNOR
THE LONDON HOSPITAL
(Whltechapel) WHITECHAPEL, LONDON, E1 1BB
[2405

\section*{ENGINEERS}

Sound Development Ltd. require two young engineers to form part of small flexible team engaged in design and installation of professional audio and broadcast systems, and maintenance of own recording studios and mobile equipment. Must be prepared to turn hand and most things.
Salary in region of \(f 1,500\) p.a. Salary in region of \(\mathrm{E} 1,500 \mathrm{p} . \mathrm{a}\).

Contact: Harry Day on 01.586 4488
[ 2443

Slough College of Technology Department of Engineering

\section*{LECTURER I}

\section*{IN RADIO AND T.V. SERVICING}

Required to teach in Radio, T.V. and Electronics Mechanics and Technician Courses. Applicants should hold CGLI Radio \& T.V. Servicing Certificate and have had good indusServicing Certificate and have had good indus-
trial experience. Teaching experience desirable trial experience.
Salary on Burnham Technical Scale, viz. £1,500- \(£ 2,524\) plus additions for qualifications and training. Removal expenses up to t15 may be paid in approved cases.
Further particulars and application forms obtainable from the Vice Principal, Slough College of Technology. Wellington Street. Slough SLI IYG, to whom completed forms should be returned within 14 days of the
appearance of this advertisement.

\section*{ANTENNA DESIGN \\ and \\ DEVELOPMENT ENGINEER}

Electronic design and development engineers are required to join an expanding company engaged in the design and development of antenna systems and R.F. feeder line components. The work covers siting assessment, the design and manufacture of antennae and associated components and systems, function testing in the H.F., V.H.F., U.H.F. and Microwave spectrums.
We design, develop and manufacture antennae for use on aircraft in addition to ground and seaborne systems and applicants with some aircraft experience would receive early consideration. Applicants of all levels of qualifications and experience are required.
Salaries will be negotiable and commensurate with experience.
The company is situated in a delightful rural setting, one mile from Witney Oxfordshire.

Apply by letter:

\section*{H. R. Smith (Technical Developments) Limited, New Mill, Crawley Road,} Witney, Oxfordshre.

\section*{INDIVIDUAL}

To take an active part in expanding my small London based outfit. This is an excellent opportunity for a person who has a thorough technical background in audio. Must be willing to contribute in accordance with the demand manufacturing professional quality high power manufacturing professional quality high power sound systems.
person.
Write giving full background to:
martin audio ltd JUBILEE STUDIOS COVENT GARDEN LONDON WC2 E8BE

\section*{MEDICAL ELECTRONICS TECHNICIAN}
(preferably graduate with industrial experience)
To work in new Teaching Hospital and Medical School as part of team evaluating drugs in man under laboratory and clinical conditions. Successful applicant to operate and maintain a wide range of electronic monitoring equipment and will be encouraged to pursue research interests in the design field. Interest in computer techniques an advantage. Starting salary \(£ 1,752\) plus London allowance.
Apply: The Secretary, Dept. of Pharmacology, Charing Cross Hospital Medical School (Fulham), Fulham Palace Road, London, W6 8RF.

\title{
Electronics Test Engineers
}

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF UHF radio-telephone equipment before customer delivery : applicants must therefore have experience of fault finding and testing electronic equipment, preferably conmunications equipment. Formal qualifications while desirable, are not as important as practical proficiency Armed service experience of such work would be perfectly acceptable. Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.

These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs A E Darkin at
Cambridge Works, Elizabeth Way, Cambridge CB4 1DW
Telephone: Cambridge 51351.
or Mrs C Dawe at
Colne Valley Road, Haverhill, Suffolk
Telephone: Haverhill 4422.

\section*{SEMICONDUCTOR APPLICATIONS}

FERRANTI

\section*{have vacancies in their}

\section*{APPLICATIONS LABORATORY}
for engineers to assist in the development and applications of descrete semiconductor devices.
AREAS OF RESPONSIBILITY:
Engineering Service to Marketing
Technical Liaison with Device Development
Circuit Design
Preparation of Application Reports
New Product Evaluation
Application Service to Customers
Qualifications required are a degree or HNC in Electronics or Applied Physics and a good knowledge of basic transistor circuitry.

Application forms may be obtained from T. J. Lunt,
Staff Manager, Ferranti Ltd., Hollinwood, Lancs.
Please quote reference ES/JAW/W2414

\section*{Field \\ Service Engineers Hayes,Middlesex}

EMI Service, the Installation and Maintenance Division for EMI Sound and Vision Ltd., requires experienced field service engineers for their Hayes based factory.

The positions require a sound electronics background and relevant experience in one of the following fields:-
\(\square\) Marine Navigational aids including marine radar.
\(\square\) Instrumentation tape recording system.
\(\square\) Digital tape recording systems.
\(\square\) Numerical control of machine tools.
Salaries are realistic and in each case will be related to individual capability and potential.

Please write or telephone for an application form, quoting "EMI Service" to: R. N. L. Black, Personnel Department, EMI Limited, 135, Blyth Road, Hayes, Middlesex. Tel. OI-573 3888 Ext. 2887

\section*{Medicovision}

We require the services of a young man to join a small team of television experts who are based at Welwyn Garden City and who spend some of their time giving educational demonstrations to members of the medical profession in varipus parts of the country.

We look for candidates with sound knowledge of black and white television and some experience with colour. They must be able to drive.

Pay and allowances will be in accordance with those expected from a major pharmaceutical company.

For further particulars and an application form please apply quoting reference \(M T V / H\) to the Personnel Officer

\section*{ROCHE}

Roche Products Limited Welwyn Garden City Hertfordshire

\section*{TEST ENGINEERS}

Electronics - Hampshire \(£ 1200\) to \(£ 2000\) per annum

We are part of one of the world's largest and fastest growing instrumentation groups.

We wish to recruit a number of technician engineers to test precision electronic instruments. Our products include digital voltmeters, oscilloscopes, data loggers, dynamic analysis instruments, high frequency synthesisers and radar systems.

Applicants should have an appreciation of electronics equivalent to an H.N.C. or Final C and G education and it is essential that they have a minimum of two years industrial experience, testing similar equipment to that outlined above.
Application forms should be obtained from the Personne Services Manager. The Solartron Electronic Group Limited, Victoria Road. Farnborough. Hampshire. Tel: Farnborough 44433


\section*{CRANFIELD}

\section*{Short Course}

\section*{on}

\section*{MICROWAVE LABORATORY PRACTICE}

\section*{7th-11th May 1973}

A predominantly practical course of instruction in coaxial line, waveguide and mircostrip methods for scientists and engineers whose work is being influenced by the wider application of microwaves.

Past experience shows that the course is ideally suited to the needs of the non-electrical specialist as well as the electrical or electronic engineer about to enter the microwave field.

To ensure personal tuition and practice the number admitted to the course will be restricted to 16 .

Fees covering tuition and full board and accommodation \(£ 50\).
Further information from:
THE REGISTRAR (SHORT COURSES),
CRANFIELD INSTITUTE OF TECHNOLOGY, CRANFIELD, BEDFORD, MK43 OAL.
Telephone: Bedford 51551 (0234-51551), Ext. 284. Telex: 825072.

\section*{CITY OF LONDON POLYTECHNIC}

\section*{TECHNICIAN}

A vacancy now exists for a Technician in the Department of Physics. Applicants must passess appropriate qualifications in the repair and maintenance of electronic equipment and should preferably have laboratory experience.

Salary (subject to review)
Within the range \(£ 1,137\) (age 21) to £1,557 plus \(£ 174\) London Weighting Allowance, according to age and qualifications.

Please write to the Head of the Department of Physics, City of London Polytechnic, 31 Jewry Street, London, EC3N 2EY, stating full details and enclosing the names of two referees.
[2389

\section*{ELECTRONIC SERVICE}

Office Machine Company has the following vacancies:
- Senior Service Engineer to assist Workshop Manager. must have experience of repairing digital printed circuit boards. preferably electronic calculators, good electronic knowledge and experience in a Service Department. Salary \(\mathbf{~} 2.000\) plus and L.V.'s.
Workshop Service Engineers to repair calculator printed circuit boards. Good basic electronic knowledge required and experience in
a Service Department. Salary \(\mathbf{£ 1 . 7 5 0}\) plus and
L.V.'s.
- \(=\)

\section*{Apply to:- Mr. V. Knight,}

Automatic Business Machines Ltd. Wyfold Road, Fulham, S.W.6. Tel: 3853311

\section*{Communications} Associates Limited
have vacancies in our Internal Service Department and Test Department for qualified and experienced

ELECTRONIC TECHNICIANS
Please telephone Mr. Donaldson, Technical Manager, at Exeter 70333 for an appointment.
| 2401

\section*{Electronics Engineer \({ }_{\text {canounate }}\)}

A graduate electronics engineer is required to join a small team in the BioEngineering and Medical Physics Unit (University of Liverpool and United Liverpool Hospitals) dealiffg with most aspects of medical electronics instrumentation in The United Liverpool Hospitals.

A successful applicant with suitable academic qualifications will be made an Honorary Research Assistant in the University and have the opportunity to undertake work leading to a higher degree.
Salary will be on the Whitley Council Scale for Medical Physicists (Basic Grade): \(£ 1278\) ( \(£ 1566\) with 1st or 2 nd class honours degree) rising to \(£ 2370\) by annual increments.
Further information and application form obtainable from The Secretary, The United Liverpool Hospitals, 80 Rodney Street, Liverpool L1 9AP to be returned by 16th March, 1973.

\section*{BENCH SERVICE ENGINEERS Feltham - Ascot Road Bedfont}

We require Bench Service Engineers with previous experience of TV (Monochrome and Colour), Radio, Hi-fi and Tape Recorders for our Central Service Division. Preference will be given to holders of City \& Guilds qualifications, though sound practical experience may outweigh formal qualifications.
Earnings will be in the range \(£ 1,600-£ 2,200\) depending on qualifications and experience. In addition there are L.Vs, a Staff Purchase Scheme and a Contributory Pension Plan Hours are 9 a.m. - 5.30 p.m. Monday to Friday.
We would be interested to hear from experienced Engineers, who wish to work with products that are renowned for quality and reliability
Write with details of past experience and current salary to
Personnel Manager.
SONY (UK) LIMITED, Pyrene House, Sunbury-on-Thames, Middlesex.


\section*{ALLOTROPE LIMITED}

Audio Equipment Specialists

\section*{REPRESENTATIVE}

Applicants should be fully conversant with studio mixing desks, microphones, and studio techniques.
Based London, W.1. Salary to match experience and qualifications.
Apply in writing-to :
ALLOTROPE LIMITED, 90 WARDOUR STREET, LONDON, WIV 3LE.

UNIVERSITY COLLEGE, GALWAY

\section*{ELECTRONICS SENIOR TECHNICIAN}
required for Department of Physics. Duties include the construction and maintenance of electronic equipment and assisting in laboratories. Minimum qualification equivalent of Advanced City and Guilds Certificate and 3 years experience as a technician.

Salary: \(£ 1,737\) to \(£ 2.013\) with noncontributory pension scheme and 4 weeks holidays.

Written applications stating age, qualifications, experience and references should be sent to the Secretary, Department of Experimental Physics, University College, Galway, Ireland, before 15th March.

12390

Multi-National Advertising Agency requires a

\section*{Technical Assistant or Assistant Engineer}
to operate and maintain colour telecine and V.T.R. equipment.
Candidates should be between the ages of 22-30 and should have "C" and "G" Telecomms, or equivalent and preferably with experience on this type of equipment. Salary is negotiable.

Write to:
Mr. R. Martin, J. Walter Thompson Co. Ltd., 40 Berkeley Square,
London, W1X 6AD.
Telephone: 01-6299496

\section*{SPANISH COMMUNICATIONS EQUIPMENT MANUFACTURER} Applications are invited from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:

\section*{NORTRON}

Fernando el Católico, 63
Madrid 15
SPAIN

\section*{TECHNICALTRAINING OFFICER (COMMUNICATIONS)}

\section*{The Company}

We are an expanding company within the Pye of Cambridge Group and offer a wide range of products including public and private address systems, telephone equipment, time control, fire alarm and CCTV. Our field service engineers and technical salesmen are provided with an extensive support service which includes product training in a market of rapidly changing technology.

\section*{The Job}

This is a new position to assist the Personnel and Training Department in the analysis of product training needs, and the development of means of meeting those needs including off the job instruction. The Training Officer will specialise in intercom and telephone systems.

\section*{The Man}

Preferably with previous experience as a training officer or instructor
Will have an extensive knowledge of electronics
Preferably will have experience in the communications industry
Willing to spend time away from home
Age 28+
He will report to the Personnel Manager
Please write giving brief details of your career and background to John Bell, Personnel Manager,
Pye Business Communications Limited,
Cromwell Road, Cambridge CB1 3HE.
Tel: Cambridge 45191 (Ext. 293/4).

A well established British Company has an immediate requirement for SUPERVISORY staff in the Republic of South Africa, and invite applications from suitably qualified personnel with experience in the maintenance of short-wave broadcasting transmitters of up to 250 KW and associated equipment.
These appointments offer:
* Staff positions
* Attractive salaries
* Prospects of permanent employment in South Africa
* Free travel for families
* Settling in allowances
* Medical aid insurance scheme

Write giving brief details to Box Number WW 2436

\section*{PETERBOROUGH AND STAMFORD HOSPITAL MANAGEMENT COMMITTEE \\ Appointment of X-RAY EMGIIEER}

To be based at Peterborough Hospital and become a member of a small team engaged upon the commissioning. maintenance and repair of a wide range of Diagnostic \(X\)-ray Apparatus.
Candidates should possess H.N.C. (Electronics) H.N.D. or equivalent but consideration will be given to suitable candidates with O.N.C. who are proceeding to a higher qualification.

Salary scale offered is:-
£1911-£2508
Possession of a car is essential, travelling expenses being payable in accordance with the agreed scales
for Health Services staffs.
Application forms and job description obtainable from the Group Engineer, Peterborough District Hospital. Thorpe Road, Peterborough, to be returned completed within fourteen days of the appearance of this advertisement.

\section*{TELEVISION}

New, vigorous and successful television systems company very urgently requires dynamic sales and installation engineers. Successful applicants will join excellent team offering unlimited opportunities. Senior and middle grade men needed. Wide experience vital. Write or ring:

Technical Director,
TV EYE LTD.,
23 Victoria Street, Windsor, Berks. Tel: Windsor 51966


Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct from-America, course, you train as a Computer Operator in only 4 weeks

Pay prospects? \(£ 2500+\) p.a.
After training. our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.

London Computer Operators Training Centre London Computer Operators Training Cen
P. 15 Oxfocd House. \(9-15\). Oxford Street. W. 1 Telephone: 01-734 2874

Dept. P15. Piccadilly Plaza, Manchester Telaphone: 061.2362935

\section*{REPAIR/CALIBRATION ENGINEERS £1850 to \(\mathbf{£ 2 0 0 0}\)}

\section*{If you are an enthusiastic Elec} tronics Test or Service Engineer in a rut come and talk to Jerry Cook about the wide range of Test Equipment you could help us repair and calibrate.
Contact:

\section*{I. D. COOK}

CALIBRATION SYSTEMS LTD.,
CAMBERLEY, SURREY
Tel: Camberley 28121
[2435
APPOINTMENTS CONTINUED ON PAGE 99

\section*{* \(\star\) \\ ARTICLES FOR SALE}

CUT THE COST OF SERVICING WITH LONG LIFE TOSHIBA VALVES
look at these prices and make yourself pounds more profit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & Goods & P. Tax & Total & Type & Goods & P. Tax & Total \\
\hline DY. 87 & 22.0 & 6.5 & 28.5 & PCF. 802 & 33.0 & 9.5 & 42.5 \\
\hline DY. 802 & 22.0 & 6.5 & 28.5 & PCL. 82 & 30.0 & 8.5 & 38.5 \\
\hline E8.91 & 14.5 & 4.0 & 18.5 & PCL. 84 & 26.5 & 7.5 & 34.0 \\
\hline ECC. 82 & 24.0 & 7.0 & 31.0 & PCL. 85 & 30.5 & 8.5 & 39.0 \\
\hline EF. 80 & 25.0 & 7.0 & 32.0 & PCL. 86 & 30.0 & 8.5 & 38.5 \\
\hline EF. 183 & 29.5 & 8.5 & 38.0 & PFL. 200 & 41.5 & 12.0 & 53,5 \\
\hline EF. 184 & 29.5 & 8.5 & 38.0 & PL. 36 & 45.5 & 13.0 & 58.5 \\
\hline EH. 90 & 27.0 & 7.5 & 34.5 & PL. 84 & 22.0 & 6.5 & 28.5 \\
\hline PC. 900 & 22.5 & \(6 \cdot 5\) & 29.0 & PL. 504 & 45.0 & 13.0 & 58.0 \\
\hline PCC. 89 & 31.5 & 9.0 & 40.5 & PL. 508 & 50.0 & 14.5 & 64.5 \\
\hline PCC. 189 & 33.5 & 9.5 & 43.0 & PL. 509 & 80.0 & 23.0 & 103.0 \\
\hline PCF. 80 & 27.0 & 7.5 & 34.5 & PY. 88 & 25.5 & 7.5 & 33.0 \\
\hline PCF. 86 & 33.0 & 9.5 & 42.5 & PY.500A & 50.0 & 14.5 & 64.5 \\
\hline PCF. 801 & 34.5 & 10.0 & 44.5 & PY. 800 & 23.0 & 6.5 & 29.5 \\
\hline
\end{tabular}

\section*{SEMI-CONDUCTORS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price t & Type & Price c & Type & Price E \\
\hline AC. 127 & 0.15 & BC. 109 & 0.11 & BF. 173 & 0.20 \\
\hline AC. 128 & 0.12 & BC. 113 & 0.22 & BF. 178 & 0.35 \\
\hline AC. 141 K & 0.30 & BC. 116 & 0.22 & BF. 179 & 0.40 \\
\hline AC.142K & 0.30 & 8 BC .117 & 0.20 & BF. 180 & 0.30 \\
\hline AC. 151 & 0.20 & \(8 \mathrm{BC}\). & 0.18 & BF. 181 & 0.30 \\
\hline AC. 154 & 0.18 & BC. 132 & 0.25 & BF. 184 & 0.21 \\
\hline AC. 155 & 0.16 & BC. 135 & 0.20 & * BF. 194 & 0.08 \\
\hline AC. 156 & 0.19 & BC. 137 & 0.25 & BF. 195 & 0.15 \\
\hline AC. 176 & 0.19 & BC. 138 & 0.40 & BF. 197 & 0.17 \\
\hline AC. 187 & 0.17 & BC. 142 & 0.26 & BF. 200 & 0.25 \\
\hline AC.187K & 0.20 & BC. 143 & 0.30 & BF. 218 & 0.35 \\
\hline AC.188K & 0.20 & *BC. 147 A & 0.08 & BF. 224 & 0.35 \\
\hline AD. 142 & 0.45 & *BC. 1478 & 0.08 & BF. 258 & 0.40 \\
\hline AD. 149 & 0.37 & *BC. 148 & 0.08 & BF. 337 & 0.28 \\
\hline AD. 161 & 0.34 & BC. 149 & 0.12 & BFY. 50 & 0.22 \\
\hline AD. 162 & 0.34 & BC. 153 & 0.20 & BFY. 52 & 0.20 \\
\hline AF. 114 & 0.22 & BC. 154 & 0.20 & BSY. 52 & 0.25 \\
\hline AF. 115 & 0.20 & * BC. 157 & 0.10 & BY. 126 & 0.20 \\
\hline AF. 116 & 0.20 & * BC. 158 & 0.08 & BY. 127 & 0.12 \\
\hline AF. 117 & 0.22 & BC. 159 & 0.12 & E. 1222 & 0.30 \\
\hline AF. 118 & 0.42 & BC. 173 & 0.18 & -1N. 60 & 0.04 \\
\hline AF. 139 & 0.37 & BC. 1788 & 0.20 & - OA. 91 & 0.045 \\
\hline AF. 178 & 0.43 & BC. 182 L & 0.12 & -OA. 95 & 0.05 \\
\hline AF. 180 & 0.40 & BC. 183 L & 0.12 & - OA. 202 & 0.075 \\
\hline AF. 181 & 0.40 & BC. 214 L & 0.15 & OC. 71 & 0.15 \\
\hline AF. 239 & 0.45 & BD. 124 & 0.70 & OC. 72 & 0.15 \\
\hline BA. 145 & 0.14 & BD. 131 & 0.45 & BU.105/02 & 9.70 \\
\hline *BC. 107 & 0.10 & BF. 160 & 0.20 & 2SC. 1172 B & 2.00 \\
\hline *BC. 108 B & 0.09 & BF. 167 & 0.19 & - Minimum & or 5 \\
\hline
\end{tabular}


Valves packed individually
Subject to settlement discount 5\% of "Goods" content 7 days and 2\% monthly.

New Price List from 11th Oct., 1972.


Gencral Price List, January, 1973
CPC,
3 Moor Park Avenue, Preston PR1 6AS, Lancashire

Telephone: Preston (0772) 56347.
Telex: 67129

\section*{60p COMPONENT PACKS}

350 carbon resistors \(60 p\) (15p); \(2005 \%\) hi-stab 60p (12p); 1001 and \(2 \% 60 \mathrm{p}(8 \mathrm{p}) ; 150\) mica, poly, ceramic. caps. 60 p (8p); 75 electrolytic 60 p (15p); 150 foil, paper, polyester 60p (15p). Any 5 packs \(£ 2.50\) ( 25 p ). CASED AMPLIFIERS: \(2 \times\) ECC83 EL84, EZ80 on \(12 \times 5 \times 3 \mathrm{in}\). chassis in oak-faced cabinet \(14 \times 13 \times 9 \mathrm{in}\). with \(7 \times 4 \mathrm{in}\). \(3 \Omega\) speaker and single motor solenoid operated non-standard tape deck. \(20 \mu \mathrm{Vi} / \mathrm{p}\) for \(2 \mathrm{Wo} 0 / \mathrm{p}\). Mains operated, tested with circuit in good condition. \(£ 3\) ( \(£ 1\) ). Computer panels, loads of transistors inc. power types. diodes. R's, C's, pot cores etc. Some boards broken but good value at 31b. £1 (25p), 7lb. £2 (40p). CROFON 1610 light guide, 64 filament in sheath E 1 per metre, \(5+80 \mathrm{p} .10+70 \mathrm{p} .8\) assorted panel metors \(£ 2.60\) ( 40 p ). Ferric Chioride 1lb. 40p (15p). 101b. \(£ 3.50\) ( 50 p ). Capacitors. listed in \(\mu \mathrm{F} / \mathrm{v}: 8 / 12,8 / 150\). \(75 / 6,0.5 / 150,4 / 200,0.5 / 250,0.25 / 350\), all \(4 \mathrm{p}: 0.4 / 100\) 550/6. 0.1/350 3p; 2/150. 25/25, 40/100 5p; 8/350, 300/150, \(20+20 / 300+50 / 50 \quad 8 p ; 8 / 450, \quad 80+80+20 / 350 \quad 10 \mathrm{p} .7 \mathrm{lb}\). bargain parcels, contain R's, C's, diodes, transistors, pots. switches, \(x\) tals, PC boards, atc., atc. Amazing variety \(£ 2\) ( cp ) REED UNITS: 31 reeds mountad round drum, mganet inside. also plugs. R's etc. \(\mathbf{£ 1}(\mathbf{2 5 p}\) ). 2 for \(\mathbf{£ 1 . 6 5}\) (35p). 10X Crystals, 1000 's from \(2-9 \mathrm{MHz}\). 15 p sach or 8 for £1. TEST GEAR: TF144G Sig. gen. \(85 \mathrm{kHz}-25 \mathrm{MHz}\) from f 12 . TF1168 High discrimination oscillator \(£ 30\). Lots of odd units at shop for callers, inc. scopes. PSU's, sig. gens, AVO's etc. SAE list. enquiries. Post in brackets. small parts 3p.

GREENWELD ELECTRONICS (W12)
24 Goodhart Way, Wesl WIckham. Kent. 01-777 2001
Shop at 21 Deptford Broadway SE8. Tel 01-692 2009.



\section*{matipus alaatronin}

All Brana
Sarvice.
DIGTTAL INDICATDRS 5 V type, 7 segment 0.9 OP. socker. \& red filtar fi.39 LED type f 3. CALCULATOR batt/mains 8 digit 4 function f3s.50.
LIGHT EMIT DIODE with pañel clip \& data 35 p ULSTRASONIC TRANSDUCERS tramsmitírceive t2.

\section*{stered hi.fi}

QUAD AUDOD: 4 chan from 2 chan matixing iC (not xoverl) E 2.87 .

 complete 4 digit kit with case \(£ 21\).
integrated circuits
741 DIL 28p. 709 To5 19p. DIL 28p. 710 33p. 748 33p. 72359 g . voltage REGULATOR: \(1 \frac{1}{3}\) A 5 to \(20 V\) \& 1.87 . PHOTO detector/ \(/ \mathrm{mmp}\). 37 p .
74N THL Gates 7400/1/2/3/4/5/10/20/30/40/50 15p. 7413 29p. 7470/72 \(29 p .7473 / 74 / 7837\) p. 7447 f1.33. 7490 83p. 7492 67p. 7412149 p. \(74141 \mathrm{f1}\).
SEMICONOUCTORS
ZENERS. BZY88 400 mW 11 p. IN4001 4p. IN4O04 8p. IN 14145 p. 2 N 305540 p . \(\mathrm{BC107}\) 8p. BC108 7p. BC109 8p. FET2N3819 28p. AC125/6/7/B AC127/8 AC187/8, AF117 ail 14p. A0161/2 35p. BC177/8/9 16p. BC182/3/4 110 BC212/3/4 12p. BCY70 15p. BFY50/1/2 17p. TIS43UJT 29p. 2N706 12p. 2N2926Y 9p. 2N3053 18p. 2N3702/3/4/5/6/7 11p. 2N3708/9/10/11 9p. CAPACITORS: 25 V 10:50/100/200 \(\mu \mathrm{F} 5 \mathrm{p}\). \(1000 \mu \mathrm{~F}\) 13p. 22pF to \(1 \mu \mathrm{~F} 3 \mathrm{p}\). free catalogue sae. pgp 7p. C.w.o. discount \(10+10 \%\). P.O. BOX 29 , BRACKNELL, BERKS.


\section*{Warehouse Must be Cleared}

RASCAL type MA168 Transitorlsed Diversity switch. Allows reception of MCW' ors. RT, 2 , \(\begin{aligned} & \text { receivers separately or together, twin meters for }\end{aligned}\) signal and recelver tevels, BFO tuning, phone output.

\section*{unused in maker's}

AVO Valve testers portable CT160 £45. Cossor 1035 Oscilloscopes \(£ 30\). Triodiac (Variac) oil cooled 0-270v 35 amp e28. 500 watt constant voltage transformers \(\mathbf{£ 1 8}\) Ditto 125 watt £8. \(240 / 110\) volt \(3 \mathrm{KVA} £ 15\) Untested bargains all clean units. TF144/G £15. CT53 £10. TF428B/1 £6. CT54 £10. BC221 £12. TF886Q Meter \(£ 30\)
all carriage extra. Loads of surplus to clear large S.A.E.
Portable Gieger Counters (Contamination meter No 1 )

\section*{CASEY BROS.}

233-237 Boundary Road,
St. Helens, Lancs.

\section*{UNISELECTOR SWITCHES}

24 volf, 10 position, 3 bank, c/w suppressing condenser and supplied c/w base plug in lacks. Uniselector only Ditto, as above, 12 position, 3 bank. Uniselector only £1.35, p. \& p. 25p. C/w base plug in jack, £175, p. \& p 25p.
Ditto, as atove, 25 position, 6 bank. This uniselector is fitted to a front panel and has a distribution board fitted in the rear and is wired from the uniselector to the distribution panel. Limlted number only. £275 each, p. \& p. 50 p.

24 voit, Radiospares type 22 , relays \(c / w\) bases, fitted to small panel ( 2 per panel), 60p per pair, p. \& \(p\). 15 p . Glass Fibre plug in digital boards. New. Designed to take divide by 10 I.C's and nixl tube \(1 C\) driver, \(\mathrm{c} / \mathrm{w}\) CCT instructions, 28p each, p. \& p. 3p.
New Numerlcal 0.9 indicator tubes, c/w data, £1 35 each, D. \& p. 6p.
Plastic Holders designed to hold the above tube and will fix to the PCB as above, \(8 p\) each, D. \& p. 4 p .

\section*{G. T. F. ELECTRONICS}

\section*{9 Ernle Road, Calne, Wilts. SN11 9BT.}

Phone: Calne 3360. 2392

\section*{RANK-KALEE \\ WOW \& FLUTTER METERS}

One or Excellent condition
BURGESS LANE \& CO. LTDD.
Thornton Works, Thornton Avenue Chiswick, London, W.
\(01.9945752 / 5953\)

\section*{SITUATIONS WANTED}

E facilities seeks electronic asssembly or repair work, Eacilities seeks electronic asssembly or repair work, \begin{tabular}{l} 
salary or contract. Suit smam runs or modifications. \\
Corbett, Ivy Cottage, Barham Green, Ipswich. \\
\hline 2319
\end{tabular} ENGINEER that has developed a precision digital Elock, that is interfacable with computers, desires either a sales agent, or a firm to manufacture and sell the unit under a licensing agreement. Write in
Enylish or German to Box No WW 2419 .
SITUATIONS VACANT

\section*{SITUATIONS VACANT}
\(\mathbf{A}^{\text {SSISTANT Chief Electronics Enginecr. Duties will }}\) A include servicing all types of audio domestic appliances, plus sample spec. reports on imported
Hi Fi cquipment, the use and familiarisation of test Hi-Fi equipment, the use and familiarisation of test cquipment. Experience on FM/MPX and tape recorder techniques is essential. Successful applicant will work in close liaison with the chief Service Engineer. Remuneration according to experience and 1473. Personnel Manuger, Harris Overseas Lid. Harvard House, 14 Thames Road, Barking. Essex.
PERSONAL ASSISTANT with technical and commercial ability wanted for managing director of
London TV rental business of the highest standing; London TV rental business of the highest standing; established over 46 years. A suitable applicant would be trained to take increasing charge during the gradual retirement of the present managing director. Excepstatinu ape and details of backeround and carecr. Box No. WW 2416 .

Due towarehouse Clearance we have a tew low powered F.M.
VHF WIreless Station TYpe A. A.F Y. No. 88. Contained In two units. (1) Transmitter/Receiver. (2) 12 volt Power Unit and L.F. Amplifier.

The TX and RX are contained in a water proof dlecast Alloy Case, using a total of 14 valves. operates on four switched
Channels which are Crystal controlled. All 8 Crystais are supplied, and are the same in each set.
Therefore all sets will transmit and receive to each other, provided each are switched to the same channel out of the
The stations are supplied with Mounting Carriers, 2 Vertical Whip Aerlals, plus Aerial Base, Spare Vaives, Buibs, Mounting Screws. Connectors etc.
including the Operating Manual giving all details, plus circuits of the Wireless set.
All above trems are individually boxed and wrapped, placed in ABSOLUTELY BRAND NEW. Made by Ecino for the ABSOLUTELY BRAND NEW, Made by Ecio for the
Government no expense spared, few only available at \(\varepsilon 9.50\), Carrlage £2.
A. Type. AN/SGGIA latest Government release of these
sought atter units, housed in metal case aporax, size 8 in \(x\) 19 in. \(\times 16\) in. deep. Using a total of 11 valves, supply voltage 115 volts \(50 \mathrm{c} / \mathrm{s}\).
Containing
Meter switched for checklna, send and receive
 used ex-Government condition. Few only avallable at \(\mathbf{\text { 7 }} \cdot 50\).
CREQUENCY SHIFT CONVERTOR AND
COMPARATOR
yoe A ressa-8 for Diversity use or single channels \(£ 15\)

Recent ministry reiease of this scarce and valued unit, this is
basslcly the VHF/UFF version of the Bc221. Range 100 mgs. to
tos.000 mgs.
10 the
Distributed over approx. 16.500 Dial divisions, each meter (same as the BC221) contains its own book of Calibration
Charts, plus circuits and instruction Book. Charts, plus circuits and instruction Book.
Contained in Metal Shockproit Transit case, with suppiy
Cable, Supply 115 volts \(\pm 10 \% 50 \mathrm{c} / \mathrm{s}\). Output on headphones ab Meter in the front panel. Accuracy is \(0.01 \%\), \(0.002 \%\) on
or the Crysta! Calibrator check points. Sensitivity for Rif Signal
input 500 Micro Volts to 1 Volt. A plus is al so provided for Video output for connection to an Oscilloscoope. RF Input connection is via coaxial Cabie or standard Wave Guide. Limlted number avaiable \(£ 18 \cdot 50\) carr. \(£ 1 / 50 \mathrm{p}\).
CREED TELEPRNTER MOTORS
For available brand new E2, post 25p.
424 Bradiord Road, Batley. Yorks. Phone: Batley 7732

\section*{TV Line out-put transformers}

Replacement types ex-stock.
For "By-return" seryice, contact:
London: 01-948 3702 .
Tidman Mail Order Lid., Dept. W.W. W.
Valves Tubes, Condensers, Resistors, Rectifers Frame out-put Transiormers also stocked. Callers welcome

\section*{BBC2 TVs \(£ 7.50\) Including
Delivery}

Thorn 850 Chassis with UHF Tuner. Exx-rental sets sold
complete but unserviced, with repolished cabinets. Rush complete but unservice
f 7.50 Cash with Order.

\section*{U.H.F. TUNERS}
 Chassis. \(£ 2 \cdot 50\) each, \(C\) W. \(0 .\). postage included Send S.A.E. for list of TVS, Tubes, Valves, etc. Allow 10-14
days delivery.

TRADE DISPOSALS
Midlands \& North: 1043 Leeds Road, Bradford 3
Scotland: Unit 5, Peacock Cross Industrial Estate Cornwall: Pencoys, Four Lanes, Redruth


\section*{Bradiey CT 471 attenuator boards \(£ 3.00\) each. SMITHS
CRYSTAL Controlled calibrator boards ( 7 transistors) for CRYSTAL Controlled callibrator boards (7 transistors) (1or
20, \(50,100 \mathrm{MHz}\). Will drive standard divide by 10 I. s . s .

 and 27.025 MHz . 70 P each. Erie ele
U.F. 50 volts \(\frac{1}{2}\) in. X 1 i in. 50 p each. \\ ELEKON ENTERPRISES \\ 224 A St. Paul's Road, Highbury Corner, London, N. 1}

SMALL but rapidly expanding company requires Audio Electronics Designer to work on develop-
ment of professional recording equipment for Motion Picture and TV Industry in a young and enthusiastic team. Salary by negotiation plus monthly profit niques an advantage. Box No. WW 2391


\section*{PARTRIDGE ELECTRONICS}

PRESENTOUR NEW!


CONSOLETTE MIXER
AVAILABLE IN KIT FORM OR READY TO USE. FIVE OR TEN WAY MONITOR FACILITIES. MONO OR STEREO. FOR DETAILS REF CL.M.

PARTRIDGE ELECTRONICS
23-25 HART ROAD, BENFLEET, ESSEX SS7 3PB.


STUDIO SOUND JAN 73
\(-0.5 \mathrm{~dB} 20 \mathrm{~Hz}-20 \mathrm{KHz}\)


EsTABLISHMENT ENGINEER required by large Euniversity physics department to take charge of group responsible for electrical and mechanical services. Grad. I.E.E. C.E.I. Part 2 or equivalent plus wide-ranging experience and practical ability essential, scale rising to \(£ 3,825^{\mathrm{p} . a}\). seven weeks' holiday p.al plus public holidays; advanageous pension scheme. Possibility of one year tenancy of transit accommoda-
 Oxford. Parks Road, Oxford.
TECHNICIAN for Electronics Section concerned with medical educational television and audio tape recording. Starting salary up to \(£ 1,300\) depending ONC can be arranged. Duties include operation and maintenance of equipnent and tape duplicating. Further details wriee or phone J. Cooper, Audio Further details wriee or phone J. Cooper, Audio
Visual Communication Dept., British Medical Association, Tavistock Square, London WCIH 9JP. Tel: \({ }_{01-387} 4499\)
\(\mathbf{W A N T E D}^{\text {Alectronics Maintenance Engineer. To }}\) work with touring group. Interesting job.
Oualifications or references required. Write Box Qualification
WW 2430 .

\section*{ATATOLSSFOA SALE}

A ARVAK ELECTRONICS 3-channel sound-light A converters. £17. Strobes. £16. Rainbow Striohes, \({ }_{9096} 132.74\) Bedford Avenue. Barnet. Herts. \({ }_{[23}\)

\section*{LOUGHBOROUGH TECHNICAL COLLEGE}

Principal: F. Lester, B.Sc., Ph.D., F.R.I.C.

\section*{Department of} Electrical Engineering
Applications are invited for places in Septem-
ber 1973 on the following full-time course:DIPLOMA IN RADIO

\section*{TELEVISION AND ELECTRONICS}

Applicants for this three-year course should expect to gain 'O' level or good CSE grades in Mathematics and a Science subject and be keenly interested in electronics.
A large element of practical work and two periods of industrial placement are included. the City and Guilds Technicians Certificate in Radio, Television and Electronics.

Further details may be obtained from : G. M. Allen, B.Sc.(Eng), D.L.C., C.Eng.',

Head of Department of Electrical Engineering Loughborough Technical College,
Radmoor, Loughborough, Leicester. LE1I 3BT Tel: 5831
[2386

\section*{TRAIN FOR SUCGESS WITH ICS}

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's. Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS (Dept 734 EI), Intertext House, London SW8.
[2296

COLOUR, UHF and TV SERVICE SPARES. Colour and UHF lists available on request. Varicap/Varactor UHF Tuners ELCl043 £4.50, VHF
Varicap Tuners for Band 1 and Band 3 £2.85, Varicap Tuners for Band 1 and Band 3 £2.85,
Salvaged Varicap Tuners \(£ 1.50\) incl. Connection \(\underset{\mathrm{P} / \mathrm{P}}{\mathrm{D}} \mathrm{D}_{25} \mathrm{P} / \mathrm{P}\) 25p. Delay Lines DL20 £3.50, DL1 \(£ 150\), PHILIPS G6 Convergence Cone 50 p . P/P 15 p. PHILIPS G6 Convergence Control Panel, Single Standard, 16 Controls Switches, etc. \({ }^{\text {S }} 5.00\), P/P 25p. £6.50, P/P 30 p . G8 Decoder Panels, almost complete, incl. I/C, \(£ 2.50, \mathrm{P} / \mathrm{P} \quad 25 \mathrm{p}\). BUSH CTV25 surplus Time Base Units, Frame, Linc \& EHT, £3.95, P/P 80p. GEC 2040 surplus Panels suitable for parts, Decoder \(£ 3.50\), Time Base \(£ 1.00\), RGB \(£ 1.00, \mathrm{P} / \mathbf{P}\) 25 p. Mullard type colour Scan Coils plus latest convergence coils for electronic control of static convergence £5.25, P/P 35p. PYE CT70 Colour LOPT assy. incl. EHT output and focus control \(£ 3.50, \mathrm{P} / \mathrm{P} 35 \mathrm{p}\). P/P 10p. Colour Crt. Base 25p, P/P 25 p . B9D valve bases for colour valves and PL500 series \(10 \mathrm{p} p / \mathrm{P} 5 \mathrm{p}\) UHF tuners transistd \(£ 285\) incl series 10 p , P/P 5 p. ndicator \(£ 3.95 .6\) Position transistd. push button drive. UHF/VHF basic integrated tuner \(£ 3.25\). Cyldon UHF valve tuners \(£ 1.50\); all tuners \(\mathrm{P} / \mathrm{P}\) 25p. Transistd. UHF/VHF IF panels \(£ 4.75\) (or salvaged \(£ 2.50\) ) P/P 25p. MURPHY \(600 / 700\) series complete UHF conversion kits incl tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly £7.50 P/P 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cct. \(£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}\). THORN 850 Dual standard time base panel \(£ 1.00 \mathrm{P} / \mathrm{P} 30 \mathrm{p}\). PHILIPS 625 IF amplifier panel incl. valves for KB featherlight, Philips 19 TG 170 GEC 2010 etc. \(£ 2.50\). PYE miniature incremental for 110 to 830. Pam and Invicta \(£ 1.95\), A.B. miniature with UHF injection suitable KB, Baird, Ferguson, 75p, Ekco, Ferranti, Plessey push button with UHF injection \(£ 1.00\), all tuners \(P / P \quad 25 p\). New fireball tuners Ferguson. HMV, Marconi £1. \(90 \quad \mathbf{P} / \mathbf{P} \quad 25 \mathrm{p}\). Large selection LOPTs. Scan coils. FOPTs available for most popular makes. PYE/LABGEAR transistd. Masthead UHF Booster \(£ 5.25\). Power unit \(£ 4.25 \mathrm{P} / \mathrm{P} 25 \mathrm{p}\), or setback battery operated UHF booster \(£ 4.25, \mathrm{P} / \mathrm{P} 25 \mathrm{p}\). MANOR SUPPLIES, 172 WEST END LANE, LONDON. N.W. 6 (No. 28, 59,159 Buses or W 64 GOLDERS MANOR DRIVE LOALI). MAIL ORDER: Tel. 01-794 8751.

COURSES

learn how to become a radio-anhateur in contact with the whole world. We give skilled preparation for the G.P.O. licence


BLOCK CAPS please

APPOINTMEN†S


This progressive company, already leader in the design and installation of P.A. Systems for all aspects of the Leisure Industry, now requires an experienced, ambitious Audio Engineer to design and prepare P.A. System specifications and quotations for installations throughout the UK.

Situated in a rural area of Yorkshire, the company expects the successful applicant to be wholly familiar with current audio equipment, and developments within this field.
Experience in reading and marking up of plans and drawings will also be an asset.

This is an exciting opportunity to command an attractive salary with all the usual fringe benefits including re-location allowance and high potentia! for advancement with a rapidly expanding organisation.
Apply in writing to:- * The Personnel Manager, Tunstall Byers \& Co. Ltd. Moss Road Works, Askern, Doncaster.
Tel. Doncaster 700531


A/D CONVERTOR. Input 999 mV , output 999「「L-compatible pulses, sampled 10 per second. Add +-12 V and 5 V supply, display unit,
lor digital voltmeter etc. Ules stock \(1 \mathrm{C}^{\prime}\) s, plug in on

A NAPR4Y RECEIYER. \(40-1000 \mathrm{mHz}\) fitted mains A PP. \& QD910 Solartron memory scope. Oficrs. Ring Byfield 60329 .
A VO's Transistor meggers. Crank Meggers A Continuity Tester at reasonable prices to elear Po. A. Murphy U.H.F. low band R/T sets, 12 V ,
Dash Mount \(25 / \mathrm{KCS}\) cumplete less Xials. Contact Dish Mount 25/
Worthing 205504.
A. 1679 PULSE GENERATOR, TTL output, P.R.F A 10 mHz to 10 Hz . pulse width 50 nS - 50 mS . Normal or compliment single shot, LED indicator.
\& 18 inc. Batteries. Mains version \(£ 23\). R. Palmer, 86 \& 18 inc. Batteries. Mains version £23. R. Palmer, 86
Willowicld, Harlow. Essex.
[2415 \(\mathrm{B}_{2}^{\text {UiLD }}\) in x in a in. x any length. DE . W. W. Ltd. ( \(\mathbf{W}\).). \(\mathrm{B}_{2}\) in. \(\mathrm{X}^{2 \frac{1}{2}}\) in. \(\mathbf{x}\) any length. D.E.W. Ltd. (W.).
Ringwuod Rd., Fernwood, Dorset. S.A.E. for leatlet Write now-Risht now.
 Horizon Systems, Park Hill, Ampthill, Beds. Phone Ampthill 2102. C.W.O. 12408
 teleprinter s-wire 525 . Pye Cambridge AMiodv \(\$ 30\) Cel. Luton 25595. (LASS FIRRE P.C. BOARD large supplies avail\(\mathrm{G}_{\text {able. }}^{\text {LASS FIRRE P.C. BOARD large supplies avail- }}\) 2 p per 3 sq. inches (under 1 it ). 75 p per sq. ft (over 1 ft ). \(1 / 16\) in double sided one counce copper 1 p per sq. inch (under 1 ft ). f1 per sq. ft. (over
1 ft ). Please add 10 p per sq . foot postage and pack1 ft). Please add 10 p per sq. foot postage and pack-
ing. We can cut to your size at 1 lp per cut. Solid ing. We can cut to your size at 1 p per cut. Solid
State Lighting, The Firs, Smallworth Lane, Garboldisham, Diss, Norfolk.
LENSES, prisms, mirrors, beamsplitters, telescopes, our 48 page lists. H. W. English, 469 Rayleigh Road our 48 page lists. H. W. English, 469 Rayleigh \(\underset{[2147}{\mathrm{RRad}} \mathrm{H}, ~\)
Hutton. Brentwood. Essex. METROPOLITAN VICKERS transformer. Serial No. T1074843. KVA.
\(415 / 240\). Amperes \(55.6 / 96.2\). Phases 3 . Frequency 50 (no lod Apply with offer: Mrs. Pinckney, 45 Black Lion Lane, PRINTED Circuit Board in 6 widths: 2 in., \(2 \frac{1}{2}\) in. 16
3 in.. \(3+\) in., 4 in. and 5 in. \(x\) any lengih: 16 in. single-sided fibreglass, \(2 p\) per 3 sq. in. Doublesided ip per sq. in. \(P\) \&
quotations for other sizes and
quantity J. Knopp
CM7
KLY. Tel. Braintree 2
2525dens, Braintree, Essex,
115

TF144G \({ }_{£}^{£ 12 .}\) CT 537 transistor \(\& 3\) diode tester 15 to 30 volt 5 amp PSU \(£ 12,50\) CT 82 Noise

UHF TRANSISTORISED TUNERS 50p, VHF suitable ext. speaker cabinets, sop. C. P. Trading, 15 Cavour Road, Sheerness, Kent. 12409 VACUUM is our speciality. New and second-hand
rotary pumps, diffusion outfics, accessories, rotary purnps, diffusion outfiss, accessories,
coaters, etc. Silicone rubber or varnish outgassing
 VHF KIT \(80-180 \mathrm{mHZ}\) receiver, tuner, convertor
 Gate. Worcester. WRI 2DT
VISIT auto traction, thousands of bargains in TR/TX tele tephone equip. meters, motors, relays. 8929489 27A Artagon Road, Twickenham, Middx. VHE RADIO TELEPHONE EQUIPMENT. Vanguard. \(12 \%\) kc's. Working condition. High and Kow band \(£ 35\) to \(£ 45\). Export inquiries welcome.
Spa-Radio, 337 High Street, Cheltenham, Glus. Phone 54303 . KHz MSF Rugby and 75 KHz Neuchat 12376 \(6 \mathbf{O}_{\text {Receivers. Signal and Audio outputs. Radio }}^{\mathrm{KHz} \text { MSF }}\) \begin{tabular}{l} 
compact units. Two available versions \(£ 35\) and \(£ 60\) \\
Toolex. Bristol Road. Sherborne ( 3211 ), Dorset. \\
\hline 121
\end{tabular} 40,000 BULBS M.E.S 4 volt \(3 \mathrm{amp} 11 \mathrm{~m} / \mathrm{m}\) 5.000 S.B.C. 6 volt 36 watt double contact case lots 24
216 ES cge 75 p or offer for the lot. Muantities of
veadight Lamps in stock. Wilkinson's, \(\begin{array}{llll}24 \text { volt Headlight Lamps in stock. } & \text { Wilkinson's, } \\ \text { L2420 }\end{array}\)

\section*{ARTICLESWANTED}

A Vo 8 WANTED. Any condition. Any quantity. A Send for packing INS. Huggett's Ltd., 2 Paw-
sons Road. W. Croydon, SY. PLessey mK 4 etc. Painton \& Pye Ether ConElectors also clean Plessey cut offs. J.M.G.
Elecronics. 16 A High Street, Crawley. Sussex. Crawley 17722. Smallfield 2403.

WE PURCHASE
Electronic and Telephone Equipment and
Components.
TOP PRICES PAID
for your redundant and surplus stock
T.W.C. LTD.
147 The Broadway, London, NWG 7EA
Telephone: \(01-203\) 2814

Plugs, sockets, Valves, Motors, Meters, instruments, Semiconductors. Have Cash Will Travel Anywhere. S.E.S., 67 London Road, Croydon. \(01-6888\)
1512. \(\mathbf{R}^{\text {ODENE stepper with reset required. Any vollage. }}\) K.B. Autonsatics, 85 Kinssdale Gardens, Drighlington, K.B. Autonatics, 85 Kinysdale Gardens, Drighlington,
Nr. Bradford, Yorkshire. Drig 2155.
[2452 CURPLUS components and equipment wanted, especially resistors and capacitors. 01-777 2001.
WANTED urgently Bleeper system preferably with operation, to handle up to 12 bleepers. Any make operation, to hande up to Yorkshire LS21 1 HX . Tel, 094344531 , 112
 Electronics, Ltd. Ashville Old Hall, Ashvitle Rd, 163
London, E. Ley. 4986. WANTED, televisions, tape recorders, radiograms,
new valves. transistors, etc.-Stan Willets, 37 High St. West Bromwich, Siaffs. Tel. Wes. 186,173
WANTED
Oscilloscope,
50 MHz
Bandwidth Wouble beam. D.C. amplifier, Sensitivity preferably 50 mV Generator, \(300-550 \mathrm{MHz}\) or to 1 GHzz
Phone details to: \(572 \quad 0933\). Phone details to: 572 0933.
WIRELESS WORLD issues wanted July 1971 to 12348
WOR

Street, West Bromwich, B71 3RG.

\section*{BOOKS}

SHORT WAVE MAGAZINE, now in its 36th year Radio Amateur transmission and reception includin Radio Amateur transmission and reception including
regular news features (DX, VHF, Clubs and SWL) egular news features sonstruction and operation of and the design, construction and operation of price 25 p at newsagents. Specimen copy 30 p post
free, first class. Annual subscription \(£ 3.00\) (or \(£ 2.75\) secund class posting) year of 12 issues.-Circulation Dept. (W) Short Wave Magazine Lid. 55 Victoria Sirce, London SW1H 0HF. (Tcl: 01-222 5341/2) WORLD RADIO TV HANDBOOK 1973, published December. \(£ 2.80\), Post (first class)
10p. Order
Erom David
EH1 1 HP .

ESSENTIAL BOOKS
HOW TO MAKE WALKIE TALKIES FOR LICENSED
 HANDBOOK. Contains circuits, data, illustrations for
British/USA recelvers, transmitters, transireceivers. With British/USA recelvers, transmitters, trans/receivers. With
modifications to sets and test equipment. Latest impres sion E3. 25 Including postage. nust for the student, aechnician. Engineer.
how the answers are arrived probe of problem
likeludes every nkell 10 be tound in eiectronicss, including semi-conductors
amplifiers, aerials. filters, CRTs, computors, power supplies etc. 307 pages. Oniy 90 D, Dostage
COSMIC RADDO
WAVES. Start
Astronomy. This big book of 444 pages is an ideal handbook Astronomy. This big and established enthusiast. Numerous
 HANDBOOK OF SATELLITES AND SPACE VEHICLES the sublect areas and problems important in system pre
Ilminary design. Extensive graphical and tabuiar data enable space scientists iechnicians working knowledge. An imposing book. 457 page greater working
\&. 650 , post free.

\section*{GERALD MYERS (WW)}

18 Shaftesbury Street, Leeds LS12 3BT
Extra postage for abroad

\section*{BUSTNESS OPPORTUNITIES}

UNIQUE OPPORTUNITY to start own business spot, wood in highlands of Scotand, popular tourist spot, good train services to Glasgow and London. (I)
ELEC TRICAL and DOMESTIC REPAIRS. Constant demand (2) COTTAGE MANUFACTURE of small electronic gadgets for sale by post. Cottage, all mod cons, for suitable applicant from end of August. Own national backing some capital preferre, nationa backing for right men and women. Origin-
ality and ability to work unsupervised essential. For information write in confidence to Box No. WW 2381. NATIONALLY known company in the field of Public Address require commissioning enyineers someone who likes to work very free-lance. Please
write Box No. WW 2412 .

\section*{CAPACITY AVAILABLE}
\(\mathbf{A}^{\text {IRTRONICS LTD., for Coil Winding-large or }}\) A small production runs. Also PC Boards Assem-
plies.
 enquiries welcomed 9 Walerand Road, London,
SE 13 TPE. Tei. \(01-8521706\). \(\mathrm{B}_{\text {Sample }}^{\text {ATCH }}\) Production Wiring and Assembly to Station Parade, Ealing Common, London, W.5. Tel: \begin{tabular}{l} 
Station Parade, Ealing Common, London, W.5. Tel: \\
\(01-992\) \\
\hline 2976.
\end{tabular} CAPACITY available to the Electronic Industry, Cirecision turned parts, engraving, milling and grinding both in metals and plastics. Limited capa-
city available on Mathey SP 33 JIG BORER. Wrice city available on Mathey Sp33 JiG RORER. Write
 Tel. \(01-985\)
D ESIGN, development, repair, test and small pro-
duction of electronic equipment. Specialist in Duction of electronic equipment. Specialist in ELECTRONICS, 54 Lawford Road. London, N.W.5. 01-267 0201

FOR ELECTRONIC assembly, wiring and complete F inspection and testing facilities: Please contact Multiform Electronics Lid, Teddington, Middx TW11 9NN. Tel 01-977
PRECISION injection moulding electronic industr Phort run specialists. Contact Jack Balzano Senior C.B. Industrial Plastics Limited, 1 Mackintosh Lane C. 9 6AB. Ring 01-985 7057

PRINTED CIRCUITS, quick service, competitive , drilling etc. Short runs Wulcomed. Jamieson s
Yorks. Tel:
(0262) \(4738 / 77877\).

\section*{EDUCATION}

CIE, AMSE, City \& Guilds, etc. Thousands of Exum successes. Postal courses in all branches of Engineering, Prospectus FREE. State subject of
interest: BIET
(Dept. ZL BWW
14), Aldermastion Court, Reading RG7 4PF. Accredited by CACC.

\section*{SCHOLARSHIPS awarded by the INSTITUTION OF ELECTRICAL ENGINEERS}

The Council of the Institution of Electrical Engineers will consider for award this year
Undergraduate and Postgraduate Scholarships with Undergraduate and Postgraduate Schola
a maximum value of E 600 per annum. a maximum value of
The closing rate for the receipt of applications is The closing rate for the receipt of applications is
Ist May 1973 and late applications cannot be considered.
Considered.
Full particulars of the conditions governing the
and Trom:- Ed
The Education
and Training Officer at the
the
Instion of
Plectrical Engineers, Savor London, WC2R OBL.

12431

\section*{NEW GRAM AND SOUND
EQUIPMENT}

GLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-

\section*{RECEIVERS AND AMPLIFIERS
SURPLUS AND SECONDHAND}

HRO R \(\times 5 \mathrm{~s}\), etc., AR88, CR100, BRT400, G209, Ltd., Ashville Old Hall, Ashville Rd., London, E. 11.

\begin{abstract}
SERVICE \(\&\) REPAIRS
TNSTRUMENT SERVICING-Multimeters (Avo,
Taylor S.E.L.), Meggers etc, Quick and competiTaylor S.E.I.), Meggers etc. Quick and competi-
ive guaranteed repairs. V. W. \& E. Smith, 34 Hurst Mi.1 Lane, GLAZEBURY, Warrington. Phone Leigh SCRATCHED TUBES. Our experienced polishing ubes as new again for only \(£ 2 \cdot 75\), plus carriage 50 p. With absolute confidence sent to Retube Ltd. North Somercote, Louth, Lincs, or 'phone 0507-85 300 . 130
CERVICE Sheets (1925-1971) for TV's, Radios, \(\mathbf{S}\) Transistors, Tape Recorders, Record Players, etc.; over 8,000 models available. S.A.E. enquiries: Hamilion Radio 47 Bohemia Road. St. Leonards; Sussex. Tel: Hastings 29066.
SIGNAL generators, oscilloscopes, output meters, wave voltmeters. frequency meters, multi-range
 Lid., Ashvil. 4986.
\end{abstract}

\section*{TAPE HECORDING ETC.}

IF quality, durability matter, consult Britain's oldest tapes. (Excellent tax-free fund raisers for schools.) Modern studio facilities with Steinway Grand.-Sound News, 18 Blenheim Road, London, W.4. 01-995 1661 YOUR TAPES TO DISC-Mono/Stereo. From feaflet. Deroy Studios, High Bank, Hawk Sireet

TEST EQUIPMENT N 3893 HZ to MHZ brand ncw \(£ 85\). List price £171. Nordmende distortion meter KM 394 brand new £85. List price \(£ 170\). Nordmende asymetrical
attenuator Box ELU 381.0 to 900 MHZ brand new £60. List \(£ 72\). Telequipment double beam oscilloscope model D53A DC to 15 MHZ . S/Hand as new perfect £200. Advance
15 HZ
to 200
KHZ
Signal generator model 81A,
S Miracle Radio. Station Approach, Grays, Essex. TUITION
R ADIO and Radar M.P.T. and C.G.L.I. Courses

\section*{VALYES WANTED}

We buy new valves, transistors and clean new components, large or small quantities, all details,
quotation by return.-Walton's. 5 Worcester St . Wolverhampion

\title{
Simple Digital Computing Examples \\ M. S. Gregory, DEng, BE, BA, PhD, FICE, FIE (Aust)
}

The book deals with the basic facts of machine computation and contains a series of problems of graded complexity which demonstrate the computer's ability to do many calculations quickly. It is unique in its elementary approach and will enable the reader to undertake operations on a computer with understanding and confidence. An invaluable introduction for scientists, engineers and students, who now have the opportunity of using a computer to solve problems arising in their work. 040870126970 pages illustrated 1971
\(\mathbf{f 1 . 0 0}\)

\title{
Basic Engineering Craft StudiesGeneral (01)
}

\author{
Edited by
}

\section*{P. H. M. Bourbousson, CIMarE, and} R. Ashworth, CEng, MIMechE, MIProdE

Written for students studying for the City and Guilds of London Institute 500 Courses on Basic Engineering Craft Studies (Part I), this book together with a companion volume covers all the topics required for each of the courses. The General 01 volume contains basic material and should be used in conjunction with the appropriate complementary volume covering the syllabus relating to the required craft or trade bias.
0408000619182 pages illustrated 1971
£1.50

\section*{F.M. Radio Servicing Handbook/2nd Edition}

\author{
Gordon J. King, RTech Eng, MIPRE, FSRE, MRTS, FISTC
}

This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of FM radio receivers in a form helpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straightforward and, as far as possible, non-mathematical.
0408000236206 pages illustrated 1970
£3.00

\section*{Semiconductors: Basic Theory and Devices}

\section*{Ian Kampel}

Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradually progresses through diodes, transistors and the more sophisticated devices that are available today. 0408000406272 pages illustrated 1971
£2.50

\title{
Electroacoustics: Microphones, Earphones and Loudspeakers
}

\author{
(An STC Monograph) \\ M. L. Gayford, BSc., CEng, MIE E, ACGI, DIC
}

This book gives a unique insight into the audio and electroacoustics field dealing in particular with the theory, design and practical realisation of the various types of microphones, earphones and loudspeakers used in sound reproduction, telephony, broadcasting and acoustic measurements. It will be of special value to students, engineers and research workers engaged in telecommunications, broadcasting and sound reproduction.
0408000260300 pages illustrated 1970
£4:50

\section*{Colour Television Servicing}

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
£4.40

\section*{Solid-State Devices and Applications}

Rhys Lewis, BScTech, CEng, MIEE
Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.
0408000503 cased 264 pages illustrated \(1971 \quad £ 3.00\)
\(0408000511 \mathrm{limp} \mathbf{£ 2 . 0 0}\)

\section*{A Simplified Approach to Solid State Physics}

\author{
M. N. Rudden, BSc, PhD, AlnstP, and J. Wilson, BSc, PhD, AlnstP
}

This book provides a broad survey of some of the more important concepts of solid state physics and will be suitable for first year university or technical college students. The approach throughout is essentially qualitative and the aim of the authors is to establish the fundamentals of the subject in as easy a manner as possible. To this end, frequent reference is made to experimental evidence in support of the theoretical concepts.
0408700033 cased 196 pages illustrated \(1971 \mathbf{£ 2 . 9 0}\) 0408700203 limp
\(\mathbf{£ 1 . 7 0}\)

Available from leading booksellers or:

\title{
The Butterworth Group
}

88 Kingsway London WC2B 6AB
Showrooms and Trade Counter
4-5 Bell Yard, London WC2

\title{
cut IT OUT...
}

Do you read Electrical Review over someone's shoulder ? Or hope to borrow a copy sometime ? Or depend on the office copy being passed on to you? If you have any of these bad habits our serious advice is to cut it out - for your own good.
Comprehensive news coverage of projects, people and products . . . the latest in research and development ... business trends, business opportunities .. recruitment - you need to know about all these things - and refer to them.
And each month there is a special survey in which experts provide in-depth analysis of an important area of electricity supply and electrical equipment. Here are two examples of our surveys: Fire Protection and Alarm Systems - February 16:

Electrical Review isn't cheap but it's very good value for money indeed. Make sure you never miss a vital issue...

\section*{...BY CUTTING THIS OUT.}


Company registered in England, registered number 677128, registered office - Dorset House, Stamford Street, London, SE1 9LU.

\section*{This book will make you a lot of money}

\author{
because it's the most
} comprehensive guide to the hi-fi scene going. And we re telling enthusiasts about it with big advertisements in the top audio and music journals. Which means there will be big demand. So order and display big, like you're in the book business. You won't regret it - but hang on to your personal copy!

\section*{HI-FI YEAR BOOK 1973}

1-5 copies: £1.50 each plus 25p postage and packing
\(6+\) copies: \(£ 1.00\) each post free.


\section*{Newnes Radio Engineer's}

\section*{Pocket Book 14th Edition}

\section*{H. W. Moorshead}

A ready reference source for formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate selection of material.
1972192 pp illustrated \(0408000740 \pm 1.20\)

\section*{Sound with Vision}

Sound Techniques for Television and Film

\section*{E. G. M. Alkin}

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
1972288 pp illustrated \(0408702362 £ 6.00\)

\section*{Video Recording}

Record and Replay Systems
Gordon White
This book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, adyantages and disadvantages of the various systems.
1972216 pp illustrated \(0408000856 £ 3.25\)
Obtainable through any bookseller or from
The Butterworth Group
88 Kingsway, London WC2B 6AB.
Trade counter: 4-5 Bell Yard, WC2.

\section*{WMMMFRACTICAL PAPERBACKS \\ NEW \\ FGOM \\ FOULSHAM-TAE}

\section*{FEBRUARY}

ADVANCED RADIO CONTROL
Edward L. Safford, Jr. \(£ 1.00\)
EASY WAY TO SERVICE
RADIO RECEIVERS
Leo G. Sands
£ 1.00
104 EASY TRANSISTOR
PROJECTS YOU CAN BUILD
Robert M. Brown
SOLID-STATE PROJECTS
FOR THE EXPERIMENTER
Wayne Green
£1.20
TEN-MINUTE TEST
TECHNIQUES FOR
ELECTRONICS SERVICING
Elmer Carlson \(£ 1.00\)
TRANSISTOR CIRCUIT
GUIDEBOOK
Byron Wels \(\quad £ 1.20\)
USING ELECTRONIC
TESTERS FOR CAR TUNE-UP
Albert Wanninger \(£ 1.20\)
MARCH
BEGINNER'S GUIDE TO
T.V. REPAIRS

George Zwick £ \(£ .40^{*}\)
DIGITAL ELECTRONICS -
PRINCIPLES \& PRACTICE
Brice Ward
£ \(1.40^{*}\)
ELECTRONIC PUZZLES \&
GAMES
Matthew Mandl
\(£ 1.40^{\circ}\)

HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS
Robert M. Brown and
Paul Lawrence
£1.40"
104 EASY PROJECTS FOR
THE ELECTRONICS
GADGETEER
Robert M. Brown \(£ 1.40^{*}\)
MODEL RADIO-CONTROL
Edward L. Safford, Jr. \(£ 1.40^{*}\)

\section*{APRIL}

125 One-Transistor Projects
Rufus P. Turner \(£ 1.40^{*}\)
INSTALLING \& SERVICING
ELECTRONIC PROTECTIVE
SYSTEMS
Harvey F. Swearer \(£ 1.40^{*}\)
PRACTICAL SOLID-STATE
PRINCIPLES \& PROJECTS
Ken W. Sessions, Jr. £1.40*
RAPID T.V. REPAIR
G. Warren Heath
£1.40*
TEST INSTRUMENTS FOR
ELECTRONICS
(Ed. by) Martin Clifford \(\quad £ 1.40^{\circ}\)
VIDEO TAPE PRODUCTION
AND COMMUNICATION
TECHNIQUES
Joel Lawrence Efrein £1.40*
HANDBOOK OF
SEMICONDUCTOR
CIRCUITS
£ \(1.40^{\circ}\)
*Prices subject to revision
FOULSHAM-TAB LTD. YEOVIL ROAD. SLOUGH.BUCKS.

\section*{SOUND 73 INTERNATIONAL}
the only exhibition in europe exclusively featuring PUBLIC ADDRESS

\section*{AND ALLIED EQUIPMENT}

\author{
Bloomsbury Centre Hotel, Coram Street, Russell Square, London, W.C.I \\ 13-I5th MARCH, 1973 \\ 1000-1800 hrs. DAILY (FINAL DAY 1000 _l 1700 hrs. )
}

Tickets available free of charge from:

> THE ASSOCIATION OF PUBLIC ADDRESS ENGINEERS LTD.
> 6 Conduit Street, London, WIR 9TG

Telephone: 01-493 5256


\section*{8th Edition}

Available fromleading booksellers or:
The Butterworth Group 88 Kingsway, London WC2B 6AB
Showrooms and trade counter: 4-5 Bell Yard, London WC2


\section*{SYNTHESISER?}

Build your own, using Dewtron*PROFESSIONAL MODULES
(*Regd. Trademark)
VOLTAGE CONTROL amplifiers, oscilators, filters, and P-H-A-S-E. MAN-SIZED PATCHBOARD, no cables CASH SAVINGS by buying sets of modules, components, and keyboard. ALL MODULES available separately. Send S.A.E. for details or 15 p for full musical catalogue, D.E.W.Ltd., 254 Ringwood Rd., Ferndown, Dorset

Thanks to a bulk purchase we can offer brand New P.I.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the capes lauly and are not co be 24 -hour despatch service. Should goods not meet with full app
S.P. \(\left\{\begin{array}{llll}3 \mathrm{in} . & 160 \mathrm{ft} . & 10 \mathrm{p} & 5 \mathrm{in} . \\ 500 \mathrm{ft} & 30 \mathrm{p}\end{array}\right.\) S.P. \(\left\{\begin{array}{lllll}53 \mathrm{in} . & 900 \mathrm{ft} & 40 \mathrm{p} & 7 \mathrm{in}, & 1,200 \mathrm{ft}\end{array} \quad \begin{array}{rl}45 \mathrm{p}\end{array}\right.\)

 Postage on all orders \(7 \frac{1}{2} p\)
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.

> STARMAN TAPES
> 28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

> Ashford 52136

WW-104 FOR FURTHER DETAILS



TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R.r also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

\section*{SPECIALISED KITS \\ HIGH STANDARD}

LOW FREQUENCY SOURCE
(to article by J. M. Osborne, W.W. Jan. 73)
A Phase-Locked Loop designer approved kit to professional standards with Glass-Fibre P.C. Board, and all components including Hardware, case, etc. Full constructional details from the designer are included. Reference accurate to 2 parts in 10"! Probably the most economic high precision signal source available. Kit £22.65.
Extra for built and tested only \(£ 6.55\).
FOR FM STEREO ENTHUSIASTS
The best decoder we know-The Motorola Phase-Locked Loop. No coils to align-just one pot to set and no instruments needed. Complete Kit \(£ 3.40\). Built \& Tested \(£ 5 \cdot 40\). Complete Kit \(£ 3 \cdot 40\). Built \& Tested \(\mathbf{E 5 \cdot 4 0 .}\) Version with PSU facilities on plug-in cord
for positive rail of 12 V or more (specify). for positive rail of 12 V or mor
Kit \(£ 5 \cdot \mathbf{2 0}\). Built \& Tested \(£ 7 \cdot \mathbf{3 0}\).
Version with integral power supply for 240 V A.C. input. Kit \(£ 7 \cdot 50\). Built \& Tested \(£ 9.70\).

\section*{Please note}

We are prepared to consider offering kits for any published article-send details for quotation. Our service is unique! ALL communications are acknowledged by return!
Send for our lists including clearance corner, enclose large S.A.E. please.

We welcome enquires and Trade supplied.
Order now for early delivery.

\section*{STUDIO ELECTRONICS}

7 Coppice Hatch, Harlow, Essex Tel. Harlow 25457
REGRET CALLERS STRICTLY BY PRIOR APPOINTMENT AT PRESENT.

\section*{Dielectrics}

\section*{P. J. Harrop, esc, Phd, FinstP}

An up-to-date, comprehensive treatment of this poorly defined yet major class of materials. The subject is developed from the fundamental theory in an integrated fashion employing the minimum of mathematics and electromagnetic theory. It includes the major advances of the last few years.

1972166 pp illustrated cosed 0408703873 £ 3.50 limp 040870388 / \(£ 2.00\)

\section*{Elements of Linear Microcircuits}
T. D. Towers, mbe, ma(Glas), Ma(Camb), B8c(Lond), CEng, MIERE

Based on a series of articles written for Wireless World, the book gives practical guidance on the selection of commercially available linear microcircuit devices, and on the handling of these sensitive circuits within an assembly.
1973116 pp illustrated \(059200077 \times £ 2.80\)

\section*{Newnes \\ Colour Television Servicing Manual Volume 1}

Gordon J. King, RTecheng, mipre, fsre
Provides a study of PAL-encoded circuits of nine basic colour television chassis, describing in depth normal operation of the sets with the object of enabling engineers and students to understand the working of the complex circuitry.
1973240 pp illustrated \(0408000899 £ 4.90\)

\section*{Telecommunication by Speech}

The
Transmission Performance of Telephone Networks
D. L. Richards, bso(Eng), FIEE, CEng, FRss

Presents a comprehensive and co-ordinated account of the principles and practice of telephone communication system design from the viewpoint of transmission performance. It gives an orderly classification of knowledge in each branch of the subject, with extensive references to the literature by means of an exhaustive bibliography.
1973604 pp illustrated \(040870344 \times £ 12.00\)

\section*{The Butterworth Group} 88 Kingsway, London, wC2B 6AB

\section*{Trade counter:}

4-5 Bell Yard, WC2


\section*{"W.W." HI-FI KITS}
\(\star\) LINSLEY HOOD 15-20W AMPLIFIER
July 1970 latest and ultimate design. Our kit personally tested and approved by the designer. \(\mathrm{P} / \mathrm{P}\) Tr's matched for spec'd periormance. Metalwork now available ensures simple construction of amps. and power supply.
* BAILEY PRE-AMP (AUG. 1971)

Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs 2 fin. or \(8 \times 1+\times 5\) tin Basic metalwork \(\times 2 \frac{1}{2} \times\) Especially recommended to drive \(15-20 \mathrm{~W} A B\) amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW" article
at 30p (Stamps
DETAILED PRICE LISTS at 5p accepted)
„REFUND GUARANTEED ON ALL PARTS

\section*{SPECIAL OFFER}

2N3055 30p each 4 for \(£ 1\) 2N3054 20p each 3 for 50p
Unmarked, Tested and Guaranteed. Post and packing 10 p per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-ATOUR
RETAIL SHOP NOW OPEN

\section*{A. 1 FACTORS}

245, North Sherwood St., Nottingham NG1 4EO
Telephone: Nottingham (0602) 46051 Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)


CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London; N12.
Telephone: 01-445 2713 01-445 0749. Evenings: 91-958 7624

\section*{EXGLUSIVE OFFERS}

\section*{INSTRUMENTATION TAPE RECORDERREPRODUCERS}

AMPEX
FR-100A
\(1^{\prime \prime} 14\) tracks 6 speed FR-100B
1R 14 tracks 6 speeds FR-600

14 tracks 4 speeds MINCOM
CMP-100
\(\frac{1}{4}^{\prime \prime} \frac{1}{2}{ }^{\text {N }} 1^{\prime \prime} 7\) tracks 6 speeds E.M.I.

TD-1 tracks 7 speeds

THERMIONIC SERIES IV \(\frac{1}{2}{ }^{*}\) Several other smaller Full details on request.
Prices of above are
 from \(£ 150\) to \(£ 700\).
\begin{tabular}{|c|}
\hline \(40-\) page list of over 1,000 different items in atook \\
available-keep one by you.
\end{tabular}

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS
cabinets
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Our height \\
Ref. in inches
\end{tabular}}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Widith } \\
\text { in inches }
\end{gathered}
\]} & \multirow[t]{2}{*}{Depth
in inches} & \multicolumn{2}{|l|}{Rack Panel} \\
\hline & & & & & \(P_{r}\) \\
\hline & \({ }^{76}\) & & 18 & 70 & \\
\hline \({ }^{\text {CB }}\) & \({ }_{80}^{76}\) & \({ }_{24}^{22}\) & 20 & 70 & 116.00 \\
\hline \({ }_{\text {co }}\) & 80
69 & \({ }^{24}\) & \({ }_{13}^{26}\) & 71 & \\
\hline \({ }_{\text {CD }}\) & 69
89
89 & \({ }_{22}^{21}\) & \({ }_{13}^{13}\) & \({ }_{7}^{68}\) & 12000 \\
\hline \({ }_{\mathrm{CF}}^{\mathrm{CE}}\) & 82 & \({ }_{22}^{22}\) & 24 & 77 & \\
\hline \({ }_{\mathrm{CH}}\) & \({ }_{88}^{87}\) & \({ }_{24}^{23}\) & \({ }^{26}\) & 80 & E12.50 \\
\hline \({ }^{\text {c }}\) & 83 & \(2+\) & 24 & 75 & ¢13.00 \\
\hline \(\mathrm{CK}^{\mathrm{C}}\) & \({ }_{30}^{83}\) & \(\stackrel{2+}{1}\) & 12 & 75 & ¢10.00 \\
\hline & 30 & 190 & 36 & 42 & 212.50 \\
\hline \({ }_{\text {c }}\) & 19 & \(\underline{24}\) & 18 & 17 & 2500 \\
\hline \({ }_{\text {Or }}^{\text {Or }}\) & \({ }_{69}^{69}\) & 24
30 & \({ }^{26}\) & \(\stackrel{61}{6}\) & ¢13.00 \\
\hline cT & 70 & 69 & 27 & 60 & \\
\hline cu & 87 & 26 & 17 & & £20.00 \\
\hline cr & 73 & \({ }^{23}\) & 24 & 66 & 218.00 \\
\hline Cz & & & & \({ }_{5}^{6}\) & 20.00 \\
\hline DA & 85 & 22 & 26 & 80 & \({ }^{1} 15.00\) \\
\hline DB & 53 & 22 & 22 & 47 & P15.00 \\
\hline \(\mathrm{DE}^{\text {de }}\) & \({ }^{6+}\) & 22 & 27 & 57 & ¢17.00 \\
\hline \({ }_{\text {DE }}^{\text {DE }}\) & \(\underline{5}\) & 40 & 24 & 91 & \%300 \\
\hline OH & 711 & 23 & 24 & 122 & 210 \\
\hline נк & 85 & 22 & \({ }_{26}\) & 179 & 20.00 \\
\hline DL & 54 & 24 & 19 & 69 & ¢18.00 \\
\hline DP & 74 & 24 & 2. & 66 & 18 \\
\hline DR & 14 & 21 & 12 & 10 & c\%.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{OPEN RACES} \\
\hline Our & Height in & Channel & Rack Panel & & \\
\hline Ref. & inches & Depth & Spacs & Base & Price \\
\hline RB & 108 & 5 & 104 & Bolts & 28.00 \\
\hline RD & 80 & 8 & 77 & 24 inches & 88.00 \\
\hline RA & 72 & 3 & 66 & Bolts & 110.00 \\
\hline RC & 6it & 5 & \({ }^{6} 3\) & Boits & 26.00 \\
\hline RE & 78 & 7 & 70 & Bolts & 27.00 \\
\hline
\end{tabular}

Full details of all above on request.


COMMERCIAL TYPE LATTICE STEEL AERIAL MASTS
All masts are sectional and have mating ends for foining to make \(u_{\text {sizes }}\) to 250 fect for the smaller sizes and 750 feet for the larger
sizes. Details and prices below are for 10 foot sections. All are galvanised finlsh. Ton and base Type A Lightweight \(6^{*}\)
Type B Mediunweight \(12^{* *}\) es Type C Medinaugular 21750 Type C Medinmweight
aides triangular
Type 0 Heavew Type D Heavyweight \(22^{*}\)
sides triangular
Type E Heavy weight \(31^{* \prime}\) Type E Hearyweight 31" \(\begin{aligned} \text { sides triangular } \\ \text { a } 29\end{aligned}\) sides tri

Full details of all above available on request.
P. HARRIS

ORGANFORD - DORSET
BH 16 6R
BOURNEMOUTH 85051

\section*{I.B.M. GOLFBALL TYPWRITERS}
(Computer Input/Output)
Finished with grey case and blue keyboard
Standard EBCDIC seven bit coding
Suitable as input/output for computer or data processing use, or as ordinary golfball typewriter.
Will accept normal or sprocketed paper
Standard 230 V mains input
Supplied in working order with all relevant data sheets, circuit diagrams and application notes Each machine serviced and tested before despatch

EXCEPTIONAL BARGAIN
\(£ 80\) each
KEYTRONICS
44 EARLS COURT RD., LONDON, W8
Telephone: 01-478 8499
CALLERS BY APPOINTMENT ONLY PLEASE!


\section*{WE PURCHASE}

COMPUTERS. TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS. MOTORS. TRANSISTORS. RESISTORS, CAPACITORS, POTENTIOmeters. Relays transformers etc. ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.I. 01-837 7781

\section*{WORLD RADIO AND T.V. HANDBOOK 1973}

A Complete Directory of International Radio and T.V.

\section*{E3•12}

ELEMENTS OF LINEAR MICROCIRCUITS by T. D. Towers \(£ 2.90\)
ELECTRONIC MUSIC PRODUCTION by Alan Douglas \{2. 85
ADVANCED RADIO CONTROL by E. L. Safford Jr. \(\mathbf{£ I \cdot 1 0}\)

TRANSISTOR CIRCUIT GUIDEBOOK by B. Wels \(£ 1 \cdot 30\)
TEN MINUTE TEST TECHNIQUES FOR ELECTRONICS SERVICING by E. C. Carlson \(\mathrm{El} \cdot 10\)

MULLARD TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard \(£ 1.92\)
\(\| 10\) THYRISTOR PROJECTS USING SCRS \& TRIACS by R. M. Marston \(\mathbf{f 1} \cdot \mathbf{4 8}\) MICROWAVE TRANSMISSION by J. A. Staniforth \(\mathbf{E} 2.47\)

OPERATIONAL AMPLIFIERS by G. B Clayton \(\mathbf{E} \mathbf{3 . 6 2}\)
SEMICONDUCTOR MEMORIES by D. A. Hodges \(£ 2.90\)
\(\star\) ALL PRICES INCLUDE POSTAGE

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185 Closed Sat. 1 p.m.
\begin{tabular}{|c|}
\hline \multirow[t]{17}{*}{\begin{tabular}{l}
BRAND NEW-FULL SPEC. DEVICES \\
MICROCIRCUITS: 709 28p; 710 36p; 723 57p; 74128 p; \(74837 p\) : 74 SERIES TTL: 00 16p; 02 18p; 10 16p; 11 21p; 20 16p; 3019 p ; \(7341 \mathrm{p} ; 7433 \mathrm{p}: 9072 \mathrm{p} ; 9267 \mathrm{p}\). \\
TRANSISTORS: 2N696 14p; 2N697 14p; 2N1613 16p; 2N1711 \\
16p; 2N2219 19p; 2N2904 17p: 2N2926 6p; 2N3053 15p; 2N3055 \\
35p; 2N3702 10p; 2N3703 10p; 2N3704 10p; 2N3706 9p; 2N3710 \\
\({ }^{9 p_{i}}\); \(2 N 3711\) 9p; 2N4058 12p; AC127 12p; AC128 12p; AF124 \\
 \\
ME8001 14p; MP8111 32p; MP8512 28p; OC44 12p; OC45 12p; OC71 12pi OC72 12p. \\
ZENERS: BZY88 \(5 \%\) SERIES 8p. 1 AMP RECTIFIERS 50 V \(3 \frac{1}{2} p ; 100 \vee 4 p ; 200 \mathrm{~V} 4 \frac{1}{2} \mathrm{p} ; 400 \mathrm{~V} 5 \mathrm{p} ; 800 \mathrm{~V} 6 \mathrm{p} ; 1000 \mathrm{~V} 7 \mathrm{p} ; 14 \mathrm{pin}\) SOCKETS \(12 p\). SOLDERCONS \(\frac{1}{2} p\) per PIN. LED Panel Lamp 40p. DALO PC PEN 80p. \\
Watt \(5 \%\) Carbon Film Resistors 10 of one value per \(5 p\). F.E.T. Op. Amp. £4.2B. 10A 500 V TR|AC £1.20. \\
JEF ELECTRONICS (W.W.3) \\
York House, 12 York Drive, Grappenhall, Warrington, WA4 2EJ. \\
Mail Order Only. C.W.O. P \& P 9p per order. O/Seas 65p. Discounts begin at \(10 \%\) for \(10+\). List free. Money back if not satisfied.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{QUARTZ CRYSTAL} UNITS from
- 1.0-60.0 MHZ
- fast delivery
- HIGH STABILITY
- TODEF 5271-A

> A. R. SINCLAIR

> 7 Flinders Close, St. Albans, Herts Tel: St. Albans 50614
> WE BUY ALL TYPES OF ELECTRICAL, ELECTRONIC EQUIPMENT \& COMPONENTS


The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 800 w of all lights except fluorescents at mains voltages from \(200-250 \mathrm{~V}, 50 \mathrm{~Hz}\). The DIMMASWITCH has built-in radio interference suppression.
Price: \(600 \mathrm{w}-\mathbf{£ 3 . 2 0}\). Kit form- \(\mathbf{£ 2 . 7 0}\).
\(300 \mathbf{w} \mathbf{£ 2 . 7 0}\). Kit form- \(\mathbf{£ 2 . 2 0}\).
All plus 10 p post and packing
Please send C.W.O. to:-

\section*{DEXTER AND COMPANY \\ 4, ULVER HOUSE, 19 KING STREET, \\ CHESTER CH1 2AH TEL: 0244-25883 \\ As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc. \\ WW-106 FOR FURTHER DETAILS}

\section*{TRANSFORMERS}

DOUGLAS GUARANTEED


\section*{LOUDSPEAKER BARGAINS}

Fane Pop 100 watt \(18^{\prime \prime} 8 / 15\) ohms....... \(£ 19.50\)
Fane Pop 60 . 80.115 Fane Pop 60 watt \(15^{\prime \prime} 8 / 15\) ohms Fane Pop 50 watt \(12^{\prime \prime} 8 / 15\) ohms Fane Pop 25/2 \(12^{\prime \prime} 25\) watt \(8 / 15\) ohms Fane Pop 15 12" 10 watt \(8 / 15\) ohms Baker Group \(2512^{\prime \prime} 3,8\) or 15 ohms Baker Group \(3512^{\prime \prime} 3,8\) or 15 ohms Celestion PS8 for Unilex EM) \(13 \times 8,3,8\) or 15 ohms EMI \(13 \times 8\) twin tweeter 3,8 or 15 ohms EMI \(13 \times 8\) type 35015 watt 8 ohms Richard Allan \(8^{\prime \prime} 3,8\) or 15 ohms Richard Allan \(12^{\prime \prime}\) dual cone 3 or 15 ohms Fane \(8^{\prime \prime} \mathrm{d} /\) cone 808 T 8 or 15 ohms Fane \(8^{\prime \prime}\) d/cone, roll surround, 807T 8 or Elac \(9 \times 5\), \(59 R M 109\) is ohms Elac \(9 \times 5\), S9RM109 15 ohms
Elac \(9 \times 5\) S9RMII 48 ohms. Elac \(9 \times 5,59 R M 1148\) oh
Elac \(6 \frac{1}{2}\) " d/cone 8 ohms.
Elac \(6 \frac{1}{2}\) "d/cone 8 ohms................. Elac \(4^{\prime \prime \prime}\) tweeter 8 ohms.
Crossover for above ( P \& P Free Goodmans 8P 8 or 15 ohms Goodmans IOP 8 or 15 ohms Goodmans 12P 8 or 15 ohms Goodmans ISP 8 or 15 ohms Goodmans 18 P 8 or 15 ohms \(2^{\prime \prime}, 2 \frac{1}{2}\) " or \(3^{\prime \prime} 80\) ohms Philips \(5^{\prime \prime} 8\) ohms \(7 \times 4\) or \(8^{\prime \prime} \times 5^{\prime \prime}, 3\) or 8 ohms E11.15 \(10^{\prime \prime} \times 6^{\prime \prime} 3,8\) or 15 ohms..

All units guaranteed new and perfect
Prompt despatch, P \& P 25p per speaker
Send for our free booklet "Choosing a speaker"
WILMSLOW AUDIO
```

(Dept.WW)

```

10 Swan Street, Wilmslow, SK9 IHF Cheshire

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wanis}

\author{
To "Wireless World" Classified Advertisement. Dept., Dorset House, Stamford Street, London, S.E.I
}

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
```

(2) Rate: 50p (10/-) PER LiNE. Average seven words per
line. Minimum two lines.

- Name and address to be included in charge if used in advertisement.
(3) Box No. Allow two words plus 25p (5/-).
Cheques etc., payable to "Wireless World" arid
crossed "\& Co."
(4) Press Day March 8, 1973 for April, 1973 issue.

```

NAME

ADDRESS


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & TEKTRONX & TELEDUHPMENT & MARCON & SOLARTRON & ADVANCE & VENNER & FURZEHILL \\
\hline MARCON & SOLARTRON & COSSOR & tektroni & S31 & & & TC1A & TSA3436 & 0160 \\
\hline TF329G & AS516 & 339 & 422 & S31 & TF1041 & CD523S 2 & T2 & TSA3334/3 & 1684 \\
\hline TF801B & AS517 & 1035 & 51140 & -43 & TF1101 & AD557 & TC2A & Radivet & HEWLETT PACKARD \\
\hline TF8018/3/S & ASW51A & 1049 & 515 A & WAYNE KERR & & CD711S & D1 & 211 & 200CD \\
\hline TF8010 & SRS 1518151A & E.M.I. & 524 AD & W221 & TFI \(104 / 1\)
TF1300 & CD814 & D2 & RACAL & 130 A \\
\hline TF867A & SRS 1528152A & WM2 & 531 & B221 & TF1300 & 00 & & SA28 & BC221 \\
\hline TF868A & VF252 & WM8 & 541 & -8121 & TF1345/2 & CD1014 & AIRMEC & SA33 & HARTLEY 13A \\
\hline TF885 & C0546 & WM16 & 541 -B & FURZEHILL & & CD1016 & 701. & & \\
\hline
\end{tabular}

This is only a small example of the manuals we have in stock. S.A.E. with your enquiries - we may be able to help

\section*{INIDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 90-100}
A1 Factors105
Acoustical Mfg. Co. Lid
Adcola Products LtdAeriatite Aerials L/dA.K.G. Equipment Lid30
Amtron U.K.
Ancom Lid.
Anders Electronics LtdAvo Ltd.
16, 1726,41
Anexira Ltd.106
Audix B. B. Lid14
14
Aveley Electric Lid
Avo Ltd.24
30Barrie ElectronicsB. \& W Electronics
Bentley AcousticBentley. K. J., \& Partners Ltd.BIIET.

Farnell Instruments Lid
Ferranti Ltd.
Fi-Comp Electronics
Fieldtech
Foulsham-TAB Ltd.
Future Film Developments
Gardners Transformers Lid.
Goldring Mig. Co. Lid.
Goodmans Loudspeakers Ltd
Grampian Reproducers Ltd.
Harris Electronics (London) Lid
Harris, P.
Hart Electronics
Hatfield Instruments Ltd
Heath (Gloucester) Ltd.
Henrys Radio Lid
Henson. R., Ltd
1.C.S. Lid
I. M.O. Precision Controls Ltd.

Industrial Exhibitions Ltd.
Industrial Sub-Assemblies Ltd. (I.S.A.) ....... 106
Inteurex Ltd
J.E.F Electronics

Jermyn Industries
Keytronics
Lasky's Radio Lid.
Ledon Instruments Ltd.
Lennard Developments Ltd.
Levell Electronics Led
Light Soldering Developments Lid.
Limrose Electronics Lid
Linstead Electronics
Macfarlane. W. \& B.
Macinnes Lahoratories Lid
Mackarl Electronics (London) Ltd
Mackarl Electronics (London) Ltd. ............ 42
Marconi Instruments Ltd. ................. Cover ii
Marriot Magneties Ltd.
Marshall, A., \& Sons (London) Ltd. .......... 71
McKnight Crystal Co. ......................... 106
McLennan Eng Itd
Millbank Electronics
Mills, W.
Milward, G. F.
Modern Book Co.................................... 66
M.O. Valves ......................... 3, 5, 26. 44

Multicore Solders Ltd. . . . ................ Cover iv
Myall, W. H.
Nombrex \(\operatorname{Ltd}\).
Pattrick \& Kinnie ..... 70
Powertran Electronics ..... 81
Practical Wireless
36
Quality Electronics Ltd ..... 36
104
Quartz Crystal Co. Ltd.
18
Racal Communications Ltd
Rank Audio Products ..... 40
R.S.C. Hi-Fi Centre Ltd. ..... 69
R.S.T. Valves Itd. ..... 7
Samsons (Electronics) Ltd ..... 83
S.D.S.A ..... 31
S.E. Laboratories (Eng.) Ltd ..... 8, 9
Service Trading Co ..... 82
70
Servo \& Electronic Sales Ltd.70
20
Shibaden (U.K.) Ltd ..... 55
Shure Electronics Ltd
Shure Electronics Ltd
106
57
Sinclair A.R.
Sinclair Radionics Lid. ..... \(54,56,57\)
S.M.E. Ltd
\(62,63,64,6\)
Smith, G. W. (Radio) Ltd. ..... 25
S.N..S. Communications ..... 103
Sowter. E. A ..... 106
42
Special Product Distributors Lid ..... 42
Starman Tapes ..... 59
Strumech Eng. Lt
Studio Electronics ..... 104
Sugden. J. E., Ltd ..... 36
Taylor Electrical Instruments Ltd ..... 42
Telcon Metals Ltd ..... 77
Teleprinter Equipment Ltd ..... 48, 52
Teleradio, The Co. (Edmonton) Lid ..... 104
7
Teoner Ltd
Toyo Communication Equipment ..... 58
44
Trannies
58
Valradio Ltà ..... 73
Vortexion Lid ..... 12
Watts, Cecil E. Lid. ..... 104
Wavtie Keir The, Co. Ltd
West Hyde Developments Ltd.West London Direct Supplies
Weyrad (Electronics) Ltd21
74Whiteley Electrical Radio Co. Lid72
22
Wilmslow Audio ..... 107

Latest addition to the Bradley family of pulse generators, the Model 240 is a versatile, value-for-money pulse generator with output rise and fall times that can be varied between 5 ns and 5 s in any ratio up to \(100: 1\).

High performance features include eight PRF ranges covering from 0.5 Hz to 50 MHz with pulse delays and widths from 10 ns to 1 s . Pulse amplitude can be varied from 0.5 V to 10 V while the baseline can be offset up to \(\pm 10 \mathrm{~V}\).

The Bradley 240 can be used to drive resistive or reactive loads of any magnitude. The internal \(50 \Omega\) source impedance may be switched out to provide \(\pm 10 \mathrm{~V}\) into a \(50 \leq\) load.


The 240 has extra operational versatility with six output modes including double pulse and square wave.

For external trigger there's an adjustable level control and slope selector which allows triggering off any point on the input waveform. This operates down to zero frequency in all modes with a trigger light to show correct operation.

There are many other high-performance features on the new Bradley 240 , which costs just \(£ 230\) in the UK. To find out about these, please telephone Ashley Stokes on 01-4507811, extension 113. Or write to him at the address below.

Our own BCS Certificate is available.

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years.
If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible.
There are well over 1,000 Specifications, made to all International Standards to choose from. and here are just a few of the special solders that we manufacture

Savbit Alloy - A copper loaded alloy to reduce copper absorption from copper wires and copper laminate when soldering and also reduces the wear of copper soldering iron bits.

High Melting Point Solder (H.M.P.) - Melting temperature liquidus \(301^{\circ} \mathrm{C}\) for special applications where above average heat is experienced.

Low Melting Point Solder (L.M.P.) - for soldering ceramics or silver coated surfaces. Melting temperature liquidus \(179^{\circ} \mathrm{C}\).

Tin Lead Cadmium (T.L.C.) - special low melting point solder. Melting temperature liquidus \(145^{\circ} \mathrm{C}\).

Ultra Fine Gauges - for soldering miniature components and assemblies. In all standard wire gauges to \(34 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). \((0.23 \mathrm{~mm})\) in most alloys.
Solder Pre-forms - include solder tape, rings, washers, pellets. Cored or solid. Available in a wide range of specifications.
Solder Cream - for special applications.
For mass assembly of printed circuit boards EXTRUSOL High Purity extruded solder for solder baths and pots.

Compatible range of printed circuit chemicals and fluxes:

PC 2 Multicore Tarnish Remove:
PC 90 Multicore Peel off Solder Resist
PC 41 Multicore Anti-Oxidant Soider Cover
PC 80 Multicore Solvent Cleaner
PC 10A Multicore Activated Surface Preservative
PC 52 Multicore Protective Coating
and seven standard Multicore liquid fluxes available in one and 45 gallon containers.
Write for Technical Bulletins, on your Company's letterhead, for products which interest you to


\section*{Multicore Solders Ltd.}

Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7.EP
Tel : Hemel Hempstead 3636। Telex : 82363
```


[^0]: Price 20p. (Back numbers 40p.)
 Editorial \& Advertising offices: Dorset House. Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription rates: Home, £4.35 a year. Overseas, 1 year $£ 4.35 ; 3$ years $£ 11.10$ (U.S.A. \& Canada 1 year $\$ 11$,
 3 years $\$ 27.75$). Student rates: Home and Overseas 1 year $£ 2.18$. 3 years $£ 5.55$ (U.S.A. \& Canada 1 year $\$ 5.75$,
 3 years $\$ 14.50$).
 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^1]: *Maidenhead Consultants, Maidenhead
 ** E.M.I. Electronics Ltd., Hayes.

[^2]: *Proprietary name registered by Telcon Lttd. \dagger Vacuumschmelze AG, Hanau a.M., Germany.

[^3]: *South East London Technical College
 \dagger Twickenham College of Technology

[^4]: TOYOCOM
 ROYO COMMUNICATION
 EQUIPMENT CO. LTD.

[^5]: Code No's. mentioned above are given as a guide to the type of device in
 the pak. The devices themselvee are normally ummarked.

[^6]: A further 10% discount on lots of 100 of any one type. Please calculate the neight of your order and include appropriate postage.

[^7]:

